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Battery charging is a greater challenge in the emerging electric vehicle domain. A newer multistage constant-current (MSCC)
charging technique encompassing state-flow control tool-based design is implemented for charging the battery of an electric two-
wheeler. MSCC method allows for faster charging and reduced battery degradation per charge. The designed controller in-
corporates line current power factor correction, thereby limiting the total harmonic distortion (THD) in line current and reactive
power. The control strategy for battery charging has been developed using the state flow chart approach for implementing MSCC.
The model has been formulated and implemented in MATLAB/Simulink. The proposed control monitors the state-of-charge
(SOC) of the battery, age, and thermal behavior due to the charging strategy. The results show that the proposed charging
technique with a state flow control approach gives effective and efficient output with reduced THD. Simulation results disclose

that the desired parameters are controllable, stable, and effective within the operational limits.

1. Introduction

With growing pollution in urban India and climate
change threatening the world, all countries and vehicle
manufacturers are clear that the future of transportation is
electric vehicles [1]. More than any other country, Indians
ride 2-wheelers and India has around 7.35 million electric
scooters and bikes, with the projected numbers for 2030
being around 26.52 million. And, the reason for the
popularity of 2-wheelers in India is the price-sensitive
market. The market for electric two-wheelers in India is
growing rapidly, and the government is pushing for their
adoption by giving incentives [2]. The market in India is
very price-sensitive, and affordable scooters and afford-
able charging solutions will be paramount [3]. The

conventional constant current-constant voltage (CC-CV)
mode of charging and its drawbacks are increased time in
CV mode [4]. The work aims to design an affordable
charger with good charging speeds, exploring a newer
method: the multistage constant current charging
method. A fast-charging method considering the battery’s
safety/lifecycle and charging time is proposed in [5] by
adopting the computation of internal dc resistance as
a function of SOC and charging currents for a Li-ion
battery. Considering the temperature rise of the Li-ion
battery and charging time using an equivalent battery
model, the particle swarm optimization technique is
adopted to find the optimal charging technique [6]. The
temperature rise can be improved by nearly 40% with an
18% reduction in charging time.
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A Cuk-based resonant LLC converter was proposed for
charging e-bikes considering the power quality of the input
current in [7]. The pulse width modulation (PWM) based
converter works in discontinuous mode. It has a single
voltage loop simplifying its control with a maximum
charging current of 10 A to charge a 20 AH battery following
the IEC-61000-3-2 standard. An improved two-switch buck
PFC incorporated SWISS rectifier-based charger for three-
wheeler was proposed by [8], accommodating both fast and
slow charging capabilities.

The problems associated with charging Li-ion batteries
are mentioned as (i) increased temperature rise if the
charging current is high with reduced charging time and (ii)
increased charging time if the charging current is main-
tained within limits with good temperature rise. Various
charging techniques for Li-ion batteries are adopted by
considering the above-given limitations. Apart from the
techniques, the charging pattern/algorithms are optimized
and adopted for real-time implementation. Every method
has its pros and cons; hence, there is always some com-
promise that must be made in charge. To reduce the charging
time, current should be increased until the battery’s tem-
perature is within limits. Once the battery’s voltage has
reached the minimum level, the charging current is reduced
to a lower value. At every stage, the SOC of the battery is
monitored to fix the charging current reference for
each stage.

In this manuscript, a novel state-flow approach-based
controller design for multistage constant-current battery
charging techniques was proposed and implemented for an
electric two-wheeler. The strategy was formulated based on
the survey conducted by the authors. This article briefs the
literature on the selected problem statement in the in-
troduction. The theoretical aspects of MSCC compared to
the CC-CV algorithm were discussed in Section 2. The
design approach adopted for developing the charger and the
control algorithm was elaborated in Section 3. The design of
the power converter and the development of the state-flow
control algorithm were discussed, respectively, in Sections 4
and 5. The proposed concept was integrated and imple-
mented in MATLAB/Simulink environment and obtained
results. Electrical and thermal aspects of the battery and
battery charger were inspected, and the results are presented
in Section 6. Section 7 includes the conclusion that abstracts
the simulation results with the possible future enhancement
in the selected domain.

2. MSCC over CC-CV Charging Algorithm

Li-ion batteries and few types of batteries currently being
utilized for electric vehicle applications [9] are charged using
the traditional CC-CV technique and are preferred over
other methods. Fast battery charging with better efficiency
has continually emphasized charging techniques [10]. In
CC-mode, a constant and higher magnitude current is used
to charge the battery until it charges to its predefined
threshold/cut-off voltage [11]. In CV-mode, a constant
voltage of magnitude equal to the cut-off value of CC-mode
is applied, resulting in a reduced charging current.

Journal of Advanced Transportation

Eventually, the current ceases when the battery potential is
equal to the applied voltage [12]. Charging the battery at
a large magnitude constant current followed by CV-mode
prolongs the charging instance [13]. This eventually leads to
adverse effects on the charging efficiency and capacity [14].
Hence, adopting the fast CC-CV charge method does not
result in a feasible charging method that can be adopted for
Li-ion batteries.

The multistage constant current technique is a new
charging technique which charges the battery in the constant
current mode in different stages with various stages of
constant current to charge the battery fully. This method
splits the battery charging time into multiple time instants.
The battery is charged under constant current mode with
different reference currents. The initial charging of the
battery is considered at higher values. As the battery charges,
the reference currents are reduced in the subsequent steps
until the battery is full, as illustrated in Figure 1. The value of
the reference current at each stage will be decided based on
the battery capacity and SOC of the battery. Several opti-
mization techniques can be employed to fix the reference
current suitably. The charging methodology improves the
battery life for many cycles with quick charging time and
reduced losses. This method resolves the problem of lower
current in CV mode in traditional chargers with a simul-
taneous reduction in charging time and cost of the charger.

The investigation of 13 charging patterns of Li-ion
batteries is considered in [15] on the electrochemical ef-
fects of charging. EIS measurements were carried out after
300", 500™, and 510™ cycles under 50% SOC. It is observed
that the charging and discharging is affected by electrode
reaction kinetics caused by diffusion of Li ions in the active
material. Under MSCC, the cells attain smaller electro-
chemical polarization, and the maximum charging current is
determined by the lithium plating boundary that determines
the rapid charging ability of Li ion batteries. MSCC strategy
results in high energy density pouch cells, with optimal
charging combination under wide range of charging tem-
peratures improving the cycle performance and shorter
charging time.

3. Design Approach

3.1. Battery Capacity. Present 2-wheeler EV batteries do not
exceed the power rating of 2.5kW; hence, in the power
converter design, all the components are selected to suit their
operating power levels.

3.2. Use Case. The aim is to develop a charger that can be
plugged in at home with single-phase supply for domestic
use and is compact, low cost as possible without compro-
mising the charging time and efficiency. Hence, a single
DC-DC boost converter for PFC and charging algorithm
applications is considered the best power converter choice.

3.3. Alternatives and Tradeoffs. Multistage constant current
charging is not the current industry standard and is aimed at
formulating an alternative to the conventional method of
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FiGure 1: llustration of MSCC technique for battery charging.

charging. The medium-long term impact of this method is
under research.

3.4. Fundamental Battery Charging Circuit. The block dia-
gram of the proposed multistage constant-current charger
system is shown in Figure 2. From the domestic supply
socket, a single-phase ac supply is connected to the step-
down transformer to reduce the voltage compatible to
charge the battery. Uncontrolled rectification of ac to dc is
performed by a diode bridge rectifier. The output of the
rectifier is fed to the PFC boost converter for appropriate
conditioning of charging voltage and shaping the input AC.
The PFC converters serve the dual purpose of regulating dc
voltage and improving the AC input’s power factor of the ac
input. A suitable control strategy is vital in any charge
controller, considering input ac voltage and battery side
parameters for regulating the PFC boost converter [14]. The
MSCC controller sets the battery’s reference voltage and
charging current, and the controller incorporates PFC. The
controller receives information like source voltage, fre-
quency, and phase from ac side and battery voltage, refer-
ence voltage, and SOC from the dc side using appropriate
sensors. Here, it is proposed a charging algorithm that
charges the battery at a constant current at different voltages
as a function of SOC of the battery.

4. Design Specifications

The design parameters of the proposed battery charger for an
electric 2-wheeler are provided in Table 1. The design in-
volves designing of PFC boost converter, LC filter, and
transformer with adjustable tap settings. The design of the
PFEC boost converter is discussed as follows.

4.1. Boost Converter with Additional LC-Filter. The circuit of
the PFC-boost converter with an additional output LC filter
is shown in Figure 3. The additional LC stage is provided to
eliminate the switching frequency ripples at the boost
converter’s output. The design of the boost inductor and
output capacitor is discussed.

Based on the duty ratio (D), the boost converter has its
predefined limits of operation [16]. Within the limits of the
duty ratio, the output voltage (V) of the boost-converter is
given by: V, =V, /(1-D). For an ideal boost-converter,
a PWM duty cycle of D=0 leads to the output voltage
equaling the input dc voltage (Vi,), and for D =1 the output
voltage tends to be infinite [17].

The value of boost inductance is calculated as

_ VinD

L, .
" fsAIL

The minimum output capacitance Cg () required is
calculated based on input power (P,,) and peak inductor
current (I;) as

(1)

Al = O.ZIPk,
2P, (2)
k — >
P Vin(min)
Tout (manD
Co(min) = an{Z (3)
S

where Al is the inductor current ripple, I, is the peak
current of the inductor, f; is the switching frequency of
the boost converter, and AV, is the ripple in output
voltage.
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FIGURE 2: Block diagram of the proposed Li-ion battery charger with MSCC algorithm.
TABLE 1: System parameters. battery voltage and the inner current loop shapes the dc-link
current so that the input current tracks the input voltage
Parameters Values

Source voltage

19-230 V (RMS), 50 Hz

Variable ratio transformer 0.081
Boost inductor (L;,) 2.1mH
Output capacitor (Coyr) 150 uF
Switching frequency f; 20kHz
LC filter
Inductor (L) 0.08 H
Capacitor (C) 90 mF
Battery specifications
Nominal voltage 252V
Rated capacity 49.4 Ah
Fully charged voltage 2933V
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FIGURE 3: Basic charging circuit with PFC boost converter.

4.2. Controller. The controller is the major component of the
control system that dynamically regulates charging current,
charge voltage, and input power factor. The controller needs

3 measurements, namely,

(1) Measure the output voltage to keep it at the reference

level (Vief)

(2) Measurement of the ac input voltage at the secondary
side of the transformer to provide a reference for the
inductor current, in such a way- the input AC in

phase with input ac voltage

(3) Measurement of the average inductor current to
ensure that it tracks the rectified AC voltage

The controller consists of two control loops as shown in
Figure 4, a primary current-control loop and a secondary
voltage-control loop. The voltage-control loop regulates

both in shape and phase, ensuring a near unity power factor
[18]. The working of the MSCC algorithm is described in
Section 5.

4.2.1. Voltage-Control Loop. Voltage control loop regulates
battery voltage by providing a current command to the inner
current controller loop of the PFC controller [19]. This
current is proportional to the magnitude of the charging
current required to charge the battery. The battery voltage
error is regulated by PI controller providing DC reference to
the inner current loop [20].

4.2.2. Inner-Current Loop. In the inner-current loop, the
reference current set by the voltage control loop is multiplied
by the final shape of the supply voltage at unit magnitude. It
is compared with the inductor current I; of the boost
converter [21]. The current error is fed to the PI controller,
whose output is the desired duty ratio (). The signal is then
fed to the pulse generator to trigger the power switch of the
PFC boost converter [22].

5. State Flow Control Algorithm

Li-ion batteries are very sensitive to overcharge and varia-
tions in charge/discharge currents; therefore, a suitable
charging algorithm is needed to maximize charging capacity,
reduce charging time, and improve battery lifespan [23].

In the traditional CC-CV mode, a high magnitude
constant current is supplied to the battery until its voltage
reaches the peak value, after which that peak voltage is
maintained and kept constant till the current decreases to its
cut-off value and charging is stopped [24]. This consistent
application of peak voltage can adversely affect the battery
and increase charging time.

The multistage charging method is faster and more ef-
ficient than the conventional CC-CV method. It is imple-
mented with 3-stage charging, where various stages have
different current values. As charging starts, the highest
current value is applied until the battery voltage reaches its
peak value, upon which the current is reduced to its second



Journal of Advanced Transportation
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FIGURE 4: Block diagram of the charge controller.

stage value, which leads to a sudden drop in the voltage. This
voltage then climbs to its peak value when the current is
dropped again. This is the mechanism of multistage charging
[25]. For the three stages, three charging current values are
chosen. The first stage will have a constant value, the
maximum allowed current (I;) for the battery in CC mode.
So, the charged AH capacity now only depends on the last
stage current (I3). The smaller the value of I, the higher the
value of charged capacity. Now, as both I, and I; are selected,
charging time depends only on I, and for different values of
I, charging times will be different, but the AH capacity
charged will approximately be the same as I3 [26]. The
optimum value of I, is selected by using the following
formula:

I, = I, xT,. (4)

This control logic gives voltage reference to the con-
troller, which then controls the current in the battery
through boost PFC. The optimal value of I, is chosen
based on Figure 5, which plotted the charging time as
a function of charging current I,. The total charging time
T is minimum when the I3 has a value calculated by (3),
and the optimal value is independent of the values of Req
and Ceq instead depends on the values of I; and I;. While
computing I,, the values of I; and I; are maintained
constant. The lowest charging time corresponds to the
value of I, which satisfies that formula. The complete
formulation of MSCC is shown in Figure 6 and is detailed
in this section.

5.1. State Flow Chart Demonstration. In the first stage, the
charger starts charging the battery at maximum current I,
and achieving the current I; gives a voltage reference of 35 V.
To avoid overlapping of all the stages simultaneously, an
initial delay of 0.4 seconds is added due to a sudden increase
in the voltage. To incorporate this, two blocks of the same
stage are used with the delay between them.

In the second stage, where the current reference is I, the
battery voltage rises to its peak value of 29.33V, and the
condition [ Ve < V3] is met. The logic moves to the second
stage with a reference voltage of 28.25V. Again, to in-
corporate the slight delay in the reduction of voltage which
might lead the control to cross all stages. Hence, a delay of
1 second is introduced and to do that, two blocks of the same
stage are used.

After the battery voltage has climbed up to Vieu. the
condition is met and moved to the third stage, where the
process repeats. And finally, in the third stage, when the
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FIGURE 5: Relationship between charging time (T) and charging
current (I,).

battery reaches its peak voltage, the charging is completed,
and the reference voltage is now reduced to 0, inhibiting the
current supply to the battery.

6. Simulation Results

The proposed charging circuit is simulated with MATLAB
Simulink. The block diagram is represented in Figure 7.

The output from the transformer is stepped down single-
phase voltage. After stepping down the input voltage is
passed through a full bridge rectifier which rectifies the AC
into DC as shown in Figure 8. From the perspective of PFC,
the load is connected to the battery’s rectifier and a boost
converter with capacitors and inductors. The load becomes
more reactive because of these reactive components, which
causes line current, i.e., current drawn from the AC supply to
go out of phase with the line voltage, reducing the power
factor. The shape of the line current becomes nonsinusoidal
while line voltage stays sinusoidal. The nonsinusoidal line
current increases reactive power and decreases active power.
All these ill-effects caused by diode bridge rectifiers can be
avoided by using the Boost PFC converter, and the results
are shown in Figure 9, line voltage (V;,) is shown in blue
while line current (I;,)) is shown in red. Inductor current (I;)
is shown in red, while reference (I} ,.f) is shown in blue in
Figure 10.

6.1. Power Factor Improvement. In the absence of a boost
converter, the source current waveforms are observed at
ac input spikes near the ac supply voltage peak. The
waveform distortion evaluated using FFT analysis has
a rich spectrum of harmonic frequencies that are odd
integer multiples of the fundamental frequency. The THD
of source current is 280%, with the corresponding power
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FIGURE 6: State flow control logic of the multistage current control algorithm.
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FiGure 7: MATLAB simulink model.

factor of 0.33 lagging, which is very poor. The provision of
a boost converter in the dc-link with a suitable control
technique that shapes the source current to be in line with
source voltage improves the source current waveform
with reduced THD and improved power factor as dis-
cussed in this section.

FFT analysis of line current is performed in all three
stages of charging to analyze the power factor improve-
ment. The line current is directly proportional to the
magnitude of the current supplied to the battery. The
source spectrum is inversely related to the power factor,
stating poor distortion in source current results in poor
power factor. For all the FFT analyses a fundamental
frequency of 50 Hz is set.

Figure 11 shows the FFT spectrum of ac line current in
CCCV mode. A charging current of higher amplitude is
chosen to limit the charging time of the battery on trivial
basis. The line current THD is 15.82% which is far beyond
the recommended limits specified by IEEE519: 2014 rec-
ommendations, and the power factor is computed to as

Power factor = \/1/1 + (15.82/100)* = 0.9877 lagging.
Figure 12 shows the FFT analysis of line current in the 1*

stage (stage of I; current). In this stage, the line current peak is

22.7 A, the corresponding THD is 9.26%, and the power factor

is computed to as Power factor = 1/1/1 + (9.26/ 100)* = 0.9957

lagging. The THD is significantly lesser than the CCCV
adopted earlier.
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Figure 13 shows the FFT analysis of line current in the 2™
stage (stage of I, current). In this stage, the line current with
a peak of 10.74 A with THD of 8.36%, and the power factor is

computed to as Power factor=1/1/1+ (8.36/ 100)* = 0.9965

lagging, and the THD is significantly less.

Figure 14 shows the FFT analysis of line current in the
stage (stage of I3 current). In this stage, the line current with
a peak of 7.92 A with THD of 4.5%, and the power factor is

3rd

computed to as Power factor= \/ 1/1 + (4.5/100)* = 0.9989
lagging, and the THD is within IEEE519:2014 recommendation.

Vpeak input in the state flow chart was reduced at
various stages to demonstrate the charging stages as it
consumes a longer run time. In stage 1, a current I; of 20 A
is supplied to the battery, which leads to increase in voltage
and SOC of the battery and V. is reduced to 27.83 V. The
battery parameters and the charging profile are shown in
Figure 15.
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In stage 2, a current I, of 10.7 A is supplied to the battery,  rate of charging of the battery because the charging rate
which leads increase in voltage and SOC% of the battery.  depends on the magnitude of the supply current; this can be
When the battery voltage reaches 27.83 V the I; isreduced to ~ seen in the %SOC. When the battery voltage reaches
I, which leads to a decrease in voltage and decrease in the 27.588V, I, is reduced to I, which again leads to a decrease
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in voltage and a decrease in the rate of charging of the
battery.

Now in the 3™ stage, the charging current magnitude (I5)
of 5.7 A is set as reference and is charging the battery. The
charging rate is even slower, following the protocol adopted
by most battery chargers in today’s world. In other words, at
the lower SOC level, the battery needs to charge quickly with
an elevated current level. The charging current should be
relatively lower at a higher SOC level. The converter’s ef-
ficiency with ideal components is calculated as the ratio of
output power to the input power measured at the funda-
mental frequency, accounting for 93.78%. The nonideal
behavior of the converter, effect of parasitic elements, and
effect of noise signals are not considered for calculating
efficiency. The ambient temperature of the battery is set
initially at 25°C and later increased to 35°C, considering the
ambient temperature of India. The performance of the
charger is invariant. In practice, there will be a detrimental

3rd

effect due to temperature variations due to environmental
conditions. Hence, measures must be taken to isolate the
battery packs exposed to direct sunlight and effective
heatproofing. This will improve the battery life and enhance
the safety of e-bikes by avoiding the attainment of higher
temperatures of battery packs.

7. Conclusion

The multistage constant current technique for charging Li-
ion batteries for two-wheeler electric vehicles was formu-
lated and developed using a state-flow approach using
MATLAB/Simulink. The performance of the MSCC-based
charger was designed considering battery life, temperature
rise, and line input current shaping with power factor
correction. The concept of fast charging was implemented by
considering SOC and battery voltage. The charging currents
for the various stages were fixed considering the charging
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time of the battery, and the results are demonstrated. The
input current spectrum of the charger indicates THD of the
input currents is within limits at near unity power factor. The
control strategy addresses the primitive design of battery
chargers for e-bike applications which can be modified for
three-wheelers. The research can further be extended by
evaluating the battery capacity after charging and thermal
analysis and considering the effect of small signal noise on
the performance of the battery charger.
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The widespread adoption of electric vehicles (EVs) can help attain economic and environmental sustainability by reducing oil
dependency and greenhouse gas emissions. However, several issues need to be addressed before EVs can become a popular vehicle
choice among the general public. A key issue is the perpetual reduction in EV battery capacity caused by battery degradation over
time with usage. This can lead to a reduced driving range and cause “range anxiety” for EV drivers. This becomes even more
critical in developing countries where consumers are highly sensitive to battery replacement costs. Thus, to promote EVs in
developing economies, policymakers and vehicle manufacturers need to develop attractive incentive schemes and warranty
strategies preceded by a thorough assessment of the useable EV battery lifespan for a wide range of users. This paper develops a
multiparadigm modeling framework to compute battery degradation for a large population of EVs by capturing the effects of
travel patterns, traffic conditions, and ambient temperature. The proposed framework consists of four different building blocks: (i)
a microscopic traffic simulation model to generate speed profiles, (ii) an EV power consumption model, (iii) a battery equivalent
circuit model, and (iv) a semiempirical battery degradation model. The proposed framework can also be used to assess the battery
life-cycle of electric-powered automated vehicles by adjusting their travel patterns accordingly. A case study is presented using
travel diary data of around 700 households from the U.S. National Household Travel Survey of 2009 to simulate household travel
patterns and corresponding battery lifespan distribution.

1. Introduction

The transportation sector’s share of energy consumption has
been steadily increasing in developing economies like India
[1]. This makes the transportation sector in developing
countries one of the major contributors to urban air pol-
lution [2]. Electric vehicles (EVs) have zero tailpipe emis-
sions, making them a promising alternative to conventional
fossil fuel-based vehicles for curbing greenhouse gas emis-
sions [3]. EVs can also potentially reduce national oil de-
pendency as the renewable and nuclear energy sectors grow.
Several automobile companies have already introduced EV's
to the market. For example, in 2021, Volvo announced a plan

to cease ICEV production from 2030 onwards and to
produce only BEVs and PHEVs [4]. Policymakers are also
currently offering incentives to encourage the purchase of
EVs [5]. For example, under the clean vehicle rebate project
[6], the California Environmental Protection Agency
(CalEPA) provides a rebate of up to $7,000 for EV purchases.

Despite international efforts, the greater adoption of EVs
still faces several challenges. For example, the reduced
maximum driving range due to battery degradation can
accentuate range anxiety (ie., the fear of running out of
battery charge before completing the trip) among EV drivers
over time [7, 8]. The costs associated with battery replace-
ment from degradation can further deter EV purchases. This
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impending inconvenience and economic burden make af-
fordable EVs unattractive for new automobile buyers, es-
pecially in developing countries where consumers are more
sensitive towards costs. The scarcity of information on
battery degradation and contributing factors also plays a
critical role in increasing consumer skepticism. A thorough
understanding of the effects of travel patterns, driving
characteristics, and environmental factors on EV battery
lifespan would assist vehicle manufacturers and policy-
makers in designing appealing incentive schemes and
warranty strategies to increase EV adoption [9]. It can also
help consumers make informed decisions based on their
travel patterns and driving behaviors.

In this context, this study proposes a multiparadigm
modeling framework to estimate the useable battery lifespan
of a large population of EVs. The useable battery lifespan is
defined as the duration within which the maximum EV
battery capacity degrades below a certain threshold of its
original capacity and needs to be replaced for regular use. It
is an important factor in deriving the energy consumption
estimation model for EVs [10]. The generally accepted
battery degradation threshold before it needs replacement is
considered to be 20 to 30% of its original capacity [11, 12].
The proposed modeling framework consists of four different
building blocks: (i) a network-level microscopic traffic
simulation model to obtain realistic drive cycles or speed
profiles (i.e., a series of vehicle speeds versus time) of the
vehicles; (ii) an EV power consumption model to compute
the power profile from the speed profile; (iii) a battery circuit
model that converts the power profile to a battery current
flow profile; and (iv) a semiempirical battery degradation
model that simulates battery lifespan based on current flows
and ambient temperature. The multiparadigm approach
provides the flexibility to use the most suitable modeling
methods at each step. Some studies have used multi-
paradigm or multistage approaches in EV-related research,
including digital battery lifespan management [13]; however,
to the best of our knowledge, they have not been used to
understand the impacts of travel patterns on the battery
lifespan.

Battery degradation or battery aging can be classified
into two different mechanisms: calendar aging (during
storage) and cycle aging (during use). Aging happens as a
result of structural disordering, variation in electrolyte
composition, or loss of active material caused by thermo-
dynamic instability [14, 15]. Calendar aging is mainly caused
by the growth of a protective layer at the anode called solid
electrolyte interphase (SEI), which results in the loss of active
material (e.g., lithium) and increased electrode impedance
[14, 16]. Cycle aging is mainly caused by structural changes
and chemical decomposition of active material at the
cathode and changes in SEI at the anode from electrolyte
reactions during charging and discharging [17]. Although
total degradation is considered as the summation of both
calendar aging and cycle aging, their degradation mecha-
nisms are not independent, and interactions occur [17]. This
study focuses on modeling Li-ion battery degradation since
most commercially available EVs use lithium-ion (Li-ion)
battery packs [8]. Due to the inherent complexity of aging
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mechanisms and their interactions, several semiempirical
battery degradation models [11, 18-21] and statistical
models [22] based on experimental data have been proposed
in the past literature.

Several efforts have been made in the past to quantify the
useable battery lifespan of EVs. For example, Marano et al.
[23] and Onori et al. [24] proposed a model to compute
battery degradation for plug-in hybrid electric vehicles
(PHEVs) using depth-of-discharge (DoD) (ie., the per-
centage of battery capacity used before recharging) and
battery temperature using linear combinations of standard
driving schedules like the Urban Dynamometer Driving
Schedule (UDDS) [25], which limits its applicability to a
large population of EVs with diverse travel patterns and
driving behavior. Guenther et al. [26] investigated vehicle-
to-grid applications for synthetic drive cycles using a sim-
plistic energy-based battery model, which ignores the effects
of internal resistance and cell voltage at different state-of-
charge (SOC) (ie., the percentage of battery capacity
available). Peterson et al. [27] analyzed vehicle-to-grid ap-
plications using UDDS and concluded that using a realistic
drive cycle is important to quantify battery degradation as
DoD may provide misleading results. Some studies have
evaluated the impacts of battery recharging strategies on
battery degradation using a combination of DoD, SOC, and/
or temperature [28, 29]. However, these models assume a
very simplistic drive cycle with little or no variation in speed
and, hence, the current flow through the battery.
Remmlinger et al. [30] presented a method to compute the
degradation index relative to the degradation of new bat-
teries by using the measurement values of cell voltage and
current flow. Pelletier et al. [31] provide a brief overview of
several Li-ion battery degradation models that can be used
for EV applications. The proposed multiparadigm frame-
work extends the existing battery lifespan computation
frameworks by introducing a microscopic simulation layer
to assess heterogeneity in travel patterns and driving be-
havior. Yang et al. [32] developed a novel analytical
framework to determine battery degradation based on travel
demand and the ambient high temperature of the battery.
Their results show that battery life ranges from approxi-
mately 5 years in Florida to 13 years in Alaska, the United
States. They also showed that if an EV continues to operate
after the 30% battery degradation limit, the greenhouse gas
emissions and energy consumption can be significantly
increased. Xu et al. [33] proposed a Q-learning-based
strategy to minimize Li-ion battery degradation and energy
consumption. The Q-learning method is an adaptive optimal
control algorithm that uses the Bellman equation of dynamic
programming. It is shown that Q-learning decreases the
battery capacity loss and increases the lifespan by 13-20%. A
summary of the literature on battery degradation models is
presented in Table 1.

The key contributions of this research are threefold.
First, this study proposes a multiparadigm modeling
methodology to derive the useable lifespan of battery of a
large population of EVs. Second, this study integrates a
microscopic traffic simulation model to account for the
driving behavior heterogeneity for battery lifespan
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TaBLE 1: Summary of the literature on battery degradation models.

. Cycle  Calendar
Study Degradation model life life Input
Marano et al. [23] Damage accumulation model Y N Current severity relative to battery size (i.e., C-rate),
’ 8 temperature, DoD, and SOC
Peterson et al. [27] Integrated dr1v1r}g and energy use profile v N C-rate, discharge power rate, DoD, and driving
modeling framework profile
Remmlinger et al. Internal resistance dependent
[30] degradation model Y N Temperature, SOC, and power demand
Onori et al. [24] Weighted Ah-throughput model Y N Temperature and DoD
[Gzlét]enther etal. Energy-based battery model Y Y Temperature and power demand
Ouyang et al. [34] Prognostic and mechanistic model Y N C-rate and temperature
Yang et al. [32] Pseudo two—dlme'nsmnal battery capacity Y Y Temperature, travel demand, and driving profile
fading model
Calearo et al. [35] Integrated therm;llozr;ld $OC dynamics Y Y Temperature and SOC
1[\;[;)]t apon et al. Physical degradation model Y N C-rate, temperature, and DoD
Olmos et al. [37] Empirical degradation model N Y C-rate, temperature, DoD, and SOC
Xu et al. [33] Control-oriented cycle-life model Y Y C-rate, temperature, and SOC
Semiempirical traffic simulation-based C-rate, temperature, travel demand, and driving
Our study Y Y

degradation model

profile

estimation. Third, each component of the multiparadigm
method offers the flexibility to incorporate even newer
models or real-world data without changing the framework’s
overall structure. For instance, real-world vehicle speed data,
if available, can replace the traffic simulation model.

The following section introduces the multiparadigm
modeling framework to quantify battery lifespan for a large
population of EVs and discusses each building block in
detail. Then, a case study for the city of Indianapolis, U.S., is
presented, and the results are discussed to illustrate the
impacts of travel patterns, driving behavior, and tempera-
ture on battery lifespan. The paper concludes with a dis-
cussion on potential applications of the proposed framework
and insights for policymakers, vehicle manufacturers, and
other stakeholders to aid greater EV adoption.

2. Methodology: Multiparadigm
Modeling Framework

The proposed framework is composed of four modeling
stages. This framework requires household vehicle travel
patterns as input, which can be obtained using resources
such as the U.S. National Household Travel Survey [38]. Ata
minimum, household vehicle travel patterns should include
details about departure time, travel time, and distance
traveled for all trips made by a particular vehicle on a given
day. The microscopic traffic simulation model based on a
real-world road network is calibrated using available traffic
demand data to generate realistic drive cycles. Each trip in
household travel patterns is then matched to a suitable drive
cycle generated by the traffic simulation model. The speed
profiles are then fed into an EV power consumption model
to compute the power profiles. A battery equivalent circuit
model is then employed to get a time series of current flow
and SOC of the EV battery. These data are subsequently

inputted to a semiempirical battery degradation model to
calculate the battery state-of-health (SOH) (i.e., the ratio of
current battery capacity to its original capacity).

2.1. Microscopic Simulation Model. Traffic simulation
models are widely used to capture nonlinear interactions
between vehicles and infrastructure at a microscopic level.
Such models can simulate vehicle dynamics and output
dynamic variables like position, speed, and acceleration for a
large number of vehicles. In this framework, a time series of
vehicle speeds is needed to compute the power requirement
from the EV battery for propulsion. The simulation model
needs to be calibrated using travel demand data between
origin-destination pairs for the given road network. The
aforementioned information can be gathered from multiple
sources, like regional traffic management websites and open-
source online resources (e.g., OpenStreetMap). The realism
of the simulation model can be further enhanced by in-
cluding more information such as traffic management in-
frastructure (e.g., traffic signals) and driver behavior (e.g.,
car-following model parameters). The simulated drive cycles
are then used as input for the EV power consumption model
discussed below.

2.2. Electric Vehicle Power Consumption Model. EV power
consumption depends directly on the vehicle speed profile.
Since the kinetic energy of a vehicle depends on its speed, it
is necessary to capture changes in the speed at a microscopic
level to accurately compute the vehicle’s power require-
ments. Some simulation packages such as ADVISOR [39]
and Autonomie [40] can compute energy consumption and
MPGe (miles per gasoline equivalent) using drive cycle data.
These tools simulate a detailed EV drivetrain system and
hence are computationally expensive. Since a key application



of the proposed framework is to quantify battery degrada-
tion for a large population of EVs, it is important to select a
computationally efficient model at each step. This study
adopts a physical model proposed by Van Haaren [41] to
compute power consumption. This approach is used for the
following reasons: (i) the model parameters are fitted using
real-world Tesla Roadster data [42], and (ii) the computa-
tional runtime is significantly lower than the simulation
packages mentioned before. This framework provides flex-
ibility to use other similar EV power consumption models
that take speed data as a primary input [43, 44].

The physical model used in this study computes the net
vehicle power loss/gain (P,,) as the sum of two components.
First, the power required to maintain a constant speed
(Peons)- Second, vehicle power requirements at variable
speed during loss/gain in kinetic energy while accelerating or
braking (Py,). The power loss/gain due to road grade is
assumed to be zero but can be added to this model by
considering the power gain/loss due to the change in po-
tential energy of the vehicle (P,). The total power loss (in
Watts) at constant speed is the sum of power losses due to
aerodynamics (P,,), drivetrain (Pg,), rolling friction (P,,),
and ancillary systems (P,,) as expressed in equations (1)-(6).
The parameter definitions and values are presented in Ta-
ble 2. Some of the parameter values are adapted to match the
[43] model, a plug-in electric compact car that accounted for
more than 23% of plug-in EV sales in the U.S. in 2013 [45].

Py, = % PAMCIV?, (1)
Py = 04V o + BarVinph + VarVingh + Car (2)
P, =c,mgV, (3)
P,.. =180, (4)
P = mg (V sinf), (5)
Peons = Py + Pgp + Prp + Py + P (6)

The total kinetic energy (in Joules) of the vehicle (Ey;,)
consists of linear kinetic energy (Ej;,,) and rotational kinetic
energy (E,,). For simplicity, the model assumes that the
rotational kinetic energy is approximately 5% of the linear
kinetic energy. The power loss/gain at variable speed is the
change in kinetic energy (AE,;,) for the given time interval
(At) as expressed in equations (7)-(9).

1
Elin = 7mV2’ (7)
2
Ekin = Elin + Erot = 1.05 Elin’ (8)
AE,,
p,. =_—_—xn 9
kin At ( )

The net power loss is multiplied by the battery-to-motor
efficiency factor to account for the inefficiencies in electrical
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to kinetic energy conversion. Similarly, the regeneration
efficiency factor is multiplied to account for the energy
recuperation from the regenerative braking system in case of
net power gain. The net power consumption of EVs is
bounded by their battery limits as expressed in equation (10).

This framework assumes these limits as -7 kW (P,,;,) and
100kW (P,...).
f P+ Py
Pmax’ ( cons km) > Pmax ,
ﬁeff
(Pcons + Pkm)
-_— P +P..)=0,
Pnet _ Beff ( cons km)
ﬁrbs (Pcons + Pkin)> (Pcons + Pkin) <0,
L Pmin’ ﬁrbs (Pcons + Pkin) SPmin'
(10)

2.3. Battery Equivalent Circuit Model. Cycle aging primarily
depends on the current flow through the battery during
charging or discharging (or C-rate). A 1 C rate is defined as
the theoretical discharging current drawn from the battery
that will discharge the entire battery in an hour at its rated
nominal voltage. A 2 C rate implies double the amount of
discharging current corresponding to the 1 C rate; that is, it
will discharge the battery in half an hour. This framework
implements a battery equivalent circuit as illustrated in
equations (11)-(16). The parameter values for Reference [46]
are obtained from its owner’s manual [46] and advanced
vehicle testing activity data [47]. Model parameter defini-
tions and values are presented in Table 3. The model uses 1-
D lookup tables to get the cell internal resistance R, (t)
during charging/discharging and open-circuit voltage
Voc (t) at different SOC, as illustrated in Figures 1 and 2,
respectively. Due to the lack of data, the internal resistance
and open-circuit values are assumed to be constant until the
battery’s end-of-life (EOL). This assumption can be relaxed
by using 2-D lookup tables containing internal resistance
and open-circuit voltage values with respect to both battery
SOC and SOH, if such data are available.

Vcell(t) = VOC (t) _Rint (t) 'Icell(t_ 1)’ (11)
_ymax (Vmax _V (t) "N )
prax t) = out out OoC sIUN ,
Chg ( ) Rint (t) t
(12)
Vo (Vo () - N -Vt
Prr;ax (t) — out ul . , (13)
dis Rint (t) t

P (1) Poy(£) 2 P (1)

Poy (t) =3 Pout (t)  Pgi ()2 Pgy ()2 P:;lagx ), (14)
Py (1) Py (1) < PG (1)
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TaBLE 2: EV power consumption model parameters.

Parameter Definition Value

14 Vehicle speed in meters per second

V inph Vehicle speed in miles per hour

p Air density (kg/m’) 1.225

A, Vehicle front area (m?) 2.27

Cy Drag coeflicient 0.28

gy Drivetrain coefficient 1 0.004

Bar Drivetrain coefficient 2 0.5

Vdr Drivetrain coefficient 3 29.3

Cdr Drivetrain coefficient 4 375

Cor Rolling resistance coefficient 0.0075

m Vehicle mass (kg) 1520

g Gravity (m/ s?) 9.81

0 Road grade 0

At Discrete time step (s) 1

Bes Battery to motor efficiency 0.85

Brvs Regeneration efficiency 0.4

P ax Maximum power output (W) 100,000

P Minimum power loss or maximum regeneration/recharging power gain (W) -7,000
TasLE 3: Battery equivalent circuit model parameters.

Parameter Definition Value

N, Number of cells in series in each module 96

N, Number of parallel modules 2

N, Total number of cells in battery pack 192

Voc (1) Cell open-circuit voltage at time ¢ (V) Using lookup-table

Ripe () Cell internal resistance at time t (Q) Using lookup-table

I (1) Cell current at time ¢ (A) Iq(0)=0

Ve (1) Cell terminal voltage at time ¢ (V)

Vglu‘{‘ Minimum battery terminal voltage (V) 336

Voex Maximum battery terminal voltage (V) 403.2

P, (1) Battery power requirement at time ¢ (W)

B () Actual battery power output at time ¢ (W)

PR (t) Maximum battery power output while discharging at time ¢ (W)

P‘c‘fg" (t) Maximum battery power input while charging at time t (W)

I () C-rate at time ¢

Kea Rated cell capacity (Ah) 33.1

O (1) Battery state-of-charge at time ¢

Oson Battery state-of-health

At Discrete time step (seconds) 1

_ Py, (®)
Icell(t) - VC t(t) K Ns TNp
;" ) (15)
_ cell
Irate (t) - Kcell : 5soh)
Ogoc (1) = O4oc (£ — 1) — I, (£) - At (16)

2.4. Battery Degradation Model. Battery degradation is af-
fected by several factors such as battery temperature, SOC,
C-rate, and total current throughput (Ah-throughput) [48].
Some models approximate the total Ah-throughput as a
product of constant depth-of-discharge and the number of
cycles [23]; thereby, ignoring the effects of SOC and C-rate.
This framework adopts a semiempirical battery degradation

model proposed by Wang et al. [21] that includes three
important parameters: time (or battery age), temperature,
and C-rate. It computes calendar aging (Q_,;) as a function of
time (7) and temperature (T) and cycle aging (Q,) as a
function of temperature, C-rate (I,.), and lifetime Ah-
throughput (I;,). The model parameters are fitted using
experimental aging data for high-power density 1.5 Ah,
18650 cylindrical cells with LiMn,;3Ni;;3Coy/3 + LiMn,04
(NCM + LMO) cathode and a graphite anode. Their results
indicate that the predicted values are within +5% of the
measured battery capacity loss. The model can be expressed
as equations (17)-(19).

Qr = Qcal + Qcyc> (17)

Qul = fTO'5 . exp(—ﬁ—%), (18)
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0.0024 A
0.0022 A
0.0020
0.0018
0.0016 A
0.0014 A

Cell Internal Resistance (Q)

0.0012 A

0.0 0.1 0.2 0.3 0.4

—e— Discharging
—+— Charging

0.5 0.6 0.7 0.8 0.9 1.0

State-of-charge

Ficure 1: Cell internal resistance values at different SOC.

4.2 A
4.1 A
4.0 4
3.9 1
3.8 4
3.7 1
3.6 4

Open-Circuit Voltage (V)

3.5 1

0.0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1.0

State-of-charge

F1GUre 2: Cell open-circuit voltage values at different SOC.

Quye =(aT? +bT +c) - exp[(dT +e) - Iye] - L. (19)

To account for the variable C-rate and temperature, the
model is modified by taking the differentiating total ca-
pacity loss function with respect to a discretized time step
(AT). For each time step, the current flow is assumed to be
constant, and instantaneous capacity loss (Dy) is computed
as the sum of instantaneous capacity loss D, and in-
stantaneous cycle loss D, by taking the differential of their
respective functions. The sum of instantaneous capacity
loss is updated to get the total capacity loss until the battery
replacement threshold limit (4,.,) is reached. Hence, the
battery lifespan is equal to the number of days elapsed
before the total capacity loss reaches the specified threshold
limit. Because Reference [49] has a rated nominal cell
capacity of 33.1 Ah and the data are calibrated for 1.5 Ah
cells, a correction factor (f,,,) equal to the ratio of rated
nominal capacities is multiplied by the cycle loss. Equations
(20)-(22) describe the modified model, and Table 4 shows
the parameter values.

DT = Dca.l + DCYC’ (20)

E
D =05 f‘f_o‘5 . exp(—R—:}), (21)

D = (aT2 +bT + c) -exp[(dT +e) - I (7)]
: Icell (T) : ﬁcorr'

This model uses ambient temperature as a proxy for
battery temperature, thereby assuming that the thermal
effects on internal resistance and cell current are negligible.
This assumption can be addressed by including a suitable
electrochemical-thermal model in the framework (see
Reference [50] for a review) or by using a 1D lookup table
to link battery temperature with the environment tem-
perature and battery cell characteristics (e.g., [51, 52]. The
model parameters are calibrated for discharging current
only. Thus, it is assumed that charging and discharging will
have a similar impact on cycle aging based on the absolute
value of I

(22)

rate*

3. Data: Case Study

A case study is presented using the proposed framework for
the city of Indianapolis, Indiana, U.S. Real-world household
vehicle travel pattern data were extracted from U.S. National
Household Travel Survey (NHTS) of 2009 [38]. The NHTS
dataset contains 1-day travel diary data of 821 vehicles (with
vehicle type as “car”) in the state of Indiana. The key var-
iables of the NHTS dataset include household ID, vehicle ID,
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TABLE 4: Battery degradation parameter values and units.

Parameter Value and unit Parameter Value and unit

a 8.61 e~ (1/Ah-K?) Iy Lifetime current throughput (Ah)

b -5.125 e— (1/Ah-K) Lt (D) C-rate at time 7

c 0.7629 (1/Ah) I (1) Cell current at time 7 (A)

d —6.7 e—3 (1/K-(C-rate)) Beorr 1.5/33.1

e 2.35 (1/(C-rate)) 24500 (J/mole)

f 14876 (1/day®?) R 8.314 (J/K-mole))

T Time (in days) T Temperature (K)

At Discretized time step (in days) Orep 30%

vehicle type, trip departure time, trip arrival time, and trip
travel time for all trips made by the household in a single day.
Since most affordable EVs have a driving range of about 80-
100 miles, vehicles with trip distances exceeding 80 miles for
any single trip are excluded from the analysis to avoid
situations with EVs running out of battery in the middle of a
trip. In the preliminary data analysis, we observed that
several vehicles having longer total daily distance did not
have sufficient time between trips to recharge the battery.
Thus, based on our preliminary data inspection, we also
excluded vehicles with total daily distance exceeding 120
miles from the analysis. These distance-based exclusion
criteria reduced our dataset to 760 vehicles. A microscopic
traffic simulation model is created to generate realistic drive
cycles for the vehicles using the simulation software Aimsun
[53]. A detailed road network of Indianapolis containing all
major freeways, most urban roads, and some minor roads is
built in AIMSUN (see Figure 3). A dynamic 15-minute time
period origin-destination traffic demand matrix is simulated
for a 24-hour time horizon with an additional 1-hour warm-
up period. The traffic demand is calibrated using NHTS trip
data for Indiana. The departure time period, distance
traveled, travel time, and speed profile of each simulated
vehicle are recorded. We generated 41,736 unique simulated
drive cycles. Each NHTS trip is matched to a simulated drive
cycle which has the least Euclidean distance in terms of both
trip distance and average speed. NHTS households with
missing simulated drive cycle data for any number of trips
are excluded from the analysis. Since most affordable EV's
have a driving range of about 80-100 miles, vehicles with a
trip distance exceeding 80 miles for any single trip or total
daily distance exceeding 120 miles are also excluded. In the
end, a total of 3,225 trips made by 697 vehicles were ana-
lyzed. Most parameter values in the battery equivalent circuit
model and degradation model are taken for Reference [43]
with a 24kWh Li-ion battery. The battery degradation
threshold is taken as 30%, that is, the battery is considered to
be unusable once its SOH is 70%. Daily average temperature
values for Indianapolis in the year 2018 (see Figure 4) are
used in a loop to compute both calendar and cycle aging
[54]. Since degradation computation is performed for each
time step, it allows the use of higher resolution temperature
data (e.g., hourly temperature) for more accuracy. Due to
data limitations, it is assumed that household vehicle travel
patterns remain unchanged until the end of useable battery
life. This assumption can be relaxed with the availability of a
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FiGure 3: Road network of Indianapolis, U.S., used in the
simulation.

richer travel pattern dataset. The vehicle is assumed to be
fully charged to its SOH level at the start of every day.
Opportunistic charging behavior is assumed during the day
with a constant charging power of 7kWh.

4. Results and Discussion

The impacts of driving behavior and travel patterns on
battery lifespan are analyzed using the proposed multi-
paradigm modeling framework. Figure 5 shows the daily
distance traveled distribution for the case study data. More
than 80% of households travel less than 50 miles per day.
Using simulated drive cycles allows the analysis of hetero-
geneity in driving behaviors such as average speed and speed
deviation. The average speed and speed deviation for all
households’ combined daily drive cycles of all trips are il-
lustrated in Figure 6. The population means of average speed
and speed deviation are 37.9mph and 16.4mph,
respectively.

Most automobile manufacturers offer battery warranties
based on either battery age, total distance traveled, or their
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FIGURE 4: Daily average temperature values for Indianapolis, U.S., in 2018.

Number of Households

0 20 40

60 80 100 120

Daily Distance Traveled (miles)

F1GURE 5: Daily distance traveled distribution.
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FIGURE 6: Speed deviation vs. average speed for combined daily drive cycles of households.

combination as a threshold. For example, Reference [46]
covers the necessary repairs needed to return battery ca-
pacity to about 75% of the original capacity for a period of 5
years or 60,000 miles, whichever comes first [49]. The case
study analysis results indicate that almost 50% of the bat-
teries reach their SOH threshold within 5 years and 90%
within 8 years. The useable battery lifespan distribution is
illustrated in Figure 7. In terms of total distance traveled
before EOL, the 50% and 90% quantiles for battery lifespan

are approximately 44,500 miles and 72,500 miles,
respectively.

To analyze the impact of driving behavior, the average
speed and speed deviation for each household are classified
as “higher” or “lower” groups based on their value compared
to their respective population means. The results indicate
that there is little or no difference between the higher and
lower average speed groups for the same total distance
traveled before EOL (see Figure 8). On the contrary, an
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FIGURE 7: Useable battery lifespan distribution.
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apparent decrease in battery lifespan can be observed among
households with higher speed deviation than those of lower
speed deviation (see Figure 9). A higher speed deviation
entails more fluctuations in kinetic energy due to acceler-
ation and deceleration (see Section 2.2), which increases the

traveled for speed deviation-based classification.

vehicle’s overall power consumption. Hence, the difference
in lifespan is caused by this additional amount of power
required, and thereby, the current flows through the battery
to balance the fluctuating kinetic energy at variable speed.
These findings illustrate the importance of using realistic and
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diverse drive cycles over combinations of standard driving
schedules to account for differences in driving behaviors.

5. Concluding Comments

This study presents a multiparadigm modeling framework to
quantify the useable battery lifespan of a large population of
EVs. The inclusion of a microscopic traffic simulation model
in the framework enables the analysis of driving behavior
heterogeneity in battery lifespan estimation. Each building
block of the multiparadigm approach provides the flexibility
to include newer models or real-world cases without af-
fecting the framework structure. For example, the traffic
simulation model can be replaced by real-world vehicle
speed data if such data are available. This study uses the
vehicle and battery specifications of Reference [49] in the
case study, but the proposed framework can be used to assess
other EVs, such as e-rickshaws, by changing the parameter
values accordingly. The impacts of vehicle travel patterns
and driving behavior (e.g., speed deviation) on EV battery
lifespan under regional temperature trends can provide
useful information for vehicle owners, policymakers, and
vehicle manufacturers. The framework can be used by ve-
hicle owners to assess the lifetime cost of EV ownership,
including battery maintenance cost, insurance cost, and
battery resale value, based on their travel needs, driving
behavior, and geographic location. In addition, policy-
makers can use battery lifespan distribution for regional
temperature and traffic conditions to design incentive
strategies, such as tax credits and extended battery war-
ranties, to regulate EV adoption trajectories. It allows vehicle
manufacturers to factor in regional conditions and con-
sumer driving behaviors while evaluating the performance
and economics of different batteries by modifying the
battery equivalent circuit model and degradation model
accordingly. The proposed framework can be utilized to
enhance EV research applications such as battery man-
agement strategies (e.g., maximum/minimum SOC range) to
enhance battery lifespan, battery recharging strategies, ve-
hicle-to-grid applications, etc., by including realistic vehicle
travel patterns and driving behavior. Furthermore, there is
an ongoing argument among researchers to promote elec-
tric-powered autonomous vehicles (AVs) over gasoline-
powered AVs to limit greenhouse gas emissions and mitigate
negative environmental impacts. The proposed framework
can be used to assess the battery life and, thereby, life cycle
environmental impacts of a large population of electric-
powered AVs. This research can be extended in different
directions. The first potential future research direction is to
integrate the electrochemical-thermal effects into the battery
degradation model. This integration enables for more ac-
curate battery health state monitoring as it accounts for the
external measurements of terminal voltage, applied current,
and surface temperature of the battery [13, 55, 56]. The
second research direction is to compare the effects of travel
patterns on fuel consumption between EVs and traditional
internal combustion engine vehicles. The third research
direction is to consider the battery degradation model for
different types of batteries used in EVs. The battery
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degradation of different EV batteries varies based on the
charging/discharging rate, number of cycles, and tempera-
ture. The detailed information for some recent battery
technology is presented by Zhao et al. [57] and Mathieu et al.
[58]. The disaggregate battery degradation model should be
calibrated for each type of EV to increase the accuracy of the
results.
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Ever-growing mobility and traffic congestion within urban areas make the need for a sustainable form of transport inevitable.
Traffic congestion has a significant effect on the amount of energy consumption of a vehicle and, as a result, on its associated
environmental impacts. Any decision-making regarding structuring a fleet without taking into account the traffic congestion level
(TCL) will lead to a less sustainable fleet with higher environmental and economic costs. To address this issue, this study examines
the effects of the traffic congestion intensity level on the fleet structure of an urban car-sharing company over a certain planning
period. We present a new optimization framework for finding an optimal vehicle composition of the fleet of an urban car-sharing
company considering the energy consumption of vehicles at different traffic congestion levels. The results show that electric
vehicles (EVs) are more competitive than diesel vehicles (DVs) in high-peak traffic congestion from the outset of the planning
period. In addition, we perform a sensitivity analysis to take into account the effects of specific uncertain parameters such as the
energy and purchasing costs of EVs on the total cost of ownership. As expected, the purchasing price of EVs, energy prices of DV,

and increase in diesel prices have the highest impact on the total cost.

1. Introduction

The idea of several people sharing the same car can be traced
back several decades ago [1]. Car-sharing is a type of shared
mobility that offers renting cars on a needed basis for as little
as 10 minutes [2] and often by the hour when other modes of
transport are not available or are not suitable [3]. The users
can be passengers, companies, and public agencies [4]. The
station of car-sharing is usually close to the location of
transportation modes, and the payment is based on travel
distance or time spent [4].

Car-sharing has the potential to reduce vehicle use,
ownership, and delays in car purchases [5-7]. It is seen as a
solution to address the issues of congestion, pollutants, and
the occupancy rate of vehicles within urban areas [8, 9]. This
leads to increasing urban sustainability from environmental,
economic, and societal points of view worldwide. [10-13].

Chen and Kockelman [14] estimated a reduction of 51% in
energy consumption and greenhouse gas (GHG) emissions
for what they have defined as a “good candidate for shared
mobility.”

In two studies [10, 11], the authors conducted a survey of
members of a car-sharing club in the US, looking specifically
at the impacts of car-sharing on household vehicle own-
ership. The results showed that the rate of vehicle ownership
among club members decreased from 0.47 to 0.24 vehicles
per household. In the last decade, the car-sharing market in
Europe has expanded, and in Germany, as the largest car-
sharing market in Europe, an increase in user usage from
0.26 million in 2012 to 1.29 million in 2020 was reported by
Roblek et al. [15].

Various research studies have shown that the demand
for car-sharing as a means of mobility in any form is in-
creasing worldwide [16-19]. In many countries around the
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world, car-sharing or short-term auto access [20] is known
as a system to minimize ownership transportation costs and
the negative effects of car use. The car-sharing industry has
recently significantly increased its market [21, 22]. In the
past decade, advancements in communication technologies
and smartphone applications have led to the emergence of
car-sharing companies such as DriveNow and Car2Go.
Autolib in Paris is one of the known operators in car-sharing
systems that offers electric car-sharing services with at least
1750 electric vehicles (EVs) and 65,000 members. Such
companies own a number of vehicles and deal with any cost
related to the operation of their fleet in the car-sharing
service.

There is a trend toward the use of electric vehicles such as
gasoline-electric hybrids and electric vehicles in car-sharing
systems [20, 23]. EVs, in comparison to their conventional
counterparts, have lower operational and maintenance costs,
and their zero tailpipe emissions are another option for
operation in car-sharing services since they usually operate
in urban environments. Furthermore, with regard to energy
consumption, their performance at lower speeds is better
than that of internal combustion engine vehicles (ICEVs)
[24], which is an additional advantage during peak-hour
traffic. The purchase price of EV's has thus far been the main
barrier to their wider use. However, with increasing tech-
nological advancement, the cost of EV batteries, which
makes up a large portion of the price of an EV, has been on a
downward trend in recent years. Following Nykvist et al.
[25]; the battery price decreased by 77% from 2007 to 2018,
reaching an average cost of $230per kWh. Thus, this
downward trend in battery prices will lead to a reduction in
EV purchase prices over time. In contrast, ICEVs have lower
purchase prices. However, the fuel cost of an ICEV, which is
the major cost during the lifetime of such a vehicle, is very
unpredictable. The steep increase in oil prices and their wild
fluctuations in recent years have affected the fuel cost of
ICEVs. Accordingly, any decision for vehicle replacement
based merely on the actual total cost of ownership of a
vehicle without taking into account the concerned uncer-
tainties might increase the cost in the long term.

To the best of our knowledge, no research study has been
conducted on an optimal fleet replacement for a car-sharing
service considering traffic congestion levels. This study in-
troduces a new optimization framework to assist a car-
sharing company in selecting the best investment strategy
for structuring its fleet from different types of vehicle
technology (EVs vs. ICEVs in particular) over a certain
planning time period. The novelty of the developed
framework lies in considering different traffic congestion
intensity levels and various demand levels for a car-sharing
service throughout a typical day of operation. The optimi-
zation framework will provide the operator with the best
fleet composition for its car-sharing company over a certain
planning period.

The remainder of the paper is organized as follows:
Section 2 contains a literature review, and Section 3 de-
scribes the model and the optimization framework. In
Section 4, the data and assumptions are presented, and
Section 5 is dedicated to the results and discussion. The
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paper ends in Section 6 with the enunciation of some
conclusions.

2. Literature Review

Various research studies have focused on fleet optimization
for shared mobility systems [26-31]. In a study by Wallar
et al. [28], the authors provided a model for optimizing fleet
composition to distributions of vehicles for shared mobility
service. They proposed an algorithm for determining the
required number of vehicles, where they should be located at
the start point, and how they should be routed to satisfy all
travel demands in a particular period of time while enabling
many passengers to be served by the same vehicle. Based on
an analysis of historical taxi data from Manhattan in New
York City, they presented a model estimating the number of
required passenger cars to meet all daily taxi demands, with
an average waiting time and an extra travel delay. Monteiro
et al. [26] provided a model to optimize the fleet size by
maximizing the number of served clients to satisfy the
demand while minimizing the high number of parked ve-
hicles in the station using a mixed-integer linear program.
Nair and Miller-Hooks [29] presented an optimization
model for fleet management of shared-vehicle services by
using a stochastic mixed-integer program with joint chance
constraints and random demand across stations to minimize
cost car redistribution in a fleet.

Some research studies developed optimization models
for electric mobility in car-sharing systems [32-36]. In
another study by [32], the authors performed an extensive
review of recent literature on car-sharing. They developed an
optimization framework for the fleet composition of station-
based car-sharing systems with heterogeneous fleets by
considering three different types of vehicles: ICEVs, plug-in
hybrid electric vehicles (PHEVs), and EVs. They demon-
strated that existing infrastructure and well-established
technology help ICEV growth and make PHEVs the best
alternative compared to the other two types of vehicles. They
concluded that EVs remain the best alternative considering
environmental and global emissions and local pollutants,
especially over long-term periods. In a research study by
Bubeck et al. [34]; the authors analyzed the total ownership
cost of electric mobility by considering the CO, subsidies
offered to EVs and buyer premiums as an incentive on the
German road up to 2050. The results showed that full and
mild hybrid electric vehicles are currently more economical
even without government subsidies. Moreover, they showed
that buyer premiums are necessary to make EVs competitive
in terms of cost, and from 2030 onward, EV's can survive as
an economical option.

Although there have been various research studies fo-
cusing on fleet optimization in shared mobility and car-
sharing systems, to the best of our knowledge, no research
study has addressed optimizing car-sharing fleet structure
considering the effect of traffic congestion. In this study,
motivated by research studies on the fleet replacement
problem in Urban Freight Transport (UFT) (see [37, 38], and
[39], we introduce a novel optimization framework to assist
a car-sharing company in choosing the best investment



Journal of Advanced Transportation

strategy for having different types of vehicles (in particular
EVs vs. ICEVs) in its fleet over some planning time period.
Despite some similarities between vehicle replacement in
urban freight and car-sharing, there are differences between
these two types of problems, which each deserve their own
analysis. This work focuses on vehicle composition for car-
sharing companies, whereas the focus of previous research
studies has been on vehicle composition for UFT. The nature
of the demand for urban freight transport throughout the
day is different from that of car-sharing services. There are
limitations regarding the operation of freight vehicles within
a city during the day (in particular, during peak hours).
However, there are no such restrictions in regard to pas-
senger vehicle operations within urban areas. More im-
portantly, the developed optimization framework takes into
account the magnitude of traffic congestion, which is a novel
approach even within the context of UFT.

3. Research Methodology

The aim of this research is to determine the best combination
of different types of passenger vehicles for the fleet of a car-
sharing company over a certain planning period. There are
various vehicles of different types that can be used by a
company to run its car-sharing service. Each vehicle has its
own characteristics, which affect the associated costs. These
costs include the purchase price, energy costs, operation and
maintenance costs, and emission costs, to name the most
important ones. In addition, depreciation rates for vehicles
vary greatly, and accordingly, the corresponding salvage
revenues are of various magnitudes.

Energy consumption is one of the main costs associated
with a vehicle during its lifetime. Speed is a principal factor
affecting the energy consumption of a vehicle and, as a result,
the amount of emissions that the vehicle produces. Fol-
lowing He et al. [40], the optimal fuel consumption occurs in
the speed range of 45-80 km/h, whereas EVs have lower
energy consumption in the range of speeds between 20 km/h
and 40km/h [41]. On the other hand, during peak hours,
traffic congestion affects the speed of a vehicle. In congested
areas, vehicles are faced with frequent stopping and going
and operating in lower-level gears, which makes them
consume more energy. Therefore, the developed optimiza-
tion framework considers these important factors by di-
viding a typical day of operation into several blocks of time
depending on the traffic congestion level of that day. The
idea of dividing a typical day of the planning time period into
several blocks of time was motivated by previous research
studies on electricity supply planning Huang and Wu [42]
and Wu and Huang [43]. To demonstrate the idea of di-
viding a typical day of operation into different blocks of time,
we use the data regarding the average speed given during
22hours of a dayin Ji et al. [44], where the authors presented
the average speed of 20,000 taxi datasets recorded by GPS in
part of the city of Shenzhen in China for 22 hours from 1 AM
to 11 PM on a weekday. An average speed of less than 30 km/
h can be demonstrated more than 70% of the time, with the
sharpest decline in average speed occurring during the peak
hours of 6-8 AM and 4-6 PM.

Thus, based on the average speed given there and the
amount of consumption for the corresponding velocity
given by He et al. [40] and Grée et al. [41]; we illustrate in
Figure 1 how a typical day of operation is divided into three
blocks of low, medium, and high congestion levels.

The developed optimization framework will determine a
more sustainable car-sharing fleet structure for the company
over a certain planning period while satisfying the interests
of the concerned stakeholders. In addition, uncertainties
related to various parameters such as energy, purchase,
emission, and maintenance costs need to be addressed.
These uncertainties have an impact on the total cost of
running a car-sharing service, and any decisions regarding
the composition of the fleet taken without considering these
can result in extra costs for the company. Accordingly, we
perform a sensitivity analysis to analyze the effects of a
number of uncertain input parameters on the total cost.

3.1. Mathematical Optimization Framework. The mathe-
matical optimization framework for structuring the fleet of a
car-sharing company considering traffic congestion levels
over a certain planning period is presented and discussed in
this subsection. The formulation is adapted and expanded
from the optimization framework in Feng and Figliozzi [37];
which was developed for the fleet composition of an urban
freight transport company. Since the traffic congestion level
is an important and effective factor in minimizing the total
cost within the context of car-sharing services, the previously
developed framework needs to be adapted to take such a
factor into consideration.

These indices are used throughout the paper as follows:

(i) K e k={1,---,K} represents each type of vehicle

technology

(ii) i € A ={0,---, A} represents the age of a vehicle of
type k

(iii) t € T ={0,---, T} represents the year of the plan-
ning time period

(iv) s € S={l,---,S} refers to the level of traffic con-
gestion in a day

The decision variables are as follows:

(i) X;;: number of age i type k vehicles used in year ¢

(i) Y;;x: number of age i, type k salvaged vehicles at the
end of year t

(iii) Z;;: number of new type k purchased vehicles at the
beginning of year ¢

(iv) x;; 4 total number of kilometers traveled by ve-
hicles of type k age i during the level of s traffic
congestion in year t

The parameters are denoted as follows:
(i) K: number of vehicle types
(ii) T: span of the planning period

(iii) S: level of traffic congestion of a typical day of
operation
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(iv) Ay maximum age of vehicle type k

(v) dr: discount rate for taking into account the de-
valuation of money with time

(vi) b,: budget of year ¢
(vii) w d: working days in the year

(viii) d, ;: demand related to the level of s traffic con-
gestion in year ¢
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(ix) u;, x: the maximum distance that can be traveled by
a vehicle of type k and age i in year ¢

(x) vi,: purchase cost (€) per unit of type k vehicle
during period ¢

(xi) s;;: salvage revenue (€) of an age i, type k vehicle

(xii) e;;4: per-km energy cost (€/km) of vehicle type k
of age i during level s of traffic congestion of year ¢

(xiii) m;, . ;: per-km operation and maintenance cost
(€/km) of vehicle k of age i during level s of traffic
congestion of year ¢

(xiv) em; . ;: CO, emission cost (€/km) of vehicles of age
i and type k during level s of traffic congestion

3.1.1. Objective Function. The objective function minimizes
the total cost. The total cost is composed of various cost
elements, namely, energy, operation and maintenance,
purchase, and emission costs. We actualized the costs at the
beginning of the planning period. Since the objective
function is linear and the decision variables take a non-
negative integer and real values, problem (1) is thus a mixed-
integer linear programming problem. Therefore, to mini-
mize the total cost, the following optimization problem is
solved as follows:

A, T K
—t
Y s Y (1+dr)
0 k=1

i=1 t=

-t
Z(ei,t,k,s + mi,t,k,s + emi,k,s)xi,t,k,s (1 + d?‘) >

S
st xppeswdug X Vie A-{A), VkeK, VteT-{T}

s=1

M=

k=1

A1
Z Xighs2dp, Vs €S, VteT—{T}
i=0

(1)
K
Y ez VEE{0,1,2,..,T -1},
k=1
X(i—l)(t—l),k = Xi,t,k + Yi,t,k Vt € T, Vk € K, Vl € A —{0},
Zt,k = XO,t,k Vt € T, Vk € K,
Xizx =0 VkeK,Vie A-{0,A},
Xpk=0 VteT,VkeK,
Yo =0 VteT,VkeKk,
Lo Xiggo Yiek €27 =10,1,2,..},
X;s € RY, where R* represents the set of nonnegative real Purchase cost:
numbers. K
The total cost (€) associated with the car-sharing service PC = Z Z Ve Zop (14 an". )
business over the planning period consisted of the following e R

components:
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Salvage revenue:

A, T K

SR = Z Z Z siYix (L +dr)7" (3)

i=1 t=0 k=1

Energy cost:

A—

IT-1 K S
EC = Z Z Z Z ks Xighos (1 +dr) " (4)
t=0 k=1 s=1

i=0
Operation and maintenance cost:

A-1T-1 K S

OP&MC= Y Y 3 N my i, (1+d)". (5

i=0 t=0 k=1s=1

Emission cost:
K S
DY ey X, (1+dr) ™" (6)

Constraint (2) concerns the total distance (in kilometers)
traveled in any year, which cannot be greater than the
maximum distance traveled by all types of vehicles used. In
addition, in constraint (3), the distance traveled by all ve-
hicles of any type and age for each demand level in any year
must be greater than the demand for the corresponding level
of s traffic congestion in that year. Constraint (4) shows that
the company has a yearly limited budget for purchasing new
vehicles. Constraint (5) enforces that in any year of the
planning period, the number of vehicles used and salvaged of
any type must be equal to the number of vehicles used of the
same type in the preceding year. Constraint (6) ensures that
in any planning period year, the new vehicles of any type
introduced into the fleet must be the same as the number of
purchased vehicles of that type. Constraint (7) forces all
remaining vehicles to be sold at the end of the planning time
period. Constraint (8) ensures that when a vehicle reaches its
maximum age, it must be salvaged. Constraint (9) ensures
that new vehicles cannot be salvaged immediately. Lastly, in
constraint (10), decision variables Z,;,X;,,andY;,, can
take only non-negative integer values, and x;,;, can also
take nonnegative real values.

4. Data and Assumptions

For the numerical experiments, we assume that a car-sharing
company has the goal of deriving an optimal combination of
its fleet from two available types of diesel and electric ve-
hicles both with the same passenger capacity. These two

types are denoted as k=1 and k=2 for DVs and EVs, re-
spectively. Tax incentives for diesel (https://taxfoundation.
org/gas-taxes-europe-2019/) cars, better fuel economy in
most European countries, and lower tailpipe emissions of
CO, for diesel (https://autotraveler.ru/en/spravka/fuel-
price-in-europe.html) [45] compared to gasoline are the
main reasons for choosing this type of ICEV in our nu-
merical experiments. The data regarding the two types of
vehicles and other input parameters are given in Table 1.

With regard to the lifetime of vehicles, considering the
European Automobile Manufacturers Association (https://
www.aut.fi/en/frontpage_vanha/statistics/international _
statistics/average_age_of_passenger_cars_in_some_
european_countries), which has reported an age of 8 years
for passenger cars in some European countries, and fol-
lowing Mahut et al. [46]; we consider a lifetime of 8 years for
both passengers DVs and EVs. In addition, a discount rate of
5% [47] is used. By considering the foreseen daily utilization
and EV battery lifetime of 160,000 km [48, 49], each EV will
need two batteries over its eight-year operational lifetime.
We include the discounted cost of the extra battery in the EV
purchase price.

For the range limitation of EVs, the Nissan Leaf, the
electric car model that registered the highest number of sales
in Europe in 2018 and the third leading passenger electric
vehicle in 2020 (https://www.statista.com/statistics/965507/
eu-leading-passenger-electric-vehicle-models/), was the EV
analyzed in this study. The Leaf has a range of 264 kilometers
with one full charge of battery. (https://www.nissanusa.com/
vehicles/electric-cars/leaf/features/range-charging-battery.
html).

To calculate the salvage or resale value, we use the fol-
lowing formula proposed by Feng and Figliozzi [37]:

sik = (1= 0)sgme = v (1-6,), VkeK,Vie A-{1},
(7)

where 0, is the rate at which vehicle type k is depreciated.
Based on the values reported by Messagie et al. [50], we set
depreciation rates per year of 17% and 28% for DVsand EVs,
respectively.

For the medium TCL, we use an energy consumption of
0.062 lit/km [51] and 0.145 kWh/km [52] for DVs and EVs,
respectively.

Based on the data given in Table 2, the energy costs per
kilometer are calculated using the formulas presented in the
following equations:

lit ;
Ciper = RSJ(kl) x Gy x el Vie AVteTVseS=1{1,23}, (8)
m
kWh ;
€ipen = Qsz(k—) x H,, xe/™ Vie A-{1}Vt e TVseS={1,2,3}, ©9)
es2 = Qua| 7
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TaBLE 1: Input-parameter data.

Vehicle type DVs EVs
Lifetime (years) A =8 A,=8
Discount rate (%) 0.05 0.05
Annual use (km) 40000 40000
Daily use (km) 160 160
Planning time horizon (years) 16 16
Depreciation rate (%) 0.17 0.28
Energy cost growth rate (Pordata 2018) (%) 0.0582 0.0289
Purchase cost (Nissan, 2020) (€) 14000 28000
Energy consumption in low TCL (s,) 0.0465 lit/km 0.1087 kWh/km
Energy consumption in medium TCL (s;) 0.062 lit/km 0.145 kWh/km
Energy consumption in peak TCL (s;) 0.0775 lit/km 0.1812 kWh/km
Energy cost (Pordata 2018) 1.16 €/1it 0.16 €/kWh
CO, emissions (well-to-wheel) 2.63 kg/lit 0.47 kg/kWh

TaBLE 2: Summary of characteristics of previous studies.

References  Method Model Context Fl.eet Vehlcle.rg placement/ TCL
size composition problem
Mixed-integer linear .
[26] Opt programming (MILP) Car-sharing system v — —
[27] Opt (MILP) Car-sharing system v — —
[28] Opt Integer llne?;ngogrammlng Car-sharing system v v —
Stochastic mixed-integer Fleet management shared-vehicle
[29] Opt program (SMIP) system v o B
[32] Opt (ILP) Car-sharing system electric mobility v/ v —
[34] Survey Total cost of ownership model Electric mobility — — —
[31] Opt  Mixed integer program (MIP) Shared mobility v — —
[35] Opt (MILP) Car-sharing system electric mobility v/ — —
[36] Opt Simulation model EV- sharing system v — —
[37] Opt (MIP) Urban freight fleet replacement Y v .
problem
[38] Opt (MIP) Urban freight f.le.et replacement and Y v -
composition problem
Mixed integer quadratic Urban freight fleet replacement

[39] Opt programming (MIQP) problem 4 4 -
This .

research Opt (MILP) Car-sharing system v v v

where R, and Q,, represent the energy consumption per
km. G4, and H,, are the corresponding parameters for the
energy cost of DVs and EVs as presented in Table 1, and f,
and f, are the annual growth rates of 5.82% and 2.89% [39]
for diesel and electricity prices, respectively. The price
growth rates were defined on the basis of the annual diesel
price history from 1980 to 2014 and the electricity price
history from 1991 to 2014 in Portugal (https://www.pordata.
pt/Portugal).

We should mention that we made the right-hand side of
(8) and (9) independent of the age of vehicles (i.e., 7). In fact,

lit km

due to a lack of data regarding the energy consumption of
vehicles with age, similar to Feng and Figliozzi [37] and
Ahani et al. [39]; we assumed that R, and Q,, are fixed
values for each i.

On average, well-to-wheel CO, emissions by DV and EV
are approximately 2.63 kg/lit and 0.47 kg/kWh, respectively
[53]. The CO, emission value for EVs is calculated by taking
into account the emissions produced by different types of
power generation technologies. Therefore, the following
equations give the emission cost of each type of vehicle based
on its age:

t lit
e, = 0.00263(ﬂ> x RSJ(l) xec, VieA-{AJ,

k; kWh
em; 5 = 0.47<—g> X Qs,2<£

kWh km

(10)

) x 0.001(%)66, Vie A-{A).
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An ec value of €25/ton is considered [54].

Following the maintenance cost data analysis from
Carstens [55], each car has a cost of approximately 0.04 euro/
km. The mileage and age of a vehicle affect its maintenance
cost. The total maintenance cost for EVs is at most 60% of
the maintenance cost for ICEVs [50]. Hence, we use the
following quadratic functions extrapolated from the data
adopted from Carstens [55] to estimate the maintenance
costs of ICEVs and then use them to approximate the
maintenance costs of EVs.

m, | = —0.0015{"2 — 0.011i + 0.076,
m,, = 0.6(=0.0015{"2 — 0.011i + 0.076),

Vie A-{0},
Vi e A-{0}.
(11)

Regarding other input parameters, the following are
assumed:

(i) The company has 20 diesel vehicles of different
ages in its initial fleet. 12 vehicles of ages 0-3 years
with three vehicles of each age and 8 vehicles of
ages 4-7 years with two vehicles of each age.

(ii) There are three traffic congestion levels (TCLs):
low (s1), medium (s2), and high (s3) with vehicle
demands of 20%, 30%, and 50% of the total de-
mand, respectively (ie.
d,,=02d,d,,=03d,andd, ; = 0.5d,).

(iii) We assume that both DVs and EVs are used
160 km per day, which is equivalent to 40,000 km
per year based on a total of 250 working days in a
year.

(iv) An annual budget of 56,000 euros is assumed for
purchasing new vehicles.

(v) We assume that the energy consumption of DVs in
the low and high TCLs is 25% less and 25% more
than that of the medium TCL, respectively.

(vi) We also assumed a scenario without incorporating
TCL into the model. For this scenario, we consider
the energy consumption of 0.062lit/km and
0.145 kWh/km for DVs and EVs, respectively.

(vii) During each year, the total demand for car-sharing
vehicles is supposed to be equivalent to the total
distance traveled by all 20 vehicles in the corre-
sponding year (d, = 40,000km X 20).

(viii) We assumed that R} and Q,, are independent of
age.

5. Results and Discussion

This section presents the results of resolving the mixed-
integer linear optimization problem (1) (see Table 3) using
the CPLEX solver of GAMS version 27.3 [56] on a laptop
computer with CPU Intel core i3—4030U 1.90 GHz and
RAM memory of 4GB running Windows 10 64 bits. We
present the total number of purchased vehicles, total dis-
tance traveled in each traffic congestion level by each type of
vehicle, number of vehicles used, and number of salvaged

7
TaBLE 3: Model statistics.
Name Number
Constraints 745
Variables 1565
Discrete variables 646
Execution time 0.06 seconds

vehicles in each year of the planning period. An elasticity
analysis is also performed to show the magnitude of the
effects of certain input parameters on the total cost.

Figure 2 shows the number of vehicles used each year for
the two types of vehicles. Regarding the number of vehicles
used, the share of electric vehicles in the fleet increases over
time up to year 12 of the planning period and then remains
constant until year 14 and then begins to decrease. Keeping
in mind that the initial fleet has been composed of only DVs,
the reason for the increase in the share of EVs and replacing
DVs in the fleet is their low operating costs, especially when
considering the traffic congestion level, which is a major
factor affecting the fuel consumption of a vehicle. We can see
that the share of EV's in the fleet begins to decrease after year
14 of the planning period, and the main reasons are their
high purchase price and high depreciation rate. Indeed, these
two factors mean that EVs, when compared with DVs, are
not competitive for just the last two years of the planning
time period. Had the planning period been infinite, then the
share of EVs would have increased constantly over the
course of the said planning period. Additionally, Figure 3
shows the number of purchased DVs and EVs over the
16 years of the planning period. The number of EVs de-
creases toward the end of the planning period because the
depreciation rate for EVs is higher than that of DVs. Figure 4
shows the number of vehicles salvaged at the end of each
year and at the end of the planning time period when all
vehicles are salvaged due to the end of the operation.

For a more thorough analysis, we present in Figures 5
and 6 the total traveled distance for each type of vehicle and
the traffic congestion level. As stated previously, we assume
that the initial fleet of the car-sharing service company is
made up of DVs only. The figures show that for a high TCL
(s=3), the total distance traveled by EVs begins to increase
year by year, and from year eight until year fourteen of the
planning period, the total traveled distance in this TCL is
covered only by EVs. In the case of medium TCL (s=2),
albeit in comparison to high TCL with a slower increase in
the share of EVs, and only from year 9 to year 13 of the
planning period is the entire demand in this TCL met by
EVs. DVs remain competitive chiefly for low TCL (s=1), as
the operational cost for this TCL is lower than those of the
other two levels. As previously mentioned, the increase in
the share of traveled distance by DVs for the high and
medium TCLs toward the end of the planning period can be
attributed to the high purchase price and the high depre-
cation rate of EVs, which render them less economically
viable for just a few years of use in the fleet.

We also assumed a scenario without incorporating the
traffic congestion level into the model to show that the traffic
congestion level has an important impact on the total cost.
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FIGURE 2: Number of vehicles used during the planning period.
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FIGURE 3: Number of purchased vehicles during the planning period.
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FIGURE 4: Number of salvaged vehicles during the planning period.
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FIGURE 6: Traveled distance of electric vehicles for different levels of traffic congestion.

As we mentioned previously for this scenario, we consider increase of 18% (from 1,955,629.032 to 2,310,844.077) in the
the energy consumption of 0.062 lit/km and 0.145kWh/km  total cost.
for DVs and EVs, respectively. This scenario led to an
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TABLE 4: Per-km discounted elasticity analysis of total cost for different factors.

Factor (range of values) (unit) Baseline value EA (TC, p)
Depreciation rate EVs (17-27) (%) 22% 0.012
Depreciation rate EVs (23-33) (%) 28% 0.053
Depreciation rate EVs (29-39) (%) 34% 0.068
DVs growth rate energy price (2.91-8.73) (%) 5.82% 0.256
EVs growth rate energy price (1.44-4.33) (%) 2.89% 0.018
Discount rate (3-7) (%) 5% -0.180
EVs purchase price (25200-30800) (€) 28000 € 0.398
Energy price (1.044-1.275) (€/lit) 1.16 €/1it 0.351
Energy price (0.144-0.176) (€/kWh) 0.16 €/kWh 0.072
Emission cost (22.5-27.5) (€/ton) 25 €/ton 0.023
Lifetime (6-10) years 8 years 0.025
EVs maintenance cost (0.024-0.028) (€/km) 0.0260 €/km 0.037

5.1. Elasticity Analysis. As mentioned previously, there is a
degree of uncertainty associated with some of the input
parameters. Variations in these parameters can also impact
the total cost. We performed an elasticity analysis on a

%chance intotal cost  {pl+ p2}

number of key parameters to test their impacts on the total
cost. To this end, we used the arc elasticity formula [57]as
follows:

{TC2 - TC1}

EA(TC, p) =

where EA (TC, p) represents the discounted total cost (TC)
per km in response to a change in parameter p.

Elasticity analysis was performed for different ranges of
values to assist the operator in determining which parameter
has the main impact on its optimal vehicle replacement
decision. Regarding the deprecation rate of EVs, an elasticity
analysis was performed for three different intervals. As
expected, the purchase price of EVs, the energy prices related
to the operation of DVs, and the growth rate in diesel prices
have the highest impact on the total cost. The results of the
elasticity analysis are presented in Table 4. A 1% change in
one of these parameters leads to increases of 0.40%, 0.35%,
and 0.26% in the total cost, respectively. For the discount
rate range, the elasticity is negative, which means that when
the discount rate increases by 1%, the total cost decreases by
0.18%.

6. Conclusions

Car-sharing can help resolve traffic congestion and emission
issues arising from increasing mobility within urban areas.
In comparison to diesel vehicles, EVs perform better in
regard to energy consumption during peak-hour traffic
congestion and low-speed flows. Taking this crucial factor
into consideration, an optimization framework for intro-
ducing new vehicles of different types into the fleet of a car-
sharing company over a certain planning period was pre-
sented. The developed framework considers the energy
consumption and emissions of different types of vehicles at
different levels of traffic congestion. To the best of our
knowledge, this is the first time that such a framework has
been presented for the optimal composition of the fleet of a

%change in parameter p  {TC1 + TC2}

{P2 - p1} (12)

car-sharing service. The numerical results showed that EVs,
compared to DVs, become more competitive year after year
during the planning period. The reason for the increase in
the share of EVs is their low operating costs. More im-
portant, their competitiveness increases with the intensity of
traffic congestion. Therefore, any decision made by a car-
sharing operator that ignores traffic congestion intensity
throughout the day as a factor would result in an onus, in the
form of extra costs, for the company in question.

In this paper, an elasticity analysis is done to consider the
uncertainty of input parameters such as the energy cost,
maintenance cost, EV purchase price, and emission cost of
different types of vehicles. In future work, it will be
worthwhile to analyze the effect of these uncertainty pa-
rameters by using a portfolio theory approach such as the
one developed by Ahani et al. [39]. We also assumed that the
range limitation of EVs was not a determining factor for the
purchase decision. Depending on the demand level for car-
sharing services, there are some situations in which such an
assumption seems unrealistic. Hence, another line of re-
search could involve developing a vehicle replacement and
assignment optimization framework by considering the
range restriction of EVs and uncertainties associated with
the network of available charging stations and demand for
car-sharing service across an urban area. In this work, we did
not take into account the charging station location, and no
limitation was assumed with regard to the demand for
charging EVs in a network of charging stations. However, in
real scenarios, the network of charging stations might have a
limited capacity for satisfying the uncertain demands for
recharging the EVs. There are various research studies on
finding optimal locations for refueling stations under
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different scenarios and conditions [58-64]. Therefore, from
the standpoint of an urban decision-maker, the integration
of the frameworks developed in the aforementioned studies
into the optimization framework of the current research
study will be another interesting future line of research.
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In this article, the concept of an electric vehicle (EV) as a sustainable development (SD) is discussed, and the viability of the
development of electric vehicles is assessed. This study broadens the conventional definition of sustainable development by
incorporating and prioritizing crucial areas of technology, environment, and policy performance. The proposed review studies
have summarized the elements that can promote the integration of electric vehicle technology. The innovation of the EV has
just become a modern innovation. At the same time, some obstacles, such as policy and lower adoption, are resisting its goals.
To overcome this situation, electric cars have to adopt some innovative approaches that can be another path to success. The
review result shows that the proposal discusses the technological advancements of electric vehicles worldwide and paves the
way for further improvements. The results also mentioned technological development to reduce emissions and help us
understand the impact on the environment and health benefits. However, the summary would be advantageous to both
scholars and policymakers, as there is a lack of integrative reviews that assess the global demand and development of EVs
simultaneously and collectively. This review would provide insight for investors and policymakers to envisage electric mobility.

1. Introduction

Electric vehicles (EVs) have the potential to contribute to the
decarbonization of transportation and the emergence of low-
carbon cities due to the benefits of energy-efhicient technology
and low pollution. Thus, it has become one of the development
trends of interest in the automotive industry [1, 2]. However,
the EV industry’s future success is highly reliant on technolog-
ical innovation [3, 4]. Many countries, including Sweden,
China, Malaysia, and Korea, have paid close attention to EV
technology innovation and issued policies to encourage EV
technological innovation [5-8]. Nowadays, technological inno-
vation in the electric vehicle field of sustainable development is
a significant topic.

The most important reason is that, at present, environ-
mental issues are becoming increasingly serious. Vehicle
exhaust gas emissions have become the most significant source

of air pollution, particularly in densely populated areas. In
order to overcome the environmental and energy crisis issues
that conventional vehicles contribute to, hybrid electric vehicle
(HEV) technology has been developed and applied over the
past few years. HEV technologies provide a fuel economy
improvement and enable HEVs to exhaust fewer emissions
compared to conventional internal combustion engine vehi-
cles (ICEVs), but HEV's cannot completely resolve the above-
mentioned issues. Thus, vehicle technology has improved to
produce pure electric vehicles (PEVs). As a result, PEV
technology could reduce greenhouse gas (GHG) emissions
and particulate matter (PM, ;) air pollution as the world is suf-
fering from dangerously high levels and poses a major envi-
ronmental risk to human health [9]. Many studies have been
conducted to reduce GHG emissions from vehicles. Without
GHG standards, global CO, emissions from passenger
vehicles would nearly double between 2000 and 2030 [10].
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However, if current GHG standards are followed, global GHG
emissions from passenger vehicles are expected to be slightly
lower in 2030 than they were in 2000. Based on other research,
currently implemented vehicle GHG emission standards will
reduce 1.7 billion tons of CO, emissions from light duty vehi-
cles (LDVs) in 2040, whereas CO, emissions from LDV will
be 5 billion tons in 2040 if GHG emission standards are not
implemented [11]. Sen et al. have estimated the impact of
GHG standards on the market share of electric vehicles (EV)
because zero-emission vehicles are more likely to meet GHG
standards, also known as the corporate average fuel economy
(CAFE) [12].

The researchers from different countries used various
methods to assess the environmental impact of EVs. Many
researchers have discovered that electric vehicles (EVs) can help
to reduce GHG emissions in a variety of ways [13-15]. For
example, Hawkins et al. discovered that in Europe, EVs could
offer a 10% to 24% reduction in global warming potential when
compared to conventional diesel vehicles [16]. According to
Onat et al,, all-electric vehicle types could help to reduce global
warming in Qatar [17]. Some scholars believe that electric vehi-
cles may not help to reduce greenhouse gas emissions [18-20].
Some researchers deny the actual environmental benefits of
EVs, owing to a lack of EV stock and the power utilized by
EVs being insufficiently clean. For example, more than 70% of
China’s electric power is generated by burning coal or natural
gas. The power production industry is well-known as a source
of air pollutant emissions, including sulfur dioxide (SO,) and
nitrogen oxide (NOy) emissions [21]. The source of electricity
generation emits a large amount of greenhouse gases, which
makes the popularity of EVs appear to be environmentally
unfriendly [20, 22-24]. The electric vehicle contributes to global
warming mitigation if the electricity generation system is pow-
ered by renewable and sustainable energy [25-27]. However,
Khan et al. have discovered a comprehensive study on solar-
powered electric vehicle charging systems [28]. As a result, from
an environmental viewpoint, EVs remain a promising trend for
decarbonizing transportation and can contribute to sustainable
development [29].

The sustainable development framework is the most
important model or framework to consider when developing
new technology. Such frameworks take into account various
aspects of development, such as social, economic, environmen-
tal, and technological factors. Furthermore, the development of
international standards and codes, universal infrastructures,
associated peripherals, and user-friendly software will be criti-
cal to the successful growth of EVs over the next decade [30].
Huge teams of researchers are working in these fields all over
the world. Khalid et al. and their research team have enclosed
a comprehensive review on advanced charging topologies and
methodologies for electric vehicle batteries [31]. They focused
on EV charging technologies regarding charging methods, con-
trol strategies, and power levels. Ahmad et al. developed an
existing EV charging infrastructure and energy management
system for smart microgrids [32]. The charging infrastructure
of electric vehicles relays on the grid system, thus unscheduled
EV connectivity with conventional grid systems leads to unre-
liable and interrupted power supply, which may lead to grid
failure. Therefore, the smart city development and energy man-
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agement systems could respond to the smart grid system,
which includes renewable energy sources (RESs) and EVs,
respectively. That research shows a good summary of the prog-
ress of EV charging infrastructure and the impact of EV charg-
ing on the grid, which, on the other hand, is critical for the
growth of the EV market. However, several authors summarized
EV charging infrastructure [33-35], EV integration into the
smart grid [36], vehicle-to-grid (V2G) technology impact [37],
battery swapping stations for electric vehicles [38], and EV
and smart grid interaction [39] in various publications. But tak-
ing part in single approaches may not be suitable for EV adop-
tion growth. There are several supporting strategies, such as
environmental and health impact, policies to help EV technol-
ogy improvement, and sustainable development worldwide.

To improve EV adoption growth towards sustainable
improvement, this paper proposes an innovative approach for
EV development to provide an important guideline with exam-
ples for developing and nondeveloping countries. Such
approaches consider various aspects of development, such as
technical, environmental, health, and policy. The study is sum-
marized from the standpoint of sustainable development using
electric vehicle technology and its impacts in different sectors.
The technological development could not help to increase EV
adoption. Thus, this review points to the technological improve-
ment rates including such key dimensions as human, nature,
and system factors. EV technology with future smart city devel-
opment is the key factor for renewable energy system develop-
ment, which could help to reduce the impact of EV integration
on the grid. The smart grid structure with EV system impact
has been discussed in this review. The following article summa-
rizes EV policy, which is a significant contribution to recogniz-
ing the major improvements in EV use in different countries
and necessary methods. The review summarized the EV adop-
tion hypothesis, which could improve the sociodemographic
and psychological characteristics. Nowadays, EV sharing and
its benefits are hot topics, and electric vehicles are playing an
essential role in environmental and infrastructure benefits. In
this regard, the review went through the vehicle sharing mobil-
ity structure discussion. Lastly, the paper summarizes and
explores some different methods and their advantages and dis-
advantages, which could continue the development of electric
vehicle innovations with a sustainable energy management sys-
tem. These discussions will give a general framework for
increasing EV growth in the world.

The structure of this article is as follows: in the next sec-
tion, we summarized the electric vehicle technology develop-
ment approaches. Section 3 summarizes the CO, emission
and reduction approaches with different countries’ alterna-
tive fuel vehicle studies. Sections 4 and 5 show the EV’s envi-
ronmental and health impacts. Section 6 summarizes the
electric vehicle policies and major improvements for EV
development. Section 7 outlines the advantages and disad-
vantages of electric vehicles. In the last section, the study
covers the conclusion and makes a recommendation.

2. Electric Vehicle Technology

Currently, the world is facing atmospheric changes and emis-
sions of ozone-depleting substances [40, 41]. Most of the
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conventional vehicles carry substances that deplete the ozone
layer. According to a declaration issued by the European Com-
mission, transportation sector is responsible for a quarter of the
total ozone layer depletion in the European Union (EU). One
of the main ozone-depleting materials is CO, gas, and about
15% of CO, is emitted by light vehicles [42]. The revolution
of electric vehicles has stirred up great interest from analysts,
governments, and strategic designers in many countries.
Today’s electric vehicle (EV) technology stems from various
types of individual achievements that divides the overall field
of EV into several key areas [43]. Because of their low pollution
level, EVs can promote low-carbon emission and present a
model for decarbonization of transportation in automobile
sector [1, 2, 44]. Nevertheless, future expansion of EVs depends
on technological improvement to a great extent [3, 4]. Policy-
makers in many countries like Sweden, China, Malaysia, and
South Korea are serious about developing strategies to support
the new inventions in this field [5, 45].

Figure 1 shows the analysis of the estimated improvement
index the estimation steps to improve the areas and subdo-
mains, where PE is the hardware and EM is the electric motor.

There are various analytical models to appreciate the sus-
tainable and unsustainable development of electric vehicles.
An enhanced version of the HNS model (human, system, and
nature) has been developed for mechanical steering of EV,
which is then converted into NHS to show versatility from N
to H and then converted to H to S. An idea of the relationship
between people, nature, and systems is shown in Figure 2. As
shown in Figure 2, each of the three representations is adjusted
equally in accordance with their proposed model (NHS)—case
(a) is more supportable than (b), and (b) is more practical and
therefore better than case (c). In the proposed model, nature,
human, and systems are considered independently (Figure 2),
whereas humans depend on nature and nature will remain
without people, and the structure depends on both humans
and nature. As a rule, support infers a rational approach to
limit negative environmental impacts trying to maintain har-
mony between all three components. The opinions of people
and structures are discerned from a natural viewpoint [46].

There are three types of electric vehicles: hybrid electric
vehicle (HEV), fuel cell electric vehicle (FCEV), and electric
vehicle (EV). According to [47], all PHEVs in a municipal
fleet can be divided into the following six categories, where
vehicles in category 2 are modular electric vehicles that are
operated by, at least, one electric motor using the energy
stored in batteries.

(1) Electric bicycles and bicycles

(2) Street electric cars

(3) High-speed urban electric vehicles
(4) Low-speed electric cars

(5) Supercars

(6) Electric bus and electric truck

A model for relationship between EV and the grid is shown
in Figure 3 [41, 48]. To overcome the low-voltage and high-

load systems, it is recommended to connect or charge EVs to
the grid at a specific time. However, EV technology advance-
ment may not only increase EV adoption. There are several cri-
teria needed for energy management methods and policies to
give motivation to EV customers. A study using bilevel mathe-
matical model to capture the decision-making processes of the
transport agency and the travelers can serve as guidance for
metropolitan transport agencies to establish specific locations
and capacities for EV [49].

2.1. Flexible and Innovative System in the Vehicle. In near
future, dynamic mobility between fully electric vehicles
(EVs) and plug-in hybrid electric vehicle (PHEV)) will
become an imperative choice for the smart grid area [50].
Hence, an energy management mechanism is desirable to
endorse the link between household business taxes and fast
car charging. One of the best choices required for flexible
and unique utilities is EV [41, 51], the function and focus
of which include strategy to ensure high response speed
and transfer energy in two directions.

2.2. Future Development Model of Electric Vehicle Network
(EVGI). Electric vehicles can be used not only as transporta-
tion but also as electrical loads (grid to vehicle (G2V)), the
corresponding energy stock of grid (vehicle to grid (V2G)),
the energy stock of various electric vehicles (vehicle to vehi-
cle (V2V)), and the energy stock of buildings (vehicle to
building (V2B)) functions system compliance center [52,
53]. In the field of vehicles, some of the latest innovations
include proprietary long-distance power transmission (wire-
less power transfer (WPT)) [54], connected mobility (CM),
autonomous or autonomous electric vehicles, and the eco-
nomic saving and life power network of electric vehicles.
Figure 4 shows a classification, and Figure 5 shows a recom-
mended model for the future development of EVs and
energy structures. This proposed structure includes renew-
able electricity and hydrogen generation for battery and fuel
cell EVs. On the other hand, energy networking systems
have been developed for energy utility, distribution, and
transmission control systems, whereas EV is contributing
as a utility and energy distributer.

2.3. Application of Renewable Energy. This section studies the
impact of renewable energy systems in implementing EV.
Knezovi¢ et al. [55] studied the opportunity and exertion of
synchronizing sustainable energy sources (for example, based
on wind and sun) to provide energy for battery charging and
limiting greenhouse gas (GHG) emissions. PEV can charge
electric vehicles in peak-oftf hour or when the renewable
energy is available. There is a lack of coordination between
the host and the distributed generation energy system (DESS)
with sustainable energy, which can be completed under the
basic load and the maximum load. At the top time, supple-
mentary energy is fed into the grid. From the literature, we
found that primarily, the broader prospects of entire future
grid system and network have been studied so far [41].

2.4. Smart Grid Structure. Smart grid is a multifaceted system
connected to all grid networks. At present, the power grid net-
work does not meet the flexibility required to facilitate EV



0.7 7

0.6 1

Estimated density

Journal of Advanced Transportation

T
0 02 04 06 08 1

1.2 14 16
Predicted-k
— PE —— EM-induc
—— PE-hybrid — EM-PM
PE-other —— Battery
Charging & disch  —— Nickel
—— Charging — L-acid
—— Discharging Li-ion
— EM

Domain & Improvement
subdomain (%)
PE 18.3
PE-hybrid 38.5
PE-other 15.8
EM 7.7
EM-PM 10.1
EM-Induction 9.4
Charging & dis 23.8
Discharging 28.6
Charging 21.9
Battery 11.7
Battery-lithium- 13.2
ion
) Battery-nickel 8.7
Battery-lead acid 5.1

FI1GURE 1: The estimated technological improvement rates of domains and subdomains [43].

Nature Human System

h—4

Human Nature Human

System Nature

System

Sustainable Unsustainable Unsustainable

FiGURE 2: Models for human, structures, and nature (HNS): (a)
sustainable and (b and c¢) unsustainable. Redrawn from this
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charging. For the exhibition of all system screen characters for
this application, various networks need to be effectually
cliched, connected, and permitted. The following are the main
components of planning a keen system [41, 52]:

(1) The substructure of the system and its components
must be adaptable

(2) The structured grid model should support future
growth

(3) When planning the structure, the structure and
points of the programming/device/grid structures
should be considered

(4) Any system update program should be executed
automatically

2.5. Impacts of EV Integration on the Grid. However, this sec-
tion’s information is important to observe the impacts of EV
integration on the grid. We summarized the effects of mixing
the EV grid, which can be divided into negative and positive. It
is recommended that before connecting EV technology to the
grid network, there will be significant heavy load problems.

However, EV technology still needs to be synchronized to the
national grid system. A short details are shown in Figure 6 [52].

2.5.1. Negative Effects. Electric cars are a wonderful test for
energy suppliers. The unnecessary integration of electric
vehicles into a decentralized system can affect the shape of
the stack, the limits of the components of the transport
frame, tension and repetitive accidents, injection of upper
symphonies, a power failure, and financing stability.

2.5.2. Positive Effects. Although top-level EV access to the
network can cause problems such as damage to the quality
of the degradation, increasing maximum loads, and power
recommendations, each of these problems can be resolved
using executive power techniques, such as [37, 56, 57].

2.6. Approach Time to Charge the Battery to Reduce Negative
Impacts. Synchronous loading is one of the most effective
strategies. The transaction costs for energy, a measure of
the energy consumption of a battery in the state of charge
(SOC) (Figure 7(a)), are regarded as the parameters of this
technology. In the independent state of charging, 55% of
the battery charge is accomplished, and additionally, 45%
is supplied during low use (10:00 p.m. to 7:00 a.m.). In
express delivery, 75% of the EV battery charge ends when
used less (10:00 p.m. to 7:00 a.m.), and the remaining 25%
is made available between 7:00 a.m. and 10:00 p.m. In an
uncontrolled state of charge, 55% of the charging time of
the battery is used during periods of low usage (10:00 p.m.
to 7:00 a.m.), and the remaining 45% is between 7:00 a.m.
and 10:00 p.m. [12].

A proposed charging schedule is shown in Figures 7(b)
and 7(c). One of the primary difficulties with this strategy
is that during periods of maximum energy consumption,
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Wireless power transfer

Wireless power transfer is the latest
technique to charge / discharge the EVs
without any physical contact between source
and load. WPT transfers electrical energy
through electromagnetics.

Connected mobility (CM) is the concept of

communication between vehicle-to-vehicle,
vehicle to a roadside base station, passenger,
traffic signal, power grid, etc.

Energy internet

Autonomous or self driving vehicles are the next
generation vehicles,which have the ability to
sense their surroundings and act upon it. Itis a
driverless technology, where the vehicle itself
decides the travelling route, identifes road
conditions, operates the vehicle to reach the
destination set by the user.

EVs may play a vital role in the development of
the energy internet (EI) technology . The EI
concept, frst introduced by Jeremy Rifkin, is to
unify the power, transportation, gas, and thermal

systems in a single platform .

With the technological advancement in EV
technologies, a new concept of vehicle

ownership may evolve in the near future using
theshared economy or collaborative consumption
concept.

F1GURE 4: Classification of EV network.

the charging of connected EV's gets restricted. The following
mode (controlled state of charge) is considered.

The updated lithium battery is suitable for charging EV's
with a range of 170 kilometers. The maximum battery
charge of EVs is around 20 to 30kWh. EV FC batteries
can charge 80% of EVs in less than 30 minutes.

3. CO, Emission and Reduction Approaches

Apart from the positive impact, we believe that EVs could be a
suitable technological option for renewable energy sources.
However, for sustainable development, EVs could contribute

to the environmental impact. Synchronization between issues
related to global temperature change and air pollution are vital
for a cleaner transportation sector. The International Energy
Agency (IEA) is taking measures to reduce carbon dioxide
(CO,¢q)> and many countries have adopted the introduction
of EVs in the market as an important policy [59, 60].

Many observations focused on the development of electric
vehicle advertisements in various departments and countries,
such as in the United States, Iceland, Canada, and the Nether-
lands [61-64]. From 2012 to 2013, the development of cooper-
ation between electric vehicles in the Scandinavian market was
determined by measuring the possibility of using various forms
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FIGURE 6: Negative and positive impacts of EV grid integration
system. Redrawn from this source [52].

of financing to purchase electric vehicles [61]. The outcomes
indicate that the decisive factors are the development of fuel
and electric vehicle costs and the driving force behind the gov-
ernment. Many tests use virtual models to estimate the cost of
emissions from electric vehicles. Therefore, further research
on real information about electric vehicles is required [65].
Buyers of electric vehicles are required to use their local grid
discharge as a guide for EV statistic, which is a dangerous devi-
ation from atmospheric deviation due to different radiant
forces in the area. Appropriate models for determining the
age limit of electricity consumption and carbon dioxide emis-
sions for electric vehicles take into account the explicit radia-
tion factor of the energy service life, which is why it should
be carried out on site [66].

As people pay more attention to environmental changes,
more attention is being paid to reducing carbon dioxide
emissions than ever before. Carbon dioxide from the auto-
motive industry, in particular, accounts for 22.9% of global
emissions [67]. More than 190 countries have created plans

to carry out the exercises foreseen after 2020 as part of the
Intended Nationally Determined Contribution (INDC) [68].
South Korea proposes to reduce the runoff of greenhouse gases
(GHG) by 37% by 2030 as an INDC. They believe that this will
be achieved by reducing carbon dioxide emissions in the
family car sector by 30.8 million tons in terms of carbon diox-
ide, which equates to the target emission reduction of 11.1%
[69]. In order to reduce greenhouse gas emissions from the
automotive sector, the Korean government has reached an
agreement to create and provide institutional assistance to
the global green automotive industry [70]. Electric vehicles
(EVs) and fuel cell electric vehicles (FCEVs) play an important
role, especially in response to environmental concerns and
future interest in cars. In light of these environmental and eco-
nomic considerations, the Korean government has set targets
for the elimination of electric vehicles and FCEV's and is look-
ing for various methods of assistance [71, 72].

3.1. Different Country’s Strategies for Alternative Fuel Vehicles
(AFVs). Figure 8 shows different countries’ strategies for alter-
native fuel vehicles (AFVs). We summarized the important
studies and methodologies for AFVs’” performance and contri-
bution to reducing GHG emissions. Previous alternative fuel
vehicle (AFV) surveys show that customer preferences for fuel
type vary by country/region and inspection time. In addition,
in many studies, the probability of making an AFV decision is
less than that of an internal combustion engine. Especially
considering the opening and charging time of the charging
station and taking into account the various characteristics of
various studies, with the current level of innovation, internal
combustion engine vehicles (ICEV) are even better than
AFV [72], but ICEVs produce more GHG emissions than
AFV. However, based on environmental and health benefits,
AFVs such as BEV and FCV technology could provide an
alternative means for sustainable development. The problem
of locating refueling stations in a transportation network via
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mathematical programming has been carried out by [73]. The
proposed model is applicable for several alternative fuel types
and is particularly suitable for hydrogen fuel.

Various studies have shown that a clear energy structure in
the United States is a key factor in AFV greenhouse gas emis-
sions. To reduce the reduction of medium- and long-term
AFV greenhouse gas emissions, some AFV assumptions need
to be considered, as well as customer trends and mechanical
innovations, as well as state regulatory mechanisms for energy
consumption. It is recommended that we follow the different
countries’ AFV methodology to overcome the EV perfor-
mance issues and use those technologies for sustainable devel-
opment. Based on the life cycle assessments around the world,
AFVs perform better than ICEVs. For example, in the Euro-
pean power mix, EVs can reduce GHG emissions by 10 to
20% compared to ICEVs. On the other hand, GHG emissions
from hydrogen production are analyzed in the context of
South Korea. They used well-to-wheel (WTW) approaches
to reduce GHG emissions. However, since a large portion of
the power sources around the world are fossil fuel based,
EVs may not be effective in reducing GHG emissions. Thus,
EV technology needs further improvement (i.e., fuel cell tech-
nology) and policy implications to achieve deep decarboniza-
tion from power to transportation sectors. In the following

section, we provide some research and future prediction out-
comes for EV development in the road transportation sector
in South Korea and China.

3.2. CO, Emission and Reduction Scenario Approaches. This is
a proposed assessment of carbon dioxide emissions and
approaches of reducing the use of heavy-duty trucks under
various conditions of emission acceptability in South Korean.
Mechanically achievable carbon reduction levels apply to the
following four situations: similar to business as usual (BAU),
mild, normal, and aggressive conditions. In the estimation of
CO, emissions, a simulation model based on the longitudinal
component of the vehicle, the normal vehicle mileage, and the
number of Korean vehicles has been used, as shown in
Figure 9. According to BAU, 30.82 million tons of carbon
dioxide will be produced by 2030 and carbon dioxide emis-
sions will be cautious and sensitive and, as a rule, will decrease
by 2.1%, 4%, and 5%, respectively. By 2040, the impact of these
conditions will be reduced by 5.7%, 10.9%, and 15.8%, respec-
tively. These results indicate that South Korea can reduce CO,
emissions through strict improvement measures or CO, regu-
lations for vehicles [74].

Here is another example. China is by far the best private
electric car advertisement in the world and flexibly represents
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part of the world’s private car in 2017. The China data
research center of Automotive Technology & Research Center
has maintained an extensive database of prices and quality.
This data can be used to evaluate the environmental impact
of the PEV in China [75].

Always indicate eVKT (vehicle kilometers travelled) of
BEV and PHEV in 5 districts. From 2011 to 2017, BEV cov-
ered 12.5 billion kilometers in 5 regions. Beijing invested over
30% in all electronic quotas; Zhejiang, Guangdong, and Shan-
dong accounted for around 20%; in Tianjin, it is less than 10%.
From 2011 to 2017, 5.8 billion kilometers were spent in 5
regions. Shanghai represents 55% of the PHEV recommenda-
tions, Guangdong 32%, and less than 5% in the other three
regions. Between 2011 and 2017, these five districts spanned
a total of 1.83 billion kilometers. In 2017, PEVs accounted
for 70.1% of the 9.7 billion kilometers guaranteed by battery-
based EVs.

Figure 10 shows the absolute annual CO2R for BEV and
PHEYV, respectively. From 2011 to 2017, BEV carbon dioxide
outflows in Beijing and Zhejiang declined. In any case, from
2011 to 2013, BEV went to Guangdong, from 2014 to Shan-
dong and from 2012 to Tianjin, carbon emissions have
increased, and the ICEV has also been limited. Although

carbon emissions in Shandong and Tianjin are generally
high, this increase in runoff is due to the generally low nat-
ural impact of destroyed vehicles in Guangdong.

In Shanghai, from 2011 to 2017, the outflow of carbon
dioxide from PHEV continued to decline. Between 2011 and
2017, plug-in hybrid cars have grown steadily in Guangdong,
Tianjin, and Shaanxi in the past 4 years (except 2016) and in
2017. It is unclear whether PHEV-CO, in region 5 has
completely run out until 2015. The model is also explained
by the general environmental impact of top models such as
Guangdong, Tianjin, and Shaanxi, although the CO, emis-
sions in Tianjin and Shaanxi are slightly higher. In 2017, the
PEV produced 355,827 tons of carbon dioxide in five main
locations. About 80% of this volume is provided by BEV and
20% by PHEV. In 2017, each BEV model emitted 606.6 kg of
carbon dioxide, and each PHEV model emitted 350.9kg of
carbon dioxide. Although BEV and PHEV disposed of
472,806 tons and 139,018 tons of carbon dioxide from 2011
to 2017, respectively, the PEV's generally reduced 611,824 tons
of carbon dioxide [76].

The above results show the performance of EVs and EV-
related policy applications. That progress mainly depends on
a country’s policy and identifying the best technology to fit
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into the market. However, underdeveloped countries should
learn from EV growth countries’ experience. A good EV policy
could help to reduce GHG emissions and environmental and
health impacts from the transportation sector. To support this
powertrain electrification, China and India launched subna-
tional level policies to inspire electric vehicle demand, local
manufacturing, research and development (R&D), and infra-
structure development. Therefore, technology and policy have
a significant role in EV growth and adoption.

4. EV Environmental Impact

Since the introduction of the most advanced combustion
engine in 1885, transportation has only been achieved through
fossil-fueled vehicles. Today, vehicles account for 29% of global
carbon dioxide emissions, while individual vehicles account for
10% [77]. In addition, by 2025, less than 5% of vehicles in the
United States will correspond to corporate average fuel econ-
omy (CAFE) [78]. On the other hand, EU regulations stipulate
that by 2020, the bound emissions of carbon dioxide must
reach 95 g/km, which means that more than 95% of cars still
do not agree with the standard [79]. As a result, the main con-
test is the amount of adoption for EVs versus clean electricity
fueled. In 2009, a fascinating study was conducted, showing
the advantages of PHEV and HEV vehicles in achieving emis-
sion targets and reducing fuel consumption compared to regu-
lar vehicles [80]. At this point, the restriction that restricts the
use of electric vehicles as a standard rather than an exception
seems to support hybrid electric vehicles. However, the envi-
ronmental impact of HEV largely depends on its internal com-
bustion engine “range extender” [81].

Another major disadvantage of simple fractional alterna-
tives is that, despite many other options, they all produce
nearby toxins such as some CO, NO,, and PM. Contrary to
the flow of carbon dioxide, these particles have local character-
istics that affect air quality within 100 km [82]. Several sources
indicate that this reduction in carbon dioxide emissions can
reach 100%, while SO, can be reduced by 75%, NO, can be
reduced by 69%, and PM,, can be reduced by 31% [83, 84].
In this regard, urban areas are exposed to another type of pol-
lution: noise pollution. In all respects, a quiet EV can reduce
the noise level by 3-5dB (A) [85]. Nonetheless, some experts

found this reduction to be a conflict advantage, especially
due to helpless street customers [86], and emphasized the need
for additional security measures.

The location of countless electric vehicles poses environ-
mental problems associated with battery disassembly.
Although it is currently impractical to use lithium batteries
incompletely, lithium batteries contain hazardous components
inherent in the toxicity of electronic equipment and must be
properly disposed of. There are many reasons why lithium bat-
teries are more difficult to predict and more expensive than
lead-acid batteries. Initially, lithium batteries were equipped
with a series of accessories, including LiCoO,, LiMn,O,,
LiNiMnCoO,, LiFePO,, LiNiCoAlO,, and Li4Ti50,,, which
made the automatic reuse process difficult. In this case, the
dynamic materials in the battery cells of Li particles are coated
with metal foil powder, which needs to be separated during
recycling. Lead-acid batteries are always made of a small num-
ber of large lead plates and are located in a single plastic case,
but in most cases, many individual low-limit batteries and lith-
ium particles are bundled in the module [87, 88].

4.1. Electric Vehicle Battery Recycling. From an environmen-
tal point of view, the rapid growth of the electric vehicle
market will not cause a large number of lithium-ion batteries
to expire. If they enter the recycling program or are improp-
erly used, they will generate a lot of toxic waste. Stringer and
Ma [89] found that due to the strengthening, the global elec-
tric vehicle load will reach 55,000 to 3.4 million from 2018 to
2025. These batteries are no longer suitable for electric vehi-
cles. However, they have less than sufficient limits for certain
fixed capacities (for example, storing energy on a private,
modern, and basic scale). However, according to Nissan
CEO Francisco Carranza [90], the price of EV battery mate-
rials that can be disposed of permanently is much lower than
the price of fully used batteries. Since the used EV battery
has enough energy to meet the less demanding tasks (such
as RES energy storage), and since the use time can only be
about 8-20 years [91], this will undoubtedly be reused again.
This wise approach is called the second demonstration of
using electric vehicle batteries, and some organizations have
recommended it, for example, Nissan and Hyundai. Marra
et al. [92] found that the ratings of batteries with potential
for reuse are almost several times higher than the ratings
of batteries that are increasingly suitable for recycling [93].

4.2. Electric Vehicle Effect on Electric Scaffolding. At the turn of
the 20™ century, global temperature changes and environmen-
tal pollution issues became the main issues of general legisla-
tive issues, which led people to seek the choice of petroleum
products functionally and may revive electric vehicles. At the
same time, the rapid expansion of the state-supplied electricity
supply can benefit both the land and the real test of the energy
structure. Huang et al. [94], described that the emergence of
electric vehicles will cause a “top-down” impact, which may
lead to serious risks related to the power system, for example,
in southern Norway in 2017 [95]. These risks include an
increase in the short-circuit currents; the voltage level could
no longer be between the standard limits; the power demand
is higher and the lifespan of the equipment is affected.
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However, the EV hosting capacity of the grid is good for a
majority of the end-users, but the weakest power cable in the
system will be overloaded at a 20% EV penetration level. The
network tolerated an EV penetration of 50% with regard to
the voltage levels at all end-users in Norway. Injecting reactive
power at the location of an installed fast charger proved to sig-
nificantly reduce the largest voltage deviations otherwise
imposed by the charger [96]. Various scientists have raised
comparable questions about these issues [97, 98].

5. Health Impact

Vehicle-driven innovations such as electric vehicles (EV),
including hybrid electric vehicles (HEV), plug-in HEV
(PHEV), and battery electric vehicles (BEV) have potential
economic, environmental, and health benefits, but they need
to recognize the impressive benefits of open EV reception.
Anyway, in the United States, only a small percentage of
electric vehicles need to investigate the behavior of the vehi-
cle distribution in order to identify the current consumers of
electric vehicles based on the attributes and settings of the
electric vehicle while also considering competitive solutions,
which are assembled fuel and diesel ordinary vehicles [99].

EVs powered by low-emitting electricity from natural
gas, wind, water, or solar power can reduce environmental
health impacts by 50% or more compared of ICEVs [100].
Considering the age of sustainable energy use, German elec-
tric vehicle emissions are 62-64% lower than traditional
vehicles [65]. However, many scholars believe that the pro-
motion of EVs in China cannot achieve energy savings or
greenhouse gas reduction in most provinces due to their
power structure [101]. Certain environmental benefits can
only be realized in certain well-established or low-carbon
regions [102]. Increasing the proportion of renewable
energy, such as hydropower, wind, and solar power, in the
power supply system can effectively reduce the negative
environmental effects of EVs [27].

5.1. Well-to-Wheel Approach. The well-to-wheel analysis is a
nonstandardized method to quantify the impact of transporta-
tion fuels and vehicles regarding energy and climate change.
According to the life cycle concept, the US Department of
Energy’s Argonne National Laboratory has proposed a well-
to-wheel (WTW) rating system for studying vehicle fuel con-
sumption. Well-to-wheel is the first step in comparing the effi-
ciency of different solutions towards greenhouse gas (GHG)
emissions. Those GHG emissions are so crucial to mitigate
because, simply put, they cause climate change. The subject of
the assessment is the support of the vehicle’s fuel base, which
is divided into two stages: the level of fuel production (or from
the well-to-tank, WTT) and the ignition level of the fuel (or
from the fuel tank-to-wheel, TTW). The former includes the
extraction, transportation, and conversion of fuel. The WTW
method focuses on the life cycle of fuel consumed by the vehi-
cles without describing the vehicle manufacture, scrapping, and
recycling. Figure 11 shows the system boundary of the well-to-
wheel approach structure [20].

Figure 12 shows an example of the EU energy mix in the
transportation sector. Let us compare vehicles that are pow-
ered by gasoline, diesel, plug-in hybrid electric vehicles
(PHEV), batteries, and compressed natural gas (CNG) [103].

There are some immediate assumptions from this simple
example:

(i) On a TTW basis, electrified solutions offer the best
performance. These are the emissions coming
directly from the vehicle

(ii) Considering the current EU energy mix (106 g CO,/
M)]), the WTT CO, contribution from BEV is approx-
imately double compared to conventional fuels. These
are the emissions coming from the fuel or, in the case
of electric vehicles, the electricity production

(iii) On a WTW basis, BEVs offer better performance
thanks to the better efficiency of the powertrain
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5.2. EV and Health. Despite continuous innovation and
improvement, the automotive industry continues to account
for a quarter of the emissions of greenhouse gas substances
(GHGs). Automobile emissions lead to a high concentration
of air pollution, and many urban communities on the planet
often do not meet the air quality indicators set by the World
Health Organization (WHO) [104]. For many reasons, it is
important to show off new energy vehicles in the global indus-
try. Electric and hydrogen-powered vehicles offer many advan-
tages for cities and urban areas, such as extremely low (hybrid
electric cars with plug-in PHEV) to zero (electric cars with bat-
tery-BEV, electric cars with fuel cell-FCHEV, and hybrid fuel
cell) tailpipe emissions, reduced noise, and the ability to enable
new smart services [105-108].

Thus, the European Union (EU) is carefully and exten-
sively studying the enforcement of a driving ban for diesel cars
in other European and German cities [109, 110]. By doing so,
policymakers want to reduce local emissions, such as nitrogen
oxides, in order to mitigate natural and health problems [111,
112]. For example, in 2018, the German city of Stuttgart will
impose restrictions on driving old diesel cars due to the higher
nitric oxide content than in previous years [113, 114]. Further-

more, policymakers want to lower greenhouse gas emissions
through alternative technologies, e.g., by using battery electric
vehicles that are powered by sustainable energy sources to
limit their environmental footprint. Since the road transport
sector has generated 18% of the all greenhouse gas emissions
over the past decade [115], an increased interest in alternative
technologies such as battery electric vehicles (BEVs) could
reduce such emissions [116].

6. EV Policy

Policy development for electric vehicles is an important fac-
tor for sustainable EV development. Most policy research
has focused on plug-in electric vehicles (PEVs) in the short
term, such as by (i) typically considering a wider range of
evaluation criteria and (ii) setting PEV sales goals in the lon-
ger term (e.g., 2030 or 2040) [117]. Much evidence shows
that the short-term method has played a key role in the
supervision of PEV so far [118, 119]. Although some studies
have shown that PEV and standard gasoline vehicles will
eventually achieve equal costs (whether on the price tag or at
any cost of ownership) [120, 121], various studies have shown
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TaBLE 2: Policy on recycling and recycling technology for metal recovery from end-of-life batteries of EVs.

Country Key content Company Recycling process Reference
European GRS Pyrometallurgy, mechanical separation,
Union Batterien hydrometallurgy
Batrec AG
. Eurodieuze hPyrolys1s,llllydrometa}lllugy, |
Swiss Create a system of collection and recycling for all types of Recupel ydrf)meta urgy, mechanica
batteries based on an extended producer responsibility separation, leaching, and refining [136-138]
France system through the Battery Directive SNAM Crushing, pyrolysis, distillation,
pyrometallurgy
Spain Pilagst Mechanical separation, chemical
treatment
Belgium Umicore  Hydrometallugy after pyrometallurgy
The German Batteries Act requires all producers and
Germany  importers of batteries and accumulators to collect end-of-  Accurec Pyrolysis, hydrometallurgy [138, 139]
life batteries
Universal waste regulations are used to manage the large
number of batteries. The recycling of EV batteries at theend =~ Onto Cryogenic crushing, hydrometallurgy,
USA of their useful lives is not required by federal law, though. ~ Retriev pyrometallurgy, cryogenic crushing,  [138, 140]
Several states recently outlawed the disposal of used EV TOXCO hydrometallurgy
batteries in landfills
Under the Law for the Promotion of Effective Utilization of
Resources, manufacturers encourage resource collectionand DOWA Pyrometallurgy, hydrometallurgy,
Japan . . . .. . [141, 142]
recycling on a voluntary basis (recycling batteries is not ~ Sumitomo  hydrometallugy after pyrometallurgy
covered by any specific laws)
Interim Measures for the Management of Recycling and
. Utilizing Power Batteries for New Energy Vehicles were
China published in China (including design, production, and N/A N/A (143, 144]
recycling responsibilities)
After receiving a subsidy, the consumer must return the SungEel
Korea EV’s dead battery. The recycling of EV battery end-of-life ~ Hitech Hydrometallurgy [145, 146]
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FIGURE 15: EV adoption hypothesis stature.

that this strategy will undoubtedly help to expand PEV trans-
action volume. In the coming decades [122, 123], for example,
a Canadian study showed that despite ideally reducing battery
costs, without expanding at least one stable PEV, the new
industry-wide PEV cannot exceed 10% by 2030 [124]. How-
ever, the current vehicle market has already switched to new
BEV technology and will soon go for FCEV. Most national
policies around the world are focused on reducing road trans-
port CO, emissions by shifting to high energy efficiency and

low-carbon energy demand technologies. According to the
International Renewable Energy Agency (IRENA), renewable
energy policies must prioritize end-use sectors over power
generation. Renewable heating and cooling require more pol-
icy attention, such as dedicated targets, technology mandates,
financial incentives, generation-based incentives, and carbon
or energy taxes [125]. EV and climate policy also push to uti-
lize renewable energy in the transportation sector. To reduce
more emissions from the road transport sector, the
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subnational government has implemented several initiatives
to stimulate the adoption of electric mobility in recent
years [126].

6.1. Barriers to Adoption. PEV adoption is low in most
regions due to a variety of demand and supply-side market
barriers [127, 128]. Understanding these barriers is helpful
for designing policies to encourage EV adoption. Previous
studies have identified eight key types of PEV stabilization
policies implemented in Canada and various sites, which
can measure their impact on PEV adoption [129]. These
policies can be predicted using core policies implemented
globally and form the basis of most PEV strategies (e.g.,
[130, 131]). For a small part of the entire industry, different
types of policies were deemed to have a negligible to small
market share impact (e.g., voluntary programs) and/or a
particularly uncertain impact (e.g., research and develop-
ment support) [117, 132]. These eight “quantifiable” policies
are described in Table 1, along with how they are currently
being implemented in Canada and how they differ from a
“strong” version that we summarized in this paper.

Table 1 shows an example, but it is true that EV adoption
needs strong policy support to overcome its barriers to adop-
tion. We can utilize the developed countries’ EV policies (e.g.,
PEV policies) and their impacts to make reliable policies that
could be linked to climate policies. However, EV policy is still
experiencing challenges because consumers need time to
adopt new technology. In this next section, we summarized
some countries’ EV policy improvements and future goals.

6.2. The Major Improvements of the 2018/19 Agreement
Include the following Policies

(1) The EU has approved some excellent strategic tools.
They include mileage standards for cars and trucks
and the Clean Electric Vehicle Directive, which stipu-
lates the public procurement of electric vehicles. The
Energy Efficiency Directive specifies minimum require-
ments for load foundations in new and rebuilt structures

(2) In China, the progress of the agreement reviewed the

speculative restrictions on the new ICE car manufactur-

ing facility and brought forth a proposal to establish
normal mileage for the passenger light-duty vehicle

(PLDV) in 2025. The utilization of separate motivating

inducements for vehicles depends on the quality of the

battery (for example, a car loan and a zero-emission car
loan under the new energy vehicle rules)

In Japan, the adoption of an automatic method,
which can be used by modern partners, means that
the emissions of greenhouse gas (GHG) substances
from vehicles (including sold vehicles) provided by
car manufacturers to households account for 80%
of the country (road vehicles account for 90%),
through the combination of HEV, BEV, PHEV,
and FCEV, to reduce emissions in 2050. The truck’s
performance principles have been revised, and an
update on the vehicle’s mileage has been announced
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(4) Canada has realized the dream of combining EVs with
new methods. British Columbia announced the intro-
duction of the world’s most potent ZEV (zero-emis-
sion vehicle) team: by 2030, the share of the ZEV
business will reach 30%, and by 2040, it will reach
100%. Canada’s system is comparable to the ten US
states where the ZEV team has been implemented

(5)

(6)

Travel transfer model
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India announced the second conspiracy period,
“Faster Adoption and Manufacturing of Electric
Vehicles in India” (FAME India). It reduced the
price of electric vehicles by half, focusing on vehicles
for open or general transportation (vehicles, rick-
shaws, and taxis) and private bicycles

In South Korea, the level of national sponsorship for
all low-carbon vehicle purchases increased from
32,000 in 2018 to 57,000 in 2019, and other strategic
tools have been added, including public access, sub-
sidies, and discounts on transportation security fees
and reduced parking spaces. It is joined by an objec-
tive to support production volume of more than 10%
of the capacity of all vehicles by 2022 and to use
money-related help and progress to guarantee great
manufacturing players

Strategic energy is also increasing in various countries.
One of the most important aircraft types is Chile, which is
one of the largest airlines in the world after China. Chile’s
goal is to rejuvenate 100% of its convertibles and 40% of
its private cars by 2050. New Zealand also has high expecta-
tions and hopes to achieve a transition from a clean econ-
omy to zero emissions by 2050. New Zealand and Chile
joined the Electric Vehicle Initiative (EVI) in 2018 [133].

6.3. Policy on Recycling of EV Battery by Countries. Battery-
related research is also important to enhance EV adoption.
This is part of waste management and needs a specific policy
to encourage the expansion of the EV market. With the rise
of the EV market, the global supply of EVs has recently
increased significantly, as has the global market for EV bat-
teries [134]. China, Japan, and Korea have a large market
share of EV batteries and are essential countries for the
development and production of EV batteries on a global
scale. Because the top ten EV battery producers are from
China, Japan, and Korea, they accounted for more than
80% of the EV battery supply in 2018 [135].

To maximize resource recovery and properly manage
hazardous materials from end-of-life EV batteries and tech-
nology, recycling policies for EV batteries are being imple-
mented in several countries, as shown in Table 2.
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6.4. EV Adoption. EVs continue to penetrate the national mar-
ket, and by the end of 2018, more than 5.1 million EVs had
been produced [147]. Global stocks of EVs have mainly been
concentrated in three regions: China accounts for about 45%
of them, followed by Europe and the United States, which
account for 24% and 22%, respectively [133]. In addition, Euro-
pean countries continue to travel relative to the entire fleet.
More than 10%, of vehicles in Norway are electric vehicles
(BEV or PHEV), followed by Iceland (3.3%), the Netherlands
(1.9%), Sweden (1.6%), and China (1.1%) [148]. However,
China has the most widespread advertising for EVs, and by
the end of 2018, its national fleet increased by 1.1 million
EVs [133]. This can be observed in the international EV targets
for 2020 or 2030 in Figure 13.

The literary outcomes integrate the appeal of EV choices
and the six components of the V2G influence. The text on
the EV and (to a lesser extent) the evolving V2G employment
classification typically emphasizes the importance of six
dimensions, including the various parts of the user, conven-
tional vehicles, and a supportive (and social) foundation for
innovation. An overview of these indicators can be seen below.
Figure 14 shows a multidimensional conceptual framework
for EV adoption [149].

6.5. EV Adoption Hypothesis. The current study has reliably
established that early users of EVs have the quality of social seg-
mentation and can be clearly identified on the basis of potential
users or non-EVs (i.e., buyers of ICE cars). Currently, the study
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Figure 19: Continued.
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assumes that regular or early users (depending on definition)
usually (1) are profoundly trained [150], (2) have a higher
income [151], (3) are young to middle-aged [152], (4) are part
of a family with several cars [150, 153], (5) live in larger families
[150], (6) are mostly men, and (7) live in small- and medium-
sized cities [152]. Figure 15 shows a diagram of the EV adop-
tion hypothesis.

The latest report by Nayum et al. [150] tested the impor-
tance of psychological factors as an indicator for buyers who
buy increasingly environmentally attractive vehicles (e.g., elec-
tric cars). They expanded the comprehensive action determi-
nation model [154], which includes targeted, standardized,
situational, and ongoing impacts on environmentally friendly
behavior [64, 155].

6.6. EV Sharing. Given the dangers of climate change, the
mobility sector must move towards sustainability. One way to
reduce emissions while driving is to establish the use of electric
vehicles (EVs). However, given the current market share in
Germany, the expected regime change from traditional com-
bustion to electric motors seems rather unlikely. This leads to
the search for new options for dynamic market growth. Recent
studies have shown that consumers lack sufficient knowledge
and have a high level of uncertainty regarding electric vehicle
technology. To overcome these barriers to acceptability, this

study suggests that experience with car-sharing services—in
particular electric car-sharing—can lead to broader adoption
of electric car technology, which will lead to wider market pen-
etration. Using the technology acceptance model, a quantitative
study was conducted between users who share cars and those
who do not to evaluate the impact of car-sharing experiences
on the acceptance of EVs. In addition, five possible predictors
for the adoption of EV's were tested: mobility, automotive own-
ership, urban areas, environmental awareness, and technology
[156]. Figure 16 shows the car-sharing mobility structure.

6.7. Measuring Frame. According to Pigou’s theory, external
factors must be assimilated to reflect their real expense or
value [157]. As a combination of new, environmentally
friendly technologies and an innovative business model, the
external effects of sharing electric cars should undoubtedly
be studied in order to facilitate this further. Selecting appropri-
ate indicators is a crucial step. The entire structure of the travel
transfer model can be observed in Figure 17 [158].
Summarizing the above findings of this document by
sharing travel measurements of EVs instead of urban ICVs
reveals some interesting results. For example, in China, in
Chonggqing, 6.33% of urban residents might want to move
their travel arrangements from ICVs to self-service EV's, while
4.26% of people want to choose EVs from ICVs. This
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conclusion means that self-service EVs are currently more
popular on the market than self-service EVs. The potential
market demand for EVs is 27,400, and the demand for EVs
with a source code is 12,000. Based on the results, the external
benefits of sharing EVs can be calculated (Figure 18(a)). The
most significant benefit comes from the highway asset reserve
and the benefit of parking. The benefits of reducing emissions
are primarily related to reducing carbon dioxide emissions, as
shown in Figure 18(b) [158].

7. Advantages and Disadvantages of
Electric Vehicles

Recently, some analysts have uncovered the critical advances in
EVs. Nordelof et al. [159] written survey analyzes knowledge
points based on the life cycle assessment as advantages of
EVs and shows the continuous development of electric vehicle
innovations, the constant progress in material production, and
the age of performance the life cycle assessment EV test [159].
They found that many articles consider the energy source to be
the driving force behind the EV results, but they also argued
that many inspections could not undo this judgment, resulting
in people having no rational information about the environ-
mental impact of EV [160]. ICEV were compared to shortages
in the concentration of GHG or EV. WHO conducted an
important WTW study focusing on EVs [161]. Figure 19 shows
a comparison of EV integration approaches [162, 163], where
SMES is the superconducting magnetic energy storage, UCCIA
is the uncontrolled charging integration approach, and CCIA is
the controlled charging integration approach.

8. Conclusions and Recommendations

EVs can effectively promote the use of renewable energy and
environmental pressures on ICE vehicles. This paper explores
EV-related technology and major policy concerns to help
make EV a sustainable development. The following conclu-
sions are drawn.

(1) The estimation of EV technology improvement in
this study indicates that the higher complexity of
sustainable development leads to relatively slower
EV adoption

(2) A possible implication for the policymakers encour-
aging EV development is to issue more incentive
plans for innovations in the grid and electric vehicle
relationship domains

(3) The technology trajectories of future development
models have been proposed for EV wireless charging
and energy networks. This could be a recommended
model for the future development of EVs and energy
structures. Moreover, power electronics for EV inte-
gration on the grid have negative impacts. The
results in the paper prove that it is time to approach
EV charging to reduce negative impacts

(4) The policymakers found that EVs might be a renew-
able energy contributor to reducing CO, emissions.

Journal of Advanced Transportation

However, EV sustainable development needs strong
policy support, which has been proposed in our
review paper. We summarized different countries’
strategies, methods, and outcomes to give attention
to EV sustainable development

Although this work provides insight and novel results and
discussion about the technological and policy development of
EV, there are still some limitations. For instance, depending
on the application, there are two different types of EV. The
car is one, and “the bus, truck, and lorry” are the others.
Exploring and contrasting the technological developments in
the domains of these two types is important from an applica-
tion standpoint. We use the common method system to
decompose the EVs filed in the work, even though it currently
appears impossible to achieve sustainable development, but
this work will provide a full package to understand barriers
and necessary methods to solve them. Thus, this study
provides a number of policy recommendation to address the
increase of the EV adoption by showing EV uptake and
promote the installation of charging stations or act to remove
barriers and limitations.

(1) The provincial government provides incentives to
EV users, such as cash rebates or subsidized loans,
to help them offset the cost of the electrical vehicle
supply equipment (EVSE) and its installation as well
as the costs of the necessary building upgrades

(2) Provide financial assistance to landlords and strata
councils with a requirement for a specific number
of charging stations

—~
w
~

Municipal and provincial governments should develop
and implement a program within the next ten years to
encourage and provide financial support to strata
councils and landlords who develop retrofit plans and
upgrade the power distribution systems of their build-
ings to meet residents’ future charging needs

(4) Avoid being overly conservative, which can result in
the unnecessary oversizing of electrical equipment,
and revise and update the regulatory requirements
from codes and standards on a regular basis to reflect
the most recent technological advancements

(5) To prevent future situations of unfairness and
inequality among them, regulate the rights and
responsibilities of EV users, building residents, strata
councils, and landlords regarding the installation
and use of charging stations within multiunit resi-
dential buildings (MURBs)

(6) Expand the current guidelines to offer precise direc-
tion and answers on technical and governance issues
like defining ownership and charging infrastructure
costs

(7) Develop a program or guideline to instruct and
direct strata councils and landlords on how to create
a long-term EV charging infrastructure plan that will
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direct and dictate present and future charging infra-
structure deployment in their building, the need for
infrastructure upgrades, and governance and owner-
ship considerations
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Data can be available upon request to the corresponding
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Demand for electric kickboards is increasing specifically in tourist-centric regions worldwide. In order to gain a competitive edge
and to provide quality service to customers, it is essential to properly deploy rental electric kickboards (e-kickboards) at the time
and place customers want. However, it is necessary to study how to divide the region to predict electric mobility demand by region.
Therefore, this study is made to more accurately predict future demand based on past regional customers’ electric mobility
demand data. We have proposed a novel electric kickboard demand prediction in spatiotemporal dimension using clustering-
aided bagging regressor. We have used electric kickboard usage data from a Jeju, South Korea-based company. As a result of the
experiment, it was found that the accuracy before using clustering-based bagging regressor and when the region was divided by the
clustering method, the performance was improved, and we have achieved a regression score (R?) of 93.42 using our proposed
approach. We have compared our proposed approach with other state-of-the-art models, and we have also compared our model
with different other combinations of bagging regressors. This study can be helpful for companies to meet the user’s demand for a

better quality of service.

1. Introduction

With the increasing demand for fuel-efficient vehicles, due
to growing concerns about greenhouse gas and carbon
emissions, the use of electric kickboards and scooters is
expected to increase over time. Since 2016, the penetration
index of this sharing-service acceptance rate has been
growing [1]. In addition, the need for sustainable urban
mobility and modern transportation infrastructure is lead-
ing to a shift from traditional modes of transport to elec-
tronic modes of transport. Demand for this electric mobility
has grown significantly. An electric kickboard is a two-ve-
hicle device. People can ride it while standing on it. It is
suitable for one and a maximum of two persons. Figure 1
shows a picture of an electric kickboard.

Electric kickboards (e-kickboards) are expected to affect
energy security and air quality positively. As industry 4.0
develops, companies have begun to study how to use big
data, which is a collection of previous data, to meet customer

needs. Such big data only applies to companies that have
continued to operate, and for startups starting a new
business, most of the data is small in amount and unstable in
the form of income [3]. It is difficult to meet customer needs
with insufficient qualitative and quantitative data. Cus-
tomers who want to use electric mobility feel satisfied with
using the service without being restricted by time and place
when they want to use it. However, suppose it cannot be used
due to finite electric mobility. In that case, customers may
feel inconvenient, and if this case continues for companies,
demand will decrease, which may affect sales [4]. That is why
companies need to place them where and when customers
want them.

This study used data from an e-kickboards company that
provides electric mobility services in Jeju Island, South
Korea. Figure 2 shows the location of kickboard stations in
Jeju Island, South Korea. Tourists or local residents can rent
a kickboard from these stations. Since there is nothing more
important than safety, the company also provides free
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Ficure 1: Electric kickboard [2].

helmets and safety gear. The top speed of the kickboard is
25km/h.

Deploying through demand forecasting may introduce
errors. If electric mobility is insufficiently deployed, this gap
can be filled by bringing it from where there is a surplus of
demand. However, the longer the distance between the two
regions, the longer it will take to serve customers. Based on
this idea, this study can also enhance prediction results by
dividing the regions in Jeju Island, placing electric mobility
with remaining demand in the center of each region, and
quickly relocating where errors occur. In this article, when
dividing the area in Jeju Island into several places, nearby
rental stations were bundled based on the centroid, and
electric mobility demand prediction was carried out. Electric
mobility is stored in the center of each region. If a region
with more demand than predicted through regional fore-
casting occurs, quick service can be provided by fetching and
deploying electric mobility in the region’s center. In addi-
tion, it was confirmed that the prediction accuracy was
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FIGURE 2: Rental locations of kickboard in Jeju Island.

increased when the learning results were compared before
and after dividing the regions.

L.1. Contributions. We proposed to use a clustering-aided
bagging regressor for electric kickboard demand prediction
in spatiotemporal dimensions. We used the k-means algo-
rithm to cluster e-kickboard demand areas and identify the
centroid and then used a bagging ensemble for demand
prediction. The proposed bagging ensemble consists of a
base layer and metalayer. The base layer consists of XGBoost,
Extra Trees regressor, and Random Forest model, whereas
the metalayer consists of an Extra Trees regressor. The
significant contribution of this article can be summarized as
follows:

(i) Integrating spatial, temporal, and weather data to
cover the effect of different parameters on the
mobility demand

(if) Employing data and predictive analytics techniques
for data obtained from electric kickboard company

(iii) Integrating clustering and bagging regressor to
develop a hybrid prediction model to predict
e-kickboard demand

(iv) Comparing the proposed model with state-of-the-
art ML models and different combinations of en-
semble models

The rest of the article is arranged as follows. Section 2
presents the relevant approaches and publications and
compares existing literature and proposed methodology.
Section 3 introduces the methodology used in this research
study. Section 4 presents an analytical and graphical analysis
of data. Section 5 provides results and covers comparisons
with the latest machine learning models. Finally, we con-
clude the article in Section 6.

2. Related Work

Different machine learning models have been used by re-
searchers, such as long short-term memory (LSTM), Gen-
eralized Autoregressive Conditional Heteroskedasticity
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(GARCH), Seasonal Autoregressive Moving Average
(SARIMA), Bidirectional Encoder Representations from
Transformers-Based Deep Spatial-Temporal Network
(BDSTN), Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN), hexagonal convo-
lution operation LSTM (H-ConvLSTM), and Dynamic
Spatiotemporal GNN method with Tensor Network
(DSTGNN). Table 1 shows the contributions of this research
in the context of the literature.

2.1. E-Mobility Data Analysis Using Deep Learning.
Greenhouse gas emissions (GHG) and high fuel con-
sumption have become a significant issue these days [14]. In
particular, CO, emissions from transportation have reached
almost a quarter of global emissions [15]. The electric vehicle
(EV) is considered an exciting alternative to solve the above
problems [16]. However, issues such as inadequate billing
infrastructure have also arisen to support the growing de-
mand in the growing EV market. Effective forecasting of
commercial EV bill demand ensures the reliability and
stability of short-term network utilities and supports in-
vestment planning and resource allocation for long-term
infrastructure bills. The article by Yi et al. [17] provides an
overview of the monthly commercial EV load application
time series using the deep learning approach. The proposed
model was confirmed by original datasets in Utah and Los
Angeles. Two forecasting purposes, one-step forward fore-
casting and multistep forward forecasting, were reviewed. In
addition, the model was compared to other time series and
machine learning models. Experiments show that both
Seq2seq and LSTM provide satisfactory one-step predic-
tions. However, when making multistep predictions, the
Seq2seq outperforms other models in terms of various
performance measurements, demonstrating the model’s
powerful ability to predict sequential data.

The study by Zuniga-Garcia et al. [18] considers the issue
of the use of travel data in the mobility data specification
standard for meaningful analysis of the use of the infra-
structure of e-scooters without the use of personally iden-
tifiable numbers. They examine the integration of e-scooters
into the city infrastructure of Austin, Texas, using e-scooter
supplier travel data and infrastructure geographic inventory
data. Their analysis shows that e-scooters use about 80,000
e-scooter rides each year, more than 11 million, which is 1.4
percent of the total electric scooter rides in the city during
this period. Their results show that the average distance
traveled by electric scooter was divided between pedestrians
(18 percent), bicycle lanes (11 percent), roadside (33 per-
cent), and other nonspecific locations (38 percent). In ad-
dition, about sixty percent of road trips were made on large
arteries, and bicycle lane users prefer moderate to high
comfort levels. The purpose of the article by Davies et al. [19]
is to examine the current distribution and development
challenges of tourist destinations, focusing on micro-
mobility. Micromobility is linked to a new model that in-
cludes but is not limited to hiking, cycling (both current
modes), e-bikes, and e-scooters (new modes). The prolif-
eration of new micromoles in destination urban areas can be

viewed positively in terms of their sustainable urban dy-
namics, thus increasing the chances of attracting tourists.
However, it is also pessimistic about potential issues with
space, accessibility, and sustainable implementation.
Therefore, destination developers and partners need to
consider successfully integrating micronavigation into a
sustainable transportation system.

2.2. E-Scooter Demand Prediction. The study by Bai and Jiao
[20] provides empirical evidence of e-scooter travel in two
US cities. Moreover, transportation and training literature
compares the two cities and emphasizes the importance of
local individuality. The results of the regional analysis show
that electric scooters were widely used in the city center and
on the university campus. However, patterns of electric
scooter use in both cities were temporarily different: Austin
faces more electric scooter congestion during the day and
weekends, while Minneapolis shows large rides at night and
throughout the week. In the article by Feng et al. [21], they
used a large amount of different Twitter data—including
text; references; GPS data; general images; and e-scooter app
screenshots, emojis, and emoticons—to analyze electric
scooter racing services. Over the past 18 months, more than
5 million English tweets referring to the word “scooter” or
scooter emoji have been added. They first did extensive data
preprocessing to eliminate noise and reduce false positives.
They believe that the results obtained by the public will
provide a deeper insight into the emergence of e-scooter
services as a generic directory in smart cities. The study by
Kolakovi¢-Bojovi¢ et al. [22] provides a quantitative and
qualitative analysis of the data by pointing out the critical
issues presented in both newspapers and Twitter posts. They
conducted media readings on its effects on various aspects of
its environmental well-being. The authors examine, among
other things, the use of electric scooters in the press and the
challenges to civic security, as well as the relationship be-
tween the posts of the Twitter community in Serbia. In
general, they tried to answer whether electric scooters can be
considered a security challenge in the city or any other issue
of moral fear.

2.2.1. Bus Arrival and Departure Time Prediction. There is
always some uncertainty about public buses’ arrival and
departure times, such as signals, bus stop times, climate
change, and fluctuations in travel requirements [23]. In
developing countries, this uncertainty is heightened by the
availability of redundant vehicles, different modes of
transportation, and a lack of risk discipline. Therefore, the
issue of forecasting remains a challenge, especially with the
arrival of buses in developing countries. The work by Achar
et al. [24] suggests a new way of predicting the arrival of
buses in real time. Unlike the current method, the proposed
method learns transport interactions and patterns. It first
recognizes the unknown sequence of spatial dependencies
and then understands the linear, non-static spatial corre-
lation for this discovered sequence. It retains the temporal
relationship between continuous travel and changing time.
The learned prediction model is rewritten in an appropriate
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TaBLE 1: Comparison of recent research contributions for vehicle demand prediction.

Sr#  Ref, year  Clustering Regression Proposed model Vehicle type  Weather Area

1 [5], 2018 Yes No Hierarchical clustering E-scooter No Germany

2 [6], 2019 No Yes LSTM Taxi Yes Xiamen and Chengdu, China

3 [7], 2020 No Yes GARCH, SARIMA E-scooter No Thammasat University, Thailand

4 (8], 2021 No Yes BDSTN Taxi Yes New York, USA

5 [9], 2021 Yes No HDBSCAN E-scooter No Berlin, Germany

6 [10], 2022 Yes Yes LSTM E-scooter Yes Seocho and Gangnam, South Korea

7 [11], 2022 No Yes Random Forest Car, bicycle No Hamburg and Hanover, Germany

8 [12], 2022 No Yes H-ConvLSTM Car No Chengdu, China

9 [13], 2022 No Yes DSTGNN Bike, taxi No New York, USA

10 Proposed Yes Yes Bagging regressor E-kickboard Yes Jeju, South Korea

linear state-specific format to make the best predictions
come true, and then the Kalman filter is applied. Perfor-
mance was analyzed using actual field data and compared
with existing methods.

2.2.2. EV Power Demand Prediction. The study by Tianheng
et al. [25] outlines the power demand forecasts for electric
vehicles and the strategy for overcoming errors in fore-
casting. The goal is to reduce fuel consumption in real-time
operations. They develop a neural network model to estimate
the vehicle’s electricity demand. Furthermore, a mathe-
matical model is proposed to convert the predicted power
demand into a battery charge status reference, greatly
simplifying the charging programming system. Finally, they
use the adaptive equivalent consumption minimization
strategy to monitor referrals and determine the status of the
propulsion system. The proposed approach enables the
maximum distribution of power between engines and cars
worldwide and maximum torque distribution locally. The
simulation power-sharing plug-in was performed on a hy-
brid electric bus. Compared to rule-based and proposed
technologies, the proposed method has significantly im-
proved fuel consumption and other indicators.

2.3. Taxi Demand Prediction. Taxi demand forecasts have
recently attracted increased research interest. In the article
by Liu et al. [26], they presented challenging and award-
winning work entitled Taxi Origin-Destination Demand
Forecast, which aims to predict the demand for taxis across
all regions at a later interval. The critical challenge was ef-
fectively acquiring various relevant kinds of information to
learn the types of questions. They addressed this issue using
the new contextual spatial time network to model the local
spatial context, the temporary evolutionary perspective, and
the global communication perspective. Extensive testing and
analysis of a large database demonstrated the high efficiency
of their contextual spatial time network model compared to
other methods for predicting the actual destination needs.
Real-time and precise taxi demand forecasts can help drivers
in booking taxi resources for the city in advance, help drivers
find passengers faster, and reduce waiting times. Many
current studies have focused on the local and temporal
characteristics of taxi demand distribution, with a lack of a
model of the relationship between taxi pick-up demand and

download demand from a multipurpose learning perspec-
tive. In the article by Zhang et al. [27], they proposed a
multifunctional learning model with three parallel LSTM
levels for predicting and downloading taxi demand and the
single demand for performance prediction methods and two
on-demand prediction methods. Experimental results from
datasets show that the demand for collection and the de-
mand for downloads depend on each other and the accuracy
of the suggested co-deduction system.

Taxi demand forecasting plays an important role, es-
pecially in ranking resources to help differentiate between
demand and service in times of economic sharing and
autonomy. However, many studies have sought to exclude
complex local-world patterns of taxi demand from the
historical taxi demand threshold, effectively ignoring the
underlying effects of regional activity and effectively mo-
bilizing long-term cycles. In the article by Cao et al. [8], they
note two significant observations; one is that the pattern of
taxi demand varies significantly between different active
areas, and the other is the demand for taxis following dy-
namic daily and weekly patterns. To address these two issues,
they proposed a new bidirectional encoder representation-
based deep spatial-temporal network that captures locations
of interest that define regional functions and include mul-
tiple local and indicates complex local-temporal relation-
ships with global features. Bidirectional encoder
representations-based deep spatial-temporal network’
points of interest have introduced a time-space adaptive
module to capture taxi demand’s complex time-space pat-
tern and dynamic time phases. Points of interest have
implemented a functional agreement implantation module
in all regions. To their knowledge, this is the first time the
proposed architecture has been used to determine the types
of taxi claims, and this is the first time they have considered
the practical similarities. Their research results with the New
York City Real Traffic Database show that the proposed
method implements more complex methods and their
suggested model is much better than other methods.

In the article by Xu et al. [28], they suggest a sequential
learning model that can estimate the demand for taxis in
different areas of the city depending upon current demand
and other relevant information. It is essential to consider the
advanced information here as future taxi applications will be
linked to past activities. For example, anyone requesting a
taxi at the mall can request a taxi to reach home within
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hours. They use LSTM, an excellent sequential learning
system, to store relevant information for future use. They
evaluate their perspective by dividing the city into smaller
areas and estimating the needs of each area within the New
York City Data Application Database. Furthermore, they
have shown that this system surpasses other predictive
methods, such as future neural networks. In addition, they
show how additional relevant information such as time,
duration, and reduction affect the results. In the article by Yu
et al. [29], a framework is proposed to suggest the needs of
taxi passengers. They consider temporal, spatial, and ex-
ternal dependencies. The proposed deep learning framework
integrates an updated density-based spatial clustering al-
gorithm with noise and conditional generative adversarial
network models. More specifically, the updated model is
applied to the road network to create multiple subnetworks
that consider the local relevance of taxi pick-up events.
Comparative results show that the proposed model out-
performs all other methods. It is recommended that more
data be added to test future research models and that more
information be added to improve prediction performance.

Taxi origin and destination flow forecasts for any city
play an important role in passenger travel needs and taxi
management and scheduling. However, complex local de-
pendence and temporal mobility make this problem difficult.
In the article by Duan et al. [30], a predictive model of a
hybrid deep neural network based on convoluted LSTM was
proposed. The underlying relationship between travel time
and origin and destination flow was investigated to improve
the prediction accuracy and integrated into the prediction
model as input. Actual taxi data was used to fully validate the
experiment’s proposed model and forecasting system. Taxi
demand forecasting is essential for making decisions on
online taxi application platforms. The article by Zhang et al.
[31] designed and explored how mutual variations can be
used to improve grouping and area forecasting. First, a taxi
zone grouping algorithm was developed based on the theory
of grouping in pairs, which considers the relationships
between the different taxi zones. Then, group-level and
global prediction modules were developed to achieve in-
ternal and intercluster features, respectively. Finally, a
multilevel recurrent neural network model was proposed to
combine the two modules.

2.4. Electric Vehicle Charging Station Adoption. The con-
struction of a charging station in the traffic network is a
significant step toward the development of intelligent vehicle
systems in urban areas [32-34]. Due to their high energy
efficiency and low emissions, electric vehicles have become
an attractive means of transportation to develop clean
mobility systems. Infrastructure-based automation needs
recharging facilities to meet the growing demand. The
planning process is, of course, responsible for their impact
on the power grid [35]. Chen et al. [36] first developed a new
user balance model that described the distribution of road
network balances along the charging lane. The battery re-
charge plan specified which charging lane to use, how long to
charge, and which electric vehicle to drive. They developed

charging lane applications under established user balance
conditions as a math program with more complementary
boundaries. The network balance and the design model were
solved by efficient solution algorithms and illustrated with
numerical examples. The Flow Refueling Location Model
(FRLM) proposed by Kuby and Lim [37] is a flow interaction
model that identifies locations on a network to maximize
essential destination flow. Due to the limited driving dis-
tance of the vehicle, the network does not form a set of
vertical dominance seats. The work by Miralinaghi et al. [38]
provides a two-tiered mathematical model for under-
standing the decision-making process of transport compa-
nies and passengers. Under the structure, EV charge is a
robust theoretical basis for network design. The design
problem is solved using a functional set algorithm. The study
results could serve as a guide for metropolitan transport
companies to build capacity for specific locations and EVs,
thus reducing long-term emissions. In another article by
Miralinaghi et al. [39], they considered the problem of
identifying charging stations in the transport network
through mathematical programming. The proposed model
applies to various alternative fuels and is particularly suitable
for hydrogen fuels. They applied two well-known solution
algorithms, branch-and-bound algorithm and Lagrangian
relaxation algorithm, to solve the problem.

3. Methodology

We obtained the data from an electric kickboard provider,
and then we used the k-means for clustering and bagging
regressor for the final demand prediction. k-means clus-
tering is a type of unsupervised learning [40]. k-means is
used with 4 clusters. Bagging is a method of taking multiple
samples and aggregating the results based on them, and each
sample independently predicts the result [41]. The bagging
regressor is used with three different models. Extreme
Gradient Boosting (XGBoost), Extra Trees, and Random
Forest are used for the base layer, and the Extra Trees model
is used for the metalayer.

Extreme Gradient Boosting is a Gradient Boosting
technique that reflects the weight of the result from the first
sample to the following sample as opposed to bagging, where
each sample independently predicts the result [42]. It
continues to learn the weights of the results from the pre-
vious sample to affect the following sample as well. XGBoost
has a faster learning rate and better model performance than
other models based on Gradient Boosting. Gradient
Boosting concentrates only on the training data results, and
overfitting easily occurs. XGBoost can prevent overfitting by
adjusting the hyperparameter values provided by the pro-
grammers by setting the desired learning method.

Random Forest is an algorithm that makes decisions
through multiple decision trees, and it was created on the
assumption that numerous ordinary algorithms solve
problems better than one smart algorithm [43]. As alearning
method, the final prediction value is determined by col-
lecting the results determined by several trees. Random
Forest is a representative bagging method and represents a
voting method. Voting is a method of finally predicting the



Journal of Advanced Transportation

| Kickboard

Spatial

| | Temporal || Weather |

K means clustering

' v
i Instancestobe 1
clustered

No

Meet stop
Criteria

Yes

| Evaluation |

v

| Prediction |

FiGure 3: Flowchart of the proposed methodology.

highest value using the results of several samples [18]. In-
stead of using a single decision tree, learning is performed as
many as the number of decision trees the programmer sets,
and the results are collected. The most mentioned result is
used as the final prediction value.

Extra Trees regressor learns in a similar way to Random
Forest. However, Random Forest uses all feature values to
produce results, whereas Extra Trees selects a method in
which multiple decision trees randomly select features to
produce optimal results [44]. Therefore, the learning speed
of Extra Trees randomly selecting some features is faster than
Random Forest using all feature values. Hence, we have used
it as a metalearner.

Figure 3 shows the flow diagram of the proposed
methodology. It starts with data aggregation. We combined
the data from different sources such as kickboard, spatial,
temporal, and weather data. Kickboard-related information
consists of rent date, rent number, and sector information.
Spatial information consisted of the x position and y position
of the kickboard. Temporal information consisted of rent
day, year, and month whereas weather data consisted of
temperature, rain, humidity, and insolation. We checked
whether there was any null value; if not, we performed
feature engineering. If there were some null values, they were
imputed using the mean. Feature engineering consisted of
creating new features from existing parameters, such as
extracting day, month, and week information from time-
stamps. The selected parameters were passed to the k-means
clustering module where the instance was clustered, and the

number of clusters was passed for centroid selection. We
chose four clusters. The next step was to assign objects to the
nearest distance and then calculate the distance. If con-
vergence was achieved, then the final clustering step would
be finished; otherwise, it would start again from centroid
selection. The selected clusters were transferred for the
optimal parameter selection. These optimal parameters were
forwarded to the bagging regressor model, consisting of
three base models and one metamodel. Random Forest,
XGBoost, and Extra Trees regressor were used as base
models, whereas Extra Trees was used as a metamodel to
obtain the final prediction. The model was evaluated using
different evaluation metrics such as R-squared, root mean
square error, and Kolmogorov-Smirnov test, and then a
prediction was made.

Figure 4 shows the structure of the proposed method-
ology. We have collected the electric kickboard data from the
local kickboard company of Jeju Island, South Korea. Jeju
Island is a famous island for tourism in South Korea.
Tourists use electric kickboards to move from one place to
another. We got the vehicle, spatial, and temporal infor-
mation from them. Then, we got the weather information
from Korea Metrological Department. We performed ex-
ploratory data analysis to understand the nature of the data.
This data was preprocessed using different techniques, such
as removing outliers and feature extraction. This pre-
processed data was forwarded to the k-means clustering
algorithm, where we found different clusters in Jeju Island.
These clusters were passed to the bagging ensemble model
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and other spatiotemporal and vehicle features. This en-
semble model consists of two layers [45]. Layer 0, or the base
layer, consists of an Extreme Gradient Boosting, Random
Forest, and Extra Trees model. Layer 1 or metalayer consists
of an Extra Trees model. We used different evaluation
metrics such as R-squared score and root means square error
(RMSE) to evaluate our proposed approach. The final
prediction was forwarded to the web application using web
services. End users could see the future prediction about
electric kickboard demand for specific locations.

4. Data Analysis

In recent years, the electric scooter, kickboards, and bikes in
many cities across the world have provided an excellent
opportunity to reduce short-distance driving [46]. The data
used for the study was the demand data of electric mobility
(electric kickboard) service company that started services on
Jeju Island in April 2019. Data from EV Pass company, a
company that provides electric mobility services on Jeju
Island, was used. The total number of data instances is
service users’ number of use cases during the data collection
period. The collection period is 717 days, from April 16,
2019, to June 11, 2021. This study predicts the daily demand
for electric mobility by grouping the demand for electric
mobility by day. In addition, we imported weather data from
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FIGURE 5: Rental location according to latitude and longitude.

the Korea Meteorological Administration [47] and added
external factors that affect the use of electric mobility, such as
daily average temperature and precipitation, and dividing
weekends and weekdays.

Figure 5 shows rental locations according to latitude and
longitude. The x-axis represents the x position or latitude,
and the y-axis shows the y position or longitude.
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Figure 6 shows daily demand for electric kickboards. The
x-axis represents the date, and the y-axis represents the total
daily demand for that day. Demand, which was low at the
beginning of the service, increased after a certain period of
time. This can be thought of as a demand phenomenon for
startups in general. In addition, demand was not constant
and showed large differences from day to day. This study was
conducted by stabilizing these unstable data through

smoothing. The window size for data smoothing was set to
11, and the window size standardizes the data by grouping
the day and the days before and after it. The window size of
11 means the midday and five days before and after, and
Figure 7 shows the data smoothing result.

Figure 8 explains the effect of the holiday, weekend, and
weekday on rental kickboard demand. The x-axis represents
the feature name, and the y-axis shows the average rent
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TasLE 2: Simulation environment.
Sr# Property Specification
1 Programming language Python 3.7.6
2 Operating system Ubuntu 18.04
3 Browser Google Chrome
4 Framework Jupyter Notebook
5 CPU Intel Core i7 CPU @ 1.80 GHZ
6 Memory 16 GB
7 Radeon 540

Graphic card

number for that day. The holiday accounts for the most
rental kickboards, whereas weekdays account for the least
numbers if there is a holiday and weekend with the maxi-
mum number of rental kickboards.

Figure 9 explains demand on each day of a month. The x-
axis represents the day number of the month, and the y-axis
shows the total rent number on that specific day.

5. Results

This section covers the experimental results achieved using
our presented approach. We have also compared our pre-
sented model with state-of-the-art algorithms. We have used
the Jupyter notebook on Ubuntu 18.04 for coding in Python
3.7.6. Table 2 summarize the simulation environment used
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for this research. We have used 80 percent of data for model
training and 20 percent for result validation. Figure 10 re-
flects the training and test data distribution. The x-axis
represents the date, and the y-axis shows the rent count. The
blue line shows the training set, and the black line shows the
testing dataset.

Feature importance is also commonly referred to as the
feature selection method. When supervised learning makes
predictions through learned data, it is a numerical expres-
sion of the effect of each feature on the result. In the time

series data sorted by day, the feature importance was higher
as the feature had a clear pattern and subdivided numerical
values among the information representing each day. Fig-
ure 11 depicts feature importance graph. T represents
temperature, I represents insulation, and H represents
humidity. Sector 0 is the first sector, and sector 3 is the fourth
sector. Other features are day, month, year, weekend, rain,
and holiday. It is observed that temperature, insulation, and
humidity impact the final prediction. The x-axis represents
the feature importance score, and the y-axis shows the name
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of the features. The feature importance is calculated using
the importance score where temperature, insulation, and
humidity have more importance than rain in the final
prediction.

In segmenting regions, the division results based on
latitude and longitude are also compared with the results of
clustering division using the k-means algorithm. Figure 12
displays clustering with 4 clusters. Apply k-means clustering
with 4 clusters. Red spots represent the centroid of the
cluster. Sectors are numbered 0, 1, 2, and 3. The x-axis
represents the x position or latitude, and the y-axis shows the
y position or longitude.

Figure 13 explains sector-wise demand, where sector 1 is
the hotspot for rental kickboards and sector 3 has minimum
kickboard demand. Sector 1 represents the Jeju-si district,
and sector 3 represents the Seogwipo-si district. The pop-
ulation of Jeju-si is around 492 thousand, while that of
Seogwipo-si is 179 thousand. Moreover, the total population
of Jeju-si stands at around 671 thousand [48]. The difference
in population is also a reason for more demand in sector 1.
The x-axis represents the sector number, and the y-axis
shows the total rent number in that specific sector. The figure
shows the difference in the size of the dots according to the
total number of rentals at each rental office on Jeju Island
during the data collection period. It can be seen that the
number of electric mobility rentals near Jeju Airport and
famous tourist destinations such as Aewol and Seongsan is
generally large. The demand for electric scooters is usually
high at tourist attractions. Jeju Island consists of many
tourist attractions such as Hallasan Mountain Natural
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4000
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FiGUre 13: Sector-wise demand.

Reserve, Geomunoreum Lava Tube System, and Seongsan
Ilchulbong Tuff Cone.

Figure 14 shows prediction results. The light blue line
shows the actual value, and the black line shows the pre-
dicted value. This graph shows the result of the proposed
approach for the test data. We have used test data from May
1, 2021, to June 11, 2021. The x-axis represents the date, and
the y-axis shows the rent count.

Root mean square error (RMSE) is defined as the square
root of mean square error (MSE) [49]. It is used to measure
the difference from the actual values of the predicted values.
The formula for calculating RMSE is given in (1), where n is
the total number of observations, y, represents the
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TaBLE 3: Comparison of the proposed approach with different individual models.
Sr# Model R? score RMSE
1 CatBoost 78.21 46.78
2 Extra Trees 91.67 21.23
3 XGBoost 89.64 29.91
4 LGBM 84.48 36.68
5 Random Forest 87.12 27.61
6 Gradient Boosting 68.17 39.31
7 Proposed 93.42 24.6
TaBLE 4: Comparison of the proposed approach with different combinations.
Hybrid model combinations )
R* score
Base layer Metalayer
CatBoost + Extra Trees + LGBM CatBoost 67.67
CatBoost + Extra Trees + Random Forest Extra Trees 72.57
CatBoost + Extra Trees + XGBoost XGBoost 70.47
CatBoost + LGBM + Random Forest Random Forest 79.24
Extra Trees + XGBoost + Random Forest Random Forest 87.32
Extra Trees + XGBoost + Random Forest XGBoost 89.05
Extra Trees + XGBoost + Random Forest Extra Trees 93.42

observed actual value, and y,, represents the estimated
(predicted) value. We have achieved an RMSE of 24.67 using
our proposed approach. Table 3 shows a comparison of the
proposed approach with different individual models.

2
RMSE = Z:l:l (yob B yes) ) (1)
n

The R? score or regression score is a statistical measure
that is defined as a set coefficients that involves observed and
predicted values [50]. A regression score is used to estimate
how well the reaction model works. R? is an indication of the
good performance achieved by the reaction model if it is
near score 1 and bad performance if the value is near to zero.

The R? score is calculated based on (2), where # is the total
number of observations, y,, represents the observed actual
value, and y,, represents the estimated (predicted) value.

Z(yob _)_/es)zz. (2)
Z(yob - yes)

We have achieved R? of 93.42 using our proposed ap-
proach. We have compared our model with different other
combinations of bagging regressors, as shown in Table 4
which displays the models used in the base layer and the
metalayer.

The Kolmogorov-Smirnov goodness of fit test (K-S test)
compares the data with a known distribution and shows if

2
R score=1—
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TaBLE 5: Kolmogorov-Smirnov goodness of fit test.

Feature Statistics P value
Sector 1 0.052 1.00
Sector 2 0.091 0.68
Sector 3 0.119 0.44
Sector 4 0.013 1.00

they have the same distribution. We performed the K-S test
on our four sectors. The results of the K-S test are repre-
sented in Table 5.

The key element in the proposed model is the bagging
ensemble method. This method allows one to take advantage
of different models and combine them into one model.
Another critical step proposed in this article is to cluster the
demand according to regions—this helps improve the ac-
curacy. The major drawback of other forecasting models that
result in less accurate forecasting is the lack of ensemble
technique.

6. Conclusions

The demand for electric mobility is increasing, especially in
tourist attractions. Machine learning can help accurately
predict the electric mobility demand in areas where com-
panies struggle to meet the demand at the proper location.
This article performs classification-aided bagging regressor
prediction of supervised learning using a small amount of
data and unstable data with a significant difference in de-
mand. We have used the data from a local electric kickboard
provider on Jeju Island, South Korea. The company provides
electric kickboards for rent to tourists and residents. Data
smoothing stabilized the irregular pattern between data while
maintaining the overall demand pattern. Data with similar
characteristics were grouped using clustering, and data with
different characteristics were separated to predict demand.
We have utilized the k-means algorithm for clustering and
bagging ensemble model for final prediction. The bagging
ensemble model consists of XGBoost, Extra Trees, and
Random Forest algorithms. We have used an Extra Trees
model as a metalearner for the proposed model. Through this,
the forecasting results significantly increased, and the demand
forecasting accuracy results after the regional division of Jeju
Island were also enhanced. We have achieved R? of 93.42
using our proposed approach. The results of this study can be
helpful for the electric mobility providers who want to predict
the demand at a specific city location accurately. In the future,
genetic algorithm can be used for feature optimization and
hyperparameter optimization.

Abbreviations

ML: Machine learning

LSTM: Long short-term memory

GARCH: Generalized autoregressive conditional
heteroskedasticity

SARIMA: Seasonal autoregressive moving average
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BDSTN: Bidirectional deep spatial-temporal
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HDBSCAN:  Hierarchical density-based spatial

clustering of applications with noise
H-ConvLSTM: Hexagonal convolution operation LSTM

DSTGNN: Dynamic spatiotemporal graph neural
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GHG: Greenhouse gas emissions
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XGboost: Extreme gradient boost

RMSE: Root mean square error
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This paper presents a robust control strategy for an electric vehicle’s three-phase off-board bidirectional AC-DC battery charger.
The conventional constant current (CC) and constant voltage (CV) charging mode are considered to provide a fast-charging
performance for the batteries. The bidirectional charger also allows using of the vehicle as an energy storage system for the grid i.e.,
charging during the peak-off times and delivering the energy back to the grid during peak times of electrical consumption. In
discharging mode, the bidirectional charger maintains constant active power flow to the grid with a given reference. For both
cases, user of a robust state feedback controller with integral action is made in the DQ-synchronous frame. The set of stabilizing
gains of this controller are determined by a linear matrix inequality (LMI)-based optimization so that the convergence time to
steady stead is minimized in the occurrence of the parametric uncertainties of the L-filter. The efficacy of the proposed controller is

verified through simulation and experimental results on 102.4 V Lithium iron phosphate (LiFePO,) batteries.

1. Introduction

With a tremendous demand for renewable energy
throughout the world, sustainable transportation methods
draw a lot of attention in comparison to conventional
transportation [1]. An enormous number of electric vehicles
(EV) and plug-in hybrid electric vehicles (PHEV) are cur-
rently being utilized due to their eco-friendly behavior. For
that reason, researchers, governments, and automakers
worldwide continue to pursue efforts through policy and
design to increase the EV market share. Many control
techniques have been proposed to answer to the demands of
rapid charging and energy-efficient battery charger.

In [1, 2] conventional proportional integral (PI) control
has been studied for single-phase bidirectional chargers.
These methods were proposed using a constant-current
(CC) and a constant-voltage charging stage that produce
faster-charging capability than that of only fixed voltage

charging methods. The topology of these methods is single-
phase based, so the amount of charging current of these
chargers is less than those of the three-phase topology.
Moreover, another main drawback of the PI controller of
[1, 2] is to gain tuning efforts for both inner-loop and outer-
loop controllers.

A bidirectional three-phase charger has been proposed
using model predictive control [3]. This scheme provides a
bidirectional power transfer with instantaneous mode
charging capability and fast dynamic response. However,
due to its only one charging stage (CV) from the grid to a
vehicle (G2V), the batteries need more time to be fully
charged. This method also requires a high computational
power which results in high sampling frequency. Moreover,
without integration of an integral control or a disturbance
observer, this method may result in output offset-state error.

Deadbeat control has been presented in [4] for the DC-
DC part of the bidirectional charger to regulate the charging
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current to the battery while PI control is also used for the
AC-DC converter side to maintain the DC-link voltage
constant. It is known that deadbeat control produces fast
transient performance in which settling time reaches the
steady state in just a few sampling periods. This control
method is sensitive to system uncertainty and measurement
noise, particularly for high sampling frequency.

The topology of [1, 2], and [4] consist of a DC-DC
converter for the CC/CV charging stage and an AC-DC
converter for power factor and DC-link voltage control. In
[5, 6], DC-DC converters have been used for single-phase
chargers and [7, 8] for the three-phase charger to improve
charging efficiency. Three operations of bidirectional
chargers such as grid-to-vehicle (G2V), vehicle-to-grid
(V2G), and vehicle-to-home (V2H) were considered in [5, 8]
to provide a full charging capability of bidirectional charger
for an electric vehicle. Yet, classical controllers such as PI
and PR were adopted which results in multiloop gain tuning.

Taking battery lifespan into account, Al-based
manufacturing and management have been reviewed in [9].
This review provides a systematic survey of Al-based
manufacturing and management solutions for enhancing
battery health performance with a focus on recent challenges
and opportunities. Data science-based full-lifespan man-
agement strategies have also been discussed in [10] to furnish
useful reference points to support the design of data science-
based battery management solutions during its lifespan,
while a brand-new hologram to make full use of battery
during full-lifespan will be formulated.

In the case of advanced control methods, battery tem-
perature is considered a key part of the battery thermal
management for battery operation safety and behavior. In
[11], a constrained generalized predictive control was pro-
posed based on a newly developed coupled thermoelectric
model. This method can be easily implemented in other
battery charging applications to control the charge current
and guarantee charging efficiency with a long lifespan. A
leader-follower-based approach has been discussed in [12] to
enable optimal charging control for the Li-ion battery pack.
This method is capable of reducing the computational
burden and enhancing the robustness to minimize the
negative impact of the cells’ model bias.

In this paper, a robust tracking control of a three-phase
bidirectional charger is presented for electric vehicle ap-
plications without using a DC-DC converter as an interface
between a three-phase AC-DC converter and batteries. The
LMI-based robust tracking control is a well-known method
and has been proposed for three-phase inverters [13, 14] and
three-phase chargers [15, 16]. This proposed bidirectional
charger is capable of charging Tesla Model S batteries which
range between 352V and 402 V. The battery is charged with
a constant current until the voltage reaches the recom-
mended maximum voltage, then the voltage is maintained
constant until the current consumed by the battery falls to a
residual value. During the discharging operation mode, the
energy stored in the batteries can be delivered back to the
power grid. The vehicle-to-grid (V2G) technology is crucial
from the viewpoint of the European Union and the bidi-
rectional charger allows to use of the Full Electric Vehicle as
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an energy storage system for the electric grid, charging them
in the peak-off times and delivering the energy back to the
grid in peak times of electrical consume. For both cases, the
use of a robust state feedback controller with integral action
is made in the DQ-synchronous frame to provide stability
and eliminate the steady-state error. Unlike a conventional
MPC, this proposed controller is capable of removing an
offset error to provide a good reference tracking output. This
method also provides a systematic controller design by
reducing the effort of gain tuning compared to the con-
ventional PI controller and guaranteeing stabilized perfor-
mance under parameter uncertainty. The set of stabilizing
gains of this controller are determined by a linear matrix
inequality (LMI)-based optimization so that the conver-
gence time to steady stead is minimized in the occurrence of
the parametric uncertainties of the L-filter. The consider-
ation of an uncertainty model in this proposed method
provides a wider range of good performance under the
uncertain value of the L-filter than a deadbeat control. In the
case of charging control, an outer-loop PI controller is
employed to maintain the dc-current and dc-voltage for CC
and CV control, respectively. The conventional phase-locked
loop (PLL) is considered in this paper to obtain grid voltage
phase angle.

2. System Description

A three-phase bidirectional charger circuit is shown in
Figure 1. The dynamic of the line current is expressed in the
abc-axis as follows:

di, (t
L a () +Ri,(t) =E,sin(wt)-v,;
diy, (t 2m
1L B ( )+Rib(t) = Emsin<wt—?> —v (1)
di (t) . . 47
A L ;t +Ri.(t) =E, sm(wt - ?> -V
where
2u, —u, —u,
‘V .= —
e 6v, (1)
- —u, +2u, —u,
bi 6v, (1)
- —u, —uy +2u,
ST ey, (t)
1, S,=on; S, =off;
Here, u, (x=a,b,c).
-1, S,=off; S, =on;

(2)

The dynamic in abc-axis (1) can be transformed into the
dg-axis as follows [17]:
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FIGURE 1: Three-phase bidirectional charger with L-filter.
diy, (t 2
40 A0 B, Ou0 +d 0, ©) G ®)
X iq(t) u4(t) The dynamic (2) can be transformed in the following
where iy, (£) = i,(t) | u(t) = u () |’ d:(1) = giscrete time with sampling period h [19] as follows:

0 [-RL w [-120 0
[—Em/L]’Af‘[ ® —R/L]’Bc—[ 0 —1/2L]

w is the angular frequency of the AC voltage source. The
inductor current iy, () and the control input u(¢) in the dg-
frame satisty the relationship as follows:

. 2 . . 3 .
idq (£) =5 T (D (6), e (6) = T (Digg (0),
, ; (4)
u(t) = 5T (Ot (1), e (6) = ST (Du o),

cos(wt) cos(wt+2m/3) cos(wt + 271/3)
) bl

where T(r) = [ —sin (wt) —sin(wt + 27/3) —sin(wt + 27/3

cos (wt) —sin (wt)

cos| w 3 sin| w 3 ) (5)
2 . 21

cos(wt——) —sm(wt——)

L 3 3 )

On the other hand, the output voltage v, (¢) in the state
equation (2) is governed by the following dynamic:

T' (t) =

dv, () _ . .
C ((it = Leon. () - That. (£), (6)
where
. 3.1
fan (6) = S, (DU () &)
where i, is the converter current and i, is an output

current to the battery. ,
The control input variable u (¢) = [ u g (t) ug(t) ] must
be constrained as follows [18]:

x(k+1) = Ayx(k) +Byv, (Hu(k) + d(k), 9)
where x(k) = [i d(k)/iq (K)1,

_an| cos(wh) sin(wh) (P oAt B b
¢ h[ —sin (wh) cos(wh) ]’ d= (IO ettdi)d, = E’”/L[ b; ]’

Ad:eAchz

by b,

B, = (jgeAcfdt)Bc = I/ZL[ b
1

], a = R/L.

b O ¢ (& cos (wh) — w sin (wh))
L=

o+’ ’
(10)
. e (0 cos(wh) + a sin (wh))
= '

2 2
a +w

3. Model Uncertainties and Offset-free Control

In this section, the uncertainties model of the system and
offset-free control are discussed. Suppose that the value of L
and R in each phase are equal but vary in certain ranges
below as follows:

L . <L<L

min =

(11a)

max’

R . <R<R (11b)

min max*

Here, we denote the matrices (A, B,) corresponding to
the four possible combinations of the immoderate value of 1/
L and 1/R as (A;, B;) (i=1,2,3,4) and suppose that the
matrices (A B,) belong to the polytopic uncertain set ¥
below as follows:

4 4
‘P={Z#H(A,~,Bi)|2#n=1,#n20}- (12)
n=1 n=1



The uncertainties of the system can be any kind of
variation but should lie within the range (9). The system
uncertain range can be determined as follows:

Ly/u<L<ul,, (13a)

Ry/u<R<uR,, (13b)
where R and L are the nominal value of the filter resistance
and inductance, respectively, and g (>1) can be considered as
a tuning parameter.

To compensate for the offset error despite the system’s
uncertainty model, the control law based on [10] is employed
for (8)as follows:

<lw(k) =w(k+1)+ (X
u(k) = Kx(k) + Lw (k)

—x(k-1)) ”

where K and L are state feedback and integrator gains,
respectively. Because of the integrator in (12), the steady-
state error between the reference state X, and the grid-
current x will be compensated provided that the closed—l%)op
system is stable. The reference state X, = [irfif irqef] is
generated by the outer-loop controller in the case of
charging mode and can be computed with a given power

reference in the case of discharging stage.

4. Robust Optimal Gain

Here, let us determine the gains of (12) so that the closed-
loop stability is provided to the system in the occurrence of
parametric uncertainties. A systematic design method is
proposed to obtain stabilizing state feedback gain K and
integral gain L using LMI. From relations (8) and (12), we get

the following:
d(k)
[ Xref ]

[x(k+1)] [Ad ozxz][x(k)] [Bd]
= + u(k) +
w(k+1) -C L, | w(k) 0,
(15)

where output matrix C = [1 0]. Relation (13) can be
. . 01
simplified as follows:

x(k+1)=A,x(k)+B,u(k) +D(k), (16)
() = | X0 | A Ox = | Ba
where x (k) := [w(k) , A, = [—C I;j]’B“ = [OZXZ]’
d(k
The control input u(k) can be given as follows:
u(k) =Fx(k)F=[K L]. (17)

Suppose that D (k) =0 to determine stabilizing gain F,
then the closed-loop system can be computed as follows:

x(k+1) = (A, +B,F)%(k). (18)

The closed-loop system (16) is stable [20] if there exists a
positive-definite matrix W such that
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W - (A, +B,F)'W(A, + B,F) >0. (19)

It can be seen that the condition (17) holds for some
W, >0(W,<W)

W, - (A, +B,F)" W(A, +B,F)>0. (20)

By employing Schur complement [20] to (18), we get

SO (AuSO + BuH)T
>0, (21)

A,S, +BH S

where H := FS), S := W™ ! and S, = S;. It should be noted
that the matrices A, and B,, contain the uncertain matrices
A, and B thus, (19) should hold for all (A, B,) €€¥. To
ensure that (19) is met for all (A,, B,) €€V, we should verify

that the condition is satisfied at all corners of the set ¥ i.e.,
S S"A” + H'BL
{ 0 ui “ls0, (i=1,2,3,4), (22)
A,S,+B,H S

A 0 B,
h A = ! 2X2,B-:= ! ,‘21)2) , 4).
where A, [—C szz] ui [Ozxz] (i 3, 4)

Summarizing the above discussion, a closed-loop system
(16) is asymptotically stable if there exist symmetric positive
definite matrices S, S, and a matrix H such that (20) holds,
and the stabilizing gain is given as follows:

F=HS,". (23)

Suppose that W, < aW or
S<aS,(0<a<l). (24)

Then, (18) implies that for k>0,

%' (k) (A, + B,F)' W (A, + B,F)x (k),
=% (k+ DWx(k+1)<x (K)W,x (k) <ax’ (k)Wx (k).
(25)

It can be expected that a small « would give a fast
convergence of z to the origin. Therefore, to obtain optimal
gain F such that the convergence time is minimized, the
following optimization problem should be solved.

Minimize « subjectto(20)and(22)
$,50>0, . (26)
a>0,H

This optimization scheme is a generalized eigenvalue
problem that can be solved efficiently by MATLAB Toolbox.
The convergence of this control method can be found in
[20].

It can be noted that the controller with optimal gain F
determined by solving problem (23) satisfies the condition
(17) and guarantees the overall closed-loop stability for any
of the variations on the filter’s inductance L and resistance R
as long as it stays within the uncertain range (9).
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5. Outer-Loop Charging Control K, = ?,
(32)
To perform the battery charging process, most of the battery K, = 2{w,.

manufacturers recommend two charging stages: constant
current (CC) followed by constant voltage (CV). The battery
is charged with a constant current until the voltage reaches
the recommended maximum voltage, then the voltage is
maintained constant until the current consumed by the
battery falls to a residual value. The control of these two
charging states is discussed in this section.

5.1. Constant Voltage (CV) Charging Mode. Here, the outer-
loop PI control for constant voltage charging is discussed.
Suppose that the dynamics of the inner-loop control in the
previous section are considerably fast so that we could
assume.

Lcon, () = I, (1), (27)
for some current reference I, (t). Let I, be the output of the
outer-loop control, i.e.,

L0 =K, (5 =, 0) + K [ v 0dn @)

o

where vfff is the constant voltage reference and v, (¢) is the

output voltage. From (5) and (25), we get

dVo (t) ref ref .
C ar +Kp(vo —vo(t)) +Kij(vo — v, (1) )dt — iy, (1).
(29)
or
d*v, (1) dv, (t) £
o — o ) = K<, (30)
C 0 KP 7 + Kv, (t) = K;v,

The K; and K, gain can be determined by considering
the characteristic polynomial of (27) and can be given as
follows:

A(s) =52+2(w,s+wf. (31)

for some appropriate value of { and w?; we get

The control diagram of the constant voltage control of
the three-phase bidirectional charger is shown in Figure 2.
The battery voltage is fed-back to the out-loop controller,
which produces a reference current i, = i, . A conventional
phase-locked loop (PLL) is used in the controller to obtain
the phase-angle of the grid voltage.

5.2. Constant Current (CC) Charging Mode. In the constant
current charging stage, the battery pack is charged with a
fixed current until the voltage reaches the recommended
maximum voltage, then switch to the constant voltage
charging stage. For the control of this constant current
charging mode, an outer-loop PI is utilized to generate a
reference signal i, = i for inner-loop robust control with
the same concept as CV charging discussed in the previous
section. The control structure of the proposed CC charging
control is validated as shown in Figure 3.

The control structure of both CC and CV charging
modes are almost identical, however, the main difference is
the use of outer-loop feedback; i,,, and v, for CC and CV
charging modes, respectively.

6. Discharging Control

Unlike CC and CV, this control scheme does not require the
outer-loop controller; however, an uncomplicated compu-
tation of the reference state x,, ; is needed. The discharging
controller allows the battery charger delivers constant power
back to the grid with a given reference P,, .

Now, let us consider how to compute the reference state
X, for the proposed robust controller. The instantaneous
active and reactive power can be represented in the a-frame

[21] as follows:
P, 3[e ep iy
= 5 5 (33)

QO eﬁ —€, lﬂ
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FIGURE 4: Block diagram of discharging mode control.

where g, e, P,, and Q, are grid-current in af-frame, grid-
voltage in af-frame, grid active power and grid reactive
power, respectively. Then, the relation (31) can be trans-
formed to dq-frame as follows:

p
(34)
Q, e, eq ]l

igq and eyq are grid-current and voltage in dg-frame,
respectively. From (32), the grid-current can be computed as
follows:

q

ig4 eq e P,
-z (35)
. 3
Iy —€; €y Q,
or
ref -1
lrz S[ed € P.¢
i;ef _eq € d Qref

In order to maintain a unity power factor, reactive power
should be eliminated, and the reference can be computed as
follows:

TaBLE 1: Simulation parameters.

Parameters Value
Grid phase-voltage 60V
DC-link capacitor 4700 yF
Filter resistance 01Q
Filter inductance 5mH
Sampling rate 10kHz
Constant current reference 5A
Constant voltage reference 107V
l-ref e
'_ d _ 2p ref d 37
Xref = = 5 ( )
.ref 3M e
1q q

where M = ¢’ +e;. The reference state X, allows the
charger to deliver constant power back to the grid with a
given reference P,

It can be noted that a negative power reference P,
results in reverse current flowing, in another word current
flow from batteries to the grid. We can charge the batteries
with constant power by the positive P .. Moreover, the
active and reactive power can be regulated directly by
adjusting P, and Q. in (34), then the reference state can be
obtained. The control structure of the proposed discharging
control is validated as shown in Figure 4.
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FiGure 7: Transient response of output current in CC mode.

7. Simulation Results

This section presents the results of the simulation on a three-
phase AC/DC bidirectional charger to verify the efficacy of
the proposed method. The simulation is implemented using
the PSIM simulation tool and MATLAB LMI toolbox to
obtain robust gain for the inner-loop controller. The pa-
rameters of the system are shown in Table 1. The control
algorithm is conducted using a DLL block from Microsoft
Visual Studio and the sampling rate is set to 10kHz. An
equivalent circuit in Figure 5 is used for the simulation
studies.

The implementation of the proposed control strategy can
be summarized as follows:

iabc [A]

0.05 0.1 0.15

Time (sec)

FIGURE 8: Steady-state grid current in CC mode.

Step 1: Derive the discrete-time model based on (8)

using the nominal value of inductance L and resistance
R.

Step 2: Choose an initial uncertainty range of the pa-
rameters (11), e.g., y=1.1, and corresponding set V.

Step 3: Compute the state feedback gain K and inte-
grator gain L by solving the optimization problem (23).

Step 4: Implement the control (12) to the charger.
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FiGure 10: (a) Active power and (b) grid voltage and current during discharging and charging mode.
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Step 5: If the closed-loop system shows serious over-
shoot or becomes unstable, then adjust the uncertainty

FIGURE 12: Lithium iron phosphate (LiFePO4) battery pack.

range, i.e., raise the value of y and repeat the procedure
from Step 3.

Step 6: After the closed-loop system becomes stable,
then apply the outer-loop control for CC or CV.

In this paper, a synchronous reference frame phase-
locked loop (PLL) is used to estimate the frequency and
phase angle of the grid voltage [22]. The control structure of
the conventional PLL is shown in Figure 6.
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TaBLE 2: Parameters of the prototype.

Parameters Value
Grid phase-voltage 60V (max)
DC-link capacitor 4700 uF
Filter resistance 020
Filter inductance 5mH
10 kHz

Sampling rate
Constant current reference 5A
Constant voltage reference 107V
Battery (LiFePO,) 102.4V (20 Ah)

>\ (a)

———+2A/div?

0 O 0 /\@F

P2:max(C2) P3:mean(C3) P4:max(C4)

Measure P1:max(C1)
5.58 A 815A 105.76 V 109 mvV
v v v

status v

FiIGUurRe 15: Experimental results of (a) battery current and
(b) phase-A grid current in CC mode.

Here, the simulation performances of the proposed bidi-
rectional charger are discussed. The transient response of the
output current to the battery in CC mode is shown in Figure 7.
This is the first charging stage of the batteries followed by

iabc [A]

8L

31.34 31.36 31.38 31.40

(sec)

~10 ;
31.30 31.32

FIGURE 16: Experimental results of three-phase grid-current in CC
mode.

constant voltage (CV) charging mode. We can see that the
proposed robust control provides a fast-transient performance
and smooth output current. The steady-state performance of the
three-phase grid current is validated in Figure 8.

Figure 9 shows the transient performance of the output
voltage in constant voltage CV charging mode. The bidi-
rectional charger switches to this stage when the battery’s
voltage reaches a certain point after constant current CC
charging mode. The outer-loop voltage control generates the
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FIGUure 18: Experimental results of (a) active power and (b) grid-voltage and current during discharging and charging mode.

reference to inner-loop control (12) as shown in Figure 2. It
can be seen that the output voltage to batteries is consid-
erably fine.

For the simulation study in Figure 10(a), the discharging
and charging of batteries with constant active power is
validated. The battery is discharged with 200 W power at
t=0.11s then switch to charging at t=0.29 s with 200 W. It
can be seen that the settling time to steady-state for both
points is considerably fast and with smooth output power.
Figure 10(b) shows phase-A grid voltage and current. We
can see that the voltage and current are in 180° phase dif-
ference in discharging stage and change to in-phase during
the charging period. It can be noted that all the afore-
mentioned simulation results were carried out using the
same uncertainty range (¢ =1.35) because within this range
we can obtain fast performance and no overshoot.

From Figure 11, a further study of using different un-
certainty ranges is shown. The different selection of y = (1.1,
1.35, 1.8, 2.5, and 4.0) in the equations (11a) and (11b) was
made. From the figure, we can conclude that the use of
u=11 results in overshoot performance while sluggish
performances are obtained with y=2.5 and 4.0. Thus, a
choice of y between 1.35 and 1.8 would be considerable.

8. Experimental Results

For the experiment, a three-phase AC/DC converter with L-
filter is used to charge 102.4V Lithium iron phosphate
(LiFePO,) batteries. The proposed robust control was

implemented on the TMS320F28377D digital signal pro-
cessor with a sampling rate of 10kHz. The battery packs
consist of 64 cells, and the 32 pairs are connected in series.
The actual battery pack is shown in Figure 12. A slide
transformer is used to drop the grid voltage to a proper level
to charge 102.4 V battery packs and the experimental setup is
shown in Figure 13. A simplified experimental setup circuit
is provided in Figure 14. The parameters of the experimental
prototype are shown in Table 2.

Figure 15 shows experimental performances of battery
charging current (a) and the phase-A grid-current (b) in
steady stead with the reference current 5A. It can be seen
that the bidirectional charger can provide a smooth constant
charging current to the batteries. Note that all the experi-
mental data below is obtained by CAN communication from
the control board.

In Figure 16, the steady state three-phase grid-current in
charging mode is validated. We can see that a considerable
balanced sinusoidal grid-current is obtained using this
proposed control.

Figure 17 shows a full process of charging using CC and
followed by CV. The battery is charged with constant 5A
until +=7400s then switched to constant voltage mode.
From the figure, we can observe that the battery voltage is
increasing to maintain a constant current. However, during
the constant voltage charging stage, the battery current is
dropping as time goes on.

For the experimental results in Figure 18(a), the dis-
charging and charging of batteries with constant active



Journal of Advanced Transportation

power is shown. The battery is discharged with constant
power, 200 W, then switch to the charging stage with 200 W.
We can see that the settling time to steady-state for both
points is considerably fast. Figure 18(b) shows a three-phase
grid-current in discharging mode followed by charging
mode. In both discharge and charging cases, an almost unity
power can be obtained.

9. Conclusions

This paper describes a robust control strategy for a three-
phase off-board bidirectional charger for an electric vehicle
without using a DC-DC converter as an interface between a
three-phase AC-DC converter and batteries. The conven-
tional constant current (CC) and constant voltage (CV)
charging mode are considered to provide a fast-charging
performance for the batteries. The bidirectional charger also
allows using of the electric vehicle as an energy storage
system for the power grid. The proposed control consists of
inner-loop robust control and outer-loop conventional PI
control. For the inner-loop robust control, a state feedback
controller with integral action is employed in dg-synchro-
nous frame. The set of stabilizing gains of this controller are
determined by an LMI-based optimization so that the
convergence time to steady stead is minimized in the oc-
currence of the parametric uncertainties of the L-filter. It can
be noted that the uncertainty range of the inductance and
resistance can be considered a design parameter. Thus, its
choice should be made depending on the resulting perfor-
mances. From the simulation and experimental results, we
can see that the proposed control for the bidirectional
charger has considerable performance in both charging and
discharging modes. The shortcoming of this proposed
charger is that it is not capable of charging low voltage
batteries due to the lack of a DC-DC converter as an in-
terlink between the batteries and an AC-DC converter. The
additional implementation of disturbance and state ob-
servers will be included in the future work of this research.

Abbreviations

CAN: Controller area network
CC: Constant current

CV:  Constant voltage

EV: Electric vehicle

G2V:  Grid to vehicle

LMI:  Linear matrix inequality
PHEV: Plug-in hybrid electric vehicle
PL Proportional integral

PLL:  Phase-locked loop

PR: Proportional resonant

V2G:  Vehicle-to-grid

V2H: Vehicle-to-home

L: Inductive filter

R: Filter resistance

C Capacitive filter

v, (t): Output voltage

Sape: Switching vector in abc-frame

i, (t): Grid current vector in abc-frame
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i,p(f): Grid current vector in af-frame
iz, (£):  Grid current vector in dg-frame
u(t):  Continuous time control input
E,: Grid voltage magnitude

w: Angular frequency

feon Converter current

Iyt Battery current

x(k):  Discrete-time state

u(k): Discrete-time control input
L...: Lower bounce filter inductance
L.... Upper bounce filter inductance
R.i,:  Lower bounce filter resistance
R...: Upper bounce filter resistance

Uncertainty set
Uncertainty range
Integral state
Integral gain

State feedback gain
Reference state

HAEET G
=

e ft
Wf Weighting matrix
X(k):  Augmented state
K;: Outer loop integral gain
K,: Outer loop proportional gain
P, Output active power

o Output reactive power
€50 Grid voltage vector in af}-frame
€4y (t): Grid voltage vector in dg-frame

P..st Active power reference
Q5:  Reactive power reference.
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A plug-in hybrid electric vehicles (PHEV) charger adapter consists of an AC/DC power factor correction (PFC) circuit accompanied
by a full-bridge isolated DC/DC converter. This paper introduces an efficient two-stage charger topology with an improved PFC
rectifier as front-end and a high-frequency zero voltage switching (ZVS). Current switching (ZCS) DC/DC converter is the second
part. The front-end converter is chosen as bridgeless interleaved (BLIL) boost converter, as it provides the advantages like lessened
input current ripple, capacitor voltage ripple, and electromagnetic interference. Resettable integrator (RI) control technique is
employed for PFC and DC voltage regulation. The controller achieves nonlinear switching converter control and makes it more
resilient with the faster transient response and input noise rejection. The second stage incorporates a resonant circuit, which helps in
achieving ZVS/ZCS for inverter switches and rectifier diodes. PI controller with phase shift modulator is used for second-stage
converter. It improves the overall efficacy of the charger by lowering the switching losses, lowering the voltage stress on the power
semiconductor devices, and reversing recovery losses of the diodes. The simulations and experimental results infer that the overall
charging efficiency increases to 96.5%, which is 3% higher than the conventional two-stage approach using the interleaved converter.

1. Introduction

In order to reduce the fuel consumption and fuel emission, the
world is moving towards eco-friendly vehicles, [1] namely
electric vehicles (EV), hybrid electric vehicles (HEV), and
PHEV. Highly efficient batteries, its fast-changing technologies,
and charging infrastructure are the key sources for the electric
vehicles. Battery chargers are crucial in the field of battery and
electric car technology [2]. A traditional combustible engine
plus an electric engine powered by a pluggable external electric
source propels PHEVs [3]. In normal driving conditions,
PHEVSs can store enough electricity from the grid to drastically
reduce their gasoline usage [4]. The recent developments in
PHEV motor drive and battery charging technologies have

increased the demand for PHEV vehicles in the market. Re-
searchers focus on improving the same to speed up the
commercialization of the vehicle in the market.

Batteries [5] such as nickel metal hybrid, lithium polymer,
and lithium-ion are predominantly used in electric vehicles
for its best efficiency, safety, energy density, and cost factor. At
all power levels, a battery charger can allow unidirectional or
bidirectional power transfer. The bidirectional power flow [6]
includes a vehicle-to-grid (V2G) mode to the grid-to-vehicle
interface (G2V). In a utility-connected microgrid, a battery
charger configuration for PHEV applications using a back-to-
back (B2B) converter is also proposed [7]. Depending on the
vehicle’s power requirements, this proposed structure can
operate in four different modes: grid-to-vehicle (G2V),
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microgrid-to-vehicle (M2V), vehicle-to-grid (V2G), and ve-
hicle-to-microgrid (V2M).

The IEC-62196 specifies the general parameters of the
charging process [4], and therefore, how energy is delivered.
In order to charge the automobiles, users have four options.
They are slow charging, semi-fast charging, fast charging,
and ultrafast charging. Two different types of chargers for
charging the battery are considered, namely high-speed
charger and on-board charger [8]. PHEV applications
support on-board charger for residential charging. From a
230V supply, 3.3 kW on-board charger can charge a 16 kWh
exhausted battery pack in around 4 hours.

The charger architectures [8] are broadly classified as
single-stage and two-stage chargers. Two-stage architecture
is preferred, as it gives low-frequency ripple rejection. Front
part of two-stage architecture is AC-DC converter, and back
end has DC/DC converter. The power architecture of a two-
stage battery charger depicted in Figure 1 includes AC/DC
PEC circuit accompanied by a second part isolated DC/DC
converter.

A variety of PFC rectifier circuits with linear and
nonlinear control methods [9] have been developed as front-
end converters. A multilevel converter configuration is the
viable choice if larger power ratings are required. Most
commonly used topologies for the front-end converter are
dual boost converter [7], bridgeless PFC converter [10],
interleaved PFC boost converter [11], and phase shifted
boost converter [12]. The interleaving concept reduces the
current ripple at the supply end and also EMI filter re-
quirement. On the other hand, the drawbacks of the con-
ventional interleaved converters include increased output
voltage ripple, cost, design complexity, the thermal problem
due to the presence of diode bridge rectifiers, voltage and
current stress on the semiconductor devices, and electro-
magnetic interferences (EMI).

A BLIL PFC boost converter with four-channel inter-
leaving is considered as front-end converter, since it
overcomes the drawbacks of the conventional converters.
The second part of the two-stage charger is an isolated
resonant DC/DC converter. Various topologies for
obtaining zero voltage switching are available. Higher
circulating primary winding current is one of the major
downsides of the traditional isolated DC/DC converter to
attain ZVS resulting in greater conductive losses of
switches. Alternatively, ZVS eliminates noise and har-
monics in high-frequency converters. Many topologies
with soft switching technique, such as phase shifted ZVS
topology [13], LLC resonant topology [14], and RCD
voltage clamping [15], are reported in the literature to
diminish the switching losses, voltage stress across the
switches, and diode’s reverse recovery loss. The proposed
second-stage resonant converter overcomes the above-
mentioned losses with lesser number of components,
thereby increasing the overall efficiency of the charger.
Miralinaghi et al. [16] suggested scheme on operation and
integration of two buck-boost converter based on a single-
phase bidirectional inverter under a maximum power point
trackers (MPPT) on DC distribution system. The power
factor correction and grid connection fulfilment were
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FIGURE 1: Block diagram of the battery charger unit.

obtained by bidirectional inverter with a full-bridge con-
figuration. The power flow between DC bus and AC grid
was controlled by an inverter control system, and it was
regulated DC bus to a certain range of voltages [16].

Tran suggested scheme on operation and integration of
two buck/boost converter based on a single-phase bi-di-
rectional inverter under a maximum power point trackers
(MPPT) on DC distribution system. With a thin PV array,
the MPPT technique was formed by two buck and boost
converter, it reduced the voltage stress. The power factor
correction and grid connection fulfilment were obtained by
bidirectional inverter with a full-bridge configuration [17].
Miralinaghi et al. [18] suggested a scheme on soft switching
charging and discharging converter with the zero-voltage
discharge function. The battery voltage can be discharged by
the converter until it becomes zero. In the charging oper-
ation at turn-on period, the zero voltage switching was
achieved, and in discharging operation at turnoff period, the
zero current switching was achieved [18]. He et al. [19]
suggested scheme on single DC single source with less
magnetite topologies for minimizing the power balance
issues. For minimizing the zero-sequence current, a sine-
triangle pulse width modulation was used. To obtain a
staircase voltage waveform using power electronic switches
under low-rated based on multilevel inverter concept. As
that the requirement of series-connected switches increases,
it depends on the number of increasing voltage level [19].
This paper introduces an efficient two-stage charger to-
pology with improved PFC rectifier as front end with a
nonlinear controller and a high-frequency ZVS-ZCS DC/DC
converter as the second stage with ACM controller as dis-
played in Figure 2.

This article is structured in the following manner: Sec-
tion 2 designates the first stage of battery charger system
with nonlinear PFC algorithm and the second stage is
resonant DC/DC converter explained in Section 3. The
requisite designed equations of the converter and its spec-
ifications of the suggested battery charger are addressed in
Section 4. The simulation results are detailed in Section 5.
Finally, Section 6 carries the conclusion report based on the
results obtained.

2. Front-End PFC Boost AC/DC Converter

BLIL PEC boost converter [20-23] shown in Figure 2 in-
cludes four inductors (L1,L2,L3, and L4), four power
MOSFET’s (Q1 to Q4), four diodes (D1 to D4), and an
intermediate DC link capacitor (Cy;). As the term suggests,
the bridge rectifier with diodes is abolished. Compared with
the traditional interleaved boost converter, four channel
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interleaving lessened the input current ripple. The total
current flowing through the inductors L1/L2 and L3/L4 will
be the input current. Since the ripple current in the inductors
[L1/L2 and L3/L4] are now out of phase, they negate each
other, thus minimizing the ripple of input current [24].
Interleaving decreases output capacitor current ripple,
current stress on the devices, and, furthermore, the circuit
EMI [25].

BLIL boost converter is implemented with the PFC
control algorithm, which improves power factor and power
quality of the input current according to IEC 61000-2-3
standard, and the load voltage is regulated to the preferred
value. The PEC [26, 27] is designed in several ways, such as
boundary conduction mode (BCM), continuous conduction
mode (CCM), and discontinuous conduction mode (DCM).
Average current mode (ACM) control is one of most
commonly used methods in boost PFC converters to ac-
complish high power factor and minimal distortion. Any
disturbance in the line voltage is compensated in the ACM
control technique, increasing the output voltage’s immunity
to variations in the supply line. This method drawback
includes detecting input current, input voltage, output
voltage, and multiplier circuit all of which add to the circuit
complexity. When a transient occurs, the outer voltage loop
reaction is slow, and it takes many switching cycles to
achieve stability. These disadvantages are rectified by in-
corporating nonlinear control technique.

The BLIL boost converter considered in this work
operates in CCM mode, and the control scheme incorpo-
rated is resettable integrator control technique. Resettable
integrator (RI) technique [28-30] shown in Figure 3 is a
nonlinear technique proposed for converters operating at
constant frequency. This does not require input voltage
sensor, multipliers, and input current error compensator as
like average current mode control. The vital advantage of this
control method is that it the harmonics are removed as well
as the transients are traced. The output signal is combined
here until it approaches the reference signal. The converter
switching frequency, f, is much higher than the frequency
of the input signal x(t) or the reference signal V, (¢), and

therefore, x (t) and V,(t) can be taken as fixed value. Let
y(t) be the output variable.

1 (Ton 1 Ton
y(t):T—SJO x(t)dt:T—Sx(t)JO dt = x0@®), (1)

where § (t) is the duty cycle and T, is the total interval. The
power device’s duty cycle is controlled when the chopped
waveform equals the input reference as stated in the-
following equation:

Ts T 1 T
jo x(8)dt = JO V. (0dty (0 = o JO x(B)dt N
2

1 (Ts
=— J Vier (1)dt =V (2).
TS 0

In different converter topologies, this control approach
may be extended to leading edge and trailing edge modu-
lation. The theoretical waveform of the control technique is
depicted in Figure 4. The sensed output voltage V., is fed to
an amplifier. The amplified error voltage V_ (¢) is tuned by PI
controller that is integrated with a resettable integrator, and
for each switching cycle, a variable magnitude ramp voltage
V. (t) is generated. The inductor current I ., is compared
with the ramp voltage as shown in Figure 3. When the
voltages are equal, the integrator resets. Therefore, the in-
tegrator resets for each switching time and the ramp voltage
begins at “0” for consecutive switching period. Thus, in one
switching period this discards the supply-fed disturbances
and load disruptions.

3. Isolated Resonant DC/DC Converter

The PHEV charger second part consists of an isolated
resonant DC/DC converter [31], which can be operated in
CCM, BCM, and DCM mode. In this case, the converter is
operated in DCM mode, with high switching (100kHz)
frequency to lessen the passive components size, the ratio of
transformer turns, and the current stress on primary end
switches. The primary winding of the transformer is coupled
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to the inverter circuit as portrayed in Figure 2. The inverter
switches and rectifier diode’s resonant switching are
achieved by fixing the duty cycle of the lower group devices
of the inverter M3 and M4 as 50%, while upper switches
(M1 and M2) are PWM controlled [32]. The power semi-
conductor devices are modelled with parasitic capacitances
and parallel diodes. All the parasitic capacitances of switches
and inductors are together taken in the output capacitance.
Theoretical waveforms for the operation of isolated resonant
DC-DC converter are shown in Figure 5.

It can be seen that the ZV switching-on and ZC
switching-off is accomplished for the inverter’s lower
switches, while the upper leg devices attain ZCS turnoff. The
diodes in the rectifier circuit connected next to the trans-
former secondary will accomplish zero current turnoff. At

the time instant ¢ = to, the power devices M1 and M4 are
turned on and the current streams through M1-Lr- primary
winding of the transformer and M4. At time ¢t =¢,, M1
turns off and the primary current follows an alternative path
via. M,-parasitic capacitance of M, and Lr.
The resonant inductor’s current i;, is expressed as
follows:
Vde - (Vo/n) (T - t,).
Lr

Atthesameinterval, the diodes DaD, and Dd will start D,
conducting on the rectifier side. The direction of the sec-
ondary current through D,-load and D, is achieved. Power
devices M1M, and M, have now attained ZCS during OFF
state. At time instant ¢ = £;, the switches M2M, and M3 are

i, (t) = (3)
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triggered ON, and D, and D, are now reverse biased, while
DbD, and D; are forward biased. The resonant inductor
current is currently, as per the initial condition
i, (0) = i,iy (0) = ip, provided by the following equation:

v,
v (T 4

iLr (t) = ipri - n

where i,;; is the primary current of the transformer. The time
instants t = t,, s, and t, are the negative equivalents of the
intervals t, to t;. For the diodes on the rectifier side of the
circuit ZCS turn-on and ZCS turnoft are accomplished. The
isolated resonant DC/DC converter removes the need of
traditional RCD voltage clamping circuit in this case,
thereby reducing the total losses and enhancing the charger
performance.

The full-bridge DC/DC converter control method in-
corporates a phase shift of lagging leg switches with respect to
leading leg switches realized by conventional ACM control as
shown in Figure 3. Here, the battery terminal voltage of the
battery is set to the current reference and the charging graph
determines the power required to charge the battery bank.
Thus, the full-bridge inverter duty ratio is determined by the
charging curve and the terminal voltage of the battery.

4. Design Considerations

This section discusses the presented two-stage battery
charger design. The four-channel interleaving inductors of

BLIL boost rectifier are designed based on the input ripple
current Al;, and it is specified as

_VuV2D

L™ fsbi2’ ®)

where V., = 1/2Vs sin wt is the maximum value of the input
voltage, and f is the switching frequency of rectifier. Lb = L1
= L2 = L3 = L4 are boost inductors. Two inductors of equal
value are connected to each phase. The duty cycle D is
expressed as

V.
D=1-—"2 (6)
Vbus

where Vbus is the bus voltage of the boost converter. The
output power P, is given as

Po = Vbus * Ibus. (7)

Here, Ibus is the rectifier output current. The MOSFET used
in the rectifier has duty cycle 04 ), and it is expressed as

Vin (0)]
=11t
84(60) v
. (8)
1 Vplsm 0|
V bl

[

where V, is the input peak value. Assuming the current
flowing through the inductor as sinusoidal, its expression is
given as follows:

i1, Jsin 6> (9)

where Ip is the input current’s maximum value. The in-
stantaneous current of MOSFET i, () and its root mean
square (RMS) value i (rms) may be given as follows:

iQ(6)=1plsin 619Q (rms)>
1/2 (10)

. 1(™ ) Vplsin 61\ 1
i (rms) = ;Jo I,lsin 0| I—T dé.

The duty cycle of the diode 8, (0) can be stated as

8 () = 1—6&6):@. (11)

o

The instantaneous value of diode current is

Vplsin 0|
ip(0) = Iplsin 0| v ) (12)

RMS value of diode current can be expressed as

- . 2172
ip (rms) = [% Jo [Iplsin 6|<%ﬂe|):| ] dé. (13)

The output capacitor current has low (I msgow)) and
high-frequency components (I._ims(high)) and is given as



6
I, V2P
I s (low) = \/—% = =
(14)
Pin
I high) = —
c—rms( lg ) Vo
The capacitor C,, is expressed as
2Po * Th
01 (15)

" V?bus — (Vbus # 0.75)

where P, is the output power and T/, is the maximum hold
up time for the line frequency 50 Hz.
\4 1

= O:—. 16
Vin 1-D (16)

And thus, the voltage stress V, across the power devices
is given as

V,=GVin=V,. (17)
The second-stage isolated DC/DC converter with voltage
gain (G) is formulated as follows:
Vv, 2xn

G: =
Vde 141 +4+k/D?

where k is the standardized time constant (k = 4n*Ly/R,T)
and # is the turn’s ratio of the transformer, and it is given as

(18)

Vo (19)

nszc*D'

The duty ratio for the inverter switch is set at 0.377 as it
gives the optimal gain value. The turn’s ratio of the trans-
former is obtained as 1.326 from (19). The voltage gain
ranges from 0.1 to 0.5 for different values of D, and k from
0.1 to 1 has been calculated and plotted using MATLAB as
shown in Figure 6. The resonant inductor value (L,L,) is
given as

k*Rx*T
L =——5
4%n
(20)
k#*Ry=T
L=———
4xn

where R is the output resistance of the converter and T is the
switching interval. Thus, the value of L, is 176 yH from (20).
The RMS value of current passing through the inverter
switches M1 and M2, I; ;ps) is given as

1 (h,
IMIZ(rms) = f Jt Iy (t)zdts (21)
0

and the RMS value of current through inverter switches M1
and M2, I (ms)> 1S given as

1 ty t,
Iyt (eme) = \]T “t i, (02dt + Jt iLr(t)zdt:|. (22)
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TaBLE 1: Specifications of the proposed charger.

Parameters Value (units)

Bridgeless PFC boost rectifier

Power output (Py) 300W
Switching frequency (fs) 80kHz
Inductors (L1,L2,L3,L4) 0.58 mH
Capacitor (C,;) 470 uF

Efficacy (1)) 97%
Isolated resonant DC/DC converter

Switching frequency (fg,) 100 kHz
Transformer turns ratio 1.326:1
Resonant inductor (L,) 176 uH
Output capacitor (C,) 470 uF
Efficacy (1)) 96.5%

The average current through the antiparallel diodes of
MOSFETs M3 and M4, Ips,, is given by

1 (5
Ipsy = T Jt i, (£)dt. (23)

The output filter capacitor Cy, value is determined using
capacitor RMS current Ic,.

1 (T 2
Iey, = T—PL (i, (6) - I,)dt,

(24)

_ ICOZ (rms)
” 47TfsVr .

The critical component value for the prototype is given
in Table 1.

5. Simulation Results

The simulation of the proposed charger is carried out for
300 W using PSIM. The converter is simulated under varying
supply conditions. Figure 7(a) shows the simulated dynamic
response of the converter when the input voltage is adjusted
from 230V to 110V at time t=0.48s using conventional
control technique. After two cycles of lowering the supply
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through inductors L; and Ls.

voltage, the input current begins to track the voltage,
bringing the power factor closer to 0.9. This is due to the slow
external voltage loop, which senses the change in output
voltage first and then adjusts the current reference
correspondingly.

The duty cycle of the switches is adjusted, resulting in the
typical controller’s slow response.

Figure 7(b) illustrates that when the supply voltage is
changed from 230V to 110V, the power factor (PF) of the
input supply is closer to unity. The interleaving inductors
reduce the input current ripple in the proposed BLIL
converter, and it is shown in Figure 7(b). Gain of PI con-
troller (K,=1; K;=33.33) evaluated for PFC with input
variations for predicting the performance of RI. It is obvious
that the input power factor remains 0.99 for both the cases,
in spite of the change in input voltage. Here, the input
current traces the instantaneous value of input voltage very

fast, and hence, Figure 7 shows a very good power factor
with the proposed controller.

The output voltage and output current regulations are
observed by introducing a step change in load at t = 0.38s.
Figure 8(a) shows the response of the output voltage when a
positive and negative step load change is introduced at time
t=0.38, respectively. It takes more than 4 cycles (> 0.085s)
to attain the steady-state condition. The output voltage and
output current regulations of RI controller are observed by
introducing a step change in load at f = 0.48s. A positive
step load change (300 W to 350 W) and a negative load
change (300 W to 250 W) are introduced at t = 0.48s as
shown in Figures 8(b) and 8(c). The controller rejects the
disturbances in one switching cycle, which eliminates the
overshoot and undershoot of voltage across the device.

For the second-stage converter, the trailing edge gating
pulses vgl and vg2 with a duty cycle of 37.77% are given to the
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upper pair of switches M1M, and M2. The gating pulses G,
for M3 (vg3M;) and M4 (vg4) is fixed with 50% duty cycle.
The inverter’s ZVS and ZCS turn-on and turnoff, as well
as the converter side diodes’ ZCS turn-on and turnoff, are
accomplished. This rectifies a 300 V voltage and conducts it
to the load, where 1 A is the current through the diode.

6. Hardware Results

The prototype feeding the resistive load shown in Figure 9 is
designed and tested for 300 W. For the front-end converter,
ferrite core inductors of 5.8 mH are connected with 600V,
99 mQ Rdson MOSFET for each channel of BLIL boost PFC
converter. A 600 V and 6 A silicon carbide diodes are chosen
as fast diodes. A resettable integrator PFC controller using
IR1150 is used to enhance the PF on the supply side, and
UC2895 IC is used as phase shift controller on DC/DC
converter. MOSFETs with 600V, 80 mQ Rdson, 450 pF
parasitic capacitance, are selected as switches for the inverter
in the second stage and 400 V/47 uF capacitor for filtering
output current ripples.

The converter is tested for (230-110) Vrms under var-
iable load conditions. The waveforms shown in Figures 10(a)
and 10(b) are observed on the input side for 230 Vrms and
110 Vrms, respectively, which depicts the input power factor
closer to unity. Harmonic spectra of the input current
waveform are shown in Figure 10(c), which illustrates that
the THD is less than 5% at 110 V input, which is required for
PHEYV battery chargers to satisfy the IEC standard 61000 3-2
class D requirements.

The inverter gating pulses with duty cycle 37% for
switches (M1 and M2) and 50% for the switches (M3 and
M4) is observed in Figure 11(a). The DC/DC converter
waveforms are shown for variable load conditions, focussing

that the soft switching can be achieved. The input voltage
with 136V peak to peak for 100 W, appearing across the
transformer primary winding, is shown Figure 11(b).

From the waveform, the passive interval (voltage zero
instant) in DCM mode can also be observed. ZCS turn-on
and turnoff can be attained for the diode (D3), which is
depicted in Figure 11(c). The DC output voltage 294 V and
output current 0.991 A obtained from the diode bridge
rectifier is shown in Figure 12(a).

7. Comparison

The proposed topology is compared with the existing front-
end converter topology controlled by conventional ACM
technique in terms of THD, semiconductor loss distribution,
and overall efficacy of the charger system.

The loss distribution for interleaved boost and BLIL
boost converter is presented in Figure 12(b) for the following
operating conditions: V;, =230V, V. =400V, switching
frequency (fs)=80kHz, and output power P, =300W.
Conduction losses, switching losses, 1/2CV?, and gate
charge losses are considered for MOSFET. As SiC diodes are
chosen, reverse recovery losses are negligible. The presence
of bridge rectifier in interleaved boost converter contributes
large portion of loss (approximately 3 W). From the
Figure 12(b), total device losses of BLIL converter have lower
losses (~3.9W) when compared to interleaved boost con-
verter. Moreover, the second-stage converter has soft
switching achieved for FETs and diodes. Hence, the loss
contribution of DC/DC converter is comparatively less
compared to conventional DC/DC converter resulting in
highly efficient battery charger.

THD of the input current from Figure 13(a) clearly
indicates that it complies with IEC standard 61000 3-2 class
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FiGure 10: (a) Input voltage and input current waveform of 300 W BLIL boost converter. (b) BLIL boost converter tested for 120 W. (c)

THD of input current for 300 W at 110V input voltage.

D limit when the converter is operated at 230 V and 110V at
full load condition. Figure 13(b) is the comparison graph of
traditional interleaved and BLIL boost converter as front-
end converter for variable output power. The graph implies

that the peak efficiency of the charger with BLIL PFC
converter is 96.5%, whereas the traditional interleaved
converter efficiency is 93%. The comparison of the charger
setup with respect to control technique is analysed and
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shown in Figures 14(a) and 14(b). From the graph, it is
inferred that the efficacy and power factor of the front-end
converter of the charger are high for RI control than ACM
control.

8. Conclusion

A high-performance two-stage converter topology for
PHEV battery charger with improved PFC rectifier as front-
end and a high-frequency ZVS-ZCS DC/DC converter as the
second stage has been discussed in this paper. The operation,
design considerations, and performance comparison with
the traditional two-stage approach are presented. A non-
linear RI control technique is implemented for the front-end
converter, which corrects power factor closer to unity in one
switching cycle at variable load powers. THD of the input
current is less than 5%, which is compliant with the IEC
61000 3-2 standard. For PFC converter and DC/DC con-
verter, respectively, the proposed charger achieves a peak
efficiency of 96.5% at 80kHz and 100kHz switching
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frequency. It operates for a wide output load variation. Thus,
the overall designated charger unit achieves an efficiency of
3.5% higher than the conventional battery charger unit.
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The competition and cooperation between automobile manufacturers and battery enterprises are an important topic concerned by
electric vehicle supply chain management. This paper investigates the cooperation modes between competing manufacturers in
the EV (electric vehicle) supply chain, under which the common supplier launches the innovation of the key component of EV to
meet the demand of two manufacturers. Three cooperation modes between manufacturers, full cooperation, partial cooperation,
and noncooperation, are established to depict the pricing decisions by the Stackelberg game. We find out that, when competition
degree is small, it is more profitable to choose partial cooperation, while it is more advantageous to choose full cooperation when
competition degree is high, and the manufacturer’s basic market demand is relatively small. Therefore, it is always preferred for the
common supplier to expect noncooperation between manufacturers. Under the background that basic market demand ratio
changes with competition degree between markets, it could be better for the whole supply chain when without cooperation or
partial cooperation depended on the supplier power while it could be better for customers when full cooperation or partial

cooperation depended on the competition degree between manufacturers.

1. Introduction

Facing the great challenges of transportation energy and
environmental problems, new energy vehicles characterized
by energy diversification, clean emission, and fuel conser-
vation are developing rapidly all over the world. At present,
international auto giants have accelerated the promotion of
electric vehicle strategy. Batteries, as the most important
component of electric vehicles, become the focus of the
competition among global automotive component suppliers,
and all companies want to occupy a high position in the new
energy vehicle market. In the electric vehicle battery market,
not only do battery suppliers begin to carry out technological
innovation but also automobile manufacturers are actively
innovating. For example, a well-known battery supplier is
striving for orders from global automobile manufacturers;
on the other hand, some automobile manufacturers intend

to master the core battery technology by themselves. For
example, Tesla, the main customer of Panasonic batteries,
plans to develop and produce the required batteries by itself.

In practice, there is usually a cooperative relationship
between a common supplier and multiple competitive
manufacturers. For example, Huawei and Xiaomi will jointly
sign a contract on CPU (central processing unit) with
Qualcomm Snapdragon, and BMW and Jaguar will use the
same chassis supplier. In this case, the products of down-
stream competitive manufacturers will compete with each
other in the market, but all manufacturers who sign a
contract with a common supplier will have common ben-
efits. How to decide the cooperation mode for competing
manufacturers facing the common supplier is a problem
worthy of attention. This paper studies this problem and
provides some meaningful guidance for the operation and
management of the supply chain.
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The rest of this paper is organized as follows: Section 2
presents the related literature, and section 3 discusses the
research assumptions and basic models. Then, section 4 is
three cooperation models between competing manufac-
turers, and their comparison and equilibrium analysis are in
section 5. Finally, section 6 is the results and further
research.

2. Related Literature

Innovation is always an important issue concerned by ac-
ademia and industry. From the perspective of supply chain
member innovation, this paper mainly focuses on two re-
search fields. One research area includes supplier innovation
in the supply chain, and supplier innovation can be divided
into active innovation or buyer incentive supplier innova-
tion. Sometimes, suppliers will take the initiative to improve
product quality and technical level. Similarly, the buyer
requires the supplier to meet the demand for product im-
provement. With the increase of global innovation out-
sourcing and the rising trend of open innovation, suppliers
play a very important role in the global supply chain. In
terms of supplier competition, Qi et al. [1] take a dual-
channel supply chain composed of two upstream suppliers
and one downstream manufacturer as the background.
Considering the wholesale price factor, Qi et al. [1] analyze
the optimal strategy for manufacturers to select suppliers
when there is competition among suppliers. Li and Wan [2]
investigate the impact of information asymmetry and in-
formation symmetry on supplier investment cost.

In the existing literature, supply chain competition is
generally studied from three aspects: manufacturer com-
petition, supplier competition, and considering the com-
petition among multiple chains. For example, manufacturers
tend to compete in terms of the product price, the service,
and the quality. Xiang et al. [3] focus on the situation under
which there is recycling competition in the process of
remanufacturing waste products obtained by multiple
manufacturers in the market, using optimization theory and
noncooperative game theory, and discuss the impact of
competition among remanufacturers and remanufacturing
cost on the relationship between supply chain members. Zhu
and Zhou [4] conduct research around the new energy
vehicle industry related to the hot topic of government
subsidies and analyze the competitive relationship between
component manufacturers and remanufacturers by estab-
lishing a game model. Ozdemir et al. [5] study the manu-
facturer’s remanufacturing decision in the environment of a
legislative disposal fee. Wu et al. [6] consider the compe-
tition between manufacturers and remanufacturers and
investigate the manufacturer’s strategic dilemma when de-
termining the degree of disassembly. Subramanian et al. [7]
extend the classic component commonality decision to
consider remanufacturing operated by manufacturers or
remanufacturers. The investment in component common-
ality can be regarded as an investment in reducing rema-
nufacturing costs. Their analysis identifies the conditions
under which generic decisions could be reversed by rema-
nufacturing. Li et al. [8] investigate the impact of
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remanufacturing on product design, especially the quality of
new products. They find that remanufacturing prompted
monopolists to provide new products of higher quality.

Recent operations management literature studies issues
surrounding the green technology innovation market (such
as [9-14]), including environmental taxes and subsidies,
policy issues, strategic decision-making, production deci-
sions, and supply chain performance. In terms of research
related to supply chain management innovation, Li and Zhu
[15] depict the disadvantages of product positioning strategy
and the advantages of product platform strategy when
product innovation faces fierce competition and encourages
managers to expand their ideas of technology R&D and
product innovation. Yu and Li [16] probe into the optimal
decision-making of channel members under different in-
novation strategies under the dominant and nondominant
position of suppliers by establishing the product innovation
model of suppliers and retailers. Huo et al. [17] find that
product-oriented service transformation and incremental
innovation have no significant complementary effect on the
high-quality development of manufacturing enterprises,
which is helpful to solve the problem of enterprise product
innovation strategy selection. Ni and Zhao [18] establish a
game theory model to find out the impact of vertical
competition and cooperation on product innovation in the
supply chain and compare the innovation investment level
and the optimal decisions of upstream suppliers and
downstream retailers under vertical competition and co-
operation. Guoyin et al. [19] build an incomplete infor-
mation dynamic game model between enterprises and
consumers, investigate how enterprises motivate consumers
through the innovation degree of new products, and decide
whether to produce and sell products through the infor-
mation fed back by consumers.

In the research field of alliance cooperation behavior in
supply chain and operation management, Zhao et al. [20]
investigate the collision behavior of two manufacturers in
the retailer-led supply chain, and undoubtedly, manufac-
turers collude to make shelf space and pricing decisions to
maximize their total profits. The cost difference is the key
factor affecting their collusion decision-making, which will
only pose an unreliable threat to retailers. Collusion is a
nonprofit strategy, which involves the horizontal competi-
tion of manufacturers when there are large differences in
costs. Melkonyan et al. [21] discuss the impact of collusion,
which distinguishes the results between Bertrand and
Cournot competition. They find out that virtual bargaining
can make participants collude and obtain higher profits; in
contrast, it does not make much sense in the Cournot
competition. Chen et al. [22] study the problem of re-
sponsible procurement under the collusion of suppliers and
auditors. An effective contract strategy is proposed to reduce
collusion and eliminate the impact of screening errors and
social efficiency loss caused by supplier audit collusion. In
the aviation supply chain, there are also relevant studies on
alliance cooperation [23-25], which mainly analyze the
cooperation motivation between airlines and airports.

In addition, in the past few decades, there has been a lot
of research on supply chain innovation. Wong and Ngai [26]
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believe that supply chain innovation is usually the stage of
the supplier, manufacturer, and “supplier plus manufac-
turer.” They propose that the innovation can be divided into
three categories from the perspective of organizational be-
havior: market-oriented innovation activities, logistics-ori-
ented innovation activities, and technology-based
innovation activities. According to the definition of inno-
vation, Gao et al. [27] propose six types of innovation,
namely product innovation, process innovation, techno-
logical innovation, organizational innovation, marketing
innovation, and resource allocation innovation. The above
scholars have classified innovation from the macro level. In
addition, Bruce [28] proposes that from the perspective of
innovation-driven, the innovation can be divided into
technology-driven  innovation = and  market-driven
innovation.

The product innovation activities considered in this
paper are mainly based on the improvement of product
quality level. By establishing the model, taking the product
quality level and the service quality level of manufacturers
and retailers into account in the supply chain, and studying
the results under different game situations, it is concluded
that the adjustment speed of the service quality level of
manufacturers and retailers is too fast, which will eventually
bring losses to the whole supply chain.

This paper will investigate how competitive manufac-
turers can negotiate with suppliers in the face of three
different modes: full cooperation (manufacturers as an al-
liance, the same wholesale price, and the same sale prices),
partial cooperation (unified wholesale price and different
sale prices for manufacturers), and noncooperation
(different wholesale prices and different sale prices), and
whether the alliance between manufacturers can gain ad-
vantages in negotiations with suppliers. Furthermore, which
operation mode preferred for suppliers is discussed.

3. Research Assumptions and Basic Model

This paper discusses a vehicle supply chain system con-
sisting of the common supplier and competing manufac-
turers. Manufacturers have the same product types and
compete in the product market (manufacturers have the
same technology). From the perspective of the vertical
structure of the supply chain, the supply chain structure of
one supplier and two manufacturers allows the shared
supplier to have a higher right to speak, and a single
manufacturer is at a disadvantage when negotiating with it.
So, at this time whether downstream manufacturers co-
operate to enhance their bargaining power with suppliers,
such as Ford and Jaguar Land Rover jointly invest in in-
novation in battery suppliers, while Tesla and Volkswagen
are negotiating with Panasonic battery suppliers, respec-
tively. Based on this, this paper studies the impact of three
different interaction behaviors of manufacturers on the
decision-making of supply chain members. The common
suppliers take the initiative to innovate and provide
competitive manufacturers with key components required
for vehicle production. When manufacturers sign agree-
ments and cooperate with suppliers, they can consider how

to cope with their competitors. The cooperation modes
between competing manufacturers can be divided into
three ways, full cooperation, partial cooperation, and
noncooperation. Full cooperation of manufacturers means
that manufacturers form alliances in the downstream to
determine the prices of products to be sold; partial co-
operation means that manufacturers maximize their overall
profits in the downstream market, but the products
compete in the market they face; noncooperation means
that manufacturers use their own profits. Maximize is the
principle and compete in the product market.

In the supply chain composed of one supplier and two
manufacturers, the supplier has a higher voice, and the
negotiation with the manufacturer alliance will lose their
position. It is worth considering whether downstream
manufacturers cooperate to enhance their bargaining power
with suppliers or negotiate with suppliers alone. This paper
analyzes the impact of manufacturers’ interactive behavior
on supply chain members’ decision-making. The idea for
this part comes from the literature [29].

According to the decision-making order, the supplier
first determines its wholesale price and innovation level, and
the manufacturer determines its cooperation V mode and
then determines the sales price. We call the manufacturer’s
full cooperation case C, partial cooperation case S, and
noncooperation case N, respectively. We will build models
for decision analysis. The following parameters will be used
in this paper, and their meanings are shown in Table 1.

We assume that the manufacturers’ basic demand is A;
when e = 0, where e is the innovation level. If the common
supplier determines its innovation level, the basic demand of
the manufacturer i becomes a;(a; = A; + e). Furthermore,
the competition degree between markets is (6 < 1). We also
assume that C(e,) = gose§ alike literature [30, 31], and for
simpler, the coefficient ¢, = 1. Through numerical example
analysis, these assumptions do not affect the results.

Referring to the market demand model of Ingene
[32, 33], here, the market demand function and con-
sumption utility function of manufacturer i are as follows:

a;i—0%as ;- pi+0xps,

Di: 1_62 > (i:1,2),
(1)
D’
U= (ociDi - 7) -6D,D,- ) pD,
i=1,2 i=1,2

To express the potential asymmetry between the markets
confronted by two chains, here, we define Q = A,/A,. We
also refer to Q) as the base demand ratio. If Q > 1, the chain
I’s initial base demand is larger than that of chain 2’s. This
has been discussed in it [34].

4. Cooperation Models between Manufacturers:
Three Cooperation Scenarios

4.1. Scenarios C: Full Cooperation between Manufacturers.
Under the scenario of full cooperation between manufac-
turers, the supplier gives the same wholesale price to two
manufacturers. The manufacturers ally with the downstream
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TaBLE 1: Definitions of model parameters.

Parameters Definition

A; Basic demand in the market i, i = 1,2

a; Basic demand in market i when e# 08, a, = A; +e; i =1,2

Q Basic market demand ratio, Q = A,/A,

e Supplier innovation level

n Manufacturer’s share of innovation cost

D; Demand in the market i, i=1,2

0 Competition degree between markets

U Consumer utility

w Wholesale price per unit

P Selling price of manufacturer i per unit, i = 1,2

Cl(e,) Supplier innovation costs

i Profit of manufacturer i, i = 1,2

T Supplier’s profit

o

to determine the price of products. Taking this scenario as
the benchmark, the decision-making order of both parties
under this scenario is the supplier actively carries out up-
stream innovation and determines the innovation level and
wholesale price; after learning that the supplier is innovating,
the manufacturer chooses to fully cooperate in the sales of
the final product and determine the price of the product. The
demand function is

C (“i_e*“sfi_PC”LQ*PC)

Df = . (2)
(1-6)
The profit functions of suppliers and manufacturers are
75 = w” (Dg + Dg) e, (3)
c c c_.cC
m,, =Dy x(p —w’),

77;2 = Dg * (pc - wc).

Taking the reverse order solution method, the manu-
facturer’s profit function is a concave function on price p.
When the manufacturer fully cooperates, the two strategic
alliance manufacturers determine the product price p based
on the principle of maximizing their overall profit. We can
get the selling price p© = 1/4(A, + A, +2(w® +e,)) given
the wholesale price w®. And then, to substitute p® into
formula (3), we can get the profit of supplier
¢ = wC (A, + A, - 2wC) + 2w, —2(1 +0)e2/2(1 +0).

By the same method, we can prove the profit of supplier, 7,
is joint concave on (w, e). So, we can get the optimal wholesale
price and innovation level, respectively, w® = (1 + 0) (A, +
A,)/3+40 and e} = A; + A,/6 + 80 according to the first-
order necessary condition of 7,. Furthermore, we can get the
optimal selling price p©* = 3(1 + 6) (A; + A,)/6 + 80 and then
gain the optimal profits of all members and the whole supply
chain as follows:

o (L0 (A; +4,) (443004, - 2+50)4,)

ml 4(1-0)(3 +40)

C (1+6)(A; +A4,)((4+30)A, - (2+50)A,))

" 4(1-0)(3 + 46)° ©)

cr_ (A +A2)2

Ts T T4(3+46)

4.2. Scenarios S: Partial Cooperation between Manufacturers.
In the manufacturer’s partial cooperative scenario, although
the supplier will adopt a unified wholesale price, the
manufacturer will set their product prices based on the
principle of maximizing their profits and compete with their
products in the market, such as Ford and Jaguar Land Rover.
The decision-making order of both parties is that the sup-
plier actively carries out upstream innovation and deter-
mines the innovation level and wholesale price. After
learning that the supplier carries out innovation, the
manufacturer chooses partial cooperation to sell the final
products and determine the price of its products, respec-
tively. Here, the demand function is

S S
Df:ai_e*a%i_pzi"'e*p}i' (6)
1-6
The profit functions of supplier and manufacturers are
nf =w’ * (Df + Dg) —ei,
ﬂiﬂ = Df * (pf - ws), (7)

7o = D3+ (- ).

By the same method, we can prove the supplier’s profit
function 7% is joint concave on (w’, e,). So, we can get the
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optimal ~ wholesale price and innovation level
w = 2-0)(1+0)(A, +A)/6+4(1-0)0 and
e; =A +A,/6+4(1-0)0. And then, the optimal selling
prices are Py = (1+0)((9+6(1-46))
A +3(1-0)A)22+60)(3+2(1-6)0) and
P =(1+0)((9+6 (1-40)A, +3(1-60)A) 2(2+6)
(3+2(1-6)0).

The optimal profits of all members and the whole supply
chain are as follows:

s _(1+0) (5+6(1-30)A, - (1+(3-00)4,)’
me 4(1-0)(2+0°3+2(1- 0)6)>

¢ (0(5+0-36)A, - (1+(3-0)0)4,)
Ja—

) (8)
" 4(1-02+0)*3+2(1- 0)0)*

= (A1+A2)2
S 12+8(1-0)6

4.3. Scenarios N: Noncooperation between Manufacturers.
Under the manufacturer’s noncooperation scenario, the
common supplier and manufacturers compete in the
product market based on the principle of maximizing their
respective profits, such as Xiaomi and Huawei. The decision-
making order of both parties is that the supplier actively
carries out upstream innovation and determines the inno-
vation level and the wholesale price to different manufac-
turers, and the manufacturers choose not to cooperate after
learning that the supplier carries out innovation, sells the
final products, and determines the price of their products,
respectively. Here, the demand function is

pN %~ 0 s — P;N + Q*P;\ii'

‘ 1-¢ )

The profit functions of the common supplier and
manufacturers are listed as follows:

N _ N N N N 2
n, =w; *D; +w, *D, —ej,

o = D7 # (pY - wy), (10)
Y = DY « (pgv —wN).

By the similar method, we can prove the common
supplier’s profit function 7Y is joint concave on
(wl,w,e;) by the third-order Hessian matrix analysis.
Then, we can gain the optimal wholesale price and inno-
vation level are wl = (7+4(1-0))0A, + A,/12
+8(1-0)0, w,N* = A; + (7+4(1-0)0)A,/12 + 8 (1 - 6)6,
and e; = A; + A,/6 + 4(1 — 0)0. Furthermore, the optimal
selling prices of production in markets are as follows: p,N* =
(21+20(11-40(1 + 0)A, + (3-20-46")A,/4 (2+6)
(3+2(1-0)0) and p,N*=(21+20(11-46 (1+6)
DA, + (3-20-469)A,/4(2+60)(3+2(1 + 0)0).

The optimal profits of all members and the whole supply
chain are as follows:

5
e 6)((7 - 46°)4, + (1 - 46)A,)’
"16(1-60)(2+60)*(3+2(1- 0)0)*
v (1 0)(7-467)A, +(1-40)4,) a1

T2 S e (1-60)(2+ 0’ G+2(1- 0)0)

v (7-46%)A] +2(1-40)A\ A, +(7 - 46°) A
T = .

s 8(6+9—992+204)

5. Models Comparison and
Equilibrium Analysis

By solving the models of full cooperation, partial cooper-
ation, and noncooperation, the optimal decisions and
maximum profits of manufacturers and suppliers under
different scenarios are obtained. This section will compare
and analyze the maximum profit under three different
scenarios to get relevant conclusions.

Proposition 1. Given innovation by the common supplier,
for manufacturer 1’s profit under three scenarios, we can get
the following.

(1) Full cooperation is preffrcrggi for manufacturer 1 under
the feasible zome, Q_ ~ <Q<Q due to n<,
> oy > Ty

2) Partial cooperation, is preferred for manufacturer 1

@ under the Izjone (A)rcn_lN £Qf<ﬁc J;md ﬁfj’: Q<a°
due to ns,>nS, >nl,

(3) Noncooperation is preferred for manufacture 1 under
Q°<Q<Q " duetond s, >nC
== ml ml ml ml

From Proposition 1, we can find out that for manufac-
turers, when their basic market demand is close to their
competitors and their products are highly competitive,
manufacturers will choose full cooperation, which can form a
strategic alliance and reduce the losses caused by competition;
when the products of two manufacturers are less competitive
in the market, as long as the basic market demand of the
manufacturer is greater than that of the competitor, it will
choose partial cooperation. At this time, it has a certain voice
in the market, so choosing partial cooperation to set its
product sales price alone is conducive to obtaining more
profits from the market; when its basic market demand is
relatively small compared with its competitors, regardless of
the degree of market competition of products, it will choose not
to cooperate and sign a separate contract with suppliers to
ensure its voice in negotiation with suppliers, so that it can
obtain more profits. Figure 1 illustrates the above results.

Proposition 2. Given innovation by the common supplier,
for manufacturer 2’s profit under three scenarios, we can get
the following.

(1) Full cooperation is preferred for manyfacturer 2 under
the feasible zome, Q“<Q<Q_ . due to nS,
> Ty > Moy
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FiGure 1: Cooperation mode choice for manufacturer 1.

(2) Partial cooperation is preferred for manufacturer 2
~C-N
under the Q“<0<Q,, and
~C-$

~C-N
SC § C s N
Q,, <Q<Q,, duetom;>n,,>m,,

zZone

(3) Noncooperation is preiegredfor manufacture 2 under

N c
the zone Q,, <Q<Q due to nl,>nS,>nS,

From Proposition 2, it can be seen that for manufacturers,
when their basic market demand is close to that of their
competitors, and their products have high substitutability in
the market; that is, there is great competition, and manu-
facturers will choose full cooperation, which can form a
strategic alliance and reduce the losses caused by competition.
In this case, the manufacturer and the competitor will reach
an agreement to form a strategic alliance to sign a contract
with the supplier; when the substitutability of two manu-
facturers’ products is low in the market, that is, the compe-
tition is very small. As long as its basic market demand is
greater than that of the manufacturer, it will choose partial
cooperation. At this time, it has a certain voice in the market.
Therefore, choosing partial cooperation to set its own product
sales price alone is conducive to obtaining more profits from
the market. When its basic market demand is relatively small
compared with that of the manufacturer, no matter whether
the product is more or less substitutable in the market; that is,
competition degree is large or small, and it will choose
noncooperation to sign a contract with the supplier alone, so
as to ensure its voice in negotiation with the supplier and
ensure that it can obtain more profits. Figure 2 illustrates the
above results, and it is easy to find that Figure 2 is symmetrical
with Figure 1.

From Propositions 1 and 2, we can get the following
inference.

Inference 1. For the manufacturers, it is preferred to choose
full cooperation with the common supplier if the basic
market demand of two manufacturers is similar, and their
products are highly competitive, while to choose nonco-
operation if there is an obvious gap between the basic market
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FIGURE 2: Cooperation mode choice for manufacture 2.

demand of the two manufacturers and competition degree is
low.

Inference 1 implies that only two equilibriums occur,
and partial cooperation will not be chosen because when
their basic market demand is low, choosing partial coop-
eration will only be beneficial to competitors, so they will not
choose partial cooperation mode.

Proposition 3. Facing the manufacturers’ choice, the com-
mon supplier’s innovation level e5 > e, = e,, and it is preferred
to choose noncooperation under the zone Q° < Q < Q due to
N > n§ > ng.

From Proposition 3, we can find that for the common
supplier, the innovation level is the same under the scenarios
of full cooperation and partial cooperation with manufac-
turers; that is, when the manufacturer obtains products at the
same wholesale price, it will choose the same innovation level
to reduce the innovation cost; when the manufacturer does
not cooperate, the wholesale price is different. Under the
competition of the manufacturer, the supplier is willing to
improve the innovation level and improve the competitiveness
of the product, to obtain more profits. Figure 3 illustrates the
above results well.

Proposition 4. For the whole supply chain, noncooperation

) ~S5-N —C
is preferred under the zone Q ~ <Q<Q  due to
N > 78 > 7€, while partial cooperation is preferred under the

zone Q€ < Q< "N due to 78> 7N > €.

From Proposition 4, we can find that for the whole supply
chain, manufacturers will not choose to cooperate completely.
This is because, under full cooperation, manufacturers are
strategic alliances in downstream. When facing the market,
the sales price is the same, and there is no motivation to strive
for more profits. At this time, the innovation level of suppliers
facing the downstream strategic alliance will also be reduced,
which makes the overall profit the lowest; when the basic
market demand of the whole supply chain is small, the
manufacturer’s partial cooperation strategy will be selected.
At this time, for the whole supply chain, it needs to expand the
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FiGUure 3: Cooperation mode choice for the common supplier.

basic market demand to improve the product sales to obtain
more revenue. Therefore, the downstream manufacturers
should avoid the loss of overall profits caused by complete
competition; when the basic market demand of the whole
supply chain is large, manufacturers will choose noncooper-
ation. At this time, products have been recognized by con-
sumers in the market, so manufacturers need to make more
efforts through competition to make the market demand
larger. When manufacturers compete, suppliers will also have
more power to improve the innovation level and to make the
whole supply chain obtain more profits. Figure 4 illustrates the
above results well.

Proposition 5. For the consumers, partial cooperation is
preferred under the zone Q5™ < Q < ﬁf]_N and Q€ < Q <Q°
due to US>UN>UC, while full cooperation is preferred
under the zone Oy, " <Q<Q° B 0°<Q<Q™Y due to
Uu¢>Us>U~.

From Proposition 5, we can find that for consumers, when
the basic market demand of two manufacturers is not much
different, that is, the market share of their products is basically
the same, and they will choose the manufacturer’s partial
cooperative scenario. At this time, there is both cooperation
and competition between manufacturers to maximize the
utility of consumers, and consumers will get more benefits;
when there is a large difference between the basic market
demand of two manufacturers, that is, one manufacturer’s
products occupy most of the consumer market, while the other
manufacturer’s products only occupy a small part of the
consumer market, and the manufacturer with a large con-
sumer market has more voice, which will be accepted by
consumers even if the price is high. Therefore, for consumers,
they prefer manufacturers to balance market prices through
full cooperation to maximize their utility. Figure 5 illustrates
the above results well.

6. Results and Comments

This paper constructs a supply chain system consisting of
one common supplier and two manufacturers and

investigates the manufacturer’s selection strategies for three
different scenarios of full cooperation, partial cooperation,
and noncooperation in the competition setting. Simulta-
neously, the common supplier launches the innovation and
obtains the decision-making of each member of the supply
chain when the manufacturer selects different scenarios. By
comparing the above models, we can find out the following
results.

When manufacturers have a large demand in the basic
market, to encourage suppliers to improve their inno-
vation level, manufacturers should choose not to coop-
erate to strive for higher profits, so that suppliers and
manufacturers can obtain the maximum benefits, re-
spectively. From the perspective of consumer utility, for
the supply chain, if the consumer utility is small, that is,
the supply chain will get more profits from the market.
Therefore, when the overall demand of products in the
basic market is small, the manufacturer should choose full
cooperation, and when the overall demand of the basic
market is large, the manufacturer should choose nonco-
operation, to obtain more profits from consumers. For
manufacturers, the discussion can be divided into two
situations: the first is that the manufacturer’s basic market
demand is greater. When the competition degree is small,
it is more profitable to choose partial cooperation. When
competition degree is high, it is more advantageous to
choose full cooperation; the second is that the manu-
facturer’s basic market demand is relatively small. At this
time, no matter how competition degree changes,
choosing noncooperation is the optimal decision. Fur-
thermore, enterprises should also realize that when they
are in an advantageous position in the market, choosing
not to cooperate is not necessarily beneficial. On the
contrary, they should cooperate with other manufacturers
in the market to improve their bargaining power and
reduce the cost of obtaining products from suppliers to
obtain more profits. Cooperation in competition and
competitiveness in cooperation are the guarantee for the
long-term development of enterprises. For example, in the
electric vehicle market, electric vehicle manufacturers
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choose more cooperative behavior to negotiate with
suppliers.

At present, the epidemic is still spreading. As a huge
supply chain system, any accident in the automobile in-
dustry may bring the impact of shutdown or delay in one
link of the super long industrial chain, resulting in a chain
reaction upstream and downstream of the whole industrial
chain. In the supply chain of parts processing and
manufacturing, when a supplier closes, other assembly
factories that rely on the parts will also suffer heavy losses.
Moreover, some parts are not replaceable, and the increase
of uncertainty of upstream suppliers leads to the reduction of
vehicle assembly output. This kind of “Domino” chain re-
action leads to severe risks in the automobile supply chain.
In the long run, it is difficult to judge the impact of the
epidemic situation and the disruption of the operation
rhythm of the industry. Industry insiders believe that the
sales side will gradually recover only when the epidemic is
controlled, but overall, the sales volume of the car market

will be further reduced this year. However, in the face of the
epidemic, we can neither ignore the complexity of the global
economy nor underestimate its resilience. In extraordinary
times, new business models will be promoted or strength-
ened. The new model, coupled with the huge market volume,
means new industrial possibilities. Different from the past,
the epidemic situation makes people clearly realize that the
only way to ensure human survival is to follow the objective
laws of nature and realize the harmonious coexistence be-
tween man and nature. Therefore, it is very important to
realize the “ecology” of automobile driving and pay more
attention to the purification of air in the vehicle and the
development of anti-virus, disinfection, and other functions,
so as to better protect the safety and health of drivers and
passengers, which has become a new direction of automobile
technology R&D and innovation in the future.

From the perspective of manufacturers’ own market
demand, this paper analyzes the influence of different in-
teractions between manufacturers on the decision-making of
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the supply chain and its members, and the conclusions
drawn are inspiring for electric vehicle manufacturers. But
this article only considers the scenario when downstream
manufacturers have the same technology and does not
consider other scenarios, such as the competition situation
or when downstream manufacturers have different tech-
nologies. In addition, it has not considered whether the
decision-making results of supply chain members will
change when downstream manufacturers provide cost
sharing to the supplier. This scenario can be used as a follow-
up research direction.
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Many countries have made great efforts to boost the use of electric vehicles in recent years; for example, advanced countries
including Norway and the Netherlands in Europe and the United States have enhanced people’s willingness to use electric vehicles
by means of appropriate subsidies and suppression of private vehicles. In Asia, Taiwan has been promoting the policy of replacing
traditional fuel two-wheeled vehicles (FTWVs) with electric two-wheeled vehicles (ETWVs) and strengthening the policy by
means of replacing a large number of old FTWVs and subsidizing the purchase of ETWVs. This study took college students as the
subjects, as they were the first potential group to buy ETWVs, and their concept of environmental sustainability can be shaped for
cultivating vehicle use habits. This study applies a questionnaire to probe into the ETWV usage preferences of college students and
explores the significant factors affecting college students’ purchase of ETWVs. This study uses a mixed logit (MXL) model for
estimation. The results of model estimation show that those who are younger, have higher income, have good experience in using
ETWYVs, and are in user-friendly external traffic environments, are more inclined to choose ETWVs. In the future, government

units can formulate policies to promote ETWVs according to the characteristics of different relevant factors.

1. Introduction

Due to the use of biofuels, electrification, and efficient
techniques, global transport emissions increased by less than
0.5% in 2019, compared with 1.9% annually since 2000.
However, transportation sector still accounts for 24% of CO,
emissions from fuel combustion. Transport modes including
cars, trucks, buses, and two- and three-wheelers are re-
sponsible for nearly 75% of transport CO, emissions. The
result highlights the need for international policies that
concentrate on these hard-to-abate subsectors [1]. Electric
modes, including electric vehicles (EVs) and ETWVs, have
become a policy adopted by governments in response to
changes in energy structure and demand. In recent years,
while vigorously promoting relevant policies, such as tax
credits, parking incentives, purchase subsidies, and other
direct measures to benefit consumers in policy development
for EVs in the United States, manufacturers have adjusted to
the relevant laws and regulations to improve consumer

willingness to enter the market, such as economic incentives
and relevant building regulations applicable to EVs.

In addition, the Norwegian government, which has high
EV use, not only subsidizes the abovementioned relevant
policies but also restricts and adjusts the taxes and regula-
tions of fuel vehicles more strictly and strengthens the
construction of hardware facilities in a government-led
manner to reduce the total cost of ownership (TCO) of users
for EVs and ETWVs. For example, from 2015 to 2017, the
Norwegian government adopted the method of building
charging stations every 50 km along important road systems
to expand the power density of the whole road system, and at
least two charging piles are constructed in each charging
station to completely meet the demand for long-distance
charging of EVs. It also announced that it is scheduled to
completely ban the sale of gasoline vehicles before 2025.

According to the statistical results of the Department of
Air Quality Protection and Noise Control, Environmental
Protection Administration (Taiwan) TEDS10.1
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(Environmental Protection Administration, 2020), the im-
pact of domestic mobile pollution sources on air quality
accounts for about one-third, while the emission of PM2.5
from various pollution sources accounts for 26% of transport
vehicles, which shows that, in order to fight against air
pollution and climate change in Taiwan, diesel vehicles and
automobiles must undergo low-carbon transformation. In
addition, according to the survey report of the Department
of Statistics, Ministry of Transportation and Communica-
tions [2], FTWVs have become the largest transportation
mode used by Taiwanese when going out (accounting for
46.6%), and FTWVs produce harmful pollutants every year,
which account for 10% of the total national emissions,
making FTWVs the main source of air pollution in urban
areas. Under the strategy of energy saving and carbon re-
duction, ETWVs can keep the maneuverability and con-
venience of the original FTWVs and become the main
means of transportation to replace the FTWVs.

There are three sources of government ETWV purchase
subsidy in Taiwan (Industrial Development Bureau. Electric
Vehicle Industry: https://www.lev.org.tw/subsidy/result.
aspx) to replace old vehicles or new purchase: (i) Indus-
trial Development Bureau, (ii) Environmental Protection
Administration, and (iii) local county and city governments
(see Table 1 for classification). According to the statistics of
the Industrial Development Bureau, the number of ETWV
subsidies applied for in Taiwan increased from single digits
in 2009 to more than 90,000 vehicles in 2020, and the ap-
plication rate climbed from 0.05% yearly to 1.44% in 2019,
indicating that the vehicle purchase subsidy strategy has
achieved certain results. Therefore, in order to understand
the influence of subsidy measures on college students’ choice
of ETWVs, this study explored college students’ choice
behavior of FTWVs and ETWVs under various subsidy
measures through the scenario design of a SP questionnaire.

Referring to the abovementioned survey report [2], the
analysis results show that the most important factor affecting
users’ purchase or replacement of ETW Vs is the “reasonable
price of ETWVs,” indicating that the price of ETWV does
affect users” purchase intention; if we compare the differ-
ences in the repurchase characteristics of the above group,
25.7% of the group members will buy ETWVs a second time;
78.8% of the original ETWYV users still buy ETWVs for the
second time. This shows that users of ETWVs have a high
degree of goodwill and loyalty, and if the usage environment
for ETWVs can be further improved, ETWV users will be
more willing to buy ETWVs.

There are 1.2 million college students in 2020, which
accounts for 5% of Taiwan population [3]. Considering that
college students are potential ETWV buyers, this study
intended to understand the important factors of college
students’ choice of ETWVs by exploring the behavior of this
group, and the results can be applied to developing effective
marketing strategies for ETWVs. Moreover, this study added
the types of subsidy measures available in the scheme de-
velopment situation in order to explore the influence of
subsidy measures on college students’ choice of ETWVs.

At present, the promotion of ETWVs in Taiwan is
mainly dominated by the governmental purchase subsidies,
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manufacturers’ incentives and subsidies, and parking con-
cessions that are granted to consumers; however, there is still
a lack of overall consideration and planning for the char-
acteristics, charging requirements, and friendly environ-
ment that ETWYV users pay attention to. This study is aimed
to explore the important factors affecting the purchase of
ETWVs (alternatives include traditional fuel and electric
two-wheeled vehicles) from the perspective of college stu-
dents. Among them, it is worth emphasizing that this study
took college students as the research subjects, as college
students are one of the main potential groups that buy
ETWV:s as their first vehicle, which means that the cognition
and attitude of environmental sustainability have a far-
reaching and long-term impact on this group. If they can
cultivate their habits of using ETWVs, their contribution to
the overall environmental reduction of carbon should be
quite significant. It is also worth mentioning that the var-
iables used in this study include a number of subsidy
measures (such as purchase subsidy, exemption from spe-
cific taxes, and parking fee reduction). Therefore, the impact
of subsidy measures on college students’ choice behavior of
ETWYV types can be explored.

2. Literature Review

In order to understand the preferences and characteristics of
ETWYV users, this study conducted a literature review of
ETWVs, which was used as a reference for the design of the
follow-up questionnaire. As ETWVs become one of the
alternatives to traditional fuel vehicles, their growth rate is
quickly increasing. Zhu et al. [4] explored the willingness to
buy (WTB) and willingness to pay (WTP) of consumers
purchasing ETWVs and adopted the contingent valuation
method (CVM). The results showed that respondents pay
more attention to the actual costs of ETWV, such as selling
price, charging rate, warranty fees, and tax incentives, and
achieving the highest speed. However, the education level
and the number of family members of the respondents will
affect the WTB and WTA of ETWYV, and it was estimated
that the WTA amount of ETWV is MOP 131554 (1
MOP =U$0.13).

Bakker [5] found that the ETWYV has a crucial influence
on urban transportation planning; however, traditional
traffic planning often ignores the ETWV because of its
current unpopularity. This study collected the development
policies of China, Vietnam, the Netherlands, and other
countries for discussion, and the results show that if ap-
propriate measures can effectively improve the utilization
rate of ETWVs, such as implementing low emission areas,
phasing out traditional motorcycles and improving the
traffic-related legal framework, the main planning principle
of urban planning will be to increase the attractiveness and
safety of ETWVs.

Guerra [6] studied ETWVs as an alternative to tra-
ditional fuel vehicles. In order to understand the Solo
region of Indonesia, he designed five attributes of ETWV's
and traditional FTWVs through a survey questionnaire.
According to the price, speed, endurance mileage, and
charging time, he invited respondents to check their
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TaBLE 1: Amount of subsidy for purchasing ETWVs in Taiwan.

Subsidy unit

Subsidy item

Amount of subsidy
Lightweight ETWV Heavy duty ETWV

Industrial Development Bureau
Taiwan Environmental Administration

Local county and city governments

New purchase
Replace the old with the new
New purchase
Replace the old with the new

US $252.6 US $252.6
US $108.3 US $36.1
US $144.4~324.8 US $36.1~180.4

US $72.2~324.8 US $72.2

preferred type of transport and applied the mixed logit
model for estimation. The results showed that, while it was
feasible to implement the ETWV market in the Solo re-
gion, the price and performance of ETWVs must be able
to compete with traditional FTWVs to gain a market
share. Regarding the speed, endurance mileage, charging
time, and price, respondents were willing to pay 7-13%
more fees to buy ETWVs that feature 10 km more en-
durance range than the original design, a faster speed by
10 km/hr, and a charging time shortened by one hour. At
the same time, the survey results also pointed out that
charging time is actually the most important influencing
factor, which indicates that improving charging tech-
nology and strengthening charging facilities can effec-
tively improve willingness to use.

Thuy and Hong [7] studied and investigated the will-
ingness and attitude of high school students in Ha Noi,
Vietnam, to use ETWVs. In order to determine the reasons
and preferences that affect students’ willingness to use
ETWYVs, this study used the Theory of Planned Behavior
(TPB), and the results showed that the attitude or preference
factors of high school students’ tendency to use ETWVs
included perceived economic benefits, convenience of use,
friendly environment feeling, and fashionable appearance
design. However, high school students’ willingness or
purpose to use ETWV is influenced by three factors: indi-
vidual subjective preference or benchmark, attitude pref-
erence to use ETWV, and attractiveness of ETWVs to high
school students.

Ferrara et al. [8] explored the usage preference of
FTWVs and ETWVs in India and designed five schemes for
face-to-face interviews to investigate transportation pref-
erences. The results showed that for individual users, the
price and performance of ETWVs are the most subjective
direct influencing factors, and when the price and perfor-
mance of ETWVs reach a certain degree (such as improved
battery charging technology), they will have enough at-
traction for individual users. Other environmental factors
that influence the choice of individual users to use ETWVs
include the integrity or improvement of the charging
infrastructure.

Lee et al. [9] probed into the promotion of E-scooter
sharing (ESS) and compared two types of users: one group
tended to use the ESS service for commuting, and the other
group used ESS service in the first mile and the last mile. The
results showed that the socioeconomic characteristics of
individuals tend to be younger, have higher income, prefer
green energy, are less satisfied with the quality of current
public transport services, and they tend to use ESS service
frequently.

Eccarius and Lu [10] compared the difference between
traditional FTWVs and ETWVs. According to the research
results, although fuel driven two-wheeled vehicles have a
large impact on air pollution, and ETWVs can meet the
needs of most users, the sustainability of ETWVs is not
comparable to that of FTWVs. Although the popularization
and application of ETWVs are still not as large as that of
traditional ETW Vs at present, it is a great advantage for the
sustainable development of the future environment; thus, it
was suggested that ETWVs should be encouraged at the
initial stage, and then, the usage restrictions of FTWVs
should be gradually adjusted.

Javid et al. [11] investigated the travelers’ adoption be-
havior towards EV's using the theoretical background of the
norm activation model (NAM) theory. The collected data
were analyzed using factor analysis and structural equation
modeling methods. The results showed that car ownership of
travelers has a positive correlation with the ownership and
usage of EVs. Several approaches were suggested to promote
the ownership and usage of EVs. Miralinaghi et al. [12]
proposed a framework to address the relationship between
consumers’ vehicle-purchasing propensities and their route
choices, locations of EV-charging, and ICEV-refueling
stations. The study can guide the metropolitan transport
agencies to establish specific locations and capacities for EV
stations. Miralinaghi and Peeta [13] designed a robust
multiperiod tradable credit scheme (TCS) to incentivize
travelers to shift from internal combustion engine vehicles to
zero-emissions vehicles over a long-term planning horizon
to reduce vehicular emissions. The robust design can ac-
commodate the uncertainty in forecasting travel demand
over years. The proposed TCS design reduced vehicular
emission rates under different travel demand scenarios
compared to that does not consider demand uncertainty.

3. Methods

The discrete choice model, mixed logit (MXL), that can take
preference heterogeneity of individuals into account has
been recognized as the most popular econometric method
[14]. MXL model also can accommodate with the correlation
amongst choice sets drawn from the same respondent. The
utility function of the ith alternative for the nth individual
can be defined as

!
Uin = Vin + Ein = ﬁnxin + Ein> (1)

where V;, is the deterministic utility, ¢;, is the stochastic
component, and S, is the vector of estimated parameters of
the explanatory variable x,,. 8, is assumed to be randomly
varied over individuals, and the probability density function



f(B) = (B, € B) is represented by parameter 6 as the mean
and covariance. According to Jou and Yeh [15], the un-
conditional choice probability of individual n choosing al-
ternative 7 is given in the following equation:

o

P, = JLin B, f (BB = J<m>f(ﬁ)dﬂ, (2)

where L, (B,) is the probability of a multinomial logit
(MNL) model and P,, is the weight of the MNL probability.
The heterogeneity of individuals can be captured through
fixed socioeconomic characteristics by decomposing f3,, into
by and ¢ * z. The details are shown in

Uin :ﬁrltxin+£in = (bk+¢*z)/xin+£in’ (3)

where b, are random parameters and z represent the at-
tributes of individual n, and ¢ is the parameter vector of
attributes z. If by are the parameters of the attributes of the
alternatives, Jou et al. [16] indicated that ¢ * z interacts
among alternatives and individuals and includes market
segmentation effects, such as socioeconomic characteristics
of individuals or observed heterogeneity.

To understand the impact of a percentage change in an
attribute on the change in the probability of choosing a
specific TWV’s scheme, we apply the direct and cross
elasticities specified in Jou and Yeh [15], expressed as

in Lin( )

& = | AL ® [Pﬁ] £ (B)d, 4)
where S, is the kth element of 8. The percentage change in
probability depends on the correlation between L;, (5) and
L;,(p) over different values of S.

4. Survey Design and Data Analysis

4.1. Survey Design. In order to understand the preference of
college students who buy ETWVs for the first time in
Taiwan, the questionnaire design was divided into four parts.
The first part is a survey of college students’ main trip ac-
tivities and behaviors, the second part is a survey of college
students’ ETWV use characteristics, the third part is a survey
of socioeconomic data, and the fourth part is a hypothetical
scenario, all of which are described as follows:

(1) PartI: main trip activity behavior of college students.

The main trip activity behavior survey of college
students includes the following: respondents’ trip
purpose, travel time, origins and destinations, the
number of times of general school use, and the
transfer/use of transit stations. Please refer to Section
4.2.2 for more details.

(2) Part II: ETWV use characteristics.

This part is aimed at the types of two-wheeled ve-
hicles held (used) by college students, whether they
are new vehicles, the use time (year), the mileage
(kilometers), and the records of related variable costs
(including fuel costs, maintenance costs, and parking
costs). The data in this part can facilitate follow-up
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studies of college students’ choice of variables for the
purchase of ETWVs.

(3) Part III: socioeconomic characteristics.

The survey of individual socioeconomic character-
istics includes the following: (1) gender: male or
female; (2) age: from 18 to 23 years old or others
(open answers), with a total of 7 sections; (3) resi-
dential area: including 29 districts in Taichung city;
(4) average monthly income of individuals (in-
cluding petty cash, part-time jobs, and allowances);
(5) average monthly income of household: from
below US $720 to above US $5038, with every US
$720 being an interval; (6) family members: 1 to 6 or
more; (7) types of vehicles at home: check the
number of motorcycles and cars, respectively; (8)
preference for limiting the maximum service life of
ETWVs; (9) whether there is a ETWV in the
household; (10) whether the individual has ever used
a ETWV.

(4) Part IV: hypothetical scenarios.

The design of the attributes and attribute levels is
critical for a choice experiment. We specified five
two-wheeled vehicle types with the following attri-
butes provided: maximum capacity, license plate,
horsepower, top speed, driving range, recharge time,
list price, maintenance cost, fuel cost/recharge cost/
battery replacement/rental prices, battery warranty,
purchase subsidy, and tax breaks. These attributes
were identified as crucial factors influencing the
adoption of ETWVs by college students. According
to Taiwan’s current policy, the incentive policy at-
tributes include purchase subsidy, reduced parking
fees, and tax breaks. The incentive’s current values
were used as a reference point to set attribute levels of
the five options and were ensured the rationality of
our experimental approach.

Each incentive attribute was designed to three levels,
+25%, +50%, and +75%, with respect to its reference point.
The base purchase subsidy of ETWV-I and ETWV-IIis US $
517.00 and US $ 585.00, respectively. The base reduced
parking fee is fixed at US$ 0.67. The base tax break is US$ 15.
The base tax break is US$ 46.67. To promote the usage of
ETWVs, the practice policy of the parking and tax breaks fee
in Taiwan is now free. Therefore, the scenario of ETWV-I
and ETWV-II is set at zero.

According to the presented scenarios, the interviewees
were asked to answer the types of vehicles they would like to
buy in the future. To understand the important consider-
ations for college students to buy ETWVs, the attributes
adopted in the experimental design of this study are shown
in Table 2. In the selection of the experimental design sit-
uations, the orthogonal method was used to reduce the
combination of scenarios. Each attribute had two or three
levels of values in the nine variable attributes (other attri-
butes are fixed), resulting in (2" x 3%) scenarios. The number
of scenarios was further reduced to 18 groups of scenarios. In
order to avoid respondents filling in too many scenarios at
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TABLE 2: Attributes’ values and levels for five different vehicle types.

Vehicle types

SC-I (100 cc)

SC-II (125 cc)

MT (150 cc)

ETWV-I
o

Za

P

ETWV-II
.\ ’

—

Maximum capacity (people)

License plate

Horsepower (hp)

Top speed (km/h)
Driving range (km)
Recharge time (h)
List price (US $)
Maintenance cost (US
$/year)

Fuel cost (F), recharge cost
(R), battery replacement/
rental prices (B; US $/year)

Battery warranty

Purchase subsidy (US $)

Parking fees (US $/h)

Tax breaks (US$/year)

2

7~8
90~100
100

1600~2600

66.67

Short trip*: 83.3 (F)
Long trip*: 166.7

(F)

Unlimited, NA

0

+25% base
+50% base
+75% base
+25% base
+50% base
+75% base

t\’ﬁ Il E

2 2
Written in black on Written in black on Written in black on Written in white on
a white background

AAA-001

2

2

Written in black

a white background a white background a green background on a white
background
5.2~8.8 8.5~18.4 1.35~5 5~8.58
105~110 120 45 90
140 150 100 110
— — 4~6 Replacement
1630~2800 2470~5260 2400~2730 2460~4300
83.33 100 33.33 36.67

Short trip: 93.3 (F)

Long trip: 183.3 (F) Long trip: 193.3 (F)

Unlimited, NA

0

+25% base
+50% base
+75% base
+25% base
+50% base
+75% base

Short trip: 100 (F)

Short trip: 5.3

Short trip: 200

(R) +216.7 (B*) (B**)
Long trip: 11.7 Long trip: 240
(R) +166.7 (B*) (B*)
30,000 km/3 yr 30,000 km/3 yr
Unlimited, NA 60,000 km/5 yr 60,000 km/5 yr
90,000 km/8 yr 90,000 km/8 yr

0

+25% base

+25% base
+50% base
+75% base

+25% base
+50% base
+75% base

+50% base 0 0
+75% base
+25% base
+50% base 0 0

+75% base

the same time, each interviewee filled in two groups of
scenarios in the questionnaire. Moreover, this study clas-
sified five types of two-wheeled vehicles, SC-I, SC-II, MT,
ETWV-I, and ETWV-II, in order for the respondent to
choose one among five alternatives. SC-I, SC-II, and MT are
FTWVs; ETWV-I and ETWV-II are ETWVs.

This study mainly discussed the behavior of college
students choosing two-wheeled vehicles in different situa-
tions. The subjects were mainly college students in central
Taiwan (including Tunghai University, Feng Chia Univer-
sity, Chung Shan Medical University, China Medical Uni-
versity, Asia  University, Chaoyang University of
Technology, National Taichung University of Science and
Technology, National Chung Hsing University, and
Hungkuang University). They engaged in one-to-one in-
terviews, and a total of 902 valid samples were collected.

4.2. Sample Representativeness and Data Analyses

4.2.1. Sample Representativeness Analysis. This study con-
ducted sample representativeness analysis according to the
data investigated by the Department of Statistics, Ministry of
Transportation and Communications in the Survey Report

on Vehicle Usage [17], and college students aged 18-45 and
with junior college to graduate school education were
screened out to verify the sample average. The common
items between Survey Report and our study include “weekly
fuel consumption amount,” “annual maintenance amount,”
and “monthly parking cost.” Therefore, sample represen-
tativeness tests were performed in terms of the three items.

(1) Weekly fuel cost:

The average weekly fuel consumption of the sample
in this study was about US$3.65/week. Based on the
survey results of the Survey Report on Vehicle Usage
(2018), the average was US$ 3.66/week. After further
verifying the average of this study and survey report,
it was found that the null hypothesis is accepted in
the significant level of 5%, which shows that there
was no difference between the samples of this study
and the survey report in this project.

(2) Annual maintenance amount:

The average number of samples in this study was US
$68.25/year, and the average number in this survey
report was US $70.10/year. Further average testing
showed that the null hypothesis is accepted in 5% of



the significant level, which shows that there was no
difference in the use characteristics between the
samples in this study and the same population re-
ported in the survey.

(3) Monthly parking cost:

In the item of monthly parking cost amount, the
average number of the sample in this study was US
$2.54/month, and the average number of the survey
report was US $2.58/year. Further verification of the
average number of this study sample and the
aforementioned vehicle use survey report showed
that the result is in the significant level of 5%, which
shows that there is no significant difference between
the sample in this study and the survey report.

Analysis of the usage characteristics of this study and the
Survey Report on Vehicle Usage (2018) showed no signif-
icant difference between the survey results of this study and
the survey report under the above three vehicle usage
characteristics, which shows that the samples of this study
are representative (as shown in Table 3).

4.2.2. Data Analysis

(1) Analysis of the Main Trip Activities of Using Vehicles.
Analysis of the main activities of vehicle use shows that most
college students have two main activities, commuting, which
accounts for about 66%, followed by eating, working, or
leisure (accounting for about 30%); regarding the purpose of
secondary activities, eating and working account for about
63%. In addition, further analysis of college students’ vehicle
use shows that most vehicles are used for more than 5
minutes, accounting for about 80%; the driving distance of
each trip is concentrated in 1~less than 3 km (accounting for
about 32%), followed by driving distance which is less than
10km (accounting for about 84%), and the driving time of
each trip is less than 30 minutes (accounting for about 93%).
Motorcycles are mostly used for short-distance trips; the
average driving speed is between 40 and 70 kph (accounting
for 80%), which shows that driving speed is not slow, which
may be related to the characteristics of college students’
riding habits.

According to the results of exploring the main activities
of college students, the number of vehicle use days is mostly
more than 5 days (about 72%). Among these results, 7 days
account for 45%, which is most noteworthy, as it shows that
the short-distance travel service of urban mass trans-
portation for college students may not meet their needs at
present; for example, the restrictions on operating hours and
boarding places (inconvenient to take public transportation
accounts for 19%), low accessibility (high vehicle mobility
accounts for 57%, and using vehicles can shorten travel time
accounts for 20%), or high boarding costs (low cost of using
vehicles accounts for 1.4%). Therefore, more flexible oper-
ating hours and higher density of boarding locations would
promote a higher usage of public transportation.

This study further explored the transport modes of
college students, not including two-wheeled vehicles. Under
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the purpose of a single trip, 80% no longer transfer or use
other means of transportation, among which the main
reasons are short distance (no transfer demand), short trip
length, uncertain transfer time, and extra waiting time,
which lead to no use of other means of transportation (about
19%), and the inconvenience of vehicle parking when
transferring is another main reason (about 15%). These
results show that college students give priority to conve-
nience for short-distance travel.

(2) Analysis of the Use Characteristics of Two-Wheeled Ve-
hicles. This part analyzed the related characteristics of ve-
hicles used by college students and found that most of the
vehicle types used are 125cc, accounting for about 63%;
more than 98% of the engines used are four-stroke engines;
the purchase amount of vehicles used is between US $1799
and US $2879, accounting for about 56%. Most college
students spend about US $2.5-4.6 per week on fuel, ac-
counting for about 53%. Other variable costs, such as
monthly parking fees and annual maintenance costs, are
concentrated in less than US$1.8 (about 57%) and US$53.9
(about 60%), respectively. The aforementioned analysis re-
sults also show that, in addition to the possible burden of the
purchase amount, the burden of other variable costs can be
ignored, as they account for less than 5% of the average
monthly income of individuals. Moreover, as two-wheeled
vehicles are more convenient than other means of trans-
portation, college students rely on two-wheeled vehicles as
their main means of transportation. If the exploration of
environmental pollution sources is the starting point, further
exploring the important influencing factors of college stu-
dents’ choice of ETWV's will be key to reduce environmental
pollution sources.

However, analysis of college students’ two-wheeled ve-
hicle ownership and use status showed that more than 73%
of college students had just purchased their vehicles, and
most were purchased within the last 2 years (about 57%). The
usage (accumulated) mileage of newly purchased vehicles
was mostly less than 15,000 km, which shows that most users
are short-distance users, which is consistent with the
aforementioned statistical analysis. On the other hand, if it is
a second-hand vehicle, the service life is averaged within 10
years (about 93%).

(3) Analysis of Personal Data. Analysis results of the basic
personal data collected from the survey in this study are
shown in Table 4. Among them, the proportions of males
and females are 45% and 55%, respectively, and the age
distribution is mostly 19~21 years old (about 22%, 26%, and
19%, respectively, for a total of about 67%), which mainly
includes sophomores to the senior year of university. About
72% of college students earn less than US$360 a month.
About 84% of college students have two-wheeled vehicles
that are 5-20 years, which highlights that the expected
holding time of vehicles after purchase is quite long, and it is
necessary to have greater incentives to promote and moti-
vate users to purchase their ETWVs in the future. In ad-
dition, the cross analysis of ETWV holding time and riding
experience was further analyzed, and it was found that about
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TaBLE 3: Results of the samples’ representative tests.

Average

Item ) i Z-value Result
This study  Survey Report on Vehicle Usage (2018)
Weekly fuel consumption amount ~ US $3.65 US $3.66 Z=0.09
Annual maintenance amount US $68.25 US $70.1 Z=112  Accept the null hypothesis H,
Monthly parking cost US $2.54 US $2.58 Z=0.33

TABLE 4: Basic data analysis.

Title Question item (p;ir:rﬁfge) Title Question item (p;ir:rﬁfge)
Gender Male 405 (44.9) Below US $720 43 (4.8)
Female 497 (55.1) US $720-1, 439 96 (10.6)
18 72 (8) US$1439-2159 189 (21)
19 194 (21.5) . US$2159-2879 156 (17.3)
20 232 (25.7) Monthly income of households ;66579 3599 143 (15.9)
Age 21 175 (19.4) US$3598-4318 99 (11)
2 123 (13.6) US$4318-5038 64 (7.1)
23 52 (5.8) Above US$5038 112 (12.4)
Above 24 54 (6) 1 2 (0.2)
Below US$0.018 162 (18) 2 14 (1.6)
US$0.018-0.036 488 (54.1) Number of family members 3 95 (10.5)
US$0.036-0.05 116 (12.9) (including oneself) 4 422 (46.8)
Personal monthly US$0.05-0.07 93 (10.3) 5 246 (27.3)
income US$0.07-0.09 12 (1.3) 6 and above 123 (13.6)
US$0.09-0.11 19 (2.1) 1 127 (14.1)
US$0.11-0.13 5 (0.6) . 2 299 (33.1)
Above US$0.13 7 (0.8) Number of vehicles 3 290 (32.2)
Less than 5 years 20 (2.2) 4 and above 186 (20.6)
5-10 years 215 (23.8) 0 96 (10.6)
_ o 10-15 years 319 (35.4) 1 453 (50.2)
Vehicle service life 15-20 ;Ifears 224 (24.8) Household car ownership 2 275 (30.5)
20-25 years 82 (9.1) 3 56 (6.2)
Over 25 years 42 (4.7) 4 and above 22 (2.4)

64% of college students have no ETWV and no relevant
riding experience, while about 26% of college students have
relevant riding experience, but do not own a ETWV, which
shows that college students are willing to try new types of
transportation, as shown in Table 5.

5. Model Estimation and Elasticity Analysis

This study divided the vehicle selection schemes in the SP
situation into five categories: “Scheme I: SC-I (100 cc),”
“Scheme II: SC-II (125cc),” “Scheme III: MT (150 cc),”
“Scheme IV: ETWV-L,” and “Scheme V: ETWV-IL.” This
section calibrated the MXL model first, and then the elas-
ticity analysis was carried out on the estimated model.

5.1. Explanatory Variables for the Model. The definition,
mean, standard deviation, and maximum and minimum
values are explained according to the explanatory variables
of each model, and the relevant explanations are detailed in
Table 6, where the last column is other studies using similar
variables.

5.2. Model Estimation Results. The estimation results of the
MXL model are shown in Table 7, in which the significant
variables include “age,” “gender,” “personal income,”
“variable cost of vehicles,” “acceptable price of ETWV,”
“classification of main reasons for using vehicles,” “looking
forward to try/reuse ETWV again,” and “tendency to choose
ETWVs if you want to buy vehicles in the future.” The
influence of each variable on college students’ choice of
vehicles is described as follows. On the whole, younger
students tend to buy FTWVs with larger cc (SC-II and MT).
In addition to buying fuel vehicles with higher cc, the male
students also tend to choose ETWV-II. With higher personal
income, people are more willing to buy ETWV-II vehicles.
When the variable costs of a vehicle (including fuel cost,
maintenance cost, and parking cost) are higher, college
students are less inclined to buy a specific fuel vehicle (SC-
II). In addition, people who use two-wheeled vehicles due to
the inconvenience of mass transportation are less inclined to
buy ETWV-I; people who use two-wheeled vehicles due to
their high mobility and convenience for other activities are
also less inclined to buy ETWV-I. When buying two-
wheeled vehicles in the future, those who will directly choose
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TaBLE 5: ETWV’s holding time and riding experience.

Holding or not of ETWV\riding experience No Yes Total
No 576 (63.9) 232 (25.7) 808 (89.6)
Yes 10 (1.1) 84 (9.3) 94 (10.4)
Total 586 (65.0) 316 (35.0) 902 (100)
TaBLE 6: Description of significant variables in the models.
Explanatory variable Average Star.ldé.ird Min  Max Value setting References
mean deviation
0: female, Lee et al. [9];
Gender 0.55 0.49 0 1 Briickmann et al.
’ ’ 1: male [18]; Eccarius and
Lu [10]
Lee et al. [9];
- 18-45 years old, adopt the actual Briickmann et al.
Age of junior college students 20.63 2.08 18 45 filled-in value for setting [18]; Eccarius and
Lu [10]
1-12 persons/household, adopt Briickmann et al
Family size 4.46 1.11 1 12 the actual filled-in value for (18] '
setting
Lee et al. [9];
Personal monthly income 84529 43504 360.88 2887.04 ‘rdoptthe actual filled-in value  Briickmann et al
for setting [18]; Eccarius and
Lu [10]
Variable cost = fuel
Variable cost of two-wheeled vehicle 272.9 117.5 614 7766 COSLtmaintenancecost+p arking - Eccarius and Lu
fee, which is the value after [10]
adding the checked values
. . Adopted the median of the Eccarius and Lu
Vehicle purchase price 2124.9 866.9 288.7 79394 checked value for setting [10]
. Adopted the median of the Eccarius and Lu
Vehicle fuel cost per week 101.651 56.183 22 317 checked value for setting [10]
1: reason for choosing traditional
Reason for choosing traditional FTWVs_the price of ETWVs is
vehicles_the price of ETW Vs is too high 0.351 0478 0 ! too high Thuyand Hong [7]
0: otherwise
1: reason for choosing traditional
Reason for choosing traditional FTWVs_poor endurance of
vehicles_poor endurance of ETWVs 0.386 0.487 0 1 ETWVs Thuy and Hong [7]
0: otherwise
Reason for choosing electric Li reason for choosing
. . 8 . 0.240 0.427 0 1 ETWVs_those who have Thuy and Hong [7]
vehicle_there is a car purchase subsidy -1 .
purchase subsidies; 0: otherwise
. . 1: reason for choosing
Reasons for choosing electric - .
vehicle_the price of electric car is 0.053 0.225 0 1 ETWVs_the price of ETWV is Thuy and Hong [7]
reasonable
reasonable ;
0: otherwise
1: reason for choosing
Choose electric vehicle reason_fuel tax/ 0192 0.394 0 1 ETWVs_fuel tax/license tax Thuy and Hong [7]

license tax exemption

exempt
0: otherwise
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TaBLE 6: Continued.
Explanatory variable Average Star}dgrd Min  Max Value setting References
mean  deviation
1: reason for choosing
Reasons for choosing electric ETWVs_those with good
vehicle_good operating efficiency operating efficiency (horsepower,
(horsepower, speed, driving distance, 0.079 0.270 0 1 extreme speed, driving distance, Thuy and Hong [7]
etc.) etc.)
0: otherwise
It is my duty to take practical actions L ‘stronglyd.dlsagre.e
and buy ETWVs to protect the 2: partly disagree;
. L 3.775 1.068 1 5 3: neutral Thuy and Hong [7]
environment and limit greenhouse gas
o 4: partly agree
emissions
5: strongly agree
S g 7
I loF)k forward to trying/using ETWVs 3534 1.007 1 5 3. neutral and Hong [71;
again Eccarius and Lu
4: partly agree [10]
5: strongly agree
1: strongly disagree
. . . 2: partly disagree Thuy and Hong
L;Elnl:otigizcuézznig lr;e of ETWVs, it 3.044 0.940 1 5 3: neutral [7]; Eccarius and
P & 4: partly agree Lu [10]
5: strongly agree
1: strongly disagree
The government cash subsidy policy is 2: partly disagree Eccarius and Lu
. 3.421 1.046 1 5 3: neutral
very attractive for me to buy ETWVs (10]
4: partly agree
5: strongly agree
o Gy nd g
I thlpk using ETWYVs can improve the 3.441 0.927 1 5 3: neutral [71; Huang [71;
quality of going out Eccarius and Lu
4: partly agree [10]
5: strongly agree
The acceptable price of ETWV 19172 82434 0  10s2¢ Aot the actual filled-in value —
for setting
High household income (greater than 0: those who do not belong to this
the sample average US$2835/ group
month) + male + agreed to spend more  0.114 0.318 0 1 —
money on ETWVs for environmental 1: those who belong to this group
protection
High household income (greater than 0: those who do not belong to this
the sample average US$2835/ group
month) + male + agree that electric car ~ 0.062 0.241 0 1 —
is the first choice to buy a car in the 1: those who belong to this group
future
TaBLE 7: Estimation results of MXL model.
Alternative Variable Coefficient Star}dgrd lbr [PilZ] PD.F
deviation St.Er. >z]  function
. I will choose ETWYV if I want to buy a vehicle (in
Random variable the future) (ETWV-I1) 1.91 0.43 4.40 0.00 Normal
Fuel vehicle 100 cc (SC-I) — — — — — —
Constant 3.11 0.34 9.11 0.00 Fixed
. Age -0.19 0.07 =292 0.00 Fixed
Fuel vehicle 125 cc (SC-IT) Gender 0.61 0.23 268 001  Fixed
Vehicle variable cost -0.89 0.26 -343 0.00  Fixed
Constant 0.42 0.40 1.05 030  Fixed
Fuel vehicle 150 cc (MT) Age —-0.31 0.08 -3.74  0.00 Fixed
Gender 2.87 0.32 892  0.00  Fixed
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TaBLE 7: Continued.

Alternative Variable Coeflicient Star.ldgrd b/ 1Pl PD.F
deviation St.Er. >z]  function
Constant -4.43 0.67 -6.60 0.00 Fixed
Use vehicle only_lnconvenilent to take public Z1.05 043 245 001 Fixed
Regular lightweight electric Main reason, hi flr?rlll(s)lt))(i)llir':at::él convenience for
vehicle (ETWV-I) > g vl ~0.96 0.31 -3.09 000 Fixed
other activities
I will choose ETWYV if I want to buy a vehicle (in 163 017 063 000  Fixed
the future)
Constant -10.24 3.19 -3.21  0.00 Fixed
. . Gender 0.87 0.40 2.20 0.03 Fixed
é?;/’\/y\;i- 1;87 electric vehicle Personal income 0.31 0.17 1.84 0.07 Fixed
Acceptable price of ETWV 0.21 0.10 1.99  0.05  Fixed
I look forward to trying/reusing ETWV 0.50 0.29 1.73  0.08  Fixed
Standard deviation of I will choose ETWYV if I want to buy a vehicle (in
parameter allocation the future) (ETWV-II) 0.75 0.34 218 0.03 -
LL (0) —1231.091
LL (B) ~980.531
p? 0.204
TasLE 8: Elasticity analysis of socioeconomic and vehicle use characteristics.
. Fuel vehicle ETWV
Variable . .
100cc SC-I 125¢c SC-II.  150cc MT  Lightweight ETWV-I  Heavy duty ETWV-II
Age (SC-II) 0313 -0.358 0.313 0313 0.204
Age (MT) 0.215 0.215 ~0.852 0.215 0.140
Gender (SC-II) ~0.135 0.205 ~0.135 ~0.135 ~0.089
Gender (MT) ~0.576 ~0.576 1.006 -0.576 -0.383
Gender (ETWV-II) ~0.051 ~0.051 -0.051 ~0.051 0.269
Personal monthly income (ETWV-II) -0.083 -0.083 -0.083 —-0.083 0.399
Variable cost (SC-II) 0.299 -0.376 0.299 0.299 0.199
Acceptable price of ETWV (ETWV-II) -0.128 -0.128 —0.128 -0.128 0.579
TaBLE 9: Elasticity analysis of the policy promotion strategy.
Fuel vehicle ETWV
Variable Lightweight Heavy duty
100cc SC-I  125¢c SC-II 150 cc MT ETWV-I ETWV-II
Use only vehicles_people with inconvenience due to public
transportation (ETWV-I) 0.019 0.019 0.019 0.175 0.006
Use only vehicles_high mobility and convenience for other
activities (ETWV-I) 0.062 0.062 0.062 —-0.485 0.021
If T want to buy a motorcycle now (in the future), I will choose an
electric vehicle (ETWV-I) -0.883 —0.883 —0.883 4.218 -0.284
I'look forward to trying/using the electric vehicle again (ETWV-II) -0.211 -0.211 -0.211 -0.211 0.881
If T want to buy a motorcycle now (in the future), I will choose an ~0.834 0834 —0.834 0834 3.686

electric vehicle (ETWV-II)

ETWVs will tend to choose ETWV-I and ETWV-IL
Moreover, the higher the price of ETWV, the more likely
college students are to choose ETWV-IIL. Finally, those
expecting to try/reuse ETWVs tend to buy ETWV-IL. The
main advantage of using MXL model is that random pa-
rameters can be tested, and the unobservable heterogeneity
of individuals can be further explained by setting random
parameters. The coefficient of “if you want to buy vehicles in
the future, you tend to choose heavy duty ETWVs” has

normal distribution and is statistically significant, which
shows that college students’ purchase of heavy duty ETWVs
will be influenced by the heterogeneity of college students’
tendency to buy ETWVs in the future.

5.3. Elasticity Analysis. Further elasticity analysis was car-
ried out for socioeconomic, vehicle use characteristics, at-
titude tendency, and incentive policy, which are all
explained, as follows:
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(1) Socioeconomic and vehicle use characteristics:

Table 8 shows the percentage of change in the
probability of each option when the value of each
variable changes by 1% (or 1 unit). The analysis
results show that, when the age of college students is
higher, they are less inclined to buy SC-II and MT,
and the purchase probability of other vehicle types
will increase by 0.14%~0.313%. Males tend to buy
SC-II, MT, and ETWV-II, while the purchase
probability of other vehicle types will decrease by
0.089%~0.576%. If the monthly income of individ-
uals is higher, they will be more inclined to buy
ETWV-II, and the purchase probability of other
vehicle types will decrease by 0.083%. If the variable
costs of vehicles are higher, they are less inclined to
buy SC-II, but the purchase probability of other
vehicles will increase by 0.199%~0.299%. Finally,
people who are willing to pay higher amounts for
ETWVs tend to buy ETWV-II, but the purchase
probability of other types will decrease by 0.128%.

(2) Analysis of attitude tendency:

Table 9 shows the percentage change in the
probability of each option when the value of each
variable changes by 1% (or 1 unit). The analysis
results show that, if you belong to the group that
uses vehicles due to the inconvenience of public
transportation, you will be less inclined to buy
ETWV-I, and the purchase probability of other
vehicle types will increase by 0.006%~0.019%. By
the same token, if you belong to the group that uses
vehicles due to its high mobility and convenience
to engage in other activities, you will be more
inclined not to buy ETWV-I, and the purchase
probability of other vehicles will increase by
0.021%~0.062%. If members of this group want to
buy a vehicle in the future, they will choose the
group of ETWVs and be more inclined to buy
ETWYV-I and ETWV-II vehicles, but the purchase
probability of other vehicle types will be reduced
by 0.284%~0.883%. In addition, the ETWV-II is
more likely to be purchased in the category of
“looking forward to try/reuse ETWVs,” but the
purchase probability of other vehicles will be re-
duced by 0.211%.

6. Conclusions and Suggestions

At present, the ETWVs available in the current market
cannot effectively attract consumers who are buying ETWVs
for the first time, which may lead to a sales window due to
high selling price, insufficient establishment of related
equipment (charging or maintenance), and limited experi-
ence/trust in ETWVs. Therefore, in this study, the potential
groups (college students) of buying ETWVs in the future
were investigated by questionnaire, and their choice pref-
erences were explored, in order to know whether the po-
tential consumers or ethnic groups have different
dependence and usage requirements for ETWVs, as
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compared with fuel-driven vehicles. According to the
abovementioned research and analysis, the results are
summarized as follows.

6.1. Conclusions

(1) According to the results of MXL estimation, the
factors that influence the choice of the fuel vehicle
scheme include “age,” “gender,” and “variable costs
of vehicles.” The factors that influence the choice of
the ETWV vehicle scheme include “gender,” “per-
sonal income,” “acceptable price of ETWV,” “If I
want to buy a vehicle now (in the future), I will
choose an electric vehicle,” and “I look forward to
trying/using an electric vehicle.”

(2) In addition, the coefficient of the random parameter
“If I want to buy a vehicle now (in the future), I will
choose an electric vehicle (ETWV-II)” in the MXL is
normal distributed and significant, which shows that
college students hope to have different choices for
ETWVs through vehicle purchase schemes in the
future.

(3) Moreover, college students who choose the fuel vehicle
scheme can be divided into three ethnic groups: male,
younger, and those who prefer heavy duty fuel vehicles;
for those who choose the ETWYV vehicle scheme, there
are four groups: male, college students with higher
personal disposable income, willing to pay a higher
amount for ETWV, and expecting or trying to use it.

(4) The results of elasticity analysis show that the
probability of ETWV purchase (including ETWV-I
and ETWV-II) will increase under specific groups;
for example, groups with socioeconomic or usage
characteristics, such as males, those with higher
personal income, and those who are willing to pay a
higher price for a ETWYV, will have a higher prob-
ability of a ETWV purchase by 0.199%~0.579%.

(5) According to the results of attitude tendency analysis
of elastic analysis, the groups with higher purchase
probability of a ETWV (including ETWV-I and
ETWV-II) can be subdivided into two categories:
those who belong to the category “I expect to try/use
ETWVs again” and those who belong to the category
“I will choose ETWVs if I want to buy vehicles now
(in the future),” both of which have higher purchase
probabilities of ETWV by 0.881%~4.2182%.

(6) Practically speaking, the carbon emission of FTWVs
is 0.055 kg/km which is twofold of the one of ETWVs
which is 0.0265kg/km [19]. According to the data
shown in MOTC [2], the average of total distance
traveled by TWs per year is around 3000 km. There
are 1.2 million college students in 2020, which ac-
counts for 5% of Taiwan population [3]. If we as-
sume, ideally, at least 80% of the college students use
ETWYVs, the environment will benefit from the re-
duction of emissions by at least 82,000 tons of carbon
emission per year.
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ETWYV promotions according to different stages; for
example, ETWV equipment, power, and matching
monthly fee schemes can be differentiated to meet

6.2. Suggestions. The following suggestions are summarized
according to the above conclusions:

(1) Develop marketing strategies for different age

groups:

The younger group of college students have a higher
probability of buying ETWV-I and ETWV-II by
0.140%~0.313%, respectively, and this phenomenon
shows that age has an impact on the purchase
probability of ETWVs. In the future, efforts should
be made to promote test drives of ETWVs. When
introducing related activities or marketing strategies,
it is suggested to subdivide the age groups of college
students; for example, high school graduates,
freshmen, and sophomores can be introduced to
market lightweight ETWVs as short-distance com-
muting modes around campus, which will enable
college freshmen to become familiar with the driving
mode first. At the same time, their first vehicle can be
purchased at a lower price, which is conducive to the
promotion and use of ETWVs.

For junior to graduate students, as they are familiar
with the various places around campus (e.g., res-
taurants and famous shops) and have a wider range
of activities, as compared with freshmen and
sophomores, heavy duty ETWVs can be marketed
for college students of this age group. The endurance,
power, and price of heavy duty ETWVs are larger
than those of lightweight ETWVs, thus college
students can travel locally, commute, and even travel
around the island, which will improve the purchase
probability of heavy duty ETWVs.

(2) Gender-oriented promotion strategies:

According to the premise of choosing the ETWV
scheme, male college students are more willing to
buy ETWVs, which shows that some usage char-
acteristics of ETW Vs can attract male groups, thus it
is suggested that the promotion of ETWVs can be
designed to attract the younger male group of college
students to improve their purchase intention. For
example, Gogoro 2 Rumbler was designed to attract
male users by using favorable color matte coating
(silver and black) and 12-inch multifunctional tires
which can accommodate different terrain. On the
other hand, since the preference rate of ETWVs for
female users is lower, more actions are applied to
promote ETWVs by the industries. For example, the
weight of vehicle, the angle of handles, the height of
chair, and the space of storage were adjusted
according to the figure of female users.

(3) Plan to promote vehicles to different groups:

According to the results of this study, the higher the
personal income of college students, the higher the
probability of choosing ETWV. This phenomenon
shows that the family economic status or personal
disposable income should be relatively abundant.
Therefore, it is suggested to design and plan different

the use needs of college students at different income
levels. Moreover, exclusive monthly fee schemes or
vehicle purchase schemes can be designed for college
students, meaning students with different statuses
can be provided with different purchase preferential
schemes to improve their ETWV purchase intention.

(4) Different warranty and rate schemes:

In the factor of variable costs, when the variable costs
of a vehicle are higher, the probability of buying
ETWYV will increase by about 0.199%~0.299%. This
phenomenon shows that, when the variable costs of
traditional fuel vehicles are too high, the disposable
income of college students will decrease, thus re-
ducing the variable costs of ETWVs can attract
college students to purchase. Specific practices can be
matched with different warranty schemes under the
combination of different rate schemes; for example,
the basic scheme is designed for basic usage (fixed
mileage in a single month), the “no regular return to
the factory maintenance scheme”, medium usage
(such as 300-600 km mileage in a single month) with
the “regular back-to-factory maintenance scheme,”
or high usage (600-1000km mileage in a single
month) with the “regular back-to-factory mainte-
nance and limited warranty scheme.” Thus, com-
binations of different warranties and rate schemes
can increase the purchase probability of ETWVs.

(5) Strengthen the use experience and experience

feedback of experienced and new users:

Regarding the groups that are willing to pay higher
prices for ETWVs, their concepts and perceptions of
ETWVs are supportive and positive, thus it is sug-
gested that freshmen can be targeted in follow-up
promotion strategies. New ETWV usage experience
or “ETWV Experience Meeting of Special Groups”
can be held among students who are about to be-
come graduate students (for example, when a
manufacturer’s new mobile phone is published, in-
vitations will be sent to experienced members or new
members to experience the functions of the new
mobile phone through invitation, which achieves
good use experience and promotes purchase), thus
these two groups were selected. Regarding freshmen
who are willing to pay a higher amount for ETWVs,
the use experience and experience feedback of their
first vehicle will often affect the type selection of
replacement vehicles in the future, thus, if effective
marketing and experience can be carried out for such
groups, the willingness to buy ETWVs should be
enhanced; regarding college students who are about
to become graduate students, meaning the change
from university stage to academic research stage, as
they are familiar with the surrounding environment
and the service life of vehicles is limited, if we can
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match the strategies mentioned in points 1 to 4 above
to promote different combination schemes, we can
also effectively improve the willingness to buy
ETWVs for students who are willing to pay higher
prices.

In addition, for the groups of “I look forward to
trying/using ETWVs again,” “If I want to buy a
vehicle now (in the future), I will choose ETWVs,” “I
have a good impression of ETWVs,” and “I tend to
use ETWVs,” the development of different promo-
tion strategies can be coordinated with the above-
mentioned similar “ETWV Experience Meeting of
Special Groups (that is, ETWV club activities or-
ganized by manufacturers),” meaning user groups
who have used or owned ETWVs in the past can be
targeted. While those who have used (or held)
ETWVs in the past have good experience in using
ETWYV, they may not be familiar with the new
models, new rate schemes, and accessory combi-
nations, thus such features can be used to promote
new models to increase the purchase intention of
ETWVs.

(6) Reinforce the gap of public transportation by
ETWVs:

For the group of “only use vehicles due to the in-
convenience of public transportation,” as public
transportation is underdeveloped in some areas, this
group will tend to use vehicles. However, as un-
derdeveloped public transportation is often located
in remote or sparse areas in peripheral business
districts, lightweight ETW Vs are not preferred to be
purchased and used. In this regard, private transport
modes that feature mobility, endurance, and a good
warranty are favored by college students, such as
100 cc fuel-driven vehicles, heavy duty 150 cc vehi-
cles, or even heavy duty ETWV-IL. Therefore, at this
stage, public bike sharing (PBS) is often adopted for
“the last mile” in Taiwan. In addition to PBS,
E-scooter sharing (ESS) services have been deployed
for short- and medium-range (3~6 km) connections,
but the ETWV models are mainly ETWV-I models.
If ETWV-II or above can be introduced in the future
to provide a faster driving experience to reach the
destination, it should effectively improve the will-
ingness of college students to use or purchase heavy
duty ETWVs.

(7) The sample target was the college student who was
riding FTWVs at the time of survey conducted.

The questionnaire asked, which alternative they would
choose if they were going to replace the old one
(FTWV)? Five alternatives including 3 types of
FTWVs and 2 types of ETWVs were presented. As
such, the ownership of TWVs remains the same,
except the emissions are reduced. Meanwhile, pro-
moting programs should keep on for all of the groups.
In this way, a synergy of public transit, shared mo-
bility, and EVs will be more effective.
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This study aims to identify the travelers’ adoption behavior towards electric vehicles (EVs) using the theoretical background of the
Norm Activation Model (NAM) theory. A questionnaire was designed and conducted in Lahore, Pakistan. A total of 402 usable
samples were obtained. The collected data were analyzed using factor analysis and Structural Equation Modeling methods. The
factor analysis confirmed the hypothesis of the statements designed according to the NAM theory, that is, awareness of con-
sequences (AC), ascription of responsibility (AR), and personal norm (PN). Other factor analyses resulted in the following reliable
factors: social and economic values (SEV), personal preferences (PP), willingness to buy (Buy), and willingness to use (Use) of an
EV. The results of SEM revealed that the AC, AR, and SEV are significant predictors of PN, whereas the PN and PP are also positive
predictors of travelers’ willingness to buy and use. The young travelers (<30 years), motorcycle users, employees, and trip distance
(>10 km) have significant and positive correlations with the PN. The car ownership status of travelers has a positive correlation
with the ownership and usage of EVs. Suitable behavioral intervention techniques were derived to promote the ownership and

usage of EVs in the context of developing regions.

1. Introduction

In recent decades, environmental pollution has been con-
sidered as one of the main causes of global warming, air
pollution, and climate change. At the moment, the world is
going through some of the most urgent issues such as energy
scarcity, emissions of Greenhouse Gases (GHGs), and air
pollution [1]. The transport sector is a major contributor of
carbon dioxide (CO,), which emits around 23% of its total
emissions [2] and is among the main reasons behind global
warming. In this pretext, electric vehicles (EVs) are one of
the potential alternatives which can substantially reduce the
amount of CO, emission, provided that the electricity is
produced through renewable energy sources [3]. However,
from the economic viewpoint, a major reason which

impedes the adoption of electric vehicles as compared with
conventional vehicles is their acquisition costs and limited
range of driving due to insufficient battery technologies
[4, 5]. The inclusion of electric vehicles and the reduction of
emissions related to national vehicle fleets were studied by
comparing different scenarios using traffic simulation in
several countries [6, 7]. According to McKinsey’s EV index,
which assesses the readiness of nations for the adoption of
EVs, Japan, the United States, France, Germany, and China
are standing in descending order. The automotive industries
are buckling up to lower the operation costs of EVs and
reduction of CO, emissions [8].

Pakistan is facing some severe environmental challenges
including air contamination, water pollution, and deterio-
rated quality of air due to smog in major cities, which are
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largely due to unplanned growth and reliance on nonre-
newable energy sources [9]. The growth in the industrial and
transport sector has been on the rise in recent years because
of the increased population. In road transportation, the
share of EVs is relatively negligible as compared with
conventional vehicles, which are the main causes of CO,
emissions. It has been estimated that the amount of CO, will
increase from 858 kg/year to 1650 kg/year by the end of 2030
[10, 11]. Moreover, transport sector is among the three
largest sources of CO, emissions in Pakistan [11].

The local and central governments are under great stress
to alleviate these environmental problems through policy
interventions and mitigate the ecological damage on an
urgent basis. In this context, the adoption and promotion of
electric vehicles are promising efforts to substantially mit-
igate the emissions of CO, especially when electricity is
produced through renewable energy sources [12]. In com-
parison with the conventional vehicles, EVs have many
advantages in terms of social, economic, societal, and en-
vironmental aspects such as reduction of carbon emissions,
improvement of energy security, and promotion of the usage
of renewable and clean energy alternatives [13]. Many
governments around the world are initiating different in-
centive programs for the uptake of electric vehicles. The US
has implemented the federal tax credit of 7500 dollars,
exemption from sales tax, and reduction in the license fee for
the adoption of EVs. This initiative was meant to popularize
the adoption of EVs and minimize the impacts of higher
selling prices [14]. Similarly, the Japanese government has
introduced a free charging policy to encourage the usage and
adoption of EVs [15]. The Ministry of Science and Tech-
nology of Pakistan is keenly interested in the promotion of
EVs to mitigate environmental pollution and energy
problems in the country. The government of Pakistan is
considering incentives and subsidies to encourage people to
adopt EVs [12].

Governments around the globe are serious to address
environmental concerns through sustainable transport
policies including promoting the share of EVs in the market.
The understanding of customers’ behavior towards the
purchase and usage of EVs will provide a clear insight into
how these issues can be battled to save environmental
degradation [16]. Several studies explored the areas of EV
adoption and purchase intentions [4, 13, 17-24]. These
studies reported that purchase price and travel ranges are the
predictors of EV purchase. It is found that the spread of
electric vehicles is closely linked to the spread of recharging
areas, which allow a widespread diffusion of these transport
systems [25]. In addition, the introduction of electric car-
sharing in cities can be an ideal solution for people to test
electric cars on the road and to highlight their convenience
and advantages over vehicles with combustion engines. It is,
therefore, an opportunity to educate people about electric
mobility and to get them used to EVs before they buy them
[26]. Electric car-sharing is also the most efficient solution
for cities as it combines car-sharing with zero-emission
technology, with positive effects on both traffic congestion,
thanks to the reduction of cars on the road, and the envi-
ronment, thanks to zero-emission traffic [27, 28]. The
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integration of demand response transport (DRT) with
electric vehicles can provide significant environmental,
economic, and social benefits; however, it presents chal-
lenging planning issues due to EV charging constraints
[29-31].

Given the shortcomings in the literature, especially in a
developing country like Pakistan, this study attempts to
explore the travelers’ EVs purchase and usage intentions
through the application of the Norm Activation Model
(NAM) theory. This may assist the researchers in identifying
the driving factors for the adoption of EVs in developing
countries with similar socioeconomic and infrastructural
characteristics. Furthermore, it proposes a framework for
the encouragement and adoption of green mobility imple-
mentation. A comprehensive questionnaire was designed in
this study, which was conducted in Lahore city. The factors
affecting the travelers’ willingness to buy and use an EV were
identified using factor analysis and Structural Equation
Modeling techniques.

The rest of the paper is organized as follows: in Section 2,
relevant literature studies are mentioned, and Section 3
describes the data collection and organization of the
questionnaire survey. Section 4 discusses the research results
and main findings of this research study. Finally, Section 5
summarizes the main findings and proposes some policy
interventions for the promotion of EV adoption in Pakistan.

2. Literature Review

Mainly, researchers have adopted two streams of research to
explore the customers’ behavior for the adoption of EVs. The
first stream includes the role of instrumental attributes of
EVs which play a significant role in the adoption of EVs. For
example, the purchase price, performance, driving range,
and recharging time have a significant impact on the pur-
chasing intentions of the customers [32]. In this strand of
research, usually, three sets of factors are considered as
predictors for the adoption of EV's: consumer characteristics,
technological factors, and contextual factors [33]. Consumer
characteristics include the roles of gender, age, income,
education levels, and social status as predictors for the
adoption of EVs [34, 35]. In the technological factors, battery
performance, driving range, and charging time are con-
sidered as predictors for the adoption of EVs [36]. The
contextual factors involve the use of different policy inter-
ventions, fuel prices, and the availability of infrastructure as
a guiding tool for the prediction of customers’ behaviors
[37, 38]. In addition, travelers who drive more especially for
longer distances are more likely to prefer EVs [39].
However, the second stream includes the pro-
environmental and economic perspectives to determine the
purchasing behavior of the customers. Some studies have
reported that environmental concerns and environmental
attributes have a significant impact on the purchasing and
adoption behavior of EVs in the customers [40, 41]. Simi-
larly, a study discussed many advantages and disadvantages
of EVs and explored the environmental concerns as a
measure for the purchase intentions of the customers [42].
They measure the environmental concern in the sense that
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“owning an EV will indicate care for the environment.”
Reference [43] also focused on the intentions of buying EV's
and measured the environmental risk of conventional
gasoline vehicles as well. Junquera et al. considered the
purchase price (economic perspective) and its range for the
measurement of customers’ intentions to buy EVs but ig-
nored the environmental dimensions [44]. Researchers
explored the differentiated approach in the purchasing of
high and low EVs and explored the generic perspective about
the environment; for example, “it is important to drive a car
that harms the environment as little as possible” [45]. Hence,
they did not explore the EV-specific environmental per-
formance in their study and no comparison was made be-
tween price and range concerning the economic point of
view. However, a study explored the environmental concern,
which was defined as “the degree to which people are aware
of problems regarding the environment and support the
effort to solve them or indicate the willingness to contribute
personally to the solution” [40]. Again, they followed the
generic approach concerning the environmental dimension
and did not investigate the economic standing and envi-
ronmental performance of EVs on customers’ purchasing
intention. Due to the environmentally friendly nature of
EVs, the adoption behavior of customers involves self-in-
terest and altruism. In addition, Perceived Customer Ef-
fectiveness (PCE), which is an estimate of the contribution of
a customer in solving the problem, also plays an important
role in solving proenvironmental behaviors [19, 46]. The
customers who believe that they can contribute their part to
proenvironmental behavior would utilize their conscious-
ness as a guiding tool for their behaviors. In addition, re-
searchers also focused on optimizing the charging
infrastructure to further reduce the emissions and subse-
quently fulfill the needs of the users [47, 48].

The NAM theory was developed by Schwartz to explain
the prosocial and environmentally friendly behavior of the
customers [49]. The NAM theory has been used by many
researchers to explore the proenvironmental behavior of
consumers in different dimensions such as reducing car use
[50], recycling [51], and energy-saving behaviors [52]. The
NAM contains three primary variables, namely, personal
norms (PN), awareness of consequences (AC), and ascrip-
tion of responsibility (AR). PN represents the moral obli-
gation to perform or refrain from specific actions. It plays a
vital role in the NAM and is used to predict altruist (pro-
social) behavior. AC represents the awareness about the
negative consequences of nonaltruistic behavior and AR
represents the feelings of responsibility for the negative
consequences arising as a result of nonaltruistic behavior.

Several researchers have used NAM theory and its ex-
tensions to model the proenvironmental behavior of trav-
elers to adopt electric vehicles. Researchers employed an
extended NAM model to explain the relationship between
personal norms and the intentions to adopt electric vehicles
[53]. They reported a significant influence of personal norms
(PN) on the intentions to adopt EV's, which was moderated
by external costs. In addition, AC, AR, and perceived
consumer effectiveness were found to have a positive in-
fluence on PN. Other existing studies also show that PNs are

positively related to prosocial behavior such as intentions to
adopt alternative fuel vehicles [54-56]. However, it is be-
lieved that many times customers fail to act in a pro-
environmental behavior because of the costs involved, that
is, monetary costs and behavioral costs [57]. Though cus-
tomers agree and approve the environmental benefit of EVs,
still they are reluctant to act because of the incurred higher
costs of purchasing (economic concerns), driving range, and
availability of charging infrastructure [18]. A summary of
relevant literature concerning the scope of this study is
presented in Table 1.

As mentioned above, many of the previous research
studies have explored and investigated different dimensions
of EVs ranging from price range to economic and envi-
ronmental concerns regarding the purchase intentions of
customers. However, none of the previous studies explored
the adoption behavior of customers regarding EVs in the
contexts of prosocial and proenvironmental behaviors in
Pakistan. In this research study, NAM theory is applied to
study the altruistic behavior of customers for the adoption of
EVs from prosocial and proenvironmental behaviors in
Pakistan. Some of the external factors of socioeconomic
characteristics of the customers are introduced in the model
to study how they influence and affect the adoption of EVs.
Overall, the contribution of this research study in the body of
the existing literature is twofold. Firstly, it explores the
determinants of purchase and usage intentions of EV cus-
tomers using NAM theory in a developing country, that is,
Pakistan. Secondly, the social, economic, and environmental
concerns are added as moderators within the relationship of
NAM theory factors and EVs purchase and usage intentions.
This proposition might answer researchers who advocated
that the incorporation of the knowledge (about the envi-
ronment, social costs, and EVs) into holistic multivariate
modeling can effectively help in predicting the intentions of
customers about their purchase and usage intentions [19].

3. Research Methods

3.1. Characteristics of the Study Area. This research study was
conducted in Lahore city, which is the second biggest city in
Pakistan and the capital of the most populated province of
the country. According to an estimation, the population of
Lahore city is more than 11 million [70]. In recent years, the
city has expanded exponentially because of the increased
economic, educational, healthcare, and recreational op-
portunities in the city. This city is surrounded by the in-
dustrial sector, which is a main source of employment in the
region, thus attracting many of the inhabitants to settle in the
city for better living opportunities. This increased pop-
ulation has created an influx which accelerated the need for
traveling in the city. However, the public transport system of
the city is not adequate to meet this demand, which has led
to a rapid increase in private car ownership in the recent
years. This increased private vehicle ownership mostly
consists of conventional vehicles with a negligible share of
EVs in the city. The emissions from these conventional
vehicles have greatly worsened the air quality and the city is
facing severe smog issues in the winters and burning heat
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TABLE 1: A summary of relevant literature.

Authors

Country

Summary of important results

(i) Hybrid EV/plug-in hybrid EV/EV owners were significantly more receptive to change and

Nordlund et al. [58] Sweden  less conservative and manifested more self-efficacy and problem awareness, as well as a higher
moral obligation, compared to the owners of CVs and alternative fuel vehicles.

. . (ii) Perceived value, attitude, the AR, AC, PN, subjective norm (SN), and perceived consumer
Asadi et al. [59] Malaysia effectiveness influenced the Ei]s purchase intentions.p

(iii) EV customers are more apprehensive about cruising power and availability of charging
. stations.
Dong et al. [60] China (iv) In addition, perceived behavioral control (PBC), PN, SN, and feelings and emotions
influence the intentions of urban households to purchase EVs.

. (v) Education and age were found to have positive effects on EVs ownership.
Westin et al. [61] Sweden (vi) In addition, PN was fouid to be the most impoIr)tant factor affecting the ownershri)p of EV.
Cui et al. [62] China (vii) The results found the environmental concern (EC) to be the most significant driver of the

’ motivation to buy EVs.
Wahl et al. [63] Germany (viii) The respondents’ anticipated effort, PN, expected performance, and facility conditions
’ significantly affect EVs adoption intentions.
Bockarjovaand Steg, [43]  Netherlands (ix) Customers were especially more likely to embrace EVs when perceived negative outcomes
’ of CVs were more serious and when EVs were expected to reduce these consequences.
(x) Perceived value, responsive efficacy, willingness to pay, and trust in EV had significant and
Ng et al. [64] Hong Kong pgsitive effect o}rll the in%entionsptoypurchase EVs. ’
Xu et al. [65] China (xi) EV driving experience directly as well as indirectly influences the intentions to adopt EVs.
. (xii) Attitude, SN, moral norm, PBC, and EC have a positive relation with the EVs adoption
Shalender and Sharma [66] India intentions.
Chu et al. [67] Korea (xiii) Patient people and people with higher caErV usage are more probable to be early adopters of
s.
Higueras-Castillo et al. [68] Spain (xvi) Driving range, reliability, and incentives are the most reliable drivers of the intentions to
’ purchase EVs.
Bobeth and Kastner [69] Germany (xv) Personal norm appeared to be an important predictor of EVs adoption intentions.

waves in the summer season each year, which is getting
intense each passing year. As EVs are potential alternatives
for reducing emissions of GHGs and CO,, there is a great
need to explore the purchase intentions of customers to-
wards EVs in the city. This is one of the compelling reasons
which motivated the objectives of this study and that is why
this study is selected to extract some of the predictors of
willingness to buy and willingness to use EVs in the city. It is
high time to look for the potentials of EVs in Lahore city
keeping in view the deteriorated environmental quality.

3.2. Questionnaire Design. A comprehensive questionnaire
was designed to achieve the aforementioned objectives. The
respondent’s socioeconomic demographics (SEDs) were in
the first part of the questionnaire. These SEDs included
gender, age, marital status, income, profession, education,
car ownership, and travel mode and trip frequency with the
same mode, trip cost, and trip distance of the daily one-way
trip. The second part of the questionnaire consisted of
several statements that were designed based on the variables
of the NAM theory and personal preferences and perceived
social and economic values in traveling. The variables of AC,
AR, and PN were measured using two statements each. The
AC variable was measured seeking the travelers’ awareness
related to the deterioration of the urban environment due to
excessive use of gasoline or diesel vehicles and waste of
natural resources such as oil or gas. The AR variable mea-
sures the travelers’ sense of responsibility regarding con-
sumption of natural resources and environmental pollution

due to the use of gasoline or diesel vehicles. The PN variable
assesses the travelers’ moral obligations for the betterment of
the urban environment and society and to preserve natural
resources. Some statements were constructed to know the
travelers” perceived social and economic values in traveling
and personal preferences. It was assumed that social and
economic values and personal preferences in traveling may
have a significant influence on people’s PN, willingness to
buy, and using an EV. Three statements were designed to get
responses on travelers’ willingness to use EVs. The will-
ingness to use an EV was asked considering the scenario of
preservation of natural resources, reduction of air pollution,
and availability of cheap electricity. Four statements were
designed for willingness to buy an EV. The presented sce-
narios for willingness to buy included cheaper than gasoline/
diesel cars, maintenance and battery costs less than gasoline/
diesel cars, proper information on mileage, and long life of
batteries. All the statements of the second part were eval-
uated using a five-point Likert scale for level of agreement,
that is, strongly disagree (1), disagree (2), neutral (3), agree
(4), and strongly agree (5). This scale was chosen considering
the reliability of the data and the easiness and understanding
of the respondents in reporting the responses to each
statement.

3.3. Surveying and Sampling Methods. This survey was
conducted with the target population in Lahore city. The
target respondents included the current car users and non-
car-users who have the potential to own an electric vehicle in
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the future. The users of various modes belonging to different
economic groups were included in the target sample. A
convenience-based random sampling strategy was adopted
in this survey. The target respondents were selected ran-
domly at each selected location in the study area. The se-
lected locations included some commercial activity centers,
government and private educational institutions, and official
buildings, where it was easy to get the required respondents.
The required sample size was decided considering the re-
quirements of Structural Equation Modeling (SEM). A
sample size of 200 is required to minimize the bias in the
results [71, 72]. Suggestions also included a ratio of 10
observations or samples per indicator [73], and the sample
size should be at least 10 times the number of free pa-
rameters in the model [74, 75]. In this study, a sample size of
around 400 was decided based on the mentioned recom-
mendations. This survey was conducted with the help of
university students. The students were trained and
instructed regarding the contents of the questionnaire and
survey techniques. All efforts were exerted to ensure the
reliability of the collected data for the extraction of exact
responses. A total of 402 useable samples were collected
within three weeks.

3.4. Data Modeling Specifications. The collected data were
analyzed using factor analysis and SEM methods. The SEM is
a multivariate statistical analysis tool used to construct the
correlations between the explanatory and objective variables.
Initially, factor analysis was performed to confirm the
correlations of observed variables with their corresponding
factors or latent variables according to the NAM theory. This
factor analysis was conducted using Maximum Likelihood
(ML) and Varimax rotation. Second-order factor analysis
was conducted to identify the factors of travelers’ willingness
to buy and use EVs. Third-order factor analysis identified the
factors concerning perceived social and economic values and
personal preferences in traveling. The reliability of the
factors and internal consistency among respondents in the
evaluation were examined with the help of factors’ Cron-
bach’s alpha values. Cronbach’s value of more than 0.7
shows an acceptable level of reliability and a value of above
0.5 shows a moderate level of reliability [76, 77]. The results
of factor analyses were combined to develop a structural
model. This structural model was developed using SPSS
Amos software. This software takes a confirmatory approach
to construct the measurement equations and structural
equations. Again, the ML method was used to develop this
comprehensive structural model. The measurement models
determine the correlations between observed variables and
latent variables (factors). Measurement models are com-
bined to identify significant structural equations between
latent variables. In this study, observed variables of travelers’
personal and trip characteristics were identified and in-
cluded in the model to assess their impact on PN and
willingness to buy and use EV. These variables were coded
on a binary scale, that is, 1 or 0. The reliability of the
structural model was determined and checked by comparing
the values of the ratio of chi-square to the degree of freedom

(CMIN/DEF), the goodness of fit index (GFI), adjusted
goodness of fit index (AGFI), comparative fit index (CFI),
and root mean square error of approximation (RMSEA). The
recommended value of CMIN/DF is 2-5; GFI, AGFI, and
CFI should be greater than 0.9; and RMSEA needs to be less
than 0.08 [72, 78, 79].

3.5. Research Hypothesis. Figure 1 presents the framework of
the research hypothesis of this study. It was hypothesized
that people’s awareness about the consequences and sense of
responsibility for the negative outcomes of their travel be-
havior influences the development of personal norms. The
AC and AR are correlated with each other. The PN has a
direct influence on people’s willingness to buy and use the
electric vehicle and it may also play the role of a mediator to
explain the influence of AC, AR, and other defined variables
of social and economic values and personal preferences on
willingness to buy and use the EVs. It was hypothesized that
perceived social and economic values and traveler’s personal
preferences in traveling may also have significant direct
effects on travelers’ willingness to buy and use the EVs, and
willingness to buy may directly influence the users’ inten-
tions to use the EV. This study also assumed that the per-
sonal and travel characteristics of travelers may have a
significant direct correlation with the PN and indirect in-
fluence on willingness to buy and use the EVs through the
PN as a mediator.

4. Data Analysis and Results

4.1. Descriptive Statistics of the Respondents. The descriptive
statistics show that the share of male and single respondents
is more in the sample (Table 2). The share of the female
working population is quite less in Lahore, resulting in their
low share in the model split of Lahore, which justifies the low
share of female respondents in the sample. The share of
young respondents is high as around 65% of them are below
the age of 30 years. The young people also make a high
proportion of the overall population of Lahore city, so it is
believed that this age distribution of the sample is consistent
with the population. Students have a major share in the
sample followed by employees. Most of the respondents fall
into the low-income category, which is due to the presence
of students in a large proportion in the sample. Around
45.27% of the respondents own one or more than one car.
The model split shows that motorcycle, private car, and
public transport modes have shares of 28.61%, 33.83%, and
12.94%, respectively. More than 70% of the respondents
have a trip frequency of 5-6 days a week or higher. The trip
length distribution is also presented in Table 2.

4.2. Factor Analysis and Average Responses. A factor analysis
was conducted on collected responses regarding PN, AC,
and AR variables of the NAM theory. This factor analysis
confirms the association of observed variables with their
corresponding latent variables, that is, AC, AR, and PN, as
shown in Table 3. Average responses of each indicator are
also presented in Table 3. The estimated values of Cronbach’s
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FIGURE 1: Framework of research hypothesis (AC: awareness of consequences, AR: ascription of responsibility, and PN: personal norm).

TaBLE 2: Descriptive statistics of the respondents’ SEDs.

Characteristics

Distribution (%)

Gender
Marital status
Age (years)
Education
Profession

Income

Car ownership
Car driving license

Usual travel mode

Trip frequency per week
Trip distance (km)

Male (85.6), female (14.4)
Single (66.9), married (33.1)
Below 20 (30.8), 21-30 (35.8), 31-40 (16.2), 41-50 (11.2), above 50 (6)
High school or below (21.4), higher secondary/diploma (25.1), bachelor (38.3), master’s or higher (15.2)
Students (38.3), employees (28.4), business (12.9), others (20.4)
<20,000 (43.8), 21,000-30,000 (10.2), 31,000-40,000 (8.2), 41,000-60,000 (11.7), 61,000-80,000 (8.2), >81,000

(17.9)

None (54.7), 1 (35.57), 2 (7.5), more than 2 (2.2)
Yes (37.3), no (62.7)
Walk/bicycle (9.9), private car (33.8), motorcycle (28.6), auto rickshaw/taxi (8.5), campus/office transport (6.2),
public transport (12.9)
Almost every day (57.9), 5-6 days (16.7), 3-4 days (15.2), 1-2 days (4.7), a few times a month (5.5)
< 10km (52.4), > 10km (47.6)

TaBLE 3: Rotated factor loadings of the NAM variables.

. Factor

Observed variables Mean
PN AR AC

I feel morally responsible for the betterment of the urban environment and society (PN-1) 4.025 0.793
I feel a moral responsibility to preserve natural resources such as oil and gas (PN-2) 4.094 0.669
I feel joint responsibility for the consumption of natural resources such as oil and gas (AR-1) 3.985 0.946
I feel equal responsibility for the degradation of the environment due to an increase in traffic (AR-2) 4.014 0.495
Excessive use of gasoline/diesel cars deteriorates (destroys) the urban quality of life and environment
(AC-1) 3.992 0.875
Car usage causes a shortage of scarce (rare) natural resources, for example, oil and gas (AC-2) 4.025 0.494

Percentage of variance explained
Cronbach’s alpha

21.678 20.561
0.737  0.715

17.512
0.673

alpha are more than 0.7 for PN and AR variables, whereas
the value for the AC variable is near 0.7. The percentages of
variance explained by PN, AR, and AC are 21.678, 20.561,
and 17.512, respectively. These values show an acceptable
level of reliability of these variables and internal consistency
among respondents in the evaluation. The variable PN shows
that the respondents placed high beliefs on their moral
obligations for the betterment of the urban environment and
society, as well as preservation of natural resources. The

factor of AR depicts travelers’ mutual sense of respon-
sibility for the consumption of resources and degradation
of the environment due to increased traffic demand. Also,
the travelers have a good sense of awareness concerning
negative outcomes of their behavior such as deterioration
of urban quality of life and environment due to air pol-
lution and reduction of natural resources due to use in
transportation. It is believed that the travelers’ sense of
awareness and responsibility and moral obligations would
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have a significant influence on their intentions to buy and
use an EV.

Second-order factor analysis was conducted on re-
spondents’ responses concerning their willingness to use EV
(Use) and willingness to buy EV (Buy). Cronbach’s alpha
values were estimated for both factors as presented in
Table 4. The calculated alpha values are more than 0.7, which
predicts an acceptable level of reliability of the factors and
internal consistency among respondents in the evaluation of
the observed variables. Most of the respondents are willing
to use EVs for the preservation of natural resources, to
reduce air pollution, and for the availability of cheap elec-
tricity. The results of the factor willingness to buy show that
the targeted groups of travelers have high willingness to buy
an EV provided that they have better awareness about the
mileage of EVs, low initial and maintenance costs than oil/
diesel cars, and batteries with long life. The results of factor
analysis predicted positive attitudes, norms, and intentions
of travelers towards the use and ownership. The percentages
of variance explained by both factors are 24.977 and 22.810,
respectively.

A third-order factor analysis was conducted on per-
ceived social, economic, and personal aspects of traveling.
This exploratory factor analysis resulted in two factors, that
is, personal preferences (PP) and social and economic values
(SEV). The estimated Cronbach’s alpha values are more than
0.5, which shows a moderate level of reliability of the
extracted factors. The PP factor depicts travelers’ priorities in
vehicle ownership and use of electric vehicles within a city as
it is easy to charge the vehicle. The first observed variable in
the PP factor has more influence in explaining the factor as it
has high factor loading. In the SEV factor, the observed
variable of “I prefer to drive a fuel-economical vehicle” has
more impact on the SEV factor as it has a very high factor
loading. It also shows that there are travelers who feel so-
cially responsible to save the environment. The percentages
of variance explained by PP and SEV are 21.282 and 21.082,
respectively, as described in Table 5.

4.3. Structural Equation Modeling (SEM). A structural model
was developed using the results of factor analysis. This model
tested the stated hypothesis of Figure 1. Observed variables
of travelers’ socioeconomic demographics (SED) variables
were defined as binary variables and tested for possible
significant structural relationships with variables of PN,
willingness to buy, and willingness to use EV. Various
variables were defined and tested but here only significant
variables are presented and discussed. These variables in-
cluded profession (1 if travelers are employees and 0 oth-
erwise), age (1 if age is less or equal to 30 years and 0
otherwise), travel mode (1 if the mode is a motorcycle and 0
otherwise), car ownership (1 if owning one or more cars and
0 otherwise), income (1 if income is between 21,000 and
60,000 and 0 otherwise), and trip distance (1 if the distance is
more than 10km and 0 otherwise).

The results of measurement and structural equations are
presented in Figure 2. The rectangles and ellipses or circles in
Figure 3 define the observed variables and latent variables,

respectively. This structural model shows that all the mea-
surement equations are positive and significant at a 1% or
5% level of significance. The AC and AR latent variables have
a positive and significant association which depicts that the
respondents who have awareness about negative outcomes
also possess a sense of responsibility for the outcomes of
their behavior. The structural coefficients of AC and AR with
PN are positive and significant at a specific significance level.
The significance and prediction power of these relationships
are consistent with previous studies explaining sustainable
travel behavior [51, 54, 56, 80]. These significant equations
show that the travelers who have a sense of awareness and
responsibility about negative outcomes of their behavior also
felt a moral obligation to preserve the natural resources and
for the betterment of the urban environment and society.
The SEV variable has a positive and significant structural
coefficient with the PN which predicts that the travelers who
put high beliefs on social and economic values in traveling
felt morally obliged to protect the environment and society
and to preserve the natural resources. The young travelers
(<30 years), civil and private employees, trip distance
(>10km), and motorcycle users have positive structural
relationships with the PN, whereas travelers with an income
level of 21,000-60,000 PKR have a negative coeflicient with
the PN. Other researchers have also shown the significance
of age, income, and profession in EV adoption behavior
[34, 35]. These results show that the employees, young
travelers, motorcycle users, and travelers with a trip distance
of more than 10 km have high moral obligations, whereas the
travelers who fall in mentioned income range have low
moral obligations. The AC, AR, and SEV along with age,
income, travel mode, profession, and trip distance variable
explain almost 48% of the variance in the PN. The SEV and
PP variables are positively related to each and significant at a
10% level of significance. It is shown that the travelers’
perceived economic and social value influences their pri-
orities in traveling and vice versa.

The structural equations of PN and PP with the will-
ingness to buy and use an EV are significant and positive,
which depicts that the development of prosocial norms
among travelers and individual’s priorities in traveling
significantly influence the potential of EV ownership and
usage. These results are in agreement with a significant role
of problem awareness and personal norms in travelers’
willingness to adopt sustainable transport policies
[51, 56, 81]. The respondents who are employees and own a
car also developed positive correlations with the willingness
to buy an EV, and the variable of car ownership is also
significant with willingness to use an EV. It means present
car owners, and civil and private employees have a high
propensity to own an EV in the future. The PN, PP, em-
ployees, and car ownership variables explain almost 67% of
the variance in willingness to buy. Similarly, the variables of
PN, PP, and car ownership collectively explain almost 32%
of the variance in willingness to use. The PN variable also
explains the role of the mediator to explain the indirect
influence of AC, AR, and SEV on travelers” willingness to
buy and use an EV. The PP variable is also a mediator
between SEV and willingness to buy and use. The values of
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TaBLE 4: Rotated factor loadings of willingness to buy and use EV.

Factors
Observed variables Mean Willingness to use EV Willingness to buy EV
(Use) (Buy)
i S;r;_\lz\;llhng to use an electric vehicle for the preservation of natural resources 3.880 0.868
I am willing to use an electric vehicle to reduce air pollution in the city (Use-2) 3.972 0.758
I am willing to use an electric vehicle considering the availability of cheap
.. 4.037 0.534
electricity (Use-3)
I would buy an electric vehicle if I have more information about the mileage with
. . 4.082 0.776
one-time charging (Buy-1)
I would buy an electric vehicle if the initial purchase cost is less than petrol or
. . 4.164 0.588
diesel vehicles (Buy-2)
I would like to buy an electric vehicle if the maintenance and battery costs are less
K 4.206 0.542
than petrol or diesel cars (Buy-3)
I would like to buy an electric vehicle if the charging batteries have a long life 4278 0.437
(Buy-4)
Percentage of variance explained 24.977 22.810
Cronbach’s alpha 0.786 0.702
TaBLE 5: Rotated factor loadings of extracted factors.
Factor
Observed variables Mean  Personal preferences Social and economic values
(PP) (SEV)
IA like to have a car with a small engine capacity (e.g., below 1000 liters = 1.0 3.120 0.780
liters) (PP-1)
Having an electric vehicle is a status symbol for me (PP-2) 3.381 0.445
I would prefer to use an electric vehicle only within a city as it is easy to get
. 3.955 0.371
charge of it (PP-3)
I prefer to drive a fuel-economical vehicle (SEV-1) 4.281 0.939
I consider it as my social responsibility to save the environment (SEV-2) 4.527 0.383
Percentage of variance explained 21.282 21.082
Cronbach’s alpha 0.515 0.508

the goodness of fit parameters fall within the recommended
limits or near to the limits; for example, CMIN/DF lies in the
range of 2-5, GFI and AGFI are more than 0.8, and RMSEA
is less than 0.08. These values show that this structural model
has an acceptable level of reliability in explaining the
travelers’ potential to own and use an EV under the
framework of NAM theory. Table 6 shows the significance of
the defined hypothesis. The significant hypotheses are
mentioned as supported and insignificant hypotheses are
stated as not supported. The hypotheses between PP and PN,
between SEV and willingness to buy, and between SEV and
willingness to use were not supported by the collected data.
Only significant hypotheses of defined variables SEDs with
PN, willingness to buy, and willingness to use are presented.

5. Discussion and Policy Implications

With the rapid increase in the population and inadequate
public transport systems, Pakistan is becoming more de-
pendent on conventional (gasoline) vehicles which jeopar-
dize environmental sustainability, especially in urban areas.
During the last few years, smog has severely hit the major
cities in the winter, which is compelling the governments to
close educational institutes and summer leads to severe heat

waves which are causing many deaths each season [10].
Therefore, it is a national priority to improve the transport
sectors which include the diversification of fuel towards
sustainable and renewable energy resources. For road
transportation, EVs are one of the very efficient energy
alternatives to conventional vehicles. The respondents of this
study manifested a positive attitude towards the adoption of
EVs owing to their prosocial and proenvironmental be-
havior; a conceptual framework of derived EV behavioral
intervention techniques is shown in Figure 3. This frame-
work shows that the travelers’ sense of awareness and re-
sponsibility about the negative outcomes of their behavior is
essential to develop prosocial personal norms among them.
It implicates that better awareness of travelers about envi-
ronmental problems caused by conventional vehicles
emissions and preservation of natural resources can play a
predictive role in improving moral obligations for the
betterment of the urban environment and society. The sense
of social and economic values in traveling also has significant
correlation with the travelers’ moral obligations to protect
the environment and save natural resources. The presence of
these social norms and values and sense of responsibility
among travelers can be handy in the promotion of envi-
ronmentally friendly vehicles such as EVs. For this purpose,
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FIGURE 2: Structural model of travelers’ willingness to buy and use an electric vehicle (AC: awareness of consequences, AR: ascription of
responsibility, PN: personal norm, SEV: social and economic value, PP: personal preferences, CMIN/DF: chi-square/degree of freedom, CFI:
comparative fit index, GFI: goodness of fit index, AGFI: adjusted goodness of fit index, and RMSEA: root mean square error of

approximation).

[ Development stage ]

Create a sense of awareness
about negative outcomes of
gasoline/diesel vehicles
through education and
awareness campaigns

Create a sense of
responsibility about negative
outcomes of gasoline/diesel
vehicles through education
and awareness campaigns

Activation stage

Promotion stage

Increase in EV
ownership with better
awareness, sense of
responsibility, moral
obligations and
perceived social,
environmental and
economic benefits

Increase in EV usage
with better awareness,
sense of
responsibility, moral
obligations and

Target
Activate pro- groups
social personal (Car
norms among owners,
target segments young
of travel market travelers,
for the motorcycle |
betterment of users, "
society and employees,
environment travelers
and preservation with trip
of natural distance
resources more than
10 km)

Develop a sense of social
and economic values about
EV benefits through
awareness programs

Integration of personal
—>

perceived social,
environmental and
economic benefits

?

priorities with anticipate
electric vehicle benefits

FIGURE 3: A conceptual framework of behavioral interventions to promote the EVs.

it is required to initiate appropriate awareness and education
programs to highlight the benefits of EVs and disadvantages
of gasoline/diesel vehicles among travelers. There is also a
need to activate the sense of responsibility among travelers
through education, seminars, and awareness as it will help to
save the environment and natural resources and to enhance
the purchase behavior of customers [82]. Once the travelers
have better awareness about the economic and social benefits

of EV, they would prefer to shift to sustainable vehicle
technologies to protect the urban environment and society
from severe air pollution resulting from the transportation
sector. This favorable attitude of an individual towards
environmental issues is more likely to be a compelling
reason to purchase EV. The activation of person norms and
integration of personal priorities with EV benefits would
help in promoting EV ownership and usage for the target
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TaBLE 6: Results of hypothesis significance.
Hypothesis Hypothesis description Decision
H1 AC e AR Supported
H2 AC — PN Supported
H3 AR — PN Supported
H4 SEV — PN Supported
H5 PP — PN Not supported
H6 SEV — PP Supported
H7 PN — willingness to buy EV Supported
HS8 SEV — willingness to buy EV Not supported
H9 PP — willingness to buy EV Supported
HI10 PN — willingness to use EV Supported
HI11 SEV — willingness to use EV Not supported
Hi12 PP — willingness to use EV Supported
H13 Willingness to buy — EV willingness to use EV Not supported
H14 Motorcycle users, young travelers, employees, trip distance Supported (only significant
a . . — PN .
>10km, middle income equations are reported)
Hi4b Own a car, employees Willingness to buy SupporFed (only significant
EV equations are reported)
1 Supported
H14c Own a car Wllhngrgis to use (only signiﬁczlzlt equations are
reported)

groups of the travel market as shown in Figure 3. The
identified target groups of the travel market would possess
the required potential to purchase and use an EV consid-
ering associated prosocial, environmental, and economic
benefits [34]. The selection of appropriate target groups is
very important for crafting energy and transport policies and
for the inclusion of EV policies as a success. The main target
groups can be present car owners and motorcycle users, civil
and private employees, and young travelers who have the
potential to own a car in the future. Also, there is a need to
provide required economic and infrastructure incentives on
EVs ownership and usage. These incentives include sub-
sidies, cheap electricity, low registration taxes, tradable
permit schemes, and the availability of charging stations
[83, 84]. Therefore, it is required to develop a system to
provide necessary information about spatial coverage of
charging stations as it will help to attract potential buyers
and users of EV's [12]. Awareness of travelers about available
economic, social, and accessibility incentives is an important
policy to enhance the adoption behavior of the masses. For
this purpose, awareness campaigns through electronic, print,
and social media can be initiated to create awareness about
the benefits of EVs. The sense of awareness and responsi-
bility and activation of moral obligations would help in
promoting EV ownership and usage. In this regard, the
government and other social organizations should join
forces and work in close collaboration to create awareness
and improve the understanding of the potential customers
about how conventional vehicles are the main contributing
factor towards deteriorated air quality in the main cities. The
change in the adoption behavior of travelers will help in
alleviating the environmental problems in Lahore city and
other developing regions. It is believed that there would be
an increase in the purchasing and adoption behavior of EV's
if these policy measures are implemented with utmost effort.
The government should encourage private auto market to

launch EVs in the country by providing special subsidies and
reducing taxes. The government’s financial incentive pro-
grams for the auto industry and its users would help in
developing green transport infrastructure in the country.
The private companies should initiate the installation of
charging stations along major highways and at other key
points to facilitate the potential users of EVs. It is required to
deploy special marketing strategies to educate the travelers
regarding availability of cheap EV and associated benefits
and facilities such as location of charging stations. A proper
contribution from the private sector is important in pro-
moting the use of EVs in developing countries. However,
proper financial and administrative support from the gov-
ernment is also vital in this regard. Electric mobility can be
integrated with ridesharing and DRT to reduce the envi-
ronmental impacts of transportation infrastructure. Special
economic incentives to the riders of EVs in combination
with car-sharing and DRT can help to shape the cities’
transport sustainably.

6. Conclusion

This study identified behavioral interventions for the
promotion of EVs using the results of a questionnaire
survey. The framework of the NAM theory was extended
including personal and travel characteristics, as well as
perceived economic and social values and personal pri-
orities in traveling. The factor analysis confirmed the
correlations of questionnaire statements with AC, AR,
and PN according to the NAM theory. The other extracted
factors also have an acceptable level of reliability in
explaining the EV adoption behavior. The AC, AR, and
SEV factors are significant and positive predictors of the
PN. The PN and PP factors are strong predictors of
travelers’ willingness to buy and use an EV. The young
travelers, motorcycle users, employees, and trip distance
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are positively related to their moral obligations, whereas
the income group (21,000-60,000 PKR) has a negative
correlation with the PN. The PN variable also plays a role
of a mediator to explain the influences of AC, AR, and SEV
variables on willingness to buy and use EVs. The travelers’
willingness to buy and willingness to use EVs are posi-
tively influenced by their present car ownership status.

The findings implicate that the development of a sense
of awareness and responsibility about the negative out-
come of their behavior would help in activating the
prosocial norms among travelers for the betterment of the
urban environment and society and preservation of nat-
ural resources. Similarly, travelers’ awareness regarding
economic, social, and environmental benefits associated
with the use of EVs would help to develop positive per-
sonal norms among travelers. The current car owners,
young travelers, current motorcycle users, and employees
can be target groups of the travel market for this pro-
motion. The availability of charging stations, cheap elec-
tricity, and economic incentives from the government in
terms of tax relaxation and subsidies would be handy pull
measures to alter the adoption behavior. On a broader
scale, this study aims to contribute to the efforts of the
government in maintaining a more sustainable transport
infrastructure in Lahore city, where energy and transport
policies are needed to be urgently integrated and special
efforts are required to understand the motivations of the
customers to understand their purchasing behaviors to-
wards EVs.

The sample of this study mainly comprised young
people and students, which may cause bias in the extracted
findings and policy implications. Future studies should
focus on large samples consisting of adequate represen-
tation of different groups of the travel market. Also, the
policies derived from stated preferences studies may be
biased as the actual intentions of the travelers may differ
once the relevant policy is implemented. Therefore, fur-
ther studies are required after the implementation of the
EV policy to examine the actual preferences of travelers.
Those studies should also evaluate the influence of
charging stations accessibility, electricity price, and spa-
tial coverage of charging stations, as well as mileage with
one-time charge of electric batteries on traveler’s will-
ingness to use the EVs. Despite limitations, the findings of
this study would provide useful insight into significant
behavioral interventions to promote the EVs and reduce
the environmental issues.
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