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Guozhen Lu, USA
Jinhu Lü, China
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1. Introduction

In this special issue, a number of papers have been accepted
for publication. The special issue concerns with theoreti-
cal investigation and mathematical analysis that are very
important for all scientific, engineering, and environmental
applications. Frommathematical modeling to computational
analysis and all the way to developing analytical and numer-
ical solutions, studying solutions properties, and so forth,
the theoretical, mathematical, and computational analyses
are indispensable bases. Rapid progress has been seen in the
analysis of flow and transport phenomena especially in the
recent years because of the significance of flow and transport
to science and engineering.

2. Overview of Work Presented in
This Special Issue

The list of papers published in this issue covers a wide range
of applications using different approaches and analyses, and
it may be divided into five groups as follows.

The first group of papers consists of nine papers that
address various issues in the area of particles/nanoparticles
suspensions flow that are used in different applications. Z.
You et al. have studied a long-term deep bed filtration in
porousmedia with size exclusion particle capturemechanism
in the paper entitled “Exact solution for long-term size
exclusion suspension-colloidal transport in porous media.” On
the other hand, E. H. Aly and A. Ebaid have introduced

a direct and effective approach to obtain the exact analytical
solution for the nanoparticles-water flow over an isothermal
stretching sheet with the effect of the slip model in the paper
entitled “Exact analytical solution for suction and injection
flow with thermal enhancement of five nanofluids over an
isothermal stretching sheet with effect of the slip model: a
comparative study.” In another paper entitled “The flow and
heat transfer of a nanofluid past a stretching/shrinking sheet
with a convective boundary condition,” S. Mansur and A.
Ishak have studied the boundary layer flow of a nanofluid
past a stretching/shrinking sheet with a convective boundary
condition. Moreover, H. Qing and X. Mingliang have pro-
posed a model of fundamental aspects of the Taylor-series
expansion method of moment (TEMOM) to describe the
aerosol population balance equation due to Brownian coag-
ulation in the continuum regime in the paper entitled “The
fundamental aspects of TEMOMmodel for particle coagulation
due to Brownian motion—part ii: in the continuum regime.”
R. Wang has presented numerical investigations on particle
trapping techniques by using intrinsic hydrodynamic effects
in an expansion-contraction microfluidic device in the paper
entitled “Hydrodynamic trapping of particles in an expansion-
contraction microfluidic device.” L.-Z. Huang and D.-M. Nie
in the article entitled “Lattice Boltzmann simulation of col-
lision between 2D circular particles suspension in Couette
flow” simulated the collision between 2D circular particles
suspension in Couette flow by usingmultiple relaxation time-
based lattice Boltzmann and direct forcing/fictitious domain
method. In the paper entitled “Modeling and numerical
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2 Abstract and Applied Analysis

analysis of the solid particle erosion in curved ducts,” K. Sun et
al. presented amodeling and computational study on particle
erosion in curved ducts. In another paper, M. H. Alawi et al.
have introduced a mathematical model to describe the fine-
particles transport carried by a two-phase flow in a porous
medium to describe the formation damage of asphalt-paved
roads in the paper entitled “Modeling and simulation of flow
and formation damage of asphalt-paved roads.” Finally, F. Yuan
and F. Gan have used the method of moments to predict
the evolution of aerosol particles in the rainfall process
in the paper entitled “Evolution of aerosol particles in the
rainfall process via method of moments.” In the paper entitled
“Direct numerical simulation of concentration and orientation
distribution of fibers in a mixing layer” by K. Zhou et al., the
concentration and orientation of suspended fibers in amixing
layer are investigated numerically.

The second group is concerned with reservoir modeling
and simulation. S. Borazjani et al. presented the paper
entitled “Exact solution for non-self-similar wave-interaction
problem during two-phase four-component flow in porous
media.” Analytical solutions for one-dimensional two-phase
multicomponent flows in porous media describe processes of
enhanced oil recovery, environmental flows of waste disposal,
and contaminant propagation in subterranean reservoirs and
water management in aquifers. In the paper entitled “New
scheme of finite difference heterogeneous multiscale method
to solve saturated flow in porous media,” F. Chen and L.
Ren have constructed a finite difference scheme, namely, the
development of the finite difference heterogeneousmultiscale
method (FDHMM), for simulating saturated water flow in
random porous media. J. Xu et al. in their paper “A direct
EulerianGRP scheme for the prediction of gas-liquid two-phase
flow in HTHP transient wells” have introduced a dimensional
splitting technique with Eulerian generalized Riemann prob-
lem (GRP) scheme to solve coupled system model of partial
differential equations which concerns with the variation
of the pressure and temperature, velocity, and density at
different times and depths in high temperature-high pressure
(HTHP) gas-liquid two-phase flow wells. In addition to
flow simulation in reservoir, reservoir sedimentation is also
considered in this issue. The basic factors influencing the
density of sediments deposited in reservoirs are discussed,
and uncertainties in reservoir sedimentation have been deter-
mined using the Delta method by F. Imanshoar et al. in the
paper entitled “Reservoir sedimentation based on uncertainty
analysis.” Also, the paper of L. Gan and J. Xu, “Retrofitting
transportation network using a fuzzy random multiobjective
bilevel model to hedge against seismic risk,” focuses on
the problem of hedging against seismic risk through the
retrofit of transportation systems in large-scale construction
projects.

The third group, which consists of two papers, is con-
cerned with some biological applications. In the first paper
entitled “A new method of moments for the bimodal particle
system in the Stokes regime,” Y.-H. Liu and Z.-Q. Yin studied
the particle system in the Stokes regime with a bimodal
distribution. A. Y. Tang and N. Amin have reviewed some
numerical approaches to solve fluid structure interaction
problems in blood flow in the paper entitled “Some numerical

approaches to solve fluid structure interaction problems in
blood flow.”

The fourth group focuses on some heat transfer in
fluid flow problems. M. Goodarzi et al. have introduced a
comparison study for the problem of natural convection heat
transfer inside cavities and enclosures in the paper entitled
“Comparison of the finite volume and lattice Boltzmann
methods for solving natural convection heat transfer problems
inside cavities and enclosures.” In the paper entitled “Revisiting
Blasius flow by fixed point method,” D. Xu et al. have used the
fixed-point method to resolve the Blasius problem.

The last group is related to flow and transport applications
in electronic devices. Numerical simulations for the melt
flow under the influence of control devices in a T-type two-
strand bloom caster tundish are presented by Z. He et al. in
the paper entitled “Numerical modeling of the fluid flow in
continuous casting tundish with different control devices.” The
fluid-driven efficiency of the micropump based on induced
charge electroosmotic was studied numerically by K. Zhang
et al. in the paper entitled “Design of T-shaped micropump
based on induced charge electroosmotic.”

3. Conclusions

This special issue presents and highlights new applications
and new challenges in five different important research areas
of flow and transport. This special issue is not intended to
be an exhaustive collection nor a survey of all of the current
trends in flow and transport research; many additional
significant research areas of flow and transport still exist and
remain to be explored, but multidisciplinary research effort is
a clear trend.

Acknowledgments

Theauthors would like to thank the participants of the special
issue for their inspiring contributions and the anonymous
reviewers for their diligent work, which led to the high quality
of the special issue. The lead guest editor S. Sun would like to
acknowledge KAUST Faculty Baseline Research Fund (BRF)
for supporting his research in flow and transport.

Shuyu Sun
Mohamed Fathy El-Amin

Jianzhong Lin



Research Article
Exact Solution for Non-Self-Similar Wave-Interaction Problem
during Two-Phase Four-Component Flow in Porous Media

S. Borazjani,1 P. Bedrikovetsky,1 and R. Farajzadeh2,3

1 Australian School of Petroleum, The University of Adelaide, SA 5005, Australia
2 Shell Global Solutions International, Rijswijk, The Netherlands
3 Delft University of Technology, The Netherlands

Correspondence should be addressed to S. Borazjani; sara.borazjani@adelaide.edu.au

Received 6 September 2013; Revised 27 December 2013; Accepted 29 December 2013; Published 12 March 2014

Academic Editor: Shuyu Sun

Copyright © 2014 S. Borazjani et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil
recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management
in aquifers. We derive the exact solution for 3 × 3 hyperbolic system of conservation laws that corresponds to two-phase four-
component flow in porous media where sorption of the third component depends on its own concentration in water and also on
the fourth component concentration. Using the potential function as an independent variable instead of time allows splitting the
initial system to 2 × 2 system for concentrations and one scalar hyperbolic equation for phase saturation, which allows for full
integration of non-self-similar problem with wave interactions.

1. Introduction

Exact self-similar solutions of Riemann problems for hyper-
bolic systems of conservation laws and non-self-similar
solutions of hyperbolic wave interactions have been derived
for various flows in gas dynamics, shallow waters, and
chromatography (see monographs [1–8]). For flow in porous
media, hyperbolic systems of conservation laws describe two-
phase multicomponent displacement [9, 10]. Consider

𝜕𝑠

𝜕𝑡
+
𝜕𝑓 (𝑠, 𝑐)

𝜕𝑥
= 0 (1)

𝜕 (𝑐𝑠 + 𝑎 (𝑐))

𝜕𝑡
+
𝜕 (𝑐𝑓 (𝑠, 𝑐))

𝜕𝑥
= 0, (2)

where s is the saturation (volumetric fraction) of aqueous
phase and f is the water flux. Equation (1) is the mass
balance for water and (2) is the mass balance for each
component in the aqueous solution. Under the conditions
of thermodynamic equilibrium, the concentrations of the

components adsorbed on the solid phase (ai) and dissolved in
the aqueous phase (ci) are governed by adsorption isotherms:

𝑎 = 𝑎 (𝑐) , 𝑎 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) , 𝑐 = (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) .

(3)

Exact and semianalytical solutions of one-dimensional flow
problems are widely used in stream-line simulation for flow
prediction in three-dimensional natural reservoirs [10]. The
sequence of concentration shocks in the one-dimensional
analytical solution is important for interpretation of labo-
ratory tests in two-phase multicomponent flow in natural
reservoir cores.

The scalar hyperbolic equations (1) and (2), 𝑛 = 0,
correspond to displacement of oil by water [9, 10]. The
(𝑛 + 1) × (𝑛 + 1) system (1) and (2) describes two-phase
flow of oleic and aqueous phases with 𝑛 components (such
as polymer and different salts) that may adsorb and be
dissolved in both phases. These flows are typical for so-called
chemical enhanced oil recovery displacements, like injections
of polymers or surfactants, and for numerous environmental
flows [9, 10]. For polymer injection in oil reservoirs, 𝑖 = 1

corresponds to polymer and 𝑖 = 2, 3, . . . , 𝑛 to different ions.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 731567, 13 pages
http://dx.doi.org/10.1155/2014/731567

http://dx.doi.org/10.1155/2014/731567


2 Abstract and Applied Analysis

Therefore the system (1) and (2) is called themulticomponent
polymer-floodingmodel [11, 12]. Besides, (𝑛−1)×(𝑛−1)hyper-
bolic system (1) and (2) describes two-phase 𝑛-component
displacement, which is typical for so-called gas methods of
enhanced oil recovery [9, 10, 13, 14]. The processes of hot
water injection with phase transitions, secondary migration
of hydrocarbons with consequent formation of petroleum
accumulations, enhanced geothermal energy projects, and
injections into aquifers are described by the above systems.
The Riemann problems correspond to continuous injection
of chemical solutions or gases into oil reservoirs; the solutions
are self-similar [3, 9, 14]. The wave-interaction problems cor-
respond to piece-wise-constant initial-boundary conditions,
for which the solutions are non-self-similar [1, 10, 15–17].The
wave-interaction solutions describe injection of limited slugs
(banks) of chemical solutions or gaseous solvents driven in
the reservoirs by water or gas [9, 10].

Riemann problem (1) and (2) with 𝑛 = 1 has been solved
with applications to various injections of polymers [17, 18],
carbonized water and surfactants [19, 20], and so forth. More
complex self-similar solutions of (1) and (2) for 𝑛 = 2, 3 were
obtained by Barenblatt et al. [21] and Braginskaya and Entov
[22] and later by Johansen et al. andWinther et al. [11, 12, 23–
25]. Analogous solutions for gas injection and 𝑛 = 3, 4,. . .
have been obtained by Orr and others [9, 13, 26–31].

The system (1) and (2) describes two-phase multicom-
ponent displacements in large scale approximation, where
the dissipative effects of capillary pressure, diffusion, and
thermodynamic nonequilibrium are negligible if they are
compared with advective fluxes under the large length scale
of the natural subterranean reservoirs. Travelling waves near
to shock discontinuities in dissipative systems have been
presented in [10, 32]. A semianalytical global solutions have
been obtained by Geiger et al. [33] and Schmid et al. [34]; see
also [16].

The particular case of so-calledmulticomponent polymer
flooding is the dependency of the component sorption
concentration of its own concentration only 𝑎

𝑖
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) =

𝑎
𝑖
(𝑐
𝑖
). Exact solutions of the Riemann problem for this case

show that the concentration of each component performs
the jump without shocks of other components (see the
corresponding solution in the books [10, 21]). Therefore, in
concentration profiles, the shocks are located in order of
decrease of derivatives of the sorption functions. In the case of
Henry isotherms 𝑎

𝑖
(𝑐
𝑖
) = Γ
𝑖
𝑐
𝑖
, the shocks are located in order

of increase of Henry’s sorption coefficients Γ
𝑖
.

The distinguished invariant feature of (𝑛 + 1) × (𝑛 +

1) conservation law systems for two-phase multicomponent
flows in porous media with sorption and phase transitions
equations (1) and (2) is its splitting into an 𝑛 × 𝑛 auxiliary
system for concentrations 𝑐

𝑖
(𝑥, 𝑡) and a scalar hyperbolic

equation for saturation 𝑠(𝑥, 𝑡) [35, 36].This splitting explains
the simple form of Riemann problem solutions for system (1)
and (2) as compared with gas dynamics or chromatography
[1, 2, 37].

The non-self-similar solution of system (1) and (2), 𝑛 =

2, for slug injections has been considered by Fayers [17],
where the qualitative behaviour of characteristic lines and
shocks has been described. The exact solutions of system

(1) and (2) for 𝑛 = 2 and 3 have been obtained in [15]
(see book [10] for detailed derivations, in which the sorption
of component depends on its own concentration only 𝑎

𝑖
=

𝑎
𝑖
(𝑐
𝑖
), 𝑖 = 1, 2, . . .). Numerous interactions of different

saturation-concentration shocks occur after the injection,
resulting in appearance of moving zones with different
combinations of components. However, after all interactions,
different component slugs are separated from each other.
As in the case of continuous injection, the slugs are finally
positioned in the order of decreasing sorption isotherm
derivatives (𝑑𝑎

𝑖
/𝑑𝑐
𝑖
). It seems that this simplified case draws

the line where the analytical solutions can be found from the
analysis of system (1) and (2) directly. Consideration of cross-
effects 𝑎

𝑖
= 𝑎
𝑖
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) in sorption functions equation

(3) introduces significant difficulties into wave analysis, and
even the Riemann problem cannot be solved for any arbitrary
case 𝑛 = 2 (see [38], where the Riemann solutions have been
obtained for several particular cases).

The splitting technique reduces number of equations in
(1) and (2) by one, allowing for exact solutions in more com-
plex multicomponent cases [35–40]. The Riemann problem
with cross-effects for adsorption 𝑎

𝑖
= 𝑎
𝑖
(𝑐
1
, 𝑐
2
) has been

solved in [39, 41, 42] for continuous polymer injection with
varying salinity using the splitting method. In the current
paper, the exact solution for non-self-similar problem of
injection of polymer slug with varying salinity followed by
water drive is obtained.

The structure of the text is as follows. The particular
case of the general system (1) and (2) that is discussed
in the current work is introduced in Section 2 along with
physics assumptions and initial-boundary conditions for slug
injection problem. The detailed description of the splitting
procedure for the system is discussed along with formulation
of initial and boundary conditions for the auxiliary system
which is presented in Section 3. Section 4 contains derivation
of the Riemann solution that corresponds to the first stage
of the slug injection. The wave-interaction slug injection
problem is solved in Section 5. Section 6 contains a simplified
solution for the particular case where the initial chemical
concentration is zero, which corresponds to the case of
polymer slug injection. The paper is concluded by physical
interpretation of the solution obtained for chemical slug
injection with different water salinity into oilfield (Sections
7 and 8).

2. Formulation of the Problem

Let us discuss the displacement of oil by aqueous chemical
solution with water drive accounting for different salinities
of formation and injected waters. In the following text, the
component 𝑛 = 1 is called the polymer, and that 𝑛 = 2 is
called the salt. The assumptions of the mathematical model
are as follows: both phases are incompressible, dispersion
and capillary forces are neglected, there are two phases (oleic
and aqueous phases) and two components dissolved in water
(polymer and salt), water and oil phases are immiscible,
chemical and salt concentrations in water are negligibly
small and do not affect the volume of the aqueous phase,
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the fractional flow of the aqueous phase is affected by
concentration of the dissolved chemical, the fractional flow
is independent of salt concentration, chemical and salt do
not dissolve in oil, linear sorption for the polymer 𝑎 = Γ𝑐,
Henry’s sorption coefficient Γ is salinity-dependent, salt does
not adsorb on the rock, and temperature is constant.

The system of governing equations consists of mass bal-
ance equations for aqueous phase, for dissolved and adsorbed
chemical, and for dissolved salt [8, 9]:

𝜕𝑠

𝜕𝑡
+
𝜕𝑓 (𝑠, 𝑐)

𝜕𝑥
= 0 (4)

𝜕 (𝑐𝑠 + 𝑎 (𝑐, 𝛽))

𝜕𝑡
+
𝜕 (𝑐𝑓 (𝑠, 𝑐))

𝜕𝑥
= 0 (5)

𝜕 (𝛽𝑠)

𝜕𝑡
+
𝜕 (𝛽𝑓 (𝑠, 𝑐))

𝜕𝑥
= 0, (6)

where 𝑠 is the water saturation, 𝑓 is the fractional flow
function, 𝑎 is the polymer sorption isotherm, and 𝑐 and 𝛽 are
chemical and salt concentrations, respectively.

The fractional flow function (water flux) depends on
the water saturation 𝑠 and on the chemical concentration
𝑐. The typical S-shapes of fractional flow functions 𝑓 under
𝑐 = const are shown in Figure 1. The fractional flow is a
monotonically decreasing function of 𝑐. Sorption isotherms
are linear for fixed salinity 𝑎(𝑐, 𝛽) = Γ(𝛽)𝑐. The functions
𝑓and 𝑎 are assumed to be bounded and smooth.

The system (4)–(6) is a hyperbolic 3 × 3 system of
conservation laws with unknowns 𝑠, 𝑐, and 𝛽.

The displacement of oil by chemical slug corresponds to
the following initial-boundary problem:

𝑥 = 0{
𝛽 = 0, 𝑐 = 𝑐

1
, 𝑠 = 𝑠

𝐿
, 𝑡 < 1

𝛽 = 0, 𝑐 = 𝑐
2
, 𝑠 = 𝑠

𝐿
, 𝑡 > 1

(7)

𝑡 = 0, 𝛽 = 1, 𝑐 = 𝑐
2
, 𝑠 = 𝑠

𝑅
. (8)

For 𝑡 < 1, during continuous injection of chemical solution
with different salinity, the solution of system (4)–(6) subject
to initial-boundary conditions equations (7) and (8) coin-
cides with the solution of the Riemann problem:

𝑥 = 0, 𝛽 = 0, 𝑐 = 𝑐
1
, 𝑠 = 𝑠

𝐿 (9)

𝑡 = 0, 𝛽 = 1, 𝑐 = 𝑐
2
, 𝑠 = 𝑠

𝑅
. (10)

The initial condition is denoted by 𝑅 in Figure 1 and the
boundary condition corresponding to injection of the slug is
denoted as 𝐿.

Generally 𝑐(𝑥, 0) = 𝑐
2
> 0 is positive. Further in the

text, the component with concentration 𝑐 is called “chemical,”
while for the case of the absence of this component initially
in the reservoir 𝑐(𝑥, 0) = 𝑐

2
= 0 we use the term “polymer.”

The solution of the Riemann problem is self-similar:
𝑠(𝑥, 𝑡) = 𝑠(𝜉), 𝑐(𝑥, 𝑡) = 𝑐(𝜉), 𝛽(𝑥, 𝑡) = 𝛽(𝜉), 𝜉 = 𝑥/𝑡 and
it can be found in [37, 39, 40]. The solution of the problem
(7) and (8) in the neighbourhood of the point (0, 1) in (𝑥, 𝑡)-
plane is also self-similar. The global solution of the system
(4)–(6) subject to the initial-boundary conditions equations

0,1

0 1,0

1
L

s

f

R

D3

D2

D1

2

3

4

c = c1

c = c∗

c = c2

−Γ(1)

Figure 1: Fractional flow curves and Riemann problem solution,
where 𝑐

1
is the slug concentration, 𝑐

2
is the initial concentration, and

𝑐
∗ is the intermediate concentration.

(7) and (8) is non-self-similar; it expresses the interactions
between hyperbolic waves occurring fromdecays of Riemann
discontinuities in points (0, 0) and (0, 1) in (𝑥, 𝑡)-plane.

System of (4)–(6) subject to the initial and boundary
conditions equations (9) and (10) is solved in Section 4 using
themethod so-called splitting procedure [35].This procedure
is explained in the next section.

3. Splitting Procedure

In the present section we briefly explain the splitting method
for the solution of hyperbolic system of conservation laws
equations (4)–(6).

3.1. Streamline/Potential Function and Auxiliary System. As it
follows from divergent (conservation law) form of equation
for mass balance for water (1) or (4), there does exist such a
potential function 𝜑(𝑥, 𝑡) that

𝑠 = −
𝜕𝜑

𝜕𝑥

𝑓 =
𝜕𝜑

𝜕𝑡
;

(11)

that is,

𝑑𝜑 = 𝑓𝑑𝑡 − 𝑠𝑑𝑥, (12)

𝜑 (𝑥, 𝑡) = ∫

𝑥,𝑡

0,0

𝑓𝑑𝑡 − 𝑠𝑑𝑥. (13)

Equation (4) is merely the condition of equality of second
derivatives of the potential 𝜑 as taken in different orders.
It also expresses that the differential of the first order form
equation (12) equals zero. The splitting procedure consists
of changing the independent variables from (𝑥, 𝑡) to (𝑥, 𝜑)

in system (4)–(6). Figures 2 and 3 show the corresponding
mapping [43, 44].

From fluid mechanics point of view, 𝜑(𝑥, 𝑡) is a potential
function, which equals the volume of fluid flowing through
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Figure 2: Introduction of potential function (Lagrangian coordinate) and mapping between independent variables.
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Figure 3: Derivation of mass balance equation in Eulerian and Lagrangian coordinate systems.

a trajectory connecting points (0, 0) and (𝑥, 𝑡). As it follows
from (12), two streamlines in Figure 3 correspond to constant
values of potential, that is, there is no flux through stream-
lines:

𝜑 (𝑥, 𝑡
2
) − 𝜑 (𝑥, 𝑡

1
) = ∫

𝑡
2

𝑡
1

𝑓 (𝑥, 𝑡) 𝑑𝑡. (14)

Equation (4) shows that the integral of (13) along the closed
contour is equal to zero; that is, the volume of fluid flowing
through a trajectory connecting points (0, 0) and (𝑥, 𝑡) is
independent of trajectory and depends on end points only.
The potential function equation (13) is determined in the way
that one end of trajectory is fixed at point (0, 0).

Let us derive the relationship between the elementary
wave speeds of the system in (𝜑, 𝑥) coordinates and those of
the large system in (𝑡, 𝑥). Consider the trajectory 𝑥 = 𝑥

0
(𝑡)

and its image 𝜑 = 𝜑
0
(𝑡) by the mapping equation (13):

𝜑
0
(𝑡) = 𝜑 (𝑥

0
(𝑡) , 𝑡) . (15)

Define the trajectory speeds as

𝐷 =
𝑑𝑥

𝑑𝑡
, 𝑉 =

𝑑𝑥

𝑑𝜑
. (16)

Let us use 𝑥 as a parameter for both curves 𝑥 = 𝑥
0
(𝑡) and

𝜑 = 𝜑
0
(𝑡). Taking derivation of both parts of (13) in 𝑥 along

trajectories and using speed definitions in (16), we obtain

1

𝑉
=
𝑓

𝐷
− 𝑠 (17)

from which follows the relationship between elementary
wave speed in planes (𝑥, 𝑡) and (𝑥, 𝜑):

𝐷 =
𝑓

𝑠 + 1/𝑉
. (18)

For example, the eigenvalues of the system of equation in
(𝑡, 𝑥) plane 𝜆

𝑖
and in (𝜑, 𝑥), Λ

𝑖
, are related by (Figure 4

[43, 44])

Λ
𝑖
(𝑠, 𝑐) =

𝑓

𝑠 + 1/𝜆
𝑖

. (19)

From now on, the independent variables (𝑥, 𝜑) are used in
(4)–(6) instead of (𝑥, 𝑡). Expressing the differential form 𝑑𝑡

from (12) as

𝑑𝑡 =
𝑑𝜑

𝑓
+
𝑠𝑑𝑥

𝑓
(20)
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Figure 4: Speeds of a particle in Eulerian and Lagrangian coordinates.

and accounting for zero differential of the form 𝑑𝑡

𝑑
2
𝑡 = 0 = [

𝜕

𝜕𝑥
(
1

𝑓
) −

𝜕

𝜕𝜑
(
𝑠

𝑓
)] 𝑑𝑥𝑑𝜑 (21)

we obtain the expression for (4) in coordinates (𝑥, 𝜑)

𝜕 (𝑠/𝑓)

𝜕𝜑
−
𝜕 (1/𝑓)

𝜕𝑥
= 0. (22)

So, (22) is themass balance for water; that is, it is (4) rewritten
in coordinates (𝑥, 𝜑).

Let us derive (5) in (𝑥, 𝜑) coordinates. The conservation
laws for (5) in the integral form are

∮

𝜕Ω

(𝑐𝑓) 𝑑𝑡 − (𝑐𝑠 + 𝑎) 𝑑𝑥 = 0, (23)

where Ω is a closed domain Ω ⊂ 𝑅
2, so the integral of (23) is

taken over the closed contour.
Applying the definition of the potential function equation

(13) into (23) yields

∮

𝜕Ω

𝑐 (𝑓𝑑𝑡 − 𝑠𝑑𝑥) − 𝑎𝑑𝑥 = ∮

𝜕Ω

𝑐𝑑𝜑 − 𝑎𝑑𝑥 = 0. (24)

Tending the domain radius to zero and applying Green’s
theorem,

𝜕𝑎 (𝑐, 𝛽)

𝜕𝜑
+
𝜕𝑐

𝜕𝑥
= 0. (25)

Now let us perform change of independent variables in (6) in
(𝑥, 𝜑) coordinates as follows:

∬(
𝜕 (𝛽𝑠)

𝜕𝑡
+
𝜕 (𝛽𝑓 (𝑠, 𝑐))

𝜕𝑥
)𝑑𝑥𝑑𝑡 = ∮

𝜕Ω

𝛽𝑠𝑑𝑥 − 𝛽𝑓 (𝑠, 𝑐) 𝑑𝑡

= ∮𝛽𝑑𝜑 = ∬
𝜕𝛽

𝜕𝑥
= 0.

(26)

Finally, the (𝑛 + 1) × (𝑛 + 1) system of conservation laws for
two-phase n component chemical flooding in porous media
with adsorption can be split into an 𝑛 × 𝑛 auxiliary system
equations (25) and (26) and one independent lifting equation

(22).The splitting is obtained from the change of independent
variables (𝑥, 𝑡) to (𝑥, 𝜑).This change of coordinates also trans-
forms the water conservation law into the lifting equation.
The solution of hyperbolic system (22), (25), and (26) consists
of three steps: (1) solution of the auxiliary problem, (25), and
(26) subject to initial and boundary conditions, (2) solution
of the lifting equation, (22), and (3) determining time 𝑡 for
each point of the plane (𝑥, 𝜑) from (13).

The auxiliary system contains only equilibrium thermo-
dynamic variables, while the initial system contains both
hydrodynamic functions (phase’s relative permeabilities and
viscosities) and equilibrium thermodynamic variables.

The above splitting procedure is applied to the solution of
displacement of oil by polymer slug with alternated salinity
in the next section.

3.2. Formulation of the Splitting Problem for Two-Phase Flow
with Polymers and Salt. Introducing new variables “density”
𝐹 and “flux”𝑈 and applying the splitting technique, the 3 × 3
system (4)–(6) is transformed to the following form:

𝐹 = −
𝑠

𝑓
, 𝑈 =

1

𝑓
(27)

𝜕 (𝐹 (𝑈, 𝑐))

𝜕𝜑
+
𝜕 (𝑈)

𝜕𝑥
= 0 (28)

𝜕𝑎 (𝑐, 𝛽)

𝜕𝜑
+
𝜕𝑐

𝜕𝑥
= 0 (29)

𝜕𝛽

𝜕𝑥
= 0. (30)

The auxiliary system equations (29) and (30) are independent
of (28).The auxiliary systemhas thermodynamic nature since
it contains only sorption function 𝑎(𝑐, 𝛽) and the unknowns
are the component concentrations c and 𝛽. Equation (28) is
the volume conservation for two immiscible phases. For the
known auxiliary solution of (29) and (30), equation (28) is a
scalar hyperbolic equation. Figure 5 shows the projection of
the space of the large system into that of auxiliary system and
the lifting procedure [43, 44].
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Figure 5: Projection of the space of the large system into that of
auxiliary system and the lifting procedure using the solution of
auxiliary system.

The boundary conditions for slug problem equation (7)
are reformulated for coordinates (𝑥, 𝜑) as

𝑥 = 0{
𝛽 = 0, 𝑐 = 𝑐

1
, 𝑈 = 1, 𝜑 < 1

𝛽 = 0, 𝑐 = 𝑐
2
, 𝑈 = 1, 𝜑 > 1.

(31)

Figure 2 shows how the initial and boundary conditions
for the large system (4) and (6) are mapped into those for
auxiliary system and the lifting equations (28)–(30).

The initial conditions for slug problem equation (8) are
reformulated for coordinates (𝑥, 𝜑) as

𝜑 = − 𝑠
𝑅
𝑥, 𝛽 = 1, 𝑐 = 𝑐

2
, 𝑈 = +∞. (32)

The solution of the Riemann problem for 𝜑 < 1 corresponds
to the following initial and boundary conditions:

𝑥 = 0, 𝛽 = 0, 𝑐 = 𝑐
1
, 𝑈 = 1

𝜑 = −𝑠
𝑅
𝑥, 𝛽 = 1, 𝑐 = 𝑐

2
, 𝑈 = +∞.

(33)

4. Solution for the Riemann Problem

Let us discuss the solution of the problem equations (7) and
(8) for 𝑡 < 1, which is self-similar; that is, the boundary and
initial conditions become (9) and (10).

Themass balance conditions on shockswhich follow from
the conservation law (Hugoniot-Rankine condition) form of
the system (28)–(30) are

𝜎 [𝑈] = [𝐹] (34)

𝜎 [𝑐] = [𝑎] (35)

𝜎 [𝛽] = 0, (36)

where 𝜎 is reciprocal to the shock velocity of (28)–(30).
As salt and polymer concentration are connected by the
thermodynamic equilibrium relationship 𝑎(𝑐, 𝛽), function
𝑎 is discontinuous if 𝑐 is discontinuous, so is 𝛽. Since 𝐹
is a function of 𝑐 and 𝑈, discontinuity of 𝑐 and 𝑈 yields
discontinuity of 𝐹.

As it follows from equality (36), either 𝜎 = 0 or [𝛽] = 0.
From (34) and (35) it follows that if𝜎 = 0, [𝑎] = 0 and [𝐹] = 0.
If [𝛽] = 0, from (35) and (36) it follows that 𝜎 = [𝑎]/[𝑐] and
𝜎 = [𝐹]/[𝑈]; therefore it yields to 𝜎 = [𝑎]/[𝑐] = [𝐹]/[𝑈].
Finally from (34), if [𝛽] = 0 and [𝑐] = 0 this leads to 𝜎 =

[𝐹]/[𝑈].
The shock waves must obey the Lax evolutionary condi-

tions [1–4, 9].

4.1. Solution for the Auxiliary System. The solution of auxil-
iary system is presented in Figure 6 by sequence of c-shock
from point 𝐿 into intermediate point and (𝑐, 𝛽)-shock into
point 𝑅. The corresponding formulae are as follows:

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)
=

{{

{{

{

𝑐
1
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥

𝑐
∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑐
2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0,

(37)

where the condition of continuity of function 𝑎(𝑐, 𝛽) on the
shock with 𝜎 = 0, and (35) allows finding the intermediate
concentration

𝑐
∗
=
Γ (1)

Γ (0)
𝑐
2
. (38)

4.2. Solution for the Lifting Equation. Figure 7 exhibits initial
and boundary conditions for hydrodynamics lifting equation
(28). Curves 𝐹 = 𝐹(𝑈, 𝑐) are shown for constants 𝑐 = 𝑐

1
, 𝑐 =

𝑐
2
, and 𝑐 = 𝑐

∗; they are obtained from fractional flow curves
𝑓 = 𝑓(𝑠, 𝑐) for the same constant values of concentration 𝑐.
Point 𝑅 corresponds to𝑈 tending to infinity and 𝐹 tending to
minus infinity, where the fractional flow 𝑓 tends to zero. The
tangent of the segment (0, 0)–(𝑈, 𝐹) tends to −𝑠𝑅.

The solution of lifting equation with known concentra-
tions (37) is given by centred wave 𝐿–2, (𝑐-𝑈)-shock 2–
>3, (𝛽-𝑐-𝑈)-shock 3–>4, and 𝑈-shock 4–>R (Figure 7). The
centred wave (𝐿–2) is given by (39)

𝜑

𝑥
=

𝜕𝐹 (𝑈
1
, 𝑐
1
)

𝜕𝑈
. (39)

Points 2 and 3 are determined by the condition of equality of
𝑈 and 𝑐 shock speeds:

𝜕𝐹 (𝑈
2
, 𝑐
1
)

𝜕𝑈
=
𝐹
2
(𝑈
2
, 𝑐
1
) − 𝐹
3
(𝑈
3
, 𝑐
∗
)

𝑈
2
− 𝑈
3

= Γ (0) . (40)

Point 4 is determined by condition of equality of the shock
velocities 𝑐, 𝛽, and 𝑈:

𝐹
3
(𝑈
3
, 𝑐
∗
) = 𝐹
4
(𝑈
4
, 𝑐
2
) = 0. (41)

Point 4 is connected to point 𝑅 by 𝑈-shock:

𝐹
4
(𝑈
4
, 𝑐
2
) − 𝐹
𝑖
(𝑈
𝑅
, 𝑐
2
)

𝑈
4
− 𝑈
𝑖

=
−𝑠
4
𝑓
𝑅
+ 𝑠
𝑅
𝑓
4

𝑓𝑅 − 𝑓
4

= −𝑠
𝑅
. (42)
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Figure 6: Solution of the auxiliary problem. (a) Adsorption isotherm for chemical for different water salinities and the Riemann problem
solution; (b) Riemann problem solution on the plane of chemical concentration c and salinity 𝛽.
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2

3
4

67

L−sL

−sR

R

c = c1
c = c∗

c = c2

Figure 7: The image of the solution in (𝐹-𝑈) plane.

The solution of the Riemann problem equations (28)–(30)
with free variables (𝑥, 𝜑) is given by the following formulae:

𝑈(𝑥, 𝜑)

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)

=

{{{{{

{{{{{

{

𝑈
1
(
𝜑

𝑥
) , 𝑐
1
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥

𝑈
3
, 𝑐

∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑈
4
, 𝑐

2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0

∞, 𝑐
2
, 𝛽 = 1, 𝜑 > −𝑠

𝑅
𝑥.

(43)

The expression 𝑠 = −𝑈𝐹(𝑈, 𝑐) allows calculating saturation
𝑠(𝑥, 𝜑):

𝑠 (𝑥, 𝜑)

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)

=

{{{{{

{{{{{

{

𝑠
1
(
𝜑

𝑥
) , 𝑐
1
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥

𝑠
3
, 𝑐

∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑠
4
, 𝑐

2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0

𝑠
𝑅
, 𝑐

2
, 𝛽 = 1, 𝜑 < −𝑠

𝑅
𝑥.

(44)

Figure 8 shows the solution of the system (28)–(30) in (𝜑, 𝑥)-
plane. For 𝜑 < 1, the solution is self-similar; the wave
interaction occurs at 𝜑 > 1.

I

II

III

IV

V
𝜑

(f = 1, 𝛽 = 0, c2)

(f = 0, 𝛽 = 1, c2)

(f = 1, 𝛽 = 0, c1)

1

0

U5(𝜑, x)

𝛽 = 0

𝛽 = 0

𝛽 = 0

c2

c2

U1(𝜑/x)

c1

𝜑 = Γ(0)x + 1

𝜑 = Γ(0)x

c∗U3

U4 𝛽 = 1
x

U = ∞

𝜑 = −sRx

6
7

(x󳰀, 𝜑󳰀)

Figure 8: Solution of the auxiliary and lifting system for slug
problem in (𝜑, 𝑥)-plane.

4.3. Inverse Mapping: Change of Variables from (𝜑, 𝑥) to (𝑡, 𝑥).
Time 𝑡 = 𝑡(𝑥, 𝜑) for solution is calculated from (12) along any
path from point (𝑥, 𝜑) to point (0, 0). The expression for time
t in zone II is

𝑡 =
1

𝑓
4

∫

𝜑

0

𝑑𝜑 +
𝑠
4

𝑓
4

∫

𝑥

0

𝑑𝑥 = (
−𝑠
𝑅
+ 𝑠
4

𝑓
4

)𝑥. (45)

The expression for time 𝑡 in zone III is

𝑡 =
1

𝑓
3

∫

𝜑

0

𝑑𝜑 +
𝑠
3

𝑓
3

∫

𝑥

0

𝑑𝑥 =
𝑠
3

𝑓
3

𝑥. (46)
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I

V

II

III

IV

t

(f = 1, 𝛽 = 0, c2)

(f = 1, 𝛽 = 0, c1)

1

0

s5(t, x)

𝛽 = 0

𝛽 = 0 𝛽 = 0

c2

c2

c2

c1 c∗s3

s4
𝛽 = 1

𝛽 = 1

x

t =
(Γ(

0)
+ s 2

)x
/f2

t =
(s 3

/f3
)x

t =
(−s

R + s4)
x/f4

s1(t/x)

(x󳰀, t󳰀)

sR

(f = 0, 𝛽 = 1, c2)

Figure 9: Non-self-similar solution of the problem for wave inter-
actions in (𝑥, 𝑡)-plane.

In zone IV, integral for calculation time, 𝑡 = ∫
𝑥,𝜑

0,0
(𝑑𝜑/𝑓 +

𝑠𝑑𝑥/𝑓) is calculated along the characteristic in centred 𝑈-
wave:

𝑡 =
𝜑

𝑓 (𝑠1 (𝜑/𝑥) , 𝑐
1
)
+

𝑠
1
(𝜑/𝑥)

𝑓 (𝑠1 (𝜑/𝑥) , 𝑐
1
)
𝑥. (47)

Figure 9 shows the solution for the Riemann problem at 𝑡 < 1;
see Figure 10 for detailed description of the Riemann solution
and profiles of unknown functions. Finally, the solution of the
Riemann problem for the system (4)–(6) is

𝑠 (𝑥, 𝑡)

𝑐 (𝑥, 𝑡)

𝛽 (𝑥, 𝑡)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝑠
1
(
𝑡

𝑥
) , 𝑐
1
, 𝛽 = 0, 𝑡 >

Γ (0) + 𝑠
2

𝑓
2

𝑥,

𝑠
3
, 𝑐

∗
, 𝛽 = 0,

𝑠
3

𝑓
3

𝑥 < 𝑡 <
Γ (0) + 𝑠

2

𝑓
2

𝑥,

𝑠
4
, 𝑐

2
, 𝛽 = 1,

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥 < 𝑡 <
𝑠
3

𝑓
3

𝑥,

𝑠
𝑅
, 𝑐

2
, 𝛽 = 1, 𝑡 <

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥.

(48)

5. Solution of the Slug Problem

Now let us solve the slug problem equations (31) and (32)
for auxiliary system (29) and (30). The solution of Riemann
problem at the point (0, 1) is given by 𝑐-shock with 𝑐− = 𝑐

2

and 𝑐+ = 𝑐
1
under constant 𝛽:

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)
=

{{{{

{{{{

{

𝑐
2
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥 + 1

𝑐
1
, 𝛽 = 0, Γ (0) 𝑥 < 𝜑 < Γ (0) 𝑥 + 1

𝑐
∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑐
2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0.

(49)

The solution of the auxiliary system is given by (49).
So, zone I in Figure 8 corresponds to initial conditions,

the solution is given by point 4 in zone II, and point 3 holds

I

II

III

IV

t

0

𝛽 = 0

𝛽 = 0

c2

c2

c∗
s3

s3

s2

s4

s4

𝛽 = 1

𝛽 = 1

x

x

x

x

t =
(Γ(

0)
+ s 2

)x
/f2

t =
(s 3

/f3
)x

t =
(−s

R + s4)
x/f4

sR

sR

sL

c1

c2

c∗

c1

s

c

1

0

𝛽

D1t1 D2t1 D3t1

(a)

(b)

(c)

(d)

t1

s1(t/x)

Figure 10: Solution of the Riemann problem: (a) trajectories of
shock fronts and characteristic lines in (𝑥, 𝑡)-plane; (b) saturation
profile; (c) chemical concentration profile; (d) salinity profile.

in zone III. Centred waves equation (39) fills in zone IV. In
zone V, 𝑐 = 𝑐

2
and 𝛽 = 0.

Now let us solve the lifting equation (28) with given
𝑐(𝑥, 𝜑) and 𝛽(𝑥, 𝜑).

TheHugoniot-Rankine condition for the rear slug front is

𝐹 (𝑈
+
, 𝑐
1
) − 𝐹 (𝑈

−
, 𝑐
2
)

𝑈+ − 𝑈−
= Γ (0) . (50)
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𝑈 is constant along the characteristic lines behind the rear
front

𝑈
5
(𝑥, 𝜑) = 𝑈

−
(𝑥
󸀠
, 𝜑
󸀠
) , (51)

where point (𝑥󸀠, 𝜑󸀠) is located on the rear front and is located
on the same characteristic line with point (𝑥, 𝜑):

𝜑 − 𝜑
󸀠

𝑥 − 𝑥󸀠
=
𝜕𝐹 (𝑈

5
, 𝑐
1
)

𝜕𝑈
. (52)

The solution of lifting equation 𝑈(𝑥, 𝜑) is given by different
formulae in zones I–V:

𝑈 (𝑥, 𝜑)

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)

=

{{{{{{{

{{{{{{{

{

𝑈
5
(𝑥, 𝜑) , 𝑐

2
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥 + 1

𝑈
1
(
𝜑

𝑥
) , 𝑐
1
, 𝛽 = 0, Γ(0) 𝑥<𝜑<Γ(0) 𝑥+1

𝑈
3
, 𝑐

∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑈
4
, 𝑐

2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0

∞, 𝑐
2
, 𝛽 = 1, 𝜑 > −𝑠

𝑅
𝑥,

(53)

where the equation for rear front of the chemical slug in the
auxiliary plane is

𝜑 = Γ (0) 𝑥 + 1. (54)

Finally, the solution of auxiliary problem equation (53) allows
calculating 𝑡(𝑥, 𝜑) for zones I, II, . . . ,V. Let us start with
determining time 𝑡 along the rear front of the slug. The
centred 𝑠-wave propagates ahead of the rear front

𝜑

𝑥
=
𝑓 (𝑠
+
, 𝑐
1
) − 𝑠
+
𝑓
󸀠
(𝑠
+
, 𝑐
1
)

𝑓󸀠 (𝑠+, 𝑐
1
)

. (55)

From (54), (55) follow the expression for 𝑥
𝐷
(𝜑
𝐷
) in a

parametric form:

𝑥
𝐷
(𝑠
+
) =

𝑓
󸀠
(𝑠
+
, 𝑐
1
)

𝑓 (𝑠+, 𝑐
1
) − 𝑓󸀠 (𝑠+, 𝑐

1
) (𝑠
+ + Γ)

=
𝑓
󸀠
(𝑠
+
, 𝑐
1
)

Δ
(56)

𝜑
𝐷
(𝑠
+
) =

𝑓 (𝑠
+
, 𝑐
1
) − 𝑠
1+

𝑓
󸀠
(𝑠
+
, 𝑐
1
)

𝑓 (𝑠+, 𝑐
1
) − 𝑓󸀠 (𝑠+, 𝑐

1
) (𝑠
+ + Γ)

=
𝑓 (𝑠
+
, 𝑐
1
) − 𝑠
1+

𝑓
󸀠
(𝑠
+
, 𝑐
1
)

Δ
.

(57)

Integration of the form (41) along the rear front gives

𝑡
𝐷
=

𝜑

𝑓 (𝑠+ (𝜑, 𝑥) , 𝑐
2
)
+

𝑠
+
(𝜑, 𝑥)

𝑓 (𝑠+ (𝜑, 𝑥) , 𝑐
2
)
𝑥

𝑡
𝐷
=

1

𝑓 (𝑠+, 𝑐
1
) − 𝑓󸀠 (𝑠+, 𝑐

1
) (𝑠1
+
+ Γ)

=
1

Δ
.

(58)

Finally, the solution of the slug problem for the system (4)–
(6) subject to initial and boundary conditions equations (7)
and (8) is (Figure 9)

𝑠 (𝑥, 𝑡)

𝑐 (𝑥, 𝑡)

𝛽 (𝑥, 𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑠
5 (𝑡, 𝑥) , 𝑐2, 𝛽 = 0, 𝑡 >

Γ (0) + 𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥 + 1

𝑠
1
(
𝑡

𝑥
) , 𝑐
1
, 𝛽 = 0,

Γ (0) + 𝑠2

𝑓
2

𝑥 < 𝑡 <
Γ (0) + 𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥 + 1

𝑠
3
, 𝑐

∗
, 𝛽 = 0,

𝑠
3

𝑓
3

𝑥 < 𝑡 <
Γ (0) + 𝑠2

𝑓
2

𝑥

𝑠
4
, 𝑐

2
, 𝛽 = 1,

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥 < 𝑡 <
𝑠
3

𝑓
3

𝑥

𝑠
𝑅
, 𝑐

2
, 𝛽 = 1, 𝑡 <

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥.

(59)
Figure 11 presents trajectories of shock fronts in (𝑥, 𝑡)-plane
along with profiles of unknowns 𝑠, 𝑐, and 𝛽 at typical
moments.

Here the trajectory of the rear slug front 𝑥
𝐷
= 𝑥
𝐷
(𝑡) is

given in a parametric form (Figure 12)
1

𝑥
𝐷

= 𝑠
𝐵
+ Γ (0)

1

𝑡
𝐷

= 𝑓
𝐴
,

(60)

where 𝑠
𝐵
is the abscissa of point 𝐵 and 𝑓

𝐴
is the ordinate of

point𝐴 (Figure 12). Equations (60) can be solved graphically.
Straight line AB is a tangent to the fractional flow curve
𝑐 = 𝑐

1
, the tangent point in 𝑠+. The rear front position 𝑥

𝐷

is determined by the interval BC at the moment determined
by AC.

6. Particular Case for the Polymer Absence in
the Reservoir before the Injection

In reality, there is no chemical initially in the reservoir during
the majority of chemical enhanced oil recovery applications;
that is, 𝑐(𝑥, 0) = 0. For zero initial polymer concentration,
the intermediate polymer concentration is equal to zero, so
the points ahead and behind the 𝛽-shock coincide in planes
(𝑐, 𝑎) and (𝑠, 𝑓). The particular simplified solution is (Figures
13 and 14)
𝑠 (𝑥, 𝑡)

𝑐 (𝑥, 𝑡)

𝛽 (𝑥, 𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑠
5 (𝑡, 𝑥) , 𝑐 = 0, 𝛽 = 0, 𝑡 >

Γ (0) + 𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥 + 1

𝑠
1
(
𝑡

𝑥
) , 𝑐 = 𝑐

1
, 𝛽 = 0,

Γ (0) + 𝑠2

𝑓
2

𝑥<𝑡<
Γ (0)+𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥+1

𝑠
3
, 𝑐 = 0, 𝛽 = 0,

𝑠
3

𝑓
3

𝑥 < 𝑡 <
Γ (0) + 𝑠2

𝑓
2

𝑥

𝑠
3
, 𝑐 = 0, 𝛽 = 1,

−𝑠
𝑅
+ 𝑠
3

𝑓
3

𝑥 < 𝑡 <
𝑠
3

𝑓
3

𝑥

𝑠
𝑅
, 𝑐 = 0, 𝛽 = 1, 𝑡 <

−𝑠
𝑅
+ 𝑠
3

𝑓
3

𝑥.

(61)
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Figure 11:The solution of the slug injection problem: (a) trajectories
of shock fronts and characteristic lines in (𝑥, 𝑡)-plane; (b) saturation
profile; (c) chemical concentration profile; (d) salinity profile.

7. Fluid Mechanics Interpretation
of the Solution

Following exact solution equations (4)–(9), let us describe
structure of two-phase flow with chemical and salt additives
during chemical slug injection.

During continuous injection 𝑡 < 1, the solution of
chemical slug injection coincides with that of continuous
chemical injection. Initial conditions equation (10) is shown
by point 𝑅 that corresponds to low initial saturation and
initial concentrations of chemical 𝑐

2
and of salt 𝛽 = 1.

The boundary condition at 𝑥 = 0 corresponds to point 𝐿
of injection of chemical solution with concentration 𝑐

1
and

salinity 𝛽 = 0. The path of Riemann problem solution in
plane (𝑠, 𝑓) consists of centred 𝑠-wave with injected chemical
concentration and unity salinity, 𝑐-𝑠-shock 2–>3, 𝑐, 𝑠, 𝛽-
shock 3–>4, and 𝑠-shock 4–>R into initial point (Figure 1).
Following nomenclature by Courant and Friedrichs [1] and
Lake [9], the Riemann solution is L–2–>3–>4–>R. Shock

0.1

0 1.0

1
L

f

R

2

3

4

c = c1

c = c∗

c = c2

s

s+
s−

c

ab

Δ

Δ/f󳰀(s+)

Figure 12: Solution of the lifting equation in (𝑠, 𝑓)-plane.

0.1

0 1.0

1
L

s

f

R

2

3

c = c1

−Γ(0)

c = c2 = 0

Figure 13: Solution of the lifting system in (𝑓-𝑠) plane when 𝑐
2
= 0.

2–>3 in plane (𝑐, 𝛽) is horizontal; shock 3–>4 is vertical
(Figure 6(b)). Shock 2–>3 in plane (𝑐, 𝑎) occurs along the
sorption isotherm; shock 3–>4 is a horizontal jump from
isotherm 𝑐 = 𝑐

∗to that 𝑐 = 𝑐
2
(Figure 7).

The trajectories of shocks 2–>3, 3–>4, and 4–> 𝑅 are
shown in Figure 7. Shock velocities are constant, so the
trajectories are straight lines. Let us fix the position 𝑥 = 1

of the raw of production wells. Before arrival of the front 4–
> 𝑅 at themoment 𝑡 = 1/𝐷

3
, oil with fraction of water𝑓𝑅 and

initial concentrations of chemical and salt is produced. After
arrival of the front, water-oil mixture with water fraction 𝑓

4

and initial concentrations of chemical and salt is produced
until the arrival of the 3–>4 front at the moment 𝑡 = 1/𝐷

2
.

The corresponding profiles of saturation and concentra-
tions are shown in Figure 10. The moment 𝑡

1
for profiles is

fixed in Figure 10(a), allowing defining positions of all fronts
in this moment. Corresponding profiles at that moment for
saturation, chemical concentration, and salinity are shown
in Figures 10(b), 10(c), and 10(d), respectively. The saturation
profile consists of declining interval 𝑠𝐿–𝑠

2
in 𝑠-wave, two oil-

water banks 𝑠
3
and 𝑠
4
, and the initial undisturbed zone 𝑠𝑅.

The chemical concentration profile consists of injected value
𝑐 = 𝑐
1
in 𝑠-wave, intermediate value 𝑐∗ in 𝑠

3
-bank, and initial
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Figure 14: Non-self-similar solution of the problem for wave
interactions in (𝑥, 𝑡)-plane when 𝑐

2
= 0.

concentration 𝑐
2
in 𝑠
4
-bank and in the initial zone. Salinity 𝛽-

profile consists of injected value in zones IV and III and initial
value in other zones.

Injection of water without chemical and with salinity
𝛽 = 0 starts at the moment 𝑡 = 1. The flow is not self-
similar anymore.The front trajectories and profiles are shown
in Figure 11. The solution for slug problem coincides with
the solution for continuous injection ahead of the rear front
𝑥
𝐷
(𝑡). The profiles taken at the moment 𝑡

1
< 1 during

continuous injection (Figure 11) coincide with those from
Figure 10.

The propagation of the rear slug front from the begin-
ning of water drive injection in the reservoir is shown in
Figure 11(a). The rear front velocity decreases reaching the
value of the forward front𝐷

3
when time tends to infinity.The

slug thickness increases and stabilises.
The profiles are shown in Figures 11(b), 11(c), and 11(d)

for the moment after the beginning of slug injection 𝑡
2
> 1.

Saturation decreases in a simple wave behind the rear slug
front, jumps down on the front, decreases in centred 𝑠-wave
in the slug, and is constant in zones II, II, and I. Chemical
slug dissolution during the water drive injection is shown in
Figure 11(c). There does occur the full concentration shock
from zero behind the read slug front to the injected value in
the slug. Further in the reservoir, there does appear a zone of
intermediate chemical concentration 𝑐∗ in the bank 𝑠

3
. The

concentration is equal to its initial value in banks 𝑠
4
and in

the initial zone. So, dissolution of slug occurs in the initial
water by formation of oil-water bank 𝑠

3
with lower chemical

concentration. Salinity changes by full shock on the front
between zones III and II.

8. Conclusions

Application of the splitting method to 3 × 3 conservation law
system describing two-phase four-component flow in porous
media allows drawing the following conclusions.

(1) The method of splitting between hydrodynamics and
thermodynamics in system of two-phase multicom-
ponent flow in porous media allows obtaining an
exact solution for non-self-similar problem of dis-
placement of oil by chemical slug with different water
salinity for the case of linear polymer adsorption
affected by water salinity.

(2) The solution consists of explicit formulae for water
saturation and polymer and salt concentrations in the
continuity domains and of implicit formulae for front
trajectories.

(3) First integrals for front trajectories allow for graphical
interpretation at the hodograph plane, yielding a
graphical method for finding the front trajectories.

(4) For linear sorption isotherms, the solution depends
on three fractional flow curves that correspond to
initial reservoir state 𝑅, injected fluid 𝐿, and an inter-
mediate curve for intermediate polymer concentra-
tion and injected salinity; the value for intermediate
polymer concentration is the part of exact solution.

(5) For linear sorption isotherms, the only continuous
wave is 𝑠-wave with constants 𝑐 and 𝛽; concentrations
𝑐 and 𝛽 change only across the fronts by jumps;
thus the solution of any problem with piece-wise
constant initial and boundary conditions is reduced
to interactions between 𝑠-waves and shocks.

(6) Introduction of salinity dependency for sorption of
the chemical introduces the intermediate (𝑐, 𝛽)-shock
into the solution of the Riemann problem; this shock
interacts with 𝑠-wave and concentration shocks in
the solution of any problem with piece-wise constant
initial and boundary conditions.

(7) The exact solution shows that the injected chemical
slug dissolves in the connate reservoir water rather
than in the chemical-free water injected after the slug.
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Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus,
sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not
impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to
consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this
paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir
sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern
Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this
investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated
sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to
about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties
associated with reservoir sedimentation.

1. Introduction

Reservoir sedimentation is filling of the reservoir with
sediment carried into the dam reservoir by streams [1].
Understanding the reservoir sedimentation process is of
fundamental significance in hydrosystems engineering. Sed-
iment inflow and deposition can affect the function of dam
reservoirs. Therefore, it is of crucial importance to estimate
the sedimentation rate and the period of time before sediment
accumulation could interfere with the useful functioning of
the reservoir. When designing a reservoir, sufficient sedi-
ment storage capacity should be taken into account so that
sediment accumulation will not impair the function of the
reservoir during the useful operational-economic life of the
project [2].

Sedimentation process in a reservoir is quite complex
because it is often influenced by several factors including
hydrological fluctuations in water and sediment inflow, vari-
ation in sediment particle size, reservoir operation cycle, and

physical controls such as size and shape of the reservoir [3, 4].
Other factors that may be important for some reservoirs are
vegetation cover in upper reaches, turbulence and density
currents, erosion of deposited sediments, and sluicing of
sediment through the dam.

Once the volume of sediment inflow to a reservoir
has been determined, effects of the sedimentation process
over the life span and the daily operation of the reservoir
must be evaluated. In the design of a reservoir, the mean
annual sediment inflow, the efficacy of the reservoir in
trapping sediment, the ultimate density of the deposited
sediment, and the distribution of the sediment within the
reservoir are among the most important factors that must be
considered. Additional storage volume equal to the volume
of the sediment expected to be deposited during the life
of the reservoir is often included in the original design to
prevent premature loss of storage capacity. The United States
Bureau of Reclamation [2] suggests using a 100-year period of

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 367627, 6 pages
http://dx.doi.org/10.1155/2014/367627

http://dx.doi.org/10.1155/2014/367627


2 Abstract and Applied Analysis

economic analysis and sediment accumulation in a reservoir.
Less than 100 years of sediment accumulation may also be
suggested in cases where the economic analysis justifies lesser
allocation. However, there is uncertainty associated with the
factors involved in reservoir sedimentation. The sources of
uncertainty can be generally classified into two main groups:
first group is natural factors (the natural factors are related to
natural happenings and conditions), which include meteoric
factors, changes in watershed hydraulic characteristics, and
natural disaster occurrences. Second group is unnatural
factors (the unnatural factors are caused by human-induced
activities) which include land-use changes and management
strategies [3, 4].

On the whole, natural variability and model related
uncertainties constantly have an effective role in accuracy
of determining the amount of sediment deposition in the
reservoir on a yearly basis, the accumulated sediment volume
in the reservoir over the number of years of reservoir
operation, and the time it takes for the accumulation of a
certain amount of sediment in the reservoir (e.g., a fraction
of the death capacity or a fraction of the total capacity of the
reservoir) [3, 5, 6]. In this context, the response of the system
to variable, uncertain inputs can be statistically quantified
through uncertainty analysis [7].

Salas and Shin [3] analyzed the uncertainty of many
factors involved in reservoir sedimentation. These factors,
called “stochastic inputs,” include those inputs associated
with annual suspended and bed load sediment rating curves,
those associated with the type of incoming sediment, those
associatedwith the trap efficacy of a reservoir, and those asso-
ciated with the variability of annual stream flow. Intrinsically,
these inputs are of random phenomena [7, 8]. This type of
variability is always associated with the factors involved in
reservoir sedimentation and may not be controlled [3, 9].

This study focuses on identifying the basic factors influ-
encing the density of sediments deposited in the reservoirs
and determining uncertainties in reservoir sedimentation
using the Delta method. A case study of Kenny Reservoir
in the White River Basin in northwestern Colorado [3, 9]
was designated to determine the density of deposits in the
reservoir and the coefficient of variation. Thus, the present
study is an attempt to ascertain the accuracy of determining
the mean density of accumulated sediments after a certain
period of time by calculating the coefficient of variation [9].

2. Factors Contributing to
Reservoir Sedimentation

2.1. Natural Factors. Natural factors affecting reservoir sed-
imentation are those intrinsic aspects of the world’s water
hydrologic cycle and the rate of land surface change. These
factors are meteoric factors (e.g., precipitation, snow, hail,
and wind) [3], watershed topography and geology, vegetation
cover, natural disasters (e.g., floods and droughts), and
the hydraulic condition of the reservoir (e.g., the ratio of
reservoir capacity to inflowvolume, the shape of the reservoir,
specifications of bottom outlets, the condition of reservoir

Table 1: Sediment classification according to size.

Sediment type Size range (mm)
Clay <0.004
Silt 0.004 to 0.062
Sand 0.062 to 2

operation, the trap efficiency of the reservoir, flow turbulence,
and physical properties of inflow) [11].

2.2. Unnatural (Human-Induced) Factors. Overexploitation
of forests, destruction of grasslands, and land-use changes
induced by human activities affect water resources and
often intensify soil erosion which consequently increase
reservoir sedimentation rates in different ways. Management
strategies, as a human-related factor, can also directly affect
the sedimentation process in reservoir dams. The main
deficiencies in this field could be the propensity to store
water from wet to dry seasons, the tendency to produce
more hydropower energy without considering sedimentary
aspects, incorrect design of water works, and shortcomings
of operation manuals [11, 12].

3. Methods

3.1. Density of Deposited Sediments. Basic factors influencing
the density of sediments deposited in a reservoir are (i) the
reservoir operation and management, (ii) the texture and
size of deposited sediment particles, and (iii) the compaction
or consolidation rate of deposited sediments [2, 11]. Among
these, the operational plan of the reservoir is probably the
most significant factor [2, 3, 5]. Sediments deposited in a
reservoir are subject to considerable drawdown with the
result that the sediments may be exposed for long periods,
and therefore undergo greater consolidation. On the other
hand, reservoirs which operate under a fairly stable pool do
not allow the deposits to dry out and consolidate as much.
The size of the incoming sediment particles has a significant
effect on density of deposits. Sediment deposits composed of
silt and sand have higher densities than those in which clay
predominates [2]. The classification of sediments according
to size is proposed by the American Geophysical Union
(Table 1).

Accumulation of new sediment deposits on top of pre-
viously deposited sediments often changes the density of
earlier deposits.The consolidation process affects the average
density over the estimated life of the reservoir, such as
for a 100-year period. Therefore, the influence of reservoir
operation is the most significant factor due to its effect
on the amount of consolidation that can take place in the
clay fraction of the deposited material when a reservoir is
subject to considerable drawdown. Strand and Pemberton
[10] classified reservoir operations (Table 2).

Abovementioned reservoir types for operation were as-
sessed by engineering judgment. Selection of the proper
reservoir operation can usually be made through the oper-
ation study prepared for the reservoir [10]. This concept
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Table 2: Classification of reservoir operation [10].

No. Reservoir operation
1 Sediment always submerged or nearly submerged

2 Normally moderate to considerable reservoir
drawdown

3 Reservoir normally empty
4 Riverbed sediments

depends on hydraulic conditions of the intake and sediment
trap coefficient of the reservoir. For example, for reservoir
type 1, releasedwater of dam is clear or near to clear; therefore
the sediments are always submerged or nearly submerged
while for reservoir type 4, running river flow passes the dam
and, in other words, the released water is debris flow. The
other two operations are judged in this manner.

The size of sediment particles entering the reservoir also
affects the density, as shown by the variation in initial masses.
Once the reservoir operation number has been assessed, the
density of the sediment deposits can be estimated using (1)
[2, 10]. Consider

𝑊
0
= 𝑊
𝐶
𝑃
𝐶
+𝑊
𝑚
𝑃
𝑚
+𝑊
𝑆
𝑃
𝑆
, (1)

where 𝑊
0
is unit weight (kg/m3), 𝑃

𝐶
, 𝑃
𝑚
, and 𝑃

𝑆
are the

percentages of clay, silt, and sand in the inflowing sediment,
respectively, and 𝑊

𝐶
, 𝑊
𝑚
, and 𝑊

𝑆
are coefficients of unit

weight of clay, silt, and sand, respectively (Table 3) [2, 10].
Sediments accumulate in the reservoir in each of the 𝑇

years of operation, and each year’s deposit will have a different
compaction time, which is significantly dependent on the
type of reservoir operation and the size of the incoming
sediment particles. Thus, density of sediments deposited
during 𝑇 years of reservoir operation can be estimated as an
approximation of the integral of (2) [5, 13]:

𝑊
𝑇
= 𝑊
0
+ 0.4343𝐾 [

𝑇

𝑇 − 1
(ln𝑇) − 1] , 𝑇 > 1, (2)

where𝑊
𝑇
is the average density after𝑇 years of operation,𝑊

0

is the initial unit weight (density) derived from (1), and 𝐾 is
consolidation constant dependent on type of reservoir oper-
ation and sediment size distribution (Table 4). In practice, a
weighted average of consolidation constants must be used for
a mixture of sediment (3) [2, 5, 13]:

𝐾
𝑖
= 𝐾
𝐶
𝑃
𝐶
+ 𝐾
𝑚
𝑃
𝑚
+ 𝐾
𝑆
𝑃
𝑆
. (3)

3.2. Analysis of Uncertainty of Reservoir Sedimentation.
When designing hydrosystems, it is essential to take uncer-
tainty into consideration since many influences are func-
tionally related to a number of uncertain variables. For
instance, as already noted, natural factors and unnatural
factors result in a complex and uncertain procedure for
reservoir sedimentation trend, and hence sediment density
is subject to uncertainty. On the other hand, optimal design
of reservoir geometry (dead storage and live storage) is a
fundamental goal for hydraulic engineers.

Table 3: Initial unit weight of incoming sediments based on
reservoir operation and type of sediments.

Operation
type

Initial unit weight (kg/m3)
Clay-𝑊

𝐶
Silt-𝑊

𝑚
Sand-𝑊

𝑆

1 416 1120 1550
2 561 1140 1550
3 641 1150 1550
4 961 1170 1550

Table 4: 𝐾 values for incoming sediments based on reservoir
operation and type of sediment [2].

Operation
type

𝐾 values for SI units
Clay-𝐾

𝐶
Silt-𝐾

𝑚
Sand-𝐾

𝑆

1 256 91 0
2 135 29 0
3, 4 0 0 0

Severalmethods for uncertainty analysis have been devel-
oped and applied in water resources engineering. The most
widely used methods are Monte Carlo Simulation (MCS)
and first-order analysis (FOA) [3, 5]. The latter is based on
linearization of the functional relationship which relates a
dependent random variable and a set of independent random
variables by Taylor series expansion. The FOA method has
been applied to several water resource and environmental
engineering problems including uncertainty [5, 6, 14]. For
example, Tehrani et al. benefited from Latin Hypercube Sam-
pling method to estimate accumulated reservoir sediment
volume in Shahr-Chai Dam by FOA method and the sensi-
tivity analysis showed that suspended sediment and bed load,
followed by annual stream flow, were the most important
factors influencing the accumulated reservoir sedimentation
volume, for both the total period and the wet and dry time
periods, and trap efficiency and percentage of sediments are
the next most important [5]. Furthermore, Hall used FOA
method to extend a fuzzy set theory and possibility theory
for coastal hydraulics [14].

In MCS method, stochastic inputs are generated from
their probability distributions and are then entered into
empirical or analytical models of the underlying physical
process involved in generating stochastic outputs. The gen-
erated outputs are then analyzed statistically to quantify the
uncertainty of the output [15, 16]. Salas and Shin [3] analyzed
the uncertainty of annual reservoir sedimentation volume
(RSV) and accumulated reservoir sedimentation volume
(ARSV) based on Monte Carlo Simulation (MCS) and Latin
Hypercube Sampling (LHS). The procedures were applied
to the case of Kenny Reservoir in the White River basin in
Colorado. The results indicated that the variability of RSV
may be described by a Gamma-2 distribution for which the
coefficient of variation was of the order of 65% [3]. This rate
of variation for determining annual reservoir sedimentation
volume makes a serious challenge to design or manage the
reservoir operation.
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Although the abovementioned studies developed me-
thodical outcomes in hydrosystem analysis especially in
alluvial hydraulics uncertainties, in these researches the
density of sediments which were deposited in the reservoir
was assumed constant. The sediments, which accumulate
in the reservoir by passing the time, will have a different
compaction; therefore their density will change depending
on variety of factors. Consequently, in this paper in order to
develop former studies, it is aimed to focus on identifying the
basic factors which affect the density of sediments deposited
in the reservoirs. Also uncertainties in reservoir sediments
density are determined using the Delta method.

3.3. Analysis of Uncertainty (DeltaMethod). First-order anal-
ysis of uncertainties, which is also known as the Delta
method, is a rather straightforward and useful technique
for the approximation of such uncertainties. This method
is widely used in many fields of engineering due mainly
to its ease of application to a wide variety of problems
[17–19]. Mays stated that Delta method application is quite
popular in many fields of engineering and, as a result, he
developed a risk-based solution for storm sewers’ design
[17]. Imanshoar et al. used Delta method to study trophic
state index (TSI) uncertainty and its variation for Miyun
Reservoir in China. Their research showed that the aver-
age TSI number and its variation for mentioned reservoir
oscillated between Mesotrophic to Eutrophic category [18].
Furthermore, Resende et al. appliedDeltamethod to estimate
the mapping, from uncertainty in discrete choice model
parameters to uncertainty of profit outcomes, and they
identified the estimated 𝛼-profit as a closed form function of
design decision variables in computer science [19].

First-order analysis is often used to assess the uncertainty
in a deterministic model formulation involving parameters
which are uncertain (i.e., not known with certainty). First-
order analysis specifically enables us to determine the mean
and variance of a random variable which is functionally
related to several other variables, some of which are ran-
dom. Thus, using first-order analysis, the combined effect of
uncertainty in a model formulation, and the use of uncertain
parameters can be assessed [14, 17]. Consider a random
variable 𝑦 that is a function of 𝑘 random variables (4)
(multivariate case) [17]:

𝑦 = 𝐺 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑗
) = 𝐺 (𝑥

𝑖
) , 𝑖 = 1 ∼ 𝑗. (4)

This function can be expressed as a deterministic equation
such as the equation mentioned above, a rational formula or
Manning’s equation, or a complex model that must be solved
on a computer.The objective is to treat a deterministic model
that has uncertain inputs in order to determine the effect of
the uncertain parameters 𝑥

1
, . . . , 𝑥

𝑘
on the model output 𝑦.

Equation (4) can be expressed as 𝑦 = 𝐺(𝑥
𝑖
), where 𝑥 =

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
. Using a Taylor series expansion of 𝑘 random

variables, ignoring the second and higher order terms, we can
obtain [17]

𝜇
𝑦
≈ 𝐺 (𝑥) +

𝑗

∑

𝑖=1

(
𝜕𝐺

𝜕𝑥
𝑖

)

𝑥

(𝑥
𝑖
− 𝑥
𝑖
) , (5)

where 𝜇
𝑦
refers to the mean value of 𝑦 under the variation of

𝑥
𝑖
and the derivation (𝜕𝐺/𝜕𝑥

𝑖
)
𝑥
are the sensitivity coefficients

that represent the rate of change of the function value 𝐺(𝑥
𝑖
)

at (𝑥
𝑖
− 𝑥
𝑖
). Assuming that the 𝑘 random variables are

independent, the variance of 𝑦 can be approximated as [17]

Ω
2

𝑦
=

𝑗

∑

𝑖=1

[(
𝜕𝐺

𝜕𝑥
𝑖

)

2

𝑥
𝑖

(
𝑥
𝑖

𝜇
𝑦

)

2

Ω
2

𝑥
𝑖

] . (6)

It is important to remember that all of the randomparameters
are assumed to follow a uniform distribution, so the mean
and variance of each parameter can be calculated using
mean = (𝑎 + 𝑏)/2 and variance = (𝑎 − 𝑏)

2
/12, in which 𝑎 and

𝑏 are the lower and upper bounds, respectively (7). Consider

Ω =
𝜎

𝑋

=
√3

3
(
𝑏 − 𝑎

𝑏 + 𝑎
) . (7)

3.3.1. Uncertainty Analysis for Density of Sediments Deposited.
Notwithstanding the advances made in understanding sev-
eral factors involved in reservoir sedimentation, predicting
the accumulation of sediment in a reservoir throughout the
years after construction of the dam is still a complex problem
in hydraulic engineering. As noted earlier, the volume of
reservoir sedimentation depends, among other factors, on
the quantity of sediment inflow, the percentage of sediment
inflow trapped by the reservoir, and the specific weight of
the deposited sediments considering the effect of compaction
with time. The sediments entering a reservoir are generally
a mixture of clay, silt, and sand. The fraction of each type
of sediment, namely, 𝑃

𝐶
, 𝑃
𝑚
, and 𝑃

𝑆
(for clay, silt, and sand,

resp.), vary from year to year.Thus, it would be impractical to
determine such variable fractions from field measurements.
Standard statistical analysis can offer a certain distribution
function for predicting fractions of each sediment type.
For instance, it may be assumed that such fractions are
uniformly distributed with lower and upper bounds that are
obtained from the measurements. Or the fractions of each
type of sediments may be assumed to be independent. In this
approach the percentages of clay, silt, and sand will have to be
adjusted so that they add up to 100% [3].

Therefore, to determine the uncertainty associated with
the type of incoming sediment and their effect on deposited
sediment’s density, (2) can be rewritten using (1) and (3) as
follows:

𝑊
𝑇
= 𝑃
𝐶
{𝑊
𝐶
+ 0.434𝐾

𝐶
[

𝑇

𝑇 − 1
(ln𝑇) − 1]}

+ 𝑃
𝑚
{𝑊
𝑚
+ 0.434𝐾

𝑚
[

𝑇

𝑇 − 1
(ln𝑇) − 1]}

+ 𝑃
𝑆
{𝑊
𝑆
+ 0.434𝐾

𝑆
[

𝑇

𝑇 − 1
(ln𝑇) − 1]} .

(8)
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Using (5) and (6), the variation coefficient of deposited sedi-
ments’ density after𝑇 years of operation could be determined
as follows:

Ω
2

𝑊
𝑇

= (
𝜕𝑊
𝑇

𝜕𝑃
𝐶

)

2

(
𝜕𝑃
𝐶

𝜕𝜇
𝑊
𝑇

)

2

Ω
2

𝑃
𝐶

+ (
𝜕𝑊
𝑇

𝜕𝑃
𝑚

)

2

(
𝜕𝑃
𝑚

𝜕𝜇
𝑊
𝑇

)

2

Ω
2

𝑃
𝑆

+ (
𝜕𝑊
𝑇

𝜕𝑃
𝑆

)

2

(
𝜕𝑃
𝑆

𝜕𝜇
𝑊
𝑇

)

2

Ω
2

𝑃
𝑆

,

(9)

whereΩ
𝑊
𝑇

is the coefficient of variation of sediments’ density
after 𝑇 years of operation, and Ω

𝑃
𝐶

, Ω
𝑃
𝑚

, and Ω
𝑃
𝑆

are
the variation coefficient of clay, silt, and sand percentage,
respectively. Equation (9) can thus be rewritten as follows:

Ω
2

𝑊
𝑇

= (𝑊
𝐶
+ 0.434𝐾

𝐶
[

𝑇

𝑇 − 1
(ln𝑇) − 1])

2

(
𝜕𝑃
𝐶

𝜕𝜇
𝑊
𝑇

)

2

Ω
2

𝑃
𝐶

+ (𝑊
𝑚
+0.434𝐾

𝑚
[

𝑇

𝑇 − 1
(ln𝑇)−1])

2

(
𝜕𝑃
𝑚

𝜕𝜇
𝑊
𝑇

)

2

Ω
2

𝑃
𝑆

+ (𝑊
𝑆
+ 0.434𝐾

𝑆
[

𝑇

𝑇 − 1
(ln𝑇) − 1])

2

(
𝜕𝑃
𝑆

𝜕𝜇
𝑊
𝑇

)

2

Ω
2

𝑃
𝑆

.

(10)

4. Results and Discussion

4.1. Case Study (Kenny Reservoir). Uncertainty analysis of
density of sediments deposited in reservoir after 𝑇 years of
operation as described earlierwas applied to theKennyReser-
voir in the White River Basin in northwestern Colorado.
Taylor Draw Dam was constructed in the early 1980’s and
created the Kenny Reservoir with a capacity of about 17 ×

10
6m3, which has been in operation since 1984 [3, 20].
The mean density of sediments deposited after 𝑇 = 50

years of operation and its coefficient of variation for Kenny
Reservoir data was determined using the abovementioned
method. The range of percentages of each type of sediment
(i.e., 𝑃

𝐶
, 𝑃
𝑚
, and 𝑃

𝑆
for clay, silt, and sand, resp.) are inde-

pendent because of their physical differences. It is important
to mention that Tobin and Hollowed evaluated statistical
distributions of each type of sediment and found them close
to the uniform type, and therefore they assumed them to be
uniformly distributed [3, 9]. Also, according to the reservoir
hydraulic condition (permanent reservoir with long length)
the sediments were always submerged. Also, the lower and
upper bounds for each fraction were analyzed by Tobin
and Hollowed using twenty samples of suspended sediment
which were collected [3, 9] (Table 5).

It should be borne in mind that for each sample the
percentages of clay, silt, and sand should add up to 100%
(𝑃
𝐶
+ 𝑃
𝑚
+ 𝑃
𝑆
= 100%). The mean percentages of sediment

accumulated (Table 5) can be summarized according to the
type and the coefficient of variation using (9).

Assuming the sediments are always submerged or nearly
submerged in Kenny Reservoir (using Table 6 and (8)), the

Table 5: Clay, silt, and sand percentages range.

Sediment type Lower bound Upper bound Distribution
𝑃
𝐶
(%) 16 41 Uniform

𝑃
𝑚
(%) 39 63 Uniform

𝑃
𝑆
(%) 14 43 Uniform

Table 6: Statistical properties of stochastic inputs for uncertainty
analysis.

Sediment type Mean Standard
deviation

Coefficient of
variation

𝑃
𝐶
(%) 28.5 7.216884 0.253224

𝑃
𝑚
(%) 51 6.928197 0.135847

𝑃
𝑆
(%) 28.5 8.37159 0.293740

mean density of sediments after 𝑇 = 50 years of operation
can be obtained as follows:

𝜇
𝑤
𝑇

=
28.5

100
{416 + 0.4343 × 256 [

50

50 − 1
(ln 50) − 1]}

+
51

100
{1120 + 0.4343 × 91 [

50

50 − 1
(ln 50) − 1]}

+
28.5

100
{1500 + 0} = 1065.42 kg/m3

.

(11)

Then, using Table 4 (reservoir type 1) and (10), coefficient of
variation of sediments’ density after 𝑇 = 50 years of Kenny
reservoir operation can be assessed as follows:

Ω
2

𝑊
𝑇

= 0.0098 󳨀→ Ω
𝑊
𝑇

= 0.099. (12)

Hence, the accuracy in determining the mean density of
sediments after 𝑇 = 50 years of operation in this reservoir
is ±9.9%. Further, the standard deviation of this parameter
can be determined as follows:

𝜎
𝑊
𝑇

= 𝜇
𝑊
𝑇

Ω
𝑊
𝑇

. (13)

Thus,

𝜎
𝑊
𝑇

= 1065.42 × 0.099 = 105.48 kgm−3, (14)

where 𝜎
𝑊
𝑇

refers to the standard deviation of variable 𝑦 (in
this case 𝑦 = 𝑊

𝑇
).

Results of this case study indicate that the mean density
of sediments deposited after 50 years of operation in Kenny
Reservoir is 1065.42 ± 105.48 (mean ± SD) kg/m3 (14).
Therefore, the accuracy of calculating the mean density of
sediments deposited after the 50th year of operation and the
needed volume for dead storage design is 9.9% (∼10%).

5. Conclusion

Due to the wide range of uncertain parameters involved in
the design procedure, predicting the deposition and accu-
mulation of sediments in a reservoir is a complex problem,
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one that has attracted the attention of hydraulic engineers
and scientists for many decades. In this paper, the problem
of analyzing and quantifying the uncertainty of mean density
of sediments deposited in a reservoir and its compaction
through the years of reservoir operation has been addressed.

Since in previous studies the density of sediments which
were deposited in the reservoirwere assumed constant, in this
paper the former studies were developed by identifying the
basic factors which affect the density of sediments deposited
in the reservoirs. Also uncertainties in reservoir sediments
density are determined using the Delta method.

For this purpose, the uncertainty of the input factors
(stochastic inputs) was analyzed first. Then, using the Delta
method, the uncertainty associated with the type of incoming
sediments and their effect on density of sediments and its
coefficient of variation were determined.

Results of this research indicate that the mean density
of sediments deposited after 50 years of operation in Kenny
Reservoir is 1065.42 ± 105.48 (mean ± SD) kg/m3. Therefore,
the accuracy of calculating the mean density of sediments
deposited after the 50th year of operation and the needed
volume for dead storage design is 10%. This user-friendly
method can be applied to engineering practices to optimize
dead storage planning via interfacing with uncertainties
associated with reservoir sedimentation.
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A new finite difference scheme, the development of the finite difference heterogeneous multiscale method (FDHMM), is
constructed for simulating saturated water flow in random porous media. In the discretization framework of FDHMM, we follow
some ideas from the multiscale finite element method and construct basic microscopic elliptic models. Tests on a variety of
numerical experiments show that, in the case that only about a half of the information of the whole microstructure is used, the
constructed scheme gives better accuracy at a much lower computational time than FDHMM for the problem of aquifer response
to sudden change in reservoir level and gives comparable accuracy at a much lower computational time than FDHMM for the weak
drawdown problem.

1. Introduction

Natural porous media exhibit a significant spatial variability
in most attributes of hydrogeological interest. For instance,
it is quite typical for hydraulic conductivity to vary orders of
magnitude over distances [1].The groundwater flowproblems
in heterogeneous porous media can be accurately solved by
using conventional finite element method or finite differ-
ence method based on smaller scale, which leads to more
computational cost. Discrete schemes obtained in this way
are often by far too expensive to be solved directly. For
the sake of the accuracy and efficiency, several different but
related multiscale methods, such as the multiscale finite ele-
ment method (MsFEM) [2, 3], the heterogeneous multiscale
method (HMM) [4], and the numerical homogenization
method [5], for problems with oscillating coefficients have
been proposed to accommodate the fine-scale description
directly. Here, we should also mention the work of Babuška
in the 70s [6–8], which motivated these multiscale methods
in an extent.

Multiscale solution methods are currently under active
investigation for the simulation of subsurface flow in het-
erogeneous formations [9]. Ye et al. [10] applied MsFEM to

simulate two- and three-dimensional saturated flow prob-
lems. Chen and Hou [11] proposed a mixed multiscale
finite element method for elliptic problems with oscillating
coefficients; they demonstrated the efficiency and accuracy of
the proposed method for flow transport in a porous medium
with a random log-normal relative permeability. He and
Ren [12] presented the finite volume MsFEM for solving
saturated flow in heterogeneous porous media. E et al. [13]
took a systemic analysis of HMM for elliptic homogenization
problems, where the error between the numerical solution
of HMM and the solution of homogenized equation is
estimated, and how to construct better approximation of
the exact solution from the HMM solution is discussed.
Ming and Zhang [14] applied HMM to the linear parabolic
homogenization problem and discriminated different types
of microscopic models. Ming and Yue [15] discussed the
numerical performance of HMM including comparison with
othermethods. Yue andE [16] developedHMMfor linear and
nonlinear transport equations with multiscale velocity fields
in heterogeneous porous media and focused on the problem
where advection is dominant at the small scale.

Most of existing multiscale methods have been limited
to the finite element method [17–19]. There are also widely
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used finite difference flow and solute transport models in
both the groundwater and oil industries. To handlemultiscale
problems with finite difference methods, based on the frame-
work of HMM [4], Abdulle and E [20] proposed the finite
difference heterogeneous multiscale method (FDHMM) for
solving multiscale parabolic problems. This method includes
a “heterogeneous” discretization which cares about the fine
scale only on small representative region of the spatial
domain. FDHMM has two components: a macroscopic
scheme evolved on a coarse grid (the grid of interest) with
unknown data recovered from the solutions of the micro-
scopic model and a microscopic scheme, in which the orig-
inal equation is solved on a sparse (heterogeneous) spatial
domain.The similar idea can be found in [21]. Chen and Ren
[22] applied FDHMM to Richards’ equation; they found that
FDHMM could effectively simulate the transient unsaturated
flow in the specific soils. In the saturated flow case, we may
precompute the macroscopic flux at a preprocessing step to
save the computational time. In addition, Abdulle and E
[20] studied the multiscale parabolic equation without the
source sink term and considered the examples where the
coefficients change according to the smooth function. For
transient flow problem in heterogeneous porous media, the
coefficients generally change in a random form; thus there is
a need for more evaluation of the applicability of FDHMM.

Here, we propose a new scheme of FDHMM for simu-
lating not only the steady saturated flow problem but also
the transient saturated flow problem in geostatistical random
porous media. The constructed scheme employs an idea
presented by Ming and Zhang [14]; that is, the microscale
parabolic model can be reduced to the microscopic elliptic
model for the problem without oscillation propagation in
time. Motivated by the construction of the multiscale finite
element base functions [2, 3], in every control volume, we
divide the microscopic elliptic model into two basic micro-
scopic elliptic models and estimate the basic macroscopic
flux by the solutions of these two basic microscopic elliptic
models. The small scale information is then brought to the
large scale through the approximation of basic macroscopic
fluxes. These basic macroscopic fluxes are just calculated
once at the preprocessing step and will be used in the
subsequent computations. In general, governing coarse-grid
equation and coupling the approach of the new scheme
are the same as those of FDHMM by Abdulle and E. The
main difference between the two methods is the microscopic
scheme, in contrast to FDHMM by Abdulle and E, where
the numerical fluxes are computed on the fly using localized
andmore resolved computations whichmeans that FDHMM
by Abdulle and E needs the macroscopic and microscopic
evolution at every time step and the new scheme adopts the
idea of MsFEM of Hou et al., by numerically precomputing
a finite difference analogue of a multiscale shape function,
which provides a fixed expression for the numerical basic
flux in terms of the coarse variables. It means that the fine-
scale information is coupled into the coarse scale by this
finite difference analogue of a multiscale shape function. In
addition, the new scheme incorporates ideas from Ming and
Zhang [14] to transform the microscopic parabolic model to

a microscopic elliptic model, which allows MsFEM ideas to
be adopted in the computational scheme.

Our method is also analogous to the classical upscaling
method, where the upscaled hydraulic conductivities are
precomputed [23, 24]. Different from the classical upscaling
method, the present method only precomputes the basic
macroscopic fluxes.The estimation of themacroscopic fluxes,
which contain both microscopic information of the medium
property and useful information about the gradients of the
solutions of microscopic elliptic models, is coupled into the
course of solving the coarse equation, and it makes the
constructed scheme put more emphasis on the interaction
between the macro- and microscale behavior. On the other
hand, in the new scheme, the fine-scale global flow solution
is decomposed into a series of local microscopic problems;
the computations of these basic microscale problems can be
carried out sequentially; this obviously saves the computa-
tional time and thememory requirement, whichmay provide
the proposed method with a possibility to solve large flow
problems under restricted computational capabilities.

This paper is organized as follows. We firstly describe the
flow problem and introduce the principle and the algorithm
of the constructed scheme in detail. Numerical examples
to illustrate the performance of the constructed scheme
are arranged in Section 3. Some conclusions are given in
Section 4.

2. New Scheme of FDHMM

2.1. Flow Problem. The transient saturated flow through a
heterogeneous porous medium is governed by the parabolic
partial differential equation

𝑆
𝑠
(x)

𝜕𝜓 (x, 𝑡)

𝜕𝑡
= ∇ ⋅ [K (x) ∇𝜓 (x, 𝑡)] + 𝑅 (x, 𝑡) ,

in Ω × (0, 𝑇) ,

(1)

where 𝜓 is the hydraulic head, 𝑆
𝑠
is the specific storage

coefficient, K is the hydraulic conductivity tensor, 𝑅 is the
source sink term, x = (𝑥, 𝑦) is the spatial coordinate, 𝑡 is the
time variable, Ω is the study area, and 𝑇 is the time domain.

2.2. Principle and Algorithm. The discretization in this study
is the mesh-centered finite difference. To simplify the presen-
tation of the constructed scheme, we assume that the solution
domainΩ is a square and uniformly discretize it with a coarse
𝑁×𝑁mesh. Let theCartesian coordinates of this coarsemesh
be represented by (𝑥

𝑖
, 𝑦
𝑗
), 𝑖, 𝑗 = 1, . . . , 𝑁 + 1. 𝐻 = 𝑥

𝑖+1
− 𝑥
𝑖
=

𝑦
𝑗+1

− 𝑦
𝑗
denotes the coarse mesh size.

Notice that a macroscopic model is known to exist
according to the homogenization theory, and the idea of the
constructed scheme is to evolve a macroscopic model for the
flux form of (1),

𝑆
𝑠
(x)

𝜕Ψ (x, 𝑡)

𝜕𝑡
= −∇ ⋅ 𝐹 (x, 𝑡) + 𝑅 (x, 𝑡) , in Ω × (0, 𝑇) ,

(2)

on a coarse mesh, where Ψ is the macroscopic state variable
corresponding to 𝜓, that is, we have Ψ = 𝜓 at the coarse
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Figure 1: Illustration of the macroscopic and microscopic compu-
tational domains.

node (𝑖, 𝑗), and 𝐹 is the macroscopic flux. In fact, based on
the principle of the flux balance, we can also deduce (2).

To solve (2), we firstly need to determine themacroscopic
flux 𝐹. In the absence of explicit knowledge of 𝐹, our problem
reduces to approximate the flux 𝐹; this will be done by locally
solving a set of microscopic models. In Figure 1, we center
a control volume at the midpoint of the line between any
two coarse nodes except for two exterior nodes. Thus, there
are four control volumes 𝐼

𝛿

𝑖±(1/2),𝑗
and 𝐼
𝛿

𝑖,𝑗±(1/2)
around every

interior node (𝑖, 𝑗) and these control volumes are centered at
the points (𝑖 ± (1/2), 𝑗) and (𝑖, 𝑗 ± (1/2)), respectively (see
Figure 2). We assume that the control volume 𝐼

𝛿

𝑖±(1/2),𝑗
is a

square of size 𝛿 and discretize it into a fine 𝑀 × 𝑀 mesh,
for which (𝜉

𝑘
, 𝜂
𝑙
) denotes the coordinate of node (𝑘, 𝑙), where

𝑘, 𝑙 = 1, . . . , 𝑀 + 1. 𝑎 = 𝜉
𝑘+1

− 𝜉
𝑘

= 𝜂
𝑙+1

− 𝜂
𝑙
denotes the fine

mesh size. For 𝜉
𝑘
and 𝜂
𝑙
, we have

𝜉
𝑘

=
𝐻 − 𝛿

2
+ (𝑘 − 1)

𝛿

𝑀
,

𝜂
𝑙
= 𝐻 −

𝛿

2
+ (𝑙 − 1)

𝛿

𝑀
, 𝑘, 𝑙 = 1, . . . , 𝑀 + 1.

(3)

Similarly, (𝜂
𝑙
, 𝜉
𝑘
) denotes the coordinate of the control vol-

ume 𝐼
𝛿

𝑖,𝑗±(1/2)
.

2.2.1. Basic Microscopic Elliptic Problems. To estimate the
macroscopic flux, we need to solve a set of local microscale
problems in the control volumes. Actually, the saturated
hydraulic conductivity tensor K(x) in this study is only a
function of the spatial position and does not oscillate in the
temporal direction, and we only need the spatial homoge-
nization of K(x) at the microscopic evolution. According to
the conclusion of [14], in every control volume 𝐼

𝛿, we can only
solve the following reduced elliptic equation:

∇ ⋅ [K (x) ∇𝜓 (x)] = 0, in 𝐼
𝛿
. (4)

In every control volume 𝐼
𝛿, similar to the construction

of the multiscale finite element base functions developed by

Hou and Wu [2] and Hou et al. [3], we will solve two basic
elliptic problems with the Dirichlet-Neumann boundary
condition in which the Dirichlet boundary condition is used
in one direction and no-flow boundary condition is used
in the other direction. For 𝐼

𝛿

𝑖+(1/2),𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑁), the

Dirichlet boundary condition is used in 𝑥-direction and no-
flow boundary condition is used in 𝑦-direction, and vice
versa for 𝐼

𝛿

𝑖,𝑗+(1/2)
(𝑖, 𝑗 = 1, 2, . . . , 𝑁).

Set the head of the basic elliptic problem with no
dimensional change. Let 𝜙

1 and 𝜙
2 be the solutions of these

two basic elliptic problems, respectively. In 𝐼
𝛿

𝑖+(1/2),𝑗
, as shown

in Figure 2, for the first basic elliptic problem, the head
on the left side is 1, and that on the right side is 0, and
vice versa for the second basic elliptic problem. Similarly,
in 𝐼
𝛿

𝑖,𝑗+(1/2)
, for the first basic elliptic problem, the head on

the bottom side is 1, and that on the top side is 0, and
vice versa for the second basic elliptic problem. The cell
problems are computed in parallel, and the number of the
processors is reduced [16, 25]. To solve the basic elliptic
problem, we considered employing the conventional finite
differencemethodwithmultigrid over a finemesh to solve the
original equation. For implementing themultigrid algorithm,
we use directly a numerical simulator MGD9V [26]. In fact,
according to the above two basic elliptic problems, we have
𝜙
1

+ 𝜙
2

= 1. Then, we only need to solve the first basic
elliptic problem and obtain the solution𝜙

2 of the second basic
elliptic problem in the course of computation according to
𝜙
2

= 1 − 𝜙
1.

2.2.2. Estimation of Basic Macroscopic Fluxes. After solving
the basic elliptic problems, we estimate basic macroscopic
fluxes based on the solutions of the basic elliptic problems. In
𝐼
𝛿

𝑖+(1/2),𝑗
, 𝐹
𝑥
𝛼
,𝛽

𝑖+(1/2),𝑗
(𝛼, 𝛽 = 1, 2) denote, respectively, the basic

macroscopic fluxes estimated by the solutions of two basic
elliptic problems; we have

𝐹
𝑥
𝛼
,1

𝑖+(1/2),𝑗
= −

1

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛿

𝑖+(1/2),𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

𝑖+(1/2),𝑗

𝐾 (x)
𝜕𝜙
𝛼

𝜕𝑥
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘+(1/2),𝑙

𝜙
𝛼

𝑘+1,𝑙
− 𝜙
𝛼

𝑘,𝑙

𝑎
,

𝐹
𝑥
𝛼
,2

𝑖+(1/2),𝑗
= −

1

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛿

𝑖+(1/2),𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

𝑖+(1/2),𝑗

𝑦

𝐻
𝐾 (x)

𝜕𝜙
𝛼

𝜕𝑥
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝜂
𝑙

𝐻
𝐾
𝑘+(1/2),𝑙

𝜙
𝛼

𝑘+1,𝑙
− 𝜙
𝛼

𝑘,𝑙

𝑎
, 𝛼 = 1, 2,

(5)

where 𝐾
𝑘+(1/2),𝑙

is the geometric mean of 𝐾
𝑘,𝑙

and 𝐾
𝑘+1,𝑙

.
Similarly, in 𝐼

𝛿

𝑖,𝑗+(1/2)
,

𝐹
𝑦
𝛼
,1

𝑖,𝑗+(1/2)
= −

1

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛿

𝑖,𝑗+(1/2)

󵄨󵄨󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

𝑖,𝑗+(1/2)

𝐾 (x)
𝜕𝜙
𝛼

𝜕𝑦
𝑑𝑥 𝑑𝑦
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(i, j)

𝜙1 = 1 𝜙1 = 0

𝜙2 = 0 𝜙2 = 1

y

x0

I𝜎

i,j+
1

2

I𝜎

i−
1

2
,j

I𝜎

i+
1

2
,j

I𝜎

i,j−
1

2

𝜕𝜙1

𝜕y
= 0

𝜕𝜙1

𝜕y
= 0

𝜕𝜙2

𝜕y
= 0

𝜕𝜙2

𝜕y
= 0

∇·[K(x)∇𝜙1(x)] = 0

∇·[K(x)∇𝜙2(x)] = 0

Figure 2: The control volumes at the coarse node (𝑖, 𝑗) and two basic microscopic elliptic models for the control volume 𝐼
𝛿

𝑖+(1/2),𝑗
.

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘,𝑙+(1/2)

𝜙
𝛼

𝑘,𝑙+1
− 𝜙
𝛼

𝑘,𝑙

𝑎
,

𝐹
𝑦
𝛼
,2

𝑖,𝑗+(1/2)
= −

1

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛿

𝑖,𝑗+(1/2)

󵄨󵄨󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

𝑖,𝑗+(1/2)

𝑥

𝐻
𝐾 (x)

𝜕𝜙
𝛼

𝜕𝑦
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝜂
𝑘

𝐻
𝐾
𝑘,𝑙+(1/2)

𝜙
𝛼

𝑘,𝑙+1
− 𝜙
𝛼

𝑘,𝑙

𝑎
, 𝛼 = 1, 2,

(6)

where 𝐾
𝑘,𝑙+(1/2)

is the geometric mean of 𝐾
𝑘,𝑙
and 𝐾

𝑘,𝑙+1
.

2.2.3. Estimation of Macroscopic Fluxes. Based on the esti-
mation of the basic macroscopic fluxes, we will estimate
macroscopic fluxes. Let Ψ

𝑛

𝑖,𝑗
be a coarse numerical solution

of (2) at time 𝑡
𝑛, to estimate the macroscopic flux 𝐹

𝑛 at time
𝑡
𝑛; we will deal with it below.

We first solve a microscopic elliptic problem with the
Dirichlet-Neumann boundary condition at every control
volume 𝐼

𝛿. Head at the Dirichlet boundary of the control
volume is calculated by bilinear interpolating functions.

For the control volume 𝐼
𝛿

𝑖+(1/2),𝑗
, heads at the left and right

sides are

𝜓
𝑛,left,𝑙
𝑖+(1/2),𝑗

= 𝑔
1

(𝜂
𝑙
) + 𝜉
1

𝑔
2

(𝜂
𝑙
) − 𝑔
1

(𝜂
𝑙
)

𝐻
,

𝜓
𝑛,right,𝑙
𝑖+(1/2),𝑗

= 𝑔
1

(𝜂
𝑙
) + 𝜉
𝑀+1

𝑔
2

(𝜂
𝑙
) − 𝑔
1

(𝜂
𝑙
)

𝐻
,

(7)

respectively, where

𝑔
1

(𝜂
𝑙
) =

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖,𝑗

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗−1

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖,𝑗+1
,

𝑀

2
< 𝑙 ≤ 𝑀,

𝑔
2

(𝜂
𝑙
)

=

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖+1,𝑗

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖+1,𝑗−1

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖+1,𝑗

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖+1,𝑗+1
,

𝑀

2
< 𝑙 ≤ 𝑀.

(8)

Thus, 𝜓𝑛,𝑙, the solution of the microscopic elliptic problem in
𝐼
𝛿

𝑖+(1/2),𝑗
, is obtained over the control volume 𝐼

𝛿

𝑖+(1/2),𝑗
via the

linear combination of 𝜙
1 and 𝜙

2, which are the solutions of
two corresponding basic elliptic problems, respectively, and
then we have

𝜓
𝑛,𝑙

= 𝜓
𝑛,left,𝑙
𝑖+(1/2),𝑗

𝜙
1

+ 𝜓
𝑛,right,𝑙
𝑖+(1/2),𝑗

𝜙
2
, 𝑙 = 1, . . . , 𝑀 + 1. (9)

Similarly, in 𝐼
𝛿

𝑖,𝑗+(1/2)
, heads at the bottom and top sides are

𝜓
𝑛,bottom,𝑙
𝑖,𝑗+(1/2)

= 𝑔
3

(𝜂
𝑙
) + 𝜉
1

𝑔
4

(𝜂
𝑙
) − 𝑔
3

(𝜂
𝑙
)

𝐻
,

𝜓
𝑛,top,𝑙
𝑖,𝑗+(1/2)

= 𝑔
3

(𝜂
𝑙
) + 𝜉
𝑀+1

𝑔
4

(𝜂
𝑙
) − 𝑔
3

(𝜂
𝑙
)

𝐻
,

(10)
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respectively, where

𝑔
3

(𝜂
𝑙
) =

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖,𝑗

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖−1,𝑗

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖+1,𝑗
,

𝑀

2
< 𝑙 ≤ 𝑀,

𝑔
4

(𝜂
𝑙
)

=

{{

{{

{

𝜂
𝑙

𝐻
Ψ
𝑖,𝑗+1

+ (1 −
𝜂
𝑙

𝐻
) Ψ
𝑖−1,𝑗+1

, 1 ≤ 𝑙 ≤
𝑀

2
,

(2 −
𝜂
𝑙

𝐻
) Ψ
𝑖,𝑗+1

+ (
𝜂
𝑙

𝐻
− 1) Ψ

𝑖+1,𝑗+1
,

𝑀

2
< 𝑙 ≤ 𝑀.

(11)

The solution of the microscopic elliptic problem in this
control volume is

𝜓
𝑛,𝑙

= 𝜓
𝑛,bottom,𝑙
𝑖,𝑗+(1/2)

𝜙
1

+ 𝜓
𝑛,top,𝑙
𝑖,𝑗+(1/2)

𝜙
2
, 𝑙 = 1, . . . , 𝑀 + 1. (12)

Like the assumption in [27], we assume that the situation
investigated in this study is for locally isotropic conductivity
and also assume the hydraulic conductivity tensor with prin-
cipal axes oriented in the direction of the principal statistical
anisotropy axes of the local parameters. It means that the
conductivity tensor for a locally heterogeneous medium is

K = (
𝐾 (x) 0

0 𝐾 (x)
) . (13)

By applying the above assumption, we derive the macro-
scopic flux 𝐹

𝑛,

𝐹
𝑛

= −
1

󵄨󵄨󵄨󵄨𝐼
𝛿󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

K (x) ∇𝜓 (x, 𝑡
𝑛
) 𝑑x

= −
1

󵄨󵄨󵄨󵄨𝐼
𝛿󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

(
𝐾 (x) 0

0 𝐾 (x)
) (

𝜕𝜓
𝑛

𝜕𝑥

𝜕𝜓
𝑛

𝜕𝑦

) 𝑑𝑥 𝑑𝑦

= −
1

󵄨󵄨󵄨󵄨𝐼
𝛿󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

(

𝐾 (x)
𝜕𝜓
𝑛

𝜕𝑥

𝐾 (x)
𝜕𝜓
𝑛

𝜕𝑦

) 𝑑𝑥 𝑑𝑦 = (
𝐹
𝑛,𝑥

𝐹
𝑛,𝑦) ,

(14)

where 𝐹
𝑛,𝑥 and 𝐹

𝑛,𝑦 are estimated macroscopic fluxes in 𝑥-
direction and 𝑦-direction at time 𝑡

𝑛, respectively. For the
control volume 𝐼

𝛿

𝑖+(1/2),𝑗
, together with (3), (5), (7), (9), and

(14), we have

𝐹
𝑛,𝑥

𝑖+(1/2),𝑗
= −

1

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛿

𝑖+(1/2),𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

∫ ∫

𝐼
𝛿

𝑖+(1/2),𝑗

𝐾 (x)
𝜕𝜓
𝑛

𝜕𝑥
𝑑𝑥 𝑑𝑦

≈ −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘+(1/2),𝑙

𝜓
𝑛,𝑙

𝑘+1,𝑙
− 𝜓
𝑛,𝑙

𝑘,𝑙

𝑎

= −
𝑎
2

𝛿2

𝑀

∑

𝑘=1

𝑀

∑

𝑙=1

𝐾
𝑘+(1/2),𝑙

(𝜓
𝑛,left,𝑙
𝑖+(1/2),𝑗

𝜙
1

𝑘+1,𝑙
− 𝜙
1

𝑘,𝑙

𝑎

+𝜓
𝑛,right,𝑙
𝑖+(1/2),𝑗

𝜙
2

𝑘+1,𝑙
− 𝜙
2

𝑘,𝑙

𝑎
)

≈ [
𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖+1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗−1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖,𝑗−1
− Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
1
,1

𝑖+(1/2),𝑗

+ [
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖+1,𝑗−1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖,𝑗−1
+ Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗

+ [
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖+1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗−1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖,𝑗−1
− Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
2
,1

𝑖+(1/2),𝑗

+ [
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖+1,𝑗−1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖,𝑗−1
+ Ψ
𝑛

𝑖,𝑗+1
)] 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗
.

(15)

Similarly, for 𝐼
𝛿

𝑖,𝑗+(1/2)
, we have

𝐹
𝑛,𝑦

𝑖,𝑗+(1/2)
≈ [

𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗+1
+ Ψ
𝑛

𝑖−1,𝑗+1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖−1,𝑗
− Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)

+ [
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗+1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)

+ [
𝐻 + 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗+1
+ Ψ
𝑛

𝑖−1,𝑗+1
− Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(2Ψ
𝑛

𝑖,𝑗
+ Ψ
𝑛

𝑖−1,𝑗
− Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

+ [
𝐻 + 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗+1
+ Ψ
𝑛

𝑖+1,𝑗+1
)

+
𝐻 − 𝛿

4𝐻
(−Ψ
𝑛

𝑖−1,𝑗
+ Ψ
𝑛

𝑖+1,𝑗
)] 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)
.

(16)

2.2.4.Macroscopic Evolution. LetΔ𝑡 be a time step size, where
Δ𝑡 = 𝑡

𝑛+1
−𝑡
𝑛.Themacroscopic evolution on the coarse mesh

is now done via the approximation of (2), and here we use
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the Crank-Nicolsonmethod to construct the fully discretized
version of (2),
𝑆
𝑠𝑖,𝑗

Δ𝑡
(Ψ
𝑛+1

𝑖,𝑗
− Ψ
𝑛

𝑖,𝑗
)

= −
1

2𝐻
(𝐹
𝑛+1,𝑥

𝑖+(1/2),𝑗
− 𝐹
𝑛+1,𝑥

𝑖−(1/2),𝑗
+ 𝐹
𝑛+1,𝑦

𝑖,𝑗+(1/2)
− 𝐹
𝑛+1,𝑦

𝑖,𝑗−(1/2)
)

−
1

2𝐻
(𝐹
𝑛,𝑥

𝑖+(1/2),𝑗
− 𝐹
𝑛,𝑥

𝑖−(1/2),𝑗
+ 𝐹
𝑛,𝑦

𝑖,𝑗+(1/2)
− 𝐹
𝑛,𝑦

𝑖,𝑗−(1/2)
) + 𝑅
𝑛

𝑖,𝑗
.

(17)
Combining (15), (16), and (17) yields

𝑆
𝑠𝑖,𝑗

Δ𝑡
(Ψ
𝑛+1

𝑖,𝑗
− Ψ
𝑛

𝑖,𝑗
)

= (𝑐
1
Ψ
𝑛+1

𝑖−1,𝑗−1
+ 𝑐
2
Ψ
𝑛+1

𝑖,𝑗−1
+ 𝑐
3
Ψ
𝑛+1

𝑖+1,𝑗−1

+ 𝑐
4
Ψ
𝑛+1

𝑖−1,𝑗
+ 𝑐
5
Ψ
𝑛+1

𝑖,𝑗
+ 𝑐
6
Ψ
𝑛+1

𝑖+1,𝑗

+𝑐
7
Ψ
𝑛+1

𝑖−1,𝑗+1
+ 𝑐
8
Ψ
𝑛+1

𝑖,𝑗+1
+ 𝑐
9
Ψ
𝑛+1

𝑖+1,𝑗+1
)

+ (𝑐
1
Ψ
𝑛

𝑖−1,𝑗−1
+ 𝑐
2
Ψ
𝑛

𝑖,𝑗−1
+ 𝑐
3
Ψ
𝑛

𝑖+1,𝑗−1
+ 𝑐
4
Ψ
𝑛

𝑖−1,𝑗

+ 𝑐
5
Ψ
𝑛

𝑖,𝑗
+ 𝑐
6
Ψ
𝑛

𝑖+1,𝑗
+ 𝑐
7
Ψ
𝑛

𝑖−1,𝑗+1

+𝑐
8
Ψ
𝑛

𝑖,𝑗+1
+ 𝑐
9
Ψ
𝑛

𝑖+1,𝑗+1
) + 𝑅
𝑛

𝑖,𝑗
,

(18)

where

𝑐
1

= −
1

8𝐻2

× [(𝐻 + 𝛿) (−𝐹
𝑥
1
,1

𝑖−(1/2),𝑗
+ 𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
− 𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
+ 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (−𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
+ 𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
− 𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)

+𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
2

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗
− 𝐹
𝑥
2
,1

𝑖−(1/2),𝑗

+𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
− 2𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (𝐹
𝑥
2
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,1

𝑖−(1/2),𝑗

+𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
− 2𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
)] ,

𝑐
3

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑥
2
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗

+𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗

+𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
4

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑦
1
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)
− 2𝐹
𝑥
1
,1

𝑖−(1/2),𝑗

−𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
+ 𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)

−2𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
+ 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
5

= −
1

8𝐻2
[(𝐻 + 𝛿) (2𝐹

𝑥
1
,1

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)

−2𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
− 2𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (2𝐹
𝑥
2
,1

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

− 2𝐹
𝑥
1
,1

𝑖−(1/2),𝑗
− 2𝐹
𝑦
1
,1

𝑖,𝑗−(1/2)
)] ,

𝑐
6

= −
1

8𝐻2
[(𝐻 + 𝛿) (2𝐹

𝑥
2
,1

𝑖+(1/2),𝑗
− 𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)
+ 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)

+𝐹
𝑦
2
,1

𝑖,𝑗−(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗−(1/2)
)

+ (𝐻 − 𝛿) (2𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

+𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗−(1/2)
)] ,

𝑐
7

= −
1

8𝐻2
[(𝐻 + 𝛿) (𝐹

𝑦
2
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)

+𝐹
𝑥
1
,1

𝑖−(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
)

+ (𝐻 − 𝛿) (𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)
− 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)

+𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
)] ,

𝑐
8

= −
1

8𝐻2
[(𝐻 + 𝛿) (−𝐹

𝑥
1
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)

+𝐹
𝑥
2
,1

𝑖−(1/2),𝑗
− 𝐹
𝑥
2
,2

𝑖−(1/2),𝑗
)

+ (𝐻 − 𝛿) (−𝐹
𝑥
2
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗
+ 2𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)

+𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
− 𝐹
𝑥
1
,2

𝑖−(1/2),𝑗
)] ,

𝑐
9

= −
1

8𝐻2
[(𝐻 + 𝛿) (−𝐹

𝑥
2
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
2
,2

𝑖+(1/2),𝑗

+𝐹
𝑦
2
,1

𝑖,𝑗+(1/2)
+ 𝐹
𝑦
2
,2

𝑖,𝑗+(1/2)
)

+ (𝐻 − 𝛿) (−𝐹
𝑥
1
,1

𝑖+(1/2),𝑗
+ 𝐹
𝑥
1
,2

𝑖+(1/2),𝑗

−𝐹
𝑦
1
,1

𝑖,𝑗+(1/2)
+ 𝐹
𝑦
1
,2

𝑖,𝑗+(1/2)
)] .

(19)
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Interpolate heads at boundaries of local 
microscopic elliptic problems (9) and (12)

Solve local basic microscopic elliptic problems (4)

Estimate basic macroscopic fluxes (5-6)

Estimate macroscopic fluxes (16-17)

Solve the macroscopic model (18)

Yes 

No Convergent?

Give Ψn

Obtain Ψn+1

Figure 3: Flow chart of the new scheme at a time step.

Then, we solve the following equation at the coarse mesh
by using MGD9V [26]:

− 𝑐
1
Ψ
𝑛+1

𝑖−1,𝑗−1
− 𝑐
2
Ψ
𝑛+1

𝑖,𝑗−1
− 𝑐
3
Ψ
𝑛+1

𝑖+1,𝑗−1
− 𝑐
4
Ψ
𝑛+1

𝑖−1,𝑗

+ (

𝑆
𝑠𝑖,𝑗

Δ𝑡
− 𝑐
5
) Ψ
𝑛+1

𝑖,𝑗
− 𝑐
6
Ψ
𝑛+1

𝑖+1,𝑗
− 𝑐
7
Ψ
𝑛+1

𝑖−1,𝑗+1

− 𝑐
8
Ψ
𝑛+1

𝑖,𝑗+1
− 𝑐
9
Ψ
𝑛+1

𝑖+1,𝑗+1

= 𝑐
1
Ψ
𝑛

𝑖−1,𝑗−1
+ 𝑐
2
Ψ
𝑛

𝑖,𝑗−1
+ 𝑐
3
Ψ
𝑛

𝑖+1,𝑗−1
+ 𝑐
4
Ψ
𝑛

𝑖−1,𝑗

+ (

𝑆
𝑠𝑖,𝑗

Δ𝑡
+ 𝑐
5
) Ψ
𝑛

𝑖,𝑗
+ 𝑐
6
Ψ
𝑛

𝑖+1,𝑗
+ 𝑐
7
Ψ
𝑛

𝑖−1,𝑗+1
+ 𝑐
8
Ψ
𝑛

𝑖,𝑗+1

+ 𝑐
9
Ψ
𝑛

𝑖+1,𝑗+1
+ 𝑅
𝑛

𝑖,𝑗
.

(20)

Thus, the algorithm is completed.The solution procedure
at a time step is illustrated in Figure 3. We also give a sum-
marywhich only includes the relevant discrete equations nec-
essary to implement the proposed method. Firstly, the basic
elliptic problems (4) are solved. Then, basic macroscopic
fluxes (5) and (6) are estimated, and the coefficients (19) are
calculated. The above steps are finished at the preprocessing
step. Finally, the macroscopic discrete equations (20) are
evolved.

The algorithm described above is easy to extend to
the steady flow problem in heterogeneous porous media.
Under the condition of the steady flow, the left-hand side

of (1) equals zero. Correspondingly, the left-hand side of
macroscopic (2) equals zero. The remainder will similarly be
completed; then we have

𝑐
1
Ψ
𝑖−1,𝑗−1

+ 𝑐
2
Ψ
𝑖,𝑗−1

+ 𝑐
3
Ψ
𝑖+1,𝑗−1

+ 𝑐
4
Ψ
𝑖−1,𝑗

+ 𝑐
5
Ψ
𝑖,𝑗

+ 𝑐
6
Ψ
𝑖+1,𝑗

+ 𝑐
7
Ψ
𝑖−1,𝑗+1

+ 𝑐
8
Ψ
𝑖,𝑗+1

+ 𝑐
9
Ψ
𝑖+1,𝑗+1

= −
1

2
𝑅
𝑖,𝑗

.

(21)
Although FDHMM proposed by Abdulle and E [20] works
for the transient problem, it is also easy to extend to the
steady problem.The given coarse- and fine-grid equations of
FDHMM are elliptic equations in the steady condition. The
iteration scheme of FDHMM is similar to that of the new
scheme, and the solutions of both methods are the same.

The locally hydraulic conductivity (13) is assumed to
be isotropic, but the macroscopic conductivity may be
anisotropic or a full tensor because the final macroscopic
scheme (18) is a nine-spot one. The algorithm may also be
extended to general quadrilateral mesh; themethod is similar
to [28].

3. Evaluation of Numerical Accuracy

All porous media in nature are heterogeneous. The hetero-
geneity in this study comes from the hydraulic conductivity.
As the standard deviation of logarithmic hydraulic conduc-
tivity increases, the heterogeneity increases.The randomcon-
ductivity field is generated by the Turning Bandmethod [29],
in which the hydraulic conductivity is assumed to be locally
isotropic. In this study, we used four saturated groundwater
flow examples, including two steady flow examples and two
transient flow examples, to show the main advantages of the
constructed scheme. Also, influences of different factors are
examined, such as conductivity fields with high variability as
well as different correlation structures, the flow rate of the
pumping well, and the size of the local microscale model, on
the accuracy of the constructed scheme.

3.1. Implementation. The algorithm has been implemented
in a FORTRAN code. Because it is difficult to construct
interesting multiscale problem with an exact solution, people
often compare the coarse scale solution obtained by the mul-
tiscale method with a computed reference solution obtained
on the fine scale. We have employed the conventional finite
difference method with multigrid over a fine mesh to solve
the original equation and refer to this solution as the “exact”
solution.

As a measure of the error, we take the relative 𝐿
2
norm

and the relative maximum norm

eer
2

= [

[

∑
𝑁
󸀠

𝑖=1
(Ψ
𝑖
− Ψ (x

𝑖
))
2

∑
𝑁
󸀠

𝑖=1
(Ψ (x
𝑖
))
2

]

]

1/2

,

eer
∞

=
max
𝑖=1,...,𝑁

󸀠

󵄨󵄨󵄨󵄨Ψ𝑖 − Ψ (x
𝑖
)
󵄨󵄨󵄨󵄨

max
𝑖=1,...,𝑁

󸀠

󵄨󵄨󵄨󵄨Ψ (x
𝑖
)
󵄨󵄨󵄨󵄨

,

(22)

respectively, where 𝑁
󸀠 is the total number of nodes on the

coarsemesh,Ψ
𝑖
denotes the coarse solution at the coarse node
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Figure 4: A realization of the random saturated conductivity fields of different standard deviations under 𝜆
𝑥

= 𝜆
𝑦

= 100m: (a) 𝜎ln𝐾 = 0.5,
(b) 𝜎ln𝐾 = 1.0, (c) 𝜎ln𝐾 = 1.5, and (d) 𝜎ln𝐾 = 2.0.

x
𝑖
, and Ψ(x

𝑖
) denotes the “exact” solution projected on the

coarse mesh; that is, Ψ(x
𝑖
) = 𝜓(x

𝑖
) at the coarse node. Here,

𝜓(x) is the “exact” solution.
In all test examples, the study domain Ω is a rectangle

covering 1 km × 1 km with the point (0, 0) as the origin. A
uniform finite difference mesh is constructed by dividing Ω

into an𝑁×𝑁mesh.Thefinemesh is a 256×256mesh, and the
“exact” solution and the random hydraulic conductivity field
are obtained on this mesh.The coarse mesh is a 16 × 16 mesh
and the coarse solution is obtained by using the multiscale
method on this mesh.

3.2. Steady Flow Problems with Isotropic and Anisotropic
Microstructure. We impose the Dirichlet-Neumann bound-
ary condition for the test steady flow problem. The left and
right sides of boundary are Dirichlet boundaries. Head on
the left is 20m, and that on the right side is 10m. The
top and bottom sides are impermeable boundaries. To start
the computation using the new scheme, we need to choose

the size of the control volume 𝛿. In this study, 𝛿 is chosen to
be equal to a half of the coarse mesh size, which means that
we only use about 50% of the total data at the small scale; that
is, 𝛿 = (1/2)𝐻. Every control volume 𝐼

𝛿 is uniformly divided
into an 8 × 8 mesh such that its mesh size equals the size of
the fine mesh.

Four conductivity fields with isotropic correlation
microstructure are first applied. Correlation lengths of these
conductivity fields are 𝜆

𝑥
= 𝜆
𝑦

= 10m, 𝜆
𝑥

= 𝜆
𝑦

= 20m,
𝜆
𝑥

= 𝜆
𝑦

= 40m, and 𝜆
𝑥

= 𝜆
𝑦

= 100m, respectively. We
assume that the geometric mean of hydraulic conductivity
is 𝐾 = 0.006m/min. Under 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, where
𝜎ln𝐾 is the standard deviation of logarithmic hydraulic
conductivity, these four conductivity fields vary by about
one, three, five, and six orders of magnitude, respectively.
A realization of the random conductivity fields with
𝜆
𝑥

= 𝜆
𝑦

= 100m and 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 is plotted
in Figure 4. Figure 5 plots the errors of the solutions of
the constructed scheme for different correlation lengths at
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Figure 5: Relative (a)𝐿
2
and (b)maximumerrors between the fine-scalemodel and the new scheme for the steady flowproblemwith isotropic

correlation microstructure.

𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0. It illustrates that the larger standard
deviation of logarithmic hydraulic conductivity leads to
the less accurate results. Furthermore, at the case with
𝜆
𝑥

= 𝜆
𝑦

= 10m and 𝜎ln𝐾 = 2.5, in which the conductivity
field varies by about nine orders of magnitude, the new
scheme is even not convergent, although it works for other
correlation scales for the same logarithmic conductivity
variance. The reason may be that conductivities of highly
heterogeneous systems are highly discontinuous, which
makes the direct application of the algorithm infeasible. It
may also indicate that the standard deviation of logarithmic
hydraulic conductivity plays an important role in the
accuracy of the new scheme. At the same time, when
𝜎ln𝐾 = 0.5, the results obtained under different correlation
lengths have about the same accuracy and the correlation
length of conductivity field shows no significant effect on the
accuracy of the new scheme. It is noted that the correlation
length is even larger than the size of the control volume in the
case with 𝜆

𝑥
= 𝜆
𝑦

= 100m. The heads in section 𝑦 = 500m
obtained from the fine-scale model on the fine mesh and the
constructed scheme on the coarse mesh for the case with
𝜆
𝑥

= 𝜆
𝑦

= 100m and 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 are depicted in
Figure 6, and we observe that the solution obtained by the
constructed scheme on a coarse mesh is able to approximate
the exact solution. The above discussion indicates that the
new scheme gives a reasonable accuracy for the test steady
flow examples with isotropic correlation microstructure.

Convergence should be a necessary condition for the
new scheme as a good numerical method. Here, we only
consider the conductivity field with 𝜆

𝑥
= 𝜆
𝑦

= 100m. Fixing
𝛿 = (1/2)𝐻, Figure 7 plotted the relative errors for coarse
meshes with 4 × 4, 8 × 8, 16 × 16, and 32 × 32 elements
under four cases that𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, respectively.The
errors monotonically decrease as the total number of coarse

elements increases and tend to zero, which means that the
new scheme solution converges as the coarse grid is refined.

Next, we turn to consider three conductivity fields with
anisotropic correlation microstructure. Fixing 𝑦-direction
correlation length 𝜆

𝑦
= 10m, 𝑥-direction correlation lengths

of these conductivity fields are 𝜆
𝑥

= 20m, 𝜆
𝑥

= 40m, and
𝜆
𝑥

= 100m, respectively. Assume that 𝐾 = 0.006m/min.
Under 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, these three conductivity fields
vary by over one, three, five, and seven orders of magni-
tude, respectively. The results of the constructed scheme for
different correlation lengths at 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 are
depicted in Figure 8. As in the previous example, the stan-
dard deviation of logarithmic hydraulic conductivity shows
significant effect on the accuracy of the new scheme. The
errors obviously increase with 𝜎ln𝐾 increasing. Compared to
the standard deviation, the correlation length of conductivity
field has relatively little influence on the accuracy of the
new scheme. The maximum error in Figure 8 is attained at
the case with 𝜆

𝑥
= 100, 𝜆

𝑦
= 10m, and 𝜎ln𝐾 = 2.0,

and the relative 𝐿
2
and maximum errors of the solution of

the constructed scheme are 2.28% and 5.88%, respectively.
Similar to the isotropic case, the new scheme also gives a
reasonable accuracy for the test steady flow examples with
anisotropic correlation microstructure.

3.3. Aquifer Response to Sudden Change in Reservoir Level.
Wedesign this transient test example based on the example in
[30]. Consider the confined aquifer in the study area. Initial
head is equal to 20m everywhere in the aquifer. We wish
to simulate changes in head through time if, at 𝑡 = 0, we
suddenly drop the water level in the reservoir on four sides
of the study area from 20m to 10m. The specific storage
coefficient and the thickness of the aquifer are 2.0 × 10

−4m−1
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Figure 6: Exact solution and the coarse solution of the new scheme in section 𝑦 = 500m for the steady flow problem under isotropic
correlation microstructure with different standard deviations: (a) 𝜎ln𝐾 = 0.5, (b) 𝜎ln𝐾 = 1.0, (c) 𝜎ln𝐾 = 1.5, and (d) 𝜎ln𝐾 = 2.0.

and 10m, respectively. To generate the random hydraulic
conductivity field, we assume that 𝐾 is 0.003m/min, the
standard deviation of ln𝐾 is 1.5, and the correlation structure
of the conductivity is anisotropic with 𝜆

𝑥
= 40m and 𝜆

𝑦
=

10m. Conductivity 𝐾 in this random field varies by over five
orders of magnitude. Fix a time step size Δ𝑡 = 5min and the
study time 8000min.

At first, accuracies and efficiencies of the constructed
scheme and FDHMM are compared. Let the size of the
control volume 𝛿 = (1/2)𝐻, and the control volume 𝐼

𝛿

is uniformly divided into an 8 × 8 mesh. The computa-
tional results of different multiscale schemes at times =

500, 1000, 2000, 4000, 5000, 6000, and 8000min are plotted
in Figure 9. Figure 9 indicates that the new scheme seems to
be more accurate than FDHMM. After 𝑡 = 1000min, eer

2

and eer
∞

of the solution of the constructed scheme mono-
tonically decrease from 2.06% to 0.32% and from 7.37% to

0.95%, respectively, while those of FDHMM fluctuate in the
intervals 2.71%∼6.60% and 6.13%∼15.40%, respectively. The
reason leading to the difference between the results obtained
by the constructed scheme and obtained by FDHMMmay be
the different approaches of estimating the macroscopic flux.
Compared with FDHMM in which the approximation of the
macroscopic flux is determined before the coarse equation is
solved, for the constructed scheme, the computation of the
macroscopic flux is coupled into the course of solving the
coarse equation.Thus, a quasistationary state of the computed
macroscopic flux is approached in the global domain for the
constructed scheme and in the local domain for FDHMM,
and it maymake the constructed scheme give better accuracy
than FDHMM for this test problem. We plot the heads in the
whole study domain at times 𝑡 = 1000 and 5000min obtained
from the fine-scalemodel on the finemesh and twomultiscale
methods on the coarse mesh (Figure 10). We observe that
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Figure 7: Relative (a) 𝐿
2
and (b) maximum errors of the solution of the new scheme for coarse grids with 4 × 4, 8 × 8, 16 × 16, and 32 × 32

elements.
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Figure 8: Relative (a) 𝐿
2
and (b) maximum errors between the fine-scale model and the new scheme for the steady flow problem with

anisotropic correlation microstructure.

the heads obtained by the new scheme on a coarse mesh
can satisfyingly approximate the “exact” heads, and FDHMM
underestimates the heads at the coarse nodes.

The results were obtained on a computer running Win-
dows XP with 2.66GHz processor, 2 megabytes of cache,
and 512 megabytes of RAM. For this test example, mem-
ory requirements using the conventional finite difference
method, the constructed scheme, and FDHMM are about
27.7, 4.3, and 4.3 megabytes, respectively; CPU times using

the three methods are about 12.1min, 0.1min, and 7.2min,
respectively. Compared with the computational cost of the
conventional finite difference method, in our test example,
the present new can save about 84.5% memory and about
99.2% CPU time, and FDHMM can save about 84.5% mem-
ory and about 40.5% CPU time. We need to solve 4𝑁(𝑁 −

1) basic microscopic elliptic problems in the constructed
scheme. In fact, the computations of these basic microscale
problems can be carried out sequentially, and, at a time,
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Figure 9: Relative (a) 𝐿
2
and (b) maximum errors between exact and two coarse solutions for aquifer response to sudden change in reservoir

level.

we only need to solve two basic microscale problems (one
for 𝐼
𝛿

𝑖+(1/2),𝑗
and the other for 𝐼

𝛿

𝑖,𝑗+(1/2)
). When 𝛿 = (1/2)𝐻,

every basic microscale problem has (𝑀 + 1)
2 unknowns;

the degrees of freedom of these basic microscale problems
are 2(𝑀 + 1)

2. Added (𝑁 + 1)
2 degrees of freedom of the

macroscopic scheme, the total degrees of freedom of the new
scheme are 2(𝑀 + 1)

2
+ (𝑁 + 1)

2. Similarly, the total degrees
of freedom of FDHMM are also 2(𝑀 + 1)

2
+ (𝑁 + 1)

2,
and degrees of freedom of the full fine scheme are (2𝑁𝑀 +

1)
2. Thus, both the constructed scheme and FDHMM can

obviously save the memory requirement. The first saving in
computational time in two multiscale schemes is achieved
by reducing the computation of the fine mesh on the whole
domain. The fine-scale global flow solution is decomposed
into a series of local microscopic problems, and this greatly
saves the computational time. However, local microscopic
models of the new scheme only need to be solved once at the
preprocessing step, while those of FDHMMneed to be solved
at every time step.Thus, the constructed scheme needs much
less CPU time than FDHMM.

Next, we discuss the effects of different cell sizes on the
accuracy of the constructed scheme. In a coarse 16×16mesh,
the coarsemesh size𝐻 equals 1000/16m;we change the size of
the control volume and let 𝛿 = (1/2)𝐻, (3/4)𝐻, 𝐻, (5/4)𝐻 in
turn. To obtain the same size as the full fine mesh size, these
control volumes are uniformly divided into 8 × 8, 12 × 12,
16 × 16, and 20 × 20 meshes in turn. The results obtained by
the constructed scheme under different control volume sizes
at times = 500, 1000, 2000, 4000, 5000, 6000, and 8000min
are depicted in Figure 11. We observe that the cases with
𝛿 = (3/4)𝐻, 𝛿 = 𝐻, and 𝛿 = (5/4)𝐻 have about the same
accuracy, and the case with 𝛿 = (1/2)𝐻 has a less accuracy.
This is likely because, at three cases with 𝛿 = (3/4)𝐻, 𝛿 = 𝐻,

and 𝛿 = (5/4)𝐻, the main microstructural information is
efficiently captured by the control volume. It may indicate
that the control volume size shows no significant effect on the
accuracy of the constructed scheme when it is chosen to be
near the coarse mesh size.

3.4. Steady and Transient Flow Problems with Weak Well
Drawdown. In this section, we first consider the steady
flow problem with well drawdown in heterogeneous porous
media. Similar to the examples discussed in [10, 31], we
impose the following fixed head and no flux boundary condi-
tions for the test example: heads on the left and right sides are
10m and top and bottom sides are impermeable boundaries.
In addition, a pumping well with the constant flow rate 𝑄

is located at the point (500m, 500m), and we let 𝑄 =

0.12m3/min, 0.24m3/min, 0.36m3/min, and 0.48m3/min,
respectively. The aquifer is 10m thick. We also choose 𝛿 =

(1/2)𝐻 and uniformly divide every control volume 𝐼
𝛿 into an

8 × 8 mesh such that its mesh size equals the size of the fine
mesh.

Four conductivity fields with 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0 are
considered. Assume that the geometric mean of hydraulic
conductivity is 𝐾 = 0.018m/min and the anisotropic
correlation microstructure with 𝜆

𝑥
= 40, 𝜆

𝑦
= 10m. The

errors of the results obtained by the constructed scheme
under different well flow rates at 𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0

are plotted in Figure 12. Different from the examples of
Section 3.2, the standard deviation of logarithmic hydraulic
conductivity shows no significant effect on the accuracy of
the new scheme. For example, given 𝑄 = 0.12m3/min, when
𝜎ln𝐾 = 0.5, 1.0, 1.5, 2.0, relative 𝐿

2
errors of the solution of

the new scheme are about 0.15%, 0.15%, 0.17%, and 0.20%,
respectively, and relative maximum errors of the solution
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Figure 10: Exact solution (top), the coarse solutions of the new scheme (middle), and FDHMM (bottom) at times 𝑡 = 1000min (left) and
5000min (right) for aquifer response to sudden change in reservoir level.

of the new scheme are 2.52%, 2.29%, 2.17%, and 2.00%,
respectively. The important factor affecting the accuracy of
the new scheme is the flow rate of the pumping well. The
larger the flow rate of pumping well is, the larger the resulting
errors are. Setting 𝜎ln𝐾 = 1.0, Figure 13 plots the heads in

section 𝑦 = 500m obtained from the fine-scale model on the
fine mesh and the constructed scheme on the coarse mesh
for the cases 𝑄 = 0.12, 0.24, 0.36, 0.48m3/min. There are
larger errors of the results of the constructed scheme near
point (500m, 500m), which are caused by the pumping well
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Figure 11: Relative (a) 𝐿
2
and (b) maximum errors between the fine-scale model and the new scheme under different cell sizes for aquifer

response to sudden change in reservoir level.
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Figure 12: Relative (a) 𝐿
2
and (b) maximum errors between the fine-scale model and the new scheme for the steady flow problem with well

drawdown.

at this point. This is likely because heads near the well vary
nonlinearly with distance to the well, which cannot be well
described by the constructed scheme. On the other hand, the
problem of the well singularity may be related to the chosen
scale. If we choose a coarse 32 × 32 mesh and 𝛿 = (1/2)𝐻

and resolve this well drawdown problem. When 𝜎ln𝐾 = 1.0,
in Figure 14, we replot the curves shown in Figure 13. We
observe that the accuracy of the new scheme was improved
markedly.

Next, we consider the transient well drawdown problem
in heterogeneous porous media. Boundaries of the study area
are Dirichlet types. Heads on four sides are all 10m. Initial
pressure head is also 10m everywhere in the aquifer. The
specific storage coefficient is 2.0 × 10

−4m−1 and the aquifer
is 10m thick. There is a pumping well at the point (500m,
500m). The well has the constant flow rate of 0.24m3/min
and is pumped for 1600min in the problem. The time step
is 1min for every method. This test example is analogous to
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Figure 13: Exact solution and the coarse solution of the new scheme in section 𝑦 = 500m for the steady well drawdown problem under
different well flow rates: (a) 𝑄 = 0.12, (b) 𝑄 = 0.24, (c) 𝑄 = 0.36, and (d) 𝑄 = 0.48 (m3(min)−1).

the examples used in [10, 31]. The statistical parameters used
to describe random conductivity field are 𝐾 = 0.018m/min,
𝜎ln𝐾 = 1.0, 𝜆

𝑥
= 40m, and 𝜆

𝑦
= 10m. This random

conductivity field varies by over three orders of magnitude.
Similar to Section 3.3, we compare accuracies and effi-

ciencies of the constructed scheme and FDHMM.The control
volume 𝐼

𝛿 has a size of (1/2)𝐻 and is uniformly divided into
an 8 × 8 mesh. We plot the computational results of different
multiscale schemes at times = 100, 200, 400, 800, 1000, 1200,
and 1600min (Figure 15). The constructed scheme gives a lit-
tle more accuracy than FDHMM. Over the whole simulating
time, eer

2
and eer

∞
of the solution of the new scheme are less

than 0.26%and 4.15%, respectively, and those of FDHMMare
less than 0.38% and 5.44%, respectively. Figure 16 shows the
heads at times 𝑡 = 200 and 1000min in section 𝑦 = 500m
obtained from the fine-scale model on the fine mesh and

two multiscale methods on the coarse mesh. We observe that
the solutions obtained by both the constructed scheme and
FDHMM on a coarse mesh are able to satisfyingly approx-
imate the exact solution except of the well singularity. Near
the well singularity, the results obtained by both multiscale
methods are in rough agreement with those obtained by the
fine-scale model, and the heads are overestimated to be about
0.45m and 0.50m by the constructed scheme and FDHMM
at the well singularity, respectively, at 𝑡 = 200min. This
fact may imply that, although a quasibalance state of the
macroscopic flux is achieved in the global domain for the
constructed scheme versus in the local domain for FDHMM,
this advantage of the constructed scheme is not obvious for
the well drawdown problem.

Computational costs of the three methods in this test
example are similar to those in the test example discussed in
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Figure 14: Exact solution and the coarse solution of the new scheme at the coarse 32 × 32 mesh in section 𝑦 = 500m under different well
flow rates: (a) 𝑄 = 0.12, (b) 𝑄 = 0.24, (c) 𝑄 = 0.36, and (d) 𝑄 = 0.48 (m3(min)−1).

Section 3.3 and are omitted in this section.This is followed by
a discussion of effects of different cell sizes on the accuracy
of the constructed scheme. As described in Section 3.3, in a
coarse 16 × 16 mesh, the control volumes are chosen to have
sizes of 𝛿 = (1/2)𝐻, (3/4)𝐻, 𝐻, (5/4)𝐻 and are uniformly
divided into 8 × 8, 12 × 12, 16 × 16, and 20 × 20 meshes
in turn. Plotted in Figure 17 are the calculated results of the
constructed scheme under different control volume sizes at
times 𝑡 = 100, 200, 400, 800, 1000, 1200, and 1600min. It
indicates that four cases give a reasonable accuracy in eer

2

and eer
∞
. We observe that the results for 𝛿 = 𝐻 are the

best, the results for 𝛿 = (3/4)𝐻 are less accurate than those
for 𝛿 = 𝐻, the results for 𝛿 = (5/4)𝐻 are less accurate
than those for 𝛿 = (3/4)𝐻, and the results for 𝛿 = (1/2)𝐻

are the worst. The results obtained under three cases with
𝛿 = (3/4)𝐻, 𝐻, (5/4)𝐻 are very similar. Thus, the control
volume size may be chosen to be near the size of the coarse

mesh for the sake of the accuracy of the constructed scheme.
In addition, under the cases with 𝛿 = (1/2)𝐻 and 𝛿 =

(3/4)𝐻, we only use about 50% and 75% of the information
of the whole microstructure, respectively. This flexibility of
choosing the size of the control volume means that the
constructed scheme may be applied to the flow problem
for which the microstructure cannot be completely found
beforehand.

4. Conclusion

A new scheme of the finite difference heterogeneous multi-
scale method, which puts more emphasis on the interaction
between the macro- and microscale behaviors, has been pre-
sented for solving saturated water flow problems in random
porous media. The macroscopic iteration formulas of steady
and transient flow problems have been explicitly deduced. By
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Figure 16: Exact solution and two coarse solutions at times (a) 𝑡 = 200min and (b) 1000min in section 𝑦 = 500m for the transient flow
problem with weak well drawdown.

solving basic microscopic elliptic problems and estimating
basic macroscopic fluxes, it is subtly brought to the large
scale for microscale information of the medium property
and useful information about the gradients of the solutions
of basic microscopic elliptic models. For the transient flow
problem, different from that FDHMM needs the macro-
scopic and microscopic evolution at every time step, the
constructed scheme implements the microscopic evolution
at the preprocessing step and only needs the macroscopic
evolution at every time step, which offers substantial saving

in the computational cost. The constructed scheme saves
about 58.7% CPU time compared to FDHMM for aquifer
response to sudden change in reservoir level on the case
𝛿 = (1/2)𝐻. Different numerical examples, including two
steady flow problems and two transient flow problems subject
to Dirichlet-Neumann boundary type, are applied to test
the efficiency and accuracy of the constructed scheme. We
have considered seven correlation lengths and four standard
deviations of the hydraulic conductivity field for steady flow
problems with isotropic and anisotropic microstructure and
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Figure 17: Relative (a)𝐿
2
and (b)maximumerrors between the fine-scalemodel and the new scheme under different cell sizes for the transient

flow problem with weak well drawdown.

considered four flow rates of the pumping well and four
standard deviations of the hydraulic conductivity field for the
steady flow problem with well drawdown. In every transient
flow problem, we have also considered four sizes of the
control volume.Thenumerical experiments demonstrate that
the constructed scheme gives a better accuracy thanFDHMM
for aquifer response to sudden change in reservoir level
and gives a comparable accuracy to FDHMM for the weak
well drawdown problem. The numerical experiments also
indicate that the constructed scheme can efficiently capture
the macroscale behavior of the solution on a coarse mesh
for the steady and transient flow problems without well
drawdown, and the scheme can approximately handle the
weak well drawdown problem. The well singularity is related
to the chosen scale. We may refine the coarse mesh size to
improve the accuracy of the solution to the well drawdown
problem. The standard deviation of logarithmic hydraulic
conductivity field plays an important role in the accuracy of
the constructed scheme.The larger the standard deviation is,
the less accurate the results are.The spatial correlation length
of random conductivity field has relatively little influence
on the accuracy of the constructed scheme. To obtain a
reasonable accuracy, the size of the control volume may be
chosen to be near or to be equal to the coarse mesh size or
other suitable size if necessary.This flexibility of choosing the
size of the control volumemeans that the constructed scheme
can be not only applied to the flow problem for which the
microstructure is completely found butmay be also applied to
the flow problem for which the microstructure is only partly
found beforehand.

This study is limited to two-dimensional saturated flow
through heterogeneous porousmedia.We also plan to extend

this scheme to solve unsaturated water flow problems with
heterogeneity which would be more difficult to simulate.
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Some numerical approaches to solve fluid structure interaction problems in blood flow are reviewed. Fluid structure interaction
is the interaction between a deformable structure with either an internal or external flow. A discussion on why the compliant
artery associated with fluid structure interaction should be taken into consideration in favor of the rigid wall model being
included. However, only the Newtonianmodel of blood is assumed, while various structure models which include, amongst others,
generalized string models and linearly viscoelastic Koiter shell model that give a more realistic representation of the vessel walls
compared to the rigid structure are presented. Since there exists a strong addedmass effect due to the comparable densities of blood
and the vessel wall, the numerical approaches to overcome the added mass effect are discussed according to the partitioned and
monolithic classifications, where the deficiencies of each approach are highlighted. Improved numerical methods which are more
stable and offer less computational cost such as the semi-implicit, kinematic splitting, and the geometrical multiscale approach
are summarized, and, finally, an appropriate structure and numerical scheme to tackle fluid structure interaction problems are
proposed.

1. Introduction

Fluid structure interaction is defined as the interaction
between deformable structures with an internal or surround-
ing fluid flow. Such deformation can either be stable or
oscillatory. Problems involving fluid structure interaction are
classified into the one-way problem which occurs when the
movement of the structure controls the motion of fluid but
the fluid’smotion does not influence the structure, or the two-
way fluid structure interaction problem when the movement
of the structure influences the motion of the fluid and vice
versa [1].

Fluid structure interaction is more often considered in
modelling biofluids because the interaction between the
blood and vessel wall is of great clinical interest, for example,
in studying cardiovascular diseases which are a major cause
of death in developed countries [2].

The interaction between blood flow and vessel wall is
often neglected because the coupled fluid and solid equations
are complicated and difficult to solve [3]. Earlier numerical

models used to predict blood flow are based on rigid
geometries [4] in which only the arterial lumen needs to
be reconstructed and discretized, yielding results that are
reasonably accurate and can be obtained in a relatively short
time [5]. However, there are still further considerations to be
taken into account such as the elastic nature and stresses on
the arterial wall that play crucial roles in arterial disease, as
well as thematerial property alterationswith the development
of the atherosclerotic lesion [6].

Numerous studies had been carried out to compare the
effect of the rigid and compliant wall on blood flow. Lee and
Xu [7] indicated that the axial velocities at the center being of
a rigid wall are higher compared to the ones in the compliant
model. Mass conservation theory is utilized to explain such
phenomena as the internal fluid pressure exerted on the vessel
wall pushes the vessel wall outward consistently and slows
the fluid flow due to the flow area expansion. Rigid wall sim-
ulation of blood flow through arteries also overpredicts the
wall shears stress. These findings showed that incorporating
fluid structure interaction has significant effects on blood
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flow characteristics [2, 7]. Siogkas et al. [5] considered a rigid
wall assumption and fluid structure interaction simulations
of blood flow in the arterial segments. They concluded that
the computational time for the simulation of fluid structure
interaction is longer than that of the rigid wall assumption. It
was found that the required time for the simulation is 30–40
minutes in the case of rigid wall but takes almost 5 hours in
the compliant vessel.

Fluid structure interaction describes the wave propaga-
tion in arteries driven by the pulsatile blood flow. From the
theoretical point of view, such problems are complex and
challenging due to the high nonlinearity of the problem. Not
only the fluid equation exhibits nonlinearity, the structure
displacement modifies the fluid domain which generates
geometrical nonlinearities as well [8].

The generalized string model had been utilized as the
structure of blood flow in compliant vessels and arteries [9–
15]. Causin et al. [16] explained that the generalized string
model is a structural model derived from the theory of linear
elasticity for a cylindrical tube with small thickness. The
reference configuration is a cylindrical surface of the base
circle radius𝑅 that is supposed tomove in radially, neglecting
the longitudinal and angular displacements. Nobile and
Vergara [15] pointed out that the generalized string model
neglects bending as well. According to Čanić et al. [17–20],
there are no analytical results which are able to prove the well
posedness of fluid structure interaction problems without
assuming the structure model that includes the higher order
derivative terms, capturing the viscoelastic behavior, or the
terms describing bending rigidity. In hemodynamics, there
exists a strong added mass effect issue in which the fluid and
structure have comparable densities. If the structure density
is higher than the fluid density, such as in aeroelasticity, the
added mass effect is negligible. Various structural models are
discussed in Section 2.

Numerical approaches of fluid structure interaction
which are discussed in Section 3 can be broadly classified into
two: the partitioned approach and the monolithic approach.
Partitioned approach can be further subdivided into the
loosely and strongly coupled algorithms [20–27]. In hemody-
namics, the use of explicit partitioned algorithm turns out to
be problematic where stability is concerned, particularly due
to the added mass effect. In addition, the implicit partitioned
algorithms are also affected by the added mass effect in terms
of convergence. Special treatment of the interface conditions
needs to be considered [8, 16, 28–30]. To date, it seems that
only the monolithic and implicit schemes are applicable in
blood flow simulation involving fluid structure interaction.
However, they are costly in terms of computational cost,
computational time, and memory requirement [9–11, 31–33].
In Section 4, the improved numerical methods which are
stable but with low computational time are summarized.

2. Fluid Structure Interaction
Problem Formulation

Fluid structure interaction problem can be divided into
three parts: fluid problem, structure problem, and coupling

x2

x1

H

L

Ω(t)

Γ(t)

Figure 1: Sketch of flow region [9, 10].

condition. The model discussed here is based on the work
of [9, 10]. Consider the flow of an incompressible, viscous
Newtonian fluid in a two-dimensional symmetric channel
with thin and deformable walls in Figure 1.

2.1. The Fluid Problem. Let 𝑥
1
and 𝑥

2
denote the horizontal

and vertical coordinates, respectively. Assume that the fluid
domain is supplanted by a symmetry boundary condition at
the axis of symmetry. The fluid domain is denoted by Ω(𝑡),
where

Ω (𝑡) = {(𝑥
1
, 𝑥
2
)∈𝑅
2
| 𝑥
1
∈(0, 𝐿) , 𝑥

2
∈(0,𝐻 + 𝜂 (𝑥

1
, 𝑡))}

(1)

with the lateral (top) boundary condition

Γ (𝑡) = {(𝑥
1
, 𝑥
2
)∈𝑅
2
| 𝑥
1
∈(0, 𝐿) , 𝑥

2
=(0,𝐻 + 𝜂 (𝑥

1
, 𝑡))} .

(2)

The fluid flow is governed by the Navier-Stokes equations:

𝜌
𝑓
(
𝜕u
𝜕𝑡

+ u ⋅ ∇u) = ∇ ⋅ 𝜎, ∇ ⋅ u = 0,

in Ω (𝑡) for 𝑡 ∈ (0, 𝑇) ,

(3)

where u = (𝑢
1
, 𝑢
2
) is the fluid velocity, 𝑝 is the fluid pressure,

𝜌
𝑓
is the fluid density, and 𝜎 is the fluid stress tensor.The fluid

is assumed asNewtonian so that the fluid stress tensor is given
by 𝜎 = −𝑝I + 2𝜇D(u), where 𝜇 is the fluid viscosity andD(u)
is the rate-of-strain tensorD(u) = ((∇u) + (∇u)𝑇)/2.

Blood is known as a suspension of red blood cells, white
blood cells, and platelets in plasma. Although blood is not a
Newtonian fluid, it is well accepted that, in medium-to-large
arteries, the Newtonian assumption is acceptable. The non-
Newtonian nature due to the particular rheology is relevant
to the small arteries and capillaries where the diameter of the
arteries and the size of the cell are comparable [18, 35]. For a
critical review on blood flow, one can refer to [36] where the
blood rheology, blood viscosity models, and conditions are
listed. In this paper, only Newtonian fluid will be considered
as in [9–11, 33].

2.2. The Structure Problem. Since the fluid structure inter-
action problem is complicated, the simplified model is used
whenever possible. Previous studies indicated that the simpli-
fied mathematical model presenting the major physical char-
acteristics is reasonable. A common set of simplifyingmodels
includes the use of two-dimensional models instead of the
more realistic three-dimensional ones, cylindrical geometry
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of a section of an artery without branching, neglecting the
viscoelastic term and the bending rigidity, and even a further
reduction to one-dimensional models. The two-dimensional
and three-dimensional models are rather complex while the
one-dimensional models suffer from a serious drawback as
they are not closed and oversimplifying the viscous fluid [18–
20].

Recent studies on the two-dimensional models with
some simplification assumptions include that of Nobile and
Vergara [15]. They assumed that the structure behaves as a
membrane which implies that the structure is a thin elastic
shell with no bending, whose thickness is neglected and
which can be described by a two-dimensional manifold. A
simple inertia-algebraic membrane model which considers
small deformation is considered.The structure equation with
initial conditions is as follows:

𝜌
𝑠
ℎ
𝑠

𝜕
2
𝜂

𝜕𝑡2
+ 𝛽𝜂 = 𝑓

𝑠
in (0, 𝑇) × Γ

0
,

𝜂
󵄨󵄨󵄨󵄨𝑡=0

= 𝜂
0

in Γ
0
,

𝜕𝜂

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝜂V in Γ
0
,

(4)

where 𝜂
0
, 𝜂V are initial conditions. If in the particular case

𝜌
𝑠
= 0, it is known as the algebraic model.
Nobile [37] proposed a generalised string model derived

from a cylindrical configuration. Let

Γ = {(𝑟, 𝜃, 𝑧) : 𝑟 = 𝑅
0
, 0 ≤ 𝑧 ≤ 𝐿, 0 ≤ 𝜃 < 2𝜋} (5)

be the cylindrical reference surface of radius 𝑅
0
, while the

longitudinal and angular displacement are neglected; thus the
radial displacement 𝜂

𝑟
= 𝜂
𝑟
(𝑡, 𝜃, 𝑧) is given by
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(6)

where 𝑘𝐺ℎ(𝜕
2
𝜂
𝑟
/𝜕𝑧
2
) account for shear deformation while

𝛾(𝜕
3
𝜂
𝑟
/𝜕𝑧
2
𝜕𝑡) introduced the viscoelastic behaviour. By

neglecting the viscoelastic terms and the term of second
derivatives in 𝑧, the resulting equation (7) is so-called
independent ring model

𝜌
𝑠
ℎ
𝑠

𝜕
2
𝜂
𝑟

𝜕𝑡2
+

𝐸ℎ

1 − V2
𝜂
𝑟

𝑅
2

0

= 𝑝 − 𝑝ext. (7)

Further simplification by neglecting the inertia term will
result in the simple algebraic equation

𝐸ℎ

1 − V2
𝜂
𝑟

𝑅
2

0

= 𝑝 − 𝑝ext. (8)

Generalised string model had been widely used as the
structure of blood flow in compliant vessels and arteries
[12–16, 32]. It is derived from the theory of linear elasticity
for a cylindrical tube with small thickness. The reference
configuration is a cylindrical surface of the base circle radius

𝑅 that is supposed to move in radially, the longitudinal and
angular displacements being neglected [16]. Causin et al. [16]
suggested that the results will be more qualitative in the
present example of a nonnegligible second-order term.

Guidoboni et al. [9, 10] proposed the generalized string
model which includes the elastic and viscoelastic behavior.
Γ(𝑡) is assumed as a linearly viscoelastic thin shell, undergoing
only transversal displacement 𝜂 = 𝜂(𝑥, 𝑡):
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ℎ
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0
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1
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2

1

+ 𝐷
0

𝜕𝜂

𝜕𝑡
− 𝐷
1

𝜕
3
𝜂

𝜕𝑡𝜕𝑥
2

1

= 𝑓
2

on (0, 𝐿) × (0, 𝑇) .

(9)

Čanić et al. [18–20] stated that there are no analyti-
cal results which are able to prove the well posedness of
fluid structure interaction problems without assuming the
structure model that includes the higher order derivative
terms capturing the viscoelastic behavior or with the terms
describing bending rigidity. They explained that the bending
rigidity of the vessels walls which are being neglected might
mean oversimplifying the physics.Thus, their motivationwas
to derive the Koiter shell equations in cylindrical coordinate.
The linearly viscoelastic cylindrical Koiter shell model is
given as

𝜌
𝑤
ℎ
𝜕
2
𝜂
𝑟

𝜕𝑡2
+ 𝐶
0
𝜂
𝑟
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1

𝜕
2
𝜂
𝑟

𝜕𝑧2
+ 𝐶
2

𝜕
4
𝜂
𝑟

𝜕𝑧4

+ 𝐷
0

𝜕𝜂

𝜕𝑥
− 𝐷
1

𝜕
3
𝜂
𝑟

𝜕𝑡𝜕𝑧2
+ 𝐷
2

𝜕
5
𝜂
𝑟

𝜕𝑡𝜕𝑧4
= 𝑓
𝑟
.

(10)

There are two interesting features: bending rigidity plays a
nonnegligible role in the 𝜀

2 approximation of the original
problem, and the fluid viscous dissipation imparts long-term
viscoelastic memory effects on the motion of the arterial
walls.

2.3. The Coupling Condition. The coupling condition
between both fluid and structure is

𝑢
1
= 0, 𝑢

2
=

𝜕𝜂

𝜕𝑡
on Γ (𝑡) for 𝑡 ∈ (0, 𝑇) . (11)

The initial and boundary conditions for fluid velocity u and
the structure displacement 𝜂 are prescribed as

u = 0, 𝜂 = 0,
𝜕𝜂

𝜕𝑡
= 0,

𝜂 (0, 𝑡) = 0, 𝜂 (𝐿, 𝑡) = 0.

(12)

3. Numerical Approaches for Fluid
Structure Interaction Problems

In this paper, the numerical approaches in solving fluid struc-
ture interaction problems are classified into two: namely, the
partitioned and the monolithic approach [20–24, 26]. Other
numerical approaches such as the conforming and non-
conforming mesh associated with the immersed boundary
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method in solving fluid structure interactions have been
reviewed in [27].

Partitioned approach treats the fluid and structure prob-
lems as two computational fields which can be solved using
two distinct solvers. The interface conditions between the
fluid and structure are solved through loosely or strongly
coupled algorithms [20–24, 26, 27]. Figure 2 shows that
loosely coupled algorithms are known as explicit algorithms
while strongly coupled algorithms are known as implicit
algorithms.

Partitioned approach is based on the successive solution
of three subproblems and allows one to reuse the existing
codes. Monolithic approach treats the fluid and structure as
a single system. In other words, flow and structure problem
is solved with a single code. The interfacial conditions are
implicit in the solution procedure. The solution procedures
of the monolithic and partitioned approach are illustrated
in Figure 3 where 𝑆

𝑓 and 𝑆
𝑠 denote the fluid and structure

solution, respectively [21, 23, 27].

3.1. Partitioned Approach. According to Sieber [34], infor-
mation in loosely coupling algorithms will be exchanged
between the solvers only once per time step. This implies
that the fluid and structure should be in equilibrium. Then
the data can be exchanged only if both fluid and structure
variables are constant within each time step. Before starting
the iterations process, all materials, fluid properties param-
eters, fluid and structure variables, time step, and the con-
vergence criteria should be initialized. However, convergence
problemsmight increase due to the nature of explicit coupling
algorithms. Thus the choice of time-step size was restricted
and it was not suitable for large structural deformations
problems. Figure 4 shows the comparison in terms of stability,
generality, and programming efforts for both couplings.

Andersson and Ahl [26] summarized some issues about
loosely and strongly coupled algorithms. For loosely coupled
algorithms, instability issue increases with decreasing the
mass density ratio. Besides, the decrease in time-step size
further increases the instability, known as the artificial added
mass effect. Errors in the predictions along with the added
mass effect caused the incorrect coupling forces that led to
the instability. For strongly coupled algorithms, it was more
stable for low mass density ratio. On the other hand, due to
more subiterations, the computational time increases when
the ratio is reduced.

Deparis et al. [38] stated that standard loosely coupling
algorithms solved the fluid, geometry, and the interface
explicitly and the structure implicitly.The computational cost
was cheap but unstable especially when the structure was
light. Several suggestions had beenmade to overcome the sta-
bility issues. Nobile and Vergara [29] proposed Robin inter-
face conditions to be enforced to solve fluid and structure
subproblems. Burman and Fernández [28] proposed a sta-
bilized explicit coupling for fluid structure interaction based
on Nitsche’s scheme. Numerical simulation of fluid structure
interaction problems involving a viscous compressible fluid
and elastic structure was considered. The explicit coupling
scheme without correction had given a stable approximation

with poor accuracy. High order accuracy was achieved after a
few correction iterations and the results were comparable to
that with implicit scheme solution [28].

It has also been suggested that the geometry and interface
coupling should be treated implicitly [18]. Vierendeels et al.
[39] proposed a coupling method for strongly coupled fluid
structure interaction problems with partitioned solvers.They
solved the reduced ordermodels for fluid and structure prob-
lem and a small number of coupling iterations. Commercial
CFD software package Fluent 6.2 was used as the fluid solver
and Abaqus 6.5 was used as the structural solver. This cou-
pling method showed a satisfactory convergence behavior.
Thus, it can be summarized that the explicit partitioned
algorithms are not suitable for problems in hemodynamics.
It was proved to be problematic with the stability issues as
the added mass effect of the fluid on the structure [16, 25,
29]. Implicit partitioned algorithms were also affected by the
added mass effect as they converge slowly. Special treatments
of the interface conditions had to be considered.

3.2. Monolithic Approach. Deficiencies in the partitioned
method had motivated the investigation on monolithic
methods [21]. Hron and Turek [40] and Hron and Mádĺık
[41] stated that the monolithic approach which treated the
problem as a single continuum with coupling automatically
takes care of the internal interface. This gets rid of the
problematic interface treatment when the fluid and structure
are solved separately. The results computed using monolithic
approaches were ten times more accurate, but the computa-
tional cost was three to four times higher than those of the
partitioned methods as stated in Michler et al. [21].

Heil [22] explained that if the fluid is incompressible or
the problem is steady, the solution of a large systemof coupled
nonlinear algebraic equations is needed. The solution of a
nonlinear system by Newton’s method was utilized since it
yielded a powerful and rapidly converging scheme. However,
repeated assembly of the Jacobian matrix and the solutions
associated with the linear systems for Newton corrections
contributed to the increase in computational cost. Thus they
developed an efficient preconditioning technique that allows
the rapid iterative solution instead of applying the Newton
method as in [20].

Heil et al. [20] studied the fluid structure interaction
in collapsible channel with monolithic and partitioned
approaches. Both approacheswere competitive in the test case
involving steady problems. In unsteady problems, strongly
coupled partitioned solvers suffered from severe convergence
problems and an under-relaxation parameter needs to be
applied in stabilizing the solution procedure. Monolithic
solvers become more essential in unsteady problems but
required an efficient precondition for the large problems,
particularly in three-dimensional problems [20].

Razzaq et al. [42, 43] presented numerical simulation of
fluid structure interaction in hemodynamics withmonolithic
approach. They restricted the research on two-dimensional
models which allow the systematic tests of the proposed
methods. The corresponding monolithic treatment of the
fluid structure interaction problems suggested that a stable
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Types of the coupling
scheme

Partitioned approach Monolithic approach

Loosely coupled algorithms
(explicit)

Strongly coupled algorithms
(implicit)

Implicit

Figure 2: Coupling schemes in solving fluid structure interaction problems.
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Figure 3: Schematic of (a) partitioned approach and (b) monolithic approach [27].

 One time step After each iteration 
equations 

Stability 

Generality 

Programming efforts 

One code of system of 

Loosely coupling Strong coupling

Figure 4: Comparing between loosely and strongly coupling algorithms [34].

second-order time stepping scheme as well as the same finite
elements for fluid and structure should be utilized. Hron and
Turek [40] and Hron and Mádĺık [41] applied different types
of discretization in space and time.They solved the simplified
two-dimensional examples with finite element and Crank-
Nicolson for the space and time discretization, respectively.
The resulting nonlinear algebraic system was solved by an
approximate Newton’s method.The results obtained had high
accuracy and robustness.

4. Improved Numerical Methods

Although stability and accuracy of partitioned approach
can be improved through prediction techniques, their error
remains larger than monolithic solutions [20, 21]. To date,
monolithic and implicit schemes seem to be applicable in
fluid structure interactions in blood flow. However, subit-
erations that are performed at each time step increase the
computational time and computational costs [9, 10, 30–33].
Several approaches based on the coupling algorithms had

been proposed in recent research works, such as the semi-
implicit, kinematic splitting algorithm, and the geometrical
multiscale approach.

4.1. Semi-Implicit Approach. Fernández et al. [30, 31] pro-
posed a semi-implicit scheme to solve the numerical simula-
tion of fluid structure interaction problems involving strong
added mass effect, particularly in hemodynamics. The idea
of the semi-implicit scheme was to treat the added mass
effect implicitlywhile other contributions such as geometrical
nonlinearities, viscous, and convective effects are solved
explicitly. Such explicit-implicit splitting can be naturally
performed using a Chorin-Temam projection scheme in the
fluid. The authors claimed that this scheme was numerically
stable, given in theoretical and numerical evidence for a wide
range of physical and discrete parameters.

However, Astorino et al. [44] stated that the scheme
proposed in [30, 31] had computing limitations such that

(i) it was assumed that the fluid problem is to be solved
with a projection scheme;
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(ii) the energy was not perfectly balanced. Astorino et al.
[44] then modified the scheme in [30, 31] by treating
the explicit part of the coupling with Nitsche-based
mortaring.The authors claimed that their schemewas
independent of the added mass effect.

Badia et al. [8] proposed a similar previous semi-implicit
approach which was based on the inexact block-LU factor-
ization of the linear system. The linear system was obtained
after the space-time discretization and linearization of the
fluid structure interaction problems. The idea presented was
to decouple the fluid velocity computation of the strongly
coupled fluid structure system. Only pressure and structure
unknowns were involved, with the advantage of reducing
the computational costs and maintaining stability. Since the
pressure was still coupled to the structure, the stability of the
scheme was independent of the added mass effect.

4.2. Kinematic Splitting Algorithm. Guidoboni et al. [9, 10,
33] proposed a new version of the loosely coupled-type
algorithm. The algorithm which is known as the kinemati-
cally coupled scheme is aligned with the crucial role of the
kinematic condition for the proposed algorithm.This scheme
applied the hypothesis that the arterial wall was modelled
as a thin shell so that such scheme does not suffer from
instabilities related to the high nonlinear interfacial coupling
between the flow and structure.The idea of the kinematically
coupled scheme was presented as follows.

(1) Use operator splitting for time-discretization.
(2) No iterations between the fluid and structure sub-

problems were required.
(3) Impose the kinematic condition in strong form in

order to maintain the tight link between fluid and
structure in each sub-problem.

(4) The fluid stress at the interface did not have to be
computed explicitly.

Kinematically coupled scheme splits the structure into
two parts: the hydrodynamic load exerted by the fluid on the
structure and the purely elastic part without the hydrody-
namic load. The hydrodynamic part, consisting of the fluid
stress acting on the interface and the viscoelastic terms, is
treated together with the fluid. By adding the hydrodynamic
part of the structure equation to the fluid equation and by
utilizing the kinematic interface condition, they deal with the
inertia of both fluid and structure at the same time, thereby
getting around the difficulty associated with the added mass
effect.The elastic part was treated separately and this enabled
the use of a wide range of structural models [9, 10].

Guidoboni et al. [9, 10] considered the incompressible,
viscous Newtonian fluid in a two-dimensional channel with
thin, deformable walls in the generalized string model. Time
discretization via Lie’s operator splitting was applied through
the scheme. Since the operator splitting was developed only
for the first-order formulation, the kinematic boundary con-
dition was applied into the structure equation to transform
the second-order formulation to the first-order formulation.
The overall structure of the scheme was to solve the four

subproblemswith different numerical schemes. Existing fluid
and structure solvers can be used as “black boxes.” Numerical
results of kinematically coupled scheme showed excellent
agreement with those obtained using an implicit scheme
[9, 10].

Bukač et al. [11] extended the work of [9, 10] by replacing
the generalized string model with linearly viscoelastic cylin-
drical Koiter shell model. The authors tried to capture the
radial and longitudinal displacement of the linearly viscoelas-
tic Koiter shell for the underlying fluid structure interaction
problem. In addition, they aimed to increase the accuracy
of kinematically coupled scheme with the modified Lie’s
scheme. The modified scheme was named as kinematically
coupled 𝛽-scheme. The results were comparable with the
monolithic scheme in [8]. Such a scheme was modular and
easy to implement and had low computational cost.

The idea of kinematic splitting algorithm inspired
Lukáčová-Medvid’ová et al. [45] to propose a similar tech-
nique to solve the fluid structure interaction problems of non-
Newtonian fluids. Lukáčová-Medvid’ová et al. [45] claimed
that their approach was more general than [9, 10, 33] because
they allowed the use of second-order splitting method and
non-Newtonian rheology. They applied implicit backward
Euler discretization to the fluid and second-order Newmark
scheme for the structure. The results were conditionally
stable.

4.3. Geometrical Multiscale Approach. Formaggia et al. [13,
32] mentioned that although the coupling algorithm for fluid
structure interaction should be implicit, it is difficult to simu-
late large regions. The simulation of three-dimensional fluid
structure interaction suffered a pressure wave that had been
generated and reflected at the flow section.Thus, geometrical
multiscale approach was proposed by coupling the detailed
three-dimensional fluid structure interaction model with a
one-dimensional reduced model as shown in Figure 5. They
applied an implicit coupling on the three-dimensional fluid
structure interaction problem and the Lax-Wendroff scheme
on the one-dimensional model. The explicit numerical algo-
rithm was proposed for the geometrical multiscale coupling.
Formaggia et al. [13, 32] attempted to eliminate the spurious
reflection at the flow section through geometrical multiscale
approach by implying one-dimensional reducedmodel as the
absorbing boundary condition. The results showed that the
pressure wave is quite well absorbed by the one-dimensional
model.

Janela et al. [46] stated that as the flow is driven by a
pressure pulse generated by a constant pressure, the ves-
sel inflates initially near the inflow boundary. The motion
propagates along the vessel until it reaches the outflow
section and is reflected back. Such issue can be solved
through geometrical multiscale approach as proposed by
[32]. Janela et al. [47] proposed several absorbing boundary
conditions in order to cope with the spurious reflection.
The numerical approximation of three-dimensional and one-
dimensional coupling was performed through a staggered
algorithm, iterating the three-dimensional fluid structure
interaction and one-dimensional model.The coupling can be
performed implicitly, comprising subiterations at each time
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Figure 5:Three-dimensional and one-dimensional couplingmodel.

step or explicitly, with no subiterations at each time step. The
proposed linear absorbing boundary conditions had been
proven to be effective in absorbing the pressure wave.

Both Formaggia et al. [32] and Janela et al. [46, 47]
mentioned that the homogenous boundary condition will
lead to energy decay property. Standard homogenous bound-
ary condition introduces the spurious reflections of the
pressure wave which will cause the structure to continue
oscillating. Proper boundary conditions should be chosen in
order to cope with the reflection issues caused by the three-
dimensional fluid structure interaction.

5. Conclusion

Fluid structure interaction needs to be included in models
of blood flow as blood interacts mechanically with the vessel
wall. It is suggested that the linearly viscoelastic Koiter shell
model should be adopted to model the structure of the vessel
wall since it takes into account the elastic and viscoelastic
behavior with bending rigidity.

The main issue in the fluid structure interaction model
of blood flow model is on how to get rid of the added mass
effect so that the numerical solution will be stable and the
computational cost is low. The monolithic scheme has been
the most commonly used approach, but it is expensive in
terms of computational cost and memory requirement. To
get around this problem, various ways to improve on the
partitioned approach have been sought.

Classical partitioned approach considers a problem sep-
arately as fluid, structure, and interface. Problem arises
when the interface is solved separately. In the kinematically
coupled scheme, which is a loosely coupled partitioned-type
algorithm, an operator splitting is applied instead of the
problem being split into the fluid and structure subproblems.
Such splitting algorithm offers the flexibility of applying any
suitable numerical methods in solving each subproblem. As
the computational cost is measured according to the number
of iterations, the computational cost of the kinematically
coupled scheme is lower, with the results obtained being as
accurate as those obtained from the implicit schemes.
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loosely-coupled-type algorithm for fluid-structure interaction
in blood flow,” Journal of Computational Physics, vol. 228, no.
18, pp. 6916–6937, 2009.
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Rendus Mathématique, vol. 345, no. 8, pp. 467–472, 2007.

[29] F. Nobile and C. Vergara, “Partitioned algorithms for fluid-
structure interaction problems in haemodynamics,”Milan Jour-
nal of Mathematics, vol. 80, no. 2, pp. 443–467, 2012.

[30] M. A. Fernández, J.-F. Gerbeau, and C. Grandmont, “A pro-
jection algorithm for fluid-structure interaction problems with
strong added-mass effect,” Comptes Rendus Mathématique, vol.
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Bukac, “Modeling of free boundary flows with applications to
blood flow,” in Proceedings of the IV European Conference on
Computational Mechanics (ECCM ’10), Paris, France, 2010.

[34] M. S. G. Sieber, Numerical simulation of fluid-structure inter-
action using loose coupling methods [Ph.D. thesis], Technical
University Darmstadt, Darmstadt, Germany, 2001.
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Different numerical methods have been implemented to simulate internal natural convection heat transfer and also to identify the
most accurate and efficient one. A laterally heated square enclosure, filled with air, was studied. A FORTRAN code based on the
lattice Boltzmann method (LBM) was developed for this purpose. The finite difference method was applied to discretize the LBM
equations. Furthermore, for comparison purpose, the commercially available CFD package FLUENT, which uses finite volume
Method (FVM), was also used to simulate the same problem. Different discretization schemes, being the first order upwind, second
order upwind, power law, and QUICK, were used with the finite volume solver where the SIMPLE and SIMPLEC algorithms linked
the velocity-pressure terms.The results were also compared with existing experimental and numerical data. It was observed that the
finite volumemethod requires less CPUusage time and yieldsmore accurate results compared to the LBM. It has been noted that the
1st order upwind/SIMPLEC combination converges comparatively quickly with a very high accuracy especially at the boundaries.
Interestingly, all variants of FVM discretization/pressure-velocity linking methods lead to almost the same number of iterations to
converge but higher-order schemes ask for longer iterations.

1. Introduction

Studying heat transfer and fluid flow using computational
methods is easier [1], safer [2], and much less costly [3] com-
pared to experimental techniques. There are a large number
of problems which can be simulated with great accuracy to
replicate experiments with high resolutions [4]. There are
currently a range of approaches with the potential to serve in
modeling heat transfer and fluid flows, such as the finite dif-
ference method (FDM), finite element method (FEM), finite
volume method (FVM), lattice boltzmann method (LBM),
boundary elements method (BEM), molecular dynamics
simulation, and direct simulation Monte Carlo. The most
widely employed approaches in the field of thermofluids

are the first four [5]. However, application of FDM can be
difficult when complex geometries are involved [6].The FEM
schemes can be intricate for solving conservative equations,
while the nonstandard FEMs have low computational effi-
ciency [7]. Application of FVM is difficult and complex
to cases with complex moving boundaries [8]. LBM is a
compressible model for ideal gases and can theoretically
always simulate the compressible Navier-Stokes equations.
With the Chapman-Enskog expansion [9], LBM can simulate
incompressible flow for lowMach numbers (Ma < 0.15) albeit
at the expense of a compressibility error [10, 11]. Besides,
regular square grids used with LBM make it very hard to
extend the simulation to curved boundaries [12]. All in all,
the accuracy of all these numerical approaches is dependent
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Figure 1: Schematic of analyzed configuration.

on the problem configuration, discretization scheme, and
numerical algorithmused [5]. As such, an important question
to answer is about finding the best approach to solve a certain
problem subject to computational efficiency and accuracy as
the most important constrains. Along these lines, Rouboa
andMonteiro [13] investigated the heat transfer phenomenon
during cast solidification in a complicated configuration
by FVM and FDM. A comparison between the numerical
results and experimental ones indicated that both discretiza-
tion approaches produced good outcome, with FVM being
slightly better as it uses more information than FDM to cap-
ture spatial temperature variations. Despite recent progress
in computing power and techniques, the literature review
indicates a lack of comprehensive studies on selecting the
ideal means of analyzing internal heat transfer and fluid flow
problems. In particular, an optimal solution technique and
procedure to simulate internal natural convection are yet
to be presented. To fill this gap in the literature, laminar
natural convection heat transfer of air inside a laterally heated
square enclosure is investigated using both FVM and LBM.
The simulation results were compared against those from
the literature. Particular attention was given to different
discretization techniques as well as pressure-velocity linking
approaches to find the best method for simulating internal
free convection problems.

2. Governing Equations

2.1. Finite Volume Method. Continuity, momentum, and
energy equations were employed for flow analysis in a system
depicted by Figure 1. Density was computed by invoking
the Boussinesq approximation for Δ𝑇 < 30

∘C [14]. The
governing equations are written as follows [15].

Continuity equation:

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦

= 0. (1)

Momentum equations in𝑋 and 𝑌 directions:

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
=

−1

𝜌

𝜕𝑝

𝜕𝑥
+
𝜇

𝜌
(
𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
) ,

𝑢
𝜕V
𝜕𝑥

+ V
𝜕V
𝜕𝑦

=
−1

𝜌

𝜕𝑝

𝜕𝑦
+
𝜇

𝜌
(
𝜕
2V

𝜕𝑥2
+
𝜕
2V

𝜕𝑦2
) + 𝛽𝑔 (𝑇 − 𝑇

𝑐
) .

(2)

Energy equation:

𝑢
𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶
𝑝

(
𝜕
2
𝑇

𝜕𝑥2
+
𝜕
2
𝑇

𝜕𝑦2
) . (3)

2.2. Lattice BoltzmannMethod. The hydrodynamic and ther-
mal Boltzmann equations with using density-momentum
and internal energy distribution functions (double popula-
tion) are as follows [16, 17]:

𝜕𝑓
𝑖

𝜕𝑡
+ 𝑐
𝑖𝛼

𝜕𝑓
𝑖

𝜕𝑥
𝛼

= Ω (𝑓) = −
1

𝜏
𝑓

(𝑓
𝑖
− 𝑓
𝑒

𝑖
) ,

𝜕𝑔
𝑖

𝜕𝑡
+ 𝑐
𝑖𝛼

𝜕𝑔
𝑖

𝜕𝑥
𝛼

= Ω (𝑔
𝑖
) − 𝑓
𝑖
𝑍
𝑖
= 0.5|c − u|2Ω(𝑓

𝑖
) − 𝑓
𝑖
𝑍
𝑖

= −
𝑔
𝑖
− 𝑔
𝑒

𝑖

𝜏
𝑔

− 𝑓
𝑖
𝑍
𝑖
.

(4)

Double population LBM model (TLBM) uses two separated
distribution functions 𝑓 and 𝑔 for hydrodynamic and ther-
mal fields, respectively. This model is the latest one among
different presented models of thermal LBMs. In addition, it
shows more accuracy and stability during the solution pro-
cess. As LBM solution process naturally tends to divergence
having a stable approach like TLBM helps the convergence.
Microscopic velocities for a D2Q9 lattice model are [12]

c
𝑖
= (cos 𝑖 − 1

2
𝜋, sin 𝑖 − 1

2
𝜋) , 𝑖 = 1, 2, 3, 4,

c
𝑖
= √2(cos [(𝑖 − 5)

2
𝜋 +

𝜋

4
] , sin [(𝑖 − 5)

2
𝜋 +

𝜋

4
]) ,

𝑖 = 5, 6, 7, 8,

c
0
= (0, 0) .

(5)

Heat dissipation and hydrodynamic and thermal equilibrium
distribution functions are given by

𝑍
𝑖
= (𝑐
𝑖𝛼
− 𝑢
𝛼
) [

𝛿𝑢
𝛼

𝛿𝑡
+ 𝑐
𝑖𝛼

𝜕𝑢
𝛼

𝜕𝑥
𝛼

] ,

𝑓
𝑒

𝑖
= 𝜔
𝑖
𝜌[1 + 3 (c

𝑖
⋅ u) +

9(c
𝑖
⋅ u)2

2
−
3u2

2
] ,

𝑖 = 0, 1, . . . , 8,

𝜔
0
=

4

9
, 𝜔

1,2,3,4
=

1

9
, 𝜔

5,6,7,8
=

1

36
,
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𝑔
𝑒

0
= −

2

3
𝜌𝑒u2,

𝑔
𝑒

1,2,3,4
=

1

9
𝜌𝑒 [1.5 + 1.5 (c

1,2,3,4
⋅ u)

+ 4.5(c
1,2,3,4

⋅ u)2 − 1.5u2] ,

𝑔
𝑒

5,6,7,8
=

1

36
𝜌𝑒 [3 + 6 (c

5,6,7,8
⋅ u)

+ 4.5(c
5,6,7,8

⋅ u)2 − 1.5u2] ,
(6)

where 𝜌𝑒 = 𝜌𝑅𝑇 and 𝜔 is the weight function. Equation (4)
in discretized forms [18] reads

𝑓
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑓

𝑖
(x, 𝑡)

= −
Δ𝑡

2𝜏
𝑓

[𝑓
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑓

𝑖

𝑒
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡)]

−
Δ𝑡

2𝜏
𝑓

[𝑓
𝑖
(x, 𝑡) − 𝑓

𝑖

𝑒
(x, 𝑡)] ,

𝑔
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑔

𝑖
(x, 𝑡)

= −
Δ𝑡

2𝜏
𝑔

[𝑔
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑔

𝑒

𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡)]

−
Δ𝑡

2
𝑓
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) 𝑍

𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡)

−
Δ𝑡

2𝜏
𝑔

[𝑔
𝑖
(x, 𝑡) − 𝑔

𝑒

𝑖
(x, 𝑡)] − Δ𝑡

2
𝑓
𝑖
(x, 𝑡) 𝑍

𝑖
(x, 𝑡) .

(7)

The two last equations are implicit. Thus, the new functions
𝑓
𝑖
and 𝑔

𝑖
are developed to address this problem:

𝑓
𝑖
= 𝑓
𝑖
+

Δ𝑡

2𝜏
𝑓

(𝑓
𝑖
− 𝑓
𝑒

𝑖
) , (8)

𝑔
𝑖
= 𝑔
𝑖
+

Δ𝑡

2𝜏
𝑔

(𝑔
𝑖
− 𝑔
𝑒

𝑖
) +

Δ𝑡

2
𝑓
𝑖
𝑍
𝑖
. (9)

Collision and streaming steps of LBM are simulated by
applying (7)–(9) as follows:

𝑓
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑓

𝑖
(x, 𝑡)

= −
Δ𝑡

𝜏
𝑓
+ 0.5Δ𝑡

[𝑓
𝑖
(x, 𝑡) − 𝑓

𝑒

𝑖
(x, 𝑡)] ,

𝑔
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑔

𝑖
(x, 𝑡)

= −
Δ𝑡

𝜏
𝑔
+ 0.5Δ𝑡

[𝑔
𝑖
(x, 𝑡) − 𝑔

𝑒

𝑖
(x, 𝑡)] −

𝜏
𝑔
Δ𝑡

𝜏
𝑔
+ 0.5Δ𝑡

𝑓
𝑖
𝑍
𝑖
.

(10)

Finally, the hydrodynamic and thermal variables can be
obtained as

𝜌 = ∑

𝑖

𝑓
𝑖
,

𝜌u = ∑

𝑖

c
𝑖
𝑓
𝑖
,

𝜌𝑒 = 𝜌𝑅𝑇 = ∑

𝑖

𝑔
𝑖
−
Δ𝑡

2
∑

𝑖

𝑓
𝑖
𝑍
𝑖
.

(11)

3. Boundary Conditions

Figure 1 illustrates a schematic of the configuration analyzed
in the present study along with the boundary conditions.

The nonequilibrium bounce-back model is used to simu-
late the no-slip boundary condition on the walls in LBM.This
model improves accuracy compared to the usual bounce-
back boundary condition and satisfies the zero mass flow
rates at nodes on the wall. The collision occurs on the
nodes located at the solid-fluid boundaries and distribution
functions are reflected in a suitable direction, satisfying the
equilibrium conditions [19].

The macroscopic boundary conditions for the present
study are

𝑇 = 𝑇
ℎ

𝑢 = V = 0 0 < 𝑦 < 1 𝑥 = 0,

𝑇 = 𝑇
𝑐

𝑢 = V = 0 0 < 𝑦 < 1 𝑥 = 1,

𝜕𝑇

𝜕𝑦
= 0 𝑢 = V = 0 0 < 𝑥 < 1 𝑦 = 0,

𝜕𝑇

𝜕𝑦
= 0 𝑢 = V = 0 0 < 𝑥 < 1 𝑦 = 1.

(12)

4. Numerical Procedure

Our FVM solver uses the implicit line-by-line tridiagonal
matrix algorithm [20, 21] to linearize the system of algebraic
equations. First order upwind [22], second order upwind
[23], power law [24], and Quadratic Upstream Interpola-
tion for Convective Kinetics (QUICK) [25] schemes were
applied in different trails to solve the same problem while
the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) [26, 27] and SIMPLE-Consistent (SIMPLEC) [28,
29] procedures were selected for pressure-velocity coupling.
The convergence criterion, maximum absolute error in each
dependent variable, was set at 10−7.

In LBM, the zero values for 𝑈(𝑥, 𝑦), 𝑉(𝑥, 𝑦), and 𝑇(𝑥, 𝑦)

are applied as the initial conditions. However, to avoid
problems in estimating the macroscopic variables in (12),
the initial fluid density is set to unity. LBM dimensionless
numbers Re, Ra, and Pr are defined identical to those of
classical Navier-Stokes equations. However, the macroscopic
numerical value should be calculated beforehand. For exam-
ple, for Pr, one has the kinematics viscosity and thermal
diffusivity determined in LBM as ] = 𝜏

𝑓
𝑅𝑇 and 𝛼 = 2𝜏

𝑔
𝑅𝑇,

where 𝜏
𝑓
and 𝜏

𝑔
are hydrodynamic and thermal relaxation

times and 𝑅 is the gas constant. The Prandtl number can
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then be written as Pr = 𝜐/𝛼 = 𝜏
𝑓
𝑅𝑇/2𝜏

𝑔
𝑅𝑇 = 𝜏

𝑓
/2𝜏
𝑔
. For

Ra = GrPr = 𝑔𝛽Δ𝑇𝐻
3
/𝜐𝛼 the values of 𝜐 and 𝛼 are now

known based on relaxation times, while the numerical values
of 𝑔, 𝛽,𝐻, Δ𝑇 are predetermined and fixed.

4.1. Gravity Effects in LBM. The Boussinesq approximation
was used as 𝜌 = 𝜌[1 − 𝛽(𝑇 − 𝑇)] to give buoyancy force per
unit mass defined asG = 𝛽g(𝑇−𝑇) and𝑓 = 𝐺⋅(𝑐 − 𝑢)𝑓

𝑒
/𝑅𝑇.

Hence, the discretized Boltzmann equation is written as

𝜕
𝑡
𝑓
𝑖
+ (c
𝑖
⋅ ∇) 𝑓
𝑖
= −

𝑓
𝑖
− 𝑓
𝑖

𝑒

𝜏
𝑓

+
G ⋅ (c
𝑖
− u)

𝑅𝑇
𝑓
𝑖

𝑒
,

𝑓
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑓

𝑖
(x, 𝑡)

= −
Δ𝑡

𝜏
𝑓
+ 0.5Δ𝑡

[𝑓
𝑖
− 𝑓
𝑒

𝑖
] +

Δ𝑡𝜏
𝑓

𝜏
𝑓
+ 0.5Δ𝑡

3𝐺 (𝑐
𝑖𝑦
− V)

𝑐2
𝑓
𝑒

𝑖
.

(13)

Applying (8) and taking into consideration the effects of
gravity, one has

𝜌 = ∑

𝑖

𝑓
𝑖
, 𝑢 = (

1

𝜌
)∑

𝑖

𝑓
𝑖
𝑐
𝑖𝑥
,

V = (
1

𝜌
)∑

𝑖

𝑓
𝑖
𝑐
𝑖𝑦
+
Δ𝑡

2
𝐺,

(14)

while for thermal macroscopic variables (11) is applied.

4.2. Deriving Navier-Stokes Equations from LBM. In order
to derive Navier-Stokes equations from the incompress-
ible lattice Boltzmann equation by using Chapman-Enskog
expansion the discretized form of Boltzmann equation can
be written as

𝑓
𝑖
(x + c

𝑖
Δ𝑡, 𝑡 + Δ𝑡) − 𝑓

𝑖
(x, 𝑡) = −

𝑓
𝑖
(x, 𝑡) − 𝑓

𝑒

𝑖
(x, 𝑡)

𝜏
𝑓

.

(15)

With 𝐾𝑛 = 𝜀 as a small (perturbation) variable, the Chap-
man-Enskog expansion for 𝑓

𝛼
and 𝜕
𝑡
reads

𝑓
𝑖
=

∞

∑

𝑛=0

𝜀
𝑛
𝑓
(𝑛)

𝑖
= 𝑓
(0)

𝑖
+ [𝜀𝑓
(1)

𝑖
+ 𝜀
2
𝑓
(2)

𝑖
+ ⋅ ⋅ ⋅ ]

= 𝑓
(eq)
𝑖

+ [𝑓
(𝑛eq)
𝑖

] ,

𝜕
𝑡
=

∞

∑

𝑛=0

𝜀
𝑛
𝜕
𝑡
𝑛

= 𝜕
𝑡
0

+ 𝜀𝜕
𝑡
1

+ ⋅ ⋅ ⋅ .

(16)

None of the nonequilibrium parts of the above equations
should be used for estimating the macroscopic properties 𝜌
and 𝜌u:

∑

𝑖

𝜀
𝑛
𝑓
(𝑛)

𝑖
= 0 ∀𝑛 > 0,

∑

𝑖

c
𝑖
𝜀
𝑛
𝑓
(𝑛)

𝑖
= 0 ∀𝑛 > 0.

(17)

Using these equations together with Tailor expansion of
Boltzmann equation around Δ𝑡, the terms which are smaller
than (Δ𝑡) dropped, and then substitute into (15), we have

[𝜕
𝑡
0

+ c
𝑖
⋅ ∇] 𝑓

(0)

𝑖
= −

𝑓
(1)

𝑖

𝜏
𝑓

,

𝜕
𝑡
1

𝑓
(0)

𝑖
+ (1 −

1

2𝜏
𝑓

) [𝜕
𝑡
0

+ c
𝑖
⋅ ∇] 𝑓

(1)

𝑖
= −

𝑓
(2)

𝑖

𝜏
𝑓

.

(18)

Macroscopic density and velocity variables can be achieved
by applying the first and second order of moments, leading to

𝜕
𝑡
∑

𝑖

𝑓
(0)

𝑖
+ ∇ ⋅ (∑

𝑖

c
𝑖
𝑓
(0)

𝑖
) = 0,

𝜕
𝑡
(∑

𝑖

c
𝑖
𝑓
(0)

𝑖
) + ∇ ⋅ [Π

(0)
+ Δ𝑡(1 −

1

2𝜏
𝑓

)Π
(1)
] = 𝑂 (Δ𝑡

2
) ,

(19)

where

Π
(0)

≡ ∑

𝑖

c
𝑖
c
𝑖
𝑓
(0)

𝑖
,

Π
(1)

≡ ∑

𝑖

c
𝑖
c
𝑖
𝑓
(1)

𝑖
.

(20)

Amount of𝑓(0)
𝑖

is determined by using𝑓𝑒
𝑖
= 𝜔
𝑖
𝜌[1+3(c

𝑖
⋅u)+

(9(c
𝑖
⋅u)2/2)−(3u2/2)] and then using the zero and first order

of moments of (18) together with 𝑓
(0)

𝑖
:

𝜕
𝑡
0

𝜌 + ∇ ⋅ (𝜌u) = 0,

𝜕
𝑡
1

𝜌 = 0,

𝜕
𝑡
0

(𝜌u) + ∇ ⋅ (𝜌uu) + ∇ (𝜌𝑐
2

𝑠
) = 0,

𝜕
𝑡
1

𝜌 + ∇ ⋅ (2𝜐𝜌𝑆 − Δ𝑡 (𝜏
𝑓
− 0.5) ∇ ⋅ (𝜌uuu)) = 0,

(21)

where

𝑆 =
∇u + (∇u)𝑇

2
,

𝜐 =

(2𝜏
𝑓
− 1)Δ𝑡

6
.

(22)

Finally, making use of ∇ ⋅ u = 0, ∇𝜌 = 0 at incompressible
limit and ignoring the term ∇ ⋅ (𝜌uuu) in (21), continuity and
momentum equations are recovered. In addition, the thermal
energy equation would be recovered in a similar way; see [30,
31] for more details.

5. Grid Independence

Structured nonuniform grid distributions were applied for
FVM simulations with a grid cluster near the walls to capture
sharp velocity and temperature gradients. For LBM simu-
lations structured grids based on D2Q9 lattice are applied.
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Table 1: Grid independence tests (FVM and QUICK/SIMPLEC).

Number of grids 15987 31974 47961 63948 Experimental value [32]
Maximum X-velocity 0.001 0.001 0.0012 0.0012 —
Dimensionless temperature at the middle of the cavity 0.460 0.465 0.489 0.493 0.51

Table 2: Grid independence tests (LBM).

Number of grids 10000 32400 48400 67600 84100 Experimental value [32]
Maximum X-velocity 0.0004 0.0008 0.0010 0.0010 0.00103 —
Dimensionless temperature at the middle of the cavity 0.430 0.449 0.463 0.471 0.475 0.51

Table 3: Thermophysical properties of air [33].

𝜌 𝐶
𝑝

𝜇 𝑘 𝛽 Gr Pr Ra
1.127 1007 1.9114 × 10

−5 0.0271 0.006092 2.662 × 10
5 0.71 1.890 × 10

5

Extensive grid independence checks were performed, as
indicated by Tables 1 and 2, to observe that a grid with 47961
and 67600 cells for all FVM solvers and LBM, respectively,
leads to mesh-independent results.

6. Results

Our numerical results, from different solvers, were compared
with benchmark experimental data from Krane and Jessee
[32] as well as the numerical predictions of Khanafer et al.
[34], Oztop and Abu-Nada [35], and Bakhshan and Emrani
[33]. The main dimensionless parameters were the Rayleigh
and Prandtl numbers, which are constant at 1.89 × 10

5 and
0.71, respectively.The fluid thermophysical properties, as well
as dimensionless numbers, are shown in Table 3.

For Pr = 0.71 and Ra = 1.89 × 10
5, the dimensionless

temperature and vertical velocity profiles at midheight are
plotted in Figures 2 and 3 and contrasted with the results
from [32–35]. These figures illustrate a superior adaptation
between the present simulation results using the FVM and
LBMmodels and those of [32–35] works. Although previous
research shows that, for complicated turbulent fluid flow
problems, the QUICK/SIMPLEC is the most accurate choice
[33], Figures 2(a) and 3(a) indicate that for laminar internal
convection heat transfer problems there is no dramatic dif-
ference among the studied discretization approaches. How-
ever, it is obvious from Figures 2 and 3 that the FVM
results are more accurate than those of LBM. This could
be attributed to the compressible nature of LBM [36, 37],
which creates a compressibility error for incompressible
flows [12]. Among the discretization/pressure-velocity link-
ing approaches examined, 1st order upwind/SIMPLEC has
the closest results to experimental benchmark data, especially
for the temperature contours in the range 0.20 ≤ 𝑋 ≤ 0.80.
With vertical velocity distribution, however, the difference
among FVM approaches is quite negligible. Nevertheless, the
fact that the accuracy and stability of the convective terms
comprise a contrasting pair is a general perception in the
field of computational heat transfer. For instance, the first
order upwind scheme is entirely stable even with strong false

diffusion [38], while the second or third order schemes like
QUICK are conditionally stable [25].

Table 4 successfully compares our numerical results with
those available in the literature under similar conditions and
geometry over a range of Ra values with Pr = 0.7. Slight
discrepancies are observed in this table between some of the
present work results and those of [34, 39–42] because of the
differences between the employed discretization methods, as
well as mesh generation types, as one would expect.

Table 5 provides the comparison of number of iterations
and required CPU usage time for the different discretization
methods considered here. As seen, LBM may take 4-5 times
longer to converge and 8-9 times more iterations compared
to FVM. There are two reasons for this. The first one is
attributed to the way LBM handles heat transfer. Although in
the present work the appropriate internal energy distribution
function, 𝑔, [43] was used to obtain the temperature field,
this model even tends to diverge. Furthermore, with LBM
modeling the corners ask for a large number of fine grids near
the corners.These two matters cause the LBM solutions to be
comparatively more time consuming.

According to Table 5, the number of iterations for
all FVM discretization method/pressure-velocity linking
approaches is nearly equal. In this case, the difference
between the QUICK/SIMPLEC method that necessitates the
largest number of iterations and the lowest one (power
law/SIMPLE) is only 79 iterations, that is, a 5.2% difference.
With respect to CPU usage time, these proportions are to
some extent different. For example, when comparing the
most time consuming method (QUICK/SIMPLEC) with the
1st order upwind/SIMPLEC approach, this time disparity is
about 4.94%, while the number of iterations differs by only
1.65%. As expected, higher-order accurate schemes are more
time consuming.

The effects of the solutionmethod, discretization scheme,
and pressure/velocity coupling approach on the streamlines
and 𝑋-velocity are illustrated by Figures 4 and 5. Two
elliptical vortexes generally appear at the center of the cavity
as a predominant feature of buoyancy-induced flow in a
laterally heated square enclosure. In this context, the 1st
order upwind scheme has the most precise results among
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(a) 1st order upwind/SIMPLE
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(b) 2nd order upwind/SIMPLE
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(c) 1st order upwind/SIMPLEC
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(d) 2nd order upwind/SIMPLEC
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(e) Power law/SIMPLE
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Figure 4: Continued.
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Figure 4: Streamlines contours.

Table 4: Comparison of the average Nusselt number along the hot wall with those in the literature.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Khanafer et al. [34], FVM 1.118 2.245 4.522 8.826
Barakos et al. [39], FVM 1.114 2.245 4.510 8.806
Markatos and Pericleous [40], FDM 1.108 2.201 4.430 8.754
de Vahl Davis [41], FDM 1.118 2.243 4.519 8.799
Fusegi et al. [42], 3-D FDM 1.105 2.302 4.646 9.012
1st upwind/SIMPLE 1.115 2.233 4.508 8.756
1st upwind/SIMPLEC 1.120 2.242 4.516 8.795
2nd upwind/SIMPLE 1.116 2.236 4.465 8.761
2nd upwind/SIMPLEC 1.119 2.240 4.489 8.799
Power law/SIMPLE 1.115 2.235 4.465 8.754
Power law/SIMPLEC 1.116 2.238 4.475 8.765
QUICK/SIMPLE 1.119 2.242 4.502 8.786
QUICK/SIMPLEC 1.113 2.230 4.479 8.757
LBM 1.108 2.210 4.456 8.756
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(a) 1st order upwind/SIMPLE

-0
.0
0
1
2

-0.0
01

-0.001-0.0008

-0
.0
0
0
8

-0.0008

-0
.0
00
6

-0.0006

-0
.0
0
0
6

-0.0006-0
.0
00
4

-0.0004 -0.0004

-0.0004

-0.0004

-0
.0
00
2

-0.000 -0.0002

-0
.0
0
0
2

-0.0002

-0.0002

00

0

0

0

0

0

0

0.0002

0.0002

0.
00
02

0.00020.00020.0004

0.0004

0.0004

0.
00
04

0.0004

0.0006

0.0006

0.00060.0006

0.0008 0.0
00
8

0.0008

0.001

0.0012

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) 2nd order upwind/SIMPLE
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Figure 5: Continued.



Abstract and Applied Analysis 11

-0.001
2

-0.001

-0.0008

-0.
00
08

-0.0008

-0.0006

-0.000
6

-0.0006

-0.0006

-0.0006

-0.0004

-0.0004

-0
.0
0
0
4

-0.0004

-0.
00
02

-0
.0
0
0
2

-0.0002 -0
.0
00
2

-0.0
002

-0.0002

00

0

0

0

0

0

0

0
.0
0
0
2

0.0002

0.
00
02

0
.0
0
0
2

0.00020.0004

0.0004

0.0004

0.
00
04

0.00040.0
00
6

0.0006

0.
00
06

0.0006

0.0006

0.0008

0.0008

0.0008
0.001

0.001

0.0012

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(g) Power law/SIMPLEC

-0.0012
-0.001

-0.001-0.
000

8

-0.0008

-0.0008

-0.0008

-0
.0
00
6

-0.0006

-0.0
006

-0.0006

-0
.0
00
4

-0.0004 -0.0004

-0.0004

-0.0004

-0
.0
00
2

-0.0002 -0.0002

-0
.00

0
2

-0.0002

00

0

0

0

0

0

0

0.0
002

0.0
002

0.0002

0.
00
02

0.00020.0002

0
.0
0
0
4

0.0004

0.
00
04

0.0004
0.0004

0.0
006

0.0006

0.
00
06

0.0006

0.0006

0.0008 0.0
00
8

0.0008

0.001

0.
00
12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(h) QUICK/SIMPLEC

-0.0
012

-0.001

-0.001

-0
.0
00
8

-0.0008

-0.0008

-0
.0
00
6

-0.0006

-0.0006

-0.0006

-0.
00
04

-0.0004 -0.0004

-0.0004

-0.0004

-0
.0
00
2

-0.0002 -0.0002

-0.0002

-0.0002

00

0

0

0

0

0
0

0.0002

0.0002

0.
00
02

0.0002
0.0002

0.0004

0.0004

0.
00
04

0.0004

0.
00
06

0.0006

0.
00
06

0.0006

0.0008

0.0008

0.0008

0.0008

0.001

0.0012

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(i) LBM

Figure 5:𝑋-velocity contours.

Table 5: Number of iterations and solving time for different discretization method.

Type of method Case number Discretization method/pressure-velocity
linking approach Number of iterations Solving time (s)

Finite volume method

1 1st upwind/SIMPLE 1571 482
2 1st upwind/SIMPLEC 1572 486
3 2nd upwind/SIMPLE 1597 502
4 2nd upwind/SIMPLEC 1598 509
5 Power law/SIMPLE 1520 469
6 Power law/SIMPLEC 1521 474
7 QUICK/SIMPLE 1598 510
8 QUICK/SIMPLEC 1599 519

Lattice Boltzmann method 1 Well-known finite difference method 47507 3360
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Figure 6: Nusselt number profile at hot wall.
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the studied discretization schemes, especially in the north-
west and southeast sides of the enclosure. Regarding the
pressure/velocity coupling approaches, the maximum stream
function values for the SIMPLE and SIMPLEC approaches
are 0.0003 and 0.0003066, respectively, translating into 2.2%
difference while the CPUusage time difference is only 4 s. For
LBM, the value of stream function is 0.000278.

For the velocity contours in the 𝑋 direction Figure 5
shows that the𝑈-velocity contours have cross-diagonal simi-
larity towards the 𝑌 = 𝑋 axis. Thus, all the methods analyzed
present comparable results with no obvious difference.

Figure 6 demonstrates the local Nusselt number distribu-
tions along the left hot wall. For all discretization schemes,
the Nusselt number is high near the bottom of the left wall
(because of extreme temperature variations) and declines
towards the top of thewall.The comparison between different
solvers reveals that the 1st order upwind scheme predicts the
maximumNusselt number while LBM leads to the lowest one
with some fluctuations along the hot wall. Interestingly, LBM
uses about 40% more grids in that region compared to FVM
ones.

7. Conclusions

Numerical tests using the finite volume and lattice Boltzmann
methods with various discretization schemes and pressure-
velocity linking algorithms were conducted to obtain the
optimum discretization/linking approaches to address the
internal convective heat transfer problems. The flow and
temperature fields, as well as number of iterations and solving
time, were evaluated.

The significant observations made in this study are sum-
marized as follows.

(1) The finite volume method results are more accurate
compared to those of LBM, especially at the corners.

(2) LBM needs a 4-5-fold CPU usage time and 8-9
times more iterations compared to the finite volume
method to solve the problem considered here.

(3) Among the studied discretization/pressure-velocity
linking algorithms, the 1st order upwind/SIMPLEC
provides themost precise results against experimental
benchmark data, especially in the boundary layers.

(4) The numbers of iterations for all FVM discretization/
pressure-velocity linking methods are nearly equal.

(5) The higher-order accurate schemes are more time
consuming.

One, however, notes that the above observations are valid
within the limits of the parameters and problem considered in
this study and could not be generalized to other cases without
further investigations.

Nomenclature

𝑥, 𝑦: Cartesian coordinates (m)
𝑓: Density-momentum distribution function
𝐻, 𝐿: Enclosure height and width (m)
Gr: Grashof number (𝑔𝛽Δ𝑇𝐿3𝜐−2)
⃗𝑔: Gravitational acceleration (m s2)

𝑍: Heat dissipation
𝑔: Internal energy distribution function
𝑐: Microscopic velocity vector
Pr: Prandtl number (𝜐 𝛼−1)
𝑃: Pressure (Nm2)
Ra: Rayleigh number (Gr Pr)
𝐶
𝑝
: Specific heat capacity (J kg1 K1)

𝑇, 𝑡: Temperature, time (K), (S)
𝑘: Thermal conductivity (Wm−1 K−1)
𝑢 = (𝑢, V): Velocities vector and its components in𝑋

and 𝑌 directions (m s1).

Greek Symbols

𝜇: Dynamic viscosity (Pa S)
𝜌: Density (kgm3)
𝜏
𝑔
: Internal energy relaxation times

]: Kinematics viscosity (m2 s1)
𝜏
𝑓
: Momentum relaxation times

𝛽: Thermal expansion coefficient (K1)
𝛼: Thermal diffusivity, 𝑥-𝑦 direction

components (m2 s1).

Subscripts

𝑐: Cold wall
𝑒: Equilibrium distribution function
ℎ: Hot wall
𝑖: Lattice velocity direction.
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This paper focuses on the problem of hedging against seismic risk through the retrofit of transportation systems in large-scale
construction projects (LSCP). A fuzzy random multiobjective bilevel programming model is formulated with the objectives of the
retrofit costs and the benefits on two separate levels. After establishing themodel, a fuzzy random variable transformation approach
and fuzzy variable approximation decomposition are used to deal with the uncertainty. An approximation decomposition-based
multi-objective AGLNPSO is developed to solve the model. The results of a case study validate the efficiency of the proposed
approach.

1. Introduction

Transportation networks play a very important role in both
urban and rural areas, as well as in industrial sites such
as large-scale construction sites. Liu et al. [1] stated that
transportation networks are critical infrastructure and their
smooth operation is important for maintaining the normal
functions of society. However, disasters, especially earth-
quakes, cause not only tremendous economic losses and
social chaos but also enormous damage to infrastructure (e.g.,
2008WenchuanEarthquake, 2010Chile Earthquake, and 2011
Japan Earthquake). Thus, as Liu et al. [1] pointed out, seismic
risk control should also consider the effect that damaged or
destroyed transportation networks have on the effectiveness
of postdisaster rescue and repair activities and the associated
socioeconomic losses. Under a seismic risk threat, retrofit
decisions are considered to be an effective protectivemeasure
and can have a significant impact on these systems [1–3].
Therefore, promoting retrofit decisions for transportation
networks is necessary to hedge against seismic risk.

The research in this area has mainly focused on the
retrofitting of bridges for transportation networks [4–6].
Werner et al. [2] extended seismic retrofits to highway

systems. Afterwards, Liu et al. [1] established a two-stage
stochastic programming model for retrofit decisions for
transportation network protection. This previous research,
however, has primarily focused on urban transportation,
but it is essential that transportation networks in large-scale
construction projects (LSCP) also be considered. As a critical
infrastructure, the smooth operation of these networks is
important for maintaining the normal progress of these
projects. Therefore, it is necessary to control the seismic
risk for LSCP transportation networks to mitigate losses.
When considering LSCP transportation network retrofits,
there are significant challenges. First, these transportation
systems have not only permanent links and temporary links
to consider but must also assess the critical links (i.e.,
bridge, tunnel, etc.) and the noncritical links. Secondly, the
retrofit decision making environment is a mutual environ-
ment involving an investor who pays for the retrofit and
an administrator who controls the transportation systems.
Thirdly, a consideration of the environmental costs for the
investor has increasingly become necessary for social and
economic development. Lastly, a majority of the previous
research has assumed that seismic damage is classified into
five categories and there is a set of discrete probabilities
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associatedwith each of the five damage categories. In practice,
however, the situation is often not that simple, and the
description of the possible result of seismic damage is vague
and uncertain. In this case, this needs to be qualified with
a vague perception of a crisp but unobservable random
variable.Hence, due to the complexity of assessing the seismic
risk to property, seismic damage is subject to uncertainty
with both fuzziness and randomness, that is, fuzzy random
in nature. More recently, since Kwakernaak [7] proposed the
concept of the fuzzy random variable, considerable research
has been done, which has allowed for its application in many
areas [7–13]. Unfortunately, there has been little research
which has discussed a mixture of fuzziness and randomness
in a transportation network retrofit problem. Therefore, the
uncertainty with hybrid fuzziness and randomness induced
by the seismic damage risk to property needs to be further
studied and elaborated.

The fuzzy random variable was proposed by Kwakernaak
[7] who regarded it as “random variables whose values are
not real, but fuzzy numbers.” From another view, Puri and
Ralescu [14] and Klement et al. [15] regarded a fuzzy random
variable as a random fuzzy set. Fuzzy random variables
represent a well-formalized concept which has underlain
many recent probabilistic and statistical studies involving
data obtained from a random experiment when these data
are assumed to be fuzzy set valued [16]. Therefore, in a
transportation network retrofit problem, the description of
seismic damage is considered a fuzzy random variable, that
is, a discrete distribution variable with a vague perception
(i.e., triangular fuzzy number). Several research works have
demonstrated how these fuzzy random coefficients can be
converted into crisp values. Usually, at first, the fuzzy random
variables are transformed into fuzzy numbers using the fuzzy
expected values [17] or transformed into (𝛼

1
, 𝜎)-level trape-

zoidal fuzzy variables through an approach proposed in Xu
and Liu [12].Then, these fuzzy numbers are transformed into
deterministic values using their expected value [18] or (𝛼, 𝛽)-
satisfactory solution to the programming is determined using
fuzzy coefficients [12]. In this case, based on the properties of
the fuzzy random seismic damage in this study, the theorem
and the proof presented in Xu and Liu [12] are adjusted
to allow for a discrete random distribution to obtain the
equivalent fuzzy bilevel programmingmodel.Then, using the
theorem proposed by Zhang et al. [19], decomposition is used
on these fuzzy variables to derive an approximate solution to
the model.

Under these emerging challenges, this paper formulates
a fuzzy random multiobjective bilevel programming model
for a transportation network retrofit decision to hedge against
seismic risk in an LSCP. The distinctions in the link types
allow for the recognition of the retrofit and reconstruction
costs. The investor and the administrator are the decision-
makers on two separate levels. Retrofit costs which include
the environmental costs and the retrofit benefits are the
two objectives of the investor, and the retrofit benefits are
the objective of the administrator. In order to describe the
hybrid uncertainty of possible seismic damage, fuzzy random
variables are introduced in the programming model, the
use of which has been applied in many areas [10, 18]. To

cope with the proposed fuzzy random multiobjective bilevel
programming model, a transformation approach is used
to obtain an equivalent fuzzy bilevel programming model.
This approach transforms the fuzzy random variables in the
model into fuzzy variables which are similar to trapezoidal
fuzzy variables. Then, decomposition is utilized on these
fuzzy variables using a fuzzy number decomposition theorem
[19]. To solve the model, an approximation decomposition-
based multiobjective AGLNPSO is developed in this paper.
Through the decomposition of the fuzzy variables, themodels
are successively solved until termination, and the approxima-
tion solutions are obtained. The multiobjective AGLNPSO
is a combination of the Pareto Archived Evolution Strategy
(PAES) [20] and the AGLNPSO [21] which is developed
by incorporating an adaptive particle swarm optimization
(APSO) [22] with a GNLPSO [23] and a multiple objectives
particle swarm optimization (MOPSO) [24].

This study contributes to the literature by adopting
the work of Liu et al. [1] to an LSCP and describing the
complex uncertain seismic damage scenario using fuzzy
random variables. Bilevel decisions involving the investor
and the administrator, distinctions between the various link
types, and the specification of the retrofit decisions into
several ranks according to the seismic damage scenario
provide a more reasonable and practical description of the
problem.The consideration of the environmental costs in the
transportation network in an LSCP enhances the focus for
management. To the best of our knowledge, an integrated
approach to deal with fuzzy random variables has not
been previously comprehensively studied.The approximation
decomposition-basedmultiobjectiveAGLNPSO is developed
as a useful tool to solve the problem, in which both the bilevel
and multiobjective environments are considered.

The remainder of this paper is as follows. The problem
description, the fuzzy random multiobjective bilevel
programming model, the transformation approach, and
the approximation decomposition are given in Section 2.
An approximation decomposition-based multiobjective
AGLNPSO is developed in Section 3. A case study is pre-
sented in Section 4. Finally, advantages, limitations, and pos-
sible future extensions of this work are presented in Section 5.

2. Modeling

In this section, the concepts for the LSCP transportation
network, the bilevel decision framework, the environmental
costs, and the fuzzy random seismic damage scenario are
introduced. Amultiobjective bilevel programming model for
the problem considering fuzziness and randomness is estab-
lished. See in the following the notations used to describe the
model.

Index

𝑎: Link in transportation network, 𝑎 ∈ 𝐴

𝑏: Node in transportation network, 𝑏 ∈ 𝐵

V: Variable environment cost, V ∈ 𝑉

𝑓: Fixed environmental cost, 𝑓 ∈ 𝐹
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𝑖: Retrofit output, 𝑖 ∈ 𝐼

𝑗: Retrofit activity, 𝑗 ∈ 𝐽

𝑘: Origin-destination pair considered as commodity,
𝑘 ∈ {1, . . . , 𝐾}.

Variables

𝑚
𝑎
= {

1, Permanent link
0, Temporary link

𝑛
𝑎
= {

1, Critical link
0, Noncritical link

𝑐
𝑝

V𝑎: Increased variable retrofit costs for permanent
link by basic rank (i.e., rank 1)
𝑐
𝑡

V𝑎: Variable retrofit costs for temporary link by basic
rank (i.e., rank 1)
𝑐
𝑝

𝑓𝑖
: Increased fixed retrofit costs for permanent link

𝑐
𝑡

𝑓𝑖
: Fixed retrofit costs for temporary link

𝜌: Weight of environmental costs
𝑐𝑒

𝑝

V : Increased variable environmental costs for per-
manent link by basic rank (i.e., rank 1)
𝑐𝑒

𝑡

V: Variable environmental costs for temporary link
by basic rank (i.e., rank 1)

𝑐𝑒
𝑓

𝑓
: Fixed environmental costs

𝑝𝑒
V
𝑗V: Percent of activity cost center 𝑗 in variable

environment cost V
𝑝𝑒

𝑓

𝑖𝑓
: Percent of output 𝑖 in fixed environment cost 𝑓

𝑐𝑒
𝑐

𝑗
: Variable environmental costs of activity cost

center 𝑗
𝑎𝑚

𝑗
: Cost of driver at activity cost center 𝑗

𝑟𝑎
𝑗
: Driver rate at activity cost center 𝑗

𝑎𝑚
𝑖𝑗
: Cost of driver for output 𝑖 in activity cost center

𝑗

𝐶: Retrofit costs including environmental costs
𝑄: Retrofit benefits
̃
𝜉
𝑎
: Preretrofit link damage state for link 𝑎

̃
Ξ
𝑎
: Postretrofit link damage state for link 𝑎

𝑐𝑟
𝑝

V𝑎: Increased variable reconstruction cost for per-
manent link by basic rank (i.e., rank 1)
𝑐𝑟

𝑡

V𝑎: Variable reconstruction cost for temporary link
by basic rank (i.e., rank 1)
𝑐𝑟

𝑝

𝑓𝑖
: Increased fixed reconstruction cost for perma-

nent link
𝑐𝑟

𝑡

𝑓𝑖
: Fixed reconstruction cost for temporary link

𝛾: Weight coefficient conversion time to monetary
value
𝑡𝑖
0

𝑎
: Free flow travel time and link 𝑎

𝛼: Coefficient of BPR function
𝑓𝑙

𝑎
: The total flow on link 𝑎

𝑐𝑎
󸀠

𝑎
: Practical capacity of link 𝑎 is set at 90% of the

design capacity
𝛽: BPR function coefficient
𝑐𝑎

𝑏
: Capacity of node 𝑏

𝑊: Node-commodity adjacency matrix
𝑀: Link-commodity adjacency matrix.

Decision Variables

𝑢
𝑎
: ∈ {0, 1, 2, 3, 4, 5} , ∀𝑎 ∈ 𝐴

𝑥
𝑘
: ≤ 0, ∀𝑘 = 1, . . . , 𝐾.

(1)

2.1. LSCP Transportation Network. The LSCP transportation
network is composed of an internal road system and an
external road system and is always built based on the existing
links around the site which are connectedwith the newly built
links according to transportation need. There are two types
of links (i.e., permanent links and temporary links) which
vary considerably in terms of quality. In addition, according
to the different functions, the links are divided into critical
links and noncritical links. Critical links are those which have
vital transport functions such as bridges and tunnels and
which should be preferentially taken into account [1]. The
retrofit decisions for the different link types vary. That is, the
links being considered for the retrofit are either considered
to be permanent or critical. The retrofit and reconstruction
costs for the temporary links are lower than those for the
permanent links. Further, the retrofit decision is specific with
0 (i.e., no retrofit) and there are several ranks according to the
seismic damage scenarios.

2.2. Bilevel Decision Framework. In this paper, the seismic
hazard retrofit decision for an LSCP transportation network
involves two participants (i.e., the investor who pays for
the retrofit and the administrator who controls the trans-
portation).Therefore, these two participants are the decision-
makers on two levels, both of whom successively make the
retrofit decisions. The investor on upper level decides which
retrofit rank should be taken for each link within the range
and, therefore, the two objectives on this level are the retrofit
costs including the environmental costs and the retrofit
benefits. The administrator decides on the commodity flow
(i.e., the transportation network flow once seismic damage
has occurred) on the lower level according to the decision
results of the upper level. On this level, the retrofit benefits
are the primary objective. In this paper, the retrofit benefits
are quantified as reconstruction and travel delay cost savings.
The investor on the upper level affects the decisions of the
administrator on lower level, but does not fully control them.
The administrator makes their decision autonomously based
on the scope of the decision of the upper level.

2.3. Environmental Costs. In recent years, more attention has
been paid to environmental problems as these have begun
to seriously affect both local communities and the economy.
Thus, it is essential to consider the environmental costs in
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Determine products

Analyse activity processes and define activities

Determine cost drivers

Allocate environmental costs

Measure cost driver amounts

Calculate cost driver rates

Calculate environmental costs for each product

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Record environmental costs

Figure 1: Obtain environmental costs for retrofitting transportation
network in LSCP based on ABC.

the LSCP. In addition, as environmental costs affect the
overall project cost, it is necessary to effectively record and
calculate environmental costs in the LSCP. Generally, many
environmental costs are not usually tracked systematically
or attributed to the related processes and outputs but are
simply summed and added to total cost [25]. The fact that
environmental costs are not fully recorded often leads to
distorted calculations [25]. Activity based costing (ABC) is
an effective method to record and calculate environmental
costs [26]. Cooper provided a comprehensive discussion of
ABC [27–30], following the pioneering work of [31, 32]. This
method treats activities as accounting objects, and identifies
and measures the amount of activities using cost drivers.

The environmental costs for retrofitting LSCP transporta-
tion networks based on the ABC are as shown in Figure 1.
As can be seen, the environmental costs are fully recorded
according to the environmental cost categories proposed in
[25]. Note that some environmental cost categories are related
to thework processes, and others are not.Then, all the outputs
involved in retrofitting the LSCP transportation network are
determined and an analysis of the activity processes and
a definition of the activities are prepared to determine the
environmental costs. Every activity corresponds to an activity
cost center. Jasch [25] proposed that the costs should bemore
precisely allocated to cost centers. Therefore, environmental
costs are either directly allocated to each activity cost center
or systematically traced to the responsible environmental
media. Of course, if those costs are attributed to outputs
directly (i.e., they are not related to the work processes), it is
not necessary to allocate them to activity cost centers. Then,
the cost drivers for the activity cost centers are determined
and the cost driver amounts measured to calculate the cost
driver rates. Finally, the environmental costs of each output
are determined.

Therefore, by using a complete recording method, distor-
tion in the environmental costs can be avoided and through

this precise allocation it is easier to effectively manage these
costs as it is possible to systematically trace them to the related
processes and outputs.

2.4. Fuzzy Random Seismic Damage Scenario. To better
understand the concepts for the fuzzy random seismic dam-
age scenario, this subsection gives some basic knowledge for
the definition and properties of the fuzzy random variables.
After Zadeh [33] proposed the concept of fuzzy sets, many
scholars have usually tied fuzziness to randomness as possible
random outcomes have to be described using fuzzy sets.
To describe this fuzziness and randomness, Kwakernaak [7]
proposed the concept of fuzzy random variables in 1978.
Kruse and Meyer [17] then worked on an expanded version
of a similar model. In addition, Puri and Ralescu [14] and
Klement et al. [15] also defined fuzzy random variables
from other angles. In this paper, the fuzzy random variables
are defined in the real number set. This makes the above
definitions equivalent [34]. Here, the definition proposed by
[14] is utilized.

In the following, R is denoted as the set of all real
numbers, F

𝑐
(R) is denoted as the set of all fuzzy variables,

andK
𝑐
(R) is denoted as all of the nonempty bounded close

intervals.

Definition 1 (see [14]). In a given probability space (Ω,A,Pr),
a mapping ̃𝜉 : Ω → F

𝑐
(R) is called a fuzzy random variable

in (Ω,A,Pr); if 𝛼 ∈ (0, 1], the set-valued function ̃
𝜉
𝛼
: Ω →

K
𝑐
(R),

̃
𝜉
𝛼
(𝜔) = (

̃
𝜉 (𝜔))

𝛼

= {𝑥 | 𝑥 ∈ R, 𝜇̃
𝜉(𝜔)

(𝑥) ≥ 𝛼} , ∀𝜔 ∈ Ω,

(2)

isFmeasurable.

Definition 2 (see [35]). If ̃𝜉
1
,
̃
𝜉
2
, . . . ,

̃
𝜉
𝑛
are fuzzy random

variables defined in the probability space on (Ω,A,Pr), then
̃
𝜉 = (

̃
𝜉
1
,
̃
𝜉
2
, . . . ,

̃
𝜉
𝑛
) is called fuzzy random vector.

Lemma3 (see [36]). Let ̃𝜉 = (
̃
𝜉
1
,
̃
𝜉
2
, . . . ,

̃
𝜉
𝑛
) be a fuzzy random

vector, and let 𝑓 be a continuous function fromRm toR. Then
𝑓(
̃
𝜉) is a fuzzy random variable.

Definition 4 (see [14]). In a given probability space (Ω,A,Pr),
if 𝜔 ∈ Ω, 𝛼 ∈ [0, 1], the mapping 𝜔 󳨃→ (

̃
𝜉)

−

𝛼
(𝜔) and 𝜔 󳨃→

(
̃
𝜉)

+

𝛼
(𝜔) are integrable; then ̃𝜉 is called the integrated bounded

fuzzy random variable on the probability space (Ω,A,Pr).

Definition 5 (see [14]). Let ̃𝜉 be an integrated bounded fuzzy
random variable on the probability space (Ω,A,Pr); the
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Figure 2: Fuzzy random seismic damage scenario.

expected value 𝐸(
̃
𝜉) of ̃𝜉 is defined as the only fuzzy set in

R; for all 𝛼 ∈ [0, 1], it satisfies

𝐸(
̃
𝜉)

𝛼

= ∫

Ω

̃
𝜉
𝛼
𝑑𝑝

= {∫

Ω

𝑓 (𝜔) 𝑑𝑝 (𝜔) : 𝑓 ∈ 𝐿
1
(𝑃) ,

𝑓 (𝜔) ∈
̃
𝜉
𝛼
(𝜔) a.s. [𝑃] } ,

(3)

where∫
Ω

̃
𝜉
𝛼
𝑑𝑝 is theAumann integral of ̃𝜉

𝛼
about𝑃 and𝐿1(𝑃)

denote all of the integrable function 𝑓 : Ω → R about the
probability measure 𝑃.

Lemma 6 (see [37]). Let (Ω,A,Pr) be complete probability
space; ̃𝜉 : Ω → F

𝑐
(R) is an integrated bounded fuzzy random

variable.Then for all 𝛼 ∈ [0, 1], the 𝛼-set of 𝐸(̃𝜉) is the compact
convex interval as follows:

𝐸(
̃
𝜉)

𝛼

= [(𝐸(
̃
𝜉))

−

𝛼

, (𝐸 (
̃
𝜉))

+

𝛼

]

= [∫

Ω

(
̃
𝜉 (𝜔))

−

𝛼

𝑑𝑝 (𝜔) , (
̃
𝜉 (𝜔))

+

𝛼

𝑑𝑝 (𝜔)] .

(4)

Lemma 7. Let (Ω,A,Pr) be complete probability space; ̃𝜉
1
, ̃𝜉

2

are integrated bounded fuzzy random variables on (Ω,A,Pr),
𝜆, 𝛾 ∈ R, and then

𝐸(𝜆
̃
𝜉
1
+ 𝛾

̃
𝜉
2
) = 𝜆𝐸(

̃
𝜉
1
) + 𝛾𝐸(

̃
𝜉
2
) . (5)

For the fuzzy random seismic damage scenario, according
to [1], advanced structural analysis can lead to a probabilistic
assessment of the structural damage for a given earthquake,
in terms of a set of discrete probabilities associated with
each of the five damage categories. Seismologists also have
made predictions as to the probabilities of various earthquake
occurrences. These two sets of probabilistic estimations from
earthquake-structural engineers and seismologists can be

combined to prepare the damage prediction [1]. For the
convenience of discussion, seismic damage to a structure
(i.e., LSCP transportation network) is usually classified into
five categories ranging from no damage to complete collapse.
However, a description of the perception result for seismic
damage is a category which is vague. In this case, a vague
perception of a crisp but unobservable random variable is
used as in the following:

̃
𝜉 = (𝑎

𝑖𝐿
, 𝑎

𝑖𝐶
, 𝑎

𝑖𝑅
) with probability 𝑝

𝑖
, 𝑖 = 1, . . . , 5. (6)

Therefore, the seismic damage scenario can be viewed as a
fuzzy randomvariable, which has a similar sense to theminor
automobile collision damage outlined in [10]. See Figure 2 for
a detailed description.

An example can be used to explain how to use the fuzzy
random variable and to describe the uncertainty in a seismic
damage scenario. Suppose that there is a link 𝑎 ∈ 𝐴 in an
LSCP transportation network. Seismic damage perception
has five categories 1, 2, 3, 4, and 5 ranging from no damage
to complete collapse and seismic damage randomly emerges
with a certain probability. On the other hand, the description
of the perception result is vague with values such as “about
1” and “about 3.” These denote the fuzzy sets and can be
conveniently described using triangular fuzzy sets, as shown
in Figure 3. Here it is assumed that the probabilities for the
five categories are 0.1, 0.2, 0.3, 0.3, and 0.1, so the seismic
damage scenario can be seen as a fuzzy random variable
as in (7) and as shown in Figure 3. It should be mentioned
that one damage scenario has different meanings for the
different damage ranks (i.e., its membership is different for
each different damage rank). Similar examples can be found
in [10]. Consider

̃
𝜉
𝑎
=

{{{{{{{

{{{{{{{

{

(0, 1, 2) with probability 0.1

(1, 2, 3) with probability 0.2

(2, 3, 4) with probability 0.3

(3, 4, 5) with probability 0.3

(4, 5, 6) with probability 0.1.

(7)

It should be noted that the same category may have
different possibilities for different links.
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Figure 3: Value of seismic damage scenario.

2.5. Model Formulation. Denote a transportation network as
𝐺(𝐵, 𝐴), where 𝐵 is the set of nodes and 𝐴 is the set of
network links. The decision variable on the upper level is
𝑢
𝑎
∈ {0, 1, 2, 3, 4, 5}, which means that a decision has been

done for link 𝑎 to be retrofitted at rank 𝑢
𝑎
, 𝑎 ∈ 𝐴. For each

commodity 𝑘 ∈ {1, . . . , 𝐾}, 𝑥
𝑘
∈ 𝑅

+
is the commodity flow

(i.e., the decision variable on the lower level), and 𝑐𝑎
𝑏
∈ 𝑅

+
is

the capacity of node 𝑏. Denote 𝑓𝑙
𝑎
as the total flow on link 𝑎

(i.e., 𝑓𝑙
𝑎
= 𝑀𝑥, for all 𝑎 ∈ 𝐴). To model the retrofit decision

with seismic risk in this paper, the assumptions are as follows.

(1) The LSCP transportation network is composed of
internal road systems and external road systems and
has two types of links, permanent and temporary. In
addition, two types of links are designated as critical
or noncritical links.

(2) The links under retrofit consideration are those which
are either permanent or critical.

(3) The retrofit activity process is the same for both
permanent and temporary links.

(4) In the retrofit, the variable environmental and recon-
struction costs for the temporary links are considered
of less importance than the permanent links.

(5) The retrofit costs and the retrofit decision have a linear
relationship which can be easily relaxed without
changing the structure of the proposedmodel, as long
as the data are available to support a more detailed
analysis.

(6) The variable environmental costs and the retrofit
decision have a linear relationship which can be
easily relaxed without changing the structure of the
proposed model, as long as the data are available to
support a more detailed analysis.

(7) Origin-destination pairs (i.e., commodities) are
determined in advance.

(8) Traffic flow can be controlled to achieve system
equilibrium [1].

(9) The preretrofit link damage state is defined as the
seismic damage scenario minus the retrofit decision
𝑢
𝑎
developed from [1].

(10) Reconstruction costs have a linear function with the
postretrofit damage state which can be easily relaxed
without changing the structure of the proposed
model.

2.5.1. Upper-Level Programming. The investor on the upper
level makes a decision as to whether there should be a retrofit
for each link 𝑎 in the transportation network and what rank
the retrofit should be. The decision needs to fully consider
the link types (i.e., permanent and temporary, critical and
noncritical).

Objective Functions. One objective on the upper level is to
minimize the retrofit costs, which include the environmental
costs. In this paper, from a systems view, the retrofit costs
are added directly to the objective function, which differs
from [1]. The investor aims to minimize costs through their
decision. Based on this assumption, the retrofit costs can be
calculated using the sum of the variable and fixed costs for all
links in the network.The retrofit costs for the temporary links
are lower than the permanent links. In order to distinguish
link types, 0-1 variables are introduced. 𝑚

𝑎
with 1 indicates

a permanent link and is 0 otherwise; 𝑛
𝑎
with 1 indicates a

critical link and is 0 otherwise.Therefore, the retrofit costs can
be denoted as∑

𝑎∈𝐴
(𝑚

𝑎
∨ 𝑛

𝑎
)((𝑐

𝑡

V𝑎 +𝑚
𝑎
𝑐
𝑝

V𝑎)𝑢𝑎 + (𝑐
𝑡

𝑓𝑖
+𝑚

𝑎
𝑐
𝑝

𝑓𝑖
)).

Here, ∨ is defined as max, namely, max[𝑚
𝑎
, 𝑛

𝑎
].

Based on the ABC described above and the assumptions,
∑

𝑎∈𝐴
(𝑚

𝑎
∨ 𝑛

𝑎
)(𝑐𝑒

𝑡

V + 𝑐𝑒
𝑝

V )𝑢𝑎 is the variable environment cost
V and 𝑐𝑒

𝑓

𝑓
denotes the fixed environmental cost 𝑓. Through

an analysis of the activity processes, the activity definitions,
and the cost allocations, 𝑐𝑒𝑐

𝑗
= ∑V∈𝑉 𝑝𝑒

V
𝑗V ∑𝑎∈𝐴

(𝑚
𝑎
∨𝑛

𝑎
)(𝑐𝑒

𝑡

V +

𝑐𝑒
𝑝

V )𝑢𝑎 is the variable environmental costs of activity cost
center 𝑗 and∑

𝑓∈𝐹
𝑝𝑒

𝑓

𝑖𝑓
𝑐𝑒

𝑓
is the fixed environmental costs of

output 𝑖. After determining the cost drivers for the activity
cost centers and measuring the cost driver amounts, 𝑟𝑎

𝑗
=

𝑐𝑒
𝑐

𝑗
/𝑎𝑚

𝑗
is the cost driver rate for activity cost center 𝑗. The

variable environmental costs for output 𝑖 are ∑
𝑗∈𝐽

𝑟𝑎
𝑗
𝑎𝑚

𝑖𝑗
.

After this, the environmental costs can then be presented as
∑

𝑖∈𝐼
(∑

𝑗∈𝐽
(∑V∈𝑉 𝑝𝑒

V
𝑗V ∑𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
)(𝑐𝑒

𝑡

V + 𝑐𝑒
𝑝

V )𝑢𝑎/𝑎𝑚𝑗
)𝑎𝑚

𝑖𝑗
+

∑
𝑓∈𝐹

𝑝𝑒
𝑓

𝑖𝑓
𝑐𝑒

𝑓

𝑓
). Thus, the objective can be described as

𝐶 (𝑢) = ∑

𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
)

× ((𝑐
𝑡

V𝑎 + 𝑚
𝑎
𝑐
𝑝

V𝑎) 𝑢𝑎 + (𝑐
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐
𝑝

𝑓𝑖
))

+ 𝜌∑

𝑖∈𝐼

(∑

𝑗∈𝐽

∑V∈𝑉 𝑝𝑒
V
𝑗V∑𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
)(𝑐𝑒

𝑡

V + 𝑐𝑒
𝑝

V ) 𝑢𝑎

𝑎𝑚
𝑗

× 𝑎𝑚
𝑖𝑗
+ ∑

𝑓∈𝐹

𝑝𝑒
𝑓

𝑖𝑓
𝑐𝑒

𝑓

𝑓
) .

(8)
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Here, 𝜌 denotes the weight of the environmental costs and is
determined by the investor.

Themaximization of the retrofit benefit is another upper-
level objective. The decision result of the lower-level is
denoted 𝑄(𝑥,

̃
𝜉) and quantified as savings in reconstruction

and travel delay costs. 𝑢 is the vector of 𝑢
𝑎
, 𝑎 ∈ 𝐴, and ̃𝜉 is the

vector of ̃𝜉
𝑎
, 𝑎 ∈ 𝐴. This can be described as

𝑄(𝑥,
̃
𝜉) . (9)

Here, maximizing the retrofit benefit while minimizing
reconstruction costs and travel time delay is denoted as
𝑄(𝑢,

̃
𝜉), which will be described in detail in the objective for

the lower level.

Logical Constraints. To describe the discrete decision vari-
ables for practical sense, the constraints in the following are
presented:

𝑢
𝑎
∈ {0, 1, 2, 3, 4, 5} , ∀𝑎 ∈ 𝐴. (10)

The objective functions and constraints above make up
the upper-level programming with lower-level programming
as in the following:

min(𝐶 (𝑢) , 𝑄 (𝑥,
̃
𝜉))

= (∑

𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐

𝑡

V𝑎 + 𝑚
𝑎
𝑐
𝑝

V𝑎) 𝑢𝑎

+ (𝑐
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐
𝑝

𝑓𝑖
))

+ 𝜌∑

𝑖∈𝐼

(∑

𝑗∈𝐽

∑V∈𝑉 𝑝𝑒
V
𝑗V ∑𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
)(𝑐𝑒

𝑡

V + 𝑐𝑒
𝑝

V ) 𝑢𝑎

𝑎𝑚
𝑗

× 𝑎𝑚
𝑖𝑗
+∑

𝑓∈𝐹

𝑝𝑒
𝑓

𝑖𝑓
𝑐𝑒

𝑓

𝑓
) ,𝑄(𝑥,

̃
𝜉))

s.t. {𝑢𝑎 ∈ {0, 1, 2, 3, 4, 5} , ∀𝑎 ∈ 𝐴

lower-level programming.
(11)

2.5.2. Lower-Level Programming. The administrator on the
lower level decides on the commodity flow 𝑥

𝑘
. In trans-

portation network literature, the flow between each origin-
destination pair is often considered as one commodity.
Different commodities represent travel between different
origin-destination pairs. 𝑥

𝑘
is used to express the flow of

𝑘 commodity. This optimal commodity flow decision seeks
to achieve optimal retrofit benefits under a postretrofit state
once an earthquake event has occurred and seismic damage
sustained. First, it is necessary to introduce the postretrofit

damage state before describing in detail the lower-level
programming.

Postretrofit Damage State. A fuzzy random vector ̃Ξ is intro-
duced to describe the damage to the link once an earthquake
has occurred after the retrofit, which has been developed
from [1]. Here, ̃Ξ is the vector for ̃

Ξ
𝑎
𝑎 ∈ 𝐴. Assume that

if a link is retrofitted at any rank, its damaged state (i.e.,
postretrofit damaged state in the earthquake) is denoted as
a seismic damage scenario (i.e., preretrofit link damage state)
minus the retrofit rank. Here, for demonstration, a negative
postretrofit damaged state is not considered, so the negative
state is treated as 0 indicating that the link will be intact.
The relationship between the preretrofit link damage state
̃
𝜉
𝑎
, the retrofit decision 𝑢

𝑎
, and the postretrofit damage state

̃
Ξ
𝑎
(
̃
𝜉
𝑎
, 𝑢) is described as in the following:

̃
Ξ
𝑎
(
̃
𝜉
𝑎
, 𝑢

𝑎
) = [

̃
𝜉
𝑎
− 𝑢

𝑎
]
+

, ∀𝑎 ∈ 𝐴. (12)

For any scenario, the postretrofit damaged state of link 𝑎 can
describe the current damaged state of link 𝑎 in an earthquake
after a retrofit. Based on the above, the discussion for the
lower-level programming is as follows.

Objective Function. Retrofit benefits are the objective of the
administrator. They are only quantified as savings in the
minimization of reconstruction and travel delay costs [1]. To
maximize benefits is to minimize costs. According to this
assumption, the reconstruction costs can be presented as
∑

𝑎∈𝐴
(𝑚

𝑎
∨ 𝑛

𝑎
)((𝑐𝑟

𝑡

V𝑎 + 𝑚
𝑎
𝑐𝑟

𝑝

V𝑎)
̃
Ξ
𝑎
+ (𝑐𝑟

𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐𝑟

𝑝

𝑓𝑖
)). This is

calculated using the sum of the variable and fixed costs for
all the links in the network when links are damaged in an
earthquake and need to be reconstructed. Travel delay costs
are the total travel time of all the links in the network. The
travel time of each link is the product of link travel time
and link flow. The link travel time depends on the link flow.
Their relationship is usually described using a nondecreasing
function such as the bureau of public roads (BPR) function
[1]. The BPR function is in the form of 𝑡𝑖0

𝑎
(1 + 𝛼(𝑓𝑙

𝑎
/𝑐𝑎

󸀠

𝑎
)
𝛽

).
Where 𝑡𝑖0

𝑎
and𝑓𝑙

𝑎
are free flow travel time and flow for link 𝑎,

respectively, 𝑐𝑎󸀠
𝑎
is the “practical capacity” of link 𝑎 and is set

to be 90% of the design capacity. Thus, the travel delay costs
of 𝑎 can be denoted as 𝑡𝑖0

𝑎
(1 + 𝛼(𝑓𝑙

𝑎
/𝑐𝑎

󸀠

𝑎
)
𝛽

)𝑓𝑙
𝑎
. The objective

function is presented as shown below:

𝑄(𝑥,
̃
𝜉) = ∑

𝑎∈𝐴

((𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐𝑟

𝑡

V𝑎 + 𝑚
𝑎
𝑐𝑟

𝑝

V𝑎)
̃
Ξ
𝑎

+ (𝑐𝑟
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐𝑟

𝑝

𝑓𝑖
))

+𝛾𝑡𝑖
0

𝑎
(1 + 𝛼(

𝑓𝑙
𝑎

𝑐𝑎󸀠
𝑎

)

𝛽

)𝑓𝑙
𝑎
) ,

(13)
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where 𝛾 is a weight coefficient converting the time to a
monetary value, 𝛼, 𝛽 are coefficients of the BPR function, and
̃
Ξ
𝑎
is as [̃𝜉

𝑎
− 𝑢

𝑎
]
+
.

Node Capacity Constraint. Logistics in large scale postdisaster
relief is very important [38]. Therefore, once an earthquake
event occurs, a working transportation network for disaster
relief and the LSCP are critically important, so the nodes
in the network should be fully functioning. Therefore, the
node capacity should be at capacity. The constraint is to keep
transport in accordance with the flow and the capacity of
node 𝑏 as shown in the following:

𝑊𝑥 = 𝑐𝑎
𝑏
, ∀𝑏 ∈ 𝐵, (14)

where 𝑊 represents the node-commodity adjacency matrix.
𝑥 is the commodity flow vector for 𝑥

𝑘
, 𝑘 ∈ 𝐾. 𝑐𝑎

𝑏
∈ 𝑅

+
is the

capacity of node 𝑏.

Flow Equation Constraint.The total flow on each link 𝑎 is the
sum of all flows of all commodity 𝑘 that contains 𝑎 and is
obtained using the link commodity adjacency matrix and the
commodity flow vector 𝑥 as in the following:

𝑓𝑙
𝑎
= 𝑀𝑥, ∀𝑎 ∈ 𝐴. (15)

Damaged Link Flow Constraint. This constraint restricts the
link flowwhen a link is damaged by the earthquake as in (16).
This constraint is applied to the postretrofit damaged state
and the “practical capacity” of link 𝑎, which is set at 90% of
the design capacity:

𝑓𝑙
𝑎
≤ (1 −

̃
Ξ
𝑎

5
) 𝑐𝑎

󸀠

𝑎
, ∀𝑎 ∈ 𝐴, (16)

where 𝑓𝑙
𝑎
is obtained in (15).

Logical Constraints. In order to describe the nonnegative
variables in the model, the constraints in the following are
presented:

𝑥
𝑘
≥ 0, ∀𝑘 = 1, . . . , 𝐾. (17)

The objective function and constraints above compose
the lower-level programming as in the following:

𝑄(𝑥,
̃
𝜉) := min ∑

𝑎∈𝐴

((𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐𝑟

𝑡

V𝑎 + 𝑚
𝑎
𝑐𝑟

𝑝

V𝑎)
̃
Ξ
𝑎

+ (𝑐𝑟
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐𝑟

𝑝

𝑓𝑖
))

+ 𝛾𝑡𝑖
0

𝑎
(1 + 𝛼(

𝑓𝑙
𝑎

𝑐𝑎󸀠
𝑎

)

𝛽

)𝑓𝑙
𝑎
)

s.t.

{{{{{{{

{{{{{{{

{

𝑊𝑥 = 𝑐𝑎
𝑏
, ∀𝑏 ∈ 𝐵,

𝑓𝑙
𝑎
= 𝑀𝑥, ∀𝑎 ∈ 𝐴,

𝑓𝑙
𝑎
≤ (1 −

̃
Ξ
𝑎

5
) 𝑐𝑎

󸀠

𝑎
, ∀𝑎 ∈ 𝐴,

𝑥
𝑘
≥ 0, ∀𝑘 = 1, . . . , 𝐾.

(18)

2.5.3. Fuzzy Random Multiobjective Bilevel Programming
Model. The complete multiobjective bilevel programming
model under a fuzzy random environment is formulated
based on the previous discussion as in the following model:

min(𝐶 (𝑢) , 𝑄 (𝑥,
̃
𝜉))

= (∑

𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐

𝑡

V𝑎 + 𝑚
𝑎
𝑐
𝑝

V𝑎) 𝑢𝑎

+ (𝑐
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐
𝑝

𝑓𝑖
))

+ 𝜌∑

𝑖∈𝐼

(∑

𝑗∈𝐽

∑V∈𝑉 𝑝𝑒
V
𝑗V ∑𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
) (𝑐𝑒

𝑡

V + 𝑐𝑒
𝑝

V ) 𝑢𝑎

𝑎𝑚
𝑗

× 𝑎𝑚
𝑖𝑗
+ ∑

𝑓∈𝐹

𝑝𝑒
𝑓

𝑖𝑓
𝑐𝑒

𝑓

𝑓
) ,𝑄(𝑥,

̃
𝜉))

s.t.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑢
𝑎
∈ {0, 1, 2, 3, 4, 5} , ∀𝑎 ∈ 𝐴,

𝑄(𝑥,
̃
𝜉) := min ∑

𝑎∈𝐴

((𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐𝑟

𝑡

V𝑎 + 𝑚
𝑎
𝑐𝑟

𝑝

V𝑎)
̃
Ξ
𝑎

+ (𝑐𝑟
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐𝑟

𝑝

𝑓𝑖
))

+𝛾𝑡𝑖
0

𝑎
(1 + 𝛼(

𝑓𝑙
𝑎

𝑐𝑎󸀠
𝑎

)

𝛽

)𝑓𝑙
𝑎
)

s.t.

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑊𝑥 = 𝑐𝑎
𝑏
,

∀𝑏 ∈ 𝐵,

𝑓𝑙
𝑎
= 𝑀𝑥,

∀𝑎 ∈ 𝐴,

𝑓𝑙
𝑎
≤ (1 −

̃
Ξ
𝑎

5
) 𝑐𝑎

󸀠

𝑎
,

∀𝑎 ∈ 𝐴,

𝑥
𝑘
≥ 0,

∀𝑘 = 1, . . . , 𝐾.

(19)

2.6. Transformation Approach for Fuzzy Random Variables.
In this subsection, some basic knowledge for the fuzzy
random variables is stated.

Definition 8 (see [33]). Given a domain 𝑈, if 𝐴 is a fuzzy set
on 𝑈, then for any 𝑥 ∈ 𝑈, see the following:

𝜇
𝐴
: 𝑈 󳨀→ [0, 1] , 𝑥 󳨀→ 𝜇

𝐴
(𝑥) , (20)

where 𝜇
𝐴
is called a membership function of 𝑥 with respect

to 𝐴 and 𝜇
𝐴
denoted the grade to each point in 𝑈 with a

real number in the interval [0, 1] that represents the grade of
membership of 𝑥 in 𝐴. 𝐴 is called a fuzzy set and described
as follows:

𝐴 = {(𝑥, 𝜇
𝐴
(𝑥)) | 𝑥 ∈ 𝑈} . (21)
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Definition 9 (see [33]). Let there be a domain 𝑈. Let 𝐴 be a
fuzzy set which is defined on 𝑈. If 𝛼 is possibility level and
0 ≤ 𝛼 ≤ 1, 𝐴

𝛼
consists of all elements whose degrees of

membership in 𝐴 are greater than or equal to 𝛼 as in the
following:

𝐴
𝛼
= {𝑥 ∈ 𝑈 | 𝜇

𝐴
(𝑥) ≥ 𝛼} ; (22)

then 𝐴
𝛼
is called the 𝛼-level set of fuzzy set 𝐴.

Definition 10 (see [39]). Let Θ be a nonempty set, and let
𝑃(Θ) be the power set of Θ. For each 𝐴 ⊆ 𝑃(Θ), there is
nonnegative number Pos{𝐴}, called its possibility, such that

(1) Pos(0) = 0 and Pos(Θ) = 1,
(2) Pos(⋃

𝑘
𝐴

𝑘
) = sup

𝑘
Pos(𝐴

𝑘
) for any arbitrary collec-

tion {𝐴
𝑘
} in 𝑃(Θ).

The triple (Θ, 𝑃(Θ),Pos) is called a possibility space. The
function Pos is referred to as a possibility measure.

Definition 11 (see [40]). A fuzzy variable is defined as a
function from the possibility space (Θ, 𝑃(Θ),Pos) to the real
number R.

Definition 12. Let 𝜀 be a discrete random variable defined on
a probability space (Ω,A,Pr) with the discrete distribution
𝑃
𝜀
(𝑥) = 𝑃{𝑥 = 𝑥

𝑛
}, 𝑛 = 1, 2, . . ., and let 𝜃 be any given

probability level and 0 ≤ 𝜃 ≤ max𝑃
𝜀
(𝑥). 𝜀

𝜃
consists of all

elements whose value of 𝑃
𝜀
(𝑥) for 𝜀 is greater than or equal to

𝜃 as the following:

𝜀
𝜃
= {𝑥 ∈ R | 𝑃

𝜀
(𝑥) ≥ 𝜃} ; (23)

then 𝜀
𝜃
is called the 𝜃-level set of random variable 𝜀.

As stated in Section 2.4, the definition proposed by [14] is
used in this paper. Although there are many properties and
transformation approaches for the fuzzy random variable,
to conveniently convert programming with fuzzy random
coefficients into crisp values, Xu and Liu [12] proposed
a theorem which could transform fuzzy random variables
into fuzzy variables similar to trapezoidal fuzzy numbers.
In this paper, this theorem and proof are adjusted to a
discrete random distribution with fluctuating lower, central,
and upper parameters for the fuzzy properties and extended
bounds of possibility for the fuzzy variable.

Theorem 13. Let

̃
𝜉 =

{{{{{{{{

{{{{{{{{

{

(𝑎
1𝐿
, 𝑎

1𝐶
, 𝑎

1𝑅
) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

1

...
...

(𝑎
𝑖𝐿
, 𝑎

𝑖𝐶
, 𝑎

𝑖𝑅
) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

𝑖

...
...

(𝑎
𝐼𝐿
, 𝑎

𝐼𝐶
, 𝑎

𝐼𝑅
) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

𝐼

(24)

be a fuzzy random variable, which has discrete random distri-
bution with fluctuating lower, central, and upper parameter for
fuzzy property.The discrete distribution is 𝑃

𝜓
(𝑥). 𝛿 is any given

probability level of random variable; 𝜂 is any given possibility
level of fuzzy variable; then the fuzzy random variable can be
transformed into a (𝛿, 𝜂)-level trapezoidal fuzzy variable.

Proof. Let

̃
𝜉 =

{{{{{{{{

{{{{{{{{

{

(𝑎
1𝐿
, 𝑎

1𝐶
, 𝑎

1𝑅
) with probability 𝑝

1

...
...

(𝑎
𝑖𝐿
, 𝑎

𝑖𝐶
, 𝑎

𝑖𝑅
) with probability 𝑝

𝑖

...
...

(𝑎
𝐼𝐿
, 𝑎

𝐼𝐶
, 𝑎

𝐼𝑅
) with probability 𝑝

𝐼

(25)

be a fuzzy random variable, which has discrete random
distributionwith fluctuating lower, central, and upper param-
eter for fuzzy property. The discrete distribution is 𝑃

𝜓
(𝑥).

According to Definition 8, the 𝛿-level sets (or 𝛿-cuts) of the
discrete random variable 𝜓 can be denoted as follows:

𝜓
𝛿
= [𝜓

𝐿

𝛿
, 𝜓

𝑅

𝛿
] = {𝑥 ∈ R | 𝑃

𝜓
(𝑥) ≥ 𝛿} . (26)

Here, 𝜓𝐿

𝛿
= min{𝑥 ∈ R | 𝑃

𝜓
(𝑥) ≥ 𝛿} and 𝜓

𝑅

𝛿
=

max{𝑥 ∈ R | 𝑃
𝜓
(𝑥) ≥ 𝛿}. The parameter 𝛿 ∈ [0,max𝑃

𝜓
(𝑥)]

here reflects the optimism degree for decision-maker. These
intervals indicate where the range of the data lies at the
probability level 𝛿. Note that 𝜓

𝛿
is crisp set.

Let𝑋 = {𝑥
𝜔
= 𝜓(𝜔) ∈ R | 𝑃

𝜓
(𝜓(𝜔)) ≥ 𝛿, 𝜔 ∈ Ω}; it is not

hard to prove that 𝑋 = [𝜓
𝐿

𝛿
, 𝜓

𝑅

𝛿
] = 𝜓

𝛿
; namely, min𝑋 = 𝜓

𝐿

𝛿

and max𝑋 = 𝜓
𝑅

𝛿
. In other words, 𝜓𝐿

𝛿
is the minimum value

that 𝜓 achieves with probability 𝛿; 𝜓𝑅

𝛿
is the maximum value

that𝜓 achieves with probability 𝛿.Therefore, the 𝛿-level fuzzy
random variable ̃𝜉

𝛿
can be defined as

̃
𝜉
𝛿
=

{{{

{{{

{

𝜓
𝐿

𝛿
= (𝑎

𝐿

(𝛿,𝐿)
, 𝑎

𝐿

(𝛿,𝐶)
, 𝑎

𝐿

(𝛿,𝑅)
) with probability 𝑝

𝐿

𝛿

...
...

𝜓
𝑅

𝛿
= (𝑎

𝑅

(𝛿,𝐿)
, 𝑎

𝑅

(𝛿,𝐶)
, 𝑎

𝑅

(𝛿,𝑅)
) with probability 𝑝

𝑅

𝛿
.

(27)

It can also be denoted as follows:
̃
𝜉
𝛿
= {𝜉

𝛿
(𝜔) = (𝑎

(𝛿,𝐿)
(𝜔) , 𝑎

(𝛿,𝐶)
(𝜔) , 𝑎

(𝛿,𝑅)
(𝜔))

with probability 𝑝 (𝜔) | 𝑥
𝜔
∈ 𝑋, 𝜔 ∈ Ω} ,

(28)

where 𝜉
𝛿
(𝜔) is a fuzzy variable. The variable ̃

𝜉
𝛿
can be

expressed in another form as ̃𝜉
𝛿

= ⋃
𝜔∈Ω

𝜉
𝛿
(𝜔) = 𝜉

𝛿
(Ω);

here 𝜉
𝛿
(𝜔)(𝜔 ∈ Ω) are fuzzy variables. So the fuzzy random

variable ̃
𝜉 is transformed into a group of fuzzy variables

𝜉
𝛿
(𝜔)(𝜔 ∈ Ω), which is denoted as 𝜉

𝛿
(Ω). On the basis of

the concept on fuzzy variable 𝜂-level sets (or 𝜂-cuts). The
parameter 0 ≤ 𝜂 ≤ 1 let

𝜉
(𝛿,𝜂)

(𝜔) = [𝜉
𝐿

(𝛿,𝜂)
(𝜔) , 𝜉

𝑅

(𝛿,𝜂)
(𝜔)]

= {𝑥 ∈ 𝑈 | 𝜇
𝜉
𝛿
(𝜔)

(𝑥) ≥ 𝜂} ;

(29)
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0

𝜂

1

𝜇
𝜉̃𝛿(𝜔)

(x)

X = {x𝜔 = 𝜓(𝜔) ∈ R|P𝜓(𝜓(𝜔)) ≥ 𝛿, 𝜔 ∈ Ω}

aL(𝛿

(𝛿

,C) a(𝛿,C)(𝜔) aR(𝛿,C)

aL(𝛿,L) a(𝛿,L)(𝜔) aR(𝛿,L) aL(𝛿,R) a(𝛿,R)(𝜔) aR(𝛿,R)

0

1

𝜇
𝜉̃ ,𝜂)

(x)

[s]L [s]Rss

Figure 4: The transformation process from fuzzy random variable ̃𝜉 to (𝛿, 𝜂)-level trapezoidal fuzzy variable ̃𝜉
(𝛿,𝜂)

.

then the 𝜂-level sets (or 𝜂 cuts) of 𝜉
𝛿
(Ω) are defined as follows:

𝜉
(𝛿,𝜂)

(Ω)

= {𝜉
(𝛿,𝜂)

(𝜔) = [𝜉
𝐿

(𝛿,𝜂)
(𝜔) , 𝜉

𝑅

(𝛿,𝜂)
(𝜔)] | 𝜔 ∈ Ω} ;

(30)

here, 𝜉𝐿
(𝛿,𝜂)

(𝜔) = inf 𝜇−1
𝜉
𝛿
(𝜔)

(𝜂), 𝜉𝑅
(𝛿,𝜂)

(𝜔) = sup 𝜇−1
𝜉
𝛿
(𝜔)

(𝜂), 𝜔 ∈ Ω.
Inspired by the fuzzy expected value of fuzzy randomvariable
proposed by [10], it can be got as follows:

𝑎
(𝛿,𝐿)

= ∑

𝜔

𝑝 (𝜔) 𝑎
(𝛿,𝐿)

(𝜔) ,

𝑎
(𝛿,𝑅)

= ∑

𝜔

𝑝 (𝜔) 𝑎
(𝛿,𝑅)

(𝜔) ,

𝜉
𝐿

(𝛿,𝜂)
= ∑

𝜔

𝑝 (𝜔) 𝜉
𝐿

(𝛿,𝜂)
(𝜔) ,

𝜉
𝑅

(𝛿,𝜂)
= ∑

𝜔

𝑝 (𝜔) 𝜉
𝑅

(𝛿,𝜂)
(𝜔) .

(31)

Consequently, ̃𝜉 can be transformed into 𝜉
(𝛿,𝜂)

by the 𝛿-
cuts and 𝜂-cuts. See Figure 4.

Where 0 ≤ 𝜂 ≤ 1 and 𝛿 ∈ [0,max𝑃
𝜓
(𝑥)], let 𝑎

(𝛿,𝐿)
= [𝑠]

𝐿
,

𝑎
(𝛿,𝑅)

= [𝑠]
𝑅
, 𝜉𝐿

(𝛿,𝜂)
= 𝑠, and 𝜉

𝑅

(𝛿,𝜂)
= 𝑠; then the fuzzy random

variable ̃𝜉 can be transformed into the (𝛿, 𝜂)-level trapezoidal
fuzzy variable 𝜉

(𝛿,𝜂)
by the following equation:

̃
𝜉 󳨀→ 𝜉

(𝛿,𝜂)
= ([𝑠]𝐿, 𝑠, 𝑠, [𝑠]𝑅) .

(32)

The parameters 𝛿 and 𝜂 both reflect optimism degree
of the decision-maker. Thus, the fuzzy random variable ̃𝜉 is
transformed into a fuzzy variable which is a trapezoidal fuzzy
number with the membership function 𝜇

𝜉
(𝛿,𝜂)

(𝑥)
. The value of

𝜇
𝜉
(𝛿,𝜂)

(𝑥)
at 𝑥 ∈ [[𝑠]

𝐿
, [𝑠]

𝑅
] is considered subjectively to be 1 as

below:

𝜇
𝜉
(𝛿,𝜂)(𝑥)

=

{{{{{{{{

{{{{{{{{

{

1 if 𝑠 ≤ 𝑥 < 𝑠,

𝑥 − [𝑠]𝐿

𝑠 − [𝑚]𝐿

if [𝑠]𝐿 ≤ 𝑥 < 𝑠,

[𝑠]
𝑅
− 𝑥

[𝑠]𝑅 − 𝑠
if 𝑠 ≤ 𝑥 < [𝑠]𝑅,

0 if 𝑥 < [𝑠]𝐿, 𝑥 > [𝑠]𝑅.

(33)

Theorem 13 is proved.

Through Theorem 13, the fuzzy random seismic damage
scenario, namely, ̃𝜉, can be transformed into (𝛿, 𝜂)-level
trapezoidal fuzzy variables 𝜉

(𝛿,𝜂)
and model (19) can be

transformed into the following fuzzy multiobjective bilevel
programming model:

min (𝐶 (𝑢) , 𝑄 (𝑥, 𝜉
(𝛿,𝜂)

))

= (∑

𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐

𝑡

V𝑎 + 𝑚
𝑎
𝑐
𝑝

V𝑎) 𝑢𝑎 + (𝑐
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐
𝑝

𝑓𝑖
))

+ 𝜌∑

𝑖∈𝐼

(∑

𝑗∈𝐽

∑V∈𝑉 𝑝𝑒
V
𝑗V ∑𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
) (𝑐𝑒

𝑡

V + 𝑐𝑒
𝑝

V ) 𝑢𝑎

𝑎𝑚
𝑗

× 𝑎𝑚
𝑖𝑗
+∑

𝑓∈𝐹

𝑝𝑒
𝑓

𝑖𝑓
𝑐𝑒

𝑓

𝑓
) ,𝑄 (𝑥, 𝜉

(𝛿,𝜂)
))

s.t.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑢
𝑎
∈ {0, 1, 2, 3, 4, 5} , ∀𝑎 ∈ 𝐴,

𝑄 (𝑥, 𝜉
(𝛿,𝜂)

)

:= min ∑

𝑎∈𝐴

((𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐𝑟

𝑡

V𝑎 + 𝑚
𝑎
𝑐𝑟

𝑝

V𝑎)

× [(𝜉
(𝜂,𝛿)

)
𝑎
− 𝑢

𝑎
]
+

+ (𝑐𝑟
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐𝑟

𝑝

𝑓𝑖
))

+𝛾𝑡𝑖
0

𝑎
(1 + 𝛼(

𝑓𝑙
𝑎

𝑐𝑎󸀠
𝑎

)

𝛽

)𝑓𝑙
𝑎
)

s.t.

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑊𝑥 = 𝑐𝑎
𝑏
,

∀𝑏 ∈ 𝐵,

𝑓𝑙
𝑎
= 𝑀𝑥,

∀𝑎 ∈ 𝐴,

𝑓𝑙
𝑎
≤ (1 −

[(𝜉
(𝜂,𝛿)

)
𝑎
− 𝑢

𝑎
]
+

5
) 𝑐𝑎

󸀠

𝑎
,

∀𝑎 ∈ 𝐴,

𝑥
𝑘
≥ 0,

∀𝑘 = 1, . . . , 𝐾.

(34)
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2.7. Approximation Decomposition of Fuzzy Variables. In
model (34), ̃𝜉 are coefficients, which when transformed to
𝜉
(𝛿,𝜂)

are fuzzy variables and so can be regarded as fuzzy
numbers. Thus, an approximation decomposition method
for fuzzy multiobjective linear bilevel programming model is
introduced. This method is as in Zhang et al. [19] solution
for fuzzy multiobjective bilevel programming, but with some
further development done on the fuzzy multiobjective multi-
follower partial cooperative bilevel programming as outlined
in [41].

Definition 14 (see [19]). A fuzzy number 𝑎 is defined as a
fuzzy set on R, whose membership function 𝜇

𝑎
satisfies the

following conditions.

(1) 𝜇
𝑎
is a mapping from R to the closed interval [0, 1].

(2) It is normal; that is, there exists 𝑥 ∈ R such that
𝜇
𝑎
(𝑥) = 1.

(3) For any 𝜆 ∈ (0, 1], 𝑎
𝜆
= {𝑥; 𝜇

𝑎
(𝑥) ≥ 𝜆} is a closed

interval, denoted by [𝑎𝐿
𝜆
, 𝑎

𝑅

𝜆
].

LetF(R) be the set of all fuzzy numbers. By decomposi-
tion theorem of fuzzy sets [19], we have

𝑎 = ⋃

𝜆∈[0,1]

𝜆 [𝑎
𝐿

𝜆
, 𝑎

𝑅

𝜆
] , (35)

for every 𝑎 ∈ F(R).

FromTheorems 17 and 18 in research of Zhang et al. [19],
the optimal solution for themodel can be determined by solv-
ing the equivalent crisp multiobjective bilevel programming
model as shown below:

min (𝐶 (𝑢) , 𝑄 (𝑥, 𝜉
𝐿(𝑅)

𝜆
))

= (∑

𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐

𝑡

V𝑎 + 𝑚
𝑎
𝑐
𝑝

V𝑎) 𝑢𝑎

+ (𝑐
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐
𝑝

𝑓𝑖
))

+ 𝜌∑

𝑖∈𝐼

(∑

𝑗∈𝐽

∑V∈𝑉 𝑝𝑒
V
𝑗V ∑𝑎∈𝐴

(𝑚
𝑎
∨ 𝑛

𝑎
) (𝑐𝑒

𝑡

V + 𝑐𝑒
𝑝

V ) 𝑢𝑎

𝑎𝑚
𝑗

× 𝑎𝑚
𝑖𝑗
+∑

𝑓∈𝐹

𝑝𝑒
𝑓

𝑖𝑓
𝑐𝑒

𝑓

𝑓
) ,

(𝑄 (𝑥, 𝜉
𝐿

𝜆
) , 𝑄 (𝑥, 𝜉

𝑅

𝜆
)))

s.t.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑢
𝑎
∈ {0, 1, 2, 3, 4, 5} , ∀𝑎 ∈ 𝐴,

𝑄 (𝑥, 𝜉
𝐿(𝑅)

𝜆
)

= (𝑄 (𝑥, 𝜉
𝐿

𝜆
) , 𝑄 (𝑥, 𝜉

𝑅

𝜆
))

:= min(∑

𝑎∈𝐴

( (𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐𝑟

𝑡

V𝑎 + 𝑚
𝑎
𝑐𝑟

𝑝

V𝑎)

× [(𝜉
𝑎
)
𝐿

𝜆
− 𝑢

𝑎
]
+

+ (𝑐𝑟
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐𝑟

𝑝

𝑓𝑖
))

+ 𝛾𝑡𝑖
0

𝑎
(1 + 𝛼(

𝑓𝑙
𝑎

𝑐𝑎󸀠
𝑎

)

𝛽

)𝑓𝑙
𝑎
) ,

∑

𝑎∈𝐴

((𝑚
𝑎
∨ 𝑛

𝑎
) ((𝑐𝑟

𝑡

V𝑎 + 𝑚
𝑎
𝑐𝑟

𝑝

V𝑎)

× [(𝜉
𝑎
)
𝑅

𝜆
− 𝑢

𝑎
]
+

+ (𝑐𝑟
𝑡

𝑓𝑖
+ 𝑚

𝑎
𝑐𝑟

𝑝

𝑓𝑖
))

+ 𝛾𝑡𝑖
0

𝑎
(1 + 𝛼(

𝑓𝑙
𝑎

𝑐𝑎󸀠
𝑎

)

𝛽

)𝑓𝑙
𝑎
))

s.t.

{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑊𝑥 = 𝑐𝑎
𝑏
,

∀𝑏 ∈ 𝐵,

𝑓𝑙
𝑎
= 𝑀𝑥,

∀𝑎 ∈ 𝐴,

𝑓𝑙
𝑎
≤ (1 −

[(𝜉
𝑎
)
𝐿

𝜆
− 𝑢

𝑎
]
+

5
) 𝑐𝑎

󸀠

𝑎
,

∀𝑎 ∈ 𝐴,

𝑓𝑙
𝑎
≤ (1 −

[(𝜉
𝑎
)
𝑅

𝜆
− 𝑢

𝑎
]
+

5
) 𝑐𝑎

󸀠

𝑎
,

∀𝑎 ∈ 𝐴,

𝑥
𝑘
≥ 0,

∀𝑘 = 1, . . . , 𝐾.

(36)

After transforming the fuzzy random seismic damage
scenario ̃

𝜉 into (𝛿, 𝜂)-level trapezoidal fuzzy variable 𝜉
(𝛿,𝜂)

,
an approximation progress of (𝛿, 𝜂)-level trapezoidal fuzzy
variable 𝜉

(𝛿,𝜂)
is conducted until termination. During the

approximation progress iterations, model (36) is solved
within a series of 𝜆 valued by a decomposition of the interval
[0, 1] into equal subintervals.

3. An Approximation Decomposition-Based
Multiobjective AGLNPSO

Bilevel programming problem is NP-hard, which loosely
means that it cannot in general be solved with a polynomial
time algorithm [42] and it is difficult to find numerical
solutions [43]. Many methods have been proposed to solve
these problems, such as the branch-and-bound methods
[44, 45], the descent method [46], and the penalty function
method [47]. In addition, heuristic algorithms [48] and
evolutionary computation [49] have also been proposed to
obtain a numerical optimal solution or numerical efficient
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AGLNPSO termination
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Initialize approximation and error coefficients
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Check the feasibility and decode the particles
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Step 10.

Step 11.

Start

End

Figure 5: Overall procedure of the proposed method.

solution. PSO has been adopted for dealing with multiob-
jective optimization problems and has been found to be
very successful, in addition to heuristics [50].Therefore, with
these considerations, the PSO is the approach adopted in
this study. An approximation decomposition-based multi-
objective AGLNPSO made up of approximation decompo-
sition [19], PAES [20], AGLNPSO [21], and MOPSO [24]
is proposed to solve the problem. Of course, this proposed
algorithm may not be the best; however, it can assist in
obtaining an effective solution, which is demonstrated in the
analysis of the case problem. In the future, in order to get even
better solutions more effectively, alternative approaches and
algorithms (e.g., other exact approaches, (meta)heuristics,
evolutionary algorithms, etc.) will be explored for compari-
son.

3.1. Overall Procedure for the Proposed Algorithm. The proce-
dure for the proposed algorithm is presented as follows; see
Figure 5.

Step 1. Initialize approximation coefficient 𝑙 = 1, which is
used to generate cut sets for the fuzzy numbers in model (36)
and the error coefficient 𝜖.

Step 2. Decompose interval [0, 1] into 2
𝑙−1 equal sub-

intervals with (2
𝑙−1

+ 1) nodes 𝜆
𝑖
(𝑖 = 0, . . . , 2

𝑙−1
), which are

arranged in the order 0 = 𝜆
0
< 𝜆

1
< ⋅ ⋅ ⋅ < 𝜆

2
𝑙−1 = 1.

Step 3. Transform model (34) into a series of models for
model (36) with 𝑙.

Step 4. Initialize the parameters: swarm size, iteration max,
the range of velocity and position for the variables, the
personal best position acceleration constant, the global
best position acceleration constant, the local best position
acceleration constant, the near neighbor best acceleration
constant, and the inertia weight max. Then, initialize the
velocities and positions of the particle-represented solu-
tions.
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Step 5. Check the feasibility and decode the particles.

Step 6. Solve the lower-level programming with the feasible
solutions of the upper level to determine the optimal objective
value. Calculate the two objectives on the upper level to
evaluate every particle.

Step 7. Calculate the 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡, 𝑙𝑏𝑒𝑠𝑡, and 𝑛𝑏𝑒𝑠𝑡 using the
multiobjective method. Restore the Pareto optimal solutions
(i.e., the (global) elite individuals), lower-level programming
solutions, and objective values of upper level and lower level.

Step 8. Update the inertia weight for each iteration.

Step 9. Update the velocity and position of each particle.

Step 10. Check the multiobjective AGLNPSO termination. If
the stopping criterion (i.e., iteration max) ismet, then end the
multiobjective AGLNPSO procedure to obtain the optimal
solution (𝑢, 𝑥)

2
𝑙 and go to Step 10; otherwise, go to Step 5.

Step 11. Check the approximation termination. If a stabi-
lization of the Pareto optimal solution is achieved, then
the Pareto optimal solution for the complete multiobjective
bilevel programming model under fuzzy random environ-
ments is obtained, and it terminates. Otherwise, 𝑙 = 𝑙 + 1;
go back to Step 3.

Here, the set convergence is proposed in this paper to
describe the stabilization of the Pareto optimal solution,
which is defined as 𝜛 and expressed as follows:

𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, 𝜒 = 0.

If traversal 𝑀 for any 𝑚 there is

𝑛 = 𝑚, 𝑛 ∈ 𝑁; then 𝜒 = 𝜒 + 1,

𝜛 =
𝜒

|𝑀|
.

(37)

That is to say, if𝜛 ≥ 𝜖, the Pareto optimal solution set is stable
and the approximation termination is achieved.

The details for the multiobjective AGLNPSO are
described as follows and the notations used are shown.

𝑠: Particle index, 𝑠 = 1, . . . , 𝑆

𝜏: Iteration index, 𝜏 = 1, . . . , 𝑇

ℎ: Dimension index, ℎ = 1, . . . , 𝐻

𝑢
𝑟
: Uniform random number in the interval [0, 1]

𝑤(𝜏): Inertia weight in the 𝜏th iteration
𝑤

max: Maximum inertia weight value
𝑤

min: Minimum inertia weight value
𝜔
𝑠ℎ
(𝜏): Velocity of the 𝑠th particle at the ℎth dimension in the

𝜏th iteration
𝜃
𝑠ℎ
(𝜏): Position of the 𝑠th particle at the ℎth dimension in

the 𝜏th iteration
𝜃
0

𝑠ℎ
(𝜏): Position for temporary and noncritical link of the 𝑠th

particle at the ℎth dimension in the 𝜏th iteration

𝜓
𝑠ℎ
: Personal best position of the 𝑠th particle at the ℎth
dimension

𝜓
𝑔ℎ
: Global best position of the 𝑠th particle at the ℎth
dimension

𝜓
𝐿

𝑠ℎ
: Local best position of the 𝑠th particle at the ℎth
dimension

𝜓
𝑁

𝑠ℎ
: Near neighbor best position of the 𝑠th particle at the
ℎth dimension

𝑐
𝑝
: Personal best position acceleration constant

𝑐
𝑔
: Global best position acceleration constant

𝑐
𝑙
: Local best position acceleration constant

𝑐
𝑛
: Near neighbor best position acceleration constant

𝜔
max: Maximum velocity value

𝜔
min: Minimum velocity value

𝜃
max: Maximum position value

𝜃
min: Minimum position value

Θ
𝑠
: Vector position of the 𝑠th particle [𝜃

𝑠1
, 𝜃

𝑠2
, . . . , 𝜃

𝑠𝐻
]

Ω
𝑠
: Vector velocity of the 𝑠th particle [𝜔

𝑠1
, 𝜔

𝑠2
, . . . , 𝜔

𝑠𝐻
]

𝑅
𝑠
: The 𝑠th set of solutions

𝑐: The current solution randomly selected one from the
nondominated solutions

𝑐
𝑁: New generated solution.

3.2. Solution Representation. In this paper, the particle-
represented solution is 𝐴 dimensions of retrofit rank 𝑢

𝑎

within [0, 1, 2, 3, 4, 5] (i.e., 𝑎 ∈ 𝐴) for all links in the LSCP
transportation network.

3.3. Particle Swarm Initialization. Initialize 𝑆 particles as a
swarm; generate the 𝑠th particle with random position Θ

𝑠
in

the range {0, 1, 2, 3, 4, 5}. Randomly generate velocity for each
particle in the range {−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5}. Set the
iteration 𝜏 = 1. Set swarm size 𝑆, iteration max 𝑇, personal
best position acceleration constant 𝑐

𝑝
, global best position

acceleration constant 𝑐
𝑔
, local best position acceleration

constant 𝑐
𝑙
, near neighbor best position acceleration constant

𝑐
𝑛
, inertia weight max 𝑤max, and inertia weight min 𝑤

min.

3.4. Feasibility Checking and Decoding Method. Since the
links to be considered for retrofit are either permanent or
critical, check and adjust the position of the temporary and
noncritical links to 0.Then, the particle-represented solution
can be directly decoded into a solution for the problem as
shown in Figure 6.

3.5. Particle Evaluation. For 𝑠 = 1, . . . , 𝑆, set Θ
𝑠
(𝜏) into the

solution 𝑅
𝑠
that is 𝑢 in the upper-level programming and put

𝑢 into the lower-level programming to determine the optimal
solution 𝑥 and the optimal objective 𝑄(𝑥). Calculate another
objective for the upper-level programming 𝐶(𝑢).
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Dimension 1 Dimension 2 Dimension 3Link:
Retrofit
decision:

Particle-represented solution:

Check and adjust the position of temporary
and noncritical link to 0

Solution of the
problem:

Link:
Retrofit
decision:

Updated particle-represented solution:

 Solution

0 0
Replace Replace

𝜃s1 𝜃s2 𝜃s3 𝜃s(H−1) 𝜃sH

Dimension H− 1 Dimension H· · ·

· · ·

Dimension 1 Dimension 2 Dimension 3
𝜃s1

𝜃s1

𝜃s2 𝜃s3 𝜃s(H−1)

𝜃s(H−1)

𝜃sH

Dimension H− 1 Dimension H· · ·

· · ·

ua: ∈ {0, 1, 2, 3, 4, 5}, ∀a ∈ A

Figure 6: Transformation from the particle-represented to the problem solution.

3.6. Multiobjective Method. The multiobjective method is
made up of the PAES procedure and the test procedure, and
selection is introduced to calculate 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡, 𝑙𝑏𝑒𝑠𝑡, and
𝑛𝑏𝑒𝑠𝑡. This method uses a truncated archive to store the elite
individuals (i.e., nondominated solutions), which is used to
separate the objective function space into hypercubes, each
of which has a score based on its density. Selection of the
best is then based on a roulette wheel selection to select the
best hypercube first and then uniformly choose a solution.
Note that the initialized solution is regarded as the 𝑝𝑏𝑒𝑠𝑡

and the nondominated solution of each particle at the 1th
iteration. When the iteration updates, the updated solution
and the nondominated solutions are used to calculate the
𝑝𝑏𝑒𝑠𝑡 by the method. After the 𝑝𝑏𝑒𝑠𝑡 has been confirmed
at each iteration, the 𝑝𝑏𝑒𝑠𝑡 nondominated solutions for
all particles are considered with the 𝑔𝑏𝑒𝑠𝑡 nondominated
solutions (i.e., there is no 𝑔𝑏𝑒𝑠𝑡 nondominated solution at
initialization) to calculate the 𝑔𝑏𝑒𝑠𝑡 by the method. Similar
to the 𝑔𝑏𝑒𝑠𝑡, among all the 𝑝𝑏𝑒𝑠𝑡 nondominated solutions
from𝐾 neighbors of the 𝑠th particle and 𝑙𝑏𝑒𝑠𝑡 nondominated
solutions, set the 𝑙𝑏𝑒𝑠𝑡 is also set using this method. For each
particle on each dimension, set 𝜓𝑁

𝑠ℎ
= 𝜓

𝑁

𝑜ℎ
that maximizes

(𝑍(Θ
𝑠
) − 𝑍(Ψ

𝑜
))/(𝜃

𝑠ℎ
− 𝜓

𝑜ℎ
) to get 𝑛𝑏𝑒𝑠𝑡, 𝑜 ∈ 𝑆 \ 𝑠. Here, the

maximization process uses the multiobjective method for the
calculation of the 𝑔𝑏𝑒𝑠𝑡 and 𝑙𝑏𝑒𝑠𝑡 above. The details for the
PAES procedure, test procedure, and selection procedure are
outlined similarly for the 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡, 𝑙𝑏𝑒𝑠𝑡, and 𝑛𝑏𝑒𝑠𝑡 next
and in Procedures 1 and 2, where 𝑐 is the current solution
randomly selected from the nondominated solutions. Note
that 𝑐 is randomly selected from the 𝑝𝑏𝑒𝑠𝑡 nondominated
solutions to calculate the 𝑔𝑏𝑒𝑠𝑡 at the 1th iteration.

Selection

Step 1. Divide 10 by the number of particles in each hypercube
to get its score.

Step 2. Apply roulette wheel selection to hypercube accord-
ing to their scores and select a hypercube.

Step 3. Uniformly choose a member of that hypercube.

Therefore, the 𝑔𝑏𝑒𝑠𝑡 nondominated solutions at the 𝑇th
are the final solutions of the problem.

3.7. Inertia Weight Updating. Update the inertia weight for
iteration 𝜏 using the following equations:

𝜔 =
∑

𝑆

𝑠=1
∑

𝐻

ℎ=1

󵄨󵄨󵄨󵄨𝜔𝑠ℎ

󵄨󵄨󵄨󵄨

𝑆 ⋅ 𝐻
,

𝜔
∗
=

{{{

{{{

{

(1 −
1.8𝜏

𝑇
)𝜔

max
, 0 ≤ 𝜏 ≤

𝑇

2
,

(0.2 −
0.2𝜏

𝑇
)𝜔

max
,

𝑇

2
≤ 𝜏 ≤ 𝑇,

Δ𝑤 =
(𝜔

∗
− 𝜔)

𝜔max (𝑤
max

− 𝑤
min

) ,

𝑤 = 𝑤 + Δ𝑤,

𝑤 = 𝑤
max if 𝑤 > 𝑤

max
,

𝑤 = 𝑤
min if 𝑤 > 𝑤

min
.

(38)
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generate a new solution 𝑐
𝑁

if (𝑐 dominates 𝑐𝑁)
discard 𝑐

𝑁

else if (𝑐𝑁 dominates 𝑐)
replace 𝑐 with 𝑐

𝑁 and add 𝑐
𝑁 to the archive

else if (𝑐𝑁 is dominated by any member of the archive)
discard 𝑐

𝑁

else if (𝑐𝑁 dominates any member of the archive)
replace it with 𝑐

𝑁 and add 𝑐
𝑁 to the archive and all other members

dominated by 𝑐𝑁 are discarded
else

apply test procedure to 𝑐, 𝑐𝑁 and the archive to determine which
becomes the new current solution and whether to add 𝑐

𝑁 to the archive
until a termination criterion has been reached, return to the beginning

Procedure 1: PAES.

if the archive is not full
add 𝑐

𝑁 to the archive
if (𝑐𝑁 is in a less crowded region of the archive than 𝑐)
accept 𝑐𝑁 as the new current solution

else
maintain 𝑐 as the current solution

else if (𝑐𝑁 is in a less crowded region of the archive than any other member on the archive)
add 𝑐

𝑁 to the archive, and remove a member of the archive from the most crowded region
if (𝑐𝑁 is in a less crowded region of the archive than 𝑐)

accept 𝑐𝑁 as the new current solution
else

maintain 𝑐 as the current solution
else

don’t add 𝑐
𝑁 to the archive

Procedure 2: Test.

3.8. Velocity and Position Updating. Update the velocity and
the position of each 𝑠th particle using the following equations:

𝜔
𝑠ℎ
(𝜏 + 1) = 𝑤 (𝜏) 𝜔

𝑠ℎ
(𝜏) + 𝑐

𝑝
𝑢
𝑟
(𝜓

𝑠ℎ
− 𝜃

𝑠ℎ
(𝜏))

+ 𝑐
𝑔
𝑢
𝑟
(𝜓

𝑔ℎ
− 𝜃

𝑠ℎ
(𝜏)) + 𝑐

𝑙
𝑢
𝑟
(𝜓

𝐿

𝑠ℎ
− 𝜃

𝑠ℎ
(𝜏)) ,

𝜃
𝑠ℎ
(𝜏 + 1) = 𝜃

𝑠ℎ
(𝜏) + 𝜔

𝑠ℎ
(𝜏 + 1) .

If 𝜃
𝑠ℎ
(𝜏 + 1) > 𝜃

max
,

then set 𝜃
𝑠ℎ
(𝜏 + 1) = 𝜃

max
𝜔
𝑠ℎ
(𝜏 + 1) = 0.

If 𝜃
𝑠ℎ
(𝜏 + 1) < 𝜃

min
,

then set 𝜃
𝑠ℎ
(𝜏 + 1) = 𝜃

min
𝜔
𝑠ℎ
(𝜏 + 1) = 0.

(39)

4. A Case Study

In this section, computational experiments were carried
out on a large-scale water conservancy and hydropower
construction project. Through the illustrative example on

the data set adopted from the case problem, the proposed
approach is validated and the efficiency of the algorithm is
tested.

4.1. Presentation of Case Problem. The XLD hydropower
station LSCP is in XLD gorge section of the JS river
located in LB county of SC province and YS county of YN
province, an area which is earthquake prone. The Yingjiang,
Wenchuan, and Panzhihua-Huili earthquakes all seriously
affected the local area. Therefore, it is critical that the LSCP
risks be controlled, especially in the transportation network.
Therefore, the proposed approach is suitable for use on the
transportation network at the XLD hydropower LSCP.

The transportation network in the project has an internal
road network and an external road network. The internal
road network is composed of more than 20 major trunk
roads and these roads form a solid network located on the
left and right banks. There is a temporary traffic bridge
upstream and a permanent traffic bridge downstream. The
external road network is composed of several secondary
roads used for automobiles, which begins at the project dam
and terminates at the PED railway station. In order to apply
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Figure 7: Simplified transportation network illustration in XLD hydropower LSCP.

the proposed approach more conveniently, adjacent roads of
the same type have been combined and the concrete shapes
of the roads have been ignored. A simplified transportation
network illustration is shown in Figure 7 which distinguishes
the permanent and temporary, critical and noncritical nature
of each road according to the practical location of the
transportation network. The illustration has 24 nodes and
18 and 29 links. There are 12 commodities in total, which
represent travel between different origin-destination pairs.
The 16 nodes in these commodities have certain capacities
(unit: number of vehicles (n)) and others have no capacity.
Tables 1 and 2 give the detailed data.

For each link in the transportation network, there is a
free flow travel time 𝑡0

𝑎
(unit: hour (h)), a “practical capacity”

for the link 𝑐
󸀠

𝑎
(unit: number of vehicles (n)), which is set

to be 90% of the design capacity [1], and a fuzzy random
seismic damage scenario ̃𝜉

𝑎
. The corresponding data for this

case problem are stated in Table 3. It should be noted that
the probabilities assigned to the fuzzy numbers for the fuzzy
random numbers ̃

𝜉
𝑎
in Table 3 were obtained through a

statistical analysis of the historical data in the area.
In the case problem, there are 2 outputs—the retrofit of

permanent (i.e., 𝑖 = 1) and temporary (i.e., 𝑖 = 2) links. The
activity process and activities for the retrofit are the same for
both types of links. Activities (i.e., 𝑗 = 1, . . . , 10) are as (1)
breaking pavement, (2) digging grooves, (3) laying pipes, (4)
backfilling grooves, (5) strengthening earth-rock, (6) evening
roadbeds, (7) digging gutters, (8) building kerbstones, (9)
constructing bases, (10) constructing pavements. Every activ-
ity corresponds to an activity cost center. According to [25],

Table 1: Travel of the commodities.

Commodity 𝑘 Travel of commodity
1󸀠 #24 → #23 → #22 → #21 → #20
2󸀠 #20 → #21 → #22 → #23 → #24
3󸀠 #20 → #19 → #7→ #5 → #2
4󸀠 #2 → #5 → #7 → #19 → #20
5󸀠 #6 → #7 → #19 → #20
6󸀠 #20 → #19 → #7 → #6
7󸀠 #20 → #18 → #17 → #16 → #13
8󸀠 #13 → #16 → #17 → #18 → #20
9󸀠 #20 → #18 → #17 → #16 → #14
10󸀠 #14 → #16 → #17 → #18 → #20
11󸀠 #20 → #18 → #17 → #16 → #15
12󸀠 #15 → #16 → #17 → #18 → #20

5 environmental media can be determined in the retrofit
work: (1) air and climate, (2) waste water, (3) waste, (4) soil
and ground water, (5) noise and vibration. Environmental
cost categories are recorded as in [25].

(1) Waste and emission treatment: depreciation for
related equipment; maintenance, operating materi-
als and services; related personnel; fees, taxes, and
charges; insurance for environmental liabilities.

(2) Prevention and environmentalmanagement: external
services for environmental management and person-
nel for general environmental management activities.
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Figure 8: Allocate environmental costs of retrofit work.

Table 2: Capacity of node.

Node 𝑏 #24 #23 #22 #21 #20 #19 #7 #5 #2 #6 #18 #17 #16 #13 #14 #15
Capacity 𝑐𝑎

𝑏
(n) 51 51 51 51 149 49 49 22 22 25 49 49 49 16 18 15

(3) Material purchase value of nonproduct output: raw
materials; auxiliary materials; operating materials;
packaging; energy; and water.

(4) Processing costs of nonproduct output: depreciation
for machinery and labor hours.

Since categories 1, 3, and 4 are variable costs (i.e., V =

1, 2, 3), category 2 is fixed costs (i.e., 𝑓 = 1); they are
recoded as (unit: ¥) [𝑐𝑒

𝑝

1
, 𝑐𝑒

𝑝

2
, 𝑐𝑒

𝑝

3
] = [11800, 5764, 2216],

[𝑐𝑒
𝑡

1
, 𝑐𝑒

𝑡

2
, 𝑐𝑒

𝑡

3
] = [73870, 8665, 3365], and 𝑐𝑒

𝑓

1
= 36538. Based

on the descriptions above, the environmental costs of the
retrofit are allocated as shown in Figure 8.

Based on the practice of the case problem and Figure 8,
the percentage output for the fixed environmental costs 1

is [𝑝𝑒𝑓
1
, 𝑝𝑒

𝑓

2
] = [90.8%, 9.2%]. To calculate the final environ-

mental costs for each output, the corresponding data for the
activity cost centers 𝑗 = 1, . . . , 10 is used as in Table 4. The
percentage of 𝑗 in the variable environmental cost categories
is denoted as [𝑝𝑒V

𝑗1
, 𝑝𝑒

V
𝑗2
, 𝑝𝑒

V
𝑗3
]. 𝑎𝑚

𝑗
denotes the cost driver

amount in 𝑗 and [𝑎𝑚
1𝑗
, 𝑎𝑚

2𝑗
] denotes the cost driver amount

of outputs in 𝑗.
In addition, the corresponding cost data for the retrofit

and reconstruction are shown in Table 5. The values for the
othermodel parameters are as follows: 𝛿 = 0.2, 𝜂 = 0.6, 𝜌 = 1,
𝛼 = 0.25, 𝛽 = 2, and 𝛾 = 1.

4.2. Case Solution. The developed algorithm was adopted
using MATLAB 7.0 on an Inter Core 2, 2.00GHz clock
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Table 3: Free flow travel time 𝑡𝑖0
𝑎
, practical capacity 𝑐𝑎󸀠

𝑎
, and fuzzy random seismic damage scenario ̃𝜉

𝑎
of each link.

Link 𝑎 Corresponding
nodes 𝑏 Free flow travel time 𝑡𝑖0

𝑎
(h) Practical capacity 𝑐𝑎󸀠

𝑎
(n) Fuzzy random seismic damage scenario ̃𝜉

𝑎

1 #1, #2 0.10 72 ̃
𝜉
1
=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 13.7%
(1, 2, 3) with probability 18.9%
(2, 3, 4) with probability 25.8%
(3, 4, 5) with probability 16.9%
(4, 5, 6) with probability 24.7%

2 #2, #3 0.08 75 ̃
𝜉
2
=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 7.8%
(1, 2, 3) with probability 15.2%
(2, 3, 4) with probability 23.4%
(3, 4, 5) with probability 29.5%
(4, 5, 6) with probability 24.1%

3
4
5
6
7
8
9
10
11

#1, #5
#2, #5
#2, #6
#3, #4
#4, #6
#6, #7
#5, #7
#6, #8
#7, #19

0.25 87

̃
𝜉
3

̃
𝜉
4

̃
𝜉
5

̃
𝜉
6

̃
𝜉
7

̃
𝜉
8

̃
𝜉
9

̃
𝜉
10

̃
𝜉
11

=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 11.5%
(1, 2, 3) with probability 8.9%
(2, 3, 4) with probability 32.8%
(3, 4, 5) with probability 27.4%
(4, 5, 6) with probability 19.4%

12 #19, #20 0.10 101 ̃
𝜉
12
=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 8.6%
(1, 2, 3) with probability 20.3%
(2, 3, 4) with probability 28.6%
(3, 4, 5) with probability 21.5%
(4, 5, 6) with probability 21.1%

13 #10, #11 0.05 96 ̃
𝜉
13
=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 6.5%
(1, 2, 3) with probability 17.2%
(2, 3, 4) with probability 13.7%
(3, 4, 5) with probability 27.2%
(4, 5, 6) with probability 35.4%

14
15
16
17
18
19
20
21
23
25

#1, #5
#12, #14
#14, #16
#9, #14
#11, #13
#13, #16
#10, #13
#15, #16
#16, #17
#18, #20

0.30 90

̃
𝜉
14

̃
𝜉
15

̃
𝜉
16

̃
𝜉
17

̃
𝜉
18

̃
𝜉
19

̃
𝜉
20

̃
𝜉
21

̃
𝜉
23

̃
𝜉
25

=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 12.8%
(1, 2, 3) with probability 20.3%
(2, 3, 4) with probability 16.5%
(3, 4, 5) with probability 31.2%
(4, 5, 6) with probability 19.2%
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Table 3: Continued.

Link 𝑎 Corresponding
nodes 𝑏 Free flow travel time 𝑡𝑖0

𝑎
(h) Practical capacity 𝑐𝑎󸀠

𝑎
(n) Fuzzy random seismic damage scenario ̃𝜉

𝑎

22 #8, #15 0.09 89 ̃
𝜉
22
=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 7.4%
(1, 2, 3) with probability 19.4%
(2, 3, 4) with probability 21.6%
(3, 4, 5) with probability 23.8%
(4, 5, 6) with probability 27.8%

24 #17, #18 0.10 84 ̃
𝜉
24
=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 23.2%
(1, 2, 3) with probability 9.1%
(2, 3, 4) with probability 20.8%
(3, 4, 5) with probability 21.6%
(4, 5, 6) with probability 25.3%

26
27
29

#20, #21
#21, #22
#23, #24

0.40 126

̃
𝜉
26

̃
𝜉
27

̃
𝜉
29

=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 16.6%
(1, 2, 3) with probability 23.2%
(2, 3, 4) with probability 7.9%
(3, 4, 5) with probability 30.1%
(4, 5, 6) with probability 22.2%

28 #22, #23 0.15 96 ̃
𝜉
28
=

{{{{{{{{{

{{{{{{{{{

{

(0, 1, 2) with probability 14.7%
(1, 2, 3) with probability 121.3%
(2, 3, 4) with probability 10.8%
(3, 4, 5) with probability 28.1%
(4, 5, 6) with probability 25.1%

Table 4: Corresponding data of activity cost centers.

Activity cost center 𝑗 𝑝𝑒
V
𝑗1

𝑝𝑒
V
𝑗2

𝑝𝑒
V
𝑗3

𝑎𝑚
𝑗

𝑎𝑚
1𝑗

𝑎𝑚
2𝑗

1 15.6% 0.0% 0.0% 426.30m2 408.10m2 18.20m2

2 6.7% 0.0% 0.0% 9.74m3 9.32m3 0.42m3

3 6.7% 25.0% 25.0% 60.90m 58.30m 2.60m
4 6.7% 0.0% 0.0% 3.35m3 3.21m3 0.14m3

5 5.4% 0.0% 0.0% 25.58m3 24.49m3 1.09m3

6 15.6% 0.0% 0.0% 426.30m2 408.10m2 18.20m2

7 6.7% 0.0% 0.0% 0.61m3 0.58m3 0.03m3

8 5.4% 25.0% 25.0% 60.90m 58.30m 2.60m
9 15.6% 25.0% 25.0% 426.30m2 408.1m2 18.20m2

10 15.6% 25.0% 25.0% 426.30m2 408.10m2 18.20m2

pulse with 2048MB memory. The algorithmic parameters
for the case problem were set as follows: error coefficient
𝜖 = 0.9, swarm size 𝑆 = 20, iteration max 𝑇 = 100,
inertia weight max 𝑤

max
= 0.9, inertia weight min 𝑤

min
=

0.1, personal best position acceleration constant 𝑐
𝑝

= 0.5,
global best position acceleration constant 𝑐

𝑔
= 0.5, local best

position acceleration constant 𝑐
𝑙
= 0.2, and near neighbor

best acceleration constant 𝑐
𝑛
= 0.1.

After 8 iterations of the approximation decomposition,
the approximation termination was achieved within 36 min-
utes on an average of 10 runs, which is time acceptable.
The optimal solutions are shown in Tables 6 and 7. For

all the Pareto optimal solutions on the upper level, the
corresponding solutions on the lower level are the same.
Table 6 shows a Pareto optimal solution set with 45 solutions
on the upper level, where only 10 of the set are enumerated for
convenience of expression.The investor is able to choose their
preferred plan from the set. If they feel that the retrofit costs
including environmental costs 𝐶 are more important, they
would choose the minimum costs plan and vice versa. Since
there are fuzzy numbers in model (36), it cannot state crisp
optimal objective values in final decision results. However,
they are easy to be transformed into equivalent crisp forms
by many fuzzy theories and it will not effect the decision.
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Table 5: Cost data of retrofit and reconstruction.

Item Cost (¥)
Increased variable retrofit costs for permanent link by
basic rank (i.e., rank 1) 𝑐𝑝V𝑎

16732

Variable retrofit costs for temporary link by basic rank
(i.e., rank 1) 𝑐𝑡V𝑎

30528

Increased fixed retrofit costs for permanent link 𝑐𝑝
𝑓𝑖

14525
Fixed retrofit costs for temporary link 𝑐𝑡

𝑓𝑖
28637

Increased variable reconstruction cost for permanent link
by basic rank (i.e., rank 1) 𝑐𝑟𝑝V𝑎

107052

Variable reconstruction cost for temporary link by basic
rank (i.e., rank 1) 𝑐𝑟𝑡V𝑎

98063

Increased fixed reconstruction cost for permanent link 𝑐𝑟𝑝
𝑓𝑖

69894
Fixed reconstruction cost for temporary link 𝑐𝑟𝑡

𝑓𝑖
50183

4.3. Analytic Results of the Proposed Approach

(1) Worthiness of Modeling and Solutions. Fuzzy random
programming approach explicitly considers the entire range
of uncertain scenarios and thus is more conforming to reality
for hedging better against uncertainty. Although it increases
the complexity of modeling, the model is well transformed
orienting computer implementation. In addition, the com-
puting complexity of the model is not greater than that of
the stochastic programming approach used in [1]. Therefore,
the extra effort onmodeling and solving fuzzy randombilevel
programming is worthwhile.

The multiobjective method is introduced to determine
the Pareto optimal solution set for the upper level and
provides more effective and nondominated alternatives for
the decision-maker. Compared with the weight-summethod
for multiobjective in [19], the solutions in this paper have
more reference value for the decision-maker and reflect
the users’ preference requirements. Therefore, it is more
worthwhile.

(2) Efficiency of Algorithm. This paper compares GA, an
usually used metaheuristics algorithm, and the developed
algorithm in this study. The merit of GA is its strong
evolutionary process to find an optimal solution by the
operation of crossover, mutation, and selection. However,
the randomly generated initial generation at the algorithms’
beginning affects the solution quality because of the bad gene
inherited from the parent generation. Moreover, the search-
ing capability is reduced as GA does not rely on gradient
or derivative information. In the developed algorithm, the
particle-represented solutions closely connect the particles of
PSO and the solutions to the problem. The hybrid particle-
updating mechanism successfully enhances the searching
capability. The developed algorithm is a useful tool for
the solution to the problem. In contrast to the previous
papers, such as [19, 21], both the bilevel and multiobjective
environments are considered in this paper.

For multiobjective optimization, the definition of qual-
ity is substantially more complex than for single-objective

optimization problems. Figure 9 shows the iterative results
of Pareto optimal solutions in 8 iterations. Note that in
each iteration of approximation decomposition, these fuzzy
numbers in model (36) are decomposed into crisp forms.
Therefore, the objective values can be evaluated. For further
expression of the efficiency of the convergence, three metrics
of performance are studied. Table 8 shows the metrics of
performance for Pareto optimal sets proposed in [51] and the
set convergence of Pareto optimal sets in 8 iterations after 10
runs.

(3) Efficiency of Algorithm Parameters. Since the search space
for the problem is so large and the computing process is time-
consuming, it is necessary to choose reasonable algorithm
parameters. Table 9 shows the comparison results of different
swarm size (i.e., 𝑆) and iteration max (i.e., 𝑇) on average
computing time and iterations after 10 runs. Looking into
Table 9, when 𝑆 = 10, the program could not obtain
results in more than 3600 s and more than 10 iterations with
both 𝑇 = 100 and 𝑇 = 200. This is the same when
𝑆 = 50 with the lower iterations. When 𝑆 = 20 and
𝑇 = 200, the process is more time-consuming than the
current algorithmparameters.Therefore, the current ones are
considered suitable.

5. Conclusions

This paper studies retrofit decision for transportation net-
work of LSCP to hedge against seismic risk. On the con-
sideration of the emerged challenges in the problem, using
distinctions of various link types, bilevel decision, environ-
mental costs, and fuzzy random seismic damage scenario, a
fuzzy random multiobjective bilevel programming model is
set up. A transforming approach is in use to obtain equivalent
fuzzy bilevel programming model. Then, decomposition is
utilized to these fuzzy variables by decomposition theorem
of fuzzy number. An approximation decomposition-based
multiobjective AGLNPSO is developed to solve the problem.
A case study is presented as an illustrative example of this
problem. The results validate the worthiness of modeling
and solutions and test the efficiency of the algorithm and
parameters.

The contributions of this paper to literature are as
the follows. (1) This study adopts the work of [1] to the
filed of LSCP. Bilevel decision involves, with the investor
and the administer, distinctions of various link types, and
retrofit decision specified into several ranks according to
the seismic damage scenario provides more reasonable and
practical description of the problem. (2) Although there
are many works on environmental cost, such as [25, 26],
few papers consider it in transportation network in LSCP.
Thus it enhances the focus points of management aims of
the problem. (3) This paper uses fuzzy random seismic
damage scenario to describe the hybrid uncertain situation.
To the best of our knowledge, it has never been done before.
(4) The approximation decomposition-based multiobjective
AGLNPSO is developed as one of the useful tools to solve
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Table 6: Pareto optimal solution set on the upperlevel.

Solution 𝑢
𝑎

1∗ 2∗ 3∗ 4∗ 5∗ 6∗ 7∗ 8∗ 9∗ 10∗ . . . . . .

Link 𝑎

1 3 3 3 3 4 4 2 1 3 3 . . . . . .

2 4 3 4 3 4 4 1 5 2 4 . . . . . .

3 2 4 2 3 2 1 2 1 5 2 . . . . . .

4 2 2 3 3 5 1 3 3 1 3 . . . . . .

5 4 3 3 1 4 4 1 5 3 4 . . . . . .

6 3 4 3 3 5 2 5 3 3 3 . . . . . .

7 4 3 3 3 3 5 1 1 2 3 . . . . . .

8 2 3 2 3 1 1 3 4 3 3 . . . . . .

9 3 4 3 2 5 1 2 4 4 3 . . . . . .

10 3 3 3 2 3 3 4 1 3 2 . . . . . .

11 2 2 2 2 3 3 2 1 1 2 . . . . . .

12 3 3 4 2 2 3 3 4 2 4 . . . . . .

13 3 3 3 1 5 3 4 4 2 3 . . . . . .

14 4 3 4 1 1 5 3 2 3 3 . . . . . .

15 2 2 1 1 2 1 2 1 3 2 . . . . . .

16 3 2 3 3 3 3 3 4 1 3 . . . . . .

17 3 2 3 2 2 4 3 2 2 3 . . . . . .

18 3 2 3 3 3 4 4 1 1 3 . . . . . .

19 3 3 2 5 1 2 5 1 3 2 . . . . . .

20 2 3 2 2 2 2 2 2 4 3 . . . . . .

21 2 4 2 5 1 1 4 3 5 4 . . . . . .

22 3 3 3 5 4 1 4 3 4 2 . . . . . .

23 2 3 2 5 2 1 2 2 3 2 . . . . . .

24 2 2 3 4 1 2 3 4 2 2 . . . . . .

25 3 2 3 2 3 3 1 5 2 3 . . . . . .

26 2 2 2 3 1 1 3 1 1 2 . . . . . .

27 4 3 4 1 3 4 3 3 2 3 . . . . . .

28 3 2 3 3 3 5 2 3 1 3 . . . . . .

29 4 4 4 5 4 5 2 5 3 4 . . . . . .

Table 7: Optimal solutions on the lowerlevel.

Commodity 𝑘 1󸀠 2󸀠 3󸀠 4󸀠 5󸀠 6󸀠 7󸀠 8󸀠 9󸀠 10󸀠 11󸀠 12󸀠

Flow of commodity 𝑥
𝑘
(n/h) 25.50 25.50 12.00 12.00 12.50 12.50 8.00 8.00 9.00 9.00 7.50 7.50

Table 8: Metrics of performance and set convergence for Pareto
optimal sets.

Iteration The average
distance

The
distribution

The
extent The set convergence

1 0.0812 0.5623 5.0088 —
2 0.0630 0.4615 5.7706 Iteration 1–2: 0.5610
3 0.1364 0.8600 6.8594 Iteration 2–3: 0.6765
4 0.1223 0.5250 6.3147 Iteration 3–4: 0.7632
5 0.1502 0.6820 6.7538 Iteration 4–5: 0.8750
6 0.2835 0.9600 6.6417 Iteration 5–6: 0.8571
7 0.0973 0.5289 5.4451 Iteration 6–7: 0.5712
8 0.1300 0.8635 6.6424 Iteration 7–8: 0.9143

Table 9: Comparison of different algorithm parameters.

𝑆 = 10 𝑆 = 20 𝑆 = 50

𝑇 = 100 𝑇 = 200 𝑇 = 100 𝑇 = 200 𝑇 = 100 𝑇 = 200

Computing
time (s) ≥3600 ≥3600 2160 3480 ≥3600 ≥3600

Iterations ≥16 ≥12 8 6 ≥4 ≥3

this problem. In contrast to the previous papers, such as
[19, 21], both the bilevel and multiobjective environments are
considered in this paper.

There are three areas suggested for future research. First,
more cost categories need to be investigated and the detailed
relationships between the retrofit decision and the costs
should be outlined to ensure the model is as practical as
possible. Secondly, to determine better, more effective solu-
tions with lower memory and computing time requirements,
alternative approaches and algorithms (e.g., other exact
approaches, (meta)heuristics, evolutionary algorithms, etc.)
could be used to make comparisons. Finally, consideration of
other behavior assumptions, such as the travelers learning or
user equilibrium, may change the structure of the problem.
Each of these areas is very important and equally worthy of
our concern.
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Figure 9: Iterative results of Pareto optimal solutions in 8 iterations.
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The well-known Blasius flow is governed by a third-order nonlinear ordinary differential equation with two-point boundary
value. Specially, one of the boundary conditions is asymptotically assigned on the first derivative at infinity, which is the main
challenge on handling this problem. Through introducing two transformations not only for independent variable bur also for
function, the difficulty originated from the semi-infinite interval and asymptotic boundary condition is overcome. The deduced
nonlinear differential equation is subsequently investigatedwith the fixed pointmethod, so the original complex nonlinear equation
is replaced by a series of integrable linear equations. Meanwhile, in order to improve the convergence and stability of iteration
procedure, a sequence of relaxation factors is introduced in the framework of fixed point method and determined by the steepest
descent seeking algorithm in a convenient manner.

1. Introduction

The Navier-Stokes equations are the fundamental governing
equations of fluid flow. Usually, this set of nonlinear partial
differential equations has no general solution, and analytical
solutions are very rare only for some simple fluid flows.
However, in some certain flows, the Navier-Stokes equations
may be reduced to a set of nonlinear ordinary differential
equations under a similarity transform [1, 2].These similarity
solutions could not only provide somephysical significance to
the complex Navier-Stokes equations but also act as a bench-
marking for numerical method.The well-known Blasius flow
[3–5] is possibly the simplest example among these similarity
solutions. It describes the idealized incompressible laminar
flowpast an semi-infinite flat plate at highReynolds numbers,
which is mathematically a third-order nonlinear two-point
boundary value problem:

A
𝑓
[𝑓] = 2𝑓

󸀠󸀠󸀠
+ 𝑓𝑓
󸀠󸀠
= 0, (1)

subject to the boundary conditions:

𝑓 (0) = 0, 𝑓
󸀠
(0) = 0, lim

𝜂→∞
𝑓
󸀠
(𝜂) = 1, (2)

where the prime denotes differentiation to the variable 𝜂 and
𝑓(𝜂) is the nondimensional stream function related to the
stream function 𝜓(𝑥, 𝑦) as follows:

𝜓 (𝑥, 𝑦) = 𝑓 (𝜂)√]𝑥𝑈
∞
. (3)

𝜂 = 𝑦√𝑈
∞
/(]𝑥) is the similarity variable, where 𝑈

∞
is the

free stream velocity, ] is the kinematic viscosity coefficient,
and 𝑥 and 𝑦 are the two independent coordinates. The two
velocity components are then determined:

𝑢 =
𝜕𝜓

𝜕𝑦
= 𝑈
∞
𝑓
󸀠
(𝜂) ,

V = −
𝜕𝜓

𝜕𝑥
=
1

2
[𝜂𝑓
󸀠
(𝜂) − 𝑓 (𝜂)] ⋅ √

]𝑈
∞

𝑥
.

(4)

According to (1) and (2) the solution is defined on a semi-
infinite interval 𝜂 ≥ 0, and one of the boundary conditions
is asymptotically assigned on the first derivative of function
at infinity, which are the main challenges on solving the
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Blasius flow. The solution to this problem has the following
asymptotic property [6, 7]:

𝑓 ∼
𝑓
󸀠󸀠
(0) 𝜂
2

2
, as 𝜂 󳨀→ 0,

𝑓 ∼ 𝜂 + 𝐵, as 𝜂 󳨀→ ∞,

(5)

where 𝐵 is a constant and the benchmarking value provided
by Boyd [6, 7] is 𝐵 = −1.720787657520503.

As known, no simple closed-form solution to the Blasius
problem is available, despite the simple form and such a
long history of it since 1908 [3]. Much attention has been
paid to this problem. Blasius [3] himself firstly investigated
this problem by the perturbation method and obtained an
approximate solution bymatching a power series solution for
small 𝜂 to an asymptotic expansion for large 𝜂. However, this
procedure may be improper because of somewhat restricted
radius of convergence in the first power series [8]. Later, this
problem was handled by Bender et al. [9] with 𝛿-expansion
in a smart manner. The approximate solutions were obtained
by He [10], Liao [11, 12], and Turkyilmazoglu [13–16] with the
variational iterationmethod, homotopy analysismethod, and
homotopy perturbation method, respectively. Wang [17] also
investigated this problem by the Adomian decomposition
method. Meantime, there are a lot of numerical methods
emerging to handle the Blasius problem including, but not
limited to, shooting method, finite differences method, and
spectral method [18–31]. A vast bibliography of numerical
methods has developed for this problem, so a full account
of them is out of the scope of this paper, and readers are
suggested to refer to the review articles [6, 7]. It is noted
that the existing numerical methods usually integrate this
problem over a finite interval 𝜂 ∈ [0, 𝜂

∞
], although the

Blasius problem is originally defined on the semi-infinite
interval 𝜂 ∈ [0, +∞). Thus the value of 𝜂

∞
should be chosen

sufficiently large to assure the accuracy of the asymptotical
boundary condition at infinity. However, the appropriate
value 𝜂

∞
could not be determined beforehand, so usually

the trial-and-error approach is involved, and some different
values should be tried to find the appropriate 𝜂

∞
to satisfy the

demanded accuracy.
In order to exactly assure the boundary conditions (2)

and obtain a uniformly valid solution on the semi-infinite
interval 𝜂 ∈ [0, +∞), two transformations not only for
the independent variable 𝜂 but also for function 𝑓(𝜂) are
introduced in this paper. The transformed nonlinear differ-
ential equation is subsequently investigated with the fixed
point method (FPM) [33], which transforms the nonlinear
differential equation into a series of integrable linear dif-
ferential equations. Hence, an approximate semianalytical
solution to the Blasius problem is finally obtained, which is
valid on the whole domain and can satisfy the asymptotic
property automatically. Meantime, in order to improve the
convergence and stability of iteration procedure, a sequence
of relaxation factors is introduced in the framework of
FPM, which are determined by the steepest descent seeking
algorithm. Thus, the accuracy of this approximate solution
could be improved step by step in a convenient manner.
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2. Revisiting the Blasius Equation by
Fixed Point Method

2.1. Transformations. As mentioned in Section 1, the main
challenge on handling the Blasius problem originates from
the semi-infinite interval 𝜂 ∈ [0, +∞) and the asymptotic
boundary condition lim

𝜂→∞
𝑓
󸀠
(𝜂) = 1. In order to overcome

these difficulties, two transformations are introduced for
independent variable 𝜂 and function 𝑓(𝜂), respectively,

𝑧 =
(𝜆𝜂 − 1)

(𝜆𝜂 + 1)
,

𝑔 (𝑧) =
𝜆 (𝑓 − 𝜂)

(1 + 𝜆𝜂)
,

(6)
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𝑓
[𝑓
𝑛
] = 2𝑓

󸀠󸀠󸀠

𝑛
+ 𝑓
𝑛
𝑓
󸀠󸀠

𝑛
(𝜆 =

1/5).

where 𝜆 (>0) is a free parameter. 1/𝜆 stands for the length
dimension and its physical meaning is related to the scale of
boundary layer thickness. The influence of 𝜆 on the solution
will be discussed in detail in Section 3.2.

Hence, the original Blasius equation becomes

A
𝑔
[𝑔] = 𝜆

2
(1 − 𝑧)

3
𝑔
󸀠󸀠󸀠
+ [1 − 3𝜆

2
(1 − 𝑧)

2
+ 𝑧 + 2𝑔] 𝑔

󸀠󸀠
= 0,

(7)

with the following boundary conditions:

𝑔 (−1) = 0, 𝑔
󸀠
(−1) = −

1

2
, 𝑔 (1) = 0, (8)

where the prime denotes differentiation to the new variable
𝑧. It is clear that the semi-infinite interval 𝜂 ∈ [0, +∞) is
mapped to the bounded interval −1 ≤ 𝑧 ≤ 1, and the original
asymptotic boundary condition lim

𝜂→∞
𝑓
󸀠
(𝜂) = 1 becomes

𝑔 (1) = lim
𝜂→∞

𝜆 (𝑓 − 𝜂)

1 + 𝜆𝜂
= lim
𝜂→∞

𝜆 [𝑓
󸀠
(𝜂) − 1]

𝜆
= 0, (9)

which is beneficial to the acquirement of the valid solution in
the whole domain.

2.2. The Idea of Fixed Point Method (FPM). The fixed point,
a fundamental concept in functional analysis [34], has been
widely adopted in studying the existence and uniqueness of
solutions by pure mathematicians. Recently, the fixed point
concept has been used to handle nonlinear differential equa-
tions, and the fixed point method (FPM) has been proposed
to obtain the explicit approximate analytical solution to the
nonlinear differential equation [33].

To outline the idea of FPM, let us consider the following
nonlinear differential equation:

A [𝑢] = 0,

B
+ [𝑢] = 0,

(10)

where A[⋅] is a nonlinear operator and 𝑢 is an unknown
function. Here,B

+
[𝑢] = 0 is the boundary condition and/or

initial condition for 𝑢.
T[⋅] is a contractive map:

T [𝑢] = 𝑢 − 𝜛 ⋅L
−1

𝐶
[A [𝑢]] , (11)

whereL
𝐶
[⋅] is a linear continuous bijective operator, named

as the linear characteristic operator of the nonlinear operator
A[⋅] and L−1

𝐶
[⋅] is the inverse operator of L

𝐶
[⋅]. 𝜛 is a real

nonzero free parameter, named as the relaxation factor, which
could improve the convergence and stability of iteration
procedure. The optimal value 𝜛 is usually dependent on the
problem to be solved [33]. Then, a solution sequence {𝑢

𝑛
|𝑛 =

0, 1, 2, 3, . . .} can be obtained from the following iteration
procedure:

𝑢
𝑛+1

= T [𝑢
𝑛
] = 𝑢
𝑛
− 𝜛
𝑛+1

⋅L−1
𝐶
[A [𝑢

𝑛
]] ,

B
+
[𝑢
𝑛+1

] = 0
𝑛 = 0, 1, 2, . . .

(12)

⇐⇒
L
𝐶
[𝑢
𝑛+1

] = L
𝐶
[𝑢
𝑛
] − 𝜛
𝑛+1

⋅A [𝑢
𝑛
] ,

B
+
[𝑢
𝑛+1

] = 0
𝑛=0, 1, 2, . . . .

(13)

If the convergence of the solution sequence {𝑢
𝑛
|𝑛 =

0, 1, 2, 3, . . .} is ensured, it is clear that the limit value 𝑢∗ is
exactly the zero point of the original nonlinear operatorA[⋅]:

A [𝑢
∗
] = 0,

B
+
[𝑢
∗
] = 0,

(14)

and 𝑢∗ is also named as a fixed point of the contractive map
T[𝑢].

In [33], only one relaxation factor 𝜛 is introduced and
determined by the so-called 𝜛-curves in a heuristic manner.
Here, a sequence of relaxation factors {𝜛

𝑛
|𝑛 = 1, 2, 3, . . .}

is introduced in (12), which will be decided according to
the steepest descent seeking algorithm in the following
Section 2.3.
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Table 1: Comparison of 𝑓󸀠󸀠(0) between FPM (𝜆 = 1/5) and others.

Present (FPM) Fazio [31] Zhang and Chen [32] Boyd [6, 7] (Benchmark)
𝑛 𝑓

󸀠󸀠

𝑛
(0)

1 0.3399132521631

0.3320575595 0.33205733621 0.33205733621519630

25 0.3314634706964
50 0.3322299008614
100 0.3320852976636
150 0.3320560696476
200 0.3320572413724
250 0.3320573781489
300 0.3320573415043
400 0.3320573362780
600 0.3320573362198
800 0.3320573362153

2.3. The Steepest Descent Seeking Algorithm (SDS). As men-
tioned in Section 2.2, the relaxation factor {𝜛

𝑛
|𝑛 = 1, 2, 3, . . .}

could improve the convergence and stability of iteration
procedure, and usually the optimal value of relaxation factor
is dependent on the problem to be solved. Here, an algorithm,
named as the steepest descent seeking algorithm (SDS), is
adopted to determine the optimal value of the relaxation
factor.

Let Res
𝑛
denote the square residual error of the aforemen-

tioned iteration procedure in (13):

Res
𝑛
= Res

𝑛
(𝜛
1
, 𝜛
2
, . . . 𝜛
𝑛
)

= ∫

Ω

(A [𝑢
𝑛
])
2

𝑑Ω, 𝑛 = 1, 2, 3, . . . ,

(15)

where Ω is the definition domain of the variable and Res
𝑛
is

a kind of global residual error and can evaluate the accuracy
of the approximation 𝑢

𝑛
.Then it is suggested that the optimal

value of relaxation factor 𝜛
𝑛,opt corresponds to the value 𝜛

𝑛

such that Res
𝑛
obtains the minimum value min(Res

𝑛
). For

example, when 𝑛 = 1, the square residual error Res
1
(𝜛
1
) is

a function of 𝜛
1
only and thus the optimal value 𝜛

1,opt can be
obtained by solving the nonlinear algebraic equation:

𝑑Res
1

𝑑𝜛
1

= 0. (16)

When 𝑛 = 2, the square residual error Res
2
(𝜛
1
, 𝜛
2
) is

dependent on 𝜛
1
and 𝜛

2
. Because the optimal value 𝜛

1,opt
is known from the previous step, the optimal value 𝜛

2,opt is
governed by the following nonlinear algebraic equation:

𝑑Res
2

𝑑𝜛
2

= 0. (17)

Similarly, for the 𝑛th-higher order, the square residual
error Res

𝑛
actually contains an unknown relaxation factor
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Table 2: Comparison of 𝑓 between FPM (𝜆 = 1/5) and Howarth.

𝜂

𝑓

FPM Howarth [21]
𝑛 = 50 𝑛 = 200 𝑛 = 800

0 0. 0. 0. 0
0.2 0.006644529362447 0.006640995986591 0.006640999714597 0.00664
0.4 0.02657431250127 0.02655986911996 0.02655988401799 0.02656
0.6 0.05976777037563 0.05973460409079 0.05973463749804 0.05974
0.8 0.1061682229933 0.1061081617252 0.1061082208390 0.10611
1.0 0.1656669946990 0.1655716339700 0.1655717257893 0.16557
1.2 0.2380877115384 0.2379485860317 0.2379487172889 0.23795
1.4 0.3231726092163 0.3229813967422 0.3229815738295 0.32298
1.6 0.4205717973682 0.4203205366053 0.4203207655016 0.42032
1.8 0.5298364510983 0.5295177515398 0.5295180377438 0.52952
2 0.6504167979655 0.6500240214585 0.6500243699353 0.65003
3 1.397637112752 1.396807516637 1.396808230870 1.39682
4 2.307039632340 2.305745294404 2.305746418462 2.30576
5 3.284986166454 3.283272129531 3.283273665156 3.28329
6 4.281691879364 4.279618989982 4.279620922514 4.27964
7 5.281627551984 5.279236492841 5.279238811029 5.27926
8 6.281851614090 6.279210729689 6.279213431346 6.27923
10 8.282182252512 8.279208870686 8.279212342934 /
15 13.284515240195 13.27920694573 13.279212342479 /
20 18.283646215099 18.27920502276 18.279212342479 /

Table 3: Comparison of 𝑓󸀠 between FPM (𝜆 = 1/5) and Howarth.

𝜂

𝑓
󸀠

FPM Howarth [21]
𝑛 = 50 𝑛 = 200 𝑛 = 800

0 0. 0. 0. 0
0.2 0.06644347995228 0.06640775477474 0.06640779209625 0.06641
0.4 0.1328378289536 0.1327640864649 0.1327641607610 0.13277
0.6 0.1990509318305 0.1989371417431 0.1989372524222 0.19894
0.8 0.2648643497350 0.2647089925007 0.2647091387231 0.26471
1.0 0.3299775414929 0.3297798506391 0.3297800312497 0.32979
1.2 0.3940157297864 0.3937758909492 0.3937761044339 0.39378
1.4 0.4565422496657 0.4562615202332 0.4562617647051 0.45627
1.6 0.5170757864638 0.5167565112060 0.5167567844226 0.51676
1.8 0.5751123265865 0.5747578444754 0.5747581438894 0.57477
2 0.6301509546266 0.6297654136655 0.6297657365024 0.62977
3 0.8465117311855 0.8460440464746 0.8460444436580 0.84605
4 0.9559675373580 0.9555178143322 0.9555182298107 0.95552
5 0.9919283302451 0.9915414951870 0.9915419001644 0.99155
6 0.9993091537696 0.9989724827440 0.9989728724358 0.99898
7 1.000215077512 0.9999212208137 0.9999216041479 0.99992
8 1.000195058002 0.9999958903313 0.9999962745353 1.00000
10 1.000231913519 0.9999996129000 0.9999999980154 /
15 1.000224523350 0.9999996133026 1.000000000000 /
20 0.9997789079310 0.9999996166005 1.000000000000 /
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Table 4: Comparison of 𝑓󸀠󸀠 between FPM (𝜆 = 1/5) and Howarth.

𝜂

𝑓
󸀠󸀠

FPM Howarth [21]
𝑛 = 50 𝑛 = 200 𝑛 = 800

0 0.3322299008614 0.3320572413724 0.33205733621526 0.33206
0.2 0.3321681255428 0.3319836510534 0.33198383711462 0.33199
0.4 0.3316651431123 0.3314696606323 0.33146984420144 0.33147
0.6 0.3302835149673 0.3300789475208 0.33007912757428 0.33008
0.8 0.3275995678839 0.3273890950354 0.32738927014924 0.32739
1.0 0.3232190113859 0.3230069482211 0.32300711668693 0.32301
1.2 0.3167975457228 0.3165890310990 0.31658919106110 0.31659
1.4 0.3080647180157 0.3078652421801 0.30786539179016 0.30787
1.6 0.2968484699253 0.2966633238744 0.29666346145571 0.29667
1.8 0.2830971363448 0.2829308930580 0.28293101725975 0.28293
2 0.2668953087923 0.2667514357803 0.26675154569727 0.26675
3 0.1613836232798 0.1613602778747 0.16136031954088 0.16136
4 0.06418469140538 0.06423412147661 0.064234121091696 0.06424
5 0.01584093436570 0.01590681516643 0.015906798685320 0.01591
6 2.367987742194𝑒 − 3 2.402051505611𝑒 − 3 2.4020398437568𝑒 − 3 0.00240
7 1.526040209602𝑒 − 4 2.201705391867𝑒 − 4 2.201689552708𝑒 − 4 0.00022
8 −9.161215077567𝑒 − 4 1.223887615942𝑒 − 5 1.224092624324𝑒 − 5 0.00001
10 1.667970449293𝑒 − 4 9.650715210973𝑒 − 9 8.442915877193𝑒 − 9 /
15 2.499528919705𝑒 − 4 −1.207941083287𝑒 − 10 1.426848065722𝑒 − 17 /
20 1.244076430614𝑒 − 4 1.815564827202𝑒 − 9 4.736242910970𝑒 − 18 /
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Figure 6: The influence of 𝜆 value on the convergence of 𝑓󸀠󸀠
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(0).

𝜛
𝑛
only, so the optimal value 𝜛

𝑛,opt is determined by the
following nonlinear algebraic equation:

𝑑Res
𝑛

𝑑𝜛
𝑛

= 0. (18)

The name of the steepest descent seeking algorithm
just comes from the aforementioned approach; that is,
every optimal value 𝜛

𝑛,opt is sought to minimize the cor-
responding square residual error Res

𝑛
. According to this

approach, only one nonlinear algebraic equation should
be solved in every iteration step, and the elements of the
sequence {𝜛

𝑛
|𝑛 = 1, 2, 3, . . .} are obtained sequentially and

separately.

2.4. Iteration Procedure. Now, for (7), let us choose the linear
characteristic operator:

L
𝐶
[𝑔] =

𝑑
3
𝑔

𝑑𝑧3
= 𝑔
󸀠󸀠󸀠
, (19)

and construct an iteration procedure as follows:
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L
𝐶
[𝑔
𝑛+1

] = L
𝐶
[𝑔
𝑛
] − 𝜛
𝑛+1

⋅A
𝑔
[𝑔
𝑛
] ,

𝑔
𝑛+1

(−1) = 0, 𝑔
󸀠

𝑛+1
(−1) = −

1

2
, 𝑔
𝑛+1

(1) = 0, 𝑛 = 0, 1, 2 . . .

(20)

⇐⇒

𝑔
󸀠󸀠󸀠

𝑛+1
= 𝑔
󸀠󸀠󸀠

𝑛
− 𝜛
𝑛+1

{𝜆
2
(1 − 𝑧)

3
𝑔
󸀠󸀠󸀠

𝑛
+ [1 − 3𝜆

2
(1 − 𝑧)

2
+ 𝑧 + 2𝑔

𝑛
] 𝑔
󸀠󸀠

𝑛
} ,

𝑔
𝑛+1

(−1) = 0, 𝑔
󸀠

𝑛+1
(−1) = −

1

2
, 𝑔
𝑛+1

(1) = 0, 𝑛 = 0, 1, 2 . . . .

(21)

The initial guess 𝑔
0
is conveniently chosen as

𝑔
0
=

(𝑧
2
− 1)

4
, (22)

which satisfies the following equation:

L
𝐶
[𝑔
0
] = 0,

𝑔
0
(−1) = 0, 𝑔

󸀠

0
(−1) = −

1

2
, 𝑔

0
(1) = 0.

(23)

3. Result and Discussion

3.1. Results as 𝜆=1/5. Before the acquirement of approximate
solution according to the iteration procedure (21), the free
parameter 𝜆 should be determined. It is found that the
iteration procedure converges rapidly when the value of 1/𝜆
takes the scale of boundary layer thickness. Here, the value of
𝜆 is firstly set to 𝜆 = 1/5 and the influence of 𝜆 value on the
solution will be studied in Section 3.2.

In order to demonstrate FPM, the procedure to obtain the
first-order approximation 𝑔

1
(𝑧) is given here in detail. Firstly,

the governing equation for𝑔
1
(𝑧) is deduced according to (21):

𝑔
󸀠󸀠󸀠

1
= −

𝜛
1

100
(19 + 62𝑧 + 19𝑧

2
) ,

𝑔
1
(−1) = 0, 𝑔

󸀠

1
(−1) = −

1

2
, 𝑔

1
(1) = 0.

(24)

Then the first order approximation𝑔
1
(𝑧) takes the follow-

ing form:

𝑔
1
(𝑧) =

73𝜛
1

6000
−
1

4
+
209𝜛
1

6000
𝑧 + (

1

4
+
41𝜛
1

3000
) 𝑧
2

−
19𝜛
1

600
𝑧
3
−
31𝜛
1

1200
𝑧
4
−
19𝜛
1

6000
𝑧
5
.

(25)

It is clear that the first-order approximation 𝑔
1
(𝑧) in (25)

is dependent on the relaxation factor 𝜛
1
, whose optimal

value could be determined by the steepest descent seeking
algorithm (SDS) as mentioned in Section 2.3. Here, the
square residual error Res

𝑛
of the original equation (1) is

introduced:

Res
𝑛
= ∫

+∞

0

(A
𝑓
[𝑓
𝑛
])
2

𝑑𝜂 = ∫

+1

−1

(1 − 𝑧)
2

8𝜆
(A
𝑔
[𝑔
𝑛
])
2

𝑑𝑧.

(26)

Then, the square residual error of 𝑓
1
(𝜂) is as follows:

Res
1
(𝜛
1
) = 0.06590476 − 0.02813884𝜛

1
+ 0.004530836𝜛

2

1

+ 2.330415 × 10
−4
𝜛
3

1
+ 5.251947 × 10

−6
𝜛
4

1
,

(27)

and the optimal value 𝜛
1,opt and the minimum of Res

1
are

𝜛
1,opt = 2.560515, min (Res

1
) = 0.02769798. (28)

Hence, the first-order approximation 𝑔
1
(𝑧) is finally

determined:

𝑔
1
(𝑧) = −0.2188471 + 0.08919127𝑧 + 0.2849937𝑧

2

− 0.08108297𝑧
3
− 0.06614663𝑧

4
− 0.008108297𝑧

5
.

(29)

For the higher-order approximation 𝑔
𝑛
(𝑧), the procedure

is similar, and an explicit semianalytical solution could be
deduced by the symbolic computation software, such as
MAXIMA, MAPLE and MATHEMATICA.

In consideration of the transformation (6), the corre-
sponding approximate solution 𝑓

𝑛
(𝜂) to the original Blasius

equations (1) and (2) is

𝑓
𝑛
(𝜂) = 𝑔

𝑛
(𝑧) ⋅ (𝜂 +

1

𝜆
) + 𝜂, 𝑧 =

(𝜆𝜂 − 1)

(𝜆𝜂 + 1)
. (30)

The convergence history of the square residual error Res
𝑛

is illustrated in Figure 1, which clearly shows that Res
𝑛
is

gradually reduced during the iteration procedure, so the
accuracy of the approximate solution could be improved step
by step to any possibility.

The second derivative 𝑓󸀠󸀠(0) is a measure of the shear
stress on the plate and plays a critical role in the Blasius
problem [4, 5]. The relationship between 𝑓󸀠󸀠

𝑛
(0) and 𝑔󸀠󸀠

𝑛
(−1)

can be deduced as follows:

𝑓
󸀠󸀠

𝑛
(0) = 4𝜆𝑔

󸀠󸀠

𝑛
(−1) . (31)

The convergence history of 𝑓󸀠󸀠
𝑛
(0) is displayed in Figure 2,

which shows that the difference between the approximation
𝑓
󸀠󸀠

𝑛
(0) and Boyd’s [6, 7] benchmarking result 𝑓󸀠󸀠(0) =

0.33205733621519630 decreases during the iteration proce-
dure. Meanwhile, the comparison between the present result
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Table 5: The asymptotic property of 𝑓 for large positive 𝜂 (𝜆 = 1/5,
𝑛 = 800).

𝜂 𝑓 − 𝜂 𝐵 = lim
𝜂→∞

(𝑓 − 𝜂) (Benchmark) [6, 7]

5 −1.716726334844

−1.720787657520503

6 −1.720379077486
7 −1.720761188971
8 −1.720786568654
9 −1.720787629355
10 −1.720787657066
11 −1.720787657516
12 −1.720787657520
13 −1.720787657521
14 −1.720787657521
15 −1.720787657521
20 −1.720787657521
25 −1.720787657521
30 −1.720787657521

and others given in [6, 7, 31, 32] is tabulated in Table 1, which
shows that 𝑓󸀠󸀠

𝑛
(0) is the same as Boyd’s benchmarking result

within 7 significant digits when 𝑛 ≥ 300 and within 12
significant digits when 𝑛 ≥ 800.

The approximate semianalytical solutions and the well-
known Howarth’s [32] accurate numerical result of 𝑓(𝜂),
𝑓
󸀠
(𝜂), and 𝑓

󸀠󸀠
(𝜂) are compared in Figure 3 and simultane-

ously tabulated in Tables 2–4, which shows that the present
result obtained by FPM is of high accuracy.

The residual error function A
𝑓
[𝑓
𝑛
] = 2𝑓

󸀠󸀠󸀠

𝑛
+ 𝑓
𝑛
𝑓
󸀠󸀠

𝑛

is plotted in Figure 4, which also reveals that the error of
approximate solutions gradually decreases during the itera-
tion procedure. Moreover, the present approximate solutions
are uniformly valid in the whole region.

Based on the asymptotic property of 𝑓(𝜂) given in (5), we
obtain

𝐵 = lim
𝜂→∞

(𝑓 − 𝜂) . (32)

The approximate value of 𝐵 could be obtained as follows:

𝐵 ≈ 𝑓
𝑛
(𝜂) − 𝜂, for large 𝜂. (33)

The comparison between the approximate value of𝐵 obtained
by FPM (𝑛 = 800, 𝜆 = 1/5) and the benchmarking result
𝐵 = −1.720787657520503 provided by Boyd [6, 7] is given
in Table 5, which shows that the present result is the same as
Boyd’s benchmarking result within 7 significant digits when
𝜂 ≥ 9 and within 13 significant digits when 𝜂 ≥ 13.

3.2. The Influence of 𝜆 Value on the Solution. It is clear that
1/𝜆 takes the length dimension in consideration of transfor-
mation (6). In order to investigate the influence of 𝜆 value
on the solution, some different 𝜆 values are considered in
the following calculations, and the comparison of Res

𝑛
at

different 𝜆 values is displayed in Figures 5(a) and 5(b). It is
found that all Res

𝑛
corresponding to different 𝜆 values are

gradually reduced during the iteration procedure, and Res
𝑛

based on 𝜆 = 1/5 converges more rapidly than others. What
is the physical meaning of 𝜆? Let us try to find the answer
from the Prandtl’s boundary layer theory [5].

According to Prandtl’s boundary layer theory, the effect
of viscosity is mainly confined to the boundary layer such
that 𝜂 < 𝛿, and the outer flow (𝜂 > 𝛿) could be considered
as inviscid flow. From Table 3, the thickness of the boundary
layer is just about 𝛿 ≈ 5, where 𝑢/𝑈

∞
= 𝑓
󸀠
≈ 0.99.

Now, the physical meaning of 𝜆 becomes clear. 1/𝜆 has the
same scale of boundary layer thickness 𝛿. In consideration of
transformation (6), the region −1 ≤ 𝑧 ≤ 1 is divided into two
equal parts, and the viscous flow (𝜂 < 𝛿 ≈ 5) and inviscid
flow (𝜂 > 𝛿 ≈ 5) correspond to −1 ≤ 𝑧 < 0 and 0 < 𝑧 < 1,
respectively. Although this determination of 𝜆 is in a heuristic
manner, it is fortunate that the solution is quite insensitive to
𝜆 so long as 1/𝜆 is of the same order-of-magnitude as 𝛿 ≈ 5.
The influence of 𝜆 on the convergence of 𝑓󸀠󸀠

𝑛
(0) is given in

Figures 6(a) and 6(b), which also reveals that the limit values
of 𝑓󸀠󸀠
𝑛
(0) with different 𝜆 values agree well with each other.

Hence, the selection of 𝜆 is nonessential to the final solution.

4. Conclusion

In this paper, the well-known Blasius flow is revisited
by the fixed point method (FPM). In order to overcome
the difficulties originated from the semi-infinite interval
and asymptotic boundary condition, two transformations
are introduced for not only the independent variable but
also the dependent variable. Under these transformations,
all the boundary conditions are exactly assured for every
order approximate solution. In the meanwhile, a free scale
parameter 𝜆 is introduced in the transformation, and its
physical meaning is related to the thickness of the boundary
layer. Moreover, a sequence of relaxation factors {𝜛

𝑛
|𝑛 =

1, 2, 3, . . .} is introduced to improve the convergence and
stability during iteration procedure, and its elements are
obtained in a convenient manner by the steepest descent
seeking algorithm. Finally, the comparison of the present
results with other scholars’ numerical results, especially with
the benchmarking results provided by Boyd, shows that
FPM is an effective and accurate approach to obtain the
semianalytical solution to nonlinear problems.

Nomenclature

𝑈
∞
: Free stream velocity, m/s

𝑢: 𝑥-components of the velocity, m/s
V: 𝑦-components of the velocity, m/s
𝜓(𝑥, 𝑦): Stream function, m2/s
𝑓(𝜂): Nondimensional stream function
]: Kinematic viscosity coefficient, m2/s.
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Long-term deep bed filtration in porous media with size exclusion particle capture mechanism is studied. For monodispersed
suspension and transport in porousmedia with distributed pore sizes, the microstochastic model allows for upscaling and the exact
solution is derived for the obtained macroscale equation system. Results show that transient pore size distribution and nonlinear
relation between the filtration coefficient and captured particle concentration during suspension filtration and retention are the
main features of long-term deep bed filtration, which generalises the classical deep bed filtration model and its latter modifications.
Furthermore, the exact solution demonstrates earlier breakthrough and lower breakthrough concentration for larger particles.
Among all the pores with different sizes, the ones with intermediate sizes (between the minimum pore size and the particle size)
vanish first. Total concentration of all the pores smaller than the particles turns to zero asymptotically when time tends to infinity,
which corresponds to complete plugging of smaller pores.

1. Introduction

Transport, filtration, and subsequent retention of suspended
particles and colloids in porous media are common phe-
nomena in nature and in many industrial applications. In
petroleum industry, migration of fine particles in low con-
solidated natural rocks during production of heavy oils leads
to significant productivity decline [1–4]. Invasion of drilling
fluid into oil and gas reservoirs results inwell impairment and
formation damage due to particle straining in thin pores [5–
7]. Flow of suspensions and colloids in porous media with
particle retention by matrix is also important for filtering
of water and industrial liquid or gas fluid streams [8–10],
enhanced bioremediation [11, 12], particle accumulation in
the streambed sediments [13], propagation of biocolloids
(bacteria viruses and protozoan parasites) in aquifers, surface
water and wastewater treatment, and so forth [14–20].

A thorough understanding and reliable prediction of
particle transport and retention by mathematical modelling
are critical to the planning and design of abovementioned
industrial and environmental processes. Up to date, consider-
able research has been devoted to the description of transport

and retention behaviour of suspensions in porous media, as
well as their effects on the alteration of the formation rock
(a number of reviews are available in the literature; see [21–
29]). In spite of all theseworks, themechanisms of suspension
transport and capture in porous media are still incompletely
understood and quantified.

The classical suspension-colloidal deep bed filtration
(DBF) theory is the most commonly used approach for
predicting particle transport behaviour and the consequent
media alterations [3, 8, 9, 14, 15]. The classical DBF model
includes two equations for particle population balance and
capture kinetics, respectively [21, 30]. Several forms of filtra-
tion coefficient as function of retained particle concentration
for different capture mechanisms and the resultant analyt-
ical solutions have been reported in the literature [21, 31].
However, the reported mismatch between the modelled and
measured particle DBF data makes it necessary to examine
the fundamental principles of the classical model for suspen-
sion transport in porous media, including its upscaling from
micro- to macroscale and possible model generalisations
[32–34].
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Figure 1: Geometric model of parallel capillary bundles with mixing chambers: (a) bundles of parallel capillaries alternated by mixing
chambers; (b) cross section of the capillary bungle with size-excluded particles.

Sharma and Yortsos [35–37] derived a new population
balance model, accounting for variation of pore and particle
size distributions due to several particle capturemechanisms.
It is assumed that the particle population moves at the
average flow velocity of the carrier fluid, and the whole
porous space is accessible to particles. The particles smaller
than the pores pass without straining; while the particles
larger than the pores are size-excluded in the medium.
Particularly, these assumptions lead to independent deep bed
filtration of polydispersed particles under the low retention
conditions.

Introduction of accessibility and flux reduction factors
into the population balance equations describes simultaneous
flow of suspension in accessible pores and flow of particle-
free water in inaccessible fraction of porous space; it also
results in the particle speed that differs from the carrier
water velocity [32, 38, 39]. A linearised model describes
deep bed filtration under the short-time injection; the con-
centration decays with time exponentially due to retention
[14, 15, 21, 23]. The analytical model for long-time injection
does not account for accessibility and flux reduction factors
[38, 39].

In the present paper, an exact solution for long-term deep
bed filtration accounting for accessibility and flux reduction
factors is derived. Being downscaled, the solution exhibits
the transient development of the pore size distribution due
to particle size exclusion. The macroscale equations result
in nonlinear retained-particle-concentration dependencies
for filtration coefficient as well as the accessibility and flux
reduction factors, which generalise the classical DBF model.

The structure of this paper is as follows. Section 2 presents
the microscale system of governing equations with varying
pore and particle size distributions. The upscaling of the
micromodel for monodispersed suspension is briefly derived
in Section 3.The analytical solution of the upscaled equations
with expressions for suspended and captured particle concen-
trations during long-term injection is derived in Section 4.
The concentration profiles and histories as obtained from

the exact solution along with constitutive relations of the
upscaled model are presented and discussed in Section 5.
Finally, Section 6 presents the conclusions of the study.

2. Microstochastic Model for Suspension
Transport in Porous Media

The geometric model of porous media for size exclusion
suspension-colloidal transport is a bundle of parallel tubes
intercalated by themixing chambers (Figure 1(a)). Size exclu-
sion flow in any arbitrary 3D domain occurs with particle
motion in “thicker” pore and capture in “thinner” pore
throat. The parallel-tube-mixing-chamber model (PTMC)
separates flow from capture: the capture occurs at the exit
of mixing chambers at entrances of thinner pores, while
the motion occurs in larger parallel capillaries (Figure 1(b)).
The phenomenological parameters and functions used in the
stochastic model are described briefly in this section. For
more details, refer to [32].

The number of pores per unit cross-sectional area of
porous media is defined by the pore concentration function

ℎ (𝑥, 𝑡) = ∫

∞

0

𝐻(𝑟
𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
, (1)

which is the integral of pore concentration distribution func-
tion 𝐻(𝑟

𝑝
, 𝑥, 𝑡) in terms of the pore radius 𝑟

𝑝
. In the similar

manner, the overall concentration of suspended particles in
porous media results from the integration of concentration
of these particles in 𝑟

𝑠
for all particle sizes

𝑐 (𝑥, 𝑡) = ∫

∞

0

𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑑𝑟

𝑠
, (2)

where 𝐶(𝑟
𝑠
, 𝑥, 𝑡) is the concentration distribution function

of suspended particles. The total concentration of retained
particles is also obtained by integration in particle size

𝜎 (𝑥, 𝑡) = ∫

∞

0

Σ (𝑟
𝑠
, 𝑥, 𝑡) 𝑑𝑟

𝑠
, (3)
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where Σ(𝑟
𝑠
, 𝑥, 𝑡) is the concentration distribution function of

retained particles.
The porosity is the total cross-sectional area of all pores

per unit cross-sectional area of porous media

𝜙 [𝐻] = ∫

∞

0

𝑠
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
, (4)

where 𝑠
1
(𝑟
𝑝
) = 𝜋𝑟

2

𝑝
is the cross-sectional area of a single pore

with radius 𝑟
𝑝
.The accessible fraction of the total porosity can

be obtained by integrating the cross-sectional area of large
pores only (𝑟

𝑝
> 𝑟
𝑠
),

𝜙
𝑎
[𝐻, 𝑟
𝑠
] = ∫

∞

𝑟
𝑠

𝑠
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
, (5)

due to the fact that only the pores with sizes larger than 𝑟
𝑠
are

accessible to these particles.
The conductance in a single pore follows from the steady

state Poiseuille flow in circular capillary [40], expressed as
𝑘
1
(𝑟
𝑝
) = 𝜋𝑟

4

𝑝
/8. Comparison with Darcy’s law leads to the

following formula for permeability:

𝑘 [𝐻] = ∫

∞

0

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
. (6)

The fractions of accessible and inaccessible fluxes are defined
as the accessible and inaccessible fractional flow functions,
respectively. The total flux of flow is the sum of the flux
via accessible larger pores and that via inaccessible smaller
pores, for any given particle size 𝑟

𝑠
. According to Darcy’s law,

the accessible fractional flow function can be calculated as
fraction of accessible permeability

𝑓
𝑎
[𝐻, 𝑟
𝑠
] =

1

𝑘
∫

∞

𝑟
𝑠

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
; (7)

thus, the inaccessible fractional flow function is

𝑓
𝑛𝑠

[𝐻, 𝑟
𝑠
] = 1 − 𝑓

𝑎
[𝐻, 𝑟
𝑠
] =

1

𝑘
∫

𝑟
𝑠

0

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
.

(8)

The system of governing equations for suspension transport
in porous media consists of the mass balance equation for
particles and the kinetic equations for particle retention and
pore plugging.

First, the conservation law for suspended and retained
particles results in the advective-capture equation for sus-
pended and retained concentrations in the following form:

𝜕

𝜕𝑡
{𝜙
𝑎
[𝐻, 𝑟
𝑠
] 𝐶 (𝑟
𝑠
, 𝑥, 𝑡) + Σ (𝑟

𝑠
, 𝑥, 𝑡)}

+ 𝑈
𝜕

𝜕𝑥
{𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑓

𝑎
[𝐻, 𝑟
𝑠
]} = 0.

(9)

Second, particle capture kinetics is obtained from the
assumption that particle accumulation in the poreswith given
sizes is proportional to the particle flux through these pores:

𝜕Σ (𝑟
𝑠
, 𝑥, 𝑡)

𝜕𝑡
=

𝑈𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑓

𝑎
[𝐻, 𝑟
𝑠
]

𝑙𝑘 [𝐻]

× ∫

𝑟
𝑠

0

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
.

(10)

The proportionality coefficient is equal to the capture prob-
ability per unit length of particle trajectory. The length
parameter 𝑙 is the distance between mixing chambers in the
PTMC model [32, 41].

Third, under the assumption of complete plugging, one
retained particle plugs one pore and vice versa. It allows
deriving the following kinetic equation for pore concentra-
tion decrease due to particle size exclusion:

𝜕𝐻 (𝑟
𝑝
, 𝑥, 𝑡)

𝜕𝑡
= −

𝑘
1
(𝑟
𝑝
)

𝑘
𝑈𝐻(𝑟

𝑝
, 𝑥, 𝑡)

× ∫

𝑟
𝑠

0

𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑓

𝑎
[𝐻, 𝑟
𝑠
] 𝑑𝑟
𝑠
.

(11)

The system of three governing equations (9)–(11) determines
the suspended and retained particle concentration distribu-
tions along with the pore concentration distribution, 𝐶, Σ,
and 𝐻. This completes the stochastic model for suspension
transport in porous media with distributed pore and particle
sizes.

In the next section, the microscale system of governing
equations for suspension transport in porous media will be
applied to the flow of monodispersed suspension, in which
case the upscale equation system is derived and the analytical
solution is obtained in macroscale.

3. Upscaling for Transport of
Monodispersed Suspension

In the case of monodispersed suspension transport in porous
media with arbitrary pore size distribution, the particle
concentration distribution function can be expressed using
theDirac delta function 𝛿:𝐶(𝑟

𝑠
, 𝑥, 𝑡) = 𝑐(𝑥, 𝑡)𝛿(𝑟

𝑠
−𝑟
𝑠0
), where

𝑟
𝑠0
is the particle size. Substitution of 𝐶(𝑟

𝑠
, 𝑥, 𝑡) into system

(9)–(11) and integration in terms of 𝑟
𝑠
in (9) and (10) and 𝑟

𝑝
in

(11) result in the following governing equations inmacroscale:

𝜕

𝜕𝑡
{𝜙
𝑎 [𝐻] 𝑐 (𝑥, 𝑡) + 𝜎 (𝑥, 𝑡)} + 𝑈

𝜕

𝜕𝑥
{𝑐 (𝑥, 𝑡) 𝑓

𝑎 [𝐻]} = 0,

(12)

𝜕𝜎 (𝑥, 𝑡)

𝜕𝑡
=

1

𝑙
𝑓
𝑎
𝑓
𝑛𝑠 [𝐻] 𝑐 (𝑥, 𝑡) 𝑈, (13)

𝜕ℎ (𝑥, 𝑡)

𝜕𝑡
= −𝑈𝑐 (𝑥, 𝑡) 𝑓

𝑎
𝑓
𝑛𝑠 [𝐻] ≡ −𝑙

𝜕𝜎 (𝑥, 𝑡)

𝜕𝑡
. (14)

Equation (14) indicates the conservation of the sum of volu-
metric concentrations of vacant pores and retained particles,
ℎ/𝑙 + 𝜎 = ℎ

0
/𝑙 + 𝜎

0
, which is exactly the mathematical form

for the condition of complete pore plugging.
An implicit analytical solution for pore concentration

distribution function 𝐻(𝑟
𝑝
, 𝑥, 𝑡) is derived with the uniform

initial condition for 𝐻 [32]: 𝑡 = 0 : 𝐻(𝑟
𝑝
, 𝑥, 𝑡) = 𝐻

0
(𝑟
𝑝
). In

this case, the solution𝐻(𝑟
𝑝
, 𝑥, 𝑡) is equivalent to the solution
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of an ordinary-differential-integral equation𝐻(𝑟
𝑝
, 𝑦)

𝐻 (𝑟
𝑝
, 𝑦) = 𝐻

0
(𝑟
𝑝
) 𝑒
−𝑘
1
𝑦
; 𝑦 = 0 : 𝐻 = 𝐻

0
(𝑟
𝑝
) , (15)

where the auxiliary function 𝑦(ℎ) is implicitly determined
from the following problem as an inverse function [32]:

ℎ (𝑦) = ∫

∞

0

𝐻
0
(𝑟
𝑝
) 𝑒
−𝑘
1
𝑦
𝑑𝑟
𝑝
; 𝑦 = 0 : ℎ = ℎ

0
. (16)

The final form of governing equations for the transport of
monosize particle suspension is obtained from the system
(12)–(14) and the solution for pore concentration distribution
function (15)-(16). Introduction of the dimensionless param-
eters 𝑋 = 𝑥/𝐿, 𝑇 = 𝑈𝑡/𝐿𝜙

0
, 𝐶 = 𝑐/𝑐

0
, 𝑆 = 𝜎/𝑐

0
𝜙
0
, Λ =

𝐿𝑓
𝑎
𝑓
𝑛𝑠
/𝑙, and 𝑠 = 𝜙

𝑎
/𝜙
0
leads to the following dimensionless

form of governing equations:

𝜕

𝜕𝑇
{𝑠 (𝑆) 𝐶 + 𝑆} +

𝜕

𝜕𝑋
{𝐶𝑓
𝑎
(𝑆)} = 0, (17)

𝜕𝑆

𝜕𝑇
= Λ (𝑆) 𝐶. (18)

The initial and boundary conditions for constant injection of
suspension into clean porous media are 𝑇 = 0 : 𝐶 = 𝑆 = 0;
𝑋 = 0 : 𝐶 = 1.

The system of (17)-(18), a type of the first-order hyper-
bolic system [42], contains functions of saturation, accessible
fractional flow, and filtration, all of which depend on retained
particle concentration in porous media. The analytical solu-
tion to the system (17)-(18) subject to the initial and boundary
conditions will be presented in the next section.

4. Analytical Solution for Long-Term
Monodispersed Suspension Transport

Derivation of the analytical solution starts from expressing
the suspension concentration𝐶 from kinetic equation (18) in
the following form:

𝐶 =
1

Λ (𝑆)

𝜕𝑆

𝜕𝑇
. (19)

An auxiliary function 𝐹(𝑆) is introduced such that 𝐶 =

𝜕𝐹(𝑆)/𝜕𝑇. Substitution into (19) leads to

𝐹 (𝑆) = ∫

𝑆

0

1

Λ (𝑢)
𝑑𝑢. (20)

Mass balance equation (17) is rewritten as

𝜕

𝜕𝑇
(𝑠 (𝑆)

𝜕𝐹 (𝑆)

𝜕𝑇
+ 𝑆) +

𝜕

𝜕𝑋
(
𝜕𝐹 (𝑆)

𝜕𝑇
𝑓
𝑎
(𝑆)) = 0. (21)

Rearranging the second term on the left side of (21)

𝜕

𝜕𝑋
(
𝜕𝐹 (𝑆)

𝜕𝑇
𝑓
𝑎
(𝑆)) =

𝜕

𝜕𝑋
(
𝜕𝐹 (𝑆)

𝜕𝑆

𝜕𝑆

𝜕𝑇
𝑓
𝑎
(𝑆))

=
𝜕

𝜕𝑋

𝜕

𝜕𝑇
(∫

𝑆

0

𝜕𝐹

𝜕𝑆
(𝑢) 𝑓
𝑎
(𝑢) 𝑑𝑢)

=
𝜕

𝜕𝑇
(
𝜕𝐹 (𝑆)

𝜕𝑋
𝑓
𝑎
(𝑆))

(22)

and integrating (21) in terms of 𝑇 result in

𝑠 (𝑆)
𝜕𝐹 (𝑆)

𝜕𝑇
+ 𝑆 +

𝜕𝐹 (𝑆)

𝜕𝑋
𝑓
𝑎
(𝑆) = 𝑔 (𝑋) , (23)

where the function 𝑔(𝑋) = 0 can be determined from the
initial condition.

The first-order hyperbolic equation (23) has the charac-
teristic lines satisfying the following equation:

𝑑𝑇

𝑑𝑋
=

𝑠 (𝑆)

𝑓
𝑎
(𝑆)

. (24)

The first-order PDE (23) is degenerated to the first-order
ODE along the characteristic lines (24)

𝑑𝐹 (𝑆)

𝑑𝑋
= −

𝑆

𝑓
𝑎
(𝑆)

. (25)

From the boundary condition 𝐶(0, 𝑇) = 1 = 𝜕𝐹(𝑆)/𝜕𝑇, we
have 𝑋 = 0 : 𝐹(𝑆) = 𝑇. Therefore, 𝐹(𝑆(0, 𝑇

0
)) = 𝑇

0
at

arbitrarymoment,𝑇
0
.This provides the solution for the initial

retained particle concentration 𝑆(0, 𝑇
0
) at the moment 𝑇

0

∫

𝑆(0,𝑇
0
)

0

1

Λ (𝑆)
𝑑𝑆 = 𝑇

0
. (26)

Subsequently, we obtain the retained particle concentration
profile 𝑆(𝑋, 𝑇) by integration of the ODE (25) as follows:

∫

𝑆(0,𝑇
0
)

𝑆(𝑋,𝑇)

𝑓
𝑎
(𝑆)

𝑆Λ (𝑆)
𝑑𝑆 = 𝑋. (27)

Finally, the suspended particle concentration 𝐶(𝑋, 𝑇) is
calculated from (19) by using the results of retained concen-
tration profile 𝑆(𝑋, 𝑇) from (27)

𝐶 (𝑋, 𝑇) =
1

Λ (𝑆)

𝜕𝑆 (𝑋, 𝑇)

𝜕𝑇
. (28)

So far, the exact solution for long-term transport of monodis-
persed suspension in porous media has been derived. Appli-
cation of the proposed model to a synthetic medium will be
demonstrated in the next section.
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Figure 2: The exact solution for 1D deep bed filtration long-term
injection problem: (a) characteristic lines and the concentration
front in (X,T)-plane; (b) shock front in the suspended concentration
profile; (c) continuous retention concentration profile.

5. Results and Discussions

In this section, the analytical solution derived in Section 4
is applied to a synthetic example of porous medium. The
solution behaviour is analysed in detail.

Let us start from the structure of the flow pattern,
shown in Figure 2. At the beginning of the suspension
injection (black curves in Figure 2), the suspended particle
concentration 𝐶 drops from unity to zero at 𝑋 = 0 and
the retained particle concentration 𝑆 is zero everywhere,
according to the initial and boundary conditions. Both the
saturation 𝑠 and the fractional flow function 𝑓

𝑎
are constant;

therefore, the characteristic curve is straight line at 𝑇 = 0

based on (24). When the time 𝑇 > 0, the concentration
front starts propagating from inlet 𝑋 = 0 along the core. In
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Figure 3: Suspended particle concentration at the core inlet and
outlet: (a) full time scale history; (b) zoom-in at the early stage.

Figure 2, the blue dashed curves present an early stage and
the red dash-dot curves correspond to a later moment. It is
shown that particle concentrations 𝐶 and 𝑆 decrease along
the distance 𝑋 behind the concentration front while remain
zero ahead of the front.The characteristic curve deviates from
straight line when 𝑇 > 0. The larger the time, the higher the
nonlinearity.

Consider the porous medium with a log-normal pore
size distribution, with the mean pore radius 4 𝜇m and the
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Figure 4: Captured particle concentration at the inlet and outlet: (a) full time scale history; (b) zoom in at the early stage.

standard deviation 2𝜇m. Three monodispersed suspensions
are injected into the medium separately, with particle sizes
2.5, 3.5, and 5.0 𝜇m, respectively. Suspended particle con-
centration profiles 𝐶(𝑋, 𝑇) are calculated from the analytical
solution derived in Section 4. Figure 3(a) shows the inlet
concentration 𝐶(0, 𝑇) and outlet concentrations for different
particle sizes 𝐶(1, 𝑇) in full scale. Figure 3(b) focuses on the
early stage around the breakthroughmoment. It is found that
particle breakthrough occurs at 𝑇 < 1 pvi; the increase of
particle size results in earlier breakthrough but lower break-
through concentration. After breakthrough, there is a plateau
of outlet concentration at small time (Figure 3(b)); then
𝐶(1, 𝑇) increases gradually and approaches unity asymptot-
ically at large time (Figure 3(a)).

The retained particle concentration profile 𝑆 is presented
in Figure 4. The profiles 𝑆(0, 𝑇) at the inlet and 𝑆(1, 𝑇) at the
outlet for three particle sizes are illustrated in Figure 4(a);
while the zoom in at early stage is in Figure 4(b) for
comparison. Particle retention at the inlet starts from 𝑇 = 0,
increasing linearly with time at the early stage (Figure 4(b)).
Compared to the deposition profile 𝑆(0, 𝑇) at the inlet, the
profile 𝑆(1, 𝑇) at the outlet exhibits a delay (Figure 4(b)) due
to the time required for particle travelling from inlet to outlet.
The larger the particle size, the smaller the delay, indicating
the earlier breakthrough for large particles, which agrees
with the results shown in Figure 3. In the long time span
(Figure 4(a)), the retained particle concentration increases
nonlinearly with time and asymptotically approaches the
maximum, which is equal to the overall concentration of
pores smaller than the particle.

Figure 5 compares the evolution of the pore concentra-
tion distribution for different particle sizes. At 𝑇 = 0, 𝐻 =

𝐻
0
(𝑟
𝑝
) for all three particle sizes (black curves in Figures

5(a)–5(c)). When 𝑇 > 0, 𝐻(𝑟
𝑝
, 𝑋, 𝑇) decreases with time for

smaller pores (𝑟
𝑝

< 𝑟
𝑠
) due to particle size exclusion; while

𝐻 keeps intact for 𝑟
𝑝

> 𝑟
𝑠
, which means larger pores are

always accessible to the particles.The pores with intermediate
sizes between the minimum pore size and the particle size
vanish faster with time than the smaller pores. It is because
the accessible suspension flux via intermediate pores is higher
than that via small pores, which leads to the larger capture
rate in intermediate pores. Finally, all the pores smaller than
the particle size will disappear when the time tends to infinity,
which corresponds to the full plugging of small pores by the
particles.

In Figure 6, the nonlinear relationship between the fil-
tration coefficient and the retained particle concentration
is presented for different particle sizes. For the same value
of retained particle concentration, the larger particle size
leads to the larger filtration coefficient. With the particle size
fixed, the higher retention concentration causes the filtration
function to deviate from the linearity, where the low retention
assumption is no longer valid [41].

Fractional flow function curve obtained from PTMC
model is given in Figure 7.The increase of particle size results
in the decrease of both accessible porosity and accessible flow
fraction. The convex shape of the curve implies that the ratio
of 𝑓
𝑎
/𝑠 increases with particle size, which corresponds to

the rise of propagation speed of concentration front. It is in
agreement with the results presented in Figures 3 and 4.
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Figure 5: Evolution of the pore size distribution for different sizes of injected particles: (a) r
𝑠
= 2.5 𝜇m; (b) r

𝑠
= 3.5 𝜇m; (c) r

𝑠
= 5.0 𝜇m.

The geometrical model of parallel capillaries intercalated
by mixing chambers adopted in the current work, results in
connective set of pores for any arbitrary particle size 𝑟

𝑠
> 0.

However, this is not the case for the real geometry of porous
space. The pores smaller than the threshold value do not
form an infinite cluster. The threshold effect is described by
the percolation model of porous media [43–45]. Percolation
description of porous space with corresponding calculations
of accessibility and flux reduction factors will significantly
change the form of fractional flow curve [32] and affect the
solution.

The majority of deep bed filtration processes in the
nature and in industry do not long as far as asymptotic
stabilisation without capture. Nevertheless, these processes
last longer than short-term periods of linear deep bed
filtration with constant filtration coefficient [41]. The linear
deep bed filtration corresponds to the case of invariant
pore size distribution. This is an asymptotic case where
the concentration of retained particles is negligibly smaller
than the number of initial vacant pores. More exactly, the
linear solution is the zero term in asymptotic expansion. The
expansion could correspond to small injected concentration,
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Figure 7: Fractional flow function for accessible flow.

or small filtration coefficient, or small times. Asymptotic
solution including first term of the expansion would provide
more detailed description of the intermediate stage of deep
bed filtration. It is expected that the effect of full plugging of
intermediate size pores (Figure 5) would be captured by the
first term of asymptotic expansion.

6. Conclusions

Derivation of the exact solution for long-term deep bed
filtration with accessibility and flux reduction allows drawing
the following conclusions.

The exact solution of the upscaled problem allows for
downscaling, exhibiting the dynamics for pore size distribu-
tions during the continuous particle straining.

The exact solution exhibits preferential plugging of pores
with sizes equal to or below the injected particle size.
The pores with radius equal to the injected particle radius
disappear first. Then the smaller pores start to disappear in
the sequence of their sizes.The radius interval of disappearing
sizes increases with time. The lower bound of the interval
turns to zero asymptotically when time tends to infinity,
which corresponds to complete plugging of pores smaller
than the particle size.

The larger the injected particles, the faster the break-
through and the lower the breakthrough concentration.
However, the breakthrough concentrations of all size particles
tend to one with time tending to infinity, which corresponds
to complete plugging of smaller pores and capture-free
transport via the larger pores.

The above are the consequences of the geometric porous
space model with parallel tubes, which also results in the
convex fractional flow function.
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The fundamental aspects of the Taylor-series expansion method of moment (TEMOM) model proposed to model the aerosol
population balance equation due to Brownian coagulation in the continuum regime is shown in this study, such as the choice of the
expansion point u, the relationship between asymptotic behavior and analytical solution, and the error of the high-order moment
equations. All these analyses will contribute to the buildup of the theoretical system of the TEMOMmodel.

1. Introduction

The population balance equations (PBE) are used to describe
the evolution process of aerosol particles in a wide range of
physical, chemical, and environmental subjects, such as nuc-
leation, coagulation, diffusion, convection, and so on. When
the Brownian coagulation plays a dominant role in such cases
where aerosol particles at a high concentration are concerned
or where suspended particles have evolved for a long time [1],
the PBE for a monovariants system can be written as [2]

𝜕𝑛 (𝜐, 𝑡)

𝜕𝑡

=
1

2
∫

V

0

𝛽 (𝜐
1
, 𝜐 − 𝜐

1
) 𝑛 (𝜐
1
, 𝑡) 𝑛 (𝜐 − 𝜐

1
, 𝑡) 𝑑𝜐

1

− ∫

∞

0

𝛽 (𝜐
1
, 𝜐) 𝑛 (𝜐, 𝑡) 𝑛 (𝜐

1
, 𝑡) 𝑑𝜐

1
,

(1)

in which 𝑛(𝜐, 𝑡) is the number density concentrations of the
particles with volume from 𝜐 to 𝜐+𝑑𝜐 at time 𝑡, 𝛽(𝜐, 𝜐

1
) is the

collision frequency function between particles with volumes
𝜐 and 𝜐

1
.

Because of its strong nonlinear partial integral-differe-
ntial structure, the direct solution is very complicated and
only a limited number of analytical solutions exist for simple

coagulation kernel [3]. So several methods are proposed to
solve this equation numerically, such as the sectional method
(SM) [4], the Monte Carlo method (MCM) [5], and the met-
hod of moment (MM) [6]. With lower computational cost
compared to the SM and MCM, the moment method has
been widely used and become a powerful tool for investi-
gating evolution processes of aerosol particles [7, 8].

By multiplying 𝜐𝑘 both the sides of (1) then integrating
over the entire particle size distribution (PSD) [9], the growth
rate of the particle moment can be obtained as follows:

𝑑𝑀
𝑘

𝑑𝑡
=
1

2
∬

∞

0

[(𝜐 + 𝜐
1
)
𝑘

− 𝜐
𝑘
− 𝜐
𝑘

1
]

× 𝛽 (𝜐, 𝜐
1
) 𝑛 (𝜐, 𝑡) 𝑛 (𝜐

1
, 𝑡) 𝑑𝜐 𝑑𝜐

1
,

(𝑘 = 0, 1, 2, . . .) ,

(2)

where the moment𝑀
𝑘
is defined as

𝑀
𝑘
= ∫

∞

0

𝜐
𝑘
𝑛 (𝜐) 𝑑𝜐. (3)

One main difficulty of the moment method is the closure of
the moment equations. There exist several methods to over-
come this bottleneck, including but not limited to the quadra-
ture method of moment (QMOM) [10], the direct quadrature
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method of moment (DQMOM) [11], and the Taylor-series
expansion method of moment (TEMOM) [3, 12].

It should be pointed out that the TEMOM has no prior
assumption for the PSD using the Taylor-series expansion to
achieve the closure and is considered as a promising appro-
ach to approximate the PBE for its relative simplicity of imple-
mentation and high accuracy [13]. Based on TEMOMmodel,
the important information about the PSD, namely, the par-
ticle number density, particle mass, and geometric standard
deviation, can be obtained for Brownian coagulation over the
entire size regimes, and its results have a great agreement
with other moment methods [3, 12–16]. But in these works,
some fundamental problems are not clarified, for example,
why the expansion point 𝑢 is set to be 𝑀

1
/𝑀
0
instead of

other formulas; why the Taylor-series are truncated just at
the first three terms; and what about the errors estimation of
the present TEMOMmodel. In the present study, mainly as a
methodological introduction, we would like to demonstrate
the theoretical analysis to answer these questions for Brown-
ian coagulation in the continuum regime.

2. Brief Review of TEMOM Model and
Its Solutions in the Continuum Regime

At the initial time, the particle size maybe small in the free
molecule regime. As time advances, the particle volume will
grow due to coagulation between particles, and the particle
size will transform to the near continuum regime via the tra-
nsition regime and finally will tend to the continuum regime
[17]. Therefore, the characteristic of particle evolution in the
continuum regime is important to understand the coagula-
tion mechanism. The collision frequency function 𝛽 in the
continuum regime is

𝛽 = 𝐵
2
(
1

𝜐1/3
+
1

𝜐
1/3

1

)(𝜐
1/3
+ 𝜐
1/3

1
) , (4)

where the constant 𝐵
2
= 3𝑘
𝐵
𝑇/2𝜇, 𝑘

𝐵
is the Boltzmann’s

constant,𝑇 is temperature, and 𝜇 is gas viscosity. Substituting
(4) into (2), a set of moment equations including integral and
fractional moments can be obtained. Using a Taylor-series
expansion at 𝜐 = 𝑢 = 𝑀

1
/𝑀
0
for 𝜐𝑘, the fractional moments

can be approximated by the combination of integralmoments
as follows:

𝜐
𝑘
= 𝑢
𝑘
+ 𝑢
𝑘−1
𝑘 (𝜐 − 𝑢)

+
𝑢
𝑘−2
𝑘 (𝑘 − 1)

2
(𝜐 − 𝑢)

2

+
𝑢
𝑘−3
𝑘 (𝑘 − 1) (𝑘 − 2)

3!
(𝜐 − 𝑢)

3
+ ⋅ ⋅ ⋅ ;

(5)

then the closure of the moment equations will be achieved
automatically without any prior assumption about the par-
ticle size spectrum. The minimum number of moments for
closing the equations is the first three-order moments 𝑀

0
,

𝑀
1
, and𝑀

2
, which represents or are proportional to the total

particle number concentration, and the total particle mass

concentration, the total scattering light, respectively. Acco-
rding to the results derived by Yu et al. [3] and Xie and Wang
[18], the equations can be rearranged as follows:

𝑑𝑀
0

𝑑𝑡
=

𝐵
2
(2𝑀
2

𝐶
− 13𝑀

𝐶
− 151)𝑀

2

0

81
,

𝑑𝑀
1

𝑑𝑡
= 0,

𝑑𝑀
2

𝑑𝑡
= −

2𝐵
2
(2𝑀
2

𝐶
− 13𝑀

𝐶
− 151)𝑀

2

1

81
,

(6)

where the dimensionless moment𝑀
𝐶
is defined as

𝑀
𝐶
=
𝑀
0
𝑀
2

𝑀
2

1

. (7)

It is clear that𝑀
1
remains constant due to the rigorous mass

conservation requirement, and its initial conditions can be
noted as𝑀

00
,𝑀
20
, and𝑀

𝐶0
= 𝑀
00
𝑀
20
/𝑀
2

1
. Equations in (6)

are a set of ordinary differential equations and can be solved
directly. The main process is described briefly as follows.
Because of the same structures of the first and the third equa-
tions in (6), the following relationship can be obtained:

𝑑𝑀
2

𝑑𝑀
0

=
−2𝑀
2

1

𝑀
2

0

. (8)

This equation can be dissolved directly as follows:

𝑀
2
=
2𝑀
2

1

𝑀
0

+ 𝐶
1
𝑀
2

1
, 𝐶

1
=
𝑀
20

𝑀
2

1

−
2

𝑀
00

, (9)

where 𝐶
1
is the integration constant, and the dimensionless

moment𝑀
𝐶
can be expressed as

𝑀
𝐶
= 2 +𝑀

0
𝐶
1
. (10)

Then substituting (10) into the first formula in (6), the relati-
onship between𝑀

0
and 𝑡 can be obtained:

5 ln𝑀
0
+
169

𝐶
1
𝑀
0

−
5

2
ln 󵄨󵄨󵄨󵄨󵄨169 + 5𝐶1𝑀0 − 2𝐶

2

1
𝑀
2

0

󵄨󵄨󵄨󵄨󵄨

−
701

9√17

arctanh
󵄨󵄨󵄨󵄨4𝐶1𝑀0 − 5

󵄨󵄨󵄨󵄨

9√17

=
13
4
𝐵
2

34𝐶
1

𝑡 + 𝐶
2
,

𝐶
2
= 5 ln𝑀

00
+
169

𝐶
1
𝑀
00

−
5

2
ln 󵄨󵄨󵄨󵄨󵄨169 + 5𝐶1𝑀00 − 2𝐶

2

1
𝑀
2

00

󵄨󵄨󵄨󵄨󵄨

−
701

9√17

arctanh
󵄨󵄨󵄨󵄨4𝐶1𝑀00 − 5

󵄨󵄨󵄨󵄨

9√17

,

(11)

in which 𝐶
2
is the integration constant. Then the second

moment𝑀
2
and dimensionless particle moment𝑀

𝐶
can be

calculated by (9) and (10), respectively. As time advances,𝑀
0

tends to zero due to coagulation; (11) can be simplified with
some limit operation as

lim
𝑀
0
→0

1

𝑀
0

= lim
𝑡→∞

169𝐵
2

81
𝑡, (12)

which is consistent with the asymptotic analysis shown byXie
et al. [18, 19].
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3. The Choice of Expansion Point 𝑢

In the TEMOM model, the choice of the expansion point at
𝑢 = 𝑀

1
/𝑀
0
is not arbitrary. Some researchers think that

the expansion for the characteristic size should take account
of dispersion in the size spectrum and that is best done
by using the well-known log-normal based expression 𝑢 =
𝑀
−3/2

0
𝑀
2

1
𝑀
−1/2

2
in a second order closure formalism [6].

Using the expansion point, the correspondingmoment equa-
tions based on TEMOM in the continuum regime are rewri-
tten as
𝑑𝑀
0

𝑑𝑡

= −

𝐵
2
𝑀
2

0
(−2𝑀

4

𝐶
+17𝑀

5/2

𝐶
−4𝑀
2

𝐶
−35𝑀

𝐶
+35𝑀

1/2

𝐶
+ 151)

81
,

𝑑𝑀
1

𝑑𝑡
= 0,

𝑑𝑀
2

𝑑𝑡

= −

2𝐵
2
𝑀
2

1
(2𝑀
4

𝐶
− 8𝑀

5/2

𝐶
− 5𝑀

2

𝐶
− 145𝑀

𝐶
− 8𝑀

1/2

𝐶
+ 2)

81𝑀
𝐶

.

(13)

The detailed derivation is provided in the appendix.The com-
parison of numerical results between (6) and (13) is shown in
Figure 1. And the initial conditions are selected as lognormal
distribution:𝑀

00
= 1;𝑀

1
= 1;𝑀

20
= 4/3. The results show

that the relative errors are small, and the two sets of equations
are equivalent approximately. However, this selection results
in more complicated moment equations. In fact, for any
expression, when it is operated using the Taylor expansion
technique, the selection of the expansion point is not unique.
In mathematics, we only need to make sure in the targeted
range than the Taylor-series expansion is convergent, and the
final constructed moment equations are simple in the form.
From this viewpoint, the selection of 𝑢 = 𝑀−3/2

0
𝑀
2

1
𝑀
−1/2

2

cannot be considered to be prior to the selection of 𝑢 =
𝑀
1
/𝑀
0
.

4. The High-Order Moment Equations

The accuracy of the TEMOM model largely depends on the
truncation errors of Taylor-series expansion. One method
to determine the truncated errors is comparing the results
of different TEMOM models, for example, the first three-
moment model, the first four-moment model, the first five-
moment model, and so forth. Similar to the derivation of the
first three moment equations, 𝜐𝑘 is expanded at 𝜐 = 𝑢 and
truncated at the first four terms as

𝜐
𝑘
= 𝑢
𝑘
+ 𝑢
𝑘−1
𝑘 (𝜐 − 𝑢)

+
𝑢
𝑘−2
𝑘 (𝑘 − 1)

2
(𝜐 − 𝑢)

2

+
𝑢
𝑘−3
𝑘 (𝑘 − 1) (𝑘 − 2)

3!
(𝜐 − 𝑢)

3
+ ⋅ ⋅ ⋅ ;

(14)

then the closed first four-moment equations can be obtained
as follows:
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(15)

with the same process, the closed first five-moment equations
are
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Figure 1: The comparison of numerical results among (6), (13), (15), and (16) with the initial condition𝑀
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= 1,𝑀
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the numerical results of𝑀
0
; (b) the relative errors for𝑀

0
; (c) the numerical results of𝑀
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(16)

The comparison of numerical results among (5), (14), and
(15) are also shown in Figure 1. The results show that the
relative errors are small, and the three sets of equations
can be considered equivalent nearly. Since the complexity
of moment equations increases rapidly with the increasing
number of reserved items but with little differences in the
numerical results, we usually prefer using the first three-
moment model proposed originally by Yu et al. [3].

5. Conclusion

Without a prior assumption for the shape of particle size
distribution, theTEMOMhas been considered as a promising
method tomodel the aerosol population balance equation. In
this study, the fundamental problems of the TEMOMmodel
in the continuum regime due to Brownian coagulation are
clarified, such as the choice of the expansion point 𝑢 and
the error of the high-order moment equations. It benefits the
understanding of PBE and TEMOMmodel.

Appendix

With the same process as Yu et al. [3] shown, we can get the
first three-moment equations as follows:

𝑑𝑀
0

𝑑𝑡
= −𝐵
2
(𝑀
1/3
𝑀
−1/3
+𝑀
2
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+𝑀
2
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) .

(A.1)

Then using (3) and (5), the fractional moments can be appro-
ximated by the combination of the first three integral mom-
ents, for example, the𝑀

1/3
is

𝑀
−1/3
=
1

9𝑢7/3
(2𝑀
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) .

(A.2)

Now replacing all the fractional moments by the integral
moments (i.e., 𝑀

0
, 𝑀
1
, and 𝑀

2
) in (A.2) and substituting

𝑢 = 𝑀
2

1
/(𝑀
3/2

0
𝑀
1/2

2
) and𝑀

𝐶
= 𝑀
0
𝑀
2
/𝑀
2

1
into (A.1), (13)

is obtained.
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Manipulation and sorting of particles utilizing microfluidic phenomena have been a hot spot in recent years. Here, we present
numerical investigations on particle trapping techniques by using intrinsic hydrodynamic effects in an expansion-contraction
microfluidic device. One emphasis is on the underlying fluid dynamical mechanisms causing cross-streamlines migration of the
particles in shear and vortical flows.The results show us that the expansion-contraction geometric structure is beneficial to particle
trapping according to its size. Particle Reynolds number and aspect ratio of the channel will influence the trapping efficiency greatly
because the force balance between inertial lift and vortex drag forces is the intrinsic reason. Especially, obvious inline particles
contribution presented when the particle Reynolds number being unit. In addition, we selected three particle sizes (2, 7, and 15𝜇m)
to examine the trapping efficiency.

1. Introduction

Microfluidics has greatly interested many researchers in
recent years, and has been widely used in the areas of
nanomaterials preparation, pharmaceutical analysis, protein
engineering, and so on [1–4]. Manipulation and sorting par-
ticles suspended inmicroflow are often applied to biomedical
area. Separating targeted particles from the detect solution is
an important process. Not a few techniques such as mem-
brane filtration, fluorescence, or magnetic particle sorting
were developed in recent years, and they have a wide range
of applications [5–7]. However, microfluidic-based devices
introduce several advantages, such as higher efficiency, lower
sample buffer consumption, fine spatial resolution, and lower
cost [8]. In addition, microfluidic-based device can trap
particles based on their intrinsic physical characteristics.
Hydrodynamic manipulation of particles in an expansion-
contraction microfluidic device is a passive method by
harnessing microchannel geometrical effects and nonlinear
hydrodynamic forces and needs not any application of exter-
nal force leading to a complicated device structure.

Passive methods used to trapping particles by exerting
hydrodynamic force are arising in microfluidic devices.

The main approaches are the cross-stream migration of
suspended particles in confined flows and microvortical
flow. The microvortex generated in sudden expansion is of
great importance for particle manipulation. Researchers have
gained some beneficial research results [9–11] in the theoreti-
cal analysis and experimental investigations on the formation
of vortices in different microchannel configurations. Jiang et
al. [9] numerically investigated the flow field under various
inlet flow rates and cavity structures and then systematically
studied the flow features of the vortex and Dean flow in
this channel by LBM. Bălan et al. [10] investigated the
dynamics of the vortices generated in the vicinity of Y-
and T-microbifurcations with one occluded branch. The
velocity distribution and streamlines were obtained through
the experiments and numerical simulations. Karimi et al.
[11] concentrated their study on the dynamical mechanisms
of cross stream migration particles in shear and vortical
flows. Tsai et al. [12–14] found that Reynolds number and
aspect ratio are both influential factors for flow patterns in a
suddenly expansion microchannel. Park et al. [15] developed
a kind of microfluidic method for focusing on microparticles
through the combined use of inertial lift forces and turbulent
secondary flows in a patterned microchannel. Furthermore,
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Figure 1: Geometric model of the expansion-contraction microflu-
idic device.

some particles trapping applications of the microvortices in
an expansion-contractionmicrochannel have been presented
in recent years [16, 17]. According to their research work,
in the contraction part, particles flow under the balance of
shear-gradient lift force and wall effect lift force. When the
particles move into the expansion part, wall effect lift force
disappears and the shear-gradient lift force leads particles to
the vortex formed in the orifice. Lee’s group [18, 19] demon-
strated a blood plasma separation scheme by employing the
unilateral contraction-expansion array microchannel with a
low aspect ratio. Small particles are driven predominantly by
Dean drag force while the larger ones are lifted by the inertial
force and stay close to their previous positions, leading to the
isolation of different size particles. The inlet flow rate should
be appropriately controlled to avoid particles migration into
the vortex in the orificial under a high flow rate.

In the present research, microvortex in the expansion-
contraction microchannel is numerically studied in order to
understand the particle migration mechanism. The particles
distribution and equilibrium position will vary with the
change of inlet flow rate and geometry dimensions.Moreover,
the research object is also to gain an insight into what
condition being beneficial to the particle trapping efficiency
for varying particle sizes and to supply the design foundations
of such a microfluidic device.

2. Problem Description

2.1. Geometric Model and Parameter Settings. The microde-
vice under investigation is presented in Figure 1. There are 3
orifices in order to separate the varying particle size distinctly.
The distance from inlet to the first orifice is 2000 𝜇m, and the
width of channel and orifice is 200 and 800𝜇m (with another
being 400), respectively. The spacing distance between 2
orifices is 500𝜇m. The depth of the entire device is set to be
200𝜇m.The dimension of the orifice is 800× 800 𝜇m. Inlet is
injected with deionized water with polystyrene microspheres
being at the size of 2, 7, and 15 𝜇m (corresponding to the size
of platelet, red blood cell and white blood cell). The outlet
for drainage is long enough off the last orifice, so we are able
to obtain distinct separation in terms of particle size. Full-
developed velocity profile is set at inlet, while the outflow is
set at the outlet. The reference atmospheric pressure is given
at the inlet, and the no-slip condition is used at the walls.

The settings of carried fluid properties: the viscosity,
density, specific heat, and thermal conductivity of con-
tinuous phase are 1.003 g/m⋅s, 0.9982 g/cm3, 4180 J/kg⋅K,

and 0.6W/m⋅K, respectively. Density and specific heat of
polystyrene microspheres are 1.055 g/cm3 and 1300 J/kg⋅K.

2.2. Numerical Model. The numerical model includes the
continuity equation, Navier-Stokes equation which is still
valid in current microchannel flow, and continuity equation
for volume fraction

∇ ⋅ 𝑉 = 0,

𝜌 [
𝜕𝑉

𝜕𝑡
+ (𝑉 ⋅ ∇)𝑉] = −∇𝑝 + 𝜇∇

2
𝑉,

(1)

where 𝑝 is the pressure, 𝜇 is the dynamic viscosity, and 𝜌 is
the density,

The particle continuity is derived from Buongiorno [20].
In our simulation, it is considered to be a dilute mixture
(about 0.5%wt). Brownian diffusion can be regarded as the
only slip mechanism for particle transport at low Reynolds
number in microflow.They are incorporated into the particle
transport equation as follows:

𝜕𝛼
𝑝

𝜕𝑡
+ 𝑉 ⋅ ∇𝛼

𝑝
= ∇ ⋅ (𝐷

𝐵
∇𝛼
𝑝
) , (2)

where 𝛼
𝑝
denotes the particle volume fraction. Brownian

diffusion is described by the terms on the right hand side.𝐷
𝐵

is Brownian diffusion coefficient. The coefficients read as

𝐷
𝐵
=
𝑘
𝐵
𝑇

3𝜋𝜇
𝑏
𝑑
𝑝

, (3)

where 𝑘
𝐵
denotes Boltzmann’s constant, 𝜇

𝑏
the viscosity of

carried fluid, and 𝑑
𝑝
the particle diameter. The bulk fluid

(carried fluid) is set to be zero.
There is still a lack of accurate theoretical models for

the prediction of the viscosity the fluid containing particles.
Normally, empirical laws [21] to predict the viscosity are

𝜇
𝑛
= 𝜇
𝑏
(1 + 18.8𝛼

𝑝
) . (4)

2.3. Method Validation. In order to verify the availability of
the numerical model, we simulated numerically the flowwith
particles in a circular capillary. The particles distributions
are shown in Figure 2. The equilibrium position is about 0.6
radius, being in good agreement with the theoretical results.
We confirm the availability of our numerical model for the
particle-laden microflow.

3. Results and Discussion

3.1. Particle Trapping Mechanism. When particles are sus-
pended in the carried fluid, the particle behavior is affected
by the inertial and viscous forces occurring in the interaction
with fluid. According to a number of theoretical analyses, the
inertial migration phenomenon can be explained by a shear-
gradient-induced lift force that causes particles to migrate
away from the axis of pipe and a wall-effect-induced lift force
that repels particles away from a pipe wall [22, 23]. This was
proved to be right by our simulation results in Figure 2. In the
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Figure 2: The contour lines of particle concentration in varying position of capillary. (a) 500𝜇m downstream, (b) 1000 𝜇m downstream, (c)
2000𝜇m downstream, and (d) 4000 𝜇m downstream.
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Figure 3: The contour line of particle concentration in varying aspect ratio (AR): (a) AR = 1, (b) AR = 2, (c) AR = 3, and (d) AR = 4.
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Figure 4: Microvortex structure and particle movement in an
orifice.

case of square ducts, particles were concentrated near four
walls (top, bottom, left, and right) [24]. We also simulated
manifold geometries with varying aspect ratio (AR), and the
results were shown in Figure 3. Numerical results show us
that the particles distribution in almost in two lines when the
aspect ratio is larger than 3 (see Figures 3(c) and 3(d)). This
is the basis of hydrodynamic manipulation of particles in an
expansion-contraction microfluidic device.

The channel geometry of multiorifices pattern (expan-
sion-contraction structure) was designed so as to transform
the particle distribution in a cross section of a straight channel
and subsequently concentrate particles close to both side
walls of channel. The mechanism of particle enrichment is
based on the vortex flow due to the suddenly expansion
channel, as shown in Figure 4. In this case, the wall-effect-
induced lift forces are weakened compared to the shear-
gradient-induced lift force; the reason is probably the long
distance from the main stream to the side walls.Themajority
of particles can be focused near sidewalls as long as they
pass through a series of contraction/expansion channels.

The mechanism of particle migration induced by solely
inertial lift forces cannot explain the dissimilarity for various
particle sizes, because the size-based particle separation in a
multiorifices microchannel is driven by a combination of two
fluid-mechanical forces: inertial lift force and themomentum
change over certain time interval is equivalent to inertial
force. Inertial forces consist of two parts: inertial lift force
and momentum-change-induced inertial force. The inertial
lift force is caused by the lateral pressure gradient exerted
on a particle, and the momentum-change-induced inertial
force can be calculated by an equation. According to the
momentum change over a certain time interval which is
equivalent to inertial force, the particle migration velocity
under consideration of the lateral migration driven by the
inertial force can be obtained [25] by

𝑈
𝑑
=

𝜌
𝑝
𝑑
2
𝑈
2

18𝜇𝐷
ℎ

. (5)

Therefore, important dimensionless parameter named parti-
cle Reynolds number should be defined, because we are able
to estimate the fluid dynamic phenomenonof particle flowing
through amicrochannel by using it. It is defined as the ratio of
the inertial lift force andmomentum-change-induced inertial
force as

Re
𝑝
=
𝑈
𝑚
𝑑
2

]𝐷
ℎ

. (6)

Here, 𝑑 is the particle diameter, 𝐷
ℎ
is the hydraulic diameter

of the channel, 𝑈
𝑚

is the maximum flow velocity in the
channel, and ] is the kinematic viscosity of the carried liquid,
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Figure 5: The contour line of particle concentration in varying position of our device: (a) position P0, (b) position P1, (c) position P2, (d)
position P3, and (e) position P4.
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Figure 6: Trapping efficiency comparison between two kinds of
orifices.

𝜇 is the dynamic viscosity. For Re
𝑝
bigger than 1, the inertial

force becomes a dominant parameter for driving the lateral
migration of particles transverse to fluid streamlines. In
contrast, in the case of Re

𝑝
less than 1, the particle behavior

is strongly promoted to follow the flow pattern by a viscous
drag force acting on the particle surface.

3.2. Numerical Results and Discussions. The channel geome-
try influences the particle trapping efficiency obviously. The
main influence factors are aspect ratio, orifice number, and
orifice structure. Figure 3 showed us that the aspect ratio
affects the particle distribution obviously. Fortunately, the
AR value of normal microfluidic device made of PDMS
(polydimethylsiloxane) is bigger than 3. However, orifice
number will also influence the trapping efficiency. Figure 5
shows us the contour lines of particle concentration in
varying position of our device. Figure 5(a) is near the inlet but
well developed, most of the particles were not trapped, and

the particles distribution is almost identical over the entire
section. At the end of first, second, and third orifices, the
width of particle distribution decreases obviously in turn, and
the particles near front and back wall fast disappeared. Near
the channel end (outlet), the particles distribution appears
to be two narrow lines. We also numerically simulated
two orifice structures, and the comparison of their particle
distributions (defined as the local population of particles to
the total population of particles) was illustrated in Figure 6.
Obviously the particles distribution lines in 800 × 400 𝜇m
orifice are not so narrow as those in 800 × 800 𝜇m orifice.
The reason should be that the particles trajectory will not
be influenced by the microvortex in 800 × 400 𝜇m orifice so
greatly as that in 800 × 800 𝜇m orifice. We can see in Figure 4
that the streamlines should be flat near the region from
expansion to contraction when the orifice width decreased,
and the particle movement at position 3 will not be so steep
that the outward migration velocity is decreased.

Equation (5) indicated that the flow rate is of great
importance to the particle trapping. Our simulations were
carried out for various flow rates ranging from 50 to
1000 𝜇L/min, with relevant Reynolds number being about 8–
160. To the particle size of 2, 7, and 15 𝜇m, particle Reynolds
numbers are calculated to be 0.02–0.41, 0.24–4.82, and 1.13–
20.1, respectively. Figure 7 shows us the particle contributions
in flow rates being 100, 200, and 500𝜇L/min, respectively,
and the particle size is 7 𝜇m. We can see that the trapping
efficiency was better under the flow rate being 200𝜇L/min
than that of 100 𝜇L/min flow rate, and (5) indicated also that
the lateralmigration velocity (meaning of trapping efficiency)
increased with the increasing of the flow velocity. However,
almost all the particles concentrated near the center line of the
channel, and the trapping efficiency closed to zero when the
flow rate is very great. This can be explained as follows: when
the flow velocity is great enough, the vortex center drifted
right (see in Figure 4) and occupied almost the entire orifice,
and therefore the streamlines in main channel will close to
straight lines and the lateral migration of particles transverse
to fluid streamlines decreased. In fact, Re

𝑝
can express the

trapping efficiency, because we know that when Re
𝑝
is bigger

than one, the inertial force becomes a dominant parameter
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Figure 7: Particle contribution in various flow rates (with particle
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for driving the lateral migration of particle transverse to fluid
streamlines. In contrast, in the case of Re

𝑝
less than one,

the particle behavior is strongly promoted to follow the flow
pattern by a viscous drag force acting on the particle surface.

Particle size is another important factor to influence
particle trapping efficiency. We simulated 3 sizes of particles
2, 7, and 15 𝜇m, and the particle concentrations are 100, 25,
and 5 × 103/𝜇L, respectively. In order to acquire relatively
better trapping efficiency, the corresponding flow rate is
1000, 200, and 50 𝜇L/min. The particle Reynolds numbers
can be calculated using (6), and they are 0.41, 0.98, and
1.13, respectively. Although the particle Reynolds number is
only 0.41 to particle size 2 𝜇m, the flow rate is somewhat

greater (1000 𝜇L/min). The numerical results are shown in
Figure 8. The particle distribution for particle sizes 7 and
15 𝜇m showed us good trapping efficiency. Notice that the
distribution center of particles with size of 7𝜇m is about
230 𝜇m and that of particle with size of 15 𝜇m is a little bigger
(240𝜇m). However, the distribution center of particle with
size of 2 𝜇m is less than 210 𝜇m.This result agrees with many
published results. In addition, the numerical results verified
once again that particle Reynolds number can predict the
particle trapping efficiency.

4. Conclusions

After numerical simulations being carried out for various
particle sizes under various flow rates in various orifices
structures, the following conclusions can be drawn.

(1) multiorifices structure is beneficial to particle trap-
ping.

(2) Aspect ratio of square channel influences the parti-
cle distribution greatly. When aspect ratio is bigger
than 3, particle distribution appears to be two-lines
structure, and loop line structure for less than 2 aspect
ratios.

(3) Particle Reynolds number is of great importance to
particle trapping. When Re

𝑝
is bigger than one, the

inertial force is dominant and enhanced the lateral
migration of particle transverse to fluid streamlines.
In contrast, in the case of Re

𝑝
less than one, the

particle is to follow the flow pattern by a viscous drag
force on the particle surface.
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A coupled systemmodel of partial differential equations is presented in this paper, which concerns the variation of the pressure and
temperature, velocity, and density at different times and depths in high temperature-high pressure (HTHP) gas-liquid two-phase
flowwells. A new dimensional splitting technique with Eulerian generalized riemann problem (GRP) scheme is applied to solve this
set of conservation equations, where Riemann invariants are introduced as the main ingredient to resolve the generalized Riemann
problem.The basic data of “X well” (HTHPwell), 7100m deep, located in Southwest China, is used for the case history calculations.
Curve graphs of pressures and temperatures along the depth of the well are plotted at different times. The comparison with the
results of Lax Friedrichs (LxF) method shows that the calculating results are more fitting to the values of real measurement and the
new method is of high accuracy.

1. Introduction

The prediction of pressure and temperature of transient gas-
liquid flow in a wellbore is important but difficult for well
completion test because they are characterized by the depen-
dence of pressure, density, velocity, and other flowparameters
on both time and space. As for pressure prediction research,
there exist empirical formulas, such as those given by Beggs
and Brill [1], Mukherjee and Brill [2, 3], and so on. Different
researchers such as Hurlburt and Hanratty [4] and Cazarez-
Candia and Vásquez-Cruz [5] have proposed mechanistic
models, assuming that flow is under steady-state conditions;
other researchers such as Taitel et al. [6]; Ouyang and Aziz
[7] have proposed unsteady-state gas-liquid two-phase flow
models. Fontanilla and Aziz [8] and Ali [9] presented two
simultaneous ordinary differential equations for estimating
the steam pressure and quality and solved these equations
by using the fourth-order Runge-Kutta method. However,
those models can only predict the pressure profiles but not
the temperature profiles and ignored their interdependence.

Concerning both pressure and temperature in HTHP
wells, Wu et al. have presented a coupled system model of

differential equations in [10], but this model only considered
the single phase flow statement. In this paper, we build
a set of coupled partial differential equations of pressure,
temperature, density, and velocity in HTHP gas-liquid two-
phase flow wells on the base of the model which was build by
Xu et al. in [11].The numerical model, which accords with the
actual situation of the well, allows for the change of oblique
angle,different heat transfermedium in annular and the depth
of the physical properties of the formation.

We found an algorithm solving model with generalized
Riemann problem (GRP) scheme, which is an analytic
extension of the Godunov scheme in [12] and originally
designed by Li and Chen in [13] for the shallow water
equations. A direct and simple derivation of the Eulerian
generalized Riemann problem scheme is presented to get
the integration in time of the conservation laws. Riemann
invariants are applied in order to resolve the singularity
at the jump discontinuity. The approach has the advantage
that the contact discontinuity in each local wave pattern is
always fixed with speed zero, while the rarefaction and the
shock waves are located on either side. Since the extension
of this scheme to multidimensional cases is obtained using
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the dimensional splitting technique, getting the integration
in time of the conservation laws is more direct and simple.

In this paper, we use GRP method for solving this
problem and get more accurate prediction of pressure and
temperature compared with those obtained from the existing
correlations such as LxF method in [11]. The basic data for
the calculation are from Xwell, 7100m of depth in Southwest
China. The curves of the gas pressure and temperature along
the depth of the well are plotted. The results can provide a
technical reliance for the process of designing well tests in
HTHP gas-liquid wells and a dynamic analysis of production
from wells.

2. Model Formulation

Considering the two-phase flow system shown in Figure 1, the
mixture density and velocity are related to the in situ liquid
volume fraction (holdup),𝐻, as follows:

𝜌
𝑚
= 𝜌
𝑙
𝐻 + 𝜌

𝑔
(1 − 𝐻)

V
𝑚
= V
𝑙
𝐻 + V

𝑔
(1 − 𝐻)

𝑢
𝑚
= 𝑢
𝑙
𝐻 + 𝑢

𝑔
(1 − 𝐻) .

(1)

2.1. Mass Balance. Consider the flow model shown in
Figure 2. According to the fluid moves through the fixed
control volume depicted by John and Anderson in [14], we
have

∬

𝑆

𝜌
𝑚
V
𝑚
𝑑𝑠 = −

𝜕

𝜕𝑡
∭

]
𝜌
𝑚
𝑑V
𝑚
. (2)

Control volume

𝜌

P

dz

V

e

𝜌 + dp

e + de

A + dA

A

P + dP

V + dV

Figure 3: Control volume 2.

Under transient conditions, applied to the control volume
in Figure 3, in the limit as 𝑑𝑧 becomes very small, the volume
and surface integral in (2) becomes

𝜕

𝜕𝑡
∭

]
𝜌
𝑚
𝑑V =

𝜕

𝜕𝑡
(𝜌
𝑚
𝐴𝑑𝑧)

∬

𝑆

𝜌
𝑚
V
𝑚
𝑑𝑠 = 𝜌

𝑚
V
𝑚
𝑑V
𝑚
+ 𝜌
𝑚
𝐴𝑑V
𝑚
+ 𝐴V
𝑚
𝑑𝜌
𝑚

= 𝑑 (𝜌
𝑚
V
𝑚
𝐴) .

(3)

Substituting (3) into (2), we get the mass balance equa-
tion:

𝜕𝜌
𝑚

𝜕𝑡
+
𝜕 (𝜌
𝑚
V
𝑚
)

𝜕𝑧
= 0. (4)

2.2. Momentum Balance. As shown in Figure 4, the integral
form of the 𝑧 component the momentum equation can be
written as follows with the external forces:

𝜕

𝜕𝑡
∭

]
𝜌
𝑚
𝑢
𝑚
𝑑𝑉 +∬

𝑆

(𝜌
𝑚
𝑢
𝑚
V
𝑚
) ⋅ 𝑑𝑆

= −∬

𝑆

(𝑃𝑑𝑆) 𝑑𝑧 − 𝜌
𝑚
𝑔 cos 𝜃𝐴𝑑𝑧 −

𝜆𝜌
𝑚
V2
𝑚

2𝑑
𝐴𝑑𝑧,

(5)

where 𝜌
𝑚
𝑔 cos 𝜃𝐴𝑑𝑧 is the force of gravity, (𝜆𝜌

𝑚
V2𝐴/2)𝑑𝑧 is

the shear stress, and
𝜕

𝜕𝑡
∭

]
𝜌
𝑚
𝑢
𝑚
𝑑𝑉 =

𝜕

𝜕𝑡
(𝜌
𝑚
V
𝑚
𝐴𝑑𝑧)

∬

𝑆

(𝜌
𝑚
𝑢
𝑚
V
𝑚
) ⋅ 𝑑𝑆 = − 𝜌

𝑚
V2
𝑚
𝐴

+ (𝜌
𝑚
+ 𝑑𝜌
𝑚
) (V
𝑚
+ 𝑑V
𝑚
)
2

(𝐴 + 𝑑𝐴)

−∬

𝑆

(𝑃𝑑𝑆)
𝑧
= −𝑃𝐴 + (𝑃 + 𝑑𝑃) (𝐴 + 𝑑𝐴) − 2𝑃(

𝑑𝐴

2
) .

(6)
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Substituting (6) into (5), we obtain momentum balance
equation:

𝜕

𝜕𝑡
(𝜌
𝑚
V
𝑚
) +

𝜕

𝜕𝑧
(𝑃 + 𝜌

𝑚
V2
𝑚
) = −𝜌

𝑚
𝑔 cos 𝜃 −

𝜆𝜌
𝑚
V2
𝑚

2𝑑
. (7)

2.3. Energy Balance. For the transient flow, it leads directly
to the energy equation in terms of temperature. As shown
in Figure 5, we should consider the heat transmission within
wellbore and from wellbore to formation as transient.

According to the energy balance law, the heat variation
flowing on control volume that is equal to the combination
heat of inflow and outflow, and the heat transferring to the
second dimension, we get the energy balance equation of
transient flow:

(𝑤𝐶
𝑝
𝑇) 𝑧 − (𝑤𝐶

𝑝
𝑇) (𝑧 + 𝑑𝑧) − 2𝜋𝑟

𝑡𝑜
𝑈
𝑡𝑜
(𝑇 − 𝑇

𝑟
) 𝑑𝑧

=

𝜕 (𝜌
𝑚
𝐶
𝑝
𝑇)

𝜕𝑡
𝐴𝑑𝑧,

(8)

where 𝑇
𝑟
= (𝐾
𝑒
𝑇
𝑒𝑖
+ 𝑟
𝑡𝑜
𝑈
𝑡𝑜
𝑇
𝑒
𝑇wbD)/(𝐾𝑒 + 𝑟𝑡𝑜𝑈𝑡𝑜𝑇wbD) and

𝑤 = 𝜌
𝑚
V
𝑚
𝐴. Equation (8) equals the following equation:

𝜕 (𝜌
𝑚
V
𝑚
𝑇)

𝜕𝑧
+
𝜕 (𝜌
𝑚
𝑇)

𝜕𝑡
=
2𝜋𝐾
𝑒
𝑟
𝑡𝑜
𝑈
𝑡𝑜
(𝑇
𝑒𝑖
− 𝑇)

𝐶
𝑃
(𝐾
𝑒
+ 𝑟
𝑡𝑜
𝑈
𝑡𝑜
𝑇wbD)

. (9)

Finally, we obtain the coupled system model of partial
differential equations:

𝜕𝜌
𝑚

𝜕𝑡
+
𝜕 (𝜌
𝑚
V
𝑚
)

𝜕𝑧
= 0,

𝜕 (𝜌
𝑚
V
𝑚
)

𝜕𝑡
+

𝜕 (𝑃 + 𝜌
𝑚
V2
𝑚
)

𝜕𝑧
= −𝜌
𝑚
𝑔 cos 𝜃 − 𝜆

2𝑑
,

𝜕 (𝜌
𝑚
𝑇)

𝜕𝑡
+
𝜕 (𝜌
𝑚
V
𝑚
𝑇)

𝜕𝑧
=
2𝜋𝐾
𝑒
𝑟
𝑡𝑜
𝑈
𝑡𝑜
(𝑇
𝑒𝑖
− 𝑇)

𝐶
𝑃
(𝐾
𝑒
+ 𝑟
𝑡𝑜
𝑈
𝑡𝑜
𝑇wbD)

,

𝜌
𝑚
=

𝑀𝑃𝛾
𝑔

𝑍𝑅𝑇
,

(𝑃, 𝑇, 𝜌
𝑚
, V
𝑚
) = (𝑃

0
, 𝑇
0
, 𝜌
𝑚0
, V
𝑚0
) 𝑡 = 0, 𝑧 = 0.

(10)

3. Format Construction

We unify the conservation equations (4), (7), and (9) which
are also included in (10) into the following formation:

𝜕𝐴
𝑚

𝜕𝑡
+
𝜕𝐵
𝑚

𝜕𝑧
= 𝐶
𝑚
, 𝑚 = 1, 2, 3,

𝑈 =

{{

{{

{

𝐴
1
= 𝜌
𝑚

𝐴
2
= 𝜌
𝑚
V
𝑚

𝐴
3
= 0,

𝐹 (𝑈) =

{{

{{

{

𝐵
1
= 𝜌
𝑚
V
𝑚

𝐵
2
= 𝑃 + 𝜌

𝑚
V2
𝑚

𝐵
3
= 𝜌
𝑚
V
𝑚
𝑇,

𝑆 (𝑈) =

{{{{{{

{{{{{{

{

𝐶
1
= 0

𝐶
2
= −𝜌
𝑚
𝑔 cos 𝜃 − 𝜆

2𝑑

𝐶
3
=
2𝜋𝐾
𝑒
𝑟
𝑡𝑜
𝑈
𝑡𝑜
(𝑇
𝑒𝑖
− 𝑇)

𝐶
𝑃
(𝐾
𝑒
+ 𝑟
𝑡𝑜
𝑈
𝑡𝑜
𝑇wbD)

.

(11)

We define the equally spaced grid points, the interface
points, and the cells as

𝑧
𝑗
= 𝑗Δ𝑧, 𝑧

𝑗+1/2
=

𝑧
𝑗
+ 𝑧
𝑗+1

2
, 𝐶

𝑗
= [𝑧
𝑗−1/2

, 𝑧
𝑗+1/2

] .

(12)

We assume that the data at time 𝑡 = 𝑡
𝑛
are piecewise

linear with a slope 𝜎𝑛
𝑗
and we have 𝑈(𝑧, 𝑡

𝑛
) = 𝑈

𝑛

𝑗
+ 𝜎
𝑛

𝑗
(𝑧 −

𝑧
𝑗
), 𝑧 ∈ (𝑧

𝑗−1/2
, 𝑧
𝑗+1/2

).
The second-order Godunov scheme for (11) takes the

following form:𝑈𝑛+1
𝑗

= 𝑈
𝑛

𝑗
−(Δ𝑡/Δ𝑥)(𝐹(𝑈

𝑛+1/2

𝑗+1/2
)−𝐹(𝑈

𝑛+1/2

𝑗−1/2
)),

where 𝑈𝑛+1/2
𝑗+1/2

is the midpoint value or the value of 𝑈 at
the cell interface (𝑧

𝑗+1/2
, 𝑡
𝑛
) with accuracy of second order.

More specifically, the mid-point value 𝑈𝑛+1/2
𝑗+1/2

is computed
with the formulas 𝑈𝑛+1

𝑗+1/2
= 𝑈
𝑛

𝑗+1/2
+ (Δ𝑡/2) (𝜕𝑈/𝜕𝑡)

𝑛

𝑗+1/2
and

𝑈
𝑛

𝑗+1/2
= 𝑅
𝐴
(0; 𝑈
𝑛

𝑗+1/2,−
, 𝑈
𝑛

𝑗+1/2,+
). Also, 𝑅𝐴 ((𝑧 − 𝑧

𝑗+1/2
)/(𝑡 −

𝑡
𝑛
); 𝑈
𝑛

𝑗+1/2,−
, 𝑈
𝑛

𝑗+1/2,+
) is the solution of the Riemann problem

centered at (𝑧
𝑗+1/2

, 𝑡
𝑛
). Moreover, 𝑈𝑛

𝑗+1/2,−
and 𝑈𝑛

𝑗+1/2,+
are

the limiting values of initial data 𝑈(𝑧, 𝑡
𝑛
) on both sides of

(𝑧
𝑗+1/2

, 𝑡
𝑛
). We present a direct and simple derivation of

the Eulerian geralized Riemann problem (GRP) scheme and
apply Riemann invariants in order to resolve the singularity
at the jump discontinuity.

The local wave configuration is usually piecewise smooth
and consists of rarefactionwaves, shocks, and contact discon-
tinuities. As the general rarefaction waves are considered, the
initial data can be regarded as a perturbation of the Riemann
initial data 𝑈

𝐿
and 𝑈

𝑅
.
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The GRP scheme assumes piecewise linear data for the
flow variables, which leads to the generalized Riemann
problem for (11) subject to the initial data:

𝑈 (𝑧, 0) = {

𝑈
𝐿
+ 𝑧𝑈
󸀠

𝐿
, 𝑧 < 0

𝑈
𝑅
+ 𝑧𝑈
󸀠

𝑅
, 𝑧 > 0,

(13)

where 𝑈
𝐿
, 𝑈
𝑅
, 𝑈
󸀠

𝐿
, and 𝑈󸀠

𝑅
are constant vectors.

The initial structure of the solution is determined by the
associated Riemann solution, denoted by lim

𝑡→0
𝑈(𝜆𝑡, 𝑡) =

𝑅
𝐴
(𝜆; 𝑈
𝐿
, 𝑈
𝑅
), 𝜆 = 𝑥/𝑡.

4. Solving Process

Step 1. Set the step length. In this paper,

ℎ = 1 (m) , 𝜏 = 60 (s) . (14)

Step 2. Obtain each point’s inclination: 𝜃
𝑗
= 𝜃
𝑗−1
+ (𝜃
𝑗
󸀠 −

𝜃
𝑗
󸀠
−1
)ℎ/Δ𝑠

𝑗
󸀠
−1
.

Step 3. The in situ liquid volume fraction (holdup) in (1) can
be calculated from

𝐻(𝜃
𝑗
) =

0.98𝐸
𝑙

0.4846

𝐹𝑟0.0868

× {1 + (1 − 𝐸
𝑙
) ln[

4.7𝑁
0.1244

V𝑙

𝐸
𝑙

0.8692
𝐹𝑟0.5056

]

× [sin (1.8𝜃
𝑗
) −

1

3
sin3 (1.8𝜃

𝑗
)]} .

(15)

Step 4. Calculate the following parameters by Liao and Feng
in [15]:

𝑈
𝑡𝑜
= (

𝑟
𝑡𝑜

𝑟
𝑡𝑖
ℎ
𝑟

+
𝑟
𝑡𝑜
ln (𝑟
𝑡𝑜
/𝑟
𝑡𝑖
)

𝑟
𝑡𝑖
ℎ
𝑟

+
1

ℎ
𝑐
+ ℎ
𝑟

+
𝑟
𝑡𝑜
ln (𝑟
𝑐0
/𝑟
𝑐𝑖
)

𝑟cas
+
𝑟
𝑡𝑜
ln (𝑟
ℎ
/𝑟
𝑐0
)

𝑟cem
)

−1

,

𝑇wbD =
2𝜋𝐾
𝑒
(𝑇
𝑒𝑖
− 𝑇wb)

∑
𝑚

𝑗=1
(𝑄
𝑗−1
− 𝑄
𝑗
)

.

(16)

Step 5. For piecewise given initial data 𝑈𝑛(𝑧) = 𝑈𝑛
𝑗
+ 𝜎
𝑛

𝑗
(𝑧 −

𝑧
𝑗
), 𝑧 ∈ (𝑧

𝑗−1/2
, 𝑧
𝑗+1/2

), we solve the Riemann problem for
(11) to define the Riemann solution 𝑈𝑛

𝑗+1/2
= 𝑅(0; 𝑈

𝑛

𝑗
+

(Δ𝑧/2)𝜎
𝑛

𝑗
, 𝑈
𝑛

𝑗+1
− (Δ𝑧/2)𝜎

𝑛

𝑗+1
), which is the same as the

classical Godunov scheme and the Riemann solver in [16] is
used in the solution.

Step 6. Determine (𝜕𝑈/𝜕𝑡)𝑛
𝑗+1/2

and evaluate the new cell
averages 𝑈𝑛+1

𝑗
. We apply monotonic algorithm slope limiters

to suppress the local oscillations near discontinuities. We
use parameter 𝛼 = 1.9 in 𝜎𝑛+1

𝑗
= minmod (𝛼(𝑈𝑛+1

𝑗
−

𝑈
𝑛+1

𝑗−1
)/Δ𝑧, 𝜎

𝑛+1,−

𝑗
, 𝛼(𝑈
𝑛+1

𝑗+1
− 𝑈
𝑛+1

𝑗
)/Δ𝑧), where 𝑈𝑛+1,−

𝑗+1/2
=

𝑈
𝑛

𝑗+1/2
+ Δ𝑧(𝜕𝑈/𝜕𝑧)

𝑛

𝑗+1/2
and 𝜎𝑛+1,−

𝑗
= (1/Δ𝑧) (Δ𝑈)

𝑛+1,−

𝑗
=

(1/Δ𝑧) (𝑈
𝑛+1,−

𝑗+1/2
− 𝑈
𝑛+1,−

𝑗−1/2
).

5. Results and Discussion

In this simulation, we study a pipe inXwell located in Sichuan
Basin, Southwest China. All the needed parameters are given
in [17] as follows: fluid density is 1000 kg/m3; depth of the
well is 7100m; friction coefficient is 1.2; ground temperature
is 160∘C; ground thermal conductivity parameter is 2.06;
ground temperature gradient is 0.0218∘C/m. Parameters of
pipes are given in Table 1. Inclination, azimuth, and vertical
depth are given in Table 2.

Through the simulation, we use GRPmethod to calculate
the prediction of pressure and temperature of the oil in the
pipe and draw a sensitive analysis for the results.We compare
the results of pressure and temperature calculated for the well
head at 1200 s byGRP and LxF schemewith themeasurement
results, which also shows that GRP scheme is more accurate
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Table 1: Parameters of pipes.

Diameter Thickness Weight Expansion Coefficient Young Modulus
88.9 9.53 18.9 0.0000115 215 0.3 1400
88.9 7.34 15.18 0.0000115 215 0.3 750
88.9 6.45 13.69 0.0000115 215 0.3 4200
73 7.82 12.8 0.0000115 215 0.3 600
73 5.51 9.52 0.0000115 215 0.3 150

Table 2: Parameters of azimuth, inclination, and vertical depth.

Number Measured Inclination Azimuth Vertical
depth

1 0 0 120.33 0
2 303 1.97 121.2 302.87
3 600 1.93 120.28 599.73
4 899 0.75 126.57 898.59
5 1206 1.25 124.9 1205.45
6 1505 1.04 124.62 1504.32
7 1800 0.49 123.75 1799.18
8 2105 2.49 125.27 2104.04
9 2401 1.27 123.13 2399.91
10 2669 2.44 120.12 2667.79
11 3021 0.14 127.39 3019.63
12 3299 1.18 122.60 3297.50
13 3605 2.05 123.25 3603.36
14 3901 0.16 121.45 3899.22
15 4183 2.92 121.24 4181.09
16 4492 2.73 129.22 4489.95
17 4816.07 1.98 121.61 4813.87
18 5099.07 2.74 129.93 5096.74
19 5394.07 0.13 120.46 5391.61
20 5706.07 0.63 129.59 5703.47
21 5983.07 2.09 120.14 5980.34
22 6302.07 2.69 122.91 6299.19
23 6597.07 2.45 129.41 6594.06
24 6911.12 0.15 124.88 6907.96

in the real calculation. We obtain series of results contained
in tables and figures and analyze these results as follows.

When the bottom pressure is 70MPa, temperatures are
plotted in Figure 6 at different depths and shown in detail
in Table 3. When the output keeps constant, the temperature
increases with the increasing depth of the well and when the
depth fixed, the temperature increases with the increasing
time. In addition, it can be seen from the figure that the
temperature changes quickly in the early stage but stabilizes
over time, especially after 1200 s.

It is established that, when depth is constant, the pressure
shown in Figure 7 and Table 4 increased with an increase
of the time. When the output keeps constant, the pressure
increased with the increasing depth of the well. This is
because, with time increasing, the flow increases and then the
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Figure 6: Temperature distribution at different depths.
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Figure 7: Pressure distribution at different depths.

frictional heat leads to an increase in the pressure. It can also
be seen that the pressure changes quickly in the early stage
but stabilizes over time.

As shown in Table 5, for the comparative results of the
well head temperature at 1200 s, the relative error between
the calculation results and the measurement results of GRP
scheme method is 5.12% and by LxF method is 6.70%, while
the relative error between the results in pressure predition at
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Table 3: Temperature at different depths on 300 s, 900 s, 1200 s, and
3600 s.

Depth Time
300 s 900 s 1200 s 3600 s

0 81.22 115.29 124.19 132.27
300 85.45 121.38 127.55 133.34
600 92.67 125.54 131.76 136.56
900 95.54 129.48 134.96 138.87
1200 101.16 133.77 137.58 141.94
1500 106.49 136.66 140.77 143.15
1800 111.76 140.67 143.23 145.17
2100 116.98 143.54 146.29 147.39
2400 121.86 145.66 148.49 149.14
2700 126.89 148.45 150.78 151.93
3000 131.55 151.78 152.99 153.85
3300 136.85 153.74 154.86 155.91
3600 140.88 154.02 154.46 157.87
3900 144.67 157.12 158.73 159.45
4200 148.25 159.34 160.87 161.88
4500 152.74 161.53 161.65 162.65
4800 155.77 162.55 162.72 163.45
5100 159.75 163.42 163.49 164.56
5400 162.36 164.56 164.87 165.24
5700 164.32 165.74 165.45 166.57
6000 166.36 166.56 167.67 167.97
6300 167.91 168.77 168.87 169.65
6600 168.23 169.45 169.57 169.81
6900 170.24 170.56 171.78 171.52

the same time calculated byGRP schememethod is 8.81% and
by LxF method is 9.73%, which shows that the distribution
prediction of the two-phase flow is more accurate in actual
calculation by GRP scheme method.

6. Conclusion

In this paper, considering the variation of pressure, tempera-
ture, velocity; and density at different times and depths in gas-
liquid two-phase flow, we present a system model of partial
differential equations according to mass, momentum, and
energy. We establish an algorithm solving model with a new
difference method with a direct Eulerian GRP scheme which
is proven to be efficient for the numerical implementation in
this paper. The basic data of the X well (HTHP well), 7100m
deep in Sichuan Basin, Southwest China, was used for case
history calculations, and a sensitivity analysis is completed
for the model. The gas-liquid’s pressure and temperature
curves along the depth of the well are plotted, and the
curves intuitively reflect the flow law and the characteristics
of heat transfer in formation. The results can provide the
technical reliance for the process of designing well tests in
high temperature-high pressure gas-liquid two-phase flow
wells and dynamic analysis of production. Furthermore, the
works in this paper can raise safety and reliability of deep
completion test and will yield notable economic and social

Table 4: Pressure at different depths on 300 s, 900 s, 1200 s, and
3600 s.

Depth Time
300 s 900 s 1200 s 3600 s

0 42.55 46.62 50.24 51.34
300 43.23 47.53 50.64 52.67
600 44.86 48.71 50.46 53.47
900 45.87 49.13 51.41 54.69
1200 46.73 50.43 52.32 54.79
1500 48.46 51.24 53.36 55.53
1800 49.43 52.43 54.47 56.12
2100 50.34 53.83 55.42 57.37
2400 51.96 56.92 54.37 57.85
2700 53.53 57.22 55.45 58.97
3000 54.44 58.46 56.78 59.34
3300 55.24 59.97 57.47 60.95
3600 56.76 59.94 58.95 61.22
3900 57.33 60.98 59.04 62.29
4200 58.93 61.22 60.29 63.33
4500 59.34 62.45 61.24 64.48
4800 60.89 63.43 62.23 64.33
5100 61.56 64.19 63.22 64.78
5400 63.35 65.24 64.18 65.34
5700 64.69 65.45 65.12 66.34
6000 65.45 66.79 66.15 67.56
6300 66.99 67.49 67.11 67.47
6600 67.46 68.52 68.22 68.58
6900 69.28 69.46 69.92 69.55

Table 5: Comparative results of the well head at 1200 s.

Well-head Temperature Pressure
Measurement results 180.65 76.10
Results by GRP method
(relative error) 171.78 (5.12%) 69.92 (8.81%)

Results by LxF method
(relative error) 169.30 (6.70%) 69.36 (9.73%)

benefits and avoid or lessen accidents caused by improper
technical design.

Nomenclature

𝐴: A total length of conduit (m2)
𝐶
𝐽
: Joule-Thompson coefficient (K/pa)

𝐶
𝑝
: Heat capacity (J/kg⋅K)

𝐷: A hydraulic diameter (m)
𝐺: Acceleration constant of gravity (m/s2)
𝐾
𝑒
: Formation conductivity (J/m⋅K)

𝑃: Pressure (KPa)
𝑟
𝐷
: Dimensionless radius

𝑟
𝑡𝑜
: Outer radius of conduit (m)

𝑇: Temperature (K)
𝑡
𝐷
: Dimensionless time
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𝑇
𝑒
: Temperature of the stratum (K)

𝑇wb: Wellbore temperature (K)
𝑇wbD: Dimensionless wellbore temperature (K)
𝑇
𝑟
: Temperature of the second surface (K)

𝑇
𝑒𝑖
: Initial temperature of formation (K)

𝑈
𝑡𝑜
: Overall-heat-transfer coefficient (W/m⋅K)

𝑉: Velocity (m/s)
𝑍: A total length of conduit (m)
𝑧: The distance coordinate in the direction

along the conduit
ℎ
𝑐
: Heat transfer coefficient for natural

convection based on outside tubing surface
and the temperature difference between
outside tubing and inside casing surface

ℎ
𝑟
: Heat transfer coefficient for radiation based

on the outside tubing surface and the
temperature difference between the outside
tubing and inside casing surface

𝐾cas: Thermal conductivity of the casing material
at the average casing temperature

𝐾cem: Thermal conductivity of the cement at the
average cement temperature and pressure

𝜆 : The friction coefficient, dimensionless
𝛾
𝑔
: Euler constant 1.781

𝜌 : Density (kg/m3)
𝜃 : Inclination angle flow conduit.
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The current paper studied the particle system in the Stokes regime with a bimodal distribution. In such a system, the particles tend
to congregate around two major sizes. In order to investigate this system, the conventional method of moments (MOM) should be
extended to include the interaction between different particle clusters. The closure problem for MOM arises and can be solved by a
multipoint Taylor-expansion technique.The exact expression is deduced to include the size effect between different particle clusters.
The collision effects between different modals could also be modeled. The new model was simply tested and proved to be effective
to treat the bimodal system.The results showed that, for single-modal particle system, the results from newmodel were the same as
those from TEMOM. However, for the bimodal particle system, there was a distinct difference between the two models, especially
for the zero-order moment. The current model generated fewer particles than TEMOM. The maximum deviation reached about
15% for𝑚

0
and 4% for𝑚

2
. The detailed distribution of each submodal could also be investigated through current model.

1. Introduction

The particulate matter has become one of the most dan-
gerous pollutants to the atmospheric environment and the
health of human beings. It will reduce the visibility of
the atmosphere and cause the traffic crowding and serious
accidents. The fine particles (PM2.5) will also be breathed
into the bronchus of human beings, followed by several
kinds of respiratory diseases. The lungs will absorb the fine
particles and cardiovascular disease will come into being [1].
However, the mechanism of the generation and evolution of
the particulate matter still remains to be clarified. Hence, it
has both theoretical and realistic senses to study the dynamics
of the particulate matter.

Previous study on the aerosol dynamics usually supposes
that the particle system is monodispersed (i.e., the system has
only one scale) or multidispersed (i.e., the system has multi-
scales) but is in a log-normal distribution in size [2]. Such
kinds of assumptions will greatly simplify the problems, and
a series of approximate or precise solutions will be obtained.
However, these assumptions are based on the experimental

measurement and cannot be applied to all the cases. There is
another type of particle size distribution, namely, bimodal or
multimodal distribution. For example, the newborn particles
together with the background particles compose the bimodal
distribution system. Furthermore, the newborn particlesmay
also exhibit a multimodal or bimodal distribution [3]. Pugat-
shova et al. [4] and Lonati et al. [5] measured the particulate
matter in the urban on-road atmosphere in different cities
and times.Themultimodal distribution was observed. At this
time, unacceptable error may appear using mono-dispersed
or log-normal assumption.

Take the bimodal system, for example: the particles gather
around two independent particle sizes. In order to study such
a system, the particle size distribution should be separated
into two sub-PSDs [6]. The dynamics of the system may be
obtained according to the two subparticle clusters. Under this
description, the governing equations of the particle system
should be modified to represent the additional coagulation
effect [7]; that is, the collision of particles is artificially
separated into two kinds: internal coagulation and external
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coagulation. Because the typical particle diameter of the
bimodal system is 5 nm to 2.5 𝜇m, whichmeans that particles
lie in different dynamic regimes (free molecular regime,
transition regime and continuum regime), the coagulation
in such a wide range should also be treated separately. The
current study will focus on the continuum (Stokes) regime.

Generally, the particle balance equation (PBE) governs
the detailed evolution process of PSD and can be numerically
solved. However, because of its huge computation resource
to solve the PBE directly, the method of moment (MOM)
[2, 8, 9] is often taken into account as an alternation. It
takes several moments of PSD in particle volume space
and converts PBE into moment equations. Each moment
has its physical meaning: zero-order moment represents the
number concentration, first-order moment represents the
volume concentration, and second-order moment is related
to the polydispersity. Although MOM cannot directly give
out the evolution of specific PSD, it can obtain the statistical
characteristics of particle system and the calculation during
this procedure reduces to an acceptable level. As a matter of
fact, MOM is widely used in the research of aerosol dynamics
for its simplicity and low computational cost.

One limitation of MOM is the closure problem due
to the coagulation term in PBE. When PBE is converted
into moment equations, the coagulation term will be trans-
formed into fractional moments, which cannot be explicitly
expressed and mathematical models should be introduced
into MOM to solve this problem, the so-called closure
problem. There are typically three kinds of methods: prede-
termined PSD [2], quadrature method of moment (QMOM)
[10], and Taylor-expansion method of moment (TEMOM)
[11].Thefirst class often supposes that the PSD is a log-normal
distribution, and the coagulation term can be directly deter-
mined. It can only be applied to the log-normal distributed
particle system. QMOM utilizes the Gaussian quadrature
method to evaluate the coagulation term in the moment
equations. The pre-determined PSD is not necessary, but
the computation is easy to diverge. TEMOM expands the
nonlinear term in the collision kernel using the Taylor
expansion. Finally, the coagulation term can be expressed as
a linear combination of different moments. TEMOM has its
superiority on its easy expression, high precision, and low
computational cost. It is widely used in the research of the
aerosol dynamics [12–15].

However, using TEMOM to study the bimodal system
has some problems. TEMOM expands the collision kernel
function at the average diameter 𝑢

0
. For the internal collision,

there is no problem, but, for the external collision in bimodal
system, this expansion should be extended. For a typical
bimodal system, there are two clusters of particles with
different diameters, and the total numbers of particles in each
cluster are also different. This fact will contribute to the fact
that the average diameter of the whole systemmay lie around
the first mode or the second mode or even the mid place of
the two modes. If the external collision term also expands
at the average diameter of the system, additional error will
decrease the accuracy of the simulation. In TEMOM, the
convergent region is (0, 2𝑢

0
) [16], while, for bimodal system,

one mode may lie outside this region if both modes expand

at the same point. This possibility may lead to the divergence
of the calculation.

Hence, the Taylor-expansion method of moments should
be developed to be applied to the bimodal particle system to
improve the accuracy and the stability. The current research
will focus on the multipoint Taylor-expansion method of
moments, and the Stokes regime is preferred for ease.

2. Mathematical Theories

Considering the typical system with Brownian coagulation
only, PSD satisfies the PBE as [2]

𝜕𝑁 (V)
𝜕𝑡

=
1

2
∫

V

0

𝛽 (𝑢, V − 𝑢)𝑁 (𝑢)𝑁 (V − 𝑢) 𝑑𝑢

− 𝑁 (V, 𝑡) ∫
∞

0

𝛽 (V, 𝑢)𝑁 (𝑢) 𝑑𝑢,

(1)

where𝑁(V) is the size distribution function, whichmeans the
number of particles with a volume V, 𝑢 and V are the particle
volumes, and 𝛽 is the Brownian coagulation coefficient.

In order to convert PBE into moment equations, the
definition of moments is introduced

𝑚
𝑘
(𝑡) = ∫

∞

0

𝑁(V, 𝑡) V𝑘𝑑V𝑎. (2)

Applying (2) to (1), the moment equations are obtained:

𝜕𝑚
𝑘

𝜕𝑡
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1

2
∬

∞

0

{[(V
1
+ V
2
)
𝑘

− V𝑘
1
− V𝑘
2
]

× 𝛽 (V
1
, V
2
)𝑁 (V

1
)𝑁 (V

2
)}𝑑V
1
𝑑V
2
.

(3)

In current paper, the Stokes regime is studied, and the
collision kernel 𝛽may be rewritten as

𝛽c (V1, V2) = 𝐵[2 + (
V
2

V
1

)

1/3

+ (
V
1

V
2

)

1/3

] , (4)

where 𝐵 = 2𝑘
𝑏
𝑇/𝜇, 𝑘

𝑏
is the Boltzmann constant, 𝑇 is the

environment temperature, and 𝜇 is the molecular viscosity of
gas.

When investigating the bimodal system, PSD can be
expressed as 𝑁(V, 𝑡) = 𝑁

𝑖
(V, 𝑡) + 𝑁

𝑗
(V, 𝑡). PBE for each sub-

PSD can be established. Apply the definition equation (2) to
the PBEs. The moment equations can be attained for both
cluster 𝑖 and cluster𝑗 listed as follows:

𝜕𝑚
𝑖

𝑘

𝜕𝑡
= 𝐶
𝑖𝑖

𝑘
+ 𝐷
𝑖𝑗

𝑘
,

𝜕𝑚
𝑗

𝑘

𝜕𝑡
= 𝐶
𝑗𝑗

𝑘
+ 𝐸
𝑖𝑗

𝑘
,

(5)
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where

𝐶
𝑖𝑖

𝑘
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1

2
∬

∞

0

{[(𝑢 + V)𝑘 − 𝑢
𝑘
− V𝑘]
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(6)
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𝑢
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𝑖
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𝐸
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𝑘
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𝑗
(V)} 𝑑𝑢 𝑑V.

(8)

Note that 𝐶𝑖𝑖
𝑘
and 𝐶

𝑗𝑗

𝑘
are only related to 𝑁

𝑖
or 𝑁
𝑗
. These

two terms represent the internal coagulation effect in the
cluster 𝑖 or 𝑗. As a result, the single point binary Taylor
expansion is used to deal with these two terms (at 𝑢

1
or 𝑢
2
).

The results from the typical TEMOM can be directly used. In
(9)𝑚
𝑘
represents 𝑘th moment of PSD𝑁

𝑖
or𝑁
𝑗
. Consider
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(2𝑚
𝑖2

2
− 13𝑚

𝑖

2
𝑚
𝑖2

1
𝑚
𝑖

0
− 151𝑚

𝑖4

1
) .

(9)

The approximation of 𝐷
𝑖𝑗

𝑘
and 𝐸

𝑖𝑗

𝑘
will be deduced in

the following part. Substitute (4) into (7) and (8). A lot of
fractional moments will appear in the expression of 𝐷𝑖𝑗

𝑘
and

𝐸
𝑖𝑗

𝑘
, which can be approximated through the Taylor expansion

of V𝑝 (𝑝 is fraction) at 𝑢
1
or 𝑢
2
. Consider

𝑚
𝑝
≈

𝑢
𝑝−2

(𝑝
2
− 𝑝)

2
𝑚
2

− 𝑢
𝑝−1

(𝑝
2
− 2𝑝)𝑚

1
+

𝑢
𝑝

2
(𝑝
2
− 3𝑝 + 2)𝑚

0
.

(10)

Making use of (10), 𝐷𝑖𝑗
𝑘
and 𝐸

𝑖𝑗

𝑘
can be expressed as a linear

combination of𝑚𝑖
𝑘
and𝑚

𝑗

𝑘
. Moreover

𝐷
0
= −

∑𝑎
𝑚𝑛

𝑚
𝑖

𝑚
𝑚
𝑗

𝑛

81
, 𝐷

1
=

∑𝑏
𝑚𝑛

𝑚
𝑖

𝑚
𝑚
𝑗

𝑛

81
,

𝐷
2
=

∑ 𝑐
𝑚𝑛

𝑚
𝑖

𝑚
𝑚
𝑗

𝑛

81
, 𝐸

0
= 0,

𝐸
1
=

∑𝑑
𝑚𝑛

𝑚
𝑖

𝑚
𝑚
𝑗

𝑛

81
, 𝐸

2
= −

∑ 𝑒
𝑚𝑛

𝑚
𝑖

𝑚
𝑚
𝑗

𝑛

81
.

(11)

The exact expressions of the coefficients in𝐷
0
,𝐷
1
,𝐷
2
,𝐸
1
,

and 𝐸
2
are listed in the appendix.

3. Tests and Discussion

In order to verify the deduction, both theoretical and numer-
ical validations are performed, respectively.
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Figure 1: The evolution of moments for Case I using different
expansion schemes.

Note that, if 𝑁
𝑖

= 𝑁
𝑗

= 𝑁/2, (5) turns into two sets
of moment equations with monomodal distribution. If (5)
and set 𝑚

𝑘
= 𝑚
𝑖

𝑘
+ 𝑚
𝑗

𝑘
, the theoretical systematic moment

equations are attained:

𝜕𝑚
𝑘

𝜕𝑡
= 4𝐶
𝑖𝑖

𝑘
. (12)

Substitute 𝐷
0
, 𝐷
1
, 𝐷
2
, 𝐸
1
, and 𝐸

2
into (5), and set 𝑢

1
=

𝑢
2

= 𝑚
1
/𝑚
0
, 𝑟 = 1. The right side of new equation just

equals 4 times of (9), which is consistent with the theoretical
equation (12).

Two simple bimodal systems are simulated to validate the
current model. The single point and multipoint expansion
methods are both taken into account and the results are
compared with each other to show the validity and accuracy.
The initial size distributions both satisfy the log-normal
distribution as follows:

𝑁(V, 𝑡) = 𝑁
0
exp

(− (ln2 (V/V
𝑔
)) / (2𝑤

2

𝑔
))

(√2𝜋V𝑤
𝑔
)

. (13)

For Case I, 𝑁𝑖
0
= 𝑁
𝑗

0
= 1.0, V𝑖

𝑔
= V𝑗
𝑔

= √3/2, and𝑤𝑖
𝑔

=

𝑤
𝑗

𝑔
= √ln(4/3) [8], which represents a monomodal system

and the PSD is separated into two equal sub-PSDs. For Case
II,𝑁𝑖
0
= 1.0, V𝑖

𝑔
= √3/2 and𝑤

𝑖

𝑔
= √ln(4/3) and𝑁

𝑗

0
= 0.1𝑁

𝑖

0
,

V𝑗
𝑔

= 1000V𝑖
𝑔
, and 𝑤

𝑗

𝑔
= 0.1𝑤

𝑖

𝑔
, which represents a bimodal

system consisting of two log-normal sub-PSDs.
Figure 1 shows the results of Case I for both single point

TEMOM and multipoint TEMOM. From the figure, a good
agreement is obtained. This is because the particle system is,
in the final analysis, a mono-modal system. The consistency
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Figure 2: The evolution of moments for Case II using different
expansion schemes.

between two methods is just as the same as the theoretical
analysis at the beginning of this paragraph.

Figure 2 shows the results of Case II for both single point
TEMOM and multi point TEMOM. From the figure, an
obvious deviation is found. It shows that, for a typical bimodal
system, the particle size difference between different models
can not be neglected. The value for multipoint TEMOM is
always smaller than that for TEMOM especially for 𝑚

0
. This

means that the original TEMOM model will underestimate
the coagulation effect for the particle number concentration
(𝑚
0
). Another interesting phenomenon is that𝑚

1
is the same

for both of the two models. The reason is that 𝑚
1
physically

represents the volume fraction of particles. The particle
collision (coagulation) will not change the total volume or the
mass of particles. Hence,𝑚

1
is a constant from the beginning

to the end.
Define the error function as

𝐸
𝑘
=

𝑚
m
𝑘

− 𝑚
s
𝑘

𝑚
s
𝑘

, (14)

Where 𝑚
m
𝑘
represents the moments in multi-point TEMOM

and 𝑚
s
𝑘
represents the moments in original TEMOM. The

exact tendency of 𝐸
𝑘
is shown in Figure 3. According to the

figure, the maximum deviation for 𝑚
0
will be about 15% and

4% for𝑚
2
. For𝑚

0
, the error function𝐸

0
will increase in a very

short time, reach the maximum, and then decrease slowly.
This phenomenon indicates that the difference in particle size
will lead to a relatively large deviation at the very beginning of
coagulation for bimodal particle systemwhen the TEMOM is
selected for the bimodal particle system.

Figure 4 shows the different moments in modes 𝑖 and 𝑗

using the technique proposed in current paper. According to
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Figure 3: The variation of error function 𝐸
𝑘
versus dimensionless

time 𝜏.
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Figure 4: The evolution of moments for Case II with different
modes.

the figure, an obvious reduction is found for each moment
𝑚
𝑘
in mode 𝑖, which means that the coagulation will lead to

the decrease of 𝑚
0
(particle number concentration) and 𝑚

1

(particle volume fraction). Particularly the volume fraction
of particles, 𝑚

1
, no longer keeps a constant because of the

external collision with particles in mode 𝑗 and the new birth
of bigger particles. For particles in mode 𝑗, the internal
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coagulation in mode 𝑗 will lead to the decrease of 𝑚
0
, while

the external coagulation betweenmode 𝑖 andmode 𝑗will take
no effect on 𝑚

0
. As a result, the slope of curve is flatter than

that in Figure 2. However, 𝑚
1
and 𝑚

2
are comparable with

those in Figure 2, because these two parameters are related
to the particle volume tightly. The average volume of particle
in mode 𝑗 is much bigger than that in mode 𝑖, according to
the initial condition. In general, such a result indicates the
importance of current technique, giving more accurate result
and more detail for the complex bimodal particle system.

4. Conclusions

The current research showed a multipoint Taylor-expansion
method of moments for the bimodal particle system in
the Stokes regime. A theoretical deduction was performed
and brief results are given. Both theoretical validation and
numerical tests are implemented. The results show that, for
a single-modal system, there is no difference between the
two methods. However, for a bimodal system, although the
evolution ofmoments has the same tendency, there is obvious
deviation between the twomethods. For the case investigated
in current paper, the maximum deviation for𝑚

0
is about 15%

and 4% for𝑚
2
. Eachmoment𝑚

𝑘
in mode 𝑖will decrease.The

technique proposed in this paper will bring in the accuracy
and details of particles. This method can be further extended
to the multi-modal system

Appendix

The coefficients in (11) are listed with the definition 𝑟 =

(𝑢
1
/𝑢
2
)
1/3. Consider

𝑎
00

= 70𝑟 + 70𝑟
−1

+ 162, 𝑎
01

= 35𝑢
−1

1
(2𝑟
2
− 𝑟
4
) ,

𝑎
02

= 𝑢
−2

1
(10𝑟
7
− 14𝑟
5
) , 𝑎

10
= 35𝑢

−1

1
(2𝑟 − 𝑟

−1
) ,

𝑎
11

= −35𝑢
−2

1
(𝑟
4
+ 𝑟
2
) , 𝑎

12
= 𝑢
−3

1
(10𝑟
7
+ 7𝑟
5
) ,

𝑎
20

= 𝑢
−2

1
(10𝑟
−1

− 14𝑟) , 𝑎
21

= 𝑢
−3

1
(7𝑟
4
+ 10𝑟
2
) ,

𝑎
22

= −2𝑢
−4

1
(𝑟
7
+ 𝑟
5
) ;

𝑏
00

= 𝑢
1
(14𝑟 − 10𝑟

−1
) , 𝑏

01
= −7𝑟

4
− 10𝑟
2
,

𝑏
02

= 2𝑢
−1

1
(𝑟
7
+ 𝑟
5
) , 𝑏

10
= −112𝑟 − 40𝑟

−1
− 162,

𝑏
11

= 𝑢
−1

1
(56𝑟
4
− 40𝑟
2
) , 𝑏

12
= 8𝑢
−2

1
(𝑟
5
− 2𝑟
7
) ,

𝑏
20

= 𝑢
−1

1
(5𝑟
−1

− 28𝑟) , 𝑏
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1
(14𝑟
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+ 5𝑟
2
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𝑏
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−3

1
(4𝑟
7
+ 𝑟
5
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𝑐
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= 𝑢
2

1
(5𝑟
−1

− 28 𝑟) , 𝑐
01

= 𝑢
1
(14𝑟
4
+ 5 𝑟
2
) ,

𝑐
02

= −4𝑟
7
− 𝑟
5
, 𝑐

10
= 𝑢
1
(98𝑟 − 25𝑟

−1
) ,

𝑐
11

= −49𝑟
4
− 25𝑟
2
, 𝑐

12
= 𝑢
−1

1
(14𝑟
7
+ 5𝑟
5
) ,

𝑐
20
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4
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2
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𝑐
22
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1
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5
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7
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𝑑
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Collision between 2D circular particles suspension in Couette flow is simulated by using multiple-relaxation-time based lattice
Boltzmann and direct forcing/fictitious domainmethod in this paper.The patterns of particle collisions are simulated and analyzed
in detail by changing the velocity of top and bottom walls in the Couette flow. It can be seen from the simulation results that, while
the velocity is large enough, the number of collisions between particles will change little as this velocity varies.

1. Introduction

Multiphase flow is a very important branch of fluid mechan-
ics, while fluid-solid two-phase flow is the main part of such
flow. And fluid-solid two-phase flow is very common in
nature and industry, such as raindrop formation, material
science, chemical industry, aerosol deposition, fluidized beds,
and injection molding machine [1, 2]. Particle collisions,
which will influence the performance of product, happen
occasionally in those processes. So it is very meaningful to
do some research to understand particle collisions and then
take control to improve the performance of product.

Even with the help of the precise and advanced particle
image velocity (PIV) instrument, it is very difficult to observe
the phenomenon of particle collisions in detail. Compar-
ing the experimental measurement, numerical simulation
has great advantages to investigate particle collisions in
fluid-solid two-phase flow, especially for direct numerical
simulation (DNS) methods. The lattice Boltzmann method
(LBM), one of the best DNSmethods with several remarkable
advantages, was first proposed by Ladd [3] and then improved
byAidun et al. [4] to simulate particles suspended in a viscous
fluid. Feng and Michaelides [5] and Tian et al. [6] united
immersed boundary method (IBM) into LBM to deal with

fluid-solid interface problem. In the past several decades the
LBM method was proved robust and efficient for particulate
flows, especially in the case of large number of particles [7–
12].Nie andLin [13] developed a single-relaxation-time (SRT)
based lattice Boltzmann-direct forcing/fictitious domain
(SRT LB-DF/FD) method to simulate particle suspensions
and then improved to multiple-relaxation-time (MRT LB-
DF/FD).

Several papers investigated particle collisions in three-
dimensional homogeneous isotropic turbulence [14–18] but
not by using DNS method. In this paper, DNS method is
adopted to simulate particle collisions. Because the MRT
model has better ability of computing pressure and more
time saving than the SRT model, the MRT LB DF/FD
method is utilized. Firstly, this method is introduced in
detail in Section 2. Secondly, simulation problem is described
in Section 3. And finally, several simulation results and
conclusions are presented in Section 4.

2. Numerical Method

2.1. The MRT LB DF/FD Method. The lattice Boltzmann
method based on the multiple-relaxation-time (MRT)
collision model is adopted in this paper [13]. The discrete
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equations can be written as follows:

𝑓
𝑖
(x + e

𝑖
Δ𝑡, 𝑡 + Δ𝑡) = 𝑓

𝑖
(x, 𝑡) − 𝑀

−1
𝑆 [m −m(eq)] + FΔ𝑡,

(1)

where 𝑆 is the diagonal collision matrix, 𝑆 = diag(0, 𝑠
𝑒
, 𝑠
𝜀
, 0,

𝑠
𝑞
, 0, 𝑠
𝑞
, 𝑠V, 𝑠V), and𝑀 is the transform matrix,

𝑀 =

[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

]
]
]
]
]
]
]
]
]
]
]
]

]

. (2)

The moment space spanned bym
𝑖
and the velocity space

spanned by 𝑓
𝑖
are related by a linear mapping,m = 𝑀𝑓; that

is,𝑓 = 𝑀
−1m.TheD2Q9model is used in 2D simulation, and

the discrete velocities are listed as the follows:

c
𝑖
=

{{

{{

{

(0, 0) 𝑖 = 0,

(±1, 0) 𝑐, (0, ±1) 𝑐 𝑖 = 1 − 4,

(±1, ±1) 𝑐, (±1, ±1) 𝑐 𝑖 = 5 − 8,

(3)

where 𝑐 = Δ𝑥/Δ𝑡 is the lattice speed, among which Δ𝑥 is the
lattice spacing, and Δ𝑡 is the time step. For D2Q9 model, the
corresponding nine moments are given by [19]

m = (𝜌, 𝑒, 𝜀, 𝑗
𝑥
, 𝑞
𝑥
, 𝑗
𝑦
, 𝑞
𝑦
, 𝑝
𝑥𝑥
, 𝑝
𝑥𝑦
)
†

, (4)

where 𝜌 is the mean density and 𝑗
𝑥

= 𝜌𝑢
𝑥
, 𝑗
𝑦

= 𝜌𝑢
𝑦
are

the conserved moments. Moreover, the other nonconserved
moments are listed as follows:

𝑒
(eq)

= −2𝜌 +
3j ⋅ j
𝜌

, 𝜀
(eq)

= 𝜌 −
3j ⋅ j
𝜌

, 𝑞
(eq)
𝑥

= −𝑗
𝑥
,

𝑞
𝑦

(eq)
= −𝑗
𝑦
, 𝑝

(eq)
𝑥𝑥

=

(𝑗
2

𝑥
− 𝑗
2

𝑦
)

𝜌
, 𝑝

(eq)
𝑥𝑦

=

𝑗
𝑥
𝑗
𝑦

𝜌
.

(5)

According to Guo et al. [20], the forcing term F is defined
as follows:

F = 𝑀
−1

(𝐼 −
1

2
𝑆)𝑀F,

𝐹
𝑖
= 𝑤
𝑖
[
c
𝑖
⋅ 𝛼

𝑐2
𝑠

+
u𝛼 : c

𝑖
c
𝑖

𝑐4
𝑠

−
u𝛼 : 𝑐2

𝑠
𝐼

𝑐4
𝑠

] ,

(6)

where 𝛼 is the acceleration due to the external force and 𝑤
𝑖

are weights related to the lattice model which are chosen as
𝑤
0
= 4/9; 𝑤

𝑖
= 1/9, 𝑖 = 1∼4; 𝑤

𝑖
= 1/36, 𝑖 = 5∼8. The speed of

sound 𝑐
𝑠
is equal to 𝑐/3

1/2. By applying the Taylor expansion

ly

lx

U0

U0

Figure 1: Schematic diagram of geometry.

techniques and theChapman-Enskog analysis, (1) leads to the
hydrodynamic equations that are shown as follows:

∇ ⋅ u = 0, 𝜌
𝑓
(
𝜕u
𝜕𝑡

+ (u ⋅ ∇)u) = −∇𝑝 + 𝜇∇
2u + a. (7)

The shear viscosity and the bulk viscosity can be defined
as follows [21]:

] =
1

3
(
1

𝑠]
−

1

2
) 𝑐Δ𝑥, 𝜁 =

1

3
(
1

𝑠
𝑒

−
1

2
) 𝑐Δ𝑥. (8)

2.2. Collisions Model. A collision model is needed to avoid
particles overlapping. Then the short-range repulsive force
developed by Wan and Turek [22] is utilized in this paper
because it is easily carried out in the code. For particle-
particle collisions, the short-range repulsive force is calcu-
lated by

𝐹
𝑃

𝑖,𝑗
=

{{{{{{{{{{

{{{{{{{{{{

{

0 𝑑
𝑖,𝑗

> 𝑅
𝑖
+ 𝑅
𝑗
+ 𝜉,

1

𝜀
󸀠

𝑃

(X
𝑖
− X
𝑗
) (𝑅
𝑖
+ 𝑅
𝑗
− 𝑑
𝑖,𝑗
)

𝑑
𝑖,𝑗

≤ 𝑅
𝑖
+ 𝑅
𝑗
,

1

𝜀
𝑃

(X
𝑖
− X
𝑗
) (𝑅
𝑖
+ 𝑅
𝑗
+ 𝜉 − 𝑑

𝑖,𝑗
)
2

𝑅
𝑖
+ 𝑅
𝑗
≤ 𝑑
𝑖,𝑗

≤ 𝑅
𝑖
+ 𝑅
𝑗
+ 𝜉,

(9)

where X
𝑖
and X

𝑗
are the mass center coordinates of the

𝑖th and 𝑗th particle, 𝑅
𝑖
and 𝑅

𝑗
are their radius, 𝑑

𝑖,𝑗
is the

distance between their mass centers which equals to |X
𝑖
−X
𝑗
|,

𝜉 is the force range which is usually set to be one or two
lattice spacing, and 𝜀

󸀠

𝑝
and 𝜀
𝑝
are two small positive stiffness

parameters for particle-particle collisions.
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Figure 2: Arrangements of Lagrangian points.

(a) 𝑡󸀠 = 1.5 (b) 𝑡󸀠 = 3.0 (c) 𝑡󸀠 = 4.0

(d) 𝑡󸀠 = 5.5 (e) 𝑡󸀠 = 6.5 (f) 𝑡󸀠 = 7.0

(g) 𝑡󸀠 = 8.0 (h) 𝑡󸀠 = 9.0 (i) 𝑡󸀠 = 10.0

Figure 3: Vorticity contours when 𝑈
0
= 0.1m/s.
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(a) 𝑡󸀠 = 1.5 (b) 𝑡󸀠 = 3.0 (c) 𝑡󸀠 = 4.0

(d) 𝑡󸀠 = 5.3 (e) 𝑡󸀠 = 6.6 (f) 𝑡󸀠 = 7.0

(g) 𝑡󸀠 = 7.4 (h) 𝑡󸀠 = 7.8 (i) 𝑡󸀠 = 8.2

Figure 4: Vorticity contours when 𝑈
0
= 0.2m/s.

But for particle-wall collisions, the corresponding short-
range repulsive force is determined as follows:

𝐹
𝑊

𝑖,𝑗
=

{{{{{{

{{{{{{

{

0 𝑑
󸀠

𝑖
> 2𝑅
𝑖
+ 𝜉,

1

𝜀
󸀠

𝑊

(X
𝑖
− X󸀠
𝑖
) (2𝑅
𝑖
− 𝑑
󸀠

𝑖
) 𝑑

󸀠

𝑖
≤ 2𝑅
𝑖
,

1

𝜀
𝑊

(X
𝑖
− X󸀠
𝑖
) (2𝑅
𝑖
+ 𝜉 − 𝑑

󸀠

𝑖
)
2

2𝑅
𝑖
≤ 𝑑
󸀠

𝑖
≤ 2𝑅
𝑖
+ 𝜉,

(10)

where X󸀠
𝑖
is the coordinate of the nearest imaginary particle

located on the boundary nearby the 𝑖th particle, 𝑑
󸀠

𝑖
is

the distance between the imaginary particle and the real one
which equals to |X

𝑖
− X󸀠
𝑖
|, and 𝜀

󸀠

𝑊
and 𝜀
𝑊

are the other two

small positive stiffness parameters for particle-wall collisions.
In this paper, 𝜀󸀠

𝑝
, 𝜀
𝑝
, 𝜀󸀠
𝑊
, and 𝜀

𝑊
are all set to be 1e-7.

3. Problem Description

The main purpose of this paper is to study collisions
between 2D circular particles suspension in Couette flow.The
schematic diagram of geometry is shown in Figure 1 which is
constructed by four solid walls, 𝑙𝑥 = 𝑙𝑦 = 8 cm, and mesh
element is 640000. The left and right walls are fixed, while
the top wall moves in the right direction with a velocity of𝑈

0

and the bottom wall moves in the left direction at the same
velocity. 128 circular particles (8 rows, 16 columns) are placed
in themiddle of this domain, and the distance of center of two
neighborhood particles in horizontal and vertical direction is
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(a) 𝑡󸀠 = 1.5 (b) 𝑡󸀠 = 3.0 (c) 𝑡󸀠 = 4.0

(d) 𝑡󸀠 = 5.3 (e) 𝑡󸀠 = 6.6 (f) 𝑡󸀠 = 7.0

(g) 𝑡󸀠 = 7.4 (h) 𝑡󸀠 = 7.8 (i) 𝑡󸀠 = 8.2

Figure 5: Vorticity contours when 𝑈
0
= 0.3m/s.

two times of the diameter of particle. In order to ignore the
influence of gravity, the density of particles is set to be same
as the suspension fluid, 𝜌

𝑝
= 𝜌
𝑓
= 1.0 g/cm3. The kinematic

viscosity of the fluid is set to be 0.01 cm2 s−1. For each particle,
the diameter is 0.2 cm and the arrangement of Lagrangian
points is shown in Figure 2.

4. Simulation Results and Conclusions

In this paper, when 𝑡
󸀠
= 𝑡/10

4 s ≤ 1.5, the circular particles
are fixed to generate a fully developed Couette flow which
can be seen from Figures 3(a), 4(a), and 5(a). And when
𝑡
󸀠
> 1.5, those particles begin tomove in the suspension fluid.

At first, 𝑈
0
is set to be very small which equals to 0.1m/s and

the instantaneous vorticity contours can be seen fromFigures

3(a)–3(i). Obviously, the vorticity is not strong enough which
makes the number of collisions very big.

Instantaneous vorticity contours for 𝑈
0

= 0.2m/s at
several interval times are shown in Figures 4(a)–4(i). It can
be seen from those figures that the particles are moving by
the influence of the two main symmetry vortices. Even when
𝑡
󸀠
= 8.2, the vortex contour is rotational symmetry from the

center of the simulation domain.
But when 𝑈

0
= 0.3m/s, Figures 5(a)–5(i) show that the

circular particles are agglomerated near the four sidewalls by
the influence of the twomain vortices. Andwhen 𝑡

󸀠
> 7.8, the

particles are no longer rotational symmetry from the center
of the simulation domain, distributed at completely random.
The vortex patterns are totally different when 𝑈

0
varies from

0.1m/s to 0.3m/s; however, the number of particle collisions
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Figure 6: Comparison of collision number with different 𝑈
0
.

varies little when 𝑈
0
is large enough which can be seen from

Figure 6.
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Porous asphalt is a standard asphalt built on aggregate storage bed which allows water to drain through it and reduces stormwater
runoff. However, porosity of the porous asphalt and the storage bed may be effectively reduced due to trapping suspended solids
from the water or from the asphalt damage. In this paper, we present mathematical modeling and numerical simulation of flow and
damage of porous asphalt-paved roads. A mathematical model to describe the fine-particles transport carried by a two-phase flow
in a porous medium is presented.The buoyancy, capillarity, andmixed relative permeabilities correlations to fit with the mixed-wet
system are considered. Throughout this investigation, we monitor the changing of the fluids properties such as water saturation
and solid properties such as porosity and permeability due to trapping the fine-particles.

1. Introduction

The impervious asphalt-paved roads may store significant
amounts of thermal energy during summer. The stored
thermal energy may be transferred to stream waters during
runoff events. Moreover, as a result of fluctuations in ambient
air temperatures—diurnal and seasonal, intensity of solar
radiation of the asphalt-paved, a significant deformation of
asphalt-paved may occur due to the heat and mass transfer
between asphalt and water. On the other hand porous (pervi-
ous, permeable, or open-graded) asphalt is standard asphalt
with reduced sand or fines that allows water to drain through
it. Pervious asphalt built on aggregate storage bed reduces
stormwater runoff. In addition to reducing runoff, this effec-
tively traps suspended solids and filters pollutants from the
water. The stormwater flows through the asphalt to the layer
of crushed stone aggregate bedding and base that supports
the asphalt while providing storage and runoff treatment.
The use of porous asphalt can potentially reduce additional
expenditures and land consumption for conventional collec-
tion, conveyance, and detention stormwater infrastructure.
Compared to the lifetime of dense graded asphalt concrete

roads, the lifetime of porous asphalt concrete is less [1]. The
loss of stones from the road surface, called raveling, is mostly
reported as the dominant defect in porous asphalt wearing
course [2, 3]. Raveling is the start of major defects like pot-
holes, because once a stone is gone, the surrounding stones
will follow for lacking support in at least one direction [4].
Raveling also has negative influence on the noise reduction
function and skid resistance of porous asphalt pavement.
During service life, the pores tend to be clogged by dirt, dust,
or other clogging agents. The formulation of fine-particles
transport in two-phase flow in porousmedia has been studied
experimentally and numerically in [5–7]. Formation damage
is a common problem in reservoir development.The particles
migrate through the porous media, deposit on the pore
surfaces, and become trapped at pore constrictions to reduce
the rock porosity and permeability.

Researchers have done many attempts to predict these
phenomena experimentally and numerically; however, there
is no study that considers the possible porosity and perme-
ability reduction. So, in order to keep porous asphalt and its
storage bed efficient, considering these kinds of effects may
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lead to interesting results. In the current work, we introduce
modeling and numerical simulation of fine-particle transport
in two-phase flow in porous asphalt-paved roads.

2. Mathematical Modeling

The basic equations that govern the flow of the two-phase
flow in porous media are mass conservation equation and
constitutive equation (Darcy’s law). The two-dimensional
governing equations may be written as

𝜕 (𝜑𝜌
𝑤
𝑆
𝑤
)

𝜕𝑡
= −∇ ⋅ (𝜌

𝑤
V
𝑤
) , (1a)

𝜕 (𝜑𝜌
𝑎
𝑆
𝑎
)

𝜕𝑡
= −∇ ⋅ (𝜌

𝑎
V
𝑎
) , (1b)

V
𝑤
= −

𝐾𝑘
𝑟𝑤

𝜇
𝑤

(∇𝑝
𝑤
− 𝜌
𝑤
g) , (2a)

V
𝑎
= −

𝐾𝑘
𝑟𝑎

𝜇
𝑎

(∇𝑝
𝑎
− 𝜌
𝑎
g) , (2b)

where 𝑆 is the saturation and V [m/s] is the velocity. 𝑤
stands for the wetting phase (water), and 𝑎 stands for the
nonwetting phase (air). 𝜑 is the porosity of the medium,
and ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑧) is the divergence operator. 𝐾 [m2] is
the absolute permeability, 𝑘

𝑟𝛼
[dimensionless] is the relative

permeability, 𝜌 [kgm3] is the density, 𝑝 [Pa] is the pressure,
and g = (0, −𝑔)

𝑇 is the gravitational acceleration. 𝜇 is the
viscosity. The fluid saturations for the two-phase flow are
interrelated by

𝑆
𝑤
+ 𝑆
𝑎
= 1. (3)

The total velocity is

V
𝑡
= V
𝑤
+ V
𝑎
. (4)

Summing the saturation equation for water phase and the oil
phase, one obtains

∇ ⋅ V
𝑡
= 0. (5)

Moreover, adding the constitutive equations for each phase,
(1a)–(2b), and substituting into (5), we end up with

V
𝑡
= −𝐾 [𝜆

𝑡
(𝑆) ∇𝑝

𝑤
+ 𝜆
𝑎
(𝑆) ∇𝑝

𝑐
] + 𝐾𝜒 (𝑆) 𝑔, (6)

where𝜆
𝛼
(𝑆) = 𝑘

𝑟𝛼
(𝑆)/𝜇
𝛼
is themobility,𝜆

𝑡
(𝑆) = 𝜆

𝑎
(𝑆)+𝜆

𝑤
(𝑆)

is the total mobility, and 𝜒 = 𝜆
𝑎
(𝑆)𝜌
𝑎
+ 𝜆
𝑤
(𝑆)𝜌
𝑤
. In order to

derive the pressure equation, substitute (6) into (5).Weobtain

∇ ⋅ [𝜆
𝑡
(𝑆) ∇𝑝

𝑤
+ 𝜆
𝑎
(𝑆) ∇𝑝

𝑐
(𝑆) − 𝜒 (𝑆) 𝑔] = 0. (7)

Substituting the constitutive equation of the water phase, (2a)
and (2b), into (1a) and (1b) gives

𝜕 (𝜑𝑆
𝑤
)

𝜕𝑡
+ ∇ ⋅ V

𝑤
= 0. (8)

Therefore, water velocity may be written as

V
𝑤
= 𝑓
𝑎
V
𝑡
+ 𝜆
𝑤
𝐾[𝑓
𝑎
∇𝑝
𝑐
] + 𝜆
𝑤
𝑓
𝑎
𝐾Δ𝜌𝑔, (9)

where Δ𝜌 = 𝜌
𝑤
− 𝜌
𝑎
.

On the other hand, a mathematical model is developed
to describe the fine-particles transport carried by two-phase
flow in porous media. Assuming that we have a number 𝑚
of size intervals of particles in the water phase, the transport
equation for each size interval 𝑖 of the particles in the water
phase can be written as

𝜕 (𝜙𝑆
𝑤
𝐶
𝑖
)

𝜕𝑡
+ V
𝑤
⋅ ∇𝐶
𝑖
= ∇ ⋅ (𝜑𝑆

𝑤
𝐷
𝑖
∇𝐶
𝑖
) + 𝑅
𝑖
, (10)

where 𝑖 = 1, 2, . . . , 𝑚. 𝐷
𝑖
is the dispersion coefficients of

particles in size interval 𝑖 in the water phase. 𝑅
𝑖
is the net rate

of loss of particles in size interval 𝑖 in the water phase.The net
rate of loss of particles may be written as [5–7] follows:

𝑅
𝑖
=
𝜕(𝛿𝜙)

𝑖

𝜕𝑡
, (11)

where (𝛿𝜙)
𝑖
= V
𝑖
+ V∗
𝑖
is the porosity change due to release

or retention of particles of interval 𝑖 in the water phase. V
𝑖

is the volume of the particles of interval size 𝑖 in contact
with the water phase available on the pore surfaces per unit
bulk volume of sandstone. V∗

𝑖
is the volume of the particles

of interval size 𝑖 entrapped in pore throats from the water
phase per unit bulk volume of sandstone due to plugging
and bridging. At the critical velocity of the surface deposition
only particle retention occurs while above it retention and
entrainment of the particles take place simultaneously [8].
A modified Gruesbeck and Collins’s model for the surface
deposition is expressed by [5–7] the following:

𝜕V
𝑖

𝜕𝑡
=

{

{

{

𝛼
𝑑,𝑖

󵄨󵄨󵄨󵄨V𝑤
󵄨󵄨󵄨󵄨 𝐶𝑖 when V

𝑤
≤ V
𝑐

𝛼
𝑑,𝑖

󵄨󵄨󵄨󵄨V𝑤
󵄨󵄨󵄨󵄨 𝐶𝑖 − 𝛼

𝑒,𝑖
V
𝑖

󵄨󵄨󵄨󵄨V𝑤 − V
𝑐

󵄨󵄨󵄨󵄨 when V
𝑤
> V
𝑐
,

(12)

where 𝛼
𝑑,𝑖

is the rate coefficients for surface retention of
the particles in interval 𝑖. 𝛼

𝑒,𝑖
is the rate coefficients for

entrainment of the particles in interval 𝑖. V
𝑐
is the critical

velocity. Similarly, the rate of entrapment of the particles in
interval 𝑖 is

𝜕V∗
𝑖

𝜕𝑡
= 𝛼
𝑝𝑡,𝑖

󵄨󵄨󵄨󵄨V𝑤
󵄨󵄨󵄨󵄨 𝐶𝑖,

(13)

where 𝛼
𝑝𝑡,𝑖

is the pore throat blocking constants. Porosity
may be changed because of particles deposition on the pore
surfaces or blocking of pore throats. The porosity variation
may be expressed by [5–7] the following:

𝜙 = 𝜙
0
− (𝛿𝜙)

𝑖
, (14)

where 𝜙
0
is the initial porosity. Also, the permeability vari-

ation due to particles deposition on the pore surfaces or
blocking of pore throats may be expressed as [5–7] follows:

𝐾 = 𝐾
0
((1 − 𝑓) 𝑘

𝑓
+
𝑓𝜙

𝜙
0

)

𝑙

, (15)
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where 𝐾
0
is the initial permeability, 𝑘

𝑓
is a constant for

fluid seepage allowed by the plugged pores, 𝑓 = 1 −

∑
𝑖
𝛼
𝑓,𝑖
V∗
𝑖
is the fraction of the original cross-sectional area

open to flow, and the value of the exponent 𝑙 has range
from 2.5 to 3.5. For the particles transport carried by fluid
stream in the porous media, deposition on pore surfaces and
blockage in pore throats may occur. The retained particles
on pore surfaces may desorb for hydrodynamic forces and
then possibly adsorb on other sites of the pore bodies or get
entrapped at other pore throats.

3. Results and Discussion

In order to get physical insights for the problem under con-
sideration, we consider that typical cross-section for pervious
pavement system consists of six porous layers (Figure 1) that
can be simplified to one-dimensional system for calculations.
The porous asphalt layer taken is 15 cm, the choker course
layer is 20 cm, the filter course is 30 cm, the filter blanket
is 8 cm, the reservoir course is 10 cm, and finally the native
material is optional that we consider it 20 cm. We consider
the top boundary as inlet of water-particles suspension. So
water imbibes into the porous asphalt and replaces the air that
leaves themedium from the same boundary.This type of flow
in porous media is called countercurrent imbibition [9–12].
In countercurrent imbibition both wetting and nonwetting
phases flow through one inflow-outflowboundary.Therefore,
the total velocity becomes zero, V

𝑡
= 0. Therefore, the flow

equations may be written as

𝜕𝑃
𝑤

𝜕𝑧
= −𝑓
𝑤
(𝑆)

𝜕𝑃
𝑐
(𝑆)

𝜕𝑧
− 𝜒 (𝑆) 𝑔,

V
𝑤
= 𝐾𝜆
𝑤
𝑓
𝑎
(
𝜕𝑃
𝑐

𝜕𝑧
+ Δ𝜌𝑔) .

(16)

Therefore,

𝜕 (𝜑𝑆
𝑤
)

𝜕𝑡
+ 𝐾

𝜕

𝜕𝑧
[𝜆
𝑤
𝑓
𝑎
(
𝜕𝑃
𝑐

𝜕𝑧
− Δ𝜌𝑔)] = 0. (17)

The relative permeabilities are given in terms of the normal-
ized wetting phase saturation 𝑆, given as

𝑘
𝑟𝑤

= 𝑘
0

𝑟𝑤
𝑆
𝑎
,

𝑘
𝑟𝑎
= 𝑘
0

𝑟𝑎
(1 − 𝑆)

𝑏
,

(18)

where 𝑎 and 𝑏 are positive numbers, 𝑘0
𝑟𝑤

= 𝑘
𝑟𝑤
(𝑆 = 1)

is the endpoint relative permeability to wetting phase, and
𝑘
0

𝑟𝑎
= 𝑘
𝑟𝑎
(𝑆 = 0) is the endpoint relative permeability to

nonwetting phase. The normalized wetting phase saturation
is given by

𝑆 =
𝑆
𝑤
− 𝑆
𝑖𝑤

1 − 𝑆
𝑟𝑎
−𝑆
𝑖𝑤

, 0 ≤ 𝑆 ≤ 1, (19)

where 𝑆
𝑖𝑤

is the irreducible water saturation and 𝑆
𝑟𝑎

is the
residual air saturation.

Porous asphalt: 15 cm

Choker course: 20 cm

Filter course: 30 cm

Filter blanket: 8 cm

Reservoir course: 10 cm

Native soil: optional

Figure 1: Typical cross-section for pervious pavement system.

For the capillary pressure we used the general correlation

𝑝
𝑐
= 𝑐
𝑤
(
𝑆
𝑤
− 𝑆
𝑤𝑟

1 − 𝑆
𝑤𝑟

)

−𝑎
𝑤

+ 𝑐
𝑎
(
𝑆
𝑎
− 𝑆
𝑎𝑟

1 − 𝑆
𝑎𝑟

)

−𝑎
𝑎

, (20)

where 𝑐
𝑤
and 𝑐
𝑎
are constants that represent the entry pressure

for imbibition and drainage, respectively. The constants 1/𝑎
𝑤

and 1/𝑎
𝑎
are the pore size distribution indexex for imbibition

and drainage, respectively.
The transport equation for the interval 𝑖 of the particles

can be written as

𝜕 (𝜑𝑆
𝑤
𝐶
𝑖
)

𝜕𝑡
+ V
𝑤

𝜕𝐶
𝑖

𝜕𝑧
=

𝜕

𝜕𝑧
(𝜑𝑆
𝑤
𝐷
𝑖

𝜕𝐶
𝑖

𝜕𝑧
) + 𝑅

𝑖
,

𝑅
𝑖

=

{

{

{

(𝛼
𝑑,𝑖
+ 𝛼
𝑝𝑡,𝑖

)
󵄩󵄩󵄩󵄩V𝑤

󵄩󵄩󵄩󵄩 𝐶𝑖,
󵄩󵄩󵄩󵄩𝑢𝑤

󵄩󵄩󵄩󵄩 ≤ 𝑢
𝑐

(𝛼
𝑑,𝑖
+ 𝛼
𝑝𝑡,𝑖

)
󵄩󵄩󵄩󵄩V𝑤

󵄩󵄩󵄩󵄩 𝐶𝑖 − 𝛼
𝑒,𝑖
V
𝑖

󵄩󵄩󵄩󵄩V𝑤 − V
𝑐

󵄩󵄩󵄩󵄩 𝐶𝑖,
󵄩󵄩󵄩󵄩𝑢𝑤

󵄩󵄩󵄩󵄩 > 𝑢
𝑐
.

(21)

The surface deposition of the particles in the interval 𝑖 is

𝜕V
𝑖

𝜕𝑡
=

{

{

{

𝛼
𝑑,𝑖

󵄩󵄩󵄩󵄩V𝑤
󵄩󵄩󵄩󵄩 𝐶𝑖,

󵄩󵄩󵄩󵄩V𝑤
󵄩󵄩󵄩󵄩 ≤ 𝑢
𝑐

𝛼
𝑑,𝑖

󵄩󵄩󵄩󵄩V𝑤
󵄩󵄩󵄩󵄩 𝐶𝑖 − 𝛼

𝑒,𝑖
V
𝑖

󵄩󵄩󵄩󵄩V𝑤 − V
𝑐

󵄩󵄩󵄩󵄩 𝐶𝑖,
󵄩󵄩󵄩󵄩V𝑤

󵄩󵄩󵄩󵄩 > 𝑢
𝑐
.

(22)

The rate of entrapment of the particles in interval 𝑖 is

𝜕V∗
𝑖

𝜕𝑡
= 𝛼
𝑝𝑡,𝑖

󵄩󵄩󵄩󵄩V𝑤
󵄩󵄩󵄩󵄩 𝐶𝑖.

(23)

The initial conditions are

𝑆
𝑤
= 𝑆
0𝑤
, 𝐶

𝑖
= V
𝑖
= V∗
𝑖
= 0,

𝑡 = 0, 0 ≤ 𝑧 ≤ 𝐻,

(24)
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Figure 2: Water saturation against the height with various imbibi-
tion times and inlet concentrations.

where 𝐻 is the depth and 𝑆
0𝑤

is the initial water saturation.
The boundary conditions are

𝑆
𝑤
= 1 − 𝑆

𝑜𝑟
, 𝐶

𝑖
= 𝐶
𝑖,0
, V

𝑖
= V∗
𝑖
= 0,

𝑡 ≥ 0, 𝑧 = 0,

𝑑𝑆
𝑤

𝑑𝑧
=
𝑑𝐶
𝑖

𝑑𝑧
=
𝑑V
𝑖

𝑑𝑧
=
𝑑V∗
𝑖

𝑑𝑧
= 0,

𝑡 ≥ 0, 𝑧 = 𝐻,

(25)

where 𝐶
𝑖,0

is the concentration of particles in the particles
suspension at the inlet boundary. The governing equations
(17)–(23) are solved numerically along with the initial and
boundary conditions, (24)–(25). An efficient algorithm is
used to solve the above high-nonlinear parabolic partial
differential equation in one space variable 𝑧 and time 𝑡. The
Galerkin method is used for spatial discretization [13], while
the time integration for the resulting ordinary differential
equation is done with an adaptive time step. 100 points of the
spatial grid were used during calculations and were enough
to provide an acceptable accuracy. Now, we consider one-size
particles suspension in the water phase at the inlet, with the
following parameter [6, 7], 𝛼

𝑑,𝑖
= 8m−1, 𝛼

𝑝𝑡,𝑖
= 17m−1, 𝛼

𝑒,𝑖
=

400m−1, V
𝑐
= 4.6 × 10

−3m/s, and 𝐷
𝑖
= 5.6 × 10

−3m2/s. The
inlet particles concentration values are 𝐶

𝑖,0
= 0.0 (without

particles), 0.0005, and 0.01.The remaining model parameters
are 𝑆
𝑤𝑟

= 𝑆
𝑜𝑟

= 0.001, 𝑎
𝑤
= 𝑎
𝑎
= 0.5, 𝑐

𝑤
= 500, 𝑐

𝑎
= −500,

𝜑
0
= 0.2, 𝑙 = 3, 𝑘

𝑓
= 0.015, 𝛾

𝑓
= 0.01, 𝑘

𝑟𝑤0
= 𝑘
𝑟𝑎0

= 1, and
𝑎 = 𝑏 = 4.

Figure 2 shows the water saturation against the dimen-
sionless distance with various imbibition times and inlet
particles concentrations. It is notable that the concentration
of particles increases the water saturation in particular after
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Figure 3: Normalized particles concentration against height with
positive/minus 𝑅

𝑖
and various imbibition times.

significant time of imbibition. Moreover, the saturation of
water increases with the time imbibition.

The normalized particles concentration is plotted in
Figure 3 against the dimensionless distance with various inlet
concentrations and imbibition times. From this figure it
can be seen that the concentration of particles increases as
the concentration at the inlet increases for positive 𝑅

𝑖
. An

interesting phenomenon can be observed from Figure 3 that
the concentration increases with time but after a certain time
of imbibition concentration of particles start to decrease with
time. This may be interpreted by increasing the rate of parti-
cles precipitation on the pore surface of the porous medium.
The opposite is true for minus 𝑅

𝑖
. It is noteworthy that, in

Figure 3, the dimensionless concentration goes larger than 1
because the concentration of particles increases by erosion of
more particles from the medium (−𝑅

𝑖
). On the other hand,

the reference concentrationwas the inlet concentration of the
particles coming with water from outside.

Figures 4 and 5 illustrate the ratios of the permeability
and porosity against the dimensionless distance with various
imbibition times, respectively. Both the permeability and the
porosity are reduced due to the precipitation of the particles
on the pores walls. It is interesting to note that the reduction
rates of the permeability and porosity depend on the layer
permeability of the medium.

4. Conclusions

In this pape, we presented numerical modeling and simula-
tion of particle transport in two-phase flow in porous asphalt-
paved roads. Numerical experiments have been performed
to explore these phenomena and to study the possible
porosity and permeability variations. We found that both
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Figure 4: Permeability ratio against the height with various imbibi-
tion times.
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Figure 5: Porosity ratio against the height with various imbibition
times.

the permeability and the porosity are reduced due to the
precipitation of the particles on the pores walls. These results
may help engineers to keep porous asphalt and its storage
bed efficient by looking for cleaning methodologies to avoid
media blocking.
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This paper presents a modeling and computational study on particle erosion in curved ducts. It is found that the average erosion
rates per impact range from 4.2 × 10

−7 to 9.5 × 10−3mm3/g under current conditions. For each doubled inlet velocity, the increases
of erosion rates per impact are 2–14 times.The erosion rate per impact varies with particle diameter with “√” shape through bends,
which is similar to the particle deposition behavior in duct flows. The erosion rate curves per injected particle show the shapes of
a 90-degree anticlockwise rotated “S” and a wide open “V,” respectively, for three larger and smaller inlet velocities. The average
erosion rates per injected particle are 1.4–18.9 times those rates per impact due to huge amounts of impacting, especially for those
depositing particles. It is obvious that the erosion rate distribution per impact is similar to a “fingerprint” with five clear stripes
and a lower “cloud” along the bend deflection angle for the three largest particles; yet, for other smaller particles, the erosion rate
distributions are much like an entire “cloud.”

1. Introduction

Particulate flow is a significant phenomenon in environ-
mental, industrial, medical, and lifetime applications. For
example, the conveying and ventilation system is severely
affected by particle flow and its erosion [1–3]. The aerosol
deposition, accumulation, and soiling on solar panels and
glazing glass will erode their surfaces obviously [4]. These
applications also include a large amount of straight and
curved duct flow. However, the particle flow and erosion in
bends have not been fully studied [5, 6].

El-Behery et al. [7] studied the penetration rate distribu-
tion for estimating solid particle erosion in curved 90∘ and
180∘ ducts. Sun et al. [8] studied the particle penetration and
deposition in and behind bends. Chen et al. [9] proposed a
comprehensive procedure to estimate the erosion in elbows
mainly for bubbly or droplet flow. Zhang et al. [10] adopted
Computational Fluid Dynamics (CFD) with near-wall and
volume improvement to predict particle impact in a sharp

bend.Macchini et al. [11] investigated the influence of particle
size, density, and concentration on bend erosive wear under
high particle concentrations. Although some studies have
been conducted to investigate the particle erosion in bends,
prediction research on the erosion distribution is limited.

Therefore, present study focuses on the erosion status
modeling and analysis of curved walls. The airflow and
particle flow are modeled and predicted to obtain the erosion
information in typical 90-degree bends.The behaviors of ero-
sion rates varying with particle diameter or Stokes number,
inlet velocity, and deflection angles are analyzed in detail.

2. Method

2.1. Fluid and Particle FlowModel. Before solving the particle
flow in a fluid, the fluid flow conservation equations were
deducted and predicted by CFD tools [12]. Together with
near-wall two-layer model, the Reynolds stress model (RSM)
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was utilized to solve the fluid flow system in the curved
duct due to its ability to predict the swirling, turbulent, and
near-surface flow [8]. Details of the RSM model are given as
follows:

𝜕𝑢
𝑖

𝜕𝑥
𝑖

= 0,

𝜕𝑢
𝑖

𝜕𝑡
+ 𝑢
𝑗

𝜕𝑢
𝑖

𝜕𝑥
𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥
𝑖

+
1

𝜌

𝜕

𝜕𝑥
𝑗

(𝜇
𝜕𝑢
𝑖

𝜕𝑥
𝑗

− 𝜌𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
) ,

(1)

where 𝑢
𝑖
is the mean velocity, 𝑟 and 𝑚 are the density

and molecular viscosity of the fluid, respectively, 𝑝 is the
mean pressure, and −𝜌𝑢

󸀠

𝑖
𝑢
󸀠

𝑗
is the Reynolds stress. The

general transport equations for the Reynolds stresses could
be estimated by

𝜕

𝜕𝑡
(𝜌𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
) +

𝜕

𝜕𝑥
𝑘

(𝜌𝑢
𝑘
𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
)

= −
𝜕

𝜕𝑥
𝑘

[𝜌𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
𝑢
󸀠

𝑘
+ 𝑝 (𝛿

𝑘𝑗
𝑢
󸀠

𝑖
+ 𝛿
𝑖𝑘
𝑢
󸀠

𝑗
)]

+
𝜕

𝜕𝑥
𝑘

[𝜇
𝜕

𝜕𝑥
𝑘

(𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
)] − 𝜌(𝑢

󸀠

𝑖
𝑢
󸀠

𝑘

𝜕𝑢
𝑗

𝜕𝑥
𝑘

+ 𝑢
󸀠

𝑗
𝑢
󸀠

𝑘

𝜕𝑢
𝑖

𝜕𝑥
𝑘

)

− 𝜌𝛽 (𝑔
𝑖
𝑢
󸀠

𝑗
𝜃 + 𝑔
𝑗
𝑢
󸀠

𝑖
𝜃) + 𝑝(

𝜕𝑢
󸀠

𝑖

𝜕𝑥
𝑗

+

𝜕𝑢
󸀠

𝑗

𝜕𝑥
𝑖

)

− 2𝜇
𝜕𝑢
󸀠

𝑖

𝜕𝑥
𝑘

𝜕𝑢
󸀠

𝑗

𝜕𝑥
𝑘

− 2𝜌Ω
𝑘
(𝑢
󸀠

𝑗
𝑢󸀠
𝑚
𝐸
𝑖𝑘𝑚

+ 𝑢
󸀠

𝑖
𝑢󸀠
𝑚
𝐸
𝑗𝑘𝑚

) + 𝑆user,

(2)

where the 1st and 4th–6th terms on the right of this equation
have detailed models to close this equation as that in [12].
Neumann outlet flow conditions were employed and the
walls were set as smooth. Staggered numerical scheme was
adopted for pressure equation and second-order discretiza-
tion methods were applied for other variables. These variable
convergences were achieved when their residuals were 10−5
or less.

Based on the modeling and computation of fluid flow
field, the particle flow was determined by tracking the path
of each particle with the Lagrangian method. When using
thismethod, particles were assumed to be spherical solid ones
with diluted flow. The Lagrangian equation can be expressed
as

𝑑𝑢
𝑝𝑖

𝑑𝑡
= 𝐹
𝐷
(𝑢
𝑖
− 𝑢
𝑝𝑖
) + 𝑔
𝑖
(1 −

𝜌
𝑎

𝜌
𝑝

) + 𝐹
𝑎𝑖
, (3)

where 𝑢
𝑝𝑖
is particle velocity in the 𝑖th direction (m/s) and

𝑢
𝑖
represents the air velocity. The 1st term on the formula

right represents the particle drag force in the 𝑖th direction
(m/s2), and the 2nd one is the gravitational force. The 3rd

term stands for other possible forces [13]. To simplify the
modelling of particle forces, this article only adopts lift force
to predict the particle flow through curved duct [14]. The
random fluctuation effects of the fluid flow on particles were
modeled by “Eddy lifetime” method [15].

2.2. Particle Wall Interaction and Erosion Models. When
particles flow along constrained domains, they will interact
with different surfaces. For present solid particles, they would
deposit on, rebound from, or reimpact with wall surfaces. To
model this process, an algebraic particle-wall impact model
[16] was utilized to describe the interaction process between
particle and wall as follows:

𝑒 = −

V𝑝
2,𝑛

V𝑝
1,𝑛

= 𝑅
𝑝𝑤
(1 − 𝜌

𝑝𝑤
) ,

V𝑝
2,𝑛
= −𝑒V𝑝

1,𝑛
,

V𝑝
2,𝑡
= V𝑝
1,𝑡
− 𝜇
1
(1 + 𝑒) V𝑝

1,𝑛
,

(4)

where 𝑒 is the restitution coefficient, V𝑝
1,𝑛

and V𝑝
2,𝑛

are particle
normal incident and reflected velocities, respectively, 𝑅

𝑝𝑤

stands for the coefficient of restitution without adhesion, 𝜌
𝑝𝑤

is the coefficient of adhesion, and 𝜇
1
is the ratio of tangential

to normal impulse. This model was integrated into the main
particle computation by in-house codes.

When particle-wall impact happens, the wall will be
eroded by impacted particles gradually. The wall surface
erosion rate or wastage rate is commonly defined as the ratio
of wall eroded mass or volume to that of impacted particles.
The erosion rate is usually determined by particle impacting
velocity and angle, wall and particle materials, and their
temperatures. In this paper, a convenientmodel developed by
Menguturk et al. [17, 18] was introduced into the curved duct
flow to analyse the wall erosion condition on the curved duct
walls as follows:

𝐸V = 1.63 × 10
−6
(V𝑝
1
cos𝛼)

2.5

sin( 𝜋𝛼
2𝛼
𝑐

)

+ 4.68 × 10
−7
(V𝑝
1
sin𝛼)

2.5

(𝛼 ≤ 𝛼
𝑐
) ,

𝐸V = 1.63 × 10
−6
(V𝑝
1
cos𝛼)

2.5

+ 4.68 × 10
−7
(V𝑝
1
sin𝛼)

2.5

(𝛼 > 𝛼
𝑐
) ,

(5)

where the unit of erosion rate 𝐸V is mm3/g, V𝑝
1
is the incident

impact velocity, 𝛼 is the incident impact angle near the wall,
and 𝛼

𝑐
is the critical incident angle with a constant value

of 22.7∘. In these formulas, the erosion rate 𝐸V has a power
relationship with index 2.5 with impact velocity V𝑝

1
. This

model was incorporated into the particle-wall interaction
model andmain particle flowmodel to obtain the impact and
erosion information in the curved duct flow.
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3. Results and Discussion

In this paper, the background fluid was selected as air, and
the flow domain was formed in the typical curved two-
dimensional duct with a 90-degree bend as shown in Figure 1.
Since particles mainly deposit and impact on the outer bend
wall, the erosions are also observed to happen at these places.
The deflection angle 𝜃 is also demonstrated from 0∘ to 90∘
in this figure. Eight particle groups were injected into the
duct flow from the duct inlet with even space distribution,
which have the diameters 𝑑

𝑝
= 1, 3, 7, 16, 30, 60, 100, and

200𝜇m. At the duct inlet, 60000 particles were injected.
The volume fraction is less than 1.02 × 10

−6. Six inlet
velocity 𝑢in conditions were adopted in this analysis, that is,
2.2, 5.3, 9, 15, 33, and 52m/s. Totally, more than 48 different
conditions were analyzed. The airflow and particle flow
modelswere validated by experimental data throughprevious
works [8, 19] in terms of the air and particle velocity profiles,
and particle depositions and penetrations, which support the
present investigations.

3.1. Erosion Rate per Impact on Curved Walls. Based on the
airflow and particle flow modeling and prediction, statistic
results of particle-wall impact and erosion status are given
in Figure 1. This figure shows the average erosion rate
per impacted particle on the curved wall for each inlet
velocity and particle diameter conditions. Using the concept
of erosion rate per impacted particle can have more physical
meanings and higher application abilities.

Generally, the average erosion rates shown in Figure 2
range from 9.5×10

−3 to 4.2×10−7mm3/g for the inlet velocity
from52m/s to 2.2m/s. Based on these erosion rate results, the
wall wastage can be calculated out considering the injected
particle mass. The erosion rate changes with inlet velocity
sharply as demonstrated in the figure. The inlet velocity
conditions are roughly set around 2-time increase from one
smaller inlet velocity to another bigger one. However, the
erosion rate generally increases nearly 2 to 14 times. This
phenomenon can be explained from the erosion rate equation
in (5). Although the erosion rate has a power relationship
with impact velocity with index 2.5, the erosion rate hasmuch
more complicated nonlinear correlation with inlet velocity
due to the complex curved duct flow conditions.

In terms of the changing with particle diameter, the
general trend of erosion rate is similar for particle diameter
from 𝑑

𝑝
= 1 to 200𝜇m for different inlet velocities. Firstly,

the erosion rate decreases with particle diameter increase.
When particle diameter 𝑑

𝑝
is 7 or 16 𝜇m, the erosion rate

gets to the lowest value. After that, it increases with the
particle diameter increase. For very large flow inlet velocity
and particle diameter, like 𝑑

𝑝
= 200 𝜇m at 𝑢in = 33 and

52m/s, the erosion rate decreases a little due to the large
inertia and gravity of these large particles with large Stokes
number St. These phenomena are similar to that observed in
the particle deposition behavior with “√” shape in duct flows
[20, 21]. This phenomenon may be attributed to the similar
impact mechanism during the deposition, rebounding, and
reimpaction process. Smaller particles of 𝑑

𝑝
= 1 to 3 𝜇m

Inlet

Outlet
Outer wall: 
main erosion places

Inner wall

Deflection angle

r2 = 0.22m

r1 = 0.12m

0.1m

𝜃 = 0∘

𝜃

𝜃 = 90∘

Figure 1: Schematic chart of the model geometry.

are affected more by diffusion, turbulence, and vortex in the
bend and theymay have higher impact angle, and thus higher
erosion rates are observed. Coarse ones of 𝑑

𝑝
= 30 to 200𝜇m

are controlled by inertia and gravity, and thus they would
erode more wall masses.

3.2. Erosion Rate per Injected Particle on Curved Walls.
Since particles may rebound and reimpact onto walls due
to the near-wall forces or mechanism like turbulence and
vortex, average erosion rate per impacted particle cannot
give macroinformation about the injected particle erosion
ability. Therefore, Figure 3 shows the average erosion rate per
injected particles statistically against the particle Stokes num-
ber. The Stokes number St is a key parameter to describe the
particle response to fluid flow in bends. This dimensionless
number is determined by the following formula:

St =
𝜏
𝑝

𝜏
𝑏

=

𝜏
𝑝
𝑢in

(𝐷
ℎ
/2)

=

𝐶
𝑐
𝜌
𝑝
𝑑
2

𝑝

18𝜇
⋅

𝑢in
(𝐷
ℎ
/2)

, (6)

where 𝜏
𝑝
is the particle relaxation time, 𝜏

𝑏
is the time scale

of the bend, 𝑢in is the air velocity at the duct inlet, 𝐷ℎ is the
hydraulic diameter of the duct, 𝐶

𝑐
is the Cunningham slip

correction factor for microparticles, 𝜌
𝑝
and 𝑑

𝑝
are particle

density and diameter, respectively, and 𝜇 is the air dynamic
viscosity. The friction velocity, 𝑢∗, shown in Figure 3 could
be calculated by

𝑢
∗
= 𝑢in√

𝑓

2
=

𝑢in/√2

−3.6 log [6.9/Re+(𝑘󸀠/3.7𝐷
ℎ
)
1.11

]

= −
𝑢in

5.1 log [6.9/Re+(𝑘󸀠/3.7𝐷
ℎ
)
1.11

]

,

(7)

where 𝑓 is the Fanning friction factor determined in straight
duct by White [22], 𝑘󸀠 is the average microscale roughness
height of the roughwall, which is zero in this work for smooth
walls, and Re is the Reynolds number.
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Figure 2: Comparison of the erosion rate 𝐸V per impact particle against the particle diameter and inlet flow velocity: (a) larger inlet velocities
of 15, 33, and 52m/s and (b) smaller inlet velocities of 2.2, 5.3, and 9m/s.
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Figure 3: Comparison of the erosion rate𝐸V per injected particle against the particle diameter and inlet flow velocity: (a) larger inlet velocities
of 15, 33, and 52m/s and (b) smaller inlet velocities of 2.2, 5.3, and 9m/s.
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Figure 4: Erosion rate 𝐸V distribution per impact particle against the deflection angle of curved duct at the inlet velocity 5.3m/s: (a) particle
diameter 200 𝜇m and (b) particle diameter 100 𝜇m.

The erosion rate curves shown in Figure 3 are generally
smoother than those in Figure 2. The curve shapes in
Figure 3(a) are much like a 90-degree anticlockwise rotated
“S.” The erosion rates range from 9.2 × 10

−5 to 2.0 ×

10
−2mm3/g.Themagnitudes of the values are generallymuch

larger than those in Figure 2(a) due to huge amounts of
impacting, especially for those depositing particles. For a
similar condition, the erosion rates in Figure 3(a) are 1.4–18.9
times those in Figure 2(a). If the solid particles have high
velocities and will deposit onto the bend surfaces, they may
impact, rebound, and reimpact on the bendwalls to gradually
lower down its velocity for deposition. Furthermore, since
particles will deposit more on ducts for larger inlet velocities
or friction velocities as demonstrated in previous research
[19, 20], the erosion rates in Figure 3(a) are generally high. In
addition, smaller particles of Stokes number St = 3.3 × 10−3–
7.2×10−1 have higher impaction frequencies or amounts than
the other larger ones as shown in the figure. This behavior
may be due to their frequent interaction with airflows.

For lower inlet velocity cases shown in Figure 3(b), the
erosion rate curves are much like wide open “V” shapes. If
larger particles of 𝑑

𝑝
> 200 𝜇m are simulated, the curves may

become the shapes demonstrated in Figure 3(a). The erosion
rates range from 1.9×10

−7 to 3.7×10−4mm3/g. Most of these
erosion rates are still larger than those shown in Figure 2(b)
due to multi-impaction of a single depositing particle. The
increasing degrees in this figure are smaller than those in
Figure 3(a). For friction velocity 𝑢∗ = 0.13m/s, the increase
degree is the smallest. Furthermore, three erosion rates are
smaller than those in Figure 2(b) for the particle groups of
St = 0.02, 0.11, 0.37. This phenomenon may be attributed to
the low particle impaction amount and low particle deposi-
tion for these particles with the smallest friction velocity.

3.3. Erosion Rate Distribution for Each Impact. Distribution
of the erosion rate per impacted particle can further demon-
strate the particle erosion picture on bend walls. Detailed
erosion magnitude and locations can be interpreted. Particle
depositions in bends mainly happen on the outer bend walls
as shown in Figure 1 and previous research results [23].
Therefore, the following analysis primarily states the erosions
on different locations of the outer bend wall.

Figures 4–7 show the distribution of erosion rate 𝐸V per
impacted particle against the deflection angle as demon-
strated in Figure 1. The angles from 0∘ to 90∘ represent bend
inlet to outlet. The case of the inlet velocity 𝑢in = 5.3m/s is
selected as an example to explain the erosion rate distribution.
Figure 4 presents the erosion rate for the largest particles
with diameters 𝑑

𝑝
= 100 and 200𝜇m. It is very obvious

that the erosion rate is like a “fingerprint” with clear stripes.
These stripes are probably caused by the clear impactions of
particles. The top stripe is the first impact of particles on the
outer bend wall with the largest erosion rate. Following the
airflow, the deflection angles with first impaction are from
0∘ to 60∘, where the peak erosion rate appears at around
20∘. After this impaction, four much clear impactions are
observed but with lower erosion rate due to moment or
velocity reduction after each impaction. The lowest unclear
cloud-like areas are the lightest impactions close to particle
depositions. They are more randomly distributed due to
turbulence, impaction, anddiffusion.Deeper color represents
that the erosion rates have a large amount at these areas. It can
be seen that the particles in this figure have very high erosion
rates from 𝐸V = 1.0×10

−5 to 1.0×10−4mm3/g. Furthermore,
the “fingerprint” phenomenon in this figure indicates that
further impactions would happen after the bend because the
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Figure 5: Erosion rate 𝐸V distribution per impact particle against the deflection angle of curved duct at the inlet velocity 5.3m/s: (a) particle
diameter 60 𝜇m and (b) particle diameter 30 𝜇m.
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Figure 6: Erosion rate 𝐸V distribution per impact particle against the deflection angle of curved duct at the inlet velocity 5.3m/s: (a) particle
diameter 16 𝜇m and (b) particle diameter 7 𝜇m.

stripes do not have end tails at 90∘ deflection angle or bend
outlet.

Figure 5 demonstrates the erosion rates for particles
with diameters 𝑑

𝑝
= 60 and 30 𝜇m. From Figure 4 to

Figure 5(a), the stripe boundaries are gradually obscure,
and they begin to widen their widths. From Figure 5(a)
to Figure 5(b), stripes have disappeared, and the general
erosion rates decrease. In Figure 5(b), most of the erosions
are from 𝐸V = 1.0 × 10

−8 to 1.0 × 10
−6mm3/g. From

Figures 5 to 6, erosions decrease with impaction and depo-
sition decreases because particle diameter decreases. From
Figures 6 to 7, erosion amounts increase again as seen in
Figures 2 and 3 due to diffusion-induced impactions of
smaller particles. In Figure 7(b), most of the erosions are
from 𝐸V = 5.0 × 10

−7 to 1.0 × 10
−5mm3/g. These larger

erosion values and amounts may be caused by larger inci-
dent angle impactions due to diffusion and turbulent eddy
mixing.
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Figure 7: Erosion rate 𝐸V distribution per impact particle against the deflection angle of curved duct at the inlet velocity 5.3m/s: (a) particle
diameter 3 𝜇m and (b) particle diameter 1 𝜇m.

4. Conclusions

This paper presented a modeling and computational study
on particle erosion in curved ducts. An algebraic particle-
wall impact model and a convenient erosion model were
adopted in a typical 90-degree bend. The erosion rates per
impacted particle and per injected particle were investigated
against different particle diameter, inlet velocity, and Stokes
number. The distribution of erosion rate was visualized and
analyzed along bend deflection angles.Themajor findings are
summarized as follows.

(1) Generally, the average erosion rates per impacted
particles range from 4.2 × 10

−7 to 9.5 × 10−3mm3/g
for the inlet velocity from 2.2m/s to 52m/s. For
each doubled inlet velocity, the increases of erosion
rates per impact are 2–14 times. This phenomenon
indicates a sharp enhancement of erosion rate due to
inlet velocity increase.

(2) The erosion rate per impact changes with particle
diameter with “√” shape in bend flows, which is
similar to the particle deposition behavior in duct
flows. When particle diameter 𝑑

𝑝
is 7 or 16 𝜇m, the

erosion rate gets to the lowest value. Other smaller
ones have higher erosion rates due to diffusion,
turbulence, and vortex. Higher erosion rates for larger
particles are caused by inertia and gravity.

(3) The erosion rate curves per injected particle are much
like a 90-degree anticlockwise rotated “S” for three
larger inlet velocities of 15, 33, and 52m/s.The erosion
rates range from 9.2 × 10

−5 to 2.0 × 10−2mm3/g. The
magnitudes of the values are 0.4-to-17.9 times larger
than those per impact due to huge amounts of impact-
ing, especially for those depositing particles. For the

lower three inlet velocities, the erosion rate curves are
much like wide open “V” shapes. Their erosion rates
range from 1.9 × 10

−7 to 3.7 × 10−4mm3/g.

(4) It is obvious that the erosion rate is like a “fingerprint”
with clear stripes for the three largest particles with
diameters 𝑑

𝑝
= 60, 100, and 200𝜇m. The deflection

angles with first impaction stripe are from 0∘ to
60∘, where the peak erosion rate appears at around
20∘. After this impaction, other four clear impaction
stripes are observed but with lower value due to the
velocity reduction after each impaction. The lowest
cloud-like areas are the lightest impactions close to
particle depositions.

(5) For other smaller particles, the erosion rate distribu-
tion is much like an entire “cloud” along the bend
deflection angle. These “clouds” become smaller and
then bigger when the particle diameter decreases.The
deflection angles of “clouds” are mainly from 20∘ to
90∘.
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The concentration and orientation of suspended fibers in a mixing layer are investigated numerically. Two cases (diffusive and
nondiffusive) are investigated for the fiber concentration distribution. The fine structures of the instantaneous distributions under
these two cases are very different due to molecular diffusion. Sharp front of concentration is observed in the nondiffusive case.
However, there is no obvious difference in the mean concentration between the two cases. With regard to the orientation, a fiber
may rotate periodically or approach an asymptotic orientation, which is determined by a determinant defined with the stain rate.
The symmetric part of the strain rate tends to make a fiber align to an asymptotic orientation, while the antisymmetric part drives a
fiber to rotate. When a fluid parcel passes through a region with relatively high shear rate, fibers carried by the fluid parcel are most
likely to rotate incessantly. On the other hand, in the region of relatively high extension rate, fibers tend to align to some asymptotic
orientation. Generally, fibers tend to align with the shear plane. This fact has significant implications in predicting the rheological
properties of fiber suspension flows.

1. Introduction

Fiber suspension flows can be found in many processes, such
as papermaking, polymer flows in melt-blowing extruders,
and nanofibers in the respiratory system. Here, discussions
are limited to rigid fibers, which are very slender bodies and
can be treated as high aspect ratio cylinders or ellipsoids.
The aspect ratio 𝑟

𝑐
is generally defined as the ratio of the

maximum and the minimum characteristic sizes of a fiber.
Because of the high aspect ratio, fiber suspensions generally
exhibit anisotropic properties. From a macroscopic point
of view, fiber suspension flows are generally nonNewtonian
fluid, and the flows are described by the Navier-Stokes
equation with appropriate constitutive equations for the
strain rate and stress. In this scale, the effects of fiber addi-
tive are treated through ensemble average. In other words,
continuous fields are used to describe the fibers states, most
importantly fiber concentration and orientation distribution.
From a microscopic point of view, the flow around a single

fiber and the corresponding translational and rotational
dynamics of a fiber are of concern.These two perspectives are
integrated to provide a continuous constitutive equation for
the strain rate and the stress through the statistical average
on all the possible microscopic flow structures. This two-
scale perspective leads the research in fiber suspension flow
to focus on two main aspects.

One aspect is to investigate the movement of fibers in
various flows. Since fibers are generally very small, the flow
around a fiber can usually be seen as a creeping flow in
the moving coordinates aligned with the fiber’s mass center.
Other than the translational movement, the rotation of a
fiber has received investigation long ago [1]. Since then, a
lot of research works have been done on the orientation
of fibers in various flows [2–15]. The other aspect is to
investigate the new properties of flows caused by the addition
of fibers. Intrinsically, it is the additional stress induced by
the fiber suspensions that makes the fiber suspensions flows
exhibit special rheological properties [16, 17], such as the drag
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reducing [18, 19], shear thinning [20]. In his serial works [21–
23], Batchelor developed a well-accepted model about the
additional stress, which closely relies on the fiber orientation
distribution.

In this work, the translational and rotational movements
of fibers in a canonicalmixing layer are simulated.Themixing
layer configuration is geometrically simple and is a very
broadly used model to investigate the shear flow, which char-
acterizes the most important fluid dynamics. A Lagrangian
particles scheme is used to deal with the convection of
fibers. The evolution of fiber orientation is tracked along
Lagrangian trajectories. This new scheme provides insightful
understanding of the fiber rotational dynamics, which helps
understand and predict the rheological properties of fiber
suspension flow. Meanwhile, it is computationally efficient
and highly flexible in adjusting the discretization error on the
orientation distribution. The paper is organized as follows.
Models and methods are described in Section 2. The results
on fiber concentration and orientation are presented in
Section 3. Section 4 is the conclusion.

2. Models and Methods

2.1. Mixing Layer Configuration. This work is to simulate
the concentration and orientation distribution of fibers in a
canonical mixing layer. To save the computational time, the
flow is assumed to be homogeneous in the spanwise direction.
On the other hand, the feedback from the fiber additive
is neglected; only one-way coupling is considered. Hence,
a planar mixing is solved. The configuration is depicted
in Figure 1. The spacial dimension is normalized by the
momentum thickness of the mixing layer at the inlet. The
computational methods for the fluid dynamics are the same
as those in Zhou and He [24]. Finite difference scheme
with structured grid is used. At the inlet, the streamwise
velocity profile is imposed by combining two Blasius laminar
boundary layers. The two streams have inlet velocities 𝑢

1
=

15m/s and 𝑢
2
= 5m/s, respectively. The Reynolds number at

the inlet based on the velocity difference and the momentum
thickness is 111. The normalized fiber concentrations at the
two streams are 𝑐

1
= 1 and 𝑐

2
= 0, respectively.

2.2. Fiber Concentration. It is assumed that the fiber con-
centration 𝑐 is a passive scalar which satisfies the convection
diffusion equation

𝜕𝑐

𝜕𝑡
+ ∇ ⋅ (u𝑐) = 𝐷

𝑐
∇
2
𝑐. (1)

The assumption is valid when the fiber is very small and
follows the fluid flow very well; additionally, the fiber con-
centration is very low and the additional stress due to the
fiber additive is negligible.Themain purpose is to investigate
the Schmidt number effect on the fiber concentration in the
mixing layer configuration here.The Schmidt number is Sc =
]/𝐷
𝑐
, where ] is the kinematic viscosity. Two cases Sc = 1 and

Sc = ∞ (i.e., 𝐷
𝑐
= 0) are investigated. The concentrations in

the two streams of themixing layer at the inlet are assumed to
be 0 and 1 (nondimensionalized). The absolute magnitude of
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Figure 1: Schematic view of the mixing layer, with instantaneous
fiber concentration 𝑐 in the mixing layer for the case Sc = 1.

the concentration is immaterial, since the fiber concentration
has no impact on the fluid flow (one-way coupling).

2.3. Fiber Rotational Dynamics. The rotation of a fiber is
described by the Jeffery [1] equation

̇p = 𝜔 ⋅ p + 𝜆 (𝜖 ⋅ p − 𝜖 : ppp) , (2)

where p is the unit vector aligned with the fiber axis
(Figure 2), the dot over a variable denotes the time derivative,
𝜔 = (∇u† − ∇u)/2 is the vorticity tensor, 𝜖 = (∇u† + ∇u)/2
is the deformation rate tensor, and 𝜆 = (𝑟2

𝑐
− 1)/(𝑟

2

𝑐
+ 1). The

equation is originally derived for an ellipsoid in Stokes flows.
It is found [1] that the force acting on the ellipsoid reduces to
two couples, with one tending tomake the ellipsoid adopt the
same rotation as the surrounding fluid and the other tending
to set the ellipsoid with its axes parallel to the principle
axes of distortion of the surrounding fluid. This discovery
was verified by the subsequent experiment of Taylor [25].
Furthermore, Bretherton [26] found that the same equation
(2) also applies to a revolution body.

As discussed in Section 2.1, themixing layer is assumed to
be homogeneous along the spanwise direction (𝑧 in Figure 2).
Hence, only components 𝜔

12
in the vorticity tensor and 𝜖

11
,

𝜖
12
, and 𝜖

22
in the deformation rate tensor are present to

determine the rotation of a fiber. Under this condition, the
Jeffery equation (2) is simplified to

̇𝑝
1
= 𝜔
12
𝑝
2
+ 𝜆 (𝜖

11
𝑝
1
+ 𝜖
12
𝑝
2
− 𝜖
11
𝑝
3

1

− 2𝜖
12
𝑝
1

2
𝑝
2
− 𝜖
22
𝑝
2

2
𝑝
1
) ,

(3a)

̇𝑝
2
= − 𝜔

12
𝑝
1
+ 𝜆 (𝜖

12
𝑝
1
+ 𝜖
22
𝑝
2
− 𝜖
11
𝑝
2

1
𝑝
2

− 2𝜖
12
𝑝
1
𝑝
2

2
− 𝜖
22
𝑝
3

2
) ,

(3b)

̇𝑝
3
= −𝜆𝑝

3
(𝜖
11
𝑝
2

1
+ 2𝜖
12
𝑝
1
𝑝
2
+ 𝜖
22
𝑝
2

2
) . (3c)

The orientation vector implicitly satisfies the condition 𝑝2
1
+

𝑝
2

2
+ 𝑝
2

3
= 1, since the fiber is rigid, which cannot extend or

shrink.
The rotational dynamic equations (3a), (3b), and (3c) are

integrated along a Lagrangian trajectory (discussed in the
next section) with the local vorticity and deformation rate by
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Figure 2: Schematics of fiber orientation. The bold line segment
denotes the fiber orientation vector.

the solver DOPRI5 [27], which uses a fourth order Runge-
Kuttamethodwith adaptive time step based a fifth order error
estimate.

2.4. Lagrangian Particles Scheme. For the translationalmove-
ment of fibers, two cases Sc = 1 and Sc = ∞ are consid-
ered. For Sc = 1, the WENO scheme [28] is used to solved
the convection diffusion equation (1). For the nondiffusive
case Sc = ∞, the traditional schemes in Eulerian frame-
work usually introduce numerical diffusion. To avoid the
numerical diffusion, the Lagrangian particles scheme [29]
is used for the case Sc = ∞. Under the conditions of
no diffusion and negligible inertial, the movement of the
mass center of a fiber follows the local fluid parcel. Hence,
the transport of fibers can be described by the Lagrangian
particles method. In the Lagrangian particles method, the
trajectories of a large number of Lagrangian particles are
tracked simultaneously. Meanwhile, the Lagrangian particles
carry the fiber concentration and orientation, which evolve
along the Lagrangian trajectories independently. The fiber
concentration is a scalar, which is easy to deal with. When
calculating the orientation distribution at a spatial position,
which is a function on the unit sphere (Figure 2), statistics of
fiber orientation at the position are required. A Monte Carlo
scheme is used to simulate the orientation evolution along
a trajectory. A Lagrangian particle carries many fibers, and
these fibers all obey the rotational dynamics equation (2).The
initial orientations of these fibers are generated randomly on
the unit sphere. The orientation distribution is approximated
through statistical averaging on the orientations of all these
fibers. Thousands of fibers are used to obtain statistically
convergent orientation distribution. The main advantage of
the Lagrangian particles scheme is that the convection of all
the fibers along a Lagrangian particle is solved simultaneous
in the same way. The number of fibers along a trajectory can
be adjusted conveniently to balance the computational cost
and the statistical error.

The dynamic equations for the Lagrangian particles and
the concentration and orientation of fibers are as follows:

dx𝑝

d𝑡
= k𝑝 (x𝑝) , (𝑝 = 1, 2, . . . , 𝑁

𝑝
) , (4)

d𝑐𝑝

d𝑡
= 0, (𝑝 = 1, 2, . . . , 𝑁

𝑝
) , (5)

in addition to (3a), (3b), and (3c), where the strain rate is
obtained along the trajectories determined by (4). Here x𝑝
and k𝑝 denote the location and the velocity of a Lagrangian
particle 𝑝, and𝑁

𝑝
is the number of Lagrangian particles.

In this study, the flow velocity is solved in the traditional
Eulerian framework. Fiber concentration and orientation
are evolved along Lagrangian trajectories. The Eulerian and
Lagrangian frameworks are coupled together. On the one
hand, trilinear interpolation is used to convert variables from
the Eulerian framework to the Lagrangian framework. To
calculate the particle trajectories, the particle velocity k𝑝(x𝑝)
is obtained by interpolating the Eulerian velocity field at
position x𝑝. The strain rate is also obtained from the Eulerian
field through interpolating it in a grid cell. On the other hand,
the reconstruction of Eulerian fields from the Lagrangian
particles uses

𝑐 (x) = 1

𝑁
Ω

∑

𝑝∈Ω

𝑐
𝑝
, (6)

where Ω is the set of particles located in the cell x and 𝑁
Ω

is the number of such particles. Similar treatment for the
orientation is carried out.

Lagrangian particles are injected at the inlet of themixing
layer at a rate proportional to the inlet velocity, to make the
number of particle 100 in a cell on average. The number
of particles be in a cell controls the discretization error
in evaluating the orientation distribution, which can be
conveniently adjusted. Increasing the number of particles
does not affect the cost of solving the fluid dynamics but
only increases the cost to track the Lagrangian trajectories
and the integration of fiber rotational dynamics along these
trajectories. It is found that 100 particles in a cell are enough
to produce statistically convergent results.

3. Results and Discussion

3.1. Fiber Concentration. The instantaneous fiber concentra-
tions for Sc = 1 and Sc = ∞ are given in Figure 3. The
concentration distribution for the two cases has similar large
structure. For Sc = 1, the concentration changes smoothly
from 0 to 1. However, for Sc = ∞, the concentration is
either 0 or 1; no intermediate value is in-between, which
is typical for nondiffusive mixing process. The Lagrangian
particles scheme captures the sharp front quite well. The
front separating 𝑐 = 0 and 1 in Figure 3(b) is not smooth
but exhibits staggered structure, which is related to the grid
resolution. It is clear that high resolution is needed to resolve
the fine scalar structure in high Schmidt numbers flows.

Although the instantaneous fine structures of the fiber
concentration for Sc = 1 and Sc = ∞ are very different, the
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Figure 3: Comparison of instantaneous fiber concentration distributions (clipped). (a) Sc = 1, (b) Sc = ∞. Same isocontours of 𝑐 = 0.9 and
𝑐 = 0.1 for Sc = 1 are also added in (b) for comparison purpose. The fiber concentration has a sharp front for Sc = ∞.
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Figure 4: Mean concentration a cross profiles at various crosswise
locations (𝑥∗ = 137, 𝑥∗ = 228, and 𝑥∗ = 319) for Sc = 1 (a, b, and c)
and Sc = ∞ (A, B, and C).

mean values are almost the same. Figure 4 shows the mean
concentration cross profiles at various streamwise locations,
where 𝑦+ = 𝑦/𝛿(𝑥∗) is the normalized coordinate with the
local momentum thickness (𝛿(𝑥∗)) of the mixing layer. The
profiles a, b, and c are for Sc = 1 at 𝑥∗ = 137, 𝑥∗ = 228,
and 𝑥∗ = 319, respectively. The profiles A, B, and C are for
Sc = ∞ at the same locations corresponding to a, b, and c.
There is no significant difference between the diffusive and
nondiffusive cases. Only minor difference between a and A is
observed. It is clear that themolecular diffusion has negligible
effect in determining the mean concentration in turbulent
flows. Generally, the Schmidt number for the translational
movement of a fiber is much larger than unity. Hence, the
molecular diffusion can be neglected in determining the
mean concentration.

3.2. Fiber Orientation. The orientation vector has three com-
ponents in the Cartesian coordinates. However, only two
of them are independent. The third one can be determined
through the normalization condition 𝑝2

1
+ 𝑝
2

2
+ 𝑝
2

3
= 1.

Equivalently, the orientation vector can be described in
the spherical coordinates with 𝜙 = arctan(𝑝

2
/𝑝
1
) and

𝜃 = arccos(𝑝
3
) (see Figure 2). For a given constant strain

rate, Zhou et al. [30] have derived the analytical solution for
the rotational movement of a fiber in a planar flow. They
found that a fiber either rotates periodically or approaches an
asymptotic orientation according to the sign of a determinant
Δ, which is defined with the strain rate. The asymptotic
orientation (if Δ > 0) and the period (if Δ < 0) are also given
there. In their derivation the shear stain is normalized by the
component 𝑢

𝑦
. Their formula cannot describe the case when

𝑢
𝑦
= 0. Here we extend their results slightly to present the

results in amore general form (including the case for 𝑢
𝑦
= 0).

The determinant is defined as

Δ = 𝜆
2
(𝜖
2

11
+ 𝜖
2

12
− 𝜔
2

12
) . (7)

If Δ > 0, the fiber approaches an asymptotic orientation with

𝜙 =
−𝜆𝜖
11
± 2Δ

𝜆𝜖
11
− 𝜔
12

, (8a)

𝜃 =

{{

{{

{

𝜋

2
if 𝜃
0
=
𝜋

2
,

0 otherwise,
(8b)

where 𝜃
0
is the initial polar angle.The results state that except,

for very special initial condition 𝜃
0
= 𝜋/2, a fiber will

approach the shear plane (𝜃 = 𝜋/2) and the azimuthal angle
given by (8a). If Δ < 0, the fiber rotates periodically, with
period

𝑇 =
𝜋

√|Δ|

. (9)

It is worth pointing out that the results on the asymptotic
angle (if Δ > 0) and the period (if Δ < 0) differ from those
of Zhou et al. [30] due to the difference in the definition
of Δ (a constant factor 4). The results here are slightly more
general in applicable conditions and more compact in form.

In this simulation, a large number of Lagrangian tra-
jectories (over one million) are tracked. The evolution of
fiber concentration and orientation along these trajectories is
simulated. The trajectories reveal how fluid parcels move in
the mixing layer. Figure 5 shows the Lagrangian trajectories
that pass through the same spatial cell (at various time
instants). The cell is located at 𝑥∗ = 319 and corresponds to
the median of the mean concentration, 𝑐 = 0.5. The median
𝑐 = 0.5 does not lie in the center line of the mixing layer
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Figure 5: Lagrangian trajectories passing through a point at various
time instants.

but shifts to the slow stream side (here negative 𝑦). From
a Lagrangian point of view, this can be explained by the
ensemble average of the concentration along the trajectories
passing through the cell. Since there is no diffusion, the
concentration along a Lagrangian trajectory is constant (see
(5)); the constant is determined by the initial value at the inlet
of the mixing layer. From Figure 5 it is obvious that a fluid
parcel originating from the fast stream (𝑦 > 0) is more likely
to travel down to the slow stream region than a fluid parcel
originating from the slow stream (𝑦 < 0) to travel up to the
fast stream region. That is why the median 𝑐 = 0.5 is located
in the slow stream region. On another aspect, the fluctuation
of the trajectories also quantitatively reflects the strength of
the mixing.

The fiber orientation along a Lagrangian trajectory is
determined by the vorticity and deformation rate that a fiber
undergoes. Figure 6 shows the profiles of the vorticity and
deformation rate along a sample Lagrangian trajectory. The
profile of the determinant Δ from (7) is also given in the
figure. Theoretical analysis demonstrates that a fiber will
rotate periodically if Δ < 0. From (7) it is clear that only 𝜔

12

contributes to the negative part of the determinant. In other
words, the antisymmetric part of the strain rate (vorticity)
drives a fiber to rotate, and the symmetric part (deformation
rate) tends to push a fiber to a specific orientation. In fact,
as Lipscomb et al. [31] pointed out, (2) may be interpreted
physically as stating the p rotates with the fluid according to
term “𝜔 ⋅p”, and simultaneously partially stains with the fluid
according to term “𝜆𝜖 ⋅ p”. The term, −𝜆𝜖 : p, compensates a
change of length which resulted from the motion described
by 𝜔 ⋅ p and 𝜆𝜖 ⋅ p, because p is of unit length. This physical
interpretation is very informative. However, it is far from
being straightforward to directly derive the conclusion from
(2) per se. Here, the determinant Δ (see (7)) has very simple
form, and it is straightforward to draw the conclusion from
the form of Δ. By comparing the components of the vorticity
and deformation rate in Figure 6, it is clear that the profile
of 𝜔
12

is more irregular than those of 𝜖
11

and 𝜖
12

(notice
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Figure 6: Profiles of the vorticity and deformation rate along a sam-
ple Lagrangian trajectory.The continuous gray is the corresponding
determinant Δ evaluated from (7).
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sample Lagrangian trajectory as used in Figure 6.

the zig-zag structures). Along this sample trajectory, most of
the Δ profile in Figure 6 is negative, indicating that a fiber
is of periodic rotation most of the time along the sample
Lagrangian trajectory but with changing period.

Figure 7 shows the three components of the orientation
vector for a fiber traveling along the same Lagrangian trajec-
tory as discussed in Figure 6. Both 𝑝

1
and 𝑝

2
exhibit nearly

periodic behavior. However, 𝑝
3
approaches 0. The initial

values of 𝑝
1
, 𝑝
2
, and 𝑝

3
are not important; all will exhibit

similar evolution behavior as shown in Figure 7; except that
for a special initial value 𝑝

3
= 1 (and hence 𝑝

1
= 𝑝
2
= 0),

the orientation vector will not change. The fact that 𝑝
3

approaches 0 shows that a fiber is very likely to align to the
shear plane (𝑥-𝑦), insensitive to its initial orientation.
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Figure 8: Orientation distribution at six positions: 1, 2, and 3 are at 𝑥∗ = 228 and correspond to 𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively; 4,
5, and 6 are at 𝑥∗ = 319 and correspond to 𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively. (a) Azimuthal angle 𝜙; (b) polar angle 𝜃.

Figures 6 and 7 show the strain rate and orientation along
the same sample Lagrangian trajectory. Along this selected
trajectory, the magnitude of vorticity 𝜔

12
is relatively high

compared to 𝜖
11

and 𝜖
12
, most of the Δ value is negative,

and hence a fiber mostly rotates periodically, with changing
period predicted by (9). Investigation in a large number of
Lagrangian trajectories shows that Δ is usually larger than
zero, whichmeans that fibers along these trajectories aremost
likely to approach an asymptotic orientation predicted by
(8a) and (8b). However, since the strain rate is not constant
along a trajectory, the asymptotic orientation also changes
correspondingly. Hence, a fiber seems to swing incessantly
when it tries to approach an evolving asymptotic orientation.
Through averaging the orientation over a very large number
of Lagrangian trajectories that pass through the same location
(at various time instants), the orientation distribution at
the location can be obtained. Figure 8 gives the orientation
distribution probability density function (pdf(𝜙) and pdf(𝜃))
at various locations. It is worth pointing out that pdf(𝜙) is
only shown in the range [−0.5𝜋, 0.5𝜋], which has period 𝜋,
since a fiber which orients at 𝜙 or 𝜙 + 𝜋 is indistinguishable
in its distribution, and pdf(𝜃) is given in the range [0, 0.5𝜋],
which has period 0.5𝜋, since the flow field is symmetric with
respect to the plane 𝜃 = 0. Distributions 1, 2, and 3 are at cross-
section 𝑥∗ = 228 and correspond to the mean concentration
𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively. Distributions 4,
5, and 6 are at cross section 𝑥∗ = 319 and also correspond
to 𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively. Through
comparing the corresponding distributions at 𝑥∗ = 228 and
𝑥
∗
= 319, no evident difference is found. It implies that the

fiber orientation distribution (which is uniformly distributed
at the inlet) has already reached a stable state, and it does
not evolve along the streamwise direction any longer in the
turbulent region. In Figure 8(a) the distributions pdf(𝜙) all

have similar shape, a peak, and a valley. Under a simple shear
flow, pdf(𝜙)will have a peak at 𝜙 = 0 [30, 32]. Here, due to the
synthetic effect of vorticity and deformation rate the peak is
in between 0 and 0.5𝜋, which is believed to be closely related
to the steady asymptotic direction predicted by (8a) and (8b).
On the other hand, the valley is believed to be related to the
unsteady asymptotic direction in (8a) and (8b). For pdf(𝜃),
it has a very high peak at 𝜃 = 0.5𝜋, which agrees with the
analysis on the evolution of 𝑝

3
in Figure 7 that a fiber is very

likely to turn to the shear plane (𝜃 = 0) and stays there. In
Figure 8 the distributions 1 and 4 correspond to 𝑐 = 0.3. Both
pdf(𝜙) andpdf(𝜃) are found to be flatter than the distributions
corresponding to 𝑐 = 0.5 or 𝑐 = 0.7. This may be due to
the position corresponding to 𝑐 = 0.3 is located in the slow
stream of the mixing layer, and the magnitude of the strain
rate is relatively smaller than those in the fast stream.

4. Conclusion

The concentration and orientation of suspended fibers in
a mixing layer are investigated numerically. The flow is
assumed to be homogeneous in the spanwise direction, and
the effects of fiber additive on the flow are neglected (very
dilute suspension). A Lagrangian particles scheme is used
to deal with the convection of fibers. With this Lagrangian
particles scheme, fiber concentration and orientation evolve
along Lagrangian trajectories independently. Ensemble aver-
age over a large number of Lagrangian trajectories is used
to obtain statistically steady values of concentration and
orientation. This Lagrangian particles scheme is found to
be very efficient to compute the fiber orientation, which
is discretized by hundreds of points on the unit sphere to
represent the fiber orientation distribution.



Abstract and Applied Analysis 7

Two cases Sc = 1 (diffusive) and Sc = ∞ (nondiffusive)
are investigated for the fiber concentration distribution.
The fine structures of the instantaneous distributions under
these two cases are very different due to the molecular
diffusion. Sharp front of the concentration is observed in the
nondiffusive case. However, there is no obvious difference in
the mean concentration between the two cases. Molecular
diffusion is negligible in determining themean concentration
of fibers in turbulent flows.

For the rotational dynamics of a fiber, the analytical
solution of Zhou et al. [30] is slightly generalized, and the
new solution is presented in a more compact and informative
form. A fiber will rotate periodically if the determinant is
negative, where the determinant is defined with the strain
rate. A fiber will approach an asymptotic orientation if
the determinant is positive. The sign of the determinant is
determined by the relative magnitude of the deformation
rate and the vorticity. The symmetric part of the strain rate
tends to make a fiber align to an asymptotic orientation,
while the antisymmetric part makes a fiber rotate. This
general conclusion helps understand the evolution of the
fiber orientation along Lagrangian trajectories. When a fluid
parcel passes through a region with relatively high shear rate,
fibers followed by the fluid parcel are most likely to rotate
incessantly. On the other hand, in the region of relatively
high extension rate, fibers tend to align to some asymptotic
orientation. Analysis on the orientation distribution shows
that the distribution is stable in the turbulent region, which
does not change along the streamwise direction. It is also
believed that the orientation is not sensitive to the initial
distribution at the inlet of the mixing layer. The pdf of the
azimuthal angle 𝜙 has the shape of a peak and a valley, which
most likely correspond to the steady and unsteady asymptotic
orientations predicted by the analytical solution. The pdf
of the polar angle 𝜃 has a prominent peak at 𝜃 = 0.5𝜋,
which shows that fibers are very likely to align with the shear
plane. This fact has significant implications in predicting the
rheology of fiber suspension flows.
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Numerical simulations were conducted to study the melt flow under the influence of control devices in a T-type two-strand bloom
caster tundish via the open source Computational Fluid Dynamics software OpenFOAM.Three different cases were studied: a bare
tundish, a tundish with two pairs of baffles, and a tundish equipped with a turbulence inhibitor and a pair of baffles. Turbulence
inhibitor and baffles arrangement showed an improvement of the fluid flow characteristics, yielding lower values of dead volume
and higher values of plug flow. With a turbulence inhibitor, the velocity of metal which flows directly toward the tundish floor is
smaller and the turbulence kinetic energy of the melt top surface is lower than the other two arrangements.

1. Introduction

In the steel production route, continuous casting of liquid
steel is the most important process. Basically, the tundish in
the continuous casting is an intermediate vessel between the
ladle and the mold to distribute and supply liquid steel to
different molds at an approximately constant rate (Figure 1).
In recent years, tundish has become more of a continuous
reactor than merely an intermediate buffer to distribute and
supply liquid steel with an approximately constant rate [1].
Various metallurgical operations, such as alloy trimming
of steel, thermal and chemical homogenization, inclusion
separation and floatation, are carried out in steel making
tundishes. The time available for these operations is very
short, and therefore, it is necessary to have a good under-
standing of fluid flow behavior in the tundish. Generally,
two research methods, physical modeling and mathematical
simulation [2–5], are used for the tundish configurations
optimization and flow control devices, such as weirs, dams,
baffles with inclined holes, and turbulence inhibitors (TI),
have been widely used to increase residence times and plug
flow volume of liquid steel [6–8].

Since detailed knowledge of the molten steel flow is a
prerequisite to any effective flow-control optimization, sig-
nificant efforts have been made by researchers to investigate
fluid flow phenomena in tundish systems. Estimation of the

various residence time distribution (RTD) parameters via
the pulse tracer addition technique has been widely used
to study the fluid flow patterns in tundish system [9–11].
In such studies, a tracer (e.g., dye, acid, or salt) is injected
through the incoming water stream and its concentration at
the exit is recorded as a function of time. The plot of the
exit concentration against time is known as the RTD curve.
The RTD of the fluid in a tundish is analyzed to characterize
the flow which, normally, includes the determination of
the extent of mixing (plug and mixed volumes) and the
dead volume in the tundish. And it has been generally
considered that the mathematical model is able to simulate
RTD phenomena realistically [12–14].

In the present, work fluid flow in a 30 t tundish with
different flow control devices was investigated by mathe-
matical models. In each case of study, flow characteristics,
velocity patterns, RTD curves, and inclusion distribution
were obtained. The objective in this work was to study the
effects of the flow control devices on the fluid flowpattern and
RTD curves in a T-type two-strand tundish of a bloom caster.

Figure 2 shows the physical dimensions of this problem.
Design of the baffles and the turbulence inhibitor as well
as the positions of the TI and baffles inside the tundish
is also indicated in Figure 2. Three types of the tundishes
were studied as follows: the bare tundish (Case I), a tundish
with a pair of baffles (Case II), and a tundish with a TI
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Figure 1: Schematic diagram of a continuous casting setup.

3°

4°

479 860 590
150

88

156

11
02

460

500

36
0

380

134

774

29
2

140

260

29

947

11
02

105

46
°

31
°

315

30
25

1076

97
7

12
00

11
4°

Turbulence inhibitor

Baffle

Figure 2: Physical dimensions of the tundish and the control devices.



Abstract and Applied Analysis 3

and a pair of baffles (Case III). The cross-section of slab is
1600mm × 200mm and the casting speed is 1.2m/min, so
the corresponding flow rate is 0.768m3/min.

2. Mathematic Formulation

2.1. Fundamental Equations. The liquid steel flow in the
continuous casting tundish can be considered to be three-
dimensional, Newtonian, and incompressible turbulence. A
layer of slag at the top of liquid is neglected and the melt
surface is assumed to be flat.Themathematical model, which
is used to simulate the melt flow inside the tundish as well as
the chemical mixing process of the tracer injected by a pulse
in the incoming stream,was formulated based on the solution
of the three-dimensional Navier-Stokes equations, the mass
transfer equation, and two equations for the k-𝜀model chosen
to represent turbulent viscosity.

Continuity equation:

𝜕 (𝜌𝑢
𝑗
)

𝜕𝑥
𝑗

= 0. (1)

Momentum equation:

𝜌𝑢
𝑗

𝜕𝑢
𝑖

𝜕𝑥
𝑗

= −
𝜕𝑝

𝜕𝑥
𝑖

+
𝜕

𝜕𝑥
𝑗

(𝜇eff (
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+

𝜕𝑢
𝑗

𝜕𝑥
𝑖

)) + 𝜌𝑔
𝑖
, (2)

where 𝑢
𝑖,𝑗
are the time-averaged fluid velocities in the ith and

jth directions, respectively, 𝜌 is the liquid density, 𝑝 is the
pressure in the fluid, 𝜇eff is the effective turbulent viscosity,
𝑔
𝑖
is the gravitational acceleration in the ith direction, 𝑥

𝑖
,

𝑥
𝑗
are the spatial coordinates in the ith and jth directions,

respectively, and 𝑖, 𝑗 denote the three directions in the global
Cartesian coordinate system.

Effective viscosity 𝜇eff is the sum of laminar viscosity 𝜇

and turbulent viscosity 𝜇
𝑡
:

𝜇eff = 𝜇 + 𝜇
𝑡
= 𝜇 + 𝜌𝑐

𝜇

𝑘
2

𝜀
. (3)

The following equation describes the turbulent kinetic ener-
gy:

𝜌𝑢
𝑗

𝜕𝑘

𝜕𝑥
𝑗

=
𝜕

𝜕𝑥
𝑗

(
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𝜎
𝑘

×
𝜕𝑘

𝜕𝑥
𝑗

) + 𝐺 − 𝜌𝜀. (4)

The following equation describes the dissipation rate of tur-
bulence energy:

𝜌𝑢
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2
)

𝑘
, (5)

where𝐺 is the generation of turbulence kinetic energy caused
by the mean velocity gradients:

𝐺 = 𝜇
𝑡

𝜕𝑢
𝑗

𝜕𝑥
𝑖

(
𝜕𝑢
𝑖
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𝑗

+

𝜕𝑢
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The values for the constants in this 𝑘-𝜀model 𝑐
1
, 𝑐
2
, 𝑐
𝜇
, 𝜎
𝑘
, and

𝜎
𝜀
are 1.44, 1.92, 0.09, 1.00, and 1.30, respectively [15].

Mass transfer equation:

𝜕𝐶

𝜕𝑡
+ 𝑢
𝑖

𝜕𝐶

𝜕𝑥
𝑖

= −𝐷eff
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𝜕𝑥
𝑗

(
𝜕𝐶

𝜕𝑥
𝑗

) . (7)

In the mass transfer equations, C is the tracer concentra-
tion. 𝐷eff = 𝐷

𝑚
+ 𝐷
𝑡
is the effective mass transfer diffusivity,

which is the summation of molecular and turbulent diffusiv-
ities, respectively.The turbulent diffusivityD

𝑡
is related to the

turbulent viscosity 𝜇
𝑡
by

𝐷
𝑡
=

𝜇
𝑡

𝜌
(8)

which means that the turbulent Schmidt number is equal to
one.

2.2. Boundary and Initial Conditions. Due to symmetry, only
a half tundish from the symmetric central-longitudinal plane
was chosen for this mathematical simulation. On the top
surface of the bath and in symmetry planes, the fluxes of
all variables were set equal to zero. No slip conditions were
applied to all solid surfaces of the tundish including baffles,
and interior walls of the tundish and standard wall functions
were applied. The tundish exit is computationally treated
as a plane, at which flow occurs at an ambient pressure.
The vertical velocity profiles of the liquid steel at the inlet
of the tundish were assumed to be uniform through the
cross-sections and the other two velocity components were
assumed to be zero. The values of k and 𝜀 at the inlet
were calculated from the inlet average velocity through the
following equations:

𝑈in =
𝑄

𝐴nozzle
,

𝑘in = 0.01𝑈
2

in,

𝜀in =
2𝑘
2/3

in
𝐷nozzle

.

(9)

The initial condition for (5) is that the tracer concentra-
tion is zero except in the ladle nozzle from the injection point
to the nozzle tip.

2.3. Geometry and Numerical Methods. A control volume-
based technique was used to convert the nonlinear gov-
erning equations to algebraic equations that can be solved
numerically using the 3Dmesh (Figure 3). A dense mesh was
employed near the wall of the tundish. SIMPLE algorithm
[16] was applied for the pressure-velocity coupling. A seg-
regated and implicit solver was used to solve the governing
equations and the second-order accuracy upwind differenc-
ing scheme was adopted to improve the accuracy of the
solution. The open source Computational Fluid Dynamics
software OpenFOAM [17] was used to compute the velocity
and concentration fields. OpenFOAM is an open source code
which is designed for continuummechanics applications and
has attracted much attention recently. It is an object oriented
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Figure 3: 3D computational mesh employed in the present model.

programming based toolbox which makes it sustainable in
terms of reuse and development by users all around theworld.
OpenFOAM gives a flexible framework which combined
almost all the required tools for solving CFD problem. Firstly,
(1)–(4) were solved together with their boundary conditions
until the steady state of the fluid flow was reached. Then
the velocity field was employed to solve (7) for the tracer
concentration under unsteady state conditions. Here, the
tracer was treated as a passive scalar; that is, the presence
of the tracer does not affect the melt flow. A criterion for
convergence was set to be less than 10−5 on all variables
and computations were carried out until the relative sum of
residuals on all variables fell below the stipulated value.

3. Results and Discussion

3.1. Model Validation. In this section, the fluid flow model
was validated against the experimental data [18] in the water
model for a single inlet, single outlet tundish in which the
tracer concentrations with time at the outlet were measured.
The bath height was kept at 260mm in the experiment and
the same height was used for the model accordingly. Figure 4
shows the temporal variation of the tracer concentration
(nondimensional) with nondimensional time and its com-
parison with the experiment. It can be seen that the overall
characteristics of the RTD curve predicted by the present
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Figure 4: Comparison of the predicted and measured RTD curves.

mathematical model match quite well with the experimental
data although some delays existed.

A typical grid independence test (i.e., 51 × 58 × 34,
63 × 79 × 40, and 76 × 96 × 48) of the present numerical
calculationwas evaluated in Figure 5which shows the profiles
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Figure 6: RTD curves for the three cases studied.

of the velocity at various transverse positions in the symmetry
plane of the bare tundish (𝑥 = 0, −1.066 ≤ 𝑦 ≤ 0.324,
𝑧 = 0.1). According to the results, the grid size schemes
of 63 × 79 × 40 and 76 × 96 × 48 have almost the same
velocitymagnitude distribution, which demonstrates that the
grid size scheme of 63 × 79 × 40 is accurate enough for the
present numerical calculation.

3.2. Effects of the Control Devices on the RTD Curve. Figure 6
shows the comparison of the RTD for the three studied cases.
The curve for Case I is characterized by two peak values of
concentrations, one soon after the tracer injection and then
the second. After then, the tracer concentration decreases
continuously with time.This is because a portion of the liquid
moves on the horizontal plane straight towards the exit [19].
The existence of the two peak values of concentration may
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Table 1: RTD parameters in the tundish system.

Tundish configuration 𝑡min (s) 𝑡max (s) 𝑡av (s)
Case I 17 28 288
Case II 65 118.8 259.6
Case III 70 164.2 325.5

suggest that the flow field in the tundish is short circuited
and that is undesirable in tundish fluid system. Thus the
bare tundish is associated with considerable short-circuiting
and large dead volumes, which are potentially detrimental
to the floatation of nonmetallic inclusions. As seen from
Figure 6, the RTD parameters in Case II and III are improved
considerably and only one peak value appeared.

From the RTD curves, minimum residence time, 𝑡min,
peak concentration time, 𝑡max, and mean residence time, 𝑡av,
can be obtained for each case. Considering that there is fluid
exchange between the fluids in the dead zone and in the active
zone, the flow model proposed by Sahai and Emi [20] was
employed in this work to calculate dead volume fraction, the
fractions of plug flow and well-mixed volumes.

Table 1 shows a summary of the flow characteristics
in the tundish with different flow control devices. Each
volume fraction of flow for the studied cases is shown in
Figure 7. It can be seen that the associated dead volume is
significantly high for the bare tundish. The application of
baffles brings down the dead volume from 54% to 24% and it
is further decreased to 16% with the TI+baffle configuration
as is clearly mentioned in Table 1. The better mixing in the
tundish occurs corresponding to higher well-mixed along
with lower dead volume and therefore it is also expected for
better temperature homogenization. At the same time, higher
plug volume with minimum dead region shows the better
inclusion removal in the tundish.

3.3. Analysis of Velocity Fields. Figure 8 shows the predicted
flow fields in one half of the two-strand bare tundish system
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Figure 8: Predicted metal flow field in tundish for all cases: (a) Case I, (b) Case II, and (c) Case III.

which represent the velocity fields in 𝑌𝑍 plane (central
longitudinal vertical plane) at 𝑋 = 0 (inlet stream). Highly
turbulent flow can be clearly seen near the inlet region of
the tundish. The incoming jet hits the tundish bottom with
very high velocity, which is evidently shown in Figure 8(a).
After striking the tundish bottom, the melt partly moves up
along the tundish side walls to the free surface, partly moving
downstream to the exit and the rest recirculating back toward
the incoming jet. The strong velocity fields thus created are
responsible for reversal of flow towards the inlet stream and

generated clockwise recirculatory flow.The impact of themelt
flow on the walls will result in high refractory wear in the
entry zone and the wall refractory wear will increase the
exogenous inclusion count of the steel supplied to the molds.
Figure 8(b) shows the flow fields for Case II, which is very
similar to Case I.With the aid of the TI in Case III, though the
recirculating flow remains, it is directed toward the tundish
floor and the turbulent flow with smaller velocity vectors is
well controlled, as shown in Figure 8(c). At the same time, due
to the high turbulence level in the TI area, it would be the best
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Figure 9: Predicted turbulent kinetic energy field in tundish for all cases: (a) Case I, (b) Case II, and (c) Case III.

region to make any alloy additions in the tundish. And along
with the higher convective and diffusivemixing in this region,
the alloy will get uniformly distributed in the rest of the
tundish, which results in homogeneity during the casting.

Figure 9(a) through Figure 9(c) shows the predicted tur-
bulence kinetic energy contours along the top surface of one
half of the tundish for Cases I, II, and III, respectively. The
high turbulence kinetic energy is associated with the liquid
steel top surface instability and the entrainment of the slag.
As seen from Figure 9(a), the highest value of the turbulence
kinetic energy is found in the region just above the inlet
stream and it is 6.5𝑒−5m2/s2 per kg of the liquid. With a pair
of baffles, the highest value is lowered to 5.0𝑒− 5m2/s2 per kg
of the liquid (Figure 9(b)). For Case III as shown in
Figure 9(c), the turbulence kinetic energy is greatly decreased
and the highest value is 2.8𝑒 − 5m2/s2 per kg of the liquid.

4. Conclusions

A numerical study was conducted to investigate the fluid
flow and residence time distribution of the T-type two-strand
continuous casting tundish with and without flow control
devices.The following conclusions have been drawn from the
present study.

(i) The application of a pair of baffles eliminates the short
circuiting phenomena in the tundish and brings down
the dead volume from 54% to 24%.

(ii) The employment of a TI and a pair of baffles is more
effective to increase the plug fraction than a bare
tundish or a tundish with just a pair of baffles, and
it was found to be an optimum configuration of the
two-strand tundish in the present study.

(iii) With a TI, the velocity vectors directed toward the
tundish floor are smaller and the turbulence kinetic
energy of the liquid steel top surface is lower than the
other two arrangements, which means a more stable
slag-metal interface.
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Thefluid-driven efficiency of themicropumpbased on induced charge electroosmoticwas studied by numerical simulationmethod.
In this paper, we propose to make some improvement against the T-shaped piping design of micropump, and we embed a janus
cylinder in the junction of the T-shaped pipe for the micropump design. We offer different voltage to the inlet of the pipe and carry
out the numerical study of the fluid field induced by the cylinder, and the comparison of the velocity and flux of the outlet in different
voltage as carried out. It is found that there are two symmetrical circulations around the polarizable side of the cylinder. And the
comparison results show that the flow and the velocity of the outlet were increased with the increasing voltage of the entrance.

1. Introduction

The development of microfluidic system raises the funda-
mental question of how to achieve good microfluid trans-
mission and drive results [1]. However, the phenomena of
flow in microfluidic system are very different from that in
the macroscopic system, which is caused by the scale effect
of flow, the electric field force at the liquid/solid interface,
and the coupled physics field of electric field-flow field-
temperature field-ion movement field in the pipeline at the
micron level [2]. The regular volume force (such as gravity
and inertial force) is not generally important, and the electric
field force becomes the leading driver of the liquid flow in
microfluidic system.And the electroosmotic flowhas become
one of the most important ways of fluid transmission in the
microfluidic chip, which does not require the machinery unit
and provide the piston flow cross section.

However, there are some shortcomings for electroosmosi.
For example, (1) strong electric field must be applied to the
whole system to achieve the necessary field strength, gen-
erating Joule heating and raising the solution temperature,
and temperature field will make feedback effect on electric
field and flow field [3–5]. (2) Ac fields, which can reduce
undesirable Faradaic reactions and Joule heating, produce
zero time-averaged flow. Fortunately, these drawbacks do not

apply to inducedcharge electroosmosis (Ramose et al. and
Ajdari). Different from electroosmosis (EOF), ICEOF results
from the interaction of the applied electric field and its own
induced diffuse charge around immobile polarizable surfaces.
The prototypical scenario involves a perfectly conducting
ion-impermeable cylinder which is placed in an electrolyte
solution. When an external electric field is applied, Faraday
currents charge the region adjacent to its surface, thereby gen-
erating a polarized Debye layer. Simultaneously, the particle
itself polarizes. The electric field exerts Lorentz body forces
on its self-inducedDebye cloud, thereby generating a velocity
field [6].

In comparison with EOF, the velocity of ICEOF may
be higher because of its nonlinear dependence on the
applied electric field. Those unique characteristics may lead
to new applications in microfluidics and nanofluidics. Recent
research includes using ICEOF for mixing [7, 8] and flow
regulating [9, 10] and promoting stirring and chaotic advec-
tion [11], the particles in Brownian motion [12], particle-wall
interaction [13] and particle-particle interaction [14], non-
spherical particles [15], and suspension dynamics [16].

In general, the induced charge electroosmosis (ICEOF)
could be used for the design of micro-pump in microfluidic
system. The impetus of this paper is to advance the under-
standing of induced charge electroosmosis (ICEOF) around
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Figure 1: Schematic diagram of the T-shaped microchannel with
Janus cylinder.

Figure 2: The mesh used in numerical simulation.

a Janus cylinder in a confined T-shaped microchannel, and
it is mostly concerned with the design of a super efficient T-
shapedmicro-pump.The relationship between fluid field and
extra electric field is also studied in this research.

2. Mathematical Model and
Boundary Conditions

2.1. Mathematical Model. The design of the T-shaped micro-
pumpwith a Janus cylinder is shown in Figure 1, and the black
side of the cylinder is nonpolarizable and the white side is
polarizable, and Figure 2 is the mesh of the computational
domain.

For the design of the T-shapedmicro-pump, we study the
ICEOF around the Janus cylinder, and the model parameters
are shown in Table 1.

Assuming the flow is incompressible and steady and
driven by the ICEOF, the momentum equation of flow can
be given as

𝜌 (
󳨀⇀
𝑉 ∙ ∇)

󳨀⇀
𝑉 = −∇𝑝 + 𝜇∇

2󳨀⇀
𝑉 +

󳨀⇀
𝐹, (1)

where 󳨀⇀𝑉 is velocity vector, 𝑝 is pressure, and 𝜌 and 𝜇 denote
the density and the viscosity of the solution, respectively.

Based on the property of flow field, two velocity compo-
nents are described by 𝑢 = 𝑢(𝑥, 𝑦), V = V(𝑥, 𝑦). In addition,

the flow is driven by electroosmosis, and then (1) can be
expressed as

𝜌 (
󳨀⇀
𝑉 ⋅ ∇)

󳨀⇀
𝑉 = −∇𝑝 + 𝜇∇

2󳨀⇀
𝑉 + 𝜌

𝑒

󳨀⇀
𝐸, (2)

where 󳨀⇀𝐸 is the electric field, which is given by 󳨀⇀𝐸 = ∇Ψ, Ψ is
the electric potential, and 𝜌

𝑒
is the charge density.The relation

between the net charge density 𝜌
𝑒
and the electrical potential

Ψ is shown as follows

𝜕
2
Ψ

𝜕𝑥2
+
𝜕
2
Ψ

𝜕𝑦2
= −

𝜌
𝑒

𝜀𝜀
0

, (3)

where 𝜀 is the dielectric constant of the electrolyte solution
and 𝜀
0
is the permittivity of vacuum.

In general, ion concentration is affected by both the
distribution of the externally applied potential, 𝜑, and the
distribution of the potential, 𝜓, associated with the electrical
double layer (with surface potential, 𝜁). The overall electric
potential, Ψ, is composed of both 𝜑 and 𝜓. However, in
general, the EDL potential distribution 𝜓 is only a small
fraction of Ψ. Since the Debye length (𝜆

𝑑
) is typically

very small compared to the microchannel height, the ion
distribution is influenced primarily by the 𝜁 potential. It is
reasonable to assume that the electric potential Ψ is given
by the linear superposition of the electrical double layer
potential and the externally applied potential, that is, Ψ =

𝜓 + 𝜑. Therefore, (3) can be represented as

𝜕
2
𝜓

𝜕𝑥2
+
𝜕
2
𝜓

𝜕𝑦2
= −

𝜌
𝑒

𝜀𝜀
0

,

∇
2
𝜙 = 0,

(4)

where,

𝜌
𝑒
= −2𝑛

∞
𝑧𝑒 sinh(

𝑧𝑒𝜓

𝑘
𝑏
𝑇
) , (5)

where 𝑧 is the valence of ions, 𝑒 is the fundamental electric
charge, 𝑛

∞
is the ionic number concentration in the bulk

solution, 𝑇 is the absolute temperature of the solution, and
𝑘
𝑏
is Boltzmann’s constant. Taking (5) into (2) results in

𝜌 (
󳨀⇀
𝑉 ⋅ ∇)

󳨀⇀
𝑉=−∇𝑝 + 𝜇∇

2󳨀⇀
𝑉 + 2𝑛

∞
𝑧𝑒 sinh(

𝑧𝑒𝜓

𝑘
𝑏
𝑇
)∇ (𝜓 + 𝜙).

(6)

2.2. Boundary Conditions. For fluid flow, atmospheric pres-
sure is specified at the inlet and outlet, and there is no slip
boundary condition on the wall. For external potential, a
constant value for potential is specified at the inlet and outlet,
and its normal-differential value on the wall is zero. For EDL
potential, its normal-differential value on the inlet and outlet
is zero. Now, we will discuss the surface electric potential in
detail.

Standard electric flow contains the interaction between
the external electric potential and the fixed electric dou-
ble layer. Thus, the electroosmotic flow velocity is linearly
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Figure 3: Schematic diagrams of induced zeta potential distribution on the polarizable particle’s surface. 𝐸
0
= 42.76KV/m, 𝑟 = 20 𝜇m.

Table 1: Model parameters.

Parameter Value Description
𝑊
1

100𝜇m The distance between inlet-1 and inlet-2
𝑊
2

20𝜇m The width of the microchannel
𝑊
3

10𝜇m The distance between cylinder center and side wall
𝐿 50𝜇m The length of vertical pipe of T-shaped microchannel
𝐷 10𝜇m The diameter of the Janus cylinder

dependent with the external electric field strength. However,
when the solid surface is polarizable and conductive, the
interrelation between the two will be very different. In this
case, the induced zeta potential 𝜁

𝑖
is dependent with the

local electric field strength 𝐸 and differs depending on the
location of the conductive surface. In the early study, an easy
correction method was proposed to achieve the numerical
simulation of the zeta potential of the conductive surface
induced by the local external electric potential 𝜑

𝑒
. The

induced zeta potential 𝜁
𝑖
is shown as

𝜁
𝑖
= −𝜙
𝑒
+ 𝜙
𝑐
, (7)

where

𝜙
𝑐
=

∫

𝑆

𝜙
𝑒
𝑑𝐴

𝐴

(8)

is an electric potential constant revision. Obviously, now, the
induced zeta potential 𝜁

𝑖
is no longer a constant but will

change with the local external electric potential.
We choose the control-volume-basedmethod to solve the

equations, and a specific discrete method is used to get the
second-order accuracy. Firstly, we solve (7) and (4) to get the

zeta potential and the external electric potential distribution
in microchannel. Then, we solve (6) to get the flow field
situation. In addition, in numerical situation, we should
certificate the grid-independent to ensure the statistical
independence of the calculations. As shown in Figure 2, the
difference caused by the furthermesh optimization above this
number of grid is less than 1%.

2.3. Validation. Evaluating the induced zeta potential around
conducting surface is critical to calculate ICEOF, and for 2D
circular cylinder, our numerical schemehas been validated by
the comparison with the analytical formulation that has been
derived (Bazant & Squires [6]) as shown in

𝜁 = 2𝐸
0
𝑟 cos𝛽, (9)

where 𝑟 is the radius of cylinder, 𝐸
0
is the averaged electric

field around cylinder, and 𝛽 is the angle as shown in Figure 3.
The results show a goodmatching between the numerical and
the analytical formulations.

3. Results and Discussion

The present simulation assumes that the T-shaped
microchannel is made of silica glass. And it is assumed
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Figure 4: The flow diagram around the Janus cylinder when 𝐸 =

2𝑒5V/m.

that water-liquid is used as the working fluid and its physical
properties are given by 𝜀 = 80, 𝜀

0
= 8.85𝑒 − 12CV−1m−1,

𝜇 = 1.003𝑒 − 3 kgm−1s−1, 𝜌 = 998.2 kg/m3. All the numerical
solutions presented in the following have been carefully
studied such that grid-independent solutions are obtained.

In this investigation, the microchannel has an external
electric potential of 𝜙out = 0V, while 𝜙in is changeable from
10V to 50V; accordingly, the electric field strength varies
from 𝐸 = 2𝑒5V/m to 𝐸 = 1𝑒6V/m.The zeta potential at the
microchannel wall is zero, and that of the conductive surface
can be obtained from (3).

As previously stated, when the conducting cylinders are
immersed in the electric field, a nonuniform distribution of
zeta potential will be induced on the conducting surfaces,
causing a varying driving force of the electroosmotic flow.
Consequently, the slipping velocity on the conducting sur-
faces changes with position, resulting in a nonuniform flow
field.Due to the oppositely charged surfaces, flow circulations
are generated near the conductive side of the embedded
cylinder.

Here, we offer the flow diagram around the Janus cylinder
when 𝐸 = 2𝑒5V/m and 𝐸 = 1𝑒6V/m, as shown in
Figures 4 and 5, respectively. We can see that consistent
with the theoretical analysis, there exist 2 symmetrical flow
circulations around the conductive side of the cylinder. In
addition, we can find that the flow circulations will become
smaller significantly and approach to the pipe wall but still be
symmetrical.

For better study of the relationship between external
electric field strength and the T-shaped pump driven efficacy,
we make numerical simulation when 𝜙in = 10V, 20V, 30V,
40V, and 50V, respectively. As shown in Figure 6, at the
outlet of the microchannel, the velocity gradient increases
with the increasing of the electrical field strength, which
means that the driven efficacy of the T-shaped micro-pump
increases with the increasing of the electrical field. For
better description of the driven efficiency, we figure out the
average velocity magnitude 𝑉 at the outlet and offer the
corresponding flux 𝑄 = 𝑉 ∗ 𝑊

3
. As shown in Figure 7, we

Figure 5: The flow diagram around the Janus cylinder when 𝐸 =

2𝑒5V/m.
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Figure 6: The velocity magnitude profiles under different applied
electric field.

can quantitatively see that the variation range of the T-shaped
micro-pump flux is from 12.41mL/s to 348mL/s.

In summary, the T-shaped micro pump embedded a
Janus cylinder, and we propose in this paper that good
fluid-driven efficiency can be obtained under small external
electric potential, which is of practical value.

4. Conclusions

In this paper, we offer a design of T-shaped micro-pump
that embedded a Janus cylinder. We carry out the numerical
study of the fluid field induced by the cylinder and make
comparison between the velocity magnitude and flux of the
outlet in different voltage. It is found that there are two
symmetrical flow circulations around the polarizable side
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Figure 7: The flux at the outlet of the microchannel under different
applied electric field.

of the Janus cylinder, and they can be used to improve
the driven efficiency of the pump. The dependence of the
driven efficiency on the electric field is also predicted. The
conclusions above can be utilized for the optimization of the
design of microfluidic devices.
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We introduced a direct and effective approach to obtain the exact analytical solution for the nanoparticles-water flow over an
isothermal stretching sheet with the effect of the slip model. In particular, we examined and compared the effect of the existence
of five metallic and nonmetallic nanoparticles, namely, Silver, Copper, Alumina, Titania, and Silicon Dioxide, in a base of water.
The most interesting physical parameters were then discussed in the presence of no-slip model, first order slip, and second order
slip parameters. It is found that, with no-slip effect, the present exact solutions are in a very good agreement with the previous
published results. On the other hand, with the effect of the slip model, increase in the nanoparticle volume friction decreases
the velocity for the high density of nanoparticles, increases it for the low density of them, and increases the temperature for all
investigated nanoparticles. Further, increase in the wall mass decreases the velocity and temperature; however, it increases the
local skin friction. Furthermore, increase in the slips slows down the velocity, increases the temperature with an impressive effect
in the injection case, and decreases the local skin friction and the reduced Nusselt number. It was also demonstrated that, as the
nanoparticle becomes heavier, this results in increase and decrease in reduced skin friction coefficient and reducedNusselt number,
respectively, with significant effect in the presence of the second slip. Finally, Silver is the suitable nanoparticle if slowing down the
velocity and increasing the temperature are needed; Silicon Dioxide is the appropriate nanoparticle if different behavior is to be
considered.

1. Introduction

Because of its numerous applications, the problemof flow and
heat transfer in boundary-layer over a stretching surface has
attracted many researchers. Examples of these applications
are metallurgical processes, such as drawing of continuous
filaments through quiescent fluids, annealing and tinning
of copper wires, glass blowing, manufacturing of plastic
and rubber sheets, crystal growing, and continuous cooling
and fiber spinning [1]. Further, there are wide range of
applications in many engineering processes, such as polymer
extrusion, wire drawing, continuous casting, manufacturing

of foods and paper, glass fiber production, stretching of
plastic films, and many others. In particular, during the
manufacture of these sheets, the melt issues from a slit and
is subsequently stretched to achieve the desired thickness.
Hence, the final product with the desired characteristics
strictly depends upon the stretching rate, the rate of cooling
in the process, and the process of stretching [2]. Therefore,
the choice of a proper cooling/heating liquid is essential as it
has a direct impact on the rate of heat transfer.

The pioneer studies of stretching sheets were done by
Sakiadis [3, 4] for a moving, inextensible sheet and later
extended by Crane [5] to a fluid flow over a linearly stretched



2 Abstract and Applied Analysis

sheet. Following the classical boundary-layer theory, many
properties were later investigated using the no-slip condition
on the wall. However, when the fluid is particulate such
as emulsions, suspensions, foams, and polymer solutions,
the no-slip condition is inadequate [6]. In such cases,
investigations show that the no-slip condition is no longer
valid, specially at the micro- and nanoscale, and instead,
a certain degree of tangential slip must be allowed [7]. In
particular, the fluid flowbehaviour deviates significantly from
the traditional no-slip flow.Therefore, in the recent years, the
interest has been given to the study of this type of flow and
some useful results have been recently introduced by many
authors, as mentioned in the next paragraphs.

Convective heat transfer in nanofluids is a topic of major
contemporary interest both in applied sciences and engineer-
ing, where a very good review was presented by Wang and
Mujumdar [8, 9] and Saidur et al. [10]. Choi [11] may be the
first author to introduce the word “nanofluid” that represents
the fluid in which nanoscale particles (diameter < 50 nm)
are suspended in the base fluid. With the rapid advances
in nanotechnology, many inexpensive combinations of liq-
uid/particles are now available. The base fluids used are usu-
ally water, ethylene glycol, toluene, and oil. Recent research
on nanofluids showed that nanoparticles changed the fluid
characteristics because thermal conductivity of these parti-
cles was higher than convectional fluids. Nanoparticles are of
great scientific interest as they are effectively a bridge between
bulk materials and atomic or molecular structures. The
common nanoparticles that have been used are Aluminum,
Copper, Silver, and Titanium or their oxides. Experimental
studies by Eastman et al. [12] and Xuan and Li [13] showed
that even with the small volumetric fraction of nanoparticles
(usually<5%), the thermal conductivity of the base liquid can
be enhanced by 10–20%.The enhanced thermal conductivity
of nanofluids together with the thermal conductivity of
the base liquid and turbulence induced by their motion
contributes to a remarkable improvement in the convective
heat transfer coefficient. Further,Majumder et al. [14] showed
experimentally that nanofluidic flow usually exhibits partial
slip against the solid surface, which can be characterized
by the so-called slip length (around 3.4–68 micrometers
for different liquids). Therefore, the no-slip condition is no
longer valid for fluid flows at the micro- and nanoscale.

In addition to the above discussion about the slip model,
Noghrehabadi et al. [15] discussed the effect of partial slip
boundary condition on the flow and heat transfer of nanoflu-
ids past stretching sheet at constant wall temperature to
extend the work done by Khan and Pop [16]. Nandeppanavar
et al. [17] have tabulated the literature of the first order
slip; consequently Fang et al. [18] only considered the effect
of the second order slip on the flow on a shrinking sheet.
Hence, the paper by Nandeppanavar et al. [17] may be the
first work to investigate the analysis of second order slip
flow and heat transfer over a stretching sheet. Recently,
Turkyilmazoglu [19] has analytically studied the heat and
mass transfer of magnetohydrodynamic second order slip
flow. He has mentioned that there exists a unique solution
for any combination of the considered parameters if the
stretching sheet is considered. Very recently, Roşca and Pop

[20] investigated the steady flow and heat transfer over a
vertical permeable stretching/shrinking sheet with a second
order slip being investigated using a second order slip flow
model. This very important study showed clearly that the
second order slip flow model is necessary to predict the flow
characteristics accurately.

To show the enhancement of using nanofluids in compar-
ison with pure base fluid, Yacob et al. [21] compared numer-
ically the thermal enhancement of two types of nanoflu-
ids, namely, Ag-water and Cu-water, over an impermeable
stretching sheet. In addition, with the effect of magnetic
field, Hamad [22] studied boundary layer and heat transfer
of nanofluids over impermeable isothermal stretching sheet
for the metallic and metallic oxide nanoparticles. Further,
Noghrehabadi et al. [23] examined theoretically the flow
and heat transfer of two types of nanofluids, namely, Silver
water and Silicon Dioxide water. They solved the governing
equations by applying a combination of a symbolic power
series andPadé approximationmethod.Very recently, Vajrav-
elu et al. [24] studied the effect of variable viscosity on the
flow and heat transfer of viscous Ag-water and Cu-water
nanofluids.They indicated that nanoparticle volume fraction
is to increase the heat transfer and hence enhance the thermal
boundary-layer thickness.

The aim of this work is to introduce a direct and effective
approach to analytically obtain the exact solution for the flow
over an isothermal stretching sheet with effect of no-slip,
first order slip parameter, and second order slip parameter.
In addition, it is to examine the effect of the existence of
the most five common nanoparticles, namely, Silver, Copper,
Alumina, Titania, and Silicon Dioxide, in a base of water.
Further, we discuss the interested physical parameters, that
is, the velocity, temperature, reduced skin friction coefficient,
and reduced Nusselt number. The structure of the paper is
as follows. Description of the problem, basic equations, and
similarity solution are presented in Section 2. In Section 3,
second, third, and fourth degree algebraic equations, includ-
ing the investigated parameters, are governed on deducing
the exact solution of the flow with no, first order, and second
order slips, respectively. In addition, exact analytical solution
of the temperature equation, represented in a simple gamma
function, is proposed in the same section. This research is to
be considered as an extension to the work done by Hamad
[22] and Noghrehabadi et al. [23], besides the comparison
with Wang [25] and Reddy Gorla and Sidawi [26] in the
special cases.

2. Governing System of Equations

2.1. Description of the Problem. Consider a two-dimensional
incompressible, laminar, and steady boundary-layer flow past
an isothermal stretching sheet coinciding with the plane 𝑦 =
0, with the flow being confined to 𝑦 > 0. This sheet is in a
water-based nanofluids, which can contain different volume
fractions of nanofluids, such as Silver (Ag), Silicon Dioxide
(SiO
2
), Copper (Cu), Alumina (Al

2
O
3
), and Titania (TiO

2
).

In addition, we assume that the [15, 17]
(i) sheet surface has temperature at the wall 𝑇

𝑤
and at

ambient fluid 𝑇
∞
, where 𝑇

𝑤
> 𝑇
∞
;
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(ii) base fluid (i.e., water) and the nanoparticles are in a
thermal equilibrium;

(iii) fluid outside the boundary layer is quiescent and
stretching sheet velocity is linear;

(iv) velocity of the sheet is 𝑈
𝑤
(𝑥) = 𝑐𝑥, where 𝑐 > 0 is the

stretching constant and 𝑥 is the coordinate measured
along the stretching surface.

The thermophysical properties of the base fluid and nanopar-
ticles are given in Table 1.

2.2. Basic Equations. Under the above assumptions, the gov-
erning boundary-layer equations of the considered nanofluid
(continuity, momentum, and energy) can be written, respec-
tively, in the dimensional form as

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦

= 0, (1)

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
=

𝜇
𝑛𝑓

𝜌
𝑛𝑓

𝜕
2
𝑢

𝜕𝑦2
, (2)

𝑢
𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
=

𝑘
𝑛𝑓

(𝜌𝐶
𝑝
)
𝑛𝑓

𝜕
2
𝑇

𝜕𝑦2
, (3)

where (𝑥, 𝑦) denotes the Cartesian coordinates along the
sheet and normal to it, 𝑢 and V are the velocity components
of the nanofluid in the 𝑥- and 𝑦-directions, respectively, 𝑝
is the pressure of the nanofluid, 𝑇 is the temperature of
the nanofluid, 𝐶

𝑝
is the specific heat at constant pressure,

𝜌
𝑛𝑓

is the effective density, 𝜇
𝑛𝑓

is the effective dynamic
viscosity, (𝜌𝐶

𝑝
)
𝑛𝑓

is the heat capacitance, and 𝑘
𝑛𝑓

is the
thermal conductivity, where (∼)

𝑛𝑓
denotes the nanofluid and

is defined as follows [28, 29]:

𝜌
𝑛𝑓
= (1 − 𝜙) 𝜌

𝑓
+ 𝜙𝜌
𝑠
, (4a)

𝜇
𝑛𝑓
=

𝜇
𝑓

(1 − 𝜙)
2.5
, (4b)

(𝜌𝐶
𝑝
)
𝑛𝑓
= (1 − 𝜙) (𝜌𝐶

𝑝
)
𝑓
+ 𝜙(𝜌𝐶

𝑝
)
𝑠
, (4c)

𝑘
𝑛𝑓
=

(𝑘
𝑠
+ 2𝑘
𝑓
) − 2𝜙 (𝑘

𝑓
− 𝑘
𝑠
)

(𝑘
𝑠
+ 2𝑘
𝑓
) + 𝜙 (𝑘

𝑓
− 𝑘
𝑠
)

𝑘
𝑓
, (4d)

where 𝜙 is the solid volume fraction, 𝜇
𝑓
is the dynamic

viscosity, 𝜌
𝑓
and 𝜌

𝑠
are the densities, (𝜌𝐶

𝑝
)
𝑓
and (𝜌𝐶

𝑝
)
𝑠

are the heat capacitances, and 𝑘
𝑓
and 𝑘

𝑠
are the thermal

conductivities, where (∼)
𝑓
and (∼)

𝑠
denote the basic fluid

and solid fractions, respectively. The appropriate boundary
conditions of (1)–(3) are as follows:

𝑢 = 𝑈
𝑤
(𝑥) + 𝑈slip, V = V

𝑤
(𝑥) ,

𝑇 = 𝑇
𝑤
(𝑥) at 𝑦 = 0,

𝑢 = V = 0, 𝑇 󳨀→ 𝑇
∞
, as 𝑦 󳨀→ ∞,

(5)

where 𝑈slip is the slip velocity introduced in the next section.

2.3. Slip Model. In the present work, we consider Wu’s slip
model [30] (valid for arbitrary Knudsen number, 𝐾

𝑛
) which

is given by

𝑈slip =
2

3
(
3 − 𝛼
𝑚
𝑙
3

𝛼
𝑚

−
3

2

1 − 𝑙
2

𝐾
𝑛

)𝜆
𝑚

𝜕𝑢

𝜕𝑦

−
1

4
[𝑙
4
+

2

𝐾2
𝑛

(1 − 𝑙
2
)] 𝜆
2

𝑚

𝜕
2
𝑢

𝜕𝑦2
= 𝐴

𝜕𝑢

𝜕𝑦
+ 𝐵

𝜕
2
𝑢

𝜕𝑦2
,

(6)

where 𝑙 = min[1/𝐾
𝑛
, 1] and 0 ≤ 𝛼

𝑚
≤ 1 and 𝜆

𝑚
are the

momentum accommodation and molecular mean free path,
respectively. Based on the definition of 𝑙, it is noticed that for
any given value of 𝐾

𝑛
, we have 0 ≤ 𝑙 ≤ 1. Therefore, the

molecular mean free path is always positive. Therefore, we
know that𝐵 < 0, and hence the second term in the right hand
side of (6) is a positive number.

2.4. Similarity Solution. The dimensionless variables can be
introduced as follows [22, 31]:

𝜂 = 𝑦√
𝑐

V
, 𝑓 (𝜂) =

𝜓

𝑥√𝑐V
, 𝜃 (𝜂) =

𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

, (7)

where 𝜂 is the similarity variable, 𝑓(𝜂) is the dimensionless
stream function, and 𝜃(𝜂) is the dimensionless temperature.
Further,𝜓 is the stream functionwhich is defined in the usual
way as 𝑢 = 𝜕𝜓/𝜕𝑦 and V = −𝜕𝜓/𝜕𝑥 to identically satisfy (1).
From (7), we therefore obtain

𝑢 = 𝑐𝑥𝑓
󸀠
(𝜂) , V = −√𝑐V𝑓 (𝜂) , (8)

where the prime denotes differentiation with respect to 𝜂.
Hence, the mass transfer velocity at the wall becomes

V
𝑤
= −√𝑐V𝑓 (0) . (9)

Now on substituting (7) and (8) into (2) and (3), we obtain
the following nonlinear ordinary differential equations:

1

(1 − 𝜙)
2.5

[(1 − 𝜙) + (𝜙𝜌
𝑠
/𝜌
𝑓
)]

𝑓
󸀠󸀠󸀠
(𝜂)

+ 𝑓 (𝜂) 𝑓
󸀠󸀠
(𝜂) − 𝑓

󸀠2
(𝜂) = 0,

1

𝑃𝑟

𝑘
𝑛𝑓
/𝑘
𝑓

(1 − 𝜙) + 𝜙(𝜌𝐶
𝑝
)
𝑠
/(𝜌𝐶
𝑝
)
𝑓

𝜃
󸀠󸀠
(𝜂) + 𝑓 (𝜂) 𝜃

󸀠
(𝜂) = 0,

(10)

where𝑃𝑟 = V(𝜌𝐶
𝑝
)
𝑓
/𝑘
𝑓
is the Prandtl number.Theboundary

conditions (5) then turn into

𝑓 (0) = 𝑠, 𝑓
󸀠
(0) = 1 + 𝛿

1
𝑓
󸀠󸀠
(0) + 𝛿

2
𝑓
󸀠󸀠󸀠
(0) ,

𝜃 (0) = 1, 𝑓
󸀠
(𝜂) 󳨀→ 0,

𝜃 (𝜂) 󳨀→ 0 as 𝜂 󳨀→ ∞,

(11)

where 𝑠 (= −V
𝑤
/√𝑐V) is the wall mass transfer parameter,

which refers to the suction and injection when 𝑠 > 0 and
𝑠 < 0, respectively, and 0 < 𝛿

1
(= 𝐴√𝑐/V) and 0 > 𝛿

2
(=

𝐵𝑐/V) are the first order slip and second order slip parameters,
respectively.
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Table 1: Thermophysical properties of the base fluid and nanoparticles [27].

Physical properties Fluid phase (water) Ag Cu TiO2 Al2O3 SiO2

𝐶
𝑝
(J/kgK) 4179 235 385 686.2 765 765

𝜌 (kg/m3) 997.1 10500 8933 4250 3970 3970
𝑘 (W/mK) 0.613 429 401 8.9538 40 36

2.5. The Quantities of Practical Interest. In this type of study,
it should be noted that the quantities of practical interest are
the skin friction coefficient 𝐶

𝑓
and local Nusselt number Nu,

which are defined as

𝐶
𝑓
=

𝜏
𝑤

𝜌
𝑓
𝑈2
𝑤

, Nu =
𝑥𝑞
𝑤

𝑘
𝑓
(𝑇
𝑤
− 𝑇
∞
)
, (12)

where 𝜏
𝑤
and 𝑞
𝑤
are the skin friction, or the shear stress, and

heat flux from the surface, respectively, which are given by

𝜏
𝑤
= −𝜇
𝑛𝑓
(
𝜕𝑢

𝜕𝑦
)

𝑦=0

, 𝑞
𝑤
= −𝑘
𝑛𝑓
(
𝜕𝑇

𝜕𝑦
)

𝑦=0

. (13)

Therefore, on using (7) and (8) in (12) and (13), the reduced
skin friction coefficient and reduced Nusselt number [22, 31]
are

𝐶
𝑓
(Re
𝑥
)
1/2

=
1

(1 − 𝜙)
2.5
𝑓
󸀠󸀠
(0) ,

Nu(Re
𝑥
)
−1/2

= −

𝑘
𝑛𝑓

𝑘
𝑓

𝜃
󸀠
(0) ,

(14)

where Re
𝑥
= 𝑐𝑥
2
/V is the local Reynolds number based on

the stretching velocity.

3. Exact Solution

Equations (2) and (3) can be rewritten as

𝜆𝑓
󸀠󸀠󸀠
+ 𝑓𝑓
󸀠󸀠
− 𝑓
󸀠2
= 0, (15)

𝜏𝜃
󸀠󸀠
+ 𝑓𝜃
󸀠
= 0, (16)

where

𝜆 =
(1 − 𝜙)

−2.5

1 − 𝜙 + 𝜙 (𝜌
𝑠
/𝜌
𝑓
)

,

𝜏 =

((𝑘
𝑠
+ 2𝑘
𝑓
)−2𝜙 (𝑘

𝑓
− 𝑘
𝑠
))/((𝑘

𝑠
+ 2𝑘
𝑓
)+𝜙 (𝑘

𝑓
− 𝑘
𝑠
))

𝑃𝑟 (1 − 𝜙 + 𝜙 ((𝜌𝐶
𝑝
)
𝑠
/(𝜌𝐶
𝑝
)
𝑓
))

,

(17)

which is exactly solved, subject to the boundary conditions
(11) in the next sections.

3.1. Exact Solution of the Flow: 𝑓(𝜂). Following the spirit
analysis as introduced by Wang [32] and, Aly and Ebaid
[33, 34], the exact solution of 𝑓equation can be deduced as
follows:

𝑓 (𝜂) = 𝑎 + 𝑏𝑒
−𝛽𝜂

, where 𝑎 = 𝜆𝛽, 𝑏 = 𝑠 − 𝑎, (18)

which satisfies (15) and the first condition in (11). Further,
from the second condition in (11), the parameter 𝛽 satisfies
algebraic equations for three models discussed in the next
three subsections.

3.1.1. No Slips: 𝛿
1
=𝛿
2
=0. When there is no slip between the

base fluid and nanoparticles, that is, 𝛿
1
= 𝛿
2
= 0, then 𝛽

satisfies the following second degree algebraic equation:

𝜆𝛽
2
− 𝑠𝛽 − 1 = 0 󳨐⇒ 𝛽 =

𝑠 ± √𝑠2 + 4𝜆

2𝜆
. (19)

This expressions ismore easier than those given in [17–19, 23].

3.1.2. Effect of the First Slip Only: 𝛿
2
=0. If the first order slip

is only to be considered, then 𝛽 has to achieve the following
third degree algebraic equation:

𝛿
1
𝜆𝛽
3
+ (𝜆 − 𝛿

1
𝑠) 𝛽
2
− 𝑠𝛽 − 1 = 0. (20)

By solving (20) and taking into account Descartes’ rule of
signs and from the fact that 𝛿

1
> 0 and 𝜆 > 0, there is only

one positive root; see Van Gorder et al. [35].

3.1.3. Effect of the Second Slip: 𝛿
1
̸= 0, 𝛿
2
̸= 0. In this case, 𝛽

satisfies the following fourth degree algebraic equation:

𝛿
2
𝜆𝛽
4
− (𝛿
1
𝜆 + 𝛿
2
𝑠) 𝛽
3
+ (𝛿
1
𝑠 − 𝜆) 𝛽

2
+ 𝑠𝛽 + 1 = 0. (21)

Following the analysis in [19], the corresponding four roots
of (21) are given by

𝛽 =

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

1

4𝛿
2
𝜆
[𝛿
1
+ 𝛿
2
𝜆(𝑠 ∓ √12𝛽3 −

𝛽
4

√𝛽
6

− 4𝛽
6
)

−2𝛿
2
𝜆√𝛽
6
] ,

1

4𝛿
2
𝜆
[𝛿
1
+ 𝛿
2
𝜆(𝑠 ∓ √12𝛽3 +

𝛽
4

√𝛽
6

− 4𝛽
6
)

+2𝛿
2
𝜆√𝛽
6
] ,

(22)
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with the following dummy variables:

𝛽
1
= 27𝑠
2
𝛿
2
𝜆 − 72𝛿

2
𝜆 (𝛿
1
𝑠 − 𝜆) + 2(𝛿

1
𝑠 − 𝜆)

3

+ 9𝑠 (𝛿
1
𝑠 − 𝜆) (𝛿

1
𝜆 + 𝛿
2
𝑠) + 27(𝛿

1
𝜆 + 𝛿
2
𝑠)
2

,

𝛽
2
=

3
√2

3𝛿
2
𝜆
[12𝛿
2
𝜆 + (𝛿

1
𝑠 − 𝜆)

2

+ 3𝑠 (𝛿
1
𝜆 + 𝛿
2
𝑠)] ,

𝛽
3
= −

2 (𝛿
1
𝑠 − 𝜆)

3𝛿
2
𝜆

+
(𝛿
1
𝜆 + 𝛿
2
𝑠)
2

4𝛿
2

2
𝜆2

,

𝛽
4
= −

8𝑠

𝛿
2
𝜆
+
4 (𝛿
1
𝑠 − 𝜆) (−𝛿

1
𝜆 − 𝛿
2
𝑠)

𝛿
2

2
𝜆2

−
(−𝛿
1
𝜆 − 𝛿
2
𝑠)
3

𝛿
3

2
𝜆3

,

𝛽
5
= 𝛽
1
+ √𝛽
2

1
− 54𝛿

2

2
𝜆2𝛽
2

2
,

𝛽
6
= 𝛽
3
+

𝛽
2

3
√𝛽
5

+

3
√𝛽
5

3
√32𝛿
2
𝜆

.

(23)

3.1.4. Important Note. Solutions exist for all values of 𝑠
(suction and injection), 𝛿

1
≥ 0 (first slip), and 𝛿

2
≤ 0

(second slip). It should be noted that any number of decimal
places can be therefore obtained in a direct way on applying
any software package, like Mathematica, Maple, or Matlab.
Mathematica 6 has been used in the current analysis, where
the positive root of (19), (20), and (21) gives the physically
meaningful and therefore this is only the root to be consid-
ered. In addition, Turkyilmazoglu [19] has recently proved
that there exists a unique solution for any combination of the
considered parameters if the stretching sheet is considered
(which was also spotted in [17]). Therefore, on obtaining the
roots, skin friction coefficient of the physical significance is
easily given by

𝑓
󸀠󸀠
(0) = 𝛽

2
(𝑠 − 𝜆𝛽) . (24)

In an indirect and difficult analysis, this was the same result
obtained by Fang et al. [18] and Nandeppanavar et al. [17], in
the special case when 𝜆 = 1 (i.e., when 𝜙 = 0).

3.2. Exact Solution of the Heat Transfer: 𝜃(𝜂). Substituting
(18) into (16), we obtain

𝜃
󸀠󸀠

𝜃󸀠
= −

1

𝜏
(𝑎 + 𝑏𝑒

−𝛽𝜂
) ; (25)

then by the integration of this equation, we get

𝜃
󸀠
(𝜂) = 𝜃

󸀠
(0) exp [− 𝑏

𝜏𝛽
(1 − 𝑒

−𝛽𝜂
) −

𝑎

𝜏
𝜂] . (26)

Further, on integrating the last equation again, we obtain

𝜃 (𝜂) = 1 + 𝜃
󸀠
(0) 𝑒
−(𝑏/𝜏𝛽)

Ω(𝜂) , (27)

where 𝜃(0) = 1, and

Ω(𝜂) = ∫

𝜂

0

𝑒
−(𝑎/𝜏)𝜎

× 𝑒
(𝑏/𝜏𝛽)𝑒

−𝛽𝜎

𝑑𝜎. (28)

On supposing that

𝑧 = −
𝑏

𝜏𝛽
𝑒
−𝛽𝜎

, (29)

then (28) becomes

Ω =
1

𝛽
(−

𝜏𝛽

𝑏
)

𝑎/𝜏𝛽

∫

−𝑏/𝜏𝛽

(−𝑏/𝜏𝛽)𝑒
−𝜏𝛽

𝑧
(𝑎/𝜏𝛽)−1

𝑒
−𝑧
𝑑𝑧. (30)

On substituting (30) into (27), taking into account the
definition of Γ function, we obtain

𝜃 (𝜂) = 1 + 𝜃
󸀠
(0) 𝑒
−𝑏/𝜏𝛽 1

𝛽
(−

𝜏𝛽

𝑏
)

𝑎/𝜏𝛽

Γ(
𝑎

𝜏𝛽
,
−𝑏

𝜏𝛽
𝑒
−𝜏𝛽
,
−𝑏

𝜏𝛽
) .

(31)

Applying the condition 𝜃(∞) = 0, we get

𝜃
󸀠
(0) 𝑒
−𝑏/𝜏𝛽 1

𝛽
(−

𝜏𝛽

𝑏
)

𝑎/𝜏𝛽

=
−1

Γ (𝑎/𝜏𝛽, 0, −𝑏/𝜏𝛽)
. (32)

Hence with the help of Γ properties, (31) is given in the final
exact form as

𝜃 (𝜂) =

Γ (𝜆/𝜏, 0, ((𝜆𝛽 − 𝑠) /𝜏𝛽) 𝑒
−𝛽𝜂

)

Γ (𝜆/𝜏, 0, (𝜆𝛽 − 𝑠) /𝜏𝛽)
, (33)

where Γ here is the generalized incomplete gamma function,
and 𝜆, 𝜏, and𝛽 are well defined in (17) and (19), respectively. It
should be noted here that 𝜃󸀠(0), which is the importance term
asmentioned in Section 2, can be easily formulated from (32)
and also by differentiating (33), as

𝜃
󸀠
(0) = −

𝛽𝑒
((𝑠−𝜆𝛽)/𝜏𝛽)

((𝜆𝛽 − 𝑠) /𝜏𝛽)
(𝜆/𝜏)

Γ ((𝜆/𝜏) , 0, (𝜆𝛽 − 𝑠) /𝜏𝛽)
. (34)

4. Results and Discussion

In this paper, the flow and heat equations of nanofluids over
an isothermal stretching sheet with effect of the slip model
were analytically solved. Exact solutions were obtained for
stream function, in the presence of first order and second
order slips, and temperature, in a direct and very effective way
using gamma function. In addition, five metallic and non-
metallic nanoparticles have been considered in this analysis,
namely, Silver (Ag), Copper (Cu), Alumina (Al

2
O
3
), Titania

(TiO
2
), and Silicon Dioxide (SiO

2
). Comparison with the

published results via four tables was presented considering
the no-slip model. The two types of slip model are then
considered; these cases are to be discussed in the next sections
with the effect of the various physical parameters, where the
Prandtl number of the base fluid (water) is kept at 6.2.

4.1. Case 1: When 𝛿
1
= 𝛿
2
= 0. In the case of 𝛿

1
= 𝛿
2
=

0, that is, no-slip model effects, (24) and (32) with (19)
have been programmed. The results of −𝑓󸀠󸀠(0) and −𝜃

󸀠
(0)

for variation of 𝑃𝑟, different nanoparticles, and Ag-water
nanoparticles are compared with Hamad [22], Wang [25],
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Table 2: Comparison of results for −𝜃󸀠(0) when 𝜙 = 0, 𝑠 = 0, and 𝛿
1
= 𝛿
2
= 0.

−𝜃
󸀠
(0)

Pr Present results Hamad [22] Wang [25] Reddy Gorla and Sidawi [26]
0.07 0.0655625 0.06556 0.0656 0.0656
0.02 0.1690886 0.16909 0.1691 0.1691
0.70 0.4539162 0.45391 0.4539 0.4539
2.00 0.9113577 0.91136 0.9114 0.9114
7.00 1.8954033 1.89540 1.8954 1.8905
20.0 3.3539041 3.35390 3.3539 3.3539
70.0 6.4621995 6.46220 6.4622 6.4622

Table 3: Comparison between the results of −𝑓󸀠󸀠(0) and −𝜃󸀠(0) for different nanoparticles when Pr = 6.2, 𝑠 = 0, and 𝛿
1
= 𝛿
2
= 0.

𝜙
Cu-water Ag-water Al2O3-water TiO2-water

Present results Hamad [22] Present results Hamad [22] Present results Hamad [22] Present results Hamad [22]
−𝑓
󸀠󸀠
(0)

0.05 1.1089199 1.10892 1.1396597 1.13966 1.0053774 1.00538 1.0115012 1.01150
0.10 1.1747460 1.17475 1.2250681 1.22507 0.9987720 0.99877 1.0095168 1.00952
0.15 1.2088623 1.20886 1.2721529 1.27215 0.9818445 0.98185 0.9960305 0.99603
0.20 1.2180438 1.21804 1.2897880 1.28979 0.9559188 0.95592 0.9725895 0.97259

−𝜃
󸀠
(0)

0.05 1.5989923 1.59899 1.5813558 1.58136 1.6224626 1.62246 1.6379138 1.63791
0.10 1.4520723 1.45207 1.4205773 1.42058 1.4916979 1.49170 1.5195895 1.51959
0.15 1.3246459 1.32465 1.2819255 1.28193 1.3754278 1.37543 1.4135927 1.41359
0.20 1.2128974 1.21290 1.1609900 1.16100 1.2711811 1.27118 1.3180499 1.31805

Table 4: Comparison between the results of −𝑓󸀠󸀠(0) and −𝜃󸀠(0) for Ag-water nanoparticles when Pr = 6.2 and 𝛿
1
= 𝛿
2
= 0.

𝜙
𝑠 = −0.5 𝑠 = 0.5 𝑠 = 3 𝑠 = 10

Present results Noghrehabadi
et al. [23]

Present results Noghrehabadi
et al. [23]

Present results Noghrehabadi
et al. [23]

Present results Noghrehabadi
et al. [23]

−𝑓
󸀠󸀠
(0)

0.00 0.7807764 0.78078 1.2807764 1.28078 3.3027756 3.30278 10.099020 10.09902
0.05 0.8603080 0.86031 1.5097201 1.50972 4.2053250 4.20532 13.087484 13.08748
0.10 0.9060379 0.90604 1.6564339 1.65643 4.8141236 4.81412 15.107262 15.10726
0.15 0.9303482 0.93035 1.7395348 1.73953 5.1682565 5.16826 16.283121 16.28312
0.20 0.9392930 0.93929 1.7710695 1.77107 5.3042838 5.30428 16.734937 16.73494

−𝜃
󸀠
(0)

0.00 0.3341463 0.33415 4.1338760 4.13375 18.877000 18.87699 62.085783 62.08581
0.05 0.3374948 0.33750 3.5686858 3.56861 16.003319 16.00329 52.565657 52.56564
0.10 0.3412474 0.34125 3.0990601 3.00902 13.637179 13.63716 44.731160 44.73115
0.15 0.3441451 0.34415 2.7036778 2.70365 11.662391 11.66238 38.194788 38.19476
0.20 0.3458192 0.34582 2.3673248 2.36732 9.995764 9.99572 32.679360 32.67934

Reddy Gorla and Sidawi [26], and Noghrehabadi et al. [23]
in Tables 2, 3, and 4, respectively. These tables indicate an
excellent agreement between the present exact solutions and
the previous results but in a simple and direct analysis rather
than the long analytical presentation in [22] and even the
difficult combination of a symbolic power series and Padé
approximation method in [23].

4.2. Case 2: When 𝛿
1
̸= 0 and 𝛿

2
=0. Figures 1 and 2 show the

effect of the volume friction 𝜙 of Cu-water and Al
2
O
3
-water

nanoparticles, respectively, on velocity distribution 𝑓󸀠(𝜂) at
different values of 𝑠 when 𝑃𝑟 = 6.2 and 𝛿

1
= 1. These figures

indicate that the increase in nanoparticle volume friction
decreases the velocity magnitude in the case of Cu-water
nanofluid; however it increases the velocity magnitude in
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Figure 1: Effect of the volume friction 𝜙 of Cu-water nanoparticles
on velocity distribution 𝑓󸀠(𝜂) at different values of 𝑠 when 𝑃𝑟 = 6.2,
𝛿
1
= 1, and 𝛿

2
= 0.

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

f
󳰀 (
𝜂
)

𝜂

Al2O3-water
𝜙 = 0.2

𝜙 = 0.1

s = −0.5

s = 5

s = 3

𝜙 = 0.05

Figure 2: Effect of the volume friction 𝜙 of Al
2
O
3
-water nanopar-

ticles on velocity distribution 𝑓
󸀠
(𝜂) at different values of 𝑠 when

𝑃𝑟 = 6.2, 𝛿
1
= 1, and 𝛿

2
= 0.

the case of Al
2
O
3
-water nanofluid. The difference between

their behaviour is because of the difference between density
ratios of the proposed nanoparticles to the density of water,
which affects the momentum equation. Further, in both
cases of Cu-water and Al

2
O
3
-water nanofluids, the increase

in 𝑠 decreases the magnitude of 𝑓󸀠(𝜂) and hydrodynamic
boundary layer. It should be mentioned here that the other
nanoparticles have been also examined and it was found that
Ag-water nanofluid behaves like Cu-water nanofluid, while
TiO
2
-water and SiO

2
-water nanofluids behave as Al

2
O
3
-

water nanofluid. However, the velocity distribution 𝑓󸀠(𝜂) of
these nanoparticles is as follows: 𝑓󸀠|Ag < 𝑓

󸀠
|Cu < 𝑓

󸀠
|TiO
2

<

𝑓
󸀠
|Al
2
O
3

≅ 𝑓
󸀠
|SiO
2

. This is presented in Figure 3, which shows
a comparison of the variation of the velocity profiles for all

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

f
󳰀 (
𝜂
)

𝜂

Cu
TiO2

Al2O3

SiO2

Ag

Figure 3: Comparing the variation of velocity distribution 𝑓󸀠(𝜂) for
the investigated nanoparticles when 𝑃𝑟 = 6.2, 𝛿

1
= 0.5, 𝛿

2
= 0,

𝑠 = 0.5, and 𝜙 = 0.1.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0
𝜃
(𝜂
)

𝜂

Cu-water
𝜙 = 0.05 𝜙 = 0.2

𝜙 = 0.1

s = −0.5

s = 0.5

s = 3

Figure 4: Effect of the volume friction 𝜙 of Cu-water nanoparticles
on temperature distribution 𝜃(𝜂) at different values of 𝑠 when 𝑃𝑟 =
6.2, 𝛿

1
= 1, and 𝛿

2
= 0.

the studied nanoparticles at specific values of the physical
parameters.

The effect of the volume friction 𝜙 of Cu-water nanopar-
ticles on temperature distribution 𝜃(𝜂) at different values of
𝑠 when 𝑃𝑟 = 6.2 and 𝛿

1
= 1 is plotted in Figure 4. This

figure indicates that the increase in 𝜙 increases 𝜃(𝜂) and
hence the thermal boundary-layer thickness. This result is
compatible with those obtained very recently by Vajravelu
et al. [24] and also agrees with the physical behaviour as
addition of 𝜙 increases the thermal conductivity of the pure
fluid and this results in increasing the thermal diffusion in
the boundary layer. Further, increase in 𝑠 decreases 𝜃(𝜂) as
well as the thermal boundary-layer thickness. All of the other
investigated nanoparticles behave like Cu-water nanofluid
with 𝜃|Ag > 𝜃|Cu > 𝜃|Al

2
O
3

≅ 𝜃|SiO
2

> 𝜃|TiO
2

, as illustrated
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0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0
𝜃
(𝜂
)

𝜂

Cu
TiO2

Al2O3

SiO2

Ag

Figure 5: Comparing the variation of temperature distribution 𝜃(𝜂)
for the investigated nanoparticles when 𝑃𝑟 = 6.2, 𝛿

1
= 0.5, 𝛿

2
= 0,

𝑠 = 0.5, and 𝜙 = 0.1.
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s = −0.5

s = 0.5s = 3

Figure 6: Effect of the first slip 𝛿
1
on velocity distribution 𝑓󸀠(𝜂) at

different values of 𝑠 for Cu-water nanoparticles when 𝑃𝑟 = 6.2, 𝜙 =
0.1, and 𝛿

2
= 0.

in Figure 5, which presents a comparison of the variation of
temperature distribution for all the studied nanoparticles at
specific values of the physical parameters.

Figures 6 and 7 present the effect of the first slip 𝛿
1
on

the velocity 𝑓󸀠 and temperature 𝜃 distributions at different
values of 𝑠 for Cu-water nanoparticles when 𝑃𝑟 = 6.2, and
𝜙 = 0.1, respectively. Figure 6 shows that the increase in
𝛿
1
significantly decreases the velocity near 𝜂 = 0 and then

slightly increases it as 𝜂 → 𝜂
∞
. However, the increase

in 𝛿
1
increases significantly the temperature and thermal

boundary-layer thickness in the injection case, that is, when
𝑠 < 0, with a little increasing in the suction case when 𝑠 > 0,
and no effect when 𝑠 ≫ 1. From these figures, one can also
notice that increase in 𝑠 decreases 𝑓󸀠(𝜂) and 𝜃(𝜂), as well
as the hydrodynamic and thermal boundary-layer thickness,
respectively.Thismeans that, although the increase in the first
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Figure 7: Effect of the first slip 𝛿
1
on temperature distribution 𝜃(𝜂)

at different values of 𝑠 for Cu-water nanoparticles when 𝑃𝑟 = 6.2,
𝜙 = 0.1, and 𝛿

2
= 0.

slip slows down the velocity, it increases the temperature with
impressive effect in the injection case.

The most important parameters of hydrodynamic and
thermal boundary layer, namely, reduced skin friction coef-
ficient and reduced Nusselt number, have been indicated
in Figures 8–11. In particular, Figures 8 and 9 present the
effect of the first slip 𝛿

1
and 𝑠, respectively, for reduced skin

friction coefficient as a function of 0 ≤ 𝜙 ≤ 0.2 for Cu-
water nanofluid, as a representative for the behaviour of all
investigated nanoparticles, when 𝑃𝑟 = 6.2 and 𝑠 = 0.5,
while Figures 10 and 11 show also the effect of 𝛿

1
and 𝑠 on

reducedNusselt number at the same specific values. Figures 8
and 9 show that increase in 𝛿

1
and 𝑠 decreases and increases,

respectively, the local skin friction. With significant effects,
the same result is also observed in Figures 10 and 11 for the
reduced Nusselt number.

Comparison of the variation of reduced skin friction coef-
ficient and reduced Nusselt number for the studied nanopar-
ticles, at selected values of the physical parameters, is plotted
in Figures 12 and 13. These figures show that the reduced
skin friction coefficient (RSFC) of these nanoparticles is as
follows: RSFC|Ag > RSFC|Cu > RSFC|TiO

2

> RSFC|Al
2
O
3

≅ RSFC|SiO
2

. However, vise versa behaviour is noticed in
Figure 13.The difference between these types of nanoparticles
is because the difference between their densities. Observing
Table 1 and (15)–(17), as the nanoparticle becomes heavy,
this results in increase and decrease in reduced skin friction
coefficient and reduced Nusselt number, respectively.

4.3. Case 3: When 𝛿
1
̸= 0, and 𝛿

2
̸= 0. In the presence of

second order slip, as shown in Figures 14, 15, 16, and 17,
behaviour of the velocity and temperature is similar to those
in 1, 3, 4, and 5, respectively. However, for Ag-water and
Cu-water nanoparticles, a decreasing difference is noticed on
comparing Figures 15 and 3. This means that the second slip
affects significantly the heaviest nanoparticles. Figures 18 and
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19 compare the variation of reduced skin friction coefficient
and reduced Nusselt number, respectively, for the studied
nanoparticles, at selected values of the physical parameters.
These figures show that the RSFC of these nanoparticles is as
follows: RSFC|Ag < RSFC|Cu < RSFC|TiO

2

< RSFC|Al
2
O
3

≅

RSFC|SiO
2

. This is vise versa behaviour comparing with

Figure 12 with significant change in the Ag-water and Cu-
water nanoparticles, as stated before. Although the same
behaviour is observed in Figures 13 and 19, the nanoparticles
with highest density are more affected in the presence of the
second slip. The results of this section demonstrate clearly
that the second order slip flow model is necessary to predict
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the flow characteristics accurately. This agrees with the result
obtained recently by Roşca and Pop [20].

5. Conclusion

The governing equations for nanofluids flow over an isother-
mal stretching sheet with the effect of the slip model were
examined in this paper. In a direct and very effective manner,
we analytically obtained the exact solutions for the flow
and temperature equations. Further, five nanoparticles were
considered and compared in the present analysis. Therefore,
the most interesting physical parameters were discussed in
the presence of no slip, first order slip, and second order slip,
parameters.

With no-slip effect, the present exact solutions are in a
very good agreement with the results presented in [22, 23, 25,
26]. Some of the interesting results of applying the slip model
are as follows:

(1) increase in the nanoparticle volume friction decreases
the velocity of Cu/Ag-water nanoparticles, increases
it for Al

2
O
3
/TiO
2
/SiO
2
-water nanoparticles, and

increases the temperature, and hence the thermal
boundary-layer thickness, for the whole five investi-
gated nanoparticles;

(2) increase in the wall mass decreases the velocity and
temperature, as well as the thermal and hydrody-
namic boundary-layer thickness, and increases the
local skin friction;

(3) increase in the slips slows down the velocity, increases
the temperature with an impressive effect in the
injection case, and decreases the local skin friction
and the reduced Nusselt number, with significate
effects;

(4) as the nanoparticle becomes heavier, this results in
increase and decrease in the reduced skin friction
coefficient and reduced Nusselt number, respectively;

(5) the second order slip parameter affects considerably
the flow characteristics, specially for the heaviest
nanoparticles.

The final note is for practical and industrial applications;
Silver is the suitable nanoparticle if slowing down the velocity
and increasing the temperature are needed; on the other
hand, Silicon Dioxide is the appropriate nanoparticle if vise
versa behaviour is to be considered.
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The boundary layer flow of a nanofluid past a stretching/shrinking sheet with a convective boundary condition is studied.
Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the local Nusselt
number and the local Sherwood number as well as the temperature and concentration profiles for some values of the convective
parameter, stretching/shrinking parameter, Brownian motion parameter, and thermophoresis parameter. The results indicate that
the local Nusselt number is consistently higher for higher values of the convective parameter. However, the local Nusselt number
decreases with increasing values of the Brownian motion parameter as well as the thermophoresis parameter. In addition, the local
Sherwood number increases with increasing Brownian motion parameter and decreases with increasing convective parameter and
thermophoresis parameter.

1. Introduction

The boundary layer flow over a stretching sheet is impor-
tant in applications such as extrusion, wire drawing, metal
spinning, and hot rolling [1]. Crane [2] pioneered the study
of stretching sheet by presenting an exact analytical solution
for the steady two-dimensional stretching of a plate in
a quiescent fluid. Since then, many authors have consid-
ered various aspects of this problem. Wang [3] extended
Crane’s study to include both suction and slip effects at the
boundary. Sahoo [4] considered non-Newtonian fluid in his
research.

Recently, the study on the flow over a shrinking sheet
has garnered considerable attention. Miklavčič and Wang
[5] initiated the study of flow over a shrinking sheet. They
found that the vorticity is not confined within a boundary
layer, and a steady flow cannot exist without exerting ade-
quate suction at the boundary. Ever since, numerous studies

emerge, investigating different aspects of this problem. Fang
et al. [6] used a second-order slip flow in their research.
Bhattacharyya et al. [7] analyzed the effects of partial slip
on laminar boundary layer stagnation-point flow and heat
transfer towards a shrinking sheet.

Inclusion of nanoparticles into the base fluid such as
water is known to increase the heat transfer capability of
the fluid. Choi and Eastman [8] discovered that the addition
of less than 1% of nanoparticles into the base fluid doubles
the heat conductivity of the fluid. Other characteristics of
nanofluid include minimal clogging of tube and long term
stability as compared to other fluids containing micro- and
millimeter sized particles (see [9–13]). Twomodels have been
constantly used by researchers to study the behaviour of
nanofluid, namely, the Tiwari-Das model [14] and Buon-
giorno model [15]. Contrary to the Tiwari-Das model [14]
that focuses on volumetric fraction of nanoparticles, Buon-
giorno model [15] pays more attention to Brownian motion
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and thermophoresis effects. Furthermore, instead of focusing
on the thermophysical properties of the nanofluid, Buon-
giorno model shifted the focus to explaining the further
heat transfer enhancement observed in convective situations.
Buongiorno model was used in many recent papers, for
example, Nield and Kuznetsov [16–18], Kuznetsov and Neild
[19, 20], Khan and Pop [21], Bachok et al. [22, 23], and Khan
and Aziz [24], among others.

In the boundary layer flow and heat transfer analysis,
constant surface temperature and heat flux are customarily
used. However, there are times when heat transfer at the sur-
face relies on the surface temperature, as what mostly occurs
in heat exchangers. In this situation, convective boundary
condition is used to replace the condition of prescribed
surface temperature or prescribed surface heat flux. Aziz [25]
employed the convective boundary condition in his research
to study the heat transfer characteristics for the Blasius flow.
Ishak [26] introduced the effects of suction and injection
at the boundary. Makinde and Aziz [27] investigated the
boundary layer flowof a nanofluid past a stretching sheetwith
a convective surface boundary condition.

Motivated by the above-mentioned investigations and
applications, we extend the study of Makinde and Aziz [27]
to include both stretching and shrinking cases, in addition to
the suction effect. Although there aremany studies conducted
on the shrinking or stretching sheet, little work has been done
to include both the stretching and shrinking cases. For the
shrinking case which was not considered by Makinde and
Aziz [27], the solutions do not exist since vorticity could
not be confined within the boundary layer. However, with
an added suction effect to confine the vorticity, the solution
may exist. The dependency of the local Nusselt number and
the local Sherwood number on four parameters, namely,
the stretching/shrinking, convective, Brownian motion, and
thermophoresis parameters, is the main focus of the present
investigation. Numerical solutions are presented graphically
and in tabular forms to show the effects of these parameters
on the local Nusselt number and the local Sherwood num-
ber.

2. Mathematical Formulation

Consider a steady, two-dimensional (𝑥, 𝑦) boundary layer
flow of a viscous and incompressible fluid over a stretch-
ing/shrinking sheet immersed in a nanofluid. It is assumed
that the stretching/shrinking velocity is in the form 𝑈

𝑤
=

𝑎𝑥, where 𝑎 is a positive constant and 𝑥 is the coordinate
measured along the stretching/shrinking surface. It is also
assumed that the constant mass flux velocity is V

0
with V

0
<

0 for suction and V
0
> 0 for injection or withdrawal of

the fluid. The nanofluid is confined to y > 0, where 𝑦 is
the coordinate measured normal to the stretching/shrinking
surface, as shown in Figure 1. It is further assumed that
the bottom surface of the sheet is heated by convection
from a hot fluid at temperature 𝑇

𝑓
which provides a heat

transfer coefficient ℎ.The surface temperature𝑇
𝑤
is the result

of a convective heating process characterized by the hot
fluid.

The governing equations for the steady conservation of
mass, momentum, thermal energy, and nanoparticle volume
fraction equations can be written as [15–24]
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(5)

where 𝑢 and 𝜐 are the velocity components along the 𝑥-
and 𝑦-axis, respectively, 𝑃 is the fluid pressure, 𝑇 is the
fluid temperature, 𝛼 is the thermal diffusivity, ] is the
kinematic viscosity,𝐷

𝐵
is the Brownian diffusion coefficient,

𝐷
𝑇
is the thermophoresis diffusion coefficient, and 𝜑 is the

nanoparticle volume fraction. Furthermore, 𝜏 = (𝜌𝑐)
𝑝
/(𝜌𝑐)
𝑓

is the ratio between the effective heat capacity of the fluidwith
𝜌
𝑓
and 𝜌
𝑝
being the density of the fluid and the density of the

particles, respectively, and 𝑐
𝑓
and 𝑐
𝑝
denote the specific heat

of the fluid and the particle at constant pressure, respectively.
The subscript ∞ represents the values at large values of y
(outside the boundary layer). Details of the derivation of (4)
and (5) are given in the papers by Buongiorno [15] and Nield
and Kuznetsov [17].

Equations (1)–(5) are subjected to the following boundary
conditions [25–27]:

𝜐 = 𝜐
0
, 𝑢 = 𝜎 𝑈

𝑤
(𝑥) ,

−𝑘
𝜕𝑇

𝜕𝑦
= ℎ (𝑇

𝑓
− 𝑇) , 𝜑 = 𝜑

𝑤
at 𝑦 = 0,

𝑢 󳨀→ 0, 𝜐 󳨀→ 0, 𝑇 󳨀→ 𝑇
∞
,

𝜑 󳨀→ 𝜑
∞

as 𝑦 󳨀→ ∞,

(6)

where 𝜎 is a constant with 𝜎 > 0 for stretching and 𝜎 <
0 for shrinking and 𝑘 is the thermal conductivity of the
base fluid. The subscript 𝑤 denotes the values at the solid
surface. The governing equations (1)–(5) subjected to the
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Figure 1: Geometry of the problem for (a) stretching and (b) shrinking sheets.

boundary conditions (6) can be expressed in a simpler form
by introducing the following transformation:

𝜓 = (𝑈
𝑤
]𝑥)1/2𝑓 (𝜂) , 𝜂 = (

𝑈
𝑤

]𝑥
)

1/2

𝑦,

𝜃 (𝜂) =
𝑇 − 𝑇
∞

𝑇
𝑓
− 𝑇
∞

, 𝛽 (𝜂) =
𝜑 − 𝜑
∞

𝜑
𝑤
− 𝜑
∞

,

(7)

where 𝜂 is the similarity variable and𝜓 is the stream function
defined as 𝑢 = 𝜕𝜓/𝜕𝑦 and 𝜐 = −𝜕𝜓/𝜕𝑥, which identically
satisfies (1). By employing the boundary layer approximations
and the similarity variables (7), (2)–(5) reduce to the follow-
ing nonlinear ordinary differential equations:

𝑓
󸀠󸀠󸀠
+ 𝑓𝑓
󸀠󸀠
− 𝑓
󸀠2
= 0, (8)

1

Pr
𝜃
󸀠󸀠
+ 𝑓𝜃
󸀠
+ Nb𝛽󸀠𝜃󸀠 +Nt𝜃󸀠2 = 0, (9)

𝛽
󸀠󸀠
+

Nt
Nb
𝜃
󸀠󸀠
+ Le𝑓𝛽󸀠 = 0, (10)

and the boundary conditions (6) become

𝑓 (0) = 𝑆, 𝑓
󸀠
(0) = 𝜎,

𝜃
󸀠
(0) = −𝛾 [1 − 𝜃 (0)] , 𝛽 (0) = 1,

(11)

𝑓
󸀠
= 0, 𝜃 = 0, 𝛽 = 0 as 𝜂 󳨀→ ∞, (12)

where primes denote differentiation with respect to 𝜂. Fur-
ther, Pr is the Prandtl number, Nb is the Brownian motion
parameter, Nt is the thermophoresis parameter, Le is the
Lewis number, 𝑆 is the mass flux parameter with 𝑆 > 0 for

suction and 𝑆 < 0 for injection, and 𝛾 is the Biot number
(convective parameter), which are defined as

Pr = ]
𝛼
, Nb =

𝜏𝐷
𝐵
(𝜑
𝑤
− 𝜑
∞
)

]
,

Nt =
𝜏𝐷
𝑇
(𝑇
𝑤
− 𝑇
∞
)

]𝑇
∞

,

Le = ]
𝐷
𝐵

, 𝑆 = −
V
0

√𝑎]
, 𝛾 =

ℎ

𝑘
√
]
𝑎
.

(13)

When Nb = Nt = 0, the present problem reduces to a regular
viscous fluid, and the nanoparticle volume fraction equation
(10) becomes ill-posed and is of no physical significance.

The physical quantities of interest are the skin friction
coefficient 𝐶

𝑓
, the local Nusselt number Nu

𝑥
, and the local

Sherwood number Sh
𝑥
which are defined as

𝐶
𝑓
=
𝜏
𝑤

𝜌𝑈2
𝑤

, Nu
𝑥
=

𝑥𝑞
𝑤

𝑘 (𝑇
𝑓
− 𝑇
∞
)

,

Sh
𝑥
=

𝑥𝑞
𝑚

𝐷
𝐵
(𝜑
𝑤
− 𝜑
∞
)
,

(14)

where 𝜏
𝑤
, 𝑞
𝑤
, and 𝑞

𝑚
are the surface shear stress, the heat, and

mass fluxes, respectively, which are given by [23]

𝜏
𝑤
= 𝜇(

𝜕𝑢

𝜕𝑦
)

𝑦=0

, 𝑞
𝑤
= −𝑘(

𝜕𝑇

𝜕𝑦
)

𝑦=0

,

𝑞
𝑚
= −𝐷
𝐵
(
𝜕𝜑

𝜕𝑦
)

𝑦=0

.

(15)

Using the similarity variables (7), we obtain

𝐶
𝑓
Re1/2
𝑥
= 𝑓
󸀠󸀠
(0) , Nu

𝑥
Re−1/2
𝑥
= −𝜃
󸀠
(0) ,

Sh
𝑥
Re−1/2
𝑥
= −𝛽
󸀠
(0) ,

(16)

where Re
𝑥
= 𝑈
𝑤
𝑥/] is the local Reynolds number.
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3. Results and Discussion

The set of ordinary differential equations (8)–(10) with the
boundary conditions (11) and (12) were solved numerically
using a shooting method. In this method, the dual solutions
are obtained by setting different initial guesses for the values
of 𝑓󸀠󸀠(0), −𝜃󸀠(0), and −𝛽󸀠(0), where all profiles satisfy the
far field boundary conditions (12) asymptotically but with
different boundary layer thicknesses. The problem for a
regular (viscous) fluid involves five parameters: Prandtl num-
ber, stretching/shrinking, suction/injection, and convective
parameters. In this study, three parameters are added, namely,
the Lewis number, Brownian motion, and thermophoresis
parameters. The asymptotic boundary conditions (12) at 𝜂 =
∞ are replaced by 𝜂 = 15 as customary in the boundary layer
analysis.This choice is adequate for the velocity, temperature,
and concentration profiles to reach the far field boundary
conditions asymptotically. We note that when 𝜎 = 1, the
closed-form solution for (8) was reported by P. S. Gupta and
A. S. Gupta [28] and Ishak et al. [29], which is given by𝑓(𝜂) =
𝜁 − (1/𝜁)𝑒

−𝜁𝜂, where 𝜁 − (1/𝜁) = 𝑆 and 𝜁 > 0. Consequently,
this expression leads to 𝑓󸀠󸀠(𝜂) = −𝜁𝑒−𝜁𝜂. Numerical results
for 𝑓󸀠󸀠(0) are compared with the analytical results obtained
and shown in Table 1 where they are found to be in excellent
agreement, cementing the validity of the numerical results in
this study. From Table 1, it is obvious that the skin friction
coefficient 𝑓󸀠󸀠(0) decreases with the increasing of 𝜎.

Variations with 𝜎 of the local Nusselt number Nu
𝑥
Re−1/2
𝑥

(heat transfer rates) and the local Sherwood number
Sh
𝑥
Re−1/2
𝑥

(concentration rates) for different values of param-
eters are presented in Figures 2–7. As can be seen in these
figures, there are more than one solution obtained for a fixed
value of 𝜎. When 𝜎 is equal to a certain value 𝜎 = 𝜎

𝑐
where

𝜎
𝑐
(<0) is the critical value of 𝜎, there is only one solution,

and when 𝜎 < 𝜎
𝑐
, there is no solution. From these figures, it

is seen that the values of |𝜎
𝑐
| remain unchanged for different

values of 𝛾, Nt, and Nb. This is clear from (8)–(12) where
the thermal field does not affect the flow field. However,
based on our computations, we found that by increasing the
mass flux parameter 𝑆, the range of solutions widens where
𝜎
𝑐
= −1.0000, −1.5625, and −2.2500 for 𝑆 = 2, 2.5, and 3,

respectively.
From Figures 2–7, the local Nusselt number and the

local Sherwood number for a nanofluid change with the
variations of 𝛾, Nt, andNb. It can be seen that the surface heat
transfer from Figures 2–4 generally decreases as 𝜎 increases.
From these figures, it is shown that the local Nusselt number
(Figure 2) is consistently higher for a nanofluid with higher
values of convective parameter 𝛾. As 𝛾 is directly proportional
to the heat transfer coefficient ℎ, it is inversely proportional
to the thermal resistance [25]. Thus, as 𝛾 increases, the heat
resistance decreases and hence increases the heat transfer
rate at the surface. Figures 3 and 4 show the effects of
thermophoresis and Brownian motion parameter (Nt and
Nb, resp.) on the local Nusselt number. The figures show that
by increasing both parameters, the heat transfer rate at the
surface reduces. To further test this observation, we construct
Tables 2(a) and 3(a)where we compute variations of the local

Table 1: Values of 𝑓󸀠󸀠(0) for different values of 𝑆.

𝑆 𝜎
𝑓
󸀠󸀠
(0)

P. S. Gupta and A. S. Gupta
[28]

Ishak et al. [29]
Present study

2

−0.2 — 0.3789
−0.1 — 0.1949
0.1 — −0.2049
0.5 — −1.1124
1 −2.4142 −2.4142

2.5

−0.2 — 0.4834
−0.1 — 0.2489
0.1 — −0.2539
0.5 — −1.3431
1 −2.8508 −2.8508

3

−0.2 — 0.5864
−0.1 — 0.2966
0.1 — −0.3033
0.5 — −1.5792
1 −3.3028 −3.3028

Nusselt number with Nt and Nb, and Nt and 𝛾. Again, we can
see that the surface heat transfer is lower for higher values
of Nt and Nb. These results concur with previous results
obtained by Nield and Kuznetsov (see [16–18]). Increasing
Brownian motion and thermophoresis parameters causes the
thermal boundary layer to thicken, thus decreasing the local
Nusselt number. This phenomenon is explained by Rasekh
et al. [30] where they claimed that the increased Brownian
motion impacts a larger extent of the fluid and the ther-
mophoresis diffusion penetrates deeper into the fluid. On the
other hand, to further attest to the results shown in Figure 2,
Table 3(a) shows that for every value of Nt, the local Nusselt
number increases with the increment of 𝛾. From Figures 3
and 4 and Table 2(a), it is interesting to note that while the
local Nusselt number changes by approximately 0.4% when
Nb is increased, the local Nusselt number decreases by only
0.006%whenNt is increased. From this observation, it seems
that Brownian motion parameter Nb affects the surface heat
transfer more than the thermophoresis parameter Nt does.

As opposed to the local Nusselt number, the local
Sherwood number increases with increasing 𝜎. However,
Figure 5 shows that increasing 𝛾 does not favour mass
exchange efficiency, and thus the local Sherwood number
drops. Table 3(b) supports this claim where we compute the
variations of the local Sherwood number with Nt and 𝛾.
Figures 6 and 7 depict the variations of mass transfer rates
with different Nt andNb. Similar to the local Nusselt number,
increasing the thermophoresis parameter Nt will cause the
local Sherwood number to drop. Nevertheless, the latter
increases with increasing Nb. These observations are also
shown in Table 2(b). From the table, it is noted that although
the increment of Nb increases the local Sherwood number,
higher values of Nt lower the mass transfer rates. Through
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Table 2: (a) Variation of the local Nusselt number Nu
𝑥
with Nb and Nt and (b) variation of the local Sherwood number Sh

𝑥
with Nb and Nt

for 𝛾 = 0.1, Le = 2, and Pr = 6.8.

(a)

Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4 Nb = 0.5
Nt Nu

𝑥
Nt Nu

𝑥
Nt Nu

𝑥
Nt Nu

𝑥
Nt Nu

𝑥

0.1 0.099140 0.1 0.098973 0.1 0.098752 0.1 0.098453 0.1 0.098043
0.2 0.099139 0.2 0.098972 0.2 0.098750 0.2 0.098451 0.2 0.098039
0.3 0.099138 0.3 0.098971 0.3 0.098749 0.3 0.098448 0.3 0.098035
0.4 0.099137 0.4 0.098970 0.4 0.098747 0.4 0.098446 0.4 0.098031
0.5 0.099136 0.5 0.098969 0.5 0.098746 0.5 0.098443 0.5 0.098026

(b)

Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4 Nb = 0.5
Nt Sh

𝑥
Nt Sh

𝑥
Nt Sh

𝑥
Nt Sh

𝑥
Nt Sh

𝑥

0.1 3.866697 0.1 3.916454 0.1 3.933054 0.1 3.941369 0.1 3.946375
0.2 3.767307 0.2 3.866821 0.2 3.900021 0.2 3.916650 0.2 3.926663
0.3 3.667917 0.3 3.817189 0.3 3.866988 0.3 3.891933 0.3 3.906953
0.4 3.568529 0.4 3.767557 0.4 3.833956 0.4 3.867217 0.4 3.887244
0.5 3.469141 0.5 3.717926 0.5 3.800925 0.5 3.842501 0.5 3.867536

Table 3: (a) Variation of the local Nusselt number Nu
𝑥
with 𝛾 and Nt and (b) variation of the local Sherwood number Sh

𝑥
with 𝛾 and Nt for

Nb = 0.5, Le = 2, and Pr = 6.8.

(a)

Nt = 0.1 Nt = 0.2 Nt = 0.3 Nt = 0.4 Nt = 0.5
𝛾 Nu

𝑥
𝛾 Nu

𝑥
𝛾 Nu

𝑥
𝛾 Nu

𝑥
𝛾 Nu

𝑥

0.1 0.098043 0.1 0.098039 0.1 0.098035 0.1 0.098031 0.1 0.098026
0.2 0.192308 0.2 0.192276 0.2 0.192243 0.2 0.192211 0.2 0.192178
0.3 0.282986 0.3 0.282884 0.3 0.282779 0.3 0.282673 0.3 0.282565
0.4 0.370261 0.4 0.370029 0.4 0.369792 0.4 0.369549 0.4 0.369301
0.5 0.454302 0.5 0.453870 0.5 0.453427 0.5 0.452972 0.5 0.452503

(b)

Nt = 0.1 Nt = 0.2 Nt = 0.3 Nt = 0.4 Nt = 0.5
𝛾 Sh

𝑥
𝛾 Sh

𝑥
𝛾 Sh

𝑥
𝛾 Sh

𝑥
𝛾 Sh

𝑥

0.1 3.946375 0.1 3.926663 0.1 3.906953 0.1 3.887244 0.1 3.867536
0.2 3.927421 0.2 3.888766 0.2 3.850122 0.2 3.811491 0.2 3.772871
0.3 3.909188 0.3 3.852327 0.3 3.795505 0.3 3.738723 0.3 3.681982
0.4 3.891640 0.4 3.817279 0.4 3.743010 0.4 3.668834 0.4 3.594756
0.5 3.874741 0.5 3.783559 0.5 3.692549 0.5 3.601719 0.5 3.511676

Figures 5–7, it is interesting to see that the change occurring
in the mass transfer rates is almost monotonous for all values
of Nt. However, the difference in the local Sherwood number
increases as 𝛾 increases and decreases as Nb increases.

Figures 8–11 show the samples of temperature and con-
centration profiles for different values of 𝛾 and Nt. These
profiles satisfy the far field boundary conditions (12) asymp-
totically which support the validity of the numerical results
obtained, as well as supporting the existence of the dual
solutions shown in Figures 2–7. For a similar problem where
dual solutions exist, Merkin [31], Weidman et al. [32], and
Postelnicu and Pop [33] have shown that the first solution
is linearly stable and physically realizable, while the second

solution is not. Thus for the present problem, it is expected
that only the first solution is physically relevant. The gener-
ated temperature profiles shown in Figure 8 are qualitatively
similar to those of Aziz [25] and Ishak [26]. From the figure,
it is seen that the temperature increases as 𝛾 increases. As
mentioned earlier, the surface temperature 𝑇

𝑤
depends on

the convective parameter 𝛾. As 𝛾 reaches ∞, the surface
temperaturewill approach 1, which conforms to the boundary
condition (11). Figure 9 shows the temperature profiles for
different values of Nt. It is observed that the change in
temperature occurs only slightly for every change in Nt. This
phenomenon supports the results obtained in Figure 3 and
Table 2(a). Figures 8 and 9 agree with the observation of
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Figure 2: Variations of the local Nusselt number (heat transfer rate)
with 𝜎 for different values of 𝛾 when Nb = Nt = 0.5, Le = 2, Pr = 6.8,
and S = 2.
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Figure 3: Variations of the local Nusselt number (heat transfer rate)
with 𝜎 for different values of Nt when Nb = 0.5, Le = 2, Pr = 6.8, 𝛾 =
0.1, and S = 2.

Makinde and Aziz [27] where the thermal boundary layer
thickens with the rise in temperature as convective parameter
and thermophoresis parameter intensify.

The concentration profiles corresponding to the temper-
ature profiles in Figures 8 and 9 are shown in Figures 10 and
11. In Figures 8 and 9, it is observed that the temperature
increases as the convective parameter 𝛾 and thermophoresis
parameter Nt increase. Due to the dependency of the con-
centration on the temperature field, we expect that higher
convective and thermophoresis parameters would allow a
deeper penetration of the concentration [27]. Hence, it is seen
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Figure 4: Variations of the local Nusselt number (heat transfer rate)
with 𝜎 for different values of Nb when Nt = 0.5, Le = 2, Pr = 6.8, 𝛾 =
0.1, and S = 2.
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Figure 5: Variations of the local Sherwood number (concentration
rates) with 𝜎 for different values of 𝛾 when Nb = Nt = 0.5, Le = 2, Pr
= 6.8, and S = 2.

that in Figures 10 and 11, the concentration increases with
the increasing of convective parameter 𝛾 and thermophoresis
parameter Nt.

4. Conclusions

The boundary layer flow of a nanofluid past a stretch-
ing/shrinking sheet with a convective boundary condition
was studied. The effects of stretching/shrinking parameter,
convective parameter, Brownian motion parameter and ther-
mophoresis parameter on the local Nusselt number and local
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Figure 6: Variations of the local Sherwood number (concentration
rates) with 𝜎 for different values of Nt when Nb = 0.5, Le = 2, Pr =
6.8, 𝛾 = 0.1, and S = 2.
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Figure 7: Variations of the local Sherwood number (concentration
rates) with 𝜎 for different values of Nb when Nt = 0.5, Le = 2, Pr =
6.8, 𝛾 = 0.1, and S = 2.

Sherwood number were studied. Numerical solutions to the
governing equations were obtained using a shootingmethod.
The results for the local Nusselt number and the local Sher-
wood number are presented for different values of the gov-
erning parameters.The local Nusselt number decreases as the
stretching/shrinking parameter increases. On the other hand,
the local Sherwood number increases with the increasing
of stretching/shrinking parameter. The local Nusselt number
is consistently higher for higher values of the convective
parameter but lower for higher values of the Brownian
motion parameter and thermophoresis parameter. From the

𝜃
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)
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Figure 8: Temperature profiles for different values of 𝛾 when Nb =
Nt = 0.5, Le = 2, Pr = 6.8, 𝜎 = −0.1, and S = 2.
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Figure 9: Temperature profiles for different values of Nt when Nb =
0.5, Le = 2, Pr = 6.8, 𝛾 = 0.1, 𝜎 = −0.1, and S = 2.

results, Brownian motion parameter affects the surface heat
transfer rate more than the thermophoresis parameter. The
local Sherwood number increases with increasing Brownian
motion parameter and decreases with increasing convective
parameter and thermophoresis parameter. The results also
indicate the existence of dual solutions for both stretching
and shrinking cases.



8 Abstract and Applied Analysis

𝛽
(𝜂
)

𝛾 = 1, 1.25, 2

𝜂

0 0.5 1 1.5 2

First solution
Second solution

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 10: Concentration profiles for different values of 𝛾 when Nb
= Nt = 0.5, Le = 2, Pr = 6.8, 𝜎 = −0.1, and S = 2.
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The method of moments is employed to predict the evolution of aerosol particles in the rainfall process. To describe the dynamic
properties of particle size distribution, the population balance equation is converted to moment equations by the method of
moments and the converted equations are solved numerically. The variations of particle number concentration, geometric mean
diameter, and geometric standard deviation are given in the cases that the Brownian diffusion and inertial impaction of particles
dominate, respectively. The effects of raindrop size distribution on particle size distribution are analyzed in nine cases. The results
show that the particle number concentration decreases as time goes by, and particles dominated by Brownian diffusion are removed
more significantly. The particle number concentration decreases much more rapidly when particle geometric mean diameter is
smaller, and the particle size distribution tends to bemonodisperse. For the same water content, the raindrops with small geometric
mean diameters can remove particles with much higher efficiency than those with large geometric mean diameters. Particles in the
“Greenfield gap” are relatively difficult to scavenge, and a new method is needed to remove it from the air.

1. Introduction

Our surroundings are filled with aerosol particles which not
only affect the environment such as the air visibility, weather,
and climate, but also cause respiratory diseases. Available
researches show that the respiratory diseases are not only
related to the particle mass concentration but also to the
particle size and number concentration [1]. Therefore, it is
necessary to remove aerosols fromair. In nature, precipitation
is one of the most effective approaches to remove aerosols
in air, in which raindrops collide with aerosols and then
collect them. The removing process is affected by external
factors including aerosol size distribution [2], raindrop size
distribution (RSD) [3], rainfall intensity [4], and physical
and chemical properties [5] and internal factors including
collision mechanisms between raindrops and aerosols and
condensation/evaporation of raindrops and aerosols [6].
The mechanisms involved in the above processes include
particle Brownian diffusion, direction interception, inertial
impaction, thermo- and diffusiophoresis forces, and electri-
cal forces [2, 7]. Although these forces are coupled, one or
more of them may dominate for various regions of particle

size, drop size, particle density and hydrodynamic tempera-
ture, and diffusion fields.

In the rainfall process, the most interesting thing is
how the particle size distribution (PSD) changes as time
progresses and how PSD is affected by different RSD. In
order to answer the questions, the population balance equa-
tion (PBE) for particles is introduced [8]. The kernel of
PBE is how to express the scavenging coefficient which
represents the removing rate of aerosols by raindrops and
is a function of collision efficiency of raindrops, terminal
velocity of raindrops, and PSD [4]. In the pioneering work,
Slinn [9] obtained a semiempirical formula of collision
efficiency according to the Navier-Stokes equation using the
dimensionless analysis coupled with the experimental data,
which has been widely used when referring to the below-
cloud scavenging process. Chate and Kamra [6] showed that
the collision efficiency of water drops increases with the
increasing impaction parameter. Chate et al. [5] evaluated
the scavenging coefficient for aerosols of diameters in the
range of 0.02–10 𝜇m with various densities in accordance
with their chemical compositions for heavy rain regime.They
found that the inertial impactionmechanism is the dominant



2 Abstract and Applied Analysis

one in removing particles of all sizes for the heavy rain
regime, and the scavenging coefficient is highly dependent
on relative humidity for hygroscopic particles. Mircea and
Stefan [4] obtained an exponential expression of the scav-
enging coefficient as a function of rainfall intensity and
collision efficiency between raindrops and aerosol particles.
In their later work, Mircea et al. [8] got the linear relations
between the scavenging coefficient and the rainfall intensity
via numerical analysis. Andronache [10, 11] concluded that
the below-cloud scavenging (BCS) coefficients of aerosols
by rainfall depend mainly on the aerosol size distribution
parameters and on rainfall intensity, decreasing significantly
with aerosol diameter, increasing with rainfall rate, and aver-
age raindrop and aerosol electric charge. Later, Andronache
et al. [12] developed a more complicated model to predict
the scavenging coefficient, finding it sensitive to the choice
of representation of mixing processes, raindrop size distribu-
tion, phoretic effects in aerosol-raindrop collisions, and cloud
droplet activation.

The researchmentioned above was focused on getting the
relation between the scavenging coefficient and the external
factors. Jung et al. [13] expressed the collision efficiency as
polynomial expression of particle diameter and applied the
method of moments (MOM) to get analytical solutions of
PBE. In their following work [3], they employed the collision
efficiency proposed by Slinn [9] and applied the MOM to
study the evolution of PSDwhen the RSDobeys theMarshall-
Palmer (MP) and Krigian-Mazin (KM) distributions, and
they got relatively good results. Besides, Bae et al. [14] devel-
oped a good analytical expression for scavenging coefficient.
The value of scavenging coefficient can be calculated when
the initial three key parameters of PSD and rainfall intensity
are given. While in the scavenging process, these parameters
evolve as time goes by and the initially calculated scavenging
coefficient will be inaccurate due to the evolution of the
PSD, even if the rainfall intensity remains the same. In fact,
the three parameters of PSD and the scavenging coefficient
couple together. Thus, we suggest that more attention should
be paid to the dynamic evolution of PSD before getting the
value of the scavenging coefficient.

The method of moments has been extensively used
to deal with the PBE when referring to physical/chemical
changes of particles, including aggregation/breakage [15],
condensation/evaporation [16], coagulation [17, 18], depo-
sition/removal [19–21], and chemical reaction [22, 23]. The
periodic moment method (PMM), proposed by Pratsinis
[24], can be used to solve the evolution of PSD for simul-
taneous nucleation, condensation, and coagulation in the
entire particle size spectrum through approximating the size
distribution by a unimodal log-normal function.

In the present study, the PMM is adopted to deal with the
PBE when referring to the wet scavenging process, and the
scavenging coefficient is expressed as a polynomial function
of aerosol diameter, raindrop diameter, and raindrop velocity.
The evolutions of PSD are simulated numerically and the
effects of RSD on PSD are studied. The variations of particle
number concentration, geometric mean diameter, and geo-
metric standard deviation are givenwhen Brownian diffusion
and inertial impaction of particles dominate, respectively.

2. Theory

2.1. Basic Theory of Wet Removal. The governing equation
describing the time-dependent removal of particles in air by
collision with raindrops [8] is as follows:

−

𝜕𝑛 (𝑑
𝑝
, 𝑡)

𝜕𝑡
= Λ (𝑑
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, 𝑡) , (1)
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𝑝
, 𝑡) is the particle size distribution in air and

Λ(𝑑
𝑝
) is the scavenging coefficient representing the rate of

scavenged particles by raindrop; consider
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0
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where 𝐾(𝑑
𝑝
, 𝐷
𝑑
) is the collision kernel (or collection kernel)

which describes the probability of collisions between particles
with diameter 𝑑

𝑝
and raindrops with diameter 𝐷

𝑑
[3, 13];
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where 𝐸(𝑑
𝑝
, 𝐷
𝑑
) is the collision efficiency which will be

discussed below. 𝑈(𝐷
𝑑
) is the velocity of a falling raindrop

with diameter𝐷
𝑑
and can be expressed as follows:
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(4)

The collision efficiency, 𝐸(𝑑
𝑝
, 𝐷
𝑑
), represents the ratio of the

actual frequency of collisions to the theoretical frequency and
is affected by turbulent diffusion, Brownian diffusion, van der
Waals force, thermophoresis, electrostatic adsorption, and so
on. Mircea et al. [4, 8] suggested the collision efficiency to
be a constant or a function of rainfall intensity (including
linear and power law functions). Jung et al. [13] got a
set of analytical solutions for polydispersed particles by a
wet removal process for submicrometer particles. Slinn [9]
obtained the following semiempirical formula according to
the Navier-Stokes equation using the dimensionless analysis
coupled with the experimental data:

𝐸 (𝑑
𝑝
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) =

1
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,

(5)

where Re = 𝐷
𝑑
𝑈(𝐷
𝑑
)𝜌
𝑎
/(2 𝜇
𝑎
) is the Reynolds number based

on the raindrop diameter, Sc = 𝜇
𝑎
/(𝜌
𝑎
𝐷diff) is the Schmidt

number of particles with the diffusion coefficient 𝐷diff =

𝑘
𝑏
𝑇𝐶
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/(3𝜋𝜇

𝑎
𝑑
𝑝
), St = 2𝜏𝑈(𝐷

𝑑
)/𝐷
𝑑
is the Stokes number of
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particles with relaxation time 𝜏 = 𝜌
𝑝
𝑑
2

𝑝
/(18𝜇

𝑎
), and 𝑆∗ =

[1.2 + ln(1 + Re)/12]/[1 + ln(1 + Re)] is a dimensionless
parameter. Here, 𝜌

𝑎
and 𝜇

𝑎
are the density and the viscosity

of air, respectively, 𝜇
𝑤
is the viscosity of a water drop, 𝑘

𝑏
is

Boltzmann’s constant, 𝑇 is the absolute temperature of air,
and 𝐶

𝑐
is the Cunningham slip correction factor and can be

approximated as follows [25]:

𝐶
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= 1 + 2.493
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exp(−0.435
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𝑑
𝑝

,

(6)

where 𝜆 is the molecular mean free path.
The terms on the right-hand side (RHS) of (5) represent

the effects of Brownian diffusion, interception, and inertial
impaction, respectively.

2.2. Application of the Method of Moments. According to
(2)-(3), the scavenging coefficient, Λ(𝑑

𝑝
), is related to the

collision kernel between particles and raindrops, collision
efficiency 𝐸(𝑑

𝑝
, 𝐷
𝑑
), and RSD 𝑛(𝐷

𝑑
). The RSD based on

particle diameter can be described with the log-normal
distribution [26], and the particle size distribution can also be
approximated by the log-normal distribution [27] as follows:
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where 𝑁
𝑑
, 𝐷
𝑑𝑔
, and 𝜎

𝑑𝑔
are the number concentration,

geometric mean diameter, and geometric standard deviation
of raindrop, respectively. Definitions of the 𝑘th moment of
raindrops and particles are 𝜉

𝑘
and 𝑚

𝑘
, respectively [24];

consider

𝜉
𝑘
= ∫

∞

0

𝐷
𝑘

𝑑
𝑛 (𝐷
𝑑
) 𝑑𝐷
𝑑
= 𝜉
0
𝐷
𝑘

𝑑𝑔
exp[𝑘

2

2
ln2𝜎
𝑑𝑔
] ,

𝑚
𝑘
= ∫

∞

0

𝑑
𝑘

𝑝
𝑛 (𝑑
𝑝
) 𝑑𝑑
𝑝
= 𝑚
0
𝑑
𝑘

𝑝𝑔
exp[𝑘

2

2
ln2𝜎
𝑑𝑝
] .

(8)

The last term on RHS of (5) is difficult to deal with when
applying the moment method to (1). Thus, the approximate
expression proposed by Jung et al. [3] is adopted as follows:

(
St − 𝑆∗

St − 𝑆∗ + 2/3
)

3/2

≅ 1 − 0.9St−0.5. (9)

The final expression of scavenging coefficient and govern-
ing moment equation are as follows [3, 14, 28]:

Λ(𝑑
𝑝
) = 𝛾
1
𝜉
1
(𝑑
−1

𝑝
+ 𝐴𝑑
−2

𝑝
) + 𝛾
2
𝜉
7/4
(𝑑
−2/3

𝑝
+ 2𝐴𝑑

−5/3

𝑝
/3)

+ 𝛾
3
𝜉
7/4
(𝑑
−1/2

𝑝
+ 𝐴𝑑
−3/2

𝑝
/2) + 𝛾

4
𝜉
3/2
𝑑
𝑝
+ 𝛾
5
𝜉
1/2
𝑑
2

𝑝

+ 𝛾
6
𝜉
5/4
𝑑
2

𝑝
+ 𝛾
7
𝜉
5/2
+ 𝛾
8
𝜉
11/4

𝑑
−1

𝑝
,

(10)

−
𝜕𝑚
𝑘

𝜕𝑡
= 𝛾
1
𝜉
1
(𝑚
𝑘−1

+ 𝐴𝑚
𝑘−2
) + 𝛾
2
𝜉
7/4

× [𝑚
𝑘−2/3

+ 2𝐴𝑚
𝑘−5/3

/3] + 𝛾
3
𝜉
7/4

× [𝑚
𝑘−1/2

+ 𝐴𝑚
𝑘−3/2

/2] + 𝛾
4
𝜉
3/2
𝑚
𝑘+1

+ 𝛾
5
𝜉
1/2
𝑚
𝑘+2

+ 𝛾
6
𝜉
5/4
𝑚
𝑘+2

+ 𝛾
7
𝜉
5/2
𝑚
𝑘
+ 𝛾
8
𝜉
11/4

𝑚
𝑘−1
,

(11)

where

𝛾
1
=
𝑘
𝑏
𝑇

6𝜇
𝑎

, 𝛾
2
= (

0.4 × 130𝜋

4
)(

2 𝜇
𝑎

130𝜌
𝑎

)

1/2

(
𝑘
𝑏
𝜌
𝑎
𝑇

3𝜋𝜇2
𝑎

)

2/3

,

𝛾
3
= (

0.16 × 130𝜋

4
)(

2𝑘
𝑏
𝑇

3 × 130𝜋𝜇
𝑎

)

1/2

, 𝛾
4
=
130 𝜋𝜇

𝑎

𝜇
𝑤

,

𝛾
5
= 130𝜋, 𝛾

6
= 130𝜋(

130𝜌
𝑎

2 𝜇
𝑎

)

1/2

, 𝛾
7
=
130𝜋

4
,

𝛾
8
= −(

0.9 × 130𝜋

4
)(

18 𝜇
𝑎

2 × 130𝜌
𝑝

)

1/2

, 𝐴 = 3.34𝜆.

(12)

According to the definition of𝑚
𝑘
,𝑚
0
is the total particle

number concentration, and (𝜋/6)𝑚
3
is the total volume of

particles. In the following calculation, we solve the first three
moment equations, that is, 𝑘 = 0, 1, and 2. The geometric
mean particle diameter, 𝑑

𝑝𝑔
, and the geometric standard

deviation, 𝜎
𝑝𝑔
, can be expressed as the function of the first

three moments as follows:

𝑑
𝑝𝑔
=

𝑚
2

1

𝑚
3/2

0
𝑚
1/2

2

, 𝜎
𝑝𝑔
= exp[ln(

𝑚
2
𝑚
0

𝑚
2

1

)]

1/2

. (13)

3. Results and Discussions

3.1. Numerical Specifications. The 4th-order Runge-Kutta
method with fixed time step is employed to solve (11)
with 𝑘 = 0, 1, and 2. The evolutions of PSD are simulated
numerically and the effects of RSD on PSD are studied in
nine cases.The values of the initialization parameter are listed
in Table 1. Case 1 and Case 4 with initial geometric standard
deviation 𝜎

𝑝𝑔0
= 1.5 are selected to validate the computation

codes. Cases 2–5 are selected to obtain the evolution of PSD
for clarifying the function by different mechanisms (i.e.,
Brownian diffusion is dominant for 𝑑

𝑝𝑔0
= 1–10 nm; both

Brownian diffusion and interception are dominant for 𝑑
𝑝𝑔0

= 0.1–0.5𝜇m; and inertial impaction is dominant for 𝑑
𝑝𝑔0

=
5–8𝜇m). Cases 6–9 are selected to study the effect of RSD
on PSD for a given water content defined by (14) [4], and
the corresponding raindrop number concentration, 𝑁

𝑑
, is

calculated via (15). The computational programs are written
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Table 1: The values of the initialization parameter for Cases 1–9.

Case 𝑁
𝑑
/m−3 𝐷

𝑑𝑔
/mm 𝜎

𝑑𝑔
𝑁
𝑝0
/m−3 𝑑

𝑝𝑔0
/𝜇m 𝜎

𝑝𝑔0

1 1.0 × 105 0.1 1.2 1.0 × 106 0.001 1.2/1.5/1.8
2 1.0 × 105 0.1 1.2 1.0 × 106 0.01 1.2/1.5/1.8
3 1.0 × 105 0.1 1.2 1.0 × 106 0.1 1.2/1.5/1.8
4 1.0 × 105 0.1 1.2 1.0 × 106 5.0 1.2/1.5/1.8
5 1.031 × 107 0.2 1.1 1.0 × 106 0.01/0.5/8.0 1.3
6 9.569 × 104 0.2 1.5 1.0 × 106 0.01/0.5/8.0 1.3
7 6.601 × 105 0.5 1.1 1.0 × 106 0.01/0.5/8.0 1.3
8 6.124 × 103 0.5 1.5 1.0 × 106 0.01/0.5/8.0 1.3
9 6.786 × 104 0.5 1.5 1.0 × 106 0.01/0.5/8.0 1.3

using the C Programming Language and are performed on
Microsoft Visual C++ 6.0 complier. Consider

𝑤 =
𝜋

6
∫

𝐷
𝑑

𝜌
𝑤
𝐷
3

𝑑
𝑛 (𝐷
𝑑
) 𝑑𝐷
𝑑
, (14)

𝑁
𝑑
=

6𝑤

𝜋𝜌
𝑤
𝐷
3

𝑑𝑔
exp (9𝜎2

𝑑𝑔
/2)

. (15)

3.2. Validation of Computation Codes. Particles with diam-
eter 𝑑

𝑝𝑔0
= 1 nm and 0.5 𝜇m are selected to validate the

computation codes. Figure 1 shows the numerical results of
particle number concentration based on different collision
efficiencies proposed by Slinn [9] and Jung and Lee [29],
respectively. The collision efficiency proposed by Slinn is
given with a semiempirical formula based on the Navier-
Stokes equation using dimensionless analysis combined with
experimental data.While the collision efficiency proposed by
Jung and Lee, as shown in (16), is valid for 𝑑

𝑝𝑔0
< 1𝜇m,

𝐸 (𝑑
𝑝
, 𝐷
𝑑
) = 2(

√3𝜋

4𝑃𝑒
)

2/3

[
(1 − 𝛼) (3𝜎 + 4)

𝐽 + 𝜎𝐾
] . (16)

3.3. Evolution of Particle Geometric Mean Diameter and
Geometric Standard Deviation. Figures 2 and 3 show the
evolution of particle geometric mean diameter, 𝑑

𝑝𝑔
, and

geometric standard deviation, 𝜎
𝑝𝑔
, in the rainfall process,

respectively. From Figure 2 we can see that 𝑑
𝑝𝑔

increases
when the initial geometric mean diameter 𝑑

𝑝𝑔0
is equal to

1 nm, 10 nm, and 0.1 𝜇m, and it decreases when 𝑑
𝑝𝑔0

is equal
to 5 𝜇m. Thus, we can deduce that there exists one kind of
particle diameter, for which 𝑑

𝑝𝑔
never changes in the whole

scavenging process. For particles with 𝑑
𝑝𝑔0

= 1 nm and 10 nm,
𝑑
𝑝𝑔

grows much faster when the value of 𝜎
𝑝𝑔0

is larger. And
for particles with 𝑑

𝑝𝑔0
= 5 𝜇m, 𝑑

𝑝𝑔
decreases much more

rapidly when 𝜎
𝑝𝑔0

is larger. The region that particle diameter
locates between 0.01 𝜇m and 2 𝜇m is called “Greenfield gap”
[30] because the collision efficiency of particles in this region
and raindrops is relatively low. While for particles in the
“Greenfield gap” (e.g., 𝑑

𝑝𝑔0
= 0.1 𝜇m), 𝑑

𝑝𝑔
hardly changes in

the whole process. The evolution of 𝑑
𝑝𝑔

in the present study
is qualitatively consistent with the result given by Jung et al.
[13].

100 101 102 103 104 105 106 107

10−2

10−1

100

Jung and Lee (1998)

t (s)

N
p

/N
p
0 dpg0 = 1nm

dpg0 = 0.5 𝜇m

Numerical results using the collision efficiency proposed by

Slinn (1983) (this study)

Figure 1: Comparison of particle number concentrations based on
different collision efficiencies.

In Figure 3, the geometric standard deviation of particle
diameter, 𝜎

𝑝𝑔
, converges to 1.0 as time goes by in the rainfall

process for all particle sizes, which means that the particle
size distribution tends to be monodisperse. For particles with
the same value of 𝑑

𝑝𝑔0
, 𝜎
𝑝𝑔

decays much faster when the
value of 𝜎

𝑝𝑔0
is larger. For particles with the same initial value

of 𝜎
𝑝𝑔0

, 𝜎
𝑝𝑔

decreases at an early stage for small particles
dominated by the Brownian diffusion, and at a later stage for
large particles controlled by the inertial impaction.𝜎

𝑝𝑔
hardly

changes for particles in the “Greenfield gap”.

3.4. Effect of Raindrop Size Distribution on Particle Size
Distribution. The effect of raindrop size distribution (RSD)
on the particle size distribution (PSD) is studied using the
values of initialization parameter for Cases 6–9 with the
given water content (10 g/m3). Figure 4 shows the evolution
of particle number concentration. For Cases 6 and 8 the
geometric standard deviation of raindrop diameter, 𝜎

𝑑𝑔
, is

the same but the geometric mean raindrop diameter, 𝐷
𝑑𝑔
, is

different. The particle number concentration decreases faster
in Case 6 than in Case 8 as shown in Figure 4. For particles
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Figure 2: Evolution of particle geometric mean diameter as time
progresses for Cases 2–5.
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Figure 3: Evolution of geometric standard deviation of particle
diameter for Cases 2–5.

with 𝑑
𝑝𝑔0

= 0.5 𝜇m and 𝑑
𝑝𝑔0

= 8 𝜇m in Cases 6 and 8, the
same tendency can be observed, which demonstrates that the
RSD in Case 6 can scavenge particles with a much higher
efficiency than that in Case 8.

For Cases 8 and 9, the geometric mean raindrop diam-
eter, 𝐷

𝑑𝑔
, is the same but the geometric standard deviation

of raindrop diameter, 𝜎
𝑑𝑔
, is different. It can be seen that

the RSD in Case 8 can remove particles with a much higher
efficiency than that in Case 9 for any kind of particles.
Meanwhile, it takes a much longer time to scavenge particles
when 𝑑

𝑝𝑔0
= 0.5 𝜇m in Case 9 than that for any other kind of

particle diameters in any case.
Figure 5 shows the effect of RSD on 𝑑

𝑝𝑔
and 𝜎

𝑝𝑔
for

particles with 𝑑
𝑝𝑔0

= 10 nm. It can be seen that 𝑑
𝑝𝑔

increases
and 𝜎

𝑝𝑔
decreases in all cases, which is consistent with the

results given in Figures 2 and 3. It takes the longest time for
𝑑
𝑝𝑔
/𝑑
𝑝𝑔0

and 𝜎
𝑝𝑔
/𝜎
𝑝𝑔0

to get the same values in Case 9, and
the shortest time in Case 6.The overall tendency of the effect
of RSD on 𝑑

𝑝𝑔
and 𝜎

𝑝𝑔
for particles with 𝑑

𝑝𝑔0
= 0.5 𝜇m and

Case 9Case 8

Case 7
Case 6
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Figure 4: Effect of RSD on particle number concentration for
Cases 6–9.
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Figure 5: Effect of RSD on particle geometric mean diameter and
geometric standard deviation (𝑑

𝑝𝑔0
= 10 nm).

𝑑
𝑝𝑔0

= 8𝜇m, which is not shown in Figure 5, is the same as
that for particles with 𝑑

𝑝𝑔0
= 10 nm.

From the above numerical results and analysis, we can
see that, for the same water content, the RSD with small
𝐷
𝑑𝑔

can remove the particles more easily than with large
𝐷
𝑑𝑔
. The RSD with small 𝜎

𝑑𝑔
, that is, a narrow distribution

of particle diameter, can collect particles more easily than
with large 𝜎

𝑑𝑔
. Thus, the RSD in Case 6 is the most efficient

in scavenging particles, the RSD in Case 8 takes second
place, the RSD in Case 7 the third, and the RSD in Case 9
is the worst, which is consistent with the experimental
result [31]. This can be explained in the following way. The
raindrop number concentration, 𝑁

𝑑
, increases as 𝐷

𝑑𝑔
and

𝜎
𝑑𝑔

decrease with a given water content according to (15),
leading to the increase of the total surface area of raindrops,
which enhances the probability of capturing small particles
dominated by the Brownian diffusion. The intermediate size
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particles controlled by the combined effect of Brownian
diffusion and interception depend on the value of 𝑑

𝑝
/𝐷
𝑑
. For

the particles with smaller 𝐷
𝑑𝑔

and 𝜎
𝑑𝑔
, 𝑑
𝑝
/𝐷
𝑑
is larger; that

is, the RSD is more monodisperse, which makes the collision
efficiency become large as shown in the second term on the
right-hand side of (5). Thus, the RSD with smaller 𝐷

𝑑𝑔
and

𝜎
𝑑𝑔

can scavenge intermediate size particles with a much
higher efficiency. While for particles with a relatively large
size, the scavenging coefficient becomes smaller with larger
𝐷
𝑑𝑔

and 𝜎
𝑑𝑔
.

4. Conclusions

The removal of aerosol particles in the rainfall process is
studied with the periodic moment method. Both the aerosol
particle size distribution and raindrop size distribution are
assumed to be log-normal. The effects on the collision
efficiency of the mechanisms of Brownian diffusion, inter-
ception, and inertial impaction have been investigated. The
binomial formulas are reexpanded to get a more accurate
expression of scavenging coefficient. The first three moments
of particle size distribution are simulated and the effects of
raindrop size distribution on particle size distribution are
studied in nine cases.

The results show that the particle number concentration
decreases as time goes by. Particles dominated by Brownian
diffusion are removed more easily. The particles in the
“Greenfield gap” are the most difficult to be removed. The
particle number concentration decreases much more rapidly
when particle geometric mean diameter is smaller. In the
scavenging process, the particle geometric mean diameter
increases when 𝑑

𝑝𝑔0
< 10 nm, and decreases when 𝑑

𝑝𝑔0
≥

1 𝜇m, but changes a little when 10 nm < 𝑑
𝑝𝑔0

< 1 𝜇m.The geo-
metric standard deviation of particle diameter converges to
1.0 as time progresses for any kind of particles, which means
that the particle size distribution tends to be monodisperse,
and it decays much faster for particles with large 𝜎

𝑝𝑔0
.

For the same water content, the raindrop size distribution
with small 𝐷

𝑑𝑔
can remove particles with a much higher

efficiency than that with large 𝐷
𝑑𝑔
, and the raindrop size

distribution with small 𝜎
𝑑𝑔

can collect particles more easily
than with large 𝜎

𝑑𝑔
. Particles in the “Greenfield gap” are

relatively difficult to scavenge, and a new method is needed
to remove it from the air.
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Venäläinen, “Scavenging of ultrafine particles by rainfall at a
boreal site: observations and model estimations,” Atmospheric
Chemistry and Physics, vol. 6, no. 12, pp. 4739–4754, 2006.

[13] C. H. Jung, Y. P. Kim, and K. W. Lee, “Analytic solution for
polydispersed aerosol dynamics by a wet removal process,”
Journal of Aerosol Science, vol. 33, no. 5, pp. 753–767, 2002.

[14] S. Y. Bae, C. H. Jung, and Y. Pyo Kim, “Development and
evaluation of an expression for polydisperse particle scavenging
coefficient for the below-cloud scavenging as a function of rain
intensity using the moment method,” Journal of Aerosol Science,
vol. 37, no. 11, pp. 1507–1519, 2006.

[15] D. L. Marchisio, R. D. Vigil, and R. O. Fox, “Implementation
of the quadrature method of moments in CFD codes for
aggregation-breakage problems,” Chemical Engineering Science,
vol. 58, no. 15, pp. 3337–3351, 2003.

[16] R. E. Sampson and G. S. Springer, “Condensation on and
evaporation from droplets by a moment method,” Journal of
Fluid Mechanics, vol. 36, no. 3, pp. 577–584, 1969.



Abstract and Applied Analysis 7

[17] M. Yu, J. Lin, and T. Chan, “A new moment method for solving
the coagulation equation for particles in Brownian motion,”
Aerosol Science and Technology, vol. 42, no. 9, pp. 705–713, 2008.

[18] M. Yu and J. Lin, “Taylor-expansion moment method for
agglomerate coagulation due to Brownian motion in the entire
size regime,” Journal of Aerosol Science, vol. 40, no. 6, pp. 549–
562, 2009.

[19] S. H. Park and K. W. Lee, “Analytical solution to change in size
distribution of polydisperse particles in closed chamber due
to diffusion and sedimentation,” Atmospheric Environment, vol.
36, no. 35, pp. 5459–5467, 2002.

[20] L. Jianzhong, S. Xing, and Y. Zhenjiang, “Effects of the aspect
ratio on the sedimentation of a fiber in Newtonian fluids,”
Journal of Aerosol Science, vol. 34, no. 7, pp. 909–921, 2003.

[21] J. Lin, P. Lin, and H. Chen, “Research on the transport and
deposition of nanoparticles in a rotating curved pipe,” Physics
of Fluids, vol. 21, no. 12, Article ID 122001, 11 pages, 2009.

[22] M. Yu, J. Lin, and T. Chan, “Numerical simulation of nanoparti-
cle synthesis in diffusion flame reactor,” Powder Technology, vol.
181, no. 1, pp. 9–20, 2008.

[23] M. Z. Yu, J. Z. Lin, and T. L. Chan, “Effect of precursor loading
on non-spherical TiO2 nanoparticle synthesis in a diffusion
flame reactor,” Chemical Engineering Science, vol. 63, no. 9, pp.
2317–2329, 2008.

[24] S. E. Pratsinis, “Simultaneous nucleation, condensation, and
coagulation in aerosol reactors,” Journal of Colloid and Interface
Science, vol. 124, no. 2, pp. 416–427, 1988.

[25] K.W. Lee andB.Y.H. Liu, “Theoretical study of aerosol filtration
by fibrous filters,” Aerosol Science and Technology, vol. 1, no. 2,
pp. 147–161, 1982.

[26] G. Feingold andZ. Levin, “The lognormal fit to raindrop spectra
from frontal convective clouds in Israel,” Journal of Climate and
Applied Meteorology, vol. 25, no. 10, pp. 1346–1363, 1986.

[27] E. R. Whitby and P. H. McMurry, “Modal aerosol dynamics
modeling,” Aerosol Science and Technology, vol. 27, no. 6, pp.
673–688, 1997.

[28] S. Y. Bae, C. H. Jung, and Y. P. Kim, “Derivation and verification
of an aerosol dynamics expression for the below-cloud scav-
enging process using the moment method,” Journal of Aerosol
Science, vol. 41, no. 3, pp. 266–280, 2010.

[29] C. H. Jung andK.W. Lee, “Filtration of fine particles bymultiple
liquid droplet and gas bubble systems,” Aerosol Science and
Technology, vol. 29, no. 5, pp. 389–401, 1998.

[30] S.Greenfield, “Rain scavenging of radioactive particulatematter
from the atmosphere,” Journal of Meteorology, vol. 14, no. 2, pp.
115–125, 1957.

[31] K. W. Lai, N. Dayan, and M. Kerker, “Scavenging of aerosol
particles by a falling water drop,” Journal of Atmospheric Science,
vol. 35, no. 4, pp. 674–682, 1978.




