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)e two-dimensional coupled map lattice (2D CML) model has been extensively employed as the basis component for designing
various schemes in the cryptography system due to its complicated chaotic dynamic behavior. In this study, we analyze the chaotic
characteristics of the 2D CML model, such as the Lyapunov exponent (LE), synchronization stability, bifurcation, and ergodicity.
We then show that the chaotic sequences generated by the 2D CML model are random according to the NIST testing. Fur-
thermore, we propose an image encryption scheme based on the 2D CML model and Singular Value Decomposition (SVD). In
our scheme, the SVD method is used to reduce the image storage, and the Red, Green, and Blue channels of a color image will be
encrypted through confusion and diffusion. )e simulation results, as well as the results of the comparison with other schemes,
demonstrate that our scheme possesses outstanding statistics, excellent encryption performance, and high security. It has great
potential for ensuring the security of digital images in real applications.

1. Introduction

Chaos has become a fresh challenge in the cryptographic
systems [1–7], because of its unique characteristics such as
the sensitivity to the initial conditions and the unpredict-
ability of trajectory. In subfields like the stream cipher [8],
Hash function [9], and multimedia encryption [10], chaotic
systems have been widely used as their basic components to
construct cryptographic primitives.

)e chaotic system commonly contains two categories.
)e first is a simple chaotic system, such as the Logistic map,
the Tent map, and the Sine map. )e chaos-based schemes
based on a simple chaotic system have the highlight of being
significantly more efficient. However, because of their
simplistic structure, the chaotic dynamic behaviors are not
sufficiently complicated, and some security vulnerabilities,
such as being easy to predict and thus get attacked, exist in
those schemes [11, 12]. )e second is a higher-dimensional

chaotic system, which has a significantly greater Lyapunov
exponent (LE) and wider bifurcation interval than the simple
one, and its chaotic characteristics are more complicated. As
a result, the higher-dimensional one is generally regarded as
more suitable for constructing the chaos-based schemes
[8–10].

In the past decades, many researchers have committed to
the chaos-based image encryption schemes with the aim of
resisting attacks that make use of high pixel correlation and
redundancy of digital images. According to the discrete
output signal of Chen’s chaotic system, a chaos-based image
encryption algorithm has been presented [13]; the simula-
tion results show that the scheme can withstand a brute-
force attack.)e spatiotemporal chaos was used to construct
a new chaos-based encryption [14], which is both efficient
and secure. A new color image encryption scheme using the
combination of different 1D chaotic maps was introduced
[15]; the experimental results demonstrate that the scheme
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owns remarkable performance in noise and attacks. )e
enhanced Sine map was used to propose a unique image
encryption approach in which row-by-row and column-by-
column concepts were introduced [16], and the strategy is
both efficient and effective. )e scheme in [17] studied a
novel chaos-based image encryption scheme based on the
Lorenz chaotic system, and experimental results demon-
strate the effectiveness and superiority of the algorithm. By
imitating the jigsaw method, a chaos-based image encryp-
tion scheme was designed in [18], and the experiment and
security analyses show that the scheme is both secure and
efficient. A fast-reaching finite time synchronization ap-
proach for chaotic systems along with its application to
medical image encryption is proposed in [19], which owns
good robustness and a fast convergence rate. A new chaotic
system with hyperbolic sinusoidal function is designed in
[20], and a novel voice encryption algorithm based on the
new system is proposed. )e chaos-based satellite image
encryption system is shown in [21], and it is secure, reliable,
robust, and simple to implement.

For all the aforementioned image encryption schemes
[13–21], higher-dimensional chaotic systems are employed
as their core. However, for most employed chaotic systems,
their LE values are either not sufficiently large or derived by
simulations. )at said, a theoretic analysis of the de-
sirable characteristics for employing those models in
cryptographic applications is still missing. Moreover,
even if a desired higher-dimensional chaotic system is
used, the above schemes fail to justify the usage of ad-
ditional heuristic procedures to turn the chaotic se-
quences into random binary streams. Indeed, without
addressing these shortcomings, cryptographic primitives
based on higher-dimensional chaotic systems are also
vulnerable to simple attacks [22].

To address the aforementioned shortcomings and to
better balance efficiency and security, the 2D CML model,
whose characteristics have been theoretically analyzed in [23],
is used as the key component for constructing a novel image
encryption scheme. We choose the piecewise Logistic map
(PLM) as the local map, since it is more sophisticated than the
Logistic map, and we then theoretically investigate the 2D
CML system instantiated with PLM. In particular, for this
specific system, its properties like LE, synchronization sta-
bility, bifurcation, and ergodicity are all thoroughly studied.
When the parameters of the system are appropriately chosen,
we show that the chaotic sequences can be directly extracted
as random binary stream without any further processing, and
the extracted stream passes the NIST randomness test suite.
Powered by the theoretical studies, using the singular value
decomposition (SVD) method, we reduce the storage of the
original image, and the block of the combined image in Red,
Green, and Blue can improve the running time of the scheme.

In a nutshell, this work makes the following
contributions:

(i) When the PLM is used as the local map, the LE of
the 2D CML model is proven to be larger, and its
bifurcation and ergodicity become much wider. All
these indicate that the 2D CML model has complex

chaotic behavior, and it can be used as a good
candidate to construct image encryption schemes.

(ii) )e random binary stream can be extracted directly
by using the chaotic sequences generated by the 2D
CML model. In particular, we can obtain 32 bits
from each node of themodel, and the NISTtest suite
confirms that the extracted binary sequences have
good randomness.

(iii) According to the SVD approach, the storage of the
original image becomes smaller, the confusion in
the block of the combined image in R, G, B can
improve the running time of our scheme, and also
the diffusion has been performed based on the
chaotic sequences produced by the 2D CML model.
)e simulation experiments show that our scheme
has good encryption performance.

)e remaining parts of this work are organized as fol-
lows. Section 2 shows the preliminary knowledge, and the
characteristics of the 2D CMLmodel are analyzed in Section
3. In Section 4, the random binary sequences based on the
2D CML model are generated. Section 5 studies an image
encryption scheme based on SVD and 2D CML chaotic
sequences. )e performance of the proposed image en-
cryption scheme is evaluated in Section 6 and the last section
draws the conclusion of this work.

2. Preliminaries

2.1. CMLModel. )e CML model proposed by Kaneko is a
classic form of the spatiotemporal chaos model [24], and it is
formulated as

x
s
n+1 � (1 − ε)f x

s
n( 􏼁 +

ε
2

f x
s−1
n􏼐 􏼑 + f x

s+1
n􏼐 􏼑􏽨 􏽩, (1)

where f(·) denotes the local chaotic map; s � 1, 2, . . . , U,
with U being the size of the CML model. )e periodic
boundary condition of the CML model is x0

n � xU+1
n .

To improve the complexity of CML, it is later ex-
tended into higher-dimensional spaces, for example, the
two-dimensional one. In the 2D CML model, the local
node is affected by the nearest four nodes simulta-
neously; that is,

x
s,t
n+1 � (1 − ε)f x

s,t
n􏼐 􏼑 +

ε
4

f x
s−1,t
n􏼐 􏼑 + f x

s+1,t
n􏼐 􏼑􏽨 + f x

s,t+1
n􏼐 􏼑 + f x

s,t−1
n􏼐 􏼑􏽩, (2)

where s � 1, 2, . . . , R and t � 1, 2, . . . , L are the row and
column indexes of the nodes, respectively. )e periodic
boundary conditions are xR+1,t

n � x0,t
n and xs,L+1

n � xs,0
n .

From equation (2), the value of the current node xs,t
n+1 at

the (n + 1)-timestamp is determined by the local node
f(xs,t

n ), the left node f(xs−1,t
n ), the right node f(xs+1,t

n ),
the top node f(xs,t−1

n ), and the bottom node f(xs,t+1
n ),

respectively.
According to [23], the LE values of 2D CML are given by

LEs � LEf + ln 1 − ε +
ε
2

cos
2πr

R
+ cos

2πl

L
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (3)
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where r � 1, . . . , R, l � 1, . . . , L, and LEf is the LE value of
the employed local chaotic map f(·). When r � 1 and l � 1,
the LEs of 2D CML reach the maximum LE (MLE) LEf.
According to equation (3), we can easily get the following
theorem.

Theorem 1. 2e MLE of the 2D CML model is independent
of the model size, but it is determined by the local chaotic map
f(·).

According to )eorem 1, the local chaotic map has
special significance for the 2D CML model and directly
decides the MLE value and chaotic characteristics of the
model. Consequently, selecting a larger LE in the local map
indicates more complexity of the model. As will be discussed
later, we use the PLM with μ � 4 and N � 64 as the local
chaotic map because it has a larger LE.

2.2. 2e Piecewise Logistic Map. )e PLM is the enhanced
version of the well-known Logistic map [25], and it possesses
much larger LE and more complex chaotic characteristics
than the Logistic map. )e PLM is defined as

xm+1 � PLM xm( 􏼁 �

N
2μxm

1
N

− xm􏼒 􏼓, 0<xm <
1
N

,

1 − N
2μ xm −

1
N

􏼒 􏼓
2
N

− xm􏼒 􏼓,
1
N
<xm <

2
N

,

N
2μ xm −

1
N

􏼒 􏼓
i

N
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1
N
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i

N
,

1 − N
2μ xm −

i

N
􏼒 􏼓

i + 1
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,

· · · . . .

N
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N
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N
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N − 2
N
<xm ​ <

N − 1
N

,

1 − N
2μ xm −

N − 1
N

􏼒 􏼓 1 − xm( 􏼁,
N − 1

N
<xm < 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(4)

where xm ∈ (0, 1) is the state value, μ ∈ (0, 4] is the control
parameter, and N is the segment number of PLM. When
N � 64 and μ � 4, its LE value is 4.574594, and hence the
MLE of 2D CML is the same.

2.3. 2e Binary Format. When designing digital image en-
cryption methods based on chaotic systems, the real-valued
chaotic orbits need to be converted into binary to obtain
pseudorandom sequences (i.e., 0s or 1s). We consider the
fixed-point representation of chaotic orbits within the range
[0, 1] using Definition 1.

Definition 1. A floating number D ∈ [0, 1] can be written
into the binary format with M bits as follows:

D � 0.C
1
(x)C

2
(x) · · · C

M− 1
(x)C

M
(x), (5)

where CM(x) ∈ 0, 1{ }.

2.4. Singular Value Decomposition. SVD is an effective
method for the factorization of an M × N(M≠N) matrix,
and it is commonly used in signal processing and image
compression. )e general form of SVD is given by

A � UΣVT
, (6)

where U and V are M × M and N × N matrices, respec-
tively, and Σ represents the M × N singular value matrix,
whose elements are all 0 except the SVD values on its
diagonal.

3. Performance Analyses of the 2D CML Model

As discussed previously, the performance of the 2D CML
model is critical for designing chaos-based cryptographic
primitives. In the 2D CMLmodel, according to equation (3),
its performance is solely determined by the local chaotic map
f(·). )erefore, selecting a local map f(·) with a large LE is
essential, since it in turn enhances the overall complexity of
the 2D CML model. With this consideration, we hereby
choose the PLM with N � 64 and μ � 4 as the local map.

3.1.2e Lyapunov Exponent Analysis. LE is an index used to
judge whether a dynamic system is chaotic or not, and a
positive LE indicates chaos. Moreover, the larger the value of
LE was, the more complex the chaotic system would be. )e
LE of a chaotic system xn+1 � F(xn) is defined as

LE � lim
x⟶∞

1
n
ln 􏽙

n

s�0
F′(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (7)

Taking the PLM as the local map, we plot the LE values of
all 64 nodes (L � R � 8) according to (3) in Figure 1.
According to this figure, it can be seen that the LEs lie within
the interval [4, 6]; all are positive and relatively large
(compared to LE of the original Logistic map). )is fact
demonstrates that the 2D CML model has complex chaotic
dynamic behaviors.

Moreover, by taking derivative of equation (3) with
respect to ε, we can further have

LE′ �
cos 2πr/R + cos 2πl/L − 2

2 + ε(cos 2πr/R + cos 2πl/L − 2)
. (8)

To select the coupling parameter ε with better chaotic
property, we first consider the case where the denominator
2 + ε(cos 2πr/R + cos 2πl/L − 2) of equation (8) is 0. In this
case, r � l � 4 and ε � 0.5, so ε � 0.5 should be avoided. We
then investigate the value of LE′ by enumerating all the
possibilities of l and r. It turns out that when ε ∈ (0, 0.5),
LE′ < 0 regardless of the choices of l and r, and, depending
on specific choices of l and r, LE′ can be either positive and
negative for ε ∈ (0.5, 1). )at said, the value of LE mono-
tonically decreases for ε ∈ (0, 0.5) and fluctuates for
ε ∈ (0.5, 1) and smaller ε achieves better chaotic property.
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With this consideration and to maintain a certain level of
coupling effect, we take the empirical value ε � 0.1 for 2D
CML instantiated with PLM in the remainder of this paper.

3.2. 2e Synchronization Stability Analysis. )e stability of
periodic orbit and chaos synchronization of the 2D CML
model are substantially more complicated [24] compared to
its 1D counterpart. However, there is little theoretical study
for its configuration. From the standpoint of cryptography
applications, the parameter settings should ensure that the
2D CMLmodel runs in a fully developed chaotic state. )us,
we present a theoretical investigation of the synchronization
stability for the 2D CML model. )eoretically, for ordered
LEs of the 2D CML, the second maximum LE value LE2 > 0
means that the system is in an asynchronous state, while
LE2 < 0 means that it is synchronous.

To begin with, let r � R and l � L − 1; according to
equation (3), we can get LE2 as

LE​ 2 � LEf + ln 1 − ε +
ε
2

cos 2 π + cos
2π(L − 1)

L
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (9)

Set LE2 � 0, and the critical value of L is

Lc � ⌊
2π

arccos 2e
−LEf − 2 + ε􏼐 􏼑/ε

⌋. (10)

Here, Lc represents the minimum number of nodes that
can ensure that the system is in an asynchronous state; that
is, L>Lc should be used to make LE2 > 0.

To verify the above-mentioned analysis, we take the
Logistic map,

xn+1 � 4xn 1 − xn( 􏼁, (11)

as the local chaotic map and set R � L � 3 and ε � 0.9 for the
2D CML model. For this specific 2D CML model, from
equation (10), Lc � 3.

We randomly initialize the values of the 2D CML, which
are denoted as xs,t

0 , s � 1, 2, 3; t � 1, 2, 3.)en, the 2DCML is
iterated 3 times and 100 times and the values are denoted as
xs,t
3 and xs,t

100, respectively. We plot xs,t
0 , xs,t

3 , and xs,t
100 in

Figure 2. From Figure 2(c), the state values of the nodes in
the 2D CML model appear to be synchronized after 100
iterations, which confirms that the 2D CMLmodel is not in a
fully developed chaotic pattern. To make LE2 > 0, we set L �

4>Lc � 3 for the 2D CML and keep all the other parameters
unchanged. )e simulation results are depicted in Figure 3.
It is clear from this figure that no stable synchronous chaos
can be observed in the states of the model. )us, we can
conclude that increasing the size of the 2D CML model is an
effective way to guarantee that the 2D CMLmodel is not in a
synchronous pattern.

3.3. 2e Bifurcation Analysis. Bifurcation shows the sudden
altering of the critical point when changing the parameters
in a chaotic system. For the 2D CMLmodel instantiated with
the PLM, simulation results indicate that the bifurcations of
all 64 nodes are almost the same. Taking the 1st node as an
example, we plot its bifurcation diagram in Figure 4. It is
clear from this Figure 4 that changing μ significantly in-
fluences the bifurcation of the system. When μ ∈ (2, 4), the
2D CML model has well-established bifurcation perfor-
mance. Specifically, the 2D CML model possesses the best
bifurcation performance with μ � 4.

3.4.2e Ergodicity Analysis. For a chaotic system, ergodicity
describes the randomness of statistical results in both time
and space. If the states of the system cover a larger interval,
the system is more complex. Here, with the parameter
settings μ � 0.5, 1.0, 1.6, 2, 2.6, 3.0, 3.6, and 4.0 for the 2D
CML instantiated with the PLM, we plot the ergodicity of the
model in Figures 5(a)–5(h). As can be seen, the 2D CML
model covers the entire interval and has the best chaotic
dynamic behavior when μ � 4.

3.5.2e Probability Density Distribution. PDD describes the
distribution of chaotic state values in the phase space. We
plot the PDD of the chaotic sequences generated by all the
nodes in Figure 6 for the 2D CML instantiated with the PLM.
According to Figure 6, it is clear that PDD of those sequences
is uneven, with the peaks appearing in the intervals [0.0, 0.2]

and [0.8, 1.0].

4. The Random Chaotic Sequences

According to the above-discussed theoretic analyses and
simulation, apparently, when selecting the PLM with μ �

4, N � 64 as the local map and setting ε � 0.1 for 2D CML,
the model owns outstanding chaotic dynamic behaviors.
Taking the 2D CML model as the key component, we derive
random sequences through the following steps:

(i) Step 1: In the 2D CML model, set R � L � 8 and
ε � 0.1, choose the PLM with μ � 4, N � 64, iterate
the model 1, 000 times to avoid transition effect, and
abandon these first 1, 000 states.

(ii) Step 2: Continue to iterate the 2D CML model. For
each iteration, a floating number B ∈ (0, 1) is de-
rived from each node, and there are totally 64

0
-2

0

LE

2

6
µ = 4, N = 64

4

8 16 24 32
the nodes

40 48 56 64

Figure 1: LE of the 8 × 8 2D CML model.
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floating numbers. Transform B into 64 binary bits
according to Definition 1; that is,

B � 0.w1w2 · · · w63w64. (12)

(iii) Step 3: )e least significant 32 bits are the required
binary bits; that is,

B′ � w32w33 · · · w63w64. (13)

For a single iteration of the 8 × 8 2D CML model, all
those 64 nodes can directly generate 32 × 64 � 2048 bits. To
further analyze the randomness of the binary stream, we use
the NIST test suite and the key sensitivity analysis to
demonstrate that the binary stream derived using the
method above owns excellent randomness and key sensi-
tivity performance.

4.1. Testing Results Analysis. )e statistical test package
launched by NIST is currently the most authoritative tool for
testing the pseudorandom sequences, and it contains 15
subtests. For each test, there exists a pvalue for measuring
whether the sequences can pass the random testing suc-
cessfully. If pvalue ≥ α, it indicates pass. Otherwise, the se-
quences fail that test. We randomly initialize the 2D CML
model according to the method in Section 4 and run the
method 488, 888 times to have 1, 000M bits. Set α � 0.01 and
split the 1, 000M bits to 1, 000 groups of 1M bit; the NIST
test is then performed on these 1, 000 groups and the results
are listed in Table 1. According to Table 1, it is clear that all
the pvalue are greater than 0.01, and the minimum pass rate
and the maximum pass rate are 0.9841 and 0.9952, re-
spectively. )e testing results of pvalue and pass rate show
that the chaotic sequences produced by the 2D CML model
possess good randomness.

4.2. SensitivityAnalysis. Sensitivity means that a tiny change
of the parameters will lead to huge changes in the output
chaotic sequences. We set the parameters of the 2D CML
model as the two following proximal cases:

Case I: ε � 0.1, μ � 4, and x0 � 0.49903121525011673;
Case II: ε � 0.1, μ � 4, and x0 � 0.49903121625011673;
their outputted pseudorandom binary streams are
collected, respectively. To verify the sensitivity, the
steams are then used to mask the digital Lena image.
)e two versions of the masked image and their dif-
ference are shown in Figure 7.

Looking into the details of the difference image, the
different rate of the encrypted images with Case I and Case II
is 99.60%, and the histograms of the two masked images are
almost uniform, as shown in Figures 7(f) and 7(g). Hence,
the pseudorandom sequences derived from the method
discussed in Section 4 own pretty good sensitivity.
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Figure 2: )e values of the 3 × 3 2D CML model with the Logistic map: (a) xs,t
0 , (b) xs,t

3 , and (c) xs,t
100.
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Figure 3: )e values of the 3 × 4 2D CML model with the Logistic map: (a) xs,t
0 , (b) xs,t

3 , and (c) xs,t
100.
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Figure 4: Bifurcation of the 1st1st node with the change in μ in the
8 × 8 2D CML model instantiated with PLM.
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5. The Proposed Encryption Scheme

Section 4 demonstrates that the chaotic sequences generated
by the 2D CML model are random and they also own good
sensitivity against the parameters. )is section takes

advantage of the chaotic sequences generated by the 2D
CML model to design a digital image encryption scheme as
an application. As depicted by Figure 8, the proposed image
encryption scheme consists of three core components: SVD,
confusion, and diffusion. )e purpose of using SVD is to
reduce storage and improve efficiency. For confusion, the
cross-plane permutation in R, G, and B channels has been
employed to comprehensively shuffle the pixel positions in
the three-color planes via a single operation. )e diffusion is
performed based on the random chaotic sequences.

5.1. 2e Encryption Algorithm. )e proposed image en-
cryption algorithm, depicted by Figure 9, is elaborated as the
four following steps, and also its pseudocode is presented as
algorithm 1.

5.2. 2e Decryption Algorithm. )e decryption is basically
the inverse of the encryption process. In detail, the encrypted
image C can be decrypted into the original image P
according to the following steps.)e pseudocode is shown in
Algorithm 2.
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Figure 5: Ergodicity of the 8 × 8 2D CML model with different μ.
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6. Experimental Analysis

To further analyze the characteristics of the proposed en-
cryption algorithm, the following simulations are
performed.

6.1.2eEncryptionandDecryption Image. For the plain Lena
(512 × 512) and Chocolate (256 × 256) images, use SVD to
decompose the images with the rate p � 0.3; the results are
shown in Figures 10(b) and 10(d), respectively. From visual
inspection, these two images are almost the same as the plain
counterparts, shown in Figures 10(a) and 10(c).

Figures 10(e)–10(h) further depict the confusion result
from equation (14). Moreover, the encrypted images and the

recovered images are shown in Figures 10(i)–10(l).
According to Figures 10(i)–10(l), the encrypted images are
noisy, and the decrypted images in Figures 10(j) and 10(l)
are the same as the original Lena and Chocolate images in
Figures 10(a) and 10(d).

6.2. 2e Statistics Results. )e histogram reflects the dis-
tribution of the image’s pixel value; the more uniform the
histogram of the encrypted image is, the better the scheme is.
We plot the histogram results of the original images (Lena
and Chocolate) and the encrypted images in Figures 11 and
12, respectively. According to Figures 11(a)–11(c), the
histogram results of the original image are highly uneven.
However, the histograms of the encrypted images in R, G,

Table 1: )e test results of NIST 800-22.

No. Test index Pass number/failure number Pass rate Pvalue Results

1 FT 992/08 0.9920 0.440975 Success
2 FBT 991/09 0.9910 0.233162 Success

3 CST (forward) 989/11 0.9890 0.397688 Success
CST (reverse) 989/11 0.9890 0.408275 Success

4 RT 995/05 0.9950 0.217857 Success
5 LROBT 989/11 0.9890 0.682823 Success
6 BMRT 993/07 0.9930 0.755819 Success
7 DFTT 992/08 0.9920 0.560545 Success
8 NTMT∗ 990/10 0.9899 0.525430 Success
9 OTMT 992/08 0.9920 0.448424 Success
10 MUST 985/15 0.9850 0.149495 Success
11 AET 987/13 0.9870 0.883171 Success

12

RET (the sample size� 629)
(1) 623/06 0.9905 0.744751 Success
(2) 620/09 0.9857 0.980003 Success
(3) 619/10 0.9841 0.705598 Success
(4) 626/03 0.9952 0.731821 Success
(5) 625/04 0.9936 0.548839 Success
(6) 621/08 0.9873 0.526040 Success
(7) 622/07 0.9889 0.462960 Success
(8) 622/07 0.9889 0.830070 Success

13

REVT (the sample size� 629)
(1) 626/03 0.9952 0.692344 Success
(2) 625/04 0.9936 0.261610 Success
(3) 625/04 0.9936 0.418149 Success
(4) 623/06 0.9905 0.290356 Success
(5) 622/07 0.9889 0.089615 Success
(6) 621/08 0.9873 0.854868 Success
(7) 621/08 0.9873 0.882929 Success
(8) 624/05 0.9921 0.299642 Success
(9) 621/08 0.9873 0.251135 Success
(10) 621/08 0.9873 0.095926 Success
(11) 624/05 0.9921 0.906025 Success
(12) 624/05 0.9921 0.131195 Success
(13) 626/03 0.9952 0.435787 Success
(14) 623/06 0.9905 0.018417 Success
(15) 620/09 0.9857 0.516370 Success
(16) 621/08 0.9873 0.077315 Success
(17) 620/09 0.9857 0.722038 Success
(18) 621/08 0.9873 0.194881 Success

14 ST1 994/06 0.9940 0.397688 Success
ST2 989/11 0.9890 0.344048 Success

15 LCT 990/10 0.9900 0.166260 Success

Complexity 7



and B channels are uniform in Figures 11(d)–11(f), and the
histogram results of the Chocolate image are similar to those
of the Lena image.

According to the approach depicted in [26], the uni-
formity of histogram can be assessed via the χ2 test. In this

test, the signi cance value is set as 0.05; if the resultant
P − value< 0.05, the decision is 1 (rejecting the hypothesis);
if the resultant P − value> 0.05, the decision is 0 (accepting
the hypothesis). �e values of the χ2 test for the histogram
results of the Lena image and the Chocolate image shown in

(a) (b) (c) (d)
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Figure 7: �e results of Lena image and the encrypted Lena image. (a) �e plain Lena image; (b) the encrypted image with case (i); (c) the
encrypted image with case II; (d) the di�erent image with case I and case II; (e) histogram of the plain Lena image; (f ) histogram of the
encrypted image with case (i); (g) histogram of the encrypted image with case II.
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Figure 8: �e core parts of our proposed image encryption scheme.
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Input: )e original image P with size N × N

Output: )e cipher image C
(1) Use SVD to decompose P and get the inverse-transformed image
(2) Divide the inverse-transformed image into R1, G1 and B1 to get the new matrix P′
(3) Divide P′ into small blocks with size 3 × 1
(4) while time≤ count1 do

(5) xn+1
yn+1

􏼢 􏼣 �
1 b

a ab + 1􏼢 􏼣
xn

yn

􏼢 􏼣%N

(6) end
(7)
(8) while time≤ count2 do
(9) P′′′(t) � P′′(t)⊕H(t)⊕P′′′(t − 1),

(10) end
(11) Divide the sequence P′′′ into three 2D matrices R2, G2, B2 with size N × N to form the R, G, B channel of the cipher image C;

(i) Step 1: For an original image P with size N × N, use SVD to decompose P and keep p � 0.3 of the singular values. )en,
separate the inverse-transformed image into R1, G1, and B1 according to its color channels. Stack the three matrices R1, G1,
and B1 to get a new matrix P′ with size 3N × N.

(ii) Step 2: Divide matrix P′ into small blocks with size 3 × 1, and in total there will be N × N blocks. Use the following equation:
xn+1
yn+1

􏼢 􏼣 �
1 b

a ab + 1􏼢 􏼣
xn

yn

􏼢 􏼣mod(N),

with a � 3 and b � 4 to confuse theN × N blocks of matrix P′ for a few times (count1).)e resultant block-shuffledmatrix is
denoted as P′′.

(iii) Step 3: Stack P′′ row by row to get a sequence of length 3N × N and generate a chaotic sequenceH of length 3N × N with the
method in Section 4, and then diffuse P′′ for some times (count2) by the following equation:
P′′′(t) � P′′(t)⊕H(t)⊕P′′′(t − 1),

where t ∈ 1, 2, . . . 3N × N and P′′′(0) � 69.
(iv) Step 4: Divide sequence P′′′ into three 2D matrices R2, G2, and B2 with size N × N to form the R, G, and B channel of the

cipher image C.

ALGORITHM 1: )e proposed image encryption algorithm.

Input: )e cipher image C
Output: )e original image P with size N × N

(1) )e encrypted image C with size N × N is
(2) divided C into R2, G2, B2; Combine those three components and reshape it to a sequence P′′′ of length 3N × N;
(3) while time≤ count1 do

(4) xn

yn

􏼢 􏼣 �
ab + 1 −b

−a 1􏼢 􏼣
xn+1
yn+1

􏼢 􏼣%N

(5) end
(6) while time≤ count2 do
(7) P′(t) � P′′(t)⊕H(t)⊕P′(t − 1)

(8) end
(9) Recover the original image P from P′ according to SVD.

(i) Step 1: )e encrypted image C with size N × N is divided Cinto R2, G2, and B2; then combine those three components and
reshape it to a sequence P′′′ of length 3N × N.

(ii) Step 2: P′′′ is then reshaped to a matrix with size 3N × N, and it will be further divided into blocks of size 3 × 1. All N × N

blocks of P′′′ will be shuffled by using the following equation for the same number of times used for encryption:
xn

yn

􏼢 􏼣 �
ab + 1 −b

−a 1􏼢 􏼣
xn+1
yn+1

􏼢 􏼣mod(N),

where a � 3, b � 4. )e result is denoted as P′′.
(iii) Step 3: Use the chaotic sequences H to diffuse sequence P′′ to get P′; that is,P′(t) � P′′(t)⊕H(t)⊕P′(t − 1),

where t ∈ 1, 2, . . . , 3N × N.
(iv) Step 4: Recover the original image P from P′ according to SVD.

ALGORITHM 2: )e image decryption algorithm.
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Figures 11 and 12 are listed in Table 2. It can be seen from
this table that all those P values (i.e., 0.9005, 0.7919, 0.6577,
0.5449, 0.2246, and 0.2069) are greater than the significance
value 0.05 for both the encrypted Lena and Chocolate

images, thus validating the uniformity of the histograms. So,
it is evident that the redundancy of plain images is com-
pletely concealed, which confirms the failure of statistical
attack.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 10: )e original image and the SVD image.
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)e correlation coefficient is commonly used to measure
the independence of horizontal (H), vertical (V), and di-
agonal (D) adjacent pixels. It is defined by

cov(x, y) � E (x − E(x))(y − E(y))􏼈 􏼉, (14)

rxy �
cov(x, y)

�����
D(x)

􏽰 �����
D(y)

􏽰 , (15)

where x and y are the adjacent pixel values and E(x) �

􏽐
P
i�1 xi/P and D(x) � 􏽐

P
i�1 (xi − E(x))2/P with P being the

number of the pixel pairs.
We use 2, 000 pairs for each of the H, V, and D directions

and present the correlation values in Figures 13 and 14.
According to Figures 13(a)–13(i), the correlation coefficients
in the H, V, and D directions of R, G, and B channels are
concentrated. However, the correlation coefficients of the
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Figure 11:)e histogram of the Lena image and the encrypted Lena image. (a) Histogram of the Lena image in R; (b) histogram of the Lena
image in G; (c) histogram of the Lena image in B; (d) histogram of the encrypted Lena image in R; (e) histogram of the encrypted Lena image
in G; (f ) histogram of the encrypted Lena image in B.
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Figure 12: )e histogram results of Chocolate image and the encrypted Chocolate image. (a) Histogram of the Chocolate image in R; (b)
histogram of the Chocolate image in G; (c) histogram of the Chocolate image in B; (d) histogram of the encrypted Chocolate image in R; (e)
histogram of the encrypted Chocolate image in G; (f ) histogram of the encrypted Chocolate image in B.
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encrypted image become uniform, as shown in
Figures 13(j)–13(r). Furthermore, we calculate the correla-
tion coefficients of 2, 000 pairs of adjacent pixels in the H, V,
and D directions according to equations (18) and (19). )e
correlation coefficient results are listed in Table 3. It can be
seen from this table that the correlation coefficients are all
close to 0, which indicates that the pixels of the encrypted
image are almost independent of each other.

6.3. Shannon Entropy Analysis. )e Shannon entropy re-
flects the average information contained in an image. It is
defined as

IE � 􏽘
n

I�0
p XI( 􏼁logp XI( )

2 , (16)

where XI is the grayscale value of the image and p(XI) is the
rate of the grayscale value XI. In the encrypted image, the
ideal entropy of a grayscale pixel is 8.0. )e global Shannon
entropy values of the original image and the encrypted image
are calculated via equation (20) and listed in Table 4.
According to this table, the values of global Shannon entropy
of the encrypted images are quite near 8.0.

To overcome the weaknesses of the global Shannon
entropy, such as inaccuracy, inconsistency, and low
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Figure 13:)e correlation results of the Lena image and the encrypted Lena image. (a) (H, V, D) correlation of the Lena image in R; (b) (H,
V, D) correlation of the Lena image in G; (c) (H, V, D) correlation of the Lena image in B; (d) (H, V, D) correlation of the encrypted Lena
image in R; (e) (H, V, D) correlation of the encrypted Lena image in G; (f ) (H, V, D) correlation of the encrypted Lena image in B.
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Figure 14: )e correlation results of the Chocolate image and the encrypted Chocolate image. (a) (H, V, D) correlation of the Chocolate
image in R; (b) (H, V, D) correlation of the Chocolate image in G; (c) (H, V, D) correlation of the Chocolate image in B; (d) (H, V, D)
correlation of the encrypted Chocolate image in R; (e) (H,V, D) correlation of the encrypted Chocolate image in G; (f ) (H, V, D) correlation
of the encrypted Chocolate image in B.
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efficiency, we use the local Shannon entropy proposed in
[27] to measure the encrypted image. For this purpose, we
select some nonoverlapping image blocks in the encrypted
image and compute the local Shannon entropy value of each
block and further calculate the mean of those Shannon
entropy values via the following equation:

Hk,TB
(S) � 􏽘

k

i�1

H Si( 􏼁

k
, (17)

where k is the number of the randomly selected nonover-
lapping image blocks, its minimum number is 30, and TB is
the block size of the nonoverlapping image block.

In our testing, the parameter k is set as 40. Moreover, the
block size TB is 4096 (64 × 64). )e local Shannon entropy
values of the encrypted Lena and Chocolate images are
presented in Table 5. As can be seen from the table, the mean
values of the encrypted Lena image’s local Shannon entropy
in RGB channel are 7.997297, 7.997129, and 7.997207, re-
spectively, and those of the encrypted Chocolate image’s
local Shannon entropy are 7.973989, 7.973779, and 7.975590.
Both are close to the ideal value of 7.984977322 for 8-bit
grayscale images with 64 × 64 × 3 in [26, 28]. To summarize,
both global and local Shannon entropy values are very close
to the ideal value, which demonstrates the high randomness
of the encrypted images.

6.4. Differential Attack Analysis. )e differential attack is an
attack method in which the attacker slightly modifies the

plaintext and compares the difference of the ciphertexts
generated before and after the modification. )e number of
pixels change rate (NPCR) and the unified average changing
intensity (UACI) are two important indicators to judge
whether the encryption scheme can resist the differential
attack. )ose two indexes are defined as

NPCR P1, P2( 􏼁 �
1

M × N
􏽘

M

a�1
􏽘

N

b�1
Sign(D(a, b)),

UACI P1, P2( 􏼁 �
1

M × N
􏽘

M

a�1
􏽘

N

b�1

D(a, b)

255
⎛⎝ ⎞⎠,

(18)

Table 2: Histogram uniformity assessment based on the chi-square test.

Image
Histogram of the encrypted Lena image Histogram of the encrypted Chocolate image
R G B R G B

P values 0.2246 0.6577 0.2069 0.9005 0.7919 0.5449
Decision (H� 0 or 1) 0; accepted 0; accepted 0; accepted 0; accepted 0; accepted 0; accepted

Table 3: )e correlation coefficients of the original image and the encrypted image.

Image Channel
Original image Encrypted image

H V D H V D

Lena
R 0.8946 0.9247 0.8636 −0.0061 0.0042 −0.0007
G 0.9562 0.9714 0.9307 −0.0040 −0.0003 −0.0045
B 0.9727 0.9826 0.9515 −0.0018 −0.0013 −0.0032

Chocolate
R 0.9889 0.9851 0.9794 −0.0029 0.0095 −0.0022
G 0.9768 0.9823 0.9647 0.0021 −0.0077 −0.0008
B 0.9713 0.9780 0.9573 0.0024 −0.0049 0.0047

Table 4: Global Shannon entropy of the original image and the
encrypted image.

Image Channel Original Encrypted
image image

Lena
R 6.9684 7.9992
G 7.5940 7.9999
B 7.2531 7.9992

Chocolate
R 6.5464 7.9975
G 5.6947 7.9974
B 5.2626 7.9972

Table 5: Local Shannon entropy of the encrypted image.

Image Channel Local Shannon entropy

Lena
R 7.997297
G 7.997129
B 7.997207

Chocolate
R 7.973989
G 7.973779
B 7.975590
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where P1 and P2 are two encrypted images, D(i, j) �

|P1(a, b) − P2(a, b)|, and

Sign(D(a, b)) �
1, P1(a, b) � P2(a, b),

0, else.
􏼨 (19)

According to the method in [29], the theoretical NPCR
critical values for different sizes with respect to the signif-
icance levels α � 0.05, α � 0.01, and α � 0.001 are shown in
Table 6; N∗0.05, N∗0.01, and N∗0.001 are the critical values of
NPCR to reject the null hypothesis regarding the associated
α-level of significance. If the NPCR test values are above N∗α ,
and they are random-like with the significance level α. As for
theoretical UACI critical values listed in Table 7, when the
UACI test values for the encrypted image lie in the interval
[u∗−

α , u∗+
α ], the encrypted image passes the UACI test

successfully.
We generate the cipher images by modifying the first

pixel and last pixel of the same plain image. )e resultant
NPCR and UACI values are listed in Table 8. It is clear from
this table that all the NPCR and UACI values meet the
criteria for accepting the null hypothesis with respect to the
significance levels (i.e., α � 0.05, α � 0.01, and α � 0.001).
In other words, the encrypted images pass the NPCR and
UACI tests successfully, and our scheme is resistant to
differential attacks.

6.5. Key Security Analysis

6.5.1. Key Space Analysis. )e larger key space indicates a
better security of the encryption algorithm. As for today’s
computation power, the key space over 2128 is secured and
infeasible, which can resist the brute-force attacks effectively.
In our scheme, the keys are the initial values of 64 nodes of
the 2D CML model. It is well known that the floating-point
arithmetic defined by IEEE 754 has a precision of 10− 15.
)erefore, each node has the 1015 possibilities; the key space
of all 64 nodes is then

1015 × · · · × 1015 � 10960. (20)

Clearly, 10960 is much larger than 2128. )us, the key
space of our scheme is large enough to resist the brute-force
attacks.

6.5.2. Key Sensitivity Analysis. Key sensitivity means a tiny
change of the secret key causing huge changes of the
encrypted results. To verify the key sensitivity of our scheme,
we use two proximal secret keys as Case 1 and Case 2 to test
our design:

Case 1: Keep the original initial conditions unchanged
Case 2: )e initial condition of one node is changed by a
magnitude of 0.00001 and all others remain unchanged

We then list the differences of the two cipher images in
Table 9. From this table, the rate of different pixels between
two cipher images is larger than 99.59%. It indicates that the
proposed scheme possesses good key sensitivity.

Table 6: )eoretical NPCR critical values for different image size.

Size
)eoretical NPCR critical values

α � 0.05 α � 0.01 α � 0.001
512 × 512 N∗0.05 � 0.995893 N∗0.01 � 0.995810 N∗0.001 � 0.995717
256 × 256 N∗0.05 � 0.995693 N∗0.01 � 0.995527 N∗0.001 � 0.995341

Table 7: )eoretical UACI critical values for different image size.

Size
)eoretical UACI critical values

α � 0.05 α � 0.01 α � 0.001

512 × 512 u∗−0.05 � 0.333730 u∗−0.01 � 0.333445 u∗−0.001 � 0.333115
u∗+0.05 � 0.335541 u∗+0.01 � 0.335826 u∗+0.001 � 0.336156

256 × 256 u∗−0.05 � 0.332824 u∗−0.01 � 0.332255 u∗−0.001 � 0.331594
u∗+0.05 � 0.336447 u∗+0.01 � 0.337016 u∗+0.001 � 0.337677

Table 8: )e NPCR and UACI values of the encrypted image.

Image Channel Chang bit NPCR UACI

Lena

R First pixel 0.9960 0.3347
Last pixel 0.9960 0.3341

G First pixel 0.9959 0.3342
Last pixel 0.9961 0.3351

B First pixel 0.9961 0.3347
Last pixel 0.9960 0.3347

Chocolate

R First pixel 0.9962 0.3347
Last pixel 0.9959 0.3348

G First pixel 0.9961 0.3346
Last pixel 0.9959 0.3346

B First pixel 0.9959 0.3343
Last pixel 0.9962 0.3342

Table 9: )e differences of the encrypted image with Case 1 and
Case 2.

Image Channel Case 1-Case 2

Lena
R 99.6166%
G 99.6143%
B 99.6253%

Chocolate
R 99.6170%
G 99.5910%
B 99.6200%
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6.6. Comparison Analysis. To further assess the perfor-
mance of the proposed scheme, quite a few recent studies
[30–38] in the same literature are included for compar-
ison. )e comparison results of correlation coefficient,
NPCR, UACI, and information entropy are listed in
Tables 10–12.

Table 10 shows the correlation coefficient values; we can
obverse that the correlation coefficient values are quite
smaller, almost equal to 0. Meanwhile, Table 11 presents the
NPCR and UACI values of our scheme and other schemes;
the values of our scheme are closer to the ideal values
(NPCR � 0.996094 and UACI � 0.334636) than those of the
schemes in [32, 33, 35–37]. Finally, Table 12 describes the
information entropy results of our scheme and other
schemes; the information entropy results of the R, G, and B
channel in our scheme are 7.9992, 7.9999, and 7.9992, re-
spectively, and the average value is 7.999433, which means
that they are almost near the ideal value of 8.0. In conclusion,
the proposed method performs at least similar to, if not
always better than, the others.

6.7. Resistance to Occlusion Attacks. When transmitting the
encrypted images, network congestion or malicious de-
struction may lead to data loss. Occlusion attack is com-
monly unitized to measure the capacity of recovering the
original image from the encrypted image with data loss.

Figures 15(a)–15(d) and Figures 16(a)–16(d) show dif-
ferent encrypted versions of the Lena and Chocolate images
with 1/256, 1/64, 1/16, and 1/4 occlusion, respectively, and
Figures 15(e)–15(h) and Figures 16(e)–16(h) show the
corresponding recovered images of the different occluded
cipher images. It is clear that the recovered images are still
recognizable even when 25% of the encrypted data are lost.

6.8. Runtime Analysis. )e runtime of an encryption
scheme is an important factor in practical applications.
We implement our scheme with C language on a personal
computer equipped with Intel(R) Core(TM) i7-10710U
CPU @ 1.10 GHz, 1.61 GHz. )e runtimes of our scheme
and the literature schemes are given in Table 13. As can be

Table 10: )e correlation coefficient results of our scheme and others.

Image
Original image Encrypted image

H V D H V D
Lena in ours 0.8946 0.9247 0.8636 −0.0061 0.0042 −0.0007
Lena in [30] 0.8946 0.9247 0.8636 0.0016 0.0002 0.0038
Lena in [31] 0.8946 0.9247 0.8636 0.0003 0.0040 0.0013
Lena in [32] 0.8946 0.9247 0.8636 0.0013 0.0034 0.0072
Lena in [33] 0.8946 0.9247 0.8636 −0.0031 0.0025 −0.0001
Lena in [34] 0.8946 0.9247 0.8636 0.0046 −0.0028 0.0014
Lena in [35] 0.8946 0.9247 0.8636 0.0005 −0.0070 0.0006
Lena in [36] 0.8946 0.9247 0.8636 −0.0047 0.0028 −0.0043
Lena in [37] 0.9902 0.9908 0.9794 0.0013 0.0047 0.0020

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 15: Occlusion attack analysis results of the cipher Lena image. ((a)–(d)) )e cipher Lena image with 1/256, 1/64, 1/16, and 1/4
occlusion; ((e)–(h)) decryption results for the images above.
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seen from the table, the encryption times of the Lena and
Chocolate images in our scheme for the R channel are
0.369s and 0.097s, respectively, which indicates that it is
more efficient than the schemes in [39–44] but inferior to

the scheme in [39]. )is is because the scheme in [39] has
a paralleled architecture and we take the task of designing
a paralleled implementation of our design as the future
work.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 16: Occlusion attack analysis results of the cipher Chocolate image. ((a)–(d)))e cipher Chocolate image with 1/256, 1/64, 1/16, and
1/4 occlusion; ((e)–(h)) decryption results for the images above.

Table 11: )e NPCR and UACI results of our scheme and others.

Image
NPCR UACI

R G B Average R G B Average
Lena in ours 0.9960 0.9959 0.9961 0.996000 0.3347 0.3342 0.3346 0.334500
Lena in [30] 0.9961 0.9963 0.9961 0.996167 0.3347 0.3345 0.3348 0.334667
Lena in [31] 0.9961 0.9961 0.9961 0.996100 0.3346 0.3346 0.3347 0.334633
Lena in [32] 0.9969 0.9969 0.9969 0.996900 0.3333 0.3333 0.3333 0.333300
Lena in [33] 0.9967 0.9969 0.9969 0.996833 0.3352 0.3353 0.3354 0.335300
Lena in [34] 0.9961 0.9961 0.9961 0.996100 0.3349 0.3349 0.3347 0.334833
Lena in [35] 0.9973 0.9968 0.9970 0.997033 0.3346 0.3345 0.3346 0.334567
Lena in [36] 0.9967 0.9964 0.9965 0.996533 0.3351 0.3350 0.3349 0.335000
Lena in [37] 0.9964 0.9965 0.9964 0.996433 0.3343 0.3347 0.3348 0.334600
Lena in [38] 0.9962 0.9961 0.9962 0.996167 0.3342 0.3343 0.3346 0.334367

Table 12: )e information entropy results of our scheme and others.

Image
Encrypted image

Average
R G B

Lena in ours 7.9992 7.9999 7.9992 7.999433
Lena in [30] 7.9985 7.9985 7.9986 7.998533
Lena in [31] 7.9994 7.9994 7.9993 7.999366
Lena in [32] 7.9997 7.9997 7.9996 7.999666
Lena in [33] 7.9976 7.9972 7.9972 7.997333
Lena in [34] 7.9994 7.9993 7.9992 7.999300
Lena in [35] 7.9972 7.9973 7.9971 7.997200
Lena in [36] 7.9973 7.9965 7.9969 7.996900
Lena in [37] 7.9994 7.9993 7.9994 7.999366
Lena in [38] 7.9917 7.9912 7.9917 7.991533
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7. Conclusion

In this paper, according to theoretical analyses in LE and
synchronization stability of the 2D CML model and also the
simulation analyses in bifurcation, ergodicity, and PDD, we
thoroughly demonstrate that the 2D CML model has good
chaotic properties. Moreover, binary sequences can be di-
rectly and effectively generated by the 2D CML model, and
passing the NIST test suite confirms that the generated
sequences possess desired properties for encryption. Relying
on this observation, we put forward an image encryption
algorithm through confusion and diffusion. Further simu-
lation analyses show that the proposed image encryption
scheme possesses good encryption characteristics.

For future work, the study of the characteristics of the
higher-dimensional CML system and its applications will be
considered.
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Topic of quantum chaos has begun to draw increasing attention in recent years. So, to ensure the security of digital image, an
image encryption algorithm based on combining a hyperchaotic system and quantum 3D logistic map is proposed.+is algorithm
is applied in four stages. Initially, the key generator builds upon the foundation of mean for any row or column of the edges of the
plain image. Its output value is used to yield initial conditions and parameters of the proposed image encryption scheme. Next, it
diffuses the plain image by the random sequences generated by 3D hyperchaotic system, and the diffusion process is realized by
implementing XOR operation. +en, the diffused image and chaotic sequences are produced by the 3D quantum chaotic logistic
map, expressed as a quantum superposition state using density matrix which is a representation of the state of a quantum system,
and finally the resulting quantum image is then confused and diffused simultaneously by a unitary matrix generated by logistic
chaos using XNOR operation to obtain the final cipher image. Because of the dependence on the plain image, the algorithm can
frustrate the chosen-plaintext and known-plaintext attacks. Simulation results and theoretical analysis verify that the presented
scheme has high safety performance, a good encryption effect, and a large key space. +e method can effectively resist exhaustive,
statistical, and differential attacks. Moreover, the encryption time of the proposed method is satisfactory, and the method can be
efficiently used in practice for the secure transmission of image information.

1. Introduction

In today’s era [1–6], with the fast development of electronic
technology and the scale of the communication network, a
lot happens over a time of one minute. Along with this rapid
development of Internet and multimedia, usage of digital
media has increased tremendously in past decades. In this
period of digital data technology, today, we are in the sphere
of digitally advanced era, where most of the private data and
secure digital information is being exchanged by the help of
electronic media such as television, smartphones, personal
computers, tablets, facsimiles, satellites, and so forth to all
corners of the world over just one minute to facilitate the

daily needs of people where digital information is being
applied in all the fields in the society.

Images originated in some scenarios such as any social
media servers, business, personal privacy, healthcare or
military systems, organizations, banks, and other private
sectors contain private information which is placed and
maintained in very big databases, since it can be transmitted,
shared, and stored on the Internet, so if this information is
stolen or an unauthorized person accesses it, this may cause
a serious damage and serious consequences to any orga-
nization [7–9].

With the widespread application of a digital image,
providing digital image information security in the
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transmission channel has become an increasingly serious
issue to be urgently solved because the data can be inter-
cepted, cracked, or destroyed [10, 11]. Hence, the security of
the important and valuable image information has become a
hot recent topic of the field of information security.

Image encryption [5, 12, 13] is one of the possible ef-
fective solutions used to protect these images from this
threat where it is extensively recognized as a useful technique
for secure transmission and its objective is to accomplish
privacy and integrity of data. It converts images into noise-
like encrypted images with key by disrupting pixel positions
or changing pixel values and decryption will reveal the
original message or information by utilizing same key uti-
lized for encryption.

To satisfy the emerging demand, a lot of useful image
encryption algorithms based on optical transformation,
DNA sequence operations, wave motion, Brownian motion,
cellular automata, compressive sensing, and chaotic system
[6, 14] were developed in literature to secure these digital
images.

Since the chaos theory was first proposed by Lorenz,
many chaotic phenomena were found inmany fields, such as
physics, astronomy, chemistry, biology, and medicine. In
1998, Fridrich firstly proposed a chaos-based image en-
cryption algorithm composed of two stages: permutation
and diffusion. After that, many scholars have designed
numerous efficient algorithms for chaotic systems and
chaos-based image encryption to be applied for the secure
communications [3, 4, 8, 11].

Chaotic systems [2, 4] have many noteworthy features
which satisfy the requirements of image encryption, such as
random-like behaviors, high sensitivity to initial conditions
and control parameters where the wrong initial condition
will lead to nonchaotic behavior, nonperiodicity, and er-
godicity, and low cost in the computer operation system and
microprocessor [8–10]. +erefore, these systems can be
rapidly applied to cryptographic systems which achieve
superior performance with respect to the trade-offs between
the security and efficiency. However, the appearance of
quantum computing brought a great challenge to classic
encryption methods [15, 16].

Additionally, with the advancement in technology in the
modern era of computer world, brute-force attack [4, 6] will
be quite easily performed in quantum computers which are
based on quantum information theory. +is vulnerability
gives potential danger to idealized security required at na-
tional security and protected innovation level. To beat this
threat, it is necessary to study novel and safer cryptosystem
to meet the current safety requirements in image encryption,
and, therefore, quantum encryption can be applied in the
image encryption process as it gives us a secure encryption
method.

Quantum computation [7, 17, 18] has shown great
potential for improving information processing speed and
enhancing communication security. Combining quantum
computing and image encryption is a secure and effective
approach to design the encryption algorithms. +e essence
task of quantum image encryption is to store the images into
quantum computers, and then quantum encryption

techniques can be exploited to process these images. Due to
the promising prospect of quantum image encryption, more
and more researchers devoted their attention to developing
quantum image representation models and designing image
encryption algorithms.

For example, Li et al. [3] proposed an efficient chaos-
based image encryption scheme, which uses the imitating
jigsaw method containing revolving and shifting operations
and shows good performance in both security and speed. Liu
et al. [7] proposed a quantum image encryption algorithm
based on bit-plane permutation and sine logistic map which
has good performance in the aspect of security and the
computational complexity is superior to its classical coun-
terpart. Dong et al. [9] proposed a self-adaptive image en-
cryption algorithm based on the quantum logistic map,
which can achieve secure communications and frustrate the
chosen-plaintext and known-plaintext attacks. In [15], an
innovative quantum color image encryptionmethod focused
on the Lucas series-based substitution box is suggested to
enhance the competence of encryption. +is cryptosystem
has more excellent key space and significant confidentiality.
In [19], an image encryption algorithm based on 3D DNA
level permutation and substitution scheme is proposed,
where the proposed encryption scheme has large key space
and high key sensitivity and may resist some typical attacks,
and it may effectively secure the secret image information.
El-Latif et al. [20] presented a new method for constructing
substitution boxes (S-boxes) based on cascaded quantum-
inspired quantum walks and chaos inducement, which will
offer gains in many cryptographic applications where the
performance of the proposed S-box scheme is investigated
via established S-box evaluation criterion and outcomes
suggest that the constructed S-box has significant qualities
for viable applications information security. In [21], a new
method for the encryption by utilizing quantum chaotic
maps and continuous chaotic dynamical systems is designed
which contributes to achieving the security of data with the
minimum time of encryption. Sridevi and Philominathan
[22] presented a quantum encryption technique which is
built by adopting Haar Integer Wavelet Transform (HIWT),
RC6 (Rivest Cipher) block cipher, and DNA (deoxy-
ribonucleic acid) sequences. In addition, a Unified Chaotic
Logistic Tent Map (ULTM) has been employed in the
permutation phase to produce the pseudorandom sequence
for shuffling the RGB planes of the quantum represented
source image in spatial and transform domains. +is
cryptosystem has confirmed the significant immune level of
the quantum cryptosystem. In [23], an enhanced quantum
scheme is proposed for generalized novel enhanced quan-
tum image representation which has good visual effects and
high security. Wen et al. [24] proposed an image crypto-
system adopting a quantum chaotic map and the certain
security-enhanced mechanisms where the cryptosystem has
excellent performance and can resist various cryptographic
attacks. Moreover, the feasibility and effectiveness of the
image cryptosystem are verified on the Internet of +ings
secure communication experimental platform. It proves that
the proposed image cryptosystem is a preferred and
promising secure communication technology solution.
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After conducting a detailed analysis of the breaking
methods, it was found that some chaos-based image en-
cryption schemes have security vulnerabilities, which are as
follows: (1) key dependence and fixed key; (2) one cycle of
permutation-diffusion architecture; (3) low-dimensional
systems used for image encryption; (4) single chaotic system
still used for encryption operation, which leads to inability to
resist brute-force attack; and (5) low sensitivity to all the
chaotic secret keys.

To overcome these security shortcomings and design
secure and effective image encryption, an image encryption
algorithm based on integrating a hyperchaotic system and
quantum 3D logistic map is presented in this paper. +e
essence goals of the proposed scheme are listed as follows:

(i) First, it can fight against the chosen-/known-
plaintext attacks due to the use of symmetric key
image cryptosystem based on original image.

(ii) Second, the generated key cryptosystem based on
the plain image is used to determine the number of
cycles of composite chaotic algorithms.

(iii) +ird, multidimensional chaotic maps like hyper-
chaos and 3D quantum logistic map are used which
have more chaotic attractors, so the high-dimen-
sional chaotic system has stronger randomness,
better confidentiality, greater amount of informa-
tion, and higher communication efficiency, pro-
viding sufficiently large key space and having high
security.

(iv) Fourth, two different chaotic systems (quantum
logistic map and hyperchaotic Chen’s system) are
combined, which have the advantage of excellent
random sequence to expand the key space, enhance
the performance of resisting brute-force attack, and
achieve better encryption effect and high level of
security.

(v) Fifth, high sensitivity with respect to all secret keys
is achieved, which leads to creating a completely
different cipher image when applied to the same
plain image whenever flipping one bit in a key.

Based on the above literature, it is evident that, for
generating excellent encryption effects and producing a
highly secure encryption scheme, it is needed to design a
combination of hyper- and multidimensional chaotic sys-
tems through density matrix which describes the quantum
state of a system.

2. Preliminary Knowledge

2.1. Chen’s Hyperchaotic System. In order to improve the
security and efficiency performance, many image encryption
methods based on three-dimensional chaotic systems,
hyperchaos, and even spatiotemporal chaos have been
presented in recent years [25].

In 1963, Lorenz [26] found the first chaotic attractor in a
three-dimensional autonomous system:

_x � a(y − x),

_y � cx − xz − y,

_z � xy − bz,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where a, b, and c are constant parameters of the system.
Typically, when a� 10, b� 8/3, and c� 28, the system is in a
chaotic state.

In 1999, Chen [27] discovered another chaotic system
with more complex dynamic behaviors than Lorenz system
when studying chaotic feedback control. Chen’s hyper-
chaotic system is defined as follows:

_x1 � a x2 − x1( 􏼁,

_x2 � −x1x3 + dx1 + cx2 − x4,

_x3 � x1x2 − bx3,

_x4 � x1 + k,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where a, b, c, d, and k are the system parameters. In this
system, when the values of the parameters (a, b, c, d, k)� (36,
3, 28, −16, −0.7 <k<0.7), the system is hyperchaotic in a very
wide parameter range in this case and has many more in-
teresting complex dynamical behaviors than those of Lorenz
system. +e hyperchaos attractors of this system are shown
in Figure 1, while the corresponding bifurcation diagram of
state x with respect to k is given in Figure 2.

Its Lyapunov exponents are λ1 � 1.552,

λ2 � 0.023, λ3 � 0, λ4 � −12.573; Lyapunov exponents for
this system are depicted in Figure 3. As the hyperchaos has
four positive Lyapunov exponents, the prediction time of a
hyperchaotic system is shorter than that of a chaotic system
[28]; as a result, it is safer than chaos in security algorithm.

2.2. 3D Quantum Logistic Chaotic Map. Quantum chaotic
systems are the quantized of classical chaotic system, such as
quantum logistic map which [1, 29, 30] is constructed by the
classical logistic system and that is a perfect example of
complex chaotic maps which arises from nonlinear dy-
namical equations. Classical chaotic maps have a small range
for key space as they suffer from low control parameters
which in turn lead to a limited chaotic range, whereas the
chaotic maps with higher dimensional as the used one in the
proposed scheme can be lead to increase the key space range,
have excessive complexity, high degree of randomness, and
high sensitivity to initial conditions and control parameters.
+erefore, quantum logistic system is suitable as seed system
in encryption algorithm.

Based on the classical logistic map and the effect of
quantum correlations on a dissipative system [31], the
proposed quantum logistic map was applied to image en-
cryption, which can be defined as follows:

xn+1 � r xn − xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑 − ryn,

yn+1 � −yne
−2β

+ e
−β

r 2 − xn − x
∗
n( 􏼁yn − xnz

∗
n − x
∗
n zn􏼂 􏼃,

zn+1 � −zne
−2β

+ e
−β

r 2 1 − x
∗
n( 􏼁zn − 2xnyn − xn􏼂 􏼃,

(3)
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where β is dissipation parameter and c represents control
parameter. However, the initial conditions (xn, yn, zn) are
set as real numbers to meet the requirement of communi-
cation. Figure 3 shows the phase diagram of quantum lo-
gistic map, and its bifurcation diagram is displayed in
Figure 4.

3. The Proposed Image Encryption and
Decryption Scheme

3.1. ImageEncryptionProcess. +is section presents the details
of the design of the proposed method based on the adopted
fundamental Fridrich’s permutation-diffusion model,
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Figure 2: Bifurcation diagram of Chen’s chaotic system with parameter k.

4 Complexity



hyperchaotic system, and a 3D quantum logistic mapping. +e
proposed algorithm is designed in the context of sensitive
information of digital color and gray images. Consider a color
image Iwith sizeW × H, whereW andH represent the image’s
rows and columns, respectively.+eR,G, andB components of
I are denoted as R, G, and B, respectively. +e proposed
framework consists of fourmain phases, and the details of these
phases are presented as follows:

(i) +e first phase is key extraction from a plain image
through computing the mean of any of the four
edges of the plain image and then utilizing that

mean to make a number of iterations for both
Chen’s hyperchaotic system and the quantum
logistic map in order tomodify the initial seeds and
control parameters for them.

(ii) Iterate continuously Chen’s hyperchaotic system
W × H times to generate a random sequence of
integers EI whose values range from [0. . .255],
where the length of sequence EI, that is, n, will be
equal to the number of pixels in the image. +en
split it into three chaotic sequences ER

i , EG
i , EB

i

which are computed using the following equations:
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E
R
i (i, j) � unit8 round mod (abs(x) − floor(abs(x)))∗ 10(14)

, 256􏼐 􏼑􏼐 􏼑􏼐 􏼑,

E
G
i (i, j) � unit8 round mod (abs(y) − floor(abs(y))) ∗ 10(14)

, 256􏼐 􏼑􏼐 􏼑􏼐 􏼑,

E
B
i (i, j) � unit8 round mod (abs(z) − floor(abs(z)))∗ 10(14)

, 256􏼐 􏼑􏼐 􏼑􏼐 􏼑,

(4)

where i � 1, 2, . . . , W × H.
(iii) Diffuse three components of the plain image by the

random sequences generated by 3D hyperchaotic
system to obtain their corresponding cipher se-
quences. +e diffusion process is performed by
implementing XOR operation as follows:

C
R
i � P

R
i ⊕E

R
i ,

C
G
i � P

G
i ⊕E

G
i ,

C
B
i � P

B
i ⊕E

B
i .

(5)

(iv) Perform quantum logistic map to produce a
chaotic sequence Qi; after that separate it into three
channels QR

i , QG
i , QB

i which can be calculated as
follows:

Q
R
i � mod floor ε1 ∗xi+1 + ε2( 􏼁, 256( 􏼁, i � 1, 2, . . . , W × H,

Q
G
i � mod floor ε1 ∗yi+1 + ε2( 􏼁, 256( 􏼁, i � 1, 2, . . . , W × H,

Q
B
i � mod floor ε1 ∗ zi+1 + ε2( 􏼁, 256( 􏼁, i � 1, 2, . . . , W × H,

(6)

where (ε1, ε2) are two large prime numbers and
(xi+1, yi+1, and zi+1) are random sequences
which are generated by 3D quantum logistic
map (3).

(v) Generate density matrix H using the following
equations:

H11 � (p +(1 − p))∗ cos
a

2
􏼒 􏼓

2
􏼠 􏼡,

H12 � (1 − p)∗ sin
a

2
􏼒 􏼓∗ ∗ cos

a

2
􏼒 􏼓􏼒 􏼓,

H21 � (1 − p)∗ sin
a

2
􏼒 􏼓∗ cos

a

2
􏼒 􏼓􏼒 􏼓,

H22 � (1 − p)∗ sin
a

2
􏼒 􏼓

2
􏼠 􏼡,

(7)

where p is probability and a is angle.
(vi) +e diffused layers (CR

i , CG
i , CB

i ) and chaotic se-
quences are produced by the 3D chaotic logistic
map (QR

i , QG
i , QB

i ) which are expressed as a
quantum superposition state, using the XNOR
function as follows:

SCR
i � C

R
i ⊕H,

SCG
i � C

G
i ⊕H,

SCB
i � C

B
i ⊕H,

SQB
i � Q

B
i ⊕H,

SQB
i � Q

B
i ⊕H,

SQB
i � Q

B
i ⊕H,

(8)

where operator ⊕ denotes bitwise exclusive NOR.
(vii) Finally, the final cipher channels FCR

i , FCG
i , FCB

i

are obtained by applying XNOR function on both a
unitary matrix generated by logistic chaos
(SQR

i , SQG
i , SQB

i ) and the diffused components
(SCR

i , SCG
i , SCB

i ) generated density matrix to
confuse and diffuse pixels simultaneously, which
can be expressed as follows:

FCR
i � SCR

i ⊕ SQ
R
i ,

FCG
i � SCG

i ⊕ SQ
G
i ,

FCB
i � SCB

i ⊕ SQ
B
i .

(9)
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(viii) Combine (FCR
i , FCG

i , and FCB
i ) into a chaoticmatrix

FCi with transpose rows and columns of the border of
the image to get the final cipher image CW×H.

+e sketch of the proposed encryption scheme is
exhibited in Figure 5 with a succinct explanation of each
phase presented herewith while the specific implementation
process of the proposed image encryption scheme is pre-
sented in Algorithm 1.

3.2. Decryption Method. +e architecture of the proposed
decryption algorithm is shown in Figure 6, which is applied
on a cipher image to produce a plain image.

4. ExperimentalResults andNumericalAnalysis

Due to the absence of a practical and functional quantum
computer, the experimental results are performed with
MATLABR2017b platform on a classical computer to verify the
security and effectiveness of the proposed quantum image
encryption algorithm. +e operation system used is Windows
10 Professional operating systemwith the specific configuration
being i7-8550U applied as the central processing unit (CPU)
and the random-access memory (RAM) adopted is 8GB.

For simulation, the control parameters and initial values
of Chen’s hyperchaotic system, given in (2), are set as a� 36,
b� 3, c� 28, and d� −16, and x0 � 0.3, y0 � −0.4, z0 �1.2, and
q� 1, we carry out the encryption scheme. +e keys for this
proposed cryptosystem include the iteration times of Chen’s
hyperchaotic system and quantum logistic chaotic map M,
where the discarded numberM is set according to the mean
of plain image. For color images, the encryption key is the
same in RGB channels.

To demonstrate the practical benefits of the proposed
image encryption scheme, a number of experiments were
performed based on the USC-SIPI (the University of Southern
California Signal and Image Processing Institute) Image Da-
tabase [32].+is database is divided into four groups of images:
Textures (64 images), Aerials (38 images), Miscellaneous (39
images), and Sequences (69 images). Each group contains
images of various sizes m×m, m� 256, 512, 1024. Different
sample images (gray and color) are chosen as test images from
the USC-SIPI “Miscellaneous” dataset and the simulation re-
sults of these encryption and decryption images are presented
in Figure 7, where the plain images of “Aerial,” “Boat,” “Male,”
“Airplane,” “Lena,” and “Baboon” are shown in Figures 7(a)–
7(f), their corresponding cipher images are shown in
Figures 7(g)–7(l), and the recovery images from decryption
process with correct secret keys are shown in Figures 7(m)–7(r)
which are identical to the original images, and their detailed
information is listed in Table 1.

As illustrated in Figures 7(g)–7(l) that the proposed
encryption scheme can encrypt different size images, besides
that it destroys the obvious pattern of the plain image and
makes the ciphered image display a space filling with a noise-
like pattern which makes the ciphered image seem random
to the intruder. +erefore, the proposed encryption algo-
rithm has good encryption and decryption effect; it can
attain the image data security and appearance security. +e

quantitative performance of the newly resulted image en-
cryption algorithm could be measured through different
evaluation parameters, including statistical, differential,
sensitivity, and key space metrics. Each of these measures is
discussed in detail in the accompanying subsections.

4.1. Key SpaceAnalysis. +e key space of a cryptosystem is the
very important factor on security when brute-force attack is
happening. For high-security cryptosystem, it should be highly
sensitive to a tiny change in the cryptographic keys and the key
space is suggested to be much larger than 2100 to resist ex-
haustive attack effectively [33–36]. Moreover, the keys should
be easy to establish and exchange for practical communication.
+e key space is the total number of different keys that can be
used in the encryption/decryption procedure. According to the
algorithm structure, the secret key format should consist of the
following: (1) +e parameters of Chen’s hyperchaotic system
are a, b, c, d, and k and each of the original variables (x1, x2, x3,
x4) has 2 decimal places; there exist 102 possible values for each
value. +is contributes to 6 possible guesses of value. +is
applies to (a, b, c, d, k, x1, x2, x3, x4) as well. +us, there are 254
possible values of (a, b, c, d, k, x1, x2, x3, x4). (2)+e initial values
of hyperchaotic system (x1, x2, x3) are obtained by iterating
system; each has 14 decimal places with the range between 0
and 1, and there exist 1014 possible values for each value. +is
contributes to 246.5 possible guesses of value.+is applies to (x1,
x2, x3) as well. +us, there are 2139.5 possible values of (x1, x2,
x3). (3) Parameters β and r are used in the quantum logistic
chaotic map, where β consists of 4 decimal places; there exist
104 possible values for each value. +is contributes to 212
possible guesses of its value and r consists of 2 decimal places,
and there exist 102 possible values for each value. +is con-
tributes to 26 possible guesses of its value. +us, there are 218
possible values of β and r. (4) Each initial value of quantum
map consists of 12 decimal places with the range between 0 and
1; there exist 1012 possible values for each value. +is con-
tributes to 240 possible guesses of value. +is applies to (x0, y0,
z0) as well. +us, there are 2120 possible values of x0, y0, and z0.
(5) Two large prime numbers are of 8 decimal places with the
range between 0 and 1; there exist 108 possible values for each
value. +is contributes to 226 possible guesses of value. +is
applies to (ε1, ε2) as well. +us, there are 252 possible values of
(ε1, ε2). (6) Density matrix has probability p and an angle a,
where p has only one decimal place with the range between 0
and 1, and a has 2 decimal places; thus there exist 101 possible
values for p; this contributes to 23 possible guesses of value,
whereas there exist 102 possible values for a; this contributes to
26 possible guesses of value. +is contributes to 210 possible
guesses of value. +us, there are 29 possible values of (p, a).

Consequently, the overall key space of the proposed
image encryption scheme is

TOTALKEY SPACE � 254 ∗ 218 ∗ 2139.5 ∗ 2120 ∗ 252 ∗ 29

� 254+139.5+120+52+20

� 2392.5
.

(10)

Complexity 7



As a result, the key space is reasonably large enough for
the cryptosystem to withstand exhaustive attacks and even
quantum computer attacks. Table 2 shows the key space
comparison of similar recent algorithms. Obviously, the
proposed encryption algorithm has larger key compared to
the existing works [4, 15, 24, 35, 37], which is sufficiently
large to resist all presently known brute-force attacks.

4.2. Key Sensitivity Analysis. To resist violent attacks, a
password system should be highly sensitive. Hence, key
sensitivity [37–40] is an important index to measure the
strength of encryption algorithm. +e key sensitivity of an
image cryptosystem can be evaluated in two aspects: First,
the cipher image will be completely different when
encrypting the same plain image with slightly different keys,
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Figure 5: Block diagram of the proposed image encryption algorithm.

Input: Plain Image P of size W × H, initial conditions and control parameters for hyperchaotic system (3D Chen’s system), and seeds
for the chaotic generator.
Output: Cipher Image C of size W × H

Step 1: Plain image P is resized to a dimension of ((W − 2) × (H − 2)) pixels and is stored as P2, and compute the meanM of any of
the edges of the plain image P.
Step 2: Iterate both Chen’s hyperchaotic system (equation (2)) and quantum logistic map (equation (3)) M times according to the
computed mean M.
Step 3: Generate three chaotic sequences ER

i , EG
i , EB

i by using a hyperchaotic system with given parameters and initial state values as
secret keys.
Step 4: Separate each of the color pixel Pi ∈ P2 of the resized image P2 into its three grayscale components of PR

i , PG
i , PB

i , then apply
XOR function between three components PR

i , PG
i , PB

i of the resized image P2 and three chaotic sequences ER
i , EG

i , EB
i produced by

chen’s hyperchaotic system. +e result is considered as diffused R, G, and B components, which are CR
i , CG

i , CB
i .

Step 5: Quantum logistic map is initiated and utilized to generate a chaotic keystream sequence Qi, after that split it into R, G, and B
components QR

i , QG
i , QB

i .
Step 6: Generate Density matrix which is described as Hermitian matrix HW−2×H−2.
Step 7: Employ Density matrix on the diffusion components (CR

i , CG
i , CB

i ), as well as the output of quantum logistic map (QR
i , QG

i , QB
i )

using XNOR function to put each of them in a superposition environment.
Step 8: +e three components of the cipher image FCR

i , FCG
i , FCB

i are generated by XNORing the output of applying density matrix
on the diffused components (SCR

i , SCG
i , SCB

i ), and quantum logistic map (SQR
i , SQG

i , SQB
i ).

Step 9: Take transpose of the edges of the plain image P in order to increase the randomness within the plain image by shuffling the
pixels.
Step 10: Recombine the cipher image FC with the shuffled edges of the plain image P to obtain the final cipher image C.

ALGORITHM 1: Image encryption method.
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which is measured by the change rate t of the cipher image.
Second, a small change in the decryption key makes a huge
difference to the result, and the original image will not be
decrypted correctly, indicating that the algorithm has a high
sensitivity. +e Lena color image with size 512× 512 is
utilized to verify the sensitivity of the suggested image
encryption scheme. During the test process, one of the keys
has undergone a tiny change, while other keys were kept
untouched. Suppose that K1 and K2 are the two keys that are
slightly different from each other, which gives encrypted
outputs of E1 and E2, respectively, whereK1 is the correct key
and K2 is the wrong one. In the proposed cryptosystem, the
control parameters of Chen’s hyperchaos system are set as
a� 36, b� 3, c� 28, and d� −16, and the initial values of the
system are x0 � 0.3, y0 � −0.4, z0 �1.2, and q� 1, which are
denoted as K1, to obtain encrypted image E1. Another
encrypted image E2 is generated with a tiny change in only x0
(x0 � 0.4, y0 � −0.4, z0 �1.2, and q� 1), which are denoted as
K2. As shown in Figures 8(b) and 8(c), the image encrypted
using K1 is completely different from the image encrypted
using K2. From the result, as shown in Figures 8(e) and 8(f),
it is clear that decryption of the encrypted image is possible
only when we use the same key.+erefore, it can be seen that
only a subtle difference in the secret key can have a huge
effect which guarantees the security against brute-force
attacks and known plain-text attacks.

4.3. Statistical Attack Analysis. To verify the security per-
formance of the proposed algorithm, the statistical analyses
including histogram, correlation, and entropy analysis are
demonstrated in this subsection.

4.3.1. Histogram Statistical Analysis. Histogram statistical
analysis is a kind of statistical attack, and the histogram can
characterize the image. It has been widely used in image
retrieval, classification, and other fields [41–47]. Image
histogram is probability density function of discrete gray
level, plotted by gray level on horizontal axis and the cor-
responding frequency on the vertical. +e more uniform the
histogram distribution for the encrypted image, the stronger
the ability of antistatistical analysis. +erefore, the elimi-
nation of correlation among pixels was necessary, and pixels
of the encrypted image had to be distributed evenly to
prevent the opponent from extracting any useful informa-
tion from the fluctuating histogram. In addition, comparing
cipher image histogram with the original image histogram,
there is a significant difference.

We have analyzed the histograms of two original images
as well as their encryptions using the proposed approach.
+e histogram of the original grayscale image of “Boat” with
dimensions 512× 512 pixels and the histogram of its cipher
image are shown in Figure 9, while Figure 10 illustrates the
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Figure 6: Block diagram of the proposed image decryption algorithm.

Input: Cipher Image C of size W × H

Output: Decrypted Image P of size W × H

Steps: Inverse steps of image encryption routine are carried out in the reverse order using the same encryption keys.

ALGORITHM 2: Image decryption method.
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histograms of the R, G, and B channels of the color plain
image “Lena” alongside its encrypted counterparts with the
size 512× 512, respectively.

Clearly, it can be seen from Figures 9 and 10 that the
histograms of the original images have obvious peaks, and

the gray value and RGB component histogram of cipher
images are very uniform and flat distribution, which indi-
cates that the attack based on histogram analysis is difficult
as attackers cannot use a statistical attack to obtain any
useful information by analyzing the histogram of the
encrypted image. +us, the proposed scheme is strong
enough to withstand statistical attacks.

Consequently, it is concluded that the proposed image
encryption scheme can achieve good performance and meet
the requirements of image encryption.

Furthermore, for quantity analyses of the image histo-
gram, a metric called variance of the histogram (var) is
measured to evaluate and guarantee the uniformity of pixels
values of the encrypted images. +e higher the uniformity of
ciphered images, the lower the value of variances of

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r)

Figure 7: Encryption and decryption results: ((a)–(f )) plain images of “Aerial,” “Boat,” “Male,” “Airplane,” “Lena,” and “Baboon”; ((g)–(l))
the corresponding encrypted images; and ((m)–(r)) decrypted images.

Table 1: Selected test images.

Image Aerial Boat Male Airplane Lena Baboon
Size 256× 256 512× 512 1024×1024 256× 256 512× 512 1024×1024
Type Grayscale Grayscale Grayscale Color Color Color

Table 2: Key space comparative analysis.

Encryption scheme Key space
Ref. [4] 2256

Ref. [15] 2125

Ref. [24] 1015×3 + 2256

Ref. [35] 2186

Ref. [37] 2364

Proposed algorithm 2392.5
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histogram [48]. +e variance of histogram can be computed
as follows:

var(H) �
1
n
2 􏽘

n

i�1
􏽘

n

j�1

1
2

hi − hj􏼐 􏼑
2
, (11)

where H � h1, h2, . . . , h256􏼈 􏼉 is a one-dimensional array of
the histogram values; hi and hj are considered as the
numbers of pixels where gray values are equal to i and j,
respectively. Tables 3 and 4 display the values of histogram
variance for the experimented grayscale and color images,
respectively, and illustrate that the variance of images after
encryption is greatly reduced when compared with the
variance of those images prior to encryption.

+e simulation results indicate that the difference in
variance value shows that the histogram depends on the
plain image; in addition, the proposed algorithm can
strongly withstand statistical analysis attack as it is efficient
to prevent attackers from obtaining any useful statistical
information to decrypt the cipher image.

4.3.2. Correlation Coefficient Analysis. It is known that some
algorithmwas broken by using correlation analysis between the
adjacent pixels. So, correlation coefficient analysis [49–52] is
performed to evaluate the statistical relationship between image
pixels, and its value is in the range of [−1, 1]. +is type of
analysis visually shows the distribution between the neigh-
borhood pixels of both the original and encrypted images.

Due to the intrinsic features of the digital image [53],
there is a strong correlation between the adjacent pixels,
namely, the gray value of one pixel of the plaintext image is
very close to the gray value of the surrounding pixels.

+erefore, attackers could try to infer adjacent pixel values
based on probability theory. Conversely, in order to resist
the statistical attack and achieve better security of the
encrypted image, an excellent image encryption algorithm
should be able to break high correlation between adjacent
pixels of the plain image and produce a very small corre-
lation value near the optimal value of zero.

Normally, three different types of correlation are per-
formed to ensure the strength of the encrypted image: the
horizontal, the vertical, and the diagonal correlation [54]. To
evaluate the proposed encryption scheme, 3000 pairs of
adjacent pixels are selected randomly in the three different
adjacent directions in both original and encrypted images of
the different sample images to calculate the correlation
coefficient. +en, the correlation coefficient rxy of each pair,
defined in (12), is calculated as follows:

rxy �
cov(x, y)

�����
D(x)

􏽰
×

�����
D(y)

􏽰 ,

cov(x, y) �
1
N

􏽘

N

i�1
xi − E(x)( 􏼁 yi − E(y)( 􏼁,

D(x) �
1
N

􏽘

N

i�1
xi − E(x)( 􏼁

2
,

E(x) �
1
N

􏽘

N

i�1
xi,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

(a) (b) (c)

(d) (e) (f )

Figure 8: Key sensitivity analysis. (a) Plain image, (b) correctly encrypted image (E1), (c) incorrectly encrypted image (E2), (d) difference of
E1 and E2, (e) incorrectly decrypted image, and (f) correctly decrypted image.
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where xi and yi are the grayscale pixel values of the ith pair
of the selected adjacent pixels in the tested image, N is the
total number of the randomized chosen samples, cov(x, y)

is the covariance of x and y, and E(x) and D(x) represent
the mean value and the variance of vector x, respectively.

Figures 11 and 12 show the correlation distribution
between neighborhood pixels in the three directions of the
grayscale “Boat” image and color “Lena” image with size
512× 512 before and after image encryption. It is obvious
that the correlation of adjacent pixel pairs of the plain image
is distributed intensively, but those of encrypted image are
scattered randomly which looks very uniform, and the
correlation is greatly reduced.

Numerically, Table 5 demonstrates values of correlation
coefficient parameter for the proposed technique in different
test images with diverse sizes. According to the quantitative
results, it can be concluded that the correlation degrees
between adjacent pixels in the plain images are close to 1,
while those of the encrypted images are very small and are

close to 0, which means that the plain image has strong
relationships, but weakness exists in the encrypted image.
+erefore, these results show that the proposed image en-
cryption scheme has a good performance in fighting against
attacks based on statistical properties of the images.

4.3.3. Information Entropy Analysis. Information entropy
[55–57] is the most important criterion to evaluate the ef-
ficiency of an image encryption algorithm. In information
theory, the entropy parameter is considered as the standard
to test randomness. For a digital image, information entropy
(IE) is one of the outstanding criteria that is usually utilized
to evaluate the degree of disorder or randomness of each
gray value in the encrypted image and measure the amount
of information hidden in an image. +e color-level distri-
bution values in an image can also be determined via entropy
analysis. Ideally, in the case of 8-bit grayscale image, a robust
encryption scheme has an entropy value of 8; otherwise, it
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Figure 9: Histogram distribution analysis of plain and encrypted grayscale image. (a) Plain grayscale “Boat” image; (b) encrypted grayscale
“Boat” image.
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causes a plausibility of consistency which undermines its
security. +e closer the value is to 8, the greater the un-
certainty is and the stronger the randomness of image is,
which leads to better-secured encryption where the less
visual information can be obtained from the image. +e
most famous entropy formula is Shannon’s entropy equa-
tion, calculated in terms of the probability of each available
data value, which can be defined as follows:

IE � − 􏽘
255

i�0
P(i)log2 P(i), (13)

where P(i) denotes the probability of occurrence of gray
level i in an image, that is, the proportion of the number
of pixels with gray value i to all pixels in an image.

Besides, to verify the randomness, local Shannon entropy
should be applied. It can be calculated by the following
operations: ① divide the image into noninterlocked K
blocks containing a certain fixed number of pixels; ②
compute Shannon entropy IE(Ki) using the former
equation (12); ③ calculate the sample mean of global
Shannon entropy over all these K image blocks as local
Shannon entropy.

Table 6 presents the simulation results of information
entropy and local Shannon entropy values, where K � 16, on
some standard original images and their respective
encrypted images, which were encrypted by the proposed
image encryption algorithm. It can be seen that the results
reveal that the entropy values of each cipher image are very
close to the ideal value of 8, while the information entropy of
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Figure 10: RGB color histogram of original “Lena” image and its corresponding cipher image.

Table 3: Variance of histogram for encrypted grayscale images.

Image name
Variance value

Plain image Cipher image
Aerial 51062 780.8235
Boat 1541901.8039 9791.7098
Male 11393958.6980 138136.8627

Table 4: Variance of histogram for encrypted color images.

Image name
Variance value

Plain image Cipher image
R G B R G B

Airplane 165621.8980 163801.6941 274155.3333 783.1607 765.4039 796.7137
Lena 1021383.0980 457505.9372 1382757.2627 8929.4431 8930.2823 9570.1019
Baboon 6346579.1843 10106060.6980 5938608.9490 133133.6470 135706.9490 136423.2078
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each plain image is much less than the ideal one. +is result
makes obtaining image information by analyzing this in-
formation difficult for attackers. +is indicates that the

encrypted images have a good randomness. As a conclusion,
the proposed scheme is safe against the perspective of in-
formation entropy attack.
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Figure 11: Adjacent pixel correlation test for plain grayscale “Boat” image (a) and the corresponding encrypted image (b) for horizontal,
vertical, and diagonal directions.
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Figure 12: Correlation distribution of color “Lena” image: (a)–(c) show RGB layers of plain image; (d)–(f) show RGB layers of cipher image
for vertical, horizontal, and diagonal directions, respectively.
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Table 7 presents the values of information entropy of the
proposed scheme as compared with the values which
resulted from other recent schemes. It can be seen that the
information entropy of the different cipher images is very
close to 8 bits and the proposed algorithm has greater su-
periority or in the same range.

4.4. Differential Attack Analysis. Differential attacks are
another effective and commonly used cryptanalysis tech-
nique. A differential attack is attempted to learn the key and
figure out the encryption scheme by tracing differences. An
Assailant may make a trivial change in the plain image,
encrypt two plain images, and then carry out cryptanalysis
by tracing the meaningful relationship between two cipher
images. According to the principles of cryptography, the
encryption algorithm should be sufficiently sensitive to the
changes of plaintext image or secrete key in order to keep
high security, such that a minor change in the plaintext
image or the initial key parameters causes a significant
change in the ciphertext image [59–64]; then differential
analysis may become useless. +e high sensitivity of the
system shows that the generated algorithm is sturdy against
any probable attack, since it would indicate no meaningful
relationship between the plain image and the cipher image.
In this test, the number of pixels changing rate (NPCR) and
unified average changing intensity (UACI) become two
widely used security analyses in the image encryption
community for differential attacks. +e tests signify the
chance of occurrence of the attack and its sensitivity towards
the source image by changing the value.

Considering C1 andC2 as the two cipher images obtained
from encrypting two one-pixel different images with M×N
size or encrypting same plain image with two secret keys of
only 1-bit difference, introduce a bipolar array, D, with the
sizes similar to images C1 and C2 as follows:

D(i, j) �
0, C1(i, j) � C2(i, j),

1, C1(i, j)≠C2(i, j).
􏼨 (14)

+e NPCR reflects the change rate of the gray value of
different pixels at the same position between two corre-
sponding encrypted images which are obtained by two
original images with one-bit difference. In other words,
NPCR helps us to understand the effect of change of single
pixel over an image, while the UACI reflects the average
change of the gray value within the two paired cipher images
(C1 and C2). +en, the formula used to calculate UACI and
NPCR is shown in the two following equations:

NPCR �
􏽐

M
i�1 􏽐

N
j�1 D(i, j)

M × N
× 100%, (15)

UACI �
1

M × N
􏽘

M

i�1
􏽘

N

j�1

C1(i, j) − C2(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
⎛⎝ ⎞⎠ × 100%.

(16)

Taking the images that are listed in Table 1 as examples
and experimenting on them for 100 times, the theoretical
ideal values of the NPCR and UACI for a gray image are
99.6094% and 33.4635%, respectively. Table 8 lists the test
results of NPCR and UACI of grayscale encrypted images,
whereas the theoretical values of NPCR and UACI for
different color images in three channels are shown in Table 9.
It can be observed from the former tables that the proposed
image encryption algorithm can achieve better perfor-
mances against differential attacks, since the values of NPCR
and UACI are close to their theoretical values. +us, the
system has guaranteed that the designed system is applicable
for real-time communication.

4.5. Known-Plaintext Attack and Chosen-Plaintext Attack
Analysis. A cryptosystem is supposed to be secure if it
resists all known types of cryptographic attacks. In
cryptanalysis, the fundamental assumption enunciated by
Kerckhoffs’s principle is that encryption and decryption
algorithms are known or transparent in a cryptosystem
[65–68]. +erefore, the security of the cryptosystem de-
pends on the key rather than the encryption algorithm
itself. In the cryptanalysis, there are four traditional
cryptanalysis attacks: (1) ciphertext-only attack, (2) known-
plaintext attack, (3) chosen-plaintext attack, and (4) cho-
sen-ciphertext attack. Among these attacks, chosen-
plaintext attack is the most threatening attack. +erefore, it
is claimed that the cryptosystem can resist the other three
types of attacks if it can resist the chosen-plaintext attack.
In order to assess the resistance of encryption algorithms
against the main attacks, two tests are generally used,
namely, the known-plaintext attack (KPA) and chosen-
plaintext attack (CPA). In known-plaintext attack and
chosen-plaintext attack, the attackers usually choose spe-
cial plaintext and make minor changes to observe the
changes of ciphertext. Or they choose some plaintext with
linear relationship to observe the characteristics of ci-
phertext. By using this method, they can obtain secret key.
By using this method, they can obtain secret key.

Table 5: Correlation coefficients results.

Image name
Plain image Cipher image

Vertical Horizontal Diagonal Vertical Horizontal Diagonal
Aerial 0.8602 0.9050 0.8213 0.0062 −0.0017 0.0031
Boat 0.9713 0.9381 0.9222 −0.0012 0.0007 0.0004
Male 0.9813 0.9774 0.9671 0.0001 0.0002 0.0023
Airplane 0.9174 0.9314 0.8643 0.0061 0.0109 0.0012
Lena 0.9902 0.9804 0.9695 0.0040 −0.0003 −0.0012
Baboon 0.9765 0.9877 0.9671 0.0023 0.0012 0.0001
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In the presented encryption scheme, the mean (M) value
of the plaintext image is computed to generate the number of
preiterations, which is related chaotic sequences generation,
and the initial value of diffusion process. In other words, the
generated random sequences are related to the plaintext, and
the chaotic systems are sensitive to the initial value. Con-
sequently, the keystream used in the proposed algorithm has
a high connection with the plain image, which means that a
small change in the plaintext image produces a completely
different key, as detailed in the “Key Sensitivity Analysis”
section. +at means the attacker cannot extract any useful
information by encrypting certain selected images because
the encrypted image is only relevant to the selected image,
which implies the excellent performance in withstanding the
known-plaintext attack and chosen-plaintext attack.

Besides, to test the ability of defending this kind of attack,
both plain images with “pure white” and “pure black” images,
their encrypted images, and the corresponding histograms are
derived, which are shown in Figure 13. From the results, it can
be seen that the pixels in the cipher image are uniformly
distributed with randomnoise, and the attacker cannot decrypt

other cipher images by using the same keys. By observing the
resulting encrypted images, we can find that it is impossible to
extract any information from the encrypted images. +erefore,
the proposed encryption scheme is sufficiently robust to resist
all forms of potential attacks.

4.6. Time Complexity Analysis. Apart from security analysis
of the image encryption scheme, performance analysis is also
an important aspect to evaluate the encryption/decryption
time and time complexity of the algorithm [69, 70]. A good
encryption algorithm needs to have a fast encryption time
and low computation complexity.

+e encryption/decryption time can be calculated
manually where it is mainly analyzed into six parts as fol-
lows: (a) mean for any row column of R, G, and B channels,
so its complexity is O(1); (b) the cyclic process N times for
Chen’s hyperchaotic system quantum logistic chaotic map,
so it has complexity of O(n); (c) the generation of three
chaotic sequences (ER, EG, EG), which are produced by
Chen’s hyperchaotic system with length M×N and hence

Table 6: Results of information entropy and local Shannon entropy.

Image name Dimension
Information entropy Local Shannon entropy

Plain image Cipher image Plain image Cipher image
Aerial 256× 256 3.3556 7.9970 3.2893 7.9556
Boat 512× 512 3.3153 7.9993 3.1037 7.9880
Male 1024×1024 3.3540 7.9998 3.2127 7.9971
Airplane 256× 256× 3 6.6906 7.9987 6.1280 7.9834
Lena 512× 512× 3 7.7495 7.9997 7.3136 7.9959
Baboon 1024×1024× 3 7.7208 7.9999 7.4281 7.9990

Table 7: Information entropy comparison.

Image name Dimension
Information entropy

Proposed Scheme Ref. [6] Ref. [39] Ref. [58] Ref. [59]
Aerial 256×256 7.9970 — — 7.9024 —
Boat 512× 512 7.9993 — 7.9993 — —
Male 1024×1024 7.9998 — 7.9998 — —
Airplane 512× 512× 3 7.9997 — — — 7.9994
Lena 512× 512× 3 7.9997 7.9988 — — 7.9994
Baboon 512× 512× 3 7.9997 — — — 7.9993

Table 8: NPCR and UACI results for cipher grayscale images.

Image name Image size NPCR (%) UACI (%)
Aerial 256× 256 99.6458 33.5243
Boat 512× 512 99.6517 33.4416
Male 1024×1024 99.6300 33.4864

Table 9: NPCR and UACI scores on color images of different sizes.

Image name Dimension
NPCR (%) UACI (%)

Red Green Blue Red Green Blue
Airplane 256× 256× 3 99.6892 99.6380 99.64113 33.3572 33.5681 33.6369
Lena 512× 512× 3 99.6394 99.6417 99.6574 33.4980 33.4593 33.5460
Baboon 1024×1024× 3 99.6241 99.6168 99.6238 33.4607 33.4702 33.4707
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the time cost is (3 × M × N); (c) XOR operation having time
complexity of O(1); (d) time cost of chaotic map sequences
and the generation of random matric being
O(n2) � max O(1), O(n2)􏼈 􏼉; (e) the computational cost of
density matrix being O(1); and (f) the computational cost of
XNOR operation being O(1). From the above analyses, the
total time cost of the proposed scheme is O(n2), so that the
time consumption of proposed scheme hinges on t repre-
senting the number of code loops.

It can be calculated by using the in-built operations of the
software used for implementation. Here, the elapsed time was
measured by the tic and toc functions of MATLAB. +e
running speed of the proposed encryption scheme for a
number of standard images with diverse sizes (M × M) is

presented in Table 10. As a result, the proposed scheme reflects
the efficiency to be used in practical cases.

Taking the 256 × 256 “Lena” image as an example,
comparative analyses of the execution time among different
encryption algorithms are illustrated in Table 11. It is ob-
served that the proposed algorithm runs faster than the
referenced algorithms [71–73]. In addition, it has less
computational complexity.

5. Conclusion

Complex nonlinearity was preserved by choosing suitable
chaotic maps. By choosing a high-dimensional chaotic
system, the key space is increased. +is study employed a
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Figure 13: Simulation result of cryptanalysis tests: (a) all white image; (b) cipher image of (a); (c) histogram of (b); (d) all black image; (e)
cipher image of (d); (f ) histogram of (e).

Table 10: Running time analysis.

Image name Image size Encryption/decryption time (s)
Grayscale Aerial 256× 256 0.4844
Color Airplane 256× 256 0.8125
Grayscale Boat 512× 512 1.4375
Color Lena 512× 512 3.2969
Grayscale Male 1024×1024 5.7500
Color Baboon 1024×1024 13.6250

Table 11: Speed performance analysis (seconds).

Encryption scheme Encryption time (s) Processor speed RAM Platform
Ref. [71] 3.45 3 GHz 4GB Python 3.6
Ref. [22] 13.90 — — MATLAB R2016b
Ref. [72] 1.67 — — MATLAB
Ref. [73] 9.36 3.60GHz 32GB MATLAB R2019b
Proposed algorithm 1.11 1.80GHz 8GB MATLAB R2017b
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chaotic quantum logistic map, combining with both con-
fusion and diffusion operations, to propose a new symmetric
image encryption algorithm. +is algorithm is based on
Chen’s hyperchaotic system to diffuse image pixels. Among
them, the keystreams extracted are different for the same
secret key associated with the plain image, which are true
random numbers generated from noise arrays. +us, the
presented approach can achieve high resistance to the
known-plaintext attack and chosen-plaintext attack as well
as high level of sensitivity where the randomness of the
random sequence displayed better behavior. At last, to
confuse the relationship between original and encrypted
images, the transpose process is applied to rows and columns
of image. +rough the results of extensive experiments and
corresponding security analysis, it can be found that the
salient features of the proposed symmetric image encryption
algorithm can be summarized as follows: (a) large enough
key space to resist brute-force attacks, (b) high level of
security and being quite worthy of being called a good se-
curity system, (c) less computational complexity, and (d)
being suitable for applications like wireless communications
due to its fast implementation. An actual implementation of
different kinds of operations in the scrambling stage to
increase the security without affecting drastically the pro-
cessing time is concerned and more detailed analysis on the
chaotic or hyperchaotic dynamical systems deserves further
investigation in the near future.
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-is article constitutes the new fixed point results of dynamic process D(Υ, μ0) through FIC-integral contractions of the Ciric kind
and investigates the said contraction to iterate a fixed point of set-valued mappings in the module of metric space. To do so, we use
the dynamic process instead of the conventional Picard sequence. -e main results are examined by tangible nontrivial examples
which display the motivation for such investigation.-e work is completed by giving an application to Liouville-Caputo fractional
differential equations.

1. Introduction and Preliminaries

In the recent past, the study of metric fixed point theory
untied a portal to a new area of pure and appliedmathematics,
the fixed point theory and its application. -is concept was
prolonged by either extendingmetric space into its extensions
or by modifying the structure of the contractions (see [1–7]).
-e most classical structure known as Banach contraction
principle (or contraction) theoremwas introduced by a Polish
mathematician Banach in 1922 [8]. -e applications of fixed
points of Banach contraction mappings defined for different
kinds of spaces is the guarantee of the existence and
uniqueness of solutions of differential and integral type
equations. -e variety of these nonlinear problems imposes
the search for more and better tools, which are recently very
remarkable in the literature. One of such tools was recently
conveyed by Wardowski [9], where the author originated a
new class of contractive mapping called F-contraction.

Nadler [10] using the idea of Pompeiu–Hausdorff metric
discussed the Banach contraction mappings for set-valued
functions rather than single-valued functions. Let (Δ, δ) be a
metric space. For μ1, μ2 ∈ Δ and A, B⊆Δ, define the Pom-
peiu–Hausdorff metric 􏽢H induced by δ on CB(Δ) as follows:

􏽢H(A, B) � max supμ1∈A �D μ1, B( 􏼁, supμ2∈B �D μ2, A( 􏼁􏽮 􏽯, (1)

for each A, B ∈ CB(Δ), where CB(Δ) denotes the set of all
nonempty closed bounded subsets of Δ and
�D(μ1, B) � infμ2∈Bδ(μ1, μ2). An element μ ∈ Δ is called a
fixed point of a set-valued mapping, i.e., Υ: Δ⟶ CB(Δ),
then μ ∈ Υ(μ). Also, denote the family of nonempty compact
subsets of Δ by K(Δ).

Some well-known results are related to this section and
hereafter.

Lemma 1. Let A and B be nonempty proximal subsets of a
metric space (Δ, δ). If α ∈ A, then

δ(α, B)≤H(A, B). (2)

Lemma 2 (see [11]). Let (Δ, δ) be a metric space and a
sequence (μi)i∈N in (Δ, δ) such that

lim
i⟶∞

δ μi, μi+1( 􏼁 � 0 (3)

is not a Cauchy sequence. 3en, there exists ε> 0 and subse-
quences of positive integers (μij

) and (μlj
), μij
> μlj
> j such that
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δ μij
, μlj

􏼒 􏼓, δ μij+1, μij
􏼒 􏼓, δ μij

, μlj − 1􏼒 􏼓, δ μij+1, μlj− 1􏼒 􏼓, δ μij+1, μlj+1􏼒 􏼓􏼔 􏼕⟶ ε+
, as j⟶ +∞. (4)

Definition 1 (see [12]). Let Υ: Δ⟶ N(Δ) be a multivalued
mapping and μ0 ∈ Δ be arbitrary and fixed. Define

�D Υ, μ0( 􏼁 � μj􏼐 􏼑
j∈N∪ 0{ }

: μj ∈ Υ μj− 1􏼐 􏼑, for all j ∈ N􏼚 􏼛. (5)

Each element of �D(Υ, μ0) is called a dynamic process of
Υ starting point μ0. -e dynamic process (μj)j∈N∪ 0{ } onward
be written as (μj).

Example 1 (see [12]). Let Δ � C([0, 1]) be a Banach space
with a norm ‖μ‖ � supr∈[0,1]|μ(r)|, μ ∈ Δ. Let Υ: Δ⟶ 2Δ be
such that, for every μ ∈ Δ, Υ(μ) is a collection of the functions

r↦k 􏽚
r

0
μ(t)dt, k ∈ [0, 1], (6)

that is,

(Υ(μ))(r) � k 􏽚
r

0
μ(t)dt: k ∈ [0, 1]􏼚 􏼛, μ ∈ Δ, (7)

and let μ0(r) � r, r ∈ [0, 1], then the sequence (1/(j!(j +

1)!)rj+1) is a dynamic process of Υ with starting point μ0.

A mapping Υ: Δ⟶ R is said to be �D(Υ, μ0)-dynamic
lower semicontinuous at μ ∈ Δ, if for every dynamic process
(μj) ∈ �D(Υ, μ0) and for every subsequence (μj(i)) of (μj)

convergent to μ, we get Υ(μ)≤ liminf i⟶∞Υ((μj(i))). If Υ is
�D(Υ, μ0)-dynamic lower semicontinuous at each μ ∈ Δ, then
Υ is said to be �D(Υ, μ0)-dynamic lower semicontinuous. If
for every sequence (μj) ⊂ Δ and μ ∈ Δ such that μj⟶ μ,
we have Υ(μ)≤ liminf j⟶∞Υ(μj), then Υ is known as lower
semicontinuous.

As of now, Branciari [5] generalized the second well-
known contraction of Banach contraction mappings is de-
termined, i.e., let (Δ, δ) be a metric space and a mapping
Υ: Δ⟶ Δ such that

􏽚
δ Υμ1 ,Υμ2( )

0
φ(s)ds ≤ β􏽚

δ μ1 ,μ2( )

0
φ(s)ds (8)

for all μ1, μ2 ∈ Δ, where β ∈ (0, 1), φ ∈ Φ, and Φ is the class
of all functions φ: [0, +∞)⟶ [0, +∞) which is Lebesgue
integrable, summable on each compact subset of [0, +∞)

and 􏽒
ε
0 φ(s)ds> 0 for all ε> 0. -en, Υ has a fixed point.

-e following lemmas are helpful for our main results.
We shall also suppose that φ ∈ Φ.

Lemma 3 (see [6]). Let (μi)i∈N be a nonnegative sequence in
such a way that limi⟶+∞μi � μ. 3en,

lim
i⟶+∞

􏽚
μi

0
φ(s)ds � 􏽚

μ

0
φ(s)ds. (9)

Lemma 4 (see [6]). Let (μi)i∈N be a nonnegative sequence.
3en,

lim
i⟶+∞

􏽚
μi

0
φ(s)ds � 0⇔ lim

i⟶+∞
μi � 0. (10)

In 2012, Wardowski [9] initiated the term of F-con-
traction and implemented on fixed point theorem related
with F-contraction. So, with the intent that, he generalizes
contraction theorem which is a purely altered from many
past results in the literature frame.

Definition 2 (see [9]). Let Υ: Δ⟶ Δ is called an F-con-
traction on a metric space (Δ, δ), if there exist F ∈ ∇5 and
τ ∈ R+ in such a way that, δ(Υμ1,Υμ2)> 0 implies

τ + F δ Υμ1,Υμ2( 􏼁( 􏼁≤F δ μ1, μ2( 􏼁( 􏼁. (11)

For each μ1, μ2 ∈ Δ, where ∇5 is the class of all functions
F: R+⟶ R such that

(Fi) μ1 < μ2 implies F(μ1)<F(μ2) for all μ1, μ2 ∈ R+.
(Fii) For each sequence μj􏽮 􏽯 of positive real numbers,

lim
j⟶∞

μj � 0 iff lim
j⟶∞

F μj􏼐 􏼑 � − ∞. (12)

(Fiii) -ere is k ∈ (0, 1) in such a way that
limc⟶0+ ckF(c) � 0.

From now, we present some well-defined examples of
F-contraction that are listed as follows:

(Fa): F(μ) � lnμ
(Fb): F(μ) � lnμ + μ
(Fc): F(μ) � − 1/ ��μ√

(F d): F(μ) � ln(μ2 + μ)

Owing to (Fi) and (11), clearly, we conclude that every
F-contraction Υ is a contractive mapping. Consequently,
every F-contraction is a continuous mapping (see more
[13]).

-e main purpose of this manuscript is to introduce the
new concept of dynamic iterative process �D(Υ, μ0) based on
FC

I -integral contractions and prove some related multi-
valued fixed point results in the class of metric space. To
approximate our main results by tangible examples are also
determined. At the end, the work is completed by giving an
application to Liouville–Caputo fractional differential
equations.

2. Main Result

First, we give our main definition.

Definition 3. Let (Δ, δ) be a metric space, μ0 ∈ Δ, F ∈ ∇5

and φ ∈ Φ. A set-valued map Υ: Δ⟶ CB(Δ) is said to be
FC

I -integral contraction with respect to a dynamic process
(μi) ∈ �D(Υ, μ0), if there exists τ: R+⟶ R+ such that

2 Complexity



􏽢H Υμi,Υμi+1( 􏼁> 0⇒ τ U μi− 1, μi( 􏼁( 􏼁

+ F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠≤F

· 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡,

(13)

for all i ∈ N, where

U μi− 1, μi( 􏼁 � max
⎧⎨

⎩δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,

·
�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩.

(14)

Remark 1. For the act of continuing our results, we consider
only the dynamic processes (μi) ∈ �D(Υ, μ0) satisfying the
following structure:

δ μi, μi+1( 􏼁> 0⇒δ μi− 1, μi( 􏼁> 0 for each i ∈ N. (15)

If the investigated process does not satisfy (15), then
there is i0 ∈ N such that

δ μi0
, μi0+1

􏼐 􏼑> 0 (16)

and

δ μi0− 1
, μi0

􏼐 􏼑 � 0. (17)

-en, we get μi0− 1
� μi0
∈ Υμi0− 1

which implies the exis-
tence of fixed point due to this consideration of dynamic
process that satisfying (15) does not depreciate a generality
of our approach.

Example 2. Let F: R+⟶ R be defined by F(μ) � lnμ.
Each set-valued FC

I -integral contraction Υ on a metric
space (Δ, δ) with respect to dynamic process �D(Υ, μ0)
assures that

τ U μi− 1, μi( 􏼁( 􏼁 + F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡.

(18)

Upon setting, we have

􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds≤ e

− τ U μi− 1 ,μi( )( ) 􏽚
U μi− 1 ,μi( )

0
φ(s)ds, (19)

for all i ∈ N, (μi) ∈ �D(Υ, μ0), and Υμi− 1 ≠Υμi. In view of the
above observations, clearly, for (μi0− 1), (μi0

) ∈ �D(Υ, μ0) such
that Υμi0− 1

� Υμi0
, the following inequality also holds

through �D(Υ, μ0)

􏽚

􏽢H Υμi0 − 1,Υμi0􏼐 􏼑

0
φ(s)ds≤ e

− τ U μi0 − 1,μi0􏼐 􏼑􏼐 􏼑
􏽚

U μi0 − 1,μi0􏼐 􏼑

0
φ(s)ds,

(20)

that is, Υ is a contraction.

Theorem 1. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ
and Υ: Δ⟶ K(Δ) be a set-valued FC

I -integral contraction
with respect to the dynamic process (μi) ∈ �D(Υ , μ0). Assume
that

Proof. In view of (μi) ∈ �D(Υ, μ0), if there exists i0 ∈ N such
that μi0

� μi0+1, then the existence of a fixed point is obvious.
-erefore, if we let μi ∉ Υμi, then �D(μi,Υμi)> 0 for every
i ∈ N. Using (15) and by Lemma 1, one writes

F 􏽚

�D μi ,Υμi( )

0
φ(s)ds􏼠 􏼡 ≤ F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠ , (21)

≤F 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡 − τ U μi− 1, μi( 􏼁( 􏼁

� F 􏽚
max

0

δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,

�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(22)

Moreover, since Υμi is compact, we obtain μi+1 ∈ Υμi

such that δ(μi, μi+1) � �D(μi,Υμi). Using (21), we have

F 􏽚
δ μi ,μi+1( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

􏽢H Υμi− 1 ,Υμi( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
δ μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡 − τ δ μi− 1, μi( 􏼁( 􏼁<F 􏽚

δ μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡.

(23)
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In view of the above observations, δ(μi, μi+1)􏼈 􏼉 is de-
creasing and hence convergent. We now show that
limi⟶∞δ(μi, μi+1) � 0. In the light of (D1), there exist σ > 0

and i0 ∈ N such that τ(δ(μi− 1, μi))> σ for all i> i0. So, we
have

F 􏽚
δ μi ,μi+1( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

δ μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡 − τ δ μi− 1, μi( 􏼁( 􏼁

≤F 􏽚
δ μi− 2 ,μi− 1( )

0
φ(s)ds􏼠 􏼡 − τ δ μi− 2, μi− 1( 􏼁( 􏼁 − τ δ μi− 1, μi( 􏼁( 􏼁

⋮

≤F 􏽚
δ μ0 ,μ1( )

0
φ(s)ds􏼠 􏼡 − τ δ μ0, μ1( 􏼁( 􏼁 − · · · − τ δ μi− 1, μi( 􏼁( 􏼁

� F 􏽚
δ μ0 ,μ1( )

0
φ(s)ds􏼠 􏼡 − τ δ μ0, μ1( 􏼁( 􏼁 + · · · + τ δ μi0− 1

, μi0
􏼐 􏼑􏼐 􏼑􏼐 􏼑

− τ δ μi0
, μi0+1

􏼐 􏼑􏼐 􏼑􏼑 + · · · + τ δ μi− 1, μi( 􏼁( 􏼁

≤F 􏽚
δ μ0 ,μ1( )

0
φ(s)ds􏼠 􏼡 − i − i0( 􏼁σ.

(24)

Let us set λi � 􏽒
δ(μi ,μi+1)

0 φ(s)ds> 0 for i � 0, 1, 2, . . . and
from (24), we see that limi⟶∞F(λi) � − ∞. By means of
(Fii), we have

lim
i⟶∞

λi � 0. (25)

Also, in the light of (Fiii), there is α ∈ (0, 1) such that

lim
i⟶∞

λi􏼂 􏼃
α
F λi􏼂 􏼃 � 0. (26)

Furthermore, from (24), we can write for all i> i0

λi􏼂 􏼃
α
F λi􏼂 􏼃 − λi􏼂 􏼃

α
F λ0􏼂 􏼃≤ λi􏼂 􏼃

α
F λ0( 􏼁 − i − i0( 􏼁σ( 􏼁

− λi􏼂 􏼃
α
F λ0􏼂 􏼃

� − λi􏼂 􏼃
α

i − i0( 􏼁σ ≤ 0.

(27)

Taking limit as i⟶∞ in (27) and using (26), we have

lim
i⟶∞

i λi􏼂 􏼃
α

� 0. (28)

Let us perceive that, from (28), there is i1 ∈ N such that
i[λi]

α ≤ 1 for all i≥ i1. We have

λi ≤
1

i
1/α. (29)

Now, in order to show that μi􏼈 􏼉 is a Cauchy sequence, we
consider j1, j2 ∈ N such that j1 > j2 ≥ i1. From (29) and by
virtue of metric condition, we have

􏽚
δ μj1 ,μj2􏼐 􏼑

0
φ(s)ds

≤ 􏽚
δ μj1 ,μj1+1􏼐 􏼑

0
φ(s)ds

+ 􏽚
δ μj1+1,μj1+2􏼐 􏼑

0
φ(s)ds + · · · + 􏽚

δ μj2 − 1,μj2􏼐 􏼑

0
φ(s)ds

� λj1
+ λj1+1 + · · · + λj2− 1

� 􏽘

j2− 1

l�j1

λl ≤ 􏽘
∞

l�j1

λl ≤ 􏽘
∞

l�j1

1
l
1/α.

(30)

In the light of (30) and view of convergence of series
􏽐
∞
l�j1

1/l1/α, we see that 􏽒
δ(μj1 ,μj2)

0 φ(s)ds⟶ 0. Hence, μi􏼈 􏼉 is
Cauchy sequence in (Δ, δ). Furthermore, for the com-
pleteness of Δ, there is μ∗ ∈ Δ such that limi⟶∞μi � μ∗.
Since Υ is compact, then we have Υμi⟶Υμ∗. By Lemma 1,
one writes

�D μi,Υμ
∗

( 􏼁≤ 􏽢H Υμi− 1,Υμ
∗

( 􏼁. (31)

So, �D(μ∗,Υμ∗) � 0 and μ∗ ∈ Υμ∗. Suppose, on the
contrary, μ∗ ∉ Υμ∗.-en, there exist i0 ∈ N and subsequence
μik

􏽮 􏽯 of μi􏼈 􏼉 such that �D(μik+1,Υμ∗)> 0 for each ik ≥ i0
(otherwise, there is i1 ∈ N such that μi ∈ Υμ∗ for every i≥ i1,
which yields that μ∗ ∈ Υμ∗). By contractive condition, one
writes
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F 􏽚

�D μik+1,Υμ∗􏼐 􏼑

0
φ(s)ds⎛⎝ ⎞⎠≤F 􏽚

􏽢H Υμik
,Υμ∗􏼐 􏼑

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U μik

,μ∗􏼐 􏼑

0
φ(s)ds⎛⎝ ⎞⎠ − τ U μik

, μ∗􏼐 􏼑􏼐 􏼑.

(32)

Upon letting k⟶∞ in (32),

F 􏽚

�D μ∗,Υμ∗( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

�D μ∗ ,Υμ∗( )

0
φ(s)ds􏼠 􏼡

− τ �D μ∗, μ∗( 􏼁( 􏼁

<F 􏽚

�D μ∗ ,Υμ∗( )

0
φ(s)ds􏼠 􏼡.

(33)

which is a contradiction. On the other hand, we see that the
mapping Δ ∋ μi↦δ(μi,Υμi) is �D(Υ, μ0)-dynamic lower
semicontinuous, we have

􏽚

�D μ∗,Υμ∗( )

0
φ(s)ds≤ liminf

n⟶∞
􏽚

�D μik
,Υμik

􏼐 􏼑

0
φ(s)ds

≤ liminf
n⟶∞

􏽚

�D μi ,Υμi( )

0
φ(s)ds

� 0

(34)

and by virtue of closedness of Υμ∗ implies that μ∗ ∈ Υμ∗
which means that μ∗ is a fixed point of Υ. □

Remark 2. If in -eorem 1, instead of the contractive
condition (13), we assume the following condition

􏽢H Υμi,Υμi+1( 􏼁> 0⇒τ Uj μi− 1, μi( 􏼁􏼐 􏼑

+ F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
Uj μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡,

(35)

where j ∈ 1, 2, 3{ } and

U1 μi− 1, μi( 􏼁 � δ μi− 1, μi( 􏼁,

U2 μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁􏼈 􏼉,

U3 μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁,
�D μi− 1,Υμi− 1( 􏼁 + �D μi,Υμi( 􏼁

2
,􏼨

·
�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩,

(36)

for all i ∈ N, (μi) ∈ �D(Υ, μ0), then there exists a fixed point
of the mapping Υ with the assumptions (D1) and (D2) on
-eorem 1.

Corollary 1. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ,
F ∈ ∇5, φ ∈ Φ, and Υ: Δ⟶ K(Δ). Assume that there exists
τ: R+⟶ R+ such that

􏽢H Υμi,Υμi+1( 􏼁> 0⇒ τ U μi− 1, μi( 􏼁( 􏼁 −
1

􏽒
􏽢H Υμi ,Υμi+1( )
0 φ(s)ds

≤ −
1

􏽒
U μi− 1 ,μi( )
0 φ(s)ds

,

(37)

for all i ∈ N, μi ∈ �D(Υ, μ0), where

U μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,􏼈

·
�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩.

(38)

-en, there exists a fixed point of the mappingΥwith the
assumptions (D1) and (D2) on -eorem 1.

Proof. If we choose F(μ) � − 1/μ, the proof follows from
-eorem 1. □

Corollary 2. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ,
F ∈ ∇5, φ ∈ Φ, and Υ: Δ⟶ K(Δ). Assume that there exists
τ: R+⟶ R+ such that

􏽢H Υμi,Υμi+1( 􏼁> 0⇒ τ U μi− 1, μi( 􏼁( 􏼁

+
1

1 − exp􏽒
􏽢H Υμi ,Υμi+1( )
0 φ(s)ds

≤
1

1 − exp􏽒
U μi− 1 ,μi( )
0 φ(s)ds

,

(39)

for all i ∈ N, μi ∈ �D(Υ , μ0), where

U μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,􏼈

�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩.

(40)

-en, there exists a fixed point of the mappingΥwith the
assumptions (D1) and (D2) on -eorem 1.

Proof. If we choose F(μ) � 1/(1 − exp(μ)), the proof fol-
lows from -eorem 1.

-e direct consequence of -eorem 1 for single-valued
maps is the following. □

Corollary 3. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ,
F ∈ ∇5, φ ∈ Φ, and Υ : Δ⟶ Δ. Assume that there exists
τ: R+⟶ R+ such that δ(Υ iμ0,Υ

i+1μ0)> 0 implies
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τ δ Υi− 1μ0,Υ
iμ0􏼐 􏼑􏼐 􏼑 + F 􏽚

δ Υiμ0 ,Υi+1μ0( )

0
φ(s)ds􏼠 􏼡

≤F 􏽚
δ Υi− 1μ0 ,Υiμ0( )

0
φ(s)ds􏼠 􏼡,

(41)

for all i ∈ N and liminfk⟶l+τ(k)> 0 for each l≥ 0. Suppose
also that a mapping Δ ∋ μ↦δ(μ,Υμ) is �D(Υ , μ0)-dynamic
lower semicontinuous. 3en, Υ has a fixed point.

Corollary 4. Let (Δ, δ) be a complete metric space, F ∈ ∇5,
φ ∈ Φ, and Υ: Δ⟶ Δ. Assume that there exists
τ: R+⟶ R+ such that δ(Υμ,Υ2μ)> 0 implies

τ(δ(μ,Υμ)) + F 􏽚
δ Υμ,Υ2μ( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

δ(μ,Υμ)

0
φ(s)ds􏼠 􏼡,

(42)

for all μ ∈ Δ and liminfk⟶l+τ(k)> 0 for each l≥ 0. Suppose
also that a mapping Δ ∋ μ↦δ(μ,Υμ) is lower semi-
continuous. 3en, Υ has a fixed point.

Example 3. Let Δ � [0, +∞) with the usual metric, Δ
constitutes a complete metric space. Consider a mapping
Υ: Δ⟶ K(Δ) by Υ(μ) � [0, μ/2], μ> 0 and τ: R+⟶ R+

by

τ(μ) �

− lnμ, μ ∈ 0,
1
2

􏼒 􏼓

ln2, μ ∈
1
2
,∞􏼔 􏼓

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

Define dynamic iterative process �D(Υ, μ0): a sequence
μi􏼈 􏼉 is given by μi � μ0gi− 1 for all i ∈ N with initial point
μ0 � 2 and g � 1/2 such that

i ≥ 2 µi = i0g i−1 Υµi−1 = [0, µ/2]

Υµi=1 = [0, 1]

Υµi=2 = [0, 1/2]

Υµi=3 = [0, 1/4]

Υµi=4 = [0,1/8]

1 −

−

−

−

1/2

1/4

1/8

µi=2

µi=3

µi=4

µi=5

Continuing the above iterative process, we see that

�D Υ, μ0( 􏼁 � 1,
1
2
,
1
4
,
1
8
, . . .􏼚 􏼛 (44)

is a dynamic iterative process of Υ starting from the point
μ0 � 2. Setting φ(s) � 1 for all s ∈ R and F(s) � ln(s). For
μi ∈ �D(Υ, μ0) and 􏽢H(Υμi,Υμi+1)> 0, we have

e

τ μi− 1− μi| |( )+F 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ e
F 􏽚

μi− 1− μi| |

0
φ(s)ds􏼠 􏼡

e

τ μi− 1− μi| |( )+ln 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ e
ln 􏽚

μi− 1− μi| |

0
φ(s)ds􏼠 􏼡

e
τ μi− 1− μi| |( )e

ln 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ e
ln 􏽚

μi− 1− μi| |

0
φ(s)ds􏼠 􏼡

e
τ μi− 1− μi| |( ) 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds≤ 􏽚
μi− 1− μi| |

0
φ(s)ds

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
≤ e

− τ μi− 1− μi| |( ) μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (45)
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and so

τ U μi− 1, μi( 􏼁( 􏼁 + F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡.

(46)

Hence, all the required hypotheses of -eorem 1 are
satisfied and hence 0 is a fixed point of Υ.

3. An Application

In this frame of study, we deal with some new aspects of
Liouville–Caputo fractional differential equations in module
of complete metric space. Several earlier developments on
fixed point theory and its applications involving fractional
calculus can be found in [14].

Define the Liouville–Caputo fractional differential
equations based on order κ ( �D(c,κ)) by

�D(c,κ)(α(g)) �
1
Γ(i − κ)

􏽚
g

0
(g − t)

i− κ− 1α(i)
(t)dt, (47)

where i − 1< κ< i, i � [κ] + 1, α ∈ Ci([0, +∞]), and the
collection [κ] represents positive real number and Γ rep-
resents the Gamma function. Let Δ: � C(I, R) be the space
of all continuous real-valued functions on I. And, complete
metric space δς: Δ × Δ⟶ [0, +∞) be given by

δς ε1, ε2( 􏼁 � supa∈I ε1(a) − ε2(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (48)

Now, consider the following fractional differential
equations and its integral boundary valued problem:

�D(c,κ)(β(g)) � L(g, β(g)), (49)

where g ∈ (0, 1), κ ∈ (1, 2] and

β(0) � 0,

β(1) � 􏽚
ϑ

0
β(g)dg, ϑ ∈ (0, 1),

⎧⎪⎪⎨

⎪⎪⎩
(50)

where I � [0, 1], β ∈ C(I, R) and L: I × R⟶ R be a con-
tinuous function. Let P: Δ⟶ Δ be defined by

Pv(r) �

1
Γ(κ)

􏽚
g

0
(g − t)

κ− 1
L(t, v(t))dt

−
2g

2 − ϑ2􏼐 􏼑Γ(κ)
􏽚
1

0
(1 − t)

κ− 1
L(t, v(t))dt

+
2g

2 − ϑ2􏼐 􏼑Γ(κ)
􏽚
ϑ

0
􏽚

g1

0
g1 − t1( 􏼁

κ− 1
L t1, v t1( 􏼁( 􏼁dt1􏼒 􏼓dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(51)

for v ∈ Δ and g ∈ [0, 1]. Now, we start the main result of this
section.

Theorem 2. Let L: I × R⟶ R be a continuous function,
nondecreasing on second variable and there is a nonconstant
function τ such that εi ∈ �Dς(Υ , ε0) and g ∈ [0, 1] implies

Pεi− 1(r) − Pεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ω
U εi− 1, εi( 􏼁(r)

1 + τ
�����������������
maxg∈IU εi− 1, εi( 􏼁(r)

􏽱
􏼒 􏼓

2,

(52)

where Ω � (2κ − 1)(Γ(κ + 1))/2(5κ + 2) and

U εi− 1, εi( 􏼁(r) � max

εi− 1(r) − εi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, εi− 1(r) − Υεi− 1(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, εi(r) − Υεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

εi− 1(r) − Υεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + εi(r) − Υεi− 1(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (53)

-en, equations (49) and (50) has at least one solution on
Δ.

Proof. For every g ∈ I and owing to operator P: Δ⟶ Δ,
one writes

Upon setting, we see that
In the light of above observation, we have
which implies that

Pεi− 1(r) − Pεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
U εi− 1, εi( 􏼁(r)

1 + τ
�����������������
maxg∈IU εi− 1, εi( 􏼁(r)

􏽱
􏼒 􏼓

2. (54)

By above virtue, we have

δς Pεi− 1(r) − Pεi(r)( 􏼁 � supa∈I Pεi− 1(r) − Pεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
U εi− 1, εi( 􏼁(r)

1 + τ
�����������������
maxg∈IU εi− 1, εi( 􏼁(r)

􏽱
􏼒 􏼓

2.
(55)

Furthermore, by contractive condition (13) upon setting
of φ(s) � 1 for all s ∈ R and F(s) � − 1/

�
s

√
, we have

􏽢H Υεi,Υεi+1( 􏼁> 0⇒ τ U εi− 1, εi( 􏼁( 􏼁 + F 􏽚

􏽢H Υεi ,Υεi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U εi− 1 ,εi( )

0
φ(s)ds􏼠 􏼡,

(56)
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for all i ∈ N, εi ∈ �Dς(Υ, ε0) and for each given ϵ> 0 such that
􏽒
ϵ
0 φ(s)ds> 0. -us, all the required hypotheses of -eorem

1 are satisfied, and hence equations (49) and (50) has at least
one solution on Δ. □

Example 4. Based upon the Liouville–Caputo fractional
differential equations based on order κ( �D(c,κ)). Let us
consider the following integral boundary-value problem:

�D
c,
3
2

􏼒 􏼓
(β(g)) �

1
(g + 3)

2
|β(g)|

1 +|β(g)| (57)

and

β(0) � 0,

β(1) � 􏽚
3/4

0
β(g)dg, ϑ ∈ (0, 1),

⎧⎪⎪⎨

⎪⎪⎩
(58)

where κ � 3/2, ϑ � 34, and
L(t, v(t)) � 1/(g + 3)2|α(g)|/1 + |α(g)|. So, the above set-
ting is an example of equations (49) and (50). Hence, here is
clearly the pair of equations (57) and (58) has at least one
solution.

4. Conclusions

In this paper, we have investigated the preexisting results of
fixed point for set-valued mappings rather than the con-
ventional mappings. Based upon a Wardowski integral and
with a nonnegative Lebesque integrable mapping, we have
transformed the conventional theorems of fixed point into
the module of FC

I . Instead of the traditional Picard sequence,
the dynamic process �D(Υ, μ0) is adopted to iterate the fixed
point. Afterwards, the results have been explained by ren-
dering concrete examples, and some foremost corollaries
have been deduced from the prime results. Also, we provide
illustrative applications to Liouville–Caputo fractional dif-
ferential equations.
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In this paper, we propose a new and simple method for image encryption. It uses an external secret key of 128 bits long and an
internal secret key. +e novelties of the proposed encryption process are the methods used to extract an internal key to apply the
zigzag process, affine transformation, and substitution-diffusion process. Initially, an original gray-scale image is converted into
binary images. An internal secret key is extracted from binary images. +e two keys are combined to compute the substitution-
diffusion keys. +e zigzag process is firstly applied on each binary image. Using an external key, every zigzag binary image is
reflected or rotated and a new gray-scale image is reconstructed. +e new image is divided into many nonoverlapping subblocks,
and each subblock uses its own key to take out a substitution-diffusion process. We tested our algorithms onmany biomedical and
nonmedical images. It is seen from evaluation metrics that the proposed image encryption scheme provides good statistical and
diffusion properties and can resist many kinds of attacks. It is an efficient and secure scheme for real-time encryption and
transmission of biomedical images in telemedicine.

1. Introduction

+e amazing developments in the field of network commu-
nications during the past years have created a great require-
ment for secured image transmission over the Internet [1].
Image data, such as medical images, military images, images of
electronic publishing, and fingerprint images from authenti-
cation systems, must be kept private and confidential. +e
confidentiality of these images is capital and cannot be guar-
anteed through the Internet. To ensure the security of infor-
mation during transmission, encryption techniques are used.
Cryptography aims to ensure data confidentiality, integrity, and
authentication during communication. In telemedicine,
medical data need to be processed with total discretion. +is
justifies the use of encryption technology in telemedicine.

Cryptographic methods are based on two fundamental
principles, namely, substitution and diffusion. Substitution
involves replacing certain letters or values of the original
message with others. Diffusion consists of dispersing the
position of the letters or the values of the original message to
scramble the message. Most encryption techniques have
been developed to secure text data. Unfortunately, these
techniques are not suitable for images because the images
have a rather complex structure and are quite large in size
compared to the text data. Yet, the images may contain
private and fairly confidential information. Hence, there is a
need to find an effective technique to secure images. +us,
designing less complex image encryption algorithms be-
comes very crucial. Much research has focused on the issue
of image security. Digital images have several properties
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such as information redundancy, a strong correlation be-
tween pixels, and large data capacities. An image encryption
algorithm must take into account all these properties.

Conventional image encryption techniques are divided into
two groups, namely, asymmetric encryption (with private and
public keys) and symmetric encryption (with a secret key) [2].
Several algorithms have been proposed in the past for the
encryption of images. We have data encryption standard
(DES), triple data encryption algorithm (TDEA), advanced
encryption standard (AES), Rivest, Shamir, and Adleman
(RSA), and fast image encryption algorithm (FEAL) [2–8]. In
recent years, chaotic systems have been used by many re-
searchers in image encryption. A chaos-based image encryp-
tion technique typically uses both substitution and diffusion
processes. +is technique generally uses an external key and
one or more generators to generate chaotic sequences that will
be used for the substitution/diffusion process. Ahmad and
Farooq in [9] approved that the generation of high-quality key
stream decides the level of security offered by the Cipher. +ey
combined the simple logistic map with the cubic map to
generate PN sequences for the proposed encryption scheme.
+ose PN sequences from the proposed generator have good
autocorrelation and have been tested randomness. Li et al. in
[10] introduced a performance-enhanced image encryption
scheme based on depth-conversion integral imaging and hy-
brid cellular automata (CA). +e aim is to meet the require-
ments of secured image transmission.+e input image is firstly
decomposed into an elemental image array (EIA) using the
depth-converted integral imaging technique. +e CA model
and chaotic sequence are used to encrypt the elemental images.
In [11], Ahmad et al. used particle swarm optimization and
chaotic map to propose an optimized image encryption. Initial
conditions of the chaotic map depend on the pending plain
image, so the algorithm is resistant because, from one image to
another, key streamwill be different. Niu et al. in [12] proposed
an efficient method for image encryption based on the chaos
theory and a deoxyribonucleic acid (DNA) sequence database
using the characteristics of chaos, such as randomness, regu-
larity, ergodicity, and initial value sensitiveness, combined with
the unique space conformation of DNA molecules and their
unique information storage and processing ability. In [13],
Kengnou et al. proposed an encryption algorithm using a 3D
chaotic system andDNAcoding. Two keys are used, an internal
one and an external one. During the chaotic process, the se-
quences generated from the different variables of the chaotic
generator are not used separately.+ey are combined using the
zigzag process and used simultaneously. Each 3D chaotic
system can be used. Twenty four DNA rules and 16 join
operations of DNA coding are used during the DNA coding
process. A Fast Walsh Transform (FWT) has been combined
with two chaotic logistic maps by Telem et al. in [14] to propose
a new scheme of image encryption. Chaotic encryption
methods are combined with the two-dimensional FWT of
images. Liu and Miao in [15] proposed an image encryption
method based on a logistic chaotic map and dynamical al-
gorithm. In their method, the parameter of the logistic map is
varied and used to shuffle the plain image.+en, the dynamical
algorithm comes to encrypt the image. Many other chaotic
encryption methods have been proposed in [15–23].

Cryptanalysis evaluates the efficiency of cryptosystems to
resist against attacks and therefore confirms their validity.
Several studies have shown that some cryptosystems based
on chaos could be cryptanalyzed [24–27]. To face this
challenge, Pareek et al. in [28] proposed an image encryption
system without chaos. From a 128-bit external key, it
provides an efficient algorithm using 16 rounds with sat-
isfactory results. In [29], Jolfaei et al. have demonstrated the
shortcomings of the image encryption scheme proposed by
Pareek et al. [28]. +e method is not secured, and the secret
key can be deduced by a chosen-ciphertext attack. Security
flaws of the encryption scheme have been discussed and
solutions have been proposed in [29]. Houas et al. proposed
in [30] a new algorithm to encrypt binary images based on
several steps. Firstly, they reduced the amount of data re-
quired to present the image. +e next step consists to divide
the image into d blocks. +ose blocks are used to construct a
new image of the same size as the original one but repre-
sented on a new basis. +e construction of the new basis is
inspired by the work of Mokhtari and Melkemi [31]. After
that transformation, they obtained a key image and used it to
encrypt and decrypt images. +e encrypted image is the
representation on a new basis. +e decryption algorithm
consists of subtraction between each encrypted image and
the key image and the sum of them.

Some image encryption methods are based on mathe-
matical transform such as cosine transform, and Fourier
transform is proposed. +e method proposed by Lima et al.
in [32] is based on the cosine number transform (CNT), a
mathematical tool whose application requires modular
arithmetic only. A CNT is very sensitive to changes in the
vector being transformed, so 2 slightly different vectors may
have significantly distinct CNTs, which are desirable for
cryptography applications [32]. +e method consists of
dividing an image into blocks that overlap horizontally and
vertically the corresponding adjacent block. +e blocks are
then sequentially taken and submitted to the recursive
computation of a two-dimensional CNT. +e method is
limited to noncompressed images and particularly to
medical images complying with the Digital Imaging and
Communications in Medicine (DICOM) standard. Lima
et al. in [33] proposed a fast computation of Cosine
transform over fields of characteristic 2 and the application
to image encryption. Annaby et al. in [34] have proposed a
cryptosystem based on Fourier transform.

In [35–38], methods to reduce the workload of the time-
consuming diffusion part are proposed. +e encryption
process is taken over the entire image. +e image is not
divided into many subblocks. +ose methods gain in exe-
cution time but have several security problems.

In [39–41], affine transformations combined with
other mathematical functions have been used to propose
image encryption methods. Zhu et al. [39] have used affine
cipher and generalized Arnold map to propose an image
encryption scheme. Ahmad and Hwang in [40] have
combined affine transformation with the chaotic map to
propose their encryption method. In [41], Shah et al. have
combined affine transformation with linear fractional
transformation.
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In this work, affine transformations are not combined
with other mathematical models or functions. We propose a
new image encryption algorithm using an external key, an
internal key, affine transformations (reflections and rota-
tions), zigzag process, and substitution-diffusion processes.
Each pixel of the plain image is converted into its equivalent
8-bit binary, and the bits of rank n (n� 1, 2, 3, 4, 5, 6, 7, 8) of
the different pixels constitute the binary image of this rank.
So, the plain image is converted into 8 binary images. From
binary images, an internal key is deduced. Each binary image
is submitted to the zigzag process to yield zigzag binary
images. Using an external key, the zigzag binary images are
mapped using affine transformations and a new image is
reconstructed. +e reconstructed image is then submitted to
substitution and diffusion processes to produce a cipher
image. +e novelties of this work are

(i) +e use of the two keys: an internal key is extracted
from the binary components of the plain image to
be encrypted. In [13], an internal key is extracted
directly from the pixel of plain image and not from
the binary components of the plain image. In this
work, an internal key is used in combination with
the external key to generate the substitution and
diffusion sequences. Internal keys are different from
one plain image to another, and consequently, the
substitution and diffusion sequences are also dif-
ferent even in the case of the same external key. To
decrypt the cipher image, one must have the exact
internal key and external key and well-known al-
gorithm used in the cryptosystem.

(ii) +e proposed algorithm does not use chaotic
generators or complex mathematic functions to
compute the substitution-diffusion sequences.
Rather, those sequences are computed from simple
logical bit operation by using external and internal
keys and the part of the previous result of the en-
cryption process.

(iii) +e application of affine transformation on the
binary component of the plain image.

(iv) +e method to apply zigzag process: depending on
the context, it can act as a diffusion or substitution
process. Previous works have applied the zigzag
process on the gray-scale image. +e proposed
method applied the zigzag process on the binary
version of the plain image. So, it acts as a substi-
tution process.

Hence, the proposed method does not gain on execution
time but gain more on efficiency, security, and robustness.
+e proposed method is very helpful in telemedicine to
secure medical images before transmitting them from one
hospital to another. +e method can also be used in every
domain where we need to secure images as military domain
and so on.

In the rest of the work, we present the details of our
encryption algorithm in Section 2. +e experimental results
and security analysis tests are given in Section 3. At the end
of the work is a conclusion.

2. Proposed Cryptosystem

2.1. Block Diagram of the Proposed Algorithm. In this work,
we used an external key of 128 bits long, an internal key,
reflection and rotation mappings, zigzag process, substitu-
tion, and diffusion processes to propose a new image en-
cryption method. +e plain image is converted into 8 binary
images. From binary images, an internal key is extracted.
Each binary image is submitted to the zigzag process to yield
zigzag binary images. Using an external key, the zigzag
binary images are mapped and a new image is reconstructed.
+is new image is divided into nonoverlapping squared
subblocks. Each subblock is then submitted to the substi-
tution and diffusion processes for K round using the
combination of the two keys. +e originality of this method
dwells on the method used to generate the internal key, the
use of reflection or rotation mapping, and the method to
apply the substitution and the zigzag processes, the method
used to compute substitution and diffusion sequences. +e
internal key is provided by the image being encrypted. In
[28], the zigzag operation is applied on the pixel values, and
it acts to change just the position of the pixel or the pixel
location in the subblock. In this work, the whole image or the
considered subblock is converted into binary images or
binary subblock. +e bits in a binary image/subblock are
then reshuffled within the image/block by a zigzag path, and
a new image/subblock is reconstructed. Consequently, the
zigzag process changes the value of the pixels and acts as a
substitution process. After the zigzag process, an external
key is used to choose the corresponding type of transfor-
mation to be applied on each zigzag binary image. In
[39–41], authors combine affine transformations with other
mathematical models or functions. In this work, we do not
use any chaotic generator or mathematical function to
generate the codes used for the substitution-diffusion pro-
cesses as usually. Rather, we combine the two keys (internal
and external) and pixels of the image to compute the codes
used on substitution-diffusion processes. +ose features are
the particularities of this algorithm.+e block diagram of the
proposed algorithm is shown in Figure 1.

2.1.1. External and Internal Keys. +e proposed algorithm
uses an external secret key of thirty-two hexadecimal
numbers as shown in this example: «ABCDEFGHI
JKLMNOPRSTUVWαβγηθλξρτφ». +is key is used for
both substitution-diffusion processes and the choice of the
type of affine transformation to be applied on binary images.
An original image Imxn is decomposed into 8 binary images
Ibimxn (i� 1, 2, . . ., 8). Ibimxn are submitted to “XOR” op-
eration and yield one binary matrix. +is matrix is then
converted into a pixel matrix. +e “XOR” operations be-
tween lines of the matrix produce the first part of the internal
key named “keyi1,” and while the “XOR” operations be-
tween columns produce the second part of the internal key
named “keyi2.” Table 1 presents the internal keys of two
images ‘ANTAMOEBACOLI’ and ‘Lena,’ respectively. One
can see the difference between the two internal keys. So,
internal keys are different from image to another. “keyi1”
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and “keyi2” are combined with an external key to generate
substitution-diffusion sequences, and consequently, substi-
tution-diffusion sequences are also different for one image to
another, and this makes the algorithm high secured and
resistant against attacks.

2.1.2. Zigzag Process. +e zigzag process aims to scramble
the image by changing the position of the pixel or the bit.
Depending on the context, it can act as a diffusion or
substitution process. In this algorithm, the zigzag process
applied to the whole binary image acts as a diffusion process.
In the case of the binary subblock, it acts as a substitution
process. A zigzag process to scramble the binary images is
shown in Figure 2.

2.1.3. Affine Transformation Process. On the Euclidean
plane, let w: R2⟶ R2 be an affine transformation; its
equation is given by

w(x, y) � (ax + by + e, cx + dy + f)

� x′, y′( 􏼁,
(1)

where (x, y) is the coordinate point, a, b, c, d, e, and f are
real numbers, and (x′, y′) is the new coordinate point. We
can also write this same transformation with the equivalent
notations:

w(u) � w
x

y
􏼠 􏼡

�
a b

c d
􏼠 􏼡

x

y
􏼠 􏼡 +

e

f
􏼠 􏼡

�
x′

y′
􏼠 􏼡

� Au + T,

(2)

where A is a 2 × 2 real matrix and T �
e

f
􏼠 􏼡 represents

translations.
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image
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process
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Binary 
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Figure 1: +e block diagram of our proposed algorithm.

Table 1: Internal keys of two images: ANTAMOEBACOLI and ‘Lena.’

78 188 117 104 223 128 20 173 163 149 88 177 175 200 20 226
129 69 76 140 81 116 102 113 169 172 48 18 59 53 221 31
65 64 217 252 193 182 106 40 4 45 101 69 209 255 63 181
92 174 248 130 243 120 29 157 150 246 46 245 134 62 174 142
158 34 176 210 11 152 156 2 78 50 54 71 55 220 66 248
45 194 164 89 70 238 221 204 56 57 58 43 223 104 67 249
143 234 255 50 51 52 53 54 60 61 207 64 65 68 70 72
55 56 57 58 59 60 61 62 73 74 75 76 77 79 80 81

Keyi1 of ANTAMOEBACOLI image Keyi2 of ANTAMOEBACOLI image
138 97 232 153 162 85 200 238 115 47 160 107 94 224 6 152
94 245 231 183 50 17 213 186 120 102 48 76 237 84 246 154
253 230 53 118 255 202 59 218 77 255 168 114 20 176 204 53
117 195 102 64 39 112 25 133 143 11 70 232 75 79 156 78
119 154 69 206 73 95 24 244 18 95 140 147 141 101 184 127
91 45 21 122 101 176 63 211 100 106 221 87 98 13 124 178
108 103 208 216 31 30 90 190 16 80 5 138 144 89 81 58
224 242 37 239 126 112 10 180 208 171 142 34 199 22 128 82

Keyi1 of lena image Keyi2 of lena image
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+e matrix A can also be written in the form of

A �
a b

c d
􏼠 􏼡

�
r1 cos θ1 −r2 sin θ2
r1 sin θ1 r2 cos θ2

􏼠 􏼡,

(3)

where (r1, θ1) are the polar coordinates of the point (a, c)

and (r2, (θ2 + (π/2))) are the polar coordinates of the point
(b, d). In other words,

r1 �

������

a
2

+ c
2

􏽱

, tan θ1 �
c

a
,

r2 �

������

b
2

+ d
2

􏽱

, tan θ2 �
b

d
.

(4)

Various transformations can be performed in R2 such as
dilations, reflections, translations, rotations, and similitudes.
In this work, we are restricted to reflection and rotation
transformations.

A reflection on the x-axis can be written in as
wrx(x, y) � (x, −y), while a reflection on the y-axis is
written as wry(x, y) � (−x, y). In matrix representation,
these reflections are given by

x′, y′( 􏼁,

wry(u) �
−1 0

0 1
􏼠 􏼡

x

y
􏼠 􏼡.

(5)

A rotation mapping has the form wr(x, y) � (x cos θ
−y sin θ, x sin θ + y cos θ).

Also, it is expressed as

wr(u) �
cos θ −sin θ

sin θ cos θ
􏼠 􏼡

x

y
􏼠 􏼡. (6)

For the rotation angle θ, 0≤ θ< 2π.
+e available reflection and rotation transformations are

(0) Identity (I):
(1) Orthogonal reflection around midvertical axis of

block (Rmv)

(2) Orthogonal reflection around midhorizontal axis of
block (Rmh)

(3) Orthogonal reflection around the first diagonal of
block (Rfdiag)

(4) Orthogonal reflection around the second diagonal of
block (Rsdiag)

(5) Rotation around the center of block +90° (R+ 90)
(6) Rotation around the center of block +180°(R+ 180)
(7) Rotation around the center of block −90°(R−90)

In the algorithm step, we use zigzag binary matrices
named Ibzimxn, i� 1, 2, . . ., 8. An external key is used to
choose the corresponding type of transformation to be
applied on each zigzag binary image Ibzimxn. Let
«ABCDEFGHIJKLMNOPRSTUVWαβγηθλξρτφ» be an
external key; to choose the corresponding affine transfor-
mations, we extract eight numbers «D, H, L, P, U, β, λ, φ»
from an external key. Each number is converted into its
corresponding octave number. +e obtained octave number
gives the corresponding transformation (from 0 to 7 as
describe previously) to be applied on the corresponding
zigzag binary image. An external key should be chosen such
as all these obtained octave number must not be null. At the
end of the affine transformation process, the transformed
binary images are used to reconstruct a new gray-scale image
Imxn
′ . +is image Imxn

′ is subdivided into nonoverlapping
squared block before the substitution-diffusion process.

2.1.4. Substitution Process. +e operation is taken into two
steps, zigzag operation and substitution, using the corre-
sponding key. +e chosen subblock SIkxk

′ is converted into a
binary subblock SbI′. +e zigzag operation is taken on SbI′,
and it is reconverted into the pixel value. A zigzag path to
scramble the binary block is shown in Figure 2.+e next step
is to combine an external key with «keyi1» to generate the
sequence which will be used for substitution operation. Let L
be the size of a subblock. Having an external key «exter-
nalkey» and an internal key «substitutioncode», the algo-
rithm to generate the sequence of each block is defined as
follows:

(a) For the first round and the first subblock,

Lon� length (keyi1);
lng� Lon/2;
codesub� keyi1;
cc1� bitxor (externalkey, codesubu (1 : lng));
cc2� bitxor (cc1, codesub ((lng + 1) : Lon));
usingcode� [cc1 cc2];

(b) For the next round K and the other subblocks,

codesubu� usingcode;
c1� bitxor (clefdecfin, codesubu ((lng + 1) : Lon));
cc1� bitxor (c1, vectsub (1 :1 : lng));
c2� bitxor (cc1, codesubu (lng:−1 :1));
cc2� bitxor (c2, vectsub ((lng + 1) : Lon));
usingcode� [cc1 cc2];

« vectsub » is the last result.

Figure 2: A zigzag path to scramble the binary subblock.
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+e sequence «usigncode» will be used for the substi-
tution process of the corresponding subblock. +e second
step of the substitution process is performed using «XOR»
operation.

2.1.5. Diffusion Process. +e subblock coming from the
substitution process is then sent through the permutation
process. +is process will modify the pixel location. +e
same algorithm used during the substitution process is
used to generate the sequence for the diffusion process in
which « keyi2» is used. +e sequence of each subblock is
rearranged in the ascending order and used to modify the
position of the pixel in the subblock.

2.1.6. =e Overall Proposed Encryption Algorithm. Let Imxn

be an original image. We can describe our encryption al-
gorithm as follows:

Step 1: generate an external secret key.
Step 2: convert image Ibimxn images.
Step 3: extract an internal secret key.
Step 4: apply zigzag process on binary images.
Step 5: select and apply affine transformation on each
zigzag binary images using the external key.
Step 6: reconstruct a new gray-scale image using
transformed zigzag binary images.
Step 7: subdivide a new image into many nonover-
lapping squared subblock.
Step 8: for each subblock and for K round,

Step 8.1: convert each pixel into the binary vector.
Step 8.2: apply scan zigzag operation to permute the
position of the binary element in the binary matrix.
Step 8.3: reconstruct a gray-scale subblock.
Step 8.4: combine an external key and an internal key
to generate the substitution sequence of the subblock.
Step 8.5: take out a second part of the substitution
process.
Step 8.6: combine an external key and an internal key
to generate the permutation sequence of the subblock.
Step 8.7: take out a diffusion process.

+e decryption algorithm is the inverse operations of the
encryption process.

2.2. Evaluation Metrics. A robust and good cryptosystem
should present many features. Firstly, the key space should
be large enough to make the brute-force attack infeasible
[17]. Secondly, the histograms of the cipher image should be
uniformly distributed. +e correlation between adjacent
pixels (vertically, horizontally, and diagonally) in the cipher
image should be approximately zero to confirm the effec-
tiveness of the method.

2.2.1. Correlation Coefficient. +e correlation metric is used
to evaluate the similarity between two images. If the images

are identical, the correlation value is equal to one. When the
correlation value is closed to zero, there is no similarity
between these images. For an efficient encryption scheme,
the correlation between plain image and cipher image must
be close to zero. +e correlation coefficient (Co) between
original and encrypted images is defined as follows:

Co �
Np 􏽐

Np

j�1 xj × yj􏼐 􏼑 − 􏽐
Np

j�1 xj × 􏽐
Np

j�1 yj
��������������������������������������������

Np 􏽐
Np

j�1 x
2
j − 􏽐

Np

j�1 xj
2􏼒 􏼓 × Np 􏽐

Np

j�1 y
2
j − 􏽐

Np

j�1 yj􏼒 􏼓
2

􏼠 􏼡

􏽳 ,

(7)

where x and y are gray-scale pixel values of the original and
encrypted images and Np is the total number of pixels.

+e correlation coefficient c of each pair of adjacent
pixels is calculated using [42]

c(x, y) �
cov(x, y)

�����������

D(x)
�����
D(y)

􏽰􏽱 , (8)

where

cov(x, y) �
1

Nap

􏽘

Nap

i�1
xi − E(x)􏼂 􏼃 yi − E(y)􏼂 􏼃, (9)

E(x) �
1

Nap

􏽘

Nap

i�1
xi, (10)

D(x) �
1

Nap

􏽘

Nap

i�1
xi − E(x)􏼂 􏼃

2
. (11)

In equations (8)–(11), x and y are the gray values of two
adjacent pixels in the image and Nap is the total number of
adjacent pairs of pixels. E(x) is the expectation of variable x,
D(x) is the variance, and cov(x, y) is the covariance of two
adjacent pixels in the image. For a good cryptosystem, the
correlation coefficient Co between plain and cipher images
should be close to zero. Likewise, the correlation coefficient c

of each pair of adjacent pixels in the cipher image should be
close to zero.

2.2.2. Entropy Information. +e information entropy, in-
troduced by Shannon, is one of the most important features
of randomness. It is used to evaluate the quantity of in-
formation in the image. Information entropy H(s) is cal-
culated in [28] using

H(s) � 􏽘

Ngl−1

i�0
P si( 􏼁log2

1
p si( 􏼁

􏼠 􏼡, (12)

where Ngl is the total number of gray levels in the image and
P(si) shows the probability of appearance of the symbol si.+e
entropy value of encrypted images should be closed to eight.

+e (k, TB)-local Shannon entropy with respect to local
image blocks may be computed by the following steps [43].
First, nonoverlapping image blocks S1, S2, . . . Sk with TB
pixels for a test image S are randomly selected. +en,
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information entropy H (Si) for all image blocks via equation
(12) may be obtained. Finally, the local Shannon entropy
over these k image blocks is computed using

Hk,TB
(m) � 􏽘

k

i�1

H Si( 􏼁

k
. (13)

2.2.3. Differential Attacks. +e change of a single pixel on a
plain image should have an important effect on the cipher
image. Number of Pixels Change Rate (NPCR) and Unified
Average Changing Intensity (UACI) are used to test the
influence of changing a single pixel in the original image on
the whole encrypted image [17]. +erefore, if A(i, j) and
B(i, j) are the pixels in row i and column j of the encrypted
images A and B, with only one-pixel difference between the
respective plain images, then the NPCR is calculated by
using the following formula [44]:

NPCR �
􏽐i,jD(i, j)

W × H
× 100%, (14)

where W and H are the width and height of A or B. D(i, j) is
calculated as follows:

D(i, j) �
1, if A(i, j)≠B(i, j),

0, otherwise.
􏼨 (15)

UACI is calculated by the following formula:

UACI(A, B) �
1

W × H
􏽘
i,j

|A(i, j) − B(i, j)|

255
⎡⎢⎢⎣ ⎤⎥⎥⎦ × 100%. (16)

+e estimated score for NPCR and UACI are 99.6094%
and 33.4635% for gray-scale images [45].

2.2.4. Image Quality Criterion. After the encryption/de-
cryption processes, we need to evaluate the performance of
the cryptosystem and the quality of images. +is is done by
evaluating the mean square error (MSE), the peak signal-to-
noise ratio, (PSNR) and the encryption quality.

Let P and P′, respectively, be a plain image, an encrypted
image, and a decrypted image. MSE is defined as follows:

MSE �
􏽐

M
m�1 􏽐

N
n�1 P(m, n) − P′(m, n)􏼂 􏼃

2

M × N
, (17)

whereM is the total number of lines in the image andN is the
total number of columns. +e PSNR is defined as follows:

PSNR � 10Log10
2552

MSE
􏼠 􏼡. (18)

When the decrypted image P′ is identical to the plain
one, MSE is zero, and consequently, PSNR is infinite.

+e total changes in pixels’ values between the plain
image and the encrypted image allow to confirm the en-
cryption quality. So, encryption quality gives us the average
number of changes to each gray level between plain image
and its corresponding encrypted image. It is defined as
follows:

Encryption quality⇀ �
􏽐

255
L HL(C) − HL(P)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

256
, (19)

where C denotes the encrypted image, L is the gray level,
L � 0, 1, 2, . . . 255, and HL is the total number of occurrence
of L in the image.

3. Experimental Results

In this work, we used medical and nonmedical images from
different databases. Some of the medical images (parasite
images) have been taken from different hospital laboratories.
+e others are from [46, 47]. Nonmedical images are from [48].
Azafack and Guefack images have been taken with a Smart-
phone techno-Y4. Our algorithm should be carried out using
MATLAB R2014a in COMPAQ Intel ® core ™ i3-2328M CPU
@ 2.20GHz 2.20GHz. +e time for encrypting/decrypting an
image of 512× 512 is 1.1 s.+e times for encrypting/decrypting
of many images are presented in Table 2.

3.1. Visual Test. To appreciate the effect of the zigzag and
affine transformation processes, we present in Figure 3 some
plain images and their corresponding transformed images.
Physically, these processes have destroyed the correlations
between the adjacent pixels in the plain images. Figure 4
presents some encrypted and decrypted images using our
proposed cryptosystem where the external key is
“A23C56789ABADEF7167DEAB6789367A9». +e size of
the subblock is 4× 4 pixels and the number of rounds on one
subblock is five. It is obvious from visual inspection of
Figures 4(a)–4(h)) that there is no correlation between the
original image and encrypted image. It is therefore im-
possible, by observing the encrypted image, to deduce the
original image. +is ensures the physical privacy of the
cryptosystem. When observing original and decrypted im-
ages in Figures 4(a), 4(c), 4(d), 4(f ), 4(g), and 4(i)), it is
obvious that the image decrypted is similar to the original
image. +is test was performed on many other images using
different keys, and all the results were conclusive. +us,
visually, the efficiency of the cryptosystem is guaranteed.
+ereafter, we conducted a statistical analysis in order to
confirm the results of the visual tests.

3.2. Key space Analysis. +e key space of a good image
encryption algorithm should be large enough to make any
brute-force attack ineffective [17, 42]. +e proposed algo-
rithm used two keys. Firstly, an external key of 128 bits is
long; thus, the cipher image has 2128 different combinations
of the secret key. Secondly, we use an internal secret key of 32
or 64 gray values which are long coming from the de-
composition of an original image. So, the size of the key is
large enough.

3.3. Correlation Tests

3.3.1. Correlation between Plain and Cipher Image. In Ta-
ble 3, the correlation coefficients between plain and cipher
images of several medical gray-scale images are given. It is
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observed that all the correlation coefficients are negligible.
+e highest value (0, 00348) is obtained for the “ossify”
image. +e cipher images are not correlated with plain
images. +e correlation between the decrypted and the
original images is always “1” confirming that both images are
identical. +e algorithm has been applied on other types of
nonmedical images. We have used the USC-SIPI image
database which is a collection of the digitized image available
and maintained by the University of Southern California
[42]. Table 4 shows the results of those images. +e same as
for medical images, correlation coefficients of images in
Table 4 are closed to zero. +e maximum value (−0, 00504)
of the correlation coefficient is very low compared to the
critical value (1). +is confirms that the proposed algorithm
is efficient for every type of image.

3.3.2. Correlation of Adjacent Pixels. Table 5 shows the
correlation coefficients between two vertically, two hori-
zontally, and two diagonally adjacent pixels in several
medical plain images and also in their corresponding
encrypted images. A high correlation is noted between
vertically, horizontally, and diagonally adjacent pixels of
original images. +e lower value (0.67636) is obtained be-
tween diagonal adjacent pixels on the image «ANTA-
MOEBACOLI». For encrypted images, these values are
approximately zero showing that two vertically, two hori-
zontally, and two diagonally adjacent pixels of encrypted
images are not correlated. +e highest value (−0, 00514) is
obtained in the case of medical images «article_oeuf_tae-
niaC2». +is is a significant feature proving the effectiveness
of our cryptosystem. +e same observation is made in the

(a) (b) (c)

Figure 3: Effect of zigzag and affine transformation processes on some images using the external key «A23C56789AB-
ADEF7167DEAB6789367A9»: (a) “Antamoebacoli” and its corresponding transformed image. (b) A plain image “BalantidumColi cyst” and
its corresponding transformed image. (c) A plain image “Girl (Lena, 4.2.04)” and its corresponding transformed image.

Table 2: Encryption/decryption time.

Image size Encryption/decryption time (second)
512× 512 1.1
256× 256 0.553
128×128 0.289
64× 64 0.104
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k) (l)

Figure 4: Visual test on some images using the secret key «A23C56789ABADEF7167DEAB6789367A9»: (a), (b), and (c) A plain image
“Balantidum Coli cyst” and its corresponding cipher and decrypted image, respectively. (d), (e), and (f) A plain image “echopelv” and its
corresponding cipher and decrypted image, respectively. (g), (h), and (i) A plain image “Girl (Lena, 4.2.04)” and its corresponding cipher
and decrypted image, respectively. (j), (k), and (l) A plain image “Guefack” and its corresponding cipher and decrypted image, respectively.

Complexity 9



case of nonmedical images in Table 6. +e proposed cryp-
tosystem produces encrypted images completely different
from original images. In Figure 5, we have presented the
distribution of horizontally and vertically adjacent pixels in
the plain image and its corresponding encrypted image.

3.4. Histograms. +e histograms of both the plain and the
encrypted images using our proposed method are shown in
Figure 6. +e histograms of the encrypted images are uni-
formly distributed while those of plain images are not. +is
confirms the toughness of the method over any statistical
attack. +e security of the encryption method is therefore
very strong.

3.5. Key Sensitivity Test. An ideal cipher image should be
extremely sensitive with respect to the key used in the al-
gorithm during the encryption and decryption processes.

3.5.1. Key Sensitivity Test of Encryption Process. An insig-
nificant change in the encryption key should be sensitive to
the cipher images. We take out the key sensitivity test during
the encryption process by using different keys to encrypt the
same image. +e difference between keys is a single bit
change. +e procedure is described as follows:

(a) We used «A23C56789ABADEF7167DEAB67893
67A9» as first external key to encrypt«S-Hema-
tobium egg» image. +e encrypted image is pre-
sented on Figure 7(b).

(b) We change a single bit on the external key by
substituting the fourth character “C” into “D.” +e
external key in this case becomes
«A23D56789ABADEF7167DEAB6789367A9». +e
obtained encrypted image is presented on
Figure 7(c).

(c) In the second case, we change the sixteenth character
7 in the external key into 6. +e used external key is

Table 3: Correlation coefficients and entropy information of some medical images.

Image name Size
Correlation coefficients
between plain and cipher

images

Entropy value
of plain image

Entropy
value

of cipher
image

Correlation coefficients
between plain and decrypted

images

ANTAMOEBACOLI 398× 407 −1.27e−03 6.9714 7.9993 1
article_oeuf_taeniaC2 200× 200 3.23 e−03 7.2348 7.9993 1
Balantidium coli cyst 200× 200 −2.54e−03 7.0118 7.9993 1
Balantidium coli_trophozoite 200× 200 −1.76e−03 5.6742 7.9992 1
DICROCOELIUM 400× 341 1.66e−03 6.6175 7.9994 1
Entamoeba coli trophozoite 200× 200 −9.34e−04 7.1234 7.9992 1
Entamoeba histolytica cyst 200× 200 −1.08e−03 5.8102 7.9994 1
Entamoeba histolytica-cyst-Gini 130×130 1.58e−03 6.5016 7.9993 1
Entamoeba histolytica trophozoite 200× 200 8.49e−04 7.6217 7.9994 1
Entamoeba histolytica
trophozoite_redim 120×120 −3.26e−03 7.8522 7.9992 1

Entamoeba histolytica
trophozoite_redim2 172×160 7.73e−05 7.7367 7.9993 1

oeuf_ascarisc 266× 200 −1.48e−04 6.9107 7.9993 1
S- Hematobium egg 400× 300 −1.03e−03 7.1983 7.9992 1
S- Mansoni egg 400× 300 9.58e−04 6.4561 7.9993 1
tropho_entamoeba_histolytica2 332× 213 −1.99e−03 3.8234 7.9993 1
tropho_iodamoeba_butschlii 200× 200 7.70e−04 6.3247 7.9993 1
Angio 64× 64 −3.21e−03 7.2769 7.9992 1
DisLocElbow 64× 64 9.58e−04 5.5326 7.9993 1
echo1 64× 64 1.61e−03 6.3281 7.9993 1
I1_200 64× 64 −7.02e−04 6.4746 7.9993 1
Node2 64× 64 −8.81e−04 6.8732 7.9994 1
Ossify 64× 64 3.48e−03 6.9989 7.9993 1
Pelvis 64× 64 1.29e−03 6.4653 7.9993 1
Ribs 64× 64 1.12e−03 6.2298 7.9991 1
Dirofilaria 241× 500 −2.59e−03 6.7666 7.9993 1
Headirm 256× 256 1.38e−03 5.0299 7.9993 1
Abdomenirm 256× 256 −6.18e−04 6.9551 7.9993 1
Pelvisirm 256× 256 1.08e−03 6.7379 7.9993 1
Gastrointestinal_parasites 512× 392 5.58e−07 7.6634 7.9994 1
Echo fetus at 12 weeks 300× 210 3.41e−04 6.4062 7.9993 1
Ultrasound of fetus of 3months 512× 396 1.90e−03 7.2999 7.9994 1
Echopelv 601× 711 −6.74e−04 6.5896 7.9998 1
CT-MONO2-8-abdo 128×128 −4.3347e−04 5.8925 7.9992 1
OT-MONO2-8-colon 128×128 −2.7e−03 6.7468 7.9993 1
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then «A23C56789ABADEF6167DEAB6789367A9».
+e encrypted image is shown in Figure 7(d).

(d) In the test number 3, the used external key is
changed into «A23C56789ABADEF7167DEAB6
789367AA». Here, the last character 9 in the first
external key is changed into A. Figure 7(e) presents a
cipher image obtained.

(e) For the last test, the second character 2 in the ex-
ternal key is changed into 3. +e used external key

becomes «A33C56789ABADEF7167DEAB6789367
A9». Figure 7(f ) presents a cipher image obtained.

For a quantitative assessment of the similarity between
those images, we present in Table 7 the correlation coeffi-
cients between the different cipher images.

Although the difference from one key to the other is a
single bit, we note from Table 7 that the values of the
correlations’ coefficients between the different encrypted
images obtained are closed to zero.+e highest correlation

Table 4: Correlation coefficients and entropy information of some nonmedical images.

File name Description Size
Correlation coefficients
between plain and cipher

images

Entropy value
of plain image

Entropy value of
cipher image

Correlation coefficients
between plain and decrypted

images
4.1.01 Girl 256× 256 3.46e−03 7.1835 7.9994 1
4.1.02 Couple 256× 256 1.05e−03 6.5007 7.9993 1
4.1.03 Girl 256× 256 6.15e−04 5.9549 7.9994 1
4.1.04 Girl 256× 256 −2.82e−04 7.6031 7.9993 1
4.1.05 House 256× 256 1.95e−03 7.0902 7.9993 1
4.1.06 Tree 256× 256 −3.07e−03 7.5634 7.9993 1
4.1.07 Jelly beans 256× 256 −1.85e−03 6.6098 7.9993 1
4.1.08 Jelly beans 256× 256 1.44e−03 6.8863 7.9993 1
4.2.01 Splash 512× 512 9.15e−04 7.3232 7.9994 1
4.2.02 Girl (tiffany) 512× 512 −2.28e−03 6.6691 7.9993 1

4.2.03 Mandrill (a.k.a.
Baboon) 512× 512 −5.77e−04 7.7659 7.9993 1

4.2.04 Girl (lena. or
lena) 512× 512 4.40e−04 7.7548 7.9993 1

4.2.05 Airplane (F-16) 512× 512 1.89e−04 6.6879 7.9994 1
4.2.06 Sailboat on lake 512× 512 5.04e−03 7.7675 7.9994 1
4.2.07 Peppers 512× 512 2.20e−03 7.7253 7.9993 1
5.1.09 Moon surface 256× 256 −1.16e−03 6.719 7.9993 1
5.1.10 Aerial 256× 256 1.71e−03 7.322 7.9992 1
5.1.11 Airplane 256× 256 −3.61e−03 6.4658 7.9994 1
5.1.12 Clock 256× 256 1.95e−03 6.7111 7.9993 1

5.1.13 Resolution
chart 256× 256 −1.47e−03 2.2863 7.9994 1

5.1.14 Chemical plant 256× 256 8.36e−05 7.3473 7.9993 1
5.2.08 Couple 512× 512 −5.45e−04 7.2187 7.9994 1
5.2.09 Aerial 512× 512 1.37e−03 7.0015 7.9994 1

5.2.10 Stream and
bridge 512× 512 −1.92e−03 7.721 7.9992 1

7.1.01 Truck 512× 512 8.68e−04 6.5836 7.9993 1
7.1.02 Airplane 512× 512 −3.11e−05 5.4408 7.9993 1
7.1.03 Tank 512× 512 −1.54e−03 6.4078 7.9994 1
7.1.04 Car and APCs 512× 512 −1.91e−04 6.8064 7.9992 1
7.1.05 Truck and APCs 512× 512 −1.27e−03 7.1124 7.9994 1
7.1.06 Truck and APCs 512× 512 2.49e−03 7.0571 7.9992 1
7.1.07 Tank 512× 512 2.88e−04 6.5399 7.9993 1
7.1.08 APC 512× 512 −2.56e−03 5.9022 7.9993 1
7.1.09 Tank 512× 512 1.01e−03 6.9868 7.9993 1
7.1.10 Car and APCs 512× 512 −1.11e−03 6.6201 7.9994 1
boat.512 Fishing boat 512× 512 9.47e−04 7.2151 7.9992 1
elaine.512 Girl (elaine) 512× 512 5.99e−04 7.5118 7.9992 1
House House 512× 512 1.67e−03 6.5802 7.9993 1

gray21.512 21 level step
wedge 512× 512 1.54e−03 4.5922 7.9992 1

numbers.
512

256 level test
pattern 512× 512 −1.56e−03 7.7768 7.9994 1

Azafack 398× 512 −1.19e−03 7.7018 7.9994 1
Guefack 365× 486 8.64e−04 6.6996 7.9994 1
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Table 5: Correlation coefficients between two vertically, horizontally, and diagonally adjacent pixels in several medical plain images and also
in their corresponding encrypted images.

Image name
Correlation coefficients of original

images Correlation coefficients of cipher images

Vert. cor Hor. cor Diag. cor Vert. cor Hor. cor Diag. cor
ANTAMOEBACOLI 0.77141 0.81532 0.67636 −2.96e−03 1.31e−03 1.06e−05
Article_oeuf_taeniaC2 0.93107 0.9308 0.87861 −1.94e−03 −5.14e−03 7.55e−04
Balantidium coli cyst 0.76953 0.78613 0.66231 1.74e−03 −6.15e−04 6.42e−04
Balantidium coli_trophozoite 0.9259 0.93259 0.90567 2.19e−03 −3.48e−03 1.56e−04
DICROCOELIUM 0.97729 0.98048 0.96751 3.89e−04 3.14e−03 −5.42e−04
Entamoeba coli trophozoite 0.99129 0.99215 0.98588 −1.85e−03 −9.26e−04 3.17e−03
Entamoeba histolytica cyst 0.93725 0.94537 0.90185 2.47e−03 −2.75e−03 −2.22e−03
Entamoeba histolytica-cyst-Gini 0.92637 0.91525 0.85601 1.69e−03 −2.96e−03 −2.11e−04
Entamoeba histolytica trophozoite 0.98471 0.98541 0.97413 2.36e−03 2.87e−03 9.35e−04
Entamoeba histolytica trophozoite_redim 0.98253 0.98307 0.96996 −1.73e−03 −2.91e−03 −3.19e−04
Entamoeba histolytica trophozoite_redim2 0.98622 0.9867 0.97545 2.20e−03 1.51e−04 −8.70e−05
oeuf_ascarisc 0.93155 0.93445 0.88098 2.59e−04 −1.48e−03 −6.88e−04
S-Hematobium egg 0.88554 0.92383 0.8354 −1.64e−03 −2.70e−03 −1.60e−03
S-Mansoni egg 0.86917 0.9053 0.80198 −3.42e−03 4.26e−04 1.10e−03
Tropho_entamoeba_histolytica2 0.99265 0.99139 0.98605 3.29e−03 5.36e−05 1.42e−03
Tropho_iodamoeba_butschlii 0.9966 0.99688 0.99391 −4.73e−04 5.99e−04 −1.66e−03
Angio 0.89905 0.96795 0.90462 −1.78e−03 3.27e−03 −8.62e−04
DisLocElbow 0.96446 0.99666 0.9608 1.40e−03 5.22e−04 1.54e−03
Echo1 0.88904 0.8776 0.8212 1.77e−03 −2.03e−04 3.88e−04
I1_200 0.99393 0.98775 0.98353 7.66e−04 8.84e−04 1.20e−03
Node2 0.96491 0.95401 0.93398 3.21e−03 2.26e−03 −9.21e−04
Ossify 0.99017 0.94411 0.9303 2.44e−03 2.14e−03 9.73e−04
Pelvis 0.94299 0.99754 0.93903 −1.73e−03 1.78e−03 −3.68e−03
Ribs 0.87322 0.88588 0.85227 −2.05e−04 −8.69e−04 1.70e−04
Dirofilaria 0.98814 0.97363 0.96349 −9.60e−04 −8.31e−04 −4.47e−04
Headirm 0.96343 0.95734 0.93986 −2.08e−03 6.53e−04 1.32e−03
Abdomenirm 0.91929 0.91331 0.8508 −1.35e−03 −6.20e−05 3.75e−04
Pelvisirm 0.96602 0.95567 0.93225 −9.36e−04 4.49e−04 2.93e−04
Gastrointestinal_parasites 0.91404 0.94614 0.88418 −3.06e−04 −2.40e−03 5.55e−05
Echo fetus at 12 weeks 0.91943 0.90556 0.85116 7.24e−04 −3.15e−03 −1.24e−03
Ultrasound of fetus of 3 months 0.96781 0.98601 0.95989 −1.85e−03 −1.60e−03 2.34e−03
Echopelv 0.89428 0.90612 0.82813 −9.96e−04 −1.11e−03 3.76e−04
CT-MONO2-8-abdo 0.93917 0.95915 0.91275 −2.57e−03 −3.56e−03 −2.56e−04
OT-MONO2-8-colon 0.96189 0.96556 0.93819 −2.33e−03 5.95e−04 −4.25e−04

Table 6: Correlation coefficients between two vertically, horizontally, and diagonally adjacent pixels in several nonmedical plain images and
also in their corresponding encrypted images from database.

Image Name Description
Correlation coefficients of original

images Correlation coefficients of cipher images

Vert cor Hor cor Diag cor Vert cor Hor cor Diag cor
4.1.01 Girl 0.96547 0.9737 0.94928 -2.94e−04 1.58e−03 5.41e−04
4.1.02 Couple 0.95615 0.93889 0.90658 2.09e−03 -1.85e−04 9.21e−04
4.1.03 Girl 0.91432 0.97598 0.89425 -4.05e−04 2.47e−03 4.50e−04
4.1.04 Girl 0.98476 0.96995 0.95805 5.88e−05 5.11e−04 -1.98e−03
4.1.05 House 0.95289 0.9781 0.94157 -3.75e−04 -1.20e−03 2.38e−04
4.1.06 Tree 0.9441 0.96695 0.9285 -2.87e−03 -3.22e−03 5.65e−04
4.1.07 Jelly beans 0.98233 0.9787 0.96461 1.58e−03 -4.40e−03 -2.56e−03
4.1.08 Jelly beans 0.97553 0.97258 0.95246 3.56e−03 -7.71e−04 -6.16e−04
4.2.01 Splash 0.9915 0.98399 0.98054 2.25e−04 -1.19e−03 -8.85e−04
4.2.02 Girl (tiffany) 0.94097 0.93826 0.91514 -2.56e−03 -8.88e−04 1.63e−03
4.2.03 Mandrill (a.k.a. Baboon) 0.75486 0.86269 0.72324 1.36e−03 -5.84e−04 -4.73e−04
4.2.04 Girl (lena. or lena) 0.98485 0.97159 0.9635 9.09e−05 -2.57e−04 -4.52e−04
4.2.05 Airplane (F-16) 0.96394 0.96616 0.94106 -7.67e−04 2.28e−03 -9.57e−05
4.2.06 Sailboat on lake 0.97003 0.97368 0.95768 9.21e−04 5.35e−04 3.48e−04
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Table 6: Continued.

Image Name Description
Correlation coefficients of original

images Correlation coefficients of cipher images

Vert cor Hor cor Diag cor Vert cor Hor cor Diag cor
4.2.07 Peppers 0.97788 0.97567 0.96806 3.40e−03 -1.47e−03 -3.18e−04
5.1.09 Moon surface 0.93093 0.89444 0.88385 3.49e−03 2.34e−03 -1.91e−03
5.1.10 Aerial 0.85731 0.90234 0.80779 3.27e−04 -1.65e−03 1.42e−03
5.1.11 Airplane 0.93722 0.95697 0.91391 6.44e−04 -1.97e−03 -1.84e−03
5.1.12 Clock 0.97373 0.95613 0.93755 -1.33e−03 -1.34e−03 1.06e−03
5.1.13 Resolution chart 0.86678 0.87242 0.75713 1.78e−03 8.89e−04 -2.11e−04
5.1.14 Chemical plant 0.89647 0.94525 0.8672 8.69e−04 -3.28e−03 -2.29e−03
5.2.08 Couple 0.89244 0.93684 0.85528 1.14e−04 9.13e−04 1.12e−03
5.2.09 Aerial 0.85803 0.89863 0.80248 -1.94e−03 -2.45e−04 -6.92e−04
5.2.10 Stream and bridge 0.92548 0.93854 0.89787 1.79e−03 1.26e−03 8.91e−04
7.1.01 Truck 0.91738 0.95927 0.90241 -1.88e−03 4.08e−03 -1.90e−04
7.1.02 Airplane 0.94637 0.9467 0.91936 -1.35e−03 2.23e−03 1.04e−03
7.1.03 Tank 0.92665 0.94073 0.90446 -2.69e−03 -3.46e−03 -2.49e−03
7.1.04 Car and APCs 0.96614 0.97538 0.95392 -1.17e−03 6.70e−04 1.46e−03
7.1.05 Truck and APCs 0.90661 0.93685 0.88725 -4.51e−03 1.12e−03 -8.10e−04
7.1.06 Truck and APCs 0.90045 0.93465 0.88065 -3.92e−03 6.38e−04 3.34e−04
7.1.07 Tank 0.86813 0.8768 0.82074 -3.03e−03 -2.04e−04 -1.32e−03
7.1.08 APC 0.92423 0.95333 0.91346 -1.88e−03 3.75e−03 2.08e−04
7.1.09 Tank 0.92675 0.96239 0.91523 -3.11e−03 1.84e−03 -2.76e−03
7.1.10 Car and APCs 0.94504 0.96181 0.92815 -2.16e−04 -3.24e−03 7.66e−04
Boat.512 Fishing boat 0.96993 0.93638 0.92308 5.46e−04 -3.22e−03 1.83e−04
Elaine.512 Girl (elaine) 0.9697 0.97256 0.96796 -1.19e−03 5.92e−04 -1.12e−03
House House 0.95059 0.97305 0.93846 4.29e−03 -8.68e−04 -2.47e−03
Gray21.512 21-level step wedge 0.99984 0.99653 0.99636 1.55e−03 -1.49e−03 8.19e−04
Numbers.512 256-level test pattern 0.71603 0.73889 0.64186 1.32e−03 -3.03e−05 1.43e−03

Azafack 0.95872 0.94002 0.92429 1.94e−04 3.10e−03 -5.24e−04
Guefack 0.99057 0.99022 0.98472 1.60e−03 5.02e−04 6.64e−04
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Figure 5: Continued.
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Figure 5: Correlation of adjacent pixels in «article_oeuf_taeniaC2.jpg image. (a) and (c)+e distribution of horizontal and vertical adjacent
pixels in the plain image. (b) and (d) +e distribution of horizontal and vertical adjacent pixels in the corresponding encrypted image.

(a)

0
100
200
300
400
500
600
700

0 50 100 150 200 250

(b) (c)

0
100
200
300
400
500
600

0 50 100 150 200 250

(d)

(e)

0

2000

4000

6000

8000

0 50 100 150 200 250

(f ) (g)

0

500

1000

1500

2000

2500

0 50 100 150 200 250

(h)

(i)

0
500

1000
1500
2000
2500
3000

0 50 100 150 200 250

(j) (k)

0

500

1000

1500

2000

2500

0 50 100 150 200 250

(l)

Figure 6: Continued.
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value obtained is 0.0041. +is test was performed on
several other images and all the results are conclusive. +is
implies that the encrypted images produced from the
proposed cryptosystem are different. +is means that the
proposed cryptosystem is very sensitive to the encryption
key.

3.5.2. Key Sensitivity Test of Decryption Process. In a robust
encryption scheme, an insignificant change in the key should
not let to the decryption of the cipher image successfully
[17]. +e key sensitivity test was performed using a slightly

different external key to decrypt the encrypted images. Some
examples are given below. A “ultrasound of fetus of 3
months” image (Figure 8(a)) has been encrypted using the
proposed cryptosystem where the external key is
“A23C56789ABADEF7167DEAB6789367A9». +e encryp-
ted image is shown in Figure 8(b).

(a) Firstly, the encrypted image (Figure 8(b)) is
decrypted with a decrypted external key
«A23D56789ABADEF7167DEAB6789367A9»
which is different to the encryption external key
«A23C56789ABADEF7167DEAB6789367A9» by a

(m)
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Figure 6: Histogram analysis plain and cipher images using the secret key «A23C56789ABADEF7167DEAB6789367A9»: (a), (b), (c), and
(d) A plain image “Balantidium Coli cyst” and its corresponding histogram, cipher image, and cipher image histogram, respectively. (e), (f ),
(g), and (h) A plain image “echopelv» and its corresponding histogram, cipher image, and cipher image histogram, respectively. (i), (j), (k),
and (l) A plain image “Girl (Lena, 4.2.04)» and its corresponding histogram, cipher image, and cipher image histogram, respectively. (m),
(n), (o), and (p) A plain image “Guefack» and its corresponding histogram, cipher image, and cipher image histogram, respectively.

(a) (b) (c)

(d) (e) (f )

Figure 7: Plain and cipher images. (a)+e plain image of «S-Hematobium egg». (b) to (f )+e different cipher images obtained with different
external keys.
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single bit. +e fourth character C in the encryption
external key is changed into D in the decryption
external key. +e decrypted image is shown in
Figure 8(c).

(b) In the second test, the encrypted image (Figure 8(b))
is decrypted by using «A23C56789AB-
ADEF6167DEAB6789367A9» as the external key.
+e sixteenth character 7 in the encryption external
key is changed into 6 in the decryption external key.
+e decrypted image is shown in Figure 8(d).

(c) In this case, the encrypted image (Figure 8(b)) is
decrypted using the decrypted external key
«A23C56789ABADEF7167DEAB6789367AA». +e
last character 9 in the encryption external key is
changed into A in the decryption external key.
Figure 8(e) shows the decrypted image which is not
correlated with the original image.

(d) In Figure 8, Figure 8(b) has been decrypted using
«A33C56789ABADEF7167DEAB6789367A9» as the
decrypted external key.+e second character 2 in the
encryption external key is changed into 3 in the
decryption external key.

Physically, the decrypted images are not similar to a
plain image “ultrasound of fetus of 3 months,” as we can see
in Figure 8. +e correlation coefficients between the plain
image and the decrypted images using a slightly different key
have been calculated.+ey are all closed to zero as we can see
in Table 8. Any change on an external secret key affects the
angle of the eight used rotations and changes an internal key.
Consequently, the resulting substitution-diffusion key is
modified. It comes out that, without an exact key, one cannot
succeed in the decryption process. +is confirms the ef-
fectiveness and key sensitivity of the proposed algorithm.

So, the proposed cryptosystem is very sensitive to the
encryption and decryption of external keys.

3.6. Attack Analyses

3.6.1. Entropy Information Analysis. It comes out from
Tables 3 and 4 that the values of entropy information ob-
tained with our new proposed scheme on medical and
nonmedical images are very close to 8. +e highest value is
7.9998 and the lowest one is 7.9991 for medical images, while
the lowest value is 7.9992 and the highest value is 7.9994 for
nonmedical images. +ese values are very close to eight
(ideal value) compared to the entropy of the original images.
+is indicates that the proposed algorithm has hidden in-
formation randomly, and information leakage in the en-
cryption process is negligible.We evaluated the local entropy
of many images using TB� 1936 as in [43], and the results
are presented in Table 9.We conclude the effectiveness of the
algorithm considering the high values of entropy infor-
mation and the local entropy.

3.6.2. Differential Attacks. Tables 10 and 11 present the
values of the Number of Pixels Change Rate (NPCR) and
Unified Average Changing Intensity (UACI) for medical and
nonmedical images.

In all the cases tested, the NPCR values are closed to
99.6% and the UACI is found close to 33.33%. Our new
algorithm is very sensitive with respect to a small percentage
of pixels’ change in the plain image and the rate of influence
because one-pixel change in the plain image is very high.
According to Tables 10 and 11, the correlation coefficients
between the cipher images are negligible. So, a minor pixel
change in the plain image has an important effect on the
cipher image. +e proposed encryption scheme is sensitive
to a minor change in the plain image.

We have evaluatedMSE and PSNR on all test images; the
MSE is zero in all the cases and the PSNR is infinite, as we
can see in Tables 10 and 11. +e original and the decrypted
image are identical in all cases.

4. Discussion

+is work proposes a new image encryption algorithm
which does not use chaotic functions or mathematical
functions which are time-consuming and make the algo-
rithm too complex. It uses an external key of 128 bit size and
an internal key. +e originality of this method dwells on the
combination of external and internal keys and the use of
reflection or rotation mapping and the method to apply
substitution and zigzag processes. An internal key comes
from the decomposition of an image to be encrypted. +e
method to extract an internal key has been explained in
Section 2. +is internal key is the first level to ensure the
security of the proposed system. To increase the security of
this system, we combine the two keys to produce the dif-
fusion-substitution sequences. +ese two aspects are the first
novelty of the work. +e second novelty comes from binary
image processing. Each binary image is reshuffled within the

Table 7: Correlation coefficients between various cipher images
presented in Figure 7

Images Correlation coefficients
Figures 6(a) and 6(b) −0.0010
Figures 6(a) and 6(c) −6.6046e−04
Figures 6(a) and 6(d) −2.6622e−04
Figures 6(a) and 6(e) 1.4038e−04
Figures 6(a) and 6(f) 0.0014
Figures 6(b) and 6(c) 5.5615e−04
Figures 6(b) and 6(d) 0.0031
Figures 6(b) and 6(e) 0.0027
Figures 6(b) and 6(f) −0.0016
Figures 6(c) and 6(d) 0.0041
Figures 6(c) and 6(e) −0.0022
Figures 6(c) and 6(f) 8.2013e−04
Figures 6(d) and 6(e) −5.3809e−04
Figures 6(d) and 6(f) 8.4005e−04
Figures 6(e) and 6(f) −6.3580e−04
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block by the zigzag path. +e corresponding reflections and
rotations are applied to binary images obtained from the
decomposition of the original image. It is also the case
during the subblock substitution process. +e scan zigzag
process is applied not on the pixels of the subblock but on
the bits of the pixel. +e new pixel block is reconstructed.
Consequently, the zigzag operation changes the values of the

pixels and acts as a substitution process. In image encryption
algorithm, the size of the external key, the size of subblock,
the number of the subblock, the number of the rounds on
each subblock, the variation of the key from one subblock to
another one and from one round to another one, the
generator used to generate sequences for the substitution-
diffusion process, and the encryption scheme are the factors

(a) (b) (c)

(d) (e) (f )

Figure 8: (a and b) +e plain image from “ultrasound of fetus of 3 months” image and its corresponding encrypted image. (c)-(f) +e
decrypted images from the encrypted image of Figure 8(b) using slightly different decryption keys than the key used for encryption.

Table 8: Correlation coefficients between various decrypted images shown in Figure 8.

Images Correlation coefficients
Figures 7(a) and 7(b) 0.0019
Figures 7(a) and 7(c) −5.0690e−04
Figures 7(a) and 7(d) 9.6489e−04
Figures 7(a) and 7(e) −5.8923e−04
Figures 7(a) and 7(f) 1.4796e−04
Figures 7(b) and 7(c) −0.0014
Figures 7(b) and 7(d) −0.0014
Figures 7(b) and 7(e) 8.0764e−04
Figures 7(b) and 7(f) −0.0018
Figures 7(c) and 7(d) −0.0016
Figures 7(c) and 7(e) −1.0391e−04
Figures 7(c) and 7(f) 0.0030
Figures 7(d) and 7(e) 0.0038
Figures 7(d) and 7(f) 0.0024
Figures 7(e) and 7(f) 8.9324e−04

Table 9: Local entropies for the cipher images.

Images Balantidium coli cyst (200× 200) Echopelv (601× 711) Girl (lena, 4.2.04) (512× 512) Guefack (365× 486)
Local entropy information 7.9088 7.9081 7.9091 7.9085
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that provide to the security, efficiency, and robustness to the
method. +e encryption method proposed in this work is
based on these parameters; when they are not enough, one
can easily cryptanalyse the cipher image during transmis-
sion. +ese features and the obtained results make the
proposed system resistant to any kind of attack while
complicating the task of cryptanalysis. Certainly, our al-
gorithm is not very fast as the others, but we fight against
cryptanalysis, and we gain on efficiency and security. Ta-
ble 12 presents the comparison of the results with those
obtained in [28, 33, 37, 38, 44] by presenting the correlation
coefficient between vertically, horizontally, and diagonally
adjacent pixels of plain and cipher image, entropy, NPCR,
and UACIA of “Lena, Airplane and Baboon” images.

Our algorithm gives the best vertical correlation co-
efficient (9.09e−05 for “Lena” image, −0.000767 for “Air-
plane “image, and 0.00136 for “Baboon” image). In terms of
horizontal correlation coefficient, the proposed algorithm
also gives the best results (0.000257 for “Lena” image and
−0.000584 for “Baboon” image). In [44], the horizontal
correlation coefficient on “Airplane “image is low (0.0017
compare to ours 0.00228), but we have a high entropy value
(7.994 compared to theirs 7.990). For diagonal correlation

coefficient obtained in [37] is the lowest (−0.00018) on
«Lena» image, but the proposed algorithm also gives the
highest entropy value (7.9993 for “Lena” image, 7.9994 for
“Airplane” image, and 7.9993 for “Baboon” image). In [44],
the nearest value of the entropy 7.9992 has been obtained,
but chaotic sequences are used and the algorithm used to
obtain these sequences is too complex. In terms of NPCR
and UACIA, the values are very close in all cases. According
to the results, the proposed method provides better per-
formance than the method based on CNTproposed in [33]
in terms of correlation, NPCR, and UACI. Table 13
presents the comparison results in medical images. It
comes from Table 13 that the proposed method provides
better performance than the method based on CNT pro-
posed in [32]. +e single difference is in “OT-MONO2-8-
colon” image, where the vertical correlation value
(−0.0003) in [32] is higher than ours (−2,33e−03). It comes
from this table that the proposed method has a perfor-
mance similar to that achieved by other recently proposed
techniques. +e advantages of the proposed method are the
originality, the simplicity of algorithm, the efficiency, and
the lower number of the round. We use five rounds instead
of sixteen as in [28].

Table 10: Values of the number of pixels change rate (NPCR) and unified average changing intensity (UACI) in several medical images.

Image name Corr (A.B) NCPR UACI MSE PSNR
ANTAMOEBACOLI −1.72e−03 99.6166 33.4613 0 ∞
article_oeuf_taeniaC2 1.26e−03 99.6227 33.4476 0 ∞
Balantidium coli cyst −1.43e−03 99.6082 33.4647 0 ∞
Balantidium coli_trophozoite 3.73e−04 99.6044 33.4487 0 ∞
DICROCOELIUM −5.02e−04 99.604 33.4573 0 ∞
Entamoeba coli trophozoite 7.61e−04 99.6201 33.4661 0 ∞
Entamoeba histolytica cyst −1.82e−03 99.6105 33.5386 0 ∞
Entamoeba histolytica-cyst-Gini −2.94e−03 99.6159 33.5402 0 ∞
Entamoeba histolytica trophozoite 6.55e−04 99.6124 33.4565 0 ∞
Entamoeba histolytica trophozoite_redim 8.47e−04 99.6067 33.4592 0 ∞
Entamoeba histolytica trophozoite_redim2 2.35e−04 99.5987 33.4662 0 ∞
Oeuf_ascarisc 7.00e−04 99.6132 33.4818 0 ∞
S-Hematobium egg −1.13e−03 99.6124 33.44 0 ∞
S- Mansoni egg −1.20e−03 99.604 33.5229 0 ∞
Tropho_entamoeba_histolytica2 1.82e−03 99.6132 33.4328 0 ∞
Tropho_iodamoeba_butschlii 1.46e−04 99.5926 33.472 0 ∞
Angio 5.33e−04 99.5983 33.4329 0 ∞
DisLocElbow −1.62e−03 99.6235 33.4576 0 ∞
Echo1 7.11e−04 99.6166 33.4819 0 ∞
I1_200 −3.09e−03 99.6059 33.5545 0 ∞
Node2 9.36e−04 99.6075 33.4614 0 ∞
Ossify −7.55e−04 99.6227 33.5145 0 ∞
Pelvis −3.33e−03 99.6227 33.4752 0 ∞
Ribs 3.25e−03 99.6136 33.4069 0 ∞
Dirofilaria 2.97e−04 99.6151 33.4711 0 ∞
Headirm 1.65e−04 99.5991 33.4599 0 ∞
Abdomenirm −2.53e−04 99.6212 33.478 0 ∞
Pelvisirm 3.67e−03 99.5869 33.3766 0 ∞
Gastrointestinal_parasites −1.53e−03 99.6235 33.4498 0 ∞
Echo fetus at 12 weeks 3.31e−03 99.6189 33.4343 0 ∞
Ultrasound of fetus of 3 months −2.24e−03 99.5979 33.5196 0 ∞
Echopelv 1.79e−05 99.6007 33.4657 0 ∞
CT-MONO2-8-abdo −4.7542e−04 99.617 33.4636 0 ∞
OT-MONO2-8-colon −1.6e−03 99.6124 33.498 0 ∞
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Table 11: Values of the number of pixels’ change rate (NPCR) and unified average changing intensity (UACI) in several nonmedical images.

File name Description Size Corr (A.B) NCPR UACI MSE PSNR
4.1.01 Girl 256× 256 −1.35e−03 99.5995 33.452 0 ∞
4.1.02 Couple 256× 256 −9.35e−04 99.6117 33.4913 0 ∞
4.1.03 Girl 256× 256 −1.38e−03 99.6178 33.5003 0 ∞
4.1.04 Girl 256× 256 5.57e−04 99.6136 33.4734 0 ∞
4.1.05 House 256× 256 −6.70e−05 99.6017 33.481 0 ∞
4.1.06 Tree 256× 256 −3.04e−03 99.6166 33.5354 0 ∞
4.1.07 Jelly beans 256× 256 3.16e−03 99.614 33.4357 0 ∞
4.1.08 Jelly beans 256× 256 2.05e−03 99.604 33.4272 0 ∞
4.2.01 Splash 512× 512 9.57e−04 99.612 33.4338 0 ∞
4.2.02 Girl (tiffany) 512× 512 2.78e−03 99.6105 33.3975 0 ∞
4.2.03 Mandrill (a.k.a. Baboon) 512× 512 1.94e−04 99.6063 33.4353 0 ∞
4.2.04 Girl (lena. or lena) 512× 512 5.32e−-04 99.6254 33.4604 0 ∞
4.2.05 Airplane (F-16) 512× 512 1.45e−03 99.604 33.4426 0 ∞
4.2.06 Sailboat on lake 512× 512 1.39e−04 99.609 33.4513 0 ∞
4.2.07 Peppers 512× 512 −1.55e−03 99.6105 33.5116 0 ∞
5.1.09 Moon surface 256× 256 2.42e−03 99.6166 33.434 0 ∞
5.1.10 Aerial 256× 256 2.44e−03 99.6262 33.4209 0 ∞
5.1.11 Airplane 256× 256 6.09e−04 99.6082 33.4821 0 ∞
5.1.12 Clock 256× 256 1.58e−03 99.5918 33.4126 0 ∞
5.1.13 Resolution chart 256× 256 −2.49e−03 99.6101 33.5335 0 ∞
5.1.14 Chemical plant 256× 256 3.96e−03 99.6346 33.343 0 ∞
5.2.08 Couple 512× 512 8.94e−04 99.5956 33.4183 0 ∞
5.2.09 Aerial 512× 512 4.95b03 99.6113 33.3598 0 ∞
5.2.10 Stream and bridge 512× 512 −7.71e−04 99.6117 33.5107 0 ∞
7.1.01 Truck 512× 512 6.92e−04 99.6025 33.4377 0 ∞
7.1.02 Airplane 512× 512 2.96e−03 99.6044 33.4076 0 ∞
7.1.03 Tank 512× 512 −6.64e−04 99.6159 33.4696 0 ∞
7.1.04 Car and APCs 512× 512 2.12e−03 99.6105 33.4304 0 ∞
7.1.05 Truck and APCs 512× 512 7.08e−04 99.6254 33.4041 0 ∞
7.1.06 Truck and APCs 512× 512 −4.98e−04 99.5941 33.5041 0 ∞
7.1.07 Tank 512× 512 7.41e−04 99.6178 33.4429 0 ∞
7.1.08 APC 512× 512 −1.30e−05 99.596 33.4592 0 ∞
7.1.09 Tank 512× 512 −6.91e−04 99.6185 33.4967 0 ∞
7.1.10 Car and APCs 512× 512 2.65e−03 99.5937 33.3973 0 ∞
Boat.512 Fishing boat 512× 512 1.10e−03 99.633 33.4121 0 ∞
Elaine.512 Girl (elaine) 512× 512 −3.55e−03 99.612 33.475 0 ∞
House House 512× 512 2.72e−04 99.6174 33.4448 0 ∞
Gray21.512 21-level step wedge 512× 512 −4.65e−04 99.6159 33.446 0 ∞
Numbers.512 256-level test pattern 512× 512 1.07e−03 99.6243 33.4408 0 ∞

Azafack 398× 512 1.97e−04 99.6109 33.4439 0 ∞
Guefack 365× 486 2.72e−03 99.5934 33.3593 0 ∞

Table 12: Comparison of results on nonmedical images.

Image Metric Cipher image [34] Cipher image
[38]

Cipher image
[39]

Cipher image
[29]

Cipher image
[44]

Cipher image of
our

algorithm

Lena

Vert. cor −0.0024 0.003709 0.00085 −0.0016 0.0034 9,09e−05
Hor. cor 0.0076 −0.00084 0.00080 0.0031 0.0026 −0.000257
Diag.
cor 0.003 −0.00018 0.00019 0.0067 0.0019 −0.000452

Entropy 7.9992 < e < 7.9994 7.99748 7.9952 7.9992 7.9993
NPCR 93,7457 >99.6 99.6553 >96 99,6201 99.6254
UACI 32.3899 33.4 33.3377 31,79 33,4006 33.4604
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5. Conclusion

In this work, a new image encryption algorithm has been
proposed in order to secure images during transmission.+e
cryptosystem uses affine transformations (reflections and
rotations), an external secret key of 128 bits long, and an
internal secret key coming from the decomposition of the
plain image, zigzag process, and substitution-diffusion
processes. +e particularity of this algorithm is the method
to extract the internal secret keys, the use of reflection and
rotation mappings on the binary images obtained from the
decomposition of the plain image to be encrypted, and the
zigzag process not on the gray-scale image but on the binary
image and binary block, and finally the method used to
combine external and internal keys to generate substitution-
diffusion sequences without complex mathematical func-
tions or complex chaotic generators. +e size of an internal
secret key depends on the size of the original image. +e
substitution process is also taken in two steps. We have
evaluated the proposed algorithm on statistical analysis and
key sensitivity analysis. +e new proposed system is efficient
and robust. +e main features of the encryption scheme are
its simplicity, its efficiency, and a high security order. Our
method also has better confusion, diffusion, and security
compared to recent methods in the literature. +e combi-
nation of external and internal secret keys, the changing of
the substitution-diffusion key for one subblock to another,
makes the method to be robust against brute-force attacks.
+e newly proposed method is expected to be useful for real-
time encryption and transmission of images in many do-
mains such as telemedicine.
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Table 12: Continued.

Image Metric Cipher image [34] Cipher image
[38]

Cipher image
[39]

Cipher image
[29]

Cipher image
[44]

Cipher image of
our

algorithm

Airplane
(512× 512)

Vert. cor −0.0095 −0.0036 −0.000767
Hor. cor 0.0025 −0.0017 0.00228
Diag.
cor 0.0009 −0.0020 −9.57e−05

Entropy 7.9992 < e < 7.9994 7.99925 7.9990 7.9994
NPCR 93.7482 99.5252 99.6178 99.604
UACI 32.3293 33.38 33.589 33.4426

Baboon

Vert. cor −0.0092 −0.0019 0.00136
Hor. cor 0.0019 −0.0014 −0.000584
Diag.
cor 0.0049 −0.0013 −0.000473
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Table 13: Comparison of results on medical images.
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+e application of multimedia sensors is widespread, and people need to transmit images more securely and efficiently. In this
paper, an image transmission scheme based on two chaotic maps is proposed. +e proposed scheme consists of two parts, secure
image transmission between sensor nodes and sink nodes (SIT-SS) and secure image transmission between sensor nodes and
receivers (SIT-SR). For resource-constrained environments, SIT-SS utilizes Tent-Logistic Map (TLM) to generate chaotic se-
quences and adopts TLM-Driven permutation and transformation to confuse image pixels. +en the cipher image is obtained
through TLM-Driven two-dimensional compressed sensing. Compared with existing schemes, the secret key design of SIT-SS is
more reasonable and requires fewer hardware resources. When sampling ratio is greater than 0.6, its image reconstruction quality
has obvious advantages. For environments with huge security threats, SIT-SR adopts dynamic permutation and confusion based
on discrete logarithms to confuse the image and exploits dynamic diffusion based on discrete logarithms to generate final cipher
image. Similarly, compared with some existing schemes, the design of SIT-SR is more practical, and the statistical characteristics of
the cipher image are better. Finally, extensive simulation tests confirm the superiority of the proposed scheme.

1. Introduction

Nowadays, the application of multimedia sensors is in-
creasingly widespread in many fields, such as medicine,
transportation, industry, education, and military. In these
application scenarios, flexibly deployed sensors need to
transmit massive images, such as medical and military
images [1, 2]. Since it involves privacy protection, com-
mercial and military security, etc., efficient and secure
protection needs to be provided for these images. However,
image data has several significant characteristics that are
different from text data, such as large volume and strong
pixel correlation [3]. And the hardware resources of sensors
are limited. +erefore, traditional encryption schemes such
as Advanced Encryption Standard (AES) are generally not
suitable for heterogeneous application environments [4–7].
In order to continuously improve the efficiency and security
of image transmission, researchers have been committed to
designing new schemes based on emerging techniques and
methods [3–28]. Among these new schemes, the ones based

on compressed sensing (CS) and chaotic systems are favored
by more and more researchers [11–13, 16–28].

CS [29, 30] is a breakthrough signal acquiring paradigm,
which can effectively capture and recover a signal with fewer
nonadaptive samples. Once introduced, CS is quickly ap-
plied to image related information security applications
[4–7, 10, 11, 31–37]. In the past decade, researchers have
gradually introduced CS into information security appli-
cations in resource-constrained environments. In [4], a
scheme called Diffie-Hellman-Hash-Compression was
proposed.+is scheme uses Semitensor Product (STP) CS to
encrypt images of different dimensions and adopts hash
algorithm and permutation operations to ensure secure
image transmission. Taking into account the high privacy
sensitivity and redundancy of medical images, Wang et al.
[5] constructed a CS based medical image encryption
scheme. +is scheme carries out image encryption between
sensor nodes by using a measurement matrix as the secret
key and can realize image compression, privacy protection,
and data aggregation simultaneously. In order to overcome
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the resource constraints of sensor nodes and ensure the
security of data transmission, an image encryption system
was exploited [6]. While enhancing the security of trans-
mission process by integrating the quantization and diffu-
sion operations, the system uses a new CSmodel and parallel
reconstruction algorithm to shorten the encryption/de-
cryption time. In [7], a flexible and secure data encryption
system based on CS was proposed. +e plain image is first
sparsely represented through discrete wavelet transform and
then permutated by Arnold scrambling. Finally, after CS and
logistic chaotic permutation, the cipher image is obtained.
Utilizing structurally random matrices, Unde et al. [10]
presented an efficient scheme based on CS. In their scheme,
artificial noise is injected into quantized CS measurements,
thereby enhancing the ability to resist Chosen-Plaintext
Attacks (CPAs).

Chaotic systems have several characteristics that are very
suitable for designing cryptosystems [1, 2]. Consequently,
more and more researchers leverage chaotic systems to
design various image encryption schemes. In [16], an image
encryption scheme using memristive chaotic system was
provided. +is scheme uses Secure Hash Algorithm (SHA)
to generate the secret key and calculate the initial value of the
chaotic system. And it also introduces a dynamic Deoxy-
ribonucleic Acid (DNA) encoding method to generate two
regular DNA matrices for encoding images. In order to
protect medical images, Moafimadani et al. [23] presented
an image encryption scheme based on a chaotic system,
which uses a fast permutation operation to scramble the
plain image and utilizes an adaptive diffusion operation to
generate the cipher image. In [24], a chaotic image en-
cryption scheme using a new symmetric key generation
system was proposed. +is scheme exploits block-level
permutation and improved zigzag transformation to achieve
the confusion effect and adopts pixel shuffling to complete
the pixel diffusion operation. With the goal of improving the
security and efficiency of image encryption, Zhu et al. [25]
proposed an efficient and simple S-box generation method
using a new compound chaotic system and then introduced
a new image encryption scheme based on double S-boxes.
Based on dynamic DNA encoding and two chaotic systems,
Zhou et al. [26] proposed an image encryption scheme with a
two-round permutation-diffusion structure. +is scheme
exploits a two-dimensional (2D) rectangular transformation
to complete the permutation operation, and before the
diffusion operation, the hamming distances of DNA ma-
trices are used to update the initial values of the chaotic
systems.

As can be seen from abovementioned works, in terms of
designing image encryption schemes, reducing resource
consumption and achieving higher security are key moti-
vations. Although these schemes have advantages in some
aspects, they all have room for further improvements. For
example, the scheme proposed in [4] adopts SHA to resist
CPAs. However, the implementation of SHA demands
considerable hardware resources and would hinder the
applicability of this scheme in resource-constrained envi-
ronments. In addition, some encryption schemes adopt one-
time pad secret key. When a large number of images need to

be encrypted, such design is not practical. +erefore, while
further improving the efficiency and security of image en-
cryption, to overcome the shortcomings of these schemes, an
image transmission scheme based on two chaotic maps, 2D-
CS, dynamic perturbation, and discrete logarithms (ITS-
CDD) is proposed. +e proposed scheme consists of two
parts, secure image transmission between sensor nodes and
sink nodes (SIT-SS) and secure image transmission between
sensor nodes and receivers (SIT-SR). Compared with some
existing schemes, ITS-CDD has contributions summarized
as follows:

(1) SIT-SS is designed for resource-constrained envi-
ronment, whereas SIT-SR is designed for environ-
ments with huge security threats. +erefore, the
applicability and practicability of ITS-CDD are
higher.

(2) Dynamic perturbation parameters (DPPs) derived
from system times and last encryption times are
designed. So, ITS-CDD not only guarantees the
diversity of equivalent key streams, but also does not
rely on external algorithms.

(3) +e secret key design of SIT-SS is more practical and
requires fewer hardware resources.

(4) 2D-CS based on lightweight chaotic map can reduce
resource overhead.

(5) Discrete logarithms under finite multiplicative group
Z∗257 are introduced to ensure higher security.

+e remainder of this paper is organized as follows. 2D-
CS, discrete logarithms, and two chaotic systems are in-
troduced in Section 2. ITS-CDD is described in Section 3.
Simulation tests and theoretical analyses are carried out in
Section 4. Finally, conclusions are drawn in Section 5.

2. Fundamental Knowledge

In SIT-SS, 2D-CS is introduced to realize image data
compression and encryption. Discrete logarithms are used to
enhance the security of SIT-SR. Two chaotic systems called
Tent-Logistic Map (TLM) [38] and 2D Logistic-Sine-Cou-
pling Map (2D-LSCM) [13] are adopted to generate the
chaotic sequences.

2.1. 2D-CS. In terms of computational complexity and
storage space, 2D-CS has obvious advantages over tradi-
tional CS [39, 40]. Assuming that A and B are random
matrices, they both have the size of M × N (M≪N). +en,
one can obtain the 2Dmeasurements Y ∈ RM×M of an image
X ∈ RN×N. Specifically,

Y � AXBT
, (1)

where A and B operate on the rows and columns of X,
respectively.

When decoding, one can regularize the image signal
recovery by using signal prior information in the form of
penalty:
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+ λJ(X), (2)

where λ is the regularization parameter, J(X) is a cost
function which is used to handle the ill-posed problem, and
(1/2)‖Y − AXBT‖

2
F is the l2 data-fidelity term. Moreover,

researchers have proposed many 2D-CS reconstruction al-
gorithms to solve the optimization problem mentioned
above. In this paper, 2D projected gradient with embedding
decryption (2DPG-ED) [12] algorithm is adopted.

2.2. Discrete Logarithms. Discrete logarithm calculation is
a complex nonlinear calculation. In the encryption pro-
cess, the use of discrete logarithms can improve its
nonlinearity [14]. For the prime 257 and its corresponding
finite multiplicative group Z∗257, one can define the dis-
crete logarithms as follows: if d ∈ Z∗257 satisfies
n ≡ gdmodp, then d is said to be the discrete logarithm of
n ∈ Z∗257. Since Z∗257 has 128 generators, we can use them to
enhance the diversity of equivalent key streams. To avoid
complex discrete logarithm calculation, we calculate the
discrete logarithm values under different generators in
advance and save them to the 2D matrix DV M with the
size of 128 × 256. Consequently, in ITS-CDD, discrete
logarithm values can be obtained by directly accessing
DV M. If one wants to calculate the discrete logarithm
value of 107 under the generator 3, namely, calculating
(log3107)mod257, one can access DVM1,107 to obtain the
discrete logarithm value 31. Table 1 shows the discrete
logarithm values of 101 to 107 under the first eight
generators.

2.3. TLM and 2D-LSCM. To save hardware resources, TLM
is adopted in SIT-SS, which is easy to implement and has
good chaotic performance. TLM can be defined as

xi �
r1r2xi−1 1 − r2xi−1( 􏼁, xi−1 < 0.5,

r1r2 1 − xi−1( 􏼁 1 − r2 1 − xi−1( 􏼁( 􏼁, xi−1 ≥ 0.5,
􏼨 (3)

where xi is generated by the i-th iteration, xi−1 is the input of
the i-th iteration, x0 ∈ (0, 1) is the initial state, and
r1 ∈ [3.57, 4], r2 ∈ (1, 2] are the control parameters. Figure 1
shows the 2D bifurcation diagram and Lyapunov Exponents
(LE) diagrams of TLM.

Compared with TLM, 2D-LSCM has better chaotic
performance, but its structure is more complex, so it is more
suitable for environments with more hardware resources.
2D-LSCM can be defined as

xi � sin π 4cxi−1 1 − xi−1( 􏼁 +(1 − c)sin πyi−1( 􏼁( 􏼁( 􏼁,

yi � sin π 4cyi−1 1 − yi−1( 􏼁 +(1 − c)sin πxi−1( 􏼁( 􏼁( 􏼁,
􏼨

(4)

where (xi, yi) is the system state generated by the i-th it-
eration, (xi−1, yi−1) is the input of the i-th iteration, (x0, y0)

is the initial state, and c is the control parameter. +e value
ranges of all these parameters are [0, 1]. Figure 2 shows the
2D bifurcation diagram and LE diagram of 2D-LSCM.

3. Proposed Image Transmission Scheme

Different from some existing schemes, ITS-CDD consists of
two parts, secure image transmission between sensor nodes
and sink nodes (SIT-SS) and secure image transmission
between sensor nodes and receivers (SIT-SR). Figure 3
shows the secure image transmission between sensor
nodes and sink nodes.

Compared with the existing schemes, SIT-SS has two
main innovations. One is introducing TLM to save the
hardware resources of sensors, and the other is introducing
DPPs to enhance the ability to resist CPAs. Figure 4 shows
the secure image transmission between sink nodes and
receivers.

Considering that sink nodes have more resources, there
are huge security threats in the process of transmitting
images to receivers through the media cloud. We have
adopted some measures to improve the security of image
transmission, such as the adoption of 2D-LSCM with better
chaotic performance and the introduction of discrete
logarithms.

3.1. Transmission between Sensor Nodes and Sink Nodes.
To save space, in this subsection, we mainly introduce the
improvements to 2DCS-ETC [12].

3.1.1. DPP Generation. According to previous cryptanalysis
works, the main reason why some schemes cannot resist
CPAs is that equivalent key streams only depend on the
secret key [41–47]. +erefore, some researchers use the hash
value of the plain image to ensure the diversity of equivalent
key streams. However, the implementation of hash algo-
rithm is not suitable for sensor nodes with limited resources.
Considering that system times and last encryption times are
constantly changing and would be affected by many factors,
they are used to generate DPPs. +e specific generation
process of DPPs is as follows:

(i) Step 1: obtain the system time Ts in milliseconds.
(ii) Step 2: get the time Te spent in the last encryption

process in milliseconds. If it is the first time to
encrypt, set Te to an initial value Ti.

(iii) Step 3: one DPP is obtained by
β � (Ts + Te)mod256.

(iv) Step 4: repeat Step 1 through Step 3 until 32 DPPs
are obtained, namely, β1, β2, . . . , β32.

In this way, we can obtain a set of DPPs. Like the hash
value, DPPs can ensure that the equivalent key streams used
when encrypting different images are different, thereby ef-
fectively resisting CPAs. More importantly, no complicated
calculations are required to obtain DPPs, and even if the
same plain image is encrypted, different equivalent key
streams would be generated.

3.1.2. TLM-Driven Global Permutation. Obviously, confu-
sion is the requirement that must be considered when de-
signing modern cryptosystems. Confusion means that each
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bit of the secret key should affect as many cipher image bits as
possible [48]. Permutation operations are commonly used to
achieve confusion, but permutation-only image encryption
schemes have been proven to be insecure [49].+erefore, SIT-
SS introduces DPPs in the permutation process. +is makes
the permutation process not only dependent on the secret key,

but also dependent on the DPPs that will inevitably change
every time the plain image is encrypted. Compared with
2DCS-ETC using the random permutation matrix to com-
plete the permutation and treat it as secret key, we use TLM
and DPPs to complete the permutation. +is can not only
reduce the resource overhead of sensor nodes, but also

Table 1: Discrete logarithm values of 101 to 107 under the first eight generators.

Row index of DV M Corresponding generator g
n (column index of DV M )

101 (101) 102 (102) 103 (103) 104 (104) 105 (105) 106 (106) 107 (107)
1 3 75 169 201 250 141 137 31
2 5 141 31 255 214 91 63 89
3 6 59 249 25 26 29 217 79
4 7 31 5 165 18 89 101 163
5 10 125 111 79 246 235 143 137
6 12 43 73 105 58 173 41 127
7 14 143 213 117 50 105 53 83
8 19 103 157 61 2 81 253 203
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Figure 1: 2D bifurcation diagram and LE diagrams of TLM: (a) 2D bifurcation diagram; (b) LE diagram versus parameter r1; (c) LE diagram
versus parameter r2.
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Figure 2: 2D bifurcation diagram and LE diagram of 2D-LSCM: (a) 2D bifurcation diagram; (b) LE diagram versus parameter c.
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improve the ability to resist CPAs. +e specific process of
TLM-Driven Global Permutation (GP) is as follows:

(i) Step 1: use the parameters (r
(1)
1 , r

(1)
2 , x(1)) to iterate

TLM N × N + r
(1)
3 times. In order to avoid negative

effects, discard the first r
(1)
3 chaotic state values.

(ii) Step 2: convert the obtained chaotic sequence S of
length N × N into the integer sequence

Si � floor Si × 1015􏼐 􏼑mod(N × N)􏼐 􏼑 + 1, (5)

where i � 1, 2, . . . , N × N, floor(·) returns the in-
teger part of an operand.

(iii) Step 3: stretch the plain image P of size N × N into
the 1D sequence 􏽥P.

(iv) Step 4: calculate the index

I � Simod 32( 􏼁 + 1, (6)

of 32 DPPs and the permutation position

α � Si + βI( 􏼁mod(N × N)( 􏼁 + 1, (7)

where i � 1, 2, . . . , N × N. Swap two pixels of 􏽥P
according to α.

Sensor Node

Sink Node

TLM-Driven GP TLM-Driven 
NPT

Gray
Mapping 

TLM-Driven 
2D-CS Quantization

TLM-Driven2D 
Measurements 

Estimation

Inverse 
Quantization

TLM-Driven 
2DPG-ED

DPP Generation

Figure 3: Secure image transmission between sensor nodes and sink nodes.

Sink Node

Receiver

Media Cloud

DPP Generation 
Dynamic Permutation 
and Confusion based 
on Discrete logarithms

Dynamic 
Diffusion based on 

Discrete 
logarithms

Inverse 
Permutation 

and Confusion

Inverse
Diffusion

Figure 4: Secure image transmission between sink nodes and receivers.
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3.1.3. TLM-Driven Negative-Positive Transformation. A
nonlinear operation called Negative-Positive Transforma-
tion (NPT) is introduced by 2DCS-ETC to improve security.
Similarly, we use TLM and DPPs to complete NPT instead of
using a random matrix in the form of secret key. +is can
further reduce the resource overhead of sensor nodes and
improve the ability to resist CPAs.

(i) Step 1: use parameter (r
(2)
1 , r

(2)
2 , x(2)) to iterate TLM

N × N + r
(2)
3 times. In order to avoid negative ef-

fects, discard the first r
(2)
3 chaotic state values.

(ii) Step 2: convert the obtained chaotic sequence S of
length N × N into the bit sequence

Si � floor Si × 1015􏼐 􏼑mod 2, (8)

where i � 1, 2, . . . , N × N.
(iii) Step 3: according to S, perform the following NPT

operation on 􏽥P.

Ci �
􏽥Pi, Si � 1,

255 − 􏽥Pi, Si � 0,

⎧⎨

⎩ (9)

where i � 1, 2, . . . , N × N.
(iv) Step 4: reshape C into the 2D cipher image.

3.1.4. TLM-Driven 2D-CS. If the chaotic sequence generated
by the chaotic system is assembled into a complete mea-
surement matrix, its performance is usually almost the same
as other commonly used random matrices [11]. Moreover,
compared with directly using a random matrix and treating
it as secret key, the chaotic measurement matrix can sig-
nificantly save the resource overhead of sensor nodes. In
SIT-SS, TLM is used to generate the measurement matrices
required for 2D-CS. Suppose the size of the measurement
matrices A and B to be created is M × N (M≪N); the
specific process of TLM-Driven 2D-CS is as follows:

(i) Step 1: use the parameters (r
(3)
1 , r

(3)
2 , x(3)) to iterate

TLM N × N + r
(3)
3 times. In order to avoid negative

effects, discard the first r
(3)
3 chaotic state values.

(ii) Step 2: arrange the obtained chaotic sequence into
the square matrix S

∧
of size N × N.

(iii) Step 3: take M rows from the orthogonal basis of S
∧

as the measurement matrix A.
(iv) Step 4: repeat Step 1 through Step 3; create the

measurement matrix B in a similar manner.
(v) Step 5: use A and B to obtain the 2D measurements

of the cipher image C.

In addition to the improvements made above, the other
steps of SIT-SS are basically the same as those of 2DCS-ETC,
which are not repeated here. Since we have introduced TLM
and DPPs in SIT-SS, the security of image transmission
between sensor nodes and sink nodes has become higher,
and the resource requirements for sensors are also lower.
Significantly, SIT-SS still maintains the advantages of 2DCS-
ETC, which is demonstrated and discussed in Section 4.1. To

save hardware resources, we directly use
r

(1)
1 , r

(1)
2 , x(1), r

(2)
1 , r

(2)
2 , x(2), r

(3)
1 , r

(3)
2 , x(3) as the secret key of

SIT-SS.

3.2. Transmission between Sink Nodes and Receivers. In SIT-
SR, we use 2D-LSCM [13] which has better chaotic per-
formance to generate chaotic sequences. Moreover, discrete
logarithms and DPPs are introduced to achieve secure image
transmission between sink nodes and receivers. It should be
noted that through the use of discrete logarithms and our
targeted design, DPPs can be directly sent out in plaintext
form by sink nodes. When decrypting, receivers can directly
use DPPs that arrived in plaintext form. In other words,
DPPs are not one-time pad secret keys, nor are they secret
parameters. Next, we introduce the specific process of SIT-
SR, as shown in Figure 5.

3.2.1. Secret Key and Chaotic System Parameters. In order to
avoid the secret key issues pointed out in some cryptanalysis
works and simplify the generation process of chaotic system
parameters [14, 41, 42], we set the secret key K in this stage as
a binary sequence with the length of 270 bits. Namely,
K � a1a2 · · · a270. In specific implementation, we directly use
nine 32-bit unsigned integers b1, b2, b3, b4, b5, b6, b7, b8, b9 to
generate three sets of parameters (x

∧(1)

0 , y
∧(1)

0 , r
∧(1)

),
(x
∧(2)

0 , y
∧(2)

0 , r
∧(2)

), (x
∧(3)

0 , y
∧(3)

0 , r
∧(3)

) for 2D-LSCM. As shown in
equation (11), this means that the 30 × 9 bits of K corre-
spond to the 30 bits of each unsigned integer, respectively.

x
∧(1)

0 � b1 × 2 + 1( 􏼁 × 2−32
,

y
∧(1)

0 � b2 × 2 + 1( 􏼁 × 2−32
,

r
∧(1)

0 � b3 × 2 + 1( 􏼁 × 2−32
,

x
∧(2)

0 � b4 × 2 + 1( 􏼁 × 2−32
,

y
∧(2)

0 � b5 × 2 + 1( 􏼁 × 2−32
,

r
∧(2)

0 � b6 × 2 + 1( 􏼁 × 2−32
,

x
∧(3)

0 � b7 × 2 + 1( 􏼁 × 2−32
,

y
∧(3)

0 � b8 × 2 + 1( 􏼁 × 2−32
,

r
∧(3)

0 � b9 × 2 + 1( 􏼁 × 2−32
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where

b1 � a1a2 · · · a30,

b2 � a31a32 · · · a60,

b3 � a61a62 · · · a90,

b4 � a91a92 · · · a120,

b5 � a121a122 · · · a150,

b6 � a151a152 · · · a180,

b7 � a181a182 · · · a210,

b8 � a211a212 · · · a240,

b9 � a241a242 · · · a270.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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Besides, these three sets of chaotic system parameters

(x
∧(1)

0 , y
∧(1)

0 , r
∧(1)

), (x
∧(2)

0 , y
∧(2)

0 , r
∧(2)

), (x
∧(3)

0 , y
∧(3)

0 , r
∧(3)

) are used to
generate chaotic matrices for the encryption process.

3.2.2. DPP Generation. +e generation process of DPPs in
SIT-SR is exactly the same as SIT-SS. And we mark 32 DPPs
used in SIT-SR as H.

3.2.3. Dynamic Permutation and Confusion Based on Dis-
crete Logarithms. As mentioned above, discrete logarithms
and DPPs are introduced in dynamic permutation and
confusion based on discrete logarithms (DPC-D), so as to
enhance the security of image transmission. Specifically,
compared with some existing permutation operations, DPC-
D has the following advantages:

(1) UseH to further perturb the permutation results and
adopt different perturbation strategies for the row
index and column index. +erefore, the permutation
results depend not only on the secret key, but also on
H.

(2) Based on discrete logarithms, H and the sorting
results of the chaotic matrix S are used to nonlinearly
transform the pixel value of each plain image pixel,
thereby further improving the security of image
transmission.

In order to better describe the specific steps of DPC-D,
an algorithm is provided in Algorithm 1.

3.3. Dynamic Diffusion Based on Discrete Logarithms. To
further improve security, dynamic diffusion based on
discrete logarithms (DD-D) also adopts discrete loga-
rithms and H. Specifically, compared with some existing
diffusion operations, DD-D has the following
advantages:

(1) Considering that multipixel diffusion is of little
significance, single-pixel diffusion is adopted,
thereby reducing the amount of computation

(2) +e nonlinearity of the diffusion process is improved
by introducing discrete logarithms; thus the security
of image transmission is further improved

In order to better describe the specific steps of DD-D, an
algorithm is provided in Algorithm 2.

Since a symmetric encryption structure is adopted in
SIT-SR, the decryption process is actually constituted by the
corresponding inverse operations of the encryption opera-
tions. With the received DPPs and the agreed secret key K,
receivers can decrypt the plain image from the cipher image.
To save space, these inverse operations are not repeated here.

4. Simulation Tests and Analyses

In this section, extensive simulation tests are performed to
demonstrate the superiority of ITS-CDD. ITS-CDD is an
image transmission scheme composed of two parts, and the
resource conditions and design goals of each part are dif-
ferent. +erefore, SIT-SS is compared with 2DCS-ETC for
resource-constrained environments, whereas SIT-SR is
compared withmore versatile schemes for general application
environments. Without loss of generality, randomly gener-
ated secret keys are used to complete the tests. Table 2 lists the
hardware and software configurations used in the tests.

4.1. Simulation Tests for SIT-SS. Since reducing the resource
consumption of sensors and improving the security of image
transmission is our goal in designing SIT-SS, the analysis
and verification of SIT-SS are mainly focused on these two
aspects. +e test images used are eight images used in [12].

4.1.1. Encryption and Decryption. Four plain images Lena,
Boats, House, and Parrots are shown in Figure 6. +eir

Dynamic Permutation 
and Confusion based on 

Discrete logarithms

Dynamic Diffusion 
based on Discrete 

logarithms

2D-LSCM

DPP 
Generation

Generation of chaotic 
system parametersSecret key

Three rounds

DPPs DVMChaotic 
matrices

Figure 5: Flowchart of SIT-SR.
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corresponding cipher images and decrypted images gener-
ated in SIT-SS are also provided. As can be seen from these
images, the cipher images are similar to noise, attackers
cannot obtain useful information from them, and there are
no significant visual differences between the decrypted
images and corresponding plain images.

4.1.2. Reconstruction Quality. Researchers often use Peak
Signal-to-Noise Ratio (PSNR) to evaluate image recon-
struction quality. Generally, a higher PSNR value indicates a

better reconstruction quality. +e definition of PSNR is as
follows:

PSNR � 10 × log10
2552

(1/(M × N)) 􏽐
M
i�1 􏽐

N
i�1 [R(i, j) − P(i, j)]

2,

(12)

where M × N is the size of the reconstructed image R and
original imageP. PSNR versus sampling ratio for 2DCS-ETC
and SIT-SS is listed in Table 3. As can be seen from Table 3,
SIT-SS can achieve the same or slightly different PSNR

Require: the plain image P with the size of N × N, the chaotic matrix S with the size of N × N, the dynamic perturbation
parameters H with the size of 1 × 32 and the discrete logarithm value matrix
DV M with the size of 128 × 256.

(1) Set T ∈ NN×N;
(2) Set the sum hs of the dynamic perturbation parameters to 0;
(3) Set the row index value g used to represent the adopted generator to 0;
(4) Set the index value idx used to represent the adopted dynamic perturbation parameters to 0;
(5) Sort each column of S in ascending order, thus get the column index matrix O and sorted result B;
(6) for i � 1 to 32 do
(7) hs � hs + Hi;
(8) end for
(9) Calculate the row index value of the generator to be used, namely let g � (hsmod128) + 1;
(10) for i � 1 to N do
(11) Sort Bi in ascending order and obtain the row index vector v;
(12) for j � 1 to N do
(13) idx � ((i − 1) × N + jmod32) + 1;
(14) T((Oi,j+Hidx)modN)+1,((j+hs)modN)+1 � DVMg,((POi,vj

,vj
+Hidx+vj)mod256)+1 − 1;

(15) end for
(16) end for

Ensure: the permuted and transformed image T.

ALGORITHM 1: DPC-D algorithm.

Require: the permuted and transformed imageTwith the size of N × N, the chaotic matrixRwith the size of N × N, the dynamic
perturbation parameters H with the size of 1 × 32 and the discrete logarithm value matrix DV M with the size of 128 × 256.

(1) Set C ∈ NN×N;
(2) Convert R into the integer matrix IR with the same format as the pixels of T, namely IR � (􏼄R × 232􏼅􏼁mod256;
(3) Set the bitwise XOR result hx of the dynamic perturbation parameters to 0;
(4) Set the row index values g1, g2 used to represent the adopted generators to 0 s;
(5) for i � 1 to 32 do
(6) hx � bitxor(hx,Hi);
(7) end for
(8) Calculate the row index values of the generators to be used, let g1 � (bitxor(hx, IR1,1)mod128) + 1,

g2 � (bitxor(g1, IRN,N)mod128) + 1;
(9) tmp: ,1 � (T: ,1 + DVMg1 ,(T: ,N+1) + DVMg2 ,(IR: ,1+1))mod256;
(10) for i � 2 to N do
(11) tmp: ,i � (T: ,i + DVMg1 ,(tmp: ,i−1+1) + DVMg2 ,(IR: ,i+1))mod256;
(12) end for
(13) C1,: � (tmp1,: + DVMg1 ,(tmpN,: +1) + DVMg2 ,(IR1,: +1))mod256;
(14) for i � 2 to N do
(15) Ci,: � (tmpi,: + DVMg1 ,(Ci−1,: +1) + DVMg2 ,(IRi,: +1))mod256;
(16) end for

Ensure: the diffused image C.

ALGORITHM 2: DD-D algorithm.
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values as 2DCS-ETC. And when sampling ratio is greater
than 0.6, its image reconstruction quality has obvious
advantages.

4.1.3. Secret Key. In 2DCS-ETC, the random permutation
matrix and random binary integer matrix are used as the
secret key, thereby obtaining a huge key space. However, in

Table 2: Software and hardware configurations used in simulation tests.

Configuration item Description
CPU Intel Xeon CPU E3-1231 v3 3.40GHz
Memory capacity 8GB
Operating system Windows 7 Ultimate (64 bit)
Test platform MATLAB R2017a (9.2.0538062)

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6: Encryption and reconstruction of four plain images: (a) plain image Lena; (b) cipher image of (a); (c) compressed cipher image of
(a); (d) reconstructed image of (c); (e) plain image of Boats; (f ) cipher image of (e); (g) compressed cipher image of (e); (h) reconstructed
image of (g); (i) plain image of House; (j) cipher image of (i); (k) compressed cipher image of (i); (l) reconstructed image of (k); (m) plain
image of Parrots; (n) cipher image of (m); (o) compressed cipher image of (m); (p) reconstructed image of (o).
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resource-constrained environments, it is not suitable to use
such secret key that requires a large amount of storage space.
For example, if the size of the plain image is 1024 × 1024, the
secret key used would be at least 2 228 224 bytes in length. In
addition, in the encryption and decryption process, the
generation and storage of two measurement matrices also
bring significant resource requirements. However, in SIT-SS,
we only need to store six floating-point numbers used as the
secret key. Meanwhile, SIT-SS also enjoys a large enough key
space, which is about 10133. Apparently, such a large key
space is sufficient to resist brute force attacks.

4.1.4. Chosen-Plaintext Attack. As we know, CPAs are the
reasons why some encryption schemes are cracked. It is
generally believed that a secure encryption scheme should be
able to resist CPAs. Derived from system times and last
encryption times, DPPs always change dynamically and will
be affected by many factors, thereby ensuring the diversity
and unpredictability of equivalent key streams. Without
relying on external algorithms such as hash algorithms, the
diversity of equivalent key streams brings excellent resis-
tance to CPAs.

4.2. Simulation Tests for SIT-SR. +e simulation tests pre-
sented in this subsection are to demonstrate the superiority
of SIT-SR in terms of security and encryption efficiency. +e
test images used for SIT-SR are from +e USC-SIPI Image
Database (https://sipi.usc.edu/database/).

4.2.1. Encryption and Decryption of Different Types of Images.
For different types of images, we uniformly treat them as 8-
bit grayscale images in ITS-CDD. Specifically, for images
with a pixel depth of less than 8 bits, we directly process them
as 8-bit grayscale images, whereas for images with pixel
depth greater than 8 bits, we encrypt them in groups of 8 bits.
For example, if we need to encrypt an image with a pixel
depth of 16 bits, we can encrypt the lower 8 bits and higher

8 bits of each plain image pixel separately. Figure 7 shows the
encryption and decryption effects of SIT-SR for different
types of images. One can see that SIT-SR has excellent
encryption effects for different types of images. +e gen-
erated cipher images are very similar to noise images, and
attackers cannot directly obtain any valuable information
from these cipher images.

4.2.2. Key Space and Key Sensitivity. Since the key space
would affect the ability to resist brute force attacks, a secure
encryption scheme should have a sufficiently large key space
[50]. We carefully design the secret key, which not only
solves the issues about equivalent secret keys, but also ex-
pands the key space to 2270. +erefore, SIT-SR is excellent in
terms of the ability to resist brute force attacks.

It is well known that a secure encryption scheme should
be able to achieve superior confusion effect [50, 51]. +at is,
one smallest change in the secret key should make the cipher
image change significantly. To evaluate the performance of
SIT-SR in this regard, we randomly generated the secret key

KR � 03D7D6F3E884 829564ED BA77D868 3B811AE4

FC8655CC 7EE7BC30 5537BFEA 2EE2238E.
(13)

Using KR, we encrypted elaine.512.tiff to obtain the
corresponding cipher image ČR. Next, we changed one bit of
KR to get two secret keys K

(1)
R , K

(2)
R with single smallest

changes. +ese two changed secret keys also were used to
encrypt elaine.512.tiff, thus obtaining the corresponding
cipher images Č(1)

R , Č(2)

R . Finally, the difference images be-
tween Č(1)

R , Č(2)

R , and ČR were calculated. As can be seen
from Figure 8, the difference images between Č(1)

R , Č(2)

R , and
ČR look similar to an ordinary cipher image.+is means that
the key sensitivity of SIT-SR in the encryption process is
extraordinary.

Similarly, in order to verify the key sensitivity of SIT-SR
in the decryption process, K

(1)
R and K

(2)
R were adopted to

Table 3: PSNR (dB) of 2DCS-ETC and SIT-SS under different sampling ratios.

Image Scheme
Sampling ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lena 2DCS-ETC 25.1608 30.7238 33.7894 36.3407 38.5169 39.0429 40.3088 41.1759 41.7017
SIT-SS 25.5232 30.6675 33.7680 36.3926 38.6439 40.4935 42.6165 44.9562 47.9543

Barbara 2DCS-ETC 22.0135 25.8589 28.8967 31.7166 34.2147 35.6315 37.3399 39.0916 40.2334
SIT-SS 22.1990 25.8260 28.8175 31.6593 34.1841 36.4853 38.8797 41.5256 45.0071

Boats 2DCS-ETC 24.6290 29.7913 32.8112 35.3011 37.4047 38.0778 39.1809 40.3438 41.5691
SIT-SS 24.1095 29.6903 32.8657 35.3405 37.4213 39.3371 41.3561 43.5876 46.6325

Cameraman 2DCS-ETC 22.3125 28.7665 31.8389 34.2630 36.4953 36.9751 38.2231 39.0237 39.7931
SIT-SS 21.8324 28.7046 31.8201 34.2575 36.4449 38.6534 40.9500 43.3287 46.3889

Foreman 2DCS-ETC 29.5930 35.8537 38.1558 38.5413 39.4111 39.8570 40.2641 40.3616 40.6835
SIT-SS 29.7572 35.7866 38.1025 39.8524 41.4978 42.9477 44.5395 46.3175 48.4910

House 2DCS-ETC 28.9899 34.1209 36.0911 37.5883 38.9428 39.1408 40.0489 41.1202 42.1401
SIT-SS 28.3764 34.1188 36.1386 37.5654 38.9717 40.3546 42.0492 44.1757 47.0669

Monarch 2DCS-ETC 22.3624 29.0054 32.5729 35.6175 37.9890 38.1359 39.3164 40.0515 40.9473
SIT-SS 22.0071 28.8123 32.6323 35.3864 37.8005 39.9611 42.1377 44.5657 47.4934

Parrots 2DCS-ETC 25.9860 33.0968 35.7941 37.8344 38.0873 39.1139 39.7870 40.3589 40.6380
SIT-SS 25.7881 32.9618 35.6443 37.7954 39.5943 41.2956 43.0655 45.0295 47.6101

Each bold value means that one of the two compared schemes has a higher PSNR value than the other.
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decrypt ČR. +e test results are shown in Figure 9. Once
again, judging from the difference image between the
wrongly decrypted images, the key sensitivity of SIT-SR in
the decryption process is excellent.

For measuring the degree of changes between images,
NPCR (Number of Pixel Change Ratio) and UACI (Unified
Average Change in Intensity) are commonly used indicators
[13]. Among them,

NPCR �
1

M × N
􏽘
i,j

Di,j × 100%, (14)

refers to the ratio of the pixels that change, whereas

UACI �
1

M × N
􏽘
i,j

C(1)
i,j − C(2)

i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

255
× 100%, (15)

refers to the average intensity of the pixel value changes. In
equations (14) and (15), M × N is the size of the images,
i � 1, 2, . . . , M, j � 1, 2, . . . , N, and D is the difference
matrix between the image C(1) before the change and the
image C(2) after the change. If C(1)

i,j ≠C
(2)
i,j , then Di,j � 1.

Otherwise, Di,j � 0. In order to quantitatively analyze the
key sensitivity of SIT-SR, we calculated the NPCR and UACI
values between the cipher images before and after the secret
key changes. As one can see from Table 4, all the test results
are very close to the ideal values, which means that SIT-SR
does have extremely high key sensitivity.

4.2.3. Pixel Value Distribution. Unlike plain images, cipher
images must have extremely uniform pixel value distribu-
tions; otherwise attackers will have the opportunity to
conduct statistics based attacks [50, 51]. In order to visually
demonstrate the pixel value distribution characteristics of
the plain images and the cipher images generated by SIT-SR,
the pixel value distribution histograms of these images are

plotted. As can be seen from Figure 10, the pixel distribu-
tions of the plain images are relatively concentrated, whereas
the pixels of the cipher images are extremely uniformly
distributed throughout the entire value range.

In addition, the histogram variance analysis and chi-
square test analysis are also performed on the cipher images
to qualitatively analyze the ability of SIT-SR to resist sta-
tistical attacks. In general, if the histogram variance of a
cipher image is smaller, then the uniformity of the cipher
image is higher. +e histogram variance of an 8-bit grayscale
image can be defined as follows:

V(H) �
1

2562
􏽘

256

i�1
􏽘

256

j�1

1
2

pi − pj􏼐 􏼑
2
, (16)

where H � p1, p2, . . . , p256􏼈 􏼉; pi and pj are the numbers of
the pixels whose grayscale values are equal to i − 1 and j − 1.
Table 5 lists the histogram variance test results of some
images. +ese images include one random image, the 8-bit
grayscale image Lena, and its cipher images generated by
different schemes.

From Table 5, one can see that the histogram variance of
the plain image is very large, which means that its pixel value
distribution is extremely uneven, whereas among the cipher
images generated by the four image encryption schemes, the
cipher image of SIT-SR has the smallest histogram variance,
which indicates that this cipher image has the most uniform
pixel value distribution and is closest to the random image.

Another way to quantitatively analyze the uniformity of
a cipher image is the chi-square test. +e chi-square value of
a cipher image can be calculated as follows:

χ2 � 􏽘
n

i�1

si − H × W × p( 􏼁
2

H × W × p
, (17)

where H × W is the height and width of the cipher image, si

is the number of pixels whose pixel value is i − 1, n is the

(a) (b) (c) (d) (e) (f )

(g) (h) (i) (j) (k) (l)

Figure 7: Encryption and decryption effects for different types of images: (a) f15.png; (b) cipher image of (a); (c) decrypted image of
(b); (d) 5.2.09.tiff; (e) cipher image of (d); (f ) decrypted image of (e); (g) gray21.512.tiff; (h) cipher image of (g); (i) decrypted image of (h); (j)
4.2.04.tiff; (k) cipher image of (j); (l) decrypted image of (k); (m) f15.png; (n) cipher image of (m); (o) decrypted image of (n); (p) f15.png; (q)
cipher image of (p); (r) decrypted image of (q); (s) f15.png; (t) cipher image of (s); (u) decrypted image of (t); (v) f15.png; (w) cipher image of
(v); (x) decrypted image of (w).
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number of all possible pixel values (for 8-bit grayscale
images, n � 256), and p � 1/n. Next, the critical value
χ20.05(255) of the chi-square test at the significant level α �

0.05 can be determined, which is 293.2478. If a cipher image
has a chi-square value less than 293.2478, then this image
can be considered to have passed the chi-square test; that is,
its pixel value distribution is statistically uniform. Conse-
quently, the smaller the chi-square value of a cipher image is,
the better its uniformity is. As can be seen from Table 6, for
some commonly used test images, the cipher images gen-
erated by SIT-SR have all passed the chi-square test. And in
most cases, SIT-SR performs better than another scheme.

4.2.4. Plain Image Sensitivity. When the plain image changes,
the corresponding change degree of the cipher image is plain
image sensitivity. Generally speaking, to effectively resist dif-
ferential attacks, an image encryption scheme must have ex-
cellent plain image sensitivity. To intuitively show the plain
image sensitivity of SIT-SR, we first encrypted some commonly
used test images. Next, after changing one pixel bit for each

plain image, the plain images with the smallest changes were
encrypted. At last, we calculated the difference images between
the cipher images obtained before and after the smallest
changes. +e relevant test results are shown in Figure 11. As
one can see from Figure 11, each plain image has undergone
only one smallest change, but almost all cipher pixels have
changed. In addition to that, these significant differences are
independent of where the plain images change and are very
close to random images.

UPCR and UACI are also utilized to qualitatively analyze
the plain image sensitivity of SIT-SR. +e UPCR and UACI
values between the cipher images obtained before and after
the smallest changes of 15 common test plain images are
shown in Table 7. Judging from the test results, SIT-SR has
excellent plain image sensitivity. +e test results of SIT-SR
are closer to the ideal values 99.6094% and 33.4635% and
perform better in terms of stability.

4.2.5. Information Entropy. Information entropy is an in-
dicator that can be used to measure the randomness or
disorder of an information source. If the information

(a) (b) (c) (d) (e) (f )

Figure 8: Key sensitivity test for encryption process: (a) elaine.512.tiff; (b) ČR obtained by KR; (c) Č
(1)

R obtained by K
(1)
R ; (d) Č(2)

R obtained by
K

(2)
R ; (e) difference image between ČR and Č(1)

R ; (f ) difference image between ČR and Č(2)

R .

(a) (b) (c) (d) (e)

Figure 9: Key sensitivity test for decryption process: (a) ČR obtained by KR; (b) decrypted image ČR obtained by KR; (c) decrypted image
Č(1)

R obtained by K
(1)
R ; (d) decrypted image Č(2)

R obtained by K
(2)
R ; (e) difference image between Č(1)

R and Č(2)

R .

Table 4: UPCR and UACI values between cipher images when secret key changes.

Change NPCR (%) UACI (%)
Lowest bit of b1 is inverted 99.6121 33.4601
Lowest bit of b2 is inverted 99.6028 33.4625
Lowest bit of b3 is inverted 99.6097 33.4837
Lowest bit of b4 is inverted 99.6013 33.4633
Lowest bit of b5 is inverted 99.6009 33.4764
Lowest bit of b6 is inverted 99.6174 33.4512
Lowest bit of b7 is inverted 99.6075 33.4810
Lowest bit of b8 is inverted 99.6122 33.4706
Lowest bit of b9 is inverted 99.6130 33.4562
Random image 99.6094 33.4635
+e bold values are the ideal values.
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entropy of the information source is higher, it can be
considered that the information source has higher ran-
domness or disorder [18–20]. When it comes to an 8-bit
grayscale image, the information entropy of the grayscale
image can be calculated as follows:

H(S) � − 􏽘
n

i�1
p si( 􏼁 × log2 p si( 􏼁( 􏼁, (18)

where n is the total number of symbols si; p(si) is the oc-
currence probability of symbol si. For the 8-bit grayscale
cipher images, the ideal value of the information entropy is 8
[18–20]. From Table 8, one can see that the information
entropy of each cipher image generated by SIT-SR is very

close to the ideal value 8. As shown in Table 9, compared
with several image encryption schemes, the information
entropy of the Lena cipher image generated by SIT-SR is
closest to the ideal value 8. +erefore, SIT-SR performs best
in terms of the information entropy.

In order to measure the randomness of cipher images
more comprehensively, a measure named Local Shannon
Entropy (LSE) is proposed [52]. +is measure is increasingly
adopted to verify the randomness of cipher images [13].
Mathematically, LSE can be defined as follows:

Lq,s(r) � 􏽘

q

i�1

H ri( 􏼁

q
, (19)
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Figure 10: Pixel value distribution histograms of elaine.512.tiff, 7.1.03.tiff, gray21.512.tiff, and their corresponding cipher images: (a)
elaine.512.tiff; (b) histogram of (a); (c) cipher image of (a); (d) histogram of (c); (e) 7.1.03.tiff; (f ) histogram of (e); (g) cipher image of (e); (h)
histogram of (g); (i) gray21.512.tiff; (j) histogram of (i); (k) cipher image of (i); (l) histogram of (k).

Table 5: Histogram variance test results of some images.

Algorithm Image Variance
Lena256.bmp 33860.0546

[13] Cipher image 266.7578
[16] Cipher image 260.7188
[17] Cipher image 276.3906
SIT-SR Cipher image 257.1094

Random image 253.8946
+e bold value means that SIT-SR has the best test result among four compared schemes.
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where r1, r2, . . . , rq are q randomly selected nonoverlapping
image blocks, s is the number of pixels in each block, and
H(ri) is the information entropy of ri. According to the test
method suggested in [52], we carried out the LSE test on the
cipher images generated by SIT-SR, and the relevant test
results are shown in Table 10. Compared with two recent
image encryption schemes, SIT-SR has the best performance
in terms of standard deviation and pass rate.

4.2.6. Pixel Correlation. +e extremely high correlation
between adjacent pixels is one of the salient features of plain
images and also one of the important reasons why traditional
encryption schemes are not suitable for image encryption
[50]. +erefore, a secure image encryption scheme should
eliminate the correlation between adjacent pixels as much as
possible. CC (correlation coefficient) is an effective indicator

to measure the correlation between adjacent pixels, and its
definition is as follows:

CCab �
E((a − E(a)) ×(b − E(b)))

�����������
D(a) × D(b)

􏽰 , (20)

where a and b are the grayscale values of two adjacent pixels;
E(a) and D(a) are the expectation and variance of the
grayscale value a. In order to verify the performance of SIT-
SR in terms of the pixel correlation, for the horizontal,
vertical, and diagonal directions, we have randomly selected
20,000 pairs of adjacent pixels from each plain image and its
corresponding cipher image to calculate the CCs. +e rel-
evant test results are shown in Table 11.

From Table 11, one can see that there are very high
correlations between adjacent pixels of the plain images; that
is, the absolute values of CCs are extremely high, whereas in

Table 6: Chi-square values of different cipher images.

Filename Size
Chi-square value

[13] SIT-SR
Lena256.bmp 256 × 256 255.8555 253.3035
5.1.10.tiff 256 × 256 261.3125 254.1953
5.1.12.tiff 256 × 256 256.2578 244.5328
5.1.13.tiff 256 × 256 274.8750 245.3797
5.2.08.tiff 512 × 512 252.7471 247.5434
5.2.09.tiff 512 × 512 274.3906 257.3434
5.3.01.tiff 1024 × 1024 236.3027 229.8125
7.1.02.tiff 512 × 512 252.9141 226.2197
7.1.03.tiff 512 × 512 248.8984 257.2324
7.1.04.tiff 512 × 512 281.2773 258.4043
7.1.05.tiff 512 × 512 275.1055 263.8584
boat.512.tiff 512 × 512 230.2256 232.7012
elaine.512.tiff 512 × 512 266.6377 230.0078
gray21.512.tiff 512 × 512 244.8789 245.3027
ruler.512.tiff 512 × 512 290.8057 223.2813
testpat.1k.tiff 1024 × 1024 258.6455 239.7627

(a1) (a5)(a4)(a3)(a2)

(b1) (b5)(b4)(b3)(b2)

Figure 11: Plain image sensitivity test results for SIT-SR: (a1) 5.1.10.tiff; (a2) cipher image of (a1); (a3) the least significant bit of the pixel at
(1,1) in (a1) is reversed; (a4) cipher image of (a3); (a5) difference image between (a2) and (a4); (b1) boat.512.tiff; (b2) cipher image of (b1);
(b3) the least significant bit of the pixel at (256,256) in (b1) is reversed; (b4) cipher image of (b3); (b5) difference image between (b2) and
(b4).
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the cipher images generated by SIT-SR, there is almost no
correlation between adjacent pixels; that is, the absolute
values of CCs are extremely low (< 0.006).

In addition, in order to more intuitively show the cor-
relation changes between adjacent pixels caused by the
encryption of SIT-SR, the correlation distribution charts of
the plain image elaine.512.tiff and its corresponding cipher
image are drawn. As can be seen from Figure 12, after the
encryption processing of SIT-SR, there is almost no cor-
relation between adjacent pixels in each direction.

4.2.7. Chosen-Plaintext Attack. In fact, almost all simulation
tests related to security analysis can only ensure the security
of image encryption schemes under ciphertext-only attacks

(COAs) [51, 53]. +is is exactly why some image encryption
schemes have been broken. Among the four types of attacks,
which are COAs, Known-Plaintext Attacks (KPAs), CPAs,
and Chosen-Ciphertext Attacks (CCAs), CCAs are the most
threatening ones, but the attack conditions required by them
are practicallymeaningless [3, 50]. If attackers can choose cipher
images arbitrarily, then they do not need to crack at all, because
for any cipher image, they can directly recover its plain image.
+erefore, it is generally believed that CPAs are the most
threatening ones among common practical attacks. Actually, in
the cryptanalysis works about image encryption, the vast ma-
jority of them adopt CPAs [3, 51]. Next, from the perspective of
attackers, the ability of SIT-SR to resist CPAs is analyzed.

Apparently, attackers will encounter several problems
when they try to break SIT-SR with CPAs. Firstly, we assume
that they could obtain the equivalent key streams of the
encryption process from chosen plain images and corre-
sponding cipher images. However, because SIT-SR intro-
duce DPPs in serval encryption steps, the equivalent key
streams they obtained cannot be used to recover other or-
dinary plain images, which are encrypted under different
DPPs. Secondly, SIT-SR also performs nonlinear

Table 9: Information entropy test results of Lena cipher images.

Scheme [13] [18] [19] [20] SIT-SR
Information entropy 7.9992 7.9979 7.9909 7.9991 7.9994
+e bold value here emphasizes that SIT-SR has better performance than
other schemes.

Table 7: NPCR and UACI test results on plain image sensitivity.

Filename
[13] SIT-SR

NPCR (%) UACI (%) NPCR (%) UACI (%)
5.1.10.tiff 99.6014 33.4774 99.6162 33.4645
5.1.12.tiff 99.6222 33.4668 99.6093 33.4642
5.1.13.tiff 99.6091 33.4782 99.6119 33.4597
5.2.08.tiff 99.6138 33.4596 99.6080 33.4589
5.2.09.tiff 99.6072 33.4496 99.6117 33.4521
5.3.01.tiff 99.6103 33.4551 99.6107 33.4595
7.1.02.tiff 99.6088 33.4749 99.6140 33.4635
7.1.03.tiff 99.6026 33.4930 99.6081 33.4836
7.1.04.tiff 99.6117 33.4699 99.6025 33.4645
7.1.05.tiff 99.6101 33.4766 99.6083 33.4643
boat.512.tiff 99.6045 33.4618 99.6098 33.4825
elaine.512.tiff 99.6139 33.4918 99.6098 33.4521
gray21.512.tiff 99.6069 33.4660 99.6122 33.4713
ruler.512.tiff 99.6113 33.4394 99.6115 33.4453
testpat.1k.tiff 99.6054 33.4571 99.6091 33.4624
Average 99.6080 33.4695 99.6113 33.4598
Std. Dev. 0.0042 0.0161 0.0028 0.0045
+e bold values here emphasize that SIT-SR has better performance than the other scheme.

Table 8: Information entropy test results of plain images and
cipher images.

Filename Plain image Cipher image
5.2.08.tiff 7.2010 7.9993
5.2.09.tiff 6.9940 7.9994
5.3.01.tiff 7.5237 7.9998
7.1.02.tiff 4.0045 7.9993
7.1.03.tiff 5.4957 7.9994
7.1.04.tiff 6.1074 7.9993
7.1.05.tiff 6.5632 7.9994
boat.512.tiff 7.1914 7.9994
elaine.512.tiff 7.5060 7.9994
gray21.512.tiff 4.3923 7.9993
ruler.512.tiff 0.5000 7.9994
testpat.1k.tiff 4.4077 7.9998

Table 10: LSE test results of different schemes.

Filename [13] [15] SIT-SR
5.2.08 7.9023 7.9024 7.9022
5.2.09 7.9020 7.9021 7.9023
7.1.02 7.9020 7.9015 7.9021
7.1.03 7.9026 7.9019 7.9024
7.1.04 7.9019 7.9021 7.9023
boat.512 7.9018 7.9022 7.9024
gray21.512 7.9026 7.9026 7.9025
ruler.512 7.9041 7.9028 7.9026
Std.Dev. 0.0007 0.0004 0.0002
Pass/All 6/8 7/8 8/8
+e bold values indicate that compared with the other two schemes, SIT-SR
has the best performance in terms of standard deviation and pass rate.
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transformations on the plain image pixels during the per-
mutation process, so the common attack method that ig-
nores the permutation process by the chosen plain images
composed of single-value pixels cannot work. +irdly, SIT-
SR adopts a nonlinear diffusion structure; that is, it adopts
the discrete logarithms based on two different generators,
which makes the encryption process cannot be simplified by
chosen plain images. To sum up, SIT-SR can effectively resist
CPAs.

4.2.8. Encryption Efficiency. Improving encryption efficiency
is one of the most important motivations to design new image

encryption schemes. SIT-SR introduce DPPs and discrete
logarithms, but in fact, discrete logarithms can be calculated in
advance, and the calculation process of DPP is very simple, so
the impact on encryption efficiency is very small. In addition,
SIT-SR uses single-pixel diffusion and only performs three
iterations in the encryption process. +ese also help to reduce
the total number of primitive operations that need to be ex-
ecuted. Table 12 shows the average time required by SIT-SR
and some other recent image encryption schemes to encrypt
the 8-bit grayscale image Lena (256 × 256). As can be seen
from Table 12, although the time complexity of each image
encryption scheme is O(M × N), the scheme proposed in [13]
requires the least number of primitive operations, so it has the

Table 11: Correlation test results for adjacent pixels of plain images and their cipher images.

Filename
Horizontal Vertical Diagonal

Plain image Cipher image Plain image Cipher image Plain image Cipher image
5.2.08.tiff 0.8906 0.0008 0.9322 −0.0038 0.8452 0.0028
5.2.09.tiff 0.8591 −0.0004 0.9000 −0.0018 0.8007 0.0020
5.3.01.tiff 0.9817 0.0015 0.9776 0.0044 0.8981 −0.0033
7.1.02.tiff 0.9446 −0.0024 0.9431 −0.0016 0.9003 0.0001
7.1.03.tiff 0.9317 −0.0021 0.9436 0.0002 0.9059 −0.0017
7.1.04.tiff 0.9672 0.0038 0.9771 0.0028 0.9552 −0.0059
7.1.05.tiff 0.9108 0.0038 0.9425 0.0058 0.8919 0.0024
boat.512.tiff 0.9711 0.0030 0.9394 0.0048 0.9245 0.0002
elaine.512.tiff 0.9720 −0.0011 0.9761 0.0010 0.9696 0.0016
gray21.512.tiff 0.9998 −0.0023 0.9968 −0.0036 0.9966 0.0031
ruler.512.tiff 0.4702 −0.0026 0.4524 0.0004 −0.0312 −0.0023
testpat.1k.tiff 0.7992 0.0035 0.7501 0.0051 0.6997 0.0005
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Figure 12: Pixel correlation distribution charts of elaine.512.tiff and its cipher image: (a, d) distribution charts in horizontal direction; (b, e)
distribution charts in vertical direction; (c, f ) distribution charts in diagonal direction.
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highest encryption efficiency, whereas for SIT-SR, it adds a
certain number of primitive operations to ensure the security,
but it still maintains the significant advantage of high en-
cryption efficiency. +at is, in terms of encryption efficiency,
SIT-SR is significantly better than the remaining four image
encryption schemes.

5. Conclusions

In order to improve the efficiency and security of image
transmission, an image transmission scheme based on two
chaotic maps is proposed in this paper. +e proposed
scheme divides the image transmission from sensor nodes
to receivers into two stages and carries out a targeted
design, which can better adapt to heterogeneous appli-
cation environments. For image transmission between
sensor nodes and sink nodes, the proposed scheme re-
duces the requirements for hardware resources and im-
proves the image reconstruction quality by introducing a
lightweight chaotic map. Besides, the design of dynamic
perturbation improves the security of image transmission
at this stage, whereas for image transmission between sink
nodes and receivers, the proposed scheme improves the
security and efficiency of image transmission by intro-
ducing another chaotic map with better chaotic perfor-
mance and discrete logarithms. In order to verify and
demonstrate the excellent performance of the proposed
scheme, extensive simulation tests and theoretical ana-
lyses are carried out. +ese tests and analyses show that,
compared with some recent schemes, the proposed
scheme has higher feasibility, security, and practicability.
In the future, we will extend the proposed scheme to video
transmission.
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Online defect detection system is a necessary technical measure and important means for large-scale industrial printing production. It is
effective to reduce artificial detection fatigue and improve the accuracy and stability of industry printing line. However, the existing
defect detection algorithms are mainly developed based on high-quality database and it is difficult to detect the defects on low-quality
printing images. In this paper, we propose a new multi-edge feature fusion algorithm which is effective in solving this problem. Firstly,
according to the characteristics of sheet-fed printing system, a new printing image database is established; compared with the existing
databases, it has larger translation, deformation, and uneven illumination variation. *ese interferences make defect detection become
more challenging. *en, SIFT feature is employed to register the database. In order to reduce the number of false detections which are
caused by the position, deformation, and brightness deviation between the detected image and reference image, multi-edge feature
fusion algorithm is proposed to overcome the effects of these disturbances. Lastly, the experimental results of mAP (92.65%) and recall
(96.29%) verify the effectiveness of the proposed method which can effectively detect defects in low-quality printing database. *e
proposed research results can improve the adaptability of visual inspection system on a variety of different printing platforms. It is better
to control the printing process and further reduce the number of operators.

1. Introduction

*e online defect detection system based on machine vision
is widely used in the field of industrial automation, such as
welding defect detection [1], glass manufacturing industry
[2], machine-parts processing [3], printed circuit board
industry [4], textile industry [5], and printing industry [6, 7].
In printing industry, manual detection has been far from
meeting the quality control requirements of modern large-
scale printing production. Online defect detection system is
an indispensable link to ensure the quality of printed matter
[8]. Figure 1 gives an example of industrial printing line, and
Figure 2 shows a typical defect detection system using
machine vision for roll-to-roll printing line.

*is paper is organized as follows. We present related
research in Section 2, and Section 3 gives the methodology,
which includes the architecture of the proposed defect de-
tection system, image registration method, and feature

extraction method. *e experimental results and discussion
are given in Section 4. Section 5 presents the conclusion and
future works.

2. Related Research

Many defect detection methods have been proposed for
roll-to-roll printing process, and these methods can ef-
fectively detect a variety of printing defects in real time.
Paper [9] detected some common printing defects, such as
ink drop, stripe, character loss, and color defect. Compared
with the traditional method to extract the gradient edge of
gray image, the proposed edge detection algorithm has
better detection performance, and it can reduce the in-
formation loss of RGB three channels and make the edge
extraction more accurate. Paper [10] provided an image
fusion method, which used multi-channel image subtrac-
tion to segment defects. *e method can update the
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reference image continuously with the printing production.
Next, a twice template matching algorithm was established
in paper [11], which firstly matched the template and then
performed differential operation on matched image to find
the location of the defect. In paper [12], the authors
designed a bidirectional image difference algorithm to
avoid the error detection of contour artifacts. In order to
better locate the first row of captured image, a fast-com-
putational algorithm based on image projection was given,
which can convert 2D image searching into 1D feature
matching. Paper [13] adopted laser scanning technology to
detect overfill and underfill defects on upper surface of the
deposited parts in the additive manufacturing process by
comparing the existing point cloud with the presliced
stereolithography (STL) model. In paper [14], Chervyakov
et al. utilized two modified adaptive median filtering
methods of impulse noise in images. *e experiment
showed potential application in processing satellite and
medical imagery, geophysical data, and in other areas of
digital image processing. Paper [15] provided a solution to
the problem of distinguishing the defects and their own
characteristics in robot 3D printing. *e research findings
can help to detect the defects online, improve the detection
accuracy, and reduce the false detection rate without being
affected by its own characteristics.

*e abovementioned detection methods all applied
image difference to extract defective patterns. Because the
defective image and standard image collected in reality often
have interferences with size, rotation, deformation, and
other factors, whether the two images can be well registered

will directly affect the accuracy of defect detection [16].
Image registration needs to be considered from the feature
space, search space, interpolation method, search strategy,
similarity measurement, and other aspects [6]. In addition,
these inspection systems also need to meet some other re-
quirements: (1) high-end and expensive line scan CCD
camera; (2) special high-precision mechanical installation
structure and lighting mode; (3) stable and reliable feeding
platform; and (4) high-quality image data acquisition. *ese
requirements limit the application range of the detection
system [17–20]. For example, it is difficult to apply the online
quality inspection system in the sheet-fed platform and the
low-end printing production line because the vibration and
interference of the platform are too large, and it is impossible
to collect qualified images. For the research issue of low-
quality printing image defect detection, the research results
are few.

Currently, more and more researchers pay attention to
the defect detection method based on machine learning [21].
Du used the deep learning method to improve the perfor-
mance of X-ray image defect detection of automotive alu-
minum castings [22]. In paper [23], the defect detection of
railway track fastener was studied by combining image
processing and deep learning. However, labeling defect
regions was time consuming, and it was difficult to collect
enough defect samples for artificial neural network learning,
which limited the application and promotion of deep
learning in the field of defect detection. Paper [24] proposed
an automatic inspection systemwith five-plane array charge-
coupled device (CCD) cameras and four LED light sources

Figure 1: Industrial printing production equipment.
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Image processing system Guiding roll 

Impression roll
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Figure 2: *e diagram of defect detection system using machine vision for gravure printing line.
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in a closed environment. A support vector machine algo-
rithm was adopted to classify defects based on the extracted
features in candidate defect regions. In paper [25], Abul’-
khanov and Kazanskiy created visual and numerical tools to
analyze a rough surface, through characterizing the rough
surface by building its information pattern through imaging
micro-roughnesses on the controlled surface and using the
parameter value. Paper [26] designed a bridge cracks de-
tection algorithm by using a modified active contour model
and greedy search-based support vector machine. In paper
[27], a novel cascaded autoencoder (CASAE) architecture
was designed for segmenting and localizing defects. *e
defect regions of segmented results are classified into their
specific classes via a compact convolutional neural network
(CNN). Paper [28] adopted a single convolutional neural
network (CNN) model that can extract effective features for
defect classification without using additional feature ex-
traction algorithms, and the proposed method can identify
defect classes not seen during training by comparing the
CNN features of the unseen classes with those of the trained
classes. Paper [29] proposed a vision-based method using a
deep architecture of convolutional neural networks (CNNs)
for detecting concrete cracks without calculating the defect
features. In addition, many other methods were also pro-
posed for defect detection using machine learning, e.g., the
generative adversarial networks [30] and reinforcement
learning [31].

In summary, traditional defect detection methods based
on image difference cannot be applied to low-quality images
effectively and it is difficult to get enough defect samples to
train a machine learning model for defect identification. In
order to improve the adaptability of visual inspection system
on a variety of different printing platforms (sheet-fed or roll-
to-roll), in this paper, a new printed image database is
established using a small CCD area array camera to collect
images on a sheet-fed machine platform. *en, a new multi-
edge feature fusion algorithm is proposed to adapt to defect
detection in low-quality dataset.

3. Materials and Methods

*e architecture of the proposed detection system consists of
image registration, image sub-block, feature extraction,
feature fusion, and feature matching, as shown in Figure 3.
Initially, some basic image preprocessing methods are in-
troduced and then we describe the detection algorithm using
multi-edge feature fusion in detail. Because the variation of
uneven illumination and deformation between samples can
greatly affect the edge feature extraction, which will lead to
false detection and missed detection, we adopt the feature
fusion method to eliminate the influence of those inter-
ferences. Next, the detection evaluation criteria selected in
this paper are described elaborately. Lastly, we present and
analyze the experiment results.

3.1. Image Registration Using SIFT Feature. *e obtained
original image contains many interference factors, such as
rotation and deformation [32]. *e inconsistency of images

needs to be corrected in advance. In this paper, SIFT feature
is applied to eliminate these variations in original images,
and Figure 4 shows the architecture of image registration
using SIFT feature, including key points, matching images,
and corrected images [33]. We cut off the redundant
boundary with size of 50 pixels directly, and the image
resolution is reduced from 800∗ 550 to 750∗ 500. *e
corrected images are as follows:

Ck(i, j) � Rk(i + 25, j + 25), (1)

where C is the corrected image, i and j are the coordinates of
each pixel, R stands for the registered image, and k is the
image sequence number. *en, we divide the whole image
into several sub-blocks with resolution of 50∗ 50, as shown
in image sub-block step in Figure 3.

3.2. Image Feature Extraction and Feature Matching

3.2.1. Feature Extraction Using Canny Edge Detection
Operator. *emainstream edge detection operators include
Roberts, Sobel, Prewitt, and so on [34]. Robert operator is
sensitive to noise. Prewitt and Sobel operators have better
detection performance on the image with gradual gray level
and low noise, but for the image with mixed multi-complex
noise, the processing effect is not ideal. *e detection effect
of the Canny operator is better than that of the gradient
operator, which can detect the thin edge of the image. *ere
are four processing steps consisting of noise reduction,
gradient calculation, non-maximum suppression, and
double threshold filtering. We can change the edge with
multiple pixel width into a single pixel wide edge and remove
the weak edge to retain the strong edge. *erefore, it is
necessary to select the appropriate operator to detect the
edge feature according to different environmental condi-
tions and requirements. *e output edge images are as
follows:

Bk(i, j) �
0, if Nmsk(i, j)<TL,

1, if Nmsk(i, j)<TH,
􏼨 (2)

where B is the detected edge feature binary image, Nms

represent gradient amplitude images after non-maximum
suppression, i and j are the coordinates of each pixel, and TL
and TH represent high and low thresholds. Figure 5 presents
the edge detection effect of the Canny operator, and the
defective part is marked with a red circle.

3.2.2. Feature Similarity Matching Using Euclidean Distance.
After obtaining the edge features, similarity with feature
matching is used to judge the defect. Firstly, the edge feature
image is reduced to one-dimensional feature vector. *e
formula is as follows:

Fk(i) � Bk(1), Bk(2), Bk(3), . . . , Bk(m × n)􏼈 􏼉, (3)

where F is the one-dimensional eigenvector of edge block
feature, B represents every pixel on the binary edge feature
image, m and n represent the row number and column

Complexity 3



number of feature image, and k is the image sequence
number.

*en, Euclidean distance is used to match the similarity
between two eigenvectors [17]. *e formula of Euclidean
distance is

dist FTemplate, FTest􏼐 􏼑 �

�����������������������

􏽘

m×n

i�1
FTemplate(i) − FTest(i)􏼐 􏼑

2

􏽶
􏽴

,

(4)
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Figure 3: *e architecture of the proposed defect detection system.
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Figure 4: *e architecture of image registration using SIFT feature.
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where dist is the Euclidean distance between two eigen-
vectors with FTemplate and FTest, i represents every element in
two eigenvectors, m and n represent the row number and
column number of feature image, and Template and Test
represent template and test eigenvectors, respectively.

According to the definition of Euclidean distance,
smaller distance between two eigenvectors means greater
similarity. We define the activation function of defect
judgment as follows.

Output �
1, dist FTemplate, FTest􏼐 􏼑> threshold,

0, other.

⎧⎨

⎩ (5)

When the matching result is greater than the threshold
value, the test eigenvector is recognized as defect and 1 is
output.

3.2.3. Fluctuation Analysis of Feature Matching Similarity.
Firstly, we defined feature similarity matching as four types:
(a) single qualified pattern and multiple qualified patterns
matching; (b) single qualified pattern and multiple defect
patterns matching; (c) single defect pattern and multiple
qualified patterns matching; and (d) single defect pattern
and multiple defect patterns matching.

Figure 6 shows the corresponding matching results.
According to analysis of matching results, the four matching
results show uniform fluctuation and there is no obvious
similarity difference between them. It is due to reflection of
pattern surface, uneven external light, and mechanical vi-
bration. *ese images with inconsistent fluctuation can lead
to false detections. In the next section, we will utilize feature
fusion method to eliminate matching similarity fluctuation
between qualified patterns.

3.2.4. Template Establishment and Defect Segmentation.
In order to eliminate the interferences as much as possible,
we propose a multi-template edge feature fusion algorithm
to increase the accuracy of defect identification. *e ar-
chitecture of the proposed method model is shown in
Figure 7, and the formula of feature fusion is expressed as
follows:

FTemplate � F1|F2|. . . |Fn,

FTest � FDefect |FTemplate,
(6)

where FTemplate represents the template feature vector, FDefect
stands for the defect image feature vector, and n is the se-
quence number of template images. *eoretically, the more
the features are fused, the better the robustness of the
template will be, and subsequent experiments will test the
proposed template detection performance with different
fusion sizes.

For visualization of defects, we extract the defect part
using feature image difference, as shown in Figure 7. *e
defect feature is obtained using image difference between
test feature and fusion feature. According to the block
position number, we mark it in the original image to
complete semantic segmentation and display the defect
parts.

4. Results

It is difficult to collect enough defect samples in industrial
production site. We ended up with 4035 complete qualified
images and 135 defective images. Because most of the
samples are defect free, we take 135 of them as a genuine
class. *us, the data used for test experiment contain 135
samples for each type and all the images are divided into
50∗ 50 sub-blocks. *e dataset and some samples are shown
in Table 1 and Figure 8, and the defective parts are marked
with a red circle.

To demonstrate the effect of fusion size on the detection
accuracy, some experiments under different fusion sizes
were carried out, and the results are shown in Table 2. We
designed seven different fusion sizes from 1 to 256. *e two
truth values represent genuine and defective patterns, re-
spectively. Apparently, the detection accuracy increases
significantly when the fusion size becomes larger. However,
when the fusion size is larger than 160, the detection ac-
curacy decreased. *erefore, the optimal fusion size is 160
for this case with accuracy of 95.18%, precision of 94.20%,
and recall of 96.29%. When the feature fusion scale is too
large or too small, it cannot achieve the ideal detection effect,
such as using a single defect pattern for template feature
generation.

In addition, we draw the similarity matching results with
fusion size of 160 in Figure 9.*e horizontal axis is the image
number from 1 to 270, and the vertical axis is the Euclidean
distance of feature matching from 0 to 1. From the distri-
bution characteristics of red dots, there are only 5 missing
detections with a matching result to 0 in the detection results

(a) (b) (c) (d)

Figure 5: Edge detection effect of Canny detection operator: (a) qualified pattern; (b) qualified pattern with Canny edge detection; (c) defect
pattern; (d) defect pattern with Canny edge detection.

Complexity 5



8

7

6

5

4

0 50 100 150 200 250 300

Qualified pattern & Qualified patterns

(a)

Qualified pattern & Defect pattern

0 20 40 60 80 100 120

8

7

6

5

9

140

(b)

8

7

6

5

4
0 50 100 150 200 250 300

Defect pattern & Qualified pattern

(c)

Defect pattern & Defect patterns

6

4

2

0

8

0 20 40 60 80 100 120 140

(d)

Figure 6: *e similarity matching results of different pattern types. (a) *e qualified pattern matches the qualified patterns. (b) *e qualified
pattern matches the defective patterns. (c)*e defective pattern matches the qualified patterns. (d)*e defective pattern matches the defective
patterns.*e horizontal axis represents the number of similarity matches.*e vertical axis represents the similarity matching results (similarity
matching score). In (a), there are 300 red points, and each point represents a matching result. *e block pattern without superposition is a
qualified pattern.*e section superimposed by three block patterns represents the other 300 qualified patterns. In (b), there are 135 red points,
and each point represents a matching result. *e block pattern without superposition is a qualified pattern.*e section superimposed by three
block patterns represents the other 135 defective patterns. In (c), there are 300 red points, and each point represents a matching result. *e
block pattern without superposition is a defective pattern. *e section superimposed by three block patterns represents the other 300 qualified
patterns. In (d), there are 135 red points, and each point represents a matching result. *e block pattern without superposition is a defective
pattern. *e section superimposed by three block patterns represents the other 135 defective patterns.
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Difference
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Figure 7: *e architecture of the proposed feature fusion and defect segmentation model.
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of the first 135 defects on horizontal axis. On the contrary, 8
out of the last 135 qualified images are detected with
matching distance not equal to 0.

*en, we select different thresholds to draw the P-R curve,
as shown in Figure 10. *e results are the same as shown in
Table 2; the detection performance first increases to the green
curve with fusion size 160 and then decreases. *e front four
curves are in a state of underfitting with insufficient amount of
feature information learning and the last two curves are in a
state of overfitting state with too much redundant

information learning.*erefore, toomuch or too little feature
fusion cannot achieve ideal recognition effect. In addition, we
employ average precision (AP) and mean average precision
(mAP) to evaluate the performance of the defect detection
method. When fusion size is 160, the mAP and recall are
92.65% and 96.29%, respectively, as shown in Table 3.

Lastly, we test detection performance of the proposed
method in extended dataset with 4035 patterns and 135
defects. Table 4 shows the experimental results in
asymmetric dataset. *e precision of small-sample dataset

Complete

Pattern defects

Figure 8: Dataset of some printing images used in this paper.

Table 2: *e confusion matrix and evaluation result of defect detection with different fusion sizes.

Confusion matrix, accuracy, precision, and recall with different fusion sizes

Fusion size Truth value
Predicted value

Accuracy (%) Precision Recall
Pattern Defect

1 Pattern 0 135 50.00 1 0
Defect 0 135 50.00% 1

16 Pattern 48 87 67.77 1 35.55%
Defect 0 135 60.81% 1

64 Pattern 110 25 88.88 95.65% 81.48%
Defect 5 130 83.87% 96.29%

128 Pattern 116 19 91.11 95.86% 85.92%
Defect 5 130 87.24% 96.29%

160 Pattern 127 8 95.18 96.21% 94.07%
Defect 5 130 94.20% 96.29%

192 Pattern 127 8 84.81 79.37% 94.07%
Defect 33 102 92.72% 75.55%

256 Pattern 127 8 81.11 74.70% 94.07%
Defect 43 92 92.00% 68.14%

Table 1: *e details of dataset for experiment.

Types Complete Defect Total
Testing set 135 135 270
Original set 4035 135 4170
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is only 31.47%, while it is up to 99.86% in large-sample
dataset.

To demonstrate the effectiveness of themethod proposed
in this paper, a comparison is made for the other detection
methods including non-fusion registration difference and

convolutional neural network (CNN). *e result is shown in
Table 5. *e method proposed in this paper achieves an
accuracy of 93.09% which outperforms other methods. *e
reason for this result is that the low-quality images are not
suitable for the traditional differential detection algorithm
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Figure 9: Similarity matching results with fusion size of 160.
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Figure 10: *e P-R curve with different fusion sizes.

Table 3: mAP and recall of defect detection.

Fusion size Type mAP Recall
160 Defects 0.9265 0.9629
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and it is different to provide sufficient defect training data for
convolutional neural network, which leads to misclassifi-
cation. In this paper, a new multi-edge feature fusion al-
gorithm is used to recognize printing defects in low-quality
datasets, which achieves a higher precision for the industrial
printing image defect detection.

5. Conclusions

In this work, a new defect detection method using multi-
edge feature fusion is proposed to improve the detection
accuracy of low-quality printing images. *e specific con-
tributions are as follows:

(1) We set up a new and more challenging print image
dataset which consists of 4170 images and has more
rotation, deformation, and uneven illumination
changes, compared with the existing printing
database.

(2) *e proposed multi-edge feature fusion algorithm
can effectively distinguish pattern defects and in-
terference changes.

(3) Different feature fusion sizes will greatly affect the
detection accuracy, and we also found that for all
fusion scales, an optimal value exists for the detec-
tion accuracy; too large or too small amount of
fusion information will reduce the overall detection
performance of the system.

*e current detection system mainly solves the problem
of fine edge defect detection of low-quality printing image,
while in further work, the detection system should be
promoted to identify more types of defects. In addition, most
samples of industrial printing products are qualified and
authentic, which leads to unbalanced data types. In future
work, how to collect enough defective images in industrial
production field and how to use machine learning method to
detect defective patterns need to be further studied.
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Megastable chaotic systems are somehow the newest in the family of special chaotic systems. In this paper, a new
megastable two-dimensional system is proposed. In this system, coexisting attractors are in some islands, interestingly
covered by megalimit cycles. *e introduced two-dimensional system has no defined equilibrium point. However, it seems
that the origin plays the role of an unstable equilibrium point. *erefore, the attractors are determined as hidden attractors.
Adding a forcing term to the system, we can obtain chaotic solutions and coexisting strange attractors. Moreover, the effect
of three different values of the forcing term’s amplitude is studied. *e dynamical properties of the designed system are
investigated using attractor plots, bifurcation diagrams, and Lyapunov Exponents diagram. Phase portraits of the novel
megastable oscillator are presented by FPGA design. Xilinx system generator block diagrams of the proposed system and
trigonometric functions are also presented.

1. Introduction

Finding new special chaotic systems or, more specifically, new
systems with special and unique dynamical characteristics has
been an active area of research since about 30 years ago. First,
Sprott has introduced some elegant quadratic three-dimen-
sional chaotic systems [1]. *en, people have tried to find the
simplest cases of special chaotic systems [2]. For example,
chaotic systems with many wings have been designed [3],
simplest jerk systems have been introduced [4], elegant
hyperchaotic systems have been found [5, 6], circulant chaotic

systems have been constructed [7], and symmetric chaotic flows
have been investigated [8, 9].

One crucial point about dynamical systems is the role of
equilibria in them. It was believed that the strange attractors and
unstable equilibrium points have a strong relationship. More
particularly, unstable equilibrium points were supposed to be
the clue for strange attractors. However, finding dissipative
chaotic systems with no equilibria was an exciting discovery
which challenged that confidence [10]. Also, chaotic systems
with stable equilibria changed many conventional beliefs about
the reason for the creation of strange attractors [11]. Systems
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with lines, curves, and surfaces of equilibria came one after
another and shed more light on many unknown points in the
field. Nevertheless, calculating system’s equilibrium points is the
first basic step of analyzing its dynamics.

Multistability is an important phenomenon in dynamical
systems [12], which is a kind of double-edged sword feature.
While it can cause unwanted shifts in a system’s dynamic, it can
provide extra flexibility, e.g., for the control aims. Sometimes the
number of coexisting attractors in amultistable system becomes
infinite. In such a scenario, if those infinite attractors are un-
countable, the system is called extreme multistable [13–15].
Initial conditions play the role of bifurcation parameters in such
systems. However, when those infinite attractors are countable,
the system is called megastable.*e term “megastable” was first
used in [16]. Megastable chaotic systems are somehow the
newest in the family of special chaotic systems [16]. In sum-
mary, the main difference between a megastable system and an
extreme multistable system is in the countability of the system’s
coexisting attractors. In both terms, the number of coexisting
attractors is limitless. Many interesting configurations of
coexisting attractors have been reported in megastable systems
[17].

Hidden and self-excited are types of attractors. Many
research studies have focused on categorizing dynamical
attractors based on them [18–20]. A self-excited attractor
can be detected easily by observing an unstable equilibrium
point in the attractor’s basin of attraction. However, an
attractor with no equilibrium point inside its basin of at-
traction is called hidden [21].

*e analysis of the dynamics of a dynamical system
needs some powerful tools to provide primary information
about the system behaviors in different conditions. In this
way, obtaining the bifurcation diagram is considered as one
of the primary steps of analyzing system’s dynamics. An-
other popular tool for analyzing the dynamics of a system is
the Lyapunov Exponents spectrum (LE diagram). LE is
simply a quantitative measure that can prove the presence of
chaos in a dynamical system [2].

Chaotic systems have many engineering applications.
*ey can be used in image encryption [22], communication
[23], circuits [24], robots [25], and so on [26]. Field pro-
grammable gate array (FPGA) implementation of nonlinear
systems plays a vital role in realizing a system using targeted
hardware. In fact, FPGAs are a kind of chips or gate arrays
that are easy to program. Engineering applications of FPGA
are wired and wireless communication, industrial and
medical systems, military, and aerospace. FPGAs are cost-
effective depending on their families, such as Spartan,
Kintex, and Virtex. Many researchers have shown interest in
FPGA implementation of chaotic systems. *ey have per-
formed the software-hardware interface by implementing
chaotic systems in FPGA [27].

In this paper, a new two-dimensional megastable system
is proposed. *e sections of this paper are arranged as
follows. *e new proposed two-dimensional system is in-
troduced in Section 2. Moreover, the dynamical properties
are explained in that section. Next, Section 3 describes the
FPGA implementation of the proposed system. *e con-
clusion of the paper is presented in Section 4.

2. A New Megastable Chaotic Oscillator

Consider System (1), which is a two-dimensional nonlinear
autonomous oscillator,

_x � − 0.1y + x
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System (1) is symmetric around the origin because the
equations are invariant under the transformation
(x, y)⟶ (− x, − y).

System (1) has no equilibrium points since no points can
be found to solve the equations − 0.1y + x(cos(r)/r) � 0 and
sin(0.1x) + y(cos(r)/r) � 0. However, the origin (0, 0)

mimics an unstable equilibrium. *is system is megastable
since it has infinite countable coexisting attractors (here,
limit cycles).

Figure 1 is a plot of coexisting limit cycles in System (1)
resulted from random initial conditions distributed around
the x-axis. *e formation of these attractors is noticeable.
We can see islands of attractors consisting of 3, 4, and 5 limit
cycles. Surprisingly 11 islands are enclosed by a huge limit
cycle. Due to the attractors’ isolated configuration, the
phrase “islands of attractors” can be used for such systems
attractors. Figure 1 includes both transient and final states of
the trajectories to show the areas of islands more
significantly.

By introducing a periodic external force in the first
equation of System (1), the following forced oscillator is
achieved:

_x � − 0.1y + x
cos(r)

r
+ A sin(ωt),

_y � sin(0.1x) + y
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It is primarily desired to find chaos in System (2). Many
sets of (A,ω) may result in chaos. By trial and error, ω � 0.6
is chosen, and A is considered as the bifurcation parameter.
However, an infinite number of coexisting attractors are
detected. Each attractor can go through different dynamical
regimes during the change in the bifurcation parameter.
*us, two attractors (one around the origin and the other
around the point (60, 0)) are selected, and their occurring
bifurcations are tracked to show such a difference.

Figure 2 shows the bifurcation diagram and LEs diagram
versus A for the nearest attractor around the origin resulted
from the constant initial conditions (0.1, 0). It is seen that
the dynamical solution starts from an attracting torus (one
negative and two zero LEs). After observing limit cycles (two
negative and one zero LEs), chaos occurs (one positive LE).
*en, the dynamic alternates between chaos and limit cycles.
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Figure 3 shows the bifurcation diagram and LEs diagram
versus A for the nearest attractor around the point (60, 0)

resulted from the constant initial conditions (60, 0). It is seen
that the dynamical solutions are different from the previous
attractor. It starts from a limit cycle and continues with it,
encountering narrow areas of chaotic attractor. It occasionally
has an attracting torus in larger values of the parameter.

It should bementioned that the LEs represented in Figures 2
and 3 are plotted and calculated using the Wolf algorithm [28]
with the run time of 2000. Moreover, these two bifurcation
diagrams and LEs diagrams can help comprehend the system
behaviors in two different initial conditions. Furthermore, the
local maxima of the time-series of variable y (ymax, which are
the peaks of the time-series of y ) are considered for plotting the
bifurcation diagrams of the proposed system.

Figure 4 shows coexisting attractors for different values
of the amplitude of the forcing term. While the system can
have different types of attractors (limit cycle, torus, and
strange attractor) simultaneously, increasing the amplitude
makes them become closer and even overlap with each other.

3. FPGA Implementation of Novel
Megastable Oscillator

FPGAs are gate arrays that are programmable, and they can
be designed to meet a special need. FPGAs are also cost-
efficient, and they are simple to design, implement, and fast

prototyping. Some of the recent pieces of the literature on
FPGA design had attracted many researchers, such as
variable-order fractional operator [29], hardware imple-
mentation of the multistable chaotic jerk system [30], FPGA
implementation of self-excited and hidden chaotic systems
[31], the discrete memristor chaotic system realized using
hardware [32], and digital implementation of thememristive
chaotic circuit [33]. Development of the nonlinear system on
an FPGA using VHDL or VERILOG hardware description
language is very work-intensive. It is easy to design the
system using the Xilinx system generator rather than writing
test benches for the VHDL or Verilog HDL programming.
In a Simulink library browser, a separate Xilinx block set
toolbox is readily available to design the system in the Xilinx
system generator platform. Simulink diagrams of Systems
(1) and (2) are shown in Figures 5 and 6 using Xilinx system
generator software. Basic blocks such as adder, subtractor,
multiplier, divider, constant multiplier, and square root are
used to design the proposed system in FPGA. All Xilinx
block sets are different fromMATLAB Simulink blocks with
the Xilinx logo in them. Additional blocks are created to
represent trigonometric functions present in the proposed
system. By applying the Taylor series (equations (3) and (4)),
trigonometric functions are implemented using the readily
available (XSG) Xilinx System Generator block sets, which is
shown in Figure 7 (sine function) and Figure 8 (cosine
function). All these blocks used to design the proposed
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Figure 1: Coexisting limit cycles in System (1) resulted from random initial conditions distributed around the x-axis. Islands of attractors
can be observed, consisting of 3, 4, and 5 limit cycles. Surprisingly 11 islands are enclosed by a huge limit cycle. *e transients are shown in
cyan, and steady states are shown in dark blue.
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system are configured according to the IEEE754 standard,
and the step size h � 0.01 is set. Integrator blocks of the state
equations are designed using Forward Euler’s Method, and

the mathematical equation to design integrators is expressed
in equation (5). A set of discretized system equations are
stated in equations (6) and (7).
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cosine function based on equation (4).
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Figure 9: Phase portraits in the plane (x, y) for System (1) illustrating megastability obtained by considering random initial conditions
distributed around the x-axis. For all initial conditions, the final state represents a limit cycle.
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Figure 10: Phase portrait in the plane (x, y) for System (2) illustrating megastability obtained by considering random initial conditions
distributed around the x-axis. *e frequency of the forcing term is ω � 0.6, and the amplitude A � 2. Adding a forcing term can make the
system exhibit various dynamics.
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Figure 11: Phase portrait in the plane (x, y) for System (2) illustrating megastability obtained by considering random initial conditions
distributed around the x-axis.*e frequency of the forcing term is ω � 0.6, and the amplitude A � 4.3. Adding a forcing term can make the
system exhibit various dynamics.
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xn+1 � xn + h − 0.1yn− 1 + xn− 1
cos(r)

r
􏼢 􏼣yn+1

� yn + h sin 0.1xn− 1( 􏼁 + yn− 1
cos(r)

r
􏼢 􏼣, where r �

������

x
2

+ y
2

􏽱

,

(6)

xn+1 � xn + h − 0.1yn− 1 + xn− 1
cos(r)

r
+ A sin(ωt)􏼢 􏼣yn+1

� yn + h sin 0.1xn− 1( 􏼁 + yn− 1
cos(r)

r
􏼢 􏼣, where r �

������

x
2

+ y
2

􏽱

.

(7)

A system generator token is an important block that is
dragged from the Xilinx block set library, which has
information about the system generator model, through
which it is possible to interface with the Vivado design
tool to create an RTL design of the system. *e phase
planes of the proposed System (1) are shown in Figure 9,
and the phase planes of System (2) are shown in
Figures 10–12, which are obtained while running the
system generator by changing initial conditions dis-
tributed around the x-axis.

4. Conclusion

A megastable system, the newest in the family of special
chaotic systems, was designed and proposed. It was two-
dimensional flow coexisting attractors in some islands,
interestingly covered by megalimit cycles. No equilib-
rium point was found for the proposed two-dimensional
system. However, the origin (0, 0) acted like an unstable
point. Adding a forcing term to the proposed system,
chaotic solutions and coexisting strange attractors were
obtained. Different behaviors were observed by altering
the amplitude of the forcing term. Since the system was
found to have no equilibrium point, the attractors were

considered in the category of hidden attractors. *e
dynamical properties of this new system were investi-
gated utilizing some tools such as attractor plots, bi-
furcation diagrams, and LEs diagrams. Two bifurcation
and LEs diagrams were plotted to show the effect of initial
conditions in the system’s behaviors and dynamics. Phase
portraits of the novel megastable oscillator were pre-
sented by FPGA design. Xilinx system generator block
diagrams of the proposed system and trigonometric
functions were also presented. *e proposed system is a
low-dimensional system with the ability to exhibit chaos
by adding a forcing term. So, it can be used in some
applications, such as a random number generator or
image encrypting as future works.
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the respective text part, and there are no additional data
requirements for the simulation results.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

-600 -550 -500 -450
X

16

14

12

10

8

6

4

2

Y

(c)

10

5

0

-5

-10
-160 -140 -120

X
-100 -80

Y

(d)

Figure 12: Phase portrait in the plane (x, y) for System (2) illustrating megastability obtained by considering random initial conditions
distributed around the x-axis.*e frequency of the forcing term is ω � 0.6, and the amplitude A � 9.7. Adding a forcing term can make the
system exhibit various dynamics.

Complexity 9



Acknowledgments

*e authors extend their gratitude to the Deanship of Sci-
entific Research at King Khalid University for funding this
work through the research group program under grant
number R. G. P. 2/48/42.

References

[1] J. C. Sprott, “Some simple chaotic flows,” Physical Review E,
vol. 50, no. 2, pp. R647–R650, 1994.

[2] J. C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows,
World Scientific, Singapore, 2010.

[3] Q. Deng, C.Wang, and L. Yang, “Four-wing hidden attractors
with one stable equilibrium point,” International Journal of
Bifurcation and Chaos, vol. 30, Article ID 2050086, 2020.

[4] J. C. Sprott, “Some simple chaotic jerk functions,” American
Journal of Physics, vol. 65, no. 6, pp. 537–543, 1997.

[5] C. Xu, J. Sun, and C. Wang, “An image encryption algorithm
based on random walk and hyperchaotic systems,” Interna-
tional Journal of Bifurcation and Chaos, vol. 30, Article ID
2050060, 2020.

[6] Q. Wan, Z. Zhou, W. Ji, C. Wang, and F. Yu, “Dynamic
analysis and circuit realization of a novel no-equilibrium 5D
memristive hyperchaotic system with hidden extreme mul-
tistability,” Complexity, vol. 2020, Article ID 7106861,
16 pages, 2020.

[7] K. Rajagopal, M. E. Cimen, S. Jafari et al., “A family of cir-
culant megastable chaotic oscillators, its application for the
detection of a feeble signal and PID controller for time-delay
systems by using chaotic SCA algorithm,” Chaos, Solitons &
Fractals, vol. 148, Article ID 110992, 2021.

[8] T. Lu, C. Li, X. Wang, C. Tao, and Z. Liu, “A memristive
chaotic system with offset-boostable conditional symmetry,”
=e European Physical Journal Special Topics, vol. 229, no. 6-7,
pp. 1059–1069, 2020.

[9] Z. Gu, C. Li, X. Pei, C. Tao, and Z. Liu, “A conditional
symmetric memristive system with amplitude and frequency
control,” =e European Physical Journal Special Topics,
vol. 229, no. 6-7, pp. 1007–1019, 2020.

[10] Z. Wei, “Dynamical behaviors of a chaotic system with no
equilibria,” Physics Letters A, vol. 376, no. 2, pp. 102–108,
2011.

[11] M. Molaie, S. Jafari, J. C. Sprott, and S. M. R. Hashemi
Golpayegani, “Simple chaotic flows with one stable equilib-
rium,” International Journal of Bifurcation and Chaos, vol. 23,
Article ID 1350188, 2013.

[12] A. N. Pisarchik and U. Feudel, “Control of multistability,”
Physics Reports, vol. 540, no. 4, pp. 167–218, 2014.

[13] H. Lin, C. Wang, and Y. Tan, “Hidden extreme multistability
with hyperchaos and transient chaos in a hopfield neural
network affected by electromagnetic radiation,” Nonlinear
Dynamics, vol. 99, no. 3, pp. 2369–2386, 2020.

[14] M. Chen, Y. Feng, H. Bao et al., “Hybrid state variable in-
cremental integral for reconstructing extrememultistability in
memristive jerk system with cubic nonlinearity,” Complexity,
vol. 2019, Article ID 8549472, 16 pages, 2019.

[15] M. Chen, M. Sun, H. Bao, Y. Hu, and B. Bao, “Flux–charge
analysis of two-memristor-based chua’s circuit: dimension-
ality decreasing model for detecting extreme multistability,”
IEEE Transactions on Industrial Electronics, vol. 67,
pp. 2197–2206, 2019.

[16] J. C. Sprott, S. Jafari, A. J. M. Khalaf, and T. Kapitaniak,
“Megastability: coexistence of a countable infinity of nested

attractors in a periodically-forced oscillator with spatially-
periodic damping,” =e European Physical Journal Special
Topics, vol. 226, no. 9, pp. 1979–1985, 2017.

[17] Z. Wang, H. R. Abdolmohammadi, M. Chen et al., “A new
megastable chaotic oscillator with singularity,” =e European
Physical Journal Special Topics, vol. 229, no. 12-13,
pp. 2341–2348, 2020.

[18] M. F. Danca, N. V. Kuznetsov, and G. Chen, “Approximating
hidden chaotic attractors via parameter switching,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 28, Article
ID 013127, 2018.

[19] S. Cang, Y. Li, R. Zhang, and Z. Wang, “Hidden and self-
excited coexisting attractors in a lorenz-like system with two
equilibrium points,” Nonlinear Dynamics, vol. 95, no. 1,
pp. 381–390, 2019.

[20] M. Chen, C. Wang, H. Bao et al., “Reconstitution for inter-
preting hidden dynamics with stable equilibrium point,”
Chaos, Solitons & Fractals, vol. 140, Article ID 110188, 2020.

[21] G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev,
“Homoclinic orbits, and self-excited and hidden attractors in
a lorenz-like system describing convective fluid motion,” =e
European Physical Journal Special Topics, vol. 224, no. 8,
pp. 1421–1458, 2015.

[22] E. Tlelo-Cuautle, V. H. Carbajal-Gomez, P. J. Obeso-Rodelo,
J. J. Rangel-Magdaleno, and J. C. Núñez-Pérez, “FPGA re-
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R. F. Escobar-Jiménez, and H. M. Romero-Ugalde, “FPGA
implementation and control of chaotic systems involving the
variable-order fractional operator with mittag-leffler law,”
Chaos, Solitons & Fractals, vol. 115, pp. 177–189, 2018.

[30] H. Chen, S. He, A. D. Pano Azucena et al., “A multistable
chaotic jerk system with coexisting and hidden attractors:
dynamical and complexity analysis, FPGA-based realization,
and chaos stabilization using a robust controller,” Symmetry,
vol. 12, no. 4, p. 569, 2020.

[31] K. Rajagopal, F. Nazarimehr, A. Karthikeyan, A. Srinivasan,
and S. Jafari, “CAMO: self-excited and hidden chaotic flows,”

10 Complexity



International Journal of Bifurcation and Chaos, vol. 29, no. 11,
Article ID 1950143, 2019.

[32] A. Karthikeyan and K. Rajagopal, “FPGA implementation of
fractional-order discrete memristor chaotic system and its
commensurate and incommensurate synchronisations,”
Pramana, vol. 90, no. 1, p. 14, 2018.

[33] B. Karakaya, A. Gülten, and M. Frasca, “A true random bit
generator based on a memristive chaotic circuit: analysis,
design and FPGA implementation,” Chaos, Solitons &
Fractals, vol. 119, pp. 143–149, 2019.

Complexity 11


