
International Journal of Recon�gurable Computing

FPGAs for Domain Experts

Lead Guest Editor: Wim Vanderbauwhede
Guest Editors: Sven-Bodo Scholz and Martin Margala

FPGAs for Domain Experts

International Journal of Reconfigurable Computing

FPGAs for Domain Experts

Lead Guest Editor: Wim Vanderbauwhede
Guest Editors: Sven-Bodo Scholz and Martin
Margala

Copyright © 2020 Hindawi Limited. All rights reserved.

is is a special issue published in “International Journal of Reconfigurable Computing.” All articles are open access articles distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Editorial Board

Christophe Bobda, USA
Jose A. Boluda, Spain
João Cardoso, Portugal
René Cumplido, Mexico
Michael Hübner, Germany
John Kalomiros, Greece
Volodymyr Kindratenko, USA
Miriam Leeser, USA
Guy Lemieux, Canada
Martin Margala, USA
Gokhan Memik, USA
Seda Ogrenci-Memik, USA
Marco Platzner, Germany
Ron Sass, USA
Walter Stechele, Germany
Jim Torresen, Norway

Contents

FPGAs for Domain Experts
Wim Vanderbauwhede  , Sven-Bodo Scholz  , and Martin Margala 

Editorial (2 pages), Article ID 2725809, Volume 2020 (2020)

Automatic Pipelining and Vectorization of Scientific Code for FPGAs
Syed Waqar Nabi  and Wim Vanderbauwhede 

Research Article (12 pages), Article ID 7348013, Volume 2019 (2019)

Dimension Reduction Using Quantum Wavelet Transform on a High-Performance Reconfigurable
Computer
Naveed Mahmud  and Esam El-Araby 

Research Article (14 pages), Article ID 1949121, Volume 2019 (2019)

Translating Timing into an Architecture:)e Synergy of COTSon and HLS (Domain Expertise—
Designing a Computer Architecture via HLS)
Roberto Giorgi  , Farnam Khalili  , and Marco Procaccini 

Research Article (18 pages), Article ID 2624938, Volume 2019 (2019)

An FPGA-Based Hardware Accelerator for CNNs Using On-Chip Memories Only: Design and
Benchmarking with Intel Movidius Neural Compute Stick
Gianmarco Dinelli  , Gabriele Meoni  , Emilio Rapuano, Gionata Benelli  , and Luca Fanucci 

Research Article (13 pages), Article ID 7218758, Volume 2019 (2019)

Implementing and Evaluating an Heterogeneous, Scalable, Tridiagonal Linear System Solver with
OpenCL to Target FPGAs, GPUs, and CPUs
Hamish J. Macintosh  , Jasmine E. Banks  , and Neil A. Kelson
Research Article (13 pages), Article ID 3679839, Volume 2019 (2019)

https://orcid.org/0000-0001-6768-0037
https://orcid.org/0000-0002-8663-1043
https://orcid.org/0000-0002-0034-0369
https://orcid.org/0000-0003-3835-4851
https://orcid.org/0000-0001-6768-0037
https://orcid.org/0000-0001-5570-0547
https://orcid.org/0000-0002-4575-1049
https://orcid.org/0000-0003-0384-8229
https://orcid.org/0000-0003-2307-139X
https://orcid.org/0000-0002-9719-2672
https://orcid.org/0000-0003-0123-7977
https://orcid.org/0000-0001-9311-6392
https://orcid.org/0000-0002-1723-7421
https://orcid.org/0000-0001-5426-4974
https://orcid.org/0000-0002-1543-4499
https://orcid.org/0000-0003-1507-9682

Editorial
FPGAs for Domain Experts

Wim Vanderbauwhede ,1 Sven-Bodo Scholz ,2 and Martin Margala 3

1University of Glasgow, Glasgow, UK
2Heriot-Watt University, Edinburgh, UK
3University of Massachusetts Lowell, Lowell, MA, USA

Correspondence should be addressed to Wim Vanderbauwhede; wim.vanderbauwhede@glasgow.ac.uk

Received 4 May 2020; Accepted 16 September 2020; Published 27 October 2020

Copyright © 2020WimVanderbauwhede et al.&is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Field-Programmable Gate Arrays (FPGAs) have recently
gained a lot of attention through demonstrated superior
performance over off-the-shelf architectures, not only with
respect to energy efficiency but also with respect to wall-
clock runtimes. For a long time, FPGAs had been used
primarily as prototyping devices or in embedded systems but
are now increasingly accepted as first-order computing
devices on desktops and servers.&is change has been driven
by a combination of increasingly larger and resourceful
FPGAs and wider availability of mature and stable high-level
FPGA programming tools.

&e application areas range across many domains from
high-finance to advanced machine learning. Despite the
availability of many tools for high-level synthesis and in-
creasing ease of access to FPGA-based computing nodes
(e.g., via Amazon Web Services), domain experts still are far
away from utilising FPGAs to gain processing performance
unless preconfigured systems for their particular applica-
tions exist in readily available form. Manycore CPUs and
GPUs are still generally considered the only viable options
for domain experts looking to accelerate their applications.

Against this background, there has been considerable
research in recent years on making FPGAs accessible for
domain experts. With this special issue, we are bringing
together work that aims to break this barrier for a wider
applicability of FPGAs.

&is special issue combines contributions from re-
searchers and practitioners that share the vision of enabling
domain experts to benefit from the performance opportu-
nities of FPGAs.

We hope that you enjoy this special issue, and this paper
collection as a whole can introduce readers to the varied and
challenging area of FPGA computing, presenting several
state-of-the-art solutions from diverse perspectives. All
accepted papers provide relevant and interesting research
techniques, models, and work directly applied to the area of
scientific FPGA programming.

Finally, we would like to thank all the authors for their
submissions to this special issue and the also the reviewers
for dedicating their time to provide detailed comments and
suggestions that helped to improve the quality of this special
issue.

&e first paper, “Automatic Pipelining and Vectorization
of Scientific Code for FPGAs,” focuses on FPGA compilation
of legacy scientific code in Fortran.&ere is a very large body
of legacy scientific code still in use today, and much new
scientific code is still being written in Fortran-77. Many of
these codes would benefit from acceleration on GPUs and
FPGAs. Manual translation of such legacy code parallel code
for GPUs or FPGAs requires a considerable manual effort.
&is is a major barrier to wider adoption of FPGAs. &e
authors of this paper have been developing an automated
optimizing compiler to lower this barrier. &eir aim is to
compile legacy Fortran code automatically to FPGA, without
any need for rewriting or insertion of pragma. &e compiler
applies suitable optimizations based on static code analysis.
&e paper focuses on two key optimizations, automatic
pipelining and vectorization. &e compiler identifies por-
tions of the legacy code that can be pipelined and vectorized.
&e backend generates coarse-grained pipelines and

Hindawi
International Journal of Reconfigurable Computing
Volume 2020, Article ID 2725809, 2 pages
https://doi.org/10.1155/2020/2725809

mailto:wim.vanderbauwhede@glasgow.ac.uk
https://orcid.org/0000-0001-6768-0037
https://orcid.org/0000-0002-8663-1043
https://orcid.org/0000-0002-0034-0369
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2725809

automatically vectorizes both the memory access and the
data path based on a cost model, generating an OpenCL-
HDL hybrid solution for FPGA targets on the Amazon
cloud. &e results show up a performance improvement of
up to four times over baseline OpenCL code.

&e second paper, “Dimension Reduction Using
Quantum Wavelet Transform on a High-Performance
Reconfigurable Computer,” introduces a very interesting
and exciting new field, the use of FPGAs for the acceleration
of quantum computing simulations. Simulation is a crucial
step in the development of quantum computers and algo-
rithms, and FPGAs have huge potential to accelerate this
type of simulations. &e paper proposes to combine di-
mension reduction techniques with quantum information
processing for application in domains that generate large
volumes of data such as high-energy physics (HEP). It fo-
cuses on using quantum wavelet transform (QWT) [1] to
reduce the dimensionality of high spatial resolution data.
&e quantumwavelet transform takes advantage of quantum
superposition to reduce computing time for the processing
of exponentially larger amounts of information. &e authors
present a new emulation architecture to perform QWT and
its inverse on high-resolution data, and a prototype of an
FPGA-based quantum emulator. Experiments using high-
resolution image data on a state-of-the-art multinode high-
performance reconfigurable computer show that the pro-
posed concepts represent a feasible approach to reducing the
dimensionality of high spatial resolution data generated by
applications in HEP.

&e third paper, “Translating Timing into an Archi-
tecture: &e Synergy of COTSon and HLS (Domain
Expertise—Designing a Computer Architecture via HLS),”
provides an in-depth description of a high-level synthesis
workflow around Vivado HLS tools. It comprises tools on
both sides of HLS: tools for design space exploration prior
to running HLS named COTSon and MYDSE as well as
tools for targeting a custom build hardware, the AXIOM
board.&e article provides a good overview of the tools and
the overall workflow through the HLS tool. &e abstract
description of the workflow is substantiated by an in-depth
presentation of example applications including the design
of a system for distributed computation across multiple
FPGA boards. Finally, some empirical evidence for the
predictive capabilities of the tool chain is being presented.
Overall, this contribution not only demonstrates the
challenges involved when designing complex systems with
HLS at the core nicely but also features the presentation of
custom-made tooling which can be used by the wider
community.

&e fourth paper, “An FPGA-Based Hardware Accel-
erator for CNNs Using On-Chip Memories Only: Design
and Benchmarking with Intel Movidius Neural Compute
Stick,” presents a full on-chip FPGA hardware accelerator
for a separable convolutional neural network designed for a
keyword spotting application. &is is a quantized neural
network realized exclusively using on-chip memories. &e
design is based on the Intel Movidius Neural Compute Stick
and compares against this device, which deploys a custom
accelerator, the Intel Movidius Myriad X Vision Processing

Unit (VPU) [2]. &e results show that better inference time
and energy per inference result can be obtained with
comparable accuracy. &is is a striking result as the VPU is a
dedicated accelerator touting ultralow power and high
performance and serves to showcase the potential of
quantized CNNs on FPGAs.

&e final paper “Implementing and Evaluating an
Heterogeneous, Scalable, Tridiagonal Linear System
Solver with OpenCL to Target FPGAs, GPUs, and CPUs,”
addresses the problem of solving linear systems, a very
common problem in scientific computing and HPC. As
indicated by the title, the paper focuses in particular on
diagonally dominant tridiagonal linear systems using the
truncated-SPIKE algorithm [3] and presents a numeri-
cally stable optimised FPGA implementation using the
open standard OpenCL [4]. &e paper compares imple-
mentations of the algorithm on CPU, GPU, and FPGA as
well as provides comparison against an optimised
implementation of the TDMA solver [5]. &e FPGA
implementation is shown to have better performance per
Watt than the CPU and GPU, and the truncated-SPIKE
algorithm outperforms the TDMA algorithm on FPGA
and CPU. &e paper also demonstrates the potential of
utilising FPGAs, GPUs, and CPUs concurrently in a
heterogeneous computing environment to solve linear
systems.

Conflicts of Interest

&e editors declare that they have no conflicts of interest.

Acknowledgments

&e editors wish to acknowledge the collaborative funding
support from the UK EPSRC under grant P/L00058X/1.

Wim Vanderbauwhede
Sven-Bodo Scholz
Martin Margala

References

[1] A. Fijany and C. P. Williams, “Quantum wavelet transforms:
fast algorithms and complete circuits,” in Proceedings of the
NASA International Conference on Quantum Computing and
Quantum Communications, pp. 10–33, Springer, Palm Springs,
CA, USA, February 1998.

[2] S. Rivas-Gomez, A. J. Pena, D. Moloney, E. Laure, and
S. Markidis, “Exploring the vision processing unit as co-pro-
cessor for inference,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 589–598, IEEE, Vancouver, Canada, May 2018.

[3] C. C. K. Mikkelsen and M. Manguoglu, “Analysis of the
truncated spike algorithm,” SIAM Journal on Matrix Analysis
and Applications, vol. 30, no. 4, pp. 1500–1519, 2009.

[4] A. Munshi, “&e opencl specification,” in Proceedings of the
IEEE Hot Chips 21 Symposium (HCS), pp. 1–314, IEEE,
Stanford, CA, USA, August 2009.

[5] D. J. Warne, N. A. Kelson, and R. F. Hayward, “Comparison of
high level fpga hardware design for solving tri-diagonal linear
systems,” Procedia Computer Science, vol. 29, pp. 95–101, 2014.

2 International Journal of Reconfigurable Computing

Research Article
Automatic Pipelining and Vectorization of Scientific
Code for FPGAs

Syed Waqar Nabi and Wim Vanderbauwhede

School of Computing Science, University of Glasgow, Glasgow, UK

Correspondence should be addressed to Syed Waqar Nabi; syed.nabi@glasgow.ac.uk

Received 4 May 2019; Revised 4 August 2019; Accepted 8 October 2019; Published 18 November 2019

Academic Editor: John Kalomiros

Copyright © 2019 Syed Waqar Nabi and Wim Vanderbauwhede. .is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

.ere is a large body of legacy scientific code in use today that could benefit from execution on accelerator devices like GPUs and
FPGAs. Manual translation of such legacy code into device-specific parallel code requires significant manual effort and is a major
obstacle to wider FPGA adoption. We are developing an automated optimizing compiler TyTra to overcome this obstacle. .e
TyTra flow aims to compile legacy Fortran code automatically for FPGA-based acceleration, while applying suitable optimizations.
We present the flowwith a focus on two key optimizations, automatic pipelining and vectorization. Our compiler frontend extracts
patterns from legacy Fortran code that can be pipelined and vectorized..e backend first creates fine and coarse-grained pipelines
and then automatically vectorizes both the memory access and the datapath based on a cost model, generating an OpenCL-HDL
hybrid working solution for FPGA targets on the Amazon cloud. Our results show up to 4.2× performance improvement over
baseline OpenCL code.

1. Introduction

Acceleration devices for high-performance computing
(HPC) and scientific computing are becoming increasingly
heterogeneous. .ere is a general consensus that no single
type of device–CPU, GPU, or FPGA–will be best suited
across the entire range of scientific applications. GPUs are
already well-established as a practical alternative to con-
ventional CPUs for accelerating scientific applications. A
considerable proportion of supercomputers in the top 500
list contains GPU accelerators. FPGAs are a more recent
addition to this canvas, and in spite of significant im-
provements in their performance and programmability in
recent years, they are still far from widespread adoption as
mainstream acceleration devices.

A key challenge that applies in a lesser or greater extent
to all accelerators is writing parallel, high-performance code
customized for performance specifically on that device. .e
challenge is all the more acute for FPGAs, which are no-
toriously difficult to program. Improvements in FPGA logic
capacity as well as high-level synthesis (HLS) programming

frameworks such as Altera’s (Intel’s) AOCL, Xilinx’s
SDAccel, andMaxeler have played an important role in their
transition from peripheral, embedded, or prototyping only
devices to first-order desktop accelerators. However, FPGAs
have failed to make the kind of inroads in HPC that GPUs
have made. .is is, in part at least, due to the fact that until
very recently there were no practical high-level pro-
gramming platforms for FPGAs, and even with their in-
troduction, it is still a challenging task to write high-
performance code. While heterogeneous programming
languages like OpenCL provide code portability, they are not
performance portable across devices. For example, [1] report
that “even though OpenCL is functionally portable across
devices, direct ports of GPU-optimized code do not perform
well compared with kernels optimized with FPGA-specific
techniques such as sliding windows. However, by exploiting
FPGA-specific optimizations, it is possible to achieve up to
3.4x better power efficiency. . ..” Our own previous work has
shown that even very simple OpenCL kernel code can lead to
very different performance profiles when moving from one
FPGA framework to another [2].

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 7348013, 12 pages
https://doi.org/10.1155/2019/7348013

mailto:syed.nabi@glasgow.ac.uk
https://orcid.org/0000-0003-3835-4851
https://orcid.org/0000-0001-6768-0037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7348013

It is our contention that such programming and opti-
mization challenges will remain a hurdle to the adoption of
acceleration devices–especially FPGAs–in mainstreamHPC,
and that high-level programming frameworks like OpenCL
should themselves be targets for still higher level compilers
that can work with sequential, unoptimized legacy code, in
which case one could truly have performance portability.

We propose an optimizing compiler framework that uses
Type Transformations (TyTra) to explore FPGA-specific
optimizations for a given application and automatically
generates the implementation code from legacy Fortran
code, leading to the desired code and performance porta-
bility. It applies these type transformations on a high-level,
functional representation of the kernel (the code to be
accelerated on the FPGA), extracted from the Fortran code
and then uses a cost model for evaluating the search-space
for an optimized solution.

A flowchart of the TyTra framework is shown in Figure 1.
.e frontend refactor Fortran 77 codes into modern,
maintainable, extensible, and accelerator-ready Fortran code
(available at https://github.com/wimvanderbauwhede/
RefactorF4Acc). We can then generate OpenCL code
targeted at GPUs (available at https://github.com/
wimvanderbauwhede/AutoParallel-Fortran) or FPGAs
(available at https://github.com/wimvanderbauwhede/
Fortran-to-OpenCL-FGPA). For FPGA targets specifi-
cally, we invoke a more involved optimization pass that
translates the OpenCL code to an intermediate repre-
sentation (IR) (available at https://github.com/waqarnabi/
ocl2tir) and then generates low-level hardware description
language (HDL) code from it. It is this optimizing route in
our flow that we will discuss in the paper, with a focus on
two key optimizations: pipelining and vectorization.

We briefly discuss the frontend of the TyTra flow in
Section 4. We present our view of the requirements of
optimizing code on FPGAs in Section 5, leading into the
main contribution of this paper in Section 6, the TyTra
backend compiler (TyBEC) and the automatic pipelining
and vectorization it enables. We present the evaluation of
our approach in the next section before concluding the
paper. We start by reviewing some related work.

2. Related Work

.e viability of FPGAs as mainstream acceleration devices
for scientific computing is well established in literature. As
an example, reference [3] presents a suitability analysis of
FPGAs for heterogeneous HPC platforms, using the Ber-
keley 13 dwarfs as a reference. .ey found FPGAs to be
suitable for 5 of the 13 dwarves, but noted that they are
difficult to use for nonspecialized designers and emphasized
the importance of more abstraction and less customization.
Reference [4] demonstrates the suitability of FPGAs, pro-
grammed via OpenCL, for implementing partial differential
equation (PDE) based scientific models. .e same article,
however, showing an OpenCL kernel written with differ-
ences in syntax and compiler hints for two different FPGA
target devices/vendors, supports our contention that
OpenCL code is not performance portable.

.ere are a number of commercial tools available that
provide a high-level programming route for accelerating
scientific code on FPGAs. Maxeler [5] is a good example,
which provides a Java metaprogramming model for de-
scribing computation kernels and connecting data streams
between them. It has been used for accelerating applications
from various domains, e.g., scientific and financial model-
ling. Altera (now Intel) OpenCL or AOCL [6] is the
implementation of the OpenCL heterogeneous parallel
programming framework for Intel FPGAs. While it is based
on the OpenCL standard, it has vendor-specific optimization
extensions. Xilinx similarly has its own OpenCL imple-
mentation called SDAccel [7]. Like AOCL, SDAccel is based
on the OpenCL standard and also proposes custom opti-
mizations to improve performance.

.ere have been other studies that are motivated in a way
similar to ours, that is, by the need for a higher abstraction
design entry than conventional high-level languages. For
example, algorithmic skeletons have been proposed to
separate algorithm from architecture-specific parallel pro-
gramming [8]. SparkCL is an attempt to bring increasingly
diverse architectures, including FPGAs, into the familiar

FPGA Target

Legacy Scientific Code
(e.g. Fortran-77)

Refactoring
Pattern-extraction (maps/folds)
Functional Description

Front-end DSE
(TyTra-CL)

Back-end DSE
(TyTra-IR)

Back-end Code
Generation

OpenCL-HDL
wrapper

OpenCL-API

HDL

Co
st

M
od

el

Convert to TyTra-CL +
Opaque Scalar Funct’s

Convert to TyTra-IR
(via LLVM-IR)

FPGA Target

OpenCL

OpenCL-API

FPGA Target

HDL

(i)
(ii)

(iii)

Figure 1: .e TyTra optimizing compiler framework. .e starting
point is Fortran 77 scientific code, though there can be other
possible entry points as well. .ere are a number of backend code-
generation options, with this paper’s focus on hybrid OpenCL-
HDL route, geared towards deployment on the Amazon cloud’s F1
instances.

2 International Journal of Reconfigurable Computing

https://github.com/wimvanderbauwhede/RefactorF4Acc
https://github.com/wimvanderbauwhede/RefactorF4Acc
https://github.com/wimvanderbauwhede/AutoParallel-Fortran
https://github.com/wimvanderbauwhede/AutoParallel-Fortran
https://github.com/wimvanderbauwhede/Fortran-to-OpenCL-FGPA
https://github.com/wimvanderbauwhede/Fortran-to-OpenCL-FGPA
https://github.com/waqarnabi/ocl2tir
https://github.com/waqarnabi/ocl2tir

Apache Spark framework [9]. Another route for increasing
the design abstraction is to use domain-specific languages
(DSLs), and there are numerous examples for FPGAs, e.g.,
FSMLanguage for designing FSMs [10] and CLICK for
networking applications [11].

A work that is quite similar to ours is the Geometry of
Synthesis project [12]. It proposes design entry in a func-
tional language paradigm, leading to generation of RTL code
for FPGAs. It does not have automatic generation and
evaluation of architectural design variants though..ere has
also been work on exploring vectorization for FPGA
pipelines for specific applications (for example, see [13]).
Automatic pipelining of high-level code is now possible with
commercial tools like Xilinx’s SDAccel, Intel’s AOCL, and
Maxeler, and some tools allow vectorization as well, though
it has to be manually programmed or hinted via pragmas.
Automatic pipelining and vectorization of high-level code
based on a cost model, one that can work with legacy Fortran
code, is entirely novel as best as we know.

While not the focus of this paper, a key first step of our
flow is refactoring legacy Fortran 77 code to make it more
accelerator friendly. .ere are a number of similar refactoring
tools available for Fortran, though Fortran 77 is supported by
very few. ROSE framework (http://www.rosecompiler.org/
index.html) from LLNL [14] is probably the most well
known, which relies on the Open Fortran Parser (OFP)
(http://fortran-parser.sourceforge.net/). .is parser claims
to support the Fortran 2008 standard. Furthermore, there is
the language-Fortran (https://hackage.haskell.org/package/
language-fortran) parser which claims to support Fortran
77 to Fortran 2003. A refactoring framework which claims to
support Fortran 77 is CamFort [15]; according to its docu-
mentation, it supports Fortran 66, 77, and 90 with various
legacy extensions. An eclipse-based interactive refactoring
tool Photran [16] supports FORTRAN 77-2008.

3. TyTra Frontend

We will briefly discuss this frontend of the TyTra flow here
for completeness; more details are in [17], where we assess its
correctness, completeness, and capability.

FORTRAN 77 can be both computationally efficient as
well as programmer efficient, allowing the programmer to
write code quickly without being too strict about it. How-
ever, it becomes very difficult to maintain and port very
quickly as a result of this. We aim to make our refactored
code modern, maintainable, and extensible.

.e requirements in mind were very different compared
with today’s languages when FORTRAN 77 was designed,
especially in terms of avoiding bugs. Some specific features,
now unacceptable in modern languages, are: implicit typing,
subroutine arguments intended access absent, and absence
of a module system, required both for extensibility and
maintainability.

.e TyTra frontend compiler converts all nonprogram
code units into modules..ese are then used with an explicit
export (only) declaration. .ere are many more refactorings
applied by our compiler, such as rewriting label-bases loops
as do-loops etc.

.e common feature of the vast majority of current
accelerators is that they have a separate memory space,
usually physically separate from the host memory. Fur-
thermore, the common offload model is to create a “kernel”
subroutine (either explicitly or implicitly) which is run on
the accelerator device.

It is extremely important to separate the memory-spaces
of the host and the kernel when generating code for modern
accelerators. Since Fortran 77 uses global variables liberally,
our frontend converts them to subroutine arguments across
the entire call tree of the program.

Our goal is to convert legacy Fortran 77 code into
parallel code so that the computation can be accelerated on
FPGAs. We use a three-step process.

First, the above refactorings give us a modern, main-
tainable, extensible, and accelerator-ready Fortran 95
codebase. .is gives an excellent starting point for many of
the other existing tools, e.g., the generated code can be
conveniently parallelized using OpenMP or OpenACC
annotations. We want, however, to provide an end-to-end
solution to the user that does not require any annotations.

.e next step in our process is identifying data-level
parallelism present in the code in the form ofmaps and folds.
.e terms, map and fold, are from the functional pro-
gramming domain and refer to ways of performing an
operation on all elements of a list. .ese constructs are
broadly equivalent to loop nests with and without de-
pendencies, and as Fortran is loop-based, our analysis is
actually an analysis of loops and dependencies. Internally,
though our representation uses the functional programming
model where map and fold are higher-order functions
(functions operating on other functions), extracted from the
bodies of the loops; we thus raise the abstraction level of our
representation, making it independent of both the original
code and the final code to be generated. We then apply a
number of rewrite rules for map and fold based functional
programs (broadly speaking equivalent to loop fusion or
fission) to optimise the code.

.e third step involves the backend of our framework,
the focus of the rest of this paper, where we use patterns
extracted to ensure that our kernels are guaranteed to be
both pipelineable and vectorizeable. .en, using our cost
model, we generate optimized, synthesizable code for Xilinx
FPGAs on the Amazon cloud F1 instances.

4. Transforming Scientific Applications for
Performance on FPGAs: A Perspective

.e potential to get good performance and energy efficiency
on FPGAs is widely recognized, but coupled with the re-
alization that achieving the potential is not trivial. It is our
view that, in the context of the domain of scientific com-
puting, the guidelines for creating architectures on FPGAs
that give high throughput can be summed up as follows:

(1) Create a deep and custom pipeline, fine-grained as
well as coarse-grained

(2) Coalesce (vectorize) global memory accesses
(3) Vectorize the pipelined datapath

International Journal of Reconfigurable Computing 3

http://www.rosecompiler.org/index.html
http://www.rosecompiler.org/index.html
http://fortran-parser.sourceforge.net/
https://hackage.haskell.org/package/language-fortran
https://hackage.haskell.org/package/language-fortran

(4) Minimize data stalls on these pipelines
(5) Maximize throughput by replicating appropriate

functional units
(6) Minimize random access to external memory by

optimizing stencil computations
(7) Use optimized numerics where possible
(8) Use vendor-optimizations where suitable

.e design-space exploration (DSE) in TyTra is informed
by the view summarized above and is carried out at two
abstractions: the frontend and the backend. In this work, we
highlight the backend, specifically two key optimizations:
pipelining and vectorization (points 1–3).

4.1. Pipelining. FPGAs consist of a fine-grained reconfig-
urable fabric that can be customized for a given application.
If the underlying application is amenable to pipeline par-
allelism, then high throughput on FPGAs can be achieved by
creating deep, custom pipelines. Pipelining can be done at
three hierarchical levels.

4.1.1. Pipelining inside Instructions. .is refers to atomic
datapath instructions like floating point operations that
require multiple clock cycles to complete. It is important to
pipeline them to achieve a high operational frequency on the
FPGA and also to maintain throughput. Such pipelined
functional units are available both in the academia and via
vendor tools. For example, we use FloPoCo [18], an open-
source tool, to generate pipelined functional units for our
solution.

4.1.2. Pipelining across Instructions. To get good perfor-
mance, pipelining instructions inside computation kernels is
crucial. .is requires a data-dependence analysis to ensure
data hazards are avoided. We refer to such pipelines in this
work as fine-grained pipelining.

4.1.3. Pipelining across Kernels. While most FPGAHLS tools
would automatically pipeline at the fine-grained level, it is
important to pipeline at this coarse-grained level as well to
get viable performance on FPGAs for large scientific
problems. Such pipelining obviates the need of using the
FPGA external DRAM (i.e., global memory in OpenCL
terminology) to communicate between kernels.

4.2. Vectorization. To optimize throughput and utilize a
target device at its maximum or near-maximum potential,
the external memory interface should ideally be operating at
or near saturation. .is is typically achieved by coalescing
access to memory [19] and/or using multiple memory banks
concurrently [13]. .e purpose is to read multiple array
indices concurrently as a single, wider data word. .is co-
alescing can also be called vectorizing the memory access. In
the previous work [2], we adapted a synthetic memory
performance benchmark to show the sustained bandwidth
to global memory of various devices (benchmark available at

https://github.com/waqarnabi/mp-stream), and we showed
that vectorization achieved up to 8.5× memory bandwidth
increase over the baseline. For any application that is
memory-bound, this improvement in memory bandwidth
will translate to an improved throughput for the overall
application. To complement the vectorized memory access,
the application’s datapath can also be vectorized, though one
must ensure data hazards are avoided.

We will now discuss pipelining and vectorization op-
timizations in the context of the TyTra backend.

5. TyTra Backend (TyBEC) Compiler

.e TyTra backend is designed to be compatible with a
variety of frontend entry routes and is composed of a custom
intermediate representation (IR) language, a parser, a
scheduler, a cost/performance model, and finally an FPGA
code generator.

5.1. /e TyTra Intermediate Language. .e TyTra In-
termediate Language (TIR) is the interface provided by the
TyTra backend, to which a number of possible frontends can
be coupled, one of which was shown in Figure 1. However,
for the purpose of this discussion, how one arrives at a TIR
description of the problem is not relevant.

.e TIR description of a problem lies halfway between
the frontend and backend optimizations that together seek
to identify the optimal design variant. Optimal in this
context means that the kernel has been pipelined, ideally
to achieve a throughput of one cycle per output, and then
vectorized to go beyond this throughput until we either
saturate the memory bandwidth (memory wall) or run out
of FPGA resources (compute wall). .ere are some op-
timizing transformations that take place in the frontend
DSE phase. .ese transformations relate primarily to
finding specific computation patterns such as maps and
folds and connecting them in a coarse-grained dataflow
graph. Once the design variant generated by the frontend
has been specified in the TIR, the backend optimizations
can be applied, and FPGA implementation code can
be generated. .is context informs the underlying model
of computation and specific requirements for our custom
IR.

5.1.1. Model of Computation: Kahn Process Networks.
.e TIR syntax is quite similar to the LLVM-IR; however, its
underlying model of computation is entirely different, as it
models a dataflow machine. .e Kahn process network
(KPN) is a suitable abstraction to use, though we apply some
additional requirements and constraints on it.

KPNs were first introduced by Gilles Kahn when pre-
senting a simple language for parallel programming [20].
.e use of the KPN abstraction for modelling architectures
for FPGAs is not a novel concept (e.g., see [21, 22]). .e key
features of this abstraction, which make it very suitable for
use as the underlying model for our IR, are as follows (direct
quotes in the list are from [20]):

4 International Journal of Reconfigurable Computing

https://github.com/waqarnabi/mp-stream

(i) Processes (or nodes) communicate via unbounded
first-in first-out (FIFO) queues.

(ii) All processes run forever.
(iii) If any process were to stop for an external reason,

the whole system will stop.
(iv) Communication lines (or edges or channels) are

the only way in which processes communicate.
(v) .e time taken by edges to transmit information

can be unpredictable, but always finite.
(vi) At any given time, a process is either computing or

waiting for data on one of its input edges.
(vii) A process can have its ownmemory or state, so it is

a “function from the histories of its input lines to
the histories of its output lines.” .is means nodes
that fold (or reduce) information are possible.

(viii) Writes to a channel are nonblocking, while reads
are blocking.

(ix) KPN process is monotonic: it “need not have all of
its inputs to start computing, since future input
concerns only future output.” Monotonicity allows
pipeline parallelism.

While these features of the KPN make it a suitable
abstraction for our purpose of modelling pipeline parallel-
ism on FPGAs, they cannot be used as is. .e key departure
required from this abstraction is replacing unbounded FIFOs
(which are not possible in a real system) with bounded
FIFOs. Additionally, nonblocking writes are not suitable
with finite FIFOs, and we introduce blocking writes.
However, the introduction of blocking writes and finite
FIFOs can lead to deadlocks unless safe bounds for the sizes
of the FIFOs are derived properly [23]. We derive safe FIFO
bounds by statically scheduling all the nodes in our dataflow
graph discussed in more detail later.

5.1.2. Syntax and Semantics of the TIR. .e TIR is strongly
and statically typed, and all computations are expressed
using Static Single Assignment (SSA)..e syntax is based on
the LLVM-IR, but the semantics are built on top of a
streaming paradigm, suitable for inferring pipelined data-
paths on an FPGA target.

Static typing is a requirement for synthesizing an FPGA
design at compile time. Strong and static typing together
provide the basis for our static cost model that underpins the
TyTra flow. .e FPGA code-generator too requires explicit
typing. TIR datatypes are mapped to LLVM datatypes
wherever possible and follow the same general scheme for
naming datatypes. However, LLVM-IR does not differen-
tiate between signed and unsigned data which are required
for TIR. Also, TIR allows custom and nonstandard data-
types, which in fact is one of the reasons for creating our own
IR. TIR supports arrays and vectors, again following the
syntax of LLVM-IR.

A design is constructed by creating a hierarchy of IR
functions, which may be considered equivalent tomodules in
an HDL like Verilog. However, these functions are described

at a higher abstraction than the register transfer level typical
for an HDL. .e TyTra backend parses the TIR description
and extracts a dataflow architecture from it.

.e TIR is neither a subset nor a superset of the LLVM-
IR, but an independent language that is inspired by it. .ere
are many features of LLVM-IR that TIR does not support,
and at the same time, there are a number of extensions in the
TIR that are alien to LLVM-IR. Under the hood, these
languages have a fundamentally different view of the ma-
chine as discussed earlier, which is eventually the funda-
mental difference. Other ways in which TIR departs from the
LLVM-IR semantics are: all variables are data streams, ar-
guments represent ports for connectivity between peer or
parent-child functions, there is custom instruction for
splitting and merging nodes, there is a specialized syntax for
creating offset streams for stencils, we can have custom
datatypes with nonstandard widths, and there is an extended
syntax to express the creation and consumption of data
streams from/to memory. Further discussion of the TIR’s
syntax and semantics is outside the scope of this paper, but
interested readers can refer to [24]. We also show TIR for
two example problems later in Section 6.

5.2. Scheduling and Pipelining. Recall from the previous
section that our extension to the KPN requires us to have
bounded FIFOs, which are large enough to ensure there is no
deadlock in the presence of blocking writes. Hence, although
the hardware realization of our nodes is based on asyn-
chronous hand-shaking with back-pressure (based on the
AXI-Stream protocol), we do need to determine safe bounds
for all inferred buffers. .is is why static scheduling of the
dataflow graph (DFG) is essential. Moreover, the TyTra flow
is predicated on the availability of a performance model that
can predict the latency and throughput of each node, which
too requires a static scheduler, even if in practice there is no
centralized scheduling controller in the synthesized FPGA
circuit.

.e scheduling algorithm of TyBEC is based on the KPN
model of computation..e SSA syntax of the TIR lends itself
to a straightforward extraction of the pipelined dataflow
from primitive instructions in leaf functions. We have
adopted an As Soon As Possible (ASAP) algorithm for
scheduling the instructions. .is can be suboptimal in terms
of resource usage [25]. More sophisticated algorithms are
possible, which exploit reuse of functional units across in-
structions to save resources. .is however would require a
fundamental change in the architecture from the current one
with a distributed scheduling mechanism, to a centralized
one where a controller would orchestrate the reuse of re-
sources. .is is a line of investigation we mean to pursue in
the future.

Functions can be hierarchical as well, reflected by hi-
erarchical nodes in the DFG. Each hierarchy is captured by
the same extended KPN model that we have discussed
earlier. .e resultant DFG translates to dataflow pipelines on
the FPGA, which are reflected in the generated HDL. .is
pipeline parallelism is, as we discussed earlier, an essential
component of the FPGA-oriented optimizations we wish to

International Journal of Reconfigurable Computing 5

apply. Both the coarse-grained pipelining of kernels (hier-
archical nodes) and fine-grained pipelining of instructions
(leaf nodes) are achieved by this hierarchical scheduling
process, illustrated in Figure 2. .is aspect of our work may
be contrasted with tools like SDAccel, where coarse-grained
pipelines across kernels have to be explicitly modelled using
OpenCL pipe semantics.

A finer level of pipelining, where we pipeline multicycle
primitive instructions like floating point operations, is
achieved by using pipelined functional units generated from
the FloPoCo tool [18].

5.3. Vectorization. Vectorization is a well explored opti-
mization for improving performance and has been explored
for FPGAs as well. .is is similar to, though not exactly the
same as, the vectorization optimization in CPUs..e way we
use this term, “vectorization” refers to both vectorization of
the datapath, and the coalescing of memory accesses. In the
TyTra backend, once the kernels have been pipelined, the
design can be vectorized automatically. Memory-access
vectorization results in coalesced transactions, which can
help achieve operation at or near memory bandwidth sat-
uration, as we have shown in our earlier work [2]. Vectorized
datapath ensures that the overall throughput is not limited
by the computation. Together, these automatic vectorization
operations enable our backend to push the solution closer to
both the memory and computation limits of the device,
which is where we ideally want to be. .e key novelty in our
flow is the complete automation of the process of vectorizing
the memory access and the datapath.

5.3.1. Automatic Detection of Vectorizable Loops in Serial
Code. Vectorizing a loop by a factor NV implies concurrent
execution of NV iterations of the loop. Loops can be vec-
torized only if they have been unrolled, and if there are no
loop-carried dependencies with reaches smaller than the
vectorization width NV. .e TyTra flow is based on
extracting map and fold patterns from serial scientific code,
as shown in Figure 1 and then scalarizing them before
passing them on to the backend. Scalarization here implies
replacing index-based array accesses with scalar variables,
effectively subsuming loops that iterate over arrays. Since the
(ostensibly) scalar variables actually refer to data streams, the
semantics of the program are preserved, though that does
require some metainformation to be carried through by the
compiler, e.g., the size of the loops. An example of this
transformation in Figure 3 shows two versions of an up-
date() function from a scientific model. .e code on the left
is a conventional loop-based function, converted by our
frontend (while we show the loop-based function written in
C to emphasize the transformation, the frontend actually
uses loop-based Fortran code as the source and emits sca-
larized C as shown.) to the scalarized version.

.ese transformations convert loops iterating over ar-
rays to scalar kernels operating on streams. .e advantage of
this frontend transformation is that we get vectorization
opportunities at the backend for free. Loop-unrolling is no
longer required, as the frontend has ported the code into the

streaming dataflow domain. More importantly, the frontend
transformations guarantee that the kernels exposed to the
backend do not have any loop-carried dependencies and
thus are vectorizable to arbitrary widths..e TyTra flow is in
fact conservative in exposing vectorization opportunities.
.is is because our flow only vectorizes mappable loops that
have no loop-carried dependencies, whereas vectorization is
possible even if they are there, as long as their reach is larger
than the vector width.

5.3.2. Using a Cost Model for Identifying the Optimum Vector
Width. .e vectorization of kernels results in additional
resource usage on the FPGA. By using our cost model, we
can estimate the resource usage for different vectorization
options. .en, we limit the vector width to the maximum
that we can fit within the target FPGA’s resources. Currently,
our backend supports vector widths of 1, 2, 4, 8, and 16 (for
OpenCL compatibility), but there is no innate reason for
limiting our flow to these vectorization factors.

.e cost model is discussed in detail in [24], but we
present its brief outline here. Figure 4 shows how the cost
model is used in our flow. .e TIR description of the design
variants is fed into the cost model, along with a description
of the target. .is description is in the form of its available
resource, memory bandwidth profile, and the cost of various
primitive instructions on that device. .e cost model then
accumulates the resource requirements for the entire device
and also estimates its performance after scheduling all in-
structions and functions. It then estimates the performance
of all variants (in case of the examples in this paper, variants
are generated by varying the vectorization factor) and
generates OCL-HDL hybrid code for the chosen one.

5.4. Generating OpenCL-HDL Hybrid Implementation for
FPGA (F1) Instances on theAmazonCloud. We considered a
number of options for implementing the design generated
by the TyTra flow on an FPGA, as shown in Figure 1, finally
converging on an OpenCL-HDL hybrid for F1 instances on
the Amazon cloud. Commercial vendors like Xilinx, Intel,
and Maxeler all provide such a hybrid programming route.
.e HLS abstraction can be used to handle the shell logic
conveniently, and kernel datapaths can be expressed at a
lower abstraction (register-transfer level or RTL), e.g., in
Verilog HDL. We avoid the need to generate complex RTL
code for shell logic yet maintain much more control over
optimizations for the kernel pipeline. Our hybrid approach
is more amenable to performance and cost prediction than
HLS-only routes. .e generated kernel pipeline is more
performance portable across FPGA vendor tools and de-
vices, as no vendor-specific pragmas and optimizations are
used. We do need to generate vendor-specific shell code, but
that follows a standard template with little variation across
designs.

Amazon’s EC2 F1 instances on the cloud provide a
suitable way of accessing the latest FPGA hardware as well as
tools [26]. FPGA AMI machine images are available, which
come prebuilt with FPGA development and runtime tools
based on Xilinx’s SDAccel and Vivado frameworks. .ese

6 International Journal of Reconfigurable Computing

for each function

Read in TIR code

Cost and perf
Model

Parse and generate abstract
syntax tree

Find main()
Identify global-memory streams

Schedule all functions

Create nodes for all relevant
instructions in the function

Connect communicating nodes
with edges

Mark nodes as leaf or
hierarchical

Identify input nodes (directly
read an argument/port) and

schedule them

Do an ASAP scheduling for the
remaining nodes

Infer buffers on un-balanced
paths. Calculate safe bounds.

Add function to global schedule

Estimate function cost and
performance

Figure 2: .e TyTra backend scheduler. It reads in the TIR description of the problem, which has a syntax similar to LLVM-IR’s, using the
SSA (single static assignment) format. .e output of the scheduler is the dataflow graph of the problem, with buffers inferred if needed (e.g.,
see Figures 6 and 9), which is then used to estimate performance, as well as generate synthesizable Verilog HDL.

Figure 3: An illustration showing conversion of a loop-based function (left) to its scalarized version (right), where the “scalars” are
effectively streams of data. Metainformation extracted by the compiler, e.g., the sizes of the streams, is carried through to the backend in
order to preserve semantics.

International Journal of Reconfigurable Computing 7

tools provide various design-entry options. From our van-
tage point, the utility of these platforms is that we can work
with the latest hardware and tool versions, and we can
experiment with our hybrid HLS(OpenCL)–HDL(Verilog)
flow.

To integrate HDL kernels with the shell logic provided by
Xilinx’s SDAccel tool, they need to be compatible with the
AXI protocol: AXI4 for DDR read and write controllers;
AXI4-Stream for transferring data streams to and from these
controllers and also peer communication; and AXI4-Lite for
control information exchange with the host [27]. .e DDR
(AXI4) and control (AXI4-Lite) interface logic is in-
corporated by using template code provided by SDAccel.
.is reduces the kernel pipeline compatibility requirement
to the AXI4-Stream protocol for interfacing with the
memory controllers. Figure 5 demonstrates this setup.

6. Evaluation

We evaluate our approach with two examples, first through a
synthetic barebones kernel and then on a scientific code
simulating the Coriolis force.

6.1. A Synthetic Example. .e simple, contrived example
creates a coarse-grained pipeline with integer arithmetic
operations. .is translates to a single cycle throughput, and
single path dataflow. .e TIR and DFG of this problem are
shown in Figure 6. Note that the DFG is generated auto-
matically as part of the backend scheduling and code-
generation. HDL code is also generated by the backend. It
can be viewed by running the backend on the TIR (the
prototype TyTra backend compiler is available at https://
github.com/waqarnabi/tybec).

.is illustrative example highlights the backend auto-
matic pipelining and vectorization optimizations that are the
focus of this work. We generated code for all vector widths
supported by our flow, in order to demonstrate the effect of
vectorization in this paper. In practice, we would follow the
following simple algorithm for converging on the vector
width:

(1) Create a design variant with the maximum allowable
vector width (currently 16 words)

(2) Estimate resource utilization
(3) If estimated resources are more than available on

target FPGA, step down to the next available vector
width

(4) Repeat 1–3 until design is predicted to fit by the cost
model (we aim to use less than 80% of target FPGA
resources, as in our experience, beyond this
threshold designs typically fail to synthesize)

.e results of our experiments are shown in Figure 7.
Since this is a small example, the maximum available
vectorization factor of 16 was possible within the avail-
able resources, and that is the variant selected. Our results
show an almost 4.2× speedup over the scalar baseline
for the maximum vectorization. .e speedup is sub-
linear and indicates a memory bottleneck. .is bottleneck
could be mitigated by using multiple memory banks if
available.

.e corresponding resource trade-off can be seen in
Figure 8. Other than DSP units, all resources show sublinear
scaling due to the almost uniform usage of logic in the shell
of the design across all variants.

Device-specific
parameterOne-time input

for each unqiue
FPGA target

(Microbenchmarks)

Variant-1
Variant-N

Target description

Plot variants on
device roofline

Identify bottleneck

Best variant = X

Parse IR and
estimate roofline

model param’s

Figure 4: .e use-case of the cost model that is integrated inside the TyTra flow’s backend. It is used to estimate the resource usage and
performance of variants being explored in the design-space.

kernel
RTL

A
XI

4
D

D
R

re
ad

 m
as

te
r

A
XI

4
D

D
R

w
rit

e m
as

te
r

AXI4-Lite (PCI)

AXI4
Stream

AXI4
Stream

Xilinx provided Shell RTL for OCL Integration

Host code (OpenCL API)
+

meta-data for RTL integration

Figure 5: .e hybrid OpenCL-HDL code-generation setup.
TyTra generated kernel pipeline design in Verilog HDL is in-
tegrated with the OpenCL-based SDAccel framework, using AXI
protocols.

8 International Journal of Reconfigurable Computing

https://github.com/waqarnabi/tybec
https://github.com/waqarnabi/tybec

6.2. Simulating the Coriolis Force. .is second example is
based on Fortran code for modelling the Coriolis force that
accompanies a text on ocean modelling [28]. .e code
predicts the pathway of nonbuoyant fluid parcels in a
rotating fluid subject to the Coriolis force. .e kernel is
computed over a two-dimensional grid for a certain
number of time steps. At each time step, the kernel reads
the velocities and positions of each grid point and updates
them. .at is, at each time step, it reads 4 floating point
numbers and writes 4 floating point numbers. .e Fortran
code is shown in Figure 9. .e equivalent TyTra-IR code
and dataflow graph (top kernel only) as generated by
the TyTra backend are shown in Figures 10 and 11,
respectively.

.e TyTra backend generates a baseline RTL (and
OpenCL wrappers) that is pipelined and without vectori-
zation. It then generates vectorized versions as well, as long
as the predicted cost fits in the target device. In this example
as well, like the previous one, all possible vectorization
factors up to 16 can be accommodated. .e resource cost
prediction of one design variant takes in the order of 0.1
seconds. .is makes the design-space exploration fairly
quick when we consider the vectorization optimization in
isolation as there are a limited number of possible variants.

kernelTop

kernelTop.%kt_vin0

(0, 1, 0)

kernelTop.kernel_A_0

(4, 1, 0)
kt_vin0.1>kernel_A_0.2::i32

kernelTop.kernel_B_1

(1, 1, 4)
kernel_A_0.1>kernel_B_1.1::i32

kernelTop.%kt_vin1

(0, 1, 0)

kt_vin1.1>kernel_A_0.1::i32

kernelTop.kernel_C_2

(1, 1, 5)

kernel_B_1.1>kernel_C_2.1::i32

kernelTop.kernel_D_3

(1, 1, 6)
kernel_C_2.1>kernel_D_3.1::i32

kernelTop.%kt_vout

(0, 1, 7)
kernel_D_3.1>kt_vout.1::i32

(1, 1, 0)

Figure 6: TIR code andDFG of the synthetic example..e TIR shows 4 kernels connected in a coarse-grained pipeline in a top kernel, which
is connected to global memory streams in the main function. .e DFG is generated by the backend from the TIR, and only the top-level
kernel is shown here. .e tuple of three integers with each node is the scheduling parameters (latency, firing-interval, and start-delay)
inferred from the code and used by the backend for scheduling and RTL code generation.

1.00

1.75
2.41

3.22

4.17

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

0 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

co
m

pa
re

d
w

ith
sc

al
ar

 v
er

sio
n

Vectorization width
(memory access and datapath)

Figure 7: Speedup achieved over nonvectorized OpenCL baseline
for various vector widths, for the first example. .e TyTra solutions
are OpenCL-HDL hybrids, and the complete host API, shell, and
kernel code for all variants is generated automatically from TIR
description.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 16

N
or

m
al

iz
ed

 re
so

ur
ce

 u
sa

ge

Vectorization width
(memory access and datapath)

Luts
Regs

Brams
dsps

Figure 8: Resource usage for various OpenCL-HDL hybrid vec-
torized versions, normalized against resource usage for non-
vectorized OpenCL baseline for the first example.

International Journal of Reconfigurable Computing 9

.e actual performance for variants is shown in Fig-
ure 12. Note that there is an important difference between
this and the first example. .e first example had 2 integer
inputs and 1 integer output. When the inputs, a total of
64 bits, were vectorized by the maximum factor of 16, it was
still within maximum data width allowed by SDAccel (which
is 1024 bits). .is second example, however, had an input
(and output) total width of 128 (32× 4) bits, so it can only be
vectorized up to a factor of 8, which is reflected in the results.
In the future, we plan to incorporate multiple memory

interfaces and banks into our design, which would allow us
to exploit this vectorization feature to its full potential.

An interesting observation here is that the performance
peaks at 2.7× baseline, at a vectorization factor of 4, with
vectorization to a factor of 8 showing virtually no im-
provement. .is example has a wider total input width of
128 (32× 4) bits, as opposed to 64 bits for the previous one.
Since the DDR memory bus for the target FPGA platform is
512 bits wide, it is saturated at a vectorization factor of 4
already. Using multiple concurrent memory interfaces and
banks should allow us to go beyond this saturation limit.

Another observation is that the performance profile is
virtually unchanged across different grid sizes and number
of time steps. .is shows performance gains of vectorization
scaling well with the problem size.

.e resource usage for all these variants is shown in
Figure 13, which shows the expected increase for increasing
the vectorization factor. Compared with the first example,
this is a larger kernel with resource heavy floating point
units, leading to the kernel having a proportionally larger
share of the resources versus the shell logic..is is the reason
vectorization scales up the resources much more than the
first example.

7. Conclusion

FPGAs are fast-becoming mainstream accelerator devices
for a variety of HPC applications. Writing optimized pro-
grams for FPGAs remains a challenge though, even with the
availability of HLS tools. We are developing an optimizing
compiler framework called TyTra, where we propose to use a
combination of transformations and optimizations to au-
tomatically generate FPGA implementations from serial,
legacy scientific codes. In this paper, we have presented two
key optimizations that are part of this framework, pipelining
and vectorization, the latter applied to both the external
(DDR) memory accesses as well as the kernel datapath. We
discussed briefly how we transform legacy serial Fortran
code to kernels with map patterns, suitable for pipeline
parallelism as well as vectorization. We highlighted our
custom IR language-based backend that can be used to
express the variants in our design space and which schedules
computations based on an extended KPN-based machine
model, finally emitting an OpenCL-HDL hybrid imple-
mentation. Evaluation of our approach on two examples
showed performance gains between 2.7× and 4.2×.
Extending our solution to exploit multiple memory banks
concurrently can be reasonably expected to achieve further
performance gains.

Exploiting such vectorization opportunities when ac-
celerating HPC code on FPGAs is essential; otherwise, we
may be operating far below optimal performance. Our flow,
because it is based on a sophisticated frontend analysis and a
cost model-based backend code-generation framework, can
give these performance gains automatically.

.ere are a number of complimentary lines of in-
vestigation that we are still pursuing. Further optimizations
at the frontend and backend of our framework in addition to
pipelining and vectorization could further improve

Figure 9: Fortran code of the Coriolis example.

Figure 10: TIR code of the Coriolis example. It shows 3 kernels
connected in a coarse-grained pipeline in a top kernel, which is
connected to global memory streams in the main function (not
shown).

10 International Journal of Reconfigurable Computing

performance. Until now, we have made models from do-
main of fluid dynamics the focus for our test cases, and such
models are innately amenable to findingmappable loops and
hence to streaming. We are investigating extending the
application domain to deep learning neural networks, which
too lends itself to a streaming architecture, but requires
closer integration of folds in addition to maps, which is an
on-going work. We are also in the process of integrating all
stages of the flow into a single framework, which we hope
will contribute to mainstreaming of FPGAs as HPC
accelerators.

Data Availability

.eTytTra backend compiler has been deposited in a Github
repository at https://github.com/waqarnabi/tybec. .is is an
on-going work, so the authors should be contacted if any
issues.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.e authors acknowledge support of the EPSRC for this
work carried out as part of the TyTra project (no. EP/
L00058X/1).

References

[1] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and
S. Matsuoka, “Evaluating and optimizing opencl kernels for
high performance computing with FPGAs,” in Proceedings of
the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’16, pp. 409–420,
Piscataway, NJ, USA, November 2016.

[2] S. W. Nabi and W. Vanderbauwhede, “MP-STREAM: a
memory performance benchmark for design space explora-
tion on heterogeneous HPC devices,” in Proceedings of the
IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pp. 194–197, Vancouver,
British Columbia, Canada, May 2018.

[3] F. A. Escobar, X. Chang, and C. Valderrama, “Suitability
analysis of FPGAs for heterogeneous platforms in HPC,” IEEE

kernel_top

kernel_top.%u

(0, 1)

kernel_top.coriolis_ker0_0

(24, 1)

u.1>coriolis_ker0_0.2::float32

kernel_top.coriolis_ker0_0_un_b

(23, 1)

coriolis_ker0_0.2>coriolis_ker0_0_un_b.1::float32

kernel_top.coriolis_ker0_0_vn_b

(23, 1)

coriolis_ker0_0.1>coriolis_ker0_0_vn_b.1::float32

kernel_top.coriolis_ker1_subker0_1

(24, 1)

coriolis_ker0_0.2>coriolis_ker1_
subker0_1.1::float32

kernel_top.coriolis_ker1_subker1_2
(24, 1)

coriolis_ker0_0.1>coriolis_ker1_subker1_2.1::float32

kernel_top.%v

(0, 1)

v.1>coriolis_ker0_0.1::float32

kernel_top.%x

(0, 1)

kernel_top.x_coriolis_ker1_subker0_1_b

(24, 1)

x.1>x_coriolis_ker1_subker0_1_b.1::float32

x_coriolis_ker1_subker0_1_b.1>coriolis_ker1_
subker0_1.2::off_23::float32

kernel_top.%y

(0, 1)

kernel_top.y_coriolis_ker1_subker1_2_b

(24, 1)

y.1>y_coriolis_ker1_
subker1_2_b.1::float32

y_coriolis_ker1_subker1_
2_b.1>coriolis_ker1_su

kernel_top.%un

(1, 1)
coriolis_ker0_0_un_b.1>un.1::off_22::float32

kernel_top.%vn

(1, 1)
coriolis_ker0_0_vn_b.1>vn.1::off_22::float32

kernel_top.%xn

(0, 1)
coriolis_ker1_subker0_1.1>xn.1::float32

kernel_top.%yn

(0, 1)
coriolis_ker1_subker1_2.1>yn.1::float32

Figure 11:.eDFG of the Coriolis example generated from the TIR, showing only the top-level kernel..e tuple of integers with each node
is the scheduling parameters (latency and firing-interval) used by the backend for scheduling and RTL code generation. .e red boxes (the
boxes with two small stubs) are inferred buffers for synchronization and deadlock avoidance.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10

Sp
ee

du
p

co
m

pa
re

d
w

ith
 b

as
el

in
e

(s
ca

la
r)

 v
er

sio
n

Vectorization factor
(memory access and datapath)

1024 × 1024 × 1000
2048 × 2048 × 1000
1024 × 1024 × 10000

Figure 12: Speedup achieved over nonvectorized OpenCL baseline
plotted against vectorization factor, for the second example
(Coriolis). .e TyTra solutions are OpenCL-HDL hybrids, and the
complete host API, shell, and kernel code for all variants is gen-
erated automatically from TIR description. .e speedup is cal-
culated for 3 different grid sizes and time steps (legend shows
dimension1× dimension2× time steps).

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

1 2 4 8

N
or

m
al

iz
ed

 re
so

ur
ce

 u
sa

ge

Vectorization factor
(memory access and datapath)

Luts
Regs

Brams
dsps

Figure 13: Resource usage for various OpenCL-HDL hybrid
vectorized versions, normalized against resource usage for non-
vectorized OpenCL baseline, for the second example (simulating
the Coriolis force).

International Journal of Reconfigurable Computing 11

https://github.com/waqarnabi/tybec

Transactions on Parallel and Distributed Systems, vol. 27,
no. 2, pp. 600–612, 2016.

[4] D. Weller, F. Oboril, D. Lukarski, J. Becker, and M. Tahoori,
“Energy efficient scientific computing on FPGAs using
OpenCL,” in Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
FPGA ’17, pp. 247–256, New York, NY, USA, February 2017.

[5] O. Pell and V. Averbukh, “Maximum performance computing
with dataflow engines,” Computing in Science & Engineering,
vol. 14, no. 4, pp. 98–103, 2012.

[6] T. Czajkowski, U. Aydonat, D. Denisenko et al., “From
OpenCL to high-performance hardware on FPGAs,” in
Proceedings of the 22nd International Conference on Field
Programmable Logic and Applications (FPL), pp. 531–534,
Oslo, Norway, August 2012.

[7] Xilinx, /e Xilinx SDAccel development environment, 2014
https://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html.

[8] M. Cole, “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming,” Parallel Com-
puting, vol. 30, no. 3, pp. 389–406, 2004.

[9] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala,
“SparkCL: a unified programming framework for accelerators
on heterogeneous clusters,” CoRR, abs/1505.01120, 2015.

[10] J. Agron,Domain-Specific Language for HW/SW Co-design for
FPGAs, pp. 262–284, Springer, Berlin, Heidelberg, Germany,
2009.

[11] C. Kulkarni, G. Brebner, and G. Schelle, “Mapping a domain
specific language to a platform FPGA,” in Proceedings of the
41st Annual Design Automation Conference, DAC ’04,
pp. 924–927, New York, NY, USA, June 2004.

[12] D. B. .omas, S. T. Fleming, G. A. Constantinides, and
D. R. Ghica, “Transparent linking of compiled software and
synthesized hardware,” in Proceedings of the Design, Auto-
mation Test in Europe Conference Exhibition (DATE),
pp. 1084–1089, Grenoble, France, March 2015.

[13] M.Weinhardt andW. Luk, “Memory access optimization and
ram inference for pipeline vectorization,” in Proceedings of the
International Workshop on Field Programmable Logic and
Applications, pp. 61–70, Glasgow, UK, August 1999.

[14] C. Liao, D. J. Quinlan, T. Panas, and B. R. De Supinski, “A
rose-based openmp 3.0 research compiler supporting mul-
tiple runtime libraries,” in Proceedings of the International
Workshop on OpenMP, pp. 15–28, Beijing, China, June 2010.

[15] D. Orchard and A. Rice, “Upgrading fortran source code
using automatic refactoring,” in Proceedings of the 2013 ACM
Workshop on Workshop on Refactoring Tools, WRT ’13,
pp. 29–32, New York, NY, USA, October 2013.

[16] J. Overbey, S. Xanthos, R. Johnson, and B. Foote, “Refac-
torings for fortran and high-performance computing,” in
Proceedings of the Second International Workshop on Software
Engineering for High Performance Computing System Appli-
cations, pp. 37–39, St. Louis, MO, USA, May 2005.

[17] W. Vanderbauwhede and G. Davidson, “Domain-specific
acceleration and auto-parallelization of legacy scientific code
in fortran 77 using source-to-source compilation,” Computers
& Fluids, vol. 173, pp. 1–5, 2018.

[18] F. De Dinechin and B. Pasca, “Designing custom arithmetic
data paths with FloPoCo,” IEEE Design & Test of Computers,
vol. 28, no. 4, pp. 18–27, 2011.

[19] SDAccel optimization recommendations, 2019, https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2017_
4/ug1207-sdaccel-optimization-guide.pdf.

[20] G. Kahn, “.e semantics of a simple language for parallel
programming,” Information Processing, vol. 74, pp. 471–475,
1974.

[21] H. Nikolov, T. Stefanov, and E. Deprettere, “Modeling and
FPGA implementation of applications using parameterized
process networks with non-static parameters,” in Proceedings
of the 13th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’05), pp. 255–263, Napa
Valley, CA, USA, April 2005.

[22] S. Shukla, N. W. Bergmann, and J. Becker, “QUKU: a FPGA
based flexible coarse grain architecture design paradigm using
process networks,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium, pp. 1–7, Long
Beach, CA, USA, March 2007.

[23] T. M. Parks, Bounded Scheduling of Process Networks,
Technical report, California University Berkeley Department
of Electrical Engineering and Computer Sciences, Berkeley,
CA, USA, 1995.

[24] S. W. Nabi and W. Vanderbauwhede, “FPGA design space
exploration for scientific HPC applications using a fast and
accurate cost model based on roofline analysis,” Journal of
Parallel and Distributed Computing, vol. 133, pp. 407–419,
2017.

[25] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee,
“Scheduling algorithms for automated synthesis of pipelined
designs on FPGAs for applications described in MATLAB,” in
Proceedings of the 2000 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems,
vol. 17, pp. 85–93, San Jose, CA, USA, 2000.

[26] Amazon EC2 F1 instances, 2019, https://aws.amazon.com/
ec2/instance-types/f1/.

[27] AMBA, AXI and ACE Protocol Specification, 2011, https://static.
docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf.

[28] J. Kämpf, Ocean Modelling for Beginners: Using Open-Source
Software, Springer Science & Business Media, Berlin, Ger-
many, 2009.

12 International Journal of Reconfigurable Computing

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf

Research Article
Dimension Reduction Using Quantum Wavelet Transform on a
High-Performance Reconfigurable Computer

Naveed Mahmud and Esam El-Araby

Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA

Correspondence should be addressed to Naveed Mahmud; naveed_923@ku.edu

Received 4 May 2019; Revised 16 August 2019; Accepted 1 September 2019; Published 11 November 2019

Academic Editor: Wim Vanderbauwhede

Copyright © 2019 Naveed Mahmud and Esam El-Araby. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

-e high resolution of multidimensional space-time measurements and enormity of data readout counts in applications such as
particle tracking in high-energy physics (HEP) is becoming nowadays a major challenge. In this work, we propose combining
dimension reduction techniques with quantum information processing for application in domains that generate large volumes of
data such as HEP. More specifically, we propose using quantum wavelet transform (QWT) to reduce the dimensionality of high
spatial resolution data. -e quantum wavelet transform takes advantage of the principles of quantum mechanics to achieve
reductions in computation time while processing exponentially larger amount of information. We develop simpler and optimized
emulation architectures than what has been previously reported, to perform quantum wavelet transform on high-resolution data.
We also implement the inverse quantum wavelet transform (IQWT) to accurately reconstruct the data without any losses. -e
algorithms are prototyped on an FPGA-based quantum emulator that supports double-precision floating-point computations.
Experimental work has been performed using high-resolution image data on a state-of-the-art multinode high-performance
reconfigurable computer. -e experimental results show that the proposed concepts represent a feasible approach to reducing
dimensionality of high spatial resolution data generated by applications such as particle tracking in high-energy physics.

1. Introduction

High-energy physics deal with advanced instruments such as
particle accelerators and detectors. -ese machines use
electromagnetic fields to accelerate charged particles to high
speeds and create collisions. By studying particle collisions
and tracking collision trajectories, physicists can test the
predictions of many theories of particle physics such as
properties of the Higgs boson [1], discovering new particle
families [2] as well as many high-energy physics problems
[3]. -ere are a number of high-energy physics (HEP) re-
search centers [4]. -e largest particle accelerator is the
Large Hadron Collider (LHC) in Geneva, Switzerland.
Large-scale general-purpose particle detectors have been
developed at the LHC. -e ATLAS [5] and Compact Muon
Solenoid (CMS) [6] are two examples which are used for
studying the properties of the Higgs boson and investigating
new physics. -e ATLAS has an inner detector that has been
used to observe the decay products of collisions. -e pixel

detector [7] is one of the main components of the inner de-
tector, having over 80 million readout channels [8] (pixels),
which contribute to half the total readout channels of the entire
experiment. Reconstruction of high-energy particles from the
pixel detector is considered a critical design and engineering
challenge [9], due to its large readout count, high spatial res-
olution, and 3D space-time measurements. -ere have been
efforts to improve the tracking performance of the ATLAS
Inner Detector [9, 10], which involved insertion of additional
pixel detector layer (Insertable B-Layer). Another approach that
has been considered in the ATLAS FTK (Fast Track Trigger)
upgrade [11] is using variable resolution patterns, where the
data from the detector is compared to generated pattern banks
of particle tracks and non-intersecting data is filtered. In high-
dimensional datasets, e.g., the pixel detector readout data, not all
the measured data variables are relevant in understanding the
underlying regions of interest (RoI). Generally, statistical pre-
dictive models are applied to multidimensional datasets for
detection and pattern matching, which is a computationally

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 1949121, 14 pages
https://doi.org/10.1155/2019/1949121

mailto:naveed_923@ku.edu
https://orcid.org/0000-0001-5570-0547
https://orcid.org/0000-0002-4575-1049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1949121

expensive process. -us, an effective method is needed to re-
duce the dimensionality [12] of the data in such high-di-
mensional spatial sets, for faster detection and matching.

As a feasible solution to this problem, we here propose
combining wavelet-based dimension reduction techniques
[13–15] with quantum information processing (QIP) [16] for
applications in domains that generate high-dimensional data
volumes such as high-energy physics (HEP). More specifi-
cally, we propose using quantumwavelet transform (QWT) to
reduce the dimensionality and high spatial resolution of data
in HEP particle tracking. Wavelet-based dimension reduction
has been shown to be an effective technique in image pre-
processing, reducing computation time, reducing inter-
processor overhead, and improving classification accuracy
[13–15]. Even so, the large volume of data from domains such
as high-energy particle physics, present a challenge for a
classical wavelet-based method. -e QWT has been dem-
onstrated in previous works to be very useful in quantum
image processing and quantum data compression [16–19].
Quantum information processing uses qubits as the basic
units of information storage, compared to classical binary
forms, and can exploit quantum mechanical properties such
as entanglement and superposition [20]. -erefore, applying
QIP techniques such as QWT for dimension reduction of
HEP data will bring substantial improvements in storage and
computation compared to classical signal processing tech-
niques. To the best of our knowledge, this work is the first to
investigate QWT-based dimension reduction for HEP ap-
plications. We develop simple and effective algorithms for
QWT and inverse-QWT (IQWT) that are best suited for
dimension reduction and present corresponding emulation
hardware architectures for QWT and IQWT.

-e objectives and focus of our work are to demonstrate
the feasibility of QWT for dimension reduction, through
emulation, and to evaluate the performance of the emulation
architectures. Our proposed algorithms are prototyped on an
FPGA-based quantum emulator that has been developed
based on our previous works [21, 22] and has been shown to
emulate full quantum algorithms such as quantum Fourier
transform (QFT) [23] and Grover’s search algorithm [24]. An
FPGAplatformwas chosen because of its reconfigurability and
flexibility in emulating multiple quantum algorithms. -e
emulator is based on the hardware system of DirectStream
[25], which is a state-of-the-art reconfigurable computing
platform.-is emulation platform can be conveniently used to
verify and benchmark future implementations of the proposed
system in HEP applications. In the next section, we discuss
fundamental concepts of quantum computing, QWT, and the
related work done on QWT. In Section 3, we elaborate our
proposed methods and emulation architectures. In Section 4,
the experimental results and analysis are presented. Section 5 is
our conclusion and future directions of this work.

2. Background and Related Work

In this section, we discuss background concepts of quantum
computing and the quantum wavelet transform. We also
discuss current and related work on QWT and high-energy
particle detection.

2.1.Qubits, Superposition, andEntanglement. -equbit is the
smallest unit of quantum information that describes a two-
level quantum mechanical system. Physical implementations
of the qubit can be electron/atomic/nuclear spin, where spin
directions of the particle represent the two qubit levels. Other
physical representations of the qubit can be photon polari-
zation, superconducting Josephson junction, etc. [26]. -e
qubit is represented theoretically using the Bloch sphere [20],
as shown in Figure 1. -e basis states of the qubit, |0〉 and |1〉

are denoted by poles of the sphere. -e property that dis-
tinguishes the qubit from the classical bit is superposition.-e
qubit can exist in a mixed or superposition state that is any
other point on the surface of the sphere other than the poles.
-e overall state of the qubit can be defined using a linear
superposition equation |ψ〉 � α|0〉 + β|1〉, where α and β are
complex numbers determined from φ and θ as shown in
Figure 1 and satisfying |α|2 + |β|2 � 1. Another distinguishing
property of qubits is entanglement [20]. Two or more qubits
can be entangled together, which means each entangled qubit
becomes strongly correlated to the other along all possible
combinations of the qubits. Outcome of measurement of one
qubit is dependent on the othermeasurement, but individually
they exhibit completely random behavior. In quantum
computing, most algorithms assume that the qubits are fully
entangled [21]. A system of n entangled qubits can be rep-
resented in vector space as N � 2n complex basis state
coefficients.

2.2. Quantum Wavelet Transform. -e wavelet transform,
similar to other transforms like Fourier transform, de-
composes input signals into their components. -e prin-
cipal difference is that Fourier transform decomposes input
signals into their sinusoidal orthogonal temporal-only
bases, while wavelet transform uses a set of non-sinusoidal
functions, usually called mother wavelets, that are both
spatially and temporally localized [15].-is results in a very
important feature unique to wavelet transform which is the
preservation of spatial locality of data. In other words,
wavelet transform gives information about both time and
frequency of input data. Wavelet transform also has better
computation speeds compared to other transforms [14].
-erefore, they are effective and widely used in many image
processing applications [16]. -e wavelet transform can be
effectively implemented in the quantum information
processing (QIP) domain as quantum wavelet transform
(QWT) [16, 18, 19]. However, the related work on QWT is
rare or preliminary. -is is because quantum computing
and QIP are fields that are gradually developing and have
not yet reached full potential. Although many large-scale
quantum hardware is being developed [27], their useful
applications are still yet to be decided. We discuss the
classical wavelet transform first and then apply it in QIP
domain, to establish a model for the QWT. -e general
wavelet transform can be expressed by

F(a, b) �
1
��
a

√
∞

− ∞
f(t)Ψ∗a,b

t − b

a
 dt, (1)

2 International Journal of Reconfigurable Computing

where Ψ is called the mother wavelet function in complex
conjugate form, and a, b are the time dilation and dis-
placement factors, respectively. Wavelet transforms can be
classi�ed as discrete or continuous depending on the use of
orthogonal or non-orthogonal wavelets, respectively. For the
purposes of this paper, we will discuss the discrete wavelet
transform (DWT). �e DWT is a decomposition of input
signals into a set of wavelet functions that are orthogonal to
its translations and scale. �e �rst and simplest DWT was
introduced by mathematician Alfred Haar [15] and is thus
named the Haar wavelet transform. �e Haar mother
wavelet function can be constructed using a unit step
function, u(t), as shown in (2).�e discretized version of the
Haar wavelet function is de�ned as (3), where t � q · Δt,
b � j · Δt, and a � K · Δt, Δt is the sampling period, and K is
the Haar window size in samples. Applying (3) in (1), the
expression for the discrete Haar wavelet transform can be
derived to be (4):

Ψ
t − b
a

() � u
t − b
a

() − 2u
t − b
a

−
1
2

() + u
t − b
a

− 1(),

(2)

ΨD
q − j
K

() �

+1, 0≤ (q − j)<
K

2
,

− 1,
K

2
≤ (q − j)<K,

0, otherwise.

(3)

FD(j, K) � ∑
N− 1

q�0
fD(q · Δt)ΨD

q − j
K

(), (4)

where N is the number of data samples. When doing
computation in the quantum domain, there are e�cient
methods of classical-to-quantum encoding [28–30]. Clas-
sical signal samples can be encoded as the coe�cients of a
quantum state, which is in superposition of its constituent
basis states [28, 31]. �e signal samples are transformed to a
normalized sequence of amplitudes as shown in (5), where n
is the number of qubits,N � 2n is the number of basis states
of the quantum system, and |ψ〉 is the input quantum state.
By applying the wavelet transform on the input quantum
state, we can formulate the equivalent expression for the
quantum Haar wavelet transform (QHT) as (6), where
|ψ〉QHT is the output quantum state:

|ψ〉 � ∑
N− 1

q�0
f(q · Δt)|q〉, where ∑

N− 1

q�0
|f(q · Δt)|2 � 1, (5)

|ψ〉QHT �
1��
N

√ ∑
N− 1

j�0
∑
N− 1

q�0
f(q · Δt)ΨD

q − j
K

()|j〉. (6)

�ere are many notable works on wavelets and appli-
cations of wavelet transforms [32–34]. We focused our
survey on works of wavelet transform applied in the �eld of
quantum information processing, i.e., quantum wavelet
transforms (QWT). Early work on the QWTwas reported in
[16], where the authors present gate-level circuits for the
quantum Haar wavelet and Daubechies D(4) wavelet. �ey
propose techniques for e�cient quantum implementation of
permutation matrices, which are required for factorization
of the unitary operations of the wavelet transforms. In [35],
the authors present quantum algorithms for Haar wavelet
transforms and demonstrate applications in analyzing the
multiscale structure of a dynamical system by logistic
mapping. �ey show the derivation of the quantum wavelet
transform by factoring the classical operators into direct
sums, direct products, and dot products, which is the same
approach in [16]. �e work in [36] also demonstrates similar
quantum circuits for QWT based on the well-known pyr-
amid and packet algorithms which are used in classical
DWT.�ework in [37] presents an analytical study of e�ects
of imperfections in quantum computation of a QWT-based
dynamical model. �ey propose a QWT-based algorithm for
the Daubechies wavelets. �e works in [38, 39] demonstrate
applications of QWTin image watermarking. Amore recent,
novel watermarking method is proposed in [18], where they
demonstrate improvement in invisibility and robustness of
the watermarked image. �e most recent work on QWT is
presented in [19], where the authors provide quantum
circuit derivations for the Haar and Daubechies wavelet
transforms. �e authors propose QHT circuits which con-
tain k levels of permutations, where k is the kernel size.

�e previous work on the QWT has mostly presented
circuits and software simulations, and no hardware imple-
mentations were reported. In comparison, our focus is on
e�cient hardware implementation of the QWT, and we
propose an optimized, low resource-intensive approach for
emulation on classical hardware. To the best of our knowledge,
our work is the �rst to (1) propose usingQHTfor reducing data
dimensionality and (2) provide hardware emulation archi-
tectures for QHT. Our approach is simpler and optimized for
emulation because it uses a single Haar kernel model and a pair
of permutation models, where the permutation models are
implemented as classical circuits. We propose classical circuits
for permutation because (1) quantum permutation circuits
implemented using multiple levels of swap operations
[16, 19, 35, 36] have large quantum cost, and (2) classical
permutation techniques such as index scheduling are space and
time e�cient for hardware implementation.

Moreover, among the previous work there have been no
experimental demonstrations of QWTs on actual quantum
hardware or on any quantum emulators. In our work, we

|ψ〉 = cos (θ/2) |0〉 + eiφsin (θ/2)|1〉

where, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π

= α|0〉 + β|1〉,

= cos (θ/2) |0〉 + (cosφ + i sinφ) sin (θ/2)|1〉θ

φ

|ψ〉

|0〉

|1〉

x

y

z

Figure 1: Bloch sphere representation of a single qubit.

International Journal of Recon�gurable Computing 3

present simplified architectures for implementing multilevel,
multidimensional QHT operations on classical hardware and
propose application of these methods in dimensionality re-
duction of particle tracking data in high-energy physics ap-
plications. Our proposed algorithms and architectures are
easily generalizable, compared to previous works. In addition,
our proposed architectures are more effective in utilizing
minimal quantum and classical hardware resources which is
more suited for dimension reduction. We experimentally
evaluate the architectures on a high-throughput and high-
accuracy FPGA quantum emulator. To the best of our
knowledge, this work is the first to present experimental
demonstrations of quantum wavelets used for dimension re-
duction in large-scale applications, e.g., LHC.

2.3.High-EnergyParticleDetectors. -eATLAS Fast Tracker
(FTK) is a hardware processor upgrade [9] for the Large
Hadron Collider (LHC) which has been developed for faster
reconstruction of tracks at 100 kHz. Details of the operating
principle, hardware components, and performance can be
found in [40]. -e reconstruction is done by matching
detector data with predefined track patterns that are stored
in associative memory on ASICs. -e data processing and
pattern matching are done using FPGA hardware. -e FTK
receives data from the ATLAS pixel detector and stores them
as clusters to reduce data size. -e clusters are arranged into
regions for parallel processing. In the processing units (PU),
the tracks are stored with full resolution on input FPGAs,
while other FPGA processors are responsible for converting
the stored data into coarser resolution segments. -is is
followed by comparison of the course-grained segments
with pre-stored Monte Carlo track patterns. -e coarse
granularity of the tracks can cause problems in identification
and pattern matching and lead to slower tracking perfor-
mance of the FTK. In this work, we propose QHTtechniques
to reduce dimensionality of full resolution data such as FTK
particle tracks. We also demonstrate an FPGA-based
hardware prototype that can be easily integrated into the
current FTK ATLAS architecture.

3. Methodology and Emulation Architectures

In this section, we elaborate ourmethodology that uses QHTto
achieve dimension reduction.We also detail the corresponding
emulation hardware architectures that were implemented [41].

3.1.DimensionReduction. -e classical wavelet transform has
been shown to achieve dimension reduction efficiently and can
be used in various applications that use hyperspectral data, for
example, remote sensing, mineralogy, and surveillance.
Depending on the type of data and the application in which
these data are being used, both 1D wavelet transform (1D-WT)
and 2Dwavelet transform (2D-WT) techniques can be used for
dimension reduction. For example, while the data in remote
sensing hyperspectral imagery is in the form of large 3D data
cubes, 1D wavelet transform (1D-WT) was previously pro-
posed [13, 14] for efficient dimensionality reduction of such
data cubes. In the experimental work in [14], five levels of

wavelet decomposition were used on images of size 217× 512
pixels by 192 bands to achieve ×32 reductions in data volume.
In current and future large-scale applications, the volume of
data can be overwhelming. For example, hyperspectral image
cubes are typically hundreds of pixels in width and height [13],
with 220–240 frequency bands [14]. -e ATLAS pixel detector
contains 1700 detection modules corresponding to 8 × 107
pixels [8] and has bandwidth capacity of 48Gb/s [11]. Hence, it
is necessary to investigate and apply newer paradigms of in-
formation processing and storage for supporting future ap-
plications at full bandwidths. In quantum information
processing, exponentially greater amount of information can
be held in the state of quantum system compared to a classical
binary system. -us, we propose using quantum information
processing techniques such as the QWT for the processing of
high volumes of data in large-scale applications. For example, a
64K× 64K image can be reduced to a smaller resolution of
32× 32 using a 32-qubit, 12-level QWT decomposition. -e
pixels are encoded as N basis states of a quantum state, where
N � 2n and n is the number of qubits, i.e., 32.

Our proposedmethodology for dimension reduction using
quantum wavelet transforms is shown in Figure 2 [41]. In our
proposed approach, each pixel of the input image is encoded as
a basis coefficient of a quantum state. Input image data first
undergoes a multidimensional quantum Haar transform, e.g.,
one-dimensional QHT (1D-QHT) or two-dimensional QHT
(2D-QHT) operation. -e operations can have multiple de-
composition levels and separate the input image into a number
of low frequency and high frequency replications, depending
on the number of decomposition levels. -e lowest frequency
image replication retains the principal components of the input
data without significant data loss.More importantly, themirror
images have reduced dimensionality and thus can be used for
reducing preprocessing overhead or communication band-
width congestion. Multidimensional inverse quantum Haar
transform (1D-IQHT or 2D-IQHT) is then applied to re-
construct the original data. -e 2D operations can be achieved
by cascading 1D operations and multiple permutation sets.

-e proposed kernel-based algorithms for multilevel 1D-
QHT and 2D-QHT are elaborated in Algorithms 1 and 2,
respectively. -e algorithms perform multilevel de-
compositions of 1D-QHTor 2D-QHToperations based on a
d-dimensional Haar wavelet kernel. -e kernel functionality
can be represented by a set of operations applied to some
input states/pixels and is preceded and followed by perfect
shuffle permutation operations [16] on the input and output
states/pixels. -e permutation operations are performed by
means of index calculations and scheduling. Algorithm 1
performs 1D-QHTon a set of input pixels, X, to produce an
output pixel set, Y. -e input pixels first undergo input
permutations, followed by 1D Haar kernel operations on 2
pixels every cycle, and output permutations. Algorithm 2
performs 2D-QHTon a set of input pixels, X, to produce an
output pixel set, Y. -e input pixels first undergo input
permutations, followed by 2D Haar kernel operations on 4
pixels every cycle, and output permutations.

To efficiently extract output state data, quantum-to-
classical readout techniques [28] such as quantum Fourier
transform (QFT) can be employed. However, this was not

4 International Journal of Reconfigurable Computing

required to be implemented in this work as full emulation of
quantum computation was performed on classical hardware
and the output of the emulator is in classical representation.
For emulation, we develop circuit models based on these
algorithms and integrate them into reconfigurable hardware
architectures for multilevel, multidimensional (1D and 2D)
QHT and IQHT. -ese models and emulation architectures
are elaborated in the next section.

3.2. Quantum Haar Transform Kernel. -e Haar wavelet
kernel can be generalized by quantum operations using n
qubits and a d-dimension kernel as shown in (7), where ⊗ is
the Kronecker product [42], H is the Hadamard transform
[20], and I is an identity matrix. Here, a group of entangled
gates is denoted by the gate symbol with the size of the
equivalent operation matrix as subscript, for example, H2d .

-e quantum Haar function can be implemented using d
entangled H gates and n − d entangled I gates as shown in
(7). For example, the transformation matrix for 2D-QHT
with d � 2 can be derived as shown in (9):

UQHT � I2(n− d) ⊗ H2d , (7)

where

H2d � H⊗ H⊗ · · · ⊗ H√√√√√√√√√√√√√√
d

,

I2(n− d) � I⊗ I⊗ · · · ⊗ I√√√√√√√√√√√√
(n− d)

,

H � H2 �
1
�
2

√
1 1

1 − 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

I � I2 �

1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ,

(8)

where n⟹ number of qubits and d⟹ kernel dimension:

2D-QHT

2D-QHT

2D-QHT 2D-IQHT

1D-QHT
(Row
wise)

1D-QHT
(Column

wise) Haar 2D kernel
or

Figure 2: Dimension reduction using 2D-QHT and 2D-IQHT.

Input: X � [x0, x1, . . . xN− 1], nrows, ncols, nlevels
Output: Y � [y0, y1, . . . , yN− 1]

nstates � nrows × ncols � N

for ilevel � 1; ilevel ≤ nlevels; ilevel + + do
for igroup � 0; igroup < (nstates/2); igroup + + do
//Initial scheduler setup
icolGroup � ⌊igroup/(nrows/2)⌋
irowGroup � igroup − icolGroup × (nrows/2)

icol � icolGroup
irow � 2 × irowGroup
//Input Permutations/Scheduler
iX00

� irow + (icol × nrows)

iX10
� iX00

+ 1
X00⟵X[iX00

]

X10⟵X[iX10
]

//1D-QHT kernel
Y00 � (X00 + X10)/

�
2

√

Y10 � (X00 − X10)/
�
2

√

//Output Permutations/Scheduler
iY00

� (irow + (icol × nrows))/2
iY10

� iY00
+ (nrows/2)

Y[iY00
]⟵Y00

Y[iY10
]⟵Y10

end for
end for

ALGORITHM 1: Multilevel 1D quantum Haar transform.

Input: X � [x0, x1, . . . , xN− 1], nrows, ncols, nlevels
Output: Y � [y0, y1, . . . , yN− 1]

nstates � nrows × ncols � N

for ilevel � 1; ilevel ≤ nlevels; ilevel + + do
for igroup � 0; igroup < (nstates/4); igroup + + do
//Initial scheduler setup
icolGroup � ⌊igroup/(nrows/2)⌋
irowGroup � igroup − icolGroup × (nrows/2)

icol � 2 × icolGroup
irow � 2 × irowGroup
//Input Permutations/Scheduler
iX00

� irow + (icol × nrows)

iX10
� iX00

+ 1
iX01

� iX00
+ nrows

iX11
� iX01

+ 1
X00⟵X[iX00

]

X10⟵X[iX10
]

X01⟵X[iX01
]

X11⟵X[iX11
]

//2D-QHT kernel
Y00 � (X00 + X10 + X01 + X11)/2
Y10 � (X00 − X10 + X01 − X11)/2
Y01 � (X00 + X10 − X01 − X11)/2
Y11 � (X00 − X10 − X01 + X11)/2
//Output Permutations/Scheduler
iY00

� (irow + (icol × nrows))/2
iY10

� iY00
+ (nrows/2)

iY01
� iY00

+ (nstates/2)

iY11
� iY01

+ (nrows/2)

Y[iY00
]⟵Y00

Y[iY10
]⟵Y10

Y[iY01
]⟵Y01

Y[iY11
]⟵Y11

end for
end for

ALGORITHM 2: Multilevel 2D quantum Haar transform.

International Journal of Reconfigurable Computing 5

U
2D
QHT � I2(n− 2) ⊗ H22 � I2n/4 ⊗ H4 � IN/4 ⊗ H4, (9)

where

H4 � H⊗ H �
1
2

1 1 1 1

1 − 1 1 − 1

1 1 − 1 − 1

1 − 1 − 1 1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (10)

3.3. Permutation Operations. Perfect shuffle permutation
on a given vector is described as partitioning the vector in
half and shuffling the top and bottom portions of the halves
[16]. In our algorithms for QHT and IQHT, we apply
similar input and output permutation operations before
and after applying the QHT kernel, respectively. -e QHT
kernel is performed on a set of k points, where k � 2d. An
input permutation operation involves dividing the input
vector of size N, into k groups, and selecting a state (pixel)
from every group(s), to be applied to the kernel operation.
For 1D-QHT and 2D-QHT operations, the input permu-
tations, P1D

in and P2D
in , are shown in (11) and (12), re-

spectively. An output permutation involves arranging the
pixels from k groups into a single output state sequence.
-e output permutation for 1D-QHT and 2D-QHT oper-
ations, P1D

out and P2D
out, are shown in (13) and (14),

respectively:

P
1D
in :

x0

x1

⋮

x nrows()

x nrows+1()

⋮

x(N− 1)

⎡⎢⎢⎣

⎤⎥⎥⎦

⟼

x0

x1

⋮

x nrows()

x nrows+1()

⋮

x(N− 1)

⎡⎢⎢⎣

⎤⎥⎥⎦

, (11)

P
2D
in :

x0

x1

x2

x3

⋮
x nrows()

x nrows+1()

x nrows+2()

x nrows+3()

⋮
⋮

x(N− 1)

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

⟼

x0

x1

x nrows()

x nrows+1()

x2

x3

x nrows+2()

x nrows+3()

⋮
⋮
⋮

x(N− 1)

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

, (12)

P1D
out :

y0

y nrows/2()

y1

y nrows/2() +1()

⋮
⋮

y(N− 1)

⎡⎢⎢⎣

⎤⎥⎥⎦

⟼

y0

y1

y2

y3

⋮
⋮

y(N− 1)

⎡⎢⎢⎣

⎤⎥⎥⎦

, (13)

P
2D
out :

y0

y nrows/2()

y(N/2)

y nrows/2()+(N/2)()

⋮
⋮

y(N− 1)

⎡⎢⎢⎣

⎤⎥⎥⎦

⟼

y0

y1

y2

y3

⋮
⋮

y(N− 1)

⎡⎢⎢⎣

⎤⎥⎥⎦

. (14)

3.4. Emulation Architectures. While developing the emula-
tion architectures for the proposed system, as an in-
termediate step, we design circuit models, illustrated in
Figures 3 and 4 for 1D- and 2D-QHT/IQHT, respectively.
-ese models are derived from the sequence of operations in
Algorithms 1 and 2 and can contain quantum and/or
classical circuits. -e 1D- and 2D-QHT models in
Figures 3(a) and 4(a), respectively, consist of input per-
mutation models (Pin), followed by Haar kernel models
(UQHT) and then output permutation models (Pout).-e 1D-
and 2D-IQHTmodels in Figures 3(b) and 4(b), respectively,
consist of inverse output permutation models (Pout)

− 1,
followed by Haar kernel models (UQHT) and then inverse
input permutation models (Pin)− 1. -e inverse models are
equivalent to the direct models, as the permutation oper-
ations are reversible. To achieve multilevel decompositions,
multiple iterations of the Haar kernel models are applied.
-e QHT and IQHT operations for 1D and 2D are sum-
marized as unitary transformations in (15) and (16), re-
spectively. -e emulation architectures of the 1D-QHT/
IQHT and 2D-QHT/IQHT are shown in Figures 5 and 6,
respectively. Since the hardware implementations of the 1D
and 2D are similar, we focus our following discussions on
the implementation of the 2D-QHTemulation architectures:

1D − QHT : P
1D
out · U

1D
QHT · P

1D
in ,

1D − IQHT : P
1D
in

− 1
· U

1D
QHT · P

1D
out

− 1
,

(15)

2D − QHT : P
2D
out · U

2D
QHT · P

2D
in ,

2D − IQHT : P
2D
in

− 1
· U

2D
QHT · P

2D
out

− 1
.

(16)

As shown in Figures 4(a) and (16), the first step in the
2D-QHT operation is the input permutation P2D

in , which is
described by (12). -e permutations can be modeled as
quantum circuits with multiple swap gates, but that would
incur high resource utilization in the corresponding emu-
lation architecture. For this reason, we use classical models

6 International Journal of Reconfigurable Computing

that involve simple index scheduling, and the corresponding
emulation architecture is shown in Figure 6(a).-e input is a
vector of quantum state coefficients which are written to a
memory array in the index order 0 to N − 1. Four coefficient
values are then read out each clock cycle, with the scheduler
generating the read indices iX00

, iX01
, iX10

, and iX11
according

to the input permutation, see Algorithm 2 and (12). -e
scheduler maintains a counter, row index irow, and a column
index icol to calculate the output indices. Multiplications and
divisions by powers of two are replaced by logical shifts for
optimizing area and speed. -e scheduler also requires a
floor operation unit.

As shown in Figures 4(b) and (9), the 2D-Haar trans-
formation, U2D

QHT, is modeled using a pair of Hadamard
gates. -e Hadamard pair operation reduces to kernel op-
erations on a set of four coefficients as we described in
Algorithm 2. -e emulation architecture for the 2D-Haar
kernel is shown in Figure 6(b).-e design takes in four input
coefficients, applies the kernel operations which involve
addition and division, and outputs four coefficients per clock
cycle. Conventional operator sharing techniques and logical
shifts are applied to optimize for speed and area.

-e final step in the 2D-QHT operation is the output
permutation, P2D

out, described by (14). -e corresponding
emulation architecture is shown in Figure 6(c) and works
similar to the input permutation scheduler. -e input
vector of coefficients are written to a memory array, four
values per clock cycle, with the scheduler generating the
write indices iY00

, iY01
, iY10

, and iY11
according to the output

permutation described in Algorithm 2. -e permuted
coefficients are then read out from memory 4 values per
clock cycle.

-e emulation hardware architectures, i.e., input/output
schedulers and 1D/2D Haar kernels, were integrated into a
reconfigurable quantum emulator design based on our
previous works [21, 22], whose high-level architecture is

shown in Figure 7. -e emulator stores input and output
quantum states as vectors of the state coefficients and core
kernel operations are extracted from the input quantum
algorithm. -e input state vector goes through the input
permutations (input schedulers) before the kernel operation
is applied iteratively across each state. To get the correct final
quantum state that represents the transformed data, the
output permutation (output schedulers) is applied. -e
architecture uses a fully pipelined dataflow architecture and
supports single and double-precision floating-point arith-
metic. For example, each quantum state coefficient is
complex and is modeled in 32 bit floating-point precision for
the real and imaginary components, respectively. -e em-
ulator also supports features such as fully-entangled input
quantum state preparation from a set of input qubits and
output quantum state measurement as a classical bit string.
-e emulator is generic and can efficiently run a given
quantum algorithm that can be reduced to its corresponding
unitary transformation.

4. Experimental Work

-e experimental work was performed on DS8, a state-of-
the-art high-performance reconfigurable computing
(HPRC) system developed by DirectStream [25]. On the DS8
platform, developers can build applications on hardware
systems ranging from single-node compute instances to
multinode structures, see Figure 8. A single C2 compute
node of the DS8 system is equipped with a high-end Intel-
Altera Arria 10AX115N4F45E3SG FPGA, with on-chip
resources such as adaptive logic modules (ALMs), block
RAMs (BRAMs), digital signal processors (DSPs), and on-
board resources such as two 32GB SDRAM memory banks
and four 8MB SRAM memory banks, as shown in Figure 8.
A user-friendly programming environment, previously
known as Carte-C [43], is integrated into the DS hardware

1D-QHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

Pin UQHT
1D 1D 1DPout

(a)

1D-IQHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

UQHT
1DPout

–11D Pin
–11D

(b)

Figure 3: (a) 1D-quantum Haar transform circuit. (b) 1D-inverse quantum Haar transform circuit.

2D-QHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

H
UQHTPin

2D 2D 2DPout

(a)

2D-IQHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

H
Pout

–1
UIQHT

2D2D Pin
–12D

(b)

Figure 4: (a) 2D-quantum Haar transform circuit. (b) 2D-inverse quantum Haar transform circuit.

International Journal of Reconfigurable Computing 7

systems. A high-level language (HLL) facilitates the devel-
opment of complex, parallel, and reconfigurable codes in an
efficient manner. -e study in [44] showed that Carte-C has
a highly productive environment, short acquisition time,
and short learning time as well as a short development time.
-e DS8 architecture provides a combination of high per-
formance, high scalability, runtime reconfiguration, and ease
of use.

-e QHT and IQHT architectures were implemented
using C++ on the DS8 programming environment. Input

images with a resolution of up to 1024 × 1024, and 256
shades of grayscale pixels, were used to test the designs.
MATLAB was used to convert the images into greyscale,
generate the input vectors for DS8, and reconstruct images
from the output vectors. Synthesis and hardware builds
were performed using Quartus Prime Version 17.02 on the
DS8 environment. Figure 9(a) shows one of the input
images converted to greyscale, and Figure 9(b) is the output
after a 1D-QHT operation with 1 level of decomposition.
Figure 9(c) is the output after a 1D-QHT operation with 2

irowGroup

nrows

irow

icol

iX00
iX10

icolGroup

igroup

x0x1x2x3

x(N–1)

...
...

...
...

x0x1x2x3

x(N–1)

...
...

...
...

Memory
X = [x0, x1, x2, x3, ..., x(N–1)]

clk rst

floor

>>1

<<1mod – (N/2)
counter

P1D
in

÷

1

(a)

X00

X10

Y00

Y10

÷

÷

1D-QHT kernel

–

√2

(b)

nrows

irowGroup irow

icol

iY00 iY10
icolGroup

igroup

y0y1y2y3

y(N–1)

...
...

...
...

y0

y1y((nrows/2)+1)

y(nrows/2)

y(N–1)

...
...

...
...

Memory
Y = [y0, y1, y2, y3, ..., y(N–1)]

clk rst

floor

>>1

>>1 >>1

>>1

mod – (N/2)
counter

P1D
out

÷

(c)

Figure 5: Emulation architectures for the (a) 1D input permutation, (b) 1D-Haar kernel, and (c) 1D output permutation.

irowGroup

nrows

irow

icol

iX00
iX10

iX01
iX11icolGroup

igroup

x0x1x(nrows)x(nrows+1)

x(N–1)

...
...

...
...

x0x1x2x3

x(N–1)

...
...

...
...

Memory
X = [x0, x1, x2, x3, ..., x(N–1)]

clk rst

floor

>>1

<<1

<<1

mod – (N/4)
counter

P2D
in

÷

1

1

(a)

X00

X10

X11

X01

Y00

Y10

Y11

Y01

>>1

>>1

>>1

>>1

2D-QHT kernel

(b)

nrows nstates

irowGroup irow

icol

iY00
iY01

iY11icolGroup

igroup

y0y1y2y3

y(N–1)

...
...

...
...

y0

y1y((nrows/2)+
(N/2))

y(nrows/2)

y(N–1)

...
...

...
...

Memory
Y = [y0, y1, y2, y3, ..., y(N–1)]

clkrst

floor

>>1

>>1 >>1

>>1
>>1

mod – (N/4)
counter

P2D
out

÷

iY10

(c)

Figure 6: Emulation architectures for the (a) 2D input permutation, (b) 2D-Haar kernel, and (c) 2D output permutation.

8 International Journal of Reconfigurable Computing

levels of decomposition, and Figure 9(d) shows the
reconstructed images after a 1D-IQHT operation was ap-
plied. Figures 10(a)–10(d) show the results from repeating
the experiment using the 2D-QHT and 2D-IQHT
architectures.

Resource utilizations from the hardware implementa-
tions are summarized in Tables 1 and 2 for 1D and 2D,
respectively. �e on-chip resources (ALMs, BRAMs, DSPs)
are used up in implementing the static components of the
design such as counters, adders, and shift operators and

C2

Control chip

Application logic
chip

32GB
ECC

SDRAM

32GB
ECC

SDRAM

8MB
ECC

SRAM

8MB
ECC

SRAM

8MB
ECC

SRAM

8MB
ECC

SRAM

Hi-barⓇ Connections

(a)

C2 C2

C2EIO

H
i-b

ar

40 GbE × 2

FPGA FPGA

FPGA

(b)

C2 EIO

4Node-1U
N + 1 power
Hi-BarⓇ switch
240 Gb/s
bidirectional
bandwidth

Chassis

Chassis

Compute Ethernet I/O
Altera Arria 10
FPGA
(Intel)

Networking
Processor
80 GbE
(40 GbE × 2)

1U-4N

FPGA

(c)

Figure 8: DS8 platform architectures. (a) Single compute node. (b) Multinode instance. (c) Node types.

Reconfigurable quantum emulator

Qubit
initialization

Output
bits

Quantum
algorithm

Kernel operation
extracted

Entanglement

Input quantum
states

Output quantum
states

Measurement

In
pu

t s
ch

ed
ul

er
s

O
ut

pu
t s

ch
ed

ul
er

s

Ke
rn

el

|ψin〉 |ψout〉

Figure 7: Recon�gurable quantum emulator architecture.

International Journal of Recon�gurable Computing 9

hence are constant as the emulated circuit size (number of
qubits) increases. -e low on-chip resource utilizations
indicate that our proposed approach and emulation archi-
tecture designs are highly space-efficient. -e 1D-QHT ar-
chitecture consumes lower on-chip resources than 2D-QHT
due to its less complex kernel operations. -e low resource
utilizations also indicate the flexibility of the QHTand IQHT
designs for integrating with larger algorithms.

-e SDRAM memory requirements for storage of the
input and output images as quantum state vectors are also
reported in Tables 1 and 2. For the highest resolution image
of size 1024 × 1024, the pixels occupy 25% of the total on-
board SDRAM memory (64GB) available on a single DS
node. -e pixels of the input images are encoded as basis
coefficients of a quantum state. For example, to store 16 ×

16 or 256 pixels, we need 256 complex coefficients each of
which have a real and imaginary component occupying
total 2 × 4 � 8 bytes in 32 bit floating-point representation.
-erefore, for storing both input and output images, 2 ×

256 × 8 � 4096 bytes of memory was required. -e ob-
tained memory usages for larger QHT circuits are con-
sistent with expected values.

-e hardware designs on the FPGA were pipelined to
ensure a constant and high operating frequency of 233MHz.
-e obtained emulation times for high resolution images are
also feasible. For a 1024 × 1024 image, 20 qubits were suf-
ficient for achieving dimension reduction using 1D-QHT
and 2D-QHT. From our experimental results, we observe
that the emulation time increases linearly with increase
in the number of image pixels (states), as illustrated in
Figure 11. -is is because a large portion of the emulation
time is dedicated to writing in and reading out the input/
output state vectors of size N (number of pixels); hence, the
emulation time complexity is O(N). -is indicates the
benefit of using quantum encoding of data, i.e., encoding
each image pixel as a basis state coefficient in the quantum
state space. Finally, the emulation times for 1D-QHT are
higher than 2D-QHT because of the higher number of it-
erations N/2 in the 1D algorithm, compared to N/4 itera-
tions in the 2D algorithm, see Algorithms 1 and 2.

In general, on a classical emulation platform, the em-
ulation execution time increases with both the spatial and
temporal complexities of the quantum circuit. In other
words, the emulation time of a quantum circuit on a classical

(a) (b)

(c) (d)

Figure 9: Experimental results of multilevel decomposition and reconstruction with 1D-QHTand 1D-IQHT. (a) Original image. (b) 1-level
1D-QHT. (c) 2-level 1D-QHT. (d) Reconstructed image using 1D-IQHT.

10 International Journal of Reconfigurable Computing

(a) (b)

(c) (d)

Figure 10: Experimental results of multilevel decomposition and reconstruction with 2D-QHT and 2D-IQHT. (a) Original image.
(b) 1-level 2D-QHT. (c) 2-level 2D-QHT. (d) Reconstructed image using 2D-IQHT.

Table 1: 1D-QHT implementation results on Arria 10AX115N4F45E3SG FPGA.

Number of pixels Number of qubits
Resource utilization∗ (%)

SDRAM∗∗ (bytes) Emulation time (sec)
ALMs BRAMs DSPs

16×16 8 11 8 1 4K 0.00018
32× 32 10 11 8 1 16K 0.00071
64× 64 12 11 8 1 64K 0.00285
128×128 14 11 8 1 256K 0.01139
256× 256 16 11 8 1 1M 0.04557
512× 512 18 11 8 1 4M 0.18226
1024×1024 20 11 8 1 16M 0.72905
∗Total chip resources: NALM � 427,200; NBRAM � 2,713; NDSP � 1,518. ∗∗Total on-board SDRAM memory: 2 parallel banks of 32GB each.

Table 2: 2D-QHT implementation results on Arria 10AX115N4F45E3SG FPGA.

Number of pixels Number of qubits
Resource utilization∗ (%)

SDRAM∗∗ (bytes) Emulation time (sec)
ALMs BRAMs DSPs

16×16 8 14 9 2 4K 0.00012
32× 32 10 14 9 2 16K 0.00047
64× 64 12 14 9 2 64K 0.00187
128×128 14 14 9 2 256K 0.00746
256× 256 16 14 9 2 1M 0.02982
512× 512 18 14 9 2 4M 0.11926
1024×1024 20 14 9 2 16M 0.47704
∗Total chip resources: NALM � 427,200; NBRAM � 2,713; NDSP � 1,518. ∗∗Total on-board SDRAM memory: 2 parallel banks of 32GB each.

International Journal of Reconfigurable Computing 11

platform is generally a function of both the circuit width
(number of qubits) and depth (number of gate levels). Due
to optimizations and encoding techniques we used, the
emulation time of our proposed emulation architectures is
a function of only the quantum circuit width (number of
qubits), as shown by our experimental results. On state-of-
the-art superconducting NISQ devices [45, 46], the exe-
cution time is a function of only the depth (number of gate
levels) of the circuit [47]. For our proposed 1D-QHT and
2D-QHT circuits, which are simple quantum circuits of
depth 1, we estimate an execution time of 0.01ms on a
typical NISQ device processing a 7 × 7 qubit array with
sampling frequency of 100 kHz [47]. -e estimated exe-
cution time is constant for a fixed circuit depth and
variable number of qubits in the quantum processing unit
(QPU) array; i.e., the time complexity is theoretically O(1).
In comparison, the time complexity of our emulation is
O(N).

Our emulation experiments and implementations help
in validating the functionality and feasibility of the proposed
QHT-based methodology in achieving dimension reduction
of high-resolution images. -e emulation provides impli-
cations for the proposed system’s application in fast, efficient
processing of particle tracking data in the large-scale, high-

energy physics domain. -e emulation is memory-bound by
the resources on a single DS FPGA node. For larger-scale
emulation, the on-board memory has to be increased, or
multi-node, and/or multichassis architectures of the DS
system can be utilized in conjunction with efficient sched-
uling techniques and high-bandwidth networks [22].

We further quantitatively compare our obtained ex-
perimental results with the existing FPGA-based emulation
work [48–53] as shown in Table 3. Among the related work
on FPGA emulation of quantum circuits, our emulator has
the capability of emulating the largest quantum circuits
(QFT, QHT, and Grover’s search), with highest operating
frequency (233MHz) and high precision (32 bit floating-
point). Current FPGA hardware-emulators have many
discrepancies (missing resource utilization, operating fre-
quency, and emulation time) in the reporting of their results
which makes a comprehensive comparison difficult. In our
comparison, we included only hardware emulators, as most
parallel-software-simulators are based on large-scale su-
percomputers such as Summit [47] and Sunway [54], which
are extremely costly, power-hungry, and resource-hungry
and are not comparable with FPGA-emulators. Also, they
provide simulations of random quantum circuits and not full
quantum algorithms.

0.0001

0.001

0.01

0.1

1

Em
ul

at
io

n
tim

e (
s)

Number of pixels

256 1024 4096 16384
FPGA Device: Arria 10AX115N4F45E3SG

65536 262144 1048576

1D-QHT
2D-QHT

Figure 11: Emulation time as a function of data size (number of pixels).

Table 3: Comparison of the proposed work against previous works of FPGA emulation.

Reported work Algorithm Number of qubits Precision Frequency (MHz) Emulation time (sec)
Fujishima [48] Shor’s factoring — — 80 10

Khalid et al. [49] QFT 3 16 bit fixed pt. 82.1 61E − 9
Grover’s search 3 16 bit fixed pt. 82.1 84E − 9

Aminian et al. [50] QFT 3 16 bit fixed pt 131.3 46E − 9

Lee et al. [51] QFT 5 24 bit fixed pt. 90 219E − 9
Grover’s search 7 24 bit fixed pt. 85 96.8E − 9

Silva et al. [52] QFT 4 32 bit floating pt. — 4E − 6
Pilch et al. [53] Deutsch 2 — — —

Mahmud et al. [22] QFT 5 32 bit floating pt. 233 4.63E − 4†
Grover’s search 5 32 bit floating pt. 233 4.38E − 7†

Proposed work
QFT 20 32 bit floating pt. 233 18.4
QHT 20 32 bit floating pt. 233 0.477

Grover’s search 22 32 bit floating pt. 233 7.5E04
†Results obtained at a later time to publication.

12 International Journal of Reconfigurable Computing

5. Conclusions

Quantum information processing and quantum computing
will have significant implications in the future of computing
technology. As current quantum technology continues to
improve, there is a great need to investigate useful appli-
cations in quantum information theory. In this work, we
presented a first effort, to the best of our knowledge, to
efficiently reduce data dimensionality using quantum pro-
cessing methods such as quantum wavelet transform. We
propose to apply these techniques in physics applications
that investigate high-energy particle detection and tracking,
where dimension reduction helps to reduce communication
bandwidth and speedup preprocessing computations. Our
proposed architectures are simpler and optimized for
hardware implementation than previously reported works.
We demonstrated the minimal resource utilization, high
performance/throughout, and high precision of the pro-
posed architectures. We prototyped our designs on a
quantum emulator and demonstrated the feasibility of
proposed techniques by conducting experiments using high-
resolution test image data.

Due to limitations of the current state of quantum
technology, e.g., cost, availability, and current scale (size) of
quantum processors, it is beyond the scope of this work to
actually implement the system and measure performance.
Although not yet integrated with the ATLAS FTK project,
the proposed approach and emulation hardware archi-
tectures are feasible for future implementations, with the
maturing of current quantum technology. For future in-
tegration into the ATLAS FTK project, data conversion
techniques such as quantum-to-classical and classical-to-
quantum, which are heavily-researched current topics,
must be perfected first, and we plan to conduct in-
vestigations of these techniques in our future work. Our
future plans also include application of the proposed
methods using real HEP data and combining QHT with
Grover’s search algorithm as a complete solution to HEP
FTK problems. We will also investigate 3D-QHT, Dau-
bechies wavelet transforms, and their application for real-
time data streaming.

Data Availability

-e test data used to support the findings of this study are
available from the corresponding author upon request and
approval from Direcstream.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

We would like to thank Prof. Alice Bean and Prof. Chris-
topher Rogan from the department of Physics and As-
tronomy at the University of Kansas for their valuable
insights and help in this work.

References

[1] CERN Accelerating science, “-e Higgs boson,” 2019, https://
home.cern/science/physics/higgs-boson.

[2] CERN Accelerating science, “Unified forces,” 2019, https://
home.cern/science/physics/unified-forces.

[3] V. L. Ginzburg, 9e Physics of a Lifetime: Reflections on the
Problems and Personalities of 20th Century Physics, Springer
Science & Business Media, Berlin, Germany, 2013.

[4] I. Kisel, Track Reconstruction and Pattern Recognition in High-
Energy Physics, 2019, https://www.physik.uni-heidelberg.de/
c/image/exp/f/highrr/Kisel_HD_12.04.2016.pdf.

[5] G. Aad and ATLAS Collaboration, “-eATLAS experiment at
the CERN large Hadron collider,” Journal of Instrumentation,
vol. 3, no. 8, 2008.

[6] C. O’Luanaigh, New Results Indicate that New Particle is a Higgs
Boson, CERN,Geneva, Switzerland, 2019, https://home.cern/news/
news/physics/new-results-indicate-new-particle-higgs-boson.

[7] CERN Accelerating science, “-e inner detector,” 2019,
https://atlas.cern/discover/detector/inner-detector.

[8] F. Hugging, “-e ATLAS pixel detector,” in Proceedings of the
IEEE Symposium Conference Record Nuclear Science, vol. 2,
pp. 1077–1081, Rome, Italy, October 2004.

[9] M. Backhaus, “-e upgraded pixel detector of the ATLAS
experiment for run 2 at the large Hadron collider,” Nuclear
Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment,
vol. 831, pp. 65–70, 2016.

[10] H. Pernegger,9e Pixel Detector of the ATLAS Experiment for
LHC Run-2, 2015.

[11] S. Amerio, A. Andreani, A. Andreazza et al.,ATLAS FTK: Fast
Track Trigger, 2013.

[12] I. K. Fodor, A Survey of Dimension Reduction Techniques,
pp. 1–18, Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory, Livermore, CA, USA, 2002.

[13] S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic
reduction of hyperspectral imagery using wavelet spectral
analysis,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 41, no. 4, 2003.

[14] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and K. Gaj,
“Wavelet spectral dimension reduction of hyperspectral im-
agery on a reconfigurable computer,” in Proceedings of the
IEEE International Conference on Field-Programmable Tech-
nology (FPT), pp. 399–402, Brisbane, Australia, December
2004.

[15] J. Wickmann, “A wavelet approach to dimension reduction
and classification of hyperspectral data,” Masters -esis,
Faculty of Mathematics and Natural Sciences, University of
Oslo, Oslo, Norway, 2007.

[16] A. Fijany and C. P. Williams, Quantum Wavelet Transforms:
Fast Algorithms and Complete Circuits, 1998, http://arxiv.org/
abs/9809004v1.

[17] J. Stajic, “-e future of quantum information processing,”
Science, vol. 339, no. 6124, p. 1163, 2013.

[18] S. Heidari, M. Naseri, R. Gheibi, M. Baghfalaki,
M. R. Pourarian, and A. Farouk, “A new quantum water-
marking based on quantum wavelet transforms,” Commu-
nications in 9eoretical Physics, vol. 67, no. 6, p. 732, 2017.

[19] L. Hai-Sheng, P. Fan, H. Xia, S. Song, and X. He, “-e multi-
level and multi-dimensional quantum wavelet packet trans-
forms,” Scientific Reports, vol. 8, no. 1, 2018.

[20] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, Cam-
bridge, UK, 2010.

International Journal of Reconfigurable Computing 13

https://home.cern/science/physics/higgs-boson
https://home.cern/science/physics/higgs-boson
http://https://home.cern/science/physics/unified-forces
http://https://home.cern/science/physics/unified-forces
https://www.physik.uni-heidelberg.de/c/image/exp/f/highrr/Kisel_HD_12.04.2016.pdf
https://www.physik.uni-heidelberg.de/c/image/exp/f/highrr/Kisel_HD_12.04.2016.pdf
https://home.cern/news/news/physics/new-results-indicate-new-particle-higgs-boson
https://home.cern/news/news/physics/new-results-indicate-new-particle-higgs-boson
https://atlas.cern/discover/detector/inner-detector
http://arxiv.org/abs/9809004v1
http://arxiv.org/abs/9809004v1

[21] N. Mahmud and E. El-Araby, “A scalable high-precision and
high-throughput architecture for emulation of quantum al-
gorithms,” in Proceedings of the 31st IEEE International
System-on-Chip Conference (SOCC 2018), Washington, DC,
USA, September 2018.

[22] N. Mahmud and E. El-Araby, “Towards higher scalability of
quantum hardware emulation using efficient resource
scheduling,” in Proceedings of the 3rd IEEE International
Conference on Rebooting Computing (ICRC 2018), Wash-
ington, DC, USA, November 2018.

[23] P. W. Shor, “Algorithms for quantum computation: discrete
logarithms and factoring,” in Proceedings of the 35th IEEE
Annual Symposium on Foundations of Computer Science
(SFCS ’94), pp. 124–134, Santa Fe, NM, USA, November 1994.

[24] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proceedings of the Twenty-Eighth Annual
ACM Symposium on 9eory of computing (STOC ’96),
pp. 212–219, Philadelphia, PA, USA, May 1996.

[25] DirectStream LLC, 2019 , https://directstream.com.
[26] Quantum Computing Report,Qubit Technology, 2019, https://

quantumcomputingreport.com/scorecards/qubit-technology/.
[27] L. Gomes, “Quantum computing: both here and not here,”

IEEE Spectrum, April 2019, https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp�&arnumber�83-22045.

[28] C. P.Williams, Explorations in QuantumComputing, Springer
Science & Business Media, Berlin, Germany, 2010.

[29] L. Grover and T. Rudolph, Creating Superpositions that
Correspond to Efficiently Integrable Probability Distributions,
2002, http://arxiv.org/abs/0208112.

[30] P. Kaye and M. Mosca, Quantum Networks for Generating
ArbitraryQuantum States, pp. 1–3, 2004, http://arxiv.org/abs/
0407102.

[31] X. Yao, H. Wang, Z. Liao et al., “Quantum image processing
and its application to edge detection: theory and experiment,”
Physical Review X, vol. 7, no. 031041, 2017.

[32] S. G. Mallat, “A theory for multiresolution signal de-
composition: the wavelet representation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 11, no. 7,
pp. 674–693, 1989.

[33] B. Toufik and N. Mokhtar, “-e wavelet transform for image
processing applications,” in Advances in Wavelet 9eory and
9eir Applications in Engineering, Physics and Technology,
pp. 395–422, InTech, Rijeka, Croatia, 2012.

[34] P. S. Addison, 9e Illustrated Wavelet Transform Handbook:
Introductory 9eory and Applications in Science, Engineering,
Medicine and Finance, CRC Press, Boca Raton, FL, USA, 2017.

[35] D. Gosal andW. Lawton, Quantum Haar Wavelet Transforms
and 9eir Applications, 2001.

[36] H. Ohnishi, H. Matsueda, and L. Zheng, “Quantum wavelet
transform and matrix factorization,” in Proceedings of the
IEEE International Quantum Electronics Conference,
pp. 1327-1328, Antwerp, Belgium, 2005.

[37] M. Terraneo and D. L. Shepelyansky, “Imperfection effects for
multiple applications of the quantum wavelet transform,”
Physical Review Letters, vol. 90, no. 25, 2003.

[38] X.-H. Song, S. Wang, S. Liu, A. A. Abd El-Latif, and
X.-M. Niu, “A dynamic watermarking scheme for quantum
images using quantum wavelet transform,” Quantum In-
formation Processing, vol. 12, no. 12, pp. 3689–3706, 2013.

[39] Y.-G. Yang, P. Xu, J. Tian, and H. Zhang, “Analysis and
improvement of the dynamic watermarking scheme for
quantum images using quantum wavelet transform,” Quan-
tum Information Processing, vol. 13, no. 9, pp. 1931–1936,
2014.

[40] N. Ilic, “-e ATLAS fast tracker and tracking at the high-
luminosity LHC,” Journal of Instrumentation, vol. 12, no. 2,
2017.

[41] N. Mahmud, E. El-Araby, and D. Caliga, “Scaling reconfig-
urable emulation of quantum algorithms at high precision
and high throughput,” Quantum Engineering, vol. 1, no. 2,
2019.

[42] R. K. Brylinski and G. Chen, Mathematics of Quantum
Computation, CRC Press, Boca Raton, FL, USA, 2002.

[43] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and R. Irish,
“Reconfigurable processing for satellite on-board automatic
cloud cover assessment,” Journal of Real-Time Image Pro-
cessing, vol. 4, no. 3, pp. 245–259, 2009.

[44] E. El-Araby, S. G. Merchant, and T. El-Ghazawi, “Assessing
productivity of high-level design methodologies for high-
performance reconfigurable computers,” in High-Perfor-
mance Computing Using FPGAs, W. Vanderbauwhede and
K. Benkrid, Eds., pp. 719–745, Springer, New York, NY, USA,
2013.

[45] A Preview of Bristlecone, Googles New Quantum Processor,
Google AI Blog, March 2018.

[46] IBM Announces Advances to IBM Q Systems & Ecosystem,
IBM Press Release, November 2017.

[47] B. Villalonga, D. Lyakh, S. Boixo et al., “Establishing the
quantum supremacy frontier with a 281 Pflop/s simulation,”
2019, http://arxiv.org/abs/1905.00444v1.

[48] M. Fujishima, “FPGA-based high-speed emulator of quantum
computing,” in Proceedings of the IEEE International Con-
ference on Field-Programmable Technology (FPT 2003), Tokyo,
Japan, December 2003.

[49] A. U. Khalid, Z. Zilic, and K. Radecka, “FPGA emulation of
quantum circuits,” in Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and
Processors (ICCD 04), pp. 310–315, San Jose, CA, USA, Oc-
tober 2004.

[50] M. Aminian, M. Saeedi, M. S. Zamani, and M. Sedighi,
“FPGA-based circuit model emulation of quantum algo-
rithms,” in Proceedings of the IEEE Computer Society Annual
Symposium on VLSI (ISVLSI ’08), pp. 399–404, Montpellier,
France, April 2008.

[51] Y. H. Lee, M. Khalil-Hani, and M. N. Marsono, “An FPGA-
based quantum computing emulation framework based on
serial-parallel architecture,” International Journal of Recon-
figurable Computing, vol. 2016, Article ID 5718124, 18 pages,
2016.

[52] A. Silva and O. G. Zabaleta, “FPGA quantum computing
emulator using high level design tools,” in Proceedings of the
Eight Argentine Symposium and Conference on Embedded
Systems (CASE’17), pp. 1–6, Buenos Aires, Argentina, August
2017.

[53] J. Pilch and J. Długopolski, “An FPGA-based real quantum
computer emulator,” Journal of Computational Electronics,
pp. 1–14, 2018.

[54] R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, “Quantum
supremacy circuit simulation on Sunway TaihuLight,” 2018,
http://arxiv.org/abs/1804.04797.

14 International Journal of Reconfigurable Computing

https://directstream.com
https://quantumcomputingreport.com/scorecards/qubit-technology/
https://quantumcomputingreport.com/scorecards/qubit-technology/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=83-22045
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=83-22045
http://arxiv.org/abs/0208112
http://arxiv.org/abs/0407102
http://arxiv.org/abs/0407102
http://arxiv.org/abs/1905.00444v1
http://arxiv.org/abs/1804.04797

Research Article
Translating Timing into an Architecture: The Synergy of COTSon
and HLS (Domain Expertise—Designing a Computer
Architecture via HLS)

Roberto Giorgi ,1 Farnam Khalili ,1,2 and Marco Procaccini 1

1Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
2Department of Information Engineering, University of Florence, Florence, Italy

Correspondence should be addressed to Roberto Giorgi; giorgi@dii.unisi.it

Received 6 May 2019; Accepted 20 September 2019; Published 3 November 2019

Academic Editor: Wim Vanderbauwhede

Copyright © 2019 RobertoGiorgi et al.(is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Translating a system requirement into a low-level representation (e.g., register transfer level or RTL) is the typical goal of the
design of FPGA-based systems. However, the Design Space Exploration (DSE) needed to identify the final architecture may be
time consuming, even when using high-level synthesis (HLS) tools. In this article, we illustrate our hybrid methodology, which
uses a frontend for HLS so that the DSE is performedmore rapidly by using a higher level abstraction, but without losing accuracy,
thanks to the HP-Labs COTSon simulation infrastructure in combination with our DSE tools (MYDSE tools). In particular, this
proposed methodology proved useful to achieve an appropriate design of a whole system in a shorter time than trying to design
everything directly in HLS. Ourmotivating problem was to deploy a novel execution model called data-flow threads (DF-(reads)
running on yet-to-be-designed hardware. For that goal, directly using the HLS was too premature in the design cycle. (erefore, a
key point of our methodology consists in defining the first prototype in our simulation framework and gradually migrating the
design into the Xilinx HLS after validating the key performance metrics of our novel system in the simulator. To explain this
workflow, we first use a simple driving example consisting in the modelling of a two-way associative cache. (en, we explain how
we generalized this methodology and describe the types of results that we were able to analyze in the AXIOMproject, which helped
us reduce the development time from months/weeks to days/hours.

1. Introduction

In recent decades, applications are becoming more and
more sophisticated and that trend may continue in the
future [1–3]. To cope with the consequent system design
complexity and offer better performance, the design
community has moved towards design tools that are more
powerful. Today, many designs rely on FPGAs [4, 5] in
order to achieve higher throughput and better energy ef-
ficiency, since they offer spatial parallelism on the portion
of application characterized by data-flow concurrent exe-
cution. FPGAs are becoming more capable to integrate
quite large designs and can implement digital algorithms or
other architectures such as soft processors or specific ac-
celerators [5]. For the efficient use of FPGAs, it is essential
to have an appropriate toolchain.(e toolchain provides an

environment in which the user can define, optimize, and
modify the components of the design, by taking into ac-
count the power, performance, and cost requirements of a
particular system and eventually synthesize and configure
the FPGA.

(e conventional method to implement an application
code on FPGAs is to write the code in Hardware Description
Language (HDL) (e.g., VHDL or Verilog). Although
working with HDL languages still is the most reliable and
detailed way of designing the underlying hardware for ac-
celerators, their use requires advanced expertise in hardware
design as well as remarkable time. (e Design Space Ex-
ploration (DSE) and debugging time of FPGAs and the
bitstream generation may reach many hours or days even
with powerful workstations. As such, moving an already-
validated architecture to the FPGA’s tool flow may save

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 2624938, 18 pages
https://doi.org/10.1155/2019/2624938

mailto:giorgi@dii.unisi.it
https://orcid.org/0000-0003-0384-8229
https://orcid.org/0000-0003-2307-139X
https://orcid.org/0000-0002-9719-2672
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2624938

significant time and effort and, as a result, facilitates the
design development.

(is situation is exacerbated by the interaction with the
Operating Systems and by the presence of multicore.
(erefore, the use of full-system simulators in combination
with HLS tools permits a more structured design flow. In
such a case, a simulator can preliminarily validate an ar-
chitecture and the HLS-to-RTL time is repeated less times.

(ere are parameters whichmake simulators preferable to
reach a certain level of performance, scalability, and accuracy
as well as reproducibility and observability. Based on the
experience of previous projects such as TERAFLUX [6, 7],
ERA [8, 9], AXIOM [4, 10–13], and SARC [14, 15], we choose
to rely on the HP-Labs COTSon simulation infrastructure
[16].(e key feature of COTSon that is useful in HLS design is
its “functional-directed” approach, which separates the
functional simulation from the timing one. We can define
custom timing models for any component of an architecture
(e.g., FPGA, CPU, and caches) and validate them through the
functional execution; however, the actual architecture has to
be specified by a separate “timing model” (see Section 2 for
more details). (e latter is what can be migrated in a
straightforward way to HLS. Moreover, COTSon is a full-
system simulator; hence, it permits to study the OS impact on
the execution and choose the best OS configuration based on
the application requirements [17].(e OS modelling is
sometimes not available in other tools (reviewed in Section 2).

In this article, we illustrate the importance of the sim-
ulation in synergistic combination with the Xilinx HLS tool
[18], in order to permit a faster design environment, while
providing a full-system Design Space Exploration (DSE).

Additionally, thanks to our DSE toolset (MYDSE)
[17, 19], we facilitate the extraction of not only important
metrics such as the execution time but also more detailed
ones such as cache miss rates and bus traffics, which help
investigate the appropriate system design. In order to il-
lustrate our methodology, we start from a driving example
related to design a simple two-way associative cache system.
(emethodology is then generalized by considering the case
of the AXIOM project, in which this methodology was
actually used to design and implement a novel data-flow
architecture [20–22] through the development of our cus-
tom AXIOM board [11].

(e contributions of this work are as follows:

(i) Presenting our methodology for designing FPGA-
based architectures, which consists in the direct
mapping of COTSon “timing models” into HLS,
where such models are pre-verified via our MYDSE
tools: the DSE is performed before using the HLS
tools, thus saving much design time

(ii) Illustrating a simple driving example based on the
modelling and synthesis of a simple two-way set-
associative cache in order to grasp the details of our
methodology

(iii) Presenting the bigger picture of using our proposed
methodology to design a whole software/hardware
platform (called AXIOM)

(e rest of the article is organized as follows: in Section 2,
we analyze related work; in Section 3, we illustrate our
methodology and tools; in Section 4, we provide a simple
driving case study; in Section 5, we show the possibilities of
our tools in the more general context of the AXIOM project.

2. Related Work

Our design and evaluation methodology aims at integrating
simulation tools and HLS tools to ease the hardware ac-
celeration of applications, via custom programmable logic.
HLS tools improve design productivity as theymay provide a
high level of abstraction for developing high-performance
computing systems. Most typically, these tools allow users to
generate a RTL representation of a specific algorithm usually
written in C/C++ or SystemC. Several options and features
are included in these tools in order to provide an envi-
ronment with a set of directives and optimizations that help
the designer meet the overall requirements. In our case, we
realized that more design productivity could be achieved by
identifying in the early stages a candidate architecture
through the use of a simulator: however, the use of a generic
simulator may not help identify the architecture, since often
the simulation model is too distant from the actual archi-
tecture or is too much intertwined with the modelling tool
[23–26]. On the other hand, the COTSon simulator uses a
different approach, called “functional-directed” simulation, in
which the functional and timing models are neatly separated
and the first one drives the latter (It is important to note that
the “timing model” implicitly defines an architecture, which
is functionally equivalent to the “functional model,” but it is
a totally separated code with different simulation speeds
[16].). (e similarity of our “timing model” specification to
an actual architecture is an important feature and it is the
basis for our mapping to a HLS specification.

In our research, we used Xilinx Vivado HLS, but other
important HLS frameworks are available and are briefly
illustrated in the following; their main features are sum-
marized in Table 1. LegUp [27] supports C/C++, Pthreads,
and OpenMP as programming models for HLS [35] by
leveraging the LLVM compiler framework [36], and permits
parallel software threads to run onto parallel hardware units.
LegUp can generate customized heterogeneous architectures
based on the MIPS soft processor. Bambu [28] is a modular
open-source HLS tool, which aims at the design of complex
heterogeneous platforms with a focus on several trade-offs
(such as latency versus resource utilization) as well as
partitioning on either hardware or software. GAUT [29] is
devoted to real-time digital signal processing (DSP) appli-
cations. It uses SystemC for automatic generation of test-
benches for more convenient prototyping and design space
exploration. DWARV [30] supports a wide range of ap-
plications such as DSP, multimedia, and encryption. (e
compiler used in DWARV is the CoSy commercial in-
frastructure [37], which provides a robust and modular
foundation extensible to new optimization directives. Stratus
HLS of Cadence [31] is a powerful commercial tool
accepting C/C++ and SystemC and targeting a variety of
platforms, including FPGAs, ASICs, and SoCs. (anks to

2 International Journal of Reconfigurable Computing

low power optimization directives, the user can achieve a
consistent power reduction. It gives support for both control
flow and data-flow designs, and actively applies constraints
to trade-off speed, area, and power consumption. (e Intel
HLS compiler [32] accepts ANSI C/C++ and generates RTL
for Intel FPGAs, which is integrated into the Intel Quartus
Prime design software. Xilinx Vivado HLS tool targets Xilinx
FPGAs [18], which offers a subset of optimization tech-
niques, including loop unrolling, pipelining, data flow, data
packing, function inline, and bit-width reduction for im-
proving the performance and resource utilization.

Xilinx SDSoC is a comprehensive automated develop-
ment environment for accelerating embedded applications
[33]. (e tool can generate both RTL level and the software
running on SoC cores for the “bare-metal” libraries, Linux,
and FreeRTOS. Xilinx SDAccel [34] aims at accelerating
functionalities in data centers through FPGA resources. We
summarize the key features of the aforementioned HLS tools
in Table 1.

Although some of the HLS tools provide a general
software/hardware simulation framework, the possibility of
easily evaluating a complex architecture-oriented design
(e.g., computer organization: level and size of caches,
number of cores/nodes, and memory hierarchy) is still
missing. Moreover, before reaching a bug-free physical
design, which meets all the design specifications, the debug
and development of such designs by using the aforemen-
tioned HLS tools may require a significant time and effort
despite all benefits that HLS tools provide to the design
community. Consequently, powerful design frameworks
that simplify the verification of the design and provide an
easy design space exploration are welcome. In this respect,
many design frameworks have emerged to implement effi-
cient hardware in less time and effort. Authors in [38]
propose a framework relying on Vivado HLS to efficiently
map processing specifications expressed in PolyMageDSL to

FPGA. (eir framework supports optimizations for the
memory throughput and parallelization. ReHLS [39] is a
framework with automated source-to-source resource-
aware transformation leveraging Vivado HLS tool. (eir
framework improves the resource utilization and through-
put by identifying the program inherent regularities that are
invisible to the HLS tool. FROST [40] is a framework that
generates an optimized design for the HLS tool. (is
framework is mainly appropriate for applications based on
streaming data-flow architectures such as image-processing
kernels.

However, whereas these tools focus on optimizing the
whole application performance, we are proposing instead an
architecture-oriented approach, where the designer can
manipulate and explore the architecture itself, before passing
it to the HLS toolchain. By using our proposed framework
(see Section 4 for more details), we can validate the design in
terms of the functional and timing models, and then define a
specific architecture, while constantly monitoring the se-
lected key performance metrics. (e architecture model is
specified in C/C++ and, thanks to the decoupling from the
simulation details and functional model, it can be easily
migrated into the HLS description. (is is illustrated in
Sections 4 and 5. In particular, we leverage the Vivado HLS
tool and on top of it, we build our design space exploration
tools relying on COTSon simulator, which is one of the key
components of our framework. In the following, we high-
light relevant features and compare several simulators
(Table 2), and we contrast them with our chosen simulator
(i.e., COTSon).

SlackSim [23] is a parallel simulator to model single-core
processors. SimpleScalar [24] is a sequential simulator,
which supports single-core architectures at the user level.
GEMS [25] is a virtual machine-based full-system multicore
simulator built on top of Intel’s Simics virtual machine.
GEMS relies on timing-first simulation approach, where its

Table 1: Key features of discussed HLS tools.

Tool Owner License Input Output Domain Testbench SW/
HW Simulation Floating

point
Fixed
point

LegUp [27] LegUp
computing Commercial C, C++ Verilog All Yes Yes HW Yes No

Bambu [28] Politecnico
di Milano Academic C VHDL, Verilog All Yes Yes SW, HW Yes No

GAUT [29] U. Bretagne
sud Academic C, C++ VHDL, SystemC DSP Yes No HW No Yes

DWARV
[30] TU delft Academic C VHDL All Yes Yes HW Yes Yes

Stratus HLS
[31] Cadence Commercial C, C++,

SystemC C, C++, SystemC All Yes Yes SW, HW Yes Yes

Intel HLS
compiler [32] Intel Commercial C, C++, Verilog All No No SW, HW Yes Yes

Vivado HLS
[18] Xilinx Commercial

C, C++,
OpenCL,
SystemC

VHDL, Verilog,
SystemC All Yes No SW, HW Yes Yes

SDSoC [33] Xilinx Commercial C, C++ VHDL, Verilog All No Yes SW, HW Yes Yes

SDAccel [34] Xilinx Commercial C, C++,
OpenCL

VHDL, Verilog,
SystemVerilog All Yes Yes SW, HW Yes Yes

For the nonobvious columns, Testbench means the capability of automatic testbench generation. SW/HW means the support for the software/hardware co-
design environment. Floating Point and Fixed Point are the supported data types for the arithmetic operations.

International Journal of Reconfigurable Computing 3

timing model drives one single instruction at a time. Even
though GEMS provides a complete simulation environment,
we found that COTSon simulator provides better perfor-
mance as we increase the number of modelled cores and
nodes. MPTLsim [26] is a full-system x86-64 multicore
cycle-accurate simulator. In terms of simulation rate,
MPTLsim is significantly faster than GEMS. MPTLsim takes
advantage of a real-time hypervisor scheduling technique
[42] to build hardware abstractions and fast-forward exe-
cution. However, during the execution of hypervisor, the
simulator components, such as memory, instructions, or I/
O, are opaque to the user (no statistics is available). On the
contrary, e.g., COTSon provides an easily configurable and
extensible environment to the users [43] with full detailed
statistics. Graphite [41] is an open-source distributed parallel
simulator leveraged in the PIN package [44], with the trace-
driven functionalities. COTSon permits full-system simu-
lation from multicore to multinode and the capability of
network simulation, which makes COTSon a complete
simulation environment. Both COTSon and Graphite per-
mit large core numbers (e.g., 1000 cores) with reasonable
speed, but COTSon provides also the modelling of pe-
ripherals such as disk and Ethernet card. Compared to
COTSon, the above simulators do not express a timing
model in a way that can be easily ported to HLS: COTSon is
based on the “functional-directed” simulation [16], which
means that the functional part drives the timing part and the
two parts are completely separated, both in the coding and
during the simulation. (e functional model is very fast but
does not include any architectural detail, while the timing
model is an architecturally complete description of the
system (and, as such, includes also the actual functional
behaviour, of course). In this way, once the timing model is
defined and the desired level of the key performance metric
(e.g., power or performance) has been reached, the design
can be easily transported to anHLS description, as illustrated
in the next sections.

3. Methodology

In this section, we present our methodology (Figure 1) for
developing hardware components for a reconfigurable
platform, as developed in the context of the AXIOM project.

First, we define the functional and the timing model of a
desired architectural component (e.g., a cache system, as
described in Section 4). Such models are described by using
C/C++ (two orange blocks in the top left part of Figure 1).

(ese models are then embedded in the COTSon simulator,
which is managed in turn by the MYDSE tools in order to
perform the design space exploration [16, 17, 19]. (e latter
is a collection of different tools, which provide a fast and
convenient environment to simulate, debug, optimize, and
analyze the functional and timing models of a specific ar-
chitecture and to select the candidate design to be migrated
to the HLS (top part of Figure 1).

Afterwards, we manually migrate a validated architec-
ture specification from COTSon to the Vivado HLS tool
(bottom part of Figure 1), where the user can apply the
specific directives defined in the timing model of COTSon
into the Vivado HLS. (is is possible because of the close
syntax of the architecture specification in COTSon and
Vivado HLS.

Our framework has the purpose of reducing the total
DSE time to define an architecture (as input to Vivado HLS
itself). We do not aim to define a precise RTL, but simply to
select an architecture suitable as input to Vivado HLS (see
Figure 2).

Finally, we pass the generated bitstream by Vivado to the
XGENIMAGE, which is a tool that assembles all needed
software, including drivers, applications, libraries, and
packages, in order to generate the operating system full
image to be booted on the AXIOM board. In Figure 1, we
highlight in green the existing (untouched) tools and in blue
the research tools that we developed from scratch or that we
modified (like COTSon). In our case, part of the process
involves the design of the FPGA board (the AXIOM board).
An important capability of the board is also to provide fast
and inexpensive clusterization. (e simulator allowed us to
model exactly this situation, in which the threads are dis-
tributed across several boards, through a specific execution
model (called DF-(reads). To that extent, the AXIOM
board [11] has been designed to include a soft-IP for the
routing of data (via RDMA custommessages) and the FPGA
transceivers are directly connected to USB-C receptacles, so
that four channels at about 18Gbps are available for simple
and inexpensive connection of up to 255 boards, without the
need of an external switch [12].

3.1. DSE Toolset and COTSon Simulator. Based on our ex-
perience of the AXIOM project [4, 12, 13], the main mo-
tivation behind the choice of the COTSon simulation
framework resides in the “functional-directed” approach
[16]. COTSon also permits to model a complete system like a

Table 2: Interesting features of simulators for high-performance computing architectures. For the nonobvious columns, Parallel/Sequential
means the simulator core can be executed either in parallel or sequential by the host processor. Full System means taking into account all
events, including the OS.

Simulator Parallel/sequential Single-core/multicore Full system Simulation methodology
COTSon [16] Parallel Multicore Yes Decoupled-functional first
GEMS [25] Sequential Multicore Yes Decoupled- timing first
Graphite [41] Parallel Multicore No Not decoupled- trace-driven
SimpleScalar [24] Sequential Single-core No Not decoupled- execution driven
MPTLsim [26] Sequential Multicore No Not decoupled- timing first
SlackSim [23] Parallel Single-core No Not decoupled- timing first

4 International Journal of Reconfigurable Computing

Timing
behaviour

(C)

Functional
behaviour

(C++) Apps +
inputs

+
COTSon

+
MYDSE

GTCOLLECT
+

GTGRAPH
Measurements

DB

KPIs
met

?

No

Yes

Timing
behaviour

(C for HLS)
Vivado HLS XGENIMAGE

Apps, inputs
drivers

libraries
packages

SD-IMAGE

Actual hardware/so�ware prototyping

Simulator-based design feedback loop (rapid prototyping)

USB-C
cable

Existing
drivers

libraries
packages

Research models

(Our) research tools

Existing tools

AXIOM board

Figure 1: Design and test methodology of the AXIOM involved a mix of simulation (via the COTSon simulator and other custom tools) and
FPGA prototyping (via our custom AXIOM board and hardware synthesis tools (like Vivado HLS)) [11].

Application
specification in

C/C++/SystemC

HLS classical workflow

∗Same tool-chain

Optimization
directives

User
constraints,

library,

Formal
model

Allocation
Scheduling

Binding

RTL generation

GTCOLLECT
GTGRAPH

COTSon

MYDSE

Proposed workflow

MYINSTALL

DSE cycle
in minutes!

DSE cycle
in hours!

Application
specification in

C/C++/SystemC

∗

VHDL/verilog

Optimization
directives

User
constraint,

library,

Formal
model

GCC/G++
compiler

Allocation
Scheduling

Binding
RTL generation

Architecture
description in C/C++

VHDL/verilog
∗

GCC/G++
compiler

Figure 2: Di�erences between classical and proposed architecture modelling frameworks. Work�ows to generate VHDL/Verilog hardware
description language from the application speci�cation written in C/C++. On the left, a typical work�ow of existing HLS tools. On the right,
we leverage the HLS tool, and on top of it, we build our framework to simulate and validate the design speci�cation.

International Journal of Recon�gurable Computing 5

cyber-physical system (CPS), i.e., including the possibility of
running a real software performing Input/Output (I/O) and
an off-the-shelf Linux distribution (or other operating
systems). Since the performance of a CPS is affected also by
the Operating System (OS) and libraries [17], it is important
to model not only the memory hierarchy and cores but also
all the devices of the system: this is possible in the COTSon
framework.

In Section 5.1, we show that the OS influence can be
detected earlier in the DSE by using our methodology.
Moreover, COTSon permits building a complete distributed
system with multi-cores and multiple nodes, where we can
observe and analyze any aspect of the application and, e.g.,
the OS activity. In order to guarantee a proper scientific
methodology for studying the experimental results that are
coming from the framework, we designed a DSE toolset
(called “MYDSE”) [19], through which it is possible to easily
set up a distributed simulation, as well as automatically
extract, calculate the appropriate averages, and examine the
key metrics. MYDSE addresses the designer’s needs mostly
on the first part of the workflow represented on the top of
Figure 1.

Moreover, MYDSE represents a higher abstraction level
in the design (Figure 3), in which existing architectural
blocks (e.g., caches) can be combined and parameterized for
a preliminary design exploration.(eMYDSE phase permits
us to answer questions such as the following: “How large
should be the cache in the target platform?” “How many
cores I need in my design?” “What would be the overhead of
distributing the computation across several FPGAs?”

3.2. COTSon Framework. In this subsection, we briefly
summarize the features of the essential component of our
toolchain–the COTSon–for the sake of a more self-con-
tained illustration of our framework. More details can be
found in [16, 17, 19, 43].

(e COTSon framework has been initially developed by
HP-Labs and its simulation core is based on the AMD
SimNow virtualization tool, which is an x86_64 virtual
machine provided by AMD to test and develop their pro-
cessors and platforms [16]. COTSon relies on the so-called
functional-directed simulation approach, where the func-
tional execution (top part of Figure 4) runs in the SimNow
Virtual Machine (VM) and the detailed timing (bottom part
of Figure 4) is totally decoupled and reconstructed dy-
namically based on the events coming from the functional
execution.

COTSon can also model a distributed machine com-
posed of several nodes: each SimNowVMmodels a complete
multicore node with all its peripherals, and an additional
component (called “Mediator”), which models a network
switch. (e virtual machines can run in parallel, thus
speeding up a simulation consisting of several nodes.
Moreover, we can use different available simulation accel-
eration techniques, such as dynamic sampling or SMARTS
[46], and perform other accounting activities, such as
tracing, profiling, and (raw) statistic collection. (e in-
struction stream coming out from each SimNow functional

core is interleaved for a correct time ordering. (e COTSon
control interface extracts the instruction stream, passing it to
the timing simulation (Figure 4).

In the “Timing Simulation” portion of the COTSon (see
the bottom part of Figure 4), we can model any architectural
components (i.e., CPU, L1 cache, network switch, acceler-
ator, etc.) with a few lines of C++ codes. (e architecture of
the modelled system is customizable by setting all the rel-
evant information in a configuration file (written in the Lua
scripting language) [47] as illustrated in the bottom part of
Figure 3). Other aspects of the simulation can be custom-
izable as well in the configuration file: e.g., the sampling
method, how to log statistics, and which kind of Operating
System (OS) image to use.

3.3. DSE Toolset. In this subsection, we describe the tools
that we have designed for the DSE. A detailed overview of
these tools has been introduced in a previous work [19].
Here, we recall the main features.

Design Space Exploration (DSE) and its automation are a
significant part of modern performance evaluation and
estimationmethodologies to find an optimal solution among
the many design options, while respecting several con-
straints on the system (e.g., a certain level of performance
and energy efficiency).

In order to facilitate and speed up the DSE, we developed
a set of tools (called “MYDSE”), through which it is possible
to easily configure the relevant aspects of our simulation
framework and automate the routine work. (anks to
MYINSTALL, a tool included in theMYDSE, the installation
and validation phase of the overall environment (which was
previously taking a lot of human effort and many hours of
work) now takes less than 10 minutes, minimizing the
human interaction and giving us the possibility of setting up
several host machines in a fast and easy way. At the end of
the installation phase, a set of regression tests is performed to
verify if the software is correctly patched, compiled, and
installed (see Figure 5–left). (is permits a fast deployment
of different machines with possibly different characteristics
and, at the same time, has a monitoring of the actual re-
sources that are available for an optimal utilization of them.

Another critical aspect of the simulation is the automatic
management of experiments, mostly in the case when a large
number of design points need to be explored: this is
managed by the MYDSE tool. Using a small configuration
file, we can define the Design Space of an experiment by
using a simple scripting syntax (In our case, we refer to
“bash.” “bash” is a popular scripting language for Linux.):
<key>�<value>. For example, it is possible to define not
only a modelled architecture (e.g., number and types of
cores, cache parameters, and multiple levels of caches), the
Operating System image, and other parameters of the
COTSon simulator, but also other higher level parameters
related to the applications, their inputs, and the standard
libraries to be used. (e MYDSE configuration file also
permits listing a set of values for each parameter so that the
design points are automatically generated. Once the design
points are generated, the tools manage the execution of the

6 International Journal of Reconfigurable Computing

experiments by scheduling and distributing the simulations
on, e.g., a cluster of simulation hosts, by collecting the results
of each simulation and inserting them in a database, where
o�-line data mining can be performed afterwards. Moreover,
the tools constantly monitor the simulations: if one of them
is failing, then it is automatically retried (thresholds are
applied to limit the re-trials).

A large number of output statistics are produced during
the simulations; thus, a database is necessary to store such
data. Statistical processing can also be selected to give a
quanti�cation of the goodness of the collected numbers (e.g.,
the coe�cient of variation and the presence of outliers). Other
tools in Figure 5 (GENIMAGE, ADD-IMAGE, GTCOL-
LECT, and GTGRAPH) are described in more detail in [19].

COTSon
control

interface

Timing simulation

SimNow instances
(Node Functional-Mode)

core
1

core
2

core
N

…

SimNow instances
(Node Functional-Mode)

core
1

core
2

core
N

…

SimNow instances
(Node functional-mode)

Core
1

Core
2

Core
N

…

Device

Disc, NIC, …

Mediator instances
(Inter-node network/switch model)

Network,
functional

models,
congestion, …

Timing interface

Sampling driver

Timing
Model

1,2, … ,n
Timing
Model

1,2, … ,n
Timing
model

1, 2, …, n

CPU,
memory,

interconnects,
timing-models

Trace collection,
profiling,
hooks, …

Sampling,
interleaving, …

Time synchronization, simulation
parallelization, network

instrumentation, network statistics, …

Functional simulation

Instruction stream

Instruction stream

Instru
ction stre

am

Figure 4: �e COTSon simulation framework architecture [19, 45].

while i < cpus() do
cpu:timer{ name=‘cpu’..i, type=“timer_simple”}
l2=Cache{ name=“l2cache”, size = “512KB”, line_size=64, latency=5, next=bus, write_policy = “WB”}
ic=Cache{ name=“icache”, size=“32kB”, line_size=64, latency=2, next=l2, write_policy=“WT”}
dc=Cache{name = “l1cache”, size=32kB”, line_size=64, latency =3, next=l2, write_policy=“WT”}
……
i=i+1;

end

MYDSE mapping (automatic)

listarch = “mem-bus.l2-ic+l2-dc+ic-cpu+dc-cpu”
listcpu =“timer_simple”
listl2c =“512+64+5”
listic =“32+64+2”
listdc =“32+64+3”

Cache size Line_size

COTSon mapping (manual)

HLS

Level-2
architecture
description

Level-1
architecture
description

Level-0
architecture
description

MYDSE

COTSon

Vivado HLS

Latency

Figure 3: �e relation between the higher level MYDSE description, the COTSon con�guration �le, and the �nal HLS translation: At the
higher level, we specify the parameters in a compact way (level 2 architecture description), and we can indicate several instances of such
parameters so that MYDSE can generate the design space points to be explored. In the COTSon con�guration (level 1), the MYDSE points
will be automatically mapped to the parameter of the corresponding architectural element (bottom part of the �gure: the “next” �eld
speci�es the position in the architecture tree, WB means write-back, and WT is the write-through policy). Finally, the architecture de-
scription is mapped manually from COTSon description to HLS (level 0).

International Journal of Recon�gurable Computing 7

3.4. Mapping an Architecture to HLS. High-level synthesis
(HLS) aims at enhancing design productivity via facili-
tating the translation from the algorithmic level to RTL
(register transfer level) [48, 49]. In the current state of the
art, given an application written in a language like C/C++
or SystemC, an HLS tool particularly performs a set of
successive tasks to generate the corresponding register
transfer level (RTL, e.g., VHDL or Verilog) description
suitable for a reconfigurable platform, such as an FPGA
[49] (Figure 2–left). (is workflow typically involves the
following steps:

(i) Compiling the C/C++/SystemC code to formal
models, which are intermediate representa-
tions based on control flow graph and data-flow
graph.

(ii) Scheduling each operation in the generated graph to
the appropriate clock cycles. Operations without
data dependencies could be performed in parallel, if
there are enough hardware resources during the
desired cycle.

(iii) Allocating available resources (LUTs, BRAMS, FFs,
DSPs, and so on) in regard to the design constraints.
For instance to enhance the parallelism, different
resources could be statistically allocated at the same
cycle without any resource contention.

(iv) Binding each operation to the corresponding
functional units, and binding the variables and

constants to the available storage units as well as
data paths to data buses.

(v) Generating the RTL (i.e., VHDL or Verilog).

All these operations continue to be performed in our
proposed framework, but the designer would like to avoid
excessive iterations through them, since they may require
many hours of computing processing or even more,
depending on the complexity of the design, even on pow-
erful workstations and with not-so-big designs. However,
COTSon and MYDSE tools (illustrated above) act like a
“front-end” to the HLS tool, as outlined in Figure 2. We use
HLS also for defining a specific architecture to accelerate the
application. Our tools allow the designer to explore possible
options for the architecture, without going to the synthesis
step: only when the simulation phase has successfully se-
lected an architecture (output of the blue block in Figure 2),
the model will be manually translated by the programmer as
an input to the HLS tools. Doing this step automatically is
out of the scope of this work.

A comparison of the total time of the DSE loops between
our framework (Figure 2-right) and HLS (Figure 2-left) is
reported here for different benchmarks (Table 3). For ex-
ample, a blocked matrix multiplication benchmark (matrix
size 864 and block size 8) and a Fibonacci benchmark (order
of up to 35) are executed based on our DF-(reads execution
model (data-flow model). As a result, thanks to our frame-
work, we were able to reduce the required time for validating
and developing the architecture compared with solely HLS

MYINSTALL MYDSE
GTCOLLECT

GTGRAPH

Environment setup Experiment phase Result and analysis

COTSon

ADD-IMAGE

Packages

GEN-IMAGE

Simulation.1
timer.log

Simulation.N
timer.log

Simulation.1
out

Simulation.N
out

Raw metrics
results

Execution
loop

check

Statistics

Tabular
representation

Graphical
representation

Automated
regression

tests

Ok/fail
report

Validation

Figure 5: Tool flow of the Design Space Exploration tool. (e MYINSTALL tool prepares the whole environment and performs automated
regression tests in the end. (e MYDSE tool takes care of the experiment loop and the reordering of several output files generated by each
simulation. Finally, the GTCOLLECTS and GTGRAPH tools collect the results, perform validation and statistical operations on the results,
and plot the data in a tabular or graphical format [19].

8 International Journal of Reconfigurable Computing

workflow, through which applying any changes in the source
codes may require many hours for the synthesis process.

4. Case Study

In this section, first, we explain our workflow by using a
simple and well-known driving example, i.e., the design of a
two-way set-associative cache in a reconfigurable hardware
platform through our methodology. Afterwards, we illus-
trate the more powerful capabilities of our framework for a
more complex example, which is the design of the AXIOM
hardware/software platform. In both cases, first, we design
the architecture in the COTSon simulator and then we test
its correct functioning and achieve the desired design goals.
Finally, we migrate the timing description of the desired
architecture into the Xilinx HLS tools.

4.1. From COTSon to Vivado HLS–A Simple Example. In
COTSon, the architecture is defined by detailing its “timing
model.” A timing model is a formal specification that defines
the custom behaviour of a specific architectural or micro-
architectural component; in other terms, the timing model
defines the architecture itself [16, 19].(e timingmodel in the
COTSon simulator is specified by using C/C++. (e designer
defines the storage by using C/C++ variables (more often
structured variables). (e timing model behaviour is specified
by explicating into C/C++ statements the steps performed by
the control part and associating them with the estimated la-
tency, which can be defined through our DSE configuration
files (see Figure 3) easily. After defining the model, we can
simulate and measure the performance of it. (is is illustrated
in Figure 6 and discussed in the following paragraphs.

Let us assume here that we wish to design a simple two-
way set-associative cache: we show how it is possible to
define the timing model of a simple implementation of it in
COTSon and then how we can map it in HLS. We start from
a conceptual description of such cache, as shown in Figure 6.
In particular, for each way of the cache, we need to store the
“line” of the cache, i.e., the following information:

(1) Valid bit or V-bit (1 bit): used to check the validity of
the indexed data

(2) Modify bit or M-bit (1 bit): used to track if data has
been modified.

(3) LRU bits or U-bits (e.g., 1 bit in this case): used to
identify the Least Recently Used data between the
two cache ways.

(4) Tag (e.g., 25 bits): used to validate the selected data of
the cache.

(5) Data (e.g., 512 bits, 64 bytes, or 16 words): contains
the (useful) data.

(e data structure to store this information in COTSon
is given by the “Line” structure, which is shown in Figure 7
(left side).

When we want to read or write data, which are stored in
a byte address (X in Figure 6), we check if the data are
already presented into the cache. (e cache controller im-
plements the algorithm to find the data in the cache. Al-
though not visible in the left part of Figure 6, there is a
control part also for identifying the LRU block. We can
implement this control in COTSon by using the two
functions (shown in the right part): one named “find”
(Figure 7), which is a simple linear search, and the other
named “find_lru” (Figure 8).

From the timing model of the implemented cache in
COTSon, we migrate the design into the Xilinx HLS tools.
One minor restriction in Vivado HLS is to use fixed size
arrays instead of dynamic data structures because of the
direct transformation of the structures to the available
hardware resources.

(e advantage of using our hybrid methodology is that
the DSE (see Figure 2 and Table 3) of the architecture of this
small cache takes a few seconds in the COTSon, while it takes
approximately four hours on a powerful workstation to
synthesize and perform the DSE with the HLS version of the
same architecture (right side of Figures 7 and 8).

In the next section, we will illustrate how, thanks to our
methodology, we were able to reduce significantly the DSE
cycles and development time of a relatively large project like
the AXIOM project, and produce reliable specification to be
implemented on the AXIOM board.

4.2.COTSonConfigurationandTiming. Onemore feature of
our environment, based on COTSon+MYDSE, is the ca-
pability of easily integrating the modelled components (i.e.,
the simple two-way set-associative cache of the previous
subsection). As we can see in Figure 9, we can build the
overall architecture by specifying how to integrate the
component in a higher level configuration file (“Level 2” in
Figure 9, the “MYDSE” configuration file).

In particular, we define the following simple syntax: the
character “− ” is the link between two architectural COTSon
blocks and the “+” character separates different links be-
tween such blocks. (e architectural blocks are implicitly
defined, since they appear in the link specification. (e “.”
character serves to replicate a set of architectural blocks,
which follow the “.” form times, where, by default, “m” is the
number of cores. (is is shown in the “listarch” variable of

Table 3: Comparison of different total DSE time of the classical design workflow for FPGAs (Figure 2-left) and our proposed methodology
(Figure 2-right).

Application HLS + Synthesis (hours) (Figure 2-left) Our framework (seconds) (Figure 2-right)
2-way cache 3 : 50 5
Blocked matrix multiplication (DF-(reads, matrix
size� 864, block size� 8, integer) 4 : 25 8

Fibonacci (DF-(reads, N� 35) 1 : 40 8

International Journal of Reconfigurable Computing 9

// basic cache -find implementation
cacheLine∗ cache_find(uint64_t address) {

cacheLine∗ xs=NULL;
uint64_t tag = cache.group_id(address); // get the tag
xs= cache[address]; // get the set (xs)
for(int i=0; i< i<num_ways; i++){

if(xs->tag ==tag && xs->v_bit == 1) {
t_hit = cache.latency_hit(); //COTSon only
return xs[i];

}
}
t_miss = cache.latency_miss(); //COTSon only
return NULL; //null pointer (i.e., miss)

}

typedef struct {
uint64_t tag;
bool v_bit, m_bit;
uint64_t u_bits;

} cacheLine;

COTSon cache_line.h

COTSon cache_impl.cpp (“find” function)

Vivado HLS cache_line.h

typedef struct {
uint64 tag;
uint1 v_bit, m_bit;
uint64 u_bits;

}cacheLine;

// basic cache-find implementation
cacheLine∗ cache_find (uint64 address) {

cacheLine∗ xs=NULL;
// get the tag
uint64 tag=cache.group_id(address);

// get the set (xs)
xs = cache.main(address);
for (int i=0; i<num_ways; i++) {

if (xs[i]->tag == tag && xs[i]->v_bit == 1) {
return xs[i];

}
}
return NULL; //null pointer (i.e., miss)

}

Vivado HLS cache_impl.cpp

From COTSon to
Vivado HLS

Figure 7: Example of the timing model of the cache “find” function, which is translated from the COTSon to the Vivado HLS. (e
implementation of this function for both the COTSon (left) and Vivado HLS (right) environments is shown in the bottom part of the figure.

XT XS

X = address

31 7 6 5 2 1 0

25 1 XO
4

V0 M0 U0 TAG0 DATA0 V1M1 U1 TAG1 DATA1

WAY-0 WAY-1

H

Decoded multiplexer
(2 to 1)

25

Multiplexer
(16 to 1)

512

D
32

512

4

25

512

= =

M = Modify bit
U = LRU bits ([log2 (A)])

From cache
architecture
to COTSon

timing model

// basic cache-find implementation
cacheLine∗ cache_find(uint64_t address) {

cacheLine∗ xs=NULL;
uint64_t tag = cache.group_id(address); // get the tag
xs= cache[address]; // get the set (xs)
for (int i=0; i< i<num_ways; i++) {

if (xs->tag ==tag && xs->v_bit== 1) {
t_hit= cache.latency_hit(); //COTSon only
return xs[i];

}
}
t_miss= cache.latency_miss(); //COTSon only
return NULL; //null pointer (i.e., miss)

}

// implementation of the least recently used policy
cacheLine∗ cache_find_lru(uint64_t address) {

cacheLine∗ xs= cache[address];
cacheLine∗ last_lru = xs[0];
int i=0;
for (++i; i<num_ways; ++i){

if (xs[i]->u_bits< last_lru->u_bits) last_lru = xs[i];
}
t_lru= cache.latency_lru(); //COTSon only
return last_lru;

}

typedefstruct {
uint64_t tag;
bool v_bit,m_bit;
uint64_t u_bits;

} cacheLine;

COTSon cache_line.h

COTSon cache_impl.cpp

FSM
cache

controller

Figure 6: Example of the logic scheme of a two-way set-associative cache. Given the byte address X on 32 bits, in this example, the cache
indexes four 64-byte blocks (2 words in 2 sets). (is implies that the last 6 bits are needed to select a byte inside the block: the first 25 bits of
the address (XT) are used for tag comparison and the remaining 1 bit (XS) is used for cache set indexing. (e cache hit (signal H) is set if the
tag of the X is present in the cache at the specified index and if the valid bit is equal to one.

10 International Journal of Reconfigurable Computing

Figure 9: i.e., the part “l2-ic + l2-dc + ic-cpu + dc-cpu” will be
instantiated “m” times.

As depicted in Figure 3, at the higher level, we specify the
parameters in an even compact way, and we can indicate
several instances of such parameters so that MYDSE can
generate the design space points to be explored. In the
COTSon con�guration, the MYDSE points will be assigned
to the parameter of the corresponding architectural element.
Moreover, we can specify the latencies of an architectural
block, which are used by its timing model for the execution
time estimation.

5. Generalization to the AXIOM Project
and Evaluation

�e aim of the AXIOM project was to de�ne a software/
hardware architecture con�guration, to build scalable em-
bedded systems, which could allow a distributed compu-
tation across several boards by using a transparent scalable
method such as the DF-�reads [20–22].

In order to achieve this goal, we rely on RDMA capa-
bilities and a full operating system to interact with the OS
scheduler, memory management, and other system re-
sources. Following our methodology, we included the e�ects
of all these features, thanks to the COTSon+MYDSE full-
system simulation framework. We will present in the next
subsection the results that we were able to obtain through
this preliminary DSE phase reasonably quickly.

After the desired software and hardware architecture was
selected in the simulation framework, we started the mi-
gration to the physical hardware: we had clear evidence that
we needed at least the following features:

(i) Possibility to exchange rapidly data frames via
RDMA across several boards: this could be imple-
mented in hardware, thanks to the FPGA high-speed
transceivers;

(ii) Possibility to accelerate portions of the application
on the programmable logic (PL), not only on one
board but also on multiple FPGA boards: this could

// implementation of the least recently used policy
cacheLine∗ cache_find_lru (uint64_taddress) {

cacheLine∗ xs= cache[address];
cacheLine∗ last_lru = xs[0]; //get LRU-line
int i=0;
for (++i; i<num_ways; ++i){

if (xs[i]->u_bits< last_lru->u_bits) last_lru = xs[i];
}
t_lru = cache.latency_lru(); //COTSon only
return last_lru;

}

COTSon cache_impl.cpp (“LRU” function) Vivado HLS cache_impl.cpp

From COTSon to Vivado HLS

// implementation of the least recently used policy
cacheLine∗ cache_find_lru(uint64 address) {

cacheLine∗ xs = cache.main(address);
cacheLine∗ last_lru = xs[0]; //get LRU-line
int i=0;
for (++i; i < num_ways; i++) {

if (xs[i]->u_bits< last_lru->u_bits) last_lru =xs[i];
}
return last_lru;

}

Figure 8: Example of translation of the timing model of the LRU (least recently used) function from the COTSon (left side) to the Vivado
HLS (right side).

listarch=“mem-bus.l2-ic+l2-dc+ic-cpu+dc-cpu”

Becomes…

dc

cpu

Dot syntax (“.”) implies “m”
replications of the next blocks

ic

l2

bus

mem

MYDSE
architecture
description

level 2

…

m times

cpu0 cpu1 cpum–1

Figure 9: Level 2 architecture description of the cache model in COTSon by using the MYDSE toolset. In this design, the CPU is directly
connected to both an Instruction Cache (“ic”) and a Data Cache (“dc”). �e “ic” and “dc” caches are then connected to another level of
caching, the L2 cache (“l2”), which is connected to the main memory (“mem”) through the “bus.”

International Journal of Recon�gurable Computing 11

be implemented by providing appropriate network
interface IPs in the FPGA.

In this way, we preselected the basic features of the
AXIOM board (Figure 10-left) through the COTSon
framework and the MYDSE toolset. (en, once the DSE was
completed, we migrated the final architecture specification
with the Vivado HLS tool into the AXIOM distributed
environment (Figure 10-right).

(e DF-(reads execution model is a promising
approach for achieving the full parallelism offered by
multi-core and multi-node systems, by introducing a
new execution model, which internally represents an
application as a direct graph named data-flow graph.
Each node of the graph is an execution block of the
application and a block can execute only when its inputs
are available [20].

5.1. Designing the AXIOM Software/Hardware Platform.
During the AXIOM project, we analyzed two main real-
world applications: Smart Video Surveillance (SVS) and
Smart Home Living (SHL) [50]. (ese applications are
very computationally demanding, since they require an-
alyzing a huge number of scenes coming from multiple
cameras located, e.g., at airports, home, hotels, or shop-
ping malls.

In these scenarios, we figured out that one of the
computationally intensive portions of those applications
relies on the execution of the matrix multiplication kernel.
For these reasons, the experiment results presented in this
section are based on the execution of the block matrix
multiplication benchmark (BMM) using the DF-(reads
execution model. (e BMM algorithm is based on the
classical three nested loops, where a matrix is partitioned
into multiple submatrices, or blocks, according to the block
size.

As we generalized the methodology described in the
previous section to the AXIOMproject [10–12], we were able
to experiment on the simulator our DF-(reads execution
model [15, 20, 21] before spending time-consuming de-
velopment on the reconfigurable hardware. We show here
some evaluations that are possible within the MYDSE and
COTSon framework once applied to the test case of the DF-
(reads modelling. In such a test case, we aim to understand
the impact of architectural and operating system choices on
the execution time of our novel data-flow execution model
[21].

(anks to theMYDSE, we were also able to easily explore
different architecture parameters, e.g., for the L2 cache size
(from 2 to 1024 kB) and for the number of nodes/boards
(ranging from one to four). (us, in the case of deploying a
soft processor and its peripherals on the FPGA, the designer
can choose safely a well-optimized configuration for, e.g., the
L2 cache size.

Moreover, we choose different operating system (OS)
distributions to analyze the overhead produced by the OS in
a target architecture: four different Ubuntu Linux distri-
butions have been used: Karmic (or Ubuntu 9.10–label
“karmic64”), Maverick (or Ubuntu 10.10–label “tfxv4”),

Trusty (or Ubuntu 14.04–label “trusty-axmv3”), and Xenial
(or Ubuntu 16.04–label “xenv0”). (e different architecture
configurations used in the experimental campaign are
summarized in Table 4.

(e simulation framework permits exploring the exe-
cution of our benchmark easily, while we vary, e.g., the
number of nodes (1, 2, 4), the OS.(e input size of the shown
example is fixed (matrix size� 512 elements).

As can be seen in Figure 11, there is a large variation of
the kernel cycles between “xenv0” (Linux Ubuntu 16.04) and
the other three Linux distributions. (is indicated us to
focus attention on the precise configuration of many dae-
mons that run in the background and that may affect the
activity of the system. While doing tests directly on the
FPGA, it would not have been easy to understand that most
of the time taken by the execution was actually absorbed by
the OS activity: a designer could have taken it for granted or
he/she could have not even had the possibility of changing
the OS distribution for testing the differences, since the
whole FPGA workflow is typically oriented to a fixed de-
cision for the OS (e.g., Xilinx Petalinux). (e situation is
even worse for cache parameters or for the number of cores,
since the designer might be forced to choose a specific
configuration.

However, the important information for us was to
confirm the scaling of the DF-(reads model, while we
increase the number of nodes/boards. We can observe that
the number of cycles is decreasing almost linearly–except the
case of “xenv0,” which is decreasing sublinearly–when we
use two and four nodes compared to the case of a single
board/node (Figure 12). Moreover, we were able to un-
derstand the size of the cache that we should use in the
physical system in order to properly accommodate the
working set of our applications.

We further explored the reasons why we can obtain a
good scaling in the execution time with more nodes by
analyzing the behaviour of L2 cache miss rate (Figures 13
and 14).

Again, this type of measurement was conveniently
done in the simulator, while it is more difficult to perform
on the Xilinx Vivado HLS model, especially when it comes
to design a soft processor and choose the best configu-
ration (e.g., size of L2 cache, and OS). In particular, we
varied again the number of nodes (1, 2, and 4), the OS
distribution as before, and the cache size for L2 with larger
values (64 KiB, 256 KiB, and 1024 KiB, to allow a wider
range of exploration of the L2 cache). As we can see from
Figure 14, the L2 cache miss rate is decreasing for all OS
distributions while we vary the number of nodes, thus
confirming that this is one of the main factors of the
improvement of the execution time. Moreover, we can
analyze which OS distribution leads to best performance.
For example, the “xenv0” produces a huge amount of
kernel activity during the computation (Figure 11).
However, the combined effect of the kernel activity
(Figure 11) and the average data latency (Figure 15)–
considering L1, L2, and L3 caches–may affect the total
execution time (Figure 12) quite heavily. (anks to this
preliminary DSE, we found that the OS distribution with

12 International Journal of Reconfigurable Computing

the best trade-o� between memory accesses and kernel
utilization is the “trusty-axmv3.”

Figure 16 shows our evaluation setup of two AXIOM
boards interconnected via USB-C cables, without the need of
an external switch. By using synergistically our framework
and Vivado toolchain, we synthesized the DF-thread exe-
cution model on programmable logic (PL). Table 5 reports
resource utilization of the key components of the imple-
mented design on PL in order to perform BMM benchmark
across two AXIOM boards.

5.2. Validating the AXIOM Board against the COTSon
Simulator. An important step in the design is to make sure

that the design in the physical board is matching the system
that was modelled in the COTSon simulator. As an ex-
ample, we show in Figure 17 the execution time in the case
of the BMM and RADIX-SORT benchmarks, when run-
ning on the simulator and on the AXIOM board, while we
vary the input data size. �e timings are matching closely,
thus con�rming the validity of our approach. We scaled the
inputs in such a way that the number of operations doubles
from the left to right (input size). On the left (Figure 17), we
have the BMM benchmark, where the input size represents
the size of the square matrices, which are used in the
multiplication. On the right (Figure 17), we have the Radix-
Sort benchmark, where the input size represents the size of
the list to be sorted.

Table 4: COTSon architectural parameter.

Parameter Description

SoC 1 core connected by shared-bus, IO-bus, MC, high-
speed transceivers

Core 3GHz, in-order super-scalar

Branch predictor Two levels (history length� 14 bits, pattern history
Table� 16KiB, 8-cycle miss-prediction penalty)

L1 cache Private I-cache 32KiB, private D-cache 32KiB, 2
ways, 3-cycle latency

L2 cache Private 2, 8, 32, 64, 256, 1024KiB, 4 ways, 5-cycle
latency

L3 cache Shared 4MiB, 4 ways, 20-cycle latency
Coherence protocol MOESI
Main memory 1 GiB, 100-cycle latency
I-L1-TLB, d-L1-TLB 64 entries, direct access, 1-cycle latency
L2-TLB 512 entries, direct access, 1-cycle latency
Write/read queues 200 Bytes each, 1-cycle latency

PL

Core
0

Core
1

Core
m–1

Node1/ board1

. . .

PL

Core
0

Core
1

Core
m–1

Noden/boardn

. . .

PS

PS

AXIOM board

Interconnects

SimNow node1

Core
0

Core
1

Core
m–1. . .

COTSon mediator

DSE
architecture
translation

PL – COTSon timing model

PS - COTSon timing model

Core
0

Core
1

Core
m–1. . .

PL – COTSon timing model

PS - COTSon timing model

SimNow noden

AXIOM distributed systemAXIOM evaluation platform

Figure 10: From COTSon Distributed System de�nition to AXIOMDistributed System by using the DSE tools.�e processing system (PS),
the programmable logic (PL), and the interconnects of the AXIOM board are simulated and evaluated into the COTSon framework with the
de�nition of the respective timing models.

International Journal of Recon�gurable Computing 13

10

20

30

40

50

60

0

70

1 2 4
%

 o
f k

er
ne

l c
yc

le
s

Nodes

xenv0
karmic64

trusty-axmv3
tfxv4

Figure 11: Percentage of kernel cycles (over total number of cycles) in the COTSon framework when using the matrix multiplication benchmark
with 512 as the matrix size and 32KiB as the cache size. We varied the number of nodes of the distributed system and the Linux distribution
(“xenv0”�Ubuntu 16.04, “karmic64”�Ubuntu 9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). �is DSE test permitted to
detect a much larger kernel activity of the “xenv0” distribution compared to the other three Linux distributions in both single-node and multiple-
node con�gurations.

1000

2000

3000

4000

5000

6000

0

7000

1 2 4

To
ta

l c
yc

le
s ×

10
E0

6

Nodes

xenv0
karmic64

trusty-axmv3
tfxv4

Figure 12: Total number of cycles in the COTSon framework when using the matrix multiplication benchmark with 512 as the matrix size and
32KiB as the cache size. We varied the number of nodes of the distributed system and the Linux distribution (“xenv0”�Ubuntu 16.04,
“karmic64”�Ubuntu 9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). �e DSE allows us to determine that the four Linux
distributions permit to obtain a good scalability when we increase the number of nodes. However, the “xenv0” con�rms the worst performance
in terms of executed cycles due to the huge number of kernel cycles shown in Figure 11.

2
4
6
8

10
12
14
16

0

18

1 2
Nodes
64KiB 512KiB 1024KiB

4 1 2
Nodes

44 11 22
Nodes

44

D
at

a c
ac

he
 ac

ce
ss

 la
te

nc
y

xenv0
karmic64

trusty-axmv3
tfx4

Figure 13: Evaluation of the data access latency in the COTSon framework when using the matrix multiplication benchmark by varying
cache size, number of nodes of the distributed system, and di�erent Linux distribution (“xenv0”�Ubuntu 16.04, “karmic64”�Ubuntu 9.10,
“trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). �e DSE shows that the data-cache access latency is almost similar in each
Linux distribution, but it is lowering when we increase the number of nodes. �us, multiple-node con�guration can be more convenient in
the DF-�reads execution model.

14 International Journal of Recon�gurable Computing

5

10

15

20

0

25

1 2 4

A
ve

ra
ge

 d
at

a a
cc

es
s l

at
en

cy

Nodes

xenv0
karmic64

trusty-axmv3
tfxv4

Figure 15: Average data latency in the COTSon framework when using the matrix multiplication benchmark with 512 as the matrix size and
32KiB as the cache size. We varied the number of nodes of the distributed system and the Linux distribution (“xenv0”�Ubuntu 16.04,
“karmic64”�Ubuntu 9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). �e data access latency of “xenv0” is improved
when we have more nodes. �is improvement has less impact on total cycles (Figure 12) than the impact of kernel activity (Figure 11).

xenv0
karmic64

trusty-axmv3
tfx4

0.1

0.2

0.3

0.4

0.5

0

0.6

1 2 4 1 2 4 1 2 4

L2
 ca

ch
e m

iss
 ra

te

Nodes
64KiB 256KiB 1024KiB

Nodes Nodes

Figure 14: Evaluation of the L2-cache miss rate in the COTSon framework when using the matrix multiplication benchmark by varying
cache sizes, number of nodes of the distributed system, and di�erent Linux distribution (“xenv0”�Ubuntu 16.04, “karmic64”�Ubuntu
9.10, “trusty-axmv3”�Ubuntu 14.04, and “tfxv4”�Ubuntu 10.10). �e Linux distribution “xenv0” shows the lowest L2 miss rate compared
to the other Linux distributions for all the presented con�gurations.

USB-C Cable
(custom lossless protocol)

4 high-speed
ports

(direct access to
FPGA

transceivers)

2 AXIOM-boards
in a cluster

Figure 16: Two AXIOM boards interconnected up to 18Gbps via inexpensive USB-C cables. �e AXIOM board is based on a Xilinx Zynq
Ultrascale + ZU9EG platform, four high-speed ports (up to 18Gbps), an Arduino socket, and DDR4 extensible up to 32GiB. As can be seen
from the picture, we do not need any external switch but just two simple USB-C cables to connect the two systems.

Table 5: Resource utilization of the key components of the implemented programmable logic on ZU9EG FPGA (AXIOM board).

Component LUT (%) LUTRAM (%) FF (%) BRAM (%) GT (%)
DF-�reads 10.03 1.8 6.01 5.43 —
NIC [4] 41.36 8.96 19.29 15.19 50

International Journal of Recon�gurable Computing 15

6. Conclusions

In this article, we presented our work�ow in developing an
architecture that could be controlled by the designer in order
to match the desired key performance metrics. We found
that it is very convenient to use synergistically the Xilinx
HLS tools and the COTSon+MYDSE framework in order to
select a candidate architecture, instead of developing ev-
erything just with the HLS tools.

We illustrated the main features of the COTSon simu-
lator and the “MYDSE” toolset, and we motivated their
purpose in our simulation methodology. �anks to the
“functional-directed” approach of the COTSon simulator,
we can de�ne the architecture of any architectural com-
ponents (i.e., a cache) for an early DSE and migrate to HLS
only the selected architecture. Our DSE toolset facilitates the
modelling of architectural components in the earlier stages
of the design.

We have modi�ed the classical HLS tool �ow, by
inserting a modelling phase with an appropriate simulation
framework, which can facilitate the architecture de�nition
and reduce signi�cantly the developing time.

We described the simple example of de�ning a two-way
set-associative cache through the timing model of COTSon.
Afterwards, we illustrated the code migration from COTSon
to Xilinx HLS tool, showing that the timing description
made in the COTSon simulator is conveniently close to the
�nal HLS description of our architecture. However, syn-
thesizing of the HLS description of the cache design in
Vivado HLS takes about four hours on a powerful work-
station, while we were able to simulate it in COTSon in a few
seconds.

By using the work�ow presented in this article, we were
able to successfully prototype a preliminary design of our
data-�ow programming model (called the DF-�reads) for a

recon�gurable hardware platform leading to the AXIOM
software/hardware platform, a real system that includes the
AXIOM board and a full software stack of more than one
million lines of codes made available as open source (https://
git.axiom-project.eu/).

Data Availability

�e data used to support the �ndings of this study are in-
cluded within the article.

Conflicts of Interest

�e authors declare that there are no con�icts of interest
regarding the publication of this paper.

Acknowledgments

�is work was partly funded by the European Commission
through projects AXIOM H2020 (id. 645496), TERAFLUX
(id. 249013), and HiPEAC (id. 779656).

References

[1] S. Mittal and J. S. Vetter, “A survey of CPU-GPU hetero-
geneous computing techniques,” ACM Computing Surveys,
vol. 47, no. 4, pp. 1–35, 2015.

[2] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and
L. Benini, “An integrated open framework for heterogeneous
MPSoC design space exploration,” in Proceedings of the De-
sign Automation and Test in Europe Conference, pp. 1145–
1150, Munich, Germany, March 2006.

[3] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan,
“Heterogeneous chip multiprocessors,” Computer, vol. 38,
no. 11, pp. 32–38, 2005.

256

512

1024

2048

4096

128

8192

200 252 320 400 504

Ex
ec

ut
io

n
tim

e (
s)

Input size

BMM benchmark validation

AXIOM-board
COTSon

(a)

AXIOM-board
COTSon

256

512

1024

2048

4096

128

8192

360000 686000 1310000 2510000 4800000

Ex
ec

ut
io

n
tim

e (
s)

Input size

RADIX benchmark validation

(b)

Figure 17: Validation of the execution time of the simulator against the AXIOM board. We used the blocked matrix multiplication (BMM)
and Radix-Sort benchmarks with di�erent sizes (weak scaling). �e results on the actual board match closely the simulations.

16 International Journal of Recon�gurable Computing

https://git.axiom-project.eu/
https://git.axiom-project.eu/

[4] D. (eodoropoulos, S. Mazumdar, E. Ayguade et al., “(e
AXIOM platform for next-generation cyber physical systems,”
Microprocessors and Microsystems, vol. 52, pp. 540–555, 2017.

[5] R. Dimond, S. Racaniere, and O. Pell, “Accelerating large-
scale HPC applications using FPGAs,” in Proceedings of the
2011 IEEE 20th Symposium on Computer Arithmetic,
pp. 191-192, Tuebingen, Germany, July 2011.

[6] A. Portero, Z. Yu, and R. Giorgi, “TERAFLUX: exploiting
tera-device computing challenges,” Procedia Computer Sci-
ence, vol. 7, pp. 146-147, 2011.

[7] R. Giorgi, R. M. Badia, F. Bodin et al., “TERAFLUX: har-
nessing dataflow in next generation teradevices,” Micropro-
cessors and Microsystems, vol. 38, no. 8, pp. 976–990, 2014.

[8] S. Wong, A. Brandon, F. Anjam et al., “Early results from
ERA—embedded reconfigurable architectures,” in Pro-
ceedings of the 2011 9th IEEE International Conference on
Industrial Informatics, pp. 816–822, Lisbon, Portugal, July
2011.

[9] S. Wong, L. Carro, M. Rutzig et al., “ERA—embedded
reconfigurable architectures,” in Reconfigurable Computing,
pp. 239–259, Springer, Berlin, Germany, 2011.

[10] R. Giorgi, “AXIOM: A 64-bit reconfigurable hardware/soft-
ware platform for scalable embedded computing,” in Pro-
ceedings of the 2017 6th Mediterranean Conference on
Embedded Computing (MECO), pp. 1–4, Bar, Montenegro,
June 2017.

[11] R. Giorgi, M. Procaccini, and F. Khalili, “AXIOM: a scalable,
efficient and reconfigurable embedded platform,” in Pro-
ceedings of the Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), Florence, Italy, September 2019.

[12] D. (eodoropoulos, D. Pnevmatikatos, C. Alvarez et al., “(e
AXIOM project (agile, extensible, fast I/O module),” in
Proceedings of the 2015 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pp. 262–269, Samos, Greece, July 2015.

[13] R. Giorgi, F. Khalili, and M. Procaccini, “Energy efficiency
exploration on the ZYNQ ultrascale+,” in Proceedings of the
30th International Conference on Microelectronics (ICM),
Sousse, Tunisia, December 2018.

[14] SARC, http://www.sarc-ip.org.
[15] R. Giorgi, Z. Popovic, and N. Puzovic, “Implementing fine/

medium grained TLP support in amany-core architecture,” in
Proceedings of the International Workshop on Embedded
Computer Systems, pp. 78–87, Ancona, Italy, March 2009.

[16] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and
D. Ortega, “COTSon: infrastructure for full system simula-
tion,” ACM SIGOPS Operating Systems Review, vol. 43, no. 1,
pp. 52–61, 2009.

[17] R. Giorgi, M. Procaccini, and F. Khalili, “Analyzing the impact
of operating system activity of different linux distributions in
a distributed environment,” in Proceedings of the 2019 27th
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp. 422–429, Pavia,
Italy, February 2019.

[18] Xilinx, https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf.

[19] R. Giorgi, M. Procaccini, and F. Khalili, “A design space
exploration tool set for future 1 k-core high-performance
computers,” in Proceedings of the Rapid Simulation and
Performance Evaluation: Methods and Tools on–RAPIDO’19,
Valencia, Spain, January 2019.

[20] R. Giorgi and P. Faraboschi, “An introduction to DF-(reads
and their execution model,” in Proceedings of the 2014 In-
ternational Symposium on Computer Architecture and High

Performance Computing Workshop, pp. 60–65, Florianópolis,
Brazil, October 2014.

[21] R. Giorgi, “Exploring dataflow-based thread level parallelism
in cyber-physical systems,” in Proceedings of the ACM In-
ternational Conference on Computing Frontiers–CF’16,
pp. 295–300, Como, Italy, May 2016.

[22] R. Giorgi, “Scalable embedded computing through recon-
figurable hardware: comparing DF-(reads, cilk, openmpi
and jump,” Microprocessors and Microsystems, vol. 63,
pp. 66–74, 2018.

[23] J. Chen, M. Annavaram, and M. Dubois, “SlackSim,” ACM
SIGARCH Computer Architecture News, vol. 37, no. 2,
pp. 20–29, 2009.

[24] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an in-
frastructure for computer system modeling,” Computer,
vol. 35, no. 2, pp. 59–67, 2002.

[25] M. M. K. Martin, D. J. Sorin, B. M. Beckmann et al., “Mul-
tifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” ACM SIGARCH Computer Architecture
News, vol. 33, no. 4, pp. 92–99, 2005.

[26] H. Zeng, M. Yourst, K. Ghose, and D. Ponomarev,
“MPTLsim: a simulator for X86 multicore processors,” in
Proceedings of the 46th ACM/IEEE Design Automation
Conference, pp. 226–231, San Francisco, CA, USA, July 2009.

[27] A. Canis, J. Choi, M. Aldham et al., “LegUp: high-level
synthesis for FPGA-based processor/accelerator systems,” in
Proceedings of the 19th ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, pp. 33–36, Mon-
terey, CA, USA, February 2011.

[28] C. Pilato and F. Ferrandi, “Bambu: a modular framework for
the high level synthesis of memory-intensive applications,” in
Proceedings of the 2013 23rd International Conference on Field
Programmable Logic and Applications, pp. 1–4, Porto, Por-
tugal, September 2013.

[29] P. Coussy, C. Chavet, P. Bomel et al., “GAUT: a high-level
synthesis tool for DSP applications,” in High-Level Synthesis,
pp. 147–169, Springer, Berlin, Germany, 2008.

[30] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu,
and S. Vassiliadis, “DWARV: delftworkbench automated
reconfigurable VHDL generator,” in Proceedings of the 2007
International Conference on Field Programmable Logic and
Applications, pp. 697–701, Amsterdam, (e Netherlands,
August 2007.

[31] Cadence, https://www.cadence.com/content/cadence-www/
global/en_US/home/tools/digital-design-and-signoff/synthe-
sis/stratus-high-level-synthesis.html.

[32] Intel, https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/hls/ug-hls/pdf.

[33] Xilinx, https://www.xilinx.com/products/design-tools/software-
zone/sdsoc.html.

[34] Xilinx, https://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html.

[35] J. Choi, S. Brown, and J. Anderson, “From software threads to
parallel hardware in high-level synthesis for FPGAs,” in
Proceedings of the 2013 International Conference on Field-
Programmable Technology (FPT), pp. 270–277, Kyoto, Japan,
December 2013.

[36] C. Lattner and V. Adve, “LLVM: a compilation framework for
lifelong program analysis & transformation,” in Proceedings of
the International Symposium on Code Generation and Opti-
mization: Feedback-Directed and Runtime Optimization,
p. 75, Palo Alto, CA, USA, March 2004.

[37] ACE CoSy, http://www.ace.nl.

International Journal of Reconfigurable Computing 17

http://www.sarc-ip.org
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls/pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls/pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.ace.nl

[38] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A DSL
compiler for accelerating image processing pipelines on
FPGAs,” in Proceedings of the 2016 International Conference
on Parallel Architecture and Compilation Techniques (PACT),
pp. 327–338, Haifa, Israel, March 2016.

[39] A. Lotfi and R. K. Gupta, “ReHLS: resource-aware program
transformation workflow for high-level synthesis,” in Pro-
ceedings of the 2017 IEEE International Conference on Com-
puter Design (ICCD), pp. 533–536, Orlando, FL, USA,
November 2017.

[40] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and
M. D. Santambrogio, “A unified backend for targeting FPGAs
from DSLs,” in Proceedings of the 2018 IEEE 29th In-
ternational Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP), pp. 1–8, Cornell Tech, NY,
USA, July 2018.

[41] J. E. Miller, H. Kasture, G. Kurian et al., “Graphite: a dis-
tributed parallel simulator for multicores,” in Proceedings of
the Sixteenth International Symposium on High-Performance
Computer Architecture, pp. 1–12, San Antonio, TX, USA,
February 2010.

[42] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: towards real-time
hypervisor scheduling in Xen,” in 2011 Proceedings of the
Ninth ACM International Conference on Embedded Software
(EMSOFT), pp. 39–48, Taipei, Taiwan, October 2011.

[43] A. Portero, A. Scionti, A. Yu et al., “Simulating the future kilo-
x86-64 core processors and their infrastructure,” in Pro-
ceedings of the 45th Annual Simulation Symposium, pp. 1–9,
Orlando, FL, USA, March 2012.

[44] C.-K. Luk, R. Cohn, R. Muth et al., “Pin,” ACM SIGPLAN
Notices, vol. 40, no. 6, pp. 190–200, 2005.

[45] R. Giorgi, “Exploring future many-core architectures: the
TERAFLUX evaluation framework,” in Advances in Com-
puters, vol. 104, pp. 33–72, Elsevier, Amsterdam, Netherlands,
2017.

[46] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“SMARTS: accelerating microarchitecture simulation via
rigorous statistical sampling,” in Proceedings of the 30th
Annual International Symposium on Computer Architecture
(ISCA ’03), pp. 84–97, San Diego, CA, USA, June 2003.

[47] R. Ierusalimschy, W. Celes, and L. H. de Figueiredo, “(e
evolution of lua,” 2005.

[48] S. Windh, X. Ma, R. J. Halstead et al., “High-level language
tools for reconfigurable computing,” Proceedings of the IEEE,
vol. 103, no. 3, pp. 390–408, 2015.

[49] D. D. Gajski, N. D. Dutt, A. C. H. Wu, and S. Y. L. Lin,
High—Level Synthesis: Introduction to Chip and System De-
sign, Springer Science & Business Media, Berlin, Germany,
2012.

[50] R. Giorgi, N. Bettin, P. Gai, X. Martorell, and A. Rizzo,
“AXIOM: a flexible platform for the smart home,” in Com-
ponents and Services For IoT Platforms, pp. 57–74, Springer,
Berlin, Germany, 2017.

18 International Journal of Reconfigurable Computing

Research Article
An FPGA-Based Hardware Accelerator for CNNs Using On-Chip
Memories Only: Design and Benchmarking with Intel Movidius
Neural Compute Stick

Gianmarco Dinelli ,1 Gabriele Meoni ,1 Emilio Rapuano,1 Gionata Benelli ,2

and Luca Fanucci 1

1Department of Information Engineering, University of Pisa, Pisa 56122, Italy
2IngeniArs, Pisa 56121, Italy

Correspondence should be addressed to Gianmarco Dinelli; gianmarco.dinelli@ing.unipi.it

Received 2 May 2019; Revised 3 September 2019; Accepted 3 October 2019; Published 22 October 2019

Academic Editor: Martin Margala

Copyright © 2019GianmarcoDinelli et al.'is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

During the last years, convolutional neural networks have been used for different applications, thanks to their potentiality to carry
out tasks by using a reduced number of parameters when compared with other deep learning approaches. However, power
consumption and memory footprint constraints, typical of on the edge and portable applications, usually collide with accuracy
and latency requirements. For such reasons, commercial hardware accelerators have become popular, thanks to their architecture
designed for the inference of general convolutional neural network models. Nevertheless, field-programmable gate arrays
represent an interesting perspective since they offer the possibility to implement a hardware architecture tailored to a specific
convolutional neural network model, with promising results in terms of latency and power consumption. In this article, we
propose a full on-chip field-programmable gate array hardware accelerator for a separable convolutional neural network, which
was designed for a keyword spotting application. We started from the model implemented in a previous work for the Intel
Movidius Neural Compute Stick. For our goals, we appropriately quantized such a model through a bit-true simulation, and we
realized a dedicated architecture exclusively using on-chip memories. A benchmark comparing the results on different field-
programmable gate array families by Xilinx and Intel with the implementation on the Neural Compute Stick was realized. 'e
analysis shows that better inference time and energy per inference results can be obtained with comparable accuracy at expenses of
a higher design effort and development time through the FPGA solution.

1. Introduction

During the last years, convolutional neural networks
(CNNs) found application inmany different fields like object
detection [1, 2], object recognition [3, 4], and KeyWord
Spotting (KWS) [5, 6]. Although they proved excellent re-
sults on cloud, their applicability for portable systems is
challenging because of the additional constraints in terms of
memory footprint and power consumption, which generally
conflict with latency and accuracy requirements. In par-
ticular, in general purpose solutions based on the use of a
microcontroller, the limited available memory limits the
complexity of the network, with possible impact on the
accuracy of the system [7]. In the sameway, microcontroller-

based systems feature the worst trade-off between power
consumption and timing performances [8].

For this reason, commercial hardware accelerators for
CNNs such as Neural Compute Stick (NCS) [9], Neural
Compute Stick 2 (NCS2) [9], and Google Coral [10] were
produced. Such products feature optimized hardware ar-
chitectures that allow to realize inferences of CNN models
with low latency and reduced power consumption. Standard
communication protocols, such as Universal Serial Bus (USB)
3.0., are generally exploited for communication purposes.

Nevertheless, since they were designed for the imple-
mentation of generic CNNs, their architectures are ex-
tremely flexible at the expense of the optimization of the
single model.

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 7218758, 13 pages
https://doi.org/10.1155/2019/7218758

mailto:gianmarco.dinelli@ing.unipi.it
https://orcid.org/0000-0003-0123-7977
https://orcid.org/0000-0001-9311-6392
https://orcid.org/0000-0002-1723-7421
https://orcid.org/0000-0001-5426-4974
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7218758

For such a reason, hardware accelerators customized for
a specific application might offer an interesting alternative
for accelerating CNNs. In particular, field-programmable
gate arrays (FPGAs) represent an interesting trade-off be-
tween cost, flexibility, and performances [11], especially for
applications whose architectures have been changing too
rapidly to rely on application-specific integrated circuits
(ASICs) and whose production volumes might be not suf-
ficient. FPGAs offer high flexibility at the same time, which
permits the implementation of different models with a high
degree of parallelism [8] and the possibility of customizing
the architecture for a specific application.

'e aim of this paper is to investigate the use of custom
FPGA-based hardware accelerators to realize a CNN-based
KWS system, analysing their performances in terms of
power consumption, number of hardware resources, accu-
racy, and timing. A KWS system represents an example of
application whose porting on the edge requires much effort,
owing to the hard design trade-offs.

'e study involves the use of different FPGA families by
Xilinx and Intel, analysing design portability on devices with
different sizes and performances. 'is allowed to realize a
benchmark that compares the obtained results with the ones
presented in our previous work for the full-SCNN (separable
convolutional neural network) model [12], which imple-
ments the same architecture exploiting a NCS (version 1,
mounting Myriad 2 Vision Processing Unit (VPU)).

To realize the architecture implemented on-board
FPGA, a bit-true simulation was performed to appropriately
quantize the model, reducing the number of resources used,
saving power, and increasing throughput when compared
with a floating-point approach.

'e remainder of the paper is structured as follows: the
Kerasmodel used to describe the KWS system is presented in
Section 2. Section 3 presents the approach used to quantize
and compress the model to optimize its implementation on-
board FPGAs. In Section 4, the results of the quantization
analysis are provided and discussed. 'e preferred FPGA-
based accelerator architecture is then described in Section 5,
focusing on the analysis of design trade-offs. Results of the
implementation on the different FPGA families are pre-
sented in Section 6. In Section 7, results in terms of max-
imum achievable clock frequency, hardware resources, and
power consumption are presented and compared with the
NCS solution. In Section 8, the usability of FPGA devices to
accelerate the inference of CNNs is discussed with respect to
the presented solution and similar applications. Finally, in
Section 9, conclusions are given.

2. Architecture of the KWS System

KWS systems are a common component in speech-enabled
devices: they continuously listen to the surrounding envi-
ronment with the task to recognize a small set of simple
commands in order to activate or deactivate specific func-
tionalities. Commercial examples of KWS systems include
“OK Google” and “Hey Siri.” 'e proposed KWS system is
designed to operate inside a domotic installation for im-
proving the quality of life of people with disabilities. In

particular, it is able to recognize 10 different commands:
“yes,” “no,” “up,” “down,” “left,” “right,” “on,” “off,” “stop,”
and “go.” Moreover, it identifies two additional classes:
“silence,” when no word is pronounced, and “unknown,”
when the pronounced word does not belong to any class.

'e KWS system was pretrained in the Python frame-
work called Keras [13], using Google Speech Command
dataset.

'e proposed architecture is based on the SCNN de-
scribed in [12], whose architecture is shown in Figure 1.

'e input of the network is a 63×13 mel frequency
spectral coefficient (MFSC) matrix [14]. 'e bin (n, k) of the
matrix contains information over the spectral content at
frequency f, as shown in equation (1):

f � k ·
fsample

N + 1
, for k � 1, . . . , K, (1)

where fsample � 16 kHz is the sample rate and N� 512 (32ms)
is the number of bins used to calculate the fast fourier
transform (FFT), measured at the instant n/fsample, with
n ∈ [0, N − 1]. Every N-sample window is weighted through
a Hann window and overlapped with the previous N/2
samples for the calculation of the FFT.

'e input layer provides the 63×13 MFSC input matrix.
'en, three separable convolutional (SC) layers follow, and
their generic structure is shown in Figure 2.

SC layers improve standard convolutional layers by
reducing the number of parameters used to process the
inputs [12]. For this reason, SCNNs are particularly in-
teresting for the realization of FPGA-based hardware ac-
celerators because they reduce memory and computation
requirements in comparison with the classic CNN approach.

A standard convolutional layer contains cout(wfxhf)

filters that are convolved over.
cin(wcinxhcin) input channels, producing

cout(wcin − wf + 1)x(hcin − hf + 1) output channels. On the
contrary, a separable convolution is realized through two
distinct convolutions performed by means of filters, whose
dimensions are, respectively, (fwx1) and (1xfh). Figure 3
better illustrates the difference between these two
approaches.

Considering the structure of the MFCS input matrix,
each SC layer performs two separated convolutions, re-
alizing a “time” convolution followed by a “frequency”
convolution.

A batch normalization (BN) layer, which has the role to
accelerate deep network training by reducing internal co-
variance shift [15], follows the frequency convolution. Fi-
nally, the rectified linear unit (ReLU) is the activation
function of each SC layer. ReLU is defined in equation (2) as

fReLU(x) �
0, when x≤ 0,

k · x, when x> 0with k ∈ R.
 (2)

A classic convolutional layer follows the three SC layers.
Table 1 summarizes the dimension of time/frequency

filters, number of input channels (Cin), output channels
(Cout), and input/output matrix dimensions for each con-
volutional layer of the network. Time_0 and freq_0 are,

2 International Journal of Reconfigurable Computing

respectively, the temporal and frequency convolutional layer
of the hidden layer 0, and similarly time_1/freq_1 for the
hidden layer 1 and time_2/freq_2 for the hidden layer 2.
Final_conv refers to the last convolutional layer of the
network.

'e average pooling layer computes the average value of
each output channel of the final_conv layer, condensing
them in 12 values, one for each class of the KWS system.
Finally, a Softmax (or normalized exponential function)
layer activation function follows. It takes a vector ZJ as input
and produces an output vector in which each element
fsoftmax(ZJ) is normalized in the interval [0, 1] and can be
interpreted as the probability that input belongs to the class j.
'e standard Softmax function is described by equation (3):

fsoftmax ZJ �
ezj

K

i�1e
zj

, for j � 1, . . . , K. (3)

In this network, the Softmax input vector is composed of
12 elements, one for each of the class of the KWS system.

'e proposed SCNN model was implemented on the
Intel Movidius NCS, showing an accuracy of 87.77%. 'e
number of parameters necessary for its implementation is
15000, including bias, weights, and batch normalization
parameters.

3. Keras Model Optimization toward the
Hardware Implementation

In the next sections, methods to map the Keras–Python
model of the KWS system on an FPGA are analysed. In

fact, this model is implemented in a high-level language
and its parameters are based on the floating-point
representation.

'e main issue about the implementation of a CNN-
based model on an FPGA regards the limitation in terms of
available hardware resources (combinatorial elements, se-
quential elements, Digital Signal Processors (DSPs), ram
blocks, etc.) of such devices [11, 16, 17]. CNN algorithms are
based on Multiply-and-ACcumulate (MAC) operations that
require a large amount of combinatorial logic elements or
DSPs. Furthermore, CNNs are characterised by a great
number of parameters that shall be stored into off-chip
memories if exceeding the available on-chip memory. 'e
use of off-chip memory could be inevitable, complicating the
design and increasing the inference time. For these reasons,
the architecture of the hardware accelerator was carefully
designed considering the trade-off between inference time
and available resources.

3.1. Model Quantization. Before realizing the FPGA
implementation, a quantization of the SCNN model was
performed. In literature, there are many examples of
quantization applied to CNNs [18–21]. 'e main advantage
offered by a fixed-point representation is the possibility to
shrink the model dimension and complexity with a negli-
gible loss in accuracy [22]. In addition, fixed-point arith-
metic requires simpler calculation than floating-point
arithmetic, with advantages in terms of complexity and
power consumption [23].

'e quantization of the original floating-point model
was performed through a bit-true simulation. 'e aim of the
simulation is to determine the number of bits necessary to
represent numbers in every internal node of the network by
limiting the loss in accuracy.

'e fixed-point representation of the model weights (or
filter elements) wq was calculated by using the approach
described by the following equation:

wq � round
w

lsbw

 · lsbw,

lsbw �
|w|max

2bw− 1 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where w is the floating-point representation of the weight
and lsbw is the value of the least significant bit (lsb). 'e
latter is calculated by dividing |w|max, which represents the
absolute value of the maximum weight over each layer, by
2bw − 1, where bw is the number of bits used to represent
weights, as required by the 2’s complement format. In
particular, since the range of weights amplitude is roughly
the same for every layer, the same value of |w|max was used
for each layer. Such choices are due to the necessity to
reduce the conspicuous degrees of freedom in the simu-
lation. Furthermore, in order to reduce the number of
operations to implement in hardware, the effects of the BN
are included in weight and bias values (BN simply consists
in algebraic operations). In formulas, each weight w(i) and
each bias b(i) belonging to a frequency convolutional layer

Input layer Conv.
layer

SC layers

Average
pooling Softmax

Figure 1: SCNN architecture.

Batch
norm.

Time conv.

Freq. conv.

ReLU

Figure 2: SC hidden layer architecture.

International Journal of Reconfigurable Computing 3

or final_conv was modified as described by equations (5)
and (6):

w(i)′ �
w(i) · c

σ
, (5)

b(i)′ � β +
(b(i) − μ) · c

σ
, (6)

where c and β are the scaling factors and bias of the BN,
respectively, σ the standard deviation, and μ the average of
the weights of a given input channel.

At the end of each layer, the acceptable number of
truncated bits btri

and a saturation (truncation of the most
significant bits) of bsati bits were also studied through the bit-
true simulation to reduce the complexity of the hardware. In
terms of formulas, truncation consists in changing the value
of the lsb, as described by the following equation:

lsbw
′� lsbw · 2btri . (7)

Instead, saturating bsati bit means discarding the bsati
most significant bits. Such operation does not affect lsbw. For
this aim, the worst case (greatest value in absolute meaning)
of each layer output was considered so as to eliminate
unused bits that were previously added for avoiding over-
flow of arithmetic operations. To sum up, the accuracy of the

model for different sets of bw, btr1, bsat1, btr2, bsat2,

. . . , btr7, bsat7 was evaluated.
A possible optimization of the model consists in

quantizing separately the weights of the last convolutional
layer, by using bwlast

bits. Indeed, the coefficients of final_-
conv may be divided by the divisor of the average pooling,
saving hardware operations. 'is optimization significantly
changes the range of weights for the last layer and a different
quantization should be applied to it. For this reason, a
second model to evaluate the overall accuracy takes into
consideration different sets (bw, bwlast

, btr1, bsat1, btr2, bsat2,

. . . , btr7, bsat7).

3.2. Pruning. Another technique to reduce the complexity of
the hardware accelerator is pruning. It consists in dropping the
least important connections of the network [24, 25] by iden-
tifying the weights or biases with a magnitude smaller than a
given threshold. In this network, the biases of the temporal
convolutional layers have magnitudes in the order of
10− 9–10− 7. Considering their small values with respect to the
other network parameters, they were pruned to reduce the
model size. Indeed, it is possible to eliminate temporal bias
terms without significantly affecting accuracy and reducing the
number of sums to be computed.

hin

win

cin

fh
fw

hin – fh + 1

win – fw + 1

cout

(a)

hinhin

win

cincin f ′w

f ′h1

win – f ′w + 1

1 win – f ′w + 1

hin – f ′h + 1
cout

(b)

Figure 3: Convolutional layers: (a) classic CNN network and (b) SCNN network.

Table 1: Convolutional parameters for the network.

Layer Input matrix Filter Cin Cout Output matrix

Hidden layer 0 Time_0 63×13 5×1 1 1 59×13
Freq_0 59×13 1× 3 1 8 59×11

Hidden layer 1 Time_1 59×11 5×1 8 8 55×11
Freq_1 55×11 1× 3 8 16 55× 9

Hidden layer 2 Time_2 55× 9 11× 1 16 16 45× 9
Freq_2 45× 9 1× 3 16 192 45× 7

Final_conv 45× 7 1× 1 192 12 45× 7

4 International Journal of Reconfigurable Computing

4. Results of the Quantization Analysis

In this section, the results obtained from the quantization
process are presented and discussed.

'e SCNN model of this network has many degrees of
freedom. For this reason, the first simulation step is finalised to
identify a starting point for amore complex analysis, and it only
focuses on the quantization of input layer words and weights.

Figure 4 shows simulation results, in terms of accuracy
and mean square error (MSE) in relation to the floating-
point model, when only the number of bits for input words
representation is quantized. A number of 4 or 5 bits optimize
accuracy and minimize the MSE. 'is first analysis gives
intuitions about a possible optimization for the input layer:
in particular, the number of bits of every input can be forced
to be multiple of 4 bits, so that several inputs might be
contained in buses such as the Advanced eXtensible In-
terface 4 (AXI4) bus [26], whose size is usually amultiple of 8
bits.

Figure 5 shows simulation results, in terms of accuracy
and MSE, when only the number of bits for the represen-
tation of weights has been quantized. In this case, accuracy
rapidly grows between 8 and 12 bits, reaching even higher
values than the original ones in correspondence of 11 and 12
bits. Finally, accuracy saturates for 16 or more bits. 'is
parameter is crucial because it influences the number of bits
necessary to represent the result of MAC operations and,
consequentially, the complexity of the entire network.

'is first analysis was the starting point for a more
detailed design exploration, involving the number of bits for
the representation of the output of each layer.

Table 2 reports the best results obtained in terms of
accuracy. Only the number of bits of SC layers and
final_conv outputs are presented in the table, whereas data
regarding temporal convolutional sublayers are omitted.'e
parameters listed in the table are as follows:

(i) b_in: number of bits for the representation of input
words.

(ii) b_filter: number of bits for the representation of
filters.

(iii) bit_out_0: number of bits for the representation of
the outputs of the first hidden layer.

(iv) bit_out_1: number of bits for the representation of
the outputs of the second hidden layer.

(v) bit_out_2: number of bits for the representation of
the outputs of the third hidden layer.

(vi) bit_out_fc: number of bits for the representation of
the outputs of the last convolutional layer.

Collected data show that it is possible to increase model
accuracy through quantization. In fact, the best accuracy
obtained for the floating-point model is 87.77%, whereas for
the fixed-point representation, the highest accuracy is
90.23%.

'e second part of the simulation considers a different
quantization for the final_conv layer due to the inclusion of
the average pooling effects, as explained in Section 3.1. 'e
results of this simulation are summarized in Table 3.

'ese models show smaller hardware requirements than
the single-quantization versions presented in Table 2. Sets of
data are the same as those in Table 2, excepting for b_last that
represents the number of bits for the representation of
final_conv layer weights, whereas b_filter refers only to SC
layer weights. 'is second model allows to shrink weights
representation for all convolutional layers, significantly re-
ducing the impact of MAC operations on hardware resource
requirements. Furthermore, several quantized models have
an accuracy score higher than the original one (87.77%).

'e model chosen for the FPGA implementation
considers both accuracy and the possibility to shrink pa-
rameter representations. Model number (7) from Table 3
was selected: it has a higher accuracy than the Keras–
Python model (88.09 versus 87.77), and it minimizes the
number of bits necessary for the representation of layer
outputs and weights. Input layer results compatible with
AXI4 because Input words are represented on 4 bits. 'e
number of bits for the representation of temporal con-
volutional outputs of model (7) is 10 for time_0, 8 for
time_1, and 10 for time_2.

5. FPGA Hardware Architecture

'is section describes the architecture of the hardware ac-
celerator that was implemented on different FPGA families.
'anks to the reduced number of parameters of the SCNN
investigated in our previous work [12], it was possible to
realize a full on-chip design with high advantages in terms of
latency and energy per inference, avoiding accesses to off-
chip memories [11, 21].

Figure 6 shows the block diagram of the accelerator. 'e
number of bits of the words read from and written into the
Input memory and RAMs is related to our preferred model,
described in the previous section.

An input memory is used as an interface between the
hardware accelerator and the system that records and
elaborates the audio samples. 'e input memory stores 4-bit
input data. 'e time/frequency layers and final_conv layer
perform convolutional operations and store the results into a
RAM memory, used as a buffer. Once the previous layer
completes an entire convolution, the next one starts reading
out its input matrix from the memory.

Each of the seven convolutional layers has its own MAC
module to perform multiply-accumulate operations. Fig-
ure 7 shows the structure of the MAC module, designed to
compute one element of the output matrix per clock cycle.

It reads nelem elements from the RAM memory, where
the value of nelem is shown in the following equation:

nelem � Cin · felem, (8)

where Cin is the number of input channels and felem is the
number of elements composing a channel filter. 'e adder-
tree structure is used for accumulation, and it was chosen to
reduce the overall latency of the circuit. Considering this
configuration of the MACmodule, the total number of clock
cycles needed to complete an entire convolution for each
convolutional layer is Nclk, as shown in the following
equation:

International Journal of Reconfigurable Computing 5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 320

20

40

60

80

100

0
1
2
3
4
5
6
7

Accuracy
MSE

Figure 4: Accuracy and MSE to the change of the number of bits for input layer words.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

20

40

60

80

100

0
5
10
15
20
25
30
35
40

Accuracy
MSE

Figure 5: Accuracy and MSE to the change of the number of bits of filter elements.

Table 2: Results of the first quantization analysis.

b_in b_filter bit_out_0 bit_out_1 bit_out_2 bit_out_fc Accuracy (%)
5 12 10 8 10 10 90.23
5 12 8 8 10 10 90.14
5 12 8 8 10 8 89.74
5 11 8 8 10 10 88.91
4 12 8 8 10 12 88.87
4 12 8 8 10 10 88.78
5 11 8 8 10 8 88.60
4 12 8 8 10 8 88.46
5 11 8 8 10 8 88.40
4 11 8 8 10 12 87.84
4 11 8 8 10 10 87.61

Table 3: Results of the second quantization analysis.

No. b_in b_filter b_last bit_out_0 bit_out_1 bit_out_2 bit_out_fc Accuracy (%)
1 5 8 6 8 8 10 12 89.88
2 5 8 6 8 8 10 10 89.74
3 4 12 6 8 8 10 12 88.87
4 4 12 6 8 8 10 10 88.75
5 4 12 6 8 8 10 12 88.21
6 4 12 6 8 8 10 10 88.09
7 4 8 6 8 8 10 10 88.09
8 4 8 6 8 8 10 10 87.61
9 4 11 6 8 8 10 12 87.55
10 4 8 6 8 8 10 10 87.43
11 5 8 6 8 8 8 10 87.39
12 4 12 6 8 8 10 8 87.36
13 4 11 6 8 8 10 10 87.29
14 5 8 6 8 8 8 8 86.93

6 International Journal of Reconfigurable Computing

Nclk � Cout · Wout · Hout, (9)

where Cout is the number of output channels and Wout and
Hout are the dimensions of the output matrix. Table 4 shows
Nclk of each convolutional layer of the network considering
the values of Cout, Wout, and Hout listed in Table 1. Finally,
819 clock cycles shall be added in order to store the 63×13
input matrix in the Input memory. A total of 90278 clock
cycles are required to complete an inference.

A major parallelization of MAC operations would offer
the opportunity to speed-up accelerator performances, re-
ducing the inference time. On the other hand, it is not
generally possible to perform an arbitrary number of op-
erations per clock cycle because of the limited number of
FPGA resources (combinatorial logic, DSPs, etc.). Fur-
thermore, if the level of parallelism is too high, routing can
become the bottleneck of the implementation.

It is possible to boost MAC module operations, in-
creasing the number of output elements n computed per
clock cycle. In particular, for n> 1, Nclk is reduced of a factor
1/n, as described by the following equation:

Nclk �
Cout · Wout · Hout

n
. (10)

Whilst this strategy leads to better timing optimization, it
increases the design effort necessary to find the best com-
bination that can fit on a specific FPGA device. Indeed, the
appropriate value of n for each layer should be tuned
depending on the size of the target FPGA, in order to
guarantee design implementability. Furthermore, paralleliz-
ing each layer guarantees negligible advantages in terms of
inference time when the number of operations necessary to
carry out an entire convolution is strongly different for every
layer. Considering the limitation of FPGA hardware

resources, it results appropriate to parallelizeMAC operations
only for the layers with the highest values of Nclk. In this
specific case, freq_2 layer contributes to 60460 over 90278
total number of clock cycles due to the very high number of
output channels (192). For this reason, the MAC module of
the freq_2 layer was customized so that it calculates 4 values of
the output matrix per clock cycle. According to equation (10),
this allows to drastically reduce freq_2 Nclk from 60480 to
15120 and consequently the total inference time from 90278
to 44918 clock cycles, halving the inference time. If a similar
parallelization was realized for the other convolutional layers
of the network, it would increase hardware resources without
a significant improvement of timing performances because of
their limited effect on the overall inference time.

As previously specified, batch normalization operations
were absorbed in the frequency convolutional layer of each
SC layer. 'e average pooling layer was included in
final_conv that provides 12 outputs, corresponding to the
sum of all the elements belonging the output matrix of each
output channel. Finally, Softmax layer can be omitted. In-
deed, to provide a direct decision on the pronounced word, it
is sufficient to select the maximum value among the twelve
outputs of final_conv.

'is architecture was chosen because its simplicity
heightens the possibility to fit the hardware accelerator in a
target FPGA, reducing design time and increasing design
portability among devices with different sizes.

6. Hardware Implementation Results

'is section describes the performances of the hardware
accelerator on different FPGA families. 'e presented ar-
chitecture was implemented on several Xilinx and Intel
devices to analyse its design portability on FPGAs with
different sizes and performances. Results are presented in
terms of hardware resource occupation, maximum achiev-
able clock frequency, inference time, and power con-
sumption. Finally, an analysis of how MAC module

Input
memory RAM RAM

4

… . .4
4

10 10
10

10

Time_0 Freq_0 Final_conv

Max
selection

... 10
10

...4

Figure 6: SCNN architecture for FPGA implementation.

+

+
+

+

+
+

.

.

.

+

+
+

x f1

x f0

x fn–2

x fn–1

.

.

.

D0

D1

Dn–2

Dn–1

Constant
multipliers

Adder-tree

Figure 7: MAC module architecture.

Table 4: Nclk values for the various layers.

Layer Nclk

Input memory 819
Time_0 767
Freq_0 5192
Time_1 4840
Freq_1 7920
Time_2 6480
Freq_2 60480
Final_conv 3780
Total 90278

International Journal of Reconfigurable Computing 7

parallelization influences design portability on smaller
FPGAs is provided.

'e devices included in the analysis are as follows:

(i) Zynq UltraScale+ (US+), xczu9eg-ffvb1156-2-e
[27]

(ii) Virtex UltraScale+, xcvu3p-ffvc1517-2-e [28]
(iii) Virtex UltraScale (US), xcvu065-ffvc1517-2-e [29]
(iv) Zynq-7000, xc7z045ffg900-1 [30]
(v) Virtex-7, xc7vx330tffg1157-2 [31]
(vi) Kintex-7 low voltage (lv), xc7k160tfbg484-2L [31]
(vii) Artix-7 low voltage (lv), xc7a200tfbg484-2 [31]
(viii) Arria 10 GX, 10AX027H3F35E2SG [32]
(ix) Stratix V GS, 5SGSMD4E1H29C1 [33]
(x) Stratix V GX, 5SEE9F45C2 [33]
(xi) Stratix V E, 5SEE9H40C2 [33]
(xii) Cyclone V, 5CEFA9U19C8 [34]

All the implementations were realized by using Vivado
design suite for Xilinx devices and Quartus Prime Software
for Intel devices.

Table 5 shows the hardware resources needed for the
implementation of the accelerator on Xilinx FPGAs. Results
are presented in terms of combinatorial elements, sequential
elements, BRAMs, and LUTRAMs (LRAMs). 'e percent-
age of used resources out of the total is also indicated. Table 6
shows hardware resources needed for the implementation of
the accelerator on Intel FPGAs. In this case, results are
presented in terms of combinatorial elements, sequential
elements, BRAMs, and DSPs.

All the implementations refer to the version of the ac-
celerator in which the MAC module of the freq_2 layer was
parallelized to compute 4 elements of its output matrix per
clock cycle. 'e structure and the number of combinatorial/
sequential elements and memory dimensions and typologies
are specific for each device. Please refer to FPGA datasheets
for more information about the architecture of Xilinx de-
vices [27–31] and Intel devices [32–34].

Figures 8 and 9 show the maximum achievable clock
frequency and the inference time for Xilinx and Intel
FPGAs, respectively. 'e minimum inference time for each
layer can be calculated taking into consideration MAC
module optimizations for the freq_2 layer and Nclk values
listed in Table 4. 'e best result is obtained for the Zynq
UltraScale+ with a maximum clock frequency of
116.2MHz and a corresponding inference time of less than
0.4ms.

A power analysis was performed for both Xilinx and
Intel FPGAs. To obtain a more accurate estimation of the
power consumption for Xilinx devices, a post-
implementation timing simulation was carried out by using
Questa® Advanced Simulator to extract information about
the switching activity of the internal nodes of the circuit.
Since Intel devices do not support postlayout simulation,
only a RTL-level estimation of the switching activity has
been included in the power consumption analysis as sug-
gested by Intel guidelines [35]. Results are shown in Table 7.

In general, Xilinx devices show a lower power consumption
than Intel devices for both static and dynamic power. 'e
only exception is the Arria 10, featuring a power con-
sumption of 1W and resulting the second best device after
the Kintex-7 lv.

6.1. Design Portability. An analysis of the hardware accel-
erator portability has been carried out in order to investigate
how the proposed design fits in smaller FPGAs. In particular,
the freq_2 layer has been customized to compute 1, 2, 4, and
8 elements (n_out) of a given output channel per clock cycle.
Results are presented in terms of hardware resources,
maximum clock frequency, and inference time.

Two FPGAs with different sizes belonging to the same
family were selected:

(i) xc7z045ffg900-2 (xc7z045) and xc7z030fbg484-2
(xc7z030) for the Zynq-7000 family [30]

(ii) xczu9eg-ffvb1156-2-e (xczu9eg) and xczu3eg-
sfva625-2L-e (xczu3eg) for the Zynq UltraScale+
family [27]

Tables 8 and 9 show the results in terms of hardware
resource occupation for the Zynq-7000 FPGAs and for the
Zynq-US+ FPGAs, respectively.

'e xc7z030 and the xczu3eg have a limited number of
hardware resources and only the version of the accelerator
with n_out equal to 1, 2, and 4 can be implemented in these
devices; the version with n_elem equals to 8 fits only in the
xc7z045 and in the xczu9eg. Owing to the limited number of
LUTs available on-board xc7z030 and xczu3eg DSPs are
included to perform MAC operations. In addition, xczu3eg
implementations exploit all the available BRAMs on-board,
and LRAMs have to be included. Versions of the hardware
accelerator with a lower level of MAC parallelization have
worst performance in terms of inference time but can fit in
smaller devices because their requirements in terms of
combinatorial elements are more relaxed. Unfortunately, the
number of RAMs required does not change because
intralayer RAM dimensions and the number of parameters
of the network do not, and it can represent a bottleneck for
the implementation of the not-customized version of the
accelerator on smaller FPGAs.

Figures 10 and 11 show the performance in terms of
clock frequency and inference time for Zynq-7000 and
Zynq-US+ FPGAs, respectively. For the xc7z045 and the
xczu9eg, the maximum achievable clock frequency does not
show large variation increasing the level of MAC parallelism.
For the xc7z030 and the xczu3eg, maximum achievable clock
frequency tends to decrease because the limited size of these
devices leads to a less optimized routing and consequently to
worse timing performances. For this reason, inference times
for xc7z030 with n_mac equals to 4 and n_mac equals to 2
are almost the same.

Similarly, when n_out is equal to 4, timing performance
of the xc7z030 solution features an implementation loss of
the 31% with respect to the solution on-board the xc7z045,
and the xczu3eg solution features an implementation loss of
47% with respect to the one on-board the xczu9eg.

8 International Journal of Reconfigurable Computing

7. Comparison with Intel Movidius Neural
Compute Stick

In this section, the FPGA-based accelerator is compared
with a commercial hardware accelerator for machine

learning on the edge: the Intel Movidius Neural Compute
Stick.

'e same model of SCNN keyword spotting was
implemented on the NCS in our previous work [12], and a
direct comparison between the performances of the two

Table 5: Hardware accelerator implementation on Xilinx FPGAs.

FPGA family Comb. elem. Comb. elem. (%) Seq. elem. Seq. elem. (%) BRAM BRAM (%) LRAM LRAM (%)
Zynq US+ 81345 30 860 <1 228 25 2560 2
Virtex US+ 81367 21 864 <1 228 32 2560 1
Virtex US 81427 23 952 <1 228 18 2560 3
Zynq-7000 76283 35 632 <1 244 45 0 0
Virtex-7 76163 37 632 <1 244 33 0 0
Kintex-7 lv 81737 81 633 <1 244 75 0 0
Artix-7 lv 87406 86 1081 <1 228 70 0 0

Table 6: Hardware accelerator implementation on Intel FPGAs.

FPGA family Comb. elem. Comb. elem. (%) Seq. elem. Seq. elem. (%) BRAM BRAM (%) DSP DSP (%)
Arria 10 GX 23722 23 296 <1 344 46 323 39
Stratix V GS 25532 18 2851 <1 344 36 323 31
Stratix V GX 23370 7 1860 <1 344 13 323 92
Stratix V E 23099 7 1843 <1 344 13 323 92
Cyclone V 24111 21 2911 <1 392 32 323 94

47.6 48.2
63.5 67.8

78.4

104.2
116.2

0.94 0.93

0.71

0.57

0.66

0.43 0.39

Artix-7 (lv) Kintex-7 (lv) Virtex-7 Zynq-7000 Virtex
UltraScale

Virtex
UltraScale+

Zynq
UltraScale+

Max frequency (MHz)
Inference time (ms)

0

20

40

60

80

100

120

140

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8: Maximum clock frequency and inference time for different Xilinx FPGA families.

31.4

57.4 60.3 61

801.43

0.78
0.74 0.73

0.56

Cyclone V Stratix V E Stratix V GS Arria 10 GX Stratix V GX
0

10
20
30
40
50
60
70
80
90

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Max frequency (MHz)
Inference time (ms)

Figure 9: Maximum clock frequency and inference time for different Intel FPGA families.

International Journal of Reconfigurable Computing 9

solutions, in terms of inference time, power consumption,
and energy per inference, is now presented.

'e NCS is a commercial deep learning hardware ac-
celerator hosting the Myriad 2 VPU by Intel Movidius [9].
'e VPU includes the following:

(i) 4Gb of LPDDR3 DRAM
(ii) 12 very long instruction word (VLIW) streaming

hybrid architecture vector engine (SHAVE) pro-
cessors optimized for machine vision used to run
parts of a neural network in parallel

(iii) 2MB on-chip memory shared between SHAVE
processors and fixed-function accelerators

(iv) 2 Leon microprocessors that coordinate the re-
ception of the network graph file and of inputs via
USB connection

'e Myriad 2 VPU supports fully connected, convolu-
tional (with arbitrary sized kernel), and depthwise con-
volutional layers.

'e NCS implements the floating-point version of the
SCNN model with a maximum accuracy of 87.77. Quan-
tization allows to increase this value to 90.23%, even if our
preferred implementation has an accuracy of 88.09%.

'e inference time for the SCNN implemented on the NCS
is approximately 10ms. 'e FPGA-based accelerator has a
lower inference time for all the FPGA implementations pre-
sented, swinging from 1.45ms for the Cyclone V to 0.39ms for
the Zynq-US+. Finally, the NCS power consumption is 0.81W.
Such a result is provided by considering the hardware setup of
our previous work [12], featuring a Rasperry PI 3B [36]
connected to theNCS. Power consumption can be estimated by
subtracting the Raspeberry PI 3B power consumption in the
absence of the NCS (1.3W) to the total power consumption of
the system during an inference (2.11W).

As shown in Table 7, power consumption for the design
implemented on-board all FPGAs is higher than that for the
NCS one. Nevertheless, for all the implementations, the
energy dissipated during an inference (Einf) is lower than the
one of NCS. In fact, it is possible to calculate Einf as shown in
the following equation:

Einf � P · tinf , (11)

Table 7: Power consumption for Xilinx and Intel FPGAs.

Device Static power
(W)

Dynamic power
(W)

Total power
(W)

Artix 7 0.151 0.892 1.043
Kintex-7 lv 0.110 0.859 0.969
Zynq-7000 0.215 1.172 1.387
Virtex 7 0.204 1.147 1.351
Virtex-US 0.626 1.235 1.861
Virtex-US+ 0.839 1.302 2.141
Zynq-US+ 0.627 1.532 2.259
Cyclone V 0.570 1.731 2.301
Stratix V E 1.607 2.150 3.757
Stratix V GS 0.857 3.153 4.010
Arria 10 0.272 0.730 1.002
Stratix V GX 1.244 2.141 3.385

Table 8: Design portability analysis for Zynq-7000 family.

Zynq-7000
family

Num
mac.

Comb.
elem. (%)

Seq. elem.
(%)

BRAM
(%)

DSP
(%)

xc7z030

1 85 <1 92 0
2 88 <1 92 0
4 55 <1 92 100
8 — — — —

xc7z045

1 33 <1 45 0
2 35 <1 45 0
4 38 <1 45 0
8 44 <1 45 0

Table 9: Design portability analysis for Zynq-US+ family.

Zynq-
US+
family

Num
mac.

Comb.
elem. (%)

Seq.
elem.
(%)

BRAM
(%)

LRAM
(%)

DSP
(%)

xczu3eg

1 54 <1 100 16 92
2 64 <1 100 16 100
4 70 <1 100 16 100
8 — — — — —

xczu9eg

1 25 <1 27 0 0
2 26 <1 27 0 0
4 30 <1 27 0 0
8 36 <1 27 0 0

67.8 67.8

0.89

67.81.33

0.66 0.58
64.9

1 2 4 8

xc7z045 max frequency (MHz)
xc7z045 inference time (ms)

63
63.5

64
64.5

65
65.5

66
66.5

67
67.5

68
68.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

67.8
1.33

61.7 0.97 0.95
47.2

1 2 4

xc7z030 max frequency (MHz)
xc7z030 inference time (ms)

0
10
20
30
40
50
60
70
80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 10: Max frequency and inference time for the Zynq-7000
family.

10 International Journal of Reconfigurable Computing

where P is the average power consumption during an in-
ference and tinf is the inference time.

Indeed, even if Xilinx and Intel devices show a higher
power consumption, the significantly lower tinf leads to a
reduced Einf .

Table 10 shows a comparison among FPGAs and NCS in
terms of inference time, power, and energy, by using model
(7) of Table 3. 'e power analysis was performed by con-
sidering the maximum achievable clock frequency (fclk) of
each FPGA in order to minimize the inference time.

Results show that FPGAs offer great design flexibility,
allowing to tune inference time and power consumption
through the choice of the different platforms. FPGAs are
promising devices for the implementation of CNN-based
hardware accelerators for portable applications and in
particular for those requiring low latency and high accuracy.
Indeed, inference time results to be diminished approxi-
mately of a factor between 7 and 25 and energy per inference
is reduced, respectively, of a factor between 2.5 and 9 in the
investigated cases.

Finally, Figure 12 provides a graphical representation of
the power consumption/inference time results shown in
Table 10. It is evident from results that all FPGA solutions
feature a reduced inference time with respect to the NCS

implementation at expense of a higher power consumption,
even if comparable for some devices.

8. Discussion

'e results presented in this work highlight the value of the
FPGA solutions to accelerate inference of CNNs.'ey offer a
remarkable trade-off between power consumption and

116.2 116.20.78

0.52

116.2

0.39 107.5 0.35

1 2 4 8

zu9eg max frequency (MHz)
zu9eg inference time (ms)

102
104
106
108
110
112
114
116
118

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a)

1 2 4

99
0.91

81.9
0.73

76.3 0.59

zu3eg max frequency (MHz)
zu3eg inference time (ms)

0

20

40

60

80

100

120

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b)

Figure 11: Max frequency and inference time for the Zynq-US+
family.

Table 10: Performance comparison between Xilinx FPGAs, Intel
FPGAs, and NCS.

Device fclk
(MHz)

Inference time
(ms)

Total power
(W)

Energy
(mJ)

Xilinx FPGA families
Artix 7 47.6 0.94 1.043 0.98
Kintex-7 lv 48.2 0.93 0.969 0.90
Zynq-7000 67.8 0.65 1.387 0.90
Virtex 7 63.5 0.71 1.351 0.96
Virtex-US 78.4 0.57 1.861 1.01
Virtex-US+ 104.2 0.43 2.141 0.92
Zynq-US+ 116.4 0.39 2.259 0.88

Intel FPGA families
Cyclone V 31.4 1.43 2.301 3.29
Stratix V E 57.4 0.78 3.757 2.9
Stratix V GS 60.3 0.74 4.010 2.96
Arria 10 61 0.73 1.002 0.73
Stratix V GX 80 0.56 3.385 1.9

Intel movidius neural compute stick
NCS 600 10 0.810 8.1

Cyclone V
Artix-7 (lv)
Kintex-7 (lv)
Stratix VE
Stratix VGS

Arria 10 GX
Virtex-7
Zynq-7000
Virtex UltraScale

Stratix VGX
Virtex UltraScale+
Zynq UltraScale+
NCS

0

2

4

6

8

10

12

In
fe

re
nc

e t
im

e (
m

s)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0
Power (W)

Figure 12: Inference time/power consumption trade-off analysis.

International Journal of Reconfigurable Computing 11

inference time, resulting in interesting solutions for on the
edge computing.

It is necessary to underline that these results were
possible, thanks to the use of a CNN model optimized for
resource-constrained devices [12], featuring a reduced
number of parameters and layers. In view of that, a full
on-chip design was achievable, with strong advantages in
terms of latency and power consumption. Consequently,
results are pertinent for applications requiring relatively
small models, such as digit and letter recognitions sys-
tems [37, 38], audio [39], and mobile vision applications
[40].

Finally, the proposed full on-chip design guarantees a
straightforward processing architecture (i.e., no data
scheduling from external memories and no management of
shared inference processing elements), further reducing the
overall system design time. However, when compared with
NCS and other plug and play solutions, the use of FPGA still
requires much more design effort and competences, in view
of the higher and heterogeneous design steps (i.e., model
quantization and architecture definition) and of the broader
design space.

9. Conclusions

'is article presents a full on-chip FPGA-based hardware
accelerator for on the edge keyword spotting. 'e KWS
system is described focusing on its realization through a
machine-learning algorithm and on traducing AI on the
edge paradigm.

Starting from a Keras–Pythonmodel of a KWS based on
a SCNN, the parameters of the network were quantized in
order to shrink the hardware resources needed for its re-
alization. CNNs have a large number of parameters and are
characterized by multiplying and accumulating operations
that make their implementation on an FPGA device chal-
lenging. Quantization analysis shows that fixed-point rep-
resentation does not significantly affect model accuracy. On
the contrary, it is possible to increase it for particular
combinations of input words, weight, and layer output
representations. 'en, the accelerator architecture is de-
scribed, focusing on design effort to exploit the intrinsic
parallelism of these devices. 'e SCNN accelerator was
implemented on several Xilinx and Intel FPGAs to analyse
design portability on different families. 'e obtained results
are presented in terms of maximum achievable clock fre-
quency, hardware resources needed for the network
implementation, energy per inference, and power con-
sumption. Finally, the proposed accelerator was compared
with a commercial solution for on the edge AI applications:
the Intel Movidius NCS. 'is analysis shows that with a
FPGA-based solution, it is possible to overcome NCS per-
formances in terms of inference time and energy per
inference.

Data Availability

'e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] D. M. Ramı́k, C. Sabourin, R. Moreno, and K. Madani, “A
machine learning based intelligent vision system for auton-
omous object detection and recognition,” Applied Intelligence,
vol. 40, no. 2, pp. 358–375, 2014.

[2] H. Zhang, K.-F. Wang, and F.-Y. Wang, “Advances and
perspective on applications of deep learning in visual object
detection,” Acta Automatica Sinica, vol. 43, no. 8, pp. 1289–
1305, 2017.

[3] L. Zhang, Z. He, and Y. Liu, “Deep object recognition across
domains based on adaptive extreme learning machine,”
Neurocomputing, vol. 239, pp. 194–203, 2017.

[4] R. Nian, B. He, and A. Lendasse, “3D object recognition based
on a geometrical topology model and extreme learning ma-
chine,” Neural Computing and Applications, vol. 22, no. 3-4,
pp. 427–433, 2013.

[5] G. Retsinas, G. Sfikas, N. Stamatopoulos, G. Louloudis, and
B. Gatos, “Exploring critical aspect of CNN-based keyword
spotting. A phocnet study,” in Proceedings of the 13th IAPR
International Workshop on Document Analysis Systems,
pp. 13–18, Vienna, Austria, April 2018.

[6] Y. B. Ayed, D. Fohr, J. P. Haton, and G. Chollet, “Keyword
spotting using support vector machines,” in Proceedings of the
5th International Conference on Text, Speech and Dialogue,
vol. 2448, pp. 285–292, Brno, Czech Republic, September
2002.

[7] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge:
keyword spotting on microcontrollers,” 2017, https://arxiv.
org/abs/1711.07128.

[8] Q. Zhang, M. Zhang, T. Chen et al., “Recent advances in
convolutional neural network acceleration,” Neurocomputing,
vol. 323, pp. 37–51, 2019.

[9] Neural compute Stick Documentation. https://software.intel.
com/en-us/movidius-ncs.

[10] Google Coral Datasheet: https://coral.withgoogle.com/
tutorials/accelerator-datasheet/.

[11] S. Mittal, “A survey of FPGA-based accelerators for con-
volutional neural networks,” Neural Computing and Appli-
cations, pp. 1–31, 2018.

[12] G. Benelli, G. Meoni, and L. Fanucci, “A low power keyword
spotting algorithm for memory constrained embedded sys-
tem,” in Proceedings of the 26th IFIP/IEEE International
Conference on Very Large Scale Integration, Verona, Italy,
October 2018.

[13] Keras Documentation. https://keras.io/.
[14] A. Mohamed, “Deep neural network acoustic models for

ASR,” Doctoral thesis, Toronto University, Toronto, Canada,
2014.

[15] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning, ICML, vol. 1, pp. 448–456, Lille, France, July 2015.

[16] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based accelerator design for deep con-
volutional neural network,” in Proceedings of the FPGA
2015—2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 161–170, Monterey, CA, USA,
February 2015.

12 International Journal of Reconfigurable Computing

https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs
https://coral.withgoogle.com/tutorials/accelerator-datasheet/
https://coral.withgoogle.com/tutorials/accelerator-datasheet/
https://keras.io/

[17] J. Qiu, J. Wang, S. Yao et al., “Going deeper with embedded
FPGA platform for convolutional neural network,” in Pro-
ceedings of the International Symposium on Field-Pro-
grammable Gate Arrays, pp. 26–35, Monterey, CA, USA,
February 2016.

[18] E. Nurvitadhi, D. Sheffield, J. Sim et al., “Accelerating
binarized neural networks: comparison of FPGA, CPU, GPU
and ASIC,” in Proceedings of the International Conference on
Field-Programmable Technology (FPT), pp. 77–84, Tokyo,
Japan, December 2016.

[19] S. Moini, B. Alizadeh, M. Emad, and R. Ebrahimpour, “A
resource-limited hardware accelerator for convolutional
neural networks in embedded vision applications,” IEEE
Transactions on Circuits and Systems II Express Briefs, vol. 64,
no. 10, pp. 1217–1221, 2017.

[20] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang, “Accelerating
low bit-width convolutional neural networks with embedded
FPGA,” in Proceedings of the 27th International Conference on
Field Programmable Logic and Applications (FPL), pp. 1–4,
Leuven, Belgium, September 2017.

[21] J. Park and W. Sung, “FPGA based implementation of deep
neural networks using on-chip memory only,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1011–1015, Shanghai, China,
March 2016.

[22] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient
processing of deep neural networks: a tuturial and survey,”
Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[23] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient and
high-throughput FPGA-based accelerator for convolutional
neural networks,” in Proceedings of the 13th IEEE In-
ternational Conference on Solid-State and Integrated Circuit
Technology (ICSICT), pp. 624–626, Hangzhou, China, Octo-
ber 2016.

[24] X. Zhang, X. Liu, A. Ramachandran et al., “High-performance
video content recognition with long-term recurrent con-
volutional network for FPGA,” in Proceedings of the 26th
International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–4, Leuven, Belgium, September
2017.

[25] J. H. Kim, B. Grady, R. Lian, J. Brothers, and J. H. Anderson,
“FPGA-based CNN inference accelerator synthesized from
multi-threaded C software,” in Proceedings of the 30th IEEE
International System-On-Chip Conference (SOCC), pp. 268–
273, Munich, Germany, September 2017.

[26] AMBAAdvanced Extensible Interface 4 Specifications. https://
www.arm.com/products/silicon-ip-system/embedded-system-
design/amba-specifications.

[27] Zynq UltraScale+ Family Datasheet. https://www.xilinx.com/
support/documentation/data_sheets/ds891-zynq-ultrascale-
plus-overview.pdf.

[28] Virtex UltraScale+ Family Datasheet. https://www.xilinx.com/
support/documentation/data_sheets/ds923-virtex-ultrascale-
plus.pdf.

[29] Virtex UltraScale Family Datasheet. https://www.xilinx.com/
support/documentation/data_sheets/ds890-ultrascale-overview.
pdf.

[30] Zynq-7000 Family Datasheet. https://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

[31] Virtex-7, Kintex-7 and Artix-7 Families’ Datasheet. https://
www.xilinx.com/support/documentation/data_sheets/ds180_
7Series_Overview.pdf.

[32] Arria 10 Family Overview. https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/hb/arria-10/
a10_overview.pdf.

[33] Stratix V Family Datasheet. https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/
stx5_51001.pdf.

[34] Cyclone V Family Datasheet. https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/hb/cyclone-
v/cv_51001.pdf.

[35] Quartus Prime Standard Edition. https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/
qts/archives/qts-qps-handbook-16.0.pdf.

[36] Rasberrey PI 3B Datasheet. https://www.terraelectronica.ru/pdf/
show?pdf_file�%252Fds%252Fpdf%252FT%252FTechicRP3.pdf.

[37] Y. Hout and H. Zhao, “Handwritten digit recognition based
on depth neural network,” in Proceedings of the International
Conference on Intelligent Informatics and Biomedical Sciences
(ICIIBMS), Shanghai, China, November 2017.

[38] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Transfer
learning for Latin and Chinese characters with deep neural
networks,” in Proceedings of the 2012 International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia,
June 2012.

[39] T. Secu, C. Puhrsh, B. Kingsbury, and Y. LeCun, “Very deep
multilingual convolutional neural networks for LVCSR,” in
Proceedings of the 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai,
China, March 2016.

[40] A. G. Howard, M. Zhu, B. Chen et al., “MobileNets: efficient
convolutional neural networks for mobile vision applica-
tions,” 2017, https://arxiv.org/abs/1704.04861.

International Journal of Reconfigurable Computing 13

https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/archives/qts-qps-handbook-16.0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/archives/qts-qps-handbook-16.0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/archives/qts-qps-handbook-16.0.pdf
https://www.terraelectronica.ru/pdf/show?pdf_file=%252Fds%252Fpdf%252FT%252FTechicRP3.pdf
https://www.terraelectronica.ru/pdf/show?pdf_file=%252Fds%252Fpdf%252FT%252FTechicRP3.pdf
https://arxiv.org/abs/1704.04861

Research Article
Implementing and Evaluating an Heterogeneous, Scalable,
Tridiagonal Linear System Solver with OpenCL to Target FPGAs,
GPUs, and CPUs

Hamish J. Macintosh ,1,2 Jasmine E. Banks ,1 and Neil A. Kelson2

1School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane,
Queensland 4001, Australia
2eResearch Office, Division of Research and Innovation, Queensland University of Technology, Brisbane,
Queensland 4001, Australia

Correspondence should be addressed to Hamish J. Macintosh; hj.macintosh@hdr.qut.edu.au

Received 27 February 2019; Revised 3 August 2019; Accepted 6 September 2019; Published 13 October 2019

Guest Editor: Sven-Bodo Scholz

Copyright © 2019 Hamish J. Macintosh et al. /is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Solving diagonally dominant tridiagonal linear systems is a common problem in scientific high-performance computing (HPC).
Furthermore, it is becomingmore commonplace for HPC platforms to utilise a heterogeneous combination of computing devices.
Whilst it is desirable to design faster implementations of parallel linear system solvers, power consumption concerns are in-
creasing in priority. /is work presents the oclspkt routine. /e oclspkt routine is a heterogeneous OpenCL implementation of the
truncated SPIKE algorithm that can use FPGAs, GPUs, and CPUs to concurrently accelerate the solving of diagonally dominant
tridiagonal linear systems. /e routine is designed to solve tridiagonal systems of any size and can dynamically allocate optimised
workloads to each accelerator in a heterogeneous environment depending on the accelerator’s compute performance. /e
truncated SPIKE FPGA solver is developed first for optimising OpenCL device kernel performance, global memory bandwidth,
and interleaved host to device memory transactions. /e FPGA OpenCL kernel code is then refactored and optimised to best
exploit the underlying architecture of the CPU and GPU. An optimised TDMA OpenCL kernel is also developed to act as a serial
baseline performance comparison for the parallel truncated SPIKE kernel since no FPGA tridiagonal solver capable of solving
large tridiagonal systems was available at the time of development. /e individual GPU, CPU, and FPGA solvers of the oclspkt
routine are 110%, 150%, and 170% faster, respectively, than comparable device-optimised third-party solvers and applicable
baselines. Assessing heterogeneous combinations of compute devices, the GPU+FPGA combination is found to have the best
compute performance and the FPGA-only configuration is found to have the best overall estimated energy efficiency.

1. Introduction

Given the ubiquity of tridiagonal linear system problems in
engineering, economic, and scientific fields, it is no surprise
that significant research has been undertaken to address the
need for larger models and higher resolution simulations.
Demand for solvers for massive linear systems that are faster
and more memory efficient is ever increasing. First proposed
in 1978 by Sameh and Kuck [1] and later refined in 2006 [2],
the SPIKE algorithm is becoming an increasingly popular
method for solving banded linear system problems [3–7].

/e SPIKE algorithm has been shown to be an effective
method for decomposing massive matrices whilst remaining
numerically stable and demanding little memory overhead
[8]. /e SPIKE algorithm has been implemented with good
results to solve banded linear systems using CPUs and GPUs
and in CPU+GPU heterogeneous environments often using
vendor-specific programming paradigms [6].

A scalable SPIKE implementation targeting CPUs and
GPUs in a clustered HPC environment to solve massive
diagonally dominant linear systems has previously been
demonstrated with good computation and communication

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 3679839, 13 pages
https://doi.org/10.1155/2019/3679839

mailto:hj.macintosh@hdr.qut.edu.au
https://orcid.org/0000-0002-1543-4499
https://orcid.org/0000-0003-1507-9682
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3679839

efficiency [5]. Whilst it is desirable to design faster imple-
mentations of parallel linear system solvers, it is necessary
also to have regard for power consumption, since this is a
primary barrier to exascale computing when using tradi-
tional general purpose CPU and GPU hardware [9, 10].

FPGA accelerator cards require an order of magnitude
less power compared to HPC grade CPUs and GPUs.
Previous efforts in developing FPGA-based routines to solve
tridiagonal systems have been limited to solving small
systems with the serial /omas algorithm [11–13]. We have
previously investigated the feasibility of FPGA imple-
mentations of parallel algorithms including the parallel
cyclic reduction and SPIKE [14] for solving small tridiagonal
linear systems. /is previous work utilised OpenCL to
produce portable implementations to target FPGAs and
GPUs. /e current work again utilises OpenCL since this
programming framework allows developers to target a wide
range of compute devices including FPGAs, CPUs, and
GPUs with a unified language.

An OpenCL application consists of C-based kernel code
intended to execute on a compute device and C/C++ host
code that calls OpenCL API’s to set up the environment and
orchestrate memory transfers and kernel execution. In
OpenCL’s programming model, a device’s computer re-
sources are divided up at the smallest level as processing
elements (PEs), and depending on the device architecture,
one or more PEs are grouped into one or many compute
units (CUs) [15]. Similarly, the threads of device kernel code
are called work items (WIs) and are grouped into work
groups (WGs). WIs and WGs are mapped to the PE and CU
hardware, respectively.

OpenCL’s memory model abstracts the types of
memory that a device has available. /ese are defined by
OpenCL as global, local, and private memory. Global
memory is generally hi-capacity off-chip memory banks
that can be accessed by all PEs across the device. Local
memory is on-chip memory and has higher bandwidth and
lower capacity than global memory and is only accessible to
PE of the same CU. Finally, private memory refers to on-
chip register memory space and is only accessible within a
particular PE.

/e motivation for this paper is to evaluate the feasibility
of utilising FPGAs, along with GPUs and CPUs concurrently
in a heterogeneous computing environment in order to
accelerate the solving of a diagonally dominant tridiagonal
linear system. In addition, we aimed at developing a solution
that maintained portability whilst providing an optimised
code base for each target device architecture and was capable
of solving large systems. As such, we present the oclspkt
routine, an heterogeneous OpenCL implementation of the
truncated SPIKE algorithm that can dynamically load bal-
ance work allocated to FPGAs, GPUs, and CPUs concur-
rently or in isolation, in order to solve tridiagonal linear
systems of any size. We evaluate the oclspkt routine in terms
of computational characteristics, numerical accuracy, and
estimated energy consumption.

/is paper is structured as follows: Section 2 provides
an introduction to diagonally dominant tridiagonal linear
systems and the truncated SPIKE algorithm. Section 3

describes the implementation of the oclspkt-FPGA
OpenCL host and kernel code and the optimisation pro-
cess. /is is followed by the porting and optimisation of
the oclspkt-FPGA kernel and host code to the GPU and
CPU devices as oclspkt-GPU and oclspkt-CPU. Section 3
concludes with discussion of the integration of the three
solvers to produce the heterogeneous oclspkt solver. In
Section 4, the individual solvers are compared to optimised
third-party tridiagonal linear systems solvers. /e three
solvers are further compared in terms of estimated energy
efficiency, performance, and numerical accuracy in ad-
dition to an evaluation of different heterogeneous com-
binations of the oclspkt. Finally, in Section 5, we draw
conclusions from the results and discuss the implications
for future work.

2. Background

2.1. Tridiagonal Linear Systems. A coefficient band matrix
with a bandwidth of β � 1 in the linear system Ax � y is
considered tridiagonal:

A �

a1,1 a1,2

a2,1 a2,2 a2,3

⋱ ⋱ ⋱

an− 1,n− 2 an− 1,n− 1 an− 1,n

an,n− 1 an,n

⎡⎢⎢⎣

⎤⎥⎥⎦

, (1)

d � min
Ai,i

i≠j Ai,j

. (2)

For nonsingular diagonally dominant systems where
d> 1 in equation (2), a special form of nonpivoting
Gaussian elimination called the /omas algorithm [16] can
perform LU decomposition in Θ(n) operations. /e
/omas algorithm provides good performance when
solving small tridiagonal linear systems; however, since this
algorithm is intrinsically serial, it fails to scale well in highly
parallel computing environments. More advanced, in-
herently parallel methods must be applied if the problem
requires solving large systems. Many parallel algorithms
exist for solving tridiagonal and block tridiagonal linear
systems and are implemented in well-established numerical
libraries [17–19].

2.2. ,e SPIKE Algorithm. /e SPIKE algorithm [2] is a
polyalgorithm that uses domain decomposition to partition
a banded matrix into mutually independent subsystems
which can be solved concurrently. Consider the tridiagonal
linear system AX � Y where A is n × n in size with only a
single right-hand side vector Y. We can partition the system
into p partitions of m elements, where k � (1, 2, . . . , p), to
give a main diagonal partition Ak, off-diagonal partitions Bk

and Ck, and the right-hand side partition Yk:

2 International Journal of Reconfigurable Computing

Ak �

ai,j ai,j+1

ai+1,j ai+1,j+1 ai+1,j+2

⋱ ⋱ ⋱

ai+m− 2,j+m− 3 ai+m− 2,j+m− 2 ai+m− 2,j+m− 1

ai+m− 1,j+m− 2 ai+m− 1,j+m− 1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

,

Bk, Ck, Yk �

0 amk+1,m(k− 1) ymk

⋮ ⋮ ⋮

am(k+1)− 1,m(k+1) 0 ym(j+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3)

/e coefficient matrix partitions are factorised so A �

DS where D is the main diagonal block matrix and S is the
SPIKE matrix as shown in the following equation:

DS �

A1

A2

⋱ ⋱ ⋱

Ap− 1

Ap

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

·

I V1

W2 I V2

⋱ ⋱ ⋱

Wp− 1 I Vp− 1

Wp I

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

.

(4)

where Vk � (Ak)− 1Bk for k � 1, . . . , p − 1 and
Wk � (Ak)− 1Bk for k � 2, . . . , p. By first solving DF � Y,
the solution can be retrieved by solving SX � F. As SX � F is
the same size as the original system, solving for X can be
simplified by first extracting a reduced system of the
boundary elements between partitions to form S X � F as
shown in equation (5), where t and b denote the top- and
bottommost elements of the partition:

1 0 Vt
1 0

0 1 Vb
1 0

0 Wt
2 1 0

0 Wb
2 0 1

⋱ ⋱ ⋱

1 0 Vt
p− 1 0

0 1 Vb
p− 1 0

0 Wt
p 1 0

0 Wb
p 0 1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

·

Xt
1

Xb
1

Xt
2

Xb
2

⋮

Xt
p− 1

Xb
p− 1

Xt
p

Xb
p

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

�

Ft
1

Fb
1

Ft
2

Fb
2

⋮

Ft
p− 1

Fb
p− 1

Ft
p

Fb
p

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (5)

/e reduced system S is a sparse banded matrix of size
2p × 2p and has a bandwidth of 2. Polizzi and Sameh [2]
proposed strategies to handle solving the reduced system.
/e truncated SPIKE algorithm states for a diagonally
dominant system where d> 1 (equation (2)) the reduced
SPIKE partitions Vt

k and Wb
k can be set to zero [2]. /is

truncated reduced system takes the form of p − 1 in-
dependent systems as shown in equation (6) which can be
solved easily using direct methods:

1 Vb
k

Wt
k+1 1

⎡⎣ ⎤⎦
Xb

k

Xt
k+1

⎡⎣ ⎤⎦ �
Fb

k

Ft
k+1

⎡⎣ ⎤⎦, k � 1, . . . , p − 1. (6)

With X computed, the remaining values of X can be
found with perfect parallelism using the following equation:

A1X1 � F1 − Vb
1X

t
2,

AkXk � Fk − Vb
kXt

k+1 − Wt
kXb

k− 1, k � 2, . . . , p − 1.

ApXp � Fp − Wt
pXb

p− 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Mikkelsen and Manguoglu [20] conducted a detailed
error analysis of the truncated SPIKE algorithm and showed
that a reasonable approximation of the upper bound of the
infinity norm is dependent on the degree of diagonal
dominance, the partition size, and bandwidth of the matrix
given by

|x − x|∞ ≈ d
− m/β

. (8)

3. Implementation

/e general SPIKE algorithm consists of four steps: (1)
partitioning the system, (2) factorising the partitions, (3)
extracting and solving the reduced system, and (4) re-
covering the overall solution.

For diagonally dominant tridiagonal linear systems, the
truncated SPIKE algorithm may be employed. /is requires
only the bottom SPIKE element vb

km and top SPIKE element
wt

km+1 in order to resolve the boundary unknown elements
xb

km and xt
km+1 [2]. /is decouples the partition from the rest

of the matrix and can be achieved by performing only the
forward-sweep steps of LU factorisation, referred to as LUFS,
and forward-sweep steps of UL factorisation, referred to as
ULFS. LUFS and ULFS will be computed for partitions k and
k + 1 for k � 1, 2, . . . , p − 1.

/e factorised right-hand side elements fb
km and ft

km+1
and SPIKE elements wt

km+1 and vb
km are used to form and

solve the reduced system SkX̂k � Fk using equation (6) to
produce xb

km and xt
km+1. /is algorithmic step is referred to

as RS.
/e remaining elements of the solution Xk can then be

recovered with equation (7) via the back-sweep step of LU,
referred to as LUBS, and the back-sweep step UL factor-
isation, referred to as ULBS, on the top and bottom half of the
partitions k and k + 1, respectively. We use the /omas
algorithm to compute the forward- and back-sweep fac-
torisation steps giving the overall complexity of our trun-
cated SPIKE algorithm as O(n). A high-level overview of the
anatomy and execution flow of our oclspkt routine is shown
in Figure 1. /e oclspkt solver expects the size of the system
n, the RHS vector Y, and the tridiagonal matrix split into
vectors of its lower diagonal L, main diagonal D, and upper
diagonal U as inputs. /e solution vector X is returned.

In the following subsections, we describe the truncated
SPIKE algorithm implementation for the FPGA (oclspkt-
FPGA) using OpenCL and the development considerations
to obtain optimised performance. As a part of this process,
we design and implement an optimised TDMA OpenCL
kernel to act as a serial baseline performance comparison for

International Journal of Reconfigurable Computing 3

the parallel truncated SPIKE kernel. Since the optimised
TDMA implementation is constrained by the available
global memory bandwidth, we are able to make genuine
comparisons of FPGA hardware utilisation and computa-
tional complexity for these two kernels.

We then discuss the process of porting and optimising
the oclspkt code for CPU and GPU. Finally, we describe
integrating the three oclspkt (FPGA, GPU, and CPU)
implementations as a heterogeneous solver. /e specific
hardware we target for these implementations are Bittware
A10PL4 FPGA, NVIDIA M4000 GPU, and the Intel Xenon
E5-1650 CPU.

3.1. FPGAImplementation. In order to take advantage of the
FPGA’s innate pipelined parallelism, we implement both the
TDMA and truncated SPIKE algorithm as single work item
kernels. A single work item kernel has no calls to the
OpenCL API for the local or global relative position in a
range of work items. /is allows the Intel FPGA compiler to
pipeline as much of the kernel code as possible, whilst not
having to address WI execution synchronisation and access

to shared memory resources. /is reduces the OpenCL
FPGA resource consumption overhead, allowingmore of the
logic fabric to be used for computation.

3.1.1. TDMA Kernel Code. We found no suitable FPGA
implementation of a tridiagonal linear system solver able to
solve large systems. In order to provide a suitable perfor-
mance baseline for the more complex SPIKE algorithm, we
implemented the /omas algorithm or TDMA with
OpenCL. /e TDMA implementation calculates the for-
ward-sweep and backsubsitution for one block of the input
system at a time, effectively treating the FPGA’s on-chip
BRAM as cache for the current working data. /e block size
m is set as high as possible and is only limited by the available
resources on the FPGA. An OpenCL representation of the
kernel implementation is shown in Figure 2.

/e forward-sweep section loadsm elements of the input
vectors L, D, U, Y, from off-chip DDR4 RAM to on-chip
BRAM. With this input, the upper triangular and modified
RHS is calculated, overwriting the initial values of D and Y.
D and Y are then written back to DDR4 RAM due to BRAM
limitation on the FPGA. /e forward-sweep section iterates
over 1, . . . , p blocks. /e back-substitution section loadsm
elements of D, U, and Y vectors and writes m elements of X

after recovering the solution via back-substitution./e back-
substitution section iterates over p, . . . , 1 blocks.

3.1.2. Truncated SPIKE Kernel Code. An OpenCL algorithm
representation of the truncated SPIKE kernel spktrunc is
shown in Figure 3. /e FPGA oclspkt implementation ex-
ecutes p iterations of its main loop, loading one block of the
linear system given, where block size is m, and we solve 1
partition per iteration of the main loop.

A partition of size m is loaded from global memory and
partitioned as per equation (3). LUFS(k) and ULFS(k) are
executed concurrently to compute and store half of the
upper and lower triangular systems [D′UY′]k((m/2); m)

and [LD′Y′]k(1; (m/2)), and the SPIKE elements vb
k andwt

k,
respectively. Next, using yb

k− 1 and vb
k− 1 from the previous

iteration and yt
k and wt

k as inputs for RS(k), the boundary
elements xb

k− 1 and xt
k are computed.

Finally, Xk(1; (m/2)) and Xk− 1((m/2); m) are then
recovered with ULBS(k) and LUBS(k − 1) of [LD′Y′]k

(1; (m/2)) and [D′UY′]k− 1((m/2); m). [D′UY′]k

((m/2); m) and vb
k are stored for the next iteration of the

main loop. /e FPGA solver is initialised with an upper
triangular identity matrix in [D′UY′]k− 1((m/2); m) for
k � 0.

/is results in a streaming linear system solver where
loading in a block of partitions at the start of the pipeline will
compute a block of the solution vector with a − (m/2) ele-
ment offset.

3.1.3. Host Code. On the host side, in order to interleave the
PCIe memory transfers to the device with the execution of
the solver kernel, we create in-order command queues for
writing to, executing on, and reading from the FPGA.

oclspkt-FPGA

O
pe

nC
L

de
vi

ce
ho

st
co

de

O
pe

nC
L

ke
rn

el
 co

de
H

et
er

og
en

eo
us

w
ra

pp
er

 co
de

GPU

GPU

CPU

CPU

FPGA

FPGA

OpenCL platform
initialisation

Partitioning and
load balancing

Recover
boundary
solutions

Input
{n, L, D, U, Y}

Output
{X}

oclspkt-GPU oclspkt-CPU

oclspkt

Execution location:
FPGA card
GPU card
Host CPU

Figure 1: An overview of the anatomy and execution flow of the
oclspkt solver.

4 International Journal of Reconfigurable Computing

We create two copies of read-only memory objects
L, D, U, Y and a write-only memory object X. /e spktrunc
kernel and the FPGA’s DMA controller for the PCIe bus
share the total bandwidth of the DDR4 RAM bank. To
maximise FPGA global memory bandwidth, the device
memory objects are explicitly designated specific RAM bank
locations on the FPGA card in such a way that the PCIe to
device RAM, and device RAM to FPGA bandwidth, is
optimised.

/e execution kernel is enqueued as a 1-by-1-by-1 di-
mension task with arguments p, L, D, U, Y, and X, where
p, the number of partitions to solve, is given by
ceil((n/m) + 1). /e execution kernel is scheduled and
synchronised with the write and read operations of the
device memory objects using OpenCL event objects.

/e kernel code is dependent on the partition size m, so
memory buffers for the input and output vectors are created
as 1-by-size vectors, where size is given by p × m. /e input
matrix consists of lower, main, and upper diagonal vectors of
A and a single right-hand side vector Y is stored in row-
major order.

/e memory objects L, D, U, Y are padded with an
identity matrix and zeros in order to accommodate linear
systems where m is not a factor of n, giving the overall
memory requirement as 5 × size.

As the kernel is implemented as a single work item, this
allows for single-strided memory access patterns when the
FPGA loads partitions from global memory for processing.
/is means that it is not necessary to implement a preex-
ecution data marshalling stage as is often required for SIMD
or SIMD-like processors.

3.1.4. Kernel Complexity and Hardware Utilisation. /e
FLOP requirements for our TDMA and truncated SPIKE
OpenCL kernels are presented in Table 1. /e TDMA kernel
has significantly fewer FLOPs compared to the truncated
SPIKE kernel. /is is expected as the TDMA kernel only
computes the LU factorisation and back-substitution,
compared to the more computationally complex truncated
SPIKE polyalgorithm described previously. However, since
the TDMA kernel requires the upper triangular matrix of the
entire system to be stored to global memory as an in-
termediate step and then subsequently reread, the TDMA
kernel requires double the number of FPGA to off-chip
memory transactions in comparison with the truncated
SPIKE kernel.

/e FLOP and memory transaction requirements shown
in Table 1 are reflected in the FPGA kernel hardware uti-
lisation presented in Table 2. OpenCL requires a static
partition of the available FPGA hardware resources in order
to facilitate host to FPGA memory transfers and OpenCL
kernel execution. Per Table 2, this static partition is sig-
nificant, consuming at least 10% of measured resource types.
/e total resource utilisation for each kernel is given by the
addition of OpenCL static resource utilisation and the
kernel-specific resource utilisation.

/e more computationally complex truncated SPIKE
kernel requires more lookup tables (ALUT), flip-flops (FF),
and digital signal processor (DSP) tiles than the TDMA
kernel. /e TDMA kernel however requires more block
RAM (BRAM) tiles due to implementing a greater number
of load store units to cater for the extra global memory
transactions. Furthermore, both kernels are constrained by
the available amount of BRAM on the FPGA, with the
BRAM utilisation by far the highest resource utilisation for
both kernels.

3.1.5. FPGA OpenCL Optimisation Considerations. Our
implementation of the truncated SPIKE algorithm is global
memory bandwidth constrained. It requires large blocks of
floating point data to be accessible at each stage of the al-
gorithm. By far the largest bottleneck to computational
throughput is ensuring coalesced aligned global memory
transactions.

When loading matrix partitions from the global to local
or private memory, a major optimisation consideration is
the available bandwidth on the global memory bus. /e
available bandwidth per memory transaction is 512 bits, and
the load-store units that are implemented by the Intel FPGA

L
D

U
Y

X

LUFS

LUBS

tdma

L
D

U
Y

X

Global
mem PC

I b
us

PC
I b

rid
ge

IO
 b

us

Host
mem

FPGA

Figure 2: /e FPGA TDMA OpenCL kernel tdma, with the ex-
ecution path and data dependencies shown. /e tdma executes as a
single WI kernel.

ULFSLUFS

ULBSLUBS

RSZ–1

spktrunc

L
D

U
Y

X

Global
mem

FPGA

PC
I b

us
PC

I b
rid

ge
IO

 b
us

L
D

U
Y

X

Host
mem

Figure 3: /e FPGA truncated SPIKE OpenCL kernel spktrunc,
with the execution path and data dependencies shown. /e
spktrunc executes as a single WI kernel.

International Journal of Reconfigurable Computing 5

compiler are of the size 2b bits where bmin � 9 and bmax is
constrained by the available resources on the FPGA.
/erefore, to ensure maximum global memory bandwidth
with the aforementioned constraints, we set partition size m
to 32 for single precision floating point data for both kernels
resulting in 1024 bit memory transactions.

/e value ofm is hard-coded and known at compile time
allowing for unrolling of the nested loops at the expense of
increased hardware utilisation. Unrolling a loop effectively
tells the compiler to generate a hardware instance for each
iteration of the loop, meaning that if there are no loop-
carried dependencies, the entire loop is executed in parallel.
However, for loops with carried dependencies such as LU/
UL factorisation, each iteration cannot execute in parallel.
Nonetheless, this is still many times faster than sequential
loop execution despite the increase in latency that is de-
pendent on the loop size.

Loop unrolling is our primary computational opti-
misation step, thereby allowing enough compute band-
width for our kernel to act as a streaming linear system
solver. Note that in our optimisation process, we either
fully unroll loops or not at all. It is possible to partially
unroll loops for a performance boost when hardware
utilisation limitations do not permit a full unroll. Partially
unrolling a loop can however be inefficient since the
hardware utilisation does not scale proportionally with the
unroll factor due to the hardware overhead required to
control the loop execution.

3.2. Porting the Truncated SPIKE Kernel to CPU and GPU.
In order to investigate the full potential for a heterogeneous
computing implementation of the truncated SPIKE algo-
rithm for solving tridiagonal linear systems of any size, we
exploited the portability of OpenCL. We modified the host
and kernel code used for the FPGA implementation to target
CPU and GPU hardware. To achieve this, it was necessary to
make modification to the host and kernel side memory
objects and data access patterns, remap the truncated SPIKE
algorithm to different kernel objects, and modify the work

group sizes and their mapping to compute units with respect
to CPU and GPU hardware architecture.

3.2.1. Partitioning and Memory Mapping. /e memory
requirements for CPU and GPU implementations are de-
pendent on the partitioning scheme for each device. /e
memory required to solve for a partition of sizemmultiplied
by a multiple of the GPU’s preferred work group size must
be less than the available local memory. /is constrains the
size and number of partitions m, since it is preferable to
maximise the occupancy of the SIMD lane whilst ensuring
that sufficient local memory is available.

Unlike the GPU, all OpenCL memory objects on the
CPU are automatically cached into local memory by
hardware [21]. However, considering that the CPU has a
lower compute unit count, we maximise the partition sizem
to minimise the number of partitions, thereby minimising
the operation count required to recover the reduced system.
/e relative values for p and size in terms of m and work
group size are shown in Table 3.

For our implementation of the truncated SPIKE algo-
rithm for the CPU and GPU, the host and kernel memory
requirements are five 1-by-size vectors, L, D, U, Y, X, of the
partitioned system and four 1-by-(p + 2) vectors,
V, W, Yt, Yb, of the reduced system. By storing the values
for V, W, Yt, Yb in a separate global memory space, we
remove the potential for bank conflicts in memory trans-
actions that may occur if the reduced system vectors are
stored in place in the partitioned system.

/e reduced system memory objects are padded with
zeros to accommodate the top- and bottommost partitions
j � 0 and j � p removing the need for excess control code in
the kernel to manage the topmost and bottommost parti-
tions. Further, to ensure data locality for coalesced memory
transactions on both the CPU and GPU, the input matrix is
transformed in a preexecution data marshalling step. /e
data marshalling transforms the input vectors so that data
for adjacent work items are sequential instead of strided.
/is allows the data to be automatically cached and for

Table 1: FLOP and global memory transactions required for the TDMA and truncated SPIKE FPGA kernels.

Operation TDMA Truncated SPIKE
ADD/SUB 3mp (5m + 3)p

MUL 3mp (6m + 5)p

DIV 3mp (3m + 3)p

MEM 10mp 5mp

Table 2: FPGA hardware utilisation for the OpenCL static portion, TDMA, and truncated SPIKE kernels, and total utilisation for each
implementation (static+ kernel).

Resource OpenCL static (%)
TDMA Truncated SPIKE

Kernel (%) Total (%) Kernel (%) Total (%)
ALUTs 13 14 27 18 31
FFs 13 10 23 13 23
BRAMs 16 52 68 49 65
DSPs 10 16 26 27 37

6 International Journal of Reconfigurable Computing

vector processing of work items on the CPU and for full
bandwidth global memory transactions on the GPU.

3.2.2. Remapping the Kernel. In contrast to the FPGA
implementation of the truncated SPIKE algorithm, for the
CPU and GPU implementations, we split the code into two
separate kernels for the CPU and three separate kernels for
the GPU. /is allows for better work group scheduling and
dispatching for multiple compute unit architectures as we
enqueue the kernels for execution as arrays of work items
known as an NDRange in OpenCL’s parlance.

In remapping the kernel to the CPU, the underlying
architecture provides relatively few processing elements per
compute unit and a fast clock speed. As such, in order to
make best use of this architecture, the number of partitions
of the truncated SPIKE algorithm should be minimised,
thereby ensuring allocation of work groups of the maximum
possible size to each compute unit to ensure maximum
occupancy. Figure 4 shows an OpenCL representation of the
CPU implementation, its execution order, and data path.

For the CPU implementation, we use the partitioning
scheme proposed by Mendiratta [22]. We compute the LU
and UL forward-sweep factorisation in the spkfaccpu kernel
where we apply UL factorisation to elements 0 to 2mmin and
apply LU factorisation to elements mmin to m where mmin is
the smallest partition size required to purify the resulting
factorisations of error as per equation (8). /is reduces the
overall operation count and is only possible when m≫mmin.
/e spktfaccpu kernel is enqueued as a p-by-1-by-1 NDRange,
in a single in-order command queue.

/e reduced system and the recovery of the overall
solution are handled by a second kernel spktrec. /e spktrec
kernel is enqueued as per spktfaccpu in a single in-order
command queue. /e reduced system is solved, and the
boundary unknown elements are recovered and used to
compute the UL back-sweep of elements 0 to mmin − 1 and
the LU back-sweep of elements m to mmin.

In contrast to the CPU, the GPU has many processing
elements per compute unit and a relatively low clock speed.
In order to optimise performance, it was important to
maximise the number of partitions of the SPIKE algorithm,
by reducing the partition size and thereby ensuring maxi-
mum occupancy of the processing elements. Figure 5 shows
an OpenCL representation of the GPU implementation, its
execution order, and data path.

For the GPU, partitioning the system and the LU andUL
factorisation of the code are handled by the first kernel,
spkfactgpu. Unlike the CPU, the GPU computes the entire
block size m of the UL and the LU factorisations. Only the
top half of the UL and the bottom half of the LU results are
then stored in global memory in order to reduce global

memory transactions and overall global memory space re-
quirements. /e reduced system and the recovery of the
overall solution are handled by two kernels, spktreclu and
spktrecul. spktreclu and spktrecul only load the bottom half of
partition m and top half of partition m, respectively, to
compute the back-sweep portions of LU and UL factorisa-
tion. /e three kernels are again enqueued as p-by-1-by-1
NDRange in in-order command queues for writing to, ex-
ecuting on, and reading from the GPU. As with the FPGA,
this effectively interleaves the PCIe data transfer with kernel
execution.

3.3. ,e Heterogeneous Solver. We further extend our
truncated SPIKE implementation to utilise all available

Table 3: oclspkt kernel partitioning schemes.

Device Partitions (p) size
FPGA ceil(n/m) + 1 p × m

GPU n/(WGsize × m) p × m × WGsize
CPU n/(CUs × WGsize) p × CU × WGsize

V
b

W
t

Y
t

Y
b

X
L

D
U

Y

ULFSLUFS

RSHIRSLO

LUBS ULBS

spkfact

a. = spkrec

a.

IO
 b

us Host
mem

CPU

Figure 4: /e CPU truncated SPIKE OpenCL kernels spkfact and
spkrec, with the execution path and data dependencies shown. Both
kernels are executed as an NDRange of work items.

V
b

W
t

Y
t

Y
b

X
L

D
U

Y

V
b

W
t

Y
t

Y
b

X
L

D
U

Y

ULFSLUFS

RSHIRSLO

LUBS ULBS

a. b.

spkfact

a. = spkreclu; b. = spktrecul

Global
mem PC

I b
us

PC
I b

rid
ge

IO
 b

us Host
mem

GPU

Figure 5: /e GPU truncated SPIKE OpenCL kernels spkfact,
spkrecul, and spkreclu, with the execution path and data de-
pendencies shown. All kernels are executed as an NDRange of work
items.

International Journal of Reconfigurable Computing 7

computation resources available on a platform, as shown in
Figure 1.

/is heterogeneous solver first checks for available de-
vices on the host using OpenCL APIs and then queries if
device profiling data exist for found devices. If profiling data
are not available for all devices, each device will be allocated
an even portion of the input system and profiling data will be
collected on the next execution of the solver. Otherwise, each
device will be allocated a portion of the input system de-
termined by the percentage of the total system throughput
over the individual devices’ previously recorded throughput.
/roughput in this case includes data transit time across the
PCIe bus, data marshalling, and compute time of the kernel.

/e heterogeneous solver then asynchronously dis-
patches chunks of the input data to the devices, executes the
device solvers, and recovers the solution. /e interchunk
boundary solutions recovered from the devices are cleansed
of error by executing a “top” level of the truncated SPIKE
algorithm on the chunk partitions.

4. Evaluation

In the following subsections, we evaluate the oclspkt routine
in terms of compute performance, numerical stability, and
estimated power efficiency. /e results presented use single
precision floating point and all matrices are random and
nonsingular, and the main diagonal has a diagonal domi-
nance factor d> 3.

All results presented in this paper have been executed on
a Dell T5000 desktop PC with an Intel Xeon CPU E5-1620
v4, 64GB of RAM, a Bittware A10PL4 FPGA, and a NVIDIA
M4000 GPU; full specifications are listed in Table 4.

4.1. Compute Performance. To evaluate the compute per-
formance of the oclspkt, we first only consider the kernel
execution time for our target devices in isolation, assuming
predistributed memory. In Figure 6, we show the time to solve
a system where N � 256 × 106, specifically identifying the
solution and data marshalling components of the overall
execution time. We set N to 256 × 106 in-order to showcase
the best possible performance for the computing-device only
without introducing PCI memory transactions. In this ex-
periment, the GPU kernel takes on average 78.4ms to solve the
tridiagonal system, where the FPGA and CPU are 2.6 and 4.8×

slower at 200ms and 376ms, respectively. Furthermore, when
also considering the data marshalling overheads required by
the GPU and CPU kernels, the GPU is still the quickest at
152ms with the FPGA and CPU now 1.3 and 6.1× slower.

/e compute performance figures are not surprising
when we consider that the performance of oclspkt is bound
by the available memory bandwidth. For large matrices, the
global memory transactions required for oclspkt-GPU and
oclspkt-CPU are ≈13N where the oclspkt-FPGA solver
requires ≈5N. We can estimate the performance of the
compute devices using the required memory transactions of
the individual solvers and with the total available memory
bandwidth of the devices. Performance estimation is cal-
culated using MT/B, where MT is the number of required

memory transactions and B is the maximum available
memory bandwidth. /e estimated relative estimated per-
formance is calculated to be 1, 2.17, and 4.57× slower for the
GPU, FPGA, and CPU, respectively (normalised for the
GPU). /ese values closely correspond to the measured
relative performance of the kernel solve time in Figure 6.

In Figure 7, we compare these results to other di-
agonally dominant tridiagonal solver algorithms, our
TDMA FPGA kernel, a CUDA-GPU implementation,
dgtsv, [6], the Intel MKL sdtsvb routine [23], and a se-
quential CPU implementation of the TDMA. For each of
the three target devices, our oclspkt implementation out-
performs the comparison routines for solving a tridiagonal
system of N � 256 × 106. /e oclspkt (FPGA) is 1.7× faster
than the TDMA (FPGA) kernel, the oclspkt (GPU)
implementation is 1.1× faster than the dgtsv, and our
oclspkt (CPU) is 1.5 and 3.5× faster than the sdtsvb and
TDMA CPU solvers, respectively. Note that for each of
these results, we include any data marshalling overhead,
but exclude host to PCIe device transfer time.

A comparison of the compute performance targeting
single and heterogeneous combinations of devices executing
the oclspkt routine is shown in Figure 8. We normalise the
performance metric to rows solved per second (RSs− 1) to
provide a fair algorithmic comparison across different device
hardware architectures. Furthermore, when evaluating the
heterogeneous solver performance of oclspkt, we use a ho-
listic system approach, which includes the host to device
PCIe data transfer times for the FPGA and GPU devices, and
all data marshalling overheads. As shown in Table 5, the
GPU+FPGA device combination has the best average
maximum performance. /e GPU+FPGA device combi-
nation performs 1.38× better than the next best device, the
GPU-only, and performs 2.48× better than the worst per-
forming device, the CPU-only implementation.

Curiously, we would expect performance metrics of the
heterogeneous combinations of devices to be close to the
summation of the individual device performance metrics. In
fact, our results show that only the GPU+FPGA hetero-
geneous performance is close to the summation of the GPU
and FPGA-only performance at 88% of the theoretical total.
/e CPU+FPGA, CPU+GPU, and CPU+GPU+FPGA
average maximum performance are only 65%, 51%, and
55%, respectively.

Table 4: Specifications for Dell T5000 desktop PC.

Component Specification
CPU Intel Xeon E5-1620 v4 @ 3.50GHz

GPU NVIDIA M4000 8GB GDDR5
PCIe G3 x16

FPGA
Bittware A10PL4 w/

Intel Arria 10 GX 8GB DDR4
PCIe G3 x8

RAM 64GB DDR4 @ 2400MHz
OS CentOS 7.4

Software

ICC 18.0.3
CUDA 9.0

Intel Quartus Pro 17.0
Intel OpenCL SDK 7.0.0.2568

8 International Journal of Reconfigurable Computing

0 500 1000 1500 2000 2500 3000

TDMA (CPU)

sdtsvb (CPU)

oclspkt (CPU)

dgtsv (GPU)

oclspkt (GPU)

oclspkt (FPGA)

TDMA (FPGA)

Time (ms) to solve N = 256M

Figure 7: Comparing time (ms) to solve a system of size N � 256 × 106 using oclspkt, dgtsv, sdtsvb, and TDMA.

CPU
FPGA

CPU + FPGA
CPU + GPU

CPU + GPU + FPGA
GPU

GPU + FPGA

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

256
512

768
1024

1280

Ro
w

s s
ol

ve
d/

se
co

nd
 (×

10
8)

Size of matrix (×106)

Heterogeneous compute performance of oclspkt

Figure 8: Performance comparison in rows solved per second for N � (256 . . . 1280) × 106 when targeting CPU, GPU, FPGA, and
heterogeneous combinations of devices.

0 100 200 300 400 500 600 700 800 900 1000

CPU

GPU

FPGA

Time (ms) to solve N = 256 × 106

Data marshalling
Solve

Figure 6: Time (ms) to solve a system of size N � 256 × 106 using oclspkt, targeting CPU, GPU, and FPGA devices.

International Journal of Reconfigurable Computing 9

For the PCIe attached devices, the GPU and FPGA
performance metrics are determined by the available PCIe
bus bandwidth. We have provisioned primary and sec-
ondary memory spaces in the GPU and FPGA global
memory space. /is allows the oclspkt routine to execute the
OpenCL kernel on the primary memory space whilst writing
the next input chuck to the secondary memory space. /is
ensures the PCIe bus, and available memory bandwidth is
being used in an efficient way. /at is to say, the OpenCL
kernel execution time (Figure 6) is completely interleaved
with the host to device memory transfers. As such, the
M4000 GPU card with 16 PCIe Gen 3.0 lanes available will
outperform the A10PL4 FPGA card with 8 PCIe Gen 3.0
lanes regardless of the kernel compute performance. Simi-
larly, the CPU performance is determined by the available
host RAM bandwidth.

Using the de facto industry standard benchmark for
measuring sustained memory bandwidth, STREAM [24, 25],
our desktop machine, specified in Table 4, has a maximum
measured memory bandwidth of 42GBs− 1. Profiling our
CPU implementation of oclspkt using Intel VTune Amplifier
shows very efficient use of the available memory bandwidth
with sustained average 36GBs− 1 and peak 39GBs− 1 memory
bandwidth utilisation. /is saturation of host memory

bandwidth by the CPU solver creates a processing bottleneck
and negatively affects the PCIe data transfer to the FPGA
and GPU./is, coupled with the heterogeneous partitioning
scheme described in subsection 3.3, will favour the increase
in the chunk size of the input system allocated for CPU
computation on each successive invocation of the oclspkt
routine and subsequently decrease the performance of GPU
and FPGA devices.

One thing that may increase the performance of the
CPU + [GPU | FPGA |GPU + FPGA] combinations of
solvers is to change the workload partitioning scheme to
only look at data marshalling and kernel execution times,
excluding the PCIe data transfer times. /is would mean on
successive calls of the routine the host would be tuned to
send more workload to the GPU and FPGA and minimise
the workload allocated to the CPU, thus improving
performance.

4.2.NumericalAccuracy. In Figure 9, we show the numerical
accuracy of the oclspkt in terms of the infinity norm of the
known and calculated results, varied by the diagonal
dominance of the input matrix compared to the TDMACPU
implementation. /e TDMA approaches the machine

Table 5: Maximum observed average (n� 16) compute performance and estimated energy efficiency of oclspkt for devices and hetero-
geneous combinations.

Device Compute performance Estimated energy efficiency
CPU 279 1.39
GPU 501 12.9
FPGA 280 28.6
CPU+GPU 396 1.67
CPU+FPGA 365 1.81
GPU+FPGA 691 15.6
CPU+GPU+FPGA 431 2.06

1E – 8

1E – 7

1E – 6

1E – 5

1E – 4

1E – 3

1E – 2

1E – 1

1E + 0

1E + 1

1.2 1.4 1.5 1.6 1.8 2 2.2 2.4 2.6 2.8

||X
 –

 X
ca

l||
∞

Diagonal dominance factor (d)

Numerical accuracy

oclspkt (GPU)
oclspkt (FPGA)

oclspkt (CPU)
TDMA (CPU)

Figure 9: Numerical accuracy of oclspkt for varying diagonal dominance compared to CPU TDMA solver.

10 International Journal of Reconfigurable Computing

epsilon value for single precision floating point numbers
when the diagonal dominance of the input system is 2,
whereas the oclspkt for the CPU, GPU, and FPGA requires a
diagonal dominance of 2.8 to achieve a similar accuracy.
Equation (8) shows that an approximation of the upper
bound of the infinity norm error is dependent on the SPIKE
partition size, the bandwidth, and the degree of diagonal
dominance. As the GPU and FPGA partition sizes and the
small CPU partition sizes are equal, that is,
mGPU � mFPGA � mCPUmin

, the numerical accuracy for all
implementations is expected to be very similar.

4.3. Estimated Energy Consumption and Efficiency. To de-
termine estimated energy consumption in Joules for each
device, we used the manufacturer’s rated thermal design
power (TDP) and multiplied it by the kernel execution time
for data marshalling and solved steps of the oclspkt. TDP

represents the average power in watts used by a processor
when the device is fully utilised. Whilst this is not a precise
measurement of power used to solve the workload, it
nevertheless provides a relative interdevice benchmark. /e
TDP of theM4000 GPU is 120W, the Xeon E-1650 is 140W,
and the A10PL4 FPGA is 33W.

When solving a system of N � 256 × 106 as shown in
Figure 10, the FPGA implementation uses 2.8× less and 20×

less energy than the GPU and CPU implementations, re-
spectively. Further, in Figure 11, we can see the estimated
energy efficiency of each hardware configuration of oclspkt
in rows solved per Joule. Across the range of the experiment,
each solver shows consistent results with the FPGA-only
solver estimated to be the most energy-efficient peaking at
28 × 106 rows solved per Joule.

/e FPGA-only solver is estimated to be on average 1.8×

more energy efficient than the next best-performing solver,
the GPU+FPGA, and is 20.0×more energy efficient than the

0 20 40 60 80 100 120 140

CPU

GPU

FPGA

Energy (J) to solve N = 256 × 106

Figure 10: Joules required to solve a tridiagonal system of N � 256 × 106 per device using the oclspkt routine.

CPU

CPU + GPU
CPU + GPU + FPGA

CPU + FPGA
GPU

GPU + FPGA
FPGA

0

5

10

15

20

25

30

256
512

768
1024

1280

Ro
w

s s
ol

ve
d/

jo
ul

e (
×1

06)

Size of matrix (×106)

Heterogeneous energy efficiency of oclspkt

Figure 11: Estimated energy efficiency: comparison in rows solved per second for N � (256 . . . 1280) × 106 for oclspktwhen targeting CPU,
GPU, FPGA, and heterogeneous combinations of devices.

International Journal of Reconfigurable Computing 11

poorest performing CPU-only solver. /is is not surprising
since the TDP for the FPGA is an order of magnitude smaller
than the other devices. Similarly to the heterogeneous results
in subsection 4.1, the addition of the CPU solver significantly
constrains the available bandwidth to host memory slowing
down the PCIe data transfer rates. In turn, this pushes more
work to the CPU solver and slows down the overall compute,
and since the CPU has the highest TDP, this exacerbates the
poor energy efficiency.

5. Conclusion

In this paper, we presented a numerically stable heteroge-
neous OpenCL implementation of the truncated SPIKE
algorithm targeting FPGAs, GPUs, CPUs, and combinations
of these devices. Our experimental case has demonstrated
the feasibility of utilising FPGAs, along with GPUs and
CPUs concurrently in a heterogeneous computing envi-
ronment in order to accelerate the solving of a diagonally
dominant tridiagonal linear system. When comparing our
CPU, GPU, and FPGA implementation of oclspkt to a
suitable baseline implementation and third-party solvers
specifically designed and optimised for these devices, the
compute performance of our implementation showed 150%,
110%, and 170% improvement, respectively.

Profiling the heterogeneous combinations of oclspkt
showed that targeting the GPU+FPGA devices gives the best
compute performance and targeting FPGA-only will give the
best estimated energy efficiency. Also adding our highly
optimised CPU implementation to a heterogeneous device
combination with PCIe attached devices significantly reduced
the expected performance of the overall system. In our ex-
perimental case, with a compute environment that has CPUs,
GPUs, and FPGAs, it is advantageous to relegate the CPU to a
purely task orchestration role instead of computation.

Under our experimental conditions, all device compute
performance results are memory bandwidth constrained.
Whilst the GPU kernel compute performance is several
times faster than the FPGA kernel, the FPGA test hardware
has several times less available memory bandwidth. As high-
bandwidth-data transfer technology is introduced to the new
generations of FPGA accelerator boards, this performance
gap between devices is expected to close. Given the signif-
icantly lower power requirements, incorporation of FPGAs
has the potential to reduce some of the power consumption
barriers currently faced by HPC environments as we move
towards exascale computing.

A natural progression of this work would be to extend
the oclspkt routine to be able to solve nondiagonally
dominant and block tridiagonal linear systems. Further, it
would be advantageous to extend the heterogeneous par-
titioning routine to be able to tune the solver to maximise
energy efficiency where desired. A part of this extension
would involve a more detailed power analysis and direct in-
line monitoring of the host power usage.

An extension of this work may also seek to account for
memory bottlenecks detected on successive invocations of
the solver further enhancing performance in heterogeneous
applications.

Data Availability

/e source code and data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

/e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

/is project utilised the High-Performance Computing
(HPC) Facility at the Queensland University of Technology
(QUT). /e facility is administered by QUT’s eResearch
Department. Special thanks go to the eResearch Department
for their support, particularly for providing access to spe-
cialist FPGA and GPU resources.

References

[1] A. H. Sameh and D. J. Kuck, “On stable parallel linear system
solvers,” Journal of the ACM, vol. 25, no. 1, pp. 81–91, 1978.

[2] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system
solver: the SPIKE algorithm,” Parallel Computing, vol. 32,
no. 2, pp. 177–194, 2006.

[3] E. Polizzi and A. Sameh, “SPIKE: a parallel environment for
solving banded linear systems,” Computers & Fluids, vol. 36,
no. 1, pp. 113–120, 2007.

[4] M. Manguoglu, F. Saied, A. Sameh, and A. Grama, “Per-
formance models for the SPIKE banded linear system solver,”
in Proceedings of the 2010 Ninth International Symposium on
Parallel and Distributed Computing (ISPDC), IEEE, Istanbul,
Turkey, July 2010.

[5] X. Wang, Y. Xu, and W. Xue, “A hierarchical tridiagonal
system solver for heterogenous supercomputers,” in Pro-
ceedings of the 2014 5th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, IEEE, New
Orleans, LA, USA, November 2014.

[6] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-M. W. Hwu,
“A scalable, numerically stable, high-performance tridiagonal
solver using GPUs,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis, pp. 1–11, IEEE Computer Society Press,
Salt Lake City, UT, USA, November 2012.

[7] H. Gabb, “Intel® adaptive SPIKE-based solver,” Technical
report, Intel, Santa Clara, CA, USA, 2010.

[8] L. W. Chang and W. M. Hwu, A Guide for Implementing
Tridiagonal Solvers on GPUs, Springer, Berlin, Germany, 2014.

[9] J. Mair, Z. Huang, D. Eyers, and Y. Chen, “Quantifying the
energy efficiency challenges of achieving exascale computing,”
in Proceedings of the 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 943–
950, IEEE, Shenzhen, China, May 2015.

[10] M. U. Ashraf, F. Alburaei Eassa, A. Ahmad Albeshri, and
A. Algarni, “Performance and power efficient massive parallel
computational model for HPC heterogeneous exascale sys-
tems,” IEEE Access, vol. 6, pp. 23095–23107, 2018.

[11] D. J. Warne, N. A. Kelson, and R. F. Hayward, “Solving tri-
diagonal linear systems using field programmable gate ar-
rays,” in Proceedings of the 4th International Conference on

12 International Journal of Reconfigurable Computing

Computational Methods (ICCM 2012), Gold Coast, QLD,
Australia, November 2012.

[12] D. J.Warne, N. A. Kelson, and R. F. Hayward, “Comparison of
high level FPGA hardware design for solving tri-diagonal
linear systems,” Procedia Computer Science, vol. 29, pp. 95–
101, 2014.

[13] S. Palmer, Accelerating Implicit Finite Difference Schemes
Using a Hardware Optimised Implementation of the ,omas
Algorithm for FPGAs, Cornell University, Ithaca, NY, USA,
2014.

[14] H. Macintosh, D. Warne, N. A. Kelson, J. Banks, and
T. W. Farrell, “Implementation of parallel tridiagonal solvers
for a heterogeneous computing environment,” ,e ANZIAM
Journal, vol. 56, pp. 446–462, 2016.

[15] B. R. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa,
“Chapter 2—introduction to OpenCL,” in Heterogeneous
Computing with OpenCL, B. R. Gaster, L. Howes, D. R. Kaeli,
P. Mistry, and D. Schaa, Eds., pp. 15–38, Morgan Kaufmann,
Burlington, MA, USA, 2nd edition, 2013.

[16] B. P. Flannery, S. Teukolsky, W. H. Press, and
W. T. Vetterling, Numerical Recipes in FORTRAN: ,e Art
of Scientific Computing, Cambridge University Press,
Cambridge, UK, 1992.

[17] P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland, “A
comparison of parallel solvers for diagonally dominant and
general narrow-banded linear systems II,” in Euro-Par’99
Parallel Processing, pp. 1078–1087, Springer, Berlin, Germany,
1999.

[18] C. R. Dun, M. Hegland, and M. R. Osborne, “Parallel stable
solution methods for tridiagonal linear systems of equations,”
in Proceedings of the Computational Techniques and Appli-
cations Conference (CTAC95), pp. 267–274, World Scientific
Publishing, River Edge, NJ, USA, August 1996.

[19] M. Hegland, “On the parallel solution of tridiagonal systems
by wrap-around partitioning and incomplete LU factoriza-
tion,” Numerische Mathematik, vol. 59, no. 1, pp. 453–472,
1991.

[20] C. C. K. Mikkelsen and M. Manguoglu, “Analysis of the
truncated SPIKE algorithm,” SIAM Journal on Matrix
Analysis and Applications, vol. 30, no. 4, pp. 1500–1519, 2008.

[21] Intel Corporation, “Developer guide for Intel® Sdk for
openCL™ applications,” 2018, https://software.intel.com/en-
us/openclsdk-devguide-2017.

[22] K. Mendiratta, “a banded SPIKE algorithm and solver for
shared memory architectures,” Masters’ thesis, University of
Massachusetts, Amherst, MA, USA, 2011.

[23] Intel Corporation, “?dtsvb,” 2018, https://software.intel.com/
en-us/mkl-developer-reference-c-dtsvb.

[24] J. D. McCalpin, “STREAM: sustainable memory bandwidth in
high performance computers,” Technical report, University of
Virginia, Charlottesville, VA, USA, 1995.

[25] J. McCalpin, Memory Bandwidth and Machine Balance in
High Performance Computers, IEEE Technical Committee on
Computer Architecture Newsletter, 1995.

International Journal of Reconfigurable Computing 13

https://software.intel.com/en-us/openclsdk-devguide-2017
https://software.intel.com/en-us/openclsdk-devguide-2017
https://software.intel.com/en-us/mkl-developer-reference-c-dtsvb
https://software.intel.com/en-us/mkl-developer-reference-c-dtsvb

