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Financial networks have been on the research agenda since
the financial crisis of 2008. Today, both regulators and the
academia recognize that interconnectedness is a crucial com-
ponent that had a key role in the amplification of losses in the
last crisis. Therefore, understanding the structure of financial
networks is important for assessing, monitoring, and regu-
lating financial systems. In addition, it washed away the belief
that supervising banks in an individual manner was sufficient
to guarantee a safe financial system, as networks can largely
amplify negative spillover effects. In this sense, we have
seen an increasing effort in designing novel mechanisms for
macroprudential regulation that include overseeing aspects
of the entire financial system, including its structure.

Though understanding how financial networks amplify
shocks is of uttermost importance for policymakers, espe-
cially for financial stability and systemic risk issues, the
literature is still at its early stages in understanding the role of
financial networks as a medium for shock amplification. This
mainly occurs because modern financial networks are inher-
ently complex to analyze as economic agents participate in a
multiplex of interrelationships in several different markets.

Modeling this heterogeneity of interconnections stands
as an important open problem because each connection can
potentially create contagion transmission channels that can
amplify losses. Another component that further increases the
modeling complexity is that each risk channel that arises from
this multiplex of interconnections is potentially dependent on
each other and thus can additively increase systemic risk in
nonlinear ways.

Complex networks evolve rapidly overtime and their
topology changes substantially. Understanding this evolution

and its impact on systemic risk and financial stability is an
important research question. There are many gaps in the
literature and we hope to address some of them within this
special issue.

The paper by K. Khashanah and T. Alsulaiman introduces
an agent-based approach. They contribute to the literature
by developing a metamodel of markets that leads to a
financial economic environment simulator. They find that the
simulated market is driven to instability in a similar manner
to patterns observed in a crisis where all agents become
homogeneous in information awareness of (negative) events.

The paper by S. Li and S. Wen studies a multiplex network
of the guarantee market, which has three layers (different type
of guarantee relationships). They provide empirical evidence
that central companies in one layer are not necessarily central
in another layer. The study contributes to the discussion on
how to model multiplex networks.

The paper by C. M. Fan et al. provides a theoretical
framework to manage the systemic risk of the banking system
in Nigeria based on macroprudential capital requirements,
which requires banks to hold capital that is proportional to
their contribution to systemic risk. They find that, despite
the heterogeneity in macroprudential capital requirements,
all risk allocation mechanisms bring a substantial decrease
in the systemic risk. The risk allocation mechanism based on
ACoVaR decreases the average default probability the most.

The paper by L. He and S. Li investigates network entropy
of dynamic banking systems. They find that network entropy
is positively correlated with the effect of systemic risk in the
three kinds of interbank networks and that network entropy
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in the small-world network is the largest, followed by those
in the random network and the scale-free network.

The paper by H. Fan et al. proposes a theoretical
framework to reveal the time evolution of the systemic risk
using sequences of financial data and uses the framework to
assess the systemic risk of the Kenyan banking system. They
study the case of Kenya and find several banks displaying
characteristics of systemically important banks (SIB) and a
case in which highly unusual interconnectedness may lead to
contagion defaults.

The paper by M. Pollak and Y. Guan studies a calibrated
network model of heterogeneous interbank exposures. Their
results show that trends in capital buffers and the distribution
and type of assets have a significant effect on the predictions
of financial network contagion models and that the rising
trend in ownership of banks by banks amplifies shocks to the
financial system.

The paper by J. Eberhard et al. studies how changes in
the structure of a brokers’ transaction network affect the
probability with which the returns and volume of the traded
financial assets change significantly. They find that changes
of this structure are significantly correlated with variables
that describe the local and international economic-financial
environments.

The paper by D. Csercsik and H. J. Kiss introduces a
new discrete time probabilistic model of depositor behavior,
which takes into account the information flow among depos-
itors. They study the role of connections and use variants of a
simple example. They find in these examples that connections
matter. The more connections the depositor has, the larger the
optimal offer from the bank is. Consequently, the denser the
connection structure is, the larger the expected payment of
the bank to the depositors is.

The paper by I. Anagnostou et al. contributes to the
portfolio credit risk literature by introducing a portfolio
credit risk model which incorporates both common factors
and contagion. They also use a credit stress propagation
network constructed from real data to quantify the impact of
deterioration of credit quality of the sovereigns on corporates.
And they present the impact of accounting for contagion
which can be useful for banks and regulators to quantify
credit, model, or concentration risk in their portfolios.

The paper by T. Chen introduces an evolving network
model of credit risk contagion in the credit risk transfer
market. The model contributes to the explicit investigation of
the connection between the factors of market behavior and
network structure and also provides a theoretical framework
for considering credit risk contagion in an evolving network
context.

The paper by L. Rossoni et al. shows that the financial cost
of capital of companies listed on the Brazilian stock exchange
is determined by the social capital of the networks of directors
and shareholders they have. The paper contributes to the field
of board interlocking and corporate governance by studying
the analysis of the social capital of the board and providing
empirical evidence of how interlocking influences the cost of
capital of these companies.

The paper by Z. Zhang et al. studies dynamic cross-
correlations between mass media news, new media news,
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and stock returns. They provide evidence of the existence
of power-law correlations between two types of news and
between news and stock returns. They also find a general
increasing trend for the cross-correlation between the two
types of news and between news and stock returns.
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We propose a discrete time probabilistic model of depositor behavior which takes into account the information flow among
depositors. In each time period each depositors’ current state is determined in a stochastic way, based on their previous state,
the state of other connected depositors, and the strategy of the bank. The bank offers payment to impatient depositors (those who
want to withdraw their funds) who accept or decline them with certain probability, depending on the offered amount. Our principal
aim is to see what are the optimal offers of the bank if it wants to keep the expected chance of a bank run under a certain level and
minimize its expected payments, while taking into account the connection structure of the depositors. We show that in the case of
the proposed model this question results in a nonlinear optimization problem with nonlinear constraints and that the method is
capable of accounting for time-varying resource limits of the bank. Optimal offers increase (a) in the degree of the depositor, (b) in

the probability of being hit by a liquidity shock, and (c) in the effect of a neighboring impatient depositor.

1. Introduction

Banks and other financial intermediaries convert short-term
liabilities into long-term and often illiquid assets, a process
called maturity transformation. Liquidating the assets is gen-
erally costly; hence if many depositors or investors attempt to
withdraw their funds from the bank or from other forms of
financial intermediation, then liquidity problems may arise
that may spark a bank run and result in solvency problems
through fire sales. If depositors anticipate such potential
problems, then it may in turn make them more prone to
withdraw. Moreover, during financial crisis it is even more
likely that depositors are concerned about the liquidity and
solvency of their bank, making bank runs more probable also.

In traditional bank run models [1, 2] banks are supposed
to determine payment to those who withdraw as a result of
a maximization problem. The bank maximizes the overall
expected utility of its depositors. Depending on the specified
environment, these models either allow a bank run outcome
[1] or do not [2]. In this paper we take a different approach.

In times of crises, it makes sense to assume that the most
important objective of the bank is to survive. More precisely,
it wants to keep the probability of a potentially devastating
bank run very low at a minimum cost. The bank’s intention
to minimize the cost (in our case the payments to depositors)
in times of financial distress is due to the uncertainty about
the duration of the crisis and unforeseeable contingencies.
Hence, the bank wants to keep as much funds available
as possible to be prepared for future potential difficulties.
However, it aims also to pay to those who withdraw smoothly
so that rumours about problems of receiving a payment from
the bank do not set off a bank run.

Our main aim is to understand the optimal payments of
the bank during crises when the bank wants to minimize
payments but also maintain sufficiently low the probability
of bank runs given the connections between depositors.
Unlike in other models, depositors’ decision is assumed to
be determined in the following way. Each bank customer
starts as a depositor without urgent liquidity needs (i.e., they
are patient in bank run parlance). However, in any period
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each depositor may be hit by a liquidity shock, turning a
patient depositor into an impatient one. Impatient depositors
have immediate liquidity needs so they withdraw money
from the bank as soon as they can. When they contact the
bank to withdraw money, the bank makes them an offer
that they can accept or reject. The probability of accepting
the offer depends on the amount that is being offered. The
larger the amount, the more likely that the depositor accepts
it. Accepting or not does not only affect the bank and the
depositor in question, but may have an additional effect.
Depositors are connected by an underlying social network
and if a patient depositor is connected to an impatient
depositor, then the probability to become impatient increases.
A possible explanation is that if a depositor notes that the
number of those who want to withdraw from the bank
increases, then she may interpret it as people trying to get
out their funds due to some problem with the bank. In such
a case it may be optimal to withdraw as well, because if a
depositor waits too long while the rest withdraws, then she
may have problems to recover her funds. Once an impatient
depositor accepts the offer from the bank, she ceases to be
impatient and her effect on other depositors disappears as
well. We define a bank run as a situation in which there is no
more patient depositor because everybody wants to withdraw
or has done so already. We compute how the payments to
depositors who want to withdraw should be so as to minimize
these payments, but also to keep the probability of a bank
run low, taking into account how depositors affect each other
through the underlying social network.

Even though bank run models differ in important points
(e.g., whether there is aggregate uncertainty about the lig-
uidity needs), almost all models have multiple equilibria,
one of which involves bank runs. This paper also admits
bank runs as the bank sets payments in a way that the
probability of runs is reduced but need not be zero. However,
we do not have equilibria as depositors do not make strategic
decisions. Depositors in our model react as an automaton
to what happens around them, in a nonstrategic way. Our
focus is on how banks determine payment optimally in
such an environment. We show that the problem can be
neatly formalized as an optimization problem. However, the
general formulation is too complex to be analyzed. Hence,
we focus in detail on a small, tractable problem. We find
that depositors with more connections receive larger optimal
offers from the bank, ceteris paribus, reflecting the idea that
the bank attempts to avoid that these depositors increase the
probability that the depositors they are connected to become
also impatient. We also find that the lower is the probability
of bank runs that a bank tolerates, the larger is the optimal
offer, all other things held constant. It is intuitive because
through larger offers the bank reduces the probability of
rejected offers that may lead to a bank run. As expected,
the optimal payment to impatient depositors increases as the
probability of liquidity shocks increases. In our examples, the
optimal offers are almost linear in the probability of being hit
by the liquidity shock, but the expected cost increases often
nonlinearly in the same parameter. We show also through
our example that the larger is the effect that an impatient
depositor exerts on her neighbors, the larger is the optimal
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offer, ceteris paribus. We find also that the sparser is the
connection structure between depositors, the less they affect
each other; hence the optimal offers from the bank are also
smaller. We show also that the same analysis can be carried
out in more complicated models that take into account
feasibility constraints and allow for time-varying offers. Most
importantly, even in these more intricate setups we find that
more connected depositors receive larger offers from the
bank.

There are several institutions and policies that are
designed to handle problems that may arise during crises.
The most prominent is deposit insurance that guarantees
the recovery of deposits in case the bank has liquidity or
other problems. There are several issues that make deposit
insurance an imperfect solution. It entails moral hazard since
the insurance of deposits may motivate banks to take on
excessive risks. The coverage is limited both in size and
scope, so depositors with a large deposit and investors with
uninsured investments still remain a concern for the bank.
For these reasons other ways of coping with financial distress
have been used also. The most frequent alternative is liquidity
suspension and rescheduling of payments. Our paper can
be viewed as an attempt to formalize how this rescheduling
should be if connections between depositors matter and the
bank aims at minimizing payments to depositors but also
wants to keep the probability of bank runs low. In many
instances, the renegotiation of payments is done by the
banking authority. Ennis and Keister [3] have examples of
how such rescheduling occurred in some countries.

Note that many nonbank institutions (like mutual funds)
engage also in maturity transformation and in their case
short-term liabilities also retain a debt-like structure. Gener-
ally, the investments these institutions have are susceptible to
investor run as well. In general, consider any firm or financial
institution that owes to investors and negotiates with them
about the terms of repayment, knowing that those investors
may be connected. Our analysis applies to them as well. A
further motivating example may be countries that struggle to
pay their sovereign debt. Consider for instance Argentina that
restructured its debt several times in the last decade. During
this process the affected bondholders are offered payments
(often in form of longer term bonds) that are lower than
the original bonds promised. Obviously, the country that is
dealing with the bondholders tries to minimize the payments
but wants the bondholders to accept the offers it makes.
If a bondholder accepts an offer, then it may influence the
willingness of other bondholders to accept the offer as well
(4].

Next we show that that depositors react to the decisions
of other depositors that they observe and then discuss issues
related to the importance of setting the right payment to
depositors.

In our model, depositors react to other depositors
observed decisions. More precisely, we assume that the
chance that a depositor becomes impatient is growing in
the number of impatient depositors that she is linked to.
Empirical studies support this idea. Kelly and O’'Grada [5]
investigate a bank run episode in New York in the 19th
century and show that the most important factor determining
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whether an individual panicked or not was her county
of origin in Ireland. Immigrants from the same country
clustered in the same neighborhood and observed each other,
so if a depositor saw a large number of individuals trying
to withdraw, then she was more likely to do so as well. Iyer
and Puri [6] study a bank run that occurred in India in
2001 and demonstrate that observing withdrawals in one’s
social network increases the probability that the depositor in
question follows suit. Starr and Yilmaz [7] show that, during
a bank run incident in 2001 that occurred in Turkey, small
and medium-sized depositors of an Islamic bank seemed to
observe withdrawals of their peers and the larger the mass
that withdrew, the more depositors did the same the next day.
Experimental evidence also suggests that observability plays
an important role in the emergence of bank runs (see, e.g., [8-
11]). A common finding of these experimental studies is that
it previous withdrawals are observed, then they induce fur-
ther withdrawals. These empirical and experimental findings
make it clear that depositors are affected by the withdrawal
decision of depositors they are connected to. That is why we
consider it important to introduce this feature into our model.

In the theoretical literature banks are supposed to act in
the interest of the depositors and hence they set payments
in a way that maximizes the overall utility of depositors.
Important for our study, Green and Lin [2] find that the
optimal payment depends on the self-reported type of the
depositors and their position in the sequence of decision. As
a consequence, depositors who withdraw early may end up
with quite different payments. Our model has that feature as
well, although in our case differences in payments are due
to the connection structure between depositors. Ennis and
Keister [3] use a Diamond and Dybvig [1] model and show
that if the bank realizes that a bank run is underway, then
it reoptimizes the payments to the subsequent depositors.
Our idea is similar in the sense that the bank adapts to hard
times, but the optimization problem in our model is very
different. Unlike [3], we do not maximize the utility of the
remaining depositors but minimize the payments to them
so that they accept it with sufficiently large probability and
do not ignite a bank run. Considering that reactions to the
first withdrawal may appear within days (or even hours), this
seems to be a plausible scenario. According to this, the most
straightforward interpretation for the discrete time periods of
our model is the scale of days.

Note that as the depositors in our model are automatons
that do not decide in a strategic way to maximize their own
utilities and neither does the bank set payments in order to
maximize the overall utility of the depositors, this study is
clearly not a strictly neoclassical economic model for bank
runs.

We are aware of only one paper that uses Markov chains
to study bank runs. Temzelides [12] studies how depositors
are affected by the number of withdrawals from their and
other banks in the previous period. He investigates myopic
best response in an evolutionary banking setup. In his model
there is no underlying social network that determines who
affects whom, but each depositor observes other depositors’
past action. Neither does he study the optimal payment, so
our approaches are quite different.

2. Materials and Methods

Assume that there are n depositors that are located at the
nodes of a network and connections enable observability.
Hence, a link connecting two depositors implies that they can
observe each other’s action.

To define a Markov chain model, we have to specify the
possible states of the model and the state transition matrix
Q which contains the state transition probabilities. Since the
connections of a certain depositor to another ones matter, we
will distinguish them. This means that the set of the possible
states of the model (&) can be determined as the Descartes
product over the set of possible states of the depositors (S).
To keep the model as simple as possible, we will assume three
possible state for each depositor:

(i) Patient (P): this is the basic state of each depositor and
following the literature a patient depositor does not
have urgent liquidity need.

(ii) Impatient (I): if a liquidity shock hits a depositor,
her state changes from P to I, meaning that she is
demanding money from the bank. Furthermore, if
two depositors are connected and one is impatient,
she increases the probability of the other one becom-
ing impatient. We assume that this effect is additive,
so two impatient acquaintances double the chance of
a P — I transition.

(iii) Out (O): we assume that the bank offers a certain
amount of money to impatient depositors, who may
accept or reject the offer. We suppose that the chance
that the impatient depositor accepts the offered quan-
tity increases with the offered sum. If the depositor
accepts the offered amount of money, her state will
turn from I to O and ceases to affect her neighbors
thereafter. If she rejects, then she stays in state I for
the next step.

Hence, S = {P,1,0}. Note that all depositors start
being patient and then may turn impatient. Those impatient
depositors who accept the offer of the bank enter state O. It
is not possible to go directly from P to O and any move in
the reverse direction (for example from I to P) is disregarded
also. Given this setup, the total number of states of the system
will be 3" where 7 is the number of depositors. For the sake
of tractability we use the following assumptions:

(i) Connection structure: the structure of the links con-
necting the depositors may be described by a simple
undirected graph, whose adjacency matrix is A (a
straightforward generalization of the model could be
where we assume asymmetric information, and thus
a directed A). Take any two depositors. If they are
linked, then the corresponding entry in the adjacency
matrix is 1. If one of them is impatient, while the other
one is patient, then the former affects the latter one
by increasing the probability that it turns impatient
as well. Following the standard language of network
analysis, if two depositors are connected, then they are
neighbors, and the number of connections a depositor
has is called degree. Hereafter, we assume that the



bank knows the connection structure. We admit that
this is a strong assumption, but banks may have a lot of
information about depositors including information
about connections between them. Based on [5, 6],
depositors living in the same neighborhood are likely
to observe each other. Starr and Yilmaz [7] suggest
that deposit size also may be a determinant of which
depositor observes which other depositors. Banks
may take into account such information.

(ii) Homogeneity: depositors are homogeneous in the
following senses: (i) the chance of being hit by the
liquidity shock is the same for all patient depositors
(and independent of the degree); (ii) when offered
a certain amount by the bank, the probability of
accepting that amount (and hence change into the
state O) is also the same for all impatient depositors
(and again independent of the degree).

(iii) Degree-dependent payments: let 0; g.(;(t) be the sum
offered to depositor i at time t where deg(i) is the
number of neighbors of i. The bank distinguishes
depositors based only on their degree. In other words,
assuming time-independent payments, two deposi-
tors with the same degree receive always the same
offer from the bank if in any given state and time.
SINce 0;4egi) () = 0jgeg(j(t) if deg(i) = deg(j)s
hereafter we use 0geq(;) (£).

Note that the assumptions on the connection structure
and homogeneity imply that depositors in the model differ
only in their degree. As a consequence, there are 2"~ possible
connection structures.

2.1. State Transition Probabilities. Now we are ready to define
the state transition probabilities. Any state ¢ in & can be
composed as s;s,--s, wheres; € S = {P,I,0}. Let us
furthermore use the following notation convention: o(t,7)
denotes s;(t), the state of depositor i at time t.

Within a given time period, we assume that the following
events take place simultaneously:

(i) Patient depositors turn impatient with some probabil-
ity (that is determined by the probability of being hit
by the liquidity shock and the number of impatient
neighbors).

(ii) Impatient depositors decide if they accept or reject the
offers by the bank.

We assume that transition events of the depositors in
one step are independent, so the transition probability from
state 0(1) = s;(1)s,(1):--s,(1) at ¢t = 1 to o(2) =
51(2)s,(2) - -s,(2) att = 2 can be written as

ple() —o@)=[]pls () —s5@), O
i=1

where p(s;(1) — s;(2)) denotes the probability that depositor
i changes her state from s;(1) to s;(2) where s;(1),s;(2) € S.
Next, we determine the single transition probabilities.
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(i) The chance of a liquidity shock hitting each patient
depositor at each time period is denoted by p,. We
assume that impatient depositors affect the behavior
of patient neighbors and may induce P — I transi-
tions: & denotes the level of how much an impatient
depositor connected to a patient one increases the
P — ] transition. This way the patient-impatient
transition at time ¢ for patient depositor i may be
calculated as

po+k ()8, )

where k!(t) is the number of impatient depositors
connected to i at time ¢ (in general we do not assume
the connection structure to change, but the model
framework is capable of handling such cases). The
chance of staying in the P stateis 1 — p(P — I).

(ii) The chance that an impatient depositor i accepts the
offered money at time ¢ is denoted by f(0geg(;)(t))
where f is a monotone increasing function, assumed
to be the same for each depositor. The chance of
staying in the I stateis 1 — p(I — O).

To characterize the evolution of the system we introduce
a lexicographic ordering of the states (e.g., PPP--- PP = 0;
PPP...PI = 0, eg., see Appendix A). Furthermore, we

define the state transition matrix Q € R Q;;is equal
to the probability of the transition from state o; to o;. The
probability of state i at time ¢ is given by the ith element of

the vector p(t) € %" . We will denote the probability of state
j (0 = 0;) attime  shortly with p’; (p| equals the jth element
of p(t)). Therefore,

p®)=(Q") 0, 3)

where p(0) € %% is a vector describing the initial state
of the system. Thus, p(0) = (1,0,0,...,0) denotes that the
probability of the initial state (in our lexicographic ordering
o, = PPP---P)is1.

Let us define the cost of a given state ¢ at time t as the
sum of offers accepted in the last time period (corresponding
to I — O transitions from t — 1 to t)

clo(t) = D

Odeg(j) (t=1). (4)
jio(t,j)=0,0(t-1,j)=I

That is, the sum of offers that have been accepted at time
period ¢ (but not before) by depositors with degree j that
ranges from 0 to n — 1. The total (or cumulated) cost (C) of
o(t) may be defined as

Clo®) =Y c(o; (k). (5)
k=2

As already pointed out, it is plausible to believe that in
turbulent times banks attempt to minimize the payments to
depositors who want to withdraw, but at the same time the
bank tries to keep the probability of a bank run at a low level.
As we will show, with the proposed formalized model we are
able to exactly grasp this intuition.
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3. Results and Discussion

3.1. Optimization with No Offer Constraints and Time-Inde-
pendent Offers. In this section we assume that the offers
are time-independent, which means that a depositor with a
certain number of neighbors receives the same offer in each
time period if in impatient state (and so we omit the argument
tin odeg(i)(t)).

Let E[C(t)] denote the expected payments to depositors
at time . In general,

EIC(®] = YC(0;(®) pi (®), (6)

where p;(t) is the probability of state o; at time ¢, which may
be calculated from x(t). However, since the offers are time-
independent, we may write

E[C(H] = ) 0gegjyti (1), 7)

j:O¢€0;

so we omit the argument # in 0geg ;) (2).

Assuming time-independent offers, the expected cost of
the bank E[C(t)] depends on the probability of those states at
time £, which have at least one O, and the position of those O-
s in 0. The position determines the degree which determines
the payment (since payments only depend on the depositors’
degree) to those depositors that were impatient and accepted
the offer.

Actual payments are made only to those impatient depos-
itors who accept the offer. Since offers are assumed to be time-
independent, in this case it does not matter when the given
state changed from I to O (in other words, when the offer
was accepted), since amounts offered for a certain (impatient)
node are time-independent.

To formulate the optimization problem, we also need to
define what we consider a bank run.

Definition I. Any state where no patient depositor is present is
considered as a bank run event. The probability of a bank run
event at time ¢ is denoted by Pyg(f) (note the irreversibility:
since thereisno O — I, O — P,or I — P transition, once
the system is in a state of bank run event, all following states
will be bank run events).

The precise interpretation of the above event is that for
a time instance t a bank run is present at time t or it has
already occurred before. Intuitively, we assume that the bank
run itself means that active depositors are present, who are
all impatient. Since the state where all depositors are in the
state O also fulfills the definition, it is contra-intuitive in the
sense that at that time the bank run is already over. However
it all depositors are in the state O, it is sure that a bank run
has already occurred.
The optimization problem of the bank is the following at
time ¢ and given a connection structure A:
min  E[C(t)]
015,04
- (8)
subject to Py (t) < Pgp»

FIGURE 1: Topology 1: connection of the depositors in the case of
Example 1.

where d is the maximal degree in the connection structure,
and

Pyg (t) = Z pi®), 9)

i:P¢o;

where P ¢ o; refers to those states which do not include
patient (P) depositors. Pgp(t) < Ppy denotes that we want
to keep the probability of bank run event below some given
threshold.

While this is a general optimization, it is too complex
to be analyzed. The size of the state transition matrix grows
exponentially with the number of the modelled depositors,
and the complexity of the resulting expressions may be very
high even in the case of quite simple examples that we show
next. One may partially overcome this problem by merging
states or doing simplifications regarding the Markov chain
model. Moreover, nonlinear optimization problems with
nonlinear constraints such as, for example, (8), are not easy to
handle, and the solvers may run into local extrema (Bertsekas
1999). Furthermore, the needed computing capacity may be
also significant due to the complexity of the functions. For
these reasons, in the rest of the paper we limit ourselves to
small examples to gain insight into how the optimal payments
and expected costs vary as the environment changes.

In this section we assume that the quantities offered by the
bank to the impatient depositors are not constrained by any
consideration regarding their upper bound. In other words,
the bank may offer arbitrarily high sums in order to control
the expected chance of a bank run event; there is no feasibility
constraint.

3.1.1. Example 1. Consider an example with three depositors.
We fix the connection structure as depicted in Figure 1.

Furthermore, we assume the most simple possible case
regarding the function f that determines the probability of
accepting an offer, namely, f(0Ogeg(;)) = Ogeg(iy- This implies
that we assume o, € [0,1) Vn. We use a lexicographic
ordering of the states described in Appendix A.

We are interested in the bank’s optimal strategy. Con-
cretely, let us determine which offers should the bank make
to impatient depositors, if the initial state of the system (e.g.,
PPP) is known, and the bank wants to keep the chance of a
bank run event (Pgy) under a certain probability level while
also aiming to minimize the expected cost.

Att = 1the probability of a bank run event is independent
of the offered sums and is equal to Py (1) = p. Regarding t =
2, Pyr(2) is equal to pg(2) + py5(2) + pi6(2) + p1,(2) + p15(2)
+ P1o(2) + py(2) + py;(2), which can be calculated from

(3), assuming x, = [1 0 0 --- O]T (i.e., at the beginning



each depositor is patient). Note that in Appendix A we define
all potential states that may arise with three depositors, and
states 8, 15, 16, 17, 18, 19, 20, and 21 are those that do not
contain any patient depositor. In Appendix A, we develop the
probabilities for all the possible 27 states and it yields that at
t = 2 the probability of bank run event is

Py (2) = 8 p] — 26°p] + 87 p, + 48p; — 126p;
(10)
+88p> — p° +6p> — 12pt + 8p?,

which is also independent of the offers. This is not surprising.
If a depositor becomes impatient at ¢ = 1, with the offer we
may influence the probability that she changes to O att = 2.
However, regarding patient depositors (on whom the bank
run event definition is based on), the important thing is how
long their impatient neighbors remain in the I state.

Consider the following example. At ¢ = 1 the state
IPP appears. With the offer at t = 1 we may affect the
probability of, for example, IPP and OPP at t = 2, but it
makes no difference in terms of whether the next state will
be considered as a bank run event or not. Recall the bank
run event definition according to which, for example, IPP and
OPP are regarded as the same. Depositors 2 and 3 are affected
by the I state of player 1 at the transition fromt = 1to t = 2,
irrespective of the offer to depositor 1 at t = 1. On the other
hand, att = 3 it matters whether depositor 1 remained in state
Tatt = 2 as well or not (which in turn already depends on the
offer).

As expected, the offers first appear in the probability of
bank run att = 3 (Pgr(3)):

Pyr (3) = 368p. +78” p, — 1208p] — 48° p, + 1565,
+ 8% p, — 1008p° + 328p° — 48p] + 27p’
- 81p;1 + 108p§5 - 81ps6 + 36ps7 - 9pf + ps9
—438°p? + 708 p +128° p? — 4687 p;
—128°p? - 28 p? +138%p] + 48 p!
+8"p] = 8°p — 65pJo, - 66p70,
+188p 0, — 38° p,0, + 188p 0, — 208pto, (1)
+48° p,0, — 208pto, + 108p 0, — 8* p,0,
+108p 0, — 28p°0, — 28p°0, + 85> plo,
+188° plo, — 148° plo, — 308° plo,
+88°plo, — 128 plo, +208° plo,
~28°plo, + 128’ plo, +28* po,
- 5821)5502 - 483p302 - 64ps302.

Since there are significantly more possible ways for a bank

runevent to formatt = 3 thanatt = 2, this expression is more
complex than the one in (10).

Complexity

0.0111

0.011 +

0.0109

0.0108

Pgr(3)

0.0107 -

0.0106 +

0.0105

0.0104 . . . .
0 0.2 0.4 0.6 0.8 1
Value of the increased parameter

—— Increase of 0; while 0, = 0.1
—— Increase of 0, while 0; = 0.1

FIGURE 2: Py (3) as function of the offer. The blue line illustrates the
effect when the offer to the degree 1 depositor is increased while the
offer to the degree 2 depositor is kept constant at 0.1, while the red
line illustrates the dual case.

In our case the expected costs are as follows:

E[C(3)] = p, (303 — 20] + 60; — 0 + 20,8 + 2050
(12)
= 201p, = 0, = 2070p, ~ 20,p,)..

To fix ideas, we compute the probability of bank run event
and the expected costs at t = 3. Without loss of generality,
assume that the probability of being hit by a liquidity shock is
7% and having an impatient neighbor increases by 2.5% the
chances that a patient depositor turns impatient as well (p, =
0.07, 8 = 0.025) and suppose that f(0geg(;)) = Odeg(i)-

Given the payments to depositors with different degree,
the probability of bank run event is depicted in Figure 2.

As expected, an increase of the offers implies the decrease
of the chance of a bank run event. Second, by increasing the
offer to the depositor with the higher degree is more effi-
cient. This highlights how important may be to differentiate
between depositors regarding the offers.

To determine the optimal strategy of the bank at t = 3, we
have to solve the following nonlinear optimization problem
with nonlinear inequality constraints:

min  E[C(3)]
B (13)
subject to  Pgg (3) < Ppg.

Regarding the above problem, the NLOPT function [13]
of the MATLAB OPTI toolbox was used [14] with the
algorithm LDSLSQP. NLOPT was chosen based on its ability
of handling nonlinear objective function and constraints, on
its numerical stability, and on its advantageous convergence
properties. Considering & = 0.08, the following figures show
how the optimal payments and expected cost depend on
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FIGURE 3: The dependence of optimal offers of*" and 05™ on p, at various levels of Ppy.

the model parameters. In these figures we see that if the
chance of a liquidity shock (p,) is low enough, the probability
of a bank run event remains under the defined threshold
even if we offer 0 return to impatient depositors. However,
as the probability of becoming impatient (p,) increases, the
importance of these offers becomes significant. Furthermore,
it we observe the y-axis in the graphs of Figure 3, we see
that the optimal offer to a depositor connected to two other
depositors is larger, as expected. We defined the function
of accepting offer (f) as the identity function, and thus the
offered sum is equal to the acceptance probability, so we
restrict our analysis to the range where 0;,0, < 1.

Figure 3 shows that the optimal offers to depositors with
one and two connected depositors (0(1)Pt and ogpt) increase
as the probability of being hit by a liquidity shock (p;)
is increased (as expected) and also shows how the maxi-
mum probability of bank run events that the bank admits
(Pyr) modulates this increase. The larger is the acceptable
probability of bank runs, the lower is the offer, ceteris
paribus.

Figure 4 shows how the expected cost changes in function
of the probability of a liquidity shock (p;,) and the acceptable
probability of bank run events (Pyy). Note that while optimal
offers are often almost linear in p,, the expected cost increases
nonlinearly in p,.

Finding 1. Anything else held constant, optimal offers
increase in the probability of a liquidity shock and in the
number of connections. The larger is the probability of bank
run event that a bank tolerates, the lower are the optimal
offers and hence the expected costs, ceteris paribus.

Figures 5 and 6 show how the sensitivity to neighbor
depositors who are impatient (§) affects the dependence of
the optimal offers (o(l’pt, ogp ") and the expected cost (E[C(3)])
on the probability of being hit by a liquidity shock (p,). We
assume Pyz = 0.02 in these cases. As expected, the more

0.1}

E[C(3)]

0.08 |

0.06 |

0.04

0.02

0.071  0.072

S

0.069  0.07
bs

O\
0.066 0.067  0.068

—— Pgr < 0.021
A~ Pgr <0.02
—— Pgg < 0.019

FIGURE 4: The dependence of E[C(3)] on p; at various levels of Pg.

an impatient depositor increases the probability of turning
impatient of her neighbor(s) (8), the larger is the optimal offer
to her so that the probability of bank run event can be kept at
the desired level. Note also that the expected cost increases
nonlinearly in § as the probability of being hit by a liquidity
shock (p,) grows beyond a certain threshold (in our example
it is around 0.07).

The interpretation of the bank run event definition may
be subject to different considerations. Here we applied a
simple approach; however one may define more complex
scenarios (e.g., we may consider a state as a bank run if less
than half of the depositors is in P state). Such alternative bank
run definitions may be easily interpreted in the proposed
framework.
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FIGURE 6: The dependence of E[C(3)] on p, at various levels of the
parameter §, describing the strength of the connections.

The Role of Connections. To get an impression how the
connections of the depositors affects the results, we modify
the connection structure of Example 1. Now, as depicted in
Figure 7, depositor 1 is not connected to depositor 2.

In this case we obtain that

Pap (2) = p2 (2 - p,) (20 + 4p, — 20p, — 4p} + p), (14)

Py (3) = p (p? - 3p,+3) (68 + 9p, — 148p, — 280,

+108p? +28° p, — 28p> + 2870, — 28° — 18p? (15)

+15p - 6p; + p, — 28p20;, — 28°p,0, +49p.0,).

Q)

FIGURE 7: Topology 2: Connection of the depositors in the case of
example 2.

Moreover,

E[C(3)] = ps (60? —0p + 30, — 20} +20.8 — 0L p,
(16)
- zofps - zofaps) :

Now we have only depositors with zero or one neighbor.
Note that offer to depositors without any connection (o,) does
not appear in (14) and (15) since an isolated depositor does
not affect anybody else. The offer o, does not influence the
probability of an isolated depositor changing to I. Once an
isolated depositor is in state I, we may enhance her transition
to O with a larger o, but this does not affect the probability
of a bank run event. This is the case because an isolated
depositor in state I does not influence anybody else, so from
the perspective of bank run it does not matter if she is in state
I or O. Trivially, if we want to minimize the expected cost, we
choose o, to be zero.

Without loss of generality, we consider the following
parameters: 8§ = 0.025, Pyz = 0.02. We determine now
the optimal offer to depositors with one connection (o0;). In
Figure 8 we see that, in the case of less connections (i.e.,
compared to topology 1), a larger p, value is required to
trigger the role of the offers (about 0.08 instead of about 0.07).
The connection parameter § modulates the results similarly
to the previous case depicted in Figure 5. As expected, if the
connection structure is sparser (topology 2), the depositors
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influence each other less, so the expected cost to prevent a
bank run is always lower. It reflects the intuitive idea that less
connection implies fewer channels to affect other depositors,
so the peril of contagion between depositors is more limited.

When there is no connection between depositors, the
optimal offer to depositors is zero as we explained before.
In the case when all depositors are connected to each other

(topology 3),
Pyg (3) = 540p] + 2187 p, — 1808p] — 188° p,

+2348p! + 38 p, — 1508p’ + 485p°

6
s

~68p] +27p> — 81p? +108p] - 81p
+ 36p$7 - 9pf + p? - 11182p52
+1748°p + 488’ p? - 1148° p?

- 428°p} — 68" p? +338°p> +128°p
17)
+38%p? —38°p¢ — 188p20, — 98° p.0,
+ 546p3 0, +128°p.0, - 603p2o,
-38%p,0, +308p 0, — 65p°0,
+608° plo, — 968 plo, — 368° plo,
+608° plo, +368° plo, + 65* plo,
~158°plo, — 128° plo, — 38* plo,,

E[C(3)] =30,p, (3 - ps + 28 — 0, — 28p;) . (18)

In Figure 9 we see that, in the case of full connectedness,
a lower p, value, compared to the previous cases, is required

9
0.25
0.2
_ 015
D
O
= o1}
0.05
04 T N N N N N N
0.084 0.0845 0.085 0.0855 0.086 0.0865 0.087 0.0875 0.088 0.0885
Ps
—-— & =0.08
—— 0 =0.075
—4— 8 =0.085

and E[C(3)] on p, and §, in the case of topology 2.

to trigger the role of the offers (about 0.05), and the expected
cost is also higher even in the case of relatively low p, values
(compared to Figure 6).

Finding 2. The connection structure between depositors
matters. The more connections there are between depositors,
the larger are the optimal offers and the expected cost of the
bank, ceteris paribus.

3.2. Optimization Problem with Offer Constraints and Time-
Dependent Offers. It is a natural to extend the model in a
direction which takes into account the bank’s investments,
returns, and liquidity, which affects the possible offers.
Moreover, in this section we also allow for the case that the
offer changes in time. This is consonant with some papers
that we cited before, as, for instance, [2, 3] also show that
banks adjust the payments to the new situations. However,
we assume that the bank does not reevaluate the situation
between time periods (in this case the realized states could
be taken into account as certain starting state of the model,
and the optimization could be performed according to this),
all offers are determined prior. While these features make
the model more realistic, they make it more complicated
also. Hence, in this section we focus on the example that we
introduced in the last section.

Consider again the topology depicted in Figure 1 and a
time horizon of 4 periods. The state transition matrix Q will
be time-dependent, since the offers at t = 1 and t = 2 may
differ. We denote the offer to a depositor with n neighbors at
time t as o,,(t).

Since the offers (o0,) are time-dependent, the resulting
values of the acceptance functions (f(o,(t))) are also time
dependent. We assume that they are the same for all deposi-
tors with the same degree.

Since the main risk is to leave depositors too long in the
impatient state, we expect that earlier offers should be larger.



10 Complexity
0.7 0.18
06l 0.16
0.14
0.5 F
0.12
4t —
2 0 = 0.1
© o3l % 0.08
0.06
02
0.04
0Lt 0.02
0 N o A 1 1 O o 1
0.05 0.052 0.054 0.056 0.058 0.06 0.062 0.05 0.052 0.054 0.056 0.058 0.06 0.062
Pbs Ps
—o— 6 =0.08 —— §=0.08
~4— 6 =0.075 —6— 8 =0.075
—A— §=0.085 —A— §=0.085
FIGURE 9: The dependence of 05™ and E[C(3)] on p, and 8, in the case of topology 3 (full connectedness).
On the other hand early offers are limited by early returns. In - 58 p2f (0, (1) - 46° pj £ (0y(1))
the optimization problem below we take this consideration i s
into account. =8"p. f (0, (1));
In this case the probability of bank run event at ¢t = 3 is (19)

Py (3) = 360p” + 787 p, — 1208p. — 48° p, + 1568p;
+8p, - 1008p] + 3»26ps6 —48p] +27 pf

—81p! +108p] — 81p° +36p. —9p° + p.

N

—438°p? +708° p> +128°p? — 468° !

~128°p? - 28" p? +138%p] + 48 p!
+6"p] & p{ ~66p; f (0, (1))
~60p; f (0, (1)) +188p. f (0, (1)
38" p.f (0, (1)) +188p] (0, (1))
—208p; f (0, (1)) +48° p, f (0, (1))
~208p? f (0, (1)) +108p f (0, (1))
= 8" p.f (0, (1)) +108p] f (0, (1))
—20p¢ f (0, (1) = 28p5 f (0, (1))
+88%p2 f (0, (1)) + 188} (0, (1))
- 148°p] f (0, (1)) - 308° pl f (0, (1))
+88%p!f (0, (1)) = 126° p} f (0, (1))
+208%p f (0, (1)) =28} f (0, (1))
+128°pl f (0, (1)) +28*p} f (0, (1))

the above expression (19) is a slight modification of (11).

Pyr(4), which depends also on f(0,(2)) and f(0,(2)), can
be similarly derived; however the expression is too long to be
detailed here.

Regarding the expected cost, the derivation is not as
simple as in Section 3.1, since if a state ends up in O, it does
matter when did it change from I to O. As detailed earlier,
the offers in t = 3 do not affect the probability of the bank
run event at t = 4, so it is enough to derive the expected costs
of the states att = 3. Consider a simple example. The expected
cost of the state POO at time ¢t = 3 may be calculated as

P12 (3) (p5(2) (20, (2) + P2y (2) (04 (1) + 0, (2))
+ P53 (2) (0, (1) + 0, (2)) + p1, (2) (20, (1)),

where p;,(3) is the probability of state 12 at time ¢ = 3 and
so on. Let us discuss this expression a bit more in detail. The
expected cost of state POO at t = 3 is proportional to its
probability p;,(3). Furthermore there are 4 ways to get to
POO =0,

(i) From PII = o05: in this case both depositor 2 and
depositor 3 (depositors with one neighbor) accept the
offer at t = 2, so the relevant term is p5(20,(2))
(remember that 0, (2) refers to offers with one neigh-
bor at time t = 2).

(ii) From PIO = 0,,: in this case depositor 3 accepted the
offer at t = 1 (since he is already in O state), while
depositor 2 accepted the offer at t = 2 which implies
P(0y(1) +0,(2)).
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FIGURE 10: f(o;): the function describing how the probability of
acceptance depends on the offered sum.

(iii) From POI = 0,;: in this case depositor 3 accepted the
offer at t = 2, while depositor 2 accepted the offer at
t = 1 which implies p,;(0,(1) + 0,(2)).

(iv) From POO = 0,: in this case both depositors 2 and 3
accepted the offer at t = 1: p;,(20,(1)).

With the summation of all such expressions we can derive
the expression for the expected cost at t = 3.
We assume the nonlinear offer-acceptance function

1
1+ exp ((1.2 - 0) /0.075))

(21)

f(0)=(

depicted in Figure 10 for all depositors.
In this case, the resulting optimization problem is as
follows:

min E[C(3)]
01(1),05(1),0,(2),0,(2) (22)

st.  07(1),0,(1),0,(2),0,(2) > 0.

3.2.1. A Numerical Example with Time-Dependent Offers.
Consider the following numerical parameters:

ps = 0.1,
6 =0.02, (23)
Pgg = 0.05.

The optimization process returns the solution
[0,(1) 0,(1) 0,(2) 0,(2)] = [1.127 1.253 0.993 1.068].
In this case E[C(3)] = 0.0216. As before, the depositor with
more connections receives a larger amount in both periods.
Moreover, the degree-dependent offers in period 1 are larger
than in period 2. This latter finding is intuitive because the
more periods lie ahead, the more risky is to have an impatient
depositor that may negatively affect other depositors.

1

2.6
2

FIGURE 11: Own liquidity and investment return profile for the bank.

3.2.2. A Numerical Example Including Offer Constraints. In
the previous example we assumed that the bank has with
certainty enough resources to carry out the payments to its
impatient customers. However, this need not be the case,
that is why we consider here an example where feasibility
constraints may bind.

Suppose that there are three depositors characterized by
the offer-acceptance function f(o;) depicted in Figure 10 and
each of them places 1 unit of money into the bank beforet = 0,
with an expected return of 1.6 at t = 4. The bank has 1 unit of
own liquidity and invests the 3 units with an expected return
of 4 at t = 4. The return profile however is incremental, but
nonlinear in time, as depicted in Figure 11. The bank receives
1.2 unit at t = 1, an additional 0.4 at + = 2, an additional
1.4 att = 3, and finally one more unit at ¢ = 4. Once more,
considering the bank run event at t = 4, the latest offers which
matter are given at t = 2, since the critical issue is how long
impatient depositors stay in impatient state, and so offers at
t = 3 do not count. The topology that we consider is as in
Figure 1.

If any of the depositors is hit by a liquidity shock, she may
withdraw from the bank. In this case the return profile affects
the possible offers. Naturally, each single offer is limited by
the actual liquidity (0,(1) < 2.2; 0,(1) < 2.2;0,(2) < 2.6;
0,(2) < 2.6). That is, the maximum payment to any depositor
is constrained by the available amount in the given period.
On the other hand, the following feasibility constraints are to
be considered in the case of multiple offers:

(i) 0,(1) +0,(1) < 2.2,20,(1) < 2.2.

(ii) 0;(1)+04(2) < 2.6,0,(1) +0,(2) < 2.6,0,(1)+0,(2) <
2.6.

(iii) 0,(2) + 0,(2) < 2.6,20,(2) < 2.6.

The first point is clear: if two offers are made att = 1,
and both are accepted, the potential payment is limited by
the liquidity available for the bank at t = 1. The second point
refers to the case if one offer is accepted at t = 1 and another at
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t = 2. In this case the first offer is constrained by 2.2, but in the
second step, the bank may only make offer from its remaining
liquidity. If the offer(s) in the first step is (are) rejected or
there is no need for offers at t = 1 (because), and in the
second step two offers have to be made, the constraints cor-
responding to the third point describe the effects of limited
liquidity.

We do not consider the case when in eithert = 1 ort = 2
three offers are to be made, or when at t = 2 one (two) offer is
made after two (one) accepted offers, since this would mean
that the system is already at a bank run.

If we consider these offer constraints the resulting opti-
mization problem will take the following form:

E[C(3)]

min
0;(1),0,(1),0(2),0,(2)

subject to  Pyg (4) < Ppy

0, (1)+0,(1) <22

20, (1) < 2.2

0, (1) +0,(2) < 2.6 (24)
0,(1)+ 0, (2) < 2.6

0, (1) +0, (2) < 2.6

0,(2) +0,(2) < 2.6

20, (2) < 2.6.

Considering p, = 0.1 § = 0.02 Ppz = 0.05, this results
in [0,(1) 0,(1) 0,(2) 0,(2)] = [1.067 1.133 1.083 1.184]
with E[C(3)] = 0.027. Similarly to previous results, in
each period the depositor with more connections receives
a larger offer from the bank. On the other hand, offers at
t = 1 are limited by liquidity constraints, and note that
now the expected cost is higher than in the previous example
(Section 3.2.1) if the objective is to keep the bank run event
probability under 5% chance. The reason for this is that the
offers cannot be efficiently distributed because of the liquidity
constraints. Note that although we considered examples with
some parameters, the optimization problem can handle any
meaningful parameter constellation.

Finding 3. When allowing for time-dependent offers and
feasibility constraints on offers we find that connections
matter. The more connections a depositor has, the larger is
the optimal offer from the bank.

4. Conclusions

We set up a model that studies the optimal offer from a
bank to a withdrawing depositor if we assume that the bank
attempts to minimize the payments, but also the probability
of a bank run event that is affected by connections between
depositors. More concretely, we assume that a depositor who
does not receive an offer that she accepts makes her neighbors
more prone to withdraw. We claim that our assumptions
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TaBLE 1

State Notation
PPP o,
PPI o,
PIP 05
IPP oy
PII o
IPI o
1p o
PPO 0y
POP 010
oprpP oy
POO (o
OPO o3
(0]0) 4 oL
000 015
Jie; 016
101 0,7
o1l O
100 Oy
OIO Ty
00I 0y
I 0y
PIO 0y
POI 0y
IPO 0y
Iop Oy
OPI Oy
oIp 0,;

and setup capture important features on payment decisions
during crises. We show that the optimization problem can
be formulated neatly in spite of nonlinearities. However, due
to the very high number of potential connection structures
between depositors finding a general solution proved elusive.
Therefore, we use three variants of a simple example to gain
some insight into the role of connections. An overarching
finding in these examples is that connections matter. The
more connections a depositor has, the larger is the optimal
offer from the bank. Consequently, the denser is the connec-
tion structure, the larger is the expected payment of the bank
to the depositors.

One clear limitation of the applicability of the described
model corresponds to the number of depositors taken into
account. The size of the state transition matrix and so the
complexity of probability formulas used in the calculation
grow exponentially with the number of depositors. A possible
approach to overcome this problem is the application of
epidemic models (see [15]) to describe the spreading of impa-
tience among depositors. A somewhat similar methodology
in the case of financial contagion has been described in [16].
On the one hand, these methods represent a natural possi-
bility of describing larger networks; on the other hand we
see that the approach presented in this paper has its benefits
as well. As we distinguish between depositors, individual
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characteristics (e.g., individual deposit size and individual
risk aversion measures corresponding to the function f)
and thus more detailed knowledge about depositors may be
taken into account. The homogeneity assumption described
in Section 2 can be relaxed, and the necessary equations may
be similarly derived.

Furthermore, although we have shown small examples
with a limited number of depositors, such an analysis may
make sense. As already mentioned, Starr and Yilmaz [7]
study a bank run episode in Turkey. They group depositors
according to the size of their deposits (small, medium-size,
and large) and analyze how they reacted to each other’s
decision. For instance, did small depositors withdraw more
after observing a surge in withdrawals by large depositors?
They find that while large depositors observe small and
medium-size depositors, the latter do not seem to observe the

(p.-1)
(= 1) = p (= 1) (0, = 1) (8 + p,— 1)
~p (= 1) = p (= 1) (0, = 1) (8 + p,— 1)
“pe(p= 1) = p(p= 1) (0, = 1) (8 + p, - 1)°
P2(p=1)" +2p2 (= 1) (0, = 1) (8 + p, = 1) + pl (p, = 1) (0, — 1) (28 + p. — 1)
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former ones. This suggests an intricate connection structure
between these groups (a directed graph may capture the idea
that one group observes another one but observability in
general is unilateral). If we interpret depositors as represent-
ing groups, then our model may help to understand this kind
of situations.

Appendix
A. Notation of the States Used in the Model

We use notation for the states of Example as shown in Table 1.

B. Analytical Form of the State
Probability Vector

The state probability vector of Example 1 at ¢ = 2 is as follows:

Ppe =1 +p,(0+p) (P = 1) (0, = 1)+ py (8+ p) (s = 1) (0, = 1) (8+ p, = 1) + pE (p, 1) (0, = 1) (0, — 1) (6 + p, — 1)
Pp=1)" +p, 8+ p) (p=1) (0, = 1)+ p 0+ p) (p = 1) (0= 1) (8 + po = 1) + pL (P~ 1) (0, = 1) (0, = 1) (8 + p, — 1)
—p2(p=1) = pl (0, = 1)7 (0, = 1) = 2p2 (8 + p,) (pe = 1) (0, = 1) = py (8 + p.)’ (pe = 1) (05 = 1) = pZ (28 + p) (p, = 1) (0, = 1) = 2p? (8 + p) (p. = 1) (0, = 1) (0, = 1)

3

peoy(p,=1) (64 p, - 1)
poy (p—1)° (8 +p,—1)
poy(p,—1) (84 p, - 1)
plot (pe—1)(26 +p,—1)
P00, (p=1) (8 + p,— 1)
plo10,(p, 1) (8 + p— 1)
p:ofoz
Ploy (0 +p) (po = 1)+ ploy (0, = 1) (0, = 1) + ploy (8+ p,) (po = 1) (0, = 1) + ploy (20 + p.) (p, — 1) (0, - 1)
P20y (0+p,) (po— 1)+ plo (0, — 1) (0, = 1) + ploy (8+ p,) (p,— 1) (0, = 1) + p0y (26 + p,) (p, — 1) (0, — 1)
Ploy (0= 1)"+ peoy (84 p) (p = 1) +2p20, (0 + p) (p,— 1) (0, - 1)
-plot (0, = 1) = plot (28 + p) (ps — 1)
’Pgoloz (0,-1)- P520102 (8+p)(ps-1)
-plo,0, (0, = 1) = ploj0, (8 + p.) (p. — 1)
—p20, (p,—1)* (8 + p,—1) - plo, (p,— 1) (0, — 1) (26 + p,— 1)
—ploy (p,—1)" (8+ p.—1) - ploy (p,— 1) (0, - 1) (26 + p, — 1)
=po1 8+ p) (P = 1) = ploy (p, = 1) (0, = 1) (8 + p — 1)
=0, 8+ p) (p,—1)" = ploy (p,— 1) (0, 1) (8 + p, — 1)
—p20, (p— 1) (0, = 1) (8 + p, = 1) = p,0, (5 + p) (s~ 1)° (8 + p,— 1)

. (BY)

=20, (p. = 1) (0, = 1) (8 + p, = 1) = o0, (5+ p) (p, = 1)* (6 + p, - 1)
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We introduce an evolving network model of credit risk contagion in the credit risk transfer (CRT) market. The model considers the
spillover effects of infected investors, behaviors of investors and regulators, emotional disturbance of investors, market noise, and
CRT network structure on credit risk contagion. We use theoretical analysis and numerical simulation to describe the influence
and active mechanism of the same spillover effects in the CRT market. We also assess the reciprocal effects of market noises, risk
preference of investors, and supervisor strength of financial market regulators on credit risk contagion. This model contributes
to the explicit investigation of the connection between the factors of market behavior and network structure. It also provides a
theoretical framework for considering credit risk contagion in an evolving network context, which is greatly relevant for credit risk

management.

1. Introduction

Credit risk is the most important risk in the credit risk trans-
fer (CRT) market, and one of the key issues is dealing with
credit risk contagion [1-9]. Modeling credit risk contagion in
the CRT network is an important yet challenging problem;
credit risk modeling involves examining the role of counter-
party risks [2, 4, 6, 9]. If a key investor is in financial distress
or default, then any investor who is economically influenced
by this given investor will be affected, including the providers
and purchasers of credit derivatives and the banks with the
investor’s credit line. The direct correlation between firms
caused by credit contagion leads to further complications in
modeling the overall risk level, either portfolio or economy
wide [3, 6, 9, 10].

In the CRT market, an intricate web of credit relations
links a wide variety of counterparties in a complex system.
If a key investor is in financial distress, then credit rating
declines, or defaults, which will lead to credit risk contagion.
Credit risk will also produce spillover effects of defaults for
other investors with indirect correlations. The spillover effects

of credit risk contagion mainly come from the similarities
in assets structure and in the effects of some behavior
deviations of investors, including credit risk holders and
financial market regulators. Thus, the behavioral factors
of investors and financial market regulators, particularly
investor sentiments, exert important spillover effects of credit
risk contagion. The market behavioral approach recognizes
that investors are not “rational” but “boundedly rational” and
that systematic biases in their beliefs cause them to trade on
nonfundamental information called “sentiment” [11]. Several
financial economists also recognize that the market exhibits
mood swings. The link between asset valuation and investor
sentiment will soon become the subject of considerable delib-
eration among financial economists. Theories departing from
rational asset pricing often posit the influence of investor
sentiment [12], which leads to price fluctuation, and risk
contagion generation. A number of theoretical studies offer
models for establishing the relationship between investor
sentiment and asset prices [12-15]. In these models, investors
are categorized into two types, namely, rational arbitrageurs
who are sentiment-free and irrational traders who are prone
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to exogenous sentiment [16]. Baker and Stein [16] find that
total sentiment, particularly the global component of total
sentiment, is a contrarian predictor of country-level market
returns. Baker and Wurgler [15, 17] predict that extensive
waves of sentiment will exert greater effects on hard-to-
arbitrage and hard-to-value stocks, which exhibit high “sen-
timent beta” [18]. Therefore, given that sentiment influences
valuation, taking a position opposite to the prevailing market
sentiment can be expensive and risky. Several theoretical
studies show that investor sentiment is the most relevant fac-
tor in the decision-making domain, which primarily affects
an investor’s personal investment decisions [19]. Baker and
Waurgler [17] pointed out that sentiment-based mispricing
is based on the uninformed demand of several investors,
noise traders, and a limit to arbitrage. Mispricing can be
persistent given that the length of period during which
overly optimistic and pessimistic noise traders will continue
exerting buying or selling pressures is unknown. Similarly,
numerous significant studies in this area are available [20-
23]. Recently, theoretical studies have found that investor
sentiment is contagious across markets [24], thus providing
clues on how investor sentiment induces the spread of risk.
The effects of the behaviors of credit risk investors have been a
concern of credit risk contagion [4, 8, 9, 25-27]. This concern
is also our motivation in considering the effect of the risk
sentiment of credit risk investors on the evolving network of
credit risk contagion. In addition, the behaviors of regulator
and the ability of investors for risk resistance can decrease the
influence of credit risk contagion [8, 9, 27, 28]. Thus, we also
introduce them to analyze the effect of these factors on credit
risk contagion. Our study enhances the understanding of the
effects of behaviors of investors and regulators on credit risk
contagion.

Given the significant development of complex network
theory, a number of scholars have looked for evidence of con-
tagion risk in the financial system which results from complex
credit connections. The most well-known contribution to
contagion analysis through direct linkages in the financial
system is Allen and Gale [29]. This work demonstrates that
the spread of contagion depends crucially on the pattern of
interconnectedness among banks through a network struc-
ture involving four banks. Since the publication of this work,
numerous scholars have applied the complex network theory
to model the complex structure of the financial system and
to analyze risk contagion in the financial system, particularly
in banking systems. Several theoretical studies have found
that the network structure is crucial to credit risk contagion
[10, 30] (Chen et al.,, 2012), including random [31] (Chen et
al., 2012) and tiered structures [30, 32-36]. These theoreti-
cal studies examine risk contagion in banking systems via
direct linkages among banks, whereas others analyze risk
contagion via indirect linkages [30, 37-41] (Jorion and Zhang,
2009). The aforementioned studies show that the network
structure can significantly affect credit risk contagion. In
our study, we consider the effect of the characteristics of
the CRT network structure and behaviors of investors and
regulators on credit risk contagion. Our objective is to under-
stand the spillover effects of infected investors, behaviors of
investors and regulators, emotional disturbance of investors,
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market noise, and CRT network structure on credit risk
contagion.

The rest of this paper is organized as follows. Section 2
presents some assumptions and notations for the following
investigation. Section 3 defines the contagious process and
feature of credit risk and builds an evolving network model
of credit risk contagion in the CRT market. Section 4 uses
stochastic dominance theory to theoretically study the effects
of risk spillover, participants’ behavioral factors, and the
CRT network structure factors. Section 5 uses numerical
simulations to deeply analyze and verify the effects of the
aforementioned factors on credit risk contagion. Finally,
Section 6 summarizes with some concluding remarks.

2. Notations and Assumptions

This study considers a network of credit risk contagion that
evolves through the spillover effects of infected investors
and behavioral interventions of investors and regulators.
To model the evolving mechanism of credit risk contagion
during credit risk transfer, we make the following assump-
tions. We assume that each node represents one individual
investor engaged in the dealing of credit derivatives in the
CRT market, and these investors are connected to each other.
Thus, investors of the CRT market can use social network
for representation. We also assume that the number of
individuals N is limited in the evolving network, N =
1,2,...,n. In order to simulate the actual situation of the
CRT market, we further assume that the number of the direct
connection edges of an investor with other investors is not less
than 2, namely, the degree k > 2 of nodes in the CRT network
of credit risk contagion.

In addition, we mark the main variables in this paper and
describe their economic and financial meanings. Thus, the
notation used in this paper has been summarized as follows:

(i) ¢y is the proportion of nodes infected with credit risk
by other nodes in the cluster with the degree of nodes
equal to k, and ¢, € [0, 1].

(ii) o is the degree of the effect of market noises on
investors. It is used to depict the influence mechanism
of noise attribute on credit risk contagion when
market noise attribute is consistent with the emotion,
aspirations, or demand of the people. In addition, « €
[0,1].

(iii) pisthe malicious attack strength of some institutional
investors. p indicates that some institutional investors
maliciously trigger and strengthen the contagion
effects of credit risk by distorting market information
and making use of resource advantage. In addition,
p € [0,1].

(iv) By is the inherent risk preference level of nodes with
the degree of nodes equal to k, and f3; € [0, 1].

(v) 0y is the resistance of nodes for credit risk contagion.
0, reflects the risk resistance level and ability of
investors under the state of credit risk contagion, and
0, € [0,1].
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(vi) & is the supervisor strength of financial market regu-
lators, and 6 € [0, 1].

(vii) # is the initial fitness of credit risk contagion in the
network. 7 is chosen from a fitness distribution f(#).
It mainly refers to the strength of the impact of credit
default behavior of one or a class of investors on
others. In other words, # indicates the contagious
capacity of credit risk in the CRT network, and # €
[0, 1].

(viii) ¢, is the emotional disturbance probability of nodes
equal to k for credit risk contagion, and 4 > ¢ > 0,
where d¢,/dp > 0, 9*¢,/dp” > 0.

(ix) p is the spillover effect of credit risk contagion of
infected nodes. p describes the degree of the effect of
credit risk of infected investors on other investors that
are not directly connected to the infected investors.
However, a similar investment assets structure exists
between the infected investors and the other investors
that are not directly connected to the infected
investors, where du/d¢;, > 0,%u/d¢.* < 0,0u/dp > 0,
0*u/dp* > 0. And p € [0, 1].

(x) A is the probability of infected nodes by credit risk to
restore the health status. A indicates the official rescue
strength, and A € [0, 1].

3. Definition of the Evolving Network Model
of Credit Risk Contagion

We begin by formally defining a dynamic evolving network
model in the CRT market that considers the spillover effects
of infected investors, behaviors, and emotional disturbance of
investors and regulators, market noise, and the CRT network
structure on credit risk contagion. Let P(k) represent the
probability distribution of nodes with the degree of nodes
equal to k in the dynamic evolving network. Then, the average
degree (k) of the dynamic evolving network is as follows:

(k) = Y kP (k) M
k

where 0 < k < n.

In the CRT network, the initial fitness # of credit risk
contagion mainly depends on the average degree (k) of the
CRT network, the probability distribution P(k) of nodes that
the degree of nodes is equal to k, and the proportion ¢ of
infected nodes with credit risk in the cluster with the degree
of nodes that is equal to k. Thus, the initial fitness # of credit
risk contagion in the dynamic evolving network is as follows:

_ 2k kP (k)
(ky

In the actual financial market, investors are not rational
but boundedly rational and systematic biases in their beliefs
cause them to trade on nonfundamental information [11].
This will lead to credit asset price fluctuation and induce
credit risk contagion generation. In fact, many theoretical
studies have found that investor behaviors are contagious

2)

across markets [24, 42-44], thus providing clues on how
investor behavior induces the spread of risk. In the CRT
market, the interactions of credit behavior among investors
were more significant [4, 9, 25-27]. Certainly, the regulators’
behaviors can restrain irrational behaviors of investors but
can also increase the irrational behavior of investors and
accelerate its contagion [9, 45-48]. Some literatures of behav-
ioral finance and psychology also show that market noise can
also further strengthen the irrational behavior of investors
and accelerate its contagion (Aase et al., 2000; Barber and
Odean, 2000; Shleifer, 2000; Tumarkin and Whitelaw, 2001;
Barber et al., 2009; Guegan, 2009) [8, 28]. In addition,
investors’ behaviors can also affect regulators’ behaviors and
decisions. Thus, in the social network, for investors with
degree of nodes equal to k, with the increase in the risk
preference level B, of investors, the contagion effect of credit
risk will be intensified in the CRT network, and the emotional
disturbance probability of investors and the spillover effect
of credit risk contagion of infected nodes will also increase.
However, the regulators’ behaviors and the investors’ ability
of risk resistance can change the evolution trend. In other
words, with the increasing supervision strength of financial
market regulators and the investors’ ability of risk resistance,
the emotional disturbance probability of nodes and the
spillover effect of credit risk contagion of infected nodes can
also be reduced. Thus, we assume the fitness #;, of credit
risk contagion with the degree of nodes equal to k, the
effect degree p, of the malicious attack of some institutional
investors on other investors with the degree of nodes equal
to k, and the spillover effect g of credit risk contagion of
infected nodes with the degree of nodes equal to k could been
written as follows:

2 3 2
M= 1+ Ck(lfﬁk )(An(8”+1)+6;)/(1+a”)

P = p(ln(83+1)+9k)/([3k2+zxz) 3)

by = ﬂ(l—ﬁkz>[1n<a3+1>+9k1/<1+a2>,

where 7, depicts the contagion effect of infected investors
on healthy investors and represents the change in the aver-
age density of infected investors in the CRT network. p,
depicts some institutional investors who maliciously trigger
or intensify the contagion effect of credit risk by distorting
market information and making use of resource advantage.
. depicts the effect degree of the default behavior of infected
nodes with the degree equal to k on the other nodes that
are not directly connected to infected nodes. Their parameter
values are independent of k.

In addition, for the infected nodes by credit risk, the
probability to restore the health status is opposite to the
mechanism above. Thus, we assume that the probability A,
of nodes infected with credit risk by other nodes to restore
the health status can be written as follows:

A = A([;k2+rx2)/(ln(83+1)+9k), (4)

where A, depicts the evolution behaviors that infected
investors restored to health status by the effect of their



own internal and external factors. Its parameter value is
independent of k.

In a recent series of literatures, the mean-field approach
as a basic tool of dealing with the Markov process has
been used to deal with the influence of different things
(27, 28, 49-52]. It can convert a multidimensional problem
into a low dimensional problem and is also considered as
a very important theoretical analysis method in statistical
physics. Eboli [53] shows that the infection mechanism in
the financial system is similar to the physical phenomenon
of network flow. Lopez [54] shows that this kind of problem
can been described using the mean-field method. Based on

U@ 40/ (B +a) [k (,1 + Ck(l—ﬁk2)<1n(63+1)+9k>/(1+oc2)) " #(1—&2)[ln<63+1>+9k]/(1+a2)]
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the existing literatures, we adopt the mean-field approach to
describe the Markov process of credit risk contagion in the
CRT network. Thus, we represent the model of credit risk
contagion with the spillover effects of infected investors and
behavioral intervention of investors and regulators as follows:

0
% = P (1= ) [k + ] = - (5)

For the contagion system of credit risk, represented by (5),
let 0¢y. /0t = 0, and we will get the equilibrium point of the
contagion system of credit risk as follows:

(6)

P

Equation (6) is the equilibrium probability of the con-
tagion system of credit risk, which describes the proportion
of infected investors with credit risk by other investors with
the degree of nodes equal to k in the CRT network. Equation
(6) describes the mechanism of the effect degree « of market
noises, the risk preference level f; of investors, the risk
resistance ability 8 of investors, the supervision strength § of
financial market regulators, the initial fitness # of credit

" 1

- p(ln(63+1)+9k)/(ﬁk2+az) [M(l—[ikz)[1n(63+1)+9k]/(1+0¢2) +k (,7 + Ck(l—ﬁkz)(ln(53+l)+9k)/(1+o<2))] + V(B +e2)/(In(8*+1)+6;) ©

kP (k) [ k (,7 " Ck(1—ﬁk2>(ln<a3+1>+6k)/<1+a2>) N M(kﬁﬁ)[1n<63+1>+9k1/(1+a2>] U@ 140/ (B +a)

risk contagion, the emotional disturbance probability ¢, of
investor, the spillover effect u of credit risk contagion of
infected nodes, the probability A of infected nodes with credit
risk by other nodes restored to the health status, and the
degree k of nodes on the proportion ¢, of infected nodes
under the equilibrium status of the credit risk contagion
system. Then, incorporating (6) into (2), we can get the
following equation.

7)

- (k) o pIn(@+1+0.)/ (B +a?) [P,(l—ﬁkz)[1n<63+1>+9k]/<1+<x2) + k(q + Ck(l—ﬁk2><1n<a3+1>+ek)/<1+a2>)] + MBS+ [(In(@+1)+6;)

Thus, we derive the fitness 7™ of credit risk contagion as
(7) under the equilibrium status of the credit risk contagion
system. Equation (7) describes the following factors under the
equilibrium status of credit risk contagion system, namely, the
effect mechanism of the effect degree o of market noises, the
risk preference level 3, of investors, the risk resistance ability
0, of investors, the supervision strength & of financial market
regulators, the fitness 7 of credit risk contagion, the emotional
disturbance probability ¢, of investor, the spillover effect y of
credit risk contagion of infected nodes, the probability A of
nodes infected with credit risk by other nodes restored to the
health status, the probability distribution P(k) of nodes that
the degree of nodes is equal to k, and the average degree (k)
of the dynamic evolving network on the fitness #* of credit
risk contagion in the CRT network.

4. Evolving Network Analysis of Credit
Risk Contagion with Market Participants’
Behavioral Factors and Network Structure
in the CRT Market

We provide a theoretical analysis of the evolving network of
credit risk contagion to study the effect of the effect degree

o of market noises, the risk preference level 5, of investors,
the resistance 0, of investors for credit risk contagion,
the supervision strength § of financial market regulators,
the initial fitness # of credit risk contagion, the emotional
disturbance probability ¢, of investor, the spillover effect y of
credit risk contagion of infected nodes, the probability A of
nodes infected with credit risk by other nodes restored to the
health status, the probability distribution P(k) of nodes that
the degree of nodes is equal to k, and the average degree (k)
of the dynamic evolving network on the evolution behaviors
of credit risk contagion in the CRT market.

4.1. Influence Mechanism of Market Participants’ Behavioral
Factors on Credit Risk Contagion

Theorem 1. For the evolving network with degree equal
to F, under the equilibrium status of credit risk conta-
gion system, the evolving behavior of credit risk contagion
exists with the following properties. (1) If y = 0 and
p(ln(53+1)+ek)/(ﬁk2+a2)M(ﬁk2+a2)/(1n(53+1)+9k) < (k)/(K?), then
the credit risk contagion system exists only at the equi-
librium point n*, and n* = 0. (2) If p = 0 and
p(ln(53+1)+ek)/(ﬁk2+a2)M(ﬁk2+a2)/(ln(53+1)+ek) > (k)] (K?), then the
credit risk contagion system exists at two equilibrium points 1,
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n*>0.

5
and n,, andny = 0,1, > 0. (3) If u > 0, then the credit risk Proof. Let
contagion system exists only at the equilibrium point n*, and
kP (k) [k (’7+Ck(l—ﬁkz)(ln(GS+1)+9k)/(1+a2)) n M(1—[Skz)[1n(63+1)+6k]/(1+(x2)] p(ln(63+1)+6k)/([3k2+a2)
(8)

G(n) =

Let A=(1- [Skz)(ln(S3 +1)+6,)/(1+ o?), B = (In(8® +
1) + O,C)/(,Bk2 +a?). And A > 0 and B > 0, then (8) can be
written as

Gln) = Z kP (k) [k (;7 + ckA) + ykA] o
P70 [ T+ K+ 6] + A

We can get G'() = Y (K*P(K)p A2 1) [Pl +
k(n + ckA)] + /\kl/B]z) > 0; thus G(x) is an increas-
ing function of #. And we can also get G'(n) =
= Y K P(R)p PPN B () Lo BT + k(6] + A PP <
0. Thus G(#) is a concave function of .

According to the above assumptions # > ¢, > 0, we can
get G(0) = Y, (kP o1 (P + LP)), G(1) =
Ye(kP(k)[k(1 + CkA) + .UkA]PkBMk) [PkB[MkA + k(1 + CkA)] +
LED < SkPRTKQ + 6 + Ao (R [ + k(1 +
aM1p®) = 1. Thus when u = 0, the credit risk contagion
system has at least one equilibrium point #* = 0, but no more
than two.

According to G' () = ¥, (K*P(k)p EA B 1 () [ Bl
k(n + ckA)] + )\kl/B]z), we can get G'(n = 0)|M:0
S RPER)PS IO = (/AR /(K)). Thus when u
0 and p(ln(63+1)+9k)/(ﬁk2+¢x2)//\(ﬁk2+a2)/(ln(83+1)+0k) < (K)/(P,
G'(r] = 0) < 1, which means that the credit risk contagion
system exists only at the equilibrium point #*, and #* = 0.

In the same way, when u = 0 and
p(ln(53+1)+9k)/(ﬁk2+a2)M(ﬁk2+oc2)/(1n(a3+1)+6k) > (k) /(K2), Gr(ﬂ _

©)

-+

0) > 1. Thus the credit risk contagion system exists at two
equilibrium points #; and #,, and #; = 0,7, > 0.

According to the above, for y > 0, we can get G(1 = 0) > 0
and G( = 1) < 1. Thus the credit risk contagion system exists
only at equilibrium point #*, and #* > 0. O

Corollary 2. With increasing market noises and risk prefer-
ences of investors, the contagion effect of credit risk and its
spillover effect will be intensified, but the effectiveness of market
supervision and official rescue will be crippled.

Proof. According to (3) and (4), we can get d¢ /0 > 0, dp;/
oa > 0, op /oo > 0, 0A/ox < 0. And 9d¢. /9B > 0, dp;/
0f3 > 0, 0p /9P > 0,01, /0f < 0. Thus we can get ¢, /0x > 0,
o /0B > 0, 0G(n)/oax > 0, and 0G(yn)/0 > 0. Thus
Corollary 2 is true. O

Corollary 3. With increasing supervision strength of financial
market regulators, the contagion effect of credit risk and its
spillover effect, the effect degree of market noises, and the

;(k) [P(ln(63+1)+6k)/(ﬁk2+oc2) [#(1—/3k2)[1n(a3+1>+ek]/(1+oc2) +k (,7 + Ck(l—ﬁkz)(ln(53+1)+6k)/(1+(x2))] + A(ﬁk2+(x2)/(ln(63+1)+9k)]'

malicious attack strength of institutional investors will be crip-
pled. However, the effectiveness of the market supervision and
official rescue will be enhanced, such that the recovery probabil-
ity of investors who are from the infected status to health status
will be enhanced.

Proof. In the same way as Corollary 2, Corollary 3 can be
proven. O

Conclusion 4. When the degree of the similar investment
asset structure among investors in the CRT market is lower,
namely, the spillover effect y = 0 of credit risk contagion, and
if the official rescue strength and the supervision strength of
financial market regulators are higher, then the effect of credit
risk contagion can be quickly controlled, and credit risk will
not be contagious and diffusive. However, if the official rescue
strength and the supervision strength of financial market reg-
ulators are lower, then the contagious and diffusion of credit
risk will emerge. When the degree of the similar investment
asset structure among investors in the CRT market is higher,
namely, the spillover effect 4 > 0 of credit risk contagion, then
the contagion effect of credit risk will emerge and be difficult
to control.

4.2. Influence Mechanism of Network Structure on Credit Risk
Contagion. In the above, we have analyzed and studied the
influence mechanism of investors’ behavior and financial
market regulators’ behavior on credit risk contagion in the
CRT market. We obtained meaningful conclusions for con-
trolling the contagion effects of credit risk. However, the dif-
ferent network structures will cause different market behav-
iors. Let P(k) and P'(k) represent the degree distribution of
two different CRT networks. According to network stochastic
dominance theory (e.g., [55-58]), if P(k) strict first order
stochastically dominates P'(k), it is equivalent to having
Y PR f(k) > Y, P'(k) f(k) for all monotone increasing
function f (k). If P(k) strict second order stochastically dom-
inates P'(k), then it is equivalent to having Y, P(k)f(k) >
Y. P'(k)f(k) for all convex function f(k). In addition,
according to the network stochastic dominance theory, if
P(k) strict first order stochastically dominates P'(k), then
the network average degree of the degree distribution P(k)
is greater than the network average degree of the degree
distribution P’ (k). If P(k) strict second order stochastically
dominates P’ (k), then the heterogeneity of the network of the
degree distribution P(k) is higher than the heterogeneity of
the network of the degree distribution P'(k). Thus, we assume
the contagion fitness #* > 0 and the proportion ¢* > 0 of
infected investors are at the equilibrium point of the system



of credit risk contagion in the CRT network, then we can
get the following theorems by using the network stochastic
dominance theory in this work.

Theorem 5. CRT networks A and B have degree distributions
equal to P(k) and P'(k), respectively. If P(k) strict first order

k [k (,1 + Ck(l—ﬁk2>(1n<a3+1>+9k>/<1+«x2>) N M(l—ﬁﬁ)[1n<a3+1>+ek1/<1+a2>] RECENESTERES
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stochastically dominates P'(k), then 1% > np in the same
conditions.

Proof. We assume Theorem 5 is untenable, then 7, < nj is

tenable.
Let

(10)

f k)=

Namely,

k (kny + i) pi

k) = .
F (k) [pr (ke + ) + Ag]

(11)

Then, we can obtain of(k)/ok = ((knp + w)’p” +
Pk Ckmy + w)) [<k) (o (ke + 1) + )»k]z > 0, and
O f(Kk)/OK> = 21 prdiepreti + i) /Y Lpi gy + i) + M) >
0. Thus f(k) is a monotone increasing convex function for
all k > 2. According to the network stochastic dominance
theory, Y, P(k) f(k) > Y, P'(k) f(k) when P(k) strict first
order stochastically dominates P'(k), namely, for all # > 0
having

Gp (’7) > Gp’ (’7) . (12)

According to Theorem 1, Gp(n) € [0,1). We assume 7,
and 7, are the equilibrium point of the system of credit risk
contagion in the CRT networks A and B, and 17, > 0, 775 > 0,
thus for all 7 € (173, 1] having n > G, (). According to the
assumption 7 > 77 is tenable, we can get

My 2 G, (1p) - (13)

According to (12), we can get

My 2 G, () > G, (1) (14)

Namely,
1y > G, (np) - (15)

However, 17, = G;(ng) for 7 > 0is the equilibrium point
of the system of credit risk contagion in the CRT network B.
Thus the assumption #; > #) is untenable; namely, Theo-
rem 5 is tenable. O

Theorem 6. CRT networks A and B have degree distributions
equal to P(k) and P'(k), respectively. If P(k) strict first order
stochastically dominates P'(k), then ¢} > ¢y in the same
conditions.

B (k) [p(ln(63+1)+9k)/(/3k2+a2) [‘u(l—ﬁkz)[1n(63+1)+9k]/(1+0<2) +k (,1 + Ck(l—ﬁkz)(1n(83+1)+9k)/(1+oc2))] + /\(ﬁk2+a2)/(1n(53+1)+9k)]'

Proof. According to (6), we can derive the proportion ¢, of
infected investors that the degree of investors is equal to k as
follows:

(ki + 1) Pr
b = , (16)
P (kg + pire) + Ak
where 7, = 5 + g TADIE D0/ _

(In(&>+1)+6,) /(B> +a)
/\(ﬁk2+a2)/(ln(63+l)+0k)
Then we can obtain 0¢,/0k = mpAi/[p(kyy + )
A¢]* > 0. Thus ¢, is a monotone increasing function for all

k > 2. Since P(k) strict first order stochastically dominates
P'(k), then we can derive

Yor Pk)> Yo P (k). 17)
k k

(=A@ +D+6,]/(14e) apq )

e = ¢

“+

In addition, due to ¢y /07 = kpe A i/ [ (ki + 1) + A ]> >
0, thus ¢ is a monotone increasing function for all # > 0.
According to Theorem 5, if P(k) strict first order stochasti-
cally dominates P'(k), then 775 > #5,. Thus for all k > 2, we
can get

s > (18)

Equation (18) is equivalent to having ), ([),f* > Y b '
for all k > 2. Thus we can get

Yo Pk)> Y ¢p P(k). (19)
k k
Thus we can obtain
Y Pk > Y E P (k). (20)
k k
Namely, ¢,* > ¢p". Thus Theorem 6 is tenable. O

Conclusion 7. Under the same conditions of investor behavior
and market supervision, the greater the average degree of
CRT network is, the higher the contagion fitness of credit
risk and the proportion of infected investors in the CRT
network. In other words, the more dense the CRT network is,
the higher the similarities are in terms of investment asset
structure, the convergence effect of investor behaviors, and
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the complexity of market regulation. Thus, the more dense
the CRT network is, the greater the influence of the investors’
irrational behaviors, the lower the efficiency of the market
regulation, and the more significant the contagion effect of
credit risk. In addition, the greater the heterogeneity of the
CRT network, the higher the contagion fitness of credit risk in
the CRT network.

Theorem 8. CRT networks A and B have degree dis-
tributions equal to P(k) and P'(k), respectively. If P(k)
strict second order stochastically dominates P'(k), then
E (0 < & < 1) is obtained as follows. (1) When (k)/
<k2> < P(ln(63+1)+9k)/([§kz+oc2)//\(ﬁk2+a2)/(ln(63+1)+9k) < & and
pt(l7‘8"2)[ln(63+1)+6k1/(1+“2) — 0, then ¢, > ¢p for all k >
2. (2) When (kyJ(KP) < & < pn@ D0/l
A WO +D00 thon ¢ < b for all k > 2.

Proof. According to (16), we can get

(Prtt + M) $uP (k) = 1 pekeP (k) + pray P (k)
= NkpickyP (k) .

(21)

In (16) and (21), we know the variables p, p, Ay, and
7. are not functions of k; that is, these parameter values are
independent of k. Thus, we can further derive

(Pt + M) Y dicP (k)
k
(22)
= ﬂkPkaP (k) + prpye — ﬂkPkaf/’kP (k).
k k
Putting (1) and (2) into (22), we can obtain
(k) — ) +
o= LA (1 = 1) + Prti. 23)
(Prtte + M)
Thus we can obtain d¢/d1 as follows:
o (&) pe (1 2y — ¢ A i@+ D40/ (e )) o

on - (Pt + Ax)

Thus ¢ is an increasing function of # for all y < (1 —
G 1A @ +D100/(+e%)y 15 And b is a decreasing function of
" for all n> (1- Ck(1_l;kz)(ln(63+1)+9k)/(1+0‘2))/2.

According to (10) df(k)/ok = ((kmp + w)’p” +

Pk + )/ ) p (kg + ) + A 1> > 0, and &% f (k)/
Ok? = 2 prdic i + M)/ (K) [pr (g + i) + A4 ] > 0. Thus
f(k) is a monotone increasing convex function for all k > 2.
According to the network stochastic dominance theory, if
P(k) strict second order stochastically dominates P'(k), then
it is equivalent to having >, P(k) f(k) > Y, P'(k) f (k) for all
convex function f(k). According to Theorem 5, we can get

Ha > Mp-

According to Theorem 1, we know that with & (0 < & < 1),
when (k)/(kz) < p(ln(53+1)+9k)/(ﬁk2+a2)/A(ﬁkz+o¢2)/(ln(83+1)+9k) <

2 3 2
£, we can get 7 < (1 — g 17O +D+60/0+a%)y 15 - And when
(k)/(kz) < & < P(ln(53+1)+9k)/(;;k2+a2)M(ﬁk2+a2)/(ln(a3+1)+9k))
_ Ck(l—ﬁkz)(ln(83+1)+9k)/(1+zx2))/2. With
p(ln(83+1)+9k)/(ﬁk2+a2) /

we can get 1 > (1

£ < & < 1), when (k)/(k*) <

2 2 3
ABFo U@ +D+6,) &, ¢ is an increasing function of

1. When (k)/(kz) < £ < p(ln(53+1)+9k)/(ﬂk2+l¥2)/

2 2 3
AP+ /@ D00 | s a decreasing function of 7. Thus we

can get that Theorem 8 is tenable. O

3 2 2
Conclusion 9. In the case of pIn@ DB+,

ABSH MO0 (k) /(k?), the effects of network
heterogeneity on the contagion scale of credit risk depend
on the interaction of the effect degree « of market noises,
the risk preference level S of investors, the resistance ) of
investors for credit risk contagion, the supervision strength §
of financial market regulators, the spillover effect y of credit
risk contagion of infected nodes, and the probability A of
nodes infected with credit risk by other nodes restored to the
health status. First, decreasing the similarity of investment
asset structure, the contagion scale of credit risk will be
reduced. However, network heterogeneity promotes the
contagion level and scale of credit risk, whereas network
homogeneity can decrease the contagion level and scale
of credit risk. Second, the malicious attack and market
noises can promote the contagion level and scale of credit
risk.

5. Simulation Analysis of the Evolving
Network Model of Credit Risk Contagion

Given the absence of a large amount of time series data
for empirical tests, numerical simulation analysis is the
most effective testing method. Such analysis is conducted
by considering the different values of the parameters in
the evolving network model of credit risk contagion. The
following are assumed: the number of investors N = 10000
in the CRT market. We choose the WS small world network
and the BA network to conduct numerical simulation, where
the probability p = 0.01 of the long distance connection of
investors in the WS small world network and the degree
distributions in the BA network are P(k) = 2m?/k>. Thus we
can find the effects of the effect degree « of market noises,
the risk preference level f3; of investors, the resistance ) of
investors for credit risk contagion, the supervision strength
0 of financial market regulators, the initial fitness 7 of credit
risk contagion, the probability ¢, of a randomly chosen old
node being deleted from the network that degree of nodes is
equal to k, the spillover effect p of credit risk contagion of
infected investors, the probability A of infected investors with
credit risk by other nodes restored to the health status, the
degree k of investors, the average degree (k) of the dynamic
evolving network, and the network structure of credit risk
contagion on credit risk contagion in the CRT market.
Furthermore, with investor behavior and the financial market
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FIGURE 1: The evolution function of the equilibrium point #* of credit risk contagion system as function in the initial fitness # of credit risk
contagion, the emotional disturbance probability ¢, of investor, the spillover effect u of credit risk contagion of infected investor, and the
malicious attack strength p of some institutional investors under the different network structure.

regulators’ behaviors, we analyze the evolving properties of
the proportion of infected investors ¢, the global fitness #
of credit risk of the contagion network, and the individual
fitness 7, of infected investors that the degree of nodes is
equal to k. In the numerical simulations, we initialize the
contagion network with m, = 10 nodes being infected with
credit risk.

In Figure 1, the equilibrium point #* of the credit risk con-
tagion system is a concave function of the initial fitness # of
credit risk contagion, the emotional disturbance probability
¢ of investor, the spillover effect y of credit risk contagion of
infected investor, and the malicious attack strength p of some
institutional investors. The malicious attack strength p of
some institutional investors is more significant. The reason is
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that the malicious attack of some institutional investors cause
market information confusion. It brings about irrational
behavior among the majority of small- and medium-sized
investors. It also shows that the disturbance effect of private
information is more significant on credit risk contagion in the
semi-strong valid market. Second, Figure 1also shows that the
contagion rate has a significant positive correlation with net-
work density and has a significant negative correlation with
the network heterogeneity. The reason is that the more dense
the credit network is, the more significant the interaction
between counterparties is. However, network heterogeneity
hampers the interaction between investors. Thus the higher
the network heterogeneity is, the more unfavorable it is
to the credit risk contagion in the CRT market. In the
same case of network density, the effect of the network
heterogeneity is the most significant on credit risk contagion
by inducing in the spillover effect of credit risk contagion
of infected investor. This also confirms Conclusions 4 and
7.

In fact, credit risk contagion is a complex process in the
CRT market. The process is mixed with complex interactions
of the behaviors of counterparties and financial market
regulators, and market noises. This adds to the probability
of the uncertainty, unpredictability, and uncontrollability of
credit risk contagion. Figure 2 shows the following factors
under the different network structure, namely, the interaction
mechanism of the effect degree o of market noises, the
risk preference level S of investors, and the supervision
strength § of financial market regulators on the equilibrium
point #* of the credit risk contagion system. First, Figure 1
shows the differential effect of the network heterogeneity.
The lower the network heterogeneity, the more significant
the reciprocal effects of the effect degree « of market noises,
the risk preference level ;. of investors, and the supervision
strength & of financial market regulators on credit risk
contagion. Second, market noises and the risk preference of
investors have a strengthening effect, and the supervision
behaviors of financial market regulators exert weakening
effects. Figures 2(a) and 2(b) show the mutual reinforcing
effects between market noises and the risk preference of
investors. Namely, with increasing market noises, the effects
of the risk preference of investors on the infectious rate of
credit risk will be promoted. With increasing risk preference
of investors, the effects of the market noises on the infectious
rate of credit risk will be also promoted. In Figures 2(c),
2(d), 2(e), and 2(f), we found the supervision behaviors
of financial market regulators will reduce the effect of
the market noises and the risk preference of investors on
credit risk contagion. With increasing supervision strength
0 of financial market regulators, the effects of the market
noises and the risk preference of investors on the infectious
rate of credit risk will be reduced. Thus, the behaviors
of counterparties and the market noises can promote the
contagious rate of credit risk and have the mutual reinforcing
effects on the contagious speed of credit risk in the CRT
market. However, the supervision behaviors of financial
market regulators will weaken the effects of the external
disturbance factors and reduce the contagious speed of credit

risk in the CRT market. This confirms Corollaries 2 and
3.

Figures 3 and 4 depict the effect mechanism of the
initial contagious fitness of credit risk, the spillover effect
of credit risk contagion of infected investor, the emotional
disturbance probability of investor, the malicious attack
strength of institutional investors, and the official rescue
strength on the contagious scale of the credit risk in the
CRT market under the different network structures. First,
Figures 3 and 4 show that the contagious scale of credit risk
has a significant positive correlation with network density.
The sparser the CRT network, the weaker the effect of
the CRT network heterogeneity on the contagious scale of
credit risk. However, with increasing average degree of the
CRT network, the effect of the CRT network heterogeneity
on the contagious scale of credit risk will be significantly
promoted. When the average degree of the CRT network is
greater than a certain threshold, the higher the CRT network
heterogeneity, the greater the contagious scale of credit risk.
Second, Figure 4(b) shows that the official market rescue will
restrain the contagious scale of credit risk. With increasing
official rescue strength, the contagious scale of credit risk
will be reduced. On the contrary, with increasing network
density, the efficiency of the official market rescue will be
reduced. When the average degree of the CRT network is
greater than a certain threshold, the higher the CRT network
heterogeneity, the lower the efficiency of the official market
rescue.

Figure 5 depicts the effects of the risk preference of
investors, the effect degree of market noises, the supervisor
strength of financial market regulators, and the risk resistance
ability of investors on credit risk contagion. Figure 5(a) shows
that when the risk preference of investors is infinitesimally
small, credit risk contagion will be controlled, and the
contagious scale of credit risk will be also infinitesimally
small. With increasing risk preference level . of investors,
credit risk contagion presents the concavity evolution of
monotone increasing. However, when the risk preference
of investors is greater than a certain threshold, credit risk
contagion presents the convexity evolution of monotone
increasing. Figure 5(b) shows that when the market noise
is smaller than a certain threshold, credit risk contagion
presents the concavity evolution of monotone increasing
along with the increasing of the effect degree of market
noises. In contrast, when the market noise is greater than
the threshold, credit risk contagion presents the convexity
evolution of monotone increasing along with the increasing
of the effect degree of market noises. In addition, Figures
5(a) and 5(b) also depict, with increasing network density,
the contagion effect of credit risk which is amplified and
the effects of the CRT network heterogeneity which will
be significantly promoted. When the average degree of the
CRT network is greater than a certain threshold, the higher
the CRT network heterogeneity, the more significant the
effects of the risk preference of investors and the market
noises on credit risk contagion. Figures 5(c) and 5(d) depict
the inhibiting effect of the supervisor strength of financial
market regulators and the risk resistance ability of investors



10

Complexity

XKD
(XA HNAS
e ':‘"::::’:’" iy
A

i .
Wl
:;fi;j:

- e
. \“\““

<
.
=
S
S
—
i
e
s
==

=

=
=
SN

=
N
=

=
=

=

=~
—
———
N
—

S
N
x

N

— VR
N
=
S
-
=
=
3

—_—
=
S

——
——
=
=
=
Q\\\
N

S
==
~

S
—

=
=
=
§§

7

/17
%
20555805

0~0
(f) BA network for (k) =5

(e) WS small world network for (k) =5
FIGURE 2: The influencing mechanism of the interaction among the effect degree o of market noises, the risk preference level 3, of investors,
and the supervision strength & of financial market regulators on the equilibrium point 7" of the credit risk contagion system under the
different network structure. (a) and (b) for § = 0.4,60 = 0.5, = 0.6, 4 = 0.3, p = 0.2, A = 0.3, ¢, = 0.1 (c) and (d) for&« = 0.3,0 = 0.5, = 0.6,
p=03,p=02,1=0.3,¢ =0.1; (e) and (f) for 3, =0.6,0 =0.5,# = 0.6, 4 = 0.3, p= 02,1 = 0.3, ¢ = 0.1.



Complexity

0.55 T T T T T T T T T

0.5 E

0.45 | R

eppauearresst 4

0.4 -

pev
et
poet
peotl
ared
e

02 L L L L L L L L L

o WS small world network for (k) = 5
x BA network for (k) = 5

- WS small world network for (k) = 10
o BA network for (k) = 10

() a = 03,8 =068 =046 =05u=012p=0221=03
Ce = 0.1

0.65 T T

1

0.6 T T T T T T T T T

0.55 R

0.5 | ]

0.45 4

0.4 e

0.35 | R

0.25 1 1 1 1 1 1 1

o WS small world network for (k) = 5
x BA network for (k) = 5

- WS small world network for (k) = 10
o BA network for (k) = 10

(b) @ = 0.3, B = 06,0 = 04,6, = 05,7 = 0.6,p = 0.2, 1 = 0.3,
G = 0.1

0.6 +

0.55 +

00000
ooo°°°°°°°
00°
o0

0.5}
¢ 045t
0‘4 i s 0.‘.0.00.& s e

0.35

0.3 fo8x

0.25 1 1

000000004
0000000000
000000000

0000000

P T LR E T R L A L A R AR
sressue

55335999999QQQQQQQQQQQQQQRQQQRQRRR

0.3 0.4 0.5 0.6

Ck

= WS small world network for (k) = 5
x BA network for (k) = 5

+ WS small world network for (k) = 10
o BA network for (k) = 10

() a=03,B=06,0=04,60=057=06u=03p=021=03

FIGURE 3: The evolution function of the contagious scale ¢ of credit risk as function in the initial fitness # of credit risk contagion, the
spillover effect y of credit risk contagion of infected investor, and the emotional disturbance probability ¢, of investor under the different
network structure. (a) fora« = 0.3, f, = 0.6,8 = 04,0 = 0.5, 4 = 0.12,p =02, A = 0.3, ¢ = 0.1; (b) fora = 0.3, B, = 0.6,5 = 04,0 = 0.5,

n=06p=02,1=03,¢ =01;(c)fora =03, 3, =06, =04,0

on credit risk contagion. With increasing network density,
the inhibiting effect of the supervision of financial market
regulators and the risk resistance ability of investors on credit
risk contagion will be reduced. When the average degree
of the CRT network is greater than a certain threshold, the
higher the CRT network heterogeneity, the lower the control

=0.5,7=06,4=012,p=021=03.

efficiency of the supervision of financial market regulators
and the risk resistance ability of investors on credit risk
contagion.

Figure 6 depicts the reciprocal effect of the market
noises, the risk preference of investors, and the supervi-
sor strength of financial market regulators on credit risk
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contagion. First, Figure 6 shows that the higher the CRT
network heterogeneity, the more significant the reciprocal
effect of the market noises and the risk preference of investors
on credit risk contagion. Second, the reciprocal effect of
the market noises and the risk preference of investors will
promote the contagious scale of credit risk in the CRT
market. However, the supervisor strength of financial mar-
ket regulators will reduce the effect of the market noises
and the risk preference of investors on credit risk conta-
gion.

6. Conclusion

In this paper, we design an evolving network model of credit
risk contagion that considers the spillover effects of infected
investors, behaviors and emotional disturbance of investors
and regulators, market noise, and the CRT network structure
on credit risk contagion. We use theoretical analysis and
numerical simulation to investigate the effect mechanism of
the spillover effects and behavioral intervention on credit
risk contagion in the CRT market. We find the strengthening
effects of the spillover effects of infected investors, the
emotional disturbance of investors and the malicious attack
behaviors of some institutional investors, the restraining
effects of the official market rescue and the risk resistance
ability of investors for credit risk contagion, and the density
effects and heterogeneous effects of the CRT network on
credit risk contagion. In addition, we also investigate the

reciprocal effects of the market noises, the risk preference
of investors, and the supervisor strength of financial market
regulators on credit risk contagion. We further find the
interactive facilitation effect of the market noises and the
risk preference of investors on credit risk contagion, and
the restraining effects of the supervisor strength of financial
market regulators on credit risk contagion. Certainly, we
acknowledge several limitations in the modeling method
and process, and the testing method and way. Due to
these limitations, the investigation results in the paper are
considered exploratory and suggestive rather than conclusive.
Therefore, future studies can further deepen and expand the
results presented in this paper.
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We investigate the dynamic cross-correlations between mass media news, new media news, and stock returns for the SSE 50 Index
in Chinese stock market by employing the MF-DCCA method. The empirical results show that (1) there exist power-law cross-
correlations between two types of news as well as between news and its corresponding SSE 50 Index return; (2) the cross-correlations
between mass media news and SSE 50 Index returns show larger multifractality and more complicated structures; (3) mass media
news and new media news have both complementary and competitive relationships; (4) with the rolling window analysis, we further
find that there is a general increasing trend for the cross-correlations between the two types of news as well as the cross-correlations

between news and returns and this trend becomes more persistent over time.

1. Introduction

According to the eflicient market hypothesis, the security
market could reflect the information instantly. However,
there are many anomalies showing that the exogenous infor-
mation plays an important role in the stock market. News,
for example, as one type of the exogenous information,
has been intensively investigated for its influence on the
stock market, including the relation between the news and
stock prices [1, 2], stock returns [3], trading volumes [4],
investors’ behavior [5, 6], and the correlation between the
inherent sentiment behind the news and the stock market [7].
With the development of the Internet, the web has become
one of the most important sources of news. Therefore, the
news is classified into traditional mass media news and new
media news according to the source of the news (as for the
definition, see https://en.wikipedia.org/wiki/New_media and
https://en.wikipedia.org/wiki/Mass_media). The new source
of the news brings new features to the news. Through the
Internet, the new media news diffuses more quickly and can
be easily obtained more conveniently. Compared to the new
media news, the mass media news is more rigorous and
we can get more insightful ideas through the mass media
news. So the emergence of the new source of news leads

to new directions for the financial research. One could be
the correlation of the different news’ sources, especially the
correlation among them when they are referred to as the
factors influencing the stock market, as well as the different
roles they play in the stock market. Since the amount of daily
news can be seen as the intensity of the information [8], it is
meaningful to explore the correlation of the amount of news.

The most commonly used measure of correlation is the
Pearson correlation. To use this measure, the time series
must be stationary and follow the Gaussian distribution.
But the news amount series in stock market are not all
the series with stationarity and Gaussian distribution. In
order to overcome these limits, existing literatures have
engaged in exploring measures to investigate long-range
cross-correlation between two time series with nonstationary
and non-Gaussian distribution. Based on the method of
detrended fluctuation analysis (DFA) introduced by Peng
et al. [9] focusing on the long-range autocorrelation of the
DNA series, Podobnik and Stanley [10] proposed the method
of detrended cross-correlation analysis (DCCA) to explore
the long-range cross-correlation between two nonstationary
time series. Then Zhou [11] introduced the multifractal
detrended cross-correlation analysis (MF-DCCA or called
MEF-DXA) to investigate the cross-correlation by considering
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the multifractal features. With these analyses, this paper is
engaged in investigating the cross-correlations between the
amount of mass media news and the amount of new media
news as well as the cross-correlation of the different types of
news and the corresponding stock returns by the methodol-
ogy of ME-DCCA. Investigations on such relationships are
conducive to the understanding of informational efficiency
in financial market.

The remainder of the paper is organized as follows.
Section 2 reviews the existing literatures about the news
and the stock markets as well as the methodology of MF-
DCCA. Section 3 describes the sample data used in this paper
and its selected process. Section 4 introduced the detailed
methodology of ME-DCCA. Section 5 presents the empirical
results of this paper and Section 6 draws the conclusion.

2. Literature Review

2.1. News and Stock Market Performances. Existing literature
on the relationships between financial news and stock market
behavior can be divided into two categories. The first refers
to the investigation on the impacts of mass media news,
that is, news extracted from newspapers, television and
advertising, returns, trading volume, liquidity, and volatility
[1,4,7,12-17]. We mainly find that the majority of these
literatures focus on earnings announcement, the number
of the headlines, and the expenditures on advertising, but
only a few employ the information content. The second
refers to the investigation on the relationships between new
media news and return predictability as well as market
dynamics [18-31]. This line of work has shifted research
interests away from building more complicated models to
attach more importance to data and its impacts on market
dynamics.

2.2. MF-DCCA. The existing literatures about the detrended
cross-correlation analysis can be approximately divided into
two parts. One engaged to extend and modify the methodol-
ogy, and a series of extended methods have been introduced,
such as the methods of MF-X-DMA [32], MF-DHA [33],
and MF-X-PF [34]. These methods all improve the efficiency
of the method of MF-DCCA to some extent. Another
part of literatures concentrated on the cross-correlation
between the time series in the financial market or across
the markets. Wang et al. [35] found that the multifractal
analysis significantly cross-correlates between Chinese A-
share and B-share by the method of MF-DCCA. Cao et al.
[36] investigated the multifractal detrended cross-correlation
between the Chinese exchange market and stock market
drawing the similar conclusions. Gu et al. [37] used the MEF-
DCCA to prove that there is different performance for the
cross-correlation between the multifractality and the market
efficiency before and after the equity division reform. Lu et al.
[38] investigated the dynamic relationship between Japanese
Yen exchange rates and market anxiety, finding that the cross-
correlation exhibits different volatility. Li et al. [39] studied
the cross-correlation between the crude oil and exchange rate
markets finding that their cross-correlation are sensitive to
sudden events.
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FIGURE I: The daily amounts of news from mass media and new
media.

3. Data Description

We get daily news data from the column of Security Infor-
mation and News in RESSET financial database in China in
this paper. The stocks corresponding to the news sample are
the constituent stocks of the Chinese Stock Market Index 50
(SSE 50). The daily returns of SSE 50 are also obtained from
the RESSET financial database in China. The stocks of SSE
50 are the most active stocks with the highest market value
and the highest liquidity in Chinese stock markets. So they
can represent the Chinese stock market well and have enough
amount of news to investigate the cross-correlation between
the two types of news and the cross-correlation between news
and return. Since the constituent stocks are adjusted every
half year, we collect all the stocks once they are selected as the
constituent stocks of SSE 50. And then we removed the stocks
which are delisted. The whole sample period extends from
January 1, 2011 to December 31, 2016 with daily observations.
And the total number of the stocks used in this paper is 532
across this period.

We classify the news into mass media news and new
media news based on the selected process used by Zhang
et al. [40] according to the source names of the news. After
conducting the selected process, the numbers of mass media
sources and new media sources are 265 and 334, respectively.
Since the constituent stocks of SSE 50 vary over time and
our aim is to investigate the cross-correlations between the
amount of news and the return of SSE 50, the daily news used
in this paper is just the news of the stocks belonging to SSE
50 on that day. Figure 1 illustrates the daily amount of the two
types of news from January 2011 to December 2015. The red
line is the amount of daily mass media news (MM) and the
blue line is the amount of daily new media news (NM). We
can find a stable trend for the amount of mass media news
across the sample period, while there is an increasing trend
for the amount of new media news on the whole. And the
quantitative relationship of the two types of news reverses
around the year of 2013. After 2013, the amount of new media
news exceeds the amount of mass media news.
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4. Empirical Methodology

To explore the cross-correlation between two nonstationary
time series, various approaches have been introduced in exist-
ing literatures. In this paper, We followed the methodology of
multifractal detrended cross-correlation analysis introduced
by Zhou [11]. Consider any two time series {x;} and {y;},i =

.» N, that have the equal length N. Then the procedure
of the MF-DCCA can be described as follows.

Step 1. We construct two “profiles” of the two time series and
get new series:

X;= i(xk—_

Yi:i(yk__

=
—_

)

=
—

i=1,2,...,N,
where ¥ = (1/N) Y3, xp and 7 = (1/N) Yo, -

Step 2. Divide the two profiles into N, = [N/s] nonoverlap-
ping windows of equal length s, respectively. If the length N of
the time series is not a multiple of the considered time scale
s, there will remain a short part segment at the end of each
profile. In order to avoid this, we repeated the same divided
procedure starting from the end of the profile. And then we
got 2N, segments of each profile. N, is set as 10 < N, < N/4
and the step is 1 in this paper.

Step 3. Estimate the local linear trend of each segment
through the OLS method.

F*(s,A)
1< (2)
= ;Z [ (A-1)s+j — (/\ 1)s+]] [Y(A Ds+j — Y(/\ 13+]]
forA=1,2,...,N;and
2 1g =
F*(s,A) = ;Z [XN—(A—Ns)s+j - XN—(/\—NS)S+]']
j=1 (3)

: [YN—()L—NS)S+ i~ YNCO-Ns j]

forA=N;+1,N;+2,...
trend.

,2N, where X and Y are the local

Step 4. Getthe gth-order fluctuation function by average over
all segments:

1/q
Fq(s):{ ZF (s A)q/z} . (4)
SA 1

Particularly, for g = 0, the equation is defined by

Z In [F? (s, /\)]]» )

5/\1

Fy (s) = exp {

Step 5. Analyze the scale behavior of the fluctuation function
through observing the log-log plots of F,(s) versus s. If two
series are long-range cross-correlated, we could get a power-
law relationship as follows:

F,(s) o sho @, (6)

h,,(q) can be obtained through the slope of the log-
log plots of F_(s) versus s. And we can calculate the slope
using the met?lod of OLS. The value of h,, ( ) indicates the
cross-correlation of the two time series. If hy (@) > 0.5,
the cross-correlation between them is per51stent (positive).
When h, (q) < 0.5, there is an antipersistent (negative) cross-
correlatlon between the two time series. And for h,,(q) =
the two time series are not cross-correlated with each other
In particular, when g = 2, the scaling exponent h,(q) is the
generalized Hurst exponents.

5. Empirical Results

5.1. Cross-Correlation Test. Before investigating the pairwise
cross-correlation among the two types of news amount series
and the return series of the index, a cross-correlation test
using the method proposed by Podobnik and Stanley [10] is
conducted firstly. And the test statistic is defined as

m 2
_ A2\ X

Here, xxi2 is the cross-correlation function and is defined
as follows:

2 ZkN:m Xk Vk—i
e ®
ket Xl k=1 Y

where {x;} and {y;} are two time series with the equal length
N.

The test statistic Q..(m) is approximately y*(m) dis-
tributed with m degrees of freedom. The null hypothesis of
this cross-correlation test is that none of the first m cross-
correlations is different from the value of Xz(m). Thereby,
if the value of the cross-correlation test exceeds the critical
value of Xz (m), the cross-correlation between the two time
series is significant.

Figure 2 shows the result of the test statistic Q (). And
the red line is the critical value of Xz(m) at 5% significant
level. The other lines represent the values of Q_ (1) between
the amount of the mass media news and the amount of the
new media news, the amount of the new media news and the
return of the SSE 50, the amount of total news and the return
of SSE 50, and the amount of the mass media news and the
return of SSE 50 from the top to the bottom of the figure. It is
clear that all the values of Q_.(m) exceed the critical value, so
the null hypothesis is rejected and there is a long-range cross-
correlation among any pair of these series.

5.2. Multifractal Detrended Cross-Correlation Analysis. Since
the value of Q. (m) just proves the existence of the long-range
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FIGURE 3: Log-log plots of F,, (s) versus s for amount of MM news

and the amount of NM news.

cross-correlation qualitatively, the MF-DCCA 1is conducted
to investigate the cross-correlation quantitatively. The scale g
is set from —10 to 10 and the step is 1. Figures 3-6 are the log-
log plots of F,,(s) versus s for the amount of MM news and
the amount of NM news, the amount of MM news and the
return of SSE 50, and the amount of NM news and the return
of SSE 50, as well as the amount of total news and the return
of SSE 50. As we can see in Figures 3-6, although there are
fluctuations in some lines, they all fit the log-log line of F, ., (s)
versus s well at 1% significant level. The significant level can
be seen from Table 1. These linear curves provide evidence
for the existence of the power-law cross-correlation between
pairs of these series.

Figure 7 shows the relationship between the scaling
exponents and g. The variance of the exponent with g
indicates that a multifractality exists in the cross-correlation
between the pairwise series among the news and the return.
Particularly, for the cross-correlations between the MM news
amount and the NM news amount, the MM news amount and
the return of SSE 50, and the total amount of news and the
return of SSE 50, the scaling exponents for g < 0 are larger
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and the return of SSE 50.

than those for ¢ > 0. So we can conclude that the cross-
correlations for small fluctuations are more persistent than
the ones for the large fluctuations. For the cross-correlation
between the NM news amount and the return of SSE 50,
the “normal” fluctuations display the most persistent cross-
correlation.

Table 1 reports the scaling exponent for these time series
when g is even (the conclusion is similar when g is odd).
The scaling exponents in Table 1 are all larger than 0.5, so
the cross-correlations between the amount of MM news, the
amount of NM news, the amount of total news, and the return
of SSE 50 are persistent. In order to explore the degree of
multifractality, the measure, AH,, is introduced as follows
[41]:

AH, = max (H,) - min (H,), 9)
where the larger the AH, is, the higher the degree of
multifractality is. The last line of Table 1 shows the value
of AH, for the four cross-correlations. AH, for MM-NM
indicates a strong multifractality for the cross-correlation
between the amounts of two types of news. The larger AH,
for the cross-correlation of MM-Return than the one of NM-
Return shows the stronger multifractal characteristics and
more complicated structure for the cross-correlation between
the amount of mass media news and the return of SSE 50.
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TABLE 1: Results of the MF-DCCA scaling exponent. This table reports the MF-DCCA scaling exponent between the amount of mass media
news, the amount of new media news, the amount of total news, and the return of SSE 50. The symbol “MM-NM” denotes the scaling
exponent between mass media news amount and new media news amount. The symbol “MM-Return” denotes the scaling exponent between
mass media news amount and the return of SSE 50. The symbol “NM-Return” denotes the scaling exponent between new media news amount
and the return of SSE 50. The symbol “TM-Return” denotes the scaling exponent between the total news amount and the return of SSE 50.
The symbol “A” denotes the difference between TM-Return and the sum of MM-Return and NM-return.

q MM-NM MM-Return NM-Return TM-Return A

~10 1.193412 0.904737 0.723414 0.931241 0.696911
(97.68) (138.06) (199.00) (87.06)

_8 1182705 0.886182 0.71819 0.913263 0.69111
(98.02) (145.94) (209.38) (87.54)

-6 1.169745 0.861594 0.71567 0.889892 0.687372
(99.44) (158.73) (219.38) (88.13)

4 1.153924 0.83167 0.723031 0.861964 0.692737
(104.83) (176.77) (217.07) (89.19)

5 1126114 0.802806 0.768141 0.837509 07334348
(127.66) (194.62) (186.21) (95.46)

0 1.060741 0.78207 0.889481 0.837438 0.834112
(247.81) (218.59) (166.68) (143.10)

) 1.005653 0.766329 0.874682 0.837032 0.80398
(81.42) (196.69) (193.44) (189.78)

4 0.915444 0.74425 0.810478 0.797665 0757063
(51.71) (124.14) (130.09) (120.17)

6 0.855658 0.718995 0.762753 0.757806 0723942
(44.70) (96.71) (105.60) (96.85)

8 0.8204 0.698176 0.731458 0.729416 0.700219
(41.72) (86.17) (94.53) (86.77)

10 0.797806 0.682709 0.710457 0.709795 0.68337
(40.08) (81.03) (88.40) (81.31)

AH, 0.395606 0.222028 0.179024 0.221446 —

q

* * % denotes significance at 1% level.
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FIGURE 6: Log-log plots of F,., (s) versus s for amount of total news

¥4
and the return of SSE 50.

The last column of Table 1 shows the difference between
the TM-Return and the sum of MM-Return and NM-Return.
The value of the last column that is larger than 0 reveals that
the influence of the combination of the mass media news
and new media news to the return is smaller than the sum
of their respective influences for the return. This leads us to

conclude that there is a sharing component between the mass
media news and the new media news reflecting a competitive
relationship. These findings indicate that there exists over-
lapped information conveyed by two information sources
and thus investors need to distinguish new information for
their decision-making. On the other hand, the value of TM-
Return that is larger than the value of either MM-Return
or NM-Return reveals the complementary relationship for
them. And this result is similar to the conclusions of Zhang
et al. [40]. Particularly, the line of TM-Return is closed to
the line of MM-Return when q < 0 and is closed to the
line of NM-Return for ¢ > 0. And this reflects the fact
that the cross-correlation between the amount of mass media
news and the return of SSE 50 leads to the cross-correlation
between the news amount and return of SSE 50 for the small
fluctuations. The cross-correlation between the amount of
new media news and return of SSE 50 is the dominant factor
for the big fluctuations. Generally speaking, all these findings
suggest that both information sources, that is, mass media
and new media, provide useful information to the financial
market and influence the variations in the asset prices.

In Figures 3-6, we can find a turning point for the linear
trend of the curves. As is suggested by Podobnik et al. [42],
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TABLE 2: Short term and long term scaling exponents between news and return series. This table reports the short term and long term scaling
exponents for the series between the mass media news and return of SSE 50, new media news amount and return of SSE 50, and total news
amount and return of SSE 50. The signal “MM-Return” denotes the scaling exponent of mass media news amount and return of SSE 50,
“NM-Return” is the scaling exponent of new media news amount and return of SSE 50, and “TM-Return” denotes the scaling exponent of

total news number and return of SSE 50. AH,, is the multifractality degree. “Short” denotes the term s < S; “long” is the term s > S*.

MM-Return NM-Return TM-Return

1 Short Long Short Long Short Long
-10 0.878 1.261 0.726 0.905 0.841 2172
-8 0.859 1.234 0.719 0.905 0.826 2.114
-6 0.833 1.200 0.715 0.896 0.805 2.030
-4 0.801 1152 0.720 0.864 0.782 1.909
-2 0.774 1.072 0.755 0.929 0.766 1.700
0 0.769 0.923 0.857 1.747 0.796 1.276
2 0.794 0.691 0.889 1111 0.869 0.797
4 0.815 0.495 0.848 0.599 0.875 0.559
6 0.811 0.397 0.807 0.355 0.850 0.455
8 0.799 0.353 0.777 0.215 0.826 0.403
10 0.786 0.332 0.757 0.123 0.808 0.373
AH, 0.110 0.929 0.175 1.624 0.114 1.799
0.5 for the small fluctuations denoting a strong persistent
cross-correlation, whereas for the big fluctuations the scaling
L5 exponents are smaller than 0.5, reflecting an antipersistent
cross-correlation (when g > 4 for MM-Return, g > 6 for NM-

Return, and g > 6 for TM-Return). The last row denotes the

=12 multifractality of the short and long term cross-correlations
T for MM-Return, NM-Return, and TM-Return. For any type
of the three pairs of cross-correlation, the short term AH, is

0.9 smaller than the long term ones significantly. Also, in Figures
8-10 that compare the short and long term cross-correlations

for any pairwise cross-correlation of the three types of cross-

correlations, there is a steady trend for all the short term

-10 -5 0 5 10
q
MM-NM —— TM-Return
—— MM-Return —— MMR + NMR
NM-Return

FIGURE 7: MF-DCCA scaling exponent for pairwise time series
among two types of news and return of SSE 50.

the point S refers to the “crossover.” Through the crossover,
the scale exponents reflect different features in short term
(s < ") and long term (s > S*). In this paper, the crossovers
of the amount of mass media news and the amount of new
media news, the amount of mass media news and return
of SSE 50, and new media news amount and return SSE
50 as well as total news amount and return of SSE 50 are
log(s*) = 2.38 (about 190 days), log(s*) = 2.33 (about 213
days), log(s*) = 2.43 (about 268 days), and log(s*) = 2.29
(about 195 days), respectively. Table 2 reports the short and
long even scale exponents for the series of news and returns.
For short term, the scale exponents are all larger than 0.5 for
three pairs of series, which reflects a strong persistent cross-
correlation for them, while the long term scaling exponents
show a different picture. The scaling exponents are larger than

scaling exponents and the lines of the short term are nearly
parallel with the x-axis. So, in long term the multifractality
of the scaling exponents is larger than the short term ones
and the cross-correlation of the news and return of SSE 50
is more stable. Particularly, by comparing the short term
scaling exponents for any pair of cross-correlation, we can
find that the values of the short term scaling exponents of
MM-Return, NM-Return, and TM-Return are nearly equal
to each other at the same scale g, whereas for the long term,
the scaling exponents of TM-Return are larger than any of
the two other scaling exponents but smaller than the sum
of them in any scale q. We attribute this to the competitive
relationship in short term and complementary relationship
in long term for the two types of news. So the influence of the
mass media news for the return is the same as the influence of
the new media for the return and the overlay of them does not
increase the cross-correlations for the news and return, while
for the long term, the complementary relationship for the two
types of news increases the influence of the total news to the
return.

5.3. Dynamic Analysis of Cross-Correlation. In this part, we
conduct the rolling window method to explore the dynamic
features of the cross-correlation. And the length of rolling
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windows selected in this paper is 250 trading days (approxi-
mately 1 year) [35]. Figure 11 shows the time varying scaling
exponents for g = 2 for the amount of mass media news
and the amount of new media news. Although the process is
fluctuating, the general trend of H, is increasing especially
for the period after 2013 when the amount of new media
news exceeds the mass media news. And the value of H, is
larger than 0.5 throughout the period. So there is a persistent

cross-correlation between the amount of mass media news
and the amount of new media news and it becomes more and
more persistent over time. Similarly, Figure 12 shows time
varying scaling exponents for g = 2 for news and return.
There is also a general increasing trend for the news amount
and return and the value of H, is larger than 0.5 over time.
The cross-correlations between news amount and return of
SSE 50 are more and more persistent. We attribute this
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FIGURE 11: Time varying scaling exponents for g = 2 for mass media
news amount and new media amount.

to the inefficient market. According to the efficient market
hypothesis, the securities’ price will reflect all the information
[43]. So if the market is not efficient, the return of SSE 50
will depend on the amount of news. To further prove this, we
introduce the concept of the market inefficiency index [37]:

El = |H - 0.5, (10)

where H is the Hurst exponent calculated by the detrended
fluctuation analysis (DFA).

In the existing literatures, the Hurst exponent is regarded
as the measure of the market efficiency [44-47]. When Hurst
exponent is equal to 0.5 (the corresponding inefficient indices
(EI) in this paper are equal to 0), the market is considered to
be efficient. So the larger the value of EI, the more inefficient
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FIGURE 12: Time varying scaling exponents for g = 2 for news and
return.

the market is. Figure 13 shows the time varying EI with
the rolling window of 250 days. In Figure 13, the value of
EI is larger than 0 over time, indicating the inefficiency of
the market. Moreover, the period after 2013 has the larger
EI than the time before, which is also the period that has
the larger scaling exponent for news amount and return
of SSE 50. So we conduct the MF-DCCA to investigate
the relationship between the cross-correlation for news and
return and the inefficient indices. Figure 14 shows scaling
exponents between cross-correlation exponent for g = 2
for news and return and market inefficiency indices. In
Figure 14, the scaling exponents for cross-correlations of
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FIGURE 14: Scaling exponents between cross-correlation exponent
for q = 2 for news and return and market inefficiency indices.

MM-Return, NM-Return, and TM-Return are all larger than
0.5atany scales, which indicates a persistent cross-correlation
between pairwise cross-correlations of them. Therefore, we
can conclude that the news, no matter whether it is the mass
media news or the new media news, plays an important role
in the inefficient market of China now.

6. Conclusion

In this paper, we investigate the cross-correlations between
two types of news (mass media news and new media news)
with the stocks of SSE 50 as well as the corresponding return
of SSE 50. By conducting the MF-DCCA method, we can
draw the following conclusions.

First, there are power-law cross-correlations between the
amount of two types of news as well as between news
and its corresponding returns. For the cross-correlation of
two types of news and the cross-correlation between mass
media news and return of SSE 50, the cross-correlations for

small fluctuations are more persistent than the ones for the
large fluctuations, while for the cross-correlation between the
amount of NM news and the return of SSE 50, the “normal”
fluctuations display the most persistent cross-correlation. The
cross-correlations all perform multifractality, but the cross-
correlation between mass media news and return of SSE 50
shows larger multifractality and more complicated structure.

Second, the value of TM-Return that is smaller than the
value of the sum of MM-Return and NM-Return reflects
the fact that there is a sharing component between the mass
media news and the new media news; hence there is a
competitive relationship between them. On the other hand,
the value of TM-Return is larger than the value of either MM-
Return or NM-Return, which reveals the complementary
relationship for them. And this result is similar to the
conclusion of Zhang et al. [40]. In addition, the short term
multifractality of the cross-correlation between news and
return is smaller than the long term one. Moreover, the short
term values of the scaling exponents of MM-Return, NM-
Return, and TM-Return are close to each other, while the
long term value of TM-Return is larger than the value of
either MM-Return or NM-Return. This leads us to conclude
that there is a competitive relationship in short term and
complementary relationship in long term for the two types
of news. So the influence of the mass media news for the
return is the same as the influence of the new media on
returns and the sharing part of them does not increase the
cross-correlation for the news and returns while for the
long term, the complementary relationship for the two types
of news increases the influence of the total news on the
return.

Third, by conducting the rolling window method, we
find that there is a general increasing trend for the cross-
correlation between the two types of news as well as the
cross-correlation between news and return and the cross-
correlations are more and more persistent over time. We
attribute this to the inefficient market. And the persistent
cross-correlations between the inefficient indices and the
time varying scaling exponents of the news and return
indicate that the news, no matter whether it is the mass media
news or the new media news, plays an important role in the
inefficient market of China now.

Admittedly, the above results cannot completely reveal
the relationship between the two types of news as well as the
relationship between news and stock returns. To explore the
role the mass media news and new media news play in the
stock market more precisely, some more work, for example,
herding behavior and structural breaks between two types
of news [48, 49], needs to be done in the future. Besides, as
suggested by Cajueiro and Tabak [50], examination on the
role of these two types of news on information efficiency is
also a promising research direction. We leave these for future
research.
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Starting from sociological perspectives on complexity, we show how the social capital of boards and owners networks affects the
implied cost of capital of companies listed on Brazilian stock exchange. We specifically show arguments and evidence that the effect
of the relational resources found in the direct, indirect, and heterogeneous board’s ties reduces the cost of capital while relational
resources embedded in shareholder networks increase the cost of capital. Our results show that while the increase in the relational
resources of the board reduces the implied cost of capital, an increase in these shared resources in the ownership relationships of

the firm increases the cost of financial capital.

1. Introduction

In this paper we are interested in the effect of two different
kinds of relevant complex networks in finance [1-3] on
implied cost of capital for the listed companies, particularly
in a prominent emerging market, Brazil, which have been
the subject of studies on complexity in other disciplines
such as epidemiology [4], geophysics [5], ecology [6, 7], and
information science [8, 9].

In this sense, our paper discusses the relationship between
networks of boards of directors of listed companies and the
networks of shareholders in the stock market with the implied
cost of capital in an emerging market context. Usually, the
cost of capital is considered one of the main aspects of a
financial decision, not only for investors but also for chief
financial officers. Simultaneously, firms in emerging markets
work under the high cost of capital related to firms listed in
developed markets. In turn, strategies that could reduce the
cost of capital are relevant for the whole capital market.

The problem of the cost of capital can be investigated
under the logic of complexity [1, 10]. And looking at com-
plexity in a substantive way, financial market problems should
be analyzed by “the relationships, connectivity and inter-
dependence between the internal and external actors, and the
various structural influences on the environment in which they
operate [...] that we will gain a deeper understanding of the
evolution of governance frameworks, and reveal new insights
regarding their effectiveness” 10, p. 2].

About this, we used sociological perspectives on com-
plexity to understanding how organizations acquire and man-
age their relational resources, such as the means by which the
social structure has an influence on the allocation of resources
[11]. Among these resources, one of the most important is
the financial capital, especially for public corporations, whose
financing strategies are fundamental to their survival and
growth [12].

Such a statement is even more valid in current times since
there are those who say that we no longer live in a society of
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organizations: we are now living in a society of investors [13].
For these reasons, the investigation into corporate finance,
including the financial cost of capital, has been gaining in
prominence in the field of organizational strategy, economic
sociology, and corporate governance [14, 15].

In view of the above, in this article we analyze the cost
of capital by Brazilian publicly quoted companies, accepting
that the assessment of such firms and their access to credit
takes place against the background of the concrete social
relationships in which they are embedded [12, 15, 16]. We
therefore seek to assess the cost of capital based on an estimate
known as implied, or ex ante, which is based on the forecasts
of analysts [17, 18], while other studies, like the one by Uzzi
[12] and Uzzi and Gillespie [11], were based on ex post
estimates, which used the history of the returns achieved.

The ex post estimate has been criticized because of
its potential inaccuracy. There are three risks associated
with such estimates [19]: (1) a difficulty when it comes to
identifying the pricing model of the assets; (2) inaccuracy
in estimating factor loadings; (3) inaccuracy in estimating
the risk factor premiums. For these reasons, Espinosa and
Trombetta [17], starting with the work produced by Gebhardt
etal. [20] and Easton and Monahan [21], investigated various
ways of estimating the implied cost of capital and reached four
plausible dimensions: RIV (the residual income valuation
model), PEF (the price to forward earnings model), PEG (the
price to earnings growth model), and MPEG (the modified
price to earnings growth model). The authors concluded that
the use of any of these measures would not alter the result,
which led us to use the implied cost of capital measure,
estimated by the PEG (price to earnings growth model),
because of data availability.

As far as the social relationships that condition the cost
of capital are concerned, we first studied the relationships of
companies established by their directors, a situation known
as board interlock, which occurs when a director or officer of
one company has also a seat on the board of another company.

Secondly, we investigated the effect of the relationships
established between companies because they have owners
in common (ownership interlock). This is because there
is a whole range of studies that deal with the board and
director interlock [15, 22-26] and ownership interlock [27-
29], but there are few studies that consider these two types of
relationship jointly [30], especially in emerging markets like
Brazil.

In the case of the board networks, Davis [31] and Mizruchi
[32] point out that the benefits are obvious for corporations
because good directors tend to participate in a greater
number of organizations, as well as in different groups, and
their centrality and position are indicative of their prestige.
Furthermore, they tend to suffer greater social pressure to act
in a responsible way [31].

Studies also indicate that the best-positioned board direc-
tors in the network tend to have a greater capacity for
receiving information, resources, and knowledge by way of
their privileged access to different, unconnected groups [31];
in other words, they have greater social capital [26, 33, 34].

Despite the fact that such arguments in favor of the
greater centrality and privileged position of the board are
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convincing, there are controversies as to whether relation-
ships have a positive or negative effect on the conduct and
performance of firms [35]. There is evidence of positive
results in some studies [15, 36, 37], just as there is evidence
of negative results [23, 38].

However, the limitation of these studies lies in the fact
that they identify the effects of the privileged position of the
boards and their directors by basically using indicators of
network centrality and position. What these studies left to one
side were the number, type, and availability of the relational
resources that these board directors bring to organizations
[39].

It is regarding this point that we mainly seek to contribute
to the studies of corporate relationship networks: we are
interested in analyzing the potential effect of the economic
capital—relational resources—that is dispersed among the
relationship networks of board directors, since the structure
of relationships is not sufficient to explain the effects of the
latter on the cost of capital.

In doing so we hope to go further than the investigation
undertaken by Uzzi [12] and Uzzi and Gillespie [11], who
considered social embeddedness in terms of size, duration,
and the complementary nature of the relationships between
companies and banks. We also evaluate the effects of the
relational resources found in direct, indirect, and heteroge-
neous relationships, since in the latter there is an assumption
that nonredundant ties provide additional advantages [34],
without mentioning that the information benefits of the
network go beyond its direct ties.

Finally, we also investigated what is called the dark side
of networks, in which we present arguments and evidence
that the overlapping social capital in ownership relation-
ships, instead of reducing the cost of capital, increases it.
This is because cross-ownership relationships may mean
that companies form part of a conglomerate with interests
and controllers in common. As a negative consequence for
investors and creditors, these relationships may be a means by
which corporations become involved in dysfunctional trans-
actions between related parties (tunneling), during which
both opportunism and conflicts may emerge [40-42].

Given the above, our objective in this study was to analyze
how the social capital of boards and owners networks affects
the financial cost of capital of companies listed on Brazilian
stock exchange, the B3. More specifically, we show arguments
that the effect of the relational resources found in the direct,
indirect, and heterogeneous board’s ties reduces the cost of
capital while relational resources embedded in shareholder
networks increase the cost of capital.

2. The Social Capital of Corporations by
Board and Ownership Interlocks

Social capital can be understood as that type of capital
that is not owned by an individual player but exists as a
potential resource because it is embedded in the networks
of relationships and is captured and used by way of social
exchange [43, 44]. Looking at it instrumentally, social capital
refers to the idea that an investment in relationships can lead
to greater access to a wide variety of resources [43].
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Therefore, any connection with different networks or
groups increases the chances of acquiring advantages [33,
34]. As Nahapiet [44] argues, “those that do best, do so
by way of their connections and relationships [...] they are
more capable of accessing and benefiting from a range of
opportunities and resources that affect their performance” (p.
580). In a simple way Portes [45] points out that “economic
capital is in the bank accounts of people, human/cultural
capital is in their heads and social capital is in the structure of
their relationships” (p. 7).

The social mechanisms that support the advantages of
social capital involve [43] greater facility in the flow of
information, the influence that the social ties exercise over
the agents who take decisions, the accreditation and social
support given by relationships, and the strengthening of
identity and recognition.

Their dimensions, on the other hand, refer to the structure
of social capital per se, in which the embeddedness of the
players in the network, the psychosocial and institutional
apparatus underlying the relationships, among which are the
bases of trust, and finally the volume of economic, cultural,
and symbolic capital that is accessible to the players in the
network are all considered individually [43, 44, 46].

To understand the social capital of corporations we
should start with the assumption that there is separation
between ownership and control, in which the former is
represented by their owners or shareholders and the latter
by their directors and officers. In the first case, social capital
is embedded in the relationship formed between two com-
panies for having joint ownership (interlocking ownership),
while in the latter case this capital is accessible from shared
officers and directors (interlocking directors and officers).

These different types of the tie can be shared by the same
set of companies, which perhaps may have led to literature
not differentiating between the effects and consequences
in the conduct and performance of corporations. However,
does the social capital embedded in these different types of
relationship operate in the same way? Our arguments indicate
it does not, and that is why we hypothesize about its effects on
the cost of capital in a different way.

As far as the board social capital is concerned, Mizruchi
[32] found that studies referring to interlocking and the
performance of companies give a variety of results, with some
authors finding positive associations and others negative,
albeit to a slight degree. This was corroborated by a recent
review by Johnson et al. [35], which highlights the complexity
and contingent character of the phenomenon. Even though
there is a great variety of such companies what they have in
common are the ways by which their social capital tends to
be operationalized.

For example, Davis and Mizruchi [47] analyzed how
the restructuring of industry in the United States affected
the position of banks in the network. To corroborate their
hypotheses, these authors used the network centrality con-
cepts of Freeman and Bonacich to determine the position of
each company. He and Huang [48], on the other hand, used
the centrality of the directors to generate a differentiation
coefficient (Gini coefficient) with the aim of identifying how
broad the informal hierarchy is. The authors found that the

broader the informal hierarchy was, the better the financial
performance was.

In Brazil, Mendes-Da-Silva et al. [36] founded a sig-
nificant relationship between having a privileged position
(network centrality, density, and cohesion) on the board of
directors of companies traded on B3’s New Market and both
market value and the indebtedness of the listed companies.
Mendes-Da-Silva [49] subsequently investigated the exis-
tence of associations between the positioning of the firm in
the network of relationships and the value of the companies.

The author used measures of network centrality (degree,
“betweenness,” and eigenvector) and found evidence that
regarding the value of companies there are optimal levels
of centrality. Also in Brazil, Rossoni and Machado-Da-Silva
[37] investigated the legitimacy arising from the boards of
directors of companies listed on the B3. The authors observed
that among the companies listed on the Traditional Market,
where there are low levels of governance, the bigger the
proportion of structural holes is, the greater the market value
is. Conversely, however, the authors found that the greater the
board network cohesion by way of the clustering coeflicient
is, the smaller the market value is. Rossoni and Machado-
Da-Silva [37] justified such negative results on the basis that
greater cohesion between company boards can increase the
risk of opportunism on the part of their directors.

This was not the only negative result found in Brazil:
Santos et al. [38] found that the value of companies was
jeopardized by high levels of interlocking, particularly in
companies in which half or more of their directors are
on three or more boards. This was also true for those
companies where the CEO sits on other boards. This result
is corroborated by Fracassi and Tate [23] in their analysis of
1500 companies that comprise the Standard & Poor’s index.
According to the authors, the ties of the CEO reduce the value
of the firm, especially in the absence of other governance
mechanisms.

Despite the contradictory results, we still insist that rela-
tionships between boards can help explain the effectiveness of
corporations, especially their cost of capital. First, because we
have elements for this, as Mizruchi et al. [15] point out, there
is historical evidence among American corporations that
relationships between executives and members of the boards
of companies are associated with the debt levels of the latter.

In line with such findings, Uzzi [12] showed how small
firms can benefit from close relational ties with banks when
the size and complementary nature of the undertaking’s
network are associated with a greater facility when it comes to
borrowing capital. Uzzi [12] and Uzzi and Gillespie [11] also
found that time, multiplexity, and a complementary nature
reduce the cost of capital to a great degree.

Secondly, because we believe that due attention has not
been paid to a fundamental dimension of social capital, the
resources exist in social relationships [39]. As Lin [43] advo-
cates, the social capital is present in the exchanges that arise
from relationships between players by way of the resources
that are mobilized and available in such relationships. In
other words, if social capital is made up of resources and
relationships, it makes no sense to pay attention to only one
dimension and ignore the other. Thus, we propose that access



to and the use of the resources found in the networks between
boards and directors can lead to better conditions for raising
capital when compared with those that are lacking in such
relational resources, which in turn reduces the cost of capital
[50].

Looking at the information mechanisms underlying this
process, there are indications that the relationships between
firms by way of their directors and officers may facilitate,
for example, access to lower capital interest rates. In many
cases, these firms look for direct financing from sources of
funds or credit markets that are little known [12]. There are
also motivational benefits embedded in these relationships, in
which the ties of trust enable exchange and reciprocity, which
are not available in simple market interactions.

Furthermore, having directors who are part of very valu-
able companies may lead to a firm having greater bargaining
power with its creditors, without considering the fact that
this may generate a greater number of alternatives, in which
these two elements, in both cases, affect the probability of a
firm managing to get hold of cheaper financial capital, which
implies a lower cost of capital [11].

Finally, knowing that the advantages of relational
resources in terms of information and influence can go
beyond the direct relationships [34], we advocate that
indirect relationships may also be potential catalysts of the
benefits we have here described. Such advantages may also
reduce the cost of capital of the companies investigated. This
being so and given these arguments, we state the following.

Hypothesis Ia. The larger the amount of relational resources
available in the direct relationships of the board is, the smaller
the company’s cost of capital is.

Hypothesis 1b. The larger the amount of relational resources
available in the indirect relationships of the board is, the
smaller the company’s cost of capital is.

In addition to the relational resources present in direct
and indirect relationships between boards, we also advocate
that those present in weak, less redundant, and more hetero-
geneous ties also affect the reduction in the cost of capital
[50]. This is because, as Burt [33, 34] stresses, structural holes
or nonredundant ties are opportunities to broker the flow of
information and resources between players that are on oppo-
site sides or atlittle-connected points in the network, and who
may have information that has greater innovative content.

As the literature about company boards points out,
such characteristics can be of advantage to publicly quoted
companies. For example, Kim [26] analyzes the effects of
the proportion of the number of outside board members as
vectors of the social capital on market value. He points out
that such ties have the capacity to extract valuable resources
from the environment. In Brazil, Rossoni and Mendes-Da-
Silva [51] and Rossoni and Machado-Da-Silva [37] used the
proportion of nonredundant ties as one of the indicators of
the legitimacy of the board. Rossoni et al. [50], using board’s
social capital ideas, showed that heterogeneous relational
resources have a stronger and more significant influence
than the resources available from board’s direct ties. In the
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first case, the data suggest that companies that have boards
with a greater proportion of structural holes tend to have
less systematic risk in the presence of other governance
mechanisms (premium listing: New Market). In the second
case, nonredundant ties were associated with greater market
value only if there were special levels of governance safeguard
in place. In the third case, relational resources present in
heterogeneous relations have a greater impact on market
value.

With regard to the effects on the cost of capital specifically,
there is no evidence of this in literature, although Uzzi [12]
indicated that an optimal level between transactions with a
greater number of banks (opening) and a smaller number
(closing) reduces the cost of capital. Given such results,
even though some of them are conditioned by institutional
factors, we believe that the mechanisms operating in the
structural holes are also valid for the cost of capital, especially
considering the value of the resources dispersed in these
heterogeneous relationships. For these reasons we consider
the following.

Hypothesis 2. The larger the heterogeneity of relational
resources available in the direct relationships of the board is,
the smaller the company’s cost of capital is.

All the previous arguments could be valid too for the
effects of social capital on the cost of capital arising from own-
ership relationships because such relationships are associated
with those of the board [30]. However, if the relationships
are of another type, there is evidence that they operate
differently [15, 35]. In our case, we argue that the overlapping
social capital in ownership relationships presents another
side, which is, in fact, contrary to the side of the relationships
between boards: the dark side of networks.

To make the link with such a statement we need to
understand the nature of such relationships. First of all, as
Kim [29] points out that the interlinking of owners may
mean that the companies form part of the same group, or a
conglomerate, which has interests and controllers in common
even though they are different companies. This can create the
opportunity for the corporations to carry out dysfunctional
transactions between related parties (tunneling), in which
both opportunism of the controller and conflicts may emerge,
especially when there are minority shareholders in some
units, but not in others [40-42].

There is also the fact that the diversification of property,
especially nonrelated property, is associated with the growth
of the firm beyond the point where it maximizes the value
of its shares, which offers opportunities for the controllers to
misuse the resources [52]. Furthermore, some of these tactics
may complicate the effectiveness of corporate governance, by
compromising the monitoring of managers and controllers,
which might lead to acquisitions and contracts that give a
lower return or have obscure interests.

There is a vast amount of documentation of cases of firms
whose assets are undervalued due to the discount given by
investors because they are part of a conglomerate [13, 53]. For
these reasons, we understand that investors and creditors, in
addition to negatively assessing the assets of companies that
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establish such relationships, also see that the cost of capital
is greater, given the enhanced underlying risk of operating
with such companies. Add to this the fact that the greater the
resources shared by a network of owners are, the greater the
chances of expropriation or tunneling are. Thus, we then have
our final hypothesis.

Hypothesis 3. The larger the amount of relational resources
available in firms with cross-ownership with the company is,
the greater the cost of capital is.

3. Method

3.1. Data and Sample. The population of this study comprises
companies listed on the B3, the Brazilian stock exchange, in
the years 2010 and 2011 (after 2008-2009 American subprime
crises). Although B3 has more than 300 companies with
market liquidity, only a small part is covered by market
analysts. For this reason, our sample involved 62 companies
totaling 114 valid cases, organized into an unbalanced panel.

The dependent variable, the implied cost of capital, that
was collected considering ¢ + 1 years, is formed from the
prediction of these analysts, in which not all companies are
relevant to the rating agencies. The coverage by analysts
refers to costs that are not always offset when the companies
are smaller or when the volume of the shares traded is
lower. After we had identified the companies covered by
market analysts and organized the market previsions by
company, we consolidated the financial data obtained from
the Economatica® database with the other sources of register
data: CVM’s disclosure system (Brazils SEC); information
from B3, the Brazilian stock exchange; and the reference
forms from the companies.

3.2. Board and Cross-Ownership Networks. We put together
the network of company boards based on information avail-
able in the reference forms of the listed companies identified
in the CVM system. First, we listed all the firms and their
respective directors and officers individually for the years
2010 and 2011, which allowed us to generate an incidence
network in the 2-mode format (companies versus directors)
for each year. We then used PAJEK software to create the
relationship networks between boards (I-mode format), in
which two firms that were directly linked shared at least
one director or officer, a phenomenon known as board
interlocking.

These data about board networks were exported to
UCINET software, which was used to generate the relational
indicators at the firm level, which were subsequently incorpo-
rated into the panel. To create the cross-ownership company
networks, the same sequence of steps described above was
used, but we considered that two companies are interrelated if
they have the same owners in the list of shareholders available
on the CVM system or if one of them holds shares in the other.

3.3. Dependent Variable

3.3.1. Implied Cost of Capital. In line with a study by Espinosa
and Trombetta [17], this measure was operationalized in the

estimate of the implied cost of capital, or cost of capital ex
ante, for the years 2011 and 2012, using

55t+2 B ft+1
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with X, being the forecasts of the consensus analysts of the
EPS (earnings per share) for the following first, second, and
third years. Beyond year ¢ + 3, gains are estimated by the
linear disappearance of the true ROE (return on equity) for
a measure of market ROE for year ¢ + 12 [17, 20, 21]. In our
sample the cost of capital varied between 0.033 (3.3% a year)
and 0.378 (37.8%), with an average of 0.148 (14.8%). Table 1
lists descriptive statistics and correlations of all variables used
in this study.

rPEG = , 1)

3.4. Independent Variables

3.4.1. Social Capital of the Board. Using the same strategy
that Rossoni et al. [50], we operationalized the social capital
by the sum of the relational resources present in three types
of relationship: direct, indirect, and heterogeneous. Thus, to
arrive at the social capital of the direct relationships, we first
identified for each year the direct ties that each firm had with
the others by way of board networks, which are known in
the vocabulary of social network analysis as “ego-networks.”
After this, we identified the market value (total value of
the shares traded on the stock exchange) of each of the
firm’s relationships, which is what we call relational resources.
Finally, we added the value of these relational resources for
each tie, which generated our social capital indicator of the
company’s direct relationships. To get a better idea of this, the
average value of the direct relational resources was around R$
21 billion (nearly U$ 9 billion). Companies like Vale (biggest
metal and mining Brazilian company), for example, had a
value of R$ 120 billion (U$ 52 billion), while the biggest
social capital of the board’s direct relationships was that of the
board of Embraer, the Brazilian aircraft manufacturer (R$ 374
billion or U$ 163 billion).

The social capital of the indirect relationships of each
firm, on the other hand, as the term itself implies, was
obtained by way of the sum of the relational resources (market
value) of the first-degree indirect relationships. Despite the
similarity with the previous measure, social capital by indirect
relationships was generated estimating the geodesic distance
between the firms and saved it in a distance matrix. We
then encoded the first-degree indirect relationships network
(value two in the network) on a binary code with the value 1,
while all the other distances were codified as zero. Finally, we
add the market value of each indirect relationship with each
company to obtain the social capital proxy of the indirect ties.

Finally, the social capital of heterogeneous relationships
was generated in the following way: First, we ran the struc-
tural holes procedure in UCINET and saved the DR (dyadic
redundancy) matrix, which gives the degree of redundancy of
each alter (direct relationship) in relation to each of the egos
(firms) in the network. Redundancy indicates the percentage
of ties that the ego and alter have in an ego network, in which
the greater the value is, the more redundant the tie is [33].
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TaBLE 1: Descriptive statistics.
Mean SD 1 2 4 5 6 7 8 9
(1) Cost of capital 0.148 0.071
(2) Social capital of
the board: direct 21.966  50.982  -0.078
relationships®
(3) Social capital of
the board: indirect 73.244  12.192 0.052  0.301""
relationships®
(4) Social capital of
the board: 14421 35257 —0.050 0.935"* 0.323"*
heterogeneous
relationships®
(5) Social capital; 42639 102.803 0014 0.404°" 0285 0.401°"
cross-ownership
(6) Board size 8.230 4921 -0.061 0.253"" 0.383"" 0.305"" 0.272*"
(7) Outsiders 0.849 0.185 -0.045 0.125" 0.227"" 0.144"" 0.143*" 0.377""
(8) Company age (In) 2.442 1.137 0.065 -0.029 -0.052 -0.021 0.067 -0.008 -0.171*"
(9) Size (In of assets) 14.427 2.273 0.002 0.182** 0.314"* 0.212"° 0.227"" 0.445" 0.260"" —0.048
(10) Leverage 63.354 601.471 0338 -0.027 -0.035 -0.024 -0.025 —0.065 —0.066 0.054 —-0.190""

**Correlation is significant at the 0.01 level (I-tailed). Correlation is significant at the 0.05 level (I-tailed). N = 114. * Amounts in billions (R$).

FIGURE 1: Main component of board interlocking between Brazilian companies. Main component (n = 187). Data for the 2010 year. The size of
vertices corresponds to the social capital value of companies: the sum of relational resources. Each vertex is one company, and edges indicate
board interlocking. Visualization algorithm: Kamada-Kawai, Note. Developed by the authors based on the data collected.

Second, we subtracted the value one from the redundancy
score of each valid alter, thus obtaining a heterogeneity score
for the alters, which was tabulated in new matrixes. Third,
we multiplied the market value of each existing relationship
(alter) by its respective heterogeneity score. Finally, we added
the product of the relationships of each firm to arrive at

the social capital of the heterogeneous relationships of the
company.

To illustrate the relationship between the board of direc-
tors and the presence of sum of relational resources (a proxy
of board’s social capital), we put the main component of board
interlocking network in Figure 1.
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3.4.2. Social Capital of Cross-Ownership. We also considered
the social capital coming from the interlinking between own-
ers since we started from the premise that it might have a dif-
ferent or complementary effect to that of the social capital of
the board [30]. Therefore, two firms have a cross-ownership
relationship when at least one of them has a shareholding in
the other [29]. To arrive at the social capital of the ownership
relationships for each of the companies, we identified those
that had owners in common or that were shareholders of
others [50].

We then identified the market value (total value of
the shares traded on the stock exchange) of each of these
companies. Finally, we added the market value of each of
these companies with cross-ownership, thus forming the
social capital proxy of the ownership relationships.

3.5. Control Variables

3.5.1. Board Size. Recent studies showed that board size
impacts financial variables as market value, risk, and ROA
[38, 54]. Also, it is a relevant characteristic of the board’s
structure [23, 55]. Therefore, a higher number of interlocks
is more likely on bigger boards. Therefore, we included as
control variable the number of board members.

3.5.2. Outsiders. We also controlled the percentage of outside
directors between board members. External directors can
generate more status, knowledge, and information without
interlocking with another company [35, 38, 56].

3.5.3. Company Age. As other studies have done [57, 58],
we operationalized the age of the company by way of the
natural logarithm of its time of operation on the Brazilian
stock exchange, and more specifically on the B3.

3.5.4. Company Size. We used the accounting value of total
assets as a proxy for the size of the firm, such information was
collected from the Economatica database. Moreover, with the
aim of reducing problems of symmetry and kurtosis, we use
natural logarithm, as was also done in other similar studies
[36-38, 59].

3.5.5. Financial Leverage. This is the amount of the total
financial debt of the company, divided by its total asset value
[60]. We operationalized this measure in accordance with
Uzzi [12] and Uzzi and Gillespie [11] because we believe there
is a suspicion that indebted companies tend to have a greater
cost of capital due to their payment needs.

3.5.6. Year. To avoid problems related to seasonality, such as
temporary trends, we controlled the time effect using dummy
variables, which is common practice in panel data [60, 61].
The 2010 year was considered as the reference category and
the 2011 year was identified in the model by way of a dummy
variable.

3.5.7 Industry. We controlled the sector effect since there is
evidence that it precedes market value [59-61]. To this end
we created s — 1 dummy variables, in which s is the number
of players identified in Economatica, considering the “others”

sector as a reference category because the former has a larger
number of observations.

3.6. Econometric Model. We analyze the influence of board
and owners’ social capital on the implied cost of capital by
panel data analysis, in which the variables were hierarchically
incorporated into eight models. We chose the econometric
panel model because we had various cases (N) with many
observations in time (T'), for N x T observations. We tested
three alternatives to evaluate which of them was the most
appropriate: (1) grouping the cut-off data based on ordinary
least squares (pooled OLS); (2) fixed effects (FE); (3) random
effects (RE). According to Greene [62], the choice of the
most adjusted model depends on confronting three test
hypotheses: (a) the existence, or otherwise, of a single
intercept of the transversal cut units (evaluated by way of the
Chow’s F test); (b) if the variance of the intercept is equal to
zero (Lagrange multiplier modified by Breusch and Pagan’s
proposition); (c) if the estimators are consistent, based on an
estimation of the generalized least squares (Hausman test).
Based on our evaluation of these hypotheses we chose the
best model for each of the relationships between variables.

Then we looked for greater robustness in the results in
six different ways. First, we assessed if the dependent variable
had serious distribution problems. Second, we assessed if the
independent variables had a linear functional form relative to
the dependent variable. Third, we assessed if the models had
problems of heteroskedasticity using the White test; if they
had, we would treat this problem by using robust standard
errors. Fourth, we checked for the existence of collinearity
problems between the independent variables.

As the social capital of direct relationships was highly
correlated with the heterogeneous relationships, we did not
regress these variables in the same models. Fifth, we observed
if the results remained consistent when we regressed the
models without the insignificant control variables, just as we
checked if they had the same tendency without the outliers.
Sixth, as far as endogeneity is concerned, even if the literature
indicated such a problem with indicators related to corporate
governance [63] and especially because these elements have
both characteristics of self-selection and reverse causality
[64], we did not use instrumental variables or simultaneous
equations [60, 65]. This is because there is no clear evidence
in the literature about the endogeneity of relational variables
[32, 35] and because it is not possible to trace a reverse causal
nexus between future predictions of analysts, which made up
the implied cost of capital, and the independent variables.

4. Results

In Table 2 we show the effects of the variables on the implied
cost of capital. After the adjustment tests of the panel data
(Chow, Breusch-Pagan, and Hausman), the fixed model was
the most suitable for all models. The White test indicated
problems with heteroskedasticity in all models also, which led
us to use the robust standard error.

Following a strategy of hierarchical estimation, in model 1
we show the effect of the control variables on the implied cost
of capital. The only control variable that was significant is a
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TaBLE 2: Influence of Social Capital on the Implied Cost of Capital (Fixed Panel Data Models).

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Board social capital: -0.532"** -0.555""
Direct relationships® (0.164) (0.276)
Board social capital: -0.165"" -0.162""
Indirect relationships® (0.073) (0.072)
Board social capital: -0.538"" -0.585"
Heterogeneous relationships® (0.215) (0.326)
Social capital: 0.119" 0.115"** 0.109** 0.124™"
Cross-ownership® (0.071) (0.047) (0.054) (0.056)
Control variables
. —-0.001 —-0.002 —-0.001 —-0.002 —-0.002 -0.002 —-0.002 -0.002
Board size
(0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)
. —-0.336" -0.222 —0.405™"" -0.232 -0.341"" —-0.224"" —0.408""" -0.230""
Outsiders
(0.150) (0.150) (0.122) (0.158) (0.138) (0.104) (0.111) (0.108)
0.039 0.056 0.041 0.053 0.051 0.071" 0.051 0.040
Company age (In)
(0.039) (0.044) (0.037) (0.046) (0.039) (0.036) (0.038) (0.040)
. 0.028 0.005 0.047 0.011 0.012 —0.003 0.040 —0.005
Size (In of assets)
(0.034) (0.036) (0.046) (0.037) (0.032) (0.027) (0.044) (0.029)
0.001 0.001 0.001 0.001 0.001 0.002" 0.001 0.002"
Leverage
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
-0.073 0.131 -0.281 0.071 0.004 0.238 —0.206 0.330
Constant
(0.498) (0.526) (0.639) (0.546) (0.477) (0.370) (0.617) (0.433)
White’s test 41.138"*" 47.366""" 46.774"" 45.202"" 52.862%"" 57.124"" 58.893""* 56.957"""
Chow’s F test 53.498"" 54.663""" 51.044™"" 53.745""" 53.879""" 53.198""" 50.997""* 74.955"""
Breusch-Pagan test 12.578** 13.8217*" 12.646*" 13.239"*" 12.520"** 12.100"*" 12.6561"*" 13.3417*"
Hausman’s test 70.758"* 12.121%" 10.786" 10.014" 11.114" 13.522% 17547 10.974"
Akaike’s criterion 353.33 374.68 362.91 365.91 354.20 378.34 363.599 366.62
F 3.24""" 4.03""" 3.58""" 3.69"" 3277 417" 3.60""" 3.75"""
R? overall 0.837 0.868 0.853 0.857 0.841 0.874 0.856 0.862

Standard error in parentheses. Dummies of industry and years omitted. N = 114;

percentage of outsiders” directors (p < 0.05): a 1% increase
in this variable is related to a 0.33% reduction in the cost of
capital. This result is coherent with other studies about board
structure, evidencing that the bigger the degree of external
financing is, the lower the cost of acquiring financial capital is.

Regarding our hypotheses, in models 2 and 6 we find that
the larger the number of relational resources (social capital)
in relationships directly established by the board is, the lower
the cost of capital is, which corroborates hypothesis 1a. The
social capital coefficient of direct relationships in model 7
indicates that every R$ 10 billion (U$ 3.3 billion) increase
in social capital present in the direct relationship leads to a
reduction of 0.55% in the cost of capital. The social capital
deriving from indirect relationships also gave a similar effect
on the cost of capital; the results were significant both in
model 3 (p < 0.05) and in model 7 (p < 0.05), leading us
to accept the validity of hypothesis 1b.

About the social capital embedded in heterogeneous
relationships (structural holes), the data indicate a significant
reduction in the cost of capital (p < 0.05, model 4; p < 0.05,
model 8), which leads us to corroborate hypothesis 2. Among

>
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p <0.01; **p < 0.05 " p < 0.1. *Amounts in billions (R$).

the three measures of board’s social capital, that one com-
posed by the heterogeneous ties had the highest coeflicients.
Results reinforce the argument that nonredundant links can
bring additional benefits in company networks.

Finally, we analyzed the effect of the social capital of cross-
ownership in models 5 to 8. The effect was significant in all
models, leading us to accept hypothesis 3. The data indicate
that an increase of R$ 10 billion (U$ 3.3 billion) in relational
resources coming from cross-ownership is associated with an
increase of 0.11% in the cost of capital. This might seem to
be a small percentage, but if we consider the average value of
these relational resources we are talking about, for example,
0.56% of current liabilities, which are around R$ 5 billion (U$
1,65 billion), this would give an average increase in the cost of
capital of around R$ 27 million (U$ 8.2 million).

5. Discussion and Conclusion

In this study, we show that while board’s social capital
reduces the cost of capital, ownership interlocks’ social capital
increases the cost of capital of companies listed on the
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Brazilian stock exchange. To this end, we used a different
measure to capture companies’ social capital founded in the
relational resources of direct, indirect, and heterogeneous
board ties and in the relational resources embedded in owner-
ship networks.

Regarding the social capital of the board, this study
indicated that the resources present in direct, indirect, and
heterogeneous relationships significantly reduce the cost of
capital of publicly quoted companies listed on the Brazil-
ian stock exchange, showing that the greater the relational
resources available via the board are, the lower the cost of
capital of the companies is. Therefore, our hypotheses were
in line with the perspectives of Chalupnicek [39] and Flap
and DeGraaf [66]. We advocated earlier measures of social
capital that do not put the relational resources as an essential
element of social capital [39, 50]. Indeed, it is not enough
to explain the complexity of the relational phenomenon in
financial networks [1, 2].

Looking at the heterogeneity of the relationships, we
found that structural holes are means for obtaining infor-
mation and various resources, enabling firms to have a
greater competitive advantage, including a bigger market
value. However, as we reported previously, more studies
will be necessary to assess how much impact the social
capital deriving from structural holes has since it was highly
correlated with the social capital inherent in direct relation-
ships.

With regard to the social capital present in relationships
between owners, our study corroborated the other studies
that provide evidence of the agency problems inherent to
cross-ownership and their respective conglomerates, whether
formal or informal [13, 27, 29, 52]. Our data tend to support
the statement that firms with cross-ownership are viewed
with reservation by investors and creditors because market
analysts tend to presume they have a greater cost of capital.
Suspicions that there is expropriation or tunneling in the
transactions between companies seem feasible. It is worth
emphasizing, also, that this effect was only visible when the
social capital of the board was included in the model, which
highlights the complementary nature between these variables
in the investigation of the precedents of the cost of capital, as
strongly suggested by Bohman [30].

5.1. Theoretical and Practical Implications. The empirical
results of this research make it possible to develop some
theoretical and practical implications. The first theoretical
understanding has to do with the positioning of the board and
its effects on the performance of companies. Various studies
use positioning measures of a player in the network to test
their research hypotheses or questions, such as small world
studies, developed by Brookfield et al. [27], Mendes-Da-Silva
[49], and Pusser et al. [67], who studied interlocking between
company boards and American universities, or Rossoni and
Machado-Da-Silva [37] and Rossoni and Mendes-Da-Silva
[51], in their research into legitimacy and market value in
companies quoted on the B3. This study produces evidence
that the board and owners relational resources have more
effect than only board relational position on the cost of capital
(39, 50].

The second theoretical implication is related to the
concept of board interlocking and corporate governance.
Davis and Mizruchi [47] state that interlocking can have
an economic and social influence on organizations, and
Davis [31] identified that interlocking has a social influence
on governance practices in the United States. Rossoni and
Mendes-Da-Silva [51] found that companies with better
quality corporate governance, organizational reputation, and
board legitimacy have an influence on the risk of shares
traded on the stock exchange. Indeed, this study contributes
to the field of board interlocking and corporate governance
by studying the analysis of the social capital of the board and
providing empirical evidence of how interlocking influences
the cost of capital of these companies.

The third theoretical implication is linked to the analysis
of the relational resources of the board and their effect on
performance. Finegold et al. [68] found evidence that the
social capital of the board guarantees that companies receive
resources, advice, and better monitoring and are assured of
a better performance. Kim [26], using Tobins Q indicator,
produces empirical evidence that the social capital of external
board members is positively associated with the market value.
Like Rossoni et al. [50], this study contributes to the research
into social capital by evaluating the relational resources of
the board using the market value (capital) embedded in
the network of relationships of companies and innovates by
measuring the cost of capital by ex ante estimates. This goes
further than other studies, like the one by Kim [26], who
measured social capital by way of affiliations in company
boards and university governing boards, and by Stevenson
and Radin [69], who measured social capital by way of
surveys with CEOs.

Finally, as Bohman [30] and Mizruchi et al. [15] advocate,
the fourth and last theoretical implication of this study refers
to the need to consider that different types of tie have different
implications; in the case of ownership relationships, for
example, there was indeed an increase in the cost of capital.
This highlights the fact that relationships may not always have
a positive potential but may also have a negative side [70].

In practical terms, this research is enlightening for invest-
ment fund managers, the managers of companies listed on
stock exchange in emerging markets like Brazil, and indi-
vidual investors. By analyzing the components of the board,
the network of company owners and the cost of capital fund
managers and creditors can evaluate strategies for seeking
better composition for their share and debenture portfolios
in order to reduce the risk of the funds they manage.

For the managers of companies listed on the stock
exchange, the data indicate that board members can be used
as the drivers of information about the best capital financing
rates. The research draws the attention of individual investors
to their need to consider the board in their assessment of a
firm, before deciding where to invest their capital.

5.2. Recommendations for Future Studies. The first recom-
mendation for future work is to analyze publicly quoted
companies with a view to looking at outsiders, following
the concept of Portes [45], to identify how they are affected
because of interlocking boards. Corporate governance is
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a topic of great interest and we recommend that a more
in-depth evaluation is carried out of social capital at the
various levels of corporate governance to assess how the
characteristics of each level of governance affect companies.

The network of owners should also be analyzed up to the
final level in the structure, in other words, as far as private
individual owners. We recommend a more in-depth analysis
into the behavior of organizations that, when they experience
some difficulty, seek to strengthen their boards by bringing
in directors with a better reputation or those who are on
boards of companies with a lower cost of capital, with the
objective being to provide their organization with greater
credibility in the short term, especially if these ties occur
between investment funds and banks.

The behavior of independent board members, who leave
organizations when the latter get into some difficulty, is also
worth analyzing. Thus, their image will not be affected by the
companies’ problems. Finally, it is also worth using spatial
regression and more recent relational statistics methods to
evaluate the individual effect of each relational resource and
not the sum of their added value at the level of the firm.
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The present paper aims to assess the systemic risk of the Kenyan banking system. We propose a theoretical framework to reveal the
time evolution of the systemic risk using sequences of financial data and use the framework to assess the systemic risk of the Kenyan
banking system that is regarded as the largest in the East and Central African region. Firstly, we estimate the bilateral exposures
matrix using aggregate financial data on loans and deposits from annual reports and analyze the interconnectedness in the market
using network centrality measures. Next, we extend the Eisenberg-Noe method to a multiperiod setting to the systemic risk of
the Kenyan banking system, in which the multiperiod includes the dynamic evolutions of the Kenyan banking system of every
bank and the structure of the interbank network system. We apply this framework to assess dynamically the systemic risk of the
Kenyan banking system between 2009 and 2015. The main findings are the following. The theoretical network analysis using network
centrality measures showed several banks displaying characteristics of systematically important banks (SIBs). The theoretical default
analysis showed that a bank suffering a basic default will trigger a contagious default that caused several other banks in the sector to
go bankrupt. Further stress test proved that the KCB bank theoretically caused a few contagious defaults due to an unusually high
interconnectedness. This methodology can contribute by being part of monitoring system of the Central Bank of Kenya (regulatory

body) as well as the implementation of policies (such as bank-internal stress tests) that assist in preventing default contagion.

1. Introduction

Events beginning in the United States in 2008, including the
collapse of some major financial institutions and the rescue of
others, ideally depict the effect that a systemic crisis can have
on an economy. Many financial institutions around the world
felt the impact of the default of some of these institutions
in the United States. Thus, systemic risk emerged as one of
the most challenging aspects. Previous to this occurrence,
there was a limited knowledge of how systemic risk affected
institutions and how to assess the systemic risk. Therefore, it
is essential to have an effective assessment of systemic risk
exposure to an institution.

A few measures of systemic risk have been proposed in
recent empirical studies. Among them, De Jonghe [1] uses
the extreme-value analysis to measure the contribution of
each single financial institution to systemic risk. Using CDS
(Credit Default Swap) of financial firms and correlations
between their stock returns, Huang et al. [2, 3] and Segoviano
Basurto [4] propose portfolio credit risk measurement meth-
ods, such as CoPoD and CIMDO methods. The conditional

Value at Risk (CoVaR) is proposed as measure of systemic
importance of financial institutions proposed by Adrian and
Brunnermeier [5]. The CoVaR can capture how much the
distress of one institution can affect another institution and
it provides a clear direction on the relation between the risks
involved between two financial institutions. Another measure
that was proposed and used as an indicator to measure the
systemic risk is the System Expected Shortfall (SES). It was
introduced to measure listed financial institutions’ contri-
butions to systemic risk. SES is defined as an institutions
tendency to be undercapitalized when the financial system
as a whole is undercapitalized. Marginal Expected Shortfall
(MES) was also introduced as a measure of an institution’s loss
in the tail of the system’s loss distribution. MES is a systemic
fragility metric that can also be used to determine an optimal
taxation policy based on systemic risk [6]. Both the SES and
the MES methods were proposed by Acharya et al. [7].
However, a limitation of those approaches is that they
measure a financial institution’s loss only if the system is
in normal time and only indirectly take into account the
size, the probability of default, and the correlation of each
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financial institution. Furthermore, the correlation does not
capture the interconnectedness adequately because it does
not consider the various interactions (such as contagious
defaults) or the relationship between interconnectedness and
systemic importance in a financial system.

In normal times, the interbank market ensures efficient
liquidity redistribution from banks with surplus liquidity to
banks with a shortage of liquidity and thus serves as an
absorber of idiosyncratic liquidity shocks. In turbulent times,
however, interbank markets can become a channel for liquid-
ity contagion due to liquidity hoarding by banks and/or credit
risk contagion due to credit losses on interbank exposures.
Interbank market contagion is more likely to occur in bank-
ing sectors that are highly dependent on wholesale financing
[8]. In an extensive study of the US financial system, Hautsch
etal. [9] show that it is mainly the interconnectedness within
the financial sector that increases the risk of failure of the
entire system, denoted as systemic risk [10].

The intricate structure of linkages can be naturally cap-
tured via a network representation of the financial system.
Such a network models the interlinking exposures between
financial institutions and can thus assist in detecting impor-
tant shock transmission mechanisms. The use of network
theories can enrich our understanding of financial systems,
helping to answer questions related to how resilient financial
networks are to contagion and how financial institutions
form connections when exposed to risk of contagion [11].
Two types of sources for the risk of contagion have been
studied in the literature. One is the network of banks investing
in similar types of assets, in which one bank failure can
lead to a fall in the price of its assets and then affect the
solvency of other banks that hold the same assets [12, 13].
The other is the risk of contagion in the interbank market,
which concerns the liquidity risk of contagion at a form
of interlocking exposure; such exposure is very short term,
mainly overnight. The focus of the present paper is on the risk
of contagion in the interbank market. The empirical studies of
the risk of contagion in the interbank market have been done
in those references [14-17]. In the theoretical studies of the
risk of contagion in the interbank market, Allen and Gale [18]
studied the effect of the static network structure on the risk
of contagion. Their results found that an interbank network
system with a complete network structure is more stable than
that with an incomplete network structure. Besides Allen
and Gale, many researchers theoretically study the effect
of the network structure on the risk of contagion [19-24].
Although studies on the risk of contagion in the interbank
network systems have made the great progress, there are
some limitations in existing research. Most of the studies
are based on static network structures (fixed bank lending
matrixes) and static bank systems (fixed the bank balance
sheets). However, the reality of an interbank network system
is with high complex dynamics.

This is where the present paper is useful in assessing
systemic risk in relation to dynamic financial networks.
In theory, the Eisenberg-Noe framework [25] describes
simultaneous defaults for one period and not for a dynamic
multiperiod scenario which applies to our case. We have
to mention that we extend the framework to a multiperiod
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setting, which borrows from the framework of Kanno [26]
and theoretically analyze the Kenyan interbank market using
aggregate data on loans and deposits from the portal-
African Markets. Kanno [26] and Lehar [27] considered the
multiperiod scenario on the systemic risk; however, they did
not consider the dynamic change of the interbank network.
Besides, Kanno only uses the maximum entropy algorithms
to estimate the topology of the interbank system. Here,
in the present paper, we use two methods (the maximum
entropy algorithms and the minimum density approach)
to estimate the network structure and make the structure
of the network system change with time. Therefore, the
present paper proposes a theoretical framework to reveal
the time evolution of the systemic risk using sequences of
financial data and uses the framework to assess the systemic
risk of the Kenyan banking system which is the largest in
East and Central Africa. This study will help us understand
the impact of systemic risk in the Kenyan banking sector.
The theoretical frame work we proposed merges existing
algorithms, maximum entropy estimation method [14], the
minimum density approach [28], the asset value estimation
algorithm [26, 27], and obligation clearing algorithm [25],
seamlessly to calculate the time evolution of the systemic risk.

The key results of the present paper are summarized as
follows. First, we explain the network structure of the Kenyan
interbank market and theoretically examine its structure
using the estimated bilateral exposures matrix. Based on the
measures on in- and out-strength, we show that most of the
banks designated as systematically important banks (SIBs)
are quite significant in the role they play in the Kenyan
interbank market. Second the contagious defaults are then
modeled in the Kenyan interbank market to then analyze the
mechanism behind contagious defaults. Thirdly stress tests
are conducted to analyze the possibility of contagious defaults
conditional on a banks basic default at an evaluation time
point.

The present paper is organized as follows. Section 2
proposes a theoretic framework of the systemic risk. In the
theoretic framework, Section 2.1 first proposes the method
of measuring systemic risk that includes basic defaults and
contagious defaults, then Section 2.2 deliberates the method-
ology of the bilateral exposures matrix, and Section 2.3
explains the estimation methodology for the market values
of assets. Section 3 describes the data used in this study.
Section 4 presents the results of the risk analysis and finally
Section 5 concludes the paper.

2. The Dynamic Theory Framework of
Assessing Systemic Risk

We first construct a dynamic theory framework of assessing
systemic risk, which is described as Figure 1. Figures 1(a) and
1(b) describe the network structure of the interbank system in
Kenyan, which can be estimated by the methods described in
Section 2.1. Figure 1(a) shows the complete network, which
can be estimated by the Maximum Entropy Method, while
Figure 1(b) represents the sparse network structure that can
be estimated by the minimum density approach, which is first
proposed by Anand et al. [28]. Figure 1(c) is the dynamic
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F1GURE 1: The dynamic theory framework of assessing systemic risk.

estimation method of banks’ assets, which is described in
Section 2.2. When we get the parameters u; and o;, then,
according to (7), we get the evolution of banks’ assets like
Figure 1(d). In Figure 1(d), in each time step, we first calculate
the basic default of banks; then, due to the connection of
banks like Figures 1(a) and 1(b), the basic default of banks,
namely, total assets smaller than the total liabilities, cause the
default of other banks that are connected to the basic default
banks. The method of computing losses from basic default
and contagion default is described in Section 2.3. At time t =
0, the structure of the interbank network system is estimated
by the balance sheet of end of each year. However, due to the
time evolution, banks may be defaulted by basic default or
by contagion, then banks that are default will be removed
from the network, and, therefore, the structure of network

will change with time, which is showed in Figure 1(e), the
evolution equations of which will be described in Section 2.4.

2.1. Estimation of Bilateral Exposures Matrix. The lending
relationship in the Kenyan interbank market is represented
by the following nominal interbank matrix X:

2. i
J

X1 X1 XIN |

X=| X % AN g, M
AN XNj O OXNN | I

inj aq a] N



where x;; denotes the amount of money that bank i borrows
from bank j. a; = },x;; denotes the total value of bank
J's interbank assets and [; = }.x;; denotes bank i’s total
liabilities. It has to hold that
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where X* is size of the interbank market. Next we adopt two
methods to estimate the matrix X. One is the method of the
maximum entropy estimation [14] in Section 2.1.1, and the
other is the minimum density approach [28] in Section 2.1.2.

2.1.1. Method of the Maximum Entropy Estimation. We know
that the diagonal elements of X have to be zero. Therefore, we
set the prior matrix of X as follows:

0 foranyi=j
X0 = yi=] 3)
al; otherwise.
Matrix X° violates the summing constraints expressed in
(2). Consequently, a new matrix X must be found to satisty
the constraints. The solution is provided by solving the
optimization problem as follows:

N N ..
. ij
min E Ex,-»ln
j %0
ij

i=1j=1

Subject to
j=1 (4)

2.1.2. The Minimum Density Approach. The minimum den-
sity approach minimizes the network’s density, the share of
actual to potential bilateral links. It minimizes the total num-
ber of linkages necessary for allocating interbank positions,
consistent with total lending and borrowing observed for
each bank. Let C represent the fixed cost of establishing a link.
Then the minimum density approach can be formulated as a
constrained optimization problem as follows:

N N
mxin CZ Z 1 [Xij>0]

i=1 j=1

N
Subject to inj =1,
j=1 ©)

N
D Xij = aj
i=1

x;; >0,

where the integer function 1 equals one only if bank i lends
bank j.
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2.2. Estimation Methodology of Market Values of Assets. Asset
value V;(t) is not daily observable. However, we can get the
asset value in the bank balance sheet at the end of each year,
while the equity market price of banks can be observed by
stock price on each day. The time f is measured in units of day
in the present paper. Next we will give a method to estimate
asset values of each day (time evolution of asset value)
according to the equity market data of banks. Assume that
the asset value V;(t) of bank i follows a geometric Brownian
motion with drift u; and volatility o;:

1

where W (t) is the standard Brownian motion. The solution to
this equation is obtained as

Vi (t) = V; () eI, )

where z is a standard normal random variable. If we know
the parameters u; and o;, then, according to (7), we can get
the evolution of V;(t). Next we can observe a time series of
equity price E;(t) from the stock market; then we can use the
Black-Scholes model to estimate the parameters u; and o; as
follows:

E,(t)=V;(t) N (d;) - D; () N (d; —o;VT),  (8)
where T = 365 days, t represents the evolution of days, and

In(V; (6) /D; () + (07/2) T
£ o, NT '

In the stock market, one can observe a time series of E;(t)
and read the face value of bank debt D;(0) from the balance
sheet. We assume that all bank debt is insured and will
therefore grow at the risk-free rate r (the interest rates
used have been obtained from the Central Bank of Kenya
website, for the relevant years (2009-2015) (https://www
.centralbank.go.ke/statistics/interest-rates/)). Then, D;(t) =
D;(0)e". Given the initial data of V;(0), time series data of
E;(0),E;(1),...,E(T),D;(0), D;(1),...,D,(T), and the arbi-
trary initial value of 1,(0), 0;(0), we can get the estimation of
\71»(1), \7}(2), cio \’/\'i(T) according to (8) and (9). Then, we use
the following maximization likelihood function to estimate
the parameters u; and o;, which is proposed by Duan et al.
[29-31]:

)

L(uy05V;(1),V;(2),..., V(1))

= —g In (Zﬂaizh)
T & (R (k) - (u; - 0?/2) b’ (10)
2 k; oth
T
=Y InV,(k),
k=1


https://www.centralbank.go.ke/statistics/interest-rates/
https://www.centralbank.go.ke/statistics/interest-rates/
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where R;(k) = In(V,(t)/Vi(t — 1)) and h = 1/365. Here, h
represents business days instead of calendar days. According
to the stock market data source, h may equal about 250, which
will be different at each year.

The estimated parameters are denoted as i;,d; respec-
tively. Then, we compare the estimated parameters #i;, 6; with
the initial values 1,(0), 0;(0); if ;, 6; do not equal 1;(0), 0;(0),
we replace the initial values u;(0),0;(0), and V;(0) with
ii;,;, and V,(0), and then we repeat the estimation method
from (8), (9), and (10) once again until the estimated
parameters #i;, 0; equal 1;(0), 0;(0). Accordingly, we get the
estimated parameters u; and o;. Then, according to (7), we
get the evolution of V;(f). The estimation method of V(t) is
the same as [27].

2.3. Method of Measuring Systemic Risk. Here, we study how
to assess the systemic risk in the financial network. We extend
a fundamental framework proposed by Eisenberg and Noe
[25] to a multiperiod setting. There is a clearing payment
system that deals with the interbank payment amounts of all
the banks in the system daily.

Let us look at a set of banks N = {1,..., N} at time .
The interbank structure is represented as (X(t), e(t)), where

x; (t)
N

pi* (t) = 1 Z Hji (t) P]* (t) +e(t)
j=1

0

Therefore, bank j is solvent in case 1and insolvent in cases 2
and 3.

We identify an insolvent bank j under the condition
(p; () < x;(t)), which holds for cases 2 and 3.

We implement the default algorithm established by
Eisenberg and Noe [25] to find a clearing payment vec-
tor. They demonstrate that, under mild regulatory condi-
tions, a unique clearing payment vector always exists for
(I1(t), e(t), and X(t)). These regularity conditions refer to
properties that the network structure must have in order that
there is a unique clearing vector.

These results apply to our multiperiod setting. The num-
ber of defaulted banks is computed by comparing the clearing
payment vector to the nominal liability vector. A theoretical
default algorithm is applied to compute the clearing payment
vector and is summarized as follows.

Type I: Basic Default

Vi(t) - D;(t) <0, (13)

where V;(t) is the market value of the total assets of bank
i at time t (days) and D;(t) is the total face value of the
interest-bearing debt of bank i at time t. The basic default

X is a (N x N) nominal interbank liabilities matrix and e is
the noninterbank net claims which is the difference between
the market value of assets and the value of liabilities, namely,
Vi(t) — D;(t).

If the total value of a bank becomes negative for a pair
(X(#),e(t)), then the bank becomes bankrupt. Let x;(t) =
Z?Ll x;;(t) represent the total interbank liability of bank i to
all banks j of the system. Furthermore, we consider a matrix
I, which is brought about by normalizing the entries to the
total claims:

xL(t) if x;(t)>0
m; =1 x@0 = (11)
0, otherwise.

A banking system is designated as a tuple (IL(¢),e(t),
and X(t)), for which we describe a clearing payment vector
p*(t). The clearing payment vector represents the limited
liabilities of the banks and the proportional distribution in
the event of a collapse.

A payment vector pi* (t) is a clearing payment vector
subject to the following happening:

N
DI (0 p; (1) + e () = x; (1),
j=1

N
0< ani (t)P; (t) + e (t) < x; (),

j=1

N
Y I (8) p} () + e () < 0.

j=1

(12)

is an idiosyncratic default, caused by the condition of the
defaulting node itself. According to Section 2.3, V;(¢) is a
random walk variable causing the idiosyncratic default at
time step ¢.

Type 2: Contagious Default

;

N
(Z L, (1) P () - x; (t>> fe (<0, (15)

j=1

b4

I; () x; (1) - x; (t)) +e(t) >0, (14)
1

If the claims of bank i are positive, but its obligations banks
pay less liability to bank 7, which results in the fact that the net
claim of bank i is negative, then a contagious default occurs
on bank i.

2.4. The Evolution of the Bilateral Exposures x(t + 1), a;(t + 1),
and I;(t + 1). After calculating a clearing payment vector at
time step t, we can calculate the new matrix of X at the time
step t + 1. We should note that when bank i defaults, bank



i can pay only part of their liabilities to other banks. y;, the
ratio, is defined as follows:

YT p] (6) + e (1)
= L; (£) .

The total assets and liabilities of bank j from time steps ¢ + 1
to T will be updated as follows:

(16)

Vit 1:T) =V, (6) - x;
D (t+1:T) =D, (t) - x;, 17)
Vit+1:T)=V;(t) - (1 - x;) x;;-

When bank i defaults, we set x; ;(t) = 0 and xj’i(t) = 0 and
clear out bank i from the network bank system. In real world,
the interbank exposures may change from day to day. And,
in the present paper, due to the default banks, the number
of banks decreases, which causes the interbank exposures to
change by time step. Note that if there is no default bank
in t, the network estimated does not change, because the
interbank totals remain the same in t and ¢ + 1.

Then, we need to recalculate the bilateral exposures
matrix X,,; according to the algorithm in Section 2.1. Thus,
the evolution of aj(t + 1) and [;(t + 1) is described as follows:

N
aj(t+1)=Yx(t+1),
- (18)
N
L(E+1)= ) x;(t+1).
j=1

3. Data

In the present paper, we use data from the portal of African
Markets. The portal has historical share price data and
has annual reports of the listed companies of the biggest
economies on the African continent. The data we have used
from this site was obtained from annual reports from the
years 2008 to 2015 from eight listed banks, as well as market
data (share prices) for the same. We also obtained monthly
interest rates from the Central Bank of Kenya for the same
banks. The banks selected for this research are big banks
in the Kenyan banking sector and they essentially have big
market share of banking clients in the market. Financial
sector in the Kenyan banking system includes the Central
Bank of Kenya (CBK), the primary regulator of the banking
industry; 28 domestic and 14 foreign commercial banks with
branches, agencies, and other outlets throughout the country;
one mortgage finance company; eight representative offices
of foreign banks; eleven licensed deposit taking microfi-
nance institutions. However, the banking sector is essentially
dominated by four major commercial banks, namely, Equity
Bank, Kenya Commercial Bank, Barclays Bank of Kenya,
and Standard Chartered. In addition, smaller banks have
emerged and experienced tremendous growth in recent years.
According to the Central Bank of Kenya, 66.7 percent of
the adult population in 2013 had formal access to financial
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services through commercial banks and the government-
owned Post Bank. With the advent of mobile money and
its recent linkages to the formal banking system, however,
the number of Kenyans with access to electronic financial
services has grown rapidly. Kenya has now become a leader
in financial inclusion and its example is being replicated in
countries around the world.

To be able to achieve the objectives of our research, we
need to identify the interbank exposures and noninterbank
exposures (net claims cash flow e for each bank). The
interbank exposures considered in the analysis are interbank
loans and advances to banks. These items are yearly interbank
transactions in the interbank markets. We do not consider
interbank transfers between parent firms and subsidiaries.
There are plenty of interbank transactions in this market;
therefore, we can estimate the bilateral exposures matrix from
the data available in the annual reports. Because we also need
to estimate the market value of the assets from equity data, we
only consider publicly traded banks. We therefore acquired
daily market share price data of the said eight banks. The data
of end-of-year period for 2009-2015 in the Kenya banking
system is listed in Table 1.

4. Results

This section describes our analysis results. In Section 4.1,
we discuss the significance of the bilateral exposures matrix
estimation and the network analysis. Section 4.2 deals with
the default analysis. Finally, in Section 4.3 we report on the
results of the stress test.

4.1. Network Analysis and Estimation of Bilateral Exposures
Matrix. We estimate the bilateral exposures matrix X stated
in (1) and use the matrix to examine the network structure of
the Kenyan interbank market. We investigate the global inter-
bank network using network centrality measures. Usually the
degree of a node is considered as a proxy variable for inter-
connectedness and explains the number of edges connected
to a node. In the present paper, we define the in-strength that
shows the ratio of the money lent to all the other banks to
the total money. For simplicity, the in-strength of bank i is
a;/Y. a;. Similarly, the out-strength of banki is I,/ I;. The total
strength of a bank is the summation of its in-strength and out-
strength. These measures, hence, give a sense of investment
and funding diversifications. Figure 2 highlights the time
variations of the in-strength (red line) and out-strength (blue
line) for eight listed banks. The bigger the increase in the in-
strength, the more the debtors the bank would have. In con-
trast, the bigger the increase in the out-strength, the more the
creditors the bank would have. Therefore, in terms of conta-
gious default, the out-strength is more important than the in-
strength. Figure 2 depicts a group of banks that borrow more
than they lend and others that lend more than they borrow.
Banks like NIC Bank, Diamond Trust Bank, National Bank
of Kenya, Cooperative Bank, and Barclays Bank lend more
than they borrow to other banks by averages of 55.3%, 53.3%,
46.2%, 38.9%, and 35.8%, respectively, from 2008 to 2015.
Meanwhile, banks like Kenya Commercial Bank and
Equity Bank lend more than they borrow by an average of
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FIGURE 2: Time variations of in-strength and out-strength for 8 banks. The total strength is the sum of the in-strength (red line) and the
out-strength (blue line). The vertical axis (the strength) shows the percentage of the amount of money borrowed or lent by a bank while

horizontal axis represents time in years.
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FIGURE 3: Time variations in number of defaulting banks in Kenyan
banking system with the network estimated by maximum entropy
estimation method.

24.3% and 19.2%, respectively, from 2008 to 2015. Therefore,
we can examine which banks borrow (lend) more than they
lend (borrow) in the Kenyan network in terms of percentage.
Following is a breakdown of the percentage figures that these
banks borrow in order of magnitude and they include Kenya
Commercial Bank (24.3%) and Equity Bank (19.2%). The list
of banks that lends includes NIC Bank (55.3%), Diamond
Trust Bank (53.3%), HFCK Bank (49.5%), National Bank
of Kenya (46.2%), Cooperative Bank (38.9%), and Barclays
Bank (35.8%).

4.2. Bank Default Analysis. We estimate the theoretical num-
ber of defaulting banks during the estimation period of
2009-2015, which is presented in Figure 3. Figure 3 indicates
the time variations of the number of defaulting banks in the
Kenyan banking industry with the complete network that
is estimated by the Maximum Entropy Method. It basically
shows that in 2015 the Kenyan banking system is more
unstable than other years. The years in 2013 and 2010 are more
stable than other years, because no banks defaulted.

There has also been a banking crisis in Kenya since 2015
mostly due to weak supervision and outright fraud by bank
directors. An example of this is the nonlisted Chase Bank
which was put under receivership in the same year. Several
other banks including National bank also showed signs of
collapsing due to the same. Analysts have been warning
banks since 2012 to stop understating loan provisions and to
increase their capitalization. A lot of work is still needed espe-
cially with the regulators including the CMA (Capital Market
Authority) and Kenyan banking sector poses a challenge of
lack of trust in the banking industry as most clients move to
other rudimentary means of saving their money.

Since the Kenyan banking system in the year 2015 is
most unstable, we compare the effect of network structure

Complexity
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FIGURE 4: Time variations in number of defaulting banks in Kenyan
banking system with the network estimated by maximum entropy
estimation method and the minimum density approach in the year
2015 with parameter ¢ = 10.

on the time variations in the number of defaulting banks
in 2015, which is presented in Figure 4. From Figure 4, we
can see that the network topology estimation methods cause
not much effect on the time variations in the number of
defaulting banks. Next, we compare the evolution of the
network topology, which is showed in Figures 5 and 6,
respectively. In Figures 5 and 6, the time step is showed in
each bank defaults; for example, in Figure 5, when the time
step is 158, then HFCK defaults. After HFCK is removed
from the bank system, the topology of the network system
is changed after 158 time steps. Figures 5 and 6 show that
although the estimation methods are not similar, the results
are similar, perhaps due to the low number of banks in the
network. However, we note in Figure 4 that the number of
defaults increases earlier in the case of the minimum density
approach. Considering that the maximum entropy estimation
produces a complete network, which lowers systemic risk
measures, and that the minimum density approach produces
a network that increases systemic risk measures, we can claim
that the time variations in the number of defaulting banks
in the Kenyan banking system, for the real (nonobserved)
network, is around the range provided by the two methods.

4.3. Stress Testing. Since the effect of the topology of the bank
network system estimated by two methods is not relevant,
we conduct a stress test to confirm the strength of the
Kenyan banking system with the minimum density approach
in 2009, 2011, and 2015, which would provide higher systemic
risk measures (more conservative). Our test is somewhat
different from typical macro stress tests, which first remove
a bank from the Kenyan banking system and then find how
many banks defaults the removed bank can cause, namely,
contagious defaults. The results of stress test are listed in
Tables 2, 3, and 4 as follows. Table 2 shows that in the Kenyan
banking system the KCB bank defaulting can result in four
defaults banks (namely, contagious default), because the KCB
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TABLE 2: Results of stress test in 2009; CDs number: number of contagious defaults; IC: interconnectedness: the total strength, namely, sum
of in-strength and out-strength; TA: total assets; IA: interbank assets (loans and advances to banks). Total assets are measured at market
value, whereas interbank assets are measured at book value. We use the letters sl, s2, s3, s4, s5, s6, s7, and s8 to stand for Barclays Bank, Coop,
Diamond Trust, Equity Bank, HFCK, KCB, NBK, and NIC, respectively. The unit of currency is Shs.

Number Bank name Collapsed banks CDs number IC TA IA

S1 Barclays Bank S1, S6, S7, S8 3 0.0518 155,151,000 1061000
S2 Coop S1, S2, S6, 57, S8 4 0.2198 110531373 4642338
S3 Diamond Trust S1, S3, S6, S7, S8 4 0.2713 47146767 5638340
S4 Equity Bank S1, S4, S6, S7, S8 4 0.3821 96512000 2022000
S5 HFCK S1, S5, S6, S7, S8 4 0.1624 18280761 2106419
S6 KCB S1, S2, S3, S6, S7, S8 5 0.6858 172384128 5936128
S7 NBK S1, S6, S7, S8 3 0.0445 51404408 1154271
S8 NIC S1, S6, S7, S8 3 0.1824 47558241 4936616

TABLE 3: Results of stress test in 2011.

Number Bank name Collapsed banks CDs Number IC TA IA

S1 Barclays Bank S1, S2, S5, S7 3 0.0227 166269000 913000
S2 Coop S2, S5, S7 2 0.2137 167772390 7437716
S3 Diamond Trust S2, 83,85, 87 3 0.2473 77453024 9452751
sS4 Equity Bank S2,83, $4, S5, S7 4 0.4791 176911000 1094000
S5 HFCK S2, S5, S7 2 0.1242 31972113 4724183
S6 KCB S2, 83, S5, S6, S7, S8 5 0.7407 282493553 17648880
S7 NBK S2, S5, S7 2 0.0741 5564998 3388191
S8 NIC S2, 85,57, S8 3 0.0981 73581321 4486475

TABLE 4: Results of stress test in 2015.

Number Bank name Collapsed banks CDs number IC TA 1A

S1 Barclays Bank S1, S3, S5, S6, S7, S8 5 0.009 241152698 252867
S2 Coop S2, 83, S5, S6, S7, S8 5 0.3109 339549808 13869273
S3 Diamond Trust S3, S5, S6, S7, S8 4 0.2843 190947903 4973737
S4 Equity Bank S3, 84, S5, S6, S7, S8 5 0.3004 341329318 16554308
S5 HFCK S3, S5, S6, S7, S8 4 0.0956 68808654 5517670
S6 KCB S3, 84, S5, S6, S7, S8 5 0.5193 467741173 9254721
S7 NBK S3, S5, S6, §7, S8 4 0.1976 117789712 1850368
S8 NIC S1, S3, S5, S6, S7, S8 5 0.2828 156762225 5464120

bank is the highest interconnectedness and its total assets and
interbank assets are the largest.

In 2011, Table 3 shows the relationship between the
number of contagious defaults and interconnectedness, the
total assets, and the interbank assets. With high interconnect-
edness, the total assets, and the interbank assets, the default
banks cause more contagious defaults banks, for example,
Equity Bank and KCB bank, which cause the number of
contagious defaults to be 4 and 5, respectively. In 2015, the
Kenyan banking system is more unstable seen from Table 4,
because any bank defaults can cause more than 4 banks to
have contagious defaults.

The stress tests results indicate the number of contagious
defaults caused by a SIB’s (systematically important bank)
default. In general, the banks that trigger over four contagious

defaults have significantly more interbank exposures as well
as greater interconnectedness measured in terms of strength
than the other banks do. In contrast, the banks that trigger less
contagious defaults do not necessarily have more interbank
exposures or greater interconnectedness compared to SIB’s
banks. As per the above results, we do not have any bank that
has triggered five contagious results, only KCB. Therefore, we
found the KCB is the systematically important bank in the
Kenyan banking system.

5. Conclusion

The present paper proposed a theoretical framework to find
the time evolution of the systemic risk by calculating the
number of defaults of banks using sequences of daily financial
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data. The framework combines the asset value estimation
algorithm [26, 27], maximum entropy estimation method
[14], the minimum density approach [28], and obligation
clearing algorithm [25], effortlessly to deal with the dynamic
problem—the time evolution of the systemic risk. The asset
value estimation algorithm is used to approximate the asset
values of the banks at each day which are required to calculate
the time evolution of systemic risk. The obligation clearing
algorithm is used to calculate the systemic risk given the
tuples of data on a daily basis.

In the present paper, we evaluated the systemic risk of the
Kenyan banking system using the theoretical framework pro-
posed. The Kenyan interbank market involves various domes-
tic contracts and transactions. First, we clarified the network
structure of the Kenyan interbank market and theoretically
analyzed its network structure using the estimated bilateral
exposures matrix. We also analyzed the interconnectedness of
each bank in the Kenyan interbank market using the in- and
out-strength measure. Significantly, we found that the banks
designated as systematically important banks (SIBs) play a
central role in the Kenyan interbank market and these are
Kenya Commercial Bank (KCB) and Equity Bank.

We modeled contagious defaults in the Kenyan interbank
network using real aggregate banking data from the portal of
African Markets and theoretically analyzed the mechanism
of contagious defaults conditional on a basic default during a
seven-year period (2009-2015).

Further analysis theoretically showed the occurrence of
some contagious defaults in 2009, 2011, and 2015, and these
years are very unstable than other years. We also conducted a
stress test and analyzed the likelihood of contagious defaults
conditional on a bank’s basic default at an evaluation time
point in the future. Some banks designated as SIBs were
confirmed to have the potential to trigger the contagious
defaults of other banks. In general, the banks that trigger over
more contagious defaults have significantly more interbank
exposures as well as greater interconnectedness measured in
terms of strength than the other banks do. We found that the
KCB is the most systematically important bank in the Kenyan
banking system.

To finalize, we are convinced that, in order to uphold the
stability of the Kenyan banking system, there is a need to
apply systemic risk assessment practices. These could also be
useful in the execution of bank-internal systemic stress tests
of default contagion.
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When setting banks regulatory capital requirement based on their contribution to the overall risk of the banking system we need
to consider that the risk of the banking system as well as each banks risk contribution changes once bank equity capital gets
redistributed. Therefore the present paper provides a theoretical framework to manage the systemic risk of the banking system
in Nigeria based on macroprudential capital requirements, which requires banks to hold capital that is proportional to their
contribution to systemic risk. Using a sample of 10 Nigerian banks, we reallocate capital in the system based on two scenarios;
firstly in the situation where the system shocks do not exist in the system, we find that almost all banks appear to hold more capital;
secondly, we also consider the situation where the system shocks exist in the system; we find that almost all banks tend to hold little
capital on four risk allocation mechanisms. We further find that despite the heterogeneity in macroprudential capital requirements,
all risk allocation mechanisms bring a substantial decrease in the systemic risk. The risk allocation mechanism based on ACoVaR
decreases the average default probability the most. Our results suggest that financial stability can be substantially improved by
implementing macroprudential regulations for the banking system.

1. Introduction

The downfall of Lehman Brothers in mid-2008 unveils that
the modern financial system was extremely fragile. The
financial system deteriorated due to the distress and in some
cases failure of important institutions, leading to further
distress and the spread of shocks to the real economy [1].
The crisis emphasizes the need of identifying the underlying
factors that destabilize the financial institutions, which could
result in systemic risk.

Bisias et al. [2] have defined systemic risk as the risk
of disruption to financial services that is caused by an
impairment of all or parts of the financial system and has
the potential to have serious negative consequences on the
real economy. Systemic risk is created endogenously within
the banking system due to banks’ common exposures to
macroeconomic factors and propagated through interbank
connections (contagion); thus systemic risk encompasses two
aspects which are basic and contagious defaults.

To deal with the systemic risk better, the financial sta-
bility board has pinpointed the need for a macroprudential

approach to financial system analysis. Researchers like Galati
and Moessner [3], Cerutti et al. [4], Ebrahimi Kahou and
Lehar [5], Lehar (2005) [6], and Hanson et al. [7] argue that
macroprudential policy is aimed to mitigate the systemic
risk and reduce its aggregate cost for the real economy; thus
the bank regulation should be designed on macroprudential
perspective so as to downsize the amount of systemic risk.
On the other hand, Basel III requires a capital conservation
buffer in normal times consisting of a further amount of core
Tier 1 equity capital equal to 2.5% of risk weighted assets. This
provision is designed to ensure that banks build up capital
during normal times so that it cannot be affected when losses
are incurred during periods of financial distress. Therefore
it is much easier for banks to raise capital during normal
times than during periods of stressed market conditions. In
a situation where the capital conservation buffer has been
wholly or partially used up, banks are required to constrain
their dividends until the capital has been replenished. How-
ever, the bank regulators in some countries require banks to
hold more capital than the minimum specified by the Basel
Committee and some banks themselves have a target for the
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capital they will hold that is higher than that specified by their
bank supervisors.

In a banking system both the overall risk and each bank’s
contribution are endogenous and hinge on the banks’ equity
capital. This means that as banks hold more capital the prob-
ability of default through either direct losses or contagion is
less; therefore redistributing bank capital changes the banks’
default probabilities, overall risk of the banking system, and
each banKk’s risk contribution. In this work we investigate
one regulatory mechanism that is macroprudential capital
requirements that require each bank to hold a buffer of equity
capital that corresponds to the banks contribution to the
overall risk of the system. We use the complex network theory
to construct the network model of banking system, where
each bank is regarded as a node and connected with others
through the interbank bilateral exposures. We investigate the
systemic risk of banking system by measuring bank’s basic
default caused by the insolvency of bank itself and contagious
default due to the interbank bilateral exposures.

We derive macroprudential capital requirements as a
fixed point using four risk allocation mechanisms: Compo-
nent and incremental value at risk [8], ACoVaR [9], and
a risk allocation mechanism based on Shapley value [10].
Among the mentioned approaches, CoVaR has the ability
to detect the risk on the system by individually systemically
important financial institutions, which are so interconnected
and large that they can cause negative risk spillover effects
on others and in addition to the smaller institutions that
are systemic when acting as part of a crowd. Moreover this
measure does not rely on contemporaneous price movements
and therefore can be used to anticipate systemic risk as it
captures institutional externalities such as “too big to fail,”
“too interconnected to fail,” and crowded trade positions. We
show that reallocation of bank capital in the system through
the new capital requirements can change the probability
of the bank to default and change total systemic risk. We
supplement the model by applying the interbank clearing net-
work algorithm designed by Eisenberg and Noe [11]. Finally,
we compare the effects of macroprudential regulations for
banking system under four risk allocation mechanisms to
measure the stability of the banking system.

Our study considers Africa that is mostly excluded by
researchers in the study of systemic risk because its stock
market capitalization is low in the global banking assets. We
use the data of 10 major banks in Nigeria in terms of assets
value and test its validity even though the country was not
affected heavily by the financial crisis. Moreover this study is
intended to show if banks keep enough capital for the risks
they take and therefore we estimate macroprudential capital
requirements as a fixed point problem. Thus, supported by
both theoretical and empirical evidence in Nigerian banking
system, our studies analyze how macroprudential capital
requirements can reduce the level of systemic risk.

2. Literature Review

There has been a wide heterogeneous discussion of measuring
and evaluating contagion and systemic risk around the
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globe; however there is a scant of literature reviews on
the macroprudential policy particularly regulatory capital
requirements on managing of systemic risk. The main imped-
iment for a true implementation of macroprudential capital
requirements is that each banK’s capital requirement would
in part be driven by the actions of other banks, and therefore
a bank cannot exercise full control over its own capital
requirements.

Two types of the risk of contagion have been studied in
the literature. One is the network of banks investing in similar
types of assets, in which one bank failure can lead to a fall in
the price of its assets and then affect the solvency of other
banks that hold the same assets [12, 13]. The other is the risk
of contagion in the interbank market, which concerns the
liquidity risk of contagion at a form of interlocking exposure;
such exposure is very short term, mainly overnight. In this
study we focus on the interbank network as a contagion
channel of systemic risk, which is when some banks are not
able to honor their promises in the interbank market they
might push other banks into insolvency which might again
lead to defaults of other banks.

The literature on contagion starts with the work of
Allen and Gale [14] who give a model of risk propagation
through interbank exposure network. They consider that the
possibility for contagion depends on the precise structure of
the interbank market and show that a complete structure of
claims in which every bank has symmetric exposures to all
other banks is much more stable than an incomplete struc-
ture; thus for same shocks some structures would result in
contagion while others would not. Freixas et al. [15] consider
that for contagion to happen in a system with money-centre
banks where the institutions on the periphery are connected
to banks at the centre but not to each other depends on
the precise values of the models parameters. Researchers
regard financial networks as robust-yet-fragile which means
that they can absorb smaller shocks to the system but may
show contagion and cascade effects when exposed to a large
enough shock [16-18]. Allen and Gale [14] show that if
there is no liquidity shock, all banks can survive; however
in liquidity shock case, number of defaulting banks change
depending on network completeness. Upper [19] makes a
summary of contagion studies in the literature and shows
that as the shock some papers are considering individual
bank failures and some are using failure of group of banks.
Lubloy [20] grouped banks according to their FX exposures
and let all banks in a given category fail jointly. Elsinger et
al. [21] use loan registry data to model common shocks to
loan books and banks foreign exchange and stock market
exposures to model shocks from financial markets. Their
approach included bankruptcy costs in the simulation of the
Austrian banking system and show that the system is able
to absorb shocks well for small bankruptcy costs while large
dead weight losses can crash the banking system. Rogers and
Veraart [22] model clearing in the interbank networks with
bankruptcy costs and provide an analysis of those situations
in which banks have incentives to bail out distressed bank.
Moreover, Frisell et al. [23] use detailed Swedish data to
model common shocks; they use asset prices correlations to
get a covariance matrix for the shock process. They show
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that contagion is much more common and reflected in the
Swedish banking system. Caccioli et al. [24] model common
shocks emanating from overlapping securities portfolios.
Their study reveals that, upon bank default, when the threat
of contagion looms, other banks might be in weak position as
well making them more vulnerable to contagion. Gauthier et
al. [25] model loan losses of banks using detailed information
on banks’ loan books and common industry exposures and
follow an iterative procedure in which they compute each
bank’s risk contribution, adjust the bank’s capital level to
that risk contribution, and then recompute both systemic
risk and each bank’s risk contribution. Furfine [26] considers
the effect of liquidity in the contagion process in the case
where the largest lender in the federal funds market is
unable to lend, therefore forcing its counterparties of that
institution to look elsewhere for funds or reduce their own
lending.

Several studies have also examined the empirical features
of interbank networks in various countries such as Upper and
Worms [27] in Germany, van Lelyveld and Liedorp [28] in the
Netherlands, Wells [29] in the UK, and Mistrulli [30] in Italy.
These studies have revealed the heterogeneity of interbank
network and are systematically surveyed in [19].

A number of studies have examined the dynamic model
of network structure such as Georg [31] who developed a
dynamic model of a banking system that can be used to
analyze the impact of the interbank network structure on
financial stability in way that when depositors decide on
deposit investment via a random walk process, banks pay
their maturing loans depending on their liquidity position.
Lux [32] examined the dynamic model of interbank credit
relationships. He assumed that banks initially choose poten-
tial trading partners randomly but form preferential relation-
ships via an elementary reinforcement learning algorithm.
The dynamic evolution of the system showed a formation
of a core-periphery structure with mainly the largest banks
assuming the roles of money centre banks mediating between
the liquidity needs of many smaller banks, On the other
hand Xu et al. [33] developed a dynamic network model
based on agent behavior to explain the formation mechanism
of interbank market and found that the interbank network
structure keeps dynamic stability in the network evolution
process, while Bluhm et al. [34] built a dynamic banking sys-
tem with banks optimizing decisions and market adjustment;
they found that higher liquidity requirements result in more
concentrated network and lower systemic risk.

In our study we believe that deriving macroprudential
capital requirements should take into account the dynamic
evolution of the banking system when measuring the sys-
temic risk of the banking system. Therefore, we extend the
Eisenberg-Noe framework [11] to a dynamic multiperiod.
Besides, the total asset value and equity value of the bank
change dynamically, which can be estimated from real-
world data instead of theoretical assumption. Furthermore,
for shock scenarios, we add a system shock artificially in
the system to observe the time evolution of the banking
system; hence measure the systemic risk and then adjust
macroprudential capital requirements according to each
bank contributing to the whole system risk. We take into

account two scenarios, namely, where the system shocks exist
and do not exist in the banking system. For shock scenarios,
we measure the systemic risk by checking whether a bank
system can withstand certain strength of system shocks.
Some banks may be bankrupt at a certain time point due
to this artificially added system shock; therefore both the
structure and the state of the bank change dynamically. We
measure the systemic risk by recording the number of banks
which undergo bankruptcy during the time. If the strength
of the system shock is fixed, then a bank system with more
banks which undergo bankrupt during the whole time course
of its evolution is believed to suffer more systemic risk.
Moreover we highlight that changing capital requirements
change the risk in the banking system and that macropru-
dential capital requirements have to be seen as a fixed point
problem.

The rest of the paper is organized as follows. Section 3
provides the network model of the banking system which
encompasses methodology for estimating the matrix of bilat-
eral exposures, the process of estimating the time evolution
of balance sheet in the banking system, the methods of
estimating the time evolution of banks default, and the
methodology of calculating bank’s macroprudential capital.
Section 4 provides the macroprudential capital requirements
under different risk allocation mechanisms, Section 5 pro-
vides data used, Section 6 presents the results, and lastly
Section 7 provides the concluding remark.

3. The Network Model of Banking System

We use the complex network theory to construct the network
model of banking system, where each bank is regarded as
a node and connected with others through the interbank
bilateral exposures. We investigate the systemic risk of
banking system by measuring bank’s basic default caused
by the insolvency of bank itself and contagious default due
to the interbank bilateral exposures. We show explicitly
that reallocation of bank capital in the system through
the new capital requirements can change the probability of
the bank to default and change total systemic risk. Thus
we set the macroprudential capital requirements as a fixed
problem and use four risk allocation mechanisms to compute
bank’s macroprudential capital requirements. We also com-
pare the effects of macroprudential regulations for banking
system under four risk allocation mechanisms which help
us to measure the stability of the banking system. Figure 1
illustrates the underlying theoretical frameworks in this
study.

3.1. Estimation of Bilateral Exposure Matrix. In this section,
we introduce the methodology used in [19] for estimating the
bilateral exposure matrix of banking system. The interbank
exposures cannot be fully observed due to the fact that some
banK’s information is not transparent; therefore, we estimate
the interbank bilateral exposure matrix by minimizing the
uncertainty of bank’s lending information based on the initial
total interbank assets data a; and total interbank liabilities
data b, in the balance sheet. The lending relationship in



4 Complexity

Estimate the network of Estimate the evolution of
the banking system balance sheet
Initial data of total Estimate the Estimate the
interbank lending evolution of assets evolution of
by banK’s stock liabilities by bank’s
¢ price data initial debt data
Estimate the matrix of ST LD dlz?::lcl ¢
bilateral exposures default
BanK’s default

v

Calculate the
macroprudential capital

v

Calculate the loss

v

Four risk allocation
mechanisms

FIGURE I: The theoretical framework.

the interbank market is represented by (N x N) nominal =~ We minimize the uncertainty of bank’s lending information

interbank matrix X: by standardizing };a; = },; b = 1, to get the results x;; =
a; *b,, which represents the standardized lending relationship
) of bank i to bank j. We know that the diagonal elements of X
- . have to be zero; thus we make new definitions for the elements
Xn X1j XIN b

x;; in the interbank matrix X as follows:

X = xll e xl] e x’lN bl (1) 0 O) i - j,
Xij = . (3)
a;b, otherwise.
L XN1 XNj xyn 4 by
; o4 Gy However, X = (x7) violates the summing constraints
expressed in (2). The standard way in the literature to handle
where x;; represents the outstanding loans of bank i tobank j,  this problem is to optimize the elements in the interbank

the sum of each row b, represents the total interbank liability =~ matrix according to (4):

of bank i, and the sum of each column g; represents the total

interbank assets of bank j. It is donated as

' N N X
bizzxij’ min Zinjln<x—0)
! @) N (4)
a; = inj‘ Z Xj; = b, inj =aj, x;; > 0.
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3.1.1. The Algorithm of Estimating the Bilateral
Exposures Matrix

Step 1. Start the iteration for the elements in the interbank
matrix X, x?j =ajb;ifi # j; otherwise x% =0.

Step 2. Take the rows constraint and set

0
1 Xij b

TSNS, (b ay)

, 1€1,2,...,N. (5)

Step 3. Take the columns constraint and set

1
2 Xij%j

X =
! Z£1 Z?; (bz * aj)

, Jj€1,2,...,N. (6)

The K iteration runs across the rows and columns constraints
show that

K-1
<K= i i€l,2,...,N
ij T N N > P A
Yici ijl (bi * aj)
7
o 7)
it s , jeL2,...,N.
Y5 ik (b a))
. . . K+1 K-1
The iteration is stopped when x;;"" — x;;™" < &, where e > 0.

3.2. Estimation of the Time Evolution of V;. The asset value of
bank is not daily observable, but we can obtain the data at the
end of year from the balance sheet. The daily data of equity
prices can be collected from the stock market on daily basis.
Following Merton [35] we interpret equity as a call option
on bank assets; thus we can estimate the time evolution of
asset value by the stochastic model and maximum likelihood
function based on the time series data of bank’s equity prices.
We assume that the asset value V; of bank i follows a geometric
Brownian motion with drift u; and volatility o;:

The equity value of bank i S,(t) is given by the Black-Scholes
model as follows:

S (1) =V, ()¢ (d) - D; () p(d, - NT).  (9)

Then equity S,(f) can be seen as a call option on the assets of
bank i with a strike price equal to the future notional value
of bank #’s debt D;(t), which is assumed to have a maturity of
T. ¢() is the standard normal distribution function, T = 365
days, t represents the evolution of days, and

i In(V; (t) /D; (1) + ((1/2) 07) T

= 10
t p— (10)

By using the time series of equity prices {S;(0),
Si(1),...,S;(T)} from the stock market, the face value of total
liabilities {D;(0), D;(1),..., D,(T)}, where D,(t) = D;,(0)e"
from the balance sheet, the arbitrary initial value of y;(0),
0,;(0), and the risk-free rate r that is obtained from the Central
bank of Nigeria from 2008 to 2014, we can estimate the time
series of assets value {\7i(1), \7i(2), o \71-(T)} according to (9).
Then we use the following maximization likelihood function
to estimate the parameters #; and 0;:

L(%,6;V,(1),V,(2),...,V;(]))

T T
= -5 In (mezh) -3

i

T
- Z In Vk’
k=1

where R;(k) = In(V,(t)/V,(t — 1)), h = 1/365. In this case h
represents business days instead of calendar days. According
to the stock market data source, h may equal about 250, which
will be different at each year.

The estimated parameters are denoted as i;, 0; respec-
tively. We compare the estimated parameters #;, 6; with the
initial value 1;(0), 0;(0); if &;, G; do not equal to u;(0), 0;(0);
we replace the initial value ©;(0), 0;(0), V;(0) with #;, 7;, V,»(O)
and then repeat the estimation method from (9), (10), and (11)
once again until the estimated parameters i;, G; equal to 1;(0),
0;(0). Accordingly we get the estimated parameters u; and o;.
Then according to (12), we get the evolution of V(¢).

Vi (1) = V; (0) eu,-f(oiz/Z)tthaix/th*z,-(t)) 12)

where z;(t) obeys normal distribution (N(0, 1)).

The above estimation method of V;(¢) is the same as [6].

To test the stability of the bank network system, we add
a system shock to the bank system. If the banks withstand a
strong shock, then we say that the system is stable. If the bank
system collapses when a weak shock applies, then we say that
the bank system is unstable. Thus, we apply a medium shock
to count the number of banks which undergoes bankruptcy. If
the probabilities of the banks which undergo bankruptcy are
large for a medium shock, then the bank system is unstable.
The system shock is added to the banking system by replacing
z;(t) in (12) with (1 - &)z;(t) + & * w(t) where & represents
the strength of the system shock and w(¢) is the system shock
which is the same for all banks. w(t) follows the normal
distribution (N(0, 1)), where £ = 0.1. Thus the evolution of
V.(t) can be estimated as follows:

V.(t) = V, (0) eu,-—((ff/Z)th+a,-x'th*[(l—E)z,-(t)+E*w(t)] (13)
1 1 N

3.3. The Measures of Banks Defaults. In the present paper, we
consider the risk of bank defaults that are basic defaults and
contagious defaults. When bank i is insolvent, we define it as
the basic default which satisfied

Vi (t) - D; () <0, (14)



where D;(t) can be described as follows:

D;(t) = (V;(0) - C; (0)) €. (15)
In (15), r is risk-free rate. We set C;(0) = 7% = V;(0), namely,
(V;(0) - D;(0))/V;(0) = 7%, where D;(0) = V;(0) — C;(0). The
7% is a capital adequacy ratio according to Basel III; therefore
C;(0) is the initial capital of bank i.

If bank i satisfies (14), bank i occurs as basic default. The
losses come from V;(t) — D;(t). Due to the variable V;(t)
following random walk, it will fluctuate around the drift
u;; however, D;(t) is a variable that is increasing with time.
Therefore, with the time step increasing, there must be some
banks default. Then through the interbank market, bank i
may cause the other banks default, which is the contagion

rb,- (t)

N
pi* (t) = 1 Z Hj,‘ (t) P; (t) +¢; (1)

Jj=1

0

where e;(t) = V;(t) — D,(t). Here, we adopt the default
algorithm [11] to find a clearing payment vector. If bank i
cannot default according to (14), it may default when other
banks are not able to keep their promises; that is, contagious
default of bank i occurs if

N
DT (1) pj (1) +€; (1) = by () < 0.

j=1

(18)

3.3.1. The Evolution of the Bilateral Exposures X (t+1), aj(t+ 1),
and b,(t + 1). After calculating a clearing payment vector at
time step t, we can calculate the new matrix of X at the time
step t + 1. We should note that when bank i defaults, bank i
can pay only a part of its liabilities to other banks. The ratio is
defined as follows:

XL 0 p) (1) + e (1)
= b (1) '

(19)
The total assets and liabilities of bank j from time step ¢ + 1
to T will be updated as follows:
Vi(t+1:T)=V;(t) - x;
Dj(t+1 :T) =D; (t)—xj,» (20)
Vit+1:T)=V;(t) - (1~ x;) x;.

When bank i defaults, we set xi)]-(t) =0, x]-)i(t) = 0 and clear
out bank i from the network bank system. Then, we need to
recalculate the bilateral exposures matrix X,,, according to

Complexity

default. Here, we extend the clearing payment mechanism [11]
to suit the calculation of the time evolution of the contagion
default. We define a new matrix IT € [0, 1]VV to standardize
the total interbank liabilities:

5O s
M) =4 b(t) (16)
0 otherwise,

where b(t) = Zj xij(t); this shows the total interbank
liabilities of bank i at time step ¢. We also define a clearing
payment vector p*(t) that respects the limited liability of
banks and proportional sharing in case of default. It denotes
the total payments made by the banks under the clearing

mechanism defined as

N
Y I () p; (1) +e, (1) 2 b (1),

j=1
N
0< Y I, () p} (1) +e; (1) < b (1),

Jj=1

N
Y I, (1) p; (t) + e () < 0,

j=1

17)

the algorithm in Section 3.1.1. Thus, the evolution of aj(t +1)
and b,(t + 1) is described as

N

a;(t+1)=Yx;(t+1)
- 1)
N

bi(t+1)=)x;(t+1).

=

Thus, we measure the stability of the banking system by
calculating the probability of bank’s default. The probability
of basic default of bank i is calculated as the ratio of the times
of basic default of bank i occurring and the total times of
the simulation. Similarly, the probability of the contagious
default of bank i is calculated as the ratio of the times of
contagious default of bank i occurring and the total times
of the simulation. The probability of the total default of
banking system is the sum of the basic defaults probability
and contagious defaults probability.

3.4. The Measure of Bank’s Macroprudential Capital. The core
algorithm of calculating bank’s macroprudential capital lies
in measuring bank’s losses, which is defined as

N

l; (t) = min <ZHji () P; (t) +e ()= b (1), 0> - (22)
=

The dynamic evolution (time step t) of banking system is

iterated for test of times (test = 1,2,3,...,M); [ ()
represents the loss of bank i at every time of simulation.
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FIGURE 2: The algorithm flowchart of calculating macroprudential capital requirements.

Therefore, we get a N x M loss matrix of N banks in M
times of simulation. The loss matrix under the given capital
C; = (Cy,C,,...,Cy) can be expressed as [(C); then, we
use the risk allocation mechanism f(e) to allocate systemic
risk to every bank, which is described as f;(I(C)). Thus, the
macroprudential capital of bank i is computed as

Ci = £:((C) (ZC?>

N (23)
Y fU©)=1, fI(C)=0,
i=1

where C! is the initial capital of bank i; C; is the redistributed
capital of bank i. The algorithm flowchart of calculating bank’s
macroprudential capital is shown in Figure 2.

4. Macroprudential Capital
Measures Underlying Four Risk
Allocation Mechanisms

Following Caccioli et al. [24] and Liao et al. [36], we use four
risk allocation mechanisms to calculate each bank’s macro-
prudential capital requirements, namely, Component VaR,
Incremental VaR, Shapley value, and ACoVaR. The methods



for calculating bank’s macroprudential capital requirements
are summarized as follows.

4.1. Component VaR. The core of this allocation mechanism
is to reallocate the capital based on the contribution f3 of each
bank’s loss J; to the total loss of banking system )" | li(l,), and

Bi = cov(l;, lp)/a2 (1,)- The macroprudential capital of bank i
under the Component VaR mechanism is given by

=By Cl. (24)
i=1

The change in capital under the Component VaR mechanism
is (C{V*R - ¢/

4.2. Incremental VaR. The theme of this allocation procedure
is to reallocate the capital according to the change in the
overall risk due to the exclusion of a bank in the system.
Individual bank losses are simulated over ten thousand
scenarios and for each scenario we compute the 5% VaR of
the total losses /, in the system, denoted by VaRp. Then, we
calculate the 5% VaR of total losses excluding bank i denoted
by VaR™". Thus, the increment VaR of bank i is calculated as

IVaR; = VaRp — VaR ™", (25)

The macroprudential capital of bank 7 under the increment
VaR mechanism is given by

CIVaR _ IVa i

; 26
! IVa (26)

=1

The change in capital under the increment VaR mechanism is
(CVR e

4.3. Shapley Value EL. The Shapley value EL method is the
arithmetic average of »n times of simulation based on the
increment VaR mechanism. Thus, a new IVaR, is represented
as ¢; by the calculation of arithmetic average based on VaR,
and VaR™.

Thus we compute the macroprudential capital require-
ments of bank i under the Shapley value EL mechanism by

Clshapley EL _ (/5 C (27)
Zz 1¢lz 1

The change in capital under the Shapley value EL mechanism
is (COMPIYEL _ 0y /0,

4.4. ACoVaR. We define CoVaR of bank i as the total loss
of banking system conditional on bank i realizing a loss
corresponding to its VaR. CoVaR, is described as

Pr (1, < CoVaR, | I; € [(1-€) VaR,, (1 + £) VaR,])
(28)

=0.5%, €¢=0.1.

Complexity

Here ACoVaR, is defined as the difference of CoVaR; and the
VaR of the total losses in the banking system conditional on
bank i making a loss at its median:

ACoVaR; = CoVaR,; — (VaRp | I; = median (li)). (29)

The macroprudential capital of bank i under the ACoVaR
mechanism is given by

(CACoVaR _ ACoVaR; Z ?
' Y, ACoVaR;

ii=1

(30)

The change in capital under the ACoVaR mechanism is
(C'ACOVaR _ CO)/CO

5. Data

In this paper, we use financial data collected from the African
markets website. The study involves 10 major public traded
commercial banks in Nigeria from 2008 to 2014. The sample
of 10 banks is selected based on banks with large assets
value, namely, Zenith International bank (¥ 3.3 trillion), FBN
Holdings (¥ 3.2 trillion), Guaranty bank (¥ 3.15 trillion),
United bank of Africa (¥ 2 trillion), Diamond bank (N
1.93 trillion), Access bank (¥ 1.835 trillion), Fidelity (¥ 1.19
trillion), Union bank of Nigeria (¥ 1.049 trillion), Skye bank
N (1 trillion), and Sterling bank (¥ 841 billion) as of 2015
(https://www.relbanks.com).

6. Results

6.1. Changes in Capital Requirements. In this section we
present the changes in capital requirements to reach the fixed
point of the four capital allocation mechanism presented in
Section 4 in percent of actual observed capital requirements.
We use numbers 1,2, 3, 4,5, 6,7 38,9, and 10 to portray Access
bank, Diamond bank, FBNH, Fidelity bank, Guaranty bank,
Skye bank, Sterling bank, Union bank of Nigeria, United bank
of Africa, and Zenith International bank, respectively. We use
different risk allocation mechanisms to reallocate the current
capital in the system as shown in Section 4. Reallocation
of capital in the system through new capital requirements
changes a banks probability of default and systemic risk. In
the first scenario, we assume the case where the system shocks
do not exist in the system for the period of 2008-2009.

Table 1 presents the increase in capital as a share of
these banks’ risk weighted assets from the current observed
capital level C) to macroprudential capital requirement C; .
The change is presented as a proportion of current observed
capital level C?; for example, (C; — C?)/C?.

The methods of four risk allocation mechanisms are quite
different from each other. Since Shapley value is based on
incremental VaR, in Table 1, these two results are similar.
The method of the Component VaR calculates the correlation
between each bank’s losses and the total loss of banking
system. In Table 1, it seems the losses of bank 10 are not very
related to other 9 banks. The method of ACoVaR is related
to the total loss of banking system conditional on bank i


https://www.relbanks.com

Complexity 9
TABLE 1: Increase in capital as a share of banks’ risk weighted assets for macroprudential capital allocation mechanism in 2008.
Bank Component VaR Incremental VaR Shapley value EL ACOVAR
1 —0.224490152 0.075807121 0.079291353 —-0.53067966
2 —0.224490152 —0.098024516 —0.108952535 1.278613545
3 —0.224490152 —0.093480509 —-0.097516656 —0.413673209
4 —0.224490152 —0.162273193 —0.164247199 0.181725936
5 —-0.224490152 —0.144122078 —-0.144675929 1.185156475
6 —0.224490152 0.129450668 0.130866402 1.171263759
7 —0.224490152 —0.052641093 —0.050383221 1.862680122
8 —0.224490152 0.739933973 0.74625635 —-0.329806275
9 1.205658115 —0.144056852 —0.144084074 —-0.507137053
10 —0.224490152 —-0.151642289 —0.151117088 —-0.631962395
TABLE 2: Increase in capital as a share of banks’ risk weighted assets for macroprudential capital allocation mechanisms in 2009.
Bank Component VaR Incremental VaR Shapley value EL ACOVAR
1 —0.838983488 —-0.321911 —-0.277249974 0.339348356
2 —0.838983488 —0.324542322 —0.291759584 0.492986513
3 —0.838983488 0.037474798 0.026574758 —-0.49003279
4 —0.838983488 —0.392470575 —-0.377802565 0.792001406
5 —0.838983488 —0.318295374 —0.313198791 —-0.10427448
6 —0.838983488 —0.324506098 —-0.3050429 0.453956728
7 —0.838983488 —-0.367389192 —-0.345570211 3.392491614
8 —-0.838983488 0.735790757 0.738495391 —-0.18476422
9 —0.838983488 0.565740871 0.550344543 —-0.0511749
10 4.219043349 —-0.292376022 —0.31859484 —0.41648809

realizing a loss corresponding to its VaR, and the method is
more related to the median of each bank’s losses; therefore,
it may eliminate the effect of extreme value. Therefore, the
results of ACoVaR for ten banks in Table 1 seem more uniform
than the method of Component VaR.

All risk allocation rules suggest that banks 3 and 10
hold more capital than their contribution to the overall risk
the system would require. The results are mixed for both
banks, under three out of four capital allocations mechanisms
suggesting that banks 2, 4, 5, 7, and 9 hold more capital for
unexpected losses while bank 6 holds little capital. For bank 1
and 8 the results shows that two out of four capital allocation
mechanisms suggest that the bank holds little; the remaining
holds more capital.

In Table 2, all risk allocation rules suggest that bank 5
holds more capital than its contribution to the overall risk
the system would require. Three out of four capital allocations
mechanisms suggest that banks 1, 2, 4, 6, 7, and 10 hold more
capital. For banks 3, 8, and 9 the results show that two out
of four capital allocation mechanisms suggest that the bank
holds little, the remaining holds more capital.

We also examine the changes in the capital requirements
when the system shock exists in the system for the period
2008-2014. We use the same risk allocation mechanism to
compute the current capital in the system. Our results are
presented in Figure 3. Figure 3 portrays the changes of capital
expressed in percentage according to macroprudential capital
requirements in situation where the system shock exists

in Nigerian banking system. We note that almost all risk
allocation rules suggest that almost all banks appear to be
undercapitalized because nearly all the changes are positive.

6.2. Probability of Bank Defaults and Macroprudential Capi-
tal Requirements. Macroprudential capital requirements can
serve as buffers against the risk created in the banking system.
To supplement our findings which are the core elements of
our study, we thus examine the extent in which macropru-
dential capital requirements reduce the average bank default
probability compared to the probability under Basel equal.
We use different risk allocation mechanisms to show the
individual bank default probabilities. Table 3 depicts the
differences in macroprudential capital requirements under
different risk mechanisms; almost all these allocations reduce
default probabilities compared to the benchmarks “Basel
equal approach.”

Table 3 depicts the individual bank default probabil-
ities under the Basel equal and macroprudential capital
requirements computed with four systemic risk allocation
mechanisms expressed in percent. Average shows the average
default probability. The table depicts that Skye bank, Guar-
anty bank, and Diamond bank are bit weaker banks in the
system as they have the highest total probabilities of basic and
contagious default as shown in Table 5; overall total default
probabilities range between 0.0081% and 0.1422%.

In addition, the findings show that capital requirements
under ACOVAR lead to the lowest default probability. The
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FIGURE 3: Increase in capital as a share of banks’ risk weighted assets using four risk allocation mechanisms assuming shocks exist.
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TaBLE 3: Individual bank default probabilities under the macroprudential capital requirements in 2008.

Bank Basel equal Component VaR Incremental VaR Shapley value EL ACOVAR

1 0.0552 0.0552 0.0332 0.0405 0.0552

2 0.1344 0.1344 0.1344 0.1344 0.0238

3 0.0952 0.0952 0.0952 0.0952 0.0952

4 0.0787 0.0787 0.0787 0.0787 0.0033

5 0.1356 0.1356 0.1356 0.1356 0.1268

6 0.1422 0.1422 0.0991 0.1201 0.0845

7 0.1247 0.1247 0.1247 0.1247 0

8 0.0081 0.0081 0 0.0001 0.0032

9 0.1065 0.0002 0.1065 0.0986 0.1065

10 0.0511 0.0511 0.0511 0.0511 0.0511

Average 0.09317 0.08254 0.08585 0.0879 0.05496
TABLE 4: Individual bank default probabilities under the macroprudential capital requirements in 2009.

Bank Basel equal Component VaR Incremental VaR Shapley value EL ACOVAR

1 0.1177 0.1177 0 0.0006 0.0065

2 0.1311 0.1311 0.0111 0.0001 0.0018

3 0.1 0.1 0 0 0.1

4 0.1508 0.1508 0.0197 0.0005 0.0005

5 0.157 0.157 0.0023 0.0558 0.0752

6 0.1643 0.1643 0.1643 0.0543 0.0063

7 0.18 0.18 0.18 0.0002 0

8 0.0722 0.0722 0 0 0.0263

9 0.9982 0.9982 0.9982 0.9982 0.9982

10 0.1222 0.0886 0.0094 0.0037 0.1222

Average 0.21935 0.21599 0.1385 0.11134 0.1337

average probability of bank defaults based on ACOVAR
decreases from 0.09317% to 0.05496%, a 0.4101% reduction in
risk. This proves that increased capital levels downsize default
risk and thus macroprudential capital requirements serve as
a buffer against internally created risk in the banking system.
More importantly, other measures like Component VaR,
Shapley value, and incremental value at risk also decrease
individual bank default probabilities.

Table 4 portrays that United bank of Africa is a weaker
bank in the system; overall total probabilities range between
0.1% and 0.9982%. Moreover, the findings show that capital
requirements under Shapley value lead to the lowest default
probability. The average probability of bank defaults based
on Shapley value decreases from 0.21935% to 0.11134%, a
0.4924% reduction in risk; other measures like Component
VaR, incremental value at risk and ACOVAR also decrease
individual bank default probabilities.

Figure 4 portrays individual bank total default proba-
bilities under macroprudential capital requirements for the
entire sample of 2008-2014.

From Figure 4, we see that in 2010 Access Bank seems
to be the weaker bank in the system. We find that the
overall total default probabilities range between 0.0247%
and 0.9501%, with ACOVAR leading to the lowest default
probability. Moreover the average probability of bank defaults

based on ACOVAR decreases from 0.13716% to 0.110084%,
that is, a 0.1974% reduction in risk. Other measures also
appear to decrease individual bank defaults.

For year 2011, Sterling and United bank of Africa are bit
weaker banks in the system. The overall total probabilities in
the system range between 0.0091% and 0.977%. Our results
reveal that capital requirements under ACOVAR lead to
the lowest default probability with the average probability
of bank defaults based on this measure decreasing from
0.05885% to 0.022254%, which is approximately a 0.62185%
reduction in risk; other measures appear to decrease the
individual bank default probabilities. Meanwhile for 2012 we
note that Access bank is a weaker bank in the system; overall
total probabilities bank defaults range between 0.0122% and
0.8829%. The findings also unveil that capital requirement
under ACOVAR leads to the lowest default probability with
the average probability of bank defaults decreasing from
0.1271% to 0.10012%, a 0.21227% reduction in risk; other
measures do the same.

For year 2013 it can be seen that the overall total
probabilities of bank defaults range between 0.001% and
0.0473%; at the same time the findings reveal that ACOVAR
lead to lowest default probability with the average probability
of bank defaults decreasing from 0.02212% to 0.00703%,
which implies a reduction in risk by 0.6822%. Sterling and
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TABLE 5: Probabilities of Basic and contagious default in 2008.
Bank Basel equal Component VaR Incremental VaR Shapley value EL ACOVAR
Basic default probabilities
Access bank 0.0546 0.0546 0.0329 0.0403 0.0546
Diamond bank 0.1342 0.1342 0.1342 0.1342 0.0234
Fbn holdings 0.0949 0.0949 0.0949 0.0949 0.0949
Fidelity bank 0.0783 0.0783 0.0783 0.0783 0.0033
Guaranty bank 0.1349 0.1349 0.1349 0.1349 0.1256
Skye bank 0.1418 0.1418 0.0986 0.1198 0.0837
Sterling bank 0.1247 0.1247 0.1247 0.1247 0
Union bank of Nigeria 0.008 0.008 0 0.0001 0.0031
United bank of Africa 0.1057 0.0002 0.1057 0.0982 0.1057
Zenith international bank 0.0504 0.0504 0.0504 0.0504 0.0504
Average 0.09275 0.0822 0.08546 0.08758 0.05447
Contagion default probabilities
Access bank 0.0006 0.0006 0.0003 0.0002 0.0006
Diamond bank 0.0002 0.0002 0.0002 0.0002 0.0004
Fbn holdings 0.0003 0.0003 0.0003 0.0003 0.0003
Fidelity bank 0.0004 0.0004 0.0004 0.0004 0
Guaranty bank 0.0007 0.0007 0.0007 0.0007 0.0012
Skye bank 0.0004 0.0004 0.0005 0.0003 0.0008
Sterling bank 0 0 0 0 0
Union bank of Nigeria 0.0001 0.0001 0 0 0.0001
United bank of Africa 0.0008 0 0.0008 0.0004 0.0008
Zenith international bank 0.0007 0.0007 0.0007 0.0007 0.0007
Average 0.00042 0.00034 0.00039 0.00032 0.00049

Union bank of Nigeria appear to be weaker banks in the
system in this year. For 2014 our findings unfold that United
bank of Africa is a weaker bank in the system; overall total
probabilities of bank defaults range between 0.006% and
0.0747%; moreover the capital requirements under ACOVAR
lead to the lowest default probability. The average probability
of bank defaults based on ACOVAR decreases from 0.02731%
to 0.01631%, a 0.4028% reduction in risk. More importantly,
other measures like Component VaR, incremental value at
risk, and Shapley value also decrease individual bank default
probabilities.

Generally we note that despite the heterogeneity in
macroprudential capital requirements across risk allocation
mechanisms, all risk allocation rules bring a substantial
improvement in bank stability relative to the existing regu-
latory framework. Compared to the bench mark, all capital
allocations mechanisms reduce the probability of banks
defaults, the lowest probability being shown by ACOVAR
measures. Our findings prove that increased capital levels
reduce default risk, in line with macroprudential capital
requirements serving as insurance against the risk created
within the financial system.

7. Conclusion

One of the major objectives of macroprudential policy is
to internalize the risk within the banking system so as to

enhance financial stability. We used the complex network
theory to construct the network model of banking system,
whereby each bank is regarded as a node and connected with
others through the interbank bilateral exposures. We used
different risk allocation mechanisms to reallocate the current
capital in the system. We realized that the financial system
risk, individual bank risk contribution, and bank default
probability change upon the reallocation of capital in the
system.

Thus we used a method to compute a fixed point for which
capital redistribution is accordant with the contributions of
each bank to the total risk of the banking system under
proposed capital allocation mechanisms. Upon reallocation
of capital in the system, we based on two scenarios; firstly
in the situation where the system shocks do not exist in the
system; in this scenario, we found that almost all banks appear
to hold more capital. This ensures that banks build up capital
during normal times so that it cannot be affected when losses
are incurred during periods of financial difficulties. Secondly,
we consider the situation where the system shock exists in
the system; we found that almost all banks tend to hold little
capital on both risk allocation mechanisms.

Our results show that United bank of Africa is the
weakest in the system with high default probability in 2009,
2011, and 2014 followed by Access bank in 2010 and 2012;
regulators should apply stringent supervision to these banks.
We reveal that, under diverse risk allocation mechanisms,
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FIGURE 4: Individual bank total default probabilities under macroprudential capital requirements for the entire sample of 2008-2014. Within

the banking system, ACOVAR downsizes the average probability of default the most.
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both the average default probability of individual institutions
and multiple banks defaults can be substantially reduced,
with ACoVaR decreasing the average default probability the
most. The findings suggest that risk allocation mechanisms
can improve the stability of the system and regulate the
financial system from a macroprudential dimension. The
macroprudential capital allocation mechanisms work as an
instrument of prudent bank regulation and importantly can
reduce the risk of banks as well as the risk of the banking
system.

The approach of estimating bilateral exposure matrix in
the present paper assumes that the topology of the interbank
network is complete network and does not reproduce incom-
plete interbank market. Depending on the actual network
structure this may negatively or positively bias the results.
In the future work, we can adopt the maximum entropy
estimation method [19] and minimum density approach [37]
to estimate the bilateral exposure matrix, and then we can give
an interval value of macroprudential capital allocation, which
will be more practical.
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Portfolio credit risk models estimate the range of potential losses due to defaults or deteriorations in credit quality. Most of these
models perceive default correlation as fully captured by the dependence on a set of common underlying risk factors. In light of
empirical evidence, the ability of such a conditional independence framework to accommodate for the occasional default clustering
has been questioned repeatedly. Thus, financial institutions have relied on stressed correlations or alternative copulas with more
extreme tail dependence. In this paper, we propose a different remedy—augmenting systematic risk factors with a contagious default
mechanism which affects the entire universe of credits. We construct credit stress propagation networks and calibrate contagion
parameters for infectious defaults. The resulting framework is implemented on synthetic test portfolios wherein the contagion effect

is shown to have a significant impact on the tails of the loss distributions.

1. Introduction

One of the main challenges in measuring the risk of a
bank’s portfolio is modelling the dependence between default
events. Joint defaults of many issuers over a fixed period of
time may lead to extreme losses; therefore, understanding the
structure and the impact of default dependence is essential.
To address this problem, one has to take into consideration
the existence of two distinct sources of default dependence.
On the one hand, performance of different issuers depends
on certain common underlying factors, such as interest rates
or economic growth. These factors drive the evolution of a
company’s financial success, which is measured in terms of its
rating class or the probability of default. On the other hand,
default of an issuer may, too, have a direct impact on the prob-
ability of default of a second dependent issuer, a phenomenon
known as contagion. Through contagion, economic distress
initially affecting only one issuer can spread to a significant
part of the portfolio or even the entire system. A good
example of such a transmission of pressure is the Russian
crisis of 1998-1999 which saw the defaults of corporate and

subsovereign issuers heavily clustered following the sovereign
default [1].

Most portfolio credit risk models used by financial
institutions neglect contagion and rely on the conditional
independence assumption according to which, conditional
on a set of common underlying factors, defaults occur inde-
pendently. Examples of this approach include the Asymptotic
Single Risk Factor (ASRF) model [2], industry extensions
of the model presented by Merton [3] such as the KMV
[4, 5] and CreditMetrics [6] models, and the two-factor
model proposed recently by Basel Committee on Banking
Supervision for the calculation of Default Risk Charge (DRC)
to capture the default risk of trading book exposures [7]. A
considerable amount of literature has been published on the
conditional independence framework in standard portfolio
models; see, for example, [8, 9].

Although conditional independence is a statistically and
computationally convenient property, its empirical validity
has been questioned on a number of occasions, where
researchers investigated whether dependence on common
factors can sufficiently explain the default clustering which


http://orcid.org/0000-0002-8708-2293
https://doi.org/10.1155/2018/6076173

occurs from time to time. Schonbucher and Schubert [10]
suggest that the default correlations that can be achieved
with this approach are typically too low in comparison
with empirical default correlations, although this problem
becomes less severe when dealing with large diversified
portfolios. Das et al. [11] use data on US corporations from
1979 to 2004 and reject the hypothesis that factor correlations
can sufficiently explain the empirically observed default
correlations in the presence of contagion. Since a realistic
credit risk model is required to put the appropriate weight on
scenarios where many joint defaults occur, one may choose
to use alternative copulas with tail dependence which have
the tendency to generate large losses simultaneously [12]. In
that case, however, the probability distribution of large losses
is specified a priori by the chosen copula, which seems rather
unintuitive [13].

One of the first models to consider contagion in credit
portfolios was developed by Davis and Lo [14]. They suggest
a way of modelling default dependence through infection
in a static framework. The main idea is that any defaulting
issuer may infect any other issuer in the portfolio. Giesecke
and Weber [15] propose a reduced-form model for conta-
gion phenomena, assuming that they are due to the local
interaction of companies in a business partner network. The
authors provide an explicit Gaussian approximation of the
distribution of portfolio losses and find that, typically, conta-
gion processes have a second-order effect on portfolio losses.
Lando and Nielsen [16] use a dynamic model in continuous
time based on the notion of mutually exciting point processes.
Apart from reduced-form models for contagion, which aim
to capture the influence of infectious defaults to the default
intensities of other issuers, structural models were devel-
oped as well. Jarrow and Yu [17] generalize existing models
to include issuer-specific counterparty risks and illustrate
their effect on the pricing of defaultable bonds and credit
derivatives. Egloff et al. [18] use network-like connections
between issuers that allow for a variety of infections between
firms. However, their structural approach requires a detailed
microeconomic knowledge of debt structure, making the
application of this model in practice more difficult than
that of Davis and Los simple model. In general, since
the interdependencies between borrowers and lenders are
complicated, structural analysis has mostly been applied to
a small number of individual risks only.

Network theory can provide us with tools and insights
that enable us to make sense of the complex interconnected
nature of financial systems. Hence, following the 2008 crisis,
network-based models have been frequently used to measure
systemic risk in finance. Among the first papers to study
contagion using network models was [19], where Allen and
Gale show that a fully connected and homogeneous financial
network results in an increased system stability. Contagion
effects using network models have also been investigated
in a number of related articles; see, for example, [20-24].
The issue of too-central-to-fail was shown to be possibly
more important than too-big-to-fail by Battiston et al. in
[25], where DebtRank, a metric for the systemic impact of
financial institutions, was introduced. DebtRank was further
extended in a series of articles; see, for example, [26-28].

Complexity

The need for development of complexity-based tools in
order to complement existing financial modelling approaches
was emphasized by Battiston et al. [29], who called for a
more integrated approach among academics from multiple
disciplines, regulators, and practitioners.

Despite substantial literature on portfolio credit risk
models and contagion in finance, specifying models, which
take into account both common factors and contagion while
distinguishing between the two effects clearly, still proves
challenging. Moreover, most of the studies on contagion
using network models focus on systemic risk and the
resilience of the financial system to shocks. The qualitative
nature of this line of research can hardly provide quantitative
risk metrics that can be applied to models for measuring the
risk of individual portfolios. The aforementioned drawback
is perceived as an opportunity for expanding the current
body of research by contributing a model that would account
for common factors and contagion in networks alike. Given
the wide use of factor models for calculating regulatory
and economic capital, as well as for rating and analyzing
structured credit products, an extended model that can also
accommodate for infectious default events seems crucial.

Our paper takes up this challenge by introducing a
portfolio credit risk model that can account for two channels
of default dependence: common underlying factors and
financial distress propagated from sovereigns to corporates
and subsovereigns. We augment systematic factors with a
contagion mechanism affecting the entire universe of credits,
where the default probabilities of issuers in the portfolio are
immediately affected by the default of the country where
they are registered and operating. Our model allows for
extreme scenarios with realistic numbers of joint defaults,
while ensuring that the portfolio risk characteristics and the
average loss remain unchanged. To estimate the contagion
effect, we construct a network using credit default swaps
(CDS) time series. We then use CountryRank, a network-
based metric, introduced in [30] to quantify the impact of
a sovereign default event on the credit quality of corporate
issuers in the portfolio. In order to investigate the impact of
our model on credit losses, we use synthetic test portfolios for
which we generate loss distributions and study the effect of
contagion on the associated risk measures. Finally, we analyze
the sensitivity of the contagion impact to rating levels and
CountryRank. Our analysis shows that credit losses increase
significantly in the presence of contagion. Our contributions
in this paper are thus threefold: First, we introduce a portfolio
credit risk model which incorporates both common factors
and contagion. Second, we use a credit stress propagation
network constructed from real data to quantify the impact of
deterioration of credit quality of the sovereigns on corporates.
Third, we present the impact of accounting for contagion
which can be useful for banks and regulators to quantify
credit, model, or concentration risk in their portfolios.

The rest of the paper is organized as follows. Section 2
provides an overview of the general modelling framework.
Section 3 presents the portfolio model with default contagion
and illustrates the network model for the estimation of conta-
gion effects. In Section 4 we present empirical analysis of two
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synthetic portfolios. Finally, in Section 5, we summarize our
findings and draw conclusions.

2. Merton-Type Models for Portfolio
Credit Risk

Most financial institutions use models that are based on
some form of the conditional independence assumption,
according to which issuers depend on a set of common
underlying factors. Factor models based on the Merton model
are particularly popular for portfolio credit risk. Our model
extends the multifactor Merton model to allow for credit
contagion. In this section, we present the basic portfolio
modelling setup, outline the model of Merton, and explain
how it can be specified as a factor model. A more detailed
presentation of the multivariate Merton model is provided by

[9].

2.1. Basic Setup and Notations. This subsection introduces the
basic notation and terminology that will be used throughout
this paper. In addition, we define the main risk characteristics
for portfolio credit risk.

The uncertainty of whether an issuer will fail to meet
its financial obligations or not is measured by its probability
of default. For comparison reasons, this is usually specified
with respect to a fixed time interval, most commonly one
year. The probability of default then describes the probability
of a default occurring in the particular time interval. The
exposure at default is a measure of the extent to which one
is exposed to an issuer in the event of, and at the time of, that
issuer’s default. The default of an issuer does not necessarily
imply that the creditor receives nothing from the issuer. The
percentage of loss incurred over the overall exposure in the
event of default is given by the loss given default. Typical
values lie between 45% and 80%.

Consider a portfolio of m issuers, indexed by i = 1,...,m,
and a fixed time horizon of T = 1 year. Denote by e; the
exposure at default of issuer i and by p; its probability of
default. Let g; be the loss given default of issuer i. Denote by Y;
the default indicator, in the time period [0, T]. All issuers are
assumed to be in a nondefault state at time ¢ = 0. The default
indicator Y; is then a random variable defined by

1 if issuer i defaults
Y= (1
0 otherwise

which clearly satisfies P(Y; = 1) = p,. The overall portfolio
loss is defined as the random variable

m
L= ZqieiYi' (2)
=

With credit risk in mind, it is useful to distinguish poten-
tial losses in expected losses, which are relatively predictable
and thus can easily be managed, and unexpected losses, which
are more complicated to measure. Risk managers are more
concerned with unexpected losses and focus on risk measures
relating to the tail of the distribution of L.

2.2. The Model of Merton. Credit risk models are typically dis-
tinguished in structural and reduced-form models, according
to their methodology. Structural models try to explain the
mechanism by which default takes place, using variables such
as asset and debt values. The model presented by Merton in
[3] serves as the foundation for all these models. Consider an
issuer whose asset value follows a stochastic process (V;);s.
The issuer finances itself with equity and debt. No dividends
are paid and no new debt can be issued. In Merton’s model the
issuer’s debt consists of a single zero-coupon bond with face
value Band maturity T. The values at time ¢ of equity and debt
are denoted by S, and B, and the issuer’s asset value is simply
the sum of these; that is,

V,=S,+B, tel0,T]. (3)

Default occurs if the issuer misses a payment to its debthold-
ers, which can happen only at the bond’s maturity T'. At time
T, there are only two possible scenarios:

(i) Vi > B:thevalue of the issuer’s assets is higher than its
debt. In this scenario the debtholders receive B; = B,
the shareholders receive the remainder S = V- — B,
and there is no default.

(ii) Vi < B: the value of the issuer’s assets is less than
its debt. Hence, the issuer cannot meet its financial
obligations and defaults. In that case, shareholders
hand over control to the bondholders, who liquidate
the assets and receive the liquidation value in lieu
of the debt. Shareholders pay nothing and receive
nothing; therefore we obtain By = V., S = 0.

For these simple observations, we obtain the below relations:
Sy = max (V; — B,0) = (V;. - B)", (4)
By =min(Vy,B) = B— (B-V;)". (5)

Equation (4) implies that the issuer’s equity at maturity T' can
be determined as the price of a European call option on the
asset value V, with strike price B and maturity T, while (5)
implies that the value of debt at T is the sum of a default-free
bond that guarantees payment of B plus a short European put
option on the issuer’s assets with strike price B.

It is assumed that under the physical probability measure
[P the process (V;),5, follows a geometric Brownian motion of
the form

dv, = u,/Vdt + o,V,dW,, te[0,T], (6)

where gy, € R is the mean rate of return on the assets,
oy > 0 is the asset volatility, and (W,),, is a Wiener process.
The unique solution at time T of the stochastic differential
equation (6) with initial value V, is given by

2
o
VT:V()eXP(<tuV_7V>T+0-VWT) (7)
which implies that
2
anT~/V<1nVO+<‘uV—%’)T,af,T). (8)



Hence, the real-world probability of default at time T,
measured at time f = 0, is given by

P(VT SB) = P(anT SlnB)

" In (B/V,) = (py —03,/2) T 9)
- oy NT '

A core assumption of Merton’s model is that asset returns are
lognormally distributed, as can be seen in (8). It is widely
acknowledged, however, that empirical distributions of asset
returns tend to have heavier tails; thus, (9) may not be an
accurate description of empirically observed default rates.

2.3. The Multivariate Merton Model. The model presented in
Section 2.2 is concerned with the default of a single issuer. In
order to estimate credit risk at a portfolio level, a multivariate
version of the model is necessary. A multivariate geometric
Brownian motion with drift vector gy, = (45, ..., ), Vector
of volatilities oy, = (0y,...,0,,), and correlation matrix X,
is assumed for the dynamics of the multivariate asset value
process (V)50 with V, = (V, 1,...,V,,,)", so that for all i

1
Vi = Vy, exp <<.”i - E"f) T+ UiWT,i> ) (10)

where the multivariate random vector W, with W, =
Wris.-os WT,m)' is satisfying W ~ N,,,(0, TZ). Default takes
place if V;; < B;, where B; is the debt of company i. It
is clear that the default probability in the model remains
unchanged under simultaneous strictly increasing transfor-
mations of Vi,; and B;. Thus, one may define

InVy; = InVy, - (4, — (1/2)07) T
Xf = 5
oNT
p lnBi—anO’i—(yi—(l/Z)criz)T

(11)

" VT

and then default equivalently occurs if and only if X; <
d;. Notice that X is the standardized asset value log-return
InVy; — InVj ;. It can be easily shown that the transformed
variables satisty (X,,... ,Xm)' ~ N,,(0,%) and their copula
is the Gaussian copula. Thus, the probability of default for
issuer i is satisfying p; = @(d;), where ®(-) denotes the
cumulative distribution function of the standard normal
distribution. A graphical representation of Merton’s model is
shown in Figure 1. In most practical implementations of the
model, portfolio losses are modelled by directly considering
an m-dimensional random vector X = (X,,...,X,,)" with
X ~ N, (0,%) containing the standardized asset returns
and a deterministic vector d = (d,,...,d,,) containing
the critical thresholds with d; = ®~'(p;) for given default
probabilities p;, i = 1,...,m. The default probabilities
are usually estimated by historical default experience using
external ratings by agencies or model-based approaches.
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A non-default path

Standardised asset returns

Time
- - - Default threshold d;

FIGURE 1: In Merton’s model, default of issuer i occurs if at time T
asset value Vr; falls below debt value B;, or equivalently if X; =
(InVy; = InVy; = (4 — (1 /Z)Giz)T)/a,-\/T falls below the critical
threshold d; = (InBy; - InV,; = (4; - (1/2)07)T)/0;VT. Since
X; ~ #(0,1), i’s default probability, represented by the shaded area
in the distribution plot, is satisfying p; = ®(d;). Note that default
can only take place at time T does not depend on the path of the
asset value process.

2.4. Merton Model as a Factor Model. The number of parame-
ters contained in the correlation matrix ¥ grows polynomially
inm, and thus, for large portfolios it is essential to have a more
parsimonious parametrization which is accomplished using
a factor model. Additionally, factor models are particularly
attractive due to the fact that they offer an intuitive interpre-
tation of credit risk in relation to the performance of industry,
region, global economy, or any other relevant indexes that
may affect issuers in a systematic way. In the following we
show how Merton’s model can be understood as a factor
model. In the factor model approach, asset returns are linearly
dependent on a vector F of p < m common underlying
factors satisfying F ~ N »(0,Q). Issuer i’s standardized
asset return is assumed to be driven by an issuer-specific

combination F; = a_F of the systematic factors

X; = \BE + 1 - Bes (12)

where F, and ¢,,...,¢,, are independent standard normal
variables and ¢; represents the idiosyncratic risk. Conse-
quently, f3; can be seen as a measure of sensitivity of X;
to systematic risk, as it represents the proportion of the X;
variation that is explained by the systematic factors. The
correlations between asset returns are given by

p (Xl-,Xj) = cov (Xi,Xj) = \/?/)’JCOV (E,ﬁj)
= \/?,Bjalfﬂaj

since F; and €, ..., €, are independent and standard normal
and var(X;) = 1.

(13)
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Default thresholds for issuer C;

Standardised asset returns

Default thresholds for issuer C;

Standardised asset returns
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FIGURE 2: Under the standard Merton model, the default threshold d, for corporate issuer C; is set to be equal to D( Pc,)- Under the
proposed model, the threshold increases in the event of sovereign default, making C,’s default more likely as the contagion effect suggests.

3. A Model for Credit Contagion

In the multifactor Merton model specified in Section 2.4, the
standardized asset returns X;, i = 1,...,m, are assumed to
be driven by a set of common underlying systematic factors,
and the critical thresholds d;, i = 1,...,m, are satistying
d; = @7'(p,) for all i. The only source of default dependence
in such a framework is the dependence on the systematic
factors. In the model we propose, we assume that, in the event
of a sovereign default, contagion will spread to the corporate
issuers in the portfolio that are registered and operating in
that country, causing default probability to be equal to their
CountryRank. In Section 3.1, we demonstrate how to calibrate
the critical thresholds so that each corporate’s probability
of default conditional on the default of the corresponding
sovereign equals its CountryRank, while its unconditional
default probability remains unchanged. In Section 3.2, we
show how to construct a credit stress propagation network
and estimate the CountryRank parameter.

3.1. Incorporating Contagion in Factor Models. Consider a
corporate issuer C; and its country of operation S. Denote
by pc. the probability of default of C;. Under the standard
Merton model, default occurs if C;’s standardized asset return
X, falls below its default threshold d; . The critical threshold

dc, is assumed to be equal to @~ Y Pc,) and is independent
of the state of the country of operation S. In the proposed
model, a corporate is subject to shocks from its country of
operation; its corresponding state is described by a binary
state variable. The state is considered to be stressed in the
event of sovereign default. In this case, the issuer’s default
threshold increases, causing it more likely to default, as
the contagion effect suggests. In case the corresponding

sovereign does not default, the corporates liquidity state is
considered stable. We replace the default threshold d, with

.
dc,-’ where
%

dc,

dg if the corresponding sovereign defaults (14)

otherwise

nsd
dc
or equivalently

de, = Vyyde + 1y gde. (15)
We denote by pg the probability of default of the country
of operation and by y., the CountryRank parameter which
indicates the increased probability of default of C; given the
default of S. An example of the new default thresholds is
shown in Figure 2. Our objective is to calibrate dg and dgfd
in such way that the overall default rate remains unchanged
and P(Yg, = 1| Yg =1) =y Denote by

x’ +y2 - 2pxy
2(1-p7) )

6, (%, 33 p) = —— eXP<
v > ) = -
2741 - p?

h k
@, (hk; p) = J J_ ¢, (x, s p) dy dx

the density and distribution function of the bivariate standard
normal distribution with correlation parameter p € (-1, 1).



Note that d¢. (w) = dis forw € {Y¢, =1, Yg =1} ¢ {¥g = 1},
and d’ (w) = dgs_d forw € {Yg, =1, Yg = 0} ¢ {Yg = 0}. We
rewrite P(Yci =11 Y = 1) in the following way:

P(Ye =1]Ys=1)

1
= mp(ycx = 1, YS = 1)
(17)
= iIP’ [XC_ < dgi_, X < ds]
Ps ’ '
= éq)z (dg>ds§l)sc,-)-

Using the above representation and given dg = ®~'(ps) and
Psc,» one can solve the equation

P(Ye =1]Ys=1)=y (18)

over de We proceed to the derivation of dmd in such way

that the overall default probability remains equal to pc,. This
constraint is important, since contagion is assumed to have
no impact on the average loss. Clearly,

pe, =P (Ye, = 1)

=P(Yg =1, Ys=1)+P (Yo =1, Yg=0)

=P (Yo =11Y=1)P(Ys=1) "
+P(Yg =1, Yg=0)
and thus
P(Yo, =1 Ys=0)=po -1 P (20)

The left-hand side of the above equation can be represented
as follows:

P (corp.def N nosov.def) = P [Xc,- < dgfd, X > ds]

=P [Xg <dg?] - P[Xg <dEd, Xg < d] (21)
= (dg") - @ (4" dss pic,) -

By use of the above and given dg = @' (ps) and Psc,» one can
solve the previous equation over dis<.

3.2. Estimation of CountryRank. In this section, we elaborate
on the estimation of the CountryRank parameter [30], which
serves as the probability of default of the corporate condi-
tional on the default of the sovereign. In addition, we provide
details on the construction of the credit stress propagation
network.

3.2.1. CountryRank. In order to estimate contagion effects
in a network of issuers, an algorithm such as DebtRank

Complexity

[31] is necessary. In the DebtRank calculation process, stress
propagates even in the absence of defaults and each node
can propagate stress only once before becoming inactive. The
level of distress for a previously undistressed node is given
by the sum of incoming stress from its neighbors with a
maximum value of 1. Summing up the incoming stress from
neighboring nodes seems reasonable when trying to estimate
the impact of one node or a set of nodes to a network of
interconnected balance sheets where links represent lending
relationships. However, when trying to quantify the prob-
ability of default of a corporate node given the infectious
default of a sovereign node, one has to consider that there is
significant overlap in terms of common stress, and thus, by
summing we may be accounting for the same effect more than
once. This effect is amplified in dense networks constructed
from CDS data. Therefore, we introduce CountryRank as an
alternative measure which is suited for our contagion model.

We assume that we have a hypothetical credit stress
propagation network, where the nodes correspond to the
issuers, including the sovereign, and the edges correspond
to the impact of credit quality of one issuer on the other.
The details of the network construction will be presented in
Section 3.2.2. Given such a network, the CountryRank of the
nodes can be defined recursively as follows:

(i) First, we stress the sovereign node and as a result its
CountryRank is 1.

(ii) Let yg be the CountryRank of the sovereign and let
e(jx) denote the edge weight between nodes j and k.
Given a node C;, let p = SC,C, ---C;_,C; be a path
without cycles from the sovereign node S, to the node
C;. The weight of the path p is defined as

w(p) = yseua) €1y (22)
where e(; ) are the respective edge weights between

nodes jand k for j € {1,...,i— 1} and k € {2,...,i}.

Let p;,..., p,, be the set of all acyclic paths from

the sovereign node to the corporate node C; and let

w(p,), ..., w(p,,) be the corresponding weights. Then
the CountryRank of node C,; is defined as
ve, = maxw(p;). (23)

In order to compute the conditional probability of default
of a corporate given the sovereign default analytically, we
would need the joint distribution of probabilities of default
of the nodes, which has an exponential computational com-
plexity, and it is therefore intractable. Thus, we approximate
the conditional probability by choosing the path with the
maximum weight in the above definition for CountryRank.

The example in Figure 3 illustrates calculation of Coun-
tryRank for a hypothetical network. The network consists
of a sovereign node S and corporate nodes C,;,C,,C;,C,.
The edge labels indicate weights in network between two
nodes. We initially stress the sovereign node which results in
a CountryRank of 1 for node S. In the next step, the stress
propagates to node C, and as a result its CountryRank is 0.9.
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FIGURE 3: [llustration of the CountryRank parameter using a hypothetical network. The subfigures (a)-(e) show the propagation of stress in
the network starting from the sovereign node to corporate nodes. At each step, the stress spreads to a node using the path with the maximum

weight from the sovereign node.

Then, node C, gets stressed giving it a CountryRank value 0.8.
For node C;, there are two paths from node S, so we pick the
path through node C, having a higher weight of 0.48. Finally,
there are three paths from node S to node C,, and the path
with maximum weight is 0.27.

3.2.2. Network Construction. Credit default swap spreads are
market-implied indicators of probability of default of an
entity. A credit default swap is a financial contract in which
a protection seller A insures a protection buyer B against the
default of a third party C. More precisely, regular coupon
payments with respect to a contractual notional N and a
fixed rate s, the CDS spread, are swapped with a payment of
N(1 — RR) in the case of the default of C, where RR, the so-
called recovery rate, is a contract parameter which represents
the fraction of investment which is assumed be recovered in
the case of default of C.

Modified e-Draw-Up. We would like to measure to what
extent changes in CDS spreads of different issuers occur
simultaneously. For this, we use the notion of a modified
e-draw-up to quantify the impact of deterioration of credit
quality of one issuer on the other. Modified e-draw-up is an
alteration of the e-draw-ups notion which is introduced in
[32]. In that article, the authors use the notion of e-draw-
ups to construct a network which models the conditional
probabilities of spike-like comovements among pairs of CDS
spreads. A modified e-draw-up is defined as an upward
movement in the time series in which the amplitude of the
movement, that is, the difference between the subsequent
local maxima and current local minima, is greater than a
threshold e. We record such local minima as the modified e-
draw-ups. The € parameter for a local minima at time ¢ is set
to be the standard deviation in the time series between days
t — nand t, where # is chosen to be 10 days. Figure 5 shows



the time series of Russian Federation CDS with the calibrated
modified e-draw-ups using a history of 10 days for calibra-
tion.

Filtering Market Impact. Since we would like to measure the
comovement of the time series i and j, we exclude the effect
of the external market on these nodes as follows. We calibrate
the e-draw-ups for the CDS time series of an index that does
not represent the region in question; for instance, for Russian
issuers we choose the iTraxx index which is the composite
CDS index of 125 CDS referencing European investment
grade credit. Then, we filter out those e-draw-ups of node
i which are the same as the e-draw-ups of the iTraxx index
including a time lag 7. That is, if iTraxx has a modified e-draw-
up on day t, then we remove the modified e-draw-ups of node
iondayst,t+1,...,t+ 7. We choose a time lag of 3 days for
our calibration based on the input data which is consistent
with the choice in [32].

Edges. After identifying the e-draw-ups for all the issuers and
filtering out the market impact, the edges in our network are
constructed as follows. The weight of an edge in the credit
stress propagation network from node i to node j is the
conditional probability that if node i has an epsilon draw-up
on day ¢, then node j also has an epsilon draw-up on days
t,t +1,...,t + 7, where 7 is the time lag. More precisely,
let N; be the number of e-draw-ups of node i after filtering
using iTraxx index and N;; epsilon draw-ups of node i which
are also epsilon draw-ups for node j with the time lag 7.
Then, the edge weight w;; between nodes i and j is defined as
w;; = N;/Nj;. Figure 6 shows the minimum spanning tree of
the credit stress propagation network constructed using the
CDS spread time series data of Russian issuers.

Uncertainty in CountryRank. We test the robustness of our
CountryRank calibration by varying the number of days
used for e-parameter. The figure in Appendix B shows that
the e-parameter for Russian Federation CDS time series
remains stable when we vary the number of days. We initially
obtain time series of e-parameters by calculating standard
deviation in the last n = 10, 15, and 20 days on all local
minima indices of Russian Federation CDS. Subsequently, we
calculate the mean of the absolute differences between the
epsilon time series calculated and express this in units of the
mean of Russian Federation CDS time series. The percentage
difference is 1.38% between the 10-day e-parameter and 15-
day e-parameter and 2.22% between the 10-day and 20-day
€-parameters.

Further, we quantify the uncertainty in CountryRank
parameter as follows. For an corporate node, we calculate the
absolute difference in CountryRank calculated using n = 15
and 20 days with CountryRank using n = 10 days for the e-
parameter. We then calculate this difference as a percentage
of the CountryRank calculated using 10 days for e-parameter
for all corporates and then compute their mean. The mean
difference between CountryRank calibrated using n = 15
days and n = 10 days is 6.84% and n = 20 days and n = 10
days is 9.73% for the Russian CDS data set.
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TABLE 1: Systematic factor: index mapping.

Factor Index

Europe MSCI EUROPE

Asia MSCI AC ASIA

North America MSCI NORTH AMERICA

Latin America MSCI EM LATIN AMERICA

Middle East and Africa MSCI FM AFRICA

Pacific MSCI PACIFIC

Materials MSCI WRLD/MATERIALS

Consumer products MSCI WRLD/CONSUMER DISCR

Services MSCI WRLD/CONSUMER SVC

Financial MSCI WRLD/FINANCIALS

Industrial MSCI WRLD/INDUSTRIALS

Government ITRAXX SOVX GLOBAL LIQUID
INVESTMENT GRADE

4. Numerical Experiments

We implement the framework presented in Section 3 to
synthetic test portfolios and discuss the corresponding risk
metrics. Further, we perform a set of sensitivity studies and
explore the results.

4.1. Factor Model. We first set up a multifactor Merton model,
as it was described in Section 2. We define a set of systematic
factors that will represent region and sector effects. We choose
6 region and 6 sector factors, for which we select appropriate
indexes, as shown in Table 1. We then use 10 years of index
time series to derive the region and sector returns Fp;),
j=1,...,6and Fg(so)» k = 1,...,6, respectively, and obtain
an estimate of the correlation matrix (), shown in Figure 7.
Subsequently, we map all issuers to one region and one sector
factor, Fp; and Fy;), respectively. For instance, a Dutch bank
will be associated with Europe and financial factors. As a
proxy of individual asset returns, we use 10 years of equity
or CDS time series, depending on the data availability for
each issuer. Finally, we standardize the individual returns
time series (X;;) and perform the following Ordinary Least
Squares regression against the systematic factor returns

Xip = araiyFre + %o Fsgo e + €ie (24)

to obtain &y, &g(;), and B; = R?, where R? is the coefficient of
determination, and it is higher for issuers whose returns are
largely affected by the performance of the systematic factors.

4.2. Synthetic Test Portfolios. To investigate the properties of
the contagion model, we set up 2 test portfolios. For these
portfolios, the resulting risk measures are compared to those
of the standard latent variable model with no contagion.
Portfolio A consists of 1 Russian government bond and 17
bonds issued by corporations registered and operating in the
Russian Federation. As it is illustrated in Table 2, the issuers
are of medium and low credit quality. Portfolio B represents
a similar but more diversified setup with 4 sovereign bonds
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TABLE 2: Rating classification for the test portfolios.
Rating Portfolio A Portfolio B
Issuers % Issuers %
AAA - 0.00% 3 3.75%
AA - 0.00% 3 3.75%
A - 0.00% 22 27.50%
BBB 1 5.56% 39 48.75%
BB 15 83.33% 11.25%
B 2 11.11% 3 3.75%
CCC/C - 0.00% 1.25%
TABLE 3: Sector classification for the test portfolios.
Sector Portfolio A Portfolio B
Issuers % Issuers %

Materials 5 27.78% 12 15.00%
Consumer products - 0.00% 12 15.00%
Services 3 16.67% 19 23.75%
Financial 7 38.89% 25 31.25%
Industrial - 0.00% 6 7.50%
Government 3 16.67% 6 7.50%
issued by Germany, Italy, Netherlands, and Spain and 76 cor- CDS spreads of Russian entities
porate bonds by issuers from the aforementioned countries. 1000 [ T
The sectors represented in Portfolios A and B are shown in
Table 3. Both portfolios are assumed to be equally weighted 800
with a total notional of €10 million. &

9 600
4.3. Credit Stress Propagation Network. We use credit default Q:;_‘
swap data to construct the stress propagation network. The 2 400
CDS raw data set consists of daily CDS liquid spreads for ©
different maturities from 1 May 2014 to 31 March 2015
for Portfolio A and 1 July 2014 to 31 December 2015 for 200

Portfolio B. These are averaged quotes from contributors
rather than exercisable quotes. In addition, the data set also
provides information on the names of the underlying refer-
ence entities, recovery rates, number of quote contributors,
region, sector, average of the ratings from Standard & Poors,
Moody’s, and Fitch Group of each entity, and currency of the
quote. We use the normalized CDS spreads of entities for the
5-year tenor for our analysis. The CDS spreads time series of
Russian issuers are illustrated in Figure 4.

4.4. Simulation Study. In order to generate portfolio loss
distributions and derive the associated risk measures, we
perform Monte Carlo simulations. This process entails gen-
erating joint realizations of the systematic and idiosyncratic
risk factors and comparing the resulting critical variables with
the corresponding default thresholds. By this comparison,
we obtain the default indicator Y; for each issuer and this
enables us to calculate the overall portfolio loss for this
trial. The only difference between the standard and the
contagion model is that in the contagion model we first
obtain the default indicators for the sovereigns, and their
values determine which default thresholds are going to be

2014-06
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2014-10
2014-12
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2015-04

Oil Transporting Jt Stk Co Transneft
Vnesheconombank

Bk of Moscow

City Moscow

JSC GAZPROM

JSC Gazprom Neft

Lukoil Co

Mobile Telesystems

MDM Bk open Jt Stk Co
Open Jt Stk Co ALROSA
QJSC Oil Co Rosneft

Jt Stk Co Russian Standard Bk
Russian Agric Bk

JSC Russian Railways

Russian Fedn

—— SBERBANK
—— OPEN Jt Stk Co VIMPEL Comms
—— JSC VTB Bk

FIGURE 4: Time series of CDS spreads of Russian issuers.
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TABLE 4: Portfolio losses for the test portfolios and additional risk due to contagion.
(a) Panel 1: Portfolio A

Quantile Loss standard model Loss contagion model Contagion impact
99% 1,115,153 1,162,329 47176 4%
99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%
Average loss 71,807 71,691

(b) Panel 2: Portfolio B

Quantile Loss standard model Loss contagion model Contagion impact

99% 373,013 379,929 6,915 2%
99.50% 471,497 520,467 48,971 10%
99.90% 775,773 1,009,426 233,653 30%
99.99% 1,350,279 1,847,795 497,516 37%
Average loss 44,850 44,872

Modified epsilon draw-up for Russian Fedn
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FIGURE 5: Time series for Russian Federation with local minima,
local maxima, and modified e-draw-ups.

used for the corporate issuers. The quantiles of the generated
loss distributions as well as the percentage increase due to
contagion are illustrated in Table 4. A liquidity horizon of 1
year is assumed throughout and the figures are based on a
simulation with 10® samples.

For Portfolio A, the 99.90% quantile of the loss distri-
bution under the standard factor model is €2,258,857, which
corresponds to approximately 23% of the total notional. This
figure jumps to €4,968,393 (almost 50% of the notional)
under the model with contagion. As shown in Panel 1,
contagion has a minimal effect on the 99% quantile, while
at 99.5%, 99.90%, and 99.99% it results in an increase of
108%, 120%, and 61%, respectively. This is to be expected

as the probability of default for Russian Federation is less
than 1% and thus, in more than 99.9% of our trials, default
will not take place and contagion will not be triggered. For
Portfolio B, the 99.90% quantile is considerably lower under
both the standard and the contagion model, at €775,773 or
8% of the total notional and €1,009,426 or 10% of the total
notional, respectively, reflecting lower default risk. One can
observe that the model with contagion yields low additional
losses at 99% and 99.5% quantiles, with a more significant
impact at 99.90% and 99.99% (30% and 37%, respectively).
An illustration of the additional losses due to contagion is
given by Figure 8.

4.5. Sensitivity Analysis. In the following, we present a series
of sensitivity studies and discuss the results. To achieve a
candid comparison, we choose to perform this analysis on the
single-sovereign Portfolio A. We vary the ratings of sovereign
and corporates, as well as the CountryRank parameter, to
draw conclusions about their impact on the loss distribution
and verify the model properties.

4.5.1. Sovereign Rating. We start by exploring the impact of
the credit quality of the sovereign. Table 5 shows the quantiles
of the generated loss distributions under the standard latent
variable model and the contagion model when the rating of
the Russian Federation is 1 and 2 notches higher than the
original rating (BB). It can be seen that the contagion effect
appears less strong when the sovereign rating is higher. At
the 99.9% quantile, the contagion impact drops from 120%
to 62% for an upgraded sovereign rating of BBB. The drop
is even higher, when upgrading the sovereign rating to A,
with only 11% additional losses due to contagion. Apart from
having a less significant impact at the 99.9% quantile, it is
clear that, with a sovereign rating of A, the contagion impact
is zero at the 99% and 99.5% levels, where the results of the
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TABLE 5: Varying the sovereign rating.

Sovereign rating Quantile standirodsinodel contaglggismodel Contagion impact
99% 1,115,153 1,162,329 47,176 4%
BB 99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%
99% 1,115,153 1,115,153 - 0%
BBB 99.50% 1,443,009 1,490,755 47,746 3%
99.90% 2,229,742 3,613,625 1,383,883 62%
99.99% 3,496,264 5,432,236 1,935,972 55%
99% 1,114,583 1,114,583 - 0%
A 99.50% 1,443,009 1,443,009 - 0%
99.90% 2,229,737 2,469,922 240,185 11%
99.99% 3,455,199 5,056,639 1,601,439 46%

contagion model match those of the standard model. This is
to be expected since a rating of A corresponds to a probability
of default less than 0.01%, and as explained in Section 4.4,
when sovereign default occurs seldom, the contagion effect
can hardly be observed.

4.5.2. Corporate Default Probabilities. In the next test, the
impact of corporate credit quality is investigated. As Table 6
illustrates, contagion has smaller impact when the corporate
default probabilities are increased by 5%, which is in line
with intuition since the autonomous (not sovereign induced)
default probabilities are quite high, meaning that they are
likely to default whether the corresponding sovereign defaults
or not. For the same reason, the impact is even less significant
when the corporate default probabilities are stressed by 10%.

4.5.3. CountryRank. In the last test, the sensitivity of the con-
tagion impact to changes in the CountryRank is investigated.
In Table 7, we test the contagion impact when CountryRank
is stressed by 15% and 10%, respectively. The results are
in line with intuition, with a milder contagion effect for
lower CountryRank values and a stronger effect in case the
parameter is increased.

5. Conclusions

In this paper, we present an extended factor model for
portfolio credit risk which offers a breadth of possible
applications to regulatory and economic capital calculations,
as well as to the analysis of structured credit products. In the
proposed framework, systematic risk factors are augmented
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TABLE 6: Varying corporate default probabilities.
Corporate default probabilities Quantile standif(isinodel contagI;(())rslsmodel Contagion impact
99% 1,115,153 1,162,329 47176 4%
Unstressed 99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%
99% 1,115,153 1,250,570 135,417 12%
Stressed by 5% 99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,333,935 4,968,393 2,634,458 113%
99.99% 3,584,506 5,713,486 2,128,979 59%
99% 1,162,329 1,260,422 98,093 8%
Stressed by 10% 99.50% 1,503,348 3,003,949 1,500,602 100%
99.90% 2,375,570 4,968,393 2,592,823 109%
99.99% 3,642,099 5,713,486 2,071,387 57%
TABLE 7: Varying CountryRank.
CountryRank Quantile standir?isino del contagI;(())rslsmo del Contagion impact
99% 1,115,153 1,162,329 47176 4%
Unstressed 99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%
99% 1,115,153 1,162,329 47,176 4%
Stressed by 5% 99.50% 1,443,579 3,196,958 1,753,379 121%
99.90% 2,258,857 5,056,634 2,797,777 124%
99.99% 3,543,441 5,713,495 2,170,054 61%
99% 1,115,153 1,162,329 47176 4%
Stressed by 10% 99.50% 1,443,579 3,389,398 1,945,818 135%
99.90% 2,258,857 5,296,249 3,037,392 134%
99.99% 3,543,441 5,801,727 2,258,286 64%

with an infectious default mechanism which affects the
entire portfolio. Unlike models based on copulas with more
extreme tail behavior, where the dependence structure of
defaults is specified in advance, our model provides an
intuitive approach, by first specifying the way sovereign
defaults may affect the default probabilities of corporate
issuers and then deriving the joint default distribution. The
impact of sovereign defaults is quantified using a credit stress
propagation network constructed from real data. Under this
framework, we generate loss distributions for synthetic test
portfolios and show that the contagion effect may have a
profound impact on the upper tails.

Our model provides a first step towards incorporating
network effects in portfolio credit risk models. The model can

be extended in a number of ways such as accounting for stress
propagation from a sovereign to corporates even without
sovereign default or taking into consideration contagion
between sovereigns. Another interesting topic for future
research is characterizing the joint default distribution of
issuers in credit stress propagation networks using Bayesian
network methodologies, which may facilitate an improved
approximation of the conditional default probabilities in
comparison to the maximum weight path in the current
definition of CountryRank. Finally, a conjecture worthy of
further investigation is that a more connected structure for
the credit stress propagation network leads to increased
values for the CountryRank parameter, and, as a result, to
higher additional losses due to contagion.
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FIGURE 9: Time series of CDS spreads of Dutch and German entities.

Epsilon parameter for varying number of calibration
days for Russian Fedn CDS

Appendix
A. CDS Spread Data

The data used to calibrate the credit stress propagation
network for European issuers is the CDS spread data of
Dutch, German, Italian, and Spanish issuers as shown in
Figures 9 and 10.

Epsilon parameter (bps)

60

Index of local minima

B. Stability of c-Parameter

—— 10 days
The plot in Figure 11 shows the time series of the epsilon — 15days
parameter for different number days used for e-draw-up — 20days

calibration. FIGURE 11: Stability of € parameter for Russian Federation CDS.
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We study how changes in the structure of a brokers’ transaction network affect the probability with which the returns and volume of
the traded financial assets change significantly. We analyze how the dynamics of the brokers’ transaction network are associated with
the returns and volume observed in the Chilean stock market. To do this, we construct and validate an index that synthesizes the
daily changes of the brokers’ transaction network structure of equity market transactions. We find that the changes of this structure
are significantly correlated with variables that describe the local and international economic-financial environments. In addition,
changes in the brokers’ transaction network structure are associated with a greater probability of positive shocks of more than two
standard deviations in the stock exchange index return and total traded stock volume. These results suggest that the structure of
the brokers’ trading relations plays a role in determining the returns and volume of transactions in the Chilean stock market.

1. Introduction

Trading stocks, bonds, or currencies create a transaction net-
work among brokers which stems from the architecture of the
financial market, which in turn affects the formation of capital
asset prices and returns. This network of brokers’ trans-
actions, in a broad sense, reflects both the investor-lender
choices based on the information they both have and the bro-
kers  information. The asset pricing literature usually assumes
that the markets operate free of transaction costs and with-
out any friction. The latter assumption is challenged both
theoretically and empirically. First, from the market design
perspective, a frictionless market implies ideal trading con-
ditions [1]. Thus, changes in the network of transactions
between brokers should not affect the returns and the vol-
umes traded. However, from the financial market microstruc-
ture perspective, asset prices and return formation is a process
governed by the rules that regulate and create the interactive
mechanisms between investors (buyers), lender (sellers), and
brokers in the market [2]. These rules also determine the
existence and participation of brokers in the market. This
occurs because these rules impose participation costs, fund-
ing constraints, and search costs that not only create imper-
fect competition but also may affect prices and returns
through broker’s trading behavior [3]. Second, the empirical

evidence shows that there exist frictions in financial markets.
Thus, changes in the brokers’ transaction network can reflect
frictions stemming from qualitatively significant changes in
the heterogeneous information available to market agents for
a given set of market rules and therefore affect capital assets
pricing and returns. For example, during the financial crisis
of 2008, the valuation of financial assets was affected by two
distinct behaviors: liquidity hoarding, and its implied reduc-
tion on transactions, and flight to quality, that is, the flight
from toxic assets toward risk-free assets [4]. Both behaviors
not only affected the observed prices and returns, but also
added further tension to the financial system and high-
lighted the difficulty of modeling how the information flows
can change the structure and implications on the returns
of the investor-lender financial network and the brokers’
transaction network, henceforth the transaction network. This
difficulty centers mainly on the fact that networks are multidi-
mensional mathematical objects, whose structure cannot be
completely described by a single dimension. That is, changes
in broker’s information and/or her financial conditions may
lead to changes in each broker’s decisions on how much to
trade and who to trade with, thereby varying the direct and
indirect trading relations between brokers or structure of the
transaction network. Moreover, the multiple dimensions that
characterize a network’s topology may be interrelated, which,
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in the case of a financial network, can have nonlinear effects
on the prices and returns of the traded assets as the literature
has reported [5, 6].

The latter argument partially illustrates the complexity
of the issue of modeling the effect of a transaction net-
work structure on the risk and returns of capital assets.
Additionally, when considering that the network structure
varies over time, it is necessary to study how the changes of
the network structure across time affect the equilibrium of
financial markets. Thus, we study how changes in the brokers’
transaction network structure affect the probability with
which the return and volume of financial assets change signif-
icantly. Our approach is dynamic and emphasizes the analysis
of the structural changes in the brokers’ transaction network
and their effects on the return and volume of a financial
market. Given that variations in financial assets returns affect
the financial position of financial intermediaries, our research
question is related to what the literature has called systemic
risk. However, the study of systemic risk is not our focus;
rather our aim is to shed some light on the effect of changes
in the transaction network’s structure on market dynamics
and its implied returns and volume in the context of an equity
market.

The literature that examines networks in financial mar-
kets has focused on the implications of three static properties
of the networks and their relationship with the stability and
fragility of financial systems. First, Kiyotaki and Moore [7],
Allen and Gale [8], and Freixas and others [9] study the effect
of financial system structure on systemic risk, developing the
first formal contagion models in banking/financial networks.
They find that, in the context of a banking system, more
interconnected network architecture or topology increases
the system’s resilience to the insolvency of one particular
bank, because the losses generated by an insolvent bank are
absorbed by a larger number of actors in the network. Thus,
alarger number of interconnections or links reduce the effect
of negative shocks on the rest of the system.

However, and in contrast to the previous conclusion,
Vivier-Lirimont [10] and Blume and others [11, 12] indicate
that a network with a high interconnection density can act as
a destabilizing force on the system, increasing the probability
of systemic defaults while increasing the number of counter-
parts in a banking network. These apparently contradictory
views illustrate the complex relation between the network
structure and systemic risk. Acemoglu and others [6] and
Haldane [4] show that the denser the interconnections are,
the more stable the network will be in the event of small
negative shocks. However, in the event of a larger shock on
a key bank in the network or hub, the same interconnections
propagate the shocks, increasing the fragility of the system
due to the possibility of contagion. In other words, one
characteristic of the network may generate more resilience
under certain condition or threshold or may act as a source
of systematic risk and instability'. A second aspect explored
in the literature is how the distribution of interconnections
affects the systemic reaction to shocks. When links are
formed randomly, a Gaussian distribution of links with “fat
middle and thin tail” is obtained [13, 14]. However, a financial
network characterized by a distribution of links with thin
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middle and long fat tail is more robust to random shocks but
is weaker against specific shocks in the hub nodes, which can
collapse the functioning of the entire network [15]. Finally,
the third characteristic of studied financial networks is related
to the degree of node separation—the “small world” property.
For networks where there are certain agents playing a key
role in the connectivity of the network or key nodes, local
disturbances are more likely to have global effects on the
network. Thus, one particular property of the network struc-
ture implies that a local problem may lead to a global one,
increasing the systemic risk of the financial system [16].

These three static characteristics mentioned are studied
by Haldane [4] in a sample of 18 developed and emerging
countries for the period of 1985-2005. Haldane finds high
levels of interconnection, long-tailed degree distributions, and
small degrees of separation in the global financial network of
this set of nations. Then, from the point of view of financial
system stability, the global financial network of this sample
may be understood as a robust-yet-fragile system. In this,
systems under certain conditions, such as loss of confidence
in certain key nodes, would favor a rapid transmission of
global financial shocks.

Another implication derived from this robust-yet-fragile
characteristic of financial networks is related to how other
network structure characteristics, such as their centrality
measures, may affect the systemic risk. However, no consen-
sus has been reached regarding the measurement and estima-
tion of the systemic risk of a financial network, and the tra-
ditional robustness measurements do not capture its fragility
100% [4]°. In an attempt to gain more accuracy in the estima-
tion of systemic risk in banks, Guerra and others [17] propose
novel systemic risk indicators that can measure the effect of
one bankruptcy over the entire system.

Analternative approach is to study the parallelism between
the analysis of the systemic risk in financial networks and
electrical, ecological, or ecosystem networks. This makes it
possible to apply analytical models and tools from these last
fields to the analysis of financial markets. May and others [18]
find that the impact of an external shock on the contagion rate
in a network depends not only on the network topology but
also on the feedback between the agents that comprise it. That
is to say, a system’s reaction to a shock depends not only on the
current network structure but also on its evolution over time,
and therefore it emphasizes the importance of studying the
dynamic properties of the network topology. An advance in
this direction is the work of Sensoy and Tabak [19] who apply
a dynamic approach to analyze the time-varying dependence
structure of a stock market.

It is worth noting that the financial agents’ trading deci-
sions are not solely determined by current information, but
they follow a dynamic process of purchase and sale decisions
that continuously give feedback on internal and external
network information. For example, the investment and
divestment decisions of money market intermediaries during
the crisis of 2008 affected liquidity, interbank interest rates,
and therefore fixed income, equity, and derivative instrument
prices, among others. This behavior and its subsequent chain
reaction are not captured by traditional risk analysis [20]. This
occurs because static risk measures focus on estimating the
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risk of specific nodes not giving an overall risk assessment of
the network and its feedback processes.

In summary, the evidence indicates that various struc-
tural dimensions of a network affect the characteristics of the
equilibrium in financial markets. Moreover, these relations
tend to be nonlinear and involve the interaction among
several network structure characteristics. Additionally, the
static network analysis must be complemented with dynamic
measures that capture the evolution and complexity of the
relationships between financial system actors or a subgroup
of these. In this line of research, Haldane [4] proposes a com-
plementarity between the development of dynamic measures
of systemic risk and measures of idiosyncratic risk of the
nodes. Aligned with Haldane’s proposal and considering the
empirical evidence that indicates that transaction costs and
frictions in financial markets affect asset’s values, returns, and
volatility [21-23], our analysis takes the dynamic perspective
to study how changes in the structure of a brokers’ transaction
network in an equity market affect the probability of qualita-
tively significant changes in the stock returns and in their level
of activity. In other words, we present a dynamic and global
analysis of the brokers’ (intermediaries’) transaction network,
which departs from the traditional static and idiosyncratic
investor or lender-agent centered approach in the literature.
Specifically, we study the following hypotheses:

(1) The transaction network’s structure changes with
variations in the financial information set available for
the market agents.

(2) Changes in the transaction network structure affect
the probability of qualitatively significant variations
in the returns of the traded assets.

(3) Changes in the transaction network structure affect
the probability of qualitatively significant variations
in the volume of the traded assets.

In order to test these hypotheses, we construct and validate a
measure of how much a network structure changes over time.
Such measure must consider the change in several possible
dimensions to capture the complexity of a network’s change.
Thus, we propose a measure, summarized in an index, which
synthesizes the complexity of the daily changes in the trans-
action network structure, using data from the Santiago Stock
Exchange (SSE)® for the period of 2006-2015. The results
show that this index is sensitive to the variation of a series
of local and international financial environment variables,
which provides evidence to support the first hypothesis. In
addition, we show that changes in the transaction network
structure, captured through the index, are strongly and
significantly associated with a greater probability of positive
shocks on the stock return at the aggregate level. We also show
that there is no evidence of a significant correlation between
a change in the network structure and negative shocks on
returns. These findings support the second hypothesis.
Finally, we find that larger changes of the transaction network
captured by the index increase the probability of a rise in
traded volumes, which supports the third hypothesis.

Our results complement the financial market microstruc-
ture evidence that frictions and imperfections at the brokers’

level affect asset prices and returns. This literature finds that
the valuation effect of frictions at brokerage level (such as
trading fees, cost of processing orders, or simply the search
for counterparties in a negotiation of purchase and sale
of shares) is relevant. These brokers’ level frictions reduce
assets’ values and lead to lower securities’ liquidity levels and
higher short term price volatility*. However, if transaction
network’s changes affect returns, then the transaction net-
work’s structural change may capture sources of brokers’
level frictions previously unidentified by the financial market
microstructure literature’.

The rest of the paper is structured as follows: in Section 2,
we describe our data® and explain our focus on the Chilean
market. Then, we explain how we characterize the network,
which allows us to study how the definition of when an
interaction between agents is generated also plays a role in
the analysis of the network structure. Finally, we present
the index that we use to summarize the structural network
change. In Section 3, we present the methodology and the
results of our analysis. First, we specify the econometric mod-
els used to test our hypotheses. Then, we present the main
results. In Section 4, we present an analysis of robustness, and
finally in the fifth section we provide our conclusions.

2. The Data

2.1. Main Data Sources. In order to empirically analyze the
changes in the transaction network of local stockbrokers, we
constructed a database with the universe of the daily stock
transactions conducted by the stockbrokers at the SSE for
the period of 2006-2015. This study relies on the level of
detail and disaggregation of the data. The dataset includes
precise information of day of transaction, instrument traded,
type of operation, units exchanged, purchase price, and
identification of the buying and selling brokers involved.
Therefore, we are able to construct the daily transaction
network for the Chilean equity market for the period of 2006-
2015. We construct an index that synthesizes and measures
the structural change of the transaction network by compar-
ing the networks at dates t and ¢ — 1. The details of the index
are presented in Section 2.4.

Then, we use this measure of the structural change of
a network (index) to econometrically study whether the
changes of the networK’s structure are correlated with changes
(evolution) of local and international financial environment
variables and indicators over time’. We consider variables
that are standard in the literature, and our aim is to capture all
possible factors that affect stock prices. Fratzscher and
others [24], Estrada and others [25], Lavigne and others
[26], and Chen and others [27] describe four channels by
which spillovers are transmitted from developed to emerging
markets: (a) portfolio balance: portfolio rebalancing that
lowers risk premiums, boosts assets prices, and lowers yields;
(b) signaling or confidence: carry trade and capital flows gen-
erated by larger differentials in interests rates; (c) exchange
rate: flows that generate appreciation and depreciation of
exchanges rates; and (d) trade flows: changes in the demands
for emerging countries’ exports. According to this and
the fact that Chile is an emerging country, the main local



variables that should be affected by a shock are the IPSA
blue-chip index (IPSA), which groups the 40 most liquid
stocks with the greatest market capitalization on the Chilean
market; the exchange rate between the Chilean peso and the
dollar (CLP); the credit default swaps at 5 years of the Chilean
sovereign debt (CDS5), and, as a measure of the aggregate
activity of the local stockbroker network, the total traded
stock volume (volume). Among the international variables,
we considered the S&P 500 Index (S&P 500) and the Chicago
Board Options Exchange Market Volatility Index (VIX) [28].
Finally, since Chile is an emerging market and is a country
exposed to the evolution of commodities prices, we also
include the MSCI emerging market index (MSCI) and the
copper (CU) and oil (Pe) prices, as they are Chile’s main
export and import products, respectively [29].

2.2. Chilean Stock Market. Studying the transaction network
in the SSE is interesting for several reasons. First, having exact
data of the daily transactions made by brokers allows us to
explore, in a dynamic setting, a part of the financial network
mostly ignored by the literature®. Second, the Chilean equity
market has less liquidity than the OECD average or other
developing markets, but it is larger in terms of market
capitalization to GDP. Third, global factors such as monetary
policy in developed countries and the appetite for global risk
are key cyclical factors in the liquidity of the equity market
and its level of activity [30]. Fourth, the main stock market
actors are pension funds managers, insurance companies,
and mutual funds [31]. These entities channel their stock
transactions via stockbrokers and not through the over-the-
counter (OTC) market; consequently, the stock purchase
and sale decisions by the main professional investors in the
Chilean market are captured through the SSE broker network.
Finally, Chile is a developing country with a medium level of
financial development and occupies the 29th place out of a
total of 62 countries’; therefore, the lessons learned from the
study of the stock market transactions and the formation of
the broker network are useful for other developing countries
on the road to greater financial development.

2.3. Characterization of the Brokers’ Transaction Network.
In order to construct the daily equity brokers’ transaction
network for the period of 2006-2015', we calculate the daily
total amount sold from one broker to another, excluding OTC
operations. The latter allows us to distinguish between the
selling behavior and the buying behavior of the SSE brokers.
This approach implies that, for each pair of brokers A and B,
there are two possible links: A sells to B and B sells to A.
Given the wide spread of amounts traded daily within a
calendar year, defining when two agents are interconnected is
not an easy task. We decided to consider different alternatives
for this definition. First, we define a traded amount thresh-
old above which the interconnection between the agents
is granted. We construct alternative networks varying the
threshold of daily traded total amounts. In particular, we
report results based on thresholds defined by the second,
fourth, sixth, and eighth deciles and the average of the
daily transactions made within a calendar year between any
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two SSE brokers. Additionally, we generated analogous results
for every decile and the mode''. For each day, a link in the
network indicates that the total (gross) amount of equity sold
by a seller to a buyer in the day is above the threshold, as
opposed to indicating that net amount sold from one broker
to another exceeds the threshold. We decided to use gross
sales to build a directed brokers’ transaction network to min-
imize the information loss regarding the brokers’ behavior
(transaction decisions) due to two motives. First, netting
transactions (within a day) generates a loss of information
due to the decrease in the number of links. To illustrate the
latter argument, consider the following example. Assume that
the threshold considered to acknowledge a relation between
two brokers is US$40. Now, suppose that, on Monday, broker
A sells US$100 worth equity in the morning to broker B
and then broker B sells US$100 worth equity to broker A in
the afternoon. If transactions were netted, the link between
A and B would not be formed, and then the transaction
network would not capture the actual behavior that brokers
A and B exhibit by trading in the morning and in the
afternoon. Second, we use a directed network to represent
the transaction network to avoid information loss due to
confounding the selling and buying behavior of the brokers.
Considering “A selling to B” identical to “B selling to A”
implicitly decreases the possible informational frictions in
financial markets, which may affect returns'.

Formally, N is the set of SSE brokers in the period of
2006-2015 and G, is the set of total transactions between
brokers in N in day ¢. Then, for a given ¢, the link ij € G,
with i, j € N indicates that the total amount sold by broker i

to broker j in stocks, denoted by 7, is such that 7/, > ¢, where

ij’ ij =

c is the threshold for the amount traded”. Thus, g' = (N, G,)
is the directed transaction network between the brokers from
N in day ¢".

Figures 1, 2, and 3 show the evolution of three threshold
criteria, second decile, eighth decile, and average, in current
MMUSD. As can be seen, in the three figures, there is a con-
siderable variability in the amounts traded.

Figure 4 shows how the three threshold criteria (sec-
ond decile, eighth decile, and average on 3 January 2012)
determine the structure of the transaction network on a
given day in the sample. The structure of the transaction
network defined by the “second decile traded amount” is
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qualitatively different compared to the network defined by the
“eighth decile traded amount” or “average traded amount.”
This qualitative difference suggests that the threshold used to
define the transaction network affects the measurement of the
transaction networK’s structural change.

In order to describe the change in g, over time, first
we characterize the network structure using a wide set of
structural characteristics. In Section 2.4, we delve deeper
into why we consider several characteristics of the network
structure instead of a single measure. Specifically, we calculate
the ratio of brokers that trade to the total number of registered
brokers in a calendar year, the ratio of sale-purchase relations
to the total number of possible directed links between
registered brokers, the density of g, (ratio of brokers to
purchase-sale relations), the percentage of nodes with the
same number of in-and-out degrees, the percentage of nodes
with an in-degree greater than 0 (percentage of brokers that
sell), the percentage of nodes with an out-degree greater than
0 (percentage of brokers that buy), the assortativity coeflicient
based on the number of links (indicating similarity between
connected brokers based on number of links), the reciprocity
coeflicient, and the clustering coeflicient for the network
(network cohesion indicator). In addition, we determine
whether the network was connected, if it had Hamiltonian
cycles, if it was bipartite, if it was acyclic, if it was planar,
and if it had loops. We normalized the number of nodes and
directed links as explained above in order to give an equal
weight to the change of any dimension used to characterize
the network at f and to avoid the situation where any specific
characteristic of the network could skew the change in g, over
time". Each of these dimensions is a component of a vector of

network characteristics at ¢ called v, = (v, ;,...,v,p), where
D is the number of network characteristics that we include in
our analysis.

2.4. Proposal of an Index of Network Change. Networks are
objects that have a multiplicity of dimensions that charac-
terize them, each one changing over time. For this reason, it
is not surprising that different studies, focused on the static
relation of a single characteristic of a financial network (or
a part of it) with some measure of financial performance,
have obtained apparently contradictory results, as previously
mentioned. These apparently contradictory conclusions can
be explained in at least two ways. First, there may be
conditions external to the network which vary over time and
explain a financial resilience that changes over time for the
same network topology. This is the approach of Acemoglu
and others [6] who show that the magnitude and number
of negative shocks on a financial system determine if greater
interconnectivity within the network increases or reduces
the robustness of a banking system. Second, a network is a
complex object for which each of its diverse characteristics
can change over time [17]. Therefore, to assume that finan-
cial performance depends exclusively on only one specific
characteristic of the network over a measurement of financial
performance omits the role that other characteristics of the
network, their interrelations, and the dynamics of the net-
work structure can have on the mechanisms which determine
both the functioning of the financial system and its returns
and volumes traded. Then discerning between the potential
causes that affect the resilience of financial systems is in
essence an empirical problem. We circumvent this problem
assuming that the networks are complex objects evolving over
time. Moreover, the investor’s broker choice and the broker’s
decisions on who to trade with reveal an additional aspect of
the financial network, which may affect its resilience. If there
are no frictions in the stock market, then the investor’s broker
choice should be random, and returns and volume traded
should not be affected by the selection of a broker. This occurs
because there is no gain from choosing one broker over
another. However, if there are frictions in the stock market,
then investors may decide to trade through a specific broker
purposely to increase (decrease) his benefits (costs) from
trade, which should affect the structure of the transaction
network and its change over time. Therefore, the change of
the transaction network’s structure may provide information
about how some financial frictions affect the stocks’ returns
and volumes traded. In the latter case, a structural change
of the transaction network should affect the IPSA return
(hypothesis 2) and volume traded (hypothesis 3).

Our goal is to produce a measure of the daily structural
change on the transaction network. Considering the mul-
tidimensionality of the object to study, we proposed two
alternative indices that capture this change:
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where g, is the transaction network at date ¢ in the SSE and
V; 4 corresponds to the dth characteristic of the network g,.
That is, in both Ktl and xf, A € R scales up or down the vector
of network characteristics at t (i.e., v,) in order to make it as
similar as possible to v,_;. Thus, a smaller A indicates that the
structural change in the transaction network in f — 1 and ¢
is smaller. Therefore, g' and g'~' are more alike. Given these
definitions, x;,x, € R,. Both indices, x; and «;, measure
the change in the transaction network. However, «; and «;
differ in that x; solely indicates the magnitude of a change
from g, to g,_;, whereas «. also indicates whether g, looks
more or less alike a complete network than g,_, '°. That is, the
difference between x| and ; is that x; measures the change
in the transaction network at two points in time without
assigning any interpretation regarding the type of structure
that the network is changing to. On one hand, «; is best suited
to study, for instance, if greater structural changes of the
transaction network are positively or negatively associated
with a better (or worse) performance of the financial system
measured by positive (negative) jumps of the return of the
market’s price index"”. On the other hand, «; is best suited
to study if structural changes toward a complete network
have different effect than structural changes away from a
complete network. The absence of change in the network at
t and at t — 1 is reflected in Ktl = 0 (and in ;ctz =1).A
greater daily transaction network’s structural change between
t and t — 1 implies a larger x; but not necessarily a larger
x7, because the latter index increases as the network changes
toward the complete network. Because we are giving equal
weights to every component in v,, k; can be interpreted as the
magnitude (absolute value) of first difference of a summary
statistic of the change between v, and v,_,. Analogously, «;
can be interpreted as the first difference of a summary statistic
of the change between v, and v,_;.

Considering that the literature is still debating if a com-
plete network helps or is detrimental for the financial system’s
resilience, we decided to focus on the role of the structural
change of the network independently of the topology that
the network moves to. Therefore, our preferred measure of
structural change is the index «;. We present only the basic
results for «.

3. Econometric Analysis

3.1 Specification of the Model. As was discussed before, the
first step consists in studying whether changes in the trans-
action network measured by the indices are correlated with
the local and international financial environment variables
that we described in Section 2.1. First, we empirically assess
which of the two possible measures of structural change
(k! or k) better captures changes in the financial system
(CLP, CDS5, VIX, MSCI, CU, and Pe). Table 1 shows the
correlation between the returns or growth rate of the financial
environment variables described in Section 2.1 and the two
possible definitions of the index. We estimate an ordinary
least squares regression where the dependent variable is
the index to obtain the correlations. Adding controls for
month and year allows us to isolate the correlations of
seasonal variations or a specific year relationship. Table 1
shows regressions for all finance variables described above.
Going forward, we focus on the relationship between the
index and the financial variables that present a statistically
significant correlation with the network structure.

It should be noted that, given the construction of the
measures of network change «; and «7, it is not possible to
determine a priori how the financial variables will be related
to the transaction network’s structural change. Furthermore,
the definition of when agents are linked (thresholds) and,
therefore, how the transaction network is structured provides
an additional degree of freedom to consider when assessing
the correlation between the financial environment variables
and the change in the transaction network structure.

One difference established in Table 1 between «; and «,
which is in line with the contradictory results described in the
aforementioned works, is that the measure that is neutral with
respect to the interpretation of movements in the network
(Ktl) correlates with more financial variables than Ktz and
confirms our theoretical choice that «; is the best suited
index for our study. Table 1 also provides support for our
first hypothesis. Specifically, the network structure moves
together with the financial environment variables. Moreover,
Table 1 shows that this relationship does not follow an easily
discernible simple pattern. Going forward, we focus on Ktl,
because the «; index correlates significantly with more of the
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TABLE 1: Basic model. This table summarizes the results of the following basic model: y, = « + 8 * X, + m, + N, + ¢,. The dependent variable
is the proposed index of network change, calculated using the average transaction as a threshold for the existence of a link. X, corresponds
to the returns or growth rate of variables such as IPSA, VIX, Pe, CU, CLP, S&P 500, volume, CDS5, and MSCI. m, and N, are month and year
fixed effects to control for seasonality and variation associated with any specific year. Columns (1) and (2) show the results for the indexes «;,

and Kf, and column (3) displays our preferred specification.

Variables (1) . 2) 5 3) .
Average (k') Average (k) Average (k')
VIX 0.112 -0.187 0.109
[0.0412] [0.0629] [0.0410]
IPSA -0.605 0.327 -0.554
[0.280] [0.377] [0.277]
MSCI 0.481 -0.487 0.556
[0.243] [0.305] [0.242]
Pe -0.372"*" 0.193 -0.316"""
[0.126] [0.145] [0.115]
cu 0.218 -0.235
[0.153] [0.187]
S&P 500 0.698 -0.948 0.679
[0.270] [0.386] [0.269]
CLP 0.876 —0.451 0.719
[0.394] [0.541] [0.376]
CDS5 —-0.0230 0.0690
[0.0651] [0.0832]
—0.00145 —-0.0158"**
Volume
[0.00375] [0.00448]
0.133""" 0.930""" 0.135""*
Constant
[0.0122] [0.0143] [0.0118]
Observations 2,340 2,340 2,352
R-squared 0.036 0.028 0.035

Robust standard errors are given in brackets. *** p < 0.01, **p < 0.05,and *p < 0.1.

financial system variables, and it is our theoretical index of
choice™®.

To deepen our understanding of how the financial system
is related to the transaction network’ structure, we analyze
the correlations presented in Table 1 for different thresholds
that define the links that form the network. For instance,
using the second decile as a threshold implies that most of
the transactions are able to establish links among the agents,
and therefore the transaction network’s structure changes
“little” and constantly due to the daily financial fluctuations.
On the other hand, if we use the eighth decile, the only
links generated are associated with transactions that are
relatively extraordinary. Therefore, the transaction network
that is formed in this case is associated with high volume
transactions that occur only seldom within a year. Thus, any
such network can be expected to change “more dramatically”
than networks defined by smaller thresholds.

Another interesting result stemming from Tablel is
the lack of correlation between traded volume and the
index. One possible concern regarding the informational
content of the index is that changes in financial activity
may endogenously affect the transaction networK’s structure
through the creation and destruction of links and nodes.

However, by construction, «; and «; capture many topolog-
ical characteristics of g, such as cyclicality and planarity and
thus not only reflect changes in the number of links and
nodes. This defining characteristic of the indices alleviates
the endogeneity concerns. Moreover, the results in Table 1
indicate that these latter network topological characteristics
are playing an important role in the index, and consequently
traded volume is, indeed, not correlated with the index.

In Table 2, the results of the estimation presented in
Table 1 are compared, but using deciles 2, 4, 6, and 8 as well
as the average as the threshold definition, we can see that,
for the transaction network defined with the average, changes
in the VIX, IPSA, MSCI, Pe, S&P 500, and CLP correlate
with the network showing more structural changes'. It is
worth noting that as we move up on the deciles, only the
VIX and the S&P 500 show correlation with the index when
the threshold is set to the eighth decile. This result suggests
that changes of external factors correlate with changes of
the transaction network defined by low volume transactions
threshold (lower deciles) or by less common high volume
transactions threshold (higher deciles).

Now, to better understand how changes in the trans-
action threshold define how the network is constructed,
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TABLE 2: Basic model using different thresholds. This table summarizes the results of the following basic model: y, = a + = X, +m, + N, +¢,.
The dependent variable is the proposed index of network change for different thresholds that define a link. X, corresponds to the returns or
growth rate of variables such as IPSA, VIX, Pe, S&P 500, CLP, and MSCI. m, and N, are month and year fixed effects to control for seasonality
and variation associated with any specific year. Column (1) uses the average transaction as a threshold. Columns (2) to (5) use the second,
fourth, sixth, and eighth deciles as thresholds.

(1) 2) (©) ) (©)

Variables
Average Second decile Fourth decile Sixth decile Eighth decile
VIX 0.109*"" 0.0735*" —-0.00858 0.0443 0.119"**
[0.0410] [0.0372] [0.0381] [0.0334] [0.0372]
IPSA -0.554"" 0.0845 —-0.248 -0.237 —-0.0450
[0.277] [0.183] [0.248] [0.194] [0.233]
MSCI 0.556 0.202 0.129 0.122 0.113
[0.242] [0.135] [0.161] [0.171] [0.165]
Pe -0.316""" —-0.0818 -0.0138 -0.0175 -0.0519
[0.115] [0.0795] [0.0711] [0.0712] [0.0796]
S&P 500 0.679 0.381 0.0800 0.374 0.821
[0.269] [0.218] [0.195] [0.173] [0.220]
CLP 0.719" 0.606"" 0.184 0.478 0.219
[0.376] [0.276] [0.331] [0.323] [0.269]
0.135""* 0.0699""" 0.0636""" 0.0623**" 0.102"""
Constant
[0.0118] [0.0104] [0.00879] [0.00638] [0.00933]
Observations 2,352 2,352 2,352 2,352 2,352
R-squared 0.035 0.032 0.028 0.016 0.025

Robust standard errors are given in brackets. *** p < 0.01, **p < 0.05,and *p < 0.1.

TABLE 3: Descriptive statistics of the network structure. This table summarizes the descriptive statistics of the network structure in terms of
the number of links and nodes for the second, fourth, sixth, and eighth deciles.

Number of links

Number of nodes

Second decile  Fourth decile ~ Sixth decile  Eighth decile ~ Second decile =~ Fourth decile ~ Sixth decile  Eighth decile
Average 412.66 309.79 206.72 103.46 30.93 28.49 25.48 20.85
Median 413.00 310.00 204.00 101.00 31.00 28.00 26.00 21.00
Mode 430.00 275.00 206.00 101.00 31.00 28.00 26.00 20.00
Std. dev. 56.15 49.99 42.00 29.31 2.29 2.11 1.98 2.24

Table 3 shows descriptive statistics about the structure of the
networks formed with different thresholds (second, fourth,
sixth, and eighth decile and the average for the daily amount
traded). The table shows that when we increase the decile
that defines the threshold, the average number of links in the
network is reduced substantially. In particular, it drops from
412 links on average when using the second decile to only 103
links on average for the eighth decile. This decrease is also
noted in the number of brokers involved, which lowers from
30 to 20. Nevertheless, the fall in the number of links is more
dramatic, since it is a drop close to 75% versus a decrease of
33% in the number of active brokers when rising from the
second to the eighth decile.

Another interesting aspect is that in relative terms the net-
work formed with thresholds associated with higher deciles is
more volatile in the number of links than the networks made
up of less restrictive thresholds.

One important concern when studying the correlation
between the index and the returns of the financial variables is
the possibility of autocorrelation in the index. That is, we want

to determine if the index is correlated with contemporaneous
returns of financial variables or if it is the lagged index
that is correlated with contemporaneous returns of financial
variables. Table 4 shows estimations of the model presented
in Table 1, adding lags of 1 and 2 days of the index. Other
autocorrelation structures were estimated”’, but the time
lags beyond two days are not statistically significant. Table 4
shows that the index constructed using the average amount
daily traded shows no autocorrelation. For the second and
fourth deciles, the index tends to reduce its change after one
day®. For the eighth decile, if there were structural changes
in the network yesterday, it is very possible that changes
are occurring today. These autocorrelations show that the
changes in the network structure are relatively localized over
time and are not long-term trends.

In order to analyze econometrically if the index | is able
to capture a relationship between changes of the transaction
network and changes in the local and international financial
environment variables, we define a shock to variable x as
the change of two standard deviations on the value of x. We
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TABLE 4: Basic model controlling for autocorrelation. This table summarizes the results of the following model: y, = a + 8% X, + y; * y,_; +
Y, * ¥,_, + m, + N, + &, The dependent variable is the proposed index of network change for different thresholds that define a link. We add
to the basic model the index lagged in one and two days to study possible autocorrelation. X, corresponds to the returns or growth rate of
variables such as IPSA, VIX, Pe, CLP, S&P 500, and MSCI. m, and N, are month and year fixed effects to control for seasonality and variation
associated with any specific year. Column (1) uses the average transaction as a threshold. Columns (2) to (5) use the second, fourth, sixth,

and eighth deciles as thresholds.

(1) )

3) (4) ©)

Variables
Average Second decile Fourth decile Sixth decile Eighth decile
VIX 0.107*** 0.0758"" —-0.00762 0.0424 0.110""*
[0.0410] [0.0373] [0.0380] [0.0334] [0.0374]
IPSA -0.562"" 0.0818 —-0.241 -0.238 -0.0739
[0.277] [0.184] [0.248] [0.195] [0.230]
MSCI 0.550 0.221 0.124 0.120 0.0482
[0.242] [0.135] [0.162] [0.171] [0.163]
Pe -0.319*"" —-0.0814 -0.0104 -0.0198 —-0.0352
[0.115] [0.0795] [0.0715] [0.0714] [0.0794]
S&P 500 0.679 0.387 0.0829 0.369 0.827
[0.268] [0.218] [0.195] [0.173] [0.223]
CLP 0.716" 0.633"" 0.182 0.477 0.225
[0.377] [0.276] [0.332] [0.323] [0.267]
0.0182 -0.0553""" -0.0314"" 0.00869 0.0921**"
Index lagged 1 day
[0.0193] [0.0126] [0.0150] [0.0172] [0.0236]
-0.00677 —-0.00574 0.0149 -0.0189 -0.0286"
Index lagged 2 days
[0.0199] [0.0225] [0.0244] [0.0192] [0.0173]
0.132**" 0.0744""" 0.0647*"" 0.0628""* 0.0914"*"
Constant
[0.0128] [0.0108] [0.00889] [0.00654] [0.00860]
Observations 2,351 2,351 2,351 2,351 2,351
R-squared 0.036 0.035 0.029 0.016 0.034
Robust standard errors are given in brackets. *** p < 0.01, ** p < 0.05,and *p < 0.1.
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differentiate positive and negative changes, and we focus on
shocks to stock returns (IPSA returns) and volume traded.
We construct a daily dummy variable upward (downward)
shocky, that takes the value of 1 if the daily variation of
variable i on day t of year y is greater than two standard
deviations above the average daily variation of i in year y
(upward). Thus, taking the IPSA equity market return as
an example, out of a total of 3,130 daily observations (see
Figure 5), we obtained 311 upward and 85 downward 2-sigma
shocks. In the case of the volume traded on the market (see

Figure 6), we obtained 347 upward and 80 downward 2-sigma
shocks.

FIGURE 6

Figure 7 illustrates all the 2-sigma shocks generated in
the period of 2006-2015 for all the variables described in
Section 2.1.

As Figure 7 shows, there are a significant number of
financial shocks in the market. In terms of the variability
of these events, it is observed that over time there is no
uniformity in these shocks. This could suggest that if these
shocks are related to changes in the financial network, the
network possibly could affect the behavior of the market
as a whole. In the next section, we study if changes in the
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Annual shocks, 2005-2016
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transaction network are correlated with these episodes of
positive and negative shocks to returns and volume.

3.2. Main Results

3.2.1. Types of Transaction and Movements in the Equity
Market. The previous results indicate a correlation between
changes in the transaction network and movements in the
financial variables. However, we are interested in learning if
the change in the transaction network may have significant
effects on both returns and volume.

In order to avoid the situation in which the threshold
defining the network is relevant for our main results, the
estimations are shown for different thresholds. These dif-
ferent networks allow us to observe econometrically both
the performance of the index and what type of transaction
network performs statistically better.

First, we estimate a probit model, where the dependent
variable I, is 0 when there is no shock and takes the value of
1 when a positive shock of two standard deviations affects the
IPSA. In other words, we estimate the following equation:

Pr(L=1)=®(a+A*y,+B=X,+m+N,), (2)

where y, is the index at time ¢ to measure how much the
transaction network structure has changed from ¢ — 1 to ¢.
X, is a set of finance variables, expressed in returns or growth
rates, such as IPSA, VIX, Pe, CLP, S&P 500, and MSCI. m, and
N, are month and year fixed effects to control for seasonality
and variation associated with any specific year.

Panel A in Table 5 shows the results of this model for
networks constructed with the aforementioned thresholds.
Surprisingly, mainly no contemporaneous change in financial
variables statistically increases or decreases the probability
of a positive shock. Note, however, that a contemporaneous
change in the network structure, captured through variations
of the index, increases the probability that there will be a
positive shock. This implication holds true for all possible
thresholds. In other words, structural changes in the trans-
action network defined by low volume transaction threshold
or high volume transaction threshold increase the probability
of a substantial positive shock on stock returns.

Yet, it is possible that the index is related to the probability
of a positive shock with a certain time lag. Panel B in Table 5

Complexity

shows estimations for the probit, when a time lag is included
for the index (xtl), for the same networks constructed with
different thresholds. In light of the results presented in
Table 4, we only use one lag for the autocorrelation structure.
It is clear from panel B that only the contemporaneous
structural change of the network is correlated with the
probability of a positive shock.

Table 5 shows that changes in the network structure,
captured through the index, are not only correlated with the
financial variables but are also capturing relevant information
at brokers level or at market level, which are not seized by
other aggregate financial variables about positive shocks in
the financial system, such as good corporate results, better
growth prospects, and political changes. Additionally, this
result is robust even when we change the threshold that
defines the network. Then, the index makes it possible to sys-
tematically analyze how the structural changes in the highly
complex and volatile networks associated with transactions
in the financial market are related to the performance of
the financial returns. These results indicate that the brokers’
network matters for the market behavior and performance, in
line with Easley and O’'Hara [2] and Vayanos and Wang [3].

However, it is possible that positive shocks and negative
shocks are different in nature. One possible difference may
be related to how information is transmitted through the
transaction network. It is plausible that negative shocks
are mostly unexpected, but positive shocks go through an
information-diffusion process. In the latter process, more
informed agents or brokers could act first, thereby transmit-
ting private information to other less informed agents. One
possible interpretation of Table 5 is that the change in the
network structure is correlated to positive shocks on returns
due to the information-diffusion process through transaction
among informed brokers. Therefore, one interesting test is
to study how the changes in the network correlate with
unexpected shocks.

Table 6 shows the estimation of a probit model to study
the correlation between the structural change of the network
and large negative shocks to the IPSA return (greater than
two standard deviations). We present the results controlling
for possible autocorrelation, but they are similar for the spec-
ification without including the lagged index. Table 6 shows
that the contemporaneous change of the transaction network
is not correlated with the probability of a negative shock. This
result is consistent with the notion of an unexpected shock
that does not affect the network structure. Moreover, other
contemporaneous financial variables display correlation with
the negative shock. For instance, an increase in the percentage
change of oil price (Pe) augments the probability of a negative
shock in the stocks return. Similarly, a drop in the S&P 500
(return) leads to an increase in the probability of a negative
shock in the stocks return. These results indicate that our
estimations are able to capture contemporaneous changes
that affect the probability of substantial changes in the IPSA
returns.

4. Additional Analysis

We present additional econometric analyses to provide fur-
ther insights and to test the robustness of the main result.
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TABLE 6: Probit model, IPSA negative shocks. This table summarizes the results of the following probit model: Pr(I, = 1) = ®(ax + A, * y, +
A, # ¥y, + B * X, +m, + N,). The probit is defined over I, which is 1 when the daily losses on the IPSA surpass two standard deviations, and it
is 0 otherwise. The independent variables are the index y, and a set of variables X, that include the returns or growth rate of variables such as
IPSA, VIX, Pe, CLP, S&P 500, and MSCI. m, and N, are month and year fixed effects to control for seasonality and variation associated with
any specific year. Column (1) uses the average transaction as a threshold. Columns (2) to (5) use the second, fourth, sixth, and eighth deciles

as thresholds.
Variables M @ B) @ B)
Average Second decile Fourth decile Sixth decile Eighth decile
-0.0989 -0.319 —-0.448 0.956 -1.210
Index
[0.736] [0.674] [0.708] [0.670] [1.056]
VIX -2.001 -1.799 -1.972 -2.130 -2.099
[1.555] [1.547] [1.560] [1.537] [1.541]
IPSA -144.2""" -146.1""" -144.9*"" -145.8""" -148.1"""
[23.26] [23.13] [23.05] [23.09] [23.39]
MSCI 2.009 3.782 2.454 2.940 2.748
[10.25] [10.49] [10.50] [10.60] [10.81]
Pe 11.33""" 1.13""" 11.02""* 1.01""* 11.43"""
[3.384] [3.327] [3.345] [3.297] [3.410]
S&P 500 -25.06 -24.41 -24.60 -26.45 -26.58
[10.32] [10.13] [10.23] [10.53] [10.53]
CLP -7.024 -7.076 —-6.786 -8.895 -7.219
[13.54] [13.47] [13.43] [13.45] [13.19]
-0.259 -1.962"" -0.506 —-0.652 -2.891""
Index lag. 1 day
[0.828] [0.992] [0.748] [0.978] [1.451]
-3.104*"" -3.064""" -3.100""" -3.168""" -2.804"""
Constant
[0.395] [0.415] [0.412] [0.412] [0.422]
Observations 2,352 2,352 2,352 2,352 2,352
Pseudo R-squared 0.593 0.597 0.594 0.595 0.603

Robust standard errors are given in brackets. ***p < 0.01 and ** p < 0.05.

The financial literature indicates that price changes tend to
be accompanied by changes in the transaction volume. For
example, Huddart and others [32] show that the transaction
volume significantly increases in the case of stock price
changes higher or lower than their past trading range. For
this reason, we study whether structural changes of the
transaction network are also correlated with an increase in
the probability that substantial changes in the traded volumes
are observed. Table 7 shows estimations for positive and
negative shocks to the traded volume®. Not surprisingly,
our results suggest that the structural change of the network
has a positive and significant effect on the probability of
a positive shock on the traded volume. However, when
studying the probability of a negative shock, the index
(constructed with networks defined by different daily amount
traded thresholds) shows no correlation with the negative
shock. However, both the index and the lagged index show
a negative correlation with a negative shock in the volume.

This result reinforces the idea that contemporaneous
structural changes of the transaction network have an effect
on the financial market behavior. As with the case of returns,
this result is consistent across thresholds, and, therefore, we
conclude that structural change of a transaction network is
pertinent (significantly correlated) for the positive shocks
on returns and traded volume regardless of the threshold
considered to construct the network.

Finally, we calculate all the marginal effects for the
average amount daily traded for each variable for the probit
regressions displayed above™. The latter calculations show,
consistently, that a change of the transaction network’s struc-
ture has a positive and statistically significant effect on the
probability of a positive shock in returns or volume.

5. Conclusions

The financial transactions may depend on the information
withheld by the investors. However, the brokers’ transaction
network reflects the decisions that brokers make based on
their own available information (public or private). We show
that these latter decisions affect the returns and volume
of the assets traded in the Santiago Stock Exchange (SSE)
equity market. In this study, we generate a measure of the
change of the brokers’ transaction network based on several
characteristics of the transaction networK’s structure in the
SSE. This measure, which we call the «; index, is able to
capture the complexity of the dynamic evolution of this
structure over time. Using an econometric analysis, we show
that this index is sensitive to the variation of a series of
local and international financial variables, which suggests
that the transaction network structure is sensitive to the
change in the economic/financial information available to the
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participants of that market. Using a study of cases with sig-
nificant price movements, we show that changes in the index
and thus in the network structure are significantly associated
with a greater probability of positive shocks on the stocks’
returns and traded volume. Nevertheless, there is no con-
sistent significant correlation between the change in the
network and negative shocks. This asymmetry in the relation
of the transaction networK’s structure and shocks on the
stocks’ returns and volume suggests that contemporaneous
changes of the transaction network to positive shocks on
the IPSA returns respond to information or signals spread
from brokers who trade large volumes to brokers who trade
smaller volumes. On the other hand, the absence of a robust
and significant relation between changes of the transaction
network and negative shocks to the IPSA returns suggests that
negative shocks are not accompanied by a flow of infor-
mation in the transaction network. Therefore, the agents in
the market cannot rationally internalize their consequences
or anticipate them either. Furthermore, we show that our
index is correlated positively and significantly with important
changes in the transaction volume observed. In terms of
possible mechanisms that can explain our results, the litera-
ture in market microstructure provides a natural relationship
between volume traded and returns of an asset. Our more
aggregate study of the relationship between the transaction
network and the probability of positive changes on vol-
ume and returns may be capturing this natural relationship
between volume and returns. We conjecture that further
research in how changes in the structure of the network affect
returns and volume would complement the microstructure
literature in terms of both new frictions at the brokers’ level
and how volume can affect returns.

Therefore, our study provides evidence that suggests that
the structural changes of the transaction network correlate
with variations in the set of financial information available
for the agents in the market (hypothesis 1), that structural
changes of the transaction network affect the occurrence
probability of qualitatively significant returns variations of
the traded assets (hypothesis 2), and that structural changes
of the transaction network affect the occurrence probabil-
ity of qualitatively significant variations in the volume of
traded assets (hypothesis 3). Finally, our results propose an
alternative to study dynamically several characteristics of a
transaction network simultaneously. This approach serves as
a basis for future studies about how the structural changes of
the transaction network of the equity market affect systemic
risk. We believe that a promising avenue would be to establish
the link between the change in the probability of a positive
shock on the stock returns and the change in the financial
position of the brokers.
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Endnotes

1. This property, known as “robust-yet-fragile” in financial
networks, exhibits nonlinear dynamics. In other words,
small shocks can cause large chain reactions.

2. In order to measure the relative importance of a node
within a network, numerous measures such as volume
of transactions, links, connectivity, and reciprocity have
been used to identify the nodes of systematically impor-
tant financial institutions (SIFIs). Kuzubas and others
[33] and Martinez-Jaramillo and others [34] show that
centrality measures applied to risk analysis are a useful
tool in the ex post analysis of a crisis, because they
provide a good understanding for a subsequent financial
regulation as they identify those institutions that are
“too interconnected too fail”. However, the existence of
nonlinearities in the network interactions means that
the centrality measures are not always the best tool to
estimate the systemic importance and contribution to
the systemic risk of a financial institution. Acemoglu and
others [6] show that, in the presence of large shocks,
the commonly applied centrality measures in empirical
works fail to identify the SIFIs.

3. Bolsa de Comercio de Santiago de Chile (BCS) in
Spanish.

4. See Stoll [1] for a survey.

5. 'The financial market microstructure literature identifies
two sources of frictions. Some frictions are the result
of the asset-associated characteristics (opacity, corporate
governance, etc.). The second source of frictions is
associated with the brokers, such as size or financial
position.

6. The key relational data in this study were provided by the

SSE in anonymized form, with no association between
the brokers’ names and their transactions.

7. All the data used to construct the change of the local
and international financial variables were obtained from
the BLOOMBERG and SEBRA terminals at the SSE
(http://www.sebra.cl).

8. Namely, the intermediaries’/brokers’ transaction net-
work.

9. World Economic Forum. The Financial Development
Report 2012. (https://www.weforum.org).

10. It should be noted that SSE assigns a code to each
stockbroker; therefore, we did not identify them by
name.

1. The interested reader can require the results for the
transaction networks based on nonreported deciles and
the mode from the authors.

12. In addition, it is common for investors to use multiple
brokers to trade in the same day, so netting transactions
could generate a loss of real stock market activity.
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https://www.weforum.org
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13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

The threshold is defined for each calendar year. To
not overburden the notation, we avoid indexing the
threshold by year.

A directed network considers thatij # jiforeveryij, ji €
G,.

Every network characteristic (dimension) takes a value
between ~1and 1 (ie,, v,y € [-1,1] forallt and d €
(1,2,...,D]).

A complete network is a network where every possible
link between each pair of nodes in the network exists.
Because we use directed networks, the complete network
is a network where every broker has a directed link to
and from every other broker in the network.

To the extent that in some general equilibrium models
price changes have a normative interpretation, one could
extend the positive interpretation of such a correlation to
a normative correlation. However, this is not our intent
in this paper and, thus, the latter could be the subject of
further research.

All explanatory variables are percentage changes of the
financial variables.

Remember that the measure k1 implies that when it
increases in value, the network has changed more.

Autocorrelograms are available upon request.

This result should not be interpreted as returning to the
original network. It only shows that the network has a
tendency to reduce its structural change after two days
of considerable structural movement.

Note that such shocks coincide in 60% of the cases with
the shocks to IPSA.

They are available upon request.
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Using historical banking data for the United States from the years 2000 to 2015 we characterize the probability and extent of a
financial contagion using a calibrated network model of heterogeneous interbank exposures. Both the probability and the average
extent of a contagion begin to rise in 2007 prior to the US financial crisis. Including a common asset in the model increases both
the probability and extent of contagion, especially during the years of the financial crisis. Based on rising institutional ownership in
the banking industry, we introduce a partially overlapping ownership asset that devalues endogenously. The addition of this asset
increases the extent of a financial contagion. Our results show that trends in capital buffers and the distribution and type of assets
have a significant effect on the predictions of financial network contagion models and that the rising trend in ownership of banks

by banks amplifies shocks to the financial system.

1. Introduction

Following the 2008-2009 US and global financial crisis, there
has been a growing interest in the role that the network
structure of banks and the types and distribution of their
assets have in determining the probability and extent of
a potential financial contagion. Chinazzi and Fagiolo [1]
provide a concise survey of recent literature in this area.
Two limitations common in much of this research relate to
the complexity of the network and asset structure and the
availability of data. First, the assets and network structures
observed in real world financial systems tend to be more com-
plicated than assumed in typical financial network models.
Second, detailed data on the structure of real world financial
networks is often extremely limited, especially for a major
nation like the United States. Empirical papers tend to focus
on nations other than the US and often employ data from a
single or small number of years. In this paper we improve on
these two limitations.

First, in addition to the standard assumption of direct
exposures (interbank loans) and independent external assets,
we add an external common asset (similar to [2]) and we

introduce the concept of a partially overlapping owner-
ship asset, or an asset held by some banks that has value
endogenously determined by failures within the banking
industry (i.e., such as an investment in an indexed portfolio
of stock for the banking industry). In addition to these assets,
we consider a core-periphery network structure, which is
increasingly becoming the preferred representation of the
banking industry. We contrast our results with those from
a scale-free network, which is another common network
structure. Finally, we use historical financial information for
depository institutions in the United States, for the years prior
to and following the financial crisis, to calibrate key financial
network characteristics such as the size of the network,
total assets, and capital buffers for individual banks as well
as to characterize and distribute the partially overlapping
ownership asset. These steps allow us to investigate how the
predictions of a financial contagion model change based on
observed trends in the banking industry.

Equity ownership of banks by banks is becoming increas-
ingly common in the United States. Between 2000 and 2015
the number of banks with ownership in other banks doubled
in the United States. Over the same time, the total value of
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this ownership across the banking system has been growing,
especially following the financial crisis. Between 2011 and
2015 the total value of ownership of banks by banks increased
by 211% (over this same time period the value of the S&P 500
rose by 55%). This growth in bank ownership by banks has the
potential to add a new and significant feedback channel that
amplifies shocks. For example, a negative shock to the bank-
ing industry reduces the value of ownership in banks, which,
in turn, further negatively affects balance sheets of banks,
further reducing the value of bank ownership and adding
additional stress to the system. To investigate this trend in
institutional ownership, we introduce a partially overlapping
ownership asset, to capture the rise in equity ownership of
banks by banks, and demonstrate how the addition of this
asset amplifies the effects of financial contagions.

Our approach is related to Sensoy’s paper [3], in which
the author investigates the effects of firm size and ownership
structure on commonality in liquidity using unique owner-
ship data for Turkey. The author analyzes both institutional
and individual ownership and finds that, in addition to the
amount of ownership and firm size, the characteristics of
investors, and the microstructure of the market are important
in determining systematic liquidity. While related, in our case
we focus on the role of institutional ownership in banking
networks in order to study financial contagion.

Our results show that for the US banking system between
2000 and 2015 the average capital buffers held by banks
increased overall and the probability of contagion declined,
with some significant exceptions in 2007 and 2008. Based
on a network of direct exposures only, in 2007 and 2008,
prior to the US financial crisis, the probability of contagion
resulting from the failure of a core bank rose from 19.7% to
24.6% (a 24% increase) and the average extent of a potential
contagion more than tripled. The addition of a common
asset greatly increases the probability of a contagion in all
years, bringing it close to 100% from a random core bank
failure between 2008 and 2010 and close to 100% in 2009
from a random periphery bank failure. A common asset
also more than doubles the average extent of contagion from
a core bank failure. While adding a partially overlapping
ownership asset increases the probability of contagion from a
core bank failure by only about 5%, it doubles the extent of a
contagion on average across all years. These results are similar
for both core-periphery and scale-free network structures.
Before focusing on the data and model we begin with a brief
review of literature related to this topic.

Caccioli et al. [4] study the Australian interbank network
and show that the interplay of multiple channels of exposures
is a major contributor to systemic risk and contagion. They
conduct stress tests to analyze contagion through direct
exposures, overlapping portfolios, and the combination of
these two channels. They conclude that contagion due to
counterparty risk can be strongly amplified by the addition
of a common portfolio. In another paper, Caccioli et al. [2]
extend the analysis of contagion caused by overlapping port-
folios to a scenario with multiple assets. They characterize
how the average level of diversification in bank portfolios,
the ratio of the number of banks to the number of assets,
and the leverage attained by banks all affect system stability
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with respect to an initial shock on a single asset or bank. By
conducting analytical simulations on a stylized network (a
random network with Poisson degree distributions for both
banks and assets), they estimate the region of parameter space
where global cascades occur. Poledna et al. [5] analyze a
four-layered interbank network and show that a traditional
measure of systemic risk based only on a single layer of
deposits and loans, which is common in most studies,
dramatically underestimates (by as much as 90%) the risk
inherent in a financial system.

While earlier literature provides empirical evidence of
real world financial networks following a scale-free network
structure [6-8], more recent papers argue that evidence from
interbank markets suggest that a core-periphery network
structure better represents interbank exposures for various
counties, such as for the interbank systems of Netherlands
[9], Italy [10], Germany [11], UK [12], Brazil [13], and Mexico
[14]. A core-periphery network classifies nodes into two
different types: core nodes and periphery nodes. Core nodes
are well connected to each other and to periphery nodes,
while periphery nodes have connections only with core
nodes. Several papers have investigated the core-periphery
structure in the context of financial networks, both from
a theoretical and dynamic perspective. Lux [15] develops a
simple dynamic model of an interbank market where banks
initially choose trading partners randomly due to idiosyn-
cratic liquidity shocks. He shows that with heterogeneity in
balance sheets and a simple reinforcement learning scheme
governing potential trading counterparts, the system quickly
converges to a core-periphery network structure. In the paper
of van der Leijj et al. [16], they propose a simple model of the
overnight interbank lending market in which banks compete
for intermediation benefits. They find that a complete core-
periphery network is not stable while an incomplete core-
periphery network may be stable with heterogeneity between
banks and inequality in payoffs corresponding to inequality
in sizes. In their paper, the banks are ex antehomogeneous
and they show that heterogeneity plays a key role in forming
a stable core-periphery network. Silva et al. [13] bridges the
empirical and theoretical literature by developing a method
of measuring how close a financial network is to a perfect
core-periphery structure and then applying this measure to
the Brazilian interbank market.

Galeotti et al. [17] study how financial linkages in net-
works affect individual payofts and risk to the system by
constructing an ownership matrix and exploring the effects
of changes to this network. They find that the effects of inte-
gration (strengthening of current links) and diversification
(spreading of links to more neighbors) depend crucially on
the topology of the network. Specifically, they show that, in
a core-periphery network, core banks take more risk than
periphery banks, which is consistent with our data, results,
and other literatures [9]. They also show that when the
network is homogenous, individuals take on too little risk
relative to the socially optimal portfolios, while when the
network is homogenous, they take on too much risk.

In addition to the empirical literature, which focuses
primarily on non-US financial networks, and the theoretical
literature, there have been several studies on the structure of
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FIGURE 1: Combined total assets and distribution for years 2000, 2009, and 2015 among the largest four banks: JPMorgan & Chase Co. (JPM),
Bank of America Corporation (BAC), Wells Fargo & Company (WFC), and Citigroup (C).

the US financial market following the financial crisis. McCord
and Prescott [18] identify significant changes to the structure
of the US banking system after the financial crisis. They find a
sharp decline in the number of banks, mostly among smaller
banks. They provide evidence that this decrease is not due
to more banks exiting the market, but rather to a decline
in the number of new entries. They also find trends in asset
concentration which are consistent with our data. While we
focus on banks with $1 billion or more in total assets, Kowalik
et al. [19] studied mergers of US banks with $1 billion or less
in total assets following the financial crisis. They also find
a decline in the number of banks and argue that since the
end of the recession, voluntary mergers have been the main
reason for this decline. They find that larger banks tend to
acquire smaller banks in order to more quickly expand loan
operations and gain access to cash and deposits to support
future loan growth.

The rest of this paper is organized in the following way.
Section 2 presents data from 2000 to 2015 on the US banking
system and discusses key trends in the number of banks,
total assets, capital buffers, and equity ownership. Section 3
explains the underlying model, network algorithm, and
calibration to the observed data. Section 4 presents the results
based on different combinations of the three assets types:
direct exposures, a common asset and a partially overlapping
ownership asset. Section 5 provides a brief summary of our
results and some concluding remarks.

2. Data

Our data are based on balance sheet and ownership informa-
tion from the FactSet Fundamentals database for the years
2000 to 2015 or approximately seven years before and after
the 2008/2009 US financial crisis. We restrict our attention
to firms (henceforth “banks”) classified as depository credit
intermediation institutions (NAICS code 5221) and head-
quartered in the United States and with total assets exceeding
$1 billion in year 2015 dollars (adjusted for inflation using
the Bureau of Labor Statistic’ Consumer Price Index for
all urban consumers, US city average series for all items).
Between 2000 and 2015 there are a total of 696 banks that
satisfy this criteria with an average of 361 active banks in
a given year. These data represent an unbalanced panel in
which institutions may enter and exit the sample based on

mergers, acquisitions, and bankruptcies. A large proportion
of institutions, 145 out of the average 361 or 40% in a given
year, are active and filed financial statements across all 16
years. While a complete analysis of the structure of the US
banking system is beyond the scope of this paper (for a
more detailed characterization of some of changes to the US
banking system over this time see [18, 19]), we focus on major
trends in the number of banks, size and distribution of total
assets, changes in capital buffers, and trends in ownership of
other banks.

Table 1 presents the summary statistics for number of
banks, total assets adjusted for inflation and capital buffers.
The total number of banks in the data peaks in 2003 at 390
declines to a low of 333 in 2012 consistent with [18, 19] and
then returns by 2015 to roughly the same level as in 2000.

Between 2000 and 2015 mean total assets rose consis-
tently, growing 63.3% (3.3% on average annually). Over the
same time period, median total assets generally declined
until 2009 before rising again for a total growth between
2000 and 2015 of 17.1% (1.1% on average annually). The large
difference between mean and median is driven primarily
by three outliers. Between 2000 and 2015 the assets of
Wells Fargo & Company grew by $1.43 trillion (+385%),
JPMorgan Chase & Co. by $1.39 trillion (+142%), and Bank of
America Corporation by $1.27 trillion (+144%). The growth
of these banks is primarily the result of consolidation in
the years leading up to and during the 2007/2008 financial
crisis (among the most significant were the 2004 mergers
of Bank One Corporation with JPMorgan & Chase Co. and
FleetBoston Financial Corporation with Bank of America
Corporation and then in 2008 the purchase of Washington
Mutual out of seizure by JPMorgan & Chase Co. and the
acquisition of Wachovia Corp. by Wells Fargo). This can also
be seen in Figure 1, which shows the combined total assets in
the data, highlighting the largest four banks, for the years of
2000, 2009, and 2015. These data show extreme consolidation
and growth among the four largest banks up to and during
the US financial crisis. In 2000 the four largest banks owned
44.4% (or $3.46 billion) of all assets in the system, in 2009 this
grew to 68.5% (or $8.12 billion), and in year 2015 they owned
63.6% (or $8.06 billion).

2.1. Trends in Capital Buffers. Table 1 also shows summary
statistics by year for capital buffers. Consistent with Gai
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FIGURE 2: Capital buffer levels by year (as a percent of total assets).

and Kapadia’s specification in [20] we define an institution’s
capital buffer as their net-worth (total assets minus total
liabilities) divided by total assets. Capital buffers show a trend
similar to mean total assets and are generally increasing,
from a mean of 8.9% in 2000 to 11.1% in 2015. The overall
rise in capital buffers is likely in part due to the tightening
of the Basel Accords during this time (see Appendix A for
discussion on the role of the Basel Accords over this time
period). One significant exception to the trend occurs in 2007
and 2008 just before the US financial crisis and can be seen
in Figure 2. Mean capital buffers fell from 10.3% in 2007
to 9.7% in 2008 and for the highest 5% percentile, capital
buffers declined from 27.2% to 22.8%. For banks in the lowest
5% percentile of capital buffers these buffers declined from
6.0% in 2007 to 5.1% in 2008 to 4.1% in 2009. The sharp
decline during 2007 and 2008 for these lowest 5% of banks
will play an important in our results, as the definition of
a financial contagion is when at least 5% of banks in the
system fail. Based on this definition, in 2009 an exogenous
loss of just over 4% of total assets at these banks (ignoring any
subsequent losses due to direct exposures and other common
and overlapping assets) would alone be sufficient to trigger a
contagion. Following 2009, mean and median capital buffers
begin to climb again. Figure 2 shows this trend in capital
buffers over time. There is a weak correlation between total
assets and capital buffers that is negative from 2000 to 2006
and positive from 2007 to 2015 this correlation is statistically
significant at the 5% level and negative in years 2000 and
2001 and positive in years 2011, 2012, and 2015, based on an
OLS regression of capital buffer = « + $log(Total Assets). In
year 2000 a 100% increase in total assets results in a 0.25-
percentage point decrease in capital buffer while in year 2015
a 100% increase in total assets results in a 0.27-percentage
point increase in capital buffer. This suggests that prior to
the US financial crisis larger banks tended to carry relatively
smaller capital buffers and after the crises relatively larger
buffers.

TABLE 2: Number of banks with ownership and average ownership
(as a percent of total assets) by bank size in 2015.

Total Assets Banks Owner-banks ~ Mean share of
Range (#) (#) assets
$100 billion+ 14 5 0.47%
$10-100 billion 54 12 0.30%
$5-10 billion 60 10 1.16%
Under $5 billion 219 17 2.24%
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FIGURE 3: Trends in bank ownership in other banks. Total value of
ownership in billions of year 2015 dollars (left axis) and number of
owner-banks (right axis) by year.

2.2. Trends in Ownership and Owner-Banks. In addition to
balance sheet information, we collect equity ownership data
for each bank from the FactSet Fundamentals database. We
then match this ownership data to the banks in our data to
construct a matrix of bank equity ownership in other banks.
To simplify discussion, banks with ownership in other banks
will be referred to as “owner-banks.” Between 2000 and 2015
there was a marked increase in both the number of owner-
banks and the total value of that ownership. In the year
2000, there were 25 banks with ownership in other banks
that totaled $31.3 million in value. By year 2015 there were
44 banks with ownership that totaled $38.9 million.

The increase in the total value of ownership is especially
pronounced since the end of the financial crisis. Between 2011
and 2015 the total system value of bank ownership by owner-
banks increased from $12.5 billion to $38.9 billion (a 211%
increase). Figure 3 shows the total value of ownership within
the system and the number of owner-banks. While some of
this increase can be attributed to the rise in the stock market
(the S&P 500 rose 55.1% over the same period), this only
explains a small portion of the increase in ownership value
and does not explain the sustained increase in the number of
owner-banks (between 2008 and 2015 the total value of bank
ownership increased by 299% while the S&P 500 rose only
44.7%).

While ownership in other banks is more likely among
larger banks, it is not exclusive to them. Table 2 shows for
year 2015 the number of owner-banks and the proportion
of owner-bank total assets in ownership, broken down by
various sizes of total assets. Of the 14 largest banks (those



with over $100 billion in total assets) five were owner-banks.
For these five, the mean value of this ownership was equal to
0.47% of their total assets. For smaller banks, those with total
assets between $5 and $10 billion and those with assets below
$5 billion, the value of their ownership, as a proportion of
total assets, was much higher (1.16% and 2.24%, resp.). Thus,
investing in ownership of other banks is not limited to large
banks, and smaller banks leverage a larger portion of their
assets in bank ownership.

For most owner-banks this ownership is relatively diver-
sified. For example, in 2015 owner-banks had, on average,
ownership in over 27 other banks (median 12.5), with larger
banks generally having ownership in a larger number of other
banks. Owner-banks also tend to limit their exposure to
ownership in a single bank, with the average owner-bank in
2015 investing at most 40% of their ownership assets in a
single bank. In 2015, the average ownership amount per bank
was 12% of their total ownership value. There are similarities
in the banks that owner-banks choose to invest in. In 2015,
more than half of total system ownership value was in just
two banks, (33% of the total system ownership value was
in Bank of America and 17.7% in Wells Fargo). In addition,
out of the 44 owner-banks, 42 have a share of ownership in
Wells Fargo, 40 in JPMorgan, and 33 in US Bank. As a result,
the failure of any of these highly owned banks would have a
significant effect on the value of ownership assets across the
system.

Opverall, ownership of banks by banks still represents a
relatively small portion of total assets. In 2015, for the ten
banks with the largest ownership positions (as a percent of
total assets) represented on average only 3.6% of their total
assets and across all owner-banks in 2015 the average value of
ownership was only 1.26% of total assets. While investment in
bank ownership is a relatively small asset class, it is growing.
Furthermore, there may be significant ownership through
private equity and debt that we cannot easily observe. The
growth of bank ownership by banks is potentially concerning
given that it has the potential to feedback into and amplify
any shocks to the banking industry.

3. Model and Methods

The model we use in our analysis is based on Gai and Kapa-
dia’s model from [20], with the addition of heterogeneous
link-weights as in [21] and a common asset as in [4]. We
also introduce a new type of asset, a partially overlapping
ownership asset, which is held by only some banks and
has value affected endogenously by bank failures. We begin
by going over the details of the model and assets before
discussing the generation of the financial network, calibration
to US banking data, and the method behind the financial
contagion simulations.

3.1. Banks and the Financial Environment. Assume that there
are N financial institutions (banks) in a network and each
bank is represented by a node in the network. Let A?OT and

L;FOT be the total assets and liabilities for bank i. Each bank
holds interbank assets, A’, as well as some combination of
a common asset, A?, a partially overlapping ownership asset,
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A9, and other external assets, A}. Each bank has two types of
liabilities, customer deposits, D;, and interbank liabilities, Lf.
If a bank becomes insolvent at any point (i.e., AITOT < L,TOT) it
immediately fails and defaults on its interbank liabilities. The
value of any interbank assets at a failed bank becomes zero.
The financial network is defined by a network of inter-
bank lending and borrowing. Let A ¢ %2 be N by N matrix
that represents the network of interbank exposures. Each
element a;; represents the amount of assets bank i loans to

bank j. By convention, a; = 0. Therefore A} = 27:1 a;; is
the total interbank lending by bank i and L} = Z;L a;; is the

total interbank borrowing of bank i. Matrix A represents a
weighted directed network with heterogeneous link-weights.
Incoming links of a node reflect the interbank assets of
the node. Outgoing links of a node represent the interbank
liabilities of that node. Let w;; = g;; /Ag be the proportion of
interbank assets belonging to bank i held by bank j.

In addition to interbank assets, each bank invests its
remaining assets across a combination of a common asset,
a partially overlapping ownership asset and external assets.
The risks and exposures associated with each of these assets
are different. The common asset reflects an asset held by all
banks with a common value determined exogenously (e.g.,
mortgage-backed securities). The common asset decreases in
value only due to an exogenous shock, however, any decrease
in value will affect the balance sheets of all banks.

The partially overlapping ownership asset reflects equity
ownership in a portfolio of banks within the system and may
decline in value following the failure of any bank included
in the portfolio. Unlike the common asset, neither do all
banks hold the partially overlapping ownership asset, nor
all banks hold necessarily included in the portfolio. The
partially overlapping ownership asset can be interpreted as
a single investment fund indexed to select banking stocks.
The network of ownership generated by this asset can be
thought of as a second, completely distinct, structure from
the network of interbank exposures. In a given year, we define
the share of this portfolio invested in bank j as P;. If bank j
fails, then the value of its stock falls to zero and the partially
overlapping ownership asset will devalue to reflect this or
suffer a 1 - P, loss. This loss, in turn, is reflected in the value of
the partially overlapping ownership asset held by some banks.
All banks that choose to invest in the partially overlapping
ownership asset purchase the same portfolio.

Finally, any remaining assets not invested in interbank
assets, the common asset or the partially overlapping own-
ership asset, are invested in a risk-free external asset. This
external asset represents other assets outside the scope of the
model.

Our main interest is in determining the probability and
extent of a financial contagion stemming from a single shock
to the financial system. All scenarios we study begin by
imposing the fajlure of a random bank on the financial
network. In scenarios in which the common asset is present,
we simultaneously impose an exogenous shock of size ¢
to this common asset in addition to the initial failure of
a random bank. Following this initial failure (and possibly
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the decline in value of the common asset), the shock may
then be transmitted across the financial network through two
channels. First, the failure and default of the initial bank will
eliminate any interbank assets of other banks held at this
bank. Second, if the failed bank is contained in the portfolio
of the partially overlapping ownership asset then the value
of this asset will decline for banks holding this asset. These
two effects combine to eliminate or reduce the value of assets
for some banks across the network, which in turn may cause
additional banks to fail.

To formalize the condition under which bank i fails
following the initial failure of another bank (and possible
simultaneous devaluing of the common asset) let K; = A]°T~
LTOT = (Al + AM 4+ AS + A®) - (L, + D;) represent the
capital buffer of bank i. Following an initial failure of bank
j> the solvency condition for bank i is

L;+D; < A]iw+ (1 —wij)Ag +(1 —(/5)A.C

1

1
+ (1 - Pj) A9
and bank i will fail if
K — A€ — p.AC
w, > K= A7 - BiA7 2)

Al

Should bank i fail, they then default on their interbank
liabilities and the partially overlapping ownership asset may
devalue. This process continues (with the solvency condition
updated to reflect prior failures) until no further banks fail.

Consistent with [20], if over 5% of all banks in the system
fail then we define this as a financial contagion. The extent
of such a financial contagion is defined as the proportion of
banks that fail or the expected proportion of banks that fail
conditioned on at least 5% of banks failing.

3.2. Calibration and Simulation Methods. For each year we
begin by calibrating the number of banks, as well as the total
assets and total liabilities for individual banks to the observed
data. The private nature of interbank loans in the United
States means that data on the structure of the interbank asset
network is limited. As a result, for each year we simulate 100
core-periphery network structures to represent the network
of interbank assets, using an algorithm calibrated to match
the typical characteristics of the interbank market of other
nations (while 100 simulations may seem low, because assets
and liabilities of individual banks are drawn directly from the
data and because the network generation algorithm is based
in part on these data, it is sufficient to allow our results to
converge. Increasing simulations to 1000 per year does not
have a significant effect on our results). See Section 3.3 for
additional details on the algorithm and parameters used to
generate the network.

While the network of interbank exposures is based on
underlying balance sheet data, the partially overlapping asset
is generated from separate data on the equity ownership
of banks by banks that is not directly related to interbank
exposures (for a brief discussion of when exposures from
ownership may be equivalent to exposures from interbank

lending and when it is appropriate to treat these as two
distinct assets see Section 5). To generate the partially over-
lapping ownership asset, in each year we construct a single
asset that reflects a representative portfolio of all observed
ownership in banks. The share of this portfolio invested
in bank j is equal to the total value of equity ownership
by all banks in bank j as a fraction of the total value of
equity ownership by all banks in all other banks, which
can be expressed as P; = Zf\il(p,-j/ Y, Py, where f’,-j
is the observed dollar value of ownership held by bank i
in bank j. After constructing the ownership asset portfolio
P ={P,,P,,..., Py}, we then distribute the amount of assets;
we observe each bank investing in equity ownership to this
portfolio.

For owner-banks or those banks which we observe having
ownership assets in the data, we multiply the amount of the
observed ownership, or A9 = Zf\il Isij/AITOT, by a factor of
15, capped at 40% of their total assets. The factor of 15 was
chosen to increase the average ownership by owner-banks
to be equal to approximately 20% of total assets or half of
the proportion we assign to the common asset (the observed
ownership by owner-banks as a percent of their total assets
in 2015 was equal to 1.26% on average. See Section 2.2 for
more details). Banks that we observe having no assets in
equity ownership invest zero in the ownership asset. We use
this form of a representative portfolio of ownership, rather
than the observed ownership network structure, and amplify
the value of this ownership, to reflect the possibility of other
unobserved sources of ownership, such as private equity and
debt ownership, as well as to more clearly capture the effect of
this asset class on financial contagions.

In the results presented in Section 4 we consider four
scenarios. In all four scenarios each bank holds 20% of their
total assets in interbank assets (Al = 0.2AT°T) and the
differences are in how the remaining 80% of total assets are
invested. The four scenarios are as follows:

(1) Direct exposures only: in Section 4.1 we first consider
the simplest case with only direct exposures from
interbank assets (A? = A? =0).

(2) Common asset: next, in Section 4.2, in addition to
direct exposures, we add a common asset equal to
40% of total assets to all banks which depreciates
by 10% simultaneously with the initial shock (AS =
0.4A7°T, AD = 0).

(3) Partially overlapping ownership asset: in Section 4.3
instead of the common asset, we add to direct expo-
sures the partially overlapping asset, which is held by
some banks and may reflect up to 40% of their total
assets (Al.C =0, 0.4A1TOT > A? >0).

(4) Common and partially overlapping ownership assets:

finally, in Section 4.4 we consider the combined
effects of these assets by combining the partially

overlapping asset with the common asset (A =
0.4A7°T,04AT°T > A > 0).

In each scenario, any assets not invested in direct expo-
sures (interbank assets), the common asset or the partially
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TaBLE 3: Comparing the CP model for the Dutch interbank market to Germany (Craig and Von Peter, 2014 [11]), Italy (Fricke and Lux, 2014
[10]), UK (Langfield et al., 2014 [12]), and Mexico (Solis-Montes, 2013 [14]).

Country Netherlands Germany Italy UK Mexico
The number of banks 100 1800 120 176 46
Average number of core banks +15 +45 +30 16 *16
Average core size +15% +2.5% +25% 9.1% +35%
Error frequency, as % of links 29% 12% 42% 47% 25%

overlapping ownership asset, are invested in other external
assets (AJiVI).

3.3. Network Structure. To generate the network of interbank
exposures we follow the definition of a core-periphery net-
work in in’t Veld and van Lelyveld [9] and van der Leij et al.
[16].

Definition 1. A network is a perfect core-periphery network
if there exists a set of core nodes K ¢ N and periphery nodes
P = N\ C such that

gi;=1
9;i=1L
Vi, j € K,
gij_o’ 3)
9ji =0,
Vi,jeP,
gj=1, ViekK, JjeP,
gni=1 ViekK, JheP,

where g;; represents a directed link between nodes i and j.
This defines a perfect directed core-periphery network.

If we form a network of interbank assets as a perfect core-
periphery structure, using the matrix A to represent the links
between different banks, we will get

CC CP 1 CP
PC PP PC 0

A number of recent papers [9-14] find that real finan-
cial networks exhibit a similar structure to a perfect core-
periphery networks, only with the addition of link “errors.”
These “errors” are missing links between core nodes as well
as extra links between periphery nodes. Table 3 represents
data from in’t Veld and van Lelyveld [9] characterizing the
number of core banks and error frequency of banking systems
in different countries.

To simulate a network of interbank exposures to reflect
the US banking system we first we assume that core banks
are those banks with the highest total assets in the system.
We fix the number of core banks at 25, which is the average
number of core banks across the countries in Table 3. After

constructing the perfect core-periphery bank network, we
calibrate error links. The error frequency of our network is set
at 31%, which is the average of error frequencies of different
countries in Table 3.

In addition to simulating the network of interbank
exposures as a core-periphery network structure, we also
consider a scale-free structure as in [21] and find results very
similar to that of the core-periphery structure. The algorithm
to generate the scale-free network as well as the results can be
found in Appendix B.

4. Results

The results in this section are organized into subsections in
which we sequentially introduce each asset type. Section 4.1
begins with only direct exposures through interbank lending.
Section 4.2 adds a common asset owned by all banks and
Section 4.3 adds a partially overlapping ownership asset to
direct exposures. Finally, Section 4.4 adds the combination
of a common asset and a partially overlapping ownership
asset to direct exposures. When a common asset is present
we present contagion results from both the initial failure
of a random core node and the initial failure of a random
periphery node. In the absence of a common asset, contagions
do not result from the initial failure of any periphery nodes
and only the results from an initial core node failure are
given (in the cases where the initial failure of periphery
nodes does not result in a contagion the overall contagion
probability (resulting from the initial failure of any node) can
be determined by multiplying the probability of contagion
from a core node failure by the proportion of nodes that are
core nodes, or 25/N, which is equal, on average, to 0.069). In
addition, we restrict our focus to the core-periphery network
structure, as it is more representative of the US banking
system. The results for the scale-free network structure are
extremely similar and for the complete results for the scale-
free network structure see Appendix B.

4.1. Direct Exposures Only. As a baseline case we begin by
considering the possibility of a financial contagion arising
only through direct exposures to counterparties through
interbank lending. The approach was first developed in [20]
and then expanded in [21, 22]. Network characteristics such
as the number of nodes, the total assets of each node, and the
capital buffer of each node are calibrated from data on the
US financial system and interbank exposures are generated
with a core-periphery network structure (see Sections 3.2
and 3.3 for further details). Our main results are that, with
the calibrated data for the US financial system and only
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FIGURE 4: Contagions with Direct Exposures Only. Probability (a) and extent (b) of a financial contagion for a core-periphery network with

direct exposures only, conditioned on a random core bank failing.

direct exposures, financial contagions originate only from
the failure of core banks and that there was a significant
increase in the probability and extent of a financial contagion
beginning in 2007, prior to the US financial crisis.

With only direct exposures, financial contagions begin
only with the initial failure of a core node or the failure of one
of the largest 25 banks. Due to the concentration of lending
at core nodes and their greater connectedness, the failure
of a single core node will have greater and wider-reaching
implications than the failure of a periphery node. Figure 4
shows the simulated probability of contagion (a) and average
extent of contagion (b) based on the initial failure of a random
core node.

Overall between 2000 and 2015 the probability of a
financial contagion resulting from the failure of a random
core node generally declined (from 25.4% to 16.4%). A
significant exception was in 2007, when the probability rose
from 19.7% to 21.4%, and 2008, when it rose to 24.6%, prior
to the beginning of the US financial crisis (the US financial
crises are often marked as beginning with the bankruptcy of
Lehman Brothers in September 2008. The effect in 2007 is also
present and more pronounced in the scale-free model, where
the probability of contagion rose from 17.6% to 19.5% in 2007).
This rise in the probability of contagion is accompanied
by a more than tripling in the average contagion extent in
2007, from 11.8% to 37.3%. Viewed ex post, these results
can be interpreted as a significant warning sign in 2007 of
the coming financial crisis. The results from the scale-free
network structure (see Appendix B) are similar.

While the rise in probability and extent of a financial
contagion in 2007 and 2008 are consistent with the financial
crisis, the result that an initial failure of a periphery node
never leads to a financial contagion suggests that direct
exposures through interbank lending alone may not provide

a rich enough set of exposures to explain more than a small
class of extreme financial contagions. To address this, in
the next sections we consider additional types of assets and
exposures.

4.2. Common Asset. In this section we add a common asset,
in a manner consistent with [4], to the existing direct expo-
sures. This common asset provides an additional exposure
common to every bank, which increases the chance of a
financial contagion. Consistent with the results of [4], we
find that the addition of a common asset to direct exposures
significantly increases both the probability and extent of
financial contagions. Unlike the previous case in Section 4.1
with direct exposures only, during some years the probability
of contagion from the initial failure of periphery node is
positive.

Figure 5 shows the simulated probability of contagion
from the failure of a random core node (a) and a random
periphery node (b) as well as the average extent of contagion
for each type of initial failure ((c) and (d), resp.). Included
in each figure in red for comparison are the results from
Section 4.1 for direct exposures only.

With the addition of a common asset, the probability
that the failure of a core node triggers a contagion is both
extremely high and highly volatile (Figure 5(a)), especially
beginning in year 2008 and through the years of the US
financial crisis. The probability of contagion drops from
82% in 2000 to 47% in 2006 before jumping to 99% in
2008 and then eventually dropping to 39% in 2015. While
this probability may appear extremely high, recall that it
is conditioned on the failure of a core node or one of
the 25 largest banks. The overall probability of contagion
resulting from the initial failure of any random node (core
or periphery) for year 2000 is just 5.9%.
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FIGURE 5: Contagions with a Common Asset. Probability of a contagion ((a) and (b)) and average extent of contagion ((c) and (d)) for a core-
periphery network with a common asset and direct exposures (black solid circles) and direct exposures only (red empty circles) conditioned
on a random core bank failing ((a) and (c)) and conditioned on a random periphery bank failing ((b) and (d)). Contagion extent shown only

when average contagion frequency is greater than 1%.

The addition of a common asset also greatly increases the
average extent of a financial contagion stemming from the
failure of a core node for most years (Figure 5(c)). Between
years 2000 to 2006 and 2012 to 2015 the contagion extent
from a core node failure is 15 to 25 percentage points higher
with the addition of a common asset. During 2007 to 2011, the
years leading up to and during the financial crisis, the average
extent is the same with and without a common asset, due to a
large increase in the number of smaller contagions, which is
discussed further below.

In addition to significantly increasing the probability and
extent of a contagion resulting from the failure of a core node,
the addition of a common asset introduces the possibility of
a contagion from a periphery node, although only during
the immediate years of the financial crisis. Prior to 2008 and
after 2010 the probability of a contagion from a periphery
node is zero (Figure 5(b)). In 2008 this probability rises to
17.2%, then to 98.7% in 2009 before falling to 5.9% in 2010.
Combined with the results for the core node failures, in 2009
the probability of a contagion resulting from the failure of any
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single node (core or periphery) was 98.9%, or a near certainty.
However, this near certainty of a contagion is offset by an
extremely low contagion extent for periphery node failures
(Figure 5(d)). In 2009, the average extent of a contagion
resulting from the failure periphery node was only 6.3%.

The extremely high probability of contagion in 2009 for
both core and periphery nodes is being primarily driven by
the decline in capital buffers we observe in the data among
banks with the lowest capital buffers. In 2009 the 5% of banks
with the lowest capital buffers (see Figure 2 and Table 1)
had capital buffers at or below 4.1%. Since the exogenous
depreciation of the common asset can be interpreted as a
four-percentage point loss in total assets this depreciation
alone results in the failure of a significant number of nodes.
During most years the initial depreciation of the common
asset results in between 0 and 3 failures directly (i.e., before
the failure of a random node and the spread of the shock
through direct exposures). However, in 2009 due to low
capital buffers this depreciation of the common asset directly
results in the failure of 17 nodes (4.59% of the network).
Combined with our imposed failure of one node, only one
additional node needs to fail through interbank exposures in
this year to meet the definition of a contagion. As a result of
the decline in capital buffers a financial contagion is almost
guaranteed with a common asset in 2009; however, the extent
of such a contagion may be relatively small. This result also
explains the convergence of contagion extent we see for core
node failures in 2008, 2009, and 2010.

While for most years the average contagion extent from a
core node failure with a common asset is 15 to 25 percentage
points higher than with direct exposures only, between 2008
and 2010 this extent drops and converges to that of the direct
exposures (see Figure 5(c)). This convergence of contagion
extent is an artifact of the introduction of a large number
of small contagions during these years (see Figure 5(a)). As
in [21], the separation of contagions into “mild contagions”
(when 5-30% of nodes fail) and “moderate contagions”
(when over 30% of nodes fail) would continue to show
significantly higher contagion extents from core node failures
with the common asset compared to direct exposures only.

The addition of a common asset results in a significantly
larger contagion probability and extent for all years. However,
one potential criticism of including a common asset is that it
has an extremely homogenizing effect on exposures. Because
the asset is truly “common” to all banks, any depreciation
in the asset will necessarily weaken the balance sheet of all
banks. In addition, without a separate market and pricing
structure for this common asset any depreciation must be
external and arbitrary. In the next section we introduce a
partially overlapping asset or a common asset which only
some banks chose to hold (i.e., it is not common to all banks).
In addition, we interpret this asset as a fixed ownership
portfolio of other banks, which allows us to endogenously
devalue this asset following the failure of a bank based on its
weight in the portfolio of ownership.

4.3. Partially Overlapping Ownership Asset. In this section we
return to the case of direct exposures (i.e., without a common
asset) and then add a partially overlapping ownership asset.

1

Unlike the common asset in Section 4.2, this asset will be held
by only some banks (hence “partially overlapping”). We also
interpret this asset as reflecting a fixed portfolio of ownership
in other banks. For a discussion of this ownership observed
in the data see Section 2.2 and of how we implement this
ownership in the model see Section 3.2. One of the advantages
of interpreting this asset as ownership is that it provides a
natural way to devalue the asset following the failure of a
bank. With the failure of a bank, the value of ownership in that
bank falls to zero and the ownership asset devalues according
to share of that bank held in the portfolio.

With the addition of this partially overlapping ownership
asset, our main results are a small increase in the probability
of a contagion and a large increase in the extent of a contagion
stemming from the failure of a core node. As in the case
of direct exposures only, contagions do not arise from the
failure of a periphery node and figures for an initial periphery
failure are omitted. Figure 6 shows the simulated probability
of contagion (a) and average extent of contagion (b) based on
the failure of a random core node. Included in each figure in
red for comparison are the results from Section 4.1 for direct
exposures only.

The addition of the partially overlapping ownership asset
has a small but positive effect on the probability of a contagion
stemming from the failure of a core node (Figure 6(a)).
Unlike the case of the common asset in Section 4.2, the
partial ownership asset neither consistently depreciates for all
failures nor uniformly transmits the this shock to all other
banks. For core nodes that are weighted little or not at all in
the portfolio, the effect of their failure will be minimal. For
example, in 2012, while 91% of the ownership portfolio was
in core banks, three-quarters of this ownership was concen-
trated in just four of these banks: Bank of America (33%),
Wells Fargo (18%), SunTrust Banks (10%), and Citibank (8%).
The effect of a failure of any core bank outside of these four
banks would be similar to the case with direct exposures
only (i.e., without the partially overlapping ownership asset).
Because periphery banks are minimally represented in the
ownership asset, the probability of a contagion from the
failure of a periphery bank remains at zero, as in Section 4.1.

While the effect of a partially overlapping ownership
asset on the probability of a financial contagion may be
small, the effect on the average extent of a contagion is
relatively large. This is because the ownership portfolio is
heavily concentrated in a small number of core node banks.
For example, in 2012 the largest shares of ownership by
the portfolio are in Bank of America (33%), Wells Fargo
(18%), SunTrust Banks (10%), and Citibank (8%). In the
event that one of these banks fails, a contagion due solely
to direct exposures is already highly likely and the partially
overlapping ownership asset serves as a channel to transmit
the contagion to owner-banks who may not have otherwise
been affected solely through direct (and indirect) exposures.
Ultimately, the partially overlapping ownership asset has
the effect of increasing the importance of a select few core
banks and worsening the extent of a contagion should one
of these banks fail. In the next section we combine this
partially overlapping ownership asset with the common
asset.
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FIGURE 6: Contagions with a Partially Overlapping Ownership Asset. Probability of a contagion (a) and average extent of contagion (b) for a
core-periphery network with a partially overlapping ownership asset and direct exposures (black solid circles) and direct exposures only (red

empty circles) conditioned on a random core bank failing.

4.4. Common and Partially Overlapping Ownership Assets. In
this section we add both the partially overlapping ownership
and common asset to direct exposures. Figure 7 shows the
simulated probability of contagion (a) and average extent of
contagion (c) based on the failure of a random core node as
well as the probability of contagion (b) and average extent
of contagion (d) based on the fajlure of a random periphery
node. Included in each figure in red for comparison are the
results from Section 4.2 for direct exposures with a common
asset.

The addition of the partially overlapping ownership asset
with the common asset and direct exposures has similar
effects to those outlined in Section 4.3. There is a small
increase in the probability of contagion from core nodes in
the years prior to and after the financial crisis (Figure 7(a))
and there is a substantial increase in the extent of contagion
(Figure 7(b)). There is no significant effect on contagions
resulting from periphery node failures. The lack of a signif-
icant interaction between the common asset and partially
overlapping ownership asset is not surprising given that the
first disproportionately affects contagions from periphery
node failures while the second disproportionately affects
contagions from core node failures. This is primarily the
case due to the observed makeup of the ownership asset
portfolio which heavily reflects core node banks (e.g., in 2015
over 92% of the ownership portfolio was in core banks).
While the partially overlapping ownership asset is held
by many periphery banks, failures from periphery banks
have a limited, if any, effect on the value of this asset. If,
hypothetically, the ownership asset was constructed primarily
of periphery banks the results would be quite different.

5. Conclusion

Using historical data on the US banking industry from 2000
to 2015 we calibrate a core-periphery financial network model
and characterize the probability and average extent of a
financial contagion over time from the random failure of a
core or periphery node. The financial network is composed
of a network of heterogeneous direct exposures, calibrated
to data where possible. In addition to direct exposures we
consider two other types of assets. The first is a common
asset as in [2] and for the second we introduce a partially
overlapping ownership asset to capture the growing equity
ownership of banks by banks that we observe in the data.
This partially overlapping ownership asset is held by a subset
of banks and devalues endogenously based on the failure of
banks within the system.

The results show that with direct exposures only, in 2007
and 2008, prior to the US financial crisis, the probability of
contagion resulting from the failure of a core bank rose from
19.7% to 24.6% (a 24% increase) and the average extent of
a potential contagion more than tripled. The addition of a
common asset greatly increases the probability of a contagion
in all years, bringing it close to 100% for core banks between
2008 and 2010 and close to 100% in 2009 for periphery
banks, primarily due to the decline in capital buffers among
certain banks in 2009. Adding a common asset also more than
doubles the average extent of contagion from a core bank
failure. The addition of a partially overlapping ownership
asset only slightly increases the probability of contagion from
a core bank failure (by about 5%) but doubles the extent of
a contagion on average across all years. The combination of
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FIGURE 7: Contagions with a Partially Overlapping Ownership and Common Asset. Probability of a contagion ((a) and (b)) and average extent
of contagion ((c) and (d)) for a core-periphery network with common and partially overlapping ownership assets and direct exposures (black
solid circles) and common asset and direct exposures only (red empty circles) conditioned on a random core bank failing ((a) and (c)) and
conditioned on a periphery bank failing ((b) and (d)). Contagion extent shown only when average contagion frequency is greater than 1%.

both a common asset and a partially overlapping ownership
asset increases both the probability and average extent of a
contagion, but there does not appear to be any significant
interaction or amplification.

Our data show that many key financial network char-
acteristics, such as number of nodes, total assets, and
capital buffers, change significantly over time and these
changes have a large effect on the probability and average

extent of a potential financial contagion. As a result, re-
searchers may want to consider data from more than a
single or small number of years when characterizing a
financial network for contagion analysis. A comparison
between results from core-periphery networks and scale-
free networks (see Appendix B) shows that the differences
in probability and average extent of a financial contagion
across the two network structures are smaller than the
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differences across years due to changes in financial network
characteristics.

While we interpret equity ownership as investment in
a single portfolio asset, such as an index fund of banking
stock, a complete network of ownership exposures may also
be interpreted as observationally equivalent to a second
network, similar to that of interbank lending. In such a case,
ownership can be captured by appropriately amplifying the
network of interbank exposures. However, there are scenarios
in which equity ownership is more appropriately treated as
a separate asset from debt. For example, ownership may
include the ownership of other firms outside the network
of banks (such as insurance or other financial firms) or
may reflect more complex types of ownership. In other
situations, the order of liquidation in a bankruptcy may be
relevant, with interbank debt claims being satisfied prior
to, or more wholly than, interbank equity claims. Finally,
by its nature, debt typically requires mutual consent to the
transaction, while equity does not. There may be a scenario
in which one bank deliberately chooses not to borrow from
another bank but is unable to prevent this other bank
from buying their equity. The distinction between debt and
equity become more relevant to the addition of strategic
behavior.

In the future we would like to expand this research to
look at the effect of partially overlapping ownership assets
with other characteristics. For example, if the portfolio was
more heavily weighted toward periphery banks then this may
increase the probability of contagion more significantly and
amplify shocks further once a contagion begins. We would
also like to expand the ownership portfolio to include other
sources of ownership, such as debt ownership, as well as the
ownership of other firms in related financial areas, such as
nondepository banks and insurance firms.

Another way to expand this research is to add a dynamic
component to the model. For example, if banks in the
financial network respond to a first round shock strategically,
their response may affect the contagion results. Reference
[2] discusses a scenario where banks try to rebalance their
portfolio to reach their target leverage level and they conclude
that this rebalancing of portfolio destabilizes the system. In
contrast, [21] shows that if banks rebalance their portfolio

by reducing investment in potentially weakened banks, this
rebalancing stabilizes the system to future shocks.

Appendix
A. Basel Accords

The definition of capital buffers used in this paper and
common in the literature, beginning with [20] and earlier, is
of net-worth (total liabilities minus total assets) divided by
total assets. This definition is the most literal definition of
solvency but does not take into consideration the riskiness
of different asset classes. Another interpretation of capital
buffers that does consider the riskiness of assets comes from
the Basel Accords or the international recommendations
on banking regulations. Basel I was developed in 1988 by
the Basel Committee on Banking Supervision (BCBS) and
was adopted in law by the Unites States and other G-10
countries in 1992. Since then the Basel Accord has gone
through revisions (Basel II in 2004 and Basel III in 2010).
In the United States Basel II became effective on April
1, 2008, but with some rules initially delayed or waived
due the 2007/2008 financial crises. The Basel III recom-
mendations were approved on July 9, 2013, in the United
States.

Under the Basel Accords the regulatory capital buffer
is measured in part by the tier 1 capital ratio or the ratio
of a bank’s core equity capital to its total risk-weighted
assets. While the tier 1 capital ratio more accurately measures
solvency riskiness than actual solvency, it may be useful to
compare this measure with the more traditional definition of
capital buffers. Figure 8 compares the median capital buffer
(as defined in this paper) with the tier 1 capital ratio under the
Basel Accord. In all years the tier 1 capital ratio is significantly
higher than the capital buffer, reflecting that it accounts for
the riskiness of relatively safe or risk-free assets on the balance
sheet. Overall the trend we see in the data for tier 1 capital
ratios is similar to the trend in capital buffers, other than
a sharper decline during the years leading up to the US
financial crisis. Another reason we do not use the tier 1
capital ratio in our model is that participation in the Basel
Accord was voluntary prior to 2008 (in 2008 97.1% of our
sample reported tier 1 capital buffers under the Basel Accords,
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compared to only 62.3% in 2003 and 6.6% in 2000), and the
rules were further changed in 2010.

B. Results from Scale-Free Network Structure

For the purpose of comparing our results for the core-
periphery network structure with the commonly used
scale-free structure we use Barabasi-Albert model to con-
struct a scale-free network, which reflects the preferential
attachment characteristic of scale-free networks. The algo-
rithm we use here is a directed version of Barabasi-Albert
model from Bollobds et al. [23].

Assume that «, f3, y, 6;,, and &, are nonnegative real
numbers such that « + § + y = 1. Starting with an initial
graph GO = G(t,), we form G(¢ + 1) from G(t) according to
the following steps:

(1) With probability «, add a new vertex v, together
with an edge from v to an existing vertex w, where
w is chosen according to d;, + §;,,(P(w = w;) =
(din(w;) +6,,)/(t + 6;,n(t))), where d;, (w;) represents
the incoming degree for node i and n(t) represents the
number of vertices in the graph at time .

(2) With probability 3, add an edge from an existing
vertex v to an existing vertex w, where v and w are
chosen independently, v is chosen according to d,,,, +
Soup and w is chosen according to d;,, + §;,,.

(3) With probability y, add a new vertex w, together with
an edge from an existing vertex v to w, where v is

chosen according to d, + Oy

To simplify comparisons with the core-periphery net-
work structure, we use the terminology “core node” to refer
to the 25 largest nodes (by total assets) in the scale-free
model and “periphery node” to refer to other nodes. Figure 9
presents for the scale-free network that are comparable to
those of the core-periphery structure presented in Sections
4.1, 4.2, and 4.4. Both network structures yield extremely
similar results.
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We investigate network entropy of dynamic banking systems, where interbank networks analyzed include random networks, small-
world networks, and scale-free networks. We find that network entropy is positively correlated with the effect of systemic risk in
the three kinds of interbank networks and that network entropy in the small-world network is the largest, followed by those in the

random network and the scale-free network.

1. Introduction

There exist financial connections in the interbank market,
which make it possible for the interbank market to be
represented as a network. It is important to study the financial
connections in the interbank market from the network per-
spective. The reason for this is that the financial connections
can become a channel for propagation and amplification
of shocks, which is directly linked to the stability of eco-
nomic/financial systems [1]. In fact, many empirical studies
have shown that interbank lending relationships reflect some
typical network structures (e.g., [2-6]), such as random
structures, small-world structures, and scale-free structures.
And there is a rapidly growing literature on bank network
models and systemic risk (e.g., [7-19]).

According to the above literature, we can know that
banking systems can be modeled as the complex networks,
which are useful to investigate systemic risk. In the realm
of complex networks, the entropy has been adopted as a
measure to characterize properties of the network topology
[20-22]. However, there is limited research to adopt entropy
to investigate interbank networks and systemic risk. And this
paper aims to add to the current literature on understanding
systemic risk in banking systems from the perspective of
network entropy. The rare instance is the work of Lee [23] who

applies the measure of network entropy to BIS global financial
network database in order to study highly connected global
banking networks. The study of Lee [23] mainly investigates
how network structure of global banking networks among
core countries has evolved during the global financial crisis
of 2007-2009 in terms of diversification and probes into
financial linkages between core countries and periphery
countries. Besides, some studies show that the notion of
entropy can be used to build an early warning indicator for
systemic risk [24, 25].

Based on the above analysis, it can be seen that entropy
measures have been rarely adopted to analyze interbank
networks and banking systemic risk. And the single study
only adopts network entropy to measure diversity of highly
connected global banking networks. Besides, there are a lot
of researches on adopting the entropy to investigate complex
networks (e.g., [20-22, 26]). This paper aims to contribute to
investigating characteristics of network entropy of dynamic
banking systems and study whether network entropy can be
used as a measure of robustness for banking systems from the
perspective of systemic risk.

Therefore, in this paper, we apply the measure of network
entropy to the dynamic banking systems, where interbank
networks analyzed include random, small-world, and scale-
free networks. In the context of the analysis of interbank
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networks, we transform adjacency matrices into stochastic
matrices and then apply the concept of entropy. In this paper,
we find that network entropy is positively correlated with the
effect of systemic risk in the three kinds of interbank networks
and that network entropy in the small-world network is the
largest, followed by those in the random network and the
scale-free network.

The rest of the paper is organized as follows. Section 2
describes the methodology. Section 3 presents the results
of numerical simulations. And the conclusion is drawn in
Section 4.

2. Methodology

2.1. Modeling of Dynamic Banking Systems. The modeling of
dynamic banking systems in this paper is based on the study
of Lux [27]. However, we are different in the formation of
interbank lending relationships and liquidity shocks. Besides,
we take bank defaults into consideration, while Lux does not.
To develop a dynamic model of a banking system with N
banks, we start from the description of its stylized balance
sheets. We assume that the assets of bank k at time ¢ include
investments, interbank loans, and liquid assets, denoted by
L (), L (t), and M, (), respectively, and that its liabilities are
composed of deposits, interbank borrowing, and net worth,
denoted by Dy (t), B(t), and W (t), respectively. At the initial
time, we assume that the interbank market does not yet exist
and set the structure of the balance sheet of bank k at time
t =0as Ik(()) = OCTAk(O), Mk(O) = (1 - OC)TAk(O), Wk(O) =
BT1,(0),and D, (0) = (1-)T1,(0), where TA,(0) and TT;(0)
denote the total assets and the total liabilities of bank k at
the initial time, respectively. In the simulation, we adopt the
following algorithm to determine how the banking system
evolves from one state to another.

The first phase is the update of liquid assets and net worth.
At the beginning of time t, liquid assets and net worth of bank
k are updated as follows:

My (t) = My (t — 1) + [Dy (t) = D (t - 1)]

= Y Bu(t-1D)[1+rg(t-1)]

€W (t-1)

+ Y by t-D[1+ry -1,
jeDp(t-1) €]

W =W (t-1)= > by(t-Drg(t-1)

i€V (t-1)

t ) bpt-Dryt-1),

jeD(t-1)

where @, (¢) and W, (t) denote the set of debtors and the set of
creditors of bank k at time ¢, respectively. B;;(t) is the actual
amount borrowed by bank i from bank j, and its interest rate
is 7;;(2). In this paper, we assume that the duration of all debts
is one and that banks’ investments remain constant over time
and disregard the return from them for simplicity. Following
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the study of Gatti et al. [28], we assume that the lender j sets
the interest rate r;;(f) on loans to the borrower i.

i 0 =n(W; )" +17(8®)", @)

where # > 0 and 6,(t) = B;(t)/W,(t). According to the
study of Georg [29], we introduce the following shocks to
deposits, which is the source of the formation of interbank
credit lending relationships:

Dy (t) = (1 =y + 21 X) Dy (£ = 1), (3)

where y, is a scaling parameter for the level of deposit
fluctuations and X is a random variable (X € [0, 1]).

The second phase is default settlement. After the first
phase, bank k defaults due to insolvency if Wi (t) < 0. If
bank k defaults, it will result in the loss of its creditors. We
assume that the loss caused by the default of bank k is shared
proportionally by its creditor banks with their respective
lending sizes. After the adjustment of liquid assets and net
worth by subtracting the loss, a creditor bank of bank k also
defaults if its net worth is less than or equal to zero, which
is caused by the default contagion. This procedure keeps
circulating until no bank defaults.

The third phase is the credit lending. We assume that
there is a threshold (M (t)) of liquid assets for bank k at
time ¢, which guarantees the continuance of regular business
operations, and M,(t) = OTA,(t). For a bank with positive
net worth, it is a potential borrower if its liquid assets are
less than the threshold; otherwise it is a potential lender. The
demand or supply of liquidity for a bank is equal to | M (t) —
M, (t)|. From time t = 1, in every period, we assume that
there exists a potential interbank network; namely, potential
borrowers can only borrow money from potential lenders
who have links with them. If the potential borrower does
not obtain enough liquidity from the first randomly selected
potential lender, it contacts other potential banks for the
remaining funds until its total demand for liquidity is satisfied
or there is no more liquidity to be allocated. For the potential
lender, if the total amount of demand for liquidity received
from potential borrowers is less than its loanable liquidity,
all its potential borrowers’ demands for liquidity can be
satisfied. Otherwise, the potential lender satisfies its potential
borrowers in a sequence according to the rank of their net
worth from high to low until all its loanable liquidity is
completely allocated.

In this paper, we assume that the funds do not transfer
from lenders to borrowers until borrowers’ demand for
liquidity is satisfied. Banks’ balance sheets will be updated
according to the actual borrowing or lending. If potential
borrowers’ demand for liquidity is not satisfied, they default.
For the sake of simplicity, the total number of banks in the
banking system is constant over time. Therefore, in this paper,
we assume a simple mechanism of entry-exit: a default bank
is replaced by a new one. The balance sheet structure of the
new bank is the same as the initial balance sheet structure of
the default bank. This can be interpreted as the entry of new
banks into the interbank market. In fact, this mechanism is
present in the existing literature, such as the study of Gatti et
al. [30].
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TABLE 1: Benchmark parameters of the model.

Parameter ~ Description Benchmark value  Range of variation
N Number of banks 100 Positive integer
[A in» Amax] Range of values of initial assets [5,200] 0 < Apin < Apax
T Pareto distribution parameter 1.2 Positive number
fo Initial proportion of investments 0.9 0,1)

B Initial proportion of net worth 0.08 0,1)

0 Proportion of M, (t) to TA.(t) 0.08 0,1)

n Interest rate parameter 0.01 Positive number
y Scaling parameter for the level of deposit fluctuations 0.1 Positive number
P Probability of connection between any two nodes in random networks 0.3 [0,1]

K Number of nearest neighbors of a node in small-world networks 30 Positive integer
P, Probability of randomly rewiring each edge of the lattice for small-world networks 0.01 [0,1]

4 Initial number of nodes in scale-free networks 25 Positive integer
¢ Number of edges of a new node in scale-free networks 15 Positive integer

2.2. Network Entropy. According to the above modeling of
dynamic banking systems, we can obtain dynamic interbank
networks, which can be represented by adjacency matrix
At) = (a;() 1< jen- a;(t) denotes the liability of bank
j towards bank i at time t. In order to apply the concept
of entropy, we need to transform adjacency matrices into
stochastic matrices. Demetrius and Manke [31] propose the
analysis of the stochastic matrix in the context of network
robustness. In this paper, we adopt their method to define
network entropy for dynamic banking systems. According to
the adjacency matrix A(f), we can obtain a stochastic matrix
( pl-j(t)) from the following formula [23]:

a;; (t)

i ()= ——
P Zﬁil a;; (t)

(4)

Given a stochastic matrix (p;;(¢)), we apply the Shannon
entropy formula [32] to the transition probability distribution
which corresponds to the ith row of the stochastic matrix, and
we can obtain Shannon entropy (E;(¢)) of node i at time t,
which is given as follows:

N
E; (t) = =) p;j (t) log p;; (1) ©)
j=1

Moreover, we can obtain Shannon entropy (E(t)) of the
interbank network at time ¢, which is defined as the weighted
sum of entropies of nodes and is given as

N
E(t) = Ym0 E @), (6)
i=1

where 7;(f) is the ith component of the unique invariant
distribution of the corresponding stochastic matrix ( p,-j(t)).

3. Simulation Results

According to the studies [2-4], we analyze network entropies
in three kinds of potential interbank networks, namely,

random networks, small-world networks, and scale-free net-
works. According to the algorithms provided by Erdds and
Rényi [33], Watts and Strogatz [34], and Barabdsi and Albert
[35], we construct the three kinds of potential interbank
networks. Following the study of Lux [27], we assume that
the initial total assets of all banks are drawn from a truncated
Pareto distribution over the range [A, ., A ] With the
power-law parameter 7. Referring to the studies [27-29], we
set the parameter values in Table 1. If not stated otherwise, our
numerical simulations are performed with the parameters
given in Table 1. For each set of parameters, we repeat every
simulation 100 times to average out stochastic effects.

3.1. Network Entropy and Systemic Risk. Demetrius and
Manke [31] study the process of network disintegration under
random node removal for the three types of networks with
different topological entropies and find that network entropy
is positively correlated with robustness, where networks
analyzed include scale-free networks, random networks, and
regular networks. In the study of Demetrius and Manke
[31], robustness pertains to the insensitivity of measurable
parameters of the system to changes in its internal organi-
zation and includes dynamical robustness and topological
robustness. Now we investigate whether network entropy can
be used as a measure of robustness for banking systems from
the perspective of systemic risk. In this paper, we adopt the
number of default banks (S) to measure the effect of systemic
risk. Figure 1 shows the results of network entropies and the
effects of systemic risk, where (a), (b), and (c) correspond,
respectively, to the results of random, small-world, and scale-
free networks. From Figure 1, it can be seen that the change
trend of network entropies is similar to that of systemic risk.

Moreover, we adopt Pearson’s correlation to investigate
the correlation between network entropies and the effects
of systemic risk. Table 2 shows Pearson’s correlation coeffi-
cients between network entropies and the effects of systemic
risk under different parameter values. We can observe that
network entropy is positively correlated with the effect of
systemic risk in the three kinds of interbank networks.
Therefore, we provide computational and analytical support
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FIGURE 1: Network entropies and effects of systemic risk. (a), (b), and (c) correspond, respectively, to the results of random, small-world, and

scale-free networks.

TABLE 2: Pearson’s correlation coefficients between network entropies and systemic risk.

Parameter Random network Small-world network Scale-free network
Y =0.1 0.3077 0.2729 0.5523
Y =02 0.3108 0.3236 0.5508
Y =0.3 0.1992 0.2845 0.5119
M, = 0.06 0.2556 0.2934 0.4834
Mk =0.08 0.3077 0.2729 0.5523
M, =0.1 0.2922 0.3176 0.5516
T=12 0.3077 0.2729 0.5523
T=2 0.3098 0.2106 0.4747
7=3 0.2644 0.1734 0.4688

for that network entropy which can reflect the robustness
of banking systems against systemic risk to a certain extent.
Moreover, the network entropy can predict the direction of
changes of systemic risk and characterize the stable states of
dynamic banking systems.

3.2. Network Entropy and Network Structure. We now inves-
tigate the difference of network entropies in the three kinds of
interbank networks. Figure 2 shows the network entropies in
the random network, the small-world network, and the scale-
free network. We can see that the values of network entropies
present a trend of decrease after the increase, and they tend to
be stable with time evolution. In fact, from Figure 1, we know
that the effect of systemic risk has the same change trend as
network entropies. Moreover, bank defaults change interbank
network structures and then result in the above evolution
characteristics of network entropies. Besides, we can observe
that the value of network entropy in the small-world network
is the largest among the three kinds of interbank networks,
followed by those in random and scale-free networks.

0.07

0 200 400 600 800 1000

—— Random network
—— Small-world network
—+— Scale-free network

FIGURE 2: Network entropies in the three kinds of interbank
networks.
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FIGURE 3: Network entropies in the three kinds of interbank networks under different parameter values. (a)-(f) are the results when y, = 0.2,

Y = 0.3, M, = 0.06, M, = 0.1, 7 = 2, and 7 = 3, respectively.

According to the above model, we can see that y;, M,, and
T are the key parameters in the establishment of interbank
networks. Therefore, we investigate the effect of these param-
eters on the above results, which is shown in Figure 3. We can
observe that the above results do not change, despite the fact
that the values of the parameters are different. From Figure 3,
it can be seen that the network entropy trajectories are very
similar among completely different network structures, and
this similarity holds if we change some parameters. The
probable reason for this result is that the effects of systemic
risk are similar among different network structures.

4. Conclusions

In this paper, we first construct artificial banking systems
and then investigate network entropy of dynamic banking
systems, where the three kinds of potential interbank net-
works are analyzed, namely, random networks, small-world
networks, and scale-free networks. First, simulation analysis
shows that the change trend of network entropies is similar
to that of systemic risk and that network entropy is positively
correlated with the effect of systemic risk in the three kinds
of interbank networks. Besides, we find that the value of
network entropy in the small-world network is the largest



among the three kinds of interbank networks, followed by
those in random and scale-free networks.

In this paper, we analyze the network entropy in known
network topologies. However, several works in the systemic
risk and banking literatures show that financial networks
are organized in a core-periphery structure. Therefore, we
believe that more research needs to be done in order to under-
stand how network entropy behaves in financial networks.
For example, how does network entropy behave in core-
periphery structures? Moreover, is the entropy dependent on
the network core size? Or does it show the same pattern
regardless of the periphery and core sizes? Similar to most
of the literature in this field, we define systemic risk as the
number of defaulting banks. In the future, we would consider
the total loss of capitalization of the banking system as a
robustness indicator.
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We propose a metamodel to assess simulated market stability by introducing information connectivity in an agent-based network.
The market is occupied by heterogeneous agents with different behaviors, strategies, and information connectivity. A jump-diffusion
process simulating events that may occur in the market is introduced. Agents information awareness varies along with agents
propensity to respond to the information jump and jump size. A jump reshuffles market positions based on agents risk preferences
determined by behavior and strategy. We examine the effect of information awareness on the volatility index of the simulated
market in a scale-free market network. The analysis is performed by developing five experiments wherein the first one corresponds
to systemic information ignorance state. Three experiments examine the role of hubs, normal agents, and hermits in the network
when intermediate combinations of agent types have information awareness. The fifth experiment corresponds to the systemic
information awareness with all agents being informed. The results show that the simulated market is driven to instability in a
similar manner to patterns observed in a crisis where all agents become homogeneous in information awareness of events. Hubs

contribute to increased connectivity and act as amplifiers of good, bad, or inaccurate information or sentiment.

1. Introduction

How should a financial economic environment simulator
(FEES) be designed and what should it inform? Our agent-
based approach ultimately provides such a FEES just as a
flight simulator offers the pilot a close-to-reality flying experi-
ence. However, the stage of reaching a truly complex financial
environment simulator is not yet mature enough and this
paper is one more step in that direction as it introduces infor-
mation jumps, heterogeneous agent behavioral responses,
information connectivity attributes, and a regulatory model
in one financial network metamodel; the term metamodel
in this paper is used in the sense that the ABM approach
for a financial market network simulation constitutes a
model of models. For the desired level of complexity, the
financial economic dynamics cannot be, thus far, expressed
analytically through a set of neatly justified equations. Thus,
the advantage of agent-based metamodels lies in their ability

to create sufficiently rich scenarios once the appropriate
components of a financial system are included and endowed
with their rules of interaction and transaction along with an
initial state.

In this paper, we build on the previous work of Khashanah
and Alsulaiman [1] where bounded rational heterogeneous
market metamodel of network of networks was developed to
explore the effect of the interaction of heterogeneous agents
on the market volatility and capital. This paper develops
the first metamodel for incorporating information jumps as
shocks in an agent-based approach and to equip agents with
heterogeneous response to information jump stimuli. Shocks
are essential for meaningful financial systemic risk simula-
tions. It is our philosophy to emphasize the quantitative-
simulative-empirical approach, which aims to quantify the
quantitative aspects of the problem, simulate the nonquan-
tifiable aspects of the problem, and calibrate the metamodel
parameters with empirical data. We do not agree with the
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excessive emphasis of some economic literature on analyzing
systemic risk from the perspective of banking systems only.
Markets, banks, intermediaries, media, and many other types
of agents collectively interact as nonlinear dynamical systems
in the financial ecosystem. Markets act as forward looking
indicators of collective intelligence in all sectors including the
banking system.

The novelty of our approach in this paper is to equip
agents with new features representing their response to
information flows including jumps. The idea that prices
are information-driven was explained by many researchers
starting with the work of Merton [2], yet those models
assume that information has been factored into the price
and may cause a jump in the price. Therefore, we obtain a
jump-diftusion model depicting postulated price dynamics.
However, market metamodels are interested in the mechanics
by which the network supports the conversion of news
into price impact. So far, market models in ABM have not
included information sources as drivers of emerging patterns
in market metamodels. As a first attempt to addressing this
shortcoming, we observe that news are mappings of events
into information from variable agent perspectives. Informa-
tion packets flow in the network wherever there is a channel
that supports that flow. Therefore, agents connectivity in our
network refers to the ability to conduct information between
two nodes. Thus we call it information connectivity. Since
events map into information and events come in bursts of
variable sizes, it makes sense to model information flow in
a financial network as a stochastic jump-diffusion process
that accounts for market events. Agents become receivers
of information flows. To equip agents with this feature, we
introduce the idea of agent information awareness in the net-
work. Agents awareness variability of events and their vari-
ability of mapping events into actionable information both
impact financial systemic patterns appearing in the financial
system. In general, agents have heterogeneous information
awareness; otherwise, agents are said to be homogeneous
in information awareness.

In ABM we calibrate the model to either theoretical
finance or empirical observations and then explore alterna-
tive scenarios that describe the relationship between mac-
robehaviors and micromotivations via the change of market
microstructure. This relationship may be explored to produce
the systemic patterns of markets under various scenarios. In
this study, we take the maximum volatility index as a proxy
measure of the systemic stability of the simulated market.

For the paper to be manageable, the analysis is carried out
by developing five scenarios for agents information awareness
of market events. The first and last scenarios are extreme cases
where it is assumed that none of the agents is informed and, in
the other, all agents are uniformly informed of the events. The
second scenario assumes that the hub agents in the network
are aware of events and they pass this information to the
agents that are directly connected to them. Similarly, the
third and fourth scenarios assume that agents with normal
connections and hermits are aware of information jumps in
the market, respectively.

The outline of this paper is as follows: Section 2 offers a
literature review. Section 3 presents definitions of the market
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metamodel, models, and rules of interactions. Section 4
extends the connectivity model and Section 5 shows the sim-
ulation results and analysis of the experiments. We conclude
with Section 6.

2. Literature Review

Researchers attempted to discover the causes of the anomalies
in the stock market even before the development of the ABM.
For over two decades researchers used ABM to explore com-
plexities of a financial market. This includes the pioneering
work of Kim and Markowitz [3] in 1989, the zero-intelligence
model of Gode and Sunder [4] in 1993, the heterogeneous
belief system of Brock and Hommes [5] in 1998, the Santa Fe
artificial stock market [6] in 1999, and the Ising Model by Iori
[7] in 2002.

Rules of interactions among market agents often find its
roots outside the ABM literature. For example, Campbell
and Kyle [8] derived an equilibrium model to examine the
dynamics of stock prices. The model was constructed in a way
that noise traders interact with smart money investors “fun-
damental traders.” They conclude that “overreaction” to the
news about the fundamental value creates an important type
of noise to stock movements; the term “noise” has a different
connotation than the one used in signal processing.

Existing models for analyzing financial systems are based
on top-down approaches, as explained in Bookstaber [9], and
focus on a comprehensive view while endeavoring to break
down the system into components, which may result in losing
a portion of variability such as behavior and agent interac-
tions. Additionally, Bookstaber categorizes the applications of
ABM in economics and finance into banks and assets man-
agement; real-estate markets; mortgage payments; payment
systems and credit risk; financial market microstructure; and
macroeconomics. In [10] Bookstaber et al. suggest that the
new version of the stress test should require more emphasis
on institutional interactions and feedback effects. Therefore,
Bookstaber et al. recommend using more adaptable models,
such as agent-based model, that are capable of capturing
more elements of systemic complexity and can evolve freely
from the history in a characteristic design similar to the real
systems.

Sornette [11] called attention to utilizing models of com-
plexity theory, such as network analysis and agent-based
models (ABM) to assess systemic risk. Helbing [12] expressed
that the catastrophe engendered by human factors can not be
clarified by analytical approaches only but rather requires a
collective comprehension of the social dynamics.

Thurner et al. [13, 14], as an implementation of ABM in
banking and asset management, studied the effect of leverage
on market behavior by building an ABM that allows borrow-
inglong assets with a margin. The results of such actions cause
fluctuations in prices, fat tail returns, and volatility clustering.
As a mechanism for contagion, a bank may liquidate some
of its assets to raise sufficient capital in response to a
margin call. Asset liquidation to cover margin calls becomes
a systemic risk when fire sale liquidations cause a downward
spiral price destruction and eventual crashes in extreme
cases.
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Poledna et al. [15] developed an ABM for simulating asset
credit regulation policy. The assessments were performed
under three different scenarios where in the first scenario the
regulator imposes limits on maximum leverage only. In the
second and third scenarios, Poledna et al. assessed the Basel
II policy and alternative hypothetical ones by which the banks
utilize options to hedge the risk completely. Kuzubas et al. [16]
simulate a financial network to examine the leverage effect in
the banking system. The results indicate that the difference in
leverage significantly affects the measure of systemic risk. The
paper studied the impact of Basel III regulations for charging
higher capital requirements for banks with higher leverage.
The results confirmed that such a rule would increase the
resilience of the system. In real-estate market application,
Gilbert et al. [17] built up an ABM to research the housing
market of the UK. The model accounts for interactions
between the buyers, seller, and realtors given a set of
endogenous and exogenous parameters representing agents
attributes such as wealth and regulator control factors like
interest rate. The results of the model show that house prices
are sensitive to interactions of interest rate and loan-to-value
(LTV) ratio. In addition, agents tend to cluster with high/low
priced houses according to wealth. Also, altering the tax
rate has an insignificant effect on house prices. Furthermore,
a shock in the market causes fluctuations in house prices.
Erlingsson et al. [18] generated an ABM of credit network
and performed a set of simulation experiments to inspect
the requirements for bank mortgages. The results show that
lowering the mortgage standards increases house prices in
the short term but leads to an unstable economic system in
the long run and may lead to a recession. However, limiting
home loans prerequisites helps market stability despite the
possibility of slowing down economic growth. Other studies
of systemic risk due to real-estate markets include the work
of Carstensen [19], Bjarnason [20], and Ge [21].

Also, researchers addressed the role of network theory
and agents direct interactions of model such as the models
of Panchenko et al. [22], Yeh and Yang [23], Delellis et al.
[24, 25], and Khashanah and Alsulaiman [1, 26]. For more
details of the ABM in market microstructure, readers may
refer to [27-30].

In postmodern finance with superconnectivity, agents in
markets trade information dynamics. This paper is the first
to introduce an information-based connectivity to model
a financial network of market agent interactions, including
information jumps, with heterogeneous agent response sys-
tem to information flows using the ABM methodology. This
paper investigates the impact of information connectivity on
systemic volatility, which is proposed as an elementary proxy
for the simulated market stability.

3. The Metamodel and Models

In this section, based on the metamodel of Khashanah
and Alsulaiman [1, 26], new definitions are introduced and
the new features are explained. In the previous work the
authors showed how the market volatility changes under
heterogeneous agents behavior. In this paper we simulate

financial market realizations to assess what may cause market
instability as a function of information flow with jumps with
heterogeneous agent information awareness and variable
connectivity. For this purpose, we introduce the following
definitions

Definition 1. The set B = {Bi,B,,...,B,,} denotes agent
behavioral types; the set § = {S;, S,,..., S} denotes the set of
k strategies;and @ = {0, 1,...,n—1} denotes a possible degree
of an agent with # the number of agents in the metamodel.

Definition 2. An agent is defined in terms of the attribute
vector a® = (b,gl)’s}(cl):dl(l)))l <i<n, b]('l) € B, e s,
and dl(i) € D.

Definition 3. The agent lattice of is the set f = B x S x D.

Definition 4. A market ./ consists of an agent lattice </, a
set of assets T, a set of regulatory frameworks %, and a set
of connectivity characteristics ¢ summarized as the 4-tuple
M=(d,T,R,6).

Definition 5. A market / is said to be homogeneous in
behavior if agents exhibit one behavior so that & is a
singleton; otherwise the market is said to be heterogeneous in
behavior. A market . is said to be homogeneous in strategy
if agents have one strategy so that § is a singleton; otherwise,
it is heterogeneous in strategy. A market .# is said to be
homogeneous in connectivity if agents are equally likely to be
connected forming a random network; otherwise, ./ is said
to be heterogeneous in connectivity.

Definition 6. A metamodel is a model of models. A market
A is a metamodel consisting of its component models and
their interactions expressed symbolically as the 4-tuple / =
(A, T, R,6).

Current practices of scientific methodology assume linear
interactions of models to produce a metamodel whose accu-
racy is as good as the minimum accuracy of its component
models; this topic deserves attention as it has impact on
advancing both complexity science and science complexity. A
new definition of approximation and intermodel propagation
of error is being developed in the context of quantitative-
simulative-empirical methodology.

The metamodel is designed so that agents may interact
directly in the trading environment where the network
topology follows a scale-free network type that is structured
based on the preferential attachment algorithm [31] with the
initial number of hubs H. In the experiments of this paper,
with Definitions 1 through 6, agents a, i = 1,2,...,211,
with attribute vector a? = (b]@, s,(j), dl(i)) withk = 1,...,4,
j =12,...,6,and ] = 0,1,...,210 referring to an agent
degree. The behavioral types set is identified with B =
{R,RO,RC,L,LO,LC} where R,RO,RC stand for the risk
averse, risk averse with overconfidence and risk averse with
conservative types. In addition, L, LO, LC stand for the loss
averse, loss averse with overconfidence and loss averse with
conservative types.



The strategies set, &, consists of four strategies: the first
strategy accounts for arbitrary traders that make invest-
ment decisions randomly, called zero-intelligence agents, and
denoted by Z. The second investment strategy accounts for
fundamental traders, denoted by F, who concentrate on the
fundamental value of the asset, not on historical prices. The
third type is referred to as momentum traders or technical
traders, denoted by T, and the fourth type is called adaptive
traders, denoted by N, with artificial intelligence capabilities
using neural networks (NN); thus, & = {Z,F, T, N}. The
last two types distinguish themselves from the first two
types in their practice that historical prices contain relevant
information to future decisions.

Using Definition 5, the market .# under consideration
is heterogeneous in behavior, strategy and connectivity. The
agent lattice &/ in this experiment is the collection of agents
possible states. Thus the market .# contains | x §| =
24 possible types of agents as a result of combinations of
behaviors and strategies. Allowing for degrees to change, we
obtain the number of points in the agent lattice to be |</| =
24 x 210 = 5040, however, only 211 points in the agent lattice
can be occupied at a given state of the market. Putting a
practical upper limit on the agent degree reduces the agent
lattice cardinality to reduce computational complexity.

The set of assets I in this experiment contains two assets:
the risk-free rate asset and one risky asset. Furthermore, the
regulatory set # = {rf,c, B, S} with the risk-free rate s
taxation ¢, and buying and selling power B and S as control
parameters. The regulatory environment can be designed to
approximately map its real constructs in various financial
economic systems.

The set of information connectivity characteristics
depends on the network topology of the market. In this paper,
our metamodel is heterogeneous in information connectivity
in the sense of Definition 5 since the underlying network
is scale-free. As part of connectivity characteristics, we
introduce the new feature of heterogeneous ability to acquire
information and be aware of information flows and call it
information awareness in the market network. We consider
this feature to be a function of agent connectivity and the
coordinates of the agent in the agent lattice. More precisely, it
is postulated that this property is a function of betweenness
centrality of an agent. In our metamodel, heterogeneous
agent awareness and the variability of mapping events
into actionable information depending on agent awareness
impact systemic patterns. The relationship between the
interconnectivity and systemic risk depends on the definition
of connectivity. In most studies on connectivity and systemic
risk, connectivity is implied by the level of cash flow and risk
flow, which are two important dimensions. In our context,
information connectivity in terms of information flow is
emphasized and, with third-party settlement, there is no
direct transactional connectivity in this model. There is a
reason for this type distinction between connectivity types:
information dynamics, including market sentiments, lead
to decisions on positions (such as buy, sell, or hold), which
result in some transactions. In general, an information
connectivity network is not identical to the corresponding
transactional or cash flow connectivity network of the same
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market but rather the networks are dynamically linked with
a variable lag. In an upcoming work, multidimensional
connectivity types are considered including agent-bank,
transactional, cash flow, and risk connectivity.

Agents belong to the market . to achieve their objec-
tives. Agents myopically aim to maximize their utility func-
tion given the wealth constraint [32]. The solution of the
optimization problem is given by

s Ei (Dot +dpar) — (1 + ”f)Pt T cpy

I @
e A VoslBos v
where j denotes the behavior of the agent, which is identified
with the set of behavioral types 9. With keeping the order,
{R,RO,RC,L,LO,LC} = {1,2,3,4,5, 6} so that, for example,
j = 1 corresponds to risk averse type R and so on. The expec-
tation E; ;,(pr.q + d;,y) is the expected price and dividend
for the next time step, which is crucial for the determination
of optimal holding. The expectations of heterogeneous agents
are by necessity diverse and they are determined based on
investment strategies explained in the next section. Here

o} 4. is the conditional standard deviation of price and
Lt Pre g 5

dividend at time ¢ + 1. For simplicity, 07, , .4
be constant of unit value. The change in the sign in the above
equation opposite the state of E; ; (P, +dyi) — (1 +714)p,
makes x; i+ = 0. By the change in the sign, we mean that the
negative sign follows the positive state of E; ;,(p,, + dyyy) —
(1 + rf)p, and the positive sign follows the negative state of
E;jt(Prs1 + dpsy) = (L+715)py

Agent behaviors are quantified by assigning values to
coefficients. Hence, the risk aversion coeflicient A = 4, loss
aversion coeflicient f = 2.5as j =4, 5 or, 6,and AW, ;, <
0. Consider overconfidence/conservative v where v = v. = 3
asj =3o0r6v =1ifj =1or4,andv = v, = 0.75
as j = 2 or 5. The intuition behind the agent behaviors
quantification is that the overconfidence/conservative agents
tend to hold, sell higher, or lower portion of stock over the
neutral traders. Also, the loss averse traders tend to reduce
their positions as confronted with a loss at a given reference
point AW, ;, as it has been indicated by Kahneman and
Tversky [33]—individuals are impacted by losses more than
profits.

The expectation E; ;,(p,,; +d,) in (1) is a critical variable
in the model. It is estimated individually given the agent
trading strategy. The zero-intelligence agents quantitatively
and randomly expect future prices and dividends as

is assumed to

Ei,j,t =U (py —2a, py +2a) +U (dy — 2b,d, + 2b), (2)

where a and b are fixed at a = 270 and b = 8 in this
study to reduce computational complexity and U = U(a, b)
is the uniform distribution on [a, b] whose parameters can
be calibrated.

The fundamental agents keep an eye on the fundamental
process of the asset price where it is assumed that the
dividends follow the process:

d, = dt,le(#d7(1/2)03*1 At+o,_, VAIW, ’ 3)
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where p1; = 0.05 is the growth rate of the dividend, o, is the
dividend volatility, and W, is a Wiener process with normal

distributions ~N(0, oy, ). The variance o7 may be estimated
using GARCH (1,1):

2 2 2
o; =al +alr;, + o, |, (4)

where o = 0.0097, &Jr} | = 0.168, and %0, | = 0.766. The
fundamental prices of the asset then follow Williams [34]:

Py = (5)
s
where r rlis the risk-free rate. This fundamental value method

works well as longas 0 < ry < 7.
The expected dividends and prices for agent i are

- E;ji [dis]
Eijy [Pei] = ]tr—fﬁ’ ©)

Ei,j,t [Pr1 + ] = Ei,j,t [Pena] + Ei,j,t [d]-

The momentum agents verify the saying “the trend is your
friend,” and they buy/sell if the previous returns are posi-
tive/negative:

'dt +d, ((p,-,j,t) ifry, >0
Ei,j,t [dt+1] =14d, - t((Pi,j,t) ifry, <0
Ldt if rd,t =0,
) (7)
P+ Py ((Pi,j,t) ifrg, >0
Ei,j,t [Peni] = 1P: - Pt (‘Pi,j,t) if rgy <0
Apt lf rd)t = 0,

where ¢, ;, ~U(0.8,1.2).

Thelast trading strategy in & = {Z, F, T, N} in the strategy
model is an adaptive trading strategy N where the neural
network is utilized for prediction execution. The designed
neural network is a feed-forward network where the input
to nodes IN; ; represents past returns of the stock that are
uniformly distributed among the agents with the minimum
of one previous return and maximum of ten past returns.
Also, the neural network consists of one hidden layer that
may be composed of one to ten nodes HN,; with equal
probability for agent i. The output of the neural network is
the expected return at time ¢ + 1 that will be mapped to
Ei) it[Prr1] and comparative approach applies to E,-, ieldial
Agents will learn by updating the weights inside the neural
network from the training data L where the training follows
uniform distribution from 10 to 100. The neural network is
invoked customarily according to parameter K = 0.1. The
stopping criteria are subject to maximum iteration iter or
base error e.

Agents may change their initial decisions of stock holding
x; as a consequence of the interaction with other agents.
Whenever agents have a direct interaction with each other

with a chance to share their market sentiment, agents may be
influenced to change their outlook on the market as a result
of the interaction. Notice that market sentiment sharing is a
form of information connectivity. The final holding decision
X is then constructed as the weighted average of the agent
initial decision and initial decisions of the connected agents:

*
X, it

L (v
o X+

1,7V, 5t N i,jt
Dkt Lik
#

Xijt otherwise,

if connections > 0 (8)

where X i is the final decision for agent i and « is a given
weight for the initial decision of holding shares of stock x; it
for agent i, N is the total number of agents, and I;; = 1 if kis
connected to i and zero otherwise.

The price formation will follow the price adjustment
method [35-38]. The price adjustment process achieves local
price equilibrium in the market based on the aggregate bids
and offers

P =P [1+7(B, - O], 9)

where p, is the market price at time ¢, % is the price adjustment
speed relative to the spread, that is, a simplified form of
market efficiency. Further, B, represents the total number of
bids among all agents and O, is the total number of offers.

4. Exogenous Factors and Market Reactions

In this study, information flow including jumps is intro-
duced in the ABM metamodel. The market ./ “consumes”
information and converts it through agent responses into
new realizations of prices and positions. The market .#
may be influenced by nonsystematic events such as political,
economic, and natural disasters, wars, or, in this day and
age, tweets and fake news. For asset price dynamics, Merton’s
jump-diffusion model superposes jumps on a diffusion pro-
cess [2] with jumps following a compound Poisson process.
Merton’s model is a special case of Lévy processes. Most
literature in finance on jumps has been in conjunction with
option pricing as the underlying asset undergoes a jump.
A good reference on the subject of jumps is the book by
Tankov [39]. For the purpose of this paper, and as a first
approximation, we postulate that the information flow I,
process follows a jump-diffusion process. The process of
jumps follows the notation and construct in [40], with
the usual definition of a probability space (Q, F,P) as a
probability space with information filtration {#,},., and the
information process I, defined on the probability space with
dynamics expressed by the stochastic differential equation
(SDE)

dI

I—f = udt + odW, + ] (Q) dN,, (10)
t

where y is the drift coefficients and o is the volatility—both

are assumed to be constant. W, is a continuous Brownian
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FIGURE 1: Simulated process A = 0.2 (a) and empirical jumps of 2008 S&P 500 prices (b).

TABLE 1: Population size of agents types.

V4 F M N
Population size

R 7 8 10 8
RO 10 7 10 10
RC 8 10
L 9 10
LO 7 10
LC 1 14 8

motion process and N, is Poisson process adapted to the
filtration with constant rate A with P(N, = n) = ((At)"/ n)e M.
As in [40], the term J(Q) is a jump amplitude process.
The three processes, W;, N,, and J(Q), are assumed to be
independent and the jump process, as in Merton model, is
taken to be a compound Poisson process in the sense that we
can sum jump amplitudes of Poisson jumps occurring over
a given time interval. Using It6 calculus the solution of (10)
takes the form

L=1, e(y—(l/Z)az)AHU\/EVVﬁQANt' (1)

The price process is assumed to follow the same dynamics.
Our implementation calibrates A to empirical jumps of price
time series with a predefined jump threshold. For example,
for the S&P500 price process, for the year of 2008, with
a threshold of +10%, we collect return jumps in the set
Ja00s{re, ¢ Iry, | > 0.1}, which is a time subseries of the return
time series.

The jump size distribution, Q, can be assumed to be
normally distributed which sufficiently achieves our imple-
mentation for this paper

Q; =pu+oe (12)

with constant ji being the jump mean and & being the
jump standard deviation. Kou and Wang assume double
exponential distribution as in “option pricing under a double
exponential jump-diffusion model,” Management Science, 50
(2004), pp. 1178-1192. For example, in the 2008 sample we find

f# = —0.052 for negative jumps and ji = 0.045 for positive
jumps. The & = 0.022 is the jump standard deviation and
€, ~ N(0,1).

Figure 1 shows the empirical jumps of the S&P500 in 2008
(a) and the simulated process for the corresponding period
with A = 0.2. The empirical jumps exhibit the phenomenon of
jump clustering, which invites, in an upcoming work, the use
of more sophisticated jump processes such as Hawkes self-
exciting processes.

In this metamodel, the jump is restricted to being in
response to an exogenous shock of the nonsystematic type
as Merton [2] explained “the Poisson distributed ‘event’ is
an arrival of an important piece of information about the
stock.” However, the news arrival is converted by agents into
actions of buy, sell, or hold, which collectively reflect in the
jump price. In other words, the price jump is in fact an
aggregate response to the stimuli of a jump in the information
space. If the market is homogeneous in behavior, strategy, and
connectivity, agents’ response will be homogeneous.

Heterogeneous awareness of news produces variable time
responses, so, as a first attempt, we relate the instances of
jumps to agents’ connectivity. There are a total of 211 agents in
the trading space by which they remain distributed according
to the behavior and strategy as shown in Table 1.

The number of direct relations is varied among agents.
The network degrees follow a power-law distribution with
H = 5. We divided agents in terms of connectivity into three
classes: hubs, normal, and hermits. The links for each agent
are demonstrated in Table 2.
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TABLE 3: Possible states of information flow awareness.

Systemic ignorance Only hubs ~ Only normal  Only hermits Normall and Hubs a}nd Hubs and Systemic
hermits hermits normal awareness
000 100 010 001 011 101 110 11

The market’s environment contains 69 individuals that
have more than 9 connections. Also, it accommodates 60
agents with degrees between 7 and 8 and 82 agents with less
than or equal to 6 edges. In addition, hubs connect with 1189
links, the normal class include 661 links, and hermits needed
464 links.

Mechanically, in order to incorporate the impact of
jumps, we assume that agents exposed to the news process
will reverse their position to be in the direction of the jump
for a period that is proportionate to the jump size. On
the other hand, the impact of a jump fades away as time
progresses; thus, the design of a jump impact time function
T,, can be expressed as

7, = 0] (QIT if jump occurs at £, (13)

where w ~ N(0.04,0.01) represents an agent propensity
to react to a jump, T stands for the simulation termination
time, J(Q) stands for the magnitude of the jump, and T,
expresses the period of time an agent is impacted by the
jump occurring at t,. The impact is realized through the agent
reversal of a position from long (short) to short (long) on
a negative (positive) jump with reversal impact time lasting
7;,- An agent does not change position if the direction of the
jump is aligned with his/her position so that, in that case,
7,, = 0. In the design of this metamodel, the market clock
is shared by all agents so that trades occur at uniform discrete
times. Agents who reverse positions continue doing so in
subsequent trades until the impact fades away, that is, for a
period of time ¢t € [t;,7, ] or unless a new jump arrives,
whichever comes first. When a new jump arrives, the clock 7,
is reset to the new jump occurrence. Therefore, the function
7,, can be viewed as the time horizon of the impact of a jump
of size J(Q) occurring at time ¢, on an agent with parameter
w over a time of simulation T In further work we extend the
time horizon impact function to be a function of behavior and
strategy.

Therefore, an agent reallocates positions conditional on
the agent awareness of the jump according to

(xz ity | @ is aware of the jump)

_ {_xz]‘)to
x; to
5. Information Awareness and
the Volatility Index

if x; i+, Position is opposite to jump direction (14)

otherwise.

We examine the market .# under different systemic expo-
sures g to the information flow. The index g represents the
state of agents awareness in the market and these states can

be large or infinite in general. For the sake of this paper,
we present a discretization of such states by assigning binary
states to each type of agent as defined with attribute vectors
a® = (bJ(.i), s,(ci),dl(i)), i,1 < i < n. In this experiment, with the

agent degree dl(’) € {4,...,49}, there are three types of agents:
hubs, normal, and hermits whose states of awareness are
designated as g,, g,, and g, respectively. In general the index
of type awareness can be partially realized but to simplify we
assume that the type is either aware or not aware of market
information; thus the range of type awareness takes values in
g; €10,1},i = 1,2, 3. This simplification yields eight possible
systemic awareness states ranging between systemic ignorance
corresponding to state 000 and systemic awareness in state
111; see Table 3.

The objective is to test the effect of agents information
awareness of events on the volatility and standard deviation
of returns. Formally we state the following hypothesis:

Hy:91=9,=95=0,
H, : at least one g; # 0.

(15)

To test the hypothesis, a one-factor factorial design is
implemented where the factor is type awareness of events. The
null hypothesis H; is systemic ignorance while the alternate
H, represents that at least one agent type has information
awareness. The test aims to specify if there is a significant
difference between the model outputs of maximum volatility
of returns. The hypothesis can be rewritten in terms of
the maximum volatility V™ and standard deviation o, of
returns.

A Monte Carlo simulation is implemented in order to
collect the necessary statistical outputs for the ANOVA. The
experiment replicates the Monte Carlo runs thirty times for
each factor for a time horizon of 1000 days. This brings the
total collected daily prices to 120,000. From theses collected
time series, we have calculated the daily returns and the
volatility index. Subsequently, the ANOVA procedure tests
whether there is a significant difference between maximum
volatility and the standard deviations of the returns in the
predescribed cases. Figures 7-11 show the results of simula-
tion experiments. Figure 2 shows the box plot of the obtained
maximum volatility index and Figure 3 shows return standard
deviations.

ANOVA shows that there is a significant difference
between the experiments where the p values were close to
zero. Table 4 summarizes the results of the analysis. The
Tukey range test clusters the experiments into three groups
in terms of the standard deviations of returns. The first group
contains the case of systemic ignorance of jump events with
the mean of annual volatility of returns over thirty runs of
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TABLE 4: ANOVA table.
Volatility index
SS DOF MS F-value p value
Intercept 340546.49 1 340546.49 5618.04398 0
Agents exposure 36287.1146 4 9071.77865 149.658425 0
Replication 1467.84234 29 50.6152532 0.835007046 0.70593738
Error 7031.52075 116 60.6165582
Returns standard deviations
SS DOF MS F p
Intercept 0.081547 1 0.081547 7853.254 0
Agents exposure 0.011833 4 0.002958 284.894 0
Replication 0.000186 29 0.000006 0.616 0.933521
Error 0.001205 116 0.00001
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FIGURE 2: Box plot for the obtained simulation outputs of the
maximum level of volatility index.

12.5%. The second group includes the group corresponding
to the awareness state of 010, that is, when only agents with
normal connections are aware of events wherein the mean
of the annual volatility of the thirty simulation runs was
29.8%. The third group corresponds to state 111 of systemic
awareness of jumps, which demonstrates that the annual
volatility increases dramatically in a statistically significant
manner compared to the other two states.

In terms of the volatility index, the experiments were
classified into three groups as well. However, the results
demonstrate that the maximum volatility index is signifi-
cantly different from the other states when the agents are
not aware of jumps or when only agents with normal range
connection are exposed to the jumps. On the other hand,

Combinations

F1GURE 3: Box plot for the obtained simulation outputs of the mean
returns standard deviation.

while no significant difference is observed on volatility of
awareness between hubs (state 100) and hermits (state 001)
agents to jump events in the market, both cases drive the
simulated market out of stability. The average of maximum
volatility index over the thirty runs realizes 51.1% and
49.2% for states 100 and 001, respectively. Hubs have large
connectivity and act as amplifiers of buy or a sell signal
as they influence other agents by their decisions. Hubs
increase the likelihood of information awareness convergence
and in the extreme can lead to herding behavior. On the
other hand, the population of hermits agents is quite large
offsetting the perceived low number of connections (power
of the masses). This property does not allow hermits to be
influenced by the sentiment of other agents in the network
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and thereby their decisions cumulatively raise fear in the
market.

The expected behavior of the market under modern
finance axioms of no-arbitrage in a normal regime is sim-
ilar to the state of systemic ignorance 000. The maximum
observed volatility index was 31 for the year 2007 just before
the financial crisis when the market shows a normal regime.
However, in a rally regime such as that observed in the period
between 2010 and 2014, the maximum volatility index was 48.
This behavior is similar to that when the hubs and hermits
are aware of information. Furthermore, the overall behavior
ranges between these cases when the normal agents are aware
of the information.

Finally, in systemic awareness case 111, the fear level
attains its volatility index maximum of 74.1 given all statistical
tests. Empirically, in the presence of successive jumps and
systemic awareness, as it was the case during the financial
crisis of 2008, this result agrees simulatively with the empir-
ical observation of VIX realizing its maximum of 80.86 on
November 20, 2008.

Furthermore, we calculated the degree centralization of
the network using Freeman’s general formula [41]:

_26Cp (n") - Cp (i)

= , 16
PTIIN-1)(N-2)] 19

where Cp, represents the centralization of the network,
Cp(n*) represents the maximum number of edges in the
network, Cp(i) represents the edges of node i, and N
represents the total number of nodes in the network.

The degree centrality of the calibrated network was 0.2.
Assuming that the volatility index can serve as a proxy
measure of finical stability, we run Monte Carlo simulation
of a decentralized network (C, = 0). In the decentralized
network, all agents are equally connected. Figures 4 and 5
show the calibrated and decentralized networks, respectively.

Under the assumption that 30% of the population has
information awareness, the Monte Carlo simulation for thirty
times is performed. The mean of the maximum volatility
index records 23.5, which is close to the case of the normal
agents awareness and systemic ignorance in the previous
experiments. In addition, the mean of the return standard
deviations of the runs is 0.014, which is comparable to state
010. Figure 6 shows the market dynamics over the Monte
Carlo runs.

In future research, we examine the market dynamics
under various levels of network centralization. Also, we
consider an assortative network structure wherein agents
tend to share information with agents of similar attribute
and compare it to a disassortative network structure where
opposite-in-attributes may share information awareness.

The results can be partially compared to the model of
Panchenko et al. [22] where they investigated the market
under various network topology and concluded that the
latency in information transmission (such as in lattice and
small world network) may cause the market instability.
However, the case here is quite different where our analysis
is predicated on the market network following a power-law
distribution and thereby allowing some nodes to be hubs

Complexity

with high degree and many hermits nodes with few edges.
The main conclusion is that, in this simulated market, the
aggressive reaction to the news from a large size of population
or a population of highly connected individuals may drive the
market out of stability.

6. Conclusion

The main contribution of this research is to advance a more
realistic metamodel of markets that leads to a financial
economic environment simulator. To this end, a formal
mathematical definition of a market is introduced along
with equipping agents with new attributes such as infor-
mation awareness of jumps in the context of a scale-free
network. This paper focuses on constructing a metamodel
for stylized stability of simulated financial markets with
emphasis on agents information connectivity, awareness,
and propensity to respond to information exposure with
a transaction. This paper offers a metamodel of a hetero-
geneous market where the agent transaction decisions are
placed based on a certain set of attributes. Agents decisions
change with behaviors, trading strategies, and the inter-
actions with other agents. Trading strategies include arbi-
trary zero-intelligence, fundamental, trend following, and
adaptive strategies that utilize neural network as a learning
mechanism. In addition, behaviors such as risk and loss
aversion, conservativeness, and overconfidence are included
in the model. Also, agents interact directly by sharing mar-
ket sentiment through a network following the power-law
distribution.

A stochastic jump-diffusion process models jump events
affecting the market. Agents may or may not be aware of these
events depending on their classification. We introduce the
concept of agent information awareness as an agent feature
and make it a function of connectivity. If the event is known
to the agent, the agent adjusts positions depending on the
jump direction. The process will continue for a time-frame
proportionate to the jump size, and thus we introduced
the idea of a time horizon impact of a jump on an agent.
Persistence of impact should be proportionate to the size
of the jump and to agent propensity to react when a jump
occurs.

Five experiments were designed to investigate the effect of
agents’ awareness of market dynamics and jump events. The
analysis of the experiments was implemented using ANOVA.
The results show that there is a significant dependence of
outputs of various scenarios on the market information
awareness states. The mean volatility and volatility index are
lowest in the state of systemic ignorance. On the other hand,
the volatility and fear index increase as hubs or hermits
do observe jumps. The reason is that a large number of
connections in the network belong to hubs, which increases
the spread of news and impacts market sentiment collec-
tively. The population size of hermits is quite large but
relatively isolated from other agents and thus hermits are
not influenced by market sentiment and this property can
drive the simulated market out of stability. Normal agents
information awareness has significant effects on market
stability but does not reach the level of hubs and hermits



Complexity

| /|

N

@ Rz O 1z O RF O LF
@ RrOZ O Loz O ROF © LOF
© RrCz O 1cz O RCF O LCF

yiviy

e\

W 0
@ §"~‘5’}

w ¥

1

“ )
Y- V=

e BNy
oo

i b//';"i\‘\ y‘"
‘ \:“.

O rRM @ LM @ RN @ LN
© rOM @® LOM @ RON @ LON
@ RCM @ LCM @ RCN @ ICN

FIGURE 4: Calibrated network.

effects. In the case where agents information awareness of
negative events increases, the fear index reaches its high
limit.

In future research and in the context of financial eco-
nomic environment simulator, we are interested in distin-
guishing between the state of persistent positive events that

may lead to euphoric responses that ride on hopes of ever
higher returns, on the one side, and negative large jumps
causing excessive fear in agents and leading to the price
destruction. It is postulated that both cases of excessive hope
or fear exhibit information awareness convergence—one on
the positive, optimistic side (false as it may be) and the other
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on the negative pessimistic side. In other words, a future
financial economic environment simulator should be able
to capture the state prior to the 2008 crisis wherein agents
were in the state best described as “irrational exuberance”
(Alan Greenspan) of unfounded hope of sustainable systemic

overperformance and be able to model the opposite state
of settling fear during a crisis where agents, individuals,
institutional traders, and brokers converged to a negative
homogeneous information awareness state, summarized by
the market becoming to many as “uninvestable”.
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We investigate a multiplex network of the guarantee market with three layers corresponding to different types of guarantee
relationships in China. We find that three single-layer networks all have the scale-free property and are of disassortative nature. A
single-layer network is not quite representative of another single-layer network. The result of the betweenness centrality shows that
central companies in one layer are not necessarily central in another layer. And the eigenvector centrality has the same result of the

betweenness centrality except the top central company.

1. Introduction

The global financial crisis of 2007-2009 has shown how
interconnected the global financial system is. Financial insti-
tutions’ interconnections can serve as a channel for systemic
risk and have been directly linked to the stability of financial
systems. Network analysis has contributed to characterizing,
understanding, and modeling financial institutions’ inter-
connections, which is gaining popularity across academics,
regulators, and policymakers.

There are a lot of studies on financial networks and sys-
temic risk (see, e.g., Allen and Gale [1]; Nier et al. [2]; May and
Arinaminpathy [3]; Gai et al. [4]; Li [5]; Li and He [6]; Georg
[7]; Sachs [8]; Sensoy and Tabak [9]; Aymanns and Georg
[10]; Acemoglu et al. [11]; Chen et al. [12]; Betz et al. [13]; Liet
al. [14]; Li and Sui [15]; Gonzélez-Avella et al. [16]; Sensoy et
al. [17]; Christiano Silva et al. [18-21]; Silva et al. [22].), while
financial institutions interact in just one way in most of these
studies. In fact, financial institutions interact in many ways.
Such a situation is best modeled with a multiplex network,
where a multiplex network is made up with several layers,
each of them composed of all relations of the same type and
modeled with a simple network [23]. Multiplex networks can
explicitly incorporate multiple channels of connectivity and
constitute the natural environment to describe systems inter-
connected through different categories of connections [24].

Mapping out the structure of complex systems as a monoplex
network could lead to missing relevant information [25]. For
example, Poledna et al. [26] find that modeling contagion
using each layer independently can lead to an underesti-
mation of systemic risk. Therefore, the multiplex network
method is useful in improving our understanding of complex
systems by taking such multilayer features into account.

The theory of multiplex networks is in its early stages and
has been introduced within the last three years to analyze
the structure of financial systems [27]. The study of financial
multiplex networks has only appeared recently. Empirical
analyses of the financial multiplex networks of Colombia,
UK, Mexico, Italy, Europe, and USA are provided by Ledén
et al. [28], Langfield et al. [29], Molina-Borboa et al. [30],
Bargigli et al. [31], Aldasoro and Alves [32], and Musmeci et
al. [33], respectively.

Ledn et al. [28] investigate a multiplex network of Colom-
bian sovereign securities settlements corresponding to the
three sovereign securities’ trading and registering environ-
ments and find that the multiplex network has some features,
such as sparse, inhomogeneous, scale-free, ultra-small-world,
and clustered. Langfield et al. [29] construct the multiplex
network of the UK interbank market and find that the net-
work of interbank exposures exhibits a core-periphery struc-
ture and the funding network has less of a core-periphery
structure. Molina-Borboa et al. [30] analyze the persistence
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and overlap of relationships between banks in a multiplex
network of the Mexican banking system, where the multiplex
network includes five layers, namely, collateralized loans
between banks, new deposits and loans, securities, outstand-
ing deposits, and loans and derivatives. Bargigli et al. [31]
analyze the Italian interbank multiplex network by transac-
tion type and by maturity and find that layers have different
topological properties and persistence over time. Aldasoro
and Alves [32] adopt data on interbank exposures broken
down by both maturity and instrument type to investigate
structures of the multiplex network of large European banks
and find that the network presents positive correlated multi-
plexity and a high similarity between layers. Musmeci et al.
[33] analyze structural properties of the multiplex network of
US stock markets, which includes four layers corresponding,
respectively, to linear, nonlinear, tail, and partial correlations
among a set of financial time series. They find that some
features are unique to the multiplex structure and would not
be visible otherwise by the separate analysis of the single-layer
networks.

In recent years, China’s listed companies widely adopt
different forms of guarantee to form a complex guarantee
circle, which reduces the difficulty of corporate finance to a
certain extent. But this also provides risk contagion channels
among listed companies. Generally, listed companies who
require guarantees tend to have relatively poor performance
and relatively large financial risk. Once a listed company has
bankruptcy risk, it may result in risk contagion among listed
companies through guarantee connections and even lead to
systemic risk. Since 2012, the frequency of China’s guarantee
circle crisis is increasing, such as, the guarantee circle crisis
in Zhejiang, Shanghai, Shandong, and other places.

In this paper, we investigate structures of the multiplex
network of the guarantee market in China, which would
be conducive to preventing risk contagion in the guarantee
market. The study on financial multiplex networks is still pre-
liminary. Existing empirical study on financial multiplex net-
works only analyzes sovereign securities markets, interbank
markets, and stock markets. Therefore, this paper contributes
to the literature on financial multiplex networks. Second, we
study different segments of the guarantee market by guaran-
tee types, and this would help to understand the economics
of guarantee market infrastructures as the collective function
of several layers of interaction between financial institutions.

The rest of the paper is organized as follows. Section 2
presents the guarantee multiplex network and the data
set. Section 3 presents the results of single-layer networks.
Section 4 presents the results of multiplex networks. And the
conclusion is drawn in Section 5.

2. Guarantee Multiplex Network and
Data Description

2.1. Guarantee Multiplex Network. We consider a guarantee
market consisting of N listed companies and m different
types of guarantee relationships. We can adopt the multiplex
network to describe the structure of the guarantee market.
A network consisting of a type of relationship can be
described by a adjacency matrix. Moreover, the structure of
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the guarantee market can fully be described by the set of
adjacency matrices, which is given as follows:
A:{A[l],A[Z],...,A[m]}, (1)
where A% = {ag}, with ag. = 1 if there is the 0 type guarantee
relationship between listed company i and listed company j;
otherwise a?j =0.
If we consider the amount of the guarantee, we can fully

describe the structure of the guarantee market by the set of
weighted adjacency matrices,

w = {wwb o wt )

where W% = {VVS} and VVS denotes the amount of the 6 type
guarantee. In this paper, we only analyze unweighted multi-
plex networks of the guarantee market in China.

2.2. Data Description. In this paper, we investigate guarantee
relationships of listed companies in China, where the data
used stem from the Wind database and the time interval is
from 2005 to 2015. The Wind database is a leading integrated
service provider of financial data in China. In order to
simplify data processing, we regard guarantee relationships
of subsidiaries as their parent companies. Besides, if there are
more than one guarantee contract between two companies,
we assumed that there is only one edge between these com-
panies.

There are 8 types of guarantee relationships among listed
companies, namely, joint liability guarantee (JLG), guaran-
teed guarantee (GUQG), credit guarantee (CRG), counter guar-
antee (COG), general guarantee (GEG), mutual guarantee
(MUG), mortgage guarantee (MOG), and pledge guarantee
(PLG). Table 1 shows numbers of companies and guarantee
relationships from 2005 to 2015. Although various guarantee
relationships all play an important role in corporate finance,
there are some differences among them. In fact, from Table 1,
we can obtain the numbers of the 8 types of guarantee
relationships from 2005 to 2015, where the numbers of JLG,
GUG, CRG, COG, GEG, MUG, MOG, and PLG are 26126,
1705, 710, 106, 3402, 204, 1121, and 551, respectively. It can be
seen that the numbers of JLG, GUG, and GEG are the largest
three. Therefore, in this paper, we investigate a multiplex
network with three layers corresponding, respectively, to
JLG, GUG, and GEG. Due to the different time period of
guarantees, in this paper we construct networks based on all
data from 2005 to 2015 without special instructions.

3. Structure Analysis of Single-Layer Networks

We first investigate topological structures of the three single-
layer networks. Figure 1 shows the distributions of degrees of
nodes of the JLG network, the GUG network, and the GEG
network. It can be seen that degree distributions of these three
networks follow a power law, and corresponding exponents
are 3.2200, 2.9000, and 2.8900, respectively. Therefore, three
single-layer networks all have the scale-free property. This
result means that there is a very strong heterogeneity of the
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TABLE 1: Numbers of companies and guarantee relationships from 2005 to 2015.
Year Number of companies JLG GUG CRG COG GEG MUG MOG PLG
2005 1869 1522 135 48 8 154 37 32 20
2006 1772 1424 104 42 6 199 40 30 6
2007 1619 1207 134 66 8 181 43 35 11
2008 1508 1184 123 36 12 120 29 39 17
2009 1291 967 120 34 14 119 23 46 15
2010 2808 1834 395 271 25 170 13 88 108
2011 2643 1937 379 176 29 96 19 86 24
2012 3661 3019 83 6 4 494 0 155 51
2013 4354 3618 78 15 0 545 0 199 88
2014 4900 4102 99 13 0 613 0 184 100
2015 6150 5312 55 3 0 711 0 227 111
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FIGURE 1: Distribution of degrees of nodes of single-layer networks.

single-layer networks, with few important hubs and many
nodes with low degree. This means that few listed companies
are at the heart of the guarantee market in China. If these
listed companies go bankrupt, it is likely to lead to the break
of the guarantee chain, which may lead to regional financial
crisis.

Next we analyze degree correlations of the three single-
layer networks, which can be measured by the following
formula [34]:

r

B MY, ik - [MW1 ¥ (1/2) (j; +ki)]2 )
MY (12) (2 + k) - [MU Y, (12) (i + k)]

where j;, k; are the degrees of the nodes at the ends of the ith
edge, with i = 1,2,..., M. This formula measures whether
a node of high degree at one end of a link prefers a node of
high degree (assortative mixing, » > 0) or low degree (dis-
assortative mixing r < 0) at the other end. According to this
formula, we can obtain that r values of JLG, GUG, and GEG
networks are —0.3000, —0.1780, and —0.1670, respectively.
This indicates that the three single-layer networks are of
disassortative nature; that is, companies of high degrees tend

to be connected to companies with low degrees. The possible
reason for this is that companies tend to find companies with
high credit for guarantee, where companies with high credit
usually have high degrees. Therefore, it is necessary to identify
the so-called systemically important listed companies, which
would adversely affect large parts of the guarantee network in
case of their bankruptcies.

4. Structure Analysis of Multiplex Networks

4.1. Similarity Analysis. In this section, we focus on analyzing
the similarity between different layers, where the similarity
analysis assesses to what extent a layer is representative of the
other. We adopt the Jaccard similarity J to analyze network
similarity, where the Jaccard similarity is the probability of
observing a link in a network conditional on the observation
of the same link in the other network [31]. The Jaccard
similarity J is defined as follows [31]:

IPAQ

P,Q) = ,
J(P,Q) PV Q)

(4)

where A(V) is the entry-wise maximum (minimum) of P and

Q.
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TABLE 2: Jaccard similarity of the JLG network over time.
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2005 0.4430 0.3060 0.2280 0.1710 0.0900 0.0700 0.0500 0.0410 0.0350 0.0270
2006 0.4590 0.3000 0.2160 0.1140 0.0860 0.0650 0.0470 0.0390 0.0290
2007 0.4660 0.3150 0.1490 0.1090 0.0760 0.0550 0.0440 0.0340
2008 0.4560 0.2090 0.1470 0.0950 0.0650 0.0530 0.0390
2009 0.2730 0.1890 0.1150 0.0780 0.0600 0.0430
2010 0.4120 0.2580 0.1770 0.1410 0.1050
2011 0.3390 0.2230 0.1730 0.1260
2012 0.4640 0.3200 0.2260
2013 0.5030 0.3280
2014 0.4840
TABLE 3: Jaccard similarity of the GUG network over time.
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2005 0.3580 0.2510 0.1620 0.1230 0.0470 0.0300 0.0090 0.0090 0.0000 0.0000
2006 0.4000 0.2470 0.1850 0.0460 0.0320 0.0330 0.0170 0.0050 0.0060
2007 0.3110 0.2450 0.0690 0.0410 0.0380 0.0190 0.0040 0.0050
2008 0.4820 0.1090 0.0640 0.0400 0.0260 0.0090 0.0110
2009 0.1490 0.0780 0.0410 0.0260 0.0090 0.0120
2010 0.3460 0.0350 0.0170 0.0100 0.0110
2011 0.0290 0.0130 0.0080 0.0090
2012 0.1260 0.0580 0.0950
2013 0.4630 0.1570
2014 0.2830

According to (2), we can obtain that the Jaccard similarity
J between the JLG network and the GUG network is 0.0340,
and that between the JLG network and the GEG network is
0.0460, and that between the GUG network and the GEG
network is 0.0390. Therefore, the Jaccard similarity between
different layers is relatively low, and thus a single-layer
network is not quite representative of another single-layer
network. This means that the structure varies greatly from
one single-layer network to another, due to the difference of
guarantee types.

Moreover, we can adopt the Jaccard similarity to analyze
the similarity of individual layers over time, where the results
are shown in Tables 2-4. From them, we can see that ]
values of the JLG market are roughly around 0.4500 for
two consecutive years, and that of the GUG market and the
GEG market have obvious fluctuation. This result shows that
guarantee relationships in the JLG market are much more
stable than those in the GUG market and the GEG market.
Besides, the Jaccard similarity decreases with the increase of
the lag phase in the three types of guarantee markets.

Similarity analysis is a relevant tool in assessing the
stability of individual layers over time and the similarity
between different layers. The above results show that the joint
liability guarantee relationship is relatively stable in China’s
guarantee market and suggest significant complementarity
between different segments of the guarantee market.

4.2. Centrality Analysis. Centrality is an important concept
of network theory. In the paper we analyze mostly between-
ness and eigenvector centrality. The betweenness centrality
quantifies how frequently a node acts as a bridge along the
shortest path between two other nodes and is computed as
follows [23]:

Nij (v)

Cp(v) = N..

1
RN )
where Cgz(v) denotes the betweenness of node v, n is the
number of nodes in the network, and Nj; represents the
number of shortest paths between nodes i and j. N;;(v) is the
number of shortest paths between nodes i and j that contain
node v. Figure 2 reports the betweenness centrality in the
JLG market either versus the betweenness in the GUG market
(Figure 2(a)) or versus the betweenness in the GEG market
(Figure 2(b)). From Figure 2, we can know that, in some cases,
the betweenness centrality of a company can be markedly
different in different layers. Therefore central companies in
one layer are not necessarily central in another layer.

Eigenvector centrality is defined as the principal eigen-
vector of the adjacency matrix defining the network [35, 36].
If the adjacency matrix of a network is denoted by A, then the
equation of an eigenvector is as follows:

Ay = Av, (6)
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TABLE 4: Jaccard similarity of the GEG network over time.
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2005 0.2700 0.1240 0.1000 0.0920 0.0550 0.0250 0.0170 0.0090 0.0120 0.0060
2006 0.2030 0.1560 0.1040 0.0540 0.0310 0.0270 0.0120 0.0160 0.0070
2007 0.2920 0.1860 0.0800 0.0340 0.0270 0.0150 0.0180 0.0110
2008 0.3740 0.1240 0.0430 0.0230 0.0150 0.0170 0.0120
2009 0.2040 0.1080 0.0460 0.0260 0.0240 0.0200
2010 0.1320 0.0680 0.0360 0.0340 0.0230
2011 0.1030 0.0420 0.0370 0.0240
2012 0.3550 0.2270 0.1680
2013 0.3820 0.2780
2014 0.4490
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FIGURE 2: Betweenness centrality of the multiplex network.
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FIGURE 3: Eigenvector centrality of the multiplex network.

where A is a constant and v is the eigenvector. Figure 3 shows
the three-dimensional plot of the eigenvector centrality of the
multiplex network. From it, we can see that the top central

node in one layer is also the top central node in another layer.
For nodes except the top central node, we can also obtain
that the eigenvector centrality of a company can be markedly
different in different layers. This result is the same as that of
the betweenness centrality.

According to the above analysis, we can see that the
centrality measures are important tools, because they can give
insight on the degree of specialization of some listed com-
panies as guarantors for some type of guarantee. Therefore,
in order to maintain the stability of the guarantee market in
China, the centrality measure provides an important tool.

5. Conclusion

Financial markets are complex systems, which can be under-
stood better based on network theory. Usually, there are more
than one type of relationships between financial institutions.
Therefore it is very important to understand financial markets
from the perspective of multiplex networks rather than
single-layer networks. In this paper, we examine how listed
companies relate to each other in different types of guarantee
relationships. We investigate a multiplex network with three



layers corresponding, respectively, to joint liability guarantee,
guaranteed guarantee, and general guarantee in China.

First, we find that three single-layer networks all have the
scale-free property and are of disassortative nature; that is,
companies of high degrees tend to be connected to companies
with low degrees. Second, according to similarity analysis,
we can know that the Jaccard similarity between different
layers is relatively low, and thus a single-layer network is
not quite representative of another single-layer network. For
individual-layer networks, we find that guarantee relation-
ships in the joint liability guarantee market are much more
stable than those in the guaranteed guarantee market and
the general guarantee market. And the Jaccard similarity
decreases with the increase of the lag phase in the three types
of guarantee markets.

Finally, we also investigate the betweenness and eigen-
vector centrality of a company in the network. The result of
the betweenness centrality shows that central companies in
one layer are not necessarily central in another layer. And the
eigenvector centrality has the same result of the betweenness
centrality except the top central company.
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