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Noncoherent light, as a common light source in life, can effectively avoid problems such as scattering noise caused by optical
components incoherent light imaging, and through the design of the optical path can also trigger interference and holographic
imaging of objects, allowing holography to be used in more fields. Various techniques have emerged for recording holograms
using incoherent light sources as technology has developed. A recording method has been proposed that exploits the
correlation between the object wave information and the Fresnel band sheet to achieve incoherent hologram recording. Using a
spatial light modulator (SLM) loaded with a bit-phase mask with multiplexed lens function, the incident light wavefield is
phase-modulated to achieve diffraction spectroscopy and phase shifting. And holograms with different phase shifts can be
obtained and combined with phase-shifting techniques to eliminate the effects of twin images caused by coaxial holography in
the reproduction process. Based on the study of this incoherent holographic imaging system, the influence of the
characteristics of the main components of the system and the corresponding parameters on the resolution of the recorded and
reproduced holograms is investigated, and optimization methods are given from both theoretical and experimental studies. The
empirical analysis of the FINCH imaging system is carried out. The observed optical path is designed, and the method of
making a bit-phase mask loaded on a spatial light modulator is presented. The effect of the focal length and recording distance
of the dislocation mask on the resolution of the system is investigated by both computer simulation and experimental operation.

1. Introduction

With the continuous progress of science and technology,
people’s requirements for optical imaging technology and
imaging systems have increased. The improvement of imag-
ing resolution has become an essential issue in modern sci-
entific research. The development of holography was
greatly facilitated by the advent of the laser in 1960. The
highly coherent nature of the laser light source produced
excellent interference effects, which significantly improved
the quality of holograms. The advent of the laser improved
the quality of holography but limited its application.

On the other hand, it has been found under incoherent
light source illumination conditions. The emergence of inco-
herent holography has adapted to the development of holo-
graphic imaging, expanding the field of application and

freeing it from the requirement of high coherence of light
sources. Holographic imaging results from the interference
effect between two light beams, which can record the ampli-
tude and phase information of an object in the resulting
interference fringe, which is the hologram of the object.
According to the principle of reversibility of the optical path,
the reproduction process can be seen as a plane wave irradi-
ating the hologram vertically, producing diffraction phe-
nomena to recover the wavefront information of the
object’s light field. The quality of the reproduced hologram
image is affected by the fact that the former is not as effective
as the latter compared with the light field interference pro-
duced by an object illuminated by a noncoherent light
source. Therefore, improving holographic imaging resolu-
tion under noncoherent light has become an important
research topic.
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2. Related Work

2.1. Holographic Display. In conventional imaging tech-
niques, based on the principle of geometrical optics, the
image detector can only receive the object’s light intensity
(i.e., amplitude), and the object’s light intensity in three
dimensions is superimposed on a flat surface. Holographic
imaging is achieved by introducing a reference light that
interferes with the light waves reflected or emitted from
the object and records interference fringes that correlate
the amplitude and phase of the thing. The reproduction pro-
cess uses the principle of diffraction to recover the wavefront
information of the object, and the recorded interference
fringe pattern is known as a ‘hologram.’ It is a two-step
imaging technique and an accurate three-dimensional imag-
ing technique.

The Fresnel incoherent correlation holography (FINCH)
technique was first proposed by Park and Yu’s groups [1, 2]
in 2007. The FINCH technique uses a spatial light modula-
tor to diffract and phase shift the incoherent light emitted
from an object. Joseph Rosen et al. demonstrated the feasi-
bility and nonscanning nature of this technique.

In addition to Joseph Rosen’s group, Czech scientists
such as Lavlesh et al. studied the FINCH system’s point
spread function and resolution [3]. They found that adjust-
ing the optical path increases the interference area of the
two beams on the surface of the image detector [4–6] and
loading the spatial light modulator with a vortex phase mask
improves the contrast at the edges of the object [7]. By
enhancing the Michelson interferometric optical path, Raj-
put’s group used two concave mirrors with different curva-
tures to replace the diffraction spectroscopy effect of the
SLM, which is no longer limited by the resolution of the
SLM [8–11] reproduction.

2.2. Noncoherent Optical Digital Holographic Imaging
Technology. Wang Pan used synthetic aperture imaging
technology to improve the resolution of incoherent digital
holography [12]. Teruyoshi and Horisaki’s group at Jinan
University used light-emitting diodes (LEDs) as the illumi-
nation source and studied the effect of light source size and
diffraction distance on the resolution of hologram reproduc-
tion [13] and optimized the quality of phase reconstruction
[14]. Teruyoshi et al. from Huazhong University of Science
and Technology improved the quality of incoherent light
imaging by investigating the imaging system’s signal-to-
noise ratio and edge contrast [15]. Tatsuki et al. from Zheng-
zhou University used the FINCH system to perform color
holographic imaging of dice, verifying the feasibility of the
incoherent light imaging system to record color holograms
[16]. Ying et al. investigated the imaging characteristics of
the FINCH microscope imaging system by building a reflec-
tive incoherent digital holographic microscope imaging sys-
tem [17]. Changwon’s group at Xi’an Institute of Optics and
Mechanics studied digital holographic microscopy systems
for LED light source illumination and partially coherent
light holographic based on point diffraction interferometry
[18]. In 2013, Yuhong et al. from South China Normal Uni-
versity conducted a simulation analysis and experimental

validation of incoherent digital holography’s recording and
reproduction process with white light irradiation [19, 20].
In 2007, Yun’s group at Beijing University of Technology
summarized the characteristics and research progress of
incoherent optical holographic imaging [21]. Further
improving the resolution of incoherent light holographic
imaging is an important aspect to advance the development
of this technology [22]. In future practical applications,
holographic imaging technology under incoherent light illu-
mination still has an important role and research value in
this field.

Although some progress has been made in FINCH imag-
ing technology through the research of Liu Yingchen’s
group, the existing analysis of noncoherent optical imaging
systems is primarily complex and limited to the influence
of a specific parameter on the imaging quality, lacking a
comprehensive analysis method. Therefore, the thorough
analysis of noncoherent optical imaging system parameters
is of great importance for optimizing the optical path and
improving the imaging system’s resolution.

3. Materials and Methods

3.1. Model Design. This experiment uses LED white light
with a wide spectral range as the light source to build a Fres-
nel incoherent correlation imaging system to experimentally
investigate the effect of different recording parameters on the
resolution. The experimental optical path is shown in
Figure 1.

In Figure 1, S is the LED white light source with a central
wavelength of about 455nm and a spectral linewidth of
30 nm. F is the filter with a central wavelength of 450nm
and a spectral linewidth of 20 nm. P is the parallel light tube.
O is the target object steel ruler. D is the polarizer (the SLM
sensitivity axis’s polarization direction). I is the diaphragm.
L is the collimated lens (f = 150mm), and BS is the beam
splitter. The LCD spatial light modulator used in the exper-
iment is a pure phase reflection type HED-450 manufac-
tured by Holy. With an image plane size of
12:5mm × 7:1mm, a resolution of 1920 × 1080 and an
image element size of 6.4μm of which the CCD camera
model is MVCII-1M, with an image element size of 5.4μm
and a resolution of 1280 × 1024, actually using pixels of
800 × 600. When using MATLAB to produce an SLM-
loaded multiplexed Fresnel lens, the two-dimensional gray-
scale matrix to be generated contains the amount of phase
modulation of the focal length of the two lenses. Therefore,
the mask is generated so that the two focal length values
are each half of the pixels and evenly distributed, in five
main steps as follows.

(1) Call the rands function to generate a two-
dimensional random matrix

(2) Assigning two focal values randomly to a two-
dimensional matrix

(3) The amount of phase modulation corresponding to
each point in the matrix is calculated from the
expression for the phase distribution
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(4) Converts the phase modulation quantities into their
corresponding gray values and generates a gray
matrix

(5) The image shows a function that generates a gray-
scale map, i.e., a bit-phase mask

As shown in Figure 2(a), the gray value of each of its
pixels represents the amount of phase modulation. When a
well-made grayscale is loaded onto the SLM, its gray value
will control the voltage across the SLM, deflecting the liquid
crystal molecules and thus changing the refractive index.
The phase-modulating effect on the light waves is equivalent
to coinciding two Fresnel lenses with different focal lengths,
as shown in Figure 2(b).

The mean-square error (MSE) method is used to evalu-
ate the image quality, which is calculated by the following
formula.

MSE = 1
MN

〠
0≤i≤N

〠
0≤j≤M

f ij − f ij′
� �2

: ð1Þ

The mean square error method calculates the mean
square value of the pixel difference between the original
image and the j distorted image and determines the distor-
tion of the distorted image by the size of the mean square
value,M,f ij; the smaller the mean square error value, the
smaller the distortion of the image, and the closer the reso-
lution to the original image. The smaller the RMS error
value, the smaller the distortion and the closer the resolution
to the original image. A comparison of the mean square
error of the reconstructed image and the simulated target
at different recording distances are shown in Table 1.

As the recording distance increases, the mean square
error value decreases, representing a better image quality,
i.e., an increase in resolution. The results are consistent with
the results of the subjective evaluation method, which jus-
tifies the mean square error method for assessing image
quality.

Next, fixing the other parameters constant, the effect on
the imaging resolution of the system is investigated by vary-
ing the mask focal length. Set the recording distances zh =
150mm to f1 = 160mm, f1 = 200mm, f1 = 240mm, respec-
tively, and the reconstructed image at its corresponding
position is shown in Figure 3.

As shown in Figures 3(a)–3(c), the resolution of the
reproduced image decreases as the mask focal length f1
increases, in line with the theoretical analysis that f1 increas-
ing leads to a decrease in numerical aperture and a reduction
in zh/f1 ratio. A comparison of the mean square error of the
reconstructed image and the simulated target object when
loaded with different mask focal lengths are shown in the
following Table 2.

As can be seen from Table 2, the mean square error value
of the reproduced image becomes more significant as the
focal length of the mask increases, in line with the theoretical
analysis.

The experiments also simulated the effect of two differ-
ent loading modes of the SLM on the imaging quality. The

first one loads the SLM with a plane wave and a spherical
wave bit-phase mask with a focal distance of f1 = 145mm,
and the second one packs the SLM with two spherical wave
bit-phase masks with the mask focal distance set to f1 =
145mm and f2 = 155mm. The recording distances for both
loading modes are assigned to zh = 150mm, and the recon-
structed images after phase shifting for both loading modes
are given in Figure 4.

As shown from Figures 4(a) and 4(b), when the SLM is
loaded with planar and spherical wave bit-phase masks, the
image background information interferes with the recon-
structed image, and the quality of the reproduced image is
not as good as when loaded with two spherical wave bit-
phase masks. In essence, when the SLM is loaded with only
one focal length mask, half of the spatial light modulator
pixels can phase modulate. Still, because its fill factor is less
than 100%, the light waves incident to the effective pixels
will be reflected without modulation. The proportion of the
reflected light as reference light is greater than the propor-
tion of the signal light after phase modulation by the SLM,
which causes part of the reference light to not participate
in the interference. For a mask with two focal lengths, the
ratio of the object wave to the reference light is close to
1 : 1, so the contrast of the recorded interference fringe is
higher than for a mask loaded with only one focal length,
and the resolution of the reconstructed image is relatively
better. The mean square error values for comparing the
reconstructed image with the simulated target for the two
diffraction modes are shown in the following table.

As can be seen from Table 3, the mean square error value
of SLM loaded with two spherical wave potential phase
masks is smaller than that of the loaded plane and spherical
wave likely phase masks, which is in line with the theoretical
analysis. Therefore, the imaging quality of loading the two
spherical wave phase factors during incoherent optical
coherence imaging is more excellent than that of loading
the plane and spherical wave phase factors.

Photodetectors cannot directly record the phase infor-
mation of light waves emitted from an object. They can only
sense the light intensity and need to encode the phase infor-
mation in the intensity information map received by the

S

CCD

S
L
M

F

O

BS

D I L

P

Figure 1: Schematic diagram of the experimental optical path of
the FINCH system.

3Advances in Mathematical Physics



detector and then decode the object light field information
through diffraction phenomena. The reproduction process
is equivalent to irradiating a hologram vertically with a
monochromatic plane wave. The diffraction pattern differs
from position to position because of the different shapes of
the interference fringes at each place, thus allowing the
recording and reproduction of the original object light field
distribution. This is analogous to Morse code, where the 26
letters of the alphabet correspond to the length and order
of the different electrical pulse response times. The electrical
signals are decoded through a previously agreed translation.

The recording process of coherent light digital holo-
graphic imaging technology is shown in Figure 5. The object
transmitted or emitted light waves carrying the phase and
amplitude information of the thing. After a distance to the
CCD recording plane, while allowing a beam of light waves
with coherence with the object light waves to irradiate the
recording plane, the two beams of light waves will interfere,
the interference pattern in the form of stripes intensity infor-
mation recorded by the CCD.

In Figure 5, Oðx, yÞ and Rðx, yÞ denote the object-wave
complex amplitude and the reference-wave complex ampli-
tude, respectively, the hologram recorded by the CCD is Ið
x, yÞ represented as

I x, yð Þ = O x, yð Þ + R x, yð Þj j2 = O x, yð Þj j2 + R x, yð Þj j2
+O x, yð ÞR∗ x, yð Þ +O∗ x, yð ÞR x, yð Þ: ð2Þ

In Equation (2), the first term indicates the intensity dis-
tribution of the light object field. The second term means the
intensity distribution of the reference light wave, which Rð
x, yÞ can be taken as a natural constant incoherent light illu-
mination due to better interference. In general, monochro-
matic plane waves can be used as reference light waves.
The third and fourth terms encode the object light wave’s
complex amplitude and phase information, which can be
regarded as the distribution function of the interference
fringe.

In digital holography, the holographic dry plate is
replaced by an image detector component, a continuously
distributed recording medium, whereas the target surface
of the image detector is not continuous. For example, in
the case of CCDs, the target surface is a combination of
many discontinuously distributed pixel units so that the
recorded hologram is a discrete intensity distribution.

I ′ x, yð Þ = I x, yð Þrect x
NxΔx

, y
NyΔy

 !
× 〠

Nx

k

〠
Nx

l

δ x − kΔx, y − lΔyð Þ:

ð3Þ

In formula (3), kl is an integer ð−Nx/2 ≤ k ≤Nx/2 − 1,−
Ny/2 ≤ l ≤Ny/2 − 1Þ, Δx, Δy are the horizontal and vertical
pixel cell size of the CCD, Nx and Ny are the number of hor-
izontal and vertical pixels, respectively, and then, the CCD
detection surface width can be expressed as Lx =NxΔx
height is Ly =NyΔy.

Consider the integration effect of the CCD’s pixel cells
during sampling.

I ′ x, yð Þ = I x, yð Þ ∗ rect x
NxΔx

, y
NyΔy

 !
comb x

Δx
, y
Δy

� �
rect

� x
NxΔx

, y
NyΔy

 !
:

ð4Þ

The symbol “∗” indicates a convolution operation. It can
be seen that a discrete intensity score is stored in a computer
in the form of a numerical matrix, which is reproduced
through the process and processing of the numerical matrix.

3.2. Recording of Incoherent Digital Holograms. Noncoherent
digital holography uses a noncoherent light source, which is
very different from coherent digital holographic imaging.
Due to the large width of the noncoherent light spectrum
and the existence of different wavelengths of light waves, it
is difficult to interfere using reference light that is coherent
with the object’s soft waves. To obtain a hologram of an
object under incoherent illumination light, one has to solve
the problem of how interference occurs. In incoherent light,
digital holography, the thing is composed of many indepen-
dent point sources, and the light waves emitted between
these independent point sources do not satisfy coherence.

(a) Schematic diagram of the bit-phase mask (b) Enlarged view of part of the bit-phase mask

Figure 2: SLM loaded bit-phase mask.

Table 1: Comparison of reconstruction errors at different
recording distances.

zh = 160mm zh = 200mm zh = 240mm
MSE 0.4279 0.3812 0.048
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Still, the light waves emitted from the same point satisfy
coherence. According to this property, interference can be
triggered to achieve incoherent holographic recording.

Using beam-splitting techniques, the light from each
point source is split into two beams, and the optical path is
designed so that the two beams converge and interfere to
form a point source hologram. In other words, point sources
are spatially self-coherent, and incoherent optical coherence
imaging takes advantage of this property. A point source
hologram can record the amplitude and phase information
of the point. By superimposing the holograms of all the inde-
pendent point sources in a non-coherent manner, all the
amplitude and phase information of the object can be
recorded. As shown in Figure 6, the recording process of
incoherent optical digital holograms can be simply expressed
as follows.

Suppose there exists a point Pðx0, y0, z0Þ at a particular
position of an object in space, the light wave from this point
arrives at the wave splitting plane and is decomposed U1
into U2 two light waves by the optical element with separat-
ing effect, and they come on the CCD plane when the
complex amplitude distribution is expressed as U1ðx − x0, y

− y0 ; z0Þ and U2ðx − x0, y − y0 ; z0Þ, U1 and U2 satisfy the
spatial coherence, and the point source hologram formed
on the CCD recording plane expresses the formula as

I x − x0, y − y0 ; zð Þ = U1 +U2j j2 = A2
o1 + A2

o2 + A2
o1A

2
o2 cos

� ϕ1 x − x0, y − y0 ; zð Þ − ϕ2 x − x0, y − y0 ; zð Þ½ �:
ð5Þ

where Ao1 and Ao2, respectively, are theU1andU2ampli-
tude, representing the intensity information of the point
source; ϕ1 and ϕ2, respectively, are theU1andU2phases, car-
rying the three-dimensional position information of the
point source. From the hologram expression, when the com-
plex amplitude U1 and U2, the phase part of the difference,
that isϕ1andϕ2is not equal, and the phase term is not con-
stant. The intensity distribution associated with the spatial
location, the amplitude, and phase information of the point
source can be recorded in full. An object can be seen as a
combination of many point sources. Assuming that an
object has an intensity distribution function gðx0, y0, z0Þ,
its incoherent hologram Hðx, yÞ is a noncoherent correlation
superimposed on the hologram formed by the object’s point
interference on the CCD, with the expression

H x, yð Þ =∭g x0, y0, z0ð ÞI x − x0, y − y0 ; z0ð Þdx0dy0dz0:
ð6Þ

(a) f1 = 160mm (b) f1 = 200mm

(c) f1 = 240mm

Figure 3: SLM simulation of reproduced images loaded with different mask focal lengths.

Table 2: Comparison of reconstruction errors for different mask
focal lengths.

f1 = 160mm f1 = 200mm f1 = 240mm
MSE 0.1741 0.3639 0.4102
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In contrast to the coherently superimposed hologram,
the hologram is the intensity distribution of all point sources
after superimposing the complex amplitude. In incoherent
light, the complex amplitude superimposition is not satis-
fied, and the hologram is the convolution integral between
the intensity distribution of all independent point sources
and the point spread function, satisfying the intensity super-

imposition. In the study of incoherent digital holography, it
is necessary to start with the point spread function, which
gives a more intuitive view of the imaging system’s response
to the input light wavefield.

Assuming a CCD detection plane of size Lx × Ly ,
expressed as a function rectðx/Lx, y/LyÞ, the expression for
the hologram after discretization is

H ′ x, yð Þ =H x, yð Þrect x
Lx

, y
Ly

 !
comb x

Δx
, y
Δy

� �
, ð7Þ

where Δx × Δy is the interval between adjacent pixels of
the CCD, and the function combðx/Δx, y/ΔyÞ can be
expressed as

comb x
Δx

, y
Δy

� �
= 〠

M

m

〠
N

n

δ x −mΔx, y − nΔyð Þ: ð8Þ

In Equation (8), M and N indicate the number of pixels
of the CCD, m and n take a range of integers −N/2 ≤ n ≤N
/2 − 1 between −M/2 ≤m ≤M/2 − 1, and the product
between Hðx, yÞ and rectðx/Lx, y/LyÞ in expression (7) repre-
sents the relationship between the CCD size and the holo-
gram. Multiplying combðx/Δx, y/ΔyÞ by indicates a discrete
sampling of the hologram received by the CCD.

Figure 7simulates a comparison of the reconstructed
image of the obtained hologram without phase shift and
after a three-step phase shift, under identical optical path
conditions.

Figure 7(a) shows the diffraction template used in the
simulation. When the hologram is not phase-shifted, the
reconstructed image in Figures 7(b) and 7(c) is disturbed
by the zero-level and conjugate images.

4. Results

4.1. Effect of Nonmonochromatic Light Sources on
Interference. From a spectroscopic point of view, any light

(a) f1 = 145mm (b) f2 = 155mm

Figure 4: Comparison of the resolution of the two diffraction modes.

Table 3: Comparison of reconstruction errors between the two
diffraction modes.

Plane-wave vs. f1 = 145mm f1 = 145mmf2 = 155mm
MSE 0.1903 0.0895

Object plane recording plane image plane

yo yo yi

xo x xi

O (x,y)

R (x,y)

Figure 5: Diagram of the 5 digital holographic recording process.

yo

U1

y

x

z
U2

Image plane wave splitting recording plane

Figure 6: Schematic diagrams of the incoherent digital holographic
recording process.
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source has a specific spectral line width, and the spectral
linewidth of a noncoherent source is greater than that of
a coherent source. Compared to quasimonochromatic
light sources, the degree of interference fringe lining
captured by the CCD is significantly affected when per-
forming interference experiments. Many wave trains of
finite length are emitted from an object illuminated by
incoherent light. A point in space is chosen where many
trains pass through at a single observation time, with
uncertainty in the phase relationship between these
trains and each other. For the Fresnel incoherent corre-
lation imaging system studied in this paper, a wave train
emitted from any object is modulated by a spatial light
modulator into two twin wave trains with different radii
of curvature but equal wave train lengths. For a point
on the CCD, the two wave trains are divided into two
beams after each has passed a certain distance and then
combined at the end when the difference between the
two wave trains traveled is more significant than the
coherence length. The two wave trains are recorded at
the exact moment from different incident wave trains;
that is, the twin wave trains do not overlap. In a single
observation time, many through the wave train on the
interference contribution to cancel each other out can
not observe stable interference fringes when the differ-
ence in the optical range of the two twin wave trains
tends to zero. It can be considered that they arrive at
the point simultaneously. At this time, they superim-
pose on each other to produce interference, and stable
interference fringes can be observed. This situation is
self-coherent.

Spectral lines with iðλÞ = dIλ/dλ spectral density and
total optical intensity as the integral of spectral density
over the width of the spectral lines:

I0 =
ð∞
0
i λð Þdλ = 1

π

ð∞
0
i kð Þdk, ð9Þ

where k = 2π/λ. The light intensities corresponding to dif-
ferent wavelengths vary with the optical range difference
Δl, and the non-coherent superposition of the light inten-
sities at all wavelengths can be expressed as

I Δlð Þ = 1
π

ð∞
0
i kð Þ 1 + cos kΔlð Þ½ �dk = I0 +

1
π

ð∞
0
i kð Þ cos kΔlð Þdk:

ð10Þ

The first term of Equation (10) is constant, and the
second term is a quantity related to the optical range dif-
ference Δl. For the sake of discussion, the above equation
is simplified by considering iðkÞ that it is equal to a con-
stant πI0/Δk in the k0 ± Δk/2 range and 0 in the rest,
which can be simplified as follows:

I Δlð Þ = I0 1 + 1
Δk

ðk0+Δk/2
k0−Δk/2

cos kΔlð Þdk
" #

= I0 1 + sin ΔkΔl/2ð Þ
ΔkΔl/2 cos kΔlð Þ

� �
:

ð11Þ

(a) Diffraction template (b) Reconstructed image without phase shift

(c) Reconstructed image after three steps of phase shift

Figure 7: Comparison of reconstructed images without phase shift and after three steps of phase shift.
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The liner ratio of the interference fringe can be derived
as

V = sin ΔkΔl/2ð Þ
ΔkΔl/2

����
����: ð12Þ

The above equation shows that the optical range differ-
ence corresponding to an interference fringe with a liner ratio
equal to zero is the maximum visual range difference to
achieve coherence, and the coherence length can be
expressed as

Δlmax =
2π
Δk

= λ2

Δλ
: ð13Þ

In a Fresnel, incoherent correlation digital holographic
imaging system, the difference in optical range between the
two twin wave trains after being split by a spatial light mod-
ulator is more significant than the coherence length. This will
reduce the quality of the interference fringe or even failure to
interfere only when the coherence length is less than that. A
clear interference fringe can be recorded on the CCD, and a
higher quality reproduction image can be obtained when
reconstructing. For nonmonochromatic light sources, the
greater the coherence length, the more wave trains will inter-
fere with each other at one point of observation, making the
interference fringe clearer. Therefore, when using noncoher-
ent light interference for digital holographic recording, a
source with a significant coherence length can be chosen to
improve the image quality.

The light source used in this paper is the GCI-060411
type produced by Daheng Optoelectronics. The electrical
power is 3W LED white. The added filter center wavelength
is 450nm, the spectral line bandwidth is about 20 nm and
belongs to the visible light band, and the more extensive
spectral range is closer to the actual application. The nonco-
herent light source and spectral diagram are shown in
Figures 8(a)–8(d).

As can be seen from Figure 9, the central wavelength of
the LED white light source is about 455nm, and the spectral
line width is 30 nm. According to Equation (13) calculation,
the coherence length of the light source is about 6.9μm.
After filtering by the filter, the coherence length is approxi-
mately 10.1μm.

To obtain good interference fringes, the maximum opti-
cal range difference in the imaging system must be less than
10.1m. In the FINCH imaging system, the visual range dif-
ference of the imaging system is related to the phase mask
loaded on the spatial light modulator and the CCD record-
ing position. The imaging system’s resolution can be
improved by adjusting the focal value of the phase mask
and the recording distance to meet the coherence length
while determining the light source.

The relationship between the recording distance zh and
the optical range difference of the imaging system is first
investigated for a light source with a coherence length of lc
= 10:1μm, assumed R0 = 2:5mm, 180mm, 230mm, and
280mm, f1, respectively, and the relationship curve between

the optical range difference and the recording distance zh is
given.

The relationship between the recording distance and the
optical range difference when the SLM is loaded with three
different sets of plane wave and spherical wave bit phase
masks is given in Figure 9. The horizontal line is the coher-
ence length of the light source. For the part of the system
located below the horizontal line, the optical range difference
is less than the coherence length. It satisfies the coherence
condition, while the visual range difference for the part
above the horizontal line is more significant than the
coherence length and does not satisfy the coherence
condition.

As can be seen from diagram 10, the maximum optical
range difference δmax of the system changes proportionally
with the recording distance zh. Keeping the value of the bit
phase mask focal length loaded by the SLM unchanged, the
optical range difference of the imaging system increases with
the distance between the CCD position and the SLM posi-
tion. Suppose the CCD recording distance continues to
grow. In that case, it will cause the CCD to record to the edge
of the hologram where the overlap of the two beams will not
interfere, reducing the radius of the hologram, and the qual-
ity of the reproduced image will be reduced. If the recording
distance is kept constant, i.e., the position of the CCD is not
moved. The focal length of the mask loaded on the SLM is
increased. The curve of the optical range difference will
become more inclined, i.e., the visual range difference at this
position is reduced, and the coherence condition can be bet-
ter met. The CCD sampling interval limits the minimum
recording distance. The optical range difference is zh = 115
mm less than the coherence length when the SLM is loaded
with a bit-phase mask focal length f1 = 180mm, zh ≤ 105mm.
Still, the CCD placed at this position will cause the informa-
tion sampled to be incomplete, resulting in a decline in
imaging quality. According to calculations, only when the
SLM is loaded with a mask focal length f1 ≥ 190mm that
zh = 115mm meets the coherence condition can the CCD
record complete information. Therefore, the recording dis-
tance is limited in two ways, both by the CCD meeting the
sampling interval and by the fact that it cannot be greater
than the coherence length.

From the above analysis, it can be seen that the maxi-
mum optical range difference of the system is related to
the recording position of the CCD, the focal length of the
bit-phase mask loaded on the SLM f1 and the radius R0 of
the modulated spot, fixed R0 = 2:5mm. To study the rela-
tionship between the focal length of the front-loaded on
the SLM f1 and the maximum optical range difference,zh
was 130mm, 150mm, and 170mm, respectively. Figure 10
gives the variation curve f1 of the leading visual range differ-
ence δmax with the focal length of the loaded mask.

Figure 10 shows that the optical range difference of the
imaging system decreases δmax as the focal length f1 of the
SLM loading mask increases. Keeping the recording position
of the CCD unchanged, and only when the focal length of
the mask is f1 more significant than a specific value will
the coherence condition be satisfied at that recording posi-
tion. At a fixed value of the focal length of the lens loading,
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it is to fulfill the coherence condition, but not less than the
minimum recording distance limited by the sampling
interval.

5. Evaluation

In summary, when the SLM is loaded with planar and spher-
ical waves, the recording distance of the CCD must satisfy
both the minimum distance limited by the sampling interval
and the requirement that the optical range difference corre-
sponding to the CCD at that position is less than the mini-
mum coherence length. According to Rayleigh’s criterion,
the resolution of the system increases with zh/f1 the increase
of the recording distance. When the recording distance is
equal to 2 f1, the solution of the system reaches its maxi-
mum. As the recording distance increases, the optical range
difference also increases, the zh/f1 maximum value being
when the visual range difference at that location is precisely
equal to the coherence length. With the light source
unchanged, i.e., the minimum coherence length is entire.
In the case of satisfying the coherence condition zh, the focal
f1 length of the SLM-loaded mask has to be increased. The

(a) LED white light source
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(d) Filtered spectrum of an LED white light source

Figure 8: LED light sources and spectrum.
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Figure 9: Variation curve of 10 optical range difference δmax with
recording distance zh (plane wave plus spherical wave).
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improvement of the imaging resolution by the ratio change
at this zh/f1 point is no longer noticeable.

When the recording distance is fixed constant, from the
numerical aperture of the imaging system, which directly
determines the resolution of the imaging system, NAout the
larger the value, the higher the imaging quality, which in this
diffraction mode NAout can be expressed as

NAout =
r
zr

= R0/f1ð Þ zh − f1j j
zh − f1j j = R0

f1
: ð14Þ

Figure 11 gives the variation of mask focal length f1 versus
numerical aperture.

As can be seen from Figure 11, the system’s numerical
aperture decreases as f1 increases, leading to a rapid decrease
in resolution and a decrease in zh/f1 ratio. At this point, the
coherence length of the light source becomes the main factor
limiting the key. Assuming that the coherence length of the
light source is increased to lc = 20μm, R0 = 2:5mm, and the
mask focal lengths f1 are set to 180mm, 230mm, and
280mm, respectively; the relationship between the optical
range difference and the recording distance zh is shown in
Figure 11.

As shown in Figure 12, the lower horizontal line is lc =
10:1μm, and the upper horizontal line is lc = 20μm, f1 =
230mm. For example, zh/f1is the the maximum value for a
coherence length of lc = 10:1μm, when the coherence condi-
tion is met 0.74; zh/f1 is approximately 1.46 when the coher-
ence length is increased to lc = 20μm, which corresponds to
an increase in resolution of roughly two times zh/f1.

Therefore, lc = 10:1; the resolution can be improved in
three ways: (1) When the focal length of the SLM loading
mask is constant, thef1,zhlarger the recording distance, the
better, but the maximum difference in the optical range at
this position must not be greater than 10.1μm. (2) When
the recording distance of the CCD is zhfixed, the smaller
the focal lengthf1of the SLM loading mask, the bigger, but
the minimum difference in optical range here must not be
greater than 10.1μm. (3) Non-coherent light illumination

can change the light source or choose a suitable filter to
reduce the spectral line width to improve the minimum
coherence length. So that the graph 13 of the horizontal line
upward can make in the SLM loaded mask that focal length
isf1constant. The more considerable recording distance can
also meet the minimum coherence length. The recording
distance is zh constant; SLM loaded with a smaller mask
focal length can also meet the minimum coherence length.
The relative increase zh/f1 in the ratio improves the resolu-
tion of the imaging system.

6. Conclusion

Holography was first proposed in 1948, and from the begin-
ning, the coherence of the light source limited the imaging
resolution. The advent of lasers brought a highly coherent
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Figure 10: Variation curve of optical 11 range difference δmax
versus mask focal length f1 (plane wave plus spherical wave).
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light source to holography and introduced coherent noise
into the optical system. As the technology continued to
develop, digital holography emerged as a simple recording
and reproduction process but still required lasers as the illu-
mination source. Noncoherent digital holography frees
holography from the limitations of light sources. It is based
on the principle of spatial self-coherence of point sources,
allowing objects to be illuminated by noncoherent light to
trigger interference to produce holograms, allowing hologra-
phy to be applied to a broader range of fields. Noncoherent
light imaging based on modulators of spatial light solves the
two significant problems of coherence dependence on light
sources and twin image overlap. The optical path is simple,
and the computer makes the recording reduction. This paper
investigates the problem of recording parameters in the
FINCH imaging system and finally validates the theoretical
analysis through experiments, providing a reference for
improving the resolution of incoherent optical coherence
imaging.
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The catenary anchor leg mooring (CALM) system usually moored a heavy oil tanker; due to its complex working mechanism and
special working environment, oil spill accidents are easy to happen. Once the oil spill accident happens, it not only causes huge
economic loss, but also kills the marine ecological environment. Oil spill trajectory model considers almost all weathering
processes including evaporation, emulsification, dispersion, dissolution, photooxidation, sedimentation, and biodegradation.
Model simulations indicated that both tidal currents and wind drag force have significant effect in oil spill movement. The
dominant wind in the area is South-westerly wind during the summer monsoon and North-easterly wind during the winter
monsoon, but South-westerly wind is far stronger and last longer than the North-easterly wind. As a result, oil spill trajectory
is most likely towards offshore to North-east during the summer period (April to September). During the winter period
(November–January), oil spill would move towards shore under North-westerly winds. Once oil reaches shore, it would stay at
shore permanently and eventually sink to seabed or beach in the simulation. Although the model does not consider longshore
drift by waves, oil movement along shore by waves would be a slow process. Therefore, the impact of oil spill during the
winter monsoon would be limited to local area around Ras Markaz.

1. Introduction

The transport of petroleum products to export destinations
is conducted either by pipeline or in oil terminals. Onshore
and offshore terminals are the common types of oil termi-
nals. However, due to geographical and economic condi-
tions, the number of ports available for the construction of
oil terminals is limited, resulting in the increase of secondary
transport costs, the detention of oil tankers arriving at a port,
and other issues. Therefore, it is necessary to study other
types of offshore oil loading/offloading facilities to cooperate
with or replace oil terminals. The most common type of off-
shore terminal is the single point mooring (SPM) of catenary
anchor leg mooring (CALM) type. A typical schematic for
the CALM system is shown in Figure 1 [1]. Since the CALM

system was introduced in 1958 [2], it has operated 85% of
the world’s 700 oil terminals [3, 4], with extensive operations
in Southeast Asia, the Middle East, and West Africa. In par-
ticular, deepwater offloading CALM buoys are being exten-
sively used in West Africa to allow the efficient loading of
spread-moored FPSO [5], and the maximum applied water
depth has reached 1435 meters (Agbami oil field, Nigeria)
[6]. But for the CALM system, due to its complex working
mechanism and special working environment, oil spill acci-
dents are easy to happen [7]. Once the oil spill accident hap-
pens, it not only causes huge economic loss, but also kills the
Marine ecological environment.

Oil spills have been occurring at sea with increasing fre-
quency, pose significant threats to the marine environment,
and often lead to devastating effects on local marine ecology
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[8]. Numerical modeling has become an important tool for
oil spill forecasting, which allows for real time effective
clean-up operations immediately after the occurrence of oil
spill accidents. Thus, recent years have seen a rapid develop-
ment of various mathematical models for simulating and
predicting oil spills. However, the movement and variation
of oil spill in the sea is a complex process, which is influ-
enced by physical, chemical, and biological processes, and
is related to the marine hydrodynamic conditions, meteoro-
logical conditions, and the oil properties. The processes
include oil film expansion, drift, evaporation, emulsification,
dissolution, sedimentation, and adsorption. The study on oil
spills began in the 1960s. Up to now, many scholars in the
world have established and perfected lots of oil spill models.
These may include advection, turbulent diffusion, evapora-
tion, dissolution, emulsification, dispersion, auto-oxidation,
biodegradation, and sinking/sedimentation [9]. In the last
five and six decades, many researchers have studied the pro-
cesses of oil spills, and various oil spill models have been
proposed [10]. Fay [11] divided the oil film expansion into
three stages: inertial expansion, viscous expansion, and sur-
face tension expansion, but did not consider the influence
of wind on horizontal diffusion. Lehr [12] considered the
influence of wind and established a modified Fay-type
spreading equation. Elliott [13] proposed the oil particle
method for the first time, which regards the oil spill as a
large number of oil particles and does not need to solve
the diffusion equation. More and more oil spill models begin
to use the Lagrange oil particle algorithm, which has become
the mainstream method of oil spill trajectory prediction.

Chao et al. [14] established two-dimensional and three-
dimensional oil spill models in Singapore coastal waters
using an oil particle algorithm. Wang et al. [15] established
a double-layer oil particle model. Sebastião and Guedes
Soares [16] introduced a method to determine the uncer-
tainties in the predictions of oil spill trajectories using a clas-
sic oil spill model. The method considers the output of the
oil spill model as a function of random variables, which
are the input parameters, and calculates the standard devia-
tion of the output results which provides a measure of the
uncertainty of the model as a result of the uncertainties of
the input parameters. Vethamony et al. [17] presented an
oil spill occurred off Goa, west coast of India, on 23 March
2005 due to collision of two vessels. The MIKE21 Spill Anal-
ysis model was used to simulate the spill trajectory. The
observed spill trajectory and the slick area were in agreement
with the model simulations. Díaz et al. [18] used the proba-
bilistic particle tracking model to simulate the oil diffusion
after the oil spill from the Prestige wreckage in Galicia.
Guo and Wang [19] based on an oil particle algorithm, com-
bined with the 3-D free-surface hydrodynamics model and
the third-generation wave model, simulated the oil release
in Dalian coastal waters. Mariano et al. [20] developed two
oil particle trajectory prediction systems and applied them
to the 2010 Deepwater Horizon oil spill in the Gulf of Mex-
ico. Yu et al. [21] proposed a random walk parameterization
hindcast method (RWPHM) for the Bohai Sea, in which
random walk is initially parameterized and combined with
remote sensing data and oil-spill models. Perianez [22]
established a Lagrangian oil spill transport model for the
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Figure 1: Schematic of a typical catenary anchor leg mooring (CALM) system.
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Red Sea. The weathering process includes evaporation,
emulsification, natural dispersion, dissolution, photooxida-
tion, sedimentation, adhesion to materials, interaction with
mineral fines, biodegradation, and the formation of tarballs

[23]. Mohamed et al. [24] presented the oil is introduced
to the marine environment; it undergoes a series of natural
processes known as “weathering.” For a successful response
operations and protection, it is critical to precisely estimate
the behavior of the spilled oil. Debra and William [25]
adapted the Fractions Skill Score method, commonly used
in weather forecasting, to oil forecasting. A subset of satellite
images and trajectory forecasts from the Deepwater Horizon
oil spill are used as an example of the method. Pan et al. [26]
demonstrated an operational oil spill forecasting system
established by National Marine Environmental Forecasting
Center (NMEFC). Satellite observations, oil spill models,
and operational met-oceanographic forecasts are integrated
into the system. Until now, many researchers have

Figure 3: Plan shape of Ras Markaz crenulated bay.

Figure 4: View of the crenulated bay from the northern headland
(Ras Markaz is in the background).

Ras Markaz

Ras Madrakah

San Carlos Banks

Duqm

Figure 5: Gulf of Masirah.

Figure 2: Location of Ras Markaz Crude Oil Park.
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investigated the weathering process of the oil spill [27–29],
in which empirical formula based on laboratory test is the
most commonly used method to calculate oil spill weather-
ing [30]. At present, some of the most widely used oil spill
models that can predict the process of oil spill transportation
and fate are as follows: Oil Spill Risk Analysis (OSRA), OIL-
TRANS, Oil Modeling Application Package (OILMAP),
General National Oceanic and Atmospheric Administration
Operational Oil Modeling Environment (GNOME), Oil Spill
Contingency and Response (OSCAR), MEDSLIK-II, Estua-
rine Oil Spill Model (EOSM), and MIKE21 SA model
[31–37].

This study presents the oil spill trajectory modelling
completed for the planning and design of the Crude Oil
Storage Terminal at Ras Markaz on the eastern Arabian
Sea coast. The location of the site and layout of the marine
facilities, which include two SPMs of CALM type and asso-
ciated pipelines, are shown in Figure 2. The purpose of the
modelling is to investigate the trajectory and fate of potential
oil spills through dispersion under the action of the tides,
currents, and winds.

2. Site Conditions

2.1. Geological and Geomorphological Setting. The Ras Mar-
kaz site is located at the southern end of a large shallow bay
extending from Ras Madrakah in the south to Masirah
Island in the north. There is a northerly movement of sedi-
ment through this large bay driven by wave conditions in
the monsoon season. This results in the accretion of sedi-
ment at the northern extremity of the bay to the west of
Masirah Island and within the channel between the island
and the mainland. At Ras Markaz, the oil pipeline trench is
located at the southern end of a shallow crenulated bay cre-

ated by differential erosion between Ras Markaz headland in
the south and a less prominent headland in the north
(Figure 3). The headland cliffs are composed of layered car-
bonate rocks (Figure 4).

2.2. Bathymetry and Locations of Oil Pipelines & SPMs of
CALM Type. The large bay extending from Ras Madrakah
up to Masirah Island has a wide and shallow bathymetry
with depths depth generally less than 30m. This bathymetry
is illustrated in Figure 5. The nearshore bathymetry of the
smaller bay at Ras Markaz can be broken down into three
zones (Figure 6). At the Ras Markaz headland, the bathym-
etry is steep with the 10m contour approximately 500m
from the coastline. For most of the crenulated bay, the near-
shore gradients are significantly shallower with the 10m
contour that is approximately 2.5 km from the coast. In the
southern half of the bay, the nearshore contains a shallow
“plateau” at around 3–6m water depth with steeper slopes
inland and seaward of it. This might indicate a significant
build-up of sand in these areas, forming a wide nearshore
bar. It is likely that sediment transported north has migrated
around Ras Markaz headland and into the crenulated bay
where the sand bar has formed. There may also be a contri-
bution of sediment from the local Wadi. In the north of the
Ras Markaz bay, there is a shallow area, San Carlos Banks
(see Figure 5). This shallow water has been identified as a
potential risk area of vessel grounding and has been selected
for this oil spill trajectory modelling. The oil pipelines and
SPM are located to the south of the bay (Figure 6).

2.3. Physical Processes

2.3.1. Wind Climate. The wind climate along the coast
between Ras Madrakah and Masirah Island is dominated
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Figure 6: Nearshore bathymetry of Ras Markaz crenulated bay.
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by the two monsoon seasons. In the summer monsoon
(April–September), the prevailing conditions are from
south-west. Outside this season, the wave climate is more

moderate with prevailing winds from the north-east.
Figure 7 illustrates monthly and annual wind roses in off-
shore based on hindcasted wind data provided by
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Figure 7: Wind roses (hindcasted wind data from Oceanweather).

Table 1: Wind frequency (hindcasted wind data from Oceanweather).

Wind speed (m/s) 0°N 30°N 60°N 90°N 120°N 150°N 180°N 210°N 240°N 270°N 300°N 330°N Total

0–3 0.57% 0.74% 1.20% 1.52% 1.64% 1.63% 1.62% 1.40% 0.89% 0.48% 0.40% 0.41% 12.5%

3–5 0.71% 1.41% 5.05% 4.90% 3.06% 2.96% 5.17% 4.83% 1.68% 0.42% 0.35% 0.52% 31.1%

5–7 0.64% 1.07% 4.06% 1.29% 0.39% 0.57% 2.84% 8.77% 2.07% 0.15% 0.13% 0.67% 22.7%

7–9 0.31% 0.49% 1.22% 0.12% 0.02% 0.03% 0.48% 9.70% 1.66% 0.01% 0.02% 0.68% 14.7%

9–11 0.09% 0.09% 0.15% 0.01% 0.00% 0.01% 0.03% 8.30% 1.13% 0.00% 0.01% 0.48% 10.3%

11–13 0.01% 0.01% 0.02% 0.00% 0.00% 0.00% 0.00% 5.56% 0.72% 0.00% 0.00% 0.12% 6.5%

13–15 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 1.92% 0.32% 0.00% 0.00% 0.01% 2.3%

Total 2.45% 3.8% 11.7% 7.8% 5.1% 5.2% 10.1% 40.5% 8.5% 1.2% 0.9% 2.9% 100%
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Oceanweather. Table 1 presents the offshore wind data in
wind frequency.

2.3.2. Tidal Range. Local tides are mixed semi-diurnal. The
range at the Ras Markaz site is approximately 1.5m
(between mean higher high water and mean lower low
water) with highest and lowest astronomical tide at
+2.54m CD and+0.14m CD, respectively.

2.3.3. Tidal Currents. Currents at the site are broadly aligned
with the coastline. Flows in a north/north-westerly direction
dominate during the summer monsoon season. Outside this
season, flows are generally in south easterly direction. Currents
are stronger during the monsoon season with flows up 0.5m/
sec at SPM1. The 1 in 1 year current at this location is 1m/
sec driven by strong winds associated with the storm event.

Figures 8 and 9 illustrate modelled peak ebb and flood
tidal currents in the area during the summer and winter
monsoons, respectively. They show that tidal current veloc-
ities (depth-averaged) close to shore are low (less than

0.05m/s to 0.35m/s locally) increasing further offshore
(greater than 0.5m/s).

3. Methodology

3.1. Governing Equations of Tidal Current Motion

3.1.1. Continuity Equation.

∂ζ
∂t

+ ∂ h + ζð Þu½ �
∂x

+ ∂ h + ζð Þν½ �
∂y

= 0: ð1Þ

3.1.2. Momentum Equation.
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+ u
∂u
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+ v
∂u
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− f v

= −g
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+ ∂
∂x
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∂u
∂x

� �
+ ∂
∂y

Ny
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� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Figure 8: Depth-averaged current velocity during spring tide of the summer monsoon (left: ebb and right: flood tides).
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Figure 9: Depth-averaged current velocity during spring tide of the winter monsoon (left: ebb and right: flood tides).
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where ζ is tide level (relative to a datum level); T is time; x
and y are cartesian coordinates; u, v is the flow velocity in x
and y directions; h is water depth (relative to a datum level);
Nx and Ny are turbulence viscosity coefficients in x and y
directions; f is Coriolis parameter; g is the acceleration of
gravity; and f b is the friction coefficient at the bottom.

3.2. Spatial Discrete Calculation of the Model. For shallow
water equations in the Cartesian coordinate system, CFL
can be defined as

CFLHD =
ffiffiffiffiffiffi
gh

p
+ uj j

� � Δt
Δx

+
ffiffiffiffiffiffi
gh

p
+ vj j

� � Δt
Δy

, ð3Þ

where CFLHD is the Courant–Friedrichs–Lewy condition in
the hydrodynamic module, h is the total water depth, u
and v are the velocity component in x and y direction, Δx
and Δy are the characteristic distance in x and y direction,
Δt is the time interval, and g is the gravitational acceleration.

3.3. Oil Spill Trajectory Model

3.3.1. Expansion Process. Take the below equation:

dAo

dt
= Ka∙A

1/3
o ∙

Vo

Ao

� �4/3
, ð4Þ

where Ao is the oil film area, Ao = πR2
o, Ro is oil film diame-

ter, t is time, Ka is diffusion coefficient; Vo = R2
oπh, and h is

the initial oil film thickness.

3.3.2. Transport Process

(i) Drift motion

Ut = Cw∙Uw +U s: ð5Þ

In Δt time, the position change equation of oil parti-
cles is

X = X0 + uΔt + CωUω sin θΔt,
Y = Y0 + vΔt + CωUω cos θΔt:

ð6Þ

where X0 and Y0 are the initial position of the oil
film; Utis the total drift velocity; U s is the surface
flow velocity; u and v are the current velocity; Uω
is the wind speed (10m above the sea surface); θ is
the wind direction angle; and Cω is the wind drift
coefficient, usually 0.03-0.04.

(ii) Turbulent diffusion

Sa = R½ �+1−1∙
ffiffiffiffiffiffiffiffiffiffiffiffi
6DaΔt

p
, ð7Þ

where Sa is the random walking distance in the a
direction within a time step, Da is the diffusion coef-
ficient in the a direction, t is the diffusion time, and
½R�+1−1 is the random number from -1 to 1.

3.3.3. Weathering Process. Oil spill model considers almost
all weathering processes including evaporation, emulsifica-
tion, dispersion, dissolution, photooxidation, sedimentation,
and biodegradation (see Figure 10).

(i) Evaporation

dQ
dt

= K2PAo

RT
∙f ∙M,

K2 = k∙A0:045
o · S −2/3ð Þ

c ·U0:78
w ,

ð8Þ

where dQ/dt is the evaporation rate; K2 is the mass
transfer coefficient (k is the evaporation coefficient, Sc
is the Schmidt number, and Uw is the wind speed), P
is vapor pressure, Ao is the oil film area, f is the evapo-
ration fraction, and R is the constant

(ii) Emulsification

Yw =
KA 1 − e−KAKB 1+Uwð Þ2 t

� �
KB

, ð9Þ

where Ywis the moisture content of the emulsion,
KA = 4:5 × 10−6, KB = 1/Yw, and Yw is the final
moisture content

(iii) Dispersion

Qd = CD0:57SFd0:7Δd, ð10Þ

where C is the encoder coefficient, D is the wave
energy dissipation, S is the fraction of sea surface
covered by oil, F is the fraction covered by broken
wave, d is the average diameter of oil droplets, and
Δd is the size interval of oil droplets

(iv) Dissolution

Dv = K1∙A∙
Mv

Mt
∙ρ1∙f D∙CV ,

Dh = K2∙A∙
Mh

Mt
∙ρ2∙f D∙Ch,

ð11Þ
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where K1 and K2 are the volatilization and recombi-
nation fraction; Mv and Mh are the volatilization and
recombination fraction mass, respectively; Mt is the
total mass of oil particles; ρ1 and ρ2 are the volatiliza-
tion and recombination fraction density, respectively;
A is the oil film area, f D is the chemical dispersant
effect; andCV andCh are the volatilization and recom-
bination fraction water solubility, respectively

3.3.4. Heat Transfer Process

(i) Heat transfer between oil film and air can be
expressed as

Hoil−air
T = Aoilk

oil−air
H Tair − Toilð Þ,

Table 2: Model setup main parameters.

Parameters Settings

Time step (s) 30

Simulation time after oil release (days) 60

Number of vertical layers 8

Horizontal dispersion coefficients (m2/s)
20 in the area around the site where fine mesh is applied;

200 in other areas where coarse mesh is applied

Vertical dispersion coefficients (m2/s) 0.01

Number of oil particles release (each run) 720

Oil property
4 fractions of oil (volatile oil, heavy oil, asphaltene and wax)

are related to Guafita crude oil)

Spreading (terminal thickness) (m) 0.0001

Biodegradation (decay rate in per day)
Volatile fraction: 0.005
Heavy fraction: 0.0

Emulsification

Maximum water fraction: 0.85
Kao constant: 3.3
Kaw constant: 200

Emulsion rate: 2.0 × 10-6 s/m3

Water solubility (kg/kg)
Volatire fraction: 2.0 × 10-5

Heavy fraction: 2.0 × 10-7

Volumentric temperature (1/°C)
Volatire fraction: 0.0007
Heavy fraction: 0.0007

Dissolution (per day) 0.4

Wind

Spreading

Wave turbulence

Emulsification

Dissolution

Turbulent mixing

Wind drift and
current transport

Oil droplets Dispersion

Toxicity

Biodegradation
Aquatic organisms
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Figure 10: Weathering processes of oil in marine environmental in open water.
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Koil−air
H = KmρaCpa

Sc
Pr

� �0:67

air
,

Pr =
Cpaρa

0:0241 0:18055 + 0:003Tairð Þ , ð12Þ

where Sc is the Schmidt number, koil−airH is the heat
transfer coefficient, Toil is the oil film temperature,
Tair is the air temperature, Pr is the air prandt1

number, Cpa is the atmospheric heat capacity, and
ρa is the atmospheric density

(ii) Heat transfer between oil film and water can be
expressed as

Hoil−water
T = Aoilk

oil−water
H Twater − Toilð Þ,

Koil−water
H = 0:332 + rwCpw Re−0:5Pr−2/3w ,
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Figure 12: Initial oil spill locations.
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Prw = CpwVwρw
1

0:330 + 0:000848 Tw−273:15ð Þ
� �

,

ð13Þ

where Twater is the temperature of water, Prw is the
number of prandt1 of water, Cpw is the water heat
capacity, and ρw is the density of water

(iii) Solar radiation

H tð Þ = Kt ·Hmax
o · sin π

t − tsunrise

tsunset − tsunrise

� �
tsunnrise < t < tsunset

0, otherwise
,

8><
>:

tsunset = tsunrise + Td ,
ð14Þ

where tsunrise is the sunrise time, tsunset is the sunset
time, and Td is the day length

(iv) Transmitting and receiving radiation

Hrad
total = σ lair · T4

air + lwaterT
4
water − 2loilT4

oil
	 


, ð15Þ

where lair is the atmospheric emissivity, lwater is the
water emissivity, loil is the oil emissivity,Tair is the
air temperature, Twater is the water temperature, Toil
is the oil temperature, and σ is the Boltzman constant

(v) Evaporative heat loss

Hvapor = 〠
numberofcomponents

i

Ni · ΔHvi,

(m
)
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Figure 13: Map of maximum oil concentration for scenario 1 (subsurface blowout: 16,000m3 spill at SPM1) (under typical wind in the
winter monsoon).
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dToil
dt

= 1
ζCph

1 − að ÞH + lairT
4
air + lwaterT

4
water − 2loil · T4

oil
	 
� �

+ how Twater − Toilð Þ + hoa Tair − Toilð Þ−〠NiΔHvi

+ dVwater
dt

ζw · Cpw + dVoil
dt

ζoilCpoil

� �

· Twater − Toilð Þ · Aoil,
ð16Þ

where ΔHvi is the vaporization heat of i, dVwater/dt is
the water absorption rate, dVoil/dt is the amount of
oil droplets dispersed by upwelling, and Cpo and
Cpw are the heat capacity of oil and water, respectively

3.4. Model Setup. The model simulation was carried out for a
duration of 60 days covering 4 spring-neap tidal cycles for
typical summer and winter monsoon wind conditions, and
also all-year wind frequency presented in Table 2.

Sensitivity tests have been carried out for an optimized
particle number for sensible balance between accuracy and

computational time. The model results have been compared
between the use of 720 particles and 7,200 particles, and the
difference was found marginal.

3.5. Modelled Oil Type. For more accurate predictions of
weathering processes, the oil is divided into fractions (so-
called pseudo-components). Therefore, for modelling pur-
pose, it is required to find specific oil characteristics, either
from a database or by laboratory tests. In this study, approach
of describing an oil by 4 fractions, namely, volatile oil, heavy
oil, asphaltene and wax, and the established oil spill template.
In this oil spill trajectory modelling, Guafita Crude Oil was
simulated, which is described by the following 4 fractions [38]:

(i) Volatile oil: 28.5 (25-32%)

(ii) Heavy oil: 53% (47-59%)

(iii) Asphaltene: 16% (10-22%)

(iv) Wax: 2.5%
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Figure 14: Map of maximum oil concentration for scenario 1 (sub-surface blowout: 16,000m3 spill at SPM1) (under typical wind in the
summer monsoon).
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3.6. Run Scenarios. The following three spill scenarios were
simulated:

(a) Surface blowout: 16,000m3oil release within one
hour at SPM1

(b) Subsea blowout; 16,000m3 oil release within one
hour at the trench exit of buried oil pipe

(c) Spill from vessel collision at the mostly likely vessel
collision area: 4,500m3 oil release within six hours

The most likely vessel collision area is at San Carlos Banks
(shown in Figure 5) which is approximately 26km in the north
of the site. A comparison of historic oil spills (from ITOPF
[39]) shows that spills exceeding 700 tonnes (approx. 700m3)
are rare (and much rarer than oil spills smaller than 700
tonnes) (refer to Figure 11). The oil spill due to grounding of
approx. 4,500 tonnes (4,500m3) is therefore considered a rea-
sonable figure based on historical spill data.

The initial oil spill locations are shown in Figure 12. It
should be noted that scenarios I and II above also are
deemed to cover, in terms of oil release volume and location,
the scenario of two VLCCs colliding at the SPM location.
From a planning and response perspective, minor variations
in the release point are not considered significant. With

regard to oil spills related to hose cleaning, the volumes asso-
ciated with this type of oil spill is considered minimal, and it
is not deemed required to model such a scenario.

4. Model Results and Discussion

4.1. Map of Maximum Oil Concentration. Results were
extracted over the entire model domain to investigate the
extent of the oil spill plumes. Figures 13 and 14 provide two
dimensional maps of maximum oil concentration (of 60-day
simulation) for the oil spill scenario 1 under typical summer
and winter wind conditions. Maps of maximum oil concentra-
tion were selected from oil release at 13 different tidal phases
and neap and spring tidal cycles for the worst cases (i.e., max-
imum extent of oil spreading). It should be noted that concen-
trations of dissolved aromatics in the water column are usually
small and not considered in the oil spill response plan and
have therefore not been considered.

4.2. Temporal Changes in Oil Concentration at Initial Spill
Locations. The model results were extracted at the initial
spill locations (shown in Figure 15) to investigate the
changes in oil concentration at those locations. Figure 15
illustrates a sample time-series plot of oil concentration at
SPM1 for oil spill scenario 1 under typical winter wind

Time series extraction points NCN_126

CN_60

I_1

I_15

CN_1
AOI_338

AOI_1
CS_108

Service Layer Credits: Source: Esri, DigitalGlbe, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

km
100500

CS_50

CS_1

Area of Interest (AOI)

Coast (North)

Coast (South)

Masirah Island

Figure 17: Shoreline points that time series data were extracted for duration statistical analysis.
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condition. It is noted that oil concentration raised immedi-
ately after oil spill, but oil concentration is reduced to ambi-
ent level within 1-2 days. This is because oil movement
under prevailing winds is almost in a transverse direction
to the tidal flow. As a result, spill oil does not return to its
release point under the influence of prevailing winds.

4.3. Probability of Oil Contamination. The probabilities of
water surface oiling have been processed from model simu-
lations for annual wind frequency for oil thickness above
0.01μm, 1μm, and 10μm and also for oil concentration
above 58 ppb. The contour maps of probabilities of thickness
above 0.01μm, 1μm, and 10μm and of oil concentration
above 58 ppb are identical. The reason is that the accuracy
of this oil spill model was limited to oil thickness above
10μm. Figure 16 shows a two-dimensional map of probabil-
ities of oil thickness above 10μm for the oil spill scenario 1.

4.4. Shoreline Impact. In order to analyze shoreline impact by
oil spill, time series of oil concentration and thickness were
extracted from model results. Those shoreline points are illus-
trated in Figure 17. Points in the “Area of Interest” (AOI) are
set to 200m interval between Ras Madrakah and South of
Duqm. Points in other coastlines, namely “Coast North”
(CN series), “Coast South” (CS series) and “Island” (I series),
are set at 5 km interval. The impact to “Coast North” is limited
to the Gulf of Masirah. “Coast South” received little oil except
those points close to Ras Madrakah headland.

5. Conclusive Remarks

The modelling results indicate that both tidal currents and
wind drag force have a significant effect in oil spill movement.
The dominant wind in the area is South-westerly wind during
the summer monsoon and North-easterly wind during the
winter monsoon, but South-westerly wind is far stronger and
last longer than the North-easterly wind. As a result, oil spill
trajectory is most likely towards offshore to North-east during
the summer period (April to September). During the winter
period (November–January), oil spill would move towards
shore under North-westerly winds. Once oil reaches shore, it
would stay at shore permanently and eventually sink to seabed
or beach in the simulation. Although the model does not con-
sider longshore drift by waves, oil movement along shore by
waves would be a slow process. Therefore, the impact of oil
spill during the winter monsoon would be limited to local area
around Ras Markaz. Oil can spread quickly to offshore under
South-westerly wind, and oil can reach to as far as Masirah
Island in the north. However, oil concentrations at the key
environmentally sensitive locations are low except Coral Head
1. It is noticed that oil movement under prevailing winds is
almost in a transverse direction to the tidal flow. As a result,
spill oil does not return to its release point under the influence
of prevailing winds.
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In this note, we characterize Sasakian manifolds endowed with ∗-η-Ricci-Yamabe solitons. Also, the existence of ∗-η-Ricci-
Yamabe solitons in a 5-dimensional Sasakian manifold has been proved through a concrete example.

1. Introduction

In 1982 (resp., 1988), Hamilton introduced the idea of Ricci
flow [1] (resp., Yamabe flow [2]). On a smooth Riemannian
(or semi-Riemannian manifold), the Yamabe flow is deter-
mined as the evolution of the Riemannian (or semi-Rie-
mannian) metric g0 at time t to g = gðtÞ using the
following equation:

∂
∂t

g tð Þ = −rg, g 0ð Þ = g0, ð1Þ

where rðtÞ refers to the scalar curvature of the metric gðtÞ. In
case n = 2, the Yamabe and Ricci flows are related as in the
following equation:

∂
∂t

g tð Þ = −2S g tð Þð Þ, ð2Þ

where S defines the Ricci tensor. Thus, for the case n > 2,
there is not such an equivalence, since the Yamabe flow pre-
serves the conformal class of metric but generally this is not
true.

The solutions of both Ricci and Yamabe flows are pre-
sented as Ricci and Yamabe solitons, respectively. On a Rie-
mannian manifold M, the Ricci and Yamabe solitons are

defined by

£Fg + 2S + 2λg = 0,

£Fg + 2 λ − rð Þg = 0,
ð3Þ

respectively, where £F is the Lie derivative operator along
vector field F (called soliton vector field) at M and λ ∈ℝ,
where ℝ is the set of real numbers. Recently in 2018, Desh-
mukh and Chen ([3, 4]) briefly studied Yamabe solitons to
find sufficient conditions at the soliton vector field so that
the metric of the Yamabe soliton is of constant scalar curva-
ture. Yamabe solitons have also been studied in ([5–8]) and
many others.

In 2019, Ricci-Yamabe flow, as a new class of geometric
flows of the type ðα, βÞ, was presented by Güler and Cras-
mareanu [9] and defined as

∂
∂t

g tð Þ = βr tð Þg tð Þ − 2αS g tð Þð Þ, g 0ð Þ = g0: ð4Þ

After Güler and Crasmareanu, Dey [10] proposed the
concept of Ricci-Yamabe solitons; according to him, the
Ricci-Yamabe soliton of the type ðα, βÞ is a Riemannian
manifold that admits

1
2
£Fg + αS + λ −

βr
2

� �
g = 0, ð5Þ
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where α, β ∈ℝ. In addition, it is noted that Ricci-Yamabe
solitons of types ðα, 0Þ and ð0, βÞ are known as α-Ricci soli-
tons and β-Yamabe solitons, respectively.

The concept of ∗-Ricci soliton was investigated by Kai-
makamis and Panagiotidou [11] in case of real hypersurfaces
at complex space forms. More specifically, it is noted that the
concept of ∗-Ricci tensor was presented firstly by Tachibana
[12] in almost Hermitian manifolds, and later by Hamada
[13] to consider different case which is the real hypersurfaces
of nonflat complex space forms. The Riemannian metric g
on the smooth manifold M is named the ∗-Ricci soliton in
case F, a smooth vector field and λ ∈ℝ obeying:

1
2
£Fg = −S∗ − g, ð6Þ

where

S∗ K , Lð Þ = g Q∗K , Lð Þ = Trace φ ∘ R K , φLð Þf g, ð7Þ

for every vector fields K , L onM, as well as Q∗ and S∗ are the
∗-Ricci operator and the ∗-Ricci tensor, respectively. In this
connection, we recommend the papers ([14–21]) for the spe-
cific contents regarding Ricci, η-Ricci, and ∗-Ricci solitons
in case of contact Riemannian geometry. In [22], the authors
studied gradient Yamabe, gradient Einstein, and quasi-
Yamabe solitons on almost co-Kähler manifolds.

Recently, Dey and Roy [23] presented the concept of ∗-η
-Ricci soliton in Sasakian manifolds. The Riemannian man-
ifold ðM, gÞ is named ∗-η-Ricci soliton in case

1
2
£ζg + S∗ + λg + μη ⊗ η = 0: ð8Þ

Motivated by previous studies, we introduce the notion
of ∗-η-Ricci-Yamabe soliton of type ðα, βÞ which is a Rie-
mannian manifold satisfying

1
2
£Fg + αS∗ + λ −

βr
2

� �
g + μη ⊗ η = 0, ð9Þ

for α, β, λ, μ ∈ℝ. The ∗-η-Ricci-Yamabe soliton is described
as shrinking, steady or expanding if it admits the soliton vec-
tor for which λ < 0, = 0 or >0, respectively. Particularly, if
μ = 0, then this concept of ∗-η-Ricci-Yamabe soliton ðg, F,
λ, μ, α, βÞ reduces to a concept of ∗-Ricci-Yamabe soliton ð
g, F, λ, α, βÞ.

Throughout the paper, we denote a ð2n + 1Þ-dimen-
sional Sasakian manifold by MS

2n+1, ∗-Ricci-Yamabe soliton
by ∗-RYS, and ∗-η-Ricci-Yamabe soliton by ∗-η-RYS. We
present our work as follows: Section 2 includes essential
results and some basic definitions of Sasakian manifolds.
Section 3 covers the study of ∗-η-RYS on MS

2n+1 leading to
several significant characterizations of the manifold. Section
4 deals with the study of pseudo-Ricci-symmetric and Ricci
recurrent MS

2n+1 admitting ∗-η-RYS. The ∗-η-RYS on
MS

2n+1 satisfying the curvature conditions Rðζ, XÞ · S = 0

and Qðg, SÞ = 0 have been studied in Sections 5 and 6,
respectively.

2. Preliminaries

A ð2n + 1Þ-dimensional differentiable manifold M is said to
admit an almost contact structure, sometimes called a ðφ, ζ
, ηÞ-structure, in case it admits a (1,1) type tensor field φ, a
structure vector field ζ, and a 1-form η satisfying [24]

φ2 = −I + η ⊗ ζ, η ζð Þ = 1, φζ = 0, η ∘ φ = 0: ð10Þ

The almost contact structure is called normal in case ℵ
+ dη ⊗ ζ = 0, where ℵ is the Nijenhuis tensor of φ: Consid-
ering the Riemannian metric tensor g that is defined on M
and satisfies

g φK , φLð Þ = g K , Lð Þ − η Kð Þη Lð Þ, η Kð Þ = g K , ζð Þ, ð11Þ

for any K , L ∈XðMÞ, where XðMÞ refers to the set of all
smooth vector fields ofM. The structure ðφ, ζ, η, gÞ is named
the almost contact metric structure. Next, considering Φ, the
tensor field of type ð0, 2Þ as ΦðK , LÞ = gðΦK , LÞ. In case dη
=Φ, then the structure ðφ, ζ, η, gÞ is named as normal met-
ric structure. The normal contact metric structure is named
Sasakian structure satisfying ([25–27]):

∇Kφð ÞL = g K , Lð Þζ − η Lð ÞK , ð12Þ

for any K , L ∈XðMÞ, where ∇ stands for the Levi-Civita
connection.

In case of MS
2n+1, we have

R ζ, Kð ÞL = g K , Lð Þζ − η Lð ÞK , ð13Þ

R K , Lð Þζ = η Lð ÞK − η Kð ÞL, ð14Þ

S K , ζð Þ = 2nη Kð Þ⇐Qζ = 2nζ, ð15Þ

∇Kζ = −φK , ð16Þ

∇Kηð ÞL = −g φK , Lð Þ, ð17Þ
for any K , L ∈XðMÞ; R and Q refers to the curvature ten-

sor and the Ricci operator.

Definition 1. A Sasakian manifold is called an η-Einstein in
case the non-vanishing Ricci tensor S is expressed as

S K , Lð Þ = ag K , Lð Þ + bη Kð Þη Lð Þ, ð18Þ

where a, b ∈ C∞ðMÞ. In particular, if b = 0, then M is named
as an Einstein manifold.

Definition 2. The vector field V is named as an affine confor-
mal vector field in case it satisfies [28]

£V∇ð Þ K , Lð Þ = L ρð ÞK + K ρð ÞL − g K , Lð Þgradρ, ð19Þ
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where ρ ∈ C∞ðMÞ. In case ρ ∈ℝ, then V is called an affine
vector field.

Lemma 3. The ∗ -Ricci tensor of MS
2n+1 is given by [14]

S∗ K , Lð Þ = S K , Lð Þ − 2n − 1ð Þg K , Lð Þ − η Kð Þη Lð Þ, ð20Þ

for any K , L ∈XðMÞ:

3. ∗-η-Ricci-Yamabe Solitons on Sasakian
Manifolds

First, we prove the following:

Theorem 4. An MS
2n+1 admitting ∗ - η -RYS ðg, ζ, λ, μ, α, βÞ

is an η -Einstein manifold of the constant scalar curvature.
Moreover, the scalars λ, μ related to each other by λ + μ = β
r/2.

Proof. Let the metric of anMS
2n+1 be ∗-η-RYS ðg, ζ, λ, μ, α, βÞ

, then Equation (9) turns to

g ∇Kζ, Lð Þ + g K , ∇Lζð Þ + 2αS∗ K , Lð Þ + 2λ − βrð Þg K , Lð Þ + 2μη Kð Þη Lð Þ = 0,

ð21Þ

for all vector fields K as well L on M. Using (16), Equation
(21) leads to

S∗ K , Lð Þ = −
1
α

λ −
βr
2

� �
g K , Lð Þ − μ

α
η Kð Þη Lð Þ, α ≠ 0: ð22Þ

Using (20), (22) takes the form

S K , Lð Þ = σ1g K , Lð Þ + σ2η Kð Þη Lð Þ, ð23Þ

where σ1 = 2n − 1 − ð1/αÞðλ − ðβr/2ÞÞ and σ2 = 1 − ðμ/αÞ.
By putting L = ζ at (23) as well the use of (10) and (11),

we have

S K , ζð Þ = σ1 + σ2ð Þη Kð Þ, ð24Þ

where σ1 + σ2 = 2n − ð1/αÞðλ + μ − ðβr/2ÞÞ.
In view of (15), from (24), it follows that

λ + μ =
βr
2
, where α ≠ 0: ð25Þ

On contracting (23), we find r = σ1ð2n + 1Þ + σ2, which
by using the values of σ1, σ2 and (25) leads to

r = 2n 2n +
μ

α

� �
, ð26Þ

where μ and αð≠ 0Þ are constants. Thus, (23) together with
(25) and (26) leads to the statement of Theorem 4.

Particularly, taking μ = 0 in (23) as well in (25) resulted
in SðK , LÞ = ð2n − 1ÞgðK , LÞ + ηðKÞηðLÞ and λ = 2n2β,
respectively, being r = 4n2. Thus, we have the following.

Corollary 5. An MS
2n+1 admitting ∗ -RYS ðg, ζ, λ, α, βÞ is an

η -Einstein manifold, and the soliton is shrinking, steady or
expanding according to β < 0, = 0 or >0, respectively.

Next, we prove the following.

Theorem 6. If an MS
2n+1 admits ∗-η-RYS ðg, F, λ, μ, α, βÞ

such that the vector field F represents an affine conformal vec-
tor field. Then, MS

2n+1 is an η-Einstein manifold, and F is an
affine vector field.

Proof. The use of (20) in (9) gives

£Fgð Þ L,Uð Þ = −2αS L,Uð Þ + 2α 2n − 1ð Þ − 2λ − βrð Þ½ �g L,Uð Þ
+ 2 α − μð Þη Lð Þη Uð Þ:

ð27Þ

Referencing Yano [29], the expression

£F∇Kg − ∇K£Fg − ∇ F,K½ �g
� �

L,Uð Þ
= −g £F∇ð Þ K , Lð Þ,Uð Þ − g £F∇ð Þ K ,Uð Þ, Lð Þ,

ð28Þ

is well-known for all K , L,U atM. As g is parallel respecting
to ∇, the previous equation turns to

∇K£Fgð Þ L,Uð Þ = g £F∇ð Þ K ,Uð Þ, Lð Þ + g £F∇ð Þ K , Lð Þ,Uð Þ,
ð29Þ

as a result of (19), it leads to

∇K£Fgð Þ L,Uð Þ = 2K ρð Þg L,Uð Þ: ð30Þ

Taking the covariant derivative of (27) respecting to K
and using (17), we have

∇K£Fgð Þ L,Uð Þ = −2α ∇KSð Þ L,Uð Þ + βK rð Þg L,Uð Þ
− 2 α − μð Þ g φK , Lð Þη Uð Þ + g φK ,Uð Þη Lð Þð Þ:

ð31Þ

Putting L =U = ζ in (31) and using (10), (11), (15), and
(30), we get

2K ρð Þ = βK rð Þ: ð32Þ

From (30)–(32), we find

α ∇KSð Þ L,Uð Þ + α − μð Þ g φK , Lð Þη Uð Þ + g φK ,Uð Þη Lð Þð Þ = 0,
ð33Þ
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which by replacing U = ζ gives

∇KSð Þ L, ζð Þ = μ

α
− 1

� �
g φK , Lð Þ, α ≠ 0: ð34Þ

Now, the covariant differentiation of (15) yields

∇KSð Þ L, ζð Þ = S L, φKð Þ − 2ng φK , Lð Þ: ð35Þ

From (34) and (35), it follows that

S L, φKð Þ = 2n − 1 +
μ

α

� �
g φK , Lð Þ: ð36Þ

By replacing K by φK in (36) and using (10), we get

S K , Lð Þ = 2n − 1 +
μ

α

� �
g K , Lð Þ − μ

α
− 1

� �
η Kð Þη Lð Þ, α ≠ 0:

ð37Þ

The contraction of (37) gives r = 2nð2n + μ/αÞ: There-
fore, from (32), it follows that KðρÞ = 0. This implies that ρ
∈ℝ; therefore, F is an affine vector field. This completes
the proof.

Furthermore, we prove the following.

Lemma 7. An MS
2n+1 satisfies the following equations:

∇LQð Þζ =QφL − 2nφL, ð38Þ

∇ζQ
� �

L = 2QφL, ð39Þ
where Q refers to the Ricci operator.

Proof. Differentiating Qζ = 2nζ along L and using (16), we
get (38). Next, differentiating (14) along W and using (16),
we find

∇WRð Þ K , Lð Þζ = R K , Lð ÞφW − g φW, Lð ÞK + g φW, Kð ÞL:
ð40Þ

Taking a frame field and then contracting (40), we get

〠
2n+1

i=1
g ∇ei

R
� �

ei, Lð Þζ,U� �
= −S L, φUð Þ + 2ng φL,Uð Þ: ð41Þ

From Bianchi’s second identity, we can easily obtain that

〠
2n+1

i=1
g ∇ei

R
� �

ei, Lð Þζ,U� �
= ∇USð Þ ζ, Lð Þ − ∇ζS

� �
U , Lð Þ:

ð42Þ

By equating (41) and (42), then using (38), Equation (39)
follows.

Now, we prove the next theorem:

Theorem 8. If an MS
2n+1 admits ∗ - η -RYS ðg, F, λ, μ, α, βÞ

such that the vector field F represents the gradient Dr of r
defined by (9), then either F is a pointwise collinear with
the structure vector field ζ or β = −2.

Proof. Suppose an MS
2n+1 admits ∗-η-RYS ðg, F, λ, μ, α, βÞ

such that the vector field F represents the gradient Dr of r,
i.e., F =Dr. Then, from (9), we find

∇KDr = −αQK − λ −
βr
2

− α 2n − 1ð Þ
� �

K + α − μð Þη Kð Þζ,

ð43Þ

for any K on M.
The covariant differentiation of (43) respecting to L and

the use of (16) and (17) leads to

∇L∇KDr = −α ∇LQð ÞK +Q ∇LKð Þð Þ − λ −
βr
2

− α 2n − 1ð Þ
� �

∇LK

+
β

2
L rð ÞK + α − μð Þ −g φK , Lð Þζ + η ∇LKð Þζ − η Kð ÞφLð Þ:

ð44Þ

Interchanging K and L in (44), we have

∇K∇LDr = −α ∇KQð ÞL +Q ∇KLð Þð Þ − λ −
βr
2

− α 2n − 1ð Þ
� �

∇KL

+
β

2
K rð ÞL + α − μð Þ −g φL, Kð Þζ + η ∇KLð Þζ − η Lð ÞφKð Þ:

ð45Þ

In view of (43), we also have

∇ K ,L½ �Dr = −αQ ∇KLð Þ + αQ ∇LKð Þ − λ −
βr
2

− α 2n − 1ð Þ
� �

∇KL

+ λ −
βr
2

− α 2n − 1ð Þ
� �

∇LK + α − μð Þ η ∇KLð Þζ − η ∇LKð Þζð Þ:

ð46Þ

From (44)–(46), we get

R K , Lð ÞDr = α ∇LQð ÞK − ∇KQð ÞLð Þ + β

2
K rð ÞL − L rð ÞKð Þ

+ α − μð Þ 2g K , φLð Þζ + η Kð ÞφL − η Lð ÞφKð Þ:
ð47Þ

By replacing K by ζ in (47) and using (10), (13), (38),
and (39), we get

L rð Þζ − ζ rð ÞL = −α QφL + 2nφLð Þ + β

2
ζ rð ÞL − L rð Þζð Þ + α − μð ÞφL:

ð48Þ

The inner product of (48) with ζ leads to

1 +
β

2

� �
L rð Þ − ξ rð Þη Lð Þð Þ = 0: ð49Þ
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Therefore, we have either β = −2 or F =Dr = ξðrÞξ, that
is, F is pointwise collinear with ζ. The proof is completed.

4. Pseudo-Ricci-Symmetric and Ricci-Recurrent
Sasakian Manifolds Admitting ∗-η-Ricci-
Yamabe Solitons

Definition 9. The non-flatMS
2n+1 is named pseudo-Ricci-

symmetric and is represented by ðPRSÞ2n+1, in case the Ricci
tensor Sð≠ 0Þ of the manifold satisfies the condition [30]

∇USð Þ K , Lð Þ = 2A Uð ÞS K , Lð Þ + A Kð ÞS U , Lð Þ + A Lð ÞS U , Kð Þ,
ð50Þ

where the non-zero 1-form A is given by gðU , ζÞ = AðUÞ, ∀
vector fields U ; ζ being the vector field that corresponds to
the associated 1-form A. In particular, if A = 0, then MS

2n+1
is called Ricci-symmetric.

The covariant derivative of (23) leads to

∇USð Þ K , Lð Þ = σ2 g U , φKð Þη Lð Þ + g U , φLð Þη Kð Þ½ �: ð51Þ

Now, using (23) and (51), (50) becomes

σ2 g U , φKð Þη Lð Þ + g U , φLð Þη Kð Þ½ �
= 2A Uð Þ σ1g K , Lð Þ + σ2η Kð Þη Lð Þ½ �

+ A Kð Þ σ1g U , Lð Þ + σ2η Uð Þη Lð Þ½ �
+ A Lð Þ σ1g U , Kð Þ + σ2η Uð Þη Kð Þ½ �:

ð52Þ

Choosing U = L = ζ, (52) reduces to AðKÞ = −3AðζÞηðKÞ
which by putting K = ζ gives AðζÞ = 0. This implies that Að
KÞ = 0. Thus, we have the following.

Theorem 10. A pseudo-Ricci-symmetric MS
2n+1 admitting ∗ -

η -RYS ðg, ζ, λ, μ, α, βÞ is Ricci-symmetric.

Definition 11 [31]. An MS
2n+1 is named as Ricci-recurrent in

case there exists a 1-form ωð≠ 0Þ holds:

∇KSð Þ L,Uð Þ = ω Kð ÞS L,Uð Þ: ð53Þ

for all K , L and U on M and 1-form ω:

By the use of (51) in (53), we find

σ2 g K , φLð Þη Uð Þ + g K , φUð Þη Lð Þ½ � = ω Kð ÞS L,Uð Þ, ð54Þ

which by putting U = ζ then using (10) and (15) reduces to

σ2g K , φLð Þ = 2nω Kð Þη Lð Þ: ð55Þ

By taking ω = η, (55) takes the form

σ2g K , φLð Þ = 2nη Kð Þη Lð Þ: ð56Þ

Now, replacing K by φK in (56) and using (10), we find

σ2g φK , φLð Þ = 0: ð57Þ

Since gðφK , φLÞ ≠ 0, therefore, we obtain σ2 = 0. This
leads to μ = α: Hence, by the use of (25), we have λ = −α +
βr/2: Therefore, we give the next theorem.

Theorem 12. If a Ricci-recurrent MS
2n+1 admits ∗ - η -RYS

ðg, ζ, λ, μ, α, βÞ, then λ = −α + βr/2 as well μ = α.

Hence, by using these values of λ and μ in (23), we
obtain

S K , Lð Þ = 2ng K , Lð Þ: ð58Þ

Thus, we state:

Corollary 13. A Ricci-recurrentMS
2n+1 admitting a ∗ - η -RYS

ðg, ζ, λ, μ, α, βÞ defines an Einstein manifold.

5. Sasakian Manifolds Admitting ∗-η-Ricci-
Yamabe Solitons Satisfying Rðζ, XÞ · S = 0

Considering an MS
2n+1 admitting ∗-η-RYS ðg, ζ, λ, μ, α, βÞ

which satisfies Rðζ, XÞ · S = 0, this implies that

S R ζ, Kð ÞL,Uð Þ + S L, R ζ, Kð ÞUð Þ = 0, ð59Þ

for all K , L,U onM: In view of (23) and the symmetries of R
, (59) takes the form

σ2 g K , Lð Þη Uð Þ + g K ,Uð Þη Lð Þ − 2η Kð Þη Lð Þη Uð Þð Þ = 0,
ð60Þ

which by taking U = ζ then using (10) and (11) turns to

σ2g φK , φLð Þ = 0: ð61Þ

From (61), it follows that σ2 = 0, which leads to μ = α;
hence, (25) gives λ = βr/2 − α: This helps us to state:

Theorem 14. For an MS
2n+1 admitting ∗ - η -RYS ðg, ζ, λ, μ

, α, βÞ that satisfies Rðζ, XÞ · S = 0, we have λ = −α + βr/2
and μ = α.

Now by using λ = −α + βr/2 and μ = α, (23) takes the
form

S K , Lð Þ = 2ng K , Lð Þ: ð62Þ

Thus, we have:

Corollary 15. In case an MS
2n+1 satisfies Rðζ, XÞ · S = 0 and

admits ∗ - η -RYS ðg, ζ, λ, μ, α, βÞ, then it defines an Einstein
manifold.
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6. Sasakian Manifolds Admitting ∗-η-Ricci-
Yamabe Solitons Satisfying Qðg, SÞ = 0

Let an MS
2n+1 admitting ∗-η-RYS ðg, ζ, λ, μ, α, βÞ satisfies

Q g, Sð Þ K , L,U ,Wð Þ = 0, ð63Þ

where

Q g, Sð Þ K , L,U ,Wð Þ = K∧gL
� �

· S
� �

U ,Wð Þ: ð64Þ

This can be expressed as

Q g, Sð Þ K , L,U ,Wð Þ = g L,Uð ÞS K ,Wð Þ − g K ,Uð ÞS L,Wð Þ
+ g L,Wð ÞS K ,Uð Þ − g K ,Wð ÞS L,Uð Þ,

ð65Þ

where ðK∧gLÞU = gðL,UÞK − gðK ,UÞL being used.
From (63), (65), and (23), we get

σ2 g L,Uð Þη Kð Þη Wð Þ − g K ,Uð Þη Lð Þη Wð Þð
+ g L,Wð Þη Kð Þη Uð Þ − g K ,Wð Þη Lð Þη Uð ÞÞ = 0:

ð66Þ

From the preceeding equation, it follows that σ2 = 0.
This implies that μ = α. Hence, from (25), we get λ = −α +
βr/2: Thus, we have

Theorem 16. If an MS
2n+1 admits ∗ - η -RYS ðg, ζ, λ, μ, α, βÞ

and the manifold satisfies Qðg, SÞ = 0, then λ = −α + βr/2 and
μ = α.

Now, by using these values of λ as well μ, (23) yields

S K , Lð Þ = 2ng K , Lð Þ: ð67Þ

Thus, we give the next corollary:

Corollary 17. In case an MS
2n+1 admitting ∗ - η -RYS ðg, ζ,

λ, μ, α, βÞ satisfies Qðg, SÞ = 0, then it is an Einstein
manifold.

Example 1. Let a manifold M = fðu, v,w, s, tÞ ∈ℝ5g of
dimension 5, where ðu, v,w, s, tÞ refer to the usual coordi-
nates at ℝ5. Suppose ρ1,ρ2, ρ3, ρ4, and ρ5 are the vector
fields at M defined as

ρ1 =
∂
∂u

, ρ2 =
∂
∂w

− 2u
∂
∂t

� �
, ρ3 =

∂
∂v

, ρ4 =
∂
∂s

− 2v
∂
∂t

� �
, ρ5 =

∂
∂t

= ζ,

ð68Þ

and these are linearly independent at each point of M.

Suppose g is the Riemannian metric defined as

g ρi, ρj

� �
= 0, 1 ≤ i ≠ j ≤ 5,

g ρi, ρj

� �
= 1, 1 ≤ i = j ≤ 5:

ð69Þ

Considering η, a 1-form on M determined as ηðKÞ = gð
K , ρ5Þ = gðK , ζÞ of all K ∈ χðMÞ. Let φ be a ð1, 1Þ tensor field
on M defined by

φρ1 = −ρ2, φρ2 = ρ1, φρ3 = −ρ4, φρ4 = ρ3, φρ5 = 0: ð70Þ

The linearity of φ and g leads to

η ζð Þ = 1, φ2K = −K + η Kð Þζ, η φKð Þ = 0,

g K , ζð Þ = η Kð Þ, g φK , φLð Þ = g K , Lð Þ − η Kð Þη Lð Þ,
ð71Þ

for all K , L ∈ χðMÞ. Therefore ½ρ1, ρ2� = 2ρ5, ½ρ3, ρ4� = −2ρ5
and ½ρi, ρj� = 0 for others i and j. By using well-known Kos-
zul’s formula, we can easily calculate

∇ρ1
ρ1 = 0, ∇ρ1

ρ2 = −ρ5, ∇ρ1
ρ3 = 0, ∇ρ1

ρ4 = 0, ∇ρ1
ρ5 = ρ2,

∇ρ2
ρ1 = ρ5, ∇ρ2

ρ2 = 0, ∇ρ2
ρ3 = 0, ∇ρ2

ρ4 = 0, ∇ρ2
ρ5 = −ρ1,

∇ρ3
ρ1 = 0, ∇ρ3

ρ2 = 0, ∇ρ3
ρ3 = 0, ∇ρ3

ρ4 = −ρ5, ∇ρ3
ρ5 = ρ4,

∇ρ4
ρ1 = 0, ∇ρ4

ρ2 = 0, ∇ρ4
ρ3 = ρ5, ∇ρ4

ρ4 = 0, ∇ρ4
ρ5 = −ρ3,

∇ρ5
ρ1 = ρ2, ∇ρ5

ρ2 = −ρ1, ∇ρ5
ρ3 = ρ4, ∇ρ5

ρ4 = −ρ3, ∇ρ5
ρ5 = 0:

ð72Þ

It can be easily verified that the manifold satisfies

∇Kζ = −φK and ∇Kφð ÞL = g K , Lð Þζ − η Lð ÞK for ζ = ρ5:

ð73Þ

It is clear that this manifold M is a Sasakian manifold.
It is easy to have the following non-vanishing compo-

nents:

R ρ1, ρ2ð Þρ1 = 3ρ2, R ρ1, ρ5ð Þρ1 = −ρ5, R ρ1, ρ2ð Þρ2
= −3ρ1, R ρ2, ρ5ð Þρ2 = −ρ5,

R ρ3, ρ4ð Þρ3 = 3ρ4, R ρ3, ρ5ð Þρ3 = −ρ5, R ρ3, ρ4ð Þρ4
= −3ρ3, R ρ4, ρ5ð Þρ4 = −ρ5,

R ρ1, ρ5ð Þρ5 = ρ1, R ρ2, ρ5ð Þρ5 = ρ4, R ρ3, ρ5ð Þρ5
= ρ3, R ρ4, ρ5ð Þρ5 = ρ4:

ð74Þ

Utilizing the previous results we calculate the following:

S ρ1, ρ1ð Þ = S ρ2, ρ2ð Þ = S ρ3, ρ3ð Þ = S ρ4, ρ4ð Þ = −2, S ρ5, ρ5ð Þ = 4:
ð75Þ

Using (23), we have Sðρ5, ρ5Þ = 4 − 1/αðλ + μ − βr/2Þ. By
equating both the values of Sðρ5, ρ5Þ, we obtain
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λ + μ =
βr
2
, α ≠ 0: ð76Þ

Hence, λ as well μ insures Equation (25), and so, g is the
∗-η-RYS on the given 5-dimensional Sasakian manifold.
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The differential geometry of plane curves has many applications in physics especially in mechanics. The curvature of a plane curve
plays a role in the centripetal acceleration and the centripetal force of a particle traversing a curved path in a plane. In this paper,
we introduce the concept of the f -curves associated with a plane curve which are more general than the well-known curves such as
involute, evolute, parallel, symmetry set, and midlocus. In fact, we introduce the f -curves associated with a plane curve via its
normal and tangent for both the cases, a Frenet curve and a Legendre curve. Moreover, the curvature of an f -curve has been
obtained in several approaches.

1. Introduction

The differential geometry of a plane curve is an attractive
area of research for geometers and physicists, owing to its
applications in several areas such as mechanics, computer
graphics, computer vision, and medical imaging. In mechan-
ics, for example, the differential geometry of plane curves is
used to study the motion of a particle in a plane. Moreover,
the curvature of a curved path is used for computing the
centripetal acceleration and the centripetal force of a particle
moving along that path (cf. [1]).

In this paper, we define the f -curve associated with a given
plane curve, for both the cases, a Frenet curve and a Legendre
curve. Note that Legendre curves are more general than Frenet
curves. Recently, the geometry of Legendre plane curves has
been quite extensively studied, and in particular, their evolutes
and involutes have been investigated (cf. [2–5]). An important
achievement of this paper is that what we find a neat expres-
sion for the curvature of an f -curve.

This paper consists of five main sections. The first sec-
tion is introductory, giving a general idea about the paper.
The second section contains basic concepts of the differential

geometry of Frenet plane curves and Legendre plane curves
which will be used in the rest of this paper. In the third sec-
tion, we introduce the concept of the f -curves associated
with Frenet and Legendre curves via their normals and we
study their curvatures in several cases. In the fourth section,
we introduce and study the f -curves associated with a Frenet
curve and a Legendre curve in a plane via their tangents.
Moreover, we give formulae for the curvature of the f
-curve associated with a plane curve in both the cases, a Fre-
net curve and a Legendre curve. In the fifth section, we give
nontrivial examples of the f -curve associated with a regular
curve via its normal and we draw these curves using the
Maple.

2. Preliminaries

In this section, we are going to review basic concepts of the
differential geometry of plane curves. For more detail about
plane curves and their properties, we refer the reader to [6,
7]. A smooth plane curve γ is a map γ : I ⟶ℝ2 given by
γðtÞ = ðγ1ðtÞ, γ2ðtÞÞ such that γ1ðtÞ and γ2ðtÞ are smooth
functions on I, where I is an open interval of ℝ. If γ is a
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regular parametrized curve (i.e., γ′ðtÞ=0 for all t ∈ I), then
we define the unit tangent vector by TγðtÞ = γ′ðtÞ/kγ′ðtÞk
and the unit normal vector by NγðtÞ = JðTγðtÞÞ, where J is

the counterclockwise rotation by π/2 and kγ′ðtÞk =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ′ðtÞ · γ′ðtÞ

q
. Now, the Frenet formula is given by

Tγ
′ tð Þ

Nγ
′ tð Þ

0
@

1
A =

0 γ′ tð Þ�� ��κγ tð Þ
− γ′ tð Þ�� ��κγ tð Þ 0

0
@

1
A Tγ tð Þ

Nγ tð Þ

 !
,

ð1Þ

where prime is the derivative with respect to the parameter t
and κγðtÞ is the curvature of γ which is given by κγðtÞ = ð
Tγ
′ðtÞ ·NγðtÞÞ/kγ′ðtÞk. The pair fTγðtÞ,NγðtÞg is called the

moving frame of the regular curve γ. If γ is parametrized
by its arc-length s, then the Frenet formula is given by

Tγ
′ sð Þ

Nγ
′ sð Þ

0
@

1
A =

0 κγ sð Þ
−κγ sð Þ 0

 !
Tγ sð Þ
Nγ sð Þ

 !
, ð2Þ

where TγðsÞ = γ′ðsÞ is the unit tangent vector, NγðsÞ = JðTγ

ðsÞÞ is the unit normal vector, and κγðsÞ = ±kTγ
′ðsÞk. Also,

the curvature is defined by κγðsÞ = dχðsÞ/ds, where χ is the
angle function between the horizontal lines and the tangent
of γ and s is the arc length of γ.

Definition 1. Let γ : I ⟶ℝ2 be a regular parametrized
curve and ~γðtÞ = γðtÞ + λNγðtÞ, where λ is a constant. Then,
~γ and γ are parallel curves.

Definition 2. Let γ : I ⟶ℝ2 be a regular parametrized
curve with nonvanishing curvature. Then, the evolute of γ
is given by

Eγ tð Þ = γ tð Þ + 1
κγ tð ÞNγ tð Þ: ð3Þ

It is a well-known result that Eγ is regular at t0 ∈ I if and
only if κγ′ðt0Þ ≠ 0.

In the rest of this section, we review some basic concepts
of Legendre plane curves, and for more information, we
refer the reader to [2–5, 8].

Definition 3. The map ðγ, ωÞ: I ⟶ℝ2 × S1 is called a Legen-
dre curve if γ′ðtÞ · ωðtÞ = 0 for all t ∈ I, where S1 is the unit
circle and ω : I ⟶ S1 is a smooth unit vector field. The
map ðγ, ωÞ is a Legendre immersion if it is an immersion.

We call γ : I ⟶ℝ2 a frontal if there exists a smooth
function ω : I ⟶ S1 such that ðγ, ωÞ is a Legendre curve,
and we call γ : I ⟶ℝ2 a wavefront if there exists a smooth
function ω : I ⟶ S1 such that ðγ, ωÞ is a Legendre
immersion.

For a Frenet curve γ, if γ has a singular point, then the
moving frame is not well-defined. For a Legendre curve, ðγ
, ωÞ: I ⟶ℝ2 × S1, an alternative frame is well-defined at
any point. This frame is given by fω, μg, where μðtÞ = Jðωð
tÞÞ. Also, we have the following formula:

ω′ tð Þ
μ′ tð Þ

 !
=

0 ℓ tð Þ
−ℓ tð Þ 0

 !
ω tð Þ
μ tð Þ

 !
, ð4Þ

where ℓðtÞ = ω′ðtÞ · μðtÞ. We call the pair fωðtÞ, μðtÞg a
moving frame of a Legendre curve γ. In addition, there exists
a smooth function βðtÞ such that βðtÞ = γ′ðtÞ · μðtÞ. The cur-
vature of the Legendre curve is ðℓðtÞ, βðtÞÞ.

Definition 4 (see [4]). Suppose that γ is a frontal with the
curvature ðℓ, βÞ. If there exists a unique smooth function
ρ : I ⟶ℝ such that βðtÞ = ρðtÞℓðtÞ for all t ∈ I, then the
evolute Eγ : I ⟶ℝ2 of γ is given by EγðtÞ = γðtÞ − ρðtÞω
ðtÞ. Moreover, Eγ is a frontal with the curvature ðℓðtÞ, ρ′
ðtÞÞ. This means that ðEγ, JðωÞÞ: I ⟶ℝ2 × S1 is a Legen-
dre curve, where J is the counterclockwise rotation by π/2
on ℝ2.

Definition 5 (see [4]). Suppose that γ is a frontal with the
curvature ðℓ, βÞ. The involute of frontal γ at t0 ∈ I is given
by Iγðt0Þ = γðtÞ − Ð tt0βðuÞdu, and ðIγ, J−1ðωÞÞ: I ⟶ℝ2 × S1

is a Legendre curve with curvature ðℓðtÞ, ðÐ tt0βðuÞduÞℓÞ,
where J−1 is the clockwise rotation by π/2 on ℝ2.

3. f -Curve via the Normal Vector
Associated with a Plane Curve

3.1. Regular Curve. In this section, we study the f -curve via
the normal vector associated with a regular plane curve.
Also, the curvature of this curve will be obtained in two dif-
ferent ways.

Definition 6. Let γ : I ⟶ℝ2 be a regular parametrized
curve. Then, the f -curve via the normal vector associated
with γ is defined by αðtÞ = γðtÞ + f ðtÞNγðtÞ, where f : I
⟶ℝ is a smooth function.

In the following lemma, we give the necessary and suffi-
cient condition for the curve α to be a regular curve.

Lemma 7. Let γ : I ⟶ℝ2 be a unit speed curve. Then, the
curve α is regular if and only if f κγ ≠ 1 or f ′ ≠ 0.

Proof. The proof of this lemma is obvious.

Remark 8. From Lemma 7, it can be easily obtained that all
singular points of the f -curve via the normal vector associ-
ated with γ lie on the evolute of γ.

2 Advances in Mathematical Physics



The following theorem provides a useful formula for the
curvature of the f -curve via the normal vector associated
with γ in the case of its regularity.

Theorem 9. Let γ : I ⟶ℝ2 be a unit speed curve and α be
its associated f -curve via the normal vector.

(1) If f κγ ≠ 1, then κα = ððκγ ± θ′Þ cos θÞ/ð1 − f κγÞ,
where θ is the angle between the tangent vector of α
and the unit tangent vector of γ

(2) If f ′ ≠ 0, then κα = ððκγ ∓ ϕ′Þ cos ϕÞ/f ′, where ϕ is
the angle between the tangent vector of α and the unit
normal vector of γ

Proof. Let γ : I ⟶ℝ2 be a unit speed curve and α be its
associated f -curve via the normal vector. Then, we have

α′ = 1 − f κγ
� �

Tγ + f ′Nγ: ð5Þ

Case 1. If f κγ=1, then from Lemma 7, α is a regular
curve, and we have

α′ · Tγ = 1 − f κγ, ð6Þ

which gives

α′
�� �� Tγ

�� �� cos θ = 1 − f κγ: ð7Þ

So, we have

α′
�� �� cos θ = 1 − f κγ: ð8Þ

Equation (8) can be rewritten as

α′
�� �� = 1 − f κγ

� �
sec θ: ð9Þ

From equation (5), we have

α′
�� ��2 = 1 − f κγ

� �2 + f ′
� �2

: ð10Þ

Now, using equation (8) in equation (10), we get

α′
�� ��2 = α′

�� ��2 cos2θ + f ′
� �2

: ð11Þ

So,

f ′ = ± α′
�� �� sin θ: ð12Þ

Substituting (8) and (12) in (5), we have

α′ = α′
�� �� cos θ� �

Tγ ± α′
�� �� sin θ
� �

Nγ: ð13Þ

The unit tangent vector of α, Tα, can be written as

Tα = cos θð ÞTγ ± sin θð ÞNγ, ð14Þ

and the unit normal vector of α, Nα, can be written as

Nα = ∓sin θð ÞTγ + cos θð ÞNγ: ð15Þ

Now,

Tα
′ ·Nα = κγ ± θ′: ð16Þ

Hence,

κα =
Tα
′ ·Nα

α′
�� �� =

κγ ± θ′
� �

cos θ
1 − f κγ

: ð17Þ

Case 2. If f ′=0, then from Lemma 7, α is a regular curve,
and we have

α′ ·Nγ = f ′, ð18Þ

which gives

αk k Nγ

�� �� cos ϕ = f ′: ð19Þ

So, we have

α′
�� �� cos ϕ = f ′: ð20Þ

Equation (20) can be rewritten as

α′
�� �� = f ′ sec ϕ: ð21Þ

Now, using equation (20) in equation (10), we get

α′
�� ��2 = 1 − f κγ

� �2 + α′
�� ��2 cos2ϕ: ð22Þ

Now,

1 − f κγ = ± α′
�� �� sin ϕ: ð23Þ

Substituting (20) and (23) in (5), we get

α′ = ± α′
�� �� sin ϕ

� �
Tγ + α′

�� �� cos ϕ� �
Nγ: ð24Þ

So,

Tα = ±sin ϕð ÞTγ + cos ϕð ÞNγ, ð25Þ

Nα = − cos ϕð ÞTγ ± sin ϕð ÞNγ: ð26Þ
Now,

Tα
′ ·Nα = κγ ∓ ϕ′: ð27Þ
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Hence,

κα =
κγ ∓ ϕ′
� �

cos ϕ
f ′

: ð28Þ

As an application of Theorem 9, the curvatures of paral-
lel curves and evolute become special cases of this theorem.
Precisely, we have the following corollary.

Corollary 10. Let γ : I ⟶ℝ2 be a unit speed curve with
nonvanishing curvature and α be its associated f -curve via
the normal vector.

(1) If f is a constant and f ≠ 1/κγ, then ðγ, αÞ are parallel
curves and κα = κγ/j1 − f κγj

(2) If f ′ ≠ 0 and f = 1/κγ, then α is the evolute of γ and

κα = ∓κ3γ/κγ′

3.2. Legendre Curve. In this section, we consider the case
when γ is a Legendre curve.

Definition 11. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve.
Then, the f -curve via the vector field ω associated with γ is
given by ~αðtÞ = γðtÞ + f ðtÞωðtÞ, where f : I ⟶ℝ is a
smooth function.

Lemma 12. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve.
Then, the f -curve via the vector field ω associated with γ is
regular if and only if f ≠ ð−βÞ/ℓ or f ′ ≠ 0.

Proof. Let ~α = γ + fω be associated with f -curve via the vec-
tor field ω, then we have

~α′ = γ′ + f ′ω + fω′: ð29Þ

Since γ′ = βμ and ω′ = ℓμ, we have

~α′ = f ′ω + β + f ℓð Þμ: ð30Þ

Now, ~α′ ≠ 0! if and only if β + f ℓ ≠ 0 or f ′ ≠ 0.

Theorem 13. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve
and ~α be its associated f -curve via the vector field ω.

(1) If f ≠ −β/ℓ, then κ~α = ððℓ ∓ ψ′Þ cos ψÞ/ðβ + ℓf Þ,
where ψ is the angle between the tangent vector of ~α
and the unit vector field μ

(2) If f ′ ≠ 0, then κ~α = ððℓ ± ξ′Þ cos ξÞ/f ′, where ξ is the
angle between the tangent vector of ~α and the unit
vector field ω

Proof. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve and ~α be
its associated f -curve via the vector field ω. Then, we have

~α′ = f ′ω + β + f ℓð Þμ: ð31Þ

Case 1. If f= − β/ℓ, then from Lemma 12, ~α is a regular
curve, and we have

~α′ · μ = β + f ℓ, ð32Þ

which gives

~α′
�� �� μk k cos ψ = β + f ℓ: ð33Þ

So, we have

~α′
�� �� cos ψ = β + f ℓ: ð34Þ

Equation (34) can be rewritten as

~α′
�� �� = β + f ℓð Þ sec ψ: ð35Þ

From equation (31), we have

~α′
�� ��2 = β + f ℓð Þ2 + f ′

� �2
: ð36Þ

Now, using equation (34) in (36), we get

~α′
�� ��2 = ~α′

�� ��2 cos2ψ + f ′
� �2

: ð37Þ

So,

f ′ = ± ~α′
�� �� sin ψ: ð38Þ

From (34) and (38), equation (31) becomes

~α′ = ± ~α′
�� �� sin ψ

� �
ω + ~α′

�� �� cos ψ� �
μ: ð39Þ

Now,

T~α = ±sin ψð Þω + cos ψð Þμ,
N~α = −cos ψð Þω ± sin ψð Þμ:

ð40Þ

Thus,

T~α
′ ·N~α = ℓ ∓ ψ′: ð41Þ

Hence,

κ~α =
ℓ ∓ ψ′
� �

cos ψ
β + ℓf

: ð42Þ
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Case 2. If f ′=0, then from Lemma 12, ~α is a regular
curve, and we have

~α′ · ω = f ′, ð43Þ

which gives

~α′
�� �� ωk k cos ξ = f ′: ð44Þ

So, we have

~α′
�� �� cos ξ = f ′: ð45Þ

Equation (45) can be rewritten as

~α′
�� �� = f ′

� �
sec ξ: ð46Þ

Now, using equation (45) in (36), we have

~α′
�� ��2 = β + ℓfð Þ2 + ~α′

�� ��2 cos2ξ: ð47Þ

So,

β + ℓf = ± ~α′
�� �� sin ξ: ð48Þ

Substituting (45) and (48) in (31), we get

~α′ = ~α′
�� �� cos ξ� �

ω ± ~α′
�� �� sin ξ
� �

μ: ð49Þ

Now,

T~α = cos ξð Þω ± sin ξð Þμ,
N~α = ∓ sin ξð Þω + cos ξð Þμ:

ð50Þ

Thus,

T~α
′ ·N~α = ℓ ± ξ′: ð51Þ

Hence,

κ~α =
ℓ ± ξ′
� �

cos ξ
f ′

: ð52Þ

Now, we have the following corollary of Theorem 13.

Corollary 14. Let γ be a frontal and ~α be its associated f
-curve via the vector field ω.

(1) If f is a unique smooth function such that f = −β/ℓ
and f ′=0, then ~α is the evolute of γ and it is a regular
curve with κ~α = ±ℓ3/ðℓ′β − ℓβ′Þ

(2) If f is a constant and f ≠ −β/ℓ, then κ~α = ±ℓ/ðβ + f ℓÞ

4. f -Curve via the Tangent Vector
Associated with a Plane Curve

4.1. Regular Curve

Definition 15. Let γ : I ⟶ℝ2 be a regular parametrized
curve. Then, the f -curve via the tangent vector associated
with γ is given by ΩðtÞ = γðtÞ + f ðtÞTγðtÞ, where f : I ⟶
ℝ is a smooth function.

Now, we state the following lemma.

Lemma 16. Let γ : I ⟶ℝ2 be a unit speed curve. Then, the
curve Ω associated with γ is regular if and only if f ′ ≠ −1 or
f κγ ≠ 0.

Remark 17. From Lemma 16, ifΩ has a singularity at t0, then
γ has an inflexion point at t0 or Ωðt0Þ = γðt0Þ.

Theorem 18. Let γ : I ⟶ℝ2 be a unit speed curve and Ω be
its associated f -curve via the tangent vector.

(1) If f ′ ≠ −1, then κΩ = ððκγ ± ζ′Þ cos ζÞ/ð1 + f ′Þ, where
ζ is the angle between the tangent vector of Ω and the
unit tangent vector of γ

(2) If f κγ ≠ 0, then κΩ = ððκγ ∓Ψ′Þ cos ΨÞ/f κγ, where Ψ
is the angle between the tangent vector of Ω and the
unit normal vector of γ

Proof. Let γ : I ⟶ℝ2 be a unit speed curve and Ω be its
associated f -curve via the tangent vector. Then, we have

Ω′ = 1 + f ′
� �

Tγ + f κγNγ: ð53Þ

Case 1. If f ′ ≠ −1, then from Lemma 16, Ω is a regular
curve, and we have

Ω′ · Tγ = 1 + f ′, ð54Þ

which gives

Ω′�� �� cos ζ = 1 + f ′: ð55Þ

From equation (53), we have

Ω′�� ��2 = 1 + f ′
� �2

+ f κγ
� �2

: ð56Þ

Substituting equation (55) in equation (56), we obtain
that

f κγ = ± Ω′�� �� sin ζ: ð57Þ
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From equation (55) and equation (57), equation (53)
becomes

Ω′ = Ω′�� �� cos ζ� �
Tγ ± Ω′�� �� sin ζ

� �
Nγ: ð58Þ

Therefore,

TΩ = cos ζð ÞTγ ± sin ζð ÞNγ,
NΩ = ∓ sin ζð ÞTγ + cos ζð ÞNγ:

ð59Þ

Hence,

κΩ = TΩ
′ ·NΩ

Ω′�� �� =
κγ ± ζ′
� �

cos ζ
1 + f ′

: ð60Þ

Case 2. If f κγ=0, then from Lemma 16, Ω is a regular
curve, and we have

Ω′ ·Nγ = f κγ, ð61Þ

which gives

Ω′�� �� cos Ψ = f κγ: ð62Þ

Substituting (62) in (56), we obtain that

1 + f ′ = ± Ωk k sin Ψ: ð63Þ

From equation (62) and equation (63), equation (53)
becomes

Ω′ = ± Ω′�� �� sin Ψ
� �

Tγ + Ω′�� �� cos Ψ� �
Nγ: ð64Þ

Therefore,

TΩ = ±sin Ψð ÞTγ + cos Ψð ÞNγ,
NΩ = − cos Ψð ÞTγ ± sin Ψð ÞNγ:

ð65Þ

Hence,

κΩ = TΩ
′ ·NΩ

Ω′�� �� =
κγ ∓Ψ′
� �

cos Ψ
f κγ

: ð66Þ

The following corollary can be easily obtained from The-
orem 18.

Corollary 19. Let γ : I ⟶ℝ2 be a unit speed curve andΩ be
its associated f -curve via the tangent vector. If f ′ = −1 (that
is, f ðsÞ = C − s for some constant C) and f ≠ 0, then Ω is
the involute of γ and κΩ = singðκγÞ/j f j.

From Theorem 18, it can be easily obtained a simple and
neat formula for the curvature of the regular part of the mid-
locus associated with a regular part of the symmetry set of a
plane curve. The symmetry set of a plane curve is the closure
of the locus of centers of the bitangent circles, and the asso-
ciated midlocus is the set of all midpoints of the chords join-
ing the tangency points. For more detail in the symmetry set
of a plane curve and the associated midlocus, we refer the
reader to [9–12].

In [9], the first author of this paper obtained the curva-
ture of the midlocus associated with the regular part of the
symmetry set of a plane curve. This curvature is given by
the following formula:

κΩ =
cos Θ κγ +Θ′

� �

sin φ sin φ + rφ′
� � , ð67Þ

where φ is the angle between the normal of a given curve γ
and the tangent of its symmetry set and Θ is the angle
between the tangent of the symmetry set and the tangent
of midlocus and prime denotes the derivative with respect
to the arc length of the symmetry set. This formula contains
more factors than the following formula in the next corollary
which gives a simple formula of the curvature of the midlo-
cus. In the following corollary, γ is the symmetry set of a
given curve, r is the radius function of the bitangent circles,
and the associated f -curve via the tangent of γ is the associ-
ated midlocus.

Corollary 20. Let γ : I ⟶ℝ2 be a unit speed curve andΩ be
its associated f -curve via the tangent vector such that f = −rr′
.

(1) If f ′ ≠ −1, then κΩ = ððκγ ± ζ′Þ cos ζÞ/ð1 − r′2 − rr′′Þ
(2) If f κγ ≠ 0, then κΩ = ð−ðκγ ∓Ψ′Þ cos ΨÞ/rr′κγ

4.2. Legendre Curve

Definition 21. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve.
The f -curve via the vector filed μ associated with γ is given
by ~ΩðtÞ = γðtÞ + f ðtÞμðtÞ, where f : I ⟶ℝ is a smooth
function.

Lemma 22. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve.
The f -curve via the vector field μ associated with γ is regular
if and only if β + f ′ ≠ 0 or ℓf=0.

Theorem 23. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve
and ~Ω be its associated f -curve via the vector field μ.

(1) If β + f ′ ≠ 0, then κ~Ω = ððℓ ∓ η′Þ cos ηÞ/ðβ + f ′Þ,
where η is the angle between the tangent vector of ~Ω
and the unit vector field μ
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(2) If ℓf ≠ 0, then κ~Ω = ððℓ ± ε′Þ cos εÞ/ℓf , where ε is the
angle between the tangent vector of ~Ω and the unit
vector field ω

Proof. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve and ~Ω
be its associated f -curve via the vector field μ. Then, we have

~Ω′ = β + f ′
� �

μ − ℓfð Þω: ð68Þ

Case 1. If β + f ′=0, then from Lemma 22, ~Ω is a regular
curve, and we have

~Ω′ · μ = β + f ′, ð69Þ

which gives

~Ω′
��� ��� cos η = β + f ′: ð70Þ

From equation (68), we have

~Ω′
��� ���2 = β + fð Þ2 + ℓfð Þ2: ð71Þ

Substituting (70) in (71), it can be shown that

ℓf = ± ~Ω′
��� ��� sin η: ð72Þ

From (70) and (72), equation (68) becomes

~Ω′ = ~Ω′
��� ��� cos η� �

μ ∓ ~Ω′
��� ��� sin η
� �

ω: ð73Þ

Now,

T ~Ω = ∓sin ηð Þω + cos ηð Þμ,
N ~Ω = −cos ηð Þω ∓ sin ηð Þμ:

ð74Þ
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(c) The curve e~γ
Figure 1: The curve γ and its resulting f -curves.
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Hence,

κ~Ω =
ℓ ± η′
� �

cos η
β + ℓf ′

: ð75Þ

Case 2. If ℓf ≠ 0, then from Lemma 22, ~Ω is a regular
curve, and we have

~Ω′ · ω = −ℓf , ð76Þ

which gives

~Ω′
��� ��� cos ε = −ℓf : ð77Þ

Using equation (77) in (71), it can be shown that

β + f ′ = ± ~Ω′
��� ��� sin ε: ð78Þ

From (77) and (78), equation (68) becomes

~Ω′ = ~Ω′
��� ��� cos ε� �

ω ± ~Ω′
��� ��� sin ε
� �

μ: ð79Þ

Now,

T ~Ω = cos εð Þω ± sin εð Þμ,
N ~Ω = ∓sin εð Þω + cos εð Þμ:

ð80Þ

Hence,

κ~Ω =
ℓ ± ε′
� �

cos ε
ℓf

: ð81Þ

Corollary 24. Let ðγ, ωÞ: I ⟶ℝ2 × S1 be a Legendre curve
with the curvature ðℓ, βÞ and ~Ω be its associated f -curve via
the vector field μ. If f = −

Ð t
t0
βðuÞdu and ℓf ≠ 0, then ~Ω is

the involute of the frontal and it is a regular curve with κ~Ω

= ±1/Ð tt0βðuÞdu.
5. Examples

In this section, we give an example in the case of a regular
curve and we repeat the process to the resulting curve but
with different function f . We use the Maple for calculation
and drawing pictures. First, let us consider the curve γðtÞ
= ðcos ðtÞ, sin ð3tÞÞ, t ∈ ð0, 2πÞ. It is clear that γ is a closed
curve (see Figure 1(a)), and we choose f1ðtÞ = 3 sin ðtÞ − 5

esin ðtÞ. The f1-curve via the normal vector associated with
γ is given by ~γðtÞ = γðtÞ + f1ðtÞNγðtÞ = ð~γ1ðtÞ, ~γ2ðtÞÞ, where

~γ1 tð Þ = cos tð Þ + 15 cos 3tð Þesin tð Þ − 9 cos 3tð Þ sin tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144 cos6 tð Þ − 216 cos4 tð Þ + 80 cos2 tð Þ + 1

p ,

~γ2 tð Þ = sin tð Þ + 5 sin tð Þesin tð Þ + 3 cos2 tð Þ − 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144 cos6 tð Þ − 216 cos4 tð Þ + 80 cos2 tð Þ + 1

p :

ð82Þ

The graph of ~γ is shown in Figure 1(b), and we may call
this graph Clown’s face.

In what follows, we consider the f -curve via the normal
vector associated with ~γ with f ðtÞ = f2ðtÞ = −5 − 2esin ð9tÞ;
this curve is given by e~γðtÞ = ~γðtÞ + f2ðtÞN~γ. The calculation

becomes very tedious, and the forms of e~γ1 and e~γ2 are too
long and very complicated. We just use the Maple for draw-
ing the graph of this curve which is shown in Figure 1(c).
Again, the resulting graph is interesting as well as the graph
of ~γ and we may call this graph Tiger’s face.

Remark 25. From this section, one can observe the impor-
tance of f -curves associated with a plane curve in the theory
of computer graphics. We hope this method for creating
curves from a given curve will find its applications to com-
puter graphics and related topics soon.

6. Final Remark

Throughout this paper, we introduce the concept of the f
-curves associated with a plane curve in the cases of Frenet
and Legendre curves. The curvatures of these new curves
have been obtained in several ways. This work has direct
applications to the motion of particles in the plane. Also, it
is useful for calculating the centripetal acceleration and the
centripetal force of a particle traversing a curved path such
as f -curve in the plane.
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Interval-valued intuitionistic fuzzy graph (IVIFG), belonging to the FGs family, has good capabilities when facing with problems
that cannot be expressed by FGs. When an element membership is not clear, neutrality is a good option that can be well supported
by an IVIFG. The previous definitions of limitations in edge irregular FG have led us to offer new definitions in IVIFGs. Hence, in
this paper, some types of edge irregular interval-valued intuitionistic fuzzy graphs (EI-IVIFGs) such as neighborly edge totally
irregular (NETI), strongly edge irregular (SEI), and strongly edge totally irregular (SETI) are introduced. A comparative study
between NEI-IVIFGs and NETI-IVIFGs is done. With the help of IVIFGs, the most efficient person in an organization can be
identified according to the important factors that can be useful for an institution. Finally, an application of IVIFG has been
introduced.

1. Introduction

The FG concept serves as one of the most dominant and
extensively employed tools for multiple real-word problem
representations, modeling, and analysis. To specify the
objects and the relations between them, the graph vertices
or nodes and edges or arcs are applied, respectively.
Graphs have long been used to describe objects and the
relationships between them. Many of the issues and phe-
nomena around us are associated with complexities and
ambiguities that make it difficult to express certainty.
These difficulties were alleviated by the introduction of
fuzzy sets by Zadeh [1]. The fuzzy set focuses on the
membership degree of an object in a particular set. Kauf-
man [2] represented FGs based on Zadeh’s fuzzy relation
[3, 4]. Rosenfeld [5] described the structure of FGs obtain-
ing analogs of several graph theoretical concepts. Bhatta-
charya [6] gave some remarks on FGs. Several concepts
on FGs were introduced by Mordeson and Nair [7]. The
existence of a single degree for a true membership could

not resolve the ambiguity on uncertain issues, so the need
for a degree of membership was felt. Afterward, to over-
come the existing ambiguities, Atanassov [8] defined an
extension of fuzzy set by introducing nonmembership
function and defined intuitionistic fuzzy set (IFS). But
after a while, Atanassov and Gargov [9] developed IFS
and presented interval-valued intuitionistic fuzzy set
(IVIFS). In 1999, Atanassov [10] defined intuitionistic
fuzzy graph (IFG), but Akram and Davvaz investigated it
in more details in [11]. Hongmei and Lianhua [12]
defined interval-valued fuzzy graph and studied its proper-
ties. Karunambigai et al. [13] discussed edge regular IFG.
Mishra and Pal [14] introduced product of IVIFG.
Nagoorgani and Radha [15, 16] studied the concept of
regular fuzzy graphs and defined degree of a vertex in
FGs. Nagoorgani and Latha [17] investigated the concept
of IFGs, NI-FGs, and HI-FGs in 2008. Shao et al. [18] dis-
cussed new concepts in IFG. Nandhini and Nandhini [19]
described the concept of SI-FGs and studied its properties.
Santhi Maheswari and Sekar defined the concepts of edge
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irregular FGs and edge totally irregular FGs [20]. Also,
they analyzed some properties of NEI-FGs, NETI-FGs,
SEI-FGs, and SETI-FGs [21, 22]. Rao et al. [23–25] studied
dominating set, equitable dominating set, valid degree, iso-
lated vertex, and some properties of VGs with novel appli-
cation. Shi and Kosari [26] introduced total dominating
set and global dominating set in product vague graphs.
Talebi et al. [27–30] defined new concepts of irregularity
in single-valued neutrosophic graphs and intuitionistic
fuzzy graphs. Kou et al. [31] studied vague graphs with
application in transportation systems. Kalaiarasi and
Mahalakshmi [32] investigated regular and irregular m
-polar fuzzy graphs. Selvanayaki [33] introduced strong
and balanced irregular interval-valued fuzzy graphs. Rash-
manlou et al. [34] investigate new results in cubic graphs.
Poulik and Ghorai [35–37] initiated degree of nodes,
detour g-interior nodes, and indices of bipolar fuzzy
graphs with applications in real-life systems. Pramanik
et al. [38] defined fuzzy competition graph and its uses
in manufacturing industries. Muhiuddin et al. [39] intro-
duced reinforcement number of a graph with respect to
half-domination. Amanathulla et al. [40] studied on dis-
tance two surjective labeling of paths and interval graphs.
Ramprasad et al. [41] investigated some properties of
highly irregular, edge regular, and totally edge regular m
-polar fuzzy graphs. Nazeer et al. [42] introduced an appli-
cation of product intuitionistic fuzzy incidence graphs in
textile industry. Bhattacharya and Pal [43] studied fuzzy
covering problem of fuzzy graphs and its application. Bor-
zooei et al. [44] defined inverse fuzzy graphs.

IVIFGs have a wide range of applications in the field of
psychological sciences as well as the identification of individ-
uals based on oncological behaviors. With the help of
IVIFGs, the most efficient person in an organization can be
identified according to the important factors that can be use-
ful for an institution. So, in this paper, some types of EI-
IVIFGs such as neighborly edge totally irregular- (NETI-)
IVIFGs, strongly edge irregular- (SEI-) IVIFGs, and strongly
edge totally irregular- (SETI-) IVIFGs are introduced. Also,
we have given some interesting results about EI-IVIFGs,
and several examples are investigated. Finally, an application
of IVIFG is presented.

2. Preliminaries

A graph G = ðV , EÞ is a mathematical model consisting of a
set of nodes V and a set of edges E, where each is an unor-
dered pair of distinct nodes.

Definition 1 (see [5]). A FG Z = ðV , ν, ξÞ is a nonempty set V
together with a pair of functions ν : V ⟶ ½0, 1� and ξ : V
×V ⟶ ½0, 1� so that ξðxyÞ ≤min fνðxÞ, νðyÞg, ∀x, y ∈ V .

Definition 2 (see [11]). An IFG is of the form G : ðη, ςÞ which
η = ðη1, η2Þ and ς = ðς1, ς2Þ so that

(i) The functions η1 : V ⟶ ½0, 1� and η2 : V ⟶ ½0, 1�
denotes the MD and NM-D of the element w ∈ V ,

respectively, and 0 ≤ η1ðwÞ + η2ðwÞ ≤ 1 for each w
∈ V

(ii) The functions ς1 : V × V ⟶ ½0, 1� and ς2 : V ×V
⟶ ½0, 1� are the MD and NM-D of the edge xw ∈
E, respectively, so that ς1ðxwÞ ≤min ðη1ðxÞ, η1ðwÞÞ
and ς2ðxwÞ ≥max ðη2ðxÞ, η2ðwÞÞ and 0 ≤ ς1ðxwÞ +
ς2ðxwÞ ≤ 1, for each xw in E

Definition 3 (see [11]). An IVFG is of the form G : ðθ, ζÞ
which θ = ½θ−, θ+� is an IVFS in V and ζ = ðζ−, ζ+Þ is an IVFS
in E ⊆ V ×V so that ζ−ðxwÞ ≤min ðθ−ðxÞ, θ−ðwÞÞ and ζ+ðx
wÞ ≤min ðθ+ðxÞ, θ+ðwÞÞ for each xw in E.

All the basic notations are shown in Table 1.

3. New Concepts of Irregular IVIFGs

Definition 4. An IVIFG is of the form G : ðσ, μÞ which σ =
ðσ1, σ2Þ = ððσ−1 , σ+1 Þ, ðσ−2 , σ+2 ÞÞ and μ = ðμ1, μ2Þ = ððμ−1 , μ+1 Þ, ð
μ−2 , μ+2 ÞÞ so that

(i) The functions σ1 : V ⟶D½0, 1� and σ2 : V ⟶D½
0, 1� denote the degree of IVM and IV-NM of the
element w ∈ V , respectively, so that 0 ≤ σ+1 ðwÞ + σ+2 ð
wÞ ≤ 1, for each w ∈ V

(ii) The functions μ1 : V ×V ⟶D½0, 1� and μ2 : V ×
V ⟶D½0, 1� denote the degree of IVM and IV-
NM of the edge wz ∈ E, respectively, are defined by
the following:

(i) μ−1 ðwzÞ ≤min ðσ−
1 ðwÞ, σ−

1 ðzÞÞ and μ+1 ðwzÞ ≤min ð
σ+1 ðwÞ, σ+1 ðzÞÞ

(ii) μ−2 ðwzÞ ≥max ðσ−2 ðwÞ, σ−2 ðzÞÞ and μ+2 ðwzÞ ≥max ð
σ+2 ðwÞ, σ+2 ðzÞÞ

so that 0 ≤ μ+1 ðwzÞ + μ+2 ðwzÞ ≤ 1, for each wz in E.

Definition 5. Let G be an IVIFG. Then, the degree of a node
w is defined as dGðwÞ = ððdσ−1 ðwÞ, dσ+1 ðwÞÞ, ðdσ−2 ðwÞ, dσ+2 ðwÞ
ÞÞ, where dσ−1 ðwÞ = Σz≠wμ

−
1 ðw, zÞ, dσ+1 ðwÞ = Σz≠wμ

+
1 ðw, zÞ,

dσ−2 ðwÞ = Σz≠wμ
−
2 ðw, zÞ, and dσ+2 ðwÞ = Σz≠wμ

+
2 ðw, zÞ.

Definition 6. Let G be an IVIFG. Then, the TD of a node w is
defined as tdGðwÞ = ððtdσ−1 ðwÞ, tdσ+1 ðwÞÞ, ðtdσ−2 ðwÞ, tdσ+2 ðwÞÞ
Þ which tdσ−1 ðwÞ = Σz≠wμ

−
1 ðw, zÞ + σ−1 ðwÞ, tdσ+1 ðwÞ = Σz≠wμ

+
1

ðw, zÞ + σ+1 ðwÞ, tdσ−2 ðwÞ = Σz≠wμ
−
2 ðw, zÞ + σ−2 ðwÞ, and tdσ+2 ð

wÞ = Σz≠wμ
+
2 ðw, zÞ + σ+2 ðwÞ.

Definition 7. Let G be an IVIFG on. Then,

(i) G is irregular, if there is a node which is a neighbor
to nodes with VDs

(ii) G is TI, if there is a node which is a neighbor to
nodes with various TDs
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Definition 8. Let G be a CIVIFG. Then, G is called an

(i) NI-IVIFG if each pair of neighbor nodes has VDs

(ii) NTI-IVIFG if each pair of neighbor nodes has vari-
ous TDs

(iii) SI-IVIFG if each pair of nodes has VDs

(iv) STI-IVIFG if each pair of nodes has various TDs

(v) HI-IVIFG if each node in G is neighbor to the nodes
having VDs

(vi) HTI-IVIFG if each node in G is neighbor to the
nodes having various TDs

Definition 9. Let G be an IVIFG on. The degree of an edge
wz is described as dGðwzÞ = ððdμ−1 ðwzÞ, dμ+1 ðwzÞÞ, ðdμ−2 ðwzÞ,
dμ+2 ðwzÞÞÞ which dμ−i ðwzÞ = dσ−i ðwÞ + dσ−i ðzÞ − 2μ−i ðwzÞ and

dμ+i ðwzÞ = dσ+i ðwÞ + dσ+i ðzÞ − 2μ+i ðwzÞ, for i = 1, 2.

Definition 10. Let G be an IVIFG. The TD of an edge wz is
presented as tdGðwzÞ = ððtdμ−1 ðwzÞ, tdμ+1 ðwzÞÞ, ðtdμ−2 ðwzÞ, t
dμ+2 ðwzÞÞÞ where tdμ−i ðwzÞ = dσ−i ðwÞ + dσ−i ðzÞ − μ−i ðwzÞ =
dμ−i ðwzÞ + μ−i ðwzÞ and tdμ+i ðwzÞ = dσ+i ðwÞ + dσ+i ðzÞ − μ+i ðwzÞ
= dμ+i ðwzÞ + μ+i ðwzÞ, for i = 1, 2.

Definition 11. Let G be a CIVIFG. Then, G is called an

(i) NEI-IVIFG if each pair of NEs has VDs

(ii) NETI-IVIFG if each pair of NEs has various TDs

Example 12. Graph which is both NEI-IVIFG and NETI-
IVIFG.

Consider G∗ which V = fu, v,w, xg and E = fuv, vw,w
x, xug.

From Figure 1, dGðuÞ = dGðvÞ = dGðwÞ = dGðxÞ = ðð0:3,0:5Þ,
ð0:5,1:0ÞÞ, dGðuvÞ = dGðwxÞ = ðð0:4,0:6Þ, ð0:4,0:8ÞÞ, and dGð
vwÞ = dGðxuÞ = ðð0:2,0:4Þ, ð0:6,1:2ÞÞ.

Table 1: Some basic notations.

Notation Meaning

IFG Intuitionistic fuzzy graph

IVFG Interval-valued fuzzy graph

IVIFG Interval-valued intuitionistic fuzzy graph

IVM Interval valued membership

IV-NM Interval-valued nonmembership

I-FG Irregular fuzzy graph

SI Strongly irregular

HI Highly irregular

NI Neighborly irregular

VD Various degree

TD Total degree

TI Total irregular

MD Membership degree

NE Neighbor edge

NEI-IVIFG Neighborly edge irregular interval-valued intuitionistic fuzzy graph

CIVIFG Connected interval-valued intuitionistic fuzzy graph

IVFS Interval-valued fuzzy set

NEI Neighborly edge irregular

NETI Neighborly edge totally irregular

TER Totally edge regular

SETI Strongly edge totally irregular

SEI Strongly edge irregular

HEI Highly edge irregular

HETI Highly edge totally irregular

CF Constant function

3Advances in Mathematical Physics



Clearly, neighbor edges have VDs. Hence, G is a NEI-
IVIFG.

For TDs, we have the following:

tdG uvð Þ = tdG wxð Þ = 0:5,0:8ð Þ, 0:7,1:4ð Þð Þ,
tdG vwð Þ = tdG xuð Þ = 0:4,0:7ð Þ, 0:8,1:6ð Þð Þ:

ð1Þ

Obviously, neighbor edges have various TDs. So, G is a
NETI-IVIFG. Hence, G is both NEI-IVIFG and NETI-
IVIFG.

Example 13. NEI-IVIFG needs not to be NETI-IVIFG.
Consider G be an IVIFG and G∗ a star includes four

nodes.

From Figure 2, dGðuÞ = ðð0:2,0:3Þ, ð0:3,0:4ÞÞ, dGðvÞ = ðð
0:1,0:2Þ, ð0:4,0:5ÞÞ, dGðwÞ = ðð0:0,0:1Þ, ð0:5,0:6ÞÞ, dGðxÞ = ðð
0:3,0:6Þ, ð1:2,1:5ÞÞ, dGðuxÞ = ðð0:1,0:3Þ, ð0:9,1:1ÞÞ, dGðvxÞ =
ðð0:2,0:4Þ, ð0:8,1:0ÞÞ, dGðwxÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, and t
dGðuxÞ = tdGðvxÞ = tdGðwxÞ = ðð0:3,0:6Þ, ð1:2,1:5ÞÞ.

Here, dGðuxÞ ≠ dGðvxÞ ≠ dGðwxÞ. Hence, G is a NEI-
IVIFG. But G is not a NETI-IVIFG, since all edges have
same TDs.

Example 14. NETI-IVIFGs need not to be NEI-IVIFGs. The
following shows this subject:

Consider G be an IVIFG so that G∗ a path consists of 4
nodes.

From Figure 3, dGðuÞ = dGðxÞ = ðð0:05,0:20Þ, ð0:15,0:25
ÞÞ, dGðvÞ = dGðwÞ = ðð0:15,0:60Þ, ð0:45,0:75ÞÞ, dGðuvÞ = dGð
vwÞ = dGðwxÞ = ðð0:1,0:4Þ, ð0:3,0:5ÞÞ, tdGðuvÞ = ðð0:15,0:60Þ
, ð0:45,0:75ÞÞ, tdGðvwÞ = ðð0:2,0:8Þ, ð0:6,1:0ÞÞ, and tdGðwxÞ
= ðð0:15,0:60Þ, ð0:45,0:75ÞÞ.

Here, dGðuvÞ = dGðvwÞ = dGðwxÞ. Hence, G is not a NEI-
IVIFG. But G is a NETI-IVIFG, since tdGðuvÞ ≠ tdGðvwÞ
and tdGðvwÞ ≠ tdGðwxÞ.

Theorem 15. Suppose G is a CIVIFG and μ is a CF. Then, G
is a NEI-IVIFG if G is a NETI-IVIFG.

Proof. Assume that μ is a CF and μðwzÞ = f , ∀wz in E, which
f = ðð f −1 , f +1 Þ, ð f −2 , f +2 ÞÞ is constant.

Let wz and zy be pairs of neighbor edges in E; then, we
have the following:

dG wzð Þ ≠ dG zyð Þ⇔ dG wzð Þ + d ≠ dG zyð Þ + d⇔ dμ−1 wzð Þ, dμ+1 wzð Þ
� �

, dμ−2 wzð Þ, dμ+2 wzð Þ
� �� �

+ f −1 , f +1
� �

, f −2 , f +2
� �� �

≠ dμ−1 zyð Þ, dμ+1 zyð Þ
� �

, dμ−2 zyð Þ, dμ+2 zyð Þ
� �� �

+ f −1 , f +1
� �

, f −2 , f +2
� �� �

⇔ dμ−1 wzð Þ + f −1 , dμ+1 wzð Þ + f +1
� �

, dμ−2 wzð Þ
��

+ f −2 , dμ+2 wzð Þ + f +2
�
Þ ≠ dμ−1 zyð Þ + f −1 , dμ+1 zyð Þ + f +1

� �
,

�
· dμ−2 zyð Þ + f −2 , dμ+2 zyð Þ + f +2
� ��

⇔ dμ−1 wzð Þ + μ−1 wzð Þ, dμ+1 wzð Þ + μ+1 wzð Þ
� �

,
�

· dμ−2 wzð Þ + μ−2 wzð Þ, dμ+2 wzð Þ + μ+2 wzð Þ
� ��

≠ dμ−1 zyð Þ + μ−1 zyð Þ, dμ+1 zyð Þ
��

+ μ+1 zyð Þ
�
, dμ−2 zyð Þ + μ−2 zyð Þ, dμ+2 zyð Þ + μ+2 zyð Þ
� ��

⇔ tdμ−1 wzð Þ, tdμ+1 wzð Þ
� �

,
�

· tdμ−2 wzð Þ, tdμ+2 wzð Þ
� ��

≠ tdμ−1 zyð Þ, tdμ+1 zyð Þ
� �

,
�

· tdμ−2 zyð Þ, tdμ+2 zyð Þ
� ��

⇔ tdG wzð Þ ≠ tdG zyð Þ:

ð2Þ

Therefore, neighbor edges have VDs if they have various
TDs. Hence, G is a NEI-IVIFG if G is a NETI-IVIFG.

Remark 16. Let G be a CIVIFG. If G is both NEI-IVIFG and
NETI-IVIFG, then μ needs not to be a CF.

Example 17. Suppose G is an IVIFG and G∗ a path consists
of four nodes.

From Figure 4, dGðuÞ = dGðxÞ = ðð0:2,0:3Þ, ð0:4,0:5ÞÞ,
dGðvÞ = dGðwÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, dGðuvÞ = ðð0:1,0:2Þ, ð
0:3,0:4ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:8,1:0ÞÞ, dGðwxÞ = ðð0:1,0:2
Þ, ð0:3,0:4ÞÞ, tdGðuvÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, tdGðvwÞ = ðð
0:5,0:8Þ, ð1:1,1:4ÞÞ, and tdGðwxÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ.

Here, dGðuvÞ ≠ dGðvwÞ and dGðvwÞ ≠ dGðwxÞ. Hence, G
is a NEI-IVIFG. Also, tdGðuvÞ ≠ tdGðvwÞ and tdGðvwÞ ≠ t
dGðwxÞ. Hence, G is a NETI-IVIFG but μ is not CF.

Theorem 18. Let G be a CIVIFG and μ a CF. If G is a SI-
IVIFG, then, G is a NEI-IVIFG.

Proof. Assume G is a CIVIFG, μ is a CF, and μðwzÞ = f , ∀wz
in E, which f = ðð f −1 , f +1 Þ, ð f −2 , f +2 ÞÞ is constant.

Let wz and zy be any two NEs in G. Assume that G is a
SI-IVIFG. Then, each pair of nodes in G has VDs, and

((0.3,0.5),(0.2,0.3))

((0.2,0.4),(0.1,0.2))x

u

((0.2
,0.3)

,(0.2
,0.4)

) ((0.1,0.2),(0.3,0.6))

w

v((0.2,0.4),(0.1,0.2))

((0.3,0.5),(0.2,0.3))

((0.2
,0.3)

,(0.2
,0.4)

)((0.1,0.2),(0.3,0.6))

Figure 1: G is both NEI-IVIFG and NETI-IVIFG.
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hence,

dG wð Þ ≠ dG zð Þ ≠ dG yð Þ⇒ dσ−1 wð Þ, dσ+1 wð Þ
� �

,
�

� dσ−2 wð Þ, dσ+2 wð Þ
� ��

≠ dσ−1 zð Þ, dσ+1 zð Þ
� �

,
�

� dσ−2 zð Þ, dσ+2 zð Þ
� ��

≠ dσ−1 yð Þ, dσ+1 yð Þ
� �

,
�

� dσ−2 yð Þ, dσ+2 yð Þ
� ��

⇒ dσ−1 wð Þ, dσ+1 wð Þ
� �

,
�

� dσ−2 wð Þ, dσ+2 wð Þ
� ��

+ dσ−1 zð Þ, dσ+1 zð Þ
� �

,
�

� dσ−2 zð Þ, dσ+2 zð Þ
� ��

− 2 f −1 , f +1
� �

, f −2 , f +2
� �� �

≠ dσ−1 zð Þ, dσ+1 zð Þ
� �

,
�

� dσ−2 zð Þ, dσ+2 zð Þ
� ��

+ dσ−1 yð Þ, dσ+1 yð Þ
� �

, dσ−2 yð Þ, dσ+2 yð Þ
� �� �

− 2 f −1 , f +1
� �

, f −2 , f +2
� �� �

⇒ dσ−1 wð Þ + dσ−1 zð Þ − 2f −1 , dσ+1 wð Þ + dσ+1 zð Þ − 2f +1
� �

,
�

� dσ−2 wð Þ + dσ−2 zð Þ − 2f −2 , dσ+2 wð Þ + dσ+2 zð Þ − 2f +2
� ��

≠ dσ−1 zð Þ + dσ−1 yð Þ
��

− 2f −1 , dσ+1 zð Þ + dσ+1 yð Þ − 2f +1
�
, dσ−2 zð Þ + dσ−2 yð Þ − 2f −2 , dσ+2 zð Þ + dσ+2 yð Þ
�

− 2f +2
��

⇒ dσ−1 wð Þ + dσ−1 zð Þ − 2μ−1 wzð Þ, dσ+1 wð Þ + dσ+1 zð Þ − μ+1 wzð Þ
� �

,
�

� dσ−2 wð Þ + dσ−2 zð Þ − 2μ−2 wzð Þ, dσ+2 wð Þ + dσ+2 zð Þ − 2μ+2 wzð Þ
� ��

≠ dσ−1 zð Þ
��

+ dσ−1 yð Þ − 2μ−1 zyð Þ, dσ+1 zð Þ + dσ+1 yð Þ − 2μ+1 zyð Þ
�
, dσ−2 zð Þ + dσ−2 yð Þ
�

− 2μ−2 zyð Þ, dσ+2 zð Þ + dσ+2 yð Þ − 2μ+2 zyð Þ
��

⇒ dμ−1 wzð Þ, dμ+1 wzð Þ
� �

,
�

� dμ−2 wzð Þ, dμ+2 wzð Þ
� ��

≠ dμ−1 zyð Þ, dμ+1 zyð Þ
� �

,
�

� dμ−2 zyð Þ, dμ+2 zyð Þ
� ��

⇒ dG wzð Þ ≠ dG zyð Þ:

ð3Þ

Hence, neighbor edges have VDs. Thus, G is a NEII-
VIFG.

Theorem 19. Let G be a CIVIFG on G∗ and μ a CF. If G is a
SI-IVIFG, then G is a NETI-IVIFG.

Proof. It is similar to Theorem 18.

Remark 20. Converse of Theorem 19 is not generally true.

Example 21. Let G be an IVIFG so that G∗ consists of four
nodes.

From Figure 5, dGðuÞ = dGðxÞ = ðð0:1,0:3Þ, ð0:2,0:4ÞÞ and
dGðvÞ = dGðwÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ.

Here, G is not a SI-IVIFG. dGðuvÞ = ðð0:1,0:3Þ, ð0:2,0:4ÞÞ
, dGðvwÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ, dGðwxÞ = ðð0:1,0:3Þ, ð
0:2,0:4ÞÞ, tdGðuvÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ, tdGðvwÞ = ðð
0:3,0:9Þ, ð0:6,1:2ÞÞ, and tdGðwxÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ.

Hence, dGðuvÞ ≠ dGðvwÞ and dGðvwÞ ≠ dGðwxÞ. Further-
more, tdGðuvÞ ≠ tdGðvwÞ and tdGðvwÞ ≠ tdGðwxÞ. Hence, G
is both NEI-IVIFG and NETI-IVIFG. But G is not a SI-
IVIFG.

Theorem 22. Let G be a CIVIFG and μ a CF. Then, G is a
HI-IVIFG if G is a NEI-IVIFG.

Proof. Assume G is a CIVIFG and μ is a CF. Consider μðw
zÞ = f , ∀wz in E, which f = ðð f −1 , f +1 Þ, ð f −2 , f +2 ÞÞ is CF.

Let wz and zy be any two neighbor edges in G. Then,

dG wð Þ ≠ dG yð Þ⇒ dσ−1 wð Þ, dσ+
1
wð Þ

� �
, dσ−2 wð Þ, dσ+2 wð Þ
� �� �

≠ dσ−1 yð Þ, dσ+1 yð Þ
� �

,
�

� dσ−2 yð Þ, dσ+2 yð Þ
� ��

⇒ dσ−1 wð Þ, dσ+1 wð Þ
� �

, dσ−2 wð Þ, dσ+2 wð Þ
� �� �

+ dσ−1 zð Þ, dσ+1 zð Þ
� �

, dσ−2 zð Þ, dσ+2 zð Þ
� �� �

− 2 f −1 , f +1
� �

, f −2 , f +2
� �� �

≠ dσ−1 zð Þ, dσ+1 zð Þ
� �

, dσ−2 zð Þ, dσ+
2
zð Þ

� �� �
+ dσ−1 yð Þ, dσ+1 yð Þ
� �

, dσ−
2
yð Þ, dσ+2 yð Þ

� �� �
− 2 f −1 , f +1

� �
, f −2 , f +2
� �� �

⇒ dσ−1 wð Þ + dσ−1 zð Þ − 2f −1 , dσ+1 wð Þ + dσ+1 zð Þ
��

− 2f +1
�
, dσ−2 wð Þ + dσ−2 zð Þ − 2f −2 , dσ+

2
wð Þ + dσ+2 zð Þ − 2f +2

� ��
≠ dσ−1 zð Þ + dσ−

1
yð Þ − 2f −1 , dσ+1 zð Þ + dσ+1 yð Þ − 2f +1

� �
, dσ−2 zð Þ + dσ−

2
yð Þ

��
− 2f −2 , dσ+2 zð Þ + dσ+2 yð Þ − 2f +2

��
⇒ dσ−

1
wð Þ + dσ−1 zð Þ − 2μ−1 wzð Þ, dσ+1 wð Þ

��
+ dσ+1 zð Þ − μ+1 wzð Þ

�
, dσ−2 wð Þ + dσ−2 zð Þ − 2μ−2 wzð Þ, dσ+2 wð Þ + dσ+2 zð Þ
�

− 2μ+2 wzð Þ
��

≠ dσ−1 zð Þ + dσ−1 yð Þ − 2μ−1 zyð Þ, dσ+
1
zð Þ + dσ+1 yð Þ

��
− 2μ+1 zyð Þ

�
, dσ−2 zð Þ + dσ−2 yð Þ − 2μ−2 zyð Þ, dσ+2 zð Þ + dσ+2 yð Þ
�

− 2μ+2 zyð Þ
��

⇒ dμ−1 wzð Þ, dμ+1 wzð Þ
� �

, dμ−2 wzð Þ, dμ+2 wzð Þ
� �� �

≠ dμ−1 zyð Þ, dμ+1 zyð Þ
� �

, dμ−2 zyð Þ, dμ+2 zyð Þ
� �� �

⇒ dG wzð Þ ≠ dG zyð Þ:

ð4Þ

Therefore, neighbor edges have VDs, if each node neigh-
bor to the nodes has VDs. Hence, G is a HIIVIFG, if G is a
NEIIVIFG.

Theorem 23. Suppose G is a CIVIFG and μ is a CF. Then, G
is HI-IVIFG if and only if G is NETI-IVIFG.

Proof. It is clear.

Theorem 24. Let G be an IVIFG on G∗, a star K1,n. Then, G
is a TER-IVIFG. If the degrees of IVM and IV-NM of no two
edges are similar, then G is a NEI-IVIFG.
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x
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.3)
,(0
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.4)
) ((0.0,0.1),(0.5,0.6))

((
0.
1,
0.
2)
,(0

.4
,0
.5
))

u
v

w

Figure 2: G is NEI-IVIFG but it is not NETI-IVIFG.
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Proof. Suppose v1, v2, v3,⋯, vn are the nodes neighbor to the
node x. Assume e1, e2, e3,⋯, en are the edges of a star G∗ in
that order having degrees of IVM m1,m2,m3,⋯,mn and
degrees of IV-NM n1, n2, n3,⋯, nn which mi = ðm−

i ,m+
i Þ

and ni = ðn−i , n+i Þ, for i = 1, 2 so that 0 ≤m+
i + n+i ≤ 1, for each

1 ≤ i ≤ n:

Then,

tdG eið Þ = tdμ−1 eið Þ, tdμ+1 eið Þ
� �

, tdμ−2 eið Þ, tdμ+2 eið Þ
� �� �

= dμ−1 eið Þ + μ−1 eið Þ, dμ+1 eið Þ + μ+1 eið Þ
� �

,
�

· dμ−2 eið Þ + μ−2 eið Þ, dμ+2 eið Þ + μ+2 eið Þ
� ��

= 〠
n

k=1
m−

k −m−
i +m−

i , 〠
n

k=1
m+

k −m+
i +m+

i

 !
,

 

· 〠
n

k=1
n−k − n−i + n−i , 〠

n

k=1
n+k − n+i + n+i

 !!

= 〠
n

k=1
m−

k , 〠
n

k=1
m+

k

 !
, 〠

n

k=1
n−k , 〠

n

k=1
n+k

 ! !
:

ð5Þ
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Figure 3: G is NETI-IVIFG but it is not NEI-IVIFG.
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Figure 4: μ is not a CF.
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Figure 5: G is both NEI-IVIFG and NETI-IVIFG, not SI-IVIFG.
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Figure 6: G is both SEI-IVIFG and SETI-IVIFG.
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Figure 7: G is SEI-IVIFG but it is not SETI-IVIFG.
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All edges ei, ð1 ≤ i ≤ nÞ, have same TDs. Hence, G is a
TER-IVIFG. Now, if m−

i ≠m−
j , m

+
i ≠m+

j , n
−
i ≠ n−j , and n+i ≠

n+j , for each 1 ≤ i, j ≤ n, then we have the following:

dG eið Þ = dμ−1 eið Þ, dμ+1 eið Þ
� �

, dμ−2 eið Þ, dμ+2 eið Þ
� �� �

= dσ−1 xð Þ + dσ−1 við Þ − 2μ−1 xvið Þ, dσ+1 xð Þ + dσ+1 við Þ − 2μ+1 xvið Þ
� �

,
�

· dσ−2 xð Þ + dσ−2 við Þ − 2μ−2 xvið Þ, dσ+2 xð Þ + dσ+2 við Þ − 2μ+2 xvið Þ
� ��

= 〠
n

k=1
m−

k +m−
i − 2m−

i , 〠
n

k=1
m+

k +m+
i − 2m+

i

 !
,

 

· 〠
n

k=1
n−k + n−i − 2n−i , 〠

n

k=1
n+k + n+i − 2n+i

 !!

= 〠
n

k=1
m−

k −m−
i , 〠

n

k=1
m+

k −m+
i

 !
, 〠

n

k=1
n−k − n−i , 〠

n

k=1
n+k − n+i

 ! !
,

 for each 1 ≤ i ≤ n: ð6Þ

Therefore, all edges ei,ð1 ≤ i ≤ nÞ, have VDs. Hence, G is
a NEI-IVIFG.

Definition 25. Let G be a CIVIFG on G∗. Then, G is called to
be a:

((0.6,0.8),(0.1,0.2))

((0.6,0.8),(0.1,0.2))x

u

((0.6
,0.88

),(0.
1,0.2

)) ((0.1,0.3),(0.3,0.4))

w

v((0.4,0.6),(0.2,0.4))

((0.5,0.7),(0.2,0.3))

((0.3
,0.5)

,(0.4
,0.5)

)((0.5,0.7),(0.2,0.3))

Figure 8: G is SETI-IVIFG but it is not SEI-IVIFG.

((0.1,0.2),(0.4,0.6))((0.
4,0.

6),(
0.1,

0.2)
)

((0.3,0.5),(0.2,0.3)) ((0
.2,
0.3

),(
0.3

,0.
5)
)

((0.5,0.6),(0.1,0.2))
u

v((0.2,0.4),(0.3,0.5))((0.4,0.7),(0.1,0.2))y

((0.3,0.4),(0.3,0.4))x w
((0.5,0.6),(0.2,0.3)) ((0.3,0.4),(0.2,0.3))

Figure 9: μ is not a CF.

((0.3,0.5),(0.1,0.4))

((0.2,0.3),(0.4,0.5)) ((0.1,0.2),(0.3,0.4)) ((0.2,0.3),(0.4,0.5))

u
((0.2,0.3),(0.3,0.4))

v
((0.3,0.4),(0.1,0.3))

w
((0.2,0.3),(0.3,0.5))

x

Figure 10: G is NEI and NETI-IVIFG but it is not SEI and SETI-IVIFG.

Table 2: The names of the staff and their specialization in the
hospital.

Name Services

Jafari (Ja) Medical equipment expert

Mohseni (Mo) Head of security guard

Alavi (Al) Head of admissions

Samie (Sa) Expert radiology and laboratory

Rezai (Re) Hospital head

Ghoreishi (Gh) IT expert

Khorami (Kh) Head of finance

Table 3: Employee power based on degree of membership and
nonmembership.

Jafari Mohseni Alavi Samie Rezai Ghoreishi Khorami

σ−1 0.85 0.85 0.75 0.65 0.55 0.55 0.45

σ+1 0.95 0.95 0.85 0.75 0.65 0.65 0.55

σ−2 0 0 0.05 0.05 0.25 0.25 0.25

σ+2 0.05 0.05 0.15 0.15 0.35 0.35 0.35
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((0.55,0.65),(0.25,0.35))

Re

((0.45,0.55),(0.25,0.35))

((0.55,0.65),(0.25,0.35))

((
0.
45
,0
.5
5)
,(0

.2
5,
0.
35
))

((
0.
35
,0
.4
5)
,(0

.2
5,
0.
35
))

((0.
15,0

.25)
,(0.

25,0
.35)

)

((0.25,0.35),(0.25,0.35))

((
0.
55
,0
.6
5)
,(0

.2
5,
0.
35
))

((
0.
85
,0
.9
5)
,(0

.0
0,
0.
05
))

((0.85,0.95),(0.00,0.05))

((0.65,0.75),(0.00,0.05))

((0.75,0.85),(0.00,0.05))

((0.55,0.65),(0.25,0.35))

((0
.15
,0.2

5),
(0.
25,
0.3
5))

((0
.55
,0.6

5),
(0.
25,
0.3
5))

((0.75,0.85),(0.05,0.15))

((0
.65
,0.7

5),
(0.
05
,0.1

5))

Ja

Mo Al Sa

Kh

Gh

Figure 11: IVIF digraph (influence graph).

Table 4: Adjacency matrix corresponding to Figure 11.

Ja Mo Al Sa Re Gh Kh

Ja 0

0:75,0:85ð Þ
,

0,0:05ð Þ

0
BB@

1
CCA 0 0 0 0 0

Mo 0 0

0:65,0:75ð Þ
,

0,0:05ð Þ

0
BB@

1
CCA 0 0 0

0:15,0:25ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Al 0 0 0 0 0 0

0:35,0:45ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Sa 0 0 0 0 0

0:45,0:55ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

0:25,0:35ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Re

0:55,0:65ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

0:55,0:65ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA 0 0 0 0

0:25,0:35ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Gh 0 0 0 0 0 0

0:15,0:25ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Kh 0 0 0 0 0 0 0
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(i) SEI-IVIFG if each pair of edges has VDs

(ii) SETI-IVIFG if each pair of edges has various TDs

Example 26. Graph that is both SEI-IVIFG and SETI-IVIFG.
Let G be a CIVIFG on G∗ which is a cycle of length five.

From Figure 6, dGðuÞ = ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðvÞ = ðð
0:3,0:5Þ, ð0:7,1:1ÞÞ, dGðwÞ = ðð0:5,0:7Þ, ð0:6,0:9ÞÞ, dGðxÞ = ðð
0:6,0:9Þ, ð0:5,0:7ÞÞ, dGðyÞ = ðð0:7,1:1Þ, ð0:3,0:5ÞÞ, dGðuvÞ = ð
ð0:6,0:9Þ, ð0:4,0:7ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:7,1:0ÞÞ, dGðwxÞ
= ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðxyÞ = ðð0:7,1:0Þ, ð0:4,0:6ÞÞ, and
dGðyuÞ = ðð0:4,0:7Þ, ð0:6,0:9ÞÞ.

Thus, G is a SEI-IVIFG.
tdGðuvÞ = ðð0:7,1:1Þ, ð0:8,1:3ÞÞ, tdGðvwÞ = ðð0:6,0:9Þ, ð

1:0,1:5ÞÞ, tdGðwxÞ = ðð0:8,1:2Þ, ð0:8,1:2ÞÞ, tdGðxyÞ = ðð
1:0,1:5Þ, ð0:6,0:9ÞÞ, and tdGðyuÞ = ðð0:8,1:3Þ, ð0:7,1:1ÞÞ:

The above calculations show that each edge has various
TD. Therefore, G is a SETI-IVIFG.

So, G is both SEI-IVIFG and SETI-IVIFG.

Example 27. SEI-IVIFG needs not be SETI-IVIFG.
Let G be an IVIFG so that G∗, a cycle of length three.

From Figure 7, dGðuÞ = ðð0:3,0:5Þ, ð0:9,1:3ÞÞ, dGðvÞ = ðð
0:5,0:7Þ, ð0:8,1:2ÞÞ, dGðwÞ = ðð0:4,0:6Þ, ð0:7,1:1ÞÞ, dGðuvÞ =
ðð0:4,0:6Þ, ð0:7,1:1ÞÞ, dGðvwÞ = ðð0:3,0:5Þ, ð0:9,1:3ÞÞ, dGðwu
Þ = ðð0:5,0:7Þ, ð0:8,1:2ÞÞ, and tdGðuvÞ = tdGðvwÞ = tdGðwuÞ
= ðð0:6,0:9Þ, ð1:2,1:8ÞÞ.

Note that G is SEI-IVIFG, since each pair of edges has
VDs. Also, G is not SETI-IVIFG, since all the edges have
same TDs. Hence, SEI-IVIFG needs not to be SETI-IVIFG.

Example 28. SETI-IVIFG needs not to be SEI-IVIFG.
Suppose G is an IVIFG so that G∗, a cycle of length four.

From Figure 8, dGðuÞ = ðð0:7,1:1Þ, ð0:4,0:6ÞÞ, dGðvÞ = ðð
0:4,0:8Þ, ð0:7,0:9ÞÞ, dGðwÞ = ðð0:8,1:2Þ, ð0:6,0:8ÞÞ, dGðxÞ = ðð
1:1,1:5Þ, ð0:3,0:5ÞÞ, dGðuvÞ = dGðwxÞ = ðð0:9,1:3Þ, ð0:5,0:7ÞÞ,
dGðvwÞ = dGðxuÞ = ðð0:6,1:0Þ, ð0:5,0:7ÞÞ, tdGðuvÞ = ðð1:0,1:6
Þ, ð0:8,1:1ÞÞ, tdGðvwÞ = ðð0:9,1:5Þ, ð0:9,1:2ÞÞ, tdGðwxÞ = ðð
1:4,2:0Þ, ð0:7,1:0ÞÞ, and dGðxuÞ = ðð1:2,1:8Þ, ð0:6,0:9ÞÞ.

It is noted that dGðuvÞ = dGðwxÞ. So, G is not SEI-IVIFG.
But G is SETI-IVIFG, since tdGðuvÞ ≠ tdGðvwÞ ≠ tdGðw

xÞ ≠ tdGðxuÞ. Hence, SETI-IVIFG needs not to be SEI-
IVIFG.

Remark 29. Let G be a CIVIFG on G∗. If G is both SEI-
IVIFG and SETI-IVIFG, then μ needs not to be a CF.

Example 30. Consider G be an IVIFG so that G∗ is a cycle of
length five.

From Figure 9, dGðuÞ = ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðvÞ = ðð
0:3,0:5Þ, ð0:7,1:1ÞÞ, dGðwÞ = ðð0:5,0:7Þ, ð0:6,0:9ÞÞ, dGðxÞ = ðð
0:6,0:9Þ, ð0:5,0:7ÞÞ, and dGðyÞ = ðð0:7,1:1Þ, ð0:3,0:5ÞÞ. Also,
dGðuvÞ = ðð0:6,0:9Þ, ð0:4,0:7ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:7,1:0Þ

Þ, dGðwxÞ = ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðxyÞ = ðð0:7,1:0Þ, ð
0:4,0:6ÞÞ, and dGðyuÞ = ðð0:4,0:7Þ, ð0:6,0:9ÞÞ.

Clearly, each edge in G has VD. Therefore, G is a SEI-
IVIFG.

Also, tdGðuvÞ = ðð0:7,1:1Þ, ð0:8,1:3ÞÞ, tdGðvwÞ = ðð
0:6,0:9Þ, ð1:0,1:5ÞÞ, tdGðwxÞ = ðð0:8,1:2Þ, ð0:8,1:2ÞÞ, tdGðxyÞ
= ðð1:0,1:5Þ, ð0:6,0:9ÞÞ, and tdGðyuÞ = ðð0:8,1:3Þ, ð0:7,1:1ÞÞ.

Thus, each edge in G has various TD. So, G is a SETI-
IVIFG. Hence, G is both SEI-IVIFG and SETI-IVIFG. But
μ is not a CF.

Theorem 31. Let G be an IVIFG on G∗. If G is a SEI-IVIFG,
then G is a NEI-IVIFG.

Proof. Let G be an IVIFG on G∗ that is SEI-IVIFG. Then,
each edge in G has VD. Thus, each neighbor edge has VD.
So, G is a NEI-IVIFG.

Theorem 32. Let G be an IVIFG on G∗. If G is a SETI-IVIFG,
then G is a NETI-IVIFG.

Proof. Let G be an IVIFG on G∗ that is SETI-IVIFG. Then,
each pair of edges in G has various TDs. Hence, each pair
of neighbor edges has various TDs. Therefore, G is a
NETI-IVIFG.

Remark 33. The inverse of Theorems 31 and 32 is not gener-
ally true.

Example 34. Let G be an IVIFG so that G∗ is a path with four
nodes.

From Figure 10, dGðuÞ = dGðxÞ = ðð0:2,0:3Þ, ð0:4,0:5ÞÞ,
dGðvÞ = dGðwÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, dGðuvÞ = ðð0:1,0:2Þ, ð
0:3,0:4ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:8,1:0ÞÞ, dGðwxÞ = ðð0:1,0:2
Þ, ð0:3,0:4ÞÞ, tdGðuvÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, tdGðvwÞ = ðð
0:5,0:8Þ, ð1:1,1:4ÞÞ, and tdGðwxÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ.

Here, dGðuvÞ ≠ dGðvwÞ and dGðvwÞ ≠ dGðwxÞ. Hence, G
is a NEI-IVIFG. But G is not a SEI-IVIFG, since dGðuvÞ ≠
dGðwxÞ. Also, note that tdGðuvÞ ≠ tdGðvwÞ and tdGðvwÞ ≠ t
dGðwxÞ. So, G is a NETI-IVIFG. But G is not a SETI-IVIFG,
since tdGðuvÞ ≠ tdGðwxÞ.

4. Application of IVIF Influence Digraph to
Find the Most Effective Person in a Hospital

Serving the people has always been an important duty of any
government, and this has also played a significant role in the
growth and prosperity of any country, because if the people
are satisfied with the government of their country, then they
will perform their duties in the best possible way. As a result,
a healthier society will be formed with more progress. One of
these very important services is taking care of people’s
health. Hospitals and medical centers must also serve
patients in the best possible way and not neglect to admit
and treat patients. But a very important issue that can be
important in the service and treatment of patients in the
fastest possible time is the rapid and correct management
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of hospital wards and health centers. If a manager can prop-
erly guide the staff under her supervision and give them the
necessary training to treat patients, then the service will be
provided in the best possible way. Therefore, in this section,
we try to introduce the most effective staff of a hospital with
the help of an IVIFG. To do this, we consider the nodes of
this influence graph as the staff of a hospital and the edges
as the influence of one employee on another employee.
The names of the staff and their specialization in the hospital
are shown in Table 2. For this hospital, the staff is as follows:

E = Jafari, Mohseni, Alavi, Samie, Rezai, Ghoreishi, Khoramif g:
ð7Þ

(i) Mohseni has been working with Samie for 12 years
and values his views on issues

(ii) Rezai has been the head of the hospital, and not
only Mohseni but also Samie is very satisfied with
Rezai’s performance

(iii) The safety of hospital staff and also the care of hos-
pital equipment is a very important issue. Mohseni
is an expert for this

(iv) Alavi and Ghoreishi have a long history of conflict

(v) Samie is very effective in laboratory and radiology
affairs of the hospital

Considering the above points, the influence graph can be
very important. But such a graph cannot show the power of
employees within a hospital and the degree of influence of
employees on each other. Since power and influence do
not have defined boundaries, they can be represented as an
interval-valued fuzzy set. On the other hand, there can be
no fair interpretation of the power and influence of individ-
uals, because evaluations are always accompanied by skepti-
cism. So, here we use the interval-valued intuitionistic fuzzy
degrees, which is very useful for influence and conflicts
between employees. The interval-valued intuitionistic fuzzy
set of employees is shown in Table 3.

We have shown the influence of persons in the IVIF
digraph with an edge. This graph is shown in Figure 11,
and its adjacency matrix is shown in Table 4.

Hospital staff are the vertices of the IVIF digraph of
Figure 11, and their strength in terms of conditions, degrees
of IVM, and IV-NM is that it can also be expressed as a per-
centage. For example, Mr. Alavi has 75% to 85% of power
and between 5% and 15% does not have this power. Also,
the edges of this graph indicate the influence of one person
on another. Degree of IVM and IV-NM can be described
in terms of positive and negative influence. For example,
between 55% and 65% of the time, Mr. Jafari is influenced
by Mr. Rezaei’s thoughts and ideas, but 25% to 35% of the
time he is not influenced by his opinions.

In Figure 11, it is clear that Mr. Rezaei controls both the
medical equipment experts: Mr. Jafari and the head of secu-

rity guard, Mr. Mohseni. His influence on both of them is
the same. Because the IV membership rate in both of them
is (0.55, 0.65), i.e., 55% to 65%. But in the case of Mr. Rezaei
and Mr. Mohseni, the degree of doubt is between 0% and
20% because

1 − 0:65 − 0:35,1 − 0:55 − 0:25ð Þ = 0,0:20ð Þ, ð8Þ

and in the case of Mr. Jafari and Mohseni, it is between 10%
and 25% because

1 − 0:85 − 0:05,1 − 0:75 − 0ð Þ = 0:10,0:25ð Þ: ð9Þ

The implication is that Mr. Jafari is more skeptical than
Mr. Rezaei. Clearly, Mr. Rezaei has the most influence in the
organization, because he dominates both the equipment
expert and the security guard; these two people have the
most power in the hospital, i.e., between 85% and 95%.

5. Conclusions

Interval-valued intuitionistic fuzzy graphs have various uses
in modern science and technology, especially in the fields of
neural networks, computer science, operation research, and
decision-making. Also, they have a wide range of applica-
tions in the field of psychological sciences as well as the iden-
tification of individuals based on oncological behaviors.
With the help of IVIFGs, the most effective person in an
organization can be identified according to the important
factors that can be useful for an institution. Therefore, in this
research, some types of EI-IVIFGs such as NETI-IVIFGs,
SEI-IVIFGs, and SETI-IVIFGs are introduced. A compara-
tive study between NEI-IVIFGs and NETI-IVIFGs is pre-
sented. Finally, an application of IVIF influence digraph
has presented. In our future work, we will introduce connec-
tivity index, Winer index, and Randic index in interval-
valued intuitionistic fuzzy graphs and investigate some of
their properties. Also, we will investigate some types of
energy, including Laplacian and skew Laplacian in both
interval-valued intuitionistic fuzzy graphs and interval-
valued intuitionistic fuzzy digraphs.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the Natural Science Foundation
of China (grant nos. 62002079).

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
pp. 338–353, 1965.

10 Advances in Mathematical Physics



[2] A. Kaufman, “Introduction a la theorie des sous-emsembles
flous,” Masson et Cie, vol. 1, 1973.

[3] L. A. Zadeh, “Similarity relations and fuzzy ordering,” Infor-
mation Sciences, vol. 3, pp. 177–200, 1971.

[4] L. A. Zadeh, “Is there a need for fuzzy logical,” Information Sci-
ences, vol. 178, pp. 2751–2779, 2008.

[5] A. Rosenfeld, Fuzzy Graphs, Fuzzy Sets and Their Applications,
L. A. Zadeh, K. S. Fu, and M. Shimura, Eds., Academic Press,
New York, 1975.

[6] P. Bhattacharya, “Some remarks on fuzzy graphs,” Pattern
Recognition Letters, vol. 6, no. 5, pp. 297–302, 1987.

[7] J. N. Mordeson and P. S. Nair, Fuzzy Graph and Fuzzy Hyper-
graphs, PhysicaVerlag, Heidebeg, Second edition, 2001.

[8] K. T. Atanassov, “Intuitionistic fuzzy sets,” International Jour-
nal Bioautomation, vol. 20, pp. 87–96, 1986.

[9] K. T. Atanassov and G. Gargov, “Interval-valued intuitionistic
fuzzy sets,” Fuzzy Sets and Systems, vol. 31, no. 3, pp. 343–349,
1989.

[10] K. T. Atanassov, “Intuitionistic Fuzzy Sets,” in Theory, Appli-
cations, Studies in Fuzziness and Soft Computing, Physica-Verl,
Heidelberg, New York, 1999.

[11] M. Akram and B. Davvaz, “Strong intuitionistic fuzzy graphs,”
Filomat, vol. 26, no. 1, pp. 177–196, 2012.

[12] J. Hongmei and W. Lianhua, “Interval-valued fuzzy subse-
migroups and subgroups associated by interval-valued fuzzy
graphs,” 2009 WRz Global Congress on Intelligent Systems,
vol. 1, pp. 484–487, 2009.

[13] M. G. Karunambigai, S. Sivasankar, and K. Palanivel, “Edge
regular intuitionistic fuzzy graph,” Advances in Fuzzy Sets
and Systems, vol. 20, no. 1, pp. 25–46, 2015.

[14] S. N. Mishra and A. Pal, “Product of interval-valued intuitio-
nistic fuzzy graph,” Annals of Pure and Applied Mathematics,
vol. 5, no. 1, pp. 37–46, 2013.

[15] A. Nagoorgani and K. Radha, “The degree of a vertex in some
fuzzy graphs,” International Journal of Algorithms, Computing
and Mathematics, vol. 2, no. 3, pp. 107–116, 2009.

[16] A. Nagoorgani and K. Radha, “On regular fuzzy graphs,” Jour-
nal of Physical Sciences, vol. 12, pp. 33–44, 2008.

[17] A. Nagoorgani and S. R. Latha, “On irregular fuzzy graphs,”
Applied Mathematical Sciences, vol. 6, no. 11, pp. 517–523,
2012.

[18] Z. Shao, S. Kosari, H. Rashmanlou, and M. Shoaib, “New con-
cepts in intuitionistic fuzzy graph with application in water
supplier systems,” Mathematics, vol. 8, no. 8, p. 1241, 2020.

[19] S. P. Nandhini and E. Nandhini, “Strongly irregular fuzzy
graphs,” International Journal of Mathematical Archive,
vol. 5, no. 5, pp. 110–114, 2014.

[20] N. R. Santhi Maheswari and C. Sekar, “On edge irregular fuzzy
graphs,” International Journal of Mathematics and Soft Com-
puting, vol. 6, no. 2, pp. 131–143, 2016.

[21] N. R. Santhi Maheswari and C. Sekar, “On neighbourly edge
irregular fuzzy graphs,” International Journal of Mathematical
Archive, vol. 6, no. 10, pp. 224–231, 2015.

[22] N. R. Santhi Maheswari and C. Sekar, “On strongly edge irreg-
ular fuzzy graphs,” Kragujevac Journal of Mathematics, vol. 40,
no. 1, pp. 125–135, 2016.

[23] S. Kosari, Y. Rao, H. Jiang, X. Liu, P. Wu, and Z. Shao, “Vague
graph structure with application in medical diagnosis,” Sym-
metry, vol. 12, no. 10, p. 1582, 2020.

[24] Y. Rao, S. Kosari, and Z. Shao, “Certain properties of vague
graphs with a novel application,” Mathematics, vol. 8, no. 10,
p. 1647, 2020.

[25] Y. Rao, S. Kosari, Z. Shao, R. Cai, and L. Xinyue, “A study on
domination in vague incidence graph and its application in
medical sciences,” Symmetry, vol. 12, no. 11, p. 1885, 2020.

[26] X. Shi and S. Kosari, “Certain properties of domination in
product vague graphs with an application in medicine,” Fron-
tiers of Physics, vol. 9, article 680634, 2021.

[27] A. A. Talebi, M. Ghassemi, and H. Rashmanlou, “New con-
cepts of irregular-intuitionistic fuzzy graphs with applica-
tions,” Annals of the University of Craiova-Mathematics and
Computer Science Series, vol. 47, no. 2, pp. 226–243, 2020.

[28] A. A. Talebi, M. Ghassemi, H. Rashmanlou, and S. Broumi,
“Novel properties of edge irregular single valued neutrosophic
graphs,”Neutrosophic Sets and Systems (NSS), vol. 43, pp. 255–
279, 2021.

[29] A. A. Talebi, H. Rashmanlou, and M. Ghassemi, New Concepts
of Strongly Edge Irregular Interval-Valued Neutrosophic
Graphs, Nova Science Publishers, Inc., 2020.

[30] A. A. Talebi, H. Rashmanlou, and S. H. Sadati, “Interval-val-
ued intuitionistic fuzzy competition graph,” Journal of
Multiple-Valued Logic and Soft Computing, vol. 34, pp. 335–
364, 2020.

[31] Z. Kou, S. Kosari, and M. Akhoundi, “A novel description on
vague graph with application in transportation systems,” Jour-
nal of Mathematics, vol. 2021, Article ID 4800499, 11 pages,
2021.

[32] K. Kalaiarasi and L. Mahalakshmi, “Regular and irreguar m-
polar fuzzy graphs,” Global Journal of Mathematical Sciences:
Theory and Practical, vol. 9, no. 2, pp. 139–152, 2017.

[33] S. Selvanayaki, “Strong and balanced irregular interval valued
fuzzy graphs,” International Journal of Engineering, Science
and Mathematics, vol. 6, no. 2, pp. 28–37, 2017.

[34] H. Rashmanlou, G. Muhiuddin, S. K. Amanathulla,
F. Mofidnakhaei, and M. Pal, “A study on cubic graphs with
novel application,” Journal of Intelligent and Fuzzy Systems,
vol. 40, no. 1, pp. 89–101, 2021.

[35] S. Poulik and G. Ghorai, “Detour g-interior nodes and detour
g-boundary nodes in bipolar fuzzy graph with applications,”
Hacettepe Journal of Mathematics and Statistics, vol. 49,
no. 1, pp. 106–119, 2020.

[36] S. Poulik and G. Ghorai, “Certain indices of graphs under
bipolar fuzzy environment with applications,” Soft Computing,
vol. 24, no. 7, pp. 5119–5131, 2020.

[37] S. Poulik and G. Ghorai, “Applications of graph’s complete
degree with bipolar fuzzy information,” in Complex & Intelli-
gent Systems, Springer, 2021.

[38] T. Pramanik, G. Muhiuddin, A. M. Alanazi, and M. Pal, “An
extension of fuzzy competition graph and its uses in
manufacturing industries,” Mathematics, vol. 8, no. 6, 2020.

[39] G.Muhiuddin, N. Sridharan, D. Al-Kadi, S. Amutha, andM. E.
Elnair, “Reinforcement number of a graph with respect to half-
domination,” Journal of Mathematics, vol. 2021, Article ID
6689816, 7 pages, 2021.

[40] S. K. Amanathulla, G. Muhiuddin, D. Al-Kadi, and M. Pal,
“Distance two surjective labelling of paths and interval
graphs,” Discrete Dynamics in Nature and Society, vol. 2021,
Article ID 9958077, 9 pages, 2021.

[41] C. Ramprasad, P. L. N. Varma, S. Satyanarayana, and
N. Srinivasarao, “Morphism of m-polar fuzzy graph,”

11Advances in Mathematical Physics



Advances in Fuzzy Systems, vol. 2017, Article ID 4715421, 9
pages, 2017.

[42] I. Nazeer, T. Rashid, and A. Keikha, “An application of prod-
uct of intuitionistic fuzzy incidence graphs in textile industry,”
Complexity, vol. 2021, Article ID 5541125, 16 pages, 2021.

[43] A. Bhattacharya and M. Pal, “Fuzzy covering problem of fuzzy
graphs and its application to investigate the Indian economy in
new normal,” Journal of Applied Mathematics and Computing,
vol. 68, no. 1, pp. 479–510, 2022.

[44] R. A. Borzooei, R. Almallah, Y. B. Jun, and H. Ghaznavi,
“Inverse fuzzy graphs with applications,” New Mathematics
and Natural Computation, vol. 16, no. 2, pp. 397–418, 2020.

12 Advances in Mathematical Physics



Research Article
Darboux Vector in Four-Dimensional Space-Time

Na Hu ,1 Tingting Zhang ,1 and Yang Jiang 2

1School of Science, Shenyang University of Technology, Shenyang, China
2College of Mathematics and Systems Science, Shenyang Normal University, Shenyang, China

Correspondence should be addressed to Na Hu; huna@sut.edu.cn

Received 8 February 2022; Accepted 25 March 2022; Published 12 April 2022

Academic Editor: Mehmet Atçeken

Copyright © 2022 Na Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the space-time model of the theory of relativity, four-dimensional Minkowski space is the basis of the theoretical framework for
the development of the theory of relativity. In this paper, we introduce Darboux vector fields in four-dimensional Minkowski
space. Using these vector fields, we define some new planes and curves. We find that the new planes are the instantaneous
rotation planes of rigid body moving in four-dimensional space-time. In addition, according to some characteristics of
Darboux vectors in geometry, we define some new space curves in four-dimensional space-time and describe them with
curvature functions. Finally, we give some examples.

1. Introduction

On the basis of the principle of relativity and Lorentz trans-
formation, in 1907, Minkowski proposed to add a time
dimension on the basis of three space dimensions, thus
forming a four-dimensional space-time, and this space-
time is also called Minkowski 4-space. The metric tensor g
in E4

1 is given by

g = dx21 + dx22 + dx23 − dx24, ð1Þ

where ðx1, x2, x3, x4Þ is a standard rectangular coordinate
system in E4

1. Minkowski space is not only closely related
to physics but also provides theoretical and methodological
support for the study of astrophysics and cosmology [1–4].
The study of submanifolds in Minkowski space is of interest
in relativity theory; therefore, more and more geometers and
physicists are committed to the study of submanifolds in
Minkowski space. For example, in [5], the authors studied
some local properties of slant geometry on spacelike subma-
nifolds of codimension two in Lorentz-Minkowski space and
investigate spacelike curves in Lorentz-Minkowski 3-space
from different viewpoints as another special case. In [6],
the authors studied null helices of 1-dimensional lightlike
submanifolds and gave some characterizations of null helices

in ℝ3
1. We refer the reader to [7–17] and the references

therein for more related works.
The Darboux vector is the local speed vector of the Fre-

net frame of space curves, which was discovered and named
after Gaston Darboux [18]. If an object moves along a regu-
lar curve, we can use the Frenet frame of space curves to
describe the motion of the object in terms of two vectors:
the translation vector and the rotation vector, where the
rotation vector is the Darboux vector. Because the Darboux
vector is directly related to the angular momentum, it is also
called the angular momentum vector.

In the past few decades, many researchers have mainly
studied Darboux vectors in 3-dimensional space [19–26]
and have obtained some interesting conclusions. For exam-
ple, in 2012, Ziplar introduced and studied Darboux helices
in Euclidean 3-space and proved that Darboux helices coin-
cide with slant helices [19]. In [20], Öztürk and Nešovic′
defined the pseudo null and null Cartan Darboux helices
in Minkowski 3-space and obtained the relationship between
pseudo null, null Cartan Darboux helices, and slant helices.
In [21], the quasi Darboux vector field of null curve in Min-
kowski 3-space was defined, and some interesting conclu-
sions about osculating developable of null curve which is
defined by quasi Darboux vector field of null curve were
obtained. Wang and Pei defined the Darboux vector of the
null curve in [23] and described the direction of the rotation
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axis of the Cartan frame in Minkowski 3-space. Later, in
2017, Düldül [27] extended the Darboux frame field to
four-dimensional Euclidean space and gave the relationship
between the curvature of Frenet frame and Darboux frame.
In [28], Düldül defined some new vector fields in four-
dimensional Euclidean space and showed that the deter-
mined new planes play the role of the Darboux vector. _I
larslan and Yildirim [29] defined the Darboux helices in
four-dimensional Euclidean space as a curve whose Darboux
vector makes a constant angle with some fixed direction and
obtained relation between the curves Darboux helix, general
helix, and V4-slant helix in a special case.

Motivated by those ideas, in this paper, we construct four
new vector fields along the space curve whose curvatures do
not disappear in four-dimensional space-time. Based on these
vector fields, we define some new planes and helices in four-
dimensional space-time. The corresponding curvature func-
tions are given when the position vectors of the curves lie on
different planes. Moreover, we define Darboux helices inMin-
kowski 4-space and give some descriptions of their curvature
functions.

2. Preliminaries

Four-dimensional space-time E4
1 is the real four-dimensional

vector space ℝ4 equipped with the standard flat metric given
by

x, yh i = x1y1 + x2y2 + x3y3 − x4y4: ð2Þ

For any three vectors x = ðx1, x2, x3, x4Þ, y = ðy1, y2, y3,
y4Þ, and z = ðz1, z2, z3, z4Þ in E4

1, their exterior product is
given by

x × y × z =

e1 e2 e3 −e4
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

�����������

�����������
, ð3Þ

where fe1, e2, e3, e4g is an orthogonal basis in E4
1, that is,

e1 = 1, 0, 0, 0ð Þ, e2 = 0, 1, 0, 0ð Þ, e3 = 0, 0, 1, 0ð Þ, e4 = 0, 0, 0, 1ð Þ:
ð4Þ

A vector v in E4
1 is called spacelike, timelike, or null

(lightlike), if hv, vi > 0 or hv, vi < 0, hv, vi = 0, respectively.
In particular, the vector v = 0 is said to be spacelike. A curve
γðsÞ: I ⟶ E4

1 is called spacelike, timelike, or null (lightlike)
if all of its velocity vectors γ′ðsÞ satisfy hγ′, γ′i > 0, hγ′, γ′i
< 0, or hγ′, γ′i = 0, respectively. The norm of a vector v in
E4
1 is given by ∥v∥ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣hv, vi ∣p

[15].

Definition 1 (see [30]). Let γðsÞ be a null curve parameterized
by null arc length s (i.e., ∥γ′′ðsÞ∥ = 1) in E4

1. Then, γðsÞ can be
framed by a Cartan Frenet frame fT ,N , B1, B2g such that

T ′

N ′

B1′

B2′

2
666664

3
777775 =

0 1 0 0
k2 0 −1 0
0 −k2 0 k3

−k3 0 0 0

2
666664

3
777775

T

N

B1

B2

2
666664

3
777775, ð5Þ

where

N , B2h i = T , B2h i = N , B1h i = T ,Nh i = T , Th i
= B1, B1h i = B1, B2h i = 0,

N ,Nh i = B2, B2h i = T , B1h i = 1,
T ×N × B1 = B2,N × B1 × B2 = B1, B1 × B2 × T

=N , B2 × T ×N = T:

ð6Þ

In sequence, T ,N , B1, B2 are called the tangent, principal
normal, first binormal, and second binormal vector field of
γðsÞ and k2 and k3 are first curvature and second curvature
of the curve γðsÞ, respectively.

Definition 2 (see [16]). LetγðsÞ be a pseudo null curve
parameterized by arc length s (i.e., ∥γ′′ðsÞ∥ = 0) in E4

1. Then,
the Frenet equation is defined by

T ′

N ′

B1′

B2′

2
666664

3
777775 =

0 1 0 0
0 0 k1 0
0 k2 0 −k1
−1 0 −k2 0

2
666664

3
777775

T

N

B1

B2

2
666664

3
777775, ð7Þ

where

B2, B2h i = B1, B2h i = N , B1h i = T , B1h i
= T ,Nh i = T , B2h i = N ,Nh i = 0,

N , B2h i = B1, B1h i = T , Th i = 1,
T ×N × B1 =N ,N × B1 × B2 = T , B1 × B2 × T

= B2, B2 × T ×N = B1,

ð8Þ

and k1 and k2 are first curvature and second curvature of the
curve γðsÞ, respectively.

3. Darboux Helix and Planes of Null Curve

When the Frenet frame fT ,N , B1, B2g of a nongeodesic null
curve makes an instantaneous helix motion in E4

1, there
exists an axis of the frame’s rotation. The direction of such
axis is given by the vector

D1 = k2T + B1,D2 = B2,D3 = T ,D4 = k3N + k2B2, ð9Þ

and we call them the Darboux vectors for the null curves in
E4
1. The Darboux vectors satisfy the Darboux equations
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T ′ =D1 ×D2 × T ,
N ′ =D2 ×D1 ×N ,
B1′ =D3 ×D4 × B1,
B2′ =D4 ×D3 × B2:

ð10Þ

From (10), we know that Frenet vectors T and N rotate
around the D1D2 plane, and Frenet vectors B1 and B2 rotate
around the D3D4 plane. We find that the D1D2 plane and
D3D4 plane play the role of Darboux vector in three-
dimensional space. We also note that D2 and D3 are Frenet
vectors of the null curve, fD1,D2,D3,D4g is linearly inde-
pendent, and D1 is orthogonal to D2 and D4. We are going
to use the subspace spanned by fD1,D2g and fD1,D4g to
represent D1D2 plane and D1D4 plane, respectively.

Inspired by [10, 28], we discuss the situation when the
curve γðsÞ lies in D1D2 and D1D4 planes.

Theorem 3. Let γðsÞ: I ⟶ E4
1 be a null curve parameterized

by null arc length s. k2, k3 are the curvature functions of the
null curve γðsÞ. If γðsÞ lies in D1D2 plane, then the curvature
functions k2, k3 satisfy

1/k3ð Þ′
k3 + k2′/k3ð Þ′

" #
′ = 0, ð11Þ

and in addition, the curve γðsÞ can be expressed as

γ sð Þ = cD1 +
ck2′ − 1

k3
D2, ð12Þ

where c is nonzero constant.

Proof. We may assume that

γ sð Þ = λ sð ÞD1 + μ sð ÞD2, ð13Þ

and we take the derivative of (13) according to s, and we
obtain

T = γ′ sð Þ = λk2ð Þ′ − μk3
� �

T + λ′B1 + λk3 + μ′
� �

B2: ð14Þ

Hence,

λk2ð Þ′ − μk3 = 1,
λ′ = 0,
λk3 + μ′ = 0:

8>><
>>: ð15Þ

From the second equation of (15), we get

λ = c, ð16Þ

and substituting (16) into the first equation of (15), we have

μ = ck2′ − 1
k3

: ð17Þ

Then, the curve γðsÞ can be denoted as

γ sð Þ = cD1 +
ck2′ − 1

k3
D2: ð18Þ

From the third equation of (15), we get

c = 1/k3ð Þ′
k3 + k2′/k3ð Þ′

, ð19Þ

that is,

1/k3ð Þ′
k3 + k2′/k3ð Þ′

" #
′ = 0: ð20Þ

This ends the proof.

Corollary 4. In particular, when k3 = a = constant ≠ 0, we
have k2 = ða2/2Þs2 + b, and the curve γðsÞ can be expressed as

γ sð Þ = cD1 +
ca2s − 1

a
D2, ð21Þ

where a and b are constants.

Theorem 5. Let γðsÞ: I ⟶ E4
1 be a null curve parameterized

by null arc length s. k2, k3 are the curvature functions of the
pseudonull curve γðsÞ. If the γðsÞ lies in D1D4 plane, then
the curvature functions k2, k3 satisfy

k2 =
s + c3
c1s + c2

, k23 =
c1 s + c3ð Þ2

c1s + c2ð Þ2 1 − s + c3ð Þ2� � , ð22Þ

and in addition, the curve γðsÞ can be expressed as

γ sð Þ = c1s + c2ð ÞD1 +
c1
k3

D4, ð23Þ

where c1, c2, and c3 are constants.

Proof. Assume that

γ sð Þ = λD1 + μD4: ð24Þ

Differentiating equation (24) with respect to s, we have

T = γ′ = λk2ð Þ′T + μk3ð Þ′N + λ′ − μk3
� �

B1

+ μk2ð Þ′ + λk3
� �

B2:
ð25Þ
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Then, we obtain the system of differential equations

λk2ð Þ′ = 1,
μk3ð Þ′ = 0,
λ′ − μk3 = 0,
μk2ð Þ′ + λk3 = 0:

8>>>>><
>>>>>:

ð26Þ

From the second equation of (26), we get

μk3 = c1: ð27Þ

Substituting (27) into the third equation of (26), we have

λ = c1s + c2: ð28Þ

Then, the curve γðsÞ can be denoted as

γ sð Þ = c1s + c2ð ÞD1 +
c1
k3

D4: ð29Þ

Substituting (28) into the first equation of (26), we have

k2 =
s + c3
c1s + c2

: ð30Þ

Substituting (27) and (28) into the fourth equation of
(26), we can calculate that

k23 =
c1 s + c3ð Þ2

c1s + c2ð Þ2 1 − s + c3ð Þ2� � : ð31Þ

This ends the proof.

Definition 6. Let γðsÞ: I ⟶ E4
1 be a null curve with parame-

terized by null arc length s. If there exists a fixed direction
V ≠ 0 such that

D1, Vh i = a, a ∈ℝ, ð32Þ

then the null curve γðsÞ is called the null Darboux helix, and
the fixed direction V is called an axis of the null Darboux
helix.

Theorem 7. Let γðsÞ: I ⟶ E4
1 be a null curve with parame-

terized by null arc length s. If γðsÞ is a null Darboux helix
in E4

1 whose fixed direction V satisfies

D1, Vh i = a, a ∈ℝ, ð33Þ

then V is given by

V = a − bk2e
Ð
ξds

� �
T + bξe

Ð
ξdsN

+ be
Ð
ξdsB1 −

bk2′
k3

e
Ð
ξdsB2,

ð34Þ

and the curvature functions k2, k3 satisfy

2k2 − ξ2 − ξ′
� �

e
Ð
ξds = a

b
, ð35Þ

where

ξ = k3 − k2′/k3ð Þ′
k2′/k3

, ð36Þ

and b ∈ℝ0, k3 ≠ 0, k2 ≠ const.

Proof. Let γðsÞ: I ⟶ E4
1 be a null Darboux helix with

parameterized by null arc length s. Then, for a fixed direc-
tion V satisfying

D1, Vh i = a, a ∈ℝ, ð37Þ

we can assume

V = u1T + u2N + u3B1 + u4B2: ð38Þ

By using (5), we can obtain

D1, Vh i = k2u3 + u1 = a, ð39Þ

D1′, Vh i = k2′u3 + k3u4 = 0: ð40Þ
Taking the derivative of equation (39) according to s, we

obtain

u1′ = − k2u3ð Þ′: ð41Þ

Differentiating equation (38) and using the Frenet equa-
tion (5), we have

u1′ − k3u4 + k2u2 = 0,
u1 + u2′ − k2u3 = 0,
u2 − u3′ = 0,
u4′ + k3u3 = 0:

8>>>>><
>>>>>:

ð42Þ

By (40), we can obtain

u4 = −
k2′
k3

u3, ð43Þ

Substituting (43) into the fourth equation of (42), we can
obtain

u3 = be
Ð
ξds, ξ = k3 − k2′/k3ð Þ′

k2′/k3
: ð44Þ

From (39), (44), and the third equation of (42), we have

u2 = u3′ = bξe
Ð
ξds,

u1 = a − k2u3 = −bξe
Ð
ξds + a:

ð45Þ
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Thus,

V = a − bk2e
Ð
ξds

� �
T + bξe

Ð
ξdsN + be

Ð
ξdsB1 −

bk2′
k3

e
Ð
ξdsB2:

ð46Þ

From the second equation of (42), the relationship
between k2 and k3 can be expressed as

2k2 − ξ2 − ξ′
� �

e
Ð
ξds = a

b
, ð47Þ

where b is given by the relation (44), and if b = 0, the axis
V = 0, which is a contradiction. Hence, b ≠ 0, which com-
pletes the proof.

Corollary 8. In particular, when a = 0, b = 1, we have

V = −k2T + ξN + B1 −
k2′
k3

B2

� 	
e
Ð
ξds, ð48Þ

and the curvature functions k2, k3 satisfy

ξ′ + ξ2 − 2k2 = 0, ð49Þ

where

ξ = k3 − k2′/k3ð Þ′
k2′/k3

: ð50Þ

Some examples of null Darboux helix in E4
1 are given

below.

Example 1. Let γðsÞ: I ⟶ E4
1 be a null curve with the arc

length s and the curvature

k2 =
s2 + 1
2 , k3 =

sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−s2 + 1

p , ð51Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = −
s2 + 1
2 T + sN + B1 −

ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p
B2

� 	
es

2/2: ð52Þ

Example 2. Let γðsÞ: I ⟶ E4
1 be a null curve with the arc

length s and the curvature

k2 =
sec2s + tan2s

2 , k3 = 2 sec s tan s, ð53Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = −
1 + sin2s
2 cos2s T + tan sN + B1 − sec sB2

� 	
sec s: ð54Þ

Example 3. Let γðsÞ: I ⟶ E4
1 be a null curve with the arc

length s and the curvature

k2 =
1
s2
, k3 = −

2
s2
, ð55Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = −
1
s2
T −

1
s
N + B1 −

1
s
B2

� 	 1
s
: ð56Þ

4. Darboux Helix and Planes of Pseudo
null Curve

When the Frenet frame fT ,N , B1, B2g of a nongeodesic
pseudonull curve makes an instantaneous helix motion in
E4
1, there exists an axis of the frame’s rotation. The direction

of such axis is given by the vector

D1 =N ,D2 = k2T ,D3 = T ,D4 = −k2N − k1B2, ð57Þ

and we call them the Darboux vectors for the pseudo null
curves in E4

1. The Darboux vectors satisfy the Darboux equa-
tions

T ′ =D1 ×D2 × T ,
N ′ =D3 ×D4 ×N ,
B1′ =D4 ×D3 × B1,
B2′ =D2 ×D1 × B2:

ð58Þ

From (58), we know that Frenet vectors T and B2 rotate
around the D1D2 plane, and Frenet vectors N and B1 rotate
around the D3D4 plane. We find that the D1D2 plane and
D3D4 plane play the role of Darboux vector in three-
dimensional space. We also note that D1 and D3 are Frenet
vectors of the pseudonull curve, fD1,D2,D3,D4g is linearly
independent, and D4 is orthogonal to D2 and D3. We are
going to use the subspace spanned by fD2,D4g and fD3,
D4g to represent D2D4 plane and D3D4 plane, respectively.

Similar to Section 3, we discuss the situation when the
curve γðsÞ is in D2D4 and D3D4 planes.

Theorem 9. Let γðsÞ: I ⟶ E4
1 be a pseudonull curve with

parameterized by arc length s. k1, k2 are the curvature func-
tions of the pseudonull curve γðsÞ. If γðsÞ lies in D2D4 plane,
then the curvature functions k1, k2 satisfy

c2k2′′ + c1k2k2′ + k2 = 0, ð59Þ

and in addition, the curve γðsÞ can be expressed as

γ sð Þ = c1D2 +
c2
k2

D4, ð60Þ

where c1 and c2 are nonzero constants.
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Proof. We may assume that

γ sð Þ = λD2 + μD4, ð61Þ

and we take the derivative of (61) according to s, and we
obtain

T = γ′ = μk1 − λk2ð Þ′
� �

T − μk2ð Þ′N

+ λ′B1 − λk1 + μk1ð Þ′
� �

B2:
ð62Þ

Hence,

u1k1 − λk2ð Þ′ = 1,
μk2ð Þ′ = 0,
λ′ = 0,
λk1 + μk1ð Þ′ = 0:

8>>>>><
>>>>>:

ð63Þ

From the second and the third equations of (63), we get

λ = c1, μk2 = c2, ð64Þ

where c1 and c2 are nonzero constants.
Then, the curve γðsÞ can be denoted as

γ sð Þ = c1D2 +
c2
k2

D4: ð65Þ

Substituting (64) into the fourth equation of (63), we
have

c2k1 = c1k2k2′ + k2: ð66Þ

From (66) and the first equation of (63), we get

c2k2′′ + c1k2k2′ + k2 = 0: ð67Þ

This ends the proof.

Theorem 10. Let γðsÞ: I ⟶ E4
1 be a pseudonull curve with

parameterized by arc length s. k1, k2 are the curvature func-
tions of the pseudonull curve γðsÞ. If the γðsÞ lies in D3D4
plane, then the curvature functions k1, k2 satisfy

k2
k1

= 1 − c1ð Þs2
2c1

+ c2s
c1

+ c3
c1
, ð68Þ

and in addition, the curve can be expressed as

γ sð Þ = c2 + 1 − c1ð Þsð ÞD3 +
c1
k1

D4, ð69Þ

where c1, c2, c3 are constants.

Proof. Assume that

γ sð Þ = λD3 + μD4: ð70Þ

Differentiating equation (70) with respect to s, we have

T = γ′ = μk1 + λ′
� �

T − λ − μk2ð Þ′
� �

N − μk1ð Þ′B2: ð71Þ

So we obtain the system of differential equations

μk1 + λ′ = 1,
λ − μk2ð Þ′ = 0,
μk1ð Þ′ = 0:

8>><
>>: ð72Þ

From the first and the third equations of (72), we get

λ = 1 − c1ð Þs + c2, ð73Þ

μk1 = c1: ð74Þ
Then, the curve γðsÞ can be denoted as

α sð Þ = 1 − c1ð Þs + c2ð ÞD3 +
c1
k1

D4: ð75Þ

Substituting (73) and (74) into the second equation of
(72), we have

μk2 =
1
2 1 − c1ð Þs2 + c2s + c3: ð76Þ

From equations (74) and (76), we can obtain

k2
k1

= 1 − c1ð Þs2
2c1

+ c2s
c1

+ c3
c1
, ð77Þ

where c1, c2, c3 are constants.

Corollary 11. In particular, when c1 = 1/1, c2 = c3 = 0, we
have k2/k1 = s2: Let k1 = 3s/ðs2 + 1Þ2 and k2 = 3s3/ðs2 + 1Þ2.
Then, the curve γðsÞ can be expressed as

γ′′ = 3s
ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p

2 s2 + 1ð Þ3
2s, s2, 1 − s2 −

s4

4
, 1 + s2 + s4

4

� 	
: ð78Þ

Definition 12. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve with

parameterized by arc length s. If there exists a fixed direction
V ≠ 0 such that

D2, Vh i = a, a ∈ℝ, ð79Þ

then the pseudo null curve γðsÞ is called the pseudo null
Darboux helix, and the fixed direction V is called an axis
of the pseudo null Darboux helix.

Theorem 13. Let γðsÞ: I ⟶ E4
1 be a pseudonull curve with

parameterized by arc length s. If γðsÞ is a pseudonull Darboux
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helix in E4
1 whose fixed direction V satisfies

D2, Vh i = a, a ∈ℝ, ð80Þ

then V is given by

V = u1T −
k2′
k1

u1N + u1k2 + að ÞB1 + u1′B2, ð81Þ

and the curvature functions k1, k2 satisfy

u1′′ − k1k2u1 = ak1, ð82Þ

where

ξ = 1 + k22 − k2′/k1ð Þ′
k2′/k1

, ð83Þ

and a, b ∈ℝ, k1 ≠ 0, k2 ≠ const.

Proof. Let γðsÞ: I ⟶ E4
1 be a pseudo null Darboux helix

with parameterized by arc length s. Then, for a fixed direc-
tion V satisfying

D2, Vh i = a, a ∈ℝ, ð84Þ

we can assume

V = u1T + u2N + u3B1 + u4B2: ð85Þ

By using (84), we can obtain

D2, Vh i = u3 − u1k2 = a, ð86Þ

D2′, Vh i = −k1u2 − k2′u1 = 0: ð87Þ
Taking the derivative of equation (86) according to s, we

obtain

u3′ = k2u1ð Þ′: ð88Þ

Differentiating equation (85) and using the Frenet equa-
tion (7), we have

u1′ − u4 = 0,
u1 + u2′ + k2u3 = 0,
k1u2 + u3′ − k2u4 = 0,
u4′ − k1u3 = 0:

8>>>>><
>>>>>:

ð89Þ

Substituting (86) and (87) into the second equation of
(89), we can obtain

u1′ −
1 + k22 − k2′ /k1ð Þ′

k2′/k1
u1 = ak2: ð90Þ

By (90), we can obtain

u1 = e
Ð
ξds ak2e

−
Ð
ξds + b

� �
, ð91Þ

where

ξ = 1 + k22 − k2′/k1ð Þ′
k2′/k1

: ð92Þ

From (87), (88), and the first equation of (89), we have

u2 = −
k2′
k1

u1 = −
k2′
k1

e
Ð
ξds ak2e

−
Ð
ξds + b

� �
,

u3 = u1k2 + a = k2e
Ð
ξds ak2e

−
Ð
ξds + b

� �
+ a,

u4 = u1′ = c1k2+ξe
Ð
ξds ak2e

−
Ð
ξds + b

� �
:

ð93Þ

Thus,

V = u1T −
k2′
k1

u1N + u1k2 + að ÞB1 + u1′B2: ð94Þ

From the fourth equation of (89), the relationship
between k1 and k2 can be expressed as

u1′′ − k1k2u1 = ak1, a ∈ℝ: ð95Þ

This ends the proof.

Corollary 14. In particular, when a = 0, b = 1, we have

V = T −
k2′
k1

N + k2B1 + ξB2

� 	
e
Ð
ξds, ð96Þ

and the curvature functions k2, k3 satisfy

ξ′ + ξ2 − k1k2 = 0, ð97Þ

where

ξ = 1 + k22 − k2′/k1ð Þ′
k2′/k1

: ð98Þ

Some examples of pseudo null Darboux helix in E4
1 are

given below.

Example 4. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve, and s is

the pseudoarc length. The curvature function k1, k2 satisfies

k1 =
1

s s2 + 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p , k2 =
sffiffiffiffiffiffiffiffiffiffiffi

s2 + 1
p , ð99Þ
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and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V =
ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p
T − s

ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p
N + sB1 +

sffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p B2: ð100Þ

Example 5. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve with the

arc length s and the curvature

k1 =
2 sec2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sec2s − 1

p , k2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sec2s − 1

p
, ð101Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = tan sT − tan2sN + tan s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sec2s − 1

p
B1 + sec2sB2:

ð102Þ

Example 6. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve with the

arc length s and the curvature

k1 =
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2es − 1
p , k2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2es − 1

p
, ð103Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = esT − e2sN + es
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2es − 1

p
B1 + esB2: ð104Þ

5. Conclusion

In this paper, we discuss some new space curves and planes
in four-dimensional space-time and give characterizations
of them in terms of the curvature functions. Before this
study, most researchers studied Darboux vector in three-
dimensional space and four-dimensional Euclidean space. In
this paper, the Darboux vector fields in three-dimensional
space are extended to four-dimensional space-time by math-
ematical method. By defining Darboux vector fields in four-
dimensional space-time in the form of vector products, we
find that the Frenet vectors rotate around a plane spanned
by two new vector fields, and this plane plays the role that
the Darboux vector plays in three-dimensional space. This
paper gives a new description of Darboux vector in four-
dimensional space-time, which promotes the further develop-
ment of angular momentum vector in physics and geometry.
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We study 3-dimensional compact and simply connected trans-Sasakian manifolds and find necessary and sufficient conditions
under which these manifolds are homothetic to Sasakian manifolds. The first two results deal with finding necessary and
sufficient conditions on a compact and simply connected trans-Sasakian manifold to be homothetic to an Einstein Sasakian
manifold and in the third result deals with finding necessary and sufficient condition on a compact and simply connected
trans-Sasakian manifold to be homothetic to a Sasakian manifold.

1. Introduction

It is well known that for an almost contact metric manifold
ðM, F, ζ, η, gÞ (cf. [1]), the product �M =M × R has an almost
complex structure J , which with product metric �g makes ð
�M, �gÞ an almost Hermitian manifold. The properties of the
almost Hermitian manifold ð �M, J , �gÞ control the properties
of the almost contact metric manifold ðM, F, ζ, η, gÞ and
provide several structures on M such as a Sasakian structure
and a quasi-Sasakian structure (cf. [1–3]). There are known
sixteen different types of structures on ð �M, J , �gÞ (cf. [4]), and
using the structure in the class W 4 on ð �M, J , gÞ, a structure
ðF, ζ, η, g, α, βÞ was introduced on M, which is called trans-
Sasakian structure (cf. [5]), that generalizes Sasakian struc-
ture, Kenmotsu structure, and cosymplectic structure on a
contact metric manifold (cf. [2, 3]), where α andβ being
the real functions defined on M.

Recall that a trans-Sasakian manifold ðM, F, ζ, η, g, α, βÞ
is called a trans-Sasakain manifold of type ðα, βÞ, and trans-
Sasakian manifolds of type ð0, 0Þ, ðα, 0Þ, and ð0, βÞ are called
a cosymplectic, a α-Sasakian, and a β-Kenmotsu manifolds,
respectively. It is on account of a result proved in [6] that
a trans-Sasakian manifold of dimension five or greater than

five reduces to a cosymplectic manifold, a α-Sasakian mani-
fold, or a β-Kenmotsu manifold, so there is an emphasis on
studying three-dimensional trans-Sasakian manifolds.

Among other questions, finding conditions under which
a compact 3-dimensional trans-Sasakian manifold ðM, F, ζ
, η, gÞ is homothetic to a Sasakian manifold is of prime
importance. The geometry of 3-dimensional trans-Sasakian
manifold is also important owing to Thurston’s conjecture
(cf. [7]), and fetching conditions on a 3-dimensional trans-
Sasakian manifold ðM, F, ζ, η, gÞ in matching it among
Thurston’s eight geometries becomes more interesting. It is
worth noting that in Thurston’s eight geometries, the first
place is occupied by the spherical geometry S3.

In ([8–13]), the authors have studied compact 3-
dimensional trans-Sasakian manifolds with some suitable
restrictions on functions α and β appearing in the definition
of a trans-Sasakian manifold for getting conditions under
which a trans-Sasakian manifold is homothetic to a Sasakian
manifold. In particular, it is known that a 3-dimensional
compact simply connected trans-Sasakian manifold ðM, F,
ζ, η, g, α, βÞ satisfying Poisson equations Δα = β and Δα =
α2β, respectively, is necessarily homothetic to a Sasakian
manifold (cf. [10]).
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An interesting work on 3-dimensional trans-Sasakian
manifolds is found in [14, 15], where the authors have con-
sidered other aspects in Thurston’s eight geometries. In [10],
it is asked whether the function β on a 3-dimensional com-
pact trans-Sasakian manifold ðM, F, ζ, η, g, α, βÞ satisfying
grad β = ζðβÞζ necessitates the trans-Sasakian manifold to
be homothetic to a Sasakian manifold. In [15], it is shown
that this question has negative answer.

Einstein Sasakian manifolds are very important due to
their geometric importance (cf. [16]). In this paper, in our
first two results, we find necessary and sufficient conditions
on a compact simply connected 3-dimensional trans-
Sasakian manifold ðM, F, ζ, η, g, α, βÞ to be homothetic to
an Einstein Sasakian manifold, and in the third, we find a
necessary and sufficient condition on a compact simply con-
nected 3-dimensional trans-Sasakian ðM, F, ζ, η, g, α, βÞ to
be homothetic to a Sasakian manifold.

In the first result, we consider a compact and simply
connected trans-Sasakian manifold ðM, F, ζ, η, g, α, βÞ of
positive constant scalar curvature τ, the function β satisfying
Fischer-Marsden equation shows that the functions α and β
are related to τ by the inequality βðα2 − β2 − τ/4Þ ≥ 0, and
the Ricci operator Q satisfying Codazzi-type equation with
respect to vector field ζ necessarily implies that ðM, F, ζ, η,
g, α, βÞ is homothetic to an Einstein Sasakian manifold. In
the second result, we show that a compact simply connected
trans-Sasakian manifold with function α constant along the
integral curves of ζ, scalar curvature τ satisfying the inequal-
ity αð6α2 − τÞ ≥ 0, and the Ricci operator Q satisfying
Codazzi-type equation with respect to vector field ζ neces-
sarily imply that ðM, F, ζ, η, g, α, βÞ is homothetic to an Ein-
stein Sasakian manifold. Finally, in the last result, we show
that on a compact and simply connected trans-Sasakian
manifold, the function β satisfies the differential inequality
ζðβ2Þ ≤ −2β3, and vector fields ð∇QÞðgradα, ζÞ, ζ are orthog-
onal, which necessarily imply that ðM, F, ζ, η, g, α, βÞ is
homothetic to a Sasakian manifold, where the covariant
derivative ð∇QÞðU , ζÞ = ∇UQζ −Qð∇UζÞ for a smooth vec-
tor field U on M.

2. Preliminaries

Let ðM, F, ζ, η, gÞ be an almost contact metric manifold
dimM = 3, where F being a ð1, 1Þ-tensor field, ζ a unit vec-
tor field, and η smooth 1-form dual to ζ with respect to the
Riemannian metric g satisfying

F2 = −I + η ⊗ ζ, F ζð Þ = 0, η ∘ F = 0, g FU1, FU2ð Þ = g U1,U2ð Þ − η U1ð Þη U2ð Þ,
U1,U2 ∈ Γ TMð Þ,

ð1Þ

where ΓðTMÞ is the space of smooth sections of the tangent
bundle TM (cf. [1]). If there exist functions α andβ on an
almost contact metric manifold ðM, F, ζ, η, gÞ satisfying

∇Fð Þ U1,U2ð Þ = α g U1,U2ð Þζ − η U2ð ÞU1ð Þ + β g FU1,U2ð Þζ − η U2ð ÞFU1ð Þ,
ð2Þ

then ðM, F, ζ, η, g, α, βÞ is said to be a trans-Sasakian mani-
fold, where ð∇FÞðU1,U2Þ = ∇U1

FU2 − Fð∇U1
U2Þ, U1,U2 ∈

ΓðTMÞ, and ∇ is the Levi-Civita connection with respect
to the metric g (cf. [8–15]). Using equations (1) and (2), it
follows that

∇Uζ = −αF Uð Þ + β U − η Uð Þζð Þ, U ∈ Γ TMð Þ: ð3Þ

Using the Ricci tensor Ric of a Riemannian manifold ð
M, gÞ, the Ricci operator Q is defined by RicðU1,U2Þ = gð
QU1,U2Þ and U1,U2 ∈ ΓðTMÞ. We have the following for
a 3-dimensional trans-Sasakian manifold ðM, F, ζ, η, g, α, β
Þ:

ζ αð Þ = −2αβ, ð4Þ

Qζ = F grad αð Þ − grad β + 2 α2 − β2� �
ζ − ζ βð Þζ: ð5Þ

Note that equation (3) implies

div ζ = 2β, ð6Þ

and using this equation together with equation (4), we have

div αkζ
� �

= kαk−1ζ αð Þ + αk div ζ = −2kαkβ + 2αkβ = −2 k − 1ð Þαkβ:
ð7Þ

Thus, on compact 3-dimensional trans-Sasakian mani-
fold ðM, F, ζ, η, g, α, βÞ, using equation (6) and the above
equation, we have

ð

M
β = 0,

ð

M
αkβ = 0fork ≠ 1:

ð8Þ

Now, we state the following result of Okumura.

Theorem 1. [17] Let ðM, gÞ be a Riemannian manifold. If M
admits a Killing vector field ζ of constant length satisfying

c2 ∇U1
∇U2

ζ − ∇∇U1
U2
ζ

� �
= g U2, ζð ÞU1 − g U1,U2ð Þζ ð9Þ

for nonzero constant c and any vector fields U1 and U2, then
M is homothetic to a Sasakian manifold.

For a smooth function h on the Riemannian manifold ð
M, gÞ, then the operator Ah defined by

Ah Uð Þ = ∇U grad h, U ∈ Γ TMð Þ ð10Þ

is called the Hessian operator of h, and it is a symmetric
operator. Moreover, the Hessian HessðhÞ of h is defined by

Hess hð Þ U1,U2ð Þ = g Ah U1ð Þ,U2ð Þ, U1,U2 ∈ Γ TMð Þ:
ð11Þ
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The Laplace operator Δ on ðM, gÞ is defined by Δh =
div ðgrad hÞ, and we also have

Δh = trAh: ð12Þ

Fischer-Marsden differential equation on a Riemannian
manifold ðM, gÞ is (cf. [18])

Δhð Þg + hRic = Hess hð Þ: ð13Þ

3. Trans-Sasakian Manifolds Homothetic to
Einstein Sasakian Manifolds

In this section, we find necessary and sufficient conditions
for a compact and simply connected 3-dimensional trans-
Sasakian manifold ðM, F, ζ, η, g, α, βÞ to be homothetic to
an Einstein Sasakian manifold.

Theorem 2. A compact and simply connected 3-dimensional
trans-Sasakian manifold ðM, F, ζ, η, g, α, βÞ with positive
constant scalar curvature τ and the function β a solution of
Fischer-Marsden equation satisfying

β α2 − β2 −
τ

4

� �
≥ 0 ð14Þ

is homothetic to an Einstein Sasakian manifold of positive
scalar curvature, if and only if, the Ricci operator Q satisfies

∇Qð Þ U , ζð Þ = ∇Qð Þ ζ,Uð Þ, U ∈ Γ TMð Þ: ð15Þ

Proof. Suppose ðM, F, ζ, η, g, α, βÞ is a compact simply con-
nected 3-dimensional trans-Sasakian manifold satisfying the
hypothesis. Then, equation (13) gives

Δβð Þg + βRic = Hess βð Þ, ð16Þ

and taking trace in above equation and using equation (12),
we have

Δβ = −
τ

2β: ð17Þ

Note that by equation (3), we have ∇ζζ = 0, and there-
fore, HessðβÞðζ, ζÞ = ζζðβÞ. Using this equation and equa-
tion (17) in equation (16), we get

−
τ

2β + βRic ζ, ζð Þ = ζζ βð Þ: ð18Þ

Now, using equation (5), we have Ricðζ, ζÞ = 2ðα2 − β2

− ζðβÞÞ. Thus, the above equation becomes

−
τ

2β + 2β α2 − β2 − ζ βð Þ� �
= ζζ βð Þ: ð19Þ

Using equation (6), we have div ðζðβÞζÞ = ζζðβÞ + 2βζð

βÞ, and inserting it in the above equation, we conclude

−
τ

2β + 2β α2 − β2� �
= div ζ βð Þζð Þ: ð20Þ

Integrating the above equation, we get

ð

M
β α2 − β2 −

τ

4
� �

= 0: ð21Þ

Using the inequality in the statement, we conclude

β α2 − β2 −
τ

4
� �

= 0: ð22Þ

Since M is simply connected, it is connected, and there-
fore equation (22) implies either (i) β = 0 or (ii) α2 − β2 − τ
/4 = 0. Suppose (ii) holds, then as τ is a constant, we get ζð
α2Þ = ζðβ2Þ, which in view of equation (4) implies βζðβÞ =
−2α2β; that is, 3β2ζðβÞ = −6α2β2. Thus, we have

ζ β3� �
= −6α2β2: ð23Þ

Using equation (6), we have div ðβ3ζÞ = ζðβ3Þ + 2β4, and
inserting it in above equation, we get

div β3ζ
� �

= 2β2 β2 − 3α2
� �

: ð24Þ

Integrating the above equation, we get

ð

M
β2 3α2 − β2� �

= 0: ð25Þ

Now, using (ii) in above integral, we have

ð

M
β2 2α2 + τ

4
� �

= 0, ð26Þ

and since the scalar curvature τ > 0, through above integral,
we conclude that β = 0. Thus, using equations (2), (3), (4),
and (5), take the forms

∇Fð Þ U1,U2ð Þ = α g U1,U2ð Þζ − η U2ð ÞU1ð Þ,
∇Uζ = −αFU ,

ð27Þ

ζ αð Þ = 0,
Qζ = F grad αð Þ + 2α2ζ:

ð28Þ

Taking the covariant derivative in the second equation of
equation (28), we get

∇Qð Þ U , ζð Þ +Q ∇Uζð Þ = ∇Fð Þ U , grad αð Þ + F AαUð Þ + 4αU αð Þζ + 2α2∇Uζ,

ð29Þ
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and using equation (27) in above equation, we arrive at

∇Qð Þ U , ζð Þ − αQ FUð Þ = 5αU αð Þζ + F AαUð Þ − 2α3FU , U ∈ Γ TMð Þ:
ð30Þ

Now, using the Codazzi equation type condition on Q in
the hypothesis, we get

∇Qð Þ ζ,Uð Þ − αQ FUð Þ = 5αU αð Þζ + F AαUð Þ − 2α3FU , U ∈ Γ TMð Þ:
ð31Þ

Using the second equation in equation (27), we compute
the Lie derivative of g with respect to ζ to conclude

£ζg
� �

U1,U2ð Þ = −αg FU1,U2ð Þ − αg FU2,U1ð Þ = 0, ð32Þ

that is, ζ is a Killing vector field and that the flow of ζ con-
sists of isometries of the Riemannian manifold M. Thus,
we have

£ζQ
� �

Uð Þ = 0, U ∈ Γ TMð Þ, ð33Þ

and using equation (27), we conclude

∇Qð Þ ζ,Uð Þ = αQ FUð Þ − αF QUð Þ, U ∈ Γ TMð Þ: ð34Þ

Combining the above equation with equation (31), we
have

−αF QUð Þ = 5αU αð Þζ + F AαUð Þ − 2α3FU , U ∈ Γ TMð Þ:
ð35Þ

Taking the inner product with ζ in above equation, we
conclude

αU αð Þ = 0, U ∈ Γ TMð Þ: ð36Þ

We claim that M being simply connected, α ≠ 0; for if
α = 0, then by equation (27), we see that ζ is parallel and that
η is closed, which implies η is exact; that is, η = df for a
smooth function f on M. This implies ζ = gradf , and M
being compact, there is a point q ∈M such that ðgradfÞðqÞ
= 0, and we get ζðqÞ = 0, a contradiction to the fact that ζ
is a unit vector field. Hence, α ≠ 0, and equation (36) implies
UðαÞ = 0, U ∈ ΓðTMÞ; that is, α is a nonzero constant.

Now, equation (28) gives QðζÞ = 2α2ζ, and taking the
covariant derivative in this equation yields

∇Qð Þ U , ζð Þ − αQ FUð Þ = −2α3FU : ð37Þ

Using the condition in the hypothesis and equation (34)
with α ≠ 0, in above equation, we get

−F QUð Þ = −2α2FU , U ∈ Γ TMð Þ: ð38Þ

Operating F on above equation while using equation (1)

and QðζÞ = 2α2ζ, we conclude

QU = 2α2U , U ∈ Γ TMð Þ: ð39Þ

This proves that M is an Einstein manifold. Finally,
using equation (27), with α a nonzero constant, we compute

∇U1
∇U2

ζ − ∇∇U1U2
ζ = −α ∇U1

FU2 − F ∇U1
U2

� �� �

= −α ∇Fð Þ U1,U2ð Þ = α2 g U2, ζð ÞU1 − g U1,U2ð Þζð Þ:
ð40Þ

Hence, by Theorem 1, we conclude thatM is homothetic
to a compact simply connected Einstein Sasakian manifold
of positive scalar curvature. The converse is trivial.

Theorem 3. A compact and simply connected 3-dimensional
trans-Sasakian manifold ðM, F, ζ, η, g, α, βÞ satisfying ζðαÞ
= 0 and the scalar curvature τ satisfying

α 6α2 − τ
� �

≥ 0 ð41Þ

is homothetic to an Einstein Sasakian manifold, if and only if,
the Ricci operator Q satisfies

∇Qð Þ U , ζð Þ = ∇Qð Þ ζ,Uð Þ, U ∈ Γ TMð Þ: ð42Þ

Proof. Suppose ðM, F, ζ, η, g, α, βÞ is a compact and simply
connected 3-dimensional trans-Sasakian manifold satisfying
the hypothesis. Then, using equation (4) and the condition
ζðαÞ = 0, we get αβ = 0. However, if α = 0, then equation
(3) implies that η is closed, and as seen in the proof of The-
orem 2, we get a contradiction owing to simply connected-
ness of M. Thus, α ≠ 0, and on connected M, equation
αβ = 0 implies that β = 0. Therefore, equations (27) and
(28) hold. Now, using equation (28), we have Qζ = Fðgrad
αÞ + 2α2ζ, which gives

−grad α = F Qζð Þ: ð43Þ

Taking covariant derivative in above equation, we have

−AαU = ∇Fð Þ U ,Qζð Þ + F ∇Qð Þ U , ζð Þ + FQ ∇Uζð Þ, U ∈ Γ TMð Þ, ð44Þ

and using equation (27), we get

−AαU = α Ric U , ζð Þζ − Ric ζ, ζð ÞUð Þ + F ∇Qð Þ U , ζð Þ − αFQFU , U ∈ Γ TMð Þ:
ð45Þ

Using condition in the hypothesis, we have

−AαU = α Ric U , ζð Þζ − Ric ζ, ζð ÞUð Þ + F ∇Qð Þ ζ,Uð Þ − αFQFU , U ∈ Γ TMð Þ:
ð46Þ

Also, equation (27) implies that ζ is a Killing vector field,
and therefore, using its outcome equation (34) as well as

4 Advances in Mathematical Physics



equation (28), we conclude

−AαU = α Ric U , ζð Þζ − 2α2U
� �

+ F αQ FUð Þ − αF QUð Þð Þ − αFQFU , U ∈ Γ TMð Þ:

ð47Þ

That is, on using equation (1), we have

AαU = α 2α2U −QU
� �

, U ∈ Γ TMð Þ: ð48Þ

Thus, we have

Δα = α 6α2 − τ
� �

, ð49Þ

and integrating the above equation, we get

ð

M
α 6α2 − τ
� �

= 0: ð50Þ

Using the condition in the hypothesis, we have αð6α2
− τÞ = 0, and as α ≠ 0, we conclude τ = 6α2. Consequently,
equation (49) implies that Δα = 0, and M being compact,
we conclude that α is a constant. Thus, α being nonzero con-
stant, equation (48) gives

QU = 2α2U , U ∈ Γ TMð Þ: ð51Þ

This proves that M is an Einstein manifold, and using
equation (27), we see that the unit Killing vector field ζ sat-
isfies

∇U1
∇U2

ζ − ∇∇U1U2
ζ = α2 g U2, ζð ÞU1 − g U1,U2ð Þζð Þ, U1,U2 ∈ Γ TMð Þ:

ð52Þ

Hence, in view of Theorem 1, we conclude that M is
homothetic to an Einstein Sasakian manifold. The converse
is trivial.

Theorem 4. A compact and simply connected 3-dimensional
trans-Sasakian manifold ðM, F, ζ, η, g, α, βÞ satisfying

ζ β2� �
≤ −2β3 ð53Þ

is homothetic to a Sasakian manifold, if and only if, the vector
fields ð∇QÞðgrad α, ζÞ and ζ are orthogonal.

Proof. Suppose ðM, F, ζ, η, g, α, βÞ is a compact and simply
connected 3-dimensional trans-Sasakian manifold satisfying
the hypothesis. Then, using equation (5), we have

grad β = F grad αð Þ −Qζ + 2 α2 − β2� �
ζ − ζ βð Þζ, ð54Þ

and taking covariant derivative in above equation with

respect to U ∈ ΓðTMÞ, while using equation (3), we get

AβU = ∇Fð Þ U , gradαð Þ + FAαU − ∇Qð Þ U , ζð Þ −Q −αFU + βU − βη Uð Þζð Þ
+ 2U α2 − β2� �

ζ + 2 α2 − β2� �
−αFU + βU − βη Uð Þζð Þ

−Uζ βð Þζ − ζ βð Þ −αFU + βU − βη Uð Þζð Þ:
ð55Þ

Taking trace in above equation and noting the following
outcome of equation (2),

〠
3

i=1
∇Fð Þ ei, eið Þ = 2αζ, ð56Þ

for a local orthonormal frame fe1, e2, e3g on M, we get

Δβ = −2αζ αð Þ − 1
2 ζ τð Þ − βτ + βRic ζ, ζð Þ + 2ζ α2 − β2� �

+ 4β α2 − β2� �
− ζζ βð Þ − 2βζ βð Þ,

ð57Þ

where we have used TrFAα = 0, TrQF = 0, TrF = 0, and well
known formula

〠
3

i=1
∇Qð Þ ei, eið Þ = 1

2 grad τ: ð58Þ

Now, using equation (4) and Ricðζ, ζÞ = 2ðα2 − β2 − ζðβ
ÞÞ in equation (57), we have

Δβ = −
1
2 ζ τð Þ − βτ − 6β3 + 10α2β − 8βζ βð Þ − ζζ βð Þ, ð59Þ

that is,

Δβ = −
1
2 ζ τð Þ − βτ − 6β3 + 10α2β − ζ ζ βð Þ + 4β2� �

: ð60Þ

Note that on using equation (6), we have 1/2 div ðτζÞ
= 1/2ζðτÞ + βτ and

div ζ βð Þ + 4β2� �
ζ

� �
= ζ ζ βð Þ + 4β2� �

+ 2β ζ βð Þ + 4β2� �
:

ð61Þ

Inserting these equations in equation (60), we arrive at

Δβ = −
1
2 div τζð Þ − 6β3 + 10α2β + 2β ζ βð Þ + 4β2� �

− div ζ βð Þ + 4β2� �
ζ

� �
,

ð62Þ

and integrating the above equation while keeping in mind
equation (8), we get

ð

M
ζ β2� �

+ 2β3� �
= 0: ð63Þ

Using the condition in the hypothesis, we conclude ζð
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β2Þ = −2β3 and βζðβÞ = −β3; that is, 3β2ζðβÞ = −3β4. We get
ζðβ3Þ = −3β4, which in view of equation (6) implies

div β3ζ
� �

= −β4: ð64Þ

Integrating the above equation yields β = 0. Thus, equa-
tions (27) and (28) are now available to us. Taking covariant
derivative in second equation of equation (28) with respect
to U ∈ ΓðTMÞ, we get

∇Qð Þ U , ζð Þ − αQ FUð Þ = ∇Fð Þ U , grad αð Þ + FAαU + 4αU αð Þζ − 2α3FU ,

ð65Þ

where we have used the second equation in equation (27).
Now, using equation (27) and noting that ζðαÞ = 0 in above
equation, we conclude

∇Qð Þ U , ζð Þ − αQ FUð Þ = 5αU αð Þζ + FAαU − 2α3FU: ð66Þ

Taking the inner product with ζ in above equation, we
get

5αU αð Þ = g ∇Qð Þ U , ζð Þ, ζð Þ − αg FU ,Qζð Þ: ð67Þ

Now, using equation (28), we have

g FU ,Qζð Þ = g FU , F grad αð Þ + 2α2ζ
� �

=U αð Þ, ð68Þ

and inserting it in equation (67), we get

6αU αð Þ = g ∇Qð Þ U , ζð Þ, ζð Þ, U ∈ Γ TMð Þ: ð69Þ

Taking U = grad α in above equation and using the con-
dition in the hypothesis, we conclude

α grad αk k2 = 0: ð70Þ

Note that M being compact and simply connected, α is
not allowed to be zero. Hence, the above equation implies
that α is nonzero constant. Thus, we have by virtue of equa-
tion (27) that

∇U1
∇U2

ζ − ∇∇U1U2
ζ = α2 g U2, ζð ÞU1 − g U1,U2ð Þζð Þ, U1,U2 ∈ Γ TMð Þ:

ð71Þ

This proves thatM is homothetic to a Sasakian manifold.
The converse is trivial.
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Fuzzy graph (FG)models take on the presence being ubiquitous in environmental and fabricated structures by human, specifically
the vibrant processes in physical, biological, and social systems. Owing to the unpredictable and indiscriminate data which are
intrinsic in real-life, problems being often ambiguous, so it is very challenging for an expert to exemplify those problems through
applying an FG. Vague graph structure (VGS), belonging to FGs family, has good capabilities when facing with problems that
cannot be expressed by FGs. VGSs have a wide range of applications in the field of psychological sciences as well as the
identification of individuals based on oncological behaviors. (erefore, in this paper, we apply the concept of vague sets (VSs) to
GS. We define certain notions, VGS, strong vague graph structure (SVGS), and vague βi-cycle and describe these notions by
several examples. Likewise, we introduce ψ-complement, self-complement (SC), strong self-complement (SSC), and totally strong
self-complement (TSSC) in VGS and investigate some of their properties. Finally, an application of VGS is presented.

1. Introduction

(e FG concept serves as one of the most dominant and
extensively employed tools for multiple real-word problem
representations, modeling, and analysis. To specify the
objects and the relations between them, the graph vertices or
nodes and edges or arcs are applied, respectively. Graphs
have long been used to describe objects and the relationships
between them. Many of the issues and phenomena around
us are associated with complexities and ambiguities that
make it difficult to express certainty. (ese difficulties were
alleviated by the introduction of fuzzy sets by Zadeh [1]. A
GS, proposed by Sampathkumar [2], refers to the general-
ization of undirected graph being relatively beneficial in
investigating some structure including graphs, signed
graphs, and graphs in which every edge is labeled or colored.
A GS facilitates studying the different relations and the
equivalent edges simultaneously. (e FS focuses on the
membership degree of an object in a particular set. (e
existence of a single degree for a true membership could not
resolve the ambiguity on uncertain issues, so the need for a
degree of membership was felt. Afterward, to overcome the

existing ambiguities, Gau and Buehrer [3] introduced false-
membership degrees and defined a VS as the sum of degrees
not greater than 1. Kaufmann [4] represented FGs based on
Zadeh’s fuzzy relation [5, 6]. Rosenfeld [7] described the
structure of FGs obtaining analogs of several graph theo-
retical concepts. Harinath and Lavanya [8] studied new
concepts in fuzzy graph structures. Bhattacharya [9] gave
some remarks on FGs. Several concepts on FGs were in-
troduced by Mordeson and Nair [10]. Dinesh [11] investi-
gated the notion of a FGS and studied some related
properties. Ghorai et al. [12, 13] presented fuzzy tolerance
graphs and planarity in VGs. Ramakrishna [14] defined VGs.
Kosari et al. [15–18] investigated domination set, equitable
domination set, and new concepts of domination in vague
graphs and vague incidence graphs. Pal and Rashmanlou
[19, 20] have given several concepts in FGs. Akram et al.
[21, 22] introduced certain fuzzy graph structures. Sunitha
and Vijayakumar [23] presented some properties of com-
plement on FGs. Muhiuddin et al. [24–26] investigated new
results in cubic graphs.

A VGS is concerned with the generalized structure of an
FG that expresses more exactness, adaptability, and
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compatibility to a system when synchronized with systems
operating on FGs. Correspondingly, a VGS is capable of
focusing on determining the uncertainly combined with the
inconsistent and indeterminate information of any real-
world problem, in which FGs may not lead to adequate
results. Hence, in this paper, we define the certain notions
including VGS, SVGS, and vague βi-cycle and describe these
notions by several examples. We study ψ-complement, SC,
and SSC in VGSs and investigate some of their properties.
Finally, an application of VGS has been presented.

2. Preliminaries

A GS G∗ � (V, R1, R2, . . . , Rk), consists of a nonempty set V

together with relations R1, R2, . . . , Rk on V, which are
mutually disjoint so that each Ri is irreflexive and symmetric.
If (a, b) ∈ Ri for some i, 1≤ i≤ k, we name it an Ri-edge and
write it as “ab.”

A GS G∗ � (V, R1, R2, . . . , Rk) is CGS, if,

(i) every edge Ri, 1≤ i≤ k appears at least once in G∗

(ii) among every pair of nodes ab in V, ab is an Ei-edge
for some i, 1≤ i≤ k

Definition 1 (see [1]). A fuzzy subset σ on a set X is a map
σ: X⟶ [0, 1]. A fuzzy binary relation on X is a fuzzy
subset σ on X × X. By a fuzzy relation, we mean a fuzzy
binary relation given by σ: X × X⟶ [0, 1].

Definition 2 (see [11]). Let G∗ � (V, R1, R2, . . . , Rk) be a GS
and let ], λ1, λ2, . . . , λk be the fuzzy subset of V, R1, R2, . . . , Rk,
respectively, so that 0≤ λi(xy)≤ σ(x)∧σ(y), ∀x, y ∈ V,
i � 1, 2, . . . , k. (en, G � (], λ1, λ2, . . . , λk) is an FGS of G∗.

Definition 3 (see [11]). Let G � (], λ1, λ2, . . . , λk) be an FGS
of a GS G∗ � (V, R1, R2, . . . , Rk). (en, F � (], τ1, τ2, . . . , τk)

is a PFSSGS of G if G, for i � 1, 2, . . . , k.

Definition 4 (see [11]). (e strength of a λi-path a0a1, · · · an

of a FGS G is ∧nj�1λi(aj−1aj), for i � 1, 2, . . . , k.

Definition 5 (see [11]). In a FGS G,
λ2i (ab) � (λi°λi)(ab) � ∨c λi(ac)∧λi(bc)􏼈 􏼉,
λj

i (ab) � (λj−1
i °λi)(ab) � ∨c λj−1i (ac)∧λi(bc)􏽮 􏽯,

j � 1, 2, . . . , n, for any n≥ 2. Also,
λ∞i (ab) � ∨ λj

i (ab), j � 1, 2, . . .􏽮 􏽯.

Definition 6 Reference [11] G � (], λ1, λ2, . . . , λk) is a
λi-cycle if and only if (Supp(]), Supp(λ1),
Supp(λ2), . . . , Supp(λk)) is a Ri-cycle.

Definition 7. Reference [11] G � (], λ1, λ2, . . . , λk) is a fuzzy
λi-cycle if and only if (Supp(]), Supp(λ1),
Supp(λ2), . . . , Supp(λk)) is a Ei-cycle and ∃ no unique ab in
Supp(λi) so that

λi(ab) � ∧ λi(cd) | cd ∈ Supp λi( 􏼁􏼈 􏼉. (1)

Definition 8 (see [3]). A VS A is a pair (tA, fA) on set X
where tA andfA are taken as real valued functions which can
be defined on V⟶ [0, 1] so that tA(a) + fA(b)≤ 1,
∀ a ∈ X.

Definition 9 (see [14]). A VG is a pair G � (A, B), where
A � (tA, fA) is a VS on V and B � (tB, fB) is a VS on
E⊆V × V so that tB(ab)≤min(tA(a), tA(b)) and fB(ab)≥
max(fA(a), fA(b)), for ab ∈ E.

All the basic notations are shown in Table 1.

3. New Concepts in Vague Graph Structure

Definition 10. 􏽢Gv � (A, B1, B2, . . . , Bn) is said to be a VGS of
a GS G∗ � (V, R1, R2, . . . , Rn), if A � (tA, fA) is a VS on V

and for every i � 1, 2, . . . , n; Bi � (tBi
, fBi

) is a VS on Ri so
that

tBi
(ab)≤ tA(a)∧tA(b),

fBi
(ab)≥fA(a)∨fA(b).

(2)

∀ab ∈ Ri ⊆V × V. Note that tBi
(ab) � 0 � fBi

(ab),
∀ ab ∈ V × V − Ri and 0≤ tBi

(ab)≤ 1, 0≤fBi
(ab)≤ 1,

∀ab ∈ Ri, where V and Ri, (i � 1, 2, . . . , n) are named UVS
and underlying i-edge set of 􏽢Gv, respectively.

Example 1. Let G∗ � (V, R1, R2) be a GS so that
V � a1, a2, a3, a4􏼈 􏼉, R1 � a1a2, a2a3􏼈 􏼉, and R2 � a3a4, a1a4􏼈 􏼉.
Let A, B1, and B2 be vague subsets of V, R1, and R2, re-
spectively, so that

A � a1, 0.4, 0.5( 􏼁, a2, 0.4, 0.6( 􏼁, a3, 0.3, 0.4( 􏼁, a4, 0.4, 0.4( 􏼁􏼈 􏼉,

B1 � a1a2, 0.4, 0.6( 􏼁, a2a3, 0.3, 0.6( 􏼁􏼈 􏼉,

B2 � a3a4, 0.3, 0.4( 􏼁, a1a4, 0.3, 0.5( 􏼁􏼈 􏼉.

(3)

(en, 􏽢Gv � (A, B1, B2) is a VGS of G∗ drawn in Figure 1.

Definition 11

(i) AVGS H
⌣

v � (C, D1, D2, . . . , Dn) is said to be a
VSGS of a VGS G

⌣

v � (A, B1, B2, . . . , Bn) with UVS
V, if C⊆A and Di⊆Ci, ∀ i, that is,

tC(a)≤ tA(a), fC(a)≥fA(a); for all a ∈ V, (4)

and for i � 1, 2, . . . , n,

tDi
(ab)≤ tBi

(ab), fDi
(ab)≥fBi

(ab); for all ab ∈ V × V.

(5)

(ii) H
⌣

v is named a VSSGS of a VGS �Gv, if C � A.
(iii) H

⌣

v is named a VPSSGS of a VGS �Gv, if it excludes
some edges of �Gv.
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Example 2. Consider a VGS G
⌣

v � (A, B1, B2) as shown in
Figure 1. Let

C � a1, 0.3, 0.6( 􏼁, a2, 0.0, 0.7( 􏼁, a3, 0.3, 0.4( 􏼁, a4, 0.3, 0.5( 􏼁􏼈 􏼉,

D1 � a1a2, 0, 0.7( 􏼁, a2a3, 0, 0.7( 􏼁􏼈 􏼉,

D2 � a3a4, 0.2, 0.5( 􏼁, a1a4, 0.3, 0.6( 􏼁􏼈 􏼉,

C1 � a1a2, 0.2, 0.6( 􏼁, a2a3, 0.3, 0.6( 􏼁􏼈 􏼉,

C2 � a3a4, 0.2, 0.4( 􏼁, a1a4, 0.3, 0.7( 􏼁􏼈 􏼉,

F1 � a1a2, 0.4, 0.6( 􏼁, a2a3, 0.3, 0.6( 􏼁􏼈 􏼉,

F2 � a1a4, 0.3, 0.6( 􏼁􏼈 􏼉.

(6)

It is easy to see that H
⌣

v � (C, D1, D2), J
⌣

v � (A, C1, C2),
and K

⌣

v � (A, F1, F2) are the VSGS, VSSGS, and VPSSGS of
�Gv, respectively.

(eir corresponding graphs are drawn in Figures 2–4.

Definition 12. Let G
⌣

v � (A, B1, B2, . . . , Bn) be a VGS with
UVS V. (en, there exists a Bi-edge among two nodes a and
b of V so that we have

(i) tBi
(ab)> 0, fBi

(ab)> 0, or
(ii) tBi

(ab)> 0, fBi
(ab) � 0, or

(iii) tBi
(ab) � 0, fBi

(ab)> 0, for some i.

Definition 13. For a VGS G
⌣

v � (A, B1, B2, . . . , Bn), the
support of Bi is described as

Supp Bi( 􏼁 � ab ∈ V × V: tBi
(ab)≠ 0 orfBi

(ab)≠ 0􏽮 􏽯, i � 1, 2, . . . , n. (7)

Definition 14. Bi-path of a VGS �Gv with UVSV is a sequence
of distinct nodes v1, v2, . . . , vm ∈ U (except the choice
vm � v1) so that vj−1vj is a Bi-edge, ∀ j � 2, 3, . . . , m.

Definition 15. In a VGS G
⌣

v � (A, B1, B2, . . . , Bn) with UVS
V, two nodes a and b called Bi-connected, if they are
connected by a Bi-path, for some i ∈ 1, 2, 3, . . . , n{ }.

Table 1: Some basic notations.

Notation Meaning
FG Fuzzy graph
FS Fuzzy set
VS Vague set
GS Graph structure
CGS Complete graph structure
VGS Vague graph structure
VSGS Vague subgraph structure
SGS Subgraph structure
FGS Fuzzy graph structure
SVGS Strong vague graph structure
UG Underlying graph
EN End node
SC Self-complementary
SSC Strong self-complementary
TSC Totally self-complementary
TSSC Totally strong self-complement
PFSSGS Partial fuzzy spanning subgraph structure
UVS Underlying vertex set
TSSC Totally strong self-complementary
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B1 (0.4, 0.6)
a2 (0.4, 0.6)

a3 (0.3, 0.4)a4 (0.4, 0.4)

a1 (0.4, 0.5)

B2 (0.3, 0.4)

B2 (0.3, 0.5) B1 (0.3, 0.6)

Figure 1: VGS 􏽢Gv � (A, B1, B2).

D1 (0.0, 0.7)
a2 (0.0, 0.7)

a3 (0.3, 0.4)a4 (0.3, 0.5)

a1 (0.3, 0.6)

D2 (0.2, 0.5)

D2 (0.3, 0.6) D1 (0.0, 0.7)

Figure 2: Vague subgraph structure H
⌣

v � (C, D1, D2).

C1 (0.2, 0.6)
a2 (0.4, 0.6)

a3 (0.3, 0.4)a4 (0.4, 0.4)

a1 (0.4, 0.5)

C2 (0.2, 0.4)

C2 (0.3, 0.7) C1 (0.3, 0.6)

Figure 3: Vague spanning subgraph structure J
⌣

v � (A, C1, C2).

F1 (0.4, 0.6)
a2 (0.4, 0.6)

a3 (0.3, 0.4)a4 (0.4, 0.4)

a1 (0.4, 0.5)

F2 (0.3, 0.6) F1 (0.3, 0.6)

Figure 4: Vague partial spanning subgraph structure K
⌣

v � (A, F1, F2).
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Definition 16. A VGS G
⌣

v � (A, B1, B2, . . . , Bn) with UVS V

is called to be Bi-strong, if ∀Bi-edges ab,

tBi
(ab) � tA(a)∧tA(b), fBi

(ab) � fA(a)∨fA(b), (8)

for some i ∈ 1, 2, 3, . . . , n{ }.

Example 3. Consider the VGS G
⌣

v � (A, B1, B2), drawn in
Figure 1. (en,

(i) a1a2, a2a3 are B1-edges and a3a4, a1a4 are B2-edges
(ii) a1a2a3 and a3a4a1 are B1 and B2 paths, respectively
(iii) a1 and a3 are B1-connected nodes of U

(iv) G
⌣

v is a B1-strong since Supp(B1) � a1a2, a2a3􏼈 􏼉 and
we have

tB1
a1a2( 􏼁 � 0.4 � tA a1( 􏼁∧tA a2( 􏼁( 􏼁,

fB1
a1a2( 􏼁 � 0.6 � fA a1( 􏼁∨fA a2( 􏼁( 􏼁,

tB1
a2a3( 􏼁 � 0.3 � tA a2( 􏼁∧tA a3( 􏼁( 􏼁,

fB1
a2a3( 􏼁 � 0.6 � fA a2( 􏼁∨fA a3( 􏼁( 􏼁.

(9)

Definition 17. A VGS G
⌣

v � (A, B1, B2, . . . , Bn) is named to
be strong, if it is Bi-strong, ∀i ∈ 1, 2, 3, . . . , n{ }.

Definition 18. A VGS G
⌣

v � (A, B1, B2, . . . , Bn) with UVS V,
is named complete or B1, B2, . . . , Bn-complete if

(i) G
⌣

v is a SVGS
(ii) Supp(Bi)≠∅, ∀i � 1, 2, 3, . . . , n

(iii) For each nodes a, b ∈ V, ab should be a Bi-edge

Example 4. Suppose G
⌣

v � (A, B1, B2) drawn in Figure 5, be
VGS of the GS G∗ � (V, R1, R2) where V � a1, a2, a3, a4􏼈 􏼉,
R1 � a1a2, a2a3, a1a3􏼈 􏼉, and R2 � a1a4, a3a4, a2a4􏼈 􏼉. (en,
G
⌣

v is a SVGS, since it is both B1-strong and B2-strong.
Moreover, Supp(B1)≠∅, Supp(B2)≠∅, and each nodes in
V, is either a B1-edge or a B2-edge, so G

⌣

v is a complete or
B1B2-complete-VGS as well.

Definition 19. In a VGS G
⌣

v � (A, B1, B2, . . . , Bn) with UVS
V, tBi

and fBi
-strength of a Bi-path “PBi

� v1v2, . . . , vm” are
denoted by δ · PBi

and Δ · PBi
, respectively, so that δ · PBi

�

∧mj�2[tBi
(aj−1aj)] and Δ · PBi

� ∨mj�2[fBi
(aj−1aj)].

(en, we write strength of the path
PBi

� (δ · PBi
,Δ · PBi

).

Example 5. In G
⌣

v � (A, B1, B2) shown in Figure 5,
P1 � a1a2a3a1 is a B1-path, and a1a4a3 is a B2-path, we have

δ · P1 � tB1
a1a2( 􏼁∧tB1

a2a3( 􏼁∧tB1
a3a1( 􏼁 � 0.2∧0.3∧0.2 � 0.2,

Δ · P1 � fB1
a1a2( 􏼁∨fB1

a2a3( 􏼁∨fB1
a3a1( 􏼁 � 0.3∨0.5∨0.5 � 0.5,

δ · P2 � tB2
a1a4( 􏼁∧tB2

a4a3( 􏼁 � 0.2∧0.4 � 0.2,

Δ · P2 � fB2
a1a4( 􏼁∨fB2

a4a3( 􏼁 � 0.6∨0.6 � 0.6.

(10)

(us, strength of B1-path is P1 � (0.2, 0.5), and strength
of P2-path is P2 � (0.2, 0.6).

Definition 20. In a VGS G
⌣

v � (A, B1, B2, . . . , Bn) with UVS
V,

(i) tBi
-strength of connectedness between a and b is

defined by t∞Bi
(ab) � ∨j≥1 t

j
Bi

(ab)􏽮 􏽯, where
t
j
Bi

(ab) � (t
j−1
Bi

°tBi
)(ab), for j≥ 2 and

t2Bi
(ab) � (tBi

°tBi
)(ab) � ∨z tBi

(ac)∧tBi
(bc)􏽮 􏽯;

(ii) fBi
-strength of connectedness among a and b is

described by f∞Bi
(ab) � ∧j≥1 f

j
Bi

(ab)􏽮 􏽯, where
f

j
Bi

(ab) � (f
j−1
Bi

°fBi
)(ab), for j≥ 2 and

f2
Bi

(ab) � (fBi
°fBi

)(ab) � ∨z fBi
(ac)∨fBi

(bc)􏽮 􏽯.

Example 6. Let G
⌣

v � (A, B1, B2) be a VGS of GS
G∗ � (V, R1, R2) as shown in Figure 6 so that
V � a1, a2, a3􏼈 􏼉, R1 � a1a2, a1a3􏼈 􏼉, and R2 � a2a3􏼈 􏼉. Since
tB1

(a1a2) � 0.2, tB1
(a1a3) � 0.2, and tB1

(a2a3) � 0,
therefore,

t
2
B1

a1a2( 􏼁 � tB1 °tB1
􏼐 􏼑 a1a2( 􏼁 � tB1

a1a3( 􏼁∧tB1
a3a2( 􏼁 � 0.2∧0.3 � 0.2,

t
2
B1

a2a3( 􏼁 � tB1 °tB1
􏼐 􏼑 a2a3( 􏼁 � tB1

a2a1( 􏼁∧tB1
a1a3( 􏼁 � 0.2∧0.2 � 0.2,

t
2
B1

a1a3( 􏼁 � tB1 °tB1
􏼐 􏼑 a1a3( 􏼁 � tB1

a1a2( 􏼁∧tB1
a2a3( 􏼁 � 0.2∧0.3 � 0.2,

t
3
B1

a1a2( 􏼁 � t
2
B1
°tB1

􏼐 􏼑 a1a2( 􏼁 � t
2
B1

a1a3( 􏼁∧tB1
a3a2( 􏼁 � 0.2∧0.3 � 0.2,

t
3
B1

a2a3( 􏼁 � t
2
B1
°tB1

􏼐 􏼑 a2a3( 􏼁 � t
2
B1

a2a1( 􏼁∧tB1
a1a3( 􏼁 � 0.2∧0.2 � 0.2,

t
3
B1

a1a3( 􏼁 � t
2
B1
°tB1

􏼐 􏼑 a1a3( 􏼁 � t
2
B1

a1a2( 􏼁∧tB1
a2a3( 􏼁 � 0.2∧0.3 � 0.2.

(11)

(us, we have,
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t
∞
B1

a1a2( 􏼁 � ∨ 0.2, 0.2, 0.2{ } � 0.2,

t
∞
B1

a2a3( 􏼁 � ∨ 0.2, 0.2, 0.2{ } � 0.2,

t
∞
B1

a1a3( 􏼁 � ∨ 0.2, 0.2, 0.2{ } � 0.2.

(12)

Since fB1
(a1a2) � 0.6, fB1

(a1a3) � 0.7, and
fB1

(a2a3) � 0, therefore,

f
2
B1

a1a2( 􏼁 � fB1 ° fB1
􏼐 􏼑 a1a2( 􏼁 � fB1

a1a3( 􏼁∨fB1
a3a2( 􏼁 � 0.7∨0.7 � 0.7,

f
2
B1

a2a3( 􏼁 � fB1 ° fB1
􏼐 􏼑 a2a3( 􏼁 � fB1

a2a1( 􏼁∨fB1
a1a3( 􏼁 � 0.6∨0.7 � 0.7,

f
2
B1

a1a3( 􏼁 � fB1 ° fB1
􏼐 􏼑 a1a3( 􏼁 � fB1

a1a2( 􏼁∨fB1
a2a3( 􏼁 � 0.6∨0 � 0.6,

f
3
B1

a1a2( 􏼁 � f
2
B1
° fB1

􏼐 􏼑 a1a2( 􏼁 � f
2
B1

a1a3( 􏼁∨fB1
a3a2( 􏼁 � 0.6∨0.7 � 0.7,

f
3
B1

a2a3( 􏼁 � f
2
B1
° fB1

􏼐 􏼑 a2a3( 􏼁 � f
2
B1

a2a1( 􏼁∨fB1
a1a3( 􏼁 � 0.7∨0.7 � 0.7,

f
3
B1

a1a3( 􏼁 � f
2
B1
° fB1

􏼐 􏼑 a1a3( 􏼁 � f
2
B1

a1a2( 􏼁∨fB1
a2a3( 􏼁 � 0.7∨0.7 � 0.7,

(13)

and

f
4
B1

a1a2( 􏼁 � f
3
B1
°fB1

􏼐 􏼑 a1a2( 􏼁 � f
3
B1

a1a3( 􏼁∨fB1
a3a2( 􏼁 � 0.7∨0.7 � 0.7,

f
4
B1

a2a3( 􏼁 � f
3
B1
°fB1

􏼐 􏼑 a2a3( 􏼁 � f
3
B1

a2a1( 􏼁∨fB1
a1a3( 􏼁 � 0.7∨0.7 � 0.7,

f
4
B1

a1a3( 􏼁 � f
3
B1
°fB1

􏼐 􏼑 a1a3( 􏼁 � f
2
B1

a1a2( 􏼁∨fB1
a2a3( 􏼁 � 0.7∨0.7 � 0.7.

(14)

(us, we have

f
∞
B1

a1a2( 􏼁 � ∨ 0.6, 0.7, 0.7, 0.7{ } � 0.7,

f
∞
B1

a2a3( 􏼁 � ∨ 0.0, 0.7, 0.7, 0.7{ } � 0.7,

f
∞
B1

a1a3( 􏼁 � ∨ 0.7, 0.6, 0.7, 0.7{ } � 0.7.

(15)

By similarity way, we can calculate t∞B2
(a1a2), t∞B2

(a2a3),
and t∞B2

(a1a3).

Definition 21. A VGS G
⌣

v � (A, B1, B2, . . . , Bn) of a GS G∗ �

(V, R1, R2, . . . , Rn) is a Bi-cycle, if G∗ is an Ri-cycle.

Definition 22. A VGS G
⌣

v � (A, B1, B2, . . . , Bn) of a GS G∗ �

(V, R1, R2, . . . , Rn) is a vague Bi-cycle, for some i, if we have

(i) G is a Bi-cycle;

(ii) (ere is no unique Bi-edge ab in G
⌣

v so that tBi
(ab) �

min tBi
(zw): zw ∈ Ri � Supp(Bi)􏽮 􏽯 or

fBi
(ab) � max fBi

(zw): zw ∈ Ri � Supp(Bi)􏽮 􏽯.

Example 7. VGS G
⌣

v � (A, B1, B2) in Figure 7 is a B1-cycle as
well as vague B1-cycle, since (Supp(A),

Supp(B1), Supp(B2)) is an R1-cycle and there are two
B1-edges with minimum degree of membership and two
B1-edges with maximum degree of membership of all
B1-edges.

Definition 23. A VGS G
⌣

v1 � (A1, B11, B12, . . . , B1n) of GS
G∗1 � (V1, R11, R12, . . . , R1n) is isomorphic to a VGS G

⌣

v2 �

(A2, B21, B22, . . . , B2n) of G∗2 � (V2, R21, R22, . . . , R2n)(G
⌣

v1 �

G
⌣

v2) if ∃ a bijective g: V1⟶ V2 and a permutation ψ on
the set 1, 2, . . . , n{ } so that

B1 (0.2, 0.3)

B
1  (0.2, 0.5)

a2 (0.3, 0.3)

a3 (0.4, 0.5)a4 (0.4, 0.6)

a1 (0.2, 0.3)

B2 (0.4, 0.6)

B2 (0.2, 0.6) B 2
 (0

.3, 0.6)

B1 (0.3, 0.5)

Figure 5: VGS G
⌣

v � (A, B1, B2).
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tA1
u1( 􏼁 � tA2

g u1( 􏼁( 􏼁,

fA1
u1( 􏼁 � fA2

g u1( 􏼁( 􏼁,

∀u1 ∈ V1, and forψ(i) � j,

(16)

tB1i
(u1u2) � tB2j

(g(u1)g(u2)), fB1i
(u1u2) �

fB2j
(g(u1)g(u2)), for all u1u2 ∈ R1i, i � 1, 2, . . . , n.

Definition 24. A VGS G
⌣

v1 � (A1, B11, B12, . . . , B1n) of GS
G∗1 � (V, R11, R12, . . . , R1n) is identical to a VGS
G
⌣

v2 � (A2, B21, B22, . . . , B2n) of G∗2 � (V, R21, R22, . . . , R2n) if
∃ a bijection g: V⟶ V so that

tA1
(u) � tA2

(g(u)),

fA1
(u) � fA2

(g(u)), for all u ∈ V,
(17)

and

tB1i
u1u2( 􏼁 � tB2i

g u1( 􏼁g u2( 􏼁( 􏼁, fB1i
u1u2( 􏼁 � fB2i

g u1( 􏼁g u2( 􏼁( 􏼁, for all u1u2 ∈ R1i, i � 1, 2, . . . , n. (18)

Example 8. Let G
⌣

v1 and G
⌣

v2 be two VGSs of GS
G∗1 � (V1, R1, R2) and G∗2 � (V2, R1′, R2′), respectively, drawn
in Figure 8. Here, G

⌣

v1 is isomorphic (not identical) to G
⌣

v2

under the mapping g: V1⟶ V2, defined by g(a1) � b1,
g(a2) � b2, and g(a3) � b3 and a permutation ψ given by
ψ(1) � 2, ψ(2) � 1 so that

tA1
ai( 􏼁 � tA2

g ai( 􏼁( 􏼁, fA1
ai( 􏼁 � fA2

g ai( 􏼁( 􏼁,∀ai ∈ V,

tBk
aiaj􏼐 􏼑 � tBψ(k)

g ai( 􏼁g aj􏼐 􏼑􏼐 􏼑, fBk
aiaj􏼐 􏼑 � fBψ(k)

g ai( 􏼁g aj􏼐 􏼑􏼐 􏼑, ∀ aiaj ∈ Rk, k � 1, 2.
(19)

Example 9. Let G
⌣

v1 � (A, B1, B2) and G
⌣

v2 � (A′, B1′, B2′) be
two VGSs of GSs G∗1 � (V, R1, R2) and G∗2 � (V′, R1′, R2′),
respectively, as shown in Figure 9. Here, G

⌣

v1 is identical with

G
⌣

v2 under the mapping g: V⟶ V′, defined by g(a1) � b6,
g(a2) � b2, g(a3) � b4, g(a4) � b5, g(a5) � b1, and g(a6) �

b3 so that

tA ai( 􏼁 � tA′ g ai( 􏼁( 􏼁, fA ai( 􏼁 � fA′ g ai( 􏼁( 􏼁, ∀ai ∈ V,

tBk
aiaj􏼐 􏼑 � tBk

′ g ai( 􏼁g aj􏼐 􏼑􏼐 􏼑, fBk
aiaj􏼐 􏼑 � fBk

′ g ai( 􏼁g aj􏼐 􏼑􏼐 􏼑, ∀ aiaj ∈ Rk, k � 1, 2.
(20)

Definition 25. Let G
⌣

v be a VGS of a GS G∗. Let ψ denote a
permutation on the set R1, R2, . . . , Rn􏼈 􏼉 and the corre-
sponding permutation on B1, B2, . . . , Bn􏼈 􏼉, i.e., ψ(Bi) � Bj if

ψ(Ri) � Ej, ∀ i. If ab ∈ Br for some r and
tB

ψ
i
(ab) � tA(a)∧tA(b) − ∨j≠itψ(Bj)(ab),

fB
ψ
i
(ab) � fA(a)∨fA(b) − ∨j≠ifψ(Bj)(ab), i � 1, 2, . . . , n,

a3 (0.3, 0.6)

a1 (0.2, 0.6)

a2 (0.4, 0.5)
B2 (0.3, 0.7)

B 1
 (0

.2, 0.7) B
1  (0.2, 0.6)

Figure 6: VGS G
⌣

v � (A, B1, B2).

a4 (0.2, 0.5)

a2 (0.1, 0.3) B 2 (0
.1

, 0
.3

)

a1 (0.2, 0.3)

a3 (0.3, 0.4)
B1 (0.2, 0.5)

B
2  (0.1, 0.4)B2 (0.1, 0.5)

B 1
 (0

.2, 0.5) B
1  (0.2, 0.4)

Figure 7: VGS G
⌣

v � (A, B1, B2).
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then, ab ∈ B
ψ
m while m is chosen so that tB

ψ
m

(ab)≥ tB
ψ
i
(ab)

and fB
ψ
m
(ab)≥fB

ψ
i
(ab), ∀ i. (en, VGS (A, B

ψ
1 , B

ψ
2 , . . . , B

ψ
n )

denoted by G
ψc
v , is named the ψ-complement of VGS.

Example 10. Consider VGS G
⌣

v � (A, B1, B2) shown in
Figure 10 and let ψ be a permutation on the set B1, B2􏼈 􏼉 so
that ψ(B1) � B2 and ψ(B2) � B1. Now, for a1a2 ∈ B1,

t
ψ
B1

a1a2( 􏼁 � tA a1( 􏼁∧tA a2( 􏼁 − ∨
j≠1

tψBj
a1a2( 􏼁􏼔 􏼕 � 0.2 − 0.2 � 0,

f
ψ
B1

a1a2( 􏼁 � fA a1( 􏼁∨fA a2( 􏼁 − ∨
j≠1

fψBj
a1a2( 􏼁􏼔 􏼕 � 0.5 − 0.5 � 0,

t
ψ
B2

a1a2( 􏼁 � tA a1( 􏼁∧tA a2( 􏼁 − ∨
j≠2

tψBj
a1a2( 􏼁􏼔 􏼕 � 0.2 − 0 � 0.2,

f
ψ
B2

a1a2( 􏼁 � fA a1( 􏼁∨fA a2( 􏼁 − ∨
j≠2

fψBj
a1a2( 􏼁􏼔 􏼕 � 0.5 − 0 � 0.5.

(21)

a1 (0.2, 0.3)

a2 (0.3, 0.4) a3 (0.2, 0.5) b2 (0.3, 0.4) b3 (0.2, 0.5)

b1 (0.2, 0.3)

B1 (0.2, 0.6)

B
2  (0.2, 0.6)B 2 (

0.2
, 0

.5)

B2 (0.2, 0.6)

B
1  (0.2, 0.6)B 1 (

0.2
, 0

.5)
Gv1
ˇ Gv2

ˇ

Figure 8: Isomorphic vague graph structures.

b6 (0.1, 0.3)

b1 (0.3, 0.4)

b2 (0.4, 0.5)

b3 (0.3, 0.3) a2 (0.4, 0.5)

a1 (0.1, 0.3)

a6 (0.3, 0.3)

a4 (0.1, 0.2)a5 (0.3, 0.4)
B'2 (0.1, 0.5)

B'1 (0.1, 0.4)

B'1 (0.2, 0.5)

B'1  (0.1, 0.5)

B' 1
 (0

.1,
 0.

6)

B'2  (0.3, 0.5) B' 2
 (0

.1,
 0.

6)

a3 (0.2, 0.5)

b4 (0.2, 0.5)

b5 (0.1, 0.2)
B2 (0.1, 0.5)

B 1 (
0.1

, 0
.6)

B
1  (0.1, 0.5)

B1 (0.2, 0.5)

B
2  (0.3, 0.5) B 2 (

0.1
, 0

.6)

B 1
 (0

.1
, 0

.4
)

Gv1
ˇ Gv2

ˇ

Figure 9: Identical vague graph structures.
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Clearly, tB
ψ
2
(a1a2) � 0.2> 0 � tB

ψ
1
(a1a2) and

fB
ψ
2
(a1a2) � 0.5> 0 � fB

ψ
1
(a1a2), so a1a2 ∈ B

ψ
2 .

tB
ψ
1

a1a3( 􏼁 � tA a1( 􏼁∧tA a3( 􏼁 − ∨ tψB2
a1a3( 􏼁􏽨 􏽩 � 0.2 − 0.2 � 0,

fB
ψ
1

a1a3( 􏼁 � fA a1( 􏼁∨fA a3( 􏼁 − ∨ fψB2
a1a3( 􏼁􏽨 􏽩 � 0.4 − 0.4 � 0,

tB
ψ
2

a1a3( 􏼁 � tA a1( 􏼁∧tA a3( 􏼁 − ∨ tψB1
a1a3( 􏼁􏽨 􏽩 � 0.2 − 0 � 0.2,

fB
ψ
2

a1a3( 􏼁 � fA a1( 􏼁∨fA a3( 􏼁 − ∨ fψB1
a1a3( 􏼁􏽨 􏽩 � 0.4 − 0 � 0.4.

(22)

So, a1a3 ∈ B
ψ
2 . Also, for a2a3, we have

tB
ψ
1

a2a3( 􏼁 � tA a2( 􏼁∧tA a3( 􏼁 − ∨ tψB2
a2a3( 􏼁􏽨 􏽩 � 0.2 − 0 � 0.2,

fB
ψ
1

a2a3( 􏼁 � fA a2( 􏼁∨fA a3( 􏼁 − ∨ fψB2
a2a3( 􏼁􏽨 􏽩 � 0.5 − 0 � 0.5,

tB
ψ
2

a2a3( 􏼁 � tA a2( 􏼁∧tA a3( 􏼁 − ∨ tψB1
a2a3( 􏼁􏽨 􏽩 � 0.2 − 0.2 � 0,

fB
ψ
2

a2a3( 􏼁 � fA a2( 􏼁∨fA a3( 􏼁 − ∨ fψB1
a2a3( 􏼁􏽨 􏽩 � 0.5 − 0.5 � 0.

(23)

So, a2a3 ∈ B
ψ
1 .

Theorem 1. A ψ-complement of a VGS is a SVGS. In ad-
dition, if ψ(i) � r, for r, i ∈ 1, 2, . . . , n{ }, then all Br-edges in
VGS G

⌣

v � (A, B1, B2, . . . , Bn) become B
ψ
i -edges in

G
⌣ψc

v � (A, B
ψ
1 , B

ψ
2 , . . . , B

ψ
n ).

Proof. (e proof of the first part is clear according to the
definition of the ψ-complement G

⌣ψc

v of VGS �Gv, since for any
B
ψ
i -edge ab, t

ψ
Bi

(ab) and f
ψ
Bi

(ab), respectively, have the
maximum values of

tA(a)∧tA(b)􏼂 􏼃 − ∨
j≠i

tψBj
(ab)

fA(a)∨fA(b)􏼂 􏼃 − ∨
j≠i

fψBj
(ab).

(24)

(at is,

t
ψ
Bi

(ab) � tA(a)∧tA(b),

f
ψ
Bi

(ab) � fA(a)∨fA(b),
(25)

for all edges ab in G
⌣ψc

v ; hence, G
⌣ψc

v is a SVGS. Now assume on
contrary that ψ(i) � r, but ab is Bs-edge in G

⌣

v with s≠ r that
shows ψBi ≠Bs.

By comparing equations (24) and (25), we have

∨
j≠ i

tψBj
(xy) � 0,

∨
j≠ i

fψBj
(xy) � 0,

(26)

that it is not true because Bs � ψBj, for some
j ∈ 1, 2, . . . , i − 1, i + 1, . . . , n{ }. (erefore, our assumption
is wrong and ab should be a Br-edge.(us, we get if ψ(i) � r,
then, all Br-edges in VGS G

⌣

v � (A, B1, B2, . . . , Bn) become

B
ψ
i -edges in G

⌣ψc

v � (A, B
ψ
1 , B

ψ
2 , . . . , B

ψ
n ), for

r, i ∈ 1, 2, . . . , n{ }. □

Definition 26. Let G
⌣

v � (A, B1, B2, . . . , Bn) be a VGS and ψ
be a permutation on the set 1, 2, . . . , n{ }. (en,

(i) G
⌣

v is SC, if G
⌣

v � G
⌣ψc

v ,
(ii) G

⌣

v is SSC, if it is identical to G
⌣ψc

v .
(iii) G

⌣

v is TSC if G
⌣

v � G
⌣ψc

v , ∀ permutations ψ on the set
1, 2, . . . , n{ }.

(iv) G
⌣

v is TSSC, if it is identical to G
⌣ψc

v , ∀ permutations ψ
on the set 1, 2, . . . , n{ }.

Theorem 2. A VGS G
⌣

v is strong if G
⌣

v is TSC.

Proof. Assume �Gv be a SVGS and ψ be a permutation on the
set 1, 2, . . . , n{ }. If ψ− 1(i) � j, then, by (eorem 1, all
Bi-edges in G

⌣

v � (A, B1, B2, . . . , Bn) become B
ψ
j -edges in

G
⌣ψc

v � (A, B
ψ
1 , B

ψ
2 , . . . , B

ψ
n ). Also, G

⌣ψc

v is strong, so,

tBi
a1a2( 􏼁 � tA a1( 􏼁∧tA a2( 􏼁 � tB

ψ
j

a1a2( 􏼁,

fBi
a1a2( 􏼁 � fA a1( 􏼁∨fA a2( 􏼁 � fB

ψ
j

a1a2( 􏼁.
(27)

(en, G
⌣

v is isomorphic to G
⌣ψc

v , under the identity
mapping g: V⟶ V and a permutation ψ, so that

tA(a) � tA(g(a)), fA(a) � fA(g(a)), for all a ∈ V, (28)

and

tBi
a1a2( 􏼁 � tB

ψ
j

a1a2( 􏼁 � tB
ψ
j

g a1( 􏼁g a2( 􏼁( 􏼁,

fBi
a1a2( 􏼁 � fB

ψ
j

a1a2( 􏼁 � fB
ψ
j

g a1( 􏼁g a2( 􏼁( 􏼁,
(29)
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for all a1a2 ∈ Ri. (is holds for all the permutation on the set
1, 2, . . . , n{ }. (us, G

⌣

v is TSC. Conversely, let ψ be any
permutation on the set 1, 2, . . . , n{ } and G

⌣

v and G
⌣ψc

v be

isomorphic. According to the definitions of ψ-complement
and isomorphism, we get

tBi
a1a2( 􏼁 � tB

ψ
j

g a1( 􏼁g a2( 􏼁( 􏼁 � tA g a1( 􏼁( 􏼁∧tA g a2( 􏼁( 􏼁 � tA a1( 􏼁∧tA a2( 􏼁,

fBi
a1a2( 􏼁 � fB

ψ
j

g a1( 􏼁g a2( 􏼁( 􏼁 � fA g a1( 􏼁( 􏼁∨fA g a2( 􏼁( 􏼁 � fA a1( 􏼁∨fA a2( 􏼁,
(30)

for all a1a2 ∈ Ei, i � 1, 2, . . . , n. Hence, G
⌣

v is a SVGS. □

Theorem 3. If GS G∗ � (V, R1, R2, . . . , Rn) is TSSC and A is
a VS of V with constant fuzzy mapping tA and fA, then, a
SVGS G

⌣

v � (A, B1, B2, . . . , Bn) of G∗ is TSSC.

Proof. Consider a SVGS G
⌣

v � (A, B1, B2, . . . , Bn) of a GS
G∗ � (V, R1, R2, . . . , Rn). Assume that G∗ is TSSC and that

for some constants s, t ∈ [0, 1], A � (tA, fA) is a VS of u so
that tA(u) � s, fA(u) � t, ∀ u ∈ V. (en, we have to prove
that G

⌣

v is TSSC. Let ψ be an arbitrary permutation on the set
1, 2, . . . , n{ } and ψ− 1(j) � i. Since G∗ is TSSC, so ∃ a bi-
jection g: V⟶ V so that for each Ri-edge a1a2 in G∗,
g(a1)g(a2) is an Ri-edge in (G∗)ψ

−1c. Consequently, for
every Bi-edge a1a2 in G

⌣

v, g(a1)g(a2) is a B
ψ
i -edge in G

⌣ψc

v .
From the definition of A and the definition of SVGS G

⌣

v,

tA(a) � s � tA(g(a)), fA(a) � t � fA(g(a)), for all a, g(a) ∈ V, (31)

and

tBi
a1a2( 􏼁 � tA a1( 􏼁∧tA a2( 􏼁 � tA g a1( 􏼁( 􏼁∧tA g a2( 􏼁( 􏼁 � tB

ψ
i

g a1( 􏼁g a2( 􏼁( 􏼁,

fBi
a1a2( 􏼁 � fA a1( 􏼁∨fA a2( 􏼁 � fA g a1( 􏼁( 􏼁∨fA g a2( 􏼁( 􏼁 � fB

ψ
i

g a1( 􏼁g a2( 􏼁( 􏼁,
(32)

for all a1a2 ∈ Bi, i � 1, 2, . . . , n, which shows G
⌣

v is SSC.
Hence, G

⌣

v is TSSC, since ψ is arbitrary. □

Example 11. A VGS G
⌣

v � (A, B1, B2, B3) of GS
G∗ � (V, R1, R2, R3) as shown in Figure 11 is TSSC.

4. Application

Providing services to the people in the shortest possible time
is one of the most important issues that governments strive
to do in the best possible way. Unfortunately, in the past, due
to the lack of medical and welfare services as well as the lack
of educational centers, people had to travel to distant cities to

provide these necessary facilities and equipment, and in this
way, unfortunately, they incurred a lot of costs. But today,
with the help of governments as well as the equipping of
medical and welfare centers, people can move to their
nearest neighboring city to benefit from these facilities. A
vague graph structure helps us to understand which route is
more appropriate for a particular service. It also shows us
which service is increasing so that governments can
strengthen it in the same way and also try to increase the rest
of the services so that people can benefit from them. Most
importantly, a VGS can also be useful to the mayor of the
area, as it helps the mayor make appropriate policies for the
city to develop appropriate services. For example, if one of

a1 (0.3, 0.4)

a3 (0.2, 0.3) a2 (0.2, 0.5) a3 (0.2, 0.3) a2 (0.2, 0.5)

a1 (0.3, 0.4)

B1
ψ (0.2, 0.5)

B
2 ψ (0.2, 0.5)B 2

ψ  (0
.2,

 0.
4)

B2 (0.2, 0.5)

B
1  (0.2, 0.5)B 1 (

0.2
, 0

.4)
Gv
ˇ Gv

ˇψc

Figure 10: Vague graph structures G
⌣

v and G
⌣ψc

v .
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the welfare services in that area is more than other services
(the number of people referring to that welfare center is
higher), then, the VGS shows this issues and as a result, the
mayor takes the necessary measures to maintain and in-
crease this opportunity. Suppose A is a set consisting of 7
cities as A � Neka,Behshahr, Sari,Ghaemshahr,Babol,{

Bahnamir,Babolsar}, and H is a VS on A as Table 2.
In Table 2, true membership value indicates the amount

of welfare, educational, medical, and peace facilities in that
area, and the false-membership value reveals the lack of
necessary facilities in each of the medical services. In
Tables 3–9, we show the membership rate of various welfare

services on the route between each pair of cities. (e rela-
tions that considered on set A are as follows:

R1 � Grocery stores, R2 � Banking services,
R3 � Car daelership, R4 � Hospitals, and
R5 � University and Schools so that (A, R1, R2, R3, R4, R5) is
a graph structure. Each object in a particular relation in-
dicates the amount of services provided between the two
cities. In these relations, each element is determined by its
corresponding membership rate, and the corresponding sets
are FSs on R1, R2, R3, R4, and R5, respectively, which are
shown by B1, B2, B3, B4, and B5, respectively.

Suppose that

R1 � (Neka, Sari), (Sari,Behshahr){ },

R2 � (Behshahr,Babol), (Babolsar,Babol){ },

R3 � (Babol,Ghaemshar), (Sari,Ghaemshahr), (Bahnamir,Babolsar){ },

R4 � (Neka,Bahnamir), (Sari,Bahnamir){ },

R5 � (Ghaemshahr,Bahnamir), (Babolsar, Sari){ }.

(33)

Now, corresponding vague sets are

B1 � ((Neka, Sari), (0.6, 0.2)), ((Sari,Behshahr), (0.7, 0.2)){ },

B2 � ((Behshahr,Babol), (0.7, 0.2)), ((Babolsar,Babol), (0.8, 0.2)){ },

B3 �
((Babol,Ghaemshahr), (0.5, 0.1)), ((Sari,Ghaemshahr), (0.7, 0.3)),

((Bahnamir,Babolsar), (0.7, 0.2))
􏼨 􏼩,

B4 � ((Neka,Bahnamir), (0.7, 0.1)), ((Sari,Bahnamir), (0.6, 0.2)){ },

B5 � ((Ghaemshahr,Bahnamir), (0.7, 0.2)), ((Babolsar, Sari), (0.6, 0.3)){ }.

(34)

a7 (0.1, 0.3) a2 (0.2, 0.3)

a3 (0.1, 0.3)

a4 (0.2, 0.3)a5 (0.1, 0.3)

a6 (0.2, 0.3)

B3 (0.2, 0.4)

B
3  (0.1, 0.4)

B1 (0.1, 0.4)

B 1 (
0.2

, 0
.4)

a1 (0.3, 0.4)

B
2  (0.2, 0.4)B 2 (

0.1
, 0

.4)

Figure 11: Totally strong self-complementary.
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Table 2: Vague set H on A.

City Membership value
Neka (0.3, 0.4)

Behshahr (0.6, 0.3)

Sari (0.8, 0.2)

Ghaemshahr (0.5, 0.3)

Babol (0.5, 0.2)

Bahnamir (0.3, 0.2)

Babolsar (0.6, 0.3)

Table 3: Vague set of services on roads connecting Neka and other cities.

Services (Neka, Behshahr) (Neka, Sari) (Neka, Bahnamir) (Neka, Babolsar)
Grocery store (0.6, 0.2) (0.5, 0.2) (0.5, 0.2) (0.7, 0.2)

Banking services (0.6, 0.2) (0.6, 0.2) (0.4, 0.3) (0.6, 0.3)

Car dealership (0.5, 0.3) (0.5, 0.2) (0.3, 0.2) (0.5, 0.4)

Hospitals (0.6, 0.2) (0.5, 0.3) (0.4, 0.2) (0.6, 0.3)

University and schools (0.5, 0.4) (0.5, 0.3) (0.6, 0.2) (0.5, 0.2)

Table 4: Vague set of services on roads connecting Behshahr and other cities.

Services (Behshahr, Neka) (Behshahr, Babol) (Behshahr, Sari)
Grocery store (0.7, 0.2) (0.6, 0.2) (0.7, 0.2)

Banking services (0.8, 0.1) (0.7, 0.2) (0.4, 0.3)

Car dealership (0.6, 0.2) (0.6, 0.3) (0.8, 0.2)

Hospitals (0.8, 0.2) (0.7, 0.2) (0.6, 0.2)

University and schools (0.7, 0.2) (0.5, 0.3) (0.6, 0.3)

Table 5: Vague set of services on roads connecting Sari and other cities.

Services (Sari, Behshahr) (Sari, Neka) (Sari, Ghaemshahr)
Grocery store (0.7, 0.2) (0.5, 0.2) (0.6, 0.2)

Banking services (0.5, 0.3) (0.4, 0.2) (0.4, 0.3)

Car dealership (0.6, 0.2) (0.5, 0.3) (0.6, 0.2)

Hospitals (0.6, 0.4) (0.4, 0.3) (0.7, 0.3)

University and schools (0.7, 0.2) (0.5, 0.2) (0.6, 0.2)

Table 6: Vague set of services on roads connecting Babol and other cities.

Services (Babol, Behshahr) (Babol, Babolsar) (Babol, Ghaemshahr)
Grocery store (0.5, 0.2) (0.6, 0.2) (0.4, 0.3)

Banking services (0.6, 0.3) (0.6, 0.1) (0.4, 0.2)

Car dealership (0.7, 0.2) (0.5, 0.3) (0.4, 0.3)

Hospitals (0.6, 0.4) (0.6, 0.2) (0.4, 0.2)

University and schools (0.6, 0.2) (0.7, 0.1) (0.5, 0.1)

Table 7: Vague set of services on roads connecting Ghaemshahr and other cities.

Services (Ghaemshahr, Babol) (Ghaemshahr, Sari) (Ghaemshahr, Bahnamir)
Grocery store (0.7, 0.1) (0.7, 0.2) (0.6, 0.2)

Banking services (0.6, 0.3) (0.8, 0.1) (0.4, 0.3)

Car dealership (0.6, 0.2) (0.7, 0.3) (0.7, 0.2)

Hospitals (0.5, 0.4) (0.6, 0.2) (0.4, 0.2)

University and schools (0.6, 0.2) (0.5, 0.4) (0.6, 0.3)
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It is obvious that (H, B1, B2, B3, B4, B5) is a VGS and is
denoted in Figure 12. In the VGS shown in Figure 12, each
edge represents the most services that occur on the con-
necting route between the two cities. For example, most

services on the way from Babolsar to Bahnamir are grocery
services, and their membership value are (0.7, 0.2). It is clear
that the city of Sari has the highest membership in terms of
banking services, which means that this city is the most

Table 8: Vague set of services on roads connecting Babolsar and other cities.

Services (Babolsar, Babol) (Babolsar, Sari) (Babolsar, Bahnamir)
Grocery store (0.7, 0.1) (0.5, 0.2) (0.6, 0.2)

Banking services (0.5, 0.3) (0.4, 0.3) (0.4, 0.3)

Car dealership (0.8, 0.2) (0.6, 0.3) (0.5, 0.2)

Hospitals (0.8, 0.2) (0.5, 0.3) (0.4, 0.3)

University and schools (0.7, 0.2) (0.5, 0.3) (0.5, 0.3)

Table 9: Vague set of services on roads connecting Bahnamir and other cities.

Services (Bahnamir, Neka) (Bahnamir, Sari) (Bahnamir, Babolsar)
Grocery store (0.5, 0.2) (0.5, 0.3) (0.5, 0.3)

Banking services (0.6, 0.3) (0.6, 0.2) (0.6, 0.2)

Car dealership (0.6, 0.3) (0.5, 0.2) (0.7, 0.2)

Hospitals (0.7, 0.1) (0.6, 0.2) (0.5, 0.3)

University and schools (0.6, 0.2) (0.5, 0.3) (0.4, 0.3)
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Figure 12: VGS showing the most important services along the roads connecting the two cities.
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sensitive city for providing banking services. According to
the VGS in Figure 12, the most common services is car
dealership. (erefore, we conclude that government should
identify places that are suitable for providing services be-
tween cities so that people can benefit from these services at
the lowest cost and in the fastest possible time.

5. Conclusion

Fuzzy graph has various uses in modern science and
technology, especially in the fields of neural networks,
computer science, operation research, and decision making.
VGS have more precision, flexibility, and compatibility, as
compared to the fuzzy graphs. Today, VGSs play an im-
portant role in social networks and allow users to find the
most effective person in a group or organization. So, in this
paper, we presented certain notions, including VGS, SVGS,
and vague Bi-cycle and illustrated these notions by several
examples. We investigated ψ-complement, SC, SSC, and
TSSC in VGS and studied some of their properties. Finally,
an application of VGS has been introduced. In our future
work, we will introduce neighborly irregular, highly irreg-
ular, strongly irregular, and edge irregularity in VGSs and
investigate some of their properties.
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In this paper, we study α-cosymplectic manifold M admitting ∗ -Ricci tensor. First, it is shown that a ∗ -Ricci semisymmetric
manifold M is ∗ -Ricci flat and a ϕ-conformally flat manifold M is an η-Einstein manifold. Furthermore, the ∗ -Weyl curvature
tensorW∗ on M has been considered. Particularly, we show that a manifold M with vanishing ∗ -Weyl curvature tensor is a weak
ϕ-Einstein and amanifold M fulfilling the condition R(E1, E2) · W∗ � 0 is η-Einstein manifold. Finally, we give a characterization
for α-cosymplectic manifoldM admitting ∗ -Ricci soliton given as to be nearly quasi-Einstein. Also, some consequences for three-
dimensional cosymplectic manifolds admitting ∗ -Ricci soliton and almost ∗ -Ricci soliton are drawn.

1. Introduction

In the last few years, theory of almost contact geometry and
related topics are an active branch of research due to elegant
geometry and applications to physics. Nowadays, many
attentions have been drawn towards the study of almost
cosymplectic manifolds which are a special class of almost
contact manifolds. +is notion was initiated by Goldberg
and Yano [1], in 1969, and then, a very systematic approach
for the study of almost cosymplectic manifolds was carried
forward by many geometers. A smooth manifold of
(2n + 1)-dimension with the condition η∧dηn ≠ 0 for a
closed 1-form η is a cosymplectic manifold. A simple ex-
ample of almost cosymplectic manifolds is given by the
products of almost Kaehler manifolds and the real line R or
the circle S1. At this moment, we refer the studies [2–5] and
the references therein for a vast and exhaustive survey of the
results on almost cosymplectic manifolds.

A new concept of the Ricci tensor named as ∗ -Ricci
tensor has been defined by Tachibana [6] and Hamada [7] in
complex geometry. Similar to a complex case, the ∗ -Ricci
tensor of an almost contact metric manifold has been de-
fined as follows:

S
∗

E1, E2( 􏼁 �
1
2

Tr E3⟶ R E1, ϕE2( 􏼁ϕE3( 􏼁, (1)

for all E1, E2 ∈ TM, where R is the Riemannian curvature
tensor. Naturally, Hamada also considered the notion of
∗ -Einstein manifold. An Hermitian manifold is ∗ -Einstein
if we have g(Q∗E1, E2) � λg(E1, E2), where λ is a constant.
Also, in the same study of Hamada, a classification of
∗ -Einstein hypersurfaces was given. On the other hand, for
an extension of Hamada’s work, we refer to Ivey and Ryan
[8]. +e concept of the ∗ -Ricci tensor has been studied in
contact case. Venkatesha and his group ([9, 10]) recently
studied some of the curvature properties on Sasakian
manifold and contact metric generalized (κ, μ)-space form
using the ∗ -Ricci tensor.

In this study, the ∗ -Ricci tensor within the framework of
α-cosymplectic manifolds has been studied. In Section 2, we
recall some basic formulas and results concerning
α-cosymplectic manifold and ∗ -Ricci tensor, which will be
useful in further sections. An α-cosymplectic manifold
satisfying ∗ -Ricci semisymmetric and ϕ-conformally flat
conditions are studied in Section 3 and shown that a
ϕ-conformably flat α-cosymplectic manifold is η-Einstein
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and a ∗ -Ricci semisymmetric α-cosymplectic manifold is
∗ -Ricci flat. In next section, the ∗ -Weyl curvature tensor
has been studied in the background of α-cosymplectic
manifold, and several consequences are noticed. In the last
section, we studied a special type of metric called ∗ -Ricci
soliton. Here, we have proved some important results of
α-cosymplectic manifold admitting ∗ -Ricci soliton.

2. Preliminaries

Here, we are going to recall some general facts on
α-cosymplectic manifolds which are relevant to our work.

An almost contact metric manifold of (2n + 1)-dimen-
sion is a 5-tuple (M, ϕ, ξ, η, g) with the following resources
[11].

ϕ2E1 � − E1 + η E1( 􏼁ξ,

η(ξ) � 1,

ϕξ � 0,

η ϕE1( 􏼁 � 0,

g ϕE1, ϕE2( 􏼁 � g E1, E2( 􏼁 − η E1( 􏼁η E2( 􏼁,

E1, E2 ∈ TM,

(2)

for a (1, 1)− tensor field ϕ, a characteristic vector field ξ, a 1-
form η is dual of ξ, and g is a Riemannian metric. It is easily
seen that

g ϕE1, E2( 􏼁 � − g E1, ϕE2( 􏼁,

g E1, ξ( 􏼁 � η E1( 􏼁,

E1, E2 ∈ TM.

(3)

It is well known that the fundamental 2-formω is defined
by ω(E1, E2) � g(ϕE1, E2) on M.

For an almost contact metric manifold M, we have the
following classifications ([12, 13]):

(1) If dη � ω, then M is a contact metric manifold
(2) If dη � 0 and dω � 0, then M is an almost cosym-

plectic manifold [1]
(3) If dη � 0 and dω � 2αη∧ω, then M is an almost

α-Kenmotsu manifold for a nonzero scalar α

In the contact geometry, the notion is normality that is a
contact analogue of the integrability of an almost complex
structure. An almost cosymplectic metric manifold being
normal, if we have [ϕ, ϕ] � 0 which is the Nijenhuis tensor of
the tensor field ϕ, is defined by

[ϕ, ϕ] � ϕ2 E1, E2􏼂 􏼃 + ϕE1,ϕE2􏼂 􏼃 − ϕ ϕE1, E2􏼂 􏼃 − ϕ E1,ϕE2􏼂 􏼃,

(4)

for all E1, E2 ∈ TM. A normal almost cosymplectic manifold
is a cosymplectic manifold.

Almost α− cosymplectic manifolds have been defined by
Kim and Pak [14] by combining an almost α-Kenmotsu and
almost cosymplectic structures by the following formula:

dη � 0,

dω � 2αη∧ω,
(5)

for a constant α. On an α-cosymplectic manifold, we have

∇E1
ϕ􏼐 􏼑E2 � α g ϕE1, E2( 􏼁ξ − η E2( 􏼁ϕE1( 􏼁, (6)

where ∇ denotes the Riemannian connection. From (6), it is
easy to see that

∇E1
ξ � − αϕ2E1 � α E1 − η E1( 􏼁ξ􏼂 􏼃, (7)

and

∇E1
η􏼐 􏼑E2 � α g E1, E2( 􏼁 − η E1( 􏼁η E2( 􏼁􏼂 􏼃. (8)

On an α-cosymplectic manifold M of dimension 2n + 1,
the following relationships are valid:

R ξ, E1( 􏼁E2 � α2 η E2( 􏼁E1 − g E1, E2( 􏼁ξ( 􏼁, (9)

R E1, E2( 􏼁ξ � α2 η E1( 􏼁E2 − η E2( 􏼁E1( 􏼁, (10)

S E1, ξ( 􏼁 � − 2nα2η E1( 􏼁, (11)

where R and S are the curvature and Ricci tensors,
respectively.

By the following lemma, we obtain some derivational
features of α-cosymplectic manifold.

Lemma 1. On an α− cosymplectic manifold of dimension
2n + 1, we have

∇E1
Q􏼐 􏼑ξ � − αQE1 − 2nα3E1, (12)

∇ξQ􏼐 􏼑E1 � − 2αQE1 − 4nα3E1, (13)

ξ(r) � − 2α r + 2n(2n + 1)α2􏽮 􏽯. (14)

Proof. Note that (11) implies Qξ � − 2nα2ξ, for Q defined by
S(E1, E2) � g(QE1, E2). Differentiating this along E1 and
using (7), we get (12). Next, differentiation of (10) with
respect to T gives

∇TR( 􏼁 E1, E2( 􏼁ξ � − αR E1, E2( 􏼁T

+ α3 g E1, T( 􏼁E2 − g E2, T( 􏼁E1􏼈 􏼉.
(15)

Let ei􏼈 􏼉
2n+1
i�1 be a local basis on M. Replacing E1 � T � ei

in the foregoing equation with summing over i gives

􏽘

2n+1

i�1
g ∇ei

R􏼐 􏼑 ei, E2( 􏼁ξ, E3􏼐 􏼑 � αS E2, E3( 􏼁 + 2nα3g E2, E3( 􏼁.

(16)
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Using second Bianchi’s identity leads to

􏽘

2n+1

i�1
g ∇ei

R􏼐 􏼑 E3, ξ( 􏼁E2, ei􏼐 􏼑

� g ∇E3
Q􏼐 􏼑ξ, E2􏼐 􏼑 − g ∇ξQ􏼐 􏼑E3, E2􏼐 􏼑.

(17)

By considering (16) in (17) and then with the help of (12),
we conclude

g ∇ξQ􏼐 􏼑E1, E2􏼐 􏼑 � − 2αS E1, E2( 􏼁 − 4nα3g E1, E2( 􏼁, (18)

which proves (13). Finally, contraction of (13) gives (14). □

From Riemannian geometry, the covariant derivative of
a (1, s)-type of tensor field K is given by

(divK) E1, E1, . . . , E1s( 􏼁 � 􏽘
2n+1

i�1
g ∇ei

K􏼐 􏼑 E1, E1, . . . , E1( 􏼁, ei􏼐 􏼑.

(19)

for all E1, E1, . . . , E1 ∈ TM, where div is stated for the di-
vergence [15].

By following descriptions, we present some classification
facts which come from the Ricci tensor and have been stated.

(1) An α− cosymplectic manifold M is called by weak
ϕ-Einstein if we have

S
ϕ

E1, E2( 􏼁 � βg
ϕ

E1, E2( 􏼁, ∀E1, E2 ∈ TM, (20)

for some function β, where gϕ(E1, E2) � g(ϕE1,

ϕE2), and Sϕ is defined by

S
ϕ

E1, E2( 􏼁 �
1
2

S
∗

E1, E2( 􏼁 + Ric
∗

E2, E1( 􏼁􏼈 􏼉,

E1, E2 ∈ TM,

(21)

In other words, Sϕ denotes the symmetric part of S∗.
If β is constant, then M is called ϕ-Einstein [16].

(2) M is called near quasi-Einstein manifold if the Ricci
tensor is of the form

S E1, E2( 􏼁 � ag E1, E2( 􏼁 + bE E1, E2( 􏼁, ∀E1, E2 ∈ TM,

(22)

where a and b are the nonzero scalars and E is a
nonzero (0, 2) tensor [17].

(3) M is called an η-Einstein manifold if we have

S E1, E2( 􏼁 � αg E1, E2( 􏼁 + cη E1( 􏼁η E2( 􏼁, ∀E1, E2 ∈ TM,

(23)

where α and c are the constants [18].

By decomposition of Riemannian curvature tensor R, the
Weyl conformal curvature tensor W has been obtained in
this way:

W E1, E2( 􏼁E3 � R E1, E2( 􏼁E3 −
1

2n − 1
S E2, E3( 􏼁E1 − S E1, E3( 􏼁E2 + g E2, E3( 􏼁QE1 − g E1, E3( 􏼁QE2􏼈 􏼉

+
r

2n(2n − 1)
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉.

(24)

for all E1, E2, E3 ∈ TM [15]. It is noted that, Weyl conformal
curvature tensor vanishes whenever the metric is con-
formally identical to a flat metric, and it is one of the im-
portant curvature properties on a manifold.

3. ∗ -Ricci Tensor on α-Cosymplectic Manifold

We are in a situation to confer the equation of the ∗ -Ricci
tensor in the framework of α-cosymplectic manifolds and
then study its various properties. In [19], authors derived the
expression of the ∗ -Ricci tensor on α-cosymplectic mani-
fold which is of the following form:

S
∗

E1, E2( 􏼁 � S E1, E2( 􏼁 +(2n − 1)α2g E1, E2( 􏼁

+ α2η E1( 􏼁η E2( 􏼁,
(25)

for all E1, E2 ∈ TM.

Note that S∗ is not symmetric. By contraction of (25), the
∗ -scalar curvature is specified by

r
∗

� r + 4n
2α2. (26)

If the ∗ -Ricci tensor S∗ is a constant multiple of the
Riemannian metric g, then we say that the manifold is
∗ -Einstein. Moreover, the ∗ -scalar curvature is not con-
stant on a ∗ -Einstein manifold.

3.1. ∗ -Ricci Semisymmetric α-Cosymplectic Manifolds. An
α-cosymplectic manifold M satisfying the condition
R(E1, E2) · S � 0 for all E1, E2 ∈ TM is called Ricci semi
symmetric, where R(E1, E2) acts as a derivation on S. +is
notion was introduced by Mirjoyan [20] for Riemann spaces
and then studied by many authors. Analogous to this, an
α-cosymplectic manifold is called ∗ -Ricci semisymmetric if
its ∗ -Ricci tensor satisfies the condition
R(E1, E2) · S∗ � 0∀E1, E2 ∈ TM.

Theorem 1. If a (2n + 1)-dimensional α-cosymplectic
manifold M is ∗ -Ricci semisymmetric, then M is ∗ -Ricci
flat. Moreover, it is an η-Einstein manifold, and the Ricci
tensor is to be exhibited as
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S E1, E2( 􏼁 � (1 − 2n)α2g E1, E2( 􏼁 − α2η E1( 􏼁η E2( 􏼁,

E1, E2 ∈ TM.
(27)

Proof. Let us consider ∗ -Ricci semisymmetric α-cosym-
plectic manifold M. +en, condition R(E1, E2).S

∗ � 0 is
equivalent to

S
∗

R E1, E2( 􏼁E3, E4( 􏼁 + S
∗

E3, R E1, E2( 􏼁E4( 􏼁 � 0. (28)

Putting E1 � ξ in (28) and then recalling (9), we have

α2 S
∗

E2, E4( 􏼁η E3( 􏼁 − g E2, E3( 􏼁S
∗ ξ, E4( 􏼁􏼈 􏼉

+ α2 S
∗

E3, E2( 􏼁η E4( 􏼁 − g E2, E4( 􏼁S
∗

E3, ξ( 􏼁􏼈 􏼉 � 0.
(29)

It is well known that Ric∗(E1, ξ) � 0. Making use of this
in (29), we find

α2 S
∗

E2, E4( 􏼁η E3( 􏼁 + S
∗

E3, E2( 􏼁η E4( 􏼁􏼉􏼈 􏼉 � 0. (30)

Again, plugging E4 by ξ in (30) shows that M is ∗ -Ricci
flat, that is, S∗(E3, E2) � 0, E3, E2 ∈ TM. Moreover, in view
of (25) and (30), we have the required result. □

3.2. ϕ-Conformally Flat α-Cosymplectic Manifolds. An
α-cosymplectic manifold M is said to be ϕ-conformally flat if
we have

ϕ2W ϕE1, ϕE2( 􏼁ϕE3 � 0, (31)

for all E1, E2, E3 ∈ TM. Sasakian manifolds which are
ϕ-conformally flat have been studied in [21]. In the fol-
lowing, we study a ϕ-conformally flat α-cosymplectic
manifold.

Theorem 2. An φ-conformally flat α-cosymplectic manifold
is ∗ − η-Einstein manifold. Moreover, M is weak φ-Einstein.

Proof. Assume that an α-cosymplectic manifold is
ϕ-conformally flat. So, it is easy to see that ϕ2C(ϕE1,

ϕE2)ϕE3 � 0 carry if and only if g(C(ϕE1,

ϕE2)ϕE3, ϕE4) � 0∀E1, E2, E3, E4 ∈ TM. Hence, ϕ-con-
formally flat means

g R ϕE1,ϕE2( 􏼁ϕE3, ϕE4( 􏼁 �
1

2n − 1
S ϕE2, ϕE3( 􏼁g ϕE1, ϕE4( 􏼁 − S ϕE1, ϕE3( 􏼁g ϕE2,ϕE4( 􏼁 + g ϕE2, ϕE3( 􏼁S ϕE1, ϕE4( 􏼁􏼈

− g ϕE1, ϕE3( 􏼁S ϕE2, ϕE4( 􏼁􏼉􏼉

−
r

2n(2n − 1)
g ϕE2, ϕE3( 􏼁g ϕE1,ϕE4( 􏼁􏼈

− g ϕE1, ϕE3( 􏼁g ϕE2,ϕE4( 􏼁􏼉.

(32)

For a local orthonormal basis ofTM with e1, . . . , e2n, ξ􏼈 􏼉,
if we put E1 � E4 � ei in (32) and sum up with respect to i,
then we obtain

􏽘

2n

i�1
g R ϕei, ϕE2( 􏼁ϕE3,ϕei( 􏼁 �

1
2n − 1

􏽘

2n

i�1
g ϕei,ϕei( 􏼁S ϕE2, ϕE3( 􏼁 − g ϕE2,ϕei( 􏼁S ϕei, ϕE3( 􏼁 + g ϕE2, ϕE3( 􏼁S ϕei, ϕei( 􏼁􏼈

− g ϕei,ϕE3( 􏼁S ϕE2, ϕei( 􏼁􏼉

−
r

2n(2n − 1)
􏽘

2n

i�1
g ϕei,ϕei( 􏼁􏼈

g ϕE2,ϕE3( 􏼁 − g ϕei, ϕE3( 􏼁g ϕE2, ϕei( 􏼁􏼉,

(33)

and therefore,

S ϕE2, ϕE3( 􏼁 − g R ξ, E2( 􏼁E3, ξ( 􏼁 �
2(n − 1)

2n − 1
S ϕE2,ϕE3( 􏼁 +

1
2n − 1

r

2n
+ α2􏼔 􏼕g ϕE2, ϕE3( 􏼁. (34)
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From (9), we obtain g(R(ξ, E2)E3, ξ) � − α2g(ϕE2,ϕE3),
and hence, from (34), we get

S ϕE2,ϕE3( 􏼁 �
r

2n
+ α2􏼔 􏼕g ϕE2,ϕE3( 􏼁. (35)

+en, from (35), it follows from (32) that

g R ϕE1, ϕE2( 􏼁ϕE3,ϕE4( 􏼁 �
r + 4nα2

2n(2n − 1)
g ϕE2, ϕE3( 􏼁g ϕE1, ϕE4( 􏼁 − g ϕE1, ϕE3( 􏼁g ϕE2, ϕE4( 􏼁􏼈 􏼉. (36)

In an α-cosymplectic manifold, in view of (3) and (9) for
all E1, E2, E3, E4 ∈ TM, we can verify that

R φ2
E1,φ

2
E2,φ

2
E3,φ

2
E4􏼐 􏼑 � R E1, E2, E3, E4( 􏼁 + α2 g E2, E3( 􏼁η E1( 􏼁η E2( 􏼁 − g E1, E3( 􏼁η E2( 􏼁η E4( 􏼁􏼈

+ g E1, E4( 􏼁η E2( 􏼁η E3( 􏼁 − g E2, E4( 􏼁η E1( 􏼁η E3( 􏼁􏼉.
(37)

Taking φE1,φE2,φE3,φE4 instead of E1, E2, E3, E4 in
(37), respectively, and making use of (36), we obtain

R E1, E2, E3, E4( 􏼁 �
r + 4nα2

2n(2n − 1)
g E1, E4( 􏼁g E2, E3( 􏼁 − g E2, E4( 􏼁g E1, E3( 􏼁􏼈 􏼉

−
r + 2n(2n + 1)α2

2n(2n − 1)
g E2, E3( 􏼁η E1( 􏼁 − g E1, E3( 􏼁η E2( 􏼁( 􏼁η E4( 􏼁 + g E1, E4( 􏼁η E2( 􏼁 − g E2, E4( 􏼁η E1( 􏼁( 􏼁η E3( 􏼁􏼈 􏼉.

(38)

By the definition of S∗, direct computation yields

S
∗

E1, E2( 􏼁 � 􏽘
2n+1

i�1
R E1, ei, ϕei, ϕE2( 􏼁

� βg E1, E2( 􏼁 − βη E1( 􏼁η E2( 􏼁,

(39)

where β � (r + 4nα2)/(2n(2n − 1)) reveals that M is
∗ − η-Einstein. In view of (3), we have

S
∗

E1, E2( 􏼁 �
r + 4nα2

2n(2n − 1)
g
ϕ

E1, E2( 􏼁, E1, E2 ∈ TM. (40)

+us, S∗ � Sϕ, and hence, it is weak ϕ-Einstein. +is
completes the proof. □

Next, for a constant scalar curvature of M, in view of
(40), we state the following.

Corollary 1. A ϕ-conformally flat α-cosymplectic manifold of
constant scalar curvature is a ϕ--Einstein manifold.

In an α-cosymplectic manifold, the ∗ -Ricci tensor is
given by (25), and so in view of (40), we state the following.

Corollary 2. A ϕ-conformally flat α-cosymplectic manifold is
η-Einstein.

Furthermore, an α-cosymplectic manifold M is called to
have the η-parallel Ricci tensor if its Ricci tensor S satisfies
the condition (∇E1

S)(ϕE2, ϕE3) � 0, E1, E2, E3 ∈ TM.
+is notion was introduced in 1976 by Kon [22] in the
framework of Sasakian manifolds and then studied by many
authors. Analogous to this notion, we state the following:

Definition 1. An α-cosymplectic manifold M is said to have
a η-parallel ∗ -Ricci tensor if its ∗ -Ricci tensor satisfies the
condition (∇E1

S∗)(ϕE2,ϕE3) � 0∀E1, E2, E3 ∈ TM.

Replacing E1 by ϕE1 and E2 by ϕE2 in (39), we obtain
S∗(ϕE1, ϕE2) � βg(ϕE1, ϕE2). Covariant derivative of the
foregoing equation with respect to E4, we get
(∇E4

S∗)(ϕE1,ϕE2) � dr(E4)g(ϕE1, ϕE2). +erefore, from
Definition 1, we have the following.

Corollary 3. Let M be a (2n + 1)-dimensional ϕ-con-
formally flat α-cosymplectic manifold. If M admits a
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η-parallel ∗ -Ricci tensor, then M has a constant scalar
curvature.

4. ∗ -Weyl Curvature Tensor on
α-Cosymplectic Manifolds

+e notion of ∗ -Weyl curvature tensor W∗ on real hy-
persurfaces of complex space forms (particularly, nonflat) is

defined recently by Kaimakamis and Panagiotidou [23] in
the following way:

W
∗

E1, E2( 􏼁E3 � R E1, E2( 􏼁E3 +
r
∗

2n(2n − 1)
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉

−
1

2n − 1
g Q
∗
E2, E3( 􏼁E1 − g Q

∗
E1, E3( 􏼁E2 + g E2, E3( 􏼁Q

∗
E1 − g E1, E3( 􏼁Q

∗
E2􏼈 􏼉,

(41)

for all E1, E2, E3 ∈ TM, where Q∗ is the ∗ -Ricci operator
and r∗ is the ∗ -scalar curvature corresponding to Q∗.

Using (25), we can write

Q
∗
E1 � QE1 + α2 (2n − 1)E1 + η E1( 􏼁ξ􏼈 􏼉. (42)

With the help of (41), (32), and (42), we obtain the
expression for the ∗ -Weyl curvature tensor on
(2n + 1)-dimensional α-cosymplectic manifold M as

W
∗

E1, E2( 􏼁E3 � W E1, E2( 􏼁E3 −
2(n − 1)α2

2n − 1
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉

−
α2

2n − 1
η E2( 􏼁η E3( 􏼁E1 − η E1( 􏼁η E3( 􏼁E2 + g E2, E3( 􏼁η E1( 􏼁ξ − g E1, E3( 􏼁η E2( 􏼁ξ􏼈 􏼉.

(43)

4.1. α-Cosymplectic Manifold with Vanishing ∗ -Weyl Cur-
vature Tensor

Theorem 3. An α-cosymplectic manifold with vanishing
∗ -Weyl curvature tensor is an η-Einstein manifold.

Proof. Let us consider an α-cosymplectic manifold M with
vanishing ∗ -Weyl curvature tensor, that is,
W∗(E1, E2)E3 � 0. +us, (43) infers that

W E1, E2( 􏼁E3 �
2(n − 1)α2

2n − 1
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉

+
α2

2n − 1
η E2( 􏼁η E3( 􏼁E1 − η E1( 􏼁η E3( 􏼁E2 + g E2, E3( 􏼁η E1( 􏼁ξ − g E1, E3( 􏼁η E2( 􏼁ξ􏼈 􏼉.

(44)

Covariant differentiation of above relation along E4 and
then contracting the resultant equation over E4 yields
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divW E1, E2( 􏼁E3 � 2(n − 1)α3 g E1, E3( 􏼁η E2( 􏼁􏼈

− g E2, E3( 􏼁η E1( 􏼁􏼉,
(45)

where “div” denotes the divergence. On the other side,
differentiatingW covariantly along E4 and then contracting
with the aid of following well-known formulas,

divR E1, E2( 􏼁E3 � g ∇E1
Q􏼐 􏼑E2, E3􏼐 􏼑 − g ∇E2

Q􏼐 􏼑E1, E3􏼐 􏼑,

divQE1 �
1
2
E1(r),

(46)

we easily obtain

divW E1, E2( 􏼁E3 �
2(n − 1)

2n − 1
g ∇E1

Q􏼐 􏼑E2, E3􏼐 􏼑 − g ∇E2
Q􏼐 􏼑E1, E3􏼐 􏼑􏽮 􏽯 −

(n − 1)

2n(2n − 1)
g E2, E3( 􏼁E1(r) − g E1, E3( 􏼁E2(r)􏼈 􏼉. (47)

By virtue of (45) and (47), we have

2(n − 1)

2n − 1
g ∇E1

Q􏼐 􏼑E2, E3􏼐 􏼑 − g ∇E2
Q􏼐 􏼑E1, E3􏼐 􏼑􏽮 􏽯 � 2(n − 1)α3 g E1, E3( 􏼁η E2( 􏼁 − g E2, E3( 􏼁η E1( 􏼁􏼈 􏼉

+
(n − 1)

2n(2n − 1)
g E2, E3( 􏼁E1(r) − g E1, E3( 􏼁E2(r)􏼈 􏼉.

(48)

Replacing E2 by ξ in (48), we obtain

2(n − 1)

2n − 1
g ∇E1

Q􏼐 􏼑ξ, E3􏼐 􏼑 − g ∇ξQ􏼐 􏼑E1, E3􏼐 􏼑􏽮 􏽯 � 2(n − 1)α3 g E1, E3( 􏼁 − η E1( 􏼁η E3( 􏼁􏼈 􏼉

+
(n − 1)

2n(2n − 1)
η E3( 􏼁E1(r) − g E1, E3( 􏼁ξ(r)􏼈 􏼉.

(49)

Recalling Lemma 1 to find

2(n − 1)

2n − 1
α g QE1, E3( 􏼁 + α2g E1, E3( 􏼁􏽮 􏽯 + 2(n − 1)α3η E1( 􏼁η E3( 􏼁 �

n − 1
2n(2n − 1)

η E3( 􏼁E1(r) − g E1, E3( 􏼁ξ(r)􏼈 􏼉. (50)

Writing ξ instead of E3 by ξ in the foregoing equation
and by making use of (11), we derive

X(r) � ξ(r)η E1( 􏼁. (51)

Making use of this equation in (50) yields

αg QE1, E3( 􏼁 � − α3 +
1
4n

ξ(r)􏼔 􏼕g E1, E3( 􏼁 + − (2n − 1)α3 +
1
4n

ξ(r)􏼔 􏼕η E1( 􏼁η E3( 􏼁. (52)
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Using (14) in (52), we get

S E1, E3( 􏼁 � 2nα2 +
r

2n
􏼚 􏼛g E1, E3( 􏼁

+ − 4nα2 −
r

2n
􏼚 􏼛η E1( 􏼁η E3( 􏼁.

(53)

+is proves our result. □

Substituting (53) in (25), we have

S
∗

E1, E3( 􏼁 � c g E1, E3( 􏼁 − η E1( 􏼁η E3( 􏼁􏼈 􏼉, (54)

where c � (1/2n) + (4n − 1)α2 shows that M is ∗ − η-Ein-
stein. In view of (3), we obtain

S
∗

E1, E3( 􏼁 �
r

2n
+(4n − 1)α2􏼔 􏼕g

ϕ
E1, E3( 􏼁, E1, E3 ∈ TM.

(55)

+us, S∗ � Sϕ, and hence, it is weak ϕ-Einstein. +us, we
state the following.

Theorem 4. An α-cosymplectic manifold with vanishing
∗ -Weyl curvature tensor is a weak ϕ-Einstein manifold.

4.2. α-Cosymplectic Manifold Satisfying the Condition
R(X, Y) · W∗ � 0. An α-cosymplectic manifold M is called
semisymmetric if its curvature tensor satisfies the condition
R · R � 0. In [24], Szabo studied the intrinsic classification of
semisymmetric spaces thoroughly. In this context, Ven-
katesha and Kumara [21] studied Sasakian manifolds sat-
isfying condition R(E1, E2) · W∗ � 0. In this section, we
make an attempt to study this condition in the framework of
α-cosymplectic manifolds and prove the following.

Theorem 5. An α-cosymplectic manifold satisfying the
condition R(E1, E2) · W∗ � 0 is an η-Einstein manifold.

Proof. Let M be an (2n + 1)-dimensional α-cosymplectic
manifold satisfying the condition (R(E1, E2) · W∗)

(U, V)E4 � 0. +is infers that

R E1, E2( 􏼁W
∗
(U, V)E4 − W

∗
R E1, E2( 􏼁U, V( 􏼁E4 − W

∗
U, R E1, E2( 􏼁V( 􏼁E4 − W

∗
(U, V)R E1, E2( 􏼁E4 � 0. (56)

Plugging ξ in place of E1 in the previous equation and
then picking inner product with ξ for the resultant equation,
we obtain

η R ξ, E2( 􏼁W
∗
(U, V)E4( 􏼁 − η W

∗
R ξ, E2( 􏼁U, V( 􏼁E4( 􏼁 − η W

∗
U, R ξ, E2( 􏼁V( 􏼁( 􏼁E4 − η W

∗
(U, V)R ξ, E2( 􏼁E4( 􏼁 � 0. (57)

In view of (9), it follows from (56) that

α2
W
∗

U, V, E4, E2( 􏼁 − g E2, U( 􏼁η W
∗
(ξ, V)E4( 􏼁 − η W

∗
(U, V)E4( 􏼁η E2( 􏼁

− g E2, V( 􏼁η W
∗
(U, ξ)E4( 􏼁 + η(U)η W

∗
E2, V( 􏼁E4( 􏼁 + η(V)η W

∗
U, E2( 􏼁E4( 􏼁

− g E2, E4( 􏼁η W
∗
(U, V)ξ( 􏼁 + η E4( 􏼁η W

∗
(U, V)E2( 􏼁

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� 0. (58)

Replacing E2 by U in the above equation, we have

W
∗

U, V, E4, U( 􏼁 − g(U, U)η W
∗
(ξ, V)E4( 􏼁 − g(U, V)η W

∗
(U, ξ)E4( 􏼁 + η E4( 􏼁η W

∗
(U, V)U( 􏼁 � 0, (59)

provided α2 ≠ 0. By virtue of (43), one can easily see that
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η W
∗

E1, E2( 􏼁E3( 􏼁 � −
1

2n − 1
g QE2, E3( 􏼁η E1( 􏼁 − g QE1, E3( 􏼁η E2( 􏼁􏼈 􏼉 +

r

2n(2n − 1)
−
2(n − 1)

2n − 1
α2􏼢 􏼣

g E2, E3( 􏼁η E1( 􏼁 − g E1, E3( 􏼁η E2( 􏼁􏼈 􏼉, η W
∗

E1, E2( 􏼁ξ( 􏼁 � 0,

(60)

η W
∗

E1, ξ( 􏼁E3( 􏼁 �
1

2n − 1
g QE1, E3( 􏼁 +

1
2n − 1

2(n − 1)α2 −
r

2n
􏼔 􏼕g E1, E3( 􏼁 +

1
2n − 1

r

2n
+ 2α2􏼔 􏼕η E1( 􏼁η E3( 􏼁, (61)

􏽘

2n+1

i�1
W
∗

ei, E2, E3, ei( 􏼁 � − (2n − 1)α2g E2, E3( 􏼁 − α2η E2( 􏼁η E3( 􏼁, (62)

where ei􏼈 􏼉
2n+1
i�1 is an orthonormal basis of the tangent space at

any point of the manifold. Taking U � ei in (59) and
summing over i and making use of (56)–(61), we get

S V, E4( 􏼁 �
1
2n

r + α2􏽮 􏽯g V, E4( 􏼁

−
1
2n

r + 4n
2

+ 1􏼐 􏼑α2􏽮 􏽯η(V)η E4( 􏼁.

(63)

+is completes the proof. □

5. α-Cosymplectic Manifolds Admitting
∗ -Ricci Solitons

Hamilton [25] introduced the notion of Ricci solitons as
fixed points of the Ricci flows on a Riemannian manifold,
and they are also self-similar solutions. +ese self-similar
solutions also generalize Einstein metrics. Ricci solitons also
correspond to self-similar solutions of Hamilton’s Ricci flow.
A Ricci soliton with a potential vector field V is defined by

EVg( 􏼁 E1, E2( 􏼁 + 2S E1, E2( 􏼁 + 2λg E1, E2( 􏼁 � 0, (64)

for some constant λ. +e Ricci soliton is said to be shrinking,
steady, and expanding accordingly as λ is negative, zero, and
positive, respectively. +e study of Ricci solitons and almost
Ricci solitons on three-dimensional cosymplectic manifolds
have been carried out by Wang [26] and De and Dey [27],
respectively.

By taking the necessary modification (64), Kaimakamis
and Panagiotidou [28] introduced the notion of a special

type of metric called ∗ -Ricci soliton on real hypersurfaces of
nonflat complex space forms. A Riemannian metric g on M

is called ∗ -Ricci soliton, if the Lie derivative of a vector field
V on M is given by

EVg( 􏼁 E1, E2( 􏼁 + 2S
∗

E1, E2( 􏼁 + 2λg E1 · E2( 􏼁

� 0,∀E1, E2 ∈ TM.
(65)

Recently, the study of ∗ -Ricci solitons within the
context of almost contact and paracontact manifolds were
carried out in the studies [18, 29–34] and drawn several
interesting results. In this section, we intended to ∗ -Ricci
soliton on a α-cosymplectic manifold. Now, we prove the
following result.

Theorem 6. Let M be α-cosymplectic manifold admitting a
∗ -Ricci soliton. If the potential vector field V is pointwise
collinear with ξ, then M is a near quasi-Einstein manifold.

Proof. Let V be a pointwise collinear vector field with ξ.
+en, we have V � bξ. From (7) and (65), we derive

EVg( 􏼁 E1, E2( 􏼁 � g ∇E1
V, E2􏼐 􏼑 + g ∇E2

V, E1􏼐 􏼑

� E1(b)η E2( 􏼁 + E2(b)η E1( 􏼁 + 2bα g E1, E2( 􏼁􏼈

− η E1( 􏼁η E2( 􏼁􏼉.

(66)

Let M be an α-cosymplectic manifold admitting a
∗ -Ricci soliton. +en, from (61) and (62), we obtain

S
∗

E1, E2( 􏼁 � − λ + bα{ }g E1, E2( 􏼁 + bαη E1( 􏼁η E2( 􏼁 −
1
2

E1(b)η E2( 􏼁 + E2(b)η E1( 􏼁􏼈 􏼉. (67)
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Let Db be a gradient of smooth function b on M, that is,
E1(b) � g(Db , E1) and E2(b) � g(Db , E2). +en, by
denoting the dual form of Db by v, we write

E1(b) � v E1( 􏼁,

E2(b) � v E2( 􏼁.
(68)

By taking account of foregoing equations in (67), we get

S
∗

E1, E2( 􏼁 � − λ + bα{ }g E1, E2( 􏼁 + bαη E1( 􏼁η E2( 􏼁 −
1
2

v E1( 􏼁η E2( 􏼁 + v E2( 􏼁η E1( 􏼁􏼈 􏼉. (69)

+en, from (25), equation (65) reduces to

S E1, E2( 􏼁 � − λ + bα +(2n − 1)α2􏽮 􏽯g E1, E2( 􏼁 + bα − α2􏽮 􏽯η E1( 􏼁η E2( 􏼁 −
1
2

v E1( 􏼁η E2( 􏼁 + v E2( 􏼁η E1( 􏼁􏼈 􏼉. (70)

Let us take a nonvanishing symmetric (0, 2) tensor E in
(66), such that

S E1, E2( 􏼁 � bα − α2􏽮 􏽯η E1( 􏼁η E2( 􏼁 −
1
2

v E1( 􏼁η E2( 􏼁􏼈

+ v E2( 􏼁η E1( 􏼁􏼉.

(71)

+en, equation (66) yields

S E1, E2( 􏼁 � ag E1, E2( 􏼁 + E E1, E2( 􏼁, (72)

where a � − λ + bα + (2n − 1)α2􏼈 􏼉. So, M is a near quasi-
Einstein. □

As an immediate outcome of +eorem 6, we have the
following corollary.

Corollary 4. An α-cosymplectic manifold admitting a
∗ -Ricci soliton is an η-Einstein manifold if V � ξ.

A near quasi-Einstein manifold is not a manifold of
nearly quasiconstant curvature. But, it is noted (+eorem 3.1
of [35]) that, a conformally flat near quasi-Einstein manifold
is a manifold of nearly quasiconstant curvature. Hence, as
immediate consequence of this fact, we obtain the following
corollary:

Corollary 5. A conformally flat α-cosymplectic manifold
admitting a ∗ -Ricci soliton is a manifold of near quasi-
constant curvature if V is a pointwise collinear with ξ.

However, since a 3-dimensional Riemannian manifold is
conformally flat, we have following.

Corollary 6. A 3-dimensional α-cosymplectic manifold ad-
mitting ∗ -Ricci soliton is a manifold of nearly quasiconstant
curvature if V is a pointwise collinear with ξ.

6. Conclusions

Einstein manifolds which are arisen from Einstein field
equations are very important classes of Riemann mani-
folds. Some generalizations of Einstein manifolds have
been defined in the literature, and there have been ob-
tained some applications of these kinds of manifolds in
theoretical physics. Contact manifolds are special Rie-
mann manifolds with almost contact structures. In the-
oretical physics, there are valuable applications of contact
manifolds. Contact manifolds divided into many sub-
classes via the certain properties of the structure. An
important one is α-cosymplectic manifold. +is structure
is also a generalization of some different contact struc-
tures. Many different characteristic properties of mani-
folds with structures have been arisen from their special
structures. One of important notion is the ∗ -Ricci tensor.
+is notion carries significant curvature features, and this
feature gives valuable information about the geometry of
the manifold. In this study, α-cosymplectic manifolds
have been examined under the effect of the ∗ -Ricci
tensor. Important results have been obtained on some
generalized Einstein manifolds, which emerged with the
effect of the ∗ -Ricci tensor. +e notion of Ricci soliton
comes from searching the solutions of Ricci flow equa-
tions. Ricci solitons have been effected from the structure
of manifolds. We studied the concept of ∗ -Ricci soliton
for α-cosymplectic manifolds. By the way, important
physical results have been stated in this study.
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