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1. Introduction

In this special issue, a number of papers have been accepted
for publication. The special issue concerns with theoreti-
cal investigation and mathematical analysis that are very
important for all scientific, engineering, and environmental
applications. From mathematical modeling to computational
analysis and all the way to developing analytical and numer-
ical solutions, studying solutions properties, and so forth,
the theoretical, mathematical, and computational analyses
are indispensable bases. Rapid progress has been seen in the
analysis of flow and transport phenomena especially in the
recent years because of the significance of flow and transport
to science and engineering.

2. Overview of Work Presented in
This Special Issue

The list of papers published in this issue covers a wide range
of applications using different approaches and analyses, and
it may be divided into five groups as follows.

The first group of papers consists of nine papers that
address various issues in the area of particles/nanoparticles
suspensions flow that are used in different applications. Z.
You et al. have studied a long-term deep bed filtration in
porous media with size exclusion particle capture mechanism
in the paper entitled “Exact solution for long-term size
exclusion suspension-colloidal transport in porous media” On
the other hand, E. H. Aly and A. Ebaid have introduced

a direct and effective approach to obtain the exact analytical
solution for the nanoparticles-water flow over an isothermal
stretching sheet with the effect of the slip model in the paper
entitled “Exact analytical solution for suction and injection
flow with thermal enhancement of five nanofluids over an
isothermal stretching sheet with effect of the slip model: a
comparative study?” In another paper entitled “The flow and
heat transfer of a nanofluid past a stretching/shrinking sheet
with a convective boundary condition, S. Mansur and A.
Ishak have studied the boundary layer flow of a nanofluid
past a stretching/shrinking sheet with a convective boundary
condition. Moreover, H. Qing and X. Mingliang have pro-
posed a model of fundamental aspects of the Taylor-series
expansion method of moment (TEMOM) to describe the
aerosol population balance equation due to Brownian coag-
ulation in the continuum regime in the paper entitled “The
fundamental aspects of TEMOM model for particle coagulation
due to Brownian motion—part ii: in the continuum regime”
R. Wang has presented numerical investigations on particle
trapping techniques by using intrinsic hydrodynamic effects
in an expansion-contraction microfluidic device in the paper
entitled “Hydrodynamic trapping of particles in an expansion-
contraction microfluidic device” L.-Z. Huang and D.-M. Nie
in the article entitled “Lattice Boltzmann simulation of col-
lision between 2D circular particles suspension in Couette
flow” simulated the collision between 2D circular particles
suspension in Couette flow by using multiple relaxation time-
based lattice Boltzmann and direct forcing/fictitious domain
method. In the paper entitled “Modeling and numerical
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analysis of the solid particle erosion in curved ducts;” K. Sun et
al. presented a modeling and computational study on particle
erosion in curved ducts. In another paper, M. H. Alawi et al.
have introduced a mathematical model to describe the fine-
particles transport carried by a two-phase flow in a porous
medium to describe the formation damage of asphalt-paved
roads in the paper entitled “Modeling and simulation of flow
and formation damage of asphalt-paved roads” Finally, F. Yuan
and F. Gan have used the method of moments to predict
the evolution of aerosol particles in the rainfall process
in the paper entitled “Evolution of aerosol particles in the
rainfall process via method of moments?” In the paper entitled
“Direct numerical simulation of concentration and orientation
distribution of fibers in a mixing layer” by K. Zhou et al., the
concentration and orientation of suspended fibers in a mixing
layer are investigated numerically.

The second group is concerned with reservoir modeling
and simulation. S. Borazjani et al. presented the paper
entitled “Exact solution for non-self-similar wave-interaction
problem during two-phase four-component flow in porous
media” Analytical solutions for one-dimensional two-phase
multicomponent flows in porous media describe processes of
enhanced oil recovery, environmental flows of waste disposal,
and contaminant propagation in subterranean reservoirs and
water management in aquifers. In the paper entitled “New
scheme of finite difference heterogeneous multiscale method
to solve saturated flow in porous media} F. Chen and L.
Ren have constructed a finite difference scheme, namely, the
development of the finite difference heterogeneous multiscale
method (FDHMM), for simulating saturated water flow in
random porous media. J. Xu et al. in their paper “A direct
Eulerian GRP scheme for the prediction of gas-liquid two-phase
flow in HTHP transient wells” have introduced a dimensional
splitting technique with Eulerian generalized Riemann prob-
lem (GRP) scheme to solve coupled system model of partial
differential equations which concerns with the variation
of the pressure and temperature, velocity, and density at
different times and depths in high temperature-high pressure
(HTHP) gas-liquid two-phase flow wells. In addition to
flow simulation in reservoir, reservoir sedimentation is also
considered in this issue. The basic factors influencing the
density of sediments deposited in reservoirs are discussed,
and uncertainties in reservoir sedimentation have been deter-
mined using the Delta method by F. Imanshoar et al. in the
paper entitled “Reservoir sedimentation based on uncertainty
analysis” Also, the paper of L. Gan and J. Xu, “Retrofitting
transportation network using a fuzzy random multiobjective
bilevel model to hedge against seismic risk; focuses on
the problem of hedging against seismic risk through the
retrofit of transportation systems in large-scale construction
projects.

The third group, which consists of two papers, is con-
cerned with some biological applications. In the first paper
entitled “A new method of moments for the bimodal particle
system in the Stokes regime,” Y.-H. Liu and Z.-Q. Yin studied
the particle system in the Stokes regime with a bimodal
distribution. A. Y. Tang and N. Amin have reviewed some
numerical approaches to solve fluid structure interaction
problems in blood flow in the paper entitled “Some numerical
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approaches to solve fluid structure interaction problems in
blood flow?”

The fourth group focuses on some heat transfer in
fluid flow problems. M. Goodarzi et al. have introduced a
comparison study for the problem of natural convection heat
transfer inside cavities and enclosures in the paper entitled
“Comparison of the finite volume and lattice Boltzmann
methods for solving natural convection heat transfer problems
inside cavities and enclosures?” In the paper entitled “Revisiting
Blasius flow by fixed point method,” D. Xu et al. have used the
fixed-point method to resolve the Blasius problem.

The last group is related to flow and transport applications
in electronic devices. Numerical simulations for the melt
flow under the influence of control devices in a T-type two-
strand bloom caster tundish are presented by Z. He et al. in
the paper entitled “Numerical modeling of the fluid flow in
continuous casting tundish with different control devices” The
fluid-driven efficiency of the micropump based on induced
charge electroosmotic was studied numerically by K. Zhang
et al. in the paper entitled “Design of T-shaped micropump
based on induced charge electroosmotic”

3. Conclusions

This special issue presents and highlights new applications
and new challenges in five different important research areas
of flow and transport. This special issue is not intended to
be an exhaustive collection nor a survey of all of the current
trends in flow and transport research; many additional
significant research areas of flow and transport still exist and
remain to be explored, but multidisciplinary research effort is
a clear trend.
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Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil
recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management
in aquifers. We derive the exact solution for 3 x 3 hyperbolic system of conservation laws that corresponds to two-phase four-
component flow in porous media where sorption of the third component depends on its own concentration in water and also on
the fourth component concentration. Using the potential function as an independent variable instead of time allows splitting the
initial system to 2 x 2 system for concentrations and one scalar hyperbolic equation for phase saturation, which allows for full
integration of non-self-similar problem with wave interactions.

1. Introduction

Exact self-similar solutions of Riemann problems for hyper-
bolic systems of conservation laws and non-self-similar
solutions of hyperbolic wave interactions have been derived
for various flows in gas dynamics, shallow waters, and
chromatography (see monographs [1-8]). For flow in porous
media, hyperbolic systems of conservation laws describe two-
phase multicomponent displacement [9, 10]. Consider

ds  Of (s,¢)
a + ox =0 (1)
d(cs+a(c) 0(cf(s0) B
o0 oax 7 @

where s is the saturation (volumetric fraction) of aqueous
phase and f is the water flux. Equation (1) is the mass
balance for water and (2) is the mass balance for each
component in the aqueous solution. Under the conditions
of thermodynamic equilibrium, the concentrations of the

components adsorbed on the solid phase (a;) and dissolved in
the aqueous phase (c;) are governed by adsorption isotherms:

G) -
(3)

Exact and semianalytical solutions of one-dimensional flow
problems are widely used in stream-line simulation for flow
prediction in three-dimensional natural reservoirs [10]. The
sequence of concentration shocks in the one-dimensional
analytical solution is important for interpretation of labo-
ratory tests in two-phase multicomponent flow in natural
reservoir cores.

The scalar hyperbolic equations (1) and (2), n = 0,
correspond to displacement of oil by water [9, 10]. The
(n+ 1) x (n+ 1) system (1) and (2) describes two-phase
flow of oleic and aqueous phases with n components (such
as polymer and different salts) that may adsorb and be
dissolved in both phases. These flows are typical for so-called
chemical enhanced oil recovery displacements, like injections
of polymers or surfactants, and for numerous environmental
flows [9, 10]. For polymer injection in oil reservoirs, i = 1
corresponds to polymer and i = 2,3,...,n to different ions.

a=al(c), a=(aja,...,a,), c=(chc-.
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Therefore the system (1) and (2) is called the multicomponent
polymer-flooding model [11, 12]. Besides, (n—1)x(n—1) hyper-
bolic system (1) and (2) describes two-phase n-component
displacement, which is typical for so-called gas methods of
enhanced oil recovery [9, 10, 13, 14]. The processes of hot
water injection with phase transitions, secondary migration
of hydrocarbons with consequent formation of petroleum
accumulations, enhanced geothermal energy projects, and
injections into aquifers are described by the above systems.
The Riemann problems correspond to continuous injection
of chemical solutions or gases into oil reservoirs; the solutions
are self-similar [3, 9, 14]. The wave-interaction problems cor-
respond to piece-wise-constant initial-boundary conditions,
for which the solutions are non-self-similar [1, 10, 15-17]. The
wave-interaction solutions describe injection of limited slugs
(banks) of chemical solutions or gaseous solvents driven in
the reservoirs by water or gas [9, 10].

Riemann problem (1) and (2) with n = 1 has been solved
with applications to various injections of polymers [17, 18],
carbonized water and surfactants [19, 20], and so forth. More
complex self-similar solutions of (1) and (2) for n = 2, 3 were
obtained by Barenblatt et al. [21] and Braginskaya and Entov
[22] and later by Johansen et al. and Winther et al. [11, 12, 23-
25]. Analogous solutions for gas injection and n = 3, 4,...
have been obtained by Orr and others [9, 13, 26-31].

The system (1) and (2) describes two-phase multicom-
ponent displacements in large scale approximation, where
the dissipative effects of capillary pressure, diffusion, and
thermodynamic nonequilibrium are negligible if they are
compared with advective fluxes under the large length scale
of the natural subterranean reservoirs. Travelling waves near
to shock discontinuities in dissipative systems have been
presented in [10, 32]. A semianalytical global solutions have
been obtained by Geiger et al. [33] and Schmid et al. [34]; see
also [16].

The particular case of so-called multicomponent polymer
flooding is the dependency of the component sorption
concentration of its own concentration only a;(¢;, ¢, . . ., ¢,) =
a;(¢;). Exact solutions of the Riemann problem for this case
show that the concentration of each component performs
the jump without shocks of other components (see the
corresponding solution in the books [10, 21]). Therefore, in
concentration profiles, the shocks are located in order of
decrease of derivatives of the sorption functions. In the case of
Henry isotherms a;(¢;) = Ic;, the shocks are located in order
of increase of Henry’s sorption coefficients I;.

The distinguished invariant feature of (n + 1) x (n +
1) conservation law systems for two-phase multicomponent
flows in porous media with sorption and phase transitions
equations (1) and (2) is its splitting into an n x n auxiliary
system for concentrations ¢(x,t) and a scalar hyperbolic
equation for saturation s(x, t) [35, 36]. This splitting explains
the simple form of Riemann problem solutions for system (1)
and (2) as compared with gas dynamics or chromatography
(1, 2, 37].

The non-self-similar solution of system (1) and (2), n =
2, for slug injections has been considered by Fayers [17],
where the qualitative behaviour of characteristic lines and
shocks has been described. The exact solutions of system
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(1) and (2) for n = 2 and 3 have been obtained in [15]
(see book [10] for detailed derivations, in which the sorption
of component depends on its own concentration only a; =
a;(¢), i = 1,2,...). Numerous interactions of different
saturation-concentration shocks occur after the injection,
resulting in appearance of moving zones with different
combinations of components. However, after all interactions,
different component slugs are separated from each other.
As in the case of continuous injection, the slugs are finally
positioned in the order of decreasing sorption isotherm
derivatives (da;/dc;). It seems that this simplified case draws
the line where the analytical solutions can be found from the
analysis of system (1) and (2) directly. Consideration of cross-
effects a; = a;(¢;,¢,,...,¢,) in sorption functions equation
(3) introduces significant difficulties into wave analysis, and
even the Riemann problem cannot be solved for any arbitrary
case n = 2 (see [38], where the Riemann solutions have been
obtained for several particular cases).

The splitting technique reduces number of equations in
(1) and (2) by one, allowing for exact solutions in more com-
plex multicomponent cases [35-40]. The Riemann problem
with cross-effects for adsorption a; = a;(c;,c,) has been
solved in [39, 41, 42] for continuous polymer injection with
varying salinity using the splitting method. In the current
paper, the exact solution for non-self-similar problem of
injection of polymer slug with varying salinity followed by
water drive is obtained.

The structure of the text is as follows. The particular
case of the general system (1) and (2) that is discussed
in the current work is introduced in Section 2 along with
physics assumptions and initial-boundary conditions for slug
injection problem. The detailed description of the splitting
procedure for the system is discussed along with formulation
of initial and boundary conditions for the auxiliary system
which is presented in Section 3. Section 4 contains derivation
of the Riemann solution that corresponds to the first stage
of the slug injection. The wave-interaction slug injection
problem is solved in Section 5. Section 6 contains a simplified
solution for the particular case where the initial chemical
concentration is zero, which corresponds to the case of
polymer slug injection. The paper is concluded by physical
interpretation of the solution obtained for chemical slug
injection with different water salinity into oilfield (Sections
7 and 8).

2. Formulation of the Problem

Let us discuss the displacement of oil by aqueous chemical
solution with water drive accounting for different salinities
of formation and injected waters. In the following text, the
component n = 1 is called the polymer, and that n = 2 is
called the salt. The assumptions of the mathematical model
are as follows: both phases are incompressible, dispersion
and capillary forces are neglected, there are two phases (oleic
and aqueous phases) and two components dissolved in water
(polymer and salt), water and oil phases are immiscible,
chemical and salt concentrations in water are negligibly
small and do not affect the volume of the aqueous phase,
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the fractional flow of the aqueous phase is affected by
concentration of the dissolved chemical, the fractional flow
is independent of salt concentration, chemical and salt do
not dissolve in oil, linear sorption for the polymer a = Tk,
Henry’s sorption coeflicient I' is salinity-dependent, salt does
not adsorb on the rock, and temperature is constant.

The system of governing equations consists of mass bal-
ance equations for aqueous phase, for dissolved and adsorbed
chemical, and for dissolved salt [8, 9]:

ds  Of (s,¢)
a + ax =0 (4)
d(cs+alcp)) .\ d(cf (s,0)) o 3)
ot ox
o(Bs)  9(Bf(s,0)
o T . ° (©

where s is the water saturation, f is the fractional flow
function, a is the polymer sorption isotherm, and ¢ and 3 are
chemical and salt concentrations, respectively.

The fractional flow function (water flux) depends on
the water saturation s and on the chemical concentration
c. The typical S-shapes of fractional flow functions f under
¢ = const are shown in Figure 1. The fractional flow is a
monotonically decreasing function of c. Sorption isotherms
are linear for fixed salinity a(c, f) = I'(f)c. The functions
fand a are assumed to be bounded and smooth.

The system (4)-(6) is a hyperbolic 3 x 3 system of
conservation laws with unknowns s, ¢, and f8.

The displacement of oil by chemical slug corresponds to
the following initial-boundary problem:

B B =0,
x—O{ﬁzo’

B=1 c=g, s=sk (8)

t<1
t>1

L
c=¢, S§$=5,

c=0,

7)

s=sk,
t=0,

For t < 1, during continuous injection of chemical solution
with different salinity, the solution of system (4)-(6) subject
to initial-boundary conditions equations (7) and (8) coin-
cides with the solution of the Riemann problem:

x=0, B=0, c=¢, s=s" )

t=0, B=1, c=g¢, s=st (10)

The initial condition is denoted by R in Figure 1 and the
boundary condition corresponding to injection of the slug is
denoted as L.

Generally ¢(x,0) = ¢, > 0 is positive. Further in the
text, the component with concentration c is called “chemical,”
while for the case of the absence of this component initially
in the reservoir c(x, 0) = ¢, = 0 we use the term “polymer”

The solution of the Riemann problem is self-similar:
s(x,t) = s(§), c(x,t) = c(§), Blx,t) = B&), & = x/t and
it can be found in [37, 39, 40]. The solution of the problem
(7) and (8) in the neighbourhood of the point (0, 1) in (x, t)-
plane is also self-similar. The global solution of the system
(4)-(6) subject to the initial-boundary conditions equations

3
0,1 1
L
2
3 D,
D,
f 4
c=¢q
c=c"
D, cC=0
R
-T(1) 0 s 1,0

F1GURE 1: Fractional flow curves and Riemann problem solution,
where ¢, is the slug concentration, ¢, is the initial concentration, and
c” is the intermediate concentration.

(7) and (8) is non-self-similar; it expresses the interactions
between hyperbolic waves occurring from decays of Riemann
discontinuities in points (0, 0) and (0, 1) in (x, £)-plane.

System of (4)-(6) subject to the initial and boundary
conditions equations (9) and (10) is solved in Section 4 using
the method so-called splitting procedure [35]. This procedure
is explained in the next section.

3. Splitting Procedure

In the present section we briefly explain the splitting method
for the solution of hyperbolic system of conservation laws
equations (4)-(6).

3.1. Streamline/Potential Function and Auxiliary System. As it
follows from divergent (conservation law) form of equation
for mass balance for water (1) or (4), there does exist such a
potential function ¢(x, t) that

__%
aa(: (11)
f= 3
that is,
de = fdt — sdx, (12)
¢ (1) = Lx(’: fdt — sdx. 13)

Equation (4) is merely the condition of equality of second
derivatives of the potential ¢ as taken in different orders.
It also expresses that the differential of the first order form
equation (12) equals zero. The splitting procedure consists
of changing the independent variables from (x,t) to (x,¢)
in system (4)-(6). Figures 2 and 3 show the corresponding
mapping [43, 44].

From fluid mechanics point of view, ¢(x, ) is a potential
function, which equals the volume of fluid flowing through
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¢=09(x=0,t))
.<fL<x =0,t,),ckx = 0,t,)

X X

¢ =¢(x,t =0)

/

sR(xy,t = 0),cR(xy, 0= 0)

FIGURE 2: Introduction of potential function (Lagrangian coordinate) and mapping between independent variables.

x X+ Ax

9+ Ap |

x X+ Ax

FIGURE 3: Derivation of mass balance equation in Eulerian and Lagrangian coordinate systems.

a trajectory connecting points (0,0) and (x,t). As it follows
from (12), two streamlines in Figure 3 correspond to constant
values of potential, that is, there is no flux through stream-
lines:

t
wnm—wmm=quﬁm. (14)

Equation (4) shows that the integral of (13) along the closed
contour is equal to zero; that is, the volume of fluid flowing
through a trajectory connecting points (0,0) and (x,t) is
independent of trajectory and depends on end points only.
The potential function equation (13) is determined in the way
that one end of trajectory is fixed at point (0, 0).

Let us derive the relationship between the elementary
wave speeds of the system in (¢, x) coordinates and those of
the large system in (t, x). Consider the trajectory x = x,(t)
and its image ¢ = ¢, (t) by the mapping equation (13):

9o (£) = ¢ (xo (1).1). (15)
Define the trajectory speeds as

dx V:g

D=—, .
dt do

(16)

Let us use x as a parameter for both curves x = x,(¢) and
@ = ¢,(t). Taking derivation of both parts of (13) in x along
trajectories and using speed definitions in (16), we obtain

1_f
— =L _ 17
v=5F 7)
from which follows the relationship between elementary
wave speed in planes (x, t) and (x, ¢):
f

b= s+ 1)V’ as)

For example, the eigenvalues of the system of equation in
(t,x) plane A; and in (¢, x), A;, are related by (Figure 4
(43, 44])

f

Ai(s.e) = s+1/A;

(19)

From now on, the independent variables (x, ) are used in
(4)-(6) instead of (x,t). Expressing the differential form dt
from (12) as

dt = — + — (20)
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FIGURE 4: Speeds of a particle in Eulerian and Lagrangian coordinates.

and accounting for zero differential of the form dt

d%zOz[%(%)—%(%)]dxd(p 1)

we obtain the expression for (4) in coordinates (x, ¢)

0:11) d() _, )

o0 0x

So, (22) is the mass balance for water; that is, it is (4) rewritten
in coordinates (x, @).

Let us derive (5) in (x, ¢) coordinates. The conservation
laws for (5) in the integral form are

(ﬁ (cf)dt —(cs+a)dx =0, (23)
20

where Q) is a closed domain Q ¢ R?, so the integral of (23) is
taken over the closed contour.

Applying the definition of the potential function equation
(13) into (23) yields

Cﬁ c(fdt - sdx) — adx = 4) cdp—adx=0. (24)
20 20

Tending the domain radius to zero and applying Green’s
theorem,

a >
alefp) o, (25)
op 0x
Now let us perform change of independent variables in (6) in
(x, @) coordinates as follows:

” (a (Bs)  9(Bf (s:0))

= - ) dxdt = (ﬁm Bsdx — Bf (s,c)dt

- £

(26)

Finally, the (n + 1) x (n+ 1) system of conservation laws for
two-phase n component chemical flooding in porous media
with adsorption can be split into an n x # auxiliary system
equations (25) and (26) and one independent lifting equation

(22). The splitting is obtained from the change of independent
variables (x, t) to (x, ¢). This change of coordinates also trans-
forms the water conservation law into the lifting equation.
The solution of hyperbolic system (22), (25), and (26) consists
of three steps: (1) solution of the auxiliary problem, (25), and
(26) subject to initial and boundary conditions, (2) solution
of the lifting equation, (22), and (3) determining time ¢ for
each point of the plane (x, ¢) from (13).

The auxiliary system contains only equilibrium thermo-
dynamic variables, while the initial system contains both
hydrodynamic functions (phase’s relative permeabilities and
viscosities) and equilibrium thermodynamic variables.

The above splitting procedure is applied to the solution of
displacement of oil by polymer slug with alternated salinity
in the next section.

3.2. Formulation of the Splitting Problem for Two-Phase Flow
with Polymers and Salt. Introducing new variables “density”
F and “flux” U and applying the splitting technique, the 3 x 3
system (4)-(6) is transformed to the following form:

U=-— (27)

d(F(U.) , 3U) _

3¢ o 0 (28)
da(ch) o
P
a =0. (30)

The auxiliary system equations (29) and (30) are independent
of (28). The auxiliary system has thermodynamic nature since
it contains only sorption function a(c, ) and the unknowns
are the component concentrations ¢ and f3. Equation (28) is
the volume conservation for two immiscible phases. For the
known auxiliary solution of (29) and (30), equation (28) is a
scalar hyperbolic equation. Figure 5 shows the projection of
the space of the large system into that of auxiliary system and
the lifting procedure [43, 44].
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FIGURE 5: Projection of the space of the large system into that of
auxiliary system and the lifting procedure using the solution of
auxiliary system.

The boundary conditions for slug problem equation (7)
are reformulated for coordinates (x, @) as

x=0{§:8:

Figure 2 shows how the initial and boundary conditions
for the large system (4) and (6) are mapped into those for
auxiliary system and the lifting equations (28)-(30).

The initial conditions for slug problem equation (8) are
reformulated for coordinates (x, ¢) as

U=1,
U=1,

c=qp,

c=0,

p<l1

¢ > 1. (31)

B=1, U = +c0. (32)

The solution of the Riemann problem for ¢ < 1 corresponds
to the following initial and boundary conditions:

B =0,

Q= —s"x, B=1,

— R —
Q=-5x c=0;

x=0, c=¢, U=1
(33)

c=¢, U=+o0.

4. Solution for the Riemann Problem

Let us discuss the solution of the problem equations (7) and
(8) for t < 1, which is self-similar; that is, the boundary and
initial conditions become (9) and (10).

The mass balance conditions on shocks which follow from
the conservation law (Hugoniot-Rankine condition) form of
the system (28)-(30) are

o [U] = [F] (34)
olc] = [a] (35)
o[pl=0, (36)
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where o is reciprocal to the shock velocity of (28)-(30).
As salt and polymer concentration are connected by the
thermodynamic equilibrium relationship a(c, ), function
a is discontinuous if ¢ is discontinuous, so is 3. Since F
is a function of ¢ and U, discontinuity of ¢ and U yields
discontinuity of F.

As it follows from equality (36), either 0 = 0 or [f3] = 0.
From (34) and (35) it follows thatif o = 0, [a] = Oand [F] = 0.
If [8] = 0, from (35) and (36) it follows that o = [a]/[c] and
o = [F]/[U]; therefore it yields to o = [a]/[c] = [F]/[U].
Finally from (34), if [f] = 0 and [c] = 0 this leads to 0 =
[F]/[U].

The shock waves must obey the Lax evolutionary condi-
tions [1-4, 9].

4.1. Solution for the Auxiliary System. The solution of auxil-
iary system is presented in Figure 6 by sequence of ¢-shock
from point L into intermediate point and (c, §)-shock into
point R. The corresponding formulae are as follows:

¢, =0, ¢>T(0)x
¢, =0, 0<p<T(0)x (37)
o B=1, —sfx<g<o,

c(x9) _
B(x.9)

where the condition of continuity of function a(c, ) on the
shock with 0 = 0, and (35) allows finding the intermediate
concentration

. I()

4.2. Solution for the Lifting Equation. Figure 7 exhibits initial
and boundary conditions for hydrodynamics lifting equation
(28). Curves F = F(U, c) are shown for constants ¢ = ¢, ¢ =
6, and ¢ = ¢*; they are obtained from fractional flow curves
f = f(s,¢) for the same constant values of concentration c.
Point R corresponds to U tending to infinity and F tending to
minus infinity, where the fractional flow f tends to zero. The
tangent of the segment (0, 0)-(U, F) tends to —sR.

The solution of lifting equation with known concentra-
tions (37) is given by centred wave L-2, (c-U)-shock 2-
>3, (B-c-U)-shock 3->4, and U-shock 4->R (Figure 7). The
centred wave (L-2) is given by (39)

p OF (U'q)
x  oU
Points 2 and 3 are determined by the condition of equality of
U and ¢ shock speeds:
OF (U, 1) _ F, (U ) = F; (Us,¢")
ou U,-U,
Point 4 is determined by condition of equality of the shock
velocities ¢, 8, and U:

F;(Us,c™) = F, (Uy ) = 0. (41)

(39)

=T(0).  (40)

Point 4 is connected to point R by U-shock:

F,(Us6) - F, (Up. o) _ =5, f 5" f, _ R (4

U, - U =t
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FIGURE 6: Solution of the auxiliary problem. (a) Adsorption isotherm for chemical for different water salinities and the Riemann problem
solution; (b) Riemann problem solution on the plane of chemical concentration ¢ and salinity .

F=-s/f ¢ =T(0)x+1
¢

¢ =T(0)x
(f=1B=06)—
1
(f=LB=0¢)—

_ U, B=0 ¢
ok
Us B=1 ¢ *
U=® o
FIGURE 7: The image of the solution in (F-U) plane.
(f=0’:3:1acz)/l R
Q=-s"x

The solution of the Riemann problem equations (28)-(30)

with free variables (x, ¢) is given by the following formulae: FIGURE 8: Solution of the auxiliary and lifting system for slug
problem in (¢, x)-plane.

U1<£>, , B=0, p>T(0
I
c(xg) =4 U ", B=0, 0<p<T(0)x
_ ., _ R
B(x.9) Uss & B=1 —sx <R(P <0 4.3. Inverse Mapping: Change of Variables from (¢, x) to (t, x).
0, o B=1 ¢>-sx Time t = t(x, ¢) for solution is calculated from (12) along any
(43)  path from point (x, ) to point (0, 0). The expression for time
The expression s = —~UF(U, c) allows calculating saturation ! inzone Il s
s(x, @):
x R
1<f) B- B IJ‘/’ s, SR
s , ¢, =0, ¢>T(0)x t=—| do+—| dx= x. (45)
s(x9) X 1* faJo 4 Jo fa
c(xp) =1 5» ¢, B=0, 0<p<T(0)x (44)
> > = 1) - R < < 0
B(x.¢) Si o P o R(P The expression for time t in zone III is
s 6, P=1 ¢<—sx

Figure 8 shows the solution of the system (28)-(30) in (¢, x)- L ¢# M
plane. For ¢ < 1, the solution is self-similar; the wave t = _J do + 5_3[ dx = 2x. (46)
interaction occurs at ¢ > 1. fs



(f=1,8=0,6)—)

FIGURE 9: Non-self-similar solution of the problem for wave inter-
actions in (x, t)-plane.

. Lo )
In zone 1V, integral for calculation time, t = |/ "(do/f +

sdx/f) is calculated along the characteristic in centred U-
wave:

1
R S Y
f(st(o/x),e) (s (9/x).c1)
Figure 9 shows the solution for the Riemann problem att < 1;
see Figure 10 for detailed description of the Riemann solution

and profiles of unknown functions. Finally, the solution of the
Riemann problem for the system (4)-(6) is

t
51<;>, ¢, B=0,t

(47)

')+
>Mx,

f

s I'(0)+s
s(x,t S35 c*, B=0, —3x<t<—() 2 x,
e [; f
c(nt) = ZR+S 25
- 4 3
(x,1) Sg> o B=1, x<t<=x,
P i /s
)
R —4x.

S, C/z, ﬁzl,t< f
L 4

(48)

5. Solution of the Slug Problem

Now let us solve the slug problem equations (31) and (32)
for auxiliary system (29) and (30). The solution of Riemann
problem at the point (0, 1) is given by c-shock with ¢™ = ¢,
and ¢* = ¢; under constant f3:

6 B=0, ¢>T(0)x+1
c(x, ) ¢, B=0, TO)x<e<T(0)x+1
B(xg) |¢» B=0, 0<p<T(0)x

6 B=1, —st<go<0.

(49)

The solution of the auxiliary system is given by (49).
So, zone I in Figure 8 corresponds to initial conditions,
the solution is given by point 4 in zone II, and point 3 holds
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FIGURE 10: Solution of the Riemann problem: (a) trajectories of
shock fronts and characteristic lines in (x, t)-plane; (b) saturation
profile; (c) chemical concentration profile; (d) salinity profile.

in zone III. Centred waves equation (39) fills in zone IV. In
zone V,c = ¢, and § = 0.

Now let us solve the lifting equation (28) with given
c(x, ) and B(x, ).

The Hugoniot-Rankine condition for the rear slug front is

F(U'e)-F(U .q)

- 0
T r(0). (50)
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U is constant along the characteristic lines behind the rear
front

Us (x,9) =U" (x',q)'), (51)

where point (x, (p') is located on the rear front and is located
on the same characteristic line with point (x, ¢):

90_90, _ oF (US’Cl)‘ (52)
x—x' ou

The solution of lifting equation U(x, ¢) is given by different
formulae in zones I-V:

U (x.9)

c(x,9)

B (x, ¢)
Us (%,9), & =0, ¢>T(0)x+1
U1<%>, ¢, =0, T(0)x<ep<T(0)x+1

=1 U, ¢, =0, 0<o<T(0)x
Uy, o B=1, —s"x<gp<0
00, o B=1, go>—st,

(53)

where the equation for rear front of the chemical slug in the
auxiliary plane is

e=T0)x+1. (54)

Finally, the solution of auxiliary problem equation (53) allows
calculating f(x,¢) for zones LII,...,V. Let us start with
determining time t along the rear front of the slug. The
centred s-wave propagates ahead of the rear front

¢ _ f(sha)=s"f'(s"a)
x f'(s%e) .

From (54), (55) follow the expression for xp(¢p) in a
parametric form:

. f(sha)

(55)

_fG%a)

*p(s1) = f(sta) = f'(she) (st +T) A (56)
o) L) ()
P f(sha)=f(shq) (s +1) (57)
)= (5e)
A .
Integration of the form (41) along the rear front gives
¢ s" (p.x)
tr =
PTG pxe) T e’
) ) (58)

t = —,
b A

T () £ () (3 T)

Finally, the solution of the slug problem for the system (4)-
(6) subject to initial and boundary conditions equations (7)
and (8) is (Figure 9)

s(x,t)
c(x,t)
B(x,1)
( I (0) + s5 (t,x)
> X)s G =0, — 1
sbx). o p > fs(ss(tax))cz)x+
t TO)+s T (0) + s5 (¢, x)
sSS(=), o =0, Zx<t< 3 x+1
(x) v B f 1"(0)+f5 (ss (t:%),0)
* S3 $2
=< 3 c, =0, —x<t<
: et 3
—s 45, S3
S4» G =1, x<t< —=—x
‘* Pob T e,
sR, G, =1, t< = +S“x.
~ F 7

(59)

Figure 11 presents trajectories of shock fronts in (x, t)-plane
along with profiles of unknowns s, ¢, and f§ at typical
moments.

Here the trajectory of the rear slug front x, = xp(t) is
given in a parametric form (Figure 12)

1
— =s55+1(0)
XD
1 (60)
B

where s is the abscissa of point B and f, is the ordinate of
point A (Figure 12). Equations (60) can be solved graphically.
Straight line AB is a tangent to the fractional flow curve
¢ = ¢, the tangent point in s+. The rear front position x,
is determined by the interval BC at the moment determined
by AC.

6. Particular Case for the Polymer Absence in
the Reservoir before the Injection

In reality, there is no chemical initially in the reservoir during
the majority of chemical enhanced oil recovery applications;
that is, ¢(x,0) = 0. For zero initial polymer concentration,
the intermediate polymer concentration is equal to zero, so
the points ahead and behind the 3-shock coincide in planes
(c,a) and (s, f). The particular simplified solution is (Figures
13 and 14)

s(x,t)
c(x,t)
B (x,t)

( T(0)+ t,
ss (,x), ¢=0, B=0, t>wx+l
t raf v 0 Poyes, 0,0
+ +s5 (8,
51(7), c=c, =0, %2 5 AL
x £ F(O)fs(ss(t»x)acz)
+
= Jd s c=0, B=0, 5—3x<t< )
£ f
s c=0, B= = +S3x<t<53x
> ' h fs
—s" +
s, c=0, B=1, t< Sl vy
~ f

(61)
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FIGURE 11: The solution of the slug injection problem: (a) trajectories
of shock fronts and characteristic lines in (x, t)-plane; (b) saturation
profile; (c) chemical concentration profile; (d) salinity profile.

7. Fluid Mechanics Interpretation
of the Solution

Following exact solution equations (4)-(9), let us describe
structure of two-phase flow with chemical and salt additives
during chemical slug injection.

During continuous injection t < 1, the solution of
chemical slug injection coincides with that of continuous
chemical injection. Initial conditions equation (10) is shown
by point R that corresponds to low initial saturation and
initial concentrations of chemical ¢, and of salt § = 1.
The boundary condition at x = 0 corresponds to point L
of injection of chemical solution with concentration ¢, and
salinity = 0. The path of Riemann problem solution in
plane (s, f) consists of centred s-wave with injected chemical
concentration and unity salinity, c-s-shock 2->3, ¢, s, 8-
shock 3->4, and s-shock 4->R into initial point (Figure 1).
Following nomenclature by Courant and Friedrichs [1] and
Lake [9], the Riemann solution is L-2->3->4->R. Shock
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FIGURE 12: Solution of the lifting equation in (s, f)-plane.

0.1

)

FIGURE 13: Solution of the lifting system in ( f-s) plane when ¢, = 0.

-T(0) 0 1.0

2->3 in plane (c, ) is horizontal; shock 3->4 is vertical
(Figure 6(b)). Shock 2->3 in plane (c,a) occurs along the
sorption isotherm; shock 3->4 is a horizontal jump from
isotherm ¢ = ¢*to that ¢ = ¢, (Figure 7).

The trajectories of shocks 2->3, 3->4, and 4-> R are
shown in Figure 7. Shock velocities are constant, so the
trajectories are straight lines. Let us fix the position x = 1
of the raw of production wells. Before arrival of the front 4-
> Ratthe momentt = 1/Dj, oil with fraction of water f Rand
initial concentrations of chemical and salt is produced. After
arrival of the front, water-oil mixture with water fraction f,
and initial concentrations of chemical and salt is produced
until the arrival of the 3->4 front at the moment ¢ = 1/D,.

The corresponding profiles of saturation and concentra-
tions are shown in Figure 10. The moment ¢, for profiles is
fixed in Figure 10(a), allowing defining positions of all fronts
in this moment. Corresponding profiles at that moment for
saturation, chemical concentration, and salinity are shown
in Figures 10(b), 10(c), and 10(d), respectively. The saturation
profile consists of declining interval s“~s, in s-wave, two oil-
water banks s; and s,, and the initial undisturbed zone s*.
The chemical concentration profile consists of injected value
¢ = ¢, in s-wave, intermediate value ¢* in s;-bank, and initial
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FIGURE 14: Non-self-similar solution of the problem for wave
interactions in (x, t)-plane when ¢, = 0.

concentration ¢, in s,-bank and in the initial zone. Salinity f3-
profile consists of injected value in zones IV and IIT and initial
value in other zones.

Injection of water without chemical and with salinity
B = 0 starts at the moment ¢t = 1. The flow is not self-
similar anymore. The front trajectories and profiles are shown
in Figure 11. The solution for slug problem coincides with
the solution for continuous injection ahead of the rear front
xp(t). The profiles taken at the moment #; < 1 during
continuous injection (Figure 11) coincide with those from
Figure 10.

The propagation of the rear slug front from the begin-
ning of water drive injection in the reservoir is shown in
Figure 11(a). The rear front velocity decreases reaching the
value of the forward front D; when time tends to infinity. The
slug thickness increases and stabilises.

The profiles are shown in Figures 11(b), 11(c), and 11(d)
for the moment after the beginning of slug injection ¢, > 1.
Saturation decreases in a simple wave behind the rear slug
front, jumps down on the front, decreases in centred s-wave
in the slug, and is constant in zones II, II, and I. Chemical
slug dissolution during the water drive injection is shown in
Figure 11(c). There does occur the full concentration shock
from zero behind the read slug front to the injected value in
the slug. Further in the reservoir, there does appear a zone of
intermediate chemical concentration ¢* in the bank s;. The
concentration is equal to its initial value in banks s, and in
the initial zone. So, dissolution of slug occurs in the initial
water by formation of oil-water bank s; with lower chemical
concentration. Salinity changes by full shock on the front
between zones III and II.

8. Conclusions

Application of the splitting method to 3 x 3 conservation law
system describing two-phase four-component flow in porous
media allows drawing the following conclusions.

1

(1) The method of splitting between hydrodynamics and
thermodynamics in system of two-phase multicom-
ponent flow in porous media allows obtaining an
exact solution for non-self-similar problem of dis-
placement of oil by chemical slug with different water
salinity for the case of linear polymer adsorption
affected by water salinity.

(2) The solution consists of explicit formulae for water
saturation and polymer and salt concentrations in the
continuity domains and of implicit formulae for front
trajectories.

(3) First integrals for front trajectories allow for graphical
interpretation at the hodograph plane, yielding a
graphical method for finding the front trajectories.

(4) For linear sorption isotherms, the solution depends
on three fractional flow curves that correspond to
initial reservoir state R, injected fluid L, and an inter-
mediate curve for intermediate polymer concentra-
tion and injected salinity; the value for intermediate
polymer concentration is the part of exact solution.

(5) For linear sorption isotherms, the only continuous
wave is s-wave with constants ¢ and f3; concentrations
¢ and B change only across the fronts by jumps;
thus the solution of any problem with piece-wise
constant initial and boundary conditions is reduced
to interactions between s-waves and shocks.

(6) Introduction of salinity dependency for sorption of
the chemical introduces the intermediate (c, §)-shock
into the solution of the Riemann problem; this shock
interacts with s-wave and concentration shocks in
the solution of any problem with piece-wise constant
initial and boundary conditions.

(7) The exact solution shows that the injected chemical
slug dissolves in the connate reservoir water rather
than in the chemical-free water injected after the slug.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Long-term cooperation in hyperbolic systems and fruitful
discussions with Professors A. Shapiro (Technical University
of Denmark), Y. Yortsos (University of Southern California),
A. Roberts (University of Adelaide), A. Polyanin (Russian
Academy of Sciences), M. Lurie, and V. Maron (Moscow
Oil and Gas Gubkin University) are gratefully acknowledged.
The reviewers are gratefully acknowledged for their critical
comments yielding to significant improvement of the text.

References

[1] R. Courant and K. O. Friedrichs, Supersonic Flow and Shock
Waves, Springer, New York, NY, USA, 1976.



12

(2]

(3]

(5]
(6]
(7]

(8]

(12

(13]
(14]
(15]

(16]

(17]

(20]

(21]

(22]

I. M. Gel'fand, “Some problems in the theory of quasi-linear
equations,” Uspekhi Matematicheskikh Nauk, vol. 14, no. 2, pp.
87-158, 1959.

A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathe-
matical Aspects of Numerical Solution of Hyperbolic Systems, vol.
118, Chapman & Hall/CRC Press, Boca Raton, Fla, USA, 2001.

B. L. Rozhdestvenski and N. N. Ianenko, Systems of Quasilinear
Equations and Their Application to the Dynamics of Gases, vol.
55, American Mathematical Society, 1983.

G. B. Whitham, Linear and Nonlinear Waves, vol. 42, John Wiley
& Sons, Hoboken, NJ, USA, 2011.

A. Kulikovskii and E. Sveshnikova, Nonlinear Waves in Elastic
Media, CRC Press, Boca Raton, Fla, USA, 1995.

J. D. Logan, An Introduction to Nonlinear Partial Differential
Equations, vol. 93, John Wiley & Sons, Hobokon, NJ, USA, 2010.

H. K. Rhee, R. Aris, and N. R. Amundson, First-Order Partial
Differential Equations: Theory and Application of Hyperbolic
Systems of Quasilinear Equations, Dover, New York, NY, USA,
2001.

L. W. Lake, Enhanced Oil Recovery, Prentice Hall, Englewood
Cliffs, NJ, USA, 1989.

P. Bedrikovetsky, Mathematical Theory of Oil and Gas Recovery:
With Applications to Ex-USSR Oil and Gas Fields, Kluwer
Academic Publishers, Boston, Mass, USA, 1993.

T. Johansen, A. Tveito, and R. Winther, “A Riemann solver for a
two-phase multicomponent process,” SIAM Journal on Scientific
and Statistical Computing, vol. 10, no. 5, pp. 846-879, 1989.

T. Johansen and R. Winther, “The Riemann problem for multi-
component polymer flooding,” SIAM Journal on Mathematical
Analysis, vol. 20, no. 4, pp. 908-929, 1989.

R. Johns and E M. Orr Jr, “Miscible gas displacement of
multicomponent oils,” SPE Journal, vol. 1, pp. 39-50, 1996.

E M. Orr Jr, Theory of Gas Injection Processes, Tie-Line
Publications, Copenhagen, Denmark, 2007.

P. Bedrikovetsky, “Displacement of oil by a chemical slug with
water drive,” Journal of Fluid Dynamics, vol. 3, pp. 102-111, 1982.

V. G. Danilov and D. Mitrovic, “Smooth approximations of
global in time solutions to scalar conservation laws,” Abstract
and Applied Analysis, vol. 2009, Article ID 350762, 26 pages,
2009.

F. Fayers, “Some theoretical results concerning the displacement
of a viscous oil by a hot fluid in a porous medium,” Journal of
Fluid Mechanics, vol. 13, pp. 65-76, 1962.

E. L. Claridge and P. L. Bondor, “A graphical method for calcu-
lating linear displacement with mass transfer and continuously
changing mobilities,” SPE Journal, vol. 14, no. 6, pp. 609-618,
1974.

G. J. Hirasaki, “Application of the theory of multicomponent,
multiphase displacement to three-component, two-phase sur-
factant flooding,” SPE Journal, vol. 21, no. 2, pp. 191-204, 1981.
G. A. Pope, L. W. Lake, and E. G. Helfferich, “Cation exchange
in chemical flooding—part 1: basic theory without dispersion,”
SPE Journal, vol. 18, no. 6, pp. 418-434, 1978.

G. L. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Fluid
Flows through Natural Rocks, Kluwer Academic Publishers,
London, UK, 1989.

G. S. Braginskaya and V. M. Entov, “Nonisothermal displace-
ment of oil by a solution of an active additive,” Fluid Dynamics,
vol. 15, no. 6, pp- 873-880, 1980.

(23]

[24]

[25]

(26]

(27]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

Abstract and Applied Analysis

O. Dahl, T. Johansen, A. Tveito, and R. Winther, “Mulicom-
ponent chromatography in a two phase environment,” SIAM
Journal on Applied Mathematics, vol. 52, no. 1, pp. 65-104, 1992.
T. Johansen, Y. Wang, E. M. Orr Jr.,, and B. Dindoruk, “Four-
component gas/oil displacements in one dimension—part I:
global triangular structure,” Transport in Porous Media, vol. 61,
no. 1, pp. 59-76, 2005.

T. Johansen and R. Winther, “The solution of the Riemann
problem for a hyperbolic system of conservation laws modeling
polymer flooding,” SIAM Journal on Mathematical Analysis, vol.
19, no. 3, pp. 541-566, 1988.

P. Bedrikovetsky and M. Chumak, “Riemann problem for
two-phase four-and morecomponent displacement (Ideal Mix-
tures),” in Proceedings of the 3rd European Conference on the
Mathematics of Oil Recovery, 1992.

V. Entov, E Turetskaya, and D. Voskov, “On approximation of
phase equilibria of multicomponent hydrocarbon mixtures and
prediction of oil displacement by gas injection,” in Proceedings of
the 8th European Conference on the Mathematics of Oil Recovery,
2002.

V. Entov and D. Voskov, “On oil displacement by gas injection,”
in Proceedings of the 7th European Conference on the Mathemat-
ics of Oil Recovery, 2000.

R. T. Johns, B. Dindoruk, and E. M. Orr Jr., “Analytical theory
of combined condensing/vaporizing gas drives,” SPE Advanced
Technology Series, vol. 1, no. 2, pp. 7-16, 1993.

C. Wachmann, “A mathematical theory for the displacement of
oil and water by alcohol,” Old SPE Journal, vol. 4, pp. 250-266,
1964.

A. Zick, “A combined condensing/vaporizing mechanism in the
displacement of oil by enriched gases,” in Proceedings of the SPE
Annual Technical Conference and Exhibition, 1986.

O. M. Alishaeva, V. M. Entov, and A. F. Zazovskii, “Structures
of the conjugate saturation and concentration discontinuities
in the displacement of oil by a solution of an active material,”
Journal of Applied Mechanics and Technical Physics, vol. 23, no.
5, pp. 675-682, 1982.

S. Geiger, K. S. Schmid, and Y. Zaretskiy, “Mathematical analysis
and numerical simulation of multi-phase multi-component
flow in heterogeneous porous media,” Current Opinion in
Colloid and Interface Science, vol. 17, no. 3, pp. 147-155, 2012.

K. S. Schmid, S. Geiger, and K. S. Sorbie, “Analytical solutions
for co- and counter-current imbibition of sorbing, dispersive
solutes in immiscible two-phase flow;” in Proceedings of the 12th
European Conference on the Mathematics of Oil Recovery, 2012.

A. P. Pires, P. G. Bedrikovetsky, and A. A. Shapiro, “A splitting
technique for analytical modelling of two-phase multicompo-
nent flow in porous media,” Journal of Petroleum Science and
Engineering, vol. 51, no. 1-2, pp. 54-67, 2006.

A. P. Pires, Splitting between thermodynamics and hydrody-
namics in the processes of enhanced oil recovery [Ph.D. thesis],
Laboratory of Petroleum Exploration and Production, North
Fluminense State University UENE 2003.

H.-K. Rhee, R. Aris, and N. R. Amundson, “On the theory of
multicomponent chromatography,” Philosophical Transactions
of the Royal Society A, vol. 267, no. 1182, pp. 419-455, 1970.

V. M. Entov and A. F. Zazovskii, “Displacement of oil by a
solution of an active and a passive additive;” Fluid Dynamics,
vol. 17, no. 6, pp. 876-884, 1982.

C. B. Cardoso, R. C. A. Silva, and A. P. Pires, “The role
of adsorption isotherms on chemical-flooding oil recovery;,



Abstract and Applied Analysis

in Proceedings of the SPE Annual Technical Conference and
Exhibition (ATCE ’07), pp. 773-780, November 2007.

B. Vicente, V. Priimenko, and A. Pires, “Streamlines simula-
tion of polymer slugs injection in petroleum reservoirs,” in
Proceedings of the SPE Latin America and Caribbean Petroleum
Engineering Conference, 2012.

S. Oladyshkin and M. Panfilov, “Splitting the thermodynamlics
and hydrodynamics in compositional gas-liquid flow through
porous reservoirs,” in Proceedings of the 10th European Confer-
ence on the Mathematics of Oil Recovery, 2006.

P. M. Ribeiro and A. P. Pires, “The displacement of oil by
polymer slugs considering adsorption effects,” in Proceedings of
the SPE Annual Technical Conference and Exhibition (ATCE '08),
pp. 851-865, September 2008.

P. Bedrikovetski, A. Pires, and A. Shapiro, “Conservation law
system for two-phase n-component flow in porous media:
splitting between thermodynamics and hydrodynamics,” in
Proceedings of the 10th International Congress on Hyperbolic
Problems Theory, 2004.

A. Pires, P. Bedrikovetsky, and A. Shapiro, “Splitting between
thermodynamics and hydrodynamics in compositional mod-
elling,” in Proceedings of the 9th European Conference on the
Mathematics of Oil Recovery, 2004.

13



Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 367627, 6 pages
http://dx.doi.org/10.1155/2014/367627

Research Article

Reservoir Sedimentation Based on Uncertainty Analysis

Farhad Imanshoar,' Afshin Iahangirzadeh,2 Hossein Basser,” Shatirah Akib,’
Babak Kamali,” Mohammad Reza M. Tabatabaei,” and Masoud Kakouei*

! Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2 Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
? Faculty of Water and Environment Engineering, Power and Water University of Technology, Tehran, Iran
* Department of Computer Engineering, Faculty of Engineering, Payam Noor University, Astaneh Ashrafieh, Iran

Correspondence should be addressed to Afshin Jahangirzadeh; afshin.jk@gmail.com

Received 16 September 2013; Revised 23 January 2014; Accepted 27 January 2014; Published 4 March 2014

Academic Editor: Mohamed Fathy EI-Amin

Copyright © 2014 Farhad Imanshoar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus,
sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not
impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to
consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this
paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir
sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern
Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this
investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated
sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to
about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties

associated with reservoir sedimentation.

1. Introduction

Reservoir sedimentation is filling of the reservoir with
sediment carried into the dam reservoir by streams [1].
Understanding the reservoir sedimentation process is of
fundamental significance in hydrosystems engineering. Sed-
iment inflow and deposition can affect the function of dam
reservoirs. Therefore, it is of crucial importance to estimate
the sedimentation rate and the period of time before sediment
accumulation could interfere with the useful functioning of
the reservoir. When designing a reservoir, sufficient sedi-
ment storage capacity should be taken into account so that
sediment accumulation will not impair the function of the
reservoir during the useful operational-economic life of the
project [2].

Sedimentation process in a reservoir is quite complex
because it is often influenced by several factors including
hydrological fluctuations in water and sediment inflow, vari-
ation in sediment particle size, reservoir operation cycle, and

physical controls such as size and shape of the reservoir [3, 4].
Other factors that may be important for some reservoirs are
vegetation cover in upper reaches, turbulence and density
currents, erosion of deposited sediments, and sluicing of
sediment through the dam.

Once the volume of sediment inflow to a reservoir
has been determined, effects of the sedimentation process
over the life span and the daily operation of the reservoir
must be evaluated. In the design of a reservoir, the mean
annual sediment inflow, the efficacy of the reservoir in
trapping sediment, the ultimate density of the deposited
sediment, and the distribution of the sediment within the
reservoir are among the most important factors that must be
considered. Additional storage volume equal to the volume
of the sediment expected to be deposited during the life
of the reservoir is often included in the original design to
prevent premature loss of storage capacity. The United States
Bureau of Reclamation [2] suggests using a 100-year period of
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economic analysis and sediment accumulation in a reservoir.
Less than 100 years of sediment accumulation may also be
suggested in cases where the economic analysis justifies lesser
allocation. However, there is uncertainty associated with the
factors involved in reservoir sedimentation. The sources of
uncertainty can be generally classified into two main groups:
first group is natural factors (the natural factors are related to
natural happenings and conditions), which include meteoric
factors, changes in watershed hydraulic characteristics, and
natural disaster occurrences. Second group is unnatural
factors (the unnatural factors are caused by human-induced
activities) which include land-use changes and management
strategies [3, 4].

On the whole, natural variability and model related
uncertainties constantly have an effective role in accuracy
of determining the amount of sediment deposition in the
reservoir on a yearly basis, the accumulated sediment volume
in the reservoir over the number of years of reservoir
operation, and the time it takes for the accumulation of a
certain amount of sediment in the reservoir (e.g., a fraction
of the death capacity or a fraction of the total capacity of the
reservoir) [3, 5, 6]. In this context, the response of the system
to variable, uncertain inputs can be statistically quantified
through uncertainty analysis [7].

Salas and Shin [3] analyzed the uncertainty of many
factors involved in reservoir sedimentation. These factors,
called “stochastic inputs,” include those inputs associated
with annual suspended and bed load sediment rating curves,
those associated with the type of incoming sediment, those
associated with the trap efficacy of a reservoir, and those asso-
ciated with the variability of annual stream flow. Intrinsically,
these inputs are of random phenomena [7, 8]. This type of
variability is always associated with the factors involved in
reservoir sedimentation and may not be controlled [3, 9].

This study focuses on identifying the basic factors influ-
encing the density of sediments deposited in the reservoirs
and determining uncertainties in reservoir sedimentation
using the Delta method. A case study of Kenny Reservoir
in the White River Basin in northwestern Colorado [3, 9]
was designated to determine the density of deposits in the
reservoir and the coefficient of variation. Thus, the present
study is an attempt to ascertain the accuracy of determining
the mean density of accumulated sediments after a certain
period of time by calculating the coefficient of variation [9].

2. Factors Contributing to
Reservoir Sedimentation

2.1. Natural Factors. Natural factors affecting reservoir sed-
imentation are those intrinsic aspects of the world’s water
hydrologic cycle and the rate of land surface change. These
factors are meteoric factors (e.g., precipitation, snow, hail,
and wind) [3], watershed topography and geology, vegetation
cover, natural disasters (e.g., floods and droughts), and
the hydraulic condition of the reservoir (e.g., the ratio of
reservoir capacity to inflow volume, the shape of the reservoir,
specifications of bottom outlets, the condition of reservoir
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TABLE 1: Sediment classification according to size.

Sediment type Size range (mm)
Clay <0.004

Silt 0.004 to 0.062
Sand 0.062 to 2

operation, the trap efficiency of the reservoir, flow turbulence,
and physical properties of inflow) [11].

2.2. Unnatural (Human-Induced) Factors. Overexploitation
of forests, destruction of grasslands, and land-use changes
induced by human activities affect water resources and
often intensify soil erosion which consequently increase
reservoir sedimentation rates in different ways. Management
strategies, as a human-related factor, can also directly affect
the sedimentation process in reservoir dams. The main
deficiencies in this field could be the propensity to store
water from wet to dry seasons, the tendency to produce
more hydropower energy without considering sedimentary
aspects, incorrect design of water works, and shortcomings
of operation manuals [11, 12].

3. Methods

3.1. Density of Deposited Sediments. Basic factors influencing
the density of sediments deposited in a reservoir are (i) the
reservoir operation and management, (ii) the texture and
size of deposited sediment particles, and (iii) the compaction
or consolidation rate of deposited sediments [2, 11]. Among
these, the operational plan of the reservoir is probably the
most significant factor [2, 3, 5]. Sediments deposited in a
reservoir are subject to considerable drawdown with the
result that the sediments may be exposed for long periods,
and therefore undergo greater consolidation. On the other
hand, reservoirs which operate under a fairly stable pool do
not allow the deposits to dry out and consolidate as much.
The size of the incoming sediment particles has a significant
effect on density of deposits. Sediment deposits composed of
silt and sand have higher densities than those in which clay
predominates [2]. The classification of sediments according
to size is proposed by the American Geophysical Union
(Table 1).

Accumulation of new sediment deposits on top of pre-
viously deposited sediments often changes the density of
earlier deposits. The consolidation process affects the average
density over the estimated life of the reservoir, such as
for a 100-year period. Therefore, the influence of reservoir
operation is the most significant factor due to its effect
on the amount of consolidation that can take place in the
clay fraction of the deposited material when a reservoir is
subject to considerable drawdown. Strand and Pemberton
[10] classified reservoir operations (Table 2).

Abovementioned reservoir types for operation were as-
sessed by engineering judgment. Selection of the proper
reservoir operation can usually be made through the oper-
ation study prepared for the reservoir [10]. This concept
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TaBLE 2: Classification of reservoir operation [10].

No. Reservoir operation

1 Sediment always submerged or nearly submerged

Normally moderate to considerable reservoir
drawdown

Reservoir normally empty

Riverbed sediments

depends on hydraulic conditions of the intake and sediment
trap coeflicient of the reservoir. For example, for reservoir
type 1, released water of dam is clear or near to clear; therefore
the sediments are always submerged or nearly submerged
while for reservoir type 4, running river flow passes the dam
and, in other words, the released water is debris flow. The
other two operations are judged in this manner.

The size of sediment particles entering the reservoir also
affects the density, as shown by the variation in initial masses.
Once the reservoir operation number has been assessed, the
density of the sediment deposits can be estimated using (1)
[2,10]. Consider

W, = WP + W, P, + WP, 1)

where W, is unit weight (kg/m’), P, P, and Ps are the
percentages of clay, silt, and sand in the inflowing sediment,
respectively, and W, W,,,, and Ws are coefficients of unit
weight of clay, silt, and sand, respectively (Table 3) [2, 10].

Sediments accumulate in the reservoir in each of the T
years of operation, and each year’s deposit will have a different
compaction time, which is significantly dependent on the
type of reservoir operation and the size of the incoming
sediment particles. Thus, density of sediments deposited
during T years of reservoir operation can be estimated as an
approximation of the integral of (2) [5, 13]:

T
T-1

Wy = W, + 0.4343K (InT)-1|, T>1, ()

where W is the average density after T  years of operation, W,
is the initial unit weight (density) derived from (1), and K is
consolidation constant dependent on type of reservoir oper-
ation and sediment size distribution (Table 4). In practice, a
weighted average of consolidation constants must be used for
a mixture of sediment (3) [2, 5, 13]:

K, = K-P- + K, P, + K¢Ps. (3)

3.2. Analysis of Uncertainty of Reservoir Sedimentation.
When designing hydrosystems, it is essential to take uncer-
tainty into consideration since many influences are func-
tionally related to a number of uncertain variables. For
instance, as already noted, natural factors and unnatural
factors result in a complex and uncertain procedure for
reservoir sedimentation trend, and hence sediment density
is subject to uncertainty. On the other hand, optimal design
of reservoir geometry (dead storage and live storage) is a
fundamental goal for hydraulic engineers.

TABLE 3: Initial unit weight of incoming sediments based on
reservoir operation and type of sediments.

Operation Initial unit weight (kg/m?)

type Clay-W,, Silt-W,,, Sand-Wg
1 416 1120 1550

2 561 1140 1550

3 641 1150 1550

4 961 1170 1550

TABLE 4: K values for incoming sediments based on reservoir
operation and type of sediment [2].

Operation K values for SI units

type Clay-K Silt-K,, Sand-Kg
256 91 0
135 29 0

3,4 0 0 0

Several methods for uncertainty analysis have been devel-
oped and applied in water resources engineering. The most
widely used methods are Monte Carlo Simulation (MCS)
and first-order analysis (FOA) [3, 5]. The latter is based on
linearization of the functional relationship which relates a
dependent random variable and a set of independent random
variables by Taylor series expansion. The FOA method has
been applied to several water resource and environmental
engineering problems including uncertainty [5, 6, 14]. For
example, Tehrani et al. benefited from Latin Hypercube Sam-
pling method to estimate accumulated reservoir sediment
volume in Shahr-Chai Dam by FOA method and the sensi-
tivity analysis showed that suspended sediment and bed load,
followed by annual stream flow, were the most important
factors influencing the accumulated reservoir sedimentation
volume, for both the total period and the wet and dry time
periods, and trap efficiency and percentage of sediments are
the next most important [5]. Furthermore, Hall used FOA
method to extend a fuzzy set theory and possibility theory
for coastal hydraulics [14].

In MCS method, stochastic inputs are generated from
their probability distributions and are then entered into
empirical or analytical models of the underlying physical
process involved in generating stochastic outputs. The gen-
erated outputs are then analyzed statistically to quantify the
uncertainty of the output [15, 16]. Salas and Shin [3] analyzed
the uncertainty of annual reservoir sedimentation volume
(RSV) and accumulated reservoir sedimentation volume
(ARSV) based on Monte Carlo Simulation (MCS) and Latin
Hypercube Sampling (LHS). The procedures were applied
to the case of Kenny Reservoir in the White River basin in
Colorado. The results indicated that the variability of RSV
may be described by a Gamma-2 distribution for which the
coeflicient of variation was of the order of 65% [3]. This rate
of variation for determining annual reservoir sedimentation
volume makes a serious challenge to design or manage the
reservoir operation.



Although the abovementioned studies developed me-
thodical outcomes in hydrosystem analysis especially in
alluvial hydraulics uncertainties, in these researches the
density of sediments which were deposited in the reservoir
was assumed constant. The sediments, which accumulate
in the reservoir by passing the time, will have a different
compaction; therefore their density will change depending
on variety of factors. Consequently, in this paper in order to
develop former studies, it is aimed to focus on identifying the
basic factors which affect the density of sediments deposited
in the reservoirs. Also uncertainties in reservoir sediments
density are determined using the Delta method.

3.3. Analysis of Uncertainty (Delta Method). First-order anal-
ysis of uncertainties, which is also known as the Delta
method, is a rather straightforward and useful technique
for the approximation of such uncertainties. This method
is widely used in many fields of engineering due mainly
to its ease of application to a wide variety of problems
[17-19]. Mays stated that Delta method application is quite
popular in many fields of engineering and, as a result, he
developed a risk-based solution for storm sewers design
[17]. Imanshoar et al. used Delta method to study trophic
state index (TSI) uncertainty and its variation for Miyun
Reservoir in China. Their research showed that the aver-
age TSI number and its variation for mentioned reservoir
oscillated between Mesotrophic to Eutrophic category [18].
Furthermore, Resende et al. applied Delta method to estimate
the mapping, from uncertainty in discrete choice model
parameters to uncertainty of profit outcomes, and they
identified the estimated a-profit as a closed form function of
design decision variables in computer science [19].

First-order analysis is often used to assess the uncertainty
in a deterministic model formulation involving parameters
which are uncertain (i.e., not known with certainty). First-
order analysis specifically enables us to determine the mean
and variance of a random variable which is functionally
related to several other variables, some of which are ran-
dom. Thus, using first-order analysis, the combined effect of
uncertainty in a model formulation, and the use of uncertain
parameters can be assessed [14, 17]. Consider a random
variable y that is a function of k random variables (4)
(multivariate case) [17]:

X)) =G(x), i=1~j (4

This function can be expressed as a deterministic equation
such as the equation mentioned above, a rational formula or
Manning’s equation, or a complex model that must be solved
on a computer. The objective is to treat a deterministic model
that has uncertain inputs in order to determine the effect of
the uncertain parameters x, ..., x; on the model output y.
Equation (4) can be expressed as y = G(x;), where x =
X1, X5 .., X. Using a Taylor series expansion of k random
variables, ignoring the second and higher order terms, we can
obtain [17]

y:G(xl,xz,...

j
b =6+ Y(52) (-3, ©

i=1
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where p,, refers to the mean value of y under the variation of
x; and the derivation (0G/0x;)5 are the sensitivity coeflicients
that represent the rate of change of the function value G(x;)
at (x; — x;). Assuming that the k random variables are
independent, the variance of y can be approximated as [17]

(a_G>2 5 (6)
axi X; ”y s

It is important to remember that all of the random parameters
are assumed to follow a uniform distribution, so the mean
and variance of each parameter can be calculated using
mean = (a + b)/2 and variance = (a — b)*/12, in which a and
b are the lower and upper bounds, respectively (7). Consider

Qizz

J
i=1

Q- J_g(b‘“>. @)

o
X 3 \b+a

3.3.1. Uncertainty Analysis for Density of Sediments Deposited.
Notwithstanding the advances made in understanding sev-
eral factors involved in reservoir sedimentation, predicting
the accumulation of sediment in a reservoir throughout the
years after construction of the dam is still a complex problem
in hydraulic engineering. As noted earlier, the volume of
reservoir sedimentation depends, among other factors, on
the quantity of sediment inflow, the percentage of sediment
inflow trapped by the reservoir, and the specific weight of
the deposited sediments considering the effect of compaction
with time. The sediments entering a reservoir are generally
a mixture of clay, silt, and sand. The fraction of each type
of sediment, namely, P, P,,, and Py (for clay, silt, and sand,
resp.), vary from year to year. Thus, it would be impractical to
determine such variable fractions from field measurements.
Standard statistical analysis can offer a certain distribution
function for predicting fractions of each sediment type.
For instance, it may be assumed that such fractions are
uniformly distributed with lower and upper bounds that are
obtained from the measurements. Or the fractions of each
type of sediments may be assumed to be independent. In this
approach the percentages of clay, silt, and sand will have to be
adjusted so that they add up to 100% [3].

Therefore, to determine the uncertainty associated with
the type of incoming sediment and their effect on deposited
sediment’s density, (2) can be rewritten using (1) and (3) as
follows:

Wy = P, {WC+0.434KC [T_ (InT) - 1”
‘P {wm +0434K, [TI: - (InT) - 1” (8)
P {WS +0.434K [TT - (InT) - 1”
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Using (5) and (6), the variation coefficient of deposited sedi-
ments’ density after T years of operation could be determined
as follows:

5/ o= \2 2/ = \2
@, - <aWT) OP¢ @+ <8WT> oP,, @
! oP¢ Oy, - opP,, Oy, ’
2/ = \2
. <8WT > 0P 2,
0P a[’lWT :
€)

where Qy,_is the coefficient of variation of sediments’ density
after T years of operation, and Qp, Qp , and Qp are
the variation coefficient of clay, silt, and sand percentage,
respectively. Equation (9) can thus be rewritten as follows:

— 2
T 2( oP¢ )
—(n1)-1|) <a,4 )QPC

Wr

03, = (WC +0.434KC[
T 20 9P\’
+ (Wm+0.434Km [— (lnT)—l]) —" ) o
T-1 Oty s
T 2( b, \’
InT -1]) s ) a2,
T-1 (nT) (8;4 > B

4. Results and Discussion

+ <WS +0.434K [

4.1. Case Study (Kenny Reservoir). Uncertainty analysis of
density of sediments deposited in reservoir after T' years of
operation as described earlier was applied to the Kenny Reser-
voir in the White River Basin in northwestern Colorado.
Taylor Draw Dam was constructed in the early 1980’ and
created the Kenny Reservoir with a capacity of about 17 x
10° m?®, which has been in operation since 1984 [3, 20].

The mean density of sediments deposited after T = 50
years of operation and its coefficient of variation for Kenny
Reservoir data was determined using the abovementioned
method. The range of percentages of each type of sediment
(i.e., Ps, P, and P for clay, silt, and sand, resp.) are inde-
pendent because of their physical differences. It is important
to mention that Tobin and Hollowed evaluated statistical
distributions of each type of sediment and found them close
to the uniform type, and therefore they assumed them to be
uniformly distributed [3, 9]. Also, according to the reservoir
hydraulic condition (permanent reservoir with long length)
the sediments were always submerged. Also, the lower and
upper bounds for each fraction were analyzed by Tobin
and Hollowed using twenty samples of suspended sediment
which were collected [3, 9] (Table 5).

It should be borne in mind that for each sample the
percentages of clay, silt, and sand should add up to 100%
(Pc + P,, + Ps = 100%). The mean percentages of sediment
accumulated (Table 5) can be summarized according to the
type and the coeflicient of variation using (9).

Assuming the sediments are always submerged or nearly
submerged in Kenny Reservoir (using Table 6 and (8)), the

5
TaBLE 5: Clay, silt, and sand percentages range.
Sediment type  Lower bound ~ Upper bound  Distribution
P (%) 16 41 Uniform
P, (%) 39 63 Uniform
P (%) 14 43 Uniform

TABLE 6: Statistical properties of stochastic inputs for uncertainty
analysis.

Sedimenttype  Mean Star.lde.lrd Coeﬂi.cie_znt of
deviation variation
P (%) 28.5 7.216884 0.253224
P, (%) 51 6.928197 0.135847
Pg (%) 28.5 8.37159 0.293740

mean density of sediments after T = 50 years of operation
can be obtained as follows:

28.5 50
fy = —= {416 +0.4343 x 256 [ (In 50) — 1”
™ 100 50 — 1
51 50
+—{1120+0.4343x91[ (ln50)—1”
100 50 - 1
28.5
+ 222 {1500 + 0} = 1065.42 kg/m’.
100
(1)

Then, using Table 4 (reservoir type 1) and (10), coefficient of
variation of sediments’ density after T = 50 years of Kenny
reservoir operation can be assessed as follows:

Q3. =0.0098 — Oy = 0.099. (12)

Hence, the accuracy in determining the mean density of
sediments after T = 50 years of operation in this reservoir
is £9.9%. Further, the standard deviation of this parameter
can be determined as follows:

Ow, = Pw, Q.- (13)
Thus,
Oy, = 1065.42 x 0.099 = 105.48 kgm_3, (14)

where oy, refers to the standard deviation of variable y (in
this case y = Wr,).

Results of this case study indicate that the mean density
of sediments deposited after 50 years of operation in Kenny
Reservoir is 1065.42 + 105.48 (mean + SD) kg/m3 (14).
Therefore, the accuracy of calculating the mean density of
sediments deposited after the 50th year of operation and the
needed volume for dead storage design is 9.9% (~10%).

5. Conclusion

Due to the wide range of uncertain parameters involved in
the design procedure, predicting the deposition and accu-
mulation of sediments in a reservoir is a complex problem,



one that has attracted the attention of hydraulic engineers
and scientists for many decades. In this paper, the problem
of analyzing and quantifying the uncertainty of mean density
of sediments deposited in a reservoir and its compaction
through the years of reservoir operation has been addressed.

Since in previous studies the density of sediments which
were deposited in the reservoir were assumed constant, in this
paper the former studies were developed by identifying the
basic factors which affect the density of sediments deposited
in the reservoirs. Also uncertainties in reservoir sediments
density are determined using the Delta method.

For this purpose, the uncertainty of the input factors
(stochastic inputs) was analyzed first. Then, using the Delta
method, the uncertainty associated with the type of incoming
sediments and their effect on density of sediments and its
coeflicient of variation were determined.

Results of this research indicate that the mean density
of sediments deposited after 50 years of operation in Kenny
Reservoir is 1065.42 + 105.48 (mean + SD) kg/rn3 . Therefore,
the accuracy of calculating the mean density of sediments
deposited after the 50th year of operation and the needed
volume for dead storage design is 10%. This user-friendly
method can be applied to engineering practices to optimize
dead storage planning via interfacing with uncertainties
associated with reservoir sedimentation.
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A new finite difference scheme, the development of the finite difference heterogeneous multiscale method (FDHMM), is
constructed for simulating saturated water flow in random porous media. In the discretization framework of FDHMM, we follow
some ideas from the multiscale finite element method and construct basic microscopic elliptic models. Tests on a variety of
numerical experiments show that, in the case that only about a half of the information of the whole microstructure is used, the
constructed scheme gives better accuracy at a much lower computational time than FDHMM for the problem of aquifer response
to sudden change in reservoir level and gives comparable accuracy at a much lower computational time than FDHMM for the weak

drawdown problem.

1. Introduction

Natural porous media exhibit a significant spatial variability
in most attributes of hydrogeological interest. For instance,
it is quite typical for hydraulic conductivity to vary orders of
magnitude over distances [1]. The groundwater flow problems
in heterogeneous porous media can be accurately solved by
using conventional finite element method or finite differ-
ence method based on smaller scale, which leads to more
computational cost. Discrete schemes obtained in this way
are often by far too expensive to be solved directly. For
the sake of the accuracy and efficiency, several different but
related multiscale methods, such as the multiscale finite ele-
ment method (MsFEM) [2, 3], the heterogeneous multiscale
method (HMM) [4], and the numerical homogenization
method [5], for problems with oscillating coeflicients have
been proposed to accommodate the fine-scale description
directly. Here, we should also mention the work of Babuska
in the 70s [6-8], which motivated these multiscale methods
in an extent.

Multiscale solution methods are currently under active
investigation for the simulation of subsurface flow in het-
erogeneous formations [9]. Ye et al. [10] applied MSFEM to

simulate two- and three-dimensional saturated flow prob-
lems. Chen and Hou [11] proposed a mixed multiscale
finite element method for elliptic problems with oscillating
coeficients; they demonstrated the efficiency and accuracy of
the proposed method for flow transport in a porous medium
with a random log-normal relative permeability. He and
Ren [12] presented the finite volume MsFEM for solving
saturated flow in heterogeneous porous media. E et al. [13]
took a systemic analysis of HMM for elliptic homogenization
problems, where the error between the numerical solution
of HMM and the solution of homogenized equation is
estimated, and how to construct better approximation of
the exact solution from the HMM solution is discussed.
Ming and Zhang [14] applied HMM to the linear parabolic
homogenization problem and discriminated different types
of microscopic models. Ming and Yue [15] discussed the
numerical performance of HMM including comparison with
other methods. Yue and E [16] developed HMM for linear and
nonlinear transport equations with multiscale velocity fields
in heterogeneous porous media and focused on the problem
where advection is dominant at the small scale.

Most of existing multiscale methods have been limited
to the finite element method [17-19]. There are also widely
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used finite difference flow and solute transport models in
both the groundwater and oil industries. To handle multiscale
problems with finite difference methods, based on the frame-
work of HMM [4], Abdulle and E [20] proposed the finite
difference heterogeneous multiscale method (FDHMM) for
solving multiscale parabolic problems. This method includes
a “heterogeneous” discretization which cares about the fine
scale only on small representative region of the spatial
domain. FDHMM has two components: a macroscopic
scheme evolved on a coarse grid (the grid of interest) with
unknown data recovered from the solutions of the micro-
scopic model and a microscopic scheme, in which the orig-
inal equation is solved on a sparse (heterogeneous) spatial
domain. The similar idea can be found in [21]. Chen and Ren
[22] applied FDHMM to Richards’ equation; they found that
FDHMM could effectively simulate the transient unsaturated
flow in the specific soils. In the saturated flow case, we may
precompute the macroscopic flux at a preprocessing step to
save the computational time. In addition, Abdulle and E
[20] studied the multiscale parabolic equation without the
source sink term and considered the examples where the
coeflicients change according to the smooth function. For
transient flow problem in heterogeneous porous media, the
coeflicients generally change in a random form; thus there is
a need for more evaluation of the applicability of FDHMM.
Here, we propose a new scheme of FDHMM for simu-
lating not only the steady saturated flow problem but also
the transient saturated flow problem in geostatistical random
porous media. The constructed scheme employs an idea
presented by Ming and Zhang [14]; that is, the microscale
parabolic model can be reduced to the microscopic elliptic
model for the problem without oscillation propagation in
time. Motivated by the construction of the multiscale finite
element base functions [2, 3], in every control volume, we
divide the microscopic elliptic model into two basic micro-
scopic elliptic models and estimate the basic macroscopic
flux by the solutions of these two basic microscopic elliptic
models. The small scale information is then brought to the
large scale through the approximation of basic macroscopic
fluxes. These basic macroscopic fluxes are just calculated
once at the preprocessing step and will be used in the
subsequent computations. In general, governing coarse-grid
equation and coupling the approach of the new scheme
are the same as those of FDHMM by Abdulle and E. The
main difference between the two methods is the microscopic
scheme, in contrast to FDHMM by Abdulle and E, where
the numerical fluxes are computed on the fly using localized
and more resolved computations which means that FDHMM
by Abdulle and E needs the macroscopic and microscopic
evolution at every time step and the new scheme adopts the
idea of MSFEM of Hou et al., by numerically precomputing
a finite difference analogue of a multiscale shape function,
which provides a fixed expression for the numerical basic
flux in terms of the coarse variables. It means that the fine-
scale information is coupled into the coarse scale by this
finite difference analogue of a multiscale shape function. In
addition, the new scheme incorporates ideas from Ming and
Zhang [14] to transform the microscopic parabolic model to
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a microscopic elliptic model, which allows MsFEM ideas to
be adopted in the computational scheme.

Our method is also analogous to the classical upscaling
method, where the upscaled hydraulic conductivities are
precomputed [23, 24]. Different from the classical upscaling
method, the present method only precomputes the basic
macroscopic fluxes. The estimation of the macroscopic fluxes,
which contain both microscopic information of the medium
property and useful information about the gradients of the
solutions of microscopic elliptic models, is coupled into the
course of solving the coarse equation, and it makes the
constructed scheme put more emphasis on the interaction
between the macro- and microscale behavior. On the other
hand, in the new scheme, the fine-scale global flow solution
is decomposed into a series of local microscopic problems;
the computations of these basic microscale problems can be
carried out sequentially; this obviously saves the computa-
tional time and the memory requirement, which may provide
the proposed method with a possibility to solve large flow
problems under restricted computational capabilities.

This paper is organized as follows. We firstly describe the
flow problem and introduce the principle and the algorithm
of the constructed scheme in detail. Numerical examples
to illustrate the performance of the constructed scheme
are arranged in Section 3. Some conclusions are given in
Section 4.

2. New Scheme of FDHMM

2.1. Flow Problem. The transient saturated flow through a
heterogeneous porous medium is governed by the parabolic
partial differential equation

oyt o
=~ =V-[Kx) Vy (x,t)]+R(xt), o

in Qx(0,T),

S, (x)

where y is the hydraulic head, S; is the specific storage
coefficient, K is the hydraulic conductivity tensor, R is the
source sink term, x = (x, y) is the spatial coordinate, t is the
time variable, Q is the study area, and T is the time domain.

2.2. Principle and Algorithm. 'The discretization in this study
is the mesh-centered finite difference. To simplify the presen-
tation of the constructed scheme, we assume that the solution
domain Q is a square and uniformly discretize it with a coarse
NxN mesh. Let the Cartesian coordinates of this coarse mesh
be represented by (x;, y;),4,j=1,...,N+ 1. H = x;,; —x; =
Yjs1 — ¥j denotes the coarse mesh size.

Notice that a macroscopic model is known to exist
according to the homogenization theory, and the idea of the
constructed scheme is to evolve a macroscopic model for the
flux form of (1),
ov (x,t)

t

S (X) ——

3 -V-F(x,t)+ R(x,t),

in Qx(0,T),
(2)

on a coarse mesh, where ¥ is the macroscopic state variable
corresponding to v, that is, we have ¥ = 1y at the coarse
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FIGURE L: Illustration of the macroscopic and microscopic compu-
tational domains.

node (i, j), and F is the macroscopic flux. In fact, based on
the principle of the flux balance, we can also deduce (2).

To solve (2), we firstly need to determine the macroscopic
flux F. In the absence of explicit knowledge of F, our problem
reduces to approximate the flux F; this will be done by locally
solving a set of microscopic models. In Figure 1, we center
a control volume at the midpoint of the line between any
two coarse nodes except for two exterior nodes. Thus, there
are four control volumes Ii‘i(l 1,; and If j+(1/2) around every
interior node (i, j) and these control volumes are centered at
the points (i + (1/2), j) and (i, j + (1/2)), respectively (see
Figure 2). We assume that the control volume Ii‘i(l f,j isa
square of size § and discretize it into a fine M x M mesh,
for which (&, 7;) denotes the coordinate of node (k, [), where

kl=1,...,M+1l.a=2¢&,, -& = n,, —n denotes the fine
mesh size. For & and 7, we have
H-¢6

& = — + (k- 1) —
s s (3)
=H--+(0-1)—, kl=1,....M+1.
M S +I=D +
Similarly, (7, &) denotes the coordinate of the control vol-
ume I[; jt(1/2)"

2.2.1. Basic Microscopic Elliptic Problems. To estimate the
macroscopic flux, we need to solve a set of local microscale
problems in the control volumes. Actually, the saturated
hydraulic conductivity tensor K(x) in this study is only a
function of the spatial position and does not oscillate in the
temporal direction, and we only need the spatial homoge-
nization of K(x) at the microscopic evolution. According to
the conclusion of [14], in every control volume I % we can only
solve the following reduced elliptic equation:

V- [K®Vyx]=0, inl. (4)

In every control volume I°, similar to the construction
of the multiscale finite element base functions developed by

Hou and Wu [2] and Hou et al. [3], we will solve two basic
elliptic problems with the Dirichlet-Neumann boundary
condition in which the Dirichlet boundary condition is used
in one direction and no-flow boundary condition is used
N), the
Dirichlet boundary condition is used in x-direction and no-
flow boundary condition is used in y-direction, and vice
versaforIl]+ 1/2) (#,j=1,2,...,N).

Set the head of the basic elliptic problem with no
dimensional change. Let ¢' and ¢* be the solutions of these
two basic elliptic problems, respectively. In I +(1 /2),j» s shown
in Figure 2, for the first basic elliptic problem, the head
on the left side is 1, and that on the right side is 0, and
vice versa for the second basic elliptic problem. Similarly,
in I, j+(172)> for the first basic elliptic problem, the head on
the bottom side is 1, and that on the top side is 0, and
vice versa for the second basic elliptic problem. The cell
problems are computed in parallel, and the number of the
processors is reduced [16, 25]. To solve the basic elliptic
problem, we considered employing the conventional finite
difference method with multigrid over a fine mesh to solve the
original equation. For implementing the multigrid algorithm,
we use directly a numerical simulator MGD9V [26]. In fact,
according to the above two basic elliptic problems, we have
@' + ¢* = 1. Then, we only need to solve the first basic
elliptic problem and obtain the solution ¢* of the second basic
elliptic problem in the course of computation according to

¢ =1-9.

in the other direction. For Iziu/z),j (i,j = 1,2,...,

2.2.2. Estimation of Basic Macroscopic Fluxes. After solving
the basic elliptic problems, we estimate basic macroscopic
fluxes based on the solutions of the basic elliptic problems. In
By Bl (0 =
macroscopic fluxes estimated by the solutions of two basic
elliptic problems; we have

1,2) denote, respectively, the basic

X1 1 0P~
Flap,j = —15 o K(x) o —dxdy
i+(1/2),j (12,
a* E& ¢k+ll ¢k1
5 ZZKkm/z
k=11=1
KXo>2 _ 1 Y a¢a
Flapm,; = I o K ®) = —dxdy
i+(1/2),] i+(1/2),j
2 MM
’Il ¢k 1 ¢kl
ZZ Kivaop— a=12
k=1I= 1
(5)

where Kk+(1/2 ) is the geometric mean of Kj; and Kj,,;.
Similarly, in I; +(1/2)°

1 o¢*
ylx
Fi Jr/2) T |I‘5 K (x) gdx dy

i ]+(1/2)| By
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FIGURE 2: The control volumes at the coarse node (i, j) and two basic microscopic elliptic models for the control volume I°

a? E& ‘/’km ¢k1
5 53 02 K
k=11=1
1 x 0P~
Vo2 il =
Fl ]+ 1/2) S Ifs. HK(X) ay dx dy
i,j+(1/2) B2
pZMMm
T’Ik ¢kl 1 (pkl
ZZ Kipapp—— a=12,
mmH
(6)

where Ky, (;/,) is the geometric mean of Ky ; and Ky, ;.

2.2.3. Estimation of Macroscopic Fluxes. Based on the esti-
mation of the basic macroscopic fluxes, we will estimate
macroscopic fluxes. Let ‘I’,"J be a coarse numerical solution
of (2) at time ", to estimate the macroscopic flux F” at time
t"; we will deal with it below.

We first solve a microscopic elliptic problem with the
Dirichlet-Neumann boundary condition at every control
volume I°. Head at the Dirichlet boundary of the control
volume is calculated by bilinear interpolating functions.

For the control volume I° i+(1/2),j» heads at the left and right

sides are
e 9, (m) — g1 (m)
l//z+1 1%)] g, (m) +& 220 q : ,
gl
n,right,l 9>\"M) —91\1
wi+(1g/2t),j =g, (m) + EMH%’
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% _
/[}’ ay
0 x
i+(1/2),j°
respectively, where
M
ﬂ\yi.+<1—ﬂ>\y.,l, 1<l< >,
_lm H) " 2
9 (’71) - i n M
<2_E>\Pi)j+<ﬁ_l>\}/i)j+1’ ?<ZSM,
92 (m)
M il M
- E\I’Hl,j'*'(l_ﬁ)\yiﬂ,j—l’ 1<l< 5
N M M M
<2_H>\I’i+1’j+<ﬁ_1>\I’i+1’j+l’ ?<ZSM
(8)
Thus, ¥/, the solution of the microscopic elliptic problem in
Ii6+(1 /2),j is obtained over the control volume Ig(l /2),j Via the

linear combination of ¢' and ¢*, which are the solutions of
two corresponding basic elliptic problems, respectively, and
then we have

n,left,/

_ n,right,l
y™ =Viia), J¢ %,

+Yila,) I=1,...

SM+1.  (9)

Similarly, in If j4(1/2)> heads at the bottom and top sides are

n,bottom, g (’1 ) -9 (’1 )
1//1 ]t-)i—(tlt/z) : =93 (Tll) + El £ 0 H Al >
-
n,top, ga\n1) — 93\
l//i,jtJrFll/Z) =95 (1) + & %x
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respectively, where

1%.+<1_ﬂ)qfl_l., 1<)
g(m) =07, BT Mo
A O
A
}71 \I’i)j+1 +(1 %) \I’i—l,j“’l’ 1< l < %)
- M i M
(2_E)qji,jﬂ"'(ﬁ_l)‘{’iﬂ,jﬂ’ > <l<M.

(11)

The solution of the microscopic elliptic problem in this
control volume is

n,bottom,!

_ n,top,! 2 _
V/ 1//zJJrl/Z)(/S (/5 l_l""

1//1]+(1/2 SM+1. (12)
Like the assumption in [27], we assume that the situation
investigated in this study is for locally isotropic conductivity
and also assume the hydraulic conductivity tensor with prin-
cipal axes oriented in the direction of the principal statistical
anisotropy axes of the local parameters. It means that the
conductivity tensor for a locally heterogeneous medium is

K= <K é") K((’X)>. (13)

By applying the above assumption, we derive the macro-
scopic flux F”,

F' = —ﬁ J Jp K (x) Vy (x,1") dx
oy
1 Kx) 0 ox
) ) (57 k)| 30 |axar
dy (14)
Ko 2
1 3 (P
__Wjj'lﬁ K(x)al dxdy—(Fn,y>,
dy

where F™™* and F™” are estimated macroscopic fluxes in x-
direction and y-direction at time ", respectively. For the
control volume Il (1/2),] ., together with (3), (5), (7), (9), and

(14), we have

1 aw
1,X _
Fi+(1/2),j = 18— . K (x) =—dxdy
i+(1/2),j +(1/2)j
M M n,l n,l
o a ZZK Vi ~ Vil
= ‘Szk Z k2T
1i=1

k=11=1 a

@ G lefi,! ¢k+1l bes
n,les 5|
T2 ZZKH(I/Z Viiam,, o

2 2
n,right,] ¢k+1,l - ¢k,l >

i+(1/2),] a

+¥7 -y

é
=~ [H (2\}1 z+1,j+1)

4H i+1,j i+1,j-1

H+d
_(2
4H

L LI

+ i,j i,j—1

n X1,1
- \I’i,j+1):| Fi+l(1/2),j
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H+§
(

n n X152
W _\Fi,j—l + Ti,j+1)j| Fi+1(1/2),j

H+4
+ [ 4H (2\Ij;+1] +\Ij;+1] 1 \Ijin+1,j+1)

A

X5,1
Z\P +¥ 1,j+1):| Fi+2(1/2),j

H-6
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n
_\Pi+1,j \I’Hl ]+1)

H+§
+[_(
4H

B X2
+ 1H ( ‘P \P1]+1):|Fi+(1/2),j'
(15)

Similarly, for Il j+(1/2)» We have

\Pn

(2\}1 ijr1 T v i+1,j+1)

i—1,j+1

ny H-6

ij+1/2) T4H

H+d (2
4H

L LI
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n Y151
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[H—6
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—1,j+1 1+1 S+l
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+[H+8(2‘I’ 4

n
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H-3§ Vvl
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0 ( \Pn1]+1 +\II+1]+1)

H-§6 92,2
+ 4H ( \I] + \Yl+1])] F1]+(1/2)

(16)
2.2.4. Macroscopic Evolution. Let At be a time step size, where

At = t"*! — ", The macroscopic evolution on the coarse mesh
is now done via the approximation of (2), and here we use



the Crank-Nicolson method to construct the fully discretized
version of (2),

S..
a0 (W =)

1 n+1l,x Fn+1 X

_ n+l,y n+l,y
Y (F1+ a2, ~ Ficajo,j + -5 )

i,j+(1/2) i,j—(1/2)

1 1,X 1,X n,y n
“oH (Fi+(1/2),j —FZupt Fz]+(1/2) Fi,j—(l/Z)) +R; ;.
(17)
Combining (15), (16), and (17) yields
SSi’j n+1 n
YA IR )
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x N X152 X5,1
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1
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Solve local basic microscopic elliptic problems (4)

Estimate basic macroscopic fluxes (5-6)
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Interpolate heads at boundaries of local

microscopic elliptic problems (9) and (12)

Estimate macroscopic fluxes (16-17)

Solve the macroscopic model (18)

Yes

FIGURE 3: Flow chart of the new scheme at a time step.

Then, we solve the following equation at the coarse mesh
by using MGD9V [26]:

n+1 n+1
- Cl‘Pi—l,j—l - Cz\yz] 1~ C3\Ijl+1] 1

S.. .
si,] n+1 n+1 n+1
+ ( A Cs) VY —aYi oY

_ n+1 \I,n+1
68 i,j+1 —G 1+1]+1

n+1
—a ¥

n n
=¥ 1j-1 T oY 1] 1t ta¥i

Ssi‘
»]
+( At +C5>\IJ 6 1+1]+C7\P 1]+1+C8\Pz]+1
n
) 1+1]+1+Ri,j
(20)

Thus, the algorithm is completed. The solution procedure
at a time step is illustrated in Figure 3. We also give a sum-
mary which only includes the relevant discrete equations nec-
essary to implement the proposed method. Firstly, the basic
elliptic problems (4) are solved. Then, basic macroscopic
fluxes (5) and (6) are estimated, and the coefficients (19) are
calculated. The above steps are finished at the preprocessing
step. Finally, the macroscopic discrete equations (20) are
evolved.

The algorithm described above is easy to extend to
the steady flow problem in heterogeneous porous media.
Under the condition of the steady flow, the left-hand side

of (1) equals zero. Correspondingly, the left-hand side of
macroscopic (2) equals zero. The remainder will similarly be
completed; then we have

a¥ijto¥ i+ ta¥+a¥;

1
i-1,j+1 + CS\P11+1 + C9 i+1,j+1 _ERi,j'
(21)

Although FDHMM proposed by Abdulle and E [20] works
for the transient problem, it is also easy to extend to the
steady problem. The given coarse- and fine-grid equations of
FDHMM are elliptic equations in the steady condition. The
iteration scheme of FDHMM is similar to that of the new
scheme, and the solutions of both methods are the same.

The locally hydraulic conductivity (13) is assumed to
be isotropic, but the macroscopic conductivity may be
anisotropic or a full tensor because the final macroscopic
scheme (18) is a nine-spot one. The algorithm may also be
extended to general quadrilateral mesh; the method is similar
to [28].

+ C6\Ilz+1 N + 07

3. Evaluation of Numerical Accuracy

All porous media in nature are heterogeneous. The hetero-
geneity in this study comes from the hydraulic conductivity.
As the standard deviation of logarithmic hydraulic conduc-
tivity increases, the heterogeneity increases. The random con-
ductivity field is generated by the Turning Band method [29],
in which the hydraulic conductivity is assumed to be locally
isotropic. In this study, we used four saturated groundwater
flow examples, including two steady flow examples and two
transient flow examples, to show the main advantages of the
constructed scheme. Also, influences of different factors are
examined, such as conductivity fields with high variability as
well as different correlation structures, the flow rate of the
pumping well, and the size of the local microscale model, on
the accuracy of the constructed scheme.

3.1. Implementation. The algorithm has been implemented
in a FORTRAN code. Because it is difficult to construct
interesting multiscale problem with an exact solution, people
often compare the coarse scale solution obtained by the mul-
tiscale method with a computed reference solution obtained
on the fine scale. We have employed the conventional finite
difference method with multigrid over a fine mesh to solve
the original equation and refer to this solution as the “exact”
solution.

As a measure of the error, we take the relative L, norm
and the relative maximum norm

YN (- ¥ (x))’

SR | o)
max,_; |‘I’ ¥ (x;)]
eery, = ,
0 max;_, v |¥ (x;)|

.....

respectively, where N’ is the total number of nodes on the
coarse mesh, ¥; denotes the coarse solution at the coarse node
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FIGURE 4: A realization of the random saturated conductivity fields of different standard deviations under A, = A, = 100 m: (a) 0y, = 0.5,

(b) 0,k = 1.0, (¢) 0,k = 1.5, and (d) 0y, x = 2.0.

x;, and W(x;) denotes the “exact” solution projected on the
coarse mesh; that is, ¥(x;) = w(x;) at the coarse node. Here,
y(x) is the “exact” solution.

In all test examples, the study domain Q is a rectangle
covering 1km x 1km with the point (0,0) as the origin. A
uniform finite difference mesh is constructed by dividing Q
into an NxN mesh. The fine mesh is a 256 x256 mesh, and the
“exact” solution and the random hydraulic conductivity field
are obtained on this mesh. The coarse mesh is a 16 x 16 mesh
and the coarse solution is obtained by using the multiscale
method on this mesh.

3.2. Steady Flow Problems with Isotropic and Anisotropic
Microstructure. We impose the Dirichlet-Neumann bound-
ary condition for the test steady flow problem. The left and
right sides of boundary are Dirichlet boundaries. Head on
the left is 20 m, and that on the right side is 10 m. The
top and bottom sides are impermeable boundaries. To start
the computation using the new scheme, we need to choose

the size of the control volume §. In this study, § is chosen to
be equal to a half of the coarse mesh size, which means that
we only use about 50% of the total data at the small scale; that
is, 8 = (1/2)H. Every control volume I % is uniformly divided
into an 8 x 8 mesh such that its mesh size equals the size of
the fine mesh.

Four conductivity fields with isotropic correlation
microstructure are first applied. Correlation lengths of these
conductivity fieldsare A, = A, = 10m, A, = A, = 20m,
Ay = A, =40m,and A, = A, = 100 m, respectively. We
assume that the geometric mean of hydraulic conductivity
is K = 0.006 m/min. Under 0, = 0.5,1.0,1.5,2.0, where
O,k is the standard deviation of logarithmic hydraulic
conductivity, these four conductivity fields vary by about
one, three, five, and six orders of magnitude, respectively.
A realization of the random conductivity fields with
Ay = A, = 100m and oy, = 0.5,1.0,1.5,2.0 is plotted
in Figure 4. Figure5 plots the errors of the solutions of
the constructed scheme for different correlation lengths at
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FIGURE 5: Relative (a) L, and (b) maximum errors between the fine-scale model and the new scheme for the steady flow problem with isotropic

correlation microstructure.

Ok = 0.5,1.0,1.5,2.0. It illustrates that the larger standard
deviation of logarithmic hydraulic conductivity leads to
the less accurate results. Furthermore, at the case with
Ay = A, =10m and 0y, = 2.5, in which the conductivity
field varies by about nine orders of magnitude, the new
scheme is even not convergent, although it works for other
correlation scales for the same logarithmic conductivity
variance. The reason may be that conductivities of highly
heterogeneous systems are highly discontinuous, which
makes the direct application of the algorithm infeasible. It
may also indicate that the standard deviation of logarithmic
hydraulic conductivity plays an important role in the
accuracy of the new scheme. At the same time, when
Ok = 0.5, the results obtained under different correlation
lengths have about the same accuracy and the correlation
length of conductivity field shows no significant effect on the
accuracy of the new scheme. It is noted that the correlation
length is even larger than the size of the control volume in the
case with A, = A, = 100 m. The heads in section y = 500 m
obtained from the fine-scale model on the fine mesh and the
constructed scheme on the coarse mesh for the case with
Ay =A, =100mand oy, g = 0.5,1.0,1.5,2.0 are depicted in
Figure 6, and we observe that the solution obtained by the
constructed scheme on a coarse mesh is able to approximate
the exact solution. The above discussion indicates that the
new scheme gives a reasonable accuracy for the test steady
flow examples with isotropic correlation microstructure.
Convergence should be a necessary condition for the
new scheme as a good numerical method. Here, we only
consider the conductivity field with A, = A, = 100 m. Fixing
0 = (1/2)H, Figure 7 plotted the relative errors for coarse
meshes with 4 x 4, 8 x 8, 16 x 16, and 32 x 32 elements
under four cases that oy, x = 0.5, 1.0, 1.5, 2.0, respectively. The
errors monotonically decrease as the total number of coarse

elements increases and tend to zero, which means that the
new scheme solution converges as the coarse grid is refined.

Next, we turn to consider three conductivity fields with
anisotropic correlation microstructure. Fixing y-direction
correlation length A, = 10 m, x-direction correlation lengths
of these conductivity fields are A, = 20m, A, = 40m, and
A, = 100m, respectively. Assume that K = 0.006 m/min.
Under oy, ¢ = 0.5, 1.0, 1.5, 2.0, these three conductivity fields
vary by over one, three, five, and seven orders of magni-
tude, respectively. The results of the constructed scheme for
different correlation lengths at 0y, = 0.5,1.0,1.5,2.0 are
depicted in Figure 8. As in the previous example, the stan-
dard deviation of logarithmic hydraulic conductivity shows
significant effect on the accuracy of the new scheme. The
errors obviously increase with oy, g increasing. Compared to
the standard deviation, the correlation length of conductivity
field has relatively little influence on the accuracy of the
new scheme. The maximum error in Figure 8 is attained at
the case with A, = 100, A, = 10m, and o,k = 2.0,
and the relative L, and maximum errors of the solution of
the constructed scheme are 2.28% and 5.88%, respectively.
Similar to the isotropic case, the new scheme also gives a
reasonable accuracy for the test steady flow examples with
anisotropic correlation microstructure.

3.3. Aquifer Response to Sudden Change in Reservoir Level.
We design this transient test example based on the example in
[30]. Consider the confined aquifer in the study area. Initial
head is equal to 20 m everywhere in the aquifer. We wish
to simulate changes in head through time if, at ¢t = 0, we
suddenly drop the water level in the reservoir on four sides
of the study area from 20m to 10 m. The specific storage
coefficient and the thickness of the aquifer are 2.0 x 10™* m™
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FIGURE 6: Exact solution and the coarse solution of the new scheme in section y = 500 m for the steady flow problem under isotropic
correlation microstructure with different standard deviations: (a) oy, x = 0.5, (b) 0y, x = 1.0, (¢) 0y, x = 1.5, and (d) 0}, x = 2.0.

and 10 m, respectively. To generate the random hydraulic
conductivity field, we assume that K is 0.003 m/min, the
standard deviation of In K is 1.5, and the correlation structure
of the conductivity is anisotropic with A, = 40mand A, =
10 m. Conductivity K in this random field varies by over five
orders of magnitude. Fix a time step size At = 5min and the
study time 8000 min.

At first, accuracies and efficiencies of the constructed
scheme and FDHMM are compared. Let the size of the
control volume 8 = (1/2)H, and the control volume I°
is uniformly divided into an 8 x 8 mesh. The computa-
tional results of different multiscale schemes at times =
500, 1000, 2000, 4000, 5000, 6000, and 8000 min are plotted
in Figure 9. Figure 9 indicates that the new scheme seems to
be more accurate than FDHMM. After t+ = 1000 min, eer,
and eer, of the solution of the constructed scheme mono-
tonically decrease from 2.06% to 0.32% and from 7.37% to

0.95%, respectively, while those of FDHMM fluctuate in the
intervals 2.71%~6.60% and 6.13%~15.40%, respectively. The
reason leading to the difference between the results obtained
by the constructed scheme and obtained by FDHMM may be
the different approaches of estimating the macroscopic flux.
Compared with FDHMM in which the approximation of the
macroscopic flux is determined before the coarse equation is
solved, for the constructed scheme, the computation of the
macroscopic flux is coupled into the course of solving the
coarse equation. Thus, a quasistationary state of the computed
macroscopic flux is approached in the global domain for the
constructed scheme and in the local domain for FDHMM,
and it may make the constructed scheme give better accuracy
than FDHMM for this test problem. We plot the heads in the
whole study domain at times t = 1000 and 5000 min obtained
from the fine-scale model on the fine mesh and two multiscale
methods on the coarse mesh (Figure 10). We observe that
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the heads obtained by the new scheme on a coarse mesh
can satisfyingly approximate the “exact” heads, and FDHMM
underestimates the heads at the coarse nodes.

The results were obtained on a computer running Win-
dows XP with 2.66 GHz processor, 2 megabytes of cache,
and 512 megabytes of RAM. For this test example, mem-
ory requirements using the conventional finite difference
method, the constructed scheme, and FDHMM are about
277, 4.3, and 4.3 megabytes, respectively; CPU times using

the three methods are about 12.1 min, 0.1 min, and 72 min,
respectively. Compared with the computational cost of the
conventional finite difference method, in our test example,
the present new can save about 84.5% memory and about
99.2% CPU time, and FDHMM can save about 84.5% mem-
ory and about 40.5% CPU time. We need to solve 4N(N —
1) basic microscopic elliptic problems in the constructed
scheme. In fact, the computations of these basic microscale
problems can be carried out sequentially, and, at a time,
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we only need to solve two basic microscale problems (one

for I,/ ; and the other for I}, ). When & = (1/2)H,

every basic microscale problem has (M + 1)* unknowns;
the degrees of freedom of these basic microscale problems
are 2(M + 1)°. Added (N + 1)* degrees of freedom of the
macroscopic scheme, the total degrees of freedom of the new
scheme are 2(M + 1)* + (N + 1) Similarly, the total degrees
of freedom of FDHMM are also 2(M + 1)* + (N + 1)
and degrees of freedom of the full fine scheme are 2NM +
1)2. Thus, both the constructed scheme and FDHMM can
obviously save the memory requirement. The first saving in
computational time in two multiscale schemes is achieved
by reducing the computation of the fine mesh on the whole
domain. The fine-scale global flow solution is decomposed
into a series of local microscopic problems, and this greatly
saves the computational time. However, local microscopic
models of the new scheme only need to be solved once at the
preprocessing step, while those of FDHMM need to be solved
at every time step. Thus, the constructed scheme needs much
less CPU time than FDHMM.

Next, we discuss the effects of different cell sizes on the
accuracy of the constructed scheme. In a coarse 16 x 16 mesh,
the coarse mesh size H equals 1000/16 m; we change the size of
the control volume and let § = (1/2)H, (3/4)H, H, (5/4)H in
turn. To obtain the same size as the full fine mesh size, these
control volumes are uniformly divided into 8 x 8, 12 x 12,
16 x 16, and 20 x 20 meshes in turn. The results obtained by
the constructed scheme under different control volume sizes
at times = 500, 1000, 2000, 4000, 5000, 6000, and 8000 min
are depicted in Figure 11. We observe that the cases with
6 = (3/4)H, § = H,and 6 = (5/4)H have about the same
accuracy, and the case with § = (1/2)H has a less accuracy.
This is likely because, at three cases with 6 = (3/4)H, § = H,

and 6 = (5/4)H, the main microstructural information is
efficiently captured by the control volume. It may indicate
that the control volume size shows no significant effect on the
accuracy of the constructed scheme when it is chosen to be
near the coarse mesh size.

3.4. Steady and Transient Flow Problems with Weak Well
Drawdown. In this section, we first consider the steady
flow problem with well drawdown in heterogeneous porous
media. Similar to the examples discussed in [10, 31], we
impose the following fixed head and no flux boundary condi-
tions for the test example: heads on the left and right sides are
10 m and top and bottom sides are impermeable boundaries.
In addition, a pumping well with the constant flow rate Q
is located at the point (500 m, 500 m), and we let Q =
0.12 m*/min, 0.24 m>/min, 0.36 m®/min, and 0.48 m>/min,
respectively. The aquifer is 10 m thick. We also choose § =
(1/2)H and uniformly divide every control volume I % into an
8 x 8 mesh such that its mesh size equals the size of the fine
mesh.

Four conductivity fields with oy, x = 0.5,1.0,1.5,2.0 are
considered. Assume that the geometric mean of hydraulic
conductivity is K = 0.018m/min and the anisotropic
correlation microstructure with A, = 40, A, = 10m. The
errors of the results obtained by the constructed scheme
under different well flow rates at oy, = 0.5,1.0,1.5,2.0
are plotted in Figure12. Different from the examples of
Section 3.2, the standard deviation of logarithmic hydraulic
conductivity shows no significant effect on the accuracy of
the new scheme. For example, given Q = 0.12 m’/min, when
onx = 0.5,1.0,1.5,2.0, relative L, errors of the solution of
the new scheme are about 0.15%, 0.15%, 0.17%, and 0.20%,
respectively, and relative maximum errors of the solution
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of the new scheme are 2.52%, 2.29%, 2.17%, and 2.00%,
respectively. The important factor affecting the accuracy of
the new scheme is the flow rate of the pumping well. The
larger the flow rate of pumping well is, the larger the resulting
errors are. Setting oy, x = 1.0, Figure 13 plots the heads in

section y = 500 m obtained from the fine-scale model on the
fine mesh and the constructed scheme on the coarse mesh
for the cases Q = 0.12,0.24,0.36,0.48 m®/min. There are
larger errors of the results of the constructed scheme near
point (500 m, 500 m), which are caused by the pumping well
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at this point. This is likely because heads near the well vary
nonlinearly with distance to the well, which cannot be well
described by the constructed scheme. On the other hand, the
problem of the well singularity may be related to the chosen
scale. If we choose a coarse 32 x 32 mesh and 6 = (1/2)H
and resolve this well drawdown problem. When oy, x = 1.0,
in Figure 14, we replot the curves shown in Figure 13. We
observe that the accuracy of the new scheme was improved
markedly.

Next, we consider the transient well drawdown problem
in heterogeneous porous media. Boundaries of the study area
are Dirichlet types. Heads on four sides are all 10 m. Initial
pressure head is also 10 m everywhere in the aquifer. The
specific storage coefficient is 2.0 x 107 m™" and the aquifer
is 10 m thick. There is a pumping well at the point (500 m,
500 m). The well has the constant flow rate of 0.24 m®/min
and is pumped for 1600 min in the problem. The time step
is 1 min for every method. This test example is analogous to
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the examples used in [10, 31]. The statistical parameters used
to describe random conductivity field are K = 0.018 m/min,
ok = 10, A, = 40m, and A, = 10m. This random
conductivity field varies by over three orders of magnitude.
Similar to Section 3.3, we compare accuracies and effi-
ciencies of the constructed scheme and FDHMM. The control
volume I° has a size of (1/2)H and is uniformly divided into
an 8 x 8 mesh. We plot the computational results of different
multiscale schemes at times = 100, 200, 400, 800, 1000, 1200,
and 1600 min (Figure 15). The constructed scheme gives a lit-
tle more accuracy than FDHMM. Over the whole simulating
time, eer, and eer, of the solution of the new scheme are less
than 0.26% and 4.15%, respectively, and those of FDHMM are
less than 0.38% and 5.44%, respectively. Figure 16 shows the
heads at times ¢ = 200 and 1000 min in section y = 500 m
obtained from the fine-scale model on the fine mesh and

two multiscale methods on the coarse mesh. We observe that
the solutions obtained by both the constructed scheme and
FDHMM on a coarse mesh are able to satisfyingly approx-
imate the exact solution except of the well singularity. Near
the well singularity, the results obtained by both multiscale
methods are in rough agreement with those obtained by the
fine-scale model, and the heads are overestimated to be about
0.45m and 0.50 m by the constructed scheme and FDHMM
at the well singularity, respectively, at ¢ = 200min. This
fact may imply that, although a quasibalance state of the
macroscopic flux is achieved in the global domain for the
constructed scheme versus in the local domain for FDHMM,
this advantage of the constructed scheme is not obvious for
the well drawdown problem.

Computational costs of the three methods in this test
example are similar to those in the test example discussed in
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Section 3.3 and are omitted in this section. This is followed by
a discussion of effects of different cell sizes on the accuracy
of the constructed scheme. As described in Section 3.3, in a
coarse 16 x 16 mesh, the control volumes are chosen to have
sizes of § = (1/2)H, (3/4)H, H,(5/4)H and are uniformly
divided into 8 x 8, 12 x 12, 16 x 16, and 20 x 20 meshes
in turn. Plotted in Figure 17 are the calculated results of the
constructed scheme under different control volume sizes at
times ¢ = 100,200,400, 800, 1000, 1200, and 1600 min. It
indicates that four cases give a reasonable accuracy in eer,
and eer,,. We observe that the results for § = H are the
best, the results for § = (3/4)H are less accurate than those
for § = H, the results for & = (5/4)H are less accurate
than those for § = (3/4)H, and the results for § = (1/2)H
are the worst. The results obtained under three cases with
0 = (3/4)H,H, (5/4)H are very similar. Thus, the control
volume size may be chosen to be near the size of the coarse

mesh for the sake of the accuracy of the constructed scheme.
In addition, under the cases with 6 = (1/2)H and § =
(3/4)H, we only use about 50% and 75% of the information
of the whole microstructure, respectively. This flexibility of
choosing the size of the control volume means that the
constructed scheme may be applied to the flow problem
for which the microstructure cannot be completely found
beforehand.

4. Conclusion

A new scheme of the finite difference heterogeneous multi-
scale method, which puts more emphasis on the interaction
between the macro- and microscale behaviors, has been pre-
sented for solving saturated water flow problems in random
porous media. The macroscopic iteration formulas of steady
and transient flow problems have been explicitly deduced. By
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solving basic microscopic elliptic problems and estimating  in the computational cost. The constructed scheme saves
basic macroscopic fluxes, it is subtly brought to the large  about 58.7% CPU time compared to FDHMM for aquifer
scale for microscale information of the medium property = response to sudden change in reservoir level on the case
and useful information about the gradients of the solutions 0 = (1/2)H. Different numerical examples, including two
of basic microscopic elliptic models. For the transient flow  steady flow problems and two transient flow problems subject
problem, different from that FDHMM needs the macro-  to Dirichlet-Neumann boundary type, are applied to test
scopic and microscopic evolution at every time step, the  the efficiency and accuracy of the constructed scheme. We
constructed scheme implements the microscopic evolution  have considered seven correlation lengths and four standard
at the preprocessing step and only needs the macroscopic ~ deviations of the hydraulic conductivity field for steady flow
evolution at every time step, which offers substantial saving ~ problems with isotropic and anisotropic microstructure and
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considered four flow rates of the pumping well and four
standard deviations of the hydraulic conductivity field for the
steady flow problem with well drawdown. In every transient
flow problem, we have also considered four sizes of the
control volume. The numerical experiments demonstrate that
the constructed scheme gives a better accuracy than FDHMM
for aquifer response to sudden change in reservoir level
and gives a comparable accuracy to FDHMM for the weak
well drawdown problem. The numerical experiments also
indicate that the constructed scheme can efficiently capture
the macroscale behavior of the solution on a coarse mesh
for the steady and transient flow problems without well
drawdown, and the scheme can approximately handle the
weak well drawdown problem. The well singularity is related
to the chosen scale. We may refine the coarse mesh size to
improve the accuracy of the solution to the well drawdown
problem. The standard deviation of logarithmic hydraulic
conductivity field plays an important role in the accuracy of
the constructed scheme. The larger the standard deviation is,
the less accurate the results are. The spatial correlation length
of random conductivity field has relatively little influence
on the accuracy of the constructed scheme. To obtain a
reasonable accuracy, the size of the control volume may be
chosen to be near or to be equal to the coarse mesh size or
other suitable size if necessary. This flexibility of choosing the
size of the control volume means that the constructed scheme
can be not only applied to the flow problem for which the
microstructure is completely found but may be also applied to
the flow problem for which the microstructure is only partly
found beforehand.

This study is limited to two-dimensional saturated flow
through heterogeneous porous media. We also plan to extend

this scheme to solve unsaturated water flow problems with
heterogeneity which would be more difficult to simulate.
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Some numerical approaches to solve fluid structure interaction problems in blood flow are reviewed. Fluid structure interaction
is the interaction between a deformable structure with either an internal or external flow. A discussion on why the compliant
artery associated with fluid structure interaction should be taken into consideration in favor of the rigid wall model being
included. However, only the Newtonian model of blood is assumed, while various structure models which include, amongst others,
generalized string models and linearly viscoelastic Koiter shell model that give a more realistic representation of the vessel walls
compared to the rigid structure are presented. Since there exists a strong added mass effect due to the comparable densities of blood
and the vessel wall, the numerical approaches to overcome the added mass effect are discussed according to the partitioned and
monolithic classifications, where the deficiencies of each approach are highlighted. Improved numerical methods which are more
stable and offer less computational cost such as the semi-implicit, kinematic splitting, and the geometrical multiscale approach
are summarized, and, finally, an appropriate structure and numerical scheme to tackle fluid structure interaction problems are

proposed.

1. Introduction

Fluid structure interaction is defined as the interaction
between deformable structures with an internal or surround-
ing fluid flow. Such deformation can either be stable or
oscillatory. Problems involving fluid structure interaction are
classified into the one-way problem which occurs when the
movement of the structure controls the motion of fluid but
the fluid’s motion does not influence the structure, or the two-
way fluid structure interaction problem when the movement
of the structure influences the motion of the fluid and vice
versa [1].

Fluid structure interaction is more often considered in
modelling biofluids because the interaction between the
blood and vessel wall is of great clinical interest, for example,
in studying cardiovascular diseases which are a major cause
of death in developed countries [2].

The interaction between blood flow and vessel wall is
often neglected because the coupled fluid and solid equations
are complicated and difficult to solve [3]. Earlier numerical

models used to predict blood flow are based on rigid
geometries [4] in which only the arterial lumen needs to
be reconstructed and discretized, yielding results that are
reasonably accurate and can be obtained in a relatively short
time [5]. However, there are still further considerations to be
taken into account such as the elastic nature and stresses on
the arterial wall that play crucial roles in arterial disease, as
well as the material property alterations with the development
of the atherosclerotic lesion [6].

Numerous studies had been carried out to compare the
effect of the rigid and compliant wall on blood flow. Lee and
Xu [7] indicated that the axial velocities at the center being of
a rigid wall are higher compared to the ones in the compliant
model. Mass conservation theory is utilized to explain such
phenomena as the internal fluid pressure exerted on the vessel
wall pushes the vessel wall outward consistently and slows
the fluid flow due to the flow area expansion. Rigid wall sim-
ulation of blood flow through arteries also overpredicts the
wall shears stress. These findings showed that incorporating
fluid structure interaction has significant effects on blood
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flow characteristics [2, 7]. Siogkas et al. [5] considered a rigid
wall assumption and fluid structure interaction simulations
of blood flow in the arterial segments. They concluded that
the computational time for the simulation of fluid structure
interaction is longer than that of the rigid wall assumption. It
was found that the required time for the simulation is 30-40
minutes in the case of rigid wall but takes almost 5 hours in
the compliant vessel.

Fluid structure interaction describes the wave propaga-
tion in arteries driven by the pulsatile blood flow. From the
theoretical point of view, such problems are complex and
challenging due to the high nonlinearity of the problem. Not
only the fluid equation exhibits nonlinearity, the structure
displacement modifies the fluid domain which generates
geometrical nonlinearities as well [8].

The generalized string model had been utilized as the
structure of blood flow in compliant vessels and arteries [9-
15]. Causin et al. [16] explained that the generalized string
model is a structural model derived from the theory of linear
elasticity for a cylindrical tube with small thickness. The
reference configuration is a cylindrical surface of the base
circle radius R that is supposed to move in radially, neglecting
the longitudinal and angular displacements. Nobile and
Vergara [15] pointed out that the generalized string model
neglects bending as well. According to Cani¢ et al. [17-20],
there are no analytical results which are able to prove the well
posedness of fluid structure interaction problems without
assuming the structure model that includes the higher order
derivative terms, capturing the viscoelastic behavior, or the
terms describing bending rigidity. In hemodynamics, there
exists a strong added mass effect issue in which the fluid and
structure have comparable densities. If the structure density
is higher than the fluid density, such as in aeroelasticity, the
added mass effect is negligible. Various structural models are
discussed in Section 2.

Numerical approaches of fluid structure interaction
which are discussed in Section 3 can be broadly classified into
two: the partitioned approach and the monolithic approach.
Partitioned approach can be further subdivided into the
loosely and strongly coupled algorithms [20-27]. In hemody-
namics, the use of explicit partitioned algorithm turns out to
be problematic where stability is concerned, particularly due
to the added mass effect. In addition, the implicit partitioned
algorithms are also affected by the added mass effect in terms
of convergence. Special treatment of the interface conditions
needs to be considered [8, 16, 28-30]. To date, it seems that
only the monolithic and implicit schemes are applicable in
blood flow simulation involving fluid structure interaction.
However, they are costly in terms of computational cost,
computational time, and memory requirement [9-11, 31-33].
In Section 4, the improved numerical methods which are
stable but with low computational time are summarized.

2. Fluid Structure Interaction
Problem Formulation

Fluid structure interaction problem can be divided into
three parts: fluid problem, structure problem, and coupling
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FIGURE 1: Sketch of flow region [9, 10].

condition. The model discussed here is based on the work
of [9, 10]. Consider the flow of an incompressible, viscous
Newtonian fluid in a two-dimensional symmetric channel
with thin and deformable walls in Figure 1.

2.1. The Fluid Problem. Let x, and x, denote the horizontal
and vertical coordinates, respectively. Assume that the fluid
domain is supplanted by a symmetry boundary condition at
the axis of symmetry. The fluid domain is denoted by Q(t),
where

Q) = {(xl,xz)ER2 | x,€(0,L), x,€(0,H + n(xl,t))}
@

with the lateral (top) boundary condition

[(t)= {(xl,xz)eR2 | x,€(0,L), x,=(0,H + n(xl,t))}.
)

The fluid flow is governed by the Navier-Stokes equations:

V-u=0,
®3)
in Q(t) for t € (0,T),

where u = (1, u,) is the fluid velocity, p is the fluid pressure,
py is the fluid density, and o is the fluid stress tensor. The fluid
is assumed as Newtonian so that the fluid stress tensor is given
by o = —pI + 2uD(u), where y is the fluid viscosity and D(u)
is the rate-of-strain tensor D(u) = ((Vu) + (Vu)7)/2.

Blood is known as a suspension of red blood cells, white
blood cells, and platelets in plasma. Although blood is not a
Newtonian fluid, it is well accepted that, in medium-to-large
arteries, the Newtonian assumption is acceptable. The non-
Newtonian nature due to the particular rheology is relevant
to the small arteries and capillaries where the diameter of the
arteries and the size of the cell are comparable [18, 35]. For a
critical review on blood flow, one can refer to [36] where the
blood rheology, blood viscosity models, and conditions are
listed. In this paper, only Newtonian fluid will be considered
as in [9-11, 33].

2.2. The Structure Problem. Since the fluid structure inter-
action problem is complicated, the simplified model is used
whenever possible. Previous studies indicated that the simpli-
fied mathematical model presenting the major physical char-
acteristics is reasonable. A common set of simplifying models
includes the use of two-dimensional models instead of the
more realistic three-dimensional ones, cylindrical geometry
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of a section of an artery without branching, neglecting the
viscoelastic term and the bending rigidity, and even a further
reduction to one-dimensional models. The two-dimensional
and three-dimensional models are rather complex while the
one-dimensional models suffer from a serious drawback as
they are not closed and oversimplifying the viscous fluid [18-
20].

Recent studies on the two-dimensional models with
some simplification assumptions include that of Nobile and
Vergara [15]. They assumed that the structure behaves as a
membrane which implies that the structure is a thin elastic
shell with no bending, whose thickness is neglected and
which can be described by a two-dimensional manifold. A
simple inertia-algebraic membrane model which considers
small deformation is considered. The structure equation with
initial conditions is as follows:

pshs 3 +[311 f, in (0, T) x I°,

o =1 inT° (4)
on 0

putd § = in T",

3t | n, in

where #,, 7, are initial conditions. If in the particular case
ps = 0, it is known as the algebraic model.

Nobile [37] proposed a generalised string model derived
from a cylindrical configuration. Let

I={(r6z):r=R,0<z<L0<6<21} (5)

be the cylindrical reference surface of radius R, while the
longitudinal and angular displacement are neglected; thus the
radial displacement #, = #,(t, 0, z) is given by
L O op e, Eh o O

P e 2 T1ovr ez

- f(1.6,2),
(6)

where kGh(azﬂ, /0z%) account for shear deformation while
y(9’n,/0z°0t) introduced the viscoelastic behaviour. By
neglecting the viscoelastic terms and the term of second
derivatives in z, the resulting equation (7) is so-called
independent ring model

o Eh 7
h g -~
Pl T T2 R

=P = Pext- 7)
Further simplification by neglecting the inertia term will
result in the simple algebraic equation

Eh n, _
l—sz(z)_

~ Pext- (8)

Generalised string model had been widely used as the
structure of blood flow in compliant vessels and arteries
[12-16, 32]. It is derived from the theory of linear elasticity
for a cylindrical tube with small thickness. The reference
configuration is a cylindrical surface of the base circle radius

R that is supposed to move in radially, the longitudinal and
angular displacements being neglected [16]. Causin et al. [16]
suggested that the results will be more qualitative in the
present example of a nonnegligible second-order term.

Guidoboni et al. [9, 10] proposed the generalized string
model which includes the elastic and viscoelastic behavior.
I'(t) isassumed as a linearly viscoelastic thin shell, undergoing
only transversal displacement 1 = #(x, t):

2 2 3
psthTZ+C011—Clai1+D 817 on

ox2 ot =12

‘ata 2 9)
on (0,L) % (0,T).

Cani¢ et al. [18-20] stated that there are no analyti-
cal results which are able to prove the well posedness of
fluid structure interaction problems without assuming the
structure model that includes the higher order derivative
terms capturing the viscoelastic behavior or with the terms
describing bending rigidity. They explained that the bending
rigidity of the vessels walls which are being neglected might
mean oversimplifying the physics. Thus, their motivation was
to derive the Koiter shell equations in cylindrical coordinate.
The linearly viscoelastic cylindrical Koiter shell model is
given as

o’ o, 0,
Pwh atz Co’7r Cl a 2 C2 a 4
3 5 (10)
on o'n, o’n,
p I _p
tDog ~DiggatDagsa = fr

There are two interesting features: bending rigidity plays a
nonnegligible role in the &* approximation of the original
problem, and the fluid viscous dissipation imparts long-term
viscoelastic memory effects on the motion of the arterial
walls.

2.3. The Coupling Condition. The coupling condition
between both fluid and structure is

0
u; =0, u, = 2 on I'(t) fort € (0,T). 1)

ot

The initial and boundary conditions for fluid velocity u and
the structure displacement 7 are prescribed as

on
u=0, 4=0, —'=0,
ot (12)
n(0,t) =0, n(L,t) =

3. Numerical Approaches for Fluid
Structure Interaction Problems

In this paper, the numerical approaches in solving fluid struc-
ture interaction problems are classified into two: namely, the
partitioned and the monolithic approach [20-24, 26]. Other
numerical approaches such as the conforming and non-
conforming mesh associated with the immersed boundary



method in solving fluid structure interactions have been
reviewed in [27].

Partitioned approach treats the fluid and structure prob-
lems as two computational fields which can be solved using
two distinct solvers. The interface conditions between the
fluid and structure are solved through loosely or strongly
coupled algorithms [20-24, 26, 27]. Figure 2 shows that
loosely coupled algorithms are known as explicit algorithms
while strongly coupled algorithms are known as implicit
algorithms.

Partitioned approach is based on the successive solution
of three subproblems and allows one to reuse the existing
codes. Monolithic approach treats the fluid and structure as
a single system. In other words, flow and structure problem
is solved with a single code. The interfacial conditions are
implicit in the solution procedure. The solution procedures
of the monolithic and partitioned approach are illustrated
in Figure 3 where $' and $* denote the fluid and structure
solution, respectively [21, 23, 27].

3.1. Partitioned Approach. According to Sieber [34], infor-
mation in loosely coupling algorithms will be exchanged
between the solvers only once per time step. This implies
that the fluid and structure should be in equilibrium. Then
the data can be exchanged only if both fluid and structure
variables are constant within each time step. Before starting
the iterations process, all materials, fluid properties param-
eters, fluid and structure variables, time step, and the con-
vergence criteria should be initialized. However, convergence
problems might increase due to the nature of explicit coupling
algorithms. Thus the choice of time-step size was restricted
and it was not suitable for large structural deformations
problems. Figure 4 shows the comparison in terms of stability,
generality, and programming efforts for both couplings.

Andersson and Ahl [26] summarized some issues about
loosely and strongly coupled algorithms. For loosely coupled
algorithms, instability issue increases with decreasing the
mass density ratio. Besides, the decrease in time-step size
further increases the instability, known as the artificial added
mass effect. Errors in the predictions along with the added
mass effect caused the incorrect coupling forces that led to
the instability. For strongly coupled algorithms, it was more
stable for low mass density ratio. On the other hand, due to
more subiterations, the computational time increases when
the ratio is reduced.

Deparis et al. [38] stated that standard loosely coupling
algorithms solved the fluid, geometry, and the interface
explicitly and the structure implicitly. The computational cost
was cheap but unstable especially when the structure was
light. Several suggestions had been made to overcome the sta-
bility issues. Nobile and Vergara [29] proposed Robin inter-
face conditions to be enforced to solve fluid and structure
subproblems. Burman and Fernandez [28] proposed a sta-
bilized explicit coupling for fluid structure interaction based
on Nitsche’s scheme. Numerical simulation of fluid structure
interaction problems involving a viscous compressible fluid
and elastic structure was considered. The explicit coupling
scheme without correction had given a stable approximation
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with poor accuracy. High order accuracy was achieved after a
few correction iterations and the results were comparable to
that with implicit scheme solution [28].

It has also been suggested that the geometry and interface
coupling should be treated implicitly [18]. Vierendeels et al.
[39] proposed a coupling method for strongly coupled fluid
structure interaction problems with partitioned solvers. They
solved the reduced order models for fluid and structure prob-
lem and a small number of coupling iterations. Commercial
CFD software package Fluent 6.2 was used as the fluid solver
and Abaqus 6.5 was used as the structural solver. This cou-
pling method showed a satisfactory convergence behavior.
Thus, it can be summarized that the explicit partitioned
algorithms are not suitable for problems in hemodynamics.
It was proved to be problematic with the stability issues as
the added mass effect of the fluid on the structure [16, 25,
29]. Implicit partitioned algorithms were also affected by the
added mass effect as they converge slowly. Special treatments
of the interface conditions had to be considered.

3.2. Monolithic Approach. Deficiencies in the partitioned
method had motivated the investigation on monolithic
methods [21]. Hron and Turek [40] and Hron and Madlik
[41] stated that the monolithic approach which treated the
problem as a single continuum with coupling automatically
takes care of the internal interface. This gets rid of the
problematic interface treatment when the fluid and structure
are solved separately. The results computed using monolithic
approaches were ten times more accurate, but the computa-
tional cost was three to four times higher than those of the
partitioned methods as stated in Michler et al. [21].

Heil [22] explained that if the fluid is incompressible or
the problem is steady, the solution of a large system of coupled
nonlinear algebraic equations is needed. The solution of a
nonlinear system by Newtons method was utilized since it
yielded a powerful and rapidly converging scheme. However,
repeated assembly of the Jacobian matrix and the solutions
associated with the linear systems for Newton corrections
contributed to the increase in computational cost. Thus they
developed an efficient preconditioning technique that allows
the rapid iterative solution instead of applying the Newton
method as in [20].

Heil et al. [20] studied the fluid structure interaction
in collapsible channel with monolithic and partitioned
approaches. Both approaches were competitive in the test case
involving steady problems. In unsteady problems, strongly
coupled partitioned solvers suffered from severe convergence
problems and an under-relaxation parameter needs to be
applied in stabilizing the solution procedure. Monolithic
solvers become more essential in unsteady problems but
required an efficient precondition for the large problems,
particularly in three-dimensional problems [20].

Razzaq et al. [42, 43] presented numerical simulation of
fluid structure interaction in hemodynamics with monolithic
approach. They restricted the research on two-dimensional
models which allow the systematic tests of the proposed
methods. The corresponding monolithic treatment of the
fluid structure interaction problems suggested that a stable
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second-order time stepping scheme as well as the same finite
elements for fluid and structure should be utilized. Hron and
Turek [40] and Hron and Madlik [41] applied different types
of discretization in space and time. They solved the simplified
two-dimensional examples with finite element and Crank-
Nicolson for the space and time discretization, respectively.
The resulting nonlinear algebraic system was solved by an
approximate Newton’s method. The results obtained had high
accuracy and robustness.

4. Improved Numerical Methods

Although stability and accuracy of partitioned approach
can be improved through prediction techniques, their error
remains larger than monolithic solutions [20, 21]. To date,
monolithic and implicit schemes seem to be applicable in
fluid structure interactions in blood flow. However, subit-
erations that are performed at each time step increase the
computational time and computational costs [9, 10, 30-33].
Several approaches based on the coupling algorithms had

been proposed in recent research works, such as the semi-
implicit, kinematic splitting algorithm, and the geometrical
multiscale approach.

4.1. Semi-Implicit Approach. Fernandez et al. [30, 31] pro-
posed a semi-implicit scheme to solve the numerical simula-
tion of fluid structure interaction problems involving strong
added mass effect, particularly in hemodynamics. The idea
of the semi-implicit scheme was to treat the added mass
effect implicitly while other contributions such as geometrical
nonlinearities, viscous, and convective effects are solved
explicitly. Such explicit-implicit splitting can be naturally
performed using a Chorin-Temam projection scheme in the
fluid. The authors claimed that this scheme was numerically
stable, given in theoretical and numerical evidence for a wide
range of physical and discrete parameters.

However, Astorino et al. [44] stated that the scheme
proposed in [30, 31] had computing limitations such that

(i) it was assumed that the fluid problem is to be solved
with a projection scheme;



(i) the energy was not perfectly balanced. Astorino et al.
[44] then modified the scheme in [30, 31] by treating
the explicit part of the coupling with Nitsche-based
mortaring. The authors claimed that their scheme was
independent of the added mass effect.

Badia et al. [8] proposed a similar previous semi-implicit
approach which was based on the inexact block-LU factor-
ization of the linear system. The linear system was obtained
after the space-time discretization and linearization of the
fluid structure interaction problems. The idea presented was
to decouple the fluid velocity computation of the strongly
coupled fluid structure system. Only pressure and structure
unknowns were involved, with the advantage of reducing
the computational costs and maintaining stability. Since the
pressure was still coupled to the structure, the stability of the
scheme was independent of the added mass effect.

4.2. Kinematic Splitting Algorithm. Guidoboni et al. [9, 10,
33] proposed a new version of the loosely coupled-type
algorithm. The algorithm which is known as the kinemati-
cally coupled scheme is aligned with the crucial role of the
kinematic condition for the proposed algorithm. This scheme
applied the hypothesis that the arterial wall was modelled
as a thin shell so that such scheme does not suffer from
instabilities related to the high nonlinear interfacial coupling
between the flow and structure. The idea of the kinematically
coupled scheme was presented as follows.

(1) Use operator splitting for time-discretization.

(2) No iterations between the fluid and structure sub-
problems were required.

(3) Impose the kinematic condition in strong form in
order to maintain the tight link between fluid and
structure in each sub-problem.

(4) The fluid stress at the interface did not have to be
computed explicitly.

Kinematically coupled scheme splits the structure into
two parts: the hydrodynamic load exerted by the fluid on the
structure and the purely elastic part without the hydrody-
namic load. The hydrodynamic part, consisting of the fluid
stress acting on the interface and the viscoelastic terms, is
treated together with the fluid. By adding the hydrodynamic
part of the structure equation to the fluid equation and by
utilizing the kinematic interface condition, they deal with the
inertia of both fluid and structure at the same time, thereby
getting around the difficulty associated with the added mass
effect. The elastic part was treated separately and this enabled
the use of a wide range of structural models [9, 10].

Guidoboni et al. [9, 10] considered the incompressible,
viscous Newtonian fluid in a two-dimensional channel with
thin, deformable walls in the generalized string model. Time
discretization via Lie’s operator splitting was applied through
the scheme. Since the operator splitting was developed only
for the first-order formulation, the kinematic boundary con-
dition was applied into the structure equation to transform
the second-order formulation to the first-order formulation.
The overall structure of the scheme was to solve the four
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subproblems with different numerical schemes. Existing fluid
and structure solvers can be used as “black boxes.” Numerical
results of kinematically coupled scheme showed excellent
agreement with those obtained using an implicit scheme
[9,10].

Bukac et al. [11] extended the work of [9, 10] by replacing
the generalized string model with linearly viscoelastic cylin-
drical Koiter shell model. The authors tried to capture the
radial and longitudinal displacement of the linearly viscoelas-
tic Koiter shell for the underlying fluid structure interaction
problem. In addition, they aimed to increase the accuracy
of kinematically coupled scheme with the modified Lie’s
scheme. The modified scheme was named as kinematically
coupled f3-scheme. The results were comparable with the
monolithic scheme in [8]. Such a scheme was modular and
easy to implement and had low computational cost.

The idea of kinematic splitting algorithm inspired
Lukacova-Medvidova et al. [45] to propose a similar tech-
nique to solve the fluid structure interaction problems of non-
Newtonian fluids. Lukalova-Medvidova et al. [45] claimed
that their approach was more general than [9, 10, 33] because
they allowed the use of second-order splitting method and
non-Newtonian rheology. They applied implicit backward
Euler discretization to the fluid and second-order Newmark
scheme for the structure. The results were conditionally
stable.

4.3. Geometrical Multiscale Approach. Formaggia et al. [13,
32] mentioned that although the coupling algorithm for fluid
structure interaction should be implicit, it is difficult to simu-
late large regions. The simulation of three-dimensional fluid
structure interaction suffered a pressure wave that had been
generated and reflected at the flow section. Thus, geometrical
multiscale approach was proposed by coupling the detailed
three-dimensional fluid structure interaction model with a
one-dimensional reduced model as shown in Figure 5. They
applied an implicit coupling on the three-dimensional fluid
structure interaction problem and the Lax-Wendroff scheme
on the one-dimensional model. The explicit numerical algo-
rithm was proposed for the geometrical multiscale coupling.
Formaggia et al. [13, 32] attempted to eliminate the spurious
reflection at the flow section through geometrical multiscale
approach by implying one-dimensional reduced model as the
absorbing boundary condition. The results showed that the
pressure wave is quite well absorbed by the one-dimensional
model.

Janela et al. [46] stated that as the flow is driven by a
pressure pulse generated by a constant pressure, the ves-
sel inflates initially near the inflow boundary. The motion
propagates along the vessel until it reaches the outflow
section and is reflected back. Such issue can be solved
through geometrical multiscale approach as proposed by
[32]. Janela et al. [47] proposed several absorbing boundary
conditions in order to cope with the spurious reflection.
The numerical approximation of three-dimensional and one-
dimensional coupling was performed through a staggered
algorithm, iterating the three-dimensional fluid structure
interaction and one-dimensional model. The coupling can be
performed implicitly, comprising subiterations at each time
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FIGURE 5: Three-dimensional and one-dimensional coupling model.

step or explicitly, with no subiterations at each time step. The
proposed linear absorbing boundary conditions had been
proven to be effective in absorbing the pressure wave.

Both Formaggia et al. [32] and Janela et al. [46, 47]
mentioned that the homogenous boundary condition will
lead to energy decay property. Standard homogenous bound-
ary condition introduces the spurious reflections of the
pressure wave which will cause the structure to continue
oscillating. Proper boundary conditions should be chosen in
order to cope with the reflection issues caused by the three-
dimensional fluid structure interaction.

5. Conclusion

Fluid structure interaction needs to be included in models
of blood flow as blood interacts mechanically with the vessel
wall. It is suggested that the linearly viscoelastic Koiter shell
model should be adopted to model the structure of the vessel
wall since it takes into account the elastic and viscoelastic
behavior with bending rigidity.

The main issue in the fluid structure interaction model
of blood flow model is on how to get rid of the added mass
effect so that the numerical solution will be stable and the
computational cost is low. The monolithic scheme has been
the most commonly used approach, but it is expensive in
terms of computational cost and memory requirement. To
get around this problem, various ways to improve on the
partitioned approach have been sought.

Classical partitioned approach considers a problem sep-
arately as fluid, structure, and interface. Problem arises
when the interface is solved separately. In the kinematically
coupled scheme, which is a loosely coupled partitioned-type
algorithm, an operator splitting is applied instead of the
problem being split into the fluid and structure subproblems.
Such splitting algorithm offers the flexibility of applying any
suitable numerical methods in solving each subproblem. As
the computational cost is measured according to the number
of iterations, the computational cost of the kinematically
coupled scheme is lower, with the results obtained being as
accurate as those obtained from the implicit schemes.
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Different numerical methods have been implemented to simulate internal natural convection heat transfer and also to identify the
most accurate and efficient one. A laterally heated square enclosure, filled with air, was studied. A FORTRAN code based on the
lattice Boltzmann method (LBM) was developed for this purpose. The finite difference method was applied to discretize the LBM
equations. Furthermore, for comparison purpose, the commercially available CFD package FLUENT, which uses finite volume
Method (FVM), was also used to simulate the same problem. Different discretization schemes, being the first order upwind, second
order upwind, power law, and QUICK, were used with the finite volume solver where the SIMPLE and SIMPLEC algorithms linked
the velocity-pressure terms. The results were also compared with existing experimental and numerical data. It was observed that the
finite volume method requires less CPU usage time and yields more accurate results compared to the LBM. It has been noted that the
Ist order upwind/SIMPLEC combination converges comparatively quickly with a very high accuracy especially at the boundaries.
Interestingly, all variants of FVM discretization/pressure-velocity linking methods lead to almost the same number of iterations to
converge but higher-order schemes ask for longer iterations.

1. Introduction

Studying heat transfer and fluid flow using computational
methods is easier [1], safer [2], and much less costly [3] com-
pared to experimental techniques. There are a large number
of problems which can be simulated with great accuracy to
replicate experiments with high resolutions [4]. There are
currently a range of approaches with the potential to serve in
modeling heat transfer and fluid flows, such as the finite dif-
ference method (FDM), finite element method (FEM), finite
volume method (FVM), lattice boltzmann method (LBM),
boundary elements method (BEM), molecular dynamics
simulation, and direct simulation Monte Carlo. The most
widely employed approaches in the field of thermofluids

are the first four [5]. However, application of FDM can be
difficult when complex geometries are involved [6]. The FEM
schemes can be intricate for solving conservative equations,
while the nonstandard FEMs have low computational efhi-
ciency [7]. Application of FVM is difficult and complex
to cases with complex moving boundaries [8]. LBM is a
compressible model for ideal gases and can theoretically
always simulate the compressible Navier-Stokes equations.
With the Chapman-Enskog expansion [9], LBM can simulate
incompressible flow for low Mach numbers (Ma < 0.15) albeit
at the expense of a compressibility error [10, 11]. Besides,
regular square grids used with LBM make it very hard to
extend the simulation to curved boundaries [12]. All in all,
the accuracy of all these numerical approaches is dependent
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FIGURE 1: Schematic of analyzed configuration.

on the problem configuration, discretization scheme, and
numerical algorithm used [5]. As such, an important question
to answer is about finding the best approach to solve a certain
problem subject to computational efficiency and accuracy as
the most important constrains. Along these lines, Rouboa
and Monteiro [13] investigated the heat transfer phenomenon
during cast solidification in a complicated configuration
by FVM and FDM. A comparison between the numerical
results and experimental ones indicated that both discretiza-
tion approaches produced good outcome, with FVM being
slightly better as it uses more information than FDM to cap-
ture spatial temperature variations. Despite recent progress
in computing power and techniques, the literature review
indicates a lack of comprehensive studies on selecting the
ideal means of analyzing internal heat transfer and fluid flow
problems. In particular, an optimal solution technique and
procedure to simulate internal natural convection are yet
to be presented. To fill this gap in the literature, laminar
natural convection heat transfer of air inside a laterally heated
square enclosure is investigated using both FVM and LBM.
The simulation results were compared against those from
the literature. Particular attention was given to different
discretization techniques as well as pressure-velocity linking
approaches to find the best method for simulating internal
free convection problems.

2. Governing Equations

2.1. Finite Volume Method. Continuity, momentum, and
energy equations were employed for flow analysis in a system
depicted by Figurel. Density was computed by invoking
the Boussinesq approximation for AT < 30°C [14]. The
governing equations are written as follows [15].

Continuity equation:

au ov

a3y " 0
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Momentum equations in X and Y directions:

o, 0u_C10p p(Su Tu
ox dy pox p\ox* o)’
_ 2 2
u@+ v _ la‘D+M o B +pBg(T-T,).
Ox ay poy p ox? ay
)
Energy equation:
ua_T + v aT k aZ_T + aZ_T (3)
ox oy pCp ox*  0y? )’

2.2. Lattice Boltzmann Method. The hydrodynamic and ther-
mal Boltzmann equations with using density-momentum
and internal energy distribution functions (double popula-
tion) are as follows [16, 17]:

ofi  ofi .
E uxa Q(f)__f(i_fi)’

9g; 9g; 2
e 2L =0(g)- f.Z =05c-uPQ(f) - f.Z
at +Clotaxa (gl) .fl 1 Oslc ul (.fl) .fl 1

- g
gl gl __fiZi-

Tg

(4)

Double population LBM model (TLBM) uses two separated
distribution functions f and g for hydrodynamic and ther-
mal fields, respectively. This model is the latest one among
different presented models of thermal LBMs. In addition, it
shows more accuracy and stability during the solution pro-
cess. As LBM solution process naturally tends to divergence
having a stable approach like TLBM helps the convergence.
Microscopic velocities for a D2Q9 lattice model are [12]

i-1 . i-1 .
¢ = (cos ——71, sin —n), i=1,2,3,4,
2 2

= \/E(cos[(i;S)”Jfg]>Sin[(i;5)ﬂ+%])’ (5)

i=5,6,7,8,

¢, =(0,0).

Heat dissipation and hydrodynamic and thermal equilibrium
distribution functions are given by

Su, ou,
Z;= (Cioc - uoc) [ St +Cioc£] >

9(¢; - u)2 - 3_112]

fiezwl»p[l+3(ci-u)+

2 2
i=0,1,...,8
4 1
Wy = 9’ W1234 = 3> Ws567.8 = 36’
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g§,6,7,8 = %Pe [3 +6 (c5,6,7,8 “u)

+4.5(csg75 )" — L5u?],
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where pe = pRT and w is the weight function. Equation (4)
in discretized forms [18] reads

fi (x+ At t + At) — f; (x,t)

:—A—[ﬁ(x+cAt t+At) -
21f

At
_E[fi(x’t)_

£5(x+ ALt + At)]

fif x,1)],

g; (x+ ALt + At) — g; (x,1)

__Ab [g; (x + At t + At) —

ng

g; (x+ At t + At)]
At

- 7ﬁ- (x+ GALt + At) Z, (x + ¢;At, t + At)
At At

- % [gz (X’ t) - gf (X) t)] - 7fz (X> t) Zi (X’ t) .

7)

The two last equations are implicit. Thus, the new functions
f; and g; are developed to address this problem:

fi=fiv 2L (f- 1), (8)

2Tf
_ At o At
=g+ — (g - )+ — f.7..
i gl+2Tg (g9:—g7) + 5 fiZi )

Collision and streaming steps of LBM are simulated by
applying (7)-(9) as follows:

ﬁ(x+ciAt,t+At) - fi(x,1)
= t) - fi (x1)],
Tf+05At [/ o) = 7 ()]
J; (x + ¢ At t + At) — G; (x, 1)
At
= t D] -—L—f7.
7, +0.5At [: 006 = gi (&, 0)] - 7, +05Atf !

(10)

Finally, the hydrodynamic and thermal variables can be

obtained as
p=21
pu= Zcifi’ (11)

A
T2
1

pe=pRT =}, -

3. Boundary Conditions

Figure 1 illustrates a schematic of the configuration analyzed
in the present study along with the boundary conditions.

The nonequilibrium bounce-back model is used to simu-
late the no-slip boundary condition on the walls in LBM. This
model improves accuracy compared to the usual bounce-
back boundary condition and satisfies the zero mass flow
rates at nodes on the wall. The collision occurs on the
nodes located at the solid-fluid boundaries and distribution
functions are reflected in a suitable direction, satisfying the
equilibrium conditions [19].

The macroscopic boundary conditions for the present
study are

T=T, 0<y<l1

T=T, 0<y<l1 x=1,

a—T:O u=v=0 0<x<1 y=0, (12)
oy

oT

@20 u=v=0

0<x<1 y=1

4. Numerical Procedure

Our FVM solver uses the implicit line-by-line tridiagonal
matrix algorithm [20, 21] to linearize the system of algebraic
equations. First order upwind [22], second order upwind
[23], power law [24], and Quadratic Upstream Interpola-
tion for Convective Kinetics (QUICK) [25] schemes were
applied in different trails to solve the same problem while
the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) [26, 27] and SIMPLE-Consistent (SIMPLEC) [28,
29] procedures were selected for pressure-velocity coupling.
The convergence criterion, maximum absolute error in each
dependent variable, was set at 1077

In LBM, the zero values for U(x, y), V(x, y), and T(x, y)
are applied as the initial conditions. However, to avoid
problems in estimating the macroscopic variables in (12),
the initial fluid density is set to unity. LBM dimensionless
numbers Re, Ra, and Pr are defined identical to those of
classical Navier-Stokes equations. However, the macroscopic
numerical value should be calculated beforehand. For exam-
ple, for Pr, one has the kinematics viscosity and thermal
diffusivity determined in LBM as v = 7,RT and a = 27,RT,
where 7 and 7, are hydrodynamic and thermal relaxation
times and R is the gas constant. The Prandtl number can



then be written as Pr = v/a = TfRT/ZTgRT = Tf/ZTg. For

Ra = GrPr = gBATH’/va the values of v and & are now
known based on relaxation times, while the numerical values
of g, B, H, AT are predetermined and fixed.

4.1. Gravity Effects in LBM. The Boussinesq approximation
was used as p = p[1 — B(T - T)] to give buoyancy force per
unit mass defined as G = ﬁg(T—T) and f = G-(c - u) f¢/RT.
Hence, the discretized Boltzmann equation is written as

fi‘fieJrG'(Ci_u)
Tf RT

Ofi+ (V) fi=~ 15

fi (x + At t + At) - f; (x,1)

Attp 3G (ciy - v) ’
Tf + 0.5At C2 a
(13)

- L[ﬁ-ffh

Tf + 0.5At

Applying (8) and taking into consideration the effects of
gravity, one has

p-Yh u=(5) Y
V= <%>Zﬁq}, + %G,

i

(14)

while for thermal macroscopic variables (11) is applied.

4.2. Deriving Navier-Stokes Equations from LBM. In order
to derive Navier-Stokes equations from the incompress-
ible lattice Boltzmann equation by using Chapman-Enskog
expansion the discretized form of Boltzmann equation can
be written as

_fi (x,1) - f{ (x,1)

fi (x+ ALt + At) - fi(x,t) = "
f

(15)

With Kn = € as a small (perturbation) variable, the Chap-
man-Enskog expansion for f, and 9, reads

=)
0 1 2 (2
fi= zgnfi(n) =fi()+[€fi()+€ fi()+'”]
n=0
— fi(eq) + [fi(neq)] , 16)

0= &0, =0, +ed, +---.

n=0

None of the nonequilibrium parts of the above equations
should be used for estimating the macroscopic properties p
and pu:

zgnfi(") =0 VYn>0,
i

17)
Zcis"fi(") =0 Vn>O0.
i
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Using these equations together with Tailor expansion of
Boltzmann equation around At, the terms which are smaller
than (At) dropped, and then substitute into (15), we have

1
[at TG V] fi(O) = _fi_>
0 T
f
2 (18)
1 y S
o, £ + (1 - —) [0, + ;- V] [V = -~
2Tf Tf

Macroscopic density and velocity variables can be achieved
by applying the first and second order of moments, leading to

3y f+V- (Zc,. f,.“’)) =0,
3, <2cif}°)> +V- [H“” +At(1 - %)H(l)] =0(af),

f
(19)

where

0 _ (0)
IT = ZCicifi 5
i

(1) _ (1)
I = Zcicifi .
i

(20)

Amount of fi(o) is determined by using f = w;p[1+3(c;-u)+
(9(c; -u)?/2)-(3u?/2)] and then using the zero and first order
of moments of (18) together with fi(o):

0,p+V-(pu)=0,

o, p =0,
(21
0, (pu) +V - (puu) +V (pcsz) =0,

0, p+V- (2va - At (Tf - 0.5) V- (puuu)) =0,
where

2
(22)

(21, -1) At
—

V=

Finally, making use of V- u = 0,Vp = 0 at incompressible
limit and ignoring the term V - (puuu) in (21), continuity and
momentum equations are recovered. In addition, the thermal
energy equation would be recovered in a similar way; see [30,
31] for more details.

5. Grid Independence

Structured nonuniform grid distributions were applied for
FVM simulations with a grid cluster near the walls to capture
sharp velocity and temperature gradients. For LBM simu-
lations structured grids based on D2Q9 lattice are applied.
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TaBLE 1: Grid independence tests (FVM and QUICK/SIMPLEC).

Number of grids 15987 31974 47961 63948 Experimental value [32]
Maximum X-velocity 0.001 0.001 0.0012 0.0012 —
Dimensionless temperature at the middle of the cavity 0.460 0.465 0.489 0.493 0.51
TaBLE 2: Grid independence tests (LBM).
Number of grids 10000 32400 48400 67600 84100 Experimental value [32]
Maximum X-velocity 0.0004 0.0008 0.0010 0.0010 0.00103 —
Dimensionless temperature at the middle of the cavity ~ 0.430 0.449 0.463 0.471 0.475 0.51
TaBLE 3: Thermophysical properties of air [33].

P C, 7 k B Gr Pr Ra
1.127 1007 1.9114x107° 0.0271 0.006092 2.662 x 10° 0.71 1.890 x 10°

Extensive grid independence checks were performed, as
indicated by Tables 1 and 2, to observe that a grid with 47961
and 67600 cells for all FVM solvers and LBM, respectively,
leads to mesh-independent results.

6. Results

Our numerical results, from different solvers, were compared
with benchmark experimental data from Krane and Jessee
[32] as well as the numerical predictions of Khanafer et al.
[34], Oztop and Abu-Nada [35], and Bakhshan and Emrani
[33]. The main dimensionless parameters were the Rayleigh
and Prandtl numbers, which are constant at 1.89 x 10° and
0.71, respectively. The fluid thermophysical properties, as well
as dimensionless numbers, are shown in Table 3.

For Pr = 0.71 and Ra = 1.89 x 10°, the dimensionless
temperature and vertical velocity profiles at midheight are
plotted in Figures 2 and 3 and contrasted with the results
from [32-35]. These figures illustrate a superior adaptation
between the present simulation results using the FVM and
LBM models and those of [32-35] works. Although previous
research shows that, for complicated turbulent fluid flow
problems, the QUICK/SIMPLEC is the most accurate choice
[33], Figures 2(a) and 3(a) indicate that for laminar internal
convection heat transfer problems there is no dramatic dif-
ference among the studied discretization approaches. How-
ever, it is obvious from Figures 2 and 3 that the FVM
results are more accurate than those of LBM. This could
be attributed to the compressible nature of LBM [36, 37],
which creates a compressibility error for incompressible
flows [12]. Among the discretization/pressure-velocity link-
ing approaches examined, 1st order upwind/SIMPLEC has
the closest results to experimental benchmark data, especially
for the temperature contours in the range 0.20 < X < 0.80.
With vertical velocity distribution, however, the difference
among FVM approaches is quite negligible. Nevertheless, the
fact that the accuracy and stability of the convective terms
comprise a contrasting pair is a general perception in the
field of computational heat transfer. For instance, the first
order upwind scheme is entirely stable even with strong false

diffusion [38], while the second or third order schemes like
QUICK are conditionally stable [25].

Table 4 successfully compares our numerical results with
those available in the literature under similar conditions and
geometry over a range of Ra values with Pr = 0.7. Slight
discrepancies are observed in this table between some of the
present work results and those of [34, 39-42] because of the
differences between the employed discretization methods, as
well as mesh generation types, as one would expect.

Table 5 provides the comparison of number of iterations
and required CPU usage time for the different discretization
methods considered here. As seen, LBM may take 4-5 times
longer to converge and 8-9 times more iterations compared
to FVM. There are two reasons for this. The first one is
attributed to the way LBM handles heat transfer. Although in
the present work the appropriate internal energy distribution
function, g, [43] was used to obtain the temperature field,
this model even tends to diverge. Furthermore, with LBM
modeling the corners ask for a large number of fine grids near
the corners. These two matters cause the LBM solutions to be
comparatively more time consuming.

According to Table5, the number of iterations for
all FVM discretization method/pressure-velocity linking
approaches is nearly equal. In this case, the difference
between the QUICK/SIMPLEC method that necessitates the
largest number of iterations and the lowest one (power
law/SIMPLE) is only 79 iterations, that is, a 5.2% difference.
With respect to CPU usage time, these proportions are to
some extent different. For example, when comparing the
most time consuming method (QUICK/SIMPLEC) with the
Ist order upwind/SIMPLEC approach, this time disparity is
about 4.94%, while the number of iterations differs by only
1.65%. As expected, higher-order accurate schemes are more
time consuming.

The effects of the solution method, discretization scheme,
and pressure/velocity coupling approach on the streamlines
and X-velocity are illustrated by Figures 4 and 5. Two
elliptical vortexes generally appear at the center of the cavity
as a predominant feature of buoyancy-induced flow in a
laterally heated square enclosure. In this context, the Ist
order upwind scheme has the most precise results among
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FIGURE 4: Streamlines contours.
TaBLE 4: Comparison of the average Nusselt number along the hot wall with those in the literature.
Ra =10’ Ra = 10* Ra=10’ Ra = 10°
Khanafer et al. [34], FVM 1.118 2.245 4.522 8.826
Barakos et al. [39], FVM 1.114 2.245 4.510 8.806
Markatos and Pericleous [40], FDM 1.108 2.201 4.430 8.754
de Vahl Davis [41], FDM 1.118 2.243 4.519 8.799
Fusegi et al. [42], 3-D FDM 1.105 2.302 4.646 9.012
1st upwind/SIMPLE 1.115 2.233 4.508 8.756
Ist upwind/SIMPLEC 1.120 2.242 4.516 8.795
2nd upwind/SIMPLE 1116 2.236 4.465 8.761
2nd upwind/SIMPLEC 1.119 2.240 4.489 8.799
Power law/SIMPLE 1.115 2.235 4.465 8.754
Power law/SIMPLEC 1.116 2.238 4.475 8.765
QUICK/SIMPLE 1.119 2.242 4.502 8.786
QUICK/SIMPLEC 1.113 2.230 4.479 8.757
LBM 1.108 2.210 4.456 8.756
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TABLE 5: Number of iterations and solving time for different discretization method.

0004

Discretization method/pressure-velocity

Type of method Case number o Number of iterations Solving time (s)
linking approach

1 Ist upwind/SIMPLE 1571 482
2 1st upwind/SIMPLEC 1572 486
3 2nd upwind/SIMPLE 1597 502

Finite volume method 4 2nd upwind/SIMPLEC 1598 509
5 Power law/SIMPLE 1520 469
6 Power law/SIMPLEC 1521 474
7 QUICK/SIMPLE 1598 510
8 QUICK/SIMPLEC 1599 519

Lattice Boltzmann method 1 Well-known finite difference method 47507 3360
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the studied discretization schemes, especially in the north-
west and southeast sides of the enclosure. Regarding the
pressure/velocity coupling approaches, the maximum stream
function values for the SIMPLE and SIMPLEC approaches
are 0.0003 and 0.0003066, respectively, translating into 2.2%
difference while the CPU usage time difference is only 4 s. For
LBM, the value of stream function is 0.000278.

For the velocity contours in the X direction Figure 5
shows that the U-velocity contours have cross-diagonal simi-
larity towards the Y = X axis. Thus, all the methods analyzed
present comparable results with no obvious difference.

Figure 6 demonstrates the local Nusselt number distribu-
tions along the left hot wall. For all discretization schemes,
the Nusselt number is high near the bottom of the left wall
(because of extreme temperature variations) and declines
towards the top of the wall. The comparison between different
solvers reveals that the 1st order upwind scheme predicts the
maximum Nusselt number while LBM leads to the lowest one
with some fluctuations along the hot wall. Interestingly, LBM
uses about 40% more grids in that region compared to FVM
ones.

7. Conclusions

Numerical tests using the finite volume and lattice Boltzmann
methods with various discretization schemes and pressure-
velocity linking algorithms were conducted to obtain the
optimum discretization/linking approaches to address the
internal convective heat transfer problems. The flow and
temperature fields, as well as number of iterations and solving
time, were evaluated.

The significant observations made in this study are sum-
marized as follows.

(1) The finite volume method results are more accurate
compared to those of LBM, especially at the corners.

(2) LBM needs a 4-5-fold CPU usage time and 8-9
times more iterations compared to the finite volume
method to solve the problem considered here.

(3) Among the studied discretization/pressure-velocity
linking algorithms, the 1st order upwind/SIMPLEC
provides the most precise results against experimental
benchmark data, especially in the boundary layers.

(4) The numbers of iterations for all FVM discretization/
pressure-velocity linking methods are nearly equal.

(5) The higher-order accurate schemes are more time
consuming.

One, however, notes that the above observations are valid
within the limits of the parameters and problem considered in
this study and could not be generalized to other cases without
further investigations.
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Nomenclature

X, y: Cartesian coordinates (m)
f: Density-momentum distribution function

H, L: Enclosure height and width (m)
Gr: Grashof number (gBATL v™?)

g: Gravitational acceleration (m s%)
Z: Heat dissipation

g: Internal energy distribution function
c Microscopic velocity vector

Pr: Prandtl number (va™?)

p: Pressure (N m?)

Ra: Rayleigh number (Gr Pr)

Cp Specific heat capacity (J kg' K')
T,t: Temperature, time (K), (S)

k: Thermal conductivity (W m 'K

u = (u,v): Velocities vector and its components in X
and Y directions (ms').

Greek Symbols

p:  Dynamic viscosity (PaS)

p: Density (kgm?)

7, Internal energy relaxation times

v: Kinematics viscosity (m?sh)

751 Momentum relaxation times

B: Thermal expansion coefficient (K

a: Thermal diffusivity, x-y direction
components (m?sh).

Subscripts

¢: Cold wall

e: Equilibrium distribution function

h: Hot wall

i: Lattice velocity direction.
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This paper focuses on the problem of hedging against seismic risk through the retrofit of transportation systems in large-scale
construction projects (LSCP). A fuzzy random multiobjective bilevel programming model is formulated with the objectives of the
retrofit costs and the benefits on two separate levels. After establishing the model, a fuzzy random variable transformation approach
and fuzzy variable approximation decomposition are used to deal with the uncertainty. An approximation decomposition-based
multi-objective AGLNPSO is developed to solve the model. The results of a case study validate the efficiency of the proposed

approach.

1. Introduction

Transportation networks play a very important role in both
urban and rural areas, as well as in industrial sites such
as large-scale construction sites. Liu et al. [1] stated that
transportation networks are critical infrastructure and their
smooth operation is important for maintaining the normal
functions of society. However, disasters, especially earth-
quakes, cause not only tremendous economic losses and
social chaos but also enormous damage to infrastructure (e.g.,
2008 Wenchuan Earthquake, 2010 Chile Earthquake, and 2011
Japan Earthquake). Thus, as Liu et al. [1] pointed out, seismic
risk control should also consider the effect that damaged or
destroyed transportation networks have on the effectiveness
of postdisaster rescue and repair activities and the associated
socioeconomic losses. Under a seismic risk threat, retrofit
decisions are considered to be an effective protective measure
and can have a significant impact on these systems [1-3].
Therefore, promoting retrofit decisions for transportation
networks is necessary to hedge against seismic risk.

The research in this area has mainly focused on the
retrofitting of bridges for transportation networks [4-6].
Werner et al. [2] extended seismic retrofits to highway

systems. Afterwards, Liu et al. [1] established a two-stage
stochastic programming model for retrofit decisions for
transportation network protection. This previous research,
however, has primarily focused on urban transportation,
but it is essential that transportation networks in large-scale
construction projects (LSCP) also be considered. As a critical
infrastructure, the smooth operation of these networks is
important for maintaining the normal progress of these
projects. Therefore, it is necessary to control the seismic
risk for LSCP transportation networks to mitigate losses.
When considering LSCP transportation network retrofits,
there are significant challenges. First, these transportation
systems have not only permanent links and temporary links
to consider but must also assess the critical links (i.e.,
bridge, tunnel, etc.) and the noncritical links. Secondly, the
retrofit decision making environment is a mutual environ-
ment involving an investor who pays for the retrofit and
an administrator who controls the transportation systems.
Thirdly, a consideration of the environmental costs for the
investor has increasingly become necessary for social and
economic development. Lastly, a majority of the previous
research has assumed that seismic damage is classified into
five categories and there is a set of discrete probabilities
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associated with each of the five damage categories. In practice,
however, the situation is often not that simple, and the
description of the possible result of seismic damage is vague
and uncertain. In this case, this needs to be qualified with
a vague perception of a crisp but unobservable random
variable. Hence, due to the complexity of assessing the seismic
risk to property, seismic damage is subject to uncertainty
with both fuzziness and randomness, that is, fuzzy random
in nature. More recently, since Kwakernaak [7] proposed the
concept of the fuzzy random variable, considerable research
has been done, which has allowed for its application in many
areas [7-13]. Unfortunately, there has been little research
which has discussed a mixture of fuzziness and randomness
in a transportation network retrofit problem. Therefore, the
uncertainty with hybrid fuzziness and randomness induced
by the seismic damage risk to property needs to be further
studied and elaborated.

The fuzzy random variable was proposed by Kwakernaak
[7] who regarded it as “random variables whose values are
not real, but fuzzy numbers” From another view, Puri and
Ralescu [14] and Klement et al. [15] regarded a fuzzy random
variable as a random fuzzy set. Fuzzy random variables
represent a well-formalized concept which has underlain
many recent probabilistic and statistical studies involving
data obtained from a random experiment when these data
are assumed to be fuzzy set valued [16]. Therefore, in a
transportation network retrofit problem, the description of
seismic damage is considered a fuzzy random variable, that
is, a discrete distribution variable with a vague perception
(i.e., triangular fuzzy number). Several research works have
demonstrated how these fuzzy random coefhicients can be
converted into crisp values. Usually, at first, the fuzzy random
variables are transformed into fuzzy numbers using the fuzzy
expected values [17] or transformed into («,, 0)-level trape-
zoidal fuzzy variables through an approach proposed in Xu
and Liu [12]. Then, these fuzzy numbers are transformed into
deterministic values using their expected value [18] or («, 3)-
satisfactory solution to the programming is determined using
fuzzy coefficients [12]. In this case, based on the properties of
the fuzzy random seismic damage in this study, the theorem
and the proof presented in Xu and Liu [I2] are adjusted
to allow for a discrete random distribution to obtain the
equivalent fuzzy bilevel programming model. Then, using the
theorem proposed by Zhang et al. [19], decomposition is used
on these fuzzy variables to derive an approximate solution to
the model.

Under these emerging challenges, this paper formulates
a fuzzy random multiobjective bilevel programming model
for a transportation network retrofit decision to hedge against
seismic risk in an LSCP. The distinctions in the link types
allow for the recognition of the retrofit and reconstruction
costs. The investor and the administrator are the decision-
makers on two separate levels. Retrofit costs which include
the environmental costs and the retrofit benefits are the
two objectives of the investor, and the retrofit benefits are
the objective of the administrator. In order to describe the
hybrid uncertainty of possible seismic damage, fuzzy random
variables are introduced in the programming model, the
use of which has been applied in many areas [10, 18]. To
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cope with the proposed fuzzy random multiobjective bilevel
programming model, a transformation approach is used
to obtain an equivalent fuzzy bilevel programming model.
This approach transforms the fuzzy random variables in the
model into fuzzy variables which are similar to trapezoidal
fuzzy variables. Then, decomposition is utilized on these
fuzzy variables using a fuzzy number decomposition theorem
[19]. To solve the model, an approximation decomposition-
based multiobjective AGLNPSO is developed in this paper.
Through the decomposition of the fuzzy variables, the models
are successively solved until termination, and the approxima-
tion solutions are obtained. The multiobjective AGLNPSO
is a combination of the Pareto Archived Evolution Strategy
(PAES) [20] and the AGLNPSO [21] which is developed
by incorporating an adaptive particle swarm optimization
(APSO) [22] with a GNLPSO [23] and a multiple objectives
particle swarm optimization (MOPSO) [24].

This study contributes to the literature by adopting
the work of Liu et al. [1] to an LSCP and describing the
complex uncertain seismic damage scenario using fuzzy
random variables. Bilevel decisions involving the investor
and the administrator, distinctions between the various link
types, and the specification of the retrofit decisions into
several ranks according to the seismic damage scenario
provide a more reasonable and practical description of the
problem. The consideration of the environmental costs in the
transportation network in an LSCP enhances the focus for
management. To the best of our knowledge, an integrated
approach to deal with fuzzy random variables has not
been previously comprehensively studied. The approximation
decomposition-based multiobjective AGLNPSO is developed
as a useful tool to solve the problem, in which both the bilevel
and multiobjective environments are considered.

The remainder of this paper is as follows. The problem
description, the fuzzy random multiobjective bilevel
programming model, the transformation approach, and
the approximation decomposition are given in Section 2.
An approximation decomposition-based multiobjective
AGLNPSO is developed in Section 3. A case study is pre-
sented in Section 4. Finally, advantages, limitations, and pos-
sible future extensions of this work are presented in Section 5.

2. Modeling

In this section, the concepts for the LSCP transportation
network, the bilevel decision framework, the environmental
costs, and the fuzzy random seismic damage scenario are
introduced. A multiobjective bilevel programming model for
the problem considering fuzziness and randomness is estab-
lished. See in the following the notations used to describe the
model.

Index

a: Link in transportation network, a € A
b: Node in transportation network, b € B
v: Variable environment cost, v € V/

f: Fixed environmental cost, f € F
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i: Retrofit output, i € T
j: Retrofit activity, j € J
k: Origin-destination pair considered as commodity,
ke{l,...,K}.
Variables

_ { 1, Permanent link
Mg = 1o, Temporary link

n = { 1, Critical link
a — | 0, Noncritical link

cP: Increased variable retrofit costs for permanent
link by basic rank (i.e., rank 1)

¢!+ Variable retrofit costs for temporary link by basic
rank (i.e., rank 1)

cjfi: Increased fixed retrofit costs for permanent link

¢} Fixed retrofit costs for temporary link
p: Weight of environmental costs

ce: Increased variable environmental costs for per-
manent link by basic rank (i.e., rank 1)

ce!: Variable environmental costs for temporary link
by basic rank (i.e., rank 1)

f
f

pe},: Percent of activity cost center j in variable
environment cost v

ce’.: Fixed environmental costs

pef}: Percent of output i in fixed environment cost f

ce}: Variable environmental costs of activity cost
center j

am;: Cost of driver at activity cost center j

ra;: Driver rate at activity cost center j

amy;: Cost of driver for output i in activity cost center
J

C: Retrofit costs including environmental costs

Q: Retrofit benefits

Ea: Preretrofit link damage state for link a

B,: Postretrofit link damage state for link a

crf : Increased variable reconstruction cost for per-
manent link by basic rank (i.e., rank 1)

cr! : Variable reconstruction cost for temporary link
by basic rank (i.e., rank 1)

cri.: Increased fixed reconstruction cost for perma-
nent link

cr';: Fixed reconstruction cost for temporary link

y: Weight coefficient conversion time to monetary
value

tig: Free flow travel time and link a
a: Coeflicient of BPR function
fl,: The total flow on link a

ca!: Practical capacity of link a is set at 90% of the
design capacity

B: BPR function coeflicient
cay,: Capacity of node b
W: Node-commodity adjacency matrix

M: Link-commodity adjacency matrix.

Decision Variables

u,: €10,1,2,3,4,5}, VacA

)

2.1. LSCP Transportation Network. The LSCP transportation
network is composed of an internal road system and an
external road system and is always built based on the existing
links around the site which are connected with the newly built
links according to transportation need. There are two types
of links (i.e., permanent links and temporary links) which
vary considerably in terms of quality. In addition, according
to the different functions, the links are divided into critical
links and noncritical links. Critical links are those which have
vital transport functions such as bridges and tunnels and
which should be preferentially taken into account [1]. The
retrofit decisions for the different link types vary. That is, the
links being considered for the retrofit are either considered
to be permanent or critical. The retrofit and reconstruction
costs for the temporary links are lower than those for the
permanent links. Further, the retrofit decision is specific with
0 (i.e., no retrofit) and there are several ranks according to the
seismic damage scenarios.

2.2. Bilevel Decision Framework. In this paper, the seismic
hazard retrofit decision for an LSCP transportation network
involves two participants (i.e., the investor who pays for
the retrofit and the administrator who controls the trans-
portation). Therefore, these two participants are the decision-
makers on two levels, both of whom successively make the
retrofit decisions. The investor on upper level decides which
retrofit rank should be taken for each link within the range
and, therefore, the two objectives on this level are the retrofit
costs including the environmental costs and the retrofit
benefits. The administrator decides on the commodity flow
(i.e., the transportation network flow once seismic damage
has occurred) on the lower level according to the decision
results of the upper level. On this level, the retrofit benefits
are the primary objective. In this paper, the retrofit benefits
are quantified as reconstruction and travel delay cost savings.
The investor on the upper level affects the decisions of the
administrator on lower level, but does not fully control them.
The administrator makes their decision autonomously based
on the scope of the decision of the upper level.

2.3. Environmental Costs. In recent years, more attention has
been paid to environmental problems as these have begun
to seriously affect both local communities and the economy.
Thus, it is essential to consider the environmental costs in
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Step 2. Determine products
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Step 3. Analyse activity processes and define activities
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Step 4. Allocate environmental costs
l
Step 5. Determine cost drivers
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Step 6. Measure cost driver amounts
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Step 7. Calculate cost driver rates
!
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FIGURE 1: Obtain environmental costs for retrofitting transportation
network in LSCP based on ABC.

the LSCP. In addition, as environmental costs affect the
overall project cost, it is necessary to effectively record and
calculate environmental costs in the LSCP. Generally, many
environmental costs are not usually tracked systematically
or attributed to the related processes and outputs but are
simply summed and added to total cost [25]. The fact that
environmental costs are not fully recorded often leads to
distorted calculations [25]. Activity based costing (ABC) is
an effective method to record and calculate environmental
costs [26]. Cooper provided a comprehensive discussion of
ABC [27-30], following the pioneering work of [31, 32]. This
method treats activities as accounting objects, and identifies
and measures the amount of activities using cost drivers.

The environmental costs for retrofitting LSCP transporta-
tion networks based on the ABC are as shown in Figure 1.
As can be seen, the environmental costs are fully recorded
according to the environmental cost categories proposed in
[25]. Note that some environmental cost categories are related
to the work processes, and others are not. Then, all the outputs
involved in retrofitting the LSCP transportation network are
determined and an analysis of the activity processes and
a definition of the activities are prepared to determine the
environmental costs. Every activity corresponds to an activity
cost center. Jasch [25] proposed that the costs should be more
precisely allocated to cost centers. Therefore, environmental
costs are either directly allocated to each activity cost center
or systematically traced to the responsible environmental
media. Of course, if those costs are attributed to outputs
directly (i.e., they are not related to the work processes), it is
not necessary to allocate them to activity cost centers. Then,
the cost drivers for the activity cost centers are determined
and the cost driver amounts measured to calculate the cost
driver rates. Finally, the environmental costs of each output
are determined.

Therefore, by using a complete recording method, distor-
tion in the environmental costs can be avoided and through
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this precise allocation it is easier to effectively manage these
costs as it is possible to systematically trace them to the related
processes and outputs.

2.4. Fuzzy Random Seismic Damage Scenario. To better
understand the concepts for the fuzzy random seismic dam-
age scenario, this subsection gives some basic knowledge for
the definition and properties of the fuzzy random variables.
After Zadeh [33] proposed the concept of fuzzy sets, many
scholars have usually tied fuzziness to randomness as possible
random outcomes have to be described using fuzzy sets.
To describe this fuzziness and randomness, Kwakernaak [7]
proposed the concept of fuzzy random variables in 1978.
Kruse and Meyer [17] then worked on an expanded version
of a similar model. In addition, Puri and Ralescu [14] and
Klement et al. [15] also defined fuzzy random variables
from other angles. In this paper, the fuzzy random variables
are defined in the real number set. This makes the above
definitions equivalent [34]. Here, the definition proposed by
[14] is utilized.

In the following, R is denoted as the set of all real
numbers, #(R) is denoted as the set of all fuzzy variables,
and J .(R) is denoted as all of the nonempty bounded close
intervals.

Definition I (see [14]). Ina given probability space (Q, </, Pr),

a mappingf : Q) = F(R)is called a fuzzy random variable

in (Q, o/, Pr); if « € (0, 1], the set-valued function E“ Q-
F(R),

&= (§@)
: )
:{xlxeR,‘ug(w)(x)zoc}, Yw € Q,

is & measurable.

Definition 2 (see [35]). If EI,EZ,...E” are fuzzy random
variables defined in the probability space on (Q, &, Pr), then

E = (El, zz, ...,&,) is called fuzzy random vector.

Lemma 3 (see [36]). Let& = (£,,&,,...,&,) beafuzzy random
vector, and let f be a continuous function from R™ to R. Then

f (E) is a fuzzy random variable.

Definition 4 (see [14]). Ina given probability space (Q, &, Pr),
ifw e Q, a € [0,1], the mapping w — (E);(w) and w —

(E); (w) are integrable; then &is called the integrated bounded
fuzzy random variable on the probability space (Q, &, Pr).

Definition 5 (see [14]). Let z be an integrated bounded fuzzy
random variable on the probability space (Q,,Pr); the
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FIGURE 2: Fuzzy random seismic damage scenario.

expected value E(E) of E is defined as the only fuzzy set in
R; for all ¢ € [0, 1], it satisfies

{9, | 2o
:”Qf(w)dp(w);feLl(P), 3)
F@) €&, (@) as. [P] }

where JQ g“dp is the Aumann integral of ?a about Pand L' (P)
denote all of the integrable function f : Q@ — R about the
probability measure P.

Lemma 6 (see [37]). Let (Q), o/, Pr) be complete probability
space; & : QO — F(R) is an integrated bounded fuzzy random

variable. Then for all o« € [0, 1], the a-set of E (E) is the compact
convex interval as follows:

(), [(=(9). ((9).]
-] (@)t (F@) ap@]-

Lemma 7. Let (Q, o, Pr) be complete probability space; ?l, 22
are integrated bounded fuzzy random variables on (Q), &/, Pr),
Ay € R, and then

E (AZ N yEZ) _AE (?1) +yE (?z) . 5)

For the fuzzy random seismic damage scenario, according
to [1], advanced structural analysis can lead to a probabilistic
assessment of the structural damage for a given earthquake,
in terms of a set of discrete probabilities associated with
each of the five damage categories. Seismologists also have
made predictions as to the probabilities of various earthquake
occurrences. These two sets of probabilistic estimations from
earthquake-structural engineers and seismologists can be

combined to prepare the damage prediction [1]. For the
convenience of discussion, seismic damage to a structure
(i.e., LSCP transportation network) is usually classified into
five categories ranging from no damage to complete collapse.
However, a description of the perception result for seismic
damage is a category which is vague. In this case, a vague
perception of a crisp but unobservable random variable is
used as in the following:

E= (a;,a;c-a;x)  with probability p;, i =1,...,5. (6)

Therefore, the seismic damage scenario can be viewed as a
fuzzy random variable, which has a similar sense to the minor
automobile collision damage outlined in [10]. See Figure 2 for
a detailed description.

An example can be used to explain how to use the fuzzy
random variable and to describe the uncertainty in a seismic
damage scenario. Suppose that there is a link a € A in an
LSCP transportation network. Seismic damage perception
has five categories 1, 2, 3, 4, and 5 ranging from no damage
to complete collapse and seismic damage randomly emerges
with a certain probability. On the other hand, the description
of the perception result is vague with values such as “about
1” and “about 3” These denote the fuzzy sets and can be
conveniently described using triangular fuzzy sets, as shown
in Figure 3. Here it is assumed that the probabilities for the
five categories are 0.1, 0.2, 0.3, 0.3, and 0.1, so the seismic
damage scenario can be seen as a fuzzy random variable
as in (7) and as shown in Figure 3. It should be mentioned
that one damage scenario has different meanings for the
different damage ranks (i.e., its membership is different for
each different damage rank). Similar examples can be found
in [10]. Consider

(0,1,2) with probability 0.1

_ (1,2,3) with probability 0.2

&, =1(2,3,4) with probability 0.3 ?)
(3,4,5) with probability 0.3
(4,5,6) with probability 0.1.

It should be noted that the same category may have
different possibilities for different links.
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FIGURE 3: Value of seismic damage scenario.

2.5. Model Formulation. Denote a transportation network as
G(B, A), where B is the set of nodes and A is the set of
network links. The decision variable on the upper level is
u, € {0,1,2,3,4,5}, which means that a decision has been
done for link a to be retrofitted at rank u,, a € A. For each
commodity k € {1,...,K}, x; € R, is the commodity flow
(i.e., the decision variable on the lower level), and ca;, € R, is
the capacity of node b. Denote fI, as the total flow on link a
(i.e., fl, = Mx, for all a € A). To model the retrofit decision
with seismic risk in this paper, the assumptions are as follows.

(1) The LSCP transportation network is composed of
internal road systems and external road systems and
has two types of links, permanent and temporary. In
addition, two types of links are designated as critical
or noncritical links.

(2) The links under retrofit consideration are those which
are either permanent or critical.

(3) The retrofit activity process is the same for both
permanent and temporary links.

(4) In the retrofit, the variable environmental and recon-
struction costs for the temporary links are considered
of less importance than the permanent links.

(5) The retrofit costs and the retrofit decision have alinear
relationship which can be easily relaxed without
changing the structure of the proposed model, as long
as the data are available to support a more detailed
analysis.

(6) The variable environmental costs and the retrofit
decision have a linear relationship which can be
easily relaxed without changing the structure of the
proposed model, as long as the data are available to
support a more detailed analysis.

(7) Origin-destination pairs (i.e.,, commodities) are
determined in advance.

(8) Trafhic flow can be controlled to achieve system
equilibrium [1].
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(9) The preretrofit link damage state is defined as the
seismic damage scenario minus the retrofit decision
u, developed from [1].

(10) Reconstruction costs have a linear function with the
postretrofit damage state which can be easily relaxed
without changing the structure of the proposed
model.

2.5.1. Upper-Level Programming. The investor on the upper
level makes a decision as to whether there should be a retrofit
for each link a in the transportation network and what rank
the retrofit should be. The decision needs to fully consider
the link types (i.e., permanent and temporary, critical and
noncritical).

Objective Functions. One objective on the upper level is to
minimize the retrofit costs, which include the environmental
costs. In this paper, from a systems view, the retrofit costs
are added directly to the objective function, which differs
from [1]. The investor aims to minimize costs through their
decision. Based on this assumption, the retrofit costs can be
calculated using the sum of the variable and fixed costs for all
links in the network. The retrofit costs for the temporary links
are lower than the permanent links. In order to distinguish
link types, 0-1 variables are introduced. m, with 1 indicates
a permanent link and is 0 otherwise; n, with 1 indicates a
critical link and is 0 otherwise. Therefore, the retrofit costs can
be denoted as ), ,(m, Vv na)((cia + macf;)ua + (c}i + macpi)).
Here, V is defined as max, namely, max[m,, n,].

Based on the ABC described above and the assumptions,
Ypenlm, v nu)(cef, + cel)u,, is the variable environment cost

v and ce}[ denotes the fixed environmental cost f. Through

an analysis of the activity processes, the activity definitions,

and the cost allocations, ce§; = ¥ o pe}, Yea(m, V n,)(ce’ +

cel)u, is the variable environmental costs of activity cost
center jand ) rcp pei}ce  is the fixed environmental costs of

output i. After determining the cost drivers for the activity
cost centers and measuring the cost driver amounts, ra; =

ce; /am; is the cost driver rate for activity cost center j. The

variable environmental costs for output i are };; ra;am;;.

After this, the environmental costs can then be presented as
t
ZieI(ZjEI(ZveV Pe;u Yaca(mg Vng)(ce, + Ceg)uu/amj)amij +

2 fer peij}ce;). Thus, the objective can be described as
C(u) = Z (m, Vvn,)

acA
t t P
X ((cm +much u, + (cﬁ + macﬂ))

vev PeY wealmy v, )(ce + cef)u,
n pz Zz EVP ]Vz EA( )( )

amj

iel \jeJ

X amy; + Z peifrce;
feF

(8)
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Here, p denotes the weight of the environmental costs and is
determined by the investor.

The maximization of the retrofit benefit is another upper-
level objective. The decision result of the lower-level is
denoted Q(x, E) and quantified as savings in reconstruction
and travel delay costs. u is the vector of 1., a € A, and € is the

vector of &,,a € A. This can be described as
Q(xf). ©)

Here, maximizing the retrofit benefit while minimizing
reconstruction costs and travel time delay is denoted as

Q(u, E), which will be described in detail in the objective for
the lower level.

Logical Constraints. To describe the discrete decision vari-
ables for practical sense, the constraints in the following are
presented:

u, €{0,1,2,3,4,5), VacA. (10)

The objective functions and constraints above make up
the upper-level programming with lower-level programming
as in the following:

min (C (u),Q (x, E))

; (z (v ) ()

acA

+ (c}i + mu%%))

e’ m, Vv n,)(cel +cef)u,
+ pz <Z ZVGV p Jv ZaEA( )( )

am;

iel \ jeJ J

X am;; + Zpe{}cef) ,Q (x,?))

feF

Vae A

U, €10,1,2,3,4,5},
" |lower-level programming.

(11)

2.5.2. Lower-Level Programming. The administrator on the
lower level decides on the commodity flow x;. In trans-
portation network literature, the flow between each origin-
destination pair is often considered as one commodity.
Different commodities represent travel between different
origin-destination pairs. x; is used to express the flow of
k commodity. This optimal commodity flow decision seeks
to achieve optimal retrofit benefits under a postretrofit state
once an earthquake event has occurred and seismic damage
sustained. First, it is necessary to introduce the postretrofit

damage state before describing in detail the lower-level
programming.

Postretrofit Damage State. A fuzzy random vector E is intro-
duced to describe the damage to the link once an earthquake
has occurred after the retrofit, which has been developed

from [1]. Here, E is the vector for B, a € A. Assume that
if a link is retrofitted at any rank, its damaged state (i.e.,
postretrofit damaged state in the earthquake) is denoted as
a seismic damage scenario (i.e., preretrofit link damage state)
minus the retrofit rank. Here, for demonstration, a negative
postretrofit damaged state is not considered, so the negative
state is treated as O indicating that the link will be intact.
The relationship between the preretrofit link damage state

he retrofit decision u,, and the postretrofit damage state

Eﬂ’
—
=)
e

2(&,,u) is described as in the following:

» <:a,ua> = [Eu - uuL, Va € A. (12)

I

[1]

For any scenario, the postretrofit damaged state of link a can
describe the current damaged state of link a in an earthquake
after a retrofit. Based on the above, the discussion for the
lower-level programming is as follows.

Objective Function. Retrofit benefits are the objective of the
administrator. They are only quantified as savings in the
minimization of reconstruction and travel delay costs [1]. To
maximize benefits is to minimize costs. According to this
assumption, the reconstruction costs can be presented as
Ypealm, V ng)((cr;a + macrfa)ga + (crtﬂ + macr%)). This is
calculated using the sum of the variable and fixed costs for
all the links in the network when links are damaged in an
earthquake and need to be reconstructed. Travel delay costs
are the total travel time of all the links in the network. The
travel time of each link is the product of link travel time
and link flow. The link travel time depends on the link flow.
Their relationship is usually described using a nondecreasing
function such as the bureau of public roads (BPR) function

[1]. The BPR function is in the form of tig(l + oc(fla/ca;)ﬁ).
Where ti and f1, are free flow travel time and flow for link a,
respectively, ca. is the “practical capacity” of link a and is set
to be 90% of the design capacity. Thus, the travel delay costs

of a can be denoted as #iJ(1 + oc(fla/ca;)ﬁ)ﬂa. The objective
function is presented as shown below:

[

a

o(s)- 2 (imond (o met)

acA

+ (crj,i + mucrjzi)) (13)

B
+yti2<1 +¢x(%> )fla>,



where y is a weight coeflicient converting the time to a
monetary value, o, 3 are coeflicients of the BPR function, and

. isas [Ea - u,],.

Node Capacity Constraint. Logistics in large scale postdisaster
relief is very important [38]. Therefore, once an earthquake
event occurs, a working transportation network for disaster
relief and the LSCP are critically important, so the nodes
in the network should be fully functioning. Therefore, the
node capacity should be at capacity. The constraint is to keep
transport in accordance with the flow and the capacity of
node b as shown in the following:

Wx =ca,, VbeB, (14)

where W represents the node-commodity adjacency matrix.
x is the commodity flow vector for x;, k € K. ca,, € R, is the
capacity of node b.

Flow Equation Constraint. The total flow on each link a is the
sum of all flows of all commodity k that contains a and is
obtained using the link commodity adjacency matrix and the
commodity flow vector x as in the following:

fl, = Mx, VacA. 15)

Damaged Link Flow Constraint. This constraint restricts the
link flow when a link is damaged by the earthquake as in (16).
This constraint is applied to the postretrofit damaged state
and the “practical capacity” of link a, which is set at 90% of
the design capacity:

11

(93}

fl, < <1—ﬁ>ca;, Va € A, (16)

where fI, is obtained in (15).

Logical Constraints. In order to describe the nonnegative
variables in the model, the constraints in the following are

presented:
x. 20, Vk=1,...,K. (17)

The objective function and constraints above compose
the lower-level programming as in the following:

Q<x,‘g> = min Z ((m Vna)((cr +m crp)

acA

[I]Il

+ (crﬂ +m CT’ﬁ))

w42}

Vb € B,
Va € A,

s.t. E
fl, < 1—?>ca Va € A,

Vk=1,...,K.
(18)
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2.5.3. Fuzzy Random Multiobjective Bilevel Programming
Model. The complete multiobjective bilevel programming
model under a fuzzy random environment is formulated
based on the previous discussion as in the following model:

min (C (u),Q <x, E))

( > (o v g) (el +mach,)

acA

+(cli+mach)

v Pel Y aea (my v n,) (cel +cef)u,
+pZ<ZZva ]vz A( )( )

am

iel \ jeJ J

Sl f> <x,z))

€1{0,1,2,3,4,5},

Q (x, ?) := min z <(mu vn,) ((crﬁa + macrfa) Ea

acA
t p
+ (crﬁ + macrﬁ.))

vt (1o ) ) 1)

(Wi = cay,

S.t. 1 Vb € B,

fl, = Mx,
Va € A,

st 4fl <1—%>ca

Va e A,

Va e A,

I]Il

kaO,
Vk=1,...,K.

(19)

2.6. Transformation Approach for Fuzzy Random Variables.
In this subsection, some basic knowledge for the fuzzy
random variables is stated.

Definition 8 (see [33]). Given a domain U, if A is a fuzzy set
on U, then for any x € U, see the following:
puz:U—[0,1], x — uz(x), (20)
where 7 is called a membership function of x with respect
to A and p; denoted the grade to each point in U with a
real number in the interval [0, 1] that represents the grade of

membership of x in A. A is called a fuzzy set and described
as follows:

A={(x,uz(x)) | x €U}. (21)
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Definition 9 (see [33]). Let there be a domain U. Let Abea
fuzzy set which is defined on U. If « is possibility level and
0 < a < 1, A, consists of all elements whose degrees of
membership in A are greater than or equal to « as in the
following:

Ap={xeUluz(x)2a}; (22)
then A, is called the a-level set of fuzzy set A.

Definition 10 (see [39]). Let ® be a nonempty set, and let
P(®) be the power set of ®. For each A < P(®), there is
nonnegative number Pos{A}, called its possibility, such that

(1) Pos(@) = 0 and Pos(®) = 1,

(2) Pos(lUy Ay) = sup,Pos(A) for any arbitrary collec-
tion {A,} in P(®).

The triple (®, P(®), Pos) is called a possibility space. The
function Pos is referred to as a possibility measure.

Definition 11 (see [40]). A fuzzy variable is defined as a
function from the possibility space (®, P(0®), Pos) to the real
number R.

Definition 12. Let € be a discrete random variable defined on
a probability space (Q, &, Pr) with the discrete distribution
P(x) = P{x = x,},n = 1,2,..., and let O be any given
probability level and 0 < 6 < max P,(x). & consists of all
elements whose value of P,(x) for ¢ is greater than or equal to
0 as the following:

g ={x€R| P, (x)>06}; (23)
then ¢, is called the 0-level set of random variable €.

As stated in Section 2.4, the definition proposed by [14] is
used in this paper. Although there are many properties and
transformation approaches for the fuzzy random variable,
to conveniently convert programming with fuzzy random
coefficients into crisp values, Xu and Liu [I12] proposed
a theorem which could transform fuzzy random variables
into fuzzy variables similar to trapezoidal fuzzy numbers.
In this paper, this theorem and proof are adjusted to a
discrete random distribution with fluctuating lower, central,
and upper parameters for the fuzzy properties and extended
bounds of possibility for the fuzzy variable.

Theorem 13. Let

((ay, a1coaig)  with probability p,

?: 1 (a, ac.ag)  with probability p; (24)

([ (ay, a;c,a;z)  with probability p;

be a fuzzy random variable, which has discrete random distri-
bution with fluctuating lower, central, and upper parameter for
fuzzy property. The discrete distribution is P, (x). & is any given

probability level of random variable; 1 is any given possibility
level of fuzzy variable; then the fuzzy random variable can be
transformed into a (3, n7)-level trapezoidal fuzzy variable.

Proof. Let

'(awalc, alR) with probability p,

gz 1 (a, a0 a;z)  with probability p; (25)

L (ar, a;c,a;z)  with probability p;

be a fuzzy random variable, which has discrete random
distribution with fluctuating lower, central, and upper param-
eter for fuzzy property. The discrete distribution is P, (x).
According to Definition 8, the §-level sets (or §-cuts) of the
discrete random variable y can be denoted as follows:

vs = (V55| = {x e R| P, (x) 2 6}. (26)

Here, 1//(13“ = min{x € R | P,(x) > 6} and 1//5;z =
max{x € R | Pu,(x) > §}. The parameter § € [0, max Pw(x)]
here reflects the optimism degree for decision-maker. These
intervals indicate where the range of the data lies at the
probability level 8. Note that v is crisp set.

Let X = {x, = y(w) e R | Pw(w(w)) > 6, w € Q};itis not
hard to prove that X = [y, ¥x] = ys; namely, min X = yj
and max X = y;. In other words, v is the minimum value
that y achieves with probability &; y5 is the maximum value
that y achieves with probability 8. Therefore, the §-level fuzzy

random variable 25 can be defined as

L L L L : de L
Yy = (a(&L),a(&c),a(&R)) with probability pj

&s = : :
1//(1; = (ags,L),ag)C),a&R)) with probability pg.
(27)
It can also be denoted as follows:
& = {55 () = (ag 1) (W), a5 ) (W) 5 As gy (@) 08)

with probability p (w) | x, € X,w € Q},

where E(;(w) is a fuzzy variable. The variable E(; can be
expressed in another form as 25 = Upea %(w) = %(Q);
here %(w)(w € ) are fuzzy variables. So the fuzzy random

variable & is transformed into a group of fuzzy variables

%(w)(w € ), which is denoted as ga(Q). On the basis of
the concept on fuzzy variable #-level sets (or #-cuts). The
parameter 0 < 77 < 1 let

Eom (@ =[5, @&, @] )

= {x eU | HE, () (x) 2 71};
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X = {x, = y(@) € RIP, (y(@)) > 8,0 € O}
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s [slr

[slp s

FIGURE 4: The transformation process from fuzzy random variable E to (8, n)-level trapezoidal fuzzy variable E(M)'

then the 5-level sets (or 7 cuts) of £5(Q) are defined as follows:
E(é‘,;y) (Q)

= {5(6,77) (w) = [56‘3’1) ((U) ’5?5’,1) (w)} | w € Q};

L : -1 R -1
here, §5, (w) = inf b @) (), &5, (@) = sup ‘u-ga(w)(n), we Q.
Inspired by the fuzzy expected value of fuzzy random variable
proposed by [10], it can be got as follows:

= ZP (w) ae 1y (W),

(30)

as,L)
asr = 2P () ag g (@),
oa) = 2P (@ o (@)

Eo = 2P (@) (5 (@).

(31)

Consequently, E can be transformed into E(M by the §-
cuts and #-cuts. See Figure 4.
Where 0 <# < 1land$§ € [0, max P, ()], letag ) =[],

AR = [s]R, 5(5 p =S andf ) =S then the fuzzy random
variable E can be transformed into the (6, #)-level trapezoidal

fuzzy variable 5(5,,1) by the following equation:

E— &g, = (15 [sy). (32)

The parameters § and # both reflect optimism degree

of the decision-maker. Thus, the fuzzy random variable £ is

transformed into a fuzzy variable which is a trapezoidal fuzzy

number with the membership function e, ) The value of
oM

TN at x € [[s];, [s]g] is considered subjectively to be 1 as
)

below:
(1 if§ <x<s,
x —[[S]] if [s], <x<s,
sS—imjp
N (33
A"l&m( ) [s]g — x if s<x<[s] |
[slg =5 ) ’
o if x < [s]p, x > [s]g-

Theorem 13 is proved. O

Through Theorem 13, the fuzzy random seismic damage

scenario, namely, E, can be transformed into (§,#)-level

trapezoidal fuzzy variables 5(5),7) and model (19) can be
transformed into the following fuzzy multiobjective bilevel
programming model:

min (C @), Q (x.&s.))

- <Z (1 v 1) (et ) g+ (s + machy))

acA

i€l am;

ZVGV pe;v ZaGA (ma 4 na) (Cei + Cef) U,
APl
iel
X am,l +Zpelf f> (x, 2}&,,)))
feF

u, €{0,1,2,3,4,5}, VaceA,

Q(x&en)
:= min Z (m, vn,) ((cria + macrfa)

Eu), ~ ).

<
(crﬂ +m,Cr ))

+yti2<1 +“<é> )fla>

s.t. 9 Wx = cay,
Vb € B,
fl, = Mx,
Va € A,
A - Lokl )y
5
Va e A,
X, 20,
\Vk=1,...,K.

(34)
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2.7. Approximation Decomposition of Fuzzy Variables. In

model (34), E are coefficients, which when transformed to

&5,y are fuzzy variables and so can be regarded as fuzzy
numbers. Thus, an approximation decomposition method
for fuzzy multiobjective linear bilevel programming model is
introduced. This method is as in Zhang et al. [19] solution
for fuzzy multiobjective bilevel programming, but with some
further development done on the fuzzy multiobjective multi-
follower partial cooperative bilevel programming as outlined
in [41].

Definition 14 (see [19]). A fuzzy number a is defined as a

fuzzy set on R, whose membership function y; satisfies the
following conditions.

(1) pz is a mapping from R to the closed interval [0, 1].

(2) It is normal; that is, there exists x € R such that
Uz(x) = 1.

(3) For any A € (0,1], a), = {x;pz(x) = A} is a closed
interval, denoted by [a}, a}].

Let #(R) be the set of all fuzzy numbers. By decomposi-
tion theorem of fuzzy sets [19], we have

a= U /\[aL,aiz N (35)

A€[0,1]

for every a € #(R).

From Theorems 17 and 18 in research of Zhang et al. [19],
the optimal solution for the model can be determined by solv-
ing the equivalent crisp multiobjective bilevel programming
model as shown below:

min (C (u),Q (x, E,I{(R)))
- < Y (m,vn,) ((cﬁa +mgch ) u,

acA
+ (c}i + muc;:))

o pel Y (my vny) (et +cef)u,
+pz<z Z‘VVP ]vz A( )( )

am;

iel \ jeJ J

X am; + Zpef}ce?) ,
feF

CEIRIEED)

1

(1, €{0,1,2,3,4,5}, VacaA,
Q (1 E4R)
= (Q(x81).Q(x8))

=min| Y | (m,Vn,) ((crfm +mger?)

" X [(Ea)]j - ua]

+ (cr}i + macr%))

+pti (1 + a(%)ﬁ>ﬂa) ;
Z <(ma vn,) ((cria + macrfa)

" X [(Ea)f\2 _uaL_

t p
+ (crﬂ +macry,

(1o ) )1)

+

s.t. o

'Wx=cab,
Vb € B,
fl, = Mx,
Va € A,
L
al)y ~ Ua
fl < <1 _ M)Cc{;’
.t
) Va € A,
[(Ea)};_ua] '
fl,<|1- — * ) ca,
Vae A,
X > 0,
(\Vk=1,...,K.

(36)

After transforming the fuzzy random seismic damage

scenario & into (8, #)-level trapezoidal fuzzy variable 2(5,,7),
an approximation progress of (0,#)-level trapezoidal fuzzy

variable 2(5,,7) is conducted until termination. During the
approximation progress iterations, model (36) is solved
within a series of A valued by a decomposition of the interval
[0, 1] into equal subintervals.

3. An Approximation Decomposition-Based
Multiobjective AGLNPSO

Bilevel programming problem is NP-hard, which loosely
means that it cannot in general be solved with a polynomial
time algorithm [42] and it is difficult to find numerical
solutions [43]. Many methods have been proposed to solve
these problems, such as the branch-and-bound methods
[44, 45], the descent method [46], and the penalty function
method [47]. In addition, heuristic algorithms [48] and
evolutionary computation [49] have also been proposed to
obtain a numerical optimal solution or numerical efficient
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FIGURE 5: Overall procedure of the proposed method.

solution. PSO has been adopted for dealing with multiob-
jective optimization problems and has been found to be
very successful, in addition to heuristics [50]. Therefore, with
these considerations, the PSO is the approach adopted in
this study. An approximation decomposition-based multi-
objective AGLNPSO made up of approximation decompo-
sition [19], PAES [20], AGLNPSO [21], and MOPSO [24]
is proposed to solve the problem. Of course, this proposed
algorithm may not be the best; however, it can assist in
obtaining an effective solution, which is demonstrated in the
analysis of the case problem. In the future, in order to get even
better solutions more effectively, alternative approaches and
algorithms (e.g., other exact approaches, (meta)heuristics,
evolutionary algorithms, etc.) will be explored for compari-
son.

3.1. Overall Procedure for the Proposed Algorithm. The proce-
dure for the proposed algorithm is presented as follows; see
Figure 5.

Step 1. Initialize approximation coefficient I = 1, which is
used to generate cut sets for the fuzzy numbers in model (36)
and the error coefficient e.

Step 2. Decompose interval [0,1] into 2t equal sub-
intervals with (2! + 1) nodes A (i=0,..., 271, which are
arranged in the order 0 = A; < A; <+ <A, =1,

Step 3. Transform model (34) into a series of models for
model (36) with [.

Step 4. Initialize the parameters: swarm_size, iteration_max,
the range of velocity and position for the variables, the
personal best position acceleration constant, the global
best position acceleration constant, the local best position
acceleration constant, the near neighbor best acceleration
constant, and the inertia weight_max. Then, initialize the
velocities and positions of the particle-represented solu-
tions.
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Step 5. Check the feasibility and decode the particles.

Step 6. Solve the lower-level programming with the feasible
solutions of the upper level to determine the optimal objective
value. Calculate the two objectives on the upper level to
evaluate every particle.

Step 7. Calculate the pbest, gbest, Ibest, and nbest using the
multiobjective method. Restore the Pareto optimal solutions
(i.e., the (global) elite individuals), lower-level programming
solutions, and objective values of upper level and lower level.

Step 8. Update the inertia weight for each iteration.
Step 9. Update the velocity and position of each particle.

Step 10. Check the multiobjective AGLNPSO termination. If
the stopping criterion (i.e., iteration_max) is met, then end the
multiobjective AGLNPSO procedure to obtain the optimal
solution (u, x), and go to Step 10; otherwise, go to Step 5.

Step I11. Check the approximation termination. If a stabi-
lization of the Pareto optimal solution is achieved, then
the Pareto optimal solution for the complete multiobjective
bilevel programming model under fuzzy random environ-
ments is obtained, and it terminates. Otherwise, | = [ + 1;
go back to Step 3.

Here, the set convergence is proposed in this paper to
describe the stabilization of the Pareto optimal solution,
which is defined as @ and expressed as follows:

me M, ne N,

x=0.
If traversal M for any m there is

(37)

n=m, neN;then y=yx+1,

- X
|M|

That is to say, if @ > €, the Pareto optimal solution set is stable
and the approximation termination is achieved.
The details for the multiobjective AGLNPSO are
described as follows and the notations used are shown.
s: Particle index, s = 1,...,S
7: Iteration index, 7 = 1,...,T
h: Dimension index,h=1,..., H
u,: Uniform random number in the interval [0, 1]
w(7): Inertia weight in the rth iteration
w™™: Maximum inertia weight value
w™": Minimum inertia weight value

wg,(7): Velocity of the sth particle at the hth dimension in the
Tth iteration

0,,(7): Position of the sth particle at the hth dimension in
the rth iteration

6, (7): Position for temporary and noncritical link of the sth
particle at the hth dimension in the 7th iteration

13

Y,: Personal best position of the sth particle at the hth
dimension

¥, Global best position of the sth particle at the hth
dimension

wfh: Local best position of the sth particle at the hth
dimension

wl: Near neighbor best position of the sth particle at the
hth dimension

: Personal best position acceleration constant

¢,: Global best position acceleration constant

¢: Local best position acceleration constant

: Near neighbor best position acceleration constant

w™: Maximum velocity value

w™": Minimum velocity value

0™: Maximum position value

6™ Minimum position value
0©,: Vector position of the sth particle [0,;, 0, ..., 0.y]
Q,: Vector velocity of the sth particle [w,;, wg,, ..., W]

: The sth set of solutions

c: The current solution randomly selected one from the
nondominated solutions

¢": New generated solution.

3.2. Solution Representation. In this paper, the particle-
represented solution is A dimensions of retrofit rank u,
within [0, 1,2, 3,4,5] (i.e., a € A) for all links in the LSCP
transportation network.

3.3. Particle Swarm Initialization. Initialize S particles as a
swarm; generate the sth particle with random position ®; in
the range {0, 1, 2, 3,4, 5}. Randomly generate velocity for each
particle in the range {-5, -4, -3,-2,-1,0, 1,2, 3,4, 5}. Set the
iteration T = 1. Set swarm_size S, iteration_max T, personal
best position acceleration constant c,, global best position
acceleration constant g local best position acceleration
constant g, near neighbor best position acceleration constant
¢, inertia weight_max w™, and inertia weight_min w™".

3.4. Feasibility Checking and Decoding Method. Since the
links to be considered for retrofit are either permanent or
critical, check and adjust the position of the temporary and
noncritical links to 0. Then, the particle-represented solution
can be directly decoded into a solution for the problem as
shown in Figure 6.

3.5. Particle Evaluation. For s = 1,...,S, set ©,(7) into the
solution R, that is u in the upper-level programming and put
u into the lower-level programming to determine the optimal
solution x and the optimal objective Q(x). Calculate another
objective for the upper-level programming C(u).
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FIGURE 6: Transformation from the particle-represented to the problem solution.

3.6. Multiobjective Method. The multiobjective method is
made up of the PAES procedure and the test procedure, and
selection is introduced to calculate pbest, gbest, Ibest, and
nbest. This method uses a truncated archive to store the elite
individuals (i.e., nondominated solutions), which is used to
separate the objective function space into hypercubes, each
of which has a score based on its density. Selection of the
best is then based on a roulette wheel selection to select the
best hypercube first and then uniformly choose a solution.
Note that the initialized solution is regarded as the pbest
and the nondominated solution of each particle at the 1th
iteration. When the iteration updates, the updated solution
and the nondominated solutions are used to calculate the
pbest by the method. After the pbest has been confirmed
at each iteration, the pbest nondominated solutions for
all particles are considered with the gbest nondominated
solutions (i.e., there is no gbest nondominated solution at
initialization) to calculate the gbest by the method. Similar
to the gbest, among all the pbest nondominated solutions
from K neighbors of the sth particle and Ibest nondominated
solutions, set the Ibest is also set using this method. For each
particle on each dimension, set y/) = /) that maximizes
(Z(©y) — Z(¥,))/ (04, — y,p,) to get nbest, 0 € S\ s. Here, the
maximization process uses the multiobjective method for the
calculation of the gbest and [best above. The details for the
PAES procedure, test procedure, and selection procedure are
outlined similarly for the pbest, gbest, lbest, and nbest next
and in Procedures 1 and 2, where ¢ is the current solution
randomly selected from the nondominated solutions. Note
that ¢ is randomly selected from the pbest nondominated
solutions to calculate the gbest at the 1th iteration.

Selection

Step 1. Divide 10 by the number of particles in each hypercube
to get its score.

Step 2. Apply roulette wheel selection to hypercube accord-
ing to their scores and select a hypercube.

Step 3. Uniformly choose a member of that hypercube.

Therefore, the gbest nondominated solutions at the T'th
are the final solutions of the problem.

3.7 Inertia Weight Updating. Update the inertia weight for
iteration 7 using the following equations:

Zle ZhH:I |“’sh|
S-H

a:

<1—&)wmax, Osrgz,
o = T 2
(02-020) o, T ooy
T 2
(w _w) max min (38)
e )
wmax
w=w+ Aw,
w=w"™ ifw>w™,
w=w"" if w>w™",
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generate a new solution ¢
if (c dominates V)
discard ¢

else if (N dominates c)

discard ¢V

else

replace ¢ with ¢V and add ¢" to the archive
else if (c" is dominated by any member of the archive)

else if (¢ dominates any member of the archive)
replace it with ¢ and add ¢ to the archive and all other members
dominated by ¢ are discarded

apply test procedure to ¢, ¢ and the archive to determine which
becomes the new current solution and whether to add ¢V to the archive
until a termination criterion has been reached, return to the beginning

PROCEDURE 1: PAES.

if the archive is not full
add ¢ to the archive

N .
accept ¢ as the new current solution
else
maintain c as the current solution

accept ¢ as the new current solution
else
maintain c as the current solution
else
don’t add ¢" to the archive

if (cV is in a less crowded region of the archive than c)

else if (cV is in a less crowded region of the archive than any other member on the archive)
add c" to the archive, and remove a member of the archive from the most crowded region
if (c" is in a less crowded region of the archive than c)

PROCEDURE 2: Test.

3.8. Velocity and Position Updating. Update the velocity and
the position of each sth particle using the following equations:

Wy, (T +1) = w (1) wg, (7) + ity (W, — Oy, (7))
+ ¢yt (Vg — 0 () + qu, (v, — 04 (1),
Oy (1+1) =04 (1) +wg, (t+1).
If6, (r+1) > 0™,
then set O, (t + 1) = 0™ wy, (t+1) = 0.
If O, (T +1) < 0™,

min

then set 0, (7+1)=0"" wy (t+1)=0.

(39)

4. A Case Study

In this section, computational experiments were carried
out on a large-scale water conservancy and hydropower
construction project. Through the illustrative example on

the data set adopted from the case problem, the proposed
approach is validated and the efficiency of the algorithm is
tested.

4.1. Presentation of Case Problem. The XLD hydropower
station LSCP is in XLD gorge section of the JS river
located in LB county of SC province and YS county of YN
province, an area which is earthquake prone. The Yingjiang,
Wenchuan, and Panzhihua-Huili earthquakes all seriously
affected the local area. Therefore, it is critical that the LSCP
risks be controlled, especially in the transportation network.
Therefore, the proposed approach is suitable for use on the
transportation network at the XLD hydropower LSCP.

The transportation network in the project has an internal
road network and an external road network. The internal
road network is composed of more than 20 major trunk
roads and these roads form a solid network located on the
left and right banks. There is a temporary traffic bridge
upstream and a permanent traffic bridge downstream. The
external road network is composed of several secondary
roads used for automobiles, which begins at the project dam
and terminates at the PED railway station. In order to apply
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FIGURE 7: Simplified transportation network illustration in XLD hydropower LSCP.

the proposed approach more conveniently, adjacent roads of
the same type have been combined and the concrete shapes
of the roads have been ignored. A simplified transportation
network illustration is shown in Figure 7 which distinguishes
the permanent and temporary, critical and noncritical nature
of each road according to the practical location of the
transportation network. The illustration has 24 nodes and
18 and 29 links. There are 12 commodities in total, which
represent travel between different origin-destination pairs.
The 16 nodes in these commodities have certain capacities
(unit: number of vehicles (n)) and others have no capacity.
Tables 1 and 2 give the detailed data.

For each link in the transportation network, there is a
free flow travel time ¢ (unit: hour (h)), a “practical capacity”
for the link c; (unit: number of vehicles (n)), which is set
to be 90% of the design capacity [1], and a fuzzy random

seismic damage scenario &,. The corresponding data for this
case problem are stated in Table 3. It should be noted that
the probabilities assigned to the fuzzy numbers for the fuzzy

random numbers £, in Table 3 were obtained through a
statistical analysis of the historical data in the area.

In the case problem, there are 2 outputs—the retrofit of
permanent (i.e., i = 1) and temporary (i.e., i = 2) links. The
activity process and activities for the retrofit are the same for
both types of links. Activities (ie., j = 1,...,10) are as (1)
breaking pavement, (2) digging grooves, (3) laying pipes, (4)
backfilling grooves, (5) strengthening earth-rock, (6) evening
roadbeds, (7) digging gutters, (8) building kerbstones, (9)
constructing bases, (10) constructing pavements. Every activ-
ity corresponds to an activity cost center. According to [25],

TaBLE 1: Travel of the commodities.

Commodity k Travel of commodity

! #24 — #23 — #22 — #21 — #20
2! #20 — #21 — #22 — #23 > #24
3 #20 — #19 — #7 — #5 — #2

4 #2 — #5 — #7 — #19 — #20
5' #6 — #7 — #19 — #20

6' #20 — #19 — #7 — #6

7' #20 — #18 — #17 — #16 — #13
8’ #13 — #16 — #17 — #18 — #20
9 #20 — #18 > #17 — #16 — #14
10’ #14 — #16 — #17 — #18 — #20
1’ #20 — #18 — #17 — #16 — #15
12' #15 — #16 — #17 — #18 — #20

5 environmental media can be determined in the retrofit
work: (1) air and climate, (2) waste water, (3) waste, (4) soil
and ground water, (5) noise and vibration. Environmental
cost categories are recorded as in [25].

(1) Waste and emission treatment: depreciation for
related equipment; maintenance, operating materi-
als and services; related personnel; fees, taxes, and
charges; insurance for environmental liabilities.

(2) Prevention and environmental management: external
services for environmental management and person-
nel for general environmental management activities.
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i | related equipment |1 | andenvironmental | | Raw materials_ | | 7 Category (4): processing
i o management D yom—r ol I costs of i
| i Maintenance, | b External services for . | uxiliary materials | ; : nonproduct output |
Environmental : | operating materials | | i s 2! — :
i ' environmental i - - : D &
: i . 0 t terial: i epreciation for !
cost | and services L management s | perating materials | : : machinery i
| [ L . Lo
i | Related personnel | | [ Personnel for general L | Packaging | Lo Labor hours :
; | Tees © i | . environmental ! ; | 5 | D! :
; €€s, taxes, and charges i i |__management activities | ' : nergy Y -
i Insurance for i e | Water | :
i environmental i ; :
; liabilities . ‘ """"""
Soil and Noise and
Environmental | Air and climate Waste water Waste groundwater vibration
media / , -
/ — R —
Activity cost
6
me (@) (@) ) @ @ ()
Product Permanent Temporary
link link
Allocate environmental costs category 1 to each activity cost center by tracing to every responsible environmental media
—> Allocate environmental costs category 2 to every product directly
—> Allocate environmental costs categories 3 and 4 to each activity cost center directly
Allocate each activity cost to every product
F1GURE 8: Allocate environmental costs of retrofit work.
TABLE 2: Capacity of node.
Node b #24 #23 #22 #21 #20 #19 #7 #5 #2 #6 #18 #17 #16 #13 #14 #15
Capacity caj, (n) 51 51 51 51 149 49 49 22 22 25 49 49 49 16 18 15

(3) Material purchase value of nonproduct output: raw
materials; auxiliary materials; operating materials;
packaging; energy; and water.

(4) Processing costs of nonproduct output: depreciation
for machinery and labor hours.

Since categories 1, 3, and 4 are variable costs (ie., v =
1,2,3), category 2 is fixed costs (i.e, f = 1); they are
recoded as (unit: ¥) [cef,ceg,cef] = [11800,5764,2216],

[ce!, ce!, cel] = (73870, 8665,3365), and ce] = 36538. Based
on the descriptions above, the environmental costs of the
retrofit are allocated as shown in Figure 8.

Based on the practice of the case problem and Figure 8,
the percentage output for the fixed environmental costs 1

is [ pe{ , pe{ ] = [90.8%, 9.2%]. To calculate the final environ-
mental costs for each output, the corresponding data for the
activity cost centers j = 1,...,10 is used as in Table 4. The
percentage of j in the variable environmental cost categories
is denoted as [pe};, pel,, pe’s]. am; denotes the cost driver
amount in j and [am, ;, am,;] denotes the cost driver amount
of outputs in j.

In addition, the corresponding cost data for the retrofit
and reconstruction are shown in Table 5. The values for the
other model parameters are as follows: § = 0.2, = 0.6, p = 1,
a=0.25p=2andy=1

4.2. Case Solution. The developed algorithm was adopted
using MATLAB 7.0 on an Inter Core 2, 2.00 GHz clock
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TABLE 3: Free flow travel time #i°, practical capacity ca’, and fuzzy random seismic damage scenari