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Many aspects in the management of healthcare systems are
quantitative, the amount of data within the health care
increases by the minute, and, in reality, it makes difficult for
healthcare systems to identify the insights into what is most
valuable for the patients. Data-driven approach to health (or
health economic) outcome assessment, artificial intelligence,
and mathematical, computational, methodological, and
technological advances are the core of effective healthcare
system management [1–3].

Modeling in medicine is a valuable tool in the planning
and evaluation of interventions, especially when a clinical
trial is ethically or logistically impossible [4, 5]. #e de-
velopment of such mathematical models used to simulate
medical outcomes is a growing area in medicine. #e
mathematical modeling is known by various names like
predictive modeling, simulation, or decision analysis. In
general, modeling techniques are used for health service
planning, effectiveness and outcome assessment, healthcare
financing and budget impact assessment, health economic
assessments, infectious disease surveillance, health service
outcomes predicting purposes, and other applications in
health care. Mathematical modeling is also helpful when
limitations like a rare event prohibit implementing RCTand
similar studies or expanding research on actual patients due
to time, ethical, legal, financial, technical, and other limi-
tations [6, 7].

With this special issue, we add to the literature by pro-
viding case studies and practical examples of mathematical

modeling and models for optimal decision-making in health
care. We aim to address questions from data analytics, solving
problems in predicting outcomes for clinical medicine and
public health.

Blood pressure (BP) is one of the indispensable elements
of physiological health characteristics and a significant in-
dicator for predicting and diagnosing hypertension and
cardiovascular diseases. Q. Wang et al. proposed a two-
domain fusion model to estimate BP continuously from
pulse wave acquired with a pressure sensor. In more detail,
the optimal external pressure applied on the pressure sensor
was first determined in order to capture pulse wave in the
radial artery. #e captured pulse wave was then processed in
both the time and frequency domains via filtering and fast
Fourier transform. A set of features were extracted from
these two domains and input into a neural network along
with blood pressure values measured by a commercial
sphygmomanometer for training. Finally, the model was
tested on new data for accuracy evaluation, and the proposed
two-domain fusion method achieved a high degree of ac-
curacy in measuring blood pressure.

H. Shang et al. proposed an improvement for ECG
analysis, namely, improved sliding window area method for
T wave detection. It allows better detection of T wave onset
and offset, which allows improving clinical diagnosis as well
as daily heart monitoring.

A. K. Heikhmakhtiar and K. M. Lim proposed com-
putational prediction of the combined effect of CRT and
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LVAD on cardiac electromechanical delay in the failing
ventricle with left bundle branch blocked (LBBB) and right
bundle branch blocked (RBBB) conditions. #e subjects
were normal sinus rhythm, LBBB, RBBB, LBBB with CRT-
only, RBBB with CRT-only, LBBB with CRT+LVAD, and
RBBB with CRT+LVAD. #e results showed that the CRT-
only shortened the total electrical activation time (EAT) in
the LBBB and RBBB conditions by 20.2% and 17.1%, re-
spectively. #e CRT-only reduced the total mechanical ac-
tivation time (MAT) and electromechanical delay (EMD) of
the ventricle under LBBB by 21.3% and 10.1%, respectively.
Furthermore, the CRT-only reduced the contractile aden-
osine triphosphate (ATP) consumption by 5%, increased left
ventricular (LV) pressure by 6%, and enhanced cardiac
output (CO) by 0.2 L/min under LBBB condition. However,
CRT-only barely affected the ventricle under RBBB condi-
tion. Under the LBBB condition, CRT+LVAD increased LV
pressure and CO by 10.5% and 0.9 L/min, respectively.
CRT+LVAD reduced ATP consumption by 15%, shortened
the MAT by 23.4%, and shortened the EMD by 15.2%. In
conclusion, they computationally predicted and quantified
that the CRT+LVAD implementation is superior to CRT-
only implementation particularly in HF with LBBB condition.

Magnetic resonance imaging has been widely used in
diagnostic imaging for general checkup in clinical practice,
especially in detection and diagnosis of brain diseases.
However, brain MR imaging has some lacks such as noise,
intensity inhomogeneity, low contrast, and partial volume
effect , which brings serious obstacles to segment the brain
MR images. #e study of J. Song and Z. Zhang presented a
novel and more robust method to noise in the brain
magnetic resonance imaging, together with a more effective
estimation method of the bias field.

Automatic segmentation of different images is one of the
most important topics in medicine. L. Cao et al. discuss
application of Random Forests Stacks for automatic seg-
mentation of pathological glomerular basement membranes
in TEM images. It allows faster observation of morpho-
logical changes, reducing manual and laborious work of
specialists. Another exercise in image processing is discussed
in J. Song and Z. Zhang. Improvements for brain tissue
segmentation and bias field correction of MR images are
proposed and evaluated. #e results are promising and
potentially can deal with noise in brain MR images.

In conventional radiotracer and drug development, poor
bench-to-bedside translation often results due to the dif-
ferences between in vitro and in vivo conditions [8]. #e
study by Y.-H. Nai and H.Watabe evaluated the feasibility of
extending the amyloid-validated screening methodology to
support the development of tau PET radiotracers, where
more challenges like off-target binding exist. #is is the first
in silico method investigated, which uses the physico-
chemical and pharmacological properties of the compounds
to support tau PET radiotracers developments. 22 PET ra-
diotracers reported to bind to tau proteins were investigated,
including 9 clinically applied and tau-focused radiotracers. #e
study supported the use of the screening methodology in ra-
diotracer development by allowing comparison of candidate
radiotracers with clinically applied radiotracers based on

SUVR, with respect to binding to a single target, and provides
some insights to guide the development of in silico models in
supporting the development of tau radiotracers.

Automatic identification of relevant biomarkers is one of
the important steps towards personalized treatment. B.
Haller et al. evaluate applicability of a number of methods,
for example, Cox regression with linear interaction, Mul-
tivariable Fractional Polynomials for Interaction (MFPI),
Local Partial Likelihood Bootstrap (LPLB), and the Sub-
population Treatment Effect Pattern Plot (STEPP), for
biomarker identification. Experiments on randomized
clinical trials show that the Cox regression works best when
interactions are monotonous and the number of events is
low. When complexity increases, MFPI and LPLB out-
perform other methods. #e authors recommend applica-
tion of statistical methods developed for assessment of
interactions between continuous biomarkers and treatment
instead of arbitrary or data-driven categorization of con-
tinuous covariates.

#e study of D. Liu et al. applies similarity measures of
single and interval valued neutrosophic sets based on Eu-
clidean distance for diagnostics. Novel theoretical model is
developed in the paper, and its effectiveness is demonstrated
on generalized diagnosis, showing that it performs well in
solving a multiple criteria decision process. #e proposed
similarity measures were applied to medical diagnosis de-
cision problems, and a number of examples were used to
illustrate the feasibility and effectiveness of the proposed
similarity measure.

Coreference resolution is a challenging part of natural
language processing (NLP) with applications in machine
translation, semantic search, and other information retrieval
and decision support systems. V. Žitkus et al. presented a
method for coreference resolution in the Lithuanian lan-
guage and its application for processing e-health records
from a hospital reception. #e novelty of their proposed
method is the ability to process coreferences with minimal
linguistic resources, which is important in linguistic appli-
cations for rare and endangered languages. #eir experi-
mental results have shown that coreference resolution is
applicable to the development of NLP-powered online
healthcare services in Lithuania.

Computer-aided models for mammographic breast
cancer diagnosis (MBCD) have been explored for over thirty
years [9]. #e study of L. Zou et al. dedicated to the tech-
nique of CNN applied in a specific application of MBCD,
and it aims to provide clues on how to use CNN in intelligent
diagnosis. #is study is restricted to peer-reviewed journal
publications, and consequently, technical details and pros
and cons of each model can be delivered. Furthermore,
based on how to use CNN techniques, theMBCDmodels are
broadly categorized into three groups. One is to design
shallow models or to modify existing models for decreased
time cost and medical instances for training; another is to
make the best use of a pretrained CNN model by transfer
learning and parameter fine-tuning; and the third is to take
advantage of CNN models for feature extraction, while the
differentiation between malignant and benign lesions is
based on machine learning classifiers. At last, findings,
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challenges, and limitations are summarized, and some clues
on the future work are also given. At present, the design and
use of CNN-based MBCD is at its early stage and result-
oriented. #e ultimate goal of using deep learning tools is to
facilitate clinical practice. #is review provides benefits to
scientific researchers, industrial engineers, and those who
are devoted to intelligent cancer diagnosis.

#e past application of mathematical models in medi-
cine also has been proven useful in cardiovascular diseases
(CVDs). #e study of O. Saidi et al. aimed to describe a
comprehensive Markov model based on both a probabilistic
multivariate approach and simple linear regression meta-
modeling using the model to evaluate the effects of increases
in uptake of stroke treatments, lifestyle changes, and primary
prevention among the Tunisian population aged 35–94 years
in 2025. It examined three interventions: improved medical
treatments in the acute phase, secondary prevention of
stroke by increasing the prescribing of statins, and primary
prevention aiming to reduce salt intake.

Type-1 diabetes is a condition caused by the lack of
insulin hormone, which leads to an excessive increase in
blood glucose level.#e glucose kinetics process is difficult to
control due to its complex and nonlinear nature and with
state variables that are difficult to measure. P. D. Ngo et al.
proposed a method for automatically calculating the basal
and bolus insulin doses for patients with type-1 diabetes
using reinforcement learning with a feedforward controller.
#e proposed controller also improved the blood glucose
responses and prevented hypoglycemia condition. Simula-
tion of the control system in different uncertain conditions
provided insights on how the inaccuracies of carbohydrate
counting and meal-time reporting affect the performance of
the control system. As a conclusion, the proposed controller
is an effective tool for reducing postmeal blood glucose rise
and for countering the effects of external known events such
as meal intake and maintaining blood glucose at a healthy
level under uncertainties.

In the paper of B. H. Lichae et al., the fractional-order
differential model of HIV-1 infection of CD4+ T-cells with
the effect of drug therapy has been introduced. #ere are
three components: uninfected CD4+ T-cells, x, infected
CD4+ T-cells, y, and density of virions in plasma, z. #e aim
is to gain numerical solution of this fractional-order HIV-1
model by the Laplace Adomian decomposition method
(LADM). #e solution of the proposed model has been
achieved in a series form. Moreover, to illustrate the ability
and efficiency of the proposed approach, the solution has
been compared with the solutions of some other numerical
methods. #e Caputo sense has been used for fractional
derivatives.

Beds are key, scarce medical resources in hospitals. #e
study of L. Luo et al. aimed to balance the utilization of
existing beds in a large tertiary hospital in China.#e author
developed a data-driven hybrid three-stage framework in-
corporating data analysis, simulation, and mixed integer
programming to minimize the gaps in bed occupancy rates
(BOR) among different departments. #e first stage is to
calculate the length of stay (LOS) and BOR of each de-
partment and identify the departments that need to allocate

beds. In the second stage were used a fitted arrival distri-
bution and median LOS as the input to a generic simulation
model. In the third stage was built a mixed integer pro-
gramming model using the results obtained in the first two
stages to generate the optimal bed allocation strategy for
different departments. #e case study demonstrated the
effectiveness of the proposed data-driven hybrid three-stage
framework and provides hospital bed policy makers with a
feasible solution for bed allocation.

Mathematical models are often used and prove their
applicability for optimal decision-making. #ey are also
useful to derive estimates of rare or future events from
recorded intermediate points. When developing models,
decisions are needed about the appropriate level of com-
plexity to be represented and about model structure and
assumptions.
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Identification of relevant biomarkers that are associated with a treatment effect is one requirement for adequate treatment
stratification and consequently to improve health care by administering the best available treatment to an individual patient.
Various statistical approaches were proposed that allow assessing the interaction between a continuous covariate and treatment.
Nevertheless, categorization of a continuous covariate, e.g., by splitting the data at the observed median value, appears to be very
prevalent in practice. In this article, we present a simulation study considering data as observed in a randomized clinical trial with
a time-to-event outcome performed to compare properties of such approaches, namely, Cox regression with linear interaction,
Multivariable Fractional Polynomials for Interaction (MFPI), Local Partial-Likelihood Bootstrap (LPLB), and the Subpopulation
Treatment Effect Pattern Plot (STEPP) method, and of strategies based on categorization of continuous covariates (splitting the
covariate at the median, splitting at quartiles, and using an “optimal” split by maximizing a corresponding test statistic). In
different scenarios with no interactions, linear interactions or nonlinear interactions, type I error probability and the power for
detection of a true covariate-treatment interaction were estimated.)e Cox regression approach was more efficient than the other
methods for scenarios with monotonous interactions, especially when the number of observed events was small to moderate.
When patterns of the biomarker-treatment interaction effect were more complex, MFPI and LPLB performed well compared to
the other approaches. Categorization of data generally led to a loss of power, but for very complex patterns, splitting the data into
multiple categories might help to explore the nature of the interaction effect. Consequently, we recommend application of
statistical methods developed for assessment of interactions between continuous biomarkers and treatment instead of arbitrary or
data-driven categorization of continuous covariates.

1. Introduction

For medical decision making, predictive biomarkers play an
important role for various diseases [1–4]. A biomarker is
called “predictive,” if the difference between the effectiveness
of two or more treatment options depends on the value of
that biomarker [5, 6]. In the presence of a qualitative
biomarker-treatment interaction [7], i.e., when the choice of
the “optimal” treatment for a given patient depends on the
patient’s value of a certain biomarker, the biomarker can be
used for treatment stratification [8]. Biomarkers used in
clinical practice for treatment stratification are, e.g., the
human epidermal growth factor receptor 2 (HER-2) status
for breast cancer patients [9, 10] or presence of epidermal

growth factor receptor (EGFR) mutation in non-small cell
lung cancers (NSCLC) [11]. Consequently, the identification
of biomarkers that allow prediction of the treatment effect
when different treatment options are available is essential to
increase clinical decision making in the sense of a stratified
or personalized medicine [12].

In practice, investigation of such treatment effect het-
erogeneity over the range of a certain biomarker in data
obtained from a randomized clinical trial is often performed
by subgroup analyses [13], where the difference in outcome
between the study groups, quantified, e.g., by a hazard
ratio, an odds ratio, or a mean difference, is estimated for
patient subgroups with similar characteristics [14] and
compared using a statistical test for interaction, which can be
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performed by including the product of the biomarker and
the variable indicating treatment allocation in an appro-
priate regression model [15, 16]. While this procedure is
intuitive and straightforward for categorical variables, e.g.,
gender or presence of comorbidities as diabetes, in-
vestigation of treatment effect heterogeneity with respect to
continuous variables, e.g., age or continuously measured
blood parameters, requires categorization of the variable,
when subgroup analyses are to be performed. Such cate-
gorization of continuous variables was criticized due to loss
of information leading to a loss of power for detection of true
interactions, implication of biological implausible effects,
and lack of comparability of results from different studies
[17, 18]. )erefore, various approaches were proposed in the
literature that allow to model and test for treatment effect
heterogeneity over the range of a continuous variable that do
not require categorization of the variable [19–21].

In this article, we describe a simulation study comparing
different approaches for detection of an interaction between
one (predefined) continuous covariate and treatment. We
simulated data as they would be expected to be collected in a
randomized clinical trial intended to compare efficacy of two
treatment groups or of treatment versus placebo. Conse-
quently, patients are allocated randomly into one of two
treatment arms and the distribution of the variable of in-
terest (often referred to as a biomarker [22]) is expected to be
the same for both treatment groups. As most predictive
biomarkers were identified for treatment of cancer [23], a
time-to-event outcome is considered, as typically overall
survival or progression-free survival is considered as pri-
mary endpoint in randomized phase III oncological trials
[24]. Results obtained by methods relying on categorization
of the continuous variable as well as methods that do not use
such categorization were investigated. We considered a
method splitting the continuous biomarker at its median to
determine two subgroups for further analysis, the use of four
subgroups determined by splitting data at the quartiles, and
use of an “optimal” cutoff value found by maximization of
the Wald statistics of the interaction term in a Cox re-
gression model. Additionally, we applied the Subpopulation
Treatment Effect Pattern Plot (STEPP) approach that in-
corporates overlapping subgroups [25], the Cox regression
model [26] assuming a linear covariate-treatment in-
teraction term, the Multivariable Fractional Polynomials for
Interaction (MFPI) approach that incorporates nonlinear
transformations for the interaction term [19], and the Local
Partial-Likelihood Bootstrap (LPLB) that uses local esti-
mates of the treatment effect at different values of the
variable of interest [27]. Different scenarios with absence
and presence of biomarker-treatment interactions were
investigated in order to estimate and compare type I error
probability and statistical power of the different approaches
under the given scenarios. Sample size and censoring dis-
tribution are varying to investigate the impact of these
characteristics on the outcome.

)e article is organized as follows. In Section 2, the
simulation study is described. )e different methods used
for identification of a biomarker-treatment interaction are
shortly introduced in Section 2.1, and references to original

articles and further articles including more detailed de-
scriptions of the considered methods are given. )e setting
of the simulation study and the relevant aspects that were
varied are described in Section 2.2. Results of the simulation
study, namely, observed type I error probabilities for sce-
narios with no true biomarker-treatment interactions and
estimates for statistical power for scenarios with truly
present biomarker-treatment interactions, are presented in
Section 3. A discussion of the results with concluding re-
marks and strengths and limitations of our simulation study
is given in Section 4.

2. Methods

)e methods investigated in the simulation study are de-
scribed in Section 2.1. Details on the settings used in the
simulation study and the data generating process are given
in Section 2.2. Data were generated and analysed using the
statistical software R [28]. Cox regression was performed
using the function coxph provided in the R library survival
[29, 30]. For convenience, the continuous covariate of in-
terest will be called “biomarker” and denoted as Z
throughout the section. Treatment allocation will be rep-
resented by a binary treatment variable T with T � 0, 1{ },
where T � 1 represents, e.g., an experimental treatment and
T � 0 a placebo control or standard treatment. As it appears
to be the most relevant effect size in practice, homogeneity of
the hazard ratio between the study groups in regard to the
biomarker of interest was investigated. For all statistical
tests, a significance level of α � 5% was used. Exact 95%
confidence intervals for rejection probabilities were
calculated.

2.1. Methods Used to Test for a Biomarker-Treatment
Interaction

2.1.1. Median Split. In many applications investigating
treatment-effect heterogeneity in regard to a continuous
biomarker, individuals are divided into two subgroups of
equal size.)is is achieved by splitting the data at the median
of the biomarker Z. )is procedure will be denoted as
“Median split” in this article. A binary indicator variable that
is assigned the value of one if the biomarker value is above or
equal to the observed median and zero else is derived. To test
for biomarker-treatment interaction, a Cox regression
model with this indicator variable, the binary treatment
indicator, and their product (the interaction term) is fitted to
the data.)e p value of theWald test for the interaction term
was used to decide whether the null hypothesis of no
biomarker-treatment interaction can be rejected on the
prespecified significance level of α � 5%.

2.1.2. Quartile Split. As an alternative approach, individuals
were divided into four subgroups with splits at the corre-
sponding quartiles of the biomarker of interest (“Quartile
split”). )e categorical variable indicating the corresponding
subgroup was used as a dummy coded nominal independent
variable in a Cox regression model. Additionally, the binary
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treatment indicator and an interaction term between the
dummy coded categorical variable indicating the biomarker
quartile and treatment were included. A likelihood ratio test
with three degrees of freedom provided in the R library car
[31] was performed to test for presence of a biomarker-
treatment interaction.

2.1.3. “Optimal” Split. For this approach, henceforth called
“Optimal split”, an “optimal” cutoff value for splitting the
continuous variable into two subgroups was determined in a
first step. Of all possible cutoff values (restricted to a
minimum subgroup size of 10% of the overall sample size),
the one leading to the largest value of the Wald statistic for
the interaction term between the dichotomized biomarker
and treatment in a Cox regression model also including the
corresponding main effects as independent variables was
used to define the subgroups for assessment of treatment
effect heterogeneity. In a second step, these subgroups were
treated as if they were predefined subgroups, and assessment
of a biomarker-treatment interaction was performed as
described for the Median split procedure in Section 2.1.1.

2.1.4. Subpopulation Treatment Effect Pattern Plot (STEPP)
Method. )e Subpopulation Treatment Effect Pattern Plot
(“STEPP”) method was proposed by Bonetti and Gelber
[25]. In the STEPP procedure, heterogeneity of the treatment
effect over the range of a biomarker of interest is assessed by
estimating the effect in multiple overlapping subgroups.
Additionally, methods for estimation of simultaneous
confidence intervals and for testing the null hypothesis of no
biomarker-treatment interaction were developed [25, 32].
Two different versions, a “tail-oriented” and a “sliding
window” approach, were proposed initially. In our simu-
lation study, we used the “sliding window” approach, where
the number of individuals within two consecutive subgroups
is held (approximately) constant by adding and eliminating
the same number of observations and the number of ob-
servations overlapping between two consecutive subgroups
is chosen a priori. For our analysis, the number of in-
dividuals within each subgroup was chosen to be n/5 and the
number of overlapping individuals to be n/10. So, the
subgroup sizes were 50, 100, and 200 for scenarios with 250,
500, and 1000 observations, and the number of overlapping
observations was 25, 50, and 100, respectively. )is led to a
total number of nine subgroups considered irrespective of
the sample size. A test on homogeneity of the hazard ratio
over all subgroups was performed to test for a biomarker-
treatment interaction. A permutation test as recommended
in [32] was conducted using 500 permutations for each
simulated dataset. Further details on the STEPP procedure
can be found in [33, 34]. For application of STEPP, the R
library stepp [35] was used.

2.1.5. Cox Regression Model with Linear Interaction. To
avoid categorization of the continuous biomarker of interest
Z, a Cox regression model [26] assuming a linear interaction
between Z and treatment T was considered. )is procedure

implies that the log-hazard ratio between the study groups is
linearly associated with the biomarker value. )e main ef-
fects of the biomarker Z, the treatment group T, and their
product Z × T were used as independent variables in a Cox
regression model. )e p value of the Wald test for the in-
teraction term was considered to decide on rejection of the
null hypothesis of no biomarker-treatment interaction. )is
procedure will be called “Cox model with linear interaction”
or shortly “Cox (linear Int.)” throughout the article.

2.1.6. Multivariable Fractional Polynomials for Interaction
(MFPI). To allow for nonlinear interaction terms, Royston
and Sauerbrei proposed the Multivariable Fractional Poly-
nomials for Interaction (“MFPI”) approach [19], which is
based on the Multivariable Fractional Polynomials (MFP)
approach presented by Royston and Altman [36]. A non-
linear transformation is considered for the biomarker of
interest, and amodel includingmain effects of treatment and
the transformed biomarker as well as their interaction is
compared to amodel including only the correspondingmain
effects. In the original publication, a model with two
polynomial transformations p1 and p2 (FP2) out of the set
p ∈ −2,−1,−0.5, 0, 0.5, 1, 2, 3{ }, where p � 0 indicates a
logarithmic transformation, was described. Identification of
the best transformation was proposed to be determined in
the model without an interaction term by finding the
combination of transformations providing the highest (log-)
likelihood value (later called flex1 approach). Based on the
results of a simulation study [37, 38] considering a con-
tinuous outcome, an alternative approach with only one
polynomial transformation (FP1) and separate de-
termination of the best transformation in the model with
and without interaction (flex3, potentially leading to non-
nested models) was recommended. We applied both ap-
proaches, the FP2-flex1 and the FP1-flex3 approach, to our
simulated data. To test for presence of a biomarker-
treatment interaction, likelihood ratio tests comparing the
models with and without interaction terms were performed
for both strategies.

2.1.7. Local Partial-Likelihood Bootstrap (LPLB). Another
method proposed in the literature for modelling nonlinear
interaction effects between a continuous biomarker and
treatment is the Local Partial-Likelihood Estimation pro-
posed by Fan et al. [21]. Liu et al. developed a bootstrapping
method, called Local Partial-Likelihood Bootstrap (“LPLB”),
that allows to test for the presence of an overall treatment
effect and to test whether the treatment effect is heteroge-
neous over the range of a continuous biomarker [27]. In the
LPLB approach, linear approximations of the treatment
effect estimate at a given biomarker value are obtained by
first-order Taylor approximations using weighted data in the
local neighbourhood of the biomarker value of interest. )e
proposed bootstrap test makes use of the residual bootstrap
[39]. )e obtained local estimates of the log-hazard ratio are
compared to the estimate obtained from a standard Cox
regression model assuming a constant treatment effect over
the biomarker range. )e maximum observed standardized
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difference of the local estimates to the constant log-hazard
ratio is considered as test statistic. For our simulation study,
we used the R library lplb [40] to apply the LPLB procedure.
Local estimates were obtained for every decile of the em-
pirical biomarker distribution. A bandwidth, indicating the
amount of observations in the neighbourhood used for local
estimation, of 0.2 was used and an Epanechnikov kernel was
considered for weighting. Five hundred bootstrap samples
were drawn for each generated dataset.

2.2. Simulation Settings. Data were generated to mimic data
observed in a randomized clinical trial primarily intended
for comparison of two different treatment options. Conse-
quently, simulated individuals were randomly allocated to
one of two treatment groups (T � 0, 1{ }) with equal prob-
ability for each group. )e covariate of interest was ran-
domly generated from a uniform distribution with a
minimum value of zero and a maximum value of one. Event
times were drawn from an exponential distribution with the
individual hazard rate depending on the allocated treatment
group and the drawn covariate value as described in Section
2.2.1. Censoring times were drawn from exponential dis-
tributions with rates as described in Section 2.2.3. )e lower
value of the two time variables was allocated as observed
time and an observed event was indicated, if the drawn event
time was smaller than the corresponding censoring time,
and a censored observation was indicated else.

2.2.1. Functional Form. In order to estimate the type I error
probability and the statistical power for detection of truly
present interaction effects associated with the different ap-
proaches, different scenarios were investigated. Overall, six
different functional forms were considered, two without
presence of an interaction effect (Scenarios 1 and 2) and four
scenarios considering different shapes of interaction terms
(Scenarios 3 to 6). All scenarios are visualized in Figure 1,
showing the hazard rates used for simulation of the event
times in dependence of the biomarker value (dashed black
and solid grey line and black scale/axis) and the resulting
hazard ratios (using a logarithmic scale) between the
treatment groups (red line and scale/axis).

Scenario 1. No associations between treatment and risk for
an event and between the biomarker of interest and risk for
an event are present; the hazard rate for each individual was
set to 1, irrespective of treatment group and biomarker value
(Figure 1(a)).

λ(x ∣ z, T � 0) � λ(x ∣ z, T � 1) � 1, (1)

where λ(x) indicates the hazard rate as a function of time.
Consequently, the hazard ratio between the groups is 1 for all
covariate values, indicating no biomarker-treatment interaction.

HR(z) � 1. (2)

Scenario 2. In the second scenario, the hazard rate depends
on the value of the biomarker Z for both treatment groups,

but the hazard ratio between the treatment groups is the
same for all biomarker values, so no biomarker-treatment
interaction is present (Figure 1(b)).

λ(x ∣ z, T � 0) � 0.5 exp (2z− 1)
2

􏼐 􏼑,

λ(x ∣ z, T � 1) � exp (2z− 1)
2

􏼐 􏼑,
(3)

leading to a hazard ratio of two for all values of Z.

HR(z) � 2. (4)

Scenario 3. In the third scenario, a true linear interaction
(on the log-hazard scale) between the biomarker of interest
and treatment is present, leading to a hazard ratio between
the treatment groups of one for a biomarker value of Z � 0
and to a hazard ratio of exp(0.75) � 2.12 for a value of Z � 1.

λ(x ∣ z, T � 0) � 0.7 exp(0.5z),

λ(x ∣ z, T � 1) � 0.7 exp(0.5z + 0.75z) � 0.7 exp(1.25z).

(5)

)e hazard ratio increases linearly on a logarithmic scale.

HR(z) � exp(0.75z). (6)

)e scenario is displayed in Figure 1(c)).

Scenario 4. In the fourth scenario, a true qualitative
biomarker-treatment interaction, with a higher risk for an
event under treatment T � 0 as compared to treatment T �

1 for patients with a small value of Z and a higher risk for
an event under T � 1 for individuals with a large value of
Z, is considered (Figure 1(d)). )e hazard ratio is
monotonically, but not linearly increasing over the bio-
marker range.

λ(x ∣ z, T � 0) � 0.9,

λ(x ∣ z, T � 1) � 0.35 exp 1.7
�
z

√
− 0.2z

2 − 0.3z􏼐 􏼑.
(7)

)e qualitative interaction is indicated by a hazard ratio
being smaller than one for values of Z< 0.424 and larger
than one for Z> 0.424.

HR(z) �
0.35 exp 1.7

�
z

√
− 0.2z2 − 0.3z( 􏼁

0.9

� 0.389 exp 1.7
�
z

√
− 0.2z

2 − 0.3z􏼐 􏼑.

(8)

Scenario 5. In Scenario 5, the risk for an event is similar
under both treatments for most of the individuals, but the
risk increases under treatment T � 1 for large values of Z
(Figure 1(e)).

λ(x ∣ z, T � 0) � 0.9,

λ(x ∣ z, T � 1) � 0.9 + 1.75z
8
.

(9)

Consequently, the hazard ratio is close to one for small
and moderate values of Z but increases for large values. For
Z � 1, the hazard ratio reaches a value of 2.94.
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Figure 1: Scenarios used in the simulation study for comparison of statistical methods. In scenarios 1 and 2 (a, b), data are generated under
the null hypothesis of no biomarker-treatment interaction. In scenarios 3 to 6, which are illustrated in (c) to (f ), the hazard ratio (illustrated
on a log-scale by the red line) depends on the biomarker value, so biomarker-treatment interactions are present.
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HR(z) � 1 +
1.75z8

0.9
. (10)

Scenario 6. In the sixth scenario, the hazard ratio for group
T � 0 depending on Z follows a U-shape, while the hazard
ratio for T � 1 is inversely U-shaped (Figure 1(f )).

λ(x ∣ z, T � 0) � 0.75 exp 0.4(2z− 1)
2

􏼐 􏼑,

λ(x ∣ z, T � 1) � 1.25 exp −0.5(2z− 1)
2

􏼐 􏼑.
(11)

)is setting leads to a qualitative biomarker-treatment
interaction with lower risks for an event under T � 1 for
small and large values of Z and lower risks under T � 0, else
indicated by an inversely U-shaped hazard ratio over the
range of Z.

HR(z) �
5
3
exp −0.9(2z− 1)

2
􏼐 􏼑. (12)

2.2.2. Sample Size. In order to evaluate whether properties
of the methods under consideration are related to the sample
size of the trial, three different settings for sample sizes were
chosen. )e generated datasets included 250, 500, or 1000
individuals, which appear to be typical sample sizes for
randomized clinical trials.

2.2.3. Censoring Distribution. In addition to the sample size,
censoring distributions were varied to produce scenarios
with different numbers of observed events. Censoring times
were drawn from exponential distributions with hazard rates
of λcens � 0.3 or λcens � 2, respectively, to produce scenarios
with censoring proportions of about 25% and about 67%,
leading to numbers of about 188, 375, and 750 expected
events for scenarios with low amount of censored obser-
vations and of 83, 167, and 333 expected events for scenarios
with high amount of censored observations.

3. Results

For each of the 36 scenarios described in Section 2.2, 1000
datasets were generated and the methods presented in
Section 2.1 were applied. )e p value of the corresponding
statistical test on biomarker-treatment interaction was
saved and compared to the conventional significance level
of α � 5%. Resulting frequencies of type I errors, i.e., pro-
portions of simulated datasets for which a statistically sig-
nificant biomarker-treatment interaction was found,
although it is not present in the corresponding scenario
(Scenarios 1 and 2), are shown in Figure 2 for all considered
methods and are also tabulated with 95% confidence in-
tervals in Table 1. It can be seen that for the method using the
“optimal” cutpoint to define two subgroups to be compared,
the probability for a false-positive result was about 50% for
both scenarios simulating data under the null hypothesis,
irrespective of sample size and amount of censored obser-
vations. )e Multivariable Fractional Polynomial for

Interaction (MFPI) procedure with the FP1-flex3 strategy
also provided an increased type I error probability of about
10%. )is was mainly caused by those datasets for which
different polynomial transformations for the biomarker
were selected for models with and without consideration of a
biomarker-treatment interaction, leading to a comparison of
nonnested regression models. When only simulated datasets
were considered, in which the same transformations were
used for the models with and without interaction term and
consequently two nested models were compared, the esti-
mated type I error probabilities ranged from 3.8% to 6.6%.
Contrarily, for datasets with different chosen trans-
formations, the null hypothesis was falsely rejected in 14.1%
to 23.8% of the corresponding simulation runs. For the
simulations under Scenario 2 with a low sample size of 250
observations and a high amount of censored observations,
leading to an expected number of about 83 events, type I
error frequencies exceeding the nominal significance level
were observed for all methods.

In Figures 3 (Scenarios 3 and 4) and 4 (Scenarios 5 and 6)
and in Tables 2 (Scenarios 3 and 4) and 3 (Scenarios 5 and 6),
the results of the scenarios with true biomarker-treatment
interaction are presented. Consequently, the frequency of
rejected null hypotheses can be interpreted as an estimate for
the statistical power of themethods under the corresponding
settings. As the procedure using two subgroups defined by
an optimal, data-driven cutpoint (Optimal split) and the
MFPI (FP1-flex3) approach provided type I error proba-
bilities relevantly exceeding the nominal level of α � 5%,
these procedures are not considered in the comparison of
statistical power and are consequently not displayed in
Figures 3 and 4. Nevertheless, the results are presented in
Tables 2 and 3 in italics for completeness.

For the scenario fulfilling the assumption of the standard
Cox regression model with a linear interaction term (Sce-
nario 3), the Cox model with linear interaction out-
performed all the other investigated methods by achieving
the highest observed statistical power (Figures 3(a) and 3(b)
and Table 2). )e MFPI (FP2-flex1) approach performed
slightly better than the approach using two subgroups de-
fined by a split at the median of the variable when the
number of expected events was large, but for the scenario
with 1000 observations and a low amount of censored
observations, the observed power was about 10 percentage
points lower for these methods as compared to the Cox
regression model with an interaction term considering the
biomarker as continuous variable (Cox model with linear
interaction: 83.8%; MFPI (FP2-flex1): 74.7%; Median split:
70.2%). )e method splitting the data into four subgroups
(Quartile split), the STEPP, and the LPLB performed worse
than the other approaches.

In Scenario 4, considering a situation with a slightly
nonlinear interaction, the Cox regression model consid-
ering the continuous biomarker performed best again,
followed (at least for scenarios with a large number of
events) by the MFPI (FP2-flex1) approach. For small to
moderate event numbers, the methods relying on cate-
gorization of the data (Median split and Quartile split)
performed similarly to MFPI (FP2-flex1). With the chosen
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Figure 2: Results of scenarios simulated under the null hypothesis of no biomarker-treatment interaction. Bars represent relative fre-
quencies of falsely rejected null hypotheses.
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settings, the estimated power for LPLB and STEPP was
smaller than for the other investigated methods
(Figures 3(c) and 3(d) and Table 2).

In the rather complex Scenario 5 with an almost identical
risk for an event under both treatments for most patients
and an increasing difference between treatments for large
values of the biomarker, the MFPI (FP2-flex1) approach
performed best in scenarios with a large number of observed
events. In scenarios with a high amount of censored ob-
servations, the Cox model with linear interaction performed
slightly better (small to moderate sample size) or very similar
(large sample size) to MFPI (FP2-flex1) (Figures 4(a) and
4(b) and Table 3). When censoring was low and sample size
was large, the LPLB approach reached an observed power
that was close to MFPI (FP2-flex1) and slightly better than
the Cox regression model. While categorization using a
Median split was much worse than the other methods for
most settings under Scenario 5 (e.g., with an observed power
for n � 1000 and low amount of censored observations of
46.6%), splitting the study population in four subgroups
(Quartile split) provided results that were relevantly better
than Median split (estimated power for the mentioned
settings of 70.9%), but worse than MFPI (FP2-flex1)

(87.5%), Cox regression with linear interaction (76.2%),
or LPLB (83.4%).

In Scenario 6, the only investigated scenario with
nonmonotonous hazard ratio over the range of the bio-
marker of interest, the Coxmodel with linear interaction and
the procedure defining subgroups at the observed median
(Median split) were not able to identify the present
biomarker-treatment interaction (estimated power between
4.6% and 6.2% for Cox model with linear interaction and
between 3.9% and 6.4% for Median split). )e highest
empirical power was observed for LPLB and the method
defining four subgroups at the observed quartiles (Quartile
split). STEPP and MFPI were able to identify the association
between biomarker and treatment effect in a relevant
amount of generated datasets but performed worse than
LPLB and Quartile split (Figures 4(c) and 4(d) and Table 3).

4. Discussion

It is well known and accepted that different patients react
differently to the same treatment. Consequently, for making
a treatment decision, characteristics of the patient or of the
disease, e.g., of a tumour, should be considered. Predictive

Table 1: Estimated type I error probabilities with exact 95% confidence intervals (in brackets) for Scenarios 1 and 2 for all investigated
methods.

n� 250 n� 500 n� 1000
Low cens. High cens. Low cens. High cens. Low cens. High cens.

Scenario 1

Median split 4.7% 5.3% 4.9% 4.4% 5.0% 6.4%
(3.5–6.2%) (4.0–6.9%) (3.6–6.4%) (3.2–5.9%) (3.7–6.5%) (5.0–8.1%)

Quartile split 6.3% 5.3% 4.2% 5.1% 3.5% 5.7%
(4.9–8.0%) (4.0–6.9%) (3.0–5.6%) (3.8–6.7%) (2.4–4.8%) (4.3–7.3%)

Optimal split 43.6% 39.9% 45.8% 40.9% 45.5% 46.6%
(40.5–46.7%) (36.8–43.0%) (42.7–48.9%) (37.8–44.0%) (42.4–48.6%) (43.5–49.7%)

STEPP 4.8% 5.9% 5.1% 4.2% 4.0% 6.3%
(3.6–6.3%) (4.5–7.5%) (3.8–6.7%) (3.0–5.6%) (2.9–5.4%) (4.9–8.0%)

Cox (linear int.) 4.9% 5.2% 4.8% 4.4% 4.8% 5.8%
(3.6–6.4%) (3.9–6.8%) (3.6–6.3%) (3.2–5.9%) (3.6–6.3%) (4.4–7.4%)

MFPI (FP1-flex3) 10.1% 10.6% 10.4% 12.0% 10.3% 13.5%
(8.3–12.1%) (8.8–12.7%) (8.6–12.5%) (10.1–14.2%) (8.5–12.4%) (11.4–15.8%)

MFPI (FP2-flex1) 4.9% 5.6% 4.9% 4.7% 6.0% 7.0%
(3.6–6.4%) (4.3–7.2%) (3.6–6.4%) (3.5–6.2%) (4.6–7.7%) (5.5–8.8%)

LPLB 4.6% 4.5% 4.2% 4.4% 3.9% 5.8%
(3.4–6.1%) (3.3–6.0%) (3.0–5.6%) (3.2–5.9%) (2.8–5.3%) (4.4–7.4%)

Scenario 2

Median split 4.2% 6.0% 5.7% 4.2% 5.7% 4.3%
(3.0–5.6%) (4.6–7.7%) (4.3–7.3%) (3.0–5.6%) (4.3–7.3%) (3.1–5.7%)

Quartile split 5.3% 6.7% 5.1% 4.5% 5.0% 5.4%
(4.0–6.9%) (5.2–8.4%) (3.8–6.7%) (3.3–6.0%) (3.7–6.5%) (4.1–7.0%)

Optimal split 50.8% 42.8% 53.9% 45.9% 52.0% 47.4%
(47.7–53.9%) (39.7–45.9%) (50.8–57.0%) (42.8–49.0%) (48.9–55.1%) (44.3–50.5%)

STEPP 5.4% 8.2% 6.8% 6.8% 7.8% 6.9%
(4.1–7.0%) (6.6–10.1%) (5.3–8.5%) (5.3–8.5%) (6.2–9.6%) (5.4–8.7%)

Cox (linear int.) 4.5% 8.2% 4.8% 6.4% 5.0% 5.2%
(3.3–6.0%) (6.6–10.1%) (3.6–6.3%) (5.0–8.1%) (3.7–6.5%) (3.9–6.8%)

MFPI (FP1-flex3) 8.1% 12.6% 9.1% 10.3% 8.1% 7.8%
(6.5–10.0%) (10.6–14.8%) (7.4–11.1%) (8.5–12.4%) (6.5–10.0%) (6.2–9.6%)

MFPI (FP2-flex1) 5.5% 6.5% 6.5% 5.6% 4.1% 5.9%
(4.2–7.1%) (5.1–8.2%) (5.1–8.2%) (4.3–7.2%) (3.0–5.5%) (4.5–7.5%)

LPLB 6.2% 5.8% 7.3% 4.8% 7.7% 6.1%
(4.8–7.9%) (4.4–7.4%) (5.8–9.1%) (3.6–6.3%) (6.1–9.5%) (4.7–7.8%)
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Figure 3: Results of scenarios simulated under the alternative hypothesis of a truly present biomarker-treatment interaction. Bars represent
relative frequencies of correctly rejected null hypotheses.
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Figure 4: Results of scenarios simulated under the alternative hypothesis of a truly present biomarker-treatment interaction. Bars
represented relative frequencies of correctly rejected null hypotheses.
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biomarkers, i.e., variables that are associated with the
treatment effect, e.g., a hazard ratio between two treatment
groups, play an important role for treatment selection.
Evidence, whether a biomarker is truly predictive, can only
be derived from randomized trials involving patients with
different values of the biomarker of interest [8]. In practice,
treatment effect heterogeneity over different factors of a
categorical variable or over the range of a continuous var-
iable in data collected in a randomized clinical trial is often
analysed by the means of subgroup analyses, estimating the
treatment effect within patients with similar characteristics
and comparing treatment effects between subgroups using a
test on interaction [14]. While this procedure is straight-
forward for categorical variables, it relies on categorization
of continuous variables. It was shown for different research
questions that categorization leads to a loss of power for
detection of true associations [41, 42], and the interpretation
of subgroup analyses based on categorized continuous
variables was often criticized due to its lack of biological
plausibility and its increased chance of spurious findings
[17, 18, 43]. One common approach to investigate such
interactions between continuous biomarkers and treatment
without categorization is the inclusion of the product of the

biomarker and the treatment indicator as independent
variable in a regression model assuming a linear interaction
term. To allow a more flexible modelling of relationships
between treatment effects and biomarker values, various
methods relaxing the linearity assumption for the in-
teraction term, e.g., the Subpopulation Treatment Effect
Pattern Plot (STEPP), the Multivariable Fractional Poly-
nomials for Interaction (MFPI) [19], or the Local Partial-
Likelihood Bootstrap (LPLB) [27] approach, were
developed.

Comparisons between those methods rarely exist in the
literature. Royston and Sauerbrei applied the MFPI and the
STEPP method to different datasets [44]. Recently, we in-
vestigated the interaction between age and treatment in a
randomized trial comparing carotid artery stenting (CAS) to
carotid endarterectomy (CEA) for patients with symp-
tomatic, severe carotid artery stenosis (SPACE trial [45, 46]).
In this analysis, very similar results were obtained from
different methods including Cox regression with linear
interaction, STEPP, MFPI, and LPLB [47]. To our best
knowledge, only a small number of simulation studies were
performed to compare the properties of the different pro-
cedures under known scenarios. Royston and Sauerbrei

Table 2: Estimated power with exact 95% confidence intervals (in brackets) for Scenarios 3 and 4 for all investigated methods.

n� 250 n� 500 n� 1000
Low cens. High cens. Low cens. High cens. Low cens. High cens.

Scenario 3

Median split 23.5% 14.1% 40.8% 25.1% 70.2% 40.9%
(20.9–26.3%) (12.0–16.4%) (37.7–43.9%) (22.4–27.9%) (67.3–73.0%) (37.8–44.0%)

Quartile split 19.2% 12.4% 36.4% 17.7% 66.0% 31.2%
(16.8–21.8%) (10.4–14.6%) (33.4–39.5%) (15.4–20.2%) (63.0–68.9%) (28.3–34.2%)

Optimal split 71.4% 57.6% 86.4% 71.7% 97.1% 84.6%
(68.5–74.2%) (54.5–60.7%) (84.1–88.5%) (68.8–74.5%) (95.9–98.0%) (82.2–86.8%)

STEPP 13.4% 10.5% 29.2% 15.5% 55.1% 26.4%
(11.3–15.7%) (8.7–12.6%) (26.4–32.1%) (13.3–17.9%) (52.0–58.2%) (23.7–29.2%)

Cox (linear int.) 29.9% 15.2% 54.2% 31.6% 83.8% 51.9%
(27.1–32.8%) (13–17.6%) (51.1–57.3%) (28.7–34.6%) (81.4–86.0%) (48.8–55.0%)

MFPI (FP1-flex3) 30.2% 18.2% 54.2% 32.5% 82.8% 51.1%
(27.4–33.2%) (15.9–20.7%) (51.1–57.3%) (29.6–35.5%) (80.3–85.1%) (48–54.2%)

MFPI (FP2-flex1) 20.4% 12.7% 42.9% 21.0% 74.7% 41.2%
(17.9–23.0%) (10.7–14.9%) (39.8–46.0%) (18.5–23.7%) (71.9–77.4%) (38.1–44.3%)

LPLB 15.2% 9.1% 32.7% 16.2% 61.2% 30.9%
(13.0–17.6%) (7.4–11.1%) (29.8–35.7%) (14.0–18.6%) (58.1–64.2%) (28.0–33.9%)

Scenario 4

Median split 26.8% 14.1% 52.3% 24.4% 78.7% 38.7%
(24.1–29.7%) (12.0–16.4%) (49.2–55.4%) (21.8–27.2%) (76–81.2%) (35.7–41.8%)

Quartile split 22.8% 14.2% 48.6% 24.2% 79.4% 37.6%
(20.2–25.5%) (12.1–16.5%) (45.5–51.7%) (21.6–27.0%) (76.8–81.9%) (34.6–40.7%)

Optimal split 77.6% 57.8% 92.3% 72.6% 99.1% 88.8%
(74.9–80.1%) (54.7–60.9%) (90.5–93.9%) (69.7–75.3%) (98.3–99.6%) (86.7–90.7%)

STEPP 14.8% 8.3% 36.8% 17.6% 68.9% 29.9%
(12.7–17.2%) (6.7–10.2%) (33.8–39.9%) (15.3–20.1%) (65.9–71.8%) (27.1–32.8%)

Cox (linear int.) 33.9% 17.7% 64.4% 32.4% 89.8% 49.2%
(31.0–36.9%) (15.4–20.2%) (61.3–67.4%) (29.5–35.4%) (87.8–91.6%) (46.1–52.3%)

MFPI (FP1-flex3) 40.4% 25.8% 72.0% 38.8% 92.4% 56.3%
(37.3–43.5%) (23.1–28.6%) (69.1–74.8%) (35.8–41.9%) (90.6–94.0%) (53.2–59.4%)

MFPI (FP2-flex1) 22.3% 14.5% 51.2% 25.6% 84.7% 41.3%
(19.8–25.0%) (12.4–16.8%) (48.1–54.3%) (22.9–28.4%) (82.3–86.9%) (38.2–44.4%)

LPLB 19.4% 8.4% 44.1% 20.1% 75.2% 33.8%
(17.0–22.0%) (6.8–10.3%) (41.0–47.2%) (17.7–22.7%) (72.4–77.8%) (30.9–36.8%)

Due to increased type I error probabilities, results for Optimal split and MFPI (FP1-flex3) are presented in italics.
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performed a simulation study to compare different MFPI
strategies to other regression models and approaches relying
on categorization of continuous variables in settings with a
continuous outcome [37, 38]. Under all the different MFPI
strategies investigated there, theMFPI (FP1-flex3) approach,
using one polynomial transformation and allowing for
different functional forms in the models with and without
considering a covariate-treatment interaction, was identified
as the “best” MFPI approach. Bonetti et al. performed a
simulation study to evaluate the impact of the parameter
settings of the STEPP approach on type I error and statistical
power and compared the results to those of a Cox regression
model with linear interaction term [32]. Liu et al. also
compared performance of their proposed LPLB approach to
the Cox regressionmodel with a linear interaction term [27].
Due to the lack of information on the properties of different
available methods proposed in the literature for identifi-
cation of a biomarker-treatment interaction, we performed a
simulation study comparing estimates for type I error
probability and statistical power of relevant methods under
various scenarios. Our aim was to perform a study in the
sense of a “neutral” simulation study as described in [48] as
we do not favour any of the investigated methods and were

not involved in the development or publication of any of
them.

As to be expected, we observed that the procedure using
an optimal cutoff value determined by maximizing theWald
statistic of the interaction term between the dichotomized
biomarker of interest and treatment in a Cox regression
model for definition of the subgroups leads to a tremen-
dously increased type I error probability of about 50%. )is
was observed similarly in simulations presented by Altman
et al. who investigated the naı̈ve use of minimum p value
categorization of a potentially prognostic variable [49].
Interestingly, an increased type I error probability of about
10% in both scenarios with data simulated under the null
hypothesis was also observed for the MFPI (FP1-flex3)
approach irrespective of sample size and censoring distri-
bution. )is was caused by datasets for which different
transformations were selected for the models with and
without an interaction term. In the simulation study by
Royston and Sauerbrei [37], no relevant increase in the
probability of false-positive findings was identified for the
MFPI (FP1-flex3) approach for most of their investigated
scenarios with observed relative frequencies of type one
errors ranging from 5% to 7%. Only for scenarios with

Table 3: Estimated power with exact 95% confidence intervals (in brackets) for Scenarios 5 and 6 for all investigated methods.

n� 250 n� 500 n� 1000
Low cens. High cens. Low cens. High cens. Low cens. High cens.

Scenario 5

Median split 16.1% 10.4% 26.7% 17.7% 46.6% 29.3%
(13.9–18.5%) (8.6–12.5%) (24.0–29.6%) (15.4–20.2%) (43.5–49.7%) (26.5–32.2%)

Quartile split 23.0% 10.5% 41.3% 21.2% 70.9% 40.1%
(20.4–25.7%) (8.7–12.6%) (38.2–44.4%) (18.7–23.9%) (68.0–73.7%) (37.0–43.2%)

Optimal split 79.7% 60.2% 93.8% 78.3% 99.4% 91.9%
(77.1–82.2%) (57.1–63.2%) (92.1–95.2%) (75.6–80.8%) (98.7–99.8%) (90.0–93.5%)

STEPP 15.9% 7.4% 35.0% 14.8% 68.7% 31.0%
(13.7–18.3%) (5.9–9.2%) (32.0–38.0%) (12.7–17.2%) (65.7–71.6%) (28.1–34.0%)

Cox (linear int.) 25.6% 16.3% 47.0% 30.6% 76.2% 51.1%
(22.9–28.4%) (14.1–18.7%) (43.9–50.1%) (27.8–33.6%) (73.4–78.8%) (48.0–54.2%)

MFPI (FP1-flex3) 39.7% 22.6% 67.3% 39.7% 93.8% 66.5%
(36.7–42.8%) (20.0–25.3%) (64.3–70.2%) (36.7–42.8%) (92.1–95.2%) (63.5–69.4%)

MFPI (FP2-flex1) 26.8% 13.2% 50.6% 27.1% 87.5% 51.8%
(24.1–29.7%) (11.2–15.5%) (47.5–53.7%) (24.4–30.0%) (85.3–89.5%) (48.7–54.9%)

LPLB 22.5% 9.3% 46.9% 21.9% 83.4% 45.3%
(19.9–25.2%) (7.6–11.3%) (43.8–50.0%) (19.4–24.6%) (80.9–85.7%) (42.2–48.4%)

Scenario 6

Median split 5.3% 3.9% 5.1% 5.1% 6.4% 4.9%
(4.0–6.9%) (2.8–5.3%) (3.8–6.7%) (3.8–6.7%) (5.0–8.1%) (3.6–6.4%)

Quartile split 24.3% 13.0% 42.0% 16.0% 73.8% 36.5%
(21.7–27.1%) (11.0–15.2%) (38.9–45.1%) (13.8–18.4%) (71.0–76.5%) (33.5–39.6%)

Optimal split 73.8% 56.5% 88.1% 67.1% 97.6% 86.3%
(71.0–76.5%) (53.4–59.6%) (85.9–90.0%) (64.1–70.0%) (96.4–98.5%) (84.0–88.4%)

STEPP 14.8% 7.9% 31.4% 12.7% 61.6% 25.9%
(12.7–17.2%) (6.3–9.7%) (28.5–34.4%) (10.7–14.9%) (58.5–64.6%) (23.2–28.7%)

Cox (linear int.) 6.1% 5.9% 4.8% 5.1% 6.2% 4.6%
(4.7–7.8%) (4.5–7.5%) (3.6–6.3%) (3.8–6.7%) (4.8–7.9%) (3.4–6.1%)

MFPI (FP1-flex3) 23.0% 16.5% 30.6% 18.5% 50.9% 27.3%
(20.4–25.7%) (14.3–18.9%) (27.8–33.6%) (16.1–21.0%) (47.8–54.0%) (24.6–30.2%)

MFPI (FP2-flex1) 20.0% 11.2% 28.6% 12.8% 45.9% 26.9%
(17.6–22.6%) (9.3–13.3%) (25.8–31.5%) (10.8–15.0%) (42.8–49.0%) (24.2–29.8%)

LPLB 22.2% 10.4% 41.5% 17.9% 74.6% 36.7%
(19.7–24.9%) (8.6–12.5%) (38.4–44.6%) (15.6–20.4%) (71.8–77.3%) (33.7–39.8%)

Due to increased type I error probabilities, results for Optimal split and MFPI (FP1-flex3) are presented in italics.
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complex functional forms and a covariate of interest fol-
lowing a skewed distribution (called “badly behaved dis-
tribution of x” in [37]), an increased type I error probability
of up to 20% was found. Maybe this problem is less pro-
nounced in a linear regression setting with quantitative
outcome than for our investigated time-to-event endpoint.
)e originally proposed MFPI (FP2-flex1) approach did not
lead to an increased probability of false-positive results and
performed generally well for all scenarios. While it was
superior to all other methods in a scenario with a hazard
ratio constant over a wide range of the biomarker and in-
creasing for individuals with large values when the number
of events was large, it was slightly less efficient than a Cox
regression model with a linear interaction term in the
presence of a truly linear or close to linear biomarker-
treatment interaction. Generally, the Cox regression
model with a linear interaction term performed better than
the other investigated methods for many scenarios. It
provided an acceptable probability of false-positive results
and higher statistical power than all other methods in the
scenario with a truly linear interaction. For small to mod-
erate event numbers, the Cox regression model also out-
performed the other methods in scenarios with nonlinear
monotonous interaction effects. In one scenario with data
generated to provide a nonmonotonous interaction effect
over the range of the biomarker of interest, the Cox re-
gression model assuming a linear interaction term was not
able to detect this association. For the LPLB procedure, type
I error frequencies did not exceed the nominal significance
level relevantly and adequate statistical power as compared
to the other methods was observed for scenarios with
complex functional form of the hazard ratio over the bio-
marker range. )e procedure splitting the data into two
subgroups (Median split) led to decreased power for most
scenarios, which was also described for other research
questions dealing with categorization of continuous cova-
riates [41, 42]. For complex associations, the split into a small
number of subgroups might be an adequate first step for data
exploration, which was also recommended in the EMA
guideline on subgroup analyses [14], or might be used for
verification of nonlinear associations found by a corre-
sponding method as also recommended in [38].

Our simulation study has several limitations. Due to
limited time and space, only a small number of different
scenarios could be investigated. We considered two sce-
narios in which data were generated under the null hy-
pothesis of no biomarker-treatment interaction and four
settings with true biomarker-treatment interactions of
different shapes. Additionally, we varied the sample size
and used two different amounts of censored observations.
We did not vary further aspects of the data generating
process as the distribution of the covariate of interest or
the influence of further covariates. While some of the
methods as fitting a Cox regression model with linear
interaction to the data or application of the MFPI ap-
proach do not rely on the specification of tuning pa-
rameters, other methods such as STEPP or LPLB allow a
greater level of user involvement by letting the applicant
choose, e.g., the size of the subgroups or the number of

overlapping individuals in STEPP or the number of points
used for local estimation and the bandwidth in LPLB. As
we only used one setting for each of the methods as de-
scribed in Section 2.1, our findings are only valid for these
specific choices, but might not transfer to the methods in
general. Further simulation studies are needed to in-
vestigate the role of the different tuning parameters on the
performance of these methods. In practical applications,
subject knowledge could allow more adequate specifica-
tions, which might improve performance of the methods
compared to our fixed settings. Additionally, we only
investigated one potential predictive biomarker and
treated it as if investigation of interaction of that bio-
marker with treatment was the prespecified primary re-
search question. In practice, these kinds of analyses will
often be performed as exploratory secondary or add-on
analyses, potentially involving multiple biomarkers of
interest, and multiplicity issues typically evolving in these
situations will have to be addressed adequately. If testing
the interaction between a predefined biomarker and
treatment is of major interest, this has to be considered in
the planning phase of a clinical trial and consequently in
the sample size calculation, as often a large sample size is
necessary to detect biomarker-treatment interactions [50].

It has to be considered that our simulation study only
aims at detection of biomarker-treatment interactions.
According to Chen et al., three steps are needed to establish a
predictive biomarker in clinical practice: identification of a
biomarker, selection of adequate subgroups for treatment
stratification, and assessment of clinical utility. Conse-
quently, after identification of a predictive biomarker,
subgroups that should be treated by different treatment
options have to be identified. For continuous biomarkers,
this could be achieved by either application of classification
techniques [51] or by exploring the pattern of the treatment
effect estimate over the range of the biomarker value. In-
tuitive visualization as provided by STEPP or by the
“treatment effect plot” [52] of the MFPI procedure can be
helpful. Additionally, further aspects such as potential risks,
patient acceptance, and costs have to be taken into account.
Clinical utility might be investigated by randomized clinical
trials using biomarker-stratified or biomarker-strategy de-
signs as described by Ondra et al. [53].

As a conclusion of our simulation study, we recommend
to perform more detailed and sophisticated analyses for
detection of biomarker-treatment interactions than the
commonly performed subgroup analyses involving di-
chotomization of continuous variables. Cox regression
models considering linear interaction terms will increase the
probability for detection of true interactions as compared to
the use of dichotomized variables in many applications.
Methods developed for detection of nonlinear interactions
can help to identify predictive biomarkers in the presence of
complex patterns. We believe that better use of available
statistical methods will help to identify and establish pre-
dictive biomarkers and increase the number, up to now
limited [54], of biomarkers used in clinical practice for
treatment stratification and consequently help to improve
health care for individual patients.
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Beds are key, scarce medical resources in hospitals. 0e bed occupancy rate (BOR) amongst different departments within large
tertiary hospitals is very imbalanced, a situation which has led to problems between the supply of and the demand for bed
resources. 0is study aims to balance the utilization of existing beds in a large tertiary hospital in China. We developed a data-
driven hybrid three-stage framework incorporating data analysis, simulation, and mixed integer programming to minimize the
gaps in BOR among different departments. 0e first stage is to calculate the length of stay (LOS) and BOR of each department and
identify the departments that need to be allocated beds. In the second stage, we used a fitted arrival distribution andmedian LOS as
the input to a generic simulationmodel. In the third stage, we built a mixed integer programmingmodel using the results obtained
in the first two stages to generate the optimal bed allocation strategy for different departments.0e value of the objective function,
Z, represents the severity of the imbalance in BOR. Our case study demonstrated the effectiveness of the proposed data-driven
hybrid three-stage framework. 0e results show that Z decreases from 0.7344 to 0.0409 after re-allocation, which means that the
internal imbalance has eased. Our framework provides hospital bed policy makers with a feasible solution for bed allocation.

1. Introduction

0e inherent difference between limited resources for
healthcare and steadily increasing demands occurs all over
the world and is particularly serious in developing countries.
According to a research report from the World Health
Organization (WHO) and World Bank Groups, at least 400
million people worldwide cannot receive one or more basic
health services [1].

0is differential is particularly apparent with respect to
bed resources. Although hospital bed numbers have in-
creased greatly in recent years, this increase cannot cope
with the growth rate of admission demand in China.
According to the report “Statistical Communique on the
Development of China’s Health and Family Planning Pro-
gram 2016” [2], the number of hospitalizations across the
nation’s medical and health institutions was 227.28 million
and the annual hospitalization rate was 16.5%. 0ere were
7.410 million beds in medical institutions across the country.

Amongst all of the medical institutions, China’s large ter-
tiary hospitals, classed as Class III according to the classi-
fication standards (Appendix), are facing the most serious
imbalance between admissions and bed resources (Table 1).
0e number of hospital beds and individuals hospitalized in
Class III hospitals increased to 2,213,718 and 76,860,000,
respectively. Bed occupancy rates (BORs) reached 98.8% in
2016.

We found that the imbalance between supply and de-
mand in large tertiary (Class III) hospitals is greater than
that in the other two classes of hospitals. Hospital managers
urgently need to find solutions to alleviate bed shortages.
Hospital administrators typically address this issue in two
ways: by improving utilization of existing beds or by
expanding capacity. 0e first involves the complex task of
strategically allocating the proper amount of beds for each
set of care types. A hospital that is unable to find an optimal
allocation may acquire additional beds. However, an ex-
pansion, which is desirable for one hospital, may not be
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advantageous from the perspective of the public planner [3]
and may even have some negative consequences, such as
doctor and nurse work overloads, decreases in medical care
quality, and aggravation of medical conflicts [4]. 0erefore,
from the perspective of the sustainability of medical re-
sources, the best option is to improve the utilization of bed
resources.

0e BOR of the Class III hospitals is usually as high as
98%. However, the utilization rate of beds in different de-
partments of a Class III hospital can be very different. West
China Hospital (WCH) is typical of such hospitals (see
Section 3.1 for more details). 0e availability of beds for
patient hospitalization services is excessive in some units and
scarce in others. 0is discrepancy between bed availability in
different departments leads to the overcrowding of some
departments and the idleness of other departments. 0is
internal imbalance has further worsened the shortage of
hospital resources.

A possible solution to this problem is to allocate the
number of beds among different departments in such a way
as to increase the utilization rate of beds and alleviate the
shortage of bed resources as much as possible. 0ere has
been considerable research into the allocation of bed re-
sources. 0e study of bed resource allocation can be divided
into two main approaches.

One approach is to assign the optimal number of beds in
a single department or care units, such as surgery units [5],
intensive care units [6, 7], and obstetrics departments [8].
For instance, Akkerman and Knip [5] planned the optimal
number of beds for cardiac surgery with the goal of reducing
patient waiting time. Oerlemans et al. [9] sent an online
questionnaire to all ICU physician members in 90 hospitals
of the Dutch Society for Intensive Care, the results of which
can be used to improve decision-making regarding alloca-
tion of ICU resources. Devapriya et al. [10] proposed the
strategic bed analysis model, which is a discrete-event
simulation model created after a thorough analysis of pa-
tient flow and data from Geisinger Health Systems (GHS).
Ridge et al. [11] investigated the problem of hospital bed
planning in the intensive care unit. Romanin-Jacur and
Facchin [12] studied the ward planning of the intensive
surgical department and the pediatric semiintensive care
unit.

Another approach to the problem focuses on the number
of hospital beds throughout the whole hospital. For example,
Akcali et al. [13] planned the best use of hospital beds in the
entire hospital with the goal of minimizing the total cost.
Utley et al. [14] determined the reasonable number of beds
for elective patients in the whole hospital in the case of a very
low rate of patient cancellation. However, there is little

research on the allocation of beds among different de-
partments or wards.

A range of operational research (OR) methods have been
developed and applied to problems of healthcare resource
allocation [15], especially bed resources. 0ese methods
include queuing theory [16, 17], simulation [18, 19], goal
programming [20, 21], and mathematical programming
[22–24]. Most of the current research uses a single method
for each study. However, the premise of queuing theory is
based on very strong assumptions, and it is difficult to apply.
Mathematical programming can flexibly add constraints and
change the objective function according to specific condi-
tions, and it is more popular. 0erefore, a hybrid of different
methods is more conducive to solving the problem. Simu-
lation and mathematical programming have become in-
creasingly popular approaches to allocate resources in health
care. Tontarski [25] utilized simulation-based optimization
and mathematical programming for solving complex nurse-
scheduling problems. Studies on the bed allocation problem
usingmathematical programming, especially combined with
simulation, are relatively few.

In short, research into bed allocation mostly focuses on
the study of the number of beds in a single department. 0e
problem of how to allocate beds in different departments has
not been fully studied. Furthermore, most of the current
research on bed allocation is based on a single method such
as queuing theory [26] or simulation [27]. 0ere are few
hybrid models which integrate data analysis, simulation, and
mathematical programming. We propose a solution to the
bed allocation problem at an operational level. We develop a
data-driven hybrid three-stage framework incorporating
data analysis, simulation, and mixed integer programming
(MIP) to determine the optimal bed allocation strategy. 0e
first stage is to select departments for allocation according to
the relationship between the number of beds and the BOR
and have this result approved by hospital management. In
the second stage, we used a simulation model to calculate the
BOR for different numbers of hospital beds. We thus derive
the functional relationship between the two variables. 0e
third stage is to find the best number of beds in five de-
partments using a MIP model. Our study aims to alleviate
shortage of beds by balancing the utilization of existing beds
without increasing the number of beds in a large hospital in
China. Overall, the contributions of this study are as follows:

(1) Our framework is data driven, making the allocation
strategy more rational. (i) Using real data from the
hospital, data analysis is used to determine the op-
timal department needs to allocate beds; (ii) the
simulation model is used to simulate the

Table 1: Hospital beds, hospitalization, and BOR of China’s large tertiary hospitals in 2015 and 2016.

Hospital level
Hospital beds Hospitalization BOR

2015 2016 2015 2016 2015 (%) 2016 (%)
Class III 2,047,819 2,213,718 68,290,000 76,860,000 98.80 98.80
Class II 2,196,748 2,302,887 71,210,000 75,700,000 84.10 84.20
Class I 481,876 517,837 9,650,000 10,390,000 58.80 58
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corresponding BOR under different bed allocation
scenarios.0e relationship between the hospital beds
and the BOR is derived from the data, thereby
providing data-driven personalized constraints for
each department.

(2) 0e objective function of the MIP model is tailored
to Chinese needs. Because the beds in large hospitals
in China have been overloaded, we are not blindly
reducing the BOR of beds but are keeping the
number of beds in a reasonable range.

(3) 0is paper provides a general framework for the
allocation of beds in the Chinese context. Different
hospitals can modify the objective function of the
model and appropriately add or reduce constraints
according to their needs. Our model provides a
reference for hospital management to effectively
manage hospital bed resources.

0e rest of the paper is organized as follows. In Section 2,
we briefly introduced the background of the case hospital
(WCH) and the process of the data-driven hybrid three-
stage framework. Taking WCH as a case study, we applied
the framework proposed in Section 2 to WCH, and these
analyses of the framework are shown in Section 3. In Section
4, we discuss the results of the paper. Finally, Section 5
concludes the paper and indicates some directions for future
research.

2. Materials and Methods

2.1. Study Hospital. From a macro perspective, the overall
BOR in China’s tertiary hospitals is very high. However, at
an individual level, the availability of hospital beds in dif-
ferent departments in individual hospitals is uneven. 0is
phenomenon exists in almost all of the tertiary hospitals in
China. It is particularly serious in WCH, a tertiary hospital
which is located in Chengdu, Sichuan province. In order to
rationally manage beds, the Admission Service Center
(ASC), a bed planning organization, was established in 2011.
It manages 2956 beds and 28 specialized care departments.
After our survey and data analysis (Figure 1), we found that
the allocation of beds among the 28 departments is not
balanced. For example, the BOR of W3 is as high as 122%,
while others, such as W12, are only 64.70%. 0e reason why
the BOR is over 100% is that the extra beds are involved in
the calculation process. When the number of inpatients
exceeds the number of fixed beds, the hospital will add
additional beds to meet the demand, and these beds are often
arranged in the corridor. 0is imbalance further leads to
inefficiency and waste of hospital bed space, which in turn
exacerbates the shortage of hospital beds.

We focus on balancing the BOR of departments by
redistributing beds to improve the utilization rate of resources.
0is study takes WCH as an example to provide a feasible
solution for the shortage of hospital beds in large hospitals.

2.2. Data Collection. 0is study used data from the Hospital
Information System of the ASC for the period from January

1 to December 31, 2013. It includes the time of each patient
admission and discharge, demographic information, and
department information and has a total of 243,685 admis-
sion registrations and 167,843 discharge records.

2.3.Methods. 0e aim of this research is to balance the BOR
of each department by allocating the hospital beds to de-
partments, using a fixed number of existing beds, and
keeping the bed utilization rate of each department at a
reasonable level. Hence, we proposed a data-driven hybrid
three-stage framework to solve this problem. 0e overall
approach is shown in Figure 2.

(1) Stage I (data preliminaries): we selected the key
departments by analyzing their current BOR and
number of beds.

(2) Stage II (construction of constraint conditions): Simio
software [28] was used to establish a simulation model
to obtain the different scenarios of the beds and cor-
responding BOR. We then determined the relationship
between the BOR and the number of beds through data
fitting, which is one of the constraints of the Stage III.

(3) Stage III (construction of model): we established a
MIP model to minimize the gap in BOR among
different departments. We applied the genetic al-
gorithm (GA) to solve this model, since GA is one of
the best tools for satisfactory solution with advan-
tages like good convergence, low computational
complexity, high robustness, and so forth [29].

2.3.1. Stage I: Data Preliminaries

(1) Calculation of Length of Hospital Stay. Length of hospital
stay (LOS) indicates the number of days the patient spent in
a hospital bed. Wemade the assumption that the LOS can be
considered as a constant [30]. We have got 243,685 ad-
mission records and 167,843 discharge records form ASC.
0e LOS is calculated as the discharge date for each patient
minus the date of admission registration in the ASC. 0e
sum of the days of all hospitalized patients is an important
parameter for calculating the BOR. 0is paper uses the data
from 2013 1/1 to 2013/12/31. We divided the patients into
three types by the discharge date as follows and calculated
the LOS in 2013 for each group.

(i) Type I: patients discharged during 2013. 0ose
patients registered in the ASC during or before 2013.
0eir actual LOS during the 2013 is called LOS1. For
example, the actual LOS of the patient who regis-
tered before 2013 is discharge date minus January 1,
2013.

(ii) Type II: those patients who left the hospital in 2014,
who registered before 2013 or during 2013. 0eir
LOS equals to December 1, 2013, minus registered
date or December 31, 2013, minus January 1, 2013,
which is named LOS2.

(iii) Type III: because some discharge data are missing,
there are patients who are recorded as having been
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discharged from hospital in 2013 but had no ad-
mission records. 0ese patients cannot be ignored.
Hence, the number of Type III patients is the total
number of discharged patients in one department
in 2013 minus the number of Type I. We cannot
directly calculate the LOS of Type III patients, so in
this study, we used the median of the LOS of Type I
patients as the value for the LOS of Type III pa-
tients, which we called LOS3.

(2)/e Calculation of BOR. We calculated each department’s
BOR according to the following formulas:

all patients’ LOS � LOS1 + LOS2 + LOS3, (1)

BOR �
all patients’ LOS

LOS that all beds can provide
. (2)

2.3.2. Stage II: Construction of Constraint Conditions.
0e Simio software was used to build simulation models
using data from different departments. Changes in the
number of beds, the number of hospitalized patients, and the
LOS of patients with different bed numbers were simulated
and used to calculate different BOR indexes.0e relationship
between hospital bed numbers and BOR was an important

constraint condition in building the mixed integer pro-
gramming model in Stage III. It proceeds in three steps:

(1) We used the EASY-FIT [31], a professional data
fitting software, to fit the patient’s arrival distribution
and LOS distribution of each department

(2) 0e fitted arrival distribution and LOS distribution
were used as the input to the simulation model,
which identified the relationship between the
number of beds and the BOR

(3) We fitted the relationship between the number of
beds and the BOR via IBM SPSS Statistics V21 and
obtained their functional relationship

2.3.3. Stage III: Construction of the Model. In order to
thoroughly understand the hospital bed allocation problem,
it is necessary to describe the characteristics of the problem
in order to implement them in an appropriate mathematical
model. We define parameters and variables of the model:

(1) Parameters
Kij: the ward type j for department i. 0ere are

three inpatient ward types.

Ki1: the number of single-bed wards in department i.
Ki2: the number of double-bedwards in department i.

Data source
Department 

selecting
Data 

preprocessing

Data fitting ISimulationData fitting II

LOS
BOR

Five departments

Bed
BOR

Mixed integer programming model

Stage I

Stage II

Stage III

Arrival rate 
LOS distribution

Quadratic curve function
of bed and BOR

Figure 2: Methodology: process of the data-driven hybrid three-stage framework.
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Figure 1: Hospital beds and BOR of 28 departments in West China Hospital.
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Ki3: the number of three-bed wards in department i

Li: lower bound of number of beds in department i.
Ui: upper bound of number of beds in department i.
Ct: the total number of beds of all the departments.
BORi(Ci): the BOR of department i, when the

number of beds of department i is Ci. 0e re-
lationship functions between BORi(Ci) and Ci of
department i can be obtained from the results of
Stage II. Here, we assume that the two variables are
quadratic functions.

(2) Variable
Ci: the number of beds of department i and

Ci � Ki1 + 2Ki2 + 3Ki3; Ci is a positive integer.
0ere are n departments in WCH, but i de-

partments (i ∈ 1, 2, . . . , n) need to be allocated beds.
Our main decision variable is Ci, which represents
the number of beds for department i. Our goal was to
balance the BOR of each department; hence, our
objective function is to minimize the total gap be-
tween BOR of each department and their average
BOR. We developed a MIP model as follows:

(3) Objective function

min(Z) � 􏽘
n

i�1
BORi Ci( 􏼁− 􏽘

n

i�1

BORi Ci( 􏼁

n
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (3)

(4) Constraints

BORi Ci( 􏼁 � βi + aiCi + biCi
2
, i � 1, 2, . . . n, (4)

􏽘

n

i�1
Ci � Ct, i � 1, 2, . . . n, (5)

Li ≤Ci≤Ui, i � 1, 2, . . . , n, (6)

Ci � Ki1 + 2Ki2 + 3Ki3, i � 1, 2, . . . , n, (7)

Kij ≥ 2, i � 1, 2, . . . , n, j � 1, 2, 3. (8)

Because of the imbalance between different specialty care
departments, we aimed to balance the BOR of various de-
partments without adding extra beds. In objective function
(3), (􏽐

n
i�1BORi(Ci))/n is the average BOR of n departments

and Z is the sum of the gap between the BOR of the n

departments and the average of their BOR. 0e purpose of
function (3) is to minimize the total gap in BOR between
different departments and average BOR.

0e constraint described by function (4) means the
functional relationship between BOR and the number of
beds, which is calculated in Stage II. Here, we assume
that the two are quadratic functions: BORi(Ci) � βi+

aiCi + biCi
2, where βi is a constant and ai and bi are co-

efficients (for more details, see Section 3.2); function (5)
means that the total number of beds of the n departments is

constant. Function (6) ensures that there will be an upper
limit and a lower limit for the beds in each department.
Functions (7) and (8) impose restrictions on the ward type
and patient gender. Each ward has either one, two, or three
beds. 0e distinction between male and female wards, and
the number of ward types in each department should not be
less than two. For example, a single-bed ward has at least two
wards so that a male patient can live in one room and a
female patient can live in another single room.0e other two
ward types have the same conditions. Both male and female
patients can decide which type of ward to live in, ensuring
the fair treatment of patients.

3. Results

3.1. Stage I: Data Preliminaries. 0e LOS of 28 departments
can be calculated by function (1), and the BOR of the 28
departments can be calculated by function (2). Table 2 shows
the number of beds and BOR in 28 departments of the
current WCH. 0e BOR varies from 60.7% to 195% among
the 28 departments. Some literature indicates [32, 33] that
the optimal range for BOR is between 85% and 90%. Based
on this estimation, we divided these departments into three
groups:

(1) Group A: BOR is less than 85%. For example, W9
owns 236 beds, but its BOR is only 75.2%.

(2) Group B: BOR is greater than 90%. For example, the
BOR of W6 reaches as high as 102%, but it only has
72 beds.

(3) Group C: BOR is between 85% and 90%. 0eir bed
numbers and BOR are within the normal range,
compared to groups A and B.

It is clear that there are serious imbalances in BOR
between departments. To solve this problem, we interviewed
a hospital manager, three other managerial assistants, and
medical physicians of the ASC. We choose five departments
(W9, W10, W19, W6, and W27) from groups A and B to
solve the problem of bed allocation by applying the
framework mentioned in Section 2.3.

3.2. Stage II: Construction of Constraint Conditions. After
perprocessing the data and selecting the departments, we
fitted the distribution of the patient arrival rate and LOS of
the five departments using EASY-FIT, and the results are
shown in Table 3.

We obtained the distribution of arrival rates for all five
departments. 0e fitting of LOS is not ideal. Five de-
partments do not display any distribution. We took the
median of the LOS as their distribution. We used W9 as the
example from which we can build the simulation model.
Figure 3 describes the simulation model of W9 in Simio.

We set up a patient entity, called Patients, and a patient
source called Source1, in the Simio software. We let Source1
associate with Patients and set the arrival rate to obey the
Johnson distribution (0.025, 0.803, −8.16, 85.98).

We built a Server1 to represent beds. Its Service capacity
was set to the current number of beds (236), and service time
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was set to 10 days. We calculated the proportion of hospi-
talizations (43%) based on the number of hospital admis-
sions (12712) and discharges (5478).

0ere are two leaving routes in the simulation model,
namely, Sink1 and Sink2. Sink1 represents the event that a
patient leaves the hospital after being served by Server1. 0e
weight from Source1 to Server1 is 43%. Sink2 indicates that a
patient who was not admitted to the hospital left the hospital
directly through Sink2; the weight from Source1 to Sink2 is
57%.

In order to validate the model, we run the model for a
simulated year. 0e result was that the total number of
discharges was 5984, and the BOR was 69.5%. Compared
with real data, the difference is 9.2% and 7.5%, respectively.
0e error was acceptable. 0en, we set different parameters

for the Server1 and calculated the BOR for different
scenarios.

BecauseW9 belongs to group A, we needed to reduce the
number of beds and increase the BOR. We should therefore
reduce the number of beds in Server1. In Table 4, we list the
number of beds and the corresponding BOR situation for
W9. 0e results of the other four departments are presented
in Tables 5–8.

We used the number of beds as an independent variable
and the BOR as the dependent variable based on the results
in Table 4. 0e graph of BOR changing with the number of
beds is shown in Figure 4. It is difficult to intuitively obtain
the relationship equation between the two from the graph, so
we selected eight kinds of curve functions—linear, loga-
rithm, quadratic, composite, power, growth, exponential,

Table 3: Results of arrival rate distribution and LOS.

Departments Department type Arrival rate LOS
W6 B Johnson SB (0.289, 0.983, −3.34, 35.11) Median� 9
W9 A Johnson SB (0.025, 0.803, −8.16, 85.98) Median� 10
W10 A Uniform (−0.72, 43.75) Median� 12
W19 A Uniform (−3.2, 92.36) Median� 10
W27 B Uniform (−3.2, 92.36) Median� 5

Figure 3: Simulation model of the W9.

Table 2: Department information summary.

A

Department W7 W8 W9 W10 W12 W15 W16 W17 W19
Beds 72 84 236 168 48 60 86 156 54

BOR (%) 83.4 75.7 75.2 71.8 64.7 70 60.7 71.1 70
Department W24 W23 W25

Beds 162 153 114
BOR (%) 75.60 84.40 67.60

B

Department W1 W3 W4 W5 W6 W11 W13 W18 W21
Beds 72 108 84 108 72 72 170 172 72

BOR (%) 94.0 122 110 91 102 95.8 93.5 100 167
Department W26 W27 W26

Beds 91 114 91
BOR (%) 195 137 195

C
Department W1 W2 W20 W28

Beds 84 66 72 114
BOR (%) 89.6 87.7 90 88.1
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and logistic—with which we can attempt to fit their func-
tional relationships. We used the value of R2 to determine
which relationship function between bed and BOR of W9
had the best fit (Table 9). Since the R2 value of the quadratic
function was the best, at 0.977, we decided that the quadratic
function best describes the relationship between the bed
numbers and the BOR in W9. We can derive the functional

relationship between BOR1(C1) and the bed C1 from
Table 9; the equation is: BOR1(C1) � 0.721 + 0.004C1 −
0.0000195C2

1.
Similar to the analysis process of W9, we obtained the

quadratic functional relationships between the BOR and the
bed number of the other four departments (Tables 10–13).
Hence, the relationship function between beds and BOR of
department i is expressed as follows:

BORi Ci( 􏼁 � βi + aiCi + biCi
2
, (9)

where BORi(Ci) represents the bed occupancy rate of de-
partment i, Ci is the number of beds in department i, βi is a
constant, and ai and bi are coefficients. We have obtained
five equations, respectively, for five departments. 0ey are

Table 5: Beds and corresponding BOR of W10.

Beds Discharge BOR (%)
68 2011 97.2
78 2301 97
88 2585 96.6
98 2865 96.1
108 3145 95.7
113 3201 93.1
118 3216 89.6
128 3246 83.4
138 3276 78
148 3299 73.3
158 3306 68.8
168 3306 64.7
178 3306 61.1

Table 4: Beds and corresponding BOR of W9 in the simulation
model.

Beds Discharge BOR (%)
92 3266 97.3
110 3896 97
123 4351 96.9
135 4771 96.8
148 5226 96.7
160 5646 96.68
172 5926 94.4
180 5982 91.1
185 5984 88.6
198 5984 82.8
210 5984 78.1
223 5984 73.5
236∗ 5984 69.5
250 5984 65.6
∗0e current number of hospital beds of W9.

Table 6: Beds and corresponding BOR of W6.

Beds Discharge BOR (%)
57 2279 98.6
62 2474 98.4
72 2864 98.1
82 3254 97.8
95 3756 97.4
100 3931 96.9
105 4106 96.4
110 4281 96
115 4438 95.1
120 4516 92.8
125 4538 89.5
130 4538 86.1
140 4538 80

Table 7: Beds and corresponding BOR of W27.

Beds Discharge BOR (%)
114 8196 98.50
130 9332 98.30
145 10345 97.70
149 10482 96.37
152 10527 94.90
160 10640 91.10
168 10674 87
175 10681 83.60
182 10688 80.40
190 10696 77.10
205 10711 71.60
220 10726 66.80

Table 8: Beds and corresponding BOR of W19.

Beds Discharge BOR (%)
30 995 97.2
35 1153 97
36 1189 96.8
39 1225 93
38 1165 90.3
40 1258 92.2
45 1246 80.9
47 1230 77.4
50 1246 73.05
52 1252 70.6
54 1274 68.9

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

80 100 120 140 160 180 200 220 240 260

BOR

Figure 4: BOR curve for different numbers of beds. 0e abscissa is
the number of beds, and the ordinate is BOR.
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Table 11: Relationship between beds and BOR in W6.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.664 21.741 1 11 0.001 1.118 −0.002
Logarithm 0.558 13.883 1 11 0.003 1.616 −0.147
Quadratic 0.956 107.465 2 10 0.000 0.687 0.008 −4.932E− 5
Composite 0.645 19.978 1 11 0.001 1.140 0.998
Power 0.539 12.849 1 11 0.004 1.966 −0.161
Growth 0.645 19.978 1 11 0.001 0.131 −0.002
Exponential 0.645 19.978 1 11 0.001 1.140 −0.002
Logistic 0.645 19.978 1 11 0.001 0.877 1.002
Note. 0e higher the R2, the better the function model. When the W6 model is fitted, it has the same outcome as W9.0e quadratic curve is also selected. 0e
bed number of W6 is C3, and the bed rate is BOR3 (C3). According to the estimated value of the parameter, BOR3(C3) � 0.687 + 0.008C3 − 0.000049323C2

3.

Table 12: Relationship between beds and BOR in W27.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.932 137.447 1 10 0.000 1.446 −0.003
Logarithm 0.882 74.410 1 10 0.000 3.673 −0.550
Quadratic 0.967 131.496 2 9 0.000 0.901 0.003 −2.007E− 5
Composite 0.964 119.131 2 9 0.000 1.094 0.000 −2.585E− 6 −3.039E− 8
Power 0.924 121.995 1 10 0.000 1.720 0.996
Growth 0.866 64.725 1 10 0.000 24.281 −0.655
Exponential 0.924 121.995 1 10 0.000 0.542 −0.004
Logistic 0.924 121.995 1 10 0.000 1.720 −0.004
Note. 0e higher the R2, the better the function model. In the W27 model fitting, the fitting of the quadratic curve is the best, and the quadratic curve is
selected. 0e bed number of W27 is C4, and the bed utilization rate is BOR4 (C4). According to the estimated value of the parameter,
BOR4(C4) � 0.901 + 0.003C4 − 0.000020066C2

4.

Table 9: Relationship between bed numbers and BOR in W9.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.836 61.326 1 12 0.000 1.253 −0.002
Logarithm 0.724 31.538 1 12 0.000 2.550 −0.328
Quadratic 0.977 230.860 2 11 0.000 0.721 0.004 0.0000195
Composite 0.820 54.831 1 12 0.000 1.367 0.997
Power 0.704 28.548 1 12 0.000 6.455 −0.392
Growth 0.820 54.831 1 12 0.000 0.313 −0.003
Exponential 0.820 54.831 1 12 0.000 1.367 −0.003
Logistic 0.820 54.831 1 12 0.000 0.732 1.003

Table 10: Relationship between bed numbers and BOR in W10.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.919 125.130 1 11 0.000 1.298 −0.004
Logarithm 0.837 56.598 1 11 0.000 2.813 −0.413
Quadratic 0.973 181.654 2 10 0.000 0.895 0.003 −2.854E− 5
Composite 0.907 107.562 1 11 0.000 1.468 0.995
Power 0.817 49.021 1 11 0.000 9.578 −0.513
Growth 0.907 107.562 1 11 0.000 0.384 −0.005
Exponential 0.907 107.562 1 11 0.000 1.468 −0.005
Logistic 0.907 107.562 1 11 0.000 0.681 1.005
Note.0e higher the R2, the better the function model. In theW10model fitting, the fitting degree of the quadratic curve is the best, and the quadratic curve is
directly selected. 0e bed number of W10 is C2, and the bed utilization rate is BOR2 (C2). According to the estimated value of the parameter,
BOR2(C2) � 0.895 + 0.003C2 − 0.00002854C2

2.
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used as constraints for the mixed integer programming
model in Stage III.

3.3. Stage III: A Mixed Integer Programming Model. After
data analysis and simulation in the first two stages, we
obtained the parameter values in equations (3)–(8), in-
cluding the five selected departments and established the
quadratic function relationship between the bed numbers
and the BOR.We then applied these parameters to equations
(3)–(8) to solve the model. 0e specific MIP model is as
follows:

Objective function

min(Z) � 􏽘
5

i�1
BORi Ci( 􏼁− 􏽘

5

i�1

BORi Ci( 􏼁

5
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (10)

Constraints

BOR1 C1( 􏼁 � 0.721 + 0.004C1 − 0.0000195C
2
1, (11)

BOR2 C2( 􏼁 � 0.895 + 0.003C2 − 0.00002854C
2
2, (12)

BOR3 C3( 􏼁 � 0.687 + 0.008C3 − 0.000049323C
2
3, (13)

BOR4 C4( 􏼁 � 0.901 + 0.003C4 − 0.000020066C
2
4, (14)

BOR5 C5( 􏼁 � 0.911 + 0.012C5 − 0.0003054C
2
5, (15)

􏽘

5

i�1
Ci � 644, (16)

92≤C1 ≤ 210, (17)

68≤C2 ≤ 138, (18)

57≤C3 ≤ 140, (19)

114≤C4 ≤ 182, (20)

30≤C5 ≤ 182, (21)

Ci � Ki1 + 2Ki2 + 3Ki3, i � 1, 2, 3, 4, 5, (22)

Kij ≥ 2, i � 1, 2, 3, 4, 5, j � 1, 2, 3. (23)

Constraints (11)–(15) are quadratic functions of the
number of beds and the BOR of the five departments. After
we obtain the number of beds in each department, we can
calculate their BOR by formulas (11)–(15). Constraint (16)
states the total number of beds in five departments. Con-
straints (17)–(21) limit the upper bound and lower bound on
bed numbers of each department. Constraints (22) and (23)
restrict the ward type and patient gender. 0ere are three
ward types for each department in WCH. So, the number of
beds in department i is the sum of the total number of beds
from those three types. In order to distinguish the male and
female wards, the number of each department type must be a
positive integer and should not be less than two.We used the
genetic algorithm [34] to solve the MIP model. 0e genetic
algorithm is run on a personal computer with an Intel®Core™ i7-7700 CPU, a 3.60GHz z Intel processor, and
8.0GB RAM. 0e elapsed time is 77.652611 seconds.

We analyzed the results from three aspects:

(1) Initial bed allocations and optimal bed allocations
based on our model: as shown in Figure 5, the blue
histograms represent the Initial bed allocation,
which is the current hospital bed number. 0e op-
timal bed allocations from ourmodel are represented
by the yellow histograms. Figure 5 shows the optimal
bed allocation strategy: the bed of the W9 reduces
from 236 to 166, W10 from 168 to 121, and W19
from 54 to 44; W6 increases from 72 to 135 andW27
from 114 to 178.

(2) Initial BOR and optimal BOR: Figure 6 shows the
corresponding BOR after optimization. 0e W9
increases from 69.5% to 84.76%, W10 from 64.7% to
84.01%, W19 from 68.9% to 84.78%; on the contrary,
W6 decreases from 98.1% to 86.81% and W27 from
98.5% to 83.48%. Blue lines represent the original

Table 13: Relationship between beds and BOR in W19.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.947 159.652 1 9 0.000 1.450 −0.014
Logarithm 0.915 96.619 1 9 0.000 3.011 −0.579
Quadratic 0.966 114.721 2 8 0.000 0.911 0.012 −3.054E− 5
Composite 0.964 108.277 2 8 0.000 1.095 0.000 −5.576E− 5 −1.687E− 6
Power 0.944 151.827 1 9 0.000 1.736 0.983
Growth 0.908 88.465 1 9 0.000 11.291 −0.695
Exponential 0.944 151.827 1 9 0.000 0.552 −0.017
Logistic 0.944 151.827 1 9 0.000 1.736 −0.017
Note. 0e higher the R2, the better the function model. In the W19 model fitting, the fitting of the quadratic curve is the best, and the quadratic curve is
selected. 0e bed number of W19 is C5, and the bed utilization rate is BOR5 (C5). According to the estimated value of the parameter,
BOR5(C5) � 0.911 + 0.012C5 − 0.0003054C2

5.
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BOR, and yellow lines represent the optimal BOR.We
found that the maximum and minimum BORs are
98.1% and 64.7%. 0e maximum difference of BOR is
33.8% but change to 2.80% after optimization.

(3) Objective function value: our objective value, Z,
represents the imbalance degree of bed utilization
between various departments. For baseline bed al-
location, the initial value of the objective function Z
is as high as 0.7344. After optimization, the optimal
value of Z is 0.0409, indicating that our optimization
reduced the severity of the imbalance.

Finally, we can get a combination of beds in different
wards based on the number of optimal beds (Table 14). In
formula (22), Ci depends on the value of Kij, that is to say,
the combinations of Kij produce different Ci values. For
example, the optimal number of beds for W9 determined by
our model is 166 (C1 � 166); there are many combinations
for single-bed wards (K11), double-bed wards (K12), and
triple-bed wards (K13), such as (26, 40, 20), (22, 42, 20), and
(36, 20, 30). 0is means that W9 can provide 26 single-bed
wards, 40 double-bed wards, and 20 triple-bed wards; 22
single-bed wards, 42 double-bed wards, and 20 triple-bed
wards; or 36 single-bed wards, 20 double-bed wards, and 30
triple-bed wards; and so on.

4. Discussion

Many tertiary hospitals in China are facing the same
problem as WCH, with respect to the imbalance in the

utilization of bed resources in different departments. 0e
availability of beds for hospital care is excessive in some cases
and scarce in others. 0is phenomenon has caused many
problems for hospitals. For example, some hospital wards
are always overcrowded, while others are underloaded. Some
scheduled patient admissions are delayed or even transferred
to other hospitals, and some patients are hospitalized in
inappropriate wards which are unsuited to their pathologies,
with the risk of a lower quality care and a greater chance of
infection [35].

To relieve this imbalance, we propose a data-driven
hybrid three-stage framework combining multiple
methods to produce a feasible bed allocation strategy since it
is difficult to allocate beds among all 28 departments in the
whole WCH. We selected five departments (W9, W10, W6,
W27, and W19) through data analysis and survey interview.
W9, W10, and W19 are departments that have many beds
with a low BOR while W6 and W27 have few beds with high
BOR. For Stage II, we developed a generic discrete-event
simulation model. We fitted the relationship function be-
tween BOR and beds of each wards via the simulationmodel.
In Stage III, we developed a MIP model to minimize the
imbalance in BOR. 0e results of Stage II are incorporated
into the MIP model as one of the key constraints. We also
considered other constraints, such as ward types (single,
double, and three-bed wards) and upper and lower bounds
on the number of beds.

Our data-driven hybrid three-stage framework produces
a flexible allocation strategy for hospital bed management.
Our research helps to improve the utilization of medical
resources and the quality of medical services by balancing
bed numbers and BOR between different departments. Our
model may be applied in two ways. Firstly, it can be extended
to other wards with different arrival rates and LOS distri-
bution. Secondly, our study can provide a reference for
dealing with the problem of hospital bed capacity to other
large general hospitals in China. Our research provides a
common framework for hospital bed allocation, so other
departments or hospitals can follow our three-stages
framework to realize their allocation of beds. Because the
data of each hospital and the actual situation are different
from those of WCH, different constraints or objective
functions may be generated. For example, other hospitals
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Table 14: Optimal number of beds and different combinations of
departments.

Department Optimal
number of beds

Different feasible combinations of
Kij : (Ki1, Ki2, Ki3)

W9 166 (K11, K12, K13) : (26, 40, 20), (22,
42, 20), (36, 20, 30), . . .

W10 121 (K21, K22, K23) : (21, 20, 20), (21,
35, 10), (31, 30, 10), . . .

W6 135 (K31, K32, K33) : (35, 20, 20), (20,
40, 7), (25, 10, 30), . . .

W27 178 (K41, K42, K43) : (78, 20, 20), (10,
39, 30), (40, 39, 20), . . .

W19 44 (K51, K52, K53) : (14, 6, 6), (4, 5,
10), (19, 5, 5), . . .
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can use data analysis to screen the departments that need to
allocate beds; then, they can follow the method described in
Stage II to fit the functional relationship between BOR and
bed. Different hospitals may have different functional re-
lationships because of their different data. Finally, hospitals
can redesign the model with more personalized objective
functions and constraints according to their own actual
situation.

5. Conclusions

We focused upon the problem of allocating beds among
different departments in a hospital. We took a large public
hospital in China, WCH, as a case study. To relieve im-
balances in BOR between departments, we proposed a three-
stage framework. In the first stage, we collected data and
identified departments of interest. In the second stage, we
identified the functional relationship between the number of
beds and the BOR. 0e third-stage MIP model provides the
best number of bed allocations for different departments. It
has proven to be a feasible method to ease the shortage of
beds.

Our research is based on real data, and hospital man-
agers can draw upon the results of this study to solve the bed
occupancy and capacity problem. 0e three-stage frame-
work can help bedmanagers adjust the allocation of beds in a
timely and dynamic manner. 0is approach can be applied
to the majority of other hospitals and may serve as a starting
point for the development of allocation models for other
service industries with similar conditions, such as the al-
location of beds or room types in hotels.

Future study can consider the following two aspects:
since this is the initial stage of bed allocation, the strategy can
be extended to more departments. In addition, the practice
will be a good reference for other large general hospitals in
China. More factors may be considered for inclusion in the
MIP model such as other ward resources (nurses and
doctors), infectious patients, and the undesirability of
mixed-sex rooms.

Appendix

General hospitals have been divided into three levels in
China, according to the hospital’s functions, tasks, facilities,
technology, medical services, and scientific management.

Class I hospitals (the number of beds is 100 or fewer):
primary hospitals and health centers that provide pre-
vention, medical care, health care, and rehabilitation services
directly to communities in a specific population.

Class II hospitals (101 to 500 beds): regional hospitals
that provide comprehensive medical and health services to
multiple communities and undertake certain teaching and
research tasks.

Class III hospitals (also called tertiary hospitals; authors’
hospital; more than 501 beds): regional or higher hospitals
that provide high-level specialized medical and health ser-
vices and perform higher education and scientific research
tasks in several areas. Tertiary hospitals are further sub-
divided into three grades based upon the technical strength

of the hospital, management levels, equipment conditions,
scientific research capabilities, and more. 0e West China
Hospital is one of the highest-grade hospitals among the
tertiary hospitals.
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Background. 0e T wave represents ECG repolarization, whose detection is required during myocardial ischemia, and the first
significant change in the ECG signal is being observed in the STsegment followed by changes in other waves like P wave and QRS
complex. To offer guidance in clinical diagnosis, decision-making, and daily mobile ECG monitoring, the T wave needs to be
detected firstly. Recently, the sliding area-based method has received an increasing amount of attention due to its robustness and
low computational burden. However, the parameter setting of the search window’s boundaries in this method is not adaptive.
0erefore, in this study, we proposed an improved sliding window area method with more adaptive parameter setting for Twave
detection.Methods. Firstly, k-means clustering was used in the annotated MIT QTdatabase to generate three piecewise functions
for delineating the relationship between the RR interval and the interval from the R peak to the Twave onset and that between the
RR interval and the interval from the R peak to the T wave offset. 0en, the grid search technique combined with 5-fold cross
validation was used to select the suitable parameters’ combination for the sliding window area method. Results. With respect to
onset detection in the QT database, F1 improved from 54.70% to 70.46% and 54.05% to 72.94% for the first and second
electrocardiogram (ECG) channels, respectively. For offset detection, F1 also improved in both channels as it did in the European
ST-Tdatabase. Conclusions. F1 results from the improved algorithm version were higher than those from the traditional method,
indicating a potentially useful application for the proposed method in ECG monitoring.

1. Introduction

Nowadays, an increase in the number of people suffering
from heart diseases has been seen. Characterized by several
waveforms such as the P wave, QRS complex, and T wave,
electrocardiogram (ECG) becomes the most intuitive and
basic tool to diagnose heart diseases in clinical applications
which can provide essential physiological/pathological in-
formation for clinical diagnoses and decision-making [1],
including important time interval information between the
onset and offset of different waves [2]. Besides, many
wearable monitoring devices have appeared in recent years,
which makes it possible to monitor ECG signals throughout
an individual’s daily life. Meanwhile, a large amount of ECG
data are generated daily, which is impossible for physicians
to view/diagnose each ECG signal manually [3]. 0erefore,

developing accurate automatic analysis algorithms for ECG
signals is critical, especially with respect to mobile ECG
monitoring [4]. Furthermore, QRS complex have been
widely investigated because of its highest amplitude over the
past decades. Up to now, there are many classical methods
for detecting QRS complex and most of the methods have
been listed in [5], and the classical widely-used methods are
parabolic fitting [6], neural-network-based method [7], and
convolutional neural network [8]. In addition, those
methods for detecting the QRS complex have shown high
sensitivity with positive predictivity (>99%) on theMIT-BIH
arrhythmia database [9], which can provide powerful sup-
port for other waves’ detections.

As one of three main waves of ECG, the Twave represents
ECG repolarization, and its absence or unusual shapes may
signify disruption in repolarization or another segment of the
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heartbeat [10]. Additionally, T wave abnormalities are asso-
ciated with some heart diseases such as inverted T waves
found in other leads (other than the V1 to V4 leads), which is
related to an increase in cardiac deaths, and a tall or wide QRS
complex with an upright T wave is further suggestive of a
posterior infarction. Furthermore, during myocardial ische-
mia, the first significant change in ECG signal is being ob-
served in ST-segment followed by changes in other waves like
P wave and QRS complex of ECG signal. Hence, detection of
the T wave is significant in clinical applications [11].

However, accurate/robust Twave detection still presents
challenges due to its low amplitude (usually 0.1 to 0.3mV) as
well as great variations in T waves’ morphologies [12], like
positive T wave, negative T wave, and biphasic T wave.
Besides, most of the ischemic cases suffering from earlier
STEMI (ST-elevation myocardial infarction) have a prom-
inent ST elimination or depression, which significantly af-
fects the detection of the T onsets. Nowadays, various
approaches based on different techniques have been pro-
posed for Twave detection, and those typical techniques are
wavelet [13, 14], mathematical model [15], support vector
machine (SVM) [16], artificial neural network (ANN)
[17–19], low-pass differentiation (LPD) [20], hiddenMarkov
model (HMM) [21, 22], partially collapsed Gibbs sample and
Bayesian (PCGS) [23], “wings” function [24], derivative
curve [25], adaptive technique [26], computing the Trape-
zium’s area [27], TU complex analyses [28], correlation
analysis [29], k-nearest neighbor [30], and sliding window
area (SWA) [31]. In these aforementioned methods, the
wavelet-based method is robust to waveform morphological
variations but is sensitive to noise [13, 14].0emathematical
model method needs to build robust ECG templates, but
when the waveform variations are large, building universal
templates becomes difficult [15]. 0e SVM-based method is
efficient but constructing efficient features is tough [16], and
the ANN-based method faces the drawback of high com-
putational complexity [17]. As a comparison, the SWA
method has low computational complexity which is also
robust to noise and waveformmorphological variations [31].

In 2006, Zhang et al. first proposed the SWAmethod for
detecting T wave offsets and confirmed its efficiency in the
QT database [31]. Subsequently, Song et al. improved this
method for detecting T wave onsets [32]. Afterwards, our
team combined onsets and offsets detection for classifying
the morphology of the ST segment [33]. In 2017, our team
analyzed its efficiency in the QT database with a different
evaluation index (F1 measure), and we found that there is
still some space for further improvement since the pa-
rameter settings in the transitional SWA method are not
adaptive [34], and the parameters given by Zhang et al. [31]
and Song et al. [32] are empiric values and there is no
optimization step included.

Hence, in this study, an improved SWA method for both
onset and offset detections of T wave with more adaptive
parameter settings is proposed. 0e performance of the
improvedmethod was compared with the traditional method,
and both methods were validated in two common ECG
databases: (1) the QT database (training and testing) and (2)
another independent European ST-T database (only testing).

2. Methods

2.1.Data. Records from two datasets are used.0e first is the
QT database, which contains 105 15-minute two-channel
ECG recordings with the sample rate of 250Hz, and we
chose it as the training and testing sets because multiple-type
records from different databases are contained in this da-
tabase. Besides, totally 43 recordings have manually anno-
tated T wave onsets and 103 recordings have manually
annotated T wave offsets. All records with annotations are
selected, and for each record, a 0.05–45Hz low-pass zero-
phase filter was applied for denoising before importing to
our algorithm. Furthermore, there are usually 30 to 100
representatively manually annotated discrete beats in each
annotated recording. 0us, an RR interval adjustment is also
needed before using these records because we used the
manually annotated R peak locations. Table 1 shows the
summarized annotated information of the QT database.
More detailed information about the annotations of this
database can be found in the study by Laguna et al. [35].

0e second database is the European ST-T database,
which consists 90 2-hour two-channel ECG recordings
sampled at 250Hz, and records of this database are only
used to test the robustness of our improved method. 0e
European ST-T database is chosen because of its widely
usages in evaluation of algorithms for analysis of ST and T
wave changes [36, 37]. In this study, 23 recordings (only the
first 5minutes in each recording) were selected and were
manually annotated for T wave onsets and offsets by a
trained staff member because of loss of Twave international
annotations. Table 1 also shows the detailed annotation
information of this database. Besides, when choosing re-
cords, if there were serious signal quality problems within
the first 5-minute episode, the following 5-minute episode
was used and a 0.05–45Hz bandpass filter was applied for
denoising for each record we chose before importing into
the algorithm. We do not implement RR interval adjust-
ment because R peaks were detected by jqrs method [21].

To verify the consistency of the annotations between the
two databases, we analyzed the time interval information
between the T wave onset/offset and the corresponding R
peak position for the two databases. Figure 1 shows the
probability density distributions of the time interval in-
formation from the two databases. As shown in Figure 1,
we found that our manual annotations of the onset/offset
of T wave in the European ST-T database had similar
probability density distributions with the annotations in
the QT database, which indicated the effectiveness of our
annotations.

2.2. Sliding Window Area (SWA) Method

2.2.1. SWA Method. SWA is an algorithm for detecting T
wave onset and offset (Ton and Tend, respectively) by analyzing
the waveform area of ECG within a sliding window [31].
Onset/offset is detected when the area of the sliding window
reaches its maximum in a prefixed searching range. 0en, we
show an example for explaining themethod in Figures 2 and 3.
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Table 1: Summary of the annotative information of the QT and the European ST-T databases.

Variable
QT database European ST-T database

Onset Offset Onset Offset
No. of recordings 43 105 23 23
No. of annotated beats 1371 3542 14337 14337
Min. Dis_qrs (ms) 52 228 60 220
Max. Dis_qrs (ms) 412 784 264 612
Mean of Dis_qrs (ms) 164 360 160 380
SD of Dis_qrs (ms) 60 71 29 47
Dis_qrs: the time interval between the Twave onset/offset and the Rwave position within the current beat; SD: standard deviation.0e annotations of the QT
database are taken from the database website https://www.physionet.org/physiobank/database/qtdb/doc/index.shtml.
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Figure 1: Probability density distribution of the time interval information between T wave onset/offset and R wave peak by analyzing the
annotations from the two databases: (a) QT database and (b) European ST-T database.
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Figure 2: Demonstration of the SWA method for T wave onset detection.
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Figure 3: Demonstration of the SWA method for detecting offsets of the T wave.
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Figure 2 illustrates the detection for Ton. Firstly, with the
location of R peak, the left and right boundaries (t1 and t2,
respectively) of search window are determined based on the
current RR interval as suggested in the study by Song et al. [32]:

t1 � ⌈0.5 ×
���
RRi

􏽰
⌉ + Ri + 0.08􏼐 􏼑s,

t2 � ⌊0.15 × RRi( 􏼁⌋ + Ri + 0.12( 􏼁s, if RRi < 0.88 s,
t1 � ⌈0.5 ×

���
RRi

􏽰
⌉ + Ri + 0.1􏼐 􏼑s,

t2 � Ri + 0.32( 􏼁s, if RRi ≥ 0.88 s,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where RRi is the ith RR interval and Ri is the ith position of R
peak.

0e waveform area (area of onset denoted as: Ao) within
the fixed sliding window t t + w􏼂 􏼃 was calculated using the
following formula:

Ao � 􏽘
t+w

j�t

sj − sk􏼐 􏼑, (2)

where w � 0.12 s (by default), which is the window width, t
stretches from t1 to t2, sj is the waveform amplitude at the jth
sample point, and sk is the local average amplitude (using a
smoothing window of p � 0.016 s by default), which is
defined according to the following equation:

Sk �
1

2p + 1
􏽘

t+p

j�t−p
Sj. (3)

As shown in Figure 2, when t�Ton, Ao reaches its
maximum value.

Figure 3 illustrates the Tend detection. At first, with the
location of the R peak, the left and right boundaries (t3 and t4,
respectively) of the search window are determined based on the
current RR interval as suggested in a study by Zhang et al. [31]:

t3 � ⌊0.15 × RRi⌋ + Ri + 0.148( 􏼁s,

t4 � ⌈0.7 × RRi⌉ + Ri − 0.036( 􏼁s, if RRi < 0.88 s,

t3 � Ri + 0.28( 􏼁s,

t4 � ⌈0.2 × RRi⌉ + Ri + 0.404( 􏼁s, if RRi ≥ 0.88 s.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

0e waveform area (area of ends denoted as: Ae) within
the fixed sliding window t−w t􏼂 􏼃 was then calculated
according to the following formula:

Ae � 􏽘
t

j�t−w
sj − sk􏼐 􏼑, (5)

where w � 0.128 s (by default), t is from t3 to t4, and sj and sk

have been defined in equation (2). As shown in Figure 3,
when t�Tend, Ae reaches its maximum value. As for the
difference between Figures 2 and 3 is the direction to cal-
culate the sliding area.

In addition, Algorithm 1 shows the description of the
traditional SWA algorithm and more details to which the
algorithm proof can refer [31].

2.2.2. Improved SWAMethod. One key issue with respect to
the SWA method is to accurately determine the search

boundaries, but the search boundaries are closely related to
the RR interval. As shown in Figures 2 and 3, if the interval of
the searching window’s boundaries was set too small which
means that two boundary points are near the current R peak,
the maximum of sliding area could not be found or the
detected onset/offset of T wave are nearer to the R peak.
0ese issues affect detection accuracy, which results in de-
tection error and vice versa.

In the traditional SWA method, there are two piecewise
functions with predefined parameter settings. In order to
more accurately model the relationships between RR interval
and the searching boundaries in this study, we performed a
k-means clustering analysis between RR intervals and RTon
(RTon denotes the time interval between the R peak and T
wave onset) as well as the relationship between the RR
intervals and RToff (RToff the time interval between the R
peak and Twave offset), which is implemented by means of
the k-means function in Matlab. 0e scatter plots with the
optimal k-means clustering (k� 3) are shown in Figure 4
[38], and k is determined by combining the results of
clustering and the computational complexity of parameters’
settings as well as the adaptiveness of the algorithm. 0en,
the two relationships (between RR intervals and RTon, and
between RR intervals and RToff ) are obtained using the
following equations:

case 1 : RR< 0.76 s, 0.05 s<RTon < 0.25 s,

case 2 : 0.76 s≤RR< 1.13 s, 0.05 s<RTon < 0.35 s,

case 3 : RR≥ 1.13 s, 0.05 s<RTon < 0.45 s,

case 1 : RR< 0.72 s, 0.2 s<RToff < 0.45 s,

case 2 : 0.72 s≤RR< 1.1 s, 0.2 s<RToff < 0.6 s,

case 3 : RR≥ 1.1 s, 0.2 s<RToff < 0.8 s.

(6)

0us, the three piecewise functions for determining the
search boundaries for T wave onset and offset detections
were obtained with the parameters presented in Table 2:

t1 � Ri +⌈ald ×
���
RRi

􏽰
⌉ + 0.02􏼐 􏼑􏼑s,

t2 � Ri +⌈alu ×
���
RRi

􏽰
⌉ + 0.16􏼐 􏼑s, if RRi < 0.76 s,

t1 � Ri +⌊ard ×
���
RRi

􏽰
⌋ + 0.04􏼐 􏼑s,

t2 � Ri +⌊aru ×
���
RRi

􏽰
⌋ + 0.24􏼐 􏼑s, if 0.76 s≤RRi < 1.13 s,

t1 � Ri +⌈amd ×
���
RRi

􏽰
⌉ + 0.04􏼐 􏼑s,

t2 � Ri +⌈amu ×
���
RRi

􏽰
⌉ + 0.4􏼐 􏼑s, if RRi ≥ 1.13 s,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

t3 � Ri +⌈ald × RRi⌉ + 0.18( 􏼁s,

t4 � Ri +⌈alu × RRi⌉ + 0.3( 􏼁s, if RRi < 0.72 s,

t3 � Ri +⌊ard × RRi⌋ + 0.18( 􏼁s,

t4 � Ri +⌊aru × RRi⌋ + 0.4( 􏼁s, if 0.72 s≤RRi < 1.1 s,

t3 � Ri +⌈amd × RRi⌉ + 0.18( 􏼁s,

t4 � Ri +⌈amu × RRi⌉ + 0.48( 􏼁, s if RRi ≥ 1.1 s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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0en, the grid search was used to determine the best
combination of parameters in equations (7) and (8), which
was implemented by for loop. In a loop, we changed the
value of one parameter at a time, kept the other parameters
unchanged, and applied the algorithm in the QTdatabase as

well as using a 5-fold cross-validation.0en, we stored the F1
measure of one loop and started another loop. 0rough all
loops, we traversed all of the combinations of parameters
referred to in Table 2. After comparing the results, the
combinations of parameters with the highest F1 measure
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Figure 4: Clustering results for T wave feature points: (a) clustering information of T wave onsets; (b) clustering information of T wave
offsets.

Input: ECG signal S(t), R peak locations, R peak numbers N, sliding window width w, smoothing factor p, and morphology
predefined factor r
Output: T wave onset locations
Calculation:

(1) Calculate t1 and t2 and construct sliding window
window� S(t1 : t2)

(2) Smooth signal and calculate sliding area for each point i inside [t1, t2]
Area(i) � sum(S(i : (i + w))− sum(S((i−p) : (i + p)))/(p∗ 2 + 1))

(3) T wave morphology classification
if r � “p”‖r � “pn”‖r � “bm”‖r � “”
calculate [k1, l1] � max(Area)

end if
if r � “n”‖r � “np”‖r � “”
calculate [k2, l2] � max(−Area)

end if
(4) Get k

k � min(k1, k2)

Output: T wave onset�R peak + k.

ALGORITHM 1: Traditional SWA algorithm (T wave onset detection).
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were chosen. 0e best parameters’ combinations for Twave
onsets are listed: ald� 0.4, alu� 0.2, ard� 0.4, aru� 0.4,
amd� 0.3, and amu� 0.0 and for T wave ends are listed:
ald� 0.2, alu� 0.1, ard� 0.2, ard� 0.1, aru� 0.0, amd� 0.0,
and amu� 0.1. 0e improved SWA method can be sum-
marized as a block diagram in Figure 5.

2.3.EvaluationMethod. Detections for true and false positives
(TP and FP, respectively) and false negative (FN) were de-
termined with a threshold of 100ms. In this study, indices like
sensitivity (Se), positive precision (P+), and F1 measurement
were selected as evaluation indices [39, 40] with the following
definitions: Se � TP/(TP + FN), P+ � TP/(TP + FN), and
F1 � (TP × 2)/(TP × 2 + FN + FP). F1 measure is selected
other than accuracy since F1measure is the weighted average of
precision and recall which satisfies our asymmetric datasets
where values of false positive and false negatives are not the
same.

3. Results

Figure 6 shows the detection examples of the proposed
method, compared with the traditional methods, Zhang’s
method for T wave offset detection [31] and Song’s method
for T wave onset detection [32]. Figure 6(a) shows the
inverted Twave detections, Figure 6(b) shows the biphasic T
wave detections, and Figure 6(c) shows the normal T wave
detections. From Figure 6, Twave offset detections get better
results than T wave onset detections. And, our method got
obviously better results when it is applied in T wave onsets
detections.

3.1. Results from the QT Database. We firstly tested the
performance of the improved SWA method on the QT
database.0e traditional SWAmethods (Song’s method [32]
and Zhang’s method [31]) were used as comparators.

Table 3 shows the results of onset and offset detections in
the QT database. Both of the two channels signals (first and
second channels) were tested. From Table 3, we found the
improved SWA method significantly enhanced detection
accuracies for both onset and offset detections. For onset
detection, F1 improved from 54.70% to 70.46% and 54.05%
to 72.94% for two ECG channels, respectively. For offset
detection, F1 improved from 87.83% to 93.73% and 86.73%
to 94.75% for two ECG channels, respectively. In addition,
detection errors were also analyzed. As expected, the im-
proved SWAmethod indicated smaller detection errors than
the traditional method except for a slight increase in the
offset detection from the second channel (traditional
0.027± 31.85ms versus improved 2.45± 33.98ms). How-
ever, it is worthwhile to note that all Se, P+, and F1 indices
increased from ∼86% to ∼94%.

3.2. Results from the European ST-TDatabase. Table 4 shows
the results of onset and offset detections in the European ST-
T database. 0e improvements after using the improved
method were more significant when performing T wave

onset detection. F1 improved from 41.02% to 84.13% and
44.33% to 87.62% for two ECG channels, respectively. 0e
mean detection errors significantly decreased from 19.52ms
to 7.04ms and 36.27ms to 6.35ms for two ECG channels,
respectively. Performance improvements in offset detection
were small but convincing F1 improved from 98.83% to
99.57% and 91.76% to 98.29% for two ECG channels, re-
spectively. However, the mean detection errors for T wave
offset detection slightly increased (not significant) when
performing the improved method.

4. Discussion

As seen from Tables 3 and 4, both T wave onset and offset
detection of the new proposed method reported better
performances (F1 measure) than the traditional method,
suggesting that applying the clustering technique in the
SWAmethod for deciding searching boundaries is helpful to
enhance detection accuracy. In addition, clustering is a
statistical-based technique, which can be used to determine
whether the independent part of a population belongs to
different groups by comparing quantitative multiple features
[38]. Besides, we noted that, for the Twave offset detections,
neither the traditional SWA nor the improved version re-
ported the better performance than the detection of T wave
onsets. One possible explanation is that Zhang proposed this
method originally to detect Twave offsets not Twave onsets
and proved its mathematical rationality for T wave offsets.
Another possible explanation is that the clustering method
for determining the search boundaries is a statistical-based
technique. 0erefore, the accuracy of the clustering results is
related to the data amount. However, the annotated T wave
onsets in the QT database are far less than the annotated T
wave offsets (1371 versus 3452). 0us, the relationship found
by clustering analysis between the RR interval and RTon is
not that strong (Figure 4(a)) compared to the relationship
between the RR interval and RToff (Figure 4(b)). Moreover,
the significant difference between the improved and tradi-
tional SWAs indicates that the improved version can more
extensively and adaptively determine the search window’s
boundaries by using the k-means clustering based on the QT
database and grid search strategy. However, the traditional
SWA only used predefined parameters and did not give out
any detailed explanations.

Another difference between Zhang’s [31] and our results
was observed when using the QT database for validation,
Zhang’s study chose the better result from the outputs of the
two ECG channels [31]. In order to compare our results with
those from Zhang, we also calculated smaller errors from the
results of two ECG channels. 0e comparable results are
summarized in Table 5. 0e mean detection errors are
similar between Zhang’s and our results. We also noted that
the standard deviation of detection errors was 25.82ms for
our method and 21.19ms for the traditional SWA. Both of
them were smaller than the acceptable threshold (30.6ms)
proposed by the common standards in Electrocardiography
Working Party [41].

Table 5 also summarizes comparable results from other
studies. 0e wavelet-based method reported a mean error of
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Input QT database signal Initializing parameters

Clustering result learning

Setting parameters’ range

Grid searchFivefold cross-validation

Comparing F1 measure

Improved method Input European ST-T 
database signal

Results of two databases

Figure 5: 0e block diagram of the proposed method for delineating the T wave onset/offset.
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Figure 6: Continued.
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1.6ms [13, 14]; the low-pass differentiation-based method
gave a relative large mean error of 13.5ms [20], while the
hidden Markov model-based method reported a mean error
of 5ms [21, 22]. Furthermore, the partially collapsed Gibbs
sample reported 4.3ms [23], and the k-nearest neighbor-

based method reported 2.8ms [20]. 0e TU complex
analysis gave a minimum detection mean error of 0.8ms but
did not include the corresponding Se and P+ results [28]. In
addition, methods proposed by Mahsa with linear and
nonlinear phase observation to detect fiducial points are also
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Figure 6: Twave detection examples.0e solid points marked ( ) are R peaks; the solid points marked ( and ) are results of our method; the
hollow circles marked ( and ) are results of the traditional method; the shadow areas are accepted as TP cases. (a) e0107; (b) e0111; (c)
e0118.

Table 3: Results of T wave detection in the QT database.

Detection Channel Method Se (%) P+ (%) F1 (%) Error mean± SD (ms)

Onset
First Traditional SWA [32] 54.70 54.70 54.70 −30.2± 40.75

Improved SWA 70.46 70.46 70.46 7.3 ± 53.12

Second Traditional SWA [32] 54.05 54.05 54.05 −36.27± 43.29
Improved SWA 72.94 72.94 72.94 6.35 ± 53.78

Offset
First Traditional SWA [31] 87.83 87.83 87.83 −2.57± 30.08

Improved SWA 93.93 93.93 93.93 1.19 ± 33.59

Second Traditional SWA [31] 86.73 86.73 86.73 0.027± 31.85
Improved SWA 94.75 94.75 94.75 2.45 ± 33.98

Table 4: Results of T wave detection in the European ST-T database.

Detection Channel Method Se (%) P+ (%) F1 (%) Error mean± SD (ms)

Onset
First Traditional SWA [32] 41.02 41.02 41.02 19.52± 31.89

Improved SWA 84.13 84.13 84.13 27.87 ± 44.22

Second Traditional SWA [32] 44.33 44.32 44.33 −36.27± 43.29
Improved SWA 87.62 87.61 87.62 215.20 ± 33.54

Offset
First Traditional SWA [31] 98.80 98.86 98.83 22.2± 22.70

Improved SWA 99.50 99.65 99.57 26.94 ± 20.98

Second Traditional SWA [31] 91.80 91.71 91.76 21.07± 26.31
Improved SWA 98.29 98.28 98.29 24.54 ± 25.52

Table 2: Information of parameters when detecting the T wave.

Parameters
T onset T offset

IV CS CR IV CS CR
ald/alu/ard 0.1 0.1 0.1∼0.4 0.1

0.1
0.1∼0.4

aru/amd 0.0 0.0∼0.4amu 0.0 0.0∼0.4
IV: initialized value; CS: change step; CR: change range.
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listed as comparative method [42], and two parts of QT
database including normal sinus rhythm and arrhythmia
database are used when evaluating extraction of fiducial
points and the nonlinear observation has more smaller
deviations 23ms for the first database and 19ms for the
second database.

0e potential issues existing in the above studies consist
of two main points: (1) the time tolerance for determining
true positive detection was not clear and (2) training and
testing were both performed in the QTdatabase, but we used
the European ST-T database as the independent testing
dataset.

Besides, as deep-learning technology improves, more
and more methods based on this technique have been
proposed to detect ECG feature points; for instance, a re-
cently proposed method using neural network and fixed-size
least-squares SVM to detect T wave end reported it is a
minimum detection mean error of −3ms in the QTdatabase;
a QRS complex detection by using two-level convolutional
neural network [8] reported its sensitivity of 99.77% in the
MIT-BIH AR database. When using deep-learning tech-
nique, a great amount of data is needed, and in T wave
detection, the annotated T wave ends are limited but a
meaningful strategy was proposed in [19], which is to use
different strategies for selecting different training sets such as
random selection and k-means. But, we just proposed an
idea that is to use one independent database (QTdataset) as
the training set and testing set and another independent
database (records from the European ST-T database an-
notated by a trained staff) as the testing set.

In order to illustrate difference between error and F1
measure, we did statistical analysis of error. And, Figure 7
gives the cumulative line chart of error (denoted as CLCE) of
Twave offsets in the QTdatabase which explains our method
got more true positive beats than the traditional method
inside our time tolerance. 0e CLCE of Twave onsets in the
QT database and CLCE of T wave in the European ST-T
database also have the same regularities of distribution as it
did in the T wave offsets in the QT database.

Moreover, the limitation of our study is that the anno-
tations of the European ST-T database are only done by a
trained staff member which may result in nonauthoritative

annotations. Besides, we only combine the data statistic and
data mining technique to changing the parameters of tradi-
tional SWAmethod. In our following work, more records with
authoritative annotations will be used to test the robustness of
the combination of parameters we obtained in this study.

5. Conclusion

In this paper, an improved sliding window area method for
detecting T wave onset and offset was proposed. 0e main
contribution/novelty was for application of the data statistic
and data mining technique: (1) k-means clustering for the
setting of search boundaries and (2) grid search strategy to
optimize the parameters. Experiments performed in the QT
database and the European ST-Tdatabase demonstrated the
improved method’s better performance.
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Figure 7: 0e cumulative line chart of error (T offsets in the QT
database). TR result represents the traditional SWA method result,
and IM result represents the improved SWA method result.

Table 5: Comparable detection results of T wave offset in the QT database.

Methods Annotations Se (%) P+ (%) Mean ± SD (ms)
Improved SWA 3542 98.5 98.5 1.21 ± 25.82
Traditional SWA [31] 3542 95.5 95.5 −1.12± 21.19
Wavelet-based [13, 14] 3542 99.77 97.79 −1.6± 18.1
Low-pass differentiation-based [20] 3542 99.00 97.74 13.5± 27.0
Hidden Markov model-based [21, 22] 3542 NA NA −5± 14
Partially collapsed Gibbs sample [23] 3403 99.81 98.97 4.3± 20.8
k-nearest neighbor-based [30] 30 records NA NA 2.8± 18.6
TU complex analysis [28] 3528 92.60 NA 0.8± 30.3
Neural network and fixed-size least-squares SVM [19] 3542 NA NA −3.0± 16.9
L.EKF25 [42] 10 records NA NA 11± 39
N.L.EKF25 [42] 4± 23
L.EKF25 [42] 15 records NA NA −17± 30
N.L.EKF25 [42] −21± 19
NA: not available; L.EKF25: linear Kalman filter; N.L.EKF25: nonlinear Kalman filter.
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,is study reviews the technique of convolutional neural network (CNN) applied in a specific field of mammographic breast
cancer diagnosis (MBCD). It aims to provide several clues on how to use CNN for related tasks. MBCD is a long-standing
problem, and massive computer-aided diagnosis models have been proposed. ,e models of CNN-based MBCD can be broadly
categorized into three groups. One is to design shallow or to modify existingmodels to decrease the time cost as well as the number
of instances for training; another is to make the best use of a pretrained CNN by transfer learning and fine-tuning; the third is to
take advantage of CNNmodels for feature extraction, and the differentiation of malignant lesions from benign ones is fulfilled by
using machine learning classifiers. ,is study enrolls peer-reviewed journal publications and presents technical details and pros
and cons of each model. Furthermore, the findings, challenges and limitations are summarized and some clues on the future work
are also given. Conclusively, CNN-based MBCD is at its early stage, and there is still a long way ahead in achieving the ultimate
goal of using deep learning tools to facilitate clinical practice. ,is review benefits scientific researchers, industrial engineers, and
those who are devoted to intelligent cancer diagnosis.

1. Introduction

Breast cancer threatens women’s life worldwide. In the
United States, it might cause an estimation of 0.25 million
new cases of invasive breast cancer, 0.06 million new cases of
noninvasive breast cancer, and 0.04 million deaths in 2016
[1]. ,is disease dramatically increases the health burden on
those developing and underdeveloped countries [2]. Sub-
stantial clinical trial indicates that early detection and di-
agnosis of breast cancer can provide patients with more
flexible treatment options and improved life quality and
survivability [3]. ,erefore, more and more attention is
being paid to related fields, such as novel imaging modalities
of ultrasound tomography [4] and breast tomography [5].

Mammography performs as a routine tool for breast
cancer screening. It enables high-resolution perception of
the internal anatomy of breast and helps the diagnosis of
suspicious lesions [6]. Screening mammography scans the
breast from the craniocaudal view and mediolateral oblique
view, while diagnostic mammography acquires more images
when symptoms, such as architecture changes and abnormal
findings, are found on screening mammographic images. To
date, screen filmmammography (FM) has been the reference
standard for use in breast cancer screening programs, while
due to the demands of higher spatial resolution, digital
mammography (DM) has been widely accepted. General
rules exist for mammographic image interpretation. How-
ever, errors are unavoidable in clinic, and reasons are
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manifold. Above all, the difference of perceived visual ap-
pearance between malignant and benign lesions is unclear
and consequently, how to quantify breast lesions with dis-
criminative features is full of challenges. Moreover, it is still
difficult to estimate the disease risk because of limited in-
formation and thus, healthy people might be turned into
patients. Besides, work overload and fatigue further cause
misinterpretation and overdiagnosis. Unfortunately, it is
found that more than 70% of suggested biopsies are with
benign outcomes during the diagnosis phase [7].

Computer-aided models for mammographic breast
cancer diagnosis (MBCD) have been explored for over thirty
years [8, 9]. It supports the decision making and helps the
differentiation between malignant and benign lesions by
providing additional information. Due to the facilitation of
MBCD models, the diagnostic performance is enhanced
regarding both sensitivity and specificity [10] and un-
necessary examinations can be reduced in a cost-effective
manner. It further benefits biopsy recommendations, follow-
up treatments, and prognosis analysis. From a technical
perspective, major MBCD models are consisted of feature
extraction and lesion malignancy prediction. ,e former
quantifies lesions with discriminative features and the latter
builds the relationship between the features and its label,
benign or malignant. Massive studies have devoted to the
investigation of breast cancer diagnosis, ranging from using
different modalities [11–13], to the analysis of subtle signs
[14, 15] and to various technique exploration [16, 17]. Be-
cause of the easy accessibility of high-performance com-
puting resources, millions of labeled data, and advanced
artificial intelligence methods, convolutional neural network
(CNN) has revolutionized image representation and
benefited a broad range of applications [18], including but
not limited to object recognition [19], visual understanding
[20], and numerical regression [21, 22]. Quite different from
conventional MBCD techniques, CNN attempts to integrate
the feature extraction and lesion classification into a su-
pervised learning procedure. ,e input of the CNN archi-
tectures is image patches of outlined lesion regions, and its
output corresponds to the predicted lesion malignancy and
intuitively, time and labor can be reduced in feature engi-
neering. Meanwhile, CNN is pushing forward the technique
upgrading in the field of medical imaging [23], medical
physics [24, 25], medical image analysis [26–28] and ra-
diotherapy [29, 30]. ,e research toward developing effec-
tive and efficient CNN-based MCBDmodels is still ongoing.

To the best of our knowledge, three review papers have
been published regarding deep learning based breast cancer
diagnosis. One concerns lesion detection and malignancy
prediction using mammography, ultrasound, magnetic
resonance imaging and digital tomosynthesis [31]. One
focuses on mammography and histology image processing
and analysis [32]. Meanwhile, it attempts to map the
features/phenotypes between mammographic abnormalities
and histological representation. ,e last one overviews deep
learning in the detection and diagnosis of various kinds of
cancers by using different imaging modalities [33]. In
general, technical details in these review papers are not well
delivered.

,is paper also presents a review. It is dedicated to the
technique of CNN applied in a specific application of
MBCD, and it aims to provide clues on how to use CNN in
intelligent diagnosis. ,e contributions of this review are
summarized as follows. At first, this study is restricted to
peer-reviewed journal publications and consequently,
technical details and pros and cons of each model can be
delivered. Furthermore, based on how to use CNN tech-
niques, the MBCDmodels are broadly categorized into three
groups. One is to design shallow models or to modify
existing models for decreased time cost and medical in-
stances for training; another is to make the best use of a
pretrained CNN model by transfer learning and parameter
fine-tuning; and the third is to take advantage of CNN
models for feature extraction, while the differentiation be-
tween malignant and benign lesions is based on machine
learning classifiers. At last, findings, challenges, and limi-
tations are summarized, and some clues on the future work
are also given.

,e remainder of this paper is structured as follows.
Section 2 describes basic concepts regarding computer-aided
diagnosis (CAD) and transfer learning. Section 3 reviews
CNN-based MBCD techniques, including the search strat-
egy of the literature and technical details of involved models.
And then, findings, challenges, and future focus are sum-
marized in Section 4. In the end, Section 5 concludes this
review.

2. Basic Concept of CAD Models

,is section briefly describes the basic concepts of
computer-aided diagnosis (CAD) and transfer learning.
Specifically, Figure 1 shows the flow chart of machine
learning- (ML-) based CAD and major architectures of
CNN-based CAD. It should be noted that for diagnosis, a
CADmodel assumes the suspicious lesion regions have been
accurately delineated and its purpose is to predict the ma-
lignancy of the input lesions.

2.1.Computer-AidedDiagnosis (CAD). ACADmodel can be
used to provide additional information and support the
decision making on disease diagnosis and cancer staging. It
is different from a computer-aided detection model which
aims to detect, localize, or segment suspicious regions.
However, it should be noticed that a computer-aided de-
tection model can be placed ahead of a diagnosis model for
comprehensive analysis from the detection and localization
to the diagnosis of suspicious regions.

2.1.1. ML-Based CAD. A ML-based CAD model consists of
feature extraction and machine learning-based classification
as shown in the left of Figure 1, and feature selection is
optional. Widely used features come from image descriptors
that quantify the intensity, shape, and texture of a suspicious
region [34]. Preferred machine learning classifiers are not
limited to artificial neural network (ANN), support vector
machine (SVM), k-nearest neighbors, naive Bayesian, and
random forest (RF) [35]. Due to the emergency of radiomics
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[36–38], it should be noted that feature selection becomes
more and more important and it aims to retrieve intrinsic
features of suspicious lesions.

Mathematically, the procedure of using a pretrainedML-
based CAD model to predict the malignancy of a lesion can
be described as follows. First, an outlined suspicious region
(Ix) as the input is quantified with scalar variables (E(Ix)) by
using feature extraction (E). ,en, feature selection (S) is
employed to decrease the feature dimension and to retrieve
informative features (S(E(Ix))). In the end, the output of the
label (y) of the lesion (Ix) is predicted using machine learning
classifiers can be formulated as y � F(S(E(Ix))). For
comprehensive understanding, overviews regarding ma-
chine learning and breast cancer diagnosis can be referred to
[8, 9].

2.1.2. CNN-Based CAD. CNN models are computational
models that are composed of multiple processing layers to
retrieve features from raw data with multilevel representa-
tions and hierarchical abstraction [19]. As shown in the right
of Figure 1, a general architecture of CNNmodels is made up
of convolutional layers, full-connection layers, and pooling
layers in addition to the input and output layers. Specifically,
Figure 2 shows the architecture of VGG16 which consists of
13 convolutional layers, 3 full-connection layers, 5 pooling
layers, and 1 softmax layer [39]. For further improvement in
object classification, many techniques can be embedded,
including nonlinear filtering, data augmentation, local re-
sponse normalization, hyperparameter optimization, and
multiscale representation [31, 32]. At present, widely used
deep learning models include, but are not limited to, VGG
[39], LeNet [40], AlexNet [41], GoogLeNet [42, 43], ResNet
[44], YOLO [45], faster R-CNN [46] and LSTM [47].

Mathematically, the procedure of using a pretrained
CNN-based CAD model for the prediction of lesion ma-
lignancy can be described as following. Given a suspicious
region (Ix), the output of a CNN-based model can be for-
malized as y � F(Ix) � fn(fn−1(· · · (f(Ix)))) where n
stands for the number of hidden layers and fi denotes the

activation function in the corresponding layer i. Further-
more, how to design the architecture of deep learning
models in addition to the comprehensive analysis and
systematic methodologies of learning representation can be
referred from [18, 19, 48].

It should be noted that CNNmodels are data-driven and
can be trained end-to-end. ,e models enable the in-
tegration of feature extraction, feature selection, and ma-
lignancy prediction into an optimization procedure.
,erefore, these retrieved features are not designed by
human engineers but learned from the input data [19]. In
general, remarkable performance of CNN-based CAD
models comes from advanced computing hardware resource
(i.e., graphic processing units and distributed computing
system), open-source software, such as TensorFlow (https://
www.tensorflow.org/), and open challenges based on mil-
lions of high-quality labeled images, such as ImageNet
(http://www.image-net.org/). Its success also benefits from
the novel design of architectures for deep learning, such as
inception [43] and identity mapping [44].

2.2. Transfer Learning. Transfer learning, or knowledge
transfer, is more a machine learning strategy. It aims to reuse
a model pretrained in the source domain as a starting point
in a different but related target domain [49]. In the field of
machine learning, an algorithm is typically designed to
address one isolated task, while through transfer learning,
the algorithm can be further adapted to a new task (Figure 3).
It has several benefits using knowledge transfer. Above all,
knowledge transfer enables the quality of the starting point
in the target domain and thereby, promising results can be
expected. Moreover, how to make use of a pretrained model
is flexible. ,e model can be employed as a feature extractor
for high-level representation of images and its parameters
can be fine-tuned with target data. In addition, both time
and cost can be reduced dramatically. Depending on com-
puting resources, it takes about days to months training a
deep model, while the time drops to hours when transferring
this model for target applications. ,anks to the accessibility
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Figure 1: ,e diagram of the main flow chart of ML-based CAD (a) and major architectures of CNN-based CAD (b). ,e black dashed line
indicates the blocks are modifiable. ,e green dashed line denotes each step in the ML-based model is interpretable, and the red solid line
indicates the CNN-based model is data-driven when the architecture is fixed.
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of pretrained deep models online, high-cost hardware seems
unnecessary. Most importantly, transfer learning relieves the
requirement of huge amount of instances for model training,
which is critically helpful in medical imaging field. At present,
the most popular object classification is based on the
ImageNet [50] and without additional comments, pretrained
CNNmodels are all denoted an initialization on the ImageNet
in this study.

3. CNN-Based MBCD

,is section firstly introduces the search strategy of litera-
tures, involved databases and performance metrics. In the
end, CNN-based MBCD methods are categorized into three
groups based on the design and use of CNN models. ,is
overview concentrates on peer-reviewed journal publica-
tions, and it provides technical details and pros and cons of
CNN models.

3.1. Search Strategy for Literature Review. For the literature
survey, IEEEXplore, Pubmed, ScienceDirect, and Google
Scholar were used to search publications relating to CNN-
based MBCD. ,e last update was at December 20, 2018.
Keywords are “convolutional neural network,” “deep learn-
ing,” “mammography,” “breast cancer,” and “diagnosis”.
Specifically, only papers published on peer-reviewed journals
were selected, and our search yielded 18 research articles.
Table 1 summarizes the literature from the used databases, the
number (no.) of medical images in lesion classification and
the diagnosis performance (AUC, the area under the curve;
ACC, accuracy; SEN, sensitivity; SPE, specificity). Note that in
each literature, only the model which achieves the best
classification performance is reported.

3.2. Involved Databases. Table 1 indicates that mostly used
mammography databases come from in-house collection
(7/18), followed by public databases of BCDR-F03 (5/18),
DDSM (4/18), INbreast (3/18), MIAS (1/18), and IRMA
(1/18), and the last one comes from the DREAM challenge
(1/18). ,e number of medical images in databases ranges
mainly from several hundreds to thousands. Notably, the

DREAM challenge is consisted of 82,000 images. More-
over, among the public databases, BCDR-F03 is the only
one consisted of FM images, while among in-house col-
lections, [55] is the one study that makes use of FM images
(1655 FM images and 799 DM images), and all other
databases and in-house collections are made up of DM
images.

,ree public databases of DDSM (http://marathon.
csee.usf.edu/Mammography/Database.html), BCDR-F03
(http://bcdr.inegi.up.pt), INbreast (http://medicalresearch.
inescporto.pt/breastresearch/index.php), and MIAS (http://
peipa.essex.ac.uk/info/mias.html) are accessible online, while
the DREAM challenge (https://www.synapse.org/#Synapse:
syn4224222) is devoted to online competition and aims at
improving the predictive accuracy of mammographic images
for early detection and diagnosis of breast cancer. ,e IRMA
[69] contains image patches selected from the DDSM, MIAS,
and other two data sets. Among the public databases, DDSM
(“Digital Database for Screening Mammography”) remains
the largest available resource for mammographic image
analysis [70]. It consists of 14 volumes of benign lesion cases
and 15 volumes of malignant lesion cases in addition to 2
volumes of benign lesion cases without callback. It also
contains 12 volumes of normal cases. ,e images in DDSM
are in an outdated image format with a bit depth of 12 or
16 bits per pixel, and image resolution is larger than [4000,
3000], both depending on scanners.

,e database BCDR-F03 (“Film Mammography Dataset
Number 3”) is a subset of Breast Cancer Digital Repository
(BCDR) that collects patient cases from the northern region
of Portugal. It was made available for the development and
comparison of algorithms [52]. ,e BCDR-F03 contains 344
patient cases, 736 FM images, and 406 breast lesions. Among
the lesions, 230 are benign (426 images) and 176 malignant
(310 images). Notably, BCDR-F03 contains FM images in
the gray-level digitized TIFF (Tagged Image File Format)
with a bit depth of 8 bits per pixel, and image resolution is
[720, 1168].

,e database INbreast is made up of 115 breast lesion
cases and 410 digital images [71]. However, only 56 cases are
histologically verified (11 benign and 45 malignant lesions).
,e mammographic images are saved in DICOM (Digital

Input/output layer
Convolutional layer
Pooling layer

Full connection layer
Softmax layer

Figure 2:,e architecture of VGG16. It consists of 13 convolutional layers, 3 full-connection layers, 5 pooling layers, and 1 softmax layer in
addition to the input and output layers.
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Imaging and Communications in Medicine) format with 14-
bit contrast resolution. ,e image matrix is [2560, 2238] or
[3328, 4084] depending on imaging scanners.

,e MIAS database (“Mammographic Image Analysis
Society”) contains 322 digital images among which 67 le-
sions are benign and 53 lesions are malignant [72]. Quite

Table 1: A summary of CNN based MBCD methods.

Year Database No. of images AUC ACC SPE SEN
[51] 2016 DDSM 600 0.967
[52] 2016 BCDR-F03 736 0.82± 0.03
[53] 2016 In-house 607 0.86
[54] 2017 In-house 3158 0.88 0.82 0.72 0.81
[55] 2017 In-house 2454 0.82± 0.02
[56] 2017 In-house 245 0.86± 0.01
[57] 2017 INbreast 115 0.91± 0.12 0.95± 0.05
[58] 2017 In-house 560 0.79± 0.02
[59] 2017 IRMA 2796 0.839 0.837 0.854 0.797
[60] 2018 In-house 78 0.81± 0.05
[61] 2018 In-house 3290 0.7274
[62] 2018 DDSM 600 0.974

MIAS 120 0.967
[63] 2018 BCDR-F03 736 0.813
[64] 2018 DDSM 5316 0.98 0.9735

BCDR-F03 600 0.96 0.9667
INbreast 200 0.97 0.9550

[65] 2018 DDSM 600 0.97
[66] 2018 DREAM 82,000 0.85

INbreast 115 0.95
[67] 2018 BCDR-F03 736 0.891 0.852
[68] 2018 BCDR-F03 736 0.88 0.81

Source data

Source model

Source labels

Target data

Target labels

Target modelTransfer learning

Figure 3: ,e diagram of knowledge transferred from the source domain to a different but related target domain. In the source domain, a
model is trained with sufficient high-quality instances (data and labels) and transfer learning enables the model used in a related target
domain. It relieves the requirement of huge amount of instances for the training of deep models in the target domain which is critically
helpful in medical imaging field.
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different from above-mentioned databases, MIAS provides
the image coordinates of center of each abnormality and the
approximate radius (in pixels) of a circle to enclose the
abnormality, but not the coordinates of points localized on
the boundary of lesions. Images are stored 8 bits per pixel in
the PGM (Probabilistic graphical model) format. ,e da-
tabase has been reduced to a 200 micron pixel edge and
padded/clipped so that the image matrix is [1024, 1024].

3.3. Performance Metrics. To quantify the classification
performance of CAD models, widely used metrics are AUC
and ACC, followed by SEN and SPE (Table 1). Specifically,
ACC, SEN, and SPE are computed based on the confusion
matrix. As shown in Table 2, TP is the case which is his-
tologically verified positive and correctly predicted as
“positive”, while FN represents the case histologically ver-
ified positive but misclassified as “negative”. Furthermore,
TN is the true negative case predicted correctly, and FP is the
true negative case but predicted as “positive” [73]. Generally,
benign lesions are labeled with “negative” and malignant
lesions are labeled “positive”.

Given the labels and corresponding prediction results,
ACC, SEN, and SPE can be, respectively, formulated as
(TP+TN)/(TP+ FN+FP+TN), TP/(TP+ FN), and TN/
(TN+FP). As to AUC, it is quantified based on the receiver
operating characteristics (ROC) curve. ROC is a curve of
probability and AUC presents a model’s capacity of lesion
differentiation. To these 4 performance metrics, higher
values indicate better performance.

3.4. CNN-Based MBCD Models. In general, CNN-based
models can be divided into dedicated models and trans-
ferred models. ,e former include the proposal of new
architectures, the modification or integration of existing
CNN models, while the latter make the most use of pre-
trained models and further fine-tune them by using medical
instances. Furthermore, it is found that somemodels just use
CNN for feature extraction and lesion diagnosis is fulfilled
by using machine learning classifiers. In particular, hand-
crafted features are taken into consideration. ,erefore, in
this study, CNN-based MBCD models are broadly catego-
rized into three groups of dedicated models, transferred
models, and hybrid models. Table 3 summarizes the CNN-
based models from the model building to its pros and cons
analysis. Note that the pros of “parameter initialization”
indicate the model is pretrained with ImageNet.

3.4.1. Dedicated MBCD Models. To enhance the diagnosis
with unlabeled data, [54] proposes a graph-based semi-
supervised learning scheme, which is consisted of iterative
data weighting, feature selection, and data labeling before
using the modified LeNet for lesion diagnosis. Experimental
results indicate that the scheme requires quite a small
portion of labeled data (100 lesions) for training and achieves
promising performance on the unlabeled data (3058 lesions).
In addition, the scheme seems less sensitive to the initial
labeled data. Reference [55] adds 2 fully connected layers at

the last full-connection layer of the frozen AlexNet. ,e
parameters in the AlexNet are initialized on the ImageNet
and keep unchanged, while the whole model is trained on
medical instances. Reference [58] proposes a four-layered
model (3 convolutional layers and 1 full-connection layer)
and a 4-fold cross-validation strategy is performed on 560
lesions (280 benign and 280 malignant). Reference [62]
designs a CNN architecture (5 convolutional layers and 2
full-connection layers), while it pretrains the model on the
ImageNet. Notably, parasitic metric learning is embedded
that makes the best use of misclassified medical instances
and improves the diagnosis performance. Reference [65]
employs YOLO for lesion detection and localization fol-
lowed by a tensor structure for the malignancy prediction.
And consequently, automatic detection and classification of
suspicious lesions is achieved simultaneously. Similarly, [66]
uses the faster R-CNN for lesion detection and localization
and the VGG for cancer diagnosis. ,e model is first trained
on the DDSM and further validated on the INbreast and the
DREAM challenge. It performs as one of the best approaches
in mammographic image analysis. Reference [67] develops a
hybrid model. It first uses the pretrained GoogLeNet for
feature extraction, and 3072 features are obtained. And then,
an attention mechanism is proposed for feature selection. At
last, it uses LSTM to integrate both contexture information
from multiview image features and information of clinical
data for the lesion classification.

Figure 4 demonstrates the flow chart and an example of
dedicated MBCD models. ,e flow chart highlights that the
CNN is a newly designed or modified network and the
example describes the architecture of the CNN model from
[58]. It should be noted that parameters of dedicated models
are with random initialization followed by iterative opti-
mization with medical instances.

Although [55, 62, 66, 67] make use of the ImageNet for
parameter initialization, it should be highlighted that one
develops a new architecture [62], one modifies the existing
architecture and introduces a new learning strategy [55], and
the others emphasize on the integration of two kinds of
network architectures for simultaneous detection and lo-
calization and final lesion diagnosis [66, 67]. ,erefore,
[55, 62, 66, 67] are categorized into the group of dedicated
models.

3.4.2. Transferred CNN Models. Due to insufficient medical
instances, deep CNN models pretrained on a large-scale of
labeled natural images (such as ImageNet) are transferred
and also fine-tuned with medical instances before the ap-
plication in breast cancer diagnosis. Reference [61] gives out
a systematic comparison of one shallow network (3 con-
volutional layers and 2 full-connection layers) and the
AlexNet. Transfer learning is concerned, and experiment
results indicate that CNN models with transfer learning
outperform the models without transfer learning. Reference
[63] investigates three kinds of implementation of an 8-
layered CNN architecture. Parameters, such as the number
of convolutional filters in each layer, are fine-tuned with
mammographic lesion instances. Experimental comparison
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Table 2: Confusion matrix.

Predicted positive Predicted negative
Histologically verified positive True positive (TP) False negative (FN)
Histologically verified negative False positive (FP) True negative (TN)

Table 3: Summary of CNN-based MBCD models from the model building to its pros and cons analysis.

Publication (year) Approach Pros (+)/cons (−)

[51] (2016)
(1) An 8-layered CNN +parameter initialization

(2) SVM-based decision mechanism +decision mechanism
(3) Compared to ML- and CNN-based models −256 mid- and 2048 high-level features

[52] (2016)
(1) A 3-layered CNN +medical instances for training

(2) SVM-based classification −17 low- and 400 high-level features
(3) Compared to ML- and CNN-based models −a shallow CNN model

[53] (2016)
(1) Transferred AlexNet +parameter initialization

(2) SVM-based classification +soft-voting-based decision mechanism
(3) Classifier-based soft voting −29 low- and 3795 high-level features

[54] (2017)

(1) Modified LeNet +semisupervised learning
(2) Graph based semisupervised learning +a few labeled data used for training

(3) Feature dimension reduction +less sensitive to initial labeled data
(4) Using unlabeled data

[55] (2017) (1) Modified AlexNet +parameter initialization
(2) Multitask transfer learning +improved generalizability

[56] (2017)
(1) Transferred the VGG +parameter initialization

(2) SVM-based classification +decision mechanism
(3) Compared to ML- and CNN-based models −38 low- and 1472 high-level features

[57] (2017)
(1) R-CNN for detection and diagnosis +minimal user intervention in image analysis

(2) Feature regression −781 low-level features for CNN feature regression
(3) RF-based classification

[58] (2017) (1) A 4-layered CNN +medical instances for training
−a shallow CNN model

[59] (2017)
(1) A 3-layered CNN +medical instances for training

(2) SVM-based classification +image analysis in transformed domain
(3) Data augmentation −a shallow CNN model

[60] (2018)
(1) VGG for feature extraction +2 features selected for diagnosis
(2) Stepwise feature selection
(3) SVM-based classification

[61] (2018)
(1) Transferred AlexNet +parameter initialization
(2) Data augmentation

(3) Compared to CNN models

[62] (2018) (1) A 7-layered CNN +parameter initialization
(2) Parasitic metric learning +parasitic metric learning

[63] (2018) (1) Transferred VGG +parameter initialization
(2) Compared to CNN-based models

[64] (2018)
(1) Transferred VGG/ResNet/Inception +parameter initialization

(2) Comparison on 3 databases +systematic comparison
−time consuming

[65] (2018) (1) YOLO and tensor structure +medical instances for training
(2) Data augmentation +simultaneous detection and classification

[66] (2018)
(1) Faster R-CNN and VGG +medical instances for training

(2) Pretrained with the DDSM +both detection and diagnosis
+evaluated on a large-scale screening dataset

[67] (2018)
(1) GoogLeNet for feature extraction +medical instances for training

(2) Attention mechanism for feature selection +multiview and clinical information fusion
(3) LSTM for feature fusion

[68] (2018)
(1) Transferred AlexNet/GoogLeNet +parameter initialization

(2) Data augmentation
(3) Compared to ML- and CNN-based models
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further indicates that incorporating handcrafted features
increases the classification performance. Reference [64]
concentrates the study on three deep learning models (VGG,
RestNet, and GoogLeNet) and knowledge transfer is ex-
plored. Experiments are conducted to compare the random
initialization and parameter initialization and to figure out
how to fine-tune the models. Notably, three public databases
(DDSM, INbreast and MIAS) are analyzed. Reference [68]
compares two deep networks (AlexNet and GoogLeNet)
which are pretrained on the ImageNet, two shallow CNN
models, and two ML-based MBCD models. Experimental
results suggest that knowledge transfer is helpful in breast
lesion diagnosis.

Figure 5 shows the flow chart and an example of trans-
ferred MBCD models. ,e flow chart highlights the offline
training of a CNN model on nonmedical images, and
moreover, it emphasizes fine-tuning the pretrainedmodel with
medical instances. A representative example using VGG as the
diagnosis model comes from [64]. It should be noted that
parameters of CNN architectures are predetermined in the
task of object recognition, and their values are further opti-
mized toward mammographic breast lesion differentiation.

Existing deep architectures are made themost use of, and
these models [61, 63, 64, 68] are pretrained on the ImageNet
and parameters are initialized. And then, mammographic
lesion instances are used to fine-tune the deepmodels.While
to further improve the diagnosis performance, additional
techniques, such as data augmentation, are embedded in the
training procedure. It should be noted that [61] has designed
shallow networks, while its purpose is to verify whether
transfer learning could improve the cancer diagnosis, and
thereby it is grouped into the transferred CNN models.

3.4.3. CNN Models as Feature Extractors. Among the CNN-
based MBCDmodels, 7 out of 18 take CNN to retrieve high-
level features for lesion representation. Reference [51] de-
velops an 8-layered network (5 convolutional layers and 3
full-connection layers). ,e model is pretrained on the
ImageNet to overcome the issue of limited medical in-
stances. And then, SVM performs as the classifier and a

decision mechanism is provided. After that, the MBCD
model integrates 256 midlevel and 2048 high-level features
for lesion classification. Reference [52] designs two shallow
networks and experimental results indicate the 3-layered
network (2 convolutional layers and 1 full-connection layer)
obtains better performance. While for higher accuracy, SVM
is further employed which takes these CNN features as its
input. Experiment results show the diagnosis performance
achieves slight but significant improvement when 17 low-
level and 400 high-level features are pooled for lesion
quantification. Reference [53] takes advantage of the pre-
trained AlexNet for the lesion differentiation. More spe-
cially, one SVM-basedmodel uses 3795 high-level features as
its input and the other SVM-based model uses 29 low-level
features for the lesion classification.,e outputs are fused by
soft voting and significant improvements are achieved in
malignancy prediction. Reference [56] investigates different
methodologies for feature fusion. It concerns 38 handcrafted
features and 1472 CNN learned features, and SVM is as the
classifier for each kind of feature.,en, the results from each
SVM are fused for final decision making. ,e results show
that the integration of low- and high-level features signifi-
cantly improves cancer diagnosis. Reference [57] proposes a
hybrid framework for mammographic image analysis. With
minimal user intervention, it is capable of mass detection,
lesion segmentation, and malignancy prediction. Specifi-
cally, for lesion differentiation, it regresses the output of the
CNN model to 781 handcrafted features and then, a full-
connection layer is added for feature abstraction. Finally, RF
is utilized to improve the diagnosis accuracy. Reference [59]
introduces a shallow network (2 convolutional layers and 1
full-connection layer). It alternatively cooperates with dis-
crete wavelet transform and curvelet transform for image
preprocessing. At last, a total of 784 features are handcrafted.
Moreover, both softmax and SVM are compared, and SVM
outperforms softmax with slight increase. Reference [60]
takes advantage of 1472 high-level features from the pre-
trained VGGwith frozen parameters. Its novelty comes from
the proposal of step-wise feature selection and the 2 most
frequently selected features are used for SVM-based breast
lesion classification.

Medical images

An example

Full connection layer
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Figure 4: ,e flow chart and an example of dedicated MBCD models. ,e flow chart highlights the CNN is a newly designed or modified
network, and the example describes the architecture of a CNN model in [58]. It should be noted that parameters of dedicated models are
with random initialization followed by iterative optimization with medical instances.
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Figure 6 shows the flow chart and an example of CNN
models as feature extractors. ,e flow chart highlights in-
formation fusion. In other words, whether a CNN model is
newly designed or pretrained becomes not important and
using low-level feature is optional. Information fusion can be
divided into two approaches. One is feature fusion followed
by a classifier, and the other is decision fusion of lesion
malignancy predicted by using one or more classifiers. ,e
example comes from [51] which develops a new CNNmodel
and the model is pretrained on ImageNet. At last, the model
fuses the prediction results (decision fusion) from SVM
classifiers which separately use 384 midlevel features and
2048 high-level features as the input.

Prior studies have proved the benefits of low-level fea-
tures in mammographic image analysis. And at present, how
to select the informative CNN features [60] and how to fuse
low-, mid-, and high-level features and clinical information
have become important [52, 53, 56]. It should be mentioned
that even if some MBCD models concern handcrafted
features [53, 56], the ultimate purpose is to construct a
hybrid framework for improved diagnosis and thereby, these
publications [53, 56] are categorized into the third group.

3.4.4. Technical Highlights among CNN-Based MBCD
Models. Table 4 summarizes the technical highlights that
can distinguish each kind of CNN-based MBCD models. In
the Table, “✔” indicates the distinct component in the
model, “✖” denotes the component is not included in the
models, while “—”means the component is not important in
this kind of CNN-based models.

4. Discussion

A total of 18 peer-reviewed journal publications (Table 1) are
found with regard to the “convolutional neural network” or
“deep learning” based “breast cancer diagnosis” using

“mammography” images. ,e models are generally divided
into three groups (Table 4): one highlights the design of new
architectures or the modification or integration of existing
networks (Figure 4); one concentrates on the use of transfer
learning and fine-tuning in breast cancer diagnosis (Figure 5);
and the last one concerns a hybrid model in which CNN
performs for feature extraction and information fusion be-
comes indispensable in decision making (Figure 6). In ad-
dition, Table 3 summarizes these models from the model
building to its pros and cons analysis.

4.1. Our Findings. To overcome the issue of limited medical
instances, there are 10 publications that employ transfer
learning [51, 53, 55, 56, 61–64, 66, 68], with or without fine-
tuning. Transfer learning is able to alleviate this issue to some
extent, since deep models have been optimized using
massive amount of data in the source domain; and conse-
quently, the time and labor can be considerably reduced in
the target domain. In particular, it has been verified that
transfer learning benefits the differentiation of breast lesions
seen in mammographic images. Besides, to increase the
number of medical instances, data augmentation is used
[59, 61, 65, 68]. It makes sense in lesion malignancy pre-
diction, since a lesion might be presented in any particular
orientation in screening and thus, the MBCD model should
be able to learn and recognize the lesion malignancy. For
data augmentation, besides image rotation and flipping,
other techniques can be adapted, such as image quality
degrading (https://github.com/aleju/imgaug) and image
deformation [74–76].

To improve the diagnosis performance, 11 out of 18
publications develop shallow architectures or modify
existing networks [51, 52, 54, 57–60, 62, 65–67]. Shallow
architectures decrease the number of medical instances for
training, while machine learning classifiers should be uti-
lized when modified deep networks with frozen or fine-
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Figure 5: ,e flow chart and an example of transferred MBCD models. ,e flow chart emphasizes transfer learning (dashed arrows) and
fine-tuning, and the example comes from [64] which makes use of pretrained VGG16 for malignancy prediction. It should be noted that
parameters of pretrained models are well-determined in the source domain, while fine-tuning attempts to use medical instances for further
optimization of these parameters toward the target task.
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tuned parameters perform as feature extractors. However,
problems occur. ,e first problem concerns which classifier
to be applied for the differentiation of benign and malignant
lesions. It is found that 9 out of 11 publications select SVM
[51, 52, 54, 58–60, 62, 65, 66], and 1 uses RF [57] and 1
chooses LSTM [67] for malignancy prediction. ,e second
one is how to choose informative and predictive features
among hundreds to thousands of variables. Most publica-
tions address this question by comprehensive experiments to
make a trade-off between the diagnosis efficiency and ef-
fectiveness, while only [56] proposes using the frequency of
the CNN feature selected in the training stage as the
weighting of the feature importance. Last but not the least, it
is time-consuming and troublesome. In general, it takes days
to weeks to develop new architectures and to modify or to
integrate deep models due to the requirements of model
training, parameter optimization, feature selection, and al-
gorithm comparison.

It is also found that 7 publications consider low-level
and/or clinical features [51–54, 56, 59, 67]. Low-level fea-
tures are mainly derived from intensity statistics, shape
description, and texture analysis [34]. Specifically, these
features can be further analyzed with multiscale de-
composition or in transform spaces. Clinical information
includes breast density, patients’ age, and other symptoms,
such as microcalcification. In addition, 4 publications

provide the comparison between CNN- and ML-based
models [51, 52, 56, 68] and ML-based models are treated
as the baseline. It should be noted that ML-based models
benefit from the prior knowledge and clinical experience in
feature crafting, feature selection, and the use of machine
learning classifiers. In particular, it is feasible to build a ML-
based model on a very small database [36]. Besides, ML-
based models are relatively lightweight computing and re-
quire no specific hardware and thus, these models can be
easily deployed and managed in daily work.

Integrating multiple representation of mammographic
lesions can enhance the performance of breast cancer di-
agnosis, while how to incorporate low-, mid-, and high-level
features or multiview data is quite difficult. ,ere are 4
publications [51, 53, 56, 67] which provide mechanism for
information fusion or decision fusion. Reference [51] pro-
poses a decision mechanism by evaluating the consistency of
the results from the midlevel features and the high-level
features. If not consistent, gray information would be added
to assess the similarity and support the decision making.
Both [53, 56] build ensemble classifiers by averaging the
results from two SVM classifiers among which one makes
use the pretrained CNN features and the other analyzes
handcrafted features. Reference [67] utilizes LSTM cells to
integrate the features from multiview data. Since multiview
data contain contextual information, the variations among

Table 4: Technical highlights.

New architecture Transfer learning Fine-tuning Information fusion
Dedicated CNN models ✔ ✖ ✖ ✖
Transferred CNN models — ✔ ✔ ✖
CNN models as feature extractors — — — ✔
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Figure 6: ,e flow chart and an example of CNN performing as feature extractors. ,e flow chart highlights the information fusion which
can be further divided into two approaches, feature fusion followed by a classifier or decision fusion of lesion malignancy predicted by using
one or more classifiers. ,e example comes from [51] which develops a new CNN model and the model is pretrained on ImageNet. At last,
the model fuses the prediction results from SVM classifiers which separately use 384 midlevel features and 2014 high-level features as its
input.
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multiview images may contribute additional information in
lesion interpretation.

4.2. Technical Challenges. Several technical challenges re-
main. ,e first challenge comes from how to use the pre-
trained deep CNN models which is closely related to the
MBCD performance [77, 78]. However, there is no definitive
answer on how to fine-tune the network and how many
medical instances is sufficient for the fine-tuning, even good
practice is available [79]. ,e simplest way is to take the
parameters of the whole network or some layers of the
network tunable. Some studies suggest layer-wise fine-
tuning, while the time consumption will be dramatically
increased [80]. On the other hand, when using deep models
as feature extractors, other technical issues arise, including
how to select high-level features, how to integrate multi-
perspective information, and which machine learning
classifier is employed. It is pitiful that no tutorial or practical
guidelines are repeatable. In clinic, to improve the perfor-
mance of breast cancer diagnosis, various imaging modal-
ities and clinical data are taken into account that further
imposes difficulties on information fusion [9]. Since no one-
size-fits-all solution is available, prior knowledge, previous
studies, and empirical experience become more and more
important to address these technical issues [78–83].

It is also challenging on how to avoid overfitting in the
optimization of deep networks. Dropout is proposed to
address the problem [84] which aims to randomly drop units
(along with connections) from the network in the training
stage. It can prevent units from coadapting too much, and a
practical guide is provided for the training of a Dropout
network [84]. It is full of potential to avoid overfitting by
increasing the number of medical instances for training. At
last, if there is no possibility to reduce the architecture
complexity and no way to increase the number of training
instances, the mainstream is to manipulate parameters, such
as the learning rate, and to monitor the drop of performance
metrics between the training phase and the validation phase
[58, 60, 61, 68]. It also should be mentioned that the
threshold of the drop is subjective, and thus, comprehensive
experiments become necessary.

,e third challenge is the curse of dimensionality [85]. It
is known that the primary purpose of deep learning is for
recognizing the target from thousands of object categories.
However, MBCD is a binary classification problem, and the
lesions seen in mammographic images are to be labeled as
benign or malignant. ,us, it seems not convincing to use
thousands of features for a binary classification problem
regarding hundreds of medical instances [51–53, 56]. Some
studies take recourse to feature selection [60] and feature
dimension reduction [54]. As to deep networks, the fre-
quency of features selected in the training phase as a
weighting factor of feature importance is meaningful [60].

In practice, challenges exist in each step of the building
of CNN-based MBCD models. First, a number of factors
influence the quality of mammographic imaging, such as the
imaging scanner and reconstruction methods, and both
breast compression and motion artifacts during image

acquisition further degrade the imaging quality. ,erefore,
quantitative image quality assessment may be necessary [86].
Moreover, due to different shapes and margin of suspicious
lesions and also ambiguous boundaries between lesions and
surrounding tissues, the quality of lesion delineation is
unstable, and thereby, the techniques for automatic mam-
mographic breast lesion detection and segmentation are still
in need of improvement [87]. In addition, evolutionary
pruning of knowledge transfer of deep models that are
pretrained on sufficient medical images is promising for
mammographic breast lesion diagnosis because of the
similar feature space [88]. Last but not the least, it is always
desirable to build a seamless system to localize the suspicious
lesions and give out the malignancy prediction simulta-
neously [65, 66].

4.3. Future Focus. Except for the technical challenges
aforementioned, another three topics should be focused on
in the future work. ,e first one is to collect sufficient high-
quality mammographic instances. Due to the limited
funding, scarce medical expertise, and privacy issues, there is
no big leap in data sharing, in particular, the mammographic
lesion images. At present, the DDSM remains the largest
publicly available database as well as the first choice in large-
scale mammographic image analysis [89]. While based
on the fact that over 150 million mammographic exami-
nations are performed worldwide per year, there is signif-
icant room for improvement in data collection and sharing.
In particular, lack of imaging data restricts the develop-
ment and upgrading of intelligent systems for personal-
ized diagnosis, including but not limited to the design of
deeper architectures, hyperparameter optimization, and the
evaluation of generalization capacity. Fortunately, rapid
progress is seen in the era of big data and many public
databases have been released online, such as TCIA (http://
www.cancerimagingarchive.net/), and various challenges are
open, such as the DREAM challenge. With such a stan-
dardization, it will become easier to compare different ap-
proaches on the same problem of the same database and
thereby pushing forward the techniques of CNN-based
MBCD.

Another topic is about the interpretation of the learned
CNN features. In contrast to handcrafted features with
mathematical formalization and clear explanation, the in-
terpretation of retrieved CNN features is quite poor. One
way to tackle this issue is from qualitative understanding
[55, 58] based on visualization. Reference [90] provides a
technique for layer-wise feature visualization. In object
recognition, the technique indicates that shallow layers
typically represent the presence of edges, middle layers
mainly detects motifs by spotting particular arrangements of
fine structures, while deep layers attempt to assemble these
motifs into a larger cluster to be a part of or the whole object
[19, 58]. It should be admitted that the layer-wise visuali-
zation technique facilitates the visual perception and further
understanding of what the networks have learned. Reference
[91] analyzed the predicted results in two-dimensional space
using t-distributed stochastic neighbor embedding (t-SNE).
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,e t-SNE represents each object by a point in a scatter plot
where nearby points denote similar objects and distant
points indicate dissimilar objects.,erefore, a clear insight is
provided into the underlying structure of malignancy pre-
diction [55]. Quantitative interpretation of deep learning is
ongoing. Reference [92] gives a geometric view to un-
derstand the success of deep learning. ,ey claim that the
fundamental principle attributing to the success is the
manifold structure in data, and deep learning can learn the
manifold and the probability distribution on it. Reference
[93] provides theory on how to interpret the concept learned
and the decisionmade by a deep model. It further discusses a
number of questions in interpretability, technical challenges,
and possible applications.,e third topic is the translation of
the clinical research of CNN-based MBCD into the decision
supporting in clinical practice. ,ere is no doubt that deep
learning tools can provide valuable and accurate in-
formation for cancer diagnosis, while it is impossible to take
the role and responsibility of clinicians. ,e fundamental
role of a clinician in routine work is to collaborate with other
team members, including physicians, technologists, nurses,
therapists, and even patients [94]. ,us, before accepting
these decision-supporting systems for daily use, it should
provide profound understanding and visual interpretation
of deep learning tools, not only the surpassing human-level
performance.

Furthermore, one big step to use CNN-based MBCD
models for clinical applications comes from the review and
approval from the Food andDrug Administration (FDA). To
date, several FDA-approved CAD systems have been in the
market, such as the QVCAD system (QView Medical Inc,
Los Altos, CA) that uses deep learning for automated 3D
breast ultrasound analysis. With the increasing use of deep
learning algorithms, more and more CNN-based CAD
systems will be approved by the FDA. Basically, compelling
properties, such as expert-level performance, robustness,
and generalizability, should be guaranteed on different
imaging devices. While from the perspective of long-term
evolution, a global real-life application accounting for
widespread geographic, ethic, and genetic variations should
be considered.,erefore, there is still a long way ahead of the
translation of deep learning tools from scientific research to
clinical practice.

4.4. Limitations. ,ere are several limitations. First, this
review focuses on CNN for automated MBCD. For
computer-aided MBCD, it can also be well tackled by using
other CAD techniques, such as case retrieval [95–97] and
breast density estimation [98, 99]. Moreover, this study
concerns only mammography. For comprehensive disease
analysis, other imaging modalities, such as ultrasound and
magnetic resonance, should be taken into consideration [31].
Besides, this review is limited to two-dimensional image
analysis, and many other medical tasks use CNN models to
tackle volumetric images [100–102]. In particular, this study
concerns only peer-reviewed journal publications that
considerably reduces the number of publications for analysis
and consequently, it might omit some high-quality

CNN-based MBCD models [103–105]. In addition, some
technical details, such as how to prepare medical instances
for training, are not delivered in this review, while it should
be kept in mind that each step is related to mammographic
image analysis.

5. Conclusion

,is study presents a technical review of the recent progress
of CNN-based MBCD. It categorizes the techniques into
three groups based on how to use CNN models. Further-
more, the findings from the model building to the pros and
cons of each model are summarized. In addition, technical
challenges, future focus, and limitations are pointed out. At
present, the design and use of CNN-based MBCD is at its
early stage and result-oriented. To the ultimate goal of using
deep learning tools to facilitate clinical practice, there is still a
long way ahead. ,is review benefits scientific researcher,
industrial engineers, and those who are devoted to intelligent
cancer diagnosis.
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Pathological classification through transmission electron microscopy (TEM) is essential for the diagnosis of certain nephropathy,
and the changes of thickness in glomerular basement membrane (GBM) and presence of immune complex deposits in GBM are
often used as diagnostic criteria. *e automatic segmentation of the GBM on TEM images by computerized technology can
provide clinicians with clear information about glomerular ultrastructural lesions.*e GBM region on the TEM image is not only
complicated and changeable in shape but also has a low contrast and wide distribution of grayscale. Consequently, extracting
image features and obtaining excellent segmentation results are difficult. To address this problem, we introduce a random forest-
(RF-) based machine learning method, namely, RF stacks (RFS), to realize automatic segmentation. Specifically, this work
proposes a two-level integrated RFS that is more complicated than a one-level integrated RF to improve accuracy and gen-
eralization performance. *e integrated strategies include training integration and testing integration. Training integration can
derive a full-view RFS1 by simultaneously sampling several images of different grayscale ranges in the train phase. Testing
integration can derive a zoom-view RFS2 by separately sampling the images of different grayscale ranges and integrating the
results in the test phase. Experimental results illustrate that the proposed RFS can be used to automatically segment different
morphologies and gray-level basement membranes. Future study on GBM thickness measurement and deposit identification will
be based on this work.

1. Introduction

Primary glomerular disease is the most common renal
disease in China [1].*e diagnosis of renal diseases is largely
dependent on renal biopsy, which is regarded as the gold
standard. Transmission electron microscopy (TEM) com-
bined with optical microscopy and immunofluorescence
examination constitutes a continuum of pathological di-
agnosis of renal diseases [2]. TEM allows the observation of
pathological changes in the microstructure of various glo-
merular cells that cannot be resolved under an optical
microscope. *us observations from light and immune
pathology can be verified at an ultrastructure level [3].
Studies have found that ultrastructural study provided
fundamental or important diagnostic information for 44.3%

of renal biopsies [4]. *erefore, TEM is essential for the
diagnosis of certain nephropathy. Considering the com-
plexity of the TEM image of the glomerulus and related
lesions, it is time consuming and labor intensive for a pa-
thologist to visually recognize subtle pathological changes,
resulting in a huge workload. Nevertheless, after the initial
screening of the computer, the diagnostic efficiency and
accuracy of glomerular diseases can be improved with the
help of automatic image-processing technology.

*e diagnosis of many renal diseases is closely related to
the glomerular basement membrane (GBM) [5]. *e
basement membrane, along with the lining of the endo-
theliocytes and the lining of the podocytes on the outside,
forms the filtration barrier, allowing the blood to filter out
and form the urine, as shown in Figure 1. *e changes of
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thickness in GBM and presence of immune complex de-
posits in GBM are often used as diagnostic criteria for
certain nephropathy, such as membranous nephropathy
with extensive membranous thickening and varying
amounts of immune complexes, Alport syndrome with
diffuse membranous thickening, and familial recurrent
hematuria syndrome (thin basement membrane ne-
phropathy) with diffuse thinning of GBM [6, 7]. Manual
measurement of the thickness of GBM is an early auxiliary
[8, 9], but the workload is very expensive. *en, some
semiautomatic software tools [10, 11] are used to obtain
the thickness of GBM more quickly and conveniently but
still need manual intervention. In terms of morphological
complexity, the autoidentification difficulty of deposits is
the same as or even greater than GBM and literatures
on this have not been found. In practicality, the thickness
measurement and deposit identification can be realized
subsequently and automatically on condition that
the GBM region is completely autorecognized or is
segmented.

Early in 1993, Ong et al. [12] applied adaptive window-
based tracking to segment glomerular TEM images. Since
then, a few semiautomatic or fully automatic methods have
been proposed. Kamenetsky et al. [13] and Rangayyan et al.
[14] achieved GBM segmentation andmeasurement through
region division and dynamic contour modeling. Wu et al.
[15] and Wu and Dikman [16] also proposed two methods.
One is to obtain the center line of the GBM by interpolating
manual mark points and then autosegment GBM through
distance mapping and low-pass filtering [15]. Another
method involves the use of threshold and morphological
method with no manual mark [16]. Liu et al. not only
segmented the GBM but also measured its length and
counted the number of slits [17]. Most existing methods
mentioned above have made some contribution, but there
are still many problems unresolved. *ese methods either
require tedious manual initialization that involves extra
work for pathologists and introduces possible subjective
errors, or they can only be used to segment truncated GBM
fragments with increased contrast and single direction as
showed in their experimental results. *erefore, ensuring
segmentation quality for the whole complex GBM images
remains challenging.

Two common difficulties associated with GBM seg-
mentation are interimage shape variations and intraimage

grayscale inconsistency. Figure 1 shows that the low contrast
between the GBM segment and surrounding tissues, such as
endotheliocytes and podocytes, and variations in the form
and width of GBM segments cause difficulty in autoex-
tracting features. In addition to the complex structure of a
pathological section, the grayscale distribution of TEM
images is very wide because of the uncertainty of sample
prefabrication and the illumination inhomogeneity of
transmission imaging.

To address the first challenge of autoextracting fea-
tures, we employ a pixel-wise classifier, namely, random
forest (RF) [18], based on machine learning to avoid re-
lying on hand-crafted features. RF is a committee of weak
learners (e.g., decision tree) to solve classification and
regression problems without manually specifying some
features through the construction and combination of
multiple decision trees and random selection of attributes
[19, 20], which can be used to cope with the complex
structural characteristics of biological images. RF has been
widely explored from medical image-processing fields,
especially detection tasks, including early identification or
prediction of Alzheimer’s disease [21], adrenal gland ab-
normality detection [22], and automatic cardiac seg-
mentation [23].

An enhanced generalization effect based on a single RF
classifier is hardly obtained because of the grayscale in-
consistency intraimage. To address this second challenge,
we propose an RF stack (RFS) model based on a wider
grayscale range of images. After assigning TEM images to
different grayscale groups, we sample from all these
groups and train a full-view RF classifier as RFS1 and
multiple RF zoom-view classifiers as RFS2. In the seg-
mentation phase, each pixel of the new GBM image is
classified automatically through full-view and zoom-view
RFS and the candidate segment results are combined and
optimized. *us, the segmentation accuracy is improved
by using this two-level integrated machine learning
method.

*e remaining sections of this paper are organized
as follows. In Section 2, information regarding GBM
image selection and preprocessing is described and the
details of the proposed RFS model for GBM segmentation
is introduced. In Section 3, experimental results are re-
ported and discussed. In Section 4, the conclusion is
presented.

GV: 93-253GV: 11-165

Endotheliocyte

Podocyte

GBM

Figure 1: Interimage shape variations and intraimage grayscale inconsistency of GBM (GV: gray value).
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2. Materials and Methods

2.1. Data and Materials

2.1.1. Image Data. Renal biopsy specimens were immedi-
ately fixed with 2.5% cold glutaraldehyde with 0.1M
phosphate buffer at pH 7.3 for 4 h, washed with phosphate
buffer, postfixed with 1% osmium tetroxide in the same
buffer, dehydrated with a graded series of ethanol, and
embedded in Spurr resin. Ultrathin sections (70 nm) were
contrast enhanced with uranyl acetate and lead citrate and
examined using a Hitachi H-7500 electron microscope
(Tokyo, Japan) at 60 kV. All of the sections were imaged with
MORADA G3 (EMSIS Corporation of Japan) at 5000x
magnification. In the field of vision, a whole glomerulus,
including the glomerular capillaries and the basement
membrane, was selected. Continuous filming was conducted
using the attached digital imaging system and controlled by
the Pathological Image Workstation of the NanFang Hos-
pital in Guangzhou, China.

2.1.2. Preprocessing of TEM Images. *e pathologists col-
lected 351 images from the obtained glomerular TEM images
to build a GBM image database. Of these 351 images, 330
were used as a training set and divided into different groups
(N� 37) according to the range of GBM’s intensity. In the
test set, 21 images with different sizes and various basement
membrane types, such as stripe-, closed-, and compound-
type, were used. *e image pixels were divided into GBM
and background. Figure 2(a) shows the original TEM image,
and Figure 2(b) illustrates its corresponding GBM binary
mask manually labeled by the pathologist.

2.2. Method Overview

2.2.1. Workflow Diagram. RF is an ensemble machine
learning method, which can be applied to image segmen-
tation by classifying pixels into target or background. *e
proposed RFS is a RF-based multilevel integrated structure
that mainly involves two phases: hierarchical training and
refinement testing. *e implementation process of RFS is
shown in Figure 3.

Train phase: from the prebuilt GBM database, an image
is randomly selected from each image group with different
GBM grayscale ranges. Hence, N images, namely, Img1 to
ImgN, needed for one training session are ready. *e si-
multaneous sampling of N images and follow-up training
yield RFS1 called the full-view RFS. *en, N RF classifiers,
RFi(i � 1, . . . , N), are generated by sampling and training
each image individually, and RFS2, which is called zoom-
view RFS, covering different grayscale ranges is
constructed.

Test phase: each pixel of the test image is classified by
RFS1 and constitutes a candidate segmentation R1. Each
pixel of the test image is classified by each RFi in RFS2 and
got N coarse segmentation results, namely, CR1 to CRN.
*en, another candidate segmentation R2 is obtained after

an iterative refinement scheme. *e final segmentation is
selected from R1 and R2 by a human expert.

2.2.2. Software Tools. *e image-processing and analysis
software FIJI (ImageJ) is developed by the US National
Health Administration, and FIJI-based secondary develop-
ment is well known. In this paper, we selected a FIJI plug-in
named Trainable Weka Segmentation (TWS) (http://imagej.
net/Trainable_Weka_Segmentation) [24], which is based on
the free open-source software Weka [25]. TWS combines a
series of machine learning algorithms to perform pixel-
based image segmentation. Figure 4 shows that TWS is
modified and integrated with some image-processing
functions provided by Matlab to meet the needs of GBM
image segmentation.

2.3. Training

2.3.1. Random Forest. RF [23] is a common method for
ensemble learning whose training algorithm relies on
bagging integration and random attribute selection in the
construction of the decision tree. *e training of one RF is
shown in a blue arrow line in Figure 3. Bootstrap sampling
technology is used to generate T training subsets from the
original training set, and T decision tree models are
established to form one RF. An RF segmentation is illus-
trated in an orange arrow line in Figure 3. *e test image is
separately classified by the T decision trees in the RF, and
the result of each decision tree is aggregated to the final
output by voting. In this paper, we refer this to level 1
integration.

2.3.2. RFS Classifiers. Considering that the intensities of
GBM in various TEM images are significantly different, a
single RF classifier cannot extract different grayscale features
of all TEM images and the segmentation performance is

(a) (b)

Figure 2: TEM image (a) and the corresponding binary mask
image of GBM (b).
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unstable. For example, given an RF classifier sampled and
trained from Figure 2, the membrane illustrated in
Figure 5(a) can be well segmented as shown in Figure 5(b)
because of the similar grayscale of the GBM in Figure 5(a)
and the classifier. A poor result is obtained by using the same
classifier to segment the membrane in Figure 5(c), and the
entire membrane fragment is almost not segmented as
shown in Figure 5(d).

To address this problem, we introduced level 2 in-
tegration. We first assigned all training images to N groups
according to the average intensity in the GBM regions.
*en, RFSs were constructed. Full-view and zoom-view

methods were proposed. *e full-view method simulta-
neously takes samples from N different grayscale range
images. As M pixels are sampled in each image, M × N

pixels are sampled at the same time for training and RFS1 is
obtained. RFS1 is a large file in the same logic form of an RF.
Due to the large number of sampled pixels and the limited
depth of the tree, we can assume that leaf nodes form
stacks.

*e zoom-view method separately takes samples from N

grayscale range images for training and obtains a series of
RFs ranging from RF1 to RFN, thereby forming RFS2. Since
the sampling points of each forest in RFS2 are well targeted

Img1

Img2

Imgn

ImgN

RF1

RF2

RFn

RFN

Full-view
RFS1

Training

Testing

CR1

CR2

CRn

CRN

R1

R2

Final result

Voting

Expert 
decision

Zoom-view
RFS2

M

M

M

M

N ∗ M

Refinement

M
N ∗ M

M sampling and RF training

N ∗ M sampling AND RF training

RF segmentation

Figure 3: Flowchart of the proposed RFS method.
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Machine learning
algorithms
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Postprocessing
algorithms
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Figure 4: Software tools.
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to images with the similar range, the generalization per-
formance of a single forest is limited and the results need to
be integrated and refined at the test or segment phase.

2.3.3. Implementation Details. In the prebuilt GBM data-
base, the TEM images in the training set were divided into
N � 37 groups according to the average intensity of GBM.
*e average intensities of the GBM begin from about 73
Hounsfield units with an intensity step of 3 Hounsfield units.

TWS has 15 applicable features, and 14 of them were
selected as the inputs of the decision tree in this paper:
common grayscale features (mean, minimum, maximum,
median, and variance), boundary features (Sobel filter, Hes-
sian, and difference of Gaussians), texture features (Gaussian
blur, entropy, and Kuwahara filter), and other features
(membrane projections, Lipschitz filter, and neighbors).

Other RF training parameters include the number of
decision trees (T � 100), the depth of decision trees
(D � 9), and the number of sampling points per image
(M � 2000). *e selection of some parameters is discussed
in Section 4.

2.4. Segmentation. Given an image to be segmented or
tested, two candidate segmentation results can be separately
obtained by RFS1 and RFS2. Pixel-by-pixel classification
through full-view RFS1 yields a candidate segmentation R1.
*e process of getting candidate R2 is more complicated.
After the preparation of a series of coarse results, namely,
CR1 to CRN, dealt by zoom-view RFS2, the probability map
are reconstructed and the candidate R2 can be obtained after
postprocessing and iterative refinement is completed. Fi-
nally, R1 and R2 are evaluated by experts to determine an
enhanced segmentation.

2.4.1. Probability Map. For each image pixel to be seg-
mented, equation (1) is used to reconstruct the probability

map with the N coarse segmentation results, namely, CR1 to
CRN:

p(i, j) �
n(i.j)

N
, (1)

where N � 37 is the total number of coarse segmentation
results, n(i, j) is the frequency of the pixel of ith row, jth
column is marked as GBM by each CR, and p(i, j) is the
probability of the pixel (i, j) as GBM.

2.4.2. Postprocessing. In the probability map, a large gray
value of a pixel corresponds to a high probability to become
GBM. *erefore, by maximizing the similarity belonging to
the same category or avoiding it to reach the minimum, the
fuzzy C-means (FCM) [26] algorithm is utilized for post-
processing to divide the image into the GBM regions and the
background. *en, after some false positives are removed
through a morphological operation, the GBM regions can be
extracted.

2.4.3. Iterative Refinement. Not every coarse segmentation
results CRi(i � 1, . . . , N) obtained from RFS2 provides
useful information on the construction of the probability
graph. In some extreme cases, some coarse segmentation
results are counterproductive to the probability map.
*erefore, a refinement process is described in Algorithm 1.

Figure 6 shows the whole segmentation process of RFS2,
including (1) 37 RF classifiers, (2) probability map, (3)
postprocessing, and (4) iterative refinement.

2.4.4. Manual Interaction for Final Decision. For a test
image, the candidate segmentation results R1 and R2 are
compared with a gold standard labeled by a pathologist. For
new images without gold standard, a user can compare R1
with R2 and make the final decision based on the following
aspects:

(a) (b)

(c) (d)

Figure 5: Segmentation results of TEM images with different grayscale ranges by using the same RF classifier.

Computational and Mathematical Methods in Medicine 5



(1) Whether the foot process of the epithelial cell or the
cytoplasm of the endothelial cell is inappropriately
contained in the region of the basement membrane
because its electron density is similar to that of the
basement membrane

(2) Whether the subepithelial immune deposit is erro-
neously excluded from the basement membrane
because its electron density is higher than that of
basement membrane

(3) *e continuity of the basement membrane should be
cautiously analyzed because pathological fracture
defects of the basement membrane are few

2.5. Evaluation Metrics. *e accuracy of the proposed
method is evaluated by Jaccard coefficient, which is widely
utilized to evaluate the performance of segmentation
methods [27–29]. It is a measure of geometric similarity
defined by

Jaccard(A, B) �
A∩B

A∪B
, (2)

where A and B are the results of manual segmentation by
human experts and the proposed method. *e range of
Jaccard value is [0, 1]. A large coefficient value corresponds
to an accurate segmentation result.

3. Experiments and Results

In this study, 21 TEM images with different grayscale ranges,
sizes, and basement membrane morphologies are used for
evaluation. *ese images are manually segmented by pa-
thologists as the gold standard.

3.1. Validation. *e RFS method provides robust segmen-
tation results of GBMs with different morphologies and
grayscale ranges. RFS1 and RFS2 are trained with M � 2000
and N � 37. Figure 7 shows the segmented images obtained
from the strip-, closed-, and compound-type basement
membranes by using the RFS method. *e top line shows
original images, and the bottom line shows the corresponding
segmentation results. As can be seen from the figure, although
the orientation, width, and other morphologies of the GBM
vary greatly, the results of the segmentation are relatively
accurate. For the three test images shown, the Jaccard values
are higher than 0.75.

Figure 8 shows the segmented images from different
grayscale range basement membranes. It can be seen that
most of the GBM is accurately segmented. Compared with
RF, the segmentation results of RFS are better. For example,
the original TEM image shown in Figure 5(c) fails with RF
segmentation, but it can be well segmented by RFS, as shown
in column 1 of Figure 8.

As shown in Figures 7 and 8, although the morphology
and grayscale range of the basement membrane vary greatly,
the results of the RFS segmentation are stable, indicating a
good generalization performance of the RFS method. Future
study on GBM thickness measurement and deposit iden-
tification will be based on this.

3.2. Influence of the RF Classifiers of Different Grayscale
Ranges. Amultilevel integrated RFS classifier is constructed
to address the generalization problem of GBM segmenta-
tion.*is is based on the hypothesis that, for an RF classifier,
the closer the grayscale range of the image to be segmented is
to the training image, the better the segmentation effect will
be. *e experimental results from the heat map in Figure 9

(1) Coarse segmentation results with an obvious error GBM area are eliminated on the basis of the preset threshold w1.
(2) *e remaining K1 coarse segmentation results CRi(i � 1, . . . , K1) are used to obtain the probability map P1 and the binary mask

B1 as shown in Sections 2.4.1 and 2.4.2.
(3) *e Jaccard similarity Si(i � 1, . . . , K1) of B1 and each CRi(i � 1, . . . , K1) are calculated. If the similarity Si is less than a preset

threshold w2, the corresponding CRi is abandoned. *e remaining K2 segmentation results are used to obtain a new probability
map P2 and the binary mask B2.

(4) *e Jaccard similarity (J) of B1 and B2 is calculated. If J≤ 98%, let P1 � P2 and B1 � B2, and step (3) is repeated until J> 98%
before they exit the loop.

(5) After the loop ends, the candidate result R2 equal to B2 is obtained.

ALGORITHM 1

CR1
Classifier

1-37

CR3

Postprocessing
Iterative

refinementp (i, j) = n (i, j)/N
. . .

. . .

CR2

CR15 CR17CR16

CR35 CR37CR36

Figure 6: Segmentation process of RFS2.
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confirm this hypothesis. *e horizontal axis from low to
high represents 37 RF classifiers corresponding to 37
grayscale ranges of the training images. *e range of the 1st
grayscale is [73.5, 75.5], and the range of the 37th grayscale is
[145.5, 147.5]. *e vertical axis represents the grayscale
mean value of the GBM of the 21 test images. *e grayscale
mean value of test image 1 is 78, which is close to the
grayscale range of levels 1 and 2. *e 21st test image has an
average grayscale of 145, which is higher than the grayscale
range of level 37.

In this experiment, each test image is separately seg-
mented by these 37 RF classifiers of different grayscale
ranges, and the corresponding Jaccard value is shown in
different colors. An accurate segmentation result corre-
sponds to a high Jaccard value, and its color turns to bright
yellow. It can be seen from the color distribution in Figure 9
that most RF classifiers are only sensitive to test images with
a close grayscale range. However, as shown in Figures 7 and
8, the RFS can accurately segment test images with different
grayscale ranges that means the generalization performance
of RF is not good as proposed RFS.

3.3.DifferencesbetweenFull-ViewRFS1 andZoom-ViewRFS2.
*emultilevel RFS is constructed in full view and zoom view
as shown in Figure 3. *e refinement details of zoom-view

RFS2 are given in Algorithm1, involving the setting of
thresholds w1 and w2. *e Jaccard values of the segmen-
tation result for each test image (the pink dots) by using
RFS2 with three different parameter combinations are shown
in columns 1, 2, and 3 of Figure 10, where w1 � 1 indicates
that all N � 37 coarse segmentation results are included in
the steps of iterative optimization without filtering. *e
Jaccard values of the segmentation result by using full-view
RFS1 are shown in column 4 of Figure 10.

Figure 10 shows that the full-view RFS1 is more robust
than the zoom-view RFS2. Regardless of how thresholds w1
and w2 are set, the mean value of RFS2 is lower than RFS1.
However, when w2 � 0.3, the segmentation result of some
test images of RFS2 is better than that of RFS1. In the ex-
perimental data, the maximum segmentation accuracy is
0.85 but the minimum value is almost 0 and all these values
are obtained through RFS2.

*e stability of RFS1 is mainly caused by a large sample
training of the classifier, involving 2000 × 37 sample points.
However, the disadvantage of this method is its high-
intensity computation. Some low accuracy of RFS2 is
caused by the effect of N course segmentation results on
refinement process. If the similarity of most results with the
gold standard is insufficient, a poor optimized image is
obtained. Otherwise, the result is enhanced or even exceed
that of RFS1.*erefore, the final step of this method involves

(a) (b) (c)

Figure 7: Segmentation results of RFS with different morphologies of GBM. (a) Strip type: size, 217∗307; Jaccard, 0.75. (b) Close type: size,
150∗206; Jaccard, 0.84. (c) Compound type: size, 282∗367; Jaccard, 0.76.
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the selection between the two candidate segmentation re-
sults of RFS1 and RFS2.

3.4. Effects of Postprocessing and Refinement. *e following
methods are adopted to validate the effect of postprocessing
and iterative refinement on RFS2: (1) voting method (V), (2)
additional postprocessing with FCM on the voting result
(V+ F), (3) additional iterative refinement on the voting result
(V+ I), and (4) additional iterative refinement on method 2
(V+ F+ I), namely, RFS2. Figure 11 shows the mean and

variance of methods (1)–(4), full-view RFS1 (5), and the final
result (6). *e mean accuracy of V is the lowest among them.
V increases after FCM postprocessing and further improves
after iterative refinement is completed. *e final result in-
cludes the maximum mean and a relatively small variance.

4. Discussion

4.1.Methods forConstructingEnsembles. Ensemble methods
construct a set of classifiers and then classify new data

(a) (b) (c)

Figure 8: Segmentation results of RFS with various grayscale ranges of GBM (RoGV: range of gray value). (a) RoGV: 54–255; size: 282∗274;
Jaccard: 0.70. (b) RoGV: 43–187; size: 168∗308; Jaccard: 0.71. (c) RoGV: 12–167; size: 297∗408; Jaccard: 0.65.
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Figure 9: Heat map of segmentation results of different grayscale ranges of RF classifiers.
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points by taking a weighted vote of their predictions.
Dietterich [30] assumed that five general purpose ensemble
methods exist: enumeration of hypotheses, manipulation of
training examples, manipulation of input features, ma-
nipulation of output targets, and injection of randomness.
We adopted two of them and developed their corre-
sponding RFS methods. Full-view RFS2 manipulates the
training examples to generate multiple hypotheses. Con-
sidering the complicated GBM images, we sample multiple
grayscale images to further increase the diversity of the
hypotheses. Zoom-view RFS1 manipulates the output
probability graph to achieve integration. *e iterative re-
finement step is addressed to reduce the adverse effect of
the rough segmentation result, further improving the ac-
curacy of segmentation.

4.2. Selection of the Parameters. *e number of decision
trees is among the most important parameter in the ap-
plication of RF algorithm in medical image segmentation
[31]. *eoretically, with the increasing number of decision
trees, the classification accuracy of the algorithm gradually
increases as computational cost rapidly increases. *e
optimal number of trees should obtain a good balance
between evaluation metric, processing time, and memory

usage. In this study, the number of decision trees is ex-
perimentally set to 100.

*e number of sampling points is another critical pa-
rameter in the RFS method. In our experiment, as the
number of sampling points increases from 200 to 2000 per
training image, the accuracy rate of the RFS classifier in-
creases by approximately 10%, whereas the accuracy is not
improved greatly if the number of sampling points con-
tinuously increases. *us, the total sampling point is set to
74,000, where M � 2000 and N � 37, to obtain the best
result.

In TWS, 15 available image feature attributes are pro-
vided in the decision tree construction. In our experiment,
the application of most features can improve the accuracy of
segmentation, but entropy (E) and anisotropic diffusion (A)
are time consuming. Let 13F indicates 13 other features aside
from E andA; Figure 12 shows that the application of feature
A not only costs more time but also reduces the accuracy of
segmentation whether by using classifier RFS1 or RFS2.
*erefore, only 14 features other than anisotropic diffusion
are used to construct the decision tree in the proposed RFS
method.

4.3. Limitations of the Proposed Method. Our experiment
results reveal that the proposed RFS method obtains poor
performance for some cases. For example, for a low-
contrast image, the accuracy rate of voting is almost 0.
Only the accuracy rate of V + I reaches 23%, whereas the
accuracy rates of the other methods are below 20%, even
that of RFS1. Such bad results greatly reduce the average
accuracy of the RFS method. RF can be combined with
other pattern recognition methods for better performance.
Lu et al. [32] applied incomplete RF with a robust vector
machine for the early identification of mild cognitive
impairment. *is method outperforms two other semi-
supervised learning methods. *erefore, to improve the
segmentation accuracy of low-contrast GBM images, the
combination of RF methods with other methods will be our
future work.

5. Conclusion

*e segmentation of the whole GBM region in TEM
pathological images can provide more rapid and intui-
tionistic observation for the morphological change and can
reduce the tedious and expensive manual workload of the
pathologist. *is work proposed a two-level integrated RFS
method involving training integration and testing in-
tegration to autosegment a GBM image. A total of 351
clinical images were included in the experiment. *e ac-
curacy and generalization ability of the RFS method were
validated. Experimental results illustrated that the pro-
posed method could be used for the automatic segmen-
tation of GBM with different morphological characteristics
and grayscale ranges. Further study is underway to im-
prove segmentation accuracy of the automated CAD
system and to implement GBM thickness measurement
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and deposit autorecognition for auxiliary pathological
diagnosis.
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Coreference resolution is a challenging part of natural language processing (NLP) with applications in machine translation,
semantic search and other information retrieval, and decision support systems. Coreference resolution requires linguistic
preprocessing and rich language resources for automatically identifying and resolving such expressions. Many rarer and under-
resourced languages (such as Lithuanian) lack the required language resources and tools. We present a method for coreference
resolution in Lithuanian language and its application for processing e-health records from a hospital reception. Our novelty is the
ability to process coreferences with minimal linguistic resources, which is important in linguistic applications for rare and
endangered languages. .e experimental results show that coreference resolution is applicable to the development of NLP-
powered online healthcare services in Lithuania.

1. Introduction

Digital means of medical informatics, especially when ap-
plying natural language processing (NLP), are indispensable
in the application of e-health and digitalization of medical
records and processes [1]. .e use of NLP has proved as a
lower-cost alternative to traditional medical methods in
many cases such as to forecast stress symptoms and suicide
risk in free-text responses sent via a mobile phone [2], or to
detect seasonal disease outbreaks by monitoring search
engine queries [3], and discovery of healthcare knowledge
from social media [4, 5].

With the development of SemanticWeb technology, web
information retrieval (IR) is changing towards meaning-
based IR. .e quality of retrieved documents relevant to the
user also highly depends on the information extraction (IE)
methods applied. In general, IE focuses on automatic ex-
traction of structured information from the unstructured
source. Standard document text preprocessing steps used in
IE are lexical analysis, morphological analysis, and named
entity recognition (NER), which can be complemented by

coreference resolution and semantic annotation. .e main
issue here is the ambiguity and complexity of the natural
language, thus making the progress in IE dependent on the
evolution of the NLP techniques. While for widely used
languages (such as English), the IE-related NLP research has
already reached the levels of maturity and practical appli-
cation on a massive scale (e.g., IBMWatson project) [6], but
the resource-poor languages, such as Lithuanian [7], remain
an open NLP research field. .e baseline application is often
steered towards automated concept extraction [8, 9], often in
combination with text mining [10, 11].

NER when applied to biomedical texts is a critical step for
developing decision support tools for smart healthcare. Ex-
amples for it are as follows: drug name recognition (DNR),
which recognizes pharmacological substances from bio-
medical texts and classifies them for discovering drug-drug
interactions [12, 13]; biomedical named entity recognition
(BNER), which extracts biomedical concepts of interest such
as genes and proteins [14]; and medical entity recognition,
which is information extraction from unstructured electronic
health records [15–17]. Such studies include mapping clinical
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descriptions to Systematized Nomenclature of Medicine
codes [18] or othermedical lexicons. Unstructured texts in the
medical domain contain valuable medical information, and
there are many errors, such as spelling errors, improper
grammatical use, and semantic ambiguities, which hinder
data processing and analysis [19]. Structuration of medical
domain knowledge using biomedical ontologies and con-
trolled vocabularies provide support for data standardization
and interoperability, healthcare administration, and clinical
decision support [20]. Rich concepts linked by semantic
relationships such as in the UnifiedMedical Language System
(UMLS) contribute to healthcare data integration, pattern
mining from EHRs, medical entity recognition in clinical text,
and clinical data sharing [21]. .e development of online
healthcare services as powerful platforms provides users with
an opportunity to address health concerns such as improving
patient-centered care and supporting self-management. .e
users consider online healthcare services as a vital source of
health information but still need more powerful semantic
search engines to arrive at informed decisions on their own
health and for more active participation in healthcare pro-
cesses [22]. However, these services depend greatly upon the
support provided by the natural language processing.

Our previous work included the development of the
semantic search framework [23] for answering questions
presented in structured Lithuanian language, which is based
on Semantics of Business Vocabulary and Business Rules
(SBVR) language. Our results in [23] showed that there is a
strong need to complement the NLP pipeline of semantic
search with the coreference resolution. Such coreference
resolution tools have not been developed for the Lithuanian
language yet, especially for very sector-important digital
medical application, as we apply our algorithm to process
digital transcripts of a hospital reception. .erefore, the
creation of such tools is a prerequisite for further im-
provement of NLP-supported health-oriented decision
making in the Lithuanian language, while the experience
gained could be extended to developing semantic search
tools for other under-resourced languages as well.

.e rest of the paper is structured as follows. In Section 2,
we analyse the related works in the coreference resolution
field, including the state-of-the-art and the methods pro-
posed for languages which are grammatically similar to
Lithuanian. Sections 3 and 4 present the coreference reso-
lution algorithm and its experimental evaluation. Section 5
presents conclusions and discusses future work.

2. Related Works

Machine-learning and rule-based approaches are efficient
methods in semantic processing, especially when enhanced
with external knowledge and coreference clues derived from
the structured document, while often still performing better
(in comparison with classic implementations) in coreference
resolution when provided with ground truth mentions [24],
while further expanded with scaffolding approaches [25].
Unsupervised methods can be applied to large-scale sce-
narios [26, 27]. Alternatively, a hybrid strategy may be used

based on a set of statistical measures and syntactical and
semantic information [28]. “Off the shelf” type of IR al-
gorithms can be utilized quite successfully in some of the
scenarios, especially with limited focus areas (in a medical
sense) [29]. Accuracy can be further improved by analysing
trigram frequencies [30] and applying graph-style algo-
rithms [31] in context-sensitive corpus fragments.

In general, the coreference resolution methods can be
classified into knowledge rich and knowledge poor. Both
methods require large resources such as semantic in-
formation, syntactic annotations, or preannotated corpora
of hospital transcripts from a hospital reception. Under
resourced, rarer languages, like Lithuanian, usually do not
have such resources available.

While up-to-date, no research has been performed to
solve coreferences in Lithuanian, but many solutions have
been proposed for other languages, mostly for English
(Table 1). Note that the evaluation results are not directly
comparable, as the authors used different corpora.

Considering languages that are more-or-less grammat-
ically similar to Lithuanian (which is one of the Baltic
languages), we summarize the related work on Latvian (only
other Baltic language) and Slavic languages such as Polish,
Russian, and Czech in Table 2.

(i) For Latvian, the only solution is LVCoref [45]. It is a
rule-based system that uses an entity-centric model.
It focuses on named entity matches (exact matches,
acronyms) and uses Hobbs’ algorithm for pronouns.

(ii) For Polish, rule-based Ruler [46] for scoring of can-
didates uses coreferences gender/number and in-
cluding (removal of nested groups) rules, lemma, and
Wordnet rules for nominal expressions and pronoun
rule specifically targeting pronouns. BARTEK [47] is
an adaptation of BART, which was designed for
English, to Polish. Mixed Polish coreferences resolu-
tion approach combines neural networks architecture
with the sieve-based approach [48].

(iii) For Russian, RU-EVAL-2014 [49] was an evaluation
campaign of anaphora and coreferences resolution
tools that employed a wide variety of approaches.
.e evaluation was performed on Russian Cor-
eference Corpus (RuCur). Machine learning ap-
proaches [50] were also used.

(iv) For Czech, coreferences are annotated in the tec-
togrammatical layer of Prague Dependency Tree-
bank (PDT) and their first coreference resolution
approach was rule based [51]. At first, all possible
candidates are collected and then their list is nar-
rowed down using 8 filters, and then from
remaining ones closest to corefering object is se-
lected as antecedent. Nguy et al. [52] adapted two
older English language approaches to Czech lan-
guage and used Decision Tree C5 for the classifier-
based approach, while the ranker-based approach
employed the averaged perceptron algorithm.
Both approaches were trained and evaluated on
PTD data with ranker-based approach providing
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better results. Treex CR [53] was developed for the
Czech language and adapted to English, Russian,
and German, although for Russian and German,
English coreferences labels were projected, which
produced notably lower results [54].

In summary, the rule-based solutions have the advantages
of easier adaptability and provide comparable results when
good training data are not available as is the case for Lithuania.
Many of more advanced solutions cannot be fully adapted for
rarer and under-resourced languages due to the lack of
available linguistic resources, as is the case with Lithuanian
language. For example, BARTat the time supported 64 feature
extractors, but due to lack of language-specific resources for
the Polish language, only 13 could be utilized. .e solutions
that are not heavy on linguistic resources can be very useful for
resource-poor languages in general.

3. A Rule-Based Coreference Resolution: A
Lithuanian Case

3.1. Definition and Framework. Coreference resolution (or
anaphora) is an expression, the interpretation of which
depends on another word or phrase presented earlier in the

text (antecedent). For example, “Tom has a backache. He was
injured.” Here the words “Tom” and “He” refer to the same
entity. Without resolving the relationship between these two
structures, it would not be possible to determine why Tom
has the backache, nor who was injured. In such cases, se-
mantic information would be lost.

Anaphoric objects are expressed with pronouns and
cannot be independently interpreted without going back to
its antecedent. In this work, such expressions are called
coreferences, unless it is required to make a distinction.
Usage of such expressions can vary depending on the type
and the style of the text. Here we focus on texts from
medical-related domains.

.e role of coreference resolution in the semantic search
framework is to provide additional semantic information
after named entity recognition before semantic annotation
(Figure 1).

3.2. Conceptual Model of Coreference Resolution. In this
chapter, a conceptualization of coreference resolution is
presented. A given model, which is expressed as UML class
diagram (Figure 2), specifies the concepts playing a certain

Table 1: Comparison of coreference resolution approaches.

Method Foundation Precision Recall F1

Hobbs [32] Syntactic tree with labeled nodes, syntactic rules,
selection constraint rules 0.81–0.91 na na

BFP [33] Centering theory 0.49–0.90 na na
Left-right centering [34] Modified centering theory 0.72–0.81 na na
Mitkov [35] POS tagger, antecedent indicators 0.897 na na
RAP [36] Salience factors 0.85–0.89 na na
Xrenner [37] Syntactic and semantic rules 0.51–0.55 0.49–0.57 0.49–0.56
Probabilistic [38] Bayesian rule 0.82–0.84 na na
MARS [39] Genetic algorithms 0.53–0.84 na na
Soon et al. [40] Machine learning (decision tree C5) 0.65–0.69 0.53–0.56 0.62
ILP [41] Machine learning (logistic classifier) 0.78–0.89 0.47–0.58 0.61–0.68
Wiseman et al. [42] Deep learning 0.77 0.70 0.73
Lee et al. [43] Deep learning 0.81 0.73 0.77
Žitnik et al. [44] Conditional random fields 0.68–0.94 0.30–0.87 0.41–0.87

Table 2: Comparison of coreference resolution methods for Balto-Slavic languages.

Method Foundation Precision Recall F1
LVCoref [45] Rule based, Hobbs’ algorithm 0.69–0.88 0.66–0.80 0.68–0.84
Ruler [46] Rule based 0.59–0.65 0.50–0.75 0.55–0.69
BARTEK [47] Machine learning 0.58 0.65 0.61
Mixed [48] Deep learning, sieve based 0.70 0.68 0.69
RU-sys1 [49] Rule based, ontology 0.82 0.70 0.76
RU-sys2 [49] Rule based 0.71 0.58 0.64
RU-sys3 [49] Rule based 0.63 0.50 0.55
RU-sys4 [49] Statistical, ontology 0.54 0.51 0.53
RU-sys5 [49] Machine learning, semantics 0.58 0.42 0.49
RU-sys6 [49] Decision tree 0.36 0.15 0.21
Khadzhiiskaia and Sysoev [50] Machine learning 0.84 0.77 0.80
Kučová and Žabokrtský [51] Rule-based filters 0.60 na na
CZ classifier [52] Classifier-based machine learning 0.70–0.76 0.70–0.76 0.70–0.76
CZ ranker [52] Ranker-based machine learning 0.79 0.79 0.79
Treex CR (Czech, English) [53] Machine learning na na 0.61–0.68
Treex CR (Russian, German) [54] Machine learning, projection 0.50–0.64 0.15–0.24 0.25–0.34
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Figure 1: An NLP pipeline of semantic search framework with coreference resolution component.

Concepts of Input Flow Concepts of Output Flow

Text
(i) publication_date

consists_of

1 1

1

1..∗ (i) previous 0..1

0..1

Lexical_unit

value(i)
(ii)

(i)
(ii)

(iii)
start_position
length

mentioned_in

mentioned_us

includes
Sentence

Person_NE

Lexeme Coreference

Mention
(i)

(ii)
start_position
length

Named_Entity

(i) next

follows

resolved_in

start_position
length

1 1

0..∗

0..∗

0..∗
0..1 0..1

0..1

0..∗

0..1

contains

expressed_by

1..∗
1..∗

1..∗

1..∗ 1
1

1..∗

(i)
(ii)

(iii)
(iv)

lemma
pos: POS_Type
gender: G_Type
number: N_Type

fits

0..1

0..*

(i)
(ii)

(iii)
(iv)
(v)

(vi)

type: Ref_Type
subtype: R_Subtype
position: P_Type
group: Gr_Type
start_position
length

(i) gender: G_Type

Organization_NE

Location_NE

Other_Part_Of_
Speech

Pronoun

(i) type: Pr_Type

Noun

fits
fits

fits

express

0..∗
0..∗

0..∗

0..∗

1..∗
1 0..1

0..1

Comma Conjunction

refers_to

Database of Public Persons

Known_Person

(i)
(ii)

full name
gender: G_Type

1

holds Position_Held

(i)
(ii)

(iii)
(iv)

position_name
lemma
from_date
to_date

Profession_Name

(i)
(ii)

value
lemma

Classification of Professions

describes (i) hyponym

-hypernym

Profession

broadnes

≪enumeration≫
Ref_Type

≪enumeration≫
R_Subtype

≪enumeration≫
P_Type

≪enumeration≫
Gr_Type

≪enumeration≫
POS_Type

≪enumeration≫
Pr_Type

≪enumeration≫
G_Type

≪enumeration≫
N_Type

Nominal
Pronominal

...

General
Relative

Repetition
Hypernym_Hyponym

Synonym
Feature

Irrelevant
Backward
Forward

Single
Multiple

Ambiguous

Noun
Pronoun

Preposition
Separator

...

...
Demonstrative Male

Female
Singular

Plural

Figure 2: A conceptual model of a coreference resolution domain.
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role in the extraction of coreferences of a certain type. .e
model gives us an understanding of the following:

(i) What features of text, sentence, and word help us
recognize the existence of coreference (they are
specified in the package Concepts of Input Flow)

(ii) What kind of text preprocessing is required
(iii) What additional resources are required for reso-

lution of certain type coreferences (they are speci-
fied in the package Database of Public Persons and
Classification of Professions)

For example, from the model provided, it is clear that,
before coreference resolution starts, it is important to pre-
process text and obtain the following:

(i) A text segmented into sentences and lexemes
(ii) Morphological features of lexemes identified
(iii) Named entities recognized

Text preprocessing itself is not a task of coreference
resolution, so it is out of the scope of this paper.

It is worthy to mention that the model is quite abstract,
language independent, and technology independent. .ere-
fore, it is applicable not only for Lithuanian but for gram-
matically similar languages as well. Concepts of this model are
used for the formalization of coreference resolution rules in the
next section. .e concepts are explained in more detail below.

.e main concepts of coreference resolution are Text,
Lexical_Unit, and Named_Entity. .e concept Text assumes a
textual document whose content should be analysed. Each test
has an associated publication date, which is important for
solving coreferences. Each text consists of at least one Lex-
ical_Unit, which includes paragraphs, sentences, words, and
punctuations, classified into the Sentence and Lexeme cate-
gories. Lexeme assumes lexical units such as words, punctu-
ations, and numbers. Each lexeme is characterized by a lemma
and a part of speech, and some of them (nouns and pronouns)
by grammatical gender and number. .e lexeme could be
specialized by POS category: Noun, Pronoun, and Oth-
er_Part_Of_Speech. Special cases ofOther_Part_Of_Speech are
Comma and Conjunction, which are required for the de-
scription of conditions of some coreference resolution rules.

A Named_Entity concept defines an object to whom
pronouns or certain nouns can refer. NER algorithms
usually recognize three types of entities: a person (Per-
son_NE), an organization (Organization_NE), and a location
(Location_NE). .e named entities of a person type require
special attention a person can be mentioned not only using
pronouns but also using a position he/she holds (Posi-
tion_Held) and a professional name (Profession). Additional
information about a person could help resolving such
coreferences more precisely. As an example, source of such
information could be a Database of Public Person, which
includes Known_Person—a well-known person mentioned
as Person_NE in the text. .e output of a coreference res-
olution algorithm is a Coreference—a relationship be-
tween coreferents. For each coreference, its type (nominal
and pronominal), subtype (relative pronoun and noun
repetition), position (points backward, forward, or irrelevant

in case of repetitions), and group (is singular, refers to the
coreference group or is ambiguous) are specified. Each
referent refers at least to one coreferent (a conceptMention).
Each Mention starts at a certain position in the text, is of a
certain length, and fits at least one Lexeme. Some of them can
fit a certain Named_Entity.

3.3. Coreference Resolution Algorithms. .e decision table
with guidelines for the application of the certain resolution
algorithm is shown as Figure 3. .e conditions are checked
consecutively on every lexeme in the text, and, if the con-
dition is satisfied, a corresponding algorithm is activated.
For example, if C2 condition is met then immediately A1
algorithm is activated.

For resolution of a specific type of references, we propose
the following algorithms:

(i) A1: specific rules resolution algorithm for resolution
of certain usage of pronouns

(ii) A2: general pronoun resolution algorithm which
focuses on the cases where pronouns refer to nouns
(or noun phrases) that are recognized as named
entities of “person” class

(iii) A3: PRA (partial, repetition, and acronym) reso-
lution algorithm for resolution of nouns recognized
as named entities and their repeated usage in the
same text

(iv) A4: HHS (hypernym, hyponym, synonymous)
resolution algorithm for resolution of nouns rec-
ognized as profession names including their syno-
nyms and hypernyms/hyponyms

(v) A5: feature resolution algorithm for resolution of
nouns that represent certain feature (at the moment
only public position being held) of the named entity
of a person

.e coreference resolution starts from the sequential
analysis of each lexeme looking for a certain type of pronoun
and noun. Depending on identified features of lexeme, a
decision about further analysis is taken. .e decision table
(Figure 3) summarizes conditions for the application of the
certain resolution algorithm. .e conditions are listed in the
upper left quadrant; the decision alternatives are listed in the
lower left quadrant. .e upper right quadrant shows the
possible alternatives for the conditions of the corresponding
row. In the upper right quadrant, the answer “na” stands for
“not relevant.” In the lower right quadrant, “✓” means that
the algorithm should be applied and “7” means that it should
not be applied.

.e idea is that the pronoun-related coreferences should
be solved first sequentially by checking the conditions C1, C2,
and C3. .en a noun-related coreference resolution should
start by sequentially checking the conditions C4, C6, and C7.

3.4. Formal Description of Coreference Resolution Algorithms.
First-order logic (FOL) formulas are employed to define
the main conditions the algorithms should check when
resolving coreferences. .e concepts of the coreference
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resolution model (Figure 2) became the predicates or
constants in the FOL formulas: the classes became the unary
predicates of the same name as class; the associations be-
tween classes—the binary predicates of the same name as
association; the attributes of classes—the binary predicates
of the same name as attribute plus verb “has” at the be-
ginning; and the literals of enumerations—constants.

.e algorithms follow the grammar rules of the Lithu-
anian language which are based on the analysis of mor-
phological features of lexemes and their order in the
sentence and text. Examples of Lithuanian language sen-
tences were translated into English as closely as possible. All
proper names were changed to generic abbreviations to
comply with GDPR.

3.4.1. A1: Specific Rules Resolution. In some cases, there
exists a rather rigid structure for pronoun usage and it can be
easily defined by using specific rules, for example,

(i) [LT] Šiandien buvo atėjęs vyras [noun], kuris
[pronoun] skundėsi nugaros skausmu.
[EN] A man [noun] who [pronoun] had a backache
came today.

(ii) [LT] Šiandien buvo atėjęs vyras [noun], su [prep-
osition] kuriuo [pronoun] aptarėme nugaros
skausmą.
[EN] A man [noun] with [preposition] whom
[pronoun] we discussed a backache came today.

Both examples are similar in their construction: [noun]
[comma] [optional preposition] [specific pronoun]. In both
cases, pronoun “kuriuo” refers to the noun “vyras.” In the
first example, we do not have an optional preposition “su,”
while we have it in the second one.

A condition for the existence of such reference formally
is defined as follows:

For every sentence s of text t and for every “Relative” type
pronoun p, which is contained in the sentence s and has a start
position sp1, is of length ln1, follows comma c or follows
prepositional lexeme l1, which follows comma c, and for every
noun l2, which has a start position sp2, is of length ln2,
precedes comma c, is of the same gender g and of the same
number n as the pronoun p, the only one coreference relation
r, which is resolved in text t, is of “Pronominal” type, “Rel-
ative” subtype, “Backward” position and “Single” group be-
tween the pronoun p and the noun n, its referent starts at
position sp1 and has length ln1, and which fits only one
lexeme p and refers to only one mention m, which starts at
position sp2, has length ln2, and fits only one lexeme l2, exists
(Rule 1).

Rule 1: ∀t, s, p, l1, c, l2, g, n, sp1, sp2, ln2. [Text(t) ∧
Sentence(s) ∧ consists_of(t, s) ∧ Pronoun(p) ∧ con-
tains(s, p) ∧ has_type(p, Relative) ∧ has_start_
position(p, sp1) ∧ has_length(p, ln1) ∧ Comma(c) ∧
(follows(p, c) ∨ (Lexeme(l1) ∧ has_pos(l1, Preposition)
∧ follows(l1, c) ∧ follows(p, l1)) ∧Noun(l2) ∧ follows(l2,
c) ∧ has_gender (p, g) ∧ has_gender (l2, g) ∧ has_
number(p, n) ∧ has_number(l2, n) ∧ has_start_
position(l2, sp2) ∧ has_length(l2, ln2) ⟶ ∃!r ∃!m.
[Coreference(r) ∧ resolved_in(r, t) ∧ has_type(r, Pro-
nominal) ∧ has_subtype(r, Relative) ∧ has_position(r,
Backward) ∧ has_ group(r, Single) ∧ has_start_
position(r, sp1) ∧ has_length(r, ln1) ∧ fits(r, p) ∧
Mention(m) ∧ refers_to(r, m) ∧ has_start_position(m,
sp2) ∧ has_length(m, ln2) ∧ fits(m, l2)]]

.e relative pronoun might be plural and refer to
multiple singular (or multiple plural) nouns:
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C1: Is a lexeme a pronoun? Yes No
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s

C2: Does a specific rule exist for this 
pronoun?

Yes No na

C3: Was the pronoun resolved by specific 
rules resolution?

Yes No na na

C4: Is a lexeme a noun? na na na Yes No

C5: Is the noun recognized as a named entity? na na na Yes No na

C6: Does the noun exist in profession 
classification?

na na na na Yes No na

C7: Does the noun exist in the knowledge 
base of public persons? na na na na Yes No Yes No na
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A1: Specific rules resolution
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sA2: General pronoun resolution

A3: PRA resolution

A4: HHS resolution

A5: Feature resolution

Figure 3: A decision table for selection of the algorithm. na: not applicable; : the algorithm should be applied; : it should not be
applied.
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(i) [LT] Komisija nerado panašumų tarp Tomo [noun],
Lino [noun], Petro [noun] ir [conjunction] Eglės
[noun], kurių [pronoun] sužalojimai atrodė panaš�us.
[EN] .e committee did not find Tom [noun], Linas
[noun], Peter [noun] and [conjunction] Eglė [noun],
who [pronoun] shared similar injuries.

In this case, a plural pronoun “kurių” is referring to four
singular nouns that have different genders..e previous rule
would not be able to solve such coreference. For this case, the
construction would be: [noun] [comma] [noun] [comma]
[noun] [conjunction] [noun] [comma] [optional preposi-
tion] [specific pronoun].

For such case, a special condition must be defined:
For every sentence s in text t and for every “Relative” type

pronoun p of “Plural” number, which is contained in the
sentence s and has a start position sp1, is of length ln1, follows
comma c1 or follows prepositional lexeme l, which follows
comma c1, and for every noun n1, which precedes comma c1,
has a start position sp2, is of length ln2, follows conjunction j,
and for every noun n2, which precedes conjunction j, has a start
position sp3, is of length ln3, and for every existing noun n3,
which follows comma c2, and for every existing noun n4, which
precedes comma c2, has a start position sp4, is of length ln4, the
only one coreference relation r, which is resolved in text t, is of
“Pronominal” type, “Relative” subtype, “Backward” position
and “Multiple” group, its referent starts at position sp1 and has
length ln1, fits only one lexeme p, refers to only one mention
m1, which starts at position sp2, has length ln2, and fits noun
n1, refers to only one mentionm2, which starts at position sp3,
has length ln3, and fits only one noun n2, and refers at least to
one mention m3, which starts at position sp4, has length ln4,
and fits noun n4, exists (Rule 2).

Rule 2: ∀t, s, p, l, c1, n1, sp1, ln1, sp2, ln2, j, n2, sp3,
ln3.[Text(t) ∧ Sentence(s) ∧ consists_of(t, s) ∧ Pro-
noun(p) ∧ contains(s, p) ∧ has_number(p, Plural) ∧ has_
type(p, Relative) ∧ has_start_position(p, sp1) ∧ has_
length(p, ln1) ∧ Comma(c1) ∧ (follows(p, c1) ∨ (Lex-
eme(l) ∧ has_pos(l, Preposition) ∧ follows(p, l) ∧ fol-
lows(l, c1)) ∧ Noun(n1) ∧ follows(c1, n1) ∧ has_
start_position(n1, sp2) ∧ has_length(n1, ln2) ∧ Con-
junction(j) ∧ follows(n1, j) ∧Noun(n2) ∧ follows(j, n2) ∧
has_start_position(n2, sp3) ∧ has_length(n2, ln3) ∧
(∃n3, c2, n4, sp4, ln4.(Noun(n3) ∧ Comma(c2) ∧
Noun(n4) ∧ follows(n3, c2) ∧ follows(c2, n4) ∧ has_
start_position(n4, sp4) ∧ has_length(n4, ln4))⟶∃!r ∃!
m1 ∃!m2 ∃m3. [Coreference(r) ∧ resolved_in(r, t) ∧
has_type(r, Pronominal) ∧ has_subtype(r, Relative) ∧
has_position(r, Backward) ∧ has_ group(r, Multiple)
∧ has_start_position(r, sp1) ∧ has_length(r, ln1) ∧ fits(r,
p) ∧ Mention(m1) ∧ refers_to(r, m1) ∧ has_
start_position(m1, sp2) ∧ has_length(m1, ln2) ∧ fits(m1,
n1) ∧ Mention(m2) ∧ refers_to(r, m2) ∧ has_start_
position(m2, sp3) ∧ has_length(m2, ln3) ∧ fits(m2, n2) ∧
Mention(m3) ∧ refers_to(r, m3) ∧ has_start_
position(m3, sp4) ∧ has_length(m3, ln4) ∧ fits(m3, n4)]]

.ough examples illustrating the certain case of cor-
eference are given in Lithuanian and English only, rules for

resolution of such coreferences could be applied for other
languages as well. For example, Rule 1 could be successfully
applied for coreference resolution in Polish or Russian
languages. Let us take the same example of a sentence in
Polish and Russian:

[PL] Dzisiaj przychodził mężczyzna [noun], który
[pronoun] skarżył się na ból pleców.
[RU] Sfгpeo> пrjypejm nuhyjoa [noun],
lptpr9k [pronoun] hampcams> oa bpm: c sпjof.

We can see that a structure of the sentence (number and
order of lexemes) is similar, a pronoun goes after the comma
and it refers to a noun, and compatibility of morphological
features (gender, number) of noun and pronoun is retained.
From the given example, we understand that the coreference
relation between pronoun and noun exists and conditions
for such existence are the same as specified in Rule 1.

3.4.2. A2: General Purpose Pronoun Resolution. .is algo-
rithm focuses on the cases where pronouns refer to nouns
(or noun phrases) that are recognized as named entities of
“person” class by NER. .e algorithm starts from the
identification of not demonstrative pronoun. In a given
example below, such a pronoun is in the second senten-
ce—“Jis” (“He”)

(i) [LT] Jonas Jonaitis [person noun phrase] skambino į
registrat�urą. Jis [pronoun] skundėsi galvos skausmu.
[EN] Jonas Jonaitis [person noun phrase] called
a reception. He [pronoun] complained about
headache.

If the pronoun is in the relative clause, the algorithm
moves backwards analysing words going before the pro-
noun. In a given example, the pronoun is at the beginning of
the sentence, so remaining parts of the sentence are not
analysed, and the algorithm moves one sentence backwards.

.e conditions for the existence of such reference for-
mally could be defined as three alternatives. .e first one
describes conditions for reference existing in the same
sentence s1 before pronoun p:

For each text’s t sentence s1 and pronoun p not of De-
monstrative type that is contained in sentence s1 and has
gender g, number n, start position sp1 and length of ln1, and
named entity e1 that is in the same sentence s1, is expressed by
lexeme l, and has gender g, number n, start position sp2 and is
of length ln2, and is before pronoun p (sp2 is lower than sp1),
but closer to pronoun p than possible named entities e2 and e3
(sp2 higher than sp3 and sp4), the only one coreference
relation r, which is resolved in text t, is of “Pronominal” type,
“Relative” subtype, “Backward” position and “Single” group
between the pronoun p and the named entity e1, its referent
starts at position sp1 and has length ln1, and which fits only
one pronoun p and refers to only one mentionm, which starts
at position sp2, has length ln2, and fits only one named entity
e1, exists (Rule 3).

Rule 3: ∀t, s1, p, l, e1, g, n, sp1, ln1, sp2, ln2.[Text(t) ∧
Sentence(s1) ∧ consists_of(t, s1) ∧ Pronoun(p) ∧
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contains(s1, p) ∧ ¬has_type(p, Demonstrative) ∧
has_gender(p, g) ∧ has_number(p, n) ∧ has_
start_position(p, sp1) ∧ has_length(p, ln1) ∧ Person_
NE(e1) ∧ includes(s1, e1) ∧ Lexeme(l) ∧ expressed_
by(e1, l) ∧ has_gender(e1, g) ∧ has_number(e1, n) ∧
has_start_position(e1, sp2) ∧ has_length(e1, ln2) ∧
sp2<sp1 ∧ ¬(∃e2, e3, sp3, sp4. (e1≠e2 ∧ e1≠e3 ∧ e2≠e3
∧ Person_NE(e2) ∧ includes(s1, e2) ∧ has_gender(e2,
g) ∧ has_number(e2, n) ∧ has_start_position(e2, sp3) ∧
Person_NE(p3) ∧ includes(s1, e3) ∧ has_gender(e3, g)
∧ has_number(e3, n) ∧ has_start_position(e3, sp4) ∧
sp2>sp3 ∧ sp4>sp2))⟶ ∃!r ∃!m. [Coreference(r) ∧
resolved_in(r, t) ∧ has_type (r, Pronominal) ∧ has_
subtype (r, General) ∧ has_position(r, Backward) ∧
has_group(r, Single) ∧ has_start_position(r, sp1) ∧
has_length(r, ln1) ∧ fits(r, p) ∧ Mention(m) ∧ refer-
s_to(r, t) ∧ has_start_position(m, sp2) ∧ has_length(m,
ln2) ∧ fits(m, e1) ∧ fits(m, l)]]

.e second alternative describes a case when a pronoun
p refers to the named entity in the previous sentence s2:

For each text’s t sentence s1, s2, where s1 follows s2, and
pronoun p not of Demonstrative type that is contained in
sentence s1 and has gender g, number n, start position sp1 and
length of ln1, and named entity e1 that is contained in sentence
s2, is expressed by lexeme l, and has gender g, number n, start
position sp2 and is of length ln2, and is closer to pronoun p
than possible named entities e2 and e3 (sp2 higher than sp3
and sp4), the only one coreference relation r, which is resolved
in text t, is of “Pronominal” type, “Relative” subtype, “Back-
ward” position and “Single” group between the pronoun p and
the named entity e1, its referent starts at position sp1 and has
length ln1, and which fits only one pronoun p and refers to only
one mention m, which starts at position sp2, has length ln2,
and fits only one named entity e1, exists (Rule 4).

Rule 4: ∀t, s1, s2, p, l, e1, g, n, sp1, ln1, sp2, ln2.[Text(t) ∧
Sentence(s1) ∧ Sentence(s2) ∧ consists_of(t, s1) ∧ con-
sists_of(t, s2) ∧ follows (s1, s2) ∧ Pronoun(p) ∧ con-
tains(s1, p) ∧ ¬has_type(p, Demonstrative) ∧ has_
gender(p, g) ∧ has_number(p, n) ∧ has_start_position(p,
sp1) ∧ has_length(p, ln1) ∧ Person_NE(e1) ∧ inclu-
des(s2, e1) ∧ Lexeme(l) ∧ expressed_by(e1, l) ∧ has_
gender(e1, g) ∧ has_number(e1, n) ∧ has_start_
position(e1, sp2) ∧ has_length(e1, ln2) ∧ ¬(∃e2, e3, sp3,
sp4. (e1≠e2 ∧ e1≠e3 ∧ e2≠e3 ∧ Person_NE(e2) ∧
includes(s2, e2) ∧ has_gender(e2, g) ∧ has_number(e2,
n) ∧ has_start_position(e2, sp3) ∧ Person_NE(p3) ∧
includes(s2, e3) ∧ has_gender(e3, g) ∧ has_number(e3,
n) ∧ has_start_position(e3, sp4) ∧ sp2>sp3 ∧ sp4>sp2))
⟶∃!r ∃!m. [Coreference(r) ∧ resolved_in(r, t) ∧ has_
type (r, Pronominal) ∧ has_subtype (r, General) ∧
has_position(r, Backward) ∧ has_group(r, Single) ∧ has_
start_position(r, sp1) ∧ has_length(r, ln1) ∧ fits(r, p) ∧
Mention(m) ∧ refers_to(r, t) ∧ has_start_position(m,
sp2) ∧ has_length(m, ln2) ∧ fits(m, e1) ∧ fits(m, l)]]

.e third alternative describes a case when a pronoun p
in the sentence s1 refers to the named entity in the sentence
s3, preceding sentences s2 and s1:

For each text’s t sentence s1, s2, s3, where s1 follows s2
and s2 follows s3, and pronoun p not of Demonstrative type
that is contained in sentence s1 and has gender g, number n,
start position sp1 and length of ln1, and named entity e1 that
is contained in sentence s3, is expressed by lexeme l, and has
gender g, number n, start position sp2 and is of length ln2,
and is closer to pronoun p than possible named entities e2 and
e3 (sp2 higher than sp3 and sp4), the only one coreference
relation r, which is resolved in text t, is of “Pronominal” type,
“Relative” subtype, “Backward” position and “Single” group
between the pronoun p and the named entity e1, its referent
starts at position sp1 and has length ln1, and which fits only
one pronoun p and refers to only one mentionm, which starts
at position sp2, has length ln2, and fits only one named entity
e1, exists (Rule 5).

Rule 5: ∀t, s1, s2, s3, p, l, e1, g, n, sp1, ln1, sp2,
ln2.[Text(t) ∧ Sentence(s1) ∧ Sentence(s2) ∧ Senten-
ce(s3) ∧ consists_of(t, s1) ∧ consists_of(t, s2) ∧ con-
sists_of(t, s3) ∧ follows (s1, s2) ∧ follows (s2, s3) ∧
Pronoun(p) ∧ contains(s1, p) ∧ ¬has_type(p, De-
monstrative) ∧ has_gender(p, g) ∧ has_number(p, n) ∧
has_start_position(p, sp1) ∧ has_length(p, ln1) ∧
Person_NE(e1) ∧ Lexeme(l) ∧ expressed_by(e1, l) ∧
includes(s3, e1) ∧ has_gender(e1, g) ∧ has_number(e1,
n) ∧ has_start_position(e1, sp2) ∧ has_length(e1, ln2) ∧
¬(∃e2, e3, sp3, sp4. (e1≠e2 ∧ e1≠e3 ∧ e2≠e3 ∧ Per-
son_NE(e2) ∧ includes(s3, e2) ∧ has_gender(e2, g) ∧
has_number(e2, n) ∧ has_start_position(e2, sp3) ∧
Person_NE(e3) ∧ includes(s3, e3) ∧ has_gender(e3, g)
∧ has_number(e3, n) ∧ has_start_position(e3, sp4) ∧
sp2>sp3 ∧ sp4>sp2))⟶ ∃!r ∃!m. [Coreference(r) ∧
resolved_in(r, t) ∧ has_type (r, Pronominal) ∧ has_
subtype (r, General) ∧ has_position(r, Backward) ∧
has_group(r, Single) ∧ has_start_position(r, sp1) ∧
has_length(r, ln1) ∧ fits(r, p) ∧ Mention(m) ∧ refer-
s_to(r, t) ∧ has_start_position(m, sp2) ∧ has_length(m,
ln2) ∧ fits(m, e1) ∧ fits(m, l)]]

Another example presents a case when a coreferent of
the pronoun “man” (in English, “for me”) is in the following
sentence:

(i) [LT] Pastebėtina, kad ligoginėse apsilankė 10 mln.
pacientų, nepaisant to, kad 2016 m. jų buvo 4%
mažiau (apsilankė beveik 9,5 mln.). Tai labiausiai
lėmė skaitmeninių paslaugų padidinimas: “Kiekman
[pronoun] teko analizuoti, padidinus skaitmenines
paslaugas tik nedidelė dalis Lietuvos [location noun]
ligoninių sumažino etatų ar atleido darbuotojus, o tai
lėmė nemažą papildomą indėl į į paslaugos kokybę”
teigė J. Jonaitis [person noun phrase].
[EN] It is noteworthy that the total hospital patient
count has reached 10million, even though in 2016 the
number was less than 4% (around 9.5 million pa-
tients). .is was influenced by the digitization of
e-health services. “As far as I [pronoun] had analysed,
only a small part of Lithuanian [location noun]
hospitals have reduced their posts or dismissed
employees, but digitization of services has led to a
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significant additional contribution to the quality of
service,” said J. Jonaitis [person noun phrase].

If the algorithm does not find any named entities moving
backwards, it moves back to pronoun and proceeds forward.
.e algorithm continues moving forward until it locates “J.
Jonaitis” entity, which is recognized as a person. Since the
gender of the pronoun “man” is ambiguous (it can refer to
both female and male persons), only their grammatical
numbers are compared. Both are singular; therefore, the
algorithm picks “J. Jonaitis” as a postcedent of the corefering
object “man.” Conditions for the existence of such reference
formally could be defined as two alternatives. .e first one
describes the conditions for reference existing in the same
sentence s1 after pronoun was mentioned:

For each text’s t sentence s1 and pronoun p not of De-
monstrative type that is contained in sentence s1 and has
gender g, number n, start position sp1 and length of ln1, and
named entity e1 that is in the same sentence s1, is expressed by
lexeme l, and has gender g, number n, start position sp2 and is
of length ln2, and is after pronoun p (sp2 is higher than sp1),
but closer to pronoun p than possible named entities e2 and e3
(sp2 higher than sp3 and sp4), the only one coreference
relation r, which is resolved in text t, is of “Pronominal” type,
“Relative” subtype, “Backward” position and “Single” group
between the pronoun p and the named entity e1, its referent
starts at position sp1 and has length ln1, and which fits only
one pronoun p and refers to only one mentionm, which starts
at position sp2, has length ln2, and fits only one named entity
e1, exists (Rule 6).

Rule 6: ∀t, s1, p, l, e1, g, n, sp1, ln1, sp2, ln2.[Text(t) ∧
Sentence(s1) ∧ consists_of(t, s1) ∧ Pronoun(p) ∧
contains(s1, p) ∧ ¬has_type(p, Demonstrative) ∧ has_
gender(p, g) ∧ has_number(p, n) ∧ has_start_
position(p, sp1) ∧ has_length(p, ln1) ∧ Person_NE(e1)
∧ includes(s1, e1) ∧ Lexeme(l) ∧ expressed_by(e1, l) ∧
has_gender(e1, g) ∧ has_number(e1, n) ∧ has_
start_position(e1, sp2) ∧ has_length(e1, ln2) ∧ sp1<sp2
∧ ¬(∃e2, e3, sp3, sp4. (e1≠e2 ∧ e1≠e3 ∧ e2≠e3 ∧
Person_NE(e2) ∧ includes(s1, e2) ∧ has_start_
position(e2, sp3) ∧ Person_NE(e3) ∧ includes(s1, e3) ∧
has_start_position(e3, sp4) ∧ sp2<sp3 ∧ sp4<sp2))⟶
∃!r ∃!m. [Coreference(r) ∧ resolved_in(r, t) ∧ has_type
(r, Pronominal) ∧ has_subtype (r, General) ∧ has_
position(r, Forward) ∧ has_group(r, Single) ∧ has_
start_position(r, sp1) ∧ has_length(r, ln1) ∧ fits(r, p) ∧
Mention(m) ∧ refers_to(r, t) ∧ has_start_position(m,
sp2) ∧ has_length(m, ln2) ∧ fits(m, e1) ∧ fits(m, l)]]

.e second alternative describes the case when the
pronoun p refers to the named entity in the following
sentence s4:

For each text’s t sentence s1, s4, where s4 follows s1, and
pronoun p not of Demonstrative type that is contained in
sentence s1 and has gender g, number n, start position sp1 and
length of ln1, and named entity e1 that is contained in sentence
s2, is expressed by lexeme l, and has gender g, number n, start
position sp2 and is of length ln2, and is closer to pronoun p
than possible named entities e2 and e3 ( sp2 higher than sp3

and sp4 ), the only coreference relation r, which is resolved in
text t, is of “Pronominal” type, “Relative” subtype, “Backward”
position and “Single” group between the pronoun p and the
named entity e1, its referent starts at position sp1 and has
length ln1, and which fits only one pronoun p and refers to only
one mention m, which starts at position sp2, has length ln2,
and fits only one named entity e1, exists (Rule 7).

Rule 7: ∀t, s1, s2, p, l, e1, g, n, sp1, ln1, sp2, ln2.[Text(t) ∧
Sentence(s1) ∧ Sentence(s2) ∧ consists_of(t, s1) ∧
consists_of(t, s2) ∧ follows (s2, s1) ∧ Pronoun(p) ∧
contains(s1, p) ∧ ¬has_type(p, Demonstrative) ∧ has_
gender(p, g) ∧ has_number(p, n) ∧ has_start_
position(p, sp1) ∧ has_length(p, ln1) ∧ Person_NE(e1)
∧ includes(s2, e1) ∧ Lexeme(l) ∧ expressed_by(e1, l) ∧
has_gender(e1, g) ∧ has_number(e1, n) ∧ has_start_
position(e1, sp2) ∧ has_length(e1, ln2) ∧ ¬(∃e2, e3, sp3,
sp4. (e1≠e2 ∧ e1≠e3 ∧ e2≠e3 ∧ Person_NE(e2) ∧
includes(s2, e2) ∧ has_start_position(e2, sp3) ∧ Per-
son_NE(e3) ∧ includes(s2, e3) ∧ has_start_position(e3,
sp4) ∧ sp2<sp3 ∧ sp4<sp2))⟶ ∃!r ∃!m. [Corefer-
ence(r) ∧ resolved_in(r, t) ∧ has_type (r, Pronominal) ∧
has_subtype (r, General) ∧ has_position(r, Forward) ∧
has_group(r, Single) ∧ has_start_position(r, sp1) ∧
has_length(r, ln1) ∧ fits(r, p) ∧ Mention(m) ∧ refer-
s_to(r, t) ∧ has_start_position(m, sp2) ∧ has_length(m,
ln2) ∧ fits(m, e1) ∧ fits(m, l)]]

.e algorithm ignores demonstrative pronouns because
they are often used to refer to entities that are not present in
the written text. Such pronouns do not carry any additional
semantic information and do not refer to any noun phrase.
.ey are used mostly for syntactic reasons and due to that
are usually ignored in coreference resolution.

3.4.3. A3: PRA Resolution. .is algorithm is based on exact
(or partial) string matches and several rules for acronyms.
Once a first named entity that can be matched with an initial
named entity is found, then the algorithm stops to keep
annotations simple: B⟶A, C⟶B and D⟶C. .is
allows the formation of the coreference chains linking all
mentions of the same entity in a text that can be later reused
for semantic analysis, for example,

(i) [LT] Tomaitis [named entity] pateko į avariją. Po
pietų Tomaitį [named entity] išvežė į operacinę.
[EN] Tomaitis [named entity] got into a car accident.
In the afternoon, Tomaitis [named entity] has been
taken to a surgery room.

In this example, two mentions of the same entity are
made: “Tomaitis” and “Tomaitį.” .ey are of different cases,
but their lemmas are identical. A condition for the existence
of such reference formally is defined as follows:

For each text’s t sentence s1 that includes named entity
e1, that has start position sp1 and is of length ln1, which is
expressed by lexeme l1 that has lemma l and for each same
text’s t sentence s2 that includes named entity e2, that has a
start position sp1 and is of length ln1, which is expressed by
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lexeme l2 that has lemma l, the only one coreference relation
r, which is resolved in text t, is of “Nominal” type, “Repe-
tition” subtype, “Irrelevant” position and “Single” group
between the noun n1 and the noun n2, its referent starts at
position sp1 and has length ln1, and which fits only one
noun n1 and refers to only one mention m, which starts at
position sp2, has length ln2, and fits only one noun n2, exists
(Rule 8).

Rule 8: ∀t, s1, s2, e1, e2, sp1, ln1, sp2, ln2.[Text(t) ∧
Sentence(s1) ∧ Sentence(s2) ∧ consists_of(t, s1) ∧
consists_of(t, s2) ∧ Named_Entity(e1) ∧ includes(s1,
e1) ∧ has_start_position(e1, sp1) ∧ has_length(e1, ln1)
∧ Named_Entity(e2) ∧ includes(s2, e2) ∧ has_-
start_position(e2, sp2) ∧ has_length(e2, ln2) ∧ e1≠e2 ∧
(∃l1 ∃l2 ∃l.(Lexeme(l1) ∧ Lexeme(l2) ∧ expressed_-
by(e1, l1) ∧ expressed_by(e2, l2) ∧ has_lemma(l1, l) ∧
has_lemma(l2, l)) ⟶ ∃!r ∃!m. [Coreference(r) ∧
resolved_in(r, t) ∧ has_type (r, Nominal) ∧ has_sub-
type (r, Repetition) ∧ has_position(r, Irrelevant) ∧
has_group(r, Single) ∧ has_start_position(r, sp1) ∧
has_length(r, ln1) ∧ fits(r, l1) ∧ fits(r, e1) ∧Mention(m)
∧ refers_to(r, t) ∧ has_start_position(m, sp2) ∧ has_-
length(m, ln2) ∧ fits(m, l2) ∧ fits(m, e2)]]

Acronym rules vary depending on the type of named
entity (currently persons, locations, and organizations are
covered).

3.4.4. A4: HHS Resolution. .is algorithm is based on
profession classification. It attempts to resolve the use of
synonyms and hypernyms/hyponyms.

(i) [LT] Gydytojai [noun referring to profession]
skundžiasi dideliu darbo kr�uviu. Chirurgų [noun
referring to profession] darbo kr�uvis pats didžiausias.
[EN] Doctors [noun referring to profession] com-
plain about heavy workload. Surgeons’ [noun re-
ferring to profession] workload is the greatest.

.e algorithm determines that “Doctor” in professions
classification is a hyponym of “Surgeon,” they also agree in
gender and number; therefore, the algorithm adds their pair
to annotations. Conditions for the existence of such refer-
ence formally are defined as follows:

For each text’s t sentence s1 that has profession p1, which is
either broader or narrower than profession p2, name v1
expressing noun n1, which has gender g, number m, start
position sp1 and is of length ln1, and for each same text’s t
sentence s2 that has profession p2, which is either broader or
narrower than profession p1, name v2 expressing noun n2,
which has gender g, number m, start position sp2 and is of
length ln2, the only one coreference relation r, which is resolved
in text t, is of “Nominal” type, “Hypernym_hyponym” subtype,
“Irrelevant” position and “Single” group between the noun n1
and the noun n2, its referent starts at position sp1 and has
length ln1, and which fits only one noun n1 and refers to only
one mention m, which starts at position sp2, has length ln2,
and fits only one noun n2, exists (Rule 9).

Rule 9: ∀t, s1, s2, n1, n2, sp1, ln1, sp2, ln2, v1, v2, p1,
p2.[Text(t) ∧ Sentence(s1) ∧ Sentence(s2) ∧ consists_
of(t, s1) ∧ consists_of(t, s2) ∧ Noun(n1) ∧ contains(s,
n1) ∧ has_start_position(n1, sp1) ∧ has_length(n1, ln1)
∧ Noun(n2) ∧ contains(s2, n2) ∧ has_start_position(n2,
sp2) ∧ has_length(n2, ln2) ∧ n1≠n2 ∧ Profession(p1) ∧
Profession(p2) ∧ p1≠p2 ∧ Profession_Name(v1) ∧
Profession_Name(v2) ∧ express(n1, v1) ∧ express(n2,
v2) ∧ describes(v1, p1) ∧ describes(v2, p2) ∧ (broad-
ens(p2, p1) ∨ broadens(p1, p2)) ∧ has_gender(n1, g) ∧
has_gender(n2, g) ∧ has_number(n1, n) ∧ has_num-
ber(n2, n)⟶∃!r ∃!m. [Coreference(r) ∧ resolved_in(r,
t) ∧ has_type (r, Nominal) ∧ has_subtype (r, Hyper-
nym_Hyponym) ∧ has_position(r, Irrelevant) ∧ has_
group(r, Single) ∧ has_start_position(r, sp1) ∧ has_
length(r, ln1) ∧ fits(r, n1) ∧Mention(m) ∧ refers_to(r, t)
∧ has_start_position(m, sp2) ∧ has_length(m, ln2) ∧
fits(m, n2)]]

An example of synonym is given as follows:

(i) [LT] J. Jonaitis buvo operacijos vadovu [noun re-
ferring to profession]. Deja, vyr. chirurgo [noun
referring to profession] vykdoma operacija buvo
nesėkminga.
[EN] From now J. Jonaitis was the head surgeon
[noun referring to profession] of operation. Un-
fortunately, the last operation of chief surgeon [noun
referring to profession] was unsuccessful.

Both “head surgeon” and “chief surgeon” are synony-
mous; therefore, the condition for the existence of such
reference formally could be defined as follows:

For each text’s t sentence s1 that has a profession’s p name
v1, which is expressed by noun n1 that has gender g, numberm,
start position sp1 and is of length ln1, and for each same text’s t
sentence s2 that has same profession’s p name v2 expressed by
noun n2 that has gender g, numberm, start position sp2 and is
of length ln2, the only one coreference relation r, which is
resolved in text t, is of “Nominal” type, “Synonym” subtype,
“Irrelevant” position and “Single” group between the noun n1
and the noun n2, its referent starts at position sp1 and has
length ln1, and which fits only one noun n1 and refers to only
onementionm, which starts at position sp2, has length ln2, and
fits only one noun n2, exists (Rule 10).

Rule 10: ∀t, s1, s2, n1, n2, sp1, ln1, sp2, ln2, v1, v2, p, g,
n.[Text(t) ∧ Sentence(s1) ∧ Sentence(s2) ∧ consists_
of(t, s1) ∧ consists_of(t, s2) ∧ Noun(n1) ∧ contains(s1,
n1) ∧ has_start_position(n1, sp1) ∧ has_length(n1, ln1)
∧ Noun(n2) ∧ contains(s2, n2) ∧ has_start_
position(n2, sp2) ∧ has_length(n2, ln2) ∧ n1≠n2 ∧
Profession_name(v1) ∧ Profession_name(v2) ∧ Pro-
fession(p) ∧ express(n1, v1) ∧ express(n2, v2) ∧
describes(v1, p) ∧ describes(v2, p) ∧ has_gender(n1, g)
∧ has_gender(n2, g) ∧ has_number(n1, n) ∧ has_
number(n2, n) ∧ n1≠n2⟶∃!r ∃!m. [Coreference(r) ∧
resolved_in(r, t) ∧ has_type (r, Nominal) ∧ has_sub-
type(r, Synonym) ∧ has_position(r, Irrelevant) ∧
has_group(r, Single) ∧ has_start_position(r, sp1) ∧
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has_length(r, ln1) ∧ fits(r, n1) ∧Mention(m) ∧ refers_
to(r, t) ∧ has_start_position(m, sp2) ∧ has_length(m,
ln2) ∧ fits(m, n2)]]

3.4.5. A5: Feature Resolution. .is algorithm at the time
attempts to resolve only those cases when a person is being
referred to by his public post (feature) that he holds, other
types of features are not currently resolved, for example,

(i) [LT] Ką rekomenduoja S. Suskelis [person noun
phrase]? Aptarkime kardiologo [noun referring to
held position] si�ulomą gydymo planą.
[EN] What does S. Suskelis [person noun phrase]
recommend? Let’s discuss treatment plan proposed
by the cardiologist [noun referring to held position].
Here a noun “cardiologist” is selected, the algorithm
moves backwards till it reaches “S. Suskelis” and
checks the knowledge base if at the time of the
publication of the medical record he has held the
position of the cardiologist.. Since “he holds it” the
algorithm checks if “S. Suskelis” and “cardiologist”
agree in gender and number. .ey agree, and their
pair is added to annotation as a feature reference. A
condition for the existence of such reference formally
is defined as follows:

For each text’s t sentence s1 that has known person k,
who during publication date d had certain position h
(publication date d is same or later than position h start date
fd and same or earlier than position h end date td), mention
as named entity e, that has a start position sp1 and is of
length ln1, and for each same text’s t sentence s2 mentioned
noun n, that has a start position sp2 and is length ln2, which
is mentioned after named entity e (noun n has a higher start
position sp2 than named entity’s sp1), whose lemma l
matches with position’s h lemma l, number is Singular and
gender g matches known person’s k gender g, the only one
coreference relation r, which is resolved in text t, is of
“Nominal” type, “Feature” subtype, “Backward” position
and “Single” group between the noun n and the named entity
e, its referent starts at position sp2 and has length ln2, and
which fits only one noun n and refers to only one mentionm,
which starts at position sp1, has length ln1, and fits only one
named entity e, exists (Rule 11).

Rule 11: ∀t, s1, s2, n, k, h, l, d, fd, td, g, sp1, sp2, ln1,
ln2.[Text(t) ∧ Sentence(s1) ∧ Sentence(s2) ∧ con-
sists_of(t, s1) ∧ consists_of(t, s2) ∧ Person_NE(e) ∧
includes(s1, e) ∧ Noun(n) ∧ contains(s2, n) ∧
Known_Person(k) ∧ mentioned_as(k, e) ∧ Position_
held(h) ∧ holds(k, h) ∧ has_lemma(h, l) ∧ has_lem-
ma(n, l) ∧ has_publication_date(t, d) ∧ has_from_
date(h, fd) ∧ has_to_date(h, td) ∧ fd≤d ∧ td≥d ∧
has_gender(k, g) ∧ has_gender(n, g) ∧ has_number(n,
Singular) ∧ has_start_position(e, sp1) ∧ has_
start_position(n, sp2) ∧ sp1<sp2 ∧ has_length(e, ln1) ∧
has_length(n, ln2) ⟶ ∃!r ∃!m. [Coreference(r) ∧
resolved_in(r, t) ∧ has_type (r, Nominal) ∧ has_sub-
type (r, Feature) ∧ has_position(r, Backward) ∧ has_

group(r, Single) ∧ has_start_position(r, sp2) ∧ has_-
length(r, ln2) ∧ fits(r, e) ∧Mention(m) ∧ refers_to(r, t)
∧ has_start_position(m, sp1) ∧ has_length(m, ln1) ∧
fits(m, n)]]

In this case, it is also relevant to track if coreference is
pointing backward or forward. We can rewrite the same
example and switch a known person with his positions:

(i) [LT] Koks yra mano šeimos gydytojas [noun re-
ferring to held position]? T. Tomaitis [person noun
phrase] yra labai patyręs j�usų šeimos gydytojas.
[EN] Who is my family doctor [noun referring to
held position]? T. Tomaitis [person noun phrase] is
very experienced doctor assigned to you.

As a result, sp1 is higher than sp2 and coreference has
different position constant values:

For each text’s t sentence s1 that has known person k,
who during publication date d had certain position h
(publication date d is same or later than position h start date
fd and same or earlier than position h end date td), mention
as named entity e, that has a start position sp1 and is of
length ln1, and for each same text’s t sentence s2 mentioned
noun n, that has a start position sp2 and is length ln2, which
is mentioned after named entity e (noun n has a lower start
position sp2 than named entity’s sp1), whose lemma l
matches with position’s h lemma l, number is Singular and
gender g matches known person’s k gender g, the only one
coreference relation r, which is resolved in text t, is of
“Nominal” type, “Feature” subtype, “Forward” position and
“Single” group between the noun n and the named entity e,
its referent starts at position sp2 and has length ln2, and
which fits only one noun n and refers to only one mentionm,
which starts at position sp1, has length ln1, and fits only one
named entity e, exists (Rule 12).

Rule 12: ∀t, s1, s2, n, k, h, l, d, fd, td, g, sp1, sp2, ln1,
ln2.[Text(t) ∧ Sentence(s1) ∧ Sentence(s2) ∧ con-
sists_of(t, s1) ∧ consists_of(t, s2) ∧ Person_NE(e) ∧
includes(s1, e) ∧ Noun(n) ∧ contains(s2, n) ∧
Known_Person(k) ∧ mentioned_as(k, e) ∧ Position_
held(h) ∧ holds(k, h) ∧ has_lemma(h, l) ∧ has_lem-
ma(n, l) ∧ has_publication_date(t, d) ∧ has_from_
date(h, fd) ∧ has_to_date(h, td) ∧ fd≤d ∧ td≥d ∧
has_gender(k, g) ∧ has_gender(n, g) ∧ has_number(n,
Singular) ∧ has_start_position(e, sp1) ∧ has_
start_position(n, sp2) ∧ sp1>sp2 ∧ has_length(e, ln1) ∧
has_length(n, ln2) ⟶ ∃!r ∃!m. [Coreference(r) ∧
resolved_in(r, t) ∧ has_type (r, Nominal) ∧ has_sub-
type (r, Feature) ∧ has_position(r, Forward) ∧ has_
group(r, Single) ∧ has_start_position(r, sp2) ∧ has_
length(r, ln2) ∧ fits(r, e) ∧Mention(m) ∧ refers_to(r, t)
∧ has_start_position(m, sp1) ∧ has_length(m, ln1) ∧
fits(m, n)]]

4. Results and Evaluation

.e coreference resolution algorithms and rules presented in
Section 3 were implemented as a separate component and
integrated into the semantic search framework NLP pipeline

Computational and Mathematical Methods in Medicine 11



(Figure 1) because it requires lexical, morphological, and NE
annotations of the text should be analysed. Solutions for
other languages should not follow the same NLP pipeline
architecture. But a supply of coreference resolution com-
ponent with lexical, morphological, and NE information of
the text must be ensured.

Coreference resolution for Lithuanian was implemented
using Java programming language and JSON data format for
annotation storage. But the proposed approach is not
technology dependent, and for other languages, it can be
implemented on any other platform.

.e evaluation was performed by analysing 100 articles
that have been preannotated and are available in our
Lithuanian Language Coreference Corpus [55], in addition
to the transcribed records of medical reception, which we
cannot disclose due to the privacy requirements.

For evaluation, we used precision, recall, and F1 metrics.
Recall R is the ratio of correctly resolved anaphoric ex-
pressions C to the total number of anaphoric expressions T.
Precision P is the ratio of correctly resolved anaphoric
expressions C to the number of resolved anaphoric ex-
pressions F. F1 is a harmonic mean of P and R:

R �
C

T
,

P �
C

F
,

F1 � 2∗
R∗P

R + P
.

(1)

Five experiments were performed with different com-
binations of coreferencing algorithms presented in Section 3.
.e results of the experiments are presented in Table 3.

Note the following threats to validity of our results:

(i) .e database of public persons must be constantly
updated as new information becomes available.
Otherwise, recall will get noticeably lower when
annotating newer texts.

(ii) In the case where plural pronouns and nouns are
used, they are difficult to be identified because of
many variations possible that often ignore gram-
matical compatibility rules.

Linking the named entity to the position held taking into
account the date of the publication of the text is limited
considering that the text might be published today but

written about things that happened in the past. .ere are no
tools, which can identify the timeframe of a certain part of
the text.

5. Conclusion

Medical entity recognition and coreferencing are difficult
tasks in Lithuanian natural language processing (NLP). We
proposed the coreference resolution approach for the
Lithuanian language. .e coreference resolution algorithm
depends on morphological and named entity recognition
(NER) annotations and preexisting databases. Due to the
proposed approach being detached from specific imple-
mentation and rules being formalized, it would not be
difficult to adapt it for grammatically similar languages. Our
novelty is the ability to process coreferences with minimal
linguistic resources, which are very important to consider in
linguistic applications for under-resourced and endangered
languages. While the proposed method provides encour-
aging results, when analysing transcribed medical records
and other corpora, and they are comparable to the results
achieved by other authors applying different resolution
approaches on other languages, it has certain limitations: it is
domain specific and is able to resolve only a subset of
coreference types, while the relatively small dataset was used
for experiments. Nevertheless, we hope that our method can
contribute to the sustainable development of the NLP-
powered online healthcare services in Lithuania.
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[51] L. Kučová and Z. Žabokrtský, “Anaphora in Czech: large data
and experiments with automatic anaphora resolution,” in
Text, Speech and Dialogue, pp. 93–98, Springer, Berlin,
Germany, 2005.

[52] G. L. Nguy, V. Novák, and Z. Zabokrtský, “Comparison of
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Influenced by poor radio frequency field uniformity and gradient-driven eddy currents, intensity inhomogeneity (or bias field)
and noise appear in brain magnetic resonance (MR) image. However, some traditional fuzzy c-means clustering algorithms with
local spatial constraints often cannot obtain satisfactory segmentation performance. /erefore, an objective function based on
spatial coherence for brain MR image segmentation and intensity inhomogeneity correction simultaneously is constructed in this
paper. First, a novel similarity measure including local neighboring information is designed to improve the separability ofMR data
in Gaussian kernel mapping space without image smoothing, and the similarity measure incorporates the spatial distance and
grayscale difference between cluster centroid and its neighborhood pixels. Second, the objective function with an adaptive
nonlocal spatial regularization term is drawn upon to compensate the drawback of the local spatial information. Meanwhile, bias
field information is also embedded into the similarity measure of clustering algorithm. From the comparison between the
proposed algorithm and the state-of-the-art methods, our model is more robust to noise in the brain magnetic resonance image,
and the bias field is also effectively estimated.

1. Introduction

Magnetic resonance image has been widely used in di-
agnostic imaging for general check-up in clinical applica-
tion, especially the detection and diagnosis of brain diseases.
/e volume change for brain tissues often indicates various
diseases [1], such as brain tumor, leukoencephalopathy,
olivopontocerebellar atrophy (OPCA), etc. /erefore, brain
tissue segmentation of MR image has become a very im-
portant medical treatment step. However, brain MR image
has some lacks such as noise, intensity inhomogeneity, low
contrast, the partial volume effect, and so on, which brings
serious obstacles to segment the brain MR images. To this
end, the multitudinous brain MR image segmentation
methods have been put forward by using the theory of fuzzy
set, random field, and level set.

Currently, there are two popular methods-based models
for medical image segmentation: the random field theory

[2–4] and the fuzzy c-means (FCM) algorithm. Random field
is density-based unsupervised method where it finds the
maximum likelihood estimate of the parameters from a
given dataset. However random field algorithm has the
disadvantages in high complexity and slow convergence and
will drop into local optimization. FCM clustering is another
efficient method used in image segmentation because it has
robust characteristics for ambiguity and can retain much
more information than random field algorithm [5].
/erefore, FCM has been widely applied in different types of
image segmentation [6–8]. /e neighboring pixels in an
image are highly correlated, i.e., the pixels in the immediate
neighborhood possess nearly the same feature data.
/erefore, the spatial relationship of neighboring pixels is an
important characteristic that can be of great aid in imaging
segmentation. However, the conventional FCM algorithm
does not fully utilize this spatial information. Pedrycz and
Waletzky [9] took advantage of the available classified
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information and actively applied it as part of their optimi-
zation procedures. Szilagyi et al. [10] proposed the enhanced
FCM (EnFCM) algorithm to accelerate the image segmen-
tation process in which the pixels of an image are replaced the
gray-level histogram and the statistical number and calcula-
tion are much smaller than FCM. In order to further reduce
the computation time and improve the parameter inflexibility,
Cai et al. [11] presented a fast generalized FCM (FGFCM)
method, and FGFCM introduced a flexible locality factor Sij
incorporating simultaneously both the gray-level difference
and spatial distance in a local window. Ji et al. [12] proposed a
robust spatially constrained fuzzy c-means (RSCFCM) algo-
rithm for brain MR image segmentation. First, a spatial factor
is constructed based on the posterior probabilities and prior
probabilities and takes the spatial direction into account.
Second, the negative log-posterior is utilized as dissimilarity
function by taking the prior probabilities into account.

FCM with spatial constraint and its variants greatly im-
proved the antinoise performance compared with FCM, but
when the noise is very serious in the image, the performance
of the algorithmmay be worse./erefore, the nonlocal spatial
information was often used and incorporated into the dis-
tance metric of FCM in recent years [13–16]. Zhao [14]
brought in a nonlocal adaptive regularization term in its
energy function, and the control factor is adaptive determined
to adjust the balance of the objective function. Feng et al. [15]
proposed a FCM method with specific nonlocal information
for the segmentation of synthetic aperture radar (SAR) image.
Ma et al. [16] proposed a modified FGFCM approach by
introducing nonlocal constraint term, and local distance
metric and nonlocal distance metric are used, respectively, in
its objective function. By introducing nonlocal constraint
term, the features of image can be usedmore comprehensively
and effectively, and the robustness to noise of FCM-based
algorithm is significantly improved. However, there generally
exists intensity inhomogeneity in brain MR images. /ere-
fore, it is necessary to further design relevant algorithms to
correct the intensity inhomogeneity. Sled et al. designed a set
of software package for the estimation of bias field [17], and
the characteristic of the method is nonparametric non-
uniform intensity normalization or N3 for short; the distri-
bution of the true tissue intensities can be achieved by an
iterative method. Tustison et al. [18] improved the N3 al-
gorithm based on modified B-spline approximation and hi-
erarchical optimization algorithm (called N4ITK); N4ITK can
also automatically perform without the priori knowledge.
Liew and Hong Yan [19] introduced a spatial constraint to a
fuzzy cluster method where the inhomogeneity field was
modeled by a B-spline surface. /e spatial pixel connectivity
was implemented by a dissimilarity index, which enforced the
connectivity constraint only in the homogeneous areas. Ji
et al. proposed the modified possibilistic FCM (MPFCM)
algorithm for bias field [20], generalized rough fuzzy c-means
(GRFCM) algorithm, [21] and fuzzy local Gaussian mixture
model (FLGMM) for brain MR image segmentation [22],
respectively. /ose methods can estimate bias field and
segment the MR images simultaneously.

In this paper, a brain tissue classification and intensity
inhomogeneity correction model of MR image based on

spatially coherent FCM with nonlocal constraints is proposed.
In this model, firstly, both the local constraint term and
nonlocal regularization term about brain MR image are in-
corporated into the objective function, and an adaptive control
factor is used tomaintain the balance between them. Secondly,
the similarity measure is designed in Gaussian kernel mapping
space without image filtering, and the detail information and
the edge of the image can be preserved well. Meanwhile, bias
field model is also embedded into the objective function of
clustering algorithm. /erefore, after the intensity in-
homogeneity of the MR image is corrected, the segmentation
accuracy is improved significantly. Experiments demonstrate
that this algorithm can not only effectively estimate the bias
field of MR image but also has stronger antinoise ability.

2. Preliminary Theory

2.1. Fuzzy Clustering Algorithms. Let X � x1, x2, . . . , xN􏼈 􏼉

denote an image with N pixels, where xk is gray value of the
kth pixel in the image. FCM clustering aims at partitioning X

into c clusters by minimizing the following objective function:

JFCM � 􏽘
c

i�1
􏽘

N

k�1
u

m
ik xk − vi

����
����
2
, (1)

where vi denotes the ith cluster prototype, uik denotes the
membership degree of xk belonging to ith cluster and fol-
lows 􏽐

c
i�1uik � 1, c denotes the number of centers, ‖ · ‖

denotes the Euclidean norm, and the parameter m is a
weight exponent on each fuzzy membership that determines
the amount of fuzziness of the resulting partition.

Ahmed et al. proposed a modification to FCM objective
function by introducing a term that allows the labeling of a
pixel to be influenced by the labels in its immediate
neighborhood [23]./is effect acts as a regularizer and biases
the solution toward piecewise homogeneous labeling. It
proved useful in segmenting images corrupted by noise. /e
modified objective function is given by

JBCFCM � 􏽘
c
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􏽘
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ik xk − vi

����
����
2

+
α

NR
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􏽘
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u

m
ik 􏽘

r∈Nk

xr − vi

����
����
2
,

(2)

where xr represents the neighbor voxels of xk and NR and
Nk stand for the number of voxels in the neighborhood of
the kth voxel. /e parameter α controls the intensity of the
neighboring effect. One disadvantage of BCFCM is that the
neighborhood labeling is computed in each iteration step,
something that is very time consuming.

2.2. Spatially Coherent Fuzzy c-Means Clustering (SCFCM).
In view of some drawbacks of standard FCM algorithm,
a modified scheme is proposed by Despotović et al. [24].
/e similarity measure Dik � ‖xk − vi‖

2 is replaced by D∗ik �

(1− Sik)‖xk − vi‖
2 introducing a weight factor Sik, and the

objective function is

JSCFCM � 􏽘
c

i�1
􏽘

N

k�1
u

m
ik 1− Sik( 􏼁 xk − vi

����
����
2
, (3)
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where Sik is a weight factor including both local spatial in-
formation and grayscale difference and is designed as follows:

Sik �
􏽐r∈Ωk

uirakrd
−1
kr

􏽐r∈Ωk
akrd
−1
kr

, (4)

whereΩk denotes a local neighboring window around xk, uir

denotes the membership degree of neighborhood pixels
belonging to the ith cluster, akr � |xk − xr| is the absolute
intensity difference between the study pixel and its neighbor,

dkr �

������������������

(pk −pr)
2 + (qk − qr)

2
􏽱

is the Manhattan distance
between the coordinates of pixel xk and xr, and (pk, qk) and
(pr, qr) denote the coordinates xk and xr in the image,
respectively. By minimizing equation (3) by Lagrangian
multiplier approach, uik and vi can be derived as shown in
the following equation:

uik �
1− Sik( 􏼁 xk − vi

����
����
2

􏼒 􏼓
−1/(m−1)

􏽐
c
l�1 1− Slk( 􏼁 xk − vl

����
����
2

􏼒 􏼓
−1/(m−1)

,

vi �
􏽐
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m
ikxk

􏽐
N
k�1u

m
ik

.

(5)

Compared with the FCM, this algorithm has two ad-
vantages: firstly, it enhances the robustness to all kinds of
noise. /e constraint item of neighborhood information is
included into the similarity measure, so as to effectively
utilize the local information of the image. Secondly, it
considers anisotropic neighborhood information, and more
details and edges information can be preserved. However,
the influence of bias field for MR images in segmentation
algorithm is not mentioned.

2.3. Coherent Local Intensity Clustering Model. Bias field of
the MR image usually embodies slowly and smoothly
varying for the pixel grayscale of the local region across an
image. Meanwhile, in a neighboring local window of the
image, bias field can be approximately considered as a
constant. /erefore, the most popular model can be de-
scribed in equation (6) [25]; let Y denote the observed image,
b denote the unknown bias field, X denote the true image to
be restored, and n denote the additive noise.

Y � bX + n. (6)

In the observed image, noise n is often assumed to obey
Gaussian distribution with zero mean and variance σ2n, and
the gray level value of the true image approximately takes a
constant in a local window. /erefore, the gray level of the
observed image can be approximated to obey Gaussian
distribution withmean bX and variance σ2n. In coherent local
intensity clustering (CLIC) model [26], a novel metric in-
troducing spatially coherent local intensity convergence
criterion for bias field estimation and image segmentation
simultaneously is proposed. A Gaussian kernel weight pa-
rameter K(r− k) is introduced into the similarity measure of
each pixel gray level xk and its neighbor pixels xr, and the
objective function of CLIC is

JCLIC � 􏽘
c

i�1
􏽘

N

k�1
u

m
ik 􏽘

r∈Ωk

K(r− k) xk − brvi

����
����
2
, (7)

where brvi is the clustering prototype with bias field in the
selective region Ωk, K(r− k) is the weight of a truncated
Gaussian kernel allocated for the intensity xk, and the weight
parameter can be defined as

K(y) �

1
a

e
−|y|2/2σ2

, for |y|≤ ρ,

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where σ denotes the standard deviation, a denotes a nor-
malization factor to standardize Gaussian kernel, and ρ
denotes a radius to measure the size of the local region.

In the CLIC model, intensity inhomogeneity of the MR
image can be effectively corrected and can reduce the
misclassification rate, but there are some drawbacks in
CLIC. When computing the distance metric between the
central pixel and its surrounding pixels in a local region, the
model only used the local neighborhood information of the
pixel without considering the global structure information of
the entire image. As a result, the antinoise performance of
this algorithm is unsatisfactory.

3. Proposed Method

/e standard FCM algorithm has the shortcoming of being
sensitive to noise./ough, the modified FCM algorithms are
improved by adding the spatial information, it is difficult to
get a satisfied segmentation result for noise robustness.
/erefore, an improved FCM approach based on CLIC and
SCFCM is proposed; its objective function is constructed
according to the local constraint term and global regulari-
zation term; the similarity measure including local neigh-
boring information is designed in Gaussian kernel mapping
space, and brain tissue classification and intensity in-
homogeneity correction can be realized simultaneously.

3.1. NonlocalWeighted Constraint. In a discrete noisy image
X � x1, x2, . . . , xN􏼈 􏼉, xk is the kth pixel and yk is its nonlocal
weighted average value. /e derivation method of the
nonlocal weighted average can be acquired in [27], and the
mathematical expression of yk is

yk � 􏽘
l∈wu

k

wklxl, (9)

where wu
k indicates a search region of radius u around xk, wkl

denotes nonlocal weight coefficient depending on similarity
measure between xk and its neighboring pixels xl in window
wu

k , and wkl satisfies the constraint conditions 0≤wkl ≤ 1 and
􏽐lwkl � 1. /e weight coefficient wkl is computed as follows:

wkl �
1

Zk

e
− x Nk( )−x Nl( )‖ ‖

2
2,σ /h( 􏼁

, (10)

where x(Nk) and x(Nl) denote the grayscale vectors in the
square neighborhood Nk and Nl of radius s around xk and
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xl, respectively, and ‖x(Nk)− x(Nl)‖
2
2,σ is the weighted

Euclidean distance between x(Nk) and x(Nl); its expression
is defined in equation (11). σ is the same as in equation (8),
and h denotes a control factor to adjust the variation of the
similarity measure wkl.

x Nk( 􏼁−x Nl( 􏼁
����

����
2
2,σ � 􏽘

(2s+1)2

p�1
σp

x
p

Nk( 􏼁−x
p

Nl( 􏼁( 􏼁
2
, (11)

where xp(Nk) is the pth pixel in the grayscale vectors x(Nk)

and σp is defined as follows:

σp
� 􏽘

s

v�max(d,1)

1
(2v + 1)2s

, (12)

where yp � mod(p, (2s + 1)) and zp � floor(p, (2s + 1))+

1, (yp, zp) denote the coordinates of the pth component in a
preselected region and d � max(|yp − s− 1|, |zp − s− 1|).

3.2. Objective Function. In order to correct bias field and
classify the brain tissues simultaneously, the modified ob-
jective function-incorporated local constraint term and
nonlocal regularization term is as follows:

Jm � 􏽘
c

i�1
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m
ik 􏽘

r∈Ωk
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2
􏼣,

(13)

where uik is the membership degree of xk belonging to the
ith cluster, Ωk denotes a local square region of the radius s

around the center xk, bkvi is the ith cluster center in Ωk, yk

denotes the nonlocal weighted average value of xk, Sik de-
notes the weight factor of local neighborhood information in
equation (4), and the definitions of K(r− k) and bk are the
same as equation (7). αk is a trade-off weight factor to adjust
the balance of local neighborhood information and nonlocal
constraints information, and the definition of parameter
αk is

αk �
1

1 + var(x)/(x)2
, (14)

where x denotes the gray level mean of all pixels in the local
region Ωk, and var(x) denotes the variance of pixel gray
values in the same window. /e larger the αk value is, the
smaller the influence of the noise is. /e factor αk can be
obtained adaptively with the change of the local window Ωk

without being given in advance.

Theorem. Assume 􏽐
c
i�1uik � 1, 0≤ uik ≤ 1, and m> 1. On the

basis of Lagrange multiplier approach, equation (13) is
minimized with respect to uik, vi and bk can be derived as
shown in the following equation:
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ik

􏽐
c
i�1􏽐r∈Ωk

Kv2i 1− αkSik( 􏼁um
ik

.

(15)

Proof. According the method of Lagrange multiplier, equa-
tion (13) can be converted to unconstrained optimization
problem:

L uik, vi, bk, λk, ck( 􏼁 � 􏽘

c

i�1
􏽘

N

k�1
u

m
ik 􏽘

r∈Ωk

αkK(r− k)

· 􏼢 1− Sik( 􏼁 xk − bkvi

����
����
2

+ 1− αk( 􏼁 yk − bkvi

����
����
2
􏼣

+ 􏽘
N

k�1
λk 1− 􏽘

c

i�1
uik

⎡⎣ ⎤⎦,

(16)

where λk is the Lagrange multiplier of the constraint con-
dition 􏽐

c
i�1uik � 1, by computing the partial derivatives of

polynomial L in regard to uik and λk, respectively, and set
zL/zuik � 0, zL/zλk � 0, as shown in the following equation:

zL

zuik

� mu
m−1
ik 􏽘

r∈Ωk

K􏼢αk 1− Sik( 􏼁 xk − bkvi

����
����
2

+ 1− αk( 􏼁 yk − bkvi

����
����
2
􏼣− λk � 0,

(17)

zL

zλk

� 1− 􏽘
c

i�1
uik � 0. (18)
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/e following equation can be obtained by mathematical
derivation of equation (17):

uik �
λk

m􏽐r∈Ωk
K αk 1− Sik( 􏼁 xk − bkvi

����
����
2

+ 1− αk( 􏼁 yk − bkvi

����
����
2

􏼔 􏼕

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1/m−1

.

(19)

Substituting equation (19) into equation (17), we obtain
the following equation:

λk

m
􏼠 􏼡

1/m−1

� 􏽘

c

i�1

⎛⎝ 􏽘
r∈Ωk

K􏼢αk 1− Sik( 􏼁 xk − bkvi

����
����
2

+ 1− αk( 􏼁 yk − bkvi

����
����
2
􏼣⎞⎠

−(1/m−1)

.

(20)

And then substituting equation (20) into equation (19),
the following equation can be obtained:

uik �
􏽐r∈Ωk

K αk 1− Sik( 􏼁 xk − bkvi

����
����
2

+ 1− αk( 􏼁 yk − bkvi

����
����
2

􏼔 􏼕
−(1/m−1)

􏽐
c
l�1 􏽐r∈Ωk

K αk 1− Slk( 􏼁 xk − bkvl

����
����
2

+ 1− αk( 􏼁 yk − bkvl

����
����
2

􏼔 􏼕􏼒 􏼓
−(1/m−1)

. (21)

Similarly, set zL/zvi � 0, that is

zL

zvi

� 􏽘
N

k�1
u

m
ik

⎛⎝ 􏽘
r∈Ωk

Kbk􏼔αk 1− Sik( 􏼁 xk − bkvi( 􏼁

+ 1− αk( 􏼁 yk − bkvi( 􏼁􏼕⎞⎠ � 0.

(22)

/e following equation can be obtained from equation
(22) by mathematical derivation:

vi �
􏽐

N
k�1􏽐r∈Ωk

Kbk αk 1− Sik( 􏼁xk + 1− αk( 􏼁yk􏼂 􏼃um
ik

􏽐
N
k�1􏽐r∈Ωk

Kb2k 1− αkSik( 􏼁um
ik

. (23)

We adopt the same mathematical derivation process to
estimate bias field bk, for fixed uik and λk, and computing the
partial derivative of L with respect to bk, set zL/zbk � 0, that
is

zL

zbk

� 􏽘
c

i�1
u

m
ik

⎛⎝ 􏽘
r∈Ωk

K􏼔αk 1− Sik( 􏼁 vixk − v
2
i bk􏼐 􏼑

+ 1− αk( 􏼁 viyk − v
2
i bk􏼐 􏼑􏼕⎞⎠ � 0,

(24)

bk can be obtained from equation (24).

bk �
􏽐

c
i�1􏽐r∈Ωk

Kvi αk 1− Sik( 􏼁xk + 1− αk( 􏼁yk􏼂 􏼃um
ik

􏽐
c
i�1􏽐r∈Ωk

Kv2i 1− αkSik( 􏼁um
ik

. (25)

/e theorem proves to be completed.
Finally, the framework of the proposed algorithm can be

summarized in Table 1. □

4. Experimental Results and Analysis

In this section, several classical algorithms for intensity
inhomogeneity correction and brain image segmentation
are selected as the reference for comparison; bias field

estimation and antinoise performance analysis for the brain
MR images are the main experimental contents. For the
experiments in the following sections, the related parameter
values are fuzzy exponential m � 2, the stop criterion
ε � 0.001, 3 × 3 neighborhood window, and the radius u �

10 of the search window.

4.1. Bias Field Correction

4.1.1. MR Image Database. Intensity inhomogeneity is one
of the problems in interfering brain MR image segmenta-
tion; in the experiments of bias field correction, the dataset is
from a simulated brain database (SBD) : BrainWeb [28] in
which the brain MR images have three types: T1-, T2-, and
proton density- (PD-) weighted 3D data volumes. In Fig-
ure 1, the T1-weighted normal brain MR images with 181 ×

217 × 181 cubic voxels, 1mm slice thickness, 40% intensity
nonuniformity, and 3% noise are used to test; all the skulls
and blood vessels are already stripped ahead of image
processing, and the image is segmented into four regions:
white matter (WM), gray matter (GM), cerebrospinal fluid
(CSF), and background.

4.1.2. Experimental Results. Figure 1 shows the results of bias
field correction and segmentation for three brain MR images.
Figure 1(a) shows the brain slice images from three different
directions: transaxial mode, sagittal mode, and coronal mode.
Figure 1(b) shows the estimated bias field, Figure 1(c) shows
the final segmentation results, and Figure 1(d) shows the
corrected images after removed bias field. Figure 2 shows the
histogram comparison of original MR image and bias cor-
rected images corresponding to three images in Figure 2.
From Figures 1 and 2, three brain tissues are more homo-
geneous after bias field correction; each brain tissue ap-
proximately obeys Gaussian distribution with different mean
and variance, and WM, GM, and CSF can be clearly dis-
tinguished. In addition, the histogram distribution of cor-
rected MR image is more reasonable, from which we can see
three approximative peaks representing three brain tissues.
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To further validate the performance of bias field cor-
rection, three bias correction algorithms including BCFCM
[23], CLIC [26], and N4ITK [18] are chosen as comparative
methods, as shown in Figure 3. Figure 3(a) is a T1-weighted
transaxial slice of normal brain MR image with 40% spatial
inhomogeneity; its slice thickness is 1mm and the noise level
is about 2%. Figures 3(b) and 3(c) are the obtained bias
inhomogeneity and the amendatory MR images by BCFCM,
CLIC, N4ITK, and our method, respectively. Figure (4)
shows the histograms of the image with spatial in-
homogeneity and the corrected images in Figure 3. It is can
be seen that the distribution of pixel gray level of blue line is
more accurate than red dotted line; it indicates that all the

algorithms of bias field estimation are more or less effective.
However, our method is more reasonable than other three
algorithms from Figure 4. Because the histogram normally
should have three peaks corresponding to WM, GM, and
CSF; the peak value of CSF is minimal according to tissue
volume, and the gray level’s mean and variance of each tissue
are also obviously different.

4.2. Antinoise Performance. In the third experiment, first of
all, the 104th transaxial slice of simulated T1-weighted brain
MR image with 1mm slice thickness and 7% Gaussian white
noise is used to analyze the robustness to the noise, and we

Table 1: /e basic flow of image segmentation and bias field estimation.

Step 1. Set the number of cluster c, the exponent of fuzziness m, stopping condition of the iteration ε> 0, the radius s of local neighborhood
window, and the radius u of search window in equation (11).
Step 2. Set the iteration initial value t � 0 and initialize bias field b0 � 1 and the center of cluster V1 � v11, v12, . . . , v1c􏼈 􏼉.
Step 3. Calculate nonlocal weight coefficient wt

kl in equation (8) and then obtain the nonlocal weighted value yt
k by equation (7).

Step 4. Update the membership degree ut
ik by equation (14).

Step 5. Update the center of clustering vt
i by equation (14).

Step 6. Calculate the estimated bias field bt
k by equation (15).

Step 7. If satisfying max‖Vt+1 −Vt‖< ε, then terminate iteration; otherwise, go to step 3 and set t � t + 1.

(a) (b) (c) (d)

Figure 1: Intensity inhomogeneity correction of brain MR images: (a) original MR images, (b) the estimated bias field, (c) segmentation
results, and (d) the corrected MR images.
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select four algorithms: standard FCM, BCFCM [23], CLIC
[26], and SCFCM [24] as the compared algorithms. /e
segmentation results are exhibited in Figure 5; Figure 5(a) is
a 2D transaxial slice image corrupted by 7% Gaussian noise,

and the corresponding classification results by FCM,
BCFCM, CLIC, SCFCM, and the proposed method are
shown in the Figures 5(b)–5(f), respectively. /e segmen-
tation results of FCM, BCFCM, and CLIC are very poor
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Corrected image
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(b)
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(c)

Figure 2: /e histogram comparison of original images and corrected images: (a) transaxial slice image, (b) sagittal slice image, and (c)
coronal slice image.

(a) (b) (c)

Figure 3: /e comparison of bias field estimation by four algorithms: (a) original images, (b) the estimated bias field, and (c) the corrected
images.
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because many pixels are misclassified; the segmentation
result by SCFCM is better than FCM, BCFCM, and CLIC;
however, there are still some noisy points that need to be
removed. It can be observed that the presented method has
more superior segmentation effect than four classical al-
gorithms and can effectively eliminate the influence of the
noise. Furthermore, the ability of detail and edge preser-
vation is also compared and analyzed for five algorithms; we
select a local region of the MR image to observe by enlarging
3 times, and the detailed images are presented in Figure 6; it
is clearly seen that Figure 6(f) is most similar subimage with
the ground truth in Figure 6(g), and the vast majority of
image details and edge are completely preserved.

In order to further evaluate and compare the antinoise
ability of aforementioned five fuzzy clustering algorithms,
we choose a brain slice image with 14% additive Gaussian
white noise as the test object, as shown in Figure 7.
Figure 7(a) is the noisy MR image with bias field,
Figures 7(b)–7(f ) are the binary images of CSF, WM, and
GM after the image is segmented by five algorithms, re-
spectively, and Figure 7(g) is the ground truth. It is clearly
seen that the extraction result of each brain tissue of the
proposed algorithm significantly outperformed the other
algorithms and effectually overcame the disadvantageous
defects of intensity inhomogeneity and noise. At the same
time, an objective evaluation index JS (Jaccard similarity)
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Figure 4: /e histogram comparison of original images and corrected images: (a) BCFCM, (b) CLIC, (c) N4ITK, and (d) our method.

(a) (b) (c)

(d) (e) (f) (g)

Figure 5: Segmentation results of the 104th transaxial slice by the five algorithms: (a) the noisy MR images, (b) FCM, (c) BCFCM, (d) CLIC,
(e) SCFCM, (f) our method, and (g) ground truth.
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(a) (b) (c)

(d) (e) (f ) (g)

Figure 6:/e detailed comparison of the enlarged local region of brainMR image: (a) the noisyMR images, (b) FCM, (c) BCFCM, (d) CLIC,
(e) SCFCM, (f) our method, and (g) ground truth.

(a) (b)

(c) (d)

(e) (f )

(g)

Figure 7: Brain tissue classification results of the five methods on the noisy MR image: (a) original MR image, (b) FCM, (c) BCFCM, (d)
CLIC, (e) SCFCM, (f) our method, and (g) ground truth.
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[29] is adopted for comparison and quantitative analysis on
the different level noise, JS is given as

JS S1, S2( 􏼁 �
S1 ∩ S2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

S1 ∪ S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (26)

where S1 represents a set of pixels of the segmented region by
a clustering algorithm, S2 denotes the set of pixels of the
corresponding region acquired from the ground truth, ∩
denotes the intersection operation, and ∪ denotes the union
operation. As a quantitative evaluation index, the values of JS
belong to the interval of [0, 1], and the higher the JS value is,
the better the segmentation performance is. We selected 15
noisy brain MR images with 20% intensity nonuniformity as
the experimental objects and the noise level from 5% to 30%.
/ese images are segmented three regions: WM, GM, and
CSF by FCM, BCFCM, CLIC, SCFCM, and our method,
respectively; JS values comparison results are shown in

Figure 8(a)–8(c). It is clearly shown that the presented
approach has better matching degree with the ground truth
and higher accuracy rate than other four clustering methods.

/en, we evaluate the effect of the search window radius
u and the square neighborhood radius s on the performance
of the proposed method. Here, we test u and s on the sets {4,
6, 8, 10, 12} and {1, 3, 5, 7}, respectively. In this experiment,
the tested images perform 8 independent runs of the al-
gorithm under each pair (u, s), and the noise level is 1% and
3%, respectively. Under each s value, the average JS curve of
the algorithm with the increase of u value is shown in
Figure 9. It can be found from Figure 9 that the algorithm
under s� 3 and u� 10 can obtain satisfying performance on
the noisy images.

In the aforementioned sections, the model is applied in
the synthetic brain MR images. Next, this model is also
applied to the real clinical images with noise. We selected
three normal MR slice images from transaxial, coronal, and
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Figure 8: JS comparisons of the brain tissue segmentation with different noise level by five algorithms: (a) JS values of WM, (b) JS values of
GM, and (c) JS values of CSF.
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Figure 9: JS value under different search window radius u and square neighborhood radius s: (a) curves on the image with 1% noise level and
(b) curves on the image with 3% noise level.
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sagittal views, and these MR images are obtained from the
Whole Brain Atlas clinical MR image database by the
Harvard medical school [30]. Figure 10(a) shows three 2D

T1-weighted brain MR slice images; the left image is a
transaxial slice, the right image is a coronal slice, and the
middle image is a sagittal slice. /e segmentation results of

(a)

(b)

(c)

(d)

(e)

Figure 10: Experimental results on real MR image: (a) three original images, (b) BCFCM, (c) HMRF-EM, (d) SCFCM, and (e) our method.
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brain slice images are given in Figure 10(b)–10(e) by
BCFCM, HMRF-EM, SCFCM, and our method, re-
spectively. From the experimental results, it is obvious that
the proposed method can effectively segment each brain
tissues as well as preserve more detail information of the
original MR image. Furthermore, the experimental results of
brain tissues in real MR images also further prove the ro-
bustness to noise of the proposed method.

5. Conclusion

Brain MR imaging has wide clinical application as an ef-
fective medical imaging diagnostic technique; however, the
real brain MR images often suffer from some interference
such as noise, intensity inhomogeneity, and low contrast.
/erefore, a brain tissue classification and nonuniformity
field correction scheme in MR images based on spatially
coherent FCM with nonlocal constraints is proposed in our
study. /e available information including local adjacent
constraint and nonlocal global information of brain MR
image is fully used in our model, and the similarity measure
is designed in Gaussian kernel mapping space. Furthermore,
the algorithm corrects the bias field of the MR image and
improves its antinoise performance. Several experiments on
the simulated brain MR images and real brain MR images
have demonstrated that the proposed model can effectually
overcome the effects of the noise while estimating the bias
field existing in brain MR images.
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Background. Mathematical models offer the potential to analyze and compare the effectiveness of very different interventions to
prevent future cardiovascular disease.We developed a comprehensiveMarkovmodel to assess the impact of three interventions to
reduce ischemic heart diseases (IHD) and stroke deaths: (i) improvedmedical treatments in acute phase, (ii) secondary prevention
by increasing the uptake of statins, (iii) primary prevention using health promotion to reduce dietary salt consumption.Methods.
We developed and validated a Markov model for the Tunisian population aged 35–94 years old over a 20-year time horizon. We
compared the impact of specific treatments for stroke, lifestyle, and primary prevention on both IHD and stroke deaths. We then
undertook extensive sensitivity analyses using both a probabilistic multivariate approach and simple linear regression (meta-
modeling). Results. +e model forecast a dramatic mortality rise, with 111,134 IHD and stroke deaths (95% CI 106567 to 115048)
predicted in 2025 in Tunisia. +e salt reduction offered the potentially most powerful preventive intervention that might reduce
IHD and stroke deaths by 27% (−30240 [−30580 to −29900]) compared with 1% for medical strategies and 3% for secondary
prevention. +e metamodeling highlighted that the initial development of a minor stroke substantially increased the subsequent
probability of a fatal stroke or IHD death. Conclusions. +e primary prevention of cardiovascular disease via a reduction in dietary
salt consumption appearedmuchmore effective than secondary or tertiary prevention approaches. Our simple but comprehensive
model offers a potentially attractive methodological approach that might now be extended and replicated in other contexts
and populations.

1. Background

Cardiovascular diseases (CVDs) cause nearly one-third of all
deaths worldwide. 80% of these deaths occur in low-income
and middle-income countries. Ischemic heart diseases
(IHD) and stroke account for the greatest proportion of
CVDs [1–3].

+e burden of IHD and stroke is considerable, and they
are the first and second leading causes of death, respectively,

worldwide [4, 5]. +ey accounted for 15.2 million deaths
(15.0 million to 15.6 million) in 2015 [4]. According to the
World Health Organization (WHO), there are 15 million
people worldwide who suffer from stroke each year, among
them, 5 million die and another 5 million are left perma-
nently disabled, causing a heavy burden for the family and
community.

+e burden of stroke will increase significantly over the
next 20 years, particularly in developing countries [6]. +us,
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the analysis of the effectiveness of health promotion in-
terventions is urgently required for appropriate planning to
reduce this burden [7].

Traditional epidemiological study designs cannot ad-
dress these issues; even clinical trials are usually restricted by
inclusion and exclusion criteria and not necessarily gener-
alizable to the entire population [8].

Mathematical modeling overcomes many of these lim-
itations. It plays a crucial role in helping to guide the most
effective and cost-effective ways to achieve the goals of health
promotion, designed and validated to guide health policies
and development strategies at several levels [9, 10].

Briefly, a model is a simplification of a real situation and
can encompass a simple, descriptive tool up to systems of
mathematical equations [11].

+e application of mathematical models in medicine has
proved useful and has become more frequent, especially for
cardiovascular diseases (CVDs) [12–16] and assessing po-
tential impacts of policies or interventions designed to alter
disease trajectories in Tunisia [17, 18].

A commonly used technique is Markov modeling, an ap-
proach that models groups of individuals transitioning across
specified pathways, informed by transition probabilities [18–20].

Due to the frequent uncertainty of the Markov model’s
inputs, sensitivity analyses to assess the robustness of the
model results are strongly recommended by modeling
guidelines. Such uncertainty analyses assess confidence in a
chosen course of action and ascertain the value of collecting
additional information to better inform the decision [21].

Our study aims (i) to describe a comprehensive Markov
model based on both a probabilistic multivariate approach
and simple linear regressionmetamodeling and (ii) using the
model to evaluate the effects of increases in uptake of stroke
treatments lifestyle changes and primary prevention among
the Tunisian population aged 35–94 years old in 2025. We
examined three interventions: (a) improved medical treat-
ments in the acute phase, (b) secondary prevention of stroke
by increasing the prescribing of statins, and (c) primary
prevention aiming to reduce salt intake.

2. Methods

In this study, we describe the development of a Markov IHD
and stroke model.

2.1. Definition of Markov Model. Markov models are a type
mathematical model based on matrix algebra which de-
scribes the transitions a cohort of patients make among a
number of mutually exclusive and exhaustive health states
during a series of short intervals or cycles. In this model, a
patient is always in one of the finite number of health states;
events are modeled as transitions from one state to another
and contribution of utility to overall prognosis depend on
length of time spent in health states [19]. +e components of
a Markov model are shown below (Figure 1):

(i) States: the set of distinct health states under con-
sideration in the model, together with the possible
transitions between them.

(ii) Cycle length: the length of time represented by a
single stage (or cycle) in a Markov process: Markov
models are developed to simulate both short-cycle
and long-term processes (e.g., cardiovascular
diseases).

(iii) Transition probabilities: the matrix of probabilities
of moving between health states from one stage to
the next.

2.2. Process of Mathematical Modeling Based on Markov
Approach. Before starting the data collection and the cal-
culation, we first defined our model by specifying the dif-
ferent states that can be included based on the literature and
expert opinions:

S � S1, S2, . . . , S3􏼈 􏼉, set of states in the process. (1)

Having specified the structure of the model in terms of
the possible transitions between states, we defined the
transition probabilities based on available data.

+e transition probability (TPij) is defined as a condi-
tional probability (Pt(sj/si)) of making a transition (mov-
ing) from state i to state j during a single cycle (t).
Additionally, transition probabilities are stratified by sex and
age groups ag ∈ c1, c2, . . . , cg􏽮 􏽯, where c1, c2, . . . , cg repre-
sents a set of age groups [19, 22].

One of the goals of the Markov model is to study the
potential effects of some health promotion interventions.
We modeled first a baseline scenario and then the in-
tervention scenarios.

For the baseline scenario, we assumed no change will
happen during the period “T” of study (20 years) in either
the present uptake rates of medical therapies or population
level uptakes of specific nutrients.

Based on the model structure in Figure 1, we assume that
we will apply three interventions to study their impact on
mortality in the future (over the 20 years: from t� year 1 to
year 20).

We define a policy Π � (I0, I1, I2, I3) as a set of the
health promotion interventions.

I0 refers the baseline scenario: we assumed no change
will happen during 20 years.
I1: scenario aimed to improve medical treatments in
acute phase.

Healthy
population

Dead

SickTP1,1

TP1,2

TP1,3 TP2,3

TP2,2

Figure 1: Markov diagram states and transition probabilities (each
circle represents a Markov state and arrows indicate transition
probabilities).
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I2: scenario for secondary prevention.
I3: scenario for primary prevention.

Starting by the baseline scenario, the process of the
Markov model is based on the two first steps below:

Step I. Calculate probabilistic transition probabilities
Probabilistic sensitivity analysis aims to fully evaluate the

combination of uncertainty in all model inputs (including
transition probabilities) simultaneously on the robustness of
model results.

+e point estimates in the model can be replaced with
probability distributions, where the mean of the distribution
reflects the best estimate of the parameter.

In this step, each input parameter (TPij) is assigned an
appropriate statistical distribution, and a Monte Carlo
simulation is run multiple times (e.g., 1000). +e iteration is
stopped when the difference of the outcomes is sufficiently
small.

We assume for example that TPs follow the distribution
defined by beta (α, β), where α probability distributions are
defined on the interval [0, 1] parameterized by two positive
shape parameters, denoted by α and β, that appear as ex-
ponents of the random variable and control the shape of the
distribution [23].

Step II. Calculate the number of people in each state for the
baseline scenario

+e next step is to define the number of people in each
state based on the TPs between states and the number of
people in the starting state “healthy people.”

In this stage, we define the number of people in each state
for the baseline scenario (healthy people (NHP), sick (NS),
and deaths (ND)) for all gender and age groups from t� year
1 to yearT, given by the following equations:

NHPt � NHPt−1 × 1− 􏽘TPi,j􏼐 􏼑,

NSt � NSt−1 + NHPt−1 × TP1,2􏼐 􏼑,

NDt � NDt−1 + NHPt−1 × TP1,3􏼐 􏼑 + NSt−1 × TP2,3􏼐 􏼑.

(2)

Another indicator can be calculated based on this model,
that is, life years gained (LY) defined by the following
equation:

LYt � NHPt −NDt. (3)

+e model is then run several times (e.g., 1000 simu-
lations). For each simulation model, parameter values are
randomly drawn from each of the distributions, and the
expected model outcome is recorded. +e 1000 simulations
result in a distribution of expected model outcomes
(e.g., deaths), which reflects the overall parameter un-
certainty in the mode [24].

At the end of the simulation, the mean as well as the
lower bound (LB) and upper bound (UB) of 95% confidence
interval of the inputs and outputs will be calculated, which
correspond to Steps I and II presented in Algorithm 1.

Step III. Calculate the number of people in each state for the
interventions scenarios

For the interventions scenarios, the model required a
base estimate of risk reduction in deaths and the age effect to
calculate policy effectiveness (ΠIi

e ) of each intervention.
+e policy effectiveness is defined by the following

formula:

􏽙

Ii

e

� 1− RRi × ae( 􏼁, (4)

where RRi is the risk reduction associated with the in-
tervention Ii(i�1:3) obtained from previous randomized
controlled trials and meta-analyses to estimate the re-
duction in age-specific deaths and ae represents the age
effects for each intervention risk reduction value.ΠIi

e is then
used to scale the transition probabilities connected to death
states.

In this stage, after recalculating the TPs, we define the
number of people in each state (healthy people (NHPIi), sick
(NSIi), and deaths (NDIi) for all sex and age groups from
t� year 1 to yearT for the interventions scenarios Ii, given
by the following equations:

NHPli
t � NHPli

t−1 × 1−TP1,2 −TP1,3 × 􏽙

Ii

e

⎛⎝ ⎞⎠,

NSli
t � NSli

t−1 + NHPli
t−1 × TP1,2􏼐 􏼑,

NDli
t � NDli

t−1 + NHPli
t−1 × TP1,3􏼐 􏼑 + NSli

t−1 × TP2,3 × 􏽙
Ii

e

⎛⎝ ⎞⎠,

LYli
t � NHPli

t −ND
li
t .

(5)

Step IV. Calculate the final outputs (DPPs and LY)
Finally, we calculate the total number of CVD deaths

(ischemic stroke and IHD deaths) that could be prevented or
postponed (DPPs) and the life years gained (LY) under each
specific scenario (equations (6) and (7)), compared to the
baseline scenario for all sex and age groups from t� year 1 to
yearT for the interventions scenarios Ii.

DPPli
st

� NDli
t −ND

l0
t , (6)

LYli
gt

� LYli
t − LY

l0
t . (7)

Step V. Linear regression metamodeling
Most current modeling studies are limited to the first

four stages and ignore this important step of metamodeling
to analyze which model inputs are most influential in af-
fecting the results. +e goal of metamodeling was thus to
increase the transparency of decision-making analytic
models and better communicate their results.

+is step is based on the application of a simple linear
regression metamodel (LRM) for the optimal
policy (Figure 2) [25].
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+e original motivation for metamodeling was to define
a simpler mathematical relationship between model outputs
and inputs than the actual model.

+e LRM is defined by the following formula:
ND � β0 + βi,jTPi,j + ε, (8)

where ND is the number of deaths (output of the model); β0
(the intercept) is the expected outcomewhen all parameters are
set to zero; TPi,j, the transition probabilities (inputs); βi,j, the

other coefficients, are interpreted relative to a 1-unit change in
each parameter on the original scales; and ε is the residual term.

Furthermore, the absolute value of the coefficients of the
parameters “βi,j” can be used to rank parameters by their
importance: the higher the coefficient is, the more the
variable is important and relevant.

+e algorithm below summarizes the process with three
states that could be generalized to n states depending on the
context to study (Algorithm 1).

Step I. Calculate probabilistic transition probabilities
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg􏽮 􏽯 do
for t � 1.....T do

TPi,j⟵ beta(αi,j, βi,j)

end for
end for

end for
Step II. Calculate the number of people in each state NHP, NS, and ND (Baseline scenario)
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg􏽮 􏽯 do
for t � 1.....T do
NHPt � NHPt−1 × (1− 􏽐TPi,j)

NSt � NSt−1 + (NHPt−1 × TP1,2)

NDt � NDt−1 + (NHPt−1 × TP1,3) + (NSt−1 × TP2,3)

LYt � NHPt + NDt

end for
end for

end for
Step III. Calculate the number of people in each state for the interventions scenarios
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg􏽮 􏽯 do

for all intervention Ii ∈ Π � (I1, . . . , I3) do
ΠIi

e � 1− (RRi × ae) where RRIi
is the intervention risk reduction value and ae its age effects

for t � 1 . . . T

NHPli
t � NHPli

t−1 × (1−TP1,2 −TP1,3 ×ΠIi
e )

NSli
t � NSli

t−1 + (NHPli
t−1 × TP1,2)

NDli
t � NDli

t−1 + (NHPli
t−1 × TP1,3) + (NSli

t−1 × TP2,3 × ΠIi
e )

LYli
t � NHPli

t −ND
li
t

end for
end for
end for

end for
Step IV. Calculate the final outputs (DPPs and LY)
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg􏽮 􏽯 do
for all intervention Ii ∈ Π � (I1, . . . , I3) do
DPPli

st
� 􏽐

T
1 ND

li
t −ND

l0
t

LYli
gt

� 􏽐
T
1 LY

li
t − LY

l0
t end for

end for
end for

end for
Step V. Linear regression metamodeling
Calculate the βi,j coefficients of the parameters
for all k ∈ 1Male, 2 Female{ } do
for all age groups ag ∈ c1, c2, . . . , cg􏽮 􏽯 do
Solve the equation ND � β0 + βi,jTPi,j + ε

end for
end for

ALGORITHM 1: Comprehensive algorithm of the Markov model and of sensitivity analysis.
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2.3. Case Study. +e algorithm introduced above has been
implemented using R (Version R.3.2.0.) software and ap-
plied on Tunisian data. +e source codes are available from
the authors upon request.

Our model predicts both IHD and stroke deaths in 2025
among the Tunisian population aged 35–94 years old, both
men and women, and compares the impact of specific
treatments for stroke, lifestyle changes, and primary
prevention.

2.4. Model Structure. Data were integrated and analyzed
using a closed cohort model based on a Markov approach,
with transition probabilities starting from population free of
ischemic stroke and moving to health states reflecting the
natural history of ischemic stroke [26, 27]. +erefore, the
starting states are defined by the size of the population and
the number of strokes occurring within this population. +e
number of persons moving from the starting states to the
stroke and death states is estimated by the transition
probabilities (Table 9 in the appendix in the supplementary
materials).

+ere are two absorbing states: IHD and stroke deaths
and non-IHD and stroke deaths as competing risks for
mortality. IHD and stroke have several risk factors in
common; increased salt intake is associated with hyper-
tension which is one of the major risk factors for both stroke
and IHD. +erefore, any policy aimed at decreasing pop-
ulation level’s intake of salt will reduce the risk of both
diseases [28].

Potential overlaps between the healthy, minor, major
stroke, and deaths are managed by calculating the condi-
tional probabilities of membership. A key element of the
model is the calculation of the transition probabilities (TPs),
particularly those related to stroke and IHD mortality
(Figure 3). +e TP calculations are detailed in Table 10 in the
Appendix in the supplementary materials.

2.5. Baseline Scenario. In the baseline scenario, we assumed
there would be no change over the 20-year model period in
the present uptake rates of acute phase medical treatments
(thrombolysis, aspirin, and stroke unit) or treatments for
secondary prevention following stroke (aspirin, statin, an-
ticoagulants, blood pressure control, and smoking cessation)
or treatment and policies for primary prevention (blood

pressure control, glucose control, lipid lowering, salt uptake,
and smoking cessation).

2.6. Prevention Scenarios. In this paper we evaluated the
following three scenarios:

(1) I1: the first scenario aimed to improve medical
treatments in the acute phase: increasing throm-
bolysis prescribing from 0% to 50% and hospitali-
zation in stroke units from 10% to 100% in Tunisia.

(2) I2: the second scenario aimed to act on medical
treatments after a stroke: increasing the prescribing
of statins from 11% to 100% (secondary prevention).

(3) I3: the third scenario aimed to reduce the con-
sumption of salt by 30%, from 14 grams to 9 grams
per day (primary prevention).

Total policy refers to the combined effects of all the three
previous strategies: acute treatment + secondary pre-
vention + primary prevention.

2.7. Modeling Policy Effectiveness and Its Impact in Mortality.
+e model applies the relative risk reduction (RRR), as
mentioned in the algorithm above, quantified for each in-
tervention scenario in previous randomized controlled trials
and meta-analyses based on international studies (data are
detailed in the Appendix in the supplementary materials
(Table 8)).

2.8. Data Sources. Published and unpublished data were
identified by extensive searches, complemented with specif-
ically designed surveys. Data items included (i) number of
stroke patients (minor and major), (ii) uptake of specific
medical and surgical treatments, (iii) population data in the
initial study year (2005) and (iv) mortality data (after one year
(data in 2006) and after 5 years (data in 2010)). Data sources
are detailed in Appendixin the supplementary materials.

2.9. Model Outputs. +e outputs of this model are the
prediction of stroke and IHD deaths prevented or postponed
(DPPs) and the life years gained (LY) among the Tunisian
population aged 35–94 years old starting from 2005 over a
twenty-year time period(to 2025) with and without possible
interventions to reduce this mortality.

We modeled all the intervention scenarios to calculate
the total number of CVD deaths (ischemic stroke and
IHD deaths) that may be prevented or postponed and the
LY for each specific scenario compared to the baseline
scenario.

3. Results

3.1. Baseline Scenario. In the baseline scenario, the model
forecast 111140 [95% CI 106570 to 115050] IHD and is-
chemic stroke deaths for people aged 35–94 years between
2005 and 2025, including 68890 [95% CI 65730 to 72350]
among men and 42250 [95% CI 38840 to 44600] among
women.

Real life Outputs (e.g.
deaths (ND))

Inputs (TPij)

LRM:
ND = β0 + βij TPij + ε

Figure 2: Simple linear regression metamodel (LRM) to sum-
marize the relationship between model inputs and outputs.
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+emodel estimated that the acute stroke treatment and
secondary prevention following stroke would, respectively,
prevent 230 [95% CI 200 to 260] deaths due to stroke and
IHD and 1920 [95% CI 1830 to 2000] in 2025, whilst primary
prevention could prevent 20330 [95% CI 20050 to 20610]
cumulative deaths due to stroke and IHD in 2025.

In terms of life years, 150 [95% CI 130 to 180] and 2390
[95% CI 2300 to 2490] would be gained in 2025 by acute
stroke treatment and secondary prevention, respectively,
whereas for primary prevention (blood pressure control,
glucose control, lipid lowering, and smoking cessation),
14590 [95% CI 14350 to 14820] life years would be gained in
2025 (Table 1).

3.2. Scenario Projections

3.2.1. Improvement on Acute Stroke Treatment. If we adopt a
strategy to increase thrombolysis uptake from 0% to 50%
and stroke units use from 10% to 100%, 600 [95% CI 550 to
650] fewer deaths could be achieved by 2025 (Table 2).

In terms of life years, 370 [95% CI 330 to 410] would be
gained in 2025 by increasing thrombolysis uptake (Figure 4).

3.2.2. Improvement on Secondary Prevention. If the uptake
of statins for secondary prevention following stroke could be
increased from 11% to 100%, 3300 [95% CI 3190 to 3410]
fewer deaths could be avoided by 2025 (Table 2).

In terms of life years, 4120 [95% CI 4000 to 4250] would
be gained in 2025 (Figure 4).

3.2.3. Food Policies. If the Tunisian government imple-
mented a strategy recommended by the WHO to reduce the
daily consumption of salt by 30 % (from 14 g/day to 9 g/day),
30240 [95% CI 29900 to 30580] deaths could be avoided by
this scenario in 2025 (Table 2). +is results in 20630 [95% CI
20350 to 20910] life year gain by 2025 (Figure 4).

3.3. Linear Regression Metamodeling of the Optimal Policy.
+e table below shows the results of linear regressing pa-
rameters on the stroke and IHD deaths prevented or

postponed (DPPs) by the salt reduction intervention. +e R2

is 0.8999, suggesting that 89. 99% of the variance in the
model outcomes is explained by our model (Table 3).

Figure 5 shows the five first important parameters based
on the absolute value of the coefficients of the parameters. In
our case study, the uncertainty of the probability of minor
stroke in the first year has the greatest impact on the stroke
and IHD deaths estimates associated with salt reduction,
followed by the probability of the stroke-free population to
die from stroke and IHD causes in the year 1 and the
probability of recurrent stroke in ischemic stroke patients
after one year. Although the main objective of the meta-
regression is to identify the most important parameters of
the model, it could also serve to give a rough idea of the size
of the effect of each parameter. We know that for each unit
increase in the independent variable, our outcome should
increase by 􏽢I

2 units. For example, the probability for the
stroke-free population to have first stroke in the year 1 has
an absolute coefficient of 646.35; this means that for each
10% risk increase in this probability, strokes and IHD will
increase by 65 IHD and stroke deaths. However, this should
be interpreted with caution since the meta-analysis re-
gression model assumes a linear relationship between
outcomes and inputs which is not the case in a Markov
model (Figure 5).

4. Discussion

In this study, we have developed a simple but comprehensive
Markov model and used it to identify key factors that predict
mortality from stroke and IHD in Tunisia in the future, as
well as the potential impacts of some medical and health
policies.

Different mathematical models have been highly used in
medical decision making [19, 29–32], but the technique of
metamodeling is less developed inmedicine. It has been used
to identify the importance of variables that can justify the
best medical decisions among pregnant women with deep
vein thrombosis [33]. Additionally, linear regression met-
amodels have also been used in some epidemiological
studies [25, 34].

TP4,4

TP2,4

TP1,1 TP1,2

TP1,5

TP1,6TP1,6

TP1,3

TP3,3

TP2,5

TP2,3
TP2,6 TP3,5

TP3,6

TP4,6

TP4,5
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stroke and

TIA
Minor

stroke and
TIA
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stroke

Nonstroke
and IHD

deaths

Stroke and
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Figure 3: Stroke model structure. TIA: transient ischemic attack; IHD: ischemic heart diseases.
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+is analysis is the first modeling study of stroke and
IHD mortality in Tunisia, based on a rigorous and com-
prehensive modeling approach consisting of three stages:

(i) Apply the Markov model in medical and strategic
decision making.

(ii) Provide a probabilistic sensitivity analysis.
(iii) Use a linear regression metamodeling for the op-

timal policy.

+is model has several strengths. First it requires mul-
tiple epidemiological national data on ischemic stroke and
demographics. In general, the data used in the model were of
good quality. However, some assumptions were necessary to
fill gaps in the missing information. We made transparent

assumptions with clear justification (see Appendix in the
supplementary materials).

Another advantage characterizing our approach and
differentiating it from the univariate traditional method of
deterministic sensitivity analysis is that it allows varying all
the parameters of the model simultaneously and thus ex-
ploring the whole parameter space. +e use of only one-way
sensitivity analyses is limited compared with multiway
analyses [35].

Furthermore, to increase the transparency of decision-
making analytic models, we have used metamodeling in this
study by applying a simpler mathematical relationship be-
tween model outputs and inputs to analyze which are the
most influential inputs on the output.

Our metamodeling approach summarizes the results of
the model studied in a transparent way and reveals its
important characteristics.

+e intercept of the regression result is the expected
outcome when all parameters are set to zero. +e other
coefficients are interpreted relative to a 1-unit change in each
parameter on the original scales. For example, in our case,
changing the risk of the first minor stroke in the first year
from the actual value to 1 increases the number of stroke and
IHD deaths by 646 deaths. In addition, the regression co-
efficients describe the relative importance of the uncertainty
in each parameter. And the use of the linear metamodeling
regression method can overcome the limitations of other
traditional statistical methods [36].

In addition, models often ignore the interaction effect
between the input parameters of a model when defining the
results. However, in our study, the use of conditional
probabilities allows us to take into account interactions in
our algorithm.

We also analyzed, in parallel of the deaths prevented or
postponed (DPPs), the life years gained according to the
different scenarios. +us, our approach allows interpreting
two key indicators in epidemiology via a rigorous and
comprehensive mathematical algorithm.

Nevertheless this modeling approach has also some
limitations; in fact, a major limitation of our work is that the

Table 1: Life years and deaths due to stroke and IHD estimations in 2025 keeping the same practices of 2005 by gender.

Life years [95% CI] Stroke and IHD deaths [95% CI]
Men
Acute stroke treatment 80 [70 to 100] −140 [−170 to −120]
Secondary prevention following stroke 1500 [1420 to 1580] −1170 [−1240 to −1110]
Primary prevention 12180 [11960 to 12400] −16760 [−17020 to −16510]
Policy total∗ 6830 [6700 to 6990] −8530 [−8710 to −8340]
Women
Acute stroke treatment 60 [50 to 80] −80 [−100 to −70]
Secondary prevention following stroke 860 [800 to 920] −720 [−770 to −670]
Primary prevention 2410 [2310 to 2510] −3570 [−3690 to −3450]
Policy total∗ 3730 [3610 to 3850] −4860 [−5000 to −4720]
Both
Acute stroke treatment 150 [130 to 1804] −230 [−260 to −200]
Secondary prevention following stroke 2390 [2300 to 2490] −1920 [−2000 to −1830]
Primary prevention 14590 [14350 to 14820] −20330 [−20610 to −20050]
Policy total∗ 10560 [10360 to 10770] −13380 [−13610 to −13160]
∗Total policy refers to the combined effects of all the three previous strategies: acute treatment + secondary prevention + primary prevention.

Table 2: Life years and deaths due to stroke and IHD by in-
corporating strategies in 2025 by gender.

Stroke and IHD deaths [95%
CI]

Men
Acute stroke treatment −350 [−390 to −310]
Secondary prevention following
stroke −2060 [−2150 to −1970]

Primary prevention −24500 [−24810 to −24200]
Policy total −23940 [−24240 to −23640]
Women
Acute stroke treatment −220 [−250 to −190]
Secondary prevention following
stroke −1240 [−1310 to −1170]

Primary prevention −10630 [−10830 to −10430]
Policy total −17050 [−17300 to −16800]
Both
Acute stroke treatment −600 [−650 to −550]
Secondary prevention following
stroke −3300 [−3410 to −3190]

Primary prevention −30240 [−30580 to −29900]
Policy total∗ −40990 [−41390 to −40600]
∗Total policy refers to the combined effects of all the three previous
strategies: acute treatment + secondary prevention + primary prevention.
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model is a closed cohort, and demographic changes were not
considered.

Linear regression is the metamodeling approach most
widely used bymany researchers for its simplicity and ease of
use. +us, our linear approximation of all input parameters
can be considered as a limit, as state-transition models are
nonlinear in general. In all metamodeling approaches, the
loss of some information is always inevitable [25].

Another limitation of our study is not to consider in the
model the costs of the strategies.

In terms of public health, the present modeling study
focuses on the future impact of ischemic stroke treatment
scenarios and population-level policy interventions on
ischemic stroke and IHD deaths and life years gained in
Tunisia. +e model forecast a dramatic rise in the total
cumulative number of IHD and Stroke deaths: by 2025,

Women
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Both

15000
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5000

0
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fe
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Primary
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Policy total

Strategies

Figure 4: Life years estimations by incorporating strategies by gender in 2025.

Table 3: Regression coefficients from metamodeling on the stroke and IHD deaths by the salt reduction intervention.

Parameters Dependent variable (Y): stroke and IHD deaths
Intercept 1337.86
TP1,2: probability for the stroke-free population to
have first stroke in the year 1 646.35

TP1,3: probability for the stroke-free population to
have first major stroke in the year 1 6.18

TP1,6: probability for the stroke-free population to die
from stroke and IHD causes in the year 1 38.49

TP1,1: probability for population free of stroke 2.45
TP2,3: probability of recurrent stroke in ischemic
stroke patients after 1 year 13.05

TP2,6: probability for the minor stroke patients to die
from stroke and IHD causes in the year 1 6.67

TP2,4: probability for first minor stroke (1st year) to
minor stroke subsequent years 0.45

TP3,3: probability of recurrent stroke in ischemic
stroke patients after 5 years −6.49

TP4,6: probability for the stroke patients to die from
stroke and IHD deaths causes 1 year after first
admission

−1.72

TP4,4: probability for minor stroke subsequent years −2.96
TP3,6: probability for the major stroke patients to die
from stroke and IHD causes −0.10

Observations 1000
R2 0.8999
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this number was estimated to reach more than 100,000
deaths.

Secondly, the model shows that the rise of thrombolytic
treatment and hospitalization in intensive care units of
stroke increased statin use for secondary prevention pale in
comparison with the salt reduction impact on future deaths
(1%, 3% vs 27% deaths prevented by 2025).

+e benefits of thrombolytic treatment among patients
with acute ischemic stroke are still matter of debate:
thrombolytic treatment increases short-term mortality and
symptomatic or fatal intracranial haemorrhage but decreases
longer term death or dependence [25]. Many studies proved
that stroke units have significant benefit to patient outcomes
in terms of reducing mortality, morbidity, and improving
functional independence. Stroke unit care was also cost
effective [37–39].

+e substantial effect of salt reduction intervention
found in our study is consistent with the literature [40, 41].
High salt intake is associated with significantly increased
risks of stroke and total cardiovascular disease ranging from
a 14% to 51% increase, depending on salt intake and pop-
ulations [42–44].

Furthermore, our results are consistent with a modeling
study in Tunisia using a different approach. Different
strategies for salt reduction were associated with substantial
lowering of CVD mortality and were cost saving apart from
health promotion [45] and consistent with the Rose hy-
pothesis that the population level strategies are more ap-
propriate in terms of less medicalization [46].

5. Conclusions

+e approach presented here is attractive since it is based on
a simple comprehensive algorithm to present the results of
sensitivity analysis from the Markov model using linear
regression metamodeling. +is approach can reveal im-
portant characteristics of Markov decision process including
the base-case results, relative parameter importance, in-
teraction, and sensitivity analyses.

+us, we recommend using this algorithm for Markov
decision process; it can be the object of creation of a
complete modeling package in R software and can be ex-
tended to other contexts and populations.

In terms of public health, we forecast that absolute
numbers of IHD and stroke deaths will increase dramatically

in Tunisia over 2005–2025. +is Large increase in stroke and
IHD mortality in Tunisia needs many actions not only in
acute stroke treatment such as implementing more basic and
organized stroke units but also in population level primary
prevention such as salt reduction in order to manage and
treat acute strokes and to alleviate the global burden of these
diseases.

Our study highlights the powerful impact of salt re-
duction on deaths from stroke and IHD. Furthermore, the
reducing dietary salt intake across the population appears an
effective way of reducing heart disease events and saving
substantial costs. +is result matches with that of the
mathematical model. Indeed our metamodeling highlights
that the probability of the first minor stroke among the
healthy population has the greatest impact on the stroke and
IHD death estimations, which confirms the importance of
primary prevention. Prevention is thus the best strategy to
fight against stroke and IHD deaths.
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In this paper, the fractional-order differential model of HIV-1 infection of CD4+ T-cells with the effect of drug therapy has been
introduced./ere are three components: uninfected CD4+ T-cells, x, infected CD4+ T-cells, y, and density of virions in plasma, z.
/e aim is to gain numerical solution of this fractional-order HIV-1 model by Laplace Adomian decomposition method (LADM).
/e solution of the proposed model has been achieved in a series form. Moreover, to illustrate the ability and efficiency of the
proposed approach, the solution will be compared with the solutions of some other numerical methods. /e Caputo sense has
been used for fractional derivatives.

1. Introduction

Human immunodeficiency virus (HIV) is a retrovirus
that causes acquired immunodeficiency syndrome (AIDS)
[1]. HIV infects, damages, and reduces CD4+ T-cells.
/erefore, it causes to decrease the resistance of immune
system [2]. /e body becomes more gradually sensitive to
infections and loses its safety. AIDS is one the most
important and dangerous diseases in our time. According
to UNAIDS 2017 annual report, “36.7 million people
globally were living with HIV and 1.8 million people
became newly infected with HIV and 1 million people
died from AIDS-related illnesses in 2016.” In spite of the
great progress in controlling the disease, no vaccine has
been yet discovered for HIV. In the last two decades, a lot
of efforts have been made to design and solve mathe-
matical models that have essential rule in analyzing to

control and prevent the spread of HIV-related diseases
[3–13]. Usually almost all of these mathematical models
explain the relation between HIV viruses and uninfected
CD4+ cells and the effect of drug therapy to infected cells.
Bonhoeffer et al. [4] presented a model for virus dynamics
with two components x and y, where x denotes the
density of infected cells and y shows the density of virus-
producing cells.

/e proposed model is as follows:
dx

dt
� c− βx− cxy,

dy

dt
� cxy−dy,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where c is the rate of production of infected cells, β
is the natural death rate of infected cells, d is the rate of
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virus-producing cells’ death, and c is the rate of infection of
uninfected cells. /is model and many such models were
inspired from Anderson’s model [14, 15]. Anderson’s model
is one of the first and the most important models of in-
fectious diseases. Tuckwell and Wan [16] introduced a
modified model of equation (1) with three components:
uninfected, infected CD4+ T-cells, and density of virions in
plasma (x, y, and z, respectively). /e presented model with
three equations is as follows:

dx

dt
� s′ − μx− βxz,

dy

dt
� βxz− εy,

dz

dt
� cy− cz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

with the initial conditions x(0) � k1,y(0) � k2, and z(0) �

k3 where s′, μ, β, ε, c, and c are constant coefficients, s′ is
the rate of creation or production of CD4+ T-cells, μ is the
natural death rate, β is the rate of infected CD4+ cells
from uninfected CD4+ cells, ε is the rate of virus-
producing cells’ death, c is the rate of creation of vi-
rions viruses by infected cells, and c is the rate of virus
particle death. For the sake of comparison and showing
the ability of the proposed approach, we use the pa-
rameter values reported in references [6, 16]. /e pa-
rameter values are as follows: s′ � 0.272 (day/mm3),
μ � 0.00136 (day/mm3), β � 0.00027 (day/virion/mm3),
ε � 0.33 (day/mm3), c � 50 (virion/CLM/day), and c � 2.0
(day). /e rate of some coefficients will change if drug
therapy is not 100% successful. When the drug treatment
begins, infected cells which create virus components are
affected. If the drug therapy is not effective, a part of
infected cells will improve and remaining cells will begin
to produce virus [8].

Mathematical modeling of many problems in biology
and other branches of sciences appears as differential
equations in fractional order. Because the fractional-
order differential equations save memory on them-
selves and are related to fractals [8, 17–19], we prefer
to use the fractional-order form of the model (2) as
follows:

Dα1(x) � s′ − μx− βxz,

Dα2(y) � βxz− εy,

Dα3(z) � cy− cz,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

with the same initial conditions, where 0< αi ≤ 1,
i � 1, 2, 3. /ere are some numerical approaches for
solving these types of mathematical models. Some of
these methods are as follows: homotopy analysis, optimal
homotopy asymptotic, homotopy perturbation, Adomian
decomposition, and variational iteration [20–30]. In [8],
system of fractional equation (3) has been solved by
homotopy analysis method (HAM) and generalized Euler

method (GEM). In [31], equation (3) has also been solved
by homotopy perturbation method (HPM). Adomian
[32], introduced a decomposition method (ADM) which
is a powerful method to get analytic approximate solution
of differential equations. Using Laplace transform
method with couple of ADM (LADM) to solve systems of
differential equations leads to an effective method that
finds many applications in applied mathematics. In this
paper, we will solve equation (3) by LADM and will
compare the results with the results achieved by gener-
alized Euler, homotopy analysis, homotopy perturbation,
and Runge–Kutta methods. /e structure of the paper is
as follows: in Section 2, we will present a brief review of
fractional calculus. In Sections 3 and 4, we will solve the
fractional-order HIV-1 model by LADM. In Section 5, the
convergence of the method will be discussed. In the last
section, we present the conclusion.

2. Fractional Calculus

/e purpose of this section is to recall a few preliminaries
about what appears in this research.

Definition 2.1. /e Riemann–Liouville fractional integral of
order α for a function X : (0,∞)⟶ R is defined as

J
α
X(s) �

1
Γ(α)

􏽚
s

0
(s− t)

α−1
X(t)dt, (4)

where αε(0,∞) (see [33]).

Definition 2.2. /e Caputo fractional derivative for a
function X : (0,∞)⟶ R on the closed interval [0, S] is
defined as

D
α
X(s) �

1
Γ(m− α)

􏽚
s

0
(s− t)

m−α−1
X

m
(t)dt, m � ºα

Ø

+ 1,

(5)

where α is the integer part of α. Another presentation
of the Caputo fractional derivative can be shown as follows
(see [33]):

D
α
X(s) � J

m−α
D

m
X(s)( 􏼁. (6)

Lemma 2.1. If αε(0,∞) and m � α + 1, then the following
result holds for fractional calculus:

J
α

D
α
X􏼂 􏼃(s) � X(s) + 􏽘

m−1

j�0

Xj(0)

j!
s

j
. (7)

Proof. See [33, 34]. □

Definition 2.3. /e Laplace transform of Caputo fractional
derivative is defined as follows:
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L D
α
X(t)􏼈 􏼉 � s

α
Y(s)− 􏽘

m−1

j�0
s
α−k−1

X
j
(0),

m− 1< α<m, m ∈ N.

(8)

3. Solution of Model (3)

In this section, LADM has been implemented to solve
system of fractional equation (3) with the initial
conditions.

We apply Laplace transform on both sides of each
equation of equation (3):

L Dα1x{ } � L s′ − μx− βxz􏼈 􏼉,

L Dα2y􏼈 􏼉 � L βxz− εy􏼈 􏼉,

L Dα3z{ } � L cy− cz􏼈 􏼉,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

which implies that

sα1L x{ }− sα1−1x(0) � L s′ − μx− βxz􏼈 􏼉,

sα2L y􏼈 􏼉− sα2−1y(0) � L βxz− εy􏼈 􏼉,

sα3L z{ }− sα3−1z(0) � L cy− cz􏼈 􏼉.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

Substitution of the initial conditions in equation (10) and
applying inverse Laplace transform results in

x � k1 + L−1
1

sα1
L s′ − μx− βxz􏼈 􏼉􏼔 􏼕,

y � k2 + L−1
1

sα2
L βxz− εy􏼈 􏼉􏼔 􏼕,

z � k3 + L−1
1

sα3
L cy− cz􏼈 􏼉􏼔 􏼕.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

To apply ADM, let us consider x, y, and z as the fol-
lowing series:

x � 􏽘
∞

i�0
xi,

y � 􏽘
∞

i�0
yi,

z � 􏽘
∞

i�0
zi.

(12)

To decompose the nonlinear term xz, let us follow an
alternate algorithm [35] to get,

xz � 􏽘
∞

i�0
pi, (13)

where pi is as the following equation:

pi � 􏽘
i

k�0
xkzi−k, (14)

substituting equations (12)–(14) into (11) reads

L x0( 􏼁 �
k1

s
,

L y0( 􏼁 �
k2

s
,

L z0( 􏼁 �
k3

s
,

L x1( 􏼁 �
s′

sα1+1 −
μ

sα1
L x0( 􏼁−

β
sα1

L p0( 􏼁,

L y1( 􏼁 �
β

sα2
L p0( 􏼁−

ε
sα2

L y0( 􏼁,

L z1( 􏼁 �
c

sα3
L y0( 􏼁−

c

sα3
L z0( 􏼁,

L x2( 􏼁 � −
μ

sα1
L x1( 􏼁−

β
sα1

L p1( 􏼁,

L y2( 􏼁 �
β

sα2
L p1( 􏼁−

ε
sα2

L y1( 􏼁,

L z2( 􏼁 �
c

sα3
L y1( 􏼁−

c

sα3
L z1( 􏼁,

⋮

L xn+1( 􏼁 � −
μ

sα1
L xn( 􏼁−

β
sα1

L pn( 􏼁,

L yn+1( 􏼁 �
β

sα2
L pn( 􏼁−

ε
sα2

L yn( 􏼁,

L zn+2( 􏼁 �
c

sα3
L yn( 􏼁−

c

sα3
L zn( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

We take inverse Laplace transform on both sides of each
equation of equation (15):
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x0 � k1,

y0 � k2,

z0 � k3,

x1 � s′ − μx0 − βx0z0( 􏼁
tα1

Γ α1 + 1( 􏼁
,

y1 � βx0z0 − εy0( 􏼁
tα2

Γ α2 + 1( 􏼁
,

z1 � cy0 − cz0( 􏼁
tα3

Γ α3 + 1( 􏼁
,

x2 � − μ + βz0( 􏼁 s′ − μx0 − βx0z0( 􏼁􏼈 􏼉
t2α2

Γ 2α2 + 1( 􏼁
− βx0 cy0 − cz0( 􏼁

tα1+α3

Γ α1 + α3 + 1( 􏼁
,

y2 � βx0 cy0 − cz0( 􏼁
tα2+α3

Γ α2 + α3 + 1( 􏼁
+ βz0 s′ − μx0 − βx0z0( 􏼁

tα1+α2

Γ α1 + α2 + 1( 􏼁
− ε βx0z0 − εy0( 􏼁

t2α2

Γ 2α2 + 1( 􏼁
,

z2 � c βx0z0 − εy0( 􏼁
tα2+α3

Γ α2 + α3 + 1( 􏼁
− c cy0 − cz0( 􏼁

t2α3

Γ 2α3 + 1( 􏼁
,

x3 � βx0c βx0z0 − εy0( 􏼁
tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
+ βx0c cy0 − cz0( 􏼁

tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
+ β2x0z0 cy0 − cz0( 􏼁

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁

+ s′ − μx0 − βx0z0( 􏼁 βz0 μ + z0( 􏼁 + μ μ + βz0( 􏼁􏼈 􏼉
t3α1

Γ 3α1 + 1( 􏼁
+ β cy0 − cz0( 􏼁 μx0 − s′ − μx0 − βx0z0( 􏼁

Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁
􏼠 􏼡􏼨 􏼩

·
t2α1+α3

Γ 2α1 + α3 + 1( 􏼁
,

y3 � βx0 c βx0z0 − εy0( 􏼁− ε cy0 − cz0( 􏼁( 􏼁( 􏼁
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
− βx0c cy0 − cz0( 􏼁

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁

− βz0 μ + βz0( 􏼁 s′ − μx0 − βx0z0( 􏼁
t2α1+α2

Γ 2α1 + α2 + 1( 􏼁
+ β s′ − μx0 − βx0z0( 􏼁

Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁

− β2x0z0 cy0 − cz0( 􏼁 + βz0ε s′ − μx0 − βx0z0( 􏼁􏼐 􏼑
tα1+2α2

Γ α1 + 2α2 + 1( 􏼁
+ ε2 βx0z0 − εy0( 􏼁

t3α2

Γ 3α2 + 1( 􏼁
,

z3 � βx0c cy0 − cz0( 􏼁− cc βx0z0 − εy0( 􏼁( 􏼁
tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
+ c

2
cy0 − cz0( 􏼁

t3α3

Γ 3α3 + 1( 􏼁

+ βz0c s′ − μx0 − βx0z0( 􏼁
tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
− εc βx0z0 − εy0( 􏼁

t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
.

(16)

We have calculated four terms of the infinite series of x,
y, and z as an approximate solution. To get any desired
accuracy, one is able to proceed the process and obtain more
terms. Finally, the solution of mathematical model can be
obtained as follows:

x(t) � 􏽘
∞

i�0
xi(t) ≈ x0(t) + x1(t) + x2(t) + x3(t),

y(t) � 􏽘
∞

i�0
yi(t) ≈ y0(t) + y1(t) + y2(t) + y3(t),

z(t) � 􏽘
∞

i�0
zi(t) ≈ z0(t) + z1(t) + z2(t) + z3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)
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4. Numerical Simulation

In this section, constants and initial values are substituted in
equation (16) to obtain an approximate solution.

Substituting the following values: s′ � 0.272 (day/mm3),
μ� 0.00136 (day/mm3), β� 0.00027 (day/virion/mm3),

ε� 0.33 (day/mm3), c � 50 (virion/CLM/day), and c � 2.0
(day) and the initial conditions x(0) � 100, y(0) � 0, and
z(0) � 1 in equation (16), we get,

x0 � 100,

y0 � 0,

z0 � 1,

x1 � 0.1090
tα1

Γ α1 + 1( 􏼁
,

y1 � 0.0270
tα2

Γ α2 + 1( 􏼁
,

z1 � −2.0000
tα3

Γ α3 + 1( 􏼁
,

x2 � −0.0001776700
t2α2

Γ 2α2 + 1( 􏼁
+ 0.05400

tα1+α3

Γ α1 + α3 + 1( 􏼁
,

y2 � −0.05400
tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 0.0000294300

tα1+α2

Γ α1 + α2 + 1( 􏼁
− 0.0089100

t2α2

Γ 2α2 + 1( 􏼁
,

z2 � 1.35000
tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 4.0000

t2α3

Γ 2α3 + 1( 􏼁
,

x3 � −0.0364500
tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
− 0.10800

tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
− 0.0000145800

t2α1+2α2

Γ 2α1 + α2 + 1( 􏼁

+ 0.000029711656
t3α1

Γ 3α1 + 1( 􏼁
− 0.00054

Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

t2α1+α3

Γ 2α1 + α3 + 1( 􏼁
,

y3 � 0.054270000
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
+ 0.10800

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
− 0.000000047971

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁

+ 0.0000294300
Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
+ 0.000004868100

tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
+ 0.0002940300

t3α2

Γ 3α2 + 1( 􏼁
,

z3 � 0.054270000
tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
− 8.0000

t3α3

Γ 3α3 + 1( 􏼁
+ 0.0014715000

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁

− 0.4455000
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
.

(18)
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/ree terms approximations can be written as the fol-
lowing form:

x(t) � 100 + 0.1090
tα1

Γ α1 + 1( 􏼁
− 0.0001776700

t2α2

Γ 2α2 + 1( 􏼁
+ 0.05400

tα1+α3

Γ α1 + α3 + 1( 􏼁
− 0.0364500

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁

− 0.10800
tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
− 0.0000145800

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁
+ 0.000029711656

t3α1

Γ 3α1 + 1( 􏼁

− 0.00054
Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

t2α1+α3

Γ 2α1 + α3 + 1( 􏼁
,

y(t) � 0.0270
tα2

Γ α2 + 1( 􏼁
− 0.05400

tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 0.0000294300

tα1+α2

Γ α1 + α2 + 1( 􏼁
− 0.0089100

t2α2

Γ 2α2 + 1( 􏼁

+ 0.054270000
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
+ 0.10800

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
− 0.000000047971

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁

+ 0.0000294300
Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
+ 0.000004868100

tα1+2α2

Γ α1 + 2α2 + 1( 􏼁

+ 0.0002940300
t3α2

Γ 3α2 + 1( 􏼁
,

z(t) � 1− 2.0000
tα3

Γ α3 + 1( 􏼁
+ 1.35000

tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 4.0000

t2α3

Γ 2α3 + 1( 􏼁
+ 0.054270000

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁

− 8.0000
t3α3

Γ 3α3 + 1( 􏼁
+ 0.0014715000

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
− 0.4455000

t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
.

(19)

Let us take α1, α2, and α3 equal to α, so the solution of
fractional-order of model (3) is obtained as follows:

x(t) � 100 +
0.1090tα

Γ(α + 1)
+
0.0538223300t2α

Γ(2α + 1)
−
0.1444348683t3α

Γ(3α + 1)
−
0.00054Γ(2α + 1)t3α

Γ(3α + 1)
,

y(t) �
0.0270tα

Γ(α + 1)
−
0.0628805700t2α

Γ(2α + 1)
+
0.1625688501t3α

Γ(3α + 1)
+
0.0000294300Γ(2α + 1)t3α

Γ(3α + 1)
,

z(t) � 1−
2.0000tα

Γ(α + 1)
+
5.35000t2α

Γ(2α + 1)
−
8.389758500t3α

Γ(3α + 1)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

For α1 � α2 � α3 � 1, the solution of equation (3) will be
as follows:

x(t) � 100 + 0.1090t + 0.02691116500t2 − 0.02425247806t3,

y(t) � 0.0270t− 0.03144028500t2 + 0.02710461836t3,

z(t) � 1− 2.0000t + 2.6750000t2 − 1.398293083t3.

⎧⎪⎪⎨

⎪⎪⎩

(21)

In Tables 1–3, one can compare the approximate solu-
tion of fractional-order of model (3) with the results of GEM,
HAM, RK4 in [8], and HPM in [31] using traditional order
α � 1. /e results of LADM are more accurate than the
results obtained by other methods.

Figures 1–3 show the results for different values of α, and
the results can be compared.
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5. Convergence Analysis of the Method

In this section, convergence of the proposed method, using
the idea presented in [36], is studied.

Consider the following functional equation:

F(v(t)) � g(t), (22)

where F is a functional operator and can be decomposed as
F � Dα + R + N and g is a known function.

Dα is a Caputo fractional derivative operator,R is a linear
operator, and N is a nonlinear analytic operator, re-
spectively. So equation (22) can be written as follows:

D
α
(v(t)) � g(t)−R(v(t)) −N(v(t)). (23)

Table 1: Numerical results of x(t) (uninfected CD4+ T-cells).

t LADM GEM HPM HAM RK4
0 100 100 100 100 100
0.2 100.023 100.023 100.023 100.023 100.023
0.4 100.046 100.047 100.047 100.047 100.047
0.6 100.070 100.071 100.071 100.071 100.071
0.8 100.092 100.097 100.097 100.096 100.097
1.0 100.112 100.122 100.123 100.122 100.122

Table 2: Numerical results of y(t) (infected CD4+ T-cells).

t LADM GEM HPM HAM RK4
0 0 0 0 0 0
0.2 0.00436 0.00434 0.00434 0.00434 0.00434
0.4 0.00750 0.00715 0.00721 0.00714 0.00715
0.6 0.01074 0.00908 0.00934 0.00909 0.00908
0.8 0.01336 0.01049 0.01117 0.01063 0.01049
1.0 0.01866 0.01161 0.01276 0.01194 0.01161

Table 3: Numerical results of z(t) (density of virions in plasma).

t LADM GEM HPM HAM RK4
0 1 1 1 1 1
0.2 0.69581 0.69030 0.69071 0.69059 0.69070
0.4 0.53851 0.51152 0.51208 0.51237 0.51190
0.6 0.46097 0.41069 0.41394 0.40994 0.41103
0.8 0.39607 0.35656 0.37749 0.35148 0.35684
1.0 0.27671 0.33053 0.42419 0.32869 0.33073

100.10

100.08

100.06

x(
t) 

va
lu

es

100.04

100.02

100
0 0.2 0.4

t values

α = 1
α = 0.75

α = 0.5
α = 0.25

0.6 0.8 1

Figure 1: Dynamics of uninfected CD4+ T-cells for various values of α.
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/e goal is to find a function v(t) satisfying equation
(22). By applying the Laplace transform on both sides of
equation (23) reads

L D
α
(v(t))􏼈 􏼉 � L g(t)−R(v(t))−N(v(t))􏼈 􏼉. (24)

By using definition (2.3), equation (23) can be written as
follows:

L v(t){ } �
v(0)

s
+
L g(t)􏼈 􏼉

sα
−
L R(v(t)){ }

sα
−
L N(v(t)){ }

sα
,

(25)

by considering v(0) � v0 and using inverse of Laplace
transform on both sides of equation (25) results in

L
−1

L v(t){ }{ } � L
−1

􏼨
v(0)

s
+
L g(t)􏼈 􏼉

sα

−
L R(v(t)){ }

sα
−
L N(v(t)){ }

sα
􏼩,

(26)

which implies that

v(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R(v(t)){ }

sα
􏼨 􏼩

−L−1
L N(v(t)){ }

sα
􏼨 􏼩.

(27)

By implementing ADM and assuming the solution v(t)

as an infinite series say, v(t) � 􏽐
∞
n�0vn(t), and writing the

nonlinear term based on Adomian polynomials such as

N(v(t)) � 􏽘
∞

n�0
pn v0(t), v1(t), . . . , vn(t)( 􏼁, (28)

where

pn v0(t), v1(t), . . . , vn(t)( 􏼁 �
1
Γ(n + 1)

dn

dλn

⎧⎨

⎩Nλ 􏽘

n

i�0
vi(t)λi⎛⎝ ⎞⎠

⎫⎬

⎭
λ�0

.

(29)
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Figure 3: Dynamics of density of virions in plasma for various values of α.
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Figure 2: Dynamics of infected CD4+ T-cells for various values of α.
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Equation (27) can be written as the following form:

􏽘

∞

n�0
vn(t) � v0 + L

−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R 􏽐
∞
n�0vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐
∞
n�0pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(30)

So, we have

􏽘

∞

n�0
vn(t) � v0 + L

−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩− 􏽘

∞

n�0
L
−1 L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

− 􏽘

∞

n�0
L
−1 L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(31)

From which we can define

v0(t) � v0,

v1(t) � L−1
L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L p0 v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

v2(t) � −L−1
L R v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

⋮

vn+1(t) � −L−1
L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Theorem 5.1. LADM for equation (21) with the solution (19)
is equivalent to

sn(t) � v0(t) + v1(t) + . . . + vn(t),

s0(t) � v0(t).
(33)

By using the following iterative scheme:

sn+1(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

(34)
where

N 􏽘
n

i�0
vi(t)⎛⎝ ⎞⎠ � 􏽘

n

i�0
pi v0(t), v1(t), . . . , vi(t)( 􏼁,

n � 0, 1, 2, . . . .

(35)

Proof. For n � 0, from equation (33):

s1(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R s0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N s0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p0 v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(36)

/en, by assumption of equation (33), we have

v1(t) � L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p0 v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

(37)

for n � 1:

s2(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R s1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N s1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t) + v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p0 v0(t)( 􏼁 + p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0(t) + v1(t)−L−1
L R v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(38)

We know that s2(t) � v0(t) + v1(t) + v2(t), so we obtain

v2(t) � −L−1
L R v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(39)

By strong induction, let us have
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vk+1(t) � −L−1
L R vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

k � 1, 2, . . . , n− 1,

(40)

and prove the following for k � n,

sn+1(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R 􏽐
n
k�0vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐

n
k�0pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩− 􏽘

n

k�0
L
−1 L R vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

− 􏽘
n

k�0
L
−1 L pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0(t) + v1(t) + . . . vn(t)−L−1
L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(41)

/en, from equation (33), we derive

vn+1(t) � −L−1
L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(42)

/is entails the statement is true and the theorem is
proved. □

Theorem 5.2. Let X be a Banach space.

(i) 􏽐
∞
i�0vi(t) resulted from equation (31), convergence to

s ∈ X, if ∃ c ∈[0, 1), s.t (∀ n ∈ N⟹ ‖vn+1‖≤ c ‖vn‖),

(ii) s(t) � 􏽐
∞
i�0vi(t) satisfies in

s(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R(s(t)){ }

sα
􏼨 􏼩

−L−1
L N(s(t)){ }

sα
􏼨 􏼩.

(43)

Proof.

sn+1 − sn

����
���� � vn+1

����
����≤ c vn

����
����≤ c

2
vn−1

����
����≤ . . . ≤ c

n+1
v0

����
����.

(44)

∀n, m ∈ N, n≥m, we have

sn − sm

����
���� � sn − sn−1( 􏼁 + sn−1 − sn−2( 􏼁 + . . . + sm+1 − sm( 􏼁

����
����

≤ sn − sn−1
����

���� + sn−1 − sn−2
����

���� + . . . + sm+1 − sm

����
����

≤ c
n

v0
����

���� + c
n−1

v0
����

���� + . . . + c
m+1

v0
����

����

≤ c
n

+ c
n−1

+ . . . + c
m+1

􏼐 􏼑 v0
����

����

≤ c
m+1 1 + c + c

2
+ . . . + c

n
+ . . .􏼐 􏼑≤

cm+1

1− c
v0

����
����.

(45)

/is means that lim
n,m⟶∞

‖sn − sm‖ � 0, therefore, sn􏼈 􏼉 is a
Cauchy sequence in the Banach space of X and is conver-
gent. So, ∃ s ϵ X, s.t lim

n⟶∞
sn � s.

From equation (33), we derive

lim sn(t)
n⟶∞

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L lim

n⟶∞
R sn(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−L−1
L lim

n⟶∞
N sn(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L lim

n⟶∞
R 􏽐

n
k�0vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−L−1
L lim

n⟶∞
N 􏽐

n
k�0vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L lim

n⟶∞
􏽐

n
k�0R vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−L−1
L lim

n⟶∞
􏽐

n
k�0pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐
∞
k�0R vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐
∞
k�0pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

(46)
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From equation (35), we have

N 􏽘
∞

i�0
vi(t)⎛⎝ ⎞⎠ � 􏽘

∞

i�0
pi v0(t), v1(t), . . . , vi(t)( 􏼁,

n � 0, 1, 2. . . . .

(47)

So,

s(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R 􏽐
∞
k�0vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N 􏽐

∞
k�0vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R(s(t)){ }

sα
􏼨 􏼩

−L−1
L N(s(t)){ }

sα
􏼨 􏼩.

(48)

□

Lemma 5.1. Equation (43) is equivalent to equation (22).

Proof. By using Laplace transform on both sides of equation
(43) reads to

L(s(t)) � L v0( 􏼁 +
L g(t)􏼈 􏼉

sα
−
L R(s(t)){ }

sα
−
L N(s(t)){ }

sα

�
v(0)

s
+
L g(t)􏼈 􏼉

sα
−
L R(s(t)){ }

sα
−
L N(s(t)){ }

sα

�
sα−1v(0)

sα
+
L g(t)􏼈 􏼉

sα
−
L R(s(t)){ }

sα
−
L N(s(t)){ }

sα
,

(49)

so we can write

s
α
L(s(t))− s

α−1
v(0) � L g(t)􏼈 􏼉−L R(s(t)){ }

−L N(s(t)){ }.
(50)

In virtue of definition 2.3 and linearity of the Laplace
transform, equation (50) can be written as the follows:

L D
α
s(t)􏼈 􏼉 � L g(t)−R(s(t))−N(s(t))􏼈 􏼉. (51)

By applying the inverse of Laplace transform on both
sides of equation (51), we derive

D
α
s(t) � g(t)−R(s(t))−N(s(t)). (52)

Considering v(t) � s(t), one gets equation (22). So, the
solution of equation (43) is the same as the solution of
equation (22). □

6. Conclusion

In this paper, a fractional-order model of HIV-1 with
three components has been introduced. When α⟶ 1,

then Dαx(t)⟶ Dx(t); therefore, the fractional-order of
presented model reduces to traditional model. By applying
Laplace transform and Adomian decomposition method, or
LADM for short, which is a strong approach to compute
numerical solution of fractional differential equations, we
gain an approximate solution of the proposed model. /e
accuracy of the proposed approach has made it a reliable
method. We have calculated four terms of the infinite series
of x, y, and z as an approximate solution. /e result of
LADM has been compared with the results of some other
methods such as GEM, HAM, RK4 [8], and HPM [31]. /e
results are presented in Tables 1–3. Figures 1–3, show that
the uninfected CD4+ T-cells, x, infected CD4+ T-cells, y, and
density of virions in plasma, z, depend on the various values
of α, the various values of the parameters, and the time
fractional derivative. A comparison of the approximate
solutions shows that LADM can work more accurate than
other methods. Convergence of the proposed method is
studied. Because of the fact that obtaining the exact solution
for system of fractional equation is difficult or impossible, we
would like to suggest such an easy and reliable approach for
further research, in the future.
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Background. Type-1 diabetes is a condition caused by the lack of insulin hormone, which leads to an excessive increase in blood
glucose level. )e glucose kinetics process is difficult to control due to its complex and nonlinear nature and with state
variables that are difficult to measure. Methods. )is paper proposes a method for automatically calculating the basal and
bolus insulin doses for patients with type-1 diabetes using reinforcement learning with feedforward controller. )e algorithm
is designed to keep the blood glucose stable and directly compensate for the external events such as food intake. Its per-
formance was assessed using simulation on a blood glucose model. )e usage of the Kalman filter with the controller was
demonstrated to estimate unmeasurable state variables. Results. Comparison simulations between the proposed controller
with the optimal reinforcement learning and the proportional-integral-derivative controller show that the proposed
methodology has the best performance in regulating the fluctuation of the blood glucose. )e proposed controller also
improved the blood glucose responses and prevented hypoglycemia condition. Simulation of the control system in different
uncertain conditions provided insights on how the inaccuracies of carbohydrate counting and meal-time reporting affect the
performance of the control system. Conclusion. )e proposed controller is an effective tool for reducing postmeal blood
glucose rise and for countering the effects of external known events such as meal intake and maintaining blood glucose at a
healthy level under uncertainties.

1. Introduction

Type-1 diabetes is a chronic condition that is characterized
by an excessive increase in blood glucose level because the
pancreas does not produce insulin hormone due to the
autoimmune destruction of pancreatic beta cells. High blood
glucose can lead to both acute and chronic complications
and eventually result in failure of various organs.

Until today, there are many challenges in control of the
blood glucose in type-1 diabetes. One of them is that the
glucose kinetics process is complex, nonlinear, and only
approximately known [1]. )ere are also many external
known and unknown factors that affect the blood glucose
level such as food intakes, physical activities, stress, and
hormone changes. Generally, it is difficult to predict and
quantify those factors and disturbances.

By using control theories, various studies have been
conducted to design a control system for patients with type-1
diabetes. For example, Marchetti et al. [2], derived an im-
proved proportional-integral-derivative controller for blood
glucose control. Soylu et al. [3] proposed a Mamdani type
fuzzy control strategy for exogenous insulin infusion. Model
predictive control has also been widely used in type-1 di-
abetes and artificial pancreas development [4, 5]. Recently,
together with the development of artificial intelligence and
machine learning, reinforcement learning (RL) has emerged
as a data-driven method to control unknown nonlinear
systems [6, 7] and has been used as a long-termmanagement
tool for chronic diseases [8, 9]. )e biggest advantage of RL
compared to other methods is that the algorithm depends
only on interactions with the system and does not require a
well represented model of the environment. )is especially
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makes RL well suited for type-1 diabetes since the modelling
process of the insulin-kinetic dynamics is complex and
requires invasive measurements on the patient or must be fit
through a large dataset. Hence, by using RL as the control
algorithm, the modelling process can be bypassed, which
makes the algorithm not susceptible to any modelling error.

In diabetes, controlling of blood glucose require actions
that are made at specific instance throughout the day in
terms of insulin doses or food intakes. )e actions are based
on the current observable states of the patients (e.g., blood
glucose measurement and heart rate). )e effectiveness of
the actions is calculated by how far the measured blood
glucose value is compared to the healthy level. In RL, an
agent makes decision based on the current state of the
environment. )e task of the algorithm is to maximize a
cumulative reward function or to minimize a cumulative
cost function. Based on these similarities in the decision-
making process between a human being and a RL agent, RL
may be key to the development of an artificial pancreas
system.

When dealing with meal disturbances, modelling of
glucose ingestion is the norm as well as the first step in
designing a controller for disturbance rejection [10]. Feed-
forward control was proven to be an effective tool to improve
disturbance rejection performance [11, 12]. In control sys-
tem theory, feed-forward is the term that describes a con-
troller that utilizes the signal obtained when there is a (large)
deviation from the model. Compared to feed-back control,
where action is only taken after the output has moved away
from the setpoint, the feed-forward architecture is more
proactive since it uses the disturbance model to suggest the
time and size of control action. Furthermore, building ameal
disturbance model is simpler and requires less data to fit
than finding the insulin-glucose kinetics. Based on the
model, necessary changes in insulin actions can be calculated
to compensate for the effects of carbohydrate on the blood
glucose level.

A challenge in the control of the blood glucose is the lack
of real-time measurement techniques. With the develop-
ment of continuous glucose measurement sensors, blood
glucose level can be measured and provided to the controller
in minute intervals. However, blood glucose value alone is
usually not enough to describe the states of the system for
control purpose.)erefore, an observer is needed to estimate
other variables in the state space from the blood glucose
measurement. In this paper, the Kalman filter was chosen for
that purpose since it can provide an optimal estimation of
the state variables when the system is subjected to process
and measurement noises [13, 14].

Vrabie et al. [15] established methodologies to obtain
optimal adaptive control algorithms for dynamical systems
with unknownmathematical models by using reinforcement
learning. Based on that, Ngo et al. [16] proposed a re-
inforcement learning algorithm for updating basal rates in
patients with type-1 diabetes. )is paper completes the
framework for blood glucose control with both basal and
bolus insulin doses. )e framework includes the re-
inforcement learning algorithm, the feed-forward controller
for compensating food intake and the Kalman filter for

estimating unmeasurable state variables during the control
process. )is paper also conducts simulations under un-
certain information to evaluate the robustness of the pro-
posed controller.

2. Methods

2.1. Problem Formulation. )e purpose of our study is to
design an algorithm to control the blood glucose in patients
with type-1 diabetes by the means of changing the insulin
concentration. )e blood glucose metabolism is a dynamic
system in which the blood glucose changing over time as the
results of many factors such as food intake, insulin doses,
physical activities, and stress level. )e learning process of
RL is based on the interaction between a decision-making
agent and its environment, which will lead to an optimal
action policy that results in desirable states [17]. )e RL
framework for type-1 diabetes includes the following
elements:

(i) )e state vector at time instance k consists of the
states of the patient:

xk � g(k)−gd(k) χ(k)􏼂 􏼃
T
, (1)

where g(k) and gd(k) the are measured and desired blood
glucose levels, respectively, and χ(k) is the interstitial insulin
activity (defined in the appendix).

(ii) )e control variable (insulin action) uk, which is part
of the total insulin ik (a combination of the basal and
the bolus insulin (Figure 1)):

ik � ubasal(k) + ubolus(k) � uk + ubasal(0) + ubolus(k), (2)

where ubasal(k) and ubolus(k) are the basal and bolus at time
instance k, respectively.

(iii) )e cost received one time-step later as a conse-
quence of the action. In this paper, the cost was
calculated by the following quadratic function:

rk+1 � xT
kQxk + u

T
k Ruk, (3)

where Q �
1 0
0 0.1􏼢 􏼣 and R � 0.01. Each element in matrix

Q and the value of R indicate the weighting factors of the
cost function. )e element in the first row and the first
column ofQ has the highest value, which corresponds to the
weighting of the difference between the measured blood
glucose and the prescribed healthy value. Since our ultimate
goal is to reduce this difference, the factor of this mea-
surement should have the largest value in the cost function.
)e element in the second row and second column of Q
corresponds to the weighting of the interstitial insulin ac-
tivity. )e value of R indicates the weighting factor of the
action (basal update). Minimizing the cost function,
therefore, becomes the problem of minimizing the difference
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between the measured blood glucose and the desired value,
the interstitial insulin activity, and the change in basal
insulin.

At time instance k + 1, a sequence of observations would
be xk, uk, rk+1, xk+1 and uk+1. Based on this observation, the
agent receives information about the state of the patient and
chooses an insulin action. )e body reacts to this action and
transitions to a new state. )is determines the cost of the
action.

For the control design purpose, the blood glucose model
(Appendix) was divided into three submodels: the meal
(Gmeal), the insulin (Gins), and the glucose kinetics (Gglucose).
)e controller has three main components: the actor, the
critic, and the feedforward algorithm. )e actor is used to
estimate the action-value function, the critic’s task is to
obtain optimal basal insulin, and the feedforward algorithm
is used to propose the bolus insulin profile for disturbance
compensation (food intake). )e purpose of the Kalman
filter is to estimate unmeasurable states of the patient.

2.2. Basal Update by Actor and Critic. When the patient is in
a fasting condition, the controller only needs to change the
basal insulin level through the actor and the critic. Based on
the current state xk, the actor proposes an insulin action uk

through the policy π : uk � π(xk). )e updated basal rate is
obtained from uk as follows:

ubasal � uk + ubasal(0). (4)

After each action, the patient transforms into a new state,
and the cost associated with the previous action can be
calculated using equation (3). )e action-value function (Q-
function) of action u is defined as the accumulation of cost
when the controller takes action uk � u at time instance k

and then continues following policy π(xk+1):

Q
π
k(x, u) � Eπ 􏽘

∞

i�0
c

i
rk+i+1 ∣ xk � x, uk � u

⎧⎨

⎩

⎫⎬

⎭, (5)

where c (with 0< c≤ 1) is the discount factor that indicates
the weighting of future cost in the action-value function.

)e action-value function depends on the current state
and the next action. It was shown that the action-value
function satisfies the following recursive equation (Bellman
equation) [15, 17]:

Q
π
k(x, u) � rk + cQ

π
k+1(x, u). (6)

Since the state space and action space are infinite,
function approximation was used in this paper for esti-
mation of the Q-function. In this case, the Q-function was
approximated as a quadratic function of vectors xk and uk:

Q
π
k(x, u) ≈ zT

kPzk, (7)

where the symmetric and positive definite matrix P is called
the kernel matrix and contains the parameters that need to
be estimated. Vector zk is the combined vector of xk and uk:

z � xT
k uT

k􏽨 􏽩
T
. (8)

With Kronecker operation, the approximated Q-func-
tion can be expressed as a linear combination of the basis
function Φ(zk) � zk ⊗ zk:

Q
π
k(x, u) ≈ zT

kPzk � wT zk ⊗ zk( 􏼁 � wTΦ zk( 􏼁, (9)

wherew is the vector that contains elements of P and ⊗ is the
Kronecker product.

By substituting Qπ
k(x, u) in equation (6) by wTΦ(zk) and

using the policy iteration method with the least square al-
gorithm [15], elements of vector w can be estimated. Matrix
P can then be obtained from w using the Kronecker
transformation.

By decomposing the kernel matrix P into smaller ma-
trices Pxx, Pxu, Pux, and Puu, the approximated Q-function
can be written as follows:

Q
π
k(x, u) �

1
2

xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T

P
xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
1
2

xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T Pxx Pxu

Pux Puu

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(10)

)e current policy is improved with actions that min-
imize the Q-function Qπ

k(x, u). )is can be done by first
taking the partial derivative of the Q-function and then
solving zQπ

k(x, u)/zu � 0. )e optimal solution can there-
after be obtained as follows [15]:

uk � −P−1uuPuxxk. (11)

With that, the update of basal insulin is

ubasal � −P−1uuPuxxk + ibe, (12)

where ibe is the equilibrium basal plasma insulin
concentration.

2.3. Bolus Update by Feedforward Algorithm. When the
patient consumes meals, in addition to the basal insulin, the
controller calculates and applies boluses to compensate for
the rise of blood glucose as the results of carbohydrate in the
food. )e feedforward algorithm first predicts how much
blood glucose level will rise and then suggests a bolus profile

D
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D D2 D2
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Figure 1: Control system diagram.
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to counter the effects of the meal. )e starting time of the
bolus doses was also calculated by the algorithm based on the
meal intake model.

Since the meal intake model (equations (A.1) and (A.2))
and the insulin model (equation (A.4)) are linear time-
invariant (LTI) models, they can be transformed from
state space equations into transfer functions as follows:

Gmeal(s) �
D2(s)

D(s)
� Cmeal sI−Ameal( 􏼁

−1Bmeal �
AG

sτD + 1( 􏼁
2,

Gins(s) �
D2(s)

D(s)
� Cins sI−Ains( 􏼁

−1Bins �
p3

s + p2
,

(13)

where

Ameal �
−1/τD 0

1/τD −1/τD

􏼢 􏼣,

Bmeal �
AG

0
􏼢 􏼣,

Cmeal � 0 1/τD􏼂 􏼃,

Ains � −p2,

Bins � p3,

Cins � 1.

(14)

Descriptions and values of τD, p2, and p3 are shown in
Tables 1 and 2. )e transfer function from the meal intake
D(s) to the blood glucose level g(s) can be calculated as

F(s) �
g(s)

D(s)
� Gmeal(s) + Gff(s)Gins(s)( 􏼁Gglucose(s).

(15)

In order to compensate for the meal, the gain of the open
loop system F(s) must be made as small as possible. Hence,
the feedforward transfer function was chosen such that
Gmeal(s) + Gff(s)Gins(s)⟶ 0, which leads to

Gff(s) � −Gmeal(s)G
−1
ins(s) �

−AG s + p2( 􏼁

p3 τDs + 1( 􏼁
2. (16)

)e meal compensation bolus in s-domain can be cal-
culated from the feedforward transfer function:

ubolus(s) � Gff(s)D(s) �
−AG s + p2( 􏼁

p3 τDs + 1( 􏼁
2 D(s). (17)

Hence, the feedforward action becomes the output of the
following dynamic system, which can be solved easily using
any ordinary differential equation solver:

p3τ
2
D €ubolus(t) + 2p3τD _ubolus(t) + p3ubolus(t)

� −AG
_D(t) + p2D(t)􏼐 􏼑.

(18)

2.4. Kalman Filter for Type-1 Diabetes System. Since the
interstitial insulin activity, the amounts of glucose in

compartments 1 and 2 cannot be measured directly during
implementation, Kalman filter was used to provide an es-
timation of the state variables from the blood glucose level.
)e discretized version of the type-1 diabetes system can be
written in the following form:

xK(k + 1) � AKxK(k) + BKuK(k) + HKw(k),

yK(k) � CKxK(k) + v(k),
(19)

where xK(k) � D1 D2 g(k)−gd(k) χ(k)􏼂 􏼃
T, uK(k) �

D(k) i(k)􏼂 􏼃
T, and matrices AK, BK, CK are linearized

coefficient matrices of the model:

AK �

−1/τD 0 0 0

1/τD −1/τD 0 0

0 1/τD −p1 −gd 0

0 0 0 −p2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

BK �

AG 0

0 0

0 0

0 p3V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

CK � 0 0 1 0􏼂 􏼃,

(20)

matrix HK is the noise input matrix: HK � 0 0 0 p3V􏼂 􏼃
T,

the output value yK(k) � g(k)−gd(k) is the measured
blood glucose deviation from the desired level, w(k) is the
insulin input noise, and v(k) is the blood glucose mea-
surement noise with zero-mean Gaussian distribution. )e
variances of w(k) and v(k) are assumed to be as follows:

E w
2
(k)􏼐 􏼑 � Rw,

E v
2
(k)􏼐 􏼑 � Rv.

(21)

Table 1: Parameters and constants of the insulin-glucose kinetics
model.

Name Description Value
p1 Glucose effectiveness 0.2min−1

p2 Insulin sensitivity 0.028min−1

p3 Insulin rate of clearance 10−4min−1

AG Carbohydrate bioavailability 0.8min−1

τD Glucose absorption constant 10min
V Plasma volume 2730 g

ibe
Equilibrium basal plasma insulin

concentration
7.326 μIU/

ml

Table 2: Variables of the insulin-glucose kinetics model.

Name Description Unit
D Amount of CHO intake mmol/min
D1 Amount of glucose in compartment 1 mmol
D2 Amount of glucose in compartment 2 mmol
g(t) Plasma glucose concentration mmol/l
χ(t) Interstitial insulin activity min−1

i(t) Plasma insulin concentration μIU/ml
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Based on the discretized model, a Kalman filter was
implemented through the following equation:

􏽢x(k + 1 ∣ k) � Ak · 􏽢x(k ∣ k− 1) + Bk · uK(k)

+ L[y(k)−C · 􏽢x(k ∣ k− 1)],
(22)

where 􏽢x(k + 1 ∣ k) denotes the estimation of x(k + 1) based
on measurements available at time k. )e gain L is the
steady-state Kalman filter gain, which can be calculated by

L � MCT CMCT
+ Rv􏼐 􏼑

−1
, (23)

where M is the solution of the corresponding algebraic
Riccati equation [13, 14, 18]:

M � AMAT
+ BRwB−AMCT CMCT

+ R􏼐 􏼑
−1
CMAT

.

(24)

By assuming the noise variances to be Rw � Rv � 0.01,
the Kalman filter gain was calculated from equation (23) as

L � 0 0 8.32 · 10−4 −6.40 · 10−7􏼂 􏼃. (25)

2.5. Simulation Setup. First, a pretraining of the algorithm
was conducted on the type-1 diabetes model in the scenario
where the patient is in a fasting condition (without food
intake). )e purpose of the pretraining simulation is to
obtain an initial estimation of the action-value function for
the algorithm. )e learning process was conducted by re-
peating the experiment multiple times (episodes). Each
episode starts with an initial blood glucose of 90mg/dL and
ends after 30 minutes. )e objective of the algorithm is to
search and explore actions that can drive the blood glucose
to its target level of 80mg/dL.

By using the initial estimation of the action-value
function, the controller was then tested in the daily sce-
nario with food intake. Comparisons were made between the
proposed reinforcement learning with the feedforward
(RLFF) controller, the optimal RL (ORL) controller [15], and
the proportional-integral-derivative (PID) controller. )e
ORL was designed with the same parameters and pretrained
in the same scenario as with the RLFF. )e PID controller
gains were chosen, which produces a similar blood glucose
settling time as the RLFF:

uk � Kp g(k)−gd(k)( 􏼁 + Ki 􏽘
k

g(k)−gd(k)( 􏼁

+ Kd(g(k)−g(k− 1)),

(26)

where

Kp � 1,

Ki � 0.001,

Kd � 0.01.

(27)

In order to understand the effects of different food types
on the controlled system, two sets of simulations were
conducted for food that has slow and fast glucose absorption
rates while containing a similar amount of carbs. Absorption

rates in the simulations are characterized by parameter τD

from the model, where τD � 50 corresponds to food with a
slow absorption rate and τD � 10 corresponds to food with a
fast absorption rate.)e amount of carbohydrate (CHO) per
meal can be found in Figure 2.

Next, the performance of the proposed controller was
evaluated under uncertainties of meal information. Two
cases of uncertainties were considered: uncertain CHO es-
timation case and uncertain meal-recording time. In the
uncertain CHO estimation, the estimated CHO information
that provided to the controller was assumed to be a normal
distribution with a standard deviation of 46% from the
correct carbohydrate value shown in Figure 2. )e standard
deviation value was used based on the average adult esti-
mates and the computerized evaluations by the dietitian
[19]. For the uncertain meal-recording time, the estimated
meal starting time is assumed to be a normal distribution
with a standard deviation of two minutes from the real
starting time. )is standard deviation value was randomly
selected because systematic research on the accuracy of
meal-time recording for patients with type-1 diabetes could
not be found. For each case, multiple simulations were
conducted in the same closed-loop system with its corre-
sponding random variables. From the obtained results, the
mean and standard deviation for blood glucose responses at
each time point will be calculated and analyzed.

3. Results

After pretraining in the no-meal scenario, the Q-function
was estimated as follows:

Q
π
k(x, u) � xT

k uT
k􏽨 􏽩

4.454 · 102 −8.870 · 104 −0.084

−8.870 · 104 3.538 · 107 33.630

−0.084 33.630 0.010

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
xk

uk

􏼢 􏼣.

(28)

)e initial basal policy was obtained from the initial Q-
function and equation (12):

ubasal(k) � 8.86(g(k)− 80)− 3534.11χ(k) + 7.326. (29)

)e initial estimation of the Q-function and the initial
basal policy were used for subsequent testing simulations of
the control algorithm.

During the simulation with correct meal information,
blood glucose responses of the RLFF, the ORL, and the PID
are shown in Figures 3 and 4. )e insulin concentration
during the process can also be found in Figures 5 and 6.With
slow-absorption food, the fluctuation range of blood glucose
was approximately ±30mg/dL for all three controllers from
the desired value (Figure 3). However, with fast absorption
glucose meals, the fluctuation range of the postmeal blood
glucose level was within ±40mg/dL with the RLFF compared
to ±60mg/dL with the ORL and is significantly smaller than
the fluctuation range ±80mg/dL of the PID (Figure 4).
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Figures 7 and 8 show the blood glucose variation under
uncertain meal time and CHO counting. )e upper and
lower bounds in shaded areas show the mean blood glucose
value plus and minus the standard deviation for each in-
stance. Under uncertain meal information, the upper
bound was kept to be smaller than 40mg/dL from the
desired blood glucose value for fast glucose absorption food
and 15mg/dL for slow glucose absorption food. )e lower
bound is smaller than 15mg/dL from the desired value for

fast glucose absorption food and 5mg/dL for slow glucose
absorption food.

4. Discussion

)e controller has shown its capability to reduce the rise of
postmeal blood glucose in our simulations. It can be seen in
Figures 3 and 4 that three controllers were able to stabilize
the blood glucose. However, when using the RLFF, the added
bolus makes the insulin responses much faster when there is
a change in blood glucose level, which reduces the peak of
the postmeal glucose rise by approximately 30 percent
compared to the ORL and 50 percent compared to the PID
in the fast-absorption case. It can also be seen that the
undershoot blood glucose (the distance between the lowest
blood glucose and the desired blood glucose value) of the
PID controller is much larger than that of the RLFF and the
ORL. )e RLFF has the smallest glucose undershoot among
the three controllers. Low blood glucose value (hypogly-
cemia) can be very dangerous for patients with type-1 di-
abetes. )erefore, simulation results show the advantage of
using RLFF in improving safety for patients. In general, with
the feedforward algorithm, the proposed algorithm is an
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Figure 4: Comparison of the blood glucose responses in the
nominal condition for fast glucose absorption food.
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Figure 5: Comparison of insulin concentrations in the nominal
condition for slow glucose absorption food.
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Figure 6: Comparison of insulin concentrations in the nominal
condition for fast glucose absorption food.
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Figure 3: Comparison of the blood glucose responses in the
nominal condition for slow glucose absorption food.
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effective tool for countering the effects of external events
such as meal intake.

Among uncertainties, carb counting created more effect
on the variation of the blood glucose than meal-time re-
cording, especially with slow absorbing food. )e un-
certainty in recording meal time may also lead to larger
undershot of blood glucose below the desired level as can be
seen in Figure 7. Following the same trend as previous
simulations, the fluctuation range of the blood glucose with
slow absorbing food is smaller than the fluctuation range
with fast glucose absorbing food. In general, the control
algorithm kept the blood glucose at the healthy level al-
though uncertainties affect the variation of the responses.
However, an accurate carbohydrate counting and accurate
meal-time recording method are still important for the
purpose of blood glucose control in order to completely
avoid the chance of getting hypoglycemia.

5. Conclusion

)e paper proposes a blood glucose controller based on
reinforcement learning and feedforward algorithm for type-

1 diabetes.)e controller regulates the patient’s glucose level
using both basal and bolus insulin. Simulation results of the
proposed controller, the optimal reinforcement learning,
and the PID controller on a type-1 diabetes model show that
the proposed algorithm is the most effective algorithm. )e
basal updates can stabilize the blood glucose, and the bolus
can reduce the glucose undershoot and prevent hypogly-
cemia. Comparison of the blood glucose variation under
different uncertainties provides understandings of how the
accuracy of carbohydrate estimation and meal-recording
time can affect the closed-loop responses. )e results
show that the control algorithm was able to keep the blood
glucose at a healthy level although uncertainties create
variations in the blood glucose responses.

Appendix

Blood Glucose Model

In this paper, the insulin-glucose process was used as the
subject in our simulations. )e model is described by the
following equations [20–23]:

dD1(t)

dt
� AGD(t)−

D1(t)

τD

, (A.1)

dD2(t)

dt
�

D1(t)

τD

−
D2(t)

τD

, (A.2)

dg(t)

dt
� −p1g(t)− χ(t)g(t) +

D2(t)

τD

, (A.3)

dχ(t)

dt
� −p2χ(t) + p3V i(t)− ube( 􏼁, (A.4)

where variable descriptions and parameter values are given
in Tables 1 and 2. In this model, the inputs are the amount of
CHO intakeD and the insulin concentration i(t).)e output
of the model is the blood glucose concentration g(t). It is
assumed that the blood glucose is controlled by using an
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Figure 7: Blood glucose responses under uncertainties for fast glucose absorption food.
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insulin pump, and there is no delay between the adminis-
tered insulin and the plasma insulin concentration.
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,e purpose of this study is to evaluate the feasibility of extending a previously developed amyloid biomathematical screening
methodology to support the screening of tau radiotracers during compound development. 22 tau-related PET radiotracers were
investigated. For each radiotracer, in silico MLogP, Vx, and in vitro KD were input into the model to predict the in vivo K1, k2, and
BPND under healthy control (HC), mild cognitive impaired (MCI), and Alzheimer’s disease (AD) conditions. ,ese kinetic
parameters were used to simulate the time activity curves (TACs) in the target regions of HC,MCI, and AD and a reference region.
Standardized uptake value ratios (SUVR) were determined from the integrated area under the TACs of the target region over the
reference region within a default time window of 90–110min. ,e predicted K1, k2, and BPND values were compared with the
clinically observed values. ,e TACs and SUVR distributions were also simulated with population variations and noise. Finally,
the clinical usefulness index (CUI) ranking was compared with clinical comparison results. ,e TACs and SUVR distributions
differed for tau radiotracers with lower tau selectivity.,e CUI values ranged from 0.0 to 16.2, with 6 out of 9 clinically applied tau
radiotracers having CUI values higher than the recommend CUI value of 3.0. ,e differences between the clinically observed
TACs and SUVR results showed that the evaluation of the clinical usefulness of tau radiotracer based on single target binding
could not fully reflect in vivo tau binding.,e screening methodology requires further study to improve the accuracy of screening
tau radiotracers. However, the higher CUI rankings of clinically applied tau radiotracers with higher signal-to-noise ratio
supported the use of the screening methodology in radiotracer development by allowing comparison of candidate radiotracers
with clinically applied radiotracers based on SUVR, with respect to binding to a single target.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder defined by histopathological features such as senile
plaques and neurofibrillary tangles (NFT), and clinical
symptoms such as memory loss and reduced executive
functions [1]. ,e yearly number of AD cases is increasing
worldwide, leading to an increased cost of care for dementia
patients. Positron emission tomography (PET) using amy-
loid and tau radiotracers can measure the amyloid and tau
loads, in terms of standardized uptake values ratio (SUVR),
and their distributions in a subject’s brain from static PET
images. Since abnormal accumulation of amyloid and tau in

the brain occurs before clinical symptoms appear, the im-
aging of these precursors can support differential diagnosis
and early intervention to increase the success rate of treating
AD or slow down the rate of dementia. As such, the 2018
National Institute on Aging-Alzheimer’s Association (NIA-
AA) research framework includes not only symptomatic
stages of AD, but also biomarker classification involving
amyloid, tau, and neurodegeneration AT(N) biomarkers [2].
,e new framework will be able to identify subjects at risk
for AD for suitable and early treatment, in particular,
preclinical AD subjects (classified as A+T−(N−) or
A+T+(N+)), who are not cognitively impaired but have
abnormal amyloid and tau protein deposits [2].
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Despite active efforts since 2000 to develop amyloid and
tau-targeting PET radiotracers to assist in the diagnosis of
AD and to support AD drug development, there are few
radiotracers that have made it into clinical studies and
displayed good clinical efficacy. In conventional radiotracer
and drug development, poor bench-to-bedside translation
often results due to the differences between in vitro and in
vivo conditions. Similarly, animal models, especially ro-
dents, are often poor predictors of human physiology and
treatment response and have been reported to be incorrect in
approximately one out of three cases [3]. Although larger
animals (e.g., pigs and primates) show closer physiology to
that of human, they are still in-prefect human models and
are costly for high-throughput screening compared to ro-
dents. ,ese issues lead to high attrition rates in drug and
radiotracer development. Biomathematical simulation can
complement high-throughput screening by allowing si-
multaneous and rapid evaluation of many candidate ra-
diotracers [4–6].

Compared to amyloid radiotracers, the development of a
successful tau radiotracer encounters additional challenges
due to the tau phenotypes. Tau proteins have six isoforms,
which differ in the number of exons (0, 1, 2) on the acidic
region and the number of repeats (3 repeats (3R) or 4R) in
the repeat-domain regions [7]. ,e different isoforms un-
dergo several posttranslational modifications, leading to
various ultrastructural conformations, which will affect the
binding of tau radiotracers. In addition, they also need to
discriminate between the paired helical filament (PHF) tau
from other β-sheet structured aggregates such as amyloid-
beta (Aβ) and α-synuclein. Although the tau protein is larger
than the Aβ protein, the tau binding sites are present in
smaller concentrations compared to the Aβ binding sites by
5–20 folds; hence, the selectivity of tau over other β-sheet
structured aggregates needs to be high to ensure accurate
quantification. Moreover, as tau proteins exist in-
tracellularly, tau radiotracers not only need to cross the
blood-brain barrier (BBB), they also need to be able to cross
the cell membrane [8].

Existing clinically applied tau radiotracers showed some
limitations. [11C]PBB3 has high binding selectivity to tau
over Aβ, but it is difficult to synthesize as it will undergo
photoisomerization [9]. Moreover, it is rapidly metabolized
in the plasma, and its polar metabolite is shown to cross the
blood-brain barrier and enter into the brain [10]. ,e short
half-life of carbon-11 has also prompted the development of
fluorinated PBB3 compounds ([18F]AM-PBB3 and [18F]PM-
PBB3) and other tau radiotracers so that they can be used in
hospitals without dedicated cyclotron facilities. [18F]T808
(also known as [18F]AV-680) exhibits defluorination, which
will affect the quantitative analysis of PET images especially
for regions near the skull [11]. Some THK compounds
(Tohoku University, Japan) showed differences in the uptake
due to the enantiomeric properties of the compounds [12]. A
serious confounding factor facing the development of tau
radiotracers is off-target brain binding, which might affect
the quantitative analysis of the PET images as observed in
[11C]PBB3, [18F]THK5351, and [18F]flortaucipir (also
known as [18F]AV1451 or [18F]T807) [13–15]. [18F]MK6240

was reported to have reduced off-target binding but further
evaluation was still required [16].

We have previously developed an amyloid bio-
mathematical screening methodology to support the screen-
ing of candidate amyloid radiotracers during compound
development [4, 5]. ,e screening methodology predicts the
standardized uptake values ratios (SUVRs) of different subject
conditions of a radiotracer and then compares the clinical
usefulness of multiple radiotracers simultaneously in dis-
criminating the subject conditions using a clinical usefulness
index (CUI). ,e CUI was developed to objectively evaluate
the clinical usefulness of a radiotracer, based on its binding
capability to a single target of interest, in terms of SUVR. ,e
SUVR is a semiquantitative parameter that generalizes the
complicated behaviors of tau radiotracers. SUVR is also
generally preferred for diagnosis of patients in amyloid and
tau imaging; hence, the clinical data are more readily available
for comparison. ,us, we chose SUVR over other kinetic
parameters such as nondisplaceable binding potential (BPND,
unitless).

In this study, we evaluate the feasibility of extending the
amyloid-validated screening methodology to support the
development of tau PET radiotracers, where more challenges
like off-target binding exist. ,is is the first in silico method
investigated, which uses the physicochemical and pharma-
cological properties of the compounds to support tau PET
radiotracers developments. 22 PET radiotracers reported to
bind to tau proteins were investigated, including 9 clinically
applied and tau-focused radiotracers, namely, [18F]THK523,
[18F]THK5105, [18F]THK5117, [18F]THK5317, [18F]THK5351,
[18F]flortaucipir, [18F]T808, [11C]PBB3 and [18F]MK6240, and
3 clinically applied but non-tau-focused radiotracers, specif-
ically [18F]Lansoprazole, [11C]Astemizole, and [18F]FDDNP.

2. Materials and Methods

An overview of the amyloid biomathematical methodology
is described briefly, followed by the screening of tau PET
radiotracers using the biomathematical methodology. ,e
details of the methodology are found in somewhere [4, 5].

2.1. Biomathematical Screening Methodology. ,e screening
methodology was based on a simplified 1-tissue-
compartment model (1TCM), with the assumption that
the radiotracers cross the blood-brain barrier (BBB) by
passive diffusion. It consists of four main parts (Figure 1).

2.2. Generation of Physicochemical and Pharmacological
Parameters. A total of three inputs were required for each
radiotracer: in silico molecular volume and lipophilicity as
represented by McGowan Volume (Vx, cm3/mol/100),
Moriguchi LogP (MLogP, unitless), and an in vitro disso-
ciation constant (KD, nM) (Table 1). Vx and MLogP were
generated based on the chemical structure of the radiotracer
using commercial software, dproperties (Talete, Italy). KD
values were extracted from the literature, measured via
binding assays, using synthetic tau or human brain ho-
mogenates. MLogP was used to derive the free fractions of
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the radiotracer in tissues (fND, unitless) and in plasma (fP,
unitless) from the following relationships [4]:

fND � 7.717e
−1.634·MLogP

,

fP � 0.936 · f
0.600
ND .

(1)

,e list of 22 tau radiotracers and their respective in-
puts are shown in Table 1. ,e KD values that were utilized
for simulations are given in bold for human brain ho-
mogenates, and italicized for synthetic tau, if available for
comparison.

2.3. Derivation of 1TCM Kinetic Parameters. ,e influx rate
constant (K1, mL/cm3/min) was derived using the modified
Renkin and Crone equation, using compound-specific
permeability (P, cm/min), with fixed values of capillary
surface area (S � 150 cm2/cm3 of brain) and perfusion (f �

0.6mL/cm3/min) as follows [4, 6]:

K1 � f 1− e
−PS/f

􏼐 􏼑. (2)

,e compound-specific permeability was derived from
the simplified Lanevskij’s permeability model, with MLogP
and Vx as inputs [4, 6]:

P � 10−0.121(MLogP −2.298)2 −2.544log V1/3
x( )−2.525

. (3)

,e efflux rate constant (k2, min−1) can be derived using
K1, fP, and fND at equilibrium:

k2 �
fND

fP
· K1. (4)

,e in vivo nondisplaceable binding potential (BPND,
unitless) was determined using Mintun’s equation with
Bavail, fND, and KD:

BPND � fND ·
Bavail

KD
. (5)

,e available tau-binding sites (Bavail, nM) were mea-
sured using enzyme-linked immunosorbent assay (ELISA).
,e total amount of tau fibrils (Bavail, nM) in the frontal
lobes, parietal lobes, and hippocampus in HC and AD were
1.5 and 16.0 nM, respectively [29], assuming a tau molecular
weight of 78,928Da (https://www.phosphosite.org).

2.4. Simulations of Population Time Activity Curves (TACs)
and SUVRs. ,e predicted K1, k2, and BPND were used to

Influx rate constant

K1 = F(MLogP, Vx)

Efflux rate constant
k2 = G(K1, fp, fND)

Binding potential
BPND = H(fND, Bavail, KD)
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Figure 1: Overview of amyloid biomathematical screening methodology.
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simulate the TACs in the target regions of HC, MCI, and AD
and a reference region, with a fixed arterial input function
(IF):

CTarget(t) � K1 · e
−k2/ 1+BPND( )·t ⊗ IF(t),

CReference(t) � K1 · e
−k2 ·t ⊗ IF(t).

(6)

An input function with similar kinetics to that observed
in tau imaging with a fast uptake and washout is required to
reflect tau kinetics. For our simulations, a fixed arterial input
function was applied with fast kinetics that was derived by
averaging the metabolite-corrected arterial plasma input
functions of 6 HC subjects injected with [11C]BF227 [30].

,e same K1 and k2 scaling factors of 1.23 and 1.15, re-
spectively, were introduced to account for the differences
between the predicted and in vivo values [5].,e scaling factor
of BPND was modified from 0.39 to 1.0 because there were few
reported values to determine the appropriate scaling factor.
Monte Carlo simulations were applied to generate 1000 TACs
in both target and reference regions with 3% noise, to reflect
the noise in PETdata, and the population variation, by varying
K1 and k2 by 10% and 20%, respectively [5, 6].,e variations in
the tau fibrils inHC andADwere determined as 10% and 35%,
respectively, using the ratio of the summed standard deviation

to themean value [29].,e amount of soluble tau inHC,MCI,
andADwas reported, but since they did not correlate well with
the amount of phosphorylated tau, these values could not be
used [31]. In our simulations, the total amount of tau fibrils in
MCI was assumed to be the mean of that in HC and AD, with
the same amount of variation of 35%, as used for the amyloid
simulations [5].

1000 noisy TACs in both target and reference regions
were generated by computer simulations with noise. In our
simulation, the target region refers to a brain region with
varying concentrations of phosphorylated tau depending on
subject conditions (e.g., temporal lobe) and a reference is a
brain region devoid of phosphorylated tau (e.g., cerebellum).
1000 SUVRs of each subject condition of HC, MCI, and AD
were determined from the ratio of the areas under the TACs
of the target regions in HC, MCI, and AD and that of the
reference region within a chosen time window. For our
simulations, a default time window of 90–110min was se-
lected as the predicted TACs of HC, MCI, and AD appeared
to reach a quasi-steady-state in this time window for almost
all 9 clinically applied tau radiotracers (Supplementary 2). To
evaluate the efficacy of fixed time windows, SUVRs were also
determined using the literature-reported time windows for
the 9 clinically applied radiotracers.

Table 1: In silico MLogP and Vx and in vitro KD of 22 tau-related PET radiotracers. KD values employed for simulations are given in bold
(measured using brain homogenates) and italicized (measured using synthetic tau).

Radiotracers MLogP Vx KD References for KD

[18F]THK523 3.19 2.11
1.67α [17]
1.99α [18]
86.5 [19]

[18F]THK5105 3.08 2.59 1.45α [19]2.63
[18F]THK5116 2.62 2.31 106& [12]
[18F]THK5117 2.85 2.45 2.65$ [20]
[18F]THK5125 3.08 2.59 10.2 [12]
[18F]THK5129 2.48 2.55 3.14 [12]
[18F]THK5151 2.25 2.41 7.07 [12]
[18F]THK5287 1.94 2.55 2.60 [12]
[18F]THK5307 1.71 2.41 5.60 [12]
[18F]THK5317 2.85 2.45 9.40& [21]
[18F]THK5351 2.25 2.41 2.90 [15]
[18F]THK5451 2.25 2.41 28.0 [12]
[18F]flortaucipir 1.95 1.86 14.6# [22]
[18F]T808 3.64 2.23 22.0# [11]

[11C]PBB3 2.34 2.31 2.50α [10]
6.30 [23]

[18F]FDDNP 2.89 2.31 36.7α [18]
[18F]FPPDB 2.87 3.15 44.8 [24]
[11C]NML 1.98 2.51 0.700α [25]

[18F]Lansoprazol 1.75 2.37 3.30α [25]
>3998δ [11]

[11C]Astemizole 4.63 3.56
13.4 [26]1.86α

>3998δ [11]
[18F]MK6240 2.49 1.96 0.260β [27]
[18F]JNJ64349311 ([18F]JNJ311) 2.07 1.83 7.90δ [28]
Units: MLogP (unitless), Vx (cm3/mol/100), KD (nM). $Averaged KD values (2.2, 3.1) for tau in AD brain homogenates of temporal and hippocampus.
βAveraged KD values 0.14, 0.30, 0.25, 0.24, and 0.38 for tau in AD brain homogenates of frontal and entorhinal cortex of 5 AD. αKD values are measured using
synthetic tau (K18Δ280K) &Ki values measured using AD brain homogenates with THK5105 as competitor δKi values measured using AD brain homogenates
with T808 as competitor. #KD values measured using AD brain via autoradiography.
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2.5. Tracer EvaluationUsing CUI. Az, Es, and Sr are the area
under the receiver operating characteristics curve, effect size,
and SUVR ratios, respectively. ,e 1000 SUVR simulated
under the subject conditions of HC, MCI, and AD were used
to determine Az, Es, and Sr for conditions-pairs of HC-MCI
andMCI-AD. CUI was then derived from the product of the
averaged Az (Az), Es (Es), and Sr (Sr) of conditions-pairs of
HC-MCI and MCI-AD with equal weightage applied:

CUI � Az × Es × Sr. (7)

,e simulated TACs and the predicted SUVR were
compared to the clinical data of 9 clinically applied tau
radiotracers. ,e predicted K1, k2 and BPND values were
compared with the clinically observed values where appli-
cable. Finally, the list of 22 tau radiotracers (Table 1) was
evaluated using CUI. We previously developed a MATLAB-
based program, RSwCUI, (Ver. 2014b, ,eMathWorks, US)
[5], to support the screening of amyloid radiotracers based
on the proposed amyloid biomathematical screening
methodology. ,e program was used for the evaluation of
tau radiotracers in this study.

3. Results

Figure 2 shows the simulated TACs for the target regions of
HC, MCI, and AD and reference regions of 9 clinically
applied tau radiotracers. In general, the clinically observed
TACs of THK compounds of the reference region had higher
peaks and faster washout in the cerebellum than the target
regions [15,32–35], while the peaks of the simulated TACs of
the reference region were always lower than that of the target
regions (Figures 2(a)–2(e)). ,e simulated TACs of [11C]
PBB3 (Figure 2(f )) were close to that observed clinically in
AD in the nonbinding and low-, middle-, and high-binding
regions [10]. ,e simulated TACs of [18F]flortaucipir
(Figure 2(g)) had slightly sharper peaks and faster washout
compared to the clinically observed TACs for both HC and
AD [36]. Unlike the THK compounds, the peaks of the
clinically observed TACs of the target regions of [18F]flor-
taucipir were higher than that of the reference region, which
was also observed in the simulated TACs [36]. ,e predicted
TACs of [18F]T808 for both the reference and the target
regions of HC, MCI, and AD conditions completely over-
lapped with each other (Figure 2(h)). ,e clinically observed
TACs of [18F]T808 appeared close to that of [18F]flortaucipir,
but with smaller differences between the subject conditions.
However, the simulated TACs showed complete overlapped
between the HC and AD conditions with a slower uptake
and washout [37]. ,e predicted TACs of both target and
reference regions of [18F]MK6240 showed similar fast uptake
but slower washout than clinically observed TACs [16].

Table 2 compares the predicted and clinically-reported
values of K1, k2, and BPND of five clinically applied tau
radiotracers with reported kinetic parameters. For [18F]
flortaucipir, the predicted K1 and k2 values of 0.256 and
0.199, respectively, were relatively close to the reported
averaged cerebellar K1 and k2 values of 0.26 and 0.17, re-
spectively [36]. ,e predicted k2 value of [18F]THK5351 was
0.140, which was higher than the clinically observed value of

0.115, with a difference of 21.7% [38]. However, unlike [18F]
flortaucipir where both K1 and k2 values were determined
using the two-tissue-compartment model with a variable
fraction [36], the reported k2 value of [18F]THK5351 was an
apparent rate constant from reference region to plasma,
which was determined using the simplified reference tissue
model (SRTM) [38].

,e predicted k2 value of [18F]THK5317 of 0.087 was
close to the literature-reported value of 0.09, even though
K1 of [18F]THK5317 value differed of [18F]THK5317 from
the clinically observed value with a difference of −39% [39].
,e predicted BPND values of 0.125 and 8.13 were very
different from the clinically observed values of 0.60 and
5.11 in AD for [18F]THK5317 [39] and [18F]MK6240 [16].
,e predicted BPND value was fairly close to that of [11C]
PBB3 [10]. ,e predicted K1 of [18F]MK6240 was close to
the clinically observed K1 value with 2.50% difference but
the predicted k2 value yielded greater difference of about
40% [16].

Table 3 shows the predicted SUVR values obtained using
the default time window and literature-reported time
window of 90–110min, and the clinically observed SUVR for
10, 10, and 9 clinically applied tau radiotracers. ,e dif-
ferences in the SUVRs predicted using both time windows
were very small for both HC and AD. ,e predicted SUVR
for HC was always greater than 1.0, but the clinically ob-
served SUVR values were less than 1.0 for some radiotracers.
In general, the clinically observed SUVR for HC and AD
were greater than the predicted SUVR determined using the
literature-reported time window, except for [11C]PBB3 and
[18F]MK6240, where the predicted SUVR for HC and AD
were greater.

,e correlations between the predicted and highest
clinically observed SUVR for AD were similar with co-
efficients of determination, R2 of 0.90 and 0.89, re-
spectively, using the literature-reported time window
and the default time window (Figure 3). However, the
good correlation was driven by [18F]MK6240, which had
the highest predicted and clinically observed SUVR. Poor
correlation was observed after removing [18F]THK5351
and [18F]MK6240. ,e small difference between the
predicted SUVR using the default and clinical-reported
time window, and the value of R2, showed that the default
time window of 90–110min was suitable for predicting
the SUVR of the tau radiotracers (Figure 3).

,e simulated SUVR distribution of [18F]THK523
across HC, MCI, and AD conditions substantially
overlapped each other (Figure 4(a)). However, the
clinically observed SUVR distribution of [18F]THK523
differed across different regions of interest, with HC−
(PIB-negative) having the smallest spread and smallest
values, HC+ (PIB-positive) having a relatively large
spread and values ranging between that of HC− and AD,
and AD subjects having the largest values and a nearly
similar spread as HC+ [30]. For [11C]PBB3, [18F]
THK5117, and [18F]flortaucipir, the clinically observed
SUVR distributions were generally larger for AD than
HC for all regions of interest analyzed, in terms of the
spread and absolute values [14, 34, 40]. ,e trend of the
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simulated SUVR population distribution was close to
that observed clinically for HC and AD conditions
(Figures 4(b)–4(d)). ,is supported the use of 35%, 35%
and 10% variations in Bavail for population simulations.

Figure 5 shows the CUI distribution of 22 tau-related
radiotracers. Among the clinically applied tau radiotracers,
[18F]MK6240 was ranked first, followed by [18F]THK5351,
[18F]THK5117, [11C]PBB3, [18F]flortaucipir, [18F]THK5317,
[18F]FDDNP, [18F]T808, and [18F]THK523, based on the KD
values measured using AD brain homogenates. For candi-
date radiotracers, [18F]THK5287 was ranked first based on
the KD values measured using AD brain homogenates, while
[11C]NML was ranked first based on the KD values measured
using heparin-induced tau polymer (HITP) (Table 1). ,e
CUI values generated using the KD values for the synthetic
tau were higher than those of the brain homogenates as the

KD values measured using synthetic tau were smaller (Ta-
ble 1). ,e ranking of the CUI values generated using the KD
values measured with synthetic tau and brain homogenates
differed for [18F]THK523, [18F]THK5105, and [11C]PBB3. 10
out of 16 tau radiotracers had CUI values higher than the
recommend CUI value of 3.0, where the results were simu-
lated using KD values measured with human brain homog-
enates. Apart from [18F]THK523, [18F]THK5317, [18F]T808,
and [18F]FDDNP, the other 6 clinically applied tau radio-
tracers yielded high CUI values. ,e CUI values ranged from
about 0.0 to 16.2, which ranged wider than that for amyloid.

4. Discussion

In this paper, we evaluated the feasibility of extending a
previously developed amyloid biomathematical screening
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Figure 2: Simulated TACs of target regions of HC, MCI, and AD and reference regions for (a) [18F]THK523, (b) [18F]THK5105, (c) [18F]
THK5117, (d) [18F]THK5317, (e) [18F]THK5351, (f ) [11C]PBB3, (g) [18F]flortaucipir, (h) [18F]T808, and (i) [18F]MK6240 from 0–120min.
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methodology to support the screening of candidate tau
radiotracers during compound development. 22 clinically
applied and candidate tau-related radiotracers were thus
used to investigate the CUI ranking of clinically applied and
candidate tau radiotracers.

4.1. Comparison of Simulated TACs and SUVR Distribution.
,e simulated TACs were very different from the clinically
observed TACs of [18F]THK523 and [18F]T808, but were
only slightly different for that of [18F]THK5117, [18F]
THK5351, [18F]flortaucipir, [11C]PBB3, and [18F]MK6240
(Figure 2). ,e simulated SUVR distributions were different
for [18F]THK523 but were similar to the clinically observed
results under HC and AD conditions for [18F]THK5117,

[18F]flortaucipir, and [11C]PBB3 (Figure 4). Both the pre-
dicted and clinically observed SUVR values were less than
1.0 in HC for some radioligands, especially those with a
lower selectivity for tau (e.g., [18F]THK523). ,e clinically
observed SUVR of AD is much higher than that of HC.
However, there is little difference in the predicted SUVR for
[18F]THK523. ,is shows that the predictions were less
accurate for tau compounds with a lower selectivity for the
target. Poor predictions might be due to binding to other
β-sheet structured proteins or off-target sites shown in the
clinical data, whereas the predicted values showed the
binding of the radiotracers to only the target site. Non-
specific binding in white matter may also lead to spill-over
into the surrounding cortical regions, leading to higher
clinically observed SUVRs.,e issue of non-specific binding

Table 2: Comparison of predicted and clinically observed K1, k2, and BPND values of four clinically applied tau radiotracers.

Radiotracers
Literature

Predicted
values

%
diffParameters Region Clinically observed

values References

[18F]flortaucipir K1
Cerebellum excluding

vermis 0.26 [36] 0.256 −1.54

k2 0.17 0.199 17.1
[18F]THK5351 (S-enantiomer of [18F]
THK5151) k2′‡ Targetβ 0.115 [38] 0.140 21.7

[18F]THK5317 (S-enantiomer of [18F]
THK5117)

K1 Targetδ 0.33 [35] 0.202 −38.8
k2 0.09 0.087 −3.33

BPND
(AD)∗ Putamen 0.60 [39] 0.125 −79.2

[11C]PBB3 BPND
(AD)¶

High-binding cortical
regions 0.37 [10] 0.427 15.4

[18F]MK6240
K1 Posterior cingulate

cortex

0.246
[16]

0.252 2.50
k2 0.099 0.138 39.2

BPND§ 5.11 8.13 59.2
βTarget ROIs: anterior cingulate, brainstem, caudate nucleus, eroded white matter, entorhinal cortex, frontal cortex, fusiform gyrus, hippocampus, inferior
temporal cortex, lingual gyrus, middle temporal gyrus, occipital cortex, pallidum, parahippocampal gyrus, parietal cortex, posterior cingulate, precuneus,
putamen, thalamus. δTarget ROIs: thalamus, putamen, hippocampus, amygdala, parietal cortex, frontal cortex, sensory motor cortex, occipital cortex,
midbrain, entorhinal cortex, and temporal cortex. ∗BPND � DVR-1, where DVR was determined using reference Logan, averaged from 4 prodromal AD.
¶BPND determined using MRTM0. §BPND determined using k3/k4 using 2T4CM in 7 symptomatic individuals classified as MCI and AD. ‡k2′ optimized from
fitting all target ROIs using SRTM with cerebellum as the reference region.

Table 3: Comparison of predicted (literature-reported and default time window of 90–110min) and clinically observed SUVR (highest
SUVR in AD) of HC and AD conditions.

Clinically applied radiotracers

Predicted SUVR Clinically observed SUVR

Default Literature Highest in
AD Regions Time window (min) References

HC AD HC AD HC AD
[18F]THK523 1.00 1.01 1.00 1.01 0.96 1.81 ITL 60–90 [32]
[18F]THK5105 1.03 1.34 1.03 1.35 1.41 1.52 PU 90–100 [33]
[18F]THK5117 1.04 1.47 1.05 1.56 1.57 1.77 PU 50–60 [34]
[18F]THK5317 1.01 1.13 1.01 1.14 — — — — —
[18F]THK5351 1.10 2.11 1.11 2.38 2.14 2.98 HIP 50–60 [15]
[18F]flortaucipir 1.03 1.35 1.03 1.35 1.17 2.19 ITL 80–100 [40]
[18F]T808 1.00 1.02 1.00 1.02 0.94 1.52 LTL 80–100 [35]
[11C]PBB3 1.04 1.43 1.05 1.55 0.85 1.42 Global# 30–50 [10]
[18F]FDDNP 1.00 1.03 1.00 1.04 1.24 1.37 ACG 45–55 [41]
[18F]MK6240 1.78 9.94 1.78 9.93 — ∼5∗ PRE 90–110 [16]
ITL � inferior temporal lobe, LTL � lateral temporal lobe, PU � putamen, PAR � parietal lobe, HIP � hippocampus, ACG � anterior posterior cingulate, PRE
� precuneus. #Global � cerebral cortex for HC and high binding ROI for AD. ∗SUVR is approximated from the plot, taking the highest SUVR in AD.
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is more apparent for tau radiotracers with lower tau-binding
selectivity, such as [18F]THK523 and [18F]THK5117
(Table 2).

4.2. Comparison of Predicted 1TCM and SUVR. ,e pre-
diction for the K1 and k2 values of the tau radiotracers
appeared to work well in racemic compounds (e.g., [18F]
flortaucipir), but not as well for enantiomeric compounds
like [18F]THK5351 and [18F]THK5317, which are

S-enantiomers of [18F]THK5151 and [18F]THK5117 re-
spectively (Table 2).,e predictions for BPND were generally
poor for the three clinically-reported tau radiotracers (Ta-
ble 2). ,is may be due to the use of a simplified 1TCM for
prediction, even though 2TCM was reported to be more
suitable for many clinically applied tau radiotracers. ,e
simplified 1TCM was selected even though 2TCM is more
accurate for modeling tau kinetics as the prediction of a
larger number of microparameters may be difficult to es-
timate reliably. Moreover, the 1TCM worked reasonably
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Figure 4: Simulated SUVR distributions of (a) [18F]THK523, (b) [18F]THK5117, (c) [18F]flortaucipir, (d) [11C]PBB3.
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well in predicting the kinetics of the amyloid radiotracers,
even though 2TCM was reported to be more suitable [5].
Other possible reasons for the poorer BPND predictions in-
cluded differences in binding to the plasma proteins due to
the enantiomeric properties of the radiotracers [42], me-
tabolites crossing the BBB for [11C]PBB3 [10], binding of tau
radiotracers to other similar β-sheet structures (Aβ and α--
synuclein), or off-target binding in target regions of interest
[13–15]. ,e predicted 1TCM parameters and SUVR, as well
as the simulated TACs and SUVR distribution, were com-
pared to clinically observed data where applicable. However,
we were limited by the small number of reported kinetic
parameters and SUVR values to fully assess the amyloid
biomathematical model for screening tau radiotracers.

,e predicted and highest clinicallyobserved SUVR data
for AD correlated well using fixed time window of 90–
110min and the literature-reported time window with R2

values of 0.88 and 0.89 respectively, for 9 clinically applied
tau radiotracers (Figure 3). However, the results were driven
mostly by [18F]MK6240. Some of the clinically applied tau
radiotracers ([18F]THK523, [18F]THK5351 and [18F]flor-
taucipir) did not have high selectivity for tau, which may
have contributed to smaller predicted values as the predicted
values were based on binding to a single target site but the
off-target binding or specific binding to other β-sheet
structures (e.g., amyloid) may yield higher clinical SUVR
values. ,e predicted TACs of [18F]T808 exhibited a much
slower clearance compared to the clinically observed ki-
netics, which resulted in a large difference between the
predicted and clinically observed SUVR. ,is may be due to
the poor predictive ability of in silico parameters for [18F]
T808, which has a unique chemical structure.

4.3. Comparison of Tau Radiotracers with CUI. ,e CUI
value of [18F]flortaucipir was large while the CUI value of
[18F]T808 was very small and does not appear to be a
promising clinical tau radiotracer. Similarly, [18F]THK523
also yielded a small CUI value, even though studies showed
that it could be applied clinically. [18F]THK523, [18F]Lan-
soprazole, and [11C]Astemizole yielded small CUI values
using the KD values measured using human brain homog-
enates, which differed greatly from that measured using
synthetic tau. KD or Ki values measured using AD brain
homogenates were very different from those measured using
heparin-induced tau polymer (HITP) (Table 1). ,is is
because HITP is composed of only 3R and/or 4R, and hence
may not undergo the same phosphorylation process as
human tau [19, 43]. On the other hand, theKD orKi values of
amyloid radiotracers measured using synthetic tau and AD
brain homogenates did not differ greatly [5]. ,e huge
difference in the KD values measured using human brain
homogenates and synthetic tau were much greater for [18F]
THK523 than for [18F]THK5105 (Table 1). ,is might also
indicate the binding preferences of [18F]THK523 to certain
tau-binding sites available on synthetic tau, that were fewer
in numbers in human brain homogenates. ,erefore, it is
important to determine the binding affinity of tau radio-
tracers to different subtypes of tau protein and other β-sheet
structures such as Aβ and α-synuclein.

[18F]THK5351 yielded higher clinically observed SUVR
than [18F]THK5117 in the same AD patients, with lower
white matter binding [15]. [18F]THK5351 was also reported
to have a higher signal-to-noise ratio (SNR), and a lower
non-specific binding in white matter than [18F]THK5105
and [18F]THK5117 [8]. Similarly, the CUI value of [18F]
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Figure 5: CUI distributions of 22 tau-related PET radiotracers.
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THK5351 was higher than [18F]THK5105 and [18F]
THK5117. [11C]PBB3, [18F]flortaucipir, and [18F]THK5105
have nearly similar CUI values (Figure 5), but the difference
in the clinically observed SUVR values between HC and AD
were greatest in [18F]flortaucipir, followed by [11C]PBB3
then [18F]THK5105 (Table 3). ,is difference may be at-
tributed to the tau subtypes that [11C]PBB3 is binding. [18F]
THK5351 and [18F]flortaucipir was reported to bind to the
same targets but with different affinities, while [11C]PBB3
seems to bind to a different tau subtype [44]. If the tau
subtype that [11C]PBB3 binds to is of a lower concentration
in subject, the clinical SUVR will become smaller. ,e
difference between the clinically observed results and CUI
ranking showed that the evaluation of the clinical usefulness
of tau radiotracer based on binding to a single target could
not reflect the actual in vivo binding in subjects. High tau
selectivity and off-target binding affect the comparison of the
in vivo binding of tau radiotracers, which are less prominent
in amyloid radiotracers. Despite the differences in CUI
rankings, the clinically applied tau radiotracers had CUI
values above the recommended value especially for those
with high SNR. ,us, the screening methodology can still
provide confidence in the decision-making of moving
candidate radiotracers for clinical studies.

4.4. Limitations of Screening Methodology. Few measure-
ments of tau concentration in postmortem human brains
using ELISA have been reported, and these values are very
different [17, 29, 45, 46]. In addition, these reported tau
concentrations were mostly measured using normal-aged
control and AD brains, with very little data on the tau
concentration in MCI. As such, the simulated SUVR dis-
tribution might not reflect the clinically observed MCI re-
sult. Moreover, the input function of the amyloid radiotracer
[11C]BF227 was used for simulations. ,us far, the input
functions of only three clinically applied tau radiotracers of
[11C]PBB3 [10], [18F]flortaucipir [36], and [18F]MK6240 [16]
have been reported. ,e arterial input functions of these
radiotracers were similar in HC and AD, with a fast uptake
and a fast washout, and the shape of the curves was similar to
that of [11C]BF227 as used in the simulation. Although the
shape of the input function of these two radiotracers was
similar to that of [11C]BF227, the shape of the arterial input
function might be different for other tau radiotracers. ,us,
we evaluated the effect of the input function on the outcome
using four different input functions with fast kinetics for HC
and AD subjects injected with [11C]BF227 or [18F]FACT,
with areas under the input function curves from 0 to 120min
of 536 (default), 649, 434, and 306 (kBq/mL) min. ,e %
COV of the predicted SUVR was less than 7.0 for all con-
ditions and radiotracers, while %COV of the CUI was less
than 7.0 for all except the poor radiotracers, namely, [18F]
FDDNP, [18F]FPPDB, and [11C]Astemizole. ,is showed
that the results would not be changed significantly using
input functions with similar kinetics. However, there were
also issues with metabolites crossing the BBB (e.g., [11C]
PBB3), but the amyloid biomathematical screening

methodology could not be used to predict the possibility of
metabolites crossing this barrier.

Off-target binding was observed in some clinically ap-
plied tau radiotracers. [18F]flortaucipir was reported to show
specific binding in the midbrain, vessels, iron-associated
regions (e.g., basal ganglia), substantia nigra, calcifications
in the choroid plexus, and leptomeningeal melanin [13].
[11C]PBB3was reported to accumulate in the venous sinuses,
basal ganglia, and thalamus, while its fluorinated com-
pounds showed off-target binding in the choroid plexus
[14, 44]. [18F]THK5351 was reported to bind to monoamine
oxidase B (MAO-B), which is highly expressed throughout
the brain, and thus, its tau binding data needs to be corrected
for MAO-B binding [47]. [18F]MK6240 was reported to have
reduced off-target binding on the whole but showed off-
target binging in regions such as the retina, substantia nigra,
ethmoid sinus, and dura matter [16]. Depending on the
region of off-target binding, the effects may not limit PET
quantification due to little or no anatomical overlap of the
target regions of interest (ROIs) with off-target regions.
Accurate PET quantification is also less affected if the ra-
diotracer has high target selectivity or if the concentrations
of the off-target binding sites are much lower compared to
that of the target [48]. Off-target binding may be one of the
contributing factors that led to the observed differences
between simulation and the clinical data of tau PET ra-
diotracers. ,e possibility of binding to off-targets is difficult
to predict, and systematic screening is required to determine
the binding of the candidate compound to a wide range of
proteins. ,is will increase the time and cost of compound
screening. ,e amyloid biomathematical screening meth-
odology could not predict off-target binding, and the in-
clusion of multiple binding sites appeared to be required for
tau radiotracers to correct for this issue.

4.5. Feasibility of Extending to the Screening of Tau
Radiotracers. To date, the comparison of multiple tau ra-
diotracers has been performed via in vitro competition
binding assays in human brain sections, using human AD
brain homogenates [11, 12] or by means of preclinical
imaging [38]. ,ere is a lack of consideration of the possible
in vivo kinetics of the radiotracers during development,
which may lead to poor clinical performance [4–6]. ,e use
of in silico data can support predictions of tracer kinetics and
increases confidence in clinical translation, in addition to
facilitating radiotracer comparisons. ,e weak SUVR cor-
relation was obtained between the predicted and clinically
observed SUVR results, mostly due to the small SUVR values
for tau radiotracers with poorer tau selectivity. However,
there are very few reported kinetic parameters to assess the
limitations of the screening methodology. ,e TACs, SUVR
distribution, and CUI rankings differed primarily for tau
radiotracers with low selectivity to tau. ,is showed that the
evaluation of the clinical usefulness of tau radiotracer based
on binding to a single target could not fully reflect the actual
in vivo binding in subjects since they also exhibited binding
preferences to nontarget sites. ,us, it is not feasible to
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directly apply the amyloid biomathematical screening
methodology to tau radiotracers due to the increased
complexity of evaluating the binding of tau radiotracers,
namely, target-binding, off-target binding, and non-specific
binding. More work is required to improve the accuracy of
predicting the clinical usefulness of tau radiotracers by in-
cluding possible binding to other β-sheet structures or off-
target sites. However, the high CUI values generated for
clinically applied tau radiotracers with high SNR showed
that the screening methodology could be used to increase
confidence in decision-making when choosing candidate
radiotracers for further evaluation.

5. Conclusions

,e predicted TACs, SUVR, and CUI ranking differed for
some clinically applied tau radiotracers, especially those
with lower selectivity for tau. ,is showed that the eval-
uation of the clinical usefulness of tau radiotracer based on
binding to a single target could not reflect the actual in vivo
tau binding in subjects due to more challenges in evaluating
the in vivo binding of tau radiotracers, such as off-target
binding and high tau selectivity, compared to amyloid
radiotracers. ,e inclusion of possible binding to other
β-sheet structures or off-target sites and the binding af-
finities to different target sites would improve the accuracy
of the prediction. From our results, clinically applied tau
radiotracers with higher SNR, such as [18F]MK6240 and
[18F]THK5351, had higher CUI rankings. ,is supported
the use of the screening methodology in radiotracer de-
velopment by allowing comparison of candidate radio-
tracers with clinically-applied radiotracers based on SUVR,
with respect to binding to a single target. Our results will
hopefully provide some insights to guide the development
of in silico models in supporting the development of tau
radiotracers.
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,e program (RSwCUI) used for TACs simulation and CUI
evaluation can be download from http://www.rim.cyric.
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Blood pressure (BP) is one of the indispensable elements of physiological health characteristics and a significant indicator for
predicting and diagnosing hypertension and cardiovascular diseases. /is paper proposes a two-domain fusion model to estimate
BP continuously from pulse wave acquired with a pressure sensor.Method. /e optimal external pressure applied on the pressure
sensor is first determined in order to capture pulse wave in the radial artery./e captured pulse wave is then processed in both the
time and frequency domains via filtering and fast Fourier transform. Finally, a set of features are extracted from these two domains
and input into a neural network along with blood pressure values measured by a commercial sphygmomanometer for training.
/e model is then tested on new data for accuracy evaluation. Results. /e proposed two-domain fusion method achieved a high
degree of accuracy in measuring blood pressure.

1. Introduction

According to the American Journal of Medicine, between
1990 and 2015, the rate of blood pressure (BP) greater than
140mmHg rose from 17307/100000 to 20526/100000 and
the associated mortality rate from 97.9/100000 to 106.3/
100000 [1]. Admittedly, abnormal BP can cause a burden on
the heart, which increases the risk of cardiovascular diseases
[2, 3]. /e traditional way of measuring blood pressure is to
place a cuff on the upper arm and then detect changes in the
pressure inside the cuff during inflation and deflation to
obtain systolic blood pressure (SBP) and diastolic blood
pressure (DBP). However, this method can hinder the cir-
culation of blood and is not intended for continuous BP
measurement.

In recent years, great progress has been made in
noninvasive continuous BP measurement. A study found
an inverse correlation between BP and the pulse transit
time (PTT) [4, 5]. But this method requires an additional

electrocardiogram (ECG) module, which brings com-
plexity and inconvenience to portable blood pressure
measurement. Wu et al. only used ECG signal to estimate
BP./ey took 6 features of the ECG and calculated the time
between the relevant features. Two sets of ECG signal
containing 4 time periods were combined and input into a
neural network for training to get the BP. However, this
model cannot simultaneously derive the BP and is sig-
nificantly different compared with the target value [6].
Secondly, PTT has a significant correlation with systolic
blood pressure but little relationship with diastolic blood
pressure [7]. Xu et al. used PTT and photoplethysmogram
(PPG) parameters to estimate blood pressure. /ey defined
PTT as the different time between the R wave of ECG and
the following pulse peak of PPG. /ey took the pulse wave
amplitude, PTT, pulse wave period, and area as the pa-
rameters to send to a feed-forward back propagation neural
network for training. Although the error could be within
5mmHg, calibration was required before getting the output
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[8]. Luo et al. fabricated a low-power (3 nW) piezoresistive
sensor (PS) device and measured BP using a single pa-
rameter PTT but also required clinical calibration of the
initial values [9].

With the advancement of sensor technology, piezoelectric
sensors nowadays become sensitive enough to reveal the pulse
wave morphological features. However, during their use,
piezoelectric sensors require an external force to balance the
pressure between the probe and soft tissue [10]. In order to
find the right amount of force applied to each individual, this
paper proposes a method to use body mass index (BMI) to
quantify the balance and find a suitable pressure for everyone.
/is will be explained in the third part of this paper.

Our goal is to develop a stable, efficient continuous blood
pressure measurement system that requires no user cali-
bration, to be used by patients with hypertension, cardio-
vascular, or other diseases for continuous BP monitoring.
/e paper is organized as follows: in Section 2, the back-
ground on propagation of pulse wave is given. In Section 3, a
two-domain fusion model and its use with artificial neural
networks (ANN) are elaborated. Section 4 shows experi-
mental results, and Section 5 provides a discussion and
conclusion on this proposed method.

2. Background

Figure 1 shows pulse wave and blood propagation.When the
cardiac ejection is completed, the central aorta forms a wave
(#1), which is rebounded and generates a rebound wave (#2)
when it propagates to the first reflection site (the arterial
node between thoracic aorta and renal arteries). /e re-
bound wave will be rebounded again, producing a wave (#3)
when the wave (#1) gets to the second reflection site (the
arterial node between abdominal aorta and iliac arteries).
Finally, both of the rebound waves (#2 and #3) will su-
perimpose on the main wave with a certain time delay and
then propagate along the blood vessel to the radial artery or
fingertip artery [11].

As shown in Figure 2, the features of the pulse wave
mainly include (b)–(g). /e (b)–(e) points correspond to the
pulse wave’s starting point, main peak, trough point, and the
peak produced by the superposition between the first re-
bound wave (#2) and the main wave (#1). Points f and g are
formed by the superposition between the second rebound
wave (#3) and the main wave (#1). Note that in a young
person with good blood vessel elasticity, the rebound wave
can be weak and it can be submerged in the main wave and
not visible in the waveform.

In order to accurately identify the characteristic points of
the pulse wave, the pulse wave needs to be acquired with
high signal-to-noise ratio (SNR) and without distortion. /e
detection of pulse wave feature points is shown below in the
next section.

3. Methods

3.1. Pulse Wave Detection. /ere are two mainstream
methods for pulse wave detection. One is photoplethysmo-
gram (PPG), and the other is to apply a piezoelectric sensor

(PS) in the radial artery. In PPG, light is emitted from a
photodiode through a fingertip, a wrist, or the like, and the
blood inside the artery absorbs the light and causes a change
in the light intensity, so that a change in the amount of blood
can be detected, therefore the pulse wave is obtained. /e
pulse wave signal in PPG is weak, and its SNR acquired by this
method is generally not high. In addition, if a patient has
arterial occlusion, tissue edema and blood clots, arrhythmia,
or weak peripheral circulation, this method will show con-
siderable deviations. While in PS, a pressure sensor is applied
to the skin above the radial artery and records the pulse
directly. /e signal often has better SNR. Because one is an
indirect measure and the other is a direct measure, the
waveform characteristics collected by the two are different,
and we have found that PS offers a lot of more details, thus
more information, in its pulse waveform than in PPGs.

Figures 3(a) and 3(b) are pulse waves from a 25-year-old
with arrhythmia, collected by PPG and PS, respectively. In
Figure 3(a), all the peaks except the main peak are all
submerged due to the irregular heart beating. In compari-
son, there are three peaks in addition to the main peak
clearly visible in Figure 3(b). Figures 3(c) and 3(d) are the
normal PPG and PS waveform from a 26-year-old female. It
can be seen that although the PPG can detect the pulse wave
(note the 2nd peak is submerged), the ratio between the 3rd
peak and the main peak is bigger than expected. /e PS on
the other hand has a better representation for the true pulse
wave. /erefore, we will use PS as the method of pulse wave
measurement for our study.

3.2. Optimal Pressure for Piezoresistive Sensor. As for the
pressure sensor for blood waveform measurement, we
choose Honeywell 1865 Series (Honeywell, Fort Mill, USA).
It is a piezoresistive sensor that employs a solid-state pie-
zopressure transducer mounted in a plastic package and
offers high resolution using its Wheatstone bridge strain
gauge design. It is designed to accurately collect tiny bi-
ological signals with good linearity, high test accuracy, and
fast response. It is used here to accurately detect the pressure
change caused by pulsation.

/e sensor is applied on top of the radial artery with a
certain external pressure to obtain the pulse wave by
detecting the beat of the superficial artery on the surface of
the skin. In actual measurements, the pressure applied to a
same person can be different at different times, resulting in a
difference in waveforms for the same individual and possibly
errors in BP estimation. We thus need to find a constant and
optimal pressure applied onto the sensor for each individual.
Unfortunately, the research on this problem is still relatively
muted. We will thus address this issue first before we move
onto our two-domain fusion model.

Since the external force applied to the sensor is mainly to
counter the pressure from the elasticity of the soft tissue, we
hypothesize that the optimal pressure for an individual is
dependent on the individual’s physical measures such as
height or obesity. We have thus done a lot of experiments to
show this indeed is the case. When a force is applied to the
detection unit and varied from small to large, the soft tissue
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under the sensor probe forms a force field. If the pressure of
the sensor probe and the arterial wall of the radial artery are
in close equilibrium, the shape and features of the pulse wave
are the most conspicuous. Correspondingly, we define the
pressure that produces the most detail of the pulse wave as
the optimal pressure (OP) for capturing pulse wave. Ad-
mittedly, if you want to get different OP for different people,
you need to rely on some indicator to quantify the soft tissue
thickness above the radial artery. For this reason, we select
the body mass index (BMI).

Figure 4(a) shows the piezoresistive sensor used in this
article. It is equipped with a homemade casing and probe
(the contact point or the tip) and signal processing board.
Figures 4(b)–4(d) are pulse waves at the pressures 2.3N,
3.8N, and 14N, respectively. At 2.3N, the amplitude of the
pulse wave is small, and the features are not clear. On the
contrary, the pulse and its features are obvious at 3.8N./en
at 14N, the pulse wave is distorted with severe baseline shift
and waveform overlapping. In order to get the OP, we
collected pulse waves for each person at different external
pressures. /e steps are as follows:

Step 1. Find the place where the radial artery beats the most.
Place the sensor probe on it.

Step 2. Place a piezoelectric film (Tekscan A201, Boston,
USA) between the probe and the skin, adjust the wrist band
so the average pressure reading is 2N, and store 20 sets of
pressure value in 500ms cycles. /en, withdraw the pie-
zoelectric film and measure the pulse wave at this time.

Step 3. Reinsert the piezoelectric film at the end of each
measurement. Increase the pressure by 0.5N and repeat step
2. Stop when the pressure reaches 14N.

Step 4. Find a set of pulse waves with ideal amplitude and
features and use median filter to fit the baseline of the
corresponding pressure measured by the film.

Step 5. Find the value with the largest difference between
the pressure value and the baseline and record the value of
the baseline at this time.

Step 6. Repeat the above steps for 30 people and then use
the BMI and the baseline values obtained in step 5 to
perform a 3rd order polynomial fit to get the OP curve,
where BMI is determined by the following equation:

BMI �
weight(Kg)

height(m)2
. (1)

In Figure 5(b), when the BMI is less than 24, the OP
curve is basically linear. It exhibits a saturation trend when
the BMI goes beyond 24. Admittedly, the BMI of more than
24 is considered overweight in China [12]. So, we can come
to a conclusion: when the BMI is lower than 24, the OP curve
is linear with BMI. /e OP is then determined by the fol-
lowing equation:

OP � −0.0114∗BMI3 + 0.7302∗BMI2 − 15.0889∗BMI

+ 104.4144.

(2)

3.3. Two-Domain Fusion Model. After the pulse wave is
acquired, we now move to the two-domain model. /e
analysis and decomposition of pulse waves so far in the
literature were essentially in a single domain, that is, either in
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Figure 1: Relationship between pulse and BP.
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Figure 3: Pulse waves captured by PS and PPG. (a) PPG with arrhythmia. (b) PS with arrhythmia. (c) Normal PPG. (d) Normal PS.

Plezoresistive
sensor

(a)

200 400 600 800 1000 1200 1400
Sample points

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
m

pl
itu

de
 (V

) 

(b)

Figure 4: Continued.

4 Computational and Mathematical Methods in Medicine



the time domain or in the frequency domain. Millasseau
et al. have obtained a generalized transfer function (GTF) by
the fast Fourier transform to analyze PPG and peripheral
pressure pulse. /ey found that GTF is not only suitable for
normotensive and hypertensive subjects, even adding few
nitroglycerin (NTG, 500mg sublingually) to the blood [13].
However, they only studied the peripheral pressure pulse
analysis but nothing for blood pressure estimation. Xing
et al. have decomposed the pulse wave in the frequency
domain and found that the blood pressure has a high
correlation with the amplitude of the fast Fourier transform
and that the phase also has a good correlation in the low
frequency part [14].

In the time domain, each morphological point of the
pulse wave can be related to physiological features that are in
turn related to the elasticity of the arteries and the ability of
the heart to contract. One can derive blood pressure based
on these characteristics. In Figure 6, the wave will be
decomposed into 7 features in the time domain.

In order to prevent confusion in the identification of
periodic features of several pulse waves, we extract features
only in a single pulsation period and then identify other
features in other pulsation period the same way.

At each systole, the amount of cardiac ejection is dif-
ferent. /e blood is transmitted through the arterial wave
and ultimately reflected in the amplitude of the systolic peak
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Figure 5: /e pressure baseline and OP vs. BMI curve. (a) Baseline of pressure fitted with median filter. (b) /ird-order polynomial fitting
for optimal pressure of capturing pulse wave.
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Figure 4: Pulse wave with different pressure. (a) Piezoresistive sensor. (b) Pulse wave at 2.3N. (c) Pulse wave at 3.8N. (d) Pulse wave at 14N.
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[15]. Peripheral resistance will change with the diameter of
the artery and the viscosity of the blood, affecting the pulse
wave [16]. If the elasticity of the distal end of the blood vessel
is higher, the peak of the rebounding wave will be relatively
lower, and the position superimposed on the main peak will
change the ratio of the area between the systolic and diastolic
points, which in turn affects the blood pressure [17, 18].
Furthermore, vascular elasticity has an influence on the PTT.
/e ratio of time between the main peak and other peaks can
be different if arteriosclerosis, tissue edema, and clots are
found out in the body [19]. /e time domain focuses on
features from a single beat, such as the ratio of each peak
within one pulse wave, while the beat-to-beat variations will
be taken into consideration in the frequency domain. Fig-
ure 7 and Table 1 show the area of S1 (cardiac systole) and S2
(cardiac diastole) and other relevant parameters in the time
domain.

In the frequency domain, as shown in Figure 8, there are
substantial amplitude components at 0.3Hz, 1.2Hz, 2.4Hz,
4.8Hz, etc., after the fast Fourier transform (FFT) of the
pulse wave, but the amplitude decays rapidly even almost
submerge after 10Hz. In this case, 0.3Hz should be the
frequency of breathing, 1.2Hz is the heart rate, and the
others are the multiple of the heart rate. It can be concluded
that the main components of the pulse wave in the frequency
domain are superimposed by the multiples or harmonics of
the frequency of the heart rate and the frequency near the
heart rate. /e amplitude component corresponding to the
frequency in the frequency domain of the pulse wave cor-
responds to the energy scale of each frequency. In order to
improve accuracy and stability, this paper performs the FFT
on five complete pulsation cycles for better frequency
sampling. /e features in the frequency domain are the
amplitudes and corresponding phases of the first three
characteristic peaks and are listed in Table 2. As for the other
points, their amplitudes are smaller and may be interfered
with the pulse wave noise.

/e features from both domains are concatenated to-
gether and processed, combining the high precision of time
domain and the stability of frequency domain into a better

dual-domain fusion model. Experimental details are given
below.

3.4. Implementation. After fitting and obtaining OP for each
people according to their BMI, a group of subjects un-
derwent measurement of pulse wave in the morning, af-
ternoon, and evening for 3 days. In addition, each
measurement is accompanied by BP obtained by a com-
mercial medical upper-arm sphygmomanometer (Yuwell
670B, Jiangsu, China). Both the features of pulse wave and
BP are fed into a neural network for supervised learning./e
process flow is shown in Figure 9 and is described below.

Step 1. Collect real-time pulse wave data and then shape
and filter to pulse wave.

Step 2. Decompose the pulse wave in the time and fre-
quency domains.

Step 3. Reconstruct and fuse features in the time and
frequency domains.

Step 4. Perform the mean shift and normalization with the
recombined features.

Step 5. Send the processed features to the neural network to
obtain SBP and DBP.
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Table 1: Features extracted in time domain.

Parameter Definition
FC /e ratio between h and H
Sss /e ratio between S1 and S1 plus S2
Sds /e ratio between S2 and S1 plus S2
Tft /e ratio between Tf and T
Tst /e ratio between T1 and T
SL /e max slope between b and c
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Figure 6: Feature points in the pulse wave in the time domain.
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Note in the two-domain fusion model, the fusion is done
in the input level of the neural network. We first exact
features from the time and the frequency domains separately
to form two vectors and then combine them into one data
matrix to feed into the neural network for training. An
additional label matrix records the true blood pressure
measured by the commercial sphygmomanometer to serve
as the training target. /e neural network then iterates
through the combined feature data, from which the weight
corresponding to each feature is generated. /e final trained
model will contain coefficients for all time and frequency
features, thus achieving the two-domain fusion.

In this paper, the quasi-Newton method is adopted for
better convergence speed of the training./e neural network
is a feed-forward back propagation ANN with 12 input
points, 30 nodes in single hidden layer, and 2 output nodes.
All 12 inputs of the network are the features extracted from
the time domain and the frequency domain. /e major
superiorities of this type of network are as follows: (1) it is
robust. Error in one input does little damage to the other
inputs. (2) It can be provedmathematically that a three-layer
network can approximate any continuous nonlinear re-
lationship with arbitrary precision. (3) It has a strong self-
adaptive learning ability and outputs adaptive learning
contents to the weights of networks [8, 20]. In order to verify
the training results, the data are randomly divided into 70%,
15%, and 15%, used for training, verification, and testing of
the neural network, respectively. /e structure of ANN is

shown in Figure 10, where x1 to xn are the spatial and
frequency features listed in Tables 1 and 2.

In addition, the number of hidden layer nodes of the
neural network is quantitatively analyzed to study the ef-
fectiveness after the number of hidden layer neurons has
been increased. /e results show that there is very little
increase in accuracy when there are more than 30 hidden
layer nodes. Furthermore, for the accuracy to increase by
0.01mmHg, the training time goes up an order of magnitude
by a network with a hidden layer of 50 neurons. /us, we
have chosen to use the aforementioned parameters for the
ANN.

4. Experiment Results

A total of 30 volunteers have participated in the experiment,
and a total of 1231 pulse wave data were measured. In order
to improve the accuracy and stability of blood pressure
estimation, we collected the pulse waves in a single cycle.
Besides, we built a threshold matrix to prevent any pa-
rameters, such as period and amplitude, exceeding the
threshold range, upon which the data are considered ab-
normal and discarded. /e training and fitting results of BP
are shown in Figure 11.

/e training automatically stopped after the about 200
iterations when the verification error became minimal. /e
total errors were within ±2mmHg according to the error
histogram (Figure 11(d)). In order to verify the performance
of the model, we used the 15% data previously put aside and
tested it. It is found that the output and target values show a
highly linear correlation.

In addition, we also compared our model results with
that of the traditional single-domain model. /e perfor-
mance of the single-domain model is inferior to that of our
two-domain model. As shown in Figure 12, the error is
±3mmHg and ±9mmHg in the time domain and the fre-
quency domain, respectively.
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Figure 8: Illustration of frequency features. (a) FFT amplitude of pulse wave. (b) FFT phase of pulse wave.

Table 2: Features extracted in frequency domain.

Parameter Definition
A1 /e amplitude of first peak
A2 /e amplitude of second peak
A3 /e amplitude of third peak
P1 /e phase of first peak
P2 /e phase of second peak
P3 /e phase of third peak
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5. Discussion and Conclusion

Experiments show that piezoresistive sensors can very well
detect the features of the pulse wave under complex factors
such as arrhythmia and are superior to PPG. /ere exists an
optimal restraint pressure for the piezoresistive sensor, and
it can be related back to the BMI for different people.

Considering the fact that the time domain model is
unstable when measuring pulse wave data but has a high-
accuracy contribution to BP and that the frequency domain
model is stable in decomposing pulse waves, the two-domain

model proposed in this paper not only retains the high
accuracy of the time domain model but also integrates the
stability of the frequency domain model. Experiments on the
time and frequency domains and two domains combined
were done and compared. /e results show that the con-
tinuous blood pressure estimation based on the two-domain
model can give BP with higher accuracy and stability than a
single-domain model does.

/ere are limitations to this study, however. For ex-
ample, the training and testing sample size is still small and
not diverse enough. Subjects were not divided into training
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Figure 12: Errors of single-domain model. (a) Error of time domain. (b) Error of frequency.
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and testing groups, i.e., data from all subjects were mixed
together and then divided for training and testing, which
could introduce internal correlation. In addition, the fea-
tures we choose to extract and use may not be the best to
represent the underlyingmechanisms of BP, and the number
of features may not be the best. In the future, we will
continue to optimize the feature selection in both the time
and frequency domains and plan to enlarge the sample space
and amend the method of data splitting for a more rigid
evaluation study.
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Similarity measure is an important tool in multiple criteria decision-making problems, which can be used to measure the
difference between the alternatives. In this paper, some new similarity measures of single-valued neutrosophic sets (SVNSs) and
interval-valued neutrosophic sets (IVNSs) are defined based on the Euclidean distance measure, respectively, and the proposed
similarity measures satisfy the axiom of the similarity measure. Furthermore, we apply the proposed similarity measures to
medical diagnosis decision problem; the numerical example is used to illustrate the feasibility and effectiveness of the proposed
similarity measures of SVNSs and IVNSs, which are then compared to other existing similarity measures.

1. Introduction

-e concept of fuzzy set (FS) A � 〈xi, uA(xi)〉|xi ∈ X􏼈 􏼉 in
X � x1, x2, . . . , xn􏼈 􏼉 was proposed by Zadeh [1], where the
membership degree uA(xi) is a single value between zero
and one. -e FS has been widely applied in many fields,
such as medical diagnosis, image processing, supply de-
cision-making [2–4], and so on. In some uncertain decision-
making problems, the degree of membership is assumed not
exactly as a numerical value but as an interval. Hence, Zadeh
[5] proposed the interval-valued fuzzy set (IVFS). However,
the FS and IVFS only have the membership degree, and they
cannot describe the nonmembership degree of the element
belonging to the set. For example, in the national entrance
examination for postgraduate, a panel of ten professors
evaluated the admission of a student; five professors con-
sidered the student can be accepted, three professors dis-
approved of his or her admission, and two professors
remained neutral. In this case, the FS and IVFS cannot
represent such information. In order to solve this problem,
Atanassov et al. [6] proposed the intuitionistic fuzzy set
(IFS) E � 〈xi, uE(xi), vE(xi)〉|xi ∈ X􏼈 􏼉, where uE(xi)(0≤
uE(xi)≤ 1) and vE(xi)(0≤ vE(xi)≤ 1) represent the mem-
bership degree and nonmembership degree, respectively,

and the indeterminacy-membership degree πE(xi) � 1−
uE(xi)− vE(xi). -e IFS is more effective to deal with the
vague information than the FS and IVFS. -en, the in-
formation about the admission of the student can be rep-
resented as an IFS E � 0.5, 0.3, 0.2, where 0.5, 0.3, and 0.2
stand for the membership degree, nonmembership degree,
and indeterminacy-membership degree, respectively.
However, the IFS also have limitation in expressing the
decision information. For example, three groups of experts
evaluate the benefits of the stock, a group of experts thinks
the possibility of the stock that will be profitable is 0.6, the
second group of experts thinks the possibility of loss is 0.3,
the third group of experts is not sure whether the stock that
will be profitable is 0.4. In this case, the IFS cannot express
such information because 0.6 + 0.3 + 0.4> 1. -erefore,
Wang et al. [7] proposed a single-valued neutrosophic set
(SVNS) N � 〈xi, TN(xi), IN(xi), FN(xi)〉|xi ∈ X􏼈 􏼉, where
TN(xi), IN(xi) and FN(xi) represent the degree of the
truth-membership, indeterminacy-membership, and falsity-
membership, respectively, and they belong to [0, 1]. So, the
information about the benefits of the stock can be repre-
sented as N � 0.6, 0.4, 0.3. However, due to the uncertainty
of the decision-making environment in multiple criteria
decision-making problems, the single numerical value
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cannot meet the needs of evaluating information. -en,
Wang [8] defined the interval-valued neutrosophic set
(IVNS) based on the SVNS, which used the interval to
describe truth membership degree, indeterminacy mem-
bership degree, and falsity membership degree, respectively.
Since the neutrosophic set was proposed, there have been
some researchers focusing on this subject [9–12].

On the other hand, similarity measure is an important
tool in multiple criteria decision-making problems, which
can be used to measure the difference between the alter-
natives. Many studies about the similarity measure are
obtained. For example, Beg et al. [13] proposed a similarity
measure of FSs based on the concept of ϵ − fuzzy transitivity
and discussed the degree of transitivity of different similarity
measures. Song et al. [14] considered the similarity measure
of IFSs and proposed corresponding distance measure be-
tween intuitionistic fuzzy belief functions. Majumdar and
Samanta [15] proposed a similarity measure between SVNSs
based on the membership degree.

In addition, cosine similarity measure is also an im-
portant similarity measure, and it can be defined as the
inner product of two vectors divided by the product of their
lengths. -ere are some scholars who study the cosine
similarity measures [16–21]. For example, Ye [16] proposed
the cosine similarity measure and weighted cosine simi-
larity measure of IVFSs with risk preference, and they were
applied to the supplier selection problem. -en, Ye [17]
proposed the cosine similarity measure of IFSs and
applied it to medical diagnosis and pattern recognition.
Furthermore, Ye [18] defined the cosine similarity measure
of SVNSs and IVNSs, but when the SVNSs N1 ≠N2,
cos(N1, N2) � 1 (the example can be seen in Section 3).
Furthermore, Ye [19] proposed the improved cosine
similarity measures of SVNSs and IVNSs based on cosine
function.

In this paper, we propose a new method to construct the
similarity measures of SVNSs, which is based on the existing
similarity measure proposed byMajumdar and Samanta [15]
and Ye [18], respectively. -ey play an important role in
practical application, especially in pattern recognition,
medical diagnosis, and so on. Furthermore, we will propose
the corresponding similarity measures of IVNSs.

-e rest of the paper is organized as follows. In Section
2, the basic definition and some properties about SVNS and
IVNS are given. In Section 3, we proposed a method
to construct the new similarity measures of SVNSs and
IVNSs, respectively. In Section 4, we apply the proposed
new similarity measures to medical diagnosis problems, the
numerical examples are used to illustrate the feasibility and
effectiveness of the proposed similarity measures, which are
then compared to other existing similarity measures. Fi-
nally, the conclusions and future studies are discussed in
Section 5.

2. Preliminaries

In this section, we give some basic knowledge about the
SVNS and the IVNS. Some existing distance measures are
also introduced, which will be used in the next section.

2.1. SVNS

Definition 1. Given a fixed set X � x1, x2 , . . . , xn􏼈 􏼉 [7], the
SVNS N in X is defined as follows:

N � 􏼊xi, TN xi( 􏼁, IN xi( 􏼁, FN xi( 􏼁􏼋 xi ∈ X
􏼌􏼌􏼌􏼌􏽮 􏽯, (1)

where the function TN(xi) : X⟶ [0, 1] defines the truth-
membership degree, the function IN(xi) : X⟶ [0, 1]

defines indeterminacy-membership degree, and the func-
tion FN(xi) : X⟶ [0, 1] defines the falsity-membership
degree, respectively. For any SVNS N, it holds that
0≤TN(xi) + IN(xi) + FN(xi)≤ 3 (∀xi ∈ X).

For any two SVNSs N1 � {〈xi, TN1
(xi), IN1

(xi), FN1
(xi)〉|xi ∈ X} and N2 � {〈xi, TN2

(xi), IN2
(xi), FN2

(xi)〉

|xi∈ X}}, the following properties are satisfied:

(1) N1 ⊆N2 if and only if TN1
(xi)≤TN2

(xi), IN1
(xi)≥ IN2

(xi), and FN1
(xi)≥FN2

(xi)

(2) N1 � N2 if and only if N1 ⊆N2 and N2 ⊆N1

2.2. IVNS

Definition 2. Given a fixed set X � x1, x2, . . . , xn􏼈 􏼉 [8], the
IVNS N′ on X is defined as follows:

N′ � 􏼚􏼜xi, T
L
N′ xi( 􏼁, T

U
N′ xi( 􏼁􏽨 􏽩, I

L
N′ xi( 􏼁, I

U
N′ xi( 􏼁􏽨 􏽩,

F
L
N′ xi( 􏼁, F

U
N′ xi( 􏼁􏽨 􏽩􏼝 xi ∈ X

􏼌􏼌􏼌􏼌 􏼛,

(2)

where TN′(xi) � [TL
N′(xi), TU

N′(xi)], IN′(xi) � [IL
N′(xi),

IU
N′(xi)], and FN′(xi) � [FL

N′(xi), FU
N′(xi)] represent the

truth-membership function, the indeterminacy-member-
ship function, and the falsity-membership function, re-
spectively. For any xi ∈ X, it holds that TN′(xi), IN′(xi),

FN′(xi)⊆ [0, 1] and 0≤TU
N′(xi) + IU

N′(xi) + FU
N′(xi)≤ 3.

For any two IVNSs N1′ � {〈xi, [TL
N1′

(xi), TU
N1′

(xi)],

[IL
N1′

(xi), IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′

� {〈xi, [TL
N2′

(xi), TU
N2′

(xi)], [IL
N2′

(xi), IU
N2′

(xi)], [FL
N2′

(xi), FU
N2′

(xi)]〉 |xi ∈ X}, the following properties are satisfied:

(1) N1′ ⊆N2′ if and only if TL
N1′

(xi)≤TN2′
L(xi),T

U
N1′

(xi)≤
TU

N2′
(xi),I

L
N1′

(xi)≥IL
N2′

(xi),I
U
N1′

(xi)≥IU
N2′

(xi),F
L
N1′

(xi)≥
FL

N2′
(xi),and FU

N1′
(xi)≥FU

N2′
(xi)

(2) N1′ � N2′ if and only if N1′ ⊆N2′ and N2′ ⊆N1′

Remark 1. When TL
N1′

(xi) � TU
N1′

(xi), IL
N1′

(xi) � IU
N1′

(xi), FL
N1′

(xi) � FU
N1′

(xi), the IVNS N1′ is reduced to the SVNS N1.

2.3. Existing Distance Measures between SVNSs and IVNSs

Definition 3. Let N1 � {〈xi, TN1
(xi), IN1

(xi), FN1
(xi)〉

|xi ∈ X} and N2 � {〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉|xi∈X}}

be any two SVNSs in X � {x1, x2, . . . , xn} [15]; then, the
Euclidean distance between SVNSs N1 and N2 is defined as
follows:
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DSVNS N1, N2( 􏼁 �

������������������������������������������������������������

􏽐
n
i�1 TN1

xi( 􏼁−TN2
xi( 􏼁􏼐 􏼑

2
+ IN1

xi( 􏼁− IN2
xi( 􏼁􏼐 􏼑

2
+ FN1

xi( 􏼁−FN2
xi( 􏼁􏼐 􏼑

2
􏼔 􏼕

3n

􏽶
􏽴

.
(3)

Definition 4. Let N1′ � {〈xi, [TL
N1′

(xi), TU
N1′

(xi)], [IL
N1′

(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′ � {〈xi,[TL
N2′

(xi),T
U
N2′

(xi)],[IL
N2′

(xi), I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉|xi ∈X}

be any two IVNSs in X � x1,x2, . . . , xn􏼈 􏼉 [22]; the Euclidean
distance between IVNSs N1′ and N2′ is defined as follows:

DIVNS N1′, N2′( 􏼁

�

����������������������������������������������������������������������������������������������������������������������

􏽐
n
i�1 TL

N1′
xi( 􏼁−TL

N2′
xi( 􏼁􏼒 􏼓

2
+ TU

N1′
xi( 􏼁−TU

N2′
xi( 􏼁􏼒 􏼓

2
+ IL

N1′
xi( 􏼁− IL

N2′
xi( 􏼁􏼒 􏼓

2
+ IU

N1′
xi( 􏼁− IU

N2′
xi( 􏼁􏼒 􏼓

2
+ FL

N1′
xi( 􏼁−FL

N2′
xi( 􏼁􏼒 􏼓

2
+ FU

N1′
xi( 􏼁−FU

N2′
xi( 􏼁􏼒 􏼓

2
􏼢 􏼣

6n

􏽶
􏽴

.

(4)

Next, we propose a new method to construct the sim-
ilarity measures of SVNSs and IVNSs based on the Euclidean
distance measure.

3. Several New Similarity Measures

-e similarity measure is a most widely used tool to evaluate
the relationship between two sets. -e following axiom
about the similarity measure of SVNSs (or IVNSs) should be
satisfied:

Lemma 1. Let X � x1, x2, . . . , xn􏼈 􏼉 be the universal set [18]
if the similarity measure S(N1, N2) between SVNSs (or
IVNSs) N1 and N2 satisfies the following properties:

(1) 0≤ S(N1, N2)≤ 1
(2) S(N1, N2) � 1 if and only if N1 � N2

(3) S(N1, N2) � S(N2, N1).

8en, the similarity measure S(N1, N2) is a genuine
similarity measure.

3.1. 8e New Similarity Measures between SVNSs. To in-
troduce the new similarity measure between SVNSs, we
first review the similarity measure S1SVNS between N1 and
N2 defined by Majumdar et al. [15], which is given as
follows:

Definition 5. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set [15],
for any two SVNSs N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉

|xi ∈ X} and N2 � {〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉 |xi∈ X};

the similarity measure of SVNSs between N1 and N2 is
defined as follows:

S1SVNS N1, N2( 􏼁 �
􏽐

n
i�1 min TN1

xi( 􏼁, TN2
xi( 􏼁􏼐 􏼑 + min IN1

xi( 􏼁, IN2
xi( 􏼁􏼐 􏼑 + min FN1

xi( 􏼁, FN2
xi( 􏼁􏼐 􏼑􏼐 􏼑

􏽐
n
i�1 max TN1

xi( 􏼁, TN2
xi( 􏼁􏼐 􏼑 + max IN1

xi( 􏼁, IN2
xi( 􏼁􏼐 􏼑 + max FN1

xi( 􏼁, FN2
xi( 􏼁􏼐 􏼑􏼐 􏼑

. (5)

It is already known that the similarity measure S1SVNS
defined by Majumdar et al. [15] satisfies the properties
in Lemma 1. It is proposed based on the membership
degree; in this section, we adopt the various methods for
calculating the similarity measure between neutrosophic
sets.

Firstly, we propose a new method to construct a new
similarity measure of SVNSs, which is based on the simi-
larity measure proposed by Majumdar et al. [15] and the
Euclidean distance; it can be defined as follows:

Definition 6. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two SVNSs N1 � {xi, TN1

(xi), IN1
(xi), FN1

(xi)|xi ∈ X}

and N2 � {xi, TN2
(xi), IN2

(xi), FN2
(xi)|xi ∈ X}; a new sim-

ilarity measure S∗1SVNS(N1, N2) is defined as follows:

S
∗
1SVNS N1, N2( 􏼁 �

1
2

S1SVNS N1, N2( 􏼁 + 1−DSVNS N1, N2( 􏼁( 􏼁.

(6)

-e proposed similarity measure of SVNSs satisfies the
following -eorem 1.

Theorem 1. 8e similarity measure S∗1SVNS(N1, N2) between
N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉|xi ∈ X} and N2 �

{〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉|xi ∈ X} satisfies the follow-

ing properties:

(1) 0≤ S∗1SVNS(N1, N2)≤ 1
(2) S∗1SVNS(N1, N2) � 1 if and only if N1 � N2

(3) S∗1SVNS(N1, N2) � S∗1SVNS(N2, N1)
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Proof.

(1) Because DSVNS(N1, N2) is an Euclidean distance
measure, obviously, 0≤DSVNS(N1, N2)≤ 1. Fur-
thermore, according to Proposition 4.2.2 by
Majumdar et al. [15], we know 0≤ S1SVNS(N1,

N2)≤ 1. -en, 0≤ 1/2(S1SVNS(N1, N2) + 1−DSVNS
(N1, N2))≤ 1, i.e., 0≤ S∗1SVNS(N1, N2)≤ 1.

(2) If S∗1SVNS(N1, N2) � 1, we have S1SVNS(N1, N2)+

1−DSVNS(N1, N2) � 2, that is, S1SVNS (N1, N2) �

1 + DSVNS(N1, N2). Because DSVNS(N1, N2) is the
Euclidean distance measure, 0≤DSVNS(N1, N2)≤ 1.
Furthermore, 0≤ S1SVNS(N1, N2)≤ 1 is obtained in
Proposition 4.2.2 [15], then S1SVNS(N1, N2) � 1 and
DSVNS(N1, N2) � 0 should be established at the same
time. If the Euclidean distance measure DSVNS
(N1, N2) � 0, N1 � N2 is obvious. According to
Proposition 4.2.2 by Majumdar et al. [15], when
S1SVNS(N1, N2) � 1, N1 � N2; so, if S∗1SVNS(N1,

N2) � 1, N1 � N2 is obtained.

On the other hand, when N1 � N2, according to for-
mulae (3) and (5) DSVNS(N1, N2) � 0 and S1SVNS(N1, N2) �

1 are obtained respectively. Furthermore, we can get
S∗1SVNS(N1, N2) � 1.

(3) S∗1SVNS(N1, N2) � S∗1SVNS(N2, N1) is straightforward.

From -eorem 1, we know the proposed new simi-
larity measure S∗1SVNS(N1, N2) is a genuine similarity
measure.

On the other hand, cosine similarity measure is also
an important similarity measure. In 2014, Ye [18] pro-
posed a cosine similarity measure between SVNSs as
follows: □

Definition 7. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set
[18], for any two SVNSs N1 � {〈xi, TN1

(xi), IN1
(xi),

FN1
(xi)〉|xi ∈ X} and N2 � {〈xi, TN2

(xi), IN2
(xi), FN2

(xi)〉

|xi ∈ X}, the cosine similarity measure betweenN1 andN2 is
defined as follows:

S2SVNS N1, N2( 􏼁 �
1
n

􏽘

n

i�1

TN1
xi( 􏼁TN2

xi( 􏼁 + IN1
xi( 􏼁IN2

xi( 􏼁 + FN1
xi( 􏼁FN2

xi( 􏼁
������������������������
T2

N1
xi( 􏼁 + I2N1

xi( 􏼁 + F2
N1

xi( 􏼁
􏽱 ������������������������

T2
N2

xi( 􏼁 + I2N2
xi( 􏼁 + F2

N2
xi( 􏼁

􏽱 . (7)

From Example 1, we know the cosine similarity measure
defined by Ye [18] does not satisfy Lemma 1.

Example 1. For two SVNSs N1 � x, 0.4, 0.2, 0.6 and
N2 � x, 0.2, 0.1, 0.3, we can easily know N1 ≠N2. But
using formula (7) to calculate the cosine similarity measure
S2SVNS(N1, N2), we have S2SVNS(N1, N2) � 1. -at is to say,
when N1 ≠N2, S2SVNS(N1, N2) � 1, which means the cosine
similarity measure S2SVNS(N1, N2) defined by Ye [18] does
not satisfy the necessary condition of property 2 in Lemma 1;
thus, it is not a genuine similarity measure. Furthermore, Ye
[19] proposed the improved cosine similarity measures of
SVNS based on the cosine similarity measure proposed by
Ye [18], which overcomes its shortcoming.

In this paper, we go on proposing another new similarity
measure of SVNSs based on the cosine similarity measure
proposed by Ye [18] and the Euclidean distance DSVNS. It
considers the similarity measure not only from the point of
view of algebra but also from the point of view of geometry,
which can be defined as:

Definition 8. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two SVNSs N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉

|xi ∈ X} and N2 � {〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉|xi ∈ X};

a new similarity measure S∗2SVNS(N1, N2) is defined as follows:

S
∗
2SVNS N1, N2( 􏼁 �

1
2

S2SVNS N1, N2( 􏼁 + 1−DSVNS N1, N2( 􏼁( 􏼁.

(8)

Remark 2. Using formula (8) to calculate Example 1
again, for two SVNSs N1 � x, 0.4, 0.2, 0.6 and N2 � x,

0.2, 0.1, 0.3, we have S∗2SVNS(N1, N2) � 0.8920. We can see
that the proposed new similarity measure S∗2SVNS(N1, N2)

overcomes the shortcoming of cosine similarity measure
S2SVNS(N1, N2) defined by Ye [18].

Theorem 2. 8e similarity measure S∗2SVNS(N1, N2) between
N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉|xi ∈X} and N2 � {〈xi,

TN2
(xi), IN2

(xi), FN2
(xi)〉|xi ∈X} satisfies the following

properties:

(1) 0≤ S∗2SVNS(N1, N2)≤ 1
(2) S∗2SVNS(N1, N2) � 1 if and only if N1 � N2

(3) S∗2SVNS(N1, N2) � S∗2SVNS(N2, N1)

Proof. -e proof of the properties (1) and (3) are similar to
-eorem 1; here, we only give the proof of property (2).

If S∗2SVNS(N1, N2) � 1, we have S2SVNS(N1, N2) + 1−
DSVNS(N1, N2) � 2, i.e., S2SVNS(N1, N2) � 1 + DSVNS(N1,

N2). Because DSVNS(N1, N2) is the Euclidean distance
measure, 0≤DSVNS(N1, N2)≤ 1. According to the property
of S2SVNS(N1, N2) in Ye [18], 0≤ S2SVNS(N1, N2)≤ 1; then,
S2SVNS(N1, N2) � 1 and DSVNS(N1, N2) � 0 should be held
at the same time. When S2SVNS(N1, N2) � 1, we have
TN1

(xi) � k · TN2
(xi), IN1

(xi) � k · IN2
(xi), and FN1

(xi) �

k · FN2
(xi) (k is a constant). When DSVNS(N1, N2) � 0, we

have N1 � N2. -en N1 � N2 is obtained.
On the other hand, according to formulae (3) and (7), if

N1 � N2, DSVNS(N1, N2) � 0 and S2SVNS(N1, N2) � 1 are
obtained, respectively; then we can get S∗2SVNS(N1, N2) � 1.

-us, S∗2SVNS(N1, N2) satisfies all the properties in
-eorem 2. □
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3.2. Some New Similarity Measures between IVNSs. In some
situations, it is difficult to provide the truth-membership
degree, false-membership degree, and indeterminate-mem-
bership degree with a precise numerical value; Wang [8] used
the interval numbers to express the related membership
degrees. Furthermore, Broumi et al. [22] proposed the cor-
responding similarity measure of IVNSs based on the simi-
larity measure S1SVNS proposed by Majumdar et al. [15].

Definition 9. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two IVNSs N1′ � {〈xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′ � {〈xi,[TL
N2′

(xi)T
U
N2′

(xi)],[IL
N2′

(xi), I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉 |xi ∈ X}

[22]; the similarity measure between IVNSs N1′ and N2′ is
defined as follows:

S1IVNS N1′, N2′( 􏼁

�
􏽐

n
i�1 min TL

N1′
xi( 􏼁, TL

N2′
xi( 􏼁􏼒 􏼓 + min TU

N1′
xi( 􏼁, TU

N2′
xi( 􏼁􏼒 􏼓 + min IL

N1′
xi( 􏼁, IL

N2′
xi( 􏼁􏼒 􏼓 + min IU

N1′
xi( 􏼁, IU

N2′
xi( 􏼁􏼒 􏼓 + min FL

N1′
xi( 􏼁, FL

N2′
xi( 􏼁􏼒 􏼓 + min FU

N1′
xi( 􏼁, FU

N2′
xi( 􏼁􏼒 􏼓􏼚 􏼛

􏽐
n
i�1 max TL

N1′
xi( 􏼁, TL

N2′
xi( 􏼁􏼒 􏼓 + max TU

N1′
xi( 􏼁, TU

N2′
xi( 􏼁􏼒 􏼓 + max IL

N1′
xi( 􏼁, IL

N2′
xi( 􏼁􏼒 􏼓 + max IU

N1′
xi( 􏼁, IU

N2′
xi( 􏼁􏼒 􏼓 + max FL

N1′
xi( 􏼁, FL

N2′
xi( 􏼁􏼒 􏼓 + max FU

N1′
xi( 􏼁, FU

N2′
xi( 􏼁􏼒 􏼓􏼚 􏼛

.

(9)

Remark 3. If TL
Nj
′(xi) � TU

Nj
′(xi), IL

Nj
′(xi) � IU

Nj
′(xi), FL

Nj
′(xi) �

FU
Nj
′(xi)(j � 1, 2), then the similarity measure S1IVNS(N1′, N2′)

is reduced to the similarity measure S1SVNS(N1, N2).
Similarly to Section 3.1, we propose a corresponding

similarity measure between IVNSs, which is based on the
similarity measure S1IVNS(N1′, N2′) and the Euclidean dis-
tance DIVNS(N1′, N2′) defined in Definition 4.

Definition 10. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set,
for any two IVNSs N1′ �{xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]|xi ∈ X} and N2′ � {xi, [TL
N2′

}(xi),

TU
N2′

(xi)], [IL
N2′

(xi), IU
N2′

(xi)], [FL
N2′

(xi), FU
N2′

(xi)]|xi ∈ X}; a
new similarity measure S∗1IVNS (N1′, N2′) is defined as
follows:

S
∗
1IVNS N1′, N2′( 􏼁 �

1
2

S1IVNS N1′, N2′( 􏼁 + 1−DIVNS N1′, N2′( 􏼁( 􏼁.

(10)

-e proposed similarity measure also satisfies -eo-
rem 3.

Theorem 3. 8e similarity measure S∗1IVNS(N1′, N2′) satisfies
the following properties:

(1) 0≤ S∗1IVNS(N1′, N2′)≤ 1
(2) S∗1IVNS(N1′, N2′) � 1 if and only if N1′ � N2′

(3) S∗1IVNS(N1′, N2′) � S∗1IVNS(N2′, N1′)

Proof. -e proof is similar to -eorem 1; hence, we omit it
here.

Next, we will use the same method to define the simi-
larity measure S∗2IVNS(N1′, N2′) between IVNS, which is based
on the cosine similarity measure S2IVNS(N1′, N2′) proposed
by Ye [21] (Definition 11) and the Euclidean distance
DIVNS(N1′, N2′) defined in formula (4). □

Definition 11. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two IVNSs N1′ � {〈xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′� {〈xi,[TL
N2′

(xi),T
U
N2′

(xi)],[IL
N2′

(xi),I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉|xi ∈X};
the cosine similarity measure S∗2IVNS(N1′,N2′) is defined as
follows [21]:

S2IVNS N1′, N2′( 􏼁 �
1
n

􏽘
n

i�1

·
TL

N1′
xi( 􏼁TL

N2′
xi( 􏼁 + TU

N1′
xi( 􏼁TU

N2′
xi( 􏼁 + IL

N1′
xi( 􏼁IL

N2′
xi( 􏼁 + IU

N1′
xi( 􏼁IU

N2′
xi( 􏼁 + FL

N1′
xi( 􏼁FL

N2′
xi( 􏼁 + FU

N1′
xi( 􏼁FU

N2′
xi( 􏼁

����������������������������������������������������������������

TL
N1′

xi( 􏼁􏼒 􏼓
2

+ TU
N1′

xi( 􏼁􏼒 􏼓
2

+ IL
N1′

xi( 􏼁􏼒 􏼓
2

+ IU
N1′

xi( 􏼁􏼒 􏼓
2

+ FL
N1′

xi( 􏼁􏼒 􏼓
2

+ FU
N1′

xi( 􏼁􏼒 􏼓
2

􏽲 ����������������������������������������������������������������

TL
N2′

xi( 􏼁􏼒 􏼓
2

+ TU
N2′

xi( 􏼁􏼒 􏼓
2

+ IL
N2′

xi( 􏼁􏼒 􏼓
2

+ IU
N2′

xi( 􏼁􏼒 􏼓
2

+ FL
N2′

xi( 􏼁􏼒 􏼓
2

+ FU
N2′

xi( 􏼁􏼒 􏼓
2

􏽲 .

(11)

Example 2. For two IVNSs N1′ � x, [0.3, 0.4], [0.2, 0.3],

[0.4, 0.5] and N2′ � x, [0.6, 0.8], [0.4, 0.6], [0.8, 1], according
to formula (11), we have S2IVNS(N1′, N2′) � 1, but N1′ ≠N2′.
In this case, the necessary condition of (2) in Lemma 1 is
not satisfied. -erefore, the cosine similarity measure
S2IVNS(N1′, N2′) proposed by Ye [22] is not a genuine sim-
ilarity measure. Motivated by this, we will propose a new
similarity measure S∗2IVNS(N1′, N2′) based on S2IVNS(N1′, N2′)

and the Euclidean distance measure DIVNS(N1′, N2′) as
follows:

Definition 12. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two IVNSs N1′ � {〈xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′� {〈xi,[TL
N2′

(xi),T
U
N2′

(xi)],[IL
N2′

(xi), I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉|xi ∈X};
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a new similarity measure S∗2IVNS (N1′,N2′) can be defined as
follows:

S
∗
2IVNS N1′, N2′( 􏼁 �

1
2

S2IVNS N1′, N2′( 􏼁 + 1−DIVNS N1′, N2′( 􏼁( 􏼁.

(12)

Remark 4. In Example 2, when N1′ ≠N2′, the similarity
measure S2IVNS(N1′, N2′) � 1, this is inconsistent with the real
decision problems. But, using formula (12) to calculate it again,
we have S∗2IVNS(N1′, N2′) � 0.8185. Obviously, the proposed
similarity measure S∗2IVNS(N1′, N2′) can rectify the existing
cosine similarity measure S2IVNS(N1′, N2′) defined by Ye [22].

Theorem 4. 8e similarity measure S∗2IVNS(N1′, N2′) satisfies
the following properties:

(1) 0≤ S∗2IVNS(N1′, N2′)≤ 1
(2) S∗2IVNS(N1′, N2′) � 1 if and only if N1′ � N2′

(3) S∗2IVNS(N1′, N2′) � S∗2IVNS(N2′, N1′)

Proof. -e proof is similar to -eorem 2, we also omit it
here.

In the next section, we will apply the proposed new
similarity measures to medical diagnosis decision problem;
numerical examples are also given to illustrate the appli-
cation and effectiveness of the proposed new similarity
measures. □

4. Applications of the Proposed
Similarity Measures

4.1. 8e Proposed Similarity Measures between SVNSs for
Medical Diagnosis. We first give a numerical example about
a medical diagnosis (adapted from Ye [19]) to illustrate the
feasibility of the proposed new similarity measures S∗1SVNS
and S∗2SVNS between SVNSs.

Example 3. Consider a medical diagnosis decision problem;
suppose a set of diagnoses Q � Q1(viral fever), Q2􏼈

(malaria), Q3(typhoid), Q4(gastritis), Q5(stenocardia)} and
a set of symptoms S � S1(fever), S2(headache), S3(stomach􏼈

pain), S4(cough), S5(chestpain)}. Assume a patient P1 has all
the symptoms in the process of diagnosis, the SVNS evaluate
information about P1 is

P1(Patient) � 􏼈〈S1, 0.8, 0.2, 0.1〉, 〈S2, 0.6, 0.3, 0.1〉,

〈S3, 0.2, 0.1, 0.8〉, 〈S4, 0.6, 0.5, 0.1〉,

〈S5, 0.1, 0.4, 0.6〉􏼉.

(13)

-e diagnosis information Qi(i � 1, 2, . . . , 5) with re-
spect to symptoms Si(i � 1, 2, . . . , 5) also can be represented
by the SVNSs, which is shown in Table 1.

By applying formulae (6) and (8), we can obtain the
similarity measure values S∗1SVNS(P1, Qi) and S∗2SVNS(P1, Qi);
the results are shown in Table 2.

From the above two similarity measures S∗1SVNS and
S∗2SVNS, we can conclude that the diagnoses of the patient P1

are all malaria (Q2). -e proposed two similarity measures
S∗1SVNS and S∗2SVNS produce the same results as Ye [19], which
means the proposed similarity measures are feasible and
effective.

4.2. 8e Proposed Similarity Measures between IVNSs for
Medical Diagnosis. We know if the doctor examines the
patient two or three times a day, then the interval values of
multiple inspections for the patient are obtained. In this
section, we will apply the proposed similarity measures
S∗1IVNS and S∗2IVNS to medical diagnosis, the example is also
adapted from Ye [19].

Example 4. Let us reconsider Example 3, assume a patient
P2 has all the symptoms, which can be expressed by the
following IVNS information.

P2(Patient) � 􏼈〈S1, [0.3, 0.5], [0.2, 0.3], [0.4, 0.5]〉,

〈S2, [0.7, 0.9], [0.1, 0.2], [0.1, 0.2]〉,

〈S3, [0.4, 0.6], [0.2, 0.3], [0.3, 0.4]〉,

〈S4, [0.3, 0.6], [0.1, 0.3], [0.4, 0.7]〉,

〈S5, [0.5, 0.8], [0.1, 0.4], [0.1, 0.3]〉􏼉.

(14)

-e same way as Example 3 in Ye [19], the diagnosis
information of SVNSs Qi with respect to symptoms Si(i �

1, 2, · · · , 5) are transformed into IVNSs, which are shown in
Table 3.

By applying formulae (10) and (12), we obtain the
similarity measure values S∗1IVNS(P2, Qi) and S∗2IVNS(P2, Qi),
the results are shown in Table 4.

From the two similarity measure values in Table 4, we
can see that the patient P2 suffers from typhoid (Q3); the
diagnosis results are the same as shown by Ye [19].

Table 1: -e relation between the diagnosis and the symptom for
SVNS decision information.

S1 S2 S3 S4 S5

Q1
<0.4, 0.6,
0.0>

<0.3, 0.2,
0.5>

<0.1, 0.3,
0.7>

<0.4, 0.3,
0.3>

<0.1, 0.2,
0.7>

Q2
<0.7, 0.3,
0.0>

<0.2, 0.2,
0.6>

<0.0, 0.1,
0.9>

<0.7, 0.3,
0.0>

<0.1, 0.1,
0.8>

Q3
<0.3, 0.4,
0.3>

<0.6, 0.3,
0.1>

<0.2, 0.1,
0.7>

<0.2, 0.2,
0.6>

<0.1, 0.0,
0.9>

Q4
<0.1, 0.2,
0.7>

<0.2, 0.4,
0.4>

<0.8, 0.2,
0.0>

<0.2, 0.1,
0.7>

<0.2, 0.1,
0.7>

Q5
<0.1, 0.1,
0.8>

<0.0, 0.2,
0.8>

<0.2, 0.0,
0.8>

<0.2, 0.0,
0.8>

<0.8, 0.1,
0.1>

We can calculate the similarity measures S∗1SVNS(P1, Qi) and
S∗2SVNS(P1, Qi)(i � 1, 2, . . . , 5), and then the diagnoses of the patient P1 can
be classified by Rj � argmax

1≤i≤5
S∗jSVNS(P1, Qi)􏽮 􏽯(j � 1, 2).

Table 2: -e similarity measures between P1 and Qi.

Q1 Q2 Q3 Q4 Q5

S∗1SVNS(P1, Qi) 0.6663 0.7188 0.5387 0.4594 0.4336
S∗2SVNS(P1, Qi) 0.8223 0.8378 0.6377 0.5500 0.4881
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4.3. Comparative Analyses of Existing Similarity Measures.
To illustrate the effectiveness of the proposed similarity
measures for medical diagnosis, we will apply the existing
similarity measures of SVNSs and IVNSs for comparative
analyses.

At first, we introduce the existing similarity measures
between SVNSs as follows:

Let N1 � {〈xi, TN1
(xi), IN1

(xi), FN1
(xi)〉 ∣ xi ∈ X} and

N2 � {xi, TN2
(xi), IN2

(xi), FN2
(xi) ∣ xi ∈ X} be two SVNSs

in X � x1, x2, . . . , xn􏼈 􏼉, the existing similarity measures
between N1 and N2 are defined as follows:

(1) Broumi et al. [23] proposed the similarity measure
SMSVNS:

SMSVNS N1, N2( 􏼁 � 1−DSVNS N1, N2( 􏼁. (15)

(2) Şahin and Ahmet [24] proposed the similarity
measure SDSVNS:

SDSVNS N1, N2( 􏼁 �
1

1 + DSVNS N1, N2( 􏼁
. (16)

(3) Ye [19] proposed the improved cosine similarity
measures SC1SVNS and SC2SVNS:

SC1SVNS N1, N2( 􏼁 �
1
n

􏽘

n

i�1
cos

π · max TN1
xi( 􏼁−TN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, IN1
xi( 􏼁− IN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, FN1
xi( 􏼁−FN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

SC2SVNS N1, N2( 􏼁 �
1
n

􏽘

n

i�1
cos

π TN1
xi( 􏼁−TN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + IN1
xi( 􏼁− IN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + FN1
xi( 􏼁−FN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

6
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (18)

(4) Yang et al. [25] proposed the similarity measure
SYSVNS(N1, N2):

SYSVNS N1, N2( 􏼁 �
SCSVNS N1, N2( 􏼁

SCSVNS N1, N2( 􏼁 + DSVNS N1, N2( 􏼁
.

(19)

Example 3′. We apply formulae (5), (7), and (15)–(19) to
calculate Example 5 again; the similarity measure values
between P1 and Qi(i � 1, 2, . . . , 5) are shown in Table 5.

As we can see from Table 5, the patient P1 is still assigned
to malaria (Q2), and the results are same as the proposed
similarity measures in this paper, which means the proposed
similarity measures are feasible and effective.

Next, we introduce the existing similarity measures
between IVNSs as follows:

Let N1′ � {〈xi, [TL
N1′

(xi), TU
N1′

(xi)], [IL
N1′

(xi), IU
N1′

(xi)],

[FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′ � {xi, [TL
N2′

(xi), TU
N2′

(xi)], [IL
N2′

(xi), IU
N2′

(xi)], [FL
N2′

(xi), FU
N2′

(xi)]|xi ∈ X} be two
IVNSs in X � x1, x2, . . . , xn􏼈 􏼉, the existing similarity mea-
sures between N1′ and N2′ are defined as follows:

(1) Broumi et al. [23] proposed the similarity measure
SMIVNS:

SMIVNS N1′, N2′( 􏼁 � 1−DIVNS N1′, N2′( 􏼁. (20)

(2) Şahin and Ahmet [24] proposed the similarity
measure SDIVNS:

SDIVNS N1′, N2′( 􏼁 �
1

1 + DIVNS N1′, N2′( 􏼁
. (21)

Table 3: -e relation between the diagnosis and the symptom for IVNS decision information.

S1 S2 S3 S4 S5

Q1
<[0.4, 0.4], [0.6, 0.6],

[0.0, 0.0]>
<[0.3, 0.3], [0.2, 0.2],

[0.5, 0.5]>
<[0.1, 0.1], [0.3, 0.3],

[0.7, 0.7]>
<[0.4, 0.4], [0.3, 0.3],

[0.3, 0.3]>
<[0.1, 0.1], [0.2, 0.2],

[0.7, 0.7]>

Q2
<[0.7, 0.7], [0.3, 0.3],

[0.0, 0.0]>
<[0.2, 0.2], [0.2, 0.2],

[0.6, 0.6]>
<[0.0, 0.0], [0.1, 0.1],

[0.9, 0.9]>
<[0.7, 0.7], [0.3, 0.3],

[0.0, 0.0]>
<[0.1, 0.1], [0.1, 0.1],

[0.8, 0.8]>

Q3
<[0.3, 0.3], [0.4, 0.4],

[0.3, 0.3]>
<[0.6, 0.6], [0.3, 0.3],

[0.1, 0.1]>
<[0.2, 0.2], [0.1, 0.1],

[0.7, 0.7]>
<[0.2, 0.2], [0.2, 0.2],

[0.6, 0.6]>
<[0.1, 0.1], [0.0, 0.0],

[0.9, 0.9]>

Q4
<[0.1, 0.1], [0.2, 0.2],

[0.7, 0.7]>
<[0.2, 0.2], [0.4, 0.4],

[0.4, 0.4]>
<[0.8, 0.8], [0.2, 0.2],

[0.0, 0.0]>
<[0.2, 0.2], [0.1, 0.1],

[0.7, 0.7]>
<[0.2, 0.2], [0.1, 0.1],

[0.7, 0.7]>

Q5
<[0.1, 0.1], [0.1, 0.1],

[0.8, 0.8]>
<[0.0, 0.0], [0.2, 0.2],

[0.8, 0.8]>
<[0.2, 0.2], [0.0, 0.0],

[0.8, 0.8]>
<[0.2, 0.2], [0.0, 0.0],

[0.8, 0.8]>
<[0.8, 0.8], [0.1, 0.1],

[0.1, 0.1]>
We can calculate the similarity measures S∗1IVNS(P2, Qi) and S∗2IVNS(P2, Qi)(i � 1, 2, · · · , 5), and the diagnosis of the patient P2 can be classified by
Rj � argmax

1≤i≤5
S∗jIVNS(P2, Qi)􏽮 􏽯(j � 1, 2).

Table 4: -e similarity measures between P2 and Qi.

Q1 Q2 Q3 Q4 Q5

S∗1IVNS(P2, Qi) 0.5783 0.4610 0.6273 0.5772 0.5401
S∗2IVNS(P2, Qi) 0.6804 0.5729 0.7503 0.7061 0.6734
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(3) Broumi and Smarandache [22] proposed the
improved cosine similarity measures SC1SVNS and
SC2SVNS:

SC1IVNS N1′, N2′( 􏼁 �
1
n

􏽘

n

i�1
cos

π
4

max T
L
N1′

xi( 􏼁−T
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, I
L
N1′

xi( 􏼁− I
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, F
L
N1′

xi( 􏼁−F
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼔

+ max T
U
N1′

xi( 􏼁−T
U
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, I
U
N1′

xi( 􏼁− I
U
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, F
U
N1′

xi( 􏼁−F
U
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼕,

(22)

SC2IVNS N1′, N2′( 􏼁 �
1
n

􏽘

n

i�1
cos

π
12

T
L
N1′

xi( 􏼁−T
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + I
L
N1′

xi( 􏼁− I
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + F
L
N1′

xi( 􏼁−F
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒

+ T
U
N1′

xi( 􏼁−T
U
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + I
U
N1′

xi( 􏼁− I
U
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + F
U
N1′

xi( 􏼁−F
U
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼓.

(23)

(4) Yang et al. [25] proposed the similarity measure
SYSVNS(N1′, N2′):

SYIVNS N1′, N2′( 􏼁 �
SCIVNS N1′, N2′( 􏼁

SCIVNS N1′, N2′( 􏼁 + DIVNS N1′, N2′( 􏼁
.

(24)

Example 4′. Applying formulae (9), (11), and (20)–(24) to
calculate Example 6 again, the similarity measure values
between P2 and Qi(i � 1, 2, . . . , 5) are shown in Table 6.

-e results of Table 6 show that the patient P2 should be
assigned to typhoid (Q3), they are same as the proposed
similarity measures S∗1IVNS and S∗2IVNS in the paper, which
means the proposed methods are feasible and effective.

-e proposed similarity measures in the paper have
some advantages in solving multiple criteria decision-
making problems. -ey are constructed based on the
existing similarity measures and Euclidean distance, which
not only satisfy the axiom of the similarity measure but also
consider the similarity measure from the points of view of
algebra and geometry. Furthermore, they can be applied
more widely in the field of decision-making problems.

5. Conclusions

-e similarity measure is widely used in multiple criteria
decision-making problems. -is paper proposed a new
method to construct the similarity measures combining the
existing cosine similarity measure and the Euclidean distance

measure of SVNSs and IVNSs, respectively, which are based
on the above existing similarity measures and the Euclidean
distance measure. And, the similarity measures are proposed
not only from the points of view of algebra and geometry but
also satisfy the axiom of the similarity measure. Furthermore,
we apply the proposed similarity measures to medical di-
agnosis decision problems, and the numerical example is used
to illustrate the feasibility and effectiveness of the proposed
similarity measure, which are then compared to other existing
similarity measures. In future research, we will focus on
studying the similarity measure between linguistic neu-
trosophic set and the application of the proposed similarity
measures of neutrosophic sets, such as pattern recognition,
supplier selection, and so on.
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Two case reports showed that the combination of CRTand LVAD benefits the end-stage heart failure patients with prolonged QRS
interval significantly. In one of the reports, the patient had the LVAD removed due to the recovery of the heart function. However,
the quantification of the combined devices has yet to be conducted. ,is study aimed at computationally predicting the effects of
CRT-only or combined with LVAD on electromechanical behaviour in the failing ventricle with left bundle branch blocked
(LBBB) and right bundle branch blocked (RBBB) conditions. ,e subjects are normal sinus rhythm, LBBB, RBBB, LBBB with
CRT-only, RBBB with CRT-only, LBBB with CRT + LVAD, and RBBB with CRT + LVAD.,e results showed that the CRT-only
shortened the total electrical activation time (EAT) in the LBBB and RBBB conditions by 20.2% and 17.1%, respectively.,e CRT-
only reduced the total mechanical activation time (MAT) and electromechanical delay (EMD) of the ventricle under LBBB by
21.3% and 10.1%, respectively. Furthermore, the CRT-only reduced the contractile adenosine triphosphate (ATP) consumption by
5%, increased left ventricular (LV) pressure by 6%, and enhanced cardiac output (CO) by 0.2 L/min under LBBB condition.
However, CRT-only barely affects the ventricle under RBBB condition. Under the LBBB condition, CRT + LVAD increased LV
pressure and CO by 10.5% and by 0.9 L/min, respectively. CRT + LVAD reduced ATP consumption by 15%, shortened the MAT
by 23.4%, and shortened the EMD by 15.2%. In conclusion, we computationally predicted and quantified that the CRT + LVAD
implementation is superior to CRT-only implementation particularly in HF with LBBB condition.

1. Introduction

Heart failure (HF) plays a major role in the number of death
worldwide [1]. ,us, the study of heart diseases including
cardiac arrhythmia, which progressively leads to HF con-
dition, is very important. Two types of cardiac therapy
devices are commonly used to treat patients with cardiac
disease: cardiac resynchronization therapy (CRT) and left
ventricular assist device (LVAD). CRT is considered as
a valuable treatment for patients with dyssynchrony HF with
QRS interval >120ms and left ventricular ejection fraction
(EF) <35% [2, 3]. A number of studies showed significant
benefits of using CRT. CRT synchronizes systolic function
[4–6], restores heart structure [7, 8], and improves symp-
toms and the quality of life of the patients identified by the
improvement of exercise endurance [3, 8–12]. However,

30% of patients with HF failed to benefit from the CRT [9].
Hu et al. [13] described that three major responses could be
obtained from the CRT treatment: resynchronization of the
intraventricular contraction, efficient ventricular preloading
by a properly timed atrial contraction, and reduction of
mitral regurgitation. One of the study findings was that
resynchronization of the intraventricular contraction itself
did not necessarily lead to stroke work improvement.
However, the synchronization of the atrioventricular firing
time was essential.

LVAD supports the ventricular pumping via mechanical
unloading for weakened heart. LVAD was initially used as
a bridge to transplantation for patients with end-stage
disease [14, 15]. However, because the availability of heart
donors is very limited, LVAD is now used as destination
therapy as it lasts for years [16–18]. LVAD reverses the
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damaged ventricle and recovers myocardial functionalities
by repairing left ventricular (LV) mass [19, 20], heart
chamber size [20, 21], improves mitral filling [22], and
induces cardiomyocyte hypertrophy regression [21, 22]. ,e
use of LVAD also increased the quality of life of the patients
[23–25]. Previously, we observed the effect of LVAD on the
electromechanical delay (EMD) under mild and severe HF
conditions [26]. ,e results showed that the LVAD not only
increased the EF but also shortened the EMD under the mild
HF and even better under severe HF conditions. ,e
comparison study of the symptomatic relief of CRT and
LVAD by Delgado et al. concluded that the use of both
devices could synergistically improve cardiac functions for
severe HF treatment [27].

In 2011, a case report article stated that the CRT
supported the restoration of end-stage HF in a 15-year-old
patient who underwent LVAD implantation [28]. ,e CRT
shortened the septal to posterior wall motion delay from
146ms to 104ms, and overall, it backed up the hemody-
namic improvements. After such improvement, the pa-
tient successfully had the LVAD removed. In another case
report article, the CRT and LVAD cooperatively restored
the cardiac functions of a 62-year-old patient who had
cardiogenic shock and left bundle branch block (LBBB)
[29]. ,e report stated that the combination of CRT and
LVAD performed a profound treatment on the weakening
heart under LBBB condition. It recovered the heart hy-
pertrophy, and the EF was increased. Based on these re-
ports, we conducted a computational modelling which
combined the CRT and LVAD to the failing ventricle with
LBBB and RBBB in order to understand the mechanism of
the two devices combined to provide such improvement to
the heart.

To the best of our knowledge, a computational study
that quantifies the effect of combined CRT and LVAD has
yet to be conducted. ,is study aims at predicting, com-
putationally with an electromechanical failing ventricles
model, the effects of CRT alone and the combination of
CRT and LVAD treatment in patients with LBBB or right
bundle branch block (RBBB). We used a well-developed
electromechanical ventricular model which had been used
to observe different heart conditions, including the pro-
longed EMD in the dyssynchrony HF condition [30],
mechanoelectrical feedback on scroll wave stability [31],
and spontaneous arrhythmia in acute regional ischemia
[32]. Recently, by using similar electromechanical cou-
pling model, our group revealed the effect of KCNQ1
S140G mutation on arrhythmogenesis and pumping
performance [33]. We used computational methods to
overcome the measurement limitations and risks of the
experimental study. We analyzed seven HF diseases and
therapies: (i) normal sinus rhythm, (ii) LBBB, (iii) LBBB
with CRT alone (LBBB + CRT), (iv) LBBB with CRT and
LVAD combination (LBBB + CRT + LVAD), (v) RBBB,
(vi) RBBB with CRT alone (RBBB + CRT), and (vii) RBBB
with combined CRT and LVAD (RBBB + CRT + LVAD)
conditions.

2. Materials and Methods

We followed an existing well-developed electromechanical
failing ventricle model with the fibers and laminar sheet
structures based on diffusion tensor magnetic resonance
imaging [34–37]. In this study, our electromechanical model
was coupled with circulatory systems and LVAD models
similarly as Lim et al. with additional Purkinje networks
compartment to simulate LBBB and RBBB conditions [38].
,e electromechanical model consisted of electrophysio-
logical and myofilament dynamics model coupled by Ca2+
transient. ,e LVAD function included the circulatory
systems, which connected to the 3D ventricular mechanics.
Figure 1 shows a full schematic of the system we used in this
study.

,e electrical component was a failing ventricular mesh
with 241,725 nodes and 1,298,751 tetrahedron elements.
,e electrical mesh has the characteristics of realistic heart
compartment, which consists of endocardial, mid-
myocardial, and epicardial cells following the ten Tusscher
et al. human ventricular tissue model [39]. ,e line mesh
type representing Purkinje networks was mapped onto
a 3D ventricle chamber as well at the endocardial region
(Figure 2(c)).

,e Purkinje networks induced the electrical activation
sequences of sinus rhythm (normal), LBBB, and RBBB
(Figure 2(c)). ,e CRTpacing site of the LBBB was placed at
the LV free-wall, while the CRTpacing site of the RBBB was
placed at the RV endocardial apex as shown in Figure 2(b).
,e electrical stimulation was first induced at the root node
of Purkinje fiber model, which propagates to the terminals,
hence stimulating the ventricular tissue. ,e electrical
propagation in the Purkinje can be described by solving
a one-dimensional wave propagation equation and triggered
the ventricular activation [40].

,e electrical propagation signal represents an ion ex-
change across the myocyte as described by ten Tusscher et al.
[39]. ,e electrophysiological phenomenon for the single
cell can be described as follows:

dV

dt
�
−Iion + Istim

Cm
, (1)

where V represents the voltage difference of intracellular and
extracellular, t represents time, Iion represents the sum of all
transmembrane ionic currents, Istim represents the current if
an external stimulus is applied, and Cm represents the cell
capacitance per unit of surface area. Iion consists of major
ionic current as follows:

Iion � INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK

+ IpCa + IpK + IbCa + IbNa,

(2)

where INa is fast inward Na+ current, IK1 is inward rectifier
K1 current, Ito is transient outward K+ current, IKr is rapid
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delayed rectifier K+ current, IKs is slow delayed rectifier K+

current, ICaL is L-type inward Ca
2+ current, INaCa is Na

+/Ca2+
exchanger current, INaK is the Na+/K+ pump current, IpCa
and IpK are sarcoplasmic plateau Ca2+ and K+ currents, IbCa
is background Ca2+ current, and INa,b is background Na+

current.
To represent the electrical propagation through the

conduction in 3D spatial, the cardiac tissue in this case could
be described by the combination of the Equation (1) with the
cellular resistivity (ρ) and surface-to-volume ratio (S) in x, y,
and z directions, respectively. ,is phenomenon can be
described by the following partial differential equation:

dV

dt
�
−Iion + Istim

Cm
+

1
ρxSxCm

z2V

zx2

+
1

ρySyCm

z2V

zy2 +
1

ρzSzCm

z2V

zz2 .

(3)

,e mathematical equation for calcium dynamics for
coupling the electromechanical simulation was also de-
scribed by ten Tusscher et al. [39]:

Ileak � Vleak Casr −Cai( 􏼁,

Iup �
Vmaxup

1 + K2
up/Ca

2
i

,

Irel � arel
Ca2sr

b2rel + Ca2sr
+ Crel􏼠 􏼡 dg,

Caibufc �
Cai × Buf c

Cai + Kbufc
,

dCaitotal
dt

�
−ICal + IbCa + IpCa − 2INaCa

2VcF
+ Ileak − Iup + Irel,

Casrbufsr �
Casr × Bufsr
Casr + Kbufsr

,

dCastotal
dt

�
VC

Vsr
−Ileak + Iup − Irel􏼐 􏼑,

(4)
where Ileak represents the calcium released from the sar-
coplasmic reticulum (SR) into the cell. Iup represents the
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Figure 1: Schematics of the electrical andmechanical elements coupled with transient calcium. Electrical element: it represents the currents,
pumps, and exchanger of the ten Tusscher ionic model as explained in equation (1). Mechanical element: a schematic diagram of the finite-
element ventricular mechanical model coupled with the circulatory and LVAD models. PRV, RV pressure; VRV, RV volume; PLV, LV
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CRA, right atrium compliance; RPU, pulmonary valve resistance.
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calcium pumping to restore the calcium again back to the
SR. Irel represents the calcium-induced calcium release
current, d is the activation gate of Irel, which was the same
with ICaL. Caitotal is the total calcium inside the cell, which
consists of Caibufc, the calcium buffer inside the cell, and
Cai, the free calcium inside the cell. Accordingly, the
Casrtotal is the sum of calcium in the SR, which includes
Casrbufsr, the calcium buffer, and Casr, the free calcium
inside the SR.

A Ca2+ transient serves as an input to the cell myofilament
model representing the generation of active tension within
each myocyte in which an ODE set and multiple algebraic
equations describe Ca2+ binding to troponin C, cooperatively
between regulatory proteins, and cross-bridge cycling. Ven-

tricular contraction results from the active tension generation
represented by themyofilament dynamicsmodel described by
Rice et al. [41]. Ventricular deformation is described by the
equations of passive cardiac mechanics, with the myocardium
being orthotropically hyperelastic, and nearly incompressible
material with passive properties defined by an exponential
strain-energy function. Simultaneous solutions of the myo-
filament model equations to those representing passive car-
diac mechanics on the finite-element mesh constitute cardiac
contraction. Considering the isometric contraction, we as-
sumed that the sarcomere length (SL) is 0 at the initial value,
dSL/dt � 0. To measure the isotonic contraction, the SL is
solved using the following ordinary differential equation
(ODE):

Endo EpiM

(a)

LBBB pacing
site

RBBB 
pacing site

(b)

Sinus LBBB RBBB

19 120 (ms)

(c)

Figure 2: (a) ,e heterogeneous mesh that has the characteristics of endocardial, midmyocardial, and epicardial cells. (b) ,e CRTpacing
site for the LBBB heart was placed on the LV free-wall, while that for the RBBB heart was placed inside the RV at the bottom of the septum.
(c) ,e electrical propagation by the Purkinje network in the sinus, LBBB, and RBBB conditions. ,e electrical activation by the Purkinje
networks is indicated in red. In sinus pacing, the Purkinje network delivers the electrical signal to its terminals. In the LBBB condition, the
Purkinje network delivered the signal only to the right network in the RV area. In the RBBB condition, the Purkinje network delivered the
signal only to the left network in the LV area. CRT, cardiac resynchronization therapy; LBBB, left bundle branch block; LV, left ventricular;
RBBB, right bundle branch block; RV, right ventricular.
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d

dt
SL �

IntegralForce + SL0 − SL( 􏼁 × viscosity
mass

, (5)

the viscosity and mass are described in Figure 1 at the
mechanical compartment, and IntegralForce is the sum of the
normalized force integrated toward time:

IntegralForce � 􏽚
t

0
( Factive(x) + Fpassive(x)

−Fpreload −Fafterload(x)􏼁 dt,

(6)

where the Factive(x) is the active force and the Fpassive(x) is
the passive force. Fpreload is the constant force at the resting
length of the initial sarcomere length, and Fafterload is the
force during the isotonic or isometric contraction. ,us,
Fafterload is expressed as follows:

Fafterload(x) � KSE × x− SL0( 􏼁. (7)

We calculated the ATP consumption by integrating the
myofilament model in one cycle proposed by Rice et al. from
each node [41]. In the myofilament model, the ATP con-
sumption rate (E) is the outcome of cross-bridge detachment
rate (gxbT) and the single overlap fraction of thick filaments
(SOVF,ick):

E � gxbT × SOVFThick. (8)

To construct an integrated model of an LVAD-
implanted cardiovascular system, we added a compart-
ment of LVAD function between LV and systemic arteries in
the circulatory system based on Kerckhoffs et al. [42] as
described previously by Lim et al. [38]. Briefly, the LVAD
component was modelled as a flow generator with a specific
mean flow rate of 3 L/min. Constant-flow conditions were
used to simulate the continuous LVAD with the inlet at the
LV apex and the outlet at the ascending aorta.

For the simulation protocol, first we simulated the
electrical model with the Purkinje delivering the signal
representing sinus rhythm, LBBB, or RBBB until the steady
state was achieved. We set the conduction velocity by
60 cm/s and the basic cycle length by 600ms. Here, we
incorporated the dyssynchrony HF conditions (LBBB and
RBBB) using CRT-alone or combined CRTand LVAD. We
then used Gaussian point for the interpolation of transient
Ca2+ from the electrical simulation as the input to the
mechanical simulation. To model the HF condition, we
multiplied the constant of passive scaling in the strain-
energy function by 5 times to stiffen the myocardium. ,e
mechanical model was simulated for 20 seconds to reach
the steady state. We compared the ATP consumption rates
and tension activation during end-systolic volume (ESV)
and the strain during end-diastolic volume (EDV) by in-
tegrating the information of them from each node. EMD
was defined as the time interval between mechanical ac-
tivation time (MAT) and electrical activation time (EAT).
MATwas identified when the local strain was shortened to
10% before its maximum, while EAT was identified when
the myocyte started to depolarize, which in our case was
−50mV [30].

3. Results and Discussion

3.1. Electrophysiological Simulation Results. Figure 3 shows
the membrane potential propagation in the normal sinus
rhythm (sinus), LBBB, LBBB + CRT, LBBB + CRT + LVAD,
RBBB, RBBB + CRT, and RBBB + CRT + LVAD conditions.
,e electrical wavelength almost covered the whole ventricle
tissue at 100ms in the sinus condition, and the EAT in the
sinus condition was 120ms (Table 1). ,e EAT in the LBBB
condition was 173ms, which was the longest among other
cases. CRT shortened the EAT in the LBBB condition to
138ms, which was close to that in the sinus condition. In the
RBBB heart, the EATwas 164ms. CRTshortened the EAT in
the RBBB heart to 136ms, which was close to the sinus
condition as well.

Figure 4 shows the calcium activation sequences. ,e
calcium activation sequence followed the electrical activa-
tion sequence for each case. Compared to the membrane
potential, which deactivated after 450ms, the Ca2+ de-
activation occurred at 250ms. CRT fastened the Ca2+ acti-
vation throughout the ventricle in the LBBB condition but
insignificantly in the RBBB condition due to the CRTpacing
site.

3.2. Cardiac Mechanics Simulation Results. Figure 5 shows
the 3D ATP consumption rate, tension, and strain trans-
mural distribution in the sinus, LBBB, LBBB + CRT, LBBB +
CRT + LVAD, RBBB, RBBB + CRT, and RBBB + CRT +
LVAD conditions. We pick one node at the LV free-wall as
representative to compare the values of them. Overall, the
ATP consumption rate and tension in the LBBB condition
had the highest values, 3.3 and 3.5 times larger than those in
the normal sinus condition, respectively. However, the CRT
decreased the ATP consumption rate and tension in the
LBBB condition to be 6% and 7% lower than those in the
normal sinus condition. Furthermore, CRT and LVAD re-
duced the ATP consumption rate and tension in the LBBB
condition to 10% and 12% lower than those in the normal
sinus condition, respectively. ,e ATP consumption rate
and tension in the RBBB condition were 8% and 9% higher
than those in the control condition. ,e CRT reduced the
ATP consumption rate and tension by 4% and 5%, re-
spectively. CRT and LVAD reduced the ATP consumption
rate and tension by 9% and 11% in the RBBB condition,
respectively. ,e strain under the LBBB condition was 80
times larger than that in the normal condition (notified by
major red region in the LV free-wall). ,e CRT reduced the
strain in the LBBB 56 times lower than that in the normal
sinus condition. CRT significantly restored the total strain
under the LBBB condition with the pacing site at the LV
free-wall. However, under LBBB + CRT + LVAD, the total
strain was only eight times lower than that in the sinus
condition. ,e continuous LVAD altered the overall strain
in the ventricles. ,e total strain in the RBBB condition was
84 times larger than that in the normal condition. In the
RBBB + CRT model, the strain activation was 122 times
larger. In the RBBB + CRT + LVAD model, the strain
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activation was 23 times lower than that in the normal
condition.

Figure 6(a) shows the LV pressure-volume (PV) loop
diagram in the sinus, LBBB, LBBB + CRT, LBBB + CRT +
LVAD, RBBB, RBBB + CRT, and RBBB + CRT + LVAD
conditions. ,e LV PV-loop in the normal sinus rhythm
condition was the same as those in the RBBB and RBBB +
CRTconditions.,e EDV in the three conditions was 88mL,
ESV was 54.5mL, and EF was 38%.,e LBBB condition had
the highest EDV and ESV of 90mL and 60mL, respectively.
,e stroke volume (SV) and EF were 30mL and 33.4%,
respectively. CRT increased the EF up to 36% in the LBBB
condition. ,e EDV, ESV, and SV in the LBBB + CRT
condition were 89mL, 57mL, and 32mL, respectively. We

did not quantify the EF inmodels in which LVADmodel was
incorporated because the PV-loop of the LV was altered due
to the LVAD implementation. However, the CO was pre-
sented to compare the effects of CRT-alone and combined
CRT and LVAD. ,e complete EDV, ESV, CO, EF, MAT,
and EMD data in all conditions are provided in Table 1.

Figure 6(b) shows the LV and systemic artery pressures
coloured in black and red lines, respectively. In the normal
sinus condition, the peak LV pressure was 148mmHg. ,e
LV pressure peaked at 358ms, and the aortic valve was
opened for 96ms. In the LBBB condition, the LV peak
pressure was 132.5mmHg. ,e LV peak pressure time was
prolonged to 407ms, and the aortic valve was opened for
100ms. ,e LV peak pressure in the LBBB + CRTcondition

Sinus

LBBB

RBBB

LBBB + CRT
(+LVAD)

RBBB + CRT
(+LVAD)

–85 30

Membrane potential (mV)

50 ms 100 ms 150 ms 400 ms 450 ms 500 ms

Figure 3: ,e membrane potential propagation of the sinus pacing, LBBB, LBBB + CRT, RBBB, and RBBB + CRTmodels. For the LBBB +
CRT + LVAD and RBBB + CRT + LVAD models, we used the same electrical activation sequence as the LBBB + CRT and RBBB + CRT
models, respectively, because the LVAD was incorporated into the mechanical computation. LBBB, left bundle branch block; CRT, cardiac
resynchronization therapy; RBBB, right bundle branch block; LVAD, left ventricular assist device.

Table 1: Hemodynamic responses under normal, LBBB, LBBB + CRT, LBBB + CRT + LVAD, RBBB, RBBB + CRT, and RBBB + CRT +
LVAD models.

Condition EDV (mL) ESV (mL) CO (L/min) EF (%) Longest EAT (ms) Average MAT (ms) Average EMD (ms)
Normal sinus rhythm 88 55 3.4 38 120 157 78
LBBB 90 60 3 33.4 173 188 79
LBBB + CRT 89 57 3.2 36 138 148 71
LBBB + CRT + LVAD — — 3.9 — 138 144 67
RBBB 87 54 3.4 38 164 162 80
RBBB + CRT 88 55 3.4 38 136 157 81
RBBB + CRT + LVAD — — 4 — 136 155 79

6 Computational and Mathematical Methods in Medicine



was increased to 141mmHg. ,e LV peak pressure time was
shortened to 364ms, and the aortic valve was opened for
96ms. In the LBBB + CRT + LVAD condition, the peak LV
pressure was 148mmHg, the same as that in the normal
condition, the LV peak pressure time was 363ms, and the
aortic valve was opened for 62ms. ,e combination of CRT
and LVAD restored the LV peak pressure and LV peak
pressure time in the LBBB condition better than CRTalone.
In the RBBB and RBBB + CRT conditions, the LV peak
pressures and LV peak pressure time were the same at

148mmHg and 353ms, respectively, and the aortic valve was
opened for 96ms, the same as that in the normal condition.
,e reason was that the electrical activation of the LV was
not altered in the RBBB condition. In the RBBB + CRT +
LVAD condition, the peak LV pressure and LV peak
pressure time were increased to 155mmHg and 350ms,
respectively, and the aortic valve was opened for 63ms. ,is
finding shows that the combined CRT and LVAD increased
the LV pressure and systemic arterymore than the CRT-only
implementation.

Sinus

LBBB

RBBB

LBBB + CRT
(+LVAD)

RBBB + CRT
(+LVAD)

0 0.0008
Calcium

50 ms 100 ms 150 ms 250 ms 350 ms 500 ms

Figure 4:,e Ca2+ propagation sequence following themembrane potential activation sequence in all cases. LBBB, left bundle branch block;
CRT, cardiac resynchronization therapy; LVAD, left ventricular assist device; RBBB, right bundle branch block.
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Figure 5:,e 3D transmural distribution of ATP, tension, and strain in all cases.,e snapshot for the ATP and tension was taken at the end-
systolic volume, while the strain snapshot was taken at the end-diastolic volume time. ATP, adenosine triphosphate; LBBB, left bundle
branch block; CRT, cardiac resynchronization therapy; LVAD, left ventricular assist device; RBBB, right bundle branch block.
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Figure 6(c) shows the overall ATP consumption rate
from one cycle of steady state. In the normal sinus condition,
the ATP consumption rate was 93 s−1. ,e ATP con-
sumption rate in LBBB condition was the highest at 100 s−1.
CRT reduced the ATP consumption rate in the LBBB
condition by 5%, while CRT and LVAD reduced the ATP
consumption rate by 15%. In the RBBB and RBBB + CRT
conditions, the ATP consumption rates were the same as
that in the normal condition, 93 s−1. However, with CRTand
LVAD support, the ATP consumption rate in the RBBB
condition was decreased by 16% to 84 s−1.

Figure 6(d) shows the CO of the seven subjects. CRT
increased the CO slightly in the LBBB condition but not in
the RBBB condition. With the combination of CRT and
LVAD, the CO of the LBBB and RBBB conditions was
significantly increased (Table 1).

Figure 7(a) shows the 3D contour of EAT, MAT, and
EMD, while Figure 7(b) shows the MAT and EMD of all

cases. As shown in Figure 7(a), the activation sequence of
MATand EMDwas identical to the EAT.,eMATand EMD
values in the normal condition were 157 and 78ms, re-
spectively. In the LBBB condition, the MATand EMD values
were the greatest at 188ms and 79ms, respectively. CRT
shortened the MAT and EMD to 148ms and 71ms in the
LBBB condition. Furthermore, the MAT and EMD in the
LBBB condition were further shortened with the combined
CRT and LVAD to 144 and 67ms, respectively. ,is finding
showed that combination of CRT and LVAD performed
better than CRT alone despite having the same EAT. In the
RBBB condition, the MAT and EMD values were 162 and
80ms, respectively. In the RBBB + CRT condition, the mean
MATand EMD values were reduced slightly to 157 and 81ms,
respectively. In the RBBB + CRT + LVAD condition, the
mean MAT and EMD values were reduced to 155 and 79ms
(close to the control condition), respectively. In the RBBB
condition, CRT alone only slightly affected the electrical and
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Figure 6: (a) LV pressure-volume loop, (b) LV pressure and aortic pressure, (c) ATP consumption rate, and (d) cardiac output of all cases.
LV, left ventricular; LBBB, left bundle branch block; CRT, cardiac resynchronization therapy; LVAD, left ventricular assist device; RBBB,
right bundle branch block; ATP, adenosine triphosphate.
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mechanical responses. However, CRT + LVAD increased CO
in the RBBB condition significantly as expected.

In general, we performed a simulation and analyzed
seven cardiac diseases and therapy conditions by using an
electromechanical ventricular model incorporated with
a circulatory systems, CRT, and LVAD models. ,e models
including normal sinus rhythm, LBBB, LBBB + CRT, LBBB
+ CRT + LVAD, RBBB, RBBB + CRT, and RBBB + CRT +
LVAD. ,e major findings of this study are as follows:

(1) CRT shortened the longest EAT by 20.2% in the
LBBB condition and 17.1% in the RBBB condition.
CRT shortened EMD by 10.1% in the LBBB condi-
tion but did not shorten EMD in the RBBB
condition.

(2) Combination of CRT and LVAD treatment short-
ened EMD more than CRT alone in the LBBB
condition (15.2%) and shortened EMD in the RBBB
condition (1.3%).

(3) CRTreduced the ATP consumption by 5% as well as
the tension and strain in the LBBB condition. CRT
also slightly increased the LV peak pressure by 6%
and increased the CO by 0.2 L/min in the LBBB
condition. However, CRT-alone did not affect these
mechanical responses in the RBBB condition.

(4) Combination of CRT and LVAD reduced the ATP
consumption by 15% in the LBBB condition and by
16% in the RBBB condition. It also increased the LV
pressure by 10.5% in the LBBB condition and 5.7% in
the RBBB condition as well as the CO up to 4 L/min
for both conditions, a degree greater than that in the
control condition.

,e pacing site at the tissue greatly affected synchro-
nization. Placement at the LV free-wall showed faster ac-
tivation throughout the chamber since the signal propagated
evenly from the midway between the base and apex
throughout the LV tissue. However, the pacing site at the RV
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endocardial apex showed a longer activation time for the
electrical signal to propagate to the base.

In the RBBB condition, the electrical activation of the LV
chamber was the same as normal sinus despite the electrical
activation alteration in the RV. ,is is the major factor why
the mechanical responses of the LV (LV PV-loop, LV
pressure, and CO) were also the same as that in normal sinus
rhythm. Even the CRT implementation in the RBBB con-
dition did not affect the mechanical responses of the LV
chamber. However, we observed significant improvement in
CO in the RBBB + CRT + LVAD condition. CRTand LVAD
also reduced the ATP consumption and tension and in-
creased the LV and aortic pressure in the RBBB condition.

CRT-alone did not fully restore the mechanical re-
sponses under the LBBB condition to normal despite the
resynchronization of the EAT, which shortened the MAT
and EMD to back normal. On the contrary, the use of
combined CRTand LVAD reduced the energy consumption
(indicated by the ATP consumption rate), tension, increased
the LV pressure, and produced CO by 18%more than that in
the HF with sinus rhythm condition. In addition, the LVAD
did not fully assist the blood distribution in the LBBB or
RBBB condition.

,e computational method allowed us to predict the
electromechanical phenomenon in the dyssynchrony heart
which underwent CRT and LVAD treatment. It is hardly
possible to observe some parameters including ATP con-
sumption, tension, MAT, and EMD from the patient’s heart
of that condition in experimental procedure. ,is study
quantified the electrical activation and hemodynamic re-
sponses in several dyssynchrony HF combined with CRT-
only, and CRTand LVAD, which has never been conducted
previously. As for the clinical impact, the results of this study
can be used as reference to generally predict the effect of the
combination of CRT and LVAD devices to the HF patients
with LBBB. ,ough, there are some parameters need to be
consider deeply by the cardiologist expert.

,is computational study has several limitations that
need to be addressed. ,e study did not follow the standard
biventricular pacing method [43]. Instead, we used only one
CRT pacing site: the RV endocardial apex (for the RBBB
condition) or the LV lateral wall (for the LBBB condition).
,e LV pacing site was not placed at the optimal position as
described before [44].We did not observe or describe the RV
mechanical responses in the RBBB condition; instead, we
showed the LV responses only. We used LVAD instead of
a right ventricular assist device to support the RBBB con-
dition. Because of our limitations, we did not validate the
results of our simulation with experimental data. In addi-
tion, we did not describe long-term effects such as recovery
of cardiac functions by the combined CRT and LVAD, as
previously described [28, 29].

4. Conclusions

In conclusion, although CRT-alone shortened the MATand
EMD to more than normal in the LBBB condition, the
mechanical responses in the LBBB condition were not re-
stored to normal. ,e combined CRT and LVAD shortened

the MAT and EMD more than CRT-alone, restored the
hemodynamic, and produced a greater CO than normal in
the LBBB and RBBB conditions. Using the combined system,
LVAD contributed to the MAT reduction by mechanical
unloading, shortened the EMD, reduced ATP consumption,
and reduced tension, which contributes to the recovery of
the heart shape and function. In short, we computationally
predicted and quantified that the CRT + LVAD imple-
mentation is superior to CRT-only implementation par-
ticularly in HF with the LBBB condition.
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