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/is paper investigates the diffusive predator-prey system with nonmonotonic functional response and fear effect. Firstly, we
discussed the stability of the equilibrium solution for a corresponding ODE system. Secondly, we established a priori positive
upper and lower bounds for the positive solutions of the PDE system. /irdly, sufficient conditions for the local asymptotical
stability of two positive equilibrium solutions of the system are given by using the method of eigenvalue spectrum analysis of
linearization operator. Finally, the existence and nonexistence of nonconstant positive steady states of this reaction-diffusion
system are established by the Leray–Schauder degree theory and Poincaré inequality.

1. Introduction

In order to describe the evolution of biological populations
in the ecosystem, some mathematical theories and methods
have been used to establish the corresponding biological
mathematical model, which has become a research hotspot.
In recent years, the research on biological models such as the
predator-prey model has aroused the attention of many
scientists and biologists. /e predator-prey model of PDE
forms is an important branch of reaction-diffusion equa-
tions. /e dynamic relationship between predator and their
prey is one of the dominant themes in ecology and math-
ematical ecology. During these thirty years, the investigation
on the prey-predator models has been developed, and more
realistic models are derived in view of laboratory experi-
ments. Moreover, the research on the prey-predator models
has been studied from various views and obtained many
good results (see [1–22] and the references therein).

However, many studies have shown that only the
presence of predators in front of the prey can affect the size
of the prey population, and the effect is even greater than the
effect of direct predation. Although some biologists have
realized that the relationship between the prey and the
predator cannot be simply described as direct killing, we

should take the fear of the prey population into account. At
present, there are few research studies on establishing
corresponding mathematical models to explain this
phenomenon.

For every specific prey-predator system, we know that
the functional response of the predator to the prey density is
very important, which represents the specific transformation
rule of the two organisms. In [8], Pang andWang considered
a predator-prey model incorporating a nonmonotonic
functional response which is called the Monod–Haldane or
Holling type IV function:

ut − d1Δu � ru 1 −
u

k
  −

puv

d + u
2, x ∈ Ω, t> 0,

vt − d2Δv � − mv +
cpuv

d + u
2, x ∈ Ω, t> 0,

znu � znv � 0, x ∈ zΩ, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where zn is the outward directional derivative normal to zΩ.
Model (1) describes a prey population u which serves as food
for a predator with population v. /e parameters
r, d, m, p, c, and k are assumed to be only positive values: the
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positive constant k is the carrying capacity of the prey and
the positive constant m is the death rate of the predator; r is
the growth rate of prey u; and the positive constants
d1 and d2 are the diffusion coefficients.

In this paper, based on the above model, in order to
describe the evolution law of the population in the eco-
system more specifically, we will consider the natural
mortality and fear effect of the prey population and es-
tablish the corresponding PDE model within a fixed
bounded domain Ω ⊂ RN with smooth boundary at any
given time and the natural tendency of each species to
diffuse to areas of smaller population concentration [7–10].
Hence, we will investigate the following reaction-diffusion
system under the homogeneous Neumann boundary
conditions as follows:

ut − d1Δu �
ru

1 + kv
− au − bu

2
−

puv

d + u
2, x ∈ Ω, t> 0,

vt − d2Δv � − mv +
cpuv

d + u
2, x ∈ Ω, t> 0,

zu

zn
�

zu

zn
� 0, x ∈ zΩ, t> 0,

u(x, 0) � u0(x)≥ 0, v(x, 0) � v0(x)≥ 0, x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where u0 and v0 are continuous functions of x. u and v stand
for the densities of prey and predators, respectively. /e
parameters a, b, c, d, r, k, p, andm are assumed to be only
positive constants. a and m denote the intrinsic death rate of
prey u and predator v, respectively. k stands for the fear
factor of prey to predator./e remaining parameters refer to
(1). Here, f(u, v) � (uv/d + u2) stands for Monod–Haldane
functional response.

/e main aim of this paper is to study the nonconstant
positive steady states of (2), that is, the existence and
nonexistence of nonconstant positive classical solutions of
the following elliptic system:

− d1Δu �
ru

1 + kv
− au − bu

2
−

puv

d + u
2, x ∈ Ω,

− d2Δv � − mv +
cpuv

d + u
2, x ∈ Ω,

zu

zn
�

zu

zn
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

/e rest of this paper is arranged as follows. In Section
2, we discuss the stability of the equilibrium of the ODE
system which corresponds to system (2). In Section 3, we
establish a priori positive upper and lower bounds for the
positive solutions of the PDE system. In Section 4, sufficient
conditions for the local asymptotical stability of two
positive equilibrium solutions of the system are established

by using the method of eigenvalue spectrum analysis of
linearization operator. In Section 5, the existence and
nonexistence of nonconstant positive steady states of this
reaction-diffusion system are established by using the
Leray–Schauder degree theory, which demonstrates the
effect of large diffusivity.

2. Stability of the ODE Model

/e goal of this section is to discuss the stability of the ODE
model; we give the ordinary differential equation of system
(3) as follows:

du

dt
�

ru

1 + kv
− au − bu

2
−

puv

d + u
2,

dv

dt
� − mv +

cpuv

d + u
2,

u(0) � u0,

v(0) � v0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

By the similar method to [7], for (4), we can get the
following result.

Lemma 1. Under initial conditions u0 > 0 and v0 > 0, the
solution of system (4) is nonnegative and ultimately bounded
which implies

limsup
t⟶∞

L(t)≤max
c(r − a + m)

4bm
, c0u + v0 , hereL≐ cu + v.

(5)

Next, we will calculate the equilibrium point of system
(4), and the result is given as follows.

Theorem 1. System (4) always has an extinction equilibrium
point E0 � (0, 0). If r> a, then system (4) has only the
equilibrium point E1 � (r − a/b, 0). If r> a, cp − 2m

��
d

√
> 0,

and ui < r − a/b, then system (4) has two positive constant
equilibrium points E2,i � (ui, vi), i� 1 and 2.

Proof. It is easy to see that all equilibrium points of system
(4) satisfy the following equations:

ru

1 + kv
− au − bu

2
−

puv

d + u
2 � 0,

− mv +
cpuv

d + u
2 � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

It follows that system (4) obviously has equilibrium
points E0 � (0, 0) and E1 � (r − a/b, 0) with r> a. Next, we
consider the existence of positive constant equilibrium
point E2,i. By calculating the second equation of (6), we
directly get
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u1 �
cp +

�����������

c
2
p
2

− 4m
2
d



2m
,

u2 �
cp −

�����������

c
2
p
2

− 4m
2
d



2m
,

(7)

where (cp − 2m
��
d

√
)> 0 ensures that ui > 0 (i � 1, 2).

Substituting ui > 0 (i � 1, 2) into (6) and combining the two
equations of system (6), we can obtain the following
equation:

rui

1 + kv
− aui − bu

2
i −

puiv

d + u
2
i

� 0, i � 1, 2. (8)

/rough the same solution deformation calculation, we
can get

h(v)≐ a2v
2

− a1v + a0 � 0, i � 1, 2, (9)

where a0 � cui(r − a − bui); a1 � − (cauik + cbu2
i k + m);

a2 � − mk. According to the Vieta theorem, we get

v1 + v2 � −
a1

a2
< 0,

v1v2 �
a0

a2
.

(10)

Obviously, if a0 ≤ 0, then f(v) � 0 has no positive
constant solution; if a0 > 0, then f(v) � 0 has only one
positive constant solution. /anks to the same sign a0 and
r − a − bui, a0 > 0 implies r − a − bui > 0, which ensures that
f(v) � 0 has only one positive constant solution denoted by
vi. /us, system (4) has two positive constant equilibrium
points E2,i � (ui, vi), i� 1 and 2. /e proof is complete. □

Theorem 2. If r≤ a, then E0 � (0, 0) is globally asymptot-
ically stable. If r> a, then E0 � (0, 0) is unstable.

Proof. /e proof of/eorem 2 is similar to that of /eorem
2 of [9]; hence, we omit it. □

Theorem 3. Assume r> a. If (r − a)(cpb + ma − mr)

− mb2d< 0, then E1 � (r − a/b, 0) is locally asymptotically
stable. If (r − a)(cpb + ma − mr) − mb2d> 0, then E1 � (r −

a/b, 0) is unstable.

Proof. /rough mathematical calculation, we obtain the
Jacobian matrix of system (5) at the equilibrium point E1 �

(r − a/b, 0) as follows:

JE1
�

a − r − krui −
pui

d + u
2
i

0
(r − a)(cpb − mr + ma) − mb

2
d

b
2
d +(r − a)

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Obviously, when (r − a)(cpb + ma − mr) − mb2d< 0
and both eigenvalues of JE1

have negative real parts, then E1 �

(r − a/b, 0) is locally asymptotically stable; when

(r − a)(cpb + ma − mr) − mb2d> 0 and JE1
has a positive

eigenvalue, then E1 � (r − a/b, 0) is unstable. /e proof is
complete. □

Theorem 4. Assume r> a. If (2m2vi/c2pb)< ui <�������������
(c2p2/2m2) − d


(i� 1 and 2), then E2,i � (ui, vi)

(i � 1 and 2) is locally asymptotically stable. If ui < (2m2vi

/c2pb) (i� 1 and 2), then E2,i is unstable.

Proof. For E2,i � (ui, vi)≐ (ui, vi), the corresponding Ja-
cobian matrix is given by

JE2,i
�

− bui +
2pu

2
i vi

d + u
2
i 

2 −
krui

1 + kvi( 
2 −

pui

d + u
2
i

cpvi

d + u
2
i

−
2cpu

2
i vi

d + u
2
i 

2 0≐
cpui

d + u
2
i

− m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (i � 1, 2).

(12)

By simplifying, we can get

JE2,i
�

− bui +
2m

2
vi

c
2
p

−
krui

1 + kvi( 
2 −

m

c

cpvi

d + u
2
i

−
2m

2
vi

cp
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (i � 1, 2),

det μI − JE2,i
  � μ2 − μ · trac JE2,i

  + det JE2,i
,

(13)

where

det JE2,i
�

krui

1 + kvi( 
2 +

m

c
⎛⎝ ⎞⎠ ·

cpvi

d + u
2
i

−
2m

2
vi

cp
 ,

trac JE2,i
  � − bui +

2m
2
vi

c
2
p

.

(14)

It is easy to get that det JE2,i
> 0 and trac(JE2,i

)< 0 under
these conditions (2m2vi/c2pb)< ui <

�������������
(c2p2/2m2) − d


. /en,

two eigenvalues of the matrix JE2,i
have negative real parts.

/erefore, the equilibrium E2,i � (ui, vi) is locally asymptoti-
cally stable. If ui < (2m2vi/c2pb) and the matrix JE2,i

has one
positive eigenvalue, then E2,i is unstable. □

3. A Priori Estimates on Equation (3)

/emain purpose of this section is to give a priori upper and
lower bounds for the positive solutions. To this aim, we first
recall the following maximum principle due to [23, 24].

Lemma 2. Suppose g(x,ω) ∈ C(Ω × R1).
If ω(x) ∈ C2(Ω) × C1(Ω) satisfies
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Δω(x) + g(x,ω(x))≥ 0(≤ 0), x ∈ Ω,

zω
zn
≤ 0(≥ 0), x ∈ zΩ,

(15)

and ω(x0) � maxΩω, then g(x0,ω(x0))≥ 0 (≤ 0).

Theorem 5. If r> a and ack d1 < bd2, (u, v) � (u(x), v(x))

is a positive solution of (3). 2en, the solution (u(x), v(x)) of
(3) yields

0< u<
r − a

b
, 0< v<ℵ, max

x∈Ωv> δ > 0, (16)

where δ ≐ (r − a)((1/ak) − (cd1/b)) and ℵ≐ [cd1 + (cd2
(r − a)/m)](r − a/b).

Proof. By Lemma 2, if u reaches its maximum at x ∈ Ω, it
follows from the first equation of (3) that

r − a − bu(x)≥
r

1 + kv(x)
− a − bu(x) −

pv(x)

d + u
2
(x)
≥ 0. (17)

Hence, 0< u≤ (r − a/b). Setting ϖ � cd1u + d2v and
combining two equations of system (3), we obtain

− Δϖ � − cd1Δu − d2Δv �
cru

1 + kv
− acu − bcu

2
− mv, (18)

that is,

Δϖ +
cru

1 + kv
− acu − bcu

2
− mv � 0. (19)

If ϖ reaches its maximum at x0 ∈ Ω, then

cru x0( 

1 + kv x0( 
− acu x0(  − bcu

2
x0(  − mv x0( ≥ 0, (20)

which results in

mv x0( ≤
cru x0( 

1 + kv x0( 
− acu x0(  − bcu

2
x0( ,

< cru x0(  − acu x0(  − bcu
2

x0( ,

< cru x0(  − acu x0( .

(21)

/us,

v x0( <
c(r − a)

m
u x0( ≤

c(r − a)
2

mb
. (22)

/anks to ϖ � cd1u + d2v, we know that

d2maxΩv<maxΩϖ � ϖ x0(  � cd1u x0(  + d2v x0( 

≤ cd1 +
cd2(r − a)

m
 

r − a

b
.

(23)

Let φ � − cd1u + d2v, then,

− Δφ � cd1Δu − d2Δv �
2cpuv

d + u
2 −

cru

1 + kv
+ acu + bcu

2
− mv,

(24)

that is,

Δφ +
2cpuv

d + u
2 −

cru

1 + kv
+ acu + bcu

2
− mv � 0. (25)

If φ reaches its maximum at x1 ∈ Ω, then

cru x1( 

1 + kv x1( 
− acu x1(  − bcu

2
x1( ≤

2cpu x1( v x1( 

d + u
2

x1( 
− mv x1( ,

<
2cpu x1( v x1( 

d

− mv x1( <N,

(26)

where N � (2cp(r − a)/b d)ℵ, which means that

1 + kv x1( >
cru x1( 

acu x1(  + bcu
2

x1(  + N
. (27)

Letting h(u) � cru/acu + bcu2 + N, it is easy to get the
maximum of h(u), that is, h(u)< r/a. /us,
v(x1)> (r − a/ak):

d2maxΩv<maxΩφ � ϖ x1(  � − cd1u x1(  + d2v x1( 

≥ (r − a)
d2

ak
−

cd1

b
 .

(28)

By (23) and (28), we have proved /eorem 5.
According to /eorems 5 and 1, we can easily get the

following conclusion. □

Theorem 6. If r> a, (r − a)(cp − 2m
��
d

√
)> 0, and

u< (r − a/b), then system (3) has two positive constant so-
lutions E2,i � (ui, vi), i� 1 and 2.

Theorem 7. Suppose that (u, v) is a nonnegative classical
solution of (3). If r≤ a, then (u, v) is always zero solution.

Proof. Integrating the equation for u in (3) over Ω by parts,
we get

0 � − d1
Ω

zu

zn
dx � − 

Ω
d1Δudx

� 
Ω

u
r

1 + kv
− a − bu −

pv

d + u
2 dx.

(29)

/us,
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0≤
Ω

bu
2dx � 

Ω
u

r

1 + kv
− a −

pv

d + u
2 dx

≤
Ω

(r − a)udx≤ 0.

(30)

Hence, u ≡ 0. Substituting u � 0 into the second equa-
tion of (3), we get

0 � − 
Ω

d2Δvdx � − m
Ω

vdx, (31)

and then, v ≡ 0. /e proof is complete. □

4. Stability of the Equilibrium of Equation (3)

/e goal of this section is to investigate the local and global
stability of the positive constant steady state (ui, vi) � U. We
first discuss the local stability of Ui. To this end, we need to
introduce some notations for developing our result.

Let

f(u, v) �
ru

1 + kv
− au − bu

2
−

puv

d + u
2,

g(u, v) � − mv +
cpuv

d + u
2.

(32)

/erefore, system (3) becomes the following forms:

ut � d1Δu + f(u, v),

vt � d1Δv + g(u, v).
(33)

It follows that two positive solutions (ui, vi) (i � 1 and 2)

satisfy

f ui, vi(  � g ui, vi(  � 0,

u1, v1(  �
cp +

�����������

c
2
p
2

− 4m
2
d



2m
, v1

⎛⎜⎜⎝ ⎞⎟⎟⎠,

u2, v2(  �
cp −

�����������

c
2
p
2

− 4m
2
d



2m
, v2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(34)

where vi (i � 1, 2) satisfies
r

1 + kv
− a − bui −

pv

d + u
2
i

� 0, i � 1, 2. (35)

In order to get the linearization operator of (3) at the
positive constant solution (ui, vi), for (33), we calculate the
partial derivatives with respect to u and v, respectively, at the
equilibrium point (ui, vi), as follows:

fu ui, vi(  � − bui +
2pu

2
i vi

d + u
2
i 

2 ≐f1,

fv ui, vi(  � −
krui

1 + kvi( 
2

pui

d + u
2
i

≐f2 < 0,

(36)

gu ui, vi(  �
cpvi d − u

2
i 

d + u
2
i 

2 ≐g1 < 0 as i � 1; g1 > 0 as i � 2,

gu ui, vi(  �
cpui

d + u
2
i

− m≐g2 � 0.

(37)

Next, give some results as follows:

(i) 0 � μ0 < μ1 < μ2 < μ3 < · · · < μi · · · <∞ are the ei-
genvalues of − Δ on Ω under homogeneous Neu-
mann boundary condition, and mi is the algebraic
multiplicity of eigenvalue μi.

(ii) ϕij, 1≤ j≤mi, are the normalized eigenfunctions
corresponding to μi, and then ϕij  (i≥ 0, 1≤ j≤mi)

are the orthonormal basis of L2(Ω).
If d1μ1 <f1, then there exists iα ≐ iα(α,Ω) satisfying

d1μi <f1, i< iα, 1≤ iα < +∞. (38)

Defining

d
(i)

2 � d
(i)

2 (α,Ω)≐min1≤i≤iαd
(i)
2 ,

d
(i)
2 �

f2g1

d1μi − f1( μi

.

(39)

Theorem 8
(1) If f1 < 0 and d2 > (f2g1/(d1μi − f1)μi), then the

positive constant steady state (u1, v1) of (3) is locally
asymptotically stable. If f1 < 0 and
d2 < (f2g1/(d1μi − f1)μi), then the positive constant
steady state (u1, v1) of (3) is unstable. If f1 >d1μ1,
then the positive constant steady state (u1, v1) of (3) is
unstable.

(2) If f1 < 0, then the positive constant steady state
(u2, v2) of (3) is locally asymptotically stable; if f1 > 0,
then the positive constant steady state (u2, v2) of (3) is
unstable.
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Proof. /e linearization operator of (3) at the positive
constant solution (ui, vi) (i � 1 and 2) can be written as

Lσ �
d1Δ + f1 f2

g1 d2Δ + g2
 , (40)

where f1, f2, g1, andg2 are defined in (36)-(37). According
to the linear stability theory, if the real parts of all eigenvalues
of Lσ are negative, then (ui, vi) is locally asymptotically
stable; if there exists the positive real part of the eigenvalue of
Lσ , then (ui, vi) is unstable.

Let (ϕ(x) andψ(x)) be the eigenfunctions corre-
sponding to the eigenvalue λ. /en,

Lσ(ϕ(x),ψ(x)) � λ(ϕ(x),ψ(x)), (41)

that is,

d1( Δϕ(x) + f1 − λ( ϕ(x) + f2ψ(x),

d2Δψ(x) + g2 − λ( ψ(x) + g1ϕ(x)) � (0, 0).
(42)

Let

ϕ � 
0≤i<∞,1≤j≤mi

ai,jϕij ,

ψ � 
0≤i<∞,1≤j≤mi

bi,jϕij ,

Bi �
f1 − d1μi − λ f2

g1 g2 − λ − d2ui

 .

(43)

/us, the eigenvalue equation of system (3) is equivalent
to


0≤i<∞,1≤j≤mi

Bi aij, bij 
T
ϕij � 0. (44)

λ is an eigenvalue of Lσ if and only if there exists i≥ 0
such as det (Bi) � 0, which is equivalent to

λ2 + Piλ + Qi � 0, (45)

where
Pi � d1 + d2( μi − f1,

Qi � − d2μi f1 − d1μi(  − f2g1.
(46)

Next, we check the stability of (u1, v1) and (u2, v2),
respectively.

(1) For the case (u1, v1). If f1 > d1μ1, then Q0 < 0 with
i< iα. Hence, (u1, v1) are unstable. If f1 < 0 and
d2 > (f2g1/(d1μi − f1)μi), then Pi,

Qi > 0. /us,
Reλ< 0 and (u1, v1) are locally asymptotically stable.
If f1 < 0 and d2 < (f2g1/(d1μi − f1)μi), then Qi < 0.
/us, Re λ> 0 and (u1, v1) are unstable.

(2) For the case (u2, v2), if f1 < 0, then Pi and Qi > 0.
/us, Re λ< 0 and (u2, v2) are locally asymptotically
stable. If f1 > 0, then P0 � − f1 < 0 and Q0 > 0. /us,
there exists some unstable Re λ> 0 and (u2, v2). /e
proof is complete. □

5. Nonconstant Positive Steady States of
Equation (3)

/e main purpose of this section is to provide some suffi-
cient conditions for the existence and nonexistence of a
nonconstant positive solution of (3) by using the Ler-
ay–Schauder degree theory [12, 24, 25]. Next, we will es-
tablish these results by dividing into two sections.

5.1. Nonexistence. /e goal of this part is to establish some
sufficient conditions for the nonexistence of nonconstant
positive solutions of (3) by the energy norm method. Some
related research studies can refer to [8–10]. For the ease of
notation, we set

u �
1

|Ω|

Ω

udx,

v �
1

|Ω|

Ω

vdx,

(47)

where (u, v) is a positive solution of (3).

Theorem 9. If d1 > (r − a/μ1) and cp< 2m
��
d

√
, then system

(3) has no nonconstant positive classical solution.

Proof. Let ω� u − uandχ � v − v, then Ωωdx � Ωχdx � 0.
Multiplying the second equation of v by χ and inte-

grating over Ω by parts, we obtain

d2
Ω

|∇χ|
2dx � 

Ω
− mv +

cpuv

d + u
2 χdx,

� 
Ω

cpuv

d + u
2 −

cpuv

d + u
2 χdx

+ 
Ω

cpuv

d + u
2 −

cpuv

d + u
2 χdx + m

Ω
vχdx

− m
Ω

vχdx,

� 
Ω

cpu

d + u
2χ

2dx + 
Ω

cpv(d − uu)

d + u
2

  d + u
2

 
ωχdx

− m
Ω
χ2dx,

� 
Ω

cpv(d − uu)

d + u
2

  d + u
2

 
ωχdx

− 
Ω

m −
cpu

d + u
2 χ2dx.

(48)

/anks to the boundary of u and v (see in/eorem 5), we
get
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d2
Ω

|∇χ|
2dx≤C1

Ω
|ωχ|dx − C2

Ω
χ2dx, (49)

where C1 � cp dℵ > 0 andC2 � m − cp/2
��
d

√
. Applying

Cauchy inequality, we obtain

|ωχ|≤
ω2

4C2/C1
+

C2

C1
χ2 �

C1ω
2

4C2
+

C2

C1
χ2. (50)

Substituting (50) into (49) and using Poincaré inequality,
we get

d2
Ω

|∇χ|
2dx≤

C
2
1

4C2

Ω
ω2dx≤

C
2
1

4C2μ1

Ω

|∇ω|
2dx. (51)

Because u and v are nonnegative, we obtain

− d1Δu≤ u(r − a). (52)

Multiplying the above equation of u by ω and integrating
over Ω by parts, using Poincaré inequality again, we obtain

d1
Ω

|∇ω|
2dx≤ (r − a)

Ω
ω2

dx≤
r − a

μ1

Ω

|∇ω|
2dx, (53)

that is,


Ω

|∇ω|
2dx≤

r − a

d1μ1

Ω

|∇ω|
2dx. (54)

If d1 > (r − a/μ1), then Ω|∇ω|dx ≡ 0. Substituting
Ω|∇ω|dx ≡ 0 into (51), we get


Ω

|∇ω|dx � 
Ω
∇χdx ≡ 0, (55)

which implies that ω and χ are always constant. /e proof is
complete. □

5.2. Global Existence. /e goal of this section is to establish
the global existence of nonconstant positive classical solu-
tions to (3) when the diffusion coefficients d1 and d2 vary
while the parameters r, a, b, c, d, m, p, and k are fixed.

For simplicity, we only consider the existence of non-
constant positive classical solutions near (u2, v2) which are
denoted by (u, tv). Letting u � u − u, v � v − v, system (3)
can be written as follows:

− d1Δu � f1u + f2v + f3,

− d2Δv � g1u + g3,
 (56)

where f3 ≐ o(|u|, |v|) and g3≐ o(|u|, |v|).
Define the space S and E as follows:

S � (u, tv): − u< u<
r − a

b
− u, − v< v<ℵ − v, ,

E � (u, v): u, v ∈ C
1+β

(Ω),
zu

zn
�

zv

zn
� 0, x ∈zΩ .

(57)

Set U � (u, tv), and then, (56) becomes

U � KU + HU, (58)

where

KU � 2f1Gd1
(u) + f2Gd1

(v), g1Gd2
(u) + g1Gd2

(v) ,

HU � Gd1
f3( , Gd2

g3(   � o(|U|),

Gd1
� − d1Δ + f1( 

− 1
,

Gd2
� − d2Δ + g1( 

− 1
.

(59)

Theorem 10. Suppose cp< 2m
��
d

√
and d1μ1 <f1 <min

− (f2/2), d1μ2 . If the principal eigenvalue μ1 has an
odd multiple eigenfunction and d2 >d

(1)
2 , then system (3) has

at least one nonconstant positive solution.

Proof. It is easy to see that system (3) has no solution on the
boundary of the space S. According to Homotopy invariance
of degree theory, for all d1 > 0, deg(I − K − H, E∩ S, 0) is
well defined and constant. Next, we will prove

deg(I − K − H, E∩ S, 0) � 1. (60)

Assume that (0, 0) is an isolated fixed point of I − K − H,
then

deg(I − K − H, E, 0) � index I − K d1( , (0, 0)(  � (− 1)
τ
,

(61)

where τ is the sum of algebraic multiplicity of all eigenvalues
greater than 0. Assume that λ is the eigenvalue of K − I and
the corresponding eigenfunction is denoted by (ξ, η), then

− d1(λ + 1)Δξ � (1 − λ)f1ξ + f2η,

− d2(λ + 1)Δη � g1ξ + λg1η.
(62)

Let

ξ � 
0≤i<∞,1≤j≤mi

aijϕij,

η � 
0≤i<∞,1≤j≤mi

bijϕij.
(63)

/us, the eigenvalue equation of system (3) is equivalent
to


0≤ i<∞,1≤ j≤mi

Bi aij, bij 
T
ϕij � 0, (64)

where

Bi �
(1 − λ)f1 − d1(1 + λ)μi f2

g1 − λg1 − d2(1 + λ)μi

 .

(65)

/us, all eigenvalues of K − I satisfy

f1g1 + d1μig1 + d1d2μ
2
i + d2μif1 λ2

+ 2d1d2μ
2
i + d1μig1 − f1g1 λ + d1d2μ

2
i − d2f1μi − f2g1 � 0.

(66)
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Set

Pi � 2d1d2μ
2
i + d1μig1 − f1g1 and

Qi � d1d2μ
2
i − d2f1μi − f2g1.

(67)

Notice that f2 < 0, g1 > 0, andf1 > 0 are defined in (36)-
(37), and it follows that Lσ and K(d1) − I have the same
number of eigenvalues. /anks to /eorem 9, let
d1 � max r − a/μ1, f1/μ1  + 1, then

deg(I − K − H, E∩ S, 0) � index I − K d1( , (0, 0)(  � 1. (68)

Next, we will calculate the sum of algebraic multiplicity
of all eigenvalues of K − I greater than 0.

Owing to d1μ1 <f1 andd2 >d
(1)
2 , it is easy to see that

Qi � − d2μ1 f1 − d1μ1(  − f2g1 < − d
(1)
2 μ1 f1 − d1μ1( 

− f2g1 � 0, P0 < 0, Q0 > 0.

(69)

Since d1μ2 >f1, then

Qi > 0,

Pi � 2d1d2μ
2
i + d1μig1 − f1g1 > 0, i≥ 2.

(70)

Hence, K − I has positive eigenvalues such as
λ1, λ2, and λ3, where λ1 satisfies

f1g1 + d1μ1g1 + d1d2μ
2
1 + d2μ1f1 λ2

+ 2d1d2μ
2
1 + d1μ1g1 − f1g1 λ + d1d2μ

2
1 − d2f1μ1 − f2g1 � 0,

(71)

and λ2 and λ3 satisfy

f1g1 + d1μ0g1 + d1d2μ
2
0 + d2μ0f1 λ2

+ 2d1d2μ
2
0 + d1μ0g1 − f1g1 λ + d1d2μ

2
0 − d2f1μ0 − f2g1 � 0.

(72)

/erefore, we denote the algebraic multiplicity of λj by τj

with d2 >d
(1)
2 , and then

τ � ∪
3

i�1
τi,

τj � dim ∪
∞

i�1
kerA

i
j,

Aj � K − λj + 1 I, j � 1, 2, 3.

(73)

We notice that τ1 � m1 if and only if
ker (A1)∩R(A1) � 0. It is easy to see that

ker A1(  � f2, d1μ1 1 + λ1(  + f1 λ1 − 1( ( 
Tϕ1j, 1≤ j≤m1 .

(74)

/anks to R(A1) � [ker (A∗1 )]⊥, suppose
(ξ, η) � ker (A∗1 ), then

K
∗
(ξ, η)
⊥

� λ1 + 1( (ξ, η)
⊥

,

K
∗
(ξ, η)
⊥

� 2f1Gd1
(ξ) + g1Gd2

(η), f2Gd1
(ξ) + g1Gd2

(η) ,

(75)

that is,

2f1Gd1
(ξ) + g1Gd2

(η) � λ1 + 1( ξ,

f2Gd1
(ξ) + g1Gd2

(η) � λ1 + 1( η.
(76)

According to the definition of Gd1
and Gd2

, we obtain

d1d2 f2 − 2f1(  λ1 + 1( Δξ � fξξ − fηη,

d1d2 f2 − 2f1(  λ1 + 1( Δη � gξξ − gηη,
(77)

where

fξ � 2d2f1 1 − λ1( f1 − f2  + d1g1f2 λ1 + 1( ,

fη � 2d2f
2
1 1 + λ1(  − d1g1 f2 + 2λ1f1( ,

gξ � d2f2 1 − λ1( f1 − f2  + d1g1f2 λ1 + 1( ,

gη � d2f1f2 1 + λ1(  − g1 f2 + 2λ1f1( .

(78)

By calculating, it follows that

B
∗
i �

fξ + d1d2 f2 − 2f1(  1 + λ1( μ1 − fη

gξ − gη + d1d2 f2 − 2f1(  1 + λ1( μ1
⎛⎝ ⎞⎠,

ker A
∗
1(  � 1 + λ1(  f1 + d1μ1( , f2 + λ1 − 1( f1 + λ1 + 1( d1μ1( 

Tϕ1j, 1≤ j≤m1 .

(79)

Next, we will prove that

f2 1 + λ1(  f1 + d1μ1(  + d1μ1 1 + λ1(  + λ1 − 1( f1 

× f2 + λ1 − 1( f1 + λ1 + 1( d1μ1 ≠ 0.

(80)

Because λ1 satisfies

f1g1 + d1μig1 + d1d2μ
2
i + d2μif1 λ2

+ 2d1d2μ
2
i + d1μig1 − f1g1 λ + d1d2μ

2
i − d2f1μi − f2g1 � 0,

(81)
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define the function H(λ) as follows:

H(λ) � f1g1 + d1μig1 + d1d2μ
2
i + d2μif1 λ2

+ 2d1d2μ
2
i + d1μig1 − f1g1 λ + d1d2μ

2
i

− d2f1μi − f2g1.

(82)

It is easy to see that H(1)> 0, so λ1 < 1. Notice that

f2 1 + λ1(  f1 + d1μ1(  + d1μ1 1 + λ1(  + λ1 − 1( f1 

× f2 + λ1 − 1( f1 + λ1 + 1( d1μ1 

<f2 1 + λ1(  f1 + d1μ1(  + 2d1μ1 f2 + 2d1μ1( 

<f2 1 + λ1(  f1 + d1μ1(  + 2d1μ1 f2 + 2f1( < , ≠ 0.

(83)

It follows that ker (A1)∩ (ker (A∗1 ))⊥ � 0, so τ1 � m1.
Because λ0 is a simple eigenvalue, by the similar method, we
can get the following result:

ker A2(  � f2, f1 λ1 − 1( ( 
Tϕ11 ,

ker A
∗
2(  � λ1 − 1(  f1 + d1μ1( , f2 + λ1 − 1( f1( 

Tϕ11 .

(84)

It is easy to get

f2 λ1 + 1(  f1 + d1μ1(  + f1 λ1 − 1(  f2 + λ1 − 1( f1 < 0.

(85)

/en ker (A2)∩ (ker (A∗2 ))⊥ � 0, and it follows that
τ2 � 1. Similarly, we can get τ3 � 1. Combining the above
results, we get

τ � τ1 + τ2 + τ3 � m1 + 1 + 1. (86)

So τ is an odd number, and we get

deg(I − K − H, E∩ S, 0) � (− 1)
τ

� − 1. (87)

/e proof is complete. □

6. Conclusion

/is paper investigates the diffusive predator-prey system
with nonmonotonic functional response and fear effect
under homogeneous Neumann boundary conditions.
Firstly, we discussed the stability of the equilibrium of the
ODE system which corresponds to system (2). Secondly, we
established a priori positive upper and lower bounds for the
positive solutions of the PDE system by maximum principle
(see/eorems 5–7), which means that the density of the two
organisms must be in a bounded range if they can coexist in
the system. /irdly, sufficient conditions for the local
asymptotical stability of two positive equilibrium solutions
of the system are proved by using the method of eigenvalue
spectrum analysis of linearization operator (see /eorem 8),
which shows that the density values of the two organisms are
locally stable at the positive equilibrium point when the
model parameters meet certain conditions. Finally, the ex-
istence and nonexistence of nonconstant positive steady
states of this reaction-diffusion system are established by

using the Leray–Schauder degree theory (see /eorems 9-
10). /e results of /eorem 9 show that the two organisms
cannot coexist in the biological system when the diffusion
rate of the prey satisfies some specific conditions. However,
the results of /eorem 10 show that two species can coexist
in a biological system if their diffusivity satisfies certain
conditions at the same time. In fact, we have used different
methods to study the similar dynamic behavior of the so-
lution on another predator-prey model in reference [26],
and one can refer to it for more detailed results.
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Case-cohort design is a biased sampling method. Due to its cost-effective and theoretical significance, this design has extensive
application value in many large cohort studies. ,e case-cohort data includes a subcohort sampled randomly from the entire
cohort and all the failed subjects outside the subcohort. In this paper, the adjustment for the distorted covariates is considered to
case-cohort data in Cox’s model. According to the existing adjustable methods of distorted covariates for linear and nonlinear
models, we propose estimating the distorting functions by nonparametrically regressing the distorted covariates on the distorting
factors; then, the estimators for the parameters are obtained using the estimated covariates. ,e proof of consistency and being
asymptotically normal is completed. For calculating the maximum likelihood estimates of the regression coefficients subject in
Cox’s model, a minorization-maximization (MM) algorithm is developed. Simulation studies are performed to compare the
estimations with the covariates undistorted, distorted, and adjusted to illustrate the proposed methods.

1. Introduction

Many survival data have the characteristics of large sample
size and high censoring rate. ,e cost is very high when all
variables of each individual in the data are measured. To
reduce the cost and improve the efficiency of cohort studies,
Prentice [1] firstly proposed the case-cohort design and gave
a pseudolikelihood method to estimate regression param-
eters. Since the publication of the landmark article [1], case-
cohort design has been applied more and more, especially
with the development of big data in recent years. For ex-
ample, some scholars have applied this design to Life Science
[2–5] and natural disasters [6], and some other scholars have
further improved this design [7, 8], respectively.

In practice, some subjects may be interfered by other
factors due to their characteristics, so their corresponding
real covariates cannot be observed; only the distorted
covariates and the distorting factors can be observed. For

example, for the Modification of Diet in Renal Disease
(MDRD) study [9, 10], glomerular filtration rate (GFR) and
serum creatinine (SCr) data are distorted by the body surface
area (BSA). To show the relationship of the two covariates,
we need to adjust them by correcting the distorting effect of
BSA. ,e covariate-adjusted regression was introduced for
situations where both predictors and response in a regres-
sion model are not directly observable, but are contaminated
with a multiplicative factor that is determined by the value of
an observable factor [11]. For the nonlinear regression
model, how to estimate the distorting functions was pro-
posed by nonparametric regression the predictors and re-
sponse on the distorting covariates [12]. ,en, the covariate-
adjusted method was extended to other models [13–15]. ,e
data studied in these documents is all complete data. In this
paper, the studied data is survival data with right censored
data, in which only distorted covariates and distorting
factors are included, and the nonparametric method [12] to

Hindawi
Complexity
Volume 2020, Article ID 8884665, 16 pages
https://doi.org/10.1155/2020/8884665

mailto:laiji1234@163.com
https://orcid.org/0000-0002-3356-7383
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8884665


estimate the distorting functions to obtain the adjusted value
of the distorted covariates on the distorting factors, where
the nonparametric method is a kernel smoothing method.

In this article, inspired by the idea of Ding et al. [16] and
Deng et al. [17], we construct a surrogate function with a
diagonal Hessian matrix by using the convexity of the ex-
ponential function and the negative logarithm function and
then maximize this surrogate function with a diagonal
Hessian matrix. ,is algorithm is minorization-maximiza-
tion (MM) algorithm.,at is, the first M is to construct a mi-
surrogate function and the secondM is to maximize the
function.

,e rest of the article is organized as follows. In Section
2, we firstly fit data from case-cohort design to Cox’s model
with distorting factors and secondly adjust the distorted
covariates by using the kernel function. In Section 3, the
convergence of the adjusted covariates and the asymptotic
properties for the proposed estimators is completed. In
Section 4, we propose a MM algorithm for implementation
of the estimation and present a cross-validation (CV) to
obtain the optimal bandwidth and a nonparametric boot-
strap approach to get the standard error estimation. Several
simulation studies are conducted to compare the estimations
without distorting factors, with distorting factors, and ad-
justed with distorting factors in Section 5. Real data analysis
of heart failure data is in Section 6. Discussion is stated in
Section 7. All proofs are given in Appendix.

2. Design and Estimation

2.1.Model andDesign. Suppose that there are n independent
subjects in the studies cohort, where Ti is the failure time, Ci

is the censoring time, Ti � min(Ti, Ci) is the observe time
for the ith subject, Δi � I(Ti ≤Ci) is the right-censoring
indicator for failure, Yi(t) � I(Ti ≥ t) is the at risk process,
and Ni(t) � ΔiI(Ti ≤ t) is the counting process, where I(·) is
an indicator function, τ is the end of study time, and Zi is a
pth covariate for subject i; we focus on the time-independent
covariate.

Let β � (β1, β2, . . . , βp) be the unknown p-dimensional
vector of regression coefficients. Ti arises from Cox’s model
as the following form:

λ(t|Z ) � λ0(t)exp β⊤Zi(t) , (1)

where λ0(t) is an unspecified baseline hazard function. ,e
corresponding partial likelihood function is widely used for
the inference of β [18] as the following form:

LF(β) � 
n

i�1

exp Zi Ti( β⊤ 


n
l�1 Yl Ti( exp Zi Ti( β⊤ 

 

Δi

. (2)

Under the case-cohort design, let A denote the sub-
cohort, which is selected from the full cohort by simple
random sampling, and ξi be an indicator, equaling 1 if the ith
subject is selected into the subcohort and 0 otherwise. Let A

denote the case-cohort sample which contained the subjects

from the subcohort A and the case outside the subcohort.
,erefore, the observed data structure can be summarized as
follows: Ti,Δi, (ξi + Δi(1 − ξi))Zi(t), 0≤Ti .

,e pseudolikelihood function [1] was proposed, and the
corresponding pseudolikelihood function takes the follow-
ing form:

Lp(β) � 
n

i�1
ωiΔi β⊤Zi Ti(  − log

n

i�1
Yl Ti( ωl exp β⊤Zl Ti(  ⎡⎣ ⎤⎦,

(3)

where ωi � Δi + (1 − Δi)ξi.

2.2. -e Adjustment of Covariates. We now study that the
covariates are distorted by some distorting factors. ,e
distorted observed data structure is

Ti,Δi, ξi + Δi 1 − ξi( ( Zi(t), Ui, 0≤ t≤Ti , (4)

where Ui is the ith distorting factor and Zi(t) is the ith
distorted covariate. Here, Zi(t) is unobservable, and ϕ(U) is
denoted as the unknown distorting functions of observable
factor U.

Firstly, we give some basic assumptions [12] as follows:

(i) Zr � ϕr(U)Zr

(ii) E[ϕr(U)] � 1, r � 1, 2, . . . , p

(iii) (Zr, U) are independent of each other,
r � 1, 2, . . . , p

Under these assumptions, the working-likelihood
function (3) can be rewritten as the following form:

lp(β) � 
n

i�1
ωiΔi β⊤ Zi Ti(  − log

n

l�1
Yl Ti( ωi exp β⊤ Zl Ti(  ⎡⎣ ⎤⎦,

Zri � ϕr Ui( Zri.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

Now, our object is to estimate the unknown coefficients β
based on observation (4) and function (5). From condition
(A3), we have

ϕr(U) �
E Zr|U 

E Zr 
, 1≤ r≤p. (6)

Many scholars have exposed some methods to estimate
ϕr(U) [19]. So, we construct the function ϕr(U) by using the
classic kernel method, for 1≤ r≤p:

ϕr( U ) �
1/(nh) 

n
i�1 K( u − Ui( /h )Zir

1/(nh) 
n
i�1 K( u − ωi( /h )

×
1
Zr

, (7)

where Zr � 1/n 
n
i�1

Zri, K(·) is a kernel function, and h is
bandwidth.
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Let Zri � Zri/ϕr(Ui) denote the adjusted covariate. ,at
is, we obtain the adjusted covariates by removing the dis-
torting factors from the distorted covariates. ,en, function
(4) can be abbreviated as

lp(β) � 
n

i�1
ωiΔi

Zi Ti( β⊤ − log
n

l�1
Yl Ti( ωl exp Zl Ti( β⊤ ⎡⎣ ⎤⎦.

(8)

Under the case-cohort design, the estimate β about the
adjustment of covariates is defined as follows:

β � argmax
β

lp(β). (9)

3. Consistency and Asymptotic Normality

To present the asymptotic results, we will introduce some
notations. Let β0 denote the true value of β. For d � 0, 1, 2,
define

S
d
(β, t) �

1
n


i∈A

Yi(t)exp ZT
i β Z⊗ d

i ,

S
d
(β, t) �

1
n



i∈A

Yi(t)exp Z⊤i β Z⊗ d
i ,

Q
d
(β, t,ω) �

1
n


i∈A

Yi(t)Yi(ω)exp 2Z⊤i β Z⊗ d
i ,

Q
d
(β, t,ω) �

1
n



i∈A

Yi(t)Yi(ω)exp 2Z⊤i β Z⊗ d
i ,

(10)

where a⊗0 � 1, a⊗1 � a, and a⊗2 � aa⊤ for a vector a.
Define

E(β, t) �
S

(1)
(β, t)

S
(0)

(β, t)
,

E(β, t) �
S

(1)
(β, t)

S
(0)

(β, t)
.

(11)

We impose the following conditions throughout the
paper. Note that convergence properties involve n⟶∞
and ‖ · ‖ refers to the Euclidean norm in these conditions:

(A1) 
τ
0 λ0(t)dt<∞.

(A2) ,ere exists some δ > 0 such that n− 1/2

supi,t∈[0,τ]Yi(t)|Zi|I ZT
i β0 > − δ|Zi| ⟶

P
0.

(A3) ,ere exists a neighborhood β of β0, and functions
sd(β, t), d � 0, 1, 2, defined on β × [0, τ], which
satisfy

(i) supβ∈B,t∈[0,τ]‖Sd(β, t) − sd(β, t)‖⟶P 0, d �

0, 1, 2.

(ii) sd(β, t), d � 0, 1, 2, are continuous of β on B

uniformly in t ∈ [0, τ]; sd(β, t), d � 0, 1, 2, are
bounded on B × [0, τ], and s(0)(β, t) is
bounded away from zero; and s(1)(β, t) �

∇βs(0)(β, t) and s(2)(β, t) � ∇2βs(0)(β, t) for all
β ∈B, t ∈ [0, τ].

(iii) ,e matrix

Σ β0(  � 
τ

0
] β0, t( s

(0)
(β, t)λ0(t)dt (12)

is positive definite, where ]( β0, t ) � ((s(2)

( β0, t ))/(s(0)( β0, t ))) − (s(1) ( β0, t ))/(s(0)

( β0, t ))}⊗ 2.
(B1) n/n⟶ α for some α ∈ (0, 1).
(B2) ,e sequence of distributions of n1/2 E(β0, t)t −

nEq(β0, t)} is tight onB × [0, τ] of left-continuous
functions with right-hand limits equipped with the
product Skorohod topology.

(B3) ,e existing functions qd(β, t,ω), d � 0, 1, 2, de-
fined on B × [0, τ]2 which satisfy

(i) supβ∈B,(t,w)∈[0,τ]2‖Q(d)(β, t,ω) − q(d)(β, t,ω)‖

⟶P 0, d � 0, 1, 2.
(ii) q(d)(β, t,ω), d � 0, 1, 2, are continuous of β on

B uniformly in (t, w) ∈ [0, τ]2, and
q(d)(β, t,ω), d � 0, 1, 2, are bounded on
B × [0, τ]2.

(iii) supn≥1E Q(d)(β, t,ω) , d � 0, 1, 2, are boun-
ded sequences.

(B4) For d � 0, 1, 2,

sup
β∈B,t∈[0,τ]

S
(d)

(β, t) − s
(d)

(β, t)

�������

�������
⟶P 0,

sup
β∈B,(t,w)∈[0,τ]2

Q
(d)

(β, t,ω) − q
(d)

(β, t,ω)

�������

�������
⟶P 0.

(13)

(C) All gr(U) � ϕr(U)p(U), 1≤ r≤p, and ϕr(U) and
p(U) are greater than a positive constant. ,ey are
differential and their derivatives satisfy the con-
dition that there exists a neighborhood of the
origin. For example, Δ and a constant c> 0 such
that, for any ξ ∈ Δ|g3

r(U + ξ) − g3
r(U)|≤

c|ξ|, 1≤ r≤p, |p3(U + ξ) − p3(U)|≤ c|ξ|.
(D1) ,e continuous kernel function K(·) satisfies the

following properties:

(i) ,e support of K(·) is the interval [− 1, 1].
(ii) K(·) is symmetric about zero.
(iii) 

1
− 1 K(U)dU � 1 and 

1
− 1 Udk(U)dU � 0, d �

1, 2, 3.

(D2) As n⟶∞, the bandwidth h is in the range from
O(n− 1/4log(n)) to O(n− 1/8).
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(E) E[Zr] is bounded away from 0, E[Zr]
2 <∞. ,ese

conditions are mild and can be satisfied in most
circumstances.

Conditions (A1)–(A3) are the regularity conditions for
the asymptotic results of Cox’s model [20]. Conditions
(B1)–(B4) are the regular conditions under the case-cohort
design [21]. Conditions (C) are related to smoothness of the
function gr(·) and the density function p(·) of U. Condi-
tions (D1)-(D2) are commonly assumed for the root n

consistency of kernel-based estimation [22, 23]. Condition
(E) is special for this problem [12, 22].

Under these conditions, we have the following result
with detailed proofs given in Appendix.

Theorem 1. (asymptotic properties of β). Under conditions
(A1)–(A3), (B1)–(B4), (C), (D1)-(D2), and (E), β converges in
probability to β0, and

�
n

√
β − tβ0 ⟶

d
N 0,Ω β0( ( , (14)

where the asymptotic variance matrix Ω(β0) � Σ0(β0)
+Σ1(β0), where

Σ1( β0 ) � 
τ

0

τ

0
Ψ( β0, t,ω )s

(0)
( β0, t )s

(0)
( β0,ω )λ0( t )λ0(ω )dtdω,

Ψ( β0, t, w ) � ( 1 − α )α− 1
s

(0)
( β0, t )s

(0)
( β0, w ) 

− 1

· q
(2)

( β0, t, w ) − q
(1)

( β0, w, t )e( β0, w )′ − e( β0, t )q
(1)

( β0, t, w )′

+q
(0)

( β0, t, w )e( β0, t )e( β0, w )′,

e( β0, t ) �
s

(1)
( β0, t )

s
(0)

( β0, t )
,

e( β0,ω ) �
s

(1)
( β0,ω )

s
(0)

( β0,ω )
.

(15)

4. The Implementation of Algorithm

In Section 3, we have finished the asymptotic properties for
the adjusted estimation β. To obtain β by solution of function
(9), we can use the Newton–Raphson algorithm. However,
in the process of calculation, we find that its Hessian matrix
is complicated and easily irreversible. So, we proposed the
MM algorithm [16] to get β for the adjustment of distorted
covariates under case-cohort design.

4.1. Construct Surrogate. ,e key of the MM algorithm to
construct surrogate function: combine the ideas of [16]; we
expose the surrogate function Q( β|β(m) ) for lp(β) by using
the convexity of the exponential function ex and the negative
logarithm function − log(x):

Q β|β(m)
  � c0 + 

n

i�1
ωiΔi β⊤ Zi Ti(  −


n
l�1 

p
r�1 Yl Ti( ωl

λlrglr βr|β
(m)

 


n
l�1 Yl Ti( ωl exp Z

⊤
l Ti( β(m)

 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ , (16)

where β(m) is the mth approximate of the adjustedmaximum
likelihood estimation β defined in (9), and
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c0 � 
n

i�1
ωiΔi 1 − log 

n

l�1
Yl Ti( ωl exp Zl Ti( 

⊤β(m)
 ⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭,

glr βr|β
(m)

  � exp λ
− 1
lr

Zlr Ti(  βr − β(m)
r  + Z

⊤
l Ti( β(m)

 ,

λlr �
Zlr Ti( 





p
r�1

Zlr Ti( 



,

(17)

with λ
− 1
lr � 0 if Z

⊤
l (Ti) � 0, where βr, β

(m)
r , and Zlr are the rth

components of β, β(m), and Zl, respectively.
With the surrogate function (16), we can transfer the

optimization problem (9) into the problem as follows:

β(m+1)
� argmax

β
Q β|β(m)

 . (18)

Following the construction process of the surrogate
function (16), we can immediately conclude that

lp(β)≥ Q β|β(m)
 , (19)

where lp(β) � Q(β|β(m)) if and only if β � β(m).

,en, with Q(β(m+1)|β(m))≥ Q (β(m)|β(m)), we have

lp β(m+1)
  � lp β(m+1)

  − Q β(m+1)
|β(m)

  + Q β(m+1)
|β(m)

 

≥lp β(m)
  − Q β(m)

|β(m)
  + Q β(m)

|β(m)
 

� lp β(m)
 ,

(20)

where lp(β) is strictly ascending when β(m+1) ≠ β(m).
With the surrogate function (16), we obtain the deriv-

atives with respect to β if β � β(m) as follows.
,e score vector:

z Q β(m)
|β(m)

 

zβ
� 

n

i�1
Δi

Z Ti(  −


n
l�1 Yl Ti( ωl

Zl Ti( exp Z
⊤
l Ti( β(m)

 


n
l�1 Yl TI( ωl exp Z

⊤
l Ti( β(m)

 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (21)

,e negative Hessian matrix:

−
z
2 Q β(m)

|β(m)
 

zβ zβ⊤
� diag −

z
2 Q β(m)

|β(m)
 

z
2β1

, . . . ,
⎧⎨

⎩

−
z
2 Q β(m)

|β(m)
 

z
2βp

⎫⎬

⎭,

(22)

where

−
z
2 Q β(m)

|β(m)
 

zβ2r

� 
n

i�1
Δiωi


n
l�1 Yl Ti( ωl

Z
2
lr/λlr exp Zl Ti( β(m)

 


n
l�1 Yl Ti( ωl exp Zl Ti( β(m)

 
,

r � 1, 2, . . . , p.

(23)

Here, the Hessian matrix is diagonal, the process of
calculation changes simply and is reversible by using
Newton–Raphson algorithm.

4.2. Cross-Validation and Bootstrap

4.2.1. Cross-Validation. In the process of the adjustment for
the distorted covariates, we use the cross-validation (CV)
method to obtain the optimal bandwidth h to construct the

kernel smoothing methods. ,e idea of the CV method is to
calculate the coverage of error between some naive responses
and the estimated responses obtained from the model fitted
by the other predictors. ,e specific expression of the
function in this article is given as follows:

CV(h) � 
n

j�1

1
nh



n

i�1
K

uj − ui

h
 ⎡⎣ ⎤⎦

2

Δu

−
2
n



n

j�1

2
nh


j≠i

K
uj − u− i

h
 ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(24)

where u− i is the set of removed ith element, Δu � uj − uj− 1.
,en, the optimal bandwidth is defined as follows:

h � argmin
h

CV(h). (25)

4.2.2. Bootstrap. Bootstrap has been widely used since it was
first proposed [24–26]. We adopt this method to calculate
the standard error of β; the basic idea of the nonparametric
approach is to construct an empirical distribution function
by repeatedly sampling from the observed data.,e steps are
summarized as follows:

Step 1: X1,
X2, . . . , Xn  are the adjusted observations

under the case-cohort design, where Xi � ( Ti,Δi,

Ui, ( ξi + ( 1 − ξi )Δi )Zi, 1≤ i≤ n}. We use the samples
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with Δi � 1 as the failure cases and the samples with
Δi � 0 as the censoring objects to constitute the
bootstrap case-cohort sample X

∗
1 , X
∗
2 , . . . , X

∗
n .

Step 2: a bootstrap replication β
∗
can be obtained based

on X
∗
1 , X
∗
2 , . . . , X

∗
n .

Step 3: repeating step 1 and step 2 B times, we can
obtain B bootstrap estimate β

∗
1 , . . . , β

∗
B .,erefore, the

standard error of the rth component of β can be es-
timated by the following form:

Se βr  �

��������������������������

1
B − 1



B

b�1

β
∗
r (b) −

1
B



B

b�1

β
∗
r (b)⎡⎣ ⎤⎦

2



,

r � 1, 2, . . . , p.

(26)

5. Simulation

As we mentioned before, if the distorting factors on cova-
riates were ignored, the result of inference may be misled
[11, 12]. In this article, we will construct several simulation
studies to compare the three estimators of regression co-
efficient β for the covariates without distorting factors, with
distorting factors, and adjusted with distorting factors in
Cox’s model. Under the case-cohort design, where βW de-
notes the estimator calculated based on the covariates
without distorting factors, βC denotes the estimator calcu-
lated based on the covariates with distorting factors, and βA

denotes the estimator calculate based on the adjusted
covariates with distorting factors, given (Z1,Z2), we consider
the hazard function of the failure time Ti as follows:

λ t|Z1,Z2(  � λ0(t) exp β1Z1 + β2Z2( . (27)

We set the true values of the parameters β to (–0.25, 0.5),
(–0.25, 0.693), and (0, 0.5). Z1 is generated from a normal
distribution with mean Z and variance 1.44. Z2 is generated
from a uniform distribution U((7/3)−

(
��
19

√
/2), (7/3) + (

��
19

√
/2)). ,e distorting factor U is

generated from a uniform distribution
U ∼ U(4 −

�
7

√
, 4 +

�
7

√
). ,e baseline hazard function λ0(t)

is set to be 1 and 2t. ,us, the failure time T satisfies an
exponential distribution with failure rate exp(β1Z1 + β2Z2)

and scale parameter [exp(β1Z1 + β2Z2)]
− 1/2, respectively.

,e censoring time C is generated from a uniform distri-
bution U(0, c) with c being chosen to desire the censoring
rate ρ � 80%, 85%, and 90%.

Under the case-cohort design, 1000 full cohort samples
are generated from function (27), and the corresponding
distorting factor is generated. ,e two parts are merged to
constitute the observed sample. ,en, we randomly selected
n � 150, 200, and 300 subcohort from the full cohort.

We compare the sample bias (Bias), the sample MSE
(SMSE), the sample standard deviations of estimates (SD),
the means of estimated standard errors (SE), and the cov-
erage probabilities of 95% nominal confidence intervals (CP)
of the three estimators to βC, βW, and βA based on 1000

independent simulated datasets and especially apply the
nonparametric bootstrap approach in Section 4.2.2 with
B � 500. We set only the covariate Z2 to be distorted and
adjusted. ,e distribution of the distorting factor U is set to
be Φ(u) � ((u + 10)2/194.9160). ,e kernel function is set
to be an Epanechnikov kernel [27] K(t) � (15/32)

(3 − 7t2)(1 − t2)(|t|≤ 1). ,e optimal bandwidth h is se-
lected by the CV method in Section 4.2.1. ,e criteria are
stopped with ε � 0.0001. ,e simulation results are sum-
marized in Table 1 with β � (− 0.25, 0.5), Table 2 with
β � (− 0.25, 0.693), and Table 3 with β � (0, 0.5),
respectively.

According to the simulation results, the estimators βW

and βA for β2 are all unbiased, the three values of SMSE,
SD, and SE are all closed, and the CP values are rea-
sonable. However, the estimators βC for β2 are all biased,
the difference between the two values of SMSE and SD is
large, and the CP value is low. ,ese facts confirm that
ignoring the distorting factors may lead to the wrong
results and conclusion and also explain that the proposed
method about the adjustment of covariates is effective. For
example, the estimator βC and βA for β � (− 0.25, 0.5),
ρ � 80%, n � 150, for β2, the bias is –0.1178, SMSE are
0.1521 and 0.1095, and CP are 0.735 and 0.947, respec-
tively. Furthermore, we can conclude that the estimators
for β1 are all reasonable.

6. Real Data Analysis

,edataset is about themedical records of heart failure patients,
from “Machine Learning Repository” (http://archive.ics.uci.
edu/ml/datasets/Heart+failure+clinical+records). ,e original
dataset version was collected by Tanvir Ahmad et al. (Gov-
ernment College University, Faisalabad, Pakistan) and made
available by them on FigShare under the Attribution 4.0 In-
ternational copyright in July 2017. ,e current version of the
dataset was elaborated by Davide Chicco et al. and donated to
the University of California Irvine Machine Learning Reposi-
tory under the same Attribution 4.0 International copyright in
January 2020.

,is dataset contains the medical records of 299 patients
who had heart failure, collected during their follow-up
period, where each patient profile has 13 clinical features,
including age, anaemia, creatinine phosphokinase, diabetes,
ejection fraction, high blood pressure, platelets, serum
creatinine, serum sodium, sex, smoking, time, and death
event. ,e goal is to assess the association between clinical
features and heart failure and its happened time. ,is real
data is survival data which meets the requirements of the
article. Death event and time are regarded as heart failure
and its happened time, respectively. For the remaining 11
clinical features, through pairwise correlation analysis, we
conclude that ejection fraction and serum sodium and
anaemia and Creatinine phosphokinase are significantly
related. Referring to relevant medical knowledge, we know
that ejection fraction may distort serum sodium. And in the
same way, anaemia may distort creatinine phosphokinase.
,e main purpose of our research is to evaluate the
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Table 1: β � (− 0.25, 0.5), Z1 ∼ N(2, 1.44), Z2 ∼ U((7/3) − (
��
19

√
/2), (7/3) + (

��
19

√
/2)), u ∼ U(4 −

�
7

√
, 4 +

�
7

√
).

n ρ (%) Type
λ0(t) � 1

β1 � − 0.25 β2 � 0.5
Bias SMSE SD SE CP Bias SMSE SD SE CP

150

80
βW − 0.0102 0.0965 0.0960 0.0992 0.965 0.0146 0.1094 0.1085 0.1118 0.961
βC − 0.0074 0.0961 0.0958 0.0978 0.959 − 0.1158 0.1499 0.0951 0.0975 0.742
βA − 0.0100 0.0960 0.0955 0.0990 0.964 0.0050 0.1105 0.1104 0.1126 0.955

85
βW − 0.0145 0.1051 0.1042 0.1053 0.950 0.0115 0.1167 0.1162 0.1189 0.960
βC − 0.0003 0.0968 0.0968 0.1030 0.956 − 0.1199 0.1575 0.1022 0.1024 0.724
βA − 0.0014 0.0971 0.0971 0.1041 0.964 − 0.0046 0.1201 0.1201 0.1197 0.950

90
βW − 0.0098 0.1114 0.1110 0.1153 0.961 0.0237 0.1306 0.1285 0.1328 0.957
βC − 0.0094 0.1096 0.1093 0.1141 0.962 − 0.1129 0.1563 0.1081 0.1116 0.802
βA − 0.0096 0.1113 0.1109 0.1152 0.963 0.0106 0.1292 0.1288 0.1326 0.954

200

80
βW − 0.0090 0.0815 0.0810 0.0878 0.969 0.0084 0.0991 0.0988 0.0992 0.943
βC − 0.0051 0.0807 0.0806 0.0868 0.971 − 0.1227 0.1497 0.0858 0.0852 0.669
βA − 0.0091 0.0818 0.0814 0.0877 0.968 0.0006 0.1012 0.1013 0.0994 0.944

85
βW − 0.0049 0.0899 0.0898 0.0926 0.951 0.0005 0.1007 0.1008 0.1055 0.963
βC − 0.0027 0.0928 0.0928 0.0914 0.940 − 0.1274 0.1560 0.0900 0.0897 0.666
βA − 0.0048 0.0950 0.0949 0.0923 0.941 − 0.0026 0.1063 0.1063 0.1061 0.949

90
βW − 0.0094 0.1035 0.1031 0.1036 0.954 0.0117 0.1174 0.1169 0.1196 0.962
βC − 0.0089 0.1038 0.1035 0.1027 0.949 − 0.1229 0.1563 0.0965 0.0986 0.720
βA − 0.0085 0.1034 0.1031 0.1034 0.953 − 0.0005 0.1151 0.1152 0.1188 0.960

300

80
βW − 0.0029 0.0732 0.0732 0.0737 0.951 0.0060 0.0848 0.0847 0.0850 0.954
βC − 0.0008 0.0725 0.0726 0.0730 0.941 − 0.1241 0.1432 0.0714 0.0712 0.561
βA − 0.0023 0.0727 0.0727 0.0736 0.950 − 0.0046 0.0844 0.0843 0.0848 0.952

85
βW − 0.0054 0.0804 0.0803 0.0795 0.948 0.0069 0.0902 0.0900 0.0929 0.959
βC − 0.0025 0.0768 0.0768 0.0792 0.953 − 0.1325 0.1532 0.0768 0.0761 0.568
βA − 0.0036 0.0764 0.0763 0.0798 0.954 − 0.0114 0.0927 0.0921 0.0921 0.947

90
βW − 0.0034 0.0912 0.0912 0.0910 0.958 0.0062 0.1105 0.1103 0.1078 0.950
βC − 0.0023 0.0902 0.0902 0.0904 0.961 − 0.1308 0.1575 0.0877 0.0861 0.632
βA − 0.0037 0.0908 0.0907 0.0909 0.957 − 0.0069 0.1093 0.1091 0.1063 0.947

λ0(t) � 2t

150

80
βW − 0.0067 0.1107 0.1105 0.1092 0.948 0.0103 0.1205 0.1201 0.1230 0.958
βC − 0.0037 0.1110 0.1110 0.1078 0.943 − 0.1170 0.1571 0.1049 0.1082 0.773
βA − 0.0060 0.1098 0.1097 0.1091 0.948 0.0001 0.1198 0.1199 0.1238 0.958

85
βW − 0.0040 0.1111 0.1111 0.1143 0.966 0.0161 0.1316 0.1306 0.1307 0.952
βC − 0.0001 0.1104 0.1105 0.1127 0.958 − 0.1183 0.1606 0.1087 0.1139 0.798
βA − 0.0036 0.1109 0.1109 0.1141 0.964 0.0069 0.1303 0.1302 0.1314 0.951

90
βW − 0.0075 0.1242 0.1240 0.1254 0.954 0.0102 0.1445 0.1442 0.1433 0.954
βC − 0.0062 0.1228 0.1227 0.1238 0.954 − 0.1259 0.1737 0.1197 0.1216 0.784
βA − 0.0066 0.1234 0.1233 0.1251 0.952 − 0.0037 0.1434 0.1434 0.1433 0.947

200

80
βW 0.0016 0.0911 0.0911 0.0944 0.951 0.0076 0.1022 0.1020 0.1074 0.957
βC 0.0056 0.0916 0.0915 0.0932 0.952 − 0.1213 0.1521 0.0917 0.0934 0.710
βA 0.0021 0.0918 0.0918 0.0943 0.954 − 0.0018 0.1024 0.1025 0.1078 0.959

85
βW − 0.0062 0.0971 0.0970 0.1011 0.965 0.0116 0.1139 0.1133 0.1160 0.956
βC − 0.0033 0.0973 0.0973 0.1000 0.959 − 0.1198 0.1542 0.0971 0.0997 0.747
βA − 0.0060 0.0970 0.0969 0.1010 0.964 0.0001 0.1141 0.1142 0.1164 0.946

90
βW − 0.0063 0.1060 0.1059 0.1124 0.956 0.0117 0.1278 0.1273 0.1297 0.958
βC − 0.0050 0.1061 0.1060 0.1113 0.957 − 0.1212 0.1608 0.1056 0.1085 0.746
βA − 0.0069 0.1064 0.1062 0.1123 0.959 − 0.0007 0.1253 0.1254 0.1296 0.956

300

80
βW − 0.0008 0.0763 0.0764 0.0790 0.964 0.0036 0.0880 0.0879 0.0909 0.963
βC 0.0024 0.0758 0.0758 0.0783 0.961 − 0.1238 0.1458 0.0770 0.0774 0.604
βA − 0.0003 0.0766 0.0767 0.0789 0.963 − 0.0048 0.0886 0.0886 0.0909 0.959

85
βW − 0.0033 0.0871 0.0871 0.0854 0.948 0.0120 0.0991 0.0985 0.0989 0.951
βC 0.0002 0.0862 0.0862 0.0847 0.949 − 0.1227 0.1479 0.0827 0.0825 0.660
βA − 0.0028 0.0870 0.0870 0.0853 0.948 0.0018 0.0979 0.0979 0.0987 0.942

90
βW − 0.0127 0.0935 0.0927 0.0978 0.969 0.0117 0.1149 0.1144 0.1141 0.945
βC − 0.0110 0.0933 0.0927 0.0970 0.961 − 0.1272 0.1575 0.0929 0.0930 0.676
βA − 0.0119 0.0929 0.0922 0.0977 0.967 − 0.0014 0.1125 0.1126 0.1131 0.946

Note: βW denotes the estimator calculated based on the covariates without distorting factors, βC denotes the estimator calculated based on the covariates with
distorting factors, and βA denotes the estimator calculated based on the adjusted covariates with distorting factors. Algorithm: MM algorithm.
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Table 2: β � (− 0.25, 0.693), Z1 ∼ N(2, 1.44), Z2 ∼ U((7/3) − (
��
19

√
/2), (7/3) + (

��
19

√
/2)), u ∼ U(4 −

�
7

√
, 4 +

�
7

√
).

n ρ (%) Type
λ0(t) � 1

β1 � − 0.25 β2 � 0.693
Bias SMSE SD βASE CP Bias SMSE SD SE CP

150

80
βW − 0.0048 0.0998 0.0998 0.1038 0.965 0.0147 0.1190 0.1181 0.1228 0.968
βC 0.0005 0.0987 0.0988 0.1016 0.969 − 0.1921 0.2170 0.1009 0.1042 0.513
βA − 0.0038 0.1005 0.1005 0.1038 0.963 − 0.0010 0.1237 0.1237 0.1236 0.944

85
βW − 0.0141 0.1082 0.1074 0.1108 0.959 0.0110 0.1320 0.1316 0.1318 0.955
βC − 0.0091 0.1042 0.1038 0.1087 0.964 − 0.1980 0.2258 0.1086 0.1088 0.517
βA − 0.0137 0.1078 0.1070 0.1106 0.959 − 0.0058 0.1351 0.1351 0.1322 0.947

90
βW − 0.0060 0.1127 0.1126 0.1207 0.974 0.0110 0.1462 0.1459 0.1446 0.953
βC − 0.0038 0.1100 0.1100 0.1185 0.975 − 0.2056 0.2363 0.1165 0.1160 0.537
βA − 0.0057 0.1139 0.1138 0.1204 0.967 − 0.0159 0.1453 0.1445 0.1443 0.946

200

80
βW − 0.0105 0.0941 0.0936 0.0914 0.949 0.0105 0.1089 0.1085 0.1092 0.953
βC − 0.0017 0.0929 0.0929 0.0897 0.954 − 0.1969 0.2150 0.0863 0.0906 0.382
βA − 0.0095 0.0937 0.0933 0.0913 0.948 − 0.0072 0.1111 0.1109 0.1097 0.949

85
βW − 0.0083 0.0973 0.0970 0.0979 0.958 0.0115 0.1088 0.1083 0.1177 0.964
βC − 0.0035 0.0955 0.0955 0.0960 0.954 − 0.1990 0.2178 0.0886 0.0949 0.446
βA − 0.0079 0.0979 0.0977 0.0977 0.956 − 0.0087 0.1125 0.1122 0.1172 0.953

90
βW − 0.0046 0.1064 0.1064 0.1084 0.956 0.0122 0.1264 0.1259 0.1326 0.971
βC − 0.0022 0.1056 0.1057 0.1067 0.953 − 0.2018 0.2278 0.1057 0.1040 0.461
βA − 0.0036 0.1060 0.1060 0.1082 0.957 − 0.0140 0.1281 0.1273 0.1312 0.959

300

80
βW − 0.0025 0.0776 0.0776 0.0765 0.953 0.0088 0.0932 0.0928 0.0928 0.955
βC 0.0038 0.0766 0.0766 0.0752 0.955 − 0.2000 0.2139 0.0758 0.0745 0.260
βA − 0.0011 0.0773 0.0774 0.0763 0.958 − 0.0090 0.0957 0.0953 0.0923 0.945

85
βW − 0.0037 0.0833 0.0833 0.0832 0.947 0.0084 0.1041 0.1038 0.1024 0.947
βC 0.0011 0.0822 0.0822 0.0819 0.945 − 0.2078 0.2223 0.0791 0.0791 0.257
βA − 0.0027 0.0838 0.0838 0.0831 0.951 − 0.0145 0.1051 0.1042 0.1011 0.934

90
βW − 0.0035 0.0959 0.0959 0.0951 0.954 0.0026 0.1153 0.1153 0.1181 0.949
βC 0.0001 0.0961 0.0961 0.0940 0.949 − 0.2135 0.2302 0.0861 0.0885 0.326
βA − 0.0021 0.0956 0.0957 0.0950 0.953 − 0.0195 0.1186 0.1170 0.1160 0.936

λ0(t) � 2t

150

80
βW − 0.0090 0.1123 0.1120 0.1137 0.952 0.0131 0.1275 0.1269 0.1338 0.954
βC 0.0006 0.1110 0.1111 0.1115 0.951 − 0.1890 0.2209 0.1144 0.1151 0.579
βA − 0.0073 0.1111 0.1109 0.1135 0.953 − 0.0032 0.1302 0.1303 0.1350 0.951

85
βW − 0.0109 0.1207 0.1203 0.1208 0.949 0.0177 0.1396 0.1386 0.1434 0.962
βC − 0.0085 0.1191 0.1188 0.1180 0.953 − 0.1864 0.2225 0.1216 0.1205 0.589
βA − 0.0106 0.1198 0.1194 0.1205 0.946 − 0.0012 0.1387 0.1388 0.1439 0.950

90
βW − 0.0124 0.1287 0.1281 0.1323 0.961 0.0158 0.1631 0.1624 0.1565 0.949
βC − 0.0138 0.1277 0.1270 0.1296 0.955 − 0.1939 0.2305 0.1248 0.1292 0.621
βA − 0.0151 0.1294 0.1286 0.1317 0.956 − 0.0072 0.1557 0.1556 0.1572 0.955

200

80
βW − 0.0115 0.0994 0.0988 0.0986 0.951 0.0162 0.1203 0.1193 0.1184 0.959
βC − 0.0025 0.0941 0.0941 0.0963 0.956 − 0.1909 0.2154 0.0999 0.0991 0.492
βA − 0.0109 0.0988 0.0983 0.0983 0.953 − 0.0011 0.1214 0.1215 0.1188 0.939

85
βW − 0.0007 0.1009 0.1010 0.1050 0.960 0.0091 0.1260 0.1258 0.1269 0.954
βC 0.0036 0.1008 0.1008 0.1031 0.957 − 0.1955 0.2218 0.1048 0.1042 0.489
βA − 0.0009 0.1012 0.1012 0.1050 0.955 − 0.0081 0.1280 0.1278 0.1272 0.949

90
βW − 0.0051 0.1105 0.1105 0.1176 0.962 0.0157 0.1484 0.1477 0.1429 0.943
βC − 0.0011 0.1082 0.1082 0.1155 0.970 − 0.1996 0.2300 0.1144 0.1142 0.540
βA − 0.0045 0.1103 0.1103 0.1173 0.961 − 0.0111 0.1434 0.1430 0.1416 0.941

300

80
βW − 0.0067 0.0799 0.0797 0.0818 0.952 0.0056 0.0934 0.0933 0.0989 0.962
βC 0.0008 0.0789 0.0790 0.0805 0.948 − 0.1969 0.2114 0.0769 0.0807 0.322
βA − 0.0058 0.0800 0.0798 0.0817 0.947 − 0.0112 0.0962 0.0956 0.0988 0.952

85
βW − 0.0083 0.0860 0.0857 0.0894 0.957 0.0081 0.1063 0.1061 0.1082 0.961
βC − 0.0004 0.0854 0.0855 0.0879 0.965 − 0.2018 0.2194 0.0861 0.0864 0.352
βA − 0.0072 0.0867 0.0864 0.0893 0.959 − 0.0115 0.1079 0.1073 0.1078 0.950

90
βW − 0.0082 0.0966 0.0963 0.1007 0.961 0.0125 0.1223 0.1217 0.1259 0.963
βC − 0.0034 0.0948 0.0948 0.0991 0.951 − 0.2012 0.2219 0.0935 0.0964 0.428
βA − 0.0060 0.0964 0.0963 0.1006 0.955 − 0.0112 0.1206 0.1201 0.1239 0.954

Note: βW denotes the estimator calculated based on the covariates without distorting factors, βC denotes the estimator calculated based on the covariates with
distorting factors, and βA denotes the estimator calculate based on the adjusted covariates with distorting factors. Algorithm: MM algorithm.
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Table 3: β � (0, 0.5), Z1 ∼ N(2, 1.44), Z2 ∼ U((7/3) − (
��
19

√
/2), (7/3) + (

��
19

√
/2)), u ∼ U(4 −

�
7

√
, 4 +

�
7

√
).

n ρ (%) Type
λ0(t) � 1

β1 � 0 β2 � 0.5
Bias SMSE SD SE CP Bias SMSE SD SE CP

150

80
βW 0.0016 0.0899 0.0899 0.0930 0.961 0.0106 0.1032 0.1027 0.1084 0.968
βC 0.0016 0.0900 0.0901 0.0920 0.963 − 0.1184 0.1490 0.0906 0.0954 0.759
βA 0.0017 0.0903 0.0903 0.0929 0.957 0.0014 0.1058 0.1058 0.1091 0.962

85
βW − 0.0013 0.1010 0.1010 0.0999 0.959 0.0079 0.1107 0.1104 0.1151 0.964
βC − 0.0007 0.0991 0.0991 0.0989 0.961 − 0.1191 0.1532 0.0964 0.0998 0.728
βA − 0.0011 0.1012 0.1012 0.0997 0.958 − 0.0052 0.1114 0.1113 0.1154 0.952

90
βW − 0.0003 0.1078 0.1079 0.1083 0.954 0.0123 0.1242 0.1236 0.1282 0.965
βC − 0.0004 0.1083 0.1084 0.1074 0.946 − 0.1218 0.1576 0.1000 0.1076 0.772
βA − 0.0003 0.1078 0.1079 0.1082 0.956 − 0.0002 0.1225 0.1225 0.1282 0.965

200

80
βW 0.0016 0.0807 0.0807 0.0823 0.963 0.0073 0.0973 0.0971 0.0963 0.951
βC 0.0029 0.0797 0.0796 0.0813 0.962 − 0.1239 0.1488 0.0824 0.0827 0.633
βA 0.0017 0.0803 0.0804 0.0822 0.966 − 0.0018 0.0984 0.0985 0.0965 0.943

85
βW 0.0007 0.0862 0.0863 0.0881 0.962 0.0071 0.1024 0.1022 0.1036 0.953
βC 0.0010 0.0845 0.0846 0.0873 0.960 − 0.1230 0.1515 0.0884 0.0878 0.672
βA 0.0005 0.0865 0.0865 0.0881 0.965 − 0.0048 0.1032 0.1031 0.1037 0.948

90
βW 0.0037 0.0940 0.0940 0.0986 0.954 0.0091 0.1148 0.1145 0.1168 0.959
βC 0.0044 0.0945 0.0944 0.0977 0.958 − 0.1270 0.1580 0.0941 0.0960 0.688
βA 0.0034 0.0945 0.0945 0.0985 0.956 − 0.0036 0.1158 0.1158 0.1163 0.953

300

80
βW 0.0016 0.0706 0.0706 0.0703 0.951 0.0012 0.0803 0.0804 0.0827 0.964
βC 0.0010 0.0705 0.0706 0.0696 0.942 − 0.1294 0.1461 0.0679 0.0692 0.526
βA 0.0019 0.0706 0.0706 0.0702 0.945 − 0.0081 0.0816 0.0813 0.0826 0.955

85
βW − 0.0003 0.0767 0.0767 0.0761 0.947 − 0.0006 0.0868 0.0868 0.0908 0.960
βC 0.0001 0.0765 0.0765 0.0756 0.947 − 0.1321 0.1504 0.0719 0.0745 0.545
βA − 0.0002 0.0767 0.0767 0.0761 0.946 − 0.0111 0.0884 0.0878 0.0904 0.950

90
βW 0.0007 0.0855 0.0855 0.0865 0.960 0.0095 0.1046 0.1042 0.1054 0.954
βC 0.0013 0.0845 0.0845 0.0861 0.969 − 0.1274 0.1521 0.0831 0.0837 0.638
βA 0.0010 0.0856 0.0857 0.0865 0.959 − 0.0027 0.1038 0.1038 0.1040 0.950

λ0(t) � 2t

150

80
βW 0.0005 0.1012 0.1013 0.1035 0.957 0.0091 0.1144 0.1140 0.1195 0.953
βC 0.0012 0.0998 0.0998 0.1024 0.959 − 0.1191 0.1570 0.1024 0.1057 0.755
βA 0.0010 0.1007 0.1007 0.1034 0.956 0.0020 0.1158 0.1158 0.1201 0.954

85
βW − 0.0020 0.1059 0.1059 0.1094 0.965 0.0132 0.1210 0.1203 0.1272 0.971
βC − 0.0031 0.1048 0.1048 0.1080 0.965 − 0.1185 0.1590 0.1062 0.1109 0.798
βA − 0.0020 0.1057 0.1058 0.1091 0.965 0.0016 0.1198 0.1198 0.1279 0.966

90
βW − 0.0038 0.1157 0.1157 0.1189 0.962 0.0069 0.1376 0.1375 0.1389 0.957
βC − 0.0040 0.1134 0.1134 0.1175 0.964 − 0.1269 0.1698 0.1128 0.1182 0.781
βA − 0.0034 0.1160 0.1160 0.1187 0.959 − 0.0036 0.1387 0.1388 0.1393 0.955

200

80
βW 0.0042 0.0906 0.0905 0.0905 0.944 0.0100 0.1057 0.1053 0.1061 0.962
βC 0.0044 0.0903 0.0902 0.0892 0.944 − 0.1196 0.1509 0.0921 0.0924 0.696
βA 0.0047 0.0904 0.0903 0.0903 0.942 − 0.0002 0.1050 0.1050 0.1065 0.956

85
βW − 0.0018 0.0950 0.0950 0.0954 0.962 0.0093 0.1089 0.1088 0.1124 0.962
βC − 0.0016 0.0949 0.0950 0.0942 0.952 − 0.1258 0.1566 0.0933 0.0960 0.700
βA − 0.0017 0.0944 0.0945 0.0952 0.957 − 0.0043 0.1092 0.1092 0.1125 0.958

90
βW − 0.0001 0.1007 0.1008 0.1065 0.972 0.0144 0.1238 0.1231 0.1263 0.965
βC 0.0009 0.0991 0.0991 0.1054 0.968 − 0.1211 0.1587 0.1026 0.1055 0.763
βA 0.0000 0.1004 0.1005 0.1064 0.974 0.0026 0.1239 0.1239 0.1264 0.959

300

80
βW − 0.0010 0.0732 0.0732 0.0754 0.959 0.0089 0.0877 0.0873 0.0890 0.965
βC − 0.0011 0.0726 0.0726 0.0746 0.962 − 0.1216 0.1439 0.0769 0.0757 0.605
βA − 0.0011 0.0733 0.0734 0.0754 0.960 − 0.0012 0.0879 0.0879 0.0891 0.965

85
βW 0.0020 0.0810 0.0810 0.0813 0.954 0.0053 0.0963 0.0962 0.0969 0.959
βC 0.0011 0.0800 0.0800 0.0808 0.952 − 0.1275 0.1508 0.0807 0.0812 0.628
βA 0.0015 0.0813 0.0813 0.0812 0.952 − 0.0053 0.0956 0.0955 0.0967 0.952

90
βW 0.0044 0.0926 0.0926 0.0925 0.953 0.0132 0.1092 0.1084 0.1118 0.961
βC 0.0045 0.0923 0.0923 0.0919 0.954 − 0.1257 0.1530 0.0872 0.0906 0.687
βA 0.0041 0.0922 0.0922 0.0924 0.949 0.0013 0.1084 0.1085 0.1108 0.960

Note: βW denotes the estimator calculated based on the covariates without distorting factors, βC denotes the estimator calculated based on the covariates with
distorting factors, and βA denotes the estimator calculate based on the adjusted covariates with distorting factors. Algorithm: MM algorithm.
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association between these clinical features under smoothed
serum sodium and creatinine phosphokinase by ejection
fraction and anaemia.

,ere are 96 deaths in this data, and the censoring rate is
nearby 67.9%. Due to the different dimensions of the
covariates, we firstly standardize each covariate.,en, we set
the standardized age as Z1, the standardized creatinine
phosphokinase as Z2, the standardized diabetes as Z3, the
standardized high blood pressure as Z4, the standardized
platelets as Z5, the standardized serum creatinine as Z6, the
standardized serum sodium as Z7, the standardized sex as
Z8, the standardized smoking as Z9, the standardized
ejection fraction as a distorting factor U1, and the stan-
dardized anaemia as a distorting factor U2, where Z2 and Z7
indicate that the covariate is distorted.

,e case-cohort sample is composed of the subcohort
randomly selected 100 from the whole data and the dead
objects in the whole data expect the subcohort. We perform
regression analysis on the sample using the proportional
hazard function:

x(t|Z) � x0(t)exp 
9

i�1
βiZi

⎧⎨

⎩

⎫⎬

⎭. (28)

Because the size of this data is small, to improve the
reliability of the sampling method, the sampling process is
repeated 100 times. ,e average value of the 100 distorted
estimates is (2.7224, 14.0226, 0.1603, 0.4295, − 0.2667,

3.0520, 11.0269, − 0.0742, 0.1933)⊤.
,en, for the same 100 case-cohort sample, we obtain the

adjusted covariates Z2 and Z7 by using the proposed kernel
smoothing method on Z2 and Z7 and replace Z2 and Z7
with Z2 and Z7, respectively. On this basis, the average of
adjusted estimates is (2.5077, 1.0344, 0.1136, 0.5474, −

0.3552, 2.8577, − 2.4303, 0.2115)⊤.
,e kernel and bandwidth selector chosen are the same

as those in Section 5. After the covariates were adjusted, the
estimator of creatinine phosphokinase is adjusted from
1.0344 to 14.0226, and the estimator of serum sodium is
adjusted from − 2.4303 to 11.0269; the estimators of other
covariates changed little after adjustment. ,e result is
reasonable and feasible in medicine and also shows that the
proposed method is effective for real data.

In practice, the covariates are measured after the case-
cohort sampling to reduce costs and improve efficiency. In
this real data, the size of the data is small, and the each
covariate has been measured. To reduce the error, we repeat
100 samplings and set the average value as the estimators.
For example, based on the 10th case-cohort sample from the
original data, the distorted estimator is (3.5393, − 0.5883,

0.1934, 0.3712, 0.4114, 6.5332, − 3.9763, 0.1236, 0.3585)⊤;
then, after the adjustment of covariates in the same sample,
the adjusted estimator is (4.5125, 79.7599, 0.1690, 0.2902,

1.0486, 5.9035, 12.7945, 0.1399, 0.1720)⊤. ,erefore, the es-
timators based on same case-cohort sample are quite dif-
ferent from the average of estimators, but the trends are the

same. So, for real data with a large sample size, we only need
to draw a case-cohort sample and measure their covariates.

7. Conclusion

We study the estimation in Cox’s model with the adjusted
covariates by using the nonparametric method based on the
kernel function under case-cohort design. Consistency and
asymptotic normality of the proposed estimators are de-
rived. We use MM algorithm for calculating the regression
coefficients, where the surrogate function with a diagonal
Hessian matrix is established to overcome the operation
difficulty in the Newton–Raphson algorithm. Simulation
and real data studies suggest that the case-cohort design can
be used to reduce the cost for cohort studies and the de-
velopment of the adjustment for distorted covariates has
nice performance.

Here, the adjustment for survival data is discussed in
Cox’s model. ,e method can be extended to other models,
such as an accelerated failure time model [28], an additive-
multiplicative model [29], and an accelerated hazards model
[30]. ,e cost-effective case-cohort design is mainly applied
to the data with the high censoring rate. However, in the
sampling process, some censoring subjects have not been
measured. To improve the efficiency, our future works in-
clude developments of inference for estimation with ad-
justed covariates under a generalized case-cohort design [31]
and an outcome-dependent sampling design.

Appendix

A. Proof of Asymptotic Properties

We start with a lemma, which is frequently used in the
process of proof. ,en, we proceed to the proof of ,eorem
1, concerning consistency and asymptotic normality.

Lemma A.1. Let η(t) be a continuous function, satisfying
E[η(T)2]<∞. Assume that conditions (C), (D1)-(D2), and
(E) hold. -e following asymptotic representation holds:



n

i�1

Zir − Zir η Tir( 

�
1
2



n

i�1
Zir − E Zr ( 

E ZrηTr 

E Zr 

+ 
n

i�1

Zir − Zir 
E ZrηTr 

E Zr 
+ Op(

�
n

√
).

(A.1)

Proof. of Lemma A.1. Recall that Zir � Zir/ϕr(Ui), which is
given by Section 2. Sample calculations give the following
expression:
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n

i�1

Zir − Zirη  Tir(  � 
n

i�1

Zirη Tir(  − 
n

i�1
Zirη Tir( .

(A.2)

,us, it suffices to deal with the equation 
n
i�1 Zirη(Tir).

According to the type it holds that



n

i�1
Ẑirη Tir(  � 

n

i�1
Ẑirη Tir( 

P̂ Ui( 

ĝr Ui( 
⎛⎝ ⎞⎠ �̂

Zr

� 

n

i�1

Zirη Tir( 
p̂ Ui( 

ĝr

  Ui( E Zr  + 

n

i�1

Zirη Tir( 
p̂ Ui( 

ĝr Ui( 
⎛⎝ ⎞⎠ �̂

Zr − E Zr  

≜ L1 + L2.

(A.3)

First, we analyze L1. ,e proof is divided into three steps.
Denote by L11, L12, and L13 the quantities:

L11 � 
n

i�1
Zirη Tir( ,

L12 � 

n

i�1
Zirη Tir( 

gr Ui( 

gr Ui( 
,

L13 � 
n

i�1
Zirη Tir( 

p Ui( 

p Ui( 
.

(A.4)

Step 1: show that

L1 � L11 + L12 + L13 + op(
�
n

√
). (A.5)

Applying the equation ϕr(·) � (gr(·)/p(·)E(Zr)), we
have

L1 � 
n

i�1
Zirη Tir( 

gr Ui( 

P Ui( 
·

p Ui( 

gr Ui( 

� 
n

i�1


q

r�1
Zirη Tir( 

gr Ui( 

p Ui( 
·

p Ui( 

gr Ui( 
1 −

gr Ui( 

gr Ui( 
+

p Ui( 

p Ui( 
  + L

k1
1 − L

k2
1

� 
n

i�1
Zirη Tir(  − 

n

i�1
Zirη Tir( 

gr Ui( 

gr Ui( 
+ 

n

i�1
Zirη Tir( 

p Ui( 

p Ui( 
+ L

k1
1 − L

k2
1

� L11 − L12 + L13 + L
k1
1 − L

k2
1 ,

(A.6)

where

L
k1
1 � 

n

i�1
Zirη Tir( 

gr(  Ui(  − gr U
2
i 

gr Ui(  − gr Ui( 
,

L
k2
1 � 

n

i�1
Zirη Tir( 

gr(  Ui(  − gr Ui( (p) Ui(  − p Ui( 

p Ui( gr Ui( 
.

(A.7)

Equation (A.5) can be concluded by proven

L
k1
1 � op n

1/2
 , 1≤ i≤ 2. (A.8)

According to ,eorem 1 of [32], Lemma 3 of [23],
condition (D2), and the Law of Large Numbers (LLN)
for (1/n) 

n
i�1 Zirη(Tir), we then follow the arguments

used in [23] to yield the higher order term:

L
k1
1 � Op ch

4
  + n

− 1/2
h

− 1log n
2



n

i�1
Zriη Tri( 

⎧⎨

⎩

⎫⎬

⎭

� op n
1/2

 .

(A.9)
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Similar argument yield (A.8) for L
k2
1 .

Step 2: show that

L12 �
1
2



n

i�1
Zirη Tir(  +

1
2



n

i�1
Zri

E Zrη Tr(  

E Zr 
+ op n

1/2
 ,

L13 �
1
2



n

i�1
Zirη Tir(  +

1
2



n

i�1
E Zrη Tr(   + op n

1/2
 .

(A.10)

To analyze L12, for ease of understanding, we use p(U) to
express the density function of U and define as follows:

gr(U) � E Zr|U p(U), 1≤ r≤p. (A.11)

We need to work on



n

i�1
Zirη Tir( 

gr Ui( 

gr Ui( 
. (A.12)

We can obtain the above sum by a U-statistic with a
varying kernel with the bandwidth h by applying the
similar arguments used by Davis and Fang [23] again.
,en, we can have the asymptotic representation [4] as
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2
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1
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K
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h
 jPJr,u(j, u)djdu + op n

1/2
 ,

(A.13)

with Pr,U(δ, U) being the density function of (Zr, U),
Jr � Zrη(Tr) and PJr,U(j, U) the density of variable
(Jr, U). Note that Zr and U are independent and Jr and

U are independent. According to conditions (C), (D1)-
(D2), and (E), we obtain
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(A.14)

L13 can be similarly proceeded. Combining (A.5) and
(A.8), we have (7):

L1 � 
n

i�1
Zirη Tir(  − E Zrη Tr(  (  −

1
2



n

i�1
Zir − E Zr ( 

E Zrη Tr(  

E Zr 

+ nE Zrη Tr(   + op n
1/2

 .

(A.15)

Step 3: show that

L2 � 

n

i�1

Zir − E Zr  
E Zrη Tr(  

E[T]r

+ op n
1/2

 . (A.16)
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From (A.16) and the definition of L2 in (A.3), we derive
that

L2 �

�Zr − E Zr 

E Zr 
L1

� 
n

i�1
[Zirη Tir(  − E Zrη Tr(   ]

�Zr − E Zr 

E Zr 

−
1
2



n

i�1
Zir − E Zr ( 

E Zrη Tr(  

E Zr 

�Zr − E Zr 

E Zr 
+ nE Zrη Tr(  

�Zr − E Zr 

E Zr 
+ op n

1/2
 ,

(A.17)

where the last equality is obtained by applying LLN to
(1/n) 

n
i�1(Zir)η(Tir) − E[Zrη(Tr)] and (1/n) 

n
i�1 (Zir)−

E[Zr].

Finally, together with the asymptotic representation of
L1 and L2 in (A.15) and (A.17), the desired result is easy to
arrive at. □

Lemma A.2. Refine

A(β, t) � 
i∈C


t

0
Zi
′β − log 

l∈C

Yl(U)exp Zi
′β( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦dNi(U),

�̂�A(β, t) � 
i∈C


t

0
Ẑi
′β − log 

i∈C

Yl(U)exp Ẑi
′β 
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⎪⎩

⎫⎪⎬
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⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦dNi(U).

(A.18)

Assume that conditions (C), (D1)-(D2), and (E) hold,
then A(β, t) converge to A(β, t) asymptotically.

Proof.

A (β, t) − A(β, t) � 
i∈C


t

0
( Zi − Zi )′β − log


l∈C

Yl(U)exp Zl
′β  


l∈C

Yl(U)exp Zl
′β(  
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log
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(A.19)

For i∈C(Zi − Zi)β, according to Lemma A.1,

Σi∈C Zi − Zi β �
1
2

i∈C

(Zi − E|Z| )′
E Z′β 

E Z′ 

+ 
i∈C

( Zi − Zi )′
E Z′β 

E Z′ 
+ op(

�
n

√
).

(A.20)

According to the Law of Large Numbers, (A.20) con-
verges to 0 in probability.

Next, we prove that


i∈C

log


l∈C
Yl(U)exp Zl

′β  


l∈C

Yl(U)exp Zl
′β(  
⟶P 0. (A.21)

Only



i∈C

Yl(U)exp Zl
′β  − 

i∈C

Yl(U)exp Zl
′β( ⟶ 0.

(A.22)

Let



i∈C

Yl(U) exp Zl
′β  − exp Zl

′β(  ⟶ 0.
(A.23)
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Because exp(·) is differentiable function, the first de-
rivative of exp(·), and it is obtained from (A.17) that

exp Zi
′β  − exp Zi

′β( ⟶
L

0. (A.24)

By (16) and (A.21), A(β, t) asymptotically converges to
A(β, t).

Under the case-cohort sampling design, let A denote the
sample set of the subcolumn, n denote the number of samples
in A, A denotes the case-cohort sample, and the set of n

represents the number of samples in A. Under the case-cohort
sampling design, the covariate is not completely observed; then,
its likelihood function cannot be expressed as (2). According to
the pseudolikelihood function given in the article of Prentice
[1], the pseudolikelihood function expression is as follows:

LF(β) � 
i∈A

exp Ziβ
⊤

( 


l∈R Ti( )

exp Ziβ
⊤

( 

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

Δi

, (A.25)

where adventure set R(t) � i: Ti ≥ t, i ∈ A∪B(t)}, B(t) �{

i: Ni(t)≠Ni(t − 1), i � 1, 2, . . . , n}. Note that only when the
individual fails at time t, the set B(t) is nonempty, and the
corresponding log-likelihood function is

lF(β) � 
i∈A
Δi Ziβ

⊤
− log 

l∈R Ti( )

exp Ziβ
⊤

( 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.26)

□

Proof of -eorem 1. To derive the asymptotic properties of
the proposed estimator β, we first introduce the following
working likelihood function:

lF(β) � Σi∈C 
τ

0
Zl
′β − log Σ

i∈C
Yl(t)exp Zl

′β   dNi(t),

(A.27)

which differs from the pseudolikelihood function lF(β) in
(A.16) by using the index set C instead of R(t). ,e cor-
responding estimator based on lF(β) is defined as

β � argmax
β∈B

lF(β). (A.28)

Note the argument in [21]; we can prove that the esti-
mator β is asymptotically equivalent to the proposed esti-
mator β. ,at is, the asymptotic properties of β can be
obtained by proofing the desired asymptotic behaviors of β.

Note that lF(β) � A(β, t). Mimicking the discussions in
Lemma 1 of [21], we obtain that

D(β, t) � n
− 1 A(β, t) − A β0, t(  

� n
− 1 A(β, t) − A(β, t) 

+ n
− 1 A(β, t) − A β0, t(  .

(A.29)

Define

D(β, t) � n
− 1 A(β, t) − A β0, t(  , (A.30)

where D(β, t) converges in probability to the same limit as

D(β, t) � 
t

0
( β − β0 )′S(1) β0, U(  − log

S
(0)

(β, U)

S
(0) β0, U( 

⎧⎨

⎩

⎫⎬

⎭S
(0) β0, U( ⎡⎣ ⎤⎦ · λ0(U)du, (A.31)

for β ∈ β. ,erefore, D(β, τ) converges uniformly to

d(β, t) � 
τ

0
( β − β0 )′s(1) β0, t(  − log

s
(0)

(β, t)

s
(0) β0, t( 

⎧⎨

⎩

⎫⎬

⎭s
(0) β0, t( ⎡⎣ ⎤⎦ · λ0(t)dt, (A.32)

which is a continuous and convex function of β and has a
unique maximum at β0 [20, 21]. ,at is,

d(β)≤ d β0( , (A.33)

with equality if and only if β � β0.
We assume that β does not converge to β0 by a set of

positive probability. So, there exists a subsequence βin  of
β  which converges to β∗ not equal to β0. Since βin  is the
maximum, we have D(βin, τ) � D(β0, τ). We obtain the
following inequality by the uniform convergency and
continuity of limit:

d β∗( ≥d β0( , β∗ ≠ β. (A.34)

,is inequality is in contradiction with (A.12), so we
have the convergency of β to β0 in probability.

From the basic assumptions I, II, and III, we derive that

E E Zij|Ui   � E E ϕj Ui( Zij|Ui  

� E ϕj Ui( E Zij|Ui  

� E ϕj Ui( E Zij  

� E ϕj Ui(  Zij

� Zij,

(A.35)
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and from the above equation, we have

Zi � Zi1,
Zi2, . . . , Zip 

T
�

Zi1
ϕ1 Ui( 

,
Zi2

ϕ2 Ui( 
, . . . ,

Zip

ϕp Ui( 
⎛⎝ ⎞⎠

⊤

�

ϕ
− 1
1 Ui(  0 0 0 0 0

0 ϕ
− 1
2 Ui(  0 0 0 0

0 0 . 0 0 0

0 0 0 . 0 0

0 0 0 0 . 0

0 0 0 0 0 ϕ− 1
p Ui( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Zi1

Zi2

.

.

.

Zip

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.36)

Under conditions (A1)-(A3), (B1)-(B4), (C), (D1)-(D2),
and (E) and similar arguments in Self and Prentice [21], we
obtain the following results:

−
1
n
∇2β

lF β0( ⟶
L Σ β0( ,

1
�
n

√ ∇2β
lF β0( ⟶

L
N(0, Σ) β0(  + Σ1 β0( .

(A.37)

Because β converges to β0 in probability, Slutsky’s
theorem, and (A.12), we can obtain

�
n

√
β − tβ0 ⟶

L
N 0, Ω β0(  , (A.38)

where the asymptotic variance matrix
Ω β0(  � Σ β0(  + Σ1 β0( , (A.39)

where

Σ β0(  � 
τ

0
ϕ− 1]( β0, t )s

(0)
( β0, t )λ0( t )ϕ− 1dt,

Σ1( β0 ) � 
τ

0

τ

0
Ψ( β0, t,ω )s

(0)
( β0, t )s

(0)
( β0,ω )λ0( t )λ0(ω )dtdω,

Ψ( β0, t, w ) � ( 1 − α )α− 1
s

(0)
( β0, t )s

(0)
( β0, w ) 

− 1
ϕ− 1

· q
(2)

( β0, t, w ) − q
(1)

( β0, w, t )e( β0, w )′ − e( β0, t )q
(1)

( β0, t, w )′ + q
(0)

( β0, t, w )e( β0, t )e( β0, w )′ ϕ
− 1

,

ϕ− 1
� 

l�1

n ϕ− 1
l .

(A.40)

□
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According to resource limitation, a more realistic pest management is that the impulsive control actions should be adjusted
according to the densities of both pest and natural enemy in the field, which result in nonlinear impulsive control. -erefore, we
have proposed a Beddington–DeAngelis interference predator-prey model concerning integrated pest management with both
density-dependent pest and natural enemy population. We find that the pest-eradication periodic solution is globally stable if the
impulsive period is less than the critical value by Floquet theorem.-e condition of permanent is established, and a stable positive
periodic solution appears via a supercritical bifurcation by bifurcation theorem. Finally, in order to investigate the effects of those
nonlinear control strategies on the successful pest control, the bifurcation diagrams showed that the model exists with very
complex dynamics. Consequently, the resource limitation may result in pest outbreak in complex ways, which means that the pest
control strategies should be carefully designed.

1. Introduction

Since pest outbreak can cause serious economic loss, pest
control has been becoming an increasing concern to en-
tomologists and society all over the world. Several pest
control strategies can be used for farmers. As well known,
chemical pesticide can directly and rapidly kill large pro-
portion of pest, and it is the only way to prevent economic
losses in many cases. Biological control is the practice of
releasing of natural enemies to control pests [1, 2], some-
times which has a highly efficacious and more active role in
some pest situations. However, in order to avoid the re-
sistance development of pests to the control tactic and to
protect the environment quality, different pest control
techniques should be combined together rather than against
overuse of a single control strategy. In particular, integrated
pest management(IPM) incorporates a variety of cultural,
biological, and chemical methods to high efficiency control
of the pest populations, which has been proved that it is
more efficient long-term strategy for pest control than the
classical one (such as biological control or chemical control)
[3–5].

It is reasonable and accurate that impulsive differential
equations mathematically simulate the evolution of bio-
logical behaviors and complex biological phenomena, which
provide conditions for people to assist in the design of IPM
strategies and understand the biological phenomena from a
mathematical point of view [1, 3, 6–9]. In recent years, the
impulsive differential systems with integrated pest man-
agement have been systematically studied and developed
rapidly [10, 11], which enriched its basic theory and ana-
lytical techniques of impulsive differential system [12–20].
However, one of the main assumptions in previous literature
is that a certain proportion of pest population is killed when
the pesticide is applied. Meanwhile, a constant natural en-
emy is released [21–28], which means that the agricultural
resources have almost no effect on IPM.

In reality, the release methods and ratios of numbers of
natural enemies will inevitably be affected by the limitation
of agricultural resources because of the unbalance devel-
opment of agricultural, such as agricultural capital, labour
forces, biological resources, and pesticides. -erefore, the
release ratios of numbers of natural enemies according to
current density in the field could significantly affect the effect
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of pest control strategy. In order to take the resource lim-
itation into the IPM strategy, several predator-prey models
with nonlinear impulse have been proposed [29–32] and
mainly focused on establishing the global stability condi-
tions. However, the nonlinear impulsive functionmentioned
above is only related to the density of the natural enemy
population in the field. Based on resource limitation, the
densities of the pest and natural enemy should be carefully
monitored before IPM measures are applied. A more re-
alistic case is that the methods for the instantaneous re-
leasing numbers of natural enemies should be based on the
dynamic changes of pest and natural enemy densities. In
other words, the higher the number of pest population or the
lower the number of predator population in the field, the
higher the number of predator population should be re-
leased and vice versa, which has not been studied until now.

-erefore, in order to take the resource limitation into
account and to understand how the nonlinear density
regulatory factor for the natural enemies affect the dynamics
of predator-prey model, we propose the following predator-
preymodel with Beddington–DeAngelis functional response
and nonlinear impulsive control:

dx(t)

dt
� rx(t) 1 −

x(t)

K
  −

αx(t)y(t)

c + x(t) + by(t)

dy(t)

dt
�

βx(t)y(t)

c + x(t) + by(t)
− δy(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, t≠ nT,

x t
+

(  � q1x(t)

y t
+

(  � q2y(t) +
λ1x(t)

1 + θ1x(t)
+

λ2
1 + θ2y(t)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, t � nT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x(t) andy(t) are the densities of prey and predator
populations, respectively, and all parameters are positive
constants. IPM strategy (the nonlinear impulse) is applied at
each discrete time point nT. 0≤ q1, q2 ≤ 1 present survival
rate of prey and predator after harvesting or pesticides; q2 ≥ 1
means that the pesticides only affect the pest and an im-
pulsive increase of the predator population density is in-
duced by release of predators. Moreover, we choose the
nonlinear saturation functions or density-dependent func-
tions as follows:

y t
+

(  � q2y(t) +
λ1x(t)

1 + θ1x(t)
+

λ2
1 + θ2y(t)

, t � nT, (2)

λ1, λ2 ≥ 0 is the maximal release amount of the predator
according to the densities of prey and predator populations
respectively, and θ1, θ2 ≥ 0 represent the shape parameter. In
particular, the system with λ1 � 0, θ2 � 0 (i.e., linear im-
pulsive perturbations) has been investigated in [27, 28]. We
assume that the densities of the natural enemy populations
are updated to y(t+) � q2y(t) + (λ1x(t)/1+ θ1x(t))

+(λ2/1 + θ2y(t)) at each time point nT, which is a more
reasonable control strategy than previous literature [31, 32].

-e purpose of this paper proposes a Bedding-
ton–DeAngelis interference model with nonlinear impulsive
control to address how the nonlinear impulsive control
actions affect the successful pest control strategies. By using
the Floquet theorem and small-amplitude perturbation
skills, we obtain that the pest-eradication periodic solution is
globally stable if the period of impulsive T is less than a
critical value, and a sufficient condition for the permanence
of the system is obtained. Moreover, when the trivial pe-
riodic solution loses its stability, we obtain that a nontrivial
periodic solution appears via a supercritical bifurcation by
employing a bifurcation theorem. By bifurcation diagrams,
we show that the model presents more rich and interesting
dynamic behavior including periodic doubling bifurcation,
period-halving bifurcations, chaotic solutions, and multi-
stability. Finally, we give some related biological
implications.

2. Global Stability of the Pest-Eradication
Periodic Solution

As we know, eradicating the pest population is an important
purpose of IPM strategy, so the existence and global stability
of the pest-eradication periodic solution play a crucial role in
studying the dynamical behavior. For this, we firstly study
the properties of the subsystem

dy(t)

dt
� − δy(t), t≠ nT,

y t
+

(  � q2y(t) +
λ2

1 + θ2y(t)
, t � nT.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Subsystem (3) is a nonlinear growth model, by using the
samemethods as those in reference [32], and we can have the
following result.

Lemma 1. When 1 − q2 exp(− δT)> 0, model (3) has a
globally stable periodic solution:

yp(t)y
∗ exp(− δ(t − nT)), t ∈ (nT, (n + 1)T), (4)

where y∗ � ((
�����
A + 1

√
− 1)/(2θ2 exp(− δT))) with

A � ((4λ2θ2 exp(− δT))/(1 − q2 exp(− δT))) is a positive
constant.

-erefore, when q2 exp(− δT)< 1, we have that model (1)
has complete expression for pest-eradication periodic so-
lution (xp(t), yp(t)) � (0, y∗ exp(− δ(t − nT))).

Next, we will present a condition which guarantees the
local and global asymptotic stability of pest-eradication
periodic solution (xp(t), yp(t)) of model (1).

Theorem 1. /e pest-eradication periodic solution
(xp(t), yp(t)) is locally asymptotically stable provided that

T<
1
r
ln

1
q1

−
α

rbδ
ln

c + by
∗ exp(− δT)

c + by
∗ . (5)
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Furthermore, (xp(t), yp(t)) is globally asymptotically
stable provided

T<
1
r
ln

1
q1

−
α

rbδ
ln

c + K + by
∗ exp(− δT)

c + K + by
∗ . (6)

Proof. -e local stability of the pest-eradication solution
may be determined by the behavior of small-amplitude
perturbations of the solution. Defining u(t) � x(t) −

xp(t), v(t) � y(t) − yp(t), then the fundamental matrix
Φ(t) of model (1) satisfies

dΦ(t)

dt
�

r −
αyp(t)

c + byp(t)
0

βyp(t)

c + byp(t)
− δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ(t), (7)

and Φ(0) � I is the identity matrix. From the third and
fourth equations of (1), one has that

u nT
+

( 

v nT
+

( 

⎛⎜⎝ ⎞⎟⎠ �

q1 0

λ1 q2 −
λ2θ2

1 + θ2yp(T) 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u(nT)

v(nT)

⎛⎝ ⎞⎠

� B(T)

u(nT)

v(nT)

⎛⎝ ⎞⎠.

(8)

-erefore, if each eigenvalues of the following matrix

M � B(T)Φ(T)

�

q1 exp 
T

0
r −

αyp(t)

c + byp(t)
 dt  0

∗ q2 −
λ2θ2

1 + θ2yp(T) 
2

⎛⎜⎝ ⎞⎟⎠exp(− δT)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

has absolute value less than one, then the solution
(xp(t), yp(t)) of model (1) is locally stable, and ∗ is not
needed to calculate the exact form. Note that all multipliers
are

μ1 � q1 exp 
T

0
r −

αyp(t)

c + byp(t)
 dt ,

μ2 � q2 −
λ2θ2

1 + θ2yp(T) 
2

⎛⎜⎝ ⎞⎟⎠exp(− δT).

(10)

It is easy to see that μ2 ≤ q2 exp(− δT)< 1. Furthermore,

λ2θ2 exp(− δT)

1 + θ2yp(t) 
2 ≤

4λ2θ2 exp(− δT)
�����������������

1 + 4λ2θ2 exp(− δT)



+ 1 
2 < 1.

(11)

So, we obtain μ2 ≥ q2 exp(− δT) − 1> − 1, which means
|μ2|< 1. Since 

T

0 (r − (αyp(t)/c + byp(t)))dt � (1/bδ), ln
((c + by∗ exp(− δT))/(c + by∗)), according to the Floquet
theory of impulsive differential equation, the pest-eradica-
tion periodic solution (xp(t), yp(t)) is locally asymptotically
stable if

T<
1
r
ln

1
q1

−
α

rbδ
ln

c + by
∗ exp(− δT)

c + by
∗ . (12)

Next, we will show the global attractivity provided
condition (6) is satisfied. From the comparison theorem of
impulsive equation, we obtain y(t)≥yp(t) − ε for all t large
enough. Also, it is easy to see that x(t)<K + ε for all t large
enough.

For simplicity, we may assume that y(t)≥yp(t) − ε and
x(t)<K + ε for all t≥ 0. If condition (6) holds true, then we
choose an ε> 0 such that

η≜ q1 exp 
T

0
r −

α yp(t) − ε 

c + K + ε + b yp(t) − ε 
⎛⎝ ⎞⎠dt⎛⎝ ⎞⎠< 1.

(13)

From model (1), we obtain

dx(t)

dt
≤x(t) r −

α yp(t) − ε 

c + K + ε + b yp(t) − ε 
⎛⎝ ⎞⎠, t≠ nT,

x t
+

(  � q1x(t), t � nT.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

Integrating on (nT, (n + 1)T], one obtains
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x((n + 1)T) � q1x(nT)exp 
(n+1)T

nT
r −

α yp(t) − ε 

c + K + ε + b yp(t) − ε 
⎛⎝ ⎞⎠dt⎡⎢⎢⎣ ⎤⎥⎥⎦

� x(nT)η.

(15)

-us, x(nT) � x(0+)ηn and consequently x(nT)⟶ 0
as n⟶∞. -erefore, x(t)⟶ 0 as n⟶∞, since
0< x(t)≤ q1x(nT)exp(rT) for t ∈ (nT, (n + 1)T].

Following, we only need to prove y(t)⟶ yp(t) as
t⟶∞. -ere must exist a 0< ε1 < (δc/β) and T1 > 0 such
that 0< x(t)< ε1 for t>T1. Again, for simplicity, it is as-
sumed that 0<x(t)< ε1 holds true for t≥ 0.-en, we deduce
that (λ1x(t)/1 + θ1x(t))< ε1λ1 and

− δy(t)≤
dy

dt
≤y(t)

βε1
c

− δ , (16)

from which we can have the following equation:

dz(t)

dt
�

βε1
c

− δ z(t) � − δ1z(t), t≠ nT,

z t
+

(  � q2z(t) + ε1λ1 +
λ2

1 + θ2z(t)
, t � nT.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(17)

By Lemma 1, model (17) has a globally asymptotically
stable periodic solution zp(t) � z∗ exp(− δ1(t − nT)), where
z∗ � ((− A1 +

����������������

A2
1 + 4B1(ε1λ1 + λ2)



)/(2B1)) with A1 � 1 −

(q2 + ε1λ1θ2)exp(− δ1T), B1 � θ2(1 −

q2 exp(− δ1T))exp(− δ1T) and t ∈ (nT, (n + 1)T].
According to the comparison theorem, we get

yp(t)≤y(t)≤ z(t) and z(t)⟶ zp(t), zp(t)⟶ yp(t) as
t⟶∞. Hence, for any ε1 > 0, we have

yp(t) − ε1 <y(t)< zp(t) + ε1, (18)

for T2 ≥T1 > 0. Furthermore, let ε⟶ 0, we get yp(t) −

ε1 <y(t)<yp(t) + ε1 for t large enough. In other words,
y(t)⟶ yp(t) as t⟶∞ for t large enough. -e proof is
completed.

3. Permanence

Persistence is an important property of dynamical systems
for addressing the long-term survival of all components of a
system. Now, we investigate the sufficient condition for the
permanence of model (1).

Theorem 2. Model (1) is permanent if T> (1/r)ln(1/q1) −

(α/rbδ)ln(c + by∗ exp(− δT)/c + by∗) holds true.

Proof. Suppose that (x(t), y(t)) is a solution of (1) with
x(0)> 0, y(0)> 0. It is easy to know that x(t)<M, y(t)<M

for all t> 0, M> (rc/α). Define m2 � y∗ exp(− δT) − ε. From
-eorem 1, it is easy to see that y(t)≥m2 for t large enough.

-en, we shall find an m1 such that x(t)≥m1 for all t that are
large enough. We will do it in the following two steps.

Step 1. Let m3 > 0, ε1 > 0 be small enough such that δ2 �

δ − (βm3/c + m3)> 0 and η≜q1 exp(rT− (rm3T/K) −

(α/bδ2)ln(c + bu∗ exp(− δ2T)/c + b u∗) − (αε1T/c))>1,
where u∗ � ((− A2 +

�����������������

A2
2 +4B2(m3λ1 +λ2)



)/(2B2))

with A2 � 1 − (q2 + m3λ1θ2)exp(− δ2T),B2 � θ2(1 − q2
exp(− δ2T))exp(− δ2T). We will prove that x(t)<m3
cannot hold for all t>0. Otherwise,

dy(t)

dt
≤ − δ2y(t). (19)

From Lemma 1, we then obtain y(t)≤ u(t) and
u(t)⟶ up(t), t⟶∞, where u(t) is the solution of

du(t)

dt
� − δ2u(t), t≠ nT,

u t
+

( ≤ q2u(t) + λ1m3 +
λ2

1 + θ2u(t)
, t � nT,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

and up(t) � u∗ exp(− δ2(t − nT)), t ∈ (nT, (n + 1)T]

with u∗ � ((− A2 +

�����������������

A2
2 + 4B2(m3λ1 + λ2)



)/(2B2)).
Consequently, there exists a T> 0 such that
y(t)≤ u(t)< up(t) + ε1 and

dx(t)

dt
≥x(t) r −

rm3

K
−

αy(t)

c + by(t)
 

≥x(t) r −
rm3

K
−

αup(t) + αε1
c + bup(t) + bε1

 

≥x(t) r −
rm3

K
−

αup(t)

c + bup(t)
−
αε1
c

 ,

(21)

for t> T. Furthermore, we get

dx(t)

dt
≥x(t) r −

rm3

K
−

αup(t)

c + bup(t)
−
αε1
c

 , t≠ nT,

x t
+

(  � q1x(t), t � nT,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

for t> T. Integrating (22) on (nT, (n + 1)T], where
nT> T, we obtain

x((n +1)T)≥x nT
+

( exp 
(n+1)T

nT
r −

rm3

K
−

αup(t)

c + bup(t)
−
αε1
c

 dt 

� x(nT)η.

(23)
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-en, x((n + k)T)> x(nT)ηn⟶∞ as k⟶∞,
which is a contradiction. -erefore, there exists a t1 > 0
such that x(t1)≥m3.
Step 2. If x(t)≥m3 for all t≥ t1, then model (1) is
permanent. If not, we can define
t∗ � inf t>t1 x(t)<m3 , -en, x(t)≥m3 for t ∈ [t1, t∗]

since the continuity of x(t) and x(t∗) � m3. We only
need to consider two possible cases.

Case (1): t∗ � n1T. For some n1 ∈ Z+, then we have
q1m3 ≤ x(t∗+) � q1x(t∗)<m3. Select n2, n3 ∈ Z+ such
that

q
n2
1 η

n3 exp n2 + 1( η1T( > 1, (24)

where ρ � r − (m3r/K) − (α/c)M< 0. Let
T′ � n2T + n3T, we will show that there exists a
t∗ < t2 ≤ t∗ + T′ such that x(t2)≥m3. If not, by (20)
with u(t∗+) � y(t∗+), we can see that
y(t)≤ u(t)≤ up(t) + ε1 for t ∈ [t∗ + n2T, t∗ + T′]. An
argument similar to Step 1 yields

x t
∗

+ T′( ≥x t
∗

+ n2T( ηn3 . (25)

Since y(t)≤M, when t ∈ [t∗, t∗ + n2T], we get

dx(t)

dt
≥ x(t) r −

m3r

K
−
α
c

M , t≠ nT,

x t
+

(  � q1x(t), t � nT.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

Furthermore, we integrate equation (26) on
[t∗, t∗ + n2T], then we know

x t
∗

+ n2T( ≥m3q
n2− 1
1 exp n2ρT( . (27)

From above, we obtain x(t∗ + T′)≥m3q
n2− 1
1

exp(n2ρT)ηn3 >m3 which leads to a contradiction.
Now, let t � inf t>t∗ x(t)≥m3 , then x(t)≤m3 for
t ∈ (t∗,t) and x(t) � m3. For any t∗ < t<t, let us as-
sume that there exists k ∈ Z+ such that t ∈ (t∗ + (k −

1)T, t∗ + kT] and k≤ n2 + n3, so, from (26), we obtain

x(t)≥x t
∗+

( q
k− 1
1 exp((k − 1)ρT)exp ρ t − t

∗
+(k − 1)T( ( ( 

≥m3q
k
1 exp(kρT)

≥m3q
n2+n3
1 exp n2 + n3( ρT( .

(28)

Let m1′ � m3q
n2+n3
1 exp((n2 + n3)η1T), thus, for

t ∈ (t∗,t), we get x(t)≥m1′. For t>t, we can continue
the same arguments since x(t)≥m3.
Case (2): t∗ ≠ n1T, n1 ∈ Z+. We have x(t∗) � m3 since
x(t) is continuous. Suppose
t∗ ∈ (n1′T, (n1′ + 1)T), n1′ ∈ Z+, we consider the fol-
lowing two cases for t ∈ (t∗, (n1′ + 1)T).

Case (2a): x(t)<m3 for t ∈ (t∗, (n1′ + 1)T]. In this
case, we continue this process by using step case (1), we
can prove that there exists a t � inf t>t∗ x(t)≥m3  such
that x(t)<m3, t ∈ (t∗,t), and x(t) � m3. For any
t ∈ (t∗,t), suppose
t ∈ (n1′T + (l′ − 1)T, n1′T + l′T], l′ ≤ 1 + n2 + n3, we
obtain

x(t)≥m3q
l′− 1
1 exp l′η1T( 

≥m3q
n2+n3
1 exp n2 + n3 + 1( ρT( ≜m1.

(29)

Since m1 <m1′, thus, for t ∈ (t∗,t), we have x(t)≥m1.
Case (2b): there is a t′ ∈ (t∗, (n1′ + 1)T) such that
x(t′)≥m3. In this case, a similar argument as above,
there is t � inf t>t∗ x(t)>m3  such that
x(t)<m3, t ∈ (t∗, t). -erefore, integrating equation
(26) on [t∗, t)(t≤ t)), we can get that
x(t)≥x(t∗)exp(ρ(t − t∗))≥m1. -us, the similar ar-
gument can be continued for both cases since x(t)≥m1
for some t> t1. -is completes the proof. □

Remark 1. Define T∗ � (1/r)ln(1/q1) − (α/rbδ)ln
((c + by∗ exp(− δT))/(c + by∗)), the pest-eradication peri-
odic solution loses its stability if T >T∗. -erefore, T∗ is the
critical threshold value to discriminate between stability and
permanence.

4. Bifurcation

Now, we will deal with the existence of nontrivial solution
near the pest-eradication solution. We use the bifurcation
theory in earlier publications [33].
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Theorem 3. Model (1) has a positive nontrivial periodic
solution when T � T∗, which is supercritical if q2 > θ2λ2 and
Kα< 4rbc.

Proof. It is convenient for the computation to exchange x

and y and change the period T to τ.

dx(t)

dt
�

βx(t)y(t)

c + y(t) + bx(t)
− δx

dy(t)

dt
� ry 1 −

y

K
  −

αx(t)y(t)

c + y(t) + bx(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, t≠ nτ,

x t
+

(  � q2x(t) +
λ1y(t)

1 + θ1y(t)
+

λ2
1 + θ2x(t)

y t
+

(  � q1y(t)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, t � nτ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Let Φ be the solution of the pulse-free system associated
with system (30). Also, we get X(t) � Φ(t, X0) with
X0 � X(0). We define the mapping Θ1,Θ2: R2⟶ R2 by

Θ1(x, y) � q2x +
λ1y

1 + θ1y
+

λ2
1 + θ2x

,

Θ2(x, y) � q1y, ξ(t) � yp(t), 0 ,

(31)

and the map F1, F2: R2⟶ R2 by

F1(x, y) �
βx(t)y(t)

c + y(t) + bx(t)
− δx,

F2(x, y) � ry 1 −
y

K
  −

αx(t)y(t)

c + y(t) + bx(t)
.

(32)

Furthermore, to establish the nontrivial periodic solu-
tion of system (30), we employ the techniques in [33]. -en,
we have

zΦ1 t, X0( 

zx
� exp 

t

0

zF1(ξ(t))

zx
dt ,

zΦ1 t, X0( 

zy
� 

t

0
exp 

t

s

zF1(ξ(s))

zy
ds 

zF1(ξ(v))

zx
exp 

v

0

zF2(ξ(s))

zy
ds dv,

zΦ2 t, X0( 

zx
� 0,

zΦ2 t, X0( 

zy
� exp 

t

0

zF2(ξ(t))

zy
dt > 0.

(33)

-us, by simple calculations, we obtain

d0′ � 1 −
zθ2
zy

·
zΦ2
zy

 
τ0 ,X0( )

� 1 − q1 exp 
τ0

0
r −

αyp(t)

c + byp(t)
 dt ,

(34)

where τ0 is the root of d0 � 0. Actually, it is easy to see that
d0′ � 0 is equivalent to τ0 � T∗.

Also, we obtain that

a0′ � 1 −
zθ1
zx

·
zΦ1
zx

 
τ0 ,X0( )

� 1 − q1 exp(− DT)> 0,

b0′ � −
zθ1
zx

·
zΦ1
zy

+
zθ1
zy

·
zΦ2
zy

 
τ0 ,X0( )

� − q2 −
θ2λ2

1 + θ2y
∗ exp(− DT)( 

2
⎛⎝ ⎞⎠

zΦ1 τ0, X0( 

zy
− λ1

zΦ2 τ0, X0( 

zy
.

(35)
Note that b0′ < 0 if q2 > θ2λ2.
Following, we should calculate the second-order partial

derivatives:
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Figure 1: Bifurcation diagrams of model (1) with respect to T. -e parameter values are as follows.
r � 2.72, K � 10, c � 1, b � 0.001, α � 1.2, β � 0.48, δ � 0.59, θ1 � 12, θ2 � 1, q1 � 0.62, q2 � 0.98, λ1 � 4.4, and λ2 � 10.2.
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Figure 2: Two coexisting attractors of model (1) with T � 7. -e other parameter values are identical to those in Figure 1. -e initial
conditions are as follows: (A − B)(x0, y0) � (1.4, 2.1); (C − D)(x0, y0) � (1.8, 2.6).
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z
2Φ2 τ0, X0( 

zx zy
� 

τ0

0
exp 

τ0

s

zF2(ζ(t))

zy
dt 

z
2
F2(ζ(t))

zx zy
exp 

s

0

zF2(ζ(t))

zy
dt ds

� − 
τ0

0
exp 

t

s

zF2(ζ(t))

zy
dt 

bαyp(s)

c + byp(s) 
3 exp 

s

0

zF2(ζ(t))

zy
dt ds

< 0.

(36)
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Figure 3: Bifurcation diagrams of model (1) with respect to λ1. -e other parameters are identical to those in Figure 1 and K � 10.5, T � 10.
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Figure 4: Two coexisting attractors of model (1) with λ1 � 9.4. -e other parameter values identical to those in Figure 3. -e initial
conditions are as follows: (A − B)(x0, y0) � (1.4, 2.1); (C − D)(x0, y0) � (1.8, 2.6).
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By the same methods as shown above, we have
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-erefore, we can deduce that
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Figure 5: Bifurcation diagrams of model (1) with respect to q2. Parameter values are as follows:
r � 2.12, K � 10, c � 1, b � 0.01, α � 1.2, β � 0.48, δ � 0.39, θ1 � 12.5, θ2 � 1.5, q1 � 0.11, λ1 � 1.5, and λ2 � 2.
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(38)

Now, we determine the sign of B, For this, let
g(t) � r − ((αyp(t))/(c + byp(t))), then g′(t) � (αδcy

∗ exp(− δt)/(c + byp(t))2)> 0, so g(t) is strictly increasing.
Since 

τ0
0 g(t)dt � ln(1/q1)> 0, which indicates that

g(τ0)> 0, i.e. (z2Φ2(τ0, X0)/zy zτ)> 0. -erefore, B< 0.
Defining φ(t) � − (r/K) + (αt/(c + bt)2), it is easy to know
that − (r/K) + (αt/(c + bt)2)≤ 0 if Kα< 4rbc, which means
φ(yp(t)) � − (r/K) + (αyp(t)/(c + byp(t))2)≤ 0 for all
yp(t)> 0. So, we have (z2Φ2(τ0, X0)/zy2)< 0. From above,
we have C> 0.

Hence, BC< 0; according to -eorem 2 of [33], a su-
percritical bifurcation occurs at T � T∗.

5. Numerical Simulation

To confirm our theoretical results and facilitate their in-
terpretation, we will focus on the complex dynamics by
bifurcation analysis numerically, which can obtain the
properties of a dynamics system.

Firstly, we investigate the effect of pulse period T on
dynamical of system. Figure 1 shows that model (1) could
exist with complex and interesting dynamic behavior with
increase of parameter T, such as period-doubling bifurca-
tion, period-halving bifurcations, chaos band, and non-
unique dynamics, i.e., several attractors may coexist with the
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Figure 6: Bifurcation diagrams of model (1) with respect to q2. Parameter values are as follows: r � 2.18, K � 5.5, c � 1.15, b � 0.01, α �

0.55, β � 0.87, δ � 0.34, θ1 � 1.2, θ2 � 2, q2 � 0.98, λ1 � 1.4, λ2 � 2.2, andT � 16.5.
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same T. For example, Figure 2 indicates that two different
attractors can coexist with each other with the same T � 7. If
we choose different initial value (x0, y0) � (1.4, 2.1) and
(x0, y0) � (1.8, 2.1), a 3T-periodic solution coexists with T-
periodic solution, which indicates that the final stable states
of pest and natural enemy population depend on their initial
densities. All these results confirm that varying impulsive
period T could dramatically change the dynamics of model
(1).

It follows from Figure 3 that the nonlinear impulsive
parameter λ1 affects the dynamics of model (1). As pa-
rameter λ1 increases, system (1) experiences period-doubling
bifurcation, chaotic, period-halving bifurcations, and mul-
tiple stability. When λ1 � 9.4, two attractors with different
amplitudes appear, i.e., a T-periodic solution and 2T-peri-
odic solution coexist (see Figure 4). -erefore, the initial
values of both the pest and predator populations are crucial.
-e above results reveal that the parameter λ1 can dra-
matically change dynamics of system (1).

From the bifurcation diagrams Figure 5, we observe that
a positive periodic solution appears when the pest-eradi-
cation solution loses its stability. -e behavior of positive
periodic solution is kept until q2 ≈ 3.9, and then a period-
doubling bifurcation occurs, which means that a T-periodic
solution disappears suddenly at this point and 2T-periodic
solution appears. With the increasing of q2, a series of pe-
riod-doubling bifurcations lead model (1) from periodicity
to chaos. When q2 ≥ 5.16 and nearby 5.16, the chaos dis-
appears and a 3T-periodic solution appears. As q2 increases
further, the evidence for 3T-periodic solution leading to
chaos can be seen. Following these, the system displays a
series of period-halving bifurcations.

Similarly, we investigate the effect of parameter q1 on
dynamic of system.-e bifurcation diagrams with respect to
parameter q1 in the range [0, 0.8] are shown in Figure 6. We
can observe that model (1) also displays very complex dy-
namical behaviors with q1 increasing.

6. Conclusion

Based on resource limitation, the optimal pest control
strategy is that the instantaneous releasing numbers of
natural enemies should be adjusted according to the den-
sities of both pest and natural enemy in the field. A more
natural understanding is that when the higher the number of
pest population or the lower the number of predator pop-
ulation in the field, the higher the number of predator
population should be released and the converse is also true.
For this, we have investigated effects of nonlinear impulsive
perturbations on a predator-prey model with Bedding-
ton–DeAngelis functional response. We have proven that
there is a global stability of pest-eradication periodic solu-
tion if the impulsive period T<T∗ by using the Floquet
theorem and small amplitude perturbation skills, and model
(1) is permanent when the period T>T∗. Hence, T � T∗

plays a bifurcation threshold, and the system bifurcates to a
positive periodic solution via supercritical bifurcation once a
threshold condition is reached. By bifurcation diagrams, we
can show that the system contains very rich dynamical

behavior, including period-doubling bifurcation, period-
halving bifurcations, chaos, and nonunique attractors, i.e.,
the system could exist with two stable positive periodic
solutions and even more complex dynamics (see Figures 2
and 4). Also, bifurcation analyses reveal that the final dy-
namics of the system depends on the initial densities, and the
nonlinear impulsive may result in complexity of pest con-
trol. All those results confirm that the pest control strategy
should be carefully designed once the nonlinear impulsive
control measures have been taken into account.

Based on the present study, we found that the system
with nonlinear impulsive control actions provides more rich
results and more realistic than the previous systems with
linear impulsive control, and thus nonlinear impulsive
control should be taken into account when implementing
integrated pest management. However, the aim of IPM
should reduce pest populations to below the economic
threshold rather than eradication, which can be naturally
and accurately described by the state-dependent impulsive
differential equations and result in more difficulty for an-
alyzing the global dynamics. We leave for future research.
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-is paper provides a new insight into an economical and effective sampling design method relying on the outcome-dependent
sampling (ODS) design in large-scale cohort research. Firstly, the importance and originality of this paper is that it explores how to
fit the covariate-adjusted additive Hazard model under the ODS design; secondly, this paper focused on estimating the distortion
function through nonparametric regression and required observation of the covariate on the confounding factors of distortion;
moreover, this paper further calibrated the contaminated covariates and proposed the estimators of the parameters by analyzing
the calibrated covariates; finally, this paper established the large sample property and asymptotic normality of the proposed
estimators and conducted many more simulations to evaluate the finite sample performance of the proposed method. Empirical
research demonstrates that the results from both artificial and real data verified good performance and practicality of the proposed
ODS method in this paper.

1. Introduction

Generally, the major cost of studying large cohort is tied up
in collecting the expensive exposure variables, which casts a
poor shadow over the researchers with the burden of limited
budgets.-erefore, the simple random sampling design with
the characteristics of cost expensive and time consuming has
been risking losing ground in the long run. To achieve some
certain goal, it is no wonder that many cost-effective
strategies have been invoked. In the early 1980s, Prentice [1]
proposed the notation of case-cohort design, and the ex-
posure variables were measured on a simple random sample,
which is called a subcohort, as well as all the cases that
experienced events that we were interested in. Since then, the
application of case-cohort sampling in the survival analysis
has been reported by Self and Prentice [2], Tsai [3], and Kim
et al. [4]. -e case-cohort design is expected to be eco-
nomical and effective sampling techniques for rare events.
When the censoring rate is relatively low or medium, the
method of generalized case-cohort design has been

developed in responding to lowering the research cost. In
addition to randomly selecting a subcohort from the entire
cohort, the information containing the relevant covariables
is collected for only a subset of the failure individuals (e.g.,
Chen [5], Cai and Zeng [6], and Kang and Cai [7]).

As a matter of fact, the failure time outcome-dependent
sampling (ODS) design is considered to be another eco-
nomical and effective alternative to the simple random
sampling design. Exposure variables are measured against
samples from two components, the subcohort and addi-
tional supplementary samples (see Chatterjee et al. [8], Zhou
et al. [9], and Weaver and Zhou [10]). Regarding the ODS
data, massive research has been carried out and formed a
wealth of literatures. For completely observed data, the
studies by Zhou et al. [11, 12] and Qin and Zhou [13] offer
the comprehensive analysis of the inference methods based
on the partially regression linear models for data from the
ODS design. -e key systematic study of how to fit the
generalized linear model with the data obtained from two-
stage ODS design was reported by Yan et al. [14]. For
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censored data, detail examination of the ODS design by Ding
et al. [15] showed the estimated impact of environmental
pollutants on women’s subfertility. A significant discussion
on estimating the equation method with an ODS sampling
scheme under Cox’s proportional hazards model was pre-
sented by Yu et al. [16].

In clinical trials and biomedical, instead of direct ob-
servation, the covariates are observed by multiplication of
unknown functions of an observable confounder. As a result,
the regression with contaminated covariates was originally
derived by Şentürk and Müller [17, 18], in which the con-
tamination information for model covariates cannot be
ignored; otherwise, it will result in a biased estimator and the
statistical inference may be misled. Since then, numerous
extensions in various aspects have been developed by
Şentürk andMüller [19], Cui et al. [20], and Li et al. [21]. For
completely observed data, one study by Cui [22] proposed to
use the nonparametric kernel estimation method to calibrate
the contaminated variables and then conducted parameter
estimation under the covariate-adjusted linear model, and
further research conducted by Zhang et al. [23] extended the
method to the nonlinear models with contaminated vari-
ables. A key study by Delaigle et al. [24] derived the process
of several nonparametric covariate-adjusted estimators of
conditional mean function. A preliminary nonparametric
test for covariate-adjusted models was undertaken by Zhao
and Xie [25], who found that the proposed test statistic has
the same limit distribution as the response and predictors
are supposed to be obtained directly. For survival data with
censoring, very few studies have investigated survival models
with contaminated covariates and even fewer people are
ready to tackle the challenge in the ODS design we are
discussing here.

We study the following covariate-adjusted additive
hazards model under the ODS design in this paper:

λ(t | Z) � λ0(t) + θTH + cX,

W � ϕ(U)X,

⎧⎨

⎩ (1)

where λ0(t) is the unknown baseline hazard function, β �

(θT, c)T is the unknown parameter of p-dimension, θ and c

are (p − 1)-dimensional and 1-dimensional parameter, re-
spectively, Z � (HT, X)T is the p-dimensional covariate, H

is the observed (p − 1)-dimensional covariate, X is the
unobservable 1-dimensional covariate, W is the actual ob-
served 1-dimensional covariable, and ϕ(·) is the unknown
distorting function of observable confounding variable U.
We focus on the method of nonparametric kernel estimation
to obtain the estimator of the distortion function and cal-
ibrate the covariate X. Meanwhile, we attempt to weigh the
contributions of the subcohort and the supplemental sample
differently, which resulted in a weighted estimation equation
with the help of calibrated covariates. Owing to the ODS
design and the covariate-adjusted process, it happens to be
challengeable in the work of theoretical developments. To
overcome the challenge, it will be followed by an approxi-
mation to the weighted estimation equation, which is taken
as the main basis for obtaining the theory properties of our
proposed estimator.

-e structure of the rest of the paper is as follows. Section 2
analyzes the process thatODS sampling data is fitted to additive
hazardmodel with covariate adjustment.-en, in Section 3, we
describe the large sample properties of our proposed estimator
in progress to verify the finite sample performance of the
proposed method by numerical approach in Section 4. In
Section 5, the empirical research shows that the method we
proposed has good practicality in the practical example of
datasets from a pulmonary exacerbations analysis. Finally, the
conclusion and prospect are summarized in Section 6.

2. Estimation Setup

Suppose that a cohort contains N independent subjects. For
the ith (i � 1, . . . , N) subject, Ti is the failure time and Ci is
the censoring time. Ti � min(Ti, Ci) is the observed time
and Δi � I(Ti ≤Ci) is the indicator variable of the right
censoring. Denote Yi(t) � I(Ti ≥ t), Vi(t) � ΔiI(Ti ≤ t) and
Zi to be the at-risk process, the counting process, and the
time-independent p-dimensional exposure variable, re-
spectively. Denote τ to be the study end time.

-e additive hazards model proposed by Lin and Ying
[26] is as follows:

λ t | Zi(  � λ0(t) + βTZi, (2)

where λ0(t) is the unknown baseline hazard function and β
is the parameter of p-dimension. If we have access to gather
information about everyone’s exposure, the following esti-
mation function is commonly used for the inference of β:

U(β) �
1
N



N

i�1

τ

0
Zi − Z  dVi(t) − Yi(t)βTZidt , (3)

where Z � 
N
i�1 Y(t)Zi/

N
i�1 Yi(t).

Under the ODS design, the scope of the failure time of
the cases is divided into K disjoint strata

Al � (al− 1, al]: l � 1, . . . , K  by positive constants
al: l � 1, . . . , K  satisfying 0 � a0 < . . . < al− 1 < al < . . .

< aK � τ. We first sample n0 SRS individuals from the
cohort, and let ξi be the indicator, by value 1 if the ith subject
being into the SRS and 0 otherwise. Denote
α � P(ξi � 1) � n0/N. We sample subset Ak(K≤ K) stratum
from set Al(l � 1, . . . , K) and then nk(k � 1, . . . , K) addi-
tional samples are drawn from the members who experience
failure and not in the SRS, but in stratum Ak. Denote ηik to
be the indicator whether the ith individual from Ak is
sampled into the additional samples. Denote
ck � P(ηik � 1 |Δi � 1, ξi � 0, Ti ∈ Ak) � nk/(nk − n0,k),
where nk and n0,k is the number of the cohort failure in-
dividuals and the SRS failure individuals dropped into Ak.
-e samples of n0 SRS sample and nk(k � 1, . . . , K) addi-
tional sample make up the ODS sample.

Denote Λ0 to be the set of SRS individual and Λk(k �

1, . . . , K) to be the supplemental sample from Ak. Denote Λ
to be the set of individuals outside ODS sample. -en, we
can summarize the observed datasets obtained by the design
of ODS as follows:

2 Complexity



(i) -e ODS sample The SRS sample : Ti,

Δi, Zi}, i ∈ Λ0,The supplemental sample : Ti,Δi,

Zi |Δi � 1, Ti ∈ Ak}, i ∈ Λk.

(ii) -e nonvalidation sample: Ti,Δi , i ∈ Λ.

For the ODS design, we only observe the variable Z for
the selected subjects. -e regression parameters β can be
derived by Uω(β) � 0, where

Uw(β) �
1
N



N

i�1

τ

0
ωi Zi − Zω  dVi(t) − Yi(t)βTZidt ,

(4)

and Zω � S(1)(t)/S(0)(t), S(d)(t) � (1/N) 
N
i�1 ωiYi(t)

Z⊗ d
i , (d � 0, 1, 2), with a⊗0 � 1, a⊗1 � a, and a⊗2 � aaT for

a vector a; and the weight wi is defined by

ωi �
ξi 1 − Δi( 

α
+
ξiΔi 1 − ζ i( 

α
+ ξiΔiζ i + 1 − ξi( Δi 

K

k�1

ζ ikηik

ck

,

i � 1, 2, . . . , N,

(5)

where ζ i � 
K
k�1 ζ ik and ζ ik � I(Ti ∈ Ak).

Note that the weight of nonvalidation samples are 0,
whereas the subcohort censored individuals are α− 1. -e
weight of the subcohort cases are 1 if their failure time
belongs to Ak(k � 1, . . . , K) and are α− 1, otherwise. -e
selected cases, not in the subcohort, are weighted by c− 1

k ,
when their time of failure belongs to Ak(k � 1, . . . , K). -e
estimator β defined by (4) takes the explicit form as follows:

β � G
− 1
N FN, (6)

where

GN � 
τ

0
S

(2)
(t) −

S
(1)

(t)
⊗2

S
(0)

(t)
 dt,

FN �
1
N



N

i�1

τ

0
ωi Zi − Zω dVi(t).

(7)

In practice, some covariates may be contaminated by
some distorting factors. In this paper, we assume
Zi � (HT

i , Xi)
T, where Hi is the observed (p − 1)-dimen-

sional covariate and Xi is the unobservable 1-dimensional
covariate and satisfies

Wi � ϕ Ui( Xi, i � 1, 2, . . . , N, (8)

where Wi is the actual observable 1-dimensional variable, Ui

is the known confounder covariate, and ϕ(·) is the unknown
distorting function of observable variable Ui. At this point,
for the ODS design, the available data have the form:

(i) -e ODS sample The SRS sample : Ti,Δi, Ui,

(H
T
i , Wi)

T
}, i ∈ Λ0,The supplemental sample :

Ti,Δi, Ui, (H
T
i , Wi)

T
|Δi � 1, Ti ∈ Ak , i ∈ Λk.

(ii) -e nonvalidation sample: Ti,Δi , i ∈ Λ.

Combining model (2) and equation (8), we assume
Ti(i � 1, 2, . . . , N) is generalized from the covariate-ad-
justed additive hazards model in this paper:

λ t | Zi(  � λ0(t) + θTHi + cXi,

Wi � ϕ Ui( Xi,

⎧⎨

⎩ (9)

where θ and c are (p − 1)-dimensional and 1-dimensional
regression parameters of primary interest, respectively.
According to Şentürk and Müller [18], two conditions on
model (9) can be listed as follows:

(C1) E[ϕ(U)] � 1
(C2) X, U{ } are mutually independent

Note that condition (C1) ensured that the mean dis-
torting effect vanishes. Based on conditions (C1) and (C2),
we obtain E[W] � E[X]. Owing to the presence of distor-
tion, the covariate Xi is unobservable, and the estimating
function (4) can be no longer used for the inference of β. If
we use directly Wi instead of Xi, it might lead to inaccurate
statistical inference. -erefore, we should calibrate the co-
variate Xi based on the known covariate Wi and confounder
covariate Ui. From (8) and condition (C2), it can obtain that

ϕ(u) �
E[W | U � u]

E[X]
. (10)

Define Φ(u) � E[W | U � u], and we adopt kernel
method to estimate Φ(u):

Φ(u) �


n

i�1K u − Ui( /h( Wi


n

i�1K u − Ui( /h
, (11)

where K(·) is a kernel function and h is a bandwidth. It is
easy to show that W � n− 1 

n
i�1 Wi converges almost to

E[W]. By E[W] � E[X], equations (10) and (11), the dis-
torting function ϕ(u) can be estimated by

ϕ(u) �
Φ(u)

W
, (12)

and the covariate Xi can be calibrated by

Xi �
Wi

ϕ Ui( 
, i � 1, 2, . . . , N. (13)

Denote Zi � (HT
i , Xi)

T, and the proposed estimator βp

for model (9) can be defined as the solution of the function:

Uω(β) �
1
N



N

i�1

τ

0
ωi

Zi − Zω  dVi(t) − Yi(t)βT Zidt ,

(14)

where Zω � S
(1)

(t)/S(0)
(t) and S

(d)
(t) � (1/N)


N
i�1 wiYi(t)Z

⊗d
i , (d � 0, 1, 2). -e explicit form of the

proposed estimator βp can be described as follows by some
simple calculation:
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βp � G
− 1
N

FN, (15)

where

GN � 
τ

0
S

(2)
(t) −

S
(1)

(t)
⊗2

S
(0)

(t)

⎧⎨

⎩

⎫⎬

⎭dt,

FN �
1
N



N

i�1

τ

0
wi

Zi − Zω dVi(t).

(16)

3. Main Results

In this section, we would like to establish the asymptotic
properties of βp in (15).

Firstly, we give the following definition.

Definition 1. Define

s
(0)

(t) � E Y1(t) ,

sHX � E Y1(t)HX ,

s
(d)
X (t) � E Y1(t)X

⊗d
 ,

s
(d)
H (t) � E Y1(t)H

⊗d
 , d � 1, 2,

Mi(t) � Vi(t) − 
t

0
Yi(s)λ0(s)ds − 

t

0
Yi(s)βTZids,

(17)

Si β0(  � 
τ

0
Zi −

E Y1(t)Z 

E Y1(t) 
 dMi(t), i � 1, 2, . . . , N,

D1 β0(  � E 1 − Δ1( S1 β0( 
⊗2

 ,

D2 β0(  � E Δ1 1 − ζ1( S1 β0( 
⊗2

 ,

D3 β0(  � E Δ1ζ1kS1 β0( 
⊗2

 ,

 β0(  � E 
τ

0
Z1 −

E Y1(t)Z 

E Y1(t) 
 

⊗2

dV1(t)⎡⎣ ⎤⎦,

(18)


1

β0(  �
1 − α
α

D1 β0(  +
1 − α
α

D2 β0( 

+ 
K

k�1
(1 − α)

1 − ck

ck

D3 β0( ,

(19)

G1 � 
τ

0
s

(2)
H (t) −

s
(1)
H (t)
⊗2

s
(0)

(t)
 dt, (20)

G2 � 
τ

0
sHX(t) −

s
(1)
H (t)s

(1)
X (t)

s
(0)

(t)
 dt, (21)

G3 � 
τ

0
s

(2)
X (t) −

s
(1)
X (t)

2

s
(0)

(t)
 dt, (22)

where Mi(t) is a locally square integrable martingale (Lin
and Ying [26]) and β0 � (θT0 , c0

T) is the true parameters
value.

Secondly, the following additional regular conditions are
concluded to illustrate the process:

(C3) 
τ
0 λ0(t)dt<∞.

(C4) P(Y1(t) � 1, for any t ∈ [0, τ])> 0.
(C5) E[ sup

0≤t≤τ
|Y1(t)Z⊗ 21 (βTZ2

1)|]<∞.
(C6) -e matrix  (β0) appeared in (18) is finite

positive definite.
(C7) -e matrix G �

G1 G2

G
T
2 G3

  is nonsingular.

(C8) As N⟶∞, α⟶ α ∈ (0, 1) and
ck⟶ ck ∈ (0, 1) for k � 1, . . . , K.

(C9) ϕ(u), f(u), and g(u) � ϕ(u)f(u) are differential,
and the 3-order derivatives of f(u) and g(u) meet
the following condition, and there exist a> 0
and a neighborhood of origin, such that, if δ
fails to the neighborhood, we have |f(3)(u + δ) −

f(3)(u)|≤ a|δ| and |g(3)(u + δ) − g(3)(u)|≤ a|δ|,
where f(u) is a density function of U.

(C10) -e function K(·) appeared in (11) meets

(i) -e support of K(·) is the interval [− 1, 1].
(ii) K(·) is symmetric about zero.
(iii) 

1
− 1 K(u)du � 1, 

1
− 1 uiK(u)du � 0,

i � 1, 2, 3.

(C11) As N⟶∞, the bandwidth h falls from
O(N− 1/4logN) to O(N− 1/8).

(C12) E[X] is bounded away from 0 and E [X]2 <∞.

-e above conditions are mild and suitable in many
circumstances. Conditions (C3)–(C8) are regular conditions
of the regression parameters which are similar to Yu et al.
[27]. However, the likes of conditions (C9)–(C12) can be
traced to Cui et al. [20].

Theorem 1. If conditions (C1)–(C12) hold, as N⟶∞, we
have βp ⟶ Pβ0.

Theorem 2. If conditions (C1)–(C12) hold, as N⟶∞, we
have
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��
N

√
βp − β0 ⟶

d
N 0, G

− 1
 β0(  + 

1
β0(  + c

2
0
Var(W) − (3/4)Var(X)

[E(X)]
2 LL

T⎛⎝ ⎞⎠G
− 1⎛⎝ ⎞⎠, (23)

where L � [G2, G3]
T. In other words,

��
N

√
θp − θ0 ⟶

d
N 0, G

− 1
 β0(  + 

1
β0( ⎛⎝ ⎞⎠G

− 1⎛⎝ ⎞⎠,
��
N

√
cp − c0 ⟶

d
N 0, σ + c

2
0
Var(W) − 3/4Var(X)

[E(X)]
2 , (24)

where βp � (θ
T
p, cp)T and σ is the (p + 1, p + 1)-element of

matrix G− 1( (β0) + 1(β0))G− 1.
To prove Theorem 1, the following definition and de-

formation lemmas are needed.

Definition 2. Define

S
(d)
H (t) �

1
N



N

i�1
ωiYi(t)H

⊗ d
i ,

S
(d)
X (t) �

1
N



N

i�1
ωiYi(t)X

⊗ d
i ,

S
(d)

X
(t) �

1
N



N

i�1
ωiYi(t) X

⊗d
i , d � 1, 2,

SHX(t) �
1
N



N

i�1
ωiYi(t)HiXi,

S
HX

(t) �
1
N



N

i�1
ωiYi(t)Hi

Xi.

(25)

In order to prove conveniently the results, we define the
partitioned matrices:

FN �

FN1

FN2

⎡⎢⎢⎣ ⎤⎥⎥⎦,

FN �
FN1

FN2

⎡⎣ ⎤⎦,

GN �

GN1
GN2

G
T
N2

GN3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

GN �
GN1

GN2

G
T
N2

GN3

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(26)

where

GN1
� GN1

� 
τ

0
S

(2)
H (t) −

S
(1)
H (t)
⊗2

S
(0)

(t)
 dt,

GN2
� 

τ

0
S

HX
(t) −

S
(1)
H (t)S

(1)

X
(t)

S
(0)

(t)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dt,

GN2
� 

τ

0
SHX(t) −

S
(1)
H (t)S

(1)
X (t)

S
(0)

(t)
 dt,

GN3
� 

τ

0
S

(2)

X
(t) −

S
(1)

X
(t)

2

S
(0)

(t)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dt,

GN3
� 

τ

0
S

(2)
X (t) −

S
(1)
X (t)

2

S
(0)

(t)
 dt,

FN1
� FN1

�
1
N



N

i�1

τ

0
ωi Hi −

S
(1)
H (t)

S
(0)

(t)
 dVi(t),

FN2
�

1
N



N

i�1

τ

0
ωi

Xi −
S

(1)

X
(t)

S
(0)

(t)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dVi(t),

FN2
�

1
N



N

i�1

τ

0
ωi Xi −

S
(1)
X (t)

S
(0)

(t)
 dVi(t).

(27)

Lemma 1. If conditions (C3)–(C8) hold, then

supt∈[0,τ] S
(d)

(t) − s
(d)

(t)
�����

�����⟶
P

0, d � 0, 1, 2. (28)

Proof. Applying Glivenko–Cantelli theorem, we obtain that

supt∈[0,τ] S
(0)

(t) − s
(0)

(t)
�����

�����⟶
P 0, (29)

where s(0)(t) � E[Y1(t)]. By corollary (III).2 from Andersen
and Gill [28], the uniform convergence of S(1)(t) and S(2)(t)

can be similarly shown. □
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Lemma 2 (see from Cui et al. [20]). If conditions (C1), (C2),
and (C9)–(C12) hold, then

1
N



N

i�1

Xi − Xi ψ Hi, Xi, t(  − QNE[Xψ(H, X, t)] � op N
− 1/2

 ,

(30)

where ψ(h, x, t) is a function of h, x, and t satisfying
E[ψ(H, X, t)]2 <∞, and

QN �
1

NE[X]


N

i�1
Wi −

Xi

2
−
E[X]

2
 ⎡⎣ ⎤⎦. (31)

Lemma 3. If conditions (C1)–(C12) hold, then
FN − FN � op(1),

GN − GN � op(1).
(32)

Proof. By Lemma 2 with ψ(Hi, Xi, t) � ωiYi(t) and
E[QN] � 0, we obtain

S
(1)

X
(t) − S

(1)
X (t) �

1
N



N

i�1
ωiYi(t) Xi − Xi  

� s
(1)
X (t)QN + op N

− 1/2
  � op(1),

(33)

where s
(1)
X (t) � E[Y1(t)X]. By Lemma 2 with

ψ(Hi, Xi, t) � ωiYi(t)Hi, we have

S
HX

(t) − SHX(t) �
1
N



N

i�1
ωiYi(t)Hi

Xi − Xi 

� sHX(t)QN + op N
− 1/2

  � op(1),

(34)

where sHX(t) � E[Y1(t)HX]. Applying Lemma 2 with
ψ(Hi, Xi, t) � ωiYi(t)Xi, we obtain

S
(2)

X
(t) − S

(2)
X (t) �

1
N



N

i�1
ωiYi(t) X

2
i − X

2
i 

�
2
N



N

i�1
ωiYi(t)Xi

Xi − Xi 

+
1
N



N

i�1
ωiYi(t) Xi − Xi 

2

� 2s
(2)
X (t)QN +

1
N



N

i�1
ωiYi(t) Xi − Xi 

2

+ op N
− 1/2

 ,

(35)

where s
(2)
X (t) � E[Y1(t)X⊗2]. Similar to the proof of D2 �

op(N1/2) in Proposition 1 from Cui et al. [20], we have

sup0≤t≤τ 

N

i�1
ωiYi(t) Xi − Xi 

2
  � op N

1/2
 . (36)

-erefore,

S
(2)

X
(t) − S

(2)
X (t) � 2s

(2)
X (t)QN + op N

− 1/2
  � op(1).

(37)

By equation (33) and the uniform convergence of S
(1)
X (t)

to s
(1)
X (t), we obtain

S
(1)

X
(t)

2
− S

(1)
X (t)

2
� S

(1)

X
(t) − S

(1)
X (t)  S

(1)

X
(t) + S

(1)
X (t) 

� s
(1)
X (t)QN + op N

− 1/2
  

· 2S
(1)
X (t) + op(1) 

� 2s
(1)
X (t)

2
QN + op N

− 1/2
 .

(38)

From the partitioned matrices in the above notation, we
obtain that

FN − FN �
0

FN1
− FN2

⎡⎣ ⎤⎦,

GN − GN �
0 GN2

− GN2

G
T
N2

− G
T
N2

GN3
− GN3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(39)

-en, by equation (33) and Lemma 2 with
ψ(Hi, Xi, t) � Vi(τ), we obtain that

FN2
− FN2

�
1
N



N

i�1
ωi

Xi − Xi Vi(τ) 

−
1
N



N

i�1
ωi 

τ

0

S
(1)

X
(t) − S

(1)
X (t)

S
(0)

(t)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dVi(t)

� QNE XV1(τ)  −
QN

N


N

i�1
ωi 

τ

0

s
(1)
X (t)

s
(0)

(t)
dVi(t)

+ op N
− 1/2

  � QNE XV1(τ) 

− QNE 
τ

0

s
(1)
X (t)

s
(0)

(t)
dV1(t)  + op N

− 1/2
 

� QNE 
τ

0
X −

s
(1)
X (t)

s
(0)

(t)
 dV1(t)  + op N

− 1/2
 

� op(1),

(40)

where s(0)(t) � E[Y1(t)]. By equations (39) and (40), we
have

FN � FN + op(1). (41)
By equations (33) and (34), we have
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GN2
− GN2

� 
τ

0
S

HX
(t) − SHX(t)  −

S
(1)
H (t) S

(1)

X
(t) − S

(1)
X (t) 

S
(0)

(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt

� 
τ

0
sHX(t)QN −

s
(1)
H (t)s

(1)
X (t)

s
(0)

(t)
QN dt � QNG2 + op N

− 1/2
  � op(1),

(42)

where G2 appeared in (21). By equations (37) and (38), we
have

GN3
− GN3

� 
τ

0
S

(2)

X
(t) − S

(2)
X (t) −

S
(1)

X
(t)

2
− S

(1)
X (t)

2

S
(0)

(t)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dt

� 
τ

0
2s

(2)
X (t)QN −

2s
(1)
X (t)

2
QN

s
(0)

(t)
 dt + op N

− 1/2
  � 2QNG3 + op N

− 1/2
  � op(1),

(43)

where G3 appeared in (22). -en, by equations (39), (42),
and (43), we have

GN � GN + op(1). (44)
□

Proof ofBeorem 1. Applying Lemma 3 and the definition of
the notation of GN and G, we obtain

GN⟶
P

G. (45)

By equation (45), condition (C7) and Slutsky Lemma, we
show that GN is nonsingular in probability. -us, it obtains
that

β � G
− 1
N FN,

βp � G
− 1
N

FN.
(46)

Similar to Yu et al. [27], we get β⟶P β0; then, by
equations (45) and (46), Lemma 3 and Slutsky Lemma, it
holds that

βp⟶
P

β0. (47)

-erefore, -eorem 1 has been proved. □

To prove-eorem 2, the following deformation lemma is
needed.

Lemma 4. If conditions (C1)–(C12) hold, then

Uω β0(  � Uω β0(  − c0QNL + op N
− 1/2

 , (48)

where L � [G2, G3]
T, G2 and G3 appeared in (21) and (22),

respectively.

Proof. By equations (4) and (14), we obtain

Uω β0(  � FN − GNβ0 �

FN1
− GN1

θ0 − GN2
c0

FN2
− G

T
N2
θ0 − GN3

c0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

Uω β0(  � FN − GNβ0 �
FN1

− GN1
θ0 − GN2

c0

FN2
− G

T
N2
θ0 − GN3

c0

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(49)

By equation (41), we have

FN2
− FN2

� QNE 
τ

0
X −

s
(1)
X (t)

s
(0)

(t)
 dV1(t)  + op N

− 1/2
 .

(50)

By equations (42) and (43), we have

GN2
− GN2

� QNG2 + op N
− 1/2

 ,

GN3
− GN3

� 2QNG3 + op N
− 1/2

 .
(51)

Similar to Yu et al. [27], we have

Uω β0(  �
1
N



N

i�1

τ

0
ωi Zi −

S
(1)

(t)

S
(0)

(t)
 dMi(t), (52)

where Mi(t) appeared in (17), which is a square integrable
martingale. -en, performing a simple calculation, we ob-
tain that

Uω β0(  − Uω β0(  �
GN2

− GN2
 c0

FN2
− FN2

+ GN2
− GN2

 
T
θ0 + GN3

− GN3
 c0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (53)
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By Uω(β0) � FN − GNβ0 and E[Uω(β0)] � 0, we have

E FN − GNβ0  � 0. (54)

-en, we have E[FN2] � (E|GN2|)
Tθ0 + E[GN3]c0, that

is,

E 
τ

0
X −

s
(1)
X (t)

s
(0)

(t)
 dV1(t)  � G

T
2 θ0 + G3c0. (55)

By equations (50) and (55), we have

FN2
− FN2

� QN G
T
2θ0 + G3c0  + op N

− 1/2
 . (56)

-erefore, by equations (51), (53), and (56), we have

Uω β0(  � Uω β0(  − c0QN G2, G3 
T

+ op N
− 1/2

 

� Uω β0(  − c0QNL + op N
− 1/2

 .
(57)

-eorem 2 can be proven by using the properties of
Lemma 4. □

Proof of Beorem 2. By Lemma 4, we have
��
N

√
Uω β0(  �

��
N

√
Uω β0(  −

��
N

√
c0QNL + op(1). (58)

-rough the calculation of double expectation, we have

Cov
��
N

√
Uω β0( ,

��
N

√
QN  �

1
E[X]

E Uω β0(  

N

i�1
Wi −

Xi

2
−
E[X]

2



Hi, Wi, Ui

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭ � 0.

(59)

By Yu et al. [27], we have

Var
��
N

√
Uω β0(   �  β0(  + 

1
β0( , (60)

where  (β0) and 1(β0) appeared in (20) and (21), re-
spectively. By performing a simple calculation, we obtain

Var
��
N

√
QN  �

1
(E[X])

2 Var W −
X

2
 

�
1

(E[X])
2 Var(W) +

1
4
Var(X) − Cov W,

X

2
  .

(61)

By conditions (C1) and (C2), we have

Cov W,
X

2
  � E(ϕ(U))E X

2
  − E(ϕ(U))E(X)

2
� Var(X).

(62)

Combining equations (61) and (62), we obtain that

Var
��
N

√
QN  �

Var(W) − (3/4)Var(X)

[E(X)]
2 . (63)

-us, by (58)–(60) and (63), we have

Var
��
N

√
Uω β0(  ⟶

P
 β0(  + 

1
β0( 

+ c
2
0
Var(W) − (3/4)Var(X)

(E(X))
2 LL

T
.

(64)

-en, we obtain that

��
N

√
βp − β0  �

z Uω(β)

zβ

 β�βn
 

− 1 ��
N

√
Uω β0(   � − G

− 1 ��
N

√
Uω β0(  

+ op(1)⟶d N 0, G
− 1

 β0(  + 
1

β0(  + c
2
0
Var(W) − (3/4)Var(X)

[E(X)]
2 LL

T⎛⎝ ⎞⎠G
− 1⎛⎝ ⎞⎠,

(65)

where βn is a point of the line between βp and β0, and

G
− 1

 β0(  + 
1

β0(  + c
2
0
Var(W) − (3/4)Var(X)

[E(X)]
2 LL

T⎛⎝ ⎞⎠G
− 1

� G
− 1

 β0(  + 
1

β0( ⎛⎝ ⎞⎠G
− 1

+ c
2
0
Var(W) − (3/4)Var(X)

[E(X)]
2 G

− 1
G2, G3( 

T
G

T
2 , G3 G

− 1

� G
− 1

 β0(  + 
1

β0( ⎛⎝ ⎞⎠G
− 1

+ c
2
0
Var(W) − (3/4)Var(X)

[E(X)]
2 R,

(66)
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where R is a (p + 1)-dimensional matrix with all elements
being zero except for the (p + 1) × (p + 1)-element being 1.
-erefore, we conclude that

��
N

√
θp − θ0 ⟶

d
N 0, G

− 1
 β0(  + 

1
β0( G

− 1⎛⎝ ⎞⎠,
��
N

√
cp − c0 ⟶

d
N 0, σ + c

2
0
Var(W) − (3/4)Var(X)

[E(X)]
2 , (67)

where σ is the (p + 1, p + 1)-element of matrix
G− 1( (β0) + 1(β0))G− 1.

Here, -eorem 2 has been proven regarding the as-
ymptotic convergence properties of normal distribution. It
was from a different viewpoint compared to previous
research. □

4. Numerical Approach

Strictly speaking, we carry out some simulations in the
section. -e underlying additive hazards model considered
is as follows:

λ(t|H, X) � λ0(t) + θH + cX, (68)

where the baseline function λ0(t) is set to be 3t2 + 1 and
e− t + t, respectively. -e true parameters θ � 0.3 and
c � − 0.2. -e covariate H∼N(0, 1) and X∼E(1). -e
censoring time C∼uniform(0, c), where constant c is chosen
to approximately produce three censoring rate ρ � 30%,
50%, and 80%. -e confounding variable U∼uniform(4 −�
7

√
, 4 +

�
7

√
) and the distortion function ϕ(U) � (1 + U)3/a,

where the constant a is chosen such that the distorting
function satisfies the identifiability constraint E[ϕ(U) � 1].
-e observed covariate W � ϕ(U)X. We choose a high-
order kernel function K(t) � (15/32)(3 − 7t2) (1 − t2)

I (|t|≤ 1) and use leave-one-out crossvalidation to select the
bandwidth.

Under the design of ODS, we sample n0 � 400 subcohort
individuals without replacement from N � 4000. -en we
partition the observed failure time into three strata by
quantiles of observed failure time. In order to study the
influence of different cutpoints, we consider 0.2 and 0.8
quantile and 0.3 and 0.7 quantile, respectively. We sample
the additional individuals of size n1 � 25 and n3 � 25 from
the first stratum and the third stratum. In addition, we
compare our proposed covariate-adjusted estimator (Pro-
posed) with two estimators, for example, oracle estimator
(Oracle) which is calculated based on the true covariate X

and naive estimator (Naive) which is computed based on the
contaminated covariate W. Note that the oracle estimator is
computed from the observations of X, which is not available
in the real data. Meanwhile, the naive method is sure to
exploit to regard directly the contaminated covariate W as
the true covariate X. Under each configuration, the results
presented in Tables 1 and 2 are obtained from 1000 inde-
pendently generated datasets, including the biases of the
estimates (Bias), the sample standard deviation (SD), the

estimated standard error (SE), and the 95% normal confi-
dence interval (CP).

By comparison and analysis, the oracle estimator is
considering to be the best of all three estimators. To be
specific, the proposed estimators for both θ and c are all
unbiased, and the statistical performance can compete with
that of the oracle estimator. Foremost, the 95% normal
confidence intervals are reasonable. When it comes to the
naive estimator, the result for c is biased. However, through
covariate-adjusted process, the main results in Section 3. In
addition, it is a fact that the efficiency gains are higher when
cutpoint is (0.2, 0.8) than when cutpoint is (0.3, 0.7).

Additionally, we conduct simulation studies to evaluate
the behavior of the proposed method when the censoring
time C depends on the covariate. -e setup is the same as in
Tables 1 and 2, except that the censoring time C is taken as
U[0, 1]I(H< 0) + U[0, 3]I(H≥ 0) and
E(1)I(H< 0) + E(1/3)I(H≥ 0), respectively. -e results are
reported in Table 3 when λ0(t) � 3t2 + 1 and Table 4 when
λ0(t) � e− t + t, which show that the proposed method
performs satisfactorily in the cases.

5. Empirical Analysis

Studies have been completed to conclude the real-world
analysis. Our study data contains 641 patients. -e accu-
mulation of extracellular DNA in the lung during bacterial
infection can bring out progressive deterioration of lung
function and aggravation of respiratory symptoms in pa-
tients with cystic fibrosis. -erefore, the dependent variable
that we are interested in is time to relapse, and the censoring
rate of the dependent variable is approximately 62.4%.
Under the ODS design, we sample 200 individuals as sub-
cohort sample. We partition the dependent variable that are
not in the subcohort into three strata. We choose two kinds
of cutpoints similar to the simulations. -e supplemental
samples of size n1 � 10 and n3 � 10 are selected from the first
stratum and the third stratum.

Two variables relevant to potential confounders have
been found, such as vital capacity and patient’s type of
treatment (Type), divided into placebo and rhDNase. In this
study, we measured forced expiratory volume twice and
abbreviated FEV1 and FEV2 separately. -en, we regarded
FEV((FEV1 + FEV2)/2) as a disorder index of vital capacity.
It has become apparent that the confounder factor U follows
a uniform distribution over [0, 1] on the basis of average. A
comprehensive study of the additive hazards model has been
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undertaken to see the effect of Type and FEV on the failure
time as follows:

λ(t ∣ Type, FEV) � λ0(t) + θType + cFEV. (69)

-eKaplan–Meier survival curves have been drawn with
related theory taking the kinds of treatment types and the
amount of FEV (adjusted FEV) of the patients into account.
In the process of drawing, we view FEV (adjusted FEV) to be

1 when FEV (adjusted FEV)≥ the median of FEV (the
median of adjusted FEV), otherwise, to be 0. As shown in
Figure 1, it can be seen that disturbance did affect relations
between FEV and survival probability, and the patients with
placebo or lower FEV (lower adjusted FEV) tend to have
lower survival probabilities.

An analysis has been presented that it is available to
derive the coefficients in model (69) with the proposed
covariate-adjusted approach and summarize estimated

Table 1: Simulation results when λ0(t) � 3t2 + 1.

ρ Cutpoints Method
θ c

Bias SD SE CP Bias SD SE CP

30%

(0.3, 0.7)
Oracle − 0.0034 0.1198 0.1149 0.931 0.0052 0.0991 0.0948 0.941
Naive − 0.0032 0.1202 0.1151 0.935 0.1154 0.0697 0.0631 0.523

Proposed − 0.0034 0.1200 0.1149 0.932 0.0014 0.1024 0.0980 0.943

(0.2, 0.8)
Oracle − 0.0012 0.0996 0.0962 0.936 0.0014 0.0801 0.0800 0.942
Naive − 0.0018 0.0994 0.0962 0.935 0.1119 0.0544 0.0531 0.436

Proposed − 0.0012 0.0996 0.0962 0.937 − 0.0008 0.0828 0.0830 0.945

50%

(0.3, 0.7)
Oracle − 0.0018 0.0959 0.0978 0.944 0.0030 0.0797 0.0792 0.950
Naive − 0.0018 0.0958 0.0977 0.947 0.1138 0.0544 0.0537 0.428

Proposed − 0.0018 0.0961 0.0978 0.942 0.0015 0.0828 0.0822 0.955

(0.2, 0.8)
Oracle − 0.0074 0.0871 0.0880 0.953 0.0026 0.0723 0.0715 0.951
Naive − 0.0073 0.0869 0.0880 0.956 0.1109 0.0510 0.0485 0.351

Proposed − 0.0075 0.0869 0.0880 0.955 − 0.0002 0.0753 0.0745 0.951

80%

(0.3, 0.7)
Oracle − 0.0015 0.0940 0.0951 0.952 0.0168 0.0777 0.0752 0.957
Naive − 0.0020 0.0934 0.0951 0.950 0.1184 0.0533 0.0501 0.308

Proposed − 0.0016 0.0939 0.0951 0.953 0.0155 0.0817 0.0783 0.959

(0.2, 0.8)
Oracle − 0.0062 0.0941 0.0927 0.941 0.0163 0.0717 0.0725 0.949
Naive − 0.0062 0.0934 0.0926 0.941 0.1157 0.0507 0.0486 0.304

Proposed − 0.0063 0.0941 0.0927 0.942 0.0146 0.0750 0.0755 0.952
“Oracle” denotes the oracle estimator calculated based on the true covariate. “Naive” denotes the naive estimator calculated based on the unadjusted
covariate. “Proposed” denotes the proposed estimator calculated based on the adjusted covariate.

Table 2: Simulation results when λ0(t) � e− t + t.

ρ Cutpoints Method
θ c

Bias SD SE CP Bias SD SE CP

30%

(0.3, 0.7)
Oracle − 0.0005 0.0774 0.0761 0.935 0.0071 0.0560 0.0544 0.945
Naive − 0.0005 0.0770 0.0759 0.943 0.1131 0.0391 0.0369 0.155

Proposed − 0.0006 0.0774 0.0760 0.932 0.0035 0.0591 0.0571 0.941

(0.2, 0.8)
Oracle − 0.0027 0.0670 0.0645 0.931 0.0059 0.0480 0.0476 0.945
Naive − 0.0037 0.0666 0.0645 0.928 0.1123 0.0344 0.0319 0.090

Proposed − 0.0031 0.0670 0.0645 0.932 0.0028 0.0503 0.0499 0.947

50%

(0.3, 0.7)
Oracle − 0.0033 0.0694 0.0706 0.958 0.0110 0.0524 0.0527 0.950
Naive − 0.0042 0.0696 0.0705 0.958 0.1142 0.0352 0.0357 0.118

Proposed − 0.0034 0.0692 0.0706 0.961 0.0084 0.0550 0.0550 0.955

(0.2, 0.8)
Oracle − 0.0083 0.0617 0.0640 0.962 0.0106 0.0478 0.0480 0.958
Naive − 0.0093 0.0621 0.0640 0.959 0.1156 0.0339 0.0323 0.067

Proposed − 0.0083 0.0618 0.0640 0.959 0.0074 0.0502 0.0501 0.958

80%

(0.3, 0.7)
Oracle − 0.0144 0.0862 0.0851 0.945 0.0169 0.0664 0.0655 0.951
Naive − 0.0142 0.0864 0.0851 0.940 0.1177 0.0461 0.0443 0.224

Proposed − 0.0144 0.0863 0.0851 0.946 0.0146 0.0695 0.0683 0.949

(0.2, 0.8)
Oracle − 0.0064 0.0843 0.0837 0.935 0.0180 0.0663 0.0636 0.934
Naive − 0.0070 0.0844 0.0837 0.939 0.1168 0.0453 0.0434 0.213

Proposed − 0.0065 0.0842 0.0837 0.936 0.0160 0.0689 0.0664 0.935
“Oracle” denotes the oracle estimator calculated based on the true covariate. “Naive” denotes the naive estimator calculated based on the unadjusted
covariate. “Proposed” denotes the proposed estimator calculated based on the adjusted covariate.
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Table 3: Simulation results when λ0(t) � 3t2 + 1.

Cutpoints Method
θ c

Bias SD SE CP Bias SD SE CP
C∼U[0, 1]I(H< 0) + U[0, 3]I(H≥ 0)

(0.3, 0.7)
Oracle 0.0015 0.1096 0.1146 0.955 0.0032 0.2418 0.2365 0.939
Naive 0.0017 0.1100 0.1145 0.955 0.1220 0.1569 0.1509 0.865

Proposed 0.0014 0.1096 0.1146 0.956 0.0080 0.2377 0.2319 0.934

(0.2, 0.8)
Oracle 0.0000 0.0927 0.0983 0.959 − 0.0028 0.2050 0.2024 0.940
Naive 0.0002 0.0927 0.0984 0.961 0.1188 0.1275 0.1288 0.865

Proposed 0.0001 0.0928 0.0983 0.959 0.0046 0.2001 0.1982 0.942
C∼E(1)I(H< 0) + E(1/3)I(H≥ 0)

(0.3, 0.7)
Oracle 0.0044 0.1269 0.1265 0.950 − 0.0078 0.2622 0.2604 0.942
Naive 0.0046 0.1270 0.1268 0.949 0.1162 0.1691 0.1648 0.905

Proposed 0.0042 0.1268 0.1265 0.949 0.0026 0.2556 0.2548 0.948

(0.2, 0.8)
Oracle 0.0051 0.1007 0.1064 0.957 − 0.0156 0.2261 0.2170 0.944
Naive 0.0046 0.1015 0.1065 0.955 0.1172 0.1394 0.1386 0.860

Proposed 0.0050 0.1009 0.1064 0.957 − 0.0077 0.2226 0.2126 0.943
“Oracle” denotes the oracle estimator calculated based on the true covariate. “Naive” denotes the naive estimator calculated based on the unadjusted
covariate. “Proposed” denotes the proposed estimator calculated based on the adjusted covariate.

Table 4: Simulation results when λ0(t) � e− t + t.

Cutpoints Method
θ c

Bias SD SE CP Bias SD SE CP
C∼U[0, 1]I(H< 0) + U[0, 3]I(H≥ 0)

(0.3, 0.7)
Oracle 0.0012 0.0810 0.0894 0.971 − 0.0033 0.1812 0.1762 0.955
Naive 0.0009 0.0804 0.0895 0.973 0.1154 0.1151 0.1112 0.843

Proposed 0.0011 0.0809 0.0895 0.971 0.0061 0.1784 0.1726 0.956

(0.2, 0.8)
Oracle − 0.0045 0.0746 0.0773 0.955 − 0.0002 0.1533 0.1540 0.949
Naive − 0.0049 0.0747 0.0774 0.957 0.1154 0.0995 0.0973 0.791

Proposed − 0.0045 0.0746 0.0773 0.957 0.0055 0.1523 0.1511 0.950
C∼E(1)I(H< 0) + E(1/3)I(H≥ 0)

(0.3, 0.7)
Oracle − 0.0001 0.0879 0.0870 0.943 0.0025 0.1836 0.1799 0.935
Naive − 0.0002 0.0878 0.0872 0.943 0.1166 0.1126 0.1127 0.855

Proposed − 0.0001 0.0877 0.0871 0.942 0.0099 0.1791 0.1762 0.941

(0.2, 0.8)
Oracle 0.0018 0.0738 0.0747 0.954 − 0.0058 0.1598 0.1537 0.936
Naive 0.0018 0.0743 0.0748 0.955 0.1180 0.0985 0.0960 0.771

Proposed 0.0019 0.0739 0.0747 0.954 0.0013 0.1568 0.1505 0.936
. “Oracle” denotes the oracle estimator calculated based on the true covariate. “Naive” denotes the naive estimator calculated based on the unadjusted
covariate. “Proposed” denotes the proposed estimator calculated based on the adjusted covariate.
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Figure 1: Estimated Kaplan–Meier survival curves for patients in pulmonary exacerbations study: (a) under different expiratory volumes;
(b) under different adjusted expiratory volumes; (c) under different treatment types.
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coefficients to be the column Est. After 1000 times artificially
estimating the process, it shows the main characteristic of SE
and the Bias which are calculated by the average of pa-
rameter estimates minus the corresponding Est. We also
apply the contaminated covariate to calculate the estimator.
-e results based on our method are listed in the columns
under Proposed and the results based on the contaminated
covariate are put in the columns under Naive in Table 5.
From the result above, we can see that, with the increase of
the mount of FEV, the risk of relapse with pulmonary ex-
acerbations will decrease. -e treatment type rhDNase of
pulmonary exacerbations can decrease the risk of death,
which is consistent with Figure 1. Moreover, due to the
covariate adjustment process, the bias of the proposed
method is less than that of the Naive method. -e sample
standard error of the cutpoint (0.2, 0.8) is less than that of the
cutpoint (0.3, 0.7), which is in accord with the simulation
results.

6. Conclusion

From the point of view, the fact is that the ODS design is a
benefit to lower the cost of expensive exposure variable and
improve computing efficiency in large-scale cohort studies.
All the results are performed for avoiding miscalculations
and perfecting interpretation with adjustment on contam-
inated covariates. Firstly, this paper has illustrated the
method of fitting covariate-adjusted additive hazard model
to the data in the ODS design. Secondly, to solve the
problems caused by contaminated covariates and biased-
sampling schemes, this paper uses nonparametric kernel
estimation method to calibrate the contaminated covariates
and uses the inverse probability weighting method based on
the calibration covariate to construct the weighted estima-
tion function. In fact, this paper has carried out an extension
of the theory properties of the estimator in the analysis of the
proposed weighted estimation function. -e numerical
simulation studies have been applied to show that the es-
timator proposed in this paper performs well in finite sample
case, and the actual data is used to show the possibility of the
implement of the method.

From the perspective of research prospects, firstly, based
on the methods and conclusions of this paper on the co-
variate adjustment problem of the additive hazard model,
there has been an increasing awareness of the potential of
discussing the problem of covariate adjustment of ODS

studies based on some other models. For example, the
accelerated failure time model discussed by Lin et al. [29],
the accelerated hazard model studied by Chen and Wang
[30], the nonautonomous SIRS model discussed by Lv and
Meng [31], and the dynamic model of the constantor studied
in [32]. Secondly, to better promote the design and keep the
proposed method practical, a promising research published
by Yu et al. [16] who proposed that the determination of
sample sizes and the optimal sample allocation method may
also be an interesting topic in the future. Furthermore, it is
hoped that future research will contribute to a further de-
velopment of survival models with multiple disease out-
comes mentioned by Kang and Cai [7].
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From the viewpoint of thermodynamics, gene transcription necessarily consumes free energy due to nonequilibrium processes.
On the other hand, regulatory molecules present on the core promoter of a gene interact often in a dynamic, highly combinatorial,
and possibly energy-dependent manner, leading to a complex promoter structure. ,is raises the question of how gene tran-
scription with general promoter topology consumes free energy.We propose a biophysically intuitive approach to calculate energy
consumption (quantified by the production rate of entropy) of a gene transcription process. ,en, we show that the numbers of
the ON and OFF states of a promoter can reduce energy consumption of the gene system and the Fano factor of mRNA, and in
contrast to other regulatory ways, the cooperative binding of transcription factors to DNA sites always reduces energy con-
sumption but amplifies the mRNA noise. While our proposed approach is general, our obtained qualitative results can in turn be
used to the inference of complex promoter structure.

1. Introduction

Gene expression is complex. Apart from the genetic in-
formation flow described by central dogma in biology, gene
expression would involve other dynamical subprocesses
such as switching between transcriptional active and inactive
states [1, 2], recruitment of transcription factors (TFs) [3, 4],
and feedback regulation [5, 6]. All these processes are
biochemical, giving rise to stochastic fluctuations in the
mRNA abundance. ,is stochasticity (often referred to as
gene expression noise) is important for the maintenance of
cellular functions and the generation of cell phenotypic
diversity. Revealing gene expression mechanisms using
stochastic models is a significant step toward understanding
intracellular processes but is also a challenging task.

Many gene models, such as stochastic telegraph models
[7–9], three-stage model [10], and gene models with
feedback of various forms [11–14], have been proposed to
study the stochastic mechanisms of gene expression from
different viewpoints. Although these models have

successfully interpreted some biological phenomena ob-
served in experiments [12–14], they assume that the gene
promoters have only one transcriptionally active (ON)
state and one transcriptionally inactive (OFF) state and
there are transitions between these states. ,is assumption
is not reasonable in many situations. In fact, even for
bacterial cells, the promoters that are viewed as simple can
exist in a surprisingly large number of regulatory states. For
example, if the PRM promoter of phage lambda in E. coli is
regulated by two different TFs binding to two sets of three
operators that can be brought together by looping out the
intervening DNA, the number of regulatory states of the
PRM promoter is up to 128 [15]. In contrast, eukaryotic
promoters would be more complex since they involve other
processes such as nucleosomes competing with or being
removed by TFs [16]. Apart from the conventional regu-
lation by TFs, the eukaryotic promoters can be also epi-
genetically regulated via histone modifications [17, 18]. All
these may lead to complex promoter topology or complex
promoter kinetics.
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On the other hand, gene transcription depending on
promoter structure is a nonequilibrium process from the
viewpoint of thermodynamics. It has been shown that
promoter kinetics regulated by TFs and/or other unspecified
molecules can be expressed in terms of free energy [19–23].
,is constitutes a generalization of thermodynamic methods
by extending the range of systems that can be represented
(i.e., including energy-consuming systems such as those of
gene transcription with complex promoter structure) and
the type of metrics that can be predicted (i.e., including
measures of dynamic and stochastic properties) [23–25].,e
usual thermodynamic formulation of cooperative and
competitive association and dissociation of TFs [26] is
equivalent to assigning the Gibbs-free energy to each pro-
moter state. ,is representation allows one to predict
equilibrium steady states (by applying a Boltzmann factor)
and has been widely used to investigate the mean aspects of
prokaryotic regulation [27]. However, the representation has
also drawbacks; for example, it limits the analysis to ener-
getically closed systems and forbids any investigation of the
stochastic aspects of gene transcription since the repre-
sentation cannot carry any kinetic information. In a word,
the question of free energy consumption in gene tran-
scription has been fully unsolved so far but has caused
concerns in recent years.

In this paper, we introduce an extra set of energy values
(i.e., the free energy of the activation barrier for each re-
action involved in the promoter kinetics). Although difficult
to access experimentally [28] and approximate to realistic
cases, they can be represented in a matrix with elements
being the known functions of kinetic parameters of the
promoter [23, 28, 29]. Consequently, the steady-state energy
consumption rate (characterizing energetic cost of promoter
kinetics) can be easily calculated. In order to show the ef-
fectiveness of this method, we analyze several gene models
with a representative promoter structure and derive ana-
lytical results for the corresponding energy consumption
rates, which are numerically verified.

2. Models, Methods, and Theory

First, we simply introduce a biological prototype of gene
expression (Figure 1(a)). To start with the expression of
a gene (a DNA sequence), it is in general needed to recruit
first transcription factors, histone kinases to the promoter
through transcription activators, and then histone acetyl-
transferase complexes and other complexes to the promoter.
All these histones are modified to recruit RNA polymerase II
and general transcription factors to DNA, so that tran-
scription is initialized and activated [30, 31]. ,is process
would simultaneously accompany some repressors that
inhibit transcription, until the whole part of the transcrip-
tion initiation complex leaves the DNA sequence and
returns to the initial state. ,en, we map this biological
prototype into a theoretical model of gene expression
(Figure 1(b)).

We point out that Figure 1 only depicts an example for
gene expression where we assume that the DNA is tran-
scribed only when the gene is in ON state (implying the

assumption that no transcription occurs in OFF state). ,e
realistic cases of gene expression (in particular transcription)
would be more complex.

In the following analysis, we will separately consider
stochastic gene expression models of four kinds of promoter
structures: (1) single ON andmulti-OFF states, (2) single OFF
and multi-ON states, (3) transcription factor dual repression,
and (4) transcription factor dual promotion.We will calculate
the free energy in each of these four cases and analyze the
relationship between gene expression and energy dissipation.

2.1. A General )eory

2.1.1. Approximate Calculation of Probability Distribution.
Recall that, for a general chemical reaction system, if we let
P(σ; t) be the probability that the system is in state σ at time
t, then the corresponding chemical master equation takes
the form

z

zt
P(σ; t) � 

σ′
J σ′

 σ, t , (1)

where J(σ′ | σ, t) � W(σ′ | σ)P(σ′; t) − W(σ | σ′)P(σ; t) is
the probability flux with W(σ′ | σ) being the transition
probability from state σ to state σ′. Now, consider a gene
model at the transcription level, where the promoter
structure is general; that is, the promoter may have arbi-
trarily many transcriptional activity (active or inactive)
states and there are transitions among these states
(Figure 1).

Assume that the promoter hasN states in total, including
K on states and N − K OFF states. Let xi represent the
probability that the gene dwells in state i (i � 1, 2, . . . , N).
According to the total probability principle, we apparently
have the identity 

N
i�1 xi ≡ 1. Moreover, based on the pro-

moter structure, we can directly write the following master
equation for variables xi (1≤ i≤N):

dx

dt
� Tx, (2)

where T � (λij) is an N × N matrix, describing the transi-
tions between promoter activity states and
x � (x1, . . . , xN)T is an n-dimensional vector. Note that T is
actually an M-matrix (i.e., the sum of every row is equal to
zero), implying that equation (2) at steady state has infinitely
many solutions. But we have the conservative condition


N
i�1 xi � 1. ,erefore, all xi can be uniquely determined if

the initial conditions are given. In particular, the steady state
of equation (2) can be uniquely determined. Denote by xs

i

the steady state of xi (i � 1, 2, . . . , N).
Next, let m represent the concentration of mRNA,

which is a continuous variable, and let Pi(m; t) be the
probability that the system is in state i. ,en, the chemical
master equation corresponding to the above gene model
can be expressed as

zP(m; t)

zt
� TP(m; t) + μ(E − I)P(m; t) + δ(E − I)[mP(m; t)],

(3)

2 Complexity



where μ � diag(μ1, . . . , μK, 0, . . . , 0) is an N × N diagonal
matrix describing transcription (here, we have assumed that
there are K transcription exits or K ON states),
δ � diag(δ1, . . . , δK, 0, . . . , 0) is an N × N diagonal matrix
describing degradation (all δi will be assumed to be the same
and the common degradation rate will be denoted by δ), and
P(m; t) � (P1(m; t), . . . , PN(m; t))T is an N-dimensional
column vector. ,e total probability is
P(m; t) � 

N
i�1 Pi(m; t). We point out that solving equation

(3) and even its steady-state equation is usually difficult.
Now, we give analytical approximations of factorial prob-
abilities Pi(m). In general, the switching rate of promoters is
slower relative to the transcription rate in eukaryotes
[27, 31], so we think that the time scale of promoter
switching is slower than transcription in this paper; there-
fore, the probability distribution of mRNA can be obtained
from the steady-state probability distribution of each state
and summed with weight. So if the gene is only at OFF state l,

where l � K + 1, . . . , N, then the mRNA only has degra-
dation without production, implying that the mRNA con-
centration follows an exponential distribution; then
Pl(m) � xs

lδe− δm, where xs
l may be understood as a weight.

If the gene is only at ON state i, then the mRNA has both
production and degradation, implying that the mRNA
concentration follows a Poisson distribution. From
amathematical viewpoint, however, the Poisson distribution
can be approximated by a normal distribution. ,erefore,
the steady-state probability distribution in ON state i can be
approximated as

Pk(m) �
Ai

E

1
���
2π

√
σk

exp −
m − Λk( 

2

2σ2k
 , (4)

where Λk � (μk/δ) is the mean, σ2k � (μk/δ) is the variance,
and k � 1, . . . , K. ,en, the total mRNA probability dis-
tribution can be approximated as

P(m) � 
K

k�1
Pk(m) + 

N

l�K+1
Pl(m) ≈ 

K

k�1
x

s
k

1
���
2π

√
σk

exp −
m − Λk( 

2

2σ2k
  + 

N

l�K+1
x

s
lδe

− δm
. (5)

,is explicit expression is in good accordance with the
one obtained by the Gillespie stochastic simulation algo-
rithm (Figure 2), we choose two-OFF and two-ON four-state
model as representatives, and these parameters are all from
the experimental data [31]. ,is implied that the above
approximation is effective. In other words, the total prob-
ability density is equal to the sum of the individual prob-
ability densities at discrete states.

2.1.2. On Free Energy Consumption. Next, we will calculate
the free energy consumption of this system; for this, we
provide an effective method. First, we introduce several

definitions; we define the entropy of this system as S(t) �

− σP(σ; t)logP(σ; t) [28, 32] (i.e., the so-called Shannon
entropy); then based on equation (1), the entropy generating
rate (i.e., the derivative of S(t) with regard to time t) can be
decomposed into (see Appendix A for details):

dS

dt
� Π − Φ, (6)

where Φ(t) � − σ,σ′J(σ′ | σ, t)logW(σ′ | σ), that is, the so-
called entropy flux rate, whereas Π(t) � − σ,σ′J

(σ′ | σ, t)log[W(σ′ | σ)P(σ′; t)], that is, the so-called entropy
production rate, which is an exact measurement of free
energy consumption of the underlying system.  (t) is also
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Figure 1: (a) Schematic diagram for a biological prototype of gene expression. Both the activation and deactivation of a gene are complex
processes, possibly involving recruitments of transcription factors, complexes, and histones as well as somemodifications. (b),e biological
prototype in (a) is mapped into a theoretical model of gene expression, where ON and OFF represent transcriptional active and inactive
states. In (a) and (b), arrow represents transition direction between two distinct states.
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called the dissipation rate of free energy [23, 32–34] and will
be the interest of this paper. ,ese concepts and results are
general, but the key to obtaining the free energy con-
sumption  (t) is how probability P(σ; t) is obtained from
equation (1) since this equation is frequently very difficult to
solve. ,us, the quantity Π of our interest is also difficult to
obtain. In the following, we will only consider the steady
state.

In order to calculate the dissipation rate of free energy
defined above, that is, Π, we define the state of the gene
system as (x1, . . . , xN, m)T, which is an N + 1 vector. ,us,
every factorial probability Pi(m) depends, in principle, on
state (x1, . . . , xN, m)T. Since the gene is only in one state at
any moment, notation Pi(m; t) may be rewritten as
P(x1, . . .∞, xN, m) where the only i component of vector
(x1, . . . , xN) is not equal to zero. Unlike the traditional
method that calculated Π directly using the expression of
P(m) (i.e., in one-dimensional state space), we will calculate
Π in the whole state space consisting of (x1, . . . , xN, m). For
this, we first write the dissipation rate of free energy defined
above as the following form [21, 23, 28]:

Π � 
A,B

JAB − JBA( ln
JAB

JBA

, (7)

where A and B represent the microscopic states of the
underlying gene system in the (N + 1)-dimensional state
space and JAB represents the transition probability from
state A to state B. ,en, we decompose Π into two parts:

Π � W +Ω, (8)

where W represents the free energy dissipation along the
hyperplane 

N
i�1 xi � 1 in the (N + 1)-dimensional state

space (W will be called the free energy dissipation of pro-
moter), whereas Ω represents the free energy dissipation
along the m-direction in the state space (Ω will be called the
free energy dissipation of transcription). From the physical
viewpoint, this decomposition seems to be reasonable and
intuitive. Moreover, the decomposition has been verified by
our numerical simulation (see the following sections).
,erefore, we only need to calculate W and Ω separately.

Note that W can be expressed as

W � 
A,B

 JAB − JBA( ln
JAB
JBA

dm, (9a)

where the sum is over the finite states since the promoter
states are finite if the factorial probabilities Pi(m) (1≤ i≤N)
are known. Moreover, the term (JAB − JBA)ln(JAB/JBA) can
be directly given based on the transition between promoter
states; for example, for the transition module of the form
state i⇄λij

λij
′ state j, we have (Jij − Jji)ln(Jij/Jji) � Pi(m; t)λij

ln(λij/λji) + Pj(m; t)λji ln(λji/λij). For factorial probability
Pi(m), we will give a physically intuitive yet effective method
to estimate Pi(m).

On the other hand, Ω can be expressed as

Ω � 
N

i�1
Ω(i)

m , (9b)

where Ω(i)
m represents the free energy consumption of

transcription when the gene is in state i. Since we have
assumed that the promoter has only K transcription exits,
the onlyKΩ(i)

m s would not be equal to zero whereas the other
Ω(i)

m s are all equal to zero.
Before doing the calculation, we make the following

preparations. For variable xi (i � 1, 2, . . . , N), we have the
master equation.

In order to calculate Ω, we first write the following
differential equations for continuous variable m:

dm

dt
� 

K

k�1
μkxk − δm ≡ F(m). (10)

,e steady state of m(t) is denoted by ms. ,en, we can
write the corresponding Fokker-Planck equation as

zP(m, t)

zt
� −

z

zm
(FP) +

1
2

z
2

zm
2 (ΦP), (11)

where Φ � 
K
k�1 μik

xs
ik

+ δms. Recall that for the Fokker-
Planck equation
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Figure 2: Comparison probability distributions between analytical (solid line) and numerical (empty circles) results, where parameter
values are set as (c01 � 0.27), (c10 � 0.23), (c12 � 0.27), (c21 � 0.27 × 0.013), (c23 � 0.23 × 0.013), (c32 � 0.27), (c34 � 0.27), (c43 � 0.23),
(μ1 � 33), (μ2 � 33 × 11), and (δ � 1).
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zP(x; t)

zt
� − 

n

i�1

z

zxi

μi(x, t)P(x; t)  +
1
2


n

i,j�1

z
2

zxizxj

Dij(x, t)P(x; t) ,

(12)

the corresponding free energy dissipation takes the form (see
Appendix B of this paper or [35, 36])

Ω �
1
2



n

i�1
 

n

j�1

z

zxj

Dij(x, t)P(x, t) 
z ln P(x, t)

zxi

dxi.

(13)

In our case, equation (12) becomes

Ω �
Φ
2


∞

0

dP(m)

dm

d ln P(m)

dm
dm �
Φ
2


∞

0

dP(m)

dm
 

2 1
P(m)

dm.

(14)

From equation (9a) for the free energy dissipation of
promoter W and equation (14) for the free energy dissi-
pation of transcription Ω, we can see that the key of cal-
culating the free energy dissipation of the whole system is
that probability P(m) must be known, where
P(m) � 

N
i�1 Pi(m) can be approximated as equation (5).

,ere are many factors that affect promoter and they
lead to many promoter models. Due to the limitation of
space, we choose four typical models that are more con-
cerned; there are two kinds of promoter multistate model
[3, 8, 30] and two kinds of transcription factor cooperative
binding model [31]. Because the complexity of the promoter
can be mapped into multistate model, people want to un-
derstand the significance of the multistates of promoter and
cooperation between transcription factors from different

aspects. In this paper, we want to study them from the new
perspective of free energy consumption.

2.2. Case 1: One ON and Multiple OFFs. ,e promoter
structure is schematically shown in Figure 3(a), where we
assume that the promoter has one transcriptional active
(ON) state and n inactive (OFF) states, which all together
form a loop. And there are transitions among these states.
For convenience, we list all the reactions of the gene model
as follows:

ON⇄
λ01

λ10
OFF1,

OFF1⇄
λ12

λ21
OFF2, . . . ,OFF(n− 1) ⇄

λ(n− 1)n

λn(n− 1)

OFFn,

OFFn⇄
λn0

λ0n

ON,

ON⟶
μ

ON + M, M⟶δ ∅

(15)

where M represents mRNA, λ01, λ10, λ12, λ21, . . . , λ(n− 1)n,

λn(n− 1), λn0, λ0n are the transition rates between different
states of the promoter, μ represents the transcription rate in
ON states, and δ represents the degradation rate. ,ese rates
are assumed to be constants.

Let x0 represent the probability that the gene dwells in
ON state and xi represent the probability that the gene
dwells in OFF state i (1≤ i≤ n). For the promoter described
in Figure 3(a), transcription matrix T in equation (3) of the
above section takes the form

T �

− λ0n + λ01(  λ10 λn0
λ01 − λ10 + λ12(  λ21

⋱ ⋱ ⋱
λ(n− 2)(n− 1) − λ(n− 1)n + λ(n− 1)(n− 2)  λn(n− 1)

λ0n λ(n− 1)n − λn(n− 1) + λn0 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where elements in the empty place are zero. ,e steady-state
equation corresponding to equation (3) is Tx � 0, where
x � (x0, x1, . . . , xn)T. Solving this algebraic equation com-
bined with the conservative condition 

n
i�0 xi � 1 yields

xs
i � (Ai/E), where Ai � k0 ,k1 ,···,kn

k≠iλkki
is a constant

depending on transition rates λkl (i � 0, 1, . . . , n) and
E � 

n
i�0 Ai. Note that there is only one ON state, implying

that K � 1. ,erefore, we have only one transcription rate,
denoted by μ. ,us, from equation (9), we obtain the mean
of the stationary mRNA level given by ms � (μ/δ)(A0/E).

According to the general method described in the above
section, we know that the probability that the gene is in ON
state can be approximated as
P0(m) � (A0/E)(1/

����
2πσ0


)exp[− ((m − Λ0)

2/2σ20)], where
Λ0 � (μ/δ) and σ20 � (μ/δ). ,e probabilities that the gene is
in OFF states can be approximated as Pi(m) � (Ai/E)δe− mδ,

where i � 1, 2, . . . , n. ,erefore, the total probability P(m) is
given by

P(m) �
A0

E

1
���
2π

√
σ0

exp −
m − Λ0( 

2

2σ20
  + 

n

i�1

Ai

E
δe

− mδ
.

(17)

,e variance of the probability distribution is given by

VARm �
A0

E
 

2μ
δ

+
A1

E
 

21
δ

+ · · · +
An

E
 

21
δ
. (18)

,us, the expression of the mRNA noise and Fano factor
is analytically expressed as
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η2 �
Varm

m
s

( 2
�

δE

μA0
 

2
A0

E
 

2
σ21 +

A1

E
 

21
δ

+ · · · +
An

E
 

21
δ

 .

(19a)

Fano �
Varm

m
s �

δE

μA0

A0

E
 

2
σ21 +

A1

E
 

21
δ

+ · · · +
An

E
 

21
δ

 .

(19b)

Next, we give the analytical expression of free energy
dissipation of the whole system, Π. First, consider the free
energy consumption of promoter, W. Note that equation
(19a) in the above section becomes

W � 
∞

0
P0(m)λ01 ln

λ01
λ10

+ P1(m)λ10 ln
λ10
λ01

 

+ P1(m)λ12 ln
λ12
λ21

+ P2(m)λ21 ln
λ21
λ12

  + · · ·

+ Pn− 1(m)λ(n− 1)n ln
λ(n− 1)n

λn(n− 1)

+ Pn(m)λn(n− 1) ln
λn(n− 1)

λ(n− 1)n

 

+ Pn(m)λn0 ln
λn0

λ0n

+ P0(m)λ0n ln
λ0n

λn0
 dm,

(20)

Using the expressions of P0(m) and Pi(m) (1≤ i≤ n)

given above, we have

W �
A0

E
λ01 ln

λ01
λ10

+
A1

E
λ10 ln

λ10
λ01

 

+
A1

E
λ12 ln

λ12
λ21

+
A2

E
λ21 ln

λ21
λ12

  + · · ·

+
A(n− 1)

E
λ(n− 1)n ln

λ(n− 1)n

λn(n− 1)

+
An

E
λn(n− 1) ln

λn(n− 1)

λ(n− 1)n

 

+
An

E
λn0 ln

λn0

λ0n

+
A0

E
λ0n ln

λ0n

λn0
 .

(21)

,erefore, we finally arrive at

W � J ln q, (22)

where J � (λ01λ12, . . . , λ(n− 1)nλn0 − λn(n− 1)λ(n− 1)(n− 2), . . . , λ
10λ0n/E) and q � ((λ01λ12, . . . , λ(n− 1nλn0)/(λnn− 1)λ(n− 1n− 2),

. . . , λ10 λ0n)) are two quantities depending on transition
rates between promoter states. Quantity W is exactly the
heat consumption per unit time of the annular flow [28, 37]
between promoter states.

,en, consider the free energy consumption of tran-
scription, Ω. Note that Φ in equation (13) is given by
Φ � μxs

0 + δms � (2μA0/δE). Also, note that the probability
distribution is given by equation (17). According to equation
(13), we thus have

Ω �
μA0

δE

∞

0

A0/E(  m − Λ0/
����

2πσ30


 exp − m − Λ0( 
2/2σ20   + δ2 

n

i�1
Ai/E( e

− mδ⎧⎨

⎩

⎫⎬

⎭

2

A0/E(  1/
����
2πσ0


 exp − m − Λ0( 

2/2σ20   + δ
n
i�1 Ai/E( e

− mδ dm.
(23)
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Figure 3: (a) Schematic diagram for a gene model with the promoter having one ON andmultiple OFFs.,ese chromatin states form a loop
and transition from one state to its neighboring state with a constant transition rate. (b) Schematic diagram for a gene model with the
promoter having one OFF and multiple ONs. ,ese promoter states also form a loop and transition from one state to another state with
a constant transition rate.
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2.3. Case 2: One OFF and Multiple ONs. Here, we consider
another representative promoter structure, where the

promoter has one OFF state and n ON states (Figure 3(b)).
All the biochemical reactions are listed as follows:

OFF⇄
c01

c10
ON1,

ON1⇄
c12

c21
ON2, . . . ,ON(n− 1) ⇄

c(n− 1)n

cn(n− 1)

ONn,

ONn⇄
cn0

c0n

OFF,

ON1⟶
μ1 ON1 + M,ON2⟶

μ2 ON2 + M, . . . ,ONn⟶
μn ONn + M, M⟶δ ∅,

(24)

where c01, c10, c12, c21, · · · , c(n− 1)n, cn(n− 1), cn0, c0n are the
transition rates between different states of promoter, μi

represents the transcription rate in ON state i, and δ rep-
resents the degradation rate.

Let x0 represent the probability that the gene dwells in
OFF state and xi represent the probability that the gene
dwells in ON state i (1≤ i≤ n). For the promoter described in
Figure 3(b), transcription matrix T in equation (3) of Section
2.1 takes the form

T �

− c0n + c01(  c10 cn0
c01 − c10 + c12(  c21

⋱ ⋱ ⋱
c(n− 2)(n− 1) − c(n− 1)n + c(n− 1)(n− 2)  cn(n− 1)

c0n cλ(n− 1)n − cn(n− 1) + cn0 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where elements in the empty place are zero. ,e steady-state
equation corresponding to equation (3) is Ty � 0, where
y � (y0, y1, . . . , yn)T. Solving this algebraic equation com-
bined with the conservative condition 

n
i�0 yi � 1 yields

ys
i � (Bi/T), where Bi � k0 ,k1 ,...,kn

k≠ickki
is a constant

depending on transition rates ckl, i � 0, 1, . . . , n, and
T � 

n
i�0 Bi. Note that there is only one OFF state but there

are n transcription rates, denoted by μi (i � 1, . . . , n). ,us,
from equation (9), we obtain the mean of the stationary
mRNA level given by ms � ((μ1B1 + μ2B2 + · · · + μnBn)/δT).

According to the general method described in Section
2.1, we know that the probabilities that the gene is in ON
states can be approximated as Pi(m) � (Bi/T)(1/����
2πσi


)exp[− (m − Λi)

2/2σ2i ], where Λi � (μi/δ) and
σ2i � (μi/δ). ,e probability that the gene is in OFF state can
be approximated as P0(m) � (B0/T)δe− mδ, where
i � 1, 2, . . . , n. ,erefore, the total probability P(m) is
given by

P(m) �
B0

T
δe

− mδ
+ 

n

i�1

1
����
2πσi

 exp −
m − Λi( 

2

2σ2i
 . (26)

,e variance of the probability distribution is given by

VARm �
B0

T
 

21
δ

+
B1

T
 

2μ1
δ

+ · · · +
Bn

T
 

2μn

δ
. (27)

,us, the expression of the mRNA noise and Fano factor
is analytically expressed as

η2 �
Varm

m
s

( 
2 �

1
ms

 
2 B0

T
 

21
δ

+
B1

T
 

2
σ21 + · · · +

Bn

T
 

2
σ2n ,

(28a)

Fano �
Varm

m
s �

1
m

s

B0

T
 

21
δ

+
B1

T
 

2
σ21 + · · · +

Bn

T
 

2
σ2n .

(28b)

Next, we give the analytical expression of free energy
dissipation of the whole system, Π. First, consider the free
energy consumption of promoter, W. Note that equation
(19a) in the above section becomes

W � 
∞

0
P0(m)c01 ln

c01

c10
+ P1(m)c10 ln

c10

c01
 

+ P1(m)c12 ln
c12

c21
+ P2(m)λ21 ln

c21

c12
  + · · ·

+ Pn− 1(m)c(n− 1)n ln
c(n− 1)n

cn(n− 1)

+ Pn(m)cn(n− 1) ln
cn(n− 1)

cλ(n− 1)n

 

+ Pn(m)cn0 ln
cn0

c0n

+ P0(m)λ0n ln
c0n

cn0
 dm.

(29)

,erefore, we finally arrive at
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W � J ln q, (30)

where J � ((c01c12, . . . , c(n− 1n)cn0 − c(nn− 1)c(n− 1n− 2), . . . ,

c10c0n)/T) and q � ((c01c12, . . . , c(n− 1ncn0)/(cnn− 1)c(n− 1n− 2),

. . . , c10c0n)) are two quantities depending on transition rates
between promoter states. Quantity W is exactly the heat

consumption per unit time of the annular flow [28, 37]
between promoter states.

,en, consider the free energy consumption of tran-
scription, Ω. Note that the probability distribution is given
by equation (17). According to equation (13), we thus have

Ω � m
s

∞

0

B0/T( δ2e− mδ
+ 

n

i�1
Bi/T(  m − Λi/

����

2πσ3i


  exp − m − Λi( 
2/2σ2i  

⎧⎨

⎩

⎫⎬

⎭

2

B0/T( δe
− mδ

+ 

n

i�1
Ai/T(  1/

����
2πσi


( exp − m − Λi( 

2/2σ2i  

dm. (31)

2.4. Case 3: Dual RepressionModel. Research [38–40] shows
that when there are multiple binding sites in the promoter
sequence, the promoter will be controlled by multiple
transcription factors and multiple enzymes, and some en-
zymes are difficult to be separated after binding, which is
called cooperative binding. Cooperative binding often oc-
curs, so what are the benefits of cooperative binding for
organisms? Why do these enzymes cooperate with each
other? We will give the answer from the perspective of
favorable gene expression and energy saving. In this section,
we take the cooperative binding of two inhibitors (dual
repression) as an example to illustrate, as shown in
Figure 3(a), where konR represents the binding rate, koff

R is the
dissociation rate, r is the transcription rate, and Ω is the
cooperation binding degree. According to the experimental
data [38, 39],Ω � 1 represents independent binding andΩ �

0.013 represents cooperation binding.
Figure 4(a) is the special case of Figure 3(a), so some

indexes of this system, such as mean, variance, noise, Fano
factor, probability distribution, and energy consumption,
are just to make n� 3 in formulas (15)− (23). We will not go
into details here, so what are the biological functions of
cooperative binding of repressors? In the third part of the
paper, the explanation is given based on the numerical
results.

2.5. Case 4:Dual PromotionModel. Research [27] shows that
the promoter will be activated by multiple transcription
factors and how does the cooperation of these activators
affect gene expression? We will give the answer from the
perspective of favorable gene expression and energy saving.
Here, we take the cooperative binding of two activators (dual
promotion) as an example, as shown in Figure 4(b), where
konp is the binding rate, koff

p is the dissociation rate, η1 and η2
are the transcription rates, where η2 � f × η1, f is the en-
hancement factor, Ω is the degree of cooperative binding,
according to the experimental data [31], Ω � 1 represents
independent binding, and Ω � 0.1 represents cooperation
binding.

Figure 4(b) is the special case of Figure 3(b), so some
indexes of this system, such as mean, variance, noise, Fano
factor, probability distribution, and energy consumption,
are just to make n� 3 in formulas (24)− (31). We will not go

into details here, so what are the biological functions of
cooperative binding of activators? In the third part of the
paper, the explanation is given based on the numerical
results.

3. Numerical Results

In principle, the above analysis formula shows how different
promoter structures affect gene expression (including
mRNA distribution, average expression level, noise in-
tensity, Fano factor, and free energy consumption), but these
results are implicit and not direct. Here, we conduct nu-
merical simulation to give intuitive results. Next, let us use
the numerical value to see how the multistates of the pro-
moter affect the free energy consumption and the signifi-
cance of cooperative binding.

3.1. Free Energy Consumption of Multistate Promoters and Its
Effect on Gene Expression. Promoter structure is complex.
Promoter regulation involves many biochemical processes
and interactions, such as splicing, chromatin remodeling,
DNA methylation, nucleosome occupation, TATA box
strength, transcription factor concentration, binding site
number, and lncRNA regulation. We map this phenomenon
into a multistate promoter model. From the perspective of
evolutionism, organisms will choose the most favorable
direction for their survival and development to evolve. What
is the reason why the promoter structure of eukaryotes is
much more complex than that of prokaryotes? We will give
some explanation from the perspective of free energy
consumption.

In Figure 3(a) of the multi-OFF promoter model, we set
the transcription rate as μ � 33, the degradation rate as
δ � 1, and the switching rate between promoter states as
λ01 � 0.27, λ10 � 0.23, λ12 � 0.27, λ21 � 0.23, λ23 � 0.27,

λ32 � 0.23, λn0 � 0.27, λ0n � 0.23. ,ese parameters are all
from the experimental data [31]. In Figure 3(b) of the multi-
ON promoter model, we set the transcription rates
asμ1 � 33, μ2 � 43, μ3 � 53, μ4 � 63, μ5 � 73, the degrada-
tion rate as δ � 1, and the switching rate between promoter
states as c01 � 0.27, c10 � 0.23, c12 � 0.27, c21 � 0.23, c23 �

0.27, c32 � 0.23, cn0 � 0.27, c0n � 0.23. ,ese parameters are
all from the experimental data [31]. Note that the switching
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rates of promoters will be affected by various factors and will
change at any time. In this section, we focus on the influence
of multiple promoter states on gene expression, so we think
that the switching rates of promoters are the same, only
considering the influence of multiple states.

According to the results shown in Figure 5, if the number
of ON states increases, then the mean RNA level will in-
crease, and the noise and Fano factor decrease, while if OFF
states increases, then the mean RNA level will decrease and
the noise increases, but Fano factor decreases. ,at is, no
matter multi-ON model or multi-OFF model, as long as the
promoter state increases, the Fano factor will decrease ac-
cordingly. Research [31] shows that Fano factor affects the
cell variability, and smaller Fano factor can reduce the
variability of cells, so we think that the multipromoter states
can reduce the variability of cells.

According to the results shown in Figure 5, we can see
that, from the total energy of the system, no matter the
multi-ON model or the multi-OFF model, the more the
promoter states are, the lower the free energy con-
sumption is. Maybe this can explain why organisms
choose complex promoters from another perspective.
However, for average energy consumption (defined as the
total energy consumption of the system divided by the
mean of mRNA, i.e., the average energy required to
produce an mRNA), the multi-ON model can reduce the
average energy consumption, but the multi-OFF model
can increase the average energy consumption. We all
know that multi-OFF promoter states can result in the
bursty generation of mRNA, while bursty gene expression
often leads to phenotypic diversity, which makes organ-
isms more adaptable to the environment. In other words,
multi-OFF model makes the average energy consumption
of the system increase, but it is accompanied by the re-
alization of biological functions.

3.2. Free Energy Consumption of Dual Repression or Pro-
motion and Its Effect on Gene Expression. Researches
[27, 31, 38, 39] show that the promoter will be regulated by
multiple transcription factors. ,ese transcription factors
are either suppressors or activators, and many transcription
factors often cooperate with each other, so what are the
benefits of the cooperation of these enzymes for gene ex-
pression? In this section, we analyze its biological function
through numerical results from the perspective of favorable
for gene expression and free energy consumption.

In Figure 3(a) of the dual repression promoter model, we
set the transcription rate as μ � 33, the degradation rate as
δ � 1, the binding rate of transcription factors as konR � 0.27,
and the dissociation rate of transcription factors as
koff

R � 0.23; these parameters are all from the experimental
data [27, 38, 39]. According to the results shown in Figure 6,
the cooperative binding of dual repression (Ω � 0.013
represents cooperative binding, green line) can reduce the
total free energy consumption but increase the average free
energy consumption compared with the independent
binding (Ω � 1 represents independent binding, red line).
And the cooperative binding of double suppressors can
significantly reduce the mean value but increase the noise
and Fano factor.

In Figure 4(b) of the dual promotion model, we set the
transcription rates as η1 � 33, η2 � 33 × f, wheref � 11, the
degradation rate as δ � 1, the binding rate of transcription
factors as kon

p � 0.27, and the dissociation rate of tran-
scription factors as koff

p � 0.23; these parameters are all from
the experimental data [27, 38, 39]. From Figure 7, we observe
that the cooperative binding of double activators (Ω � 0.1
for cooperative binding, yellow line) can reduce the total
energy consumption and increase the average energy con-
sumption compared with the independent binding (Ω � 1
for independent binding, red line). And the cooperative
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Figure 4: (a) Schematic diagram for dual repression structure. kon
R represents binding rate, koffR represents dissociation rate, μ represents

transcription rate, Ω represents cooperation binding degree, Ω � 1 represents independent binding, and Ω � 0.013 represents cooperation
binding. (b) Schematic diagram for dual promotion structure. konR represents binding rate, koffR represents dissociation rate, η1 and η2
represent transcription rates, where η2 � f × η1, f is the enhancement factor, Ω represents cooperation binding degree, Ω � 1 represents
independent binding, and Ω � 0.1 represents cooperation binding.
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Figure 6: Free energy consumption of dual repression and its effect on gene expression (mean, noise, and Fano factor); parameter values are
set as konR � 0.27, koffR � 0.23, and μ � 33.
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Figure 5: Effect of promoter’s multiple states on energy consumption and gene expression (mean, noise, and Fano factor). In all the cases,
the rates of activator or inhibitor association and dissociation are set as 0.27 and 0.23; that is, the switch rates of the promoter states are set as
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μ1 � 33, μ2 � 43, μ3 � 53, μ4 � 63, μ5 � 73, and degradation rate as δ � 1.
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binding of double activators can significantly increase the
mean value, but the noise and Fano factor also increase.

From Figures 6 and 7, we can conclude that the co-
operative binding can amplify the effect; that is to say, the
cooperative binding of a double suppressor can make the
inhibition effect stronger, while the cooperative binding of
double activator can make the promotion effect stronger,
which can be seen from the mean comparison chart. No
matter the kind of cooperative binding, cooperative binding
can always reduce the total free energy consumption and
increase the value of noise and Fano factor; in other words,
cooperative binding can reduce the free energy consumption
and increase the risk of cell mutation.

4. Discussions

All living organisms not only have the ability to collect
information about their environment but also adjust their
internal physiological states in response to environmental
changes. ,is common property also includes single cells’
ability to respond to various possible changes in their en-
vironment by regulating their gene expression patterns. As
a matter of fact, much of this regulation occurs at the
transcription initiation level and is mediated by physical or
chemical interactions between TFs and DNA sites, leading to
many transcriptionally active and inactive states that form

complex promoter structure. In addition, in prokaryotic and
eukaryotic cells, the association and dissociation of most
regulatory molecules (e.g., TFs) involve cooperation and
competition with the other regulatory molecules bound to
the DNA sites (or the promoter). Many important biological
events occurring in gene expression such as DNA looping,
chromatin open/closed state, and DNA methylation are also
important factors impacting gene expression and are
influenced by the regulatory molecules present on the
promoter in a dynamic, highly combinatorial, and possibly
energy-dependent manner. ,e combination of all these
aspects also takes place in RNA polymerase recruitment and
provides the promoter with various possible levels of
transcriptional competency, far from the binary vision of all-
or-nothing active and inactive genes.

In this paper, we have analyzed the dynamics of a single-
gene promoter with an arbitrarily complex structure, focusing
on the calculation of energetic cost (quantified by the energy
consumption rate). Importantly, we have developed an ana-
lytical yet effective method to free energy consumed in gene
transcription, which not only can greatly reduce computational
complexity but also can provide an intuitive understanding of
free energy dissipation in gene transcription. In particular, the
derived formulas for the calculation of the energy consumption
rate provide useful information on the global behavior of the
underlying gene system.
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Although our calculation framework is general, we do
not consider the effect of feedback regulation on promoter
kinetics and gene expression. However, feedback regulation
is ubiquitous in gene regulatory networks. In our case, this
corresponds to the case that every component of the pro-
moter matrix describing promoter kinetics is a function of
the system’s state. Correspondingly, the gene promoter may
exhibit more complex behavior. How free energy con-
sumption is calculated and the mechanism of how energy
consumption affects gene expression remain unexplored. It
would not be difficult to extend the computational method
for free energy consumption proposed in this paper to the
case of feedback regulation.

Finally, modern system biology has set gene networks to
the front of the stage, expecting complexity arising from the
interactions among many genes. Currently, it seems that
more attention should be paid to single nodes of these
networks since spontaneous stochastic kinetics of the pro-
moters are an unneglectable, considerable source of com-
plexity. ,e connection between network and expression
behaviors is worth further study from the viewpoint of
energy consumption.

Appendixes

A. The General Theory of Entropy
Generation Rate

For aMarkovian biochemical reaction network, let W(η′ | η)

represent the transition rate for state η to state η′ in state
space, and let P(η, t) be the probability that the system is in

state η at time t. ,en, the corresponding chemical master
equation takes the form

z

zt
P(η; t) � 

η′
J η′

 η, t , (A.1)

where

J η′
 η, t  � W η′

 η P η′, t(  − W η | η′( P(η, t),

(A.1a)

is the probability flow. Using this flow, if we define the
entropy flux rate as

Φ(t) � − 

η,η′
J η′

 η, t logW η′
 η ,

(A.2)

then the generation rate of the entropy is given by

Π(t) � − 

η,η′
J η′

 η, t log W η′
 η P(η; t) .

(A.3)

In fact, according to the definition of Shannon entropy,
we know that the system’s entropy is
S(t) � − ηP(η; t)logP(η; t) (which should be rewritten as
the form of integral if η is a continuous variable). ,e de-
rivative of S(t) with regard to t yields

dS

dt
� − 

η
[logP(η; t) + 1]

z

zt
P(η; t). (A.4)

Since (z/zt)P(η; t) � η′J(η′ | η, t), we have

dS

dt
� − 

η,η′
[logP(η; t) + 1]J η′

 η, t  � − 

η,η′
J η′

 η, t logP(η; t) − 

η,η′
J η′

 η, t . (A.5)

Using Φ � − η,η′J(η′ | η, t)logW(η′ | η), we can derive

dS

dt
� − 

η,η′
J η′

 η, t  log P(η; t)W η′
 η   + 1  − Φ.

(A.6)

Note that



η,η′
J η′

 η, t  � 

η,η′
P η′; t( W η | η′(  − P(η; t)W η′

 η   � 0.

(A.7)

Since (dS/dt) � Π − Φ, we thus prove equation (A 3).

B. Entropy Generation Rate Theory
Corresponding to Fokker-Planck Equation

Consider the following Fokker-Planck equation:

zP(x; t)

zt
� − 

n

i�1

z

zxi

μi(x, t)P(x; t)  +
1
2



n

i,j�1

z
2

zxizxj

Dij(x, t)P(x; t) .

(B.1)

,e entropy of the system is

S(t) � −  P(x; t)lnP(x; t)dx. (B.2)

Differentiating both sides with regard to time t yields

d
dt

S(t) � − [1 + lnP(x; t)]
z

zt
P(x; t)dx. (B.3)

Note that equation (B.1) may be rewritten as

zP(x; t)

zt
� −

zJ

zx
, (B.4)

where
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J(x, t) � 
n

i�1
μi(x, t)P(x, t) −

1
2



n

j�1

z

zxj

Dij(x, t)P(x, t) ⎡⎢⎢⎣ ⎤⎥⎥⎦.

(B.5)

Using equation (B.4), it follows from equation (B.3) that

d
dt

S(t) � [1 + lnP(x; t)]
zJ(x, t)

zx
dx � −  J(x, t)

z ln P(x; t)

zx
dx.

(B.6)

,us,

d
dt

S(t) � − Φ +Π ≡ − 
n

i�1
 μi(x, t)

zP(x, t)

zxi

dxi +
1
2



n

i�1
 

n

j�1

z

zxj

Dij(x, t)P(x, t) 
z ln P(x, t)

zxi

dxi, (B.7)

where Π � 1/2
n
i�1  

n
j�1(z/zxj) [Dij(x, t)P(x, t)]((z ln

P(x, t))/zxi)dxi represents the generation rate of the en-
tropy and Φ � − 

n
i�1  μi(x, t)(zP(x, t)/zxi)dxi represents

the entropy flux rate.
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[35] T. Tomé and M. J. de Oliveira, “Entropy production in ir-
reversible systems described by a Fokker-Planck equation,”
Physical Review E, vol. 82, no. 2, Article ID 021120, 2010.

[36] G. A. Casas, F. D. Nobre, and E. M. F. Curado, “Entropy
production and nonlinear Fokker-Planck equations,” Physical
Review E, vol. 86, no. 6, Article ID 061136, 2012.

[37] H. Qian, “Phosphorylation energy hypothesis: open chemical
systems and their biological functions,” Annual Review of
Physical Chemistry, vol. 58, no. 1, pp. 113–142, 2007.

[38] N. E. Buchler, U. Gerland, and T. Hwa, “On schemes of
combinatorial transcription logic,” Proceedings of the Na-
tional Academy of Sciences, vol. 100, no. 9, pp. 5135–5141,
2003.

[39] M. L. Simpson, C. D. Cox, and G. S. Sayler, “Frequency
domain analysis of noise in autoregulated gene circuits,”

Proceedings of the National Academy of Sciences, vol. 100,
no. 8, pp. 4551–4556, 2003.

[40] F. Jiao and C. Zhu, “Regulation of gene activation by com-
petitive cross talking pathways,” Biophysical Journal, vol. 119,
pp. 1–11, 2020.

14 Complexity



Research Article
MTAD-TF: Multivariate Time Series Anomaly Detection
Using the Combination of Temporal Pattern and Feature Pattern

Q. He ,1 Y. J. Zheng ,1 C.L. Zhang ,1,2 and H. Y. Wang 1

1School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture,
Beijing 100044, China

Correspondence should be addressed to Q. He; heqiang@bucea.edu.cn

Received 26 August 2020; Revised 23 September 2020; Accepted 16 October 2020; Published 29 October 2020

Academic Editor: Tongqian Zhang

Copyright © 2020 Q. He et al. )is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, multivariate time series anomaly detection has made great progress in many fields and occupied an important position.
)e common limitation of many related studies is that there is only temporal pattern without capturing the relationship between
variables and the loss of information leads to false warnings. Our article proposes an unsupervised multivariate time series
anomaly detection. In the prediction part, multiscale convolution and graph attention network are mainly used to capture
information in temporal pattern with feature pattern. )e threshold selection part uses the root mean square error between the
predicted value and the actual value to perform extreme value analysis to obtain the threshold. Finally, the model in this paper
outperforms other latest models on actual datasets.

1. Introduction

Anomaly detection of time series data has always been a hot
issue in academia and industry. )e detection of abnormal
points and the location of abnormal areas can provide
important information at critical moments, so that people
can intervene with abnormal events in a targeted way to
prevent or eliminate abnormal events. Anomaly detection of
time series data has attracted people’s attention in industry,
finance, military, medical treatment, insurance, robotics,
multiagent, network security, IOT, complex biological
systems, etc. [1, 2].

)e anomaly detection of time series is to detect points
with outliers, oscillations, or other abnormal conditions. In
general, the proportion of anomalies in the overall time
series is very low, so people hope to successfully capture the
outliers by learning the distribution of original data or other
characteristics through the algorithm. Univariate anomaly
detection is carried out on the time series with only one
feature. Since there is only one dimension of data, many
traditional filtering algorithms can be used, that is, spectral
residual algorithm [3]. Multivariate time series anomaly

detection refers to the anomaly detection of time series data
with multiple sequences. )is kind of problem is extended
based on univariate time series anomaly detection. )e
occurrence of anomalies in multivariate time series data is
often determined by multiple features, and the individual
analysis of each feature cannot accurately locate the
anomalies. Complex biological systems generally have this
characteristic. For example, time series data from an epi-
demic model may include the number of patients, the
number of healthy people, infection rate and the immuni-
zation rate, etc.)e severity of epidemic cannot be judged by
partial characteristics. )erefore, a more reasonable method
is to comprehensively analyse multiple variables to identify
anomalies.

At present, significant progress has been made in the
study of MTAD (multivariate time series anomaly detection)
in deep learning. For example, Malhotra et al. [4] proposed
an encoder-decoder network based on LSTM, which
modelled the reconstruction probability of “normal” time
series and used reconstruction errors to detect anomalies in
multiple sensors. Hundman et al. [5] used the long- and
short-time memory network (LSTM) to detect the spacecraft
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multivariate time series based on prediction loss. Ding et al.
[6] proposed RADM, a real-time anomaly detection algo-
rithm based on Hierarchical Temporal Memory (HTM) and
Bayesian Network (BN), which improved the performance
of real-time anomaly detection. However, most of the
proposed methods often rely on the RNN (Recurrent Neural
Network) learning properties and distribution in temporal
pattern; relationship between sequences is still unutilized.
)erefore, we believe that new latent dependencies can be
exploited from feature pattern, which is more conductive to
anomaly detection. We propose a method combination of
temporal pattern and feature pattern.

Our main contribution is as follows:

(1) To the best of our knowledge, this is the first study on
multivariate time series anomaly detection generally
from a graph-based perspective with graph attention
network in forecast

(2) We propose a new model that combines temporal
with feature pattern, capturing more latent rela-
tionship between variables

(3) Experimental results show that our method out-
performs the state-of-the-art methods on 3
benchmarks

)e arrangement of this article is as follows. We give
related work on time series anomaly detection in Section 2.
In Section 3, the prerequisite knowledge of GATand GRU in
the model is introduced. In Section 4, the proposed method
is introduced in detail. )e fifth section conducts experi-
ments and analysis. Finally, we summarize the full text.

2. Related Work

Anomaly detection is also known as novelty detection,
outlier detection, or event detection in other related fields
[7]. Time series anomaly detection is one of the most
concerning problems. It can be classified into supervised,
semisupervised, and unsupervised abnormal detection
according to whether labels are used during training. Su-
pervised learning method [8] requires labelled data for
training and can only identify known abnormal types [9], so
its application scope is limited. Semisupervised method is a
kind of learning method combining supervised learning and
unsupervised learning. Semisupervised method uses a large
amount of untagged data as well as tagged data, rarely
studied in the field of TSAD (Time Series Anomaly De-
tection). )erefore, research of TSAD focuses on the un-
supervised problem.

According to the number of sequences in the data, the
problem can be divided into univariate and multivariate
time series anomaly detection. Univariate time series
anomaly detection [3, 10, 11] only considers whether the
variables conforms to long-term pattern; when there is a big
difference between data value and the overall distribution, it
is regarded as an outlier instance. )e traditional method in
univariate time series anomaly detection is to use mainly
hand-made features to model patterns of normal and ab-
normal events [12]. For example, there are SVD [13], wavelet

analysis [9], ARIMA [14], and so on. Besides, Netflix released
a document based on robust Principal Component Analysis
[15] and received a good response. Twitter also published a
method which uses the seasonal hybrid extreme study de-
viation test (S-H-ESD) [16]. In addition, the use of neural
networks for detection has also made great progress [17].
Multivariable problems have multiple variables on each
timestamp [18]. )e existing multivariate time series
anomaly detection methods can be divided into two cate-
gories: (1) univariate based anomaly detection [15], where
each sequence is monitored separately by univariate algo-
rithm and the results are summarized to give the final
judgment, and (2) direct anomaly detection [19], where
multiple features are considered at the same time for al-
gorithm analysis. Let us focus on the second type of ap-
proach. Zong et al. [20] proposed a model which uses deep
autoencoder to generate low dimensional data, represent the
reconstruction errors of each input data point, and input
into a Gaussian mixture model (GMM) for multivariable
anomaly detection. LSTM-VAE algorithm [7] is a LSTM
network based on encoder-decoder to reconstruct the error
of time series and use the reconstruction error to detect the
abnormal situation of some sensors. LSTM-NDT [5] is an
unsupervised algorithm without parameter threshold se-
lection. )e objective of this paper is to establish an anomaly
detection system to monitor the data sent back by the
spacecraft which is marked by experts in related fields.

Graph neural network is very popular in recent years
which have enjoyed great progress in dealing with spatial
dependencies among entities in a network. Gugulothu et al.
[21] combined nontime pattern reduction technology and
periodic automatic encoder through the end-to-end learning
framework for time series modelling. OmniAnomaly [22]
proposes a stochastic recurrent neural network that captures
the normal pattern of multiple variable through modelling
data distribution with stochastic variables.

3. Preliminaries

3.1.ProblemStatement. When analysing real-world datasets,
a common requirement is to find out those instances that
can be considered as outliers, which are significantly dif-
ferent from most other points. )e goal of the anomaly
detection task is to be data-driven to find abnormal of all
samples. In our work, we are concerned about multivariable
data X � x1, x2, . . . , xN  ∈ Rm∗n; the value at time i is
xi ∈ Rm, i� 1, 2, . . ., n.mmeans there arem variables and n
is the length of data. Our target is to determine whether xt is
an abnormal point. )is is a time series problem; we have a
huge amount of data; historical data is helpful for under-
standing the current moment xt. To efficiently use and learn
the information of X, sliding window w:
xt−w, xt−w+1, . . . , xt−1 used to predict xt which would be
considered to be normal. )e difference between the pre-
dicted xt with the ground truth will be put into the threshold
selection module; the larger the difference, the greater the
possibility of xt being abnormal; when such difference
exceeds the threshold we set, we consider it to be an
abnormality.
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3.2. Basics of GAT and GRU

3.2.1. GAT (Graph Attention Network). We know that
many data are in Euclidean space. )e most significant
characteristic of data in Euclidean space is that it has a
regular spatial structure. For example, the picture is a
regular square grid, the voice data is a one-dimensional
sequence, and so on. )ese data can be represented by a
one-dimensional or two-dimensional matrix. However,
many data in real life do not have a regular spatial
structure, that is, data in non-Euclidean space, such as
abstract graphs of electronic transactions, recommenda-
tion systems, social networks, and so on; each node in the
graph is related to other nodes.)e connection is not fixed.
)erefore, people use graph neural networks to model data
in non-Euclidean spaces. In recent years, due to the strong
expressiveness of graph structure, the research of analysing
graphs with machine learning methods has received more
and more attention. Graph neural network (GNN) is a
method of processing graph pattern information based on
deep learning. Due to its better performance and inter-
pretability, GNN has become a widely used graph analysis
method. Commonly used graph neural networks include
Graph convolution networks, graph attention networks,
and graph autoencoder. Among them, GAT [23] proposes
to utilize the attention mechanism to add weighted fea-
tures of neighbouring nodes. )e weight of neighbouring
node features completely depends on the node, inde-
pendent of the graph structure. In our model, to find the
latent relationship between variables, we use GAT to
calculate the correlation between nodes. )e specific de-
tails are explained in Section 4.3.

3.2.2. GRU (Gated Recurrent Unit). Recurrent neural net-
work (RNN) is a kind of neural network that captures the
dynamic information in serialized data through the periodic
connection of nodes in the hidden layer. It is different from
feedforward neural networks; RNN can save the state of a
context and even store, learn and express relevant infor-
mation in any long context window. No longer limited to the
spatial boundaries of traditional neural networks, it can be
extended in time series. Intuitively speaking, there is an edge
between the nodes of the hidden layer of this time and the
hidden layer of the next moment. But RNN’s most signif-
icant drawback is that it cannot learn to preserve and exploit
older information, namely, gradient vanishing and gradient
explosion. Sepp Hochreiter and Jurgen Schmidhuber pro-
posed long- and short-term memory (LSTM) in 1997 [24].
LSTM is a kind of periodic neural network, which alleviates
the problem of RNN to some extent. Practice shows that this
method is very suitable for processing time series data. In
fact, the LSTM algorithm has evolved many variations in
recent years. Rafal Jozefowicz et al. of Google conducted a
comprehensive architecture search to evaluate over 10,000
different RNN/LSTM architectures [25] and as a result we
could not find an architecture with better performance than
the GRU, and, except for the language model, GRU works
better than LSTM in other application scenarios. GRU
(Gated Recurrent Unit) is a variant of LSTM, which has
fewer parameters and is more efficient than LSTM. Hence,
our model chooses GRU structure instead of LSTM.

Cho et al. [26] proposed a Gated Recurrent Unit (GRU)
to enable each recursive unit to adaptively capture the de-
pendencies of different time scales. Like classical recurrent
neural networks, GRU are a chain of neural units too. Its
structure is expressed mathematically as follows:

rt � σ Wr · ht−p, xt  ,

zt � σ Wz · ht−p, xt  ,

ht � tanh Wh
· rt∗ ht−p, xt , ht � 1 − zt( ∗ ht−p + zt∗ ht, yts � σ Wo · ht( .

(1)

xt and ht−1 represent the input at the current time and the
output ht � tanh(Wh

· [rt ∗ ht−p, xt]) at the next time.
Where rt is a set of reset gates, it is used to control howmuch
information about previous state is forgotten. )e smaller
the value of reset gate, the more the past information is
discarded. zt is update gates. )e update gate is used to
control the degree howmuch information from the previous
moment is brought into the current state. )e larger the
value is, the more the information from the current needs to
remain and the less the information from the previous
neuron can be retained. (,) represents two vectors concat-
enate, and ∗ is an element-wise multiplication.

σ is the commonly used sigmoid function which controls
numbers between 0 and 1. We are accustomed to using tanh
function (hyperbolic tangent function) as hidden update ac-
tivation function:

sigmoid: y �
1

1 + e
− x

( 
,

tanh : y �
e

x
− e

− x
( 

e
x

+ e
−x

( 
.

(2)

4. Proposed Model

4.1. Model Architecture. As demonstrated in Figure 1, our
framework consists of three core components: the temporal
convolution model, the graph attention model, and
threshold select model. )e result obtained in the first two
models is the forecasting of our MTAD-TF. )e root mean
square error (RMSE) between the forecasted result and the
real value is input to the error threshold selection model. If
the error exceeds the threshold which we set through POT, it
is considered that an anomaly occurs at the moment.

Complexity 3



)e explanation of the forecasting model is as follows:

(i) Temporal convolution component: we propose a
temporal convolution model to capture temporal
patterns by multiscale 1D convolutions, which can
find temporal patterns with multiple periods

(ii) Graph attention component: the graph attention
network is used in the feature dimension; the in-
terrelation between variables is beneficial to forecast
the time series

4.2. Data Preprocessing. For a multivariable time series, the
dimensions of different variables are quite different. We
cannot allow these differences to affect subsequent predic-
tion and threshold selection. )erefore, we preprocess the
data with themaximum-minimumnormalizationmethod in
both training subsets with testing subsets:

xt �
xt − minXtraining

maxXtraining − minXtraining
. (3)

4.3. ForecastingModel. )e overview of the proposed model
is shown in Figure 2. First, for the sake of alleviating the
possible noise effects of the original data X, 1D convolution
operation is carried out to smooth the data:

XCNN � RELU WCNN ∗X + bCNN( ,

RELU � max(0, x).
(4)

)e result of convolution XCNN is then fed into three
identical blocks which are shown as green box. Each block
has temporal convolution component in series with graph
attention networks.

4.3.1. Temporal Convolution Component. )e temporal
convolution module captures sequential patterns of time series
data in temporal dimension through 1D convolutional filters to
come up with a temporal convolution module that is able to
both discover temporal patterns with various ranges and
handle long sequences, that is, using multiscale convolution
filters [27]. However, how to choose the correct filter size is a
challenging problem. To understand convolution in terms of
communication theory and image processing, the convolution
kernel size is generally set to odd [28]. )e reasons are as
follows: compared with even numbers, odd numbers have a
center point and are more sensitive to edges and lines, which
can extract edge information more effectively and avoid the

deviation of position information. In addition, the odd number
can ensure that the two sides of the image are symmetrical to
each other when padding, so that size of the output image is the
same as size of the input. )erefore, as shown in Figure 3, we
select filters sizes of 1× 3, 1× 5, 1× 7, and 1× 9which consist of
temporal inception layer. )e combination of these filters of
different sizes can contain some periodic temporal signals, such
as data of period 12. )e model can start the input layer from
the first temporal convolution layer through the 1× 5 and then
from the second temporal convolution layer through the 1× 7.
)e selection of small convolution kernel can not only reduce
the parameters but also add more nonlinear mappings to
improve the robustness. Finally, we patch the results of dif-
ferent convolution, respectively, to restore the previous data
size. )e input of temporal convolution component in block 2
is the average value of GAT’s output and XCNN. TC com-
ponent in block 3 is the average value of block 2’s input
(include XCNN) and block 2’s output.

4.3.2. Graph Attention Network Component. Multivariate
time series anomaly detection is a challenge due to the
increase of variable and data volume. However, more var-
iable also means more information which is brought. It is
actually very critical for anomaly detection. Previous models
did not pay attention to feature pattern, but only focus on
temporal pattern. )erefore, we combine temporal pattern
and feature pattern in the model. Specially, each block has a
temporal convolution component that connects to a GAT.
In GAT, each node in the graph can be assigned different
weights based on the characteristics of its neighbor nodes.
And it does not require costly matrix operations or rely on a
preconceived graph structure.

)e input to the graph attention layer is a set of vectors
for a node: v1, v2, . . . , vn , where vi have the same di-
mension with xi. )e output of each node calculated by the
GAT layer is shown as follows:

hi � σ 
L

j�1
αijvj

⎛⎝ ⎞⎠, (5)

eij � Leaky RELU W · vi ⊕ vj  
⊤

. (6)

Leaky RELU: yi �

xi, if xi ≥ 0,

xi

ai

, if xi ≤ 0,

⎧⎪⎪⎨

⎪⎪⎩
ai ∈ (1,∞), (7)

Feature 

Multivariable time
series data

Forecasting resultsTemporal 

Threshold selecting

Figure 1: Overview of MTAD-TF.
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αij �
exp eij 


L
l�1 exp eik( 

, (8)

where hi is the output of node xi with the same dimension.
αij is the correlation degree between xi and xj like (8) is
calculated: ⊕ is the result of concatenate of two nodes, and w

is the parameters obtained by learning. Leaky RELU is a
nonlinear activation function as shown in (7). L denotes the
number of adjacent points to xi.

)e results of each GATand XCNN (after 1D convolution
of original input X) are the data of the same dimension,
which are three-dimensional tensor, and each dimension is
batch size, window size, and the number of variables, re-
spectively. )e output of GATwhich is in three blocks and X
are concatenated in the third dimension of tensor, which

thickens the temporal information of data and is conducive
to prediction from GRU. Finally, the results of the fore-
casting part are obtained by carrying on the three full
connection layers.

4.4. 4reshold Selection Model. )e loss function of the
prediction model selects root mean square error (RMSE) is
as follows:

Lossforecasting(t) �

���



m

i�1




yt,i − xt,i)
2
, (9)

where yt,i is the prediction value of the i-th feature at time t
and xt,i is the real value at the same time.)e RMSE between
them denotes loss at time t.

)e test set was input to the trained forecasting model,
and the RMS loss between the predicted value and the true
value of each observation point in the test set was recorded as
l1, l2, . . . , lQ  ∈ RQ and utilizes POT (peaks over threshold)
model of EVT (extreme value theory) to select the threshold
value of the subsequence.

Extreme value theory is a statistical theory to find the law
of extreme values in a sequence. It is generally believed that
extreme values are the outliers to be found in the problem of
anomaly detection, and they are located at the tail of the
distribution in most cases. )e advantage of the extreme
value theory is that it does not need to assume the data
distribution and the threshold can be set automatically
through parameter selection. )e second theorem POT
shows that samples larger than threshold are subject to

Inputs

Conv

TC
module

GAT
module

TC
module

GAT
module

TC
module

GAT
module

Residual connection

GRU

3FC

Outputs
TC

module

Multiscale convolution
1D filter = 3, 5, 7, 9,
Padding = 1, 2, 3, 4

Concatenate

Block 1 Block 2 Block 3

Figure 2: Forecasting model.

1 × 3 1 × 5 1 × 7 1 × 9

Padding = 1 Padding = 2 Padding = 3 Padding = 4

Average

Figure 3: Temporal convolution component.
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generalized Pareto distribution (GPD). )erefore, select the
threshold th through POT:

Fth � P(L − th> l|L> th) ∼ 1 +
cl

β
 

1/c

, (10)

where th is the initial threshold. c denotes shape parameters
in GPD and β is any value in scale parameters
L � l1, l2, . . . , lQ . L-th represents the part above the
threshold. th is the quantile obtained by experience. Similar
to literature [10], we utilize maximum likelihood estimation
(MLE) for parameter estimation of c and β. )e threshold
thF is calculated according to the following formula:

thF ≃ th −
β
c

qQ

Qth
 

−c

−1.⎛⎝ (11)

q is the proportion of L > th and Q is the number of
observed values. Qth denotes the number of L > th. To
select the threshold value of POT, the process of pa-
rameter adjustment is needed.

5. Experiment and Analysis

5.1. Benchmarks andEvaluationMetrics. Regarding datasets,
we use three real-world datasets to verify the effectiveness of
MTAD-TF, namely, MSL (Mars Science Laboratory) rover,
SMAP (Soil Moisture Active Passive) satellite, and SMD.

MSL and SMAP are two public datasets of NASA’s
spacecraft [29].

SMD [22] is five weeks of server data in a large Internet
company, which has been published on GitHub. SMD is
divided into two parts with the same data size. )e first part
is the training set and the second part is the testing set. )e
abnormal data on the testing set has been marked by experts
in related fields. Among them, the training set and the
testing set contain 28 groups, which need to be trained and
tested separately.)at is, the model trained on the first group
of data in the training set is tested by the same group of the
testing set. )e final score is the average of 28 groups.

)e details of the three datasets are given in Table 1,
including the number of variables, size of the training set and
testing set, proportion of abnormal samples in the testing set,
and partial variable names.

Regarding metrics, we followed the typical evaluation
metrics like other anomaly detection models: precision,
recall, and F1 score. )ey are defined as follows:

precision(P) �
TP

TP + FP
,

recall(R) �
TP

(TP + FN)
,

F1 �
2 × precision × recall
(precision + recall)

.

(12)

Among them, TP is true positives (correctly detected
anomaly), FP represents false positives (falsely detected
anomaly), and FN refers to false negative (falsely detected
normally). )e higher the values of the above three indi-
cators, the stronger the robustness of the model.

5.2. Baselines for Comparison. )is section will show the
comparison results with the other 4 baselines on 3 bench-
marks. )e compared models include LSTM-NDT [5],
LSTM-VAE [7], DAGMM [20], and OmniAnomaly [22]:

(i) LSTM-NDT: LSTM is used for anomaly detection of
multidimensional time series which also is a dy-
namic and unsupervised method for determining
threshold. Besides, to reduce the false positive rate
and identify false positive data, a “pruning strategy”
is proposed.

(ii) LSTM-VAE: VAE’s feedforward network uses
LSTM replacement but does not consider the de-
pendence between stochastic variables.

(iii) DAGMM: combine neural network, estimation
network, and Gaussian mixture model organically
to do unsupervised anomaly detection.

(iv) OmniAnomaly: the core idea of this paper is to learn
latent representations to capture the normal pat-
terns of multivariate time series while considering
time dependence and stochastic.

Table 2 summarizes the evaluation results of all the
baselines, which shows excellent generalization capability
and achieves the best F1 score on 4 datasets.

LSTM-NDT has a high score on SMAP, but it performs
poorly on MSL and SMD, reflecting that the model is very
sensitive to different scenarios. Our model is stable and has
excellent performance on different benchmarks.

Short-term information is also very important for multi-
variable time series. )e reason why DAGMM’s performance
is not ideal is that short-term information is not considered.
We utilize multiscale convolution, which can better adapt to
data with different periods. )is article also conducts addi-
tional ablation experiments (see Section 5.3) to compare the
effectiveness of different components in our model.

OmniAnomaly applies a stochastic model, regards
variables as stochastic variables, and then learns its distri-
bution, which has high performance on the three datasets.
)e limitation of this model is that it does not consider the
relationship between the variables.

5.3. Ablation Study. To illustrate the necessity and effec-
tiveness of core components in the forecasting part, we
conduct an ablation study on the four datasets to validate the
multiscale convolution, GAT, and GRU that contribute to
the improved outcomes of our proposed model. Firstly, we
name the MTAD-TF without different components as
follows:
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(i) w/o temporal: removing the multiscale convolution
processing in the temporal pattern, only GAT is left
in each block

(ii) w/o GAT: Removing the GATprocessing in feature
pattern, only temporal pattern is left in each block

(iii) w/o GRU: Removing GRU means XCNN and output
of three blocks are directly ingested to the FC layer

From Table 3, different components have different effect
on different benchmarks. For MSL and SMD, deletion of
GATmakes the F1 score drop the most, while SMAP is most
affected by temporal convolution component. )e score of
EEG-EYE has not decreased much, but it has reduced to
varying degrees.

5.4. Case Study. We will carry out case analysis of noise
experiment in the EEG-EYE state data and GAT in this part.

EEG- (electroencephalogram-) EYE state is from UCI,
one continuous EEG measurement with the Emotive EEG
Neuroheadset, looking for the relationship between 13 EEGs
in different positions of the human brain with the opening
and closing of human eyes. )erefore, EEG-EYE state is a
dataset that can be classified into two categories. We regard
the open-eye label as the anomaly to be searched for and
then perform anomaly detection on it.

5.4.1. Noise Experiment. To understand the antinoise ability
of the model, we carried out case analysis of noise adding
experiment. Five kinds of Gaussian white noise with mean
value of 0 and variance of {0.1, 0.2, 0.3, 0.4, 0.5} were added
into the training set, respectively. )en the trained model
was tested with the unchanged test set, and the F1 value was
obtained as shown in the blue broken line in Figure 4. As the
variance of Gaussian noise increases, the data shows a
downward trend, which conforms to our common sense.
However, it also indicates that the model is still not robust

enough and the addition of noise does not play a role in data
enhancement. )e effect of variance 0.02 is better than that
of variance 0.01. Compared with variance 0.01, the noise of
variance 0.02 increases the difficulty of network training,
prevents overfitting, and improves the generalization ability,
which can be regarded as the effect of data enhancement.

According to the verification in literature [10], it can be
known that one-dimensional convolution has the effect of
smoothing data. From another perspective, we illustrate the
function of 1D convolution with experimental scores, and
we add a contrast experiment to the above pure noise ex-
periment: noise with different variances is added to the
model with 1D convolution removed. As shown in the
orange broken line in Figure 4, compared with the score in
pure noise, the score of without convolution drops signif-
icantly, indicating that the existence of convolution can
reduce the impact of noise during data preprocessing.

5.4.2. GAT. We took out the correlation between abnormal
and normal before the abnormality from GAT, respectively,
and drew the heat map in Figure 5. )e right side of Figure 5
shows the correlation between feature 1 and features 2, 3, 4,
5, 6, 16, 17, 18, 19, 20, and 21 at normal time, while the
correlation was at abnormal time on the left. )e darker the
color block, the higher the correlation between features, and
vice versa. On the same horizontal line, the large chromatic
aberration between the left and right sides means that when
an abnormality occurs, the correlation between features has

Table 1: Dataset information.

Dataset MSL SMAP SMD
No. of attributes 55 25 38
Training subset size 58317 135183 708405
Testing subset size 73729 427617 708420
Anomaly rate (%) 10.72 13.13 4.16

Variables information
Telemetry data: computational,
radiation, temperature, power,

activities, etc.

CPU load, network usage,
memory usage, etc.

Table 2: Performance of our model and baselines.

Dataset
MSL SMAP SMD

Precision Recall F1 Precision Recall F1 Precision Recall F1
LSTM-NDT 0.5944 0.5374 0.5640 0.8965 0.8846 0.8905 0.5684 0.6438 0.6037
LSTM-VAE 0.5257 0.9546 0.6780 0.8551 0.6366 0.7298 0.7922 0.7075 0.7842
DAGMM 0.5412 0.9934 0.7007 0.5845 0.9058 0.7105 0.5835 0.9042 0.7093
OmniAnomaly 0.8867 0.9117 0.8989 0.7416 0.9776 0.8434 0.8334 0.9449 0.8857
MTAD-TF 0.9043 0.8988 0.9015 0.9779 0.8192 0.8916 0.9045 0.9048 0.8940

Table 3: Ablation study. F1 scores are reported.
MSL SMAP SMD

MTAD-TF 0.9015 0.8916 0.8940
w/o temporal 0.7238 0.6945 0.7520
w/o GAT 0.6827 0.7089 0.6373
w/o GRU 0.8174 0.7000 0.7502
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changed greatly, which can be used as a partial basis for
abnormal location. Due to the lack of information about
abnormal location in the dataset, further experimental
verification cannot be carried out. However, it can be as-
sumed that when an abnormality occurs, the correlation
between certain features is significantly different from
normal conditions.

6. Conclusions

In this paper, a new multivariate time series anomaly de-
tection framework MTAD-TF is proposed. By using the
temporal pattern and feature pattern model of multiple time

series to make joint prediction, more latent information can
be obtained than that of single pattern model. )e method is
superior to the other four baselines in the three common
datasets. In addition, this model has a good antinoise ability
and the GATmaybe can help with abnormal location. Future
workmay come from two aspects. First, attempts to combine
the prediction model with the reconstruction model may
further improve the accuracy of the model. Secondly, there is
too little information on abnormal location and it is hoped
that further abnormal location experiments can be carried
out to improve the robustness of the MTAD-TF.

Appendix

A.1. Notation X

A is batch of multivariate time series input. x is an instance of
Xm number of variables (feature) in every instance. w is the
length of X in sliding window. xi is an instance output after
data preprocessing. vi is input node representation for a
GAT layer. vi is input node representation for a GAT layer.
hi is output node representation for a GAT layer. αij is
attention score of node j to node i in a GAT layer. k0 is the
size of filter in 1D convolution. k1 is hidden dimension of the
GRU layer in forecasting component. k2 is hidden dimen-
sion of 3 fully connected layers in forecasting component.

A.2. Experimental Settings

We use the same sliding window w � 100 in SMAP and
SMD. w is for MSL and EEG-EYE state is set to 120 and 50,
respectively. )e size of filter in 1D convolution we use in all
datasets is k0 � 7. k1 � k2 �150 in all dataset except EEG-EYE
state which is 100. We use the Adam optimizer to train our
model for 100 epochs with an initial learning rate 0.001.
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One-class support vector machine (OCSVM) is one of the most popular algorithms in the one-class classification problem, but it
has one obvious disadvantage: it is sensitive to noise. In order to solve this problem, the fuzzy membership degree is introduced
into OCSVM, which makes the samples with different importance have different influences on the determination of classification
hyperplane and enhances the robustness. In this paper, a new calculation method of membership degree is proposed and
introduced into the fuzzy multiple kernel OCSVM (FMKOCSVM). *e combined kernel is used to measure the local similarity
between samples, and then, the importance of samples is determined based on the local similarity between training samples, so as
to determine the membership degree and reduce the impact of noise. *e proposed membership requires only positive data in the
calculation process, which is consistent with the training set of OCSVM. In this method, the noise has a smaller membership value,
which can reduce the negative impact of noise on the classification boundary. Simultaneously, this method of calculating
membership has a higher efficiency. *e experimental results show that FMKOCSVM based on proposed local similarity
membership is efficient and more robust to outliers than the ordinary multiple kernel OCSVMs.

1. Introduction

Anomaly detection is an important aspect of data mining. It
is used to find objects in a data set that are significantly
different from other data to achieve the purpose of pre-
venting abnormal events. At present, the application of
anomaly detection in the field of medicine and biological
systems is of great significance, and it has been successfully
applied to protein detection, [1] cancer screening, [2] and
health monitoring [3]. *e essence of anomaly detection is a
classification algorithm suitable for processing data with an
extremely imbalanced class. Complex biological systems
usually have this feature. For example, the data of an in-
fectious disease model may include characteristic data of
patients and characteristic data of nonpatients. But, in real
life, there are far more healthy people than patients. Timely
and effective detection of patients with infectious diseases is

an effective way to prevent the outbreak of infectious
diseases.

Support vector machine (SVM) [4, 5] is a classical
classification algorithm, but its performance will deteriorate
when dealing with a one-class classification problem or
distribution imbalance data. Among the solutions to one-
class classification problems, there are density estimation-
based methods and support vector-based methods. *e
method based on support vector is popular because of its
simplicity and high efficiency. *ere are two models for this
method: (1) one-class support vector machine (OCSVM) [6];
(2) support vector data description (SVDD) [7]. *e goal of
SVDD is to find a minimum hypersphere that contains all
target samples.*emain idea of OCSVM is to take the origin
of the feature space as a representative of the abnormal data
and then separate the target sample from the origin at the
maximum margin. *is paper focuses on OCSVM.
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Like SVM, OCSVM is also sensitive to noise, which is
due to the assumption that each sample has the same im-
portance or weight during training. Introducing fuzzy
membership in SVM and constructing the fuzzy support
vector machine (FSVM) [8] is one of the effective methods to
solve this problem. *e calculation methods of fuzzy
membership are mainly focused on two kinds of classifi-
cation problems [9–11]. For example, the heuristic function
derived from the centered kernel alignment is used to cal-
culate the dependency relationship between the data point
and its label to calculate the fuzzy membership [9] In [10],
the membership degree of each sample point is determined
by the lower approximation operator of a fuzzy rough set
based on Gaussian kernel. As shown in [11], entropy is used
to measure the class determinacy of samples. Samples with a
higher class determinacy are assigned to a larger fuzzy
membership. Generally, in order to improve the robustness
of OCSVM, different weights are assigned to training
samples, which are called weighted one-class support vector
machine (WOCSVM) [12–14]. WOCSVM reduces the im-
pact of noise by assigning lower weights to the noise [12]. As
shown in [14], using prior knowledge to assign different
weights to the samples, the weight is only related to the
distribution knowledge of the neighbors, which is only
determined by the k-nearest neighbors of the instance. In
recent years, there are many studies on calculating sample
weight in one-class classification problems [15–18]. As
shown in [19], membership based on fuzzy rough set theory
[20, 21] is used as a weight in OCSVM.

*e above method improves the robustness of OCSVM
to a certain extent but has some limitations. For example,
when the amount of data is too large, it [14] is too inefficient
when calculating sample weights. *e authors in [19] use
abnormal data when calculating the membership degree of
the sample. In this paper, a novel strategy is proposed to
solve the problem of poor robustness of OCSVM; that is,
membership degree is introduced into the model. Different
from the above membership calculation method, this
method only uses one category of data, which fully adapts to
the characteristics of OCSVM. *e membership calculation
method proposed is related to the local density of the data,
which is obtained by the local similarity of the training data.
We take an S-type function based on local density as a
membership function.

OCSVM uses kernel trick to solve the nonlinear sepa-
rability problem, but it also brings the problem of kernel
selection. Multiple kernel learning method [22–26] is used to
solve this problem, that is, the multiple kernel one-class
support vector machine (MKOCSVM) [27].

*e main work of this paper is as follows:

(1) *emultiple kernel learning andmembership degree
are introduced into OCSVM at the same time, and
the fuzzy multiple kernel one-class support vector
machine (FMKOCSVM) model is constructed to
solve the problem of core selection and noise
sensitivity.

(2) A novel method of membership calculation is pro-
posed, which is based on local similarity.

(3) We illustrate the effectiveness of this degree of
membership in the figure.

(4) According to the maximum similarity between the
combination kernel and the ideal kernel, the weight
coefficients of the multiple kernels are determined.

(5) It is proved by experiments that the method pro-
posed in this paper performs better than the method
of fuzzy membership and the model without
membership.

*e combined kernel more fully characterizes the data
than the single kernel. Using multiple kernel functions at the
same time can solve the difficult problem of selecting the
kernel function and its parameters, and this method can be
applied to different sample information.

*e rest of this paper is organized as follows: Section 2
introduces the knowledge of OCSVM, MKOCSVM, and
FMKOCSVM. *e formulation and algorithm of our
FMKOCSVM based on local similarity are detailed in
Section 3; and Section 4 reports the experimental results,
followed by the conclusion in Section 5.

2. Related Information

2.1. One-Class Support Vector Machine. Compared with the
SVM, OCSVM is suitable for dealing with the problem of
data category imbalance or one-class classification.*emain
idea is to first map the data from the original space to the
feature space through nonlinear mapping and then take the
origin of the feature space as the representative of outliers to
find an optimal classification hyperplane in the feature
space, in which the image of normal data can be separated
from the origin by the maximum margin. A graphical il-
lustration is shown in Figure 1. Figure 1(a) shows the de-
scription of the classification in the original space.
Figure 1(b) shows the description of the classification in the
feature space.

Supposed the training samples x1, x2, . . . , xl  ∈ Rn (n is
the dimension of xi ), where l is the number of training
samples. ϕ(·) is a function that maps samples to feature
spaces. Let ω, ρ denote normal vector and bias term for
classification hyperplane in the feature space. *e classifi-
cation hyperplane is expressed as ωTϕ(x) − ρ � 0.

*e goal is to maximize the distance between the clas-
sification hyperplane and origin. *en, OCSVM needs to
solve the following convex programming [6]:

min
w,ρ,ξ

1
2
‖ω‖

2
+
1
vl



l

i�1
ξi − ρ,

s.t. ωTϕ xi( ≥ ρ − ξi,

ξi ≥ 0, i � 1, 2, . . . , l.

(1)

Here, ξi is the slack variable, which means that outliers
are allowed to exist, and v ∈ (0, 1] is a parameter to control
the proportion of support vector and error points. Using the
Lagrange multiplier method, the dual problem of the above
optimization problem can be written as follows:
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min
a

1
2



l

i



l

j

αiαjk xi, xj ,

s.t. 
l

i�1
αi � 1, 0≤ αi ≤

1
vl

, i � 1, 2, . . . , l.

(2)

Because the above process needs to meet the KKT
(Karush–Kuhn–Tucker) condition,

αi ≥ 0,

ωTϕ xi(  − ρ + ξi ≥ 0,

αi ωTϕ xi(  − ρ + ξi  � 0,

ci ≥ 0,

ξi ≥ 0,

ciξi � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

*e solution of equation (3) corresponds to sample xi, and
there is always αi � 0 or ωTϕ(xi) � ρ − ξi. When αi � 0, the
sample xi has no effect on the hyperplane. When αi > 0,
ωTϕ(xi) � ρ − ξi must be true. In this case, this sample is called
a support vector. If αi < 1/vl, then ci > 0; there must be ξi � 0;
that is, the sample is located on the maximum separation
boundary; if αi � 1/vl, then ci � 0; in this case, when ξi > 0, the
sample xi is misclassified, which is called the boundary support
vector. As shown in Figure 2, when different values are used,
the positions of corresponding sample points are different.

Let NSV, NBSV represent the total number of support
vectors and the total number of boundary support vectors,
respectively. *e maximum value of αi is 1/vl and has the
following constraints:



l

i�1
αi � 1, 0≤ αi ≤

1
vl

, i � 1, 2, . . . , l. (4)

So we can have the following inequality:

NBSV
1
vl
≤ 

l

i�1
αi ≤NSV

1
vl

, i � 1, 2, . . . , l. (5)

Multiplying ] on both sides of equation (5) gives

NBSV
1
l
≤ v≤NSV

1
l
, i � 1, 2, . . . , l. (6)

It can be known from equation (6) that the value of ]
determines the lower bound of the total support vector ratio
and the upper bound of the boundary support vector ratio:

ω � 
l

i�1
αiϕ xi( . (7)

*e normal vector of the hyperplane can be obtained by
using equation (7).

Let xSVt denote the tth support vector located on the
maximum spacing plane (0< αt < 1/vl) and the bias term of
the hyperplane obtained according to

ρ �
1

nsv


nsv

t�1
ωTϕ xSVt  � 

nsv

t�1
αik xi, x

SV
t . (8)
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boundary
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Original space

(a)

Feature space

f > 0

f < 0 f = 0

0
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ω
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Figure 1: A graphical illustration of the one-class support vector machine.*e black dot represents the target sample, the box represents the
abnormal sample, and the black solid line represents the boundary.

0

Support 
vectors

αi = 0

Feature space

αi = 1/vl

0 < αi < 1/vl, ξi = 0

Figure 2: *e definitions of support vectors. *e black dot rep-
resents the target sample, and the black dot with a dotted circle
represents support vector.
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*us, the decision function can be written as

f(x) � sgn ωTϕ(x) − ρ 

� sgn 
l

i

αik xi, x(  − ρ⎡⎣ ⎤⎦.
(9)

For a given test sample x, after substituting x into
equation (9), when f(x) returns +1, the sample is judged as a
normal point; when f(x) returns − 1, the sample is judged as
an abnormal point.

2.2. Multiple Kernel One-Class Support Vector Machine.
MKOCSVM replaces the single kernel function in the
conventional OCSVM with a combined kernel, which can
effectively avoid the difficulty in selecting the kernel function
and its parameters.

*e forms of combined kernel function include linear
combination and nonlinear combination, [28] expressed as

kη(x, z) � 
P

m�1
ηmkm(x, z), ηm ≥ 0, (10)

kη(x, z) � 
P

m�1
km xm

, zm
(  

ηm . (11)

Here, ηm is the kernel weight of the mth basic kernel.
*e MKOCSVM model can be formulated as

min
ωη ,ρ,ξ

1
2
ωη

�����

�����
2

+
1
vl



l

i�1
ξi − ρ,

s.t.
ωT
η ϕη xi( ≥ ρ − ξi,

ξi ≥ 0, i � 1, 2, . . . , l.

(12)

Here, kη(xi, xj) � 〈ϕη(xi), ϕη(xj)〉. *e function f(x)

can be written as

f(x) � sgn ωT
η ϕ(x) − ρ 

� sgn 
l

i

αikη xi, x(  − ρ⎡⎣ ⎤⎦.
(13)

To seek the optimal combination weight for each basis
kernel, the authors in [27] suggest optimizing the maximum
kernel-target alignment value of the combination kernel and
the ideal kernel, that is, solving the following objective
function [29]:

max
η

A Kη, yyT
  �

〈P
m�1 ηmKm, yyT〉F���������������������������������

〈P
m�1 ηmKm, 

P
m�1 ηmKm〉F〈yy

T
, yyT〉F

 ,

�


P
m�1 

l
i,j�1 ηmk

m
ij

l

������������������


P
m,s�1 ηmηs〈Km,Ks〉F

 ,

s.t. ηm ≥ 0, m � 1, 2, . . . , P.

(14)

Here, Km is the kernel matrix. 〈K1,K2〉 is the Frobenius
inner product between two matrices, which is given by

〈K1,K2〉F � 
l

i�1

l

j�1
k1 xi, xj k2 xi, xj . (15)

Only solution equation (16) is needed to obtain the
optimal combination weight:

max
η



P

m�1


l

i,j�1
ηmk

m
ij − 

P

m,s�1
ηmηs〈Km,Ks〉F − δ 

P

m�1
η2m,

s.t. ηm ≥ 0, m � 1, 2, . . . , P.

(16)

Here, δ is a regularization coefficient.

2.3. FuzzyMultipleKernelOne-Class SupportVectorMachine.

Let si denote membership degree of the sample xi, then the
training set can be expressed as (x1, s1), (x2, s2), . . . ,

(xl, sl)} ∈ R
n, where si ∈ [0, 1]. *e FMKOCSVM needs to

solve the following optimal programming:

min
ω,ρ,ξ

1
2
ωη

�����

�����
2

+
1
vl



l

i�1
siξi − ρ,

s.t. ωT
η ϕη xi( ≥ ρ − ξi,

ξi ≥ 0, i � 1, 2, . . . , l.

(17)

When si � 1, i � 1, 2, . . . , l, the FMKOCSVM degener-
ates to the normal MKOCSVM.

After introducing the Lagrange multiplier αi ≥ 0, ci ≥ 0,
for each inequality constraint, the Lagrange function of
equation (17) is
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L ωη, ξ, ρ, α, γ  �
1
2
ωη

�����

�����
2

+
1
vl



l

i�1
siξi − ρ − 

l

i�1
ciξi − 

l

i�1
αi ωT

η ϕη xi(  − ρ + ξi . (18)

Setting the derivatives with respect to ωη, ξ, and ρ to zero,
then we can obtain

ωη � 
l

i�1
αiϕη xi( ,



l

i�1
αi � 1,

αi �
1
vl

si − ci.

(19)

Substituting equation (19) into equation (18), the dual
form of equation (17) can be written as

min
α

1
2



l

i



l

j

s.t. 

l

i�1
αi

0≤ αi ≤
1
vl

si, i � 1, 2, . . . , l.

(20)

Obviously, the only difference between the dual prob-
lems of MKOCSVM and FMKOCSVM is the upper bound
of αi. *e upper bound of αi becomes si/vl in equation (20).
*e function f(x) can be written as

f(x) � sgn 
l

i

αikη xi, x(  − ρ⎡⎣ ⎤⎦. (21)

In FMKOCSVM, when the noise has a lower mem-
bership during training, the negative effect of noise on the
classification hyperplane can be reduced.

3. Training FMKOCSVM with Local Similarity-
Based Membership

Noise in the training set may not belong to any class at all.
*erefore, if these samples with uncertainty are distributed
near the edges of the target data, the model will overfit. To
alleviate this phenomenon, this paper assignsmembership to
each training point, whichmakes the samples play a different
role in training and reduces the negative impact of noise. In
this section, we first introduce the calculation method of
membership based on local similarity in detail and then
propose the FMKOCSVM algorithm using membership
based on local similarity.

3.1. Local Similarity-Based Memberships. Assume the target
sample x1, x2, . . . , xl  ∈ Rn. Let Kη represent the multiple
kernel matrix defined by Kη � kη(xi, xj)l×l, where the ex-
pression of multiple kernel function is equation (10).

Let all the elements of the upper triangle of the multiple
kernel be sorted from large to small, i.e., Kη � kη(xi, xj)i< j,
and then write it as a vector G � g1, g2, . . . , gt ,
t � l(l − 1)/2.

Next, define a constant ε ∈ [0, 1] and let h � [εt], where
[εt] is the integral part of εt. θ � gh is a threshold. For each
sample x, let u represent the total number of
kij ≥ θ, j � 1, 2, . . . , l. In other words, ui represents
the number of samples in the target sample whose sim-
ilarity with the sample xi is greater than or equal to the
threshold.

*e kernel kη(xi, xj) measures the similarity between
two target samples xi and xj, and a large kernel indicates a
large similarity. If the membership degree of the sample xi

to the target class is higher, it is obvious that more samples
are similar to the sample xi in the input sample, i.e., the
greater the value of ui. In other words, a sample with a
higher value of u should have a greater contribution to the
classification boundary, the penalty for misclassification of
such samples is greater, and the noise will have a smaller
value of u.

*erefore, we take u as a measure function, which
measures the importance of the target sample to the clas-
sification hyperplane. Obviously, the value of u cannot be
directly used as a membership degree of FMKOCSVM. We
use an S-type function to map this measure into the
membership degree in the unit interval. At the same time,
this S-type function increases the difference between
membership degrees of samples with different importance.
*e membership function is written as

si �
1

1 + exp − τ ui/U(  − (1/2)( ( 
, (22)

where U � max
i

ui . τ > 0 is a constant. *e value range is
(0, 1). Figure 3 describes the distribution of membership
values by τ taking different values. According to Figure 3,
when τ � 10, the distribution of membership value is the
best. Algorithm 1 lists the detailed calculation process of
membership based on local similarity.

Since noise has a low degree of membership to the target
class, there are few similar instances in the input data. In
other words, the noise will get a smaller membership value.
*erefore, we proposed a method that can make the noise
have less influence on the classification boundary. More
importantly, because the training data of OCSVM only
include target samples, the traditional method of calculating
membership degree is not suitable for OCSVM. However,
our method of membership based on local similarity only
uses the features of the target data and does not involve the
information of class, which is very suitable for a one-class
classification problem. Furthermore, the proposed method
has obvious high efficiency.

We analyze the computational complexity of Algo-
rithm 1 with the O notation. First, the computational
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complexity of calculating the multiple kernel matrix in step 2
is O(l2). Second, the average computational complexity of
multiple kernel matrix sorting in step 3 is O(t2). *ird, it
costs O(l2) to calculate u in steps 4 to 12. Finally, calculating
the memberships in steps 13 to 16 costs O(l). Hence, the
total computational complexity of local similarity-based
membership degree is

O l
2

  + O t
2

  + O l
2

  + O(l) � O l
2

  + O l
4

  + O l
2

  + O(l)

� O l
4

 .

(23)

Compared with classification performance, O(l4) is also
acceptable.

tau = 20
tau = 30

tau = 1
tau = 10
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Figure 3: *e distribution of membership with different values of τ. *e horizontal axis is the values of u/U. *e vertical axis is the
corresponding membership value. *e black dashed line is the distribution of membership when τ � 1. *e red solid line is the distribution
of membership when τ � 10. *e blue dash-dotted line is the distribution of membership when τ � 20. *e cyan dotted line is the
distribution of membership degree when τ � 30.

Input: the training set x1, x2, . . . , xl , the kernel function set k1, k2, . . . , kP ,
*e kernel weight ηm, m � 1, 2, . . . , P, ε ∈ [0, 1]

Output: the membership vector si, i � 1, 2, . . . , l

(1) Preprocess the training set
(2) Calculate the combined kernel matrix Kη � (kηij

)l×l according to equation (10)
(3) Sort Kη � (kηij

)i< j from large to small as G � g1, g2, . . . , gt ,t � l(l − 1)/2
(4) Calculate the constant h according to h � [εt], and fixed threshold according to θ � gh

(5) for i� 1 : l do
(6) initialize ui � 0
(7) for j� 1 : l do
(8) if kij ≥gh then
(9) ui � ui + 1
(10) end if
(11) end for
(12) end for
(13) Calculate U � max

i
ui 

(14) for i� 1 : l do
(15) Calculate the membership degree si of the sample xi according to equation (22)
(16) end for
(17) end

ALGORITHM 1: Local similarity-based memberships.
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3.2. Overall Procedure of FMKOCSVM Based on Local
Similarity. *e detailed process of FMKOCSVM based on
membership degree of local similarity is listed in Algo-
rithm 2. In the following part of this paper, we use
FMKOCSVM_LS to represent the proposed algorithm.

In Figure 4, the classification performance of
MKOCSVM is shown in Figure 4(a) and the classification
performance of FMKOCSVM_LS proposed by us is shown
in Figure 4(b).*e combined kernel function is composed of
seven Gaussian kernels with a width of
2− 5, 2− 4, 2− 3, 2− 2, 2− 1, 20, 21 . Parameter v is set to 0.02.*e
value of the regularization coefficient δ in equation (16) is set
to 100. In order to reduce the cost of tuning extraparameter,
we set ε to 0.2 and τ to 10 directly. Obviously,
FMKOCSVM_LS has a tighter boundary than MKOCSVM.
In Figure 4(b), some outliers are identified by
FMKOCSVM_LS. However, MKOCSVM does not identify
any outliers, and there are a lot of gaps inside the boundary.

After adding 10% Gaussian noise to the training set, the
results are shown in Figure 5.

*e parameter settings in Figure 5 are the same as in
Figure 4. As we can see, when there are noises in the training
set, the classification ability of FMKOCSVM_LS is much better
than that of MKOCSVM. In Figure 5(a), MKOCSVM dis-
tinguishes all noises as target data, which makes the perfor-
mance of MKOCSVM very bad. In Figure 5(b), we can see that
most of the noises have a very small membership value, and the
negative effect of noise on the boundary is weak. *erefore,
FMKOCSVM_LS can improve the robustness of MKOCSVM.

In the next section, we will further prove through ex-
periments that our proposed method of calculating mem-
bership is better than the previous method.

4. Experiments

4.1. Experiment Setup

4.1.1. Approaches. We compared FMKOCSVM_LS with the
following methods: (1) MKOCSVM: the ordinary multiple
kernel one-class support vector machine [27]; (2)

Input: the training set x1, x2, . . . , xl , the kernel function set k1, k2, . . . , kP , the kernel parameter set σ1, σ2, . . . , σP , the test set
T

Output: the classification results of T: y

(1) Preprocess the training set
(2) for m� 1 : P do
(3) Calculate the corresponding kernel matrix Km of σm

(4) end for
(5) Substituting the kernel matrix Km, m � 1, 2, . . . , P into equation (16)
(6) Calculate the kernel weight vector ηm, m � 1, 2, · · · , P according to equation (16)
(7) Calculate the combined kernel matrix Kη according to equation (10)
(8) for each xi ∈ x1, x2, · · · , xl  do
(9) Calculate the membership degree si of the sample xi according to equation (22)
(10) end for
(11) Train the FMKOCSVM with the fuzzy membership values.
(12) Calculate the classification results of test set according to equation (21)
(13) end

ALGORITHM 2: FMKOCSVM_LS.

0 6 82 4–4–6 –2–8
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–2
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(a)

0 6 82 4–4–6 –2–8
–8

–6

–4

–2

0

2

4

6

8

(b)

Figure 4: *e classification performance of MKOCSVM and FMKOCSVM_LS without noises. *e magenta solid line is the boundary. *e
blue dots are the target samples.
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WMKOCSVM: the weighted one-class support vector ma-
chine is formed by WOCSVM [14] combined with the
multiple kernel function; (3) FMKOCSVM: the fuzzy
multiple kernel one-class support vector machine, in which
membership is calculated based on a rough set [19]. Because
two classes of samples are needed to calculate membership,
the training set contains negative class samples. *ese
negative samples are only used to calculate membership.

In MKOCSVM, the parameter v is determined by 10-
fold cross validation, and the value range is
0.01, 0.04, 0.07, 0.10, 0.13, 0.16, 0.19{ }.*e basic kernel of the
multiple kernel function is seven Gauss kernel functions
with kernel width 2− 6, 2− 5, 2− 4, 2− 3, 2− 2, 2− 1, 20 . *e pa-
rameter δ in the multiple kernel learning algorithm is set to
100. WMKOCSVM, FMKOCSVM, and FMKOCSVM_LS
also use these parameters during training. *e number of
nearest neighbors in WMKOCSVM is set to 10, which is the
same as in [14]. In order to avoid increasing the time due to
the adjustment of parameters, when calculating the mem-
bership based on local similarity in FMKOCSVM_LS, we
directly set ε � 0.5 and τ � 10.

4.1.2. Metrics. In this paper, the performance of different
approaches is evaluated by three popular metrics, namely,
g-mean, AUC, and training time. According to the confu-
sionmatrix in Table 1, we can get the true positive rate (TPR)
and the false positive rate (FPR). In one-class classification
problems, using g-mean and AUC as measures is more
accurate than using accuracy:

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
,

g − mean �
�������
a

+
× a

−


,

AUC �
1 + TPR − FPR

2
.

(24)

4.1.3. Data Sets. In this section, we selected 14 benchmark
data sets, 13 of which are from the UCI machine learning
repository. *ere are three experiments on biological
systems. *e Heart data set is a data set used for heart
disease diagnosis. *e Breast data set is a data set used to
diagnose whether a patient’s breast cancer is benign or
malignant. *e Biomed data set is used to screen whether it
is a carrier. Creditcard_cut is a part of the data set of
creditcard fraud detection on Kaggle. Because the original
Creditcard data set is too large, we only randomly selected
729 transaction data (483 normal transactions and 249
fraudulent transactions) for the experiment. Table 2 lists
the details of these data sets.

For each data set, we use 70% of the positive data as the
training set. *en, we randomly selected a part of negative
data as the noise in the training set, and the proportion of
noise was 10%.*e rest of the data is used as the test set. *e
training set is normalized before training. And the test set is
processed according to the standard of the training set.

4.2. Results. In order to obtain stable results, each method
has done 20 independent experiments on each data set. *e
result used in the comparison is the average of the 20 results.
Table 3 shows the optimal value of v obtained through the
10-fold cross validation. In order to get the best results of the
four algorithms, v in Table 3 is used in each experiment.

Table 4 is a comparison of g-mean. Table 5 shows a
comparison of AUC values. Table 6 shows the average
training time of MKOCSVM, WMKOCSVM,
FMKOCSVM, and FMKOCSVM_LS on each data set.
Figure 6 is the total training time of 14 data sets of each
method.

Table 1: Confusion matrix.

Predicted positive Predicted negative
Positive TP FN
Negative FP TN
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Figure 5: *e classification performance of MKOCSVM and FMKOCSVM_LS. 10% of Gaussian noise is added. *e magenta solid line is
the boundary.*e blue dots are the target samples.*e black crosses are the noises with Gaussian distribution.*e number at bottom of the
noise represents its membership.
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From Tables 4 and 5, we can find that the performance of
FMKOCSVM_LS is the best among the four algorithms,
which proves that our membership method can improve the
robustness of MKOCSVM. More importantly,
WMKOCSVM and FMKOCSVM have only one best result

on 14 data sets, respectively. However, our proposed method
has twelve optimal performances.

On the Iris, Breast, and Wdbc data sets,
FMKOCSVM_LS shows great advantages. Its g-mean is
27%∼32% higher than that of MKOCSVM, 10%∼18% higher

Table 2: Data information.

Number Data set Positive samples Negative samples Samples Features
1 Australia 383 307 690 14
2 Balancescaleleft 288 337 625 4
3 Biomed 127 67 194 5
4 Glass 70 144 214 9
5 Heart 160 137 297 13
6 Vowel 48 480 528 10
7 Wine 48 130 178 13
8 Creditcard_cut 483 249 729 30
9 Japan 357 294 651 15
10 Iris 50 100 150 4
11 Breast 458 241 699 9
12 Wdbc 357 212 569 30
13 Pima 500 268 768 8
14 Waveform 300 600 900 21

Table 3: *e optimal value of v.

Number Data set MKOCSVM WMKOCSVM FMKOCSVM FMKOCSVM_LS
1 Australia 0.19 0.1 0.19 0.07
2 Balancescaleleft 0.19 0.1 0.07 0.04
3 Biomed 0.16 0.04 0.07 0.01
4 Glass 0.07 0.07 0.04 0.01
5 Heart 0.19 0.07 0.19 0.04
6 Vowel 0.01 0.01 0.01 0.01
7 Wine 0.01 0.01 0.01 0.01
8 Creditcard_cut 0.13 0.04 0.07 0.01
9 Japan 0.19 0.1 0.19 0.13
10 Iris 0.01 0.01 0.01 0.01
11 Breast 0.04 0.01 0.04 0.01
12 Wdbc 0.07 0.01 0.04 0.01
13 Pima 0.19 0.1 0.1 0.07
14 Waveform 0.16 0.04 0.07 0.01

Table 4: Comparison of g-mean.

Number Data set
g-mean (mean± std (%))

MKOCSVM WMKOCSVM FMKOCSVM FMKOCSVM_LS
1 Australia 59.19± 2.22 65.08± 2.39 74.18± 2.68 74.74± 2.51
2 Balancescaleleft 61.38± 2.05 66.17± 2.29 66.73± 3.22 69.99± 3.09
3 Biomed 72.43± 5.59 76.80± 4.53 78.71± 2.98 81.07± 4.15
4 Glass 67.74± 5.41 74.02 ± 4.38 70.20± 5.34 72.51± 6.64
5 Heart 63.90± 1.79 63.76± 3.90 67.82± 5.05 70.51 ± 3.45
6 Vowel 79.46± 8.26 79.02± 4.79 80.42± 5.72 84.88 ± 6.24
7 Wine 81.49± 7.59 81.20± 7.17 82.87± 6.71 85.68 ± 9.07
8 Creditcard_cut 72.00± 3.37 74.26± 3.90 81.36± 2.18 83.66 ± 1.91
9 Japan 58.23± 4.08 64.59± 2.77 73.10 ± 2.91 68.87± 3.52
10 Iris 63.87± 15.23 69.67± 6.95 75.48± 13.65 93.87 ± 4.76
11 Breast 60.71± 4.85 65.72± 5.28 81.22± 4.54 92.00 ± 1.93
12 Wdbc 59.06± 5.03 55.31± 6.78 73.08± 4.24 86.41 ± 1.83
13 Pima 51.92± 1.91 61.03± 2.18 62.39± 2.18 64.92 ± 2.09
14 Waveform 68.99± 4.39 67.65± 3.49 74.13± 2.52 78.23 ± 1.87
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Figure 6: *e total training time of 14 data sets of MKOCSVM, WMKOCSVM, FMKOCSVM, and FMKOCSVM_LS.

Table 5: Comparison of AUC value.

Number Data set
AUC (mean± std (%))

MKOCSVM WMKOCSVM FMKOCSVM FMKOCSVM_LS
1 Australia 62.25± 1.99 65.43± 2.32 74.35± 2.62 74.88 ± 2.49
2 Balancescaleleft 64.21± 1.91 66.88± 2.27 68.10± 3.17 70.64 ± 2.84
3 Biomed 73.27± 5.17 77.10± 4.41 79.05± 2.80 81.22 ± 4.11
4 Glass 71.26± 4.31 74.29 ± 4.13 71.26± 5.33 73.63± 6.37
5 Heart 64.81± 1.66 64.08± 3.89 68.00± 5.10 71.09 ± 2.99
6 Vowel 80.17± 7.32 79.49± 4.65 80.78± 5.64 85.32 ± 5.71
7 Wine 82.23± 6.84 81.74± 7.02 83.62± 1.95 87.04 ± 7.17
8 Creditcard_cut 73.86± 2.67 75.25± 3.18 81.44± 2.20 83.70 ± 1.90
9 Japan 60.84± 3.44 64.86± 2.79 73. 24 ± 2.84 69.03± 3.48
10 Iris 69.90± 10.54 71.75± 6.32 78.24± 9.82 94.17 ± 4.44
11 Breast 67.87± 2.95 71.04± 3.61 82.53± 3.76 92.34 ± 1.76
12 Wdbc 65.65± 3.25 63.44± 4.02 75.17± 3.44 86.50 ± 1.73
13 Pima 57.33± 1.84 61.82± 2.07 62.75± 2.03 65.09 ± 2.18
14 Waveform 70.70± 3.86 69.80± 2.94 74.35± 2.53 78.80 ± 1.82

Table 6: Average training time.

Number Data set
Training time (s)

MKOCSVM WMKOCSVM FMKOCSVM FMKOCSVM_LS
1 Australia 20.60 48.65 22.67 28.22
2 Balancescaleleft 13.13 30.30 16.85 19.34
3 Biomed 5.43 12.75 6.16 7.68
4 Glass 1.52 5.31 3.17 2.92
5 Heart 7.75 17.87 7.96 9.64
6 Vowel 3.57 5.11 4.58 2.95
7 Wine 1.31 4.89 1.44 3.21
8 Creditcard_cut 38.51 75.93 47.19 54.96
9 Japan 18.81 44.18 20.30 24.42
10 Iris 1.22 4.22 1.70 1.88
11 Breast 32.86 51.27 33.24 47.58
12 Wdbc 18.71 45.89 23.86 28.26
13 Pima 38.49 68.94 51.42 57.08
14 Waveform 14.91 37.20 20.84 21.97
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than that of FMKOCSVM, and 23%∼31% higher than that of
WMKOCSVM. In the corresponding data set, the AUC
value of FMKOCSVM_LS also increased significantly. On
the Japan data set, although the g-mean of FMKOCSVM LS
is lower than the g-mean of FMKOCSVM, it is still 10%
higher than the g-mean of MKOCSVM and 4% higher than
the g-mean of WMKOCSVM. AUC value is the same as
g-mean. On the Glass data set, WMKOCSVM has the best
result, and its result is only about 2% higher than that of
FMKOCSVM_LS. However, on the Glass data set, the result
of FMKOCSVM_LS is 5% higher than that of MKOCSVM,
which proves that our membership calculation method can
reduce the impact of noise on classification ability. In the
remaining 9 data, the results of FMKOCSVM_LS are the best
and have obvious advantages. For example, on the Wave-
form data set, the g-mean of FMKOCSVM_LS is 10% higher
than that of WMKOCSVM and 4% higher than that of
FMKOCSVM.

In terms of training time, although our method is not
the fastest, FMKOCSVM_LS is still faster than
WMKOCSVM. *e training time of WMKOCSVM is 1.5
times of that of FMKOCSVM_LS on average. Compared
with the training time of MKOCSVM, the increased
training time of FMKOCSVM_LS is within the acceptable
range.

All of the above proves that the MKOCSVM with
membership is more robust. Moreover, our proposed
membership based on local similarity is the best.

5. Conclusions

In order to solve the problem of poor robustness of
MKOCSVM, this paper proposes a fuzzy multiple kernel
one-class support vector machine based on local simi-
larity, in which membership is based on the local simi-
larity of the training data. Firstly, the similarity between
samples is measured by combining the kernel matrix.
*en, according to the selected threshold, the local
similarity of each sample is determined. Finally, an S-type
function is used to map the local similarity to the unit
interval, and the function value is taken as the mem-
bership value. Experiments show that the membership
method proposed in this paper can improve the robust-
ness of MKOCSVM. Moreover, compared with the other
two methods, our method is optimal.

*e difficulty in fuzzy multiple kernel one-class sup-
port vector machine lies in how to determine the effective
membership. Compared with the previous membership
calculation method, only the target data are needed to
calculate the membership based on the local similarity of
the data, which is consistent with the OCSVM training set.
In this method, the noise or outliers are assigned a small
membership value, which makes the noise have the
weakest impact on the classification boundary. *erefore,
the membership method in this paper helps improve the
robustness of MKOCSVM. In the next step, we will re-
search the optimization method of parameters in the
process of membership calculation based on local
similarity.
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-e mathematical modeling of malaria disease has a crucial role in understanding the insights of the transmission dynamics and
corresponding appropriate prevention strategies. In this study, a novel nonlinear mathematical model for malaria disease has been
proposed. To prevent the disease, we divided the infected population into two groups, unaware and aware infected individuals.-e
growth rate of awareness programs impacting the population is assumed to be proportional to the unaware infected individuals. It
is further assumed that, due to the effect of awareness campaign, the aware infected individuals avoid contact withmosquitoes.-e
positivity and the boundedness of solutions have been derived through the completing differential process. Local and global
stability analysis of disease-free equilibrium has been investigated via basic reproductive number R0, if R0< 1, the system is stable
otherwise unstable. -e existence of the unique endemic equilibrium has been also determined under certain conditions. -e
solution to the proposed model is derived through an iterative numerical technique, the Runge–Kutta method. -e proposed
model is simulated for different numeric values of the population of humans and anopheles in each class. -e results show that a
significant increase in the population of susceptible humans is achieved in addition to the decrease in the population of the
infected mosquitoes.

1. Introduction

Malaria is an ancient disease with challenging health issues.
-e tropical regions such as Africa, Asia, and America are
favorable for the rapid spread of this disease [1]. In 2018,
there are estimated two-hundred and twenty-eight million
cases of malaria around the world. -is deadly disease is the
root cause of the death of four-hundred-five thousand
people according to the World Health Organization (WHO)
2019 world malaria report [2]. -is disease is originated by
the plasmodium parasite. -e transmission of this infection
to human body is by the bite of a female mosquito. Medical
symptoms such as a rise in the body temperature, fatigue,

pain, shivering, and sweats may occur within a few days after
an infected mosquito bite. Till the time, there is no effective
vaccine developed and some existing antimalarial drugs are
losing their effectiveness due to the drug resistance evolved
in the parasite [3].

-e literature on the mathematical model for vector-
borne disease likewise malaria is vast. -e first published
model demonstrating the life cycle of the malaria parasite
was developed by Sir Ross [4]. -e model proposed by Sir
Ronald Ross is one of the simplest models, known as the
classical Ross model in the literature. It demonstrates the
crosstalk between the number of mosquitoes and the pro-
portion of bite that produced infection in the human body.
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-is model was frequently used in the past due to its
simplicity. However, the simplicity of the mathematical
model is at the cost of limitations in the analysis. -erefore,
considering the great challenge of malaria disease, several
researchers have developed/modified existing models by
introducing different factors/parameters in the model.

-e mathematical modeling of infectious disease has
proved to play an important role in understanding the in-
sights of the transmission dynamics and appropriate control
strategies [5]. In past, several mathematical models have
been proposed to analyze this deadly disease. -e extension
of Sir Ross’s model includes the modification/addition of
different important factors likewise, latent period of infec-
tion [6], immunity factor [7], the heterogeneity of human
and mosquito [8, 9], susceptibility to malaria in host pop-
ulation [10, 11], exposed human and mosquito [3, 12], and
recovered human [8, 13], among others.

Macdonald has introduced the effect of exposed mos-
quitoes by employing a separate differential equation
catering the rate of change of exposed mosquitoes [7].
Similarly, Anderson and May proposed to add the rate of
change of exposed human in the model [6]. -e comparison
of two epidemiological models of immunity to malaria
shows that different characterizations of immunity, boosted
by exposure to infection, generate qualitatively different
results [8]. Nagwa and Shu analyzed the deterministic dif-
ferential equationmodel for endemicmalaria in the presence
of the variable host and parasite population [13]. -eir
results suggested that disease is persistent if the threshold
parameter exceeds the barrier of magnitude unity; otherwise,
a disease-free equilibrium always exists. In a similar study,
Chitnis and co-authors have presented the bifurcation
analysis of the reproductive number (RN) [14]. RN is the
number of secondary infections that one infectious indi-
vidual would create over the time course of the disease
period, provided that total population except infectious is
susceptible [15]. Lashari and co-authors formulated the
vector-borne disease environment in the form of an optimal
control problem. -ey have introduced three different
control parameters including personal protection, disease
medical treatment, and mosquito reduction strategies [3].
Ozair and co-authors have analyzed the transmission dy-
namics of malaria disease with a nonlinear incident rate [16].
Addawe and Lope proposed to divide the human population
into two compartments: preschool (0–5 years) and over five
age [17]. -eir findings verify the existing results that
asymptotical stability is guaranteed with RN magnitude less
than unity. Mishra and co-authors, Samanta and co-authors,
and Greenhalag and co-authors have proposed and analyzed
a nonlinear mathematical model to assess the effect of
awareness by media on the prevalence of infectious disease
[18–20]. Cai et al. introduced a malaria model with an
asymptomatic class in human population and exposed
classes in both human and vector populations [21]. Sung
Chan and co-authors have studied the vector-bias mathe-
matical model and considered two different incidence areas:
a high transmission area and a low transmission area [22].
Recently, Sung Chan and co-authors have developed a new
transmission model to evaluate the rate of malaria relapse

infections in the northern part of Korea and to examine its
effect at the population-level on radical cure [23].

In this article, a deterministic vector-borne disease
model is proposed. Previous studies suggested that pre-
vention is a control parameter for such infectious diseases.
-us, it shall be helpful to add awareness terms in the
mathematical model of the disease. -e whole infected host
population is divided into two groups, aware and unaware
infected individuals. We analyzed the model to study the
impact of awareness programs conducted by awareness
campaign through medical staff on the spread of malaria
disease. In the modeling process, it is assumed that the
growth rate of the cumulative density of awareness program
will increase with an increase in the unaware infected in-
dividuals in the host population. We also assumed that both
infected classes can spread disease when the mosquitoes
contact them, but the aware class has very low chance to
spread disease due to awareness campaigns. It is further
assumed that due to awareness, the contact rate of infected
mosquito interaction with aware humans will be reduced.
-e performance of the proposed model is evaluated by
comparing the result with previous models. -e result of the
proposed model suggests that disease-free equilibrium is
achieved earlier than the existing model.

-e rest of the article is as follows. In section 2, the
formulation of a mathematical model is presented. Section 3
describes the positivity and boundedness of solution. In
section 4, the existence of disease-free equilibrium including
derivation of basic reproduction number and stability
analysis of the model is presented. -e results of numerical
simulation are illustrated in Section 5, Section 6 provides
discussion, and Section 7 provides conlclusion.

2. Model Formulation

Mosquito-borne diseases, e.g., yellow fever, dengue fever,
and malaria, are frequently observed in tropical and sub-
tropical countries. -ese illnesses spread widely in a short
period with the life-threatening impact of many human
lives. Among these vector-borne diseases, malaria is one of
the serious and major illnesses caused by several species of
mosquito-borne parasite (Plasmodium falciparum, Plas-
modium malaria, Plasmodium ovale, Plasmodium vivax,
etc.) [24]. Anopheles female mosquito is responsible for the
transmission of disease to the human body through a bite
[3]. -is blood meal of mosquito converts a healthy human
being (susceptible) into a category called infected hosts. -e
human population that are not infected but under the threat
that they can catch malaria infection are known as the
exposed population. Individuals recovered from the infected
population through medical treatment without threat to
their life fall in the group of recovered ones. Figure 1 shows
the schematic diagram of the proposed malaria disease
model for particular population of humans and mosquitoes.

-e human population is divided into five different
compartments (susceptible, exposed, unaware infected,
aware infected, and recovered) representing the total pop-
ulation at any time t. Let Nh be the total population in a
region under consideration for malaria disease analysis.
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Suppose Sh(t) denotes the numbers of humans susceptible to
disease, Eh(t) is the count for the exposed hosts to disease,
Iuh(t) and IAh(t) are showing unaware and aware infected
human population, and Rh(t) is the numbers of individual
who have temporarily recovered from disease. Similarly,
mosquito population has been grouped into three com-
partments. Let Sm(t) is the count for susceptible mosquito
population, Em(t) is the numbers for exposed mosquito
population, Im(t) represents the numbers of an infected
member of the mosquito population, and Nm(t) is the total
count of the mosquito population in a particular area of
interest. Also, let M(t) be the cumulative density of
awareness programs driven in the region at time t. -e
growth rate of the density of awareness programs is assumed
to be proportional to unaware infected individuals. It is
assumed that the contact of infected mosquitoes with aware
individuals will be reduced. -e constant μ1 represents the
rate at which awareness campaigns are being implemented
and μ0 represents the depletion rate of these campaigns due
to ineffectiveness, a social problem in the population.

For host population, φh is the recruitment rate of human
population in a particular region, b is the contact rate of
mosquito to human population, βmh is the probability that
bite of infectious mosquito result in the transmission of
disease to susceptible human, c1 is the rate of loss of im-
munity in recovered human, αh is the rate of progression
from exposed to unaware infected class, c is the treatment
rate in the region, c0 is the recovery rate of unaware infected
population with temporary immunity, u1 represents the

successful efforts of treatment resulting recovered humans,
ρi is the rate of awareness to unaware infected human, aLI is
the rate of loss of awareness of aware infected human, cm is
the recovery rate of aware infected human (that rate is
greater than the normal recovery rate due to awareness), and
δh and μh are the disease and natural death rate of the
human, respectively.

For mosquito population, φm and μm are the mosquito
recruitment and natural death rate, δm represents the
strategies to kill mosquito after awareness, βhm is the
probability that a blood meal of an infectious mosquito
result in the transmission of disease to susceptible indi-
vidual, βAhm is the probability of disease transmission from
aware infected human to susceptible mosquitoes, b1 is the
contact rate between unaware infected human to susceptible
mosquitoes, and αm is the rate of progression from exposed
mosquitoes to infected mosquitoes. -e definitions of the
mathematical parameters with their values are summarized
in Table 1.

-ese definitions lead to a set of coupled nonlinear
differential equations describing the proposed model, for the
infectious vector-borne disease. -e mathematical form of
the model is described as follows:

dSh(t)

dt
� φh − bβmhSh(t)Im(t) + c1Rh(t) − μhSh(t), (1)

dEh(t)

dt
� bβmhSh(t)Im(t) − αh + μh( Eh(t), (2)

Recruitment Awareness campaigns

Susceptible
human

Sh

Exposed
human

Eh

Unware
infected
human

IUh

Recovered
human

Rh

Aware
inflected
human

IAh

Recruitment
Susceptible
mosquito

Sm

Exposed
mosquito

Em

Infected
mosquito

Im

φh

φm

μ0

μh

bβmh

bβhm + b1βAhm

μh

αh

αm

ρi aLI

μh

μh

μm μm

γm

μh

δh

δh

δm

μm

δm δm

μ1

γ1

γ + γ0u1

Figure 1: Schematic diagram of the proposed model algorithm.
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dIUh(t)

dt
� αhEh(t) − δh + μh + c + c0u1 + ρiM(t)( IUh(t)

+ aLIIAh(t),

(3)

dIAh(t)

dt
� ρiM(t)IUh(t) − μh + δh( IAh(t) − cmIAh(t)

− aLIIAh(t),

(4)

dRh(t)

dt
� c + c0u1( IUh(t) + cmIAh(t) − μh + c1( Rh(t),

(5)

dSm(t)

dt
� φm − μm + δm( Sm(t) − bβhmSm(t)IUh(t)

− b1βAhmSm(t)IAh(t),

(6)

dEm(t)

dt
� bβhmSm(t)IUh(t) + b1βAhmSm(t)IAh(t)

− μm + δm + αm( Em(t),

(7)

dIm(t)

dt
� αmEm(t) − μm + δm( Im(t), (8)

dM(t)

dt
� μ1IUh(t) − μ0M(t). (9)

3. Positivity and Boundedness of Solutions

-e mathematical model presented in the system of equa-
tions (1)–(9) describes the rate of change of different
compartments of human and mosquito population.
-erefore, it is important to verify that all solutions with
nonnegative initial conditions shall remain nonnegative for
all time. All the solutions of proposed system, which initiates
inside region D, remain in region D. Mathematically,

-is result can be summarized in the following theorem.

Theorem 1. For all time t≥ 0, there exists a domain:

D �

Sh(t), Eh(t), IUh(t), IAh(t), Rh(t), Sm(t), Em(t), Im(t)(  ∈ R
8
+: Sh(0)> 0, Eh(0)≥ 0

IUh(0)≥ 0, IAh(0)≥ 0, Rh(0)≥ 0, Sm(0)≥ 0, Em(0)≥ 0, Im(0)≥ 0; Nh ≤ φh/μh( 

Nm ≤ φm/μm( 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (10)

All the solutions of the system of equations (1)–(9) are
bounded in domain D:

Proof. Let (Sh(t), Eh(t), IUh(t), IAh(t), Rh(t), Sm(t),

Em(t), Im(t)) be any solution with positive initial conditions

Table 1: Definition and values of parameters used in the model.

Parameters Definition Values References
φh Recruitment rate of human 10 [3]
c1 Rate of loss of immunity to recovered human 1/730 [25]
μh Natural death rate of human 1/60 ∗ 365 [3]
b Contact rate between mosquito and human 3 [3]
βmh Disease transmission rate from mosquito to human 0.001 [3]
αh Rate of progression from exposed to unaware infected 1/17 [3]
c Treatment rate in the region 0.07 [3]
c0 Recovery rate of unaware infected human 0.04 [3]
u1 Successful effort of treatment (0 or 1) 1
ρi Rate of awareness to unaware infected human 0.0005 Assumed
δh Disease death rate of infected human 0.01 [3]
aLI Rate of loss of awareness to uninfected human 0.02 Assumed
cm Recovery rate of aware infected human 0.012 Assumed
φm Recruitment rate of mosquito 50 [3]
βuhm Disease transmission rate from unaware human to mosquito 0.0001 [3]
b1 Contact rate between mosquito and aware human 0.12 Assumed
βAhm Disease transmission rate from aware human to mosquito 0.0001 Assumed
μm Natural death rate of mosquito 1/15 [3]
δm Death rate of mosquito due to human awareness 1/50 Assumed
αm Rate of progression from exposed mosquito to infected mosquito 1/18 [3]
μ1 Constant rate influenced by unaware infected human 0.02 Assumed
μ0 Depletion rate of awareness 0.01 Assumed
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Sh(0)> 0, Eh(0)≥ 0, IUh(0)≥ 0, IAh(0)≥ 0, Rh(0)≥ 0, Sm

(0)≥ 0, Em(0)≥ 0, Im(0)≥ 0, with Nh(Sh(t), Eh(t), IUh(t),

IAh(t), Rh(t)) � Sh(t) + Eh(t) + IUh(t) + IAh(t) + Rh(t) and
Nm(Sm(t), Em(t), Im(t)) � Sm(t) + Em(t) + Im(t) + Em(t)

+ Im(t). Notice that the sum of the first five compartments
Sh(t), Eh(t), IUh(t), IAh(t), Rh(t) in system of equations
(1)–(9) is equal to the total human population of size Nh and
the sum of compartments (Sm(t), Em(t), Im(t)) is equal to
the total mosquito population of size Nm. Hence adding
these equations yields the time derivative along with the
solution of equations (1)–(9) given as

dNh

dt
� φh − μhNh − δh IUh + IAh( ≤φh − μhNh. (11)

dNm

dt
� φm − μmNm − δmNm ≤φm − μmNm. (12)

Equations (11) and (12) can be written as

dNh

dt
  + μhNh ≤φh, (13)

dNm

dt
  + μmNm ≤φm. (14)

Solving these different inequalities yields

Nh ≤
φh

μh

  1 − e
− μht

  + Nh(0)e
− μht

, (15)

Nm ≤
φm

μm

  1 − e
− μmt

  + Nm(0)e
− μmt

. (16)

Consequently, taking the limit as t⟶∞
givesNh ≤ (φh/μh)&Nm ≤ (φm/μm). -us, D is positively
invariant, and all the solutions are bounded in the interval
[0,∞). □

4. Existence of Disease-Free Equilibrium Point

Disease-free equilibrium points are the steady-state solution,
when there is no malaria infection. -us, the disease-free
equilibrium point for the system of equations (1)–(9) implies
that Eh � 0, Iuh � 0, IAh � 0, Rh � 0, Em � 0, and Im � 0,
and after solving the equations (1) and (6) of system yields
Sh � (φh/μh) and Sm � (φm/μm + δm). -us, we obtain the
disease-free equilibrium point, E1:

E1 �
φh

μh

 , 0, 0, 0, 0,
φm

μm + δm

 , 0, 0, 0 . (17)

4.1. Basic Reproductive Number. -e basic reproductive
number R0 measures the average number of new malaria
infections generated by a single infected individual in a
completely susceptible population [26].

To obtain R0 for system of equations (1)–(9), we used the
next-generation matrix technique described in
[15, 25, 27, 28]. Let x � (Eh, IUh, IAh, Em, Im, Sh, Rh, Sm)T,
then the model system of equations (1)–(9) can be written as

dx

dt
� F(x) − V(x), (18)

where

V(x) � V
−

(x) − V
+
(x)( , (19)

F(x) �

bβmhShIm

0
0

bβhmSmIUh + b1βAhmSmIAh

0
0
0
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

V(x) �

αh + μh( Eh

− αhEh − aLIIAh + δh + μh + c + c0u1 + ρiM( IUh

− ρiMIUh + μh + δh + cm + aLI( IAh

μm + δm + αm( Em

− αmEm + μm + δm( Im

− φh − c1Rh + bβmhShIm + μhSh

− c + c0u1( IUh − cmIAh + μh + c1( Rh

− φm + μm + δm( Sm + bβhmSmIUh + b1βAhmSmIAh

− μ1IUh + μ0M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)

Finding the partial derivative of F and V at disease-free
equilibrium point E1 gives F and V, respectively, as follows:

F �

0 0 0 0 bβmh φh/φh( 

0 0 0 0 0

0 0 0 0 0

0 bβhm φm/μm + δm(  b1βAhm φm/μm + δm(  0 0

0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)
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V �

αh + μh 0 0 0 0

− αh δh + μh + c + c0u1 − aLI 0 0

0 0 μh + δh + cm + aLI 0 0

0 0 0 μm + δm + αm 0

0 0 0 − αm μm + δm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

So that

V
− 1

�

v
− 1
11 0 0 0 0

v
− 1
21 v

− 1
22 v

− 1
23 0 0

0 0 v
− 1
33 0 0

0 0 0 v
− 1
44 0

0 0 0 v
− 1
54 v

− 1
55

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where v
−
11 1 � (1/αh + μh), v

− 1
21 � (− αh/(αh + μh)(δh + μh +

c+ c0u1)), v
− 1
22 � (1/δh + μh + c + c0u1), v

− 1
23 � (− aLI/(δh +

μh + c + c0u1)(μh + δh + cm + aLI)), v
− 1
33 � (1/μh + δh + cm +

aLI), v
− 1
44 � (1/μm + δm + αm), v

− 1
54 � (− αm/(μm + δm + αm)

(μm + δm)), v
− 1
55 � (1/μm + δm).

-e basic reproductive number R0 � ρ(FV− 1) is the
spectral radius of the product FV− 1. -us,

R0 � ρ FV− 1
  �

������������������������������������������������

φhφmαhαmb
2βmhβhm

μh αh + μh(  δh + μh + c + c0u1(  μm + δm + αm(  μm + δm( 
2




. (25)

In equation (25), (αh/(αh + μh))is the probability that a
human will survive the exposed state to become infectious;
(1/(δh + μh + c + c0u1)) is the average duration of the in-
fectious period of the human; (αm/(μm + δm + αm)) is the
probability that a mosquito will survive the exposed state to
become infectious; and (1/(μm + δm)) is the state to become
infectious. Let the basic reproductive number, R0, be written
as R0 �

�����
RhRm


, where Rh � (φhαhbβmh/μh(αh + μh)(δh +

μh + c + c0u1)) and Rm � (φmαmbβhm/(μm + δm + αm)

(μm + δm)2).
Here, Rh describes the number of humans that one

infectious mosquito infects over its expected infection pe-
riod in a completely susceptible human population and Rm

describes the number of mosquitoes infected by one in-
fectious human during the period of infectiousness in a
completely susceptible mosquito population.

4.2. Stability Analysis of Disease-Free Equilibrium. We an-
alyzed the stability of disease-free equilibrium of the system
of equations (1)–(9) by using the basic reproductive number
R0 in the following theorem.

Theorem 2. ;e disease-free equilibrium (DFE) E1 is locally
asymptotically stable if R0 ≤ 1 and unstable if R0 > 1.

Proof. -e Jacobian of the system of equations (1)–(9)
evaluated at the disease-free equilibrium point E1 is obtained
as follows:

J E1(  �

j11 0 0 0 j15 0 0 j18 0

0 j22 0 0 0 0 0 j28 0

0 j32 j33 j34 0 0 0 0 0

0 0 0 j44 0 0 0 0 0

0 0 0 j54 j55 0 0 0 0

0 0 j63 j64 j66 j66 0 0 0

0 0 j73 j74 0 0 j77 0 0

0 0 0 0 0 0 j87 j88 0

0 0 j93 0 0 0 0 0 j99

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where j11 � − μh, j15 � c1, j18 � − bβmh(φh/μh), j22 � − (αh +

μh), j28 � bβmh(φh/μh), j32 � αh, j33 � − (δh + μh + c + c0u1),

j34 � aLI, j44 � − (μm + cm + δm + aLI), j54 � cm, j55 � − (μh

+ c1), j63 � − bβhm(φm/μm + δm), j64 � − b1βAhm(φm/μm +

δm), j66 � − (μm + δm), j73 � bβhm(φm/μm + δm), j74 � b1
βAhm(φm/μm + δm), j77 � − (μm + δm + αm), j87 � αm, j88 �

− (μm + δm), j93 � μ1, j99 � − μ0.
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-e DFE, E1, is locally asymptotically stable (LAS) if we
show that all the eigenvalues of equation (26) have negative
real part. Since the first, sixth, and ninth columns of equation
(26) contain only the diagonal terms, three eigenvalues
− μh, − (μm + δm), and − μ0can be obtained from these col-
umns. Remaining eigenvalues of equation (26) can be ob-
tained from the submatrix J1 formed by excluding the first,
sixth, and ninth rows and columns of equation (26). Hence,
we have

J1 E1(  �

j22 0 0 0 0 j28

j32 j33 0 0 0 0

0 0 j44 0 0 0

0 0 j54 j55 0 0

0 j73 j74 0 j77 0

0 0 0 0 j87 j88

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Similarly, the fourth column of equation (27) contains
only the diagonal term which forms negative eigenvalues

− (μh + c1). All the remaining eigenvalues of equation (27)
can be calculated by the submatrix J2:

J2 E1(  �

j22 0 0 0 j28

j32 j33 0 0 0

0 0 j44 0 0

0 j73 j74 j77 0

0 0 0 j87 j88

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

-e eigenvalues of equation (28) are the roots of the
following characteristic equation:

λ − j44(  λ − j22(  λ − j33(  λ − j77(  λ − j88(  − j28j32j73j87(  � 0.

(29)

From equation (29), we can get five eigenvalues. One of
the eigenvalues j44 � − (μm + cm + δm + aLI) has a negative
real part. -e other four eigenvalues can be obtained from
equation (30):

λ − j22(  λ − j33(  λ − j77(  λ − j88(  − j28j32j73j87 � 0

λ + αh + μh(  λ + δh + μh + c + c0u1(  λ + μm + δm + αm(  λ + μm + δm( 

−
b
2αhαmβmhβhmφhφm

μh μm + δm( 

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

If we let b1 � − j22, b2 � − j33, b3 � − j77, and b1 � − j88,
then equation (30) becomes

a4λ
4

+ a3λ
3

+ a2λ
2

+ a1λ + a0 � 0, (31)

where

a4 � 1, a3 � b1 + b2 + b3 + b4, a2 � b1b2 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4,

a1 � b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4, a0 � b1b2b3b4 −
b
2αhαmφhφmβmhβhm

μh μm + δm( 
,

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(32)

where a0 is in the terms of reproduction number and R0, can
be written as

a0 � b1b2b3b4 1 − R0( . (33)

We employ the Routh–Hurwitz criterion, which states
that all the roots of equation (31), has negative real parts, if
and only if the coefficients ai are positive andmatrices Hi > 0
for i � 0, 1, 2, 3, and 4. From equation (32), it is easy to see
that a1 > 0, a2 > 0, a3 > 0, and a4 > 0 since all bi

′s> 0. More-
over, if R0 < 1, it follows from equation (33) that a0 > 0. Also,
the Hurwitz matrices for equation (31) are found to be
positive that are given as follows:

H1 � a1 > 0,

H2 � det
a3 a4

a1 a2
 > 0,

H3 � det

a3 a4 a0

a1 a2 a3

0 a0 a1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠> 0,

H4 � det

a3 a4 0 0

a1 a2 a3 a4

0 a0 a1 a2

0 0 0 a0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
> 0.

(34)
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-erefore, all the eigenvalues of the Jacobian matrix in
equation (26) have negative real parts, when R0 < 1 and DFE
is LAS. However, when R0 > 1 we see that a0 < 0 and by
Descartes’s rule of signs, there is exactly one sign-change in
the sequence a4, a3, a2, a1, and a0 of the coefficient of
equation (31). So, there is one eigenvalue with the positive
real part and DFE is unstable. □

Remark 1. -e case for R0 � 1 is possible when a0 � 0 in the
characteristic equation. By considering the special case of
Routh–Hurwitz stability criterion [29], and replacing this
term with very small value, i.e., ε, the result could be
interpreted as first case, i.e., R0 < 1.

Theorem 3. ;e disease-free equilibrium (DFE) of the system
of equations (1)–(9) is globally asymptotically stable (GAS) on
D if R0 < 1.

Proof. To prove this theorem, we adopt the method de-
scribed in [30–32]. Castillo-Chavez and co-authors de-
scribed this method to prove the GAS of DFE in their
research article [32]. We begin the proof by defining new
variables and breaking our system of equations (1)–(9) into
two subsystems. With X � (Sh, Rh, Sm) and
I � (Eh, Iuh, IAh, Em, Im), this system can be written as

dX

dt
� F(X, I), (35)

dI

dt
� G(X, I)withG(X, 0) � 0, (36)

where X ∈ R3 denotes the number of uninfected compart-
ments and I ∈ R5 denotes the number of infected
compartments.

-e two vector-valued functions F(X, I) and G(X, I) are
given as

F(X, I) �

φh − bβmuhSh(t)Im(t) + c1RUh(t) − μhSh(t)

c + c0u1( IUh(t) − μh + c1( Rh(t) + cmIAh(t)

φm − μm + δm( Sm(t) − bβUhmSm(t)IUh(t) − b1βAhmSm(t)IAh(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (37)

G(X, I) �

bβmhSh(t)Im(t) − αh + μh( Eh(t)

αhEh(t) − δh + μh + c + c0u1 + ρiM(t)( IUh(t) + aLIIAh(t)

ρiM(t)IUh(t) − μh + δh( IAh(t) − cmIAh(t) − aLIIAh(t)

bβUhmSm(t)IUh(t) + b1βAhmSm(t)IAh(t) − μm + δm + αm( Em(t)

αmEm(t) − μm + δm( Im(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

withG(X, 0) � 0. (38)

E0 � (X∗, 0) denotes the disease-free equilibrium of the
subsystems, where

X
∗

�
φh

μh

 , 0,
φm

μm + δm

  . (39)

-e conditions (H1) and (H2) belowmust bemet for the
global stability:

H1( : For
dX

dt
  � F(X, 0), X

∗is GAS, (40)

H2( : G(X, I) � AI − G(X, I)with G(X, I)≥ 0, ∀(X, I) ∈ D,

(41)

where A is an M-matrix (the off-diagonal elements of A are
nonnegative).

Now consider the reduced system (dX/dt) � F(X, 0),

dSh(t)

dt
� φh + c1Rh(t) − μhSh(t), (42)

dRh(t)

dt
� − μh + c1( Rh(t), (43)

dSm(t)

dt
� φm − μm + δm( Sm(t). (44)

X∗ � (Sh, Rh, Sm) � (φh/μh, 0,φm/μm + δm) is the GAS
equilibrium point for the reduced system
(dX/dt) � F(X, 0). To see this, solve equation (43) to obtain
Rh � Rh(0)e− (μh+c1)t⟹Rh⟶ 0 as t⟶∞. Similarly,
from equation (44), we get Sm � (φm/(μm + δm)) + (Sm(0) −

(φm/(μm + δm)))e− (μm+δm)t⟹ Sm⟶ (φm/(μm + δm)) as
t⟶∞.

Finally, equation (42) yields Sh � (φh/μh) + (Sh(0) +

Rh(0) − (φh/μh))e− μht and − Rh(0)e− (μh+c1)t⟹ Sh⟶
(φh/μh) as t⟶∞. Hence, the convergence of solutions of
equations (42)–(44) is global in D. And, G(X, I) � [AI −
G(X, I) with G(X, I)≥ 0,∀(X, I) ∈ D], where

A �

− αh + μh(  0 0 0 φh/μh( bβ2
αh − A aLI 0 0

0 ρiM − B 0 0

0 K1bβ2 K1b1β3 − C 0

0 0 0 αm − D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(45)

8 Complexity



where
β1 � βmh, β2 � βhm, β3 � βAhm, K1 � (Λm/μm + δm),

A � μh + δh + c + c0u1 + ρiM, B � μh + δh + cm + aLI,
C � μm + δm + αm, and D � μm + δm:

I �

Eh

IUh

IAh

Em

Im

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

G(X, I) �

bβ2Im

φh

μh

  − Sh 

0

0

bβ2IUh + b1β3IAh( 
φm

μm + δm

  − Sm 

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

-is completes the proof. □

4.3. Existence of Endemic Equilibrium Point. Besides the
disease-free equilibrium point, we shall show that the system
of equations (1)–(9) has a unique endemic equilibrium point
E2. -e endemic equilibrium point is a steady-state solution,
where the disease persists in the population.

Theorem 4. ;e system of equations (1)–(9) has no endemic
equilibrium, when R0< 1 and a unique endemic equilibrium
exists when R0> 1.

Proof. Let E2 � (S ∗h , E∗h , I∗Uh, I∗Ah, R∗h , S∗m , E∗m , I∗m , M∗) be a
nontrivial equilibrium of system of equations (1)–(9), i.e.,
all components of E2 are positive. If we set all the dif-
ferential equations of system of equations (1)–(9) equal to
zero, we get

S
∗
h �

k1k2k3

kbβ1φmαm μh + c1(  kbβ2I
∗
UH + b1β3ρiμ1I

2∗

UH  + kk2k3μh μh + c1( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (48)

E
∗
h �

k1bβ1φmαm kbβ2I
∗
UH + b1β3ρiμ1I

2∗

UH 

k αh + μh(  μh + c1(  bβ1φmαm kbβ2I
∗
UH + b1β3ρiμ1I

2∗

UH  + μhk2k3 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (49)

I
∗
Ah �

μ1ρiI
2∗

UH
k

,
(50)

R
∗
h �

k c + c0u1( I
∗
UH + cmρiμ1I

2∗

UH
k μh + c1( 

, (51)

S
∗
m �

kφm

k3
, (52)

E
∗
m �

kbφmβ2I
∗
UH + b1φmβ3ρiμ1I

2∗

UH 

μm + δm + αm( k3
,

(53)

I
∗
m �

Kbφmαmβ2I
∗
UH + b1φmαmβ3ρiμ1I

2∗

UH 

k2k3
,

(54)

M
∗

�
μ1I
∗
UH

μ0
, (55)
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where β1 � βmh, β2 � βhm, β3 � βAhm, k � μ0(μh + δm + cm +

aLI), k1 � kφh(μh + c1) + kc1(c + c0u1)I1 + c1cmρiμ1I
2∗

UH,

k2 � (μm + δm)(μm + δm + αm), and k3 � k(μm + δm) +

kbβ2I∗UH + b1β3ρiμ1I
2∗

UH. -is is a positive solution of
equation given by

A1I
3
∗

UH + A2I
2
∗

UH + A3I
∗
UH + A4 � 0, (56)

where

A1 �
b1β3ρ

2
i μ

2
1μ0 c1cm

φhαmβ2

φhαmβ2 μh + c1(  μh + δh + cm( 

c1cm μm + δm(  μh + δh + c + c0u1( 
  − R

2
0 +

kbb1αmφmβ1β3ρ
2
i μ

2
1μ0 μh + c1( 

μh + αh(  μm + δm + cm( 

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

A1 �
b1β3ρ

2
i μ

2
1μ0 c1cm

φhαmβ2

φhαmβ2 μh + c1(  μh + δh + cm( 

c1cm μm + δm(  μh + δh + c + c0u1( 
  − R

2
0 +

kbb1αmφmβ1β3ρ
2
i μ

2
1μ0 μh + c1( 

μh + αh(  μm + δm + cm( 

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

A3 �
k
2μ0
φh

bφhβ1
c1 c − c0u1(  μm + δm( 

− R
2
0  +

k b1β3ρiμ1μ0(  μh + c1( 

δh + μh + c + c0u1( bβ2

Kbβ2
b1β3μ0 δh + μh + c + c0u1( 

− R
2
0 

+
k
2μ0 μh + c1( a

φhαhμh

R
2
0 −

φhαhρiμ1aLI

K δh + μh + c + c0u1( 
 ,

A4 � k
2μ0 μh + c1(  1 − R

2
0  .

(57)

-e systems (1)–(9) have no positive solution; when
R0 < 1, A1 > 0, A2 > 0, A3 > 0, and A4 > 0 However, when
R0 > 1, A4 < 0, by using Descartes’s rule of sign, there is
exactly one sign-change in the equation, and there exists
exactly one positive root. -is implies that a unique endemic
equilibrium exists. -is completes the proof. □

Remark 2. -ere are more than one endemic equilibrium
existing in case, when R2

0 > (φhαmβ2(μh + c1)(μh + δh + cm)/
c1cm(μm + δm)(μh + δh + c+ c0u1)).

5. Results

-e general overview of the proposed model has been shown
in Figure 1. -e definitions and corresponding numeric
values of the parameters/variables in the system of equations
(1)–(9) have been summarized in Table 1. -e definitions of
the compartment variables are summarized in Table 2.

Figure 2 represents the 3D-plot for the proposed model.
In this figure, the proposed models converge to the same
point on different initial conditions. A comparison result of
proposed model (incorporating awareness) and existing
model (without awareness) has been shown in Figures 3–7
for human and mosquito populations. In each figure, re-
duction/growth of human and mosquito population in each
class has been presented.

In Figures 3–5, the population of susceptible, unaware
infected, and aware infected human population with and
without awareness has been shown. We can easily see that,
when there is no awareness, the population of susceptible
humans is decaying rapidly (the red line) and there is a rapid
increase in unaware infected human growth (the red line).
But, when we give awareness to unaware infected humans,

we experienced susceptible humans are increasing and
unaware infected humans are decreasing significantly. It is
due to the fact that, when we provide awareness to unaware
infected humans, the contact rate of infected human and
infected mosquitoes has also been reduced. -e result
revealed that a significant reduction in the population of
unaware infected humans, for different timespans, is
achieved through the proposed model. It has also been
shown that the corresponding growth of unaware infected
human population and infected mosquitoes increases
without awareness as compared with that of the proposed
model. -e results also revealed that a significant reduction
in the population of susceptible mosquitoes and infected
mosquitoes for different timespans are achieved through the
proposed model. It has also been shown that the corre-
sponding growth of infected mosquito population is higher
without awareness as compared with the proposed model.

In Figures 8 and 9, we show that, when we give
awareness, it also affects the contact rate between human and
mosquito population.

Figures 8 and 9 describe that, when there is no aware-
ness, the biting rate is also high in the region. And, infected
human and mosquito population increases rapidly, but
when we add awareness into the system, the contact rate
between aware infected humans and mosquitoes has been
reduced. We show the results on the different biting rates in
Figures 8 and 9 with low and high awareness rates.

6. Discussion

Malaria is a mosquito vector-borne disease spread in around
hundred countries worldwide. -e highest mortality rates are
reported in tropical countries likewise sub-Saharan Africa [33].
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During the past decade, several prevention measures have been
used to reduce the transmission of this deadly disease.-emost
frequently used measures include indoor spraying and bed nets.
-e vaccine of this deadly disease has not been prepared till date.
-e measures that can reduce the spread of this dangerous
disease are preventive measures and awareness. In this paper, a
mathematical model for the vector-borne disease has been
proposed incorporating the awareness against this disease.

Vector-borne disease models have been proposed/mod-
ified in the past. Tumwiinw and co-authors proposed a

mathematical model that tracks the dynamics of malaria in
the human host and mosquito vector [34]. -ey incorporated
infected humans recovered from infections and immune
humans after the loss of immunity against this deadly disease
to rejoin the susceptible class again. Addawe and Lope have
modified and analyzed the mathematical model of Tumwiinw
and co-authors [17]. -ey divided the human population into
two compartments: preschool (up to five years of age) and the
rest of human population (older than five years of age).
Lashari and co-authors introduced three types of control

Table 2: Definition and values of variables used in the model.

Variables Corresponding definition I. Values Reference
Sh Represents the number of individuals not yet infected with the malaria parasite, at time t 100 [3]
Eh Represents the number of individuals who are infected but not yet infectious 20 [3]

Iuh
Represents the individuals that are infected and are capable of transmitting the disease to susceptible

mosquitoes 10 [3]

IAh Represent the number of aware infected human in the region 0 Assumed
Rh Represents the number of individuals who have temporarily recovered from the disease 0 [3]
Sm Represents the number of mosquitoes not yet infected with the malaria parasite at time t 1000 [3]
Em Represents the number of mosquitoes who are infected but not yet infectious 30 [3]

Im

Represents the mosquitoes that are infected and are capable of transmitting the disease to susceptible
human 20 [3]

M Represents the cumulative density of awareness programs initially 0 Assumed
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Figure 2: Convergence of solutions with different initial
conditions.
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Figure 3: Population of susceptible humans with and without
awareness (without awareness (red line), with low to high
awareness rate (blue, green, magenta, and yellow line)).
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Figure 4: Population of unaware infected humans with and
without awareness, (without awareness (red line); with low to high
awareness rate awareness (blue, green, magenta, and yellow line)).
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parameters, namely, personal protection, treatment, and
mosquito-reduction strategies to reduce the spread of malaria
disease [3]. -us, the previous literature suggests that the
reduction of the spread of this dangerous disease could be
achieved through preventive measures. -erefore, a mathe-
matical model has been developed in this study to cater the
awareness strategy as a variable in the model. -e awareness
could be addressed to infected humans, and the aware in-
fected humans could reduce contact rate with mosquitoes due
to awareness. -e proposed model has been compared with
existing model. -e comparative results show that a signifi-
cant improvement in the reduction of vector-borne infection
could be achieved with awareness.

7. Conclusion

Malaria is a tropical infectious disease. Scientists have not
succeeded till date to develop an effective vaccine to re-
taliate this deadly disease.-us, the mathematical modeling
of this disease has a crucial role to understand the insights
of the transmission dynamics and corresponding appro-
priate prevention strategies. A novel mathematical model
has been proposed in this study to prevent malaria disease.

-e simulation results have significantly shown that
awareness is an important factor to fight against this deadly
disease. -us, the spread of this illness could be prevented
through effective awareness strategies in regions, where it
has rapid spread.
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In this paper, taking both white noises and colored noises into consideration, a nonlinear stochastic SIRS epidemic model with
regime switching is explored.*e threshold parameter Rs is found, and we investigate sufficient conditions for the existence of the
ergodic stationary distribution of the positive solution. Finally, some numerical simulations are also carried out to demonstrate the
analytical results.

1. Introduction

It is well known that the incidence rate plays a crucial role in
studying the dynamics of infectious disease models. In
general, bilinear incidence βSI is considered in most in-
fectious disease models [1, 2]. For example, Li and Ma [3]
conducted the qualitative analyses of the SIS epidemic model
with vaccination and varying total population size. Nakata
and Kuniya [4] introduced the global dynamics of a class of
SEIRS epidemic models in a periodic environment. In order
to effectively investigate the rapid spread of the disease, it is
rewarding to consider the behavioral changes and crowding
effect of the infected individuals, as well as choose appro-
priate parameters to prevent the unbounded contact rate.
Capasso and Serio [5] proposed the saturated incidence
(βSI/(1 + αI)), which is more reasonable than the bilinear
incidence. For the detailed introduction of the saturated
incidence, see [5].

*e classical SIRS epidemic model with the saturated
incidence rate is in the following form [6, 7]:

dS(t)

dt
� A −

βS(t)I(t)

1 + αI(t)
− μS(t) + ωR(t),

dI(t)

dt
�
βS(t)I(t)

1 + αI(t)
− (μ + λ + d)I(t),

dR(t)

dt
� λI(t) − (μ + ω)R(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where S(t), I(t), and R(t) represent the number of sus-
ceptible, infected, and removed individuals at time t, re-
spectively. A denotes an input of new members into the
population, β stands for the transmission rate, μ is the
natural mortality, d is the death rate relative to the disease, λ
is the proportion of the infective class to the recovered class,
and ω is the per capita rate of loss of immunity.

In nature, it is inevitable for a population to be affected
by a variety of random factors [8, 9]. Consequently, it is
crucial to consider the randomness which might exist during
the transmission of disease [10, 11]. In general, there are two
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types of random perturbations to be considered in ecosystem
modeling: one is white noise which can be described as
Brownian motion [12–14], and the other is colored noise
(also called telegraph noise) which can be described through
a finite-state Markov chain [15–17]. In [15], Liu et al. in-
vestigated the threshold behavior of a multigroup SIRS
epidemic model with standard incidence rates and Mar-
kovian switching. Lin and Jin [16] considered a stochastic

SIS epidemic model with regime switching; by verifying a
Foster–Lyapunov condition, the threshold condition for the
ergodicity is presented. Hu et al. [17] studied a stochastic SIS
epidemic model with vaccination and nonlinear incidence
under regime switching.

Motivated by the above literature, we study a nonlinear
stochastic SIRS epidemic model with two kinds of random
interference. *e model is as follows:

dS(t) � (1 − q(ξ(t)))A(ξ(t)) −
β(ξ(t))S(t)I(t)

1 + αI(t)
− μ(ξ(t))S(t) + ω(ξ(t))R(t) dt

+ σ1(ξ(t))S(t)dB1(t),

dI(t) �
β(ξ(t))S(t)I(t)

1 + αI(t)
− μ(ξ(t))I(t) − λ(ξ(t))I(t) dt + σ2(ξ(t))I (t)dB2(t)( ,

dR(t) � (q(ξ(t))A(ξ(t)) + λ(ξ(t))I(t) − μ(ξ(t))R(t) − ω(ξ(t))R(t))dt + σ3(ξ(t))R(t)dB3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where q is a fraction of vaccinated individuals for newborns.
*e incidence rate α contains the crowding effect of the
infected individuals and should not be disturbed by the
noises in the environment. Bi(t)(i � 1, 2, 3) denotes one-
dimensional standard Brownian motion, and σi(i � 1, 2, 3)

is the intensity of white noise. ξ(t) is a right-continuous
Markov chain taking values in M � 1, 2, . . . , m{ }, and the
generator matrix of ξ(t) is Γ � (cij)1≤ i,j≤m. *e details of the
Markov chain are presented in [18], which we omit here.

In this paper, the dynamic behaviors of stochastic dif-
ferential system (2) are discussed. In Section 2, we get the
conditions for the extinction and persistence in mean of the
infected. In Section 3, we investigate the ergodicity of system
(2) by constructing a suitable Lyapunov function. Finally,
numerical simulations are given in Section 4.

2. The Extinction and Persistence of the Disease

In system (2), let N(t) � S(t) + I(t) + R(t); then, we have

dN(t) � [A(ξ(t)) − μ(ξ(t))N(t)]dt + σ1(ξ(t))S(t)dB1(t)

+ σ2(ξ(t))I(t)B2(t)

+ σ3(ξ(t))R(t)dB3(t).

(3)

From Lemma 2.1 and Lemma 2.2 of [19], we have the
following.

Lemma 1. For any initial value (S(0), I(0), R(0),

r(0)) ∈ R3
+ × M, the solution (S(t), I(t), R(t)) of system (2)

has the following properties:

(1) limt⟶∞((S(t) + I(t) + R(t))/t) � 0 a.s.
(2) limt⟶∞(

t

0 S(u)dB1(u)/t) � 0, limt⟶∞(
t

0 I(u)d
B2(u)/t) � 0, limt⟶∞(

t

0 R(u)dB3(u)/t) � 0 a.s.

Definition 1

(1) If limt⟶∞I(t) � 0, then the disease tends to be
extinct

(2) If limt⟶∞inf(1/t)E 
t

0 I(z)dz> 0, then the disease
tends to be persistent in mean

Define a matrix

M �

μ(1) − c11 · · · − c1m 0 · · · 0

⋮ ⋮ ⋮ ⋮

− cm1 · · · μ(m) − cmm 0 · · · 0

− ω(1) · · · 0 μ(1) + ω(1) − c11 · · · − c1m

⋮ ⋮ ⋮ ⋮

0 · · · − ω(m) − cm1 · · · μ(m) + ω(m) − cmm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

2 Complexity



Following Lemma 1 in [20], we obtain that M is a
nonsingularM-matrix. By*eorem 2.10 (see Mao and Yuan
[21]), for vector β � (β(1), β(2), . . . , β(m), 0, 0, . . . ,

0)T ∈ R2m, the equation Mη � β has a unique solution:

η � d1(1), d1(2), . . . , d1(m), d2(1), d2(2), . . . , d2(m)( 
T ∈ R

2m
+ .

(5)

*at is,

β(k) − d1(k)μ(k) + 
l∈M

ckld1(l) � 0, k � 1, 2, . . . , m,

d1(k)ω(k) − d2(k)(μ(k) + ω(k)) + 
l∈M

ckld2(l) � 0, k � 1, 2, . . . , m.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

*en, we define a parameter

Rs � Σk∈Mπk d1(k)(1 − q(k))A(k) + d2(k)q(k)A(k) − μ(k) + λ(k) +
σ22(k)

2
  . (7)

Theorem 1. For any initial value (S(0), I(0), R(0),

r(0)) ∈ R3
+ × M, assume that α + d1 − d

⌣

2 > 0 ; then,

(1) 6e disease I(t) of system (2) is extinct when Rs < 0
(2) 6e disease I(t) of system (2) is persistent in mean

when Rs > 0

Proof. Define the function

U(S(t), I(t), R(t), k) � U1(S(t), I(t), R(t), k) + U2(I(t)),

(8)

where

U1(S(t), I(t), R(t), k) � d1(k)(S(t) + I(t)) + d2(k)R(t),

U2(I(t)) � ln I(t) + αI(t).

(9)

*en, applying Itô’s formula, we have

LU1 � d1(k)[(1 − q(k))A(k) − μ(k)S(t) − (μ(k) + λ(k))I(t) + ω(k)R(t)]

+ d2(k)[q(k)A(k) + λ(k)I(t) − (μ(k) + ω(k))R(t)] +(S(t) + I(t)) 
m

l�1
ckld1(l) + R(t) 

m

l�1
ckld2(l)

� d1(k)(1 − q(k))A(k) + d2(k)q(k)A(k) + − d1(k)μ(k) + 
m

l�1
ckld1(l)⎡⎣ ⎤⎦S(t)

− (μ(k) + λ(k))d1(k) − λ(k)d2(k) − 
m

l�1
ckld1(l)⎡⎣ ⎤⎦I(t)

+ d1(k)ω(k) − d2(k)(μ(k) + ω(k)) + 
m

l�1
ckld2(l)⎡⎣ ⎤⎦R(t)

� d1(k)(1 − q(k))A(k) + d2(k)q(k)A(k) − β(k)S(t) − β(k) + λ(k)d1(k) − λ(k)d2(k) I(t),

(10)

LU2 �
β(k)S(t)

1 + αI(t)
− μ(k) + λ(k) +

σ22(k)

2
  +

αβ(k)S(t)I(t)

1 + αI(t)
− α(μ(k) + λ(k))I(t)

� β(k)S(t) − α(μ(k) + λ(k))I(t) − μ(k) + λ(k) +
σ22(k)

2
 .

(11)
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By (10) and (11), one can obtain that

LU � d1(k)(1 − q(k))A(k) + d2(k)q(k)A(k) − μ(k) + λ(k) +
σ22(k)

2
 

− β(k) + λ(k)d1(k) − λ(k)d2(k) + αμ(k) + αλ(k) I(t)

� d1(k)(1 − q(k))A(k) + d2(k)q(k)A(k) − μ(k) + λ(k) +
σ22(k)

2
 

− β(k) + λ(k) α + d1(k) − d2(k)(  + αμ(k) I(t).

(12)

An application of generalized Itô’s formula yields

U(S(t), I(t), R(t), ξ(t))

� U(S(0), I(0), R(0), ξ(0)) + 
t

0
LU(S(z), I(z), R(z), ξ(z))dz + 

t

0
d1(ξ(z))σ1(ξ(z))S(z)dB1(z)

+ 
t

0
1 + α + d1(ξ(z))( I(z) σ2(ξ(z))dB2(z) + 

t

0
d2(ξ(z))σ3(ξ(z))R(z)dB3(z)

+ 
t

0


R
U S(z), I(z), R(z), i0 + ℓ(ξ(z), l)( (  − U(S(z), I(z), R(z), ξ(z))μ(dz , dl),

(13)

where μ(dz, dl) � c(dz, dl) − μ(dl)dz is a martingale mea-
sure. By using Lemma 1.9 of [21], we can get

E[U(S(t), I(t), R(t), ξ(t))] � E[U(S(0), I(0), R(0), ξ(0))] + E 
t

0
LU(S(z), I(z), R(z), ξ(z))dz . (14)

*en,

E
U(S(t), I(t), R(t), ξ(t))

t
 

� E
U(S(0), I(0), R(0), ξ(0))

t
 

+ E
1
t


t

0
d1 ( ξ(z))(1 − q(ξ(z)))A(ξ(z)) + d2(ξ(z))q(ξ(z))A(ξ(z)) − μ(ξ(z)) + λ(ξ(z)) +

σ22(ξ(z))

2
 dz 

− E
1
t


t

0
β(ξ(z)) + λ(ξ(z)) α + d1(ξ(z)) − d2(ξ(z))(  + αμ(ξ(z)) I(z)dz .

(15)
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Hence,

Rs

β
⌣

+ λ
⌣

α + d
⌣

1 − d2  + αμ⌣
≤ lim

t⟶∞
inf

1
t

E 
t

0
I(z)dz

≤ lim
t⟶∞

sup
1
t

E 
t

0
I(z)dz

≤
Rs

β + λ α + d1 − d
⌣

2  + αμ
.

(16)

In conclusion, based on the condition α + d1 − d
⌣

2 > 0, we
have the following:

(1) If Rs < 0, then limt⟶∞I(t) � 0, a.s.
(2) If Rs > 0, then limt⟶∞inf(1/t)E 

t

0 I(z)dz≥ (Rs/β
⌣

+

λ
⌣

(α + d
⌣

1 − d2) + αμ⌣)> 0, and the disease I(t) of
system (2) is persistent in mean □

Remark 1. According to*eorem 1, if the intensity of white
noise is large enough that the condition Rs < 0 holds, then
the disease dies out with probability 1. Conversely, if Rs > 0,
the disease of system (2) is persistent in mean. *is means
that the presence of environmental noise is conducive to
disease control.

3. Ergodic Stationary Distribution of System (2)

*e study of the ergodicity and stationary distribution has
been widely concerned by many scholars [22, 23]. In this
section, in order to investigate the ergodic property of
system (2), we establish a suitable Lyapunov function with
Markov conversion.

Theorem 2. For any initial value (S(0), I(0), R(0),

ξ(0)) ∈ R3
+ × M, if Rs > 0, stochastic process (S(t), I(t),

R(t), ξ(t)) of system (2) is ergodic and has a unique stationary
distribution in R3

+ × M.

Proof. Let x(t) � ln S(t), y(t) � ln I(t), and z(t) � lnR(t).
System (2) can be transformed into

dx(t) �
(1 − q(ξ(t)))A(ξ(t))

e
x(t)

−
β(ξ(t))e

y(t)

1 + αe
y(t)

− μ(ξ(t)) +
ω(ξ(t))e

z(t)

e
x(t)

−
1
2
σ21(ξ(t)) dt + σ1(ξ(t))dB1(t),

dy(t) �
β(ξ(t))e

x(t)

1 + αe
y(t)

− μ(ξ(t)) − λ(ξ(t)) −
1
2
σ22(ξ(t)) dt + σ2(ξ(t))dB2(t),

dz(t) �
q(ξ(t))A(ξ(t))

e
z(t)

+
λ(ξ(t))e

y(t)

e
z(t)

− μ(ξ(t)) − ω(ξ(t)) −
1
2
σ23(ξ(t)) dt + σ3(ξ(t))dB3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

*e ergodic property of system (2) is the same as that of
system (17). We need to prove that system (17) satisfies the
three conditions of Lemma 2.2 in [18]. Obviously, conditions

(1) and (2) are satisfied. Hence, we only need to prove
condition (3).

Define

H(x, y, z, k) �
1

ϑ + 1
e

x
+ e

y
+ e

z
( 

ϑ+1
− a d1(k) e

x
+ e

y
(  + d2(k)e

z
+ y + αe

y
+ τ(k)  − x − z, (18)

where ϑ ∈ (0, 1), σ⌣
2

� max1≤i≤3,k∈Mσ⌣
2
i (k), and a> 0 satisfy

μ − (ϑ/2)σ⌣
2 > 0, − aRs + 2μ⌣ + ω⌣ + (1/2)σ⌣

2
1 + (1/2)σ⌣

2
3 ≤ − 2. τk

will be determined later. *ere exists a unique point
(x0, y0, z0, k) which is the minimum value of H(x, y, z, k).

Set

V(x, y, z, k) � H(x, y, z, k) − H x0, y0, z0, k( . (19)

Denote

V1 �
1

ϑ + 1
e

x
+ e

y
+ e

z
( 

ϑ+1
,

V2 � − d1(k) e
x

+ e
y

(  + d2(k)e
z

+ y + αe
y

+ τ(k) ,

V3 � − x,

V4 � − z.

(20)

An application of generalized Itô’s formula yields
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LV1 � e
x

+ e
y

+ e
z

( 
ϑ

A(k) − μ(k)e
x

− μ(k)e
y

− μ(k)e
z

( 

+
ϑ
2

e
x

+ e
y

+ e
z

( 
ϑ− 1 σ21(k)e

2x
+ σ22(k)e

2y
+ σ23(k)e

2z
 

≤ 3ϑA(k) e
ϑx

+ e
ϑy

+ e
ϑz

  − μ(k)e
(ϑ+1)x

− μ(k)e
(ϑ+1)y

− μ(k)e
(ϑ+1)z

+
ϑ
2
σ21(k)e

(ϑ+1)x
+
ϑ
2
σ22(k)e

(ϑ+1)y
+
ϑ
2
σ23(k)e

(ϑ+1)z

� − μ(k) −
ϑ
2
σ21(k) e

(ϑ+1)x
− μ(k) −

ϑ
2
σ22(k) e

(ϑ+1)y

− μ(k) −
ϑ
2
σ23(k) e

(ϑ+1)z
+ 3ϑA(k) e

ϑx
+ e

ϑy
+ e

ϑz
 

≤ − μ −
ϑ
2
σ⌣
2

 e
(ϑ+1)x

− μ −
ϑ
2
σ⌣
2

 e
(ϑ+1)y

− μ −
ϑ
2
σ⌣
2

 e
(ϑ+1)z

+ 3ϑA
⌣

e
ϑx

+ e
ϑy

+ e
ϑz

 ,

(21)

LV2 � − d1(k)(1 − q(k))A(k) − d2(k)q(k)A(k) + μ(k) + λ(k) +
σ22(k)

2
− 

m

l�1
cklτ(l)

+ e
x

d1(k)μ(k) − β(k) − 
l∈M

ckld1(l)⎡⎣ ⎤⎦ + e
y

d1(k) + α( (μ(k) + λ(k)) − d2(k)λ(k) − 
l∈M

ckld1(l)⎡⎣ ⎤⎦

+ e
z

− d1(k)ω(k) + d2(k)(μ(k) + ω(k)) − 
l∈M

ckld2(l)⎡⎣ ⎤⎦

� − G0k − 
m

l�1
cklτ(l) + e

y β(k) + d1(k) − d2(k)( λ(k) + α(μ(k) + λ(k)) ,

(22)

where we used equation (4) and

G0k � d1(k)(1 − q(k))A(k) + d2(k)q(k)A(k) − μ(k) − λ(k) −
σ22(k)

2
.

(23)

Let τ � (τ1, . . . , τm)T be the solution of the following
Poisson system:

Γτ � 
m

k�1
πkG0k

⎛⎝ ⎞⎠ 1
→

−

G01

⋮

G0m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (24)

where G � (G01, G02, . . . , G0m)T.
Substituting this equality into (22), we obtain

LV2 � − 
m

k�1
πkG0k + e

y β(k) + d1(k) − d2(k)( λ(k) + α(μ(k) + λ(k)) , (25)

LV3 � −
(1 − q(k))A(k)

e
x −

β(k)e
y

1 + αe
y +

ω(k)e
z

e
x − μ(k) −

1
2
σ21(k) , (26)

LV4 � −
q(k)A(k)

e
z −

λ(k)e
y

e
z + μ(k) + ω(k) +

1
2
σ23(k) . (27)
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Figure 1: Simulations of the solution (S(t), I(t), R(t)) to stochastic model (2) with (S(0), I(0), R(0)) � (1, 0.7, 0.8). (a) k � 1, σ2(1) � 0.05.
(b) k � 2, σ2(2) � 0.1.
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Figure 2: Simulations of the solution (S(t), I(t), R(t)) to stochastic model (2) with (S(0), I(0), R(0)) � (1, 0.7, 0.8). (a) k � 1, σ2(1) � 1.2.
(b) k � 2, σ2(2) � 1.2.
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Combining (21) and (25)–(27), we have

LV(x, y, z, k) � LV1 + aLV2 + LV3 + LV4

≤ − μ −
ϑ
2
σ⌣
2

 e
(ϑ+1)x

+ 3ϑA
⌣

e
ϑx

−
(1 − q

⌣
)A

e
x − μ −

ϑ
2
σ⌣
2

 e
(ϑ+1)y

+ 3ϑA
⌣

e
ϑy

+ ae
y β

⌣

+ λ
⌣

d
⌣

1 − d2  + α(μ⌣ + λ
⌣

)  + β
⌣

e
y

− μ −
ϑ
2
σ⌣
2

 e
(ϑ+1)z

+ 3ϑA
⌣

e
ϑz

−
qA

e
z

− aRs + 2μ⌣ + ω⌣ +
1
2
σ⌣
2
1 +

1
2
σ⌣
2
3.

(28)

Consequently, take ρ sufficiently large, and let U �

(− ρ, ρ) × (− ρ, ρ) × (− ρ, ρ); then, we have LV(x, y, z, k)≤ −

1 for any (x, y, z, k) ∈ Uc × M. According to Lemma 2.2 in
[18], we know that (x(t), y(t), z(t), ξ(t)) is ergodic and
positive recurrent.

*is proof is completed. □

4. Conclusions and Numerical Simulations

*is paper investigated a nonlinear epidemic disease
model with two kinds of noise disturbances. *e
threshold of extinction and persistence in mean is
obtained.

(i) If Rs < 0, the infected individuals tend to become
extinct

(ii) If Rs > 0, the infected individuals are persistent in
mean

(iii) If Rs > 0, the stochastic process
(S(t), I(t), R(t), ξ(t)) of system (2) is ergodic and
has a unique stationary distribution

To verify the correctness of the theoretical analysis,
numerical simulation is employed in the following example.

Example 1. In system (2), let ξ(t) be a right-continuous
Markov chain taking values inM � 1, 2{ } with the generator
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Figure 3: (a) Markov chain. (b), (c), (d), and (e) Distributions of S(t), I(t), and R(t) of model (2).

8 Complexity



Γ �
− 3 3

1 − 1
 . (29)

*en, the unique stationary distribution of ξ(t) is
π � (π1, π2) � (1/4, 3/4). Let α � 0.2, and other coefficients
in system (2) are selected as follows.

For k � i(i � 1, 2), (A(1), A(2)) � (1.3, 1.1), (q(1), q

(2)) � (0.2, 0.3), (β(1), β(2)) � (0.6, 0.7), (μ(1), μ(2)) �

(0.45, 0.5), (λ(1), λ(2)) � (0.2, 0.3), (ω(1),ω(2)) � (0.3,

0.2), (σ1(1), σ1(2)) � (0.2, 0.2), and (σ3(1), σ3(2)) �

(0.05, 0.2).
Firstly, let (σ2(1)σ2(2)) � (0.05, 0.1). *is gives

Rs � 0.52874> 0. According to *eorem 1, the infectious
disease is permanent (Figure 1).

*en, let (σ2(1), σ2(2)) � (1.2, 1.2). *is gives
Rs � − 0.1902< 0. Based on *eorem 1, the disease I(t) goes
extinct (Figure 2). It is easy to see that the disease tends to
become extinct when the intensity of white noise increases.

Lastly, let
(σ2(1)σ2(2)) � (0.05, 0.1), (μ(1), μ(2)) � (0.2, 0.15). *is
gives Rs � 3.8277> 0. From *eorem 2, the stochastic
process (S(t), I(t), R(t), ξ(t)) of system (2) is ergodic and
has a unique stationary distribution (Figure 3). Figure 3(a)
shows the Markov chain, and Figure 3(b) shows a stationary
distribution of the stochastic SIRS model. From
Figures 3(c)–3(e), we obtain the distributions of S(t), I(t),
and R(t) in stochastic system (2), respectively. *is means
stochastic SIRS model (2) has an ergodic stationary
distribution.
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In nature, a biological invasion is a common phenomenon that often threatens the existence of local species. Getting rid of the
invasive species is hard to achieve after its survival and reproduction. At present, killing some invasive ones and putting artificial
local species are usual methods to prevent local species from extinction. An ODE model is constructed to simulate the invasive
procedure, and the protection policy is depicted as a series of impulses depending on the state of the variables. Both the ODEs and
the impulses form a state feedback impulsive model which describes the invasion and protection together. *e existence of
homoclinic cycle and bifurcation of order-1 periodic solution of the impulsive model are discussed, and the orbitally asymptotical
stability of the order-1 periodic solution is certificated with a novel method. Finally, the numerical simulation result is listed to
confirm the theoretical work.

1. Introduction

Biological invasion is the introduction and establishment of
a species beyond its natural range where it may proliferate
and spread dramatically [1]. As being predicted, the rate of
biological invasion is expected to increase with the accel-
eration of worldwide movement of people and goods [2, 3].
Biological invasions constitute a major environmental
change driver, affecting conservation, agriculture, and hu-
man health [4, 5]. Inevitably, biological invasions result in
species interactions. When local community members are
challenged by biological invasions, they may face novel
antagonists such as predators or competitors, or they may
benefit from new prey, new and underutilized host plants, or
even new mutualists [6]. It is well known that some invasion
cases such as the diffusion of alien invasive plants in Albania
and the Mediterranean [7] and the rampant diffusion of
Asian carp in America have caused great disaster in nature
niche. Since biological invasions contribute a lot to rapid
environmental change [8], biodiversity loss, degradation of
ecosystem structure, impairment of ecosystem services [9],
and significant impacts on both natural and agricultural

ecosystems [10], ecological invasion and subsequent influ-
ence are receiving increasing attention from scientists and
governors. To prevent some species from extinction and
destruction of niche caused by the ecological invasion,
ecologists carry out some strategies such as the introduction
of natural enemies, substitution of invasion species, physical
prevention, and chemical prevention. *ese artificial con-
trolling methods are executed periodically instead of being
performed continuously. And the time point to carry out the
artificial assistance is decided by the density of the species,
but not the fixed period.

Recently, some mathematicians improved a lot in the
state feedback impulsive dynamics. *ey not only set up the
basic framework but also proposed and proved some useful
theorems. Chen revised and improved some basic frame
definitions and proposed a series of theorems which
established the foundation of this area and had been widely
applied in dealing with practical problems [11]. Zhang et al.
improved the theory about order-1 periodic solution in the
model of the Internet worm control [12].Wei et al. dedicated
a lot in the area of homoclinic cycle and heteroclinic orbit
with respect to some kinds of dynamic model [13–15].
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Inspired by the new results in state feedback impulsive model
[16–26], and classical work in limit cycle [26] the authors
propose a state feedback impulsive model, which is more
suitable than the ODE model, to describe the procedure of
ecological invasion and artificial control.

*is paper is organized as follows. Section 2 proposes a
state feedback impulsive model which describes the artificial
auxiliary as an impulse relying on the state of variables and
introduces some preliminaries of state feedback impulsive
system. *e existence of homoclinic cycle and order-1 pe-
riodic solution is proved in Section 3, and its stability is
proved in Section 4. Some numerical simulations will be
exhibited in Section 5.

2. StateFeedbackImpulsiveArtificialAssistance
Model and Its Preliminaries

We focus on the artificial control by releasing some artificial
breeding ones and getting rid of some invasive ones to help
the local species to survive from competition with invasive
ones.

2.1. Free Developing Model and Analysis. We consider the
model

dx

dt
� x(a − cy),

dy

dt
� y(d − ex)

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

to describe the competition between the two species, where
x and y are densities of local and invasive species sepa-
rately, and these two species compete for the same natural
resource. Considering the practical significance, we only
discuss model (1) in the first quadrant. It is easy to find that
model (1) has two equilibriums O(0, 0) and E(d/e, a/c),
where O(0, 0) is an unstable node while E(d/e, a/c) is a
saddle. *e dynamical features of model (1) are shown in
Figure 1. Since there is only one saddle in the first quadrant,
we claim that there exists no limit cycle in the area
(x, y) | x> 0, y> 0 .

In Figure 1, unstable and stable manifolds of saddle E,
shown in heavy lines, are denoted with L1 and L2. *en, the
first quadrant is separated into four parts G1, G2, G3, and G4.
*e trajectories initiated from G3 and G4 will tend to (∞, 0)

which means the local species can survive the invasion
without artificial assistance. On the contrary, the trend of
trajectories starting from G1 and G2 implies that the local
species will experience a critical shrink after a certain period,
and the invasion will lead to the extinction of local species
sooner or later. *e endangered species should have already
been protected in special ways, and in this paper, we focus on
the common protection of nonendangered local species
during the invasion, so we only study the trajectories in G1.

*e artificial control is designed as follows. When the
density of invasive species reaches a certain level which is
marked with h, manual intervention will be implemented.
*rough some technical skills, such as spraying biocide,

artificial killing, and releasing natural enemies, the invasive
species will be partly removed. At the same time, a certain
number of local species are put into circulation to replenish
its density. Since the perishing of invasive species and the
replenishing of local species are carried out according to the
actual state of the species and all the artificial auxiliary can be
finished in a relatively short period compared with the long-
term struggle between the two species, the invasion and
protection procedure should be described with a state
feedback impulsive model. Without loss of generality, we
assume the density of invasive species before mankind help
is bigger than the ordinate of equilibrium E, i.e., h> a/c. If
the mankind help is strong enough to maintain the state of
the species in areas G3 and G4, the local system will persist.
However, the power of mankind is always limited, which
means the invasive species cannot be eliminated thoroughly
and the local species can only be complemented with limited
amount. So, we also assume that the state of two species is
located in area G1 and its boundaries after impulse.

2.2. Construction of the State Feedback Impulsive Model.
*e state feedback impulse control works in the following
procedure. Once the density of invasive species y rises to the
threshold value h, people will cull some of them at the rate of
β and put in some artificial local ones at the same time. *e
number of artificial local ones put in the circumstance is
infected by density of remainder local species. In circum-
stantial depiction, we put in more artificial ones to keep the
local species permanence if the density of local species is
lower, i.e., it is inversely proportional to the density of local
species x before the impulse. To construct the model, we
denote the intersection of unstable manifold L1 and the
thresh hold line y � h as A(xA, h), and point A+(xA+ , (1 −

β)h) denotes the intersection of stable manifold L2; the line
consisted of the points after impulse. We also denote the
intersection of thresh hold line y � h and the horizontal
isocline dy/dt � 0 as P(xP, yP) (see Figure 2). *en, the
model can be described as
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Figure 1: Trajectories of model (1) with parameter values:
a � 5, c � 4, d � 6, and e � 3.
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dx

dt
� x(a − cy),

dy

dt
� y(d − ex),

y≠ h ory � h, x>xP,

Δx � α xA+ − x( ,

Δy � − βy,

y � h, xA ≤x≤xP.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

From the description above, we assume that α≤ 1 and all
the parameters in model (2) are positive. In model (2), the
investment of artificial local species is monotonically de-
creasing with the left ones, which is in accordance with the
actual situation. *e less the local species left, the more the
artificial ones invested.

2.3. Preliminaries. In the following part of this section, some
preliminaries about the state feedback impulsive system will
be introduced.

Definition 1. A state feedback impulsive system is defined as

dx

dt
� P(x, y),

dy

dt
� Q(x, y),

(x, y) ∉M x, y ,

Δx � A(x, y),

Δy � B(x, y),
(x, y) ∈M x, y .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

*e dynamic system defined with (3) is a kind of
semicontinuous dynamic system. In the system, when the
variables (x, y) reach setM x, y , the impulse will be carried
out according φ: (x, y)⟶ (x + Δx, y + Δy). Here,
M x, y  is called impulse set and ϕ is impulsive function.
Without loss of generality, the initial point P0 of system (3)

should be restricted not in impulse set M x, y , i.e.,
P ∈ Ω � R2\M x, y . Define N � φ(M), and we call it phase
set. *e state feedback impulsive system can be denoted with
(Ω, f,φ, M), where
f(x, y) � (P(x, y), Q(x, y)), (x, y) ∉M x, y . And the
mapping of the state feedback impulsive system is expressed
with f⊗φ(•, t).

It is obvious that line segment AP is impulsive set of
model (2), while a certain part of line y � (1 − β)h is the
corresponding phase set. While the trajectory L reaches the
impulsive set AP at point MG, the impulsive function φ
maps it to the point NG, i.e. f⊗φ(G, t) � NG.

Definition 2 (see [11]). Since f⊗φ(•, t) is a mapping on
itself, there exists a point G∗ in phase set N and a corre-
sponding moment t∗ satisfying f(G∗, t∗) � M∗G ∈M;
moreover, φ(M∗G ) � φ(f(G∗, t∗)) � G∗ ∈ N,
i.e.,f⊗φ(G∗, t∗) � G∗. *en, f⊗φ(G∗, t∗) is an order-1
periodic solution of model (3). And the trajectory from G∗ to
M∗G controlled by f and the mapping segment line from
M∗G to G∗ controlled by φmake up an order-1 limited cycle.
Furthermore, if there is a saddle on the order-1 limited cycle,
then they form an order-1 homoclinic cycle.

Definition 3 (see [11]). Suppose impulse set M and phase set
N are straight lines (see Figure 2). To any point G ∈ N,
define the absolutely value of its abscissas as its coordinate.
*e trajectory initiating from G intersects impulse set M at
MG; then, the impulse function φ maps MG to NG in phase
set N, and NG is the subsequent point of G. *en, we define
the successor function of G as F(G) � |xNG

| − |xG|.

Remark 1. *e sufficient and necessary condition of F(G) �

0 is that the solution from G point is an order-1 periodic
solution of system (3).

Lemma 1 (see [11]). Successor function F(A) is continuous.

Lemma 2 (see [11]). In semicontinuous dynamic system
(Ω, f,φ, M), there exist two points G1 and G2 in phase set N;
if F(G1) · (G2)< 0, then there must exist a point G∗ between
G1 and G2 in phase set N satisfying F(G∗) � 0, i.e.,
f⊗φ(G∗, t) is the order-1 periodic solution.

Lemma 3. If the impulsive condition is expressed with
ϕ(x, y) � 0, then system (3) can be rewritten as

dx

dt
� P(x, y),

dy

dt
� Q(x, y),

ϕ(x, y)≠ 0,

Δx � A(x, y),

Δy � B(x, y),

ϕ(x, y) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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Figure 2: Diagram of state feedback impulsive system with pa-
rameter values: a � 5, c � 4, d � 6, e � 3, h � 2.2, and β � 0.2.
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Assume it has an order-q periodic solution
Γ(t): � (ξ(t), η(t)), and the period is T. *en, the order-1

periodic solution is orbitally asymptotically stable if the
factor μ2 satisfies |μ2|< 1, where

μ2 � 

q

k�1
Δk exp 

T

0

zP

zx
(ξ(t), η(t)) +

zQ

zy
(ξ(t), η(t)) dt ,

Δk �
P+((zB/zy)(zϕ/zx) − (zB/zx)(zϕ/zy) +(zϕ/zx)) + Q+((zA/zx)(zϕ/zy) − (zA/zy)(zϕ/zx) +(zϕ/zy))

P(zϕ/zx) + Q(zϕ/zy)
.

(5)

Here, P, Q, zA/zx, zA/zy, zB/zx, zB/zy, zϕ/zx, and
zϕ/zy are the corresponding values at point (ξ(τk), η(τk)),
and P+ and Q+ are calculated at (ξ(τ+

k ), η(τ+
k )).

*ese definitions and lemmas about the state feedback
impulsive system are of great significance in the following
part of this paper.

3. Homoclinic Cycle and
Homoclinic Bifurcation

In order to discuss the existence of homoclinic cycle and
order-1 periodic solution of model (2), we choose α as a key
parameter. For a certain α, the homoclinic cycle exists and
then it will disappear and bifurcate an order-1 periodic
solution with the changing of α.

3.1. Homoclinic Cycle of Model (2) about Parameter α.
*e horizontal isocline l: dy/dt � 0 of model (2) expressed
as dot line in Figure 3 crosses impulsive set M: y � h and
phase set N: y � (1 − β)h at P and Q (see Figure 3), and the
vertical isocline l∗: dx/dt � 0 is a line passing saddle E and
paralleling with x axis. From the trajectory properties of
model (2), we know that the intersection point A of unstable
manifold L2 and the line y � h must locate on the left side of
horizontal isocline l and on the upside of vertical isocline l∗,
while the intersection pointA+ of stable manifold L1 and line
y � (1 − β)h must be on the upper right side.

According to the control of model (2), L2, unstable
manifold of saddle, E, comes out from E and reaches im-
pulsive set M at point A. Restricting α � 1, A will be mapped
by the impulsive mapping φ of model (2), i.e.,

φ xA, h(  � xA+ , (1 − β)h( , φ: A⟶ A
+
. (6)

After the impulsive mapping, the trajectory moves along
L1, the stable manifold of E. So, trajectory EA, impulsive line
AA+, and trajectory A+E form a closed cycle, and saddle E

locates on it.*en, the homoclinic cycle forms (see Figure 3).

Theorem 1. If α � 1, then there exists an order-1 homoclinic
cycle in model (2).

3.2. Homoclinic Bifurcation about Parameter α. α> 1 indi-
cates that putting abundant artificial local ones can maintain
the permanence of local species. But in practice, the massive
release cannot be satisfied every time for the deficiency of

artificial breeding capability. Congruous with the above, we
only consider the case that the phase point locates in G1 in
this paper.

In this section, we assume α< 1, so the phase point of A

which is denoted as NA locates on the left side of A+. Take
another point B+(xB+ , (1 − β)h) on the left side of A+ and
assume xB+ � xA+ − ε, where ε> 0 is a small enough number,
which means B+ is sufficiently close to A+. Following the
fundamental theories of ordinary differential equation, there
exists a unique trajectory L passing through B+ and inter-
secting with the impulse set M at point B(xB, h). According
to the continuous property of solution with respect to the
initial value, point B locates on the right side of A and is close
enough to A. Furthermore, based on the continuous char-
acteristic of impulse function φ with respect to the inde-
pendent variable, the phase point NB � φ(B) is also close
enough to NA, i.e., NB is on the left side of B+, F(B+)< 0 (see
Figure 4).

*en, we consider the trajectory passing Q. Following
the properties of trajectories, there exists only one trajectory
passing through Q denoted as L∗; it arrives the imagine set
M: y � h at D, then the impulsive function φmaps D to ND.
*e following discussion is basedfsection, we will discuss the
orbital stabi on the location of ND(xND

, (1 − β)h).

Case 1. xND
� xQ � d/e. *is condition ensures the phase

points ND and Q coincide and the successor function of Q is
F(Q) � 0, i.e., the trajectory Q D and the impulsive mapping
DND make up an order-1 limit cycle (see Figure 5). We
denote the value of α under this situation as α∗.

Case 2. xND
>xQ � d/e, i.e., α∗ < α< 1. With this condition,

we have that the successor function of Q is
F(Q) � xND

− xQ > 0. According to Lemma 2, there exists a
point C ∈ N (between Q and B+) satisfying F(C) � 0. *at
means there exists an order-1 periodic solution of system (2)
(see Figure 6).

Case 3. xND
<xQ � d/e, i.e., α< α∗. Here, we can get a

contrary successor function of Q, i.e., F(Q) � xND
− xQ < 0.

Denote the intersection of L and phase set N (L moves
upside) as B∗; then, F(B∗)> 0. Also, from Lemma 2, there
exists a point C∗ ∈ N (between B∗ and Q) satisfying
F(C∗) � 0. *at means there exists an order-1 periodic
solution of system (2) (see Figure 7).

From the discussion of those three cases, we have the
following theorem.
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Theorem 2. If α < α< 1 (α is the threshold to make sure the
phase point is located in G1) holds, then there exists an order-1
periodic solution to system (2).

Remark 2. From*eorems 1 and 2, we know that system (2)
has an order-1 homoclinic cycle when α � 1. For any
α < α< 1, the order-1 homoclinic cycle breaks and bifurcates
an order-1 periodic solution. *en, α � 1 is a bifurcation
point for system (2).

4. Stability of the Order-1 Periodic Solution

In this section, we will discuss the orbital stability of the
order-1 periodic solution.

Theorem 3. Suppose (ξ(t), η(t)) is an order-1 periodic
solution of model (2) which initiates from (ξ0, η0) ∈ N and
it arrives the impulsive set at (ξ1, η1) ∈M. =e order-1
periodic solution (ξ(t), η(t)) is orbitally asymptotically
stable if

(H), ξ0 <
d

e
(7)

is satisfied.

Proof 1. Assume Γ(t) � (ξ(t), η(t)) is an order-1 periodic
solution of system (2) and the period is T. Denote
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Figure 3: Homoclinic cycle of model (2) with parameter values: a � 5, c � 4, d � 6, e � 3, h � 2.2, β � 0.2, and α � 1.

0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

E

h

A+ (xA+, (1 – β)h)

B+ (xB+, (1 – β)h)

A (xA, h)

NA NB

X

Y
Q

L1
L2

l∗: dx/dt = 0

l : dy/dt = 0

PB

L

(1 – β)h

Figure 4: Trajectory L passing B+ and impulse mapping of B with
parameter values: a � 5, c � 4, d � 6, e � 3, h � 2.2, and β � 0.2.

0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

E

D

A+ (xA+, (1 – β)h)

A (xA, h)h

X

Y

L1

L∗

L2

l∗: dx/dt = 0

l : dy/dt = 0

P

(1 – β)h Q (ND)

Figure 5: Trajectory L∗ passing Q and impulse mapping D of case I
with parameter values: a � 5, c � 4, d � 6, e � 3, h � 2.2, and
β � 0.2.

Complexity 5



ξ0 � ξ(0),

ξ1 � ξ(T),

η0 � η(0) � (1 − β)h,

η1 � η(T) � h,

(8)

ξ+
1 � ξ T

+
(  � ξ1 + α xA+ − ξ1(  � ξ0,

η+
1 � η T

+
(  � η0 � (1 − β)h.

(9)

Following the expression of system (2), we have

P(x, y) � x(a − cy),

Q(x, y) � y(d − ex),

A(x, y) � α xA+ − x( ,

B(x, y) � − βy,

ϕ(x, y) � y − h.

(10)

*en, their values can be calculated as

zP

zx
� a − cy,

zP

zy
� − cx,

zQ

zx
� − ey,

zQ

zy
� d − ex,

zA

zx
� − α,

zA

zy
� 0,

zB

zx
� 0,

zB

zy
� − β,

zϕ
zx

� 0,

zϕ
zy

� 1.

(11)

We also have

Δ1 �
(1 − α)Q+

Q
�

(1 − α) d − eξ0( η0
d − eξ1( η1

� (1 − α)(1 − β)
d − eξ0
d − eξ1

,

(12)


T

0

zP

zx
(ξ(t), η(t)) +

zQ

zy
(ξ(t), η(t)) dt

� 
T

0

_x

x
+

_y

y
 dt

� ln
ξ1
ξ0

·
η1
η0

.

(13)

*en,

μ2 �Δ1 · exp
T

0

zP

zx
(ξ(t), η(t)) +

zQ

zy
(ξ(t), η(t)) dt

� (1 − α) ·
d − eξ0
d − eξ1

·
ξ1
ξ0

.

(14)
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In area G1, variable x shows a continuous decrease when
it is controlled by the first two equations of model (2).
(ξ0, η0) and (ξ1, η1) are coordinates of the intersections of
the order-1 periodic solution with phase set and impulsive
set. It is obvious that the trajectories move from the in-
tersection on phase set to the one on impulsive set, so we can
draw the conclusion that ξ1 < ξ0. With these conditions, if

(H), ξ0 <
d

e
, (15)

also holds, i.e., the intersection of the order-1 periodic so-
lution and the phase set locates on the left side of the
horizontal isocline, we have 0< (d − eξ0/d − eξ1)< 1. *en,
|μ2|< 1 is satisfied. Following Lemma 3, we can draw the
conclusion that the order-1 periodic solution is orbitally
asymptotically stable. *is completes the proof. □

5. Numerical Simulation and Discussion

System (1) is a state feedback impulsive dynamic system
whose corresponding system without impulse is model (2).
In Section 3 and Section 4, we have proved that system (2)
has either a homoclinic cycle or an order-1 periodic solution
according to different parameter values. To verify the result,
we show some results which display the conclusion more
intuitively.

In the following numerical simulation of model (2), we
assume a � 5, c � 4, d � 6, e � 3, and h � 2.2 while the pa-
rameters α and β which control the intensity of impulse take
different values.

Figure 8 shows that homoclinic cycles exist when α � 1
while the parameter β takes different values. It means the
existence of homoclinic cycle is not influenced by the value
of parameter β as long as the impulsive set is located above
the saddle E.

Figure 9 exhibits the situation when α> 1. When α> 1,
the phase point will drop in area G4 which means the
trajectory definitely runs to (∞, 0). In reality, if there are
plenty of artificial local ones can be invested in the com-
petition together with getting rid of a certain amount of
invasive ones, then the local species will success and sustain.
If artificial breeding local species is easy, impulsive replenish
of enough amount of artificial local ones can help the local
species hold advantage in the competition with invasive
ones. So, strengthening the local species with supplying
plentiful amount in single impulse is the best strategy when
dealing with ecological invasion.
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Figure 10: Existence of order-1 periodic solution when α< 1 with parameter values: a � 5, c � 4, d � 6, e � 3, h � 2.2, and β � 0.2 and initial
values (3.5, 2.4). *e cases of α � 0.3, α � 0.6, and α � 0.9 are shown with hazel, blue, and pink lines coordinately.
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When α< α< 1, there exists order-1 periodic solution in
model (2), and Figure 10 shows the specific situation. It
means that removing some invasive species and supplying a
certain amount of local species can keep the local species and
prevent it from extinction. In reality, when the local species
is not quite easy to breed, proper amount investment of local
species and removal of invasive ones will keep the two
species into periodic circumstances. Both local species and
invasive species will be kept, and their amounts appear to
have a complex relation with each other. *e single situation
and the time series of local species x and invasive species y

are shown in Figure 11. It is easy to find that both time

period and amplitude increase with the growing of α based
on the fixed β. *is means that more supplement of artificial
breeding of local species can make the local species steady
when facing disturbance.

To different β, model (2) has an order-1 periodic solution
for α< α< 1. Figure 12 shows the order-1 periodic solutions
of model (2) when β � 0.3.

Based on the theoretical and numerical results, we can
conclude that killing invasive species and investing artificial
breeding local species into circumstances can help the local
ones resist the ecological invasion. Investing plenty of local
species in one time can even support the local species win the
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Figure 11: *e order-1 periodic solution of model (2) and time series of x and y with parameters a � 5, c � 4, d � 6, e � 3, h � 2.2, and β �

0.2 and initial values (3.5, 2.4). (a, b) α � 0.3. (c, d) α � 0.6. (e, f ) α � 0.9. (a), (c), and (e) show the order-1 periodic solution, while (b), (d),
and (f) exhibit the time series of variables x and y.
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competition. If the supplement of local species is not enough,
we should also replenish it as abundant as we can, since the
more we invest, the stronger the local species will be.

Data Availability

No data were used to support the study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

Meng Zhang was supported by NSFC (no. 11701026) and the
Fundamental Research Funds for Beijing University of Civil
Engineering and Architecture, China (X19031). Yi Zhao was
supported by the BUCEA Post Graduate Innovation Project
(no. PG2020098).

References

[1] D. Simberloff, Invasive Species: What Everyone Needs to Know,
Oxford University Press, Oxford, UK, 2013.

[2] F. Essl, S. Dullinger, W. Rabitsch et al., “Socioeconomic legacy
yields an invasion debt,” Proceedings of the National Academy
of Sciences, vol. 108, no. 1, pp. 203–207, 2011.

[3] H. Seebens, M. T. Gastner, and B. Blasius, “*e risk of marine
bioinvasion caused by global shipping,” Ecology Letters,
vol. 16, no. 6, pp. 782–790, 2013.

[4] S. L. Chown, K. A. Hodgins, P. C. Griffin, J. G. Oakeshott,
M. Byrne, and A. A. Hoffmann, “Biological invasions, climate
change and genomics,” Evolutionary Applications, vol. 8,
no. 1, pp. 23–46, 2015.

[5] P. Peter and D. M. Richardson, “Invasive species, environ-
mental change and management, and ecosystem health,”
Annual Review of Environment and Resources, vol. 35,
pp. 25–55, 2010.

[6] A. I. Queiroz and P. Simon, Histories of Bioinvasions in the
Mediterranean (Environmental history Series, Springer,
Cham, Switzerland, 2018.

[7] D. Simberloff, J.-L. Martin, P. Genovesi et al., “Impacts of
biological invasions: what’s what and the way forward,”
Trends in Ecology & Evolution, vol. 28, no. 1, pp. 58–66, 2013.

[8] N.-M. Gabriela and S. Fei, “Understanding macroscale pat-
terns and processes of invasion. theses and dissertations
available from ProQuest,” 2018.

[9] C. Hui and D. M. Richardson, Invasion dynamics, Oxford
University Press, Oxford, UK, 2017.

[10] J. A. Lau and C. P. Terhorst, “Causes and consequences of
failed adaptation to biological invasions: the role of ecological
constraints,”Molecular Ecology, vol. 24, no. 9, pp. 1987–1998,
2015.

[11] L. Chen, X. Liang, and Y. Pei, “*e periodic solutions of the
impulsive state feedback dynamical system,” Communications
in Mathematical Biology and Neuroscience, vol. 2018, Article
ID 14, 2018.

[12] M. Zhang, G. Song, and L. Chen, “A state feedback impulse
model for computer worm control,” Nonlinear Dynamics,
vol. 85, no. 3, pp. 1561–1569, 2016.

[13] C. Wei and L. Chen, “Heteroclinic bifurcations of a prey-
predator fishery model with impulsive harvesting,” Interna-
tional Journal of Biomathematics, vol. 06, no. 05, Article ID
1350031, 2013.

[14] C. Wei and L. Chen, “Dynamic analysis of mathematical
model of ethanol fermentation with gas stripping,” Nonlinear
Dynamics, vol. 57, no. 1-2, pp. 13–23, 2009.

[15] C. Wei and L. Chen, “Periodic solution of prey-predator
model with beddington-DeAngelis functional response and
impulsive state feedback control,” Journal of Applied Math-
ematics, vol. 2012, Article ID 607105, 2012.

[16] T. Zhang, N. Gao, J. Wang et al., “Dynamic system of mi-
crobial culture described bu impulsive differential equations,”
Mathematical Modelling and Its Application, vol. 8, no. 01,
pp. 1–13, 2019.

[17] S. Huang, “Modeling and solution to the problem of optimal
epidemic control: a review,” Mathematical Modelling and Its
Application, vol. 8, no. 03, pp. 1–36, 2019.

[18] C. Wei and L. Chen, “Periodic solution and heteroclinic
bifurcation in a predator-prey system with allee effect and
impulsive harvesting,” Nonlinear Dynamics, vol. 76, no. 2,
pp. 1109–1117, 2014.

[19] H. Gritli and S. Belghith, “Walking dynamics of the passive
compass-gait model under OGY-based state-feedback con-
trol: analysis of local bifurcations via the hybrid poincaré
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In this paper, a fractional-order HBVmodel was set up based on standardmass action incidences and quasisteady assumption.'e
basic reproductive number R0 and the cytotoxic T lymphocytes’ immune-response reproductive number R1 were derived. 'ere
were three equilibrium points of themodel, and stable analysis of each equilibrium point was given with corresponding hypothesis
about R0 or R1. Some numerical simulations were also given based on HBeAg clinical data, and the simulation showed that there
existed positive logarithmic correlation between the number of infected cells and HBeAg, which was consistent with the clinical
facts. 'e simulation also showed that the clinical individual differences should be reflected by the fractional-order model.

1. Introduction

Viral infection is a major global problem, and mathematical
models are an important tool for the study of biological
phenomenon [1–5] and viral infectious disease [6–9] be-
cause they can help us to understand the dynamics of some
infectious diseases and some chronic viral infections.

Mathematical models were also used to interpret exper-
imental and clinical results in the fields of (anti-) HIV, HBV,
and HCV infections [10–12]. 'ese models were all set up
with ordinary differential equation. In recent years, fractional
differential equation models were often used in biology be-
cause the researchers found that the biological cell mem-
branes have electron conductivity, which could be classified as
a fractional-order model [13, 14]. In addition, some biological
models established by fractional differential equations have
proved to be more advantageous than integers [14]. In par-
ticular, the biggest difference between the fractional-order
model and the integer-ordermodel is that the fractional-order
model has the memory, while the characteristic of the im-
mune response contains the memory [14].

So, when we discuss virus immune models, fractional
mathematical models have become important tools.

Arafa et al. [14] proposed a fractional-order HIV infec-
tion model, Wang et al. [15] proposed a fractional-order
HIV infection model, considering the logistic growth of
the healthy CD4 cells, and Yan and Kou [16] had further
proposed the following HIV model:

D
α
x � λ − dx + ρx 1 − x +

y

xmax
  − βxv,

D
α
y � βxv − ay,

D
α
v � ky − cv.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Within-host HBV models of fractional order were also
discussed [17, 18], and the model in paper [17] was as follows:

D
α
x � λ − dx − βxv + δy,

D
α
y � βxv − (a + δ)y,

D
α
v � ky − cv,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where x, y, and v represent the concentration of uninfected
hepatocytes cells, infected cells, and viruses, the death rate of
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them is d, a, and c, reprectively, the uninfected hepatocytes
are supposed to be produced at rate λ, β is the infection rate
at which the uninfected cell becomes infected, and the in-
fected hepatocytes are cured by noncytolytic processes at a
constant rate δ per cell. Based on model (2), Cardoso et al.
[18] also disused a fractional model of hepatitis B with drug
therapy by representing β and k in model (2) with (1 − ρ)β
and (1 − μ)k, in which ρ and μ represent the drug efficacy.

It should be pointed out that the bilinear incidences βxv

were used to describe the infection between uninfected cells
and virus in [14–18], but Min et al. changed it to standard
incidence function (βxv/(x + y)) to describe the HBV in-
fection model, which seemed more reasonable because it is
independent of the number of total cells of liver [19]. On the
other hand, Bartholdy et al. andWodarz et al. [20] found that
the turnover of free virus wasmuch faster than that of infected
cells, whichmeans quasisteady assumption could be used, that
is, the amount of free virus is simply proportional to the
number of infected cells, so the number of infected cells y can
also be considered as a measure of virus load. Based on
quasisteady assumption, Guo and Cai [21] discussed a HBV
infection model by (βxy/(x + y)) instead of (βxv/(x + y)),
but the model is integral order. On the other hand, model (2)
does not include the immune cell, while the cytotoxic
T lymphocyte (CTL) immune response after viral infection is
universal and necessary to eliminate or control the disease.

'ough fractional differential equations have proved to
be a good choice to describe biological phenomenon, most
discussions only focus on mathematic analysis and nu-
merical simulation, and so far, almost no papers have used
fractional-order models to explain clinic phenomenon about
HBV. In this paper, based on the above discussion and
quasisteady assumption, a HBVmodel was set up as follows:

D
α
x � λ − dx −

βxy

(x + y)
+ δy,

D
α
y �

βxy

(x + y)
− ay − pyz − δy,

D
α
z � cyz − bz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

in which 0< α< 1, the meanings of x and y are the same as
those in model (2), z represents the number of CTL, where
the immune response is assumed to get stronger at a rate cyz

and decays exponentially at a rate bz, which is proportional
to their current concentration, and the parameter p ex-
presses the efficacy of the nonlytic component.

'is paper is organized as follows. In Section 2, some
definitions and lemmas of fractional-order differential equation
are cited. In Section 3, we mainly discuss the existence and
uniqueness of positive solutions. 'e stability analysis is given
in Section 4. 'e simulation is given in Section 5. 'is paper
ends with a conclusion in Section 6 and discussion in Section 7.

2. Primary Concept and Lemma

It is known that fractional derivative has a variety of defi-
nitions [17, 22]. In this paper, we used the Caputo fractional
derivatives which are defined as follows.

Definition 1 (see [14]). 'e Caputo fractional derivatives of
order α> 0, n − 1< α< n, n ∈ N, are defined as

D
α
f(t) �

1
Γ(n − α)


t

0

f
(n)

(s)

(t − s)
α+1− n

ds, (4)

whereΓ(n − α) � 
∞
0 tn− αe− tdt.

Definition 2 (see [20]). 'e discriminant D(f) of a
polynomial

f(x) � x
n

+ a1x
n− 1

+ a2x
n− 2

+ · · · + an, (5)

is defined by D(f) � (− 1)(n(n− 1)/2)R(f, f′), where f′ is the
derivative of f. R(f, f′) is the determinant of the corre-
sponding (2n − 1)⊗ (2n − 1) Sylvester matrix. 'e Sylvester
matrix is formed by filling the matrix beginning with the
upper left corner with the coefficients of f(x) and then
shifting down one row and one column to the right and
filling in the coefficients starting there until they hit the right
side. 'e process is then repeated for the coefficients of
f′(x).

'e following lemmas were useful to our arguments.

Lemma 1 (see [23]). For a fractional-order system:

D
α
x(t) � f(t, x(t)),

x t0(  � x0,

⎧⎨

⎩ (6)

with 0< α< 1 and x ∈ Rn, the equilibrium point of the system
is locally asymptotically stable if all eigenvalues λi of Jacobian
matrix J � (zf/zx) evaluated at the equilibrium point
satisfy

arg λi( 


>
απ
2

. (7)

Lemma 2 (see [24]). For the polynomial equation,

P(λ) � λn
+ d1λ

n− 1
+ d2λ

n− 2
+ · · · + dn � 0. (8)

'e conditions which make all the roots of (8) satisfy (7)
are displayed as follows:

(i) For n� 1, the condition is d1 > 0
(ii) For n� 2, the conditions are either Routh–Hurwitz

conditions or

d1 < 0,

4d2 > d1( 
2
,

tan− 1

����������

4d2 − d1( 
2



d1

⎛⎜⎜⎝ ⎞⎟⎟⎠





>
απ
2

.

(9)

(iii) For n� 3,

(a) If the discriminant D(P) of P(λ) is positive,
then Routh–Hurwitz conditions are the
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necessary and sufficient conditions, that is,
d1 > 0, d3 > 0, d1d2 > d3

(b) IfD < 0, d1 ≥ 0, d2 ≥ 0, andd3 > 0, then (7) holds
when α< (2/3)

(c) If D(P)< 0,d1 < 0, and d2 < 0, then (7) holds
when α> (2/3)

(d) If D(P)< 0, d1 > 0, d2 > 0, and d1d2 � d3, then
(7) holds for all α ϵ [0, 1)

Lemma 3 (see [25]). Assume that the vector function f: R+ ×

R3⟶ R3 satisfies the following conditions:

(1) Function f(t, x(t)) is Lebesgue measurable with re-
spect to t on R+

(2) Function f(t, x(t)) is continuous with respect to x(t)

on R3

(3) (zf(t, x(t))/zx) is continuous with respect to x(t) on
R3

(4) ‖f(t, X)‖≤ω + λ‖x‖, ∀ t ∈ R+, X ∈ R3

Here ω and λ are two positive constants; then, initial value
problems DαX(t) � f(t, x(t)), X(t0) � x0, α ∈ (0, 1] have a
unique solution.

Lemma 4 (see [26]). Let m(t) ∈ Cq[(t0, T], R] and assume
that ∀ t1 ∈ (t0, T], m(t1) � 0 andm(t)> 0, t ∈ [t0, t1]; then,
Dqm(t1)< 0.

3. The Existence and Uniqueness of
Positive Solutions

For the proof of the existence and uniqueness about the
positive solution, we firstly prove that there exists a posi-
tively invariant region for system (3).

Let

N(t) � x + y +
p

c
z, (10)

and we have

D
α
N(t) � λ − dx − ay −

pb

c
z≤ λ − h x + y +

p

c
z ,

(11)

in which h � min d, a, b{ }, so we have

N(t)≤ −
λ
h

+ N(0) Eα − ht
α

(  +
λ
h

. (12)

Let D � x + y + (p/c)z≤ (λ/h), x, y, z≥ 0 ; it is easy to
see that D is a positively invariant region for model (3).

Theorem 1. For any initial condition in D, system (3) has a
unique solution X(t) � (x(t), y(t), z(t))T, and the solution
will remain nonnegative for all t≥ 0.

Proof 1. Firstly, we prove the existence and uniqueness of
the solution. We denote

f(t, X) �

λ − dx −
βxy

(x + y)
  + δy

βxy

x + y
  − ay − pyz − δy

cyz − bz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Obviously f(t, X) satisfies conditions (1)–(3) of Lemma
3, and we only prove that system (3) satisfies the last con-
dition (4) of Lemma 3. Let

η �

λ
0
0

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

A1 �

− d δ 0
0 − a − δ 0
0 0 − b

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

A2 �

− β 0 0
β 0 0
0 0 0

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

A3 �

0 0 0
0 − p 0
0 0 0

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

A4 �

0 0 0
0 0 0
0 0 c

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

X(t) �

x(t)

y(t)

z(t)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

(14)

Hence,

‖f(t, X)‖ � A1X(t) +
y(t)

x(t) + y(t)
A2X(t) + z(t)A3X(t) + y(t)A4X(t) + η

��������

��������
,

≤ A1x(t)
����

���� + A2X(t)
����

���� +
c

p
m A3X(t)

����
���� + m A4X(t)

����
���� +‖η‖,

≤ A1
����

���� + A2
����

���� +
c

p
m A3

����
���� + m A4

����
���� ‖X(t)‖ +‖η‖,

(15)
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in which m � (λ/h). By Lemma 3, system (3) has a unique
solution.

We now prove the solution is nonnegative for all t≥ 0.
From model (3), we know

D
α
x|x− 0 � λ≥ 0,

D
α
y|y�0 � 0,

D
α
y|z�0 � 0.

(16)

By Lemma 4, the solution is nonnegative. In summary,
the system has a unique nonnegative solution.

4. Stable Analysis

In this section, we will discuss the stability of model (3). 'is
system always has an infection-free equilibrium
E0 � (x0, 0, 0), where x0 � (λ/d).

'e basic reproduction number is

R0 �
β

(a + δ)
. (17)

When R0 > 1, system (3) will have an immune-absence
equilibrium E1 � (x1, y1, 0), where

x1 �
λ(a + δ)

(a + δ)d + a(β − a − δ)
,

y1 �
λ(β − a − δ)

(a + δ)d + a(β − a − δ)
,

(18)

which means the uninfected cells and infected cells coexist
but the immune response is not activated yet, that is, cy1 < b.
Further, we will give the immune-response reproductive
number R1 � (cy1/b) when R1 > 1, that is, cy1 > b, which
means immune response is activated. So, when R1 > 1, there
is another immune-response equilibrium E2 � (x2, y2, z2),
where

x2 �
Δ +

����������������
Δ2 + 4d δy

2
2 + λy2 



2dc
,

y2 �
b

c
,

z2 �
βcx2

p cx2 + b( 
−

(a + δ)

p
,

(19)

in which Δ � λ − dy2 − βy2 + δy2. Note that x2, y2, and z2
must be positive, and we can prove z2 > 0 holds only when
R1 > 1. Hence, E2 exists if and only if R1 > 1.

Now, we introduce the main theorem.

Theorem 2. For system (3), if R0 < 1, the equilibrium E0 is
globally asymptotically stable. If R0 > 1, the equilibrium E0 is
unstable.

Proof 2. Jacobian matrix J at E0 is

J �

λ + d β − δ 0

0 λ + a + δ − β 0

0 0 λ + b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (20)

'e characteristic equation for the infection-free equi-
librium E0 is given as follows:

(λ + d)(λ + a + δ − β)(λ + b) � 0. (21)

We can see that the characteristic roots
λ1 � − d< 0, λ2 � − b< 0, and whenR0 < 1, λ3 � β − a − δ < 0,
all the characteristic roots satisfied |arg λi| � π > α(π/2),
which shows that E0 is locally asymptotically stable by
Lemma 1. If R0 > 1, |argλ3| � 0< α(π/2), E0 is unstable.

Let

V(x) � y +
p

c
z, (22)

and we have

D
α
V � D

α
y +

p

c
D

α
z,

�
βxy

(x + y)
  − ay − pyz − δy +

p

c
(cyz − bz),

�
x

x + y
 ∗ βy − (a + δ)y −

pb

c
z,

≤ βy − (a + δ)y � (a + δ)y R0 − 1( .

(23)

Since R0 < 1, we have DαV≤ 0. Let
M � (x, y, z) ∈ D, DαV � 0 ; obviously,M ⊂ (x, y, z) ∈
D, y � 0 }. Let E be the largest positively invariant subset of
M; obviously, E is nonempty since ((λ/d), 0, 0) ∈ E. Let (x(t),
y(t), z(t)) be the solution of system (3) with initial value
(x0, y0, z0) ∈ E; then, y(t) � 0. By the first and the third
equations of (3), we have

x(t) � −
λ
d

+ x(0) Eα − dt
α

(  +
λ
d

,

z(t) � z(0)Eα − bt
α

( ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)

and when, x(t)⟶ (λ/d), z(t)⟶ 0, by the invariance of
E, x(t) � (λ/d), z(t) � 0. By t⟶∞the Lyapunov–LaSalle
theorem [26], when t⟶∞, all solutions in the set D

approach E0. Noting that E0 is locally asymptotically stable,
the infection-free equilibrium E0 is globally asymptotically
stable.

Theorem 3. For system (3), when R0 > 1,

(1) De equilibrium E1 is locally asymptotically stable if
R1 < 1

(2) If R1 > 1, the equilibrium E1 is unstable

Proof 3. 'e characteristic equation for the equilibrium E1 is
given as

4 Complexity



det

λ + d +
βy

2
1

x1 + y1( 
2

βx
2
1

x1 + y1( 
2 − δ 0

−
βy

2
1

x1 + y1( 
2 λ −

βx
2
1

x1 + y1( 
2 + a + δ py1

0 0 λ − cy1 + b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0, (25)

that is,

λ − cy1 + b(  λ2 + a + δ + d +
β y

2
1 − x

2
1 

x1 + y1( 
2

⎛⎝ ⎞⎠λ +(a + δ)d +
β ay

2
1 − dx

2
1 

x1 + y1( 
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0. (26)

We can see λ1 � cy1 − b, and when R1 < 1, λ1 is negative
and |argλ1| � π > α(π/2).

Next, we consider the following equation:

λ2 + a + δ + d +
β y

2
1 − x

2
1 

x1 + y1( 
2

⎛⎝ ⎞⎠λ +(a + δ)d +
β ay

2
1 − dx

2
1 

x1 + y1( 
2 � 0.

(27)

We let

B � a + δ + d +
β y

2
1 − x

2
1 

x1 + y1( 
2 � a + δ + d + β

y1 − x1( 

x1 + y1( 
� (a + δ) R0 − 1(  + d,

C � (a + δ)d +
β ay

2
1 − dx

2
1 

x1 + y1( 
2 �

d(a + σ)(a + δ) R0 − 1(  + a(a + δ)
2

R0 − 1( 
2

β
.

(28)

Since R0 > 1, we can see B> 0, C> 0; hence, (27) has two
negative real roots, and we denote them by λ2 and λ3
(|argλ2| � π > α(π/2) and |argλ3| � π > α(π/2)), so when
R1 < 1, the equilibrium E1 is locally asymptotically stable.
When R1 > 1, λ1 is positive, and |argλ1| � 0< α(π/2), E1 is
unstable.

Finally, we discuss the local stability of the immune-
response equilibrium state E2, and the Jacobian matrix at E2
is given by

J �

− d −
βy

2
2

x2 + y2( 
2 −

βx
2
2

x2 + y2( 
2 + δ 0

βy
2
2

x2 + y2( 
2

βx
2
2

x2 + y2( 
2 − a − δ − pz2 − py2

0 − cz2 cy2 − b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)

'e corresponding characteristic equation is

P(λ) � λ3 + a1λ
2

+ a2λ + a3 � 0, (30)

where

a1 � d + a + δ + pz2 +
βy

2
2 − x

2
2

x2 + y2( 
2,

� d +
βx2

x2 + y2
+
β y2 − x2( 

x2 + y2
,

� d +
βy2

x2 + y2
> 0,

a2 �
βy

2
2

x2 + y2( 
2 a + pz2(  + pbz2 + d a + δ + pz2(  −

βx
2
2d

x2 + y2( 
2,

�
βy

2
2

x2 + y2( 
2 a + pz2(  + pbz2 + d

βx2

x2 + y2
−

βx
2
2d

x2 + y2( 
2,

�
βy

2
2

x2 + y2( 
2 a + pz2(  + pbz2 + βd

x2y2

x2 + y2( 
2 > 0,

a3 � pbz2 d +
βy

2
2

x2 + y2( 
2

⎛⎝ ⎞⎠> 0.

(31)

It is easy to verify that
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a1a2 >pbz2 d +
βy2

x2 + y2
 >pbz2 d +

βy
2
2

x2 + y2( 
2

⎛⎝ ⎞⎠ � a3.

(32)

Based on Definition 2, we obtain

D(P) � −

1 a1 a2 a3 0

0 1 a1 a2 a3

3 2a1 a2 0 0

0 3 2a1 a2 0

0 0 3 2a1 a2





� 18a1a2a3 + a1a2( 
2

− 4a
2
1 − 4a

2
2 − 27a

2
3.

(33)

By Lemma 2, we have the following theorem.

Theorem 4. For system (3), when R1 > 1,

(1) If the discriminant D(P) of P(λ) is positive, the
equilibrium E2 is locally asymptotically stable for
0< α< 1

(2) If D(P)< 0, then the equilibrium E2 is locally as-
ymptotically stable for 0< α< (2/3)

5. Numerical Simulation

5.1. Simulation of the Immune-Response Equilibrium. We
first simulate the stability of E2, and the locally stable
condition of E2 is given by 'eorem 4. 'e parameters we
used are listed in Table 1 which can make R1 � 578.5076> 1,
D(P) � − 0.1296< 0 hold. We choose α � 0.55, α � 0.6 and
α � 0.65, which satisfy 0< α< (2/3), and the simulation is
shown in Figure 1. 'e dynamic routes of uninfected and
infected cells are shown in Figures 1(a) and 1(b), and the
CTL cells are shown in Figure 1(c). 'e simulation shows
that the immune-response equilibrium E2 is locally as-
ymptotically stable for 0< α< (2/3),which is consistent with
the conclusion of 'eorem 4.

5.2. Simulation of Correlation between HBeAg and Infected
Cells. A positive correlation was found between log-HBV
DNA and log-HBeAg in [27], that is, the higher the HBeAg,
the higher the HBV DNA load. Since by quasisteady as-
sumption, the amount of free virus is simply proportional to
the number of infected cells, the number of infected cell
should also be positive logarithmic correlative with HBeAg.
Since we could not get the specific number of infected cells
from clinic, HBeAg can be quantified. In the following part,
we will testify the positive correlation between the infected
cell and the HBeAg based on the clinical data of HBeAg by
numerical simulation. We use four CHB patients’ HBeAg
clinical data of 108 weeks with the treatment of entecavir
from Dongzhimen Hospital; two patients were from suc-
cessful-treatment group, and the other two patients were
from unsuccessful-treatment group; the data are shown in
Tables 2 and 3.

By 'eorem 2, the infection-free equilibrium
E0 � (x0, 0, 0) is asymptotically stable if R0 < 1. When
simulating the successful-treatment group, the parameters
we choose should make R0 < 1. Considering the biological
significance of the parameters, we choose the parameters in
Table 4 as follows.

A human liver contains approximately 2 × 1011 hepa-
tocytes [28], and a patient has a total of about 3000ml
plasma. Usually, clinical testing quantification is based on
one millilitre. Consequently, we can assume that
(λ/d) ≈ (2 × 1011/3000). Since the half-life of a hepatocyte is
about half a year, we choose d � 0.00379 similar to [28]. 'e
half-life of CTL is about 77 days [29], so we choose b � 0.009.
Other parameters were chosen by simulation. 'e param-
eters in Table 4 can make R0 � 0.045< 1 hold. We give three
simulation results with α � 1, α � 0.9, and α � 0.8; the
simulations are shown in Figure 2. 'e dynamic routs of
uninfected cells and CTL cells are shown in Figures 2(a) and
2(b), and the HBeAg and infected cells are shown in
Figure 2(c). 'e simulation shows that the infection-free
equilibrium E0 is asymptotically stable with different
0< α< 1 which is consistent with the conclusion of'eorem
2, but when α � 1, the dynamic route is obviously different.
From the simulation in Figure 2(c), we can also observe the
positive correlation between log-infected cells and log-
HBeAg for different α< 1, which is consistent with clinical
fact. On the other hand, from the clinical data of HBeAg, we
can see that the change rate was different between different
patient, though they have same change trend, which shows
that individual differences do exist in clinical therapy even
with the same medicine and the same dose; the clinical
phenomenon may be explained by our model to some ex-
tent. From the simulation, we can see that the larger the α,
the slower the decrease rate of infected cells and CTL in the
former stage, but the faster the decrease rate in the later
stage; the individual difference may be reflected by different
α, and the fractional-order model should be a good tool to
describe HBV infection.

When we simulate the unsuccessful-treatment group in
Table 3, the patients’ ALT level was lower than normal
standard, so we can think that the patient has not yet de-
veloped an immune response to the hepatitis B virus. When
R0 > 1, there exists the equilibrium E1 without immune
activities, so we choose the immune parameter b larger than
that in Table 4 and the immune parameter c smaller than that
in Table 4. 'e death rate of infected cells should decrease
without immune activities, so we choose parameter a which
is smaller than that in Figure 2. Since E1 is asymptotically
stable, if R1 < 1, the parameter we choose in Table 5 canmake
R0 � 2.4253 > 1 and R1 � 0.1351< 1 hold. We also used
α � 0.9, α � 0.85, and α � 0.8 to simulate, and the simulation
is shown in Figure 3. 'e dynamic routes of uninfected cells
and CTL cells are shown in Figures 3(a) and 3(b), and the
HBeAg and infected cells are shown in Figure 3(c). From the
simulation, the dynamic routes of uninfected cells, infected
cells, and CTL cells show that the immune-absence equi-
librium E1 is asymptotically stable with different α which is
consistent with the conclusion of 'eorem 3. From the
simulation, there still exists the same change trend but
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Table 1: Parameters in Figure 1.

Parameter Value Parameter Value
λ 10 c 0.051
β 0.01 d 0.18
a 0.003 p 0.006
b 0.011 δ 0.000000018
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Figure 1: Simulation results of immune-response equilibrium E2 with different α.
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Table 2: HBeAg data of successful-treatment group.

0 12 24 36 48 60 72 84 96 108 (week)
I 819.51 34.55 12.44 4.23 1.12 0.61 0.44 0.38 0.38 0.44
II 874.31 12.15 1.88 1.65 1.15 0.82 0.36 0.4 0.37 0.31

Table 3: HBeAg data of unsuccessful-treatment group.

0 12 24 36 48 60 72 84 96 108 (week)
I 36.79 138.6 221.36 314.88 393.78 391.75 378.63 411.61 407.91 342.63
II 44.11 85.05 140.27 141.82 125.86 142.63 158.75 194.48 0.6 243.72

Table 4: Parameters in Figure 2.

Parameter Value Parameter Value
λ 2.53e+ 005 c 0.31e − 007
β 6.9e − 004 a 4∗ 3.79e − 003
d 3.79e − 003 p 1.5e − 004
b 0.9e − 002 δ 1.9e − 004

α = 0.8
α = 0.9
α = 1
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Figure 2: Continued.
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Figure 2: Simulation results of successful-treatment group.

Table 5: Parameters in Figure 3.

Parameter Value Parameter Value
λ 2.53e+ 005 c 0.31e − 009
β (6.9e − 003)∗ 2 a 3.79e − 003
d 3.79e − 003 p 1.5e − 004
b 0.9 δ 1.9e − 004
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Figure 3: Continued.

Complexity 9



different change rate with different α, and the positive
correlation between log-infected cells and log-HBeAgis re-
flected roughly. 'e positive correlation is not so good for
patient 2’s HBeAg data, but the trend is consistent between
the infected cells and HBeAg. We can see there also exists
some difference with different α which may reflect the in-
dividual difference.

6. Conclusions

In this paper, based on the fact that immune response has
memory, we discussed a fractional-order HBV model
with standard mass action incidences, and we obtained
the basic reproductive numbers R0 and the cytotoxic
T lymphocytes’ immune-response reproductive number
R1. When R0 < 1, we have proved that E0 is globally as-
ymptotically stable which meant the infected person can
eventually recover automatically even when infected with
a large number of HBV. When R0 > 1 and R1 < 1, E1 was
locally asymptotically stable which meant the one in-
fected by HBV with no immune response would be in-
fected persistently. When R1 > 1, we also gave the local
stable condition of E2, which meant the infected person
has immune response to HBV, but the persistent infec-
tion still existed. Furthermore, we gave some simulations
with different α to test our theoretical results and some
clinical phenomena. 'e simulation showed that our
model can simulate the positive correlation between log-
infected cells and log-HBeAg to some extent. On the
other hand, even with the same initial conditions and the
same parameters, we also found that there existed some
difference in the dynamic routes with different order α,
which may reflect the individual difference. From the
analysis and simulation, we can see the fractional-order
model maybe more reasonable to describe HBV immune
course.

7. Discussion

In our paper, we found that the fractional-order model can
reflect the characteristics of immune memory and clinical
individual differences, but it should be pointed out that there
are only three variables in our model; the model only de-
scribed HBV infection roughly. Furthermore, we could not
obtain the number of uninfected cells, infected cells, and
CTL; when we performed the simulation, we only chose the
parameters from biological meaning, not from real clinical
data, so there are still many works to be done in the future.
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Ebola is an infectious virus that causes Ebola hemorrhagic fever in primates and humans, which was first found in 1976.-e Ebola
virus outbreak in West Africa in 2014 was the largest ever. A lot of researchers use mathematical models to analyze the
characteristics of infectious diseases. However, many parameters in the model cannot be estimated completely. To ease the
difficulty, we proposed an approach to estimate the parameter based on genetic algorithm (GA). GA uses the natural selection
method of the fittest to find the optimal solution of the model.-e least residual squares sum is used as fitness function to measure
the performance of GA in parameter estimation. Moreover, we used a dynamical model and the real data of Ebola in Sierra Leone
to verify the validity of GA. -e experimental results indicate that the GA has strong competitiveness compared with the classical
method, and it is a feasible method for estimating the parameters of infectious disease models.

1. Introduction

Ebola virus belongs to the family Filoviridae and is con-
sidered a prototype pathogen of viral hemorrhagic fever [1].
-e virus was first detected in the Ebola river basin in
southern Sudan and Congo in 1976 [2–9]. Since the dis-
covery of Ebola virus, only four species of this virus cause
human disease, namely, Zaire ebolavirus, Tai Forest ebola-
virus, Sudan ebolavirus, and Bundibugyo ebolavirus [10]. -e
Reston virus causes only animal disease, not human disease.
-erefore, the source of the Ebola virus is unknown. Re-
searchers found evidence of asymptomatic infection of Ebola
virus in three species of the fruit bats, which suggested that
the bats are most likely to be the source of the deadly virus
[11]. -e bats could carry Ebola virus to other animals and
even humans [12–14].

Ebola virus is transmitted through the saliva, the urine,
and other body fluids [15, 16]. People can cause infection by
direct contact with body fluids which carry the virus, with
the virus entering the body through the nose, the mouth, the

eyes, and the damaged skin [17]. Humans become infected
after contact with the blood, the body fluids, and the infected
fruit bats, as well as through the sexual contact [18].

Since there were no good treatments and approved
vaccines at the time, the management of Ebola virus was
limited to the use of obstacles and palliative care to suppress
transmission [19]. A large-scale Ebola outbreak occurred in
West Africa in 2014, mainly in Guinea, Liberia, and Sierra
Leone. -e number of confirmed cases is far greater than
that in the past [10]. -e lack of effective preventive mea-
sures at the time resulted in more people being infected with
the Ebola virus [20]. In [21], the authors investigated the
effectiveness of small interfering RNAs treatments for Ebola-
infected patients. RNA interference can suppress the ex-
pression of viral genes; thus it is effective in suppressing
Ebola virus replication, and the authors developed mono-
clonal antibodies against Ebola glycoprotein for the treat-
ment of Ebola-virus-infected people [22]. In addition, some
researchers used Sierra Leone’s disease data to study
mathematical models of Ebola virus, predict the progress of
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the epidemic, and propose preventive control measures and
recommendations [5, 23–25].

Research on infectious diseases using dynamic models
has become one of the important methods [26–32]. -e
propagation coefficient of the disease in the model affects the
prediction results directly, and, consequently, it is important
to estimate the propagation coefficient correctly. Classical
parameter estimation methods are the Markov Chain Monte
Carlo (MCMC) method, the least-squares method, and so
on. -e basic principle of the MCMCmethod is to construct
a Markov chain by using the joint posterior probability
distribution of the model propagation coefficients and assign
any initial value to the simulation until it converges to a
stable distribution. -is determines the propagation coef-
ficient [33–35]. -ere are many improved MCMC methods,
such as using sequential Monte Carlo (SMC) filter tech-
niques to estimate the propagation coefficients in the model
[36]. However, firstly, the traditional method is limited by
the calculation cost of the high-dimensional nonlinear
model, which may take a lot of calculation time; it is usually
not easy to obtain high-precision results, and it is not
possible to get all the propagation coefficients at once
[37, 38]. Secondly, the numerical estimation of the marginal
probability distribution is difficult to achieve in the high-
dimensional inversionmodel [39].-e least-squares method
is performed by convolving the simulated data with the real
data [40]. Although it has low calculation cost and gener-
ality, it does not consider the uncertainty of the inverse
problem solution, and the initial value of the propagation
coefficient will affect the efficiency of the algorithm. -e
least-squares method has certain flaws in determining the

initial value. If it is set close to the optimal propagation
coefficient, the result will be obtained quickly. If it is set far
from the optimal propagation coefficient, it will increase the
time of the algorithm [41].

In this paper, we present a method to solve inverse
problems of differential equations based on GA.-e GA is a
method that is widely used in parameter estimation and
other fields, and it has been proven to be a reliable method
for estimating parameters based on nonlinear functions
[42, 43]. It has a powerful adaptive search technology and
uses the natural selection method of the fittest to simulate
the evolution process, and thereby it can effectively solve the
optimization problem [44]. When searching in high-di-
mensional models, GAs are superior to the other traditional
search techniques due to their simplicity, effectiveness,
versatility, and robustness [45, 46]. We have used the GA of
adaptive mutation operator to estimate the parameters of
differential equations. -e advantage of this method is that
the parameters in the high-dimensional model can be
completely estimated by a small amount of data and all
parameters combinations can be quickly obtained in a
limited evolution process. In addition, an effective combi-
nation of multiple propagation coefficients can be obtained
by GA for reference in studying the propagation dynamics.

-e remainder of this paper is organized as follows. In
Section 2, we introduced the transmission dynamical model
of Ebola in Sierra Leone and the theories and processes of
GA. In Section 3, we estimated the values of the parameters
in a dynamical model based on GA. What is more, we
validate the accuracy of the experiment results. Finally, we
give the discussion and conclusions in Section 4.
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2. Main Method

2.1. ADynamicalModel of Ebola Virus Transmission in Sierra
Leone. -e time series of Ebola-confirmed case reports were
collected from the World Health Organization (WHO) and
the Ministry of Health of Sierra Leone. -e data include the
Ebola outbreak in 14 regions of Sierra Leone, including the
suspected cases (IS), the probable cases (IP), and the
hospital-confirmed cases (H), which are thought to rep-
resent the best available data of the Ebola epidemic. Due to
the fact that hospitalization is a result of real infections, while
suspected and probable cases may not be completely con-
verted into hospitalized cases, it is more accurate to use
hospitalization cases to indicate the actual number of the
Ebola infections. We collected the newly infected cases for
34weeks from May 19th, 2014, to January 11th, 2015. More
detailed data can be found in [47].

We used a GA based on adaptive mutation operator.
-ink of the propagation coefficient of the Ebola virus model
as a genetic target. It is binary-encoded, and then the genetic
operators of random selection with elitism, multipoint
crossover, and gene site mutation are used to simulate
evolution to find the optimal solution. Set evaluation index
for parameter genetic process as fitness function which is a
sum of variances of fitted data and real data. We estimated
the parameters based on the dynamical model established in
[6]. Record the optimal parameter set of each generation and
perform comparison with the optimal parameter set of the
next generation, always save the optimal set, and wait until
the evolution has completed obtaining all the parameters in
the model.

Based on other literature analyses, this article divides
Ebola virus transmission into seven categories, namely,
susceptible (S), exposed (E), suspected individuals may
be misdiagnosed (IS), probable individuals (IP), hos-
pital-confirmed cases (H), the individuals who may
infect others at a funeral (F), and removed (R) [6].
Figure 1 depicted the transmission mechanism of the
Ebola virus.

Consequently, we have used the following system of
equation (1) to simulate the transmission dynamics of the
Ebola virus in Sierra Leone and the biological meanings of
parameters can be obtained in Table 1. We quantified the
uncertainty of parameter estimates, and we give the 95%
confidence intervals in Table 1.

2.2. GeneticAlgorithm. GA is a method for finding solutions
based on biological evolution process [42]. -e process
includes random selection, crossover, and mutation for an
individual with the best combination of genes. GA begins
with initializing the propagation coefficient in model (1) for
binary encoding. -e encoding length is determined by
parameter range and accuracy. We used par to represent the
parameters set: par � [β1, β2, βH, βF, λ1, p, m1, η, m2,

λ2, q, λ3, rh, θ, δ1, rd, ri, rdh, δ2, rih, rf]. Assuming that all
propagation coefficients are within [0, 1], the accuracy is 4
digits after decimal point, and thus the coding length can be
determined by the following formula:

213 <
rangemax − rangemin

accuracy
�

1 − 0
0.0001

� 10000< 214. (2)

-erefore, a parameter can be represented by 14 bits of
binary, and par consisting of all parameters needs to be
encoded with 14 × 21 � 294 bits of binary. We collected the
disease status of Ebola for 34 weeks, and the detailed data are
shown above, so we set the initial population of parameters
to 34 parameters set. Afterwards, we need to determine the
fitness function; we take the minimum residual sum of
squares between the solution of the infected case in the
model and the actual infected case:

fitness � 
t�1

(I(t) − I(t))
2
, t � 1, 2, . . . , 34, (3)

where I(t) represents the infected cases in the model at time
t and I(t) represents the actual infected cases at time t. We
use fitness function to evaluate the initial population and
give the initial fitness value of parameters.

GA mainly includes three genetic operators: selection,
crossover, and mutation. Selection is to apply the selection
operator to the group. -e purpose of selection is to inherit
the optimized parameters directly to the next generation or
to generate a new par to the next generation through pairing
and crossover. Selection operations are based on the fitness
evaluation of parameters in the population. Here we adopt a
random selection combined with elitism, which means that
we will copy the parameters with higher fitness once, replace
the ones with the least fitness, and retain the best parameters
of each generation. -is is the elite strategy; then we ran-
domly select parameters for crossover and mutation.

Crossover operator plays a key role in GA. It is mainly
divided into single-point crossover, two-point crossover,
and multiple-point crossover. -e commonly used is the
single-point crossover; that is, a cross point is randomly set
in the parameter string, when the intersection is performed,
in front of this point or partial structures of two parameters
sets exchange and thus two new parameters sets are gen-
erated. An example of a single-point crossover is shown in
Figure 2. Because our parameter binary is too long, single-
point crossover cannot meet our needs, so we chose mul-
tiple-point crossover to increase the diversity of parameters.

-e mutation operator is to change certain gene posi-
tions of parameter strings in the population; for example, 0
becomes 1, and 1 becomes 0. An example of mutation is
shown in Figure 3.We adopted the gene locus mutation with
adaptivemutation operator in GA; that is, each gene position
was mutated with a certain mutation probability. Moreover,
the mutation probability can be adaptively adjusted by the
parameters set fitness. When the difference between pa-
rameters set fitness and the average fitness of the population
is small, it means that parameters are close to each other,
which is not conducive to the next crossover. -erefore, it is
necessary to increase the mutation probability and reduce
the mutation probability when the difference is large, be-
cause the mutation probability is usually between 0.001 and
0.1, and the probability of mutation is small, so that it is not
easy to destroy the genes of the dominant parameters, and it
can jump out when the algorithm falls into the local optimal
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Figure 1: Ebola’s transmission mechanism in Sierra Leone.

Table 1: Description of parameters in model (1).

Parameter Description Value 95% confidence intervals
β1 Transmission coefficient between communities S and Is 0.9162 [0.1173, 1.1247]
β2 Transmission coefficient between communities S and IP 0.8929 [0.1341, 1.1803]
βH Transmission coefficient at the hospital 0.1674 [0.0623, 1.0713]
βF Transmission coefficient during the funerals 0.2736 [0.0887, 1.0665]
p Misdiagnosed proportion in IS 0.657 [0.1638, 0.6891]
q Proportion of correctly diagnosed suspected cases that move to F 0.1447 [0.0531, 1.1805]
η Proportion of exposed cases entering the IP compartment 0.619 [0.1008, 1.1189]
θ Proportion of infected and hospitalized 0.0023 [0.1476, 0.3507]
λ1 Time from suspected to susceptible 1.59 days [0.0641, 1.002]
λ2 Average time from suspected to death 4.88 days [0.0418, 1.0139]
λ3 Time from suspected to probable 2.38 days [0.0661, 1.0172]
m1 Time from exposed to probable 1.0007 days [0.0611, 1.2091]
m2 Time from exposed to suspected 20.9 days [0.1053, 1.2612]
rh Time from probable to hospitalized 3.56 days [0.2733, 0.5884]
rdh Average time from hospitalization to death 1.2 days [0.1109, 1.187]
ri Time from probable to removed 5.69 days [0.1221, 1.1318]
rih Time from hospitalized to removed 2.56 days [0.0844, 1.1501]
rf Average time from death to burial 1.21 days [0.1323, 0.9899]
rd Time from probable to death 1.11 days [0.0099, 1.183]
δ1 Mortality rate from probable to death 0.5141 [0.1219, 1.0691]
δ2 Mortality rate from hospitalized to death 0.6214 [0.0455, 1.1318]
N Size of the Sierra Leone population 6348350 [47]

1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 New B1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1par B:

par A: 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 New A1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1

Cross point

Figure 2: -e two parameters sets A and B exchange the part after the cross point and reconstitute two new parameters sets.
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solution. -e mutation characteristic of GA can make the
solution process randomly search the entire space where the
solution may exist and ensure the diversity of the pop-
ulation, so the global optimal solution can be obtained to a
certain extent.

Next, we solve model (1), decode the parameters into
decimalism, and substitute them into the model solution
to get the estimated value of confirmed-infection cases,
that is, hospitalization cases. Fitness function (3) is used to
fit the real infected cases. -en we find the parameters
with the highest fitness in this generation, that is, the
parameters with the least error, and keep them in the next-
generation genetic process. Afterwards, we cyclically
execute selection, crossover, mutation, and evaluation of
new parameters set until the maximum number of iter-
ations is reached.

-e general steps of using GA to estimate parameters of
Ebola model are explained as follows:

Step 1: consider the parameter to be estimated as a gene
chromosome, define the parameter using binary cod-
ing, and then initialize the population.
Step 2: assign a fitness value to each parameter using
equation (3). Starting from the second generation of
parameters, parameters are ranked from small to large
according to fitness values, and the first two parameters
sets with the greatest fitness are duplicated once to
replace the two parameters sets with the smallest
fitness.
Step 3 (selection process): add randomly initialized
parameters to the population to increase population
diversity, and then two parameters sets are randomly
selected as paternal parameters sets.
Step 4 (crossover): two new offspring parameters are
generated by crossing the two parents at multiple
points.
Step 5 (mutation): use the gene locus mutation de-
scribed above in combination with adaptive mutation
operator.
Step 6: solve equation (1) using the ode function.
Step 7: convert the types of parameters sets from binary
to decimal, substitute it into the solution of equation
(1), obtain the predicted value of the diseased cases, and
use equation (3) to evaluate the fitness value of the new
parameters set to obtain an optimal parameters set.
Step 8: when the fitness of the new offspring produced
by genetic manipulation is higher than that of the
parent, the new parameters sets replace the parents and
are inserted into the parent population for the next

genetic manipulation. If the optimal individual remains
unchanged for 30 consecutive times, multiple-point
crossover and mutation are carried out.
Step 9: save the best parameters set of this generation.
Step 10: if the number of iterations is not reached,
proceed with step 2.

-e above steps are executed iteratively until the ter-
mination condition is reached. Parameter estimation is
finished whenever the genetic operation completed. -e
parameter values to be used in the model are the optimal
solution of the last generation of parameters, and the specific
values are shown in Table 1. We can study the propagation
dynamics and preventive measures of Ebola.

3. Main Results

-ere are many methods for parameter estimation, in-
cluding Markov Chain Monte Carlo (MCMC) method and
least-squares method. It is not easy to analyze and estimate
the parameters in the infectious disease model because there
are many parameters in the model which cannot be esti-
mated fully. Consequently, we propose to estimate the pa-
rameters in model (1) using GA, which are described in
Section 2. Algorithm 1 shows the scheme of GA used on
parameter estimation of the Ebola model. In this algorithm,
par denotes a set of parameters, constants a and b represent
two parameters sets randomly selected from par set and
crossed according to the crossover probability px to get a′
and b′. In mutation, a′ and b′ are changed to a and b by gene
locus mutations, according to mutation probability pm. IC
denotes the initial value of each variable in equation (1) and t
indicates the time of virus transmission. “count” indicates
that successive generations of optimal values have not
changed.

In this study, we used different genetic operators and
fitness functions (3) to conduct data fitting for the real
hospital-diagnosed cases. We conducted 70 experiments and
selected a set of parameters which performed well. -e
results are listed in Table 1. After experimental verification,
we chose the crossover probability px to be 0.8 and the initial
mutation probability pm to be 0.01. -e genetic algebra
Constant is 3000 times. -e fitting result for the cumulative
number of cases is shown in Figure 4.

Figure 5 represents the evolutionary process of the
optimal value of each generation in GA.With the increase of
genetic algebra, the error between the model solution and
the real data is gradually decreasing, which means that the
fitness of the model is increasing. Until the maximum ge-
netic algebra is reached, a set of near-optimal parameters are
obtained. Since the error persists, we can regard the sub-
optimal solution as the optimal solution. -e subgraph in
Figure 5 is an enlarged view of early inheritance. Although
this set of parameters performs well and converges quickly,
we can see from the figure that it converges around 200
generations, but, because of the instability of GA, sometimes
it takes a long time to converge to the optimal value.
-erefore, we unified the genetic algebra to 3000 generations
during the experiment. It can be seen from the figure that the

Mutation point

1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1New par A:

1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1par A:

Figure 3: Parameters sets gene mutations generate new parameters
sets.
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GA can quickly reduce the error in the early stage, and the
convergence speed is very fast, which shows the effectiveness
of our algorithm.

In [5], the parameters βI � 0.0498, βH � 0.0225, and
βF � 0.0013 are given, and, in [23], the parameters βI �

0.128, βH � 0.08, βF � 0.111, and δ1 � δ2 � 0.75 are given.

Meanwhile, the parameters βF � 0.489, δ1 � 0.8, δ2 � 0.4 are
given in [6]. Although some of the propagation coefficients
are very different from those in other papers, because the
deterministic models are different, we have that cabins are

(1) Parameter length CL is determined according to parameter range.
(2) Each parameter is represented by a chromosome of CL length to get a complete parameters set par � [β1, β2, . . . , rf].
(3) Initialize all parameters set, parc � [β1, β2, . . . , rf], c � 34.
(4) Evaluate the fitness of each par using f.
(5) for i � 1, 2, . . . , Constant do
(6) if i � 2 do
(7) Sort par allocation fitness in an ascending order.
(8) par34 � [β1, β2, . . . , rf] � par1 � [β1, β2, . . . , rf].
(9) par33 � [β1, β2, . . . , rf] � par2 � [β1, β2, . . . , rf].
(10) end if
(11) Randomly add an initialization parameter to replace one of the par
(12) if max f(par) close to average f(par) do
(13) Mutation probability pm � 0.1.

(14) end if
(15) Randomly select a, b ∈ par (a≠ b).
(16) Cross over a and b according to px, a, b⟹ a′, b′.
(17) Perform mutation on a′ and b′ according to pm, a′, b′⟹ a, b.
(18) D � ebolaSol(par, IC, t).
(19) Evaluate fitness f � sum(D − Data)2.
(20) if f(a)<f(a) do
(21) par(a) � par(a).
(22) end if
(23) if count> 30 do
(24) Multiple crossover and variation.
(25) end if
(26) Find the best parameters set in this generation bestp(i) that satisfies bestp(i) � minf(par).
(27) end for
(28) Find the best parameters set parbest that satisfies parbest � bestp(Constant).

ALGORITHM 1: Parameter estimation of GA.
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Figure 4: -e fitting result for actual data of Ebola virus disease in
Sierra Leone for 34 weeks with the deterministic model (1).
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more, and we cannot directly compare them with those in
other papers. We are uncertain about patients in the exposed
period, so the propagation coefficient associated with it is
uncertain. We can only use GA to solve each parameter
value. -us, we only perform comparison with some im-
portant parameters. In this paper, δ1 � 0.5141, δ2 � 0.6214
are close to the above literature to some extent. We obtain
the basic reproduction number of Ebola virus in Sierra
Leone R0 ≈ 1.895 which is calculated in the same way as in
Xia et al.’s work [6]; it is basically consistent with R0 ≈ 1.7
given in [5] and R0 ≈ 1.78 given in [23]. -e results show
that the GA can accurately estimate all the parameters in the
model, and the data are fitted well. Another advantage of the
GA is that you are free to set the parameters precision, but
you need to consider the length of the parameters set, which
is very useful for getting high-precision parameters. It can be
seen that GA can be used as a feasible method for parameter
estimation.

Due to the fact that we are using a certain mathematical
model, we only need to use the actual diseased data as test
data and apply them in model (1) to get a set of near-optimal
parameters. We set each of the parameter ranges to [0, 1],
randomly generate the initial parameters as the input of the
model, and use the GA to obtain a set of parameters that fit
the model better. We can use GA to give a variety of pa-
rameter combinations for researchers’ reference. However,
some parameters may have overfitting problems, so we
conducted 70 experiments to select a set of parameters that
are more realistic. We calculated the 95% confidence in-
tervals for the best set of parameters in the 70 experiments,
and almost all parameters are within the confidence inter-
vals, which also shows the validity of the GA for parameter
estimation. -e confidence intervals for all the parameters
are shown in Table 1.

4. Discussion and Conclusion

-is work proposed a GA parameter estimation method
based on adaptive mutation operator, which could be
applied to biomathematical models and differential
equations in other fields. -rough GA’s adaptive search
parameters, the parameters in various models can be
effectively found, and multiple parameter combination
schemes can be given, which reduces the process of
manual adjustment of parameters by researchers and
provides an effective reference for scientific research. In
addition, in the study of infectious diseases, due to the
complexity of the model, all of the parameters are often
difficult to obtain, and the basic reproduction number R0
for evaluating whether there is an outbreak of an infec-
tious disease needs to be obtained by calculating pa-
rameters; and the parameters can indicate the
transmission dynamics of infectious diseases and the scale
of transmission visually. -us, parameter estimation is the
most important, and the GA can be used to effectively find
all the parameters in the model, which make up for the
shortcomings of the traditional method, such as long
calculation time and slow convergence speed. -e method
we have proposed has been evaluated in the experimental

process, where the performance has reached the desired
level. Finally, the GA can be applied not only to infectious
disease models but also to other mathematical and
physical models, and it proposes a new idea for parameter
estimation.

Since the initial population of GA needs to assign values
randomly, it will lead to output instability; we cannot
quantify the uncertainty due to the discrete distribution of
the output parameters, which is a common problem of GA
and needs to be improved. On the other hand, fitness
function is an important factor to determine the pros and
cons of genetic evolution, so it is very important to select a
suitable fitness function. Finally, a very important step in GA
is to find the solution of the model, so it may not be suitable
for the unsolvable equation, but it is applicable for most
models. -ere are many improved genetic algorithms, and
we can improve the existing algorithms and expand their
scope of application.

-e GA can solve specific problems with only a small
amount of data, and the corresponding fitness function
can be used for searching. -erefore, it is a general-
purpose algorithm used in many fields. In function op-
timization, GA can estimate not only the parameters of
biomathematical model but also the kinetic parameters of
microorganisms. It can also solve the performance pa-
rameters of nonlinear physical problems. In addition, GA
performs well in path planning, cloud computing task
scheduling, communication network design, image fea-
ture extraction, and other fields. Furthermore, there are
some studies that combine GA with machine learning
methods such as neural network.

In this paper, we introduce the basic process of
adaptive mutation genetic algorithm, introduce how to
use GA to estimate the parameters of Ebola virus model in
Sierra Leone, and give the data curve and genetic iterative
process for fitting actual infections. In addition, we offer a
new idea for parameter estimation in other research
fields, such as dynamical model of disease transmission
[48–50] or predator-prey interactions [51–53] with
spatial effects [32, 54–56] in the form of reaction-diffu-
sion equations.
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Cardiovascular disease is a major threat to human health. *e study on the pathogenesis and prevention of cardiovascular disease
has received special attention. In this paper, we have contributed to the derivation of a mathematical model for the nonlinear
waves in an artery. From the Navier–Stokes equations and continuity equation, the vorticity equation satisfied by the blood flow is
established. And based on the multiscale analysis and perturbation method, a new model of the Boussinesq equation with viscous
term is derived to describe the propagation of a viscous fluid through a thin tube. In order to be more consistent with the flow of
the fluid, the time-fractional Boussinesq equation with viscous term is deduced by employing the semi-inverse method and the
fractional variational principle. Moreover, the approximate analytical solution of the fractional equation is obtained, and the effect
of viscosity on the amplitude and width of the wave is studied. Finally, the effects of the fractional order parameters and vessel
radius on blood flow volume are discussed and analyzed.

1. Introduction

In recent years, in the field of biological rheology, the
rheology which is related to the blood, blood vessels, and
heart that constitute the human blood circulation has been
developed rapidly. Blood circulation is a complex system
that can cause great damage to the whole body when a
certain organ is diseased. In order to better understand the
physiological and pathological behavior of the human car-
diovascular system, it is necessary to deeply study the dy-
namics of blood flow in the arteries and the mechanical
factors of blood flow.

Soliton phenomena exist in many fields [1–3]. Organism
is a completely nonlinear complex medium, and both the
blood composition and the structure of blood vessels show
obvious nonlinear characteristics. *e nonlinearity of blood
flow has long been discovered by Womersley [4, 5] and
McDonald [6, 7], which also provides a new direction and

way for people to understand the law of life movement. Since
then, many scholars have begun to study the field and made
great progress. Ravindran et al. [8] derived the nonlinear
Schödinger equation (the terms of pseudodifferential op-
erators) governing the modulation of periodic waves. *e
KdV equation describing blood flow is obtained by Sigeo [9],
to explain the steepness of pressure waves during propa-
gation. Hashizume [10] analyzed the propagation of pressure
waves from a theoretical perspective. Liu [11] combined
arterial flow as a balanced flow with periodic small pulsatile
flow and analyzed the effect of vascular elasticity on blood
flow. Demiray [12, 13] considered propagation of wave
through a viscous incompressible fluid contained in a
prestressed thin elastic tube. Choy [14] deduced the
mathematical model of nonlinear wave modulation of artery
with stenosis.

Fractional derivative theory and methods [15–18] are
widely used in the study of nonequilibrium systems of
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various intermediate processes and critical phenomena in
physics and mechanics, especially in nonlinear science
[19–22]. Fractional differential equations are transformed in
a standard differential equation by replacing the time de-
rivative or the space derivative with the fractional derivative.
Compared with integer-order differential equations, the
most important advantage of fractional derivative equations
is that it can better fit some natural physical processes and
dynamic system processes. Moreover, the study of solving
partial differential equations also has a new exploration, such
as the extended tanh method [23], the exp-function method
[24], the variational-iteration method [15, 25], the Hirota
bilinear method [19], and the (G′/G)-expansion method
[26].

*e structure of the full article is as follows: in Section 2,
the Boussinesq equation with viscous term is derived by the
multiscale analysis and perturbation method and used for
the first time to describe blood flow. Based on the new
model, we obtain the time-fractional Boussinesq equation
with viscous term in Section 3. In Section 4, the approximate
analytical solution of the above fraction equation and the
viscous effect is discussed. Finally, the effects of fractional
order, vascular radius, and blood flow velocity on stroke
volume are analyzed and studied.

2. Derivation of the Boussinesq Equation

As we all know, the cardiovascular system is a complete
closed conduit system. *us, the blood can be considered as
an incompressible non-Newtonian fluid. When dynamic
equilibrium of the blood is disturbed by a pressure pulse
generated by the motion of the heart, a harmonic wave type
of motion will be developed in the blood. Although previous
researchers have done some research about this question, the
viscosity of fluid is often ignored. We consider blood vessel
as cylindrical shape and adopt cylindrical coordinate system
to describe the motion of blood. In this paper, we set x as the
central axis of a blood vessel and axial coordinate and set r as
the radial coordinates. *erefore, based on Womersley
theory [4], basic equations of pulsatile flow in arteries are
described as follows:
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where u and v are the axial and radial velocities of blood,
respectively; p is the atmospheric pressure; ρ is the blood
density; and η represents the viscosity coefficient of blood.
From (3), we can define the flow function of blood which
satisfies
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Substituting (4) into (1) and (2), we can gain the vorticity
equation of blood flow with viscosity term:
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where D2 ≡ ((z2/zr2) − (1/r)(z/zr) + (z2/zx2)). *rough
analysis, we assume that the basic law of blood flow can be
expressed by the Poiseuille flow. *erefore, the speed of
blood can be expressed as

u(r) � umax 1 −
r

R
 

2
 , (6)

where umax � (ΔpR2/4μΔL) is the maximum velocity of
central axis of the blood vessel. ΔL represents the length of
the blood fluid, and μ represents viscosity coefficient of
blood. Δp is the pressure difference between two ends of
blood, and R is the radius of the blood vessel. Next, when
considering the viscosity of the vascular wall, we can get the
revised form of the Poiseuille flow:
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We set basic flow function of blood as ψ. *erefore, it
meets

u �
1
r

zψ
zr

, (8)

where we define disturbed flow function φ(r, x, t) which
represents disturbance of blood flow. *erefore, the flow
function can be expressed as

Ψ(r, x, t) � ψ(r) + φ(r, x, t). (9)

And then, from (8) and (4), we can obtain

u � u +
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Substituting (9) and (10) into (5) and considering that
there are other effects of dissipation which can offset
(2aη/ρ), we obtain
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where a � (4umax/R2) and limr⟶0 u(r) � umax. *e above
equation is a vorticity equation of disturbed flow function φ
which contains information about the effects on the heart
when physiological or psychological condition changes
dramatically.

In the previous studies, researchers have obtained the
KdV equation from the Navier–Stokes equation and con-
tinuity equation of blood flow. However, with the devel-
opment of nonlinear theory increasing, more equations
which have stronger nonlinear properties are needed to
describe problems in reality. *erefore, the Boussinesq
equation model will be deduced in this paper. In order to
obtain this equation, we firstly define coordinate

transformations with long wave approximation and adopt
the space-time transformation as follows:

X � ε(x − ct),

T � ε2t,

r � r,

(12)

and we set
η
ρ

� ε3Q, (13)

where ε is a small parameter. Substituting (12) into (11)
yields
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*en, we extend perturbed flow function about ε as
follows:

φ � ε2φ0 + ε3φ1 + ε4φ2 + · · · . (15)

Due to the fact that the velocity of wave propagation in
blood is much faster than that of blood flow on the axis of the
blood vessel, we can obtain u≪ c. *us, substituting (15) into
(14), we can yield all levels of approximation equations about ε:
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2 −

1
r

z

zr
 φ0

+ Q
z
2

zr
2 −

1
r

z

zr
 

z
2

zr
2 −

1
r

z

zr
 φ0 ,

(16)

where Γ ≡ − c(z/zX)((z2/zr2) − (1/r)(z/zr)) − a(z/zX).
For ε3, it is easy to see that φ0 has a solution, and the form

is φ0 � A(X, T)ϕ0(r); then, we have

− c
z
2

zr
2 −

1
r

z

zr
 ϕ0 − aϕ0 � 0. (17)

For ε4, by analysis, we assume (zφ1/zX) �

(zA/zT)ϕ1(r), where ϕ1(r) satisfies the following equation:

− c
z
2

zr
2 −

1
r

z

zr
 ϕ1 − aϕ1 �

a

c
ϕ0. (18)

Let us consider the equation of order ε5. By substituting
φ0 � A(X, T)ϕ0(r), (zφ1/zX) � (zA/zT)ϕ1(r), (17), and
(18) into the equation and multiplying the both sides of the
order ε5 equation by (ϕ0/r)(z/zX), we have

z
2

zX
2
ϕ0
r

z
2

zr
2 −

1
r

z

zr
 φ2 + a

z
2φ2

zX
2
ϕ0
r

1
c

� −
z
2
A

zT
2
ϕ0
r

a

c
2 ϕ1 +

ϕ0
c

  −
z
4
A

zX
4
ϕ20
r

−
a

c
2
ϕ20
r
3

z
2
A
2

zX
2 − Q

zA

zX

1
c

ϕ0
r

z2

zr2
−
1
r

z

zr
 

2

ϕ0.

(19)

And then integrating it with respect to r from 0 to R, we
can have the following equation:

z
2
A

zT
2 + a1

z
2
A
2

zX
2 + a2

z
4
A

zX
4 + a3

zA

zX
� 0, (20)

where

a0 � 
R

0

ϕ0
r

a

c
2 ϕ1 +

ϕ0
c

 dr,

a1 � 
R

0

a/c2  ϕ20/r
3

 dr

a0
,

a2 � 
R

0

ϕ20/r dr

a0
,

a3 � Q 
R

0

(1/c) ϕ0/r( (  z
2/zr

2
  − (1/r)(z/zr) 

2
ϕ0dr

a0
.

(21)
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Equation (20) is a new Boussinesq equation with vis-
cosity effect which can be used to describe the state of the
disturbance flow of blood with viscous properties. Com-
paring with the previous KdV model, the above model has
stronger nonlinear properties. Besides, it can be concluded
that there is disturbance flow in the form of solitary waves in
the arteries.

3. Derivation of the Time-Fractional
Boussinesq Equation

In this section, we seek for the time-fractional Boussinesq
equation by using the semi-inverse method and the frac-
tional variational principle. Firstly, we use a potential
function VX(X, T), where A(X, T) � VX(X, T) gives the
potential equation of (20) in the following form:

VXTT + a1 A
2

 
XX

+ a2VXXXXX + a3AX � 0. (22)

*e functional of the potential equation (22) can be
represented by

J VX(  � 
X

dX
T

dT VX c0VXTT + c1a1 A
2

 
XX



+ c2a2VXXXXX + c3a3AX,

(23)

where c0, c1, c2, and c3 are the Lagrangian multipliers which
can be obtained later by taking the variation of (23). AX and
(A2)XX are considered as the fixed functions.

Making use of integrating (23) by parts and assuming
VT|T

� VX|X � VXX|X � VXXX|X � 0, we can gain

J VX(  � 
X

dX
T

dT − c0V
2
XT + c1a1VX A

2
 

XX


+ c2a2V
2
XXX + c3a3VXAX.

(24)

Applying the variation optimum condition, we can
derive the Euler equation as follows:

2c0VXTT + c1a1 A
2

 
XX

+ 2c2a2VXXXXX + c3a3AX � 0.

(25)

Comparing (25) with (22), we can obtain the following
Lagrangian multipliers:

c0 �
1
2
,

c1 � 1,

c2 �
1
2
,

c3 � 1.

(26)

*erefore, the Lagrangian form of (20) can be given by

L VXT, VX, VXX, VXXX(  � −
1
2

V
2
XT + a1VX A

2
 

XX

+
1
2

a2V
2
XXX + a3VXAX.

(27)

At this time, the Lagrangian form of the time-fractional
Boussinesq equation can be represented as

F 0D
β
TVX, VX, VXX, VXXX  � −

1
2 0D

β
TVX 

2
+ a1VX A

2
 

XX

+
1
2

a2V
2
XXX + a3VXAX,

(28)

where based on the left Riemann–Liouville compression
derivative, the fractional derivative 0D

β
TVX is defined as

0D
β
Tf(T) �

1
Γ(1 − β)

d
dT


T

a
dτ(T − τ)

− β
f(τ) ,

0≤ β≤ 1, T ∈ [a, b].

(29)

*erefore, the time-fractional form of (20) can be
expressed by

J VX(  � 
X
dX

T
dTF 0D

β
TVX, VX, VXX, VXXX . (30)

*us, the variation of functional (30) can be obtained:

δJ VX(  � 
X
dX

T
dT

zF

z0D
β
TVX

δ 0D
β
TVX  +

zF

zVX

δVX

⎧⎨

⎩

+
zF

zVXX

δVXX +
zF

zVXXX

δVXXX.

(31)

As we all know, the fractional integration by parts is
obtained by the following rule:


a

b
dT f(T)aD

β
Tg(T)  � 

b

a
dT g(T)TD

β
bf(T) ,

f(T), g(T) ∈ [a, b],

(32)

based on the right Riemann–Liouville fractional derivative,
0D

β
Tf(T) is obtained by

TD
β
Tf(T) �

− 1
Γ(1 − β)

d
dT


b

T
dτ(τ − T)

− β
f(τ) ,

0≤ β≤ 1, T ∈ [a, b].

(33)

Using (31) and (32), we get

δJ VX(  � 
X
dX

T
dT TD

β
b

zF

z0D
β
TVX

⎛⎝ ⎞⎠ +
zF

zVX

⎧⎨

⎩

−
z

zX

zF

zVXX

  +
z
2

zX
2

zF

zVXXX

 δVX.

(34)

By using variation principle, when δJ(V) � 0, we obtain
the optimization of the variation of functional. And then, we
yield the Euler–Lagrange equation of (20) as the following
equation:
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− 0D
β
T

zF

z0D
β
TVX

⎛⎝ ⎞⎠ +
zF

zVX

−
z

zX

zF

zVXX

  +
z
2

zX
2

zF

zVXXX

  � 0.

(35)

Substituting (28) into (35) and letting 0D
β
TVX � A(X,T),

(35) is turned into the following form:

0D
2β
T A(X, T) + a1 A

2
 

XX
+ a2AXXXX + a3AX � 0. (36)

Equation (36) is a new model, which is gained by the
time-fractional method. *erefore, it is named as time-
fractional Boussinesq equation.

4. Solution of the Time-Fractional
Boussinesq Equation

In the previous section, a new time-fractional Boussinesq
equation had been gained. It can be used to describe the flow
characteristics of blood with viscous properties. Due to this
reason, we decide to yield the solution of the time-fractional
Boussinesq equation to further characterize the flow state of
blood.

Let we define the fractional complex transform as
follows:

τ �
T
α

Γ(1 + α)
, (37)

where α is the unknown constant. And then, we can yield the
fractional derivatives into classical derivatives with (37):

z
α
A

zT
α �

z
2
A

zτ2
. (38)

It is obvious that (36) can be deduced to

z
2
A

zτ2
+ a1 A

2
 

XX
+ a2AXXXX + a3AX � 0. (39)

Next, we consider to gain the solution of (39). Due to the
fact that a3 describes viscous properties of blood, we set μ �

a3 as a small parameter. Assuming that A0 � A0(X, μ(1/2)τ)

and considering to get the properties of (39), two time scales
are defined as follows:

ζ � τ,

η � μ(1/2)τ,
(40)

and A is expanded as

A(X, τ) � A1(X, ζ, η) + μA2(X, ζ, η). (41)

*us, we obtain all levels of approximation equations
about μ:

μ0:
z
2
A1

zζ2
+ a1

z
2
A
2
1

zX
2 + a2

z
4
A1

zX
4 � 0,

μ1:
z
2
A2

zζ2
+ a1

z
2

A1A2( 

zX
2 + a2

z
4
A2

zX
4 � −

z
2
A1

zη2
−

zA1

zX
.

(42)

For μ0, it is obvious that the solution of the equation can
be expressed as

A1(X, ζ, η) � A0sec h
2 a1A0

6a2
 

(1/2)

(X − ]ζ) + c⎡⎣ ⎤⎦, (43)

where ] � (− (2a1A0/3))(1/2) and A0 represents the maxi-
mum amplitude at initial moment. *en, for μ1, we use the
equation to determine the form of A0. Assuming that

A2 � B(I),

I � X + ζ.
(44)

By substituting (44) into the order one of μ equation
from (42), the following equation is obtained:

z
2
B

zI
2 + a1

z
2

zI
2 A1B(  + a2

z
4
B

zI
4 � M A1( , (45)

where M(A1) � − (z2A1/zη2) − (zA1/zX). In order to de-
scribe the structure of A2, we consider to choose proper
function G which should be orthogonal to M(A1) as


+∞

− ∞
G(I)M A1( dI � 0. (46)

Multiplying both sides of (45) by G, integrating them by
parts and using B|I�±∞ � 0 and(dB/dI)|I�±∞ � 0, we can see
that G(I) satisfies

d2G
dI

2 + a1A1
d2G
dI

2 + a2
d4G
dI

4 � 0. (47)

By assuming G( ±∞) � 0, the solution of (47) can be
obtained as

G � A0sec h
2 a1A0

6a2
 

(1/2)

I + c⎡⎣ ⎤⎦. (48)

Substituting (48) into (46) and using (45), we obtain

A0 � e
−

�μ√ τ− X
. (49)

*erefore, we obtain the approximate solution of (39) as
follows:

A(X, ζ, η) � A0sec h
2 a1A0

6a2
 

(1/2)

(X − ]ζ) + c⎡⎣ ⎤⎦, (50)

where A0(X, μ(1/2)τ) � e−
�μ√ τ− X. *e above equation is the

solution of (39) and can be used to describe the flow state of
blood more specifically.

Finally, the solution of the time-fractional Boussinesq
equation is

A(X, T) � exp
−

��μ√
T
α

Γ(1 + α)
− X 

· sec h
2 a1

6a2
exp

−
��μ√

Tα

Γ(1 + α)
− X  

(1/2)

⎡⎣

· X − ]
T
α

Γ(1 + α)
  + c,

(51)
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where ] � (− (2a1/3)exp((−
��μ√

Tα/Γ(1 + α)) − X))(1/2).
In order to study the influence of blood viscosity and

fractional order on the evolution of blood flow, we change
the value of μ, α, X, and T to get related results. From
Figure 1, we can see that when viscosity parameter μ � 0, the
amplitude of solitary waves is largest; at the same time, the
width of solitary waves is the smallest. With the decrease of
the amplitude, the width increases gradually. Figure 2 de-
picts the evolution of solitary waves in blood under different
viscosity coefficient μ. It is evident that amplitude of the
solitary waves becomes smaller with timeT from Figure 2(a),
while the width of the solitary waves becomes larger with
time T. And we can know that the viscosity effect leads to the
amplitude of the solitary waves to decrease and the width of
the solitary waves to increase. In addition, in contrast with
Figure 2(b), we find with the increasing viscosity coefficient
μ, the rate of amplitude reduction has been accelerated and
the direction of the wave changes from the positive direction
of X to the negative direction of it. Figure 3 shows the
solitary waves under different fractional order α. We find the
peak value of amplitude is not linear with α, and there is a
minimum of the peak with the corresponding critical value
of α. According to the critical value, the peak value of
amplitude increases firstly and then decreases.

5. Analysis and Discussion

In this section, we consider to calculate the value which can
represent the state of blood by using the results from the
previous sections. First, we search for the solution of (17)
and (18). Taking ϕ0(r) � ϕ0((

���
c/a

√
)z) � zw(z) and

substituting them into (17) yield

z
2d

2
w

dz
2 + z

dw

dz
+ z

2
− 1  � 0. (52)

And the solution of (52) is expressed as

w(z) � C1J1(z) + C2N1(z), (53)

where C1 andC2 are the constants and J1(z) and N1(z) are
expressed as

J1(z) � 
∞

m�1

(− 1)
m

m!Γ(m + 2)

z

2
 

2m+1
,

N1(z) �
J1(z)cos(π) − J− 1(z)

sin(π)
.

(54)

*us, the solution of (17) can be described as

ϕ0(r) � C1r

��
a

c



J1 r

��
a

c



 . (55)

Similarly, by substituting (55) into (18), we obtain

ϕ1(r) � C3r

��
a

c



J1 r

��
a

c



 , (56)

where C3 is a constant. We take the physiological parameters
of the human body as follows:

R � 1.25 × 10− 2m,

umax � 0.4m/s,

L � 6.3 × 10− 2 m,

c � 5.5m/s.

(57)

And set Q � − 0.01, C1 � 0.1, and C3 � − 500. *erefore,
by using (21), we obtain the coefficients of (36) as follows:

a0 � − 8.52776 × 10− 1
,

a1 � − 2.5917,

a2 � − 5.9084 × 10− 7
,

a3 � 3.7 × 10− 3
.

(58)

Due to that the basic flow in a human artery can be
assumed to be the Poiseuille flow, the stream function can be
expressed as

ψ � umax
r
2

2
−

r
4

4R
2 . (59)

So the stream function can be obtained as follows:

Ψ � umax
r
2

2
−

r
4

4R
2  + ε2 exp

−
��μ√

T
α

Γ(1 + α)
− X 

· sec h
2 a1

6a2
exp

−
��μ√

Tα

Γ(1 + α)
− X  

(1/2)

⎡⎣

· X − ]
T
α

Γ(1 + α)
  + cC1r

��
a

c



J1 r

��
a

c



 ,

(60)

where X � ε(x − ct) and T � ε2t following (12).
Because in the cylindrical coordinate system, the dif-

ference of the flow function values of any two points in the
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Figure 1: Variation of amplitude and width according to the
viscosity coefficient μ(α � 1, T � 5, X � 0.005, a2 � − 1, a1 � − 20,

c � 0).
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plane passing through the symmetry axis multiplied by 2π is
equal to the value, which is the flow rate of the rotating
surface formed by the rotation of any curve passing through
these two points around the symmetric axis, we decide to
calculate blood flow by using the values of the outlet and

entrance of blood vessels. We take the flow function of the
central position of the vessel at the entrance of the aorta as
Ψ1, where X � 0 and r � 0, and take the flow function at the
junction of heart and aorta as Ψ1, where x � 0 and r � R.
*us, we obtain

Ψ1 � 0,

Ψ2 �
1
4
umaxR

2
+ ε2 exp

−
��μ√ ε2t 

α

Γ(1 + α)
+ εct⎛⎝ ⎞⎠C1r

��
a

c



J1 r

��
a

c



 

· sec h
2 a1

6a2
exp

−
��μ√ ε2t( 

α

Γ(1 + α)
+ εct  

(1/2)

− εct − −
2a1

3
exp

−
��μ√ ε2t( 

α

Γ(1 + α)
+ εct  

(1/2) ε2t 
α

Γ(1 + α)
⎛⎝ ⎞⎠ + c⎡⎢⎢⎣ ⎤⎥⎥⎦.

(61)
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Figure 2: *e evolution of solitary waves in blood with viscosity: (a) α � 1, a2 � − 1, a1 � − 20, c � 0, μ � 0.005; (b) α � 1, a2 � − 1, a1 � − 20,
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*us, the blood flow at the outlet of the heart can be
expressed as

Qheart �
1
2
πumaxR

2
+ 2πε2 exp

−
��μ√ ε2t 

α

Γ(1 + α)
+ εct⎛⎝ ⎞⎠C1R

��
a

c



J1 R

��
a

c



 

· sec h
2 a1

6a2
exp

−
��μ√ ε2t( 

α

Γ(1 + α)
+ εct  

(1/2)

− εct +
2a1

3
exp

−
��μ√ ε2t( 

α

Γ(1 + α)
+ εct  

(1/2) ε2t 
α

Γ(1 + α)
⎛⎝ ⎞⎠ + c⎡⎢⎢⎣ ⎤⎥⎥⎦.

(62)

In a cardiac cycle, the time-dependent image of the blood
flow volume of the cardiac outlet is shown in Figure 4.

From Figure 4, we can see that, when α is smaller, this
model can be used to describe people with less blood flow or
faster blood flow conduction. And when α is large, this
model can be used to describe people with slow blood flow in
the body, or blood output from the heart is not easy to
circulate throughout the body. *ese people may have le-
sions in some parts of the blood vessels, causing obstruction
to blood flow. Or they are in good physical condition, but
they are at high risk of cardiovascular and cerebrovascular
diseases. Furthermore, we can find the appropriate value of α
to describe different populations by combining the actual
monitoring data.

As we all know, stroke volume of healthy people is
basically stable. When stroke volume is not stable for a long
time, we can infer that there may be something wrong with
that person’s cardiovascular system. If the amount of stroke
volume is smaller, it will lead to insufficient oxygen supply to
other tissues and organs. On the contrary, when stroke
volume is too large, it will increase the load of human blood
vessels, thus causing some cardiovascular and cerebrovas-
cular diseases. According to the above introduction, we can
find that stroke volume in each cycle of the heart is an
important index which can reflect the health status of human

cardiovascular system. *us, we give the description of the
stroke volume as follows:

V � 
T

0
Qheartdt, (63)

where T represents the pulsatile cycle of the heart. By cal-
culating, with umax � 0.4 and R � 1.25 × 10− 2, we obtain the
stroke volume in each cycle of the heart as 78.54ml which is
close to the theoretical calculation value 78.5ml. *erefore,
this model can well reflect the actual blood flow of the
human body.

Considering that there is always a certain degree of
difference in genetic characteristics of different people, it is
easy to misjudge the disease condition if we use a unified
health standard to measure the population with different
characteristics. *us, we consider to yield several different
standards which can be used to measure the health of
different groups of people by adjusting the value of frac-
tional order α. Figure 5 shows that the stroke volume in-
creases with the increase of α. V has a larger growth rate in
the range of α value from 0.4 to 0.8, while it grows slowly in
other value ranges. *us, we can consider selecting the
appropriate value of α from 0.4 to 0.8 with the actual test
data.
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Figure 4: *e blood flow volume of cardiac outlet at the different values of time and α(c � 0).
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Because the radius of the blood vessel can influence
stroke volume, we consider changing the value of R to get
several results as shown in Figure 6.

In Figure 6, the values of α from bottom to top are 0.2,
0.4, 0.6, and 0.8. We can find that under the condition of the
same vessel radius, stroke volume increases with the increase
of the maximum velocity of blood vessel center. In addition,
under the same umax, the value of V is also related to the size
of the vascular radius. As the vessel radius increases, stroke
volume increases as well.

6. Conclusion

In this paper, we derive time-fractional Boussinesq equation
with viscous term to describe blood flow and discuss the
effects of fractional order and viscosity on blood flow vol-
ume. *is indicates that local hemodynamic factors play an
important role in the occurrence and development of

cardiovascular disease.*erefore, it is of great significance to
study the changes of blood flow in blood vessels to reveal the
pathogenesis of major vascular diseases.
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Exploring the behaviors of beta oscillations in the basal ganglia is helpful to understand the mechanism of Parkinson’s disease.
Studies have shown that the external and internal segments (GPe, GPi) of the globus pallidus receive different intensities of signals
from the striatum in Parkinson’s disease and play different roles in the production of beta oscillations, but the relevant mechanism
still remains unclear. Based on a model of the subthalamic nucleus (STN) and globus pallidus (GP), we propose an extended STN-
GPe-GPi model and analyze the dynamical behaviors of beta oscillations in this model.(e stability condition is obtained through
theoretical analyses, and the generation of beta oscillations by the inputs from the cortex and striatum is further considered. (e
influence of some parameters related to GPi on its firing rate oscillations is discussed. (e results obtained in this paper are
expected to play a guiding role in the medical treatment of Parkinson’s disease.

1. Introduction

Parkinson’s disease is a chronic neurodegenerative disease
with the symptoms of involuntary tremor of the hand and
head, muscle rigidity, slow movement, and imbalance of
posture [1]. (e main pathological causes of Parkinson’s
disease ascribe to the loss of dopamine neurons in the basal
ganglia [2], which consists of the striatum, globus pallidus
(GP), subthalamic nucleus (STN), compacta (SNc), and
reticular (SNr) structure of the substantia nigra [3–5]. (e
loss of dopamine neurons causes beta oscillations with
frequencies ranging from 13Hz to 30Hz in the basal ganglia
[6, 7]. (erefore, it is necessary for understanding the
mechanism of Parkinson’s disease to analyze the conditions
of beta oscillations in the basal ganglia [8].

Many researches explored the origin of beta oscillations
in the basal ganglia [9–12]. Van Albada et al. believed that
oscillations originated from the cortical-thalamic loop and
then spread to the basal ganglia with the development of the

disease [13]. Holgado et al. found that the STN-GP loop in
the basal ganglia plays an important role in generating
oscillations, which are related to connection weight and
synaptic transmission time between STN and GP [14].
Furthermore, a model with two STN and one GP pop-
ulations are considered to get the stability boundary of
oscillations [15, 16]. However, GP population has not been
divided into the external and internal segment (GPe and
GPi) in the above models, where GPi is the main output
structure of the basal ganglia and also used to treat dystonia
by deep brain electrical stimulation in medicine [5]. Actu-
ally, GPi and GPe are affected by different intensities from
striatum to result in Parkinson’s disease. (erefore, it is
necessary to add both GPe and GPi into the basal ganglia
network.

Based on the above considerations, we introduce both
GPe and GPi in the above model proposed by Holgado et al.
as a new STN-GPe-GPi model. (e mechanism of gener-
ating beta oscillations for the newmodel is explored through
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theoretical analyses and numerical simulation. (e model of
STN-GPe-GPi loop is given in Section 2. Section 3 shows the
results. Stability analyses and bifurcation for this model are
given through theory analyses. Also, the effect of inputs from
the cortex and striatum and some parameters related to GPi
on beta oscillations is discussed in Section 4. Finally, the
conclusion is given in Section 5.

2. Model

(e model of STN- GPe-GPi loop，which is an extended
STN-GP model, is considered here in order to understand
the mechanism of Parkinson’s disease. Actually, GP can be
divided into two parts, GPe and GPi. (ey can receive
different excitatory inputs from the cortex in Parkinson’s
disease, and GPi as the output part of the basal ganglia
mainly affects the activity of neurons in thalamic and cortical
areas. GPe and GPi receive inhibitory and excitatory
stimulations from striatum and STN, respectively, but
GPe sends inhibitory signal to GPi and STN. Besides, STN
also receives excitatory stimulation from the cortex
(see Figure 1).

(e following firing rate equations are used to describe
the dynamical behavior of the model, as shown in Figure 1
[17–18]：

τGG1′(t) � FG −WGGG2 t − TGG(  + WSGIS t − TSGI( (

−WXGStr − G1(t),
(1)

τGG2′(t) � FG WSGES t − TSGE(  − WXGStr(  − G2(t), (2)

τSS′(t) � FS −WGSG2 t − TGS(  + WCSCtx(  − S(t), (3)

where G1(t), G2(t), and S(t) represent the firing rate of
GPi，GPe, and STN; τG and τS are time constants of GP and
STN; W and T are synaptic connection weight and the delay
of signal transmission between neural populations, re-
spectively, Wij and Tij are connection weight and time delay
between the neural populations i and j, WSGE, WSGI, TSGE,
and TSGI denote connection weights and the time delays
from STN to GPe and GPi, respectively, Str and Ctx are
input constants from the striatum and cortex. FS and FG are
activation functions of STN and GP, which are given by the
following formulas [14]:

FS(x) �
MS

1 + MS − BS/BS( exp −4x/MS( 
,

FG(x) �
MG

1 + MG − BG/BG( exp −4x/MG( 
,

(4)

where Mi is the maximum firing rate of neuron population i
and Bi is the firing rate of neuron population iwith no input.
(e activation functions FS(x) and FG(x) with their de-
rivatives are shown in Figures 2(a) and 2(b), respectively.

(e parameters and their source are given in Table 1, and
the connection weights between neuron populations in
healthy and disease states are given in Table 2. Figure 3
shows time series of the firing rate of healthy and disease
states, which oscillates for Parkinson’s disease and reaches
the steady state in the healthy state.

3. Results and Discussion

3.1. Stability Analyses for the STN-GPE-GPI Model. In this
section, we obtain the following equations (5)–(7) by sim-
plifying equations (1)–(3) with F(x) � x without inputs
from the striatum and cortex and the identical τ and T:

τG1′(t) � −WGGG2(t − T) + WSGIS(t − T) − G1(t), (5)

τG2′(t) � WSGES(t − T) − G2(t), (6)

τS′(t) � −WGSG2(t − T) − S(t). (7)

Equations (5)–(7) are given in matrix form as follows:

G1′(t)

G2′(t)

S′(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

0
WGG

τ
−

WSGI

τ

0 0 −
WSGE

τ

0
WGS

τ
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G1(t − T)

G2(t − T)

S(t − T)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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+

1
τ

0 0

0
1
τ

0

0 0
1
τ
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G1(t)

G2(t)

S(t)
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� 0.
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Figure 1: Schematic diagram of STN-GPe-GPi. Each rectangular
represents neural population, arrows indicate excitatory inputs,
lines ending with black dots mean inhibitory inputs, and the
striatum and cortex represent their inputs, respectively.

2 Complexity



Let

A �

0
WGG

τ
−

WSGI

τ

0 0 −
WSGE

τ

0
WGS

τ
0
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,

B �

1
τ

0 0

0
1
τ

0

0 0
1
τ
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.

(9)

Using Laplace transform [30],
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Figure 2: (a) Curves of the activation functions FS(x) and FG(x). (b) Derivatives of activation functions FS(x) and FG(x).

Table 1: Parameter values in the model and their sources.

Parameter Value Reference
T 6ms [19, 20]
τS 6ms [21–23]
τG 14ms [24]
Ctx 27 spk/s [25]
Str 2 spk/s [26]
MS 300 spk/s [27]
BS 17 spk/s [27]
MG 400 spk/s [20, 28]
BG 75 spk/s [28, 29]

Table 2: Connection weights between neurons in different states.

Parameter Healthy state Parkinson’s disease
WGS 1.12 10.7
WSGE 19.0 20.0
WSGI 19.0 20.0
WGG 6.60 12.3
WCS 2.42 9.2
WGG 15.1 139.4
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L[f(t − T)] � e
− sT

F(s),

L[f(t)] � F(s),

L[f′(t)] � sF(s) − F(0).

(10)

Equation (8) can be given as follows:

s

G1(s)

G2(s)

S(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

G1(0)

G2(0)

S(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + Ae

−sT

G1(s)

G2(s)

S(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + B

G1(s)

G2(s)

S(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0.

(11)

Without loss of generality, let

G1(0)

G2(0)

S(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0. (12)

(en,

sI + Ae
− sT

+ B � 0, (13)

where S is the eigenvalue of the characteristic equation and I

is the unit matrix. Taking the determinant on both sides of
matrix (13),

det sI + Ae
− sT

+ B  � 0, (14)

then

s +
1
τ

 
3

+
WGSWSGE

τ2
s +

1
τ

 e
− 2sT

� s +
1
τ

  s +
1
τ

 
2

+
WGSWSGE

τ2
e

− 2sT
  � 0.

(15)

s≠ (−1/τ), so

s +
1
τ

 
2

+
WGSWSGE

τ2
e

− 2sT
� 0. (16)

Let s � iλ and e−2sT be expanded by Euler transforma-
tion, and equation (16) is changed into

−λ2 +
1
τ2

+
2iλ
τ

+
WGSWSGE

τ2
(cos 2 λT − i sin 2 λT) � 0.

(17)

For simplification, let τ � 1 and T � T/τ，equation (17)
can be written as follows：

−λ2 + 1 + 2iλ + WGSWSGE(cos 2 λT − i sin 2 λT) � 0.

(18)

Let the real part and the imaginary part be zero,
respectively:
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Figure 3: Time series of systems (1)–(3): (a) Parkinson’s disease and (b) healthy state.
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−λ2 + 1 + WGSWSGE cos 2 λT � 0, (19)

2λ − WGSWSGE sin 2 λT � 0. (20)

Add the squares of (19) and (20) to get the following
equation:

λ �
������������
WGSWSGE − 1


. (21)

Bring equation (21) into equation (19), and we get
stability boundary of the linear system：

T �
1

2
������������
WGSWSGE − 1

 arccos 1 −
2

WGSWSGE
 . (22)

So, the linear model equations (5)–(7) oscillate at the
following condition:

T

τ
>

1
2

������������
WGSWSGE − 1

 arccos 1 −
2

WGSWSGE
 . (23)

3.2. Stability Analysis for the Nonlinear Model. For the
nonlinear model with activation functions, we linearize the
activation functions at the steady state (G∗1 , G∗2 , S∗) and get
the characteristic equation (24) in a matrix form based on
the steps in Section 3.1.

det sI + A1e
− sT

+ B  � 0, (24)

where

A1 �

0 −FG ∗1
′ WGG

τ
FG∗1
′ WSGI

τ

0 0 FG∗2
′ WSGE

τ

0 −FS∗
′ WGS

τ
0
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Figure 4: (a) Stability boundary curve for the linear system; (b) stability boundary for the nonlinear system; (c) the effect of cortical input on
oscillation; (d) the effect of the striatum input on the oscillation. Ctx and Str denote the inputs from the cortex and striatum.
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(erefore, the stability boundary of the nonlinear model
is as follows:

T �
1

2
������������������
FS∗
′ WGSFG ∗2

′ WSGE − 1
 arccos 1 −

2
FS∗
′ WGSFG∗2

′ WSGE

⎛⎝ ⎞⎠.

(26)

(e oscillation condition is

T

τ
>

1

2
������������������
FS∗
′ WGSFG ∗2

′ WSGE − 1
 arccos 1 −

2
FS∗
′ WGSFG ∗2

′ WSGE

⎛⎝ ⎞⎠.

(27)

We analyze the stability of the model shown in Figure 1
and get the stability conditions equations (22) and (26) for
the linear and nonlinear model, respectively. Next, we draw
the stability boundary curves of equations (22) and (26) and
explore the effect of the inputs from the striatum and cortex
on oscillation through numerical simulation.

3.3. Numerical Simulation of Stability Conditions.
Figures 4(a) and 4(b) describe the stability boundary curves of
linear and nonlinear models based on equations (22) and (26),

respectively. (e decreasing boundary curve is infinitely close
to x-axis with the increase of WGSWSGE⟶∞. (e system
oscillates for parameter values above the curve while it is stable
for ones below the curve. However, the nonlinear system
oscillate for a larger weight WGSWSGE than the one of linear
system at the same T/τ.

Figures 4(c) and 4(d), respectively, show the influence of
the inputs from the cortex and striatum on the stability of the
nonlinear system. (e boundary curve of the cortex is in the
shape of “U,” where the system will oscillate in the area of
above “U” and it will reach a stable steady state in the area
below “U.”While the boundary curve of the striatum decreases
to x-axis with the increase of the input of the striatum.

4. The Effect of Parameters Related to GPI on
Frequency and Amplitude of Nonlinear
Model Oscillation

In this section, the effect of three groups of parameters
related to GPi, WGG − TGG, WSGI − TSGI, and WSGE − WSGI,
on oscillation frequency (Figures 5 (a1)–(a3)) and amplitude
(Figures 5 (b1)–(b3)) are also considered. Besides, time series
of the GPI firing rate are given in Figure 6 for typical parameter
values in each group of parameters in order to clearly see the
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Figure 5:(e effect ofWGG − TGG, WSGI − TSGI, andWSGE − WSGI on the frequency of the GPi firing rate (a1)–(a3) and the amplitude of GPi
(b1)–(b3). Other parameters are taken from Parkinson’s state in Table 2.
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influence of these parameters on the frequency and amplitude
of GPi oscillation. We set the frequency of the stable steady
state to be 0. As can be seen from Figures 5 (a1) and (b1), the
plane is divided into two parts, where the firing rate of GPi
reaches a steady state for parameters taken in the blue area of
the upper half while it will oscillate for parameters taken in the
red area of the lower half. Frequency of oscillation with 14Hz
almost is not affected byWGG andTGG, while smallerWGG and
larger TGG increase the amplitude of oscillation to 180. Fig-
ures 5 (a2) and (b2) shows that the firing rate of GPi always
oscillates with beta frequency band of about 14Hz and lower
amplitudes for WSGI < 20 otherwise alpha oscillations with
frequency of 8Hz–12Hz and higher amplitude for WSGI > 20.
Besides, Figure 5 (a3) shows that the firing rate of GPi reaches
the steady state for smaller WSGE (WSGE < 3.0) while it os-
cillates for large WSGE (WSGE > 3.0), where the frequency and
amplitude increase for smaller WSGE and larger WSGI.

Furthermore, time series of the GPi firing rate are given
in Figure 6 for three pairs of parameters from each group of
parameter plane in Figure 5 to clearly see the influence of
these parameters on the frequency and amplitude of the GPi
firing rate. It can be seen from Figures 6 (a1)–(a3) that the
firing rate of GPi oscillates for smaller WGG and larger TGG.

According to Figures 6 (b1)–(b3), the firing rate of GPi al-
ways oscillates with smaller amplitude and larger frequency
for smaller WSGI and TSGI while the case is opposite for
larger WSGI and TSGI. Figures 6 (c1)–(c3) show that larger
WSGE makes the firing rate of GPi oscillate and larger WSGI
increases the amplitude of oscillation.

To sum up, the connection weights between neurons
have a great influence on oscillation of the GPi firing rate,
where smaller WGG and larger WSGE, WSGI easily induce the
oscillation of the GPi firing rate. However, transmission
delays between neurons affect the amplitude of the GPi firing
rate, where larger TGG and smaller TSGI will increase the
amplitude.

5. Conclusions

Analyzing the conditions of beta oscillation in the basal
ganglia is helpful to understand the mechanism of Par-
kinson’s disease. In this paper, we analyze the conditions of
beta oscillation in the STN-GPe-GPi model for different
cases. First, stability analyses give stability boundary con-
dition equations (22) and (26) for the linear system and
nonlinear system, respectively, which are shown in
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Figure 6: Typical time series of the firing rate of GPi for some parameters: (a1)–(a3) WGG − TGG, (b1)–(b3) WSGI − TSGI, and (c1)–(c3)
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Figures 4(a) and 4(b). (e nonlinear system oscillates for
larger connection weight than the one of the linear system
due to activation function. In addition, we consider the
influence of the cortex and striatum as external input of the
STN-GPe-GPi loop on the stability boundary of the non-
linear system. As can be seen from Figures 4(c) and 4(d), the
nonlinear system is in the state of oscillation for
100< ctx< 400 or 5< str< 25. Comparing with the results in
[15], the stability boundary system in this model moves to
the right and other results almost are consistent with the
ones in [15]. Furthermore, it can be seen from numerical
simulation that the influence of the connection weights and
delays is related to GPi on its oscillation. Smaller connection
weight from GPe to GPi (WGG) and larger one from STN to
GPe (WSGE) make the system oscillate easily, regardless of
connection weight (WSGI) and transmission delay (TSGI)
from STN to GPi. We hope that the results may provide
guidance for the therapy of reducing pathological oscilla-
tions of PD, especially for the operation of the region related
to GPi. However, it is necessary to consider a more complete
neural network related to Parkinson’s disease and explore
the conditions of beta oscillation in response to different
time delay, noise, and temperature [31]. Furthermore, we
will investigate the pathogenesis of Parkinson’s disease from
the perspective of systems’ biology in the future [32].
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In this paper, we propose and discuss a stochastic logistic model with delay, Markovian switching, Lévy jump, and two-pulse
perturbations. First, sufficient criteria for extinction, nonpersistence in the mean, weak persistence, persistence in the mean, and
stochastic permanence of the solution are gained. (en, we investigate the lower (upper) growth rate of the solutions. At last, we
make use of Matlab to illustrate the main results and give an explanation of biological implications: the large stochastic dis-
turbances are disadvantageous for the persistence of the population; excessive impulsive harvesting or toxin input can lead to
extinction of the population.

1. Introduction

It is universally known that the logistic model is one of the
most significant and classical models in mathematical bi-
ology. Many scholars have studied it and achieved fruitful
results (see [1–8]).(e classical logistic equation is expressed
by

dX(t) � X(t) r − a1X(t) dt, (1)

where X denotes the population size and r and a1 stand for
the intrinsic growth rate and the intraspecific competition
rate, respectively. With the improvement of the under-
standing of biological mathematical models, some factors
have been considered, such as random interference, time
delay, and so on. Compared with the classical original
model, stochastic models (see [9–16]) can better reflect the
actual situation. Based on model (1), we obtain the following
stochastic model:

dX(t) � X(t) r − a1X(t) + a2X(t − τ) + a3 
0

− ∞
X(t + θ)dς(θ) dt

+ σX(t)dB(t) + X t
−

( )
Y

c(v) N(dt, dv),

(2)

where r and ai(i � 1, 2, 3) are non-negative constants. τ ≥ 0
is the time delay. ς(θ) stands for a probability measure on
(− ∞, 0]. B(t) is the independent standard Brownianmotion
defined on a complete probability space (Ω,F, Ft t≥0,P)

and σ ≥ 0 is the intensity of the white noise. X(t− ) is the left
limit of X(t). N(dt, dv) is a Poisson random measure with

characteristic measure λ on a measurable bounded below
subset Y ofR\0 with λ(Y )<∞, c is a Lévymeasure such that
N(dt, dv) � N(dt, dv) − λ(dv)dt.

In addition to the white noise and Lévy noise mentioned
above, there are other noises in nature, such as telegraph
noise, which can be expressed by continuous-time Markov
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chain that mainly describes the random switching between
two or more environment states [17] and which is different
due to rainfall, nutrition, and other factors [18, 19]. (us, a

series of articles about Markovian switching have been in-
vestigated (see [20–28]). We focus on the stochastic logistic
model with Markovian switching:

dX(t) � X(t) r(ξ(t)) − a1(ξ(t))X(t) + a2(ξ(t))x(t − τ) + a3(ξ(t)) 
0

− ∞
X(t + θ)dς(θ) dt

+ σ(ξ(t))X(t)dB(t) + X t
−

( )
Y

c((ξ(t)), v) N(dt, dv),

(3)

where ξ(t) is a continuous-timeMarkov chain with values in
finite state spaceM � 1, 2, . . . , N{ }. We assume that B(t) and
ξ(t) are independent.

As we all know human activities will have a significant
impact on the population system, we must pay attention to
the growing influence of human beings on population
systems. (e main manifestation of human activities is the
regular harvesting of species or the regular stocking for the
protection of endangered species, which cannot be con-
sidered continuously. (erefore, these phenomena can be
described more accurately by the stochastic models with
impulsive effects (see [29–34]).

On the other hand, human activities not only have a
direct impact on the population but also have an indirect
impact. (e toxin produced by environmental pollution has

an indirect impact on the species. Environmental pollution
caused by human activities has become an important issue
that the world has to consider. Environmental pollution not
only pollutes the atmosphere but also produces toxins that
can enter into animals and plants, causing unimaginable
harm to them; the light ones canmake some populations die,
and the heavy ones may cause species extinction. And these
toxins will also accumulate in animals and plants. People
transfer toxins in their bodies by eating the animals and
plants, which can cause harm to human health. (erefore, it
has become an inevitable trend to consider the influence of
environmental toxins on the population (see [35–38]).

Based on the above discussion, we first consider the
following stochastic hybrid logistic model with two-pulse
perturbations:

dX(t) � X(t) r(ξ(t)) − α(ξ(t))C0(t) − a1(ξ(t))X(t) + a2(ξ(t))X(t − τ) + a3(ξ(t)) 
0

− ∞
X(t + θ)dς(θ) dt

+ σ(ξ(t))X(t)dB(t) + X t−( )
Y

c((ξ(t)), v) N(dt, dv),

dC0(t) � kCe(t) − (g + m)C0(t) dt,

dCe(t) � − hCe(t)dt,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, t≠ tn, t≠ nT, n ∈ Z+,

ΔX(t) � δnX(t),ΔC0(t) � 0,ΔCe(t) � 0, t � tn, n ∈ Z+,

ΔX(t) � 0,ΔC0(t) � 0,ΔCe(t) � u, t � nT, n ∈ Z+,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where C0(t) and Ce(t) represent the concentration of toxins
in organism and in environment at time t, respectively. α≥ 0 is
the decreasing rate of the growth rate associated with the
uptake of the toxins, k> 0 stands for the uptake rate of toxicant
in the environment, g> 0 and m> 0 are the excretion rate and
depuration rate, respectively, h> 0 is the loss rate of toxicant in
the environment, and u stands for the toxin input amount at
every time. Let 0< t1 < t2 < · · · , limn⟶+∞tn � +∞, n ∈ Z+,
where Z+ is the set of positive integers. When δn > 0, the
impulsive effects imply releasing population, while if δn < 0, the
impulsive effects indicate harvesting for population. In this
paper, we always suppose that 1 + δn > 0 for all n ∈ Z+.

(e rest of the paper is organized as follows. In Section
2, we give some preliminaries. (e existence and
uniqueness of the global positive solution of the model are
given in Section 3. (e sufficient conditions for the

stochastic permanence and extinction are studied in Sec-
tion 4. Some asymptotic properties of the solution are
proved in Section 5. Finally, we give some numerical
simulations to illustrate our results.

2. Preliminaries

Denote the generator Γ � (ckl)N×N of the Markov chain ξ(t)

given by

P(ξ(t + Δ) � l | ξ(t) � k) �
cklΔ + o(Δ), if k≠ l,

1 + ckkΔ + o(Δ), if k � l,


(5)

where Δ> 0, ckl ≥ 0 if k≠ l while 
N
l�1 ckl � 0. When ξ(t) is

irreducible, then ξ(t) has a unique stationary distribution
π � π1, π2, . . . , πN  which is the solution of
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πΓ � 0,



N

k�1
πk � 1, πk > 0, ∀k ∈ M.

⎧⎪⎪⎨

⎪⎪⎩
(6)

Consider a stochastic differential delay equation (SDDE)
with Markovian switching and Lévy noise (see [12]) as
follows:

dx(t) � f(x(t), x(t − τ(t)), t, ξ(t))dt + g(x(t), x(t − τ(t)), t, ξ(t))dB(t) + 
Y

J x t−( ), t, ξ(t), v( ) N(dt, dv),

x(0) � x0 ∈ LF0
[− τ, 0];Rn( ),

ξ(0) � ξ0 ∈ M,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where x(t) � (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state
vector and x(t − τ(t)) � (x1(t − τ(t)), x2(t − τ(t)), . . . ,

xn(t − τ(t)))T ∈ Rn is the delayed state vector. x(t− ) �

lims⟶tx(s). (e time-varying delay τ(·): R+⟶ [0, τ] is a
Borel measurable function. f(·, ·, ·, ·): Rn × Rn × R+×

M⟶ Rn is the drift coefficient vector, g(·, ·, ·, ·): Rn × Rn ×

R+ × M⟶ Rn×n is the diffusion coefficient matrix, and
J(·, ·, ·, ·): Rn × Rn × M × Y⟶ Rn.

For each k ∈ M, let V(x, y, t, k) ∈ C1,2(Rn × Rn × R+ ×

M;R+) be any twice continuously differentiable function;
the operator LV(x, y, t, k): Rn × Rn × R+ × M⟶ R can
be defined by

LV(x, y, t, k) � Vt(x, t, k) + Vx(x, t, k)f(x, y, t, k)

+
1
2
trace g

T
(x, y, t, k)Vxx(x, t, k)g(x, y, t, k) 

+ 
Y

V(x + J(x, t, k, v), t, k) − V(x, t, k) − J(x, t, k, v)Vx(x, t, k) λ(dv) + 
N

l�1
cklV(x, t, k),

(8)

where

Vt(x, t, k) �
zV(x, t, k)

zt
,

Vx(x, t, k) �
zV(x, t, k)

zx1
,
zV(x, t, k)

zx2
, . . . ,

zV(x, t, k)

zxn

 ,

Vxx(x, t, k) �
z2V(x, t, k)

zxizxj

 
n×n

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

(en, one has the generalized Itô’s formula:

dV � LV(x, y, t, k)dt + Vx(x, t, k)f(x, y, t, k)dB(t)

+ 
Y
ln(1 + J(x, t, k, v)) N(dt, dv).

(10)

Hypothesis 1 (locally Lipschitz condition). For any integer
h≥ 1, there exists a constant Lk > 0 such that

|f(x, y, t, k) − f(x, y, t, k)|∨|g(x, y, t, k) − g(x, t, k)|

≤Lk(|x − x| +|y − y|),

(11)

for those x, y, x, y ∈ Rn with |x|∨ |y|∨ |x|∨ |y|≤ h and any
(t, k) ∈ [0, T] × M.

Hypothesis 2 (linear growth condition). (ere is a constant
L> 0 such that

|f(x, y, t, k)|∨ |g(x, y, t, k)|≤L(1 +|x| +|y|), (12)

for any (x, y, t, k) ∈ Rn × Rn × R+ × M.

Hypothesis 3. For each ξ > 0, there is a constant Lξ that
depends on ξ such that


Y

|J(x, t, k, v) − J(y, t, k, v)|
2λ(dv)≤Lξ|x − y|

2
, (13)

with |x|∨|y|≤ ξ.
Here, Hypotheses 1–3 are the conservative conditions to

check the existence and uniqueness of the global solution of
(7). In this paper, Hypotheses 1–3 are always satisfied.

For simplicity, denote some notations
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〈f〉t �
1
t


t

0
f(s)ds, t> 0,

g � min
k∈M

g(k) ,

�g � max
k∈M

g(k) ,

f∗ � lim inf
t⟶+∞

f(t),

f∗ � lim sup
t⟶+∞

f(t),

b(k) � r(k) −
σ2(k)

2
− 

Y
[c((k), v) − ln(1 + c((k), v))]λ(dv),

b(k) � 2r(k) − σ2(k) − 2
Y

(c((k), v))λ(dv) − 2α(k)C∗0 ,

η∗ � lim sup
t⟶+∞

1
t


0< tn < t

ln 1 + δn( ⎤⎦ + 
k∈M

πkb(k), η∗ � lim inf
t⟶+∞

1
t


0< tn < t

ln 1 + δn( ⎤⎦ + 
k∈M

πkb(k).⎡⎢⎢⎣⎡⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

In order to give the proof in this paper, we provide some
assumptions.

A.1: there exists a constant K1 > 0 such that


Y
ln (1 + c((ξ(t)), v))

2λ(dv)≤K1. (15)

A.2: 1 + c((ξ(t)), v)> 0, and there exists constant
K2 > 0 such that


Y

[c((ξ(t)), v) − ln(1 + c((ξ(t)), v))]λ(dv)<K2.

(16)

A.3: let the initial value X � β be positive and β ∈ Cg

(see [31, 39]), which is defined by

Cg � ψ ∈ C (− ∞, 0];R+( : ‖ψ‖Cg
� sup

− ∞<θ≤0
e

rθ
|φ(θ)| < +∞ .

(17)

(ere exists a probability measure ρ and a constant
r> 0 such that

ρr � 
0

− ∞
e

− 2rθdς(θ)< +∞. (18)

A.4: a � (a1 − �a2 − �a3)> 0.
A.5: there exist two positive constants m and M such
that

m≤ 
0<tn<t

1 + δn( ≤M. (19)

A.6: ma1 >max M(�a2 + �a3), M(�a2e
τ + �a3ρr) .

We give some useful inequality in [40].

(1) (Exponential martingale inequality) Let T, α, β be
any positive numbers. (en,

P sup
0≤t≤T


t

0
g(s)dB(s) −

α
2


t

0
|g(s)|

2ds > β ≤ e
− αβ

.

(20)

(2) (Chebyshev’s inequality) If c> 0, p> 0, X ∈ Lp

(Ω,Rd) which is the family of Rd-valued random
variables X with E|X|p <∞. (en,

P ω: |X(ω)|≥ c{ }≤ c
− p
E|X|

p
. (21)

Next, we consider the following subsystem of system (4):

dC0(t) � kCe(t) − (g + m)C0(t) dt,

dCe(t) � − hCe(t)dt,
, t≠ nT, n ∈ Z+,

ΔC0(t) � 0,ΔCe(t) � u, t � nT, n ∈ Z+.

⎧⎪⎪⎨

⎪⎪⎩

(22)

From [38], we can get the following lemma.

Lemma 1 (see [38]). System (22) has a unique globally
asymptotical stable positive T-periodic solution
(C0(t), Ce(t))T. If C0(0)> C0(0), Ce(0)> Ce(0), then
C0(t)> C0(t), Ce(t)> Ce(t) for all t≥ 0, where
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C0(t) � C0(0)e− (g+m)(t− nT) +
ku e− (g+m)(t− nT) − e− h(t− nT)( 

(h − g − m) 1 − e− hT( 
,

C0(0) �
ku e− (g+m)T − e− hT( 

(h − g − m) 1 − e− (g+m)T(  1 − e− hT( 
,

Ce(t) �
ue− h(t− nT)

1 − e− hT
,

Ce(0) �
u

1 − e− hT
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

for t ∈ (nT, (n + 1)T], n ∈ Z+. In addition,

lim
t⟶+∞
〈C0(t)〉 �

ku

h(g + m)T
≜C0. (24)

From Lemma 1, system (4) can be replaced by the dy-
namical behaviors of the following limiting system:

dX(t) � X(t) r(ξ(t)) − α(ξ(t))C0(t) − a1(ξ(t))X(t) + a2(ξ(t))X(t − τ) + a3(ξ(t)) 
0

− ∞
X(t + θ)dς(θ) dt

+ σ(ξ(t))X(t)dB(t) + x t−( )
Y

c((ξ(t)), v) N(dt, dv),

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, t≠ tn, n ∈ Z+,

ΔX(t) � δnX(t), t � tn, n ∈ Z+.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

3. Positive and Global Solutions

Theorem 1. For any initial data (X(0), ξ(0)) ∈ R× M,
system (25) has a unique positive solution (X(t), ξ(t)) ∈ R ×

M with probability one

Proof. Consider the following SDDEs with Markovian
switching and without impulses:

dY(t) � Y(t) r(ξ(t)) − α(ξ(t))C0(t) − a1(ξ(t)) 
0<tn < t

1 + δn( Y(t)⎡⎢⎢⎣

+ a2(ξ(t)) 
0<tn < t− τ

1 + δn( Y(t − τ)

+ a3(ξ(t)) 
0

− ∞


0<tn < t+θ
1 + δn( Y(t + θ)dς(θ)⎤⎥⎥⎥⎦dt

+ σ(ξ(t))Y(t)dB(t) + Y t
−

( )
Y

c((ξ(t)), v) N(dt, dv),

(26)

with initial value (Y(0), ξ(0)). By the theory of SDDEs with
Markovian switching and Lévy jump, we refer the reader to
[12]. System (26) has a unique global positive solution
(Y(t), ξ(t)).

Let X(t) � 0<tn< t(1 + δn)Y(t) with initial value
(X(0), ξ(0)).

Since X(t) is continuous on each interval (tn, tn+1) ⊂ R+,
then

dX(t) � 
0<tn < t

1 + δn( dY(t)

� 
0<tn< t

1 + δn( Y(t) r(ξ(t)) − α(ξ(t))C0(t) − a1(ξ(t)) 
0<tn< t

1 + δn( Y(t)⎡⎢⎢⎣

+ a2(ξ(t)) 
0<tn< t− τ

1 + δn( Y(t − τ) + a3(ξ(t)) 
0

− ∞


0<tn<t+θ
1 + δn( Y(t + θ)dς(θ)⎤⎥⎥⎥⎦dt
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+ σ(ξ(t)) 
0<tn < t

1 + δn( Y(t)dB(t) + 
0<tn < t

1 + δn( Y t
−

( )
Y

c((ξ(t)), v) N(dt, dv)

� X(t) r(ξ(t)) − α(ξ(t))C0(t) − a1(ξ(t))X(t) + a2(ξ(t))X(t − τ)

+ a3(ξ(t)) 
0

− ∞
X(t + θ)dς(θ)dt + σ(ξ(t))X(t)dB(t) + X t

−
( )

Y
c((ξ(t)), v) N(dt, dv),

(27)

for t≠ tn, n ∈ Z+.
And for ∀tn ∈ R+, we get

X t
+
n(  � lim

t⟶t+
n

X(t) � 
0<tn < t

1 + δn( Y t
+
n( 

� 1 + δn(  
0<tn < t

1 + δn( Y tn(  � 1 + δn( X tn( .

(28)

Moreover,

X t
−
n(  � lim

t⟶t−
n

X(t) � 
0<tn < t

1 + δn( Y t
−
n( 

� 
0<tn < t

1 + δn( Y tn(  � X tn( .
(29)

(us, system (25) has the unique global positive solution
(X(t), ξ(t)). □

4. Extinction and Persistence

Theorem 2. When A.1–A.4 hold, if η∗ < αC0, then

lim
t⟶+∞

X(t) � 0, a.s. (30)

Namely, the population X(t) of system (25) is extinct.

Proof. Applying Itô’s formula to system (26), we have

d lnY(t) � r(ξ(t)) −
σ2(ξ(t))

2
− 

Y
[c((ξ(t)), v) − ln(1 + c((ξ(t)), v))]λ(dv)

− α(ξ(t))C0(t) − a1(ξ(t)) 
0<tn < t

1 + δn( Y(t)

+ a2(ξ(t)) 
0<tn < t− τ

1 + δn( Y(t − τ)

+ a3(ξ(t)) 
0

− ∞


0<tn < t+θ
1 + δn( Y(t + θ)dξ(θ)⎤⎥⎥⎥⎦dt

+ σ(ξ(t))dB(t) + 
Y
ln(1 + c((ξ(t)), v)) N(dt, dv).

(31)

Integrating both sides of (31) from 0 to t yields

lnY(t) − lnY(0) � 
t

0
b(ξ(s)) − α(ξ(s))C0(s) − a1(ξ(s)) 

0<tn < s

1 + δn( Y(s)⎡⎢⎢⎣

+ a2(ξ(s)) 
0<tn < s− τ

1 + δn( Y(s − τ)

+ a3(ξ(s)) 
0

− ∞


0<tn < s+θ
1 + δn( Y(s + θ)dξ(θ)⎤⎥⎥⎥⎦ds

+ σ(ξ(s))dB(s) + 
Y
ln(1 + c((ξ(s)), v)) N(ds, dv)
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� 
t

0
⎡⎣b(ξ(s)) − α(ξ(s))C0(s) − a1(ξ(s))X(s) + a2(ξ(s))X(s − τ)

+a3(ξ(s)) 
0

− ∞
X(s + θ)dξ(θ)ds + 

t

0
σ(ξ(s))dB(s)

+ 
t

0

Y
ln(1 + c((ξ(s)), v)) N(ds, dv),

(32)

owing to


t

0
a3(ξ(s)) 

0

− ∞
X(s + θ)dξ(θ)ds � 

t

0
a3(ξ(s)) 

− s

− ∞
X(s + θ)dξ(θ) + 

0

− s
X(s + θ)dξ(θ) ds

� 
t

0
a3(ξ(s))ds 

− s

− ∞
e

r(s+θ)
X(s + θ)e

− r(s+θ)dξ(θ)

+ 
0

− t
dξ(θ) 

t

− θ
a3(ξ(s))X(s + θ)ds

≤ �a3‖φ‖Cg


t

0
e

− rsds 
0

− ∞
e

− 2rθdξ(θ) + �a3 
0

− ∞
dξ(θ) 

t

0
X(s)ds

≤
1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

  + �a3 
t

0
X(s)ds.

(33)

(en, we have

lnY(t) − lnY(0) � 
t

0
⎡⎣b(ξ(s)) − α(ξ(s))C0(s) − a1(ξ(s))X(s) + a2(ξ(s))X(s − τ)

+a3(ξ(s)) 
0

− ∞
X(s + θ)dξ(θ)ds + 

t

0
σ(ξ(s))dB(s)

+ 
t

0

Y
ln(1 + c((ξ(s)), v)) N(ds, dv)

≤ 
t

0
b(ξ(s)) − α(ξ(s))C0(s) − a1 − �a2 − �a3( X(s) ds

+
1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

  + 
0

− τ
a2(ξ(s + τ))X(s)ds

+ 
t

0
σ(ξ(s))dB(s) + 

t

0

Y
ln(1 + c((ξ(s)), v)) N(ds, dv)

≤ 
t

0
b(ξ(s)) − α(ξ(t))C0(s) − aX(s) ds +

1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

 

+ 
0

− τ
a2(ξ(s + τ))X(s)ds + M1(t) + M2(t),

(34)
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where

M1(t) � 
t

0
σ(ξ(s))dB(s),

M2(t) � 
t

0

Y
ln(1 + c((ξ(s)), v)) N(ds, dv).

(35)

Since M1(t) and M2(t) are local martingales, the qua-
dratic variations are

〈M1(t), M1(t)〉 � 
t

0
σ2(ξ(s))ds≤ �σ1( 

2
t,

〈M2(t), M2(t)〉 � 
t

0

Y
ln (1 + c((ξ(s)), v))

2λ(dv)ds≤K1t.

(36)

Making use of the strong law of large numbers for local
martingales (see [41]) yields

lim
t⟶+∞

M1(t)

t
� 0,

lim
t⟶+∞

M2(t)

t
� 0,

a.s.

(37)

From (34), we can get that


0<tn < t

ln 1 + δn(  + lnY(t)≤ 
0<tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − 

t

0
α(ξ(t))C0(s)ds

− 
t

0
aX(s)ds +

1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

 

+ 
0

− τ
a2(ξ(s + τ))X(s)ds + lnY(0) + M1(t) + M2(t).

(38)

(us,

lnX(t)≤ 
0<tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − 

t

0
α(ξ(t))C0(s)ds

− 
t

0
aX(s)ds +

1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

 

+ 
0

− τ
a2(ξ(s + τ))X(s)ds + lnY(0) + M1(t) + M2(t)

≤ 
0<tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − α

t

0
C0(s)ds

− a 
t

0
X(s)ds +

1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

 

+ 
0

− τ
a2(ξ(s + τ))X(s)ds + lnY(0) + M1(t) + M2(t).

(39)

Taking superior limit on both sides of (39) and applying
the ergodicity of ξ(·) and (37), we obtain

limsup
t⟶+∞

lnX(t)

t
≤ limsup

t⟶+∞

1
t


0<tn < t

ln 1 + δn( ⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 
k∈M

πkb(k) − αC0 ≔ η∗ − αC0 < 0, a.s.

(40)
□

Theorem 3. When A.1–A.4 hold, if η∗ ≥ αC0, then

limsup
t⟶+∞

1
t


t

0
X(s)ds≤

η∗ − αC0

a
� X
∗
. (41)

Particularly, if η∗ � αC0, then limt⟶+∞(1/t)


t

0 X(s)ds � 0, that is, the population X(t) of system (25) is
nonpersistent in the mean.

Proof. For ∀ε> 0, there exists a constant T> 0, for all
0<T< n − 1≤ t≤ n, such that
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1
t

lnY(0) +
1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

  + 
0

− τ
a2(ξ(s + τ))X(s)ds + M1(t) + M2(t) ≤

ε
2
,

1
t


0< tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − α

t

0
C0(s)ds]≤ η∗ − αC0 +

ε
2
.⎡⎢⎢⎣

(42)

Substituting above inequalities into (39), we have

lnX(t) ≤ 
0<tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − α

t

0
C0(s)ds

− a 
t

0
X(s)ds +

1
r
�a3‖φ‖Cg

ρr 1 − e
− rt

 

+ 
0

− τ
a2(ξ(s + τ))X(s)ds + lnY(0) + M1(t) + M2(t)

≤ η∗ − αC0 + ε( t − a 
t

0
X(s)ds, a.s.

(43)

Denote g(t) � 
t

0 X(s)ds; then, we have (dg(t)/dt) �

X(t). Taking exponent on both sides of (43) yields

e
ag(t)dg(t)

dt
≤ e

η∗ − αC0+ε( )t
. (44)

Integrating (44) from T to t, we can show that

e
ag(t) ≤

a

η∗ − αC0 + ε
e

η∗− αC0+ε( )t
+ e

ag T0( )

−
a

η∗ − αC0 + ε
e

η∗ − αC0+ε( )T
.

(45)

Taking logarithm of (45) yields


t

0
X(s)ds≤

1
a
ln

a

η∗ − αC0 + ε
e

η∗ − αC0+ε( )t


+ e
ag(T)

−
a

η∗ − αC0 + ε
e

η∗ − αC0+ε( )T
.

(46)

Taking superior limit on (46) elicits that

limsup
t⟶+∞

1
t


t

0
X(s)ds≤ limsup

t⟶+∞

1
at

ln
a

η∗ − αC0 + ε
e

η∗− αC0+ε( )t


+ e
ag(T)

−
a

η∗ − αC0 + ε
e

η∗ − αC0+ε( )T
.

(47)

Utilizing L’Hospital’s rule results in

limsup
t⟶+∞

1
t


t

0
X(s)ds≤ limsup

t⟶+∞

η∗ − αC0 + ε
a

�
η∗ − αC0

a
� X
∗
.

(48)

□

Theorem 4. When A.1–A.4 hold, if η∗ > αC0, then the
population X(t) of system (25) is weakly persistent a.s.

Proof. Denote L � ω | limsupt⟶+∞X(t,ω) � 0 ; suppose
that P(L)> 0. (en, it follows from (39) that

lnX(t) − lnX(0)

t
≤
1
t


0<tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − α

t

0
C0(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦

−
a

t


t

0
X(s)ds +

1
rt

�a3‖φ‖Cg
ρr 1 − e

− rt
 

+
1
t


0

− τ
a2(ξ(s + τ))X(s)ds +

M1(t)

t
+

M2(t)

t
.

(49)

For ∀ω ∈ L, we have limt⟶+∞X(t,ω) � 0. As a result,

limsup
t⟶+∞

lnX(t,ω) − lnX(0)

t
≤ 0,

limsup
t⟶+∞

a

t


t

0
X(s)ds � 0.

(50)

From (49), one has

0≥ limsup
t⟶+∞

lnX(t, w) � η∗ − αC0 > 0, (51)

which is a contradiction. □

Remark 1. (rough (eorems 2–4, we find an interesting
biological phenomenon: when η∗ > αC0, the population
X(t) is weakly persistent; when η∗ < αC0, the population
X(t) goes to extinction, which means that the persistence
and extinction of X(t) depend on η∗ and the absorption
intensity of toxins αC0.

Theorem 5. When A.1–A.3 hold, if η∗ > �αC0, then
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liminf
t⟶+∞

1
t


t

0
X(s)ds≥

η∗ − �αC0
�a1

� X
∗

, a.s. (52)
(at is, the population X(t) of system (25) is persistent

in the mean a.s.

Proof. Applying Itô’s formula to (26) yields

d lnY(t) � r(ξ(t)) −
σ2(ξ(t))

2
− 

Y
[c((ξ(t)), v) − ln(1 + c((ξ(t)), v))]λ(dv)

− α(ξ(t))C0(t) − a1(ξ(t)) 
0<tn < t

1 + δn( Y(t)

+ a2(ξ(t)) 
0<tn < t− τ

1 + δn( Y(t − τ)

+ a3(ξ(t)) 
0

− ∞


0<tn < t+θ
1 + δn( Y(t + θ)dξ(θ)⎤⎥⎥⎥⎦dt

+ σ(ξ(t))dB(t) + 
Y
ln(1 + c((ξ(t)), v)) N(dt, dv)

≥ b(ξ(t)) − �αC0(t) − �a1X(t) dt + σ(ξ(t))dB(t)

+ 
Y
ln(1 + c((ξ(t)), v)) N(dt, dv).

(53)

Calculating inequality (53), one has

lnX(t)≥ 
0<tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − �α

t

0
C0(s)ds

− �a1 
t

0
X(s)ds + lnY(0) + M1(t) + M2(t).

(54)

According to the properties of the limit, there exists
T1 > 0 such that for ∀ε1 > 0,


0<tn < t

ln 1 + δn(  + 
t

0
b(ξ(s))ds − �α

t

0
C0(s)ds≥ η∗ − �αC0 −

ε1
4

 t,

lny(0)≥ −
ε1
4

t,

M1(t)≥ −
ε1
4

t,

M2(t)≥ −
ε1
4

t.

(55)

(en, inequality (54) becomes

lnX(t)≥ η∗ − �αC0 − ε1( t − �a1 
t

0
X(s)ds, (56)

for t>T1. By using a method similar to (eorem 3, we can
obtain that

liminf
t⟶+∞

1
t


t

0
X(s)ds≥ liminf

t⟶+∞

η∗ − �αC0 − ε1
�a1

�
η∗ − �αC0

�a1
� X
∗

.

(57)

□

Theorem 6. When A.1–A.3, A.5, and A.6 hold, if


N
k�1 πkb(k)> 0, then the population X(t) of system (25) is

stochastically permanent.

Proof. First, we prove that for ∀ε> 0, there exists a constant
b1 > 0 such that

liminf
t⟶+∞

P X(t) ≥ b1 ≥ 1 − ε. (58)

Define

V1(Y) �
1

Y2,

V2(Y) � ϑk 1 + V1(Y)( 
ϱ
,

V3(Y) � e
κt

V2(Y),

(59)

where ϱ and κ are sufficiently small positive constants and
satisfy

ϑk ϱb(k) − 2ϱ2σ2(k)  − 
N

l�1
cklϑl > 0, 1≤ k≤N,

ϑk ϱb(k) − 2ϱ2σ2(k)  − 

N

l�1
cklϑl − κϑk > 0, 1≤ k≤N,

(60)

where ϑ � (ϑ1, ϑ2, . . . , ϑN)T≫ 0 such that A(ϱ)ϑ≫ 0.
From (26), we can calculate that

10 Complexity



dV1(Y) � 2V1(Y) − r(ξ(t)) +
3
2
σ2(ξ(t)) + α(ξ(t))C0(t) + a1(ξ(t)) 

0<tn < t

1 + δn( Y(t)⎡⎢⎢⎣

− a2(ξ(t)) 
0<tn < t− τ

1 + δn( Y(t − τ) − a3(ξ(t)) 
0

− ∞


0<tn < t+θ
1 + δn( Y(t + θ)dς(θ)

+
1
2


Y

1
(1 + c((ξ(t)), v))2

− 1 + 2c((ξ(t)), v) λ(dv)dt

− 2V1(Y)σ(ξ(t))dB(t) + V1(Y)
Y

1
(1 + c((ξ(t)), v))2

− 1  N(dt, dv)

≤ 2V1(Y) − r(ξ(t)) +
3
2
σ2(ξ(t)) + α(ξ(t))C0(t) + a1(ξ(t)) 

0<tn < t

1 + δn( Y(t)⎡⎢⎢⎣

+
1
2


Y

1
(1 + c((ξ(t)), v))2

− 1 + 2c((ξ(t)), v) λ(dv)dt

− 2V1(Y)σ(ξ(t))dB(t) + V1(Y)
Y

1
(1 + c((ξ(t)), v))2

− 1  N(dt, dv).

(61)

Applying the generalized Itô’s formula yields

dV2(Y)≤ 1 + V1(Y)( 
ϱ− 2 ϱϑk 1 + V1(Y)(  − 2V1(Y) r(k) −

3
2
σ2(k) − α(k)C0(t)

−
1
2


Y

1
(1 + c((k), v))2

− 1 + 2c((k), v) λ(dv)

+ 2a1(k) 
0<tn < t

1 + δn( V
1/2
1 (Y)⎞⎠⎤⎥⎥⎦dt + 2ϱ(ϱ − 1)ϑkσ

2
(k) 1 + V1(Y)( 

ϱ− 2
V

2
1(Y)

+ ϑk
Y

1 + V1(Y) + V1(Y)
1

(1 + c((k), v))2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ



− ϱ 1 + V1(Y)( 
ϱ− 1

V1(Y)
1

(1 + c((k), v))2
− 1 λ(dv)dt

+ 
N

l�1
cklϑl 1 + V1(Y)( 

ϱdt − 2ϱϑkσ(k) 1 + V1(Y)( 
ϱ− 1

V1(Y)dB(t)

+ 
Y

1 + V1(Y) + V1(Y)
1

(1 + c((k), v))2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv)

≤ 1 + V1(Y)( 
ϱ− 2

− ϑk 2r(k)ϱ − σ2(k)ϱ − 2ϱ
Y

(c((k), v))λ(dv) − 2α(k)C
∗
0

− 2ϱ2σ2(k) − 

N

l�1
cklϑl

⎤⎦V
2
1(Y) + 2a1(k)MV

3/2
1 (Y)

− ϑk 2r(k)ϱ − 3σ2(k)ϱ − 2ϱ
Y

(c((k), v))λ(dv) − 2α(k)C
∗
0  − 

N

l�1
cklϑl

⎡⎣ ⎤⎦V1(Y)

Complexity 11



+ 2a1(k)MV
1/2
1 (Y) + 

N

l�1
cklϑl

⎫⎬

⎭dt − 2ϱϑkσ(k) 1 + V1(Y)( 
ϱ− 1

V1(Y)dB(t)

+ 
Y
ϑk 1 + V1(Y) + V1(Y)

1
(1 + c((k), v))2

− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv)

� 1 + V1(Y)( 
ϱ− 2

− ϑk ϱb(k) − 2ϱ2σ2(k)  − 
N

l�1
cklϑl

⎛⎝ ⎞⎠V
2
1(Y)

⎧⎨

⎩

+ 2a1(k)MV
3/2
1 (Y) − ϑk ϱb(k) − 2ϱσ2(k)  − 

N

l�1
cklϑl

⎛⎝ ⎞⎠V1(Y)

+ 2a1(k)MV
1/2
1 (Y) + 

N

l�1
cklϑl

⎫⎬

⎭dt − 2ϱϑkσ(k) 1 + V1(Y)( 
ϱ− 1

V1(Y)dB(t)

+ 
Y
ϑk 1 + V1(Y) + V1(Y)

1
(1 + c((k), v))2

− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv),

(62)

and we use the following equation:


Y

1 + V1(Y) + V1(Y)
1

(1 + c((k), v))2
− 1  

ϱ



− 1 + V1(Y)( 
ϱ
λ(dv)< 0.

(63)

(erefore, we obtain that

dV3(Y) � κe
κt

V2(Y)dt + e
κtdV2(Y)≤ e

κt 1 + V1(Y)( 
ϱ− 2

− ϑk ϱb(k) − 2ϱ2σ2(k)  − 
N

l�1
cklϑl − κϑk

⎛⎝ ⎞⎠V
2
1(Y)

⎧⎨

⎩

+ 2a1(k)MV
3/2
1 (Y) − ϑk ϱb(k) − 2ϱσ2(k)  − 

N

l�1
cklϑl − 2κϑk

⎛⎝ ⎞⎠V1(Y)

+2a1(k)MV
1/2
1 (Y) + 

N

l�1
cklϑl + κϑk

⎫⎬

⎭dt − 2ϱϑke
κtσ(k) 1 + V1(Y)( 

ϱ− 1
V1(Y)dB(t)

+ ϑke
κt


Y

1 + V1(Y) + V1(Y)
1

(1 + c(k), v)2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv)

� e
κt

H(Y)dt − 2ϱϑke
κtσ(k) 1 + V1(Y)( 

ϱ− 1
V1(Y)dB(t)

+ ϑke
κt


Y

1 + V1(Y) + V1(Y)
1

(1 + c(k), v)2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv),

(64)

where

H(Y) � 1 + V1(Y)( 
ϱ− 2

− ϑk ϱb(k) − 2ϱ2σ2(k)  − 
N

l�1
cklϑl − κϑk

⎛⎝ ⎞⎠V
2
1(Y) + 2a1(k)MV

3/2
1 (Y)

⎧⎨

⎩

− ϑk ϱb(k) − 2ϱσ2(k)  − 
N

l�1
cklϑl − 2κϑk

⎛⎝ ⎞⎠V1(Y) + 2a1(k)MV
1/2
1 (Y) + 

N

l�1
cklϑl + κϑk

⎫⎬

⎭.

(65)
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Since H � supY∈R+ H(Y)< +∞,

dV3(Y)≤ e
κt

Hdt − 2ϱϑke
κtσ(k) 1 + V1(Y)( 

ϱ− 1
V1(Y)dB(t)

+ ϑke
κt


Y

1 + V1(Y) + V1(Y)
1

(1 + c(k), v)2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv).
(66)

Calculating (66), it is not difficult to show that

E ϑk 1 + V1(Y)( 
ϱ

 ≤ ϑkV2 Y0( E e
− κt

  +
H

κ
E 1 − e

− κt
 .

(67)

(us,

limsup
t⟶+∞

E Y(t)
− 2ϱ

 ≤ limsup
t⟶+∞

E 1 + V1(Y(t))( 
ϱ

 

≤ limsup
t⟶+∞

V2 Y0( 

eκt
+

H 1 − e− κt( 

κmink∈M ϑk 
  � H.

(68)

Consequently,

limsup
t⟶+∞

E X(t)
− 2ϱ

 

� limsup
t⟶+∞

E 
0< tn < t

1 + δn( )
− 2ϱ

Y(t)
− 2ϱ

]≤M
− 2ϱ

H.⎛⎝⎡⎢⎢⎣

(69)

(en, for ∀ε> 0, let b1 � M(ε/H)1/2ϱ; using Chebyshev’s
inequality, we have

limsup
t⟶+∞

P |X(t)|< b1  � limsup
t⟶+∞

P |X(t)|
− 2ϱ > b

− 2ϱ
1 

≤ lim
t⟶+∞

E |X(t)|− 2ϱ 

b
− 2ϱ
1
≤ ε.

(70)

In other words,

liminf
t⟶+∞

P |X(t)|≥ b1 ≥ 1 − ε. (71)

Next, we prove that for ∀ε> 0, there exists b2 > 0 such
that

liminf
t⟶+∞

P X(t) ≤ b2 ≥ 1 − ε. (72)

Applying generalized Itô’s formula to (26):

d(Y(t)) � Y(t) r(ξ(t)) − α(ξ(t))C0(t) − a1(ξ(t)) 
0<tn < t

1 + δn( Y(t)⎡⎢⎢⎣

+ a2(ξ(t)) 
0<tn < t− τ

1 + δn( Y(t − τ)

+ a3(ξ(t)) 
0

− ∞


0<tn < t+θ
1 + δn( Y(t + θ)dς(θ)⎤⎥⎥⎥⎦dt

+ σ(ξ(t))Y(t)dB(t) + Y t
−

( )
Y

c((ξ(t)), v) N(dt, dv)

≤ r(ξ(t)) − αC0(t)( Y(t) − ma1Y
2
(t) + M�a2Y(t)Y(t − τ)

+M�a3Y(t) 
0

− ∞
Y(t + θ)dς(θ)dt + σ(ξ(t))Y(t)dB(t)

+ e
t
Y t

−
( )

Y
c((ξ(t)), v) N(dt, dv)

≤ r(ξ(t)) − αC0(t)( Y(t) − ma1Y
2
(t) +

M�a2

2
Y
2
(t)

+
M�a2

2
Y
2
(t − τ) +

M�a3

2
Y
2
(t) +

M�a3

2

0

− ∞
Y
2
(t + θ)dς(θ)dt

+ σ(ξ(t))Y(t)dB(t) + Y t
−

( )
Y

c((ξ(t)), v) N(dt, dv).

(73)
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(us,

d e
t
Y(t) ≤ e

t 1 + r(ξ(t)) − αC0(t)( Y(t) − ma1Y
2
(t) +

M�a2

2
Y
2
(t)

+
M�a2

2
Y
2
(t − τ) +

M�a3

2
Y
2
(t) +

M�a3

2

0

− ∞
Y
2
(t + θ)dς(θ)dt

+ e
tσ(ξ(t))Y(t)dB(t) + e

t
Y t

−
( )

Y
c((ξ(t)), v) N(dt, dv)

� e
t

G(Y(t)) −
ma1

2
Y
2
(t) +

M�a2

2
Y
2
(t − τ) +

M�a3

2

0

− ∞
Y
2
(t + θ)dς(θ) dt

+ e
tσ(ξ(t))Y(t)dB(t) + e

t
Y t

−
( )

Y
c((ξ(t)), v) N(dt, dv),

(74)

where

G(Y(t)) � 1 + r(ξ(t)) − αC0(t)( Y(t)

−
ma1

2
Y
2
(t) +

M�a2

2
Y
2
(t) +

M�a3

2
Y
2
(t).

(75)

According to ma1 >M(�a2 + �a3), we get

G � sup
Y∈R+

G(Y)< +∞. (76)

(en,

e
t
Y(t) − Y(0)≤G e

t
− 1  −

ma1

2


t

0
e

s
Y
2
(s)ds +

M�a2

2


t

0
e

s
Y
2
(s − τ)ds

+
M�a3

2


t

0
e

s

0

− ∞
Y
2
(s + θ)dς(θ)ds + 

t

0
e

sσ(ξ(s))Y(s)dB(s)

+ 
t

0
e

s

Y

c((ξ(s)), v)Y t
−

( ) N(ds, dv).

(77)

On the one hand,

M�a2

2


t

0
e

s
Y
2
(s − τ)ds �

M�a2

2


t− τ

− τ
e

s+τ
Y
2
(s)ds

≤
M�a2

2

0

− τ
e

s+τ
Y
2
(s)ds +

M�a2e
τ

2


t

0
e

s
Y
2
(s)ds,

·
M�a3

2


t

0
e

s

0

− ∞
Y
2
(s + θ)dς(θ)ds

�
M�a3

2


t

0
e

s


− s

− ∞
Y
2
(s + θ)dς(θ) + 

0

− s
Y
2
(s + θ)dς(θ) ds

�
M�a3

2


t

0
e

sds 
− s

− ∞
e
2r(s+θ)

Y
2
(s + θ)e

− 2r(s+θ)dς(θ)

+
M�a3

2

0

− t
dς(θ) 

t

− θ
e

s
Y
2
(s + θ)ds
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�
M�a3

2


t

0
e

sds 
− s

− ∞
e
2r(s+θ)

Y
2
(s + θ)e

− 2r(s+θ)dς(θ)

+
M�a3

2

0

− t
dς(θ) 

t+θ

0
e

(s− θ)
Y
2
(s)ds

≤
M�a3

2
‖ξ‖

2
Cg


t

0
e

(1− 2r)sds 
0

− ∞
e

− 2rθdς(θ)

+
M�a3

2

0

− ∞
e

− θdς(θ) 
t

0
e

s
Y
2
(s)ds

≤
M�a3

2
‖ξ‖

2
Cg
ρrt +

M�a3ρr

2


t

0
e

s
Y
2
(s)ds.

(78)

(erefore,

e
t
Y(t)≤Y(0) + G e

t
− 1  −

ma1 − M �a2e
τ + �a3ρr( 

2


t

0
e

s
Y
2
(s)ds

+
M�a2

2

0

− τ
e

s+τ
Y
2
(s)ds +

M�a3

2
‖ξ‖

2
Cg

hrt

+ 
t

0
e

sσ(ξ(s))Y(s)dB(s) + 
t

0
e

s

Y

c((ξ(s)), v)Y t
−

( ) N(ds, dv).

(79)

Taking expectations on both sides of (79) yields

limsup
t⟶+∞

E[Y(t)]≤G. (80)

(is leads to

limsup
t⟶+∞

E[X(t)] ≤ limsup
t⟶+∞

E 
0< tn < t

1 + δn( Y(t)]≤MG.⎡⎢⎢⎣

(81)

(en, for ∀ε> 0, let b2 � (MG/ε), and we have

limsup
t⟶+∞

P |X(t)|> b2 ≤ lim
t⟶+∞

E[|X(t)|]

b2
� ε. (82)

(at is,

limsup
t⟶+∞

P |X(t)|≤ b2 ≥ 1 − ε. (83)

From (71) and (83), X(t) of system (25) is stochastically
permanent. □

5. Asymptotic Properties

Theorem 7. When A.1–A.3, A.5, and A.6 hold and any
solution X(t) of system (25) have the property that

limsup
t⟶+∞

ln|X(t)|

ln t
≤ 1, a.s., (84)

and if 
N
k�1 πkb(k)> 0,

liminf
t⟶+∞

ln|X(t)|

ln t
≥ −

1
2ϱ

, a.s. (85)

Proof. From (73), we have

dY(t) � Y(t) r(ξ(t)) − α(ξ(t))C0(t) − a1(ξ(t)) 
0<tn < t

1 + δn( Y(t)⎡⎢⎢⎣

+ a2(ξ(t)) 
0<tn < t− τ

1 + δn( Y(t − τ)

+ a3(ξ(t)) 
0

− ∞


0<tn < t+θ
1 + δn( Y(t + θ)dς(θ)⎤⎥⎥⎥⎦dt

+ σ(ξ(t))Y(t)dB(t) + Y t
−

( )
Y

c((ξ(t)), v) N(dt, dv).

(86)
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(en,

E limsup
t≤]≤t+1

Y(]) ≤E[Y(t)] + E sup
t≤]≤t+1


t+1

t
Y(s)ds




 

+ E limsup
t≤]≤t+1


]

t
σ(ξ(s))Y(s)dB(s) 

+ E limsup
t≤]≤t+1


]

t

Y

c((ξ(s)), v)y(s) N(ds, dv) .

(87)

By the Burkholder–Davis–Gundy inequality (see [40]),
one has

E sup
t≤]≤t+1


]

t
σ(ξ(s))Y(s)dB(s) 

≤
��
32

√
E 

t+1

t
σ2(ξ(s))Y

2
(s)ds 

1/2
⎡⎣ ⎤⎦

≤ 4
�
2

√
�σE sup

t≤]≤t+1
Y(s) ,

(88)

E limsup
t≤]≤t+1


]

t

Y

c((ξ(s)), v)Y(s) N(ds, dv) 

≤
��
32

√
E 

]

t

Y

c
2
((ξ(s)), v)Y

2
(s)N(ds, dv) 

1/2

≤ 4
�
2

√

Y

�c
2λ(dv) 

1/2
E sup

t≤]≤t+1
Y(]) .

(89)

Substituting (80), (88), and (89) into (87) yields

E limsup
t≤]≤t+1

Y(]) ≤E[Y(t)] + BE sup
t≤]≤t+1

[Y(])] , (90)

where B � G + 4
�
2

√
�σ + 4

�
2

√
(

Y
�cλ(dv))1/2.

In view of (90), we have

E limsup
t≤θ≤t+1

Y(]) ≤B. (91)

By Chebyshev’s inequality, for ∀ε> 0, we can obtain

P ω | sup
ζ≤t≤ζ+1

Y(t)> ζ1+ε⎧⎨

⎩

⎫⎬

⎭ ≤
B

ζ1+ε, ζ � 1, 2, . . . . (92)

By using the Borel–Cantelli lemma [27], we get

sup
ζ≤t≤ζ+1

[Y(t)]≤ ζ1+ε
. (93)

(erefore, for ζ ≤ t≤ ζ + 1 and ζ ≥ ζ0(ω), if t⟶∞,
then ζ⟶∞.

limsup
t⟶+∞

ln|Y(t)|

ln t
≤
ln supζ≤t≤ζ+1[Y(t)] 

ln t
≤
ln ζ1+ε

ln t
≤ 1 + ε.

(94)

Let ε⟶ 0; then, limsupt⟶+∞(lnY(t)/ln t)≤ 1, that is,

limsup
t⟶+∞

ln|X(t)|

ln t
� limsup

t⟶+∞

0<tn < tln 1 + δn(  + ln|Y(t)|

ln t
≤ 1.

(95)

Now, we prove the lower growth rate of the solution.
From (68), we obtain

limsup
t⟶+∞

E 1 + V1(Y)( 
ϱ

 ≤H, (96)

where H is a positive constant.
Similarly,

d 1 + V1(Y)( 
ϱ

 ≤ ϱ 1 + V1(Y)( 
ϱ− 2

− 2 r(ξ(t)) −
1
2
σ2(ξ(t)) − ϱσ2(ξ(t)) − α(ξ(t))C0(t)

− 
Y

(c((ξ(t)), v))λ(dv)V
2
1(Y) + 2a1(ξ(t)) 

0<tn < t

1 + δn( V
3/2
1 (Y)

− 2 r(ξ(t)) −
3
2
σ2(ξ(t)) − α(ξ(t))C0(t) − 

Y
(c((ξ(t)), v))λ(dv) V1(Y)

+2a1(ξ(t)) 
0<tn < t

1 + δn( V
1/2
1 (Y)⎤⎥⎥⎦dt − 2ϱσ(ξ(t)) 1 + V1(Y)( 

ϱ− 1
V1(Y)dB(t)

+ 
Y

1 + V1(Y) + V1(Y)
1

(1 + c((ξ(t)), v))2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv)

≤ ϱ 1 + V1(Y)( 
ϱ− 2

D1V
2
1(Y) + D2V

3/2
1 (Y) + D3V1(Y) + D2V

1/2
1 (Y) dt

− 2ϱσ(ξ(t)) 1 + V1(Y)( 
ϱ− 1

V1(Y)dB(t)

+ 
Y

1 + V1(Y) + V1(Y)
1

(1 + c((ξ(t)), v))2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv),

(97)
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where

D1 � − 2 r(ξ(t)) −
1
2
σ2(ξ(t)) − ϱσ2(ξ(t)) − α(ξ(t))C0(t) − 

Y
(c((ξ(t)), v))λ(dv) ,

D2 � 2Ma1(ξ(t)),

D3 � − 2 r(ξ(t)) −
3
2
σ2(ξ(t)) − α(ξ(t))C0(t) − 

Y
(c((ξ(t)), v))λ(dv) .

(98)

Let D> 0 be sufficiently large for

ϱ D1V
2
1(Y) + D2V

3/2
1 (Y) + D3V1(Y) + D2V

1/2
1 (Y) 

≤D 1 + V1(Y)( 
2
.

(99)

(en,

d 1 + V1(Y)( 
ϱ

 ≤D 1 + V1(Y)( 
ϱ

+ 2ϱσ(ξ(t)) 1 + V1(Y)( 
ϱ− 1

V1(Y)dB(t)

+ 
Y

1 + V1(Y) + V1(Y)
1

(1 + c((ξ(t)), v))2
− 1  

ϱ

− 1 + V1(Y)( 
ϱ

  N(dt, dv).

(100)

Let ζ � 1, 2, . . ., and making use of (100) gives

E limsup
(k− 1)ζ≤t≤kζ

1 + V1(Y(t))( 
ϱ⎡⎣ ⎤⎦

≤E 1 + V1(Y((k − 1)ζ))( 
ϱ

  + DE limsup
(k− 1)ζ≤t≤kζ


t

(k− 1)ζ
1 + V1(Y(t))( 

ϱds⎡⎣ ⎤⎦

+ E limsup
(k− 1)ζ≤t≤kζ


t

(k− 1)ζ
2ϱσ(ξ(t)) 1 + V1(Y)( 

ϱ− 1
V1(Y)dB(t)




⎡⎣ ⎤⎦

+ E limsup
(k− 1)ζ≤t≤kζ


t

(k− 1)ζ
ϱ 1 + V1(Y)( 

ϱ− 1
V1(Y)

Y

1
(1 + c((ξ(t)), v))2

− 1  N(dt, dv)




⎡⎣ ⎤⎦.

(101)

We compute that

DE limsup
(k− 1)ζ≤t≤kζ


t

(k− 1)ζ
1 + V1(Y(s))( 

ϱds




⎡⎣ ⎤⎦≤DE 

t

(k− 1)ζ
1 + V1(Y(s))( 

ϱ
ds 

≤DζE limsup
(k− 1)ζ≤t≤kζ

1 + V1(Y(t))( 
ϱ⎡⎣ ⎤⎦,

(102)
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E limsup
(k− 1)ζ≤t≤kζ


t

(k− 1)ζ
2ϱσ(ξ(t)) 1 + V1(Y)( 

ϱ− 1
V1(Y)dB(s)




⎡⎣ ⎤⎦

≤
��
32

√
E 

kζ

(k− 1)ζ
4ϱ2σ2(ξ(t)) 1 + V1(Y)( 

2ϱ− 2
V

2
1(Y)ds 

1/2
⎡⎣ ⎤⎦

≤ 8
�
2

√
ϱ�σE 

kζ

(k− 1)ζ
1 + V1(Y)( 

2ϱds 

1/2
⎡⎣ ⎤⎦

≤ 8
��
2ζ


ϱ�σE limsup

(k− 1)ζ≤t≤kζ
1 + V1(Y(t))( 

ϱ⎡⎣ ⎤⎦,

(103)

E limsup
(k− 1)ζ≤t≤kζ


t

(k− 1)ζ
ϱ 1 + V1(Y)( 

ϱ− 1
V1(Y)

Y

1
(1 + c((ξ(t)), v))2

− 1  N(dt, dv)




⎡⎣ ⎤⎦

≤
��
32

√
E 

t

(k− 1)ζ

Y
ϱ2 1 + V1(Y)( 

2ϱ− 2
V

2
1(Y)

Y

1
(1 + c((ξ(t)), v))2

− 1 

2

N(ds, dv)⎡⎣ ⎤⎦

1/2

≤
��
32

√
ϱ 

Y

1
(1 + c)2

− 1 

2

λ(dv)⎛⎝ ⎞⎠

1/2

E 
t

(k− 1)ζ

Y

1 + V1(Y)( 
2ϱ

N(ds, dv) 

1/2

≤ 4
��
2ζ


ϱ 

Y

1
(1 + c)2

− 1 

2

λ(dv)⎛⎝ ⎞⎠

1/2

E sup
(k− 1)ζ≤t≤kζ

1 + V1(Y)( 
ϱ⎡⎣ ⎤⎦.

(104)

Substituting (102)–(104) into (101) results in

E limsup
(k− 1)ζ≤t≤kζ

1 + V1(Y(t))( 
ϱ⎡⎣ ⎤⎦

≤E 1 + V1(Y((k − 1)ζ))( 
ϱ

 

+ CE limsup
(k− 1)ζ≤t≤kζ

1 + V1(Y(t))( 
ϱ⎡⎣ ⎤⎦,

(105)

where
C � Dζ + 8

��
2ζ


ϱ�σ + 4

��
2ζ


ϱ(

Y
((1/(1 + c)2) − 1)2λ(dv))1/2.

(en, from (96) and the above inequality, we get

E limsup
(k− 1)ζ≤t≤kζ

1 + V1(Y(t))( 
ϱ⎡⎣ ⎤⎦≤C. (106)

(en, for ∀ε> 0, we have

P ω | sup
(k− 1)ζ≤t≤kζ

1 + V1(Y(t))( 
ϱ >(kζ)

1+ε⎧⎨

⎩

⎫⎬

⎭

≤
C

(kζ)1+ε, k � 1, 2, . . . .

(107)

(us,
ln 1 + V1(Y(t))( 

ϱ

ln t
≤

(1 + ε)ln(kζ)

ln((k − 1)ζ)
. (108)

(at is,

limsup
t⟶+∞

ln 1 + V1(Y(t))( 
ϱ

ln t
≤ 1 + ε. (109)

Letting ε⟶ 0 gives

limsup
t⟶+∞

ln |Y(t)|− 2ϱ 

ln t
≤ 1. (110)

Consequently,

liminf
t⟶+∞

ln(|Y(t)|)

ln t
≥ −

1
2ϱ

. (111)

(at is,

liminf
t⟶+∞

ln(|X(t)|)

ln t
≥ liminf

t⟶+∞

ln(m|Y(t)|)

ln t
≥ −

1
2ϱ

. (112)
□

6. Numerical Simulations

Now, we use Matlab to analyze our results. We choose the
same initial value (X(0), C0(0), Ce(0)) � (1, 0.3, 0.6) and
the same parameter value as follows:

r(1) � 1,

α(1) � 0.2,

a1(1), a2(1), a3(1)(  � (0.25, 0.1, 0.02),

r(2) � 0.8,

α(2) � 0.3,

a1(2), a2(2), a3(2)(  � (0.3, 0.03, 0.05),

k � 0.6,

g � 0.26,

m � 0.05,

h � 0.23,

T � 4,

τ1 � 2,

λ(Y ) � 1.

(113)
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In system (4), let ξ(t) ∈ S � 1, 2{ } and the generator

Γ �
− 7 7

3 − 3
 . (114)

By solving (6), we get a stationary distribution
π � (π1, π2) � (0.3, 0.7).

Now, we discuss the effects of different parameters on the
population.

Example 1. Let c(1) � 0.5, c(2) � 1.1, σ(1) � 0.04, σ(2) �

0.1, u � 1, δn � e0.3 − 1. (en, we obtain η∗ � 0.8771>

0.4208 � αC0. According to (eorem 4, we know that X(t)

is weakly persistent (see Figure 1(a)). It can be seen from
Figures 1(b) and 1(c) that the toxins in the organism C0(t)

and the toxins in the environment Ce(t) have a periodic
solution.

6.1. Effect of the White Noise σ. Choosing the same pa-
rameters as in Example 1 but σ: by comparing Figure 1(a)
and Figures 2(a) and 2(b), we found that the disturbance of
population in the stochastic model is positively correlated
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Figure 1: (a) Markov chains, (b) the time sequence diagram, and (c) the phase portrait of C0(t) and Ce(t).
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Figure 2: Effect of the white noise: (a) σ(1) � 0.2, σ(2) � 0.2; (b) σ(1) � 0.5, σ(2) � 0.5; (c) σ(1) � 1, σ(2) � 1.
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Figure 3: Effect of the Lévy noise: (a) c(1) � 3, c(2) � 3; (b) c(1) � 10, c(2) � 10.
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Figure 4: Effect of telegraph noise.
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Figure 5: Effect of the exogenous total toxicant input: (a) u � 1; (b) u � 2; (c) u � 3.
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Figure 6: Effect of impulse: (a) δn � e− 0.3 − 1; (b) δn � e− 0.7 − 1; (c) δn � e− 2 − 1.
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with the intensity of white noise. By comparing Figures 2(a)–
2(c), the population will go extinct with increasing intensity
of white noise. When the intensity of white noise is less than
a certain level, the population still be persistent, while the
white noise with large intensity may cause population
extinction.

6.2. Effect of the LévyNoise c. Choosing the same parameters
as in Example 1 but σ(1) � 0.4, σ(2) � 0.4, and c: from
Figure 3, it is concluded that the Lévy noise has a large
impact on the persistence of population. It is shown that the
number of the population will decrease when the intensity of
the Lévy noise increases. When the intensity of the Lévy
noise became larger, the population became extinct.
(erefore, Lévy noise will not only reduce the number of
species but also lead to population extinction.

6.3. Effect of TelegraphNoise. Choosing the same parameters
as in Example 1 but δn � 0: from Figure 4, we find that all
parameter values are the same except the Markov chain.
Since telegraph noise is described by a Markov chain,
choosing a different Markov chain will produce different
results.

6.4. Effect of the Exogenous Total Toxicant Input u.
Choosing the same parameters as in Example 1 but u: from
Figure 5, we find that the population can still be persistent
when the total input of exogenous toxicant is small (see
Figures 5(a) and 5(b)), while the population will go extinct
when the total input of exogenous toxicant is strong (see
Figure 5(c)).

6.5. Effect of Impulse δn. Choosing the same parameters as in
Example 1 but δn: in Figure 6, we describe the impact of
pulse harvest on the population. By comparing Figures 6(a)–
6(c), we find that with the increase of the harvest, the
population will gradually decrease until it becomes com-
pletely extinct.

7. Conclusion

In this paper, we explore the dynamics of a stochastic delay
hybrid logistic model with two-pulse perturbations. First, by
using Itô’s formula, exponential martingale inequality,
Chebyshev’s inequality, and other mathematical skills, we
establish some sufficient conditions for extinction, non-
persistence in the mean, weak persistence, persistence in the
mean, and stochastic permanence. (en, the asymptotic
properties of the lower growth rate and the upper growth
rate of the solution are estimated.

Now, we give the key results as follows:

(I) (1) If η∗ < αC0, then the population X(t) is extinct.
(2) If η∗ � αC0, then the population X(t) is nonpersistent
in the mean.

(3) If η∗ > αC0, then the population X(t) is weakly
persistent.

(4) If η∗ > �αC0, then the population X(t) is persistent
in the mean.

(5) If 
N
k�1 πkb(k)> 0, then the population X(t) is

stochastically permanent.
(II) (e solution X(t) obeys

X
∗

�
η∗ − �αC0

�a1
≤ liminf

t⟶+∞

1
t


t

0
X(s)ds

≤ limsup
t⟶+∞

1
t


t

0
X(s)ds≤

η∗ − αC0

a
� X
∗
, a.s.

(115)

(III) (e solution satisfies

limsup
t⟶+∞

ln|X(t)|

ln t
≤ 1,

liminf
t⟶+∞

ln|X(t)|

ln t
≥ −

1
2ϱ

, a.s.

(116)

From our results and analysis, we can obtain the fol-
lowing conclusions. (1) Both white noise and Lévy noise tend
to have negative effects on the persistence of population.
However, the Lévy jump may have a greater influence than
white noise on the persistence of population. (2) If the choice
of telegraph noise is different, the persistence of the pop-
ulation will produce different results. (3) (e total input of
exogenous toxicant has a great disadvantaged influence on
persistence of the population. With the increase of the total
input of exogenous toxicant, the number of population will
decrease, which enlightens us to reduce pollutant emissions
to protect the ecological system. (4) (e pulse release of the
population is beneficial to the growth of the population; the
pulse harvest of the population is beneficial to the growth of
the population under reasonable conditions, but once
overharvested, it will cause the population to become
extinct.

(ese give us significant enlightenment: (1) when fish-
ermen are fishing, they must maintain reasonable fishing to
avoid overfishing that can lead to population extinction; (2)
the discharge of factory sewage, exhaust gas, domestic
sewage, etc., should be strictly controlled, and we should do
our best to reduce the discharge of polluted toxins; and (3)
humans should reduce interference with populations.
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)e immune system against tumors acts through a complex dynamical process showing a dual role. On the one hand, the immune
system can activate some immune cells to kill tumor cells (TCs), such as cytotoxic T lymphocytes (CTLs) and natural killer cells
(NKs), but on the other hand, more evidence shows that some immune cells can help tumor escape, such as regulatory T cells
(Tregs). In this paper, we propose a tumor immune interaction model based on Tregs-mediated tumor immune escape
mechanism. When helper Tcells’ (HTCs) stimulation rate by the presence of identified tumor antigens is below critical value, the
coexistence (tumor and immune) equilibrium is always stable in its existence region. When HTCs stimulation rate is higher than
the critical value, the inhibition rate of effector cells (ECs) by Tregs can destabilize the coexistence equilibrium and cause Hopf
bifurcations and produce a limit cycle. )is model shows that Tregs might play a crucial role in triggering the tumor immune
escape. Furthermore, we introduce the adoptive cellular immunotherapy (ACI) and monoclonal antibody immunotherapy (MAI)
as the treatment to boost the immune system to fight against tumors. )e numerical results show that ACI can control TCs more,
while MAI can delay the inhibitory effect of Tregs on ECs. )e result also shows that the combination of both immunotherapies
can control TCs and reduce the inhibitory effect of Tregs better than a single immunotherapy can control.

1. Introduction

Tumors can be benignant (not cancerous), premalignant
(precancerous), and malignant (cancerous). Every year
millions of people suffer with cancer and die from this
disease throughout the world [1]. It is important to un-
derstand tumor’s mechanisms of establishment and de-
struction, cell-mediate immunity with cytotoxic
T lymphocytes (CTLs), and natural killer cells (NKs),
generally called effector cells (ECs) that are cytotoxic to
tumor cells (TCs), and play a basic role in immune response
against tumors [2, 3]. Moreover, efficient antitumor im-
munity requires the action of helper T cells (HTCs), which
can directly activate naive CD8+ T cells to differentiate into
CTLs [4–6]. Recently, it has been reported that regulatory
T cells (Tregs) can inhibit CTLs and promote the escape of
TCs [7]. Tregs suppress immune cells, and when the war

between Tcells and infection is over, the Tregs signal to stop
[8]. Cancer immunotherapy fights against cancer by
strengthening the body’s immune system, but the involve-
ment of Tregs inhibits the immune response and turns off
the anticancer effect. Tregs inhibition is important in the
dynamics of the tumor immune system, which is one mo-
tivation of this work.

Adoptive T cell immunotherapy (ACI) as a common
immunotherapy involves injecting adoptive T cells directly
into tumor patients [9–11]. Its advantages are good de-
struction of tumor and persistence, while its disadvantages
are serious toxic and side effects. )e monoclonal antibody
immunotherapy (MAI) is the immune checkpoint inhibitor
[12, 13], which has the advantage of removing the sup-
pression state of the immune system and restoring the
immune function of the body to TCs and the disadvantage of
having serious immune-related adverse reactions.
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Tregs have become an important target in tumor im-
munotherapy because of their contribution to tumor im-
mune escape. Cytotoxic T lymphocyte antigen 4 (CTLA-4) is
a marker that is expressed on the surface of activated T cells
and transmits inhibitory signals in the immune response
[14–16]. Blocking CTLA-4 can reduce the inhibitory activity
of Tregs, and the anti-CTLA-4 humanized monoclonal
antibody Ipilimumab and Tremelimumab are used to treat
advanced melanoma and malignant mesothelioma, re-
spectively [17]. Similar to CTLA-4, programmed death re-
ceptor 1 (PD-1) can also promote the activation and
development of Tregs [18–21]. Blocking PD-1 can prevent
the development of Tregs and prevent the conversion of
HTCs into Tregs [22]. Currently, OPDIVO (Nivolumab), an
anti-PD-1 monoclonal antibody, has been approved by the
US FDA for the treatment of melanoma, renal cell carci-
noma, and non-small cell lung cancer [23–25]. Establish-
ment of a mathematical model to study the immunotherapy
on the reduction of Tregs inhibition has both theoretical and
practical significance.

In order to describe the mechanisms of host’s own
immune response to against TCs, various types of mathe-
matical models have been proposed [26–43]. )e modelling
of the tumor immune system described by ordinary dif-
ferential equations (ODEs) has a long history, which can be
traced back to the classic research of Stepanova in 1980 [26].
In 1994, Kuznetsov et al. established the famous two-di-
mensional ODEs model, postulating that tumor growth
follows the Logistic growth pattern. )ey evaluated the
parameters of the model by fitting experimental data from
mice [27]. In 2003, Stolongo-Costa et al. assumed that TCs
follows the exponential growth pattern and constructed a
two-dimensional ODEs model. )ey analyzed the basic
properties of the model and provided conditions for stability
of the tumor-free equilibrium, explaining its epidemiological
significance [28]. In 2004, Galach simplified Kuznetsov’s
system to account for the effect of immune delay on the
tumor immune system [29]. In 2014, Dong et al. constructed
a three-dimensional ODEs model focusing on the effects of
HTCs on the tumor immune system [4].

In 1998, Kirschner and Panetta generalized Kuznet-
sov–Taylor model and illustrated the dynamics between
TCs, ECs, and IL-2. )ey firstly introduced ACI into their
model which can explain both short-term tumor oscillations
in tumor sizes as well as long-term tumor relapse [11]. In
2003, in order to study the role of cytokine therapy in the
activation of the immune system, Stolongo-Costa et al.
introduced cycle therapy term Fcos2ωt and established a
cycle immunotherapy model. )ey obtained some thresh-
olds of the frequency and intensity of immunotherapy [28].
In 2006, de Pillis et al. constructed the six-dimensional
ODEs model to investigate the effects of combined che-
motherapy and immunotherapy on tumor control. )ey
briefly analyzed the nature of the model and discussed the
optimal treatment using optimal control theory [30]. In
2008, Bunimovich-Mendrazitsky et al. established a pulsed
differential equation model with Bacillus Calmette-Guerin
tumor immunotherapy. )ey obtained the critical threshold
and pulse frequency of BCG injection dose that could

successfully treat superficial bladder cancer [31]. In 2012,
Wilson and Levy established a mathematical model con-
taining Tregs.)ey studied the absence of treatment, vaccine
treatment, anti-TGF treatment, and combination vaccine
and anti-TGF treatment, as well as sensitivity analysis of
some important parameters [8]. In 2018, Radunskaya et al.
established a mathematical model with blood, spleen, and
tumor compartments to study PD-L1 inhibitors in the role
of tumor immunotherapy. )e model was used to fit pa-
rameters with the experimental data.)e results showed that
increasing the resistance of PD-L1 doses can greatly improve
the clearance rate of tumor [32].

)is paper investigates the role of Tregs in the tumor
immune system. )erefore, we incorporate the fourth
population of Tregs into the previous system in [8]. For the
mathematical simplicity, a bilinear term also has been used
to describe the interactions between immune response and
tumor. To our knowledge, HTCs can recognize TCs and
promote the growth of ECs. And ECs can provide direct
protective immunity by attacking TCs. When there are more
HTCs and ECs, in order to maintain immune homeostasis,
the body will produce corresponding Tregs to suppress ECs,
and Tregs originating from both HTCs and ECs. )en, we
establish a four-dimensional ODEs model described as
below:

dT(t)

dt
� aT(t)(1 − bT(t)) − nE(t)T(t),

dE(t)

dt
� pE(t)H(t) − qR(t)E(t) − d1E(t),

dH(t)

dt
� s2 + k2T(t)H(t) − d2H(t),

dR(t)

dt
� r1E(t) + r2H(t) − d3R(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where T(t), E(t), H(t), and R(t) represent the populations
of TCs, ECs, HTCs, and Tregs, respectively. )e first
equation describes the rate change of TCs population. )e
tumor follows logistic growth dynamics with growth rate a,
and the maximum capacity is 1/b. n represents the loss rate
of TCs by ECs interaction.)e second equation describes the
rate change of the ECs population. d1 is the mortality rate of
ECs. p is the activation rate of ECs by HTCs, and q is the
inhibition rate of Tregs on ECs. )e third equation describes
the rate change of the HTCs population, s2 is birth rate of
HTCs produced in the bone marrow, and HTCs have a
natural lifespan of an average 1/d2 days. k2 is HTCs stim-
ulation rate by the presence of identified tumor antigens.)e
fourth equation gives the rate change of the Tregs pop-
ulation, r1 and r2 are the activation rates of Tregs by ECs and
HTCs, respectively. d3 represents per capita decay rate of
Tregs. A diagram of the various interactions between these
cell populations is shown in Figure 1.

We nondimensionalize model (1) by taking the following
scaling:
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t �
τ

nT0
, T(t) � T0x(τ), E(t) � E0y(τ), H(t)

� H0z(τ), R(t) � R0u(τ), α �
a

nT0
, β � bT0,

ρ �
p

n
, ω2 �

k2

n
, θ �

qR0

nT0
, δ1 �

d1

nT0
, δ2

�
d2

nT0
, δ3 �

d3

nT0
, σ2 �

s2

nT0H0
, c1 �

r1

nR0
, c2 �

r2

nR0
,

(2)

and we choose the scaling T0 � E0 � H0 � R0 � 106. By
replacing τ by t, we obtain the following scaled model:

dx(t)

dt
� αx(t)(1 − βx(t)) − x(t)y(t),

dy(t)

dt
� ρy(t)z(t) − θy(t)u(t) − δ1y(t),

dz(t)

dt
� σ2 + ω2x(t)z(t) − δ2z(t),

du(t)

dt
� c1y(t) + c2z(t) − δ3u(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

with initial conditions

x(0) � x0 ≥ 0,

y(0) � y0 ≥ 0,

z(0) � z0 ≥ 0,

u(0) � u0 ≥ 0.

(4)

Here, x, y, z, and u denote the dimensionless densities of
TCs, ECs, HTCs, and Tregs populations, respectively.

2. Model Analysis

2.1. Well Posedness of Model (3). )e following proposition
establishes the well posedness of model (3) with initial
conditions (4).

Proposition 1. 9e solutions (x(t), y(t), z(t), u(t)) of
model (3) with initial conditions (4) are existent, unique, and
nonnegative on the interval [0, +∞).

Proof. Since the right-hand side of model (3) is completely
continuous and locally Lipschitz on the interval [0, +∞),
there exists a constant δ > 0 such that the solutions
(x(t), y(t), z(t), u(t)) of model (3) with initial conditions
(4) are existent and unique on the interval [0, δ), where
0< δ ≤ +∞ [44].

From model (3) with initial conditions (4), we obtain

x(t) � x0e


t

0
(α(1− β(s))− y(s))ds ≥ 0,

y(t) � y0e


t

0
ρz(s)− θu(s)− δ1( )ds ≥ 0,

z(t) � z0e


t

0
ω2x(τ)− δ2( )dτ

+ σ2 
t

0
e


t

s
ω2x(τ)− δ2( )dτ

ds ≥ 0,

u(t) � u0e
−δ3t

+ 
t

0
c1y(s) + c2z(s)( e

−δ3(t− s)
ds ≥ 0.

(5)

It is obvious to see that the solutions
(x(t), y(t), z(t), u(t)) of model (3) with initial conditions
(4) are nonnegative for all t≥ 0. )e proof is complete. □

2.2. Existence of Equilibria. In this section, we will study the
existence of various equilibria for system (3). We set
(dx/dt) � 0, (dy/dt) � 0, (dz/dt) � 0, and (du/dt) � 0 in
system (3), and we have

αx(1 − βx) − xy � 0,

ρyz − θyu − δ1y � 0,

σ2 + ω2xz − δ2z � 0,

c1y + c2z − δ3u � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Putting x � 0 andy � 0 yields the tumor-free and ECs-
free equilibrium, namely,

P0 � x0, y0, z0, u0(  � 0, 0,
σ2
δ2

,
c2σ2
δ2δ3

 , (7)

which always exists.
Putting x � 0 andy≠ 0 yields the tumor-free equilib-

rium, namely,

P1 � x1, y1, z1, u1(  � 0,
δ3 ρσ2 − δ1δ2(  − c2θσ2

θc1δ2
,
σ2
δ2

,
ρσ2 − δ1δ2

δ2θ
 ,

(8)

TCs

HTCsECs

Tregs

nET

aT (1 – bT)

k2TH

pEH

r2Hr1E

qRE

d2Hd1E

d3R

S2

Promotion

Inhibition

Figure 1: A diagram of interactions among the different cell
populations in model (1).
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which exists when ρ> δ1δ2/σ2 and θ< δ3(ρσ2−
δ1δ2)/c2σ2 ≜ θ1.

Putting x � 1/β yields the tumor-dominant equilibrium,
namely,

P2 � x2, y2, z2, u2(  �
1
β

, 0,
βσ2

βδ2 − ω2
,

βc2σ2
δ3 βδ2 − ω2( 

 ,

(9)

which exists when ω2 < βδ2 ≜ ω∗2 .
Putting x≠ 0 andx≠ 1/β and eliminating y, z, and u in

(6), we have

F(x) � Ax
2

+ Bx + C � 0, (10)

where A � −αβθc1ω2 < 0, B � θαc1(ω∗2 + ω2) + δ1δ3ω2 > 0,

andC � δ3(ρσ2 − δ1δ2) − θ(αc1 δ2 + c2σ2).
)en, we have the coexistence equilibrium

P
∗

� x
∗
, y
∗
, z
∗
, u
∗

(  � x
∗
, α 1 − βx

∗
( ,

σ2
δ2 − ω2x

∗,

·
αc1 1 − βx∗(  δ2 − ω2x

∗(  + c2σ2
δ3 δ2 − ω2x

∗( 
,

(11)

which exists when x∗ < μ ≜ min (1/β), (δ2/ω2) , where x∗ is
the positive root of (10).

Below, we consider the existence condition of P∗:

Case (1): C≥ 0, i.e., θ≤δ3(ρσ2 −δ1δ2)/αc1δ2 + c2σ2 ≜ θ0.
Since F(1/β) � θαβc1δ2 + δ1δ3ω2 + Cβ/β> 0 and F(δ2/
ω2) � θαc1δ2 + δ1δ2δ3 + C> 0, we have 1/β< x∗

and δ2/ω2 < x∗, which contradicts with x∗ < μ. Hence,
P∗ does not exist in this case.
Case (2): C< 0, i.e., θ> θ0.

Let Δ� B2 −4AC � 4αβc1θω2(δ3(ρσ2 −δ1δ2)− θ(αc1δ2+
c2σ2)) + (θαc1(ω∗2 +ω2) +δ1δ3ω2)

2 � [θαc1(ω2 −ω∗2 ) +δ1
δ3ω2]

2 +4αβθc1ω2σ2(ρ δ3 −θc2).
If Δ< 0, then (10) does not have a positive root. Hence,

P∗ does not exist in this case.
If Δ � 0, then (10) has one positive root x∗, where x∗ �

θαc1(ω∗2 +ω2)+δ1δ3ω2/2αβθc1ω2>ω∗2 +ω2/2βω2 �1/2((δ2/
ω2)+(1/β))≥μ, which contradicts with x∗<μ. Hence, P∗

does not exist in this case.
If Δ> 0, then (10) has two positive roots, where x∗+ �

θαc1(ω∗2 + ω2) + δ1δ3ω2 +
��
Δ

√
/2αβθc1ω2 and x∗− � θαc1

(ω∗2 + ω2) + δ1δ3ω2 −
��
Δ

√
/2αβθc1ω2. Since x∗+ >θαc1 (ω∗2 +

ω2) +δ1δ3ω2/2αβθc1ω2>ω∗2 +ω2/2βω2 � (1/2)((δ2/ω2)+ (1/
β))≥ μ, which contradicts with x∗ <μ. If x∗− <μ, i.e., F(1/β) �

(δ1δ3ω2 +βδ2 (ρσ2 −δ1δ2) −θβc2σ2/β)>0⇒θ<(δ1δ3ω2+

βδ3 (ρσ2 −δ1δ2)/βc2σ2) ≜ θ2 and F(δ2/ω2) � σ2(ρδ3 −θc2)>
0⇒θ<ρδ3/c2≜θ3, there exists a unique coexistence equi-
librium P∗ � (x∗,y∗,z∗ ,u∗) � (x∗, α(1−βx∗), σ2/
δ2 −ω2x

∗, αc1(1−βx∗)(δ2 −ω2x
∗) + c2σ2/δ3(δ2 −ω2x

∗)),
where x∗ � x∗− .

)e existence conditions for each equilibrium are given
in Table 1.

2.3. Stability of Equilibria. In order to investigate the local
stability of the above equilibria P0, P1, P2, andP∗ of system
(3), we linearize the system and obtain Jacobian matrix at
each equilibrium P(x, y, z, u):

J(P) �

α − 2αβx − y −x 0 0

0 ρz − θu − δ1 ρy −θy

ω2z 0 ω2x − δ2 0

0 c1 c2 −δ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(12)

)e corresponding characteristic equation is

det(J(P) − λI) �

α − 2αβx − y − λ −x 0 0

0 ρz − θu − δ1 − λ ρy −θy

ω2z 0 ω2x − δ2 − λ 0

0 c1 c2 −δ3 − λ





� 0. (13)

Theorem 1. System (3) always has one tumor-free and ECs-
free equilibrium P0, which is unstable.

Proof. At P0, characteristic (13) becomes

(λ − α) λ + δ2(  λ + δ3(  λ +
θc2σ2 + δ1δ2δ3 − ρσ2δ3

δ2δ3
  � 0.

(14)

It can be seen that one eigenvalue α is positive. Hence, P0
is unstable. □

Theorem 2. System (3) has one tumor-free equilibrium P1,
when ρ> δ1δ2/σ2 and θ< θ1, which is locally asymptotically
stable (LAS) if the inequality θ< θ0 holds.

Proof. At P1, characteristic (13) becomes

λ −
θ αc1δ2 + c2σ2(  − δ3 ρσ2 − δ1δ2( 

θc1δ2
 

λ + δ2(  λ2 + δ3λ + θc1y1  � 0.

(15)
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)en, one root of characteristic equation is −δ2 < 0. It is
easily noted that as δ3 > 0, θc1y1 > 0, so λ

2 + δ3λ + θc1y1 � 0
has solutions with negative real parts. )erefore, P1 is LAS
when θ(αc1δ2 + c2σ2) − δ3(ρσ2 − δ1δ2)/θc1δ2 < 0, that is,
θ< θ0. □

Theorem 3. System (3) has one tumor-dominant equilib-
rium P2, when ω2 <ω∗2 , which is LAS if the inequality
θ> βδ3(ρσ2 − δ1δ2) + δ1δ3ω2/βc2σ2 ≡ θ2 holds.

Proof. At P2, characteristic (13) becomes

(λ + α) λ + δ3(  λ −
ω2 − ω∗2

β
  λ − ρz2 − θu2 − δ1(   � 0.

(16)

)e three roots of characteristic equation are
λ1 � −α< 0, λ2 � −δ3 < 0, and λ3 � ω2 − ω∗2 /β< 0, if
ω2 <ω∗2 . So, P2 is LAS when λ4 � ρz2 − θu2 − δ1 � ρβσ2δ3 −

δ1δ3(ω∗2 − ω2) − θβc2σ2/δ3(ω∗2 − ω2)< 0, which is equiva-
lent to θ> θ2.

At P∗, characteristic (13) becomes

λ4 + A1λ
3

+ A2λ
2

+ A3λ + A4 � 0, (17)

where

A1 � αβx
∗

+ δ3 + δ2 − ω2x
∗ > 0,

A2 � θc1y
∗

+ αβ δ2 − ω2x
∗

( x
∗

+ αβx
∗

+ δ2 − ω2x
∗

( δ3 > 0,

A3 � θc1 αβx
∗

+ δ2 − ω2x
∗

( y
∗

+ αβδ3 δ2 − ω2x
∗

( x
∗

+ ρω2x
∗
y
∗
z
∗ > 0,

A4 � θαβc1 δ2 − ω2x
∗

( x
∗
y
∗

+ ρδ3 − θc2( ω2x
∗
y
∗
z
∗
.

(18)

Note that δ2 >ω2x
∗ and θ<min θ2, θ3  are necessary for

the existence of P∗, then we have A4 > 0. By the
Routh–Hurwitz criterion, the roots of (17) have only neg-
ative real parts if and only if

A1 > 0, A2 > 0, A3 > 0, A4 > 0, A1A2

− A3 > 0, A1 A2A3 − A1A4(  − A
2
3 > 0.

(19)

Hence, we obtain the sufficient conditions for stability of
P∗:

(H1): δ2 >ω2x
∗
, θ<min θ2, θ3 ,

(H2): A1A2 − A3 � θc1 αβx
∗

+ δ2 − ω2x
∗

( y
∗

+ αβδ3 δ2 − ω2x
∗

( x
∗

− ρx
∗
y
∗
z
∗ > 0,

(H3): A1 A2A3 − A1A4(  − A
2
3 � B1θ + B2 > 0,

(20)

where

B1 � αβx
∗

+ δ2 − ω2x
∗

( 
2δ3 + αβx

∗
+ δ2 − ω2x

∗
 δ23
− ρω2x

∗
y
∗
z
∗ αβx

∗
+ δ2 − ω2x

∗
( c1y

∗

− αβx
∗

+ δ2 − ω2x
∗

+ δ3( 
2 αβc1 δ2 − ω2x

∗
( x

∗
y
∗

(

−ω2c2x
∗
y
∗
z
∗
,

B2 � αβx
∗

+ δ2 − ω2x
∗

( 
2δ3 + αβx

∗
+ δ2 − ω2x

∗
 δ23

−ρω2x
∗
y
∗
z
∗ αβδ3 δ2 − ω2x

∗
( x

∗
+ ρω2x

∗
y
∗
z
∗

( 

− αβx
∗

+ δ2 − ω2x
∗

+ δ3( 
2ρω2δ3x

∗
y
∗
z
∗
.

(21)
□

Theorem 4. System (3) has a unique coexistence equilibrium
P∗, when ω2 ≤ω∗2 , θ0 < θ < θ2 or ω2 >ω∗2 , θ0 < θ< θ3 hold,
and P∗ is LAS, when conditions (20) are satisfied.

We summarize the above results in Table 1, where
ω∗2 � βδ2, θ0 � δ3(ρσ2 − δ1δ2)/αc1δ2 + c2σ2,
θ1 � δ3(ρσ2 − δ1δ2)/c2σ2,
θ2 � βδ3(ρσ2 − δ1δ2) + δ1δ3ω2/βc2σ2, and θ3 � ρδ3/c2.

2.4. Numerical Simulations. In this section, we choose some
suitable parameters in (3) to simulate numerically the
theoretical conclusions obtained in the previous sections by
using the Matlab software package MATCONT [45]. We
select the following parameters’ set [4]:

α � 1.636, β � 0.002, δ1 � 0.3743, σ2 � 0.38,

δ2 � 0.055, ρ � 0.48, c1 � 0.15, c2 � 0.2, δ3 � 0.25.

(22)

Note that ω∗2 � βδ2 � 0.00011. By calculations, we have

Table 1: )e existence and stability conditions of each equilibrium.

Existence conditions Stability conditions
P0 Always Unstable
P1 θ< θ1 θ< θ0
P2 ω2 <ω∗2 θ> θ2

P∗ θ> θ0
(i): ω2 ≤ω∗2 , θ< θ2 < θ3
(ii): ω2 >ω∗2 , θ< θ3 < θ2

 (20)
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θ0 �
δ3 ρσ2 − δ1δ2( 

αc1δ2 + c2σ2
� 0.452,

θ1 �
δ3 ρσ2 − δ1δ2( 

c2σ2
� 0.5323,

θ3 �
ρδ3
c2

� 0.6,

θ2 �
βδ3 ρσ2 − δ1δ3(  + δ1δ3ω2

βc2σ2
� 615.625ω2 + 0.5323.

(23)

And we find the stability region of P∗ � (x∗, y∗, z∗, u∗)

(see Figure 2). P∗ is LAS in regions I and II. P∗ is unstable in
region III.

Let us denote the point in θ − ω2 plane as Qi � (θ,ω2).

Case (a): we choose a point Q1 � (0.48, 0.0001) in the
region I; then, system (3) has one interior equilibrium:

P
∗
1 � (77.6449, 1.38195, 8.0448, 7.265). (24)

)e eigenvalues of Jacobian matrix of (12) are

− 0.4623, − 0.049151, − 0.01991 − 0.378i and

− 0.01991 + 0.378i,
(25)

so P∗1 is stable, as shown in Figure 3(a).
Case (b): we choose a point Q2 � (0.455, 0.0004) in the
region II; then, system (3) has one interior equilibrium:

P
∗
2 � (2.84485, 1.62669, 7.05506, 6.62006). (26)

)e eigenvalues of Jacobian matrix of (12) are

− 0.0931 + 0.301i, − 0.0931 − 0.301i, − 0.0633

+ 0.0188i and − 0.0633 − 0.0188i,
(27)

so P∗2 is stable, as shown in Figure 3(b).
Case (c): we choose a point Q3 � (0.48, 0.000111) in
the region II, then system (3) has one interior
equilibrium:

P
∗
3 � (72.569, 1.39855, 8.094, 7.314). (28)

)e eigenvalues of Jacobian matrix of (12) are

−0.458, − 0.0491, − 0.0132 + 0.383i and − 0.0132 − 0.383i,

(29)

so P∗3 is stable, as shown in Figure 3(c).
Case (d): we choose a point Q4 � (0.48, 0.0004) in the
region III; then, system (3) has one interior
equilibrium:

P
∗
4 � (26.365, 1.54973, 8.54816, 7.76837). (30)

)e eigenvalues of Jacobian matrix of (12) are

−0.4328, − 0.0497, 0.0509 + 0.416i and 0.0509 − 0.416i,

(31)

so P∗4 is unstable, as shown in Figure 3(d).
Below, we perform numerically bifurcation analysis of x

against θ for different values of ω2.

Case (1): we choose ω2 � 0.0001<ω∗2 � 0.00011 (see
Figure 4(a)).
We obtain the following result.

Proposition 2. When 0< θ< θ0, P0 exists and is unstable, P1
exists and is LAS, P2 exists and is unstable, and P∗ does not
exist. When θ0 < θ< θ1, P0 exists and is unstable, P1 exists and
is unstable, P2 exists and is unstable, and P∗ exists and is LAS.
When θ1 < θ < θ2, P0 exists and is unstable, P1 does not exist,
P2 exists and is unstable, and P∗ exists and is LAS. When
θ> θ2, P0 exists and is unstable, P1 does not exist, P2 exists
and is LAS, and P∗ does not exist.

Case (2): we choose ω2 � 0.0004>ω∗2 � 0.00011 (see
Figure 4(b)).

We obtain the following result.

Proposition 3. When 0< θ< θ0, P0 exists and is unstable, P1
exists and is LAS, and P∗ does not exist. When θ0 < θ< θ4,
where θ4 � 0.4657 is a Hopf bifurcation, P0 exists and is
unstable, P1 exists and is LAS, and P∗ exists and is LAS.
When θ4 < θ< θ1, P0 exists and is unstable, P1 exists and is
unstable, and P∗ exists and is unstable. When θ1 < θ< θ3, P0
exists and is unstable, P1 does not exist, and P∗ exists and is
unstable. When θ> θ3, P0 exists and is unstable, P1 does not
exist, and P∗ does not exist.

Consider the case where HTCs stimulation rate (ω2) is
low by the presence of identified tumor antigens (ω2 <ω∗2 ).
When the inhibition rate of Tregs to ECs θ is lower than θ0,
the solution of system (3) approaches P1 implying that ECs
can still effectively remove TCs. When θ0 < θ< θ2, the so-
lution of system (3) approaches P∗ showing the coexistence
of TCs and immune cells, which means that the patient can
survive with tumors. When θ> θ2, TCs escape the control of
the immune system and develop into malignant tumors.

Next consider the case where HTCs stimulation rate (ω2)
is high by the presence of identified tumor antigens
(ω2 >ω∗2 ). When θ< θ0, the solution of system (3) ap-
proaches P1 implying that TCs can be effectively removed by
ECs. When θ0 < θ< θ4, the solution of system (3) approaches
P∗ implying that TCs can still be controlled by the immune
system.When θ> θ4, the system has a Hopf bifurcation point
and induces a limit cycle (see Figure 3(e)). In the biological
sense, it can be understood that the number of TCs presents
a periodic change.
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Figure 2: Stability region of P∗ and Hopf bifurcation curve in θ − ω2 parameter plane.
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Figure 3: )e other parameter values are given in (22). (a) P∗1 (77.644, 1.381, 8.044, 7.265) is LAS, θ � 0.48 andω2 � 0.0001. (b)
P∗2 (2.844, 1.626, 7.055, 6.62) is LAS, θ � 0.455 andω2 � 0.0004. (c) P∗3 (72.569, 1.398, 8.094, 7.314) is LAS, θ � 0.48 andω2 � 0.000111.
(d) P∗4 (26.365, 1.549, 8.548, 7.768) is unstable, θ � 0.48 andω2 � 0.0004. (e) )e 3D phase portrait depicts tumor cell, ECs, and Tregs,
θ � 0.48 andω2 � 0.0004.

Complexity 7



3. Treatment Model

In order to investigate well the effect of Tregs in tumor
immune response under the treatment, we follow the way
in [11] to introduce the constant treatment term s1 into
the second equation of (1). Since CTLA-4 and PD-1 can
inhibit the development of Tregs and prevent the
transformation of HTCs into Tregs [12], the effect of
CTLA4 or PD-1 on Tregs can be considered. )en, we
shall establish a five-dimensional ODEs model described
as below:

dT(t)

dt
� aT(t)(1 − bT(t)) − nE(t)T(t),

dE(t)

dt
� s1 + pE(t)H(t) − qR(t)E(t) − d1E(t),

dH(t)

dt
� s2 + k2T(t)H(t) − d2H(t),

dR(t)

dt
� r1E(t) + r2H(t) − d3R − mR(t)W(t),

dW(t)

dt
� s3 − d4W(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where W(t) represents the concentration of monoclonal
antibody in human body at time t, s1 represents the treat-
ment term of introducing LAK and TIL into the region of
tumor localization, m represents the inhibition rate of
monoclonal antibody on Tregs, s3 represents the amount of
monoclonal antibody entering human body at time t, and d4
represents the attenuation coefficient of monoclonal
antibody.

We scale those new parameters in model (32) as follows:

W(t) � W0v(τ), σ1 �
s1

nE0T0
, ξ �

mW0

nT0
, σ3 �

s3

nW0T0
, δ4 �

d4

nT0
,

(33)

and we choose the scaling W0 � 106. By replacing τ by t, we
obtain the following scaled model with treatment:

dx(t)

dt
� αx(t)(1 − βx(t)) − x(t)y(t),

dy(t)

dt
� σ1 + ρy(t)z(t) − θy(t)u(t) − δ1y(t),

dz(t)

dt
� σ2 + ω2x(t)z(t) − δ2z(t),

du(t)

dt
� c1y(t) + c2z(t) − δ3u(t) − ξu(t)v(t),

dv(t)

dt
� σ3 − δ4v(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

with initial conditions

x(0) � x0 ≥ 0, y(0) � y0 ≥ 0, z(0) � z0 ≥ 0, u(0)

� u0 ≥ 0, v(0) � v0 ≥ 0.
(35)

Here, v denotes the dimensionless concentration of
monoclonal antibody.

3.1. Model Analysis. By a similar proof of Proposition 1, we
can obtain the well posedness of model (34) with initial
conditions (35) as follows.

Proposition 4. 9e solutions (x(t), y(t), z(t), u(t)) of
model (34) with initial conditions (35) are existent, unique,
and nonnegative on the interval [0, +∞).
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Figure 4:)e bifurcation diagrams of x with respect to θ for different ω2 � 0.0001 and 0.0004, respectively.)e stable state is represented by
the blue curve, and the unstable one corresponds to the red curve. )e equilibria are P0(0, 0, z0, u0), P1(0, y1, z1, u1), P2(500, 0, z2, u2), and
P∗(x∗, y∗, z∗, u∗) of system (3) (in order to distinguish P0 from P1, we move P1 up a little bit). (a) ω2 � 0.0001. (b) ω2 � 0.0004.
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Next, we discuss the effect of three types of immuno-
therapy on tumors such as

Case I: ACI model (σ1 > 0, σ3 � 0)
Case II: MAI model (σ1 � 0, σ3 > 0)
Case III: combined immunotherapy model
(σ1 > 0, σ3 > 0)

We set dx/dt � 0, dy/dt � 0, dz/dt � 0, du/dt �

0, anddv/dt � 0 in (34), and we have
αx(1 − βx) − xy � 0,

ρyz − θyu − δ1y + σ1 � 0,

σ2 + ω2xz − δ2z � 0,

c1y + c2z − δ3u − ξuv � 0,

σ3 − δ4v � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

3.1.1. ACI Model. When σ1 > 0 and σ3 � 0, we put v � 0 and
(36) becomes

αx(1 − βx) − xy � 0,

ρyz − θyu − δ1y + σ1 � 0,

σ2 + ω2xz − δ2z � 0,

c1y + c2z − δ3u � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(37)

Putting x � 0 yields the tumor-free equilibrium, namely,

E0 � x0, y0, z0, u0(  � 0, y0,
σ2
δ2

,
c1δ2y0 + c2σ2

δ2δ3
 ,

(38)

where y0 � −B +
��������
B2 − 4AC

√
/2A, A � θc1δ2 > 0, B � δ1δ2δ3

+ θc2σ2 − ρσ2δ3, andC � − σ1δ2δ3 < 0. E0 always exists.
Putting x≠ 0 and eliminating y, z, and u in (37), we

have

F(x) � C3x
3

+ C2x
2

+ C1x + C0

C3 � θα2β2c1ω2 > 0,

C2 � −θα2βc1ω2 − αβ θαc1 βδ2 + ω2(  + δ1δ3ω2 < 0,

C1 � θα 2αβc1δ2 + αc1ω2 + βc2σ2( 

+ αδ3 δ1ω2 − β ρσ2 − δ1δ2(   − σ1ω2δ3,

C0 � σ1δ2δ3 + αδ3 ρσ2 − δ1δ2(  − θα αc1δ2 + c2σ2( .

(39)

Case (a): if F(0)F(μ) � C0F(μ)< 0 (where
μ � min (1/β), (δ2/ω2) , due to F(+∞)> 0 and
F(−∞)< 0, then (39) has one positive root x∗ in the
interval [0, μ]. )erefore, system (34) has a unique
coexistence equilibrium:

E
∗

� x
∗
, y
∗
, z
∗
, u
∗

(  � x
∗
, α 1 − βx

∗
( ,

σ2
δ2 − ω2x

∗,

αc1 1 − βx∗(  δ2 − ω2x
∗(  + c2σ2

δ3 δ2 − ω2x
∗( 

.

(40)

We show the existence conditions of E∗ in the
following:

Case (1): C0 > 0, F(μ)< 0.
Since C0 > 0, we have θ< σ1δ2δ3 + αδ3(ρσ2 − δ1δ2)/
α(αc1δ2 + c2σ2)≜ θ5. Since F(μ)< 0, we have the
following two cases:
Case where 1/β< δ2/ω2, i.e., ω2 < βδ2. Since μ � 1/β,
we have F(μ) � δ3σ1(βδ2 − ω2)/β> 0. )at is a
contradiction.
Case where 1/β> δ2/ω2, i.e., ω2 > βδ2. Since μ � δ2/ω2,
we have F(μ) � ασ2(βδ2 − ω2)(c2θ − δ3ρ)/ω2 < 0
implying θ> ρδ3/c2 � θ3. If θ5 ≥ θ3, i.e., σ1δ2δ3+
αδ3(ρσ2 − δ1δ2)/α(αc1δ2 + c2σ2)≥ ρδ3/c2, we have
σ1 ≥ α(αρc1 + δ1c2)/c2, there exists E∗.
Case (2): C0 < 0, F(μ)> 0.
Since C0 < 0, we have θ> θ5. Since F(μ)> 0, we have
the following two cases:
Case where 1/β< δ2/ω2, i.e., ω2 < βδ2. Since μ � 1/β,
we have F(μ) � δ3σ1(βδ2 − ω2)/β> 0, there exists E∗.
Case where 1/β> δ2/ω2, i.e., ω2 > βδ2. Since μ � δ2/ω2,
we have F(μ) � ασ2(βδ2 − ω2)(c2θ − δ3ρ)/ω2 > 0
implying θ< θ3. If θ3 ≥ θ5, i.e., ρδ3/c2 ≥ σ1δ2δ3+
αδ3(ρσ2 − δ1δ2)/α(αc1δ2 + c2σ2), we have σ1 ≤ α
(αρc1 + δ1c2)/c2, there exists E∗.

Case (b): If F(0)F(μ) � C0F(μ)> 0, then (39) can have
two positive roots x∗1 and x∗2 in the interval [0, μ],
where x∗1 and x∗2 are the roots of (39). )erefore,
system (34) can have two coexistence equilibria:

E
∗
1 � x

∗
1 , y
∗
1 , z
∗
1 , u
∗
1(  � x

∗
1 , α 1 − βx

∗
1( ,

σ2
δ2 − ω2x

∗
1

,

αc1 1 − βx∗1(  δ2 − ω2x
∗
1(  + c2σ2

δ3 δ2 − ω2x
∗
1( 

,

(41)

E
∗
2 � x

∗
2 , y
∗
2 , z
∗
2 , u
∗
2(  � x

∗
2 , α 1 − βx

∗
2( ,

σ2
δ2 − ω2x

∗
2

,

αc1 1 − βx∗2(  δ2 − ω2x
∗
2(  + c2σ2

δ3 δ2 − ω2x
∗
2( 

.

(42)

In the following, we show the existence condition of E∗1
and E∗2 .
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Differentiating (39), we have

F′(x) � 3C3x
2

+ 2C2x + C1 � 0, (43)

where C3 > 0 and C2 < 0. If C1 > 0 and Δ≜C2
2 − 3C1C3 > 0,

then (43) has two positive roots x+
1 � −C2 −

��
Δ

√
/3C3 and

x+
2 � −C2 +

��
Δ

√
/3C3. And if C1 < 0, then (43) has one pos-

itive root x+
2 � −C2 +

��
Δ

√
/3C3.

Case (1): C0 > 0, F(μ)> 0.
Since C0 > 0, we have θ< θ5. Since F(μ)> 0, we have the
following two cases:
Case where 1/β< δ2/ω2, i.e., ω2 < βδ2. Since μ � 1/β, we
have F(μ) � δ3σ1(βδ2 − ω2)/β> 0. If F(x+

2 )< 0, then
there exist E∗1 and E∗2 .
Case where 1/β> δ2/ω2, i.e., ω2 > βδ2. Since μ � δ2/ω2,
we have F(μ) � ασ2(βδ2 − ω2)(c2θ − δ3ρ)/ω2 > 0 im-
plying θ< θ3. )en, we have θ <min θ3, θ5 . If
F(x+

2 )< 0, then there exist E∗1 and E∗2 .
Case (2): C0 < 0, F(μ)< 0.

Since C0 < 0, we have θ> θ5. Since F(μ)> 0, we have the
following two cases:

Case where 1/β< δ2/ω2, i.e., ω2 < βδ2. Since μ � 1/β, we
have F(μ) � δ3σ1(βδ2 − ω2)/β> 0. )at is a contradiction.

Case where 1/β> δ2/ω2, i.e.,ω2 > βδ2. Since μ � δ2/ω2, we
have F(μ) � ασ2(βδ2 − ω2)(c2θ − δ3ρ)/ω2 < 0 implying
θ> θ3. )en, we have θ>max θ3, θ5 . If F(x+

1 )> 0, then
there exist E∗1 and E∗2 .

Next, we show the stability of the above two equilibria E0
and E∗ of system (34) with v � 0. We linearize the system
and obtain the characteristic equation whose expression is
the same as (13).

Theorem 5. System (34) with v � 0 always has one tumor-
free equilibrium E0, which is LAS if the inequality θ< θ5
holds.

Proof. At E0 � (x0, y0, z0, u0) � (0, y0, σ2/δ2, c1δ2y0 +

c2σ2/δ2δ3), the characteristic equation becomes

λ − α + y0(  λ + δ2(  λ2 +
σ1
y0

+ δ3 λ + θc1y0 +
σ1δ3
y0

  � 0,

(44)

and one root of characteristic equation is −δ2 < 0. It is easily
noted that as σ1/y0 + δ3 > 0, θc1y1 + σ1δ3/y0 > 0, so the
solutions of λ2 + ((σ1/y0) + δ3)λ + θc1y1 + (σ1δ3/y0) � 0
have always negative real parts. )erefore, E0 is LAS if and
only if α − y0 � 2αA + B −

��������
B2 − 4AC

√
/2A< 0, that is, if and

only if θ< θ5.
At E∗ � (x∗, y∗, z∗, u∗), characteristic (13) becomes

λ4 + B1λ
3

+ B2λ
2

+ B3λ + B4 � 0, (45)

where

B1 � αβx
∗

+ δ3 +
σ1
y∗

+
σ2
z∗
> 0,

B2 � αβx
∗

+
σ2
z∗

 
σ1
y∗

+ δ3  + αβx
∗σ2
z∗

+ δ3
σ1
y∗

+ θc1y
∗ > 0,

B3 � θc1y
∗

+ δ3
σ1
y∗

  αβx
∗

+
σ2
z∗

  + αβx
∗σ2
z∗

δ3 +
σ1
y∗

 

+ ρω2x
∗
y
∗
z
∗ > 0,

B4 � αβx
∗σ2
z∗

θc1y
∗

+ δ3
σ1
y∗

  + ρδ3 − θc2( ω2x
∗
y
∗
z
∗
.

(46)

By the Routh–Hurwitz criterion, the roots of (45) have
negative real parts if and only if B1 > 0, B2 > 0, B3 > 0,

B4 > 0, B1B2 − B3 > 0, andB1(B2B3 − B1B4) − B2
3 > 0.

Hence, we obtain the sufficient condition for the stability
of P∗:

(H4): B4 � αβx
∗σ2
z∗

θc1y
∗

+ δ3
σ1
y∗

 

+ ρδ3 − θc2( ω2x
∗
y
∗
z
∗ > 0,

(H5): B1B2 − B3 � K1θ + K2 > 0,

(H6): B1 B2B3 − B1B4(  − B
2
3 � B3 K1θ + K2(  − B

2
1B4

(47)

where
K1 � σ1 + δ3y

∗
( c1,

K2 � δ3 +
σ1
y∗

+
σ2
z∗

  α2β2x∗2 + αβx
∗

+
σ2
z∗

 
σ1
y∗

+ δ3 

+ αβx
∗σ2
z∗

 + δ3
σ1
y∗

σ1
y∗

+ δ3  − ρω2x
∗
y
∗
z
∗
,

K3 � K1 αβx
∗

+
σ2
z∗

 c1y
∗
,

K4 � K2c1y
∗

+ K1
σ1δ3
y∗

  αβx
∗

+
σ2
z∗

  

+ K1αβx
∗σ2
z∗

δ3 +
σ1
y∗

− αβx
∗

+ δ3 +
σ1
y∗

+
σ2
z∗

 

2

c1y
∗⎛⎝ ⎞⎠

+ ρ + c2( ω2x
∗
y
∗
z
∗
,

K5 � K2 αβx
∗

+
σ2
z∗

 
σ1δ3
y∗

− αβx
∗σ2
z∗

K2 δ3 +
σ1
y∗

 

− αβx
∗

+ δ3 +
σ1
y∗

+
σ2
z∗

 

2σ1δ3
y∗

⎤⎦ + K2 − δ3( ρω2x
∗
y
∗
z
∗
.

(48)
□
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Theorem 6. System (34) with v � 0 has a coexistence
equilibrium E∗ when ω2 > βδ2, σ1 ≥ α(αρc1 + δ1c2)/c2,

θ3 < θ< θ5 or ω2 > βδ2, σ1 ≤ α(αρc1 + δ1c2)/c2, θ5 < θ< θ3 or
ω2 < βδ2, θ> θ5 hold. Further E∗ is LAS when condition (47)
is satisfied.

3.1.2. MAI Model. When σ1 � 0, σ3 > 0, (36) becomes
αx(1 − βx) − xy � 0,

ρyz − θyu − δ1y � 0,

σ2 + ω2xz − δ2z � 0,

c1y + c2z − δ3u − ξuv � 0,

σ3 − δ4v � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

Equation (49) can be simplified as follows:
αx(1 − βx) − xy � 0,

ρyz − θyu − δ1y � 0,

σ2 + ω2xz − δ2z � 0,

c1y + c2z − δ31u � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

where δ31 � δ3δ4 + ξσ3/δ4.
)e analysis of (50) is similar to that of (12), and the

equilibria of (34) can be obtained as follows:

F0 � 0, 0,
σ2
δ2

,
c2σ2
δ2δ31

,
σ3
δ4

 

� 0,
δ31 ρσ2 − δ1δ2(  − θc2σ2

θc1δ2
,
σ2
δ2

,
ρσ2 − δ1δ2

θδ2
,
σ3
δ4

 ,

F2 �
1
β

, 0,
βσ2

βδ2 − ω2
,

βc2σ2
δ31 βδ2 − ω2( 

,
σ3
δ4

 ,

F
∗

� x
∗
, α 1 − βx

∗
( ,

σ2
δ2 − ω2x

∗,

αc1 1 − βx∗(  δ2 − ω2x
∗(  + c2σ2

δ31 δ2 − ω2x
∗( 

,
σ3
δ4

.

(51)

Here, x∗ ∈ (0, μ) and satisfies the equation
a2x

2 + a1x + a0 � 0, where coefficients are defined as a2 �

− θαβc1ω2 < 0, a1 � θαc1(βδ2 + ω2) + δ1δ31ω2 > 0, and a0 �

δ31(ρσ2 − δ1δ2) − θ(α c1δ2 + c2σ2).
)e Jacobian matrix of system (34) at any equilibrium

F(x, y, z, u, v) is as follows:

J(F) �

α − 2αβx − y −x 0 0 0

0 ρz − θu − δ1 ρy −θy 0

ω2z 0 ω2x − δ2 0 0

0 c1 c2 −δ3 − ξv ξu

0 0 0 0 −δ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

α − 2αβx − y −x 0 0 0

0 ρz − θu − δ1 ρy −θy 0

ω2z 0 ω2x − δ2 0 0

0 c1 c2 −δ31 ξu

0 0 0 0 −δ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(52)

)e corresponding characteristic equation is

|J(F) − λI| � 0. (53)

Substituting δ31 for δ3 in (12), we have

|J(F) − λI| � λ + δ4( |J(P) − λI| � 0. (54)

)us, the stability analysis of F is similar to that of P.
Substituting δ31 for δ3 in (20) to get new conditions for

the stability of F∗:
(h1): A4 � θαβc1 δ2 − ω2x

∗
( x

∗
y
∗

+ ρδ31 − θc2( ω2x
∗
y
∗
z
∗ > 0,

(h2): A1A2 − A3 � θc1 αβx
∗

+ δ2 − ω2x
∗

( y
∗

+ αβδ31 δ2 − ω2x
∗

( x
∗

− ρx
∗
y
∗
z
∗ > 0,

(h3): A1 A2A3 − A1A4(  − A
2
3 � B1θ + B2 > 0,

(55)

where

B1 � αβx
∗

+ δ2 − ω2x
∗

( 
2δ31 + αβx

∗
+ δ2 − ω2x

∗
( δ231

− ρω2x
∗
y
∗
z
∗
 αβx

∗
+ δ2 − ω2x

∗
( c1y

∗

− αβx
∗

+ δ2 − ω2x
∗

+ δ31( 
2 αβc1 δ2 − ω2x

∗
( x

∗
y
∗

(

−ω2c2x
∗
y
∗
z
∗
,

B2 � αβx
∗

+ δ2 − ω2x
∗

( 
2δ31 + αβx

∗
+ δ2 − ω2x

∗
( δ231

− ρω2x
∗
y
∗
z
∗
 αβδ31 δ2 − ω2x

∗
( x

∗
+ ρω2x

∗
y
∗
z
∗

( 

− αβx
∗

+ δ2 − ω2x
∗

+ δ31( 
2ρω2δ31x

∗
y
∗
z
∗
.

(56)

We set
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θ70 �
δ31 ρσ2 − δ1δ2( 

αc1δ2 + c2σ2
,

θ71 �
δ31 ρσ2 − δ1δ2( 

c2σ2
,

θ72 �
βδ31 ρσ2 − δ1δ2(  + δ1δ31ω2

βc2σ2
,

θ73 �
ρδ31
c2

,

(57)

and we obtain the following results.

Theorem 7. System (34) always has one tumor-free and ECs-
free equilibrium F0, which is unstable.

Theorem 8. System (34) has one tumor-free equilibrium F1
when ρ> δ1δ2/σ2 and θ< θ71, which is LAS if the inequality
θ< θ70 holds.

Theorem 9. System (34) has one tumor-dominant equilib-
rium F2 when ω2 <ω∗2 , which is LAS if the inequality θ> θ72
holds.

Theorem 10. System (34) has a unique coexistence equi-
librium F∗ when ω2 <ω∗2 , θ0 < θ< θ2 or ω2 >ω∗2 , θ0 < θ< θ3
hold. Further F∗ is LAS, when condition (55) is satisfied.

3.1.3. Combined Immunotherapy Model. When
σ1 > 0 and σ3 > 0, (36) can be simplified as follows:

αx(1 − βx) − xy � 0,

ρyz − θyu − δ1y + σ1 � 0,

σ2 + ω2xz − δ2z � 0,

c1y + c2z − δ31u � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(58)

where δ31 � δ3δ4 + ξσ3/δ4.
)e analysis of (58) is similar to that of (37), and the

equilibria of (34) can be obtained as follows:

N0 � x0, y0, z0, u0, v0(  � 0, y0,
σ2
δ2

,
c1δ2y0 + c2σ2

δ2δ31
,
σ3
δ4

 ,

(59)

where y0 � −B +
��������
B2 − 4AC

√
/2A with A � θc1δ2 > 0,

B � δ31(δ1δ2 − ρσ2) + θc2σ2, andC � −σ1 δ2δ31 < 0.

N
∗

� x
∗
, y
∗
, z
∗
, u
∗
, v
∗

(  � x
∗
, α 1 − βx

∗
( ,

σ2
δ2 − ω2x

∗,

αc1 1 − βx∗(  δ2 − ω2x
∗(  + c2σ2

δ31 δ2 − ω2x
∗( 

,
σ3
δ4

,

(60)

where x∗ ∈ (0, μ) and satisfies the equation c3x
3 + c2x

2 +

c1x + c0 � 0 with coefficients

c3 � θα2β2c1ω2 > 0,

c2 � −θα2βc1ω2 − αβ θαc1 βδ2 + ω2(  + δ1δ31ω2 < 0,

c1 � θα 2αβc1δ2 + αc1ω2 + βc2σ2(  + αδ31 δ1ω2

− β ρσ2 − δ1δ2(  − σ1ω2δ31,

c0 � σ1δ2δ31 + αδ31 ρσ2 − δ1δ2(  − θα αc1δ2 + c2σ2( .

(61)

For system (34) at N0 � (x0, y0, z0, u0, v0), Jacobian
matrix is expressed as follows:

J N0(  �

α − y0 0 0 0 0

0 −
σ1
y0

ρy0 −θy0 0

ω2z0 0 −δ2 0 0

0 c1 c2 −δ31 ξu0

0 0 0 0 −δ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (62)

)e corresponding characteristic equation is

J N0(  − λI


 � λ + δ4(  J E0(  − λI


 � 0. (63)

)us, the stability analysis of N0 is similar to that of E0.
Set θ8 � αδ31(ρσ2 − δ1δ2) + σ1δ2δ31/α(αc1δ2 + σ2c2), and
we can get the following result.

Theorem 11. System (34) always has one tumor-free equi-
librium N0, which is LAS if the inequality θ< θ8 holds.

For system (34) at N∗ � (x∗, y∗, z∗, u∗, v∗), Jacobian
matrix is given as follows:

J N
∗

(  �

−αβx∗ −x∗ 0 0 0

0 −
σ1
y∗

ρy∗ −θy∗ 0

ω2z
∗ 0 ω2x

∗ − δ2 0 0

0 c1 c2 −δ31 ξu∗

0 0 0 0 −δ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (64)

9e corresponding characteristic equation is

J N
∗

(  − λI


 � λ + δ4(  J E
∗

(  − λI


 � 0. (65)

9us, the stability analysis of N∗ is similar to that of E∗.
Set θ9 � ρδ31/c2 and substitute δ31 for δ3 in (47) to get new
conditions:
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(h4): B4 � αβx
∗σ2
z∗

θc1y
∗

+ δ31
σ1
y∗

 

+ ρδ31 − θc2( ω2x
∗
y
∗
z
∗ > 0,

(h5): B1B2 − B3 � k1θ + k2 > 0,

(h6): B1 B2B3 − B1B4(  − B
2
3 � B3 k1θ + k2(  − B

2
1B4

� k3θ
2

+ k4θ + k5 > 0,

(66)

where
k1 � σ1 + δ31y

∗
( c1,

k2 � δ31 +
σ1
y∗

+
σ2
z∗

  α2β2x∗2 + αβx
∗

+
σ2
z∗

 
σ1
y∗

+ δ31 

+ αβx
∗σ2
z∗

 + δ31
σ1
y∗

σ1
y∗

+ δ31  − ρω2x
∗
y
∗
z
∗
,

k3 � k1 αβx
∗

+
σ2
z∗

 c1y
∗
,

k4 � k2c1y
∗

+ k1
σ1δ31

y∗
  αβx

∗
+
σ2
z∗

  

+ k1 αβx
∗σ2
z∗

δ31 +
σ1
y∗

− αβx
∗

+ δ31 +
σ1
y∗

+
σ2
z∗

 

2

c1y
∗⎛⎝ ⎞⎠⎡⎢⎢⎣

+ ρ + c2( ω2x
∗
y
∗
z
∗
, k5 � k2 αβx

∗
+
σ2
z∗

 
σ1δ31

y∗

− αβx
∗σ2
z∗

k2 δ31 +
σ1
y∗

  − αβx
∗

+ δ31 +
σ1
y∗

+
σ2
z∗

 

2σ1δ31
y∗

⎡⎣ ⎤⎦

+ k2 − δ31( ρω2x
∗
y
∗
z
∗
.

(67)

9erefore, we can obtain the following result.

Theorem 12. System (34) has a coexistence equilibrium N∗

when ω2>βδ2,σ1≥α(αρc1 +δ1c2)/c2,θ9<θ<θ8 or ω2>βδ2,
σ1≤α(αρc1 +δ1c2)/c2,θ8<θ<θ9 or ω2<βδ2, θ>θ8 hold.
Further N∗ is LAS when condition (66) is satisfied.

3.2. Numerical Simulations

3.2.1. ACI Model (σ1 > 0, σ3 � 0). We conduct numerical
simulations of the ACI model. We choose ω2 � 0.0004 and
the other parameter values are given in (22). We find the
stability region of E∗ � (x∗, y∗, z∗, u∗), as shown in
Figure 5(a). E∗ is stable in region I and unstable in region II.

Case (a): we choose a point G1 � (σ1, θ) � (0.4, 0.5) in
the region I, then system (34) has one coexistence
equilibrium:

E
∗

� (11.560, 1.598, 7.543, 6.993). (68)

)e eigenvalues of characteristic equation of (47) are

−0.269, − 0.041, − 0.1388 + 0.334i and − 0.1388 − 0.334i,

(69)

so E∗ is stable, as shown in Figure 6(b).
Case (b): we choose a point G2 � (σ1, θ) � (0.4, 0.55)

in the region II; then, system (34) has one coexistence
equilibrium:

E
∗

� (69.131, 1.409, 13.895, 11.962). (70)

)e eigenvalues of characteristic equation of (47) are

−0.830, − 0.021, 0.0326 + 0.6039i and 0.0326 − 0.6039i,

(71)

so E∗ is unstable, as shown in Figures 6(c) and 6(d).

According to the stability condition of tumor-free
equilibrium E0 in )eorem 5, ACI curve can be ob-
tained as

θ �
αδ3 ρσ2 − δ1δ2(  + σ1δ2δ3

α αc1δ2 + c2σ2( 
� 0.09391σ1 + 0.452. (72)

We find the stability region of E0 � (0, y0, z0, u0)

shown in Figure 5(b). E0 is stable in the region III and
unstable in the region IV. With the increase of σ1,
region III gradually increases, while region IV grad-
ually decreases.
Case (c): we choose a point G3 � (σ1, θ) � (0.4, 0.48)

in the region III; then, system (34) has a tumor-free
equilibrium:

E0 � (0, 1.782, 6.909, 6.596). (73)

)e eigenvalues of Jacobian matrix of E0 are

−0.055, − 0.146, − 0.237 + 0.358i and − 0.237 − 0.358i,

(74)

so E0 is stable, as shown in Figure 6(a).
Case (d): we choose a point G4 � (σ1, θ) � (0.4, 0.53)

in the region IV; then, system (34) has a tumor-free
equilibrium:

E0 � (0, 1.141, 6.909, 6.212). (75)

)e eigenvalues of Jacobian matrix of E0 are

0.494, − 0.055, − 0.3 + 0.297i and − 0.3 − 0.297i, (76)

so E0 is unstable.
We choose ACI parameter σ1 � 0.4 to study the rela-

tionship between the number of TCs x and the parameter θ
(see Figure 5(c)). By some calculations, we have θ3 � ρδ3/c2 �
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0.6, θ5 � αδ3(ρσ2 −δ1δ2) +σ1δ2δ3/α(αc1 δ2 + c2σ2) � 0.489.
And Hopf bifurcation point appears at θ∗ACI � 0.5354. We
can obtain the following result.

Proposition 5. When 0< θ< θ5, E0 exists and is LAS, and E∗

is nonexistent. When θ5 < θ< θ
∗
ACI, E0 exists and is unstable,

and E∗ exists and is LAS. When θ∗ACI < θ< θ3, E0 exists and is
unstable, and E∗ exists and is unstable. When θ> θ3, E0 exists
and is unstable, and E∗ is nonexistent.

Next, we choose different ACI parameters
σ1 � 0, 0.1, 0.3, 0.5, 0.7, 0.9, to study the relationship be-
tween the number of TCs x and the parameter θ (see
Figure 5(d)).

By comparing the curves in Figure 5(d), we see that, as σ1
increases gradually, the stable region of tumor-free equilib-
rium E0 of system (34) gradually increases (the intersection
point of the curve and the x-coordinate gradually moves to the
right) and the stability region of equilibrium E∗ in system (34)
gradually increases (the blue curve gradually moves upward).
9is indicates that increasing the injection volume of adoptive
T cells can not only delay the inhibitory effect of Tregs on
tumor immune response but also help the immune system to

remove more TCs. It also helps the immune system to control
more TCs, keeping them at a stable state.

3.2.2. MAI Model (σ1 � 0, σ3 > 0). We conduct numerical
simulations of the MAI model. We choose ω2 � 0.0004, ξ �

0.05, and δ4 � 0.25 and the other parameter values are given
in (22). We find the stability region of F∗ � (x∗, y∗, z∗, u∗),
as shown in Figure 7(a). F∗ is stable in region I and unstable
in region II.

Case (a): we choose a point M1 � (σ3, θ) � (0.4, 0.6)

in region I; then, system (34) has one coexistence
equilibrium:

F
∗

� (2.413, 1.628, 7.032, 5.002, 1.6). (77)

)e eigenvalues of Jacobian matrix of F∗ are

−0.25, −0.146 + 0.336i, −0.146 −0.336i, −0.0499

+ 0.033i and − 0.0499 − 0.033i,
(78)
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Figure 5: (a) Stability region of E∗ and Hopf bifurcation curve in θ − σ1 parameter plane. E∗ is stable in region I and unstable in region II.
(b) ACI curve. E0 is stable in region III and unstable in region IV. (c))e bifurcation diagram of x with respect to θ for fixed σ1 � 0.4. Hopf
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so F∗ is stable, as shown in Figure 8(b).
Case (b): we choose a point
M2 � (σ3, θ) � (0.4, 0.635) in region II; then, system
(34) has one coexistence equilibrium:

F
∗

� (27.345, 1.546, 8.624, 5.93, 1.6). (79)

)e eigenvalues of Jacobian matrix of F∗ are

−0.4334, −0.25, −0.0644, 0.0172

+ 0.429i and 0.0172 − 0.429i,
(80)

so F∗ is unstable, as shown in Figures 8(c) and 8(d).
According to the stability condition of tumor-free
equilibrium F1 in )eorem 7, MAI curve can be ob-
tained as

θ � δ3δ4 + ξσ3(  ρσ2 − δ1δ2( / αc1δ2 + σ2c2( 

δ4 � 0.3616 σ3 + 0.452.
(81)

We find the stability region of F1, as shown in
Figure 7(b). F0 is stable in region III and unstable in
region IV. With the increase of σ3, region III
gradually increases, while region IV gradually
decreases.
Case (c): we choose a point M3 � (σ3, θ) � (0.4, 0.5)

in region III; then, system (34) has a tumor-free
equilibrium:

F1 � (0, 2.556, 6.909, 5.349, 1.6). (82)

)e eigenvalues of Jacobian matrix of F1 are
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Figure 6: Choose σ1 � 0.4, and the other parameter values are given in (22). (a)When θ � 0.48, E0(0, 1.782, 6.909, 6.596) is LAS. (b)When
θ � 0.50, E∗(11.560, 1.598, 7.543, 6.993) is LAS. (c) When θ � 0.55, E∗(69.131, 1.409, 13.895, 11.962) is unstable. (d) When θ � 0.55, the
3D phase portrait depicts TCs, ECs, and Tregs.
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−0.92, −0.25, −0.055, −0.164 + 0.428i and − 0.164 − 0.428i,

(83)

so F1 is stable, as shown in Figure 8(a).
Case (d): we choose a pointM4 � (σ3, θ) � (0.4, 0.6) in
region IV; then, system (34) has a tumor-free equilibrium:

F1 � (0, 1.575, 6.909, 4.903, 1.6). (84)

)e eigenvalues of Jacobian matrix of F1 are
0.061, − 0.25, − 0.055, − 0.164 + 0.338i and − 0.164 − 0.338i,

(85)

so F1 is unstable.
We choose MAI parameter σ3 � 0.4 to study the rela-

tionship between the number of TCs x and the parameter θ
(see Figure 7(c)). By some calculations, we have
θ70 � δ31(ρσ2 − δ1δ2)/αc1δ2 + c2σ2 � 0.597, θ71 � δ31(ρσ2−
δ1δ2)/c2σ2 � 0.703, and θ73 � ρδ31/c2 � 0.792. And Hopf
bifurcation point appears at θ∗MAI � 0.627. We can obtain
the following result.

Proposition 6. When 0< θ< θ70, F0 exists and is unstable, F1
exists and is LAS, and F∗ exists and is LAS. When

θ70 < θ< θ
∗
MAI, F0 exists and is unstable, F1 exists and is un-

stable, and F∗ exists and is unstable. When θ ∗MAI < θ < θ71, F0
exists and is unstable,F1 exists and is unstable, andF∗ exists and
is unstable. When θ71 < θ< θ73, F0 exists and is unstable, F1 is
nonexistent, and F∗ exists and is unstable. When θ> θ3, F0
exists and is unstable, F1 is nonexistent, and F∗ is nonexistent.

Next, we choose different MAI parameters
σ3 � 0, 0.1, 0.3, 0.5, 0.7, 0.9, to study the relationship between
the number of TCs x and the parameter θ (see Figure 7(d)).

By comparing the curves in Figure 7(d), we can find that,
with the gradual increase of σ3, the stability region of the
tumour-free equilibrium F1 of system (34) gradually increases
(the intersection point of curves and x-coordinate gradually
moves to the right). 9is shows that the increase of antibody
injection quantity can help to slow down Tregs inhibition of
tumor immune responses. 9e stability region of equilibrium
F∗ of system (34) gradually increases (the blue curve gradually
moves upward), which means that increasing the amount of
antibody injected can help the immune system to control more
TCs. By comparing Figures 5 and 7, we find that the effect of
MAI is better than that of AIC in delaying the inhibitory effect
of Tregs on tumor immune response (at the same injection
dose, the intersection point of curves and x-coordinate in
Figure 7 moves to the right more widely than that in Figure 5).
AIC is more effective than MAI in controlling TCs (the blue
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Figure 7: (a) Stability region of F∗ and Hopf bifurcation curve in θ − σ3 parameter plane. F∗ is stable in region I and unstable in region II.
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blue curves represent the stable steady states of system (34), while the red curves represent the unstable steady states).

16 Complexity



curve in Figure 7 moves up more than the blue curves in
Figure 5 at the same injection dose).

3.2.3. Combined Immunotherapy Model (σ1 > 0, σ3 > 0).
We conduct numerical simulations of the combined immu-
notherapy model. We choose ω2 � 0.0004,

ξ � 0.05, and δ4 � 0.25, and the other parameter values are
given in (22). We find the stability region of N∗ � (x∗, y∗,

z∗, u∗, v∗), as shown in Figure 9(a). When σ3 increases
gradually, the stability region of N∗ also increases gradually.

Case (a): we choose a point L1 � (θ, σ1) � (0.7, 0.4) on
the left of the curve σ3 � 0.5; then, system (34) has one
coexistence equilibrium:

N
∗

� (11.56, 1.59, 7.54, 4.99, 2). (86)

)e eigenvalues of Jacobian matrix of (64) are

−0.06, − 0.176, − 0.25, − 0.22 − 0.37i and − 0.22 + 0.37i,

(87)

so N∗ is stable, as shown in Figure 10(b).
Case (b): we choose a point L2 � (θ, σ1) � (0.78, 0.4)

on the right of the curve σ3 � 0.5; then, system (34) has
one coexistence equilibrium:

N
∗

� (77.887, 1.381, 15.936, 9.698, 2). (88)
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Figure 8: Choose σ3 � 0.4, and the other parameter values are given in (22). (a) When θ � 0.5, F1(0, 2.556, 6.909, 5.349, 1.6) is LAS.
(b) When θ � 0.6, F∗(2.413, 1.628, 7.032, 5.002, 1.6) is LAS. (c) When θ � 0.635, F∗(27.345, 1.546, 8.624, 5.93, 1.6) is unstable. (d) When
θ � 0.635, the 3D phase portrait depicts TCs, ECs, and Treg.
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)e eigenvalues of Jacobian matrix of (64) are

− 0.906238, − 0.0248, − 0.25, 0.00641
− 0.66i and 0.00641 + 0.66i,

(89)

so N∗ is unstable, as shown in Figures 10(c) and 10(d).
According to the stability condition of tumor-free
equilibrium N0 in )eorem 11, combined immuno-
therapy surface can be obtained as

θ �
αδ31 ρσ2 − δ1δ2(  + σ1δ2δ31

α αc1δ2 + σ2c2( 

� 0.055σ1 + 0.2647(  1.366σ3 + 1.707( .

(90)

)erefore, the stability region of tumor-free equilib-
rium N0 of system (34) is obtained (see Figure 9(b)).
Case (c): we choose a point L3 � (σ1, σ2, θ) � (0.5, 0.5,

0.4) below surface (90); then, system (34) has a tumor-
free equilibrium:

N0 � (0, 8.3, 6.909, 7.505, 2). (91)

)e eigenvalues of Jacobian matrix of (64) are
−6.664, − 0.055, − 0.25, − 0.204 + 0.69i and − 0.204 − 0.69i,

(92)

so N0 is stable, as shown in Figure 10(a).
Case (d): we choose a point L4 � (σ1, σ2, θ) �

(0.5, 0.5, 0.8) above surface (90); then, system (34) has
a tumor-free equilibrium:

N0 � (0, 0.886, 6.909, 4.32, 2). (93)

)e eigenvalues of Jacobian matrix of (64) are

0.75, − 0.055, − 0.25, − 0.453 + 0.311i and

− 0.453 − 0.311i,
(94)

so N0 is unstable.
We choose combined immunotherapy parameter σ1 �

0.4 and σ3 � 0.4 to study the relationship between the
number of TCs x and the parameter θ (see Figure 9(c)).
By some calculations, we have θ8 � αδ31(ρσ2 − δ1δ2) +
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σ1δ2δ31/α(αc1δ2 + σ2c2) � 0.646, and θ9 � ρδ31/ c2 � 0.791.
And Hopf bifurcation point appears at θ∗CI � 0.727. We can
obtain the following result.

Proposition 7. When 0< θ< θ8, N0 exists and is LAS, and
N∗ is nonexistent. When θ8 < θ< θ

∗
CI, N0 exists and is un-

stable, and N∗ exists and is LAS. When θ∗CI < θ< θ9, N0 exists
and is unstable, and N∗ exists and is unstable. When θ > θ9,
N0 exists and is unstable, and N∗ is nonexistent.

For combined immunotherapy, by comparing the curves
in Figure 9(d), we know that, with the increase of σ1 and σ3,
the stability region of the tumour-free equilibrium of N0 of
system (34) gradually increases (the intersection point of
curves and x-coordinate gradually moves to the right), and
the stability region of equilibrium N∗ of system (34)
gradually increases (the blue curve gradually moves up-
ward). By comparing Figure 9 with Figures 5 and 7, it can be

seen that combined immunotherapy has better effects on
delaying the inhibitory effect of Tregs on tumor immune
response and helps the immune system to control more TCs
than ACI or MAI.

4. Discussion and Conclusion

Tregs-mediated tumor immune escape is one of the core
mechanisms of tumor immune regulation. And Tregs have
been found to mediate tumor evasion and immune escape in
many different solid tumors [46]. )e study on Tregs has a
very high research value and application prospect in the
immunotherapy of tumors. If the activity of Tregs is con-
trolled or blocked during the tumor immune response, or a
barrier is set to prevent Tregs from migrating into the tumor
microenvironment, then the effect of tumor immunotherapy
can be improved [47].
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Figure 10: (a) When σ1 � σ3 � 0.5, θ � 0.4, N0(0, 8.3, 6.909, 7.505, 2) is LAS. (b) When σ1 � 0.4, σ3 � 0.5, θ � 0.7,
N∗(11.56, 1.59, 7.54, 4.99, 2) is LAS. (c) When σ1 � 0.4, σ3 � 0.5, θ � 0.78, N∗(77.887, 1.381, 15.936, 9.698, 2) is unstable. (d) When
σ1 � 0.4, σ3 � 0.5, θ � 0.78, the 3D phase portrait depicts TCs, ECs, and Tregs.
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First, we developed a mathematical model to study the
inhibitory role of Tregs in the tumor immune system. For the
lower recognition of tumor antigens by the immune system,
the stronger the inhibition effect of Tregs on ECs, TCs can
easily escape the control of the immune system (see
Figure 4(a)). When the immune system is highly sensitive to
tumor antigens, the immune system activates ECs; the
stronger the inhibition effect of Tregs on ECs, the more
complicated interactions between TCs and immune cells
(see Figure 4(b)).

Second, we incorporated the previousmathematicalmodel
with three types of immunotherapy to obtain ACImodel, MAI
model, and combined both ACI andMAI model.)rough the
theoretical analysis and numerical simulations, we found that
ACI can control more TCs, but have no obvious effects on
reducing the inhibitory effect of Tregs on ECs (see Figure 5).
MAI can effectively reduce the inhibitory effect of Tregs on
ECs, but cannot control more TCs (see Figure 7). However,
combination immunotherapy with ACI and MAI is more
effective than single immunotherapy. It can not only signif-
icantly reduce the inhibitory effect of Tregs on ECs but also
help the immune system to kill TCs to the maximum extent
(see Figure 9). )erefore, we recommend the use of combined
immunotherapy in the treatment of tumors. Besides, clinical
trials are needed to further evaluate the safety and efficacy of
combined immunotherapy.

)is paper focused on the general process of tumor
immune response with negative feedback. Using the
mathematical model, it is possible to simulate the state of
tumors in the immune system at different inhibition states.
)e results of the study can contribute to the understanding
of tumor immunity; at the same time, it also provides new
ideas for the treatment of tumors. However, due to the
complexity and heterogeneity of tumor microenvironment,
there is still a certain gap between the mathematical model
and the description of the real interactions between the
tumor and immune system. )erefore, specific tumor
microenvironment and heterogeneous tumoral pop-
ulations should be considered in practical application to
make the model more realistic [34]. In addition to the
bilinear incidence model considered in this paper, non-
bilinear model with saturation incidence should be
employed in the further study [35]. Besides, other im-
portant factors such as immune activation delays
[36–38, 48], stochastic effects [39, 40, 49], and impulsive
perturbations [41, 42, 50] can be considered in the mod-
elling of the tumor immune system. )e tumor immune
response dynamics in vivo is very complex and not well
understood primarily because the measurements of the
necessary parameters are difficult in vivo [43].
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In this paper, we propose a stage-structured predator-prey model with migrations among patches in an n-patch environment.)e
net reproduction number for each patch in isolation is obtained along with the net reproduction number of the system of patches,
R0. Inequalities describing the relationship among these numbers are also given. Furthermore, threshold dynamics determined by
R0 is established: the predator dies out ifR0 < 1 while the predator persists ifR0 > 1. Focusing on the case with two patches, we
obtain that the dispersal decreases the net reproduction numberR0. By numerical simulations, we find that the dispersal may be a
good thing or a bad thing because the dispersal could make the predator population thrive or extinct, and hence we might seek
steady state in the ecological environment by controlling parameters related to the prey and the predator.

1. Introduction

)e effect of dispersal of organisms on population dynamics
is one of the central topics in ecology and evolutionary
biology [1–5]. Each species has a characteristic pattern of
variation in abundance over space. Understanding the
factors responsible for manifest diversity in distributional
patterns is an important prerequisite for studying survival
and extinction of species. For example, many types of birds
and mammals migrate from cold regions to warm regions in
search of a better habitat or a breeding site [6], and for
ecological communities of insects, dispersal of a predator is
usually driven by its nonrandom foraging behavior which
can often respond to prey-contact stimuli [7, 8].

During the past couple of decades, due to the prevalence
of the predator-prey relationship in the nature, predator-prey
models with diffusion in patchy environment have attracted
significant attention from ecologists, biologists, and bio-
mathematicians. Levin [9] proposed two-species competition
and prey-predator models with population dispersal among
patches. Takeuchi [10] and Kuang and Takeuchi [11] found
that stabilizing and destabilizing effects could be induced by
prey dispersal. Gramlich et al. [12] considered a 2-patch 2-
species system and found that dispersal between different

habitats influences the dynamics and stability of populations
considerably. Moreover, these effects depend on the local
interactions of a population with others. Kang et al. [8]
formulated a two-patch Rosenzweig–MacArthur prey-pred-
ator model with mobility only in the predator, and they found
that dispersal may stabilize or destabilize the coupled system;
dispersal may generate multiple interior equilibria or may
destroy interior equilibria. In a few patch models, the com-
mon findings for most studies on interactions of prey and
predator are that dispersal makes the dynamics very com-
plicated. )is means that dispersals of prey and predator play
an important role in regulating, stabilizing, or destabilizing
population dynamics of both prey and predator. In an n-patch
environment, due to the intricacies that arise from dispersal,
not much has been done yet. Qiu andMitsui [13] considered a
predator-prey system with diffusion and time delay in an n-
patch environment, where prey disperses between n patches
of a heterogeneous environment with barriers between
patches where a predator cannot cross. Al-Darabsah et al. [14]
proposed a prey-predator model in multiple patches through
the stage-structured maturation time delay with migrations
among patches. However, they only discussed the existence of
equilibrium points and the uniform persistence for the special
case of two patches.
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To our best acknowledgment, little attention has been
paid to the relation between the long-term dynamics and
dispersal rate of the multipatch predator-prey model. In two
recent references [15, 16], net reproduction numberR0 was
introduced into the nondiffusion predator-prey models; it
was shown that the net reproduction number determines its
threshold dynamics; hereR0 has the similar definition to the
basic reproduction number of general compartmental epi-
demic model, as discussed in [17]. Since there are many
excellent results on investigating the effects of mobility rate
on basic reproduction number and the threshold dynamics
of multipatch epidemic model, for reference, we refer to
Hsieh et al. [18], Wang et al. [19], and Wang et al. [20]. )is
motivates us to study an n-patch predator-prey model with
prey and predator diffusing simultaneously.

In this paper, we focus on a model with prey and
predator dispersal in an n-patch environment. In addition,
the predator is structured as juvenile and adult. We assume
that juvenile predators may diffuse as they can follow adult
one. We also need to pay attention to acquisition probability
of the juvenile predator, which can be zero and less than
unity. Moreover, the dispersal among patches may occur
only in a single species. )e main focus of our study of such
prey-predator interactions in an n-patch heterogeneous
environment is to explore the following ecological questions:

(1) What is the net reproduction number R0? And
whether there is a limit on R0?

(2) In a two-patch model, what is the relationship be-
tween the constant dispersal rates of prey and
predator and R0?

(3) How does dispersal of prey and predator affect the
extinction and persistence of predator in all patches?

(4) Howmay dispersal promote the coexistence of prey and
predator when predator goes extinct in a single patch?

)e paper is organized as follows. In the next section, we
propose the model and show the positiveness and ultimate
boundedness of solution under some conditions. In Section 3,
we derive a general formula for the net reproduction number
and give a bound forR0, show the local asymptotical stability
of the predator-free equilibriumwhenR0 < 1, and also obtain
the global attractivity of the predator-free equilibrium under
some conditions. Moreover, we consider the special case with
the linear predation function in a two-patch environment. In
Section 4, we prove the uniform persistence whenR0 > 1, and
hence the system has at least one positive equilibrium. Nu-
merical simulations are provided in Section 5 to demonstrate
our results. )e paper concludes with a brief discussion.

2. The Model

In this section, we formulate a predator-prey model in n

patches by taking into consideration diffusion among patches
and a stage structure in the predator. In each patch i, there are
prey individuals, juvenile predator individuals, and adult
predator individuals, denoted by Ni, PJ

i , and PA
i , respectively.

For patch i, let ri be the intrinsic growth rate in the
absence of predation and Ki be the carrying capacity of the

prey; dN
i , dJ

i , and dA
i denote the death rates of prey,

juvenile predators, and adult predators, respectively; we
always assume ri > dN

i ; σi stands for the acquisition prob-
ability of juvenile predators and σi ∈ [0, 1); we always as-
sume ei to be the probability of the captured prey being
converted into juvenile predators; αi is the progression rate
of juvenile predators. All parameters are assumed to be
positive except that σi can be zero.

We assume that the predation function fi(Ni) satisfies
the following basic assumptions for Ni ∈ (0,∞).

(1) fi(Ni)> 0, i ∈ Nn � 1, 2, . . . , n{ }.
(2) fi(Ni) � Nigi(Ni), gi(Ni) is a continuous function

about Ni and gi(Ni)> 0, i ∈ Nn.
(3) fi
′(Ni)≥ 0, i ∈ Nn.

)e following three types of predation functionsf(N) in
[21] satisfy the above assumptions.

(1) f(N) � bN, b> 0.
(2) f(N) � (bN/1 + cN), b, c> 0.
(3) f(N) � (bN2/1 + cN2), b, c> 0.

We assume that there is no capture and captured be-
havior in the diffusion process, and mK

ij for K � N, J, A are
the constant dispersal rates from patch j to patch i for i≠ j of
prey, juvenile predators, and adult predators, respectively,
with mK

ii � 0. It is assumed that the matrices MK � (mK
ij),

i, j ∈ Nn for K � N, J, A are irreducible. )e flowchart of
diffusion is shown in Figure 1.

Based on the above assumptions, our model is as follows:

_Ni � riNi 1 −
Ni

Ki

  − fi Ni(  PA
i + σiP

J
i  − dN

i Ni

+ 
j∈Nn

mN
ij Nj − 

j∈Nn

mN
ji Ni,

_P
J

i � eifi Ni(  PA
i + σiP

J
i  − dJ

i + αi PJ
i

+ 
j∈Nn

mJ
ijP

J
j − 

j∈Nn

mJ
jiP

J
i ,

_P
A

i � αiP
J
i − dA

i PA
i + 

j∈Nn

mA
ijP

A
j − 

j∈Nn

mA
jiP

A
i .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Similar to [19], for a vector x ∈ Rn, we use diag(x) to
denote the n × n diagonal matrix, whose diagonal elements
are the components of x. We use the ordering inRn generated
by the cone Rn

+, that is, x ≤ y if y − x ∈ Rn
+, x < y if x ≤ y and

x ≠ y, and finally x≪ y means xi <yi for any index i.
Denote the vector

N(t),PJ
(t),PA

(t)  � N1(t), . . . , Nn(t), P
J
1(t), . . . ,

P
J
n(t), P

A
1 (t), . . . , P

A
n (t))

T ∈ R3n
+ ,

(2)

A0 � N(0),PJ
(0),PA

(0) . (3)
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Moreover, we assume that each component of A0 is
nonnegative with the following initial conditions:


i∈Nn

Ni(0)> 0,


i∈Nn

P
A
i (0) + σiP

J
i (0) > 0.

(4)

)en, it follows from the standard existence and
uniqueness theorem for ordinary differential equations that
there is a unique solution to system (1).

Theorem 1. Consider system (1) with nonnegative initial
conditions (4). 4en, for each i ∈ Nn and t> 0, N(t), PJ(t),
and PA(t) are all positive and ultimately bounded.

Proof of 4eorem 1. Firstly, we prove that for i ∈ Nn,
Ni(t)> 0 for t> 0. For convenience, we rewrite the first
equation of (1) as

_Ni(t) � Pi(t)Ni(t) + Qi(t), i ∈ Nn, (5)

where

Pi(t) � ri −
ri

Ki

Ni(t) − gi Ni(t)( 

· P
A
i (t) + σiP

J
i (t) − d

N
i − 

j∈Nn

m
N
ji

⎛⎝ ⎞⎠,

Qi(t) � 
j∈Nn

m
N
ij Nj(t).

(6)

Let I1 � i ∈ Nn | Ni(0)> 0  and I2 � Nn\I1. Since
i∈Nn

Ni(0)> 0, we know that I1 ≠∅. If i0 ∈ I1, then from (5)

with i � i0, we easily see that Ni0
(t)> 0 for t> 0. If I2 � ∅,

then we are done. Now suppose that I2 ≠∅. Since (mN
ij ) is

irreducible, there exists i1 ∈ I2 such that mN
i1j ≠ 0 for some

j ∈ I1. )en, Qi1
(t)> 0 for t> 0. )is and (5) with i � i1

imply that Ni1
(t)> 0 for t> 0. Denote J1 � I1 ∪ i1  and

J2 � I2\ i1 . If J2 � ∅, then we are done. Otherwise, con-
tinuing this way, after a finite number of steps, we have
Ni(t)> 0 for t> 0 and i ∈ N.

Next, we prove that for i ∈ Nn, PJ
i (t)> 0 and PA

i (t)> 0
for t> 0. Since i∈Nn

(PA
i (0) + σiP

J
i (0))> 0, there exists

i2 ∈ Nn such that PA
i2

(0) + σi2
PJ

i2
(0)> 0. First, we assume that

PA
i2

(0)> 0. By noting

_P
A

i (t) � − d
A
i − 

j∈Nn

m
A
ji

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦P
A
i (t) + αiP

J
i (t) + 

j∈Nn

m
A
ijP

A
j (t)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(7)

which is similar to (5), we can use similar arguments as those
of showing Ni(t)> 0 for t> 0 and i ∈ Nn to obtain PA

i (t)> 0
for t> 0 and i ∈ Nn. )en, from

_P
J

i (t)≥ − d
J
i + αi + 

j∈Nn

m
J
ji

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦P
J
i (t) + eifi Ni(t)( P

A
i (t),

(8)

we see that PJ
i (t)> 0 for t> 0 and i ∈ Nn. Now, assume that

σi2
PJ

i2
(0)> 0, which implies that PJ

i2
(0)> 0. )en, from the

second equation of (1), we get PJ
i2

(t)> 0 for t> 0. )is,
combined with the third equation of (1), yields PA

i2
(t)> 0 for

t> 0. )en as before, we can show that PA
i (t)> 0 and

PJ
i (t)> 0 for t> 0 and i ∈ Nn.

eifi (Ni) (PA
i + σiP j

i)

ejfj (Nj) (PA
j + σjPJ

j)

riNi (1 – Ni/Ki)

rjNj (1 – Nj/Kj)

di
N

Ni

mN
ijmN

ji mJ
ijmJ

ji mA
ji mA

ij

dJ
i di

A

Pi
A

dj
N dJ

j

PJ
j

αjPJ
j

αiPJ
i

dj
A

Pj
A

Prey

Nj

Prey

Juvenile predator

Juvenile predator

Adult predator

Adult predator

PJ
i

Figure 1: Flowchart of the dispersal process between patch i and j.
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Finally, we show the boundedness of solutions. On the
one hand, let N(t) � i∈Nn

Ni(t). )en, by the Cau-
chy–Schwartz inequality, we have

_N(t)≤ 
i∈Nn

ri − d
N
i Ni(t) − 

i∈Nn

ri

Ki

N
2
i (t)

≤ max
i∈Nn

ri − d
N
i N(t) − min

i∈Nn

ri

Ki

  
i∈Nn

N
2
i (t)

≤ max
i∈Nn

ri − d
N
i N(t) − min

i∈Nn

ri

Ki

 
N2(t)

n
.

(9)

It follows that limsupt⟶∞N(t)≤ nmaxi∈Nn
ri − dN

i /
mini∈Nn

ri/Ki} . On the other hand, let G(t) �

i∈Nn
(eiNi(t) + PJ

i (t) + PA
i (t)). )en,

_G(t) � 
i∈Nn

eiriNi(t) 1 −
Ni(t)

Ki

  − eid
N
i Ni(t) + ei 

j∈Nn

m
N
ij Nj(t) − ei 

j∈Nn

m
N
ji Ni(t) − d

J
i P

J
i (t) − d

A
i P

A
i (t)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≤ 
i∈Nn

2eiriNi(t) + ei max
j∈Nn

m
N
ij N(t)  − 

i∈Nn

eiriNi(t) + d
J
i P

J
i (t) + d

A
i P

A
i (t) 

≤ max
i∈Nn

2eiri  + 
i∈Nn

ei max
j∈Nn

m
N
ij  ⎛⎝ ⎞⎠N(t) − min

i∈Nn

ei, d
J
i , d

A
i G(t).

(10)

It is easy to see from this and
limsupt⟶∞N(t)≤ nmaxi∈Nn

ri − dN
i /mini∈Nn

ri/Ki} that

lim sup
t⟶∞

G(t)≤
maxi∈Nn

2eiri  + i∈Nn
eimaxj∈Nn

mN
ij  

mini∈Nn
ei, dJ

i , dA
i 

×
nmaxi∈Nn

ri − dN
i 

mini∈Nn
ri/Ki}.

(11)
)is completes the proof.
To show the existence of predator-free equilibria (PFE),

we let PJ
i � PA

i � 0, i ∈ Nn in equation (1) to get

_Ni � riNi 1 −
Ni

Ki

  − dN
i Ni + 

j∈Nn

m
N
ij Nj

− 
j∈Nn

m
N
ji Ni, 

i∈Nn

Ni(0)> 0.

(12)

In order to obtain a positive equilibrium for system (12),
we assume that

s diag ri − d
N
i  + MN

 > 0, (13)

where s(·) represents the stability modulus of an n × n

matrix and is defined by s(H): � max Reλ | λ{ is an eigen-
value ofH} for an n × n matrixH. From [19, 20, 22], we have
the following two lemmas. □

Lemma 1. Under assumption (13), system (12) admits a
unique equilibrium N0 � (N0

1, N0
2, . . . , N0

n)T, which is posi-
tive and globally asymptotically stable in Rn

+\ 0{ }.

Lemma 2. Under assumption (13), system (1) admits a
unique PFE P0 � (N0, 0, 0)T, where N0 � (N0

1, N0
2, . . . ,

N0
n)T ∈ Rn

+ is the unique equilibrium of (12) and
0 � (0, . . . , 0)

T

n√√√√√√√√
∈ Rn

+.

3. Threshold Dynamics

3.1. 4e Net Reproduction Number. In this section, we first
give definition of the net reproduction number R0 for the
general predator-prey dispersal model (1), which is similar to
the basic reproduction number for epidemic system; for
reference, we refer to [17, 23].

Let P0 be the PFE of (1). From [17], we have

F �
F11 F12
0 0

  �
diag eiσifi N0

i( (  diag eifi N0
i( ( 

0 0
 ,

(14)

V �
V11 0

− V21 V22
 , (15)

where

V11 � diag d
J
i + αi + 

j∈Nn

m
J
ji

⎛⎝ ⎞⎠ − MJ
,

V21 � diag αi( ,

V22 � diag d
A
i + 

j∈Nn

m
A
ji

⎛⎝ ⎞⎠ − MA
.

(16)

Note that V11 and V22 are both irreducible nonsingular
M-matrices with positive column sums and hence V− 1

11 > 0
and V− 1

22 > 0. Following the procedure introduced in [17], the
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net reproduction number R0 of equation (1) is given by
R0 � ρ(FV− 1), where ρ represents the spectral radius of the
matrix. Let M1 � F − V. )en, by [17], there hold two
equivalences:

R0 > 1⟺ s M1( > 0,

R0 < 1⟺ s M1( < 0.
(17)

As

FV− 1
�

F11 F12
0 0

 
V− 1

11 0

V− 1
22V21V− 1

11 V− 1
22

⎛⎝ ⎞⎠, (18)

we have

R0 � ρ F11V
− 1
11 + F12V

− 1
22V21V

− 1
11 . (19)

In equation (19), F11V− 1
11 accounts for the contribution of

juvenile predators to the adult predators, while
F12V− 1

22V21V− 1
11 accounts for the contribution by adult

predators themselves. Diffusion rates of preys influence the

predator population capture rate, and diffusion rates of
predators affect their consumption.

)e net reproduction number gives an important
threshold of the n-patch diffusion predator-prey system.

Theorem 2. Consider model (1). Suppose (13) holds. If
R0 < 1, then the PFE is locally asymptotically stable, and if
R0 > 1, then the PFE is unstable. Moreover, ifR0 < 1, then the
PFE is globally attractive for solutions with initial conditions
(2).

Proof of 4eorem 2. It follows from ([10], )eorem 2) that
the PFE is locally asymptotically stable if R0 < 1 and un-
stable if R0 > 1.

Now, we prove the global attractivity of the PFE as
follows.

Let (N(t),PJ(t), PA(t)) be an arbitrary solution of (1).
We first show that limt⟶∞ PJ(t) � limt⟶∞PA(t) � 0.

Since s(M1)< 0, there exists an ε> 0 such that
s(M1 + M2(ε))< 0, where

M2(ε) �
diag eiσi fi N0

i + ε(  − fi N0
i(  (  diag ei fi N0

i + ε(  − fi N0
i(  ( 

0 0
 . (20)

Note that N(t) satisfies

_Ni(t)≤ riNi(t) 1 −
Ni(t)

Ki

  − d
N
i Ni(t)

+ 
j∈Nn

m
N
ij Nj(t) − 

j∈Nn

m
N
ji N(t),

(21)

where i ∈ Nn. By Lemma 1 and Comparison )eorem
[24, 25], we have lim supt⟶∞N(t)≤N0. It follows that there
exists t0 ≥ 0 such thatN(t)≤N0 + (ε, . . . , ε n)

√√√√√√
for t≥ t0.)en,

for t≥ t0, (PJ(t),PA(t)) satisfies

_PJ
(t)

_PA
(t)

⎛⎝ ⎞⎠≤ M1 + M2(ε)( 
PJ(t)

PA(t)
 . (22)

Since s(M1 + M2(ε))< 0, we obtain limt⟶∞PJ(t) �

limt⟶∞PA(t) � 0 by applying Comparison )eorem
[24, 25].

Next, we prove that limt⟶∞N(t) � N0. It suffices to
show lim inf t⟶∞N(t)≥N0 as lim supt⟶∞N(t)≤N0. Since
gi is continuous and Ni is bounded, i ∈ Nn, there exists κ> 0
such that gi(Ni(t))≤ κ for t≥ 0. By equation (13), there exists
η0 > 0 such that s(diag(ri − dN

i − (1 + σi)κη) + MN)> 0 for
η ∈ (0, η0). For any η ∈ (0, η0), there exists t1 ≥ 0 such that
0≤PJ

i (t), PA
i (t)≤ η for t≥ t1. )en,

_Ni(t)≥ riNi(t) 1 −
Ni(t)

Ki

  − d
N
i + 1 + σi( ηκ Ni(t)

+ 
j∈Nn

m
N
ij Nj(t) − 

j∈Nn

m
N
ji Ni(t)

(23)

for t≥ t1 and i ∈ Nn. By Lemma 1 and Comparison)eorem
[24, 25], we know that lim inft⟶∞N(t)≥N0(η), where
N0(η) is the positive equilibrium of (12) with di being
replaced by dN

i + (1 + σi)ηκ, i ∈ Nn. It is easy to see that
limη⟶0 N0(η) � N0. )erefore, we have
lim inf t⟶∞N(t)≥N0 as required.

To summarize, we have shown that
limt⟶∞(N(t),PJ(t),PA(t)) � (N0, 0, 0). )is completes
the proof.

Next, we consider the effect of dispersal on R0 and
provide lower and upper bounds of R0. In the rest of this
paper, we let ai � dJ

i + αi for i ∈ Nn. When there is no dif-
fusion of prey, that is, MN � [0]n×n, we have
N0 � (N0

1, N0
2, . . . , N0

n)T with N0
i � K(ri − dN

i )/ri for i ∈ Nn

and the net reproduction number in patch i in isolation is
given by

R
(i)
0 �

eiσifi Ki ri − dN
i( /ri( 

ai

+
eiαifi Ki ri − dN

i( /ri( 

dA
i ai

.

(24)

We define a modified reproduction number in patch i:

R
(i)

0 �
eiσifi Ki ri − dN

i( /ri( 

ai + 
n
j�1m

J
ji

+
eiαifi Ki ri − dN

i( /ri( 

dA
i + 

n
j�1m

A
ji  ai + 

n
j�1m

J
ji 

.

(25)

Clearly, R
(i)

0 <R
(i)
0 . )en, we can obtain the following

result on the bounds for the net reproduction number for
system (1), in terms of the numbers defined in equations (24)
and (25) for each patch. □
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Theorem 3. For system (1), if MN � [0]n×n, then

R0 ≥ max
1≤i≤n

R
(i)

0 . (26)

Moreover, if ai � a, ei � e, αi � α, σi � σ, fi � f,
dN

i � d1, dA
i � d2, and ri � r for i ∈ Nn, then

max max
1≤i≤n

R
(i)

0 , min
1≤i≤n

R
(i)
0 ≤R0 ≤ max

1≤i≤n
R

(i)
0 . (27)

Proof of 4eorem 3. From [18, 26], let Vjj[1′] denote the
matrix obtained by deleting the first row and the first column
ofVjj (j � 1, 2); Y � [yij] and Z � [zij] denoteV− 1

11 andV
− 1
22 ,

respectively. Let W � [wij] � G + H, where
G � [gij] � F11Y and H � [hij] � F12ZV21Y. It follows that
yij > 0 and zij > 0 for i, j ∈ Nn. By [26], we have

R0 � ρ(W)≥wii � gii + hii, i ∈ Nn. (28)

Here,

g11 � e1σ1f1
K1 r1 − dN

1( 

r1
 

y11 � e1σ1f1
K1 r1 − dN

1( 

r1
 

detV11 1′ 

detV11
.

(29)

By virtue of Fisher’s inequality [27],

detV11 ≤ a1 + 
n

j�1
m

J
j1

⎛⎝ ⎞⎠detV11 1′ . (30)

)en,

g11 ≥
e1σ1f1 K1 r1 − dN

1( /r1( ( 

a1 + 
n
j�1m

J
j1

. (31)

Similarly,

h11 � e1α1f1
K1 r1 − dN

1( 

r1
 z11y11

+ 
n

k�2
e1f1

K1 r1 − dN
1( 

r1
 αkz1kyk1.

(32)

)us, we have

h11 ≥ e1α1f1
K1 r1 − dN

1( 

r1
 z11y11

� e1α1f1
K1 r1 − dN

1( 

r1
 

detV22 1′ 

detV22

detV11 1′ 

detV11
.

(33)

Again, by Fisher’s inequality,

h11 ≥
e1α1f1 K1 r1 − dN

1( /r1( 

dA
1 + 

n
j�1m

A
j1  a1 + 

n
j�1m

J
j1 

⎛⎝ ⎞⎠. (34)

)en, from these conclusions, we know

R0 ≥ R
(1)

0 . (35)
Similarly, it can be shown that

R0 ≥ R
(i)

0 , i � 2, 3, . . . , n, (36)

and (26) is proved.
If we let ai � a, ei � e, αi � α, σi � σ, fi � f, dN

i � d1,
dA

i � d2, and ri � r for i ∈ Nn, then wij � eσf(Ki(r − d1)/
r)yij + eαf(Ki(r − d1)/r)

n
k�1zikyik for i, j ∈ Nn. Without

loss of generality, assume that 0<K1 ≤K2 ≤ . . . ≤Kn. From
the fact that the sum of each column of the matrix V11 is
equal to a> 0 and the sum of each column of the matrix V22
is d2 > 0, we see that 

n
i�1yij � (1/a) and 

n
i�1zij � (1/d2) for

j ∈ Nn. )us, for the matrix W, the sum of column j is



n

i�1
wij � 

n

i�1
eσf

Ki r − d1( 

r
 yij + 

n

i�1
eαf

Ki r − d1( 

r
  

n

k�1
zikyik

≤ eσf
Kn r − d1( 

r
  

n

i�1
yij + eαf

Kn r − d1( 

r
  

n

i�1


n

k�1
zikyik

� eσf
Kn r − d1( 

r
  

n

i�1
yij + eαf

Kn r − d1( 

r
  

n

k�1


n

i�1
zik

⎛⎝ ⎞⎠yik �
eσf Kn r − d1( /r( 

a
+

eαf Kn r − d1( /r( 

d2a

� R
(n)
0 .

(37)

Similarly, we can prove 
n
i�1wij ≥ (eσf(K1(r − d1)/

r)/a) + (e αf(K1(r − d1)/r)/d2a) � R
(1)
0 . From [26], we

obtain the following inequalities:

min1≤i≤nR
(i)
0 ≤R0 ≤max1≤i≤nR

(i)
0 . (38)

Combining this with (26), we get (27). )is completes
the proof. □

3.2.4eModelwithTwoPatches. In this section, we consider
a special case of equation (1) with n � 2 and assume that
fi(Ni) � biNi, bi > 0 for i � 1, 2, namely,
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_N1 � r1N1 1 −
N1

K1
  − b1N1 PA

1 + σ1P
J
1  − dN

1 N1 + mN
12N2 − mN

21N1,

_P
J

1 � e1b1N1P
A
1 + e1b1σ1N1P

J
1 − dJ

1 + α1 PJ
1 + mJ

12P
J
2 − mJ

21P
J
1,

_P
A

1 � α1P
J
1 − dA

1 PA
1 + mA

12P
A
2 − mA

21P
A
1 ,

_N2 � r2N2 1 −
N2

K2
  − b2N2 PA

2 + σ2P
J
2  − dN

2 N2 + mN
21N1 − mN

12N2,

_P
J

2 � e2b2N2P
A
2 + e2b2σ2N2P

J
2 − dJ

2 + α2 PJ
2 + mJ

21P
J
1 − mJ

12P
J
2,

_P
A

2 � α2P
J
2 − dA

2 PA
2 + mA

21P
A
1 − mA

12P
A
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

)e PFE of equation (39) is (N0
1, N0

2, 0, 0, 0, 0)T, where
(N0

1, N0
2)

T satisfies

r1N1 1 −
N1

K1
  − dN

1 N1 + mN
12N2 − mN

21N1 � 0,

r2N2 1 −
N2

K2
  − dN

2 N2 + mN
21N1 − mN

12N2 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Let

N0
� N

0
1, N

0
2 

T
. (41)

Note that

F11 � diag e1σ1b1N
0
1, e2σ2b2N

0
2 ,

F12 � diag e1b1N
0
1, e2b2N

0
2 ,

(42)

V21 � diag α1, α2( , (43)

V11 �
a1 + mJ

21 − mJ
12

− mJ
21 a2 + mJ

12
 ,

V22 �
dA
1 + mA

21 − mA
12

− mA
21 dA

2 + mA
12

 .

(44)

Recall that ai � dJ
i + αi for i � 1, 2. Hence, we have

R0 � ρ F11V
− 1
11 + F12V

− 1
22V21V

− 1
11  � ρ(W), (45)

where

W �
w11 w12

w21 w22
 , (46)

with

w11 �
e1σ1b1N0

1 a2 + mJ
12 

a1a2 + a1m
J
12 + a2m

J
21

+
e1b1α1N0

1 a2 + mJ
12  dA

2 + mA
12(  + e1b1α2N0

1m
J
21m

A
12

a1a2 + a1m
J
12 + a2m

J
21  dA

1 dA
2 + dA

1 mA
12 + dA

2 mA
21( 

,

w12 �
e1σ1b1N0

1m
J
12

a1a2 + a1m
J
12 + a2m

J
21

+
e1b1α1N0

1m
J
12 dA

2 + mA
12(  + e1b1α2N0

1m
A
12 a1 + mJ

21 

a1a2 + a1m
J
12 + a2m

J
21  dA

1 dA
2 + dA

1 mA
12 + dA

2 mA
21( 

,

w21 �
e2σ2b2N0

2m
J
21

a1a2 + a1m
J
12 + a2m

J
21

+
e2b2α1N0

2m
A
21 a2 + mJ

12  + e2b2α2N0
2m

J
21 dA

1 + mA
21( 

a1a2 + a1m
J
12 + a2m

J
21  dA

1 dA
2 + dA

1 mA
12 + dA

2 mA
21( 

,

w22 �
e2σ2b2N0

2 a1 + mJ
21 

a1a2 + a1m
J
12 + a2m

J
21

+
e2b2α1N0

2m
J
12m

A
12 + e2b2α2N0

2 a1 + mJ
21  dA

1 + mA
21( 

a1a2 + a1m
J
12 + a2m

J
21  dA

1 dA
2 + dA

1 mA
12 + dA

2 mA
21( 

.

(47)
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It follows from equation (45) that

R0 �
1
2

w11 + w22 +

�������������������

w11 − w22( 
2

+ 4w12w21



 . (48)

Theorem 4. If e1 � e2 � e, σ1 � σ2 � σ, a1 � a2 � a,
b1 � b2 � b, α1 � α2 � α, dA

1 � dA
2 � d, mJ

ij � m, and
mA

ij � km, i, j � 1, 2, where k is a positive constant, then R0
decreases as m increases.

Proof of 4eorem 4. From equation (46) and under the
assumptions on parameters, we get

W �
w11 w12

w21 w22
  �

b1N
0
1u b1N

0
1v

b2N
0
2v b2N

0
2u

 , (49)

where

u �
eσ(a + m)

a(a + 2m)
+

eα 2km2 +(d + ka)m + ad 

ad(a + 2m)(d + 2km)
,

v �
eσm

a(a + 2m)
+

eαm(2km + d + ak)

ad(a + 2m)(d + 2km)
.

(50)

By equation (48), R0 is the larger root of the following
quadratic equation:

λ2 − b1N
0
1 + b2N

0
2 uλ + b1b2N

0
1N

0
2 u

2
− v

2
  � 0. (51)

Note that

u + v �
e(σd + α)

ad
,

u − v �
e[α + σ(d + 2km)]

(a + 2m)(d + 2km)
,

(52)

u
2

− v
2

�
e(σd + α)

ad
·

e[α + σ(d + 2km)]

(a + 2m)(d + 2km)
. (53)

It follows from u + v � e(σd + α)/ad that
zu/zm � − zv/zm. Taking partial derivatives with respect to
m for equation (51) gives

2λ − b1N
0
1 + b2N

0
2 u 

zλ
zm

� λ b1N
0
1 + b2N

0
2 

zu

zm
− b1b2N

0
1N

0
2
z u2 − v2( 

zm
�

λ b1N
0
1 + b2N

0
2  − 2b1b2N

0
1N

0
2
e(α + σd)

ad
 

zu

zm
.

(54)

Moreover, from the definition of u, we have

zu

zm
� −

eσa

a(a + 2m)2
−

eα
ad

·
6kmad + 8k2m3 + ad2 + 4km2d + ka2d + 4k2m2a

(a + 2m)2(d + 2km)2
< 0. (55)

Note that 2λ|λ�R0
> (b1N

0
1 + b2N

0
2)u. )us, to show

zR0/zm< 0, that is to say, zλ/zm|λ�R0
< 0, it is sufficient to

show for λ � R0,

b1N
0
1 + b2N

0
2 λ − 2b1b2N

0
1N

0
2 ·

e(σd + α)

ad
> 0. (56)

We claim that λ> (1/2)(b1N
0
1 + b2N

0
2)(u + v). Since

λ�
1
2

b1N
0
1 + b2N

0
2 u +

���������������������������������

b1N
0
1 + b2N

0
2( 

2
u2 − 4b1b2N

0
1N

0
2 u2 − v2( )



 ,

(57)

it is equivalent to show that

b1N
0
1 + b2N

0
2 

2
u
2

− 4b1b2N
0
1N

0
2 u

2
− v

2
 > b1N

0
1 + b2N

0
2 

2
v
2
,

(58)

or

b1N
0
1 − b2N

0
2 

2
u
2

− v
2

 > 0. (59)

)is is automatically true since u> v> 0. It follows from
λ> (1/2)(b1N

0
1 + b2N

0
2)(u + v) that

b1N
0
1 + b2N

0
2 λ>

1
2

b1N
0
1 + b2N

0
2 

2
(u + v)

�
1
2

e(σd + α)

ad
b1N

0
1 + b2N

0
2 

2
.

(60)

)us, as required,

b1N
0
1 + b2N

0
2 λ − 2b1b2N

0
1N

0
2
e(σd + α)

ad

>
1
2

e(σd + α)

ad
b1N

0
1 − b2N

0
2 

2
> 0.

(61)

)is completes the proof. □

Remark 1. Under the condition of )eorem 4, the following
result can be proved similarly; each entry of the matrix W
decreases in terms of a or d, and it increases in terms of e, σ,
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and α. Hence, the net reproduction number decreases in
terms of a or d, and it increases in terms of e, σ, and α.

4. Persistence and Existence of
Positive Equilibria

Under certain conditions, we use the techniques of persis-
tence theory [28, 29] to show the uniform persistence of the
predator population and the existence of at least one positive
equilibrium (or coexistence equilibrium) when R0 > 1.

Theorem 5. If equation (13) holds and R0 > 1, then system
(1) is uniformly persistent, that is, there exists a positive
constant ϵ such that every solution Φt(A0) ≡
(N(t),PJ(t),PA(t)) with A0 ∈ Rn

+ × IntR2n
+ satisfies

lim inf
t⟶∞

P
J
i (t), P

A
i (t) ≥ (ε, ε), i ∈ Nn. (62)

Hence, it has at least one positive equilibrium.

Proof of 4eorem 5. Let
X � A0 ∈ R

3n
+

 Ni(0)> 0, i ∈ Nn ,

X0 � A0 ∈ X
 P

J
i (0)> 0, P

A
i (0)> 0, i ∈ Nn ,

(63)

z X0 � X∖ X0. (64)

It then suffices to prove that (1) is uniformly persistent
with respect to ( X0, z X0).

It is easy to see from )eorem 1 that X0 is positively
invariant and system (1) is dissipative. Define

Mz :� A0 ∈ z X0
Φt A0(  ∈ z X0, t≥ 0 . (65)

We claim that

Mz � A0 ∈ X
 P

J
i (0) � P

A
i (0) � 0, i ∈ Nn . (66)

Suppose on the contrary that there exists i0 ∈ Nn such
that either PJ

i0
(0)> 0 or PA

i0
(0)> 0, then similar arguments as

those in the proof of)eorem 1 gives PJ
i (t)> 0 and PA

i (t)> 0
for t> 0 and i ∈ Nn. )is contradicts with the definition of
Mz, and hence the claim has been proved.

Next, choose ε> 0 such that s(M1 + M2(− ε))> 0. )en,
choose η> 0 such that N0(η)≥N0 − (ε/2, . . . , ε/2 n)

√√√√√√√√√√
and

s(diag(ri − dN
i − (1 + σi)κη) + MN)< 0. Here, M2(ε),

N0(η), and κ are those defined in the proof of)eorem 2.We
claim that

lim sup
t⟶∞

max
i∈Nn

P
J
i (t), P

A
i (t) >

η
2
. (67)

It is similar to the proof of )eorem 2. By way of
contradiction, suppose there exists A0 such that
lim supt⟶∞maxi∈Nn

PJ
i (t) , PA

i (t)}≤ η/2. )en, there exists
t0 ≥ 0 such that

max
i∈Nn

P
J
i (t), P

A
i (t) ≤ η, for t≥ t0. (68)

)en, N(t) satisfies (23) for t≥ t0. As
s(diag(ri − dN

i − (1+σi)κη) +MN)<0, we have lim inf t⟶∞
N(t)≥N0(η) by Lemma 1 and Comparison )eorem. )us,

there exists t1≥t0 such that N(t)≥N0 − (ε, . . . ,εn)
√√√√√√

for t≥t1.
It follows that (PJ(t),PA(t)) satisfies

_PJ
(t)

_PA
(t)

⎛⎝ ⎞⎠≥ M1 + M2(− ε)( 
PJ(t)

PA(t)
 , (69)

for t≥ t1. Consider the following auxiliary system:

_P
J

(t)

_P
A

(t)

⎛⎜⎜⎝ ⎞⎟⎟⎠ � M1 + M2(− ε)(  PJ
(t)PA

(t)). (70)

Since s(M1 + M2(− ε))> 0, we know λ: � s(M1 +

M2(− ε)) is an eigenvalue of M1 + M2(− ε) with a positive
eigenvector, say v. As (PJ(t1),PA(t1))≫ (0, 0), there exists
ξ > 0 such that (PJ(t1),PA(t1))≥ ξv. Again, by Comparison
)eorem, we have (PJ(t),PA(t))≥ ξeλ(t− t1)v for t≥ t1. It
follows that none of PJ

i (t) and PA
i (t), i ∈ Nn, is bounded, a

contradiction to the boundedness of solutions (see)eorem 1).
Note that N0 is globally asymptotically stable in Rn

+∖ 0{ }

for equation (17). By the above claim, we know that both
0, 0, 0{ } and P0  are isolated invariant subsets in X,

Ws((0, 0, 0))∩A0 � ∅, where Ws((0, 0, 0)) is stable mani-
fold of ((0, 0, 0)). Clearly, every orbit in Mz converges to
either (0, 0, 0) or P0, and (0, 0, 0){ and P0  are acyclic in
Mz. By ([30], )eorem 5 and Remark 1), we conclude that
system (1) is uniformly persistent with respect to ( X0, z X0).
By [31], system (1) has at least one equilibrium
(N∗,PJ∗,PA∗) ∈ A0 with PJ∗ ≫ 0 and PA∗ ≫ 0. We further
claim that N∗ ≠ 0. Otherwise, if N∗ � 0, by summing up the
equilibrium equations for PJ, we get i∈Nn

(dJ
i + αi)P

J∗
i � 0.

)us, PJ∗ � 0, a contradiction. )is completes the
proof. □

5. Simulations

In this section, numerical simulations are used to analyse the
effects of the diffusion rates mN

ij , mJ
ij, and mA

ij on the net
reproduction number R0 in a two-patch environment.
Here, for having concrete observation, we let mJ

ij � mA
ij � m

and mN
ij � mN, i, j � 1, 2.

First, we fix the parameters as follows:

r1 � 0.45,

b1 � 1,

σ1 � 0.01,

e1 � 0.3,

α1 � 0.4,

d
J
1 � d

A
1 � 0.3,

r2 � 0.5,

b2 � 1,

σ2 � 0.01,

e2 � 0.3,

α2 � 0.4,

d
J
2 � d

A
2 � 0.3.

(71)
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We change the reproduction number of each isolated
patch by changing the carrying capacity and the death rate of
prey. Table 1 summarizes all the possibilities of the repro-
duction numbers in both patches.

When mN⟶ 0, from Figure 2, we find that the net
reproduction numberR0 increases and then decreases as m

increases, and the final value of the threshold is greater than
unity, but it is not difficult to observe that R0 is almost
unchanged if the predator population hardly diffuses
(m⟶ 0). When the prey population and the predator
population simultaneously diffuse, R0 increases and then
decreases, and the final value of the threshold is less than
unity. In Figure 3, if we reduce the carrying capacity and the
death rate of the second isolated patch in Figure 2, that is, K2
decreases from 3 to 2.45 and dN

2 decreases from 0.23 to 0.15,
we draw the conclusion thatR0 increases and the final value
is greater than unity as m increases no matter how mN

changes, and R0 does not change if m⟶ 0.
When we increase the production number of the first

isolated patch and haveR01 > 1,R02 < 1 in Figure 4, it is easy
to find that the thresholdR0 always decreases and is close to
unity asm increases andmN⟶ 0. On the contrary,R0 first
decreases and then increases and is greater than unity as mN

increases when m⟶ 0. However,R0 always decreases and
is less than unity as the prey population and the predator
population simultaneously diffuse. In Figure 5, we increase
the parameters including the carrying capacity and the death
rate in the first isolated patch in Figure 4, that is, K1 increases
from 2.8 to 3.2 and dN

1 increases from 0.15 to 0.18. Under
these circumstances, we find that the curve of R0 changes a
lot. )e curve ofR0 is waved as m increases when mN⟶ 0
and is greater than unity when m⟶ 1. R0 always de-
creases and tends to stabilize as mN increases when m⟶ 0.
When the dispersal of the prey and the predator happens
simultaneously, the curve of R0 is waved and is finally less
than unity.

)e situations of Figures 6 and 7 are similar to Figures 4
and 5 owing to the differences of the carrying capacities and
the death rates of the preys. Contrary to circumstances of
Figures 4 and 5, we know that the final values of R0 in
Figures 6 and 7 are greater than unity as mN, mJ, mA⟶ 1.

)e situations of Figures 8 and 9 are very interesting;R0
increases and is greater than unity if mN⟶ 0 or
mJ, mA⟶ 0, but R0 gradually decrease and is even less
than unity when mN, m⟶ 1.

6. Discussion

In this paper, we studied a predator-prey model to describe
the dynamics of predation with stage structure in the
predator and dispersal in an n-patch environment. )e

population dispersal among patches can be interpreted as
migration or predation in which the predator has to seek
prey by virtue of food reduction. In addition, predation
function f(N) includes three typical types having biological
significance.

In Section 2, we first proposed the predator-prey model
with diffusion in an n-patch environment. And we proved
that the solutions of system (1) are all positive and ultimately
bounded with nonnegative initial conditions ()eorem 1).
In Section 3, we derived the net reproduction number and
obtained the stability of the PFE through the relationship
between ρ(FV− 1) and 1 ()eorem 2). Moreover, we pro-
vided the upper bound and the lower bound ofR0 ()eorem

Table 1: )e relationship of R01 with R02.

R01 < 1 R01 > 1

R02 < 1
Figure 2, R01 < 1, R02 < 1, K1 <K2 Figure 4, R01 > 1, R02 < 1, K1 <K2
Figure 3, R01 < 1, R02 < 1, K1 >K2 Figure 5, R01 > 1, R02 < 1, K1 >K2

R02 > 1
Figure 6, R01 < 1, R02 > 1, K1 <K2 Figure 8, R01 > 1, R02 > 1, K1 <K2
Figure 7, R01 < 1, R02 > 1, K1 >K2 Figure 9, R01 > 1, R02 > 1, K1 >K2

0.9

0.95

1

1.05

1.1

1.15

R0

0

1

m
0

0.8
0.6

0.4
0.2

1

mN 0.4
0.6

0.8

0.2

Figure 2: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 0.96, R02 � 0.9257, K1 � 2.8, K2 � 3,
dN
1 � 0.18, dN

2 � 0.23, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).

0

1

0

0.95

1

1.05

1.1

1.15

1.2

1.25

m
0.4

0.6
0.8

0.2

0.8
0.6

0.4
0.2

1

mN

R0

Figure 3: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 0.96, R02 � 0.98, K1 � 2.8, K2 � 2.45,
dN
1 � 0.18, dN

2 � 0.15, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).
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1
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Figure 6: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 0.96, R02 � 1.1657, K1 � 2.8, K2 � 3,
dN
1 � 0.18, dN

2 � 0.16, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).
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Figure 7: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 0.96, R02 � 1.008, K1 � 2.8, K2 � 2.45,
dN
1 � 0.18, dN

2 � 0.14, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).
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Figure 8: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 1.0286, R02 � 1.12, K1 � 3, K2 � 3.5,
dN
1 � 0.18, dN

2 � 0.22, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).
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Figure 9: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 1.0286, R02 � 1.12, K1 � 3, K2 � 2.8,
dN
1 � 0.18, dN

2 � 0.15, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).
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Figure 5: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 1.0971, R02 � 0.9257, K1 � 3.2, K2 � 3,
dN
1 � 0.18, dN

2 � 0.23, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).

0

1

m0.4
0.6

0.8

0.2
0

0.8
0.6

0.4
0.2

1

mN

0.98

1

1.02

1.04

1.06

R0

Figure 4: )e effects of the diffusion rates on the net reproduction
number R0 where R01 � 1.0667, R02 � 0.9257, K1 � 2.8, K2 � 3,
dN
1 � 0.15, dN

2 � 0.23, and mN, mJ � mA � m vary from 0.01 to 1;
all other parameters are given in equation (71).

Complexity 11



3). For a two-patch model (39), the constant dispersal rate of
prey and predator decreasesR0 ()eorem 4). If ρ(FV− 1)> 1
and the dispersal rate matrices of prey and predator are
assumed to be irreducible, system (1) persists globally (i.e., in
all patches) under some conditions in Section 4 ()eorem 5).

By numerical simulations, we found some interesting
phenomena. From Figures 2 and 3, we first know that the net
reproduction number R0 may be greater than unity even if
R01 < 1, R02 < 1, and it may also be less than unity. )is
phenomenon is related with the carrying capacities K1, K2
and the death rates of prey dN

1 , dN
2 . In Figures 4–7, if one of

the isolated patch thresholds is greater than unity and the
other is less than unity, when the diffusion happens, the curve
ofR0 changes in a complex way. Here, we still obtain all kinds
of figures through changing parameters K1, K2, dN

1 , dN
2 . It is

not hard to think that the curve of R0 becomes complicated
when we change the other parameters. In addition, because
dispersal leads to extinction of predators, we believe that
dispersal may be a bad thing, but sometimes dispersal may be
a good thing if we want to eliminate some pests.

)ere are some interesting questions worthy of further
study; for instance, the corresponding conclusions for the
above two functional response types still remain open due to
the analytical challenge, which remain as future questions.
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Brucellosis is one of the major infectious diseases in China. In this study, we consider an SI model of animal brucellosis with
transport. )e basic reproduction numberR0 is obtained, and the stable state of the equilibria is analyzed. Numerical simulation
shows that different initial values have a great influence on results of the model. In addition, the sensitivity analysis of R0 with
respect to different parameters is analyzed. )e results reveal that the transport has dual effects. Specifically, transport can lead to
increase in the number of infected animals; besides, transport can also reduce the number of infected animals in a certain range.
)e analysis shows that the number of infected animals can be controlled if animals are transported reasonably.

1. Introduction

Brucellosis is a zoonosis. It is one of the animal diseases,
especially domesticated livestock. Brucellosis mainly attacks
sheep, cattle, horses, dogs, pigs, humans, and so on. )is
epidemic is highly infectious and can be transmitted directly
or indirectly through brucella carriers. Humans and animals
have certain immunity after suffering from the disease, but
they can be infected again. Its incidence is higher in spring
and summer. Humans are generally susceptible to the dis-
ease and can acquire certain immunity. )ere is cross im-
munity among different Brucella species, and the re-
infection rate is 2–7. Some scholars have studied the in-
fectious diseases and obtained some results [1–8].

Many articles have studied brucellosis through dynamic
models [9–12]. Hou et al. [9] proposed a model with general
incidences and analyzed the dynamics of this model. Sun
and Zhang [11] gave a brucellosis model which incorporated
proportional birth and studied the global stability. Yang et al.
[13] proposed to combine age structured brucellosis disease
model with spatial diffusion infection firstly (R0 was ob-
tained by mathematical analysis), analyzed the sensitivity to
parameters, and gave the prevention and control measures
of the disease. Yang et al. [14] studied a nonlinear model
including spatial and seasonal variations to study the

transmission dynamics of brucellosis and proved the im-
portance of spatial and seasonal heterogeneity in disease
control. )e mathematical model of sheep brucellosis and
the effect of slaughtering policy have also been studied [15].

)e Chinese government has taken many measures to
prevent diseases: vaccination, disinfection and elimination,
and so on. If the disease is found, culling measure is taken
immediately. However, in fact, some breeders do not take
these measures in order to reduce economic losses, which
can cause the spread of disease; besides, because the disease
has a latent period, breeders do not discover brucellosis in
time. In these cases, they transport animals which include
the infected.

)ere has been some studies on the impact of transport
on disease transmission [16–18]. A delay periodic patch
model with transmission related infection was studied and
the authors discussed the difference between the periodic
model and the corresponding autonomous model [19]. Liu
and Stechlinski [20] proposed a periodic SIS epidemic model
with time delay and transport related infection in patchy
environment. )ey discussed the dependence of R0 on
transport related infection parameters and fluctuation am-
plitude. )is paper studies the disease transmission of the
remaining animals after the animals are transported away,
which will be helpful for disease prevention and control.
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In this paper, we study an SI model of animal brucellosis
with transport. We show that transport has dual effects. In
Section 2, we study the existence of the equilibrium. In
Section 3, we study the dynamic behavior of the equilibrium.
In Section 4, the numerical simulation is given. Finally, some
conclusion are summarized and discussed.

2. Equilibria

We study a two-dimensional model: densities of the sus-
ceptible (S) and densities of the infected (I), in this paper. It
is assumed that the transport rate B is a nonzero constant
when the number of infected is less than a certain value;
when the number of infected is greater than a certain value,
B equals 0. )e detailed relation between susceptible and
infected is given in Figure 1. )en, the model is expressed in
the following form:

_S � A − BC − βSI − dS,

_I � − B(1 − C) + βSI − dI − uI,

⎧⎨

⎩ (1)

where
B≠ 0, if I≤ I0,

B � 0, if I> I0.
 (2)

We assume that all parameters are nonnegative in this
model.

A is the recruitment rate of the animal populations, β is
the infection coefficient, B is transport proportion, 0<C< 1
is the rate of susceptible in this transport, d is the natural
death rate of the animal populations, and μ is the disease-
related death rate.

When I≤ I0, the steady state of (1) can be written as
follows:

A − BC − βSI − dS � 0,

− B(1 − C) + βSI − dI − uI � 0.
 (3)

When I> I0, the steady state of (1) can be written as
follows:

A − βSI − dS � 0,

βSI − dI − uI � 0.
 (4)

(1) has no disease-free equilibrium.
Based on Ref. [21], we can obtain the basic reproduction

number R0:

F � [βSI],

] � [(d + u)I],

F � βS �
βA

d
,

V � d + u,

R0 � ρ FV
− 1

  �
βA

d(d + u)
.

(5)

System (4) has a positive equilibrium E∗ � (S∗, I∗) �

((d + u)/β, (d(R0 − 1))/β).

Evidently, we have

R0 >
βI0

d
+ 1. (6)

Next, we calculate the positive solution of system (3).
)rough the first equation of system (3), we obtain
S � (A − BC)/βI + d. )en, we substitute it into the other
equation of (3), so we have

β(d + μ)I
2

+ μd + d
2

+ Bβ − Aβ I + B d(1 − C) � 0.

(7)

Assume b � μd + d2 + Bβ − Aβ. Note that A − BC> 0.
If b≥ 0, it is easy to know that there is no positive

equilibrium; then, we consider b< 0, where

b � μd + d
2

+ Bβ − Aβ � − R d(d + u) + ud + d
2

+ Bβ .

(8)

Consequently, we have the following expression:

Δ � − − R d(d + u) + ud + d
2

+ Bβ d(d + u) + ud + d
2

+ Bβ 
2

− 4β(d + μ)(1 − C)Bd.

(9)

Δ≥ 0 is equivalent to

R0 ≤ 1 +
Bβ

d(d + u)
−
2

����������������
β(d + μ)(1 − C)B d



d(d + μ)
,

R0 ≥ 1 +
Bβ

d(d + u)
+
2

����������������
β(d + μ)(1 − C)B d



d(d + μ)
�
Δ

p0.

(10)

b< 0 is equivalent to

R0 ≥ 1 +
Bβ

d(d + u)
. (11)

b< 0 and Δ≥ 0 if and only if (10) holds. If (10) holds,
there are two solutions of (3):

I1 �
− b −

��
Δ

√

2β(d + μ)
,

I2 �
− b +

��
Δ

√

2β(d + μ)
.

(12)

If the condition I1 ≤ I0 holds, then we have

A

dS

βSI

BC B(1 – C)

uIdI

S I

Figure 1: Flow diagram of disease transmission. Here, S denotes
susceptible, I denotes infected, B is transport proportion, and C is
the proportion of susceptible in the transport.
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− b −
��
Δ

√
< 2β(d + μ)I0. (13)

)is is equivalent to
b + 2β(d + μ)I0 ≤ 0,

b + 2β(d + μ)I0( 
2 ≤Δ,

⎧⎨

⎩ (14)

or

b + 2β(d + μ)I0 ≥ 0. (15)

By calculating, (14) is equivalent to

R0 ≥ 1 +
Bβ

d(d + u)
+
2βI0

d
�
Δ

p1,

R0 ≥ 1 +
Bβ

d(d + u)
+
βI0

d
+

(1 − C)B

(d + u)I0
�
Δ

p2.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

(15) is equivalent to

R0 ≤p1. (17)

As a conclusion, when R0 ≥max(p1, p2) or R0 ≤p1,
I1 < I0 holds.

If I2 < I0 holds, we have

− b +
��
Δ

√
≤ 2β(d + μ)I0. (18)

It is equivalent to an inequality as follows:
b + 2β(d + μ)I0 ≥ 0,

b + 2β(d + μ)I0( 
2 ≥Δ.

⎧⎨

⎩ (19)

We have that (19) is equivalent to

R0 ≤min p1, p2( . (20)

According to the discussions above, we can obtain two
theorems as follows.

Theorem 1. E∗ is the unique endemic equilibrium of (1) if
and only if (βI0/d) + 1<R0 <p0.

Note that p1 <p2 is equivalent to β(d + μ)I20 < (1 − C)B d.
Besides, if Ei exist, they must satisfy R0 ≥p0 which is
equivalent to β(d + μ)I20 > (1 − C)Bd. 0erefore, we can ob-
tain that p1 <p2 is impossible. Note that p1 >p2 is equivalent
to β(d + μ)I20 > (1 − C)Bd. So, we have the following.

Theorem 2. (1) IfR0 <p0, endemic equilibria E1 and E2 do
not exist.

(2) If p0 <R0 <p2 and β(d + μ)I20 > (1 − C)B d, then
E1(S1, I1) and E2(S2, I2) exist.

(3) If p2 <R0 <p1 and β(d + μ)I20 > (1 − C)B d, then
E1(S1, I1) exists.

According to )eorems 1 and 2, the changes in the
number of equilibrium with the basic reproduction number
are shown in Figure 2. When p0 <R0 <p2, there are three
endemic equilibria; when p2 <R0 <p1, two endemic equi-
libria exist. We can see that the number of infected is
proportional toR0 if there is no transport. On the contrary,

the number of infected does not always increase with R0
when there is transport. Consequently, the proper transport
might reduce the chance of infection in this area.

Next, we give the relationship between the transport rate B

and I in Figure 3. As seen from the Figure 3, model (1) has two
endemic equilibria when there is transport. When B<B∗ or
B>B∗ and I< I∗, the number of the infected always increases
with the increase of B; when B>B∗ and I> I∗, transport is
good for disease control. So, the transport has dual effects on
the number of I; it can not only promote the growth of
brucellosis but also inhibit the growth of the disease. Con-
sequently, the transport rate B plays a very important role.

3. Stability Analysis

J is the Jacobian matrix of (1) with respect to E∗:

J �
− dR0 − (d + u)

d R0 − 1(  0
 , (21)

with trJ � − dR0 < 0, detJ � d(d + u)(R0 − 1). )en,
λ1 < 0, λ2 < 0, and we have the following result [22–24].

Theorem 3. E∗ is locally asymptotically when R0 > (β/d)

I0 + 1.
0is conclusion can be easily obtained. 0e dynamic

behavior of the stable node indicates that susceptible and
infected animal populations can coexist for a long time.

)e Jacobian matrix of system (1) with respect to Ei is

J �

− dR0 − (d + u)

βI β
A − BC

βI + d
− d − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

with

detJ � − β(A − BC) +(d + μ)(βI + d) +
β2I(A − BC)

βI + d

� (d + u)(βI + d)
2 < dβ(A − BC).

(23)

If detJ< 0, then E1 is a saddle. Note that I< I0, and we
have the following results [25–27].

Theorem 4. (1) E1 is a saddle if
(βI0 + d)2(d + μ)<dβ(A − BC).

(2) E2 is stable if

βA< βBC + β2I20 + 3dβ I0 + 2d2 + μβI0 + μd,

(d + μ) βI0 + d( 
2

+ dβBC>max d(d + μ) + 2βI0(d + μ) + Bβ ,

d2 + dμ + βdI0 + βμI0 + Bβ +
(1 − C)B d

I0
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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(3) E2 is unstable if either

βA> βBC + β2I20 + 3dβ I0 + 2d2 + μβI0 + μd,

(d + μ) βI0 + d( 
2

+ dβBC>max d(d + μ) + 2βI0(d + μ) + Bβ ,

d2 + dμ + βdI0 + βμI0 + Bβ +
(1 − C)Bd

I0
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

or

(d + μ) βI0 + d( 
2

+ dβBC>max d(d + μ) + 2βI0(d + μ) + Bβ ,

d2 + dμ + βdI0 + βμI0 + Bβ +
(1 − C)Bd

I0
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

Theorem 5. 0e unique endemic equilibrium E∗(S∗, I∗) of
system (1) is globally asymptotically stable when R0 > 1+

(β/d)I0.

Proof. Define the Lyapunov function [28, 29]:

V(S, I) � S − S
∗

− S
∗ ln

S

S0
+ I − I

∗
− I
∗ ln

I

I0
. (27)

)e derivative of V(S, I) along solutions of system (1) is

dV

dt
� _S 1 −

S∗

S
  + _I 1 −

I∗

I
 

� (A − βSI − dS) 1 −
S∗

S
  +(βSI − (d + μ)I) 1 −

I∗

I
 

� dS
∗ 2 −

S

S∗
−

S∗

S
  + βS

∗
I
∗ 2 −

S

S∗
−

S∗

S
 .

(28)

Since (S/S∗) − (S∗/S)< 2, (dV/dt) � (dS∗ + βS∗I∗)

(2 − (S/S∗) − (S∗/S))≤ 0.
WhenR0 > 1 + (β/d)I0, we have (dV/dt)< 0. (dV/dt) �

0 holds if and only if S � S∗, I � I∗. By Lyapunov–Lasalle
theorem [30–32], the endemic equilibrium E∗(S∗, I∗) is
globally asymptotically stable when R0 > 1 + (β/d)I0. □

4. Numerical Results

In an epidemic model, the basic reproduction numberR0 is
an important parameter which can predict the dynamics of
the disease. If R0 < 1, it indicates that the disease can be
controlled and can even disappear. Otherwise, the disease
will outbreak when the basic reproduction number R0 > 1.
In this paper, when the endemic equilibrium exists, the basic
reproduction numberR0 > 1. Next, we analyze the spread of
the disease over time.

Figure 4 represents time series of the infected animal
populations with different initial values. We take
B � 50, I0 � 110, d � 0.9, μ � 0.3, β � 0.01, c � 0.5, andA �

441.99 with different initial values: (a) S0 � 200, I0 � 130; (b)
S0 � 100, I0 � 80; (c) S0 � 300, I0 � 180; (d) S0 � 300, I0 �

100. One can conclude from this figure that there is great
distinction between different initial values. As seen from
Figure 4(b), the number of infected decreases over time. On
the contrary, in the other three figures, the number of in-
fected increases in the beginning. )erefore, initial values
play an important role in the control of the disease.

Next, we give sensitivity analysis of R0 in order to find
better control strategies. Different parameters are
substituted into the expressionR0 � βA/(d(d + u)). We use
the normalized forward sensitivity index and derive an
analytical expression [33]:

c
R0
p �

zR0

zp
×

zp

zR0
. (29)

Table 1 shows the sensitivity index ofR0 with respect to
different parameters. We can conclude from Table 1 thatR0
is more sensitive to the recruitment rate A and the infection
coefficient β, which means that the main influencing factors
ofR0 are A and β. Since A and β are proportional toR0, the
most effective way to reduceR0 is to reduce the recruitment
rate and the infection coefficient.

2 2.5 3 3.5 4 4.5
R0

0

50

100

150

200

250

I

P2P0 P1

Figure 2: )e density of the infected animal populations as a
function of basic reproduction number R0. P0 indicates that the
equilibrium will appear when there is no transport, P1 indicates
that the equilibrium will disappear in the case of transport, and P2
indicates that there are three equilibria in two cases. Parameter
values: B � 50, I0 � 110, d � 0.9, μ � 0.3, β � 0.01, andC � 0.5.

0 20 40 60 80
B

0

50

100

150

200

I

I∗

B∗

Figure 3: )e relationship between the transport rate B and the
infected animal populations I. B∗ indicates that there are two
equilibria. Parameter values:
I0 � 110, d � 0.9, μ � 0.3, β � 0.01, C � 0.5, and A � 300.

4 Complexity



5. Conclusion and Discussion

Brucellosis has always been a research focus in infectious
diseases. Measures to control the spread of brucellosis are
vaccinating susceptible and culling infected animal pop-
ulations. However, in fact, due to some practical factors,
such as the incubation period of the disease and economic
factor, the breeders will transport the animals containing the
infected and fail to take effective measures in time. )is case

is tremendously overlooked despite its real existence in
China. In order to study the influence of transport on the
spread of brucellosis, we present an SI model with transport.
)rough mathematical analysis, we obtain the basic re-
production number R0 and the positive equilibria. )e
existence and global stability of these equilibria are analyzed.
Our results reveal that initial values have important effects
on the spread of disease.

Our work demonstrates that the transport has dual ef-
fects. Specifically, transport can lead to increase in the
number of the infected; besides, transport can also reduce
the number of the infected animals in a certain range. )is is
an interesting result. )is indicates that transport can help
control the disease for a time. Besides, sensitivity of the basic
reproduction numberR0 is calculated.)e results show that
the main influencing factors are the recruitment rate and the
infection coefficient. Some measures should be taken, such
as vaccination and disinfection. We suggest that breeders

100

110

120

130

140

150

160

I

t
0 10 20 30 40 50

(a)

0

10

20

30

40

50

60

70

80

I

t
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(b)

t

I

250

200

150

100

50

0
42 6 8 1210 14 1816

(c)

100806040200 120
100

110

120

130

140

150

160

170

180

I

t

(d)

Figure 4: Time series of the infected animal populations with different initial values. Parameter values:
B � 50, I0 � 110, d � 0.9, μ � 0.3, β � 0.01, c � 0.5, andA � 441.99. Initial values: (a) S0 � 200, I0 � 130; (b) S0 � 100, I0 � 80; (c)
S0 � 300, I0 � 180; (d) S0 � 300, I0 � 100.

Table 1: )e sensitivity index of R0 with respect to different
parameters.

Parameter Sensitivity index
β 1
A 1
μ − 1.836
d − 4.282
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can increase animal vaccination coverage rate and enhance
the awareness of disease prevention.

)e analysis shows that the number of infected animals
can be controlled if animals are transported reasonably.
However, we do not analyze how the disease spreads in the
transported animals; this may not be good at disease control.
Consequently, we will analyze the dynamic behavior of the
animals which have been transported and give a better
strategy to control brucellosis. Besides, infectious diseases
spread in space, and spatial infectious disease models can
describe the dynamics of disease transmission.)erefore, we
will integrate the diffusion term into the disease model in the
future study [34–36].
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.is paper proposes a new method of construction of Lyapunov functionals for the dynamical systems described by fractional
differential equations and fractional partial differential equations..e proposed method is rigorously presented. Furthermore, the
method is applied to establish the global stability of some fractional biological models with and without diffusion.

1. Introduction

In recent years, fractional differential equations (FDEs) are
used to describe the temporal dynamics of various systems in
many fields. .ese equations are the generalization of the
classical ordinary differential equations (ODEs). However,
fractional partial differential equations (FPDEs) are the
generalization of the partial differential equations (PDEs)
which can be an effective tool to describe the spatiotemporal
dynamics of several phenomena with memory or have he-
reditary properties.

.e construction of Lyapunov functionals to prove the
global stability of fractional dynamic systems has attracted
the attention of some authors. Aguila-Camacho et al. [1]
established a new lemma for fractional derivative in Caputo
sense with order α ∈ (0, 1). .ey used this lemma to
demonstrate the stability of some fractional-order systems
by mean of quadratic Lyapunov functionals. Duarte-Mer-
moud et al. [2] extended the lemma of [1] to a vector of
differentiable functions, and they used Lyapunov functionals
containing general quadratic forms in order to analyze the
stability of fractional-order model reference adaptive control
(FOMRAC) schemes. Vargas-De-León [3] extended the
Volterra-type Lyapunov function to fractional-order epi-
demic systems via an inequality to estimate the Caputo

fractional derivative of this function. On the other hand, a
study in [4] has been devoted to establish the global stability
for some diffusion equations in biology by means of Lya-
punov functionals.

.e methods mentioned above are applied for particular
Lyapunov functionals such as quadratic or Volterra-type.
Likewise, the work in [4] is especially applicable for the
models formulated by PDEs..erefore, the main goal of this
study is to develop a new mathematical method to construct
the Lyapunov functionals for FDEs and FPDEs based on
those of ODEs. To do this, the next section deals with the
description of the method and the last section is devoted to
the application of our method to investigate the global
stability of some mathematical models in epidemiology as
well as in virology.

2. Description of the Method

Consider the following FDE:

D
α
t u � f(u), (1)

where Dα
t is the fractional derivative in the Caputo sense of

order α ∈ (0, 1], the state variable u is a non-negative vector
of concentrations u1, . . ., um, and f: IRm⟶ IRm is a C1
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function. It is obvious that if α � 1, then (1) becomes the
following ordinary differential equation:

_u � f(u). (2)

Let Ω be a bounded domain in IRn with smooth
boundary zΩ andD � (d1, . . . , dm) with di ≥ 0. Assume that
u∗ is a steady state of (1). .en, u∗ is also the steady state of
the following fractional diffusion system with homogeneous
Neumann boundary condition:

zαt u � DΔu + f(u) inΩ ×(0, +∞),

zu

z]
� 0 on zΩ ×(0, +∞),

u(x, 0) � u0(x) inΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where △ � 
n
i�1 z2/zx2

i represents the Laplacian operator
and zu/z] denotes the outward normal derivative on the
boundary zΩ.

Let V(u) be aC1 function defined on some domain in Rm
+

and u(t) is a solution of (1). Further, we suppose that the
range of u(t) is contained in the domain of V(u) and

D
α
t V(u(t))≤∇V(u) · f(u), (4)

whose equality holds if α � 1.
We observe that the right-hand side of the above in-

equality is given by the scalar product of the gradient of the
function V(u) and the vector field f(u). Hence, the right-
hand side is defined without the fact that u(t) is a solution of
(1), which is very important for the construction of Lya-
punov functionals.

Let u(t, x) be a solution of (3). Denote

W � 
Ω

V(u(t, x))dx. (5)

.e fractional time derivative of W along the positive
solution of (3) satisfies

D
α
t W≤

Ω
∇V(u) · (DΔu + f(u))dx

� 
Ω
∇V(u) · f(u)dx + 

Ω
∇V(u).DΔudx

� 
Ω
∇V(u) · f(u)dx + 

m

i�1
di
Ω

zV

zui

Δuidx.

(6)

By applying Green’s formula, we find


Ω

zV

zui

Δuidx � 
zΩ

zV

zui

zui

z]
dσ − 

Ω
∇ui · ∇

zV

zui

 dx. (7)

According to (zu/z]) � 0 on zΩ, we have


Ω

zV

zui

Δuidx � − 
Ω
∇ui · ∇

zV

zui

 dx. (8)

.erefore,

dW

dt
≤
Ω
∇V(u) · f(u)dx − 

m

i�1
di
Ω
∇ui · ∇

zV

zui

 dx.

(9)

Additionally, we assume that the function V satisfies the
following condition:

di
Ω
∇ui · ∇

zV

zui

 dx≥ 0, for all i � 1, . . . , m. (10)

From the above, it is not difficult to obtain the following
result.

Theorem 1. Let V be a Lyapunov functional for the ordinary
differential equation (2).

(i) If V satisfies the condition (4), then V is also a
Lyapunov functional for fractional differential
equation (1).

(ii) If V satisfies the conditions (4) and (10), then the
function W defined by (5) is a Lyapunov functional
for fractional diffusion system (3).

In the literature, several researchers constructed the
Lyapunov functional in the following form:

V � 
m

i�1
ai ui − u

∗
i − u

∗
i ln

ui

u∗i
 . (11)

Corollary 2. If V is a Lyapunov functional for ordinary
differential equation (2) of the form given in (11), then V is a
Lyapunov functional for fractional differential equation (1).
Moreover, the function W defined by (5) is a Lyapunov
functional for fractional diffusion system (3).

Proof. We have

D
α
t V � 

m

i�1
aiD

α
t ui − u

∗
i − u

∗
i ln

ui

u∗i
 . (12)

By applying Lemma 3.1 in [3], we get

D
α
t V≤ 

m

i�1
ai 1 −

u∗i
ui

 D
α
t ui

� ∇V(u) · f(u).

(13)

.en, V satisfies the condition (4). It follows from
.eorem 1 (i) that V is also a Lyapunov functional for
fractional differential equation (1).

On the other hand, we have


Ω
∇ui · ∇

zV

zui

 dx � aiu
∗
i 
Ω

∇ui



2

u2
i

dx≥ 0, (14)

which implies that V satisfies the condition (10). According
to .eorem 1 (ii), we deduce that the function W given by
(4) is also a Lyapunov functional for fractional diffusion
system (3). .is completes the proof. □
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Remark 3. .emethod described above can be used to prove
the stability of many fractional systems with and without
diffusion. It is very important to recall that the steady state
u∗ is stable if there exists a Lyapunov functional satisfying
Dα

t V(u)≤ 0. Moreover, if Dα
t V(u)< 0 for all u≠ u∗, then u∗

is asymptotically stable. Additionally, according to [5], if
Dα

t V(u)≤ 0 and the largest invariant set in u | Dα
t V(u) � 0 

is the singleton u∗{ }, then u∗ is asymptotically stable. .is
means that the solution of the system starting from any
initial conditions converges to u∗.

3. Applications

.is section focuses on the application of the method de-
scribed in the above section in order to establish the global
stability of some fractional diffusion biological models by
constructing Lyapunov functionals from those of the cor-
responding systems which are formulated by ODEs.Example
1. Consider the SIR epidemic model described by the fol-
lowing nonlinear system of FDEs:

Dα
t S � A − μS −

βSI

α0 + α1S + α2I + α3SI
,

Dα
t I �

βSI

α0 + α1S + α2I + α3SI
− (μ + d + r)I,

Dα
t R � rI − μR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where S, I, and R are the populations of susceptible, infected,
and recovered individuals, respectively..e parameters A, μ,
d, and r are, respectively, the recruitment rate, the natural
death rate, the death rate due to disease, and the recovery
rate. .e incidence function of system (15) is described by
Hattaf–Yousfi functional response [6] of the form
βSI/1 + α1S + α2I + α3SI, where the non-negative constants
αi, i � 0, 1, 2, 3, measure the saturation, inhibitory, or psy-
chological effects, and the positive constant β is the infection
rate. .is functional response covers the most famous forms
existing in the literature such as the classical bilinear inci-
dence, the saturated incidence, the Beddington–DeAngelis
functional response [7], the Crowley–Martin functional
response [8], and the specific functional response introduced
in [9]. Further, the fractional models proposed in [10, 11] are
particular cases of model (15); it suffices to take α0 � 1 and
α1 � α2 � α3 � 0 for [10] and α0 � 1 for [11].

Since the state variable R does not appear in the two first
equations of fractional model (15), we can reduce (15) to the
following system:

Dα
t S � A − μS −

βSI

α0 + α1S + α2I + α3SI
,

Dα
t I �

βSI

α0 + α1S + α2I + α3SI
− (μ + d + r)I.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

Due to the great mobility of individuals inside or outside a
country or region, we consider the following fractional model:

zαt S � dSΔS + A − ψ(S(x, t), I(x, t))I(x, t),

zαt I � dIΔI + ψ(S(x, t), I(x, t))I(x, t) − ηI(x, t),
 (17)

where ψ(S,I) � (βS/α0 +α1S +α2I +α3SI) and η� μ+ d + r.
.e parameters dS and dI are the diffusion coefficients for
the susceptible and infected populations, respectively. Also,
we consider model (17) with homogeneous Neumann
boundary conditions:

zS

z]
�

zI

z]
� 0, on zΩ ×(0 +∞), (18)

and initial conditions:

S(x, 0) � S0(x)≥ 0,

I(x, 0) � I0(x)≥ 0,

x ∈ Ω.

(19)

For α � 1, model (16) becomes the following nonlinear
system of ODEs:

_S � A − μS − ψ(S, I)I,

_I � ψ(S, I)I − ηI.

⎧⎨

⎩ (20)

Obviously, model (20) has always one disease-free
equilibrium Ef((A/μ), 0). By a simple computation, the
basic reproduction number is given by

R0 �
βA

α0μ + α1A( (μ + d + r)
. (21)

When R0 > 1, model (20) has another equilibrium
named endemic equilibrium E∗(S∗, I∗), where

S
∗

�
2 ηα0 + α2A( 

β − α1η + α2μ − α3A +
�
δ

√ ,

I
∗

�
Λ − μS∗

η
,

(22)

with δ � (β − α1η + α2μ − α3Λ)
2 + 4α3μ(ηα0 + α2A).

System (20) is a special case of the mathematical model
presented in [12]. .us, the disease-free equilibrium Ef is
globally asymptotically stable when R0 ≤ 1. However, Ef

becomes unstable and the endemic equilibrium E∗ is
globally asymptotically stable if R0 > 1.

Let S0 � A/μ and Φ(z) � z − 1 − ln(z) for z> 0. From
[12], the function

V1(u) �
α0S0

α0 + α1S0
Φ

S

S0
  + I (23)

is a Lyapunov functional for ODE model (20) at Ef.
Moreover, we have

∇V1(u) · f(u) �
α0

α0 + α1S0
1 −

S0

S
 (A − μS − ψ(S, I)I)

+ ψ(S, I)I − ηI

�
− α0μ S − S0( 

2

α0 + α1S0( S
+ ηI

ψ(S, I)

ψ(S, 0)
R0 − 1 

≤
− α0μ S − S0( 

2

α0 + α1S0( S
+ ηI R0 − 1( .

(24)
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Additionally, we have

D
α
t V1(u)≤∇V1(u) · f(u). (25)

.en, V1 satisfies the condition (4). By applying .eo-
rem 1 (i), we deduce thatV1 is also a Lyapunov functional for
FDE model (16) at Ef.

Now, we construct the Lyapunov functional for frac-
tional diffusion model (17) at Ef as follows:

W1 � 
Ω

V1(u(x, t))dx. (26)

In this case, we have

di
Ω
∇ui · ∇

zV1

zui

 dx≥ 0, for all i � 1, 2. (27)

In fact,

dS
Ω
∇S · ∇

zV1

zS
 dx �

α0dSS0

α0 + α1S0

Ω

|∇S|2

S2
dx≥ 0,

dI
Ω
∇I · ∇

zV1

zI
 dx � 0.

(28)

.is implies that V1 satisfies the condition (10). It follows
from .eorem 1 (ii) that W1 is a Lyapunov functional for
fractional diffusion systems (17)–(19) at Ef when R0 ≤ 1.

For the global stability of the endemic equilibriumE∗, we
consider the following function:

V2(u) � S − S
∗

− 
S

S∗

ψ S∗, I∗( )

ψ X, I∗( )
dX + I

∗Φ
I

I∗
 , (29)

which is a Lyapunov functional for ODE model (20) at E∗.
On the other hand, we have

∇V2(u) · f(u) � 1 −
ψ S∗, I∗( )

ψ S, I∗( )
 (A − μS − ψ(S, I)I)

+ 1 −
I∗

I
 (ψ(S, I)I − ηI),

D
α
t V1(u)≤∇V1(u) · f(u).

(30)

.us, V2 obeys the condition (4) and then V2 is a
Lyapunov functional for FDE model (8) at E∗.

Denote

W2 � 
Ω

V2(u(x, t))dx. (31)

It is not hard to show that

dS
Ω
∇S ·∇

zV2

zS
 dx �

α0 +α2I∗( dSS∗

α0 +α1S∗ +α2I∗ +α3S∗I∗

Ω

|∇S|2

S2
dx≥0,

dI
Ω
∇I ·∇

zV2

zI
 dx � dII

∗

Ω

|∇I|2

I2
dx≥0.

(32)

.en, condition (10) holds. .erefore, W2 is a Lyapunov
functional for fractional diffusion systems (17)–(19) at E∗

when R0 > 1.
Consequently, we have the following:

(i) When R0 ≤ 1, the disease-free equilibrium Ef of
(17)–(19) is globally asymptotically stable.

(ii) When R0 > 1, the endemic equilibrium E∗ of
(17)–(19) is globally asymptotically stable.

Example 2. Consider the following fractional viral infection
model:

Dα
t H � λ − μH − β1HV − β2HI,

Dα
t I � β1HV + β2HI − δI,

Dα
t V � pI − cV,

⎧⎪⎪⎨

⎪⎪⎩
(33)

where healthy cells (H) are produced at rate λ, die at rate μH,
and become infected by contact with virus at rate β1HV and
by contact with infected cells at rate β2HI. Infected cells (I)
die at rate δI. Free viral particles (V) are released from
infected cells at rate pI and decay at rate cV. Note that when
α � 1 and β1 � 0, we obtain the basic model which was used
to study some viral infections such as HIV, HBV, and HCV
[13–16].

Now, we extend the above fractional model (33) by
taking into account the mobility of the virus as well as the
cells. .en, model (33) becomes

zαt H � dHΔH + μ − μH(x, t) − β1H(x, t)V(x, t)

− β2H(x, t)I(x, t),

zαt I � dIΔI + β1H(x, t)V(x, t) + β2H(x, t)I(x, t)

− δI(x, t),

zαt V � dVΔV + pI(x, t) − cV(x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

where H(x, t), I(x, t), and V(x, t) denote the concentra-
tions of healthy cells, infected cells, and free viral particles at
position x and at time t, respectively. .e parameters dH, dI,
and dV represent, respectively, the diffusion coefficients of
healthy cells, infected cells, and free viral particles.

.e cells and virus are biological quantities which should
be non-negative, and they also should not cross the
boundary of the domain..en, we consider system (34) with
the homogeneous Neumann boundary conditions:

zH

z]
�

zI

z]
�

zV

z]
� 0, on zΩ ×(0, +∞), (35)

and initial conditions:

H(x, 0) � H0(x)≥ 0,

I(x, 0) � I0(x)≥ 0,

V(x, 0) � V0(x)≥ 0,

∀x ∈ Ω.

(36)

.e corresponding ordinary system of the above models
is given by
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_H � λ − μH − β1HV − β2HI,

_I � β1HV + β2HI − δI,

_V � pI − cV.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

.is system admits a unique infection-free equilibrium
Qf(H0, 0, 0), where H0 � (λ/μ). Further, the basic repro-
duction number is given by

R0 �
λ pβ1 + cβ2( 

cδμ
. (38)

.is basic reproduction number is the sum of two basic
reproduction numbers due to virus-to-cell and cell-to-cell
transmissions. If R0 > 1, ODE model (37) has another bi-
ological steady state called the infection chronic which is
labeled by Q∗(H∗, I∗, V∗), where

H
∗

�
λ

dR0
,

I
∗

�
cμ R0 − 1( 

pβ1 + cβ2
,

V
∗

�
pcμ R0 − 1( 

c pβ1 + cβ2( 
.

(39)

.ese two equilibria are also steady states of both models
(33) and (34). First, we consider a Lyapunov functional for
ODE model (37) at Qf as follows:

L1(u) � H
0Φ

H

H0  + I +
β1H0

c
V. (40)

Calculating the time derivative of L1 along the solution
of (37), we get

dL1

dt
� ∇L1(u) · f(u)

� 1 −
H0

H
  λ − μH − β1HV − β2HI( 

+ β1HV + β2HI − δI

+
β1H0

c
(pI − cV)

�
− μ
H

H − H
0

 
2

+ δI R0 − 1( .

(41)

If R0 ≤ 1, then (dL1/dt)≤ 0 with equality if and only if
H � H0, I � 0 and V � 0. .erefore, the infection-free
equilibrium Qf is globally asymptotically stable when
R0 ≤ 1. Since

D
α
t L1(u)≤∇L1(u) · f(u), (42)

it follows from .eorem 1 (i) that L1 is also a Lyapunov
functional for FDE model (33) at Qf.

Next, we construct a Lyapunov functional for fractional
diffusion model (34) at Qf as follows:

L1 � 
Ω

L1(u(x, t))dx. (43)

We have

dH
Ω
∇H · ∇

zL1

zH
 dx � dHH

0

Ω

|∇H|2

H2 dx≥ 0,

dI
Ω
∇I · ∇

zL1

zI
 dx � 0,

dV
Ω
∇V · ∇

zL1

zV
 dx � 0.

(44)

.en, L1 satisfies the condition (10). Using .eorem 1
(ii), we deduce that L1 is a Lyapunov functional for frac-
tional diffusion systems (34)–(36) at Qf if R0 ≤ 1.

Based on the results in [17], the function

L2(u) � H − H
∗

− H
∗ ln

T

T∗
+ I − I

∗
− I
∗ ln

I

I∗

+
β1H∗V∗

pV∗
V − V

∗
− V
∗ln

V

V∗
 

(45)

is a Lyapunov functional for ODE model (37) at Q∗ when
R0 > 1. Let

L2 � 
Ω

L2(u(x, t))dx. (46)

Since L2 has the form given in (11), we conclude, by
applying Corollary 2, that L2 is a Lyapunov functional
for FDE model (33) and L2 is a Lyapunov functional
for fractional diffusion systems (34)–(36) at Q∗ when
R0 > 1.
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Appropriate water body diversion can improve the water quality of Tai Lake. Excessive diversion of water would, however,
dramatically alter the local flow fields, which are not conducive to the growth of aquatic plants and the stability of ecosystems./e
current “Diverting Water from the Yangtze River to Tai Lake (DWYRTL)” project uses a single water source, the Wangyu River,
for diversion, a model that may significantly affect the nearby flow rate or uniformity of the lake and is not conducive to the long-
term stability of the aquatic ecosystem in the Tai Lake district of the eastern part of the lake. In order to simulate the different
situations of single- and dual-source water diversions (Wangyu-Xinmeng Rivers) in Tai Lake, we based this study on a three-
dimensional hydrodynamic model coupled with the Euler method, which can accurately calculate the water exchange rates in the
different districts of Tai Lake. /e results show that (1) it is recommended that the total annual diversion of water should not
exceed 20×108m3; (2) the wind field is the most important factor determining the distribution of spatial water exchange; (3)
under wind-free conditions, the flow rate of a single-source diversion of water is approximately 50% higher than that of dual-
source diversion; and (4) water diversion under the prevailing conditions of the northwest wind in winter will reduce the
semiexchange period of the eastern part of the lake area from 50 to 30 days, significantly changing the nearby district’s uniformity,
leading to ecological risks./erefore, it is recommended that the dual-source water diversionmode be used in winter and windless
season, and single-source water diversion mode be used in other seasons.

1. Introduction

Diverting water from the Yangtze River to Tai Lake
(DWYRTL) is one of the major water conservation projects
in the Tai Lake Basin. /is diversion supplies a large amount
of water resources to downstream areas including the city of
Shanghai and Zhejiang Province while serving as one of the
essential basic projects for social and economic development
in the Yangtze River Delta [1]. However, the continuous
increase in downstream water demand, the overflow rate,
and the water exchange uniformity (WEU) index [2] will
have a certain adverse effect on the stability of the aquatic

ecosystem. In particular, the East Lake District forms the
region with the most complete aquatic ecosystem that can
only be sustained by relying on diversion of the Wangyu
River alone. /e Wangyu River is very close to the district
that is most sensitive to changes in hydrology, and an ex-
cessive diversion of water from theWangyu River will have a
significant impact on the East Lake District [3]. An uneven
mixing of water bodies will also change the original aquatic
environment, thereby reducing the survival rate of aquatic
vegetation [4, 5]. Many scholars have found that cyano-
bacterial blooms will be directly affected by hydrodynamic
forces and pollutant fluxes caused by water diversion [6, 7].
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/erefore, further research and discussion are needed to
determine whether this risk can be mitigated by the Wan-
gyu-Xinmeng River dual-source diversion method.

At present, researchers have mainly used on-site mon-
itoring and hydrodynamic models to study the flow velocity
of water bodies. On-site monitoring may provide measured
field data and basic boundary conditions for a hydrody-
namic model. A hydrodynamic model can predict and
compare different future scenarios quantitatively [8]. /e
exchange of water in a water body is mainly reflected by the
water exchange rate and the semiexchange cycle [9]. Cur-
rently, water body exchange studies have mainly been
conducted using the Lagrange method and the Euler method
[10]. Based on a three-dimensional unsteady state model,
Luff and Pohlmann [11] used the Lagrange method to study
the exchange of water between water bodies (e.g., flushing-
time, turn-over time, and half-life time) in the North Sea.
However, the Lagrange method ignores the convective
diffusion of water [12, 13]. By contrast, Euler’s Method uses a
conservativemethod, namely, a coupled convective diffusion
model, to simulate the water body exchange in a local area
[14].

Based on a current tidal model, Xie et al. [15] simulated
the exchange of water in water bodies on an impounded
lake in Taipingwan Port of Dalian, Liaoning Province,
China. /e simulation suggested that the construction of a
submerged dike would hinder the exchange of water be-
tween water bodies, i.e., the elevation of the underwater soil
would have a significant impact on the exchange capacity of
regional water. Dai et al. [16] used an unstable state model
to analyze the exchange of water bodies between Dongting
Lake and Yangtze River before and after the imple-
mentation of the /ree Gorges Project. Dai and colleagues
have identified a significant change in the amount of water
entering and exiting the lake and documented an extended
period of water body exchange during the postconstruction
phase. Based on the three-dimensional Euler algorithm of
the Environmental Fluid Dynamics Code, Xu et al. [17]
examined the exchange of water between water bodies in
urban man-made lakes and obtained good results for some
recently completed projects through optimizations. Water
body exchange research based on the Euler method can,
therefore, more intuitively and accurately reflect the unique
influence of water diversion on the exchange of water
between water body in a large scale and local areas of Tai
Lake.

Most of the studies on the DWYRTL project only
considered a single-source water diversion model, which
may lose another viable solution if the demand for water
resources is met, but a dual-source diversion may be able to
resolve the related problems [18]. Among them, Li et al. [19]
analyzed the relationship between the diversion of the
Wangyu River and the hydrodynamic conditions of Tai
Lake, determined the basic hydrodynamic parameters of Tai
Lake, and optimized the economic applicability of the water
diversion project. During the implementation of WDYRTL
in the Wangyu River basin, Yang et al. [20] revealed that
short-term water diversion would cause a deterioration in

the quality of water in the Gong Bay area. Qing [21] adopted
a two-dimensional unsteady state model to assess the hy-
drodynamic conditions and water quality of the Taihu River
after the diversion of water from the Xinmeng River to Tai
Lake. /e study suggested that the diversion of the Xingeng
River would improve the aquatic environment of Tai Lake,
but comprehensive control would be needed to prevent the
most negative effects of single-channel drainage on the
quality of water in the Yangtze River. Yong [22] studied the
environmental changes of Tai Lake after the diversion of the
Xingeng River. /e study not only found that the aquatic
environment improved in the Northwest Lake District but
also documented the relatively poor water diversion effi-
ciency from the Yangtze River and the associated water
diversion management conditions. In general, there are still
some drawbacks with regard to the optimization of dual-
source water diversion in different situations.

/is study involved the construction of a three-di-
mensional hydrodynamic mathematical model based on the
measured data acquired from 2017 to 2018. /e changes in
nearby flow velocity were studied and analyzed using dif-
ferent diversion models and scales. /e calculation of the
water exchange rate and the semiexchange period for eight
wind field conditions prevailing at different time periods was
coupled with the Euler algorithm during the analysis. /e
calculation of the water exchange rate and semiexchange
period of the eight main districts of Tai Lake were expected
to be obtained, and a more in-depth study of the difference
and linkages between single-source diversion and dual
source diversion should continue in order to provide a
scientific reference for future diversion strategies. /e paper
mainly discusses (1) the research area, (2) the research
method, (3) results and discussion, and (4) conclusions.

2. Study Area

Tai Lake, located at the lower reaches of the Yangtze River
Basin (119°08′–122°55′E, 30°05′–32°08′N), covers an area of
2,338 km2 to a maximum water depth of up to 3m. /is
typical large shallow lake [23] has been previously divided
into three lake bay districts and five major water areas in
order to accurately analyze the water exchange character-
istics of the various areas of the lake [24]. Using data
downloaded from the China Meteorological Data Network
(http://data.cma.cn/), in the last decade, Tai Lake was mainly
affected by the easterly winds in autumn and mainly affected
by the southeastern and northwestern monsoons in spring-
summer and winter, respectively (Figure 1). According to
the Tai Lake Basin Authority, Ministry of Water Resources
(http://www.tba.gov.cn/), the DWYRTL project consists
mainly of the Xinmeng River Extension Project, the Xingou
River Extension Project, and the Wangyu River Project,
where the first and last of these projects directly divert water
from the Yangtze River into Tai Lake. In the last decade, the
average annual water intake was 7.5 billion m3, with the
main water diversion periods occurring between January-
March, July-August, and October-December and the longest
continuous water diversion period being 90 days [16].
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From 1990 to 2017, the amount of water diverted from
the Yangtze River to the west of the Wangyu River increased
annually [25], with the annual amount of water diversion
increasing from 1.6 billion m3 to 5.2 billion m3 during this
period—an increase of 225% (Figure 2). Over the same
period, the total amount of water entering the lake also
increased, while the number of days of water exchange in Tai
Lake decreased correspondingly year-on-year, from 266
days to 160 days, by 39.8%.

3. Methodology

3.1. 3D Hydrodynamic Model. To accurately calculate the
volume of water body exchange, this study employed a
hydrodynamic model used in this study that is based on the
Navier−Stokes equations of three-way incompressible flow
and Reynolds values and was subject to the assumption of
Boussinesq and hydrostatic pressure. /e finite volume
method was applied to calculate the spatial discretization.
Its mathematic expression is shown in the equations below
[26].

/e water flow continuity equation is given by the fol-
lowing equation:
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where t represents time; x, y, and z are the Cartesian co-
ordinates; u, v, and w are the components of velocity along
the x, y, and z coordinate directions, respectively; fu and fv

are the Coriolis accelerations along the X and Y coordinate
directions; f � 2Ω sin φ represents the Coriolis factor
(Ω is the angular velocity of the Earth’s rotation, and φ is the
geographic latitude); g is the acceleration of gravity; η
represents the water level; ρ0 and ρ represent the density of
air and water, respectively; Pa is the atmospheric pressure; h

represents the total water depth; Sxx, Sxy, and Syy are the
radiation stress tensors; vt is the vertical vortex viscosity
coefficient; S is the source-sink term; and Fu and Fvare the
horizontal stresses along the X and Y coordinate directions,
respectively. /e flow velocity gradient-stress relationships
can be expressed by
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Figure 1: Map showing the location of water diversion from the Yangtze River to Tai Lake project. An inset map shows the location of the
study area within China.
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where A is the horizontal eddy viscosity coefficient.

3.2. Convective Diffusion Model. To simulate the water ex-
change more intuitively and accurately, we use a convective
diffusion model based on the Euler method, given by [27], as
seen in equation (5):
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where C is the contaminant concentration; Ex, and Ey are the
diffusion coefficients in the X and Y directions, respectively.
According to the Elder empirical formula, it can be known
that
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where n is the Manning coefficient.

3.3. Water Body Exchange Research Methods. A dissolved
conservation substance with an initial concentration of
100mg/L was placed in the lake body (note that the initial

concentration in the lake water was zero). After a certain
period of convective diffusion, the ratio of the total amount
of the remaining substance in the various areas of Tai Lake to
the total amount of the initial substance is the water ex-
change rate of the region at that moment as shown in
equation (7). An exchange rate that reaches 50% of the time
is the semiexchange period [28].

EX tj  � 1 −
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M
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⎡⎣ ⎤⎦ × 100%, (7)

where EX is the water exchange rate;H is the water depth; i is
the grid number in the calculated area; and j is the specific
time number.

Based on the constructed model, we will extract the
nodes and grids of different districts (taking Gong Bay as an
example), calculate the local water exchange rate, and then,
determine the semiexchange period of different districts
under this scenario through the water exchange method
(Figure 3).

4. Results and Discussions

4.1. Determining the Model Parameter Rates. In order to
ensure that the constructed hydrodynamic model can meet
the research needs of water body exchange studies, the water
body was divided into 9422 nonstructural grids with a spatial
resolution of 300m; data acquired from 2017 to 2018 were
employed. After calibration and verification of the depth of
the lake, measurements of the coefficient of turbulence, the
height of the bottom friction, and the wind drag coefficient
were estimated at 0.28, 0.02m, and 0.003m, respectively./e
simulation results were well aligned with the measured water
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Figure 2: Trends in the amount of water entering Tai Lake from 1990 to 2017 and its water body exchange time.
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level at each monitoring station (Figure 4). /e flow field
structure simulated by the southeast and northwest mon-
soons at a speed of 5m/s had exactly the same circulation
shape as the measured results (Figure 5). /e results in
direction and velocity of circulation flow were also con-
sistent with the results reported in previous studies [29].

In order to further compare the simulated water levels
with the measured values, this study uses three model
evaluation methods, namely, average relative error (MRE),
root mean square error (RMSE), and correlation coefficient
analysis (R2). /e evaluation process involves an error and
correlation analysis of the measured values (M) and sim-
ulated values (S) with the following formulations [30]:
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where N is the number of times of total simulation; i is the
number of times of simulation; Si is the value of the ith
simulation; Mi is the value of the ith measurement; S is the
simulated average value; and M is the measured average value.

/e assessment results of the four stations (Table 1) show
that the simulated water levels fit well with the measured water
levels (the highest water level error<0.09m). Simulation results
can account for more than 90% of the actual situation. As a
result, the constructed hydrodynamic model met the re-
quirements for subsequent water body exchange research.

4.2. Optimizing the DWYRTL Project. Wind field conditions
(i.e., windless and 5m/s in either easterly, southeasterly, or
northwesterly directions) were determined in accordance

with the climatic conditions of Tai Lake [31]. Following the
relationship between the level of flood control at Tai Lake
and the ecologically accepted water level, the initial water
level was set at 3.25m in the model [32], while the total
calculation time was set at 60 days; this depended on the
average time between 2007 and 2017, with the time step at
86,400 s. Based on these settings (Table 2), the exchange
characteristics of Tai Lake under the conditions of single-
source diversion of the Wangyu River and dual-source di-
version of the Wangyu and Xinmeng rivers were simulated.
Also, because this simulation was primarily a comparative
study, it was assumed that other external conditions
remained unchanged; that is, the effects of rainfall, runoff,
and evaporation were not considered separately.

Ignoring wind conditions, the simulation outputs show
that Gong Bay, Center District, and East Lake District were
themain areas of the water exchange operatingmode (a), but
the water quality of the Yangtze River was poor compared to
that of the exchange area (Figure 6). In addition, dependence
on a single source of water diversion from theWangyu River
would increase the concentration of water with poor quality
in this region while reducing the water capacity of Tai Lake.
In addition, the flow field would be subjected to frequent
changes that would not be appropriate for the growth of
aquatic plants and the restoration of aquatic ecosystems./e
operation mode (b) would significantly reduce the effects on
the flow field in the East Lake District, ensuring the stability
of the ecosystem as long as the volume of water and the
hydrological conditions are constant./is is true because the
dual-source common diversion areas would include the
water body exchange areas of Zhushan Bay and the
Northwest Lake District. As an auxiliary measure, the di-
version of water bodies should not be used to meet the
unconditional needs of the society or the economy. Oper-
ating modes (c) and (d) indicate that when water diversion is
extended to 400m3/s, approximately 45% of Tai Lake water
would be exchanged within 60 days, while the Tai Lake water
body exchange period under natural conditions is approx-
imately 300 days. /is suggests that this level of water body
diversion has caused significant disturbances to the aquatic

Step2: According to the calculated average water exchange rate of the 
different parts in Tai Lake, the semiexchange period is determined

Step1: �e node and grid number determined according to the lake
parts
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Figure 3: Two-step approach used to calculate the semiexchange period of Tai Lake using bathymetry data.
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Figure 4: Calibration and verification of surface elevation: (a) Xishan, (b) Dapu, (c) Taipu, and (d) Wangting monitoring station elevations.
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Table 1: Model calculation evaluation.

Monitor Year RMSE MRE (%) R2

Xishan 2017 0.056 4.66 0.971
2018 0.018 1.30 0.995

Dapu 2017 0.039 3.06 0.976
2018 0.100 6.64 0.839

Taipu 2017 0.049 3.51 0.968
2018 0.075 6.12 0.923

Wangting 2017 0.059 4.37 0.934
2018 0.087 6.02 0.876

Table 2: Simulated operating mode under different water diversion and hydrological conditions.

Scene Time Wind speed/(m/s) Wind direction Wangyu River/(m3/s) Xinmeng River/(m3/s) Taipu River/(m3/s)
a All year 0 — 200 0 −200
b All year 0 — 100 100 −200
c All year 0 — 400 0 −400
d All year 0 — 200 200 −400
e Spring-Summer 5 SE 200 0 −200
f 5 SE 100 100 −200
g Autumn 5 E 200 0 −200
h 5 E 100 100 −200
i Winter 5 NW 200 0 −200
j 5 NW 100 100 −200

200 m3/s

200 m3/s

400 m3/s

400 m3/s

200 m3/s200 m3/s

400 m3/s

200 m3/s

100 m3/s
100 m3/s

Exchange rate (%)
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88–96
80–88
72–80
64–72
48–64
32–48
16–32
8–16
4–8
2–4
1-2
0-1

N

(a) (b)

(c) (d)

Figure 6: Simulated water body exchange rates under operating modes (a)–(d) as described in the main text.
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environment of Tai Lake, which would have a serious impact
on the storage capacity of Tai Lake and the stability of the
aquatic ecosystem [28]. It is recommended that the total
water intake in the future should not exceed 20% of the total
annual lake water intake, i.e., 20×108m3/a.

/e rate at which water flows through Tai Lake is mainly
affected by the wind field and the exchange rate of water; an
excessive flow rate will have a certain adverse effect on the
stability of the ecosystem [33–35]. /e flow field of the
surrounding area will be controlled by the inflow-outflow
discharge under windless conditions. Under the different
diversion scales of the Wangyu and Xingeng rivers, the
changes in velocity at two monitoring points, XD and ZSW,
can be seen in Figure 7. From the calculation results and the
change in flow rate, the flow rate of a single-source water
diversion (200m3/s) is predicted to be approximately 50%
higher than that of a dual-source water diversion (100m3/s
average), i.e., the best strategy under wind-free conditions is
to divert water from the Wangyu and Xingeng rivers by
100m3/s. At this time, water diversion has the lowest impact
on the different districts and contributes to the stability of
the ecosystem [36].

/e simulation results show that when the total amount
of water is 200m3/s, the Tai Lake water exchange rate is
approximately 20% over the four seasons, regardless of
whether the water diversion method is a single- or a dual-
source (Figure 8). /is indicates that the water exchange rate
is not mainly related to the amount of water entering/leaving
the lake but related to the spatiotemporal distribution of the
exchange of the water body, which depends primarily on the
wind field [37]. /is occurs because the wind field mainly
determines the flow field of large shallow lakes. Single-
source water diversion is prone to creating an imbalance in
hydrodynamics, which makes it difficult to replace the water

in Zhushan Bay and the western lake areas where pollution is
serious and algae easily accumulate. /e water exchange
areas created by dual-source flow were predicted to be
18.84%, 16.24%, and 15.02% higher than when single-source
water diversion occurs in the same areas during the spring-
summer, autumn, and winter seasons. /ese changes may
enhance the hydrodynamics of the western lake region
under the influence of the southeastern monsoon in spring
and summer; meanwhile, the hydrodynamics of Zhushan
and Meiliang bays are under the influence of the north-
western monsoon in winter. Consequently, taking into ac-
count both economic benefits of a dual-source system and
local meteorological conditions, it is vital that appropriate
methods of water diversion be chosen in accordance with the
needs of different periods.

By conducting a statistical analysis of the eight major
sublake areas of Tai Lake, we found that the water exchange
rate and the semiexchange period of the eight districts under
ten operating modes would change significantly. /e results
of the present study show the wind field has a significant
impact on the spatiotemporal water exchange rate and the
semiexchange period (Table 3, e, g, and i and f, h, and j),
which is consistent with the conclusion of Safak [38]. /e
most significant change for the East Lake District would
occur when single-source water diversion is carried out in
the Wangyu River during winter. Its semiexchange period
would be 29–30 days, i.e., 60 days of water diversion can
completely replace the water volume of the East Lake
District, which is unfavorable to the stability of the eco-
system of the East Lake District [39]. However, if dual-
source water diversion is adopted in winter for optimization
purposes, the water exchange period would increase to 102
days, which would significantly reduce the negative impact
on the eastern lake region. /e joint-source diversion
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Figure 7: (a) Map of Tai Lake showing the speed of water flow, and (b) flow rates in different levels of water diversion from the Yangtze River
to Tai Lake scales from the Wangyu and Xingmeng rivers.
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method for theWangyu-Xingeng rivers should, therefore, be
adopted in winter, with each river water volume accounting
for half of the total amount of diverted water. During spring
and summer, different methods of diversion of water should
be applied in accordance with the actual need to replace the
water body in particular areas. Specifically, when an

exchange of water is required in the Meiliang Bay area, a
single-source diversion method is recommended for the
Wangyu River; when an exchange of water is required in the
western lake area, the Wangyu River-Xingeng River joint-
source diversion method should be adopted with 50% of the
water contributed by the Wangyu River. In autumn, sewage
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Figure 8: Water exchange rate simulation results for operating modes (e)–(j).
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from the western part of the lake would flow rapidly to the
East Lake District under the influence of the easterly wind
flow. In this case, a single-source water diversion of the
Wangyu River should be undertaken so that pollutants in the
heart of the lake can be neutralized and the impact on the
ecosystem of the East Lake District can be reduced.

Using the modeled results above, all strategies were
analyzed according to the flow rate and uniformity index
[40]. It was found that more attention should be paid to the
effects of the flow rate, which will change the stability of the
ecosystem. When the wind field dominates the flow field,
more attention should be paid to the water exchange uni-
formity index, which will have a significant impact on the
large forms of wetland vegetation [2]. Finally, this study sets
out the scientifically sound management strategies (Table 4)
for the “DWYRTL” project based on the specific conditions
of the wind field.

5. Conclusions

First, an appropriate type of water body diversion can
improve the water quality of Tai Lake. Excessive diversion of
water would, however, dramatically alter the local flow fields,
which would not be conducive to the growth of aquatic
plants and the stability of various parts of the Tai Lake
ecosystem. Excessive diversion would also have serious ef-
fects on the original storage capacity and the natural ability
of the lake to adjust to various types of changing conditions.

/erefore, the WDYRTL project should not unintentionally
expand the scale of water diversion in the future. It is
recommended that the total annual diversion of water
should not exceed 20% of the total intake of water, i.e.,
20×108m3/a./e optimization of water management can be
carried out by combining weather forecast information with
the dual-source water diversion mode.

Second, the exchange rate of water depends mainly on
the amount of water entering/exiting the lake. Ignoring wind
conditions, the flow rate of a single-source water diversion is
approximately 50% higher than that of dual-source water
diversion. In southeastern monsoon conditions, the ex-
change of water occurs mainly in three lake bay areas and in
the center of the lakes. Under the conditions of the east
monsoon, water exchange rates will be the highest in three
lake bay areas and the Northwest Lake area. Meanwhile,
during the northwest monsoon, water exchange will pri-
marily occur in the Center and East Lake districts. In a sense,
the wind field is predicted to be the key factor determining
the spatiotemporal distribution of the water exchange area.

/ird, under normal conditions, the dual-source water
diversion method has many more advantages than the
single-source water diversion method; however, some dif-
ferences would recommend use of the single-source method
at times. In spring and summer, single-and double-source
water diversion methods should be selected based on the
needs of the actual water replacement areas. In autumn, a
single-source water diversion method is preferable to ensure

Table 3: Water exchange rate and the semiexchange period of eight lake districts under ten operating modes.

Scene Indicator Gong Bay Meiliang Bay Zhushan Bay Center area Northwest area Southwest area East Lake East area

a EX (%) 100 21.07 0.32 29.51 0 0 5.58 0
SEP (day) 7–8 — — — — — — —

b EX (%) 99.72 8.69 99.99 15.25 53.99 0 0.54 0
SEP (day) 16–17 — 5∼6 — 54∼55 — — —

c EX (%) 100 32.32 9.27 62.27 3.72 0.01 45.68 0
SEP (day) 3–4 — — 48∼49 — — — —

d EX (%) 100 20.43 100 43.32 89.76 2.69 16.58 0
SEP (day) 8–9 — 3∼4 — 37∼38 — — —

e EX (%) 65.60 59.08 55.19 9.64 9.33 1.52 3.35 1.57
SEP (day) 8–9 47∼48 53∼54 — — — — —

f EX (%) 51.60 35.93 77.97 9.91 19.46 11.68 4.74 7.63
SEP (day) 53–54 — 9∼10 — — — — —

g EX (%) 83.07 55.15 50.43 17.73 40.28 0.32 12.73 0
SEP (day) 8–9 52∼53 59∼60 — — — — —

h EX (%) 64.43 36.78 83.15 18.62 47.08 1.24 19.01 2.47
SEP (day) 34–35 — 8∼9 — — — — —

i EX (%) 72.74 7.81 30.57 18.55 3.82 1.66 70.49 20.19
SEP (day) 7–8 — — — — — 29∼30 —

j EX (%) 68.68 36.19 80.09 19.18 2.22 0.77 54.93 12.91
SEP (day) 18–19 — 6∼7 — — — 50∼51 —

“/” means that the semiexchange period (SEP) has not been reached within the calculation time and no value is assigned.

Table 4: /ree optimal water diversion strategies.

Strategy Wangyu River (m3/s) Xinmeng River (m3/s) Wind field Index optimization
1 100 100 Windless Flow rate
2 200 0 E, SE (4m/s) Evenness for the east part of Tai Lake
3 100 100 NW (4m/s) Evenness for the east part of Tai Lake
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both an adequate water supply in theWest Lake area and the
stability of the aquatic ecosystem in the East Lake area. In
winter, the Wangyu-Xinmeng River dual-source water di-
version method is recommended, with each river accounting
for 50% of the total amount diverted water.
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In this paper, we investigate pattern dynamics of a nonlocal delay SI epidemic model with the growth of susceptible population
following logistic mode. Applying the linear stability theory, the condition that the model generates Turing instability at the
endemic steady state is analyzed; then, the exact Turing domain is found in the parameter space. Additionally, numerical results
show that the time delay has key effect on the spatial distribution of the infected, that is, time delay induces the system to generate
stripe patterns with different spatial structures and affects the average density of the infected. +e numerical simulation is
consistent with the theoretical results, which provides a reference for disease prevention and control.

1. Introduction

Research on infectious disease models can be traced back to
the pioneering work of Kermack and Mckendrick [1, 2], and
the traditional model is usually described by ordinary dif-
ferential equations as a result of the spatially homogeneous
assumption [3–10]. Considering the instantaneous change,
researchers have established epidemic models via impulsive
differential equations [11–15]. However, besides the change
of time, the spatial distribution of populations has an sig-
nificant effect on diseases transmission. As a matter of fact,
spatial distribution of the population is not homogeneous,
but depend on the spatial location and the surrounding
environment factors, such as the amount of food, the
number of natural enemies, and the number of the infected
[16, 17]. +erefore, considering the space in epidemic
models is more suitable for the spread process of infectious
diseases. Recently, many reaction-diffusion models have
been proposed to study their dynamical behaviors and study
the corresponding control measures [18–29].

Since they can reach the current position from any other
positions in the whole space when humans or animals are

moving in space, which is more reflective for the actual
situation, therefore, the nonlocal delay of infectious disease
has become a research focus in epidemiology. Wang andWu
[30] studied the Kermack–Mckendrick SIR model with
nonlocal delay and discussed the dynamic properties of
disease spatial diffusion. Pan [31] studied the existence of
wave front solutions for a class of infectious disease models
with nonlocal diffusion and time delay by constructing
upper and lower solutions. Zhen et al. [32] also obtained the
traveling wave solutions for a class of SIR epidemic models
with spatiotemporal delays. Using the upper and lower
solutions and its related monotone iterative techniques,
Tang et al. [33] studied the sufficient conditions for the
global asymptotic stability of the disease-free equilibrium of
the bird system.

Most of the abovementioned studies focus on the
traveling wave solutions and global stability of the nonlocal
epidemic model. However, few literatures study the pattern
formation of infectious disease models based on reaction-
diffusion equation with nonlocal delay. Pattern dynamics
can effectively characterize the spatial distribution of the
infected, so as to provide decision-making guidance for the
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government. In fact, in the natural environments with
limited resources, the assumption of logistic growth is more
consistent with the actual situation [34–37]; then, we assume
the susceptible possess the logistic growth in the absence of

the infected. In addition, we take the standard incidence
ratio to describe the infection between the susceptible and
the infected. To this end, we propose the following model:
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possible positions to the position (HTML translation failed)

before time t. +e nonlocal item.depicts the cumulative
number of the infected reaching x position at t time who
starts from any y position in the entire space at s time.


t

− ∞


R2
Q(x − y, t − s)I(y, s)ds dy. (3)

In order to study the spatiotemporal dynamics of model
(1), in Section 2, we first obtain the steady states of model (1),
linearize the model at the endemic steady state, and then
analyze the conditions of system generating Turing insta-
bility and parameter space of Turing pattern generated. In
Section 3, different stripe patterns are shown for different
time delays, which indicates that time delay affects the
structures of Turing patterns. In Section 4, the summary and
discussion are given.

2. Linear Analysis and Turing Patterns

In this section, we define a new variable V(x, t) to replace
the nonlocal term 

t

− ∞ 
R2Q(x − y, t − s)I(y, s)dyds; then,

system (1) can be transformed into 3-variable reaction-
diffusion system:

zc
zt

� F(c) + DΔc, (4)

where

c �

S

I

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F(c) �

rS 1 −
S

K
  −

βSV

S + I
− (d + A)S

βSV

S + I
− (μ + d)I

1
τ

(I − V)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D �

DS

DI

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

By studying system (4) without diffusion, so the ordinary
differential equation is given:

dS(t)

dt
� rS(t) 1 −

S(t)

K
  −

βS(t)V(t)

S(t) + I(t)
− (d + A)S(t),

dI(t)

dt
�
βS(t)V(t)

S(t) + I(t)
− (μ + d)I(t),

dV(t)

dt
�
1
τ

(I(t) − V(t)),

(6)

system (6) has two constant steady states E0 � (S0, I0, V0) �

(K(r − A − d)/r, 0, 0) and E∗1 � (S∗1 , I∗1 , V∗1 ), where

S
∗
1 �

K(r + μ − A − β)

r
,

I
∗
1 �

K(r + μ − A − β)(β − d − μ)

r(d + μ)
,

V
∗
1 �

K(r + μ − A − β)(β − d − μ)

r(d + μ)
.

(7)

According to the actually biological situation, the pop-
ulation number should be nonnegative. So, if r>A + d

holds, then S0 > 0, that is, E0 is disease-free steady states. In
addition, if the condition

(H1) r>A + β − μ, β> μ + d, (8)
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is satisfied, then S∗1 > 0, I∗1 > 0, and V∗1 > 0, which shows that
E∗1 is the endemic steady state.

+e main focus of infectious diseases is to study the
outbreak and prevalence, so as to provide theoretical
guidance for the prevention and control of infectious dis-
eases. +en, the following contents only study endemic
steady state E∗1 .

+rough setting

w �

S − S∗1

I − I∗1

V − V∗1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (9)

we substitute (9) into (4), expand F(c) at the endemic steady
state E∗1 based on Talyor expansion, and then obtain the
following linear equation:

zw
zt

� DΔw + Jw, J �

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

where

a11 �
Aβ + β2 + β d − βr − d2 − 2 dμ − μ2

β
,

a12 �
(β − d − μ)(d + μ)

β
,

a13 � − d − μ,

a21 �
(β − d − μ)2

β
,

a22 � −
2β d + 2βμ − d2 − 2 dμ − μ2

β
,

a23 � d + μ,

a31 � 0,

a32 �
1
τ
,

a33 � −
1
τ
.

(11)

In order to solve the solution of system (10) satisfying the
boundary condition (2), we first define W(x) as the time-
independent spatial eigenvalue problem, which satisfies the
following system:

ΔW + k
2W � 0, ( n

→
· ∇)W � 0, for x on zΩ , (12)

where k is the eigenvalue (i.e., wavenumber).
We now look for solutions w(x, t) of (10) in the form

w(x, t) �

C1

C2

C3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

λt+i k
→

·x
, (13)

where k
→

is the wave vector with magnitude k � | k
→

|. By
inserting (13) into (10), the characteristic equation matrix is
obtained:

|J − λE − D| � 0, (14)

which is equivalent as follows:

λ3 + a2(k)λ2 + a1(k)λ + a0(k) � 0, (15)

with

a2(k) � DS + DI + 1( k
2

− A − β + d + 2μ + r +
1
τ
,

a1(k) � DS + DI + DSDI( k
4

−
1
βτ

AβDIτ + β2DIτ − 2βdDSτ + β dDIτ − 2βDSμτ − βDIrτ

+ d
2
DSτ − d

2
DIτ + 2 dDSμτ − 2 dDIμτ + DSμ

2τ − DIμ
2τ + Aβτ

+ β2τ − β dτ − 2βμτ − βrτ − βDS − βDIk
2
 −

1
βτ

(2Aβ dτ

Table 1: Symbol descriptions of model (1).

Symbol Interpretations

S(x, t)
+e density of the susceptible at position x(x ∈ R2) at

time t

I(x, t) +e density of the infected at position x(x ∈ R2) at time t

A +e emigration rate of the susceptible
Ω +e diffusion domain
n
→ Unit outward normal to zΩ
zΩ +e closed boundary of the diffusion domain Ω
Δ Laplace operator (z2/zX2) + (z2/zY2)

DS +e diffusion rate of the susceptible
DI +e diffusion rate of the infected
β +e infection rate
μ +e mortality rate due to infectious disease caused
d +e natural mortality
r +e intrinsic growth rate
K +e carrying capacity

Complexity 3



+ 2Aβμτ − Ad
2τ − 2A dμ τ − Aμ2τ + 3β2dτ + 3β2μτ − 2βd

2τ

− 6βdμ τ − 2βdr τ − 4βμ2τ − 2βμrτ + d
2μτ + d

2
rτ + 2 dμ2τ

+ 2dμ rτ + μ3τ + μ2rτ + Aβ + β2 − βμ − βr,

a0(k) � DSDIk
6

−
1
βτ

AβDIτ + β2DIτ − 2β dDSτ + β dDIτ − 2βDSμτ

− βDIrτ + d
2
DSτ − d

2
DIτ + 2dDSμτ − 2dDIμτ + DSμ

2τ − DIμ
2τ

− βDSDIk
4
 −

1
βτ

2Aβ dτ + 2Aβμτ − Ad
2τ − 2A dμ τ

− Aμ2τ + 3β2dτ + 3β2μτ − 2βd
2τ − 6βdμ τ − 2β dr τ − 4βμ2τ

− 2βμrτ + d
2μτ + d

2
rτ + 2 dμ2τ + 2dμ rτ + μ3τ + μ2rτ

+ AβDI + β2DI − β dDS + β dDI − βDSμ − βDIr + d
2
DS

− d
2
DI + 2dDSμ − 2 dDIμ + DSμ

2
− DIμ

2
k

2


−
(d + μ)(− d + β − μ)(A + β − μ − r)

βτ
,

(16)

where a2(k)> 0 for any k because of condition (H1) satisfied.
Moreover, one can obtain the corresponding charac-

teristic equation for system (6) as follows:

λ3 + a2(0)λ2 + a1(0)λ + a0(0) � 0, (17)

where

a2(0) � − A − β + d + 2μ + r +
1
τ
,

a1(0) � −
1
βτ

2Aβ dτ + 2 dμ rτ + μ3τ

+ μ2rτ + Aβ + β2 − βμ − βr

+ 2Aβμτ − Ad
2τ − 2A dμ τ − Aμ2τ

+ 3β2dτ + 3β2μτ − 2βd
2τ

− 6βdμ τ − 2βdr τ − 4βμ2τ − 2βμrτ

+ d
2μτ + d

2
rτ + 2 dμ2τ,

a0(0) � −
(d + μ)(β − d − μ)(A + β − μ − r)

βτ
.

(18)

On the basis of condition (H1), one can derive a2(0)> 0
and a0(0)> 0. According to Hurwitz criterion, the condition
for the local asymptotic stability of E∗1 of system (6) is

(H2)a2(0)a1(0) − a0(0)> 0. (19)

Theorem 1. .e nonspatial system (6) gives rise to a Hopf
bifurcation at endemic steady state E∗1 if only and if the
condition

(H3)a2(0)a1(0) − a0(0) � 0, (20)

is established.

Proof. It is obvious that a2(0)> 0 and a0(0)> 0 due to the
existence of endemic equilibrium E∗1 (i.e., (H1)). According
to the theorem of [38], when conditions a2(0)> 0, a0(0)> 0,
and a2(0)a1(0) − a0(0) � 0 hold, a Hopf bifurcation occurs
for nonspatial system (6).

Next, we find the conditions under which system (4)
generates Turing instability near endemic steady state E∗1 : E∗1
is locally asymptotic stability for system (6), but E∗1 loses
stability for system (6) with diffusion (i.e., system (4)).
Furthermore, we already know a2(k)> 0 for any k, while the
signs of a0(k) and a2(k)a1(k) − a0(k) are uncertain. Now,
we need to look for the condition that E∗1 of system (4)
becomes unstable. Obviously, Hurwitz criterion is not sat-
isfied, that is, a0(k)< 0 or a2(k)a1(k) − a0(k)< 0; then, the
corresponding instability conditions are given. Based on
such two cases, we derive the following theorems with re-
spect to Turing instability. □

Theorem 2. For system (4), if condition (H1) holds, and one
of the following conditions

(C1) h1 < 0 and H2(z1)< 0
(C2) h1 > 0, h2 < 0, (h2)

2 − 3h3h1 > 0 and H2(z1)< 0

is satisfied, then endemic steady state E∗1 is unstable for some
k, where
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z1 �
− h2 +

�����������

h2( 
2

− 3h3h1



3h3
. (21)

Proof. Let z � k2 > 0 and H2(k2) � a0(k), then H2(z) �

h3z
3 + h2z

2 + h1z + h0, where

h3 � DSDI > 0,

h2 � −
1
βτ

AβDIτ + β2DIτ − 2βdDSτ + βdDIτ

− 2βDSμτ − βDSDI

− βDIrτ + d
2
DSτ − d

2
DIτ + 2 dDSμτ

− 2dDIμτ + DSμ
2τ − DIμ

2τ,

h1 � −
1
βτ

2Aβ dτ + 2Aβμτ − Ad
2τ − 2A dμ τ

− Aμ2τ + 3β2dτ + 3β2μτ − 2βd
2τ − 6βdμ τ

− 2βdr τ − 4βμ2τ

− 2βμrτ + d
2μτ + d

2
rτ + 2dμ2τ + 2dμ rτ + μ3τ + μ2rτ

+ AβDI + β2DI − β dDS + β dDI − βDSμ − βDIr + d
2
DS

− d
2
DI + 2 dDSμ − 2 dDIμ + DSμ

2
− DIμ

2
,

h0 � −
(d + μ)(− d + β − μ)(A + β − μ − r)

βτ
> 0.

(22)

Considering the properties of cubic polynomials, the
coefficient of the third order of H2(z) is greater than zero
and H2(0) � h0 > 0. By solving the first-order derivative
H2(z) about z, namely, H2′(z) � 3h3z

2 + 2h2z + h1 � 0, we
can deduce

z2 �
− h2 −

�����������

h2( 
2

− 3h3h1



3h3
≤ z1 �

− h2 +

�����������

h2( 
2

− 3h3h1



3h3
.

(23)

(i) If condition h1 < 0 holds, then one can obtain
z2 < 0< z1, which further shows that z1 is the
minimum point.+en, we can get a2(k)< 0 for some
k when H2(z2,min)< 0 combining with
H2(0) � h0 > 0 (see Figure 1(a)).

(ii) If conditions h1 > 0, h2 < 0, and (h2)
2 − 3h3h1 > 0

hold, then we can get 0< z2 < z1, and z2 and z1 are
maximum and minimum points, respectively. Fur-
thermore, according to H2(z1)< 0, one can derive
that a2(k)< 0 for some k (see Figure 1(b)).

Obviously, Hurwitz criterion does not hold for Case (i)
or Case (ii), and then the endemic steady state E∗1 is unstable
for system (4).

+us, the conditions of system (4) generating Turing
instability is given:

(H1), (H2),

(C1) or, (C2).
 (24)

In addition, we set H3(z) � a2(k)a1(k) − a0(k) and
z � k2 > 0, that is,

H3(z) � hq3
z
3

+ hq2
z
2

+ hq1
z + hq0

, (25)

where

hq3
� DI + 1(  DS + 1(  DS + DI( > 0,

hq2
� −

1
τβ

2AβDSDIτ + AβD
2
Iτ + 2β2DSDIτ + β2D2

Iτ − 2βdD
2
Sτ

− 2βdDSDIτ + β dD
2
Iτ − 2βD

2
Sμτ − 4βDSDIμτ − 2βDSDIrτ

− βD
2
Irτ + d

2
D

2
Sτ − d

2
D

2
Iτ + 2dD

2
Sμτ − 2dD

2
Iμτ + D

2
Sμ

2τ

− D
2
Iμ

2τ + 2AβDSτ + 2AβDIτ + 2β2DSτ + 2β2DIτ − 2βdDSτ

− 2βdDIτ − 4βDSμτ − 2βDSrτ − 4βDIμτ − 2βDIrτ + Aβτ

+β2τ − β dτ − βD
2
S − 2βDSDI − βD

2
I − 2βμτ − βrτ − 2βDS − 2βDI,

hq1
�

1
τ2β

A
2βDIτ

2
+ 2Aβ2DIτ

2
− 4Aβ dDSτ

2
− 2Aβ dDIτ

2
− 4AβDSμτ

2


− 4AβDIμτ
2

− 2AβDIrτ
2

+ 2Ad
2
DSτ

2
+ 4A dDSμτ

2
+ 2ADSμ

2τ2

+ β3DIτ
2

− 5β2dDSτ
2

− 3β2dDIτ
2

− 5β2DSμτ
2

− 5β2DIμτ
2

− 2β2DIrτ
2

+ 5βd
2
DSτ

2
+ 14β dDSμτ

2
+ 4β dDSrτ2 + 2β dDIμτ

2
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+ 2β dDIrτ
2

+ 9βDSμ
2τ2 + 4βDSμrτ2 + 3βDIμ

2τ2 + 4βDIμrτ2

+ βDIr
2τ2 − d

3
DSτ

2
+ d

3
DIτ

2
− 5d

2
DSμτ

2
− 2d

2
DSrτ2

+ 3d
2
DIμτ

2
− 7dDSμ

2τ2 − 4 dDSμrτ2 + 3 dDIμ
2τ2 − 3DSμ

3τ2

− 2DSμ
2
rτ2 + DIμ

3τ2 + A
2βτ2 + 2Aβ2τ2 − 2Aβ dτ2 − 4Aβμτ2

− 2Aβrτ2 + β3τ2 − 2β2dτ2 − 4β2μτ2 − 2β2rτ2 + βd
2τ2

+ 4β dμ τ2 + 2βdr τ2 + 4βμ2τ2 + 4βμrτ2 + βr
2τ2 − 2AβDSτ

− 2AβDIτ − 2β2DSτ − 2β2DIτ + 2βdDSτ + β dDIτ + 4βDSμτ

+ 2βDSrτ + 3βDIμτ + 2βDIrτ − 2Aβτ − 2β2τ + β dτ

+3βμτ + 2βrτ + βDS + βDI,

hq0
�

1
τ2β

2A
2β dτ2 + 2A

2βμτ2 − A
2
d
2τ2 − 2A

2
dμ τ2 − A

2μ2τ2

+ 5Aβ2dτ2 + 5Aβ2μτ2 − 5Aβd
2τ2 − 14Aβdμ τ2 − 4Aβ dr τ2

− 9Aβμ2τ2 − 4Aβμrτ2 + Ad
3τ2 + 5Ad

2μτ2 + 2Ad
2
rτ2

+ 7A dμ2τ2 + 4A dμ rτ2 + 3Aμ3τ2 + 2Aμ2rτ2 + 3β3dτ2

+ 3β3μτ2 − 5β2d2τ2 − 15β2dμ τ2 − 5β2dr τ2 − 10β2μ2τ2

− 5β2μrτ2 + 2βd
3τ2 + 11βd

2μτ2 + 5βd
2
rτ2 + 18β dμ2τ2

+ 14β dμ rτ2 + 2β dr
2τ2 + 9βμ3τ2 + 9βμ2rτ2 + 2βμr

2τ2

− d
3μτ2 − d

3
rτ2 − 4d

2μ2τ2 − 5d
2μrτ2 − d

2
r
2τ2 − 5 dμ3τ2

− 7 dμ2rτ2 − 2 dμ r
2τ2 − 2μ4τ2 − 3μ3rτ2 − μ2r2τ2 + A

2βτ

+ 2Aβ2τ − 2Aβ dτ − 4Aβμτ − 2Aβrτ + β3τ − 3β2dτ

− 5β2μτ − 2β2rτ + βd
2τ + 4β dμ τ + 2β dr τ + 4βμ2τ

+ 4βμrτ + βr
2τ − Aβ − β2 + βμ + βr. (26)

H2(z)

0 zz2

z1

(a)

H2(z)

0 z
z1

z2

(b)

Figure 1: +e diagrams of the cubic function H2(z) in +eorem 1: (a) case (i) and (b) case (ii).
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+rough some analyses, we can give the following
conclusion. □

Theorem 3. For system (4), suppose that the following holds

(C3) hq1
< 0, hq0
> 0, and H3(z3)< 0

(C4) hq1
> 0, hq0

> 0, hq2
< 0, (hq2

)2 − 3hq3
hq1
> 0, and

H3(z3)< 0

.en, endemic steady state E∗1 becomes unstable for some
k, where

z3 �
− hq2

+

�������������

hq2
 

2
− 3hq3

hq1



3hq3

. (27)

Given that the cubic polynomial functions H2(z) and
H3(z) have similar structures and conditions, thus the proof
process of +eorem 3 is similar to that of +eorem 2; then,
one can easily obtain the above result.

+erefore, we derive another condition for system (4) to
give rise to Turing instability:

(H1), (H2),

(C3)or, (C4).
 (28)

3. Numerical Results

In this section, we will carry out numerical simulations for
system (4) with Neumann boundary conditions, which will
be used to illustrate our theoretical analysis. For the con-
venience of numerical simulation, we select two-dimen-
sional space area Ω � [0, a] × [0, a] and set the same space
step h in X and Y directions of the space area. Simulta-
neously, time step is fixed as Δt.+en, the mesh generation is
given:

xi � ih, i � 0, 1, 2, . . . , J,

yj � jh, j � 0, 1, 2, . . . , J, Jh � a,

tn � nΔt, n � 0, 1, 2, . . . .

(29)

F(c) in system (4) is relabeled as F(c) �

f1(S, I, V)

f2(S, I, V)

f3(S, I, V)

⎛⎜⎝ ⎞⎟⎠,

and the following finite difference scheme is adopted for
system (4):

Sn+1
i,j − Sn

i,j

Δt
� DS

Sn
i+1,j − 2Sn

i,j + Sn
i− 1,j

h2 +
Sn

i,j+1 − 2Sn
i,j + Sn

i,j− 1

h2  + f1 S
n
i,j, I

n
i,j, V

n
i,j ,

In+1
i,j − In

i,j

Δt
� DI

In
i+1,j − 2In

i,j + In
i− 1,j

h2 +
In

i,j+1 − 2In
i,j + In

i,j− 1

h2  + f2 S
n
i,j, I

n
i,j, V

n
i,j ,

Vn+1
i,j − Vn

i,j

Δt
�

Vn
i+1,j − 2Vn

i,j + Vn
i− 1,j

h2 +
Vn

i,j+1 − 2Vn
i,j + Vn

i,j− 1

h2 + f3 S
n
i,j, I

n
i,j, V

n
i,j ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where Sn
i,j, In

i,j, and Vn
i,j represent the approximate value of

S(xi, yj, tn), I(xi, yj, tn), and V(xi, yj, tn), respectively. In
the simulation process, the initial value is a small random
disturbance at endemic steady state E∗1 , and the area range of
individuals’ activity is Ω � [0, 100] × [0, 100]. +e space
region is evenly divided into 100 × 100 grids, and the cor-
responding space step is h � 1. +e time interval is [0, 5000],
and the time step is set to Δt � 0.005. +e first-order dif-
ference is used for the first-order derivative of the time, and
the second-order derivative of the space is discretized by the
center differencemethod in process of numerical simulation.
For infectious diseases, the spatial distribution of infected
individuals is a key issue for the control of infectious disease.
Turing pattern can visually describe the spatial distribution
of infected individuals. +e focus of our simulation is how
nonlocal delay affects spatial distribution of infected indi-
viduals. We thus take parameter value as K � 1000, d � 0.3,
μ � 0.2, r � 0.8, DS � 1, DI � 10, A � 0.4, and β � 0.58; time

delay τ is selected as the control parameter. Figures 2 and 3
are the time sequence diagram of spatial distribution of the
density of the infected for time delays τ � 0.1 and τ � 0.6,
respectively. It can be seen from these two figures that spatial
distribution of the density of the infected evolves with time,
which finally presents a regular nonuniform macroscopic
structure in limited time, namely, stripe patterns, which
indicates the number of infected individuals gradually in-
creases over time and eventually gathers together. Under
different time delay parameters, the infected finally forms
different spatial distribution structures in the first row of
Figure 4, which are called strip patterns. +ese patterns are
further presented in three-dimensional space in the second
row of Figure 4, which directly reflects the change of the
density of the infected with space. Figure 5 shows the re-
lationship between the average density of the infected and
time delay τ, that is, the average density of the infected
decreases with the increase of time delay τ (τ is less than the
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Figure 2: +e spatial evolution of the density of the infected with time for time delay τ � 0.1: (a) t � 90000; (b) t � 200000; (c) t � 300000;
(d) t � 1000000.
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Figure 3: +e spatial evolution of the density of the infected with time for time delay τ � 0.6: (a) t � 80000; (b) t � 180000; (c) t � 400000;
(d) t � 1000000.
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Figure 4: +e first row shows stripe patterns with three different spatial structures in two-dimensional space for different time delay parameters:
(a and d) τ � 0.1; (b and e) τ � 0.2; (c and f) τ � 0.3. +ese patterns are further presented in a three-dimensional space in the second row.
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Figure 5: +e relationship between the average density of the infected and time delay τ.
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critical value), while the opposite case appears when τ is
greater than the critical value.

4. Conclusions and Discussion

+is paper investigates spatiotemporal dynamics of the SI
epidemic model with nonlocal effect and the growth of the
susceptible population following logistic mode, and we
obtain two spatially homogeneous steady states including
disease-free steady state and endemic steady state. We
mainly analyze the dynamical behavior near endemic steady
state-Turing instability. In general, the condition of system
generating Turing instability is that the endemic steady state
is stable in the system without diffusion (i.e., ordinary
equation system), but becomes instability in the system with
diffusion (i.e., reaction-diffusion system); then, the system
finally gives rise to stable spatial structure, which is called
Turing pattern. +e conditions of system (4) generating
Turing instability are (24) or (28) based on Hurwitz crite-
rion, and the parameter space of the existence of Turing
pattern is given by condition (24). While the corresponding
parameter space is difficult to obtain because of the com-
plexity condition (28), which will be carried out in the
following work. Time delay widely exists in the process of
disease transmission, such as incubation period and immune
period. We thus study the influence of time delay on in-
fectious diseases in numerical simulations, find that the
average density of the infected firstly decreases, and then
increase with the increase of time delay, which provides a
theoretical support for disease control. At the same time, we
simulate the evolution of spatial distribution of the density of
the infected under different time delays, and the spatial
distribution of the density of the infected finally forms stripe
pattern with different spatial structure, which does not
change with time. +e high incidence area of infectious
diseases is found, which also provides data information for
prevention and control of infectious disease.

In the research process of pattern dynamics of system
(4), we consider a special form of kernel function so that the
nonlocal delay system could be transformed into general
reaction-diffusion system; then, pattern dynamics can be
followed. In fact, there are some other forms of kernel
functions in the biological system, but different forms shall
induce nonlocal delay system to convert into different dif-
ferential system; thus, this is a very meaningful work to study
the effects of different kernel functions on the pattern dy-
namics in the future.

Data Availability

No data were used to support this study.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e project was funded by the Natural Science Foundation
of Shanxi Province (Grant nos. 201901D111322 and

201901D211411), Universities’ Science and Technology In-
novation Item of Shanxi Province (Grant no. 2019L0472),
Program for the (Reserved) Discipline Leaders of Taiyuan
Institute of Technology (Grant no. 2018008), Natural Science
Foundation of Taiyuan Institute of Technology (Grant no.
2016LZ02), and Graduate Students’ Education Innovation
Item of Shanxi Province (Grant no. 2016BY120).

References

[1] W. O. Kermack and A. G. McKendrick, “A contribution to the
mathematical theory of epidemics,” Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathe-
matical and Physical Character, vol. 115, no. 772, pp. 700–721,
1927.

[2] W. O. Kermack and A. G. McKendrick, “Contributions to the
mathematical theory of epidemics—I,” Bulletin of Mathe-
matical Biology, vol. 53, no. 1-2, pp. 33–55, 1991.

[3] L. Li, G.-Q. Sun, and Z. Jin, “Bifurcation and chaos in an
epidemic model with nonlinear incidence rates,” Applied
Mathematics and Computation, vol. 216, no. 4, pp. 1226–1234,
2010.

[4] Y. Kang and C. Castillo-Chavez, “Dynamics of SI models with
both horizontal and vertical transmissions as well as Allee
effects,” Mathematical Biosciences, vol. 248, pp. 97–116, 2014.

[5] G.-Q. Sun and Z.-K. Zhang, “Global stability for a sheep
brucellosis model with immigration,” Applied Mathematics
and Computation, vol. 246, no. 1, pp. 336–345, 2014.

[6] S. Usaini, R. Anguelov, and S. M. Garba, “Dynamics of SI
epidemic with a demographic Allee effect,” .eoretical Pop-
ulation Biology, vol. 106, pp. 1–13, 2015.

[7] J. P. Tripathi and S. Abbas, “Global dynamics of autonomous
and nonautonomous SI epidemic models with nonlinear
incidence rate and feedback controls,” Nonlinear Dynamics,
vol. 86, no. 1, pp. 337–351, 2016.

[8] G.-Q. Sun, J.-H. Xie, S.-H. Huang, Z. Jin, M.-T. Li, and L. Liu,
“Transmission dynamics of cholera: mathematical modeling
and control strategies,” Communications in Nonlinear Science
and Numerical Simulation, vol. 45, pp. 235–244, 2017.

[9] L. Li, J. Zhang, C. Liu, H.-T. Zhang, Y. Wang, and Z. Wang,
“Analysis of transmission dynamics for Zika virus on net-
works,” Applied Mathematics and Computation, vol. 347,
pp. 566–577, 2019.

[10] L. Chen and J. Sun, “Global stability of an SI epidemic model
with feedback controls,” Applied Mathematics Letters, vol. 28,
pp. 53–55, 2014.

[11] J. Jiao, L. Chen, and G. Luo, “An appropriate pest manage-
ment SI model with biological and chemical control concern,”
Applied Mathematics and Computation, vol. 196, no. 1,
pp. 285–293, 2008.

[12] K. M. Fuhrman, I. G. Lauko, and G. A. Pinter, “Asymptotic
behavior of an SI epidemicmodel with pulse removal,”
Mathematical and Computer Modelling, vol. 40, no. 3-4,
pp. 371–386, 2004.

[13] K. Y. Liu, T. Q. Zhang, and L. S. Chen, “State-dependent pulse
vaccination and therapeutic strategy in an SI epidemic model
with nonlinear incidence rate,” Computational and Mathe-
matical Methods in Medicine, vol. 2019, Article ID 3859815,
10 pages, 2019.

[14] B. Liu, Y. Duan, and S. Luan, “Dynamics of an SI epidemic
model with external effects in a polluted environment,”
Nonlinear Analysis: Real World Applications, vol. 13, no. 1,
pp. 27–38, 2012.

10 Complexity



[15] Y. Pei, S. Liu, C. Li, and L. Chen, “+e dynamics of an im-
pulsive delay SI model with variable coefficients,” Applied
Mathematical Modelling, vol. 33, no. 6, pp. 2766–2776, 2009.

[16] L. Li, J. Zhen, and S. Gui-Quan, “Spatial pattern of an epi-
demic model with cross-diffusion,” Chinese Physics Letters,
vol. 25, no. 9, pp. 3500–3503, 2008.

[17] Y. Song, H. Jiang, H. Jiang, and Y. Yuan, “Turing-hopf bi-
furcation in the reaction-diffusion system with delay and
application to a diffusive predator-prey model,” Journal of
Applied Analysis & Computation, vol. 9, no. 3, pp. 1132–1164,
2019.

[18] Y. Wang, J. Wang, and L. Zhang, “Cross diffusion-induced
pattern in an SI model,” Applied Mathematics and Compu-
tation, vol. 217, no. 5, pp. 1965–1970, 2010.

[19] G.-Q. Sun, “Pattern formation of an epidemic model with
diffusion,” Nonlinear Dynamics, vol. 69, no. 3, pp. 1097–1104,
2012.

[20] X. Tang and Y. Song, “Cross-diffusion induced spatiotemporal
patterns in a predator-prey model with herd behavior,”
Nonlinear Analysis: Real World Applications, vol. 24,
pp. 36–49, 2015.

[21] W. Ding, W. Z. Huang, W. Huang, and S. Kansakar,
“Traveling wave solutions for a diffusive SIS epidemic model,”
Discrete & Continuous Dynamical Systems—B, vol. 18, no. 5,
pp. 1291–1304, 2013.

[22] J. Li, G.-Q. Sun, and Z. Jin, “Pattern formation of an epidemic
model with time delay,” Physica A: Statistical Mechanics and
Its Applications, vol. 403, pp. 100–109, 2014.

[23] G. Q. Sun, S. L. Wang, Q. Ren, Z. Jin, and Y. P. Wu, “Effects of
time delay and space on herbivore dynamics: linking in-
ducible defenses of plants to herbivore outbreak,” Scientific
Reports, vol. 5, no. 1, Article ID 11246, 2015.

[24] T. Zhang, W.Wang, and K. Wang, “Minimal wave speed for a
class of non-cooperative diffusion-reaction system,” Journal
of Differential Equations, vol. 260, no. 3, pp. 2763–2791, 2016.

[25] G.-Q. Sun, C.-H.Wang, and Z.-Y. Wu, “Pattern dynamics of a
Gierer-Meinhardt model with spatial effects,” Nonlinear
Dynamics, vol. 88, no. 2, pp. 1385–1396, 2017.

[26] Z. Lin and H. Zhu, “Spatial spreading model and dynamics of
West Nile virus in birds and mosquitoes with free boundary,”
Journal of Mathematical Biology, vol. 75, no. 6-7, pp. 1381–
1409, 2017.

[27] G.-Q. Sun, C.-H. Wang, L.-L. Chang, Y.-P. Wu, L. Li, and
Z. Jin, “Effects of feedback regulation on vegetation patterns
in semi-arid environments,”AppliedMathematical Modelling,
vol. 61, pp. 200–215, 2018.

[28] P. Magal, G. F. Webb, and Y. Wu, “On the basic reproduction
number of reaction-diffusion epidemic models,” SIAM
Journal on Applied Mathematics, vol. 79, no. 1, pp. 284–304,
2019.

[29] J. Ge, C. Lei, and Z. Lin, “Reproduction numbers and the
expanding fronts for a diffusion-advection SIS model in
heterogeneous time-periodic environment,” Nonlinear
Analysis: Real World Applications, vol. 33, pp. 100–120, 2017.

[30] Z.-C. Wang and J. Wu, “Travelling waves of a diffusive
Kermack-McKendrick epidemic model with non-local
delayed transmission,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 466,
no. 2113, pp. 237–261, 2009.

[31] S. X. Pan, “Traveling wave fronts in an epidemic model with
nonlocal diffusion and time delay,” International Journal of
Mathematical Analysis, vol. 2, no. 21–24, pp. 1083–1088, 2008.

[32] Z. Zhen, J. Wei, L. Tian, J. Zhou, and W. Chen, “Wave
propagation in a diffusive SIR epidemic model with

spatiotemporal delay,” Mathematical Methods in the Applied
Sciences, vol. 41, no. 16, pp. 7074–7098, 2018.

[33] Q. Tang, J. Ge, and Z. Lin, “An SEI-SI avian-human influenza
model with diffusion and nonlocal delay,” Applied Mathe-
matics and Computation, vol. 247, pp. 753–761, 2014.

[34] F. M. Hilker, M. Langlais, and H. Malchow, “+e allee effect
and infectious diseases: extinction, multistability, and the
(Dis-) appearance of oscillations,” .e American Naturalist,
vol. 173, no. 1, pp. 72–88, 2009.

[35] L. Cai, G. Chen, and D. Xiao, “Multiparametric bifurcations of
an epidemiological model with strong Allee effect,” Journal of
Mathematical Biology, vol. 67, no. 2, pp. 185–215, 2013.

[36] L. Q. Gao and H. W. Hethcote, “Disease transmission models
with density-dependent demographics,” Journal of Mathe-
matical Biology, vol. 30, no. 7, pp. 717–731, 1992.

[37] J. Li, Z. Jin, Z. Jin, G.-Q. Sun, and L.-P. Song, “Pattern dy-
namics of a delayed eco-epidemiological model with disease
in the predator,” Discrete & Continuous Dynamical System-
s—S, vol. 10, no. 5, pp. 1025–1042, 2017.

[38] P. Yu, “Closed-form conditions of bifurcation points for
general differential equations,” International Journal of Bi-
furcation and Chaos, vol. 15, no. 4, pp. 1467–1483, 2005.

Complexity 11



Research Article
A General Model of Population Dynamics Accounting for
Multiple Kinds of Interaction

Luciano Stucchi,1,2 Juan Manuel Pastor,2 Javier Garcı́a-Algarra ,3 and Javier Galeano 2

1Universidad Del Paćıfico, Lima, Peru
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Population dynamics has been modelled using differential equations almost since Malthus times, more than two centuries ago.
Basic ingredients of population dynamics models are typically a growth rate, a saturation term in the form of Verhulst’s logistic
brake, and a functional response accounting for interspecific interactions. However, intraspecific interactions are not usually
included in the equations. *e simplest models use linear terms to represent a simple picture of the nature; meanwhile, to
represent more complex landscapes, it is necessary to include more terms with a higher order or that are analytically more
complex. *e problem to use a simpler or more complex model depends on many factors: mathematical, ecological, or
computational. To address it, here we discuss a new model based on a previous logistic-mutualistic model. We have generalized
the interspecific terms (for antagonistic and competitive relationships), and we have also included new polynomial terms to
explain any intraspecific interaction. We show that, by adding simple intraspecific terms, new free-equilibrium solutions appear
driving a much richer dynamics. *ese new solutions could represent more realistic ecological landscapes by including a new
higher order term.

1. Introduction

In the times of the coronavirus, many news on television and
magazines try to explain how the size of the infected pop-
ulation evolves, showing exponential plots of the infected
populations over time. *ese communications try to predict
the time evolution of the size of this population in the future.
Behind these predictions, there is always a differential
equationmodel.*ese polynomial models have linear terms,
but to account for more complex interactions, they can add
higher order terms, as quadratic, cubic, or even, analytically
more complex functions, such as decreasing hyperbolic
terms.*e problem of choosing a complex or a simple model
depends on the balance between properly representing
nature and being able to understand the model response. In
many cases, the simplest model may be enough to under-
stand the benchmarks in the big picture, but sometimes, we

need more complexity to represent significant aspects of our
problem, and therefore, we need more complex and more
difficult models. Finding the balance between simple and
complex is a tricky problem, but how simple or complex
should the model be? Let us try to answer this question in a
population dynamics problem.

In the study of population dynamics, Lotka [1] and
Volterra [2] were the first ones to model trophic interactions
in order to study predator-prey relationships within two (or
more) populations:

X1
·

� r1 − b12X2( X1,

X2
·

� − r2 + b21X1( X2,

(1)

where bij terms represent the rate of the interactions be-
tween populations Xi and Xj and the ri represents their
effective growth rates. In these equations, signs are
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incorporated to give a clear meaning to each term, con-
sidering all parameters as positive real numbers. *is simple
model uses a linear term to represent the interaction with the
environment and a pairwise second-order term to show the
antagonistic interaction between the populations of two
different species. It was necessary to introduce a higher order
term, to represent this interaction.

Although most population dynamics models first dealt
with antagonistic relations, mutualistic interactions are
widely spread, e.g., [3, 4]. Garcia-Algarra et al. [5] proposed a
logistic-mutualistic model. *eir formulation was based on
writing an effective growth rate as the sum of the intrinsic
growth rate (ri) plus the mutualistic benefit (bijXj) and,
associated with them, to include a saturation term for the
whole effective growth term. *e model was depicted as

X1
·

� r1 + b12X2( X1 − a1 + c1b12X2( X
2
1,

X2
·

� r2 + b21X1( X2 − a2 + c2b21X1( X
2
2.

(2)

*e term aiX
2
i represents the intraspecific competition for

resources, and the term cibijXjX
2
i plays the role of saturation

for the mutualistic benefit. *is model needs to reach a third-
order term to prevent the unbounded growth and depicts a
well behaved system, with enough richness to model large
ensembles of mutualistic networks and their behaviour.

Other authors have addressed different strategies to
introduce the mutualistic interaction. For example, Dean [6]
introduced an exponential dependency on the carrying
capacity, K, which consequently yields nonlinear terms into
the equations. To avoid the unbounded growth, the authors
in [7, 8] proposed restrictions using a type II Holling
functional response. *is functional leaves the path of in-
troducing a polynomial term with a hyperbolic function.

Nowadays, several studies have focused on adding higher
order terms to explain more complex ecological interactions.
Letten and Stouffer [9] studied the influence of interspecific
interactions as nonadditive density-dependent terms only
for competitive communities. Bairey et al. [10] studied the
new solutions that a third species adds in pairwise inter-
actions, adding third degree terms with the three different
populations, bijkXiXjXk. It is well known that an increase in
the order of a polynomial term introduces new solutions to
the equations, but as AlAdwani and Saavedra [11] showed
these new terms do not always produce viable solutions,
furthermore, they must be free-equilibrium points, and of
course, the solutions must have an ecological meaning.

Here, we propose a new general model in which any
ecological interaction can be included in a simple way. In a
first step, we generalise the model proposed by Garcia-
Algarra et al. [5] overcoming the restrictions of the sign of
the parameters; in a second step, we reorganize the intra-
specific interactions allowing for both positive and negative
interactions, and finally, we introduce a third-order term to
brake any unbounded pairwise interactions.

2. Methods and Materials

We define a new general model. Equation (3) represents the
population dynamics of the species Xi driven by an effective

growth rate (first parenthesis in equation (3)) and limited by
a logistic brake (second parenthesis in equation (3)). *e
view of the model is simple and similar to the original
Verhulst idea [12], where the low-order terms represent the
increase in the population and the high-order terms the
brake. *e differences with other models are in the terms
included in the effective growth rate and logistic brake. *e
effective growth rate includes the vegetative growth rate, ri,
and all density-dependent pairwise interactions, interspe-
cific interactions, bijXj(∀j≠ i), and intraspecific ones, biiXi;
the logistic brake includes the logistic term due to intra-
specific competition, ai, the interspecific intraspecific brake,
bijXjXi, and the intraspecific ones, biiX

2
i .

2.1. A New General Model including Intraspecific Interaction
Terms. Regarding the mutualistic model (equation (2)) we
introduce two differences: first, the parameters of the
equation, ri and bij, can be positive or negative, representing
the different ecological interactions, and second, we include
the effect of the population in its own effective growth rate
just adding the index j � i in the sum of the interactions
terms, so the model can be represented as

Xi

·

� Xi ri + 
n

j�1
bijXj

⎛⎝ ⎞⎠ − ai + ci 

n

j�1
bijXj

⎛⎝ ⎞⎠Xi
⎡⎢⎢⎣ ⎤⎥⎥⎦, (3)

where the subscript i runs from 1 to n, including the in-
traspecific interaction (j � i). With this term, we are taking
into account the interaction between individuals of the same
populations. *e new terms yield new solutions and a dif-
ferent phase space. In particular, the inclusion of the term
− cibiiX

3
i is key for the emergence of new solutions although

there was already a term with the same order in the mu-
tualistic logistic model (equation (2)), cibijXjX

2
i . It can be

observed in Figure 13 in Supplementary Materials (available
here). We explain all details about the number of solutions in
Appendix in Supplementary Materials (available here).

Generally, in the literature of populations dynamics, the
intraspecific interactions have been introduced only as a
logistic brake, − aiXi, representing a growth limit due to
resource sharing. In our model, the term, bii, can represent
any kind of intraspecific interaction from beneficial, namely,
cooperation to harmful interactions, such as competition or
even cannibalism. Even though the logistic term − aiXi can
be seen as the result of intraspecific interactions that limit the
growth by resource sharing and it can be included in the
interaction term biiXi, we maintain the separated formu-
lation for the sake of comparison with the equation without
this new term.

In fact, there are abundant examples of different in-
traspecific behaviours in the literature, such as those
mentioned above. Cooperation is well known among social
and eusocial species [13], and benefits of cooperative be-
haviour have been consistently reported, especially for
eusocial animals [14]. On the other way, in nature, we can
find different types of competition among members of the
same population. For example, Stucchi and Figueroa [15]
reported the aggressive intraspecific behaviour of the
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Peruvian booby, which attacks their peers not by means of
taking their food but for the sake of being around their nest.
In the same way, adult boobies show little tolerance for
pigeons that are not from them, pecking them to death. *is
behaviour is well known for other territorial animals, and it
conceptually differs from the conventional intraspecific
competition for resources.

2.2. Solutions with One Population. In general, the equation
system (3) cannot be solved analytically. However, the study
of only one population can be solved and illustrates the
possibilities of the model.

Consider equation (3) for only one population. *e
equation can be written as

_X � X[(r + b · X) − (a + cb · X)X], (4)

where we have removed the subscripts for simplicity. Sta-
tionary points where _X � 0 give us the keys to understand
the behaviour of the time evolution of the population sizes.
*e trivial solution, which corresponds to extinction, is
X⋆ � 0. Now, the nontrivial stationary solutions can be
obtained from the following condition:

r +(b − a)X
⋆

− c · bX
⋆2

� 0. (5)

*en, the stationary solutions of equation (4) are the
extinction and the solutions of equation (5):

X
⋆
± �

(b − a) ±
������������

(b − a)2 + 4rbc



2bc
. (6)

In ecology, we are only interested in the positive real so-
lutions, generally called feasible solutions. To obtain these fea-
sible solutions in equation (6), we need to study several cases:

(i) r and b have the same sign. In addition to the trivial
solution, X⋆ � 0, in both cases, there is one positive
stationary point, which corresponds to the carrying
capacity of the population, and the other is negative,
which is not a feasible solution.

(a) In the case that both parameters are negatives,
r< 0 and b< 0, the positive solution is unstable
and the trivial solution is the unique stable
solution.

(b) In the opposite case, r> 0 and b> 0, the carrying
capacity is the stable solution.

(ii) r and b have different signs. *e interesting point of
having a high-order term comes from the possibility
of different signs of the parameters. When r and b

have different signs, there are two solutions as long
as the condition c≤ (b − a)2/4|rb| is fulfilled.

(a) If b> 0, it is a necessary another condition to
obtain a feasible solution that b> a. Ecologically
speaking, this means that the term of intraspe-
cific interaction overcomes the intrinsic growth
deficiency and increases the population. In
Figure 1(b), we plot a case with these conditions.
We obtain three fixed points: initial and end

points are stable, and the intermediate point is
unstable. *is point marks the threshold pop-
ulation; above this value, intraspecific coopera-
tion moves the population to reach the carrying
capacity, and below this value, the population
goes to extinction.

(b) If b< 0. In this scenario, the intermediate point is
stable, and the other solutions are unstable.
Consequently, the intraspecific competitions
produce a new stationary solution, lower than
the carrying capacity. *is behaviour has been
called as Allee effect [16]. See the example in
Figure 1(b).

In Figure 1, we depict on the top _X vs. X and on the
bottom, the temporal evolution of the population size X(t)

vs. t. On the left, the growth rate r is negative, and the
intraspecific interaction coefficient b is positive. *e inter-
mediate stationary solution plays the role of a population
threshold because smaller communities will go extinct
(population in orange in Figure 1(c)), while larger com-
munities will grow to its carrying capacity (population in
green in Figure 1(c)). On the right, the growth rate r is
positive, and the interaction coefficient b is negative. In this
case, the carrying capacity becomes unstable, and the system
evolves to the new stable intermediate solution because of
the detrimental intraspecific interaction (both populations
in Figure 1(d)). Two examples of population evolution are
plotted in each scenario, where the orange and green dots in
the upper plot depict the initial condition of each evolution
in the lower plot.

2.3. Solutions with Two Populations. In the case of two
populations, the general model is written as

X1
·

� X1 r1 + b11X1 + b12X2(  − a1 + c1b11X1 + c1b12X2( X1 ,

X2
·

� X2 r2 + b22X2 + b21X1(  − a2 + c2b22X2 + c2b21X1( X2 .

(7)

For two populations, we also find the expected trivial
solution, i.e., the total extinction (X⋆1 � 0 and X⋆2 � 0) and
the partial extinctions (X⋆1 , 0) and (0, X⋆2 ), from the fol-
lowing equations:

r1 + b11 − a1( X
⋆
1 − c1b11X

⋆2
1 � 0,

r2 + b22 − a2( X
⋆
2 − c2b22X

⋆2
2 � 0.

(8)

However, as they are second-order equations, there are
two solutions of feasible partial extinctions for each pop-
ulation. *e coexistence solutions can be obtained from
equation (7); these equations can exhibit up to 6 new sta-
tionary solutions. Concerning the finite stationary solutions,
the intraspecific term makes it more difficult to obtain an
analytic expression from the following equations:

r1 + b11X
⋆
1 + b12X

⋆
2(  − a1 + c1b11X

⋆
1 + c1b12X

⋆
2( X
⋆
1 � 0,

r2 + b22X
⋆
2 + b21X

⋆
1(  − a2 + c2b22X

⋆
2 + c2b21X

⋆
1( X
⋆
2 � 0.

(9)
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Two out of these six solutions are new free-equilibrium
points, due to the new intraspecific terms (details in Supple-
mentary Material). Even though we cannot obtain analytic
expressions for all solutions, we explored different scenarios by
performing numerical simulations with different parameter
values. In the next section, we show how the intraspecific
interaction changes the phase space of the standard biological
interactions.

2.4. Linear Stability Analysis. In the next section, we explore
the linear stability analysis of our system solutions.

2.4.1. One Population Model. To perform the linear stability
analysis of the stationary solutions, we derive equation (4) at
the fixed points:

d _X

dX

X�0
� r, (10)

d _X

dX

X�X⋆±

� r + 2(b − a) − 3cbX
⋆

 X
⋆

� − r − cbX
⋆2

. (11)

In the trivial solution, the eigenvalue is λ� r and the
unique stable solution is r< 0.

According to equation (11), the derivative at the (pos-
itive) stationary solution X⋆ will be negative when

(b − a) − 2cbX
⋆
± � ∓δ < 0. (12)

*en, X⋆+ is always stable and X⋆− is unstable.
When r> 0 and b> 0, extinction is an unstable solution

and population rises to the carrying capacity at X⋆+, the only
positive nontrivial solution. However, for r> 0 and b< 0, i.e.,
with intraspecific competition, a new stationary solution
emerges, X⋆− >X⋆+. Now, the higher solution is unstable, and
the population only reaches a lower value at the stable point
X⋆+. In this case, the negative intraspecific interaction results
in a lower carrying capacity.

When r< 0, extinction is stable. If b< 0, the only positive
finite solution is X⋆− , which is unstable. However, when
b> a> 0, a new stable solution, X⋆+, emerges at higher values
than X⋆− . In this scenario, X⋆− marks the threshold pop-
ulation; above this value, intraspecific cooperationmoves the
population to reach the carrying capacity, and below this
value, the population goes to extinction (see Figure 1(c)).
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Figure 1: Temporal derivative (up) and population evolution (down) for one population with intraspecific interaction. Negative growth rate
(left), r � − 0.1, with positive intraspecific interaction b � 0.005 and c � 0.005. Positive growth rate (right), r � 0.1, with negative intra-
specific interaction b � − 0.015 and c � 0.05.
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2.4.2. Two Populations Model. *e linear stability for the
generalmodel (equation (3)) can be analyzed from the Jacobian
matrix at the stationary solutions. Its entries are obtained from

zfi

zXi

X⋆
� gi X

⋆
(  + bii − ai( X

⋆
i − 2cibiiX

⋆2
i − ci 

j≠i
bijX
⋆
i X
⋆
j ,

zfi

zXj


X⋆

� bijX
⋆
i 1 − ciX

⋆
i( ,

(13)

where X⋆ � (X⋆1 , . . . , X⋆i , . . . , X⋆j , . . .) is the vector of the
stationary solution.

For two populations, the Jacobian matrix for the total
extinction is

J 0,0{ } �
r1 0

0 r2
 , (14)

whose eigenvalues λ1 � r1 and λ2 � r2 are negative when
both growth rates are negative. For the partial extinctions,
the Jacobian matrix reads

J X⋆1 ,0{ } �
− r1 − c1b11X

⋆2
1 b12X

⋆
1 1 − c1X

⋆
1 

0 r2 + b21X
⋆
1

⎛⎝ ⎞⎠. (15)

As expected, this Jacobian matrix is almost the same as
the matrix for the logistic-mutualistic model (see Appendix
A in [5]), but the first entry includes the intraspecific in-
teraction term − c1b11X

⋆2
1 . *is new term makes the partial

extinction to be stable when the intraspecific interaction is
positive b11 > 0. *e same is stated for the symmetric so-
lution (0, X⋆2 ).

And for the nontrivial solution (X⋆1 , X⋆2 ), the Jacobian
matrix is written as follows:

J X⋆1 ,X⋆2{ } �
− r1 − b12X

⋆
2 − c1b11X

⋆2
1 b12X

⋆
1 1 − c1X

⋆
1 

b21X
⋆
2 1 − c2X

⋆
2  − r2 − b21X

⋆
1 − c2b22X

⋆2
2

⎛⎝ ⎞⎠.

(16)

In this case, both diagonal entries include the intra-
specific term with a negative sign. *is means that a positive
intraspecific direct interaction enhances the stability of this
stationary solution, while a negative intraspecific direct
interaction contributes to destabilize it.

A qualitative study of the linear stability can also bemade
by analyzing the nullclines. Solving the nullclines,
f1(X1, X2) � 0, we obtain two solutions X1 � 0, as follows:

g1 X1 ≠ 0(  � r1 + b11 − a1( X1 − c1b11X1
2

− c1X1 − 1( b12X2 � 0,
(17)

or writing X2 in terms of X1:

X2 g1 � 0(  �
r1 + b11 − a1( X1 − c1b11X1

2

b12 c1X1 − 1( 
. (18)

*is expression presents a discontinuity at X1 � 1/c1 and
at X2 � 1/c2 for the f2 nullcline. At this discontinuity, the
growth rate of species 1 takes the value,

g1(X1 � 1/c1) � r1 − a1/c1, independently of X2 (and the
same for g2(X2 � 1/c2)). *e condition for a bounded
growth leads to c1 ≤ a1/r1, and as in Verhulst’s equation, this
parameter, 1/c1, plays the role of the carrying capacity. With
the same condition for species 2, i.e., c2 ≤ a2/r2, we may
define a rectangle limited by X1 � 0, X1 � 1/c1, X2 � 0, and
X2 � 1/c2 in whose boundary the flux vectors never point
out of the rectangle, and therefore, the growth is bounded.

Figure 2 depicts the bounding rectangle limited by the
axis and the dashed lines 1/c1 and 1/c2. In Figure 2(a), the
conditions c1 ≤ a1/r1 and c2 ≤ a2/r2 are fulfilled, and the flux
lines are pointing inside the rectangle. In Figure 2(b), the
conditions are no longer satisfied, but one stable solution is
located outside the rectangle, allowing some flux lines to go
out. *e asymptotic behaviour of the nullcline at X1 � 1/c1
has changed and now it rises to infinity.

*e intersection of both nullclines defines the stationary
solutions. As the expression equation (18) is nonlinear,
there can be several solutions inside the rectangle. *is
allows more than one stable solution inside this area,
separated by saddle points. As an example, Figure 2 shows
the intersections of nullclines (black lines for X1 and orange
lines for X2) as red points; two of them are stable stationary
solutions, separated by a saddle point. In this example for a
predator-prey system, the phase space shows the typical
solution of a stable spiral (at X1 � 42 and X2 � 79) and a
new stable node at a higher population of predator and prey
(at X1 � 200 and X2 � 164). Note that even though a1 does
not fulfil the condition a1 ≤ c1 · r1, in this example, the
system is also bounded and stable outside the rectangle.
Finally, the same study can be done for N species. For every
species, the value Xi � 1/ci can define a threshold for the
initial population for which the flux trajectories never go
outside the N-dimensional rectangle. In this case, free-
equilibrium solutions will be harder to obtain; however, the
Jacobian at these points will have a similar expression (see
Supplementary Material).

2.5. Solutions with6ree Populations. Ecological complexity
increases with species number. Just as a little example, we
show in this section how the intraspecific interaction can
change the outcomes in a 3-species predator-prey system.
We show how a positive coefficient in the intraspecific term
of the prey-1 avoids the extinction. Figure 3(a) shows the
time evolution of three populations: two preys and one
predator; the cooperation coefficient in prey-1
(b11 � 0.001), even smaller than the interspecific coefficient
(b13 � − 0.004), changes the initial outcome resulting in a
stationary population for prey-1 and predator and the
extinction of prey-2.

For the case of negative intraspecific interaction, we
show another predator-prey system, with two preys and
one predator. In this example, the intraspecific coefficient
of the predator (b33 � − 0.0005) allows both preys to survive
at higher populations (Figure 3(b)); the three populations
exhibit initial oscillations until they reach a stationary
population; however, the difference in the interspecific
coefficient (b13 � − 0.004 and b23 � − 00045) makes the
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prey-1 stationary population to be higher than that of
prey-2.

3. Results

Here, we show the great variety of scenarios of ecological
interactions that this general model is capable of producing.
*e aim of this section is to show the great richness of the
model, but it is not an exhaustive study of the parameters.
We show some examples of the solutions that the intra-
specific interaction provides to the populations model with
two populations. Since exploring all the possible combi-
nations of signs and ratios among the parameters would be
unmanageable and redundant, we only show some inter-
esting cases. For all the figures shown in this section, we
have varied the parameters in the effective growth rate, ri,
bii, and bij, and we have set the limiting parameters a1 �

a2 � 0.00075 and c1 � c2 � 0.005.

3.1.Antagonism. *e solutions of the classical predator-prey
model are modified when intraspecific interactions
come into play. In our following examples, we have X1 as
the prey and X2 as the predators. We only show obligate
predation since the facultative case only offers a minor
change.

3.1.1. 6e Effect of Cooperation among Prey. *e predator-
prey system without any intraspecific interaction has only
two free-equilibrium solutions: one convergent spiral and
one unstable solution, located at the carrying capacity of
the prey. *e addition of cooperation among the pop-
ulation of preys can generate a new stable solution. Besides

the well known oscillatory solution, we may find a new
stable node at high population values, separated by a
saddle point. Figure 4(a) shows the phase space and
trajectories (with the stationary solutions as red points)
for a predator-prey system when preys (X1) exhibit
positive intraspecific interaction (cooperation). Phase
trajectories keep around the stable spiral for low pop-
ulations; however, the saddle point defines a new basin
towards the new stable solution for high population values
(note that the intraspecific parameter, b11 � 0.0028, is
lower than the absolute value of the interspecific pa-
rameter, b12 � − 0.0036).

If the detrimental interspecific interaction becomes less
harmful, the original stable spiral may disappear and the
only stable solution is the coexistence at the carrying ca-
pacity (Figure 4(b), with b12 � − 0.0036).

When the intraspecific interaction is greater than the
interspecific interactions, in our example, |b12| � b21 < b11, a
new dynamic appears. *e spiral becomes unstable, and the
trajectories go outwards; as this stationary solution is in the
repulsion basin of the saddle point, the trajectories cannot go
out, and they will remain in a closed orbit, i.e., in a limit
cycle. In Figure 5(a) (with b11 � 0.0036 and b12 � − 0.0072, in
addition to representing the trajectories and the stationary
solutions), we depict 3 initial points (in green, yellow, and
orange) corresponding to the time evolution picture shown
below. *e intermediate solution that appeared due to the
cooperation term acts as a threshold between the spiral and
the coexistence located at the carrying capacity of the prey,
which remains as a stable solution. Now, if we decrease the
intraspecific parameter, the saddle point moves towards the
carrying capacity, all the stationary solutions become un-
stable, and all the trajectories fall into the limit cycle
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Figure 2: Nullclines and phase space for an antagonistic system where both populations cooperate intraspecifically. Dashed lines represent
Xi � 1/ci, and while solid lines are the nullclines (orange for X2 and black for X1). (a)a1 � 0.0008 fulfils the condition a1 > c1 · r1, and flux
lines inside the rectangle do not point out of this region. (b)a1 � 0.0007< c1 · r1, and some flux lines go out of the rectangle. Parameters:
r1 � 0.15, r2 � − 0.15, b11 � 0.0028, b12 � − 0.0034, b21 � 0.0072, b22 � 0.0005, a2 � 0.00075, and c1 � c2 � 0.005.
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(Figure 5(b)). *e corresponding time evolution
(Figure 5(b)) shows fluctuating population for all initial
points.

3.1.2. 6e Effect of Cooperation among Predators. In Fig-
ure 6, we show the effect of the intraspecific interactions only
on predators. As in the previous case, without any intra-
specific interaction, the system has only two free-equilib-
rium points: one convergent spiral and one unstable
solution, located at the carrying capacity of the prey. *e
addition of cooperation among predators can generate a

pair of new solutions, both of them corresponding to partial
extinctions of prey. *e effect is the same that we showed
for one population in Figure 1 but acting on the predator
axis. *us, cooperation among predators introduces a
similar effect of facultative predation. We tested two dif-
ferent values of predators cooperation parameter b22 to see
its direct influence. Although, in both cases, the cooperative
term is greater than predation, i.e., b21 < b22, we can see that,
at lower values of cooperation, almost no effect is notable,
but at greater values, two partial extinctions of prey appear,
one stable and one unstable, a saddle-node bifurcation.*is
allows predators to survive without preys when cooperation
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Figure 3: Population evolution in a predator-prey system with two preys: (a) prey-1 with cooperation b11 � 0.001 (r1 � r2 � 0.15,
r3 � − 0.15, b13 � b23 � − 0.004, and b31 � b32 � 0.004); (b) predator with competition b33 � − 0.0005 (r1 � r2 � 0.15, r3 � − 0.15;
b13 � − 0.004, b23 � − 0.0045, and b31 � b32 � 0.001).
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Figure 4: Phase space and trajectories for two populations involved in a predator-prey interaction. To the left, we have a case with a lower
b11 � 0.0028 than to the right, b11 � 0.0035. Cooperation among prey allows a new intermediate solution, which is unstable and acts in the
same way as in Figure 1. Also, as greater cooperation decreases the predatory term, and the relation may become commensalistic at some
points. Here, r1 � 0.15, r2 � − 0.15, b12 � − 0.0036, and b21 � 0.0072.
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reaches a certain limit. In Figure 6(a), we have the case in
which cooperation is weaker, and in Figure 6(b), the case in
which is mildly stronger. *e coexistence located at the
carrying capacity of the prey remains unstable.

3.2.Competition. In the case of competition, the principle of
competitive exclusion stands that the stable solution is the
partial extinction but, if interaction parameters are weak,
another feasible stable solution is a coexistence point [17].
However, by including intraspecific interactions, the coex-
istence could become stable for higher or lower values of the
interspecific interaction parameters. For a range of positive
intraspecific parameters, partial extinctions and the total
carrying capacity could be stable at the same time. Adding a
positive intraspecific interaction term (cooperation) in one

species may induce a new saddle point, defining two basins,
one towards partial extinction of this species and the other
one to the system carrying capacity. When cooperation
occurs in both species, these two saddle points and the origin
define a central attraction basin towards the system carrying
capacity; meanwhile, outside this basin, the system evolves
towards one species extinction, as per the principle of
competitive exclusion (see Figure 7(a)). When we have
negative intraspecific parameters, the carrying capacity
becomes unstable, and the only stable solutions are the
partial extinctions; however, due to the intraspecific inter-
action, these points occur at a population below its carrying
capacity. Both effects can be seen as consequences of in-
traspecific cooperation and competition in the same way as
for one population in Figure 1. Cooperation induces new
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Figure 5: Phase space and trajectories for two populations involved in a predator-prey interaction. We show here a special case where the
coexistence spiral solution diverges and become unstable. When that happens, a limit cycle appears. To the left, we have a case with a smaller
predation, i.e., b12 � − 0.006435 than to the right, where b12 � − 0.0072. In both cases, b11 � b21 � 0.0036, which means that both populations
benefit the same from population X1, but the predatory effects of X2 on X1 are stronger on the right. For greater cooperation values, the
intermediate solution might even disappear, as it is shown on the right. *e green, blue, and yellow dots in the phase space mark the initial
conditions of the simulations located below. Here, r1 � 0.15 and r2 � − 0.15.
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solutions as partial carrying capacities and intraspecific
competition as partial extinctions.

3.3. Mutualism. *e logistic-mutualistic model exhibits, in
addition to the total and partial extinctions, two feasible
finite solutions (5): the larger one corresponds to the case
where both populations reach their carrying capacities, and
the lower one is a saddle point that allows us to define a

survival watershed. By adding intraspecific interactions, new
partial extinctions and carrying capacities could appear.

3.3.1. Obligate-Obligate Mutualism. For the sake of sim-
plicity, we only expose the case of equal sign in the pa-
rameters for both species, i.e., r1, r2 < 0 and b12, b21 > 0. In
Figure 8, we show the phase space for two populations
involved in a mutual obligatory mutualism with two
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Figure 6: Phase space and trajectories for two populations involved in an antagonist interaction. To the left, we have a case with a lower
b22 � 0.004 than to the right, b22 � 0.005. Cooperation among predators allows two new partial extinctions of prey, one stable and one
unstable, in the same way in Figure 1 but on the predators axis.*e coexistence located at the carrying capacity of the prey remains unstable.
Here, r1 � 0.15, r2 � − 0.15, b11 � 0, b12 � − 0.0072, and b21 � 0.0036.
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Figure 7: Phase space and trajectories for two populations involved in competition with positive intraspecific interaction. We used two
different combinations of b11 � b22 to see the influence of intraspecific cooperation and competition. (a) b11 � b22 � 0.0019, and we have the
case in which both populations are cooperative and two new solutions appear together with a basin towards the carrying capacity of the
system. (b) b11 � b22 � − 0.001, and we have the case in which both are competitive. Noting that when both populations are cooperative,
partial carrying capacities appear and they are both unstable. And when both populations are competitive, partial extinctions appear instead
although stable and below the carrying capacities. Here, r1 � r2 � 0.15 and b12 � b21 � − 0.002.
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different values of the cooperation coefficients, bii. In
Figure 8(a), with weak cooperation, the phase space exhibits
two free-equilibrium points: the stable carrying capacity and
a saddle point defining a survival watershed, as in [5].
However, with strong intraspecific interaction (Figure 8(b)),
four new unstable solutions can appear: two saddle points
and two unstable fixed nodes, corresponding to partial
extinctions. As in the case of one population (see Figure 1),
the new saddle points are the thresholds. Whenever a
population is higher than this threshold, it will never go
extinct. *e total extinction basin is limited by the curve

passing through the nontrivial saddle point and these new
unstable fixed nodes.

On the contrary, when mutualistic species exhibits neg-
ative intraspecific interactions, as in Figure 9, the stable
carrying capacity moves towards the saddle point
(Figure 9(a)). And eventually, when this negative term is high
enough, these two solutions collide and total extinction re-
mains as the exclusive stable stationary solution (Figure 9(b)).

In the case of one cooperative population and one
competitive population, the system exhibits this asymmetry;
again, a new saddle point in the cooperative population axis
sets a survival threshold. Above it, the system always evolves
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Figure 8: Obligate-obligate mutualism with cooperation in two populations: (a) we have the case where b11 � b22 � 0.0001, which means
that intraspecific cooperation is lower than mutualism; (b) we have b11 � b22 � 0.0045, which means that both intraspecific cooperation and
mutualism weight the same. Here, r1 � r2 � − 0.15 and b12 � b21 � 0.0045.
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Figure 9: Obligate-obligate mutualism with competition in two populations: (a) we have the case where b11 � b22 � − 0.0001, which means
that intraspecific competition is lower thanmutualism; (b) we have b11 � b22 � − 0.00062868, whichmeans that intraspecific competition has
stronger effects than mutualism. Here, r1 � r2 � − 0.15 and b12 � b21 � 0.005.
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towards the coexistence solution and will never go extinct,
and it is shown in Figure 10.

3.3.2. Facultative-Facultative Mutualism. When both
growth rates, r1 and r2, are positive, total extinction is an
unstable solution and the carrying capacity is stable
(Figure 11(a)). However, when both populations exhibit
negative intraspecific interactions, the maximum system
carrying capacity may become unstable and a new stable

finite solution emerges at lower populations (Figure 11(b)),
as one expects following the one population solution with
intraspecific competition (see Figure 1). In Figure 11(a), the
intraspecific interaction generates four partial extinctions as
unstable stationary solutions (two saddle points and two
unstable nodes). In Figure 11(b), with higher negative in-
traspecific interaction, two extra solutions appear as partial
carrying capacities, and the total carrying becomes unstable.
In this case, the system exhibits 9 positive stationary
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Figure 10: Obligate-obligate mutualism with positive and negative intraspecific interaction: (a) we have the case where b11 � − 0.002 and
b22 � 0.002, which means that intraspecific competition of X1 is the same that intraspecific cooperation of X2 and both interactions weight
lower than mutualism; (b) we have b11 � − 0.0045 and b22 � 0.0045, which means that intraspecific competition of X1 weights the same than
mutualism and intraspecific cooperation of X2. Here, r1 � r2 � − 0.15 and b12 � b21 � 0.0045.
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Figure 11: Facultative-facultative mutualism with negative intraspecific interaction: (a) we have the case where b11 � b22 � − 0.002, which
means that intraspecific competition is weaker than mutualism; (b) we have b11 � b22 � − 0.008, which means that intraspecific competition
is stronger than mutualism. Here, r1 � r2 � 0.15 and b12 � b21 � 0.005.
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solutions: four saddle points, four unstable points, and only
one stable solution.

In the case of facultative mutualism with different in-
traspecific interactions, one of them is beneficial and the
other one is harmful; the carrying capacity could be reduced
for populations with negative intraspecific interaction, while
its partner, with positive intraspecific interaction, will grow
until reaching its own saturation. Figure 12 depicts this
scenario. In Figure 12(a), competition is weaker than co-
operation, and the total carrying capacity is the stable sta-
tionary solution. In Figure 12(b), competition is stronger
than cooperation, and the total carrying capacity becomes
unstable. As before, competition only generates unstable a
partial extinction, while cooperation pushes the coexistence
solution into a transcritical bifurcation.

4. Conclusions

In the title of the paper, we ask how simple a population
dynamics model should be. To address the discussion, we
have introduced the intraspecific interactions in the [5]
model using their same philosophy to include new terms.
*ese appear in the first term of the interaction, representing
the effective growth rate, and in the logistic brake to balance
the first term. With respect to the previous model, this
modification introduces two new terms: biiX

2
i and − cibiiX

3
i ,

regarding the intraspecific interactions. Furthermore, we
have generalized the model allowing the parameters that
define the interactions, bij, to be positive or negative.

In our opinion, the ecological reason to introduce dif-
ferent intraspecific interactions is supported by observa-
tions; cooperative and competitive intraspecific interactions
are widely known in a wide variety of ecological systems,
from social insects to microbial communities. *ey have
been overseen by population dynamics modelling, which
mainly focused on interactions with the environment or

interspecific interactions (see, for example, the historical
sequence developed in [18]).

Furthermore, the cubic term offers an interesting be-
haviour from the mathematical point of view. As AlAdwani
and Saavedra [11] explain that new high-order terms can
introduce new free-equilibrium solutions, but it is necessary
that these solutions will be feasible, and of course, with a
clear ecological meaning. In this way, several authors have
used high-order interactions to improve the stability or
diversity of ecological models. For example, Letten and
Stouffer [9] show the advantages of the high-order terms,
introducing nonadditive density-dependent effects; the au-
thors study the influence of the high-order interactions in
the competitive communities. Or Grilli et al. [19] show how
the high-order interactions increase the stability of the
systems. In our model, the term − cibiiX

3
i introduces 2 new

free-equilibrium solutions (see Supplementary Material
(available here)) that in our opinion can explain ecological
situations that were not well explained before with the
population dynamics equations.

Delving into the idea of high-order interactions, Bairey et al.
[10] introduce 3-way or 4-way terms, overcoming the pairwise
interactions.*ese terms are intended to simulate the effect that
interactions between species are modulated by one or more
species.*is idea is inspiring, butwe believe that simplermodels
like ours that use polynomial terms and pairwise interaction can
still explain many ecological landscapes. Every time that we
increase the order of a new term, it is more difficult to define it
and their corresponding parameters in the field.

We would like to highlight that the inclusion of the
intraspecific terms shows new solutions that could represent
more complex ecological landscapes. For example, the case
of predator-prey system with positive intraspecific term in
the preys exhibits a new solution with a steady state at large
populations. *is solution could represent the way herds act
as a defensive mechanism for preys [20, 21]. Also, large herds
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Figure 12: Facultative-facultative mutualism with intraspecific competition and cooperation: (a) we have the case where b11 � − 0.002 and
b22 � 0.008; (b) we have b11 � − 0.008 and b22 � 0.002. Here, r1 � r2 � 0.15 and b12 � b21 � 0.005.
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of zebras or wildebeest seem to be stable in time; in [22], the
authors presented data of the Kruger National Park, in South
Africa, that showed a stable and increasing population of
zebras and wildebeest (more than 10,000 individuals) over a
period of twenty years, with more or less stable population of
lions (around 400 individuals). Or the effects of intraspecific
competition can act as a regulatory mechanism. Polis [23]
showed that intraspecific predation acts in a reinforced way:
higher populations decrease the resources available for in-
dividuals, reducing their growing rates and promoting
smaller and weaker individuals, those are more easily killed
or eaten, which increases the per capita food level, both by
reducing the population and by satiating the cannibalists.

*e main advantage of this general model (equation (3))
is that it can be used to describe any ecological regime and
that it carries its own saturation mechanism that avoids the
“orgy of mutual benefaction” of [24]. Stucchi [25] showed
using a simplified generalized model, studying a nursery
pollination system, and modelling all the interspecific in-
teractions with the same functional. *is allowed a clear
interpretation of the parameters of the whole system and an
unambiguous way to compare them. Furthermore, Stucchi t
al. [26] showed that intraspecific interactions in a predator-
prey system might lead to diffusion-driven instabilities.

Finally, we would like to venture to discuss some more
speculative ideas. Nowadays, there are some attempts to model
transitions from antagonistic to mutualistic interspecific rela-
tionships, limited by the fact that they deal with different
mathematical functionals for mutualism and antagonism
[27–29]. *ese models include changes that arise continually
fromone regime to another, but treating the transition only in a
descriptive way. In addition, adaptive changes are modelled
through parameter changing systems, where parameters have
their own dynamic equations, but these models are still limited
to specific ecological regimes, either antagonistic or mutualistic
[30–32]. However, if one may adequately define the dynamics
of the parameters in a general model of ecological interactions,
it may reflect a deeper view of nature, where ecology meets
evolution. *us, by including evolutionary changes in our
model, one may be capable of modelling transitions due to
mutations and natural selection, which is surely the way how
transitions on ecological regimes occur in nature.
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