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We introduce a new algorithm (horizontal algorithm) in a real Hilbert space, for approximating a common fixed point of a finite
family of mappings, without imposing on the finite family of the control sequences ςi

n􏼈 􏼉
∞
n�1􏼈 􏼉

N

i�1, the condition that 􏽐
N
i�1 ςi

n � 1, for
each n≥ 1. Furthermore, under appropriate conditions, the horizontal algorithm converges both weakly and strongly to
a common fixed point of a finite family of type-one demicontractivemappings. It is also applied to obtain some new algorithms for
approximating a common solution of an equilibrium problem and the fixed point problem for a finite family of mappings. Our
work is a contribution to ongoing research on iteration schemes for approximating a common solution of fixed point problems of
a finite family of mappings and equilibrium problems.

1. Introduction

Let Y be a nonempty set and S: Y⟶ Y be a mapping. A
point y ∈ Y is called a fixed point of S if y � Sy. If
S: Y⟶ 2Y is a multivalued mapping, then y is a fixed point
of S if y ∈ Sy. y is called a strict fixed point of S if Sy � y􏼈 􏼉.
(e set F(S) � y ∈ D(S): y ∈ Sy􏼈 􏼉 (respectively,
F(S) � y ∈ D(S): y � Sy􏼈 􏼉) is called the set of fixed points
of the multivalued (respectively, single-valued) mapping S,
while the set Fs(S) � y ∈ D(S): Sy � y􏼈 􏼉􏼈 􏼉 is called the set
of strict fixed points of S.

Let Y be a normed space. A subset K of Y is called
proximinal if for each y ∈ Y, there exists k ∈ K such that

‖y − k‖ � inf ‖y − w‖: w ∈ K􏼈 􏼉 � d(y, K). (1)

It is known that every convex closed subset of a uni-
formly convex Banach space is proximinal. We shall denote
the family of all nonempty closed and bounded subsets of Y

by CB(Y), the family of all nonempty subsets of Y by 2Y, and
the family of all proximinal subsets of Y by P(Y), for
a nonempty set Y.

LetD denote the Hausdorffmetric induced by themetric
d on Y, that is, for every A, B ∈ CB(Y),

D(A, B) � max sup
a∈A

d(a, B), sup
b∈B

d(b, A)􏼨 􏼩. (2)

Let Y be a normed space and S: D(S)⊆Y⟶ 2Y be
a multivalued mapping on Y. S is called L − Lipschitzian if
there exists L≥ 0 such that, for all x, y ∈ D(S),

D(Sx, Sy)≤L‖x − y‖. (3)

In (3), if L ∈ [0, 1), then S is a contraction, while S is
nonexpansive if L � 1. S is called quasi-nonexpansive if
F(S)≠∅ and for all p ∈ F(S),

D(Sx, Sp)≤ ‖x − p‖. (4)

Clearly, every nonexpansive mapping with the non-
empty fixed point set is quasi-nonexpansive. (e multi-
valued mapping S is k-strictly pseudo-contractive-type of
Isiogugu [1] using the terminology of Browder and Pet-
ryshen [2] for single-valued pseudo-contractive mapping
and Markin [3] for the monotone operator if there exists
k ∈ [0, 1) such that given any pair x, y ∈ D(S) and u ∈ Sx,
there exists v ∈ Sy satisfying ‖u − v‖≤D(Sx, Sy) and

D
2
(Sx, Sy)≤ ‖x − y‖

2
+ k‖x − u − (y − v)‖

2
. (5)
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If k � 1 in (5), then S is pseudo-contractive-type, while S

is nonexpansive-type if k � 0. Every multivalued non-
expansive mapping S: D(S) ⊆Y⟶ P(Y) is nonexpansive-
type. S is of type-one in the sense of Isiogugu et al. [4] if given
any pair x, y ∈ D(S), then

‖u − v‖≤D(Sx, Sy), for all u ∈ PSx, v ∈ PSy, (6)

where PSx: � u ∈ Sx: ‖u − x‖ � d(x, Sx){ }. S is called
a multivalued demicontractive in the sense of Isiogugu and
Osilike [5] using the terminology of Hicks and Kubicek [6]
for single-valued demicontractive if F(S)≠∅ and for all
p ∈ F(S) and x ∈ D(S), there exists k ∈ [0, 1) such that

D
2
(Sx, Sp)≤ ‖x − p‖

2
+ kd

2
(x, Sx). (7)

If k � 1 in (7), S is hemicontractive in the terminology of
Naimpally and Singh [7] for single-valued hemicontractive,
while S is quasi-nonexpansive if k � 0.

Furthermore, every multivalued k− strictly pseudo-
contractive-type in the sense of [1] with the nonempty set of
strict fixed points is demicontractive with respect to its set of
strict fixed points.

A single-valued mapping S: D(S)⊆H⟶ H is called
nonspreading in the sense of Kohsaka and Takahashi [8, 9]
if

‖Sx − Sy‖
2 ≤ ‖x − y‖

2
+ 2〈x − Sx, y − Sy〉, ∀x, y ∈ C.

(8)

Observe that if S is nonspreading and F(S)≠∅, then S is
quasi-nonexpansive. S is k-strictly pseudo-nonspreading in
the sense of Osilike and Isiogugu [10] if there exists k ∈ [0, 1)

such that

‖Sx − Sy‖
2 ≤ ‖x − y‖

2
+ k‖x − Sx − (y − Sy)‖

2

+ 2〈x − Sx, y − Sy〉,
(9)

for all x, y ∈ D(S). Clearly, every nonspreading mapping is
k-strictly pseudo-nonspreading. If S is k− strictly pseudo-
nonspreading and F(S)≠∅, then S is demicontractive in the
sense of [6] (see also [11]).

Several algorithms have been introduced by different
authors for the approximation of common fixed points of
finite family of mappings Si􏼈 􏼉

N

i�1, where N ∈ N (the set of
nonnegative integers) (see, for example, [12–18] and ref-
erences therein). One of the motivations for this aspect of
research is the well-known convex feasibility problem which
is reducible to the problem of finding a point in the in-
tersection of the set of fixed points of a family of non-
expansive mappings (see, for example, [19, 20]). (e earliest
of such algorithms was the cyclic algorithm introduced by
Bauschke [12] using a Halpern-type iterative process con-
sidered in [21] for the approximation of a common fixed
point of a finite family of nonexpansive self-mappings. He
proved the following theorem.

Theorem 1 (see [12], (eorem 3.1). Let K be a nonempty
convex closed subset of a real Hilbert space H and
S1, S2, . . . , SN be a finite family of nonexpansive mappings of
K into itself with F: � ∩N

i�1F(Si)≠∅ with F �

F(SNSN− 1 . . . S1) � F(S1SN . . . S2) � F(SN− 1SN− 2 . . . S1SN).
Given points u, x0 ∈ K, let xn􏼈 􏼉 be generated by

xn+1 � ςnxn + 1 − ςn( 􏼁Sn+1xn+1, n≥ 0, (10)

where Sn ≔ Sn(modN) and ςn ⊂ (0, 1) satisfies 􏽐n≥1|ςn+N − ςn|

<∞. ,en, xn􏼈 􏼉 converges strongly to PFu, where PF: H⟶
F is the metric projection.

(e above algorithm of Bauschke was extended to ap-
proximate the family of more general class of strictly pseudo-
contractive mappings (see, for example, [22, 23]). Suantai
et al. also considered similar algorithms (see, for example,
[24]) and references therein.

In 2008, Zhang and Guo [25] considered a parallel it-
eration for approximating the common fixed points of
a finite family of strictly pseudo-contractive mapping. (ey
obtained the following theorem.

Theorem 2 (see [25], (eorem 4.3). Let E be a real q-
uniformly smooth Banach space which is also uniformly
convex and K be a nonempty convex closed subset of E. Let
N≥ 1 be an integer, and for each 1≤ i≤N, let Si: K⟶ K be
a ki-strictly pseudo-contractive mapping for some 0≤ ki < 1.
Let k � min ki: 1≤ i≤N􏼈 􏼉. Assume the common fixed point
set ∩N

i− 1F(Si) is nonempty. Assume also for each n, λn
i􏼈 􏼉

N

i�1 is
a finite sequence of positive numbers such that 􏽐

N
1�1 λ

n
i � 1 for

all n and infn≥1λ
n
i > 0 for all 1≤ i≤N. Given x0 ∈ K, let

xn􏼈 􏼉
∞
n�1 be the sequence generated by the algorithm:

xn+1 � ςnxn + 1 − ςn( 􏼁 􏽘

N

i�1
λn

i Sixn, n≥ 0. (11)

Let ςn􏼈 􏼉
∞
n�1 be a real sequence satisfying the conditions

􏽘

∞

n�0
􏽘

N

i�1
λn+1

i − λn
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<∞;

􏽘

∞

n�0
1 − ςn( 􏼁qk − Cq 1 − ςn( 􏼁

q− 1
􏽨 􏽩 �∞.

(12)

,en, xn􏼈 􏼉 converges weakly to a common fixed point of
Si􏼈 􏼉

N

i�1.

Motivated by the parallel algorithm above, many authors
have considered in a real Hilbert space, another form of
parallel algorithm for a finite family Si􏼈 􏼉

N
i�1 of ki-strictly

pseudo-contractive mappings defined by

xn+1 � ς0nxn + 􏽘
N

i�1
ςi

nSixn, n≥ 1, (13)

where ςi
n􏼈 􏼉
∞
n�1 ⊆ (0, 1) for each i and 􏽐

N
i�0 ς

i
n � 1 for each n

(see, for example, [13] and references therein).
In [14], Iemoto and Takahashi studied the approxima-

tion of common fixed points of a nonexpansive self-mapping
T and a nonspreading self-mapping S in a real Hilbert space.
If T, S: C⟶ C are, respectively, nonexpansive and non-
spreading mappings, they considered the iterative scheme
xn􏼈 􏼉
∞
n�1 generated from arbitrary x1 ∈ C by

2 Journal of Mathematics



xn+1 � 1 − ςn( 􏼁xn + ςn βnSxn + 1 − βn( 􏼁Txn􏼂 􏼃, n≥ 1,

(14)

where ςn􏼈 􏼉 and βn􏼈 􏼉 are suitable sequences in [0, 1]. (ey
proved the following main theorem:

Theorem 3 (see [14], (eorem 4.1). Let H be a real Hilbert
space. Let C be a nonempty convex and closed subset of H. Let
S be a nonspreading mapping of C into itself and T a non-
expansive mapping of C into itself such that F(T)∩F(S)≠∅.
Define a sequence xn􏼈 􏼉

∞
n�1 in C as follows:

x1 ∈ C,

xn+1 � 1 − ςn( 􏼁xn + ςn βnSxn + 1 − βn( 􏼁Txn􏼂 􏼃,
􏼨 (15)

for all n ∈ N, where ςn􏼈 􏼉
∞
n�1, βn􏼈 􏼉

∞
n�1 ⊂ [0, 1].

,en, the following hold:

(i) If lim infn⟶∞ςn(1 − ςn)> 0, 􏽐
∞
n�1 (1 − βn)<∞,

then xn􏼈 􏼉
∞
n�1 converges weakly to v ∈ F(S).

(ii) If 􏽐
∞
n�1 ςn(1 − ςn) �∞ and 􏽐

∞
n�1 βn <∞, then

xn􏼈 􏼉
∞
n�1 converges weakly to v ∈ F(T).

(iii) If lim infn⟶∞ςn(1 − ςn)> 0 and lim infn⟶∞βn

(1 − βn)> 0, then xn􏼈 􏼉
∞
n�1 converges weakly to

v ∈ F(T)∩F(S).

Motivated by the above result, Osilike and Isiogugu ob-
tained the following result.

Theorem 4 (see [10], (eorem 3.1.1). Let C be a nonempty
convex closed subset of a real Hilbert space, and let
T: C⟶ C be a k-strictly pseudo-nonspreading mapping
with a nonempty fixed point set F(T). Let β ∈ [k, 1), and let
ςn􏼈 􏼉
∞
n�1 be a real sequence in [0, 1) such that limn⟶∞ςn � 0.

Let xn􏼈 􏼉
∞
n�1 and zn􏼈 􏼉

∞
n�1 be sequences in C generated for ar-

bitrary x1 ∈ C by

xn+1 � ςnxn + 1 − ςn( 􏼁 βxn +(1 − β)Txn􏼂 􏼃, n≥ 1,

zn �
1
n

􏽘

n

k�1
xk, n≥ 1.

(16)

,en, zn􏼈 􏼉
∞
n�1 converges weakly to z ∈ F(T), where

z � limn⟶∞PF(T)xn.

We observed that all the existing iteration schemes for
the approximation of a common fixed point of a finite family
T1, T2, . . . , TN􏼈 􏼉 of mappings for N> 2, which are related to
the parallel algorithm, require the condition that, for each n,
􏽐

N
i�1 ςi

n � 1 on the control sequences ςi
n􏼈 􏼉
∞
n�1􏼈 􏼉

N

i�1. However,
in real-life applications, ifN is very large, it is very difficult or
almost impossible to generate a family of such control se-
quences. Moreover, the computational cost of generating
such a family of control sequences is very high and also takes
a very long process. On the contrary, the algorithms of
Iemoto and Takahashi [14] and Osilike and Isiogugu [10] do
not require the imposition 􏽐

N
i�1 ς

i
n � 1 on the control se-

quences for N � 2. Consequently, there is a need to extend
the iteration schemes in [10, 14] for N> 2.

Motivated by the above observations and the algorithms
of Iemoto and Takahashi [14] and Osilike and Isiogugu [10],
which do not require the imposition 􏽐

N
i�1 ς

i
n � 1 on the

control sequences for N � 2 and the need to extend the it-
eration schemes forN> 2, the aim of this work is first to study
some possible linear combinations of the products of the
elements of a family of sequence of real numbers ςi

n􏼈 􏼉
∞
n�1􏼈 􏼉

N

i�1
whose sum is unity. Second, to apply the result to construct
a new (horizontal) algorithm which does not require the
condition 􏽐

N
i�1 ς

i
n � 1 on the finite family of the control se-

quences ςi
n􏼈 􏼉
∞
n�1􏼈 􏼉

N

i�1. (ird, to prove that the new algorithm
converges weakly and strongly to an element in the in-
tersection of the set of fixed points of a countable finite family
of multivalued type-one demicontractive mappings. We also
show that our algorithm is an extension of the algorithm of
Osilike and Isiogugu [10] when N � 2. Furthermore, the
algorithm is applied to establish some new algorithms for the
approximation of the common solution of an equilibrium
problem and a fixed point problem for a finite family of type
demicontractive mappings. (e numerical examples and
computations of the horizontal algorithm were also pre-
sented. (e obtained results complement, extend, and im-
prove many results on the iteration schemes for the
approximation of common fixed points for a finite family of
single-valued and multivalued mappings.

2. Preliminaries

In the sequel, we shall need the following definitions and
lemmas.

Definition 1 (see, e.g., [26–27]). Let Y be a Banach space and
S: D(S)⊆Y⟶ 2Y be a multivalued mapping. I − S is
weakly demiclosed at zero if for any sequence, xn􏼈 􏼉

∞
n�1 ⊆D(S)

such that xn􏼈 􏼉 converges weakly to p and a sequence yn􏼈 􏼉 with
yn ∈ Sxn for all n ∈ N such that xn − yn􏼈 􏼉 strongly converges
to zero. (en, p ∈ Sp (i.e., 0 ∈ (I − S)p).

Definition 2. A Banach space Y is said to satisfy Opial’s
condition [28] if whenever a sequence xn􏼈 􏼉 weakly converges
to x ∈ Y, then it is the case that

lim inf xn − x
����

����< lim inf xn − y
����

����, (17)

for all y ∈ Y, y≠x.

Definition 3 (see [29]). A multivalued mapping
S: C⟶ P(C) is said to satisfy condition (1) (see, for ex-
ample, [29]) if there exists a nondecreasing function
f: [0,∞)⟶ [0,∞) with f(0) � 0 and f(r)> 0 for all
r ∈ (0,∞) such that

d(x, Sx)≥f(d(x, F(S))), ∀x ∈ C. (18)

Definition 4 (see [4]). Let Y be a normed space and
S: D(S)⊆Y⟶ 2Y be a multivalued map. S is of type-one if
given any pair x, y ∈ D(S), then

‖u − v‖≤D(Sx, Sy), for all u ∈ PSx, v ∈ PSy. (19)
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Lemma 1 (see [30]). Let an􏼈 􏼉 and cn􏼈 􏼉 be sequences of
nonnegative real numbers satisfying the following relation:

an+1 ≤ an + cn, ∀n ∈ N. (20)

If 􏽐 cn <∞, then limn⟶∞an exists.

3. Main Results

Let K be a nonempty convex and closed subset of a real
Hilbert space H. Suppose that Si􏼈 􏼉

N
i�1, N≥ 2 is a countable

finite family of mappings Si: K⟶ K, and we consider the
horizontal iteration process generated from arbitrary x1 for
the finite family of mappings Si􏼈 􏼉

N

i�1, using a finite family of
the control sequences ςi

n􏼈 􏼉
∞
n�1􏼈 􏼉

N

i�1 as follows:

For N� 2,

xn+1 � ς1nxn + 1 − ς1n􏼐 􏼑 ς2nS1xn + 1 − ς2n􏼐 􏼑S2xn􏽨 􏽩. (21)

For N� 3,

xn+1 � ς1nxn + 1 − ς1n􏼐 􏼑 ς2nS1xn + 1 − ς2n􏼐 􏼑􏽨

· ς3nS2xn + 1 − ς3n􏼐 􏼑S3xn􏽨 􏽩􏽩.
(22)

For arbitrary but finite N≥ 2,

xn+1 � ς1nxn + 1 − ς1n􏼐 􏼑 ς2nS1xn + 1 − ς2n􏼐 􏼑 ς3nS2xn􏽨􏽨

+ 1 − ς3n􏼐 􏼑 . . . ςNSN− 1xn + 1 − ςN( 􏼁SNxn􏼂 􏼃 . . .􏼂 􏼃􏽩􏽩

� ς1nxn + 􏽘
N

i�2
ςi

n 􏽙

i− 1

j�1
1 − ςj

n􏼐 􏼑Si− 1xn

+ 􏽙
N

j�1
1 − ςj

n􏼐 􏼑SNxn, n≥ 1.

(23)

We now present the following results which are very
useful in establishing our convergence theorems.

Proposition 1. Let ςi􏼈 􏼉
N

i�1 ⊆R be a countable subset of the set
of real numbers R, where N≥ 2 is an arbitrary integer. ,en,
the following holds:

ς1 + 􏽘
N

i�2
ςi 􏽙

i− 1

j�1
1 − ςj􏼐 􏼑 + 􏽙

N

j�1
1 − ςj􏼐 􏼑 � 1. (24)

Proof. For N � 2,

ς1 + 􏽘
2

i�2
ςi 􏽙

i− 1

j�1
1 − ςj􏼐 􏼑 + 􏽙

2

j�1
1 − ςj􏼐 􏼑

� ς1 + ς2 1 − ς1( 􏼁 + 1 − ς1( 􏼁 1 − ς2( 􏼁

� ς1 + 1 − ς1( 􏼁 ς2 + 1 − ς2( 􏼁􏼂 􏼃

� ς1 + 1 − ς1( 􏼁 � 1.

(25)

We assume it is true for N and prove for N+1.

ς1 + 􏽘
N+1

i�2
ςi 􏽙

i− 1

j�1
1 − ςj􏼐 􏼑 + 􏽙

N+1

j�1
1 − ςj􏼐 􏼑

� ς1 + 􏽘
N

i�2
ςi 􏽙

i− 1

j�1
1 − ςj􏼐 􏼑 + ςN+1 􏽙

N

j�1
1 − ςj􏼐 􏼑 + 􏽙

N+1

j�1
1 − ςj􏼐 􏼑

� ς1 + 􏽘
N

i�2
ςi 􏽙

i− 1

j�1
1 − ςj􏼐 􏼑 + 􏽙

N

j�1
1 − ςj􏼐 􏼑 ςN+1 + 1 − ςN+1( 􏼁􏼂 􏼃

� ς1 + 􏽘
N

i�2
ςi 􏽙

i− 1

j�1
1 − ςj􏼐 􏼑 + 􏽙

N

j�1
1 − ςj􏼐 􏼑 � 1.

(26)
□

Remark 1. Proposition 1 holds if ςi􏼈 􏼉
N
i�1 is replaced with

ςi􏼈 􏼉
N

i�0.

Proposition 2. Let ςi􏼈 􏼉
N

i�k ⊆R be a countable subset of the set
of real numbers R, where k is a fixed nonnegative integer and
N ∈ N is any integer with k + 1≤N. ,en, the following
holds:

ςk + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 + 􏽙
N

j�k

1 − ςj􏼐 􏼑 � 1. (27)

Proof. For k � 0, N � 1, and k � 1, N � 2, the proofs follow
from Remark 1 and Proposition 1, respectively.

We assume it is true for k and N. Now, for k and N + 1,

ςk + 􏽘
N+1

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 + 􏽙
N+1

j�k

1 − ςj􏼐 􏼑

� ςk + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 + ςN+1 􏽙

N

j�k

1 − ςj􏼐 􏼑 + 􏽙
N+1

j�k

1 − ςj􏼐 􏼑

� ςk + 􏽘

N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 + 􏽙

N

j�k

1 − ςj􏼐 􏼑 ςN+1 + 1 − ςN+1( 􏼁􏼂 􏼃

� ςk + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 + 􏽙
N

j�k

1 − ςj􏼐 􏼑

� ςk + 􏽘
N

i�k

ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 + 􏽙
N

j�k

1 − ςj􏼐 􏼑 � 1.

(28)

□

Proposition 3. Let t, u, and v be arbitrary elements of a real
Hilbert space H. Let k be a fixed nonnegative integer and
N ∈ N be such that k + 1≤N. Let vi􏼈 􏼉

N− 1
i�k ⊆H and

ςi􏼈 􏼉
N
i�k ⊆ [0, 1] be a countable finite subset of H and R, re-

spectively. Define

y � ςkt + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑vi− 1 + 􏽙
N

j�k

1 − ςj􏼐 􏼑v. (29)

(en,

4 Journal of Mathematics



‖y − u‖
2

� ςk‖t − u‖
2

+ 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 vi− 1 − u
����

����
2

+ 􏽙
N

j�k

1 − ςj􏼐 􏼑‖v − u‖
2

− ςk 􏽘

N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 t − vi− 1
����

����
2

+ 􏽙
N

j�k

1 − ςj􏼐 􏼑‖t − v‖
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− 1 − ςk( 􏼁 􏽘

N− 1

i�k+1
ςi 􏽙

i

j�k

1 − ςj􏼐 􏼑 vi− 1 − ςi+1vi + wi+1􏼂 􏼃
����

����
2⎡⎢⎢⎢⎣

+ςN 􏽙

N

j�k

1 − ςj􏼐 􏼑 v − vN− 1
����

����
2⎤⎥⎥⎥⎦,

(30)

where wk � 􏽐
N
i�k+1 ςi􏽑

i− 1
j�k(1 − ςj)vi− 1 + 􏽑

N
j�k(1 − ςj)v, k �

1, 2, . . . , N − 1, and wN � (1 − ςN)v.

Proof. Using the well-known identity,

‖tx +(1 − t)y‖
2

� t‖x‖
2

+(1 − t)‖y‖
2

− t(1 − t)‖x − y‖
2
,

(31)

which holds for all x, y ∈ H and for all t ∈ [0, 1], we prove by
(i) direct computation and (ii) induction.

Observe that, for k≤N − 1, wk � (1 − ςk)

[ςk+1vk + wk+1]. Consequently, by the direct computation,
we have

‖y − u‖
2

� ςkt + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑vi− 1 + 􏽙
N

j�k

1 − ςj􏼐 􏼑v − u

����������

����������

2

� ςkt + wk − u
����

����
2

� ςkt + 1 − ςk( 􏼁 ςk+1vk + wk+1􏼂 􏼃 − u􏼃
����

����
2

� ςk‖t − u‖
2

+ 1 − ςk( 􏼁 ςk+1vk + wk+1 − u
����

����
2

− ςk 1 − ςk( 􏼁 t − ςk+1vk + wk+1􏼂 􏼃
����

����
2

� ςk‖t − u‖
2

+ 1 − ςk( 􏼁 ςk+1 vk − u
����

����
2

+ 1 − ςk+1( 􏼁 ςk+2vk+1 + wk+2 − u
����

����
2

􏼔

− ςk+1 1 − ςk+1( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2
􏼕

− ςk 1 − ςk( 􏼁 ςk+1 t − vk

����
����
2

+ 1 − ςk+1( 􏼁 t − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

􏼔

− ςk+1 1 − ςk+1( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2
􏼕

� ςk‖t − u‖
2

+ 1 − ςk( 􏼁ςk+1 vk − u
����

����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁 ςk+2vk+1 + wk+2 − u
����

����
2

− 1 − ςk( 􏼁ςk+1 1 − ςk+1( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

− ςk 1 − ςk( 􏼁ςk+1 t − vk

����
����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁 t − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

+ςk 1 − ςk( 􏼁ςk+1 1 − ςk+1( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2
􏼕

� ςk‖t − u‖
2

+ 1 − ςk( 􏼁ςk+1 vk − u
����

����
2

− ςk 1 − ςk( 􏼁ςk+1 t − vk

����
����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁 ςk+2vk+1 + wk+2 − u
����

����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁 t − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

− ςk+1 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

Journal of Mathematics 5



� ςk‖t − u‖
2

+ 1 − ςk( 􏼁ςk+1 vk − u
����

����
2

− ςk 1 − ςk( 􏼁ςk+1 t − vk

����
����
2

− ςk+1 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁 ςk+2vk+1 + wk+2 − u
����

����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁 t − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

� ςk‖t − u‖
2

+ 1 − ςk( 􏼁ςk+1 vk − u
����

����
2

− ςk 1 − ςk( 􏼁ςk+1 t − vk

����
����
2

− ςk+1 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁 ςk+2vk+1 + 1 − ςk+2( 􏼁 ςk+3vk+2 + wk+3􏼂 􏼃 − u
����

����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁 ςk+2vk+1 + 1 − ςk+2( 􏼁 ςk+3vk+2 + wk+3􏼂 􏼃 − t
����

����
2

� ςk‖t − u‖
2

+ 1 − ς1n􏼐 􏼑ςk+1 vk − u
����

����
2

− ς1n 1 − ς1n􏼐 􏼑ςk+1 t − vk

����
����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁ςk+2 vk+1 − u
����

����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk+2( 􏼁 ςk+3vk+2 + wk+3 − u
����

����
2

− 1 − ςk( 􏼁 1 − ςk+1( 􏼁ςk+2 1 − ςk+2( 􏼁 vk+1 − ςk+3vk+2 + wk+3􏼂 􏼃
����

����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁ςk+2 vk+1 − t
����

����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk+2( 􏼁 ςk+3vk+2 + wk+3 − t
����

����
2

+ ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁ςk+2 1 − ςk+2 vk+1 − ςk+3vk+2 + wk+3
����

����
2

􏼒

− ςk+1 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

� ςk‖t − u‖
2

+ 1 − ςk( 􏼁ςk+1 vk − u
����

����
2

− ςk 1 − ςk( 􏼁ςk+1 t − vk

����
����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁ςk+2 vk+1 − u
����

����
2

+ 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk+2( 􏼁 ςk+3vk+2 + wk+3 − u
����

����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁ςk+2 vk+1 − t
����

����
2

− ςk 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk+2( 􏼁 ςk+3vk+2 + wk+3 − t
����

����
2

− ςk+1 1 − ςk( 􏼁 1 − ςk+1( 􏼁 1 − ςk( 􏼁 vk − ςk+2vk+1 + wk+2􏼂 􏼃
����

����
2

− 1 − ςk( 􏼁
2 1 − ςk+1( 􏼁ςk+2 1 − ςk+2( 􏼁 vk+1 − ςk+3vk+2 + wk+3􏼂 􏼃

����
����
2
,

� ςk‖t − u‖
2

+ 􏽘
k+2

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 vi− 1 − u
����

����
2

− ςk 􏽘

k+2

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 t − vi− 1
����

����
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− 1 − ςk( 􏼁 􏽘

k+2

i�k+1
ςi 􏽙

i

j�k

1 − ςj􏼐 􏼑 vi− 1 − ςi+1vi + wi+1􏼂 􏼃
����

����
2⎡⎢⎢⎢⎣

+ 􏽙
k+2

j�k

1 − ςj􏼐 􏼑 ςk+3vk+2 + wk+3􏼂 􏼃 − u
����

����
2

− ςk 􏽙

k+2

j�k

1 − ςj􏼐 􏼑 t − ςk+3vk+2 + wk+3􏼂 􏼃
����

����
2

�

⋮
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� ςk‖t − u‖
2

+ 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 vi− 1 − u
����

����
2

+ 􏽙
N

j�k

1 − ςj􏼐 􏼑‖v − u‖
2

− ςk 􏽘

N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 t − vi− 1
����

����
2

+ 􏽙
N

j�k

1 − ςj􏼐 􏼑‖t − v‖
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− 1 − ςk( 􏼁 􏽘

N− 1

i�k+1
ςi 􏽙

i

j�k

1 − ςj􏼐 􏼑 vi− 1 − ςi+1vi + wi+1􏼂 􏼃
����

����
2⎡⎢⎢⎢⎣

+ςN 􏽙

N

j�k

1 − ςj􏼐 􏼑 v − vN− 1
����

����
2⎤⎥⎥⎥⎦. (32)

(erefore, it holds for k, N from direct computation.
Since induction holds for a fixed k and each N from

direct computation, then it is true for k, N � 1, 2, 3. (us, to
prove by induction, we then assume that it is true for k, N

and prove for k and N + 1. From

y � ςkt + 􏽘
N+1

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑vi− 1 + 􏽙
N+1

j�k

1 − ςj􏼐 􏼑v, (33)

we have that

‖y − u‖
2

� ςkt + 􏽘
N+1

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑vi− 1 + 􏽙
N+1

j�k

1 − ςj􏼐 􏼑v − u

����������

����������

2

� ςkt + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑vi− 1 + ςN+1 􏽙

N

j�k

1 − ςjj􏼐 􏼑vN + 􏽙
N+1

j�k

1 − ςj􏼐 􏼑v − u

����������

����������

2

� ςkt + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑vi− 1 + 􏽙
N

j�k

1 − ςj􏼐 􏼑 ςN+1vN + 1 − ςN+1( 􏼁v􏼂 􏼃 − u

����������

����������

2

� ςkt + 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑vi− 1 + 􏽙
N

j�k

1 − ςj􏼐 􏼑v
∗

− u

����������

����������

2

� ςk‖t − u‖
2

+ 􏽘
N

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 vi− 1 − u
����

����
2

+ 􏽙
N

j�k

1 − ςj􏼐 􏼑 v
∗

− u
����

����
2

− ςk 􏽘

N

i�k+1
ςi 􏽙

i− k

j�k

1 − ςj􏼐 􏼑 t − vi− 1
����

����
2

+ 􏽙

N

j�k

1 − ςj􏼐 􏼑 t − v
∗����
����
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− 1 − ςk( 􏼁 􏽘

N− 1

i�k+1
ςi 􏽙

i

j�k

1 − ςj􏼐 􏼑 vi− 1 − ςi+1vi + wi+1􏼂 􏼃
����

����
2⎡⎢⎢⎢⎣

+ςN 􏽙

N

j�k

1 − ςj􏼐 􏼑 v
∗

− vN− 1
����

����
2⎤⎥⎥⎥⎦.

(34)

Observe that

t − v
∗����
����
2

� ςN+1vN + 1 − ςN+1( 􏼁v − t
����

����
2

� ςN+1 t − vN

����
����
2

+ 1 − ςN+1( 􏼁‖t − v‖
2

− ςN+1 1 − ςN+1( 􏼁 vN − v
����

����
2
.

(35)

Also,

v
∗

− vN− 1
����

����
2

� ςN+1vN + 1 − ςN+1( 􏼁v − vN− 1
����

����
2

� vN− 1 − ςN+1vN + 1 − ςN+1( 􏼁v􏼂 􏼃
����

����
2

� vN− 1 − ςN+1vN + wN+1􏼂 􏼃
����

����
2
.

(36)
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Furthermore,

v
∗

− u
����

����
2

� ςN+1vN + 1 − ςN+1( 􏼁v − u
����

����
2

� ςN+1 u − vN

����
����
2

+ 1 − ςN+1( 􏼁‖v − u‖
2

− ςN+1 1 − ςN+1( 􏼁 vN − v
����

����
2
.

(37)

It then follows from (34–37) that

‖y − u‖
2

� ςk‖t − u‖
2

+ 􏽘

N+1

i�k+1
ςi 􏽙

i− 1

j�k

1 − ςj􏼐 􏼑 vi− 1 − u
����

����
2

+ 􏽙
N+1

j�k

1 − ςj􏼐 􏼑‖v − u‖
2

− ςk 􏽘

N+1

i�k+1
ςi 􏽙

i− i

j�k

1 − ςj􏼐 􏼑 t − vi− 1
����

����
2

+ 􏽙
N+1

j�k

1 − ςj􏼐 􏼑‖t − v‖
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− 1 − ςk( 􏼁 􏽘

N

i�k+1
ςi 􏽙

i

j�k

1 − ςj􏼐 􏼑 vi− 1 − ςi+1vi + wi+1􏼂 􏼃
����

����
2⎡⎢⎢⎢⎣

+ςN+1 􏽙

N+1

j�k

1 − ςj􏼐 􏼑 v − vN

����
����
2⎤⎥⎥⎥⎦.

(38)

We now apply Propositions 2 and 3 to prove the fol-
lowing weak and strong convergence theorems for type-one
demicontractive mappings.

□

Theorem 5. Let K be a nonempty convex and closed subset of
a real Hilbert space H. Suppose that Si􏼈 􏼉

N

i�1, N≥ 2 is
a countable finite family of type-one demicontractive map-
pings Si: K⟶ P(K) from K into the family of all prox-
iminal subsets of K with contractive coefficients λi ∈ [0, 1) for
each i. Suppose that ∩N

i�1F(Si)≠∅ and for each i, (I − Si) is
weakly demiclosed at zero; then, the sequence of the horizontal
algorithm defined by

xn+1 � ςn,1xn + 􏽘
N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑yn,i− 1

+ 􏽙

N

j�1
1 − ςn,j􏼐 􏼑yn,N, n≥ 1,

(39)

converges weakly to q ∈ ∩N
i�1F(Si), where yn,i ∈ Sixn for each

i and ςn,i􏽮 􏽯
∞
n�1􏽮 􏽯

N

i�1 is a countable finite family of real se-
quences in [0, 1] satisfying the following:

(i) ςn,1 > λ>max λi􏼈 􏼉
N
i�1; ςn,i < ς< 1, for each i.

(ii) lim infn⟶∞ςn,i􏽑
i− 1
j�1(1 − ςn,j)(ςn,1 − λi− 1)> 0,

i � 2, 3, . . . , N.
(iii) lim infn⟶∞􏽑

N
j�1(1 − ςn,j)(ςn,1 − λN)> 0.

Also, if, in addition, Si is L-Lipschitzian and satisfies
condition (1) for each i, then xn􏼈 􏼉 converges strongly to
q ∈ ∩N

i�1F(Si).

Proof. Setting xn+1 � y, xn � t, p � u, k � 1, and
yn,N ∈ SNxn � v in Proposition 3, we obtain

xn+1 − p
����

����
2 ≤ ςn,1 xn − p

����
����
2

+ 􏽘
N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 yn,(i− 1) − p

����
����
2

+ 􏽙
N

j�1
1 − ςn,j􏼐 􏼑 yn,N − p

����
����
2

− ςn,1 􏽘

N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 xn − yn,i− 1

����
����
2⎡⎢⎢⎣

+ 􏽙
N

j�1
1 − ςn,j􏼐 􏼑 xn − yn,N

����
����
2⎤⎥⎥⎦.

(40)

Applying type-one demicontractive condition on each
Si, we obtain

xn+1 − p
����

����
2 ≤ ςn,1 xn − p

����
����
2

+ 􏽘
N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 xn − p

����
����
2

+ λi− 1 xn − yn,(i− 1)

����
����
2

􏼔 􏼕

+ 􏽙
N

j�1
1 − ςn,j􏼐 􏼑 xn − p

����
����
2

+ λN xn − yn,N

����
����
2

􏼔 􏼕

− ςn,1 􏽘

N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 xn − yn,i− 1

����
����
2

+ 􏽙

N

j�1
1 − ςn,j􏼐 􏼑 xn − yn,N

����
����
2⎡⎢⎢⎣ ⎤⎥⎥⎦

� ςn,1 + 􏽘
N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 + 􏽙

N

j�1
1 − ςn,j􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦ xn − p

����
����
2

− ςn,1 − λi− 1􏼐 􏼑 􏽘

N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 xn − yn,i− 1

����
����
2

− ςn,1 − λN􏼐 􏼑 􏽙

N

j�1
1 − ςn,j􏼐 􏼑 xn − yn,N

����
����
2
.

(41)
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Consequently, if we set k� 1 in Proposition 2, we obtain

xn+1 − p
����

����
2 ≤ xn − p

����
����
2

− 􏽘
N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λi− 1􏼐 􏼑⎡⎢⎢⎣

· xn − yn,i− 1
����

����
2

+ 􏽙
N

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λN􏼐 􏼑 xn − yn,N

����
����
2⎤⎥⎥⎦.

(42)

Furthermore, condition (i) on the control sequences
implies that limn⟶∞‖xn − p‖ exists; hence, xn􏼈 􏼉 is bounded.
Similarly, conditions (ii) and (iii) imply that
limn⟶∞‖xn − yn,i‖0, i � 1, 2, . . . , N. Finally, the demi-
closedness property of each (I − Si), boundedness of xn􏼈 􏼉,
uniqueness of the limit of a weakly convergent sequence, and
Opial property of a real Hilbert space guarantee the weak
convergence of xn􏼈 􏼉 to q ∈ ∩N

i�1F(Si). Also, since Si is L-
Lipschitzian and satisfies condition (1) for each i, it then
follows from standard argument that xn􏼈 􏼉 converges
strongly to q ∈ ∩N

i�1F(Si).
□

Remark 2. If N � 2 and we set ςn,1 � ςn and ςn,2 � β, for all n,
I (the i de ntity mapping) � S1, and S � S2, we obtain

xn+1 � ςn,1xn + 􏽘
2

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑Sn,i− 1 + 􏽙

2

j�1
1 − ςn,j􏼐 􏼑Sn,2

� ςnxn + 1 − ςn( 􏼁βnIxn + 1 − ςn( 􏼁 1 − βn( 􏼁Sxn

� ςnxn + 1 − ςn( 􏼁 βxn +(1 − β)Sxn􏼂 􏼃,

(43)

which was considered by Osilike and Isiogugu [10].

4. Applications

We now present the application of (eorem 5 in the con-
struction of algorithms for approximating a common so-
lution of an equilibrium problem and fixed point problem.

For solving the equilibrium problems for a bifunction
F: C × C⟶ R, let us assume that F satisfies the following
conditions:

(A1): F(g, g) � 0 for all g ∈ C

(A2): F is monotone, that is, F(g, h) + F(h, g)≤ 0, for
all g, h ∈ C

(A3): for each g, h, z ∈ C, limt↓0F(tz + (1 − t)g, h)≤
F(g, h)

(A4): for each g ∈ C, h↦F(g, h) is convex and lower
semicontinuous

Lemma 2 (see [31]). Let C be a nonempty convex closed
subset of a real Hilbert space H and F: C × C⟶ R,
a bifunction satisfying (A1)–(A4). Let r> 0 and g ∈ H. ,en,
there exists z ∈ C such that

F(z, h) +
1
r

〈h − z, z − g〉≥ 0, ∀h ∈ C. (44)

Lemma 3 (see [32]). Let C be a nonempty convex closed
subset of a real Hilbert space H. Assume that F: C × C⟶ R

satisfies (A1)–(A4). Let r> 0 and g ∈ H. Define
Tr: H⟶ 2C by

Tr(g) � z ∈ C: F(z, h) +
1
r

〈h − z, z − g〉≥ 0􏼚 􏼛, ∀h ∈ C.

(45)

,en, the following hold:

(1) Tr is single valued.
(2) Tr is firmly nonexpansive, that is, for any g, h ∈ H,

‖Trg − Trh‖2 ≤ 〈Trg − Trh, g − h〉.
(3) F(Tr) � EP(F).
(4) EP(F) is convex and closed.

Lemma 4 (see [33]). Let C be a nonempty convex closed
subset of a real Hilbert space H and F: C × C⟶ R,
a bifunction satisfying (A1)–(A4). Let r> 0 and g ∈ H. ,en,
for all g ∈ H and p ∈ F(Tr),

p − Trg
����

����
2

+ Trg − g
����

����
2 ≤ ‖p − g‖

2
. (46)

Lemma 5. Let H be a real Hilbert space, and let C be
a nonempty convex closed subset of H. Let PC be the convex
projection onto C. ,en, convex projection is characterized by
the following relations:

(i) g∗ � PC(g)⇔ 〈g − g∗, h − g∗〉≤ 0, for all h ∈ C.
(ii) ‖g − PCg‖2 ≤ ‖g − h‖2 − ‖h − PCg‖2.
(iii) ‖g − PCh‖2 ≤ ‖g − h‖2 − ‖PCh − h‖2.

Motivated by Algorithm 19 of Isiogugu et al. [34], we
obtain the following result using a selection of Algorithm 4.2
above in the sense of [34].

Theorem 6. Let C be a nonempty convex closed subset of
a real Hilbert space H, f: C × C⟶ R, a bifunction satis-
fying (A1)–(A4) and Ti􏼈 􏼉

N
i�1 be such that Ti: C⟶ P(C) is

type-one λi-strictly pseudo-contractive-type mappings, and
(I − Ti) is weakly demiclosed at zero for each i � 1, 2, . . . , N.
Suppose that F � ∩N

i�1Fs(Ti)∩EP(f)≠∅. Let xn􏼈 􏼉 be a se-
quence generated from arbitrary x0 ∈ C as follows:
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Algorithm 1.

yn � ςn,1xn + 􏽘
N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑yn,i− 1 + 􏽙

N

j�1
1 − ςn,j􏼐 􏼑yn,N,

un ∈ K such thatF un, y( 􏼁 +
1
rn

〈y − un, un − yn〉 ≥ 0, ∀y ∈ K,

xn+1 �
1
2

un + xn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where yn,i ∈ Tixn for each i and ςn,i􏽮 􏽯
∞
n�1􏽮 􏽯

N

i�1 is
a finite family of real sequences in [0, 1] for each i

satisfying

(i) ςn,1 > λ>max λi􏼈 􏼉
N

i�1; ςn,i < ς< 1, for each i.
(ii) lim infn⟶∞ςn,i􏽑

i− 1
j�1(1 − ςn,j)(ςn,1 − λi− 1)> 0,

i � 2, 3, . . . , N.
(iii) lim infn⟶∞􏽑

N
j�1(1 − ςn,j)(ςn,1 − λN)> 0.

Also, if, in addition, Ti satisfies condition (1) for
each i,

(iv) rn􏼈 􏼉 ⊂ [a,∞) for some a> 0.

(en, xn􏼈 􏼉 converges strongly to p ∈ F .

Proof

xn+1 − p
����

����
2

�
1
2

xn + un( 􏼁 − p

�������

�������

2

�
1
2

xn − p
����

����
2

+
1
2

un − p
����

����
2

−
1
4

xn − un

����
����
2

≤
1
2

xn − p
����

����
2

+
1
2

yn − p
����

����
2

−
1
4

xn − un

����
����
2

�
1
2

xn − p
����

����
2

−
1
4

xn − un

����
����
2

+
1
2
ςn,1xn + 􏽘

N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑yn,i− 1 + 􏽙

N

j�1
1 − ςn,j􏼐 􏼑yn,N − p

����������

����������

2

≤
1
2

xn − p
����

����
2

−
1
4

xn − un

����
����
2

+
1
2

xn − p
����

����
2

− 􏽘
N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λi− 1􏼐 􏼑 xn − yn,i− 1

����
����
2⎡⎢⎢⎣⎡⎢⎢⎣

+ 􏽙
N

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λN􏼐 􏼑 xn − yn,N

����
����
2⎤⎥⎥⎦⎤⎥⎥⎦

� −
1
4

xn − un

����
����
2

+ xn − p
����

����
2

−
1
2

􏽘

N

i�2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λi− 1􏼐 􏼑 xn − yn,i− 1

����
����
2⎡⎢⎢⎣

+ 􏽙
N

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λN􏼐 􏼑 xn − yn,N

����
����
2⎤⎥⎥⎦.

(48)

It then follows that limn⟶∞‖xn − p‖ exists; hence, xn􏼈 􏼉

is bounded. Also,

􏽘

∞

n�1

1
2
ςn,i 􏽙

i− 1

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λi− 1􏼐 􏼑 xn − yn,i− 1

����
����
2

≤ x0 − p
����

����
2 <∞, i � 1, 2, . . . , N − 1.

􏽘

∞

n�1

1
2

􏽙

N

j�1
1 − ςn,j􏼐 􏼑 ςn,1 − λN􏼐 􏼑 xn − yn,N

����
����
2 ≤ x0 − p

����
����
2 <∞.

(49)

(us, from (i), (ii), and (iii), we have that
limn⟶∞ ‖xn − yn,i‖ � 0, for all i � 1,2, . . . ,N. Furthermore,
limn⟶∞‖xn − un‖ � 0. Consequently, limn⟶∞‖xn+1 − xn‖2 �

limn⟶∞‖1/2(xn − un)‖2 � 0 which implies that xn􏼈 􏼉 is
a Cauchy sequence in K. Also, since K is convex and closed,
xn􏼈 􏼉 converges strongly to some q ∈K. From the Opial
condition of H and the demiclosedness property of Ti, we
have that q ∈Tiq, for all i − 1,2, . . . ,N.

(e remaining part of the proof is similar to the method
of [34], (eorem 20. (erefore, it is omitted.

□
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5. Examples

We present the numerical computation of the iteration
scheme of (eorem 5.

Let H � (Rm, ‖.‖, ≤ ) Rm with the usual norm “‖.‖” on
Rm and partial order “≤ ” on R, C � x � (x1, x2, . . . ,􏼈

xt, . . . , xm) ∈ Rm: x1 � x2 � . . . � xt � . . . � xm}. Observe
that (C, ‖.‖, ≤ ) is a convex closed linear total ordered subset
of Rn with a≤ b if and only if at ≤ bt for all t � 1, 2, 3, . . . , m.
Denote the order interval a≤x≤ b by [a, b], and let Si􏼈 􏼉

∞
i�1 be

a countable infinite family of mappings and
Si: C⟶ CB(C) define for each i and x ∈ C by

Six �

−
4i

2i + 1
􏼒 􏼓x, −

3i

2i + 1
􏼒 􏼓x􏼔 􏼕, x≥ 0,

−
3i

2i + 1
􏼒 􏼓x, −

4i

2i + 1
􏼒 􏼓x􏼔 􏼕, x< 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

Clearly, for each i,

(I)F(Si) � 0􏼈 􏼉.
(II)PSi

x � − (3i/(2i + 1))x{ }.

D Six, Siy( 􏼁 �

4i

2i + 1
‖x − y‖, x, y≥ 0,

4i

2i + 1
‖x − y‖, x, y< 0,

3i

2i + 1
x −

4i

2i + 1
y

�������

�������
≥

3i

2i + 1
x −

3i

2i + 1
y

�������

�������
, x≥ 0, y< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

Table 1: Sequences of coordinates xt,n􏽮 􏽯
∞
n�1 of xn􏼈 􏼉

∞
n�1 � (x1,n, x2,n, . . . , xt,n, . . . xm,n)􏽮 􏽯

∞
n�1 for each t � 1, 2, . . . , m.

N� 5, xt,1 � 10 N� 5, xt,1 � − 10 N� 10, xt,1 � − 10 N� 10, xt,1 � 10
n xt,n N xt,n n xt,n n xt,n
1 − 10 1 10 1 10 1 − 10
2 − 4.863391744 2 4.863391744 2 4.86333914 2 − 4.86333914
3 − 2.426008398 3 2.426008398 3 2.42595782 3 − 2.42595782
4 − 1.220221064 4 1.220221064 4 1.22018365 4 − 1.22018365
5 − 0.615820431 5 0.615820431 5 0.61579556 5 − 0.61579556
6 − 0.311310767 6 0.311310767 6 0.31129518 6 − 0.31129518
7 − 0.157521707 7 0.157521707 7 0.1575123 7 − 0.1575123
8 − 0.079750993 8 0.079750993 8 0.07974546 8 − 0.07974546
9 − 0.040392014 9 0.040392014 9 0.04038883 9 − 0.04038883
10 − 0.020462938 10 0.020462938 10 0.02046113 10 − 0.02046113
11 − 0.01036864 11 0.01036864 11 0.01036763 11 − 0.01036763
12 − 0.005254554 12 0.005254554 12 0.00525399 12 − 0.00525399
13 − 0.002663152 13 0.002663152 13 0.00266284 13 − 0.00266284
14 − 0.00134987 14 0.00134987 14 0.0013497 14 − 0.0013497
15 − 0.000684252 15 0.000684252 15 0.00068416 15 − 0.00068416
16 − 0.000346866 16 0.000346866 16 0.00034682 16 − 0.00034682
17 − 0.000175843 17 0.000175843 17 0.00017582 17 − 0.00017582
18 − 0.000089144 18 0.000089144 18 0.00008913 18 − 0.00008913
19 − 0.000045193 19 0.000045193 19 0.00004519 19 − 0.00004519
20 − 0.000022912 20 0.000022912 20 0.00002291 20 − 0.00002291
21 − 0.000011615 21 0.000011615 21 0.00001161 21 − 0.00001161
22 − 0.000005887 22 0.000005887 22 0.00000588 22 − 0.00000588
23 − 0.000002983 23 0.000002983 23 0.00000298 23 − 0.00000298
24 − 0.000001509 24 0.000001509 24 0.00000151 24 − 0.00000151
25 − 0.000000762 25 0.000000762 25 0.00000076 25 − 0.00000076
26 − 0.000000384 26 0.000000384 26 0.00000038 26 − 0.00000038
27 − 0.000000191 27 0.000000191 27 0.00000019 27 − 0.00000019
28 − 0.000000095 28 0.000000095 28 0.00000009 28 − 0.00000009
29 − 0.000000046 29 0.000000046 29 0.00000004 29 − 0.00000004
30 − 0.00000002 30 0.00000002 30 0.00000002 30 − 0.00000002
31 − 0.000000007 31 0.000000007 31 0.00000001 31 − 0.00000001
32 0 32 0
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(III) ‖u − v‖ � (3i/(2i + 1))‖x − y‖≤D(Six, Siy), for
all u ∈ PSi

x, v ∈ PSi
y.

(IV) ∩N
i�1F(Si) � 0􏼈 􏼉.

(V) d2(x,Six)�‖x− (− (3i/(2i+1))x)‖2�‖x+(3i/(2i+

1))x‖2�((5i+1)/(2i+1))2‖x‖2.
(VI) d(x, F(Si)) � d(x, 0􏼈 􏼉) � ‖x‖.

(VII) H2(Six, S0) � ‖((4i/2i + 1))x‖2 � ‖x‖2+ [((4i/2i+

1))2 − 1]‖x‖2 � ‖x‖2 + (12(i)2 − 4i − 1/(2i + 1)2)‖x‖2.
It then follows from (V) and (VII) that
(VIII) H2(Six, S0) � ‖x − 0‖2 + (12(i)2 − 4i − 1/25(i)2

+ 10i + 1)d2(x, Six).
Also, from (V) and (VI), we obtain that
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Case 1a: N = 5 and xt,1 = 10
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Case 1b: N = 5 and xt,1 = –10
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Case 2a: N = 10 and xt,1 = –10
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Figure 1: Errors vs. iteration numbers (n): case 1a (a); case 1b (b); case 2a (c); case 2b (d).
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(IX) d(x, Six)≥f(d(x, F(Si))), where f: [0,∞)

⟶ [0,∞) is defined by f(r) � r.

In summary, for each i, we have from (III), (VIII), and
(IX) that Si is type-one demicontractive mapping with
contraction coefficient λi � (12(i)2 − 4i − 1/25(i)2+ 10i + 1)

and satisfies condition (1).
Observe that sup λi􏼈 􏼉

∞
i�1 � (12/25) � limi⟶∞λi. (ere-

fore, if we set − (3i/(2i + 1))xn � yn,i ∈ Sixn and define
ςn,i􏽮 􏽯
∞
n�1􏽮 􏽯

N

i�1 ⊆ 2
[0,1] by

ςn,i �
38(ni)2 + 37
50 (ni)2 + 1􏽨 􏽩

, (52)

then

(i) ςn,1 > (37/50)> (12/25) � sup λi􏼈 􏼉
∞
i�1;

ςn,i < (38/50)< 1.
(ii) lim infn⟶∞ςn,i􏽑

i− 1
j�1(1 − ςn,j)(ςn,1 − λi− 1) �

limn⟶∞ςn,i􏽑
i− 1
j�1(1 − ςn,j)(ςn,1 − λi− 1) �

(38/50)(1 − (38/50))i− 1((38/50) − λi− 1)> 0,
2≤ i<N − 1.

(iii) lim infn⟶∞􏽑
N
j�1(1 − ςn,j)(ςn,1 − λiN

) �

limn⟶∞􏽑
N
j�1(1 − ςn,j)(ςn,1 − λiN

) �

(1 − (38/50))N((38/50) − λiN
)> 0.

Table 1 and Figure 1 show the sequences for N� 5 and
N� 10. (e values are rounded up to 9 decimal places.

6. Conclusion

A horizontal iteration scheme for the approximation of
a common fixed point of a finite family of mappings is
introduced in a real Hilbert space. (is algorithm does not
require the imposition of sum� 1 on the control sequences.
Its applicability in developing other algorithms is demon-
strated in Algorithm 1. Furthermore, its computability is
also exhibited in our numerical computations presented in
Section 5.
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.e main purpose of this paper is to study mixed equilibrium problems in Hadamard spaces. First, we establish the existence of
solution of the mixed equilibrium problem and the unique existence of the resolvent operator for the problem. We then prove
a strong convergence of the resolvent and a Δ-convergence of the proximal point algorithm to a solution of the mixed equilibrium
problem under some suitable conditions. Furthermore, we study the asymptotic behavior of the sequence generated by a Halpern-
type PPA. Finally, we give a numerical example in a nonlinear space setting to illustrate the applicability of our results. Our results
extend and unify some related results in the literature.

1. Introduction

Let C be a nonempty set and Ψ be any real-valued function
defined on C. .e minimization problem (MP) is defined as

findx
∗ ∈ C such thatΨ x

∗
( 􏼁≤Ψ(y), ∀y ∈ C. (1)

In this case, x∗ is called a minimizer of Ψ and
argminy∈CΨ(y) denotes the set of minimizers of Ψ. MPs are
very useful in optimization theory and convex and nonlinear
analysis. One of the most popular and effective methods for
solving MPs is the proximal point algorithm (PPA) which
was introduced in Hilbert space by Martinet [1] in 1970 and
was further extensively studied in the same space by
Rockafellar [2] in 1976..e PPA and its generalizations have
also been studied extensively for solving MP (1) and related
optimization problems in Banach spaces and Hadamard
manifolds (see [3–7] and the references therein), as well as in
Hadamard and p-uniformly convex metric spaces (see [8–
13] and the references therein).

An important generalization of Problem (1) is the fol-
lowing equilibrium problem (EP), defined as

findx
∗ ∈ C such thatF x

∗
, y( 􏼁≥ 0, ∀y ∈ C. (2)

.e point x∗ for which (2) is satisfied is called an equi-
librium point of F. .e solution set of problem (2) is denoted by
EP(C, F). .e EP is one of the most important problems in
optimization theory that has received a lot of attention in recent
time since it includes many other optimization and mathe-
matical problems as special cases, namely, MPs, variational
inequality problems, complementarity problems, fixed point
problems, and convex feasibility problems, among others (see,
for example, [5, 14–18]). .us, EPs are of central importance in
optimization theory as well as in nonlinear and convex analysis.
As a result of this, numerous authors have studied EPs inHilbert,
Banach, and topological vector spaces (see [19, 20] and the
references therein), as well as in Hadamard manifolds (see
[3, 21]).

Very recently, Kumam and Chaipunya [5] extended
these studies to Hadamard spaces. First, they established the
existence of an equilibrium point of a bifunction satisfying
some convexity, continuity, and coercivity assumptions, and
they also established some fundamental properties of the
resolvent of the bifunction. Furthermore, they proved that
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the PPA Δ-converges to an equilibrium point of a monotone
bifunction in a Hadamard space. More precisely, they
proved the following theorem.

Theorem 1. Let C be a nonempty closed and convex subset of
an Hadamard space X and F : C × C⟶ R be monotone
and Δ-upper semicontinuous in the first variable such that
D(JF

λ )IC for all λ> 0 (where D(JF
λ ) means the domain of

JF
λ ). Suppose that EP(C, F)≠∅ and for an initial guess

x0 ∈ C, the sequence xn􏼈 􏼉 ⊂ C is generated by

xn ≔ J
F
λn

xn− 1( 􏼁, n ∈ N, (3)

where λn􏼈 􏼉 is a sequence of positive real numbers bounded
away from 0. 5en, xn􏼈 􏼉Δ-converges to an element of
EP(C, F).

Other authors have also studied EPs in Hadamard spaces
(see, for example, [14, 15]).

In the linear settings (for example, in Hilbert spaces), EPs
have been generalized into what is called the mixed equi-
librium problem (MEP), defined as

find x
∗ ∈ C such thatF x

∗
, y( 􏼁 + Ψ(y) − Ψ x

∗
( 􏼁≥ 0, ∀y ∈ C.

(4)

The MEP is an important class of optimization problems
since it contains many other optimization problems as
special cases. For instance, if F ≡ 0 in (3), then the MEP (4)
reduces to MP (1). Also, if Ψ ≡ 0 in (3), then the MEP (4)
reduces to the EP (2). .e existence of solutions of the MEP
(4) was established in Hilbert spaces by Peng and Yao [22]
(see also [23]). More so, different iterative algorithms have
been developed by numerous authors for approximating
solutions of MEP (4) in real Hilbert spaces (see, for example,
[22–24] and the references therein).

Since MEPs contain both MPs and EPs as special cases
in Hilbert spaces, it is important to extend their study to
Hadamard spaces, so as to unify other optimization
problems (in particular, MPs and EPs) in Hadamard
spaces. Moreover, Hadamard spaces are more suitable
frameworks for the study of optimization problems and
other related mathematical problems since many recent
results in these spaces have already found applications in
diverse fields than they do in Hilbert spaces. For instance,
the minimizers of the energy functional (which is an ex-
ample of a convex and lower semicontinuous functional in
a Hadamard space), called harmonic maps, are very useful
in geometry and analysis (see [9]). Also, the gradient flow
theorem in Hadamard spaces was employed to investigate
the asymptotic behavior of the Calabi flow in Kahler ge-
ometry (see [25]). Furthermore, the study of the PPA for
optimization problems has successfully been applied in
Hadamard spaces, for computing medians and means,
which are very important in computational phylogenetics,
diffusion tensor imaging, consensus algorithms, and
modeling of airway systems in human lungs and blood
vessels (see [26, 27], for details). It is also worthy to note
that many nonconvex problems in the linear settings can be
viewed as convex problems in Hadamard spaces (see
Section 4 of this paper).

Therefore, it is our interest in this paper to extend the
study of the MEP (4) to Hadamard spaces. First, we establish
the existence of solution of the MEP (4) and the unique
existence of the resolvent operator associated with F and Ψ.
We then prove a strong convergence of the resolvent and
a Δ-convergence of the PPA to a solution of MEP (4) under
some suitable conditions on F andΨ. Furthermore, we study
the asymptotic behavior of the sequence generated by the
Halpern-type PPA. Finally, we give a numerical example in
a nonlinear space setting to illustrate the applicability of our
results. Our results extend and unify the results of Kumam
and Chaipunya [5] and Peng and Yao [22].

The rest of this paper is organized as follows: In Section 2,
we recall the geometry of geodesic spaces and some useful
definitions and lemmas. In Section 3, we establish the existence
of solution for MEP (4) and the unique existence of the re-
solvent operator associated with F and Ψ. Some fundamental
properties of the resolvent operator are also established in this
section. In Section 4, we prove a strong convergence of the
resolvent and a Δ-convergence of the PPA to a solution of
MEP (4) under some suitable conditions on F and Ψ. In
Section 5, we study the asymptotic behavior of the sequence
generated by the Halpern-type PPA. In Section 6, we generate
some numerical results in nonlinear setting for the PPA and
the Halpern-type PPA, to show the applicability of our results.

2. Preliminaries

2.1. Geometry of Geodesic Spaces

Definition 1. Let (X, d) be a metric space, x, y ∈ X and I �

[0, d(x, y)] be an interval. A curve c (or simply a geodesic
path) joining x to y is an isometry c : I⟶ X such that
c(0) � x, c(d(x, y)) � y, and d(c(t), c(t′) � |t − t′|) for all
t, t′ ∈ I. .e image of a geodesic path is called a geodesic
segment, which is denoted by [x, y] whenever it is unique.

Definition 2 (see [28]). A metric space (X, d) is called
a geodesic space if every two points of X are joined by
a geodesic path, and X is said to be uniquely geodesic if every
two points of X are joined by exactly one geodesic path. A
subset C of X is said to be convex if C includes every geodesic
segments joining two of its points. Let x, y ∈ X and
t ∈ [0, 1], and we write tx⊕ (1 − t)y for the unique point z in
the geodesic segment joining from x to y such that

d(x, z) � (1 − t)d(x, y) andd(z, y) � td(x, y). (5)

A geodesic triangleΔ(x1, x2, x3) in a geodesic metric space
(X, d) consists of three vertices (points in X) with unpar-
ameterized geodesic segment between each pair of vertices. For
any geodesic triangle, there is comparison (Alexandrov) tri-
angle Δ ⊂ R2 such that d(xi, xj) � dR2(xi, xj) for
i, j ∈ 1, 2, 3{ }. Let Δ be a geodesic triangle in X and Δ be
a comparison triangle for Δ , then Δ is said to satisfy the
CAT(0) inequality if for all points x, y ∈Δ and x, y ∈ Δ :

d(x, y)≤ dR2(x, y). (6)
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Let x, y, and z be points in X and y0 be the midpoint of
the segment [y, z]; then, the CAT(0) inequality implies

d
2

x, y0( 􏼁≤
1
2

d
2
(x, y) +

1
2

d
2
(x, z) −

1
4

d(y, z). (7)

Inequality (7) is known as the CN inequality of Bruhat
and Titis [29].

Definition 3. A geodesic space X is said to be a CAT(0) space
if all geodesic triangles satisfy the CAT(0) inequality.
Equivalently, X is called a CAT(0) space if and only if it
satisfies the CN inequality.

CAT(0) spaces are examples of uniquely geodesic
spaces, and complete CAT(0) spaces are called Hadamard
spaces.

Definition 4. Let C be a nonempty closed and convex subset
of a CAT(0) spaceX..emetric projection is a mappingPC :

X⟶ C which assigns to each x ∈ X, the unique point PCx

in C such that

d x, PCx( 􏼁 � inf d(x, y) : y ∈ C􏼈 􏼉. (8)

Definition 5 (see [30]). Let X be a CAT(0) space. Denote the
pair (a, b) ∈ X × X by ab

�→
and call it a vector. .en,

a mapping 〈., .〉 : (X × X) × (X × X)⟶ R defined by

〈 ab
�→

, cd
�→

〉 �
1
2

d
2
(a, d) + d

2
(b, c) − d

2
(a, c) − d

2
(b, d)􏼐 􏼑,

∀a, b, c, d ∈ X,

(9)

is called a quasilinearization mapping.
It is easy to check that 〈ab

�→
, ab
�→

〉 � d2(a, b), 〈ba
�→

,

cd
�→

〉 � − 〈ab
�→

, cd
�→

〉, 〈ab
�→

, cd
�→

〉 � 〈 ae
�→

, cd
�→

〉 + 〈eb
→

, cd
�→

〉, and
〈ab

�→
, cd
�→

〉 � 〈 cd
�→

, ab
�→

〉 for all a, b, c, d, e ∈ X. A geodesic
space X is said to satisfy the Cauchy–Swartz inequality
if 〈ab

�→
, cd
�→

〉≤d(a, b)d(c, d)∀a, b, c, d ∈ X. It has been
established in [30] that a geodesically connected metric
space is a CAT(0) space if and only if it satisfies the
Cauchy–Schwartz inequality. Examples of CAT(0) spaces
include Euclidean spaces Rn, Hilbert spaces, simply con-
nected Riemannian manifolds of nonpositive sectional
curvature [31], R-trees, and Hilbert ball [32], among
others.

We end this section with the following important
lemmas which characterize CAT(0) spaces.

Lemma 1. Let X be a CAT(0) space, x, y, z ∈ X, and
t, s ∈ [0, 1]. 5en,

(i) d(tx⊕ (1 − t)y, z)≤ td(x, z) + (1 − t)d(y, z)

(see [28])
(ii) d2(tx⊕ (1 − t)y, z)≤ td2(x, z) + (1 − t)d2(y, z) − t

(1 − t)d2(x, y) (see [28])

2.2. Notion of Δ-Convergence

Definition 6. Let xn􏼈 􏼉 be a bounded sequence in a geodesic
metric space X. .en, the asymptotic center A( xn􏼈 􏼉) of xn􏼈 􏼉

is defined by

A xn􏼈 􏼉( 􏼁 � v ∈ X : lim sup
n⟶∞

d v, xn( 􏼁 � inf
v∈X

lim sup
n⟶∞

d v, xn( 􏼁.

(10)

A sequence xn􏼈 􏼉 in X is said to be Δ-convergent to
a point v ∈ X if A( xnk

􏽮 􏽯) � v{ } for every subsequence xnk
􏽮 􏽯

of xn􏼈 􏼉. In this case, we write Δ-limn⟶∞xn � v (see [33]).
.e concept of Δ-convergence in metric spaces was first
introduced and studied by Lim [34]. Kirk and Panyanak [35]
later introduced and studied this concept in CAT(0) spaces
and proved that it is very similar to the weak convergence in
Banach space setting.

We now end this section with the following important
lemmas which are concerned with Δ-convergence.

Lemma 2 (see [28, 36]). Let X be an Hadamard space. 5en,

(i) Every bounded sequence in X has a Δ-convergent
subsequence

(ii) Every bounded sequence in X has a unique asymptotic
center

Lemma 3 ([37], Opial’s Lemma). Let X be an Hadamard
space and xn􏼈 􏼉 be a sequence in X. If there exists a nonempty
subset F in which

(i) limn⟶∞d(xn, z) exists for every z ∈ F

(ii) if xnk
􏽮 􏽯 is a subsequence of xn􏼈 􏼉which isΔ-convergent

to x, then x ∈ F

5en, there is a p ∈ F such that xn􏼈 􏼉 is Δ-convergent to p.

Lemma 4 ([14], Proposition 4.3). Suppose that xn􏼈 􏼉 is
Δ-convergent to q and there exists y ∈ X such that
lim sup d(xn, y)≤d(q, y), then xn􏼈 􏼉 converges strongly to q.

3. Existence and Uniqueness of Solution

In this section, we establish the existence of solution forMEP
(4). We also establish the unique existence of the resolvent
operator associated with the bifunction F and the convex
functional Ψ. In addition, we study some fundamental
properties of this resolvent operator. We begin with the
following known results.

Definition 7. Let X be a CAT(0) space. A function
Ψ : D(Ψ)⊆X⟶ R (where D(Ψ) means the domain of Ψ )
is said to be convex, if

Ψ(tx⊕ (1 − t)y)≤ tΨ(x) +(1 − t)Ψ(y),

∀x, y ∈ X, t ∈ (0, 1).
(11)
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Ψ is lower semicontinuous (or upper semicontinuous) at
a point x ∈ D(Ψ), if

Ψ(x)≤ lim inf
n⟶∞
Ψ xn( 􏼁 orΨ(x)≥ lim sup

n⟶∞
Ψ xn( 􏼁􏼠 􏼡, (12)

for each sequence xn􏼈 􏼉 in D(Ψ) such that limn⟶∞xn � x.
We say that Ψ is lower semicontinuous (or upper semi-
continuous) on D(Ψ), if it is lower semicontinuous (or
upper semicontinuous) at any point in D(Ψ).

Lemma 5 (See [9]). Let X be a Hadamard space and
Ψ : C⟶ Rbe a convex and lower semicontinuous function.
Then, Ψis Δ-lower semicontinuous.

For a nonempty subset C of X, we denote by conv(C),

the convex hull of C. .at is, the smallest convex subset of X
containing C. Recall that the convex hull of a finite set is the
set of all convex combinations of its points.

Theorem 2 (the KKM principle) (see [5], .eorem 3.3; see
also [14], Lemma 1.8). Let C be a nonempty, closed, and
convex subset of an Hadamard space X and G : C⟶ 2C be
a set-valued mapping with closed values. Suppose that for any
finite subset x1, x2, . . . , xn􏼈 􏼉 of C,

conv x1, x2, . . . , xm􏼈 􏼉( 􏼁 ⊂ %∪mi�1G xi( 􏼁. (13)

5en, the family G(x){ }x∈C has the finite intersection
property. Moreover, if G(x0) is compact for some x0 ∈ C, then
∩x∈CG(x)≠∅.

3.1. Existence of Solution for Mixed Equilibrium Problem

Theorem 3. Let C be a nonempty closed and convex subset of
an Hadamard space X. Let Ψ : C⟶ Rbe a real-valued
function and F : C × C⟶ R be a bifunction such that the
following assumptions hold:

(A1) F(x, x) � 0, ∀x ∈ C

(A2) For every x ∈ C, the set y ∈ C : F(x, y) +􏼈

Ψ(y) − Ψ(x)< 0}is convex
(A3) 5ere exists a compact subset D ⊂ C containing

a point y0 ∈ D such that F(x, y0) + Ψ(y0) − Ψ
(x)< 0whenever x ∈ C/D

5en, the MEP (4) has a solution.

Proof. For each y ∈ C, define the set-valued mapping G :

C⟶ 2C by

G(y) ≔ x ∈ C : F(x, y) + Ψ(y) − Ψ(x)≥ 0􏼈 􏼉. (14)

By (A1), we obtain that, for each y ∈ C, G(y)≠∅ since
y ∈ G(y). Also, we obtain from (A2) that G(y) is a closed
subset of C for all y ∈ C.

We claim that G satisfies the inclusion (13). Suppose for
contradiction that this is not true, then there exist a finite
subset y1, y2, . . . , ym􏼈 􏼉 of C and αi ≥ 0, ∀i � 1, 2, . . . , mwith
􏽐

m
i�1αi � 1 such that y∗ � 􏽐

m
i�1αiy1 ∉ G(yi) for each

i � 1, 2, . . . , m. .at is, there exists y∗ ∈ conv( y1, y2, . . . ,􏼈

ym}) such that y∗ ∉ G(yi), for each 1, 2, . . . , m. By (14), we
obtain for each i � 1, 2, . . . , m that

F y
∗
, yi( 􏼁 + Ψ yi( 􏼁 − Ψ y

∗
( 􏼁< 0. (15)

.us, for each i � 1, 2, . . . , m, yi ∈ y ∈ C : F(y∗, y) +􏼈

Ψ(y) − Ψ(y∗)< 0}, which is convex by (A2). Since
conv( y1, y2, . . . , ym􏼈 􏼉) is the smallest convex set containing
y1, y2, . . . , ym, we have that conv( y1, y2, . . . , ym􏼈 􏼉)

⊂ y ∈ C : F(y∗, y) + Ψ(y) − Ψ(y∗)< 0􏼈 􏼉, which implies
that y∗ ∈ y ∈ C : F(y∗, y) + Ψ(y) − Ψ(y∗)< 0􏼈 􏼉. .at is,
0 � F(y∗, y∗) + Ψ(y∗) − Ψ(y∗)< 0, which is a contradic-
tion. .erefore, G satisfies the inclusion (13).

Now, observe that (A3) implies that there exists
a compact subsetD of C containing y0 ∈ D such that for any
x ∈ C/D, we have

F x, y0( 􏼁 + Ψ y0( 􏼁 − Ψ(x)< 0, (16)

which further implies that

G y0( 􏼁 � x ∈ C : F x, y0( 􏼁 + Ψ y0( 􏼁 − Ψ(x)≥ 0􏼈 􏼉 ⊂ D.

(17)

.us, G(y0) is compact. It then follows from.eorem 2
that ∩y∈C G(y)≠∅. .is implies that there exists x∗ ∈ C

such that

F x
∗
, y( 􏼁 + Ψ(y) − Ψ x

∗
( 􏼁≥ 0, ∀y ∈ C. (18)

.at is, MEP (4) has a solution. □

3.2. Existence and Uniqueness of Resolvent Operator

Definition 8. Let X be an Hadamard space and C be
a nonempty subset of X. Let F : C × C⟶ R be a bifunc-
tion, Ψ : C⟶ R be a real-valued function, x ∈ X, and
λ> 0; then, we define the perturbation 􏽥Fx : C × C⟶ R of F
and Ψ, by

􏽥Fx(x, y) ≔ F(x, y) + Ψ(y) − Ψ(x) +
1
λ

〈xy
�→

, xx
�→

〉,

∀x, y ∈ C.

(19)

In the next theorem, we shall prove the existence and
uniqueness of solution of the following auxiliary problem:
find x∗ ∈ C such that

􏽥Fx x
∗
, y( 􏼁≥ 0, ∀y ∈ C, (20)

where 􏽥Fx is as defined in (19). .e proof for existence is
similar to the proof of .eorem 3. But for completeness, we
shall give the proof here.

Theorem 4. Let C be a nonempty closed and convex subset of
an Hadamard space X. Let Ψ : C⟶ Rbe a convex function
and F : C × C⟶ R be a bifunction such that the following
assumptions hold:

(A1) F(x, x) � 0, ∀x ∈ C

(A2) F is monotone, i.e., F(x, y) + F(y, x)≤ 0, ∀x, y, ∈ C
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(A3) F(x, .) : C⟶ R is convex ∀x ∈ C

(A4) For each x ∈ X and λ> 0, there exists a compact
subset Dx ⊂ C containing a point yx ∈ Dx such
that F(x, yx) + Ψ(yx) − Ψ(x) + (1/λ)〈xyx

���→
, xx
�→

〉<
0whenever x ∈ C/Dx.

5en, (20) has a unique solution.

Proof. Let x be a point in X. For each y ∈ C, define the set-
valued mapping G : C⟶ 2C by

G(y) � x ∈ C : F(x, y) + Ψ(y) − Ψ(x) +
1
λ

〈xy
�→

, xx
�→

〉≥ 0􏼚 􏼛.

(21)

.en, it is easy to see that G(y) is a nonempty closed
subset of C. As in the proof of .eorem 3, we claim that G
satisfies the inclusion (13). Suppose for contradiction that
this is not true, then there exists y∗ � 􏽐

m
i�1αiyi ∈

conv( y1, y2, . . . , ym􏼈 􏼉) such that

F y
∗
, yi( 􏼁 + Ψ yi( 􏼁 − Ψ y

∗
( 􏼁 +

1
λ
〈y∗yi

����→
, xy
∗���→
〉< 0,

i � 1, 2, . . . , m.

(22)

By (A3) and the convexity of Ψ, we obtain that

0 � F y
∗
, y
∗

( 􏼁 + Ψ y
∗

( 􏼁 − Ψ y
∗

( 􏼁 +
1
λ
〈y∗y∗

����→
, xy
∗���→
〉

≤􏽘
m

i�1αi F y
∗
, yi( 􏼁 + Ψ yi( 􏼁 − Ψ y

∗
( 􏼁( 􏼁

+
1
λ

􏽘
m

i�1αi〈y
∗
yi

����→
, xy
∗���→
〉􏼒 􏼓< 0,

(23)

which is a contradiction. .erefore, G satisfies the inclusion
(13). By (A4), we obtain that G(yx) ⊂ Dx. .us, G(yx) is
compact and by .eorem 2, we get that ∩y∈CG(y)≠∅.
.erefore, (20) has a solution.

Next, we show that this solution is unique. Suppose that
x and x∗ solve (20). .en,

0≤ 􏽥Fx x, x
∗

( 􏼁 � F x, x
∗

( 􏼁 + Ψ x
∗

( 􏼁 − Ψ(x) +
1
λ
〈xx

�→
, xx
∗���→
〉,

0≤ 􏽥Fx x
∗
, x( 􏼁 � F x

∗
, x( 􏼁 + Ψ(x) − Ψ x

∗
( 􏼁 +

1
λ
〈xx
∗���→
, x
∗
x

���→
〉.

(24)

Adding both inequalities and noting that F is monotone,
we obtain that

0≤ −
1
λ
〈xx

�→
, xx
∗���→
〉 +〈xx

∗���→
, xx
∗���→
〉􏼒 􏼓

� −
1
λ

d x, x
∗

( 􏼁
2
,

(25)

which implies that x � x∗. □

Definition 9. Let X be an Hadamard space and C be
a nonempty closed and convex subset of X. Let F : C ×

C⟶ R be a bifunction and Ψ : C⟶ R be a convex
function. Assume that (20) has a unique solution for each
λ> 0 and x ∈ X. .is unique solution is denoted by JΨλFx,
and it is called the resolvent operator associated with F andΨ
of order λ> 0 and at x ∈ X. In other words, the resolvent
operator associated with F and Ψ is the set-valued mapping
JΨλF : X⟶ 2C defined by

J
Ψ
λF(x) ≔ EP C, 􏽥Fx( 􏼁 � 􏼚z ∈ C : F(z, y) + Ψ(y) − Ψ(z)

+
1
λ

〈zy
�→

, xz
�→

〉≥ 0,∀y ∈ C􏼛, for allx inX.

(26)

Under the assumptions of .eorem 4, we have
the unique existence of JΨλF(x). .erefore, JΨλF is well
defined.

3.3. Fundamental Properties of the Resolvent Operator. In
the following theorem, we shall study some fundamen-
tal properties of the resolvent operator. First, we recall
the following definitions which will be needed for our
study.

Definition 10. Let X be a CAT(0) space. A point x ∈ X is
called a fixed point of a nonlinear mapping T : X⟶ X, if
Tx � x. We denote the set of fixed points of T by Fix(T). .e
mapping T is said to be

(i) Firmly nonexpansive, if

d
2
(Tx, Ty)≤ 〈TxTy

�����→
, xy
�→

〉, ∀x, y ∈ X. (27)

(ii) Nonexpansive, if

d(Tx, Ty)≤d(x, y), ∀x, y ∈ X. (28)

Theorem 5. Let C be a nonempty closed and convex subset of
an Hadamard space X. Let Ψ : C⟶ Rbe a convex function
and F : C × C⟶ R be a bifunction satisfying assumptions
(A1)–(A4) of 5eorem 4. For λ> 0, we have that JΨλFis single
valued. Moreover, if C ⊂ D(JΨλF),then

(i) JΨλFis firmly nonexpansive restricted to C
(ii) For F(JΨλF)≠∅,we have

d
2

J
Ψ
λFx, x􏼐 􏼑≤ d

2
(x, v) − d

2
J
Ψ
λFx, v􏼐 􏼑,

∀x ∈ C, ∀v ∈ fix J
Ψ
λF􏼐 􏼑,

(29)

(iii) For 0< λ≤ μ, we have d(JΨμFx, JΨλFx)≤��������
1 − (λ/μ)

􏽰
d(x, JΨμFx),which implies that

d(x, JΨλFx)≤ 2d(x, JΨμFx), ∀x ∈ C

(iv) Fix(JΨλF) � MEP(C, F,Ψ)
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Proof. For each x ∈ D(JΨλF) and λ> 0, let z1, z2 ∈ JΨλFx. .en
from (26), we have

F z1, z2( 􏼁 + Ψ z2( 􏼁 − Ψ z1( 􏼁 +
1
λ
〈z1z2

���→
, xz1
��→〉 ≥ 0,

F z2, z1( 􏼁 + Ψ z1( 􏼁 − Ψ z2( 􏼁 +
1
λ
〈z2z1

���→
, xz2
��→〉 ≥ 0.

(30)

Adding both inequalities and using assumption (A2), we
obtain that

〈z2z1
���→

, z1z2
���→〉≥ 0, (31)

which implies that d2(z1, z2)≤ 0. .is further implies that
z1 � z2. .erefore, JΨλF is single valued.

(i) Let x, y ∈ C, then

F J
Ψ
λFx, J
Ψ
λFy􏼐 􏼑 + Ψ J

Ψ
λFy􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑

+
1
λ
〈JΨλFxJ

Ψ
λFy

����������→
, xJ
Ψ
λFx

�����→
〉 ≥ 0,

(32)

and

F J
Ψ
λFy, J

Ψ
λFx􏼐 􏼑 + Ψ J

Ψ
λFx􏼐 􏼑 − Ψ J

Ψ
λFy􏼐 􏼑

+
1
λ
〈JΨλFyJ

Ψ
λFx

����������→
, yJ
Ψ
λFy

������→
〉 ≥ 0.

(33)

Adding (32) and (33), and noting that F is monotone,
we obtain

1
λ
〈xJ
Ψ
λFx

�����→
, J
Ψ
λFxJ
Ψ
λFy

����������→
〉 +〈yJ

Ψ
λFy

������→
, J
Ψ
λFyJ
Ψ
λFx

����������→
〉􏼠 􏼡≥ 0, (34)

which implies that

〈xy
�→

, J
Ψ
λFxJ
Ψ
λFy

����������→
〉 ≥ 〈JΨλFxJ

Ψ
λFy

����������→
, J
Ψ
λFxJ
Ψ
λFy

����������→
〉. (35)

.at is,

〈xy
�→

, J
Ψ
λFxJ
Ψ
λFy

����������→
〉 ≥d

2
J
Ψ
λFx, J
Ψ
λFy􏼐 􏼑. (36)

(ii) It follows from (36) and the definition of quasili-
nearization that

d
2

x, J
Ψ
λFx􏼐 􏼑≤d

2
(x, v) − d

2
v, J
Ψ
λFx􏼐 􏼑,

∀x ∈ C, v ∈ fix J
Ψ
λF􏼐 􏼑.

(37)

(iii) Let x ∈ C and 0< λ≤ μ, then we have that

F J
Ψ
λFx, J
Ψ
μFx􏼐 􏼑 + Ψ J

Ψ
μFx􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑

+
1
λ
〈xJ
Ψ
λFx

�����→
, J
Ψ
λFxJ
Ψ
μFx

����������→
〉≥ 0,

(38)

and

F J
Ψ
μFx, J

Ψ
λFx􏼐 􏼑 + Ψ J

Ψ
λFx􏼐 􏼑 − Ψ J

Ψ
μFx􏼐 􏼑

+
1
μ
〈xJ
Ψ
μFx

�����→
, J
Ψ
μFxJ
Ψ
λFx

����������→
〉 ≥ 0.

(39)

Adding (38) and (39), and using the monotonicity of F,
we obtain that

〈JΨλFxx
�����→

, J
Ψ
μFxJ
Ψ
λFx

����������→
〉≥

λ
μ
〈JΨμFxx

�����→
, J
Ψ
μFxJ
Ψ
λFx

����������→
〉. (40)

By quasilinearization, we obtain that

λ
μ

+ 1􏼠 􏼡d
2

J
Ψ
μFx, J

Ψ
λFx􏼐 􏼑≤ 1 −

λ
μ

􏼠 􏼡d
2

x, J
Ψ
μFx􏼐 􏼑

+
λ
μ

− 1􏼠 􏼡d
2

x, J
Ψ
λFx􏼐 􏼑.

(41)

Since (λ/μ)≤ 1, we obtain that

λ
μ

+ 1􏼠 􏼡d
2

J
Ψ
μFx, J

Ψ
λFx􏼐 􏼑≤ 1 −

λ
μ

􏼠 􏼡d
2

x, J
Ψ
μFx􏼐 􏼑, (42)

which implies that

d J
Ψ
μFx, J
Ψ
λFx􏼐 􏼑≤

�����

1 −
λ
μ

􏽳

d x, J
Ψ
μFx􏼐 􏼑. (43)

Moreover, we obtain by triangle inequality and (43) that

d x, J
Ψ
λFx􏼐 􏼑≤ 2d x, J

Ψ
μFx􏼐 􏼑. (44)

(iv) Observe that

x ∈ fix J
Ψ
λF􏼐 􏼑⟺F(x, y) + Ψ(y)

− Ψ(x) +
1
λ

〈xx
�→

, xy
�→

〉≥ 0,

∀y ∈ C

⟺F(x, y) + Ψ(y) − Ψ(x)≥ 0, ∀y ∈ C

⟺x ∈ MEP(C, F,Ψ).

(45)
□
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Remark 1. It follows from Cauchy–Schwartz inequality that
firmly nonexpansive mappings are nonexpansive, and it is
well known that the set of fixed points of nonexpansive
mappings is closed and convex. .us, by (i) and (iv) of
.eorem 5, we have that MEP(C, F,Ψ) is closed and convex.

4. Convergence Results

For the rest of this paper, we shall assume that C is a non-
empty closed and convex subset of an Hadamard space X
and that D(JΨλF)IC.

4.1. Convergence of Resolvent. In the following theorem, we
shall prove that JΨλFx􏼈 􏼉 converges strongly to a solution of
MEP (4) as λ⟶ 0.

Theorem 6. Let Ψ : C⟶ Rbe a convex and lower semi-
continuous function and F : C × C⟶ R be Δ-upper sem-
icontinuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4. If MEP(C, F,Ψ)≠∅, then
JΨλnFx􏽮 􏽯converges strongly to q ∈ MEP(C, F,Ψ),which is the
nearest point of MEP(C, F,Ψ)to x as λ⟶ 0.

Proof. Let v ∈ MEP(C, F,Ψ), since JΨλF is nonexpansive (by
Remark 1), we obtain that JΨλFx􏼈 􏼉 is bounded. Let λn􏼈 􏼉 be
a sequence that converges to 0 as n⟶∞. .en, JΨλnFx􏽮 􏽯 is
bounded. .us, by Lemma 2(i), there exists a subsequence
JΨλnkFx􏽮 􏽯 of JΨλnFx􏽮 􏽯 that Δ-converges to q ∈ C.

Now, observe that, by the definition of JΨλF, the Δ-upper
semicontinuity of F, lower semicontinuous of Ψ, and
Lemma 5, we obtain that

F(q, y) + Ψ(y) − Ψ(q)≥ 0. (46)

.erefore, q ∈ MEP(C, F,Ψ). Hence, we obtain from
.eorem 5(ii) that

d
2

J
Ψ
λnkFx, x􏼐 􏼑≤ d

2
(x, v), ∀v ∈ MEP(C, F,Ψ). (47)

Since d2(., x) is Δ-lower semicontinuous, we obtain that

d
2
(q, x)≤ lim inf

k⟶∞
d
2

J
Ψ
λnkFx, x􏼐 􏼑≤ d

2
(x, v),

∀v ∈ MEP(C, F,Ψ),

(48)

which implies that

d(q, x)≤d(x, v), ∀v ∈ MEP(C, F,Ψ). (49)

.us, q � PΓx, where PΓ is the metric projection of X
onto Γ, and Γ � MEP(C, F,Ψ). .erefore, by taking λnk � λ,
we have that JΨλFx􏼈 􏼉Δ-converges to q � PΓx as λ⟶ 0.

Now, observe also that .eorem 5(ii) implies that

d J
Ψ
λFx, x􏼐 􏼑≤d(q, x). (50)

It then follows from Lemma 4 that JΨλFx􏼈 􏼉 converges
strongly to q � PΓx as λ⟶ 0.

By setting Ψ ≡ 0 in .eorem 6, we obtain the following
result which is similar to ([14], .eorem 4.4). □

Corollary 1. Let F : C × C⟶ R be Δ-upper semi-
continuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4. If MEP(C, F)≠∅, then
JλFx􏼈 􏼉converges strongly to q ∈ MEP(C, F), which is the
nearest point of MEP(C, F) to x as λ⟶ 0.

4.2. Proximal Point Algorithm. In this section, we study the
Δ-convergence of the sequence generated by the following
PPA for approximating solutions of MEP (4): For an initial
starting point x1 in C, define the sequence xn􏼈 􏼉 in C by

xn+1 � J
Ψ
λnFxn, n≥ 1, (51)

where λn􏼈 􏼉 is a sequence in (0,∞), F : C × C⟶ R is
a bifunction, and Ψ : C⟶ R is a convex function.

Recall that the PPA does not converge strongly in general
without additional assumptions even for the case where
F ≡ 0. See for example, the question of interest raised by
Rockafella as to whether the PPA can be improved from
weak convergence (an analogue of Δ-convergence) to strong
convergence in Hilbert space settings. Several counterex-
amples have been constructed to resolve this question in the
negative (see [38, 39]). .erefore, only weak convergence of
the PPA is expected without additional assumptions. For this
reason, we propose the following Δ-convergence theorem
for the PPA (51).

Theorem 7. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be Δ-upper sem-
icontinuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4. Let λn􏼈 􏼉 be a sequence in (0,∞)

such that 0< λ≤ λn, ∀n≥ 1. Suppose that MEP(C, F,Ψ)≠∅,
then, the sequence given by (51) Δ-converges to an element of
MEP(C, F,Ψ).

Proof. Let v ∈ MEP(C, F,Ψ). .en, by Remark 1 and
.eorem 5(iv), we obtain that

d v, xn+1( 􏼁 � d v, J
Ψ
λnFxn􏼐 􏼑≤d v, xn( 􏼁, (52)

which implies that limn⟶∞d(xn, v) exists for all
v ∈ MEP(C, F,Ψ). Hence xn􏼈 􏼉 is bounded. It then follows
from .eorem 5(ii) that

d
2

xn+1, xn( 􏼁≤d
2

xn, v( 􏼁 − d
2

xn+1, v( 􏼁⟶ 0, as n⟶∞.

(53)

.at is,

lim
n⟶∞

d xn+1, xn( 􏼁 � 0. (54)

Since xn􏼈 􏼉 is bounded, then there exists a subsequence
xnk􏼈 􏼉 of xn􏼈 􏼉 that Δ-converges to a point, say q ∈ C. From
(51) and (26), we obtain that

F xnk+1, y( 􏼁 + Ψ(y) − Ψ xnk+1( 􏼁≥ −
1
λnk

〈xnkxnk+1
���������→

, xnk+1y
������→〉

≥ −
1
λnk

d xnk+1, xnk( 􏼁d xnk+1, y( 􏼁.

(55)
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Since 0< λ≤ λnk, xn􏼈 􏼉 is bounded, F is Δ-upper semi-
continuous in the first argument and Ψ is lower semi-
continuous, we obtained from (54) and (55) that

F(q, y) + Ψ(y) − Ψ(q)≥ lim sup
k⟶∞

F xnk+1, y( 􏼁 + Ψ(y)( 􏼁

− lim inf
k⟶∞
Ψ xnk+1( 􏼁

≥ −
M

λ
lim sup

k⟶∞
d xnk+1, xnk( 􏼁 � 0,

(56)

for some M> 0 and for all y ∈ C. .is implies that
q ∈ MEP(C, F,Ψ).

It then follows from Lemma 3 that xn􏼈 􏼉Δ-converges to
an element of MEP(C, F,Ψ).

By setting Ψ ≡ 0 in .eorem 7, we obtain the following
result which coincides with ([5], .eorem 7.3). □

Corollary 2. Let F : C × C⟶ R be Δ-upper semi-
continuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4 and λn􏼈 􏼉 be a sequence in (0,∞)

such that 0< λ≤ λn ∀n≥ 1. Suppose that EP(C, F)≠∅; then,
the sequence given for x1 ∈ C by

xn+1 � JλnFxn, n≥ 1. (57)

Δ-converges to an element of EP(C, F).
By setting F ≡ 0 in .eorem 7, we obtain the following

corollary which is similar to ([9], .eorem 1.4).

Corollary 3. Let Ψ : C⟶ R be a convex and lower sem-
icontinuous function and λn􏼈 􏼉 be a sequence in (0,∞) such
that 0< λ≤ λn, ∀n≥ 1. Suppose that argminy∈CΨ(y)≠∅;
then, the sequence given for x1 ∈ C by

xn+1 � J
Ψ
λn

xn, n≥ 1. (58)

Δ-converges to an element of argminy∈CΨ(y).

5. Asymptotic Behavior of Halpern’s Algorithm

To obtain strong convergence result, wemodify the PPA into
the following Halpern-type PPA and study the asymptotic
behavior of the sequence generated by it: For x1, u ∈ C,

define the sequence xn􏼈 􏼉 ⊂ C by

xn+1 � αnu⊕ 1 − αn( 􏼁J
Ψ
λnFxn, (59)

where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉, F and Ψ are as
defined in (51).

We begin by establishing the following lemmas which
will be very useful to our study.

Lemma 6. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be a bifunction
satisfying (A1)–(A4) of 5eorem 4. If λ, μ> 0 and x, y ∈ C,

then the following inequalities hold:

d
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑≤ 2λF J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + 2λ Ψ J

Ψ
μFy􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑􏼐 􏼑 + d

2
x, J
Ψ
μFy􏼐 􏼑 − d

2
x, J
Ψ
λFx􏼐 􏼑,

(λ + μ)d
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + μd

2
J
Ψ
λFx, x􏼐 􏼑 + λd

2
J
Ψ
μFy, y􏼐 􏼑≤ λd

2
J
Ψ
λFx, y􏼐 􏼑 + μd

2
J
Ψ
λFy, x􏼐 􏼑.

(60)

Proof. We first prove (60). Let λ, μ> 0 and x, y ∈ C. .en,
by (26), we obtain that

F J
Ψ
λFx, z􏼐 􏼑 + Ψ(z) − Ψ J

Ψ
λFx􏼐 􏼑 +

1
λ
〈xJ
Ψ
λFx

�����→
, J
Ψ
λFxz

�����→
〉 ≥ 0,

∀z ∈ C,

(61)

which implies that

2λΨ J
Ψ
λFx􏼐 􏼑≤ 2λF J

Ψ
λFx, z􏼐 􏼑 + 2λΨ(z) + 2〈xJ

Ψ
λFx

�����→
, J
Ψ
λFxz

�����→
〉

� 2λF J
Ψ
λFx, z􏼐 􏼑 + 2λΨ(z) + d

2
(x, z) − d

2
x, J
Ψ
λF􏼐 􏼑

− d
2

J
Ψ
λFx, z􏼐 􏼑

≤ 2λF J
Ψ
λFx, z􏼐 􏼑 + 2λΨ(z) + d

2
(x, z)

− d
2

x, J
Ψ
λFx􏼐 􏼑.

(62)

Now, set z � tJΨμFy⊕ (1 − t)JΨλFx for all t ∈ (0, 1) in (5).
SinceΨ is convex and F satisfies conditions (A1) and (A3) of
.eorem 4, we obtain that

2λΨ J
Ψ
λFx􏼐 􏼑 + d

2
x, J
Ψ
λFx􏼐 􏼑≤ 2λ􏼒tF J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑

+(1 − t)F J
Ψ
λFx, J
Ψ
λFx􏼐 􏼑􏼓

+ 2λ tΨ J
Ψ
μFy􏼐 􏼑 +(1 − t)Ψ J

Ψ
λFx􏼐 􏼑􏼐 􏼑

+ td
2

x, J
Ψ
μFy􏼐 􏼑 +(1 − t)d

2
x, J
Ψ
λFx􏼐 􏼑

− t(1 − t)d
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑

� 2λtF J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑

+ 2λ tΨ J
Ψ
μFy􏼐 􏼑 +(1 − t)Ψ J

Ψ
λFx􏼐 􏼑􏼐 􏼑

+ td
2

x, J
Ψ
μFy􏼐 􏼑 +(1 − t)d

2
x, J
Ψ
λFx􏼐 􏼑

− t(1 − t)d
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑,

(63)
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which implies that

2λΨ J
Ψ
λFx􏼐 􏼑 + d

2
x, J
Ψ
λFx􏼐 􏼑≤ 2λF J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑

+ 2λΨ J
Ψ
μFy􏼐 􏼑 + d

2
x, J
Ψ
μFy􏼐 􏼑

− (1 − t)d
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑.

(64)

As t⟶ 0 in (64), we obtain (60).
Next, we prove (60). From (60), we obtain that

μd
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑≤ 2λμ F J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + Ψ J

Ψ
μFy􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑􏽨 􏽩

+ μd
2

x, J
Ψ
μFy􏼐 􏼑 − μd

2
x, J
Ψ
λFx􏼐 􏼑.

(65)

Similarly, we have

λd
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑≤ 2μλ F J

Ψ
μFy, J

Ψ
λFx􏼐 􏼑 + Ψ J

Ψ
λFx􏼐 􏼑 − Ψ J

Ψ
μFy􏼐 􏼑􏽨 􏽩

+ λd
2

y, J
Ψ
λFx􏼐 􏼑 − λd

2
y, J
Ψ
μFy􏼐 􏼑.

(66)

Adding both inequalities and noting that F is monotone,
we get

(λ + μ)d
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + μd

2
x, J
Ψ
λFx􏼐 􏼑 + λd

2
y, J
Ψ
μFy􏼐 􏼑

≤ μd
2

x, J
Ψ
μFy􏼐 􏼑 + λd

2
y, J
Ψ
λFx􏼐 􏼑.

(67)
□

Lemma 7. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be a bifunction
satisfying (A1)–(A4) of 5eorem 4. Let λn􏼈 􏼉 be a sequence in
(0,∞) and v be an element of C. Suppose that limn⟶∞λn �

∞ and A( JΨλn
xn􏽮 􏽯) � v{ } for some bounded sequence xn􏼈 􏼉 in

X, then v ∈ MEP(C, F,Ψ).
Proof. From (60), we obtain that

λn + 1( 􏼁d
2

J
Ψ
λnFxn, J

Ψ
F v􏼐 􏼑 + d

2
J
Ψ
λnFxn, xn􏼐 􏼑 + λnd

2
J
Ψ
F v, v􏼐 􏼑

≤ d
2

J
Ψ
F v, xn􏼐 􏼑 + λnd

2
J
Ψ
λnFxn, v􏼐 􏼑,

(68)

which implies that

d
2

J
Ψ
λnFxn, J

Ψ
F v􏼐 􏼑≤

1
λn

d
2

J
Ψ
F v, xn􏼐 􏼑 + d

2
J
Ψ
λnFxn, v􏼐 􏼑

2
. (69)

Since limn⟶∞λn �∞, xn􏼈 􏼉 is bounded and
A( JΨλn

xn􏽮 􏽯) � v{ }, we obtain that

lim sup
n⟶∞

d J
Ψ
λnFxn, J

Ψ
F v􏼐 􏼑≤ lim sup

n⟶∞
d J
Ψ
λnFxn, v􏼐 􏼑

� inf
y∈X

lim sup
n⟶∞

d J
Ψ
λnFxn, y􏼐 􏼑,

(70)

which by Lemma 2(ii) and Theorem 5(iv) implies that
v ∈ fix(JΨF ) � MEP(C, F,Ψ).

Lemma 8 (Xu, [40]). Let an􏼈 􏼉 be a sequence of nonnegative
real numbers satisfying the following relation:

an+1 ≤ 1 − αn( 􏼁an + αnσn + cn, n≥ 0, (71)

where (i) αn􏼈 􏼉 ⊂ [0, 1], 􏽐 αn �∞;(ii) lim sup σn ≤ 0;

(iii) cn ≥ 0; (n≥ 0), 􏽐 cn <∞. 5en, an⟶ 0 as n⟶∞.

Theorem 8. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be a bifunction
satisfying (A1–A4) of 5eorem 4. Let xn􏼈 􏼉 be a sequence
defined by (59), where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉 is
a sequence in (0,∞) such that limn⟶∞λn �∞. 5en, we
have the following:

(i) 5e sequence JΨλnFxn􏽮 􏽯 is bounded if and only
ifMEP(C, F,Ψ)≠∅

(ii) If limn⟶∞αn � 0, 􏽐
∞
n�1αn �∞ andΓ ≔ MEP

(C, F,Ψ)≠∅, then xn􏼈 􏼉 and JΨλnFxn􏽮 􏽯converge to
v � PΓu,wherePΓis the metric projection of X onto Γ

Proof. (i) Suppose that J
f

λn
xn􏼚 􏼛 is bounded..en by Lemma

2(ii), there exists v ∈ X such that A( J
f

λn
xn􏼚 􏼛) � v{ }. From

(59) and Lemma 1(i), we obtain that

d xn+1, v( 􏼁≤ αnd(u, v) + 1 − αn( 􏼁d J
Ψ
λnFxn, v􏼐 􏼑, (72)

which implies that xn􏼈 􏼉 is bounded. Also, since limn⟶∞λn �

∞ and A( JΨλnFxn􏽮 􏽯) � v{ }, we obtain by Lemma 7
thatMEP(C, F,Ψ)≠∅.

Conversely, let MEP(C, F,Ψ)≠∅. .en, we may assume
that v ∈ MEP(C, F,Ψ)≠∅. .us, by (59) and Lemma 1, we
obtain that

d xn+1, v( 􏼁≤ αnd(u, v) + 1 − αn( 􏼁d J
Ψ
λnFxn, v􏼐 􏼑

≤ αnd(u, v) + 1 − αn( 􏼁d xn, v( 􏼁

≤max d(u, v), d xn, v( 􏼁􏼈 􏼉,

(73)

which implies by induction that

d xn, v( 􏼁≤max d(u, v), d x1, v( 􏼁􏼈 􏼉, ∀n≥ 1. (74)

.erefore, xn􏼈 􏼉 is bounded. Consequently, JΨλnFxn􏽮 􏽯 is
also bounded.

(ii) Since Γ ≔ MEP(C, F,Ψ)≠∅, we obtain from (74)
that xn􏼈 􏼉 and JΨλnFxn􏽮 􏽯 are bounded. Furthermore, we obtain
from Lemma 1(ii) that

d
2

xn+1, v( 􏼁≤ αnd
2
(u, v) + 1 − αn( 􏼁d

2
J
Ψ
λnFxn, v􏼐 􏼑

− αn 1 − αn( 􏼁d
2

u, J
Ψ
λnFxn􏼐 􏼑

≤ αnd
2
(u, v) + 1 − αn( 􏼁d

2
xn, v( 􏼁

− αn 1 − αn( 􏼁d
2

u, J
Ψ
λnFxn􏼐 􏼑

� 1 − αn( 􏼁d
2

xn, v( 􏼁 + αnδn, ∀n≥ 1,

(75)

where δn � d2(u, v) + (αn − 1)d2(u, JΨλnFxn). Now, set vn �

JΨλnFxn, ∀n≥ 1..en, by the boundedness of vn􏼈 􏼉 and Lemma
2(i), we obtain that there exists a subsequence vnk

􏽮 􏽯 of vn􏼈 􏼉
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that Δ-converges to some 􏽢v ∈ C. .us, by Lemma 2(ii), we
obtain that A( vnk

􏽮 􏽯) � 􏽢v{ }. Moreover, limk⟶∞λnk
�∞ and

xnk
􏽮 􏽯 is bounded. Hence, by Lemma 7, we obtain that
􏽢v ∈ MEP(C, F,Ψ).

Next, we show that xn􏼈 􏼉 converges to 􏽢v. By the Δ-lower
semicontinuity of d2(u, .), we obtain that

d
2
(u, 􏽢v)≤ lim inf

k⟶∞
d
2

u, vnk
􏼐 􏼑 � lim

k⟶∞
d
2

u, vnk
􏼐 􏼑

� lim inf
n⟶∞

d
2

u, vn( 􏼁.
(76)

Since δn � d2(u, v) + (αn − 1)d2(u, vn), limn⟶∞αn � 0,
v � PΓu, and 􏽢v ∈ Γ, we obtain from the definition of PΓ and
(76) that
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Figure 1: Errors vs iteration numbers n: Case 1 (a); Case 2 (b); Case 3 (c); Case 4 (d).
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lim sup
n⟶∞

δn ≤ d
2
(u, v) − lim inf

n⟶∞
d
2

u, vn( 􏼁

≤ d
2
(u, 􏽢v) − lim inf

n⟶∞
d
2

u, vn( 􏼁≤ 0.
(77)

.us, applying Lemma 8 to (75) gives that xn􏼈 􏼉 con-
verges to v � PΓu. It then follows that JΨλnFxn􏽮 􏽯 is convergent
to v � PΓu.

By setting Ψ ≡ 0 in .eorem 8, we obtain the following
new result for equilibrium problem in an Hadamard
space. □

Corollary 4. Let F : C × C⟶ R be a bifunction satisfying
(A1–A3) of 5eorem 4 and xn􏼈 􏼉 be a sequence defined for
u, x1 ∈ C, by

xn+1 � αnu⊕ 1 − αn( 􏼁JλnFxn, (78)

where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉 is a sequence in
(0,∞) such that limn⟶∞λn �∞. 5en, we have the
following:

(i) The sequence JλnFxn􏽮 􏽯 is bounded if and only if
EP(C, F)≠∅

(ii) If limn⟶∞αn � 0, 􏽐
∞
n�1αn �∞ and Γ ≔ EP(C, F)≠

∅, then xn􏼈 􏼉 and JλnFxn􏽮 􏽯 converge to v � PΓu,where
PΓ is the metric projection of X onto Γ

By setting F ≡ 0 in 5eorem 8, we obtain the following
result which coincides with ([41], 5eorem 5.1).

Corollary 5. Let Ψ : C⟶ C be a proper convex and lower
semicontinuous function and xn􏼈 􏼉 be a sequence defined for
u, x1 ∈ C, by

xn+1 � αnu⊕ 1 − αn( 􏼁J
Ψ
λn

xn, (79)

where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉 is a sequence in
(0,∞) such that limn⟶∞λn �∞. 5en, we have the
following:

(i) The sequence JΨλn
xn􏽮 􏽯 is bounded if and only if

argminy∈CΨ(y)≠∅
(ii) If limn⟶∞αn � 0, 􏽐

∞
n�1αn �∞ and Γ ≔

argminy∈CΨ (y)≠∅,then xn􏼈 􏼉 and JΨλn
xn􏽮 􏽯 converge

to v � PΓu, where PΓis the metric projection of X onto
Γ

6. Numerical Results

In this section, we generate some numerical results in
nonlinear setting for Algorithms (58) and (79).

Let X � R2 be endowed with a metric dX : R2×

R2⟶ [0,∞) defined by

dX(x, y) �

���������������������������

x1 − y1( 􏼁
2

+ x2
1 − x2 − y2

1 + y2( 􏼁
2

􏽱

,

∀x, y ∈ R2
.

(80)

.en, (R2, dX) is an Hadamard space (see ([42], Ex-
ample 5.2)) with the geodesic joining x to y given by

(1 − t)x⊕ ty � 􏼒(1 − t)x1 + ty1, (1 − t)x1 + ty1( 􏼁
2

− (1 − t) x
2
1 − x2􏼐 􏼑 − t y

2
1 − y2􏼐 􏼑􏼓.

(81)

Now, define Ψ : R2⟶ R by

Ψ x1, x2( 􏼁 � 100 x2 − 2( 􏼁 − x1 − 2( 􏼁
2

􏼐 􏼑
2

+ x1 − 3( 􏼁
2
. (82)

.en, it follows from ([42], Example 5.2) that Ψ is
a proper convex and lower semicontinuous function in
(R2, dX) but not convex in the classical sense (Figure1).

Now, take αn � 1/(n + 1) and λn � n + 1 for all n≥ 1,
then all the conditions of Corollaries 4.5 and 5.6 are satisfied.
Hence, by considering the following initial vectors, we
obtain the numerical results for Algorithms (58) and (79) as
shown by the graphs as follows:

Case 1: x1 � (0.5, − 0.25)T and u � (0.5, 3)T

Case 2: x1 � (− 1.5, − 3)T and u � (0.5, 3)T

Case 3: x1 � (0.5, 3)T and u � (− 1.5, − 3)T

Case 4: x1 � (0.5, 3)T and u � (0.5, − 0.25)T
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[1] B. Martinet, “Brève communication. Régularisation
d’inéquations variationnelles par approximations succes-
sives,” Revue Française d’Informatique et de Recherche
Opérationnelle. Série Rouge, vol. 4, no. R3, pp. 154–158, 1970.

[2] R. T. Rockafellar, “Monotone operators and the proximal
point algorithm,” SIAM Journal on Control and Optimization,
vol. 14, no. 5, pp. 877–898, 1976.
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In this paper, we introduce an iterative method for approximating a common solution of monotone inclusion problem and fixed
point of Bregman nonspreading mappings in a reflexive Banach space. Using the Bregman distance function, we study the
composition of the resolvent of a maximal monotone operator and the antiresolvent of a Bregman inverse strongly monotone
operator and introduce a Halpern-type iteration for approximating a common zero of a maximal monotone operator and a
Bregman inverse strongly monotone operator which is also a fixed point of a Bregman nonspreading mapping. We further state
and prove a strong convergence result using the iterative algorithm introduced. (is result extends many works on finding a
common solution of the monotone inclusion problem and fixed-point problem for nonlinear mappings in a real Hilbert space to a
reflexive Banach space.

1. Introduction

Let E be a real reflexive Banach space with a norm ‖ · ‖ and
E∗ be the dual space of E. We denote the value of x∗ ∈ E∗ at
x ∈ E by 〈x∗, x〉. A mapping A is called a monotone
mapping if for any x, y ∈ domA, we have

μ ∈ Ax,

] ∈ Ay⟹ 〈μ − ], x − y〉≥ 0.
(1)

A monotone mapping A : E⟶ 2E∗ is said to be
maximal monotone if its graph, G(A) ≔ (x, u) ∈{

E × E∗ : u ∈ Ax}, is not properly contained in the graph of
any other monotone operator. A basic problem that arises in
several branches of applied mathematics [1–7] is to find
x ∈ E such that

0 ∈ Ax. (2)

One of the methods for solving this problem is the well-
known proximal point algorithm (PPA) introduced by

Martinet [8]. Let H be a Hilbert space and let I denote the
identity operator on H. (e PPA generates for any starting
point x0 � x ∈ H, a sequence xn􏼈 􏼉 in H by

xn+1 � I + λnA( 􏼁
− 1

xn, n � 1, 2, . . . , (3)

where A is a maximal monotone mapping and λn􏼈 􏼉 is a given
sequence of positive real numbers. It has been observed that
(3) is equivalent to

0 ∈ Axn+1 +
1
λn

xn+1 − xn( 􏼁, n � 1, 2, . . . . (4)

(is algorithm was further developed by Rockafellar [5],
who proved that the sequence generated by (3) converges
weakly to an element of A− 1(0) when A− 1(0) is nonempty
and lim infn⟶∞λn > 0. Furthermore, Rockafellar [5] asked if
the sequence generated by (3) converges strongly in general.
(is question was answered in the negative by Güler [9] who
presented an example of a subdifferential for which the
sequence generated by (3) converges weakly but not
strongly. Also, the works of Bruck and Reich [10] and
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Bauschke et al. [11] are very important in this direction. For
more recent results on PPA, see [12–14].

(e problem of finding the zeros of the sum of two
monotone mappings A and B, is to find a point x∗ ∈ E such
that

0 ∈ (A + B)x
∗
, (5)

has recently received attention due to its significant im-
portance in many physical problems. One classical method
for solving problem (5) is the forward-backward splitting
method [15], which is as follows: for x1 ∈ E,

xn+1 � (I + rB)
− 1

xn − rAxn( 􏼁, n≥ 1, (6)

where r> 0. (is method combines the proximal point al-
gorithm and the gradient projection algorithm. In [16],
Lions and Mercier introduced the following splitting iter-
ative methods in a real Hilbert space H:

xn+1 � 2J
A
r − I􏼐 􏼑 2J

B
r − I􏼐 􏼑xn, n≥ 1,

xn+1 � J
A
r 2J

B
r − I􏼐 􏼑xn + I − J

B
r􏼐 􏼑xn, n≥ 1,

(7)

where JT
r � (I + rT)− 1. (e first one is called Peaceman–

Rachford algorithm and the second one is called
Douglas–Rachford algorithm [15]. It was noted that both
algorithms converge weakly in general [16, 17].

Many authors have studied the approximation of zero of
the sum of two monotone operators (in Hilbert space) and
accretive operators (in Banach spaces), but the approxi-
mation of the sum of two monotone operators in more
general Banach spaces other the Hilbert spaces has not
enjoyed such popularity.

(roughout this paper, f : E⟶ (− ∞, +∞] is a proper
lower semicontinuous and convex function, and the Fenchel
conjugate of f is the function f∗ : E∗ ⟶ (− ∞, +∞] de-
fined by

f
∗

x
∗

( 􏼁 � sup 〈x∗, x〉 − f(x) : x ∈ E􏼈 􏼉. (8)

We denote by domf the domain of f, that is, the set
x ∈ E : f(x)< +∞􏼈 􏼉. For any x ∈ intdomf and y ∈ E, the
right-hand derivative of f at x in the direction of t is defined by

f
o
(x, y) ≔ lim

t⟶0+

f(x + ty) − f(x)

t
. (9)

(e function f is said to be Gâteaux differentiable at x if
the limit as t⟶ 0+ in (9) exists for any y. In this case,
fo(x, y) coincides with ∇f(x), the value of the gradient ∇f
at x. (e function f is said to be Gâteaux differentiable if it is
Gâteaux differentiable for any x ∈ intdomf.(e function f is
Fréchet differentiable at x if the limit is attained with ‖y‖ � 1
and uniformly Fréchet differentiable on a subset C of E if the
limit is attained uniformly for x ∈ C and ‖y‖ � 1.

(e function f is said to be Legendre if it satisfies the
following two conditions:

(L1) intdomf≠∅ and the subdifferential zf is single-
valued in its domain
(L2) tdomf∗ ≠∅ and zf∗ is single-valued on its
domain

(e class of Legendre functions in infinite dimensional
Banach spaces was first introduced and studied by Bauschke
et al. in [18]. (eir definition is equivalent to conditions (L1)
and (L2) because the space E is assumed to be reflexive (see
[18], (eorems 5.4 and 5.6, p. 634). It is well known that in
reflexive Banach spaces, ∇f � (∇f∗)− 1 (see [19], p. 83).
When this fact is combined with conditions (L1) and (L2),
we obtain

ran∇f � dom∇f∗ � int(domf)
∗
,

ran∇f∗ � dom∇f � int(domf).
(10)

It also follows that f is Legendre if and only if f∗ is
Legendre (see [18], Corollary 5.5, p. 634) and that the
functions f and f∗ are Gâteaux differentiable and strictly
convex in the interior of their respective domains.

Several interesting examples of the Legendre functions
are presented in [18, 20, 21]. A very important example of
Legendre function is the function 1/s‖ · ‖s with s ∈ (1,∞),
where the Banach space E is smooth and strictly convex, and
in particular, a Hilbert space. (roughout this article, we
assume that the convex function f : E⟶ (− ∞, +∞] is
Legendre.

Definition 1. Let f : E⟶ (− ∞, +∞] be a convex and
Gâteaux differentiable function, the function Df : domf×

intdomf⟶ [0,∞) which is defined by

Df(y, x) ≔ f(y) − f(x) − 〈∇f(x), y − x〉, (11)

is called the Bregman distance [22–24].

(e Bregman distance does not satisfy the well-known
metric properties, but it does have the following important
property, which is called the three-point identity: for any
x ∈ domf and y, z ∈ intdomf,

Df(x, y) + Df(y, z) − Df(x, z) � 〈∇f(z) − ∇f(y), x − y〉.

(12)

Let C be a nonempty subset of a Banach space E and
T : C⟶ C be amapping, then a point x is called fixed point
of T if Tx � x. (e set of fixed point of T is denoted by F(T).
Also, a point x∗ ∈ C is said to be an asymptotic fixed point of
T if C contains a sequence xn􏼈 􏼉

∞
n�1 which converges weakly

to x∗ and limn⟶∞‖xn − Txn‖ � 0 [25]. (e set of asymp-
totic fixed points of T is denoted by 􏽢F(T).

Definition 2 [26, 27]. Let C be a nonempty, closed, and
convex subset of E. A mapping T : C⟶ int(domf) is
called

(i) Bregman firmly nonexpansive (BFNE for short) if

〈∇f(Tx) − ∇f(Ty), Tx − Ty〉

≤ 〈∇f(x) − ∇f(y), Tx − Ty〉, ∀x, y ∈ C.
(13)

(ii) Bregman strongly nonexpansive (BSNE) with re-
spect to a nonempty 􏽢F(T) if

2 Journal of Mathematics



Df(p, Tx)≤Df(p, x), (14)

for all p ∈ 􏽢F(T) and x ∈ C and if whenever xn􏼈 􏼉
∞
n�1 ⊂ C

is bounded, p ∈ 􏽢F(T) and

lim
n⟶∞

Df p, xn( 􏼁 − Df p, Txn( 􏼁􏼐 􏼑 � 0, (15)

it follows that

lim
n⟶∞

Df Txn, xn( 􏼁 � 0. (16)

(iii) Bregman quasi-nonexpansive if F(T)≠∅ and

Df(p, Tx)≤Df(p, x), ∀x ∈ C andp ∈ F(T). (17)

(iv) Bregman skew quasi-nonexpansive if F(T)≠∅ and

Df(Tx, p)≤Df(x, p), ∀x ∈ C andp ∈ F(T). (18)

(v) Bregman nonspreading if

Df(Tx, Ty) + Df(Ty, Tx)≤Df(Tx, y)

+ Df(Ty, x), ∀x, y ∈ C.
(19)

It is easy to see that every Bregman nonspreading
mapping T with F(T)≠∅ is Bregman quasi-nonexpansive.
Also Bregman nonspreading mappings include, in partic-
ular, the class of nonspreading functions studied by Taka-
hashi et al. in [28, 29]. For more information on Bregman
nonspreading mappings, see [30].

In a real Hilbert space H, the nonlinear mapping T :

C⟶ C is said to be

(i) Nonexpansive if

‖Tx − Ty‖≤ ‖x − y‖, ∀x, y ∈ C. (20)

(ii) Quasi-nonexpansive if F(T)≠∅ and

‖Tx − p‖≤ ‖x − p‖, ∀x ∈ C and p ∈ F(T). (21)

(iii) Nonspreading if

2‖Tx − Ty‖
2 ≤ ‖Tx − y‖

2
+ ‖Ty − x‖

2
, ∀x, y ∈ C.

(22)

Clearly, every nonspreading mapping Twith F(T)≠∅ is
also quasi-nonexpansive mapping. (e class of non-
spreading mappings is very important due to its relation
with maximal monotone operators (see, e.g., [28]).

Let B : E⟶ 2E∗ be a maximal monotone operator. (e
resolvent of B, Resf

B : E⟶ 2E, is defined by (see [26])

Resf

B ≔ (∇f + B)
− 1 ∘ ∇f. (23)

It is known that Resf
B is a BFNE operator, single-valued,

and F(Resf
B) � B− 1(0∗) (see [26]). If f : E⟶ R is a

Legendre function which is bounded, uniformly Fréchet
differentiable on bounded subsets of E, then Resf

B is BSNE
and 􏽢F(Resf

B) � F(Resf

B) (see [31]).
Assume that the Legendre function f satisfies the fol-

lowing range condition:

ran(∇f − A)⊆ ran∇f. (24)

An operator A : E⟶ 2E∗ is called Bregman inverse
strongly monotone (BISM) if (domA) (domf), and for any
x, y ∈ intdomf and each u ∈ Ax and v ∈ Ay, we have

〈u − v,∇f∗(∇f(x) − u) − ∇f∗(∇f(y) − v)〉 ≥ 0. (25)

(e class of BISM mappings is a generalization of the
class of firmly nonexpansive mappings in Hilbert spaces.
Indeed, if f � 1/2‖ · ‖2, then ∇f � ∇f∗ � I, where I is the
identity operator and (25) becomes

〈u − v, x − u − (y − v)〉≥ 0, (26)

which means
‖u − v‖

2 ≤ 〈x − y, u − v〉. (27)

Observe that

domA
f

� (domA)∩ (intdomf),

ranA
f ⊂ intdomf.

(28)

In other words, T is a (single-valued) firmly non-
expansive operator.

For any operator A : E⟶ 2E∗ , the antiresolvent op-
erator Af : E⟶ 2E of A is defined by

A
f ≔ ∇f∗ ∘ (∇f − A). (29)

It is known that the operator A is BISM if and only if the
antiresolvent Af is a single-valued BFNE (see [32], Lemma
3.2(c) and (d), p. 2109) and F(Af) � A− 1(0∗). For examples
and further information on BISM, see [32].

Since the monotone inclusion problems have very close
connections with both the fixed-point problems and the
equilibrium problems, finding the common solutions of
these problems has drawn many people’s attention and has
become one of the hot topics in the related fields in the past
few years [33, 34]. Furthermore, interest in finding the
common solution of these problems has also grown be-
cause of the possible application of these problems to
mathematical models whose constraints can be present as
fixed points of mappings and/or monotone inclusion
problems and/or equilibrium problems. Such a problem
occurs, in particular, in the practical problems as signal
processing, network resource allocation, and image re-
covery (see [35, 36]).
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In this paper, we introduce an iterative method for
approximating a common solution of monotone inclusion
problem and fixed point of Bregman nonspreading mapping
in a reflexive Banach space and prove a strong convergence
of the sequence generated by our iterative algorithm. (is
result extends many works on finding common solution of
monotone inclusion problem and fixed problem of non-
linear mapping in a real Hilbert space to a reflexive Banach
space.

2. Preliminaries

(e Bregman projection [22] of x ∈ int(domf) onto the
nonempty, closed, and convex subset C ⊂ int (domf) is
defined as the necessarily unique vector ProjfC(x) ∈ C

satisfying

Df ProjfC(x), x􏼐 􏼑 � inf Df(y, x) : y ∈ C􏽮 􏽯. (30)

It is known from [37] that z � ProjfC(x) if and only if

〈∇f(x) − ∇f(z), y − z〉≤ 0, for ally ∈ C. (31)

We also have

Df y,ProjfC(x)􏼐 􏼑 + Df ProjfC(x), x􏼐 􏼑

≤ Df(y, x), for allx ∈ E, y ∈ C.
(32)

Note that if E is a Hilbert space and f(x) � 1/2‖x‖2, then
the Bregman projection of x onto C, i.e.,
argmin ‖y − x‖ : y ∈ C􏼈 􏼉, is the metric projection PC.

Lemma 1 [37]. Let f be totally convex on int (domf). Let C be
a nonempty, closed, and convex subset of int (domf) and
x ∈ int(domf); if z ∈ C, then the following conditions are
equivalent:

(i) z � Proj
f

C(x)

(ii) 〈∇f(x) − ∇f(z), z − y〉≥ 0 for all y ∈ C

(iii) Df(y, z) + Df(z, x)≤Df(y, x) for all y ∈ C

Let f : E⟶ R∪ +∞{ } be a convex and Gâteaux dif-
ferentiable function. (e function f is said to be totally
convex at x ∈ intdomf if its modulus of totally convexity at
x, that is, the function vf : int (domf) × [0, +∞) defined by

vf(x, t) ≔ inf Df(y, x) : y ∈ domf, ‖y − x‖ � t􏽮 􏽯, (33)

is positive for any t> 0. (e function f is said to be totally
convex when it is totally convex at every point
x ∈ int(domf). In addition, the function f is said to be
totally convex on bounded set if vf(B, t) is positive for any
nonempty bounded subset B, where the modulus of total
convexity of the function f on the set B is the function vf :

int(domf) × [0, +∞) defined by

vf(B, t) ≔ inf vf(x, t) : x ∈ B∩ domf􏽮 􏽯. (34)

For further details and examples on totally convex
functions, see [37–39].

Let f : E⟶ R be a convex, Legendre, and Gâteaux
differentiable function and let the function
Vf : E × E∗ ⟶ [0,∞) associated with f (see [23, 40]) be
defined by

Vf x, x
∗

( 􏼁 � f(x) − 〈x∗, x〉 + f
∗

x
∗

( 􏼁, ∀x ∈ E, x
∗ ∈ E
∗
.

(35)

(en Vf is nonnegative and Vf(x, x∗) � Df(x,

∇f∗(x∗)), ∀x ∈ E, x∗ ∈ E∗. Furthermore, by the sub-
differential inequality, we have (see [41])

Vf x, x
∗

( 􏼁 +〈y∗,∇f∗ x
∗

( 􏼁 − x〉

≤Vf x, x
∗

+ y
∗

( 􏼁, ∀x ∈ E, x
∗
, y
∗ ∈ E
∗
.

(36)

In addition, if f : E⟶ (− ∞, +∞] is a proper lower
semicontinuous function, then f∗ : E∗ ⟶ (− ∞, +∞] is a
proper weak∗ lower semicontinuous and convex function
(see [42]). Hence, Vf is convex in the second variable. (us,
for all z ∈ E,

Df z,∇f∗􏽘

N

i�1
ti∇f xi( 􏼁⎛⎝ ⎞⎠≤ 􏽘

N

i�1
tiDf z, xi( 􏼁, (37)

where xi􏼈 􏼉
N

i�1 ⊂ E and ti􏼈 􏼉 ⊂ (0, 1) with 􏽐
N
i�1ti � 1.

Lemma 2 (see [43]). Let r> 0 be a constant and let f :

E⟶ R be a continuous uniformly convex function on
bounded subsets of E. <en

f 􏽘
∞

k�0
αkxk

⎛⎝ ⎞⎠≤ 􏽘
∞

k�0
αkf xk( 􏼁 − αiαjρr xi − xj

�����

�����􏼒 􏼓, (38)

for all i, j ∈ N∪ 0, xk ∈ Br, αk ∈ (0, 1), and k ∈ N∪ 0 with
􏽐
∞
k�0αk � 1, where ρr is the gauge of uniform convexity of f.

Recall that a function f is said to be sequentially consisted
(see [37]) if for any two sequences xn􏼈 􏼉 and yn􏼈 􏼉 in E such
that the first one is bounded,

lim
n⟶∞

Df yn, xn( 􏼁 � 0⟹ lim
n⟶∞

yn − xn

����
���� � 0. (39)

(e following lemma follows from [44].

Lemma 3. If domf contains at least two points, then the
function f is totally convex on bounded sets if and only if the
function f is sequentially consistent.

Lemma 4 (see [45]). Let f : E⟶ (− ∞, +∞] be a Leg-
endre function and let A : E⟶ 2E∗ be a BISM operator such
that A− 1(0∗)≠∅. <en the following statements hold:

(i) A− 1(0∗) � F(Af)

(ii) For any w ∈ A− 1(0∗) and x ∈ domAf, we have

Df w, A
f

x􏼐 􏼑 + Df A
f

x, x􏼐 􏼑 ≤ Df(w, x). (40)

Remark 1. If the Legendre function f is uniformly Fréchet
differentiable and bounded on bounded subsets of E, then
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the antiresolvent Af is a single-valued BSNE operator which
satisfies F(Af) � 􏽢F(Af) (cf. [31]).

Lemma 5 (see [46]). If f : E⟶ R is uniformly Fréchet
differentiable and bounded on bounded subsets of E, then ∇f
is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E∗.

Lemma 6 (see [44]). Let f : E⟶ R be a Gâteaux dif-
ferentiable and totally convex function. If x1 ∈ E and the
sequence Df(xn, x1)􏽮 􏽯 is bounded, then the sequence xn􏼈 􏼉 is
also bounded.

Lemma 7 (see [45]). Assume that f : E⟶ R is a Legendre
function which is uniformly Fréchet differentiable and
bounded on bounded subset of E. Let C be a nonempty, closed,
and convex subset of E. Let Ti : 1≤ i≤N􏼈 􏼉 be BSNE operators
which satisfy 􏽢F(Ti) � F(Ti) for each 1≤ i≤N and let
T ≔ wnTN− 1 . . . T1. If

∩ F Ti( 􏼁 : 1≤ i≤N􏼈 􏼉, (41)

and F(T) are nonempty, then T is also BSNE with
F(T) � 􏽢F(T).

Lemma 8 (Demiclosedness principle [30]). Let C be a
nonempty subset of a reflexive Banach space. Let g : E⟶ R

be a strict convex, Gâteaux differentiable, and locally bounded
function. Let T : C⟶ E be a Bregman nonspreading
mapping. If xn⇀p in C and lim

n⟶∞
‖Txn − xn‖ � 0, then

p ∈ F(T).

Lemma 9 (see [47]). Assume an􏼈 􏼉 is a sequence of non-
negative real numbers satisfying

an+1 ≤ 1 − tn( 􏼁an + tnδn∀n≥ 0, (42)

where tn􏼈 􏼉 is a sequence in (0, 1) and δn􏼈 􏼉 is a sequence in R

such that

(i) 􏽐
∞
n�otn �∞

(ii) lim supn⟶∞ δn ≤ 0

<en, limn⟶∞ an � 0.

Lemma 10 [48]. Let an􏼈 􏼉 be a sequence of real numbers
such that there exists a nondecreasing subsequence ni􏼈 􏼉 of
n{ }, that is, ani

≤ ani+1 for all i ∈ N. <en there exists a
nondecreasing sequence mk􏼈 􏼉 ⊂ N such that mk⟶∞, and
the following properties are satisfied for all (sufficiently
large number k ∈ N): amk

≤ amk+1 and ak ≤ amk+1,
mk � max j≤ k : aj ≤ aj+1􏽮 􏽯.

3. Main Results

Theorem 1. Let C be a nonempty, closed, and convex subset
of a real reflexive Banach space E and f : E⟶ R a Legendre
function which is bounded, uniformly Fréchet differentiable,
and totally convex on bounded subsets of E. Let A : E⟶ 2E∗

be a Bregman inverse strongly monotone operator,

B : E⟶ 2E∗ be a maximal monotone operator, and
T : C⟶ C be a Bregman nonspreading mapping. Suppose
Γ ≔ F(ResfA ∘Af)∩F(T)≠∅. Let cn􏼈 􏼉 ⊂ (0, 1) and αn􏼈 􏼉, βn,
and δn􏼈 􏼉 be sequences in (0, 1) such that αn + βn + δn � 1.
Given u ∈ E and x1 ∈ C arbitrarily, let xn􏼈 􏼉 and yn􏼈 􏼉 be
sequences in E generated by

yn � ∇f∗ cn∇f xn( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁( 􏼁,

xn+1 � ProjfC ∇f∗ αn∇f(u) + βn∇f yn( 􏼁 + δn∇f Resf

B ∘Af yn( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑, n≥ 1.

⎧⎨

⎩

(43)

Suppose the following conditions are satisfied:

(i) lim
n⟶∞

αn � 0 and 􏽐
∞
n�1αn �∞

(ii) (1 − αn)a< δn, αn ≤ b< 1, a ∈ (0, 1/2)

(iii) 0≤ c< lim infn⟶∞ cn ≤ lim supn⟶∞ cn < 1

Then xn􏼈 􏼉 converges strongly to ProjfΓu, where ProjfΓ is
the Bregman projection of E onto Γ.

Proof. First we observe that F(Resf
B ∘Af) � (A + B)− 10 and

F(Resf
B ∘Af) � F(Resf

B)∩F(Af). (us, since Resf
B and Af

are BSNE operators and F(Resf

B)∩F(Af) � (A + B)− 10≠∅,

it then follows from Lemma 7 that Resf

B ∘Af is BSNE and
F(Resf

B ∘Af) � 􏽢F(Resf

B ∘Af).

We next show that xn􏼈 􏼉 and yn􏼈 􏼉 are bounded.
Let p ∈ Γ, then from (43), we have

Df p, yn( 􏼁 � Df p,∇f∗ cn∇f xn( 􏼁( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁( 􏼁

≤ cnDf p, xn( 􏼁 + 1 − cn( 􏼁Df p, Txn( 􏼁

≤ cnDf p, xn( 􏼁 + 1 − cn( 􏼁Df p, xn( 􏼁

� Df p, xn( 􏼁.

(44)

Also

Df p, xn+1( 􏼁≤Df􏼒p,∇f∗􏼔αn∇f(u) + βn∇f yn( 􏼁

+ δn∇f Resf

B ∘A
f

yn( 􏼁􏼐 􏼑􏼕􏼓

≤ αnDf(p, u) + βnDf p, yn( 􏼁

+ δnDf p,Resf
B ∘A

f
yn􏼐 􏼑

≤ αnDf(p, u) + βnDf p, yn( 􏼁 + δnDf p, yn( 􏼁

� αnDf(p, u) + 1 − αn( 􏼁Df p, yn( 􏼁

� αnDf(p, u) + 1 − αn( 􏼁Df p, xn( 􏼁

≤max Df(p, u), Df p, xn( 􏼁􏽮 􏽯

⋮

≤max Df(p, u), Df p, x1( 􏼁􏽮 􏽯.

(45)

Hence Df(p, xn)􏽮 􏽯 is bounded. (erefore, by Lemma 6,
xn􏼈 􏼉 is also bounded, and consequently, yn􏼈 􏼉 is also bounded.
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We now show that xn converges strongly to
x � ProjfΓ (u). To do this, we first show that if there exists a
subsequence xni

􏽮 􏽯 of xn􏼈 􏼉 such that xni
⇀ q ∈ C, then q ∈ Γ.

Let s � sup ‖∇f(xn)‖, ‖∇f(Txn)‖􏼈 􏼉 and ρ∗s : E∗ ⟶ R

be the gauge of uniform convexity of the conjugate function
f∗. From Lemma 2 and (9), we have

Df p, yn( 􏼁≤Df p,∇f∗ cn∇f xn( 􏼁( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁( 􏼁

� Vf p, cn∇f xn( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁( 􏼁

� f(p) − 〈p, cn∇f xn( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁〉
+ f
∗

cn∇f xn( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁( 􏼁

≤ cnf(p) − cn〈p,∇f xn( 􏼁〉 + cnf
∗ ∇f xn( 􏼁( 􏼁

+ 1 − cn( 􏼁f(p) − 1 − cn( 􏼁〈p,∇f Txn( 􏼁〉
+ 1 − cn( 􏼁f

∗ ∇f Txn( 􏼁( 􏼁 − cn 1 − cn( 􏼁ρ∗s
· ∇f xn( 􏼁 − ∇f Txn( 􏼁

����
����􏼐 􏼑

� cnDf p, xn( 􏼁 + 1 − cn( 􏼁Df p, Txn( 􏼁

− cn 1 − cn( 􏼁ρ∗s ∇f xn( 􏼁 − ∇f Txn( 􏼁
����

����􏼐 􏼑

≤Df p, xn( 􏼁 − cn 1 − cn( 􏼁ρ∗s
· ∇f xn( 􏼁 − ∇f Txn( 􏼁

����
����􏼐 􏼑.

(46)
(us, from (45), we have

Df p, xn+1( 􏼁≤ αnDf(p, u) + 1 − αn( 􏼁

· Df p, xn( 􏼁 − cn 1 − cn( 􏼁ρ∗s ∇f xn( 􏼁 − ∇f Txn( 􏼁
����

����􏼐 􏼑􏽨 􏽩.

(47)

We consider the following two cases for the rest of the
proof. □

Case A. Suppose Df(p, xn)􏽮 􏽯 is monotonically
nonincreasing. (en, Df(p, xn)􏽮 􏽯 converges and
Df(p, xn) − Df(p, xn+1)⟶ 0 as n⟶∞. (us, from
(47), we have

1 − αn( 􏼁 1 − cn( 􏼁cnρ
∗
s ∇f xn( 􏼁 − ∇f Txn( 􏼁

����
����􏼐 􏼑

≤ αn Df(p, u) − Df p, xn( 􏼁􏼐 􏼑 + Df p, xn( 􏼁 − Df p, xn+1( 􏼁.

(48)

Since αn⟶ 0, n⟶∞, then we have

lim
n⟶∞

cn 1 − cn( 􏼁ρ∗s ∇f xn( 􏼁 − ∇f Txn( 􏼁
����

����􏼐 􏼑 � 0, (49)

and hence, by condition (iii) and the property of ρ∗s , we have

lim
n⟶∞
∇f xn( 􏼁 − ∇f Txn( 􏼁

����
���� � 0. (50)

Since ∇f∗ is uniformly norm-to-norm continuous on
bounded subset of E∗, we have

lim
n⟶∞

xn − Txn

����
���� � 0. (51)

Again

∇f xn( 􏼁 − ∇f yn( 􏼁
����

���� � ∇f xn( 􏼁 − cn∇f xn( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁( 􏼁
����

����

� 1 − cn( 􏼁 ∇f xn( 􏼁 − ∇f Txn( 􏼁
����

����⟶ 0, n⟶∞.

(52)

Since ∇f∗ is uniformly norm-to-norm continuous on
bounded subsets of E∗, we have that

lim
n⟶∞

xn − yn

����
���� � 0. (53)

Now, let wn � ∇f∗(βn/1 − αn∇f(yn) + δn/1 − αn∇f
(Resf

B ∘Afyn)), then

Df p, wn( 􏼁 � Df p,∇f∗
βn

1 − αn

∇f yn( 􏼁 +
δn

1 − αn

∇f Resf
B ∘A

f
yn􏼐 􏼑􏼢 􏼣􏼠 􏼡

≤
βn

1 − αn

Df p, yn( 􏼁 +
δn

1 − αn

Df p,Resf

B ∘A
f

yn􏼐 􏼑

≤
βn + δn

1 − αn

Df p, yn( 􏼁

� Df p, yn( 􏼁.

(54)

(erefore, we have

0≤Df p, xn( 􏼁 − Df p, wn( 􏼁

� Df p, xn( 􏼁 − Df p, xn+1( 􏼁 + Df p, xn+1( 􏼁 − Df p, wn( 􏼁

≤Df p, xn( 􏼁 − Df p, xn+1( 􏼁 + αnDf(p, u)

+ 1 − αn( 􏼁Df p, wn( 􏼁 − Df p, wn( 􏼁

� Df p, xn( 􏼁 − Df p, xn+1( 􏼁

+ αn Df(p, u) − Df p, wn( 􏼁􏽨 􏽩⟶ 0, as n⟶∞.

(55)

More so

Df p, wn( 􏼁≤
βn

1 − αn

Df p, yn( 􏼁 +
δn

1 − αn

Df p,Resf
B ∘A

f
yn􏼐 􏼑

� Df p, yn( 􏼁 − 1 −
βn

1 − αn

􏼠 􏼡Df p, yn( 􏼁

+
δn

1 − αn

Df p,Resf
B ∘A

f
yn􏼐 􏼑

≤Df p, xn( 􏼁 +
δn

1 − αn

􏼢Df p,Resf
B ∘A

f
yn􏼐 􏼑

− Df p, yn( 􏼁􏼣.

(56)

Since (1 − αn)a< δn and αn ≤ b< 1, we have

6 Journal of Mathematics



a Df p, yn( 􏼁 − Df p,Resf
B ∘A

f
yn􏼐 􏼑􏼐 􏼑 <

δn

1 − αn

􏼢Df p, yn( 􏼁

− Df p,Resf

B ∘A
f

yn􏼐 􏼑􏼣

≤Df p, xn( 􏼁

− Df p, wn( 􏼁⟶ 0,

as n⟶∞.

(57)

(us,

Df p, yn( 􏼁 − Df p,Resf
B ∘A

f
yn􏼐 􏼑⟶ 0, as n⟶∞.

(58)

(erefore, since Resf

B ∘Af is BSNE, we have that
limn⟶∞Df(yn,Resf

B ∘Afyn) � 0, which implies that

lim
n⟶∞

yn − Resf
B ∘A

f
yn

�����

����� � 0. (59)

Setting un � ∇f∗[αn∇f(u) + βn∇f(yn) + δn∇f(Resf
B ∘

Afyn)], for each n≥ 1, we have

Df yn, un( 􏼁 � Df􏼒yn,∇f∗􏼔αn∇f(u) + βn∇f yn( 􏼁

+ δn∇f Resf
B ∘A

f
yn􏼐 􏼑􏼕􏼓

≤ αnDf yn, u( 􏼁 + βnDf yn, yn( 􏼁 + δnDf

· yn,Resf
B ∘A

f
yn􏼐 􏼑⟶ 0.

(60)

(us,

lim
n⟶∞

yn − un

����
���� � 0. (61)

(erefore, from (47), we have

un − xn

����
����≤ un − yn

����
���� + yn − xn

����
����⟶ 0, n⟶∞.

(62)

Moreover, since xn+1 � ProjfCun, then

Df p, xn+1( 􏼁 + Df xn+1, un( 􏼁≤Df p, un( 􏼁, (63)

and therefore, we have that

Df xn+1, un( 􏼁≤Df p, un( 􏼁 − Df p, xn+1( 􏼁

≤ αnDf(p, u) + βnDf p, yn( 􏼁 + δnDf p,Resf
B ∘A

f
yn􏼐 􏼑

− Df p, xn+1( 􏼁

� αnDf(p, u) + 1 − αn( 􏼁Df p, yn( 􏼁 − Df p, xn+1( 􏼁

≤ αn Df(p, u) − Df p, xn( 􏼁􏼐 􏼑 + Df p, xn( 􏼁

− Df p, xn+1( 􏼁⟶ 0, n⟶∞,

(64)

which implies

xn+1 − un

����
����⟶ 0, n⟶∞. (65)

Hence,

xn+1 − xn

����
���� ≤ xn+1 − un

����
���� + un − xn

����
����⟶ 0, n⟶∞.

(66)

Since xn􏼈 􏼉 is bounded, there exists a subsequence xni
􏽮 􏽯 of

xn􏼈 􏼉 such that xni
􏽮 􏽯 converges weakly to q ∈ C as n⟶∞.

Since lim
n⟶∞

‖xni
− Txni

‖ � 0, it follows from Lemma 8

that q ∈ F(T). Also, since ‖xni
− yni

‖⟶ 0, it implies that
yni

also converges weakly to q ∈ E. (erefore,
from (59), we have that q ∈ F(Resf

B ∘Af), and hence,
q ∈ Γ � F(T)∩F(Resf

B ∘Af).

Next, we show that xn􏼈 􏼉 converges strongly to
x � ProjfΓ (u).

Now from (43), we have

Df x, xn+1( 􏼁≤Df􏼒x,∇f∗􏼔αn∇f(u) + βn∇fyn

+ δn∇fRes
f
B ∘A

f
yn􏼕􏼓

� Vf x, αn∇f(u) + βn∇f yn( 􏼁 + δn∇f Resf
B ∘A

f
􏼐 􏼑yn􏼐 􏼑

≤Vf􏼒x, αn∇f(u) + βn∇f yn( 􏼁 + δn∇f Resf
B ∘A

f
􏼐 􏼑yn

− αn(∇f(u) − ∇f(x))􏼓

− 􏼊 − αn(∇f(u) − ∇f(x)),∇f∗

· αn∇f(u) + βn∇f yn( 􏼁 + δn∇f Resf
B ∘A

f
􏼐 􏼑yn􏽨 􏽩 − x􏼋

� Vf x, αn∇f(x) + βn∇f yn( 􏼁 + δn∇f Resf
B ∘A

f
􏼐 􏼑yn􏼐 􏼑

+ αn〈∇f(u) − ∇f(w), un − x〉

� Df􏼒x,∇f∗􏼔αn∇f(x) + βn∇f yn( 􏼁

+ δn∇f Resf
B ∘A

f
􏼐 􏼑yn􏼕􏼓 + αn􏼊∇f(u)

− ∇f(x), un − x􏼋

� αnDf(x, x) + βnDf x, yn( 􏼁 + δnDf x,Resf

B ∘A
f

yn􏼐 􏼑

+ αn〈∇f(u) − ∇f(x), un − x〉

≤ βnDf x, yn( 􏼁 + δnDf x, yn( 􏼁

+ αn〈∇f(u) − ∇f(x), un − x〉

� 1 − αn( 􏼁Df x, yn( 􏼁 + αn〈∇f(u) − ∇f(x), un − x〉

≤ 1 − αn( 􏼁Df x, xn( 􏼁 + αn〈∇f(u) − ∇f(x), un − x〉.

(67)
Choose a subsequence xnj

􏼚 􏼛 of xn􏼈 􏼉 such that

lim sup
n⟶∞
〈∇f(u) − ∇f(x), xn − x〉 � lim

j⟶∞
􏼊∇f(u)

− ∇f(x), xnj
− x􏼋.

(68)

Since xnj
⇀ q, it follows from Lemma 1(ii) that
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lim sup
n⟶∞
〈∇f(u) − ∇f(x), xn − x〉 � lim

j⟶∞
􏼊∇f(u)

− ∇f(x), xnj
− x􏼋

� 􏼊∇f(u) − ∇f(x),

q − x􏼋≤ 0.

(69)

Since ‖un − xn‖⟶ 0, n⟶∞, then,
lim sup

n⟶∞
〈∇f(u) − ∇f(x), un − x〉 ≤ 0. (70)

Hence, by Lemma 9 and (67), we conclude that
Df(x, xn)⟶ 0, n⟶∞. (erefore, xn􏼈 􏼉 converges
strongly to x � ProjfΓ(u).

Case B. Suppose that there exists a subsequence nj􏽮 􏽯 of n{ }

such that

Df xnj
, w􏼒 􏼓<Df xnj+1, w􏼒 􏼓, (71)

for all j ∈ N. (en, by Lemma 10, there exists a non-
decreasing sequence mk􏼈 􏼉 ⊂ N with mk⟶∞ as n⟶∞
such that

Df p, xmk
􏼐 􏼑≤Df p, xmk+1􏼐 􏼑,

Df p, xk( 􏼁≤Df p, xmk+1􏼐 􏼑,
(72)

for all k ∈ N. Following the same line of arguments as in Case
I, we have that

lim
k⟶∞

Txmk
− xmk

�����

����� � 0,

lim
k⟶∞

Resf
BA

f
ymk

− ymk

�����

����� � 0,

lim
k⟶∞

wmk
− xmk

�����

����� � 0,

lim sup
k⟶∞
〈∇f(u) − ∇f(p), wmk

− p〉 ≤ 0.

(73)

From (67), we have

Df p, xmk+1􏼐 􏼑≤ 1 − αmk
􏼐 􏼑Df p, xmk

􏼐 􏼑

+ αmk
〈∇f(u) − ∇f(p), wmk

− p〉.
(74)

Since Df(p, xmk
)≤Df(p, xmk+1), it follows from (74)

that

αmk
Df p, xmk

􏼐 􏼑≤Df p, xmk
􏼐 􏼑 − Df p, xmk+1􏼐 􏼑

+ αmk
〈∇f(u) − ∇f x

∗
( 􏼁, wmk

− p〉

≤ αmk
〈∇f(u) − ∇f(p), wmk

− p〉.

(75)

Since αmk
> 0, we obtain

Df p, xmk
􏼐 􏼑≤ 〈∇f(u) − ∇f(p), wmk

− p〉. (76)

(en from (73), it follows that Df(p, xmk
)⟶ 0 as

k⟶∞. Combining Df(p, xmk
)⟶ 0 with (74), we

obtain Df(p, xmk+1)⟶ 0 as k⟶∞. Since
Df(p, xk)≤Df (p, xmk+1) for all k ∈ N, we have xk⟶ p as
k⟶∞, which implies that xn⟶ p as n⟶∞.

(erefore, from the above two cases, we conclude that
xn􏼈 􏼉 converges strongly to x � ProjfΓu.

(is completes the proof.

Corollary 1. Let C be a nonempty, closed, and convex subset
of a real reflexive Banach space E and f : E⟶ R a Legendre
function which is bounded, uniformly Fréchet differentiable,
and totally convex on bounded subsets of E. Let A : E⟶ 2E∗

be a Bregman inverse strongly monotone operator,
B : E⟶ 2E∗ be a maximal monotone operator, and
T : C⟶ C be a Bregman firmly nonexpansive mapping.
Suppose Γ ≔ F(ResfA ∘Af)∩F(T)≠∅. Let cn􏼈 􏼉 ⊂ (0, 1) and
αn􏼈 􏼉, βn, and δn􏼈 􏼉 be sequences in (0, 1) such that
αn + βn + δn � 1. Given u ∈ E and x1 ∈ C arbitrarily, let xn􏼈 􏼉

and yn􏼈 􏼉 be sequences in E generated by

yn � ∇f∗ cn∇f xn( 􏼁 + 1 − cn( 􏼁∇f Txn( 􏼁( 􏼁,

xn+1 � ProjfC ∇f∗ αn∇f(u) + βn∇f yn( 􏼁 + δn∇f Resf

B ∘Af yn( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑, n≥ 1.

⎧⎨

⎩

(77)

Suppose the following conditions are satisfied:

(i) lim
n⟶∞

αn � 0 and 􏽐
∞
n�1αn �∞

(ii) (1 − αn)a< δn, αn ≤ b< 1, a ∈ (0, 1/2)

(iii) 0≤ c< lim infn⟶∞ cn ≤ lim supn⟶∞ cn < 1

Then, xn􏼈 􏼉 converges strongly to ProjfΓu, where ProjfΓ is
the Bregman projection of E onto Γ.

Corollary 2. Let C be a nonempty, closed, and convex subset of a
real Hilbert space H. Let A : H⟶ H be a single-valued 1-
inverse stronglymonotone operator,B : E⟶ 2E∗ be amaximal
monotone operator, and T : C⟶ C be a firmly nonexpansive
mapping. Suppose Γ ≔ F((I + B)− 1(I − A))∩F(T)≠∅. Let
cn􏼈 􏼉 ⊂ (0, 1) and αn􏼈 􏼉, βn, and δn􏼈 􏼉 be sequences in (0, 1) such
that αn + βn + δn � 1. Given u ∈ E and x1 ∈ C arbitrarily, let
xn􏼈 􏼉 and yn􏼈 􏼉 be sequences in E generated by

yn � cnxn + 1 − cn( 􏼁Txn,

xn+1 � PC αnu + βnyn + δn(I + B)− 1(I − A)yn􏼐 􏼑, n≥ 1.

⎧⎨

⎩

(78)

Suppose the following conditions are satisfied:

(i) lim
n⟶∞

αn � 0 and 􏽐
∞
n�1αn �∞

(ii) (1 − αn)a< δn, αn ≤ b< 1, a ∈ (0, 1/2)

(iii) 0≤ c< lim infn⟶∞ cn ≤ lim supn⟶∞ cn < 1

Then, xn􏼈 􏼉 converges strongly to PΓu, where PΓ is the
metric projection of H onto Γ.
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4. Application

In this section, we apply our result to obtain a common
solution of variational inequality problem (VIP) and equi-
librium problem (EP) in real reflexive Banach spaces.

Let C be a nonempty, closed, and convex subset of a real
reflexive Banach space E. Suppose g : C × C⟶ R is a
bifunction that satisfies the following conditions:

A1 g(x, x) � 0, ∀x ∈ C

A2 g(x, y) + g(y, x)≤ 0, ∀x, y ∈ C

A3 lim supt↓0g(tz + (1 − t)x, y)≤g(x, y), ∀x, y,

z ∈ C

A4 g(x, .) is convex and lower semicontinuous, for
each x ∈ C.

(e equilibrium problem with respect to g is to find
x ∈ C such that

g(x, y)≥ 0, ∀y ∈ C. (79)

We denote the set of solutions of (79) by EP(g). (e
resolvent of a bifunction g : C × C⟶ R that satisfies A1 −

A4 (see [49]) is the operator Tf
g : E⟶ 2C defined by

T
f
g(x) ≔ z ∈ C : g(z, y) +〈∇f(z) − ∇f(x), y − z〉≥ 0, ∀y ∈ C􏼈 􏼉.

(80)

Lemma 11 ([27], Lemma 1, 2). Let f : E⟶ (− ∞,∞) be
a coercive Legendre function and let C be a nonempty, closed,
and convex subset of E. Suppose the bifunction
g : C × C⟶ R satisfies A1 − A4, then

(1) dom(Tf
g) � E.

(2) Tf
g is single valued

(3) Tf
g is Bregman firmly nonexpansive

(4) F(Tf
g) � EP(g)

(5) EP(g) is a closed and convex subset of C
(6) Df(u, Tf

g(x)) + Df(Tf
g(x), x)≤Df(u, x), for all

x ∈ E and for all u ∈ F(Tf
g)

Let A : E⟶ E∗ be a Bregman inverse strongly
monotone mapping and let C be a nonempty, closed, and
convex subset of domA. (e variational inequality problem
corresponding to A is to find x ∈ C, such that

〈Ax
∗
, y − x

∗〉 ≥ 0, ∀y ∈ C. (81)

The set of solutions of (81) is denoted by VI(C, A).

Lemma 12 (see [25, 46]). Let A : E⟶ E∗ be a Bregman
inverse strongly monotone mapping and f : E⟶ (− ∞,∞]

be a Legendre and totally convex function that satisfies the
range condition. If C is a nonempty, closed, and convex subset
of domA∩ int(domf), then

(1) P
f

C ∘Af is Bregman relatively nonexpansive mapping

(2) F(P
f

C ∘Af) � VI(C, A)

Now let iC be the indicator function of a closed convex
subset C of E, defined by

iC(x) �
0, x ∈ C,

+∞, otherwise.
􏼨 (82)

The subdifferential of the indicator function
ziC(x) � NC(x), where C is a closed subset of a Banach
space E and NC ⊂ E∗ is the normal cone defined by

NC(x) �
v ∈ E∗ : 〈v, x − x〉≤ 0, for allx ∈ C{ }, x ∈ C,

∅, x ∉ C.
􏼨

(83)

The normal cone NC is maximal monotone and the
resolvent of the normal cone corresponds to the Bregman
projection (see [50], Example 4.4) that is Resf

NC
� ProjfC.

Therefore, if we let B � NC and T � Tf
g , then the iter-

ative algorithm (77) becomes
yn � ∇f∗ cn∇f xn( 􏼁 + 1 − cn( 􏼁∇f Tf

gxn􏼐 􏼑􏼐 􏼑,

xn+1 � ProjfC ∇f∗ αn∇f(u) + βn∇f yn( 􏼁 + δn∇f ProjfC ∘Af yn( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑, n≥ 1.

⎧⎪⎨

⎪⎩

(84)

Thus, from Corollary 1, we obtain a strong convergence
result for approximating a point x ∈ VI(C, A)∩EP(g).
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