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A typical way to predict the remaining useful life (RUL) of bearings is to predict certain health indicators (HIs) according to the
historical HI series and forecast the end of life (EOL). -e autoregressive neural network (ARNN) is an early idea to combine the
artificial neural network (ANN) and the autoregressive (AR) model for forecasting, but the model is limited to linear terms. To
overcome the limitation, this paper proposes an improved autoregressive integrated moving average with the recurrent process
(ARIMA-R) method.-e proposedmethod addsmoving average (MA) components to the framework of ARNN, adding the long-
range dependence and nonlinear factors. To deal with the recursive characteristics of the MA term, a process of MA component
estimating is constructed based on the expectation-maximummethod. In the concrete realization of the method, the rotation tree
(RTF) is introduced in place of ANN to improve the prediction performance.-e experiment on FEMTO datasets reveals that the
proposed ARIMA-R method outperforms the ARNN method in terms of predictive performance evaluation indicators.

1. Introduction

Bearings are critical parts of most rotating machines. -ey
carry the resolves of shafts, but also bear the largest pressure.
44% of failure of some rotating machines are due to the
malfunction of bearings, which cause force focusing on other
fragile parts and then lead to systematic failure [1–4]. A
difficulty in the maintenance is that the replacement of
bearings needs disassembly of all related parts and requires
planned maintenance based on their health condition. -e
necessity of prediction of the degradation process, therefore,
arises that if the degradation can be predicted somehow,
maintenance can be arranged to examine the least parts and
repair most potential faults. -erefore, the estimation of the
time before failure, that is, the remaining useful life (RUL) of
bearings, is an important part of rotating machines’ prog-
nostics and health management (PHM) [5–7].

In the prediction of RUL, because of the nonlinearity and
condense noise mixed within, certain forms of health in-
dicators (HIs) are proposed to simplify the prediction. HIs
are generally quantities that can be calculated according to

life data, and they are designed to be more predictable than
RULs and keep consistency with RULs. -at is, the time HIs
reach a given threshold corresponds to the time RULs are
depleted, and the end of life (EoL) of the measuring
equipment is met [8].

Although the end of life (EoL) of the equipment can be
judged by the failure criterion, the service life itself is not a
physical quantity that can be directly observed. It needs to be
achieved through indirect methods (i.e., the state observa-
tion signal is processed to obtain indicators that reflect the
degradation state and then the health indicators (HIs) are
used to determine the EoL location with HI degradation
trend prediction).

Generally, degradation prediction methods of bearings
can be classified as physical model-based and data-driven-
based approaches. Physical model-based approaches de-
scribe the whole system with a comprehensive mathematical
model, indicating the characteristics and failure patterns of
the system, especially the occurrence and growth of cracks,
and the modes and energy of vibration [9–11]. Alternatively,
data-driven methods dynamically build a model for the
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observed machine based on the signals acquired, with a
certain prior knowledge that usually comes from previous
data collected. Compared with the model-driven methods,
the digital model based on the data-driven monitoring
method is not accurate, but from the perspective of feasi-
bility, the observation data required by these methods are
easy to be obtained, are more versatile, and can provide
satisfactory prediction requirements [12–17].

It is a very popular path to build a hybrid model
combining the ML-based models with time series analysis
(TSA) [18–20]. Methods based on TSA deem the degra-
dation of the equipment like a process continuous in time.
-e autoregressive (AR) model and its successive models are
widely used time series models in prognostics. In this family
of models, the past signal is linearly mapped to the current
signal, and the current signal is the linear polynomial
summing up the historical signals and other random factors.
-emoving average (MA)models are combined with the AR
model to introduce long-range dependence missed from the
AR model, which becomes the ARMA model [21]. Derived
from this combination, the differential process is further
added to it, giving rise to the autoregressive integrated
moving average (ARIMA). Researchers solve forecasting
tasks with all types of ARIMAmodels since the time they are
invented [22–24]. -e long-range dependence expressed in
the MA terms of these models is critical in the prognostics of
bearings [25]. In addition, Qiu et al. [26] compared the
methods of predicting HIs and suggested that an ARMA
model achieves well balances in computing complexity and
performance.

Nevertheless, the traditional ARMA model solving
procedure needs to repeatedly fit a variety of AR and ARMA
models of different orders, which are lengthy and difficult for
large data. So, it is appealing to combine ARIMA with ANN
to simplify the solving. Autoregressive neural network
(ARNN) is an early combination of ML and TSA [27]. -e
ARNNmodel directly uses historical observation data as the
input of the neural network to solve the next observation,
but different from the original model, the outputs are not
necessarily obtained by a linear combination of inputs. It
mends AR with nonlinear trait and black box solving of
parameters and confines the input features of ANN to re-
duce overfit and difficulties on training. Because of the
nonlinear trait of ARNN, it is also called nonlinear autor-
egressive neural network (NARNN) [28–31].

ARNN is based on the AR model, so the long-term
coefficients described by the MA part of the ARMA model
will be neglected. As [25] suggests, such leakages will lead to
inaccurate prediction of HIs. Because ARMA describes more
complicated models and the ARIMA is more universal than
ARMA, it is natural to expect that a machine learning
method combines with the ARMA or ARIMA model.

-e main obstacle of such a combination of machine
learning algorithms and the ARMA or ARIMAmodel is that
the MA parts are basically the error terms between real and
predicted observation, so it refers to the model result, which
is still unknown when solving the model. -us, the family of
ARMAmodels is hard to be modeled by the ANN and other
similar ML structures [32–34]. In the application of time

series models to HI or RUL prediction, researchers mainly
combine the ARMA family and ML methods as two inde-
pendent parts, such as combining ARMA and SVM [35] and
particle filter (PF) [23]. Even the ARNN has been used for
such simply combination [36], or adding complexity from
exogenous input to it [37]. In this type of combination,
parameters and outputs of ARMA models are calculated by
the traditional method and the outputs are added to pre-
dictions of other models to obtain the final result.

-e contribution of this work lies in the following two
aspects: first, this paper proposes an ARIMA-R method as
the implementation framework of approximating the
ARIMA model with ML, which is realized with the moving
average approximation by recurrent means. Second, a test in
series generated from an ARIMA model is carried out to
examine the proposed ARIMA-R method, and the result
shows that the method can estimate the next observation in
such series with high accuracy.

-e rest of this paper is organized as follows: Section 3
describes the ARIMA model and proposes the ARIMA-R
method on its basis; Section 4 expresses the verification on
the ability of the ARIMA-R model in describing generated
ARIMA series and then uses the method to estimate bearing
HIs through the public FEMTO dataset, with analysis of the
parameter settings of the method; Section 5 concludes the
whole study.

2. Methodology

2.1. ARIMAandARNN. -e ARIMA model originates from
the AR model and MA model [21]. -ese models belong to
the same type, depicting the autocorrelation of series data,
which is the correlation between the data and its “lagged”
copy. If autocorrelation exists, those data of the past will
influence the future in some ways, usually described by
functional relationships. Autocorrelation is common in
times series analysis since most time series data reflects the
inherited causality of the observation subject.

Assuming the autocorrelation in series is linear, the AR
model and MAmodel can be obtained. In the AR model, the
result is related to its previous observation and expressed by
the linear combination of historical observations. Different
from the ARmodel, the output in theMAmodel is explained
by the errors of historical predictions. -e prediction errors,
implying the relationship between output and its trend or
expectation, include accumulative historical effects and
long-range dependency, as well as the influences of random
history.

-e combination of AR model and MA model is the
ARMA model, while its improvement by applying differ-
encing to both inputs and outputs results in the ARIMA
model. -e ARMA model includes short-term autore-
gressive and long-term moving average, which can better
describe time series. However, ARMA inherits the strict
requirements of the AR and MA models for the sequence to
ensure the existence of autocorrelation.-e sequence subject
to the ARMA model is required to have weak stationarity,
that is, zero mean and constant variance.-e ARIMAmodel
weakens this requirement by introducing the difference of
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the sequence. It only needs the sequence to have differencing
stationarity; in other words, it can become a stationary
sequence after a finite number of differences.

For convenience, we denote the lag operator L with
Ldxt � xt− d. -en, given a time series observation
X � x1, x2, . . . , xt, the ARIMA model describes the series as

yt � (1 − L)
d
xt 1 − ϕ1L − · · · − ϕpL

p
􏼐 􏼑,

yt � c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑εt,
(1)

where c is the base value of X; εs � 􏽢ys − ys is the historical
prediction error (assumed to be white noise when s � t); p is
the order of AR terms (1 − ϕ1L − · · · − ϕpLp)yt, q of MA
terms (1 + θ1L + · · · + θqLq)εt, and d of differencing orders;
ϕ and θ are the parameters of the AR and MA (q) model,
respectively. To emphasize the order parameters, the model
may be written as follows: ARIMA(p, d, q).

-is description takes the series as the d order sum of
linear combination by multiple predictors in terms of AR,
MA, and random noise. -e orders of AR, MA, and the
sum determine the specific form of ARIMA model, while
the parameters of each term are to be solved to provide the
prediction. With the variety of orders, the ARIMA model
can generate time series ranging from white noise and
random walk to complicated drift with the quadratic
trend.

-e simplicity of ARIMAmodel requires certain features
of the subject data. -e critical requirement is the auto-
correlation of the series, so the autocorrelation function
(ACF) and partial autocorrelation function (PACF) need to
be calculated from the data to determine which order of AR
and MA terms are available in the prediction.

A reliable procedure has been described by Box and
Jenkins [38] to build the ARIMA model, including the
following three steps: (1) model identification and deter-
mination of the orders p, d, and q, (2) parameter estimation
of AR and MA terms, and (3) prediction checking and
performance evaluation.

Proposed by [27], the ARNN attempts to use ML
methods to solve AR models. -e output variable (i.e.,
target) (p) can be expressed as follows:

􏽢yt � h c, yt− 1, . . . , yt− p􏼐 􏼑, (2)

where h(·) is the nonlinear transformation obtained by the
neural network.

Because the neural network can produce nonlinear
features by introducing activation functions with strong
nonlinear features, the application of activation functions
with weak nonlinear characteristic in ARNN can achieve an
effect that is almost equivalent to the AR model. However,
this method is not expanded to the ARMA model because
simply using the input data cannot directly obtain the
prediction error features.

2.2. Rotation Forest. Rotation forest is an ensemble ML
method, which integrates weak learners to gain accurate
results. It is originally proposed only for classification

purposes in [39], but the regression version was imple-
mented later in [40].

In the field of ML, ensemble methods mainly include
bagging (which is to train the classifiers with partial sample)
and boosting (which is used to chain the weak classifiers for
reinforcement). On the basis of bagging, the rotation forest
constructs different features by rotating the features in
feature space, thereby generating diversity on the classifiers.
Different from bagging, although bootstrapping is used in
the rotation forest method, instances are not discarded
during classification, and all information about features is
retained. -e procedure of rotation forest can be depicted as
follows.

Let X � [x1, x2, . . . , xN]T be a dataset with N instances,
where each xi instance includesm features inm-dimensional
feature space Fm, xi � [Fxii,1, Fxi,2, . . . , Fxi,m]T ∈ Fm.
-erefore, X is an N × m matrix. Let Y � [y1, y2, . . . , yN]T

be the regression target with respect to X.
Rotation forest generates l decision trees, D1, D2, Dl, to

form a rotation tree.
-e training set for an individual DT is processed with

the following steps:

Step 1: randomly divide the feature set F into k subset
F1, F2, . . . , Fk. Assume each subset contains
q�m/k features.

Step 2: for each subset Fj, let Xj be the training set with
only features in Fj and a bootstrap subset of Xj is
drawn and used to form a new training set
denoted by Xj

′.
Step 3: principal component analysis (PCA) is applied to

each Xj
′ and gives weight matrix Cj.

Step 4: all k matrices, C1 to Ck, is used to construct a
rotation matrix R in the form of diagonal block
matrix that C1 to Ck is put to the main diagonal
blocks, and set all other blocks to zero as shown in
equation (3).-e columns ofR, which are divided
from feature F, are then rearranged according to
F, denoted as R′.

R �

C1 0{ } . . . 0{ }

0{ } C2 . . . 0{ }

. . . . . . . . . . . .

0{ } 0{ } . . . Ck

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (3)

Step 5: the training set for a DT is given by T � XR′. DT
is then trained by T and Y.

All l trees estimate the regression target with yi. -e
average of all yi is taken as the output of the rotation tree as
in

􏽢y � 􏽘
i

􏽢
y

i
. (4)

For the entire training set Xt, randomly generate a subset
Fj of all features Ft for K times. For each subset Fj, the
features in the intersection of Fj and X are selected to create
the corresponding subset Xj. A random replacement
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sampling is performed in Xj to produce the bootstrap
sample Xj

′. With K bootstrap sample X′j, PCA is used on
X′j to obtain the component matrix Cj, and all Cj rearrange
internally to form a block diagonal matrix R as the rotation
matrix. A rotation regression tree D is trained based on the
sample X, Y and matrix R:

D � f: T⟶ Y � f: XR′ ⟶ Y. (5)

To further increase the number of ensemble samples,
repeat the above process L times to obtain L rotating trees
and then use all rotating trees to form a rotation forest. -e
average prediction of all trees is the output of the rotation
forest.

3. ARIMA-R

3.1. Flowchart and Basics of Proposed ARIMA-R.
Compared with the AR model, the solution of the ARIMA
model is more difficult and complicated. To determine the
three order parameters of p, d, and q, it is necessary to
enumerate different differential order d and search for the
proper combination of p and q. Given a tentative d, the
inputs and outputs are differenced to d order for successive
calculation.-e autocorrelation function (ACF) is calculated
with respect to all possible lags and then another tentative
middleware; the AR model is fit by the differential data for
the partial autocorrelation function (PACF) or directly
maximum likelihood estimation (MLE). -e tentative p and
q are determined by the result of ACF and PACF; then, the
still tentative ARIMA model is finally solved only for
evaluating the criterion such as Akaike information criterion
(AIC). After testing multiple combinations of parameters,
the order parameters are finally determined.

As shown in Figure 1, to simplify the solving of ARIMA
model, a framework called ARIMA-R is constructed based
on the ARNN method. -e framework takes series data as
input and provides its prediction as output.

Given a time series S and its observation X, where the
time series is discrete and X contains observations until time
t − 1, X � xt− 1, xt− 2, . . . , x1􏼈 􏼉, the prediction target is the
observation xt at time t. According to the ARIMA model,
given orders p, d, and q, the target xt can be expressed as
follows:

1 − ϕ1L − · · · − ϕpL
p

􏼐 􏼑(1 − L)
d
xt � c

+ 1 + θ1L + · · · + θqL
q

􏼐 􏼑εt,

ετ � (1 − L)
d
􏽢xτ − (1 − L)

d
xτ ,

(6)

where ϕ1,ϕ2, . . . ,ϕp are the coefficients of AR terms,
θ1, θ2, . . . , θq are the coefficients of MA terms, ετ is the
prediction error at time point τ, when τ � t, ετ meets the
Gaussian distribution, L is the lag operator, and c is the
constant. For convenience, assume yt � (1 − L)dxt as the
observation, and the prediction error can be written as
ετ � 􏽢yτ − yτ .

For calculation of ετ , we introduce the recurrent moving
average (RMA) terms (1 + θ1L + · · · + θqLq)ε(n)

t , where ε(n) �

􏽢y(n− 1) − y is the nth generation error of prediction and real
history.

For recurrent prediction, the model is depicted as
follows:

1 − ϕ1L − · · · − ϕpL
p

􏼐 􏼑􏽢y
(n)
t

� c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑ε(n)
t

� c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑􏽢y
(n− 1)

− 1 + θ1L + · · · + θqL
q

􏼐 􏼑y.

(7)

-e input term F
(n)
t of ARIMA-R can be described as

follows:

F
(n)
t � c, Lyt, L

2
yt, . . . , L

p
yt, ε

(n)
t , Lε(n)

t , . . . , L
qε(n)

t􏽮 􏽯. (8)

Using the rotation forest based on regression tree, the
prediction output of this generation can be given as follows:

􏽢Y
(n)

� 􏽢y
(n)
1 , 􏽢y

(n)
2 , . . . , 􏽢y

(n)
t where 􏽢y

(n)
t �

1
L

􏽘

L

i�1
Di F

(n)
t􏼐 􏼑, (9)

where L is the number of rotation trees (e.g., the magnitude
of ensemble) and Di is the single regression tree found by
rotation forest algorithm.

After each iteration, if the parameters of MA terms
converge or the maximum iteration generation R is reached,
the recursion ends. In the end, calculate xt from 􏽢Y

(n) re-
ferring to the reverse of yt � (1 − L)dxt. -e first prediction
􏽢y(0) needs to be estimated by other means. Considering that
the evolution of regression tree may fall into local maxima, a
more accurate estimate of y should be selected for the
preliminary prediction value. -e most universal way is to
set it as equal to the last historical data xt− 1, which can be
regarded as a coarse solution of AR(1) model. Given the
condition of stationary including zero-mean sequence, an
estimation of always 0 is also acceptable.

3.2. Order Determination in Proposed ARIMA-R. -e main
purpose of order determination is to estimate the polyno-
mial form when building the model. Too fewmodel variables
cannot give a model that can describe the data well; too
many variables are avoided in traditional modeling based on
the principle of reducing assumptions, but in ML because
the solution is approximate, too many feature variables are
likely to cause overfitting. In themethod, we choose to use an
integrated algorithm based on regression decision tree-ro-
tating tree algorithm to alleviate this problem when solving
the model.

-e regression tree algorithm uses features to divide the
output space, and it applies the information entropy to
divide the input feature space. If some features do not
produce meaningful division, the pruning algorithm will be
used to remove the judging branch of the feature. -is study
applies the bagging strategy to generate samples with diverse
characteristics through random sampling. A shallow weak
decision tree is generated for each sample, and the final
regression result is generated. Since the weak decision tree
naturally tends to be underfitting, plus that there are pruning
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algorithms to further reduce the decision branches, the
integrated decision tree algorithm can effectively alleviate
the overfitting problem caused by too many features.

3.3.DiscussionaboutMATerms. As shown in (1), it is easy to
see that the different process in the model only uses the
different observation data and the prediction error of the
different data as input and the difference of the prediction
result as the output. In other words, this process equally
affects historical data as input and prediction results as
output.-erefore, the actual problem to be predicted after d-
order differential process is the same in form as the ARMA
model. In this way, it is also possible to study the ARIMA
model in the same way as the ARMA model.

When trying to useMLmethods such as neural networks
to model the ARMA model, the MA term in the ARMA
model, that is, the random error term, is difficult to deal
with. -is term represents the error between the past pre-
dicted results and the actual results. Before modeling this
term, one must first obtain all the predicted outputs before
this input when training each input. -is also means that a
model for each data point needs to be trained step by step,
instead of training a model for all data at once. In addition,
in this case, there will be no consistency between models for
each sequential data point and it is possible that a model only
for this moment may be trained, and it has no predictive
ability for data in other time periods [18, 41].

According to the definition of the MA term, the MA
term is the error between the predicted result and the actual
result, so the ARMA model can be rewritten as follows:

1 − ϕ1L − · · · − ϕpL
p

􏼐 􏼑 + 1 + θ1L + · · · + θqL
q

􏼐 􏼑􏼐 􏼑yt

� c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑􏽢yt.
(10)

As shown in (10), there are p groups of parameters for
AR terms and q parameters for MA terms to be solved in the
building of themodel. It can be seen that the ARMAmodel is

actually a linear model about q items of historical prediction
results and h � max p, q􏼈 􏼉 items of historical observation
data. -e long-range dependence of the MA item is also
because if the historical observation term is expanded each
time the MA term is expanded, the previous h items of
historical data will be added to the model. -is also explains
why the MA term should not be directly assumed as a series
of uniformly distributed random variables. Although the
historical prediction 􏽢y is an estimate of historical data y, it is
generally assumed that the estimated error y − 􏽢y is a normal
distribution with a fixed variance of zero means, but in fact,
if the error is directly assumed to come from a zero-mean
normal distribution, or if it is assumed to be zero, it will lose
earlier observations and cause greater losses.

According to the above conclusions, the ARMA model
can be established and solved by ML methods. However, the
problem of how to calculate the predicted results before
giving the model parameters and solving the model is still to
be solved. Traditionally, the parameters are solved by cal-
culating their maximum likelihood estimation (MLE) or
least-squares estimation (LSE). However, considering that
what we really need is the single-step estimation of time
series prediction, it is also reasonable to calculate the result
by training an artificial neuron network (ANN) or other
regressors. However, in the ARNN model, MA term is
excluded, so there is no solution in ARNN implementation.

-is work introduces the idea of expectation maximi-
zation (EM) algorithm to carry out the iterative process [42].
-e EM algorithm can calculate the MLE when the pa-
rameters are incomplete. For the statistical model of the
observation data X and the unknown data Z, the parameter
Θ needs to be estimated. Each iteration of the EM algorithm
consists of the following two steps:

(1) Step E is to calculate the expected value of Z based on
the existingmodel dataX and the parameter th and use
the expected value to replace the true value of the
missing data and calculate theMLE of the parameter th

Original signal

History

Differencing signal

Prediction

Prediction of differencing signal

Prediction of original signal

First 
estimator

ARIMA-R feature 
AR RMA

Error

Store difference series for recovering signal

Rotation Forest

Rotated feature

Update prediction

Determine order by mean and ACF

Output when converged

Figure 1: Flowchart of ARIMA-R.
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(2) StepM is to use the MLE of the parameterΘ given in
Step E to find the parameter Θ when the MLE is
minimized

After each iteration, update the parameter Θ and check
whether it has converged. If it converges, the estimation is
ended. In the EMmethod, the missing data Z is the expected
value calculated based on other data, and the initial value of
the parameter Θ is a random value.

On the one hand, the data to be estimated in step E are
historical forecast data 􏽢y, and the expected value of 􏽢y is
consistent with the historical data y, which will cause theMA
item to always be zero. On the other hand, if the estimated
value of 􏽢y is related to earlier historical data, it will speed up
the convergence of the prediction model. In addition, if the
parameter values of the ARMA model are initialized ran-
domly, it is likely that the calculation result completely
deviates from the true value, leading to overfitting or falling
into local optimal problems. -erefore, the choice here is to
use an AR(1) model to predict y and use this prediction

result as the historical prediction data 􏽢y and then directly
solve the model parameters. Since the ARMA model de-
scribes a zero-mean sequence with stationarity, it is feasible
to use zero as the prediction result.

StepM is obtained by solving and optimizing theMLE in the
EM algorithm. In the method proposed here, the rotating forest
can be used directly to obtain the model parameters, so only the
model parameters need to be saved for the next iteration.

Only for single-step prediction, the proposed framework
is useful, while on the multiple-step prediction, there is a
limit to the ARIMA-R method. Since the ARIMA model is
modeling the next value of observation, such a model is not
fit to direct regression of future value. -e only method is to
predict the future step by step. In the calculation of pre-
diction, the future errors are assumed to be zero and the
future observations are replaced with the prediction before.
Such treatment means that, on prediction, an ARIMA
(p, d, q) model is degraded to an ARIMA (p, d, 0) model.
-is means that the proposed ARIMA-R model must

Input: X � x1, x2, . . . , xt− 1
(1) d⟵ 0
(2) repeat
(3) Y: (1 − L)dX

(4) Dd � Y

(5) Calculate ACF of y
(6) d⟵d + 1
(7) until E(y) − 0< eps and ACF converge \(⊳\) the limit eps depends on practical situation.
(8) First guess:
(9) for training and testing set do
(10) Calculate Y0 by Y0 � L1Y \(⊳\) other prediction methods also work.
(11) : end for
(12) : k� 1
(13) repeat
(14) for training and testing set do
(15) Calculate RMA
(16) e〈k〉 � y − y〈k − 1〉

(17) Construct feature
(18) F(k): F

(k)
t � yt− 1, . . . , yt− p, et− 1 . . . et− q􏽮 􏽯

(19) end for
(20) Train the Rotation Forest in training set
(21) for training set do
(22) y � D(k)(F(k))

(23) end for
(24) Calculate y〈k〉

(25) for training and testing set do
(26) y � D(k)(F(k))

(27) end for
(28) Calculate changes
(29) s � MSE(y(k), y(k))

(30) until k> kmax or s< eps

(31) Construct F<k>
(32) for j from 1 to k do
(33) Calculate e(k), F(k), y(k)

(34) end for
(35) xt � D(F(k)) + D1 + · · · + Dd− 1

Output: estimated output xt

ALGORITHM 1: ARIMA-R.
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similarly reduce to the ARIMA (p, d, 0) model. -erefore, it
turns out that, on multiple-step prediction of enough length,
the recursive order r should be 1 or 0. In such a situation, this
model is indiscriminate from the normal ARNN model.

3.4. Analysis of Computational Complexity. To analyse the
computational complexity of ARIMA-R, we adopt the big O
notation to describe the relation between operation quan-
tities and input sizes. A complexity O(p(N)) means that
when the input size N approaches infinite, the time of
operation is infinite with the same order as p(N).

For a signal series with length N, given orders p and q, our
method needs r times of iteration in which a rotation forest is
trained, where r is a small constant. Each time a rotation forest
is trained, L trees are calculated. Every rotation tree needs K

times of PCA and to train a decision tree based on the
rearranged PCA results. In this process, L and K are pre-
determined parameters. -erefore, the algorithm needs to
calculate K × L times of PCA and train L decision trees, in
addition to L times of extra matrix multiplication. Reference
[43] shows that the complexity of PCA with d-dimension
vectors isO(d2N + d3); reference [44] indicates that training a
balanced regression tree on d-dimension data requires
O(dN logN) times of multiplication. We also know that a
matrix multiplication between anm-by-nmatrix and an n-by-
pmatrix isO(mnp). Summing up the results, the complexity is

O (p + q)
2
N +(p + q)

3
+(p + q)N log N +(p + q)

2
N􏼐 􏼑,

(11)

which is rewritten as

O s
2
N + s

3
+ sN log N􏼐 􏼑 � O(N log N), (12)

where s � p + q is relatively small.
-en, we come to ARIMA. As indicated by [45], the

computational complexity of ARIMA itself is
O((N − p)p2 + (N − p)q2), which is better than the proposed
ARIMA-R with fixed p and q. Nonetheless, the computing
burden lies on the order determination part. Following the
Box–Jenkins method (if assume pmax and qmax), given fixed
differential parameter i, pmax _qmax times of searches are
necessary to determine the proper order parameters p and q for
ARIMA. For each parameter combination, ACF and PACF to
certain orders, such as pmax order, should be calculated to
obtain the AIC and determine parameters. Reference [46]
suggested that if we use the common Levinson–Durbin method
to solve ACF and PACF, the complexity of ACF is O(N2) and
that of PACF is O(q2N2). Because the total times of ACF and
PACF solving in the Box–Jenkins method are pmaxqmax, the
complexity in this part is O(pmaxqmaxq

2N2) � O(N2). In total,
the complexity of ARIMA is

O (N − p)p
2

+(N − p)q
2

+ pmaxqmaxq
2
N

2
􏼐 􏼑 � O N

2
􏼐 􏼑.

(13)

It is worth noting that the ACF and PACF solving is also
needed in ARIMA-R, while the total times are reduced to
pmax. With the common operations eliminated, traditional

ARIMA with the Levinson–Durbin method still needs
pmax(qmax − 1) times of searches, so the result keeps
unchanging.

-e above analysis suggests that the proposed ARIMA-R
algorithm reduced the computing burden in order deter-
mination, in the cost of complexity increasing in parameter
approximation. Overall, the computational complexity of
ARIMA-R is reduced.

4. Experimental Verification in
Prognostics of Bearings

-ree experiments are conducted to verify the ability of the
proposed ARIMA-R method: an experiment with simulated
data, a single-step forecast experiment based on bearing
remaining useful life datasets, and a long-term prediction
experiment.

To compare the prediction errors of ARNN and that of
ARIMA-R for each sample, four indicators, mean square
error (MSE), mean absolute error (MAE), coefficient of
determination (R2), and mean absolute percentage error
(MAPE), are introduced. Among the indicators, MSE,
MAE, and MAPE are better if they are closer to 0, which
means the prediction result is closer to the predicting
target. R2 indicates the proportion of the target that can be
explained by the prediction, so the value of R2 should close
to 1. Mathematical expressions of these indicators are
shown as

MSE �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
, (14)

MAE �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (15)

R
2

� 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − y( 􏼁

2

� 1 −
MSE
Var

,

(16)

MAPE �
|y − 􏽢y|

|y|

�
1
n

􏽘

n

i�1

yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|y|
.

(17)

4.1. Verification with Simulated Data. To verify the prog-
nostic capacity of the proposed ARIMA-R method, this
paper selects the following parameters to establish a curve
that meets the ARIMA model, as shown in Table 1.

Since the MA term actually uses random noise to replace
the unknown past data when generating the ARIMA curve
in simulation, other forms of the curve may also be gen-
erated with the same parameters and starting point. ARNN
and ARIMA-R were used to build a model to solve the first
100 data points of the curve and then used to make a single-
step prediction for the last 100 data points. -e results are
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shown in Figure 2. -is experiment is a single-step pre-
diction, that is, for each time point t, the data up to time
point t − 1 is used to predict the observation result. -e x-
axis in the figure is the order of observation samples, and the
y-axis is the actual HI value and the difference value of HI,
respectively. Figure 2(a) shows that the 1–100 observations
are used as training data and the 101–200 data are used as
test data. Figure 2(b) shows the different prediction results of
the test data part. It can be clearly seen that the prediction of
the ARIMA-R method is more accurate than that of the
ARNN method.

However, it should be emphasized that such high per-
formance comes from that the data are purely generated by
the ARIMA model and in single-step prediction. For long-
term prediction, random factors will dominate the result.
-e long-term result in Figure 3 indicates that the prediction
error blooms gradually after about 15 iterations of long-term
prediction.

4.2. Experiment Setup and Procedure for Single-Step Forecast.
In the prognostic experiment, vibration signals of bearings at
the run-to-fail situation are used. -e bearing dataset is
provided by FEMTO Institute, published on the NASA
Prognostics Center of Excellence (PCoE) [47]. Two or-
thogonally installed accelerometers in horizontal and ver-
tical directions on the housing of bearing collect vibration
signals in the form of acceleration, as shown in Figure 4. For
both signal channels, the sampling frequencies of signals are
25.6 kHz, while the data are collected every 10 seconds for
1 second. For all conditions and bearings, the data acqui-
sition is begun at the normal state of bearings and ended
when the bearings fail. -e detail of the platform and the
experiments can be obtained in [47]. -e dataset includes 17
subsets under three different conditions, as shown in Table 2.

-e root mean square (RMS) of the vibration signals is
calculated and provided as the HI prediction target. Each set
of data is a series of observation samples arranged in time
order, so the time series analysis is used for processing the
signals. -e bearing 1_4 data are taken as an example in
Figure 5. -e RMS data are a flat small value at the be-
ginning, namely, platform period, and in the middle of the
wearing period, abnormal values that far exceed the average
value of the platform period frequently appear; finally, in the
final stage, the RMS value increases abnormally, until the
bearing fails completely.

-e division of stages is carried out according to the
position of the node where the trend of the data changes
suddenly. Since the ARIMA model is a model based on
sequence prediction, it is not suitable for predicting the data
when sudden changes occur. So, it is better not to make

cross-stage predictions. Here, the data of the failure stage are
mainly selected as the prediction object for method verifi-
cation. In the process of model training using ML algo-
rithms, the data need to be divided into a training set and a
validation set. Under the assumption that the samples of the
two datasets follow the same model, the training set is used
to determine the model parameters and then the validation
set is used to verify the performance of the model. Generally
speaking, the training set and the validation set are randomly
selected regardless of the order of the data, but the ARIMA
model is a time series model; thus, training the model with
future data will result in inaccurate performance in the past
data in the validation set. -erefore, a certain length of data
is selected as the training set from the beginning of the
overall sequence, and the subsequent sequence is used as the
verification set.

In this experiment, after selecting the training data, the
key parameters can be determined through data research,
mainly to determine the order of the ARIMA model, in-
cluding AR order p, MA order q, and differencing order d.
As mentioned in the problem of order determination in
Section 2.2, the ARIMA-R method does not require precise
order determination, but it is still necessary to carry out the
difference and calculate the ACF to determine the differ-
encing order d and determine the reference values of p

and q.
-e data are generally divided into a training set and a

validation set for training the model and a test set for testing
the performance of the model. However, a special division is
required here. -e data are first divided into normal phase
data and abnormal phase data according to the trend, and
then the abnormal data are used to train the model [48]. -e
reason is that the data of different phases cannot be regarded
as in the same distribution, so it cannot be learnt by the same
model. In this study, bearing datasets 1_4, 1_6, and 3_3 are
used as the training target for prediction, where first 1/3 of
data are selected as the training samples, and the rest are for
testing. -e data of these bearings in the abnormal state are
shown in Figure 6.

-e ACF and PACF of RMS itself and its difference are
represented in Figure 7, from dataset 1–7. -is dataset is not
used in the prediction, and the ACF/PACF results are taken as
reference in order determination. In order to be processed
using the ARIMA-R model, the sequence used for model
prediction needs to be a sequence of approximately zeromean
after differencing, so the ACF function of the sequence is
calculated first, and the PACF function is calculated based on
the AR (15) model, whose orders are determined by the result
of ACF function. According to the lags that the ACF/PACF
value is above the significance line, the orders of model are
determined as shown in the ARIMA-R part of Table 3.

Table 1: Parameters to simulate ARIMA data.

Term Order Order AR param. MA param.
AR 2 1 0.5 0.65
MA 4 2 − 0.75 − 0.5
Diff. 2 3 − 0.2

4 − 0.1
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After determining the order of the ARIMA-R model,
the ML algorithm be used to train the model, so the data
must be divided first. -e ML algorithm inside the model is
selected to be Rotation Forest Regressor (RTF), and the
parameter settings of the two models are shown in Table 3.
In addition, as the reference for RMA, the Lag 1 obser-
vation, that is, the last one, is used in calculating RMA for
the first estimate of this observation. Since the maximum
value of the three parameters d, p, and q is 20, the model
can be regarded as a single-step forecast using 20 historical
data.

-e prediction directly given by RTF or other algorithms
is the d-order difference of the observed data. -e actual
predicted value can be obtained by adding the predicted
difference value to the sum of the observed value and dif-
ference of this observation.

Taking the data of prediction in bearing 1–4 as an example,
the prediction results are shown in Figure 8(b), and the pre-
diction result obtained after accumulating the observation
value and the difference value is shown in Figure 8(a). In
Figure 8(b), the comparison is the prediction result of ARNN
method. Except for the first 50 data where due to sudden
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Figure 2: -e single-step prediction result of the generated data. (a) -e prediction result after the difference is restored. (b)-e prediction
result of the differenced data.
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Figure 3: A part of long-term prediction by ARIMA-R.
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changes in data and lack of historical data, the predictions of
both methods are identically zero, the ARIMA-R method has
certain advantages over the ARNN method. Because it is a

single-step forecast, it can be seen that the forecast results are in
good agreement with the actual data, but if the model is ex-
tended to multistep, serious errors will surely occur.

4.3. Experiment Performance and Analysis. -e single-step
prediction results of the ARIMA-R model for several test
samples are shown in Table 4. Comparing the performance
of the two methods in the table, it can be seen that the overall
performance of the ARIMA-R method is better than that of
ARNN, but there is no significant advantage. -is is because
the data used for testing have obvious noise, which affects
the learning of the model. -e performance of the ARNN
algorithm in different data is unstable. -is is because the
number of samples is insufficient, resulting in overfitting.

-e combination of the ARIMA-R model and various
ensemble tree algorithms can be used to train the prediction
model, and the comparison of the results is shown in Table 5.
-e table demonstrates the results replacing RTF in ARIMA-
R with different ensemble ML algorithms. Like previous
experiment, the result comes from single-step prediction on
the bearing dataset, and the result from the ARNN algorithm
is provided as a reference.

-e algorithms chosen to combine with include Gradient
Boosting Tree (GBT), AdaBoost Tree (ABT), and Random
Forest (RF), in addition to ANN.-e result suggests that the
RTF algorithm has some advantages over the others in the
framework of ARIMA-R, but is not always better. -is is as
expected because these ensemble trees have similar learning
capabilities, and that is similar to the ability of ANN.

4.4. Long-Term Prediction. A long-term prediction by
ARIMA-R is conducted on the FEMTO data, aiming to
further examine the performance of the proposed method.

NI DAQ Pressure regulator Cylinder pressure Force sensor Bearing tested Accelerometers

Motor Tachometer Speed reducer Torque meter Coupling Platinum RTD

Figure 4: -e experimental platform PRONOSTIA. In the accelerated degradation experiment of bearings carried out on the PRONOSTIA
platform, the data collected from two mutually orthogonal acceleration sensors are transmitted to the computer through DAQ equipment.
In order to accelerate the aging of the bearing, radial force is exerted on the bearing [47].

Table 2: FEMTO datasets.

Operation cond. Condition1 Condition2 Condition3

Datasets

Bearing1_1 Bearing2_1
Bearing1_2 Bearing2_2
Bearing1_3 Bearing2_3 Bearing3_1
Bearing1_4 Bearing2_4 Bearing3_2
Bearing1_5 Bearing2_5 Bearing3_3
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7
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Figure 5: RMS of bearing 1_4.
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Figure 6: RMS in abnormal state. (a) Bearing 1_4. (b) Bearing 1_6. (c) Bearing 3_3.

Difference Order 0 Sample Autocorrelation Sequence Partial Autocorrelation Sequence

Sample Autocorrelation Sequence Partial Autocorrelation Sequence

Difference Order 2 Sample Autocorrelation Sequence Partial Autocorrelation Sequence

Difference Order 3 Sample Autocorrelation Sequence Partial Autocorrelation Sequence

0.5

1

1.5

2

2.5

20 40 600

Difference Order 1

10 20 30 40 500
Lag

-0.5

0

0.5

1

A
CF

-0.5

0

0.5

1

Pa
rt

ia
l A

CF
10 15 20 255

Lag

-1

-0.5

0

0.5

1

20 40 600
-0.5

0

0.5

1

A
CF

10 20 30 40 500
Lag

-0.4

-0.2

0

0.2

Pa
rt

ia
l A

CF

10 15 20 255
Lag

-2

-1

0

1

2

20 40 600
-1

-0.5

0

0.5

1

A
CF

10 20 30 40 500
Lag

-0.5

0

0.5

Pa
rt

ia
l A

CF

10 15 20 255
Lag

-4

-2

0

2

4

20 40 600
-1

-0.5

0

0.5

1

A
CF

10 20 30 40 500
Lag

-1

-0.5

0

0.5

Pa
rt

ia
l A

CF

10 15 20 255
Lag
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A rule similar to IEEE PHM 2012 Data Challenge is
adopted. -e data from bearing 1_3 to 1_7, 2_3 to 2_7, and
3_3 are taken as test data, in which only the given length of
data is available, and the RUL at the end of test data is to be
predicted.

As implied before, the proposed method is not fit to
predict a long sequence directly. To compensate for this, a 2-
order linear regression model based on ordinary least-
squares (OLS), provided by scikit-learn [49], is used for
initial prediction.-e rotation forest regressor then modifies

Table 3: Parameters of ARIMA-R and algorithm associated.

ARIMA-R Random forest and
rotation forest

AdaBoost and Gradient
Boost ARNN

p 20 Estimators 800 Estimators 200 Hidden layer (10, 30)
q 20 Max depth 10 Activation ReLU
d 2 Learning rate 0.2 Solver Adam
r 2 Learning rate Adaptive

Recovered Prediction

training seg
test seg
ARIMA-R

1

2

3

4

5

6

7

8

9

H
I

50 100 150 200 250 3000
Observation

(a)

Diff Prediction

test seg
ARIMA-R
ARNN

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

1.25

H
I D

iff

150 200 250 300100
Observation

(b)

Relative error

ARIMA-R
ARNN

–25

–20

–15

–10

–5

0

5

H
I D

iff
 E

rr
or

 R
at

e

150 200 250 300100
Observation

(c)

Figure 8: Single-step prediction of ARIMA-R and ARNN. (a) RMS. (b) Difference. (c) Error rate (%) of difference.
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the prediction thereafter. -e modification part is similar to
the recurrent process in the proposed method. -e pre-
diction result is evaluated by the criterion introduced by
[47], as depicted in the following equation:

score �
1
n

􏽘

n

i�1
e
ln(0.5)Ciεi , (18)

where ϵi is the ith relative error of predicted RUL in per-
centage and Ci is the coefficient that depends on ϵi:

Ci �

− 1
5

, ϵi ≤ 0,

1
20

, ϵi > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

-e result and criterion score are compared with results
from previous research studies [50–54], as shown in Table 6.
In the table, predicted RULs, authentic RULs of all test
datasets, and relative errors in percentage are presented. -e

Table 4: Single-step prediction of ARIMA-R and ARNN.

Algorithm R 1_6 1_4 3_3
MSE MAE MSE MAE MSE MAE

ARNN 3.58 53.30 3.58 53.30 2.57 45.08
ARIMA 1 1.60 30.15 3.91 55.23 1.32 23.49
ARIMA 2 1.54 26.04 5.21 46.48 2.57 30.91

Table 5: RMA method comparison.

Data Algorithm MSE MAE R2 MAPE

1_4

ARNN
5.39 55.16 0.968 6.13

GBT 8.95 72.25 0.990 1.70
ABT 3.91 55.23 0.991 1.57

ARIMA-R
RF 4.84 64.57 0.993 1.37
NN 3.58 53.30 0.977 2.45
RTF 5.21 46.48 0.997 0.84

1_6

ARNN
5.34 55.76 0.960 6.26

GBT 2.01 30.68 0.977 4.79
ABT 1.60 30.15 0.985 3.63

ARIMA-R
RF 1.60 31.69 0.986 3.64
NN 4.01 47.67 0.976 5.35
RTF 1.54 26.04 0.991 2.76

3_3

ARNN
15.55 96.15 0.914 5.60

GBT 4.55 48.25 0.975 2.58
ABT 4.15 43.91 0.977 2.29

ARIMA-R
RF 4.00 41.64 0.978 2.17
NN 10.74 74.34 0.941 3.98
RTF 2.57 30.91 0.986 1.63

Table 6: Prediction performance score comparison on the FEMTO dataset.

Dataset Predicted RUL(s) Authentic RUL(s)
Relative error (%)

A [51] B [52] C [53] D [54] E [50] ARIMA-R
Bearing1_3 3973 5730 43.28 37 − 1.04 − 0.35 1.05 30.66
Bearing1_4 247 339 67.55 80 − 20.94 5.6 20.35 27.14
Bearing1_5 1403 1610 − 22.98 9 − 278.26 100 11.18 12.85
Bearing1_6 1459 1460 21.23 − 5 19.18 28.08 34.93 0.05
Bearing1_7 7338 7570 17.83 − 2 − 7.13 − 19.55 29.19 3.07
Bearing2_3 4361 7530 37.84 64 10.49 − 20.19 57.24 42.08
Bearing2_4 1302 1390 − 19.42 10 51.8 8.63 − 1.44 6.37
Bearing2_5 333 3090 54.37 − 440 28.8 23.3 − 0.65 89.23
Bearing2_6 822 1290 − 13.95 49 − 20.93 58.91 − 42.64 36.30
Bearing2_7 349 580 − 55.17 − 317 44.83 5.17 8.62 39.86
Bearing3_3 589 820 3.66 90 − 3.66 40.24 − 1.22 28.17
Score - - 0.263 0.307 0.355 0.429 0.569 0.479
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score (18)of each group of predictions is shown at the
bottom of the table.

We can see from the score that the proposed method has
an advantage on method A-D, especially for data from
bearing1_6 and bearing1_7. -at is because, at the end of
these datasets, the trend of sequence conforms with the weak
stationarity requirement of ARIMA, e.g., the order statio-
narity. With such stationarity, ARIMA constructed from
history observation can reflect the future closer. On the other
side, bearing datasets 2_4 and 3_3 illustrate a clear situation
transition during the final stage of degradation, and the
predictions are far from the true RULs.

In fact, the basic assumption of ARIMA model includes
certain types of stationarity on the series. Moreover, suffi-
cient information on the history series is required to obtain a
more accurate forecast. In the situation that the monitoring
bearings are seriously damaged, neither stationarity nor
information is sufficient. -us, the prediction result is not
only because of the predicting ability of the model itself but
also due to the nonlinear component introduced by the
machine learning method when the rotation forest is used to
solve the model parameters.

According to the results, further analysis of the com-
bination between the time series model represented by
ARIMA and the machine learning algorithm will be im-
portant in the research hereafter.

5. Conclusion

An implementation method of approximating the ARIMA
model with ML estimation is proposed in this paper, named
ARIMA-R. -e advantage of this method is that it does not
need to calculate and predict the entire history of the
training samples step by step to obtain the MA term of
ARIMA model, so it is suitable for general nonrecursive ML
methods. -is method also adds feature terms to the ARNN
model corresponding to moving average terms, improving
the ability to describe RUL indicators. At the same time, the
idea of using an ensemble regression tree algorithm, rotation
forest, instead of ANN to find parameters is proposed to
improve the predictive ability when the quantity of data is
small. -is modification is fit to the data accessibility in
bearing HI prediction. -e proposed ARIMA-R method
combines ARIMA time series prediction model and en-
semble regression trees and is used to predict bearing health
indicators. -e experimental results show that its prediction
outperforms the ARNN algorithm. -is method constructs
the RMA quantity in an iterative way to replace theMA term
in the ARIMA algorithm, which is the prediction error term.
At the same time, it is proposed to use an ensemble tree
instead of ANN in ARNN to improve the fitting ability of
small sample training. -rough this method, the major
benefit is that the ARIMA model can be implemented more
completely in the nonrecursiveML algorithm.-erefore, the
ARIMA model and similar models such as ARMA, SAR-
IMA, and FARIMA can be used to improve accuracy and
efficiency of large-scale data fitting using ML. -e further
work can be included at the following three aspects. First,
more samples can be used to verify the performance of the

proposed method. Second, how to combine this method
with other ML algorithms and life prediction frameworks is
worth exploring. -ird, it is meaningful that in-depth re-
search of the relationship between preliminary estimation
and the prediction results of the iterative model needs to be
studied.
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Gears are the most important parts of rotating machinery and power transmission devices. When gears are engaged in meshing
transmission, vibration will occur due to factors such as gear machining errors, meshing rigidity, and meshing impact. .e
traditional FxLMS algorithm, as a common active vibration algorithm, has been widely studied and applied in gear transmission
system active vibration control in recent years. However, it is difficult to achieve good performance in convergence speed and
convergence precision at the same time. .is paper proposes a variable-step-size multichannel FxLMS algorithm based on the
sampling function, which accelerates the convergence speed in the initial stage of iteration, improves the convergence accuracy in
the steady-state adaptive stage, and makes the modified algorithm more robust. Simulations verify the effectiveness of the
algorithm. An experimental platform for active vibration control of the secondary gear transmission system is built. A pie-
zoelectric actuator is installed on an additional gear shaft to form an active structure and equipped with a signal acquisition system
and a control system; the proposed variable-step-size multichannel FxLMS algorithm is experimentally verified..e experimental
results show that the proposed multichannel variable-step-size FxLMS algorithm has more accurate convergence accuracy than
the traditional FxLMS algorithm, and the convergence accuracy can be increased up to 123%.

1. Introduction

As a general-purpose part, gear is an important transmission
device in various mechanical equipment systems and plays a
very key role in equipment in machinery, transportation,
chemical, aviation, aerospace, shipbuilding, and other in-
dustries. In actual applications, the gears inevitably have
manufacturing and installation errors, and the gear teeth will
deform under the action of the load. .ese errors and de-
formations destroy the meshing relationship of the gear
transmission and make the position of the gear me\shing
deviate from its theoretical position so that the instanta-
neous transmission ratio changes, causing the collision and
impact between the teeth and forming the gear meshing.
Internal excitation results in vibration and noise [1–4].

.e vibration of the gear system will not only produce
noise and lead to the instability of the transmission

system, but also accelerate the fatigue damage of the
transmission system and cause its failure and serious
consequences [5]. For example, one of the main excitation
sources of the helicopter body is the vibration from the
transmission system [6]. Excessive vibration levels will
cause discomfort to the crew, cause fatigue, affect work
efficiency, and reduce the precision and reliability of
precision instruments and weapon aiming systems, or
even fail to work normally. Besides, vibration and noise
will cause fatigue damage and damage to some compo-
nents, which directly affects the flight reliability of the
helicopter [7–9]. .e problem of vibration and noise of a
helicopter is more prominent than that of other aircraft. If
part of the vibration and noise can be eliminated during
the operation of the helicopter, it has important practical
significance to ensure the flight safety of the helicopter and
improve the ride comfort [10, 11].
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For the study of the vibration of the gear transmission
system, in 1967, British scholar H. Optiz published an article
on the dynamic performance of spur gear and the helical
gear. According to the mechanism of gear vibration and
noise, it is concluded that the vibration of gearbox and noise
is a function of gear transmission error and precision, and
some valuable analysis curves are given. Since the mid-
1970s, the research objects of many scholars are mainly
flexible rotors under high speed, such as rotors on high-
speed high-precision machine tools and centrifugal units,
which are usually under supercritical speed. How to restrain
the rotor vibration, prevent the overall instability, and en-
sure the safe operation of the rotor has become a key
problem. In the aspect of active control actuator, electro-
magnetic bearing and electromagnetic damper are studied
more. As early as 1980, Haberman and Brunet [12] studied
the stiffness characteristics of electromagnetic bearing and
proposed the “bathtub” shaped complex stiffness curve.
Since then, most researchers have analyzed the supporting
characteristics of the electromagnetic bearing system based
on this. Zhang and Zhang [13] reviewed in detail the re-
search progress of unbalanced control technology of elec-
tromagnetic bearing. Maslen et al. [14] made a
comprehensive review and summary of the existing un-
balanced vibration control methods and the latest research
results in the field of electromagnetic bearing. Huang and
Lin [15] used a fuzzy control method to conduct theoretical
and experimental research on unbalanced vibration control
of conical electromagnetic bearing. Jiang and Zmood [16]
designed a controller based on H∞ for self-excitation and
external interference. Electromagnetic dampers have the
advantages of noncontact, no mechanical friction and wear,
no lubrication, long service life, and controllable stiffness
and damping. Kasarda et al. [17] applied the electromagnetic
damper to the active control of subsynchronous resonance
of high-speed single-disk rotor system, which reduced the
resonance amplitude by 93%. Nonami et al. applied the
electromagnetic damper to the vibration control of the
flexible rotor shaft. .e control signal of the damper was
provided by the analog controller, which effectively reduced
the resonance peak of the flexible rotor shaft. Elbuken et al.
[18] applied the electromagnetic damper to the vibration
control of the rotating suspension and effectively reduced
the vibration of the rotating suspension by exerting control
force on the rotating suspension through the electromag-
netic damper. Using the idea of finite element model and
considering the influence of meshing error, Guan et al.
[19, 20] established the coupled vibration model of the gear
transmission system with bending and torsion and deduced
the transmission function of the vibration from the gear
excitation to the gearbox body, which laid a foundation for
the vibration control of the rear gear transmission system.
According to the criteria of modal control force and energy
consumption, Guan evaluated four different ways of actu-
ator installation in gearbox vibration active control system.
.e results show that the actuator is connected by extra
bearings on the shaft in the best way and is more convenient
to install. In the research of gear vibration, many scholars
[21–23] also adopt this actuator installation method.

Montague et al. [24] as early as the active control method
used in gear vibration control in 1994, they adopt the
method of feedforward control needed for the inhibition of
gear vibration control was deduced, by manual adjustment
of phase shift amplifier in the experiment to adjust the
voltage signal of driving voltage actuator, experimental re-
sults show that the meshing frequency is 4500Hz, with 75%
of vibration attenuation. Subsequently, Sutton et al. [7]
clamped the three magnetostrictive actuators on the support
and controlled the vibration of the gear of the helicopter
transmission in the frequency range of 250–1250Hz to
minimize the vibration kinetic energy of the supporting rod.
Rebbechi et al. [25] adopt the feedforward controller to
adjust the phase and amplitude of the control force to realize
the vibration control of the gearbox box body. .e exper-
iment shows that the vibration at the meshing fundamental
frequency, double frequency, and triple frequency of the
gearbox and the radiation noise at the meshing fundamental
frequency is greatly reduced. Chen and Brennan’s [26]
simple gear mesh model has set up the control needed to
control the size of the torsional vibration being deduced,
based on the nonlinear system design of the adaptive
controller to control the harmonic frequency. .e experi-
ment showed that stiffness modulation factor is proportional
to the load on the gear,and the torsional vibration damping
is about 7 dB at meshing frequencies of 150–350 Hz. Guan
et al. [27] proposed a direct hybrid adaptive control method
based on the Lyapunov stability theorem to simultaneously
adjust feedback gain and feedforward gain to control gear
vibration, and the results showed that this method was not
sensitive to gear meshing frequency error. Li et al. [28, 29]
installed the actuator on the gear shaft with additional
support bearings, combined with the phase-locked loop for
frequency estimation of reference signals, and used the
filtered LMS algorithm to control the gear vibration. After
that, many scholars have improved the filtering LMS al-
gorithm and applied it to active vibration control and
achieved good control results [30–39]. Wu and Lin [40] used
a digital processor (DSP) to combine three different control
algorithms to form a hybrid controller to control the vi-
bration of the gearbox, but it was too complex to be applied
in practice. Li et al. [29], based on frequency estimation
technology, presented an improved filtering LMS algorithm
that is used to control the vibration of the gearbox. To avoid
out-of-band overadjustment, an integrated adaptive linear
enhancer is also used.

Most of the above researches on vibration control of
gearbox adopt a single gear transmission system, so single-
input and single-output control methods are adopted. In this
paper, a two-stage gearbox is taken as the controlled object,
and there is two gear meshing excitation in the system. To
achieve global vibration suppression of the system, multiple
sensors are needed to capture the dynamic vibration of the
structure and multiple actuators to suppress the energy
generated by excitation [41–43]. .erefore, this paper will
adopt a multichannel control method [44, 45] to control the
vibration of the two-stage gear transmission system actively.
As a common model, the traditional FxLMS algorithm has
been widely studied and applied in vibration control in
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recent years, but it is difficult to achieve good performance in
convergence speed and convergence accuracy. To solve the
problems existing in traditional FxLMS algorithms, a
multichannel FxLMS algorithm with variable step size is
proposed in this paper. .e algorithm accelerates the con-
vergence speed in the initial stage of convergence, improves
the convergence accuracy in the steady-state adaptive stage,
and makes the system have certain robustness [46].

Traditional vibration control methods such as modal
control, pole assignment, and optimal control are based on
the precise model of controlled structure, but the gear
transmission system is a vibration system with serious
uncertainty and difficult to accurately model. It is difficult to
design a steady feedback system to achieve the desired
control performance by using traditional control methods.
However, the adaptive control method is less dependent on
prior knowledge and does not depend on specific models, so
it is an ideal choice to apply the adaptive control method to
the active control of gear vibration.

2. Establishmentof theTwo-StageTransmission
Gearbox Model

UG software can get different specifications of parts by
modifying the parameters. It only needs to input some basic
parameters of gears, such as tooth number, modulus,
pressure angle, and tooth surface width. UG software can
automatically generate the required gear model. .is
method can also be used for gear shaft and bearing, which
greatly improves design efficiency. .e main parameters of
the gears in the gearbox are calculated by the formula
derivation [47]. .e basic data of gears are shown in Table 1.

.e shaft is designed according to the size of the gear.
.emain radial size of the shaft is shown in Figure 1. Among
them, (a) is the high-speed shaft and low-speed shaft; (b) is
the intermediate shaft. .e size of the box is determined
according to the size of the shaft and the size of the gear. .e
internal size of the box is 282mm× 135mm× 270mm. Use
UG to generate a three-dimensional model according to the
designed size, and the established three-dimensional model
is shown in Figure 2. .e motor is an adjustable speed
motor, which can adjust the speed of the gearbox in a large
range..e load is a magnetic powder brake; on the one hand,
it can adjust the load, allowing a more comprehensive
analysis of the dynamic characteristics of gear load. On the
other hand, it could make gear mesh closer by applying a
load. Due to gear wear and insufficient precision, there will
be gaps between the gear components. Under low or light
load conditions, the gear meshing may swing back and forth,
which will have a certain impact on the acquired signal. .is
effect can be reduced by applying a load.

.e details of the active control structure inside the
gearbox are shown in Figure 3..e active control structure is
composed of an actuator bracket, a piezoelectric actuator, an
antiload bar, and a support bearing. .e bottom of the
bracket is bolted to the wall of the box, and one end of the
actuator is clamped with the top sleeve. .e other end of the
actuator is connected with the antiload bar, and the antiload
bar is fixed on the support bearing. .e antiload bar is a

slender shaft with a certain degree of flexibility for overload
protection. Besides, to improve the control accuracy, the
direction of the control force output of the piezoelectric
ceramic actuator is parallel to the direction of the meshing
line of the gear.

.e 3D model of the two-stage gearbox was imported
into ADAMS, and the virtual prototype model was con-
structed by adding constraints. .e functional expression of
contact force is

MAX 0, K q0 − q( 􏼁
e

− C ×
dq

dt
× STEP q, q0 − d, 1, q0, 0( 􏼁􏼨 􏼩,

(1)

where K is the stiffness coefficient, q0 is the reference col-
lision distance of two contact objects, q is the actual collision
distance of two contact objects, e is the index in the rigidity,
C is the damping rate, and d is the distance that the damping
rate reaches the maximum.

.e gear is made of no. 45 steel, and the bearing is made
of type 6003 deep groove ball bearing. For the contact
collision between the gears, the contact collision parameters
between the bearing ball and the inner and outer rings are set
as shown in Table 2.

Add the constraints of each component, set the speed on
the input shaft, and apply load on the output shaft, and the
virtual prototype of the two-stage gear transmission system
can be obtained, as shown in Figure 4.

To verify the usability of the virtual prototype and provide
a theoretical basis for vibration active control joint simulation,
dynamic simulation in ADAMS, first set the multistage
gearbox virtual prototype input speed to 2540 rpm and the
load to 1N·m. At this time, the meshing fundamental fre-
quency of low-speed shaft gear is 500Hz, and that of high-
speed shaft gear is 804Hz. .e simulation time is set as 0.5 s,
and the simulation step length is 0.0001 for simulation ver-
ification. Figures 5(a)–5(d) show the vibration acceleration of
the low-speed axis and the high-speed axis in the time domain
and frequency domain, respectively.

3. Description of the Improved
FxLMS Algorithm

3.1. Traditional FxLMS Algorithm. .e online identification
method of secondary channels is an additional random noise
method first proposed by Eriksson and Allie [48], as shown
in Figure 6. P(n) is the transfer function from the primary
source to the control point. S(n) is a transfer function of the
secondary path from the actuator to the control point and is
a very complex electro-acoustic coupling system, which is
mainly composed of D/A conversion, loudspeaker, sec-
ondary acoustic channel, and A/D conversion. X(n) is the
reference signal. E(n) refers to the residual vibration re-
sponse signal detected by the error sensor at the control
point.

Random noise v(n) is used as the input of the secondary
channel adaptive online identification filter S’(n). When the
identification filter converges, S’(n) can uniquely converge to
S(n). In the adaptive control process, S’(n) can be used as an
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estimated transfer function of the secondary channel S(n).
However, this method will add random noise to the input of
the actuator y(n) and cause additional vibration of the
control point through the secondary channel, and the vi-
bration cannot be eliminated in the whole identification
process of the secondary channel.

.e calculation process of the algorithm is as follows:

e(n) � d(n) + v′(n) + y′(n),

es � e(n) − v(n) × s′(n).
(2)

According to the LMS algorithm, the weight iteration of
online identification of secondary channels can be expressed
as

s′(n + 1) � s′(n) + μsv(n)e′(n), (3)

where μs is the step size of filter S’(n), and

s′(n) � s0, s1, . . . , sM−1􏼂 􏼃

v(n) � [v(n), v(n − 1), . . . v(n − M + 1)]
T
,

(4)

Table 1: Gears at all levels.

Part name Tooth number Tooth surface width (mm) Modulus (mm) Pressure angle (°)
High-speed shaft gear 19 25 2.0 20
Low-speed shaft gear 35 25 2.0 20
Middle shaft big gear 37 20 2.0 20
Middle shaft small gear 23 30 2.0 20

15.0 18.0 17.0
15.0 14.0

195.0

(a)

15.0 18.0
20.0 15.018.0

155.0

(b)

Figure 1: Dimension drawing of the shaft.

1 2 3 4 5

Figure 2: Gear transmission system with a built-in piezoelectric actuator. 1: motor, 2: gear box, 3: active control structure, 4: magnetic
powder brake, and 5: base.
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1 2 3 4 5

Figure 3: Internal details of active control structure. 1: actuator support, 2: piezoelectric actuator, 3: antiload rod, 4: support bearing,
and 5: meshing line.

Table 2: Gears at all levels.

Part name Gear Ball bearing
Stiffness coefficient K 9.16×105N/mm3/2 1.644×105N/mm3/2

Stiffness force index e 1.5 1.5
Damping ratio C 30N·S−1/mm 30N·S−1/mm
.e damping rate reaches the maximum distance 0.1mm 0.05mm
Coefficient of dynamic friction 0.05 0.0036
Coefficient of static friction 0.08 0.05

Figure 4: Overall diagram of the ADAMS virtual prototype.
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where M is the length of filter S’(n).
At this time, the weight update of the FxLMS algorithm

is expressed by the following formula:

w(n + 1) � w(n) + μx′(n)e(n)

w(n) � w0, w1, . . . wN− 1􏼂 􏼃
T

x′(n) � x′(n), x′(n − 1), . . . , x′(n − N + 1)􏼂 􏼃,

(5)

where μ is the step size of the FxLMS algorithm and N is the
length of the weight W(n) of the FxLMS algorithm.

.e traditional FxLMS algorithm updates iteratively with
a fixed step size. When the step size factor is larger, the
convergence rate is faster in the early stage, but in the steady-
state adaptive stage, the step size is too large, and the os-
cillation occurs, resulting in a large error. On the contrary,
when the step size factor is small, the steady-state error is

small, but the convergence rate in the early stage will de-
crease greatly. Moreover, the traditional FxLMS algorithm
mainly studies the single-channel problem. With the in-
creasing degree of mechanical complexity, it is difficult to
meet the control requirements of a single channel.

3.2. Improved Multichannel Variable-Step-Size FxLMS
Algorithm. To solve the problem of the traditional fixed step
size algorithm, many kinds of research have been made on
the variable-step-size LMS algorithm. In this paper, three
classical variable-step-size LMS are compared. Based on the
variable-step-size LMS algorithm based on the sampling
function, a certain change is made to the form of the var-
iable-step-size LMS algorithm. In the case of little impact on
the convergence rate, the steady-state error is smaller, and it
has a better anti-interference ability.
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Figure 5: Diagram of vibration acceleration in the time domain and frequency domain. (a) Time domain and (b) frequency domain of the
low-speed shaft gear. (c) Time domain and (d) frequency domain of the high-speed shaft gear.
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.e mechanism of variable-step-size LMS algorithm is a
function model between step size factor and error. .ree
typical function models are as follows.

Step factor μ(n) is the Sigmoid function of error e(n), as
shown in the following equation:

μ(n) � α
1

1 + e
(− β|e(n)|)

− 0.5􏼨 􏼩. (6)

Step factor μ(n) is the tongue function of error e(n), as
shown in the following equation:

μ(n) � α 1 −
1

βe
2
(n) + 1

􏼨 􏼩. (7)

Step factor μ(n) is the sampling function of error e(n), as
shown in the following equation:

μ(n) � α 1 −
sin(β × e(n))

β × e(n)
􏼨 􏼩, (8)

where α and β take the same parameters as 4 and 8, re-
spectively, to obtain the nonlinear curve of step factor and
error signal of the above algorithm.

From Figure 7, we can see that compared with the
sigmoid function and tongue function, the LMS algorithm
based on the sampling function has a larger step size in the
early stage, so its convergence rate is relatively fast. In the
steady-state adaptive stage, the steady-state error is small
because of the smaller dμ/de(n) value. On this basis, the
function is further improved.

μ(n) � α 1 −
sin(β × e(n) × e(n − 1))

β × e(n) × e(n − 1)
􏼨 􏼩, (9)

where the values of α and β are still 4 and 8; the curves are
compared in Figure 8.

It can be seen from Figure 8 that the improved LMS
algorithm based on sampling function does not reduce the
step size significantly in the early stage but significantly
reduces the step size in the steady-state adaptive stage, which
will lead to a decrease in the convergence rate, but signif-
icantly improves the convergence accuracy. Moreover, the
autocorrelation value e(n) × e(n − 1) of the error signal is
used to adjust the step factor in the functional relation
between the step factor and the error so that the step factor
has the anti-interference ability.

.e iterative formula of the improved LMS adaptive
algorithm based on the variable step size of the sampling
function is as follows:

e(n) � d(n) − X
T
(n)W(n),

W(n + 1) � W(n) + 2μ(n)e(n)X(n),

μ(n) � α 1 −
sin(β × e(n) × e(n − 1))

β × e(n) × e(n − 1)
􏼨 􏼩.

(10)

From (10), we can get

d(n) � X
T
(n)W(n) + e(n). (11)

According to the principle of adaptive filtering, the above
equation can be rewritten as

d(n) � X
T
(n)W

∗
(n) + v(n), (12)

where W∗(n) is the optimal weight coefficient of the filter,
and the mean value of v(n) is 0, which is unrelated to the
input signal.

Substitute (12) into equation (10) to get

e(n) � v(n) + X
T
(n)W

∗
(n) − X

T
(n)W(n)

� v(n) + X
T
(n) W

∗
(n) − W(n)( 􏼁

� v(n) + X
T
(n)ΔW(n),

(13)

where ΔW(n) is the weight coefficient deviation.
So, we get

e(n)e(n − 1) � v(n)v(n − 1) + v(n)X
T
(n − 1)ΔW(n − 1)

+ X
T
(n)ΔW(n)v(n − 1)

+ X
T
(n)ΔW(n)X

T
(n − 1)ΔW(n − 1).

(14)

According to the fact that v(n) is a Gaussian white noise
signal, its correlation is poor, that is, E[v(n)v(n − 1)] � 0,
and is not related to the input signal X(n), the following can
be obtained:

E[e(n)e(n − 1)] � E X
T
(n)ΔW(n)X

T
(n − 1)ΔW(n − 1)􏽨 􏽩.

(15)

From equation (15), we can see that in the function of
step factor and error signal obtained by the improved LMS
adaptive algorithm based on variable step size of sampling
function, the influence of noise signal is eliminated, so the
algorithm is not affected by noise signal and has a strong
anti-interference ability.

.e improved LMS algorithm is applied to the multi-
channel active vibration control system. .e improved
FxLMS algorithm is the multichannel variable step size
FxLMS algorithm. .e schematic diagram of the active
control structure is shown in Figure 9, where x(n) represents
the reference signal, S represents the secondary channel
between all actuators and sensors,W represents the channel
variable step FxLMS algorithm controller in the multi-
channel vibration control system, andV represents the white
noise output to the secondary channel. Suppose the system
has J active controllers, K sensors, the reference signal is
written as x(n), and the FxLMS controller W is written as

W � w1, w2, . . . , wj􏽨 􏽩
T
, (16)

where wj is the weight vector of the jth controller, which is to
write the ownership value coefficient in the FxLMS algo-
rithm as a weight vector.

.e multichannel active vibration control system has
J×K secondary channels; secondary channel S can be
written as

Shock and Vibration 7
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S(n) �

s11(n) · · · s1K(n)

⋮ ⋱ ⋮

sJ1(n) · · · sJK(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

where sJK(n) represents the secondary channel between the
jth active actuator and the kth sensor. s’JK(n) represents the
filter coefficient identified using the secondary channel
between the jth active actuator and the kth sensor.

4. The Cosimulation

Combined with the multichannel FxLMS algorithm struc-
ture in Figure 10 and the active control structure of the two-
stage gearbox in Figure 2, the active vibration control system
of the gearbox is designed as shown in Figure 10 below. .e
vibration caused by excitation and the gear pair is the control
target. S1(z) and S2(z), respectively, represent two sec-
ondary channels. To eliminate the influence of secondary
channels, corresponding models 􏽢S1(z) and 􏽢S2(z) are in-
troduced into the control system to filter the input signals of
the controller. In adaptive active vibration control, the se-
lection of reference signals has a great influence on the
control effect. To obtain the reference signals with high
correlation with the vibration of the gear system, the fre-
quency estimation of the vibration signals collected in real
time is carried out through the second-order IIR adaptive
notch filter [49] to obtain the meshing frequency of the gear
pair and then synthesize the reference signals online.

.rough simulation, the effectiveness of the improved
FxLMS algorithm in the application of two-gearbox vibra-
tion active control is verified. In Simulink to build vibration
active control system, its core is the improved FxLMS
adaptive filter, due to the multiple-input multiple-output
filter, the Level-2 function improved FxLMS algorithm, the
adaptive trap of reference signal synthesizer using the same
Level-2 function to carry on the design, use of FIR filter
structure simulation of the secondary channel, connect the
controller, the reference signal synthesizer, and the sec-
ondary channel model, and get the vibration active control
system..e virtual prototype model of the gear transmission
system in ADAMS was imported into Simulink as a me-
chanical module, which was connected with the control
system to obtain the active vibration control cosimulation
model of gear transmission integrated with the mechanical
system and the control system, as shown in Figure 11.

.e input speed of the gearbox is 2540 rpm..emeshing
frequency of the high-speed shaft gear pair is 800Hz and the
meshing frequency of the low-speed shaft gear pair is
500Hz. .e load is 1N·m. Set the simulation parameters as
follows: the adaptive filter order as the controller is set to 80,
the step size factor of the algorithm adopts the variable-step-
length factor based on the sampling function, and the
sampling frequency is selected as 10 kHz. Joint simulation is
carried out, and the simulation results are shown in
Figure 12.

Figures 12(a) and 12(c) show that compared with the
traditional FxLMS algorithm, the improved FxLMS algo-
rithm has a faster convergence rate and a smaller steady-state

error. In Figure 12(a), the FxLMS control system reaches
stability after about 0.15 s, while the improved FxLMS
control system reaches stability after about 0.07 s. In
Figure 12(c), the FxLMS control system reaches stability
after about 0.12 s, while the improved FxLMS control system
reaches stability after about 0.08 s. Moreover, it can be seen
from Figures 12(a) and 12(c) that the improved FxLMS
control system has a smaller vibration acceleration after
stabilization is achieved.

Figures 12(b) and 12(d) show that the suppression of
vibration by the active vibration control system is mainly at
the 2nd and 3rd harmonics. In Figure 12(b), the vibration
reduction of the FxLMS control system at the 2nd harmonic
1000Hz and the 3rd harmonic 1500Hz is 10 dB and 14 dB,
respectively. .e vibration reduction of the improved
FxLMS control system at 1000Hz and 1500Hz is 23 dB and
31 dB, respectively. In Figure 12(d), the vibration reduction
of the FxLMS control system at 1608Hz and 2412Hz of the
second- and third-order harmonics is 17 dB and 28 dB,
respectively. .e vibration reduction of the improved
FxLMS control system at 1608Hz and 2412Hz is 24 dB and
37 dB, respectively. It is further proved that compared with
the traditional FxLMS algorithm, the improved FxLMS al-
gorithm has a smaller steady-state error.

5. Design and Verification of Experiments

.e experimental platform of the active vibration control
system of the gearbox system can be divided into three parts,
namely, the gear transmission system, the vibration mea-
surement processing system, and the active control system.
.e established platform is shown in Figure 13.

.e gear transmission system consists of a DC motor,
motor governor, coupling, gear transmission part, and
magnetic powder brake. .e gear transmission part is
composed of two pairs of meshing gears, the modulus is 2,
the pressure angle is 20°, the number of teeth of high-speed
shaft meshing gear is 19 and 37, respectively, and the
number of teeth of low-speed shaft meshing gear is 23 and
35. Adjustable speed motor speed range is of 0–1800 rpm.
.e two couplings are, respectively, connected with the
motor and the high-speed shaft, the magnetic powder brake,
and the low-speed shaft. Magnetic powder brake can provide
0–15N·m torque.

.e vibration measurement processing systemis used to
detect the vibration signal of the gearbox and the error
signalinput to the controller. .e acceleration sensor is used
to collect the signalof the casing, and the collected signal is
displayed in real time with theanalysis software DASP-V11
and is input to the controller as a calculatederror signal to
calculate and output the control signal.

.e active control system includes a controller, a pie-
zoelectric actuator, a piezoelectric actuator power supply,
and an actuator clamp. For the control system, this paper
selects the Speedgoat real-time simulation system as the
control system of active vibration control and establishes a
semiphysical simulation control platform. .e Speedgoat
real-time simulation system provides a MATLAB/Simulink
driver module that converts the algorithm control system
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established on Simulink into the required C code and
transmits the generated object code to the processor, which
calculates the voltage signal of the piezoelectric actuator and
controls the piezoelectric actuator.

To verify the effectiveness of the proposed multichannel
active vibration control structure for the vibration control of
the gear transmission system, the proposed active control
algorithm was programmed, compiled, and downloaded to
the real-time target machine as the controller of the active
control system on the MATLAB/Simulink platform, and the
multichannel variable-step-size FxLMS algorithm was
adopted in this paper. To ensure the effectiveness of the
control system, the sampling time of the controller is set to
0.0001 s..emotor speed was adjusted to 1200 rpm, the load
was adjusted to 1NM, and the active vibration control was
started. .e vibration signals of the gearbox body were
collected through the acceleration sensor, as shown in
Figure 14. .e vibration signals before and after the control
were Fourier transformed to obtain the vibration frequency

domain control diagram, which was compared with the
traditional FxLMS algorithm, as shown in Figure 15. .e
meshing fundamental frequencies of the low-speed shaft and
high-speed shaft are 236Hz and 380Hz, respectively.

It can be seen from the time-domain diagram of vi-
bration control in Figure 14 that the vibration attenuation
begins at 8 s when the control begins, and the convergence is
completed at the 12th second, and the vibration attenuation
reaches 70% before the control. As can be seen from the local
enlargement of Figure 15, the control effect is obvious at the
basic frequency and multiple frequencies of gear meshing.
.e specific meshing frequency data is shown in Table 3
below. It can be seen from Table 3 that the decay of the
meshing frequency of the low-speed shaft is about 3-4 dB,
and that of the high-speed shaft is 3–5.5 dB. According to the
data in Table 3, it can be calculated that the convergence
accuracy has increased by 23%–82%.

When the speed is adjusted to 1530 rpm, the meshing
fundamental frequency of the low-speed shaft and high-
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speed shaft is 301Hz and 485Hz, respectively. .e vibration
generated by the gear transmission system is controlled, and
the control frequency domain curve is shown in Figure 16. It
can be seen from the figure that the attenuation at low-speed
shaft meshing frequency is 4.5-5 dB, and the vibration at-
tenuation at high-speed shaft meshing frequency is about 8-
9 dB. .e specific meshing frequency data is shown in Ta-
ble 4. According to the data in Table 4, it can be calculated
that the convergence accuracy has increased by 36%–123%.

Based on the active vibration control results of the gear
under two rotating speeds, we can know that the proposed
multichannel variable-step-size FxLMS algorithm has an
effective suppression effect on the vibration at the high
harmonic in the gear transmission system, and the vibration
attenuation range is 3–9 dB. It can be seen that the atten-
uation of the meshing frequency of the high-speed shaft is
higher than that of the low-speed shaft. Compared with the
traditional FxLMS algorithm, the proposed multichannel
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Figure 12: Simulation results of active vibration control. (a) Low-speed shaft time domain, (b) low-speed frequency time domain, (c) high-
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Table 3: Active vibration control of the gear system at 1200 r/min and 1N m.

Frequency/Hz
Power spectral density (dB)

Uncontrolled FxLMS Improved FxLMS
236 96.17 93.92 92.68
380 99.60 97.66 96.28
473 101.75 98.00 97.12
760 109.07 105.27 103.51
940 97.17 94.96 93.14
1140 95.57 92.18 91.04
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Figure 16: Vibration frequency domain control diagram at 1530 rpm.
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variable-step-size FxLMS algorithm has a better control
effect. .e control accuracy can be increased up to 123%.

6. Conclusion

In this paper, a novel active vibration control platform based
on a piezoelectric actuator is constructed, which is com-
posed of hardware and software such as a two-stage
transmission device, control system, signal acquisition, and
processing system. .e multichannel variable-step-size
FxLMS algorithm is used as the controller to control the
vibration of the gearbox. Experimental results show that the
multichannel variable-step-size FxLMS algorithm is effective
for vibration control of the gear system, and its control effect
is better than the traditional FxLMS control, which can
reduce the vibration by 3–9 dB at the target. .e control
accuracy is improved by 23%–123%.
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Early detection of fault events through electromechanical systems operation is one of the most attractive and critical data
challenges in modern industry. Although these electromechanical systems tend to experiment with typical faults, a common event
is that unexpected and unknown faults can be presented during operation. However, current models for automatic detection can
learn new faults at the cost of forgetting concepts previously learned. -is article presents a multiclass incremental learning
(MCIL) framework based on 1D convolutional neural network (CNN) for fault detection in induction motors. -e presented
framework tackles the forgetting problem by storing a representative exemplar set from past data (known faults) in memory.-en,
the 1D CNN is fine-tuned over the selected exemplar set and data from new faults. Test samples are classified using nearest
centroid classifier (NCC) in the feature space from 1D CNN. -e proposed framework was evaluated and validated over two
public datasets for fault detection in induction motors (IMs): asynchronous motor common fault (AMCF) and Case Western
Reserve University (CWRU). Experimental results reveal the proposed framework as an effective solution to incorporate and
detect new induction motor faults to already known, with a high accuracy performance across different incremental phases.

1. Introduction

IMs support most of the production process in the modern
industry’s daily life due to their straightforward construc-
tion, reliability, and relatively low cost. However, IMs
operate for long uninterrupted working periods, are exposed
to the elements, and minimum preventive maintenance.
-ese operative conditions raise unexpected faults that can
show up at any time, causing lower productivity and eco-
nomic losses. -us, early motor failure detection and cor-
rection are challenging problems that catch many
researchers’ attention.

From a general overview, motor fault analysis methods
split into signal processing and artificial intelligence ap-
proaches [1]. -e first ones have been focused on analyzing
diverse physical magnitudes to find features that help

identify abnormal behavior in the motor’s performance
[2, 3]. For example, rotor vibrations [4], bearing faults [5],
and broken rotor bar [2]. Meanwhile, artificial intelligence-
based methods have been integrated to provide automatic
fault detection using a data-driven approach.-ese methods
base their performance on extracted features from raw
signals to be used as inputs. In past years, deep learning (DL)
architectures, such as autoencoders (AE) [6], convolutional
neural network (CNN) [5, 7, 8], and capsule networks
(CapsNet) [1], have been used in fault diagnosis due to their
potential applicability for the automatic feature extraction,
reported in several cases new state-of-the-art results. In the
literature, most works combine DL architectures with dif-
ferent handcraft features and feature extractors (e.g., Fourier
and Wavelet transform) [8]. Recently, some authors [9–12]
have shown some promising advances to eliminate the
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requirement of the handcraft features, where CNN archi-
tectures have demonstrated high effectiveness. Despite this
progress, classification models have been focused on
detecting a set of known patterns that characterize typical
faults on equipment from manufacturers. However, modi-
fications in the operative conditions can generate patterns
from new failures that differ from those detected by the
current model. -is issue forces existing methods to learn a
new model considering unknown failure conditions.

To overcome the practical challenge mentioned above,
multiclass incremental learning (MCIL) arises a promising
solution by updating the current model on new data instead
of training once on a whole dataset. Indeed, MCIL aims to
learn new classes from previous ones, although none or a few
samples of old classes are retained. Unlike the conventional
classification setting, inMCIL, samples from different classes
come in different time phases, whereas incremental classi-
fiers aim to achieve a competitive performance overall seen
classes [13]. Motivated by this, only a few works have been
reported by traditional approaches to address multiclass
incremental learning. For example, Saucedo-Dorantes et al.
[14] trained a self-organizing map (SOM) every time that a
new detection occurs. However, this model does not retain
samples from previous classes, and the complexity of the
model increases when new faults are incorporated. Incre-
mental model transfer learning (IMTL) [15] follows a do-
main adaptation approach to allow a classification model to
detect new faults but requires all samples from past faults
during the subsequent incremental phases to achieve high
performance. Overall, these works are still limited because
they depend on an engineered data representation. In this
direction, deep learning approaches have certain advantages
by learning task-specific features and classifiers from raw
signals. However, deep learning models can suffer from
catastrophic forgetting [16] when they are trained incre-
mentally, i.e., the tendency of a neural network to underfit
past classes when new ones are learned.

-is study presents an MCIL framework based on an 1D
CNN for fault detection in IMs. To tackle the catastrophic
forgetting problem, the presented framework employs a
memory containing representative exemplars from past data
and updates a 1D CNN model across incremental states,
using a fine-tuning procedure [16]. -e representative ex-
emplars from past (known) faults are selected using the
Herding method [17]. Next, nearest centroid classifier
(NCC) is used to classify test samples in each incremental
phase. By doing this, the proposed framework maintains a
constant model complexity while new classes appear each
time. We evaluated and validated the presented model over
two different study cases: (1) motor common faults diagnosis
and (2) bearing fault diagnostics. Experimental results show
that the proposed MCIL framework effectively incorporates
new faults on an 1D CNN, achieving a high accuracy per-
formance across different incremental phases.

2. Convolutional Neural Network

Convolutional neural network (CNN) is a biologically in-
spired artificial neural network that processes data with a

known grid-like topology [18]. CNN alternates convolution
and pooling layers, followed by a fully connected layer to
extract features and generate the desired output. Due to the
inherent one-dimensional signals obtained from a vibration
analysis in IMs, it has been preferable to deal with these
signals using one-dimensional models [9, 11]. -us, we first
describe 1D convolution operators, which are used in the
presented work. -en, we describe the complement layers
that integrate a convolutional network.

In its standard approach, CNN performs a set of con-
volutions between an input signal and some finite impulse
response (FIR) filters. -e convolution operation (∗ ) is
described as a weighted average of an input signal xi:

si � ki ∗ xi

� 􏽘
L− 1

j�0
ki− j · xj,

(1)

where si is called i-th feature map and k denotes a weighting
factor, called filter or kernel, with length L. -e kernels are
built to identify spatial features on the input data.-e output
from a convolutional layer defines the next layer’s activation
value.-en, the output s

(l)
i of a convolutional layer (l) at i-th

feature map is defined as follows:

s
(l)
i � σ 􏽘

L

j�1
K(l)

i,j ∗ x
(l− 1)
j + b(l)

i
⎛⎝ ⎞⎠, (2)

where K(l)
i,j denotes each local weighting factor of the kernel,

x(l− 1)
j represents the j-th feature map at the layer l − 1, L is
the number of filters applied over x(l− 1)

j , b(l)
i is the bias, and σ

is the activation function.
Most of the time, raw data contain noise and undesirable

spectral shapes that affect the feature extraction process [19].
Motivated from this issue, the SincNet layer [9, 20], an
extension of the standard convolution, applies a set of
temporal convolutions between a raw signal and digital
filters to boost the first convolutional layer output.

2.1. SincConvolution. Instead of learning the filters from the
data, as the conventional CNN, the SincNet [9, 20] performs
the convolution operation with a preset function g that
requires only a reduced set of learnable parameters Θs, as
defined in the following equation:

y[n] � x[n]∗g n,Θs􏼂 􏼃, (3)

where g is a filter bank for band-pass filter in the frequency
domain; it takes advantage of the Sinc function to convert to
time domain through the inverse Fourier transform [19]. -e
use of rectangular filters represents a practical selection to
define g. -emagnitudeΦ of a generic band-pass filter can be
described as the difference between two low-pass filters.

Φ f, fL, fH􏼂 􏼃 � rect
f

2fH

􏼠 􏼡 − rect
f

2fL

􏼠 􏼡, (4)

where Θs � fL, fH􏼈 􏼉 the set of the trainable parameters; fL

and fH represent low and high cutoff frequencies,
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respectively, of the band-pass filter learned by the Sinc filters.
rect(·) describes the rectangular function at the instant t as
follows:

rect(t) �
1, |t|≤ 0.5,

0, otherwise.
􏼨 (5)

Using the inverse Fourier transform, the reference
function g becomes

g n, fL, fH􏼂 􏼃 � 2fH · sin c 2πfHn( 􏼁 − 2fL · sin c 2πfLn( 􏼁,

(6)

where the Sinc function is defined as sinc(x) � sin(x)/x.
Finally, to achieve an approximation of the ideal band-pass
filter, a winnowing procedure is applied. -is procedure
multiplies the truncated function g with a window function
ω [21], intending to smooth out the abrupt discontinuities at
the ends of g:

gω n, fL, fH􏼂 􏼃 � g n, fL, fH􏼂 􏼃 · ω n, fL, fH􏼂 􏼃. (7)

-erefore, the succeeding layers learn the filter gain of
each actual layer.

2.2. PoolingLayers. -ese layers perform a downsampling to
reduce the spatial size of features, encouraging the input
data’s invariance to spatial translations. In particular, a max-
pooling layer reporting the j-th maximum element within a
rectangular frame for each feature map. Meanwhile, a global
average pooling (GAP) layer replaces the fully connected
layers in a CNNmodel [22], averaging the feature maps from
previous convolutional layers. GAP aims to force corre-
spondences between learned feature maps and classes in the
previous convolutional layers.

3. MCIL Methodology

LetX andY denote a feature and a label space, respectively.
Let D � (X,Y) � (xj, yj)􏽮 􏽯

N

j�1 be a labeled dataset with N

samples, where (X,Y) ∈ X × Y. In a classification problem,
a taskT consists in learning a labeling function G, such that
G: X⟶Y. Notice that G represents a deep neural net-
work with parameters Θ, so that Y � G(X;Θ). Likewise, G

can be expressed as a composition of two functions,
G � Gy ∘Gf, where Gf: X⟶Z is a feature extractor and
Gy: Z⟶ Y feature labeling with parameters Θf and Θy,
respectively; here, Z is a latent feature space. -e feature
extractor Gf takes X and produces a latent feature dataset Z.
-en, Gy receives Z as input and produces label classifi-
cations Y, i.e., Y � Gy(Gf(X;Θf);Θy).

We focus on multiclass incremental learning (MCIL)
where the model complexity is maintained constant during
N incremental states, while a reduced number of samples is
retained from past classes [13, 23]. We assume N + 1 phases,
that is, N incremental phases and one initial phase S0. A
model G0 is learned on a datasetD0 during the phase S0. Due
to this, we assume a memory limitation, all samples fromD0
cannot be stored, so that exemplars E0 are selected and

stored as a replacement of D0 with |E0|≪ |D0|. In the i-th
incremental phase, dataset Di from Ci classes is streamed,
whereas exemplars E0: i− 1 from phases 0 to i − 1 are stored in
memory. -e aim of MCIL is to learn a model G using
exemplars E0: i− 1 and data set Di.

Figure 1 shows the flowchart of the MCIL methodology
for fault detection in IMs. In the initial phase, a modelG, that
is 1D CNN, is trained via cross-entropy loss Lce on the
dataset D0, containing signals from different motor con-
ditions. Next, exemplars E0 are selected using Herding
method [17] over D0 in feature space, Z0 � Gf(D0). -e
nearest centroid classifier (NCC) is used to classify test
samples in the current phase using E0 as training set. In the
i-th incremental phase, the output layer from the CNN is
extended with randomly initialized weights for each new
class. -en, the 1D CNN is fine-tuned over Di and E0: i− 1
using cross-entropy lossLce; notice that imbalance data are
produced inDi ∪E0: i− 1 because E0: i− 1 contains a reduced set
of exemplars from past classes. -is procedure updates all
parameters Θ of 1D CNN. -e resulting trained model G in
phase i is used to extract features from Di and E0: i− 1.
Herding method is used to select the exemplar set Ei overDi

in feature space. -en, NCC uses E0: i as training set in
feature space to classify test samples. -is procedure is re-
peated over the different incremental phases.

3.1. CNN Architecture. -e 1D CNN architecture is shown
in Figure 2. 1D time-domain signals are used as inputs to the
1D CNN. One Sinc layer [9, 20] and two standard convo-
lution layers were incorporated into the feature extractor.
Conv a × b − c denotes the convolution layer of c filters with
a size a and a stride b. For the lower layers, large size filters
were employed to deal with high frequencies present in data.
We added max-pooling layers to reduce the spatial feature
dimensions. Likewise, a global average pooling layer is used
to reduce the spatial dimensions of the learned features. -e
output layer is extended for each new class with a random
initial value. -e softmax activation function is used at the
output layer to perform motor fault classification.

3.2. Exemplar Set Selection. -e exemplar set Ei is adjusted in
each incremental phase i using the Herding method [17], as
shown in Algorithm 1. -e exemplar selection is required
when training data are available. Feature representation from
dataset Di is obtained using the feature extractor Gf (line 2).
Each sample is normalized employing the L2 norm (line 3).
Notice that m exemplars are selected and stored iteratively for
each class (lines 5–7). One sample is added to the exemplar set
in each iteration, prioritizing that sample that makes the
average feature vector better approximate the mean vector.

3.3. Nearest Centroid Classifier. Nearest centroid classifier
(NCC) [24] is a nearest-neighbor classifier, which is used to
address the bias produced on new classes by training CNN
over imbalanced data. -e procedure followed by NCC is
described in Algorithm 2. First, feature representations from
exemplars E0: i are obtained using the feature extractor Gf
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(line 1). -e centroid is computed as the point from which
the sum of the distances of all exemplars that belong to that
particular class are minimized (lines 2–4). NCC assigns the
label of the most similar class centroid to the test sample xt

(line 5) as follows:

y∗ � arg min
c∈1,...,C

d pc, Gf xt( 􏼁􏼐 􏼑, (8)

where pc is the centroid vector for the class c, obtained from
exemplars E0: i; meanwhile, d is the Euclidean distance.

Phase 0 Phase 1 Phase 2 Phase i Phase N... ...

... ...

... ...

... ...

Dataset D0 Dataset D1 Dataset D2 Dataset Di Dataset DN

Train G (θ) using cross-
entropy Lce on D0

Fine-tuno model G (θ)
on D1 and E0

Fine-tuno model G (θ)
on D2 and E0:1

Fine-tuno model G (θ)
on Di and E0:i-1

Fine-tuno model G (θ)
on DN and E0:N-1

Select m exemplars EN
using Herding method

Select m exemplars Ei
using Herding method

Select m exemplars E2
using Herding method

Select m exemplars E1
using Herding method

Select m exemplars E0
using Herding method

Exemplars E0:NExemplars E0:iExemplars E0:2Exemplars E0:1Exemplars E0

Classify test samples
using NCC and E0

Classify test samples
using NCC and E0:1

Classify test samples
using NCC and E0:2

Classify test samples
using NCC and E0:i

Classify test samples
using NCC and E0:N

Figure 1: Flowchart of the presented methodology in order to train an incremental classifier for the fault detection in IMs.
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Figure 2: Architecture of the 1D CNN model.

Inputs: Xc � x1, . . . , xnc
􏽮 􏽯: dataset of class c; m: number of exemplars to select; Gf: feature extractor

Output: E: exemplar set
(1) Initialize E to the empty set {}
(2) Zc←Gf(Xc) \(⊳\) Get feature representations
(3) 􏽢Zc←Zc/‖Zc‖2 \(⊳\) L2 norm
(4) z←1/nc􏽐􏽢z∈ 􏽢Zc􏽢z \(⊳\) Get mean feature vector
(5) for k � 1, . . . , m do
(6) pk←argmin

􏽢z
∈ 􏽢Zc‖z − (1/k)[Gf(􏽢z) + 􏽐

k− 1
j�1Gf(pj)]‖2

(7) end for
(8) E← p1, . . . , pm􏼈 􏼉

ALGORITHM 1: Herding method.
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4. Experimental Setup

-is section first describes data from the different cases of
study used in multiclass incremental learning for motor fault
diagnosis. Next, the experimental protocol is described.
Finally, we present the implementation details of the MCIL
model.

4.1. Cases of Study. Our experiments were conducted on
two cases of study based on vibration analysis: (1) motor
common fault diagnosis and (2) bearing fault diagnosis.
For this, we used two public benchmark datasets: asyn-
chronous motor common fault (AMCF) [1] and Case
Western Reserve University (CWRU) [25]. Tables 1 and 2
present the description of the data acquisition and studied
faults for the AMCF and CWRU datasets, respectively. -e
AMCF dataset is composed of 8,000 samples from 8 motor
conditions (1,000 per class), where each sample contains
1,024 points. For the CWRU dataset, experiments were
performed under 1 hp workload. -is dataset contains
three types of fault locations in bearing (balls, inner race,
and outrace), showing fault diameters of 0.007, 0.014, and
0.021 inches. CWRU contains 10,000 samples from 10
different motor conditions (1,000 per class), including
health bearings.

4.2. Experimental Protocol. For each dataset, we evaluated
the proposed MCIL model starting from a pretrained CNN
over initial data of motor faults; meanwhile, the rest of the
data coming in different phases are used to train CNN in a
class-incremental way. First, we fix the number of stored
exemplars to the smallest memory size allowed, and after, the
number of incremental phases is varied. Next, we fix the
number of incremental phases to 6 and 8 for AMCF and
CWRU, while the number of exemplars per fault is varied
considering m � 5 and m � 10. In each incremental phase,
faults are given in a fixed random order; 80% of the data
samples in each class are used for training, and the
remaining 20% for testing, performing a stratified sampling.
-e final model in each incremental phase is used to classify
classes observed so far. Experiments were repeated five times
using different random initial weights, different partitions of
data, and a different fault order. We calculate the average
accuracy and standard deviation only for incremental states,
which are of interest forMCIL. Our comparison includes the
results of CNN employing all previous data available (Full)

and those using a fine-tuning procedure with a random
selection of exemplars (FT +R).

4.3. Implementation Details and Model Parameter Selection.
Table 3 presents the details of the 1D CNN model. We used
filters with a large (101), medium (51), and small (11) size to
learn features from raw signals. In addition, max-pooling
layers were used with a size and stride of 3 to reduce spatial
feature dimensions. -e 1D CNN model employs a total of
56,281 trainable parameters. -e 1D CNN model was
implemented in Pytorch 1.7.0, whereas NCC was obtained
from scikit-learn library (https://scikit-learn.org/stable/).
Experiments were performed using a PC Intel(R) Core (TM)
i7 with a graphic card GTX 1080 Nvidia on Ubuntu 20.04
LTS.

In our experiments, the 1D CNN model was trained by
Adam algorithm [26] during 40 and 30 epochs for the AMCF
and CWRU datasets, respectively. For both datasets, the
initial learning rate was set to 0.0001 at the initial phase,
whereas it was set to 0.001 for incremental phases. In ad-
dition, a learning decay of 0.1 was applied at 30 and 20
epochs. Likewise, a batch size of 30 was selected from {10, 30,
50} for both datasets. -is hyperparameter setting was se-
lected after comparing different configurations across 6 and
8 incremental phases on AMCF and CWRU; 5 exemplars
from each past class (known faults) were stored in memory.
For model parameter selection, we used coordinate descent
[27], which changes only one hyperparameter at a time,
aiming the best configuration. Fine-tuning and Herding
selection (FT+H) were used for CNN retraining and ex-
emplar selection in each incremental phase. Experimental
results, as shown in Table 4, indicate that the batch size has a
lower negative impact compared with learning rate. For both
datasets, the 1D CNN model achieves its highest average
accuracy when the learning rate is 0.001 and the batch size is
10 and 30.-is last value of batch size was selected because it
requires a lower number of iterations for data processing
during training. Finally, as shown in Figure 3, the 1D CNN
model stabilizes its training above 20 and 15 epochs on
AMCF and CWRU for the different incremental phases.
Using 40 and 30 epochs during training, we ensure a sta-
bilization of the 1D CNN model.

5. Results

5.1. Case 1:Motor Common Fault Diagnostics. Table 5 shows
the average accuracy and standard deviation (SD) on AMCF

Inputs: E0: i � p1, . . . ,pt􏼈 􏼉: exemplar set from phase 0 to i; Gf: feature extractor; xt: sample to be classified
Output: y∗: one hot vector of the class label; C: number of classes

(1) 􏽢Z←Gf(E0: i) \(⊳\) Get feature representations
(2) for c � 1, . . . , C do
(3) pc←argmin

p1∈􏽢Zc

􏽐
p2∈􏽢Zc

d(p1,p2)
(4) end for
(5) y∗←argminc∈1,...,C‖pc − Gf(xt)‖2 \(⊳\) nearest prototype

ALGORITHM 2: Nearest centroid classifier.
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using a different number of incremental phases and ex-
emplars. We observed that the most challenging scenario is
presented when one exemplar per fault is retained across
different incremental phases. Inversely, we can see that the
most straightforward scenario is presented when a greater
number of exemplars per fault is stored (m � 5 and m � 10).
Notice that the performance of FT +R (fine-tuning with a
random selection) dropped when m � 1 and the number of

incremental phases decreased. In this scenario, the proposed
MCIL framework (FT +NCC+H) obtained average accu-
racies beyond 94%, outperforming to FT+R at least 20
percentage points (pp). Moreover, we can see that
FT +NCC+H achieved average accuracies of 98.32% and
98.85% over 6 incremental phases and a number of exem-
plars m equal to 5 and 10, outperforming to FT+R by 5.07
and 3.79 pp.

Table 4: Accuracy results of 1D CNN on AMCF and CWRU datasets, using different batch sizes and learning rates.

Batch size Learning rate
AMCF 10 30 50 0.01 0.001 0.0001
1D CNN (FT+H) 94.97 ± 3.40 94.24 ± 3.96 91.20 ± 07.06 80.05 ± 08.33 94.24 ± 03.96 58.67 ± 14.14
CWRU
1D CNN (FT+H) 98.77 ± 0.83 98.78 ± 0.83 98.68 ± 01.09 66.42 ± 09.66 98.78 ± 00.83 87.58 ± 06.10
Best results are boldfaced for each setting.

Table 1: Description of the AMCF dataset.

Data acquisitions
Motor 4 hp YE2-100L2-4
Sensor type CT1020 L accelerometer
Signal
description

Vibration signals were collected using an acquisition card PCI-1716 with a sampling frequency of 250 kS/s, high-
resolution of 16 bits, and 16 SE/8 DI channels

Fault description

Type of fault
-e damages of the motors are as follows: short circuit of 2 turns (SC2T), short circuit of 4 turns (SC4T), short circuit of
4 turns (SC8T), air-gap eccentricity (AE), rotor bar broken (RBB), bearing cage broken (BCB), and bearing abrasion

fault (BAF)

Table 2: Description of the CWRU dataset.

Data acquisitions
Motor 2 hp reliance electric
Sensor type Accelerometers
Signal description Vibration signals were collected using a 16-channel DAT recorder. Digital data was collected at 12k samples/second
Fault description
Bearing 6205-2RS JEM SKF, deep groove ball bearing
Fault location Balls, inner race, and out race
Fault diameters 0.007, 0.014, and 0.021 inch

Table 3: Implementation details of the 1D CNN model.

Block Layer name Hyperparameters Number of trainable parameters

Input Sample input —
SincNet Filters � 30, size � 101, stride � 1 60

SincNet
Activation function ReLU —

Max-pooling Size � 3, stride � 3 —
Convolution 1D Filters � 30, size � 51, stride � 1 45,930

Conv1 Activation function ReLU —
Max-pooling Size � 3, stride � 3 —

Conv2 Convolution 1D Filters � 30, size � 11, stride � 1 9,930
Activation function ReLU —

GAP Global average pooling — —

Output Fully connected C units 361
Activation function Softmax —
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5.2. Case 2: Bearing Fault Diagnostics. Table 6 shows the
average accuracies and standard deviations (SD) on CWRU
using a different number of incremental phases and ex-
emplars. -e most challenging scenario is presented when
m � 1, where the performance of FT +R dropped when the
number of phases increased. In this scenario, FT+NCC+H
achieved average accuracies beyond 93%, outperforming
FT+R at least 6.27 pp. On the other hand, we observed that
FT +NCC+H outperformed FT+R by only 0.48 and 0.39
pp across 8 incremental phases, while the number of ex-
emplars is 5 and 10.

5.3. Ablation Studies

5.3.1. Effect of Each Component. We analyzed the impact of
each component to determine its contribution over the final
accuracy on AMCF and CWRU. Figure 4 shows the accuracy
performance on AMCF and CWRU during 6 and 8 incre-
mental phases, although one exemplar is retained in
memory. Notice that accuracy results of FTwithout memory
also were included. For both datasets, we observed that FT
reduces its accuracy performance over incremental phases if

memory is not available, suggesting the presence of the
catastrophic forgetting problem. We can see that fine-tuning
results significantly improved when memory is incorporated
(FT +H), storing representative samples from past faults.
Finally, notice that NCC also had a positive impact on the
final accuracy (FT +NCC+H) by reducing the bias gener-
ated by incorporating new faults.

5.3.2. Effect of the Number of Exemplars. Figure 5 shows the
impact on accuracy performance by varying the number of
exemplars per fault. We observed that FT +R improved its
results when the number of stored exemplars increased,
while FT +NCC+H obtained results above 96% starting
from 1 exemplar per class. We can see that FT +NCC+H
achieved a competitive performance (98.32% vs. 99.38%)
than training on full data, storing at least 5 exemplars per
fault, while FT+R became competitive by using more than
20 exemplars.

Regarding the CWRU results, we can see that the worst
performance is obtained when the number of stored ex-
emplars per class is 1. Moreover, FT+R and FT+NCC+H
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Figure 3: Accuracy performance of 1D CNN (FT+H) across different epochs. We show the accuracy performance for the different
incremental phases.

Table 5: Accuracies and standard deviations (SD) over AMCF using a different number of incremental phases and exemplars.

m � 1 Phases � 6
1 phase 3 phases 6 phases m � 5 m � 10

FT+R 55.40 ± 03.85 68.96 ± 14.63 75.66 ± 08.37 93.25 ± 03.67 95.06 ± 03.53
FT+NCC+H 96.70 ± 02.33 94.73 ± 02.03 96.22 ± 02.26 98.32 ± 00.91 98.85 ± 00.63
Full 99.38 ± 00.31
Best results are boldfaced for each setting.
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Figure 4: Impact of each component of FT +NCC+H on (a) AMCF and (b) CWRU across 6 and 8 incremental phases, retaining one
exemplar per fault. Accuracy results of FT without (w/o) memory also were included.
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Figure 5: Impact of the number of exemplars stored in memory: (a) AMCF and (b) CWRU.

Table 6: Average accuracy and standard deviation (SD) for MCIL methods over CWRU, using a different number of incremental phases of
exemplars.

m � 1 Phases � 8
1 phase 4 phases 8 phases m � 5 m � 10

FT+R 91.65 ± 03.40 83.90 ± 03.44 81.22 ± 04.22 98.65 ± 01.00 98.86 ± 00.96
FT+NCC+H 97.92 ± 01.18 94.77 ± 00.88 93.36 ± 01.96 99.13 ± 00.54 99.25 ± 00.39
Full 100.0 ± 0.00
Best results are boldfaced for each setting.
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increased their accuracy performance starting from 2
samples per fault. FT+NCC+H obtained an average ac-
curacy above 99%, storing at least 3 exemplars per fault,
while FT +R achieved the same performance above 5
exemplars.

5.3.3. Effect of the Herding Method for Exemplar Selection.
We studied the impact of the exemplar selection via Herding
and a random selection over the accuracy performance on
AMCF and CWRU. Figure 6 shows the accuracy perfor-
mances on AMCF and CWRU across 6 and 8 incremental
phases, while a different number of exemplars from past
faults are retained. For AMCF, we observed that the Herding
method (marked as +H) slightly improves the accuracy
performance over random selection (marked as +R) when 1
to 10 exemplars are retained. For CWRU, only improve-
ments can be seen when 2 to 5 exemplars are retained. We
observed that random selection obtained a similar or even
better performance than the herding method for the rest of
the cases.

5.3.4. Effect of Noise over the Proposed Framework. In order
to test the performance of the proposed framework under
different noise conditions, we applied additive white
Gaussian noise (AWGN) to the raw signals from the test
set; 6 and 8 incremental phases were used on AMCF and
CWRU, retaining 5 exemplars from past classes. Table 7
presents the classification results of FT +NCC +H under
three different noise levels; accuracy results of FT +H
(CNN trained incrementally) and the full model (CNN
using all data) were included as reference. As expected,
evaluated solutions reduced their average accuracy when
a lower noise level is applied. However, we can see that
FT +NCC +H obtained average accuracies beyond 92%
and 94% when an SNR � 5 is applied on signals from
AMCF and CWRU, respectively. For AMCF and CWRU,
FT +NCC +H obtained the best average accuracies when
SNR is 5 and 10, while it obtained a similar accuracy
performance compared with the full model when SNR
is 15.

5.3.5. Comparison of Classification Time. We analyzed the
classification times of our proposed framework
(FT+NCC+H) across different incremental phases; we
included times of FT +H (CNN trained incrementally) as
reference. For this experiment, 6 and 8 incremental phases
were used for AMCF and CWRU, although 5 exemplars
from each learned class were stored in memory. Table 8
shows the classification times for evaluated solutions. We
can see that times increased when new classes are added to
the 1D CNN classifier. Also, we observed that the times of
FT +NCC+H did not significantly increase with respect to
FT+H (CNN as classifier). From this, notice that NCC uses

a reduced number of exemplars from past and current faults
as training set.

6. Discussion

In experiments, we evaluated and validated the proposed
MCIL framework on two different cases of study for motor
fault detection in IMs. -e evaluation was performed under
scenarios where data from new faults are streamed in dif-
ferent time phases. From the results, we found that theMCIL
framework allows the incorporation and detection of past
and new motor faults from vibration signals with high ac-
curacy across different incremental phases. Unlike previous
works [14, 15], one or more faults can be added to the 1D
CNN model in each incremental phase. Notice that com-
putational requirements andmemory should be bounded. In
this sense, the proposed MCIL framework maintains a
constant complexity while a few samples from past faults are
retained. To the best of our knowledge, this is the first work
that studies MCIL, based on a deep learning approach, for
fault diagnosis in IMs from vibration signals.

From ablation studies, we observed that a neural net-
work model tends to forget previously learned faults. -is
problem is known as catastrophic forgetting, which is
produced by incorporating new faults into a pretrained
model in a sequential way. In this direction, we found that
the fine-tuning procedure with a memory of exemplars and
the NCC classifier provides an effective solution to tackle the
catastrophic forgetting problem [16] for fault diagnosis in
IMs. As expected, the average accuracies of evaluated so-
lutions significantly improved when the number of retained
exemplars in memory increased. Notice that results on
AMCF showed that at least 5 exemplars per fault are re-
quired across 6 incremental phases to achieve a competitive
accuracy than training on full data. Also, we found that at
least 3 exemplars were required across 8 incremental phases
to obtain a similar performance using all data on CWRU.
Notice that this amount of stored exemplars per fault
represents approximately 1% of the size of the training set.
Moreover, AMCF results showed that a greater number of
incremental phases do not negatively impact the accuracy
performance of the 1D CNN model; CWRU results showed
that a greater number of incremental phases negatively
impact the MCIL model’s accuracy performance. Con-
cerning to the exemplar selection, we found that the herding
method slightly improved over the accuracy results than
using a random selection when a few exemplars are retained,
but similar or even worst results were obtained in other
cases. Regarding noise conditions, we found that
FT +NCC+H provides a robustness to disturbances in
signals, outperforming to the full model in accuracy per-
formance for SNRs with low values. In particular, we found
that NCC helps to face such disturbances in signals. Finally,
we found that NCC does not increase the classification time
because a reduced number of samples are used as training
set.
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Figure 6: Impact of the herding method for exemplar selection on (a) AMCF and (b) CWRU. Herding method is marked as +H, whereas a
random selection is marked as +R.

Table 8: Classification time (seconds) across different incremental phases.

AMCF
Incremental phases FT+H FT+NCC+H
Initial 0.1092 0.1084
1 0.1173 0.1386
2 0.1340 0.1443
3 0.1403 0.1588
4 0.1652 0.1704
5 0.1677 0.1862
6 0.1905 0.2034
CWRU
Incremental phases FT+H FT+NCC+H
Initial 0.1087 0.1067
1 0.1129 0.1240
2 0.1308 0.1336
3 0.1462 0.1498
4 0.1555 0.1669
5 0.1590 0.1821
6 0.1836 0.2077
7 0.2011 0.2164
8 0.2093 0.2355

Table 7: Accuracy performances and standard deviations for evaluated solutions under different noise levels on AMCF and CWRU.

SNR
5 10 15

AMCF
Full 74.21 ± 00.91 94.41 ± 01.70 99.45 ± 00.21
FT+H 85.68 ± 03.37 93.55 ± 04.14 94.96 ± 03.32
FT+NCC+H 92.51 ± 03.22 98.15 ± 01.03 98.39 ± 00.89
CWRU
Full 70.16 ± 06.18 96.20 ± 01.13 99.81 ± 00.07
FT+H 77.74 ± 07.08 93.25 ± 02.84 97.33 ± 01.62
FT+NCC+H 94.35 ± 04.49 98.77 ± 01.03 98.92 ± 00.89
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7. Conclusions

-is study presents a MCIL framework based on fine-tuning
with a memory of exemplars and the nearest centroid
classifier (NCC) over an 1D convolutional neural network
(CNN), to incorporate new motor faults from vibration
signals to already known. Specifically, 1D CNN is fine-tuned
over samples from new faults and exemplars from known
(past) faults, whereas NCC is used during testing phase to
classify samples from past and new faults. -e proposed
framework was evaluated over two datasets for motor fault
diagnosis: AMCF and CWRU. Different experimental sce-
narios were considered, including different numbers of
incremental phases and stored exemplars. Experiments
showed that the proposed framework achieved an accuracy
performance beyond 93% and 94% on AMCF and CWRU,
retaining one exemplar per fault and varying the number of
incremental phases. We found that 5 and 3 exemplars per
fault across 6 and 8 phases on AMCF and CWRU are re-
quired to achieve competitive accuracy than training with
full data (98.32% vs. 99.38% and 99% vs. 100.00%). -ese
results suggest that the catastrophic forgetting problem can
be reduced by the proposed framework over AMCF and
CWRU. Another interesting finding is that NCCmay help to
obtain a robust classifier when noise is presented in data.
Using this proposed framework, we showed that a classifier,
based on a deep learning model, may be trained incre-
mentally, achieving satisfactory diagnosis results for fault
detection in IMs and maintaining a constant complexity of
the model. As future work, we are interested in developing
an end-to-endMCIL framework, where the feature extractor
and the classifier can be trained jointly. Likewise, we are
planning to extend our study for the diagnostic of incipient
and electrical faults.
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(is paper proposes a fault diagnosis method for miniature DC motors (MDCMs) in the presence of the uncertainties caused by
material and random factors of the production process. In this method, the probability models of fault multiple features are
established based on the advantage criterion of the maximum overall average membership to determine the distribution of fault
multiple features.(e fault diagnosis algorithm is synthesized to obtain the threshold ranges of fault multiple features according to
different confidence levels. Experimental test results are presented and analyzed to validate the efficiency and performance of the
proposed fault diagnosis method.

1. Introduction

Due to their small size, lightweight, and easy control,
miniature DC motors (MDCMs) are widely used in the
industrial fields of home appliances, office automation,
automotive parts, etc. [1]. In these applications, the efficient
and reliable operation of MDCMs is increasingly important.
However, the factory quality inspection of MDCMs mainly
relies on the manual experience, which leads to low pro-
duction efficiency, heavy workload, and missed inspection
[2]. (erefore, the effective motor fault detection technology
on the production line is crucial for the factory quality of
MDCMs.

Generally, there are four main techniques for the motor
fault diagnosis, which are classified into the signal-based,
model-based, data-based, and indicator-based method
classes [3, 4]. (e signal-based method uses sensor equip-
ment to measure the diagnostic signals of the motor, such as
current [5], vibration [6], acoustic [7], and thermal [8], and
the fault type is detected by comparing and analyzing the
diagnostic signals. Measurements of the acoustic signal,
vibration signal, and thermal signal are noninvasive. (e
motor current signature analysis (MCSA) has been suc-
cessfully applied to the fault diagnosis of DC motors and

induction motors, especially under steady-state conditions
and rated load [9]. However, the signal-based method re-
quires a large number of sensing devices.

(e model-based method relies on the theoretical
analysis of the motor, which key is to establish the motor
model under the fault condition [3]. (e motor fault can be
detected by comparing the actual parameters with the
estimated parameters of the properly functioning motor.
Residual analysis and suitable signal processing are used to
define the fault indicators [3]. Winding function approach
[10], dynamic mesh reluctance approach [3], and finite
element approach [11] were used to model. (e available
models are nice analytical tools predicting motor behavior,
but their parameters are not easily determined. (e least-
squares (LS) method [11, 12], fully decoupled parity
equation [13], and universal adaptive stabilizer [14] were
used to estimate the motor parameters. Since the motor
faults generally change multiple electromechanical pa-
rameters, it is difficult to establish a fault prediction model
of the complex fault systems.

(e data-based method is a powerful tool to improve the
effectiveness and reliability of the diagnosis since it does not
require any knowledge about motor parameters and models
[3, 4]. Artificial intelligence techniques are widely used in the
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data-based method, which need to use the healthy and faulty
motor data for feature extraction and classification. Several
artificial intelligence techniques, such as neural networks
[15, 16], support vector machine [15], fuzzy logic [17], expert
system networks [18], deep learning [19], and algorithms [20],
have been developed to detect the motor faults. (e combi-
nations of the above techniques have been reported in the
literature. (e convolutional neural network (CNN) was used
for extracting features, and then the support vector machine
[21] and deep transfer learning [22] were used to diagnose
faults.(e application of artificial intelligence techniques in the
motor fault diagnosis can promote the automation of the
diagnostic process. However, these methods require a large set
of training samples [23], and the generalization performance of
artificial intelligence techniques has limitations.

(e indicator-based method is to compare the measured
value with the indicator threshold, which is a widely used
fault diagnosis method. An and Li [24] proposed the per-
mutation entropy of the reconstructed signal as the fault
feature of piezoelectric ceramics. Jafari et al. [25] established
four different indices and used the well-established Otsu
thresholding technique to set the index thresholds for fault
diagnosis. Ali and Liang [26] used d8 for the fault indicator,
and the indicator threshold was determined using the
universal threshold technique. Irfan et al. [27] designed an
adaptive threshold scheme using the statistical decision
theory. An accurate indicator threshold is essential for the
indicator-based method. In addition, in the manufacturing
process of MDCMs, various uncontrollable factors (material
nonlinearity and random factors of the production process)
lead to uncertainties of the MDCM output performance.
(erefore, a fixed indicator threshold is difficult to apply to
the fault diagnosis of the MDCM.

Fault diagnosis methods of the MDCM need to con-
sider the uncertainty of the production process. Wang et al.
[23] used a probability modeling approach for photovoltaic
fault diagnosis to solve the problems of the nonlinearity
and uncertainty of the PV array output interval. Liu et al.
[28] proposed a failure probability calculation method for
power equipment based on multicharacteristic parameters.
Li et al. [29] proposed an adaptive dynamic update model
of the equipment alarm threshold based on a similar
proportion and state probability model. Wen and Gao [30]
estimated the probability distribution of health indicator
points, and the deterioration of the ball screw is evaluated
by the probability distribution. (e probability density
function of fault indicators can be determined using the
error comparison method [23] and kernel density esti-
mation [29, 30].

However, the probabilistic fault diagnoses of DC motors
have not been considered in the previous studies. (is paper
proposes a novel solution to apply a fault diagnosis method
for the MDCM by incorporating the probability modeling
and the advantage criterion of the maximum overall average
membership.

(e novelties and contributions of this paper are sum-
marized as follows:

(1) Proposing the advantage criterion of the maximum
overall average membership to determine the opti-
mal fitting distribution, which cannot be handled by
the traditional hypothesis test

(2) Designing a fault diagnosis algorithm based on
probability modeling to deal with the uncertainties
caused by material and random factors of the pro-
duction process, improving the accuracy of MDCM
fault diagnosis

(3) Designing the diagnostic test platform of MDCMs to
validate the performance of the proposed fault di-
agnosis method

(e rest of this paper is arranged as follows: in Section 2, the
structure of theMDCM and data sources are described in detail.
In Section 3, the probability models of fault multiple features are
established using the advantage criterion of the maximum
overall average membership, and the fault diagnosis method is
discussed in detail, which is verified in Section 4. Section 5
summarizes this paper and outlines future research directions.

2. Data Acquisition

2.1. Structure of the MDCM. Figure 1 shows the schematic
diagram of the MDCM discussed in this paper. (e MDCM
consists of a rotor and a stator (Figure 1(a)). (e stator is
equipped with a ring permanent magnet, and the rotor
consists of three coil windings which are wounded on three
teeth [31]. (e motor windings are connected by a triangle
connection (Figure 1(b)). (e parameters of a healthy
MDCM used for testing are listed in Table 1.

2.2. Data Sources. By analyzing and solving the mathe-
matical model of the MDCM, the fault multiple features,
namely, DC component (Pdc), frequency point (fm), am-
plitude of frequency point (Pf ), and spectrum area (A), were
proposed to diagnose motor faults in [2]. Figure 2 shows the
structure diagram of data acquisition of the MDCM with no
load. After preamplification, low-pass filtering, analog-to-
digital (A/D) converter, and fast Fourier transform (FFT)
conversion, the frequency domain data of fault multiple
features (Pdc, fm, Pf, and A) can be obtained by the data
statistics [2]. In this paper, the healthy motor (HM), the
interturn short fault motor (ISFM), the open winding fault
motor (OWFM), the winding desoldering fault motor
(WDFM), and the abnormal magnet loop fault motor
(AMFM) were studied. 110 healthy motors and 60 motors
(Xiamen Dazhen Electric Co., Ltd.) with each fault type were
randomly selected as experimental samples.

3. Fault Diagnosis Method

3.1. Maximum Overall Average Membership Advantage
Criterion. (e advantage criterion of the maximum overall
average membership was used to determine the distribution
of the fault multiple features [32, 33]. (e key to the
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advantage criterion of the maximum overall average
membership is to construct membership functions.

Step 1. Determine the membership function.
Let the domain of the fault multiple features’ distri-

bution model be U, and 􏽥A1, 􏽥A2, 􏽥A3, and 􏽥A4 denote the
normal distribution, exponential distribution, Weibull
distribution, and lognormal distribution, respectively.
(ey are the fuzzy subset of F(U). Y is a sample of U,
Y � y1, y2, . . . , yn􏼈 􏼉

T, where n is the number of motor
samples. (e membership function μ􏽥Ai

(yj) (i � 1, 2, 3, 4)

represents the fuzzy membership degree of the yjth index
in the sample Y to the fuzzy subset 􏽥Ai. (e normalization
of μ􏽥Ai

(yj) is as follows:

μ􏽥A1
yj􏼐 􏼑 + μ􏽥A2

yj􏼐 􏼑 + μ􏽥A3
yj􏼐 􏼑 + μ􏽥A4

yj􏼐 􏼑 � 1,

j � 1, 2, . . . , n.
(1)

Normal distribution membership function μ􏽥A1
(yj) is

expressed as

μ􏽥A1
yj􏼐 􏼑 �

F1 yj􏼐 􏼑

F1 yj􏼐 􏼑 + F2 yj􏼐 􏼑 + F3 yj􏼐 􏼑 + F4 yj􏼐 􏼑
, (2)

where

F1 yj􏼐 􏼑 � 1 − ∅
yj − μ
σ

􏼒 􏼓 − F yj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

∅
yj − μ
σ

􏼒 􏼓 � 􏽚
yj − μ/σ

− ∞

1
���
2π

√ e
− t2/2dt,

F2 yj􏼐 􏼑 � 1 − 1 − e
− yj/λ − F yj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

F3 yj􏼐 􏼑 � 1 − 1 − e
− yj/η( 􏼁

β

− F yj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

F4 yj􏼐 􏼑 � 1 − ∅
lnyj − μl

σl

􏼠 􏼡 − F yj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

∅
lnyj − μl

σl

􏼠 􏼡 � 􏽚
nyj− μl/σl

− ∞

1
���
2π

√ e
− t2/2dt,

(3)

where ∅(yj − μ/σ) and F(yj) are the distribution function
of the normal distribution and the empirical cumulative
distribution function of the sample data, respectively.
Parameters σ and μ are estimated from the sample data.
1 − e− yj/λ is the distribution function of the exponential
distribution, and the parameter λ is estimated from the
sample data. 1 − e− (yj/η)m

is the distribution function of the
Weibull distribution, and the parameters η and m are
estimated from the sample data. ∅(lnyj − μ/σ) is the
distribution function of the lognormal distribution, and the
parameters σl and μl are estimated from the sample data.

Exponential distribution membership function μ􏽥A2
(yj)

is expressed as

μ􏽥A2
yj􏼐 􏼑 �

F2 yj􏼐 􏼑

F1 yj􏼐 􏼑 + F2 yj􏼐 􏼑 + F3 yj􏼐 􏼑 + F4 yj􏼐 􏼑
. (4)

Weibull distribution membership function μ􏽥A3
(yj) is

expressed as

μ􏽥A3
yj􏼐 􏼑 �

F3 yj􏼐 􏼑

F1 yj􏼐 􏼑 + F2 yj􏼐 􏼑 + F3 yj􏼐 􏼑 + F4 yj􏼐 􏼑
. (5)

N
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Coil winding

(a)
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N NS

Pole pitch

Pitch

(b)

Figure 1: Schematic diagram of the MDCM: (a) structure of the MDCM; (b) coil winding diagram.

Table 1: Main parameters of a healthy MDCM.

Motor parameters Values
Rated voltage 5.0V DC
No load current 45mA max
No load speed 5400–6700 r/min
Phase resistance of the winding 18Ω
Moment of inertia 2.668×10–7 kgm2

Damping coefficient 4×10− 7

Number of poles 2
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Logarithmic normal distribution membership function
μ􏽥A4

(yj) is expressed as

μ􏽥A4
yj􏼐 􏼑 �

F4 yj􏼐 􏼑

F1 yj􏼐 􏼑 + F2 yj􏼐 􏼑 + F3 yj􏼐 􏼑 + F4 yj􏼐 􏼑
. (6)

Step 2. Calculate the local membership advantage.
(e local membership advantage Δμ􏽥Ai

(xj) is defined as

Δμ􏽥Ai

xj􏼐 􏼑 � μ(i)

􏽥Ak

yj􏼐 􏼑 − min μ􏽥Ai

yj􏼐 􏼑􏼚 􏼛,

i � 1, 2, 3, 4; j � 1, 2, . . . , n,

(7)

where μ(i)

􏽥Ak

(yj) represents the new sequence of μ􏽥Ai

(yj) sorted
from the largest to the smallest. k represents the sort of the
new sequence, and i represents the sort of the original
sequence.

Step 3. Calculate the overall average membership advantage.
(e overall average membership advantage μ􏽥Ai

(Y) is
defined as

μ􏽥Ai

(Y) �
1
n

􏽘

n

j�1
Δμ􏽥Ai

yj􏼐 􏼑, i � 1, 2, 3, 4. (8)

Step 4. Calculate the maximum overall average membership
advantage.

(e maximum overall average membership advantage
μ􏽥A

(Y) is defined as

μ􏽥A
(Y) � max μ􏽥A1

(Y), μ􏽥A2
(Y), μ􏽥A3

(Y), μ􏽥A4
(Y)􏼚 􏼛. (9)

3.2. Distribution Characteristics of Fault Multiple Features.
Figure 3 shows the process of determining the distribution of
fault multiple features. (e maximum likelihood estimation
method was used to estimate the parameters of the hypo-
thetical distribution of fault multiple features.(e advantage
criterion of the maximum overall average membership was
used to determine the distribution type of fault multiple
features. (e overall average membership advantage μ􏽥Ai

(Y)

of fault multiple features was calculated based on the ex-
perimental data. (e results of the hypothetical distribution
of the fault multiple features are shown in Table 2. Because
the resolution of the current spectrum is 40Hz and the data
interval of fm is narrow, fm does not meet any hypothetical
distribution. (erefore, it is not necessary to confirm its
distribution using the advantage criterion of the maximum
overall average membership.
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Figure 2: Data acquisition of the MDCM.
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It can be seen from Table 2 that μ􏽥A4
(Y) of Pdc is the

largest among all of them for HM, and it obeys lognormal
distribution according to the advantage criterion of the
maximum overall average membership. Pf and A obey the
Weibull distribution and lognormal distribution, respec-
tively. For ISFM, OWFM, WDFM, and AMFM, the process
of determining the distribution of fault multiple features is
similar to that of HM.

3.3. Probability Density Function of Fault Multiple Features.
(e probability density functions of the fault multiple fea-
tures for HM, ISFM, OWFM, WDFM, and AMFM are
shown in Table 3. It can be seen from Table 3 that the fault
multiple features obey normal distribution, lognormal dis-
tribution, and Weibull distribution, respectively.

(e probability density function diagrams of the fault
multiple features in different conditions are shown in

Obtain fault multiple
features data

Determine four membership
function μ~Ai

 (yj)

Calculate the local membership
advantage ∆μ~Ai

 (xj)

Calculate the overall average
membership advantage μ~Ai

 (Y)

Calculate the maximum overall
average membership advantage

μ~Ai
 (Y)

Determine the distribution
type of fault multiple features

μ~Ai
 (Y) = max {μ~A1

 (Y), μ~A2
 (Y), μ~A3

 (Y), μ~A4
 (Y)}

μ~Ai
 (Y) = (1/n) n

j=1 ∆μ~Ai
 (yj)

∆μ~Ai
 (xj) = μ~Ak

 (Yj) – min {μ~Ai
 (yj)}(i)

∆μ~Ai
 (yj) = (Fi (yj))/(F1 (yj)+F2 (yj)+F3 (yj)+F4 (yj))

{yj|yj ∈ Y, j = 1, 2, ..., n}

Figure 3: (e flowchart of determining the distribution of fault multiple features.

Table 2: Results of the hypothetical distribution.

Type of fault Indicators
Hypothetical distribution

Normal Exponential Weibull Lognormal
μ, σ μ􏽥A1

(Y) λ μ􏽥A2
(Y) η, β μ􏽥A3

(Y) μl, σl μ􏽥A4
(Y)

HM
Pdc 893.82, 59.98 0.0667 893.82 0.0009 922.32, 15.07 0.0607 6.79, 0.067 0.0673
Pf 222.16, 35.44 0.0562 222.16 0.0010 237.08, 7.27 0.0580 5.39, 0.166 0.0531
A 809.02, 200.36 0.0484 809.02 0.0011 887.39, 4.38 0.0472 6.67, 0.250 0.0487

ISFM
Pdc 2103.8, 84.30 0.0674 2103.8 0.0026 2144.8, 24.6 0.0609 7.65, 0.040 0.0679
Pf 1050.22, 54.76 0.0669 1050.22 0.0005 1075.34, 21.94 0.0650 6.96, 0.053 0.065
A 5632.8, 148.47 0.0709 5632.8 0.0011 688.19, 11.09 0.0643 8.64, 0.026 0.0622

OWFM
Pdc 661.78, 56.39 0.0631 659.58 0.0003 679.73, 16.19 0.0546 6.49, 0.084 0.065
Pf 185.92, 23.38 0.0613 185.92 0.0003 196.12, 8.98 0.0589 5.22, 0.129 0.0599
A 861.74, 53.19 0.0659 861.74 0.0017 887.19, 15.60 0.0580 6.76, 0.061 0.0647

WDFM
Pdc 915.66, 58.57 0.0657 915.66 0.0021 943.87, 14.56 0.0562 6.82, 0.063 0.0654
Pf 1355.33, 70.9 0.0686 1355.33 0.0019 1389.57, 18.92 0.0618 7.21, 0.052 0.0696
A 9780.93, 228.4 0.0701 9780.93 0.0022 9895.76, 39.81 0.0609 9.19, 0.023 0.0648

AMFM
Pdc 1072.4, 97.79 0.0627 1072.4 0.0005 1117, 11.8 0.0607 6.97, 0.092 0.0621
Pf 380.54, 31.72 0.0629 380.54 0.0004 394.56, 14.60 0.0638 5.94, 0.085 0.0622
A 2662.9, 139.8 0.0667 2662.9 0.0025 2730.83, 18.72 0.0604 7.89, 0.052 0.063
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Figure 4. (e characteristics of the probability density
function are summarized as follows:

(1) (e distribution of each fault multiple feature
changes with the type of fault.

(2) (ere is no obvious regularity in the distribution of
fault multiple features.

(3) It can clearly distinguish HM, ISFM, and WDFM
using fault multiple features.

(4) (e probability density curves of HM and OWFM
have overlapping areas. (rough the setting
threshold range of Pdc, it is possible to distinguish
between HM and OWFM.

3.4. 8reshold of Fault Multiple Features. (e probability
distribution of fault multiple features with different fault
types was determined using the probability statistics and the
advantage criterion of the maximum overall average
membership. (e threshold range of fault multiple features
with different fault types can be calculated by the following
equation:

P tl ≤x≤ tu􏼈 􏼉 � 􏽚
tu

tl

f(x)dx � 1 − α, (10)

where tl and tu are the lower and upper bounds of the
threshold range, f(x) is the probability density function of
each fault multiple feature, and (1 − α) is the confidence
level.

By comparing the threshold range of fault multiple
features with different confidence levels, the optimal con-
fidence level of fault multiple features was determined. (e
confidence levels of fault multiple features were set to 95%,
90%, 85%, and 80%, and the performance of different
confidence levels was discussed. As shown in Figure 5, the
threshold ranges of fault multiple features with different
confidence levels were calculated. As can be seen from
Figure 5, the larger the confidence level setting is, the larger
the upper bound of the threshold range is and the smaller the
lower bound of the threshold range is. It means that, as the
confidence level increases, the threshold range becomes
larger.

Table 4 shows the overbound rates for different
confidence levels which can be used as a reference for the
threshold range setting of the fault multiple features. It
can be seen from Table 4 that the smaller the confidence
level is, the larger the overbound rates’ data and

overbound rates are. In order to avoid a faulty motor
being misjudged as a HM, the confidence level of fault
diagnosis for the HM was set to 90%, and the confidence
level of the faulty motor was set to 95% according to the
results in Figure 4 and Table 4. (e threshold ranges of the
HM with a confidence level of 90% were calculated by
equation (10) as shown in Figure 6.

By modeling the probability distribution of fault indi-
cators in different fault conditions, the threshold ranges of
fault multiple features with a confidence level of 90% were
calculated by equation (10). Figure 7 shows the threshold
ranges of the ISFMwith a confidence level of 95%.(e upper
and lower bounds of the threshold ranges for each fault
multiple feature are shown in Table 5, in which
fm � kcpn/60, where k, c, p, and n are the number of
commutators, the coefficient determined by the number of
commutators, the number of pole pairs, and the rotational
speed, respectively. (e speed range of the HM is
5400–6700 r/min, so the threshold range of fm is [540, 670].
Similarly, the threshold ranges of fm for other faulty motors
are shown in Table 5. It can be seen from Table 5 that the
threshold ranges of PDC of the HM and PDC of the OWFMdo
not overlap, and the HM and the OWFM can be diagnosed.

3.5. Fault Diagnosis Algorithm. (e fault classification in-
dicator di(m) was defined to measure the membership
degree of the tested motor (m) belonging to the ith motor
type (HM, ISFM, OWFM, WDFM, and AMFM), and it can
be calculated by the following equation:

di(m) � 􏽙

j�4

j�1
uij mj􏼐 􏼑, (i � 1, 2, 3, 4, 5; j � 1, 2, 3, 4),

(11)

where mj is the jth fault multiple features of the tested motor
m. uij(mj) reflects whether mj is in the threshold range of
the ith motor type, and it can be calculated by the following
equation:

uij mj􏼐 􏼑 �
1, t

l
ij ≤ mj ≤ t

u
ij,

0, mj ≤ t
l
ij ormj ≥ t

u
ij,

⎧⎪⎨

⎪⎩
(12)

where tl
ij and tu

ij are the lower and upper bound of the
threshold range of the jth fault multiple features for the ith
motor type (Table 4). According to equation (13), the tested
motor was classified.

Table 3: Probability density function of the fault multiple features.

Type of fault Pdc Pf A
HM 1/

���
2π

√
× 0.067xe− (lnx− 6.79)2/2×0.0672 7.27/237.08(x/237.08)6.27e− (x/237.08)7.27

1/
���
2π

√
× 0.025xe− (lnx− 6.67)2/2×0.0252

ISFM 1/
���
2π

√
× 0.04xe− (lnx− 7.65)2/2×0.042 1/

���
2π

√
× 54.76e− (x− 1050.22)2/2×54.762 1/

���
2π

√
× 148.47e− (x− 5632.8)2/2×148.472

OWFM 1/
���
2π

√
× 0.084xe− (lnx− 6.49)2/2×0.0842 1/

���
2π

√
× 23.38e− (x− 185.92)2/2×23.382 1/

���
2π

√
× 53.19e− (x− 861.74)2/2×53.192

WDFM 1/
���
2π

√
× 58.57e− (x− 915.66)2/2×58.572 1/

���
2π

√
× 0.052xe− (lnx− 7.21)2/2×0.0522 1/

���
2π

√
× 0228.4e− (x− 9780.93)2/2×0228.42

AMFM 1/
���
2π

√
× 97.79e− (x− 1072.4)2/2×97.792 14.6/394.56(x/394.56)13.6e− (x/394.56)14.6

1/
���
2π

√
× 139.8e− (x− 2662.9)2/2×139.82
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If d1(m) � 1, then the testedmotor is aHM,

if d2(m) � 1, then the tested motor is a ISFM,

if d3(m) � 1, then the tested motor is anOWFM,

if d4(m) � 1, then the testedmotor is aW DF M,

if d5(m) � 1, then the testedmotor is aAMFM.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

3.6. Steps of the Fault Diagnosis Method. Based on the above
analysis, the MDCM fault diagnosis method is proposed and
shown in Figure 8. (e steps of the proposed fault diagnosis
method can be summarized as follows.

Step 1. Data acquisition.
(e armature currents are processed by a preamplifier,
a low-pass filter, an A/D converter, and FFT

transformation, and the values of fault multiple features
are obtained.
Step 2. Confirm the probabilistic model.
Build the probability distribution model of fault
multiple features, calculate the overall average
membership advantage of each fault multiple fea-
ture, and then determine the probabilistic model of
each fault multiple feature based on the advantage
criterion of the maximum overall average
membership.
Step 3. Calculate threshold ranges.
Calculate the threshold ranges of each fault multiple
feature using the probability model.
Step 4. Fault diagnosis.
Calculate the fault classification indicator, and then
give the fault diagnosis result of the tested motor based
on the fault diagnosis algorithm.
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Figure 4: Probability density functions of the fault multiple features in different conditions.

Shock and Vibration 7



4. Performance Analysis of the Fault
Diagnosis Method

4.1. Diagnostic Device. In order to verify the validity of the
fault diagnosis method, the fault diagnosis experiments were
performed. (e diagnostic device of MDCMs is shown in
Figure 9, which mainly includes the data collection and
processing module, the microprocessing module, and the
LCD display module. (e function of the signal acquisition
and processing module is to amplify the current signal and
remove the high-frequency noise generated by the com-
mutation. (e STM32F107VCT chip is selected as the

processor of the microprocessor module, which mainly plays
the role of A/D sampling, FFT transformation, and fault
diagnosis. (e LCD display module mainly displays the fault
multiple feature values and diagnosis results. 100 healthy
motors and 30 motors (Xiamen Dazhen Electric Co., Ltd.)
with each fault type were selected to test the proposed
method.

4.2. Diagnostic Results. (e fault diagnosis results of motors
with different faults are shown in Table 6. Table 6 shows that
one of the 100 HMs is misjudged as other faults, and the
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Figure 5: (reshold range of fault multiple features with different confidence levels: (a) Pdc, (b) Pf, and (c) A.

8 Shock and Vibration



accuracy rate of HM is 99%. (e reason is that the confi-
dence level of HM was set to 90%, and the threshold ranges
of fault multiple features were narrowed accordingly. From
Table 6, the accuracy rate of ISFM, OWFM, WDFM, and

AMFM is, respectively, 96.67%, 96.67%, 100%, and 93.33%,
and the faulty motor has not been diagnosed as the healthy
motor. (e reason is that the confidence levels of ISFM,
OWFM, WDFM, and AMFM were all set to 95%.

Table 4: Overbound rates for different confidence levels.

Confidence level (%) Fault multiple features HM (%) ISFM (%) OWFM (%) WDFM (%) AMFM (%)

95
Pdc 2.73 5.00 3.33 6.67 3.33
Pf 2.73 6.67 5.00 3.33 1.67
A 0.91 6.67 6.67 6.67 3.33

90
Pdc 10.91 10.00 3.33 8.33 5.00
Pf 7.27 11.67 10.00 8.33 11.67
A 8.18 8.33 10.00 10.00 6.67

85
Pdc 16.36 11.67 6.67 10.00 13.33
Pf 13.64 16.67 16.67 15.00 18.33
A 17.27 10.00 13.33 11.67 16.67

80
Pdc 20.00 15.00 10.00 13.33 25.00
Pf 24.55 21.67 23.33 20.00 26.67
A 25.45 13.33 15.00 16.67 20.00

(992.48,0.95) 
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Table 5: (reshold of the fault multiple features in different conditions.

Type of fault
Pdc fm Pf A

tl
1 tu

1 tl
2 tu

2 tl
3 tu

3 tl
4 tu

4

HM 796.16 992.48 540.00 670.00 157.57 275.70 522.58 1189.41
ISFM 1942.24 2271.96 160.00 240.00 942.89 1157.55 5341.81 5923.80
OWFM 558.56 776.38 560.00 600.00 140.10 231.74 757.49 965.99
WDFM 800.86 1030.46 160.00 200.00 1221.80 1498.05 9333.27 1022.86
AMFM 880.73 1264.07 600.00 680.00 306.73 431.46 2388.89 2936.90
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To further calculate the diagnostic accuracy of the
proposed method, 3000 motors were randomly selected
from the production line, and the diagnostic accuracy of
motors is calculated and shown in Table 7. It can be seen
fromTable 7 that the accuracy rate of HMs is 99.76%, and the
faulty motor has not been diagnosed as the healthy motor. It
means that the proposedmethod can be applied to themotor
factory testing.

5. Conclusions

(is paper proposes a probability modeling approach by the
threshold ranges of each fault multiple feature. By calcu-
lating the overall average membership advantage of the four
distribution functions, the probability density of fault
multiple features can be determined; then, the threshold
ranges of fault multiple features can be obtained. Finally, the
validity of the fault diagnosis method is verified. In this
paper, the main findings and the shortcomings can be
summarized as follows:

(1) (e membership functions of the normal distri-
bution, exponential distribution, Weibull distri-
bution, and lognormal distribution are
established to calculate the maximum overall
average membership advantage of the fault
multiple features.

(2) (e maximum overall average membership advan-
tage criterion is used to determine the probability
distribution model of fault multiple features, which
solves the problem that the classical statistical
analysis is difficult to determine the optimal prob-
ability distribution model.

(3) (e threshold ranges of fault multiple features are
calculated by setting the confidence of the probability
density functions. (e motor fault diagnosis algo-
rithm is given based on the threshold range of fault
multiple features.

(4) When the proposed method is applied to other types
of motors, the probability model needs to be
retrained.
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Because the mine is damp and dark, it is not easy to detect the rigid tank channel’s structural failure directly. +erefore, we judged
the tank channel’s surface condition by detecting the magnitude of the vibration displacement of the lifting container. In our
study, we used a laser vision system to measure the structural vibration displacement. In order to accurately segment the laser spot
information from the vibration image, we proposed an approach that links the relationship between the gray value of the area
adjacent to the threshold point and the background’s gray value to the target in the image. We used MCE to evaluate the
segmentation effect of threshold segmentation and verified the improved algorithm’s accuracy by detecting the pixel centroid of
laser spots. Results show that the improved algorithm in our study has the best threshold segmentation effect, the error
classification can be close to 0.0003, and theminimumdeviation of the obtained vibration displacement is close to 0.1 pixels, which
can realize the accurate extraction of the vibration signal of the vertical shaft tank. +e novelty of this method lies in the accurate
threshold segmentation and noise reduction processing of the laser speck vibration image under various interference envi-
ronments in the operation of the mine hoisting system and the accurate acquisition of vibration signals. +e research work
provides a basis for the accurate evaluation of mechanical faults of automation technology.

1. Introduction

China’s coal resources are vibrant, and it is an essential part
of the energy field [1]. +e mine hoist system undertakes
transportation tasks such as coal, equipment, and personnel,
and its operation status will directly affect the safe and ef-
ficient production of the coal mine. When the lifting con-
tainer is disturbed during operation, structural vibration will
be generated. By analyzing its vibration characteristics, the
health of the mine lifting system can be indirectly obtained.
+ere are many existing vibration measurement methods,
and the contact acceleration sensormethod is generally used.
However, such methods are prone to signal distortion, delay,
and other consequences [2]. In contrast, the noncontact
optical measurement technology of machine vision has
received an increasing attention due to its advantages, such
as high accuracy and intuitiveness [3]. +e visual

measurement method of laser spot vibration displacement
refers to combining the laser and CCD camera, marking the
laser spot on the vibration, using the CCD camera to collect
the marking laser spot, and performing the corresponding
image processing to obtain the vibration displacement of the
measured position [4], as shown in Figure 1.

Image segmentation is the technique and process of
dividing an image into several specific areas and proposing
feature targets. +e threshold segmentation method has
attracted much attention for its simplicity and adaptability
[5]. +e more widely used threshold algorithm is the Otsu
method based on the maximum variance between classes; it
is an image binarization algorithm proposed by the Japanese
scholar Otsu. However, the Otsu method has certain limi-
tations. For some interfering images and grayscale histo-
grams that do not have prominent bimodal characteristics,
the segmentation accuracy cannot be guaranteed. Many
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scholars have improved Otsu’s method to adapt the algo-
rithm to complex images in more situations. Ng has pro-
posed an interclass variance method that emphasizes
troughs, uses the probability of gray value as the threshold
value as the weight, and adds it to the target formula of
interclass variance, so that the optimal threshold of image
segmentation tends to the gray level of the trough position
value [6]. On this basis, Fan and Lei [7] proposed an in-
terclass variance method emphasizing the trough neigh-
borhood, considering the gray value distribution of the
target and the background, and adding the distribution
probability weights of all pixels in the neighborhood of the
threshold point. Shen et al. [8] proposed a recursive method
of multithreshold segmentation. Based on emphasizing the
neighborhood of troughs, factors related to the relative
relationship between channels and crests in the histogram
were added, which effectively improved the segmentation
results’ boundary details. In order to consider the spatial
relationship between the central pixel and its neighborhood,
Yu proposed a new region-based active contour model,
which effectively segments the image by measuring the
similarity of local patches [9]. In the second year, a new level-
set method for medical image segmentation based on
adaptive perturbation was proposed, which can effectively
segment medical images with intensity inhomogeneity [10].

+e above algorithms have improved the Otsu method to
a certain extent and have also been proved to be useful for
similarly labeled target segmentation. However, the seg-
mentation effect of such improved algorithms on non-
uniformly illuminated images and noisy images is limited.
+e coal mine’s underground environment is complex, and it
is challenging to ensure that the image received by CCD is not
affected by noise, dust, and intense light. Moreover, the
underground mine environment is humid, and the laser is
prone to produce abnormal transmission light during the
transmission process, that is, stray light. Ghost imaging
manifests stray light caused by reimaging a few reflected lights
in the optical transmission system [11, 12]. In the visual
system, the ghost images gathered on the image surface re-
ceived by the CCD camera will increase the image’s noise.+e
center of mass of the laser spot may be erroneously detected.

When the hardware measures cannot eliminate the noise,
the image preprocessing can be optimized [13]. +is research
analyzes the related improved algorithm’s problems inmarking
laser speckle segmentation under the interference of pulse
noise, intense light, and ghost images. Considering the influ-
ence of different interference on image gray value distribution,
an improved algorithm is proposed. Combined with the gray
value pixel of the neighborhood of the threshold point, the
difference between the gray value of the background and the
target in the image histogram, the range size of the neigh-
borhood and the ratio of the gray value of the threshold point to
the background, and the gray value of the threshold point to the
target area, the optimal threshold is selected to be closer to the
ideal threshold of segmentation. Mathematical morphology
algorithm has good robustness to noise, combined with
mathematical morphology to process the segmented image,
avoiding under- or oversegmentation generated during
threshold segmentation, effectively solving the impact of

environmental interference and improving segmentation target
quality [14].

2. Research Basis

To collect the fault vibration image of the vertical shaft
hoisting tank, the vertical shaft hoisting system shown in
Figure 2 was built. +is experiment can simulate the three
failure modes of step bump, joint misalignment, and joint
gap, by acting different tank faults and collecting and
hoisting the vibration image of the container. +e lifting
speed is 0.18m/s, and the impact force caused by the high-
frequency vibration caused by the impact step defect of the
tank channel causes the displacement of the laser spot
centroid pixel.+e CCD camera sensor is attached to the top
center of the lifting container. A fluorescent screen is placed
H above the camera lens, and the fluorescent screen is
relatively fixed to the CCD camera. Two laser transmitters
are symmetrically installed in the same plane above the mine
tank passage, and the direction of emission is downward. In
this experiment, the laser spot vibration image of the vertical
shaft hoisting system test bench was collected.

+e experimental hardware conditions are Core i5-3470
CPU 3.20 GHZ, and the programming environment uses
MATLAB R2015a. As shown in Figure 3, our research’s
images are collected by the DMK33G618 CCD industrial
camera provided by the Imaging Source, with a resolution of
640× 480 pixels, a maximum frame rate of 120fps, and a lens
focal length of 16mm. +e two sets of laser emitters are
ultrasmall red dots, emitting pure red lasers with a wave-
length of 650 nm. +e size of the red spot can be adjusted
manually from 0.4mm to several centimeters. It also adopts
an anticorrosion DC plug cable, which is suitable for all-
weather and all-environment use, as shown in Figure 4.

+e laser vision vibration measurement system was built
and completed, and the program design for the camera to
collect vibration images was completed. +en, a series of
algorithm processing is performed on the obtained vibration
image, the laser spot in the vibration image is detected, the
vibration displacement information of the centroid of the
laser spot is extracted, and its pixel coordinates are obtained
in real time. +e basic idea is to do image preprocessing
analysis and threshold segmentation on the vibration images
collected by the camera and store the static centroid co-
ordinate information of laser spots at the beginning. In the
next frame image, the centroid coordinates of laser spots in
real time are obtained, the initial centroid coordinates are
calculated, and the relative vibration displacement infor-
mation of laser spots is obtained; the process is shown in
Figure 5.

Laser Mark point

Camera

Figure 1: Structure diagram of the laser vision system.
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3. The Traditional Otsu Threshold
Segmentation Algorithm

+e Otsu method is an automatic threshold method to
maximize the variance between classes. +e algorithm is
derived from the gray histogram using the principle of least
squares. It has the characteristics of fast processing speed

and simple operation. It is a commonly used method. It is
characterized by fast processing speed and simple operation
and is a commonly used threshold selection method [15].
+e basic idea is as follows:

A digital image F� [f (x, y)]M×N with a size of M×N,
f (x, y) represents the gray value at the pixel point (x, y), in
which there are L-level gray values, namely f (x, y) ∈H, H�

{0, 1, 2, . . ., L− 1}.+e gray value l (0 ≤ l ≤ L− 1) is set as the
abscissa and the number of pixels with the gray value of l in
the image h(l) as the ordinate and the gray histogram of the
image is drawn. +e pixels with the gray value of l appear in
the image’s probability is as follows:

p(l) �
h(l)

M × N
, (1)

where l� 0, 1, . . ., L− 1. Also,

􏽘

L−1

l�0
p(l) � 1. (2)

+e threshold T is set to divide the pixels in the image
corresponding to the grayscale histogram into two types:
background regionC0 and target regionC1, whereC0 is the total
number of pixels N0 � 􏽐

T
l�0 h(l) in the gray value [0, T] and C1

is the gray value in [T+1, L− 1] the total number of pixels
N1 � 􏽐

L−1
T+1h(l); the proportion of the pixel area are as follows:

p0(T) �
N0

M × N
,

p1(T) �
N1

M × N

� 1 − p0(T).

(3)

+e average values of C0 and C1 are as follows:

w0 �
μ0(T)

N0
,

w1 �
μ1(T)

N1
.

(4)

From (4), we can see

w � w0N0 + w1N1, (5)

where w0 represents the mean value of background region
C0, w1 represents the mean value of target region C1, and w

represents the global mean value of the image.
+en, the between-class variance is defined as follows:

σ2B � p0(T) w0 − w( 􏼁
2

+ p1(T) w1 − w( 􏼁
2
. (6)

Given that T ∈ [0, L− 1], the T value when reaches the
maximum value is the optimal threshold which is

T � Arg max
0≤T≤L−1

σ2B. (7)

To study the threshold segmentation effect of the tra-
ditional Otsu algorithm, a noninterference laser spot image
was selected for verification.

Laser

Camera

Laser
spotRoller

guide
wheels

Li� the
container

Figure 2: Vertical shaft rigid can way test bench based on the laser
vision system.

Camera Lens

Figure 3: Camera and lens.

Figure 4: Laser transmitter in kind.
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As shown in Figure 6, it can be seen that the traditional
Otsu method segmented the noninterference laser spot
image. Although the target can be extracted, the segmented
target part cannot be matched entirely with the original
laser spot, leading to incorrect detection of the spot center.
+e black area is the background part less than the
threshold gray value, and the white area is the target part
greater than the threshold gray value. Because the tradi-
tional Otsu method does not entirely separate the target
and the background from the interference-free laser spot
image, it does not explore the image segmentation’s effect
under interference.

4. Other Improved Algorithms

In recent years, domestic and foreign scholars have made
many optimization improvements based on Otsu method
to make Otsu method widely and effectively perform
threshold segmentation. Ng [6] proposed the probability
of occurrence when the gray value is a threshold in the
gray histogram as a weighting factor. +e optimal
threshold of image segmentation tends to be the gray
value of the trough position. +e improved specific ex-
pression is as follows:

σ2B � [1 − h(T)] p0(T) w0 − w( 􏼁
2

+ p1(T) w1 − w( 􏼁
2

􏽨 􏽩.

(8)

Fan et al. proposed a smooth histogram weighted Otsu
method based on Ng [7]. +is weighting includes the
threshold point’s gray value and considers the distribution of
all pixels in the neighborhood of the threshold point.
Probability information makes weighting more effective and
threshold positioning more accurate. +e improved specific
expression is as follows:

σ2B � [1 − h(T)] p0(T) w0 − w( 􏼁
2

+ p1(T) w1 − w( 􏼁
2

􏽨 􏽩.

(9)

Among them,

h(T) � [h(T − k) + · · · + h(T − 1)

+ h(T) + h(T + 1) + · · · + h(T + k)],
(10)

where h(T) represents the sum of the gray value pixels’
distribution probabilities in the threshold Tneighborhood in
the gray histogram with a range of (2k+1), strengthening the
likelihood of the valley’s gray value in the histogram.

Based on the smooth histogram’s weighting, Shen [8]
further considered the probability of the trough’s gray value
in the histogram and the relative height of the gray value of
the canal and the neighboring peaks. +ey used it as the
weight item when selecting the threshold. +e improved
specific expression is as follows:

σ2B � [1 − ](T)] p0(T) w0 − w( 􏼁
2

+ p1(T) w1 − w( 􏼁
2

􏽨 􏽩.

(11)

Among them,

](T) � h(T)
2h(T)

hL(T) + hR(T)
, (12)

where hL(T) and hR(T) are the probability of the nearest
peaks’ gray value pixels in the histogram. Combining the
threshold neighborhood value pixels and the relative height
of the threshold and the neighboring wave peaks, the in-
fluence of the target distribution ratio is reduced, and the
optimal solution of the formula tends to be the valley gray
value. If the gray value T is the adjacent left and right peaks, T
is used to replace this peak’s gray value.

To explore the improved Otsu algorithm’s threshold
segmentation effect, different specifications of noninterfer-
ence laser speckle image i and laser speckle image in the case
of high-intensity light ii, pulse noise iii, and ghost image iv
are selected. +ese threshold segmentation algorithms are
processed separately [12].

As can be seen from Figures 7–10, Ng, Fan, and Shen
algorithms are all successful in segmenting the laser spot
image without interference. Since the intense light’s gray
value is close to the target point’s gray value, the Ng

Taking pictures

Whether it is the
first frame

As the initial 
position

Show and record

Image 
preprocessing

Threshold 
segmentation

Morphological 
processing

Obtain the centroid 
position of the pixel

Calculate the relative 
displacement

Y

N

Template 
matching

Figure 5: Flow chart of image processing and laser spot centroid detection.
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algorithm uses the gray neighborhood as the weight to
increase the proportion of the trough. Under the interfer-
ence of the intense light, the final threshold is almost entirely
in the background area. Shen algorithm considers the re-
lationship between the valley’s gray value and its left and
right peak gray values, making the threshold more towards
the target. +e final segmentation effect is improved com-
pared with the Fan algorithm, but the segmentation fails. Ng
algorithm only considers the gray value of the valley in the
image; under the interference of intense light, the final
segmentation effect is higher than the Fan and Shen algo-
rithm, but the segmentation fails. Including the Otsu
threshold and 70% and 80% of the pixel range, the laser spot
cannot be wholly separated from the intense light back-
ground. Ghost imaging is also a kind of stray light. Ng, Fan,
and Shen algorithms fail to segment, which cannot guar-
antee the target spot’s integrity. It can be seen from the figure
that the Ng, Fan, and Shen algorithms do not affect impulse
noise.

5. Improved Algorithms

+e specific improvement plan is: from the image histogram,
filter out the gray value lm at the background peak in the
histogram and the gray value ln at the target peak. +e
traversal range of the threshold T is lm<T< ln. +e gray value
at the background peak is lm. +e total pixel point at the gray
value ln at the target wave peak is NA; the threshold value T
in the histogram and the gray value T in the neighborhood are
(2k+1) the total number of pixels Na of all gray values, oc-
cupying the background gray. +e full pixel point ratio from
the degree value to the gray target value is Pl(T); the distances
from the threshold to the background and the gray target
value are Xm and Xn, respectively. +e gray value T in the
threshold neighborhood accounts for the threshold to the
background, and the ratio of the target gray value difference is
PX(T); the above parameters are introduced as weighting
factors into the Otsu method, and the improved target for-
mula for the between-class variance is as follows:

NA � 􏽘

ln

l�lm

h(l),

Na � 􏽘
T+k

l�T−k

h(l),

Pl(T) �
􏽐

T+k
l�T−kh(l)

􏽐
ln
l�lm

h(l)
,

PX(T) �
2k + 1

Xn − Xm

,

σ2B � 1 − Pl(T)PX(T)􏼂 􏼃 p0(T) w0 − w( 􏼁
2

􏽨

+ p1(T) w1 − w( 􏼁
2
􏽩.

(13)

It can be seen from the improved interclass variance
target formula that Pl(T) and PX(T) are used as weighting
coefficients, and the weighting factors of reference [6] are
combined. +e background target gray value and pixel in-
formation are added to make the target gray. +e interclass
variance of the degree value is relatively increased. +e
optimal threshold range is further approached to the target
gray value, which reduces the influence on the optimal
threshold when the background proportion is large.

Mathematical morphology is composed of a set of
morphological algebraic operators, which can solve image
processing problems such as noise suppression, feature
extraction, threshold segmentation, and shape recognition
[16]. In 2019, Yan proposed a novel early fault detection
strategy based on enhanced scale morphological cap product
filtering (ESMHPF), which realized the effects of noise
suppression and feature enhancement [17]. At the same
time, a multiscale morphological analysis algorithm based
on a feature selection framework is proposed to build
multidomain features, highlight fault symptoms, suppress
noise, and improve fault detection ability [18].
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Figure 6: Otsu segmentation: (a) original image, (b) Otsu division, and (c) image histogram.
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Figure 7: Laser spot segmentation effect without interference: (a) original image, (b) Ng algorithm, (c) Fan algorithm, (d) Shen algorithm,
and (e) histogram and each segmentation threshold.
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Figure 8: Laser spot segmentation effect under high-intensity light interference: (a) original image, (b) Ng algorithm, (c) Fan algorithm,
(d) Shen algorithm, and (e) histogram and each segmentation threshold.
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Figure 9: Laser speckle segmentation effect under the interference of pulse noise: (a) original image, (b) Ng algorithm, (c) Fan algorithm,
(d) Shen algorithm, and (e) histogram and each segmentation threshold.
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Figure 10: Laser speckle segmentation effect under ghost imaging interference: (a) original image, (b) Ng algorithm, (c) Fan algorithm,
(d) Shen algorithm, and (e) histogram and segmentation threshold.
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After the laser spot’s target segmentation is completed, a
binary image containing the laser spot is obtained. However,
there will still be a certain amount of noise, which still
interferes with the subsequent detection. In this regard, the
morphology is selected to filter impurity interference. Since
the laser spots in the image are composed of several small
laser spots, combined with the characteristics of environ-
mental noise, the radius is defined as 2-pixel structural el-
ements S, and S is used to perform open and close operations
on the segmented image, which are defined as follows:

f ∘ S � (fΘS)⊕ S,

f · S � (f⊕ S)ΘS,
(14)

where ⊕ denotes the dilation operator,Θ denotes the erosion
operator, · is the opening operator, and ∘ is the closing
operator.

6. Discussion of Experimental Results

To test the segmentation effect of the improved threshold
segmentation algorithm on the vertical shaft tank’s vibration
image, the segmentation performance is evaluated by two
evaluation indicators: the misclassification error (MCE) and the
pixel centroid deviation. MCE represents the result of threshold
segmentation of a single image, which indicates the proportion
of the wrongly divided background pixel to the target area when
the image’s target pixel is classified into the background area.
+e pixel centroid deviation value represents the result of a
comprehensive evaluation of the machine vision vibration
displacement detection in actual operation. It represents the
deviation value of the laser spot pixel centroid’s displacement in
the segmented image and the cage’s displacement running on
the tank in the vertical shaft lifting system.

7. MCE Evaluation Threshold
Segmentation Results

MCE is used to evaluate the effects of threshold segmen-
tation [19]. MCE ∈ [0, 1] represents the probability that the
image is misclassified after threshold segmentation, where 0
represents no error classification of image pixels, 1 means
complete error classification of image pixels, and the greater
the MCE value, the more misclassified pixels. MCE is de-
fined as follows:

MCE � 1 −
Bo ∩BT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Ao ∩AT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Bo

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Ao

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (15)

where Bo and Ao, respectively, are the background area
and target area pixels in the standard segmentation state (no

standard segmentation image, manually adjusted to the best
segmentation effect as the standard segmentation image)
and BT and AT, respectively, are the background area and
target area pixels in the test segmentation state. +e number
of points, ║, represents the number of pixels in the area.

As shown in Table 1, the segmentation effect of a single
image can be seen through the MCE value. No matter if it is
without interference or other interference, the improved
algorithm’s segmentation effect in this research is the best. In
the visual inspection failure, the MCE value is not enough to
bear the overall image segmentation effect’s burden. +e
most important thing is whether the obtained vibration
displacement is accurate and useful.+erefore, it is necessary
to calculate the position deviation of the pixel centroid after
segmentation.

8. Algorithm Validity Test

To test the segmentation algorithm in this research, under
the same experimental environment, the improved algo-
rithm is presented in this research using no interference
image I, impulse noise under the strong light interference
image II, and ghost imaging under impulse noise interfer-
ence III image threshold segmentation, to explore its seg-
mentation effect. +e test images and the corresponding
threshold segmentation results are shown in Figures 11–13.

As can be seen from the segmentation results in
Figures 11–13, the threshold value determined by the al-
gorithm in this research can effectively distinguish the target
from the background edge region [20]. Although some noise
processing is left, the target point’s feature information in
the test image can be retained under feature matching.

Centroid detection is carried out on the above seg-
mentation images, and the standard mean square error is
used to detect the original centroid coordinates and the
actual centroid coordinates [21], which is defined as follows:

e �

�������������������

x1 − x0( 􏼁
2

+ y1 − y0( 􏼁
2

􏽱

, (16)

where (x1, y1) is the actual centroid coordinate of the
laser spots in the segmented image and (x0, y0)is the original
centroid coordinate, and the unit is pixel.

As shown in Table 2, it can be seen from the deviation
value of the laser spot centroid after segmentation of each
algorithm that the method in this research is slightly higher
than other ways for interference-free images. However, for
intense light interference images under impulse noise and
ghost imaging interference images under impulse noise, this
algorithm’s improved threshold is far better than the other
three threshold segmentation algorithms. +erefore,
according to the laser speckle characteristics, this research

Table 1: MCE value of the vibration image under each threshold segmentation algorithm.

Image category
MCE value

Ng algorithm Fan algorithm Shen algorithm Improved algorithm
i 0.0048 0.0053 0.0063 0.0032
ii 0.3517 0.8589 0.51 0.0003
iii 0.0031 0.0046 0.0025 0.0006
iv 0.0048 0.0071 0.0055 0.0006
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Figure 11: Laser spot segmentation effect without interference: (a) original image, (b) improved algorithm, (c) morphological processing,
and (d) histogram and each segmentation threshold.
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Figure 12: Laser speckle segmentation effect of intense light interference under pulse noise: (a) original image, (b) improved algorithm,
(c) morphological processing, and (d) histogram and each segmentation threshold.
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improves a threshold segmentation algorithm based on the
Otsu method and combines the mathematical morphology
to segment the laser speckle vibration image.

9. Conclusion

+is research proposes a laser vision detection method for
vertical shaft rigid tank road surface failure. Aiming at the
obtained vibration spot image, an improved Otsu seg-
mentation algorithm is proposed. Based on the relative
height of the trough’s gray value and the nearest peak in the
histogram, the background is introduced. +e relative re-
lationship between the target gray value and the pixel in-
formation is used as the weight, combined with
mathematical morphology processing, effectively segment-
ing the spot’s shape and data under impulse noise, high-
intensity light interference, and ghost imaging interference.
+us, the vibration displacement of the lifting vessel ob-
tained is more accurate. Comparing the Ng algorithm, Fan
algorithm, Shen algorithm, and the improved threshold
algorithm in this research, the results show that the

segmentation effect of the algorithm in this research is
significantly enhanced compared with other algorithms, the
error classification can be close to 0.0003, and the seg-
mentation effect is the best. And the contrast experiment of
the pixel centroid detection of the spot image and the de-
viation value was carried out. +e minimum error value was
close to 0.1 pixels, which verified the spot information’s
accuracy and completeness after the algorithm
segmentation.

+is research mainly uses a laser vision system, a
fusion of mathematical morphology, and an improved
Otsu threshold segmentation algorithm to detect the
vertical shaft lifting container’s vibration image. +e
follow-up will further discuss the intelligent fault diag-
nosis method to diagnose vertical shaft rigid tank channel
fault accurately.

Data Availability

+e video data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 13: +e effect of ghost imaging interference laser speckle segmentation under impulse noise: (a) original image, (b) improved
algorithm, (c) morphological processing, and (d) histogram and each segmentation threshold.

Table 2: Position deviation value of each threshold segmentation algorithm.

Image category
Error value (pixel)

Ng algorithm Fan algorithm Shen algorithm Improved algorithm
I 0.224 0.224 0.173 0.1
II — — — 0.6
III 41.742 42.035 41.937 0.1
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In order to solve the problem that a single type of sensor cannot fully reflect the bearing life information in the process of bearing
residual life prediction of metro traction motor, a bearing residual life prediction method based on multi-information fusion and
convolutional neural network is proposed. Firstly, the vibration sensor and acoustic emission sensor are used to collect the bearing
life signals on the bearing fatigue life test bench. Secondly, wavelet packet decomposition is used to denoise the collected bearing
life signal and extract multiple eigenvalues. On this basis, the multiple eigenvalues are normalized, and the bearing degradation
trend is analyzed. Finally, the collected bearing life is divided into five stages, and the processed multiple eigenvalues are fused and
input into convolutional neural network for training and recognition. +e results show that the probability of predicting the stage
of bearing life based on multiple eigenvalues and convolutional neural network is more than 98%.

1. Introduction

Rolling element bearings are one of the most critical
components in rotating machinery to support rotating
shafts. Any unexpected failure of bearings may result in
several negative implications, such as downtime increase,
productivity reduction, and even raise of safety risks [1–5].

In recent years, great achievements have been made in
the research of algorithms in various fields. For example,
Deng et al. [6] proposed an improved MSIQDE algorithm
based on hybrid Multistrategy to solve the problem that
quantum differential evolution (QDE) is easy to lead to
premature convergence and low search ability and fall into
local optimum. Aiming at the problems of slow convergence
speed, poor global search ability, and difficulty in designing
rotation angle of quantum heuristic evolutionary algorithm
(QEA), Cai et al. [7] proposed an improved quantum co-
operative coevolution algorithm with faster convergence
speed and higher convergence accuracy based on coevolu-
tion strategy. Deng et al. [8] and others proposed an im-
proved differential evolution algorithm (HMCFQDE) in
order to overcome the shortcomings of differential evolution

algorithm, such as low efficiency, insufficient search diver-
sity, slow convergence speed, and high possibility of search
stagnation, combined with the quantum computing char-
acteristics of quantum evolutionary algorithm (QEA) and
the idea of divide and rule of cooperative coevolutionary
algorithm (CCEA). Based on the nonlinear Wiener process
model, Wen et al. [9] and others proposed an improved
method to predict the remaining service life of bearings.
Chen [10] and others proposed a prediction model based on
correlation features and multivariable support vector ma-
chine to solve the problem of using small samples to predict
the residual life of rolling bearings due to the lack of suf-
ficient condition monitoring data. Zhao et al. [11] proposed
KELM (maximum power spectral density fitting curve
differentiation) and weight applied to time to failure
(WAFT) to solve the problem of different individual
methods of rolling bearings and the different performance
degradation curves caused by the difference of kernel ex-
treme learning quality and working conditions and estab-
lished a new RUL prediction model of rolling bearings. Yang
and Court [12] conducted a study on the actual health status
of test bearings with different types and severity of failures by

Hindawi
Shock and Vibration
Volume 2021, Article ID 5271785, 7 pages
https://doi.org/10.1155/2021/5271785

mailto:xuyanweiluoyang@163.com
https://orcid.org/0000-0003-2048-0075
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5271785


using four dimensionless status monitoring standards.+ese
studies have achieved good results in the direction of bearing
life prediction, but they all input a single eigenvalue into the
model for training, the extracted bearing life information is
limited, and the multieigenvalue information fusion tech-
nology is not considered. +e multieigenvalue information
fusion technology can improve the prediction accuracy.
With the development of information fusion technology,
more and more scholars join in the research. Wu and Zhang
[13] proposed a new cascaded fusion convolutional long-
and short-term memory network for orientation rule pre-
diction because of the limited structure of current deep
learning methods and the poor stability of prediction results
due to the use of single sensory data. Wang et al. [14] used
KPCA method to reduce the dimension of the extracted
features and used kernel principal component to estimate
the parameters of WPHM model and proposed a trend
prediction method of rolling bearing residual service life
based on Pchip-EEMD-GM(1, 1). +ese studies using in-
formation fusion technology in the direction of bearing
residual life prediction have achieved good results and
provide useful reference in information fusion technology,
but, using a single type of sensor, the information collected
cannot fully reflect the bearing life information, which will
affect the prediction of bearing life.

In order to solve the problem that a single sensor cannot
fully reflect the bearing life information, this paper uses
wavelet packet decomposition [15] to denoise the collected
original signal and extract multiple eigenvalues and studies
the remaining life prediction of metro traction motor
bearing based on information fusion and convolutional
neural network.

2. Signal Preprocessing and Degradation
Index Selection

2.1. Signal Acquisition and Preprocessing. +e model of the
bearing studied in this paper is Nu 216. As the bearing of
metro traction motor, it plays an important role in the safe
operation of the subway, so it is particularly important to
predict the remaining service life of the bearing. In order to
reduce the test cycle and simulate the early defects in the
actual operation of the bearing, the Da Zu YLP-MDF-152
three-dimensional laser instrument was used to prefabricate
the defects on the rolling element. During the process of
defect prefabrication, 30% laser energy was used. +e pitting
diameter was 20 μm and the crack width was 15 μm. On this
basis, the remaining life is explored and the remaining life
test is carried out. +e selected test bench is T40-120, which
is located in Henan Engineering Laboratory of intelligent
numerical control equipment.+e test bench is composed of
hydraulic system (providing loading, cooling, and lubrica-
tion), temperature measurement system, pressure mea-
surement system, and data acquisition system. +e data
acquisition system includes acoustic emission sensor
(model: R50S-TC, measurement range: 50 kHz–700 kHz,
maximum sampling frequency: 10m/sS) and vibration
sensor (model: LC0151T, range: 33 g, sensitivity: 150mv/g).
+e test bench is shown in Figure 1.

+e test was carried out according to GB/T24607-2009
national test standard. +e 120-hour fatigue life strength-
ening test was carried out under the working conditions of
radial equivalent dynamic load of 40 kN and rotating speed
of 2400 r/min. +e bearing status data is collected every 10
minutes. After the test is completed, a total of 720 sets of
bearing performance degradation test data are collected.
+ere are a lot of noises in the collected original signals. In
order to filter and denoise the original signals, they are
decomposed by wavelet packet. Wavelet packet decompo-
sition is a more detailed time-frequency analysis method. It
decomposes the high frequency and low frequency of the
original signal at the same time, which ensures that the signal
has high resolution in different frequency bands and greatly
improves the signal analysis ability [16].

Wavelet packet decomposition is used to decompose
the signal N times, and each decomposition will decompose
the high-frequency and low-frequency signals obtained
from the previous decomposition. +e decomposed signal
retains the bearing life information without distortion.
Suppose that the eigenvector extracted from a single sensor
is Zi (i� 1,2, . . ., k), so the eigenvector obtained by mul-
tisensor synthesis isW ×Zi. +e expansion of Zi is shown in
the following formula:

Zi �

z11 . . . z1k

⋮ ⋱ ⋮

zm1 · · · zmk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where W is the number of sensors, k is the number of
extracted eigenvalues, and m is the number of samples. In
this paper, db4 wavelet basis function is selected, and the
original signal is decomposed by eight times wavelet packet,
and the multiple eigenvalues of each frequency band are
extracted.

2.2. Selection of Degradation Index of Bearing Residual Life.
After performing wavelet packet decomposition on the
original signal, it is necessary to extract the eigenvalues of the
obtained high-frequency and low-frequency signals. In this
paper, Fourier transform is used to analyze the original
signal in frequency domain, and wavelet packet decompo-
sition is used to process the original signal, so as to extract
the characteristic value of time-domain signal. +e time-
domain features are divided into dimensional and dimen-
sionless. Among them, dimensional time-domain features
include standard deviation (SD) and root mean square

Figure 1: Bearing fatigue life test bench.
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(RMS), and dimensionless time-domain features include
kurtosis (Kr) and margin (C). +eir formula is as follows:
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+e standard deviation, root mean square value, kur-
tosis, and margin are calculated according to the above
formula. Some calculation results are shown in Tables 1
and 2.

From Tables 1 and 2, we can see that the same sensor
cannot be directly fused because of the different magnitude
of the value between different eigenvalues. At the same time,
the numerical unit of the same feature value is different
between different sensors, and it cannot be directly fused.
+erefore, we need to normalize them to map them to the
same interval and perform fusion within the same interval.

3. Information Fusion and Model Building

3.1. Fusion of Eigenvalues. In engineering practice, the life
decline process of rolling bearings is often reflected by vi-
bration signals, so as to carry out life state identification and
life assessment [17]. However, in order to cope with the
shortcomings of single type of sensors, vibration and
acoustic emission sensors are used to collect bearing life
information in this test. After the preprocessed signal and
the feature value are extracted, the simultaneous interpreting
cannot be directly integrated, because the physical meaning
of data collected by different sensors is different, and nor-
malization is needed.

Normalization refers to mapping from one interval to
another. Suppose that the original eigenvalue interval
extracted is (X1, X2), and the normalized interval is (Y1, Y2).
If the data before normalization isG and the normalized data
is H, then the mapping relationship between G and H is as
follows:

H � f(G). (3)

+e mapping relation is linear:

H �
G − X1( 􏼁 Y2 − Y1( 􏼁

X2 − X1
+ c. (4)

Information fusion technology is based on normaliza-
tion and has the characteristics of complementary mea-
surement results of multisensor. Information fusion can

evaluate and decide the importance of its parameters [18].
Information fusion can be divided into data layer fusion,
feature layer fusion, and decision level fusion according to the
fusion mode. Data layer fusion belongs to the most original
fusion [19], and the loss of information is the least. However,
due to the difference of detection technology between acoustic
emission sensor and vibration sensor, data layer fusion is not
adopted; feature level fusion belongs to the fusion of extracted
eigenvalues. Although some information is lost, the difference
between sensors can be eliminated by normalization pro-
cessing, and a lot of information will be lost in decision level
fusion, so feature level fusion is used in this experiment.

It can be seen from Table 2 that the extracted eigenvalues
cannot be directly fused, and they need to be normalized and
then fused. After 720 groups of data are fused, 120 groups are
selected as the test group, and the remaining 600 groups are
taken as the training group. +e test group and training
group are divided into five stages.+e divided test group and
training group are marked and input into the neural network
for training.

3.2. PredictionModel of Bearing Residual Life Based onMulti-
Information Fusion and CNN. Convolutional neural net-
work is a feedforward neural network composed of mul-
tilayer networks. In view of the LeNet-5 structure, the
convolutional neural network is improved. Initially de-
termine the size of the convolution kernel to be 3× 3; the
activation function of convolutional neural network in-
cludes sigmoid, tanh, and ReLU, as well as initial selection
of activation function ReLU. After the feature information
is extracted in convolution layer and transmitted to pooling
layer, the pooling layer performs feature selection and
information filtering and preliminarily determines that the
pooling matrix is 2× 2. +e full-connection layer needs to
carry out nonlinear combination of the extracted features
to get the output, and the output layer selects softmax
classification function for classification. +e structure of
convolutional neural network is shown in Figure 2.

Table 1: Characteristic values of bearing life collected by vibration
sensor.

Vibration sensor
SD RMS Kr C
43.6529 1980.265 3.3203 1.0473
45.4865 1981.92 14.5511 1.263
52.9402 1981.651 79.2886 1.4892
53.5617 1979.754 90.9587 1.0493

Table 2: Characteristic values of bearing life collected by acoustic
emission sensor.

Acoustic emission sensor
SD RMS Kr C
0.0176 0.0178 687.014 170.6823
0.1956 0.1961 134.212 497.5525
0.0454 0.0458 108.6922 111.4096
0.0653 0.0653 125.7846 183.2307
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After normalization, it is necessary to train convolu-
tional neural network, input normalized data into neural
network, and adjust the numbers of convolution layers and
pooling layers in the convolutional neural network model.
Finally, it is determined that the size of the convolution
kernel of the first layer of the convolutional neural network
is 3× 3, the output dimension is 46× 46, the sliding step is 1,
the pooling matrix of the first layer is 2× 2, and the moving
step is 2.+e size of the second layer of convolution kernel is
3× 3, the output dimension is 21× 21, the sliding step is 1,
the pooling matrix of the second layer is 2× 2, the moving
step is 2, and the first layer is fully connected set to 100, the
fully connected layer of the second layer is set to 64, and the
output layer is set to 5. +e activation function of the first
layer is ReLU, and the activation function of the second layer
is tanh. +e optimal training times (Epochs) of the model are
100.

After the above work is completed, the normalized ei-
genvalues of each sensor are input into the adjusted neural
network, and the recognition rate is shown in Table 3.

According to Table 3, the recognition rate of different
eigenvalues is different. +e root mean square value has the
best recognition rate, which indicates that the root mean
square can extract the most bearing life information, and
standard deviation, kurtosis, and margin decrease in
turn, which indicates that the bearing life information
extracted by them decreases in turn. It can be seen from
Table 3 that, for a single sensor, the fusion of different
eigenvalues can improve the accuracy of remaining life
prediction, which shows that there are similarities and
differences between different eigenvalues in extracting
bearing life information. +rough fusion of feature values
extracted by different sensors, it is seen that the accuracy
of predicting the remaining life of bearing is also im-
proved, and it is shown that different sensors can be
complemented to improve the accuracy of bearing
remaining life prediction.

4. Data Analysis

By analyzing the normalized eigenvalues, the bearing life
trend is shown in Figures 3 and 4.

It can be seen from Figure 3 that, except for kurtosis, the
trend of other indicators is upward, which indicates that
kurtosis index can extract the least bearing life information,
while the root mean square and standard deviation can
extract more bearing life information than margin. Figure 4
shows the trend of bearing life collected by AE sensor, and
the above conclusion can be verified from Figure 4.

It can be seen from Figures 3 and 4 that, with the increase
of bearing running time, the bearing life index is getting
larger and larger. +rough the analysis, it can be concluded
that dimensionless kurtosis and margin are not as good as
dimensionless root mean square and standard deviation.
From the two kinds of sensors, vibration sensor is better than
acoustic emission sensor in root mean square and standard
deviation, and acoustic emission sensor is better than vi-
bration sensor in margin and kurtosis.

It can be seen from Figures 3 and 4 that they have the
same bearing life index, and the upper and lower wave
momentum are different. In order to explore the influence of
the up and down wave momentum on the accuracy, taking
root mean square as an example, the root mean square
(RMS) obtained from the two sensors is input into the
convolutional neural network to obtain the color scale di-
agram of the accuracy in each stage, as shown in Figure 5.

In the above figure, A, B, C, D, and E represent the five
stages of bearing life:A represents the first stage, B represents
the second stage, C represents the third stage, D represents
the fourth stage, and E represents the fifth stage. +is ex-
periment is carried out after the discovery of bearing early
defects. +e first stage is the bearing early defects, and the
fifth stage is the final stage of bearing life collection. A total of
720 groups of data were collected, and the collected data
were divided into test set and training set, including 120
groups of test samples and 600 groups of training samples. In
the training process, the neural network will output the
probability values of these five stages for each group of test
samples. +e 120 groups of test samples will output 120× 5
probability values. Taking an average value of each two
groups of 120 groups as the new probability value, the new
probability value will be made into a color scale diagram of
Figure 5. In this grayscale image, the deeper the color is, the
higher the probability is.

Convolution

Input
layer

Convolution
layer

Convolution
layer

Pooling
layer

Pooling
layer

Fully
connected

layer

Fully
connected

layer

Pooling Convolution Pooling Output
layer

Figure 2: Convolutional neural network model.
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From Figure 5, we can see that the vibration sensor is not
as good as the acoustic emission sensor in the first stage and
the second stage, but it is better than the acoustic emission

sensor in other stages, which shows that the fusion of the
information obtained by the two sensors is conducive to
improving the accuracy of bearing residual life prediction.
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Figure 3: Bearing life curve collected by vibration sensor.
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Figure 4: Bearing life curve collected by acoustic emission sensor.

Table 3: Recognition rate of each normalized eigenvalue.

Eigenvalue Acoustic emission sensor (%) Vibration sensor (%)
RMS 94.17 95.83
Kr 70.83 66.67
C 70.00 61.67
SD 93.33 95.00
Recognition rate of multiple eigenvalues of a single sensor 95.83 96.67
Comprehensive recognition rate of two sensors 98.33
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At the same time, in Figure 5, we can see that the accuracy
rate of the two adjacent stages is lower than that of the
middle part of the stage.

Taking root mean square value as an example, it can be
seen from Figures 3–5 that the fluctuation of life curve
collected by acoustic emission sensor in the first stage is
smaller than that of vibration sensor. At this time, we can see
that the accuracy rate of acoustic emission sensor in the first
stage is high. Compared with other stages, it can be found
that the smaller the fluctuation of bearing life curve is, the
higher the accuracy of bearing life stage is. On the whole, the
fluctuation of bearing life curve collected by vibration sensor
is smaller than that of acoustic emission sensor, so vibration
sensor is better than acoustic emission sensor in bearing life
prediction.

5. Conclusion

Aiming at the problem that a single sensor cannot reflect the
bearing life information comprehensively, a bearing residual
life prediction method based on multi-information fusion
and convolutional neural network is proposed.

(1) +is paper studies the prediction of the remaining
life of subway traction motor bearings with deep
learning and information fusion technology. First,
use vibration sensor and acoustic emission sensor to
collect bearing life signals on the bearing fatigue test
bench; secondly, use wavelet packet decomposition
to denoise the collected original signals and extract
multiple eigenvalues. On this basis, multiple eigen-
values are extracted. +e eigenvalues are normalized
and the bearing degradation trend is analyzed. It is

found that the vibration sensor performs better than
the acoustic emission sensor in terms of dimension,
and the acoustic emission sensor performs better
than the vibration sensor in the dimensionless as-
pect. Finally, the processed multiple eigenvalues are
fused and input into the convolutional neural net-
work for training to predict the remaining service life
of the bearing.

(2) +e results show the following: ① +e vibration
sensor has less fluctuation on the bearing life curve
compared to the acoustic emission sensor, and the
recognition rate of using two types of sensors at the
same time is higher than that of using a single type of
sensor. ② +e information fusion of different types
of sensors is realized by using feature layer fusion,
and the combination of convolutional neural net-
work can effectively predict the remaining life of the
bearing.
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,emulti-information data acquisition system of tool wear condition of CNC lathe is built by acquiring the acoustic emission and
vibration acceleration signals.,e data of acoustic emission and vibration acceleration signals during the process of CNCmachine
tool processing under the conditions of different tool wear degrees and different cutting conditions are acquired and analyzed
using the orthogonal experimental method. ,e optimum characteristic frequency band of acoustic emission and vibration
acceleration signals was extracted by the wavelet envelope decomposition method so as to recognize tool wear condition as the
characteristic parameters. ,e characteristic information of acoustic emission and vibration acceleration signals during the
process of CNC machine tool processing was fused. In addition, the intelligent recognition of tool wear condition during the
process of machine tool processing was researched.

1. Introduction

Tool wear and breakage will occur in the process of CNC
machine tool cutting, which will directly affect the ma-
chining accuracy and surface quality of the workpiece. Tool
wear and breakage will also directly affect the machining
efficiency and cutting stability of the whole manufacturing
equipment system. According to statistics, the failure
shutdown rate caused by tool failure accounts for about
22.4% of the total failure shutdown rate of CNC machine
tools. In the actual production process [1], there is a highly
nonlinear relationship between the influencing factors and
the tool wear [2], so it is difficult to judge the tool wear
accurately by the manual method. In order to ensure the
accuracy of machining, it is necessary to replace the tool
before the tool is severely worn, so it is necessary to replace
the tool frequently, but the frequent replacement of the tool
reduces the efficiency of production and improves the cost of
machining. If the serious situation of tool wear and damage
is not found in time or the tool is not replaced in time, the
processing process may be interrupted, and the workpiece
may be scrapped. By monitoring and identifying the tool

wear status, the tool can be replaced at the right time.
Monitoring, identifying the tool wear status, and timely
replacing the tool not only can ensure the machining ac-
curacy but also can improve the tool utilization and reduce
the production cost. Replacing the cutting tool at the right
time can avoid the scrapping of the workpiece and the failure
of the machine tool caused by the failure of the cutting tool.

In recent years, many experts and scholars have studied
the methods to identify the tool wear state [3–9], and their
research has promoted the development of tool wear state
identification technology. However, many experts and
scholars study the tool wear state identification method
based on the information provided by a single sensor, and it
is difficult to ensure that a single sensor provides correct and
comprehensive information. Information fusion technology
is a comprehensive decision-making process to accurately
estimate the measurement results of multiple sensors, so as
to comprehensively and timely evaluate the situation, threat,
and importance. ,erefore, information fusion technology
has the advantages of high fault tolerance, complementarity,
economy, and being real time [10–17]. In recent years, in-
formation fusion technology has been applied more and
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more in the field of tool wear state recognition, but there is
no unified standard [18–22].

At present, the common methods of multi-sensor data
fusion can be summarized as random and artificial intelli-
gence. Artificial intelligence includes fuzzy logic reasoning,
neural network, and so on. ,e representation and pro-
cessing of information by fuzzy logic reasoning is closer to
the way of human thinking, but there are many subjective
factors in the description of information, so the represen-
tation and processing of information by fuzzy logic rea-
soning lacks objectivity. Neural network has strong fault
tolerance, self-learning, self-organization, and self-adaptive
ability. It can simulate complex nonlinear mapping andmeet
the requirements of multi-sensor data fusion technology. In
this paper, BP neural network technology is used to fuse the
acoustic emission (AE) signal of tool wear and the char-
acteristic information of vibration signal in the process of
numerical control cutting, so as to study the intelligent
recognition technology of tool wear state in the process of
numerical control turning.

2. Acquisition System of Tool Wear Condition

2.1. +e Structure of the System. ,e acquisition system of
tool wear condition is composed of a CNC lathe, workpiece,
turning tool, AE sensor, vibration sensor, amplifier, signal
conditioner, data acquisition card, and computer (the
structure diagram of the system is shown in Figure 1).

,e AE sensor and vibration sensor are placed in the tool
handle. ,e signal detected by the sensor is processed by the
preamplifier and signal conditioner and then transmitted to
the computer by data acquisition card for analysis and
processing. Figure 2 shows the physical diagram of the
multi-information data acquisition system of tool wear
condition of the CNC lathe, which is composed of a CKJ6152
CNC lathe, PCI-8 acoustic emission instrument, WD/FM01
broadband differential AE sensor, LC0151T acceleration
sensor, LC0201-5 signal conditioner matched with accel-
eration sensor, and PCI8510 data acquisition card. ,e
signal-to-noise ratio of the acoustic emission instrument is
4.5, the frequency range is 1 kHz–3MHz, and the maximum
sampling frequency is 10m/s. ,e AE sensor collects the
voltage signal, the measurement range is 1 kHz –1MHz, and
the resonant frequency is 531.25 kHz. ,e sensitivity of the
acceleration sensor is 150mV/g, the measurement range is
33 g, the resolution is 40 kHz, the resonant frequency is
0.0002 g, and the frequency range is 0.7Hz–13 kHz. And the
8-channel data acquisition card with the speed of 500 k/s is
adopted is 500 k/s.

2.2. +e Location of Sensors. ,e vibration sensor and AE
sensor are fixed on the new turning tool of CNC lathe
according to different directions and distances. ,e material
of the turning tool is YT15.,e turning test of 45# steel bar is
carried out under the conditions of spindle speed

n� 800 r/min, feed rate f� 40mm/min, and back engage-
ment ap� 0.5mm. ,e signals of vibration sensor and AE
sensor are collected and analyzed to determine the rea-
sonable fixed position of the sensor.

As shown in Figure 3, the AE sensor is tested in five
installation positions. Position 1 is 15 cm from the tip at the
rear of the left side of the handle, position 2 is 4 cm from the
tip at the front of the left side of the handle, position 3 is 2 cm
from the tip at the right side of the handle, position 4 is 4 cm
from the tip at the right side of the handle, and position 5 is
6 cm from the tip at the right side of the handle. We find the
root-mean-square value of data collected by AE sensor and
judge the strength of signal according to the value of root-
mean-square value. ,e results show that the root-mean-
square values of positions 3, 4, and 5 decrease in turn, while
the root-mean-square values of positions 2 and 4 are ba-
sically the same, indicating that the signal strength is in-
dependent of direction, while position 1 has the smallest
root-mean-square value. ,erefore, the best installation
position for the AE sensor is position 3.

As shown in Figure 4, the acceleration sensor is tested in
three different positions: position 1 is 4 cm away from the
tip, position 2 is 8 cm away from the tip, position 3 is 12 cm
away from the tip, and the three spatial positions are shown
in X, Y, and Z directions in Figure 4. ,e results show that
position 1 and Z direction have the largest root-mean-square
value, so position 1 and Z direction are selected as the best
installation position for acceleration sensor.

2.3. Dividing the Degree of ToolWear. One kind of indexable
cemented carbide tool CNMG120404-PM and 45# steel bar
are selected as test objects. And the parameters of the tool
CNMG120404-PM are as follows: tool material YT15, tool
rake angle c � 11°, clearance angle α� 10°, tool cutting edge
angle Kr′� 95°, tool cutting edge inclination angle λ� 0°.
Cutting tests are carried out according to engagement
ranging from 0.3mm to 1.0mm to obtain tool test samples
of different wear degrees.

During the turning process, the wear of the flank surface
has a great influence on the quality of the workpiece, cutting
force, and cutting temperature. Since the wear of the flank
surface is easy to observe and measure [23], according to the
international standard ISO 3685-1977, the wear band width
VB measured at the middle part of the flank surface is se-
lected as the test standard, and the tool wear state is divided
into 4 wear degrees as shown in Table 1.

2.4. Orthogonal Experimental Method. Taking the tool wear
degrees, spindle speed, feed rate, and cutting depth as the
main factors, four kinds of blade samples with different wear
degrees were selected, and 16 groups of turning experiments
were carried out by the orthogonal experimental method.
,e AE signal and vibration signal were collected in each
group of tests, and the influence degree of different factors
on AE signal and vibration signal was analyzed.
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,e test conditions are cutting with cutting fluid. ,e
material processed is 45# steel bar, and the experimental
time of each group is 30 s.

Table 2 shows the experimental parameters and the data
collected by the sensor, and Table 3 shows the analysis results
of the experimental data using the mean method.

According to the analysis results in Table 3, for AE signal, the
maximum range of wear degree is 1.9357, the maximum range
of spindle speed is 2.5541, the maximum range of feed speed is
0.3083, and the maximum range of cutting depth is 0.5408.
,erefore, the spindle speed has themost significant effect onAE
signal, followed by wear degree and cutting depth, and the feed
speed has the least effect on AE signal. For vibration signal, the
maximum range of wear degree is 0.5346, the maximum range
of spindle speed is 0.2944, the maximum range of feed speed is
0.2650, and the maximum range of cutting depth is 0.1615.
,erefore, the influence of wear degree on vibration signal is the
most significant, followed by spindle speed and feed speed, and
the influence of cutting depth on vibration signal is the least.

3. Selection of Tool Wear Characteristics

Acoustic emission and vibration signals are nonstationary
random signals whose frequency and statistical characteristics
vary with time. Spectrum analysis can analyze the charac-
teristics of nonstationary random signals in a certain period.
Wavelet packet analysis is a kind of signal processing tech-
nology, which concentrates the information energy, finds
the order in the details, and selects the rules, and it can divide
the frequency band into multiple levels and can adaptively
select the corresponding frequency band according to the

Lathe

Chuck

Workpieces

Turning tool

Vibration sensorAE sensor

Amplifier Signal conditioner

Computer

Data acquisition card

Figure 1: ,e structure diagram of the system.

Figure 2: ,e physical diagram of the multi-information data
acquisition system of tool wear condition of CNC lathe.
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Figure 3: Installation position of AE sensor.
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Figure 4: Installation position of acceleration sensor.

Table 1: Tool wear degrees.

Classification Initial
wear

Normal
wear

Medium
wear

Severe
wear

Degrees 1 2 3 4
VB values
(mm) 0∼0.1 0.1∼0.3 0.3∼0.6 0.6∼
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characteristics of the analyzed signal, so that it can match the
signal spectrum and improve the resolution of time-fre-
quency, and it is widely used in engineering practice. In this
paper, the wavelet packet decomposition method is used to
decompose the test data, and the energy value of each fre-
quency band signal is obtained. ,en, according to the mean
and range of each frequency band energy under different
conditions, the relevant characteristic frequency band of
acoustic emission and vibration signal is selected.

3.1. Selection of Vibration Signal Characteristics. ,e vibration
signal of toolwear ismainly in the low-frequency band (nomore
than 8kHz) [24]. Considering the integrity of the collected
signal, the sensor with the frequency range of 0.7–13kHz and
sampling speed of 250k/s is selected to collect the signal, and the
db8 is selected as the wavelet base to decompose the collected
signal by 6-level wavelet packet, and then the frequency dif-
ference of each frequency band is reduced to 1.95 kHz. ,e
6-level wavelet packet decomposition of medium wear tool
vibration signal in 13–16 frequency bands is shown in Figure 5.

Since the effective frequency of the signal is not more
than 13 kHz, only the first 16 of 64 bands (0∼31.2 kHz) are

analyzed to avoid information redundancy. ,e energy
changes of the first 16 frequency bands of vibration signals
with different tool wear degrees are shown in Figure 6.

It can be seen from Figure 6 that the energy is mainly
concentrated in P1, P2, P3, P4, P7, and P8 frequency bands.
With the increase of tool wear degree, the energy increases
significantly in P2, P4, P7, and P8 frequency bands. Since the
effective frequency range of acceleration sensor is
0.7Hz∼13 kHz (±10%), the P8 band is omitted. ,e char-
acteristic frequency bands of vibration signal are P2, P4, and
P7.

,en, the mean and range of energy values in P2, P4, and
P7 frequency bands under different conditions are calculated
by orthogonal table to determine the characteristic fre-
quency band which can best reflect the wear degree and is
least affected by external factors. Table 4 shows the mean and
range of energy values of vibration signals in P2, P4, and P7
frequency bands obtained by using orthogonal test table.

According to Table 4, the wear degree has the greatest
influence on the energy changes of P2, P4, and P7 bands,
which is consistent with the analysis results in Table 3.

In P2 band (1.95∼3.9 kHz), the range of wear degree is
24.96, which is much larger than that of the other three

Table 2: Experimental parameters and collected data.

Serial
numbers

Experimental parameters Collected data

Degrees of wear Spindle speed (r/
min)

Feed rate (mm/
min)

Cutting depth
(mm) AE sensor (V) Vibration sensor (V)

1 1 560 20 0.4 0.7522 0.1542
2 1 800 30 0.6 1.4141 0.1732
3 1 1120 40 0.8 2.0434 0.2119
4 1 1600 50 1.0 3.1657 0.2183
5 2 560 30 0.8 1.1045 0.3117
6 2 800 20 1.0 1.9643 0.2944
7 2 1120 50 0.4 1.7929 0.2357
8 2 1600 40 0.6 3.9895 0.2698
9 3 560 40 1.0 2.3615 0.4471
10 3 800 50 0.8 3.3478 0.3960
11 3 1120 20 0.6 4.4762 0.1940
12 3 1600 30 0.4 4.9327 0.2112
13 4 560 50 0.6 2.0609 1.2597
14 4 800 40 0.4 2.2999 0.6498
15 4 1120 30 1.0 4.0951 0.3535
16 4 1600 20 0.8 4.4076 0.6331

Table 3: Analysis result of experiment data.

Signal classification Influence factors
Degrees of wear Spindle speed Feed rate Cutting depth

AE signal

Mean 1 1.8439 1.5698 2.9001 2.4444
Mean 2 2.2128 2.2565 2.8866 2.9852
Mean 3 3.7796 3.1019 2.6736 2.7258
Mean 4 3.2159 4.1239 2.5918 2.8967
Range 1.9357 2.5541 0.3083 0.5408

Vibration signal

Mean 1 0.1894 0.5432 0.3189 0.3127
Mean 2 0.2779 0.3784 0.2624 0.4742
Mean 3 0.3121 0.2488 0.3947 0.3882
Mean 4 0.7240 0.3331 0.5274 0.3283
Range 0.5346 0.2944 0.2650 0.1615
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factors, which are 3.35 times, 7.66 times, and 4.11 times that
of spindle speed, feed speed, and cutting depth, respectively.
,e P2 frequency band is the most important one, and the
three factors of cutting cannot be considered, so it is an ideal
characteristic frequency band.

In P4 band (5.85∼7.8 kHz), the range of wear degree is
41.88, which is 2.18 times, 3.23 times, and 3.70 times that of
the range of spindle speed, feed speed, and cutting depth,
respectively. In the P4 frequency band, the wear degree has
the greatest influence on the energy change, but the influ-
ence of the three cutting factors on the energy change is
relatively small, so P4 can be selected as the characteristic
frequency band.

,e range of wear degree in P7 band (11.7∼13.65 kHz) is
18.59, which is 1.27 times, 1.44 times, and 2.02 times that of
spindle speed, feed speed, and cutting depth, respectively. P7
band cannot be used as characteristic band.

,erefore, P2 is the best characteristic band of vibration
signal, followed by P4.

3.2. Feature Selection of AE Signal. ,e acoustic emission
signal of tool wear is an ultra-high frequency stress wave
pulse signal with a frequency of more than 100 kHz released
when dislocation, crack propagation, and plastic deforma-
tion occur in the molecular lattice during metal processing
[25]. ,is paper selects 100 kHz∼1MHz sensor, with a
sampling frequency of 2m/s, adopts 5-stage wavelet packet
decomposition, and selects dB8 as wavelet base to reduce the
frequency difference of each frequency band to 31.25 kHz.
,e wavelet packet decomposition of AE signal shows that
the energy mainly exists in P1∼P16 bands (0∼500 kHz), and
there is almost no energy in P17∼P32 bands, so only P1∼P16
bands are analyzed. ,e energy changes of the first 16 bands
of acoustic emission signals with different wear degree of the
tool are shown in Figure 7.

It can be seen from Figure 7 that the energy is mainly
concentrated in P1∼P8 and P13 frequency bands. With the
increase of tool wear degree, the energy increases signifi-
cantly in P1, P2, P4, P7, and P13 frequency bands. Since the
effective frequency band of AE signal is greater than
100 kHz, P1 and P2 frequency bands (0∼62.5 kHz) are
omitted. ,e characteristic frequency bands of AE signal are
P4, P7, and P13.

,en, the mean and range of energy values in P4, P7, and
P13 frequency bands under different conditions are calcu-
lated by orthogonal table to determine the characteristic
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Figure 5: 6-level wavelet packet decomposition of medium wear tool vibration signal in 13–16 frequency bands. (a) P13. (b) P14. (c) P15.
(d) P16.
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frequency band which can best reflect the wear degree and is
least affected by external factors. Table 5 shows the mean
value and range of energy value of vibration signal P4, P7,
and P13 under different conditions.

It can be seen from Table 5 that the spindle speed has the
greatest influence on the energy change of P4, P7, and P13
bands, which is consistent with the analysis results in Table 3.

In P4 frequency band (93.75∼125 kHz), the range of
spindle speed is 1432.7, the influence of tool wear degree is
second only to spindle speed (range is 1116.6), and the
influence of feed speed and cutting depth is relatively small
(range is 568.6 and 692, respectively).

In P7 frequency band (187.5 ∼ 218.75 kHz) and P13
frequency band (375∼406.25 kHz), the influence of wear
degree is the second, but the influence of wear degree is

similar to that of feed speed and cutting depth, so it is not
suitable to be used as characteristic frequency band.

,erefore, it is more suitable to select P4 band as the
characteristic band of AE signal in tool wear detection. At
the same time, considering that the acoustic emission signal
characteristics in tool wear monitoring system are greatly
affected by the spindle speed, in order to reduce the error
rate of intelligent recognition, the spindle speed is also se-
lected as the characteristic value of AE signal.

In view of the small influence of cutting depth and feed
speed on vibration and acoustic emission signals, the short-
term experimental processing was carried out on the ob-
tained worn blade samples by keeping the cutting depth and
feed speed at the constant value and selecting the spindle
speed randomly according to the orthogonal test speed. ,e
acoustic emission and vibration signals of each blade during
processing were collected, and the energy values of P2 and
P4 frequency bands of vibration signals, the energy values of
P4 frequency band of acoustic emission signals, and the
corresponding spindle speed are extracted as the required
characteristic parameters for the training and verification of
the intelligent recognition model of tool wear state. ,e test
parameters of this short-term experimental processing are as
follows: cutting depth ap is 0.6 mm, feed speed vf is 30mm/
min, spindle speed random, using cutting fluid, processing
material 45# steel bar, and each blade test time is 30 s.

4. Information Fusion Model Based on BP
Neural Network

,e cutting process is a complex nonlinear stochastic
process with many variables. ,e relationship between the
tool wear state and the monitored signal is also highly
nonlinear. Artificial intelligence algorithms such as support
vector machine (SVM), fuzzy clustering analysis (FCA), and
neural network (NN) are widely used in tool wear condition

Table 4: Energy analysis results of P2, P4, and P7 frequency bands of vibration signal (×105).

Frequency band Mean and range
Experimental factors

Degrees of wear Spindle speed Feed rate Cutting depth

P2

Mean 1 6.97 21.07 14.97 12.47
Mean 2 11.97 13.63 15.46 18.54
Mean 3 12.09 13.84 14.64 16.45
Mean 4 31.93 14.43 17.9 15.51
Range 24.96 7.44 3.26 6.07

P4

Mean 1 7.66 33.08 18.14 20.67
Mean 2 13.38 22.83 15.84 28.32
Mean 3 16.33 13.84 24.12 20.92
Mean 4 49.54 17.16 28.82 17.00
Range 41.88 19.24 12.98 11.32

P7

Mean 1 6.46 22.54 10.29 10.15
Mean 2 10.28 11.91 8.42 19.37
Mean 3 11.36 7.92 13.15 12.07
Mean 4 25.05 10.77 21.29 11.55
Range 18.59 14.62 12.87 9.22
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Figure 7: Energy value of AE signal in different frequency bands.
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monitoring and recognition. Support vector machine (SVM)
is a pattern recognition method based on statistical learning
theory and structural risk minimization principle. It takes
into account the training error and generalization ability.
Support vector machine (SVM) is a pattern recognition
method based on statistical learning theory and structural
risk minimization principle and taking into account the
training error and generalization ability. SVM is widely used
in pattern recognition and feature extraction such as small
sample, high dimension, nonlinear, and local minimum.
Fuzzy clustering analysis is an analysis method that estab-
lishes the fuzzy similarity relationship according to the
characteristics, intimacy, and similarity of objective things
based on the fuzzy mathematics and then classifies and
identifies the fuzzy state of samples according to a certain
membership degree, so as to cluster objective things. Fuzzy
clustering analysis method is widely used in meteorological
forecast, geology, agriculture, forestry monitoring, and other
aspects. It is widely used in meteorological forecast, geology,
agriculture, forestry monitoring, and other aspects. Artificial
neural network is a nonlinear and adaptive information
processing system composed of a large number of inter-
connected processing units. It can imitate the information
processing function of human brain neural system in dif-
ferent degrees and levels. Artificial neural network is a
nonlinear and adaptive information processing system
composed of a large number of interconnected processing
units, which can imitate the information processing function
of the human brain neural system in different degrees and
levels and also can provide high accuracy automatic clas-
sification ability for signals with large amount of data and
complex characteristics. Artificial neural network is mainly
used in the field of information processing and pattern
recognition. It is mainly used in the field of information
processing and pattern recognition.

In the information fusion pattern recognition system,
the information provided by each information source has
certain uncertainty. Choosing the appropriate fusion algo-
rithm is the core problem of the information fusion pattern
recognition system. ,e process of fusion of information

with uncertain features is essentially an uncertain reasoning
process. Neural network has strong fault tolerance, self-
learning, self-organization, and self-adaptive ability, can
simulate complex nonlinear mapping, and can determine
the classification standard according to the similarity of the
samples accepted by the current system. ,e characteristics
of neural network and its powerful nonlinear processing
ability can meet the technical requirements of multi-sensor
information fusion. In view of this, this paper uses BP neural
network technology to study the intelligent recognition
method of tool wear state.

4.1. Structure Parameter Design of BP Neural Network

4.1.1. Design of Input Layer and Output Layer. ,e energy
values of P2 and P4 frequency bands of vibration signal, P4
frequency band of AE signal, and corresponding spindle
speed are selected as the four main characteristic parameters
of tool wear. ,erefore, the input vector is determined to be
4, that is, the number of neurons in the input layer is 4. ,e
output is the tool wear, so the number of neurons in the
output layer is 1.

4.1.2. Hidden Layer Design. According to Kolmogorov
theorem, a three-layer BP neural network can realize the
nonlinear mapping from any n dimension tom dimension. In
this paper, a single hidden layer structure is selected. ,e
number of nodes in the hidden layer directly affects the
performance of neural network. ,e number of nodes is too
small, and the pattern space is rough, which leads to poor fault
tolerance and low ability of identifying the samples without
learning. Too many nodes and too fine division of pattern
space lead to too long network training time, slow or even
nonconvergence of the network, and storage of the irregular
content in the sample, reducing the generalization ability of
the system. ,e number of hidden layer nodes is [26]

l �
��������
n + m + a

√
, (1)

Table 5: Energy analysis results of P4, P7, and P13 frequency bands of AE signal.

Frequency band Mean and range
Experimental factors

Degrees of wear Spindle speed Feed rate Cutting depth

P4

Mean 1 1051.9 732.2 1821.5 1281.7
Mean 2 1182.8 1159.8 1607.2 1754.3
Mean 3 2157.1 2007.4 1306.6 1062.3
Mean 4 1116.6 2164.9 1252.9 1618.9
Range 1105.2 1432.7 568.6 692

P7

Mean 1 372.3 138.6 439.5 376.7
Mean 2 331.4 250.9 499 432.3
Mean 3 484.3 493.7 397 434.1
Mean 4 489.3 794.1 341.7 434.2
Range 157.9 655.5 157.3 57.5

P13

Mean 1 309.1 117.7 383.4 316.3
Mean 2 255.8 209.1 422.5 354.5
Mean 3 404.1 417.1 325.7 382.1
Mean 4 445.0 670 282.4 361.1
Range 189.2 552.3 140.1 65.8
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where l is the number of hidden layer nodes, n is the number
of input nodes,m is the number of output nodes, and a is the
adjustment constant between 1 and 10.

,e BP neural network model is established among 4–15
hidden layer neurons by the trial method, and the optimal
number of hidden layer neurons is determined by network
error. When the number of hidden layer neurons is 9, the
network error is the smallest, and the number of hidden
layer nodes is 9. ,erefore, the 3-layer BP neural network
structure based on the intelligent recognition of tool wear
state based on information fusion is 4-9-1. According to the
output of BP neural network, the wear degree of the tool can
be directly determined.

4.2. Multi-Information Fusion Based on BP Neural Network.
,e physical quantities of vibration signal, acoustic emission
signal, and spindle speed characteristic parameters have
different meanings. Before neural network training, the
characteristic data should be normalized. ,e normalization
method was used.

x
0
i � 1 −

xi − x
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

xmax − xmin( 􏼁
. (2)

Among them, xmax � max xi􏼈 􏼉, xmin � xi􏼈 􏼉, x � 􏽐
n
i�1

xi/n.
So, the values of the input vectors are all between 0 and 1.
,e hyperbolic tangent function is chosen as the acti-

vation function [27]. ,e initial weight of the network is
randomly selected between (0, 1). ,e learning rate is 0.01,
the training error is 1× 10−8, and the maximum training
period is 40000. From the test characteristic data, 16 groups
of P2 and P4 band energy value of the vibration signal and P4
band energy value of the acoustic emission signal are se-
lected randomly, and the corresponding spindle speed also is
selected together as the training samples to train the BP
neural network. ,e 3-layer BP neural network model with
4-9-1 network structure is trained, and the training target
precision is achieved through 31 steps. ,e training error
curve is shown in Figure 8.

5. Test Results and Analysis

18 groups of P2 and P4 band energy value of the vibration
signal and P4 band energy value of the acoustic emission
signal which are not the training samples are selected from
the test characteristic data, and the corresponding spindle
speed also is selected as the test samples together. ,ese test
samples are input into the BP neural network to verify the
intelligent recognition method of tool wear state.

Firstly, the pattern recognition method of support
vector machine is used to recognize the tool wear state
based on single sensor information. ,en, BP neural net-
work technology is used to identify the tool wear state by
fusing the vibration signal, acoustic emission signal, and
spindle speed feature information. Finally, the above dis-
crimination results were compared with the actual detec-
tion results of tool wear (18 samples, including 1 initial

wear, 7 types of normal wear, 6 types of moderate wear, and
4 types of severe wear).

,e 18 samples were sorted according to the actual value
of tool wear. ,e actual detection degree of tool wear, the
recognition degrees by single vibration signal or single
acoustic emission signal, and the recognition degree by
information fusion are shown in Figure 9.

,e results of single vibration signal identification were
as follows: one normal wear (No. 1) was misjudged as initial
wear, and two kinds of moderate wear (Nos. 13 and 14) were
misjudged as severe wear. ,e recognition accuracy of all
samples was 83.33%. ,e results of single acoustic signal
recognition were as follows: 1 normal wear (No. 3) was
misjudged as initial wear, 1 medium wear (No. 13) was
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misjudged as severe wear, and the accuracy rate of identi-
fication for all samples was 88.89%.,e result of information
fusion identification was as follows: one medium wear (No.
14) was misjudged as severe wear, and the accuracy of all
samples was 94.44%.

,e accuracy of tool wear state recognition based on
neural network multi-information fusion is 11.11% and
5.55% higher than that based on vibration signal and
acoustic emission signal.

,e diagnosis flowchart of the tool wear status is shown
in Figure 10.

6. Concluding Remarks

Tool wear state directly affects the accuracy, efficiency, and
cost of workpiece processing and the stability of the whole
manufacturing equipment system.

(1) ,is paper studies the application of information
fusion technology in tool wear state recognition. ,e
multi-information data acquisition system of tool
wear condition of CNC lathe is composed of a CNC
lathe, workpiece, sensor, and signal amplifier and
also includes a data acquisition, analysis, and pro-
cessing device.

(2) In this paper, BP neural network is used to fuse the
feature information of vibration signal and AE signal
with high correlation with tool wear degree, a 3-layer
BP neural network tool wear state intelligent rec-
ognition model with 4-9-1 structure is constructed,
and the model is trained.

(3) ,e experimental results show that the recognition
accuracy of the intelligent recognition system for tool
wear state of CNC turning tool in all experimental

samples is 94.44%, which is 11.11% higher than that
of vibration sensor and 5.55% higher than that of AE
sensor.

,e accuracy of the tool wear state identified by the
information fusion method is higher than that of the tool
wear state identified by a single sensor, which effectively
realizes the monitoring and automatic monitoring of the
tool wear state and has a certain practical application value.
However, the model established in this paper is only suitable
for CNC lathe and has low universality.
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To achieve the purpose of accurately grasping a random target with the upper limb prosthesis, the acquisition of target localization
information is especially important. For this reason, a novel type of random target localization algorithm is proposed. Firstly, an
initial localization algorithm (ILA) that uses two 3D attitude sensors and a laser range sensor to detect the target attitude and
distance is presented. Secondly, an error correction algorithm where a multipopulation genetic algorithm (MPGA) optimizes
backpropagation neural network (BPNN) is utilized to improve the accuracy of ILA.*irdly, a general regression neural network
(GRNN) algorithm is proposed to calculate the joint angles, which are used to control the upper limb prosthetic gripper tomove to
the target position. Finally, the proposed algorithm is applied to the 5-DOF upper limb prosthesis, and the simulations and
experiments are proved to demonstrate the validity of the proposed localization algorithm and inverse kinematics (IK) algorithm.

1. Introduction

According to the 2006 China National Disability Sample
Survey, there were 2.26 million amputees, accounting for
approximately 9.37% of the disabled [1]. From the infor-
mation provided by the National Limb Loss Information
Center, in 2005, there were 1.6 million who lost a limb in the
United States, and this number is expected to reach 3.6
million by 2050 [2]. A large proportion of these amputees are
upper limb amputees who do not have the means to perform
some daily activities, such as drinking water, eating, and
dressing. Upper limb prostheses that can capture and move
objects according to the wearer’s needs are wearable robots
from the perspective of human–computer integration [3].
However, for upper limb prostheses, the pose (position and
orientation) information of a random target is not fixed, and
inverse kinematics (IK) solution cannot be determined.
Unfortunately, research on random target localization al-
gorithms is mostly seen in the fields of mobile robots and
industrial robots and rare in the field of upper limb

prostheses. *erefore, how to accurately obtain the pose
information of a random target has become a difficult
problem that researchers need to urgently address.

Cao et al. [4] studied a method of using machine vision
and a neural network (NN) to decrease the absolute position
error of the robot. However, the NN was easily trapped in a
local solution, which led to instability in the localization
accuracy. Jiang et al. [5] proposed an algorithm which
combined particle swarm optimization algorithm with back
propagation neural network (BPNN) to solve the IK solution
of the UR3 robot. However, there was a lack of blindness in
the selection of the step size, which affected the accuracy of
the solution. Yi et al. [6] proposed a positioning system using
optical flow sensor based on the sensor fusion technique,
However, in low-light and slippery environments, the sys-
tem generates large errors. Jung et al. [7] selected the pose of
robot by extracting the initial state of the surrounding en-
vironment of the robot and determined the sample distri-
bution according to the given area map. *e positioning
success was determined by calculating the similarity between
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the robot sensor state and the estimated posture on a given
map. But the positioning accuracy is greatly affected by the
environment.

*e research object of this paper is 5 degrees of freedom
(DOF) upper limb prosthesis, as shown in Figure 1. It is not a
commercial product, but a product developed by the research
group and is an internal product of the laboratory. *e re-
mainder of this paper is structured as follows. In Section 2, the
kinematic of the upper limb prosthesis is analyzed. *e lo-
calization algorithm is introduced in Section 3. In Section 2.2,
the IK algorithm is addressed. *e proposed algorithm is
validated through simulations and experiments in Section 4.
Finally, Section 5 provides conclusions and future work.

2. Kinematic Analysis

2.1. Forward Kinematics. *e relationship among the joint
coordinate systems is illustrated in Figure 2, and the D-H
parameters are shown in Table 1.

i−1
i T �

ci −sicαi sisαi aici

si cicαi −cisαi aisi

0 sαi cαi di

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where si � sin θi, ci � cos θi, sαi � sin αi, and
cαi � cos αi.

*e pose of end-effector (EE) in the base coordinate
system is described as n0T:

0
nT �

0
1T θ1( 􏼁

1
2T θ2( 􏼁 . . .

n−1
n T θn( 􏼁. (2)

When (θ1, θ2 . . . θn) is known, solving the pose of the EE
in the base coordinate system is called positive kinematics.
Conversely, when the pose of the EE in the base coordinate
system is known, solving the joint angle is called IK.

Drinking water is a common activity in real life. To avoid
the overflow of water from the cup during the movement of
the upper limb prosthesis, this paper uses anMPU6050 hand
attitude sensor to control the gripper to always hold and
move in the horizontal direction. *erefore, the EE coor-
dinate system is described as in the coordinate system
o3 − x3y3z3. Additionally, the EE coordinate system is de-
scribed as 50T in the base coordinate system.

0
5T � T θ0( 􏼁

0
1T θ1( 􏼁

1
2T θ2( 􏼁

2
3T θ3( 􏼁Q,

�

1 0 0 295 sin1 + 212 sin1 cos3 + 212 cos1 cos2 sin3
0 1 0 −212 sin2sin3
0 0 1 212 cos2 sin1 sin3 − 212 cos1 cos3 − 295 cos1
0 0 0 1
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.

(3)

Because the attitude information of the gripping object is
simplified, the key problem of the IK solution becomes
obtaining the exact position of a random target.

2.2. IKAlgorithm. According to equation (3) and the output
values of MPGA-BPNN, the following equations can be
obtained:

Figure 1: 5-DOF upper limb prosthesis.
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*rough equation (4), the angular values of the front
three joints can be obtained. However, this is a complex set
of nonlinear transcendental equations that has no analytical
solution. *erefore, a method for solving transcendental
equations by using the fast nonlinear approximation ability
of a general regression neural network (GRNN) [9–11] is use
d in this paper. Once the learning samples are determined,
the connection weights between the corresponding network
structure and neurons are also determined. When using a
GRNN to solve the problem, we need to complete the
following work. First, in view of the training time and ac-
curacy requirements, θi(i � 1, 2, 3) are evenly dispersed into
100 copies in the range of the joint angle change, and then
the prosthetic joint space θk � [θ1k, θ2k, θ3k]T

(k � 1, 2 . . . 100) is obtained and saved as the Q{ } matrix,
which is used as the target sample of the GRNN. *en, the
corresponding coordinates [px, py, pz]T are obtained by
substituting θk into the first three rows of the fourth column
of equation (3) and saved as the S{ }matrix, which is used as
the input samples of GRNN. In this way, the IK solution
model is established.

3. Localization Algorithm

3.1. Initial Localization Algorithm (ILA). *e three-dimen-
sional attitude sensor [12], which relies on geomagnetic
localization, aggregates three-axis acceleration, a three-axis
gyroscope, and a three-axis magnetometer. *is attitude
sensor can detect and describe three-dimensional pose
changes with respect to Earth coordinates (roll direction,
pitch direction, and yaw direction). To obtain a random
target initial position, two attitude sensors (MPU9250) and a
distance sensor (CY30) need to be installed on the wearer, as
shown in Figure 3. Attitude sensor 1 is installed on the
artificial limb shoulder to calibrate the attitude with the
rotation of the body, and attitude sensor 2 is installed on the
head of the wearer to detect head movement relative to
attitude sensor 1. When the wearer’s head is upright and
looking straight ahead, the attitude data of sensor 1 and
sensor 2 are consistent, and this moment is described as the
preliminary state. When the wearer’s head turns up and
down or turns left and right, the upper limb prosthesis can

obtain the rotation or pitch angle of the head relative to the
wearer’s body by comparing the data of attitude sensor 1 and
attitude sensor 2. To confirm the operation target distance, a
laser range sensor is installed on the side of the head (left ear)
and emits a laser projected onto the operation target by
adjusting the head attitude.

*e coordinate systems are shown in Figure 4. S is the
prosthetic basic coordinate system, N is the coordinate
system about the middle of the neck, H is the coordinate
system about the middle of the head, and E is the laser range
sensor coordinate system. When the user’s head turns up
and down, it is equivalent to N coordinates rotating by an
angle βs around the S coordinates of the (0, 0, zn) axis, and
the origin of the N coordinate system is fixed at
(0, 0, zn)relative to the origin of the S coordinate system.
When the user shakes his head left and right, it is equivalent
toH coordinates rotating by an angle (0, 0, zn) around the N
coordinates of the (0, 0, zn) axis, and the origin of the H
coordinate system is fixed at (0, 0, zn) relative to the origin of
the N coordinate system. When the head is in the prelim-
inary state, the origin of the E coordinate system is set in the
positive direction of the βh axis about the H coordinate
system, and the βh axis of the E coordinate system coincides
with the βh axis of the H coordinate system. Furthermore,
the βh axis of the E coordinate system coincides with the
direction of the laser beam, and the βh axis of the E coor-
dinate system and βh axis of the H coordinate system form a
fixed angle βh, which is equivalent to the E coordinate system

Table 1: D-H parameters of the upper limb prosthesis.

Joint (i) θi (rad) di (mm) ai (mm) αi (rad) Angle range (rad)

1 θ1(0) 0 0 π/2 （−π/9, π/2)
2 θ2(−π/2) 295 0 −π/2 （−5π/6, 5π/18)
3 θ3(0) 0 0 π/2 （0, 5π/6)
4 θ4(0) 212 0 −π/2 （−5π/9, 5π/9)
5 θ5(−π/2) 0 100 π/2 （−5π/6, π/6)
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3 4
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yS

zS zN

xN
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zE
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Figure 3: Schematic diagram of the installed sensors. 1: artificial
limb; 2: attitude sensor 1; 3: attitude sensor 2; and 4: laser range
sensor.
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rotating around the S
NK axis of theH coordinate system.*e

origin of the E coordinate system is fixed at S
NK relative to the

origin of the H coordinate system.
By comparing the relative attitude angle discrepancy

between the two three-dimensional attitude sensors, the
homogeneous transformation matrix of the N coordinate
system to the S coordinate system S

NK can be derived as
follows:

S
NK �

cos βs 0 sin βs xs

0 1 0 ys

−sin βs 0 cos βs zs

0 0 0 1
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In the same way,
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H
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. (7)

*e target distance measured by the laser ranging sensor
is d, and its homogeneous matrix D is

D � dx dy dz 1􏽨 􏽩
T

� [d 0 0 1]
T
. (8)

An upper limb prosthesis controller for the wearer that
has a random target coordinate calculation program is
prepared. By adjusting the head attitude, the wearer projects
the laser emitted onto the operation target. *rough coor-
dinate transformation, the position of the target M in the S
coordinate system can be obtained.
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S
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N
HK ·

H
E K · D
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1
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,
(9)

where xs, ys, zs, zn, yh are associated with the physical pa-
rameters of the wearer, and the rotation angles βs and cn are
found by comparing the data from the two attitude sensors.
βh depends on the installation position of the laser range
sensor on the wearer’s head.

3.2. Error Analysis. Although the ILA can locate a target in
an unstructured environment, the attitude sensor used in the
localization system is based on the principle of inertial at-
titude measurement. Drift accumulation error and the
magnetic bias can produce positioning errors. In actual
random localization experiments, we collected 100 deviation
values from the three-dimensional attitude sensors relative
to the roll, pitch, and yaw directions of the Earth. *e de-
tection accuracy of the two three-dimensional attitude

sensors relative to the deviations in the roll and pitch di-
rections of the Earth is relatively high (no more than 1°).
However, the detection accuracy of the two three-dimen-
sional attitude sensors relative to the deviation in the Earth’s
yaw direction is poor (approximately 10°). *is is very
unfavorable for the purpose of determining the localization
of a random target. *rough histogram analysis of 100 data
points in the yaw direction, it is found that the distribution
of this group of data basically conforms to a Gaussian
distribution. *erefore, we set a fixed sampling period for
the deviation values of the two attitude sensors in the yaw
direction to collect and calculate 100 values of the deviation
in the yaw direction each time and then to calculate their
mathematical expectations. *e distribution curves of the
deviation values before and after processing by this method
are shown in Figure 5. Although this method improves the
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Figure 4: Schematic diagram of a random target M.
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stability of the random target location of the upper limb
prosthesis, localization accuracy still needs to be improved.

In addition, structural clearance and installation angle
errors will inevitably occur in the process of prosthetic limb
assembly. *ere are many reasons for the errors that ulti-
mately reduce the localization accuracy of the system. *e
red laser spot in Figure 6 represents the desired position. It is
obvious that the actual position of the gripper center deviates
from the desired position. Also, the errors between the initial
positioning coordinates and the desired position coordinates
are shown in Figure 7. It is found that the positioning error
by ILA is approximately 28mm, which cannot meet the
wearer’s requirements. *erefore, based on ILA, this paper
further uses an error correction algorithm to improve the
localization accuracy.

3.3. Error Correction Algorithm

3.3.1. BPNN Algorithm. NNs are currently popular in ma-
chine learning. Among them, BPNN is a multilayer feed-
forward NN whose characteristics are forward signal
transmission and error back propagation. In the forward
transmission process, the signal is processed layer by layer
from the input layer through the hidden layer to the output
layer. If the output layer cannot obtain the desired output,
the signal is transmitted to back propagation, and the weight
and threshold are adjusted according to the prediction error,
so that the output of BPNN continues to be close to the
expected output [13–15]. It is known that BPNN containing
a hidden layer has sufficient accuracy to approximate any
continuous function [16]. Figure 8 shows BPNN topology
diagram, where (x

p
i , y

p
i , z

p
i ) are the initial location

coordinates of the target point and are obtained by the
method described in Section 3.1. (xt

i , yt
i , zt

i) are actual
measured values of the target points corresponding to the
aforementioned (x

p

i , y
p

i , z
p

i ).
Because the initial weight and threshold are random,

with the training of the BPNN, the weight and threshold will
be constantly updated, and eventually the weight and
threshold will converge to a certain value. However, the
gradient descent training algorithm of the BPNN may
produce local minima. Evolutionary algorithms (EAs) can be
effectively used to find the optimal weight and threshold
globally without calculating gradient information [17]. EAs
include simulated annealing algorithm (SAA) [18, 19],
particle swarm optimization (PSO) [20, 21], and genetic
algorithm (GA). Compared with SAA and PSO, GA has the
advantages of efficient heuristic search and parallel com-
puting and has been widely used in function optimization
and combination optimization. *erefore, this paper uses a
GA combined with the BPNN (called GA-BPNN) to solve
the problem that the BPNN falls into local minima solutions.

3.3.2. GA-BPNN Algorithm. A GA is an optimization
method based on natural selectionmechanism in the process
of biological evolution [22–24]. *is paper uses GA’s global
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Figure 5: Distribution curves before and after numerical treatment
of the deviation in the yaw direction.

Figure 6: Difference between the desired position and the actual
position of the gripper center.
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search ability to search the optimal weights and thresholds of
BPNN. *en, the prediction model with the optimal weight
and threshold of BPNN is established, referred to as GA-
BPNN. Figure 9 is a flowchart of GA-BPNN algorithm.

*e deviation of the output values (xi, yi, zi) of the
BPNN and the actual measured values is taken as the ob-
jective function of the GA, defined as follows:

Ei �

���������������������������

xi − x
t
i􏼐 􏼑

2
+ yi − y

t
i􏼐 􏼑

2
+ zi − z

t
i􏼐 􏼑

2
􏽲

. (10)

*e goal of GA is to find the weight and threshold of
BPNN with the least sum of squares in all evolutionary
generations and to develop in the direction of increasing the
value of the fitness function. It is constructed as follows:

fitness �
1

1 + Ei

. (11)

GAs include single-population genetic algorithm
(SPGA) and multiple-population genetic algorithm
(MPGA). *e early SPGA is popular, but there are some

shortcomings, such as premature convergence, poor local
search ability, and serious assimilation of the late population.
For this reason, multipopulation genetic algorithm (MPGA)
[25, 26] was proposed. Besides of solving the shortcomings
of single-population genetic algorithm, the convergence
speed and accuracy have been improved. *is paper uses
MPGA and SPGA to search the optimal weights and
thresholds of BPNN (called MPGA-BPNN and SPGA-
BPNN, resp.) and observes the changes of fitness values
obtained by these two algorithms.*e specific parameters of
the SPGA and MPGA are as follows:

(a) SPGA: binary coding, roulette selection, and single-
point crossover. *e crossover probability is 0.85,
and the mutation probability is 0.07. *e evolu-
tionary algebra is set to 200, and the total number of
individuals is 1000.

(b) MPGA: binary coding, roulette selection, and mul-
tipoint crossover. *e crossover probability and the
mutation probability of various groups are randomly
generated in [0.4, 0.9] and [0.005, 0.1], respectively,
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Figure 8: Architecture of BPNN.
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and the immigration operator and artificial selection
operator are introduced. *e evolutionary algebra is
set to 200, the number of populations is 10, and the
number of individual populations is 100.

3.3.3. GA Evaluation. With the operation of SPGA-BPNN
and MPGA-BPNN, the changes curve of fitness value is
obtained, as shown in Figure 10. It is not difficult to find that
the best fitness value obtained by MPGA is 0.996, which is
much higher than the 0.56 obtained by SPGA.*erefore, this
paper chooses MPGA-BPNN as error correction algorithm
of ILA.

After the training, the Ei and the average absolute error
(AAE) Es of the output values of the MPGA-BPNN relative
to the actual measurement value are obtained by (15) and
(19). To evaluate the error correction ability of MPGA-
BPNN, Es of the ILA, BPNN, and SPGA-BPNN are intro-
duced as follows:

E
p
i �

����������������������������

x
p
i − x

t
i􏼐 􏼑 + y

p
i − y

t
i􏼐 􏼑

2
+ z

p
i − z

i
i􏼐 􏼑
2

􏽲

, (12)

E
b
i �

���������������������������

x
b
i − x

t
i􏼐 􏼑 + y

b
i − y

t
i􏼐 􏼑

2
+ z

b
i − z􏼐 􏼑

2
􏽲

, (13)

E
s
i �

���������������������������

x
s
i − x

t
i􏼐 􏼑 + y

s
i − y

t
i􏼐 􏼑

2
+ z

s
i − z

t
i􏼐 􏼑

2
􏽲

, (14)

E
m
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�����������������������������

x
m
i − x

t
i􏼐 􏼑 + y

m
i − y

t
i􏼐 􏼑

2
+ z

m
i − z

t
i􏼐 􏼑

2
􏽲

, (15)

E
p
s �

1
N

􏽘

N

i�1

�����������������������������

x
p
i − x

t
i􏼐 􏼑

2
+ y

p
i − y

t
i􏼐 􏼑

2
+ z
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i − z
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2
􏽲

, (16)
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􏽘
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, (17)
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, (18)

Yes

No

BPNM GA

Determining the network topology

Parameters of networks

Initial parameters

Error estimation

Adjustment of weights

Save the prediction model

Initialize the population

Population fitness

Select genetic operation

Crossover

Mutation

Calucate fitness

Yes No

Precision
requirement?

Stopping rule
satisfied?

Figure 9: Framework of GA-BPNN.

Evolutionary generation
0 50 100 150 200

Fi
tn

es
s v

al
ue

0.45

0.55

0.65

0.75

0.85

0.95
1

SPGA
MPGA

0.9

0.8

0.7

0.6

0.5

0.4

Figure 10: *e changes of fitness value.

Shock and Vibration 7



E
m
s �

1
N

􏽘

N

i�1

������������������������������

x
m
i − x

t
i􏼐 􏼑

2
+ y

m
i − y

t
i􏼐 􏼑

2
+ z

m
i − z

t
i􏼐 􏼑

2
􏽲

,

(19)

where, (xb
i , yb

i , zb
i ) are the output values of BPNN,

(xs
i , ys

i , zs
i ) are the output values of SPGA-BPNN,

(xm
i , ym

i , zm
i ) are the output values of MPGA-BPNN, and N

is the number of test points.

4. Simulations and Experiments

In this section, simulations and experiments are constructed
to prove the validity and practicability of the proposed al-
gorithms. Simulations are implemented with the aid of the
MATLAB R2015a tool and experiments are run using an
Intel Core™ i5-2450M CPU @ 2.50GHz and 2GB RAM as
the control platform.

4.1. Simulation Analysis of Localization Algorithm and IK
Algorithm. To assess the accuracy of the proposed locali-
zation algorithm, 200 points were randomly selected from
BPNN training samples as test points.*e errors in the x-, y-,
and z-directions between the actual position obtained by
BPNN, SPGA-BPNN, and MPGA-BPNN and the desired
position are obtained as shown in Figure 11. It is found that
the average error by BPNN and SPGA-BPNN is 11mm and
6.6mm, respectively; however, the average error by our
algorithm is 1mm. In other words, compared with the initial
positioning coordinates, BPNN and SPGA-BPNN error
correction algorithm reduces position error by 57.1% and
78.6%, respectively; however, our algorithm reduces the
error by 96.4%.

(xm
i , ym

i , zm
i ) of the above 200 test points are selected to

evaluate the accuracy of the IK algorithm. *e corre-
sponding joint angle values are obtained through the IK
algorithm and brought into (3) to obtain corresponding
position coordinates. Comparing with (xm

i , ym
i , zm

i ) of the
above 200 test points, the position errors in the x-, y-, and z-
direction are obtained as shown in Figure 12. It is found that
the average error is 0.035mm.

*e simulations show that the proposed localization
algorithm and IK algorithm is valid. Furthermore, these
proposed algorithms are applied to the developed 5-DOF
upper limb prosthesis to verify the effectiveness.

4.2. ExperimentAnalysis of LocalizationAlgorithm. *e laser
point was randomly hit 10 positions in the workspace by
adjusting the head attitude, and the position coordinates of
each test point were obtained by the ILA and used as input to
the BPNN, SPGA-BPNN, and MPGA-BPNN. *en, the
network output value by the BPNN, SPGA-BPNN, and
MPGA-BPNN of each test point was obtained and compared
with the corresponding actual measured values, as shown in
Figure 13. It is easy to see that the output values of the
MPGA-BPNN are closer to the actual measurement values.

Furthermore, through equation (15), E
p
i , Eb

i , Es
i , and Em

i

of the test points are calculated, respectively, as shown in
Table 2. *e AAEs obtained by equation (19) are 48.71mm,
18.92mm, 11.18mm, and 2.50mm, respectively. Compared
with the AAE of the initial position value, the AAE of the
output values of the BPNN and SPGA-BPNN is reduced by
61.16% and 75.77%, respectively. However, the AAE of the
output values of our algorithm is reduced by 94.87%. *ese
results further illustrate that error correction algorithm of
the MPGA-BPNN is more effective in the actual positioning
of the upper limb prosthesis.

It is well known that classical visual location algorithms
use point description to match features between the current
view and the map. After consulting the related literature, we
find that the visual positioning accuracy is approximately
5mm. However, our positioning accuracy is 2.5mm, which
is higher than visual location algorithms. In addition, our
method is an interactive localization method. In the case of
multiple targets, visual localization algorithms cannot un-
derstand which random target the user is going to grasp, but
our algorithm can aim the laser beam at a target and
command the upper limb prosthesis to grasp it. *erefore,
the proposed algorithm is more concise and accurate than
visual localization algorithms.

4.3. Experiment Analysis of IK Algorithm. By inputting the
output coordinates of MPGA-BPNN into GRNN solving
model, the joint angles of the front three joints of the upper
limb prosthesis were obtained, as shown in column 4 of
Table 3. *e upper limb prosthesis moves according to the
obtained joint angles, and finally the gripper center accu-
rately moves to the position of the laser point, as shown in
Figure 14.

To verify the accuracy of the joint angle solution, the
joint angles solved by GRNN are substituted into equation
(3) to obtain the coordinates of the center of the gripper, as
shown in column 5 of Table 3. At this time, [px, py, pz] is
regarded as the actual position, and (xm

i , ym
i , zm

i ) is regarded
as the desired position. *e responses of the actual position
and the desired position in the 3D coordinate system are
obtained, as shown in Figure 15(a), and the projection re-
sults in the xy-, xz-, and yz-planes are illustrated in
Figures 15(b)–15(d). It is easy to see that the IK algorithm
can obtain a unique solution with high accuracy.

4.4. Practical Applications of Artificial Limbs. An experiment
at which a cup is picked up from the table and moved to the
mouth of the wearer is performed. First, the laser point is
targeted to the center of the cup through wearer’s head
movement. *en, through the target localization algorithm
and IK algorithm, the grippermoved to the center of the cup.
Finally, the human–computer interaction system was used
to complete the process of gripping the cup and moving it to
the mouth, as shown in Figure 16. *e effectiveness of the
localization algorithm and IK algorithm is further verified.
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Figure 11: Error curve in the x-, y-, and z-directions of test points.
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Figure 13: Tracking diagram between the actual values obtained by the test point through the ILA, BPNN, SPGA-BPNN, andMPGA-BPNN
and the corresponding measured values.

Table 2: Deviations of test points.

Test point number deviations 1 2 3 4 5 6 7 8 9 10
E

p

i (mm) 56.50 44.58 49.10 46.65 49.67 50.07 51.23 44.86 48.43 46.05
Eb

i (mm) 20.86 21.44 19.80 17.85 19.24 17.74 18.92 17.56 18.89 16.86
Es

i (mm) 11.28 10.52 11.13 10.45 11.36 11.38 11.05 10.30 12.36 12.00
Em

i (mm) 2.33 2.56 2.45 2.20 2.94 2.72 2.72 2.14 2.37 2.52

Table 3: Inverse and positive solution results of testing points.

Test point (xt
i , yt

i , zt
i) (mm) (xm

i , ym
i , zm

i ) (mm) Joint angle (rad) (x
f
i , y

f
i , z

f
i ) (mm)

1 −41 18 −500 −39.83 16.46 −498.82 −0.21 −0.26 0.32 −40.41 17.14 −498.77
2 −61 100 −98 −62.30 101.71 −96.63 −0.33 −1.84 2.62 −62.61 101.83 −96.09
3 −17 −42 −488 −18.66 −40.83 −489.37 −0.23 0.41 0.50 −18.91 −40.51 −489.63
4 −141 21 −486 −142.33 22.32 −484.84 −0.24 −2.37 0.15 −142.00 22.09 −484.76
5 23 −105 −463 21.50 −103.63 −465.08 −0.14 0.87 0.69 22.18 −103.14 −466.16
6 −39 −63 −489 −40.38 −64.44 −490.72 −0.20 0.84 0.42 −40.52 −64.37 −490.30
7 6 209 −270 7.69 210.57 −271.63 0.02 −1.56 1.68 7.71 210.72 −271.79
8 10 −121 −430 11.23 −122.21 −431.31 −0.27 0.77 0.98 11.64 −122.57 −431.84
9 62 15 −482 63.41 16.33 −483.36 −0.10 −0.15 0.56 63.41 16.83 −483.36
10 9 −141 −411 10.12 −142.53 −412.67 −0.27 0.87 1.08 10.86 −142.91 −412.77
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Figure 14: Artificial limb accurately moving to the target position. *e numbers represent the laser test point at different positions.
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Figure 15: Continued.
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5. Conclusions and Future Work

To achieve the purpose of accurately grasping a random
target with the upper limb prosthesis, a novel type of random
target localization algorithm is proposed. Firstly, an initial
localization algorithm (ILA) that uses two 3D attitude
sensors and a laser range sensor to detect the target attitude
and distance is presented. Secondly, MPGA-BPNN error
correction algorithm is proposed to improve the localization
accuracy of the target based on the ILA is utilized. *irdly,
GRNN algorithm is presented to calculate the prosthetic
joint angles. Finally, the proposed algorithm is applied to the

5-DOF upper limb prosthesis. *e simulations show that the
average positioning error by MPGA-BPNN error correction
algorithm is 1mm, and the average error of the IK algorithm
is 0.035mm. Compared with ILA, the accuracy by MPGA-
BPNN error correction algorithm is greatly improved and
better than BPNN error correction algorithm and SPGA-
BPNN error correction algorithm.

*e laser test point positioning experiment shows that
the AAE between the output values after error correction by
MPGA-BPNN and the actual values is 2.5mm, and the
proposed IK algorithm can accurately obtain a unique IK
solution. *e experiment of gripping a cup from a table and
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Figure 15: Response diagrams of the actual position and the desired position.

(a) (b) (c)

Figure 16: Motion process of the upper limb prosthesis. (a) Locating the position of the cup, (b) gripping the cup, and (c) moving the cup to
the wearer’s mouth.
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moving it to the mouth of the wearer’s further verifies that
the positioning algorithm and the IK algorithm can meet the
requirements of the wearer.

In our future work, we will try to eliminate the restriction
of the upper limb prosthesis’s DOF tomeet the wearer’s need
for more use. We also aim to consider using voice or brain
waves to control the movement of the upper limb prosthesis.
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In order to investigate the effects of hand-arm posture, grip force, push force, and vibration excitation intensity on the mechanical
impedance of human hand-arm system, a test system with a self-developed vibration handle has been prepared. Based on the
testing system, the mechanical impedance of the hand-arm system of seven Chinese adult males were tested and calculated under
the random vibration excitation with the frequency of 10–1000Hz. /e results reveal that when the frequency is lower (<40Hz),
the hand-arm system with an elbow angle of 180o produces a higher mechanical impedance; when the frequency ranges from
40Hz to 100Hz, the hand-arm system with an elbow angle of 90o generates a higher mechanical impedance; while when the
frequency is higher (>100Hz), the hand-arm posture seems to have no obvious effect on the mechanical impedance. Higher grip
or push force would increase the frequency corresponding to the peak value of the mechanical impedance and often correspond to
a higher mechanical impedance in a specific frequency range (30–200Hz). When the frequency is lower (<140Hz), vibration
intensity has certain effects on the mechanical impedance of the hand-arm system. In conclusion, vibration intensity does not
directly affect the mechanical impedance, but an increase in grip or push force often causes an increase in mechanical impedance
and a higher frequency that corresponds to the peak of mechanical impedance.

1. Introduction

When the agricultural machinery and equipment are
working in the field, strong vibrations are inevitably pro-
duced due to the low levelness of the farmland, large motion
range of the working device, high running speed of the
transmission system and its own structural characteristics,
and the vibrations will be passed to the body of the operator
through the seat, steering wheel, handrails, and pedals.
According to different body parts that are influenced by the
transmitted vibrations, the vibrations can be divided into
whole body vibration and local vibration. Whole body vi-
bration mainly refers to the vibration transmitted to the
body through the supporting surface, such as the seat. Local
vibration, also known as hand-transmitted vibration, is the

mechanical vibration or shock acting on or transmitted to
the hand-arm system through the hand or fingers from the
steering wheel and operating armrest [1, 2]. Some vibrating
tools and machines, such as crushers, rock drills, and
grinders, are widely used in many industrial occasions. /e
workers who manipulate this kind of tools or machines for a
long time may feel tingling and numbness in their hands, the
severity of which usually increases with stronger vibration
intensity of the tool. In severe cases, it may cause physical
discomfort and loss of control of the tool [3]. /ese acute
effects usually disappear shortly after stopping the use of the
tool. However, prolonged exposure to such high-intensity
hand-transmitted vibrations can cause a series of diseases in
the blood vessels, sensory nerves, and musculoskeletal parts
of the human hand-arm system. /ese diseases are
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collectively referred to as “arm vibration syndrome,” also
known as Raynaud’s disease. For legal occupational diseases,
the main symptoms are vibration white fingers [4, 5].
Figure 1 shows the symptoms and signs of vibration white
fingers. According to previous reports, vibration white
fingers are difficult to treat and require a long recovery
period. /e symptoms of some patients continue to dete-
riorate even after the vibration operation is stopped. For
example, a study revealed that some patients with Raynaud’s
disease could not recover from vibration exposure even after
more than 20 years [6].

Hand-transmitted vibration will cause some damage to
the health of the operators of vibrating machinery, especially
under high vibration intensity and long exposure to vi-
bration. Hence, the harm caused by hand-transmitted vi-
bration is a particularly prominent problem. At present,
there is an increasing demand for the protection of the
health of vibration tool operators. /erefore, it is critical to
effectively control the hand-transmitted vibration to mini-
mize the harm to the human hand-arm system.

So far, relevant research has been mainly focused on the
vibration source of the tool itself, aiming to optimize the
structure of the tool, reduce the strength of hand-trans-
mitted vibration, and alleviate the adverse effects of vibration
on the human hand-arm system. However, there has been
little research on the human hand-arm system under hand-
transmitted vibrations, such as the absorption and trans-
mission characteristics of vibration energy in the hand-arm
system, the response of the system to hand-transmitted
vibration, and its relationship with vibration excitation. To
minimize the impact of hand-transmitted vibration on
human health, it is also highly necessary to study the
characteristics of vibration transmission in the human hand-
arm system, as well as some physical factors of vibration such
as hand-arm posture, vibration frequency and amplitude,
and gripping force. Exploration of the transfer law of vi-
bration energy in the hand-arm system can not only help to
improve and optimize the structure of the vibration ma-
chinery but also provide important reference for monitoring
the occupational health of workers and the early diagnosis
and prevention of arm vibration disease.

Investigation of the biodynamic response of the human
hand-arm system can facilitate a better understanding of the
mechanism underlying the damage caused by vibration, as
well as help to formulate frequency weighting factors for the
evaluation of the risk caused by vibration exposure. Besides,
it may also facilitate the development of methods or devices
for the isolation of the hand-arm system from vibration.
Some studies have been carried out on the biodynamic
responses of the hand-arm system, including apparent mass,
apparent stiffness, and mechanical impedance, and most
studies are focused on mechanical impedance. /e main
research findings are as follows. Lundström et al. measured
the mechanical impedance of the hand-arm system in the
frequency range of 20–1500Hz and found that the me-
chanical impedance is strongly dependent on the frequency

of vibration [7]. Burström studied the mechanical imped-
ance of the human hand-arm system with random vibration
under different experimental conditions and statistically
analyzed whether the conditions have an effect on the
amplitude and phase of the mechanical impedance. /e
results were further compared with those from other studies
using the sinusoidal excitation. /e results showed that the
vibration level and vibration stimulation frequency have a
very significant effect on the mechanical impedance of the
hand-arm system. /e increase in grip or push force will
cause the increases of impedance [8]. Hempstock and
O’Connor evaluated the measurement accuracy of the
mechanical impedance of the human hand-arm system and
found that when the frequency is lower than 25Hz, there
were certain differences between the measured impedance
values [9]. Gurram et al. employed the impedance testing
technique of the driving point to study the biodynamic
response of the human hand-arm system under sinusoidal
and random excitation and found that, within a certain
frequency range, the response characteristics of the hand-
arm system caused by sinusoidal excitation and random
excitation are significantly different, indicating the nonlinear
characteristics of the hand-arm system [10]. Dong et al.
proposed a method to measure the mechanical impedance of
the finger and the palm and studied the distribution char-
acteristics of mechanical impedance. /e results showed
that, at lower frequencies (≤40Hz), the mechanical im-
pedance of the palm was significantly higher than that of the
finger; when the frequency was increased to 100Hz, most of
the mechanical impedance was still distributed in the palm;
when the frequency was above 160Hz, the mechanical
impedance of the finger was close to or slightly higher than
that of the palm. /ey also discussed the basic distribution
characteristics of mechanical impedance in the finger and
palm under vibration in three orthogonal directions [11, 12].
Based on a theoretical analysis of the three-degree-of-free-
dom and four-degree-of-freedom biomechanical models of
the human arm, Li studied the effects of vibration frequency,
vibration intensity, hand-arm posture, and gripping force
level on the mechanical impedance of the hand-arm system
and found very significant relationships among these factors
[13]. Dai et al. described mechanical impedance from the

Figure 1: Symptoms and signs of vibrating white fingers.

2 Shock and Vibration



perspective of vibration mechanics and biomechanics and
designed a quantitative detection system for the muscle
rigidity symptoms of Parkinson’s disease [14].

From the above literature, it can be seen that, in recent
years, great progress has been made in research on the vi-
bration transmission of the hand-arm system. However, in
many studies, adult males in Europe and the United States
were taken as the subjects, whose physical characteristics are
very different from those of Chinese adult men. Hence, it
remains unclear whether the previously reported biody-
namic characteristics and vibration transmission charac-
teristics of the hand-arm system can also be applied to
Chinese adult males, and little is known about whether the
relevant results and conclusions can be directly used to guide
the optimization design for vibration reduction of machines
in China.

/e mechanical impedance of the human hand-arm
system is closely related to the tension of soft tissues such as
arm muscles. In the process of operating the machine and
tools, hand-arm posture and hand force are the main factors
that affect the muscle tension and should be two key factors
in testing the mechanical impedance of the hand-arm sys-
tem. /erefore, this study intends to test the effects of hand-
arm posture and hand force on the mechanical impedance of
the hand-arm system under different vibration intensities.

2. Materials and Methods

2.1. Research Subjects. /e subjects of this experiment were
the right arms of seven healthy right-handed adult males
with no history of vibration exposure. /e anthropometric
parameters measured according to GB/T 5703-2010 [15] are
shown in Table 1.

/e volume of the hand was measured by the Archi-
medes drainage method, with the wrist just being immersed
in water. /e maximum grip diameter refers to the linear
distance between the middle finger point (ph III) and the
most protruding part of the thumb knuckle when the fin-
gertip of the thumb touches the middle fingertip. /e test
results of anthropometric parameters in Table 1 show that
the hand-related parameter values are significantly lower
than those of western subjects in hand-transmitted vibra-
tion-related tests. At the same time, in this experiment, there
were also some differences in anthropometric parameters
among different subjects, which might be utilized to study
the influence of hand size on the hand-transmitted vibration
later.

2.2. Definition of Mechanical Impedance of the Hand-Arm
System. Mechanical impedance refers to the obstruction of
the mechanical structure on the vibration transmission and
can be obtained by calculating the ratio of the force F acting
on the system to the speedV generated due to the force at the
action point. /e human arm is a musculoskeletal system
consisting of muscle and bone parts. /e bone has a large
inertia, and the muscle has rigidity, viscosity, and inertia.
/ese mechanical characteristics are collectively called arm
impedance or armmechanical impedance [16]. According to

the standard GB/T 19740-2005 [17], the free mechanical
impedance Z(ω) of the driving point of the hand-arm system
is defined as the complex ratio of the excitation force F(ω)
applied at the frequency and the vibration velocity V(ω)
caused at the same frequency, and ω is the vibration angular
frequency. For all other connection points, the system is free,
which means that the applied external force is zero, namely,

Z(ω) �
F(ω)

V(ω)
. (1)

It should be noted that the mechanical impedance value
of a hand-arm system is generally a complex number, that is,
it has a real part and an imaginary part. Hence, it can also be
expressed by mode and phase, and the real part is the
mechanical resistance that reflects the absorption and dis-
sipation of vibration energy. In this study, the hand and arm
are regarded as a system whose vibrations in the three axes
are independent under the biodynamic coordinate system
(see Figure 2), as specified in ISO 5349-1-2001 [18]. In this
test, the mechanical impedance was measured along the Zh
direction (along the forearm) specified in the human bio-
dynamic coordinate system, which is the main vibration
exposure direction of many hand-held power tools during
operation. Besides, in this direction, the mechanical im-
pedance value of the entire arm is also the highest [11].

2.3. Calculation of the Mechanical Impedance of the Hand-
Arm System. In the experiment, the vibration handle was
tested first in the contactless state. /e sensor signal on the
finger side was used to represent the vibration characteristics
of the vibration handle. /erefore, the force signal and
acceleration signal on the finger side were measured when
subjects did not hold the handle. /e mechanical impedance
of handle (Zhandle) was calculated by the integral of accel-
eration value, Fourier transform of force value and velocity
value in time domain and the calculation of equation (1).
Similarly, the force signal and acceleration signal on the
finger side and the palm were, respectively, measured when
the subjects held the handle. /e mechanical impedance of
the finger (Zfinger) and the palm (Zpalm) were calculated in
the same way as the calculation of Zhandle. Finally, the
mechanical impedance value of the entire hand-arm system
was obtained by subtracting Zhandle from Zfinger plus Zpalm.

Assuming that the force values measured by the two
force sensors on the finger side of the subject are F1 and F2
and the force values measured by the two force sensors on
the palm side are P1 and P2, respectively, the finger force
(Ffinger) and palm force (Fpalm) can be expressed as follows:

Ffinger � F1 + F2,

Fpalm � P1 + P2.
(2)

/e acceleration values measured on the finger side and
palm side were integrated once to obtain the velocity value
on the finger side (Vfinger) and palm side (Vpalm), respec-
tively. /en, the force value F(t) and velocity value V(t) in
time domain were converted into force value F(ω) and
velocity value V(ω) in frequency domain by Fourier
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transform. In equations (3) and (4), the mechanical im-
pedance value on the finger side (Zfinger) and the palm side
(Zpalm) can be obtained as follows:

Zfinger(ω) �
Ffinger(ω)

Vfinger(ω)
, (3)

Zpalm(ω) �
Fpalm(ω)

Vpalm(ω)
. (4)

Finally, the mechanical impedance (Z) of the hand-arm
system can be expressed by the following formula:

Z � Zfinger + Zpalm − Zhandle. (5)

2.4. Mechanical Impedance Test of the Hand-Arm System

2.4.1. Test Equipment. In this study, a self-developed vi-
brating handle was used. /e grip part of the test handle was
40mm in diameter, 120mm in length, and 2mm in
thickness. Figure 3 shows the structural schematic and
physical diagram of the vibrating handle. In order to ensure
its mechanical properties and avoid resonance within the
analysis range, the vibrating handle was made of aluminum
alloy, which has the characteristics of light weight and high
rigidity. /e handle was evenly divided into the upper and
lower parts at the center line, which were connected by bolts.
/e middle of each part was equipped with a three-

dimensional acceleration sensor, of which the upper half was
used to measure the vibration response at the palm and the
lower half was used to measure the vibration response at the
fingers. Such installation method could provide the reli-
ability of the vibration response test [19]. It is worth noting
that the grip part of the vibrating handle was cylindrical and
its inside was of a curved surface, which was not conducive
to the installation of the acceleration sensor. /erefore, a
small rectangle block was welded on the inner surface so that
the acceleration sensor could be fixed on the surface of the
block. /e rectangular block had a flat surface and should be
parallel to the middle bracket of the vibrating handle in the
welding process and close to the center of the vibrating
handle. Both ends of each part were, respectively, fixed with
two three-dimensional force sensors on an aluminum alloy
strip bracket, wherein the force sensor was fixed by bolts, and
the acceleration sensor inside the vibrating handle was fixed
with strong glue. All sensors were installed following the
instructions. In addition, a clamp was designed to connect
the vibrating handle to the vibrating table. /e vibrating
handle developed in this study can not only measure the
vibration response of the finger side and palm side at the
same time but also directly measure the grip and push force
exerted by the hand-arm system. /erefore, a force plate
device for measuring push force was not required.

/e three-dimensional force sensor was used to measure
the static and dynamic force at the driving points of the palm
side and finger side at the same time. /rough proper signal
processing, the static and dynamic fractions in the force
signal measured by each force sensor can be obtained.
Figure 4 is a schematic diagram of the contact force, grip
force, and push force of the hand, assuming that the static
forces measured by the two force sensors on the palm side
are P1 and P2 and those on the finger side are F1 and F2.
According to ISO 10819-2013 [20], the static grip force (Fg)
and push force (Fp) can be defined as

Fg � F1 + F2,

Fp � P1 + P2 − F1 + F2( 􏼁.
(6)

During the test, by rotating the shaker cylinder by 90°,
the shaking table could be perpendicular to the horizontal
plane so that the direction of the vibration excitation gen-
erated by the shaker could meet the Zh direction of the test

Table 1: Anthropometric measurements of the subjects.

Subject
number

Height
(cm)

Weight
(kg)

Length of
the hand
(cm)

Width of
the hand
(mm)

/ickness of
the hand (mm)

Volume of
the hand
(ml)

Maximum grip
diameter (mm)

Length of the
upper Arm

(cm)

Length of the
forearm (cm)

1 183.0 100.0 20.1 89.4 39.8 400.0 96.5 37.7 47.1
2 170.0 60.0 20.0 85.5 24.5 350.0 97.2 34.5 45.2
3 171.0 61.0 16.7 80.2 24.7 300.0 85.7 31.7 40.5
4 169.0 58.0 17.4 83.5 29.7 320.0 91.4 32.1 42.2
5 173.0 70.0 17.1 83.3 25.6 310.0 90.7 33.3 43.9
6 176.0 78.0 19.8 88.5 31.7 380.0 97.7 35.4 46.1
7 165.0 62.0 15.2 78.4 23.1 270.0 81.6 30.6 39.6

zh

zh

yh

xh

Biodynamic coordinate system

Fundamental coordinate system

Figure 2: Hand grip coordinate system.
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(along the forearm). Figure 5 is the schematic diagram of the
mechanical impedance test process (taking the subject’s
hand-arm posture at 90° as an example).

2.4.2. Test Design. According to the literature, the posture of
the hand-arm system, grip force, push force, vibration in-
tensity, and individual differences all have certain effects on
the mechanical impedance of the human hand-arm system.
Since individual differences are very complex, the research
has been mainly focused on the influence of hand-arm
posture, grip force, push force, and vibration intensity on the
mechanical impedance of the human hand-arm system. In
order to investigate the effect of hand-arm posture on the
mechanical impedance, we tested and calculated the me-
chanical impedance of the subjects when the elbow angle of
the hand arm was 90° and 180°, respectively. To investigate
the effect of grip force on the mechanical impedance, we
tested and calculated the mechanical impedance of the
subjects when the grip force was 10, 30, and 50N, respec-
tively. Similarly, to assess the effect of push force on the
mechanical impedance, we determined and calculated the
mechanical impedance of the subjects when the push force
was 10 and 30N, respectively. Finally, because the usual
research range of vibration intensity is 3.5–10m/s2, we tested
and calculated the mechanical impedance of the subjects
under the vibration intensity of 5 and 10m/s2, respectively.
/e test design is shown in Table 2.

Figure 6 shows the two hand-arm postures used in the
mechanical impedance test of the hand-arm system.

2.4.3. Experimental Procedure. First, the parameters for the
vibration table and data acquisition card were set. /e ex-
citation mode was set to broadband random vibration of
10–1000Hz, and the vibration intensity was 5m/s2. In order
to make the collected signal as close as possible to the real
signal in the studied frequency range, the sampling fre-
quency was set as 5000Hz. After setting of the parameters,
the vibrating handle was fixed on the vibrating table. It
should be noted that the vibrating handle and the surface of
the vibration table cannot be loosened. /en, the vibration
characteristics of the empty handle were tested, so as to
eliminate the influence of the mechanical impedance of the
vibrating handle itself on the test results when calculating the
mechanical impedance of the hand-arm system. At the same
time, analysis of the vibration characteristics of the handle
showed that there was no obvious resonance phenomenon
in the handle in the frequency range studied. /erefore, the
vibrating handle could meet the test requirements. All
subjects were required to dress lightly and not to wear a coat
or rings and watches to minimize the influence of clothing
on the test results, and the subjects were tested in a random
order. Subsequently, the subjects were required to take the
postures according to the test requirements and hold the
vibrating handle with appropriate force. Vibration exposure
started after the correct postures and the required grip and
push force were maintained. During the test, the subjects
needed to observe the display screen of the force signal to
maintain the grip and push force at levels required by the test
(fluctuations within 3N were allowed). If the subject could
keep the grip and push force within the range required by the
test, the vibration signal frequency of the hand-arm system
would not change significantly in 20 s of vibration exposure.
Furthermore, at higher hand force levels (grip force 50N and
push force 30N), it would be difficult for the subjects to
maintain hand force at this level for a long period of time.
/erefore, the test of each combination of different test
factors lasted for approximately 30 s. Each subject performed
12 trials under one vibration intensity. To avoid the possible
impact of hand fatigue on the test results, after the end of
each test, the subject would be allowed to take a three-
minute rest before taking the next test. /en, the vibration

Fg

Fc

Fg Fp
Zh

Xh

Figure 4: Sketch map of hand contact force (Fc), grip force (Fg),
and push force (Fp).

zh
xh yh

P1

F1
Force sensor

Accelerometer

Force sensorP2

F2

(a) (b)

Figure 3: Vibration handle. (a) Structural sketch. (b) Physical map.
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excitation intensity of the vibration table was adjusted to
10m/s2, and other parameter settings were kept unchanged
to repeat the above test.

3. Results and Discussion

Matlab software was used to calculate the mechanical im-
pedance amplitude of the human hand-arm system, and the
results were expressed at the center frequency point of 1/3
octave in the frequency range of 10–1000Hz.

3.1. Influence of Individual Differences of Subjects on Me-
chanical Impedance. /e hand-arm posture is the main
factor affecting the mechanical impedance [21]. /erefore,

we principally discussed the effect of individual differences
on mechanical impedance under two different hand-arm
postures. Furthermore, we set other test conditions to low
strength state (vibration intensity was 5m/s2, the push force
was 10N, and the grip force was 30N) to assure the accuracy
of the results. /e mechanical impedance amplitudes of
seven subjects were calculated by the integral of acceleration
value, Fourier transform of force value and velocity value in
time domain and the calculation of equation (1). /e results
are shown in Figure 7.

Observations showed that, under two different hand-
arm postures, the amplitude of mechanical impedance of the
hand-arm system was only different among individual
subjects at low vibration frequencies (<100Hz), but when
the frequency was above 100Hz, the individual differences

Table 2: Levels of different test factors.

Hand-arm posture Vibration intensity (m/s2) Grip force (N) Push force (N)

Elbow angle 90° 5 10 1030
Elbow angle 180° 10 50 30

(a) (b)

Figure 6: Hand-arm posture in the mechanical impedance test. (a) 90° elbow angle. (b) 180° elbow angle.

Force
display

Exciter

Excitation direction

Base
Power

amplifier

Vibration
feedback
control
system

Force and acceleration signals

Acceleration signal

Data acquisition
system

Figure 5: Schematic diagram of the mechanical impedance measurement process of the hand-arm system.
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among the subjects showed no obvious effect on the me-
chanical impedance amplitude. Figure 7(a) shows that when
the elbow angle was 90° and the frequency was lower than
14Hz, the amplitude of mechanical impedance of the hand-
arm system increased with increasing hand volume, hand
length, hand width, and arm length. /e large volume of
hand means relatively large apparent mass of the arm sys-
tem, which would result in a stronger coupling effect with
the vibrating handle. In addition, it was observed that, in the
frequency range of 30–100Hz, a smaller hand volume
usually corresponded to a higher mechanical impedance
amplitude, with a peak value at around 40Hz, possibly
because resonance occurs in the hand-arm system at this
frequency. Figure 7(b) shows that when the elbow angle was
180°, the individual differences of the subjects had no ob-
vious effect on the mechanical impedance, but No. 4 subject
had two peaks of mechanical impedance amplitude at
around 16Hz and 30Hz./e second peak may be associated
with the resonance frequency of the hand-arm system at this
posture and hand force level. Although the differences
among individual subjects had certain effects on the me-
chanical impedance of the hand-arm system in a specific
frequency range, the change trend of mechanical impedance
amplitude along with the vibration frequency was basically
the same for all subjects. According to GB 10000-88 [22], the
anthropometric values of the No. 4 subject were closer to the
average of Chinese adult males, which were shown in

Table 3. Consequently, the test and calculation results of the
No. 4 subject were further discussed.

3.2. Effect of Hand-Arm Posture on Mechanical Impedance.
Figure 8 shows the changes in the mechanical impedance
amplitude of the human hand-arm system with the vibration
frequency under different hand-arm postures. Other test
conditions are as follows: vibration intensity is 5m/s2, grip
force is 30N, and push force is 30N.

Figure 8 clearly shows that when the elbow angle was
180°, the hand-arm system would produce higher me-
chanical impedance amplitudes at lower frequencies (below
40Hz), and when the frequency was extremely low, the
hand-arm system exhibited similar characteristics to
dampers. Under this combination of grip and push force
levels, the peak value of the mechanical impedance ampli-
tude occurred at a frequency of around 20Hz. When the
elbow angle was 90°, the peak value of mechanical imped-
ance amplitude appeared at around 41Hz. Aldien et al. have
reported that the frequency corresponding to the peak value
of the mechanical impedance amplitude is usually related to
the main resonance frequency of the hand-arm system [21].
When the elbow angle was 90°, the frequency corresponding
to the peak value of the mechanical impedance was in good
agreement with the range of resonance frequency values of
the hand-arm system reported in many studies [23]. When
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Figure 7: Amplitude of mechanical impedance of the hand-arm system for different subjects (5m/s2 vibration magnitude, 30N grip force,
and 10N push force). (a) 90° elbow angle. (b) 180° elbow angle.
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the frequency ranged from 40 to 100Hz and the elbow angle
was 90°, the mechanical impedance amplitude of the hand-
arm system was higher; when the frequency was higher than
100Hz, the hand-arm posture had no obvious effect on the
mechanical impedance.

When the frequency was low and the elbow angle was
180°, the system produced a significantly higher mechanical
impedance amplitude, indicating a relatively high effective
mass of the coupling of the hand-arm system with the vi-
brating handle, which would cause the flow of low-frequency
vibration energy to the whole body through the hand-arm
system. Compared with the resonance frequency of the
hand-arm system with an elbow angle of 90°, a higher ef-
fective mass would bring a lower resonance frequency.

3.3. Effect of Grip Force on Mechanical Impedance.
Figure 9 shows the effect of grip force on the mechanical
impedance of the hand-arm system under different hand-
arm postures when the vibration intensity was 5m/s2 and the
push force was 30N.

Figure 9 shows that, in two different hand-arm postures, an
increase in grip force would increase the frequency corre-
sponding to the peak value of mechanical impedance ampli-
tude of the hand-arm system. When the elbow angle was 90°
and the frequency was low (<34Hz), grip force had no obvious
effect on the mechanical impedance of the hand-arm system.
When the frequency range was 34–400Hz, the mechanical
impedance amplitude of the hand-arm system increased with

greater grip force; however, when the frequency was further
increased, the effect of grip force was reduced. For the hand-
arm posture with an elbow angle of 180°, when the frequency
was low, the mechanical impedance amplitude was signifi-
cantly higher, indicating that the hand-arm system was more
strongly coupled to the vibrating handle. In almost the entire
frequency range studied, a higher grip force usually corre-
sponded to a higher mechanical impedance amplitude, but
with the increases in frequency, the impact of grip force on the
mechanical impedance of the hand-arm system would be
gradually weakened./ese findings are in good agreement with
those of Aldien et al. [21].

3.4. Effect of Push Force on Mechanical Impedance.
Figure 10 shows the effect of changes in push force on the
mechanical impedance under the two hand-arm postures
when the vibration intensity was 5m/s2 and the grip force
was 30N.

It can be seen that, similar to the effect of grip force, an
increase in push force would also increase the frequency
corresponding to the peak value of mechanical impedance
amplitude of the hand-arm system under both hand-arm
postures. When the elbow angle was 90° and the frequency
ranged from 30Hz to 200Hz, an increase in push force also
increased the mechanical impedance amplitude of the hand-
arm system, but when the frequency was below 30Hz or
above 200Hz, the effect of push force on the mechanical
impedance of the hand-arm system was weakened. When
the elbow angle was 180°, an increase in push force would
elevate the mechanical impedance amplitude of the hand-
arm system in almost the entire frequency range, particularly
at lower frequencies (<100Hz).

3.5. Effect of Vibration Intensity on Mechanical Impedance.
Figure 11 shows the effects of different vibration intensities
on the mechanical impedance of the hand-arm system under
two hand-arm postures when the grip force was 30N and the
push force was 30N.

For different vibration intensities, the variations of the
mechanical impedance amplitude of the hand-arm system
were basically consistent under the two hand-arm postures.
When the frequency was lower (<140Hz), vibration in-
tensity had a greater impact on the mechanical impedance
under the hand-arm posture with an elbow angle of 180°,
which is consistent with the results of Aldien et al. [21]. In
addition, under this posture, the mechanical impedance
amplitude decreased with increasing vibration intensity.
Lundström et al. also found that when the frequency was
below 100Hz, the mechanical impedance amplitude of the
hand-arm system decreased with increasing vibration in-
tensity, indicating the reliability of the measurement in this
study [7].

Table 3: /e average anthropometric values of Chinese adult males.

Main
parameter

Weight
(kg)

Height
(cm)

Length of
Hand (cm)

Width of
Hand (mm)

Length of upper
Arm (cm)

Length of
Forearm (cm)

Average values 59.0 167.8 18.3 82.0 31.3 42.0
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Figure 8: Amplitude of mechanical impedance of the hand-arm
system under different postures (5m/s2 vibration magnitude, 30N
grip force, and 30N push force).
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Figure 10: Amplitude of mechanical impedance of the hand-arm system under different push forces (5m/s2 vibration magnitude and 30N
grip force). (a) 90° elbow angle. (b) 180° elbow angle.
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Figure 9: Amplitude of mechanical impedance of the hand-arm system under different grip forces (5m/s2 vibration magnitude and 30N
push force). (a) 90° elbow angle. (b) 180° elbow angle.
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4. Conclusion

To investigate the effects of hand-arm posture, grip force,
push force, and vibration excitation intensity on the me-
chanical impedance of human hand-arm system, a test
system with a self-developed vibration handle has been
established. On the basis of the testing system, the me-
chanical impedance of the right-hand-arm system of seven
healthy adult males were tested and calculated under dif-
ferent hand-arm postures, vibration intensities, grip forces,
and push forces. At the same time, taking the No. 4 subject as
the research object, the influence of different test factors on
the mechanical impedance of the human hand-arm system
was discussed.

In conclusion, increases in grip or push force contribute
to higher mechanical impedance amplitudes and frequencies
corresponding to the peak value of the mechanical im-
pedance. Vibration intensity greatly affects the mechanical
impedance amplitude in a lower frequency range when the
elbow angle is 180°. /e investigation of the mechanical
impedance of the hand-arm system will help to optimize and
develop the biomechanical model of the human hand-arm
system. In addition, since the influence of different factors
on the mechanical impedance of the hand-arm system was
analyzed within a certain frequency range, the injury of the
human arm can be more accurately targeted, which is
beneficial to the development of vibration isolators.
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