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In order to study the construction effect of deep and large foundation pit excavation and its impact on the surrounding en-
vironment under complex stratum conditions, the deep and large foundation pit of the top-down construction method of shield
exit shaft of S2 line of Wenzhou City railway is taken as the research object in this paper. According to the complex geological
conditions of deep soft soil layer with underlying inclined rock surface in Wenzhou, the numerical simulation method is used to
carry out the related research. /e simulation results of the deformation characteristics of the diaphragm wall under two different
working conditions which are the same length diaphragm wall and the suspended foot diaphragm wall are compared and
analyzed. According to the analysis results, the suspended foot diaphragm wall is determined as the final construction scheme of
the diaphragmwall, and it is verified by fieldmeasurement./e research results can provide technical support for the construction
of similar projects. At the same time, it can also provide basic accumulation for the construction of major projects in Wenzhou.

1. Introduction

With the construction of the urban underground track, a
large number of foundation pit projects appear. Foundation
pit engineering is a multidisciplinary system engineering
involving structural engineering, engineering mechanics,
soil mechanics, foundation engineering, engineering mon-
itoring technology, and construction organization man-
agement. It is a complex technology with two branches of
civil engineering, which are architectural engineering and
geotechnical engineering [1]. Generally, the regional geo-
logical conditions of foundation pit engineering are rela-
tively poor, generally weak, or weak soil layers, and the
occurrence and change forms of groundwater are diverse,
such as the southeast coast of China. In this case, the key
links of foundation pit engineering construction, including
excavation, support, and dewatering, are often complex,
which is a highly risky and challenging topic in the field of

geotechnical engineering [2]. /e traditional excavation
method of foundation pit is sloping excavation; that is, large
open excavation without support structure or vertical ex-
cavation after certain support measures (such as anchor
support, retaining wall support, and pile wall support) is
adopted. After reaching the predetermined excavation
depth, the concrete bottom plate is poured, and then the
construction method is from bottom to top, or a combi-
nation of the two, and the sloping excavation is adopted for
the upper part, the lower part adopts the construction
method of support and excavation [3]. Although the above
excavation methods are simple and fast, they have high
requirements for engineering geological conditions,
hydrogeological conditions, sloping excavation space, and
excavation depth and are not suitable for the construction of
underground space in large cities with poor hydrogeological
conditions and dense populations. Under this background,
the top-down construction method of the foundation pit

Hindawi
Advances in Civil Engineering
Volume 2022, Article ID 2576122, 24 pages
https://doi.org/10.1155/2022/2576122

mailto:846765019@qq.com
https://orcid.org/0000-0002-8768-6361
https://orcid.org/0000-0003-2364-8873
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2576122


came into being. Its important feature is how to deal with the
sliding resistance, horizontal resistance, and vertical load
capacity of the basement structure. /e common method to
transfer the vertical load to the foundation is to use the frame
column or Qiao. At this time, the outer wall of the basement
can be served by the diaphragm wall. Italy is the first country
in the world to have the reverse practice, and then, it has
gradually developed in western developed countries such as
the United States and Japan. So far, many engineering
practices show that the top-down construction method of
foundation pit is an effective construction method for
multistorey underground space structures of buildings and
roads in big cities [4,5].

So far, the pace of theoretical research on the top-down
construction method is relatively slow, showing the phe-
nomenon that theoretical research lags behind engineering
practice [6–10]. /ere are three main research methods: (1)
using many engineering practices and the basic theory of soil
mechanics to summarize the engineering experience and
practical methods, (2) using engineering monitoring tech-
nology and field test to capture the information of moni-
toring points during construction, and (3) the finite element
simulation of the project carried out by using computer
technology. /e research contents mainly include the fol-
lowing: research on water and soil pressure and deformation
around foundation pit; research on stress, strain, and dis-
placement of foundation pit support structure; and study on
the settlement difference between intermediate pile (col-
umn) and diaphragm wall.

In the study of soil displacement, Hsieh and Ou [11]
fitted and analyzed 9 foundation pit engineering exam-
ples with different support methods of top-down con-
struction method and down-top construction method
and considered that the conclusion of soil deformation
law caused by down-top construction method can be
applied to the top-down construction method. Yoo and
Lee [12] used the hardening soil constitutive model to
establish a two-dimensional numerical model to study the
characteristics of surface soil displacement. In the study
of internal force and deformation of foundation pit
retaining structure, Bose and Som [13] used numerical
simulation to study the influence of diaphragm wall
height, excavation width, and support structure prestress
on foundation pit excavation; Ng et al. [14] used the
Cambridge model to study the excavation process and
results of multisupport foundation pit in cohesive soil,
compared with the actual project, and obtained some
meaningful conclusions; Finno et al. [15] studied the
influence of foundation pit excavation on soil deforma-
tion and the influence of foundation pit support structure
on pore water pressure by means of a test. /e focus or
foundation of the research on the differential settlement
of top-down construction method lies in the research on
pile foundation settlement theory. Poulos has made
outstanding contributions in this regard. /e Poulos
elastic theory model established by Poulos has been used
for reference by many scholars [16]. Because the elastic
theory method assumes that the soil layer is uniform and
the stiffness is constant, it can not reflect the anisotropy

and stratification characteristics of the actual foundation
soil. On this basis, scholars at home and abroad introduce
correction factors to modify and supplement Poulos’s
elastic theory model in varying degrees according to the
actual formation conditions.

In addition, as an important retaining structure of the
foundation pit, the diaphragm wall has the advantages of
good overall, large stiffness, and convenient construction.
It is still loved by builders. Bolton and Powrie [17] de-
scribed the construction and foundation pit design
mechanism by using an indoor centrifuge test and studied
the behavior of diaphragm wall before foundation pit in-
stability, including surface settlement outside the foun-
dation pit and bending moment of the diaphragm wall. Ou
et al. [18] conducted field measurement on the foundation
pit excavated by the top-down construction method, an-
alyzed the data, and concluded that the horizontal dis-
placement of soil close to the diaphragm wall is similar to
that of the wall. Graham [19] simulated and studied the
deformation of diaphragm walls during foundation pit
construction and analyzed the law of wall displacement and
internal force. Wang et al. [20] analyzed a large number of
field-measured data of ground connecting wall deforma-
tion in foundation pit and pointed out that the deformation
of ground connecting wall in top-down construction
method is smaller than that in the forward method. Xu et al.
[21] analyzed the deformation law of diaphragm walls in
different foundation pit projects by studying a large
number of practical projects using diaphragm walls as a
support structure in the deep foundation pit in Shanghai.
Qiu et al. [22] established a practical engineering numerical
model through the finite element numerical simulation
research method to simulate the excavation process of the
foundation pit and found that the greater the excavation
depth of the foundation pit, the greater the deformation of
the diaphragm wall.

To sum up, although the construction technology and
relevant theories of the top-down construction method have
achieved certain results and the application has been pop-
ularized, it is still applied as a special construction method,
which is mainly used when there are special requirements for
the project, or when the traditional method can not meet the
requirements and is very uneconomic. At the same time, the
combined action of the diaphragm wall and top-down
construction method can reduce the deformation of the
foundation pit. /e deformation law of the diaphragm wall
provides guidance for subsequent foundation pit design and
construction and ensures the safety of foundation pit con-
struction. In this paper, based on the top-down construction
method of deep foundation pit for shield exit shaft of S2 line
of Wenzhou City railway, aiming at the complex geological
conditions of deep soft soil layer with underlying inclined
rock surface in Wenzhou, the deformation characteristics of
different diaphragm walls (diaphragm wall with the same
length and suspended foot diaphragm wall) are compared
and analyzed by using numerical simulation method, and
the suitable construction scheme of diaphragm wall is de-
termined, It can provide a reference for foundation pit
engineering under similar geological conditions.

2 Advances in Civil Engineering



2. Project Overview

/e project is located at the mouth of Oujiang River,
connecting Qitoushan, Huanghua Town, Yueqing City, and
Lingkun Town, Longwan District. It is an important part of
line S2 of the Wenzhou City railway. /e shield tunneling
method is used for construction. /e tunnel location is
shown in Figure 1. Jiangbei’s working shaft is the exit shaft of
the shield tunnel, and foundation pit engineering is an
important construction item of the Oujiang North portal
tunnel. /e length of the foundation pit is 43m, the width is
21.9m or 27.6m, the excavation depth is 51.63m (as shown
in Figure 2), and the excavation depth is 51.63m. Jiangbei
working well is located in the deep muddy soil layer of the
Oujiang shoal area./e upper part is the muddy soil and clay
layer, and its thickness is about 46m. /ere is a deep riprap
layer in the middle and a weakly weathered tuff layer in the
lower part. /e rock surface is horizontally extroverted, and
the geological conditions are complex (as shown in Fig-
ure 3). /e foundation pit is protected by diaphragm wall,
the thickness of the diaphragm wall is 1.5m, the width of the
standard section is generally 5.5m, the length of the local
special-shaped diaphragm wall is adjusted appropriately (as
shown in Figure 4), and the reinforced concrete ring frame
beam and each floor plate are used as support (as shown in
Figure 5).

To sum up, the deep foundation pit engineering of
Jiangbei working well is the deepest foundation pit in
Zhejiang Province, and it faces multiple complex geology.
/erefore, how to carry out diaphragm wall construction
and foundation pit excavation and support under complex
geological conditions and effectively control the deforma-
tion of foundation pit to ensure construction safety has
become a construction difficulty of this project, which is also
the research focus of this paper. In this paper, the numerical
simulation method is used to compare and analyze the
construction effect of the top-down method of diaphragm
wall foundation pit under different working conditions and,
finally, determine the best design scheme of diaphragm wall
construction and foundation pit excavation and support
suitable for the project.

3. Research on Numerical Simulation

Midas GTS software is used in numerical simulation, which
can carry out two-dimensional and three-dimensional finite
element numerical modeling for geotechnical engineering
and analyze the stress and deformation of structural com-
ponents and soil materials in engineering. /e simulation
results are very similar to the measured data.

3.1. Numerical Model

3.1.1. Model Size. According to the actual size of the
foundation pit, the calculation model diagram is established,
as shown in Figure 3./e length of the foundation pit relying
on the project is 43m, the left width is 21.9m, the right width
is 27.6m, and the excavation depth is 51.63m. According to
the previous modeling experience, the size of the foundation

pit model can generally be 3–5 times the excavation depth of
the foundation pit [23]. Finally, the overall size of the
foundation pit model is determined as the length is 287m,
the width is 227.6m, and the height is 100m.

3.1.2. Formation Treatment Method. According to the de-
tailed investigation report of the Oujiang North portal
tunnel, the stratum is fine layered. /rough sorting out and
merging the soil materials with similar properties, the soil
materials are divided into five different layers, and the
modified Mohr-Coulomb constitutive model is adopted for
the soil materials. /e material parameters of each layer are
shown in Table 1. (Note: the parameters that cannot be
provided in the geological survey report are calculated by the
empirical method. /e other two stiffness properties can be
selected according to the compression modulus of a certain
ratio. Generally, the secant modulus is equal to the tangent
modulus and three times the compression modulus.)

For the inclined rock surface, according to the geological
survey data, the inclined rock surface is diagonally inclined,
and the slope of the rock surface is not uniform. It is difficult
to model and simulate according to the actual trend, and
there are many irregular grid cells, which lead to poor quality
of the grid and reduce the simulation speed. In order to meet
the needs of simulation calculation, according to the depth
of the rock surface around the foundation pit determined by
the survey, after determining the depth of the weathered
rock at the interface between the rock surface and the
foundation pit, the rock surface trend inside the foundation
pit is determined by the slope average method, and the rock
surface trend outside the foundation pit is extended
according to the slope inside the foundation pit to form the
internal rock surface trend of the model. /e size of the
completed model is shown in Figure 6.

3.2. Selection of Structural Elements andMaterial Parameters.
/e supporting structure of the deep foundation pit in
Beikou well is mainly the diaphragm wall, supporting plate,
and reinforced concrete ring frame beam, as shown in
Figure 5. /e elastic constitutive model is selected for all
supporting structures, in which the diaphragmwall and each
floor structure adopt a two-dimensional plate element,

Figure 1: Schematic diagram of the location of Oujiang Beikou
tunnel.
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which is extracted from the three-dimensional solid element.
/e reinforced concrete ring frame beam is mainly flexural,
and its length is larger than the cross-sectional area, so a one-

dimensional beam element is adopted, which is extracted
from the three-dimensional solid element. /e material
parameters of the supporting structure are shown in Table 2.
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Figure 3: Geological profile of Jiangbei working well.

Figure 2: Layout map of Jiangbei working well.
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3.3. Boundary Conditions and Mesh Generation. In the
length direction (X direction) of the model, the displacement
of the X-axis is limited, that is, u� 0, v≠ 0, and w≠ 0. In the
width direction (Y direction), the displacement of the Y-axis
is limited, that is, u≠ 0, v � 0, and w≠ 0. In the height di-
rection (z direction), the upper boundary of the model is
free, i.e., unrestricted, and the lower boundary of the model
is fully constrained, i.e., u� 0, v � 0, and w � 0 (U is the
displacement in the X direction, V is displacement in the Y
direction, and W is displacement in the Z direction). In this
model, a hybrid grid is used.

3.4. Determination of Simulated Construction Process of Top-
Down Method. /e deep foundation pit is constructed by
the top-down method. According to the design and con-
struction technology of the foundation pit, the foundation
pit excavation is simulated according to the actual tech-
nology. /e foundation pit excavation is divided into 12
steps, and the specific construction process is shown in
Table 3.

3.5. Determination of Simulation Conditions. According to
the needs of the project, the following two comparative
conditions are determined for research: ① the bottom of
the diaphragm wall is at the same elevation and ② sus-
pended foot diaphragm wall. /e construction procedures
of the two conditions are shown in Table 3. According to
the needs of simulation, the horizontal displacement,
bending moment deformation and surrounding ground
settlement of diaphragm wall are selected as the con-
struction effect indexes.

3.6. Calculation Assumption. In this paper, based on the
foundation pit of the exit well of the project, the calculation
model is established considering the surrounding soil.
According to the actual stratum situation and the calculation
needs of the model, the following assumptions are made.①
/e soil is isotropic and evenly distributed, and the soil is
isotropic and uniformly distributed.②/e influence of the
surrounding environment induced by diaphragm wall
construction is not considered. ③ /e influence of soil
drainage consolidation and groundwater seepage is not
considered.

4. Numerical Simulation of Construction
EffectofDiaphragmWallFoundationPitwith
Top-Down Method under Different
Working Conditions

4.1.Numerical SimulationStudyonConstructionEffect ofTop-
Down Construction Method for Foundation Pit with Dia-
phragm Wall of the Same Length. /e foundation pit con-
struction is divided into 12 steps, and there are many
excavation conditions. In the simulation, the first, third,
fifth, seventh, and tenth excavation is selected (corre-
sponding to the process number in Table 3 is third, fifth,
seventh, ninth, and twelfth). /ese five excavation condi-
tions are used to study and analyze the foundation pit
construction effect.

4.1.1. Design of Diaphragm Wall with the Same Length.
/e excavation depth of the foundation pit is 51.63m, which
belongs to a super deep foundation pit with a weak stratum.
/e original design diaphragm wall of the foundation pit is
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the same length diaphragm wall. /e diaphragm wall is
made of C45 waterproof concrete, with the bottom at the
same elevation, the depth of 59.80m, and the thickness is
1.5m, as shown in Figure 7.

4.1.2. Analysis of Horizontal Displacement Simulation Results
of Diaphragm Wall with the Same Length. /e horizontal
displacement contour plot of the diaphragm wall with the
same length under five excavation conditions is shown in

Table 1: Material parameters of soil layer.

Number Layer Layer thickness (m) Compression
modulus (MPa) Poisson’s ratio Unit weight (kN/m3) Cohesion (kPa) Internal

friction angle (°)
① Silt 1 18 1.97 0.30 18 6.05 2.93
② Silt 2 14 2.09 0.30 15 6.38 3.11
③ Clay 1 14.8 2.98 0.40 20 10.23 3.10
④ Clay 2 3.18 3.80 0.35 18 12.45 7.58
⑤ Tuff 1.65 500.00 0.30 23 20.00 33.00

Figure 5: Section diagram of foundation pit supporting structure.
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Figure 8. In the contour plot, the one on the left is the west
wall, and the one on the right is the east wall (the same
below).

/e horizontal displacement data of the diaphragm wall
under five excavation conditions obtained from Figure 8 are
sorted and analyzed, and the depth-displacement curve of
the diaphragm wall can be obtained, as shown in Figure 9,
and the maximum horizontal displacement and depth data
of diaphragm wall can be summarized into a table, as shown
in Table 4.

It can be seen from the above that the horizontal
displacement of the diaphragm wall is small in the first

excavation. With the excavation of the foundation pit, the
pouring of intermediate plate structure, and the support of
ring frame beam, the horizontal displacement curve of
diaphragm wall forms the deformation law of “small at
both ends, large in the middle.” /e maximum horizontal
displacement of the east wall is larger than that of the west
wall, which is due to the existence of an inclined rock
surface, and the displacement and deformation laws of the
east and west walls are basically the same. With the increase
of the excavation depth of the foundation pit, the maxi-
mum horizontal displacement of the diaphragm wall in-
creases continuously, and the position of the maximum

Figure 6: Overall calculation model of foundation pit.

Table 2: Material parameters of supporting structure.

Structure name Element
type

Constitutive
model

Modulus of elasticity
(kN/m2)

Poisson’s
ratio

Unit weight
(kN/m3)

/ickness/diameter
(m)

Diaphragm wall Plate Elastic 32500000 0.2 24.5 1.5
Ring frame beam Beam Elastic 32500000 0.2 24.5 3.5×1.8
Top plate/middle
plate Plate Elastic 32500000 0.2 24.5 0.4

Floor Plate Elastic 32500000 0.2 24.5 3

Table 3: Details of construction procedures.

Process
number Process node

1 /e original stratum is established, and the initial stress is analyzed by applying boundary constraint and self-weight load
2 Activate diaphragm wall and clear displacement
3 /e first excavation to −2.000m activates the first ring frame beam and roof

4 /e second excavation was to −7.700m, and the second ring frame beam and the middle slab of the negative first floor
were activated

5 After the third excavation to −13.400m, the third ring frame beam and the middle slab of the second floor were activated
6 /e fourth excavation to −19.750m, the fourth ring frame beam and the negative third floor slab were activated
7 /e fifth excavation to −24.550m, the fifth ring frame beam and the negative fourth floor slab were activated
8 /e sixth excavation was to −28.895m, and the sixth ring frame beam and the middle slab of the fifth floor were activated

9 /e seventh excavation was carried out to −34.145m, and the seventh ring frame beam and the middle slab of the sixth
floor were activated

10 /e eighth excavation to −38.945m, the eighth ring frame beam and the negative seventh floormiddle plate were activated

11 /e ninth excavation was carried out to −43.575m, and the ninth ring frame beam and the middle slab of the eighth floor
were activated

12 /e tenth excavation to −51.630m, the floor was activated
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horizontal displacement moves downward. Due to the
constraint of rock on the diaphragm wall, the final max-
imum horizontal displacement is above the excavation

surface, and the maximum horizontal displacement is
about 3/5∼3/4 times of the final excavation depth of the
foundation pit.
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Figure 8: /e horizontal displacement contour plot of the diaphragm wall with the same length under five excavation step conditions.
(a) /e first excavation step. (b) /e third excavation step. (c) /e fifth excavation step. (d) /e seventh excavation step. (e) /e tenth
excavation step.

Figure 7: Schematic diagram of the bottom-level wall-to-wall model.
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4.1.3. Analysis of the Bending Moment Simulation Results of
Diaphragm Wall with the Same Length. /e bending mo-
ment contour plot of the diaphragm wall under five exca-
vation conditions is shown in Figure 10.

/e depth-bending moment curve of the diaphragm wall
can be obtained by sorting and analyzing the bending
moment data of the diaphragm wall under five excavation
step conditions, as shown in Figure 11, and the maximum
bending moment and depth data of the diaphragm wall can
be summarized into a table, as shown in Table 5.

It can be seen from the above that the bending moment
of the diaphragm wall is small in the first excavation, and
there is a reverse bending point. With the progress of
excavation, the bending moment of the diaphragm wall
increases gradually, and the bending moment in the final
excavation stage decreases slightly compared with that in
the previous stage. /e maximum positive moment is
larger than the maximum negative moment at each ex-
cavation stage. Due to the existence of inclined strata, the
maximum bending moment of the east wall is larger than

that of the west wall in each excavation stage, and the
deformation law of the east wall and the west wall is
basically the same, but asymmetric. With the increase of
the excavation depth of the foundation pit, the maximum
positive (negative) bending moment of the diaphragm
wall increases continuously (except for the tenth exca-
vation). During the tenth excavation, the maximum
positive bending moment of the diaphragm wall de-
creases, the position of the maximum positive bending
moment first moves down and then rises, the original
position remains unchanged, and the position of the
maximum negative bending moment does not change
with the change of excavation stage. In each excavation
stage, the maximum positive bending moment of the
diaphragm wall is larger than the maximum negative
bending moment. /e maximum positive bending mo-
ment of the diaphragm wall is about 7/10∼3/4 times of the
final excavation depth of the foundation pit, and the
maximum negative bending moment is about 4/5∼49/50
times of the final excavation depth of the foundation pit.

Table 4: Summary of the corresponding depth of the maximum horizontal displacement of the ground connecting wall.

Working procedure
Diaphragm wall (west) Diaphragm wall (east)

Maximum horizontal
displacement (mm)

/e depth of
diaphragm wall (m)

Maximum horizontal
displacement (mm)

/e depth of
diaphragm wall (m)

/e first excavation step (−2.000m) 0.145 −11.96 −0.364 −11.96
/e third excavation step (−13.400m) 2.171 −20.93 −5.171 −23.92
/e fifth excavation step (−24.550m) 6.537 −29.90 −16.581 −32.89
/e seventh excavation step (−34.145m) 8.126 −32.89 −21.666 −35.88
/e tenth excavation step (−51.630m) 8.256 −32.89 −22.341 −38.87
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Figure 9: /e horizontal displacement curve of the diaphragm wall. (a) West wall. (b) East wall.
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4.1.4. Analysis of Ground Settlement Simulation Results of
Diaphragm Wall with the Same Length. /e contour plot of
soil surface settlement and deformation under five exca-
vation conditions is shown in Figure 12.

By sorting and analyzing the simulated data of soil
surface settlement under five excavation conditions, the
surface settlement distance curve from the foundation pit
can be obtained, as shown in Figure 13, and the data of the
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Figure 11: /e bending moment curve of the diaphragm wall. (a) West wall. (b) East wall.
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Figure 10: /e bending moment contour plot of suspended diaphragm wall under five excavation step conditions. (a) /e first excavation
step. (b) /e third excavation step. (c) /e fifth excavation step. (d) /e seventh excavation step. (e) /e tenth excavation step.
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Table 5: Summary of maximum bending moment corresponding to the depth of the ground wall.

Working procedure
Diaphragm wall (west) Diaphragm wall (east)

Maximum bending
moment (kN·m/m)

/e depth of the
diaphragm wall (m)

Maximum bending
moment (kN·m/m)

/e depth of the
diaphragm wall (m)

/e first excavation step
(−2.000m) 349.896/−269.976 −35.88/−44.85 497.000/−300.185 −38.87/−50.83

/e third excavation step
(−13.400m) 757.587/−449.852 −26.91/−44.85 1127.313/−511.097 −20.93/−50.83

/e fifth excavation step
(−24.550m) 2024.333/−1214.235 −29.90/−44.85 3480.993/−1632.490 −32.89/−50.83

/e seventh excavation
step (−34.145m) 2518.406/−1831.024 −35.88/−44.85 4609.055/−3168.472 −38.87/−50.83

/e tenth excavation step
(−51.630m) 2462.475/−838.087 −35.88/−44.85 4271.144/−3594.525 −38.87/−50.83

Remarks
Among the maximum bending moments in the table, the maximum positive bending moment value is before
“/,” and the maximum negative bending moment value is after “/,” respectively, corresponding to the depth of

the diaphragm wall
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Figure 12: Continued.
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location of the maximum surface settlement can be sum-
marized into a table, as shown in Table 6.

/rough comprehensive analysis of Figures 12 and 13
and Table 6, the following conclusions can be obtained:

(1) During the first excavation, the surface settlement of
the soil is very small. /e maximum surface settle-
ment of the soil on the east and west sides is about
0.5mm. /e maximum settlement is located 10m
away from the edge of the foundation pit, and the
settlement beyond 20m is almost zero.

(2) During the third excavation, the soil surface settle-
ment increased, and the maximum settlement was
about 4.0∼4.5mm. /e soil surface settlement po-
sition changed, all located 15m away from the edge
of the foundation pit, and the soil surface settlement
outside 60m was small.

(3) During the fifth excavation, the surface settlement of
the soil continued to increase, and the maximum
surface settlement was about 11.0mm, an increase of
about twice that of the third excavation, which was
consistent with the sudden increase of the horizontal
displacement and a bending moment of the dia-
phragm wall during the fifth excavation. Due to the
deformation law of the diaphragm wall, the surface
also had a large settlement. /e maximum surface
settlement position of the soil in the west remained
unchanged, and it was still 15m away from the
foundation pit division. /e maximum ground
settlement position of the soil on the east side
changes, which is 20m away from the pit edge of the
foundation pit, and the ground settlement of the soil
outside 80m is about 0.8mm.

(4) During the seventh excavation, the surface settle-
ment of soil continued to increase with a small in-
crease. /e maximum surface settlement of soil was

about 13.0∼14.0mm, the maximum surface settle-
ment position remained unchanged (15m in the west
and 20m in the east), and the surface settlement
outside 85m was about 0.9mm.

(5) During the tenth excavation, the soil surface set-
tlement continued to increase with a smaller in-
crease. /e maximum soil surface settlement was
about 15.0mm, and themaximum surface settlement
position remained unchanged (the west side is 15m
and the east side is 20m). /e maximum surface
settlement is about 0.029% of the excavation depth of
the foundation pit of 51.630m, about 67% of the
maximum horizontal displacement of the diaphragm
wall. /e maximum surface settlement is located
20m away from the edge of the foundation pit, about
0.4 times the excavation depth of the foundation pit
of 51.630m.

(6) /e maximum surface settlement of the soil in the
east is slightly greater than that in the west (except
for the third excavation step). /e surface settlement
curve of the soil in each construction stage first
increases and then decreases with the distance from
the edge of the foundation pit and finally tends to be
stable, showing a “groove shape.” According to the
curve, the law of surface settlement and deformation
on the east and west sides is basically the same. With
the increase of foundation pit excavation depth, the
maximum surface settlement increases continuously.
/e maximum settlement position of the west sur-
face does not change with the change of excavation
conditions (except the first excavation step). /e
maximum surface settlement is about 0.029% of the
final excavation depth of the foundation pit and
about 67% of the maximum horizontal displacement
of the diaphragm wall. /e maximum surface set-
tlement is located 20m away from the edge of the
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Figure 12: /e contour plot of surface settlement and deformation under five excavation conditions. (a) /e first excavation step. (b) /e
third excavation step. (c) /e fifth excavation step. (d) /e seventh excavation step. (e) /e tenth excavation step.
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foundation pit, about 0.4 times the final excavation
depth of the foundation pit, and the main influence
area is about 1.5 times the final excavation depth of
the foundation pit.

4.2.Numerical SimulationStudyonConstructionEffect ofTop-
Down Construction Method for Foundation Pit with
Suspended Foot Diaphragm Wall

4.2.1. Research Background of Optimization of Suspended
Diaphragm Wall. In the original design scheme of the
Jiangbei working shaft foundation pit, the height of the
diaphragm wall is 59.8m, the thickness is 1.5m, and the
bottom of the diaphragm wall is at the same elevation.
However, in the construction process, due to the high
strength of moderately weathered rock, the construction
speed of existing wall forming equipment is too slow to meet
the requirements of the construction period, and the cost is
too high./rough the discussion of experts, it is proposed to
change the insertion mode of in situ diaphragm wall into the
design scheme of a suspended foot diaphragm wall with two

meters into the rock. /e length of the left wall (west wall) of
the suspended foot diaphragm wall is 45.82m, and the
length of the right wall (east wall) is 51.98m, as shown in
Figure 14. Other conditions are completely consistent with
the same length diaphragm wall in Section 4.1.

/erefore, the purpose of numerical simulation under
this condition is to study the deformation law of the sus-
pended diaphragm wall foundation pit during top-down
construction. /rough the theoretical analysis of the data
obtained from the numerical simulation, the purpose of
optimizing the diaphragm wall can be achieved. /e data
and analysis results can be used as reference materials for
related projects.

4.2.2. Analysis of Simulation Results of Horizontal Dis-
placement of Suspended Diaphragm Wall (9e Depth into
Rock is 2m). Here, it should be emphasized that since the
horizontal displacement, bending moment, and surface
settlement contour plot obtained by the simulation of the
construction effect of the suspended diaphragm wall are
similar to those of the diaphragm wall with the same length,
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Figure 13: /e curve of surface subsidence. (a) West wall. (b) East wall.

Table 6: Summary of the corresponding position of the maximum subsidence of the surface.

Working procedure
External surface of foundation pit (west) External surface of foundation pit (east)
Maximum

settlement (mm)
Distance from

foundation pit edge (m)
Maximum

settlement (mm)
Distance from

foundation pit edge (m)
/e first excavation step (−2.000m) −0.460 10.00 −0.470 10.00
/e third excavation step (−13.400m) −4.340 15.00 −4.339 15.00
/e fifth excavation step (−24.550m) −10.938 15.00 −10.968 20.00
/e seventh excavation step (−34.145m) −13.515 15.00 −13.626 20.00
/e tenth excavation step (−51.630m) −14.851 15.00 −14.967 20.00
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the simulation contour plot corresponding to the above
three construction effect indexes is no longer displayed here.

/e data of the horizontal displacement of the dia-
phragm wall under five simulated excavation conditions are
sorted out and analyzed, and the depth-displacement curve
of the diaphragmwall is obtained, as shown in Figure 15, and
the maximum horizontal displacement and depth data of the
diaphragm wall are summarized into a table, as shown in
Table 7.

It can be seen from the above that the horizontal dis-
placement of the foot diaphragm wall is small in the first
excavation step. With the excavation of the foundation pit,
the pouring of the middle plate structure, and the support of
the ring frame beam, the horizontal displacement curve of
the foot diaphragm wall is in the shape of “small at both
ends, large in the middle.” When the diaphragm wall is a
suspended footing and the underlying strata are less em-
bedded, the displacement and deformation of the end and
bottom of the suspended footing diaphragm wall are larger.
/e maximum horizontal displacement of the east wall is
greater than that of the west wall, which is due to the ex-
istence of the inclined rock surface. /e displacement and
deformation of the east and west walls are asymmetric. /e
maximum horizontal displacement of the diaphragm wall
gradually moves down with the increase of the excavation
depth and finally above the excavation surface. /e maxi-
mum horizontal displacement is about 7/10 ∼3/4 times the
final excavation depth of the foundation pit.

4.2.3. Analysis of Bending Moment Simulation Results of
Suspended Diaphragm Wall (9e Depth into Rock Is 2m).
By sorting and analyzing the data in the bending moment
cloud part of the suspended footed diaphragm wall under
five simulated excavation step conditions, the relationship
curve between depth and bending moment of the suspended
footed diaphragm wall can be obtained, as shown in Fig-
ure 16, and the maximum bending moment and depth data
of the suspended footed diaphragm wall can be summarized
into a table, as shown in Table 8.

It can be seen from the above that the bending moment
of the diaphragm wall is small in the first excavation step,

and there is a reverse bending point. With the progress of
excavation, the bending moment of the diaphragm wall
increases gradually and then decreases slightly in the final
excavation stage. /e maximum positive moment is larger
than the maximum negative moment at each excavation
stage. /e position of the maximum positive bending mo-
ment of the east and west walls first moves down and then
rises and then remains unchanged after the original position.
/e position of the maximum negative bending moment
does not change with the change of the excavation stage
(except for the tenth excavation of the east wall). Due to the
existence of inclined strata, the maximum bending moment
of the east wall is larger than that of the west wall in each
excavation stage (except for the negative bending moment of
the tenth excavation step), and the deformation law of the
east wall and the west wall is basically the same, but
asymmetric. In each excavation stage, the maximum positive
bending moment of the diaphragm wall is larger than the
maximum negative bending moment. /e maximum pos-
itive bending moment of the diaphragm wall is about 7/
10∼3/4 times the final excavation depth of the foundation
pit, and the maximum negative bending moment is about 4/
5∼19/20 times the final excavation depth of the foundation
pit.

4.2.4. Analysis of Simulation Results of Ground Settlement of
Suspended Diaphragm Wall (9e Depth into Rock Is 2m).
By sorting and analyzing the simulated data of soil surface
settlement under five excavation step conditions, the surface
settlement distance curve from the foundation pit can be
obtained, as shown in Figure 17, and the data of the location
of the maximum surface settlement can be summarized into
a table, as shown in Table 9.

It can be seen from the above that the settlement of soil
surface is small at the first excavation step and increases
gradually with the increase of excavation depth. In each
construction stage, the surface settlement curve of soil in-
creases first, then decreases, and finally tends to be stable
with the distance from the foundation pit edge, showing a
“groove” curve, and the surface settlement deformation law
of the east and west sides is basically the same. /e maxi-
mum settlement of the east and west sides of the ground is
the same, and the final settlement is 0.3 times the final
excavation depth of the foundation pit. /e maximum
surface settlement is about 0.036% of the final excavation
depth of the foundation pit, about 78% of the maximum
horizontal displacement of the foot diaphragm wall. /e
maximum surface settlement is located at a distance of 15m
from the edge of the foundation pit, about 0.3 times the final
excavation depth of the foundation pit, and the main impact
area is about 1.5 times the final excavation depth of the
foundation pit.

4.3. Comparative Analysis of Simulation Results under Two
Conditions

4.3.1. Comparative Analysis of Horizontal Displacement of
the DiaphragmWall. After sorting and analyzing the data in

Figure 14: Schematic diagram of the ground connection wall (the
depth into the rock is 2m).
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Figure 15: /e horizontal displacement curve of the suspended foot diaphragm wall. (a) West wall. (b) East wall.

Table 7: Summary table of the corresponding depth of the maximum horizontal displacement of the suspended foot diaphragm wall.

Working procedure

Suspended foot diaphragm wall (west, the
length is 45.82m)

Suspended foot diaphragm wall (east, the
length is 51.98m)

Maximum horizontal
displacement (mm)

/e depth of the
diaphragm wall (m)

Maximum horizontal
displacement (mm)

/e depth of the
diaphragm wall (m)

/e first excavation step (−2.000m) 0.141 −11.46 −0.371 −13.00
/e third excavation step (−13.400m) 2.146 −22.91 −5.170 −23.39
/e fifth excavation step (−24.550m) 6.613 −32.07 −16.490 −33.79
/e seventh excavation step (−34.145m) 8.418 −34.37 −22.006 −36.39
/e first excavation step (−2.000m) 7.738 −36.66 −23.497 −38.99
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Figure 16: /e bending moment curve of the suspended foot diaphragm wall. (a) West wall. (b) East wall.
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Figure 17: /e curve of the surface settlement of the suspended foot diaphragm wall. (a) West wall. (b) East wall.

Table 9: Summary of the corresponding position of the maximum subsidence of the surface.

Working procedure
External surface of foundation pit (west) External surface of foundation pit (east)
Maximum

settlement (mm)
Distance from

foundation pit edge (m)
Maximum

settlement (mm)
Distance from

foundation pit edge (m)
/e first excavation step (−2.000m) −0.459 10.00 −0.476 10.00
/e third excavation step (−13.400m) −4.385 15.00 −4.393 15.00
/e fifth excavation step (−24.550m) −11.511 20.00 −11.511 20.00
/e seventh excavation step (−34.145m) −14.621 20.00 −14.526 20.00
/e tenth excavation step (−51.630m) −18.419 15.00 −17.778 15.00

Table 8: Summary of the corresponding depth of the maximum bending moment of the suspended foot connecting wall.

Working procedure

Suspended foot diaphragm wall (west, the length is
45.82m)

Suspended foot diaphragm wall (east, the length is
51.98m)

Maximum bending
moment (kN·m/m)

/e depth of the
diaphragm wall (m)

Maximum bending
moment (kN·m/m)

/e depth of the
diaphragm wall (m)

/e first excavation step
(−2.000m) 383.553/−154.641 −34.37/−43.53 495.496/−183.378 −38.99/−49.38

/e third excavation step
(−13.400m) 732.862/−311.066 −27.49/−43.53 1127.781/−404.225 −20.79/−49.38

/e fifth excavation step
(−24.550m) 2080.852/−600.905 −34.37/−43.53 3621.628/−1118.857 −33.79/−49.38

/e seventh excavation
step (−34.145m) 2654.072/−250.395 −34.37/−43.53 4654.927/−1193.643 −38.99/−49.38

/e first excavation step
(−2.000m) 2596.608/−469.726 −34.37/−43.53 4251.651/−42.949 −38.99/−51.98

Remarks
Among the maximum bending moments in the table, the maximum positive bending moment value is before
“/,” and the maximum negative bending moment value is after “/,” respectively, corresponding to the depth of

the diaphragm wall
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the contour plot of horizontal displacement of diaphragm
wall during the 10th excavation step (that is, the foundation
pit is excavated to the bottom) under two working condi-
tions, the depth-displacement curve of the diaphragm wall
under two working conditions can be obtained, as shown in
Figure 18, and the maximum horizontal displacement and
depth data of diaphragm wall under two working conditions
can be summarized into a table, as shown in Table 10.

/e following can be seen from Figure 18 and Table 10:

(1) In the tenth excavation step, it entered the moder-
ately weathered rock with high strength. In case 1,
the maximum horizontal displacement of the west
wall is 8.256mm, which is at the depth of −32.89m.
/e maximum horizontal displacement of the east
wall is −22.341mm, which is located at the depth of
−38.87m. In case 2, the maximum horizontal dis-
placement of the west wall is 7.738mm at the depth
of −36.66m. /e maximum horizontal displacement
of the east wall is −23.497mm, which is located at the
depth of −38.99m.

(2) From the comparison of the two working conditions,
it can be seen that the maximum horizontal dis-
placement of the west wall is reduced by 0.518mm,
the maximum horizontal displacement of the east
wall is increased by 1.156mm, the horizontal dis-
placement of the end and bottom of the diaphragm
wall is increased suddenly, and the stability of the
diaphragm wall is poor, which is due to the large
horizontal displacement and deformation due to the
lack of rock embedment in working condition 2.
/erefore, the horizontal displacement of condition
2 is larger than that of condition 1, and themaximum
horizontal displacement of condition 2 moves down.

4.3.2. Bending Moment Analysis of Diaphragm. By sorting
and analyzing the data in the bending moment cloud part of
the diaphragm wall during the 10th excavation step (i.e., the
foundation pit is excavated to the bottom) under two
working conditions, the depth-bendingmoment curve of the
diaphragm wall under two working conditions can be ob-
tained, as shown in Figure 19, and the maximum bending
moment and depth data of diaphragm wall under two
working conditions can be summarized into a table, as
shown in Table 11.

/e following can be seen from Figure 19 and Table 11:

(1) In the tenth excavation step, it enters the moderately
weathered rock stratumwith high strength on the left
and low strength on the right. In case 1, the maxi-
mum positive bending moment of the west wall is
2462.475 kN·m/m, which is located at the depth of
−35.88m. /e maximum positive bending moment
of the east wall is 4271.144 kN·m/m, which is located
at the depth of −38.87m. /e maximum negative
bending moment of the west wall is −838.087 kN·m/
m, which is located at the depth of −44.85m. /e
maximum negative bending moment of the east wall
is −3594.525 kN·m/m, which is located at the depth

of −50.83m. In case 2, the maximum positive
bending moment of the west wall is 2596.608 kN·m/
m, which is located at the depth of −34.37m. /e
maximum positive bending moment of the east wall
is 4251.651 kN·m/m, which is located at the depth of
−38.99m. /e maximum negative bending moment
of the west wall is −469.726 kN·m/m, which is lo-
cated at the depth of −43.53m. /e maximum
negative bending moment of the east wall is
−42.949 kN·m/m, which is located at the depth of
−51.98m.

(2) From the comparison of the two working conditions,
it can be seen that the maximum positive bending
moment of the east wall and the west wall increases,
and the maximum negative bending moment de-
creases sharply in case 2 compared with case 1./ere
is a large positive bending moment at the bottom of
the west wall and a small negative bending moment
at the bottom of the east wall. /is is because when
the foot diaphragmwall is excavated to the bottom of
the foundation pit, the west wall has no embedded
restraint effect of the rock layer, and the east wall is
embedded in the rock layer very shallow. In case 2,
the maximum positive (negative) bending moment
of the west wall moves up slightly, the maximum
positive (negative) bending moment of the east wall
moves down slightly, and the maximum negative
bending moment of the east wall is located at the
bottom of the diaphragm wall. In both cases, the
maximum positive bending moment of the east and
west walls appears above the excavation face, which
indicates that the rock embedment in the diaphragm
wall has a great constraint on the bending moment
deformation of the diaphragm wall. /e maximum
positive moment of the two walls is larger than the
maximum negative moment. Because of the exis-
tence of inclined rock, the maximum bending mo-
ment of the east wall is larger than that of the west
wall.

4.3.3. Comparative Analysis of Ground Settlement of Dia-
phragm Wall. By sorting and analyzing the data in the
contour plot of ground settlement of diaphragm wall soil
mass during the 10th excavation step (i.e., excavation to the
bottom) under two working conditions, the curve of ground
settlement distance from the edge of the foundation pit
under two working conditions can be obtained, as shown in
Figure 20, and the data of maximum ground settlement
position under two working conditions can be summarized
into a table, as shown in Table 12.

/e following can be seen from Figure 20 and Table 12:

(1) /e tenth excavation step, into the moderately
weathered rock. In case 1, the maximum settlement
of the soil surface on the west side of the foundation
pit is −14.851mm, which is 15m away from the side
of the foundation pit. /e maximum surface set-
tlement of the east side soil is −14.967mm, which is
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Figure 18: /e horizontal displacement curve of the diaphragm wall. (a) West wall. (b) East wall.

Table 10: /e corresponding depth of maximum horizontal displacement of diaphragm wall during the 10th excavation step under two
working conditions.

Working procedure

Diaphragm wall (west) Diaphragm wall (east)
Maximum
horizontal

displacement
(mm)

/e depth of the
diaphragm wall

(m)

Maximum
horizontal

displacement
(mm)

/e depth of the
diaphragm wall (m)

Diaphragm wall of the same length (working
condition 1) 8.256 −32.89 −22.341 −38.87

Suspended foot diaphragm wall (working condition
2) 7.738 −36.66 −23.497 −38.99
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Figure 19: Bending moment diagram of the diaphragm wall. (a) West wall. (b) East wall.
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20m away from the side of the foundation pit. In case
2, the maximum settlement of the soil surface on the
west side of the foundation pit is −18.419mm, which
is 15m away from the side of the foundation pit. /e
maximum surface settlement of the east side soil is
−17.778mm, which is 15m away from the side of the
foundation pit.

(2) From the comparison of the two conditions, it can be
seen that compared with condition 1, the maximum
settlement of soil surface in condition 2 increases by
2.5∼3.5mm, which is because the rock has a little
constraint on the foot diaphragm wall. /e maxi-
mum settlement position of the soil surface on the
west side remains unchanged, and the maximum

settlement position of the soil surface on the east side
moves to 15m away from the edge of the foundation
pit. With the distance from the foundation pit edge,
the surface settlement curve of soil under the two
conditions first increases, then decreases, and finally
tends to be stable, showing a “groove” curve, and the
surface settlement deformation law of the east and
west sides is basically the same.

5. Field Measurement Verification

/e top-down construction method of hanging footed di-
aphragm wall foundation pit is adopted. /e surface set-
tlement of the diaphragmwall, deep horizontal displacement
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Figure 20: /e curve of surface subsidence. (a) West wall. (b) East wall.

Table 12: Summary of corresponding positions of maximum ground settlement during the 10th excavation step under two working
conditions.

Working procedure
External surface of foundation pit (west) External surface of foundation pit (east)
Maximum

settlement (mm)
Distance from foundation

pit edge (m)
Maximum

settlement (mm)
Distance from foundation

pit edge (m)
Diaphragm wall of the same length
(working condition 1) −14.851 15.00 −14.967 20.00

Suspended foot diaphragm wall
(working condition 2) −18.419 15.00 −17.778 15.00

Table 11: /e corresponding depth of maximum bending moment of diaphragm wall in the 10th excavation step under two working
conditions.

Working procedure

Diaphragm wall (west) Diaphragm wall (east)

Maximum bending
moment (kN·m/m)

/e depth of the
diaphragm wall (m)

Maximum bending
moment (kN·m/m)

/e depth of the
diaphragm wall

(m)
Diaphragm wall of the same length
(working condition 1) 2462.475/−838.087 −35.88/−44.85 4271.144/−3594.525 −38.87/−50.83

Suspended foot diaphragm wall
(working condition 2) 2596.608/−469.726 −34.37/−43.53 4251.651/−42.949 −38.99/−51.98
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of wall, and axial force of concrete support are monitored at
the construction site. /e layout of monitoring points is
shown in Figure 21, and the label information of measuring
points is shown in Table 13.

/e cumulative deformation curve of surface settlement
is shown in Figure 22, the variation curve of concrete
support axial force is shown in Figure 23, and the variation

curve of deep horizontal displacement of diaphragm wall is
shown in Figure 24.

/rough the analysis of the variation curve of the field
measured data from Figures 22 to Figure 24 and the
comparison with the above numerical simulation results,
although there are differences in values, they are all within
the acceptable range, which verifies the correctness of the

Figure 21: Layout of monitoring points.

Table 13: Measuring point information.

Monitoring content Measuring point ID Number of measuring points

Ground settlement of diaphragm wall

DBC-1-1∼DBC-1-4

30

DBC-2-1∼DBC-2-6
DBC-3-1∼DBC-3-4
DBC-4-1∼DBC-4-5
DBC-5-1∼DBC-5-4
DBC-6-1∼DBC-6-7

Deep horizontal displacement of diaphragm wall CXQ1∼CXQ6 6

Axial force of concrete support

ZCL1-1∼ZCL1-4

32

ZCL2-1∼ZCL2-4
ZCL3-1∼ZCL3-4
ZCL4-1∼ZCL4-4
ZCL5-1∼ZCL5-4
ZCL6-1∼ZCL6-4
ZCL7-1∼ZCL7-4
ZCL8-1∼ZCL8-4
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Figure 23: Variation curve of axial force of concrete support.
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Figure 24: Continued.
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Figure 22: Cumulative deformation of surface settlement.
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numerical simulation results and the reliability of the top-
down construction of the foundation pit with suspended feet
and ground walls.

6. Conclusion

In this paper, the construction effect of the top-down
construction method for the diaphragm wall of foundation
pit under two working conditions of diaphragm wall with
the same length and suspended foot is simulated, and the
horizontal displacement, bending moment, and surface
settlement deformation law of diaphragm wall of foundation
pit are analyzed.

(1) When the foundation pit with the same length is
excavated by the top-down construction method, the
horizontal displacement of the diaphragm wall is
small at the first excavation. With the excavation of
the foundation pit, the deformation law of “small at

both ends and large in the middle” is formed as a
whole of the horizontal displacement curve of the
diaphragm wall. /e position of the maximum
horizontal displacement of the diaphragm wall
gradually moves down with the increase of the ex-
cavation depth, which is 3/5∼3/4 times the final
excavation depth of the foundation pit, while the
position of the maximum positive and negative
bending moments of the diaphragm wall is close to
the bottom of the foundation pit. /e surface set-
tlement of soil is very small during the first exca-
vation step, and it is in “groove shape” with the
gradual increase of excavation. /e maximum sur-
face settlement is smaller than the excavation depth
and the maximum horizontal displacement of the
diaphragm wall. /is value occurs at a distance of
20m from the edge of the foundation pit, and the
main influence area is about 1.5 times the final ex-
cavation depth of the foundation pit.
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Figure 24: Variation curve of deep horizontal displacement of the diaphragm wall.
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(2) When the foundation pit of the hanging foot
ground connecting wall is excavated by reverse
method, /e horizontal displacement curve of the
hanging foot ground connecting wall is in the shape
of “small at both ends and large in the middle.” /e
maximum horizontal displacement position of the
diaphragm wall gradually moves down with the
increase of excavation depth, which is about 7/
10∼3/4 of the final excavation depth. In each ex-
cavation stage, the maximum positive bending
moment of the diaphragm wall is greater than the
maximum negative bending moment. /e maxi-
mum positive and negative bending moments of the
diaphragm wall are close to the bottom of the
foundation pit. /e maximum surface settlement is
about 0.036% of the final excavation depth of the
foundation pit, about 78% of the maximum hori-
zontal displacement of the hanging foot ground
connecting wall, which is 15m away from the edge
of the foundation pit, and the main influence area is
about 1.5 times of the final excavation depth. /e
horizontal displacement, bending moment, and
surface settlement of the suspended foot diaphragm
wall decrease with the increase of the depth of the
suspended foot diaphragm wall into the rock.
However, the greater the depth into the rock, the
better it becomes. When the depth of the rock
increases to a certain extent, the role of continu-
ously increasing the depth of the rock is no longer
obvious. /erefore, in the actual project, the ap-
propriate depth into the rock is selected on the
premise of ensuring the safety of the foundation pit
and reducing the cost.
/erefore, through the comparative analysis of the
simulation results, it can be seen that compared with
the top-down construction method of the same
length diaphragm wall, the simulation results of the
top-down construction method of the suspended
foot diaphragm wall foundation pit are relatively
better. At the same time, combined with the general
situation of relying on the project and the sugges-
tions given by experts, it is more suitable to use the
suspended foot diaphragm wall for the construction
of the foundation pit diaphragm wall.

(3) /rough the comparative analysis of the field
monitoring data and the simulation results, the
correctness of the numerical simulation results is
verified, and the reliability of the reverse construc-
tion method of the hanging foot ground wall
foundation pit is also verified.
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In the construction and cement manufacturing sectors, the development of artificial intelligence models has received remarkable
progress and attention. +is paper investigates the capacity of hybrid models conducted for predicting the compressive strength
(CS) of concrete where the cement was partially replaced with ground granulated blast-furnace slag (FS) and fly ash (FA)
materials. Accurate estimation of CS can reduce the cost and laboratory tests. Since the traditional method of calculation CS is
complicated and requires lots of effort, this article presents new predictive models called SVR − PSO and SVR − GA, that are a
hybridization of support vector regression (SVR) with improved particle swarm algorithm (PSO) and genetic algorithm (GA).
Furthermore, the hybrid models (i.e., SVR − PSO and SVR − GA) were used for the first time to predict CS of concrete where the
cement component is partially replaced.+e improved PSO and GA are given essential roles in tuning the hyperparameters of the
SVR model, which have a significant influence on model accuracy. +e suggested models are evaluated against extreme learning
machine (ELM) via quantitative and visual evaluations. +e models are evaluated using eight statistical parameters, and then the
SVR-PSO has provided the highest accuracy than comparative models. For instance, the SVR − PSO during the testing phase
provided fewer root mean square error (RMSE) with 1.386MPa, a higher Nash–Sutcliffe model efficiency coefficient (NE) of
0.972, and lower uncertainty at 95% (U95) with 28.776%. On the other hand, the SVR − GA and ELM models provide lower
accuracy with RMSE of 2.826MPa and 2.180, NE with 0.883 and 0.930, and U95 with 518.686 183.182, respectively. Sensitivity
analysis is carried out to select the influential parameters that significantly affect CS. Overall, the proposed model showed a good
prediction of CS of concrete where cement is partially replaced and outperformed 14 models developed in the previous studies.

1. Introduction

1.1. Background. As an essential in most civil engineering
projects and activities, concrete is a standard man-made
mixture consisting of specific components such as cement,
water, and some additional materials. Since concrete
manufacturing, many engineering projects have been carried
out successfully using this profitable and imperative material.
Traditional concrete is widely used in several construction

areas, containing four classical materials: Portland cement,
water, coarse aggregate, and fine aggregate. +ere is also a
second type of concrete called high-strength concrete, which
has unique properties due to the usage of additional materials
that may not be used in ordinary concrete mixes. However,
the estimation of hardened concrete properties is a critical
obstacle for concrete technology due to several predicted and
unpredicted parameters that may significantly influence the
concrete properties [1, 2].
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+e compressive strength (CS) is one of the significant
properties of concrete as it has a crucial role in designing
engineering structures. Furthermore, other important
properties of concrete, like water tightness and elastic
modulus, have direct and significant relations with the CS of
concrete. In current practice, to assess the CS of the concrete,
many cylindrical or cubic samples are produced and tested at
various sample ages. However, the conducted tests are time-
consuming and expensive [3, 4]. Besides, the changes in the
concrete mixes may lead to producing concrete with un-
desired characteristics. Hence, the tests should be repeated
until the required properties of concrete are achieved by
changing the magnitudes of the used ingredients [5]. +us,
this problem can be better encountered when pozzolan
powders partially replace the cement content.

1.2. UsingGroundGranulated Blast-Furnace Slag and Fly Ash
Materials in the Concrete Mixture. As a type of pozzolan
powders, ground granulated blast-furnace slag (FS) and fly
ash (FA) are generally used as a partial replacement material
of concrete because they are easy to reach and economic
[6, 7]. In general, FA is a fine powder of spherical particles
(diameter of 1 µm to 150 µm) obtained as a residual from the
burning of pulverized coal in thermal power plant furnaces.
As a result of its good performance and economic benefits,
fly ash is used as a replacement for cement in 98% of
American ready-mix companies [8]. As fly ash is an essential
material in concrete mixture and thus it significantly affects
the CS of concrete, several factors affect the characteristics of
fly ash, such as the source of coal, heating and cooling
mechanism, and combustion temperature [9]. +e com-
bustion process has a significant influence on the mechanical
properties of FA. For instance, wet processing produces a FA
with a high separated aggregate. On the other hand, dry
processing can grow homogenous FA in particle size [10].
+e utilization of FA material as partial replacement of
cement in concrete mixture decreases the values of some
concrete parameters like slump and CS. Still, it enhances the
integrity and workability of the concrete [11]. Some studies
recommend that in standard engineering and construction
projects, the percentage of FA in concrete as a partial
substitute for cement ranges from 20% to 50% of the total
volume of cementitious aggregate [12]. However, concrete
with fly ash increases the setting time; therefore, the CS of
concrete varies by time and temperature of curing. Fur-
thermore, fly ash concrete indicates an early development in
concrete strength, particularly at elevated temperatures,
which increases the CS in later stages compared to ordinary
concrete [13].

Furnace slag (FS) is also considered a popular material
used as partial cement replacement material. FS is a by-
product of the manufacture of iron and steel in blast fur-
naces, the chemical composition of which is based on the
raw materials from which it is produced [14]. Cooling status
has great importance on the characteristics of the FS. For
instance, if the molten slag is quickly cooled, it will be
converted to noncrystalline components with hydraulic
properties [15]. Additionally, concrete with higher CS and

durability results in partial cement replacement with FS.
However, a higher FS dosage can cause cracks and thermos-
hygral (TH) damages, thereby negatively affecting the me-
chanical strength of concrete [16, 17].

+e use of mentioned materials such as FS and fly ash in
concrete as a partial replacement of cement is not only an
effective waste disposal means but can be helpful as an al-
ternative material for cement. Recent studies illustrated that
the production of cement from different industries around
the world case too much pressure on the environment by
increasing the amount of carbon dioxide (CO2) emissions in
the atmosphere and, subsequently, global warming [18–20].
However, in the traditional concrete mixture, the rela-
tionship between the predictors (water, cement, fine and
coarse aggregate) and CS property is nonlinear and chal-
lenging to capture. Furthermore, when the additives and
other materials are used in concrete, such as FS and FA, CS
and its parameters will become more complex. According to
what mentioned before, there are no clear guidelines to
select the optimum amount of FA and FS in concrete to
ensure getting a desirable value of CS; therefore, a better
understanding of that relation between CS and its variables
using advanced approaches can help eliminate the carrying
on the experiments and thus, reducing cost and time. Be-
sides, it provides engineers with a simplified method to
predict experimental outcomes.

Nevertheless, accurately predicting the CS of concrete
where the cement martial is partially replaced has become a
challenging issue in the concrete technology sector due to
the complex and nonlinear relationship between CS prop-
erty and the other materials used in manufacturing the
concrete. Over the last decades, several scholars have de-
veloped models to estimate concrete CS. Moreover, scholars’
attempts can be roughly divided into categories: (1) con-
ventional artificial intelligence approaches such as soft
computing models; (2) hybrid artificial intelligence models.

1.3. Soft Computing Models. Soft Computing (SC), as an
efficient approach, can estimate the magnitude of the CS of
concrete. One of the significant SC advantages is providing
solutions for linear and nonlinear problems where the
mathematical models cannot easily derive the under relation
among the involved parameters in a particular situation [21].
Furthermore, SC methods utilize human-based knowledge,
understanding, recognition, and learning in computing.
Recently, many researchers have used artificial intelligence
(AI) approaches and machine learning (ML) techniques as a
sub-branch of SC methods to predict different concrete
properties. Keshavarz and Torkian [22] developed two SC
systems called artificial neural networks (ANN) Adaptive
Neuro-Fuzzy Inference (ANFIS) to estimate the CS of
concrete based on several concrete mixed parameters. +e
study showed that both systems were predicting CS very
well. However, the ANFIS model provides slightly better
estimates than the ANN model. Another study by [23]
presents the ability of both data-driven models, ANN and
multiple linear regression (MLR) approaches to predict
concrete CS. +e study shows that the MLR model has less
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prediction accuracy than the ANN model. Moreover, a
comparison study has been published between ANN and
ANFIS systems to estimate the CS of cement-based mortal
materials [24]. +e study concluded that the ANFIS faced an
overfitting problem and produced undesirable predictions
compared to the ANN model. Additionally, Ni and Wang
[25] investigate the ability of artificial neural networks
(ANN) to predict the CS of concrete. +e study revealed that
the proposed model provided higher prediction accuracy
and could capture the complex relationships between CS and
concrete variables.

Another study was conducted by Lee et al. [26] to in-
vestigate the potential of using different AI models such as
support vector regression (SVR) and ANNmodels to predict
CS of concrete at the age of 28 days. +e results showed that
SVR predicted CS more accurately than the ANN technique
and was less time-consuming. Akande et al.[27] developed
two predictive models called ANN and SVR to predict the
CS of concrete and concluded that the SVR model was more
stable and gave slightly higher prediction accuracy than
ANN. Additionally, Ling et al. [28] presented a study to
estimate the CS of concrete using a combined model called
SVR-CV(SVR is coupled with a cross-validation approach).
+e proposed model provided a higher accuracy level than
other AI models such as ANN and decision tree (DT).
Furthermore, satisfactory performance of the ANN model
has been noticed throughout the prediction of the CS of
high-performance concrete (HPC) and self-compacting
concrete (SCC) [29]. Moreover, the feasibility of using the
SVR technique and multivariable nonlinear regression
(MNR) has been investigated by [30] in terms of the pre-
diction of CS of concrete of lightweight foamed concrete at
an earlier age (7-day). +e study concluded that the SVR
model gives higher estimation accuracy and efficiently
captures the non-linear relation between the input variables.

1.4. Hybrid Models. To overcome the issues related to
standard models, several scholars have used hybrid AI-based
metaheuristic algorithms to enhance the performances of
these systems [31, 32]. In literature, several metaheuristic
algorithms are employed to optimize AI models such as
ANN, SVR, and ANFIS to enhance their performances and
obtain much better predictions [10, 33–36]. +ere is an
investigation for accurately predicting the CS of concrete
was carried out by Madandoust et al. [37] using adaptive
neuro-fuzzy inference systems (ANFIS) and Group method
of data handling (GMDH) as a sort of ANN. +e GMDH
model is enhanced using a genetic algorithm (GA) and
singular value decomposition method. +e study also
conducted sensitivity analyses to illustrate which variables
have more effect on CS. +e results showed that both
adopted approaches could accurately estimate CS at different
ages. Besides, another study also conducted a hybrid model
carried out by the hybridization ANNwith GA to predict CS
of concrete in the presence of FA and FS materials [38]. +e
outcome of the proposed model is validated against the
traditional ANN, which is trained by a backpropagation
algorithm, and the assessment criteria showed that the

hybrid model (ANN-GA) yielded a minor error forecasted
than the traditional ANN model. Han et al. [39] presented a
hybrid model by combining ANN with particle swarm al-
gorithm (PSO) to constitute the ANN-PSO model to esti-
mate the CS of ground granulated blast furnace slag
(GGBFS) concrete. For validation assessment, the perfor-
mance of the hybrid model (ANN-PSO) is compared with
the standard ANN model. +e study showed a noticeable
improvement in the estimations due to the presence of the
PSO algorithm.

1.5. Research Motivation. +ere is evidence that energy
savings, high cement costs, and pressure from environ-
mental organizations and researchers have all led to an
increase in the use of industrial waste materials such as fly
ash and ground granulated blast-furnace slag in concrete
mixing [40]. +e use of such materials in concrete makes it
more economical and enhances the strength, abrasion, heat
evolution, workability, and shrinkage properties of concrete
in both fresh and hardened states [41]. Partially replacing
cement in concrete mixes is essential because it reduces
carbon dioxide emissions into the atmosphere while at the
same time lowering the overall cost of producing concrete
mixes.

Many researchers proved that it is difficult to provide a
consistent method for additive materials (such as fly ash and
other cement replacement materials) in the design of con-
crete mixtures because of the complexity and uncertainty of
the design parameters, which significantly influence the
compressive strength of concrete. Due to these limitations,
engineers in practical use a traditional method called the
trial-and-error process to find the right concrete design.
However, this approach requires time to accomplish the tests
of compressive strength. +us, applying a fast and efficient
method that can predict the compressive strength of con-
crete immediately or provide the optimal mix design would
be very useful. +is paper uses artificial intelligence (AI)
models to provide an efficient mix-design tool that over-
comes these difficulties.

1.6. Research Significance. To the best of the authors’
knowledge, no published work in the literature has
employed hybrid SVR with GA or improved PSO algorithms
to optimize the hyperparameters of SVR for the prediction of
CS of concrete with partial cement replacement. +e pri-
mary advantage of this research is to predict the compressive
strength of concrete where the cement was partially replaced
with furnace slag and fly ash. Furthermore, the presence of
these materials in the concrete mixture makes the rela-
tionship between the compressive strength of concrete and
other concrete components very complex. +erefore, the
traditional modes in such cases could not provide accurate
solutions; therefore, thinking of alternative methods having
a satisfactory level of flexibility and predictability is vital.
Furthermore, in construction and martial fields, accurate
prediction of the CS can effectively minimize the costs by
reducing the laboratory work and saving time and effort.
Accordingly, this study provides an alternative approach to
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efficiently estimate one of the most significant features of
concrete (CS) in the presence of industrial waste materials.
Establishing a systematic approach that can accurately
predict the CS of concrete in earlier stages is significant in
concrete development and manufacturing because this ap-
proach can generate the needed design data faster[42]. +us,
in this study, support vector regression (SVR) combined
with two metaheuristic algorithms known as genetic opti-
mizer (GA) and improved particle swarm optimization
(PSO) to constitute SVR-PSO and SVR − GA predictive
models. +e mentioned algorithms optimize the hyper-
parameters of SVR and kernel parameters and significantly
improve the prediction accuracy. Next, the capacities of
these models are examined in the case of compressive
strength prediction. Accordingly, a powerful AImodel called
extreme learning machine (ELM) is also prepared and de-
veloped for verification purposes. Besides, the performance
of the best model is also validated against 14 models de-
veloped in previous studies as a crucial step to examine the
validity and reliability of the proposed model. Finally,
sensitivity analyses are used to identify the most significant
parameters that influence concrete CS.

2. Materials and Methods

2.1. Data Collection and Statistical Description. +e experi-
mental data used in this current study include seven vari-
ables called (Portland cement “ASTM type I”), furnace slag,
fly ash (which is produced from the power plant), water,
superplasticizer (C49429 typeG), coarse aggregate (maxi-
mum size of 1 cm), fine aggregate (fineness modulus size of
3), and one response variable represent the compressive
strength at 28-day age. It is necessary to identify the primary
ingredients to understand concrete behavior better. Several
considerations should be taken into account through de-
signing the concrete mixes. For instance, More cement
content increases the cohesiveness of the mixture, resulting
in stickier concrete, and thus cracks may occur. Neverthe-
less, reducing the cement content considering constant
water content results in a mixture with poor cohesion.
+erefore, cement content should be optimally assigned to
ensure a more reliable concrete mix. On the other hand, the
other contents, such as water-cement ratio and fine and
coarse aggregate, significantly impact the concrete strength.
A very fine aggregate requires more water content to pro-
duce a mixture with reasonable consistency. +e conse-
quences of increasing the water-cement ratio are significant
in reducing the compressive strength of concrete. +erefore,
increasing water content usually provides concrete with
poor properties. +us, several researchers have addressed
this issue by using chemical additives such as super-
plasticizers. +e primary purpose of conducting these ex-
perimental samples is to seek the capability of partially
replacing the cement with furnace slag and fly ash. Table 1
presents the statistical description of all data used in this
current study. Where Min, Max, Std, and CC symbols in
Table 1 refer to the minimum, maximum standardization,
and correlation coefficient with the Compressive strength,
respectively. +e statistical parameters are listed in the table

showing a nonlinear relationship between the target and
input variables. Moreover, there is a positive relation be-
tween cement and fly ash and compressive strength. +e
cement has the highest correlation with compressive
strength with a correlation coefficient (CC) of 0.446, fol-
lowed by fly ash with a CC of 0.444. +e other variables have
a negative relationship with CS, and the range of CC is
between -0.038 and -0.254.

For better assessing the quality of input parameters
mentioned before, their variabilities are statistically com-
pared. As the obtained data have different ranges, the
normalization approach is beneficial for enhancing a better
perspective. Consequently, all the input parameters and their
target are separately normalized between one and zero as
follow:

xi
′ �

xi − xmin

xmin − xmax
, (1)

where xi
′ is the ith normalized value of a variable x.

Figure 1 compares the input variables’ variability;
therefore, the interquartile ranges (IQR) are calculated using
respected quintiles (Q75% − Q25%). +e IQR values of each
normalized input variable are given in Figure 1 in the range
of 0.274 to 0.650. Superplasticizer with IQR of 0.274) and
cement with IQR of 0.641 have the lowest and highest
variability compared to other input variables. Lastly, it is
essential to mention that the data used in this study is
collected from two different sources in the literature and
includes 103 data samples [43, 44].

2.2. Genetic Algorithm. Genetic algorithm (GA) is one of
the most popular algorithms introduced by John [45] for
solving engineering and science optimization problems.
+is algorithm is inspired by the natural selection theory
and then expanded by Goldenberg [46]. GA can find so-
lutions for complex and nonlinear issues, and this aspect is
considered one of the main advantages of this algorithm.
Different optimization purposes can be addressed by GA,
such as continuous or discontinuous or containing a
random noise, linear or nonlinear, and static and dynamic.
+us, GA has succeeded in solving optimization problems
in various areas. However, it is also characterized as a
complicated algorithm because of its limitations, like
determining several algorithm parameters (size of pop-
ulation and genetic operator rate) and creating the proper
function. Better assigning these parameters is critical for
getting highly accurate solutions and having a noticeable
influence on the algorithm’s convergence; consequently,
the designer should be careful [47, 48]. Chromosomes in
GA have a fixed length that encodes linear binary strings
between 0 and 1. +ese Chromosomes are significant
factors because it is responsible for producing the gen-
erations. +e chromosome is selected as a random char-
acteristic [49], and the Chromosomes are evaluated
according to these characteristics. +ey are then selected
via genetic operators of the remaining Chromosomes and
begin producing new generations. Besides, in a range of 0
to 1, crossover selects between parents and mutation work.
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+is process is repeated several times until creating the best
generations assessed according to their performance
[50, 51].

2.3. Particle Swarm Optimization (PSO). +e second opti-
mization algorithm used in this study is the PSO algorithm,
an approach employed in optimization issues for solution
purposes. +e PSO algorithm was introduced to the sci-
entific sectors for the first time by Kennedy and Eberhart in
1995 [52], inspired by the accumulative behavior of particles.
Less memory required and high learning speed is considered
the most compelling characteristic of the PSO compared to
GA.+e solution of optimization problems in a model based
on the PSO algorithm appears like a particle that flies like a
bird in the solution space. +e framework algorithm of
(PSO) is described as follows [53].

Given x
(i)
j present the location and v

(i)
j is the particle j

speed at iteration i, so the following formulas have been
utilized to determine the solution for j position and velocity
at the following iteration:

v
(i+1)
j � wv

(i)
j + c1 ∗ r1 ∗ pbestj − x

(i)
j􏼐 􏼑􏼐 􏼑

+ c2 ∗ r2 ∗ gbestj − x
(i)
j􏼐 􏼑􏼐 􏼑, vmin ≤ v

(i)
j ≤ vmax . . . ,

(2)

x
(i+1)
j � x

(i)
j + v

(i+1)
j � 1, 2, . . . , n. (3)

In the above formula, i represents the number of iter-
ations while w is the coefficient of inertial weight. +e rest of
the variables are explained as follows:

pbestj: the ideal position for the particles throughout
the PSO performance approach.
gbestj: the perfect condition for the particle throughout
the PSO performance approach.
r1, r2: the arbitrary value in the interval [0,1]. +e
algorithm of PSO is described as follows:

(i) Set the magnitude of iteration i� 0, and for
starters, consider an arbitrary location and speed
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Figure 1: (a) Boxplot of normalized input and target variables and (b) Quantile percent of the concrete components.

Table 1: +e statistical description of the used variables in this study.

Variable Unite Min Max Average Std CC
Cement kg/m3 137.000 374.000 229.894 78.877 0.446
Slag kg/m3 0.000 193.000 77.974 60.461 −0.332
Fly ash kg/m3 0.000 260.000 149.015 85.418 0.444
Water kg/m3 160.000 240.000 197.168 20.208 −0.254
Superplasticizer kg/m3 4.400 19.000 8.540 2.808 −0.038
Coarse aggregate kg/m3 708.000 1049.900 883.979 88.391 −0.161
Fine aggregate kg/m3 640.600 902.000 739.605 63.342 −0.154
Compressive strength MPa 17.190 58.530 36.039 7.838 1.000
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for the generated particles. Secondly, the structure
for every particle has to calculate the value of
fitness adjustment.

(ii) +en checking process takes place to compare
fitness magnitude with pbest. If the result is im-
proved, the system changes the value of pbest with
the new one, leading to an updated magnitude of
gbest.

(iii) +e PSO approach will calculate the speed value
for every particle using equation (2), so the po-
sition of every particle will be updated as well using
equation (3). Finally, iteration continues by in-
creasing the value of i with i + 1 and repeating the
process till verification of terminated criteria.

2.4. Support Vector Regression (SVR). In 1995 Cortes and
Vapnik [54] developed a technique called Support Vector
Machine (SVM) as a form of Artificial intelligence (AI) to
deal with classification problems by combining SRM
(Structural RiskMinimization) and SLT (Statistical Learning
+eory). Consequently, various sectors have commonly
employed this technique for regression and prediction
problem-solving. +e concept of support regression ma-
chine (SRM) is the framework of SVM depiction. It presents
an effective implementation with high accuracy compared to
classical Empirical Risk minimization (ERM), which de-
pends on a conventional learning algorithm, such as neural
network techniques. +e objective of the SRM is to increase
the precision of predicting by minimizing upper and lower
limits while reducing training dataset total error is ERM
responsibility. +erefore, SVM is considered a practical
approach to solving several issues and producing more
accurate and reliable predictions [55]. Lately, due to being a
more efficient and reliable tool, researchers have been ap-
plying SVM in a tremendous section of the prognostication
fields conducting various functions related to machine
learning [56–60]. Let D denote dataset points
D � (xi, yi)􏼈 􏼉 ∈ Rd ∗R, i � 1: n. +e primary concept here is
to obtain a function f that contains a connection between x
variable and grandeur for determiningmodel ywhere y is the
function of x which is acquired from data D.

f(x) � (wx) + b, b ∈ R, (4)

f(x) � (w∅(x)) + b. (5)

+ese equations represent linear (4) and nonlinear (5)
functions related to regression problems. +is approach has
involved two stages in obtaining the optimum value for the
weight (w) and bias (b). +ese stages showed applying the
Euclidean norm method in the first stage while the second
stage presented decreasing produced error magnitude by
utilizing empirical risk function. To sum up, minimizing risk
function Rreg(f) by

Rreg(f) � Remp(f) +
1
2

w
2����
����. (6)

And exhibiting theoretical value empirical error by

Remp(f) � C
1
N

􏽘

N

1
L xi, yi, f xi, W( 􏼁( 􏼁, (7)

where L(xi, yi, f(xi, W) is the cost function and is derived
as one of the two main cost functions used. ε–insensitive loss
is the first function, while the second function has been
connected with the least square support vector machine (LS-
SVM) known as the quadratic loss [61].

Moreover, the equilibrium between empirical risk and
the denominated regularization is implied by a regulariza-
tion constant “C”. +e following equations present a primer
formula for issues of optimization:

min
1
2

w
2����
���� + C 􏽘

n

i�1
ξi + ξ∗i( 􏼁, (8)

under the constraints
yi − w∅(x) − b≤ ε + ξi,

yi − w∅(x) − b≥ − ε − ξ∗i ∀i ∈ 1, . . . n{ },

ξi, ξ
∗
i ≥ 0.

⎧⎪⎪⎨

⎪⎪⎩

(9)

So, it is more reasonable to consider certain error limits
to increase problem solution competence. +erefore, the
function accuracy will be approximated where ε indicated a
tube size and the slack parameters characterized by ξi and ξ

∗
i .

+e quadratic initiative has been utilized to obtain su-
perior minimized value for regularized risk related to esti-
mating best weight magnitude according to the principle of
Lagrange multipliers by implementing optimality con-
straints [62]. Calculating these multipliers, by using the
formula below to the minimum value:

min L αi, α
∗
i( 􏼁 � − 􏽘

n

i�1
yi αi − α∗i( 􏼁 + ε􏽘

n

i�1
yi αi + α∗i( 􏼁

+
1
2

􏽘

n

i�1
􏽘

n

j�1
αi − α∗i( 􏼁 αj − α∗j􏼐 􏼑K Xi, Xj􏼐 􏼑,

(10)

as αi and α∗i indicate the Lagrange multipliers where i� 1 to
n at certain limits

0≤ αi, α
∗
i ≤C, i � 1, . . . n,

􏽘

n

i�1
αi − α∗i( 􏼁 � 0.

(11)

Finally, a numerical expression for the regression
function is described by:

f x, 􏽢αi,
􏽢α∗j􏼒 􏼓 � 􏽘

n

i�1
􏽢αi − 􏽢α∗j􏼒 􏼓K X, Xi( 􏼁 + b

∗
. (12)

+e kernel function can be characterized by K(xi, xj) �

∅(xi)∗∅(xi) which would have a value depicted by the
result of scalar for xi and xj vectors in ∅(xi) and ∅(xj)

feature space.
One of the main steps to enhance the performance

accuracy of the SVR approach is to select the kernel function
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properly. +e selection process depends mainly on the
Mercer conditions [63]. Accordingly, the kernel function
type that meets this criterion can be implemented. In this
study, the Radial Basis Kernel function (RBF), as expressed
below, is used to map the nonlinear relationship between CS
of concrete and its dependent variables.

K xi, xj􏼐 􏼑 � exp −
xi, xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (13)

where σ is the bandwidth of the RBF kernel.

2.5. Extreme Learning Machine. Extreme learning machine
(ELM) is an efficient and relatively modern-learning algo-
rithm introduced in 2006 for training feedforward neural
network (FFNN) instead of the conventional algorithm (i.e.,
backpropagation algorithm). +e ELM model is the same as
the structure of a single layer of FFNN, including three
critical layers (input, hidden, and output). ELM has many
advantages that surpass its counterpart FFNN, including
speed and well generalization abilities [63, 64]. Moreover,
the traditional FFNN has many defects and shortcomings,
including low convergence, local minima problems, over-
fitting, and poorer generalization. Furthermore, classical
FFNN is usually trained using a backpropagation algorithm,
and hence, it becomes more likely to be stuck into local
minima.

+e structure of the ELM model consists of three suc-
cessive layers called input, hidden, and output layers, re-
spectively. +e input layer receives the predictor vectors,
while the hidden layer contains several hidden nodes to
process the data to the output layer. It is important to say
that data transmission from layer to next layer through
neurons. Lastly, the output layer is responsible for producing
the calculated outcomes of the model. +e hidden layer is
essential because it contains the majority of the information
of the data.

+e core concept of ELM is the weights and bias values
used to link the transmission data from the input layer to the
hidden layer.+ese values are assigned randomly and do not
need to be corrected. +erefore, this algorithm is very fast.
+en, the activation function is usually nonlinear applied to
extract the most significant features from data which will be
passed to the next layer. It is essential to mention that the
output layer weights are calculated based onMoore–Penrose
approach [65].

+e steps below show the process of establishing the
ELM model.

(i) Inputting the predictors and their corresponding
targets (output values).

(ii) Defining the number of hidden nodes in the
hidden layer using the trial-and-error procedure.

(iii) Assigning the weight and bias values of the hidden
layer randomly.

(iv) Data normalization.
(v) Selecting transfer function.

(vi) Processing the data in hidden nodes using equa-
tion (14) to prepare it for the next layer (calculating
the output of hidden layer H).

(vii) Determining the output layer weights using the
Singular Value Decomposition (SVD) approach as
shown in equations (15) and (16).

(viii) Computing the predicted targets (CS).
(ix) Denormalizing predicted targets (CS).

H(x, α, β) �

g x1( 􏼁

.

.

.

g xN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

g a1.x1 + β1( 􏼁 . . . g aL.x1 + βL( 􏼁

.

.

.

g a1.xN + β1( 􏼁 . . . g aL.xN + βL( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)

where g is the activation function, x, β, a respectively are the
input vectors, bias, and weight values.

HB � Y. (15)

+en, calculate the output weights from equation (16)

􏽢B � H
†
Y, (16)

where H† denotes the Moore-Penrose generalized inverse of
Hussain matrix, Y is the actual targets, and B is the vector
that contains output weights calculated by the SVD method.
It is essential to mention that the sigmoid transfer function is
used as an activation function in the hidden layer.

2.6. HybridModels:Model Development. +e SVR algorithm
usually uses a specific kernel function to calculate the hy-
perplane to fit the data well. +e majority of engineering
issues are very complex. +erefore, it is beneficial to use the
nonlinear kernel function, and hence there will be three
most efficient hyperparameters (C, ε, and ɣ) of the SVR
approach that greatly influence the SVR performance. +e
gamma parameter (ɣ) increases the algorithm’s capability to
match the training data ideally with their corresponding
target(s), while the cost parameter (C) is a penalty metric for
promoting the process of predicting the data instances more
correctly. Decreasing the value of ɣ (1/2σ2) would negatively
affect SVR performance and thus, underfitting the data;
however, increasing too much gamma results in overfitting
the dataset. Consequently, the optimal values of these
hyperparameters (C, ε, and ɣ) significantly impact the SVR
performance, thereby getting more accurate predictions.

In the literature, there are several attempts to select these
hyperparameters of SVR. One of these strategies, using trial
and error methods. However, this approach may not provide
the optimal solutions as it is also limited in a specific range of
assumptions. Moreover, this approach is time-consuming
and requires a higher computational cost. +e other pro-
cedure to compute the hyperparameters of SVR is called grid
-search approach. +is strategy also has several disadvan-
tages, such as required computational efforts and time. In
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addition, this strategy requires a limited range of assump-
tions of each parameter; it sometimes gives some of the
hyperparameters less attention than others. +us, in this
study, these hyperparameters are efficiently optimized using
two different optimizations, namely, genetic and particle
swarm algorithms. Figure 2 and Figure 3 show the incor-
poration of SVR with these algorithms [66, 67]. +e root
mean square error formula is used as a fitness function of
both algorithms.

+e main steps regarding the hybridization of SVR
(calibration processes) are stated below:

(i) Dividing data into sets, training (75%; 77 samples),
and testing set (25%; 26-sample).

(ii) +e training set data is used to develop SVR-GA
and SVR-PSO models.

(iii) Selecting the root mean square error as an ob-
jective function.

(iv) Initializing the parameters for each algorithm (GA
and PSO).

(v) Defining the range of each hyperparameter. In this
study, the algorithms first search these parameters
from 0 to 1.

(vi) As some hyperparameters such as C have a wide
range of data (from 0 to infinity), we reconstruct
this obtained value from the previous step as C� 1/
c, where C is obtained from the previous step.

(vii) +e algorithm starts finding the optimal parame-
ters that reduce the objective function (in this
study, RMSE is used as an objective function).

(viii) +e applied algorithm has been given a significant
task to increase the accuracy during the calibration
process by minimizing the cost function.

(ix) In this study, the cost function is described as root
mean square error (RMSE �������������������������

(1/N) 􏽐
N
i�1 (CSobsi

− CSpredi
)2

􏽱
).

(x) +e algorithm then starts using random numbers
to assign the hyperparameters and updates these
values until optimal accuracy or maximum itera-
tion is achieved.

(xi) Inserting the reconstructed hyperparameters to the
SVR algorithm.

(xii) Calculating the other SVR parameters like beta and
alpha using minimal sequential optimization
(SMO) is considered a more efficient algorithm
[68].

(xiii) Calculate the cost function (RMSE).
(xiv) If the RMSE is very small or the algorithm reaches

the maximum iterations, the algorithm stops the
calibration process. Otherwise, the applied algo-
rithm continues the updating of hyperparameters.

It is essential to mention that all predictive models used
in this study are developed using MATLAB 2018b.

Concerning PSO, it is used based on the algorithm described
in Kennedy and Eberhart [52], with some modifications and
improvements suggested by Pedersen [69] and Mezura-
Montes and Coello Coello [70].

Data
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Initialize the hyperparameters
(C, σ, ε)

Train SVR model

Calculate the
fitness value

Update personal
best and global best

Update velocity and
position of each particle
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Final optimized model Yes
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Figure 3: Incorporation of SVR with the genetic particle swarm
algorithm.
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Figure 2: Incorporation of SVR with genetic algorithm.
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2.7. Statistical Matrices. In this paper, nine parameters ac-
counting for the error between measured and predicted CS
of concrete is used, namely; mean absolute relative error
(MARE), root mean square error (RMSE), mean absolute
error (MAE), maximum absolute percentage relative error
(erMax), uncertainty at 95% (U95), correlation of coefficient
(CC), correlation of determination (R2), Nash–Sutcliffe
model efficiency coefficient (NE), Index of Agreement or
Willmott (WI), and relative error (RE). Some of the stated
parameters like R2, CC, NE, and WI measure the strength of
the relation between predicted and actual vectors, usually
having values in the range of 0 to 1. On the other hand, the
error metrics like RMSE, MARE, MAE, erMax, U95 mea-
sures are used to compute the forecaster error. +e best
model should provide fewer values of error measures (as
lower as possible) and the highest value of correlation
measures (near to one). In this study, the U95 parameter is
used to efficiently select the best model accuracy when some
of the proposed models would give close estimates of CS of
concreter, and hence it would be challenging to choose the
best predictive model. Some earlier studies showed that the
U95 could help in the detection of the statistical differences
between outcomes of comparable models and the actual
values much better than other statistical parameters such as
RMSE, MAE, R2, and so on [63]. Furthermore, the a-20
index as a new engineering metric is used to further assess
the applied models’ performances. It is essential to mention
that the perfect and ideal model has a-20 index of 1.+e a-20
index has an essential advantage in the engineering field
because this factor quantifies the number of experimental
samples that satisfy the predicted magnitudes with a devi-
ation of ±20%, compared to the corresponding (experi-
mental) values [71].

+e mathematical expressions of these statistical pa-
rameters are derived from equations (17) to (26) [72, 73].

MARE �
1
N

􏽘

N

i�1
CSobsi

− CSpredi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (17)

RMSE �

��������������������

1
N

􏽘

N

i�1
CSobsi

− CSpredi
􏼐 􏼑

2

􏽶
􏽴

, (18)

MAE �
1
n

􏽘

n

t�1
CSobsi

− CSpredi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (19)

CC �
􏽐

n
t�1 CSobsi

− CSobsi
􏼐 􏼑 CSpredi

− CSpredi
􏼐 􏼑􏽨 􏽩

��������������������������������������

􏽐
n
t�1 CSobsi

− CSobsi
􏼐 􏼑

2
􏽐

n
i�1 CSpredi

− CSpredi
􏼐 􏼑

2
􏽱 ,

(20)

erMAX � max
CSobsi

− CSpredi

CSobsi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡, (21)

U95 � 1.96 SD2
+ RMSE2

􏼐 􏼑
1/2

, (22)

R
2

� 1 −
􏽐

n
i�1 CSobsi

− CSpredi
􏼐 􏼑

2

􏽐
n
i�1 CSpredi

− CSpre d􏼐 􏼑
2, (23)

WI � 1 −
􏽐

n
i�1 CSobsi

− CSpredi
􏼐 􏼑

2

􏽐
n
i�1 CSpredi

− CSobs

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + CSobsi
− CSobs

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2,

(24)

NS � 1 −
􏽐

n
i�1 CSobsi

− CSpredi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
n
i�1 CSobs − CSobs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (25)

RE% �
CSobsi

− CSpredi

CSobsi

∗ 100, (26)

a20 index �
m20

n
, (27)

where CSobsi
andCSpredi

are respectively observed and pre-
dicted value of i-th sample; CSobs, and CSpredi

are the average
of observed and predicted values separately. While n refers
to the total number of samples, and m20 refers to the
number of samples with an experimental rate value/pre-
dicted value between 0.80 and 1.20. Lastly, SD is the standard
deviation of the forecasted errors.

3. Results and Discussion

Compressive strength (CS) of ordinary and high-strength
concrete is a significant property during manufacturing the
cement. Many factors affect CS, and the relationship be-
tween them and CS of concrete is highly nonlinear for
classical and high strength concrete. +is part of the study
discusses the calculated results obtained by three different
models, ELM, SVR-GA, and SVR-PSO.

Table 2 provides more information regarding the per-
formance of each predictive model during the training
phase. At first glance, the hybrid model (SVR-GA and SVR-
PSO) provided much more accurate predictions than the
ELM model. Moreover, the ELM could not recognize very
well the complex relation between CS and its’ factors thereby
decreasing the accuracy and increasing the forecasting errors
(MAE� 1.890, RMSE� 2.614, MAPE� 0.054, CC� 0.939,
U95 � 370.638, NE� 0.883, WI� 0.968, a20-index� 0.974
and erMax� 0.212). However, the other both models (SVR-
GA and SVR-PSO) gave high accurate forecasting in ad-
dition to a slight preference in favor of SVR-GA model
(MAE� 0.673, RMSE� 1.011, MAPE� 0.021, CC� 0.993,
U95 � 6.882, NE� 0.982, WI� 0.995, and erMax� 0.102).

+e quantitative assessment is in Table 2 illustrates that
the SVR-PSO model can predict CS of concrete at a good
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level of accuracy with MAE of 0.978, RMSE of 1.163, MAPE
of 0.028, CC of 0.997, U95 of 6.107, NE of 0.977, WI of 0.994,
and erMax of 0.065. Finally, the most important note that can
be drawn based on the given outcomes is that the differences
between the performances of the applied three modes under
statistical measures, in general, are minimal except the given
assessments obtained from the U95 parameter.

As shown in Figure 4, scatter plots prove helpful in-
formation on the performance of each adopted model by
explaining the diversion of every predicted point to the
actual value. According to the figure, it can be shown that the
SVR-PSO model is considered the best model in the pre-
diction of CS of concrete and provides the highestR2 (0.993),
followed respectively by the SVR-GA with R2 of 0.986 and

ELM with R2 of 0.883. Moreover, the predicted values ob-
tained by the SVR-PSO model are found to have less dis-
persion and sticker to the fitted line than other comparable
models (i.e., ELM and SVR-PSO).

Although the SVR-GA and SVR-PSO provided the
highest prediction accuracies compared to the ELM model,
very few statistical differences were found between their
performances, and the training set could not give a robust
assessment as the models were trained based on known
targets.+erefore, the testing phase is crucial in assigning the
best predictive models for CS of standard and high strength
of concrete. At the testing phase, the model would assess
under unknown targets. +us, the generalization capabilities
of each adopted model can be revealed [74]. Several
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Figure 4: Comparing between actual and predictive values: correlation of determination, a, b, and c are respectively referring to SVR-PSO,
SVR-GA, and ELM.

Table 2: Assessing the performance of each suggested model: training set.

Model/statistical measures SVR-PSO SVR-GA ELM
MAE (MPa) 0.978 0.673 1.890
RMSE (MPa) 1.163 1.011 2.614
MAPE (MPa) 0.028 0.021 0.054
CC 0.997 0.993 0.939
U95% 6.107 6.882 370.638
NE 0.977 0.982 0.883
WI 0.994 0.995 0.968
erMax 0.065 0.102 0.212
a20-index 1 1 0.974
Bold values represent the higher accuracy value.
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statistical metrics are tabulated in Table 3 to evaluate the
proficiency of the proposed models. Following statistical
metrics, the SVR-PSO is found to have the highest accuracy
of prediction with the fewest metrics errors (MAE� 1.101,
RMSE� 1.386, MAPE� 0.034, CC� 0.989, U95 � 28.776,
NE� 0.972, WI� 0.992, and erMax� 0.151). Based on the
same table, the forecasted error increased in related to ap-
plying SVR − GA of estimation CS during tidying set
(MAE� 2.008, RMSE� 2.826, MAPE� 0.067, CC� 0.956,
U95 � 518.686, NE� 0.883, WI� 0.962, and erMax� 0.417).
+e presented results explain the ELM model’s performance
gives much better predictions than the SVR-GA model with
MAE of 1.657, RMSE of 2.614, MAPE of 0.047, CC of 0.956,
U95 of 183.182, NE� 0.930, WI of 0.981, and erMax of 0.175.

+e presented statistical parameters indicate that all used
models except SVR-PSO gave relatively higher errors in the
testing phase than their training performance. As a result,
the SVR-GA and ELM models have faced overfitting issues.
+e other most significant observation extracted from the
statistical description shown in Table 3 is that the statistical
metric (U95%) is the most efficient parameter in deter-
mining the best accuracy model. +e importance of that
parameter appears in selecting the highest quality model
among several modeling techniques when the values of other
statistical indicators are much closer to each other and no
significant differences are noticed. +us, the SVR-PSO
model performs superior to all comparable models.

As the testing part is very significant, visualization as-
sessments are excessively used to identify the best model’s
capacity and verify whether the SVR − PSO still outperforms
other used techniques according to visual assessments. As
illustrated in Figure 5, the scatter plots clearly showed that
the SVR − PSO model is closer to the actual CS of concrete
than other used models. +e given results indicated a higher
accuracy prediction of CS than other models. Moreover, the
SVR-PSO model recorded the highest value of R2 of 0.978
followed by SVR − GA (R2 � 0.931), and ELM (R2 � 0.914).
Despite the SVR-GA provider higher value of R2 than the
ELM model, it produces very high uncertainty compared to
the ELM technique. In order to obtain adequate and in-
formative graphical evaluation error forecasting, relative
error, as shown in Figures 6(a)–6(c), is established for
exhibiting the relative error (RE %) for every sample over the
testing set. +e figure can also give a better understanding of

the model’s efficiency in predicting CS for every single
sample. It can be observed that the proposed SVR − PSO
generates the fewest RE% values compared to the other
modeling approaches.+e average absolute relative error for
the SVR − PSO model was recorded significantly fewer
(3.40%) compared to other models ELM (4.74%) and SVR-
GA (6.71%), respectively.

Moreover, the distribution of RE% for each suggested
model is plotted in Figure 6(d). +e boxplot presentations
are created to evaluate the suggested models’ performances
and illustrate the visualized information regarding the ef-
ficiency of the models in predicting the CS of standard and
high strength concrete. +e comparable models (SVR-GA
and ELM) generated undesirable outlier values with a rel-
atively higher interquartile range (IQR). However, the SVR-
PSO model performance is excellent. +e estimates were
noticed to have the fewest extreme values compared to
adopted models. Moreover, the predicted median of RE%
obtained by the SVR-PSO model was nearest to zero.
Concerning interquartile range (IRQ), the proposed model
(SVR-PSO) predicts a more desirable value of IRQ (5.235)
compared to SVR-GA (6.662) and SVR-PSO (7.439).

Furthermore, Table 4 is created based on the predicted
compressive strength of concrete values using the applied
models during the testing phase. It shows that the SVR − GA
model sometimes provides estimates with higher errors than
the other models. For instance, the difference between the
experimental value and predicted value in sample 19 was
noticed to be very high (8.08MPa). Furthermore, the other
vital observation that can be concluded from that table is that
the applied model (PSO − SVR) generates very accurate
predictions for CS of high and normal strength of concrete.
It can be said that (PSO − SVR) models are more efficient
for predicting the cs in the presence of waste industrial
material in the concrete than the SVR − GA and ELM.
Moreover, Figure 7 provides more information about the
efficiency of the predicted models during the testing phase.
Based on that figure, the estimated values by the SVR-PSO
model are very accurate and closer to their corresponding
observations.

In order to evaluate the performances of all suggested
models more efficiently, the Taylor diagram, as shown in
Figure 8, is created based on the outcomes of each predictive
model developed in this study during the testing phase. In
this figure, both axes (vertical and horizontal) are connected
via a circular line, representing the standard deviation. +e
value of the coefficient of correlation as a performance in-
dicator is indicated by the black radial lines drawn from the
center of the coordinates, and the circular walnut lines
indicate the value of root mean square error (RMSE) and
another significant performance indicator. In this figure, the
actual dataset is placed in the base of the Taylor diagram and
assumes that the data have the highest correlation of co-
efficient (i.e., CC� 1), RMSE of zero, and a calculated
standard deviation (SD) value. +en, the performances of
each model in terms of the three statistical parameters
(RMSE, CC, and SD) are compared with those evaluated
from the actual dataset. +us, the efficiency of the predictive
modeling approach can be easily identified via assessing its

Table 3: Assessing the performance of each suggested model:
testing set.

Model/statistical measures SVR-PSO SVR-GA ELM
MAE (MPa) 1.101 2.008 1.657
RMSE (MPa) 1.386 2.826 2.180
MAPE (MPa) 0.034 0.067 0.047
CC 0.989 0.956 0.965
U95% 28.776 518.686 183.182
NE 0.972 0.883 0.930
WI 0.992 0.962 0.981
erMax 0.151 0.417 0.175
a20-index 1 0.923 1
Bold values represent the higher accuracy values.
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Figure 6: Comparison of the performances of three adopted models: (a, b, and c respectively belong to SVR-PSO, SVR-GA, and ELM, while
d shows the boxplot presentation for illustrating the distribution of relative error for all adopted models in a single plot.
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Figure 5: Comparing between actual and predictive values: correlation of determination, (a, b, and c) respectively belong to SVR-PSO, ELM,
and SVR-GA.
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Table 4: +e predicted compressive strength values using applied models versus the experimental values during the testing phase.

No. Sample SVR-PSO (MPa) SVR-GA (MPa) ELM (MPa) Experimental (MPa)
1 28.73 29.93 28.85 28.70
2 36.07 35.85 39.02 35.52
3 46.56 46.62 46.12 45.69
4 41.26 40.84 41.91 41.81
5 37.85 37.87 36.34 37.39
6 34.00 33.23 38.27 36.46
7 39.03 38.07 38.17 41.14
8 21.02 24.74 18.54 18.26
9 40.16 39.03 42.69 41.01
10 36.03 35.53 37.00 35.39
11 31.11 31.25 31.83 30.97
12 43.68 40.87 46.82 46.36
13 33.94 34.27 33.97 33.78
14 40.53 38.98 42.30 42.08
15 31.70 32.28 33.11 30.97
16 46.51 46.64 45.61 45.82
17 51.92 51.76 48.07 52.65
18 41.33 39.46 42.66 43.54
19 21.46 27.20 20.15 19.19
20 37.49 37.47 37.62 38.19
21 45.36 44.29 43.90 45.42
22 29.34 30.95 25.94 29.23
23 31.67 31.96 30.18 33.51
24 41.88 41.33 39.55 43.01
25 26.65 27.97 25.97 27.89
26 29.14 30.04 32.92 28.03
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similarity with the based model of the actual dataset. It can be
seen from this figure that the SVR-PSOmodel takes the closest
position to the actual data, which indicates the excellent
performance of this model. However, the other models (SVR-
GA and ELM) show a lower similarity with the actual data than
the SVR-PSO model during the testing phase.

Finally, both quantitative and visualized assessments re-
ferred to the adopted predictive model (SVR-PSO) have
performed very well in training and testing phases to predict
the compressive strength of standard and high-performance
concrete. Although the CS has had a complex relationship with
the existing parameters, the proposed modeling approach was
very stable and gave the highest accuracy results compared to
other comparable models. For ensuring the reliability of the
proposedmodel (SVR-PSO), the outcome of this model during
the testing set will be compared with other predictive models
conducted in previous studies in terms of coefficient of de-
termination (R2). +is indicator is very efficient when com-
paring a specificmodel’s outcomes to others developed in other
studies with a different dataset. +e most important thing is
that this parameter is not affected by normalization and the
scale of the dataset.+emodels are developed based on a given
dataset from different ranges and distributions. However, most
other statistical criteria such as RMSE, NSE, and other criteria
are mainly influenced by the scale of the used data set. When
comparing different predictive models established from several
datasets, these parameters may be misleading. Finally, the
hyperparameters of SVR, which PSO and GA have optimized,
are presented in Table 5.

3.1. Comparing the Proposed Model with Others Developed in
Previous Studies. Shariati et al. [10] presented a novel
model by incorporating the extreme learning machine and
grey wolf optimizer to predict the concrete CS. For

compression purposes, the authors used standard extreme
learning machine (ELM), support vector regression (SVR)
with different kernel functions, artificial neural network,
and adaptive neuro-fuzzy inference system (ANFIS). +e
assessment results revealed that the proposed modeling
approach outperformed other modeling approaches with
desirable accuracy (R2 � 0.9381). Another study [75] in-
vestigated using the data mining approach as a computer
aid to predict CS of high-strength concrete. +e authors
used a cross-validation (CV) approach with a multiple
additive regression tree (Mars). +e proposed model is
evaluated with other approaches like ANN and SVR, sta-
tistical model, and bagging regression trees. +e results
discovered that the comparable models gave undesirable
performances while the proposed model achieved the
highest accuracy with R2 of 0.943.+e study conducted that
the other modeling approaches gave lower accuracy and
suffered overfitting problems. Chou et al. [27] applied two
approaches to estimate concrete CS, called ANN and SVR.
In order to achieve better performances, the authors de-
veloped both models using the same dataset. However, the
performance of the ANNmodel was slightly lower than the
SVR model. +e study concluded that the SVR is more
stable and hence gives the higher prediction accuracy with
R2 of 0.9551. Moreover, Pham et al. [76] investigated the
hybridization of least square support vector regression with
a firefly algorithm to establish a hybrid model called (LS-
SVR-FFA) for predicting CS of high-performance concrete.
For verification of the performance of the hybrid model,
authors used other benchmark models called SVR and
ANN. the results found that the LS-SVR-FFA model was
very accurate compared to SVR and ANN models in the
prediction of CS of concrete with R2 of 0.89. Bui et al. [77]
hybridized the novel whale optimization algorithmwith the
ANN approach to enhance the model’s performance in
predicting concrete CS. +e authors also incorporated the
neural network with several algorithms (ant colony opti-
mization and dragonfly algorithm). +e outcomes of the
study showed that the proposed model (WOA-NN) gains
the fewest error forecasting and best performance
(R2 � 0.898). Another study was conducted by Hameed and
AlOmar [4] to predict CS of concrete using the ANN-CV
model.+e study used the multiple linear regression (MLR)
model for comparison and validation of the performance of
the proposed model. +e study concluded that the MLR
approach could not provide desirable results as ANN
models though using CV techniques with both models.
However, the superiority of the ANN model is obvious in
terms of accuracy performance (R2 � 0.931). Table 6
provides more reverent studies which developed differ-
ent prediction models for the prediction of CS of concrete.
Based on the outcome of the reviewed models collected
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Table 5: +e optimized hyper-parameters of SVR by PSO and GA.

Parameter GA PSO
C 1.160329 8.511694
ɣ 8.007E− 03 0.015044
ε 0.990097 0.048581
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from the literature, the suggested model (SVR-PSO) out-
performed all comparable models developed and used in
previous studies.

3.2. Sensitivity Analysis. After assessing the reliability of the
proposed model (SVR-PSO) and validating its performance
against different models developed in previous studies to
predict CS of concrete, it is vital to conduct sensitivity
analyses to identify the most significant parameters that have
an important influence on CS of concrete. Moreover, the
selection of the most influential parameters has great im-
portance in minimizing time and cost as well as this step is
vital in structural and material engineering [86]. +e cosine
amplitude method is applied in this current paper [47, 87].
+e mathematical expression of the amplitude method can
be seen according to the following equation:

Rij �
􏽐

n
k�1 Xik ∗Xjk􏼐 􏼑

���������������
􏽐

n
k�1 X

2
ik 􏽐

n
k�1 X

2
jk

􏽱 , (28)

where Rij is the correlation degree between each input var-
iable and target (CS of concrete). +is factor ranges between 0
and 1. If there is a high correlation between a parameter with
CS of concrete, the value of Rij is becoming close to one. On
the other hand, if there is no relation between a variable and
CS of concrete, the value Rij equals zero. Moreover, in the
stated equation, n is the number of samples during the crucial
step of this study (i.e., testing set), and the parameters Xi and
Xj, respectively are the input and output values (CS of
concrete). Figure 9 shows the influence of each used pa-
rameter on the CS of concrete. It found that the fine aggregate,
coarse aggregate, water, and cement variables have the highest
impact on CS. However, the other input parameters (i.e., SP,
fly ash, and slag) have a lower impact on the CS of concrete.

3.3. Limitation of the Proposed Method and Possible Future
Research. +e obtained results have proved the capability of
SVR-PSO in the prediction of CS of concrete where the
cement was partially replaced with other materials. +e

proposed model showed an important improvement in
prediction capacity compared to other comparable models
such as ELM and SVR-GA. Besides, the input predictors of
this study, including seven different materials, are intro-
duced to the models to predict the CS property. However,
the prediction accuracy of the proposed model may improve
if the advanced data preprocessing technique is applied.
Moreover, the input vectors may have uncertainties and are
correlated, which eventually hider the model’s performance.
+erefore, this study recommends applying the principal
component analyses (PCA) approach before training the
model. Applying the PCA approach has a significant ad-
vantage in eliminating the redundant information and
correlation between input data, thereby enhancing the
predicting accuracy of the applied model.

4. Conclusions

+e significant contribution of this research was to develop a
hybrid AI model for the prediction of compressive strength
of concrete with 28-day age where the cement was partially
replaced with the pozzolan powders such as furnace slag and
fly ash. +e traditional approaches such as the trial-and-
error method applied to find the optimal concrete design
have some limitations since the process is time-consuming
and needs several experimentals. Furthermore, the process
of partially replacing cement in concrete manufacturing
makes the relationships between CS and concrete compo-
nents very complex. Accordingly, the classical method does
not provide the most optimal solutions. +us, this research
has introduced a novel approach as an efficient and cost-
effective method to early estimate the CS. For this regard,
SVR is hybridized with two different nature-inspired opti-
mizations like modified PSO and GA, constituting SVR-PSO
and SVR-GA models, respectively. +ese algorithms are
given a significant task in optimizing the hyperparameters of
SVR. Furthermore, the ELM model is also developed for
validating the performances of both SVR-PSO and SMR-
GA. +ere were eight statistical matrices used for assessing
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Table 6: Validating the SVR − PSO against predictive models
collected from the literature.

Reference Model R2

[10] ELM-GWO 0.9381
[75] MART-CV 0.943
[27] SVR 0.9551
[76] LS-SVR-FA 0.89
[77] WOA-ANN 0.898
[4] ANN-CV 0.931
[78] MARS-GBM 0.956
[79] ANN 0.922
[80] Neural-expert system(NEX) 0.76
[81] Fuzzy polynomial neural networks (FPNN) 0.821
[82] ANN 0.934
[83] EFSIM 0.927
[84] RELM- CV 0.884
[85] XGBoost with feature selection 0.9339
Proposed model (SVR-PSO) 0.978
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the performance of each model separately. +e results
showed that all proposed models (ELM, SVR-GA, and SVR-
PSO) provided good estimates. However, there were sig-
nificant differences reported throughout the testing set.
Additionally, the reported results uncovered that the SVR-
GA suffered overfitting problems. Although the ELM model
has been found to provide highly accurate estimates com-
pared to the SVR-GA model, the SVR-PSO model was
superior in predicting the compressive strength of concrete.
Among all eight statistical parameters that are used in this
study, the uncertainty at 95% (U95) is noticed as a more
efficient parameter in evaluating the prediction capacity of
used models.+e proficiency of U95 is remarkably noticed to
efficiently identify the most efficient predictive modeling
approach when other statistical parameters such as coeffi-
cient of determination (R2), mean absolute error (MAE),
and Index of Agreement or Willmott (WI) gave almost very
close assessments for all comparable models. Furthermore,
visualization assessments such as boxplots, scatter plots, and
Taylor diagrams have been carried out and pointed out that
the SVR-PSO models were the best predictive models in the
prediction of CS. Besides, further assessment has been
carried out by comparing the performance of the proposed
model (SVR-PSO) with 14 models that had been developed
in the literature. It is found that the proposed model of this
study gave more excellent estimates than the comparable
models. Sensitivity analysis using the cosine amplitude
method also has been done in this study to select the most
influential input parameters on the outputs. It was found
that the fine aggregate, coarse aggregate, water, and cement
variables have the highest impact on CS, respectively. Fi-
nally, the hybridization of SVR with modified PSO provided
more accurate CS predictions and thus can help to enhance
the understanding of the underlying relations between
concrete mix components and CS property.

Using Seven input variables may hinder the performance
of the applied models because these variables may have
redundant information. Besides, these parameters may be
correlated to each other or have uncertainties that reduce the
efficiency of the predicted model. For future studies, this
study recommends using the PCA approach before training
the models to remove the redundant information from input
vectors and eliminate the correlation between inputs data.
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efficiency of ground granulated blast furnace slag on concrete
properties – a review,” Construction and Building Materials,
vol. 105, pp. 423–434, 2016.

[17] H. Bı̇nı̇ci, M. Y. Durgun, T. Rızaoğlu, and M. Koluçolak,
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In order to study the deformation of a diaphragm wall and the settlement of surrounding soil under the complicated conditions of the
deep and soft soil layer, which is underlying inclined rock and top-down construction method, the construction scheme of suspended
diaphragm wall based on the engineering practice of Oujiang North Estuary deep and large foundation pit of Wenzhou S2 railway is
proposed, and the research method of numerical simulation is adopted in this article. By using Midas GTS finite element software, a
three-dimensional model of deep and large foundation pit excavation with top-down construction method is established, and the
internal force, deformation, and surface settlement of surrounding soil of suspended diaphragmwall with different depths into rock (1m,
2m, and 4m) are analyzed. Furthermore, the optimization simulation research on the anchor locking scheme is carried out for the
determined footed diaphragm wall. Similarly, the anchor locking scheme at a depth of 1m into the interface between soil and rock is
selected as the supporting scheme of the footed diaphragm wall through the simulation results. )e research results of this article can
guarantee the safety of diaphragm wall construction of deep and large foundation pit in complex stratum.

1. Introduction

At present, deep foundation pit engineering is more and
more widely applied, and the depth of foundation pit is also
becoming deeper and deeper. Most of the deep foundation
pits must be supported during the construction period. )e
purpose of foundation pit support is to ensure the safety of
the surrounding environment of the foundation pit and the
construction process of the underground structure [1]. )e
temporary enclosure, support, or reinforcement measures
taken around the working face of the basement create fa-
vorable conditions for the construction of the underground
structure and ensure a good working environment for the
underground construction.

In the 1920s–1930s, Germany, France, and Italy obtained
the initial patent of diaphragm wall through practical

certification and adopted the “pile wall integration” tech-
nology to reduce the thickness of the basement exterior wall
and the area of the foundation pit. )e design compre-
hensively considers the load transfer structure of waterproof
[2] and diaphragm wall and checks the strength and du-
rability under different loads through different stages of
foundation pit construction and external factors [3], such as
earthquakes [4]. In 1950, Italy built the first pile row dia-
phragmwall reservoir dam, and later inMilan metro project,
the subway retaining wall has been built in pebble foun-
dation [5], which shows the good advantages of diaphragm
wall technology and further promotes the development of
diaphragm wall and “pile wall integration” technology. Since
then, Germany, France, Japan, the United States, and other
countries have introduced diaphragm wall and “pile wall
integration” technology [6] and continuously improved and

Hindawi
Advances in Civil Engineering
Volume 2022, Article ID 8201726, 20 pages
https://doi.org/10.1155/2022/8201726

mailto:sunfuxue@163.com
https://orcid.org/0000-0002-8768-6361
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8201726


developed. At present, the technology of diaphragm wall in
Japan is at the leading level in the world.)e diaphragm wall
with the deepest depth of 140m and thickness of 2.8m has
been built, and the deep well with an inner diameter of 144m
and a depth of 110.1m has been built.

At present, the foundation pit engineering is developing
in the direction of large scale, large depth, tight construction
period, and short distance [7]. )e foundation pit support
methods are diversified. Various support forms can be seen
in the same foundation pit. Soil nailing wall support and pile
row support are combined, and slope excavation is com-
bined with the diaphragm wall. Because the urban land is
more and more expensive and the urban traffic pressure and
the population are increasing, the top-down construction
method for foundation pit design has become the first choice
for the foundation pit excavation adjacent to the urban
underground pipeline and subway. )e top-down con-
struction method for foundation pit design is suitable for
large-area and deep foundation pits. It can simultaneously
construct the superstructure, effectively shorten the con-
struction period, save the cost, and control the deformation
of the foundation pit and soil outside the pit. With the
further improvement of the construction accuracy of col-
umn piles in underground structures, more and more civil
engineers favor the reverse method design for constructing
basement foundation pits of high-rise buildings, and many
typical projects have emerged [8, 9]. At the same time, many
scholars have conducted in-depth research on reverse
practice and achieved some important results.

Ou et al. [10] conducted field measurement on the
foundation pit excavated by the top-down construction
method, analyzed the data, and concluded that the hori-
zontal displacement of soil close to the diaphragm wall is
similar to that of the wall. Long [11] conducted a large
number of field measurements by studying the relationship
between foundation pit deformation and excavation depth
with different soft soil thicknesses between the bottom-up
construction method and the top-down construction
method. It is concluded that the top-down construction
method can reduce the deformation of the foundation pit.
Gong et al. [12] proposed that the top-down construction
method avoids repeated labor such as dismantling and
replacing supports, saves resources and construction cost,
and requires a small site during construction, which brings
many conveniences to the construction. Kung [13] collected
and summarized the actual construction cases of 26 foun-
dation pits in the Taipei silty clay area. )e analysis results
show that the horizontal displacement of diaphragm wall in
bottom-up construction method foundation pit is 1.28 times
that in top-down construction method foundation pit under
similar engineering conditions. Regardless of the thermal
shrinkage effect of concrete floor, the average horizontal
displacement of diaphragm wall in bottom-up construction
method foundation pit is 1.1 times that in the top-down
construction method. Aye et al. [14] used the finite element
software PLAXIS to analyze the influence of the under-
ground passage constructed by the top-down construction
method in Bangkok on the upper existing overpass, obtained
the stratum calculation parameters through the inversion

analysis, calculated and analyzed the deformation of the
underground diaphragm wall of the passage, and compared
it with the field measured data. )e results show that the
maximum horizontal displacement of the underground
diaphragm wall is only 0.29% times of the excavation depth.
)e bending moment and axial force of the bored cast-in-
place pile near the existing overpass are increased. Liu et al.
[15] analyzed the field monitoring data of a 38m deep
foundation pit constructed by a top-down construction
method in Shanghai, including the horizontal displacement
of the diaphragm wall and the variation of differential
settlement of intermediate piles with the progress of con-
struction. )e results showed that the maximum horizontal
displacement of the diaphragm wall was within the range of
0.2%∼0.3% times the excavation depth, and the maximum
differential settlement of intermediate piles was less than 1/
500 of the column spacing, all of that meet the deformation
control requirements.

With the rapid development of urban rail transit con-
struction, deep foundation pit engineering, to a certain
extent, meets the needs of urban construction and devel-
opment. Still, the surrounding environment of the foun-
dation pit is more complex, the geological conditions are
worse, and the research on the construction of foundation
pits in underlying strata is less; these factors bring great
challenges to the safety of foundation pit construction. In
this context, based on the deep foundation pit engineering of
Jiangbei working shaft of S2 line of Wenzhou City railway,
using the three-dimensional finite element numerical sim-
ulation method, aiming at the underground continuous wall
support, the soft soil layer of underlying inclined rock
surface, and the top-down construction technology, this
article makes a comprehensive study on the internal force
and deformation effect of deep foundation pit suspended
foot diaphragm wall construction. )rough the comparative
analysis of the numerical simulation results and the field
measured data, the construction and support scheme of the
diaphragm wall suitable for relying on the project is de-
termined to provide a guarantee for the safety of
construction.

2. Project Overview

)e project on which this article relies is the foundation pit
project of the exit shaft of the S2 shield tunnel of Wenzhou
City railway in Zhejiang Province, China. )e length of the
foundation pit is 43m, the width is 21.9m or 27.6m, and the
excavation depth is 51.63m. )e foundation pit is located in
the deep muddy soil layer in the Oujiang shoal area. )e
upper part is about 46m of muddy soil and clay layer. )ere
is a deep riprap layer in the middle and a weakly weathered
tuff layer in the lower part. )e rock surface is horizontally
extraverted, and the geological conditions are complex (as
shown in Figure 1).

)e foundation pit is protected by a diaphragm wall, the
thickness of the diaphragm wall is 1.5m, the width of the
standard section is generally 5.5m, the length of the local
special-shaped diaphragm wall is adjusted properly, and the
reinforced concrete ring frame beam and each floor plate are
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used as the support (as shown in Figure 2). Due to the
complex geological conditions, the reverse construction
method is adopted in the foundation pit construction.
)erefore, how to carry out diaphragm wall construction
and foundation pit excavation and support under complex
geological conditions and effectively control foundation pit
deformation to ensure construction safety is a construction
difficulty of the project and also the research focus of this
article.

According to the field investigation data, the existing
construction equipment and the results of expert discussion,
it is proposed to use the suspended foot diaphragm wall for
the construction of the foundation pit diaphragm wall, but
the specific depth into the rock remains to be determined. In
this article, the numerical simulation method will be used to
simulate the construction of the suspended footed dia-
phragm wall so as to determine the depth of the suspended
footed diaphragm wall into the rock (1m, 2m, and 4m) and
the locking reinforcement scheme of the suspended footed
diaphragm wall so as to provide a reference for the smooth
progress of the project.

3. Simulation Scheme Design

Midas GTS NX is selected as the numerical simulation
software in this article because its simulation results are very
similar to the measured data (this is because Midas GTS NX
can truly simulate the actual construction process according
to the setting process of the on-site retaining structure and

soil excavation), the constitutive model is rich, and the
simulation results have high accuracy in the simulation of
foundation pit, slope, tunnel, and other practical projects.

3.1. Establishment of Numerical Model

3.1.1. Model Size. According to the actual size of the
foundation pit, the calculation model diagram is established
(as shown in Figure 3): the length of the foundation pit
relying on the project is 43m, the left width is 21.9m, the
right width is 27.6m, and the excavation depth is 51.63m.
According to the previous modeling experience, the size of
the foundation pit model can generally be 3–5 times the
excavation depth of the foundation pit [10]. Finally, the
overall size of the foundation pit model is determined as
287m long, 227.6m wide, and 100m high.

3.1.2. Formation Treatment Method. According to the de-
tailed investigation report of the Oujiang North portal
tunnel, the soil layer is fine. )rough sorting and merging
the soil materials with similar properties, the soil materials
are divided into five different layers, and the modified
Mohr–Coulomb constitutive model is adopted.)e material
parameters of each layer are shown in Table 1. (Note: the
parameters that cannot be provided in the geological survey
report are calculated by the empirical method.)e other two
stiffness properties can be selected according to the com-
pression modulus of a certain ratio. Generally, the secant

Figure 1: Geological profile of Jiangbei working well.
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modulus is equal to the tangent modulus and three times the
compression modulus.)

3.1.3. Treatment Method of Inclined Strata. According to the
geological survey data, the inclined rock surface is diagonally
inclined, and the slope of the rock surface is not uniform. It
is difficult to model and simulate according to the actual
trend, and there are too many irregular grid cells, leading to
poor grid quality. When running on a low configuration
computer, the calculation process is very slow. In order to
meet the needs of simulation calculation, according to the
rock surface depth around the foundation pit determined by

the investigation, after determining the depth of moderately
weathered rock at the interface between the rock surface and
the foundation pit, the rock surface trend inside the foun-
dation pit is determined by the slope average method, and
the rock surface trend outside the foundation pit is extended
according to the slope inside the foundation pit to form the
internal rock surface trend of the model. )e size of the
completed model is shown in Figure 1.

3.2. Selection of Structural Elements andMaterial Parameters.
)e supporting structure of the deep foundation pit of the
Beikou well is mainly the diaphragm wall, supporting plate,

Figure 2: Section diagram of foundation pit supporting structure.
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and reinforced concrete ring frame beam (as shown in
Figure 2). )e elastic constitutive model is selected for all
supporting structures, in which the diaphragmwall and each
floor structure adopt a two-dimensional plate element,
which is extracted from the three-dimensional solid element.
)e reinforced concrete ring frame beam is mainly flexural,
and its length is larger than the cross-sectional area, so a one-
dimensional beam element is adopted, which is extracted
from the three-dimensional solid element. )e material
parameters of the supporting structure are shown in Table 2.

3.3. Boundary Conditions and Mesh Generation. In the
length direction (x-direction) of the model, the displacement
of the X-axis is limited, that is, u� 0, V≠ 0, w≠ 0. In the
width direction (Y-direction), the displacement of the Y-axis
is limited, that is, u≠ 0, v � 0, w≠ 0. In the height direction
(z-direction), the upper boundary of the model is free, i.e.,
unrestricted, and the lower boundary of the model is fully
constrained, i.e., u� 0, v � 0, w � 0 (U is displacement in X-
direction, V is displacement in Y-direction, and W is dis-
placement in Z-direction).

Midas GTS provides two types of mesh generation:
tetrahedral mesh and hybrid mesh. In this model, the hybrid
grid is used. )e mixed mesh is mainly hexahedron, with
pentahedron and tetrahedron as the transition mesh.
Compared with tetrahedral mesh, the hybridmesh has better
stability and higher accuracy. In addition, the number of
meshes generated by hybrid mesh is far less than that
generated by tetrahedron under the same cell size, which

greatly improves the calculation speed. )erefore, when the
size of a large engineering model is larger, the hybrid mesh is
usually used.

3.4. Determination of Simulated Construction Process. )e
deep foundation pit is constructed by the top-down method.
According to the design and construction technology of the
foundation pit, the foundation pit excavation is simulated
according to the actual technology. )e foundation pit
excavation is divided into 12 steps, and the specific con-
struction process is shown in Table 3.

3.5. Determination of Simulation Conditions. According to
the needs of the project, the following two working conditions
are determined for the study: ① suspended foot diaphragm
wall;② suspended foot to connect the wall, adding anchor lock
foot. )e construction process of condition ① is shown in
Table 3 above.)e first 11 steps of condition② are the same as
those of condition①. )e 12th step is the tenth excavation to
−51.630m, and the anchor rod and bottom plate are activated.
According to the needs of simulation, the horizontal dis-
placement, bending moment deformation, and surrounding
ground settlement of the diaphragm wall are selected as the
construction effect indexes.

3.6. Simulation Assumptions. In this article, the outlet well
foundation pit is selected, and the calculation model is
established considering the surrounding soil. According to

Figure 3: Overall calculation model of foundation pit.

Table 1: Material parameters of soil layer.

Number Layer Layer thickness (m) Compression modulus (MPa) Poisson’s ratio Unit weight
(kN/m3) Cohesion (kPa) Internal friction

angle (°)
① Silt 1 18 1.97 0.30 18 6.05 2.93
② Silt 2 14 2.09 0.30 15 6.38 3.11
③ Clay 1 14.8 2.98 0.40 20 10.23 3.10
④ Clay 2 3.18 3.80 0.35 18 12.45 7.58
⑤ Tuff 1.65 500.00 0.30 23 20.00 33.00

Advances in Civil Engineering 5



the actual stratum situation and the calculation needs of the
model, the following assumptions are made: ① the soil is
isotropic and evenly distributed; ② the influence of the
surrounding environment induced by diaphragm wall
construction is not considered; ③ the influence of soil
drainage consolidation and groundwater seepage is not
considered.

4. Simulation Study on Construction Effect of
Top-Down Construction Method for
Foundation Pit with Suspended Foot
Diaphragm Wall

In the original design scheme of Jiangbei working shaft
foundation pit, the height of the diaphragm wall is 59.8m,
the thickness is 1.5m, and the bottom of the diaphragm wall
is at the same elevation. However, in the construction
process, due to the high strength of moderately weathered
rock, the construction speed of existing wall forming
equipment is too slow to meet the requirements of the
construction period, and the cost is too high. )rough the
discussion of experts, it is proposed to change the insertion
mode of the in situ diaphragmwall into the design scheme of
the suspended foot diaphragm wall, which is 2m into the
rock. )e left wall (West wall) of the suspended foot dia-
phragm wall is 45.82m long, and the right wall (east wall) is
51.98m long (as shown in Figure 4). It can be seen from
Table 3 that there are many excavation conditions, so the 1st,

3rd, 5th, 7th, and 10th excavations (corresponding to
process No. 3rd, 7th, 9th, and 12th in Table 3) are selected to
study and analyze the foundation pit construction effect.

Table 2: Material parameters of supporting structure.

Structure name Element
type

Constitutive
model

Modulus of elasticity
(kN/m2)

Poisson’s
ratio

Unit weight (kN/
m3)

)ickness/diameter
(m)

Diaphragm wall Plate Elastic 32500000 0.2 24.5 1.5
Ring frame beam Beam Elastic 32500000 0.2 24.5 3.5×1.8
Top plate/middle
plate Plate Elastic 32500000 0.2 24.5 0.4

Floor Plate Elastic 32500000 0.2 24.5 3

Table 3: Details of construction procedures.

Process
number Process node

1 )e original stratum is established, and the initial stress is analyzed by applying boundary constraint and self-weight load
2 Activate diaphragm wall and clear displacement
3 )e first excavation to −2.000m, the first ring frame beam and roof was activated

4 )e second excavation was to −7.700m, and the second ring frame beam and the middle slab of the negative first floor
were activated

5 After the third excavation to −13.400m, the third ring frame beam and the middle slab of the second floor were activated
6 )e fourth excavation to −19.750m, the fourth ring frame beam and the negative third-floor slab were activated
7 )e fifth excavation to −24.550m, the fifth ring frame beam and the negative fourth-floor slab were activated
8 )e sixth excavation was to −28.895m, and the sixth ring frame beam and the middle slab of the fifth floor were activated

9 )e seventh excavation was carried out to −34.145m, and the seventh ring frame beam and the middle slab of the sixth
floor were activated

10 )e eighth excavation to −38.945m, the eighth ring frame beam and the negative seventh-floor middle plate were
activated

11 )e ninth excavation was carried out to −43.575m, and the ninth ring frame beam and the middle slab of the eighth floor
were activated

12 )e tenth excavation to −51.630m, the floor was activated

Figure 4: Schematic diagram of the ground connection wall the
depth into rock is 2m.
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4.1. 6e Horizontal Displacement Analysis. )e horizontal
displacement contour plot of the diaphragm wall under five
excavation conditions is shown in Figure 5. In the contour
plot, the one on the left is the west wall, and the one on the
right is the east wall (the same below).

After sorting and analyzing the data in Figure 5, we can
get the relationship curve between the depth and dis-
placement of the footed diaphragm wall (as shown in Fig-
ure 6) and combine the maximum horizontal displacement
and depth data of the footed diaphragm wall into a table (as
shown in Table 4).

It can be seen from Figure 6 and Table 4 that the hor-
izontal displacement of the foot diaphragm wall is small in
the first excavation. With the excavation of the foundation
pit, the pouring of the middle plate structure, the support of
the ring frame beam, and the horizontal displacement curve
of the foot diaphragm wall are in the shape of “small at both
ends, large in the middle.” )e maximum horizontal dis-
placement of the diaphragm wall gradually moves down
with the increase of excavation depth and finally locates
above the excavation surface. )e maximum horizontal
displacement is about 7/10∼3/4 times the final excavation
depth of the foundation pit.

In addition, when the diaphragm wall is a suspender and
the underlying strata are less embedded, the displacement
and deformation of the end and bottom of the suspender
diaphragm wall are larger. )e maximum horizontal dis-
placement of the east wall is larger than that of the west wall,
which is due to the existence of inclined rock surface. )e
displacement and deformation law of the east and west walls
is asymmetric, and the maximum horizontal displacement
position gradually moves down with the excavation
condition.

4.2. Bending Moment Analysis. )e bending moment con-
tour plot of the diaphragm wall under five excavation
conditions is shown in Figure 7.

By sorting and analyzing the data in Figure 7, the re-
lationship curve between depth and bending moment of the
hanging foot ground connecting wall can be obtained, as
shown in Figure 8, and the maximum bending moment and
depth data of the hanging foot ground connecting wall can
be summarized into a table, as shown in Table 5.

It can be seen from Figure 7 and Table 5 that the bending
moment of the diaphragm wall is small in the first exca-
vation, and there is a reverse bending point. With the
progress of excavation, the bending moment of the dia-
phragm wall increases gradually and then decreases slightly
in the final excavation stage. In each excavation stage, the
maximum positive bending moment of the diaphragm wall
is larger than the maximum negative bending moment. )e
maximum positive bending moment of the diaphragm wall
is about 7/10∼3/4 times the final excavation depth of the
foundation pit, and themaximum negative bendingmoment
is about 4/5∼19/20 times the final excavation depth of the
foundation pit.

In addition, the maximum positive bending moment is
larger than the maximum negative bending moment in each

excavation stage. )e position of the maximum positive
bending moment of the east and west walls first moves down
and then rises and then remains unchanged after the original
position. )e position of the maximum negative bending
moment does not change with the change of the excavation
stage (except for the tenth excavation of the east wall). Due
to the existence of inclined strata, the maximum bending
moment of the east wall is larger than that of the west wall in
each excavation stage (except for the negative bending
moment of the tenth excavation), and the deformation law
of the east wall and the west wall is basically the same but
asymmetric.

4.3. Analysis of Surface Subsidence. )e contour plot of soil
surface settlement under five excavation conditions is shown
in Figure 9.

By sorting and analyzing the data in Figure 9, the
relationship curve between surface settlement and dis-
tance from foundation pit can be obtained, as shown in
Figure 10, and the data of maximum surface settlement
position can be summarized into a table, as shown in
Table 6.

)rough comprehensive analysis of Figures 9 and 10 and
Table 6, the following conclusions can be obtained:

(1) During the first excavation, the surface settlement of
the soil is very small. )e maximum surface settle-
ment of the soil on the east and west sides is about
0.5mm. )e maximum settlement is located 10m
away from the edge of the foundation pit, and the
settlement beyond 20m is almost zero.

(2) During the third excavation, the soil surface settle-
ment increased, and the maximum settlement was
about 4.0∼4.5mm. )e soil surface settlement po-
sition changed, all located 15m away from the edge
of the foundation pit, and the soil surface settlement
outside 60m was small.

(3) During the fifth excavation, the surface settlement of
the soil continued to increase, and the maximum
surface settlement was about 11.5mm, an increase of
about 1.8 times that of the third excavation, which
was consistent with the sudden increase of the
horizontal displacement and a bending moment of
the diaphragm wall during the fifth excavation. Due
to the deformation law of the diaphragm wall, the
surface also had a large settlement. )e maximum
surface settlement positions of the soil on the east
and west sides changed and were located away from
the foundation at 20m around the pit; the surface
settlement of soil mass beyond 80m is about
0.8∼0.9mm.

(4) During the seventh excavation, the soil surface
settlement continues to increase with a small in-
crease.)emaximum surface settlement of the soil is
about 14.0∼15.0mm, the maximum surface settle-
ment position remains unchanged (20m in the west
and 20m in the east), and the surface settlement
outside 85m is about 0.8∼0.9mm.
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Figure 5: Horizontal displacement contour plot of suspended diaphragm wall under five excavation conditions. (a) First excavation, (b)
third excavation, (c) the fifth excavation, (d) the seventh excavation, and (e) the tenth excavation.
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Figure 6: )e relation curve of depth horizontal displacement of the foot diaphragm wall. (a) )e west wall and (b) the east wall.
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(5) After the tenth excavation, the surface settlement
of soil continued to increase, the maximum
surface settlement of soil was about 18.4 mm, and
the location of the maximum surface settlement
changed (the west side is 15 m and the east side is
15 m). )e maximum surface settlement is
about 0.036% of the excavation depth of the

foundation pit of 51.630 m, about 78% of the
maximum horizontal displacement of the hanging
foot ground connecting wall. )e maximum
surface settlement is located 15 m away from the
edge of the foundation pit, about 0.3 times the
excavation depth of the foundation pit of
51.630 m.

Table 4: Summary of the corresponding depth of the maximum horizontal displacement of the suspended foot connected wall.

Working procedure

Suspended foot diaphragm wall (west, the length is
45.82m)

Suspended foot diaphragm wall (east, the length is
51.98m)

Maximum horizontal
displacement (mm)

)e depth of
the diaphragm wall

(m)

Maximum
horizontal displacement

(mm)

)e depth of the diaphragm
wall (m)

)e first excavation
(−2.000m) 0.141 −11.46 −0.371 −13.00

)e third excavation
(−13.400m) 2.146 −22.91 −5.170 −23.39

)e fifth excavation
(−24.550m) 6.613 −32.07 −16.490 −33.79

)e seventh excavation
(−34.145m) 8.418 −34.37 −22.006 −36.39

)e tenth excavation
(−51.630m) 7.738 −36.66 −23.497 −38.99
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Figure 7: )e bending moment contour plot of suspended diaphragm wall under five excavation step conditions. (a) )e first excavation
step, (b) the third excavation step, (c) the fifth excavation step, (d) the seventh excavation step, and (e) the tenth excavation step.
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(6) It can be seen from the above construction stages
that the soil surface settlement curve in each con-
struction stage first increases and then decreases with
the distance from the edge of the foundation pit and
finally tends to be stable, showing a “groove shape.”
According to the curve, the law of surface settlement
and deformation on the east and west sides is ba-
sically the same. )e maximum settlement position
of the surface on the east and west sides is the same,
which is finally located at 0.3 times the final exca-
vation depth of the foundation pit, and the main
influence area is about 1.5 times the final excavation
depth of the foundation pit.

4.4. Simulation Study on the Influence of Embedded Depth of
Foot DiaphragmWall on Foundation Pit. In order to further

determine the relationship between the foot and the depth of
rock in the foot diaphragm wall, the numerical simulation
models of the foot diaphragm wall with the depth of 1m and
4m are established, respectively. )e other setting condi-
tions are completely consistent with the depth of 2m. )e
maximum horizontal displacement, maximum bending
moment, and maximum surface settlement of the foot di-
aphragm wall with different depths of rock are obtained and
summarized into a table (as shown in Table 7).

)e following can be seen from Table 7:

(1) )e results show that the horizontal displacement,
bending moment, and surface settlement of the di-
aphragm wall decrease with the increase of the depth
of the diaphragm wall.

(2) When the depth of the suspended footed diaphragm
wall increases from 1m to 2m, the horizontal
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Figure 8: )e relation curve between depth and horizontal displacement of the foot diaphragm wall. (a) )e west wall and (b) the east wall.

Table 5: Summary of the corresponding depth of the maximum bending moment of the suspended foot connecting wall.

Working procedure

Suspended foot diaphragm wall (west, the length is
45.82m)

Suspended foot diaphragm wall (east, the length is
51.98m)

Maximum bending
moment (kN∙m/m)

)e depth of the
diaphragm wall (m)

Maximum bending
moment (kN∙m/m)

)e depth of the
diaphragm wall (m)

)e first excavation
(−2.000m) 383.553/−154.641 −34.37/−43.53 495.496/−183.378 −38.99/−49.38

)e third excavation
(−13.400m) 732.862/−311.066 −27.49/−43.53 1127.781/−404.225 −20.79/−49.38

)e fifth excavation
(−24.550m) 2080.852/−600.905 −34.37/−43.53 3621.628/−1118.857 −33.79/−49.38

)e seventh excavation
(−34.145m) 2654.072/−250.395 −34.37/−43.53 4654.927/−1193.643 −38.99/−49.38

)e tenth excavation
(−51.630m) 2596.608/−469.726 −34.37/−43.53 4251.651/−42.949 −38.99/−51.98

Remarks
Among the maximum bending moments in the table, the maximum positive bending moment value is before
“/” and the maximum negative bending moment value is after “/,” respectively, corresponding to the depth of

the diaphragm wall.
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displacement of the suspended footed diaphragm
wall decreases by 0.916mm and 0.975mm for every
1m increase. When the rock depth increases from
2m to 4m, the horizontal displacement and surface

settlement decrease by 0.470mm and 0.578mm for
each 1m increase. When the rock depth increases
from 1m to 4m, the bending moment of the dia-
phragm wall decreases gradually.
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Figure 9: )e contour plot of surface settlement under five excavation step conditions. (a))e first excavation step, (b) the third excavation
step, (c) the fifth excavation step, (d) the seventh excavation step, and (e) the tenth excavation step.
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(3) )rough the analysis of the data, it can be seen that
the increase of the depth of the foot diaphragm wall
into the rock can effectively reduce the deformation
of the foundation pit. However, when the depth of
the rock increases to a certain extent, the effect of
continuing to increase the depth of the rock is no
longer obvious, so on the premise of the safety and
stability of the foundation pit and reducing the cost,
this article selects the foot diaphragm wall founda-
tion pit with the depth of 2m into the rock to
continue to optimize.

5. Simulation Study on Locking Reinforcement
Scheme of Suspended Diaphragm Wall

In practical engineering, when the footwall is excavated
below the footwall, the footwall may be separated from the
rock, resulting in large displacement, affecting the stability of
the foundation pit, so it is necessary to lock the footwall.
According to the engineering experience, the reinforcement

measures of the locking anchor are often adopted.)erefore,
this article optimizes the reinforcement based on the depth
(2m) of the suspended foot diaphragm wall into the rock.

5.1. Design Parameters of Foot Bolt. According to the bolt
design specification, the horizontal spacing of bolts should
be greater than 1.5m, and the mesh size of the foundation pit
in the model is 4, which is greater than 1.5. )e angle of the
inclined anchor should be from 15 to 25, so the angle of the
anchor should be 20, and the thickness of the overlying soil
should be more than 4m. )e project is covered with soft
clay about 46m, and the bolt is a full grouting bolt with a
length of 10m.)e anchor rod is arranged 1m below the soil
rock interface. )e elastic constitutive model is selected for
the bolt. Because the bolt ignores the bending deformation
and mainly bears the axial force, the one-dimensional
embedded truss element is used to directly divide the one-
dimensional element, and thematerial parameters of the bolt
are shown in Table 8. Other conditions are completely
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Figure 10: )e curve of surface subsidence. (a) )e west wall and (b) the east wall.

Table 6: Summary of the corresponding position of the maximum subsidence of the surface.

Working procedure
External surface of foundation pit (west) External surface of foundation pit (east)

Maximum settlement
(mm)

Distance from foundation pit
edge (m)

Maximum settlement
(mm)

Distance from foundation pit
edge (m)

)e first excavation
(−2.000m) −0.459 10.00 −0.476 10.00

)e third excavation
(−13.400m) −4.385 15.00 -4.393 15.00

)e fifth excavation
(−24.550m) −11.511 20.00 −11.511 20.00

)e seventh excavation
(−34.145m) −14.621 20.00 −14.526 20.00

)e tenth excavation
(−51.630m) −18.419 15.00 −17.778 15.00
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consistent with those of the suspended diaphragm wall (the
model is shown in Figure 11).

5.2. Simulation Study on Construction Effect of Bolt Foot
Locking andFoot SuspendedDiaphragmWall. It can be seen
from Table 3 that due to many excavation conditions, the
1st, 3rd, 5th, 7th, and 10th excavations (corresponding to
the 3rd, 7th, 9th, and 12th processes in Table 3) are se-
lected to study and analyze the construction effect of
anchor bolt foot locking and foot suspended diaphragm
wall foundation pit.

Here, it should be emphasized that since the horizontal
displacement, bending moment, and surface settlement
cloud pictures obtained by the simulation of the construc-
tion effect of the anchor bolt locking foot and the suspended
foot diaphragm wall are similar to those of the suspended
foot diaphragm wall, the simulation cloud pictures corre-
sponding to the above three construction effect indexes are
no longer displayed here.

5.2.1. Horizontal Displacement Analysis. By sorting and
analyzing the data in the horizontal displacement cloud
diagram obtained from the simulation, the relationship
curve between the depth and horizontal displacement of the
anchor bolt foot hanger diaphragm wall can be obtained, as
shown in Figure 12, and the maximum horizontal dis-
placement and depth data of the anchor bolt foot hanger
diaphragm wall can be summarized into a table, as shown in
Table 9.

It can be seen from Figure 12 and Table 9 that the
horizontal displacement of the anchor bolt locking foot
suspended diaphragm wall is small in the first excavation.
With the excavation of the foundation pit, the horizontal
displacement curve of the suspended foot diaphragm wall
is in the shape of “small at both ends and large in the
middle.” When the footed diaphragm wall is excavated to
the bottom and separated from the rock stratum, adding
bolt locking feet can effectively restrain the displacement
and deformation of the end and bottom of the footed
diaphragm wall, so as to reduce the overall horizontal
displacement and deformation of the footed diaphragm
wall. )e maximum horizontal displacement of the east

wall is larger than that of the west wall, which is due to the
existence of inclined rock surface. )e displacement and
deformation law of the east and west walls is asymmetric,
and the maximum horizontal displacement position
gradually moves down with the excavation condition. )e
maximum horizontal displacement of the east wall is
larger than that of the west wall, which is due to the
existence of inclined rock surface. )e displacement and
deformation law of the east and west walls is asymmetric,
and the maximum horizontal displacement position
gradually moves down with the excavation condition. )e
maximum horizontal displacement of diaphragm wall
moves downward with the increase of excavation depth,
and finally above the excavation surface. )e maximum
horizontal displacement is about 7/10∼3/4 times of the
final excavation depth of foundation pit. Compared with
the cantilever diaphragm wall, the increase of displace-
ment is more stable. )e bolt can effectively restrain the
increase of displacement at the end and bottom of the
diaphragm wall, and the restraint effect of the end dis-
placement is more obvious.

Table 7: Summary of maximum deformation of foundation pit with different rock entry depths.

Rock penetration depth of foot diaphragm wall (m) 1 2 4
Horizontal displacement of foot diaphragm wall (mm) −24.413 −23.497 −22.557
Bending moment of foot diaphragm wall (kN∙m/m) 4697.035 4654.927 4285.135
Surface settlement (mm) −19.394 −18.419 −17.263

Table 8: Anchor material parameters.

Structure name Element type Constitutive model Modulus of elasticity
(kN/m2) Poisson’s ratio Unit weight

(kN/m3) )ickness/diameter (m)

Anchor Embedded truss Elastic 200000000 0.3 76.98 0.025

Figure 11: Schematic diagram of anchor lock foot suspended foot
connecting wall model.
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5.2.2. 6e Bending Moment Analysis. By sorting and ana-
lyzing the data in the bending moment cloud diagram
obtained from the simulation, the relationship curve be-
tween the depth and bending moment of the anchor bolt
foot hanger diaphragm wall can be obtained, as shown in
Figure 13, and the maximum bending moment and depth
data of the anchor bolt foot hanger diaphragm wall can be
summarized into a table, as shown in Table 10.

It can be seen from Figure 13 and Table 10 that the
bending moment of the first excavation of the diaphragm
wall with bolt locking and foot suspended is small, and there
is a reverse bending point. With the progress of excavation,
the bending moment of the diaphragm wall gradually in-
creases, and then slightly decreases compared with the
previous excavation stage. In each excavation stage, the
maximum positive bending moment of the diaphragm wall
is larger than the maximum negative bending moment. )e
maximum positive moment is larger than the maximum
negative moment at each excavation stage. )e location of
the maximum negative moment of the east and west walls

does not change with the excavation stage. Due to the ex-
istence of inclined strata, the maximum positive bending
moment of the east wall is larger than that of the west wall in
each excavation stage, and the deformation law of the east
wall and the west wall is basically the same, but asymmetric.
)e maximum positive bending moment of diaphragm wall
is about 7/10∼3/4 times of the final excavation depth of
foundation pit, and themaximumnegative bendingmoment
is about 4/5∼19/20 times of the final excavation depth of
foundation pit. Compared with the suspended diaphragm
wall, the anchor can effectively control the bending moment
deformation of diaphragm wall, especially the bottom
bending moment deformation of diaphragm wall.

5.2.3. Analysis of Surface Subsidence. By sorting and ana-
lyzing the data in the simulated surface settlement cloud
map, the curve of surface settlement distance from the
foundation pit edge can be obtained, as shown in Figure 14,
and the data of the location of the maximum surface
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Figure 12: )e horizontal displacement curve of anchor bolt locking foot suspended foot diaphragm wall. (a) )e west wall and (b) the east
wall.

Table 9: Summary of the corresponding depth of the maximum horizontal displacement of the anchor lock foot connecting wall.

Working procedure

Suspended foot diaphragm wall (west, the
length is 45.82m) Suspended foot diaphragm wall (east, the length is 51.98m)

Maximum
horizontal

displacement(mm)

)e depth
of the diaphragm

wall(m)

Maximum horizontal
displacement(mm)

)e depth of the
diaphragm wall(m)

)e first excavation
(−2.000m) 0.142 −11.46 −0.371 −13.00

)e third excavation
(−13.400m) 2.151 −22.91 −5.158 −23.39

)e fifth excavation
(−24.550m) 6.463 −32.07 −16.400 −33.79

)e seventh excavation
(−34.145m) 8.099 −34.37 −21.823 −36.39
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settlement can be summarized into a table, as shown in
Table 11.

It can be seen from Figure 14 and Table 11 that the
settlement of soil surface is small at the first excavation, but it
increases gradually with the excavation. In each construction
stage, the surface settlement curve of soil increases first, then
decreases, and finally tends to be stable with the distance
from the foundation pit edge, showing a “groove” curve, and
the surface settlement deformation law of the east and west
sides is basically the same. )e maximum surface settlement
is about 0.03% of the final excavation depth of the foun-
dation pit, about 70% of the maximum horizontal dis-
placement of the suspended foot diaphragm wall. )e
maximum surface settlement is located at a distance of 15m
from the edge of the foundation pit, about 0.3 times of the
final excavation depth of the foundation pit, and the main

impact area is about 1.5 times of the final excavation depth of
the foundation pit. Compared with the suspended foot di-
aphragmwall, the anchor rod controls the surface settlement
to a certain extent.

5.3. Simulation Study on the Influence of Different Anchor
Positions of Lock Foot on Foundation Pit. In order to further
determine the relationship between the reinforcement effect
of anchor foot and anchor position, the model of anchor
position at the soil rock interface is established. Other setting
conditions are consistent with the standard model. )e
maximum horizontal displacement, maximum bending
moment and maximum surface settlement of foundation pit
at different anchor positions are obtained and summarized
into a table, as shown in Table 12.
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Figure 13: )e bending moment curve of anchor bolt locking foot suspended foot diaphragm wall. (a) West wall, (b) east wall.

Table 10: Summary of the corresponding depth of the maximum bending moment of the anchor lock foot suspended foot connecting wall.

Working procedure

Suspended foot diaphragm wall (west, the length is
45.82m)

Suspended foot diaphragm wall (east, the length is
51.98m)

Maximum bending
moment(kN∙m/m)

)e depth of
diaphragm wall(m)

Maximum bending
moment(kN∙m/m)

)e depth of
diaphragm wall(m)

)e first
excavation(−2.000m) 333.942/−230.579 −27.49/−43.53 460.319/−184.544 −33.79/−49.38

)e third
excavation(−13.400m) 751.792/−436.294 −27.49/−43.53 1198.865/−414.313 −23.39/−49.38

)e fifth
excavation(−24.550m) 2042.740/−1060.720 −34.37/−43.53 3626.023/−1160.760 −33.79/−49.38

)e seventh
excavation(−34.145m) 2596.272/−1049.140 −34.37/−43.53 4425.413/−1356.545 −38.99/−49.38

)e first
excavation(−2.000m) 2576.597/−191.356 −34.37/−43.53 4239.727/−168.822 −41.58/−49.38

Remarks
Among the maximum bending moments in the table, the maximum positive bending moment value is
before “/”, and the maximum negative bending moment value is after “/”, respectively corresponding to the

depth of diaphragm wall.
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It can be seen from Table 12 that as followings:

(1) )e horizontal displacement, bending moment and
ground settlement of the diaphragm wall decrease
with the downward movement of the anchor
position.

(2) )rough the analysis of the data, it can be seen that the
anchor can effectively reduce the deformation of the
foundation pit, but if the anchor position is not set
reasonably, it will not only not achieve the goal of
effectively reducing the deformation, but also increase
the cost. )erefore, on the premise of ensuring the
safety and stability of the foundation pit, the anchor
position should be selected properly. )erefore, based

on the analysis of the simulation results and the re-
ality, this paper selects 1m below the interface be-
tween soil and rock as the anchorage position.

6. Comparative Analysis of Simulation
Results of Diaphragm Wall Construction
Effect under Different Working Conditions

6.1. Comparative Analysis of Horizontal Displacement of
DiaphragmWall. After sorting and analyzing the data in the
horizontal displacement contour plot of diaphragm wall
during the 10th excavation (i.e. the foundation pit is ex-
cavated to the bottom) under two working conditions, the

0 –20 –40 –60 –80 –100
0

–2

–4

–6

–8

–10

–12

–14

–16

Se
ttl

em
en

t v
al

ue
 (m

m
)

The 1st excavation
The 3rd excavation
The 5th excavation

The 7th excavation
The 10th excavation

Distance from foundation pit edge (m)

(a)

0 20 40 60 80 100
0

–2

–4

–6

–8

–10

–12

–14

–16

Se
ttl

em
en

t v
al

ue
 (m

m
)

The 1st excavation
The 3rd excavation
The 5th excavation

The 7th excavation
The 10th excavation

Distance from foundation pit edge (m)

(b)

Figure 14: )e curve of surface subsidence. (a) West wall, (b) east wall.

Table 11: Summary of the corresponding position of the maximum subsidence of the surface.

Working procedure

External surface of foundation pit (west) External surface of foundation pit (east)

Maximum settlement
(mm)

Distance from foundation pit
edge (m)

Maximum
settlement
(mm)

Distance from foundation pit
edge (m)

)e first excavation(−2.000m) −0.467 10.00 −0.482 10.00
)e third
excavation(−13.400m) −4.380 15.00 −4.369 15.00

)e fifth
excavation(−24.550m) −11.468 20.00 −11.594 15.00

)e seventh
excavation(−34.145m) −14.601 20.00 −14.741 15.00

)e first excavation(−2.000m) −15.600 20.00 −15.913 15.00

Table 12: Summary of maximum deformation of foundation pit with different anchoring positions.

Anchor position of lock foot )e interface between soil and rock 1m below the interface between soil and rock
Horizontal displacement of diaphragm wall (mm) −23.494 −22.665
Bending moment value of diaphragm wall(kN∙m/m) 4668.444 4425.413
Surface settlement (mm) −18.224 −15.913
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depth-displacement curve of diaphragm wall under two
working conditions can be obtained, as shown in Figure 14,
and the maximum horizontal displacement and depth data
of diaphragm wall under two working conditions can be
summarized into a table, as shown in Table 13.

It can be seen from Figure 15 and Table 13 that the 10th
excavation entered into moderately weathered rock stratum
with high strength. In case 1, the maximum horizontal
displacement of the west wall is 8.256mm, which is at the
depth of −32.89m. )e maximum horizontal displacement
of the east wall is −22.341mm, which is located at the depth
of −38.87M. In case 2, the maximum horizontal displace-
ment of the west wall is 7.738mm at the depth of −36.66m.
)e maximum horizontal displacement of the east wall is
−23.497mm, which is located at the depth of −38.99m.

From the comparison of the two working conditions, it
can be seen that the maximum horizontal displacement of
the west wall is reduced by 0.518mm, the maximum
horizontal displacement of the east wall is increased by
1.156mm, the horizontal displacement of the end and
bottom of the diaphragm wall is increased suddenly, and
the stability of the diaphragm wall is poor, which is due to
the large horizontal displacement and deformation due to
the lack of rock embedment in working condition 2,
)erefore, the horizontal displacement of condition 2 is
larger than that of condition 1, and the maximum hori-
zontal displacement of condition 2 moves down.

6.2. 6e Bending Moment Analysis of Diaphragm Wall.
By sorting and analyzing the data in the bending moment
contour plot of diaphragm wall during the 10th excavation
(i.e. the foundation pit is excavated to the bottom) under two
working conditions, the depth bending moment curve of
diaphragm wall under two working conditions can be ob-
tained, as shown in Figure 16, and the maximum bending
moment and depth data of diaphragm wall under two
working conditions can be summarized into a table, as
shown in Table 14.

It can be seen from Figure 16 and Table 14 that the tenth
excavation entered the moderately weathered rock stratum
with high strength on the left and low strength on the right.
In case 1, the maximum positive bending moment of the
west wall is 2596.608 kN∙m/m, which is located at the depth
of −34.37m.)e maximum positive bending moment of the
east wall is 4251.651 kN∙m/m, which is located at the depth
of −38.99m.)emaximum negative bending moment of the
west wall is −469.726 kN∙m/m, which is located at the depth
of −43.53m.)emaximum negative bending moment of the
east wall is −42.949 kN∙m/m which is located at the depth of
−51.98m. In case 2, the maximum positive bending moment
of the west wall is 2576.597 kN∙m/m, which is located at the
depth of −34.37m;)e maximum positive bending moment
of the east wall is 4239.727 kN∙m/m, which is located at the
depth of −41.58m.)emaximum negative bending moment
of the west wall is −191.356 kN∙m/m, which is located at the
depth of −43.53m;)emaximum negative bendingmoment
of the east wall is −168.822 kN∙m/m, which is located at the
depth of −49.38m.

From the comparison of the two working conditions, it
can be seen that the maximum positive bending moment
of the east wall and the west wall is reduced, the maximum
negative bending moment of the west wall is reduced, and
the maximum negative bending moment of the east wall is
increased. )ere is a small negative bending moment at
the bottom of the west wall, and the bending moment at
the bottom of the east wall is almost zero. )is is due to the
important constraint of the anchor, which effectively
reduces the maximum positive bending moment of the
diaphragm wall and the bending moment at the bottom of
the diaphragm wall, In case 2, the location of the maxi-
mum positive (negative) bending moment of the west wall
remains unchanged, the location of the maximum positive
bending moment of the east wall moves down, and the
location of the maximum negative bending moment of the
east wall moves up. In both cases, the maximum positive
bending moment of the east and west walls appears above
the excavation face, which indicates that the rock em-
bedment in the diaphragm wall has a great constraint on
the bending moment deformation of the diaphragm wall.
)e maximum positive moment of the two walls is larger
than the maximum negative moment. Because of the
existence of inclined rock, the maximum bending moment
of the east wall is larger than that of the west wall.

6.3.ComparativeAnalysis ofGroundSettlement ofDiaphragm
Wall. By sorting and analyzing the data in the contour plot
of ground settlement of diaphragm wall soil mass during the
10th excavation (i.e. excavation to the bottom) under two
working conditions, the curve of ground settlement distance
from the edge of foundation pit under two working con-
ditions can be obtained, as shown in Figure 17, and the data
of maximum ground settlement position under two working
conditions can be summarized into a table, as shown in
Table 15.

It can be seen from Figure 17 and Table 15 that the tenth
excavation entered the moderately weathered rock stratum.
In case 1, the maximum settlement of the soil surface on the
west side of the foundation pit is −18.419mm, which is 15m
away from the side of the foundation pit; )e maximum
surface settlement of the east side soil is −17.778mm, which
is 15m away from the side of the foundation pit. In case 2,
the maximum settlement of the soil surface on the west side
of the foundation pit is −15.600mm, which is 20m away
from the side of the foundation pit; )e maximum settle-
ment of the east soil surface is −15.913mm, which is 15m
away from the foundation pit. )e maximum settlement of
soil surface is about 15.0mm. )e maximum settlement of
soil surface remains unchanged (15m in the West and 20m
in the East).)emaximum settlement of soil surface is about
0.029% of the excavation depth of 51.630m and 67% of the
maximum horizontal displacement of diaphragm wall. )e
maximum settlement of soil surface is 20m away from the
edge of foundation pit, It is about 0.4 times of the excavation
depth of 51.630m.

From the comparison of the two conditions, it can be
seen that compared with condition 1, the maximum
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settlement of soil surface on both sides of the East and the
West decreases by 1.5 ∼ 3.0mm in condition 2, which is due
to the effective restraint effect of the anchor rod. )e

maximum settlement position of soil surface on the west side
moves to 20m away from the edge of the foundation pit,
while themaximum settlement position of soil surface on the

Table 13:)e corresponding depth of maximum horizontal displacement of diaphragm wall during the 10th excavation under two working
conditions.

Working conditions

Diaphragm wall (west) Diaphragm wall (east)
Maximum

horizontal displacement
(mm)

)e depth
of diaphragm

wall(m)

Maximum
horizontal displacement

(mm)

)e depth of diaphragm
wall(m)

Suspended foot diaphragm wall
(working condition 1) 7.738 −36.66 −23.497 −38.99

Suspended foot diaphragm wall
(reinforcement)
(Working condition 2)

8.143 −34.37 −22.665 −38.99
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Figure 15: )e horizontal displacement curve of diaphragm wall. (a) West wall, (b) east wall.
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Figure 16: )e bending moment diagram of diaphragm wall. (a) West wall, (b) east wall.
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east side remains unchanged. )e results show that the
settlement curves of soil surface under two conditions in-
crease first, then decrease, and finally tend to be stable with
the distance from the foundation pit edge, showing a
“groove” curve, and the surface settlement deformation laws
of the east and west sides are basically the same.

7. Conclusion

In this paper, numerical simulation method is used to study
the construction effect of top-down construction method for
deep and large foundation pit with underlying inclined rock
surface. )e horizontal displacement of diaphragm wall,

bending moment of diaphragm wall and ground settlement
deformation of foundation pit with suspended foot dia-
phragm wall and anchor bolt locking foot diaphragm wall
are analyzed respectively.

(1) When the foundation pit of hanging foot ground
connecting wall is excavated by top-down con-
struction method, the horizontal displacement curve
of hanging foot ground connecting wall is in the
shape of “small at both ends and large in the middle.”
With the excavation of the foundation pit, the po-
sition of the maximum horizontal displacement of
the diaphragm wall gradually moves downward, and
the maximum positive moment of the diaphragm

Table 14: )e corresponding depth of maximum bending moment of diaphragm wall during the 10th excavation under two working
conditions.

Working conditions

Diaphragm wall (west) Diaphragm wall (east)
Maximum
bending

moment(kN∙m/m)

)e depth
of diaphragm

wall(m)

Maximum
bending

moment(kN∙m/m)

)e depth of diaphragm
wall(m)

Suspended foot diaphragm wall
(working condition 1) 2596.608/−469.726 −34.37/−43.53 4251.651/−42.949 −38.99/−51.98

Suspended foot diaphragm wall
(reinforcement)
(Working condition 2)

2576.597/−191.356 −34.37/−43.53 4239.727/−168.822 −41.58/−49.38
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Figure 17: )e curve of surface subsidence. (a) West wall, (b) east wall.

Table 15: Summary of corresponding positions of maximum ground settlement during the 10th excavation under two working conditions.

Working conditions
Diaphragm wall (west) Diaphragm wall (east)

Maximum
settlement (mm)

Distance from
foundation pit edge (m)

Maximum
settlement (mm)

Distance from
foundation pit edge (m)

Suspended foot diaphragm wall (working
condition 1) −18.419 15.00 −17.778 15.00

Suspended foot diaphragm wall
(reinforcement) (working condition 2) −15.600 20.00 −15.913 15.00
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wall is greater than the maximum negative moment.
)e maximum surface settlement is located 15m
away from the edge of the foundation pit, which is
about 0.3 times the final excavation depth of the
foundation pit. )e horizontal displacement, bend-
ing moment and surface settlement of the hanging
foot diaphragm wall decrease with the increase of the
rock depth. When the rock depth increases to a
certain extent, the effect of continuously increasing
the rock depth is no longer obvious.)erefore, in the
actual project, the appropriate rock depth is selected
on the premise of ensuring the safety of the foun-
dation pit and reducing the cost.

(2) When the foundation pit is excavated by the top-
down construction method, the horizontal dis-
placement curve of the ground wall is in the shape of
“small at both ends and large in the middle.”
Compared with the hanging foot ground wall, the
displacement, bending moment deformation and
surface settlement of the hanging foot ground wall
are effectively controlled under the action of the
anchor bolt. )e horizontal displacement, bending
moment value and surface settlement of the hanging
foot diaphragm wall decrease with the downward
movement of the anchor bolt anchorage position.
)e addition of anchor bolts can effectively reduce
the deformation of the foundation pit, but the anchor
position needs to be set reasonably, otherwise, it will
not achieve the purpose of effectively reducing the
deformation, but also increase the cost. )erefore,
the anchor position should be properly selected on
the premise of ensuring the safety and stability of the
foundation pit.
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With the increase in construction scale and difficulty of large and complex bridges in China, it has become increasingly difficult to
assess the safety risks of bridges during the construction period. /erefore, how to reasonably assess the safety risk of large,
complex bridges during construction has become particularly important. Existing assessment methods are subjective in assigning
weights, and it is difficult to select representative important factors to focus on for the prevention and control of numerous risk
sources; they do not comprehensively consider the correlation of various risk sources during the construction period. To address
the above shortcomings, a safety risk assessment of large and complex bridges during the construction period based on the Delphi-
improved fuzzy analytic hierarchy process (FAHP) factor analysis method is proposed in this paper. First, the Delphi method was
used to conduct a general survey of safety risk factors during the bridge construction period, and then the work breakdown
structure-risk substructure (WBS-RBS) was used to establish the evaluation index system. Second, the improved FAHP was
combined with it to calculate the weight of each risk factor. Finally, the factor analysis method was used to determine the
correlation degree of each risk factor, and representative factors were selected to express the risk degree of the object to be
evaluated to screen out major risk factors in the construction process. Finally, the feasibility and practicality of the method are
verified by combining an actual engineering case with AHP (analytic hierarchy process) to perform a comparative study, which
provides a reference basis for subsequent bridge construction risk prevention.

1. Introduction

In recent years, as China’s demand for transport infra-
structure has increased, the construction of bridges in China
has accelerated accordingly, and construction locations have
gradually shifted from mountainous to coastal areas. /e
construction of large and complex bridges in coastal areas is
characterized by high construction difficulty, long con-
struction times, and many uncontrollable factors. Because it
involves marine operations, the building of these bridges
leads to innovation in construction methods; coupled with
the complex and changing environment of coastal areas, the
construction conditions are harsher than in other envi-
ronments, leading to greater difficulty in the construction of
complex bridges. /erefore, the dangers of the constructing

complex bridges in coastal areas are greatly increased. Some
scholars have pointed out that the risks faced by structures
such as bridges during the construction period are much
higher than those during the operational period [1, 2]. In
addition, due to the influence of factors such as geology,
hydrology, and construction complexity, bridge construc-
tion safety accidents occur frequently in China, resulting in
very large numbers of casualties and a very large amount of
property losses, as well as adverse effects on society. For
example, according to the analysis of 84 collapse accidents of
various engineering structures in the United States from
1977 to 1981, 21 of them occurred during the construction
period, accounting for 25% of the total. Further, more than
two-thirds of bridge collapse accidents that occurred in
China from 1984 to 1988 occurred during the construction

Hindawi
Advances in Civil Engineering
Volume 2022, Article ID 5397032, 16 pages
https://doi.org/10.1155/2022/5397032

mailto:lqflch@zzu.edu.cn
https://orcid.org/0000-0003-1756-7284
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5397032


period. /is shows that there is a high risk during the
construction of bridges, which must be given sufficient at-
tention. /erefore, to ensure the quality of bridge con-
struction and the safety of the construction process, it is
necessary to analyze and study the safety risks during the
bridge construction period and to correct and prevent the
construction process and management steps with potential
safety hazards to ensure the construction quality and safety.
For example, adverse factors such as ship collisions, sea
breezes, surge tide pressure, and deep marine accumulation
of soft ground foundations exist.

Today, the domestic and international research on the
construction period safety risk assessment of complex
bridges in coastal areas is still in its infancy, and both
theoretical research and practical application still need to be
expanded. /ere are many risk factors in the construction
period of complex bridges in coastal areas; for example,
given adverse factors such as ship collisions, sea breeze, surge
tide pressure, and deep marine accumulation of soft ground
foundations, each factor is interrelated and dependent on
each other, and the threat of hidden risk factors to the
construction period is no less than that of explicit risk
factors. /e scientific identification method and evaluation
analysis method are the basis of controlling the safety risk
during the construction period. /e main methods com-
monly used for risk evaluation are Monte Carlo simulation
analysis [3], analytic hierarchy process (AHP) [4], Technique
for Order Preference by Similarity to an Ideal Solution
(TOPSIS) method [5], machine learning method [6, 7],
triangular fuzzy number (TFN) and the AHP [8]./e idea of
risk analysis originated in France and was first used in the
insurance industry; in the 1950s, risk management was
established as a separate discipline in the face of the threat of
the nuclear industry. Risk analysis encompasses the risk
assessment of things, and conducting safety risk assessment
is beneficial in understanding the risk state of the structure
and identifying specific risk source factors. A number of
scholars have conducted studies on the safety risk assess-
ment of large and complex bridges during the construction
period. Peng [9] applied the integrated hierarchical analysis
method and cloud model to propose a cluster decision-
making method of cloud clustering to determine the main
risk factors and risk losses by means of expert scoring and
applied the cloud generator to calculate the numerical
features of expert scoring to quantitatively assess bridge
safety risks. Gong [10] summarized the risk factors for the
bridge construction period, which are divided into internal
factors, external factors, and human factors. Internal factors
mainly include internal action, material properties, and
geometric parameters, external factors include external
temporary supports, natural climate, and external loads, and
human factors mainly include management, design, con-
struction, modeling, and statistics. Different factors will have
different consequences according to their degree of influ-
ence, and when several risk factors cross each other, the
probability of risk is greatly increased. Lai et al. [11] used the
likelihood, exposure, criticality (LEC) method to select the
potential risk, risk conditions, and triggers of the bridge
structure construction period as risk indicators to calculate

the weights, used gray correlation theory to evaluate the risk
in terms of risk occurrence probability and loss, and ranked
the risk sources according to their indicators in order of
merit to determine significant risk sources./e levels of risks
at all levels were clarified, and the empirical study showed
that the method effectively improved the evaluation accu-
racy of the evaluation model. Liu [12] applied a fuzzy
comprehensive evaluation model to evaluate bridge con-
struction safety risks based on the study of advanced risk
management at home and abroad. Liu [13] combined the ant
colony algorithm and BP neural network to optimize the
model of the BP neural network for bridge construction
period risk by using the ant colony algorithm. Yang et al. [14]
established an assessment model based on extended belief
rule base (EBRB) joint optimization for bridge risk assess-
ment. /e work first proposed the generation method and
the approximate reduction method of the extended belief
rule by introducing parameter optimization and data en-
velopment analysis, respectively; then, the joint optimization
method of EBRB was proposed based on iterative optimi-
zation by linking these two methods together to ensure that
the constructed EBRB has the optimal parameter values and
number of parameters. Finally, the validity of the proposed
model was tested by introducing a recognized dataset
commonly used in the field of bridge risk assessment. /e
results showed that the proposed model can significantly
improve the accuracy of bridge risk assessment. Khan et al.
[15] proposed a framework for assessing bridge fire risk.
Within this framework, each criterion, subcriterion, and
alternative that may affect bridge fire risk is assigned a weight
value based on its importance. Using AHP to determine the
weights of different factors and validating the analysis with
examples, the method can estimate the fire risk of a specific
bridge in a region or the entire bridge network, which can
help in the prevention and control of bridge risks. Regarding
risk assessment models, Stewart [16] assessed the reliability
of bridges based on risk levels and environmental analysis,
which provides a better assessment model for the structural
inspection of bridges. Yang et al. [17] developed a new
disjunctive belief rule-based (DBRB) expert system for
bridge risk assessment that takes BRB into account as a type
of belief rule-based (BRB) system, thus overcoming the most
common conjunctive belief rules (CBR) consisting of a BRB
expert system with a combinatorial explosion problem.With
the proposed dynamic parameter optimization model and
improved differential evolution (IDE) algorithm, the DBRB
expert system is complete and can obtain globally optimal
parameter values for modeling bridge risks compared to the
existing CBR and DBR-related parameter optimization
models. Andric and Lu [18] combined fuzzy hierarchical
analysis with fuzzy logic to propose a basic framework for
bridge risk assessment and showed that both models can be
effective in achieving bridge risk assessment.

Scientific assessment methods are an important part of
safety risk evaluation and measure the accuracy of risk
analysis. Although many scholars have conducted many
theoretical and applied studies on bridge risk assessment,
there are few studies on safety risk assessment during the
construction period, which is much riskier than other
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periods. In addition, existing studies have not considered the
identification of dynamic risk sources as the most funda-
mental part of risk assessment, which is not conducive to
reflecting the potential risk factors for bridge projects, and
the assessment methods used are more subjective in
assigning weights. It is difficult to select representative and
important factors to focus on prevention and control for
many risk sources without considering the correlation
among risk sources during the construction period. /e
premise of risk assessment is identifying risk sources;
however, there are many dynamic risk sources in the con-
struction process that are gradually generated during the
construction process. Some evaluation indices in the bridge
construction process are fuzzy, and when using hierarchical
analysis to determine the weight of the indices, the relative
importance of each index cannot be determined at all. Factor
analysis explains themeaning of each factor by using the idea
of dimensionality reduction to study the interrelationships
among many variables, find the truly correlated variables,
and divide the variables with high correlation into one
category, each of which represents a common factor. Its
main function is to simplify the data, explain the relationship
between the original variables, and emphasize the correla-
tion between the variables. It is suitable for selecting rep-
resentative factors from many risk factor indicators to
express the degree of risk of the object to be evaluated. For
large and complex bridge construction projects in coastal
areas, it is difficult to conduct an accurate analysis using the
existing risk assessment methods. /rough an in-depth
study of the special environment of coastal areas and the
construction characteristics of large and complex bridges,
this paper establishes a comprehensive analysis method
based on the existing evaluation and analysis, including the
Delphi method, improved FAHP, and factor analysis, and
applies it to the analysis of safety risks during the con-
struction period of large and complex bridges in coastal
areas, taking the premise of risk source identification
combined with the Delphi method for initial screening of
risk sources and using improved FAHP for weight calcu-
lation of risk factors to reduce the influence of human
subjective factors on weight values. Finally, the correlation
between risk factors was analyzed using the factor analysis
method, and construction projects with higher risk coeffi-
cients were determined, which improved the comprehen-
siveness and accuracy of the evaluation process.

/e main contributions of this paper are as follows:

(i) /e Delphi method and improved FAHP were used
to identify and calculate the weight of risk sources
during the construction period of large and complex
bridges. By establishing a census list of risk sources
and combining the Delphi method, the risk sources
are scored, and the risk sources generated during the
whole construction process can be considered.

(ii) /e factor analysis method was proposed to assess
the safety risks during the bridge construction pe-
riod, and the factors with higher comparative risk
levels were screened out, taking the correlation
between the risk factors into full consideration.

(iii) /e rationality and feasibility of the Delphi-im-
proved FAHP factor analysis method were applied
and studied on actual engineering cases, and a
comparative study with AHP was performed to
verify the applicability of the method, which pro-
vides a reference for the safety risk assessment of
similar large and complex bridges during the
construction period.

/e rest of this paper is summarized as follows. Section 2
describes the methods used for safety risk evaluation during
bridge construction and their risk identification process.
Section 3 presents an applied study of the methods used in
this paper with practical cases. Conclusions are given and
discussed in Section 4. Figure 1 is a flowchart of the method
used in this paper.

2. Identification Process and Methods

2.1. Identification of Risk Sources during Bridge Construction.
/ere are many risk sources in the construction period of
large and complex bridges, which are closely related to each
other. /e application of reasonable methods for screening
can ensure the accuracy, scientific design, and effectiveness
of construction safety risk assessment. /ese risk factors
include the complex and not clear geological and hydro-
logical environment in which the bridge is located, and
foundation of the construction plan often has to change and
replace the construction equipment due to sudden changes
in geology and hydrology. /e bridge foundation structure
not only needs to bear the effect of large vertical loads, but
also needs to directly bear the effect of large horizontal loads
such as wind and waves, water currents, and ice pressure and
faces greater risks in construction of bridges in coastal areas,
as the construction conditions are more complicated. On the
one hand, due to the large scope of the project itself, material
supply, operating sites, and other factors and a wide range of
construction vessels, it is easy to experience difficulties in the
organization of the construction site. On the other hand,
offshore construction is more affected by cold currents,
waves, high winds, and other hydrological and meteoro-
logical influences, and risk events such as concrete pouring
of bearing platforms and superstructure construction are
increased. /e main methods of risk identification mainly
include expert scoring methods and checklist methods.
However, due to the lengthy construction period and
complex process of bridge construction, the potential risk
sources are not static as the construction process gradually
completes the bridge superstructure, substructure, bearings,
and other structures./ere will be dynamic risk sources, and
so the above method for identification is more difficult, and
it is difficult to exhaustively identify the risk sources. /e
Delphi method can concentrate the rich engineering ex-
perience of experts and thus effectively identify risks [19].
WBS-RBS was originally proposed by David Hilson, a leader
in the field of PMI in the U.S. /e basic principle is to
decompose the risk source into two parts: the work
breakdown structure (WBS) and the risk breakdown
structure (RBS). When using the WBS-RBS system, it is
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possible to analyze any of the risk factors present in the
construction process. In the lower part of the system, the
work is further divided into more independent parts, called
work units, which are theoretically more conducive to the
analysis of subprojects. WBS-RBS is an engineering risk
identification method that can be used to discern the overall
picture of an engineering project but can also go into the
specific details of engineering construction [20]. Based on
these factors, this paper uses the Delphi method to identify
risk sources and determines the main risk sources through
expert assignment. /en, using WBS-RBS, each process is

decomposed and analyzed to identify the risk sources level
by level to achieve the purpose of risk source identification.

2.1.1. Decomposition Structure of Bridge Construction
Technology. /e construction technology decomposition of
large and complex bridges in coastal areas should consider
not only the construction sequence, but also the formation
mechanism of risk sources. Bridge engineering is a bottom-
up structural system that includes the structural charac-
teristics and construction sequences of bridges. Bridge

Identify safety risk sources during bridge construction

Delphi method

Establish a safety risk evaluation system during bridge
construction

WBS-RBS

Establish priority relationship matrixs

Build fuzzy consistency matrixs

Consistency test, determine weights

Improved FAHP 

Evaluation of safety risks during bridge construction

Factor Analysis

Evaluation result analysis

Figure 1: Flow chart of the method used in this paper.
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construction technology can be divided into foundation
engineering, temporary engineering, tower column engi-
neering, and beam slab engineering. /e construction
procedures for large and complex bridges are shown in
Figure 2.

/e risks of subprojects should be considered for specific
project capacity and enter into the next level of project
division, as shown by Table 1. When users decompose the
construction process for other types of bridges, the analysis
should be carried out in conjunction with the construction
process of the bridge itself. For example, simply supported
beam bridges can be divided into lower engineering, upper
engineering, and auxiliary engineering.

2.1.2. Decomposition Structure of Bridge Construction
Technology. Different scholars use different risk classifica-
tions according to the characteristics of risk formation.
Combined with the environmental characteristics of coastal
areas, the division of safety risk factors for large and complex
bridge construction should follow the principle of easy risk
identification. Combined with the theory of system safety
engineering and bridge construction engineering, the Delphi
method was used to invite 15 experts from different fields,
and after the experts’ opinions about the classification of
bridge construction risk factors were obtained, they were
collated, summarized, counted, and anonymously fed back
to each expert, and opinions were again sought, concen-
trated, and fed back, until a unanimous opinion was ob-
tained. /e expert questionnaire is shown in Table 2. When
users conduct a survey of safety risk sources during the
construction period of other types of bridges, the survey
should be carried out in conjunction with the specific
construction processes of the bridge; for example, the
possible risk sources for the lower engineering of simply
supported beam bridges are pile foundation construction,
reinforcement cage tying, and welding.

Finally, the bridge construction risk factors can be di-
vided into four types of risk sources: human, machine,
material, and environment, thus dividing the bridge con-
struction risk source system into four subsystems, human,
machine, material, and environment, and establishing a
WBS decomposition tree, where WBS refers to the identi-
fication of bridge construction risk sources as a general
objective and is then decomposed into multiple independent
units. /e decomposition diagram is shown in Figure 3.
Users can directly refer to the WBS decomposition tree
based on the four categories of risk sources: human, ma-
chine, material, and environment.

Human factor risk refers to a source of risk from human
error. /e construction of the whole bridge project is a
process that is dominated by people, mainly performing
surveys, measurements, designs, construction, management,
detection, and maintenance. /erefore, human error has the
greatest impact on the entire bridge project.

Machine factor risk refers to the source of risk caused by
mechanical failure. Mechanical failures include mechanical
loss, mechanical aging, mechanical failure, mechanical
mismatch, and insufficient mechanical production capacity.

For large bridge construction, human power is limited, and
machinery is required to assist the construction. /e quality
of machinery directly determines the occurrence rate of
safety incidents.

Material factor risk refers to the risk source formed by
material factors. /e materials here do not only refer to the
reinforcement, cement, sand and gravel, asphalt, etc., re-
quired for the construction of bridges, but also include the
temporary materials used, such as hanging baskets, grouting
machines, supports, welds, cutting devices, and various
kinds of spammers and other application tools. Materials are
the pillars of the project, which directly affects the quality of
the project. With the continuous innovation of the bridge
structure situation and span, new materials and new tech-
nologies are always emerging for engineering applications.
/erefore, the influence of the quality of materials in the
construction process is becoming increasingly obvious.

Environmental factor risk refers to the risk source
formed by environmental factors. Environmental risk
sources include the natural environment and construction
environment. /e natural environment refers to the wind,
rain, lightning, temperature, humidity, earthquakes, volca-
noes, tsunamis, etc., at the project location./e construction
environment refers to the convenience conditions that can
be provided for construction based on existing technical
conditions and capital level. All kinds of environmental
factors in construction can affect the safety risk.

/ere are many risk factors in the construction period
of large and complex bridges in coastal areas, and their
influence degrees are different. /e reasonable division of
risk sources is an important part of safety risk assessment.
/erefore, continuing to use the Delphi method, inviting
experts from construction units, supervision units, design
units, etc., and considering the four aspects of human,
machine, material, and environment can determine the
risk events that each risk source subsystem has. /e results
of the are expressed using RBS, where RBS refers to the
decomposition of the four main factors of bridge con-
struction safety risk into individual basic events. At this
time, WBS is combined to obtain the factors affecting the
risk sources of the bridge construction period, and the
final results are shown in Table 3. /e specific risk [11]
sources of various risk factors are shown in Table 2. Users
can create an RBS based on the division of risk events in
the four areas of people, machines, materials, and envi-
ronment that different types of bridges have during
construction.

2.1.3. Identification of Risk Sources during Bridge
Construction. Combined with the construction process
breakdown structure table and the risk sources of various
risk factors, the project is reviewed item by item. First, the
risk checklist, as shown in Table 4, is sent to the relevant
technical personnel, including the main project leader,
project construction personnel, project supervision per-
sonnel, experts, and scholars related to the project and public
officials, for scoring and assignment. If more than 93% of the
requested data are collected, the data source is considered
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reliable, and the construction safety risk source data are
sorted out, which require further analysis. After performing
the previous task, when determining the unique

construction technology of other types of bridges and the
safety risk sources during the construction period, users
should develop a general survey table for the safety risk

Large complex bridge construction process

Unit project

Support construction

Pile foundation
engineering

Cofferdam
 construction

Boxed construction

U
nderw

ater concrete

Tower column engineering Beam slab engineering Foundation engineeringTemporary engineering

H
anging basket
construction

Box girder hoisting

Prestressed construction

Form
w

ork construction

Cable engineering

Concrete pouring
engineering

Floating bridge
construction

Steel trestle construction

Scaffold engineering

O
peration m

achinery

Crane operation

Sub project

Figure 2: Organizational chart of construction procedures for large and complex bridges.

Table 1: Decomposition of the large complex bridge construction process.

Unit project Subproject

Foundation engineering a1
Support construction a11, pile foundation engineering a12, cofferdam construction a13,

boxed construction a14, underwater concrete a15
Temporary engineering a2

Floating bridge construction a21, steel trestle construction a22, scaffold engineering a23,
operation machinery a24, crane operation a25

Tower column engineering a3 Formwork construction a31, cable engineering a32, concrete pouring engineering a33
Beam slab engineering a4 Hanging basket construction a41, box girder hoisting a42, prestressed construction a43

Table 2: Questionnaire on safety risk sources during bridge construction.

Project
Risk sources

Harmful
consequences

Level of risk (please compare
and quantify two by two) Remarks

Human factor Machine factor Material factor Environmental
factor

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Filler: Proofreader: Date of filling out the form:

Human factors risk 

Identification of risk sources during
bridge construction

Machine factor risk Material factor risk Environmental factor risk

Figure 3: WBS decomposition of risk sources during bridge construction.

Table 3: Construction risk factor decomposition.

Risk factor Subproject
Human risk b1 Personnel operation error b11, human design error b12, inexperience of personnel b13
Machine risk b2 Device not running b21, equipment mismatch b22
Material risk b3 Insufficient material strength b31, defective materials b32, materials expired b33
Environmental risk b4 Tsunami disaster b41, typhoon b42, heavy rain b43, earthquake disaster b44
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sources of the bridge during the construction period and lay
the foundation for the subsequent weight assignment.

2.2. Risk Source Weight Assignment. /e improved FAHP is
adapted from AHP. By introducing the theory of fuzzy
mathematics, the consistency test problem in AHP is solved.
/e fuzzy judgment matrix in this method conforms to
people’s thinking and logic, and the form is simple and ac-
curate. AHP is a combined qualitative and quantitative method
proposed by Professor Saaty in the US in the 1970s. /e
method is a decision-making tool for complex systems, which
mainly involves constructing a judgment matrix, comparing
the relative importance in each level, calculating the relative
weight of each item in that level, and finally combining the
relative weights of each level [21]. AHP does not require a large
amount of data and can quantify some qualitative issues
through the scoring of experts. /e method does not take into
account the dynamics of decision-makers in a dynamic en-
vironment, so it is difficult to express objectivity in the eval-
uation results; therefore, some scholars have combined fuzzy
mathematics and hierarchical analysis methods to form a new
decision-making method, FAHP [22]. FAHP is a new method
of risk assessment formed by combining fuzzy analysis with
hierarchical analysis. When using AHP, it is difficult to
maintain consistency in ways of thinking when there are many
indicators at different levels, and fuzzy hierarchical analysis can
solve this problem by introducing the “affiliation degree” in
fuzzy mathematics [23] and using the affiliation function for
the indicators with a fuzzy nature (see Table 5).

In general, the improved FAHP method has the fol-
lowing advantages over AHP:

(1) Simple in theory. /e FAHP method is simple to
calculate during the process of determining weights
and only needs to build a comparison matrix be-
tween two and two, without a complicated calcu-
lation process, which is convenient for decision-
makers to operate.

(2) Strong engineering applicability. FAHP can be an-
alyzed from both qualitative and quantitative as-
pects. As a huge decision system, engineering needs a
combination of qualitative understanding and
quantitative description to fully interpret all its in-
formation, and the method is widely used in engi-
neering practice.

(3) Good overall performance. When using FAHP for
analysis, the whole problem is first regarded as a

system, and the purpose of decision-making as a
whole is achieved by analyzing each part of the
system, which can be applied to the decision-making
problems of complex systems.

2.3. Improved FAHP. After the risk sources are identified,
they need to be categorized and analyzed, such as what risk
sources are involved in the foundation project and what are
the risk events; we rely on theWBS-RBS to gradually expand
these risks by level, which involves the allocation problem.
At this time, we need to listen to expert opinions regarding
the bridge construction of each structure in the human,
machine, and material ring, which may provide the risk
sources according to the Delphi method to enumerate and
combine with the actual construction of the project. /e
division is carried out according to the Delphi method,
taking into account the actual construction characteristics of
the project and listening to the experts’ opinions. /en,
values are assigned to the identified risk sources./emethod
of assignment is based on the possibility of risk sources, the
controllable degree of risk sources, the maturity of con-
struction technology, and the frequency of risk sources
through the Delphi method. Combined with the judgment
ideas of AHP [24], it is more flexible and convenient to
assign the weight of risk sources.

/e improved FAHP mainly establishes the comparison
matrix of assessment indices by comparing the relative
importance of risk source factors, constructs the fuzzy
consistency judgment matrix of assessment indices, calcu-
lates the weight vector of assessment indices, and then
conducts risk evaluation and analysis of bridges. /e user
needs to compare the risk sources of other types of bridges
during the construction period and determine the relative
importance of the risk source factors to establish a com-
parison matrix of evaluation indicators. /e subsequent
weight calculation can be calculated according to the fol-
lowing calculation formula, and the parameters involved in
each step formula are explained.

2.3.1. Fuzzy Evaluation. /e traditional fuzzy analytic hi-
erarchy process (FAHP) evaluation concept is rough, as
follows:

bi > bj, bij � 1,

bi � bj, bij � 0.5,

bi < bj, bij � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

Table 4: Survey on safety risk sources of bridge construction.

Project Risk sources
b1 b2

b11 b12 b13 . . . b21 . . .

a1

a11 ✓ ✕ ✕ . . . ✓ . . .

a12
a13
. . .

a2 a21
. . . . . .
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/e evaluation steps of the improved FAHP are similar
to those of the fuzzy chromatography analysis method. First,
according to the scoring situation of experts, the data are
sorted out and processed to improve the rationality of the
evaluation standard [25]. Compared with the traditional
evaluation concept, it is humanized and conforms to the
logical thinking mode of human beings. /e traditional
expert scoring comparison method uses the 1–9 scale
method [26], while Table 1 shows that the distribution of the
affiliation function is 0 to 1 to ensure that the overall af-
filiation interval is 0 to 1. /erefore, the refinement process
of the severity level and the possibility level is realized by
linear interpolation, which refines these two levels from 1
scale to the 0 to 1 scale, and this shift can effectively improve
the calculation accuracy and unify the interval variables for
special bridge construction. /e stability and reliability of
the risk level estimation results are guaranteed [27]. /e
expert scoring processing is shown in

bj �
􏽐

n
i�1 Vij

n · 100
, j � 1, 2, . . . m, (2)

where bj is the j-th risk source scoring value after data
processing, and Vij is the actual scoring value of the i-th
expert for the j-th risk source. In addition, 100 is the per-
centage scalar.

2.3.2. Establish a Priority Relation Matrix. /e priority
relation matrix compares the risk sources of the same type,
judges the risk degree of each risk source, and determines the
overall weight coefficient according to the lower-level risk
matrix. /e length of the bij interval is 2, and the median
value is 0. According to the mapping principle, bij is con-
verted into the value of the 0-1 interval, and 0.5 is taken as
the median value of the interval. /e changed form is as
follows:

bij � bi − bj, (3)

b
∗
ij �

bij

2
+ 0.5, (4)

where bij is the difference between Row i and Column j, and
b∗ij is the comparison value after the change.

2.3.3. Establishing Fuzzy Consistent Matrix R and Relative
Weight. According to equations (2)–(4), the fuzzy consis-
tent matrix R is established.

Rij �
ki − kj

2n
+ 0.5, (5)

ki � 􏽘
n

j�1
bij, i � 1, 2, . . . , n. (6)

/e elements in the fuzzy consistent judgment matrix R
are added in rows to obtain vector c, and the vector c is
normalized to obtain the relative weight w [28].

ci � 􏽘
n

j�1
Rij, i � 1, 2, . . . , n, (7)

wi �
ci

􏽐
n
k�1 ck

, i � 1, 2, . . . , n. (8)

2.4. Factor Analysis Method. /e bridge construction pro-
cess is a dynamic system. /rough construction process
decomposition and project risk factor decomposition, the
risk source identification method shows that the same risk
source does not exist solely in a fixed project process, but
that risk sources may be related and influenced by each
other. If only the identified risk sources are controlled, the
management method will be too mechanical and will play an
ineffective role in risk control. /erefore, the factor analysis
method is used to conduct microanalysis on the obtained
risk sources. By combining the occurrence mechanism of
risk sources and internal complex internal relations, the
correlation degree of various risk sources was evaluated to
determine the major risk sources [29]. /e user can perform
the corresponding calculations by the following calculation
steps and formulas to obtain the evaluation results, where
the parameters involved in each step are explained.

Table 5: Scale values of membership.

Scaling Definition Explanation
0.5 Equally important Element i has the same importance compared to element j
0.6 Slightly more important Element i is slightly more important than element j
0.7 Obviously important Element i is significantly more important than element j
0.8 More important Element i is much more important than element j
0.9 Extremely important Element i is extremely more important than element j

0.1, 0.2, 0.3, 0.4 Inverse comparison /e result of comparing the importance of element i over element j is bij;
then element j is more important by 1- bij than i.
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(1) Principle of factor analysis
First, the variables are standardized, so that the mean
value of each variable is 0, and the standard deviation
is 1. /en, the original variable is represented by a
linear combination of k (k<p) factors fk[30],
namely,

x1 � a11f1 + a12f2 + . . . + a1kfk + ε1,

x2 � a21f1 + a22f2 + . . . + a2kfk + ε2,

. . . ,

xp � ap1f1 + ap2f2 + . . . + apkfk + εp,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x � af + ε,

h
2
i � 􏽘

k

j�1
a
2
ij,

si � 􏽘

p

j�1
a
2
ij.

(9)

(2) BM SPSS statistics V21.0 software was used to solve
and process the data, and the feasibility of the
method was determined by means of factor ex-
traction, consistency analysis, and construction
validity analysis [31]. Finally, the factor score is
calculated according to equation (13), and the safety
risk of large and complex bridges in coastal areas
during the construction period is quantitatively
evaluated.

F � a1f1 + a2f2 + . . . + anfn, (10)

f � 􏽘
v

i�1
vq. (11)

(3) In particular, a is the factor contribution rate, f is
the factor score coefficient, n is the number of fac-
tors, the maximum eigenvalue method is selected for
the number of factors, the factor has an eigenvalue
greater than 1, v is the number of original factors,
and q is the factor weight in the factor score matrix.

3. Engineering Application

3.1.EngineeringBackground. /eZhongkai expressway is an
east-west expressway planned by Zhongshan City, Jiangmen
City, Guangdong Province connecting Hong Kong and
Macao, Shenzhen, Zhongshan, Jiangmen main city, Kaiping
City and Taishan City, of which Yinzhou Lake Bridge is a
control node project of Zhongshan Kaiping expressway,
whose geographical location is Sanjiang Town, Jiangmen
City, Guangdong Province, spanning Shazai Island, Tanjiang
River, and connecting with Shuangshui Town. Its main
channel bridge includes a double tower and double cable
plane hybrid composite beam cable-stayed bridge with a
semifloating system. /e span combination is
56.8 + 64.8 + 66.4 + 530 + 66.4 + 64.8 + 56.8m, and the total
length of the main bridge is 903m, the total width of the

main beam top is 36m, the mid-span is a PK box composite
beam, and the side span is a concrete beam. /e cable tower
is an A-type bridge tower, and the auxiliary pier and
transition pier are box-type piers.

/e lower part of the bridge structure has a box-type
thin-walled pier and column foundation pier with a bored
pile foundation. /e main pier is arranged with 36Φ2.8 m
bored piles, 53m long on the east side, and 67m long on
the west side; 13 Φ2.2 m bored piles, 54 m and 55m long
on the east auxiliary pier; 2 × 6 Φ2.2 m bored piles, 70m
and 58m long on the west auxiliary pier; 13 Φ2.2 m bored
piles, 62 m long on the east transition pier; and 13 Φ2.2 m
bored piles, 49 m long on the west transition pier. /e
tower bearing platform is 60.1 m in the cross-bridge
direction and 22.4 m in the along-bridge direction, with a
thickness of 7 m and a tower height of 2.5 m; the bearing
platform of the east side transition pier, auxiliary pier,
and west side transition pier adopts an integral-type
bearing platform, and the left and right side bearing
platforms are connected with cross-ties, such that each
bearing platform has a plan size of 13.6 m × 9m and a
thickness of 3.5 m; the bearing platform of the west side
auxiliary pier adopts a separation-type bearing platform.
/e west side auxiliary pier bearing adopts a separated
bearing, with a plane size of 13.6 m × 9m and a thickness
of 3.5 m.

3.2. Risk Source Identification. /e WBS-RBS method was
used to establish a specific risk source index system, and then
the Delphi method was used to score the participating ex-
perts to identify the safety risk sources of the construction of
the lower part of the Yinzhou Lake Bridge. /e risk source
identification table established by the WBS-RBS method is
shown in Table 6. /e scoring data of 15 experts are pro-
cessed by equation (2). /e final construction safety risk
identification of the lower part of the Yinzhou Lake Bridge is
shown in Table 7.

3.2.1. Establish a Priority Relation Matrix. Taking D12, fire
prevention on-site, as an example, the priority relationship
matrix between D12-E is established by applying the im-
proved fuzzy analytic hierarchy process (FAHP) theory,
combined with the site construction situation and expert
scoring value, as shown in Table 8.

According to equations (2)–(8), the fuzzy consistent
matrix and relative weight of D12-E are calculated. /e
results are shown in Table 9.

3.2.2. Total Weight of the Fuzzy Hierarchy. /e above
methods were applied to solve the priority relationship
matrix and to calculate the relative weights for A11–D12,
which will not be repeated herein. Finally, the fuzzy hier-
archical relative weight matrix w was established for the
construction risks of the lower part of the Yinzhou Lake
Bridge to determine the importance of each risk factor to the
construction process.
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Table 6: Risk source identification table established using the WBS-RBS method.

Project
Risk sources

Human risk
E1

Machine material
risk E2

Environmental
risk E3

Construction technology
impact E4

Foundation pit
engineering (A)

Foundation pit excavation A11 . . . . . . . . . . . .

Foundation pit support A12 . . . . . . . . . . . .

Pile foundation
construction (B)

Equipment transportation and
installation B11

. . . . . . . . . . . .

Embedded casing B12 . . . . . . . . . . . .

Drilling with drilling machine B13 . . . . . . . . . . . .

Hole cleaning B14 . . . . . . . . . . . .

Hoisting reinforcement cage B15 . . . . . . . . . . . .

Underwater concrete pouring B16 . . . . . . . . . . . .

Pile cap
construction (C)

Boxed cofferdam C11 . . . . . . . . . . . .

Cofferdam hoisting C12 . . . . . . . . . . . .

Pile cap construction C13 . . . . . . . . . . . .

Formwork engineering C14 . . . . . . . . . . . .

Other(D) Construction electricity D11 . . . . . . . . . . . .

Fire prevention on-site D12 . . . . . . . . . . . .

Table 7: Risk source score table for the lower part of the Yinzhou lake bridge.

Project Risk sources
E1 E2 E3 E4

A A11 0.791 0.701 0.705 0.734
A12 0.789 0.776 0.746 0.697

B

B11 0.703 0.832 0.607 0.612
B12 0.817 0.822 0.714 0.734
B13 0.748 0.737 0.694 0.735
B14 0.797 0.767 0.714 0.742
B15 0.784 0.801 0.718 0.780
B16 0.894 0.815 0.698 0.795

C

C11 0.795 0.795 0.707 0.749
C12 0.800 0.749 0.701 0.735
C13 0.797 0.782 0.732 0.793
C14 0.816 0.816 0.750 0.841

D D11 0.807 0.831 0.790 0.840
D12 0.755 0.809 0.689 0.801

Table 8: D12-E priority relationship matrix.

D12 E1 E2 E3 E4
E1 0.500 0.546 0.602 0.541
E2 0.454 0.500 0.556 0.495
E3 0.398 0.444 0.500 0.439
E4 0.459 0.505 0.561 0.500

Table 9: D12-E fuzzy consistent matrix and relative weight.

D12 E1 E2 E3 E4 W1

E1 0.500 0.523 0.551 0.521 0.262
E2 0.477 0.500 0.528 0.498 0.250
E3 0.449 0.472 0.500 0.470 0.236
E4 0.480 0.503 0.531 0.500 0.252
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W �

0.257 0.255 0.252 0.256 0.252 0.255 0.252 0.262 0.254 0.257 0.253 0.251 0.249 0.249

0.246 0.253 0.268 0.256 0.251 0.252 0.254 0.252 0.254 0.250 0.251 0.251 0.252 0.256

0.246 0.249 0.240 0.243 0.246 0.245 0.243 0.237 0.243 0.244 0.244 0.243 0.247 0.241

0.251 0.243 0.240 0.245 0.251 0.248 0.251 0.249 0.248 0.249 0.252 0.254 0.253 0.255

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (12)

3.3. Risk Assessment and Analysis. /e internal relationship
between risk sources and engineering projects is determined
with the factor analysis method, and the relative weight W
calculated by the fuzzy hierarchy is imported into IBM SPSS
for factor analysis and calculation.

3.3.1. Data Analysis. /e variance contribution rate of
factors is calculated with software, as shown in Table 10.
Among them, the first set of data describes the initial so-
lution of the factor, the characteristic root of the first factor is
1.773, the explained total variance of the original four
variables is 44.335%, and the cumulative variance contri-
bution rate is 44.335%; the ending mode of the second and
third factors is similar to that of the first factor; the third
group of data describes the factor solution, with a total
variance of 99.877%, which indicates that the three factors
reflect 99.877% of the information of the original variable.

Figure 4 shows that the first factor has the highest ei-
genvalue and largest contribution rate to the variable in-
terpretation, while the eigenvalue of the third factor is
smaller, therefore contributing less to the explanatory var-
iables, and they can be ignored.

3.3.2. Factor Score. Table 11 is the factor score matrix, and
the factor score function can be calculated according to the
regression algorithm. According to equations (10)-(11), the
final score of the factors is calculated and sorted. /e data
results are shown in Table 12.

3.3.3. Result Analysis. According to the fuzzy comprehen-
sive calculation method, the foundation excavation factor
score is 0.83, ranking the first, and the risk coefficient is the
largest; the score of the foundation pit support factor is 0.55,
ranking the second, with the same risk; the score of the hole
cleaning work factor after drilling is 0.33, which is slightly
lower than the first two construction procedures, but there
are also greater risks; the other construction processes are
also high. /e factor scores and the risk order of the project
are shown in Table 13. During the construction progress of
the project, according to the known risk coefficient, scientific
management methods are applied to pay attention to the
construction process with high risk and take reasonable
construction measures to avoid risks in time and reduce
economic losses.

/e main purpose of bridge construction safety risk
identification and analysis is to perform better risk man-
agement and control to ensure the safety of people and
structures during bridge construction. /is process requires
reasonable risk response measures, scientific risk manage-
ment measures that are the key to risk disposal,

consideration that different sizes of risk disposal programs
are not the same, and the requirement of scientific con-
sideration that is not arbitrary, which requires compliance
with certain principles. /e specific principles of risk re-
sponse strategies are as follows.

(i) Availability and validity
Risk control should pay attention to the availability
of control methods, and the methods should be
combined with the practical factors of the situation
to ensure that they are available in engineering
practice. /e risk decision should be made
according to the characteristics of the risk occur-
rence. At the same time, the effectiveness of the
control method should be ensured, and the pro-
posed risk control method should be able to prevent
and control the risk effectively.

(ii) Cost reasonableness
/e bridge construction process has many kinds of
risks and great difficulty in prevention, which causes
the cost of the control process to also be larger.
/erefore, in the process of risk control, the issue of
cost should be considered, the size of the cost and
benefit should be compared, and the funds should
be reasonably controlled to ensure that the premise
of solving the risk is to try to save costs and balance
the gains and losses.

(iii) Comprehensiveness
Bridge construction projects are large and complex
systems, and construction processes face numerous
risks. Each risk control program has its own
uniqueness and limitations. /e control process
should be considered cross-use to ensure that the
control scope and control benefits are maximized.

(iv) Science
/e selection of a risk control program should have
a scientific basis and not be a blind decision./e risk
identification and assessment of the entire bridge
are rigorously scientifically proven, thus ensuring
the accuracy of risk recognition.

3.4. RiskAssessment andAnalysis. /emost commonly used
method for risk assessment is the AHP method [32, 33],
which we adopted as a comparative study. /e main steps of
the AHP method are establishing a hierarchical structure
model, constructing all judgment matrices in each level,
using the two-by-two comparison method to derive the
weights of individual influencing factors, and ranking the
weights of each influencing factor.
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3.4.1. Building Hierarchical Structure Model. /e hierar-
chical structure diagram is generally divided into 3 layers,
the top layer, middle layer, and bottom layer, representing
the target layer, criterion layer, and indicator layer, re-
spectively. In actual case analysis, the structure can be di-
vided according to the objectives to be evaluated, the factors
to be considered and the interrelationship points among

evaluation indicators. According to on-site research, liter-
ature review, and expert opinion, it was determined that the
risk source engineering items of the lower part of the
Yinzhou Lake Bridge are foundation pit engineering, pile
foundation engineering, bearing platform construction, and
others, and each risk source engineering item contains
multiple risk factors. Finally, a three-layer hierarchical
structure model containing the target layer, criterion layer,
and indicator layer is established. As shown in Figure 5, A, B,
C, D and A11, A12, . . ., D12 refer to risk source engineering
projects and risk source factors, respectively; the details are
the same as those in Table 6 for risk events and risk source
designations.

3.4.2. Construction of Judgment Matrix at Each Layer.
By inviting experts such as construction experts and su-
pervision experts, the relative importance of the two factors
is calibrated using a scale of proportionality, as shown in
Table 13, and the judgment matrix of risk source factors at
the criterion level relative to the target level is shown in
Table 14.

Table 10: Total variance explained.

Component
Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative % Total % of variance Cumulative %
1 1.773 44.335 44.335 1.773 44.335 44.335 1.759 43.980 43.980
2 1.243 31.081 75.416 1.243 31.081 75.416 1.257 31.437 75.416
3 0.978 24.461 99.877
4 0.005 0.123 100.000
Extraction method: principal component analysis.

Component Number
1 2 3 4
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Figure 4: Factor eigenvalue distribution.

Table 11: Component score coefficient matrix.

Component
1 2

Risk sources 1 −0.031 0.787
Risk sources 2 −0.539 −0.350
Risk sources 3 0.320 −0.147
Risk sources 4 0.420 −0.187

Table 12: Factor score table.

Project name Factor score Sequence
A11 0.83 1
A12 0.55 2
B11 −1.12 13
B12 0.16 4
B13 −0.27 12
B14 0.33 3
B15 0.03 9
B16 −0.2 11
C11 0.12 5
C12 0.07 7
C13 0.05 8
C14 −0.53 14
D11 0.11 6
D12 −0.12 10

Table 13: Scale of proportions.

/e relative importance of the i-th risk event
over the j-th risk event

Quantified
values

Equally important 1
Slightly more important 3
Stronger and more important 5
Strongly important 7
Extremely important 9
Intermediate value of two adjacent judgments 2, 4, 6, 8
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To ensure that the results obtained with this method are
reasonable and reliable, it is necessary to judge the con-
sistency of the target layer-criterion layer judgment matrix.
/e consistency check is shown in

CR �
CI

RI
< 0.1, (13)

where RI is the average random consistency index. /e
equation for CI is CI � λmax − n/n − 1, n is the order of the
judgment matrix, RI takes the values shown in Table 15, and
λmax is the maximum eigenvalue.

/e square root method is adopted to find the solution of
λmax [34] as follows: Step one: multiply each element by row
to obtain uij; see equation (13); Step 2: raise uij to the power
of n to obtain ui; see equation (15); Step 3: normalize ui to
obtain the weight vector ωi; see equation (16); Step 4: cal-
culate the maximum characteristic root λmax of the judgment
matrix; see equation (17).

uij � 􏽙
n

j�1
bij, (14)

ui �
���
uij

n
􏽰

, (15)

ωi �
ui

􏽐
n
i�1 ui

, (16)

λmax � 􏽘
n

i�1

(Aω)i

nωi

, (17)

where bij is the relative importance value of the i-th eval-
uation index relative to the j-th evaluation index, which is
the value in the judgment matrix; A is the judgment matrix;
ω is the eigenvector; and n is the number of elements. In this

case, the maximum eigenvalue of CI is 4.235, RI is 0.078, and
CR is 0.9. /erefore, since 0.087< 0.1, the consistency re-
quirement is satisfied. /e weight vector occupied by A–D is
w � (0.566, 0.265, 0.060, 0.109).

/e following is the judgment matrix of each factor in
the index layer relative to the criterion layer. /e relative
importance of each factor in the index layer to the criterion
layer is calculated by two comparisons, and the results are
shown in Tables 16–19.

According to the calculation method of the weight
feature vector of each evaluation factor in the criterion layer
relative to the target layer, the weight vector of the judgment
matrix of A-A1-2 is obtained, and it is calculated that
λmax � 2, CI � 0, RI � 0, and CR � 0< 0.1, which meets the
consistency requirement. /e weight vector occupied by A-
A1-2 is w � (0.750, 0.250).

/e same calculation method is used to obtain the
weight vector of the judgment matrix of B–B1-6, and it is
calculated that λmax � 6.563, CI � 0.113, RI � 1.24, and
CR � 0.091< 0.1, which satisfies the consistency require-
ment. /e weight vector occupied by B–B1-6 is w � (0.157,
0.398, 0.055, 0.240, 0.119, 0.031).

In the same way, the weight vector of the judgment
matrix C–C1-4 is obtained, and after calculation,
λmax � 4.076, CI � 0.025, RI � 0.9, and CR � 0.028< 0.1,
which meets the consistency requirements. /e weight
vector occupied by C–C1-4 is w � (0.543, 0.254, 0.085, 0.119).

/e same calculationmethod is used to obtain the weight
vector of the judgment matrix of D-D1-2, and it is calculated
that λmax � 2, CI� 0, RI� 0, and CR� 0< 0.1, which also
meets the consistency requirements. /e weight vector
occupied by D-D1-2 � (0.750, 0.250).

3.4.3. Calculation of Combination Weights and Total Hier-
archical Ranking. /e combined weight of each risk source
is the product of the weight of each risk source in the

Safety Risk Assessment of the Construction of
the Bridge Lower EngineeringTarget layer

Criterion layer

Indicator layer

A CB D

B11 B12 B13 B14 B15 B16A12A11 C11 C12 D11 D12C13 C14

Figure 5: /e hierarchical structure model of the safety risk assessment of the project under the pile of the Yinzhou lake bridge.

Table 14: Judgment matrix of the objective layer-criterion layer.

A B C D
A 1 3 5 7
B 1/3 1 5 3
C 1/5 1/5 1 1/3
D 1/7 1/3 3 1

Table 15: Average random consistency index.

1 2 3 4 5 6 7 8 9
0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45
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indicator layer and the feature vector of the weight of the
indicator layer. /en, the calculated weight of each risk
source index was sorted from large to small, and the results
are shown in Table 20.

/e total ranking results of all risk factors that are
involved in bridge construction were obtained as follows:
foundation pit excavation A11, foundation pit support A12,
embedded casing B12, construction electricity D11, hole
cleaning B14, equipment transportation and installation
B11, boxed cofferdam C11, hoisting reinforcement cage B15,
fire prevention on-site D12, cofferdam hoisting C12, drilling
with drilling machine B13, underwater concrete pouring
B16, formwork engineering C14, and pile cap construction
C13.

Comparing the improved fuzzy hierarchical factor
analysis method with the AHP method in the bridge con-
struction safety risk evaluation study, we can see that both of
them use the expert scoringmethod to determine the relative
importance of the risk sources. However, for the initial
identification of risk sources, this paper adopts the fuzzy
hierarchical analysis method, which can solve the problem of
fuzzy evaluation indices in the bridge construction process
by introducing an “affiliation degree” in fuzzy mathematics
and using the affiliation function to deal with the fuzzy
indices. /e method proposed in this paper considers the
dynamic risk sources in the construction process and selects
the representative risk sources for analysis and
consideration.

4. Conclusions and Discussion

/ere are many risk factors present during the construction
period of a large and complex bridge. In this paper, the
Delphi method and WBS-RBS method are employed to
identify potential dynamic risk sources, establish a safety risk
evaluation index system for the construction period of a
large and complex bridge, use improved fuzzy hierarchical
analysis for weight calculation, and combine factor analysis
to evaluate the safety risk of a large and complex bridge
during the construction period. An empirical study was
conducted to assess the practical application of the method,
and the main conclusions are as follows.

(1) /rough the construction process decomposition
and construction safety factor decomposition
method, a set of safety risk census systems applicable
to the bridge construction period is established,
which can more perfectly identify the dynamic risks
in the construction process and identify them more
comprehensively and accurately. Whether the results
are obtained using the method proposed in this
paper or the comparative study, it is concluded that
foundation pit excavation and foundation pit sup-
port are relatively dangerous risk events, and so risk
prevention should be strengthened in actual con-
struction and similar projects to pay attention to
these types of risk.

(2) /rough the organic combination of the Delphi
method, FAHP, and factor analysis method, the
advantages of the above three methods are integrated
to compensate for their defects. /e safety risk sit-
uation of bridge construction periods is complex,
and there are many uncertainties and fuzziness. /is
method can quantitatively analyze this kind of
complex system and calculate the risk value
accurately.

(3) /e fuzzy comprehensive evaluation method is ap-
plied to quantitatively evaluate the safety risk of the
lower part of the Yinzhou Lake Bridge during its

Table 16: A-A1-2 judgment matrix.

A A1 A2

A1 1 3
A2 1/3 1

Table 17: B–B1-6 judgment matrix.

B B1 B2 B3 B4 B5 B6
B1 1 1/3 3 1/3 3 5
B2 3 1 7 3 3 7
B3 1/3 1/7 1 1/3 1/5 3
B4 3 1/3 3 1 3 7
B5 1/3 1/3 5 1/3 1 5
B6 1/5 1/7 1/3 1/7 1/2 1

Table 18: C–C1-4 judgment matrix.

C C11 C12 C13 C14

C11 1 3 3 7
C12 1/3 1 3 3
C13 1/3 1/3 1 1/3
C14 1/7 1/3 3 1

Table 19: D-D1-2 judgment matrix.

D D1 D2

D1 1 3
D2 1/3 1

Table 20: Hierarchical total sorting results.

Risk factors
Single weight

Weights SequenceA B C D
0.566 0.265 0.060 0.109

A11 0.750 0.4245 1
A12 0.250 0.1415 2
B11 0.157 0.0417 6
B12 0.398 0.1056 3
B13 0.055 0.0147 11
B14 0.240 0.0636 5
B15 0.119 0.0315 8
B16 0.031 0.0081 12
C11 0.543 0.0326 7
C12 0.254 0.0152 10
C13 0.085 0.0051 14
C14 0.119 0.0071 13
D11 0.750 0.0818 4
D12 0.250 0.0273 9
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construction period, and reasonable disposal mea-
sures are presented according to the risk of the
project to prevent the occurrence of safety risk events
and provide guidance for the safety risk assessment
of the bridge construction period in the future. A
comparative study was also conducted, and the
scientific and accurate nature of the proposed
method was fully demonstrated.

/is paper provides a new method that is applicable to
the evaluation of safety risks during the construction period
of large and complex bridges; however, the method also has
some limitations, the main 2 of which are as follows: first, the
method requires the user to have a certain level of mathe-
matical calculation ability, and the formula has some cal-
culation complexity; second, some risk source factors may
exist in the operational period or design period, and since
their risk hazard levels may also be high, these factors need to
be integrated with the factors of other periods. In general, as
a major infrastructure country, China’s infrastructure
construction is accelerating, and the construction of bridges
has reached new heights in terms of span, construction
difficulty, and construction technology, and so traditional
evaluation methods need to be innovated. Our next study
will focus on the acquisition and calculation of unidentified
factors, taking into account the complexity of the actual
construction environment, the numerous risk sources
during bridge construction, the decision to deploy these risk
events, and the identification of the more important risk
sources to assess their degree of risk to the overall project.
For the purpose of this paper, this involves intelligent cal-
culations, which need to rely on language programming to
edit the formulas involved in these methods and transform
them into source code language programs, and in practice,
the user only needs to input the relevant parameters to
obtain the evaluation results. To promote the use of this
method, we are also strengthening it to study the risk
evaluation of other types of bridges during the construction
period, and we will also carry out the safety risk evaluation of
other types of bridges during the construction period.
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During the phase of building survey, spalling and its severity should be detected as earlier as possible to provide timely information on
structural heath to building maintenance agency. Correct detection of spall severity can significantly help decision makers develop
effective maintenance schedule and prioritize their financial resources better.*is study aims at developing a computer vision-based
method for automatic classification of concrete spalling severity. Based on input image of concrete surface, the method is capable of
distinguishing between a minor spalling in which the depth of the broken-offmaterial is less than the concrete cover layer and a deep
spalling in which the reinforcing steel bars have been revealed. To characterize concrete surface condition, image texture descriptors
of statistical measurement of color channels, gray-level run length, and center-symmetric local binary pattern are used. Based on
these texture-based features, the support vector machine classifier optimized by the jellyfish search metaheuristic is put forward to
construct a decision boundary that partitions the input data into two classes of shallow spalling and deep spalling. A dataset consisting
of 300 image samples has been collected to train and verify the proposed computer visionmethod. Experimental results supported by
the Wilcoxon signed-rank test point out that the newly developed method is highly suitable for concrete spall severity classification
with accuracy rate� 93.33%, F1 score� 0.93, and area under the receiver operating characteristic curve� 0.97.

1. Introduction

Spalling is a notable defect widely encountered in surface of
reinforced concrete structures (refer to Figure 1). *e ap-
pearance of spalling significantly deteriorates the integrity
and durability of reinforced concrete elements. *is defect
can be caused by severe servicing environment and loads.
More importantly, the appearance of spalls may indicate
more serious damages in the internal structure of reinforced
concrete elements, e.g., corrosion of steel reinforcement.

Spalling should be detected as earlier as possible due to
several reasons. First, spall objects badly affect the aesthetics
of building structures and therefore bring about discomfort
for occupants. Second, if the layer of concrete cover is re-
moved due to spalling, reinforcing steel bars are exposed to

the environment and this fact expedites the corrosion of the
steel bars (as shown in Figure 1(b)). Subsequently, the area
and the depth of spall objects increase over time. *ird,
spalling appeared in ceilings, cladding structures, or con-
crete beams is particularly hazardous for occupants. *e
materials broken off from spalled areas can cause significant
injuries and even loss of human lives.

As a consequence, periodic visual inspection is necessary
to detect and evaluate the severity of spalling defects. Most
importantly, deep spalling in which the layer of concrete
cover has completely broken off and steel reinforcement has
been exposed should be detected timely and requires urgent
remedy. In Vietnam as well as in other developing countries,
visual inspection performed by human technicians and
manual visual data processing are the main approaches for
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spall detection. Although these approaches can help to detect
and evaluate the severity of this distress accurately, they are
also notoriously known to be labor and time-consuming.
With a large surface area of concrete structure, timely in-
spection and fast visual data processing are virtually im-
possible for a limited number of inspectors.

*erefore, maintaining good serviceability via periodic
visual inspection and evaluation is crucial to keep building
environment operational and protect occupants’ health. In
recent years, due to the availability of low-cost digital
cameras as well as a rapid improvement of image processing
techniques, computer vision-based structural health moni-
toring systems have been increasingly used to enhance the
productivity of periodic building survey [1–3].*ese systems
have been demonstrated to be viable tools for building defect
detections. *ey are capable of not only producing ac-
ceptable detection accuracy but also guaranteeing consis-
tency in assessment outcomes. *e computer vision-based
methods yield objective evaluation results; they are not
affected by subjective judgments in data processing per-
formed by humans.

Due to the aforementioned advantages, various auto-
mated and data-driven methods used for concrete spalling
detection have been constructed in the literature. German
et al. [4] constructed an automated model for detecting
spalled regions on the surfaces of concrete columns based on
a local entropy-based thresholding algorithm, a global
adaptive thresholding algorithm, and morphological oper-
ations; the model is tested with concrete columns during a
postearthquake investigation. Dawood et al. [5] proposed a
computer vision-based approach for spalling detection and
quantification in subway networks; this study employs
various image processing techniques including image
thresholding, histogram equalization, and filtering in an
attempt to detect the quantify the severity of spall objects.
*is computer vision-based method is validated with a set of
75 image samples and attains an accuracy rate of 89.3%.

Hoang [6] relied on a steerable filter used for feature
extraction and machine learning-based data classification to

recognize wall defects including concrete spalling. *e
method of roughness descriptor based on Hough trans-
formation and similarity analysis is described in Wu et al.
[7]; this approach is utilized for recognizing concrete
spalling occurring in metro tunnel surface. A model that
integrates image processing techniques of texture analysis
and machine learning has been proposed in Hoang et al. [8];
a piecewise linear stochastic gradient descent logistic re-
gression has been used to categorized images of concrete
surface into two classes of “nonspall” and “spall.”

Abdelkader et al. [9] harnessed the capability of particle
swarm optimization metaheuristic coupled with the Tsallis
entropy function and discrete wavelet transform to automate
the detection of spalling area. Hoang [10] developed an
image processing-based spall object detection method re-
lying on Gabor filter for region of interest extraction, texture
analysis methods for characterizing feature of concrete
surface, and logistic regression models used for data clas-
sification; this integrated approach can effective locate the
spall objects but is not capable of classifying spall severity.

Abdelkader et al. [11] developed an entropy-based au-
tomated approach for detection and assessment of spalling
severities in reinforced concrete bridges; invasive weed
optimization-based image segmentation, information the-
ory-based formalism of images, and the Elman neural
network are hybridized to formulate the proposed method.
Zhao et al. [12] investigated various feature selection
strategies used with machine learning models and texture
descriptors to detect concrete surface voids.

Recently, deep learning methods have also been applied
to tackle the problem of interest. *e main advantage of the
deep learning models is that the feature extraction phase can
be performed automatically [13, 14]. *rough various
convolutional and pooling operations, useful features such
as edges, shapes, texture, and so on can be revealed by the
machine and used for the subsequent pattern recognition
tasks in a fully connected layer [15]. Wei et al. [16] proposed
deep learning-based recognition and quantification for
concrete surface bughole; the employed artificial intelligent

(a)

(b)

Figure 1: Appearances of spall in reinforced concrete surface: (a) shallow spall and (b) deep spall.
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method is convolutional neural network (CNN); the main
research finding is that the CNN-based model can effectively
replace the traditional detection methods carried out by
manual inspection.

Another deep learning-based concrete surface void de-
tection method has been put forward in [17]; this method is
trained by small-sized image of 28× 28 pixels, and its per-
formance outperformed conventional image processing
techniques of the Laplacian of Gaussian algorithm and the
Otsu method. A CNN-based method used for detecting
building defects has been developed in [18]; this method is
capable of automatically detecting and localizing key
building defects such as mould, deterioration, and stain.

Although CNN-based methods are generally capable
tools for detecting spalling and other defects in concrete
surface, the deep learning approaches typically demand a
large volume of image datasets in order to construct reliable
classifiers [13, 19]. *is fact requires a great effort in visual
data collection and a meticulous data labeling process. In
addition, successful implementation of deep learning
models also necessitates experience and the trial-and-error
process to adjust a significant number of model tuning
parameters.

In general, based on recent reviewing works performed
by Koch et al. [20]; Feng and Feng [21]; Dong and Catbas
[22]; and Yadhunath et al. [23], there is an increasing trend
of applying image processing and machine learning for
automatically detecting concrete surface distresses including
spall. *erefore, investigations of other image processing
tools and machine learning frameworks are helpful to
provide a broader view on the possibility and capability of
computer vision methods in dealing with the task at hand. It
is also noted that although various models for spall object
detection have been put forward and verified, few studies
have constructed spall severity classification models based
on two-dimensional digital images. Such models can be
immensely helpful for the decision maker and building
maintenance agencies to schedule their maintenance and
prioritize their budgets spent on treatment of building el-
ements effectively.

In addition, although machine learning methods have
been extensively used in computer vision-based structural
health monitoring [3, 12, 24–26], hybrid approaches that
combine the strengths of machine learning and meta-
heuristic algorithms are rarely investigated in this field es-
pecially for concrete spall recognition. Metaheuristic
algorithms can be used to optimize the learning phase of
machine learning models and therefore help to achieve
better predictive performances [27–33].

Accordingly, the current study aims at contributing to
the body of knowledge by constructing a hybrid machine
learning and metaheuristic approach used for computer
vision-based concrete spall severity recognition. *e
employed machine learning method is support vector ma-
chine [34] because SVM has been proven to be a highly
capable tool for pattern recognition especially for nonlinear
and multivariate datasets [35–40]. To optimize the perfor-
mance of SVM, a novel and recently proposed metaheuristic
approach of jellyfish search is utilized.

*e jellyfish search metaheuristic algorithm is employed
to identify the most suitable tuning parameters of the SVM
model that yields the desired predictive performance on
reinforced concrete spall severity recognition. SVM is used
in this study to recognize concrete surface subject to the
defects of shallow spall and deep spall. Herein, the first class
represents spall objects with its depth smaller than the
concrete cover; the latter class contains spall objects having
their embedded reinforcement exposed.

Moreover, since the areas of the aforementioned classes
have different surfacing properties such as coarseness/fine-
ness, image texture descriptors of statistical measurements of
color channels [41], gray-level run length [42, 43], and center-
symmetric local binary pattern [44] are used to characterize
the surface properties of concrete used for spall severity
classification. *ese texture descriptors have been selected by
this study due to their ease of implementation, fast compu-
tation, and good discriminative capability [8, 45–50]. In
addition, as demonstrated in previous studies [25, 51, 52], the
combination of image’s color properties and texture is able to
bring about good image classification accuracy.

In summary, the main contribution of the current study
to the body of knowledge can be stated as follows:

(i) *is study proposes and verifies a computer vision-
based method that is capable of categorizing concrete
spall severity. *is approach can significantly boost
the productivity and effectiveness of the periodic
survey on the structural health of concrete elements.

(ii) *e proposed approach is a hybridization of JSO
metaheuristic and SVM. *e JSO algorithm is used
to optimize the SVM training phase automatically.

(iii) *e integration of various texture descriptors,
which include statistical measurements of color
channels, gray-level run length, and center-sym-
metric local binary pattern, aims at describing the
surface feature of concrete surface effectively.

(iv) *e computer vision-based method is trained and
optimized automatically with minimum human
intervention and effort on parameter fine-tuning.

*e subsequent sections of the study are organized as
follows. Section 2 reviews the research methodology. *e
next section describes the structure of the proposed com-
puter vision-based approach employed for spall severity
classification. Experimental results are reported in Section 4.
Concluding remarks and main research findings are sum-
marized in the last section of the article.

2. Research Methodology

*is section of the article presents the research methodology
of the current study. *e research methodology includes four
main sections: image acquisition, image texture computation,
model optimization, and model construction. *e overall
research methodology is depicted in Figure 2.*e subsequent
parts of this section review the image texture descriptors used
for feature extraction, the machine learning, and the meta-
heuristic algorithm employed for model optimization.
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2.1. 'e Employed Image Texture Descriptors. It is observable
that surfacing properties of concrete with different categories of
spalling severity can be used for pattern classification.*erefore,
this study relies on the statistical measurement of image pixel
intensity [41], the gray-level run length [42, 43], and the center-
symmetric local binary pattern for concrete spall severity
classification [44].

2.1.1. Statistical Measurement of Image Pixel Intensity.
*is study relies on 2-dimensional RGB image samples to
recognize concrete spall severity. One image sample has
three color channels of red (R), green (G), and blue (B)
and is commonly represented by three separated matri-
ces, each of which contains information of pixel intensity
in one color channel. To extract the statistical
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measurements of image pixel intensity of an image
sample I, it is necessary to establish the first-order his-
togram P (I) describing the statistical distribution of
pixels’ gray level. Using P (I), the metrics of mean (μc),
standard deviation (σc), skewness (δc), kurtosis (ηc),
entropy (ρc), and range (Δc) are computed for a color
channel c � R, G, B{ }. Since each color channel yields six
statistical measurements, the total number of features
describing the pixel intensity distribution of one image
sample with three color channels is 6 × 3 �18.

*e indices of mean (μc), standard deviation (σc),
skewness (δc), kurtosis (ηc), entropy (ρc), and range (Δc)

are obtained in the following equations [51]:

μc � 􏽘
NL−1

i�0
Ii,c × Pc(I),

σc �

�������������������

􏽘

NL−1

i�0
Ii,c − μc􏼐 􏼑

2
× Pc(I)

􏽶
􏽴

,

δc �
􏽐

NL−1
i�0 Ii,c − μc􏼐 􏼑

3
× Pc(I)

σ3c
,

ηc �
􏽐

NL−1
i�0 Ii,c − μc􏼐 􏼑

4
× Pc(I)

σ4c
,

ρc � − 􏽘

NL−1

i�0
Pc(I) × log2 Pc(I)( 􏼁,

Δc � Max Ic( 􏼁 − Min Ic( 􏼁,

(1)

where NL� 256 represents the number of discrete intensity
values, c is the index of color channels (R, G, or B), and P (I)
denotes the first-order histogram of an image.

2.1.2. Gray-Level Run Length (GLRL). GLRL, proposed in
[42], is a powerful method for extracting statistical prop-
erties of spatial distribution of gray levels. *is method
utilizes higher-order statistics that analyze the joint distri-
bution of multiple pixels [48]. First, GLRL matrices are
computed from a gray-scale image. Subsequently, the oc-
currence of runs of pixels in a given direction is inspected
and statistically quantified. GLRL is useful for characterizing
the coarseness or fineness of image region due to the ob-
servation that coarse textures are presented by a large
number of neighboring pixels featuring the same gray in-
tensity. On the contrary, a small number of neighboring
pixels with similar gray-level intensity are observed in fine
textures. Given an image of interest, the GLRL constructs a
run-length matrix as the number of runs that stems from a
location (i, j) of the image in a certain direction [47].
Commonly, for one image sample, four GLRL matrices are
computed for the horizontal direction, vertical directions,
and two diagonal directions [53].

Let p (i, j) denote a run-length matrix, and the short run
emphasis (SRE), long run emphasis (LRE), gray-level non-
uniformity (GLN), run length nonuniformity (RLN), and run
percentage (RP) are calculated as follows [19, 42]:

SRE �
1

Nr

􏽘

M

i�1
􏽘

N

j�1

p(i, j)

j
2 ,

LRE �
1

Nr

􏽘

M

i�1
􏽘

N

j�1
p(i, j) × j

2
,

GLN �
1

Nr

􏽘

M

i�1
􏽘

N

j�1
p(i, j)⎛⎝ ⎞⎠

2

,

RLN �
1

Nr

􏽘

N

j�1
􏽘

M

i�1
p(i, j)⎛⎝ ⎞⎠

2

,

RP �
Nr

Np

,

(2)

where M and N denote the number of gray levels and the
maximum run length,Nr represents the total number of runs
and Np is the number of pixels, and i and j denote the
coordinates of a pixel within an image sample.

In addition to the aforementioned indices, Chu et al. [54]
proposed the low gray-level run emphasis (LGRE) and high
gray-level run emphasis (HGRE) described as follows:

LGRE �
1

Nr

􏽘

N

j�1
􏽘

M

i�1

p(i, j)

i
2 ,

HGRE �
1

Nr

􏽘

N

j�1
􏽘

M

i�1
p(i, j) × i

2
.

(3)

Dasarathy and Holder [55] put forward additional in-
dices extracted from GLRL matrices. *ese indices are the
short run low gray-level emphasis (SRLGE), short run high
gray-level emphasis (SRHGE), long run low gray-level
emphasis (LRLGE), and long run high gray-level emphasis
(LRHGE); their equations are given by

SRLGE �
1

Nr

􏽘

N

j�1
􏽘

M

i�1

p(i, j)

i
2

× j
2,

SRHGE �
1

Nr

􏽘

N

j�1
􏽘

M

i�1

p(i, j) × i
2

j
2 ,

LRLGE �
1

Nr

􏽘

N

j�1
􏽘

M

i�1

p(i, j) × j
2

i
2 ,

LRHGE �
1

Nr

􏽘

N

j�1
􏽘

M

i�1
p(i, j) × i

2
× j

2
.

(4)
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2.1.3. Center-Symmetric Local Binary Pattern (CS-LBP).
CS-LBP, proposed in [44], is a modified version of the standard
local binary pattern (LBP) [56, 57]. CS-LBP inherits the ca-
pability of LBP in describing the texture of an interest region via
the distribution of its local structures as well as the intolerance
against illumination changes. Both CS-LBP and LBP are widely
recognized as simple yet effective texture descriptors [50, 58].
Nevertheless, one major drawback of the original LBP is that it
yields a long histogram and therefore produces a large number
(i.e., 256) of features to be learnt. A large number of data
dimensions usually impose a significant challenge for machine
learning model which relies on the data to construct classifiers
of interest [59, 60]. Furthermore, the standard texture de-
scriptor is not robust in describing flat image regions [44, 58].

To improve the performance of LBP, CS-LBP is devised
by proposing a new scheme of pairwise pixel comparison as
shown in Figure 3.Given a patch of × 3 pixels, the CS-LBP
compares center-symmetric pairs of pixels in the neigh-
borhood to yield different binary patterns. *e function Δ is
employed for comparing pairs of pixels; its formula is given
by

Δ(x) �
1, if x>T,

0, otherwise,
􏼨 (5)

where T denotes a thresholding value employed to inspect
the significance of the gray intensity differences of 2 pixels.

*e center-symmetric pairs of pixel are compared to
characterize the local structure of image texture. *erefore,
the total number of extracted features is only 16 instead of
256 as required by LBP. In addition, to meliorate the ro-
bustness on flat image region, a thresholding value T is used
to determine the significance of the gray-level differences
between two pixels of interest. *e thresholding value T is
commonly set to be 3 as suggested in [61]. Accordingly, the
formula used to compute the CS-LBP descriptor is given by

FCS−LBP(i, k) � 􏽘

(N/2)−1

i�0
Δ pi − pi+(N/2)􏼐 􏼑 × 2i

, (6)

where i and k denote the coordination of a pixel within an
image sample and N� 8 which is the number of neighboring
pixels.

2.2. Support Vector Machine Classification (SVC). *e pat-
tern recognition method of SVC was first proposed in [34].
*is method is a highly effective tool suitable for dealing
with classification tasks in high-dimensional space. In this
study, SVC is used to categorize the input image data into
two class labels of deep and shallow concrete spalling. Let
D � (x, y)|x ∈ S andy � f(x)􏼈 􏼉 denote a training dataset.
Herein, the input feature refers to numerical data extracted
by the aforementioned texture descriptors of the statistical
measurement of color channels, GLRL, and CS-LBP. Using

SVC, an approximated function f
∧

(x): X⟶ −1, +1{ } can
be established with the label −1 which means “shallow spall”
and the label +1 which corresponds to “deep spall.”

To cope with nonlinear separable datasets, SVC relies on
kernel functions to construct a mapping from the original
input space to a high-dimensional feature space within

which linear separation of datasets is feasible. *e data
mapping and the construction of a hyperplane used for data
separation are demonstrated in Figure 4. To establish such
hyperplane, the following nonlinear optimization problem
must be solved:

minimize Jp (w, e) �
1
2
w

T
w + C

1
2

􏽘

N

k�1
e
2
k

subjected to yk w
Tφ xk( 􏼁 + b􏼐 􏼑≥ 1 − ek, k � 1, . . . , N, ek ≥ 0,

(7)

where w ∈ Rn and b ∈R are the parameters of the hyper-
plane, e denotes the vector of slack variables, and C and φ(x)

represent the penalty coefficient and the nonlinear data
mapping function, respectively.

In the formulation of a SVC model, the explicit form of
the mapping function is not required. Instead of that, the dot
product of φ(x) denoting a kernel function K (xk, xl) can be
obtained. For nonlinear pattern recognition, the kernel
function of choice is the radial basis kernel function (RBKF)
[62]; its formula is given by

K xk, xl( 􏼁 � exp −
xk − xl

����
����
2

2σ2
⎛⎝ ⎞⎠, (8)

where σ denotes a hyperparameter of the kernel function.

2.3. Jellyfish Search (JS) Metaheuristic. As can be shown in
the previous section, the establishment of a SVC model
used for spall severity classification requires a suitable
determination of the penalty coefficient C and the kernel
function-based data mapping which is reflected in the
tuning parameter σ of the RBKF. *e penalty coefficient C
indicates the amount of penalty suffered by misclassified
data samples during the model training phase; the tuning
parameter σ of the RBKF controls the locality of the kernel
function which influences the generalization of a SVC
model [63].

It is noted that the task of searching for those hyper-
parameters can be considered as a global optimization problem
[28, 32, 64–71]. Moreover, since C and σ are searched in
continuous space, the number of parameter combinations is
infinitely large.*is factmakes an exhaustive search for the best

p6

p5

p4

p3

p2

p1

p0pc

p7

Central Pixel

Neighboring Pixel

CS-LBP =
Δ (p0-p4)x20+
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Δ (p3-p7)x23

Figure 3: Demonstration of the CS-LBP texture descriptor.
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hyperparameters infeasible. *erefore, this study employs on
the JS metaheuristic to tackle such optimization problem.

*e JS metaheuristic, proposed in [72], is a nature-inspired
algorithm highly suitable for solving global optimization
problems. *is metaheuristic is motivated by the behaviors of
jellyfish in the ocean. Herein, each searching agent is modeled
as a jellyfish.*emovements of searching agents in an artificial
ocean which is the search space of interest mimic their actually
movements in the real-world ocean which are governed by the
ocean current, the motion within a swarm, and a time control
mechanism for motion mode changing.

Chou and Truong [72] proposed three idealized rules to
formulate the JS optimization algorithm.*e first rule is that
the jellyfish may either follow the ocean current or change
their locations within a swarm and there is a time control
function that governs their switching of motion type. *e
second rule is that the jellyfish alter their location in order to
search for better food source.*e third rule is that the fitness
of a location (reflected in the value of the cost function) as
well as the jellyfish at this location is proportionate to the
amount of food.

After a swarm of jellyfish is randomly generated, the
searching agents start to explore and exploit the artificial
ocean to search for better food source. *e first type of
jellyfish movement is following the ocean current. Herein,
the direction of the current is expressed as follows:

T � XBest − β × rand ×
􏽐

NJ
i�1Xi

NJ
, (9)

where T denotes the direction of the ocean current, XBest is
the location of the current best jellyfish, NJ is the number of
jellyfish, β� 3 is the scaling factor, and rand denotes a
uniform random number within [0, 1].

Accordingly, the location of a jellyfish is updated via

Xi(t + 1) � Xi(t) + rand × T

� Xi(t) + rand × XBest − β × rand ×
􏽐

NJ
i�1Xi

NJ
􏼠 􏼡.

(10)

Inside a swarm, jellyfish demonstrate both passive and active
motions [73, 74]. Initially, when a swarm has just been estab-
lished, the jellyfish tend to exhibit passive motion. Subsequently,
the jellyfish have the tendency to follow active motion. *e
passive motion is mathematically formulated as follows:

Xi(t + 1) � Xi(t) + c × rand ×(UB − LB), (11)

where c � 0.1 is a motion coefficient and LB and UB are the
lower and upper boundaries of the search variables.

*e active motion of jellyfish is determined by the
quantity of food stored in a randomly selected location.
Generally, jellyfish approach a better food source in a swarm.
*e location of an individual within a swarm is iteratively
revised as follows:

Xi(t + 1) � Xi(t) + rand × DJ,

DJ �
Xj(t) − Xi(t), if f Xi( 􏼁≥f Xj􏼐 􏼑,

Xi(t) − Xj(t), if f Xi( 􏼁<f Xj􏼐 􏼑,

⎧⎪⎨

⎪⎩

(12)

where DJ denotes the direction of a jellyfish, Xi is the target
jellyfish, Xj is a randomly selected jellyfish within the swarm,
and f denotes the cost function of the problem of interest.

Furthermore, to govern the movement of jellyfish between
following the ocean current and moving inside the swarm, the
time control mechanism including a time control function c (t)
and a constant C0� 0.5 is employed.*e time control function
yields a random value ranging from 0 to 1. If the value of c (t)
surpasses C0, the jellyfish attach to the ocean current. On the
contrary, the jellyfish move within a swarm. *e time control
function is mathematically described as follows:

c(t) � 1 −
t

TMax
􏼠 􏼡 ×(2 × rand − 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (13)

where TMax denotes the maximum number of searching
iterations.

2.4.'e Collected Image Samples. *e objective of this work
is to process image samples of reinforced concrete surface
for the task of spalling severity classification. To achieve such
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Figure 4: Demonstration of the SVC-based spalling severity classification.
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objective, this study has carried out field surveys in Danang
city (Vietnam) to collect image samples of reinforced
concrete surface. *is image set includes two categories of
shallow spalling and deep spalling.*e first category consists
of spalling objects in which the depth of spalling is smaller
than the concrete cover layer. *e second category includes
spalling objects in which reinforcing bars have been exposed
to the outside environment.

*e total number of collected image samples is 300; the
number of data in each category is 150 to ensure a balanced
classification problem. *e collected image samples are il-
lustrated in Figure 5. It is noted that the image samples have
been captured by the 18-megapixel resolution Canon EOS
M10 and the 16.2-megapixel resolution Nikon D5100. *e
labels of the image data have been assigned by human
inspectors.

3. The Computer Vision-Based Jellyfish Search
Optimized Support Vector Classification
(JSO-SVC) for Concrete Spalling
Severity Classification

*is section of the article aims at describing the overall
structure of the proposed computer vision-based approach
used for automatic classification of concrete spalling se-
verity. *e overall structure of the newly developed ap-
proach consists of three modules: (i) image texture
computation, (ii) JS-based model optimization, and (iii)
SVC-based spalling severity categorization based on input
image samples. Figure 6 demonstrates integrated modules of
the proposed model named as JSO-SVC. *e proposed
method for automatic classification of concrete spalling
severity is an incorporation of image texture descriptions,
supervised machine learning-based pattern recognition, and
stochastic search-based model optimization.

*e image texture description methods of statistical
measurements of pixel intensity, GLRL, and CS-LBP are
used to extract texture-based features from the collected
digital images. *e SVC pattern recognizer assisted by the JS
stochastic search is employed to establish a class boundary
that divided the input feature space into two categories of
“shallow spall” and “deep spall.” *e role of the JS stochastic
search is to optimize the parameter setting of the SVC
model. It is noted that the texture computation module has
been developed by the authors in Microsoft Visual Studio
with Visual C# .NET. Furthermore, the SVC model opti-
mized by the JS algorithm is coded in MATLAB environ-
ment with the help of the Statistics and Machine Learning
Toolbox [75] and the source code of JS which can be accessed
at [76]. *e optimized computer vision-based model which
relies on the module of texture computation and the JS-SVC
model has been coded and compiled in Visual C# .NET
Framework 4.7.2 and the built-in functions provided by the
Accord.NET Framework [77].

To characterize the properties of concrete surface, this
study relies on texture description methods of statistical
measurements of pixel intensity, GLRL, and CS-LBP. *e
first texture descriptor measures statistical indices of the

three color channels (red, green, and blue). For each
channel, six indices of mean, standard deviation, skewness,
kurtosis, entropy, and range are computed. *erefore, the
first descriptor produces 3× 6 �18 features. Moreover,
since one objective of the study is to detect the appearance
of reinforcing bars within an image sample, the occurrence
of runs of pixels in a given direction can be useful.*us, it is
beneficial to employ the GLRL approach in the feature
extraction phase. Four GLRL matrices with orientations of
0°, 45°, 90°, and 135° are computed, each of which yields 11
statistical measurements. Accordingly, the GLRL descrip-
tor produces 4×11 � 44 features. Finally, the CS-LBP
texture description method is computed to characterize the
local pattern of image regions. It is noted that to compute
the CS-LBP, the number of neighboring pixels around a
central pixel is 8. In other words, the radius of this texture
descriptor is 1 pixel. As mentioned earlier, the CS-LBP
yields 16 texture-based features. Accordingly, the total
number of texture-based features used for spall severity
classification is 18 + 44 + 16� 78. *e texture computation
processes for the two class labels of interest area are
demonstrated in Figure 7.

To train and validate the proposed JSO-SVC model, the
collected dataset has been randomly partitioned into a
training set (90%) and a testing set (10%). *e training set is
used for model construction phase; the testing set is reserved
for inspecting themodel predictive capability when predicting
unseen data sample. In addition, prior to the model training
phase, the Z-score normalization is commonly employed
preprocess the extracted features [78]. Accordingly, all of the
extracted features are approximately centered at 0 and have a
unit standard deviation. *e Z-score equation is given by

XZ �
XD − MX

STDX

, (14)

where XZ and XD denote the normalized and the original
input data, respectively, and MX and STDX represent the
mean value and the standard deviation of the original input
data, respectively.

In addition, the jellyfish stochastic search with 20 jel-
lyfish is used to assist the SVC training phase. It is noted that
the number of optimization iterations of the JSmetaheuristic
is 100. *e JS algorithm’s parameters including the scaling
factor (β), the motion coefficient (c), and the parameterC0 of
the time control function are set to be 3, 0.1, and 0.5
according to the suggestions of Chou and Truong [72].

*is stochastic search engine optimizes the model se-
lection of the SVCmodel used for spall severity classification
via an appropriate setting of the model hyperparameters.
*rough operations based on ocean current following and
motions within a swarm, a population of jellyfish gradually
explores and exploits an artificial ocean and identifies a good
set of the penalty coefficient and the RBFK parameter.
Herein, the lower and upper boundaries of the searched
variables are [0.1, 0.01] and [1000, 1000], respectively.
Furthermore, to effectively optimize the machine learning
model, a 5-fold cross-validation-based objective function
has been employed. *is objective function of the JSO-SVC
is given by [19]
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FJSO−SVC �
􏽐

5
k�1 FNRk + FPRk( 􏼁

5
, (15)

where FNRk and FPRk denote false negative rate (FNR) and
false positive rate (FPR) computed in the kth data fold,
respectively.

*e FNR and FPR metrics are given by

FNR �
FN

FN + TP
,

FPR �
FP

FP + TN
,

(16)

where FN, FP, TP, and TN refer to the false negative, false
positive, true positive, and true negative data samples,
respectively.

4. Experimental Results and Discussion

As mentioned earlier, the JS-SVCmodel has been coded and
complied in Visual C# .NET Framework 4.7.2. Moreover,
experiments with the compiled computer program have
been performed on the ASUS FX705GE-EW165T (Core i7
8750H and 8GB Ram) platform.*e JSmetaheuristic is used
to fine-tune the SVC-based spall severity classification ap-
proach. After 100 iterations, the JS metaheuristic has located
the best values of the search variables as follows: the penalty
coefficient� 867.6788 and the RBKF parameter� 58.6156.
*e best-found cost function value is 1.0696. *e optimi-
zation process of the jellyfish swarm is demonstrated in
Figure 8.

As described in the previous section, the collected dataset
which includes 300 data samples has been randomly sepa-
rated into a training set (90%) and a testing set (10%).
Moreover, to reliably evaluate the predictive performance of
the proposed JSO-SVC, this study has repeated the model
training and testing processes with 20 independent runs.*e
statistical measurements obtained from these 20 indepen-
dent runs are employed to quantify the model predictive
capability in the task of concrete spalling severity recogni-
tion. *is repeated model evaluation aims at reducing the

variation caused by the randomness in the data separation
process.

In addition, to demonstrate the JSO-SVC predictive
performance, the random forest classification (RFC) model
[79] and convolutional neural network (CNN) models [80]
have been employed as benchmark approaches. *e RFC
and CNN are selected for result comparison in this study
because these two machine learning approaches have been
successfully applied in various works related to computer
vision-based or nondestructive testing-based structural
health monitoring/diagnosis [14, 26, 81–88].

*e RFC has been constructed with the MATLAB’s
Statistics and Machine Learning Toolbox [75]. Adaptive
moment estimation (Adam) [89] and root mean square
propagation (RMSprop) [90] are the two state-of-the-art
approaches for training the deep neural network. *e CNN
models trained by Adam and RMSprop are denoted as
CNN-Adam and CNN-RMSprop, respectively. *ese two
models are constructed with the help of the MATLAB deep
learning toolbox [91]. *e model structures of the bench-
mark methods have been identified via several trial-and-
error experiments with the collected dataset. *e number of
classification trees used in the random forest ensemble is 50.
In addition, the two CNN models have been trained with
3000 epochs and the batch size of 8. *e employed CNN
models have been trained with the learning rate parame-
ter� 0.001; moreover, L2 regularization with the regulari-
zation coefficient of 0.0001 has been employed to mitigate
model overfitting [91]. To implement the deep neural
computing models, the size of the input images has been
standardized to be 32× 32 pixels. *e model structure of the
employed CNN models is shown in Table 1.

In addition, to appraise the prediction capability of the
proposed JSO-SVC and the employed benchmark ap-
proaches, a set of performance measurement metrics is
employed in this section. Since the problem of spall severity
has been modeled as a two-class classification problem, the
indices of classification accuracy rate (CAR), precision,
recall, negative predictive value (NPV), F1 score, and area
under the receiver operating characteristic curve (AUC)
[92, 93] are employed to quantify the classification model

(a)

(b)

Figure 5: Demonstration of the collected image samples: (a) class label −1 (shallow spall) and (b) class label +1 (deep spall).
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Figure 6: *e proposed computer vision method for automatic concrete spall severity classification.
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performance. For the plotting of the receiver operating
characteristic curve and computation of the AUC, readers
are guided to the previous work of van Erkel and Pattynama
[94]. *e detailed calculations of CAR, precision, recall,
NPV, and F1 score are given by [92, 95]

CAR �
NC

NA

100%,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

NPV �
TN

TN + FN
,

F1 score �
2TP

2TP + FP + FN
,

(17)

where NC and NA denote the numbers of correctly predicted
data and the total number of data, respectively. As men-
tioned earlier, FN, FP, TP, and TN represent the false
negative, false positive, true positive, and true negative data
samples, respectively.

*e prediction performances of the proposed JSO-SVC
and other benchmark methods are shown in Table 2 which
reports the mean and standard deviation (Std) of the
employed performance measurement metrics. Observable
from this table, the proposed hybridization of JS and SVC
has attained the most accurate classification of concrete
spalling severity with CAR� 93.333%, precision� 0.932,
recall� 0.936, NPV� 0.963, and F1 score� 0.933. *e model
construction phase of the JSO-SVC requires a computational
time of 1067.4 s. *e computational time of the proposed
approach is roughly 3.3 s.

*e RFC is the second best method with CAR� 87.500%,
precision� 0.871, recall� 0.890, NPV� 0.892, and F1 score-
� 0.877, followed by CNN-Adam (CAR� 81.500%, pre-
cision� 0.877, recall� 0.750, NPV� 0.788, and F1
score� 0.799) and CNN-RMSprop (CAR� 79.167%, pre-
cision� 0.809, recall� 0.777, NPV� 0.794, and F1 score-
� 0.785). With CAR>90% and F1 score> 0.9, it can be seen
that the predictive result of the JSO-SVC is highly accurate.*e
performance of the decision tree ensemble of RFC with
CAR� 87.5% and F1 score� 0.877 is fairly accurate and ac-
ceptable. Meanwhile, with CAR values of around 80% and F1
score approaching 0.8, the performance of the CNN models is
clearly inferior to the machine learning approaches of JSO-SVC
and RFC. *e boxplots demonstrating the statistical distribu-
tions of the models’ performance in terms of CAR and F1 score

obtained from 20 independent runs are provided in Figures 9
and 10.

Besides the aforementioned metrics, ROC curves and
AUC are also important indicators of classification per-
formance. A ROC curve is a graph depicting the perfor-
mance of a model when classification threshold varies. *e
horizontal axis of the graph is the false positive rate and the
vertical axis of the graph is the true positive rate. *e ROC
curves of the proposed JSO-SVC and other benchmark
models are provided in Figures 11–14. From those curves,
the AUC values can be computed. AUC measures the two-
dimensional area beneath the ROC curves. *is indicator
depicts an aggregate evaluation of the model performance
with all possible values of the classification threshold. AUC
varies between 0 and 1 with 0 indicating a useless classifier
and 1 demonstrating a perfect classifier. Observed from the
experimental outcomes, the JSO-SVC has also attained the
highest AUC of 0.969, followed by RFC (AUC� 0.944),
CNN-Adam (AUC� 0.896), and CNN-RMSprop
(AUC� 0.855). *e boxplot of the AUC results is illustrated
in Figure 15.

In addition, to reliably assert the superiority of the newly
developed JSO-SVC model used for concrete spalling se-
verity classification, this study has employed the Wilcoxon
signed-rank test [96] with the significant level (p value)�

0.05. *e Wilcoxon signed-rank test is a widely employed
nonparametric statistical hypothesis test used for model
performance comparison [97]. One significant advantage of
this statistical hypothesis test is that it does not require the
assumption of normally distributed data [65]. *erefore, the
Wilcoxon signed-rank test offers robust statistical power and
is likely to yield statistical significant outcome.

*e important performance measurement metrics of
CAR, F1 score, and AUC are subject to this nonparametric
hypothesis test. Herein, the null hypothesis is that the means
of the prediction performances of two models are actually
equal. *eWilcoxon signed-rank test outcomes are reported
in Tables 3–5. Observably, with p values <0.05, the null
hypothesis can be rejected and the superiority of the pro-
posed hybrid method can be firmly stated.

*e experimental results have shown the superiority of
the JSO-SVC over deep neural computing approaches of
CNN models. It can be seen that although the CNN models
have been demonstrated to be powerful methods in various
computer vision tasks, their performance largely depends on
the size of the training samples [48]. *e main advantages of
CNN lie in its capability of automatic feature representation
via convolutional operators and its hierarchical architecture
for learning high-level features from raw data. However,
both of these advantages can only be realized with a suffi-
ciently large number of image samples with correct ground
truth labeling. As stated in [98], when the number of training
samples is insufficient, the performance of deep learning
models can be inferior to those of hand-crafted features-
based prediction approaches.

For the case in which there are a limited number of data
samples, the CNN models have difficulties in properly fine-
tuning their internal structures with a huge number of
parameters needed to be specified in various hidden layers

Table 1: *e structures of the employed CNN model.

CNN layers
Convolutional layers Pooling layers

Number of filters Filter size Filter size
1 32 8 4
2 32 4 4
3 16 2 2
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Figure 10: Boxplot of F1 score values obtained from the employed machine learning models.

Table 2: Experimental result comparison.

Phase Metrics
JSO-SVC RFC CNN-Adam CNN-RMSprop

Mean Std Mean Std Mean Std Mean Std

Training

CAR (%) 95.926 0.574 98.500 0.441 90.278 3.341 89.056 5.207
Precision 0.950 0.008 0.978 0.005 0.932 0.052 0.915 0.062
Recall 0.969 0.007 0.993 0.006 0.875 0.079 0.870 0.113
NPV 0.969 0.007 0.993 0.006 0.887 0.060 0.886 0.076

F1 score 0.960 0.006 0.985 0.004 0.899 0.039 0.885 0.068
AUC 0.983 0.002 0.998 0.001 0.966 0.025 0.952 0.039

Testing

CAR (%) 93.333 3.801 87.500 4.941 81.500 5.669 79.167 8.298
Precision 0.932 0.048 0.871 0.070 0.877 0.090 0.809 0.104
Recall 0.936 0.062 0.890 0.069 0.750 0.118 0.777 0.136
NPV 0.935 0.057 0.892 0.062 0.788 0.076 0.794 0.098

F1 score 0.933 0.042 0.877 0.047 0.799 0.067 0.785 0.096
AUC 0.969 0.020 0.944 0.046 0.896 0.060 0.855 0.080
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Figure 9: Boxplot of CAR values obtained from the employed machine learning models.
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[58, 99]. *erefore, with a dataset of 300 image samples, the
hybrid machine learning method of JSO-SVC with texture-
based feature extraction is capable of outperforming the
CNNmethods. *e model optimization process via gradient
descent algorithms employed by CNN encounters certain
difficulty in identifying the fittest set of network parameters
because the number of trained parameters greatly out-
numbers the data size. *is fact is partly reflected in the
stability of the predictive outcomes of the deep learning
models.

To quantify the stability of the model prediction, this
study has employed the coefficient of variation (COV) [100].
*is index is defined as the ratio of the standard deviation to
the mean. Generally speaking, a small COV value indicates a

small variation of prediction result and is associated with a
reliable model. *e COV indices of the proposed model,
RFC, and the two CNN models are reported in Figure 16.
Considering the metrics of CAR, F1 score, and AUC, the
COV of JSO-SVC (with COVCAR � 4.07%, COVF1-

score � 4.54%, and COVAUC � 2.04%) is significantly lower
than that of the CNN-Adam (COVCAR � 6.96%, COVF1-

score � 8.35%, and COVAUC � 6.65%) and CNN-RMSprop
(COVCAR � 10.48%, COVF1-score � 12.28%, and
COVAUC � 9.36%).

On the other hand, the proposed approach based on the
SVC is the pattern recognizer that lends itself to learning
with small or medium-size datasets because the SVC focuses
on sparseness property when building a classification model
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Figure 11: ROCs of JSO-SVC: (a) training phase and (b) testing phase.
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Figure 12: ROCs of RFC: (a) training phase and (b) testing phase.
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from data. Put differently, the final SVC model only resorts
to a small subset of the dataset to construct the classification
boundary.*e data points contained in such small subset are
called support vectors, and they are highly relevant and
informative for carrying out the task of concrete spall se-
verity classification. *is is a significant advantage of the
JSO-SVC because a sparse concrete spall severity classifi-
cationmodel is less likely to suffer from data overfitting.*is
point is clearly demonstrated via the learning performance
(CAR� 95.926%) and testing performance (93.333%) of the
JSO-SVC. *e accuracy rates of the proposed approaches in
the training and testing phases are relatively close to each
other.

*e classification model based on the integration of JSO
and SVC also features a high degree of learning stability due
to its sparseness property because the sparse model is ca-
pable of mitigating the effect of noisy samples within the
collected dataset. Moreover, the SVC model construction
boils down to solving a quadratic programming problem
which can guarantee a learning convergence to a global
optimal solution. *is feature of the JSO-SVC also facilitates
the reliability and stability of the spall severity recognition
performance. *e aforementioned analysis on COV has
revealed these facts.*e COV of JSO-SVC, which is less than
5%, is comparatively lower than that of other benchmark
models.
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Figure 13: ROCs of CNN-Adam: (a) training phase and (b) testing phase.
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Figure 14: ROCs of CNN-RMSprop: (a) training phase and (b) testing phase.
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However, one disadvantage of the proposed spall se-
verity recognition model is that the optimization process
required determining an optimal set of parameters of the
SVC can be costly. *e reason is that the SVC-based model
training and prediction phases operate inside the cost

function computing phase of the utilized JSO. Another
limitation of the JSO-SVC-based spall severity classifier is
that it has not been equipped with advanced feature se-
lection. Such drawbacks ought to be addressed in future
extensions of the current work.
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Figure 15: Boxplot of AUC values obtained from the employed machine learning models.

Table 3: p values obtained from the Wilcoxon signed-rank test results with CAR index.

Models JSO-SVC RFC CNN-Adam CNN-RMSprop
JSO-SVC x 0.0022 0.0001 0.0002
RFC 0.0022 x 0.0043 0.0023
CNN-Adam 0.0001 0.0043 x 0.1744
CNN-RMSprop 0.0002 0.0023 0.1744 x

Table 4: p values obtained from Wilcoxon signed-rank test results with F1 score index.

Models JSO-SVC RFC CNN-Adam CNN-RMSprop
JSO-SVC x 0.0028 0.0001 0.0003
RFC 0.0028 x 0.0025 0.0012
CNN-Adam 0.0001 0.0025 x 0.6274
CNN-RMSprop 0.0003 0.0012 0.6274 x

Table 5: p values obtained from Wilcoxon signed-rank test results with AUC index.

Models JSO-SVC RFC CNN-Adam CNN-RMSprop
JSO-SVC x 0.0859 0.0002 0.0001
RFC 0.0859 x 0.0137 0.0007
CNN-Adam 0.0002 0.0137 x 0.0793
CNN-RMSprop 0.0001 0.0007 0.0793 x
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5. Concluding Remarks

*is study has proposed and verified a computer vision-
based approach for automatic classification of concrete
spalling severity. *e proposed approach is an integration of
image texture analysis methods, metaheuristic optimization,
and machine learning-based pattern recognition. *e tex-
ture descriptors of statistical measurement of color channels,
GLRL, and CS-LBP are used to characterize images of
concrete surface with respect to color, gray pixel run length,
and local structure. With such extracted features, the SVC
machine learning optimized by JS metaheuristic is employed
to construct a decision boundary that separates the input
data into two classes of deep spalling and shallow spalling.

A dataset including 300 image samples has been col-
lected to train the proposed computer vision method. Ex-
perimental results point out that the integrated model can
help to attain the most desired spall severity classification
with CAR� 93.333%, precision� 0.932, recall� 0.936,
NPV� 0.963, F1 score� 0.933, and AUC� 0.969. *ese re-
sults are significantly better than those of the benchmark
methods including RFC and CNN models. *erefore, the
newly developed JSO-SVC can be a potential tool to assist
building maintenance agencies in the task of periodic
structural heath survey. Further improvements of the cur-
rent approach may include the following:

(i) *e utilization of the hybrid model to detect other
concrete surface defects such as crack, bughole, algal
colonization, and so on.

(ii) *e employment of other sophisticated texture
descriptors for representing characteristics of con-
crete surface and better dealing with noise in the
surface background.

(iii) Increasing the size of the current dataset to me-
liorate the applicability of the current method.

(iv) Investigating the possibility of combing hand-
crafted texture-based features with deep learning
models used for concrete spalling severity
classification.

(v) Employing advanced techniques of metaheuristic-
based model optimization and feature selection to
enhance the performance of the spall severity rec-
ognition task.

Data Availability

*e dataset used to support the findings of this study has
been deposited in the repository of GitHub at https://github.
com/NDHoangDTU/ConcreteSpallSeverity_JSO_SVC. *e
first 78 columns of the data are texture-based features
extracted from image samples.*e last column is the label of
the data instances with 0� “shallow spalling” and 1� “deep
spalling.”
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“Local binary features for texture classification: t,” vol. 62,
pp. 135–160, 2017.

[51] N.-D. Hoang, “Image processing-based pitting corrosion
detection using metaheuristic optimized multilevel image
thresholding and machine-learning approaches,” Mathe-
matical Problems in Engineering, vol. 2020, Article ID
6765274, 19 pages, 2020a.

[52] N. Tadi Bani and S. Fekri-Ershad, “Content-based image
retrieval based on combination of texture and colour in-
formation extracted in spatial and frequency domains,” 'e
Electronic Library, vol. 37, no. 4, pp. 650–666, 2019.

[53] S. Dash and M. R. Senapati, “Gray level run length matrix
based on various illumination normalization techniques for
texture classification,” Evolutionary Intelligence, vol. 14,
no. 2, pp. 217–226, 2018.

[54] A. Chu, C. M. Sehgal, and J. F. Greenleaf, “Use of gray value
distribution of run lengths for texture analysis,” Pattern
Recognition Letters, vol. 11, no. 6, pp. 415–419, 1990.

[55] B. V. Dasarathy and E. B. Holder, “Image characterizations
based on joint gray level-run length distributions,” Pattern
Recognition Letters, vol. 12, no. 8, pp. 497–502, 1991.
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Orthogonal experiments were performed to study the flexural strength of an eco-friendly concrete containing fly ash (FA) and
ground granulated blast-furnace slag (GGBFS). .e effects of different test parameters, such as water-binder ratio (W/B), FA
content, GGBFS content, sand ratio, gravel gradation, and curing time, on the flexural strength of the concrete were analyzed..e
significance level of each influencing factor and the optimal mixing proportion of the concrete were determined by range analysis
and hierarchy analysis. It was found that the W/B ratio had the greatest influence on the flexural strength of the concrete. .e
flexural strength of the concrete decreased gradually with the increase ofW/B..eGGBFS content and the sand ratio had a greater
influence in the early stage of concrete curing. .e middle and later stages of concrete curing were mainly affected by gravel
gradation and the FA content. A flexural strength prediction model of the concrete was developed based on a backpropagation
neural network (BPNN) and a support vector machine (SVM) model. It was noticed that the BPNN and SVM models both had
higher accuracy than the empirical equation, and the BPNN model was more accurate than the SVM model.

1. Introduction

Concrete is one of the most widely used building materials
due to its good quality and low price [1]. Concrete structures
are mainly subjected to bending rather than axial tension.
However, the flexural properties of concrete are poor, and
cracks easily appear under tensile stress conditions.
.erefore, it is of great significance to improve the flexural
strength of concrete [2]. Supplementary cementitious ma-
terials, such as fly ash, ground granulated blast-furnace slag,
and silica powder, are generally used to improve the per-
formance of concrete, reduce the waste stock, and lower the
construction cost [3].

Fly ash (FA) is a waste discharged after pulverized coal
combustion. It has a high storage cost and can cause en-
vironmental pollution [4, 5]. Nili M et al. [6] studied the
influences of FA on concretes of different ages and noticed
that FA greatly enhanced the concrete strength in the later
stage of curing. Golewski [7] studied the compressive

strength and fracture toughness of concrete with FA con-
tents of 20% and 30%. It was reported that the compressive
strength and fracture toughness of concrete were signifi-
cantly improved when the FA replacement ratio was 20%.
When the FA replacement ratio was 30%, the improvement
of material properties did not appear until six months after
curing. Golewski [8] found that the optimal FA content to
improve the fracture toughness of concrete was 17% (by
weight). .e fracture toughness of concrete began to de-
crease when the FA content exceeded 23% of the total ce-
mentitious material. Atis [9] reported that the flexural
strength of 70% FA-replaced concrete after 7, 28, 90, and 365
days was reduced by 46.83%, 24.71%, 26.2%, and 35.16%,
respectively, as compared to that of 50% FA-replaced
concrete.

Ground granulated blast-furnace slag (GGBFS) is a by-
product of iron smelting [10]. Extensive research has been
performed on GGBFS-substituted concrete. Hogan et al. [11]
conducted a comparative study on ordinary concrete and
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GGBFS-substituted concrete with 40% and 60% replacement
ratios. .e compressive strength of the GGBFS-substituted
concrete was found to be lower than that of the ordinary
concrete in the first three days. However, the compressive
strength of the GGBFS-substituted concrete increased at
a higher rate than that of the normal concrete after three
days, especially when the GGBFS replacement ratio was 40%.
.e GGBFS-substituted concrete had the same or higher
flexural strength than the ordinary concrete after seven days.
Sivasundaram et al. [12] studied the variation of the flexural
strength of GGBFS-substituted concrete with 50%–75%
replacement ratios. .e flexural strength of the GGBFS-
substituted concrete after 14 days was higher than that of
common concretes. However, some studies have reported
opposite results. For example, Khatib et al. [13] studied the
effects of different GGBFS replacement ratios (0%, 40%,
60%, and 80%) on the flexural strength of concrete. It was
found that the concrete flexural strength with a GGBFS
replacement ratio of 60% was significantly higher than that
of the control group and decreased slightly when the re-
placement ratio was 40%. A significant decrease in flexural
strength was noticed when the replacement ratio was 80%.
Bharatkumar et al. [14] reported a reduction in the flexural
strength of GGBFS-substituted concrete. When the total
amount of cementitious material was 472 kg/m3 and the
water-cement ratio was 0.36, the addition of 50% of GGBFS
decreased the 56-day bending strength by 7.2%. When the
total amount of cementitiousmaterial was 430 kg/m3 and the
water-cement ratio was 0.4, this drop reached 11.29%.
Nazari and Riahi [15–18] found that the 7-day flexural
strength of concrete was reduced by 24.32% and 32.43%,
respectively, when cement was partially replaced with 45%
and 60% of GGBFS. On the contrary, the addition of GGBFS
increased the 28-day and 90-day flexural strengths of the
concrete.

Machine learning methods are also widely used in the
field of concrete strength prediction. Zheng et al. [19] de-
veloped a stable concrete compressive strength development
over time (CCSDOT) model by combining conventional
methods with artificial intelligence. Chithra et al. [20] used
multiple regression analysis and an artificial neural network
to predict the compressive strength of concrete containing
silica and copper slag and reported that the artificial neural
network model had higher accuracy and relevance. Chou
et al. [21] predicted the compressive strength of a high-
performance concrete by a support vector machine (SVM)
model based on mean absolute percentage error (MAPE).
Omran et al. [22] predicted the compressive strength of
concrete containing lightweight aggregates and Portland
limestone cement by seven different models—three ad-
vanced predictive models, four regression tree models, and
two ensemble methods. .e SVM model was based on se-
quential minimum optimization, and test results revealed
that all models acquired acceptable prediction performance,
except for decision stump. .i Mai et al. [23] developed
a random forest model to predict the compressive strength
of concrete based on artificial neural network (ANN) and
adaptive-network-based fuzzy inference system models
(ANFIS) and noticed that these two machine learning

methods had high accuracy. Palika Chopra et al. [24] used
a decision tree (DT) model, a random forest (RF) model, and
a neural network to predict the compressive strength of
concrete, and the neural network model was found to have
higher prediction accuracy.

With the growing environmental pollution problems
and the urgent demand for green construction, environ-
ment-friendly concretes need to be developed. In the present
work, orthogonal experiments were performed to study the
flexural strength of an eco-friendly concrete containing FA
and GGBFS. .e effects of different test parameters, such as
water-binder ratio (W/B), FA content, GGBFS content, sand
ratio, gravel gradation, and curing time, on the flexural
strength of the concrete were analyzed..e significance level
of each influencing factor was determined by range analysis
and hierarchy analysis. Moreover, a flexural strength pre-
diction model of the concrete was developed based on
a backpropagation neural network (BPNN) model and an
SVM model, and the prediction accuracies of these two
machine learning models and an empirical equation were
compared.

2. Materials and Methods

2.1. Materials. Water, cement, river sand, gravel, FA,
GGBFS, and a water reducer were used as raw materials.
Portland cement 42.5 R was used in this research, and its
initial and final setting times were 145 and 211min, re-
spectively. According to the Chinese Building Code GB/T
14684-2011 “Natural River Sand for Construction,” natural
river sand with a fineness modulus of 2.8 was used as the fine
aggregate. According to the Chinese standard GB/T 14685-
2011 “Gravel and Crushed stone for Construction,” two
types of gravels with different grades were used (maximum
particle sizes were 20mm (G1) and 40mm (G2)). First-grade
FA was selected according to the Chinese standard GB/
T1596-2005 “Fly Ash Used in Cement and Concrete.”
GGBFS with a density of 2.88 g/cm3 and a specific surface
area of 463m2/kg was used..e gradation curves of different
mixtures are shown in Figure 1. .e chemical compositions
of FA and GGBFS are presented in Table 1, and their
properties are listed in Table 2.

2.2. Mixing Proportions. .e W/B ratio, the contents of FA
and GGBFS, the sand ratio (mass ratio of sand to the total
mass of aggregates (mass sum of sand and coarse aggregate)
[25]), and gravel gradation were considered as the main
influencing factors, and each factor had four levels.
.erefore, 16 different mixing proportions were determined
based on the orthogonal design method. .e levels were
determined by literatures [7, 8, 26–28]: W/B ratio� 0.35,
0.375, 0.40, 0.425, sand ratio� 33%, 35%, 37%, 39%, FA and
GGBFS contents� 5%, 10%, 15%, 20%, gravel gradation with
small stones (5–20mm) and medium stones (20–40mm)�

30%:70%, 40%:60%, 50%:50%, 60%:40% (Table 3).

2.3. Test Procedure. Specimens with different mixing pro-
portions were cured for 1 day, 3 days, 7 days, 14 days, 28
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Table 3: Mix proportions.

Specimen number
Mix proportions (kg/m3)

Water Binder FA GGBFS Sand Small gravel Middle gravel
S1 135 386 19.3 19.3 620 378 881
S2 135 386 38.6 38.6 658 488 733
S3 135 386 57.9 57.9 695 592 592
S4 135 386 77.2 77.2 733 688 458
S5 135 360 18 36 629 766 510
S6 135 360 36 18 667 619 619
S7 135 360 48 72 705 480 720
S8 135 360 72 48 743 349 813
S9 135 338 16.9 50.7 636 516 775
S10 135 338 33.8 16.9 674 376 877
S11 135 338 50.7 67.6 713 728 486
S12 135 338 67.6 33.8 752 588 588
S13 135 318 15.9 63.6 643 652 652
S14 135 318 31.8 44.7 681 760 506
S15 135 318 44.7 31.8 720 368 859
S16 135 318 63.6 15.9 759 475 713

Table 1: Chemical compositions of FA and GGBFS.

Constituent (%) SiO2 Al2O3 CaO MgO SO3 Fe2O3 Na2O K2O H2O
FA 58 30 2.8 1.5 1.22 4.3 0.00 1.36 0.5
GGBFS 33.84 13.27 40.8 6.08 0.29 0.28 0.2 0.36 0.3

Table 2: Main properties of FA and GGBFS.

Properties Fineness Water demand ratio (%) Loss on ignition (%) Density(g/cm3) Fluidity ratio (%)
FA 9.22 91 5.0 2.252 —
GGBFS — — 1.236 0.88 95
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Figure 1: Gradation curves of different mixtures.
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days, and 45 days under standard conditions. .ree speci-
mens were formed in each age, and the size of the specimens
was 150mm× 150mm× 550mm. .e side of each specimen
was placed on a support, and the placement position was
checked to ensure that the stress position of the specimenmet
the specified requirements. .e loading speed was varied
between 0.05 and 0.08MPa/s. When a specimen was at the
edge of failure, the throttle of the testing machine was kept
stable until the test ended, and the failure load was recorded.
During the processing of test results, 115% and 85% of the
mean values of three measured values were taken as the upper
and lower limits, respectively.When only one of themeasured
values did not meet the specified requirements, the average
value of the other two measured values was taken as the final
result. When more than one of the measured values did not
meet the specified requirements, the test was reperformed
[29]..e test device is shown in Figure 2..e flexural strength
of the concrete was calculated as

ft �
Fl
bh2

, (1)

where ft is the flexural strength of the concrete, F is the
maximum load at the time of concrete failure, l is the
distance of the support (span; l � 3h), b is the width of the
specimen section, and h is the height of the specimen
section.

3. Results and Discussion

3.1. Test Results. .e flexural strengths of the concrete
specimens of different ages are shown in Figure 3 and
Table.4.

It can be seen from Figure 3 that the flexural strengths of
the concrete specimens with different mixing proportions
increased with the extension of the curing time. .e flexural
strength of the specimens varied significantly between 1 and
3 d and slightly between 28 and 45 d, indicating that the
increment of flexural strength gradually became smaller with
the extension of the curing time [30].

3.1.1. Influence of W/B Ratio on Concrete Flexural Strength.
It is clear from Figure 4 that the flexural strength of the
concrete decreased gradually with the increase of the W/B
ratio. .e increase of the W/B ratio was equivalent to the
reduction of cementitious materials in the concrete. .e
shortage of cementitious materials led to an upward mi-
gration of the remaining water after the hydration reaction,
forming a water film on coarse aggregates and reducing the
bond strength between coarse aggregates and the cement
mortar. Moreover, the loss of water formed a small water
passage inside the concrete, leading to the formation of
microcracks. Consequently, the compactness and interfacial
bond strength of the structure were reduced, causing a de-
cline in the flexural strength of the concrete [31].

3.1.2. Influence of FA Content on Concrete Flexural Strength.
It is observable from Figure 5 that the flexural strength of the
concrete first increased and then decreased with the increase

of the FA content. When the FA content was 15%, the
flexural strength of the concrete reached a maximum, except
for the specimen with 1-d curing age. .is was because FA
mainly participated in the hardening process of cementitious
materials through the formation of microaggregates and
particles [32]. .e increase of the FA content reduced the
proportion of cement and decreased the hydration rate of
cement, causing a reduction in the flexural strength of the
concrete.

3.1.3. Influence of GGBFS Content on Concrete Flexural
Strength. After the addition of GGBFS into the concrete,
gaps between cement particles were filled, the compactness
was improved, and the flexural resistance was strengthened.
GGBFS improved the early flexural strength of cement after
the hydration reaction. GGBFS also reduced the calcium ion
concentration between cement and coarse aggregates and
increased the cementing performance between them. .us,
the flexural strength of the concrete was improved after the
addition of GGBFS [6]. However, after a certain amount,
GGBFS indirectly affected the hydration reaction of cement
and reduced the flexural resistance (Figure 6).

3.1.4. Influence of Sand Ratio on Concrete Flexural Strength.
It is observable from Figure 7 that the flexural strength of the
concrete gradually increased with the increase of the sand
ratio. With the increase of the sand ratio, micropores in the
concrete were gradually filled with sand, and the com-
pactness was also gradually improved; thus, the stiffness of
the concrete was enhanced. However, the difference between
the flexural strengths of the concrete specimens with the
sand proportions of 37% and 39% was not very big. Taking
the flexural strength of the 28 d specimen as an example, the
flexural strengths for the sand proportions of 37% and 39%
were 6.26 and 6.35MPa (only 1.44% increment), re-
spectively. It indicates that the compactness of the concrete
did not increase significantly when the sand ratio increased
from 37% to 39%.

3.1.5. Influence of Gravel Gradation on Concrete Flexural
Strength. It is observable from Figure 8 that when gravel
gradation increased from 3 : 7 to 4 : 6, the flexural strength of
the concrete increased, and when it exceeded 4 : 6, the flexure
strength gradually decreased. A proper gravel gradation
could completely wrap the cement mortar on the surface of
large and small gravels, enhance the adhesiveness between
cement particles, make the internal distribution of each
component of the concrete uniform, and improve the
compactness by reducing the gap between cement particles.
When there were insufficient small gravels and too many
large gravels in coarse aggregates, the bonding strength
between coarse aggregates and cement particles was affected,
resulting in a reduction in the flexural strength [33].
However, when there were too many small gravels, coarse
aggregates were affected; thus, the flexural strength of the
concrete began to decrease.
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Table 4: Flexural strength of concrete at various ages.

Specimen number
Flexural strength (MPa)

1 d 3 d 7 d 14 d 28 d 45 d
S1 2.55 (0.01) 4.02 (0.12) 5.01 (0.14) (0.06) 5.72 (0.10) 6.20 (0.06) 6.47 (0.06)
S2 3.05 (0.03) 4.82 (0.14) 5.94 (0.12) 6.49 (0.15) 6.78 (0.09) 6.99 (0.06)
S3 3.07 (0.09) 4.99 (0.15) 5.89 (0.10) 6.50 (0.07) 7.10 (0.20) 7.37 (0.18)
S4 2.91 (0.01) 4.51 (0.08) 5.40 (0.14) 5.95 (0.07) 6.60 (0.06) 6.86 (0.14)
S5 3.19 (0.02) 4.73 (0.10) 5.64 (0.15) 6.19 (0.14) 6.75 (0.12) 7.02 (0.20)
S6 3.07 (0.11) 4.57 (0.06) 5.48 (0.10) 5.98 (0.07) 6.56 (0.10) 6.80 (0.09)
S7 2.90 (0.04) 4.23 (0.05) 5.62 (0.12) 6.02 (0.14) 6.63 (0.15) 6.77 (0.15)
S8 2.79 (0.06) 4.16 (0.07) 5.27(0.14) 5.67 (0 .07) 5.93 (0.09) 6.25 (0.06)
S9 2.94 (0.03) 4.49 (0.06) 5.23 (0.06) 5.87 (0.15) 6.43 (0.14) 6.67 (0.20)
S10 2.63 (0.02) 3.68 (0.09) 4.28 (0.08) 5.03 (0.08) 5.80 (0.08) 6.40 (0.12)
S11 1.42 (0.01) 3.41 (0.06) 4.63(0.14) 5.45 (0.14) 6.01(0.09) 6.26 (0.09)
S12 1.64 (0.02) 3.42 (0.04) 4.53 (0.10) 5.27 (0.10) 5.73 (0.14) 5.99 (0.12)
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3.2. RangeAnalysis. Range analysis was carried out based on
orthogonal test results, and the corresponding observations
are presented in Table 5, where the W/B ratio, the FA
content, the GGBFS content, the sand ratio, and gravel
gradation are termed as A, B, C, D, and E, respectively.

Now, comparing the R values of different influencing
factors after 1 d of aging, it is detectable that
RA＞R D＞RE＝RC＞RB; thus, the order of the five influ-
encing factors is W/B ratio> Sand ratio>Gravel

Table 4: Continued.

Specimen number
Flexural strength (MPa)

1 d 3 d 7 d 14 d 28 d 45 d
S13 1.67 (0.01) 3.37 (0.06) 4.37 (0.09) 4.98 (0.07) 5.67 (0.15) 6.00 (0.14)
S14 1.95 (0.03) 3.73 (0.07) 4.63(0.14) 5.29 (0.06) 5.66 (0.06) 5.99 (0.10)
S15 2.20 (0.05) 3.95 (0.03) 4.87 (0.10) 5.23 (0.07) 5.80 (0.09) 6.07 (0.20)
S16 2.13 (0.04) 3.50 (0.05) 4.32 (0.08) 4.83 (0.10) 5.38 (0.08) 5.73 (0.08)
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gradation>GGBFS content> FA content. Similarly, after 3,
7, 14, 28, and 45 d of aging, the trends wereW/B ratio> Sand
ratio>GGBFS content>Gravel gradation> FA content, W/
B ratio>Gravel gradation>GGBFS content> FA con-
tent> Sand ratio, W/B ratio>Gravel gradation> FA con-
tent>GGBFS content> Sand ratio, W/B ratio>Gravel
gradation> FA content> Sand ratio>GGBFS content, and
W/B ratio> FA content> Sand ratio>GGBFS con-
tent>Gravel gradation, respectively.

Further, by comparing the Ki values, it was found that
K2＞K1＞K3＞K4 in the level of factor A, indicating that
the flexural strength of the concrete reached a maximum
when factor A was on the second level. Similarly, the optimal
levels of factors B, C, D, and E were second, third, fourth, and
second, respectively. .erefore, when the horizontal combi-
nation was A2B2C3D4E2, the flexural strength of the concrete
was the greatest under the consideration of a single action of
the factors; therefore, this horizontal combination was the
optimal preparation process combination to improve the
flexural strength of the concrete after 1 d of aging. Similarly,
the optimal mixing proportions of the concrete after 3, 7, 14,
28, and 45 d of aging were A1B2C3D4E2, A1B3C3D4E2,
A1B3C3D4E2, A1B3C3D4E2, and A1B3C3D4E2, re-
spectively. However, the A1B3C3D4E2 mixing proportion is
recommended for engineering applications.

3.3. Analytic Hierarchy Process. .e analytic hierarchy
process (AHP) turns complex problems into easy-to-un-
derstand hierarchies. Range analysis used for orthogonal tests
cannot obtain the influence level of each factor on test results.
AHP can obtain the influence level of each factor and also the
influence weight of each level [31]. Figure 9 shows the AHP
model used in this experiment. .e model was divided into
three layers—the first layer contained the index of the test, the
second layer consisted of different influencing factors, and the
third layer was composed of the levels of different factors.

It was assumed that the average value of the sum of test
data under the j level of factor N(i) was Kij (Table 5), and it
was called the effect of the j level of factorN(i)on the test
(i � 1(A), 2(B), 3(C), 4(D), 5(E); j � 1, 2, 3, 4). Moreover,
Mij � Kij; thus, three matrices were derived. Matrix a

presents the influence of horizontal layers on the test, matrix
s is the normalization of each column of matrix a, and
matrix c is a weight matrix representing the influences of
different factors on the test.

a �

M11 0 0 0 0

M21 0 0 0 0

M31 0 0 0 0

M41 0 0 0 0

0 M12 0 0 0

0 M22 0 0 0

0 M32 0 0 0

0 M42 0 0 0

0 0 M13 0 0

0 0 M23 0 0

0 0 M33 0 0

0 0 M43 0 0

0 0 0 M14 0

0 0 0 M24 0

0 0 0 M34 0

0 0 0 M44 0

0 0 0 0 M15

0 0 0 0 M25

0 0 0 0 M35

0 0 0 0 M45
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Figure 8: Influence of gravel gradation on concrete flexural strength.
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Table 5: Range analysis of concrete flexural strength.

1 d A B C D E
K1 2.90 2.59 2.29 2.26 2.54
K2 2.99 2.68 2.52 2.23 2.76
K3 2.16 2.40 2.69 2.76 2.36
K4 1.99 2.37 2.53 2.78 2.37
R 1.00 0.31 0.40 0.55 0.40
Better scheme (BS) A2 B2 C3 D4 E2
Factor priority (FP) ADECB/ADCEB
3 d A B C D E
K1 4.59 4.15 3.88 3.85 3.95
K2 4.42 4.20 4.23 3.94 4.26
K3 3.75 4.15 4.34 4.23 4.09
K4 3.64 3.90 3.95 4.38 4.10
R 0.95 0.30 0.47 0.53 0.31
BS A1 B2 C3 D4 E2
FP ADCEB
7 d A B C D E
K1 5.56 5.06 4.86 4.95 4.86
K2 5.50 5.08 5.25 5.05 5.28
K3 4.67 5.25 5.26 5.03 5.08
K4 4.55 4.88 4.92 5.25 5.08
R 1.01 0.37 0.40 0.30 0.42
BS A1 B3 C3 D4 E2
FP AECBD
14 d A B C D E
K1 6.17 5.69 5.50 5.58 5.41
K2 5.97 5.70 5.80 5.65 5.80
K3 5.41 5.80 5.83 5.64 5.68
K4 5.08 5.43 5.50 5.76 5.72
R 1.08 0.37 0.34 0.18 0.39
BS A1 B3 C3 D4 E2
FP AEBCD
28 d A B C D E
K1 6.67 6.26 6.04 6.06 5.93
K2 6.47 6.20 6.27 6.10 6.31
K3 5.99 6.39 6.28 6.26 6.27
K4 5.63 5.91 6.18 6.35 6.26
R 1.04 0.48 0.24 0.29 0.33
BS A1 B3 C3 D4 E2
FP ABEDC
45 d A B C D E
K1 6.92 6.54 6.32 6.31 6.30
K2 6.71 6.55 6.52 6.38 6.54
K3 6.33 6.62 6.57 6.63 6.54
K4 5.95 6.21 6.51 6.60 6.53
R 0.98 0.41 0.26 0.33 0.24
BS A1 B3 C3 D4 E2/E3
FP ABDCE

8 Advances in Civil Engineering



Now, tj � 􏽐
5
i�1 Mij(j � 1, 2, 3, 4); hence, the weight of each

factor level of the test index wasω � ascT..e data presented
in Table 4 were substituted into the matrix. Among the four
levels of the W/B ratio, A1 (35%) had the largest weight.
Among the four levels of FA content, when the age was 1 d,
B2 (10%) had the largest weight. When the ages were 7 and
14 d, B4 (20%) and B3 (15%) had the largest weight, re-
spectively. As the curing time increased, the weight of the
influence of FA on flexural strength gradually increased.
Among the four levels of GGBFS content, when the age was
1 d, C3 (15%) had the largest weight. When the age was 7 d,
C2 (10%) and C4 (20%) had the largest weight. When the age
reached 14 d, the weight of C3 again (15%) became the
largest. Among the four levels of sand ratio, D4 (39%) had
the largest weight, and among the four levels of gravel
gradation, E2 (40%:60%) had the largest weight. .erefore,
the optimal values of W/B ratio, FA content, GGBFS con-
tent, sand ratio, and gravel gradation were 35%, 15%, 15%,
39%, and 40%:60%, respectively.

Range analysis and AHP were used to analyze the in-
fluences of different factors on the flexural strength of the
concrete. It is clear that the effects of each factor on concrete
flexural strength were significantly different at different ages.
Among the five factors, theW/B ratio had the greatest influence
on the flexural strength of the concrete.With the increase of the
W/B ratio, the flexural strength of the concrete gradually
decreased. FAmainly played a role in the later stage of concrete
setting and hardening, and with the increase of the FA content,
the flexural strength of the concrete first increased and then
decreased. GGBFS played a role mainly in the early stage of
concrete curing. With the increase of the GGBFS content,
concrete flexural strength first increased and then decreased.
.e sand ratio also played amore obvious role in the early stage
of concrete curing. .e flexural strength of the concrete also
increased as the sand ratio increased. Gravel gradation mainly
played a role in themiddle stage of concrete curing..eflexural
strength of the concrete first increased and then decreased with
the increase of the amount of small gravels.

It is clear fromFigure 10 that the flexural strength change of
the concrete caused by the W/B ratio was always the largest in
all six ages [34], indicating that the effect of W/B was the
greatest among the five influencing factors. .is was because
cementitious materials included cement, FA, and GGBFS.
.ese three materials constantly changed their form and
characteristics with the extension of the aging period and
“actively” participated during concrete hardening [33]. Cement
in cementitious materials continuously underwent a hydration

reaction and generated compounds to improve the flexural
strength of the concrete. GGBFS played a role in the early stage
of curing and enhanced the early flexural strength of the
concrete. .e positive role of FA was noticed in the later stage
of curing, and it improved the flexural strength.

.e influence of FA content on the flexural strength of
the concrete was not significant during 1–7 d of curing.
However, with the extension of the aging time, FA greatly
influenced the flexural strength, and this phenomenon was
related to the mineral composition of FA. FA mainly con-
sisted of SiO2, Al2O3, Fe2O3, CaO, and other components.
.ese elements had certain activities and reacted with Ca2+
ions after cement hydration to formC-S-H, which coated FA
and formed a porous structure between cement and fly ash.
.erefore, FA could not completely react with the cement
hydration products in the early stage and manifested a low
influencing degree on the flexural strength. However,
a secondary reaction began, because the coated FA was
gradually decomposed and formed more stable compounds,
thus enhancing the flexural strength of the concrete [6, 32].

.e influence level of GGBFS was always higher than
that of FA in the early stage. .is was because Ca2+ ions
produced by the hydration reaction became enriched at
internal interfaces of the concrete. Active SiO2 atoms of
GGBFS reacted with Ca2+ ions and generated stable C-S-H,
thus increasing the flexural strength of the concrete.
However, with the extension of the curing time, the content
of GGBFS decreased continuously; thus, its influence level
began to decline. At this time, FA gradually replaced GGBFS
and reacted with unstable compounds in the concrete,
improving the flexural strength. .erefore, the influence
level of GGBFS was less than that of FA in the later stage.

Fine sand particles filled the gaps between the cemen-
titious materials and coarse aggregates and increased the
flexural strength by improving the internal compactness of
the concrete [35, 36]. In the early stage, the cement hydration
reaction was slow; thus, the cement slurry and coarse ag-
gregates could not set well with each other..erefore, the sand
ratio played a significant role in improving the flexural
strength during 1–3d of curing. .e internal integrity of the
concrete was gradually improved with the extension of the
curing time; thus, the cementing performance between ma-
terials was continuously enhanced, and the effects of FA and
gravels were gradually revealed. In the later stage, the flexural
strength of the concrete increased steadily, and the importance
of W/B, coarse aggregates, and other materials decreased
slightly; however, the influence of the sand ratio increased.

W/B FA content GGBFS content Sand ratio Pebble gradation

1d,3d,7d,14d,28d,45d
Flexural strength

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 E1 E2 E3 E4

Figure 9: AHP model for the flexural strength test.
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.e influence of gravel gradation first increased and then
decreased with the extension of the curing time..e increase
and decrease of the proportion of coarse aggregates were
closely related to the increase of flexural strength. .e bond
strength between coarse aggregates and cement stones
manifested a significant effect on the interfacial bond
strength. With the extension of the curing time, the amount
of stable materials generated in the concrete gradually in-
creased, and the growth range of the bond strength between
coarse aggregates and cement stones also increased, thus
improving the flexural strength of the concrete. After 28 d of
curing, the growth rate of the bond strength between coarse
aggregates and cement stones slowed down; thus, the effect
of coarse aggregates on flexural strength decreased.

4. Prediction Model for Concrete Flexural
Strength Based on Machine Learning

It is discernible from Figures 6–10 that the relationship be-
tween the five factors and the flexural strength of the concrete
was nonlinear; therefore, it is necessary to establish a multi-
variate nonlinear regression model to quantify the influences

of these five factors on the flexural strength of the concrete. In
this analysis, BPNN and SVM were used to optimize the
prediction model by adjusting relevant parameters and
functions. .e W/B ratio, FA content, GGBFS content, sand
ratio, gravel gradation, and aging time were used as input data
of the input layer, and the flexural strength of the concrete was
the output layer data. A total of 96 sets of data were used to
form a database; in order to avoid the overfitting of data,
a stratified 20-fold cross-validation was used to set the
training model; Figure 11 showed a schematic description of
the cross-validation. .e designing and testing of these two
machine learning models were performed in Matlab 2018b.

4.1. Prediction Model Structure

4.1.1. SVM. SVM, as an intelligent algorithm, can overcome
nonlinear problems and is suitable for small samples [37].
.e process of flexural strength prediction was performed
using a kernel function to learn the relationship between the
input index and the output index. In the SVM model, the
kernel function defined in the high-dimensional feature
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Figure 10: Influence weight of each factor level on the test index.
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space was used to estimate regression. .e kernel function
was mapped from the low-dimensional space to the high-
dimensional space, so that the input had a nonlinear per-
formance (Figure 12). Based on statistical learning theory,
the SVM model performed regression estimation through
risk minimization. Vapnik’s ε-insensitive loss function was
used to measure the risk. .e risk function consisting of an
empirical error and a confidence level value was minimized
by the structural risk minimization principle [38].

4.1.1.1. Kernel Function. .e Kernel function has a great
influence on the prediction accuracy of SVM. In different
prediction models, an appropriate kernel function should be
selected according to research characteristics [39]. .e
Gaussian kernel function was used for the prediction model
due to its advantages of radial basis kernel function and good
antijamming ability.

4.1.1.2. Implementation Steps. First, a sample dataset of the
model with N degrees of freedom was given: (x1, y1),
(x2, y2),. . .,(xn, yn)}, where xi is the input vector (prediction
vector), and yi is the output vector (target vector). .e set of xi

and yi was a subset of the population P(x, y) of unknown
probability density distribution. Moreover,xi was mapped to
a high-dimensional feature space by the nonlinear
functionφ(xi), and linear regression was then carried out in the
high-dimensional space. .e relationship between the pre-
diction vector and the target vector was simulated by the fitting
functionf(x) � ωT × φ(x) + b, whereω and b are parameters.

4.1.2. BPNN. BPNN was mainly composed of two processes:
signal forward propagation and error backpropagation. .e
input layer was processed by the hidden layers and then
propagated to the output layer. .e error between the output
value and the actual value was transmitted to the input layer
through the hidden layer, so that each unit could share the
error. Further, through repeated weight adjustments, the
required prediction accuracy was achieved [35]..e structure
of the BPNN model shown in Figure 13 includes one input
layer, one output layer, and several hidden layers [40].

(1) Hidden Layer of BPNN. Generally, a hidden layer has
one or two layers. According to the Kolmogorov theorem,

a simple BPNN with only one hidden layer can approx-
imate a nonlinear continuous function of any complexity
degree with arbitrary accuracy on a closed set. In practical
applications, the number of hidden layers is generally
determined by comparing network training accuracies
under different hidden layers [41]. After repeated tests,
a hidden layer was used in this analysis, constituting
a network structure of “1 + 1 + 1.”

.e number of hidden layer nodes was determined as
N �

�����
n + m

√
+ a, where N is the number of hidden layer

nodes, n is the number of input layer nodes, m is the
number of output layer nodes, and a is a constant be-
tween 1 and 10 [42]. .is equation was used in combi-
nation with a trial-and-error method to improve the
network performance. .e hidden layer was iterated with
the number of nodes from 3 to 13 until an optimal
network performance was achieved. .e optimal mini-
mize number of nodes in the hidden layer was selected as
10.

(2) Determination of Transfer Function and Training Algo-
rithm. (1) Transfer function: in order to select the transfer
function, a typical design of BPNN was adopted. .e log-
Sigmoid function was adopted as the transfer function in
the hidden layer, and the output layer used a linear
transfer function, because its output value could be ar-
bitrarily assigned as an output function [42]. (2) Training
algorithm: a traditional BPNN belongs to the fastest
descent method, which has a low learning efficiency and
easily falls into a local minimum point. .e Lev-
enberg–Marquardt rule is suitable for solving large- and
medium-scale problems, because one iteration can sig-
nificantly reduce the error [43].

4.2. Analysis of Prediction Results. In order to verify the
prediction accuracy of the model, the mean square error
(MSE), root mean square error (RMSE), and the good-
ness of fit (R2) were evaluated. .e MSE reflected the
degree of dispersion between predicted and actual values,
and RMSE is the standard value of MSE, whereas R2

verified the degree of fit between predicted and actual
values.

1 2 53 4 16 17 18 19

Data

A120

1 2 53 4 16 17 18 20 A219

1 2 53 4 16 17 19 20 A3 A =
i=1

Ai18

20 2 53 4 16 17 18 19 A201

Training fold Test fold

1
20

20
∑

Figure 11: Schematic description of 20-fold validation.
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2 ,

(3)

where yobs is the observed value, yobs is the average observed
value, and ypred is the predictive value.

4.2.1. Prediction Results Comparison between BPNN and
SVM. .e performance of the BPNN model was verified by
comparing it with the SVM model. From Table 6 and
Figure 14, it can be seen that both the SVM model and the
BPNN model have high accuracy, but in comparison, the R2

for the SVM training set is 0.883, the R2 for the BPNN
training set is 0.888, theMSE for the SVM testing set is 0.332,

and R2 is 0.841, and the MSE for the BPNN testing set is
0.143, and R2 is 0.927. Based on these observations, it can be
concluded that BPNN outperforms the SVM model in
predicting the data in both the training and testing sets.

Table 7 and Figure 15 show the number of samples and
corresponding percentage in the error range from BPNN
and SVM, and the model with the most frequent value of
misprediction rate was taken as the model presented in the
paper. .ese key statistics showed that the BPNN model has
higher predictive ability compared with SVM model. .e
percentages of BPNN model training set and test set pre-
diction error range of 5% are 93.9% and 92.7%, respectively,
while the SVM model values are 89.25 and 88.5.

Because the basic principles of BPNN and SVM are
different, and the operating mechanism is also inconsistent,
the significant difference analysis of the model prediction
results can better analyze and compare the results. .e SPSS
21.0 software was used to test the significance of the dif-
ference in the prediction results, the t-test method was se-
lected to compare the significant difference between the two
methods, and the P value was 0.28> 0.05, indicating that
there is no significant difference in the fitting results of the
two methods. Although there is no significant difference in
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content
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gradation
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Figure 13: BPNN structure.
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Figure 12: Nonlinear mapping in SVM.
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the results between the two modeling methods, BPNN was
more suitable for the prediction of the flexural strength of
the concrete, because there are higher requirements for
prediction accuracy of concrete strength.

4.2.2. Prediction Results Comparison with the Empirical
Equation. Existing flexural strength prediction models are
mainly determined by the compressive strength of concretes.
.e Chinese code [44] presents a relationship between the
compressive strength and flexural strength of concrete, and
we compared the prediction accuracy of machine learning
methods and empirical formulas for the 28-day flexural

strength of concrete, which was calculated from the machine
learning method and the compressive strength in literature
[45], respectively. .e test results are shown in Table 8.

Since only the relationship between compressive
strength and flexural strength of concrete at 28 days of age is
given in the specification, the predicted results of 28-day
concrete flexural strength in machine learning methods are
also chosen for comparison, and the results showed that the
BPNN model still has the highest accuracy. Meanwhile, the
t-test results indicated that there is a significant difference
between the machine learning prediction results and the
empirical equation prediction results. Furthermore, the use
of machine learning methods can avoid complicated

Table 6: Evaluation parameters of machine learning methods.

MSE RMSE R2

BPNN train 0.250 0.500 0.888
BPNN test 0.143 0.364 0.927
SVM train 0.262 0.507 0.883
SVM test 0.322 0.547 0.841
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Figure 14: .e correlation between actual and predicted output using the machine learning methods.

Table 7: Number of samples and corresponding percentage in the error range from machine learning predictions.

Error range(%))
SVM BPNN

No of train % No of test % No of train % No of test %
5 1628 89.25 85 88.5 1712 93.9 89 92.7
10 121 6.63 5 5.2 89 4.88 8 8.33
15 45 2.47 4 4.2 17 0.93 4 4.17
20 30 1.64 2 2.1 6 0.32 3 0.31
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experiments and reduce the error of human intervention, so
the BPNN model is recommended as a prediction tool for
the flexural strength of concrete when the data type is similar
to this research.

5. Conclusions

Orthogonal experiments were performed to study the
flexural strength of an eco-friendly concrete containing FA
and GGBFS. .e effects of W/B ratio, FA content, GGBFS
content, sand ratio, and gravel gradation on the flexural
strength of the concrete were investigated by range analysis
and hierarchy analysis. In addition, two machine learning
models were proposed to predict the flexural strength of the
concrete. .e main observations of this research are sum-
marized below.

.e effects of different factors and different levels of each
factor on the flexural strength of the concrete were analyzed,
and the optimal mixing proportions of the concrete for six
different ages were also determined. .e optimal values of
W/B ratio, FA content, GGBFS content, sand ratio, and
gravel gradation were 35%, 15%, 15%, 39%, and 40%:60%,
respectively.

.e W/B ratio had the greatest effect on the flexural
strength of the concrete. With the increase of W/B, the
flexural strength of the concrete decreased gradually. .e

early stage of concrete curing was mainly influenced by the
GGBFS content and the sand ratio. GGBFS manifested
a strong activity by consuming Ca2+ ions in the concrete..e
flexural strength of the concrete first increased and then
decreased with the increase of the GGBFS content. .e sand
ratio had a positive role in the improvement of the flexural
strength of the concrete.

Gravel gradation had a greater influence in themiddle stage
of concrete curing. .e flexural strength of the concrete first
increased and then decreasedwith the increase of the content of
small gravels. FA mainly played a role in the later stage of
concrete curing, because C-S-H initially covered the surface of
FA, and the flexural strength of the concrete first increased and
then decreased with the increase of the FA content.

.e BPNN and SVM models both had higher accuracy
than the empirical equation after 20-fold cross-validation.
However, the BPNNmodel wasmore accurate than the SVM
model, while there is no significant difference in the fitting
results of the two methods. .us, BPNN was more suitable
for the prediction of the flexural strength of the concrete,
because there are higher requirements for prediction ac-
curacy of concrete strength.

.e established model has a good adaptability in this
research. In the future, future verification of the trained
machine learning models on more mix proportions and
curing conditions needs to be conducted. Moreover,

0

20

40

60

80

100
N

um
be

r o
f s

am
pl

e (
%

)

10 15 205
Error range (%)

89.25
93.9

6.63 4.88 2.47 0.93 1.64 0.32

SVM
BPNN

(a)

88.5
92.7

5.2 8.33
4.2 4.17 2.1 0.31

10 15 205
Error range (%)

0

20

40

60

80

100

N
um

be
r o

f s
am

pl
e (

%
)

SVM
BPNN

(b)

Figure 15: Distribution of the errors from machine learning methods. (a) Training. (b) Testing.

Table 8: Evaluation parameters of machine learning methods and empirical equation.

MSE RMSE R2

Empirical equation 0.114 0.338 0.720
SVM 0.050 0.223 0.876
BPNN 0.037 0.193 0.909
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some machine learning models with higher prediction
accuracy deserve to be built as much as complexity
allows.
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A sufficiently strict conduction of supervision during bridge operation is a crucial matter for many countries, including the
underdeveloped country of Viet Nam. In recent times, the budgets in developed countries used for funding the implementation of
quality-assessment procedures are quite high compared to the lower budgets in underdeveloped countries. �e plan proposed in
this work addresses the current lack of information available in the process of structure-quality evaluation. �e vibration signals
will be acquired from the random circulation status to determine the structure’s behavior so as to utilize the signal information
during the bridge span’s operation. �e study’s main goal is to find various parameters that can be used to evaluate the actual
bridge performance.�ese parameters must meet certain criteria, such as high sensitivity, lowmeasurement cost, and efficiency in
the measurement process, but must not affect the itinerary of vehicles moving on the bridge.�e actual structural vibration signals
used in this work currently serve as a best trend model for evaluating the operation of the bridge span structure. �is study will
focus on determining the relationship among deflection, acceleration, and vehicle load so as to evaluate the structure’s working
process. �is study has also fabricated an experimental model to evaluate and test the sensitivity of the parameters utilized in this
study in order to verify the results obtained. �e results obtained in this research will be applied for the quality-control process in
several bridge models with span structures built with the composite steel concrete cross section of the beam. Many developing
countries, including Viet Nam, will receive benefit in the future from the useful advantages presented in this study.

1. Introduction

Viet Nam is similar to other Southeast Asian countries [1, 2]
located in the region, in that it has an interlace system of
rivers and canals. Most major cities in Viet Nam are located
in areas near rivers or river junctions. After conducting
extensive surveys in the Ho Chi Minh City area [3, 4], it was
determined that there are more than 1000 bridges [5, 6] and
safe operations of these bridges are especially considered as a
key focus because of their important role in so many so-
cioeconomic activities.�e normal measures of assessing the
quality conditions of the bridge structure will be undertaken
through an assessment of the bridge structure’s concrete
beams and the composite steel concrete cross section of the
beam [7, 8]. At present, the inspection, monitoring, and
verification of bridge quality are commonly implemented
through three main measures as follows:

(i) �e first measure is a system of humanmonitoring,
giving information that is often more qualitative
than quantitative, and that can be somewhat
subjective. �e techniques of this measure include
inspection and monitoring by manual methods,
visual inspection, and use of specialized equipment
[9–11]. �is measure has significant advantages
and is simple and easy to implement, and the
inspection cost for initial investment is low, but it
has disadvantages as well: the damages in the
details of the bridge structure cannot be detected in
a timely fashion, and the bridge material me-
chanical changes cannot be evaluated. Most of the
information obtained from a structure with these
methods is of a qualitative nature, acquired
through the subjective evaluation of human
observations.
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(ii) �e second measure consists of methods for col-
lecting quantitative data for bridge vibrations
generated by an applied periodic force. �e bridge
quality inspection [12–14] includes the following
activities: the quality is either merely checked or
thoroughly determined, the project quality is for-
mally assessed, and the quality is compared to the
design’s original requirements. �e aim of this
measure is to assess the bridge’s actual working
ability under the actual load effect. Some parameters
are used for a quantitative evaluation process during
implementation [15], including deformation, de-
flection, vibration amplitude, and specific fre-
quency. �e advantage of this measure is that it can
give us a clear understanding of the different
quantitative values and the load’s impact options.
�ese methods can shed light on the factors re-
sponsible for putting the structure in some of the
most dangerous situations during its operation.�is
measure’s disadvantage is that the measurement
data are obtained in a static state, except for few of
the following dynamic parameters: specific fre-
quency, damping coefficient, and vibration ampli-
tude, which are determined by generating the
vibration pattern with a periodic force. �e amount
of information received from this method is too low;
therefore, it cannot fully reflect the operation status
of the structure, nor fully explain the structure’s
behavior.

(iii) �e third measure surveys the structure’s behavior
during the actual operation through vibration
measurement [16–19]. �is measure has been
widely applied to bridge abutments in recent times.
�is measure allows the acquisition of much data
regarding bridge behavior under diverse actual
loads. �is measure allows the advantages of
characterizing the actual situation of the load,
detecting changes in mechanical parameters, lo-
cating weakened portions of the structure, and
determining the weakening rate over time. �ese
advantages can help in making reasonable decisions
and plans when evaluating a project’s quality.
However, for the cases of difficult economic situ-
ations in underdeveloped countries, these testing
systems are not economically feasible and so cannot
be widely applied.

Assessing the advantages and disadvantages of all three
methods above, this study proposes several methods for
building relationships between important parameters in the
bridge structure’s vibration process so as to collect data for
the vibrations and deformation of the structure under the
effects of random loads during operation and utilization.�e
data obtained in this study will supplement the bridge’s
existing database system and, at the same time, will add new
parameters having a higher sensitivity than traditional pa-
rameters.�is can serve in making the most suitable plan for

quality assessment, inspection, and regular maintenance for
a project. �is study has practical significance in monitoring
and evaluating a project’s working status over time. �is
study also helps management agencies form a basis for
making important decisions about the structure’s operation.
Furthermore, the results in this study, which have been
implemented in practice, will establish a database source
facilitating the application of these advanced methods in
quality assessment and project management.�is is the basis
for expanding these research methods and conducting fu-
ture bridge evaluations.

2. Theoretical Basis

Many studies have already carried out the modeling of
bridge structures, which are categorized by type according to
the structure’s bearing status. Many models have simulated
the structure of a bridge span in the form of force-bearing
beams, models which are presently popular [20–22]. For a
load applied under static conditions, the span structure
model is generally depicted as shown in Figure 1.

For the case of the span model shown in Figure 1, if P is
the static load, the beam’s deflection y is given by the fol-
lowing formulas as

y �
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in which l is the length of the beam and a and b are the
positions to determine the set point of the load P. EJ is the
flexural stiffness; E is the elastic modulus; P is the load on the
beam; and J is the area inertia moment to the principal axis
of inertia, which is coincident with the x-axis direction.

If the load p moves with speed v along the beam length
with Q � Q0 cos(Ωt), as shown in Figure 2, the beam’s
forced vibration is demonstrated through the deflection
equation, shown as follows:
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where g is the gravity acceleration, ρ is the specific weight
per structure’s unit volume, A is the cross-sectional area,
d �

������
EJ/Aρ

􏽰
, and t is the time. �e forces actually acting on

the structure are, however, often in the form of a harmonic
force.

For the case shown in Figure 3, in which Q is the variable
force given by the expression Q � Q0 cos Ωt and moving
with speed v, the beam’s forced vibration [23, 24] is pre-
sented as follows:
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in which α � vl/πa; β � τ/τ2; τ � 2l2/πa; τ1 � l/v; and
τ2 � 2π/Ω.�e nondamped free vibration of a single support
beam has the following form:
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where Ci and Di are constants and pi is the ith-specific
frequency in the following equation:
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�is study introduces the concept of “dynamic coeffi-
cient” so as to determine the relationship between the
structure’s load impact and the specific vibration frequency,
in order to evaluate the changes in bridge span structure
during the vibration process. �e dynamic coefficient model
has demonstrated that this coefficient is used for evaluating
the bridge’s load capacity through the deflection and the
vibration frequency, as shown in equations (2) and (3), and
the abridged model of the dynamic coefficient, as shown in
the following equation:
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in which δ is the dynamic coefficient, ω is the excitation
frequency of vehicle load,Ω is the excitation frequency of the
load under the action of velocity v, ω(1) is the first excitation
frequency of vehicle load, and ωb is the bending frequency.

3. Results

3.1. Building the Experimental Models. Considering the
methods implemented by us, this study examines the actual
model of the�ang Long Bridge, as shown in Figure 4, which
has the following specifications: the bridge is 60m long; it
includes 5 spans, each span being 12m long; it has a simple
steel concrete; the span cross-section includes 5 steel
I-beams with dimensions 550× 250× 9× 22mm; the abut-
ments and pillars are made of reinforced concrete; the bridge
deck for vehicles is made of reinforced concrete of thickness
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Figure 1: Single beam borne with static load.
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Figure 2: Single beam is under load moving with velocity v along
the beam bar.
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18 cm; the bridge deck for pedestrians has a thickness of 20 cm;
the current operating load is 13 tons; and the bridge was built
before 1990. �e modeling process used in this study for the
�ang Long Bridge, which is located on �ang Long Street,
District 9, Ho Chi Minh City, is shown in Figure 5.

�e bridge span is narrow; therefore, only one vehicle at
a time can cross the bridge. �e study models the �ang
Long Bridge’s mechanical force-bearing system, as shown in
Figure 5, with a load consisting of two contributing com-
ponents: the concentrated load P and the moving load
Q0 sin Ωt, with forced frequency Ω, as originally analyzed.

In this research, the displacement signals are measured
using a displacement sensor and the vibrations are measured
with an accelerometer sensor.�ese sensors are permanently
mounted and in contact with the beams’ underside surfaces.
�e signal acquisition model is demonstrated in Figure 6.

In fact, the frequency of the constraining force Ω often
depends on the mechanism and Q depends on the velocity v

as in Table 1.�is study assumes that Q � k∗ v2 andΩ � v/R,
where Q is the amplitude of the harmonic force, k is the
experimental coefficient, Ω is the force’s angular frequency,
and R is the wheel radius, as shown in Table 2. �is study will
consider the change of load P in the range of load limit for
each type of vehicle, as in Table 3, due to the harmonically
constraining force influenced by the vehicle structure.

With the parameters of the load P, the velocity v, and the
frequency Ω of the constraining force, this study has built a
workable model through the actual measurement process so
as to determine the maximum deflection at given locations on
the bridge span.�is study has calculated themaximum stress
value during the beams’ vibration for the locations at which
the deflection value is measured.�e graph of the relationship
between deflection and stress is given in Figure 7.

We can see the linear relationship between deflection and
stress with the results in Figures 7 and 8. �e linear regression

equation is y� 6×10− 12x–8×10− 9 with a correlation coefficient
of R2�1. When the load, velocity, and frequency of the
constraining force change, the slope coefficient in Figure 8
remains constant; the deflection linearly increases when the
load increases, regardless of the change in velocity or the
change in frequency of the constraining force. �e relationship
between displacement and stress is often expressed as the
structure’s stress-deformation relationship. �e results shown
in Figure 9 [25, 26] were obtained from a study that used the
linear material model to demonstrate the stress-deformation
relationship of a concrete-reinforced beam structure with two
required parameters: the elastic modulus of steel Es and
the yield intensity of steel fy. �is concrete structure’s simple
stress-strain relationship curve has amultilinear isotropic form,
proposed by Kachlakev [27], with two required parameters: the
concrete’s elastic modulus Ec and its compressive strength fc

′.
In this material model, the von Mises criterion was used for
determining the stress threshold so as to convert the concrete’s
linear behavior into nonlinear behavior, as shown in Figure 10,
in which ε0 is the stress at the peak of thematerial structure and
β is a material parameter depending on the shape of the stress-
deformation diagram. �e stress-deformation relationship is
given by equation (7a). For the case of [25], the stress-de-
formation relationship is as shown in equation (7b).

σ � Eε, (7a)

σi � Eiεi. (7b)

With the models being studied in [25–27], we can see in
the results that the relationship between stress and defor-
mation is either always a linear function during a process
[28, 29] or it is only a linear function in each defined space
[25, 26]. An evaluation model that exhibits both the influence
of the elastic modulus E, which is a structural characteristic,

(a) (b)

First span Second span �ird span Fourth span Fi�h span

Acceleration sensor

Displacement sensor

Second abutment

B

Water

First abutment

A
x x x x x
x x x x x

First pier Second pier �ird pier Fourth pier

(c)

Figure 4: Actual model and longitudinal section of �ang Long Bridge.
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and the antiviscosity coefficient C, which is a characteristic
property of the material, has not yet been constructed.

3.2. Relationship of Dynamic Parameters

3.2.1. Relationship between Deflection and Vibration
Acceleration. For the change of each load P, this study gets
the results of both maximum deflection and maximum
acceleration. When the velocity v changes in the model, this
study changes the velocity v from 6m/s to 16m/s in order to

either simplify the simulation process or conform to the
bridge inspection standards.

We can see from the graphs shown in Figures 11(a)–11(f)
that the variable relationship between deflection and acceler-
ation at different load levels is relatively similar in terms of
shape. Generally, when the acceleration increases, the deflec-
tion also increases and the difference in loadsmay be due to the
masses of the loads that have influenced the beam’s vibration

Table 1: Deflection data and elongation with load P, as the ex-
perimental velocity v changes.

P v Deflection (m) Stress (N/m2)
5,700 13 0.0056461 9.93×108

5,800 6 0.0052025 9.15×108

5,900 6 0.0052897 9.31× 108

6,100 6 0.0054634 9.61× 108

6,200 14 0.0066553 1.17×108

6,500 6 0.0058087 1.02×109

7,100 15 0.0071237 1.25×109

8,200 13 0.0080203 1.41× 109

8,300 15 0.0083693 1.47×109

8,500 8 0.0079308 1.40×109

8,600 8 0.0080177 1.41× 109

8,800 6 0.0086454 1.52×109

9,000 8 0.0083818 1.47×109

10,100 9 0.01011 1.78×109

10,200 8 0.0094648 1.67×109

10,300 9 0.010372 1.82×109

10,400 4 0.010212 1.80×109

10,500 5 0.010266 1.81× 109

10,600 3 0.010262 1.81× 109

10,900 16 0.010373 1.82×109

11,000 5 0.010795 1.90×109

11,200 5 0.010946 1.93×109

Table 2: Load parameters corresponding to different radii of ve-
hicle wheels.

Wheel radius R (m) Load index Weight (kg)
0.330 83 487
0.356 88 560
0.381 96 710
0.406 100 800
0.432 104 900
0.457 108 1,000
0.483 109 1,030
0.508 110 1,060
0.533 111 1,090
0.559 112 1,120

l
a b

x

z

F = P + Q = P0cos (ωt) + Q0cos (�￀t)
v

y

Figure 5: Actual load model of �ang Long Bridge.
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Signal from the
displacement sensor

Signal from
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Filter
noise

Figure 6: Diagram of data acquisition from the displacement sensor and vibration accelerometer.

Table 3: Increased range of P force value corresponding to each
type of wheel radius.

R-wheel radius (m) P value (N)
0.008382 4,500–4,800
0.009042 4,800–5,600
0.009677 5,600–7,100
0.010312 7,100–8,000
0.010973 8,000–9,000
0.011608 9,000–10,000
0.012268 10,000–10,300
0.012903 10,300–10,600
0.013538 10,600–10,900
0.014199 10,900–11,200
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frequencies according to equation (6). �us, when the speed
changes from 6m/s to 16m/s with the same P load value, the
study gets both the maximum deflection in this speed range

and the frequency of the corresponding coercive force. From
this, the study gets a graph that demonstrates the relationship
between the deflection and the coercive force frequency

0.9fc′

0.00078fc′0.25

Stress
fc′

0
0.0038 Strain

1.71fc′/Ec

∗β = ((1)/(1 – fc′/εo.Ec))

(Kachlakev D.I. et al., 2011)

(C. E. Todeschini et al., 1964)

fc′.[(β∗.(ε/εo))/(β – 1 + (ε/εo)β)]

fc = ((1.8fc′.(εc/εo))/(1 + (εc/εo)2)

fc′.[(β.(ε/εo))/((7.26/fc′)3.0 β – 1 + (ε/εo)(7.26/fc′)3.0β)]

Figure 10: Concrete stress-strain models [27] and [28].
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Figure 11: Graph of deflection versus acceleration with load of (a) P � 4,600 N, (b) P � 4,900 N, (c) P � 5,600 N, (d)P � 8,000 N, (e) P � 10,00
N, and (f) P � 11,200 N, all enclosed with the change of velocity v.
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corresponding to the load P, as shown in Figures 11(a)–11(f),
where the deflection reaches themaximum value for the case in
which the vibration gradually approaches closer to the beam’s
first specific frequency.

3.2.2. Building the Relationship between the Dynamic Co-
efficient and the Excitation Conditions. �e curve has
demonstrated the relationship between the dynamic coefficient
δ and the velocity v, as represented in equation (6). When the
force P is constant, this study shows a dynamic coefficient δ
corresponding to each velocity v, with v varying from 6m/s to
16m/s. In the graph, the dynamic coefficient δ and the velocity
v appear as two neighboring peaks, the distance between the
two peaks being about 1m/s, as shown in Figure 12.�is can be
explained because δ is affected by Ω in equation (6). �eo-
retically, the larger the dynamic coefficient is, the closer the
coercive force frequency will be to the system’s specific fre-
quency. When referring to the actual spectrum analysis graph
for a bridge, the frequency graph of the free vibrations shows
two frequency peaks, which is called the “beat” phenomenon.
�is will be clearly analyzed in the following points:

(1) �e influence ofP on the dynamic coefficient of fixed v.
Because of the fixed speed and the increased load, the
dynamic coefficient δ increases due to the force P

affecting the beam’s first natural frequency,
according to equation (6). �erefore, when P in-
creases, the beam’s specific frequency ω1 decreases,
with a value close to the coercive frequency gener-
ated by the vehicle, and the dynamic coefficient δ also
increases. Because of the increased load P, the dy-
namic coefficient δ also increases in each specified
load interval. In Figure 13, each new segment will
linearly increase and then a sudden decrease is
shown at the segment’s end. At that moment, the
dynamic coefficient δ linearly increases according to
the original relationship; this process continues in
many different force intervals, forming a graph that
is not entirely linear, according to the theory

originally given. �is can be explained: When the
force P increases, the dynamic coefficient δ linearly
increases, but when Ω decreases, the dynamic co-
efficient δ also decreases because it corresponds to
each frequency of the coercive force Ω. At certain
locations, the δ value suddenly decreases because the
coercive force frequency Ω abruptly changes under
the original sine-cosine period, as shown in
Figures 14(a)–14(f).
Table 4 shows that in the experimental model, the slope
coefficient a, which is calculated as the ratio of the
dynamic coefficient δ to the coercive force Ω, is nearly
constant during the experiment process. �is can be
explained by the fact that the coefficient a does not
depend on the angular frequency of the coercive force at
constant velocity. In addition, when the coercive force
frequency Ω increases, the coefficient of b decreases.
Table 4 shows the result that the more the Ω decreases
in value, the faster the coefficient of b increases. When
the actual speed of the experimental model is v � 9m/s,
the relationship between the load P and the dynamic
coefficient δ given by the equation δ � aP+b is
δ � 0.000003 ∗ P+1.041517. In this experiment, the
average deviation for coefficient a is 0, and for coeffi-
cient of b, it is 0.004117. With this deviation level, the
obtained results have given a high convergence.

(2) �e influence of P impacted on the dynamic coef-
ficient in the case of changed velocity v.
With the increase in speed, the load value increases
and the δ value also increases in each specified load
interval. However, when all load ranges are con-
sidered in the same graph, the δ value tends to
decrease, as shown in Figure 15. �is study can see
the conformity with equation (6) when the P load
value is in inverse ratio to the δ coefficient. �is is
similar to the previous survey, which showed that
when the speed increases, the dynamic coefficient in
each P value segment increases and the δ value
increases linearly, as shown in Figures 16(a)–16(e).
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Figure 12: Relationship between the dynamic coefficient and velocity.
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Figure 13: Graph showing relationship between P and δ corresponding to v � 9m/s.

1.0627

1.063

1.0634

1.0637

1.0626

1.0628

1.063

1.0632

1.0634

1.0636

1.0638

4450 4500 4550 4600 4650 4700 4750 4800 4850

Im
pa

ct
 fa

ct
or

Force P (N)

y = 3E – 06x + 1.0474
R2 = 0.9966

(a)

1.0625
1.0628

1.0631

1.0634
1.0637

1.064

1.0644
1.0647

1.062

1.0625

1.063

1.0635

1.064

1.0645

1.065

4800 4900 5000 5100 5200 5300 5400 5500 5600 5700

Im
pa

ct
 fa

ct
or

Force P (N)

y = 3E – 06x + 1.0471
R2 = 0.9985

(b)

1.064
1.0643

1.0646
1.0649

1.0652
1.0655

1.0658
1.0661

1.0664

1.0635

1.064

1.0645

1.065

1.0655

1.066

1.0665

1.067

7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100

Im
pa

ct
 fa

ct
or

Force P (N)

y = 3E – 06x + 1.0424
R2 = 1

(c)

1.0658
1.0661

1.0664
1.0667

1.067
1.0673

1.0676

1.068
1.0683 1.0686

1.0655

1.066

1.0665

1.067

1.0675

1.068

1.0685

1.069

8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100

Im
pa

ct
 fa

ct
or

Force P (N)

y = 3E – 06x + 1.0424
R2 = 1

y = 3E – 06x + 1.0404
R2 = 0.9991

(d)

Figure 14: Continued.
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In Table 5, we can see that the equation showing the
relationship between the dynamic coefficient δ and the load
P, when the velocity v changes, gives δ � 0.000004 ∗ P+
1.24804 with an average deviation of 0.0000016 for the
coefficient of a and of 0.009768 for the coefficient b.�us, the

value of the dynamic coefficient δ depends on both the
velocity v and the load P as well as the frequency of coercive
force Ω. As v increases, the δ value changes according to the
linear relationship, as shown in the diagrams for δ and v.
Corresponding to each Ω value, P and δ increase linearly.

Table 4: Regression coefficients of δ � aP+ b corresponding to each Ω.

Ω a b R2

13.29787 0.000003 1.0353 1
15.06402 0.000003 1.0365 0.9991
15.39646 0.000003 1.0404 0.9991
15.7784 0.000003 1.0424 1
18.55288 0.000003 1.0471 0.9985
19.47209 0.000003 1.0474 0.9966
Average 0.000003 1.041517 0.998883
Average deviation 0 0.004117 0.000889
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Figure 14: δ value graph when force P ranges (a) from 4,500N to 4,800 N with Ω� 19.47209 rad/s, (b) from 4,900N to 5,600 N with
Ω� 18.55288 rad/s, (c) from 7,200N to 8,000N with Ω� 15.7784 rad/s, (d) from 8,100N to 9,000 N with Ω� 15.39646 rad/s, (e) from
9,100N to 10,000 N with Ω� 15.06402 rad/s, and (f) from 9,100N to 10,000 N with Ω� 15.06402 rad/s.
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4. Conclusion

�e experimental testing model has been applied in this
study so as to find the relationships between the charac-
teristic mechanical parameters during the measurement and
testing process. From this manuscript, we can build an

experimental model in the field that is most suitable for the
actual moving loadmodel, with some conclusions as follows:

(1) From either theory or experiment, the deflection
values obtained under the load influence moving on
the beams are relatively similar in terms of shape. As
the deflection increases along with the velocity in-
crease of the accelerating load, it can be seen that the
difference in results with the varying loads may be
due to the loads’ mass influence on the beam’s vi-
bration frequencies. With a constant P load value,
but with speed increasing from 6m/s to 16m/s, the
study finds that the maximum deflection of fre-
quency of the corresponding coercive force either
remains unchanged or shows an insignificant
change. From this study, we get the relationship
between the deflection and the frequency of the
corresponding coercive force. And, the deflection
reaches the maximum value when the vibration
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Figure 16: �e diagram of the maximum δ value, when the velocity v changes corresponding to P (a) from 4,500N to 4,800N, (b) from
4,900N to 5,600N, (c) from 7,200N to 8,000N, (d) from 8,100N to 9,000N, and (e) from 9,100N to 10,000N.

Table 5: Regression coefficients δ � a∗P + b corresponding to each
P value range.

P (N) a b R2

4500–4800 0.000007 1.2607 0.948
4900–5600 0.000005 1.2598 0.9768
7200–8000 0.000003 1.2413 0.9643
8100–9000 0.000003 1.2394 0.9889
9100–10000 0.000002 1.239 0.9505
Average 0.000004 1.24804 0.9657
Average deviation 0.0000016 0.009768 0.01372

Advances in Civil Engineering 11



frequency approaches closer to the beam’s first
specific frequency.

(2) Vehicle velocity has almost no influence on deflec-
tion values in both theoretical and experimental
cases. It can be shown that for varying velocities, the
differences in the results obtained for deflection
values are insignificant and a structure’s quality
verification process is based primarily on deflection
values.

(3) As P increases, the beam’s specific frequency ω1
decreases, so the dynamic coefficient δ increases
accordingly. As the load P increases, however, the
dynamic coefficient δ increases only for each spec-
ified load interval. �e value of the dynamic coef-
ficient δ appears as a relationship, showing a linear
increase at each segment, with a sudden decrease
between segments. �is process continues for many
different force intervals, resulting in an incompletely
linear diagram, according to the originally given
theory. It can be shown that at certain locations, the δ
value suddenly decreases because the coercive force
frequency Ω suddenly changes, according to the
initially given period.
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