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It is well known that stochastic models have come to play
an increasingly important role in a wide range of research
and application fields including engineering, physics, biol-
ogy, finance, mechanics, electronics, and mathematics. The
study of stochastic systems has attracted a large number of
researchers. Various problems such as the stability, stabiliza-
tion, state feedback control, adaptive control, filtering design,
tracking control, state estimation, passivity, and adaptive
synchronization have been investigated in the literature.

The accepted papers in this special issue include stochas-
tic stability, finance and computation, stochastic𝐻

∞
control,

state estimation, state feedback control, robust filtering,
multiagent systems, networked control systems, time-delayed
systems, and neural networks.

The problem of stochastic stability is one of the most
important problems in the fields of stochastic systems. There
are 10 papers relating to this topic in this special issue. More
precisely, the paper entitled “Further Results on Stability
Analysis for Markovian Jump Systems with Time-Varying
Delays” by O. M. Kwon et al. presents an improved delay-
dependent stability criterion for a class of Markovian jump
systems with time-varying delays by constructing a newly
augmented Lyapunov-Krasovskii functional and combin-
ing Wirtinger-based integral inequality. The paper entitled
“Globally Asymptotic Stability of Stochastic Nonlinear Sys-
tems by the Output Feedback” byW. Cheng et al. investigates
the problem of the globally asymptotic stability for a class of
stochastic nonlinear systemswith the output feedback control

by developing a new method. The paper entitled “The Mean
Stability Criteria in terms of Two Measures for Stochastic
Differential Equations with Coefficient’s Uncertainty” by Rui
Zhang et al. studies the stochastic stability criteria of two
measures to the mean stability by applying optimal control
approaches. The paper entitled “Exponential Stability of
Jump-Diffusion SystemswithNeutral Term and Impulses” by
H. Yang et al. deals with the mean square and almost surely
exponential stability for a class of jump-diffusion systems
with neutral term and impulses. The paper entitled “Stochas-
tic Stability of Discrete-Time Switched Systems with a Ran-
dom Switching Signal” by K. Liu et al. presents a necessary
and sufficient condition for stochastic stability of discrete-
time linear switched system, where the switching signal
allows fixed dwell time before a Markov switch occurs. The
paper entitled “The Stationary Distribution and Extinction of
GeneralizedMultispecies Stochastic Lotka-Volterra Predator-
Prey System” by F. Yin and X. Yu establishes the existence
of stationary distribution and extinction for multispecies
stochastic Lotka-Volterra predator-prey system by using the
Lyapunov method and space decomposition technique. The
paper entitled “Stability Analysis of R&D Cooperation in a
Supply Chain” by L. Xu et al. investigates the opportunistic
behavior in the vertical R&D cooperation and analyzes the
equilibrium of the cooperation. The paper entitled “Evolu-
tionary Game-Theoretic Solution for Virtual Routers with
Padding Misbehavior in Cloud Computing” by X. Bi et al.
considers a detailed solution and analysis for describing the
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normal behavior and padding misbehavior of virtual routers
through analyzing the stability of the equilibrium points.The
paper entitled “Finite-Time Boundedness of Markov Jump
System with Piecewise-Constant Transition Probabilities via
Dynamic Output Feedback Control” by B. Yan et al. stud-
ies the problem of finite-time boundedness of Markovian
jump system with piecewise constant transition probabilities
via dynamic output feedback control, which leads to both
stochastic jumps and deterministic switches. The paper enti-
tled “Consensus ofNoisyMultiagent SystemswithMarkovian
Switching Topologies and Time-Varying Delays” by Y. Shang
presents some necessary and sufficient consensus conditions
for two classes of multiagent systems: delays affecting only
the output of the agents’ neighbors and delays affecting both
the agents’ own outputs and the outputs of their neighbors.

The problem of 𝐻
∞

control is studied by a number of
researchers, and new results are reported in these papers.
The paper entitled “Asynchronous 𝐻

∞
Estimation for Two-

Dimensional Nonhomogeneous Markovian Jump Systems
with Randomly Occurring Nonlocal Sensor Nonlinearities”
by R. Zhang et al. discusses the problem of asynchronous𝐻

∞

estimation for a class of two-dimensional nonhomogeneous
Markovian jump systems with nonlocal sensor nonlinearity,
where the nonlocal measurement nonlinearity is governed
by a stochastic variable satisfying the Bernoulli distribution.
The paper entitled “𝐻

2
/𝐻
∞

Control Design of Detectable
Periodic Markov Jump Systems” by T. Hou and H. Ma
studies the infinite horizon 𝐻

2
/𝐻
∞

control problem for a
class of discrete-time periodic Markov jump systems with
(𝑥, 𝑢, V)-dependent noise by using the spectral criterion of
detectability and game theoretic approach.The paper entitled
“𝐻
∞

Gain-Scheduled Control for LPV Stochastic Systems”
by C.-C. Ku and G.-W. Chen investigates the robust control
problem for a class of discrete-time uncertain stochastic
systems by applying the gain-scheduled control scheme and
linear parameter varying modeling approach as well as
linearmatrix inequality approach.The paper entitled “Robust
𝐻
∞

Filtering for Uncertain Neutral Stochastic Systems with
Markovian Jumping Parameters and TimeDelay” by Y. Li and
Z. Huang considers the robust𝐻

∞
filter design problem for a

class of uncertain neutral stochastic systems with Markovian
jumping parameters and time delay by using the Lyapunov-
Krasovskii theory and generalized Finsler lemma. The paper
entitled “Study onH

−
Index of Stochastic LinearContinuous-

Time Systems” by Y. Li et al. presents a necessary and suffi-
cient condition ofH

−
index larger than 𝛾 > 0 and proves that

the solvability of generalized differential equation and the
feasibility of theH

−
index are equivalent.

In recent years, the applications of stochastic systems
in finance and operations management have received much
attention.Thepaper entitled “Dynamic Inventory andPricing
Policy in a Periodic-Review Inventory System with Finite
Ordering Capacity and Price Adjustment Cost” by B. Yang
et al. studies a dynamic inventory control and pricing
optimization problem in a periodic-review inventory system
with price adjustment cost. The paper entitled “A Ran-
dom Parameter Model for Continuous-Time Mean-Variance
Asset-Liability Management” by H. Ma et al. investigates

a continuous-timemean-variance asset-liabilitymanagement
problem in a market with random market parameters based
on the theories of stochastic linear-quadratic optimal control
and backward stochastic differential equations. The paper
entitled “Concession Period Decision Models for Public
Infrastructure Projects Based on Option Games” by Z. Wang
et al. seeks out concession period decision models for public
infrastructure with option game theory and studies the influ-
ence of minimum government income guarantee and gov-
ernment investment on concession period.The paper entitled
“Multivariate Time-Varying𝐺-𝐻CopulaGARCHModel and
ItsApplication in the FinancialMarket RiskMeasurement” by
Q. Chen et al. depicts the return distribution of financial asset
and constructs the multivariate time-varying 𝐺-𝐻 Copula
GARCH model which can simultaneously describe “asym-
metric, leptokurtic, heavy-tail” characteristics, the time-
varying volatility characteristics, and the extreme-tail depen-
dence characteristics of financial asset return by employing
the strengths of 𝐺-𝐻 distribution, Copula function, and
GARCH model. The paper entitled “Maximum Principle
for Forward-Backward Stochastic Control System Driven
by Lévy Process” by X. Wang and H. Huang studies some
stochastic optimal control problems including the maximum
principle and the linear quadratic problem, where the con-
trolled system is described by a forward-backward stochastic
differential equation, driven by Lévy process.

In addition, stochastic systems in other areas are consid-
ered in this special issue.The paper entitled “Optimal Design
of Stochastic Distributed Order Linear SISO Systems Using
Hybrid Spectral Method” by D. Pham et al. studies stochastic
distributed order systems by using the operational matrix
technique, the existing Monte-Carlo, polynomial chaos, and
frequency methods.The paper entitled “The Impact of Aging
Agricultural Labor Population on Farmland Output from the
Perspective of Farmer Preferences” by G. Guo et al. investi-
gates some factors to better understand the impact of an aging
agricultural labor population on agricultural production.
The paper entitled “On Two-Level State-Dependent Routing
Polling Systems with Mixed Service” by G. Zheng et al.
discusses an𝑁+1 that queues single-server two-level polling
systemwhich consists of one key queue and𝑁 normal queues
based on priority differentiation and efficiency of the system.
The paper entitled “Microstructure Models with Short-Term
Inertia and Stochastic Volatility” by M. A. Kouritzin shows
that all the price data sets exhibit strong evidence of both
inertia andHeston-type stochastic volatility for a class of par-
tially observed microstructure models, containing stochastic
volatility, dynamic trading noise, and short-term inertia. The
paper entitled “The Particle Filter Sample Impoverishment
Problem in the Orbit Determination Application” by P. C. P.
M. Pardal et al. discusses techniques for administering one
implementation issue that often arises in the application of
particle filters: sample impoverishment.

Finally, we remark that the selected topics and published
papers may not be a comprehensive representation of recent
developments on the stability and control of stochastic sys-
tems, but we strongly hope that the reader will find the special
issue very useful.
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We study jump-diffusion systemswith neutral term and impulses. Under some conditions, we prove that the jump-diffusion systems
with neutral term and impulses are mean square and almost surely exponentially stable. Finally, we give an example to describe the
theoretical results.

1. Introduction

Recently, stochastic partial differential systems (SPDS) are
often used to describe some evolution phenomena in study-
ing pattern recognition and engineering [1, 2]. Dynamic
behavior of solutions for SPDS has been discussed by many
researchers [3–8].

In the practical application, there exists often impul-
sive disturbance under specific circumstances [9, 10]. For
example, in [11, 12], Zhu et al. discussed stability behavior
of stochastic impulsive systems. Sakthivel and Luo [13] dis-
cussed asymptotics of stochastic impulsive systems. Further,
in [14], Jiang and Shen studied asymptotic behavior for
stochastic impulsive infinite delays systems. Chen et al. [15]
discussed stability of stochastic impulsive systems by inequal-
ity technique.

In addition, many models such as population models
and circuits models often include the derivative terms of
the current state and past state, which are often described
as neutral systems [16–21]. Meanwhile, there are also a few
works on jump diffusions, which are discussed extensively.
For example, Zhu [22] discussed the long-time behavior of
the solution including the 𝑝th moment asymptotic stability
and almost sure stability for stochastic jump systems. In [23,
24], the authors established dynamical behavior of stochastic
jump systems and stochastic jump biological model. Cui et al.

[25–27] studied the existence, uniqueness, and some stability
of stochastic jump systems. Luo and Taniguchi [28] discussed
the existence of solutions of neutral stochastic jump systems
under non-Lipschitz condition. Ren and Sakthivel [29, 30]
discussed dynamic behavior of second-order jump-diffusion
systems.

The rest of the paper is organized as follows. In Section 2,
we give some preliminaries on mild solution. Then we give
some conditions to guarantee stability of mild solution by the
fixed point theory in Section 3. In Section 4, an example is
presented to show our conclusions.

2. Preliminaries

Throughout this paper, let (Ω,F, {F
𝑡
}
𝑡≥0
,P) be a complete

probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying the usual
conditions [31]. Let  > 0 and 𝑅

+
= [0, +∞). Moreover, let Ξ

and ℘ be real separable Hilbert spaces with norms | ⋅ |
Ξ
, | ⋅ |
℘

and let m(℘, Ξ) be the space of all bounded linear operators
from ℘ into Ξ. In this work, ‖ ⋅ ‖ is the norms of operators.
The notation D = DF0

([−, 0], Ξ) denotes the family of all
F
0
-measurable functions from [−, 0] into Ξ with the norm

|Ψ|D = sup
𝑡∈[−,0]

|Ψ(𝑡)|
Ξ
.

Let {𝐵(𝑡) : 𝑡 ≥ 0} be a ℘-valued Wiener process on the
probability space (Ω,F, {F

𝑡
}
𝑡≥0
,P) with a trace class opera-

tor 𝑄 on ℘. L0
2
(℘, Ξ) being the set of all 𝑄-Hilbert-Schmidt
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operators from ℘ to Ξ. For the construction, the reader is
referred to [19, 25, 31, 32]. Assume that 𝑚(]), ] ∈ D

𝑚
, is a

stationaryF]-Poisson point process with characteristic mea-
sure 𝜆. 𝑁(𝑑], 𝑑𝜗) defined by 𝑁(],X) = ΣV∈D𝑚 ,]≥V1X(𝑚(V))
for X ∈ B(℘ − {0}). Let �̃�(𝑑], 𝑑𝜗) = 𝑁(𝑑], 𝑑𝜗) − 𝜆(𝑑𝜗)𝑑],
which is independent of 𝐵(⋅). For the Poisson measure, see
[21].

Suppose that 𝑆(𝑡), 𝑡 ≥ 0, is an analytic semigroup with
its infinitesimal generator𝐴 [14]. For the analytic semigroup,
see Pazy [32, Page 60–75]. In the paper, assume that 0 ∈ 𝜌(𝐴).
According to Pazy [32], a linear closed operator (−𝐴)𝛼 (𝛼 ∈

(0, 1]) can be defined onD((−𝐴)
𝛼
).

Consider a jump-diffusion system with neutral term and
impulses:

𝑑 [𝑌 (𝑡) + 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))]

= [𝐴𝑌 (𝑡) + 𝑃 (𝑡, 𝑌 (𝑡 − 𝜁 (𝑡)))] 𝑑𝑡

+ 𝑅 (𝑡, 𝑌 (𝑡 − 𝜛 (𝑡))) 𝑑𝐵 (𝑡)

+ ∫
X

Θ (𝑡, 𝑌 (𝑡 − 𝜃 (𝑡)) , 𝜗) �̃� (𝑑𝑡, 𝑑𝜗) , 𝑡 ̸= 𝜏
𝑗
, 𝑡 ≥ 0,

Δ𝑌 (𝜏
𝑗
) = 𝐻

𝑗
(𝑌 (𝜏
−

𝑗
)) , 𝑡 = 𝜏

𝑗
, 𝑗 = 1, . . . , 𝜄,

(1)

with the initial data 𝑌
0
(⋅) = Ψ ∈ DF0

([−, 0], Ξ). Here 𝐷, 𝑃 :
𝑅
+
×Ξ → Ξ,𝑅 : 𝑅

+
×Ξ → L0

2
(℘, Ξ),Θ : 𝑅

+
×Ξ×X → Ξ and

𝜅(𝑡), 𝜛(𝑡), 𝜁(𝑡), 𝜃(𝑡) : 𝑅
+
→ [0, ] are continuous. Consider

𝐻
𝑗
: Ξ → Ξ, Δ𝑌(V) = 𝑌(V+) − 𝑌(V−), where 𝑌(V+) =

lim
ΔV→0+𝑌(V + ΔV) and 𝑌(V

−
) = lim

ΔV→0+𝑌(V − ΔV), 0 <

𝜏
1
< ⋅ ⋅ ⋅ < 𝜏

𝜄
< ∞ = lim

𝑗→∞
𝜏
𝑗
.

Definition 1. A process 𝑌(𝑡), 𝑡 ∈ [0, 𝑇], 𝑇 ∈ [0,∞), is said to
be the mild solution to system (1) if

(i) 𝑌(𝑡) is a F
𝑡
-adapted, càdlàg process and is almost

surely square-integrable on [0, 𝑇];
(ii) for 𝑡 ∈ [0, 𝑇]𝑌(𝑡) satisfies
𝑌 (𝑡) = 𝑆 (𝑡) Ψ (0) + 𝑆 (𝑡)𝐷 (0, Ψ)

− 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))

− ∫

𝑡

0

𝐴𝑆 (𝑡 − V) 𝐷 (V, 𝑌 (V − 𝜅 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑃 (V, 𝑌 (V − 𝜁 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑅 (V, 𝑌 (V − 𝜛 (V))) 𝑑𝐵 (V)

+ ∫

𝑡

0

∫
X

𝑆 (𝑡 − V) Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) �̃� (𝑑V, 𝑑𝜗)

+ ∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
)𝐻
𝑗
(𝑌 (𝜏
−

𝑗
)) ,

(2)

and 𝑌
0
= Ψ ∈ DF0

([−, 0], Ξ).

To establish exponential stability [7, 10, 20] of system (1),
we need the following hypotheses.

(𝐻
1
) ‖𝑆(𝑡)‖ ≤ 𝑒−𝛽𝑡, where 𝛽 is a positive constant.

(𝐻
2
) There exists �̃� > 0 such that, for 𝑡 ≥ 0, 𝑌

1
, 𝑌
2
∈ Ξ,

(−𝐴)
𝛼
𝐷(𝑡, 𝑌

1
) − (−𝐴)

𝛼
𝐷(𝑡, 𝑌

2
)

2

Ξ
≤ �̃�

𝑌1 − 𝑌2

2

Ξ
. (3)

(𝐻
3
) There exist positive constants 𝐿

1
, 𝐿
2
, 𝐿
3
such that, for

𝑡 ≥ 0, 𝑌
1
, 𝑌
2
∈ Ξ,

𝑃 (𝑡, 𝑌1) − 𝑃 (𝑡, 𝑌2)

2

Ξ
≤ 𝐿
1

𝑌1 − 𝑌2

2

Ξ
,

𝑅 (𝑡, 𝑌1) − 𝑅 (𝑡, 𝑌2)

2

L0
2

≤ 𝐿
2

𝑌1 − 𝑌2

2

Ξ
,

∫
X

Θ (𝑡, 𝑌1, 𝜗) − Θ (𝑡, 𝑌2, 𝜗)

2

Ξ
𝜆 (𝑑𝜗) ≤ 𝐿

3

𝑌1 − 𝑌2

2

Ξ
.

(4)

(𝐻
4
) There exist constants 𝑙

𝑗
such that, for 𝑌

1
, 𝑌
2
∈ Ξ,

|𝐻
𝑗
(𝑌
1
) − 𝐻
𝑗
(𝑌
2
)|
2
≤ 𝑙
𝑗
|𝑌
1
− 𝑌
2
|
2
(𝑗 = 1, . . . , 𝜄).

(𝐻
5
) One has 𝐷(𝑡, 0) = 𝑃(𝑡, 0) = 𝑅(𝑡, 0) = Θ(𝑡, 0, 𝜗) =

𝐻
𝑗
(0) = 0 (𝑗 = 1, 2, . . .) for 𝑡 ≥ 0.

Remark 2. We should point out that it is clear that system (1)
has a trivial solution when Ψ = 0 by (𝐻

1
)–(𝐻
5
).

3. Main Results

In the section, we will state and prove our main results on
mean square and almost surely exponential stability to system
(1) by the fixed point theory. To prove our main results, we
firstly give a useful lemma.

Lemma 3 (see [18, 32]). Under (𝐻
1
), assume that 0 ∈ 𝜌(𝐴).

Then, for 𝛼 ∈ (0, 1],

(i) for 𝑌 ∈ D((−𝐴)
𝛼
), 𝑆(𝑡)(−𝐴)𝛼𝑌 = (−𝐴)

𝛼
𝑆(𝑡)𝑌;

(ii) there exist constants𝑀
𝛼
> 0 and 𝛽 > 0 such that, for

𝑡 > 0,
(−𝐴)

𝛼
𝑆 (𝑡)

 ≤ 𝑀𝛼𝑡
−𝛼
𝑒
−𝛽𝑡
. (5)

Now we will state and prove the main results on stability.

Theorem4. Suppose that (𝐻
1
)–(𝐻
5
) hold.Then system (1) has

a uniquemild solution and ismean square exponentially stable,
if the initial data Ψ is mean square exponentially stable and

6 [�̃�
(−𝐴)

−𝛼
2

+ �̃�𝑀
2

1−𝛼
𝛽
−2𝛼
Γ
2
(𝛼)

+ 𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝐿
3
(2𝛽)
−1

+ �̃�𝑒
−2𝛽𝑇

] < 1.

(6)

Here �̃� = E(∑
𝜄

𝑗=1
|𝑙
𝑗
|) and𝑀

1−𝛼
and 𝛽 are defined by (5).

Proof. Let Υ be the Banach space of 𝑌(𝑡) with the norm
‖𝑌‖
Υ
:= sup

𝑡≥0
E|𝑌(𝑡)|2

Ξ
and there exist 𝑀 > 0 and 𝛿 > 0

such that, for 𝑡 ≥ 0,

E |𝑌 (𝑡)|
2

Ξ
< 𝑀E |Ψ|

2

D 𝑒
−𝛿𝑡
. (7)



Mathematical Problems in Engineering 3

Define an operator Π : Υ → Υ by Π(𝑌)(𝑡) = Ψ(𝑡) for 𝑡 ∈
[−, 0] and for 𝑡 ≥ 0,

Π (𝑌) (𝑡) = 𝑆 (𝑡) Ψ (0) + 𝑆 (𝑡)𝐷 (0, Ψ)

− 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))

− ∫

𝑡

0

𝐴𝑆 (𝑡 − V) 𝐷 (V, 𝑌 (V − 𝜅 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑃 (V, 𝑌 (V − 𝜁 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑅 (V, 𝑌 (V − 𝜛 (V))) 𝑑𝐵 (V)

+ ∫

𝑡

0

∫
X

𝑆 (𝑡 − V) Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) �̃� (𝑑V, 𝑑𝜗)

+ ∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
)𝐻
𝑗
(𝑌 (𝜏
−

𝑗
)) .

(8)

Now we will prove that the operatorΠ has a fixed point in Υ.
Without loss of generality, we suppose that 0 < max{𝛿, 𝜂} <
𝛽. Let 𝛽

𝜍
:= (𝛽 − 𝜍)

−1. We firstly claim that Π(Υ) ⊂ Υ. Let
𝑌(𝑡) ∈ Υ and we then have from (8)

E |Π (𝑌) (𝑡)|
2

Ξ

≤ 7E |𝑆 (𝑡) Ψ (0) + 𝑆 (𝑡)𝐷 (0, Ψ)|
2

Ξ

+ 7E |𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))|
2

Ξ

+ 7E

∫

𝑡

0

𝐴𝑆 (𝑡 − V) 𝐷 (V, 𝑌 (V − 𝜅 (V))) 𝑑V


2

Ξ

+ 7E

∫

𝑡

0

𝑆 (𝑡 − V) 𝑃 (V, 𝑌 (V − 𝜁 (V))) 𝑑V


2

Ξ

+ 7E

∫

𝑡

0

𝑆 (𝑡 − V) 𝑅 (V, 𝑌 (V − 𝜛 (V))) 𝑑𝐵 (V)


2

Ξ

+ 7E

∫

𝑡

0

∫
X

𝑆 (𝑡 − V) Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) �̃� (𝑑V, 𝑑𝜗)


2

Ξ

+ 7E



∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
)𝐻
𝑗
(𝑌 (𝜏
−

𝑗
))



2

= 7

7

∑

𝑖=1

𝐹
𝑖
.

(9)

Note that the initial data Ψ is mean square exponentially
stable; that is, there exist, for �̃� > 0, 𝜂 > 0 such that

− ≤ 𝑡 ≤ 0, E|Ψ(𝑡)|2 ≤ �̃�E|Ψ(0)|2
Ξ
𝑒
−𝜂𝑡. By (𝐻

2
) and (𝐻

5
),

we have

𝐹
2
= E

(−𝐴)
−𝛼
(−𝐴)
𝛼
𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))


2

Ξ

≤ �̃�
(−𝐴)

−𝛼
2

E |𝑌 (𝑡 − 𝜅 (𝑡))|
2

Ξ

≤ �̃�
(−𝐴)

−𝛼
2

(𝑀E |Ψ|
2

D 𝑒
𝛿−𝛿𝑡

+ �̃�E |Ψ (0)|
2

Ξ
𝑒
𝜂−𝜂𝑡

) .

(10)

Then (5) together with (𝐻
2
) and (𝐻

5
) yields

𝐹
3
≤ 𝑀
2

1−𝛼
E(∫
𝑡

0

𝑡
(1−𝛼)/2

V 𝑒
−𝛽(𝑡−V)/2

𝑡
(1−𝛼)/2

V 𝑒
−𝛽(𝑡−V)/2

⋅ |(−𝐴)
𝛼
𝐷(V, 𝑌(V − 𝜅(V)))|

Ξ
𝑑V)
2

≤ 𝑀
2

1−𝛼
∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V 𝑑V

⋅ ∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V E
(−𝐴)

𝛼
𝐷 (V, 𝑌 (V − 𝜅 (V)))

2

Ξ
𝑑V

≤ �̃�Γ (𝛼) 𝛽
−𝛼
𝑀
2

1−𝛼

⋅ ∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V E |𝑌 (V − 𝜅 (V))|2
Ξ
𝑑V

≤ �̃�Γ (𝛼) 𝛽
−𝛼
𝑀
2

1−𝛼

⋅ ∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V

⋅ (𝑀E |Ψ|
2

D 𝑒
𝛿−𝛿V

+ �̃�E |Ψ (0)|
2

Ξ
𝑒
𝜂−𝜂V

) 𝑑V

≤ �̃�Γ
2
(𝛼) 𝛽
−𝛼
𝑀
2

1−𝛼

⋅ (𝛽
𝛼

𝛿
𝑀E |Ψ|

2

D 𝑒
𝛿−𝛿𝑡

+ 𝛽
𝛼

𝜂
�̃�E |Ψ|

2

D 𝑒
𝜂−𝜂𝑡

) .

(11)

By (𝐻
1
), we have

𝐹
4
≤ E(∫

𝑡

0

𝑒
𝛽V−𝛽𝑡 𝑃 (V, 𝑌 (V − 𝜁 (V)))

Ξ 𝑑V)
2

≤ ∫

𝑡

0

(𝑒
(𝛽V−𝛽𝑡)/2

)
2

𝑑V

⋅ E(∫
𝑡

(𝑒
(𝛽V−𝛽𝑡)/2 𝑃 (V, 𝑌 (V − 𝜁 (V)))

Ξ)
2

𝑑V)

≤
𝐿
1

𝛽
∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

E
𝑌 (V − 𝜁 (V))


2

Ξ
𝑑V

≤
𝐿
1

𝛽
(𝛽
𝛿
𝑀E |Ψ|

2

D 𝑒
𝛿−𝛿𝑡

+ 𝛽
𝜂
�̃�E |Ψ|

2

D 𝑒
𝜂−𝜂𝑡

) .

(12)
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By the properties of the martingales, we have

𝐹
5
≤ ∫

𝑡

0

E |𝑆 (V − 𝑡) 𝑅 (V, 𝑌 (V − 𝜛 (V)))|2L0
2

𝑑V

≤ ∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

E |𝑅 (V, 𝑌 (V − 𝜛 (V)))|2L0
2

𝑑V

≤ 𝐿
2
∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

E |𝑌 (V − 𝜛 (V))|2
Ξ
𝑑V

≤ 𝐿
2
∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

(𝑀E |Ψ|
2

D 𝑒
𝛿−𝛿V

+ �̃�E |Ψ|
2

Ξ
𝑒
𝜂−𝜂V

) 𝑑V

≤ 𝐿
2
(𝛽
𝛿
𝑀E |Ψ|

2

D 𝑒
2𝛿−2𝛿𝑡

+ 𝛽
𝜂
�̃�E |Ψ|

2

Ξ
𝑒
𝜂−𝜂𝑡

) ,

𝐹
6
≤ E∫

𝑡

0

∫
X

𝑒
2𝛽V−2𝛽𝑡

|Θ (V, 𝑌 (V − 𝜃 (V)) , 𝜗)|2 𝜆 (𝑑𝜗) 𝑑V

≤ 𝐿
3
∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

E |𝑌 (V − 𝜃 (V))|2
Ξ
𝑑V

≤ 𝐿
3
(𝛽
𝛿
𝑀E |Ψ|

2

D 𝑒
𝛿−𝛿𝑡

+ 𝛽
𝜂
�̃�E |Ψ|

2

Ξ
𝑒
𝜂−𝜂𝑡

) .

(13)

By (𝐻
1
) and (𝐻

4
), we have

𝐹
7
≤ 𝑒
−2𝛽𝑡

𝑙
𝑗
E

𝑌 (𝑡
−

𝑗
)


2

Ξ
. (14)

From (9) to (14), we can see obviously that there exist �̂� > 0

and 𝛿 > 0 such that

E |Π (𝑌) (𝑡)|
2

Ξ
≤ �̂�E |Ψ|

2

D 𝑒
−𝛿𝑡
. (15)

Next we claim that Π(𝑌)(𝑡) is càdlàg on Υ. Let 𝑌 ∈ Υ, �̂� ≥ 0,
and Δ�̂� > 0; we have from (8) that

E
Π (𝑌) (�̂� + Δ�̂�) − Π (𝑌) (�̂�)


2

Ξ

≤ 7

7

∑

𝑖=1

E
𝐹𝑖 (�̂� + Δ�̂�) − 𝐹𝑖 (�̂�)


2

Ξ
.

(16)

We can easily see that E|𝐹
𝑖
(�̂� + Δ�̂�) − 𝐹

𝑖
(�̂�)|
2

Ξ
→ 0 as Δ�̂� → 0,

𝑖 = 1, . . . , 4, and 𝑖 = 7. Moreover, by the properties of the
martingales, we have the fact that when Δ�̂� → 0,

E
𝐹5 (�̂� + Δ�̂�) − 𝐹5 (�̂�)


2

Ξ

≤ 2∫

�̂�

0

E
(𝑆 (�̂� + Δ�̂� − V) − 𝑆 (�̂� − V))

⋅ 𝑅 (V, 𝑌 (V − 𝜁 (V)))
2

Ξ
𝑑V

+ 2∫

�̂�+Δ�̂�

�̂�

E
𝑆 (�̂� + Δ�̂� − V) 𝑅 (V, 𝑌 (V − 𝜁 (V)))

2

Ξ
𝑑V

→ 0,

E
𝐹6 (�̂� + Δ�̂�) − 𝐹6 (�̂�)


2

Ξ

≤ 2E



∫

�̂�

0

∫
X

(𝑆 (�̂� + Δ�̂� − V) − 𝑆 (�̂� − V)

⋅ Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) �̃� (𝑑V, 𝑑𝜗)


2

Ξ

+ 2E



∫

�̂�+Δ�̂�

�̂�

∫
X

𝑆 (�̂� + Δ�̂� − V)

⋅ Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) �̃� (𝑑V, 𝑑𝜗)


2

Ξ

≤ 2
𝑆 (Δ�̂�) − 𝐼


2

E

⋅ ∫

�̂�

0

∫
X

𝑆 (�̂� − V)Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗)
2

Ξ
𝜐 (𝑑𝜗) 𝑑V

+ 2E

⋅ ∫

�̂�+Δ�̂�

�̂�

∫
X

𝑆 (�̂� + Δ�̂� − V)Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗)
2

Ξ

⋅ 𝜐 (𝑑𝜗) 𝑑V

→ 0.

(17)

Consequently, we obtain that Π(Υ) ⊂ Υ.
We finally claim Π is contractive. From (8), 𝑌

1
, 𝑌
2
∈ Υ,

sup
0≤𝑡≤𝑇

E
Π (𝑌1) (𝑡) − Π (𝑌2) (𝑡)


2

Ξ
≤ 6

6

∑

𝑖=1

𝐺
𝑖
. (18)

Similar to (10)–(14), we have

𝐺
1
= sup
0≤𝑡≤𝑇

E
𝐷 (𝑡, 𝑌

1
(𝑡 − 𝜅 (𝑡))) − 𝐷 (𝑡, 𝑌

2
(𝑡 − 𝜅 (𝑡)))


2

Ξ

≤ �̃�
(−𝐴)

−𝛼
2 sup
0≤V≤𝑇

E
𝑌1 (V) − 𝑌2 (V)


2

Ξ
,

𝐺
2
= sup
0≤𝑡≤𝑇

E

∫

𝑡

0

𝐴𝑆 (𝑡 − V)

⋅ [𝐷 (V, 𝑌
1
(V − 𝜅 (V)))

−𝐷 (V, 𝑌
2
(V − 𝜅 (V)))] 𝑑V



2

Ξ

≤ �̃�𝑀
2

1−𝛼
𝛽
−2𝛼
Γ
2
(𝛼) sup
0≤V≤𝑇

E
𝑌1 (V) − 𝑌2 (V)


2

Ξ
,

𝐺
3
= sup
0≤𝑡≤𝑇

E

∫

𝑡

0

𝑆 (𝑡 − V)

⋅ [𝑃 (V, 𝑌
1
(V − 𝜁 (V)))

−𝑃 (V, 𝑌
2
(V − 𝜁 (V)))] 𝑑V



2

Ξ

≤ 𝐿
1
𝛽
−2 sup
0≤V≤𝑇

E
𝑌1 (V) − 𝑌2 (V)


2

Ξ
,
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𝐺
4
= sup
0≤𝑡≤𝑇

E

∫

𝑡

0

𝑆 (𝑡 − V)

⋅ [𝑅 (V, 𝑌
1
(V − 𝜛 (V)))

−𝑅 (V, 𝑌
2
(V − 𝜛 (V)))] 𝑑𝐵 (V)



2

Ξ

≤ 𝐿
2
(2𝛽)
−1 sup
0≤V≤𝑇

E
𝑌1 (V) − 𝑌2 (V)


2

Ξ
,

𝐺
5
= sup
0≤𝑡≤𝑇

E

∫

𝑡

0

∫
X

𝑆 (V − 𝑡)

⋅ [Θ (𝑡, 𝑌
1
(V − 𝜃 (V)) , 𝜗)

−Θ (𝑡, 𝑌
2
(V − 𝜃 (V)) , 𝜗)]

⋅ �̃�(𝑑V, 𝑑𝜗)


2

Ξ

≤ 𝐿
3
(2𝛽)
−1 sup
0≤V≤𝑇

E
𝑌1 (V) − 𝑌2 (V)


2

Ξ
,

(19)

𝐺
6
= sup
0≤𝑡≤𝑇

E



∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
) (𝐻
𝑗
(𝑌
1
(𝜏
−

𝑗
)) − 𝐻

𝑗
(𝑌
2
(𝜏
−

𝑗
)))



2

≤ �̃�𝑒
−2𝛽𝑇 sup
0≤V≤𝑇

E
𝑌1 (V) − 𝑌2 (V)


2

Ξ
.

(20)

Here �̃� = E(∑
𝜄

𝑗=1
|𝑙
𝑗
|).

Consequently, we have

sup
0≤𝑡≤𝑇

E
Π (𝑌1) (𝑡) − Π (𝑌2) (𝑡)


2

Ξ

≤ 6 [�̃�
(−𝐴)

−𝛼
2

+ �̃�𝑀
2

1−𝛼
𝛽
−2𝛼
Γ
2
(𝛼)

+ 𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝐿
3
(2𝛽)
−1

+ �̃�𝑒
−2𝛽𝑇

]

⋅ sup
0≤V≤𝑇

E
𝑌1 (V) − 𝑌2 (V)


2

Ξ
.

(21)

Then if (6) holds,Π is contractive.Therefore, system (1) has a
unique𝑌(𝑡) ∈ Υ and𝑌(𝑡) is mean square exponentially stable
if (6) holds. This proof is complete.

According to [5], we similarly have the following.

Theorem 5. Under the conditions in Theorem 4, system (1) is
almost surely exponentially stable.

If Θ = 0, system (1) becomes

𝑑 [𝑌 (𝑡) + 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))]

= [𝐴𝑌 (𝑡) + 𝑃 (𝑡, 𝑌 (𝑡 − 𝜁 (𝑡)))] 𝑑𝑡

+ 𝑅 (𝑡, 𝑌 (𝑡 − 𝜛 (𝑡))) 𝑑𝐵 (𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑗
,

Δ𝑌 (𝜏
𝑗
) = 𝐻

𝑗
(𝑌 (𝜏
−

𝑗
)) , 𝑡 = 𝜏

𝑗
, 𝑗 = 1, . . . , 𝜄,

(22)

with the initial data 𝑌
0
(⋅) = Ψ ∈ DF0

([−, 0], Ξ).
FromTheorems 4 and 5, we have the following.

Corollary 6. Assume that the conditions in Theorem 4 hold,
but (6) is replaced with the following condition:

5[

[

�̃�
(−𝐴)

−𝛼
2

+𝑀
2

1−𝛼
�̃�𝛽
−2𝛼
Γ
2
(𝛼)

+ 𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝑒
−2𝛽𝑇

E(
𝜄

∑

𝑗=1


𝑙
𝑗


)]

]

< 1.

(23)

Then system (22) admits a unique mild solution and is mean
square and almost surely exponentially stable.

If Θ ≡ 0 and𝐷 ≡ 0, system (1) becomes

𝑑𝑌 (𝑡) = [𝐴𝑌 (𝑡) + 𝑃 (𝑡, 𝑌 (𝑡 − 𝜁 (𝑡)))] 𝑑𝑡

+ 𝑅 (𝑡, 𝑌 (𝑡 − 𝜛 (𝑡))) 𝑑𝐵 (𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑗
,

Δ𝑌 (𝜏
𝑗
) = 𝐻

𝑗
(𝑌 (𝜏
−

𝑗
)) , 𝑡 = 𝜏

𝑗
, 𝑗 = 1, . . . , 𝜄,

(24)

with the initial data 𝑌
0
(⋅) = Ψ ∈ DF0

([−, 0], Ξ).

Corollary 7. Assume that the conditions in Theorem 4 hold,
but (𝐻

2
) and (6) are replaced with the following condition:

4(𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝑒
−2𝛽𝑇

E(
𝜄

∑

𝑗=1


𝑙
𝑗


)) < 1. (25)

Then system (24) has a unique mild solution and is mean
square and almost surely exponentially stable.

Remark 8. We think that the results of the paper can be
generalized to infinite delay systems. Systems (22) and (24)
have been discussed in [14] and [13], respectively, which focus
on asymptotic stability of mild solution. Also by Theorem 4
system (1) without impulses is also mean square and almost
surely exponential stability under some conditions, which has
been studied in [25]. However, it is well known that there are
great differences on themethod between the time-delay cases,
in particular when considering a problem involved in pertur-
bation. In the paper, wemainly focus on exponential stability.
In the sense, [13, 14, 25] are generalized to more extensive
systems.

Remark 9. In particular, when 𝐷 ≡ 0, Θ ≡ 0, system (1)
without jumps, impulses, and neutral term reduces to SPDS,
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which is mean square and almost surely exponential stability
if 3(𝐿

1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1
) < 1. When 𝐿

1
𝛽
−2
+ 𝐿
2
𝛽
−1
< 1/3, Luo

[5] showed that system (1) without jumps, impulses, and neu-
tral term is mean square exponentially stable to this system.
In the sense, the result of the paper improves the result of [5].

Remark 10. Besides, it should be pointed out that the pro-
posed method in the paper can be employed to consider the
𝑝th moment (𝑝 ≥ 2) exponential stability to system (1).

4. Illustrative Example

Example 1. Consider a jump-diffusion system with neutral
term and impulses:

𝑑 (𝑌 (𝑡, 𝜒) + 𝛽
1
𝑌 (𝑡 − 𝜅 (𝑡) , 𝜒))

= (
𝜕
2

𝜕𝜒2
𝑌 (𝑡, 𝜒) + 𝛽

2
𝑌 (𝑡 − 𝜁 (𝑡) , 𝜒)) 𝑑𝑡

+ 𝛽
3
𝑌 (𝑡 − 𝜛 (𝑡) , 𝜒) 𝑑𝐵 (𝑡)

+ ∫
X

𝛽
4
𝜗𝑌 (𝑡 − 𝜃 (𝑡) , 𝜒) �̃� (𝑑𝑡, 𝑑𝜗) , 𝑡 ≥ 0,

Δ𝑌 (𝜏
𝑗
, 𝜒) = 𝑏

𝑗
𝑌 (𝜏
−

𝑗
, 𝜒) , 𝑡 = 𝜏

𝑗
(𝑗 = 1, 2, 3, . . . , 𝜄) ,

(26)

with 𝑌(𝑠, ⋅) = Ψ(𝑠, ⋅) ∈ L2[0, 𝜋], 𝑌(⋅, 0) = 𝑌(⋅, 𝜋) = 0, 𝑠 ≤ 0,
where 𝛽

𝑗
> 0, 𝑏
𝑗
≥ 0 and ∑𝜄

𝑗=1
𝑏
𝑗
< ∞.

Let X = {x ∈ 𝑅 : 0 < |x| ≤ ℓ, ℓ > 0} and H = 𝐿
2
(0, 𝜋).

The operator 𝐴 is defined by 𝐴 : H → H with 𝐴 = 𝜕
2
/𝜕𝜒
2

and

D (𝐴) = {𝑌 ∈ H : 𝑌,
𝜕𝑌

𝜕𝜒
are absolutely continuous,

𝜕
2
𝑌

𝜕𝜒2
∈ H, 𝑌 (0) = 𝑌 (𝜋) = 0} ;

(27)

then (−𝐴)3/5 is given by

(−𝐴)
3/5
𝑌 =

∞

∑

𝑛=1

𝑛⟨𝑌,√
2

𝑛
sin 𝑛𝜒⟩

H

√
2

𝑛
sin 𝑛𝜒, (28)

and the domain

D ((−𝐴)
3/5
)

= {𝑌 ∈ H,
∞

∑

𝑛=1

𝑛⟨𝑌,√
2

𝑛
sin 𝑛𝜒⟩

H

√
2

𝑛
sin 𝑛𝜒 ∈ H} .

(29)

Since, for 𝑡 ≥ 0, ‖𝑆(𝑡)‖ ≤ exp(−𝜋2𝑡), from Pazy [32, Page 70],
we have


(−𝐴)
−3/5

≤
1

Γ (3/5)
∫

∞

0

V−2/5 ‖𝑆 (V)‖ 𝑑V ≤
1

𝜋6/5
. (30)

Obviously, (𝐻
1
)–(𝐻
5
) are satisfied with

𝛽 = 𝜋
2
, �̃� =


(−𝐴)
3/5

2

𝛽
2

1
, 𝐿

1
= 𝛽
2

2
,

𝐿
2
= 𝛽
2

3
, 𝐿

3
= 𝛽
2

4
∫
X

𝜗
2
𝜆 (𝑑𝜗) , 𝑙

𝑗
= 𝑏
2

𝑗
.

(31)

Thus, by Theorems 4 and 5, system (26) is mean square and
almost surely exponentially stable if


(−𝐴)
3/5

2

𝛽
2

1
(
1

𝜋2
+
𝑀
2

2/5

𝜋
) +

𝛽
2

2

𝜋4
+
𝛽
2

3

2𝜋2

+
𝛽
2

4

2𝜋2
∫
X

𝜗
2
𝜆 (𝑑𝜗) + 𝑒

−2𝜋𝑇
E(
𝜄

∑

𝑗=1


𝑏
𝑗



2

) <
1

6
,

(32)

where𝑀
2/5

is defined by (5).

5. Concluding Remarks

In this paper, we have discussed jump-diffusion systems with
neutral term and impulses. Some conditions on mean square
and almost surely exponential stability of the mild solutions
to the jump-diffusion systemswith neutral term and impulses
are derived by the fixed point theory. The obtained results
extend some earlier results to the case of SPDS with neutral
term and jump and impulses. Finally, the results of this paper
are demonstrated well with an example.
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We study a stochastic optimal control problem where the controlled system is described by a forward-backward stochastic
differential equation driven by Lévy process. In order to get our main result of this paper, the maximum principle, we prove the
continuity result depending on parameters about fully coupled forward-backward stochastic differential equations driven by Lévy
process. Under some additional convexity conditions, the maximum principle is also proved to be sufficient. Finally, the result is
applied to the linear quadratic problem.

1. Introduction

The stochastic optimal control problem is one of the cen-
tral themes of modern control science. Forward-backward
stochastic control systems which the controlled systems
described by forward-backward stochastic differential equa-
tions (FBSDEs) are widely used in mathematics and finance.
Peng and Wu [1] firstly used a probabilistic method to get
the existence and uniqueness results of fully coupled FBSDEs;
then Peng [2] considered one kind of forward-backward
stochastic control systems with economic background when
the control domain is convex and obtained the maximum
principle; since then a number of developments in this
direction were reported in Wu [3] and Shi and Wu [4].
Wu [5] firstly proved the existence and uniqueness results
of the solutions to fully coupled FBSDEs with Brownian
motion and Poisson process; then Shi and Wu [6] got the
stochastic maximum principle for fully coupled FBSDEs with
random jumps.More conclusions about stochasticmaximum
principle about forward-backward stochastic control systems
driven by Brownian motion and Poisson process can be seen
in [7–9].

It is natural to extend the stochastic differential equa-
tions (SDEs) with Brownian motion and Poisson process to
the case of Lévy process with independent and stationary

increments. Baghery et al. [10] firstly considered the following
fully coupled forward-backward stochastic differential equa-
tion driven by Lévy process (FBSDEL):

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝑡 +

𝑑

∑

𝑖=1
𝜎
𝑖
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝐵

𝑖

𝑡

+

∞

∑

𝑖=1
𝑔
𝑖
(𝑡, 𝑥

𝑡−
, 𝑦

𝑡−
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑦
𝑡
= 𝑓 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝑡 −

𝑑

∑

𝑖=1
𝑧
𝑖

𝑡
𝑑𝐵

𝑖

𝑡
−

∞

∑

𝑖=1
𝑟
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑥0 = 𝑎,

𝑦
𝑇
= Φ (𝑥

𝑇
) ,

(1)

and, under some monotonicity assumptions, they got the
existence and uniqueness of solutions for this equation. Zhu
[11] had proposed the asymptotic stability in the 𝑃th moment
for SDE with Lévy noise. Nualart and Schoutens [12] con-
structed a set of pairwise strongly orthonormal martingales
called Teugels martingale and they also proved a martingale
representation theorem for Lévy processes satisfying some
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exponential moment condition. Using the martingale rep-
resentation theorem they [13] had proved the existence and
uniqueness of a solution for backward stochastic differential
equations (BSDEs) driven byTeugelsmartingale. Bahlali et al.
[14] extended this conclusion to the BSDEs driven by Teugels
martingale and an independent Brownian motion; they got
the existence, uniqueness, and comparison of solutions for
these equations under Lipschitz and locally Lipschitz condi-
tions on the coefficient. Based on these consequences, Mitsui
and Tabata [15] established the closeness property of the
solution of the multidimensional backward stochastic Riccati
differential equation with Lévy process; then they used this
solution to study a linear quadratic regulation problem with
Lévy process. After the foundation of the existence and
uniqueness of the solutions of SDEs and multidimensional
BSDEs driven by Lévy process, Tang and Wu [16] proceed to
study a stochastic linear quadratic optimal control problem
with a Lévy process, where the cost weighting matrices of the
state and control were allowed to be indefinite.

These consequences are important for the researching of
maximum principle for forward stochastic control system
driven by Lévy process, as the adjoint equation for forward
stochastic control system is a BSDE. Meng and Tang [17]
firstly were concerned with optimal control for forward
stochastic control system driven by Teugels martingale; they
got the maximum principle and verification theorem for
this system. In 2012, Tang and Zhang [18] were concerned
with optimal control of BSDE driven by Teugels martingale
and an independent multidimensional Brownian motion;
they derived the necessary and sufficient conditions for the
existence of the optimal control by means of convex variation
methods and duality techniques. When the control domain
was nonconcave and the control variable was allowed to
enter the coefficients of the Teugels martingales, Lin [19]
got the necessary maximum principle for optimal control
of stochastic system driven by multidimensional Teugels
martingales. Zhang et al. [20] firstly studied the forward-
backward stochastic control system where the system was
driven by Teugels martingale and an independent multidi-
mensional Brownian motion as follows:

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝑥

𝑡
, 𝑢

𝑡
) 𝑑𝑡 +

𝑑

∑

𝑖=1
𝜎
𝑖
(𝑡, 𝑥

𝑡
, 𝑢

𝑡
) 𝑑𝐵

𝑖

𝑡

+

∞

∑

𝑖=1
𝑔
𝑖
(𝑡, 𝑥

𝑡−
, 𝑢

𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑦
𝑡
= 𝑓 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡,
, 𝑢

𝑡
) 𝑑𝑡 −

𝑑

∑

𝑖=1
𝑧
𝑖

𝑡
𝑑𝐵

𝑖

𝑡
−

∞

∑

𝑖=1
𝑟
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑥0 = 𝑎,

𝑦
𝑇
= Φ (𝑥

𝑇
) ,

(2)

and they had got the maximum principle and verification
theorem in the condition of the SDE part did not contain the
backward state variables; the forward-backward stochastic
control system they studied was not fully coupled.

In this paper, we extend the result of Zhang et al. [20]
to the fully coupled forward-backward stochastic control
system. Here the state variables are described by fully coupled
FBSDEs driven by Brownian motion and an independent
Teugels martingale. Before applying the convex variation
and duality technique to obtain the stochastic maximum
principle, we use the samemethod in [5] to get the continuity
result depending on parameters, as the continuity result is
not only important for us to get the stochastic maximum
principle but also important property of FBSDEL especially
in practice. Different from the Wu [3] and Shi and Wu [6]
aboutmaximumprinciples to Brownianmotions and Poisson
process, we also needmore general Ito’s formula about 𝑐 ̀𝑎𝑑𝑙 ̀𝑎𝑔

semimartingale.
This paper is organized as follows. In Section 2, we will

give some preliminaries used in this paper. Section 3 presents
the continuity result depending on parameters about fully
coupled FBSDEs driven by Lévy process. In Section 4, we
obtain the main result of this paper, the maximum principle.
We also prove that, under some additional convexity condi-
tions, the maximum principle can be a sufficient condition
for optimal control. And, in Section 5, an application of
our stochastic maximum principle to the linear quadratic
problem which the linear control system described by fully
coupled FBSDEL is proved.

2. Preliminaries and Notations

Let (Ω, 𝐹, 𝑃,F
𝑡
, 𝐵

𝑡
, 𝐿

𝑡
) (𝑡 ∈ [0, 𝑇]) be a complete space

driving by Brownianmotion and Lévy process in𝑅𝑚×𝑅\{0},
with Lévy measure ]; that is, {𝐵

𝑡
}0≤𝑡≤𝑇 is a standard Brownian

motion. {𝐿
𝑡
}0≤𝑡≤𝑇 is 𝑅-valued Lévy process of the form 𝐿

𝑡
=

𝑏𝑡 + ℓ
𝑡
independent of {𝐵

𝑡
}0≤𝑡≤𝑇, corresponding to a standard

Lévy measure ] satisfying the following conditions:

(i) ∫
𝑅
(1 ∧ 𝑥2)](𝑑𝑥) < ∞,

(ii) ∫
(−𝜀,𝜀)

𝑐 𝑒
𝜆|𝑥|](𝑑𝑥) < ∞, for every 𝜀 > 0 and for some

𝜆 > 0, and

F
𝑡
= 𝜎 (𝐿

𝑠
, 𝑠 ≤ 𝑡) ∨ 𝜎 (𝐵

𝑠
, 𝑠 ≤ 𝑡) ∨ℵ. (3)

Here ℵ is the totality of 𝑃-null sets and 𝑔1 ∨ 𝑔2 denotes the
𝜎-field generated by 𝑔1 ∪ 𝑔2.

Let 𝑥 be a Lévy process and denote the left limit process
by 𝑥

𝑡−
= lim

𝑠→ 𝑡,𝑠≤𝑡
𝑥
𝑠
and the jump size at time 𝑡 by

Δ𝑥
𝑡
= 𝑥

𝑡
− 𝑥

𝑡−
. Set

𝑥
𝑖

𝑡
=
{

{

{

∑

0<𝑠≤𝑡
(Δ𝑥

𝑠
)
𝑖

, 𝑖 ≥ 2

𝑥
𝑡
, 𝑖 = 1

(4)

and we denote the compensated power jump process of order
𝑖 by 𝑌𝑖

𝑡
= 𝑥

𝑖

𝑡
−𝐸[𝑥

𝑖

𝑡
]; then Teugels martingale (𝐻𝑖

𝑡
)0≤𝑡≤𝑇 can be

defined as follows:

𝐻
𝑖

𝑡
= 𝑐

𝑖,𝑖
𝑌
𝑖

𝑡
+ 𝑐

𝑖,𝑖−1𝑌
𝑖−1
𝑡

+ 𝑐
𝑖,𝑖−2𝑌

𝑖−2
𝑡

+ ⋅ ⋅ ⋅ + 𝑐
𝑖,1𝑌

1
𝑡
. (5)

Here the coefficients 𝑐
𝑖,𝑘

correspond to orthonormalization
of the polynomials 1, 𝑥, 𝑥2, . . . with respect to the measure
𝜇(𝑑𝑥) = 𝜐(𝑑𝑥) + 𝜎

2
𝛿0(𝑑𝑥).
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Now we introduce some notations adopted in this paper
as follows:

(1) 𝐻: Hilbert space,

(2) ⟨𝛼, 𝛽⟩: the inner product in 𝑅𝑛, ∀𝛼, 𝛽 ∈ 𝑅𝑛,

(3) |𝛼| = √⟨𝛼, 𝛼⟩: the norm in 𝑅𝑛, ∀𝛼 ∈ 𝑅𝑛,

(4) ⟨𝐴, 𝐵⟩ = tr(𝐴𝐵𝑇): the inner product in 𝑅𝑛×𝑚, ∀𝐴, 𝐵 ∈
𝑅
𝑛×𝑚,

(5) |𝐴| = √tr(𝐴𝐴𝑇): the inner product in 𝑅
𝑛×𝑚, ∀𝐴 ∈

𝑅
𝑛×𝑚,

(6) 𝑙2: the space of real valued sequences𝑋 = (𝑥
𝑛
)
𝑛≥0 such

that

‖𝑥‖
2

𝑙
2 =

∞

∑

𝑖=1
𝑥
2
𝑖
< ∞, (6)

(7) 𝑙2(𝐻): the space of𝐻-valued sequences𝜙 = 𝜑𝑖
𝑖≥1 such

that

𝜙

2

𝑙
2
(𝐻)

=

∞

∑

𝑖=1


𝜙
𝑖

2
< ∞, (7)

(8) 𝑙2(0, 𝑇;𝐻): the corresponding spaces of 𝑙2(𝐻) valued
F

𝑡
-measurable processes equipped with the norm

𝜙

2
𝑙
2
(0,𝑇;𝐻) = 𝐸∫

𝑇

0

∞

∑

𝑖=1


𝜙
𝑖

𝑡



2
𝐻
𝑑𝑡 < ∞, (8)

(9) 𝐿2(Ω,F
𝑡
, 𝑃;𝐻): the space of𝐻-valued random vari-

able 𝜉 with the norm

𝜉

2
= 𝐸

𝜉

2

𝐿
2
(Ω,F
𝑡
,𝑃;𝐻)

< ∞, (9)

(10) 𝑀2
(0, 𝑇;𝐻): the space of 𝐻-valued F

𝑡
-measurable

process 𝜙(⋅) = {𝜙(𝑡, 𝜔) : (𝑡, 𝜔) ∈ [0, 𝑇] × Ω} with
the norm

𝜙 (⋅)

2
𝑀

2
(0,𝑇;𝐻) = 𝐸∫

𝑇

0

𝜙𝑡

2

𝑀
2
(0,𝑇;𝐻) 𝑑𝑡 < ∞, (10)

(11) 𝑆2(0, 𝑇;𝐻): the space of 𝐻-valued F
𝑡
-measurable

𝑐 ̀𝑎𝑑𝑙 ̀𝑎𝑔 process 𝑓(⋅) = {𝑓(𝑡, 𝜔) : (𝑡, 𝜔) ∈ [0, 𝑇] × Ω}
with the norm

𝑓 (⋅)

2
𝑆
2
(0,𝑇;𝐻) = 𝐸 sup

0≤𝑡≤𝑇

𝑓𝑡

2
𝐻
𝑑𝑡 < ∞, (11)

(12) for notational brevity:

𝑀
2
(0, 𝑇) = 𝑀2

(0, 𝑇; 𝑅𝑛) ×𝑀2
(0, 𝑇; 𝑅𝑚)

×𝑀
2
(0, 𝑇; 𝑅𝑚×𝑑) × 𝑙2 (0, 𝑇; 𝑅𝑚) .

(12)

Let us recall more general Ito’s formula about 𝑐 ̀𝑎𝑑𝑙 ̀𝑎𝑔

semimartingales which is important for us to get the max-
imum principle. Let 𝑋 = {𝑋

𝑡
: 𝑡 ∈ [0, 𝑇]} be 𝑐 ̀𝑎𝑑𝑙 ̀𝑎𝑔

semimartingales, and we denoted the quadratic variation by
[𝑋] = {[𝑋]

𝑡
: 𝑡 ∈ [0, 𝑇]}; 𝐹 is a C2 real valued function;

then 𝐹(𝑋) is also semimartingales and following Ito’s formula
holds:

𝐹 (𝑋
𝑡
) = 𝐹 (𝑋0) +∫

𝑡

0
𝐹

(𝑋

𝑠−
) 𝑑𝑋

𝑠

+
1
2
∫

𝑡

0
𝐹

(𝑋

𝑠
) 𝑑 [𝑋]

C
𝑠

+ ∑

0<𝑠≤𝑡
{𝐹 (𝑋

𝑠
) − 𝐹 (𝑋

𝑠−
) − 𝐹


(𝑋

𝑠−
) Δ𝑋

𝑠
} ,

(13)

where [𝑋]C is the continuous part of the quadratic variation
[𝑋].

When 𝐹(𝑋) = 𝑋
2 and 𝐹(𝑋) = 𝑋

𝑡
𝑌
𝑡
, where 𝑋, 𝑌 are two

𝑐 ̀𝑎𝑑𝑙 ̀𝑎𝑔 semimartingales, we get

𝑋
2
𝑡
= 𝑋

2
0 +∫

𝑡

0
2𝑋

𝑠−
𝑑𝑋

𝑠
+∫

𝑡

0
𝑑 [𝑋]

𝑠
,

𝑋
𝑡
𝑌
𝑡
= 𝑋0𝑌0 +∫

𝑡

0
𝑋
𝑠−
𝑑𝑌

𝑠
+∫

𝑡

0
𝑌
𝑠−
𝑑𝑋

𝑠

+∫

𝑡

0
𝑑 [𝑋, 𝑌]

𝑠
.

(14)

Here [𝑋, 𝑌] is the quadratic covariation of𝑋, 𝑌. We can refer
to Protter [21] for a complete survey in this topic.

Next, we introduce the existence and uniqueness results
for fully coupled FBSDEL (1):

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝑡 +

𝑑

∑

𝑖=1
𝜎
𝑖
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝐵

𝑖

𝑡

+

∞

∑

𝑖=1
𝑔
𝑖
(𝑡, 𝑥

𝑡−
, 𝑦

𝑡−
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑦
𝑡
= 𝑓 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) 𝑑𝑡 −

𝑑

∑

𝑖=1
𝑧
𝑖

𝑡
𝑑𝐵

𝑖

𝑡
−

∞

∑

𝑖=1
𝑟
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑥0 = 𝑎,

𝑦
𝑇
= Φ (𝑥

𝑇
) ,

(15)

where

𝑏 : Ω× [0, 𝑇] × 𝑅𝑛 ×𝑅𝑚 ×𝑅𝑚×𝑑 × 𝑙2 (𝑅𝑚) → 𝑅
𝑛
,

𝜎 : Ω× [0, 𝑇] × 𝑅𝑛 ×𝑅𝑚 ×𝑅𝑚×𝑑 × 𝑙2 (𝑅𝑚) → 𝑅
𝑛×𝑑

,

𝑔 : Ω× [0, 𝑇] ×𝑅𝑛 ×𝑅𝑚 ×𝑅𝑚×𝑑 × 𝑙2 (𝑅𝑚)

→ 𝑙
2
(𝑅

𝑛
) ,

𝑓 : Ω× [0, 𝑇] × 𝑅𝑛 ×𝑅𝑚 ×𝑅𝑚×𝑑 × 𝑙2 (𝑅𝑚) → 𝑅
𝑚
.

(16)
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For a given𝑚 × 𝑛 full rank matrix 𝐺, we set

𝜆 = (

𝑥

𝑦

𝑧

) ,

𝐴 (𝑡, 𝜆, 𝑟) = (

−𝐺
𝑇
𝑓 (𝑡, 𝜆, 𝑟)

𝐺𝑏 (𝑡, 𝜆, 𝑟)

𝐺𝜎 (𝑡, 𝜆, 𝑟)

) .

(17)

Assumption 1. Assume the following.

(i) 𝑏,𝜎,𝑔, and𝑓 are uniformly Lipschitz continuouswith
respect to (𝑥, 𝑦, 𝑧, 𝑟).

(ii) For each (𝜔, 𝑡) ∈ Ω×[0, 𝑇], 𝑙(𝜔, 𝑡, 0, 0, 0, 0) ∈ 𝑀2
(0, 𝑇)

and 𝑔(𝜔, 𝑡, 0, 0, 0, 0) ∈ 𝐻
2
(𝑙
2
), where 𝑙 = 𝑏, 𝜎, 𝑓,

respectively.

(iii) Φ(⋅) is uniformly Lipschitz continuouswith respect to
𝑥 and ∀𝑥,Φ(𝑥) ∈ 𝐿2(Ω, 𝐹

𝑇
, 𝑃).

Assumption 2. We also assume that

⟨𝐴 (𝑡, 𝜆1, 𝑟1) −𝐴 (𝑡, 𝜆2, 𝑟2) , 𝜆1 −𝜆2⟩ +
∞

∑

𝑖=1
⟨𝐺𝑔𝑖, 𝑟𝑖⟩

≤ −𝛽1 |𝐺𝑥|
2

−𝛽2(

𝐺
𝑇
𝑦


2
+

𝐺
𝑇
�̂�


2
+

∞

∑

𝑖=1


𝐺
𝑇
𝑟𝑖


2
) ;

⟨Φ (𝑥1) −Φ (𝑥2) , 𝐺 (𝑥1 −𝑥2)⟩ ≥ 𝜇1 |𝐺𝑥|
2
,

(18)

where 𝜆1 = (𝑥1, 𝑦1, 𝑧1), 𝜆2 = (𝑥2, 𝑦2, 𝑧2), 𝑥 = 𝑥1 − 𝑥2, 𝑦 =

𝑦1−𝑦2, �̂� = 𝑧1−𝑧2, 𝑔𝑖 = 𝑔
𝑖
(𝑡, 𝜆1, 𝑟1)−𝑔

𝑖
(𝑡, 𝜆2, 𝑟2), 𝑟𝑖 = 𝑟

𝑖

1−𝑟
𝑖

2,
and 𝛽1, 𝛽2 and 𝜇1 are nonnegative constants with 𝛽1 +𝛽2 > 0,
𝛽2 + 𝜇1 > 0. Moreover, we have 𝛽1 > 0, 𝜇1 > 0 (resp., 𝛽2 > 0)
when 𝑚 > 𝑛 (resp., 𝑛 > 𝑚). Under Assumptions 1 and 2, in
[10], they have got the following lemma.

Lemma 3 (existence and uniqueness theorem of FBSDEL
[10]). Under Assumptions 1 and 2, FBSDEL (15) has a unique
solution.

3. Continuity Result Depending on
Parameters about FBSDEL

Next, we are going to get the continuity result depending on
parameters about FBSDEL.

Let (𝑏
𝛼
, 𝜎

𝛼
, 𝑔

𝛼
, 𝑓

𝛼
, Φ

𝛼
), 𝛼 ∈ 𝑅 be a family of FBSDEL:

𝑑𝑥
𝛼

𝑡
= 𝑏

𝛼
(𝑡, 𝑥

𝛼

𝑡
, 𝑦

𝛼

𝑡
, 𝑧

𝛼

𝑡
,𝑟𝛼
𝑡
) 𝑑𝑡

+

𝑑

∑

𝑖=1
𝜎
𝑖

𝛼
(𝑡, 𝑥

𝛼

𝑡
, 𝑦

𝛼

𝑡
, 𝑧

𝛼

𝑡
,𝑟𝛼
𝑡
) 𝑑𝐵

𝑖

𝑡

+

∞

∑

𝑖=1
𝑔
𝑖

𝛼
(𝑡, 𝑥

𝛼

𝑡−
, 𝑦

𝛼

𝑡−
, 𝑧

𝛼

𝑡
,𝑟𝛼
𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑦
𝑡
= 𝑓

𝛼
(𝑡, 𝑥

𝛼

𝑡
, 𝑦

𝛼

𝑡
, 𝑧

𝛼

𝑡
,𝑟𝛼
𝑡
) 𝑑𝑡 −

𝑑

∑

𝑖=1
𝑧
𝑖,𝛼

𝑡
𝑑𝐵

𝑖

𝑡

−

∞

∑

𝑖=1
𝑟
𝑖,𝛼

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑥
𝛼

0 = 𝑎,

𝑦
𝛼

𝑇
= Φ

𝛼
(𝑥

𝛼

𝑇
) .

(19)

Assumption 4. (i) The family (𝑏
𝛼
, 𝜎

𝛼
, 𝑔

𝛼
, 𝑓

𝛼
, Φ

𝛼
), 𝛼 ∈ 𝑅 are

equi-Lipschitz with respect to (𝑥, 𝑦, 𝑧, 𝑟) and 𝑥 separately.
(ii) The function 𝛼 → (𝑏

𝛼
, 𝜎

𝛼
, 𝑔

𝛼
, 𝑓

𝛼
, Φ

𝛼
) is continuous

in their existing space norm sense, respectively.

Thenwe can get the following continuity result depending
on parameters of forward-backward stochastic differential
equation driven by Lévy processes.

Theorem 5. Let (𝑏
𝛼
, 𝜎

𝛼
, 𝑔

𝛼
, 𝑓

𝛼
, Φ

𝛼
), 𝛼 ∈ 𝑅 be a family of

FBSDEL satisfying Assumptions 1, 2, and 4 with solutions
denoted by (𝑥𝛼, 𝑦𝛼, 𝑧𝛼, 𝑟𝛼). Thus, the function

𝛼 → (𝑥
𝛼
, 𝑦

𝛼
, 𝑧

𝛼
, 𝑟
𝛼
, 𝑥

𝛼

𝑇
) :

𝑅 → 𝑀
2
(0, 𝑇) × 𝐿2 (Ω,F

𝑡
, 𝑃, 𝑅

𝑛
)

(20)

is continuous.

Proof. For notational brevity, we only prove the continuity of
FBSDEL (19) at 𝛼 = 0. Set �̂�

𝑡
= 𝜆

𝛼

𝑡
−𝜆

0
𝑡
= (𝑥

𝛼

𝑡
−𝑥

0
𝑡
, 𝑦

𝛼

𝑡
−𝑦

0
𝑡
, 𝑧

𝛼

𝑡
−

𝑧
0
𝑡
) and 𝑟

𝑡
= 𝑟

𝛼

𝑡
− 𝑟

0
𝑡
. From Assumptions 1, 2, and 4, applying

the usual technique to 𝑥
𝑡
of Itô’s SDE with Lévy process, we

can get

sup
0≤𝑡≤𝑇

𝐸
𝑥𝑡

2
≤ 𝐾1𝐸∫

𝑇

0
(
𝑦𝑡

2
+
�̂�𝑡

2
+

𝑟
𝑖

𝑡



2

) 𝑑𝑡

+𝐾1𝐸∫
𝑇

0
(

�̂�
𝑡



2
+
�̂�𝑡

2
+
𝑔𝑡


2

) 𝑑𝑡.

(21)

Applying the same technique to 𝑦
𝑡
of BSDE with Lévy

process, then

𝐸∫

𝑇

0
(
𝑦𝑡

2
+
�̂�𝑡

2
+

𝑟
𝑖

𝑡



2
) 𝑑𝑡

≤ 𝐾1 (𝐸∫
𝑇

0

𝑥𝑡

2
𝑑𝑡 +𝐸

𝑥𝑇

2
+𝐸∫

𝑇

0


𝑓
𝑡



2
𝑑𝑡

+𝐸

Φ
𝛼
(𝑥

0
𝑇
) −Φ0 (𝑥

0
𝑇
)


2
) .

(22)
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Here 𝐾1, 𝐾2 depend on the Lipschitz constants and 𝑇, and

𝑓
𝑡
= 𝑓

𝛼
(𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) −𝑓0 (𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) ,

�̂�
𝑡
= 𝑏

𝛼
(𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) − 𝑏0 (𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) ,

�̂�
𝑡
= 𝜎

𝛼
(𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) − 𝜎0 (𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) ,

𝑔
𝑡
= 𝑔

𝛼
(𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) − 𝑔0 (𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) .

(23)

Set

𝐴
𝛼
(𝑡, 𝜆, 𝑟) = (

−𝐺
𝑇
𝑓
𝛼
(𝑡, 𝜆, 𝑟)

𝐺𝑏
𝛼
(𝑡, 𝜆, 𝑟)

𝐺𝜎
𝛼
(𝑡, 𝜆, 𝑟)

) , (24)

and applying Itô’s formula to ⟨𝐺𝑥
𝑡
, 𝑦

𝑡
⟩ yields

𝐸⟨Φ
𝛼
(𝑥

𝛼

𝑇
) −Φ

𝛼
(𝑥

0
𝑇
) , 𝐺𝑥

𝑇
⟩+𝐸⟨Φ0 (𝑥

𝛼

𝑇
)

−Φ0 (𝑥
0
𝑇
) , 𝐺𝑥

𝑇
⟩

= 𝐸∫

𝑇

0
[⟨𝐴

𝛼
(𝑡, 𝜆

𝛼

𝑡
, 𝑟
𝛼

𝑡
) −𝐴

𝛼
(𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
) , �̂�

𝑡
⟩

+

∞

∑

𝑖=1
⟨𝐺 (𝑔

𝑖

𝛼
(𝑡, 𝜆

𝛼

𝑡
, 𝑟
𝛼

𝑡
) − 𝑔

𝑖

𝛼
(𝑡, 𝜆

0
𝑡
, 𝑟

0
𝑡
)) , 𝑟

𝑖

𝑡
⟩]𝑑𝑡

+𝐸∫

𝑇

0
[⟨𝑥

𝑡
, − 𝐺

𝑇
𝑓
𝑡
⟩+⟨𝐺

𝑇
𝑦
𝑡
, �̂�
𝑡
⟩+

𝑑

∑

𝑖=1
⟨�̂�

𝑖

𝑡
, 𝐺�̂�

𝑖

𝑡
⟩

+

∞

∑

𝑖=1
⟨𝐺

𝑇
𝑟
𝑖

𝑡
, 𝑔

𝑖

𝑡
⟩]𝑑𝑡.

(25)

From the above three estimates, we get

𝛽1𝐸∫
𝑇

0

𝐺𝑥𝑡

2
𝑑𝑡 + 𝜇1𝐸

𝐺𝑥𝑇

2

+𝛽2𝐸∫
𝑇

0
[

𝐺
𝑇
𝑦
𝑡



2
+

𝐺
𝑇
�̂�
𝑡



2
+

𝐺
𝑇
𝑟
𝑡



2
] 𝑑𝑡

≤ 𝐶1 [𝐸

Φ
𝛼
(𝑥

0
𝑇
) −Φ0 (𝑥

0
𝑇
)


2

+𝐸∫

𝑇

0
(

𝑓
𝑡



2
+

�̂�
𝑡



2
+
�̂�𝑡

2
+
𝑔𝑡


2
) 𝑑𝑡]

+ 𝛿𝐸
𝑥𝑇


2

+ 𝛿𝐸∫

𝑇

0
(
𝑥𝑡

2
+
𝑦𝑡

2
+
�̂�𝑡

2
+
𝑟𝑡

2
) 𝑑𝑡,

(26)

where the constant 𝐶1 depends on the Lipschitz constants 𝑇
and 𝛿. When𝑚 ≥ 𝑛, 𝛽1 > 0, and 𝜇1 > 0, then

𝛿 = min(1
3
,

1
3𝐾1

,
𝛽1

𝐺
𝑇
𝐺


3
,
𝜇1

𝐺
𝑇
𝐺


3
) . (27)

If𝑚 ≤ 𝑛, 𝛽2 > 0, and 𝜇1 ≥ 0, then

𝛿 = min(1
3
,

1
3𝐾1

,
1

3𝐾1𝑇
,
𝛽2

𝐺𝐺

𝑇

3
) . (28)

Thus, it is clear whatever 𝛽1 > 0, 𝛽2 ≥ 0, and 𝜇1 > 0 or
𝛽1 ≥ 0, 𝛽2 > 0, and 𝜇1 ≥ 0 we always have

𝐸
𝑥𝑇


2
+𝐸∫

𝑇

0
(

�̂�
𝑡



2
+
𝑟𝑡

2
) 𝑑𝑡

≤ 𝐶[𝐸

Φ
𝛼
(𝑥

0
𝑇
) −Φ0 (𝑥

0
𝑇
)


2

+𝐸∫

𝑇

0
(

𝑓
𝑡



2
+

�̂�
𝑡



2
+
�̂�𝑡

2
+
𝑔𝑡


2
)] .

(29)

The proof is completed.

4. Maximum Principle

Let us consider the following full coupled forward-backward
stochastic control system:

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) 𝑑𝑡

+

𝑑

∑

𝑖=1
𝜎
𝑖
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑢

𝑡
) 𝑑𝐵

𝑖

𝑡

+

∞

∑

𝑖=1
𝑔
𝑖
(𝑡, 𝑥

𝑡−
, 𝑦

𝑡−
, 𝑟
𝑡
, 𝑢

𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑦
𝑡
= 𝑓 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡,
, 𝑢

𝑡
) 𝑑𝑡 −

𝑑

∑

𝑖=1
𝑧
𝑖

𝑡
𝑑𝐵

𝑖

𝑡
−

∞

∑

𝑖=1
𝑟
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑥0 = 𝑎,

𝑦
𝑇
= Φ (𝑥

𝑇
) ,

(30)

where (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) take values in 𝑅𝑛 × 𝑅𝑚 × 𝑅

𝑚×𝑑
× 𝑙

2
(𝑅

𝑚
);

𝑎 ∈ 𝑅
𝑛 is given.

Let 𝑈 be a nonempty convex subset of 𝑅𝑘. We define the
admissible control set 𝑈

𝑎𝑑
= {𝑢(⋅) ∈ 𝑀

2
(0, 𝑇; 𝑅𝑘); 𝑢

𝑡
∈ 𝑈, 0 ≤

𝑡 ≤ 𝑇, a.e., a.s.} and the cost functional:

𝐽 (𝑢) = 𝐸∫

𝑇

0
𝐿 (𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) 𝑑𝑡 + ℎ (𝑥

𝑇
) + 𝛾 (𝑦0) . (31)

The optimal control problem is to find 𝑢 ∈ 𝑈
𝑎𝑑
, such that

𝐽 (𝑢 (⋅)) = inf
𝑢(⋅) ∈𝑈[0,𝑇]

𝐽 (𝑢 (⋅)) . (32)

Assumption 6. Now we introduce the basic assumptions of
this section as follows.

(i) 𝑏, 𝑓, and 𝐿 are continuously differentiable with
respect to (𝑥, 𝑦, 𝑧, 𝑟, 𝑢); 𝜎 is continuously differen-
tiable with respect to (𝑥, 𝑦, 𝑧, 𝑢); 𝑔 is continuously
differentiable with respect to (𝑥, 𝑦, 𝑟, 𝑢); Φ and ℎ are
continuously differentiable with respect to 𝑥; 𝛾 is
continuously differentiable with respect to 𝑦. And the
derivatives of each function are all bounded.



6 Mathematical Problems in Engineering

(ii) For each (𝑥, 𝑦, 𝑧, 𝑟, 𝑢) ∈ 𝑅𝑛×𝑅𝑚×𝑅𝑚×𝑑×𝑙2(𝑅𝑚)×𝑈
𝑎𝑑
,

there exists a constant 𝐶 > 0, such that

|𝐿| ≤ 𝐶 (1+ |𝑥|2 + 𝑦

2
+ |𝑧|

2
+ ‖𝑟‖

2
+ |𝑢|

2
) ,

|ℎ| ≤ 𝐶 (1+ |𝑥|2) ,

𝛾
 ≤ (1+

𝑦

2
) ,

𝐿𝑥
 +


𝐿
𝑦


+
𝐿𝑧

 +
𝐿𝑟

 +
𝐿𝑢



≤ 𝐶 (1+ |𝑥| + 𝑦
 + |𝑧| + ‖𝑟‖ + |𝑢|) ,

ℎ𝑥
 ≤ 𝐶 (1+ |𝑥|) ,


𝛾
𝑦


≤ 𝐶 (1+ 𝑦

) .

(33)

(iii) For any given admissible control 𝑢(⋅), (30) satisfies
Assumptions 1 and 2.

Then, for a given admissible control, fromLemma 3, there
exists a unique solution satisfying control system (30).

Let 𝑢
𝑡
be an optimal control and let (𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) be the

corresponding trajectory. For any given admissible control 𝑢
𝑡

and 0 ≤ 𝜀 ≤ 1, we define

𝑢
𝜀

𝑡
= 𝑢

𝑡
+ 𝜀 (𝑢

𝑡
−𝑢

𝑡
) . (34)

Since 𝑈
𝑎𝑑

is convex, then 𝑢
𝜀

𝑡
is in 𝑈

𝑎𝑑
; that is, 𝑢𝜀

𝑡
is an

admissible control and (𝑥
𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
) is the corresponding

trajectory.
We introduce the following variational equation:

𝑑𝑋
𝑡
= [𝑏

𝑥
(𝑡) 𝑋

𝑡
+ 𝑏

𝑦
(𝑡) 𝑌

𝑡
+ 𝑏

𝑧
(𝑡) 𝑍

𝑡
+ 𝑏

𝑟
(𝑡) 𝑅

𝑡

+ 𝑏
𝑢
(𝑡) (𝑢

𝑡
−𝑢

𝑡
)] 𝑑𝑡 +

𝑑

∑

𝑖=1
[𝜎

𝑖

𝑥
(𝑡) 𝑋

𝑡
+𝜎

𝑖

𝑦
(𝑡) 𝑌

𝑡

+𝜎
𝑖

𝑧
(𝑡) 𝑍

𝑡
+𝜎

𝑖

𝑢
(𝑡) (𝑢

𝑡
−𝑢

𝑡
)] 𝑑𝐵

𝑖

𝑡
+

∞

∑

𝑖=1
[𝑔

𝑖

𝑥
(𝑡) 𝑋

𝑡−

+𝑔
𝑖

𝑦
(𝑡) 𝑌

𝑡−
+𝑔

𝑖

𝑟
(𝑡) 𝑅

𝑡
+𝑔

𝑖

𝑢
(𝑡) (𝑢

𝑡
−𝑢

𝑡
)] 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑦
𝑡
= [𝑓

𝑥
(𝑡) 𝑋

𝑡
+𝑓

𝑦
(𝑡) 𝑌

𝑡
+𝑓

𝑧
(𝑡) 𝑍

𝑡
+𝑓

𝑟
(𝑡) 𝑅

𝑡

+𝑓
𝑖

𝑢
(𝑡) (𝑢

𝑡
−𝑢

𝑡
)] 𝑑𝑡 −

𝑑

∑

𝑖=1
𝑍
𝑖

𝑡
𝑑𝐵

𝑖

𝑡
−

∞

∑

𝑖=1
𝑅
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑋0 = 0,

𝑌
𝑇
= Φ

𝑥
(𝑥

𝑡
)𝑋

𝑇
.

(35)

From Assumption 6, we can verify that variational equa-
tion (35) satisfies Lemma 3. Thus, there exists a unique solu-
tion (𝑋

𝑡
, 𝑌

𝑡
, 𝑍

𝑡
, 𝑅

𝑡
) satisfying variational equation. In order

to get the maximum principle, we also need the following
lemma.

Lemma 7. Assume that Assumption 6 holds. We have

𝐸 sup
0≤𝑡≤𝑇

𝑥
𝜀

𝑡
−𝑥

𝑡
− 𝜀𝑋

𝑡


2
= 𝑜 (𝜀

2
) ,

𝐸 sup
0≤𝑡≤𝑇

𝑦
𝜀

𝑡
−𝑦

𝑡
− 𝜀𝑌

𝑡


2
+𝐸∫

𝑇

0

𝑧
𝜀

𝑡
− 𝑧

𝑡
− 𝜀𝑍

𝑡


2
𝑑𝑡

+𝐸∫

𝑇

0

𝑟
𝜀

𝑡
− 𝑟

𝑡
− 𝜀𝑅

𝑡


2

𝑑𝑡 = 𝑜 (𝜀
2
) ,

(36)

where (𝑋
𝑡
, 𝑌t, 𝑍𝑡

, 𝑅
𝑡
) is the solution of variational equation

(35).

Proof. Set

Δ𝑥
𝑡
= 𝜀

−1
(𝑥

𝜀

𝑡
−𝑥

𝑡
) ,

Δ𝑦
𝑡
= 𝜀

−1
(𝑦

𝜀

𝑡
−𝑦

𝑡
) ,

Δ𝑧
𝑡
= 𝜀

−1
(𝑧

𝜀

𝑡
− 𝑧

𝑡
) ,

Δ𝑟
𝑡
= 𝜀

−1
(𝑟
𝜀

𝑡
− 𝑟

𝑡
) ,

(37)

and then

𝑑Δ𝑥
𝑡
= 𝜀

−1
[𝑏 (𝑡, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)

− 𝑏 (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝑡

+ 𝜀
−1
[

𝑑

∑

𝑖=1
𝜎
𝑖
(𝑡, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)

−

𝑑

∑

𝑖=1
𝜎
𝑖
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝐵

𝑖

𝑡

+ 𝜀
−1
[

∞

∑

𝑖=1
𝑔
𝑖
(𝑡, 𝑥

𝜀

𝑡−
, 𝑦

𝜀

𝑡−
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)

−

∞

∑

𝑖=1
𝑔
𝑖
(𝑡, 𝑥

𝑡−
, 𝑦

𝑡−
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝐻

𝑖

𝑡
,

− 𝑑Δ𝑦
𝑡
= 𝜀

−1
[𝑓 (𝑡, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)

−𝑓 (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝑡 −

𝑑

∑

𝑖=1
Δ𝑧

𝑖

𝑡
𝑑𝐵

𝑖

𝑡

−

∞

∑

𝑖=1
Δ𝑟

𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

Δ𝑥0 = 0,

Δ𝑦
𝑇
= 𝜀

−1
[Φ (𝑥

𝜀

𝑇
) −Φ (𝑥

𝑇
)] .

(38)
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We can transform (38) into

𝑑Δ𝑥
𝑡

= �̂� (𝑡, Δ𝑥
𝑡
, Δ𝑦

𝑡
, Δ𝑧

𝑡
, Δ𝑟

𝑡
, 𝑢

𝑡
−𝑢

𝑡
) 𝑑𝑡

+

𝑑

∑

𝑖=1
�̂�
𝑖
(𝑡, Δ𝑥

𝑡
, Δ𝑦

𝑡
, Δ𝑧t, Δ𝑟𝑡, 𝑢𝑡 −𝑢𝑡) 𝑑𝐵

𝑖

𝑡

+

∞

∑

𝑖=1
𝑔
𝑖
(𝑡, Δ𝑥

𝑡−
, Δ𝑦

𝑡−
, Δ𝑧

𝑡
, Δ𝑟

𝑡
, 𝑢

𝑡
−𝑢

𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑Δ𝑦
𝑡

= 𝑓 (𝑡, Δ𝑥
𝑡
, Δ𝑦

𝑡
, Δ𝑧

𝑡
, Δ𝑟

𝑡
, 𝑢

𝑡
−𝑢

𝑡
) 𝑑𝑡 −

𝑑

∑

𝑖=1
Δ𝑧

𝑖

𝑡
𝑑𝐵

𝑖

𝑡

−

∞

∑

𝑖=1
Δ𝑟

𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

Δ𝑥0 = 0,

Δ𝑦
𝑇
= 𝜀

−1
[Φ (𝑥

𝜀

𝑇
) −Φ (𝑥

𝑇
)] ,

(39)

where

�̂� (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
−𝑢

𝑡
)

= 𝐴
𝑙
(𝑡) 𝑥

𝑡
+𝐵

𝑙
(𝑡) 𝑦

𝑡
+𝐶

𝑙
(𝑡) 𝑧

𝑡
+𝐷

𝑙
(𝑡) 𝑟

𝑡

+𝐸
𝑙
(𝑡) (𝑢

𝑡
−𝑢

𝑡
) ,

(40)

for 𝑙 = 𝑏, 𝜎, 𝑔, 𝑓, respectively, and

𝐴
𝑙
(𝑡) =

{

{

{

𝐴 (𝑡) , 𝑥
𝜀

𝑡
− 𝑥

𝑡
̸= 0

0, otherwise,

𝐵
𝑙
(𝑡) =

{

{

{

𝐵 (𝑡) , 𝑦
𝜀

𝑡
− 𝑦

𝑡
̸= 0

0, otherwise,

𝐶
𝑙
(𝑡) =

{

{

{

𝐶 (𝑡) , 𝑧
𝜀

𝑡
− 𝑧

𝑡
̸= 0

0, otherwise,

𝐷
𝑙
(𝑡) =

{

{

{

𝐷(𝑡) , 𝑟
𝜀

𝑡
− 𝑟

𝑡
̸= 0

0, otherwise,

𝐸
𝑙
(𝑡) =

{

{

{

𝐸 (𝑡) , 𝑢
𝑡
− 𝑢

𝑡
̸= 0

0, otherwise,

(41)

where

𝐴 (𝑡) = (𝑥
𝜀

𝑡
−𝑥

𝑡
)
−1

⋅ [𝑙 (𝑡, 𝑥
𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
) − 𝑙 (𝑡, 𝑥

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)] ,

𝐵 (𝑡) = (𝑦
𝜀

𝑡
−𝑦

𝑡
)
−1

⋅ [𝑙 (𝑡, 𝑥
𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
) − 𝑙 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)] ,

𝐶 (𝑡) = (𝑧
𝜀

𝑡
− 𝑧

𝑡
)
−1

⋅ [𝑙 (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
) − 𝑙 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)] ,

𝐷 (𝑡) = (𝑟
𝜀

𝑡
− 𝑟

𝑡
)
−1

⋅ [𝑙 (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
) − 𝑙 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝜀

𝑡
)] ,

𝐸 (𝑡) = [𝜀 (𝑢
𝑡
−𝑢

𝑡
)]
−1

⋅ [𝑙 (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, z
𝑡
, 𝑟
𝑡
, 𝑢

𝜀

𝑡
) − 𝑙 (𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] .

(42)

From the continuity result depending on parameters we
have got in Section 3, we know that

𝐸 sup
0≤𝑡≤𝑇

𝑥
𝜀

𝑡
−𝑥

𝑡


2
+𝐸 sup

0≤𝑡≤𝑇

𝑦
𝜀

𝑡
−𝑦

𝑡


2

+𝐸∫

𝑡

0

𝑧
𝜀

𝑡
− 𝑧

𝑡


2
𝑑𝑡 +𝐸∫

𝑡

0

𝑟
𝜀

𝑡
− 𝑟

𝑡


2
𝑑𝑡 ≤ 𝐾𝜀

2
;

(43)

that is, (𝑥𝜀
𝑡
− 𝑥

𝑡
, 𝑦

𝜀

𝑡
− 𝑦

𝑡
, 𝑧

𝜀

𝑡
− 𝑧

𝑡
, 𝑟
𝜀

𝑡
− 𝑟

𝑡
) → 0 in𝑀2

(0, 𝑇), as
𝜀 → 0. Together with Assumption 6, we can get

lim
𝜀→ 0

𝐴
𝑙
(𝑡) = 𝑙

𝑥
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟t, 𝑢𝑡) ,

lim
𝜀→ 0

𝐵
𝑙
(𝑡) = 𝑙

𝑦
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) ,

lim
𝜀→ 0

𝐶
𝑙
(𝑡) = 𝑙

𝑧
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) ,

lim
𝜀→ 0

𝐷
𝑙
(𝑡) = 𝑙

𝑟
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) ,

lim
𝜀→ 0

𝐸
𝑙
(𝑡) = 𝑙

𝑢
(𝑡, 𝑥

𝑡
, 𝑦t, 𝑧𝑡, 𝑟𝑡, 𝑢𝑡) ,

lim
𝜀→ 0

�̂� (𝑡, Δ𝑥
𝑡
, Δ𝑦

𝑡
, Δ𝑧

𝑡
, Δ𝑟

𝑡
, 𝑢

𝑡
−𝑢

𝑡
)

= 𝑙
𝑥
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) Δ𝑥

𝑡

+ 𝑙
𝑦
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) Δ𝑦

𝑡

+ 𝑙
𝑧
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) Δ𝑧

𝑡

+ 𝑙
𝑟
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) Δ𝑟

𝑡

+ 𝑙
𝑢
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) (𝑢

𝑡
−𝑢

𝑡
) .

(44)

As FBSDEL (35) has a unique solution (𝑋
𝑡
, 𝑌

𝑡
, 𝑍

𝑡
, 𝑅

𝑡
)

under Assumption 6, from the continuity and uniqueness
result by Lemma 3, we know that (Δ𝑥

𝑡
, Δ𝑦

𝑡
, Δ𝑧

𝑡
, Δ𝑟

𝑡
) con-

verges to (𝑋
𝑡
, 𝑌

𝑡
, 𝑍

𝑡
, 𝑅

𝑡
) in𝑀2

([0, 𝑇]) as 𝜀 → 0.
The proof is complete.
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Notice that lim
𝜀→ 0+(𝐽(𝑢

𝜀

𝑡
− 𝐽(𝑢

𝑡
))/𝜀) ≥ 0 and we can get

the following variational inequality.

Lemma 8. Assume that Assumption 6 holds; then

𝐸∫

𝑇

0
𝐿
𝑥
(𝑡) 𝑋

𝑡
𝑑𝑡 +𝐸∫

𝑇

0
𝐿
𝑦
(𝑡) 𝑌

𝑡
𝑑𝑡

+𝐸∫

𝑇

0
𝐿
𝑧
(𝑡) 𝑍

𝑡
𝑑𝑡 +𝐸∫

𝑇

0
𝐿
𝑟
(𝑡) 𝑅

𝑡
𝑑𝑡

+𝐸∫

𝑇

0
𝐿
𝑢
(𝑡) (𝑢

𝑡
−𝑢

𝑡
) 𝑑𝑡 + 𝐸ℎ

𝑥
(𝑥

𝑇
)𝑋

𝑇

+𝐸𝛾
𝑦
(𝑦0) 𝑌0 ≥ 0.

(45)

Proof. First we have

𝐽 (𝑢
𝜀

𝑡
− 𝐽 (𝑢

𝑡
))

𝜀
=
1
𝜀
{𝐸∫

𝑇

0
[𝐿 (𝑡, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)

− 𝐿 (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝑡 + 𝐸 [ℎ (𝑥

𝜀

𝑇
) − ℎ (𝑥

𝑇
)]

+ 𝐸 [𝛾 (𝑦
𝜀

0) − 𝛾 (𝑦0)]} .

(46)

Under Assumption 6, from Lemma 7, we can get

lim
𝜀→ 0

1
𝜀
𝐸∫

𝑇

0
[𝐿 (𝑡, 𝑥

𝜀

𝑡
, 𝑦

𝜀

𝑡
, 𝑧

𝜀

𝑡
, 𝑟
𝜀

𝑡
, 𝑢

𝜀

𝑡
)

− 𝐿 (𝑡, 𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝑡

→ 𝐸∫

𝑇

0
[𝐿

𝑥
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)𝑋

𝑡

+𝐿
𝑦
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) 𝑌

𝑡

+𝐿
𝑧
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) 𝑍

𝑡

+𝐿
𝑟
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) 𝑅

𝑡

+𝐿
𝑢
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) (𝑢

𝑡
−𝑢

𝑡
)] 𝑑𝑡,

lim
𝜀→ 0

1
𝜀
𝐸 [ℎ (𝑥

𝜀

𝑇
) − ℎ (𝑥

𝑇
)] → 𝐸 [ℎ

𝑥
(𝑥

𝑇
)𝑋

𝑇
] ,

lim
𝜀→ 0

1
𝜀
𝐸 [𝛾 (𝑦

𝜀

0) − 𝛾 (𝑦0)] → 𝐸 [𝛾
𝑦
(𝑦0) 𝑌0] .

(47)

Then (45) is proved.
The proof is complete.

We define the Hamiltonian function𝐻 as follows:

𝐻(𝑡, 𝑥, 𝑦, 𝑧, 𝑟, 𝑢, 𝑝, 𝑞, 𝑘, 𝜌)

= ⟨𝑝, −𝑓 (𝑡, 𝑥, 𝑦, 𝑧, 𝑟, 𝑢)⟩ + ⟨𝑞, 𝑏 (𝑡, 𝑥, 𝑦, 𝑧, 𝑟, 𝑢)⟩

+ ⟨𝑘, 𝜎 (𝑡, 𝑥, 𝑦, 𝑧, 𝑢)⟩ + ⟨𝜌, 𝑔 (𝑡, 𝑥, 𝑦, 𝑟, 𝑢)⟩

+ 𝐿 (𝑡, 𝑥, 𝑦, 𝑧, 𝑟, 𝑢) ,

(48)

and the following adjoint forward-backward equation to
variational equation (35):

𝑑𝑝
𝑡

= −𝐻
𝑦
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) 𝑑𝑡

−

𝑑

∑

𝑖=1
𝐻

𝑖

𝑧
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) 𝑑𝐵

𝑖

𝑡

−

∞

∑

𝑖=1
𝐻

𝑖

𝑟
(𝑡, 𝑥

𝑡−
, 𝑦

𝑡−
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑞
𝑡

= 𝐻
𝑥
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) 𝑑𝑡 −

𝑑

∑

𝑖=1
𝑘
𝑖

𝑡
𝑑𝐵

𝑖

𝑡

−

∞

∑

𝑖=1
𝜌
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑝0 = − 𝛾𝑦 (𝑦0) ,

𝑞
𝑇
= ℎ

𝑥
(𝑥

𝑇
) −Φ

𝑥
(𝑥

𝑇
) 𝑝

𝑇
.

(49)

It is easy to verify that (49) satisfies Assumptions 1 and
2; then there exists a unique quarter (𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) satisfying

(49).
Then we have the main result of this paper which is the

following theorem.

Theorem 9. Supposing that Assumptions 1, 2, 4, and 6 hold,
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) is an optimal pair for our optimal control

problem and (𝑝
𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌t) is the solution to corresponding

adjoint equation (49). Then for each admissible control 𝑢
𝑡
∈

𝑈(0, 𝑇) we have

⟨𝐻
𝑢
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , (𝑢

𝑡
−𝑢

𝑡
)⟩ ≥ 0

𝑎.𝑒., 𝑎.𝑠.,
(50)

where𝐻 is defined by (48).

Proof. Applying Ito’s formula to ⟨𝑋
𝑡
, 𝑞

𝑡
⟩ + ⟨𝑌

𝑡
, 𝑝

𝑡
⟩, we can

obtain

𝐸 [ℎ
𝑥
(𝑥

𝑇
)𝑋

𝑇
] + 𝐸 [𝛾

𝑦
(𝑦0) 𝑌0] +𝐸∫

𝑇

0
[𝐿

𝑥
(𝑡) 𝑋

𝑡

+𝐿
𝑦
(𝑡) 𝑌

𝑡
+𝐿

𝑧
(𝑡) 𝑍

𝑡
+𝐿

𝑟
(𝑡) 𝑅

𝑡
+𝐿

𝑢
(𝑡)

⋅ (𝑢
𝑡
−𝑢

𝑡
)] 𝑑𝑡

= 𝐸∫

𝑇

0
⟨𝐻

𝑢
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) ,

(𝑢
𝑡
−𝑢

𝑡
)⟩ 𝑑𝑡.

(51)
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The variational inequality implies for each 𝑢
𝑡
∈ 𝑈[0, 𝑇] that

𝐸∫

𝑇

0
⟨𝐻

𝑢
(𝑡, 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , (𝑢

𝑡
−𝑢

𝑡
)⟩ 𝑑𝑡

≥ 0.
(52)

The proof is completed.

Next, under some additional convexity conditions, we
prove that the maximum principle can be a sufficient condi-
tion for optimal control.

Theorem 10. For stochastic control system (30) and the cost
functional 𝐽(𝑢), if Assumptions 1, 2, 4, and 6 hold, and
𝑦
𝑇

= 𝑀𝑥
𝑇
, 𝑀 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃; 𝑅

𝑚×𝑛
), ℎ is convex in 𝑥,

and 𝛾 is convex in 𝑦. Let 𝑢
𝑡
be an admissible control and let

(𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) be the corresponding trajectory. Let (𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
)

be the solution of corresponding adjoint equation (49). Suppose
that the Hamiltonian function𝐻 is convex in (𝑥, 𝑦, 𝑧, 𝑟, 𝑢) and
inequality (50) holds; then 𝑢

𝑡
is an optimal control.

Proof. Let V
𝑡
be an arbitrary admissible control and the

corresponding trajectory is (𝑥V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
); then

𝐽 (V (⋅)) − 𝐽 (𝑢 (⋅))

= 𝐸∫

𝑇

0
[𝐿 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
) − 𝐿 (𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝑡

+ 𝐸 [ℎ (𝑥
V
𝑇
) − ℎ (𝑥

𝑇
)] + 𝐸 [𝛾 (𝑦

V
0) − 𝛾 (𝑦0)]

= 𝐼1 + 𝐼2,

(53)

where

𝐼1

= 𝐸∫

𝑇

0
[𝐿 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
) − 𝐿 (𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
)] 𝑑𝑡,

𝐼2 = 𝐸 [ℎ (𝑥
V
𝑇
) − ℎ (𝑥

𝑇
)] + 𝐸 [𝛾 (𝑦

V
0) − 𝛾 (𝑦0)] .

(54)

From the definition of Hamiltonian function𝐻, we get

𝐼1 = 𝐸∫
𝑇

0
[𝐻 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
, 𝑝

V
𝑡
, 𝑞

V
𝑡
, 𝑘

V
𝑡
, 𝜌

V
𝑡
)

−𝐻 (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
)] 𝑑𝑡

+𝐸∫

𝑇

0
⟨𝑓 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
)

−𝑓 (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) , 𝑝

𝑡
⟩ 𝑑𝑡

−𝐸∫

𝑇

0
⟨𝑏 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
)

− 𝑏 (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) , 𝑞

𝑡
⟩ 𝑑𝑡 −

𝑑

∑

𝑖=1
𝐸

⋅ ∫

𝑇

0
⟨𝜎

𝑖
(𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, V

𝑡
) − 𝜎

𝑖
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑢

𝑡
) , 𝑘

𝑖

𝑡
⟩ 𝑑𝑡

−

∞

∑

𝑖=1
𝐸∫

𝑇

0
⟨𝑔

𝑖
(𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
)

− 𝑔
𝑖
(𝑥

𝑡
, 𝑦

𝑡
, r
𝑡
, 𝑢

𝑡
) , 𝜌

𝑖

𝑡
⟩ 𝑑𝑡.

(55)

By convexity of ℎ, 𝛾 and using Itô’s formula to ⟨𝑞
𝑡
, 𝑥

V
𝑡
− 𝑥

𝑡
⟩ +

⟨𝑝
𝑡
, 𝑦

V
𝑡
− 𝑦

𝑡
⟩ we can get

𝐼2 ≥ 𝐸 ⟨ℎ𝑥 (𝑥𝑇) , 𝑥
V
𝑇
−𝑥

𝑇
⟩ +𝐸⟨𝛾

𝑦
(𝑦0) , 𝑦

V
0 −𝑦0⟩

= −𝐸∫

𝑇

0
⟨𝐻

𝑥
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌t) , 𝑥

V
𝑡

−𝑥
𝑡
⟩ 𝑑𝑡

−𝐸∫

𝑇

0
⟨𝐻

𝑦
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑦

V
𝑡

−𝑦
𝑡
⟩ 𝑑𝑡 −

𝑑

∑

𝑖=1
𝐸

⋅ ∫

𝑇

0
⟨𝐻

𝑖

𝑧
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑧

𝑖V
𝑡
− 𝑧

𝑖

𝑡
⟩ 𝑑𝑡

−

∞

∑

𝑖=1
𝐸∫

𝑇

0
⟨𝐻

𝑖

𝑟
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟t, 𝑢𝑡, 𝑝𝑡, 𝑞𝑡, 𝑘𝑡, 𝜌𝑡) , 𝑟

𝑖V
𝑡

− 𝑟
𝑖

𝑡
⟩ 𝑑𝑡 −𝐸∫

𝑇

0
⟨𝑓 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
)

−𝑓 (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) , 𝑝

𝑡
⟩ 𝑑𝑡

+𝐸∫

𝑇

0
⟨𝑏 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
)

− 𝑏 (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) , 𝑞

𝑡
⟩ 𝑑𝑡 +

𝑑

∑

𝑖=1
𝐸

⋅ ∫

𝑇

0
⟨𝜎

𝑖
(𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, V

𝑡
) − 𝜎

𝑖
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑢

𝑡
) , 𝑘

𝑖

𝑡
⟩ 𝑑𝑡

+

∞

∑

𝑖=1
𝐸∫

𝑇

0
⟨𝑔

𝑖
(𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
)

− 𝑔
𝑖
(𝑥

𝑡
, 𝑦

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
) , 𝜌

𝑖

𝑡
⟩ 𝑑𝑡,

(56)
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and from (53) to (56) we have

𝐽 (V (⋅)) − 𝐽 (𝑢 (⋅))

= 𝐸∫

𝑇

0
[𝐻 (𝑥

V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
, 𝑝

V
𝑡
, 𝑞

V
𝑡
, 𝑘

V
𝑡
, 𝜌

V
𝑡
)

−𝐻 (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
)] 𝑑𝑡

− 𝐸∫

𝑇

0
⟨𝐻

𝑥
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑥

V
𝑡
−𝑥

𝑡
⟩ 𝑑𝑡

−𝐸∫

𝑇

0
⟨𝐻

𝑦
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑦

V
𝑡

−𝑦
𝑡
⟩ 𝑑𝑡 −

𝑑

∑

𝑖=1
𝐸

⋅ ∫

𝑇

0
⟨𝐻

𝑖

𝑧
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑧

𝑖V
𝑡
− 𝑧

𝑖

𝑡
⟩ 𝑑𝑡

−

∞

∑

𝑖=1
𝐸∫

𝑇

0
⟨𝐻

𝑖

𝑟
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑟

𝑖V
𝑡

− 𝑟
𝑖

𝑡
⟩ 𝑑𝑡.

(57)

Moreover, as the Hamiltonian function 𝐻 is convex in
(𝑥, 𝑦, 𝑧, 𝑟, 𝑢), the following inequality holds:

𝐻(𝑥
V
𝑡
, 𝑦

V
𝑡
, 𝑧

V
𝑡
, 𝑟

V
𝑡
, V

𝑡
, 𝑝

V
𝑡
, 𝑞

V
𝑡
, 𝑘

V
𝑡
, 𝜌

V
𝑡
)

−𝐻 (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
)

≥ ⟨𝐻
𝑥
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑥

V
𝑡
−𝑥

𝑡
⟩

+ ⟨𝐻
𝑦
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑦

V
𝑡
−𝑦

𝑡
⟩

+

𝑑

∑

𝑖=1
⟨𝐻

𝑖

𝑧
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑧

𝑖V
𝑡
− 𝑧

𝑖

𝑡
⟩

+

∞

∑

𝑖=1
⟨𝐻

𝑖

𝑟
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , 𝑟

𝑖V
𝑡
− 𝑟

𝑖

𝑡
⟩

+ ⟨𝐻
𝑢
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) , V

𝑡
−𝑢

𝑡
⟩ ,

(58)

and from (57) to (58) and together with (50) for arbitrary
admissible control V

𝑡
we have

𝐽 (V (⋅)) − 𝐽 (𝑢 (⋅)) ≥ 0, (59)

then admissible control 𝑢
𝑡
is an optimal control.

The proof is completed.

5. Applications in Linear Quadratic Problem

In this section, we will apply our stochastic maximum
principle to the linear quadratic problem which the linear

control system described by fully coupled forward-backward
stochastic differential equation driven by Lévy processes:

𝑑𝑥
𝑡
= (𝐴

𝑡
𝑥
𝑡
+𝐵

𝑡
𝑦
𝑡
+

𝑑

∑

𝑖=1
𝐶
𝑖

𝑡
𝑧
𝑖

𝑡
+

∞

∑

𝑖=1
𝐷
𝑖

𝑡
𝑟
𝑖

𝑡
+𝐸

𝑡
𝑢
𝑡
)𝑑𝑡

+

𝑑

∑

𝑖=1
(𝐹

𝑖

𝑡
𝑥
𝑡
+𝐺

𝑖

𝑡
𝑦
𝑡
+𝑉

𝑖

t 𝑧
𝑖

𝑡
+𝑊

𝑖

𝑡
𝑢
𝑡
) 𝑑𝐵

𝑖

𝑡

+

∞

∑

𝑖=1
(𝐽

𝑖

𝑡
𝑥
𝑡
−

+𝐾
𝑖

𝑡
𝑦
𝑡
−

+𝐿
𝑖

𝑡
𝑟
𝑖

𝑡
+𝑀

𝑖

𝑡
𝑢
𝑡
) 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑦
𝑡
= (𝑁

𝑡
𝑥
𝑡
+𝑃

𝑡
𝑦
𝑡
+

𝑑

∑

𝑖=1
𝑄
𝑖

𝑡
𝑧
𝑖

𝑡
+

∞

∑

𝑖=1
𝑅
𝑖

𝑡
𝑟
𝑖

𝑡
+ 𝑆

𝑡
𝑢
𝑡
)𝑑𝑡

−

𝑑

∑

𝑖=1
𝑧
𝑖

𝑡
𝑑𝐵

𝑡
−

∞

∑

𝑖=1
𝑟
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑥0 = 𝑎,

𝑦
𝑇
= ℎ𝑥

𝑇
+ 𝜉

(60)

and the cost functional:

𝐽 (𝑢)

= 𝐸 ⟨𝑄𝑥
𝑇
, 𝑥

𝑇
⟩+𝐸⟨�̃�𝑦0, 𝑦0⟩

+𝐸∫

𝑇

0
(⟨�̃�

𝑡
𝑥
𝑡
, 𝑥

𝑡
⟩+⟨�̃�

𝑡
𝑢
𝑡
, 𝑢

𝑡
⟩+⟨�̃�

𝑡
𝑦
𝑡
, 𝑦

𝑡
⟩) 𝑑𝑡

+

𝑑

∑

𝑖=1
𝐸∫

𝑇

0
⟨�̃�

𝑖

𝑡
𝑧
𝑖

𝑡
, 𝑧

𝑖

𝑡
⟩ 𝑑𝑡 +

∞

∑

𝑖=1
𝐸∫

𝑇

0
⟨�̃�

𝑖

𝑡
𝑟
𝑖

𝑡
, 𝑟
𝑖

𝑡
⟩ 𝑑𝑡,

(61)

where theF
𝑡
-predictable matrix processes

𝐴, 𝐹
𝑖
, 𝐽

𝑗
, �̃� : [0, 𝑇] ×Ω → 𝑅

𝑛×𝑛
,

𝑖 = 1, 2, . . . , 𝑑, 𝑗 = 1, 2, . . .

𝐵, 𝐶
𝑖
, 𝐷

𝑗
, 𝐺

𝑖
, 𝑉

𝑖
, 𝐾

𝑗
, 𝐿

𝑗
: [0, 𝑇] ×Ω → 𝑅

𝑛×𝑚
,

𝑖 = 1, 2, . . . , 𝑑, 𝑗 = 1, 2, . . .

𝐸,𝑊
𝑖
,𝑀

𝑗
: [0, 𝑇] ×Ω → 𝑅

𝑛×𝑘
,

𝑖 = 1, 2, . . . , 𝑑, 𝑗 = 1, 2, . . .

𝑃, 𝑄
𝑖
, 𝑅

𝑗
, �̃�, �̃�

𝑖
, �̃�

𝑗
: [0, 𝑇] ×Ω → 𝑅

𝑚×𝑚
,

𝑖 = 1, 2, . . . , 𝑑, 𝑗 = 1, 2, . . .

𝑁 : [0, 𝑇] ×Ω → 𝑅
𝑚×𝑛

,

𝑆 : [0, 𝑇] ×Ω → 𝑅
𝑚×𝑘

,

�̃� : [0, 𝑇] ×Ω → 𝑅
𝑘×𝑘

;

(62)

the F
𝑇
-predictable random matrix 𝑄 : Ω → 𝑅

𝑛×𝑛 and the
F0-predictable stochastic matrix �̃� : Ω → 𝑅

𝑚×𝑚 are all
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uniformly bounded. And 𝑎 ∈ R𝑛×𝑛, ℎ ∈ 𝐿2(Ω,F
𝑇
, 𝑃;R𝑚×𝑛

),
and 𝜉 ∈ 𝐿2(Ω,F

𝑇
, 𝑃;R𝑚

).
To study this problem, we need the assumptions on the

coefficients as follows.

Assumption 11. Thestate weightingmatrix processes �̃�, �̃�, �̃�𝑖,
and �̃�𝑗, 𝑖 = 1, 2, . . . , 𝑑, 𝑗 = 1, 2, . . ., and the control weighting
matrix process �̃� and random matrixes 𝑄 and �̃� are almost
everywhere almost surely symmetric and nonnegative. Fur-
thermore, �̃� is almost everywhere almost surely uniformly
positive; that is,𝑁 ≥ 𝛿𝐼, for some positive constant 𝛿 almost
everywhere almost surely.

Assumption 12. For the control processes there is no further
constraint:

𝑈
𝑎𝑑
= {𝑢 (⋅) : 𝑢 (⋅)

is F
𝑡
-predictable with values in R

𝑘
,

𝐸 ∫

𝑇

0
|𝑢 (𝑡)| 𝑑𝑡 <∞} .

(63)

If we denote the norm of 𝑈
𝑎𝑑

by

‖𝑢 (⋅)‖
𝑈
𝑎𝑑

= 𝐸√∫

𝑇

0
|𝑢 (𝑡)|

2
𝑑𝑡; (64)

then 𝑈
𝑎𝑑

is a Hilbert space. And by Lemma 3 we also know
that the linear FBSDEL (60) has a unique solution; that is, the
linear quadratic problem is well defined.

Theorem 13. Under Assumptions 11 and 12, LQ problems (60)
and (61) have a unique optimal control, and the optimal control
is

𝑢
𝑡
= −

1
2
�̃�

−1
𝑡
[𝐸

𝑇

𝑡
𝑞
𝑡
− 𝑆

𝑇

𝑡
𝑝
𝑡
+

𝑑

∑

𝑖=1
(𝑊

𝑖

𝑡
)
𝑇

𝑘
𝑖

𝑡

+

∞

∑

𝑖=1
(𝑀

𝑖

𝑡
)
𝑇

𝜌
𝑖

𝑡
] ;

(65)

here 𝑝, 𝑞, 𝑘, and 𝜌 are the solution of the following adjoint
FBSDEL:

𝑑𝑝
𝑡
= [𝑃

𝑡
𝑝
𝑡
−𝐵

𝑇

𝑡
𝑞
𝑡
−

𝑑

∑

𝑖=1
(𝐺

𝑖

𝑡
)
𝑇

𝑘
𝑖

𝑡
−

∞

∑

𝑖=1
(𝐾

𝑖

𝑡
)
𝑇

𝜌
i
𝑡

− 2�̃�
𝑡
𝑦
𝑡
]𝑑𝑡

−

𝑑

∑

𝑖=1
[𝑄

𝑖

𝑡
𝑝
𝑡
− (𝐶

𝑖

𝑡
)
𝑇

𝑞
𝑡
− (𝑉

𝑖

𝑡
)
𝑇

𝑘
𝑖

𝑡
− 2 (�̃�𝑖

𝑡
) 𝑧

𝑖

𝑡
] 𝑑𝐵

𝑖

𝑡

−

∞

∑

𝑖=1
[𝑅

𝑖

𝑡
𝑝
𝑖

𝑡
− (𝐷

𝑖

𝑡
)
𝑇

𝑞
𝑡
− (𝐿

𝑖

𝑡
)
𝑇

𝜌
𝑡
− 2�̃�𝑖

𝑡
𝑟
𝑖

𝑡
] 𝑑𝐻

𝑖

𝑡
,

− 𝑑𝑞
𝑡
= [𝑁

𝑇

𝑡
𝑝
𝑡
−𝐴

𝑡
𝑞
𝑡
−

𝑑

∑

𝑖=1
𝐹
𝑖

𝑡
𝑘
𝑖

𝑡
−

∞

∑

𝑖=1
𝐽
i
𝑡
𝜌
𝑖

𝑡
− 2�̃�

𝑡
𝑥
𝑡
]𝑑𝑡

−

𝑑

∑

𝑖=1
𝑘
𝑖

𝑡
𝑑𝐵

𝑡
−

∞

∑

𝑖=1
𝜌
𝑖

𝑡
𝑑𝐻

𝑖

𝑡
,

𝑝0 = − 2�̃�𝑦0,

𝑞
𝑇
= 2𝑄𝑥

𝑇
− ℎ𝑝

𝑇
.

(66)

Proof. From Assumptions 11 and 12 and inequality (29), we
can verify that the cost function 𝐽(𝑢(⋅)) (61) is strictly convex
and continuous over 𝑈

𝑎𝑑
and

lim
‖𝑢(⋅)‖

𝑈
𝑎𝑑

→∞

𝐽 (𝑢 (⋅)) = ∞; (67)

then, from Lemma 5.3 in [18], the cost function has a unique
minimal value and, together with Lemma 3 (existence and
uniqueness theorem of FBSDEL), the LQ problem has a
unique optimal control. Next, we will prove that the optimal
control 𝑢

𝑡
has an expression as (65).

Let (𝑥
𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
) be the optimal state process corre-

sponding to the optimal control 𝑢
𝑡
and let (𝑝

𝑡
, 𝑞

𝑡
, 𝑘

𝑡
, 𝜌

𝑡
) be

the unique solution to adjoint equation (66) corresponding
to the optimal pair (𝑢

𝑡
; 𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
, 𝑟
𝑡
); then the Hamiltonian

function

𝐻(𝑡, 𝑥, 𝑦, 𝑧, 𝑟, 𝑢, 𝑝, 𝑞, 𝑘, 𝜌) = −⟨𝑝,

(𝑁
𝑡
𝑥
𝑡
+𝑃

𝑡
𝑦
𝑡
+

𝑑

∑

𝑖=1
𝑄
𝑖

𝑡
𝑧
𝑖

𝑡
+

∞

∑

𝑖=1
𝑅
𝑖

𝑡
𝑟
𝑖

𝑡
+ 𝑆

𝑡
𝑢
𝑡
)⟩+⟨𝑞,

(𝐴
𝑡
𝑥
𝑡
+𝐵

𝑡
𝑦
𝑡
+

𝑑

∑

𝑖=1
𝐶
𝑖

𝑡
𝑧
𝑖

𝑡
+

∞

∑

𝑖=1
𝐷
𝑖

𝑡
𝑟
𝑖

𝑡
+𝐸

𝑡
𝑢
𝑡
)⟩+⟨𝑘,

𝑑

∑

𝑖=1
(𝐹

𝑖

𝑡
𝑥
𝑡
+𝐺

𝑖

𝑡
𝑦
𝑡
+𝑉

𝑖

𝑡
𝑧
𝑖

𝑡
+𝑊

𝑖

𝑡
𝑢
𝑡
)⟩+⟨𝜌,

∞

∑

𝑖=1
(𝐽

𝑖

𝑡
𝑥
𝑡
−

+𝐾
𝑖

𝑡
𝑦
𝑡
−

+𝐿
𝑖

𝑡
𝑟
𝑖

𝑡
+𝑀

𝑖

𝑡
𝑢
𝑡
)⟩+⟨�̃�

𝑡
𝑥
𝑡
, 𝑥

𝑡
⟩

+⟨�̃�
𝑡
𝑢
𝑡
, 𝑢

𝑡
⟩+⟨�̃�

𝑡
𝑦
𝑡
, 𝑦

𝑡
⟩+

𝑑

∑

𝑖=1
⟨�̃�

𝑖

𝑡
𝑧
𝑖

𝑡
, 𝑧

𝑖

𝑡
⟩

+

∞

∑

𝑖=1
⟨�̃�

𝑖

𝑡
𝑟
𝑖

𝑡
, 𝑟
𝑖

𝑡
⟩ .

(68)
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FromTheorem 9 and Assumption 12 we have

𝐻
𝑢
= − 𝑆

𝑇

𝑡
𝑝
𝑡
+𝐸

𝑇

𝑡
𝑞
𝑡
+

𝑑

∑

𝑖=1
(𝑊

𝑖

𝑡
)
𝑇

𝑘
𝑖

𝑡
+

∞

∑

𝑖=1
(𝑀

𝑖

𝑡
)
𝑇

𝜌
𝑖

𝑡

+ 2𝑁
𝑡
𝑢
𝑡
= 0;

(69)

that is

𝑢
𝑡
= −

1
2
�̃�

−1
𝑡
[𝐸

𝑇

𝑡
𝑞
𝑡
− 𝑆

𝑇

𝑡
𝑝
𝑡
+

𝑑

∑

𝑖=1
(𝑊

𝑖

𝑡
)
𝑇

𝑘
𝑖

𝑡

+

∞

∑

𝑖=1
(𝑀

𝑖

𝑡
)
𝑇

𝜌
𝑖

𝑡
] ;

(70)

then (65) holds.
The proof is completed.

6. Conclusion

In this paper, the continuity result depending on parameters
of forward-backward stochastic differential equation driven
by Lévy process is proved. Based on this result, we get the
stochastic maximum principle for fully coupled forward-
backward stochastic control system driven by Lévy process.
And then we use the stochastic maximum principle to solve
LQ problem.
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This paper studies the H
−

index problem. We obtain a necessary and sufficient condition of H
−

index larger than 𝛾 > 0. A
generalized differential equation is introduced and it is proved that its solvability and the feasibility of theH

−

index are equivalent.
We extend the deterministic cases to the stochastic models. Our results can be used to fault detection filter analysis. Finally, the
effectiveness of the proposed results is illustrated by an example.

1. Introduction

It is well known that many control and filtering problems
have been discussed based on a certain performance index
of a system, such asH2 norm,H

∞

norm, andH
−

index; see
[1–9].H

∞

norm is themeasure of the worst-case disturbance
inputs on the controlled outputs [1–4]. The H

−

index is
a measure of the minimum sensitivity of system outputs
to system inputs. H

∞

norm and H
−

index with specific
application to fault detection filter have been carried out in
[10–17]. To ensure robustness, H

−

index should be maxi-
mized andH

∞

norm should be minimized. UsingH
−

/H
∞

performance can make certain that the residual signal is
maximally sensitive to faults and highly robust to disturbance
inputs; see [16, 17].

In [12], H
−

index was defined as the minimum non-
zero singular value in zero frequency. In [10], the authors
extended the results of [12] to all frequency range. By means
of LMIs, a necessary and sufficient condition was given for
the infinite frequency range. The case for finite frequency
range was concluded through frequency weighting. In recent
decades, a great deal of attention has been attracted to
H
−

index in time domain. A fault residual generator was
designed to maximize the fault sensitivity in the finite time

domain [16–20]. Based onH
−

index, results on optimal fault
detection can be found in [17, 18] and the references. The
lower bound ofH

−

index for linear time-varying systemswas
proposed in [19, 20]. A sliding mode observer was designed
for sensor fault diagnosis of nonlinear time-delay systems;
see [21]. In [22], a fault-tolerant controller was projected to
compensate nonlinear faults by using a fuzzy adaptive fault
observer.

Although there is much work on theH
−

index problem,
to the best of our knowledge, very little work was concerned
with the H

−

index in stochastic systems. In this paper, the
H
−

index for stochastic linear continuous-time systems is
discussed. The definition of the H

−

index is extended to the
stochastic case. We present a necessary and sufficient con-
dition of the H

−

index. A generalized differential equation
is introduced and it is proved that its solvability and the
feasibility of the H

−

index are equivalent. Comparing our
results with the bounded real lemma [2, 9], it shows that the
H
−

index is not completely dual toH
∞

norm.TheH
−

index
discussed in this paper is only for tall or square systems. The
reason for this is thatH

−

index is zero for wide systems. But
bounded real lemma for H

∞

is applicable to any systems.
Finally, the effectiveness of the given methods is illustrated
by numerical example.
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The outline of the paper is organized as follows. In
Section 2, some efficient criteria are given for theH

−

index of
stochastic linear systems in finite horizon. Section 3 contains
an example provided to show the efficiency of the proposed
results. Finally, we conclude this paper in Section 4.

Notations. 𝑅 is the field of real numbers. 𝑅𝑚×𝑛 is the vector
space of all 𝑚 × 𝑛 matrices with entries in 𝑅. S

𝑛

(𝑅) is the
set of all real symmetric matrices 𝑅𝑛×𝑛. 𝐴 is the transpose of
matrix𝐴. 𝐴−1 is the inverse of𝐴. Given positive semidefinite
(positive definite) matrix 𝐴, we denote it by 𝐴 ≥ 0 (𝐴 > 0). 𝐸
is themathematical expectation. 𝐼 is identitymatrix. 0

𝑛

is 𝑛×𝑛

zero matrix. L2
F([0, 𝑇], 𝑅

𝑝

) is the space of nonanticipative
stochastic process 𝑦(𝑡) ∈ 𝑅

𝑝 with respect to increasing 𝜎-
algebras F

𝑡

(𝑡 ≥ 0) satisfying ‖𝑦(𝑡)‖

2
[0,𝑇] < ∞, where

‖𝑦(𝑡)‖

2
[0,𝑇] = 𝐸∫

𝑇

0 𝑦(𝑡)



𝑦(𝑡)𝑑𝑡 = 𝐸∫

𝑇

0 ‖𝑦(𝑡)‖

2
𝑑𝑡. A square

(wide or tall) system denotes a system when the number of
inputs equals (is more than or less than) the outputs number.

2. Finite Horizon Stochastic H
−

Index

In this section, we will discuss the H
−

index problem of
stochastic linear continuous-time systems. We give a neces-
sary and sufficient condition of the H

−

index larger than
𝛾 > 0 in finite horizon.

Consider the following stochastic linear time-varying
systemG:

𝑑𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) V (𝑡)] 𝑑𝑡

+ [𝐴0 (𝑡) 𝑥 (𝑡) + 𝐵0 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) +𝐷 (𝑡) V (𝑡) , 𝑥 (0) = 𝑥0.

(1)

In the above, 𝜔(𝑡) is the one-dimensional standard Wiener
process defined on the complete probability space (Ω,F,P),
with the natural filter F

𝑡

generated by 𝜔(𝑡) up to time 𝑡.
Consider 𝑥(𝑡) ∈ 𝑅

𝑛, V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), and 𝑧(𝑡) ∈

𝑅

𝑙 are the system state, control input, and regulated output,
respectively. 𝐴(𝑡), 𝐵(𝑡), 𝐴0(𝑡), 𝐵0(𝑡), 𝐶(𝑡), and 𝐷(𝑡) are
coefficients with appropriate dimensions. For any 0 < 𝑇 < ∞

and (V(𝑡), 𝑥0) ∈ L2
F([0, 𝑇], 𝑅

𝑝

) × 𝑅

𝑛, there exists unique
solution 𝑥(𝑡) = 𝑥(𝑡; V, 𝑥0) ∈ L2

F([0, 𝑇], 𝑅

𝑛

) of (1).
The finite horizon stochastic H

−

index of system (1) can
be stated as follows.

Definition 1. For stochastic system (1), given 0 < 𝑇 < ∞, its
H
−

index in [0, 𝑇] is defined as

‖G‖

[0,𝑇]
−

= inf
V ̸=0,𝑥0=0

‖𝑧 (𝑡)‖

[0,𝑇]

‖V (𝑡)‖

[0,𝑇]

= inf
V ̸=0,𝑥0=0

{𝐸∫

𝑇

0 𝑧 (𝑡)



𝑧 (𝑡) 𝑑𝑡}

1/2

{𝐸∫

𝑇

0 V (𝑡)

 V (𝑡) 𝑑𝑡}

1/2 ,

(2)

where V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

).

Remark 2. If V is fault signal and 𝑧 is the residual, then the
H
−

index describes the smallest fault sensitivity of system
(1). In this paper, we suppose that system (1) is tall or
square because theH

−

index is zero for wide system.

Given 𝛾 > 0 and 0 < 𝑇 < ∞, let

𝐽

𝛾

𝑇

(𝑥0, V) = ‖𝑧 (𝑡)‖

2
[0,𝑇] − 𝛾

2
‖V (𝑡)‖

2
[0,𝑇]

= 𝐸∫

𝑇

0
[𝑧 (𝑡)



𝑧 (𝑡) − 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡.

(3)

We will study the following optimal problem:

min
V∈L2

F
([0,𝑇],𝑅𝑝)

𝐽

𝛾

𝑇

(𝑥0, V) . (4)

Remark 3. It can be shown that ‖G‖

[0,𝑇]
−

> 𝛾 is equivalent to
the following inequality

𝐽

𝛾

𝑇

(0, V) = ‖𝑧 (𝑡)‖

2
[0,𝑇] − 𝛾

2
‖V (𝑡)‖

2
[0,𝑇]

= 𝐸∫

𝑇

0
[𝑧 (𝑡)



𝑧 (𝑡) − 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡 > 0,
(5)

∀V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), V(𝑡) ̸= 0.

Remark 4. When 𝑇 = ∞, (2) corresponds to the infinite
horizon case.

Lemma 5. Suppose 𝑃(𝑡) : [0, 𝑇] → S𝑛(𝑅) is continuously
differentiable, 𝑇 > 0. Then, for every 𝑥0 ∈ 𝑅

𝑛, V(𝑡) ∈

L2
F([0, 𝑇], 𝑅

𝑝

),

𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0

𝑃 (0) 𝑥0 −𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)]

+𝐸∫

𝑇

0
[[

𝑥 (𝑡)

V (𝑡)

]



M (𝑡, 𝑃 (𝑡)) [

𝑥 (𝑡)

V (𝑡)

]] 𝑑𝑡,

(6)

whereM(𝑡, 𝑃(𝑡)) = [

𝐿(𝑃(𝑡))+

̇

𝑃(𝑡) 𝐾(𝑃(𝑡))

𝐾(𝑃(𝑡))


𝐻

𝛾
(𝑃(𝑡))

] ∈ S𝑛+𝑙(𝑅),

𝐿 (𝑃 (𝑡)) = 𝑃 (𝑡) 𝐴 (𝑡) +𝐴 (𝑡)



𝑃 (𝑡)

+𝐴0 (𝑡)


𝑃 (𝑡) 𝐴0 (𝑡) +𝐶 (𝑡)



𝐶 (𝑡) ,
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𝐾 (𝑃 (𝑡)) = 𝑃 (𝑡) 𝐵 (𝑡) +𝐴0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡)

+𝐶 (𝑡)



𝐷 (𝑡) ,

𝐻

𝛾

(𝑃 (𝑡)) = 𝐵0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡) +𝐷 (𝑡)



𝐷 (𝑡) − 𝛾

2
𝐼.

(7)

Proof. Let 𝑥0 ∈ 𝑅

𝑛, V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), and 𝑥(𝑡) =

𝑥(𝑡; V, 𝑥0) denote the corresponding solution of (1). Applying

Ito’s formula to 𝑥(𝑡)



𝑃(𝑡)𝑥(𝑡) and taking expectations, we
have that, for any 𝑇 > 0,

𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)] − [𝑥 (0) 𝑃 (0) 𝑥 (0)]

= 𝐸∫

𝑇

0
𝑑 [𝑥 (𝑡)



𝑃 (𝑡) 𝑥 (𝑡)]

= 𝐸∫

𝑇

0
[

𝑥 (𝑡)

V (𝑡)

]



Q (𝑡, 𝑃 (𝑡)) [

𝑥 (𝑡)

V (𝑡)

] 𝑑𝑡,

(8)

where

Q (𝑡, 𝑃 (𝑡)) =

[

[

𝑃 (𝑡) 𝐴 (𝑡) + 𝐴 (𝑡)



𝑃 (𝑡) + 𝐴0 (𝑡)


𝑃 (𝑡) 𝐴0 (𝑡) + ̇

𝑃 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) + 𝐴0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡)

𝐵 (𝑡)



𝑃 (𝑡) + 𝐵0 (𝑡)


𝑃 (𝑡) 𝐴0 (𝑡) 𝐵0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡)

]

]

. (9)

So

𝐽

𝛾

𝑇

(𝑥0, V) = 𝐸∫

𝑇

0
[‖𝐶𝑥 (𝑡) +𝐷V (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
] 𝑑𝑡

+ 𝑥 (0) 𝑃 (0) 𝑥 (0)

− 𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)]

+𝐸∫

𝑇

0
[

[

𝑥 (𝑡)

V (𝑡)

]

]



Q (𝑡, 𝑃 (𝑡))

[

[

𝑥 (𝑡)

V (𝑡)

]

]

𝑑𝑡

= 𝑥 (0) 𝑃 (0) 𝑥 (0) − 𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)]

+𝐸∫

𝑇

0
[

[

𝑥 (𝑡)

V (𝑡)

]

]



M (𝑡, 𝑃 (𝑡))

[

[

𝑥 (𝑡)

V (𝑡)

]

]

𝑑𝑡,

(10)

which ends the proof.

Below, we prove the following theoremwhich is necessary
in this paper.

Theorem 6. For (1) and some given 𝛾 > 0, if the following
differential Riccati equation

𝐿 (𝑃 (𝑡)) +

̇

𝑃 (𝑡) = 𝐾 (𝑃 (𝑡))𝐻

𝛾

(𝑃 (𝑡))

−1
𝐾 (𝑃 (𝑡))



,

𝐻

𝛾

(𝑃 (𝑡)) > 0,

𝑃 (𝑇) = 0

(11)

admits solution 𝑃

𝑇

(𝑡) on [0, 𝑇], then ‖G‖

[0,𝑇]
−

> 𝛾.

Proof. By Lemma 5, for every V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), V ̸= 0,
𝑥0 = 0, we conclude that

𝐽

𝛾

𝑇

(0, V) = 𝐸∫

𝑇

0
[

[

𝑥 (𝑡)

V (𝑡)

]

]



M (𝑡, 𝑃

𝑇

(𝑡))

[

[

𝑥 (𝑡)

V (𝑡)

]

]

𝑑𝑡.

(12)

By using completion of squares argument and the first equal-
ity in (11), we have

𝐽

𝛾

𝑇

(0, V) = 𝐸∫

𝑇

0
𝑥 (𝑡)



[𝐿 (𝑃

𝑇

(𝑡)) +

̇

𝑃

𝑇

(𝑡) −𝐾 (𝑃

𝑇

(𝑡))

⋅𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



] 𝑥 (𝑡) 𝑑𝑡

+𝐸∫

𝑇

0
{[V (𝑡) +𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥 (𝑡)]



⋅ 𝐻

𝛾

(𝑃

𝑇

(𝑡))

⋅ [V (𝑡) +𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥 (𝑡)]} 𝑑𝑡

= 𝐸∫

𝑇

0
{[V (𝑡) − V∗ (𝑡)]𝐻𝛾 (𝑃

𝑇

(𝑡))

⋅ [V (𝑡) − V∗ (𝑡)]} 𝑑𝑡,

(13)

where V∗(𝑡) = −𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥(𝑡).
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From 𝐻

𝛾

(𝑃

𝑇

(𝑡)) > 0, 𝐽𝛾
𝑇

(0, V) ≥ 0, to show 𝐽

𝛾

𝑇

(0, V) > 0,
we define the operator L: LV(𝑡) = V(𝑡) − V∗(𝑡) with its
realization:

𝑑𝑥 (𝑡) = (𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) V (𝑡)) 𝑑𝑡

+ [𝐴0 (𝑡) 𝑥 (𝑡) + 𝐵0 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑥 (0) = 0,

V (𝑡) − V∗ (𝑡) = V (𝑡) +𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥 (𝑡) .

(14)

ThenL−1 exists, which is determined by

𝑑𝑥 (𝑡) = [𝐴 (𝑡) − 𝐵 (𝑡)𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
(𝐵 (𝑡)



𝑃

𝑇

(𝑡)

+ 𝐵0 (𝑡)


𝑃

𝑇

(𝑡) 𝐴0 (𝑡) +𝐷 (𝑡)



𝐶 (𝑡))] 𝑥 (𝑡) 𝑑𝑡

+ [𝐴0 (𝑡) − 𝐵0 (𝑡)𝐻
𝛾

(𝑃

𝑇

(𝑡))

−1
(𝐵 (𝑡)



𝑃

𝑇

(𝑡)

+ 𝐵



0 (𝑡) 𝑃𝑇 (𝑡) 𝐴0 (𝑡) +𝐷 (𝑡)



𝐶 (𝑡))] 𝑥 (𝑡) 𝑑𝜔 (𝑡)

+ 𝐵 (𝑡) (V (𝑡) − V∗ (𝑡)) 𝑑𝑡 + 𝐵0 (𝑡) (V (𝑡) − V∗ (𝑡)) 𝑑𝜔 (𝑡) ,

𝑥0 = 0,

(15)

where V(𝑡) = −𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥(𝑡) + (V(𝑡) − V∗(𝑡)).
We assume that 𝐻

𝛾

(𝑃

𝑇

(𝑡)) ≥ 𝜖𝐼, 𝜖 > 0, so there exists
constant 𝐶0 > 0, such that

𝐽

𝛾

𝑇

(0, V)

= 𝐸∫

𝑇

0
[V (𝑡) − V∗ (𝑡)]𝐻𝛾 (𝑃

𝑇

(𝑡)) [V (𝑡) − V∗ (𝑡)] 𝑑𝑡

≥ 𝜖









V (𝑡) − V∗ (𝑡)




2
[0,𝑇] = 𝜖 ‖LV (𝑡)‖

2
[0,𝑇]

≥ 𝐶0 ‖V (𝑡)‖

2
[0,𝑇] > 0.

(16)

That is, ‖G‖

[0,𝑇]
−

> 𝛾.
Now, we consider the following equation:

̇

𝑋 (𝑡) + 𝐿 (𝑋 (𝑡)) +𝐾 (𝑋 (𝑡)) 𝐹 (𝑡) + 𝐹 (𝑡)



𝐾 (𝑋 (𝑡))



+𝐹 (𝑡)



𝐻

𝛾

(𝑋 (𝑡)) 𝐹 (𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑋 (𝑇) = 0,

(17)

where 𝐹(𝑡) ∈ 𝐶[0, 𝑇] and this equation has unique solution
𝑋(𝑡) = 𝑃

𝛾

𝐹

(𝑡), 𝑡 ∈ [0, 𝑇].

It is easy to see that (17) satisfies the following equation:

̇

𝑃

𝛾

𝐹

(𝑡) + [

𝐼

𝐹 (𝑡)

]



[

𝐿 (𝑃

𝛾

𝐹

(𝑡)) 𝐾 (𝑃

𝛾

𝐹

(𝑡))

𝐾 (𝑃

𝛾

𝐹

(𝑡))



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡))

] [

𝐼

𝐹 (𝑡)

]

= 0, 𝑡 ∈ [0, 𝑇] ,

𝑃

𝛾

𝐹

(𝑇) = 0.

(18)

Lemma 7. Suppose 𝐹(𝑡) ∈ 𝐶[0, 𝑇] and 𝑃

𝛾

𝐹

(𝑡) is the solution of
(18). Then if V(𝑡) ∈ L2

F([0, 𝑇], 𝑅

𝑝

), one obtains

𝐽

𝛾

𝑇

(𝑥0, V+𝐹𝑥

𝐹

) = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
[V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡) + 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡)

+ V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)] 𝑑𝑡,

(19)

where 𝑥

𝐹

(𝑡) = 𝑥(𝑡, 𝐹(𝑡)𝑥

𝐹

(𝑡) + V(𝑡), 𝑥0) is the solution of

𝑑𝑥

𝐹

(𝑡) = (𝐴 (𝑡) + 𝐵 (𝑡) 𝐹 (𝑡)) 𝑥

𝐹

(𝑡) 𝑑𝑡

+ (𝐴0 (𝑡) + 𝐵0 (𝑡) 𝐹 (𝑡)) 𝑥

𝐹

(𝑡) 𝑑𝑤 (𝑡)

+ 𝐵0 (𝑡) V (𝑡) 𝑑𝑤 (𝑡) + 𝐵 (𝑡) V (𝑡) 𝑑𝑡

(20)

with 𝑥

𝐹

(0) = 𝑥0 and

𝐺 (𝑡) = 𝐾 (𝑃

𝛾

𝐹

(𝑡))



+𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) 𝐹 (𝑡) .

(21)

As V = 0, then

𝐽

𝛾

𝑇

(𝑥0, 𝐹𝑥𝐹) = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0. (22)

Proof. In terms of Lemma 5with𝑃(𝑡) = 𝑃

𝛾

𝐹

(𝑡) and𝐹(𝑡)𝑥

𝐹

(𝑡)+

V(𝑡) for V(𝑡),

𝐽

𝛾

𝑇

(𝑥0, V+𝐹𝑥

𝐹

) = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
{[

𝑥

𝐹

(𝑡)

𝐹 (𝑡) 𝑥

𝐹

(𝑡) + V (𝑡)

]



M (𝑡, 𝑃

𝛾

𝐹

(𝑡))

⋅ [

𝑥

𝐹

(𝑡)

𝐹 (𝑡) 𝑥

𝐹

(𝑡) + V (𝑡)

]}𝑑𝑡 = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
{𝑥

𝐹

(𝑡)



[

𝐼

𝐹 (𝑡)

]



⋅ [

𝐿 (𝑃

𝛾

𝐹

(𝑡)) +

̇

𝑃

𝛾

𝐹

(𝑡) 𝐾 (𝑃

𝛾

𝐹

(𝑡))

𝐾 (𝑃

𝛾

𝐹

(𝑡))



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡))

] [

𝐼

𝐹 (𝑡)

] 𝑥

𝐹

(𝑡)} 𝑑𝑡
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+𝐸∫

𝑇

0
{V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡) + 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡)

+ V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)} 𝑑𝑡 = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
{V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡) + 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡)

+ V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)} 𝑑𝑡.

(23)

This means that (19) holds. Let V = 0 in (19); we obtain (22).
Now we are in a position to prove that 𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) is
invertible for 𝑡 ∈ [0, 𝑇].

Lemma 8. For system (1), if ‖G‖

[0,𝑇]
−

> 𝛾 for some given 𝛾 > 0,
𝐹(𝑡) ∈ 𝐶[0, 𝑇], 𝑇 > 0, and 𝑃

𝛾

𝐹

(𝑡) satisfies (18). Then,

𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) ≥ [(‖G‖

[0,𝑇]
−

)

2
− 𝛾

2
] 𝐼 > 0, 𝑡 ∈ [0, 𝑇] . (24)

Proof. Let us first prove that 𝐻𝛾(𝑃𝛾
𝐹

(𝑡)) ≥ 0. Suppose this is
false; then there exists 𝑡

∗

∈ [0, 𝑇), 𝑢 ∈ 𝑅

𝑙, ‖𝑢‖ = 1 such that
𝑢



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡

∗

))𝑢 ≤ −𝜂 for some 𝜂 > 0. Then, for sufficiently
small 𝛿 > 0,

𝑢



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) 𝑢 ≤ −

𝜂

2
, 𝑡 ∈ [𝑡

∗

, 𝑡

∗

+ 𝛿] ⊂ [0, 𝑇] . (25)

Define

V (𝑡) =

{

{

{

0, 𝑡 ∈ [0, 𝑡∗) ∪ (𝑡

∗

+ 𝛿, 𝑇] ,

𝑢, 𝑡 ∈ [𝑡

∗

, 𝑡

∗

+ 𝛿] .

(26)

Using Lemma 7 with this V(𝑡) and 𝑥0 = 0, we can derive that
𝑥

𝐹

(𝑡) = 0 for 𝑡 ∈ [0, 𝑡∗] and

𝐽

𝛾

𝑇

(0, V) = 𝐸∫

𝑇

0
[









𝐶 (𝑡) 𝑥

𝐹

(𝑡) +𝐷 (𝑡) V (𝑡)









2

− 𝛾

2
‖V (𝑡)‖

2
] 𝑑𝑡 = 𝐸∫

𝑇

0
[V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡)

+ 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡) + V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)] 𝑑𝑡

≤ 𝐸∫

𝑡

∗
+𝛿

𝑡

∗

(2 









𝐺 (𝑡)



𝑢



















𝑥

𝐹

(𝑡)









−

𝜂

2
)𝑑𝑡.

(27)

Since 𝑥

𝐹

(𝑡) is continuous and 𝑥

𝐹

(𝑡

∗

) = 0, (27) is negative.
Moreover, the condition ‖G‖

[0,𝑇]
−

> 𝛾 implies 𝐽

𝛾

𝑇

(0, V) ≥ 0.
As a result, this is a contradiction. If 𝑡∗ = 𝑇, we can replace
[𝑡

∗

, 𝑡

∗

+ 𝛿] by [𝑇 − 𝛿, 𝑇] and use a similar proof.
Next, let ‖G‖

[0,𝑇]
−

> (𝛾

2
+𝜌

2
)

1/2 for any 𝜌 > 0 and 𝜆 = (𝛾

2
+

𝜌

2
)

1/2. Replacing 𝛾 with 𝜆 in (18), we obtain the correspond-
ing solution 𝑃

𝜆

𝐹

(𝑡). Applying the previous step, we can deduce

that 𝐻𝜆(𝑃𝜆
𝐹

(𝑡)) ≥ 0. For any 𝑡0 ∈ [0, 𝑇), set 𝐹
𝑡0

= 𝐹(𝑡 + 𝑡0),
𝑡 ∈ [0, 𝑇−𝑡0]. Let𝑃

𝜆

𝐹𝑡0
(𝑡) be the solution of (18) with 𝛾 replaced

by 𝜆 and 𝐹 replaced by 𝐹

𝑡0
on [0, 𝑇 − 𝑡0]. Then, 𝑃𝜆

𝐹𝑡0
(𝑡) =

𝑃

𝜆

𝐹

(𝑡 + 𝑡0), 𝑡 ∈ [0, 𝑇 − 𝑡0]. By (22), for any 𝑡0 ∈ [0, 𝑇), 𝑥0 ∈ 𝑅

𝑛,

𝑥



0𝑃
𝜆

𝐹

(𝑡0) 𝑥0 = 𝑥



0𝑃
𝜆

𝐹𝑡0
(0) 𝑥0 = 𝐽

𝜆

𝑇−𝑡0
(𝑥0, 𝐹𝑡0𝑥𝐹𝑡0

)

≤ 𝐽

𝛾

𝑇−𝑡0
(𝑥0, 𝐹𝑡0𝑥𝐹𝑡0

) = 𝑥



0𝑃
𝛾

𝐹

(𝑡0) 𝑥0,

(28)

and so 𝐻

𝜆

(𝑃

𝛾

𝐹

(𝑡0)) ≥ 𝐻

𝜆

(𝑃

𝜆

𝐹

(𝑡0)) ≥ 0. By continuity,
𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) ≥ 𝜌

2
𝐼 for all 𝑡 ∈ [0, 𝑇]. As this holds for arbitrary

𝜌

2
< (‖G‖

[0,𝑇]
−

)

2
−𝛾

2, it follows that𝐻𝛾(𝑃𝛾
𝐹

(𝑡)) ≥ [(‖G‖

[0,𝑇]
−

)

2
−

𝛾

2
]𝐼 > 0. This completes the proof.

Remark 9. When 𝑡 = 𝑇, (24) becomes 𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑇)) =

𝐷(𝑇)



𝐷(𝑇) − 𝛾

2
𝐼 > 0. If system (1) is time-invariant, then

𝐷



𝐷−𝛾

2
𝐼 > 0. (29)

Remark 10. By the equality 𝐴(𝐼 − 𝐵𝐴)

−1
= (𝐼 − 𝐴𝐵)

−1
𝐴, we

have that 𝐶[𝐼 − 𝐷(𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



]𝐶 = 𝐶



(𝐼 − 𝛾

−2
𝐷𝐷



)

−1
𝐶.

If system (1) is time-invariant and square, by (29),

𝐶



[𝐼 −𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶

= 𝐶



(𝐼 − 𝛾

−2
𝐷𝐷



)

−1
𝐶 ≤ 0.

(30)

Now, we present the following theorem which is impor-
tant in this paper.

Theorem 11. Suppose system (1) is time-invariant and square
and satisfies ‖G‖

[0,𝑇]
−

> 𝛾 for given 𝛾 ≤ 0. Then (11) has a
unique solution 𝑃

𝑇

(𝑡) ≤ 0 on [0, 𝑇] for every 𝑇 > 0. Moreover,
𝐽

𝛾

𝑇

(𝑥0, V) is minimized by the feedback control:

V∗ (𝑡) = 𝐹

𝑇

(𝑡) 𝑥

𝐹𝑇
(𝑡) ,

𝐹

𝑇

(𝑡) = −𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



,

(31)

where 𝑥

𝐹𝑇
(𝑡) satisfies

𝑑𝑥

𝐹𝑇
(𝑡) = (𝐴+𝐵𝐹

𝑇

(𝑡)) 𝑥

𝐹𝑇
(𝑡) 𝑑𝑡

+ [𝐴0 +𝐵0𝐹𝑇 (𝑡)] 𝑥𝐹𝑇 (𝑡) 𝑑𝑤 (𝑡) ,

𝑥

𝐹𝑇
(0) = 𝑥0

(32)

and the optimal cost is

min
V∈L2

F
([0,𝑇],𝑅𝑝)

𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0𝑃𝑇 (0) 𝑥0. (33)
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Proof. We prove that ‖G‖

[0,𝑇]
−

> 𝛾 implies the existence
of solution 𝑃

𝑇

(𝑡) of (11) on [0, 𝑇]. Using a contradiction
argument, we suppose that (11) does not admit a solu-
tion. By the standard theory of differential equations, there
exists unique solution 𝑃

𝑇

(𝑡) backward in time on maximal
interval [𝑇0, 𝑇] (𝑇0 ≥ 0), and as 𝑡 → 𝑇0, 𝑃𝑇(𝑡) becomes
unbounded.

Let 0 < 𝛿 < 𝑇 − 𝑇0, 𝑥(𝑇0 + 𝛿) = 𝑥

𝑇0 ,𝛿
∈ 𝑅

𝑛, 𝑄(𝑡) =

𝐵



𝑃

𝑇

(𝑡) + 𝐵



0𝑃𝑇(𝑡)𝐴0 + 𝐷



𝐶, 𝑅(𝑡) = 𝐵



0𝑃𝑇(𝑡)𝐵0 + 𝐷



𝐷 − 𝛾

2
𝐼,

by completing the squares; then

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝐸∫

𝑇

𝑇0+𝛿
[𝑧 (𝑡)



𝑧 (𝑡)

− 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡 = 𝐸∫

𝑇

𝑇0+𝛿
[𝑧 (𝑡)



𝑧 (𝑡)

− 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡 + 𝐸∫

𝑇

𝑇0+𝛿
𝑑 (𝑥 (𝑡)



𝑃

𝑇

(𝑡) 𝑥 (𝑡)) 𝑑𝑡

+ 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
= 𝐸∫

𝑇

𝑇0+𝛿
𝑥 (𝑡)



[𝐶



𝐶

+𝐴



𝑃

𝑇

(𝑡) + 𝑃

𝑇

(𝑡) 𝐴 +𝐴



0𝑃𝑇 (𝑡) 𝐴0 + ̇

𝑃

𝑇

(𝑡)

−𝑄 (𝑡)



𝑅 (𝑡)

−1
𝑄 (𝑡)] 𝑥 (𝑡) 𝑑𝑡 + 𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)

+ 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)]



𝑅 (𝑡) [V (𝑡)

+ 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)] 𝑑𝑡 + 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿

= 𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡) + 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)]



𝑅 (𝑡) [V (𝑡)

+ 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)] 𝑑𝑡 + 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
.

(34)

Obviously,

min
V∈L2

F
([𝑇0+𝛿,𝑇],𝑅

𝑝
)

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)

= 𝐽

𝛾

(𝑥, V∗, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
,

(35)

where V∗(𝑡) = −𝑅(𝑡)

−1
𝑄(𝑡)𝑥(𝑡).

Furthermore, we can see that

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝐸∫

𝑇

𝑇0+𝛿
[𝑧 (𝑡)



𝑧 (𝑡)

− 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡

= 𝐸∫

𝑇

𝑇0+𝛿
{[𝐶𝑥 (𝑡) +𝐷V (𝑡)]



[𝐶𝑥 (𝑡) +𝐷V (𝑡)]

− 𝛾

2V (𝑡)

 V (𝑡)} 𝑑𝑡 = 𝐸∫

𝑇

𝑇0+𝛿
𝑥 (𝑡)



𝐶



[𝐼

−𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝑡) 𝑑𝑡 +𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)

+ (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)]



(𝐷



𝐷−𝛾

2
𝐼) [V (𝑡)

+ (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)] 𝑑𝑡.

(36)

From Remark 10,

𝐽

𝛾

(𝑥, Ṽ, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝐸∫

𝑇

𝑇0+𝛿
𝑥 (𝑡)



⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝑡) 𝑑𝑡 ≤ 0,

(37)

where Ṽ(𝑡) = −(𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥(𝑡). Considering (35), we
get

𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
≤ 𝐽

𝛾

(𝑥, Ṽ, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) ≤ 0, (38)

which implies that

𝑃

𝑇

(𝑇0 + 𝛿) ≤ 0. (39)

By linearity, the solution of (1) with initial state 𝑥

𝑇0 ,𝛿
satisfies

𝑥 (𝑡, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)

+ 𝑥 (𝑡, V, 0, 𝑇0 + 𝛿) .

(40)

Suppose Φ(𝑡) is the solution of

𝐶



𝐶+𝐴



Φ (𝑡) +Φ (𝑡) 𝐴+𝐴



0Φ (𝑡) 𝐴0 + ̇

Φ (𝑡) = 0,

Φ (𝑇) = 0,
(41)

and we have

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) − 𝐽

𝛾

(𝑥, V, 0, 𝑇0 + 𝛿)

= 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
+𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)



⋅ (𝐵



0Φ (𝑡) +𝐷



𝐶)𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)] 𝑑𝑡

+𝐸∫

𝑇

𝑇0+𝛿
[𝑥 (𝑡, 0, 𝑥

𝑇0 ,𝛿
, 𝑇0 + 𝛿)



(𝐵



0Φ (𝑡) +𝐷



𝐶)



⋅ V (𝑡)] 𝑑𝑡.

(42)
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Take ‖G‖

[0,𝑇]
−

≥ (𝛾

2
𝜖

2

)

1/2,

V (𝑡)

=

{

{

{

Ṽ (𝑡) = − (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡) , 𝑡 ∈ [0, 𝑇0 + 𝛿]

V (𝑡) , 𝑡 ∈ (𝑇0 + 𝛿, 𝑇] ,

(43)

and it is easy to show that

𝐽

𝛾

(𝑥, V, 0, 𝑇0 + 𝛿) = 𝐸∫

𝑇

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
) 𝑑𝑡

−𝐸∫

𝑇0+𝛿

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖Ṽ (𝑡)‖

2
) 𝑑𝑡

= 𝐸∫

𝑇

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
) 𝑑𝑡 −𝐸∫

𝑇0+𝛿

0
𝑥 (𝑡)



⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝑡) 𝑑𝑡

−𝐸∫

𝑇0+𝛿

0
[Ṽ (𝑡) + (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)]



⋅ (𝐷



𝐷−𝛾

2
𝐼)

⋅ [Ṽ (𝑡) + (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)] 𝑑𝑡

≥ 𝐸∫

𝑇

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
) 𝑑𝑡 ≥ 𝜖

2

‖V (𝑡)‖

2
[0,𝑇]

≥ 𝜖

2

‖V (𝑡)‖

2
[𝑇0+𝛿,𝑇]

.

(44)

It follows that

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) ≥ 𝐸∫

𝑇

𝑇0+𝛿
𝜖

2

‖V (𝑡)‖

2
𝑑𝑡

+ 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
+𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)



(𝐵



0Φ (𝑡)

+𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)] 𝑑𝑡

+𝐸∫

𝑇

𝑇0+𝛿
[𝑥 (𝑡, 0, 𝑥

𝑇0 ,𝛿
, 𝑇0 + 𝛿)



(𝐵



0Φ (𝑡) +𝐷



𝐶)



⋅ V (𝑡)] 𝑑𝑡 = 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
+𝐸∫

𝑇

𝑇0+𝛿











𝜖 [V

− 𝜖

−2

(𝐵



0Φ (𝑡) + 𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)]











2
𝑑𝑡

−𝐸∫

𝑇

𝑇0+𝛿











𝜖

−1

(𝐵



0Φ (𝑡) +𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0

+ 𝛿)











2
𝑑𝑡 ≥ 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿

−𝐸∫

𝑇

𝑇0+𝛿











𝜖

−1

(𝐵



0Φ (𝑡) +𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0

+ 𝛿)











2
𝑑𝑡.

(45)

It is obvious that there exists constant 𝐶0 > 0 such that

𝐶2










𝑥

𝑇0 ,𝛿











2
≥ 𝐸∫

𝑇

𝑇0+𝛿











𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)











2
𝑑𝑡. (46)

So, there is constant 𝐶1 > 0 such that

𝐸∫

𝑇

𝑇0+𝛿











𝜖

−1

(𝐵



0Φ (𝑡) +𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)











2
𝑑𝑡

≤ 𝐶1










𝑥

𝑇0 ,𝛿











2
.

(47)

In addition,

𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿

= −𝐸∫

𝑇

𝑇0+𝛿
𝑑 (𝑥 (𝑡)



Φ (𝑡) 𝑥 (𝑡))

= 𝐸∫

𝑇

𝑇0+𝛿











𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)𝐶











2
𝑑𝑡 ≥ 0.

(48)

From (45), we have

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) ≥ −𝐶1










𝑥

𝑇0 ,𝛿











2
.

(49)

In view of (35) and (39), it yields

−𝐶1 ≤ 𝑃

𝑇

(𝑇0 + 𝛿) ≤ 0. (50)

So, 𝑃
𝑇

(𝑇0 + 𝛿) can not become unbounded as 𝛿 → 0, which
means that (11) has unique solution 𝑃

𝑇

(𝑡) on [0, 𝑇].
Setting 𝐹(𝑡) = 𝐹

𝑇

(𝑡), 𝑡 ∈ [0, 𝑇], in (17), from (31), we
obtain

̇

𝑃

𝑇

(𝑡) + 𝐿 (𝑃

𝑇

(𝑡)) +𝐾 (𝑃

𝑇

(𝑡)) 𝐹 (𝑡)

+ 𝐹 (𝑡)



𝐾(𝑃

𝑇

(𝑡))



+𝐹 (𝑡)



𝐻

𝛾

(𝑃

𝑇

(𝑡)) 𝐹 (𝑡) = 0.
(51)

Hence 𝑃

𝑇

(𝑡) satisfies (17), or equivalently (18). So

𝑃

𝛾

𝐹𝑇
(𝑡) = 𝑃

𝑇

(𝑡) , 𝑡 ∈ [0, 𝑇] . (52)

By (31),

𝐺 (𝑡) = 𝐾 (𝑃

𝑇

(𝑡))



+𝐻

𝛾

(𝑃

𝑇

(𝑡)) 𝐹

𝑇

(𝑡) = 0, (53)
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and, in terms of Lemma 7,

𝐽

𝛾

𝑇

(𝑥0, V+𝐹

𝑇

𝑥)

= 𝑥



0𝑃𝑇 (0) 𝑥0 +𝐸∫

𝑇

0
[V (𝑡)



𝐻

𝛾

(𝑃

𝑇

(𝑡)) V (𝑡)] 𝑑𝑡.

(54)

But by Lemma 8,

𝐻

𝛾

(𝑃

𝑇

(𝑡)) = 𝐻

𝛾

(𝑃

𝛾

𝐹𝑇
(𝑡)) ⪰ [(‖G‖

[0,𝑇]
−

)

2
− 𝛾

2
] 𝐼

≻ 0, 𝑡 ∈ [0, 𝑇] .

(55)

Hence, V∗(𝑡) = 𝐹

𝑇

(𝑡)𝑥(𝑡) minimizes 𝐽

𝛾

𝑇

(𝑥0, V) and
minV∈L2

F
([0,𝑇],𝑅𝑝)𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0𝑃𝑇(0)𝑥0.

According to Theorems 6 and 11, we get the following
theorem.

Theorem 12. If system (1) is time-invariant and square, for
given 𝛾 > 0, the following are equivalent:

(i) Consider ‖G‖

[0,𝑇]
−

> 𝛾.

(ii) The following equation

𝑃 (𝑡) 𝐴+𝐴



𝑃 (𝑡) +𝐴



0𝑃 (𝑡) 𝐴0 +𝐶



𝐶+

̇

𝑃 (𝑡)

= (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)

⋅ (𝐵



0𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼)

−1

⋅ (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)



,

𝐵



0𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼 > 0,

𝑃 (𝑇) = 0

(56)

has unique solution 𝑃

𝑇

(𝑡) ≤ 0 on [0, 𝑇]. Moreover,
minV∈L2

F
([0,𝑇],𝑅𝑝)𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0𝑃𝑇(0)𝑥0.

Remark 13. For given 𝛾 > 0, if we replace 𝐵, 𝐶, 𝐷, and V(𝑡)
with 𝐵

𝛿

= [
𝐵 0
𝑛×𝑛

], 𝐶
𝛿

= [
𝐶 𝛿𝐼

𝑛

]

, 𝐷
𝛿

= [

𝐷 0𝑙×𝑛
0𝑛×𝑙 0𝑛×𝑛 ], and

V
𝛿

(𝑡) = [
V(𝑡) 0

𝑛×𝑛

]

, respectively, and 𝑧(𝑡) with 𝑧

𝛿

(𝑡) in (1),
we deduce the correspondingH

−

index ‖G‖

[0,𝑇]
𝛿−

and

𝐽

𝛾

𝑇,𝛿

(𝑥0, V) = 𝐸∫

𝑇

0
{









𝑧

𝛿

(𝑡)









2
− 𝛾

2 






V
𝛿

(𝑡)









2
} 𝑑𝑡

= 𝐸∫

𝑇

0
{‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
+ 𝛿

2
𝐼} 𝑑𝑡.

(57)

When ‖G‖

[0,𝑇]
−

> 𝛾, then ‖G‖

[0,𝑇]
𝛿−

> 𝛾. Using Theorem 12 to
the modified data, it is easy to see that the following equation

𝑃 (𝑡) 𝐴+𝐴



𝑃 (𝑡) +𝐴



0𝑃 (𝑡) 𝐴0 +𝐶



𝐶+𝛿

2
𝐼 +

̇

𝑃 (𝑡)

= (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)

⋅ (𝐵



0

𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼)

−1

⋅ (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)



,

𝐵



0

𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼 > 0,

𝑃 (𝑇) = 0

(58)

has unique solution 𝑃

𝛿,𝑇

(𝑡) ≤ 0 on [0, 𝑇]. Moreover,
minV∈L2

F
([0,𝑇],𝑅𝑝)𝐽

𝛾

𝑇,𝛿

(𝑥0, V) = 𝑥



0𝑃𝛿,𝑇(0)𝑥0.

Now, we are to show what happens as 𝑇 increases.

Theorem 14. If system (1) is time-invariant and square,
‖G‖

[0,𝑇]
−

> 𝛾 for some 𝛾 > 0. Then 𝑃

𝑇

(𝑡) in (56) decreases as 𝑇
increases for every 𝑡 ∈ [0, 𝑇].

Proof. Suppose 𝑇 > 𝑇, 𝑡 ∈ [0, 𝑇], and 𝑥0 ∈ 𝑅

𝑛. Let V∗
𝑇−𝑡

be
optimal for 𝑥0 on [0, 𝑇 − 𝑡], and set

V (𝜏)

=

{

{

{

V∗
𝑇−𝑡

(𝜏) , 𝜏 ∈ [0, 𝑇 − 𝑡]

− (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝜏) , 𝜏 ∈ (𝑇 − 𝑡, 𝑇 − 𝑡] .

(59)

By the time invariance of 𝑃
𝑇

(𝑡), 𝑃
𝑇−𝑡

(0) = 𝑃

𝑇

(𝑡). Then,

𝑥



0𝑃𝑇 (𝑡) 𝑥0 = 𝑥



0𝑃𝑇−𝑡 (0) 𝑥0 ≤ 𝐽

𝛾

𝑇−𝑡

(𝑥0, V)

= 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) + 𝐸∫

𝑇−𝑡

𝑇−𝑡

{‖𝑧 (𝜏)‖

2
− 𝛾

2
‖V (𝜏)‖

2
} 𝑑𝜏

= 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) + 𝐸∫

𝑇−𝑡

𝑇−𝑡

{𝑥



(𝜏)

⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝜏)} 𝑑𝜏

+𝐸∫

𝑇−𝑡

𝑇−𝑡

{[V (𝜏) + (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝜏)]



⋅ (𝐷



𝐷−𝛾

2
𝐼) [V (𝜏) + (𝐷



𝐷 − 𝛾

2
𝐼)

−1

𝐷



𝐶𝑥 (𝜏)]} 𝑑𝜏
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= 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) + 𝐸∫

𝑇−𝑡

𝑇−𝑡

{𝑥



(𝜏)

⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝜏)} 𝑑𝜏

≤ 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) = 𝑥



0𝑃𝑇 (𝑡) 𝑥0.

(60)

This means that 𝑃
𝑇

(𝑡) decreases as 𝑇 increases for every 𝑡 ∈

[0, 𝑇].

3. A Numerical Example

Below, we give a numerical example to illustrate the rightness
of Theorems 12 and 14.

Example 1. In system (1), we consider a two-dimensional
linear stochastic system with the following parameters:

𝐴 = [

0 1

1 2

] ,

𝐵 = [

2 1

1 3

] ,

𝐶 = [

1 1

2 3

] ,

𝐷 = [

1 0

0 1

] ,

𝐴0 = [

1 2

2 1

] ,

𝐵0 = [

1 0

0 0

] .

(61)

Set 𝛾 = 0.5, 𝑇 = 2, 3; by solving (56), we can obtain the
solutions of

𝑃2 (𝑡) = [

𝑝

11
2 (𝑡) 𝑝

12
2 (𝑡)

𝑝

12
2 (𝑡) 𝑝

22
2 (𝑡)

] ,

𝑃3 (𝑡) = [

𝑝

11
3 (𝑡) 𝑝

12
3 (𝑡)

𝑝

12
3 (𝑡) 𝑝

22
3 (𝑡)

] ,

(62)

for which their trajectories are shown in Figure 1. If we set
𝑡 = 1, then it yields

𝑃2 (1) = [

−0.0892 −0.0953
−0.0953 −0.1446

] ,

𝑃3 (1) = [

−0.1044 −0.0889
−0.0889 −0.1489

] .

(63)

It is easy to see that𝑃2(1) > 𝑃3(1), which verifies the rightness
of Theorem 14.

0 0.5 1 1.5 2 2.5 3
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P
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2 (t)

P
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P
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P
12
3 (t)

P
22
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Figure 1: The trajectories of 𝑃2(𝑡) and 𝑃3(𝑡).

4. Conclusion

In this paper, we have solved the H
−

index problem where
both stochastic and deterministic perturbations are present.
Necessary and sufficient condition for the lower bound ofH

−

index is given by means of the solvability of a generalized
differential equation.The proposed results are not completely
dual toH

∞

norm, and the effectiveness of the givenmethods
is illustrated by numerical example.
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Concession period is an important decision-making variable for the investment and construction of public infrastructure projects.
However, we currently have few scientific methods to exactly determine the concession period. This paper managed to seek
out concession period decision models for public infrastructure with option game theory, studied the influence of minimum
government income guarantee and government investment on concession period, and demonstrated those models in the formulas
mentioned in the paper. The research results showed that the increase of minimum government income guarantee value would
shorten the concession period, while the increase of income volatility, that is, the uncertainty, would lengthen the concession period.
In terms of government investment, optimal concession period would lengthen to some extent with the increase of government
investment ratio and the income and the decrease of its guarantee value. Yet, optimal concession period would shorten in case
of extreme highness of the government investment ratio due to its high guarantee value. And the government would accordingly
shorten the concession period in case of the unchanged government investment ratio with the increased income volatility and risks.
Still, the paper put forward the argument that the government would apply various guarantee methods and implement flexible
concession period in accordance with the specific circumstances of public infrastructure projects.

1. Introduction

In recent years, the rapid growth of the investment and
construction of infrastructure projects both at home and
abroad has become an important way to promote economic
growth and structural adjustment. The government, to solve
the issue of shortage of funds for the purpose of projects
construction, is adopting relatively flexible policies such as
encouragement of nonpublic investment in the infrastructure
projects to diversify the financing channels and patterns
such as PPP and BOT. Therefore, to determine a rational
concession period in the concession agreement is the key
to effectively urge private investment in construction of
infrastructure projects which are characterised by large-scale
investment, long construction period, obvious social benefits,
andmultiple risks (Dai andWen [1], Liu et al. [2]). Concession
period is an important decision-making variable for the
investment and construction of franchised infrastructure
projects. Within the concession period, private investors

are responsible for projects construction and operation and
collect fees to settle the debts and make profits according
to the agreed modes in concession negotiation. After the
concession period, private investors will transfer the projects
to the government for free or at the agreed price. Therefore,
the length of the concession period will profoundly affect the
interests of the private investors and the government.

Currently, there are two major categories of concession
period decision-making methods for infrastructure projects:
one is based on the net present value (NPV) of the project; for
example, scholars like Li and Shen [3] established concession
period decision model for the infrastructure BOT project
from the perspective of income and cash flow. Scholars like
Ye, Shen, Thomas, Song, and Huang [4–8], applying net
present value (NPV) and Monte Carlo simulation method,
analysed design issues on the project concession period. Qin
[9] adopted CAPM model to change the discount rate value
of the foregoing model into the risk-adjusted discount rate
which is more suitable for deciding concession period of
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projects under system risks, while scholars including Wen
[10–14] tried to confirm the risk income ratio of the projects
on the basis of investors’ risk appetite. Nevertheless, such
method failed to considerate the uncertainty of the projects’
future profits, the long operating period, and the influence
of government guarantee and ignored the flexibility and
complexity of determining the concession period under the
market environment.

The second is based on game theory and real options
theory. The concession period’s decision of infrastructure
project can be seen as a game between the investors and
the government. In the process of bargaining, investors, at
the price of harming the interests of the government and
the public, will manage to prolong the concession period
which lay a solid foundation for the construction quality of
infrastructure. On the contrary, the government will try to
shorten the concession period to safeguard the interests of
the government and the public, and the shortened concession
period will definitely damage the quality and operating life
of infrastructure construction and increase the maintenance
costs after retaking the project. In model PPP, Medda [15]
regarded the interests allocation between the government
and private investors as a bargaining game and analyzed
the strategic behaviour and potential moral risks in case
guarantee value is higher than finance loss. Scholars like Yang
et al. [16] established concession period decision model by
analysing the game features between the government and
the project corporation. Gao et al. [17] adopted the “cake-
sharing” model in complete information dynamic game to
study how to determine BOT project concession period
with relatively stable profits and known life cycle of project.
Scholars like Shen et al. [18], after considering the bargaining
behaviour between the government and nongovernment in
the concession period negotiations, established a complete
information dynamic game model to determine the conces-
sion period and explained the effect of negotiation interaction
factors on confirming concession period from the angle of
the negotiation. Applying game theory, Bao [19] established
a dynamic game and the concession period decision model
with changed investment cost. Wu et al. [20] established
the game model for project corporation’s investment and
government’s concession period and analysed the issues
about the optimal strategies, respectively, with Stackelberg’s
game method. Zhang and Durango-Cohen [21] built a game
model for concession negotiation between government and
private investors and studied how the government encour-
ages private investment in the projects by offering some
preferential policies. These results laid the foundation for
solving issues about concession period decision but failed
to solve the problems on determining the concession period
flexibly. As an option, real option bears more flexibility for
the decision making of government and project corporation
[22]. Gao et al. [23] pointed out that infrastructure BOT
project, differing form general projects, has specific risk
guarantee which is provided by the government for the
purpose of attracting nongovernmental investment and it
can be seen as down-and-in options. As for PPP projects,
governmentwill participate in investments and bear the risks.
Scholars like Takashima et al. [24] explored the investment

decisions of the government and private investors based on
PPP model, applied real options method to analyze the ratio
of shared investment costs and risks in project operation, and
pointed out that the size of shared ratio will affect investment
decisions and the value of the project. Cruz and Marques
[25], taking hospital project as an example, considered the
uncertainty of PPP projects as an opportunity and built a
model based on real options theory to assess the benefits from
flexibility of the contract and concluded that the uncertainty
increased the project value.

Public infrastructure investment and financing process
involves many people’s interests and each has different focus
on economic efficiency and social benefits. On determining
the concession period of the projects, we will take the
game process between the investors and the government
into consideration except for the uncertainties. And the
option game theory integrating real option theory with game
theory explains the impact of option game characteristics
on concession period under the uncertain conditions of
minimum government income guarantee and government
participation in the risk sharing in a better way. Smets [26]
was the first to introduce the game theory to real options
analysis framework. Based on this, Ottoo [27] pointed out
that the government may divide BOT infrastructure projects
into several phases and give the right to invest in next-
phase project construction to companies which successfully
won the bidding of phase I. This option can be regarded
as growth option, that is, the option to grasp the growth
opportunity. Scholars like Alonso-Conde et al. [28], taking
financing structure and contract clauses in the PPPmodel as a
real option, analyzed how these options affect the investment
incentives, and the government transfers the project benefits
to the private investors via government guarantee. Articles
in China analysing the project concession period decision-
making problems with option game method are few and far
between. Using the option game, Guo et al. [29] studied issues
about construction costs of infrastructure BOT project phase
II and its concession period determination as well but failed
to consider the value and effect of government guarantees.
Gong et al. [30] used the real options approach and game
theory and built the quantitative decision negotiation model
for concession period of BOT projects with the minimum
government income guarantees but did not consider the
impact of other government guarantees on the concession
period. In reality, the government will take various mea-
sures to attract nongovernmental investors to participate
in investment of public infrastructure construction, such
as offering investors the minimum income guarantee, or
investing and sharing the risks. Different guarantee formswill
exert different effects on concession period.Our paper contri-
butions are as follows: beginning with projects without gov-
ernment guarantees, taking the elements such as minimum
government income guarantee and government investment
and sharing risks into consideration, building concession
period decision models for public infrastructure projects
with option game theory, studying the influence of different
government guarantees on concession period, and deter-
mining government guarantee forms and concession period
rationally.
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Table 1: Complete information about bargaining game elements
between two parties.

Participants Investors The government
The strategic space (0, 𝑇

𝑥
) (𝑇

𝑥
, 𝑇)

Payoff function 𝐸[𝑉(0, 𝑇
𝑥
) − 𝐼 + 𝐸(𝐺)] 𝐸[𝑉(𝑇

𝑥
, 𝑇) − 𝐸(𝐺)]

This paper consists of 6 sections as follows. We propose
basic assumption to build the models in Section 2. We
establish option game decision model for the concession
period of the projects without government guarantee and
determine the optimal concession period under these cir-
cumstances which serves as a reference for the following
analysis in Section 3. In Section 4, we establish the option
game decisionmodel for the concession period of the projects
with government guarantee after considering the minimum
government income guarantee and government investment
and sharing risks and attain the analytical solutions to the
optimal concession period. In Section 5, in order to make the
analysis more intuitive and clear, we explain the optimal con-
cession period obtained fromoption game decisionmodel for
the project concession period in Section 3 and Section 4 by
numerical examples analysis and we make a summary of the
conclusion in Section 6.

2. Model Hypotheses

Since concession negotiation comes after bid evaluation,
the information is open. In order to facilitate analysis, we
assume that the government and investors share the relevant
information in the bid, face common project conditions,
and know clearly about each other’s strategies and that the
other party knows theirs; both parties are inclined to pursue
appetite for neutral risk and maximum benefit. Investors and
the government will weigh the advantages and disadvantages
in the bargaining on determining the project concession
period.

We assume that the concession period negotiation is
the complete information bargaining game between the two
parties. Game has three elements of participants, the strategic
space and payoff function; in the process of negotiation, the
three elements are shown in Table 1.

Among them,𝐸 is expectations,𝑇 is the project’s planning
use life, 𝑇

𝑥
is the concession period, 𝐼 is initial investment

cost, 𝑉 is the value of the project, 𝑉
𝑡
is instantaneous net

cash flow, and 𝐺 is government guarantee value. We assume
that 𝑉

𝑡
follows geometric Brownian motion, so it satisfies the

random process as follows: 𝑑𝑉
𝑡

= 𝛼𝑉
𝑡
𝑑𝑡 + 𝜎𝑉

𝑡
𝑑𝑧. 𝛼 is the

expected growth rate of 𝑉
𝑡
, 𝜎 is the volatility of 𝑑𝑉

𝑡
/𝑉
𝑡
, and

𝑑𝑧 is increment of standard wiener process.
In the concession negotiation stage, investors have sub-

mitted the tender, so the first round of the game is to offer
price by the investors. Government may accept it or reject
it: if government accepts the tender, the game ends, and the
concession period is determined; if the government rejects
the tender, then the game enters into the second round, and
the role of two sides changes, continuing bargaining over
and over again. After selecting qualified candidates through

bidding, the government, according to the quality of the
scheme, determines the optimal investors to negotiate and
will negotiate with the next candidate in case of failure. As
a dominant role in the negotiations, the government has the
say in accepting or rejecting the agreement in the final phase.
Overall, concession period negotiations are the bargaining
game for even times of the price offered by the investors in
the first round. Through backward induction, we can get the
following negotiations equalization payment of investors:

𝑉
𝐸

𝐼
(𝑅) = 𝐸(∫

𝑇

0

𝑉
𝑡
𝑒
−𝑢𝑡

𝑑𝑡 − 𝐼) (1 − 𝛿 + 𝛿
2

− ⋅ ⋅ ⋅ 𝛿
𝑅−1

)

= [
𝑉
0
(1 − 𝑒−𝑚𝑇)

𝑚
− 𝐼](

1 − 𝛿
𝑅

1 + 𝛿
) ,

(1)

where 𝐸(𝑉) is the total income within project life, 𝑅 is
the number of negotiating rounds, 𝛿 is the discount rate of
negotiation round, 𝑉

0
as the initial income flow, 𝑢 > 𝛼 is the

risk-adjusted discount rate for future income, and 𝑚 = 𝑢 −

𝛼 > 0 is convenience income of a project. When negotiating
rounds tend to be infinite, Shaked and Sutton’s [31] and Cui
et al.’s [32] research results show that the subgame refining
Nash equilibrium of the game equals the investors’ balance
payment in the first round:

𝑉
1

𝐼
(𝑅) =

𝐸 (𝑉)

1 + 𝛿
= [

𝑉
0
(1 − 𝑒−𝑚𝑇)

𝑚
− 𝐼](

1

1 + 𝛿
) . (2)

In the negotiation process between government and in-
vestors, the governmentwill determine the concession period
𝑇
𝑥
in favour of the interests of the public, and𝑇

𝑥
will meet the

following decision model:

max
𝑇
𝑥

𝐸 [𝑉
(𝑇
𝑥
,𝑇)

− 𝐸 (𝐺)] (3)

s.t. 𝐸 [𝑉
(0,𝑇
𝑥
)
− 𝐼 + 𝐸 (𝐺)] ≥ 𝑢. (4)

Formula (3) is utility function of the government, that
is, concession period under the maximum public interests.
Formula (4) is the restricted conditions for government utility
function, namely, themaximum expected utility the investors
get from the project during the concession period. Among
them, 𝑢 stands for opportunity utility, that is, the maximum
expected utility the investors get from other projects while
being lost in the infrastructure projects.

After the government determines the concession period
𝑇
𝑥
, investors take the initial investment cost 𝐼 as decision-

making variables will meet the following decision model in
the case of profit guarantee:

max
𝐼

𝐸 [𝑉 (0, 𝑇
𝑥
) − 𝐼 + 𝐸 (𝐺)] . (5)

Formula (5) shows the cost invested by investors in the
project construction in the pursuit of maximum profit after
the concession period determined by the government.
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3. The Option Game Model between
Investors without Government Guarantees
and Government

𝐺 = 0 in the case of no government guarantee; then, the
income function in concession period investors without gov-
ernment guarantees is

𝐸 [𝑉
(0,𝑇
𝑥
)
− 𝐼 + 𝐸 (𝐺)] =

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− 𝐼. (6)

Then, during the period of time, that is, from the
government to recover project management rights, to the end
of the project period, the expected function of government
revenue is:

𝐸 [𝑉
(𝑇
𝑥
,𝑇)

− 𝐸 (𝐺)] =
𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
. (7)

According to the respective decision models of govern-
ments and investors and using backward induction, we get
investors’ construction costs 𝐼 under the conditions of the
assumed concession period, and the government determines
the appropriate concession period value𝑇

𝑥
accordingly.Thus,

the government and investors reach a win-win situation by
taking the interests of both sides into account.

Substituting (7) into (3) and (6) into (4), we can obtain
the government’s decision-making models and restricted
conditions:

max
𝑇
𝑥

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚

s.t.
𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− 𝐼 ≥ 𝑢.

(8)

Lagrange multiplier method can be used to solve the
maximization of formula (8). Let 𝜆 be a Lagrange multiplier,
(8) combine together to form a Lagrangian function, we can
know

𝐿 (𝑇
𝑥
, 𝜆) =

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚

+ 𝜆[
𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− 𝐼 − 𝑢] .

(9)

Seeking first-order partial derivatives of 𝑇
𝑥
and 𝜆 in

formula (9), respectively, we can know

𝜕𝐿

𝜕𝑇
𝑥

= (𝜆 − 1)𝑉
0
𝑒
−𝑚𝑇
𝑥 = 0 (10)

𝜕𝐿

𝜕𝜆
=

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− 𝐼 − 𝑢 = 0. (11)

We can know from (11) that

𝑇
𝑥
=
ln𝑉
0
− ln [𝑉

0
− 𝑚 (𝐼 + 𝑢)]

𝑚
. (12)

4. The Option Game Models between
Investors with Government Guarantees
and Government

Government guarantees aim to attract investors (domestic
and foreign consortiums, companies, and individuals) to
invest in the construction of infrastructure projects and are
government commitments to share the various risks such as
investment return, franchising operation, and environmental
conditions in the investment process. Generally, such guar-
antees have a variety of forms, such as the minimum income
guarantee of project, franchising operation price guarantee,
legal consistency guarantees, and risk sharing.

4.1. The Impact of Minimum Government Income Guarantee
on the Concession Period. Assuming that government pro-
vides investors with a minimum income guarantee 𝑉, that
is to say, the guaranteed value is 0 when the income is not
less than 𝑉 and the guaranteed value is 𝑉 − 𝑉

(0,𝑇
𝑥
)
when

the income is less than 𝑉, then the guaranteed value 𝐺 =

max[0, 𝑉 − 𝑉
(0,𝑇
𝑥
)
] is equivalent to a European put option

with 𝑉
(0,𝑇
𝑥
)
as the underlying asset, 𝑉 as exercise price, and

𝑇
𝑥
as expiry date. According to real options approach, we can

obtain the expected value of government guarantees with B-S
option equation:

𝐸 (𝐺) = 𝑉𝑒
−𝑟𝑇
𝑥𝑁(−𝑑

2
) −

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
𝑁 (−𝑑

1
)

≥ 0.

(13)

Among them, 𝑟 is risk-free income rate and 𝑁(⋅) is the
accumulation normal distribution function.

Similarly, we can obtain the expected income function of
the investors with government guarantee within the period of
the concession:

𝐸 [𝑉 (0, 𝑇
𝑥
) − 𝐼 + 𝐸 (𝐺)]

=
𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− 𝐼 + 𝐸 (𝐺) .

(14)

Then, the expected income function from the date when
the government took over the operation right to the end of
planned use life is

𝐸 [𝑉 (𝑇
𝑥
, 𝑇) − 𝐸 (𝐺)] =

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
− 𝐸 (𝐺) . (15)

Substituting (15) in (3) and (14) in (4), we can obtain
the government’s decision-making model and its constraints
under the premise of a minimum income guarantee:

max
𝑇
𝑥

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
− 𝐸 (𝐺)

s.t.
𝑉
0
(1 − 𝑒

−𝑚𝑇
𝑥)

𝑚
+ 𝐸 (𝐺) − 𝐼 ≥ 𝑢.

(16)
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Lagrange multiplier method can be used to solve the
maximization of formula (16). Let 𝜆 be a Lagrange multiplier,
(16) combine together to form a Lagrangian function, we can
know

𝐿 (𝑇
𝑥
, 𝜆) =

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
− 𝐸 (𝐺)

+ 𝜆[
𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
+ 𝐸 (𝐺) − 𝐼 − 𝑢] .

(17)

Substituting formula (13) into (17), we can obtain

𝐿 (𝑇
𝑥
, 𝜆) =

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
− 𝑉𝑒
−𝑟𝑇
𝑥𝑁(−𝑑

2
)

+ 𝐸 [𝑉
(0,𝑇
𝑥
)
]𝑁 (−𝑑

1
) + 𝜆[

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚

+ 𝑉𝑒
−𝑟𝑇
𝑥𝑁(−𝑑

2
) − 𝐸 [𝑉

(0,𝑇
𝑥
)
]𝑁 (−𝑑

1
) − 𝐼 − 𝑢] .

(18)

Seeking first-order partial derivatives of 𝑇
𝑥
and 𝜆 in

formula (18), respectively, we can know

𝜕𝐿

𝜕𝑇
𝑥

= [𝑉
0
𝑒
−𝑚𝑇
𝑥 − 𝑟𝑉𝑒

−𝑟𝑇
𝑥𝑁(−𝑑

2
)

− 𝑉
0
𝑒
−𝑚𝑇
𝑥𝑁(−𝑑

1
)] (𝜆 − 1) = 0

(19)

𝜕𝐿

𝜕𝜆
=

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
𝑁 (𝑑
1
) + 𝑉𝑒

−𝑟𝑇
𝑥𝑁(−𝑑

2
) − 𝐼

− 𝑢 = 0.

(20)

And we will work out the numerical solution to 𝑇
𝑥
and 𝜆

in (19) and (20).

4.2. The Impact on Concession Period of Government Partici-
pation in Risk Sharing. Guarantee provided by government
participating in risk sharing means that the government
allocates some funds into the construction of infrastructure
projects. Suppose government’s investment amount is 𝐺,
accounting for 𝜃 of the total investment 𝐼, that is,𝐺 = 𝜃𝐼 (0 <

𝜃 < 1), income sharing ratio is also 𝜃, that is, the government
guaranteed value is 0 when 𝜃 is zero, and the guaranteed
value is 𝜃(𝐼 − 𝑉

(0,𝑇
𝑥
)
) when 0 < 𝜃 < 1, and the guaranteed

value 𝐺 = Max[0, 𝜃(𝐼 − 𝑉
(0,𝑇
𝑥
)
)] is therefore equivalent to a

European put option with 𝑉
(0,𝑇
𝑥
)
as underlying asset, 𝜃𝐼 as

exercise price, and𝑇
𝑥
as expiry date. According to real options

approach, we can obtain the expected value of government
guarantees with B-S option equation:

𝐸 (𝐺) = 𝜃𝐼𝑒
−𝑟𝑇
𝑥𝑁(−𝑑

2
) −

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
𝑁(−𝑑

1
)

≥ 0.

(21)

Among them, 𝑟 is risk-free income rate and 𝑁(⋅) is the
accumulation normal distribution function.

Similarly, we can obtain the expected income function
of the investors with government within the period of the
concession:

𝐸 [(1 − 𝜃)𝑉 (0, 𝑇
𝑥
) − (1 − 𝜃) 𝐼 + 𝐸 (𝐺)]

= (1 − 𝜃)
𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− (1 − 𝜃) 𝐼 + 𝐸 (𝐺) .

(22)

Then, the expected income function of the government
within the planned use life is

𝐸 [𝑉 (𝑇
𝑥
, 𝑇) + 𝜃𝑉 (0, 𝑇

𝑥
) − 𝜃𝐼 − 𝐸 (𝐺)]

=
𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
+ 𝜃

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− 𝜃𝐼

− 𝐸 (𝐺) .

(23)

In the negotiation process between government and
investors, the government will determine the concession
period 𝑇

𝑥
in favour of the interests of the public and 𝑇

𝑥
will

meet the following decision model:

max
𝑇
𝑥

𝐸 [𝑉 (𝑇
𝑥
, 𝑇) + 𝜃𝑉 (0, 𝑇

𝑥
) − 𝜃𝐼 − 𝐸 (𝐺)] (24)

s.t. 𝐸 [(1 − 𝜃)𝑉 (0, 𝑇
𝑥
) − (1 − 𝜃) 𝐼 + 𝐸 (𝐺)] ≥ 𝑢. (25)

Lagrange multiplier method can be used to solve the
maximization of formula (23) and (24). Let 𝜆 be a Lagrange
multiplier, and using (23) and (24) combined together to form
a Lagrangian function, we can know

𝐿 (𝑇
𝑥
, 𝜆) =

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
+ 𝜃

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚

− 𝜃𝐼 − 𝐸 (𝐺) + 𝜆[(1 − 𝜃)
𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚

− (1 − 𝜃) 𝐼 + 𝐸 (𝐺) − 𝑢] .

(26)

Substituting (21) into (22),

𝐿 (𝑇
𝑥
, 𝜆) =

𝑉
0
(𝑒−𝑚𝑇𝑥 − 𝑒−𝑚𝑇)

𝑚
+ 𝜃

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚

− 𝜃𝐼 − 𝜃𝐼𝑒
−𝑟𝑇
𝑥𝑁(−𝑑

2
) +

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
𝑁 (−𝑑

1
)

+ 𝜆[(1 − 𝜃)
𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− (1 − 𝜃) 𝐼

+ 𝜃𝐼𝑒
−𝑟𝑇
𝑥𝑁(−𝑑

2
) −

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
𝑁(−𝑑

1
) − 𝑢] .

(27)
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Table 2: The relationship between 𝑇
𝑥
, 𝐸(𝐺), and 𝜎.

𝑇
𝑥

𝜎 = 0 𝜎 = 0.1 𝜎 = 0.2 𝜎 = 0.3 𝜎 = 0.4 𝜎 = 0.5 𝜎 = 0.6 𝜎 = 0.7 𝜎 = 0.8 𝜎 = 0.9 𝜎 = 1

𝐸(𝐺) = 0 12 — — — — — — — — — —
𝐸(𝐺) = 1 ∗ 108 12 17 32 58 76 84 87 87 88 88 88
𝐸(𝐺) = 2 ∗ 10

8 12 15 25 45 61 69 72 73 74 74 74
𝐸(𝐺) = 3 ∗ 10

8 12 14 22 37 52 60 64 65 66 66 66
𝐸(𝐺) = 4 ∗ 108 11 13 19 32 46 54 58 59 60 60 60
𝐸(𝐺) = 5 ∗ 108 11 13 18 29 41 49 53 55 55 55 55
𝐸(𝐺) = 6 ∗ 10

8 11 12 17 26 37 45 49 51 51 52 52
𝐸(𝐺) = 7 ∗ 108 11 12 15 23 34 42 46 48 48 49 49
𝐸(𝐺) = 8 ∗ 108 11 11 15 21 31 39 43 45 46 46 46
𝐸(𝐺) = 9 ∗ 10

8 11 11 14 20 29 36 40 42 43 43 44
𝐸(𝐺) = 10 ∗ 108 10 11 13 18 26 34 38 40 41 41 42

Seeking first-order partial derivatives of 𝑇
𝑥
and 𝜆 in

formula (27), respectively, we can know

𝜕𝐿

𝜕𝑇
𝑥

= (𝜆 − 1) [(1 − 𝜃)𝑉
0
𝑒
−𝑚𝑇
𝑥 − 𝑟𝜃𝐼𝑒

−𝑟𝑇
𝑥𝑁(−𝑑

2
)

+ 𝑉
0
𝑒
−𝑚𝑇
𝑥𝑁(−𝑑

1
)] = 0

(28)

𝜕𝐿

𝜕𝜆
= (1 − 𝜃)

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
− (1 − 𝜃) 𝐼

+ 𝜃𝐼𝑒
−𝑟𝑇
𝑥𝑁(−𝑑

2
) −

𝑉
0
(1 − 𝑒−𝑚𝑇𝑥)

𝑚
𝑁 (−𝑑

1
) − 𝑢

= 0.

(29)

And we will work out the numerical solution to 𝑇
𝑥
and 𝜆

in (28) and (29).

5. Numerical Examples

We will make further analysis with numerical examples
to get more intuitive and clear result. Comparison results
of multiple sets of data simulation show that the analysis
results of this paper are not sensitive to the selection of
parameter values, and the specific size of parameter value
selected in the models within practical scope does not affect
analysis conclusions of this paper.Therefore, this papermakes
simulation analysis by selecting a set of data which best suits
the actual economic situation as a basic data. Assuming that
the initial investment cost of an infrastructure project 𝐼 is 6
billion, and 𝑉

0
, the initial income, is 400 million, then the

convenience income of the project is 2% and the risk-free
interest rate of financial asset pricing is computed from the
average interest rates of interbank market, interbank bond
repo market, and exchange repo market and so is the risk-
free income rate, and we take the comparatively long retaking
period of the project into account and assume that 𝑟 is 5%
[29], 𝑉, the minimum income guarantee, is eight billion, and
𝑢, the opportunity utility, is 3 billion.

Firstly, substituting the relevant data into formula (12), we
can obtain concession period of projects without government
guarantees 𝑇

𝑥
= 29.8919 years. That is to say, the initial
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Figure 1: 𝜎 = 0, 0.2, 0.4, the relationship between 𝐸(𝐺) and 𝑇
𝑥
.

investment cost of the investors is 6 billion, the initial income
is 400million, the convenience income is 0.02, and the oppor-
tunity utility is 3 billion. The government’s optimal decision
is to transfer the operation right of the infrastructure projects
to investors with the concession period of 30 years which
conforms to the concession operation period of most of the
public infrastructure projects with concession operation right
(such as highways, urban sewage treatment plants, and power
plants) in China.

Secondly, using relevant data, we conduct numerical
simulation of formula (19) with MATLAB; the result is
shown in Figure 1 and Table 2. Figure 1 shows the relationship
between the expected value ofminimumgovernment income
guarantee 𝐸(𝐺) and the concession period (𝑇

𝑥
) when the

curves from the bottom to the top represent the income
volatility 0, 0.2, and 0.4, respectively. We can get from
Figure 1 and Table 2, under certain income volatility, that the
concession period gradually shortens with the increase of
expected values of the minimum income guarantee; that is
to say, the increase of the government guarantee will shorten
the optimal concession period, and while expected values
of the minimum income guarantee are fixed, the concession
period will lengthen with the increase of income volatility;
that is, the uncertainties will lengthen the optimal concession
period. Simultaneously, Table 2 shows thatwhen the expected
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Table 3: The relationship between 𝑇
𝑥
, 𝜃, and 𝜎.

𝑇
𝑥

𝜎 = 0 𝜎 = 0.1 𝜎 = 0.2 𝜎 = 0.3 𝜎 = 0.4 𝜎 = 0.5 𝜎 = 0.6 𝜎 = 0.7 𝜎 = 0.8 𝜎 = 0.9 𝜎 = 1

𝜃 = 0 30 30 30 31 31 31 30 30 30 30 30
𝜃 = 0.1 31 31 32 32 32 32 31 31 31 31 31
𝜃 = 0.2 33 33 34 34 34 33 33 32 32 32 32
𝜃 = 0.3 36 36 36 36 36 35 35 34 34 34 34
𝜃 = 0.4 40 40 40 40 39 38 38 37 37 37 37
𝜃 = 0.5 46 46 46 46 45 43 42 42 42 41 41
𝜃 = 0.6 56 56 56 56 54 53 52 52 51 51 51
𝜃 = 0.7 80 80 80 80 79 78 77 77 77 77 77
𝜃 = 0.8 1 1 1 1 1 1 1 1 1 1 1
𝜃 = 0.9 3 3 3 3 3 3 3 3 4 5 6
𝜃 = 1.0 5 5 5 5 5 5 6 7 9 11 12

Table 4: The relationship between 𝐸(𝐺), 𝜃, and 𝜎.

𝐸(𝐺) (108) 𝜎 = 0.0 𝜎 = 0.1 𝜎 = 0.2 𝜎 = 0.3 𝜎 = 0.4 𝜎 = 0.5 𝜎 = 0.6 𝜎 = 0.7 𝜎 = 0.8 𝜎 = 0.9 𝜎 = 1.0

𝜃 = 0 — — — — — — — — — — —
𝜃 = 0.1 — — — — — — 0.02 0.53 0.88 1.08 1.20
𝜃 = 0.2 — — — — — 0.32 1.07 1.64 2.01 2.23 2.34
𝜃 = 0.3 — — — — 0.23 1.13 1.95 2.55 2.94 3.15 3.26
𝜃 = 0.4 — — — — 0.75 1.73 2.57 3.17 3.53 3.73 3.82
𝜃 = 0.5 — — — 0.21 1.02 1.98 2.76 3.29 3.58 3.72 3.78
𝜃 = 0.6 — — — 0.26 0.94 1.68 2.23 2.56 2.71 2.77 2.79
𝜃 = 0.7 — — — 0.12 0.41 0.67 0.82 0.88 0.90 0.90 0.90
𝜃 = 0.8 41.11 41.11 41.11 41.11 41.11 41.11 41.11 41.11 41.12 41.13 41.10
𝜃 = 0.9 34.86 34.86 34.86 34.81 34.81 34.82 34.74 34.68 34.51 34.25 33.84
𝜃 = 1.0 30.00 30.00 29.99 30.01 30.00 30.00 29.99 29.99 30.01 30.01 30.00

value ofminimumgovernment income guarantee is relatively
low, 𝐸(𝐺) varies within 0–100 million Yuan. Only when
volatility rate is relatively low, government will attract the
private investment by prolonging concession period. On the
contrary, if the volatility rate is relatively high, the extension
of the concession period is difficult to have attraction to
private investors.

Thirdly, using relevant data, we conduct numerical simu-
lation of formula (29) with MATLAB; the results are shown
in Figure 2 and Table 3. When 𝜃 varies within the range of 0–
0.7, the concession period gradually extends with the increase
of government investment ratio under fixed income volatility.
But when 𝜃 further increases, the concession period rapidly
declines.That shows that the optimal concession period, with
the government investment ratiowithin certain scope (𝜃 = 0–
0.7), will extend with the increase of government investment
ration and income and the decrease of its guarantee value
under fixed income volatility. But optimal concession period
will be shortened by the government accordingly in case of
extreme highness of the government investment (𝜃 > 0.7)
ratio, that is, regarding the guarantee value of government
investment as put option, for the high guarantee value,
which is verified in Table 4. And concession period will
accordingly shorten with fixed government investment ratio
and increased income volatility. That fact shows that the
government will accordingly shorten the concession period
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Figure 2: 𝜎 = 0.2, 0.5, 0.7, the relationship between 𝑇
𝑥
and 𝜃.

in case of the unchanged government guarantee with the
increased income volatility and risks.

6. Conclusions

This paper, taking the elements such as minimum gov-
ernment income guarantee and government investment
and sharing risks into consideration, established concession
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period decision models for public infrastructure with option
game theory, studied the influence of minimum government
income guarantee and government investment on concession
period, and verified the fact that the increase of minimum
government income guarantee value will shorten the con-
cession period, while the increase of income volatility, that
is, the uncertainty, will lengthen the concession period with
numerical simulation. In terms of government investment,
optimal concession period will lengthen to some extent
with the increase of government investment ratio and the
income and the decrease of its guarantee value. Yet, optimal
concession period will shorten in case of extreme highness
of the government investment ratio due to its high guarantee
value. And the government will accordingly shorten the
concession period in case of the unchanged government
investment ratio with the increased income volatility and
risks.

The above conclusions show that the government, in
accordance with the specific circumstances of the public
infrastructure projects and various guaranteemodes [33], will
implement flexible concession period system which will be
written in the Concession Period Agreement: the concession
period ends after the investors regain their investment and
get the stipulated income and will not be restricted to a fixed
period, hence reaching the goal to encourage private investors
to participate in the construction of public infrastructure and
balance the interest between investors and the public as well.
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R&D outsourcing becomes the often-adopted strategy for firms to innovate. However, R&D cooperation often ends up with failure
because of its inherent quality of instability. One of the main reasons for cooperation failure is the opportunistic behavior. As the
R&Dcontract between firms is inherently incomplete, opportunistic behavior always cannot be avoided in the collaborative process.
R&D cooperation has been divided into horizontal and vertical types. This paper utilizes game theory to study opportunistic
behavior in the vertical R&D cooperation and analyzes the equilibrium of the cooperation. Based on the equilibrium and numerical
results, it is found that the vertical R&D cooperation is inherently unstable, and the downstream firm is more likely to break the
agreement. The level of knowledge spillovers and the cost of R&D efforts have different effects on firms’ payoffs. When the level
of knowledge spillover is low or the cost of R&D efforts is high, mechanisms such as punishment for opportunism may be more
effective to guarantee the stability of cooperation.

1. Introduction

In the knowledge economy era, the competition of technical
market is increasingly fierce, and firms are forced to accelerate
the process of technical innovation. However, it is more
difficult for firms to accomplish knowledge creation and
technological innovation in isolation [1]. R&D outsourcing
becomes the often-adopted strategy for firms to innovate.
R&D cooperation becomes a common phenomenon, which
helps firms in sharing risk and cost, accessing knowledge
and technological know-how network, and internalizing the
externalities created by knowledge spillovers [2–4]. Despite
these advantages, the inherent quality of instability of R&D
cooperation oftenmay not be avoided, and R&D cooperation
often ends with failure [5–8]. A main reason for cooperation
failure is the opportunistic behavior by one party or the
other [9, 10]. Opportunism appears due to the cooperative
and competitive relationship of the two collaborative firms.
Opportunism is defined as selfish behavior which means
seeking a firm’s self-interest with deceit at the expense of
its partners [11–13]. As the R&D contract between firms is
inherently incomplete, firms in the cooperation are often not
accessible to the detailed information aboutwhat the partners

are expected to do, and it is impossible for a third party
to keep watch on R&D efforts [14]. Therefore, opportunistic
behavior always cannot be avoided in the collaborative
process.

Based on the types of collaborative partnership, R&D
cooperation has been divided into horizontal and vertical
R&D cooperation. Many of research works have been done
about these two types of R&D cooperation [15–20]. Although
firms may arrange their R&D inputs to realize the maximiza-
tion of the total profit of the two firms, opportunism may
still prevail in these two types of R&D cooperation. Such
noncooperative behavior may prevent a firm from losing
its competitive knowledge. However, it would lead to the
instability of the cooperation. Kesteloot and Veugelers study
the stability of horizontal R&D cooperation in a repeated
game and emphasize the important role of spillovers [21].
Cabon-Dhersin and Ramani use a noncooperative game to
discuss the effect of trust on horizontal R&D cooperation,
and they find that when opportunism cannot be avoided, the
nature of firms, the configurations of trust, and the level of
spillovers decide whether the horizontal R&D cooperation is
successful or not [14]. Cassiman and Veugelers find that, in
vertical cooperation, the effectiveness of strategic protection
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is important to induce cooperation [22]. Lhuillery and Pfister
find that vertical R&D cooperation also faces a higher risk of
failures [23].

Most of the existing literatures using game theoretical
approach have studied the stability of horizontal R&D coop-
eration. Our paper uses a game theoretical approach to ana-
lyze the stability of the vertical R&D cooperation. We focus
on opportunistic behavior in the vertical R&D cooperation.
The results of this paper indicate that the vertical R&D
cooperation is unstable, and the downstream firm is more
likely to break the agreement. When building a partnership,
firms need to consider the social statue and reputation of its
partner and mutual trust between the two firms. This paper
also identifies the roles of knowledge spillover and the cost of
R&D effort in the stability of vertical R&D cooperation.These
two factors influence the firms’ payoffs in different situations.
And they play different roles in the decision process. It is
found that when the level of knowledge spillover is low or the
cost of R&D efforts is high, mechanisms such as punishment
for opportunism may be more effective.

The rest of this paper is given as follows. Section 2 intro-
duces the model of our paper. Section 3 gives the equilibrium
analysis of the game and analyzes the effects of spillover level
and R&D effort cost on stability of the game. Section 4 pre-
sents numerical illustration and Section 5 gives the conclu-
sion of this paper.

2. The Model

In the part, we present the model in two subsections. Our
game model is described in the first subsection. R&D expen-
ditures and payoffs in different situations are solved in the
second subsection.

2.1. Description of Game Model. Studies show that single
source brings long-term benefits if used appropriately [24]
and one or two suppliers are usually [25, 26] enough for a
manufacturer. Following Ge et al. [20], we consider cooper-
ative R&D in a simple supply chain with a final-good
manufacturer (denoted as Firm 𝐴) and an input supplier
(denoted as Firm 𝐵) in our model.

We assume that Firm 𝐴 decides its production quantity
based on the market demand and then submits its order to
Firm 𝐵. Firm 𝐵 sells inputs to Firm 𝐴 in the market. The two
firms in the supply chain establish a vertical strategic R&D
collaboration link. The reduction of marginal cost in our
study is an R&D production function following d’Aspremont
and Jacquemin [5]. In the vertical R&D cooperation,
firms coordinate their R&D inputs and then allocate R&D
resources to reduce the production costs. The reduction of
marginal production cost comes from a firm’s own research.
Meanwhile, R&D efforts of its cooperator also help reducing
the firm’s cost due to positive spillovers. Let 𝛽 ∈ [0, 1] be the
parameter reflecting the spillover level between firms. The
spillover levels of the two firms in the vertical R&D cooper-
ation are assumed to be symmetric. We also assume that the
fixed costs of firms are set to be zero. Let 𝑐

𝑖
and 𝑐
𝑖
> 0 denote

the original marginal cost and let 𝑒
𝑖
denote the R&D efforts of

firm 𝑖. Therefore, the marginal cost 𝑐
𝑖
after R&D investment

of firm 𝑖 is written as follows:

𝑐
𝑖
= 𝑐
𝑖
− 𝑒
𝑖
− 𝛽𝑒
𝑗
, 𝑖, 𝑗 = 𝐴, 𝐵, 𝑗 ̸= 𝑖. (1)

We assume that R&D investment is costly. Given a level
𝑒
𝑖
∈ [0, 𝑐

𝑖
) of R&D efforts, the cost of efforts is given by

(1/2)𝛾𝑒
𝑖

2, and 𝛾 is a technological parameter and satisfies
𝛾 > 0, indicating diminishing returns to R&D.

In the production market, let us suppose that Firm 𝐵
produces the inputs and sells them to Firm 𝐴 at price 𝑃

𝑠
, and

Firm𝐴 uses the inputs to produce final goods. Let us suppose
that the inverse demand function in the market is given by
𝑃 = 𝑎 − 𝑞, where 𝑃 represents the price of a final product and
𝑞 represents the total production quantity of final goods pro-
duced by Firm𝐴. At the same time, the order quantity of Firm
𝐴 is equal to production quantity of final goods. Given an
R&D profile (𝑒

𝐴
, 𝑒
𝐵
) of the two firms, the quantity 𝑞 of final

goods and the input price 𝑃
𝑆
of Firm 𝐵 and the net profits of

Firm 𝐴 and Firm 𝐵, (𝜋
𝐴
, 𝜋
𝐵
), can be written as follows:

𝜋
𝐴
= (𝑎 − 𝑞 − 𝑐

𝐴
+ 𝑒
𝐴
+ 𝛽𝑒
𝐵
) 𝑞 − 𝑃

𝑆
𝑞 −
1

2
𝛾𝑒
𝐴

2
, (2)

𝜋
𝐵
= (𝑃
𝑆
− 𝑐
𝐵
+ 𝑒
𝐵
+ 𝛽𝑒
𝐴
) 𝑞 −
1

2
𝛾𝑒
𝐵

2
. (3)

As the game is dynamic, we can use the backward intro-
duction method. We start with the quantity of final goods.
Firm 𝐴 chooses its output level independently to realize the
maximization of its own profit. For any configuration of R&D
efforts (𝑒

𝐴
, 𝑒
𝐵
) invested by Firm 𝐴 and Firm 𝐵, the optimal

condition for the profit maximization of Firm 𝐴 is given by

𝜕𝜋
𝐴

𝜕𝑞
= 𝑎 − 2𝑞 − 𝑐

𝐴
+ 𝑒
𝐴
+ 𝛽𝑒
𝐵
− 𝑃
𝑆
= 0. (4)

Then the production quantity of the final product can be
got by

𝑞 =
1

2
(𝑎 − 𝑐

𝐴
+ 𝑒
𝐴
+ 𝛽𝑒
𝐵
− 𝑃
𝑆
) . (5)

Substituting (5) into (3), the net profit function of Firm 𝐵
can be rewritten as

𝜋
𝐵
=
1

2
(𝑃
𝑆
− 𝑐
𝐵
+ 𝑒
𝐵
+ 𝛽𝑒
𝐴
) (𝑎 − 𝑐

𝐴
+ 𝑒
𝐴
+ 𝛽𝑒
𝐵
− 𝑃
𝑆
)

−
1

2
𝛾𝑒
𝐵

2
.

(6)

By solving partial derivatives of (6) about 𝑃
𝑆
for profit

maximization, the optimal input price can be got as follows:

𝑃
𝑆
=
1

2
[𝑎 − 𝑐

𝐴
+ 𝑐
𝐵
+ (1 − 𝛽) 𝑒

𝐴
− (1 − 𝛽) 𝑒

𝐵
] . (7)

Then the production quantity of the final product can be
obtained as follows:

𝑞 =
1

4
[𝑎 − 𝑐

𝐴
− 𝑐
𝐵
+ (1 + 𝛽) 𝑒

𝐴
+ (1 + 𝛽) 𝑒

𝐵
] . (8)
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Therefore, the net profits of Firm𝐴 and Firm𝐵 are gained
as

𝜋
𝐴
=
1

16
[𝑎 − 𝑐
𝐴
− 𝑐
𝐵
+ (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)]
2
−
1

2
𝛾𝑒
𝐴

2
,

𝜋
𝐵
=
1

8
[𝑎 − 𝑐
𝐴
− 𝑐
𝐵
+ (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)]
2
−
1

2
𝛾𝑒
𝐵

2
.

(9)

The total profit of the supply chain profit is

𝜋
𝑇
= 𝜋
𝐴
+ 𝜋
𝐵
=
3

16
[𝑎 − 𝑐
𝐴
− 𝑐
𝐵
+ (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)]
2

−
1

2
𝛾 (𝑒
𝐴

2
+ 𝑒
𝐵

2
) .

(10)

2.2. R&D Expenditures and Payoffs in Different Situations.
After establishing the R&D cooperation, firms choose their
levels of R&D efforts. Each firm has two choices. One is to
invest on R&D efforts to maximize the total profit of the two
firms, which is treated as reciprocal behavior. Another is to
invest on R&D efforts to maximize a firm’s own profit, which
is regarded as opportunistic behavior. After that, each firm
invests in its R&D efforts, and this is not observable. With
the above discussion, we can now solve for the R&D efforts
and the corresponding net profits in four different situations
of vertical R&D cooperation.

First, Firms𝐴 and𝐵 both choose reciprocal behavior, and
we will define this situation as situation 𝑅𝑅. In this situation,
each firm decides its R&D efforts by the maximization of the
total profit. Then the optimal condition for situation 𝑅𝑅 is
obtained as follows:

𝜕𝜋
𝑇

𝜕𝑒
𝐴

=
3

8
(1 + 𝛽) [𝜃 + (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)] − 𝛾𝑒

𝐴
= 0,

𝜕𝜋
𝑇

𝜕𝑒
𝐵

=
3

8
(1 + 𝛽) [𝜃 + (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)] − 𝛾𝑒

𝐵
= 0,

(11)

where 𝜃 = 𝑎 − 𝑐
𝐴
− 𝑐
𝐵
.

By solving (11), we can, respectively, define the R&D
efforts and net profits of Firm 𝐴 and Firm 𝐵 in situation 𝑅𝑅
as follows:

𝑒
𝐴
= 𝑒
𝐵
=
3𝜃 (1 + 𝛽)

8𝛾 − 6 (1 + 𝛽)
2
,

𝜋A =
𝛾𝜃
2
[4𝛾 − 4.5 (1 + 𝛽)

2
]

[8𝛾 − 6 (1 + 𝛽)
2
]
2
,

𝜋
𝐵
=

𝛾𝜃
2
[8𝛾 − 4.5 (1 + 𝛽)

2
]

[8𝛾 − 6 (1 + 𝛽)
2
]
2
.

(12)

Second, Firms𝐴 and 𝐵 both choose opportunistic behav-
ior, defined as situation 𝑂𝑂. In this situation, each firm

decides its R&D efforts by the maximization of its own profit.
Then the optimal condition for situation 𝑂𝑂 is expressed by

𝜕𝜋
𝐴

𝜕𝑒
𝐴

=
1

8
(1 + 𝛽) [𝜃 + (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)] − 𝛾𝑒

𝐴
= 0,

𝜕𝜋
𝐵

𝜕𝑒
𝐵

=
1

4
(1 + 𝛽) [𝜃 + (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)] − 𝛾𝑒

𝐵
= 0.

(13)

And the R&D efforts and net profits of Firm 𝐴 and Firm
𝐵 in situation 𝑂𝑂 can be separately defined as follows:

𝑒
𝐴
=
𝜃 (1 + 𝛽)

8𝛾 − 3 (1 + 𝛽)
2
,

𝑒
𝐵
=
2𝜃 (1 + 𝛽)

8𝛾 − 3 (1 + 𝛽)
2
,

𝜋
𝐴
=

𝛾𝜃
2
[4𝛾 − 0.5 (1 + 𝛽)

2
]

[8𝛾 − 3 (1 + 𝛽)
2
]
2
,

𝜋
𝐵
=

𝛾𝜃
2
[8𝛾 − 2 (1 + 𝛽)

2
]

[8𝛾 − 3 (1 + 𝛽)
2
]
2
.

(14)

Third, we will define this situation as situation 𝑅𝑂, where
Firm 𝐴 chooses reciprocal behavior and Firm 𝐵 chooses
opportunistic behavior. At this time, Firm𝐴 decides its R&D
efforts for the best interest of the cooperation, while Firm 𝐵
chooses to cheat.Then the optimal condition for situation𝑅𝑂
is written by

𝜕𝜋
𝑇

𝜕𝑒
𝐴

=
3

8
(1 + 𝛽) [𝜃 + (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)] − 𝛾𝑒

𝐴
= 0,

𝜕𝜋
𝐵

𝜕𝑒
𝐵

=
1

4
(1 + 𝛽) [𝜃 + (1 + 𝛽) (𝑒

𝐴
+ 𝑒
𝐵
)] − 𝛾𝑒

𝐵
= 0.

(15)

And the R&D efforts and net profits of Firm 𝐴 and Firm
𝐵 in situation 𝑅𝑂 are severally defined as follows:

𝑒
𝐴
=
3𝜃 (1 + 𝛽)

8𝛾 − 5 (1 + 𝛽)
2
,

𝑒
𝐵
=
2𝜃 (1 + 𝛽)

8𝛾 − 5 (1 + 𝛽)
2
,

𝜋
𝐴
=

𝛾𝜃
2
[4𝛾 − 4.5 (1 + 𝛽)

2
]

[8𝛾 − 5 (1 + 𝛽)
2
]
2
,

𝜋
𝐵
=

𝛾𝜃
2
[8𝛾 − 2 (1 + 𝛽)

2
]

[8𝛾 − 5 (1 + 𝛽)
2
]
2
.

(16)
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Table 1: R&D efforts and payoffs of Firms A and B in different situations.

Situation 𝑅𝑅 𝑂𝑂 𝑅𝑂 𝑂𝑅

𝑒
𝐴

3𝜃 (1 + 𝛽)

8𝛾 − 6 (1 + 𝛽)
2

𝜃 (1 + 𝛽)

8𝛾 − 3 (1 + 𝛽)
2

3𝜃 (1 + 𝛽)

8𝛾 − 5 (1 + 𝛽)
2

𝜃(1 + 𝛽)

8𝛾 − 4(1 + 𝛽)2

𝑒
𝐵

3𝜃 (1 + 𝛽)

8𝛾 − 6 (1 + 𝛽)
2

2𝜃 (1 + 𝛽)

8𝛾 − 3 (1 + 𝛽)
2

2𝜃 (1 + 𝛽)

8𝛾 − 5 (1 + 𝛽)
2

3𝜃 (1 + 𝛽)

8𝛾 − 4 (1 + 𝛽)
2

𝜋
𝐴

𝜃
2
(4 − 4.5𝐿)

(8 − 6𝐿)
2

𝜃
2
(4 − 0.5𝐿)

(8 − 3𝐿)
2

𝜃
2
(4 − 4.5𝐿)

(8 − 5𝐿)
2

𝜃
2
(4 − 0.5𝐿)

(8 − 4𝐿)
2

𝜋
𝐵

𝜃
2
(8 − 4.5𝐿)

(8 − 6𝐿)
2

𝜃
2
(8 − 2𝐿)

(8 − 3𝐿)
2

𝜃
2
(8 − 2𝐿)

(8 − 5𝐿)
2

𝜃
2
(8 − 4.5𝐿)

(8 − 4𝐿)
2

Similarly, when 𝐴 chooses opportunistic behavior and
Firm 𝐵 chooses reciprocal behavior, we can define R&D
efforts and net profits in situation 𝑂𝑅 as follows:

𝑒
𝐴
=
𝜃 (1 + 𝛽)

8𝛾 − 4 (1 + 𝛽)
2
,

𝑒
𝐵
=
3𝜃 (1 + 𝛽)

8𝛾 − 4 (1 + 𝛽)
2
,

𝜋
𝐴
=

𝛾𝜃
2
[4𝛾 − 0.5 (1 + 𝛽)

2
]

[8𝛾 − 4 (1 + 𝛽)
2
]
2
,

𝜋
𝐵
=

𝛾𝜃
2
[8𝛾 − 4.5 (1 + 𝛽)

2
]

[8𝛾 − 4 (1 + 𝛽)
2
]
2
.

(17)

The details in four situations are summarized in Table 1,
where 𝐿 = (1 + 𝛽)2/𝛾, and 𝐿 increases with the spillover level
between cooperative firms but decreaseswith the cost of R&D
efforts.We will assume that 0 < 𝐿 < 8/9 to make sure that the
R&D investment and production quantity exist.

3. Equilibrium Analysis

In this part, we first compare the payoffs of Firm 𝐴 and Firm
𝐵 in different statuses and obtain the equilibrium of the game.
Second, we, respectively, discuss the effects of spillover level
and R&D cost on profits of four different situations.

3.1. Comparison of Payoffs in Different Status. According to
the behavior decision-making and the corresponding profit,
the payoff matrix of different R&D investment profiles is
given in Table 2. Given the comparison of the profits between
different situations, three lemmas have been derived in the
following.

Lemma 1. Comparison of payoffs of Firm 𝐴 in four different
situations is as follows:

(1) If Firm𝐴 is reciprocal while its partner is opportunistic,
Firm 𝐴 will get a lower profit compared with the profit

Table 2: The payoff matrix of different R&D investment profiles.

Firm 𝐵
Reciprocal
behavior

Opportunistic
behavior

Firm 𝐴
Reciprocal behavior (𝜋𝑅𝑅

𝐴
, 𝜋𝑅𝑅
𝐵
) (𝜋𝑅𝑂

𝐴
, 𝜋𝑅𝑂
𝐵
)

Opportunistic behavior (𝜋𝑂𝑅
𝐴
, 𝜋𝑂𝑅
𝐵
) (𝜋𝑂𝑂

𝐴
, 𝜋𝑂𝑂
𝐵

)

yielded by the R&D cooperation with two reciprocal
firms

𝜋
𝑅𝑅

𝐴
> 𝜋
𝑅𝑂

𝐴
. (18)

(2) If Firm𝐴 is opportunistic while its partner is reciprocal,
Firm𝐴will get a higher profit compared with the profit
yielded by the R&D cooperation with two opportunistic
firms

𝜋
𝑂𝑅

𝐴
> 𝜋
𝑂𝑂

𝐴
. (19)

(3) Firm 𝐴 will get a higher profit from R&D cooperation
with two opportunistic firms than the R&Dcooperation
with two reciprocal firms

𝜋
𝑂𝑂

𝐴
> 𝜋
𝑅𝑅

𝐴
. (20)

The particulars of the derivations are presented in the
appendix. From the results of Lemma 1, the profit comparison
of Firm 𝐴 in four different situations is given as follows:

𝜋
𝑂𝑅

𝐴
> 𝜋
𝑂𝑂

𝐴
> 𝜋
𝑅𝑅

𝐴
> 𝜋
𝑅𝑂

𝐴
. (21)

In the vertical R&D cooperation, for any value of the cost
effort 𝛾 and the spillover level 𝛽, the downstream firm always
benefits more from opportunistic behavior. Cheating is an
optimal strategy for Firm 𝐴 in cooperation game.

Lemma 2. Comparison of payoffs of Firm 𝐵 in four different
situations is as follows:

(1) If Firm 𝐵 is reciprocal while its partner is opportunistic,
Firm 𝐵 will get a lower profit compared with the profit



Mathematical Problems in Engineering 5

yielded by the R&D cooperation with two reciprocal
firms

𝜋
𝑅𝑅

𝐵
> 𝜋
𝑂𝑅

𝐵
. (22)

(2) If Firm 𝐵 is opportunistic while its partner is reciprocal,
Firm 𝐵 will get a higher profit compared with the profit
yielded by the R&D cooperation with two opportunistic
firms

𝜋
𝑅𝑂

𝐵
> 𝜋
𝑂𝑂

𝐵
. (23)

(3) If Firm 𝐵 is reciprocal while its partner is opportunistic,
Firm 𝐵 will get a lower profit compared with the profit
yielded by the R&D cooperation with two opportunistic
firms

𝜋
𝑂𝑂

𝐵
> 𝜋
𝑂𝑅

𝐵
. (24)

(4) Firm 𝐵 will get a higher profit from R&D cooperation
with two reciprocal firms than the R&D cooperation
with two opportunistic firms

𝜋
𝑅𝑅

𝐵
> 𝜋
𝑂𝑂

𝐵
. (25)

(5) When the inequality 0 < 𝐿 < (80 − √1216)/81 is
satisfied, Firm 𝐵 will get a higher profit from the
R&D cooperation with only Firm 𝐵 cheating than
the cooperation with two reciprocal firms. When the
inequality (80−√1216)/81 < 𝐿 < 8/9 is satisfied, Firm
𝐵will get a lower profit from the R&D cooperation with
only Firm 𝐵 cheating than the cooperation with two
reciprocal firms

When 0 < 𝐿 < 80 −
√1216

81
,

𝜋
𝑅𝑂

𝐵
> 𝜋
𝑅𝑅

𝐵

When 80 −
√1216

81
< 𝐿 <
8

9
,

𝜋
𝑅𝑅

𝐵
> 𝜋
𝑅𝑂

𝐵
.

(26)

The particulars of the derivations are also presented
in the appendix. From the results of Lemma 2, the profit
comparison of Firm 𝐵 in four different situations is given as
follows:

When 0 < 𝐿 < 80 −
√1216

81
,

𝜋
𝑅𝑂

𝐵
> 𝜋
𝑅𝑅

𝐵
> 𝜋
𝑂𝑂

𝐵
> 𝜋
𝑂𝑅

𝐵

When 80 −
√1216

81
< 𝐿 <
8

9
,

𝜋
𝑅𝑅

𝐵
> 𝜋
𝑅𝑂

𝐵
> 𝜋
𝑂𝑂

𝐵
> 𝜋
𝑂𝑅

𝐵
.

(27)

In the vertical R&D cooperation, the optimal strategy for
Firm𝐵 is influenced by the R&Deffort cost 𝛾 and the spillover
level 𝛽. Lower value of 𝐿 indicates that the cost of R&D efforts
may be high or the spillover level may be low. Upstream Firm
𝐵 benefits more from opportunistic behavior. Higher value
of 𝐿 indicates that the cost of R&D efforts may be low or the
spillover level may be high. At this time, reciprocal behavior
of two firms yields the highest profit to Firm 𝐵.

Based on the above analysis, we can obtain the equilib-
rium of the game. At the equilibrium, the optimal strategies
for both of the two firms are choosing opportunistic behavior.
Therefore, the vertical R&D cooperation is inherently unsta-
ble.

3.2. Effects of Spillover and R&D Cost on Profits. As men-
tioned above, the value of𝐿depends on the level of knowledge
spillover and the cost of R&D effort. In this part, we mainly
analyze their effects on the profits of Firm 𝐴 and Firm 𝐵 in
different situations.

Proposition 3. In the vertical R&D cooperation, the profits of
Firm𝐴 gained from reciprocal behavior decrease when the level
of spillover 𝛽 increases and the cost of R&D efforts 𝛾 declines.

Proof. Consider

𝜕𝜋
𝑅𝑅

𝐴

𝜕𝐿
=
𝜕𝜃
2
(4 − 4.5𝐿) (8 − 6𝐿)

−2

𝜕𝐿

= −4.5𝜃
2
(8 − 6𝐿)

−2

+ 12𝜃
2
(4 − 4.5𝐿) (8 − 6𝐿)

−3

=
−4.5𝜃

2
(8 − 6𝐿) + 12𝜃

2
(4 − 4.5𝐿)

(8 − 6𝐿)
3

=
𝜃
2
(8 − 27𝐿)

(8 − 6𝐿)
3
< 0.

(28)

Similarly, it is easy to obtain 𝜕𝜋𝑅𝑂
𝐴
/𝜕𝐿 = 𝜃

2
(4−22.5𝐿)/(8−

5𝐿)
3
< 0. The values of 𝜋𝑅𝑅

𝐴
and 𝜋𝑅𝑂

𝐴
decrease with the

increase of the value of 𝐿. As 𝐿 = (1 + 𝛽)2/𝛾, we can learn that
when the level of spillover 𝛽 increases and the cost of R&D
efforts 𝛾 declines, the profits of Firm𝐴 gotten from reciprocal
behavior decrease.

Proposition 4. In the vertical R&D cooperation, the profits of
Firm 𝐴 gained from opportunistic behavior increase when the
level of spillover 𝛽 rises and the cost of R&D efforts 𝛾 declines.

Proof. Consider

𝜕𝜋
𝑂𝑂

𝐴

𝜕𝐿
=
𝜕𝜃
2
(4 − 0.5𝐿) (8 − 3𝐿)

−2

𝜕𝐿

= −0.5𝜃
2
(8 − 3𝐿)

−2

+ 6𝜃
2
(4 − 0.5𝐿) (8 − 3𝐿)

−3
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Table 3: The profits of four situations in different levels of spillovers.

𝛽 𝐿 𝜋
𝑅𝑅

𝐴
𝜋
𝑂𝑂

𝐴
𝜋
𝑅𝑂

𝐴
𝜋
𝑂𝑅

𝐴
𝜋
𝑅𝑅

𝐵
𝜋
𝑂𝑂

𝐵
𝜋
𝑅𝑂

𝐵
𝜋
𝑂𝑅

𝐵

0.00 0.20 167.60 178.05 158.16 188.08 383.87 346.97 387.76 342.40
0.10 0.24 169.73 183.28 157.85 196.11 402.96 355.12 407.56 349.40
0.20 0.29 171.84 189.31 157.09 205.57 426.05 364.48 431.29 357.39
0.30 0.34 173.77 196.24 155.65 216.71 454.16 375.17 459.86 366.49
0.40 0.39 175.24 204.22 153.23 229.87 488.72 387.40 494.50 376.84
0.50 0.45 175.77 213.41 149.34 245.51 531.77 401.38 536.86 388.59
0.60 0.51 174.59 224.01 143.27 264.21 586.37 417.39 589.32 401.96
0.70 0.58 170.29 236.29 133.94 286.76 657.16 435.78 655.25 417.19
0.80 0.65 160.27 250.58 119.61 314.23 751.69 456.99 739.71 434.58
0.90 0.72 139.55 267.29 97.42 348.13 882.81 481.56 850.45 454.51
1.00 0.80 97.66 286.99 62.50 390.63 1074.22 510.20 1000.00 477.43

=
−0.5𝜃

2
(8 − 3𝐿) + 6𝜃

2
(4 − 0.5𝐿)

(8 − 3𝐿)
3

=
𝜃
2
(20 − 1.5𝐿)

(8 − 3𝐿)
3
> 0.

(29)

Similarly, it is easy to obtain 𝜕𝜋𝑂𝑅
𝐴
/𝜕𝐿 = 𝜃

2
(28 − 2𝐿)/(8 −

4𝐿)
3
> 0.The values of𝜋𝑂𝑂

𝐴
and𝜋𝑂𝑅
𝐴

increasewith the value of
𝐿 growing. As𝐿 = (1 + 𝛽)2/𝛾, we can learn thatwhen the level
of spillover𝛽 increases and the cost of R&D efforts 𝛾 declines,
the profits of Firm𝐴 gotten from opportunistic behavior rise.

Proposition 5. In the vertical R&D cooperation, the profits of
Firm𝐵 in four situations will increase when the level of spillover
𝛽 rises and the cost of R&D efforts 𝛾 declines.

Proof. Consider

𝜕𝜋
𝑅𝑅

B
𝜕𝐿
=
𝜕𝜃
2
(8 − 4.5𝐿) (8 − 6𝐿)

−2

𝜕𝐿

= −4.5𝜃
2
(8 − 6𝐿)

−2

+ 12𝜃
2
(8 − 4.5𝐿) (8 − 6𝐿)

−3

=
−4.5𝜃

2
(8 − 6𝐿) + 12𝜃

2
(8 − 4.5𝐿)

(8 − 3𝐿)
3

=
𝜃
2
(60 − 27𝐿)

(8 − 6𝐿)
3
> 0.

(30)

Similarly, it is easy to obtain 𝜕𝜋𝑅𝑂
𝐵
/𝜕𝐿 = 𝜃

2
(64−10𝐿)/(8−

5𝐿)
3
> 0, 𝜕𝜋𝑂𝑂

𝐵
/𝜕𝐿 = 𝜃

2
(32 − 6𝐿)/(8 − 3𝐿)

3
> 0, and 𝜕𝜋𝑂𝑅

𝐵
/

𝜕𝐿 = 𝜃
2
(28−16𝐿)/(8−4𝐿)

3
> 0.The values of 𝜋𝑅𝑅

𝐵
, 𝜋𝑅𝑂
𝐵

, 𝜋𝑂𝑂
𝐵

,
and 𝜋𝑂𝑅

𝐵
go up with the value of 𝐿 increasing. As 𝐿 =

(1 + 𝛽)
2
/𝛾, we can learn that when the level of spillover

𝛽 increases and the cost of R&D efforts 𝛾 declines, the profits
of Firm 𝐵 gotten from the vertical cooperation rise.

4. Numerical Illustration

In this section, we use numerical illustration to discuss the
profits in four different situations and analyze the effects of
the level of knowledge spillover and the cost of R&D efforts
on the stability of the R&D cooperation.

First, in order to analyze the effects of spillover levels on
the two firms’ profits in different situations, we assume the
basic parameters to be as follows:

𝑎 = 100,

𝑐
𝐴
= 30,

𝑐
𝐵
= 20,

𝛾 = 5.

(31)

From Table 3 it can be seen that the profits of Firm 𝐴 in
the four situations satisfy 𝜋𝑂𝑅

𝐴
> 𝜋
𝑂𝑂

𝐴
> 𝜋
𝑅𝑅

𝐴
> 𝜋
𝑅𝑂

𝐴
. As the

level of knowledge spillover goes up, the comparison of Firm
𝐴’s profits remains unchanged. As for Firm 𝐵, when the level
of knowledge spillover stays at a low level, choosing oppor-
tunistic behavior brings more benefits to Firm 𝐵 in the game.
However, as the level of knowledge spillover increases to a
certain value, Firm 𝐵 gets the highest profit from cooperation
with two reciprocal firms.

From Figure 1 we learn that the profits of Firm 𝐴 gotten
from reciprocal behavior are lower than the profits gained
from opportunistic behavior.The higher the level of spillover,
the lower benefits Firm𝐴 get from reciprocal behavior in the
vertical R&D cooperation. From Figure 2 we can learn that
Firm 𝐵 will get more benefits from its partner’s reciprocal
behavior. Therefore, Firm 𝐴 is more likely to choose oppor-
tunistic behavior compared with Firm 𝐵. The vertical R&D
cooperation faces a higher probability of failure. As Figure 1
shows, when the knowledge spillover stays at a low level, the
differences among the profits of Firm 𝐴 in four situations
are small. As the level of knowledge spillover increases, the
differences among the profits of Firm 𝐴 in four situations
grow.Therefore, when the level of knowledge spillover is low,
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Table 4: The profits of four situations in different levels of R&D effort costs.

𝛾 𝐿 𝜋
𝑅𝑅

𝐴
𝜋
𝑂𝑂

𝐴
𝜋
𝑅𝑂

𝐴
𝜋
𝑂𝑅

𝐴
𝜋
𝑅𝑅

𝐵
𝜋
𝑂𝑂

𝐵
𝜋
𝑅𝑂

𝐵
𝜋
𝑂𝑅

𝐵

3.00 0.75 127.55 274.10 86.51 362.50 943.88 491.49 899.65 462.50
3.50 0.64 161.27 249.48 120.85 312.07 743.91 455.36 732.90 433.26
4.00 0.56 171.66 233.31 136.45 281.19 639.15 431.33 638.70 413.52
4.50 0.50 175.00 221.89 144.63 260.42 575.00 414.20 578.51 399.31
5.00 0.45 175.77 213.41 149.34 245.51 531.77 401.38 536.86 388.59
5.50 0.41 175.52 206.86 152.23 234.31 500.71 391.42 506.38 380.23
6.00 0.38 174.86 201.65 154.10 225.59 477.32 383.47 483.13 373.52
6.50 0.35 174.04 197.41 155.35 218.61 459.08 376.97 464.83 368.02
7.00 0.32 173.18 193.90 156.21 212.91 444.46 371.56 450.05 363.43
7.50 0.30 172.35 190.93 156.80 208.15 432.49 366.99 437.87 359.54
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Figure 1: The profits of Firm 𝐴 in different levels of spillovers.
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Figure 2: The profits of Firm 𝐵 in different levels of spillovers.

mechanisms such as punishment for opportunism may be
more effective to guarantee the stability of cooperation.

Second, in order to analyze the effects of R&D effort cost
on the two firms’ profits in different situations, we assume the
basic parameters to be as follows:

𝑎 = 100,

𝑐
𝐴
= 30,

𝑐
𝐵
= 20,

𝛽 = 0.5.

(32)

From Table 4 it can also be seen that the profits of Firm𝐴
in the four situations satisfy 𝜋𝑂𝑅

𝐴
> 𝜋
𝑂𝑂

𝐴
> 𝜋
𝑅𝑅

𝐴
> 𝜋
𝑅𝑂

𝐴
. As the

cost of R&D efforts goes up, the comparison of the Firm 𝐴’s
profits remains unchanged. As for Firm 𝐵, when the cost of
R&D efforts stays at a low level, choosing reciprocal behavior
brings more benefits to Firm 𝐵 in the game. However, as the
cost of R&D efforts increases to a certain value, Firm 𝐵 gets
higher profits from cooperation with two reciprocal firms.

From Figure 1 we learn that the profits of Firm 𝐴 gotten
from reciprocal behavior are lower than those from oppor-
tunistic behavior. But when the cost of R&D efforts increases,
the profits of Firm 𝐴 gotten from reciprocal behavior grow.
From Figure 4 we can learn that Firm 𝐵will get more benefits
from its partner’s reciprocal behavior. But its profits decrease
with the cost rising. Figures 3 and 4 also indicate that Firm
𝐴 is more likely to choose opportunistic behavior compared
with Firm𝐵.Moreover, when the cost of R&Defforts stays at a
high level, the differences among the profits of Firm𝐴 in four
situations are small.Therefore, when the cost of R&Defforts is
high, mechanisms such as punishment for opportunism may
be more effective to guarantee the stability of cooperation.

5. Conclusion

As the R&D contract between firms is inherently incomplete,
the opportunistic behavior could not be avoided, which
makes the R&D cooperation unstable. Compared with the
game theoretical based literature on the stability of R&D
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Figure 3:Theprofits of Firm𝐴 in different levels of R&Deffort costs.
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Figure 4:Theprofits of Firm𝐵 in different levels of R&Deffort costs.

cooperation, we study the stability of vertical R&D cooper-
ation. In this paper, we have provided a gamemodel with two
firms in the vertical R&D cooperation to discuss the stability
of the cooperation. Two firms first build a partnership and
then coordinate their decisions of R&D efforts. However,
due to the cooperative and competitive relationship between
the two collaborative firms, opportunism cannot be avoided,
which makes the vertical R&D cooperation fail. We first
analyze the profits of Firm 𝐴 and Firm 𝐵 in four different
situations and then, respectively, compare the values of
payoffs of Firm 𝐴 and Firm 𝐵. Finally we discuss the effects
of spillover level and R&D cost on profits of four different
situations, and numerical illustration is presented.

Our results suggest that the vertical R&D cooperation
is inherently unstable, and the downstream firm is more
likely to break the agreement. When building a partnership,
firms need to consider the social statue and reputation of its
partner and mutual trust between the two firms. This paper
also identifies the role of knowledge spillovers and the cost
of R&D efforts in the stability of vertical R&D cooperation.
Knowledge flow and R&D cost influence the firms’ payoffs
in different situations. And they play different roles in

the decision process. We learn that when the level of knowl-
edge spillover is low or the cost of R&D efforts is high,
mechanisms such as punishment for opportunism may be
more effective.

These results may provide a theoretical basis for the
operation of vertical R&D cooperation.This paper also raises
some questions for future research. First, we note that our
analysis concentrates on a simple supply chain with two firms
involved. In future work we hope to explore the stability of
vertical R&D cooperation in a more general setting. Second,
empirical work can be done to better analyze the oppor-
tunism problem in the vertical R&D cooperation. Third,
other factors such as punishment and trust in the stable R&D
cooperation can be considered in future studies.

Appendix

(1) Derivation of the Comparison of 𝜋𝑂𝑂
𝐴

and 𝜋𝑅𝑅
𝐴
. Consider

𝜋
𝑂𝑂

𝐴
− 𝜋
𝑅𝑅

𝐴
=
𝜃
2
(4 − 0.5𝐿)

(8 − 3𝐿)
2
−
𝜃
2
(4 − 4.5𝐿)

(8 − 6𝐿)
2

=
𝜃
2

(8 − 3𝐿)
2
(8 − 6𝐿)

2
[(4 − 0.5𝐿) (8 − 6𝐿)

2

− (4 − 4.5𝐿) (8 − 3𝐿)
2
]

=
𝜃
2
𝐿

(8 − 3𝐿)
2
(8 − 6𝐿)

2
(22.5𝐿

2
− 60𝐿 + 64) > 0.

(A.1)

Therefore, we can get 𝜋𝑂𝑂
𝐴
> 𝜋
𝑅𝑅

𝐴
.

(2) Derivation of the Comparison of 𝜋𝑂𝑂
𝐵

and 𝜋𝑂𝑅
𝐵

. Consider

𝜋
𝑂𝑂

𝐵
− 𝜋
𝑂𝑅

𝐵
=
𝜃
2
(8 − 2𝐿)

(8 − 3𝐿)
2
−
𝜃
2
(8 − 4.5𝐿)

(8 − 4𝐿)
2

=
𝜃
2

(8 − 3𝐿)
2
(8 − 4𝐿)

2
[(8 − 2𝐿) (8 − 4𝐿)

2

− (8 − 4.5𝐿) (8 − 3𝐿)
2
]

=
𝜃
2

(8 − 3𝐿)
2
(8 − 4𝐿)

2
(8.5𝐿
2
− 32𝐿 + 32) > 0.

(A.2)

Therefore, we can get 𝜋𝑂𝑂
𝐵
> 𝜋
𝑂𝑅

𝐵
.

(3) Derivation of the Comparison of 𝜋𝑅𝑅
𝐵

and 𝜋𝑂𝑂
𝐵

. Consider

𝜋
𝑅𝑅

𝐵
− 𝜋
𝑂𝑂

𝐵
=
𝜃
2
(8 − 4.5𝐿)

(8 − 6𝐿)
2
−
𝜃
2
(8 − 2𝐿)

(8 − 3𝐿)
2

=
𝜃
2

(8 − 3𝐿)
2
(8 − 6𝐿)

2
[(8 − 4.5𝐿) (8 − 3𝐿)

2

− (8 − 2𝐿) (8 − 6𝐿)
2
]

=
𝜃
2
𝐿

(8 − 3𝐿)
2
(8 − 6𝐿)

2
(31.5𝐿

2
− 192𝐿 + 224) .

(A.3)
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The intersections of the quadratic function 𝑦 = 31.5𝑥2 −
192𝑥 + 224 with the 𝑥-axis are, respectively, ((192 −
√8640)/63, 0) and ((192 + √8640)/63, 0). As 0 < 𝐿 < 8/9,
therefore, we can get 𝜋𝑅𝑅

𝐵
> 𝜋
𝑂𝑂

𝐵
.

(4) Derivation of the Comparison of 𝜋𝑅𝑅
𝐵

and 𝜋𝑅𝑂
𝐵

. Consider

𝜋
𝑅𝑅

𝐵
− 𝜋
𝑅𝑂

𝐵
=
𝜃
2
(8 − 4.5𝐿)

(8 − 6𝐿)
2
−
𝜃
2
(8 − 2𝐿)

(8 − 5𝐿)
2

=
𝜃
2

(8 − 6𝐿)
2
(8 − 5𝐿)

2
[(8 − 4.5𝐿) (8 − 5𝐿)

2

− (8 − 2𝐿) (8 − 6𝐿)
2
]

=
𝜃
2
𝐿

(8 − 3𝐿)
2
(8 − 6𝐿)

2
(−40.5𝐿

2
+ 80𝐿 − 32) .

(A.4)

The intersections of the quadratic function 𝑦 = −40.5𝐿2 +
80𝐿−32with the 𝑥-axis are, respectively, ((80−√1216)/81, 0)
and ((80 + √1216)/81, 0). As 0 < 𝐿 < 8/9, therefore, when
(80−√1216)/81 < 𝐿 < 8/9, we can get 𝜋𝑅𝑅

𝐵
> 𝜋
𝑅𝑂

𝐵
, and, when

0 < 𝐿 < (80 − √1216)/81, we can get 𝜋𝑅𝑅
𝐵
< 𝜋
𝑅𝑂

𝐵
.
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We address the problem of the globally asymptotic stability for a class of stochastic nonlinear systems with the output feedback
control. By using the backstepping design method, a novel dynamic output feedback controller is designed to ensure that the
stochastic nonlinear closed-loop system is globally asymptotically stable in probability. Our way is different from the traditional
mathematical inductionmethod. Indeed, we develop a newmethod to study the globally asymptotic stability by introducing a series
of specific inequalities. Moreover, an example and its simulations are given to illustrate the theoretical result.

1. Introduction

As is well known, the stability problem of nonlinear systems
with the state feedback or output feedback control has
received much attention since it can be extensively applied in
many fields such as engineering and finance. In the practical
application, nonlinear systems with the feedback control can
model many kinds of stochastic influences either natural or
man-made. The output feedback control especially has been
used more widely for the reason that a system by the output
feedback is more flexible to respond to the information of
control systems than the state feedback.

In recent years, there has been a larger number of research
works on the global stability for nonlinear systems with the
output feedback control [1–6]. For example, Qian and Lin [5]
have considered the global stability by the output feedback
for a family of triangular nonlinear systems in which the
gain parameter 𝐿 is dependent on the parameters of the
controller. Combining the backstepping method and output
feedback domination approach, M.-L. Liu and Y.-G. Liu [4]
have investigated the semiglobally asymptotic stability for
a class of uncertain nonlinear systems. In [1], Andrieu and
Praly have applied the output feedback to study the globally
asymptotic stability of nonlinear systems based on a unifying
point. In [2], Du et al. have discussed the global output

feedback stabilization of a class of uncertain upper-triangular
systems with the input delay in which the controller with
a scaling gain was used to deal with a larger input delay
by a coordinate change. However, all the above works did
not consider noise disturbances. Actually, the synaptic trans-
mission in real systems can be viewed as a noisy process
introduced by random fluctuations from the release of infor-
mation and other probabilistic causes. Moreover, a system
can be stabilized or destabilized by certain stochastic inputs.
Therefore, noise disturbances should be taken into account
when studying the stability of nonlinear systems.

It is worth pointing out that the problem of global
output feedback stability for a class of deterministic lower-
triangular systems has been solved in [5] by using the feed-
back domination design method and constructing a linear
output compensator. Unfortunately, the noise disturbance
was ignored in [5]. As discussed in the above, the noise
disturbance has an important effect on the stability of a
real system. So it is natural to question whether a nonlinear
output feedback system is stable or not when it is affected
by the noise disturbance. About this issue, the previous work
on output feedback control of stochastic nonlinear systems
almost combines the backstepping method and the mathe-
matical induction to design the output feedback control. For
example, Liu et al. [7, 8] have discussed the output feedback
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control of a class of stochastic nonlinear systems with linearly
bounded unmeasurable states and a class of stochastic non-
minimum-phase nonlinear systems. Chen et al. [9] and Liu
and Xie [10] have talked about the state feedback stability for
stochastic nonlinear systems with time-varying delay. Guo et
al. [11] have solved the output feedback stability for a class of
stochastic nonlinear systems with power growth conditions.
More results can be found in [12–16]. The proofs in these
papers are complicated.

In the spirit of stochastic stability theoremofKhasminskii
[17] and that ofMao [18] about globally asymptotic stability in
probability, we construct a novel Lyapunov function directly
to prove the stability of the nonlinear stochastic output feed-
back system. As the discussion in [5], we also abandon the
separation principle paradigm and apply a recursive control
algorithm to design the linear control and the Lyapunov
function. Different from the mathematical induction, we use
some of the ingenious distortion of inequalities to make the
infinitesimal generator negative definite. To obtainmore con-
cise result, we take the dynamic gain from 2 rather than 1. In
particular, a novel linear observer system is designed and the
Lyapunov function is constructed by the following formula:

𝑉 =
𝑛 + 1
2
(𝜀
𝑇
𝑃𝜀)

2
+

𝑛

∑

𝑗=1

1
4𝐿4𝑗−4

𝜉
4
𝑗
. (1)

Without using the mathematical induction, we construct
some variables to achieve the multiform inequalities. As a
consequence, our result has more brief frame of the linear
controller than that given in [19]. Moreover, the model dis-
cussed in [19] can be regarded as the special case of ours.

The rest of this paper is arranged as follows. In Section 2,
we present the preparation of globally asymptotic stability
and introduce some inequalities which play an important role
in the proof of ourmain results. In Section 3, a novel dynamic
output feedback is designed by the backstepping procedure.
In Section 4, we use an example to illustrate the theoretical
results. Finally, in Section 5, we conclude the paper with some
general remarks.

2. Preliminaries

In this section, we mainly give the definition of the globally
asymptotic stability in probability and introduce several pre-
liminary lemmas.

Consider the following stochastic nonlinear systems:

𝑑𝑥 = 𝑓 (𝑥) 𝑑𝑡 + 𝑔 (𝑥) 𝑑𝜔,

𝑥 (0) = 𝑥0 ∈ R
𝑛
,

(2)

where 𝑥 ∈ R𝑛 is the state; 𝜔 is an 𝑟-dimensional standard
Brownian motion; and the Borel measurable functions 𝑓 :
R𝑛 → R𝑛 and 𝑔 : R𝑛 → R𝑛×𝑟 are locally Lipschitz and
satisfy 𝑓(0) = 0, 𝑔(0) = 0.

Definition 1. The function 𝛾(⋅) : R
+
→ R
+
is said to beK, if

𝛾(⋅) is continuous, strictly increasing, and vanishing at zero.

Definition 2 (see [8]). The equilibrium 𝑥 = 0 of (2) is said
to be globally asymptotically stable in probability if, for any
𝜀 > 0, there exists 𝛾(⋅) ∈K such that

𝑃 {|𝑥 (𝑡)| < 𝛾 (
𝑥0
)} ≥ 1− 𝜀, ∀𝑡 ≥ 0, 𝑥0 ∈ R

𝑛
\ {0} , (3)

and for any initial condition 𝑥0,

𝑃{ lim
𝑡→∞
𝑥 (𝑡) = 0} = 1. (4)

Definition 3 (see [8]). For any given 𝑉(𝑥) ∈ C2 associated
with system (2), the differential operator L is defined
as L𝑉 = (𝜕𝑉/𝜕𝑥

𝑇
)𝑓 + (1/2)tr{𝑔𝑇(𝜕2𝑉/𝜕𝑥2)𝑔}, where

(1/2)tr{𝑔𝑇(𝜕2𝑉/𝜕𝑥2)𝑔} is called Hessian term ofL.

Lemma4 (see [8]). Consider system (2) and suppose that there
exist positive definite, radially unbounded, twice continuously
differentiable function 𝑉(𝑥), and a positive definite function
𝑊(𝑥) such thatL𝑉(𝑥) ≤ −𝑊(𝑥); then

(i) for (2) there exists an almost surely unique strong solu-
tion on [0,∞) for each 𝑥0 ∈ R𝑛;

(ii) the equilibrium 𝑥 = 0 of system (2) is globally asymp-
totically stable in probability.

Lemma 5 (see [13]). Let 𝑝 ≥ 1. Then for any 𝑥, 𝑦 ∈ R,


𝑥
1/𝑝
−𝑦

1/𝑝 ≤ 2
(𝑝−1)/𝑝 𝑥 − 𝑦



1/𝑝
,

𝑥 ± 𝑦


𝑝
≤ 2𝑝−1 𝑥

𝑝
±𝑦
𝑝 ≤ 2

𝑝−1
(
𝑥
𝑝 +
𝑦
𝑝) ,

(|𝑥| +
𝑦
)
1/𝑝
≤ |𝑥|

1/𝑝
+
𝑦


1/𝑝
≤ 2(𝑝−1)/𝑝 (|𝑥| + 𝑦

)
1/𝑝
.

(5)

Lemma 6 (see [13]). For any given real numbers 𝑐, 𝑑 and any
real-valued functions 𝑓(𝑥, 𝑦) > 0, 𝑔(𝑥, 𝑦, 𝑧) ≥ 0, the following
inequality holds:

𝑔 (𝑥, 𝑦, 𝑧) |𝑥|
𝑐 𝑦


𝑑

≤
𝑐

𝑐 + 𝑑
𝑓 (𝑥, 𝑦) |𝑥|

𝑐+𝑑
+
𝑑

𝑐 + 𝑑

× (𝑔 (𝑥, 𝑦, 𝑧))
(𝑐+𝑑)/𝑑

(𝑓 (𝑥, 𝑦))
−𝑐/𝑑 𝑦



𝑐+𝑑
,

(6)

where 𝑥, 𝑦, 𝑧 ∈ R. Particularly when one takes 𝑓(𝑥, 𝑦) =
𝑔(𝑥, 𝑦, 𝑧) = 1, 𝑐 = 3, and 𝑑 = 4, then the inequality will
become

𝑥
3
𝑦 ≤

3
4
𝑥
4
+
1
4
𝑦
4
. (7)

Lemma 7. For any constants 𝑎 > 0 and 𝑏 ∈ R, one has that,
for any 𝑥, 𝑦 ∈ R,

− 𝑎𝑥
4
+ 𝑏𝑥𝑦

3
≤ 𝑘1𝑎

−1/3
𝑏
4/3
𝑦
4
, (8)

− 𝑎𝑥
4
+ 𝑏𝑥

3
𝑦 ≤ 𝑘2𝑏

4
𝑎
−3
𝑦
4
, (9)

where 𝑘1 = 4−1/3 − 4−4/3 > 0 and 𝑘2 = (3/4)
3
− (3/4)4 > 0.
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Proof. We first prove (8). Let 𝑍1(𝑥) = −𝑎𝑥
4
+ 𝑏𝑥𝑦

3, where 𝑦
is a parameter. Then we have

𝑍


1 (𝑥) = − 4𝑎𝑥
3
+ 𝑏𝑦

3
= 0, 𝑥 = ( 𝑏

4𝑎
)

1/3
𝑦. (10)

So for any 𝑥 ∈ (−∞, (𝑏/4𝑎)1/3𝑦), 𝑍1(𝑥) > 0, and 𝑥 ∈
((𝑏/4𝑎)1/3𝑦, +∞), 𝑍1(𝑥) < 0. With the sufficient condition
of extreme value, 𝑥 = (𝑏/4𝑎)1/3𝑦 is the maximum point of
function 𝑍1(𝑥). Therefore, it follows that

𝑍1 (𝑥) ≤ − 𝑎 [(
𝑏

4𝑎
)

1/3
𝑦]

4

+ 𝑏 [(
𝑏

4𝑎
)

1/3
𝑦]𝑦

3

= (4−1/3 − 4−4/3) 𝑎−1/3𝑏4/3𝑦4.

(11)

We now prove (9). Similarly, letting 𝑍2(𝑥) = −𝑎𝑥
4
+ 𝑏𝑥

3
𝑦,

where 𝑦 is a parameter, we have

𝑍


2 (𝑥) = − 4𝑎𝑥
3
+ 3𝑏𝑥2𝑦 = 0, 𝑥 =

3𝑏𝑦
4𝑎

or 𝑥 = 0. (12)

So for any 𝑥 ∈ (−∞, 3𝑏𝑦/4𝑎), 𝑍2(𝑥) > 0, and 𝑥 ∈ (3𝑏𝑦/
4𝑎, +∞), 𝑍2(𝑥) < 0. With the sufficient condition of extreme
value, 𝑥 = 3𝑏𝑦/4𝑎 is the maximum point of function 𝑍2(𝑥).
Thus, we get

𝑍2 (𝑥) ≤ − 𝑎(
3𝑏𝑦
4𝑎
)

4
+ 𝑏(

3𝑏𝑦
4𝑎
)

3
𝑦

= [(
3
4
)

3
−(

3
4
)

4
] 𝑏

4
𝑎
−3
𝑦
4
.

(13)

Lemma 8. For a series of numbers 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ R, one has

𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑛
 ≥
√𝑎

2
1 + 𝑎

2
2 + ⋅ ⋅ ⋅ + 𝑎

2
𝑛
,

√
𝑎
2
1 + 𝑎

2
2 + ⋅ ⋅ ⋅ + 𝑎

2
𝑛

𝑛
≥
𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑛

𝑛

≥ 𝑛√𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛

≥
2

1/𝑎1 + 1/𝑎2 + ⋅ ⋅ ⋅ + 1/𝑎𝑛
.

(14)

Lemma 9 (Cauchy-Schwartz’s inequality). Let the vector 𝑥 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R

𝑛 and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ R𝑛, then

(𝑥1𝑦1 +𝑥2𝑦2 + ⋅ ⋅ ⋅ + 𝑥𝑛𝑦𝑛)
2

≤ (𝑥
2
1 + ⋅ ⋅ ⋅ + 𝑥

2
𝑛
) (𝑦

2
1 + ⋅ ⋅ ⋅ + 𝑦

2
𝑛
) .

(15)

Lemma 10 (Young’s inequality). For vectors 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑛,
one has 𝑥𝑇𝑦 ≤ (𝜀𝑝/𝑝)|𝑥|𝑝 + (1/𝑞𝜀𝑞)|𝑦|𝑞, where 𝜀 > 0, 𝑝 > 1,
𝑞 > 1, and 1/𝑝 + 1/𝑞 = 1.

3. The Output Feedback Model and
Control Design

In this section, we design a novel linear observer system
(18) for the stochastic nonlinear system (16) below. Using the
backstepping method, a simple linear control is constructed
to guarantee that the closed-loop stochastic system is globally
asymptotically stable in probability.

Consider the following nonlinear stochastic system:

𝑑𝑥1 = (𝑥2 +𝑓1 (𝑥1)) 𝑑𝑡 + 𝑔
𝑇

1 (𝑥1) 𝑑𝑤,

𝑑𝑥2 = (𝑥3 +𝑓2 (𝑥2)) 𝑑𝑡 + 𝑔
𝑇

2 (𝑥2) 𝑑𝑤,

.

.

.

𝑑𝑥
𝑛−1 = (𝑥𝑛 +𝑓𝑛−1 (𝑥𝑛−1)) 𝑑𝑡 + 𝑔

𝑇

𝑛−1 (𝑥𝑛−1) 𝑑𝑤,

𝑑𝑥
𝑛
= (𝑢 +𝑓

𝑛
(𝑥
𝑛
)) 𝑑𝑡 + 𝑔

𝑇

𝑛
(𝑥
𝑛
) 𝑑𝑤,

𝑦 = 𝑥1,

(16)

where 𝑥
𝑖
= (𝑥1, . . . , 𝑥𝑖) is the state vector, 𝑢 ∈ R is the control

input, 𝑤 is the 𝑟-dimensional standard Wiener process, and
𝑦 ∈ R are the system output. The nonlinear functions 𝑓

𝑖
:

R
+
× R𝑖 → R and 𝑔

𝑖
: R
+
× R𝑖 → R𝑟 are locally Lipschitz

with 𝑓
𝑖
(0) = 0, 𝑔

𝑖
(0) = 0, 𝑖 = 1, . . . , 𝑛.

Assumption 11. The nonlinear functions 𝑓
𝑖
(𝑥
𝑖
) ∈ R and

𝑔
𝑖
(𝑥
𝑖
) ∈ R𝑟, 𝑖 = 1, . . . , 𝑛, are locally Lipschitz with 𝑓

𝑖
(0) = 0

and 𝑔
𝑖
(0) = 0 for 𝑖 = 1, . . . , 𝑛. Moreover, there exist two

constants 𝑙1 ≥ 0 and 𝑙2 ≥ 0 such that

𝑓𝑖 (𝑥𝑖)
 ≤ 𝑙1 (

𝑥1
 + ⋅ ⋅ ⋅ +

𝑥𝑖
) ,

𝑔𝑖 (𝑥𝑖)
 ≤ 𝑙2 (

𝑥1
 + ⋅ ⋅ ⋅ +

𝑥𝑖
) .

(17)

The linear observer system is designed as

̇̂𝑥1 = 𝑥2 (𝑡) + 𝐿𝑎1 (𝑥1 −𝑥1) ,

̇̂𝑥2 = 𝑥3 (𝑡) + 𝐿
2
𝑎2 (𝑥1 −𝑥1) ,

.

.

.

̇̂𝑥
𝑛−1 = 𝑥𝑛 (𝑡) + 𝐿

𝑛−1
𝑎
𝑛−1 (𝑥1 −𝑥1) ,

̇̂𝑥
𝑛
= 𝑢+𝐿

𝑛
𝑎
𝑛
(𝑥1 −𝑥1) ,

(18)

where 𝐿 ≥ 2 is an appropriate constant and 𝑎
𝑖
> 0, 𝑖 =

1, . . . , 𝑛, are coefficients of the Hurwitz polynomial:

𝑝 (𝑡) = 𝑡
𝑛
+ 𝑎1𝑡
𝑛−1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛−1𝑡 + 𝑎𝑛. (19)
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The observation error 𝜀
𝑖
= (𝑥
𝑖
− 𝑥
𝑖
)/𝐿
𝑖−1 satisfies

𝑑𝜀 = 𝐿

[
[
[
[
[
[
[
[
[
[

[

−𝑎1 1 0 ⋅ ⋅ ⋅ 0

−𝑎2 0 1 ⋅ ⋅ ⋅ 0
.
.
.

.

.

.
.
.
. d

.

.

.

−𝑎
𝑛−1 0 0 ⋅ ⋅ ⋅ 0
−𝑎
𝑛

0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]

]

𝜀𝑑𝑡 +

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑓1

𝑓2
𝐿

.

.

.

𝑓
𝑛−1
𝐿𝑛−2
𝑓
𝑛

𝐿𝑛−1

]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑑𝑡

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑔
𝑇

1

𝑔
𝑇

2
𝐿

.

.

.

𝑔
𝑇

𝑛−1
𝐿𝑛−2

𝑔
𝑇

𝑛

𝐿𝑛−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑑𝑤 = 𝐿𝐴𝜀𝑑𝑡 +𝐹𝑑𝑡 +𝐺𝑑𝑤,

(20)

where 𝐴 is a Hurwitz matrix. Therefore, there is a positive-
definite matrix 𝑃 = 𝑃𝑇 > 0 such that

𝐴
𝑇
𝑃+𝑃𝐴 = − 𝐼. (21)

Theorem 12. Assume that Assumption 11 holds. Then, the
equilibrium at origin of the closed-loop nonlinear stochastic
system (16) and (18) with the linear controller (31) below is
globally asymptotically stable in probability. Furthermore, it
follows from Lemma 4 that there exists an almost surely unique
strong solution on [0,∞) for each 𝑥0 ∈ R𝑛.

Proof. Consider the following Lyapunov function 𝑉0(𝜀) =
((𝑛 + 1)/2)(𝜀𝑇𝑃𝜀)2. Then, we have

L𝑉0 = (𝑛 + 1)

⋅ ((𝜀
𝑇
𝑃𝜀) (𝜀

𝑇
(𝐿𝐴
𝑇
𝑃+𝐿𝑃𝐴) 𝜀 + 2𝜀𝑇𝑃𝐹)

+
1
2
tr (𝐺𝑇 (4𝑃𝜀𝜀𝑇𝑃+ 2𝜀𝑇𝑃𝜀𝑃)𝐺)) ≤ − (𝑛 + 1)

⋅ 𝜆min𝐿 ‖𝜀‖
4
+ 2 (𝑛 + 1) 𝜀𝑇𝑃𝜀𝜀𝑇𝑃𝐹+ 3 (𝑛 + 1)

⋅ 𝑟√𝑟 |𝐺|
2
|𝑃|

2
‖𝜀‖

2
≤ − (𝑛 + 1) 𝜆min𝐿 ‖𝜀‖

4
+ 2 (𝑛

+ 1) 𝜆2max ‖𝜀‖
3
|𝐹| + 3 (𝑛 + 1) 𝑟√𝑟𝜆2max |𝐺|

2
‖𝜀‖

2
,

(22)

where 𝜆min denotes the minimum eigenvalue and 𝜆max is the
maximum eigenvalue of the matrix 𝑃.

It follows from Assumption 11 that

|𝐹| = √𝑓
2
1 + (

𝑓2
𝐿
)

2
+ ⋅ ⋅ ⋅ + (

𝑓
𝑛

𝐿𝑛−1
)

2

≤ 2𝑙1 (
𝑥1
 +

1
𝐿

𝑥2
 + ⋅ ⋅ ⋅ +

1
𝐿𝑛−1

𝑥𝑛
) ,

|𝐺| = √𝑔
2
1 + (

𝑔2
𝐿
)

2
+ ⋅ ⋅ ⋅ + (

𝑔
𝑛

𝐿𝑛−1
)

2

≤ 2𝑙2 (
𝑥1
 +

1
𝐿

𝑥2
 + ⋅ ⋅ ⋅ +

1
𝐿𝑛−1

𝑥𝑛
) .

(23)

Recalling that 𝑥
𝑖
= 𝑥
𝑖
+ 𝐿
𝑖−1
𝜀
𝑖
, 𝑖 = 1, . . . , 𝑛, we get

2 (𝑛 + 1) 𝜆2max ‖𝜀‖
3
|𝐹| ≤

3
2
(𝑛 + 1) 𝜆2max ‖𝜀‖

4

+
1
2
(𝑛 + 1) 𝜆2max |𝐹|

4

≤ (
3
2
(𝑛 + 1) + 64 (𝑛 + 1) 𝑛2𝑐4) 𝜆2max ‖𝜀‖

4

+ 64 (𝑛 + 1)

⋅ 𝑛
3
𝑐
4
𝜆
2
max (𝑥

4
1 +

1
𝐿4
𝑥
4
2 + ⋅ ⋅ ⋅ +

1
𝐿4𝑛−4

𝑥
4
𝑛
) ,

3 (𝑛 + 1) 𝑟√𝑟𝜆2max |𝐺|
2
‖𝜀‖

2
≤
3
2
(𝑛 + 1) 𝜆2max ‖𝜀‖

4

+
3
2
(𝑛 + 1) 𝑟3𝜆2max |𝐺|

4

≤ (
3
2
(𝑛 + 1) + 192 (𝑛 + 1) 𝑛2𝑟3𝑐4) 𝜆2max ‖𝜀‖

4

+ 192 (𝑛 + 1) 𝑛3𝑟3𝑐4𝜆2max (𝑥
4
1 + ⋅ ⋅ ⋅ +

1
𝐿4𝑛−4

𝑥
4
𝑛
) ,

(24)

where 𝑐 = max{𝑙1, 𝑙2}.
Substituting (24) into (22) yields

L𝑉0 ≤ − ((𝑛 + 1) 𝜆min𝐿− 𝑐0) ‖𝜀‖
4

+ 𝑐1 (𝑥
4
1 +
𝑥
4
2
𝐿4
+ ⋅ ⋅ ⋅ +

𝑥
4
𝑛

𝐿4𝑛−4
) ,

(25)

where

𝑐0 = (3 (𝑛 + 1) + (64+ 192𝑟
3
) (𝑛 + 1) 𝑛2𝑐4) 𝜆2max,

𝑐1 = (64+ 192𝑟
3
) (𝑛 + 1) 𝑛3𝑐4𝜆2max.

(26)

Now, we take the Lyapunov function as follows:

𝑉 =
𝑛 + 1
2
(𝜀
𝑇
𝑃𝜀)

2
+

𝑛

∑

𝑗=1

1
4𝐿4𝑗−4

𝜉
4
𝑗
. (27)
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And 𝑥
𝑖
= 𝜉
𝑖
+ 𝑥
∗

𝑖−1, 𝑥
∗

𝑖−1 = −𝐿𝑏𝑖−1𝜉𝑖−1, and 𝑥1 = 𝜉1, where
𝑖 = 2, . . . , 𝑛 and 𝑏

𝑖
is needed to be determined later. Then, a

direct computation yields

L𝑉 ≤ − ((𝑛 + 1) 𝜆min𝐿− 𝑐0) ‖𝜀‖
4
+ 𝑐1𝑥

4
1 + 𝑐1 (

1
𝐿4
𝑥
4
2

+ ⋅ ⋅ ⋅ +
1
𝐿4𝑛−4

𝑥
4
𝑛
)+ 𝜉

3
1 (𝑥2 +𝐿𝑎1𝜀1) +

𝑛−1
∑

𝑗=2

1
𝐿4𝑗−4

𝜉
3
𝑗

⋅ (𝑥
𝑗+1

+𝐿
𝑗
𝑎
𝑗
𝜀1 −

𝑗−1

∑

𝑖=1

𝜕𝑥
∗

𝑗−1

𝜕𝑥
𝑖

(𝑥
𝑖+1 +𝐿

𝑖
𝑎
𝑖
𝜀1))+

1
𝐿4𝑛−4

𝜉
3
𝑛
(𝑢

+𝐿
𝑛
𝑎
𝑛
𝜀1 −
𝑛−1
∑

𝑖=1

𝜕𝑥
∗

𝑛−1
𝜕𝑥
𝑖

(𝑥
𝑖+1 +𝐿

𝑖
𝑎
𝑖
𝜀1))

≤ − ((𝑛 + 1) 𝜆min𝐿− 𝑐0) ‖𝜀‖
4
+ 𝑐1𝜉

4
1

+ 8𝑐1
𝑛

∑

𝑗=2

1
𝐿4𝑗−4

𝜉
4
𝑗
+ 8𝑐1

𝑛

∑

𝑗=2

𝑏
4
𝑗−1

𝐿4𝑗−8
𝜉
4
𝑗−1 + 𝜉

3
1 (−𝐿𝑏1𝜉1

+𝐿𝑎1𝜀1) +
𝑛−1
∑

𝑗=1

1
𝐿4𝑗−4

(𝜉
3
𝑗
𝜉
𝑗+1 −𝐿𝜉

4
𝑗
) +

𝑛−1
∑

𝑗=1

1
𝐿4𝑗−5

𝜉
4
𝑗

+

𝑛−1
∑

𝑗=2

1
𝐿4𝑗−4

𝜉
3
𝑗
(−𝐿𝑏

𝑗
𝜉
𝑗

+(𝐿
𝑗
𝑎
𝑗
𝜀1 −

𝑗−1

∑

𝑖=1

𝜕𝑥
∗

𝑗−1

𝜕𝑥
𝑖

𝐿
𝑖
𝑎
𝑖
𝜀1)−

𝑗−1

∑

𝑖=1

𝜕𝑥
∗

𝑗−1

𝜕𝑥
𝑖

𝑥
𝑖+1)

+
1
𝐿4𝑛−4

𝜉
3
𝑛
(𝑢+𝐿

𝑛
𝑎
𝑛
𝜀1

−

𝑛−1
∑

𝑖=1

𝜕𝑥
∗

𝑛−1
𝜕𝑥
𝑖

(𝑥
𝑖+1 +𝐿

𝑖
𝑎
𝑖
𝜀1)) ≤ − (𝜆min𝐿− 𝑐0) ‖𝜀‖

4

+ ((−𝑏1 + 𝑐1 + 𝑎


1) 𝐿 + 8𝑐1𝑏
4
1 ) 𝜉

4
1 + 8𝑐1

𝑛

∑

𝑗=3

𝑏
4
𝑗−1

𝐿4𝑗−8
𝜉
4
𝑗−1

+

𝑛

∑

𝑗=2

𝑚
𝑗−1

𝐿4𝑗−5
𝜉
4
𝑗
+

𝑛

∑

𝑗=1

𝑘2 + 1
𝐿4𝑗−5

𝜉
4
𝑗
+

𝑛−1
∑

𝑗=2

1
𝐿4𝑗−4

𝜉
3
𝑗
(−𝐿𝑏
𝑗
𝜉
𝑗

+𝐿𝑏
𝑗−1𝜉𝑗 +𝐿

2
𝑏
𝑗−1,𝑗−1𝜉𝑗−1 + ⋅ ⋅ ⋅ + 𝐿

𝑗
𝑏
𝑗−1,1𝜉1)

+
1
𝐿4𝑛−4

𝜉
3
𝑛
(𝑢 + 𝐿𝑏

𝑛−1𝜉𝑛 + ⋅ ⋅ ⋅ + 𝐿
𝑛−1
𝑏
𝑛−1,2𝜉2

+𝐿
𝑛
𝑏
𝑛−1,1𝜉1) ,

(28)

where
𝑎


1 = 𝑘1𝜆
−1/3
min 𝑎

4/3
1 ,

𝑏
𝑗−1,1 = − 𝑏𝑗−1𝑏𝑗−2 ⋅ ⋅ ⋅ 𝑏2𝑏

2
1 ,

𝑏
𝑗−1,2 = − 𝑏𝑗−1𝑏𝑗−2 ⋅ ⋅ ⋅ 𝑏3𝑏

2
2 + 𝑏𝑗−1𝑏𝑗−2 ⋅ ⋅ ⋅ 𝑏1, . . .

𝑏
𝑗−1,𝑗−2 = − 𝑏𝑗−1𝑏

2
𝑗−2 + 𝑏𝑗−1𝑏𝑗−2,

𝑏
𝑗−1,𝑗−1 = − 𝑏

2
𝑗−1 + 𝑏𝑗−1𝑏𝑗−2,

𝑚
𝑗−1 = 𝑘1𝜆

−1/3
min (𝑎𝑗 + 𝑏𝑗−1𝑎𝑗−1 + 𝑏𝑗−1𝑏𝑗−2𝑎𝑗−2 + ⋅ ⋅ ⋅

+ 𝑏
𝑗−1 ⋅ ⋅ ⋅ 𝑏1𝑎1)

4/3
,

𝑗 = 2, . . . , 𝑛.
(29)

From Lemma 7, it follows that

L𝑉 ≤ − (𝜆min𝐿− 𝑐0) ‖𝜀‖
4
+ ((−𝑏1 + 𝑐1 + 𝑎



1 + 𝑘2

+ 1) 𝐿 + 8𝑐1𝑏
4
1 ) 𝜉

4
1 +
𝑛−1
∑

𝑗=2

−𝑏
𝑗

𝐿4𝑗−5
𝜉
4
𝑗
+ 8𝑐1

𝑛

∑

𝑗=3

𝑏
4
𝑗−1

𝐿4𝑗−8
𝜉
4
𝑗−1

+

𝑛−1

∑

𝑗=2

1
𝐿4𝑗−4

𝜉
3
𝑗
((𝑏
𝑗−1 +𝑚𝑗−1 + 𝑘2 + 1) 𝐿𝜉𝑗

+𝐿
2
𝑏
𝑗−1,𝑗−1𝜉𝑗−1 + ⋅ ⋅ ⋅ + 𝐿

𝑗−1
𝑏
𝑗−1,2𝜉2 +𝐿

𝑗
𝑏
𝑗−1,1𝜉1)

+
1
𝐿4𝑛−4

𝜉
3
𝑛
(𝑢 + 𝐿 (𝑏

𝑛−1 +𝑚𝑛−1 + 𝑘2 + 1) 𝜉𝑛

+𝐿
2
𝑏
𝑛−1,𝑛−1𝜉𝑛−1 + ⋅ ⋅ ⋅ + 𝐿

𝑛
𝑏
𝑛−1,1𝜉1) ≤ − (𝜆min𝐿

− 𝑐0) ‖𝜀‖
4
+ ((−𝑏1 + 𝑐1 + 𝑎



1 + 𝑘2 + 1) 𝐿 + 8𝑐1𝑏
4
1 ) 𝜉

4
1

+ 8𝑐1
𝑛−1
∑

𝑗=2

𝑏
4
𝑗

𝐿4𝑗−4
𝜉
4
𝑗
+

𝑛−1
∑

𝑗=2

−𝑏
𝑗
+ 𝑏
𝑗−1 + 𝑚𝑗−1 + 𝑘2 + 1
𝐿4𝑗−5

𝜉
4
𝑗

+
1
𝐿4𝑛−4

𝜉
3
𝑛
𝑢+

𝑛−1
∑

𝑗=1

𝑛 − 𝑗

𝐿4𝑗−5
𝜉
4
𝑗
+

𝑛

∑

𝑗=2

1
𝐿4𝑗−4

((−𝐿
5
𝜉
4
𝑗−1

+𝐿
2
𝑏
𝑗−1,𝑗−1𝜉𝑗−1𝜉

3
𝑗
) + ⋅ ⋅ ⋅ + (−𝐿

4𝑗−7
𝜉
4
2

+𝐿
𝑗−1
𝑏
𝑗−1,2𝜉2𝜉

3
𝑗
) + (−𝐿

4𝑗−3
𝜉
4
1 +𝐿
𝑗
𝑏
𝑗−1,1𝜉1𝜉

3
𝑗
))

+
1
𝐿4𝑛−4

𝜉
3
𝑛
(𝑢 + 𝐿 (𝑏

𝑛−1 +𝑚𝑛−1 + 𝑘2 + 1) 𝜉𝑛)

≤ − (𝜆min𝐿− 𝑐0) ‖𝜀‖
4
+ ((−𝑏1 + 𝑐1 + 𝑎



1 + 𝑘2 + 𝑛) 𝐿

+ 8𝑐1𝑏
4
1 ) 𝜉

4
1 + 8𝑐1

𝑛−1
∑

𝑗=2

𝑏
4
𝑗

𝐿4𝑗−4
𝜉
4
𝑗
+

𝑛−1
∑

𝑗=2

1
𝐿4𝑗−5

(−𝑏
𝑗
+ 𝑏
𝑗−1

+𝑚
𝑗−1 + 𝑘2 + 1+ 𝑛− 𝑗 + 𝑑𝑗−1 +𝑑𝑗−2 + ⋅ ⋅ ⋅ + 𝑑2

+𝑑1) 𝜉
4
𝑗
+

1
𝐿4𝑛−4

𝜉
3
𝑛
(𝑢 + 𝐿 (𝑏

𝑛−1 +𝑚𝑛−1 + 𝑘2 + 1

+ 𝑟
𝑛−1 + 𝑟𝑛−2 + ⋅ ⋅ ⋅ + 𝑟2 + 𝑟1) 𝜉𝑛) ≤ − (𝜆min𝐿− 𝑐0)

⋅ ‖𝜀‖
4
−

𝑛−1
∑

𝑗=1

1
𝐿4𝑗−4

(𝐿 − 8𝑐1𝑏
4
𝑗
) 𝜉

4
𝑗
−

1
𝐿4𝑛−5

𝜉
4
𝑛
,

(30)
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where

𝑑1 = 𝑘1𝑏
4/3
𝑗−1,1,

𝑑2 = 𝑘1𝑏
4/3
𝑗−1,2, . . . , 𝑑𝑗−2 = 𝑘1𝑏

4/3
𝑗−1,𝑗−2,

𝑑
𝑗−1 = 𝑘1𝑏

4/3
𝑗−1,𝑗−1,

𝑟1 = 𝑘1𝑏
4/3
𝑛−1,1,

𝑟2 = 𝑘1𝑏
4/3
𝑛−1,1, . . . , 𝑟𝑛−2 = 𝑘1𝑏

4/3
𝑛−1,𝑛−2,

𝑟
𝑛−1 = 𝑘1𝑏

4/3
𝑛−1,𝑛−1,

𝑏1 = 𝑐1 + 𝑎


1 + 𝑘2 + 𝑛+ 1,

𝑏
𝑗
= 𝑏
𝑗−1 +𝑚𝑗−1 + 𝑘2 + 1+ 𝑛− 𝑗 + 1+𝑑𝑗−1 + ⋅ ⋅ ⋅

+ 𝑑1, 𝑗 = 2, . . . , 𝑛 − 1,

𝑢 = − 𝐿𝑏
𝑛
𝜉
𝑛
= −𝐿 (𝑏

𝑛−1 +𝑚𝑛−1 + 𝑘2 + 2+ 𝑟𝑛−1 + 𝑟𝑛−2

+ ⋅ ⋅ ⋅ + 𝑟2 + 𝑟1) 𝜉𝑛.

(31)

Now, we choose the gain constant 𝐿 = max{2, 𝑐0/𝜆min, 8𝑐1𝑏
4
1 ,

. . . , 8𝑐1𝑏
4
𝑛−1}, and then the right-hand side of (30) becomes

negative definite.Therefore, it follows from Lemma 4 that the
equilibrium of the closed-loop nonlinear stochastic system is
globally asymptotically stable in probability and there exists
an almost surely unique strong solution on [0,∞) for each
𝑥0 ∈ R

𝑛.

Remark 13. Letting 𝑔
𝑖
(𝑥) ≡ 0 for all 𝑥 ∈ R𝑛 and 𝑖 =

1, . . . , 𝑛, then system (16) is reduced to the deterministic
system, which was studied by Qian and Lin in [5]. Therefore,
we extend the conclusion for the deterministic system to
the stochastic nonlinear system and construct a novel linear
output feedback controller.

Remark 14. Letting 𝑓
𝑖
(𝑥) ≡ 0 for all 𝑥 ∈ R𝑛 and 𝑖 =

1, . . . , 𝑛, then system (16) is reduced to that in [19], which was
studied by Deng and Krstić. It is worth pointing out that the
output feedback control in [19] is nonlinear, which is very
complex. However, our research is based on a novel linear
output feedback control. Therefore, our result extends and
improves that in [19].

Remark 15. In [7], Liu and Zhang studied the stability of
stochastic nonlinear systems with linearly bounded unmea-
surable states by the output feedback control. It should be
mentioned that the mathematical induction played a key
role in the proof of the main result in [7]. However, in this
paper, we construct a novel lyapunov function and prove the
stability directly without using the mathematical induction,
whichmake the proofmore concise and help us construct the
linear output feedback controller more easily.

4. An Example

In this section, we will use an example to illustrate our main
result.

Example 1. Consider the following stochastic nonlinear sys-
tem:

𝑑𝑥1 = (𝑥2 +
1
16
𝑥1 sin𝑥

2
2)𝑑𝑡 +

1
16
(2𝑥21 −𝑥

3
1) 𝑑𝑤,

𝑑𝑥2 = (𝑢+
1
16
𝑥1 +𝑥2

) 𝑑𝑡 +
1
16

ln (1+ 𝑥2
) 𝑑𝑤,

𝑦 = 𝑥1.

(32)

Obviously, the functions 𝑓1, 𝑓2, 𝑔1, 𝑔2 are locally Lipschitz
such that

𝑓1 (𝑥)
 ≤

1
16
𝑥1
 ,

𝑓2 (𝑥)
 ≤

1
16
(
𝑥1
 +
𝑥2
) ,

𝑔1 (𝑥)
 ≤

1
16
𝑥1
 ,

𝑔2 (𝑥)
 ≤

1
16
(
𝑥1
 +
𝑥2
) ,

(33)

which verifies that Assumption 11 holds. Moreover, it is easy
to check that

|𝐹| ≤
1
8
(
𝑥1
 +

1
𝐿

𝑥2
) ,

|𝐺| ≤
1
8
(
𝑥1
 +

1
𝐿

𝑥2
) .

(34)

The linear observer system is designed as

𝑑𝑥1 = (𝑥2 +𝐿 (𝑥1 −𝑥1)) 𝑑𝑡,

𝑑𝑥2 = (𝑢+ 𝐿
2
(𝑥1 −𝑥1)) 𝑑𝑡,

(35)

with a suitable choice of the parameter 𝐿. The observation
errors 𝜀1 = 𝑥1 − 𝑥1 and 𝜀2 = (𝑥2 − 𝑥2)/𝐿 satisfy

𝑑𝜀 = 𝐿[

−1 1
−1 0

] 𝜀𝑑𝑡 +[

[

𝑓1

𝑓2
𝐿

]

]

𝑑𝑡 +
[
[

[

𝑔
𝑇

1 (𝑦)

𝑔
𝑇

2 (𝑦)

𝐿

]
]

]

𝑑𝑤

= 𝐿𝐴𝜀𝑑𝑡 +𝐹𝑑𝑡 +𝐺𝑑𝑤.

(36)

For the abovematrix𝐴, there exists a positive-definite matrix
𝑃 satisfying 𝐴𝑇𝑃 + 𝑃𝐴 = −𝐼, where

𝑃 =

[
[
[

[

1 −
1
2

−
1
2

3
2

]
]
]

]

. (37)

It is easy to get the minimum eigenvalue 𝜆min = (5 − √5)/4
and maximum eigenvalue 𝜆max = (5+√5)/4 of the matrix 𝑃.
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Figure 1: The first state response in Example 1.

Now, taking 𝑉0 = (3/2)(𝜀
𝑇
𝑃𝜀)

2, then we get

L𝑉0 ≤ − (3𝜆min𝐿− 𝑐0) ‖𝜀‖
4
+ 𝑐1𝑥

4
1 +
𝑐1
𝐿4
𝑥
4
2, (38)

where

𝑐0 = 9.1𝜆
2
max,

𝑐1 = 0.1𝜆
2
max.

(39)

Choosing

𝑉 = 𝑉0 + 𝑐1𝜉
4
1 +
𝑐1
𝐿4
𝜉
4
2 , (40)

𝜉1 = 𝑥1, and 𝜉2 = 𝑥2 + 𝐿𝑏1𝑥1, we have

L𝑉 ≤ − (𝜆min𝐿− 𝑐0) ‖𝜀‖
4
+ (8𝑐1𝑏

4
1 −𝐿) 𝜉

4
1 −

1
𝐿3
𝜉
4
2 , (41)

where 𝑏1 = 4, 𝑏2 = 29, 𝐿 = 664, and 𝑢 = −𝐿𝑏2(𝑥2 + 𝐿𝑏1𝑥1) =
−𝐿𝑏2𝜉2. Obviously,

𝑉 =
3
2
(𝜀
𝑇
𝑃𝜀)

2
+
1
4
𝜉
4
1 +

1
4𝐿4
𝜉
4
2 , (42)

which is positive-definite and proper. By Theorem 12, we see
that the equilibrium 𝑥 = 0 of the nonlinear closed-loop
stochastic system (32) and (35) is globally asymptotically
stable in probability and there exist an almost unique strong
solution on [0,∞). The state response and control input with
initial conditions 𝑥1 = 0.5, 𝑥2 = 0, 𝑥1 = 0.6, and 𝑥2 = 0 are
presented in Figures 1–3.

Figures 1–3 show that the equilibrium of the closed-loop
system is unique and tends to 0 when the initial state is
nonzero. In other words, for the closed-loop system, the
equilibrium is globally asymptotically stable in probability
and there exists an almost surely unique strong solution on
[0,∞) for each 𝑥0 ∈ R

𝑛, which verifies our theoretical results.

−250

−200

−150

−100

−50

0

50

100

150

200

Time (s)

System state

St
at

e

0 0.1 0.2 0.3 0.4 0.5 0.70.6

x2

x̂2

Figure 2: The second state response in Example 1.
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Figure 3: The control input in Example 1.

5. Conclusion

In this paper, we have studied the problem of globally
asymptotic stability of stochastic nonlinear systems by the
output feedback with a novel method. It is worth pointing
out that the design of the dynamic output feedback controller
plays an important role in the proof of our main result,
especially that the Young inequality is a key tool. We believe
that our formulation and approach can be used to analyse
the stabilization problemof stochastic nonlinear systemswith
input delays, in which the feedback domination designwill be
a more complex structure.
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This paper is concerned with the existence of stationary distribution and extinction for multispecies stochastic Lotka-Volterra
predator-prey system. The contributions of this paper are as follows. (a) By using Lyapunov methods, the sufficient conditions
on existence of stationary distribution and extinction are established. (b) By using the space decomposition technique and the
continuity of probability, weaker conditions on extinction of the system are obtained. Finally, a numerical experiment is conducted
to validate the theoretical findings.

1. Introduction

The dynamic relationship between the predators and the
preys has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology
due to its universal existence and importance [1]. The classic
predator-prey model is the Lotka-Volterra model, governed
by the following differential equation:

�̇� = 𝑥 (𝑎 − 𝑏𝑦) ,

̇𝑦 = 𝑦 (−𝑐 + 𝑓𝑥) ,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) denote the prey and predator population
size, respectively, at time 𝑡. For the prey component, the
parameters 𝑎 and 𝑏 are the fixed growth and mortality rates,
respectively. For the predator component, the parameters 𝑐
and 𝑓 are the fixed growth and mortality rates, respectively.
Since then, variants of the two-species Lotka-Volterra system
have been frequently investigated to describe population
dynamics with predator-prey relations; see, for example, [2–
4].

Recently, the multispecies predator-prey systems have
received a great deal of research attention since they took
the differences among individual growth and mortality into
account (see [5–8]). In order to understand the nature of the
competitive interactions and relationships between predator

and prey, Yang and Xu [8] considered the following periodic
𝑚-prey and 𝑛−𝑚-predator Lotka-Volterra differential system
with periodic coefficients:

𝑑𝑥

𝑖
= 𝑥

𝑖
(𝑏

𝑖 (
𝑡) −

𝑛

∑

𝑗=1

𝑎

𝑖𝑗 (
𝑡) 𝑥𝑗

)𝑑𝑡, 𝑖 = 1, . . . , 𝑚,

𝑑𝑥

𝑖
= 𝑥

𝑖
(−𝑏

𝑖 (
𝑡) +

𝑚

∑

𝑗=1

𝑎

𝑖𝑗 (
𝑡) 𝑥𝑗

−

𝑛

∑

𝑗=𝑚+1

𝑎

𝑖𝑗 (
𝑡) 𝑥𝑗

)𝑑𝑡,

𝑖 = 𝑚 + 1, . . . , 𝑛,

(2)

where 𝑥
𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚, denotes the density of prey species

at time 𝑡 and 𝑥
𝑖
(𝑡), 𝑖 = 𝑚 + 1, . . . , 𝑛, denotes the density of

predator species at time 𝑡. Under the assumption that 𝑏
𝑖
(𝑡) >

0 (𝑖 = 1, . . . , 𝑚), 𝑏
𝑖
(𝑡) ≥ 0 (𝑖 = 𝑚 + 1, . . . , 𝑛), 𝑎

𝑖𝑖
(𝑡) >

0 (𝑖 = 1, . . . , 𝑛), 𝑎

𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) are continuous periodic

functions with a common periodic 𝑇 > 0, a set of sufficient
conditions on the existence and global attractiveness of the
periodic solution to system (2) are obtained. Recently, Chen
and Shi [5] further considered the almost periodic case of
more complicated systems than system (2) under the almost
periodic case. By constructing a suitable Lyapunov function,
they obtained a set of sufficient conditions which guarantees
the existence of a unique globally attractive positive almost
periodic solution to the corresponding system.
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On the other hand, from the biological point of view,
population systems in the real world are inevitably affected
by environmental noise. In the past decades, the dynamics
of stochastic populations and related topic have received
a great deal of research attention (see [9–21]), since they
have been successfully used in a variety of application
fields, including biology (see [22–28]), epidemiology (see
[29, 30]), and neural networks (see [31–33]). More recently,
the asymptotic properties of stochastic predator-prey systems
have received a lot of attention; the readers can refer to
[10, 11, 34] and the references therein. For example, the
dynamics of the density dependent stochastic predator-prey
system with different functional response have been studied
by Ji and Jiang in [10, 11]. Vasilova [34] has investigated
a stochastic Gilpin-Ayala predator-prey model with time-
dependent delay, and certain asymptotic results regarding
the long-time behavior of trajectories of the solution and
sufficient criteria for extinction of species for a special case
of the considered system are given.

In this paper, considering the effect of environmental
noise, we introduce stochastic perturbation into the growth
rate of the prey and the predator in system (2) and assume
that parameters 𝑏

𝑖
and 𝑎

𝑖𝑗
are constant. Then we obtain

the following 𝑚-prey and 𝑛 − 𝑚-predator stochastic Lotka-
Volterra system with constant coefficients:

𝑑𝑥

𝑖
= 𝑥

𝑖
(𝑏

𝑖
−

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

𝑗
)𝑑𝑡 + 𝜎

𝑖
𝑥

𝑖
𝑑𝐵

𝑖 (
𝑡) ,

𝑖 = 1, . . . , 𝑚,

𝑑𝑥

𝑖
= 𝑥

𝑖
(−𝑏

𝑖
+

𝑚

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

𝑗
−

𝑛

∑

𝑗=𝑚+1

𝑎

𝑖𝑗
𝑥

𝑗
)𝑑𝑡

+ 𝜎

𝑖
𝑥

𝑖
𝑑𝐵

𝑖 (
𝑡) , 𝑖 = 𝑚 + 1, . . . , 𝑛,

(3)

where 𝐵(𝑡) = (𝐵

1
(𝑡), 𝐵

2
(𝑡), . . . , 𝐵

𝑛
(𝑡)) is an 𝑛-dimensional

Brownian motion and 𝜎

2

𝑖
will be called the noise intensity.

Throughout this paper, we always assume that the following
hypothesis holds:

𝑏

𝑖
> 0, 𝑖 = 1, . . . , 𝑚,

𝑏

𝑖
≥ 0, 𝑖 = 𝑚 + 1, . . . , 𝑛,

𝑎

𝑖𝑖
> 0, 𝑖 = 1, . . . , 𝑛,

𝑎

𝑖𝑗
⩾ 0 (𝑖 ̸= 𝑗) .

(4)

In the study of stochastic population systems, extinction
and existence of stationary distribution are two important
and interesting properties, respectively, meaning that the
population system will die out or the distribution of the
solution converges weakly to the probability measure in the
future, which have received a lot of attention (see [12, 35–37]).
Then one question arises naturally: under what condition can
system (3) have a stationary distribution and become extinct,
respectively?This issue constitutes the first motivation of this
paper.

In addition, the existing literatures (see [10, 35]) show
clearly that if the noise intensity of every prey species is
more than twice the corresponding intrinsic growth rate,
the population will become extinct exponentially. Then one
interesting question is as follows: What will happen if the
noise intensity equals twice the intrinsic growth rate? Thus,
the second purpose of this paper is to solve this interesting
problem.

The organization of the paper is as follows. Section 2
describes some preliminaries. The main results are stated
in Sections 3 and 4. In Section 3, sufficient conditions are
obtained under which there is a stationary distribution
to system (3). By utilizing some novel stochastic analysis
techniques, sufficient criteria for ensuring the extinction of
system (3) are obtained in Section 4. Section 5 provides some
numerical examples to check the effectiveness of the derived
results. Conclusion is made in Section 6.

2. Notation

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}

𝑡≥0
,P) be a complete probability space with a

filtration {F
𝑡
}

𝑡≥0
satisfying the usual conditions (i.e., it is

increasing and right continuous whileF
0
contains all P-null

sets). Let 𝐵(𝑡) = (𝐵

1
(𝑡), 𝐵

2
(𝑡), . . . , 𝐵

𝑛
(𝑡)) be an n-dimensional

Brownian motion defined on the probability space. If 𝐴 ∈

𝑅

𝑛×𝑛 is symmetric, its largest and smallest eigenvalues are
denoted by𝜆max(𝐴) and𝜆min(𝐴). Let𝑥

∗
= (𝑥

∗

1
, 𝑥

∗

2
, . . . , 𝑥

∗

𝑛
) be

the positive equilibrium of the corresponding deterministic
predator-prey system to system (3), that is, the solution to the
following equation:

𝑏

𝑖
−

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

∗

𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑚,

−𝑏

𝑖
+

𝑚

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

∗

𝑗
−

𝑛

∑

𝑗=𝑚+1

𝑎

𝑖𝑗
𝑥

∗

𝑗
= 0, 𝑖 = 𝑚 + 1, . . . , 𝑛.

(5)

In the same way as Zhu and Yin [38] and Liu et al. [39]
did, we can also show the following result on the existence of
global positive solution.

Lemma 1. Suppose that condition (4) holds; then one has the
following assertions:

(i) For any given initial value 𝑥
0
∈ 𝑅

𝑛

+
, there is a unique

solution 𝑥(𝑡, 𝑥

0
) to system (3) and the solution will

remain in 𝑅𝑛
+
with probability 1; namely,

P {𝑥 (𝑡, 𝑥

0
) ∈ 𝑅

𝑛

+
, ∀𝑡 ≥ 0} = 1, (6)

for any 𝑥
0
∈ 𝑅

𝑛

+
.

(ii) For any given initial value 𝑥
0
∈ 𝑅

𝑛

+
and any 𝛽 > 0,

almost every sample path of 𝑥𝛽(𝑡, 𝑥
0
) is locally but

uniformly Holder continuous.

Lemma 2 (see [40]). Let 𝑓(𝑡) be a nonnegative function
defined on [0, +∞) such that 𝑓(𝑡) is integrable on [0, +∞) and
is uniformly continuous on [0, +∞); then lim

𝑡→∞
𝑓(𝑡) = 0.
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3. Stationary Distribution

In this section, we mainly show that system (3) has a
stationary distribution. Let us give a lemma that will be used
in the following proof. Let 𝑋(𝑡) be a homogeneous Markov
process in 𝐸

𝑛
⊂ 𝑅

𝑛 described by the following stochastic
equation:

𝑑𝑋 (𝑡) = 𝑏 (𝑋) 𝑑𝑡 +

𝑑

∑

𝑘=1

𝜎

𝑘 (
𝑋) 𝑑𝐵𝑘 (

𝑡) . (7)

The diffusion matrix is

𝐴 (𝑥) = (𝑎

𝑖𝑗 (
𝑥)) , 𝑎

𝑖𝑗 (
𝑥) =

𝑑

∑

𝑘=1

𝜎

𝑖

𝑘
(𝑥) 𝜎

𝑗

𝑘
(𝑥) . (8)

Lemma3 (see [41]). One assumes that there is a bounded open
subset𝐺 ⊂ 𝐸

𝑛 with a regular (i.e., smooth) boundary such that
its closure 𝐺 ⊂ 𝐸

𝑛, and
(i) in the domain 𝐺 and some neighborhood therefore,

the smallest eigenvalue of the diffusion matrix 𝐴(𝑥) is
bounded away from zero;

(ii) if 𝑥 ∈ 𝐸

𝑛
\ 𝐺, the mean time 𝜏 at which a path issuing

from𝑥 reaches the set𝐺 is finite, and sup
𝑥∈𝐾

𝐸

𝑥
𝜏 < +∞

for every compact subset 𝐾 ∈ 𝐸

𝑛 and throughout this
paper one sets inf 0 = ∞.

One then has the following assertions:
(1) The Markov process 𝑋(𝑡) has a stationary distribution

𝜇(⋅) with density in 𝐸𝑛.
(2) Let 𝑓(𝑥) be a function integrable with respect to the

measure 𝜇(⋅). Then

P{ lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝑓 (𝑥 (𝑠)) 𝑑𝑠 = ∫

𝐸
𝑛

𝑓 (𝑦) 𝜇 (𝑑𝑦)} = 1. (9)

Remark 4. The proof is given by [41] in detail. Precisely, the
existence of a stationary distribution with density is obtained
in Theorem 4.3 on pp. 117. The ergodic property is referred
to Theorem 4.2 on pp. 110. To validate (i), we can directly
show that 𝜆min{𝐴(𝑥)} > 0. To validate (ii), it suffices to prove
that there is some neighborhood 𝑈 and a nonnegative 𝐶2-
function 𝑉 such that, for any 𝑥 ∈ 𝐸

𝑛
\ 𝑈, L𝑉(𝑥) is negative

(for details refer to [42], pp. 1163).

Theorem5. Let condition (4) hold and let𝑥(𝑡, 𝑥
0
) be the global

solution to system (3) with any positive initial value 𝑥
0
∈ 𝑅

𝑛

+
.

Assume that there exists 𝑐 = (𝑐

1
, 𝑐

2
, . . . , 𝑐

𝑛
) ≫ 0 such that

𝑐

𝑖
𝑎

𝑖𝑖
−

1

2

𝑛

∑

𝑗 ̸=𝑖

𝑖=1

(𝑐

𝑖
𝑎

𝑖𝑗
+ 𝑐

𝑗
𝑎

𝑗𝑖
) > 0, 𝑖 = 1, 2, . . . , 𝑛,

1

2

𝑛

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖

< min
1⩽𝑖⩽𝑛

{

{

{

{

{

(𝑐

𝑖
𝑎

𝑖𝑖
−

1

2

𝑛

∑

𝑗 ̸=𝑖

𝑖=1

(𝑐

𝑖
𝑎

𝑖𝑗
+ 𝑐

𝑗
𝑎

𝑗𝑖
))(𝑥

∗

𝑗
)

2
}

}

}

}

}

.

(10)

Then there is a stationary distribution for system (3).

Proof. Let 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡, 𝑥

0
) for simplicity. Applying Itô’s

formula to 𝑉(𝑥) = ∑

𝑛

𝑖=1
𝑐

𝑖
(𝑥

𝑖
− 𝑥

∗

𝑖
− 𝑥

𝑖
ln(𝑥
𝑖
/𝑥

∗

𝑖
)) yields

L𝑉 = −

𝑛

∑

𝑖=1

𝑐

𝑖
𝑎

𝑖𝑖
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2

−

𝑚

∑

𝑖=1

𝑚

∑

𝑗 ̸=𝑖

𝑗=1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
) (𝑥

𝑗
− 𝑥

∗

𝑗
)

−

𝑚

∑

𝑖=1

𝑛

∑

𝑗=𝑚+1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
) (𝑥

𝑗
− 𝑥

∗

𝑗
)

+

𝑛

∑

𝑖=𝑚+1

𝑚

∑

𝑗=1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
) (𝑥

𝑗
− 𝑥

∗

𝑗
)

−

𝑛

∑

𝑖=𝑚+1

𝑛

∑

𝑗 ̸=𝑖

𝑗=𝑚+1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
) (𝑥

𝑗
− 𝑥

∗

𝑗
)

+

1

2

𝑛

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖
.

(11)

By the inequality 2𝑎𝑏 ⩽ (𝑎

2
+ 𝑏

2
), we have

L𝑉 ⩽ −

𝑛

∑

𝑖=1

𝑐

𝑖
𝑎

𝑖𝑖
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2
+

1

2

𝑚

∑

𝑖=1

𝑚

∑

𝑗 ̸=𝑖

𝑗=1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2

+

1

2

𝑚

∑

𝑖=1

𝑚

∑

𝑗 ̸=𝑖

𝑗=1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑗
− 𝑥

∗

𝑗
)

2

+

1

2

𝑛

∑

𝑖=𝑚+1

𝑛

∑

𝑗 ̸=𝑖

𝑗=𝑚+1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2

+

1

2

𝑛

∑

𝑖=𝑚+1

𝑛

∑

𝑗 ̸=𝑖

𝑗=𝑚+1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑗
− 𝑥

∗

𝑗
)

2

+

1

2

𝑚

∑

𝑖=1

𝑛

∑

𝑗=𝑚+1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2

+

1

2

𝑚

∑

𝑖=1

𝑛

∑

𝑗=𝑚+1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑗
− 𝑥

∗

𝑗
)

2

+

1

2

𝑛

∑

𝑖=𝑚+1

𝑚

∑

𝑗=1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2

+

1

2

𝑛

∑

𝑖=𝑚+1

𝑚

∑

𝑗=1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑗
− 𝑥

∗

𝑗
)

2

+

1

2

𝑛

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖

= −

𝑛

∑

𝑖=1

𝑐

𝑖
𝑎

𝑖𝑖
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗 ̸=𝑖

𝑗=1

𝑐

𝑖
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2
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+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗 ̸=𝑖

𝑗=1

𝑐

𝑗
𝑎

𝑖𝑗
(𝑥

𝑖
− 𝑥

∗

𝑖
)

2
+

1

2

𝑛

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖

= −

𝑛

∑

𝑖=1

[

[

[

𝑐

𝑖
𝑎

𝑖𝑖
−

1

2

𝑛

∑

𝑗 ̸=𝑖

𝑖=1

(𝑐

𝑖
𝑎

𝑖𝑗
+ 𝑐

𝑗
𝑎

𝑗𝑖
)

]

]

]

(𝑥

𝑖
− 𝑥

∗

𝑖
)

2

+

1

2

𝑛

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖
.

(12)

Note that (10); then the ellipsoid

𝑛

∑

𝑖=1

[

[

[

𝑐

𝑖
𝑎

𝑖𝑖
−

1

2

𝑛

∑

𝑗 ̸=𝑖

𝑖=1

(𝑐

𝑖
𝑎

𝑖𝑗
+ 𝑐

𝑗
𝑎

𝑗𝑖
)

]

]

]

(𝑥

𝑖
− 𝑥

∗

𝑖
)

2

=

1

2

𝑛

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖

(13)

lies entirely in 𝑅𝑛
+
. Now we can take 𝑈 to be a neighborhood

of the ellipsoid with 𝑈 ⊆ 𝐸

𝑛
= 𝑅

𝑛

+
, such that, for 𝑥 ∈ 𝑅

𝑛

+
\ 𝑈,

L𝑉 < 0, which means condition (ii) of Lemma 3 is verified.
Now we begin to verify condition (i) in Lemma 3.

Let us define 𝐻(𝑥) = diag(𝜎
1
𝑥

1
, 𝜎

2
𝑥

2
, . . . , 𝜎

𝑛
𝑥

𝑛
), so the

diffusion matrix is 𝐴(𝑥) = 𝐻

𝑇
(𝑥)𝐻(𝑥). It is clear that

𝜆min{𝐻
𝑇
(𝑥)𝐻(𝑥)} ⩾ 0. If 𝜆min{𝐻

𝑇
(𝑥)𝐻(𝑥)} = 0 holds, there

exists 𝜉 = (𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑛
)

𝑇
∈ 𝑅

𝑛 such that |𝜉| = 1 and
𝜉

𝑇
𝐻

𝑇
(𝑥)𝐻(𝑥)𝜉 = 0, which implies that 𝐻(𝑥)𝜉 = 0. By the

definition of 𝜎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, and 𝑥 ∈ 𝑅𝑛

+
\ 𝑈, we see 𝜉 = 0,

but it contradicts with |𝜉| = 1. So 𝜆min{𝐻
𝑇
(𝑥)𝐻(𝑥)} > 0 for

𝑥 ∈ 𝑅

𝑛

+
\𝑈must hold.Thatmeans condition (i) of Lemma 3 is

verified. Therefore, we can say that stochastic system (3) has
a stationary distribution.

Remark 6. Theorem 5 shows that system (3) has a unique
stationary distribution when the perturbation is small in the
sense that

1

2

𝑛

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖

< min
1⩽𝑖⩽𝑛

{

{

{

{

{

(𝑐

𝑖
𝑎

𝑖𝑖
−

1

2

𝑛

∑

𝑗 ̸=𝑖

𝑖=1

(𝑐

𝑖
𝑎

𝑖𝑗
+ 𝑐

𝑗
𝑎

𝑗𝑖
))(𝑥

∗

𝑗
)

2
}

}

}

}

}

.

(14)

4. Extinction

Extinction is one of the most basic questions that can
be studied in the population dynamics, which means the
population system will die out. Most of the time we
need to know the extinction rate of the species for which
we have to make a suitable policy in advance and to
make useful measures to protect them from becoming
extinct.

Theorem7. Let condition (4) hold and let𝑥(𝑡, 𝑥
0
) be the global

solution to system (3) with any initial value 𝑥
0
∈ 𝑅

𝑛

+
. Assume

that there exists an integer 𝑘 ⩽ 𝑚 such that

𝑏

𝑖
<

𝜎

2

𝑖

2

, 𝑖 = 1, . . . , 𝑘,

𝑏

𝑖
=

𝜎

2

𝑖

2

, 𝑖 = 𝑘 + 1, . . . , 𝑚.

(15)

One then has the following assertions:

(i) For 𝑖 = 1, . . . , 𝑘, the solution 𝑥
𝑖
(𝑡, 𝑥

0
) to system (3) has

the property that

lim
𝑡→∞

log𝑥
𝑖
(𝑡, 𝑥

0
)

𝑡

= 𝑏

𝑖
−

𝜎

2

𝑖

2

a.s. (16)

That is, for each 𝑖 = 1, . . . , 𝑘, the species 𝑖 will
become extinct exponentially with probability one and
the exponential extinction rate is −(𝜎

𝑖
/2 − 𝑏

𝑖
).

(ii) For 𝑖 = 𝑘 + 1, . . . , 𝑚, the solution 𝑥
𝑖
(𝑡, 𝑥

0
) to system (3)

has the property that

lim
𝑡→∞

𝑥

𝑖
(𝑡, 𝑥

0
) = 0,

lim
𝑡→∞

log𝑥
𝑖
(𝑡, 𝑥

0
)

𝑡

= 0 a.s.
(17)

That is, for each 𝑖 = 𝑘 + 1, . . . , 𝑚, the species 𝑖 still
becomes extinct with zero exponential extinction rate.

(iii) For 𝑖 = 𝑚+ 1, . . . , 𝑛, the solution 𝑥
𝑖
(𝑡, 𝑥

0
) to system (3)

has the property that

Lim
𝑡→∞

log𝑥
𝑖
(𝑡, 𝑥

0
)

𝑡

= −𝑏

𝑖
−

𝜎

2

𝑖

2

a.s. (18)

That is, for each 𝑖 = 𝑚 + 1, . . . , 𝑛, the species 𝑖 will become
extinct exponentially with probability one and the exponential
extinction rate is −(𝜎

𝑖
/2 + 𝑏

𝑖
).

Proof. Let 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡, 𝑥

0
) for simplicity. To make the proof

clear, we are going to divide it into four steps. The first
step and the third step are to show the least upper bound
of exponential extinction rate for the top 𝑘 preys and the
predators of system (3), respectively. The second step is to
show the extinction for the bottom𝑚 − 𝑘 preys of system (3)
in the case of 𝜎2

𝑖
= 2𝑏

𝑖
, 𝑖 = 𝑘 + 1, . . . , 𝑚. The fourth step is to

accomplish the proof of assertions (i)–(iii) based on the proof
of Steps 1–3.
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Step 1. Applying Itô’s formula to log𝑥
𝑖
(𝑡) yields

log𝑥
𝑖 (
𝑡) = log𝑥

𝑖 (
0) + ∫

𝑡

0

(𝑏

𝑖
−

𝜎

2

𝑖

2

)𝑑𝑠

− ∫

𝑡

0

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 + 𝑀𝑖 (

𝑡) ,

𝑖 = 1, . . . , 𝑚,

(19)

log𝑥
𝑖 (
𝑡) = log𝑥

𝑖 (
0)

+ ∫

𝑡

0

(

𝑚

∑

𝑗=1

𝑎

𝑖𝑗
−

𝑛

∑

𝑗=𝑚+1

𝑎

𝑖𝑗
)𝑥

𝑗 (
𝑠) 𝑑𝑠

+ ∫

𝑡

0

(−𝑏

𝑖
−

𝜎

2

𝑖

2

)𝑑𝑠 +𝑀

𝑖 (
𝑡) ,

𝑖 = 𝑚 + 1, . . . , 𝑛,

(20)

where 𝑀
𝑖
(𝑡) = ∫

𝑡

0
𝜎

𝑖
𝑑𝐵

𝑖
(𝑠), 𝑖 = 1, . . . , 𝑛, is the real-valued

continuous local martingale vanishing at 𝑡 = 0, with the
quadratic variation ⟨𝑀

𝑖
(𝑡),𝑀

𝑖
(𝑡)⟩ = 𝜎

2

𝑖
𝑡. Dividing both sides

of (19) and (20) by 𝑡, we have that

1

𝑡

log𝑥
𝑖 (
𝑡) =

1

𝑡

log𝑥
𝑖 (
0) +

1

𝑡

∫

𝑡

0

(𝑏

𝑖
−

𝜎

2

𝑖

2

)𝑑𝑠

−

1

𝑡

∫

𝑡

0

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 +

1

𝑡

𝑀

𝑖 (
𝑡) ,

𝑖 = 1, . . . , 𝑚,

(21)

1

𝑡

log𝑥
𝑖 (
𝑡) =

1

𝑡

log𝑥
𝑖 (
0)

+

1

𝑡

∫

𝑡

0

(

𝑚

∑

𝑗=1

𝑎

𝑖𝑗
−

𝑛

∑

𝑗=𝑚+1

𝑎

𝑖𝑗
)𝑥

𝑗 (
𝑠) 𝑑𝑠

+

1

𝑡

∫

𝑡

0

(−𝑏

𝑖
−

𝜎

2

𝑖

2

)𝑑𝑠 +

1

𝑡

𝑀

𝑖 (
𝑡) ,

𝑖 = 𝑚 + 1, . . . , 𝑛.

(22)

Using the strong law of large numbers for martingales [43],
we obtain that

lim
𝑡→∞

𝑀

𝑖 (
𝑡)

𝑡

= 0 a.s., 𝑖 = 1, . . . , 𝑛.
(23)

For 𝑖 = 1, 2, . . . , 𝑘, letting 𝑡 → ∞ in (21) yields that

lim sup
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

⩽ lim
𝑡→∞

1

𝑡

∫

𝑡

0

(𝑏

𝑖
−

𝜎

2

𝑖

2

)𝑑𝑠 = 𝑏

𝑖
−

𝜎

2

𝑖

2

< 0 a.s., 𝑖 = 1, . . . , 𝑘.

(24)

Step 2. The main aim of this step is to show lim
𝑡→∞

𝑥

𝑖
(𝑡) =

0 a.s. for 𝑖 = 𝑘 + 1, . . . , 𝑚. When 𝜎2
𝑖
= 2𝑏

𝑖
, (21) turns to be the

following form:

1

𝑡

log𝑥
𝑖 (
𝑡) =

1

𝑡

log𝑥
𝑖 (
0) −

1

𝑡

∫

𝑡

0

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠

+

1

𝑡

𝑀

𝑖 (
𝑡) , 𝑖 = 𝑘 + 1, . . . , 𝑚.

(25)

According to the convergence of ∫∞
0
𝑥

𝑖
(𝑠)𝑑𝑠, we can decom-

pose the sample space into two exclusive events spaces as
follows:

𝐽

𝑖,1
= {𝜔 : ∫

∞

0

𝑥

𝑖 (
𝑠) 𝑑𝑠 <∞} ,

𝐽

𝑖,2
= {𝜔 : ∫

∞

0

𝑥

𝑖 (
𝑠) 𝑑𝑠 =∞} ,

𝑖 = 𝑘 + 1, . . . , 𝑚.

(26)

On the other hand we can divide the sample space into three
mutually exclusive events as follows:

𝐸

𝑖,1

= {𝜔 : lim
𝑡→∞

sup𝑥
𝑖 (
𝑡) ⩾ lim
𝑡→∞

inf 𝑥
𝑖 (
𝑡) = 𝛾𝑖

> 0} ,

𝐸

𝑖,2
= {𝜔 : lim

𝑡→∞
sup𝑥
𝑖 (
𝑡) > lim
𝑡→∞

inf 𝑥
𝑖 (
𝑡) = 0} ,

𝐸

𝑖,3
= {𝜔 : lim

𝑡→∞
𝑥

𝑖 (
𝑡) = 0} .

(27)

From the above, the proof of lim
𝑡→∞

𝑥

𝑖
(𝑡) = 0 a.s. is

equivalent to show 𝐽

𝑖,1
⊂ 𝐸

𝑖,3
a.s. and 𝐽

𝑖,2
⊂ 𝐸

𝑖,3
a.s. Now we

give the process in two parts.

Part 1 of Step 2. Now we show 𝐽

𝑖,1
⊂ 𝐸

𝑖,3
a.s. It follows from

Lemma 1 that almost every sample path of 𝑥
𝑖
(𝑡) is locally

but uniformly Holder continuous and therefore almost every
sample path of 𝑥

𝑖
(𝑡, 𝑥

0
) must be uniformly continuous.

Considering the definition of 𝐽
𝑖,1
and Lemma 2, we obtain

lim
𝑡→∞

𝑥

𝑖 (
𝑡) = 0 a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚, (28)

which means 𝐽
𝑖,1
⊂ 𝐸

𝑖,3
a.s.

Part 2 of Step 2. The aim of this part is to prove that 𝐽
𝑖,2

⊂

𝐸

𝑖,3
a.s. It is sufficient to show 𝑃(𝐽

𝑖,2
∩ 𝐸

𝑖,1
) = 0 and 𝑃(𝐽

𝑖,2
∩

𝐸

𝑖,2
) = 0.
If this 𝑃(𝐽

𝑖,2
∩𝐸

𝑖,1
) = 0 is not true, for any 𝜔

𝑖
∈ (𝐽

𝑖,2
∩𝐸

𝑖,1
)

and 𝜀
𝑖
∈ (0, 𝛾

𝑖
/2) there exists 𝑇(𝜀

𝑖
, 𝜔

𝑖
) such that ∀𝑡 > 𝑇(𝜀

𝑖
, 𝜔

𝑖
)

𝑥

𝑖 (
𝑡) > 𝛾

𝑖
− 𝜀

𝑖
>

𝛾

𝑖

2

, 𝑖 = 𝑘 + 1, . . . , 𝑚 a.s. (29)
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Simple computations show that

1

𝑡

∫

𝑡

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 =

1

𝑡

∫

𝑇

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠

+

1

𝑡

∫

𝑡

𝑇

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠

⩾

1

𝑡

∫

𝑇

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 + 𝑎𝑖𝑗

𝑡 − 𝑇

𝑡

𝛾

𝑖

2

a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚.

(30)

Letting 𝑡 → ∞ on both sides of (30) yields

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 >

1

2

𝑎

𝑖𝑗
𝛾

𝑖
> 0

a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚.

(31)

This implies that

lim sup
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

⩽ −

1

2

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝛾

𝑖
a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚, (32)

which contradicts with the definition of 𝐽
𝑖,2

and 𝐸

𝑖,1
. So

𝑃(𝐽

𝑖,2
∩ 𝐸

𝑖,1
) = 0must hold.

Now we proceed to show 𝑃(𝐽

𝑖,2
∩ 𝐸

𝑖,2
) > 0 is false. Now

we need more notations such as

𝐵

𝜀

𝑡
:= {0 ⩽ 𝑠 ⩽ 𝑡 : 𝑥 (𝑠) ⩾ 𝜀} ,

ℎ

𝜀

𝑡
:=

𝑚 (𝐵

𝜀

𝑡
)

𝑡

,

ℎ

𝜀
:= lim sup
𝑡→∞

ℎ

𝜀

𝑡
,

𝐻

𝜀
:= {𝜔 ∈ 𝐽

𝑖,2
∩ 𝐸

𝑖,2
: ℎ

𝜀
> 0} ,

(33)

where 𝑚(𝐵𝜀
𝑡
) means the length of 𝐵𝜀

𝑡
. From the definition of

𝐻

𝜀, we can easily get that 𝐻0 = 𝐽

𝑖,2
∩ 𝐸

𝑖,2
. The following is

right for any 𝜀
1
< 𝜀

2
:

𝐵

𝜀
2

𝑡
⊂ 𝐵

𝜀
1

𝑡
,

𝑚 (𝐵

𝜀
2

𝑡
) ⩽ 𝑚 (𝐵

𝜀
1

𝑡
) ,

ℎ

𝜀
2

𝑡
⩽ ℎ

𝜀
1

𝑡
,

(34)

which yields

ℎ

𝜀
2

𝑡
⩽ ℎ

𝜀
1

𝑡
,

𝐻

𝜀
2

⊂ 𝐻

𝜀
1

,

∀𝜀

1
< 𝜀

2
.

(35)

From the continuity of probability, we can obviously get

𝑃 (𝐻

𝜀
) → 𝑃(𝐻

0
) = 𝑃 (𝐽

𝑖,2
∩ 𝐸

𝑖,2
) , as 𝜀 → 0. (36)

Based on the hypothesis 𝑃(𝐽
𝑖,2
∩ 𝐸

𝑖,2
) > 0, we can claim

that there exists 𝜃 > 0 such that 𝑃(𝐻𝜃) > 0. It is therefore to
see that, for any 𝜔 ∈ 𝐻

𝜃,

1

𝑡

𝑛

∑

𝑗=1

∫

𝑡

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 =

1

𝑡

𝑛

∑

𝑗=1

∫

𝐻
𝜃

𝑡

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠

+

1

𝑡

𝑛

∑

𝑗=1

∫

[0,𝑡]\𝐻
𝜃

𝑡

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠

⩾

1

𝑡

𝑛

∑

𝑗=1

∫

𝐻
𝜃

𝑡

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠

⩾

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝜃

𝑚 (𝐵

𝜃

𝑡
)

𝑡

a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚.

(37)

Letting 𝑡 → ∞ on both sides of (37) yields

1

𝑡

𝑛

∑

𝑗=1

∫

𝑡

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 ⩾

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝜃ℎ

𝜃 a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚, (38)

which means

lim sup
𝑡→∞

1

𝑡

log𝑥
𝑖 (
𝑡) ⩽ −

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝜃ℎ

𝜃

a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚.

(39)

This also contradicts with the definition of 𝐽
𝑖,2

and 𝐸

𝑖,2
. It

immediately yields that the assertion 𝑃(𝐽
𝑖,2
∩ 𝐸

𝑖,2
) = 0 must

hold. Now we can claim that 𝑃(𝐽
𝑖,2
∩ 𝐸

𝑖,1
) = 0 and 𝑃(𝐽

𝑖,2
∩

𝐸

𝑖,2
) = 0, which means 𝐽

𝑖,2
⊂ 𝐸

𝑖,3
. Combining with the fact

𝐽

𝑖,1
⊂ 𝐸

𝑖,3
and 𝐽
𝑖,2
⊂ 𝐸

𝑖,3
, we have

lim
𝑡→∞

𝑥

𝑖 (
𝑡) = 0 a.s., 𝑖 = 𝑘 + 1, . . . , 𝑚. (40)

Step 3. It follows from (24) and (40) that

lim
𝑡→∞

𝑥

𝑖 (
𝑡) = 0 a.s., 𝑖 = 1, . . . , 𝑚. (41)

This implies

lim
𝑡→∞

1

𝑡

𝑚

∑

𝑗=1

∫

𝑡

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 = 0 a.s. (42)

Now letting 𝑡 → ∞ on both sides of (22) yields

lim sup
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

⩽ −𝑏

𝑖
−

𝜎

2

𝑖

2

< 0

a.s., 𝑖 = 𝑚 + 1, . . . , 𝑛.

(43)

Step 4. It is immediate from (40) and (43) that

lim
𝑡→∞

𝑥

𝑖 (
𝑡) = 0 a.s., 𝑖 = 1, . . . , 𝑛. (44)
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This implies

lim
𝑡→∞

1

𝑡

𝑛

∑

𝑗=1

∫

𝑡

0

𝑎

𝑖𝑗
𝑥

𝑗 (
𝑠) 𝑑𝑠 = 0 a.s., 𝑖 = 1, . . . , 𝑛. (45)

By taking limit on both sides of (21) and (22), we have

lim
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

= 𝑏

𝑖
−

𝜎

2

𝑖

2

a.s., 𝑖 = 1, . . . , 𝑘,

lim
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

= −𝑏

𝑖
−

𝜎

2

𝑖

2

a.s., 𝑖 = 𝑚 + 1, . . . , 𝑛.

(46)

So assertions (i)–(iii) of Theorem 7 must hold.

Remark 8. Note that, for 𝑚 = 𝑛, system (3) becomes
the following classic stochastic Lotka-Volterra competitive
systems, which have received much attention (see [12, 36,
38]):

𝑑𝑥

𝑖
= 𝑥

𝑖
(𝑏

𝑖
−

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
𝑥

𝑗
)𝑑𝑡 + 𝜎

𝑖
𝑥

𝑖
𝑑𝐵

𝑖 (
𝑡) ,

𝑖 = 1, . . . , 𝑛.

(47)

And condition (4) becomes the following form:

𝑏

𝑖
> 0, 𝑖 = 1, . . . , 𝑛,

𝑎

𝑖𝑖
> 0, 𝑖 = 1, . . . , 𝑛,

𝑎

𝑖𝑗
⩾ 0 (𝑖 ̸= 𝑗) .

(48)

Thus, by Theorem 7, we have the sufficient conditions on
extinction for system (45) as Corollary 9.

Corollary 9. Let condition (48) hold and let 𝑥(𝑡, 𝑥
0
) be the

global solution to system (47) with any initial value 𝑥
0
. Assume

that there exists an integer 𝑘 ⩽ 𝑛 such that

𝑏

𝑖
<

𝜎

2

𝑖

2

, 𝑖 = 1, . . . , 𝑘,

𝑏

𝑖
=

𝜎

2

𝑖

2

, 𝑖 = 𝑘 + 1, . . . , 𝑛.

(49)

One then has the following assertions:
(i) For 𝑖 = 1, . . . , 𝑘, the solution 𝑥

𝑖
(𝑡, 𝑥

0
) to system (47) has

the property that

lim
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

= 𝑏

𝑖
−

𝜎

2

𝑖

2

a.s. (50)

That is, for each 𝑖 = 1, . . . , 𝑘, the species 𝑖 will
become extinct exponentially with probability one and
the exponential extinction rate is −(𝜎

𝑖
/2 − 𝑏

𝑖
).

(ii) For 𝑖 = 𝑘+1, . . . , 𝑛, the solution 𝑥
𝑖
(𝑡, 𝑥

0
) to system (47)

has the property that

lim
𝑡→∞

𝑥

𝑖 (
𝑡) = 0,

lim
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

= 0 a.s.
(51)

0 200 400 600 800 1000
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1

Figure 1: Computer simulation of 𝑥
1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡) generated

by the Heun scheme for time step Δ = 10

−3 for system (52) on
[0, 1000], respectively.

That is, for each 𝑖 = 𝑘+1, . . . , 𝑛, the species 𝑖 still becomes extinct
with zero exponential extinction rate.

By using some novel stochastic analysis techniques, we
point out that species 𝑖 is still extinct when 𝜎

2
= 2𝑏

𝑖
. In

comparisonwithTheorem 4.1 in [12], the conditions imposed
on the extinction are weaker.

5. Example and Simulations

In this section, we present a numerical example to illustrate
the usefulness and flexibility of the theorem developed in the
previous section.

Example 1. Consider a 3-dimensional stochastic Lotka-
Volterra predator-prey system as follows:

𝑑𝑥

1
= 𝑥

1
(0.9 − 0.8𝑥

1
− 0.2𝑥

2
− 0.4𝑥

3
) 𝑑𝑡

+ 𝜎

1
𝑥

1
𝑑𝐵

1 (
𝑡) ,

𝑑𝑥

2
= 𝑥

2
(0.8 − 0.3𝑥

1
− 0.9𝑥

2
− 0.5𝑥

3
) 𝑑𝑡

+ 𝜎

2
𝑥

2
𝑑𝐵

2 (
𝑡) ,

𝑑𝑥

2
= 𝑥

3
(−0.1 + 0.3𝑥

2
+ 0.1𝑥

2
− 0.6𝑥

3
) 𝑑𝑡

+ 𝜎

3
𝑥

3
𝑑𝐵

3 (
𝑡) .

(52)

System (52) is exactly system (3) with 𝑛 = 3, 𝑚 = 2, 𝑎
11

=

0.8 > 0, 𝑎
12

= 0.2 > 0, 𝑎
13

= 0.4 > 0, 𝑎
21

= 0.3 > 0,
𝑎

22
= 0.9 > 0, 𝑎

23
= 0.5 > 0, 𝑎

31
= 0.3 > 0, 𝑎

32
=

0.1 > 0, 𝑎
33

= 0.6 > 0, 𝑏
1
= 0.9 > 0, 𝑏

2
= 0.8 > 0, and

𝑏

3
= 0.1 > 0.We compute that the equilibrium (𝑥

∗

1
, 𝑥

∗

2
, 𝑥

∗

3
)


=

(0.9107, 0.4808, 0.1882)

.The existence and uniqueness of the
solution follow from Lemma 1. On the condition of the suit-
able parameters, we can get the simulation figures with initial
value (𝑥

1
(0), 𝑥

2
(0), 𝑥

3
(0)) = (0.6, 0.4, 0.4) by MATLAB. In

Figures 1–3, the blue line represents the population of 𝑥
1
(𝑡),
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Figure 2: Computer simulation of a single path of 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, 3,

generated by the Heun scheme for time step Δ = 10

−3 for system
(52) on [0, 1000], respectively.

the green line represents the population of 𝑥
2
(𝑡), and the red

line represents the population of 𝑥
3
(𝑡).

(i) (𝜎
1
, 𝜎

2
, 𝜎

3
)


= (0.02, 0.01, 0.005)

: choosing 𝑐

1
=

1, 𝑐

2
= 1, 𝑐

3
= 1.5, we further compute that

𝑐

1
𝑎

11
−

1

2

(𝑐

1
𝑎

12
+ 𝑐

2
𝑎

21
+ 𝑐

1
𝑎

13
+ 𝑐

3
𝑎

31
) = 0.05 > 0,

𝑐

2
𝑎

22
−

1

2

(𝑐

2
𝑎

21
+ 𝑐

1
𝑎

12
+ 𝑐

2
𝑎

23
+ 𝑐

3
𝑎

32
) = 0.325 > 0,

𝑐

3
𝑎

33
−

1

2

(𝑐

3
𝑎

31
+ 𝑐

1
𝑎

13
+ 𝑐

3
𝑎

32
+ 𝑐

2
𝑎

23
) = 0.20 > 0,

𝑐

1
𝑎

11

−

1

2

[(𝑐

1
𝑎

12
+ 𝑐

2
𝑎

21
) (𝑥

∗

2
)

2
+ (𝑐

1
𝑎

13
+ 𝑐

3
𝑎

31
) (𝑥

∗

3
)

2
]

= 0.72715466,

𝑐

2
𝑎

22

−

1

2

[(𝑐

2
𝑎

21
+ 𝑐

1
𝑎

12
) (𝑥

∗

1
)

2
+ (𝑐

2
𝑎

23
+ 𝑐

3
𝑎

32
) (𝑥

∗

3
)

2
]

= 0.68114512,

𝑐

3
𝑎

33

−

1

2

[(𝑐

3
𝑎

31
+ 𝑐

1
𝑎

13
) (𝑥

∗

1
)

2
+ (𝑐

3
𝑎

32
+ 𝑐

2
𝑎

23
) (𝑥

∗

2
)

2
]

= 0.47238604,

1

2

3

∑

𝑖=1

𝑐

𝑖
𝑥

∗

𝑖
𝜎

2

𝑖
= 0.000209709

< min
1⩽𝑖⩽3

{0.72715466, 0.68114512, 0.47238604} .

(53)

By virtue of Theorem 5, system (52) has a unique stationary
distribution.

0 200 400 600 800 1000
−1

−0.5

0

0.5

Figure 3: Computer simulation of (log𝑥
𝑖
(𝑡))/𝑡, 𝑖 = 1, 2, 3, gener-

ated by the Heun scheme for time step Δ = 10

−3 for system (52) on
[0, 1000], respectively.

(ii) (𝜎
1
, 𝜎

2
, 𝜎

3
)


= (1.38,

√
1.6, 0.05)

: note that 𝜎2
1

=

1.9044 > 2𝑏

1
= 1.8, 𝜎

2

2
= 1.6 = 2𝑏

2
= 1.6; by virtue of

Theorem 7, system (52) is extinctive. From Figure 2, we can
see that the predator population will die out though it suffers
the small white noise when the prey population becomes
extinct.

But we cannot see the value of the extinction rate of
the three populations clearly. So we give Figure 3 to show
(log𝑥
𝑖
(𝑡))/𝑡 for 𝑖 = 1, 2, 3. According to Theorem 7, we can

compute that, for 𝑖 = 1, the growth rate is −0.05220 (it is said
that the extinction rate is 0.05220). By the same method, we
can know that the extinction rate is 0.00000 for 𝑖 = 2 and the
extinction rate is 0.10125 for 𝑖 = 3.

6. Conclusion

This paper is devoted to the existence of stationary dis-
tribution and extinction for multispecies stochastic Lotka-
Volterra predator-prey system. Firstly, by applying Lyapunov
methods, sufficient conditions for ensuring the existence of
stationary distribution of the system are obtained. Secondly,
some novel techniques have been developed to derive weaker
sufficient conditions under which the system is extinctive.
Finally, numerical experiment is provided to illustrate the
effectiveness of our results.
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An infinite horizon𝐻
2
/𝐻
∞
control problem is addressed for discrete-time periodicMarkov jump systems with (𝑥, 𝑢, V)-dependent

noise. Above all, by use of the spectral criterion of detectability, an extended Lyapunov stability theorem is developed for the
concerned dynamics. Further, based on a game theoretic approach, a state-feedback𝐻

2
/𝐻
∞
control design is proposed. It is shown

that under the condition of detectability 𝐻
2
/𝐻
∞

feedback gain can be constructed through the solution of a group of coupled
periodic difference equations.

1. Introduction

𝐻
∞

control has been one of the most active areas of modern
control theory since the 1970s. Owing to the introduction
of state-space approach [1], many researchers have been
inspired to extend the deterministic 𝐻

∞
control theory to

various stochastic systems; see [2–5]. In the development
of stochastic 𝐻

∞
theory, [2] can be regarded as a pioneer-

ing work, which firstly established a stochastic version of
bounded real lemma for linear Itô-type differential systems.
Besides, initialed from [6], considerable progress has been
made in the study of stochastic𝐻

2
/𝐻
∞

control. By combing
𝐻
∞

index with an quadratic cost performance, the resulting
multiobjective control strategy ismore attractive than the sole
𝐻
∞

control in engineering applications.
The main objective of this paper is to settle an infi-

nite horizon 𝐻
2
/𝐻
∞

control problem for periodic Markov
jump systems with multiplicative noises. By now, Markov
jump systems have been extensively investigated [7–9]. For
example, stochastic and robust stability have been elaborately
discussed in [10, 11] for networked dynamics with Markovian
jump. As concerns 𝐻

∞
theory, an 𝐻

∞
estimation problem

was tackled in [12] for a class of discrete homogeneous

Markov jump systems. On the other hand, an infinite horizon
𝐻
∞

control problem was handled in [13] for nonlinear Itô
systems with homogeneous Markov process. However, few
results have been reported for 𝐻

2
/𝐻
∞

control of periodic
Markov jump systems. To some extent, this study will
generalize the work of [14] to the case of periodically time-
varying coefficients and transition probabilities, as in [15–17].

The remainder of this paper is organized as follows.
Section 2 gives basic preliminaries and problem formula-
tions. In Section 3, the intrinsic relationship between asymp-
totic mean square stability and detectability is addressed. As
a result, a Barbashin-Krasovskii-type theorem is established
for periodic Markov jump systems with state-dependent
noises. Section 4 contains an internally stabilizing control
design, which can not only fulfill the prescribed disturbance
attenuation level, but also minimize the output energy. To
verify the effectiveness of the proposed approach, a numerical
example is supplied in Section 5. Finally, Section 6 concludes
this paper with a concluding remark.

Notations. 𝑅𝑛 (C𝑛) is 𝑛-dimensional real (complex) space
with the usual Euclidean norm ‖ ⋅ ‖; 𝑅𝑛×𝑚 is the space of
all 𝑛 × 𝑚 real matrices with the operator norm ‖ ⋅ ‖

2
; 𝑆
𝑛
is
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the set of all 𝑛 × 𝑛 symmetric matrices whose entries may be
complex; 𝐴 > 0 (≥ 0): 𝐴 ∈ 𝑆

𝑛
is a positive (semi)definite

matrix; 𝐴 is the transpose of a matrix (vector) 𝐴; 𝐼
𝑛
is the

𝑛 × 𝑛 identity matrix; Z
+
:= {0, 1, . . .} and Z

1+
:= {1, 2, . . .};

D = {1, 2, . . . , 𝑁}; ⊗ is the operation of Kronecker product;
Ker(⋅) is the kernel of a matrix; diag{⋅} is a (block) diagonal
matrix.

2. Preliminaries

On a complete probability space (Ω,F,P), we consider the
following discrete-time periodic Markov jump system with
(𝑥, 𝑢, V)-dependent noise:

𝑥 (𝑡 + 1) = 𝐴
0
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) + 𝐵

0
(𝑡, 𝜂
𝑡
) V (𝑡) + 𝐺

0
(𝑡, 𝜂
𝑡
)

⋅ 𝑢 (𝑡) +

𝑟

∑

𝑠=1

[𝐴
𝑠
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) + 𝐵

𝑠
(𝑡, 𝜂
𝑡
) V (𝑡)

+ 𝐺
𝑠
(𝑡, 𝜂
𝑡
) 𝑢 (𝑡)] 𝑤

𝑠
(𝑡) ,

𝑧 (𝑡) = [

𝐶 (𝑡, 𝜂
𝑡
) 𝑥 (𝑡)

𝐷 (𝑡, 𝜂
𝑡
) 𝑢 (𝑡)

] ,

𝐷 (𝑡, 𝜂
𝑡
)


𝐷(𝑡, 𝜂
𝑡
) = 𝐼
𝑛
𝑢

,

𝑡 ∈ Z
+
,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛, 𝑢(𝑡) ∈ 𝑅𝑛𝑢 , V(𝑡) ∈ 𝑅𝑛V , and 𝑧(𝑡) ∈ 𝑅𝑛𝑧 denote
the system state, control input, exogenous disturbance, and
measurement output, respectively. Assume that {𝑤(𝑡) |

𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑟
(𝑡))

, 𝑡 ∈ Z

+
} is a sequence of

independent random vectors such that 𝐸[𝑤(𝑡)] = 0 and
𝐸[𝑤(𝑡)𝑤(𝑠)


] = 𝐼
𝑟
𝛿(𝑡 − 𝑠) (𝛿(⋅) is a Kronecker function). The

Markov chain {𝜂
𝑡
}
𝑡∈Z+ takes values inDwith a nondegenerate

transition probability matrix P
𝑡
= [𝑝
𝑡
(𝑖, 𝑗)]
𝑁×𝑁

(𝑝
𝑡
(𝑖, 𝑗) :=

P(𝜂
𝑡+1

= 𝑗 | 𝜂
𝑡
= 𝑖)) and the initial distribution 𝜋

0
(𝑖) =

P(𝜂
0
= 𝑖) > 0 for all 𝑖 ∈ D. As usual, we set that {𝜂

𝑡
}
𝑡∈Z+ is

independent of the stochastic process {𝑤(𝑡)}
𝑡∈Z+ and itsmode

is measurable in real time. Moreover, the coefficients of (1)
are 𝜃-periodic (e.g., 𝐴

𝑠
(𝑡, 𝑖) = 𝐴

𝑠
(𝑡 + 𝜃, 𝑖)) and the transition

probability of 𝜂
𝑡
satisfies 𝑝

𝑡
(𝑖, 𝑗) = 𝑝

𝑡+𝜃
(𝑖, 𝑗) (𝑖, 𝑗 ∈ D), where

𝜃 ∈ Z
1+
. LetF

𝑘
be 𝜎-algebra generated by {𝜂

𝑡
, 𝑤(𝑠) | 0 ≤ 𝑡 ≤

𝑘, 0 ≤ 𝑠 ≤ 𝑘 − 1}. In the case of 𝑘 = 0, F
0
= 𝜎{𝜂

0
}. Denote by

𝑙
2
(0,∞; 𝑅

𝑚
) the space of 𝑅𝑚-valued, nonanticipative square

summable stochastic processes {𝑦(𝑡, 𝜔) : Z
+
× Ω → 𝑅

𝑚
}

which areF
𝑘
-measurable for all 𝑘 ∈ Z

+
and∑∞

𝑡=0
𝐸‖𝑦(𝑡)‖

2
<

+∞. It is clear that 𝑙2(0,∞; 𝑅𝑚) is a realHilbert spacewith the
norm induced by the usual inner product: ‖𝑦(⋅)‖

𝑙
2
(0,∞;𝑅

𝑚
)
=

(∑
∞

𝑡=0
𝐸‖𝑦(𝑡)‖

2
)
1/2
< +∞.

Definition 1 (see [18]). The zero-state equilibrium of discrete-
time periodic Markov jump systems

𝑥 (𝑡 + 1) = 𝐴 (𝑡, 𝜂
𝑡
) 𝑥 (𝑡) +

𝑟

∑

𝑠=1

𝐴
𝑠
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) 𝑤

𝑠
(𝑡) , (2)

or (A;P) is called asymptotically mean square stable (AMSS)
if lim

𝑡→∞
𝐸‖𝑥(𝑡; 𝜉, 𝑖, 𝑡

0
)‖
2
= 0 for all (𝜉, 𝑖) ∈ 𝑅𝑛 × D and

𝑡
0
∈ Z
+
. Here, 𝑥(𝑡; 𝜉, 𝑖, 𝑡

0
) is the state of (2) corresponding to

the initial state 𝑥(𝑡
0
) = 𝜉 ∈ 𝑅

𝑛 and 𝜂
𝑡
0

= 𝑖 ∈ D. Moreover, if
there exists 𝜃-periodic sequence {𝐾(𝑡, 𝑖)}

𝑡∈Z
+

∈ 𝑅
𝑛×𝑛
𝑢 (𝑖 ∈ D)

such that the zero-state equilibriumof the closed-loop system

𝑥 (𝑡 + 1)

= [𝐴
0
(𝑡, 𝜂
𝑡
) + 𝐺
0
(𝑡, 𝜂
𝑡
)𝐾 (𝑡, 𝜂

𝑡
)] 𝑥 (𝑡)

+

𝑟

∑

𝑠=1

[𝐴
𝑠
(𝑡, 𝜂
𝑡
) + 𝐺
𝑠
(𝑡, 𝜂
𝑡
)𝐾 (𝑡, 𝜂

𝑡
)] 𝑥 (𝑡) 𝑤

𝑠
(𝑡)

(3)

is AMSS for any (𝑥
0
, 𝜂
0
) ∈ 𝑅

𝑛
× D, then (A,G;P) is called

stochastically stabilizable and 𝑢(𝑡) = 𝐾(𝑡, 𝜂
𝑡
)𝑥(𝑡) is called a

stabilizing feedback.

By Theorem 3.10 [18], we know that system (2) is asymp-
totically mean square stable if and only if it is exponentially
mean square stable.

Definition 2 (see [19]). The periodic Markov jump system
with measurement equation

𝑥 (𝑡 + 1) = 𝐴
0
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) +

𝑟

∑

𝑠=1

𝐴
𝑠
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) 𝑤

𝑠
(𝑡) ,

𝑧 (𝑡) = 𝐶 (𝑡, 𝜂
𝑡
) 𝑥 (𝑡) ,

𝑡 ∈ Z
+
,

(4)

or (A,C;P) is called (uniformly) detectable if for any 𝑡
0
∈ Z
+
,

𝜉 ∈ 𝑅
𝑛, and 𝜂

𝑡
0

∈ D, there holds

𝑧 (𝑡) ≡ 0 (a.s.) , 𝑡 ∈ [𝑡
0
, 𝑇] , ∀𝑇 > 𝑡

0

⇒ lim
𝑡→∞

𝐸
𝑥 (𝑡; 𝜉, 𝑖, 𝑡0)



2

= 0.

(5)

In this paper, we will deal with the infinite horizon
optimal𝐻

2
/𝐻
∞
control problem about (1). More specifically,

for a prescribed disturbance attenuation level 𝛾 > 0, we aim to
find a linear, memoryless, periodic state-feedback controller
𝑢
∗
(𝑡) ∈ 𝑙

2
(0,∞; 𝑅

𝑛
𝑢) such that [20]

(i) when V(𝑡) ≡ 0, the closed-loop state of (1) correspond-
ing to 𝑢 = 𝑢∗(𝑡) is AMSS;

(ii) the 𝑙2-induced norm of 𝐿𝑢
∗

∞
satisfies ‖𝐿𝑢

∗

∞
‖ < 𝛾, where

𝐿
𝑢
∗

∞
is the perturbation operator defined by 𝐿𝑢

∗

∞
(V) =

𝑧(𝑡; 0, V, 𝑢∗); it is notable that 𝑧(𝑡; 0, V, 𝑢∗) is the output
of (1) corresponding to 𝑥(0) = 0 and 𝑢 = 𝑢∗(𝑡), while
V(𝑡) ∈ 𝑙2(0,∞; 𝑅𝑛V) is arbitrary random disturbance;

(iii) when the worst-case disturbance V∗(𝑡), if existing, is
imposed on (1), 𝑢∗(𝑡) minimizes the corresponding
output energy 𝐽

2
(𝑢, V∗) := ∑∞

𝑡=0
𝐸‖𝑧(𝑡)‖

2.

3. Stability and Detectability

In this section, we will focus on the detectability of periodic
Markov jump system (1). This structural property will play
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an essential role in the treatment of𝐻
2
/𝐻
∞
control problem.

Firstly, we present several instrumental operators.
Let 𝑆𝑁
𝑛
(resp., 𝑆𝑁+

𝑛
) indicate the set of all𝑁 sequences𝑉 =

(𝑉(1), . . . , 𝑉(𝑁)) with 𝑉(𝑖) ∈ 𝑆
𝑛
(resp., 𝑉(𝑖) ≥ 0). Thus, 𝑆𝑁

𝑛
is

a Hilbert space with the inner product:

⟨𝑈, 𝑉⟩ =

𝑁

∑

𝑖=1

Tr (𝑈 (𝑖) 𝑉 (𝑖)) , ∀𝑈, 𝑉 ∈ 𝑆
𝑁

𝑛
. (6)

Given𝑈 ∈ 𝑆𝑁
𝑛
, letL

𝑡
: 𝑆
𝑁

𝑛
→ 𝑆
𝑁

𝑛
be a Lyapunov operator

defined asL
𝑡
(𝑈) = (L

𝑡
(𝑈, 1), . . . ,L

𝑡
(𝑈,𝑁)), where

L
𝑡
(𝑈, 𝑖) =

𝑟

∑

𝑠=0

𝑁

∑

𝑗=1

𝑝
𝑡
(𝑗, 𝑖) 𝐴

𝑠
(𝑡, 𝑗) 𝑈 (𝑗) 𝐴

𝑠
(𝑡, 𝑗)


. (7)

Then, associated with inner product (6), the adjoint operator
ofL
𝑡
is given byL∗

𝑡
(𝑈) = (L∗

𝑡
(𝑈, 1), . . . ,L∗

𝑡
(𝑈,𝑁)):

L
∗

𝑡
(𝑈, 𝑖) =

𝑟

∑

𝑠=0

𝐴
𝑠
(𝑡, 𝑖)


𝑁

∑

𝑗=1

𝑝
𝑡
(𝑖, 𝑗) 𝑈 (𝑗) 𝐴

𝑠
(𝑡, 𝑖) . (8)

In terms ofL
𝑡
, we can construct a causal evolutionT

𝑡,𝑠
=

L
𝑡−1
⋅ ⋅ ⋅L
𝑠
(𝑡 > 𝑠 ≥ 0); when 𝑡 = 𝑠, T

𝑡,𝑡
= I (i.e., the

identity operator).
To proceed, let us introduce the following two linear

operators (cf. [14, 21]):

𝜓 (𝑋) = [𝜓 (𝑋 (1))

⋅ ⋅ ⋅ 𝜓 (𝑋 (𝑁))


]


,

𝜑 (𝑋) = [𝜑 (𝑋 (1))

⋅ ⋅ ⋅ 𝜑 (𝑋 (𝑁))


]


,

𝜓 (𝑋 (𝑖)) = (𝑥11 (𝑖) ⋅ ⋅ ⋅ 𝑥1𝑛 (𝑖) ⋅ ⋅ ⋅ 𝑥𝑛1 (𝑖) ⋅ ⋅ ⋅ 𝑥𝑛𝑛 (𝑖))


,

𝜑 (𝑋 (𝑖)) = (𝑥11 (𝑖) ⋅ ⋅ ⋅ 𝑥1𝑛 (𝑖) 𝑥22 (𝑖) ⋅ ⋅ ⋅ 𝑥2𝑛 (𝑖) ⋅ ⋅ ⋅ 𝑥𝑛−1,𝑛−1 (𝑖) 𝑥𝑛−1,𝑛 (𝑖) 𝑥𝑛𝑛 (𝑖))


,

(9)

where 𝑋 ∈ 𝑆
𝑁

𝑛
and 𝑥

𝑗𝑘
(𝑖) is the entry of 𝑋(𝑖). It is easy to

verify that 𝜓 : 𝑆𝑁
𝑛
→ C𝑛

2

𝑁 and 𝜑 : 𝑆𝑁
𝑛
→ C(𝑛(𝑛+1)/2)𝑁 are

both invertible and satisfy

𝜓 (L
𝑡
(𝑋)) = 𝑀

𝑡
𝜓 (𝑋) ,

𝜑 (L
𝑡
(𝑋)) = 𝐿

𝑡
𝜑 (𝑋) ,

𝜓 (𝑋) = 𝐻𝜑 (𝑋) ,

∀𝑋 ∈ 𝑆
𝑁

𝑛
,

(10)

where𝐻 ∈ 𝑅𝑛
2

𝑁×(𝑛(𝑛+1)/2)𝑁 is a constantmatrix of full column
rank and

𝑀
𝑡
= (P


𝑡
⊗ 𝐼
𝑛
2) Δ{

𝑟

∑

𝑠=1

𝐴
𝑠
(𝑡, 𝑖) ⊗ 𝐴

𝑠
(𝑡, 𝑖)} ,

𝐿
𝑡
= (𝐻

𝐻)
−1

𝐻𝑀
𝑡
𝐻.

(11)

In (11), 𝐿
𝑡
is called the induced matrix of L

𝑡
and Δ{𝐴(𝑖)} :=

diag{𝐴(1), . . . , 𝐴(𝑁)} (if 𝐴(𝑖) ≡ 𝐴 for 𝑖 ∈ D, then
Δ(𝐴) := diag{𝐴, . . . , 𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

}). Repeating the above steps, the

induced matrix of T
𝑡,𝑠

is realized to be A
𝑡,𝑠
= 𝐿
𝑡−1
⋅ ⋅ ⋅ 𝐿
𝑠
.

Particularly, the induced matrix of T𝜃
𝑡
is denoted by A𝜃

𝑡
:=

A
𝑡+𝜃,𝑡

.
Next, we will give two useful lemmas, which have been

shown in [19].

Lemma 3. (A;P) is AMSS if and only ifΛ(T𝜃
𝑡
) = Λ(A𝜃

𝑡
) ⊂ ⊙,

where Λ(⋅) denotes the spectral set of an operator (or a matrix)
and ⊙ := {𝜆 ∈ C | |𝜆| < 1}.

Lemma 4. (A,C;P) is detectable if and only if for some 𝑡 ∈
Z
+
, there does not exist any nonzero𝑋 ∈ 𝑆𝑁

𝑛
such that

T
𝜃

𝑡
(𝑋, 𝑖) = 𝜆𝑋 (𝑖) , 𝜆 ∈ C, |𝜆| ≥ 1, 𝑖 ∈ D,

𝐶 (𝑗, 𝑖)T
𝑗,𝑡
(𝑋, 𝑖) = 0, 𝑗 = 𝑡, . . . , 𝑡 + 𝜃 − 1.

(12)

We are prepared to establish the following Barbashin-
Krasovskii stability criterion for (4).

Theorem 5. If (A,C;P) is detectable, then (A;P) is AMSS if
and only if the PLE

𝑋
𝑡
(𝑖) =L

∗

𝑡
(𝑋
𝑡+1
, 𝑖) + 𝐶 (𝑡, 𝑖)


𝐶 (𝑡, 𝑖) , 𝑡 ∈ Z

+
(13)

has a unique 𝜃-periodic solution𝑋
𝑡
∈ 𝑆
𝑁+

𝑛
.

Proof. By Theorem 2.5 [18], if (A;P) is AMSS, then the PLE
(13) admits a unique 𝜃-periodic solution 𝑋

𝑡
∈ 𝑆
𝑁+

𝑛
. Next,

we will show the converse assertion. If (13) has 𝜃-periodic
solution 𝑋

𝑡
∈ 𝑆
𝑁+

𝑛
but (A;P) is not AMSS, by Lemma 3,

there must exist 𝜆 ∈ Λ(T𝜃
𝑡
) with |𝜆| ≥ 1. Denote by 𝜌(T𝜃

𝑡
)

the spectral radius of T𝜃
𝑡
; then 𝜌(T𝜃

𝑡
) ≥ 1. According to the

Krein-Rutman theorem, there is a positive definite 𝑋 ∈ 𝑆
𝑁

𝑛

such that T𝜃
𝑡
(𝑋) = 𝜌(T𝜃

𝑡
)𝑋. Since (A,C;P) is detectable,

by Lemma 4, for some 𝑡 ∈ Z
+
, there exists at least one 𝑘 ∈

{𝑡, . . . , 𝑡 + 𝜃 − 1} such that

𝐶 (𝑘)T
𝑘,𝑡
(𝑋) ̸= 0. (14)
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Thus, for inner product (6), it can be computed from (13) that

0 ≤

𝑡+𝜃−1

∑

𝑘=𝑡

𝑁

∑

𝑖=1

Tr (𝐶 (𝑘, 𝑖)T
𝑘,𝑡
(𝑋, 𝑖) 𝐶 (𝑘, 𝑖)


)

=

𝑡+𝜃−1

∑

𝑘=𝑡

⟨𝐶 (𝑘)

𝐶 (𝑘) ,T

𝑘,𝑡
(𝑋)⟩

= ⟨𝑋
𝑡
, 𝑋⟩ − ⟨𝑋

𝑡+𝜃
,T
𝜃

𝑡
(𝑋)⟩ .

(15)

Due to the periodicity of𝑋
𝑡
, (15) leads to the fact that

0 ≤

𝑡+𝜃−1

∑

𝑘=𝑡

𝑁

∑

𝑖=1

Tr (𝐶 (𝑘, 𝑖)T
𝑘,𝑡
(𝑋, 𝑖) 𝐶 (𝑘, 𝑖)


)

= ⟨𝑋
𝑡
, 𝑋 −T

𝜃

𝑡
(𝑋)⟩ = ⟨𝑋

𝑡
, [1 − 𝜌 (T

𝜃

𝑡
)]𝑋⟩ ≤ 0,

(16)

which implies𝐶(𝑘, 𝑖)T
𝑘,𝑡
(𝑋, 𝑖)𝐶(𝑘, 𝑖)


= 0 for 𝑡 ≤ 𝑘 ≤ 𝑡+𝜃−1

and 𝑖 ∈ D. That is, 𝐶(𝑘)T
𝑘,𝑡
(𝑋) = 0 for 𝑡 ≤ 𝑘 ≤ 𝑡 + 𝜃 − 1,

which contradicts (14). Hence, (A;P) is AMSS.

Remark 6. In [18], a similar result has been proven under the
condition of stochastic detectability. According to [19], (uni-
form) detectability is a weaker prerequisite than stochastic
detectability. Therefore, Theorem 5 has improved the result
of Theorem 4.1 [18] within the concerned framework.

4. 𝐻
2
/𝐻
∞

Control

In this section, a game theoretic approach will be employed
to deal with the infinite horizon 𝐻

2
/𝐻
∞

control problem
of (1). Under the assumption of detectability, a necessary
and sufficient condition can be provided for the existence of
𝐻
2
/𝐻
∞

controller.

Theorem 7. For system (1), if the following coupled periodic
difference equations (CPDEs) admit 𝜃-periodic quaternion
solution (𝑋

1
(𝑡),𝐹
1
(𝑡);𝑋
2
(𝑡),𝐹
2
(𝑡)) ∈ 𝑆

𝑁+

𝑛
×𝑅
𝑁

𝑛×𝑛V
×𝑆
𝑁+

𝑛
×𝑅
𝑁

𝑛×𝑛
𝑢

on Z
+
×D,

𝑋
1
(𝑡, 𝑖) =

𝑟

∑

𝑠=0

𝐴
2

𝑠
(𝑡, 𝑖)

E
𝑡
(𝑋
1
(𝑡 + 1) , 𝑖) 𝐴

2

𝑠
(𝑡, 𝑖)

+ 𝐶 (𝑡, 𝑖)

𝐶 (𝑡, 𝑖) + 𝐹

2
(𝑡, 𝑖)

𝐹
2
(𝑡, 𝑖)

+ 𝐹
3
(𝑡, 𝑖)𝐻

1
(𝑡, 𝑖)
−1
𝐹
3
(𝑡, 𝑖)

,

𝐻
1
(𝑡, 𝑖) ≥ 𝜀

0
𝐼
𝑛V
, 𝜀
0
∈ (0, 𝛾

2
−

𝐿
𝑢
∗

∞



2

) ,

(17)

𝐹
1
(𝑡, 𝑖) = 𝐻

1
(𝑡, 𝑖)
−1
𝐹
3
(𝑡, 𝑖)

, (18)

𝑋
2
(𝑡, 𝑖) =

𝑟

∑

𝑠=0

𝐴
1

𝑠
(𝑡, 𝑖)

E
𝑡
(𝑋
2
(𝑡 + 1) , 𝑖) 𝐴

1

𝑠
(𝑡, 𝑖)

+ 𝐶 (𝑡, 𝑖)

𝐶 (𝑡, 𝑖)

− 𝐹
4
(𝑡, 𝑖)𝐻

2
(𝑡, 𝑖)
−1
𝐹
4
(𝑡, 𝑖)

,

(19)

𝐹
2
(𝑡, 𝑖) = −𝐻

2
(𝑡, 𝑖)
−1
𝐹
4
(𝑡, 𝑖)

, (20)

where

𝐴
1

𝑠
(𝑡, 𝑖) = 𝐴

𝑠
(𝑡, 𝑖) + 𝐵

𝑠
(𝑡, 𝑖) 𝐹

1
(𝑡, 𝑖) ,

𝐴
2

𝑠
(𝑡, 𝑖) = 𝐴

𝑠
(𝑡, 𝑖) + 𝐺

𝑠
(𝑡, 𝑖) 𝐹

2
(𝑡, 𝑖) ,

𝐻
1
(𝑡, 𝑖) = 𝛾

2
𝐼
𝑛V

−

𝑟

∑

𝑠=0

𝐵
𝑠
(𝑡, 𝑖)

E
𝑡
(𝑋
1
(𝑡 + 1) , 𝑖) 𝐵

𝑠
(𝑡, 𝑖) ,

𝐻
2
(𝑡, 𝑖) = 𝐼

𝑛
𝑢

+

𝑟

∑

𝑠=0

𝐺
𝑠
(𝑡, 𝑖)

E
𝑡
(𝑋
2
(𝑡 + 1) , 𝑖) 𝐺

𝑠
(𝑡, 𝑖) ,

𝐹
3
(𝑡, 𝑖) =

𝑟

∑

𝑠=0

𝐴
2

𝑠
(𝑡, 𝑖)

E
𝑡
(𝑋
1
(𝑡 + 1) , 𝑖) 𝐵

𝑠
(𝑡, 𝑖) ,

𝐹
4
(𝑡, 𝑖) =

𝑟

∑

𝑠=0

𝐴
1

𝑠
(𝑡, 𝑖)

E
𝑡
(𝑋
2
(𝑡 + 1) , 𝑖) 𝐺

𝑠
(𝑡, 𝑖) ,

(21)

and (A,C;P), (A + BF
1
,C;P) are detectable, then the

state-feedback 𝐻
2
/𝐻
∞

control is given by (𝑢
∗
(𝑡) =

𝐹
2
(𝑡, 𝜂
𝑡
)𝑥(𝑡), V∗(𝑡) = 𝐹

1
(𝑡, 𝜂
𝑡
)𝑥(𝑡)).

Conversely, if (A + BF
1
,C;P) is detectable and the

𝐻
2
/𝐻
∞

control problem about (1) is solved by (𝑢∗(𝑡) =

𝐹
2
(𝑡, 𝜂
𝑡
)𝑥(𝑡), V∗(𝑡) = 𝐹

1
(𝑡, 𝜂
𝑡
)𝑥(𝑡)), then CPDEs (17)–(20)

admit a unique 𝜃-periodic quaternion solution (𝑋
1
(𝑡), 𝐹
1
(𝑡);

𝑋
2
(𝑡), 𝐹
2
(𝑡)) ∈ 𝑆

𝑁+

𝑛
× 𝑅
𝑁

𝑛×𝑛V
× 𝑆
𝑁+

𝑛
× 𝑅
𝑁

𝑛×𝑛
𝑢

on Z
+
× 𝐷.

Proof. “⇒”: (a) Let us first show that 𝑢∗ stabilizes system (1)
internally (V(𝑡) ≡ 0). To this end, we rewrite (19) as follows:

𝑋
2
(𝑡, 𝑖) =

𝑟

∑

𝑠=0

[𝐴
1

𝑠
(𝑡, 𝑖) + 𝐺

𝑠
(𝑡, 𝑖) 𝐹

2
(𝑡, 𝑖)]



⋅E
𝑡
(𝑋
1
(𝑡 + 1) , 𝑖) [𝐴

1

𝑠
(𝑡, 𝑖) + 𝐺

𝑠
(𝑡, 𝑖) 𝐹

2
(𝑡, 𝑖)]

+ 𝐶
1
(𝑡, 𝑖)

𝐶
1
(𝑡, 𝑖) ,

(22)

where

𝐶
1
(𝑡, 𝑖) =

[
[
[

[

𝐶 (𝑡, 𝑖)

𝐻
1
(𝑡, 𝑖)
−1/2

𝐹
3
(𝑡, 𝑖)

𝐹
2
(𝑡, 𝑖)

]
]
]

]

. (23)

Since (A + BF
1
,C;P) is detectable, by Lemma 4, we can

prove that (A + BF
1
+ GF
2
,C
1
;P) is also detectable. From

(22) and Theorem 5, it follows that (A + BF
1
+ GF
2
;P) is

AMSS, which means 𝑢∗(𝑡) = 𝐹
2
(𝑟
𝑡
)𝑥(𝑡) ∈ 𝑙

2
(0,∞; 𝑅

𝑛
𝑢) and

V∗(𝑡) = 𝐹
1
(𝑟
𝑡
)𝑥(𝑡) ∈ 𝑙

2
(0,∞; 𝑅

𝑛V). Similarly, we can prove that
(A + GF

2
;P) is also AMSS. Hence, 𝑢∗(𝑡) can stabilize system

(1) internally.
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(b) Consider the following: ‖𝐿𝑢
∗

∞
‖ < 𝛾. Implementing

𝑢
∗
(𝑡) = 𝐹

2
(𝑡, 𝜂
𝑡
)𝑥(𝑡) into system (1), we get

𝑥 (𝑡 + 1)

= 𝐴
2

0
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) + 𝐵

0
(𝑡, 𝜂
𝑡
) V (𝑡)

+

𝑟

∑

𝑠=1

{𝐴
1

𝑠
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) + 𝐵

𝑠
(𝑡, 𝜂
𝑡
) V (𝑡)}𝑤

𝑠
(𝑡) ,

𝑧 (𝑡) = [

𝐶 (𝑡, 𝜂
𝑡
)

𝐷 (𝑡, 𝜂
𝑡
) 𝐹
2
(𝑡, 𝜂
𝑡
)

] 𝑥 (𝑡) ,

𝐷 (𝑡, 𝜂
𝑡
)


𝐷(𝑡, 𝜂
𝑡
) = 𝐼
𝑛
𝑢

,

𝑡 ∈ Z
+
.

(24)

Noting that (A + BF
1
;P) is AMSS, 𝑋

1
∈ 𝑆
𝑁+

𝑛
is a stabilizing

solution of (17). By use of Theorem 1 [20], we deduce that
system (24) satisfies ‖𝐿𝑢

∗

∞
‖ < 𝛾.

(c) 𝑢∗ minimizes the performance 𝐽
2
(𝑢, V∗). By (17) and

(24), we can complete square as follows:

𝐽
∞
(𝑢
∗
, V) :=

∞

∑

𝑡=0

[𝐸 ‖𝑧 (𝑡)‖
2
− 𝛾
2
‖V (𝑡)‖2] =

𝑁

∑

𝑖=1

𝜋
0
(𝑖)

⋅ 𝑥


0
𝑋
1
(0, 𝑖) 𝑥

0

−

∞

∑

𝑡=0

𝐸 {[V (𝑡) − 𝐻
1
(𝑡, 𝜂
𝑡
)
−1

𝐹
3
(𝑡, 𝜂
𝑡
)


𝑥 (𝑡)]


⋅ 𝐻
1
(𝑡, 𝜂
𝑡
) [V (𝑡) − 𝐻

1
(𝑡, 𝜂
𝑡
)
−1

𝐹
3
(𝑡, 𝜂
𝑡
)


𝑥 (𝑡)]}

≤

𝑁

∑

𝑖=1

𝜋
0
(𝑖) 𝑥


0
𝑋
1
(0, 𝑖) 𝑥

0
= 𝐽
∞
(𝑢
∗
, V∗) ,

(25)

which implies that V∗(𝑡) = 𝐹
1
(𝑡, 𝜂
𝑡
)𝑥(𝑡) is the worst-case

disturbance associated with 𝑢∗. Applying V∗ to system (1), we
have

𝑥 (𝑡 + 1)

= 𝐴
1

0
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) + 𝐺

0
(𝑡, 𝜂
𝑡
) 𝑢 (𝑡)

+

𝑟

∑

𝑠=1

{𝐴
1

𝑠
(𝑡, 𝜂
𝑡
) 𝑥 (𝑡) + 𝐺

𝑠
(𝑡, 𝜂
𝑡
) 𝑢 (𝑡)}𝑤

𝑠
(𝑡) ,

𝑧 (𝑡) = [

𝐶 (𝑡, 𝜂
𝑡
) 𝑥 (𝑡)

𝐷 (𝑡, 𝜂
𝑡
) 𝑢 (𝑡)

] ,

𝐷 (𝑡, 𝜂
𝑡
)


𝐷(𝑡, 𝜂
𝑡
) = 𝐼
𝑛
𝑢

,

𝑡 ∈ Z
+
.

(26)

It remains to show that 𝑢∗ fulfills the following optimal
index:

min
𝑢(⋅)∈𝑙

2
(0,∞;𝑅

𝑛𝑢 )

{𝐽
2
(𝑢, V∗) =

∞

∑

𝑡=0

𝐸 [‖𝑧 (𝑡)‖
2
]} ,

subject to (26) ,

(27)

which is an LQ optimal control problem. Since (19) is
equivalent to (22) and (A+BF

1
+GF
2
,C
1
;P) is detectable, by

Theorem 5,𝑋
2
∈ 𝑆
𝑁+

𝑛
is a stabilizing solution of (19). Making

use of Proposition 6.3 [18], we arrive at

𝐽
2
(𝑢, V∗) =

𝑁

∑

𝑖=1

𝜋
0
(𝑖) 𝑥


0
𝑋
2
(0, 𝑖) 𝑥

0

+

∞

∑

𝑡=0

𝐸 {[𝑢 (𝑡) + 𝐻
2
(𝑡, 𝜂
𝑡
)
−1

𝐹
4
(𝑡, 𝜂
𝑡
)


𝑥 (𝑡)]


⋅ 𝐻
2
(𝑡, 𝜂
𝑡
) [𝑢 (𝑡) + 𝐻

2
(𝑡, 𝜂
𝑡
)
−1

𝐹
4
(𝑡, 𝜂
𝑡
)


𝑥 (𝑡)]}

≥

𝑁

∑

𝑖=1

𝜋
0
(𝑖) 𝑥


0
𝑋
2
(0, 𝑖) 𝑥

0
= 𝐽
2
(𝑢
∗
, V∗) ,

(28)

where 𝑢∗ = 𝐹
2
(𝑡, 𝜂
𝑡
)𝑥(𝑡). This justifies the sufficiency

statement.
“⇐”: Assume that (𝑢∗(𝑡) = 𝐹

2
(𝑡, 𝜂
𝑡
)𝑥(𝑡) and V∗(𝑡) =

𝐹
1
(𝑡, 𝜂
𝑡
)𝑥(𝑡)) solve the considered 𝐻

2
/𝐻
∞

control problem.
Thus, 𝑢∗ stabilizes system (1) internally and ‖𝐿𝑢

∗

∞
‖ < 𝛾. By

Theorem 1 [20], we conclude that (17) admits a stabilizing
solution 𝑋

1
∈ 𝑆
𝑁+

𝑛
, which implies that (A + BF

1
+ GF
2
;P)

is AMSS. Since system (24) is internally stable, by Corollary
3.9 [18], we deduce that 𝑥(𝑡) ∈ 𝑙2(0,∞; 𝑅𝑛) for any V(𝑡) ∈
𝑙
2
(0,∞; 𝑅

𝑛V). As shown in the sufficient part, by use of (17)
and (24), we will come to (25), which indicates 𝐹

1
(𝑡, 𝜂
𝑡
) =

𝐻
1
(𝑡, 𝜂
𝑡
)
−1
𝐹
3
(𝑡, 𝜂
𝑡
)
. Further, imposing V∗ on system (1) gives

(26). Because 𝑢∗ is the optimal𝐻
2
/𝐻
∞
control, 𝑢∗ solves LQ

control problem (27). Moreover, from detectability of (A +
BF
1
,C;P), we have that (A + BF

1
+GF
2
,C
1
;P) is detectable.

Recalling that (A + BF
1
+ GF
2
;P) is AMSS, by Theorem 5,

(22) (i.e., (19)) has a stabilizing solution𝑋
2
∈ 𝑆
𝑁+

𝑛
. Finally, by

completing square in terms of (19) and (26), we obtain (28),
which justifies that𝐹

2
(𝑡, 𝜂
𝑡
) = −𝐻

2
(𝑡, 𝜂
𝑡
)
−1
𝐹
4
(𝑡, 𝜂
𝑡
)
.This ends

the proof.

Remark 8. If the coefficients of (1) reduce to be time-
invariant and the Markov chain {𝜂

𝑡
}
𝑡∈Z+ is homogeneous,

then Theorem 7 is reduced to the conclusion of Theorem 3
[14]. Hence, the current study can be regarded as a periodic
extension of [14]. At present, there still exists some difficulty
in generalizing the abovemethod to design𝐻

2
/𝐻
∞
controller

for time-varyingMarkov jump systems as in [22]. To this end,
a time-varying version of PBH criterion has to be developed.
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Figure 1: State responses and𝐻
2
performance.

5. Numerical Example

Consider the following two-dimensional Markov jump sys-
tem with the periodic coefficients listed as follows:

𝐴
0
(𝑡, 1) = [

0.88 − 0.35 cos𝜋𝑡 0

0 0.6
] ,

𝐴
0
(𝑡, 2) = [

0.66 0

0 0.73
] ,

𝐵
0
(𝑡, 1) = [

0.52

0.31
] ,

𝐵
0
(𝑡, 2) = [

0.76

0.53
] ,

𝐺
0
(𝑡, 1) = [

1.4 + 0.2 cos𝜋𝑡
0.49

] ,

𝐺
0
(𝑡, 2) = [

1.1

1.04
] ,

𝐴
1
(𝑡, 1) = [

0.63 0

0 0.72
] ,

𝐴
1
(𝑡, 2) = [

0.48 −0.2 cos𝜋𝑡
0 0.6

] ,

𝐵
1
(𝑡, 1) = [

0.4 − 0.1 cos𝜋𝑡
0.5

] ,

𝐵
1
(𝑡, 2) = [

0.1

0.4
] ,

𝐺
1
(𝑡, 1) = [

1.1

1.04
] ,

𝐺
1
(𝑡, 2) = [

0.4

0.3
] .

(29)

Moreover, 𝐶(𝑡, 𝑖) ≡ [0.9 0.56] and 𝐷(𝑡, 𝑖) ≡ 1. It is clear that
𝜃 = 2. The transition probability matrix P

𝑡
is determined

by 𝑝
2𝑘
(1, 1) = 𝑝

2𝑘
(2, 1) = 0.2, 𝑝

2𝑘
(1, 2) = 𝑝

2𝑘
(2, 2) = 0.8,

𝑝
2𝑘+1
(1, 1) = 𝑝

2𝑘+1
(2, 1) = 0.3, and 𝑝

2𝑘+1
(1, 2) = 𝑝

2𝑘+1
(2, 2) =

0.7 (𝑘 ∈ Z
+
). For a prescribed disturbance attenuation level

𝛾 = 2.3, by use of the Runge-Kutta algorithm, we can solve
CPDEs (17)–(20) and get the feedback gains of (𝑢∗, V∗):

𝐹
1
(2𝑘, 1) = [0.12 0.024] ,

𝐹
1
(2𝑘, 2) = [0.03 0.05] ,

𝐹
2
(2𝑘, 1) = [−0.49 −0.21] ,

𝐹
2
(2𝑘, 2) = [−0.34 −0.27] ;

𝐹
1
(2𝑘 + 1, 1) = [−0.06 0.05] ,

𝐹
1
(2𝑘 + 1, 2) = [0.04 0.016] ,

𝐹
2
(2𝑘 + 1, 1) = [−0.38 −0.235] ,

𝐹
2
(2𝑘 + 1, 2) = [−0.35 −0.25] ,

𝑘 ∈ Z
+
.

(30)

By Lemma 4, it can be verified that (A,C;P) and (A +

BF
1
,C;P) are both detectable. Applying (𝑢∗, V∗) to the

periodic Markov jump system, we get the closed-loop state
trajectory and corresponding 𝐻

2
performance. Figure 1(a)

has displayed 50 sampled state trajectories originating from
(𝑥
1
(0), 𝑥
2
(0)) = (10, 20), while Figure 1(b) demonstrates the

cumulative energy of the system output.

6. Conclusion

In this paper, an infinite horizon𝐻
2
/𝐻
∞
control problem has

been settled for discrete-time periodic Markov jump systems
with multiplicative noise. Under the condition of (uniform)
detectability, a game theoretic𝐻

2
/𝐻
∞
control is produced by
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solving a group of CPDEs. Note that there remain some open
topics on this issue. For example, it is interesting as well as
challenging to investigate the 𝐻

2
/𝐻
∞

control problem with
input or output saturation constraint [23], which no doubt
deserves a further study.
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Necessary and sufficient condition for stochastic stability of discrete-time linear switched system with a random switching signal is
considered in this paper, assuming that the switching signal allows fixed dwell time before a Markov switch occurs. It is shown that
the stochastic stability of the system is equivalent to that of an auxiliary system with state transformations at switching time, whose
switching signal is a Markov chain.The stochastic stability is studied using a stochastic Lyapunov approach.The effectiveness of the
proposed approach is demonstrated by a numerical example.

1. Introduction

The study of hybrid system is motivated by several real
world technological processes involving the interconnection
of logical and discrete dynamics. The evolution of logical
variables may be modeled either within a deterministic or
within stochastic framework. Among stochastic hybrid sys-
tems, a widely investigated class is given by random switched
linear system, which consists of a set of linear systems and a
random switching signal. If the switching signal is a Markov
process or Markov chain, Markov jump linear systems are
considered [1, 2]. In [1], some stable conditions for mean
square stability for discrete-time jump linear system with
finite stateMarkov chain are presented and the stochastic sta-
bility is also considered. The analysis and synthesis problems
of stochastic stability inMarkov jump linear systemhave been
extensively addressed, such as Markov jump Lur’e system in
[3], state and mode detection delay system in [4], antilinear
system in [5], and singular system in [6], in Borel space
[7]. Due to the probabilistic description of communications,
Markov jump systems are well suited to model changes
induced by nature, for example, unexpected events and ran-
dom faults.

Among different assumptions on the switching signal, the
arbitrary switching framework is described by considering
the switching signal to be an exogenous perturbation [8].The
properties of stability and performance must hold for any
possible switching rules [9–11]. If the switching signal could
be designed or governed by a supervisor, the deterministic
models are more adequate. For example, in many hybrid
systems, the switching signal may be designed in order to
improve some properties of the systems [8].

To the best of our knowledge, there exists a vast literature
on both stochastic and deterministic hybrid systems, but
fewer contributions have investigated the stability of discrete-
time hybrid systems subject to both stochastic jumps and
deterministic switching. For continuous-time system, [12]
considers the stability analysis of linear switched systemswith
a random switching signal, which could be partitioned into
the deterministic part and random part. In [13], the stability
of a class of Markov jump linear systems characterized by
piecewise-constant transition rates and system dynamics is
investigated. The switching signal proposed in this paper has
a wide-ranging application; for example, in general models
of queuing theory, the interarrival time is not exponentially
distributed and may contain a deterministic component [14].
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In this paper, the stochastic stability of a discrete-time
switched linear system with a random switching signal is
considered.The dwell time of eachmode could consist of two
parts: fixed dwell time and random dwell time, which means
that the system almost surely stays in each mode for a few
time instants before the Markov switch occurs. Through an
auxiliary Markov jump linear system with state transitions
at switching time, whose stochastic stability is equivalent to
that of original system, a necessary and sufficient condition is
proposed by using the stochastic Lyapunov approach. When
the parameters of the random switching signal are known, the
system stability can be checked by solving a set of coupled
linear matrix inequalities. Noting that the fixed dwell time
could be designed, one can change the dwell time to affect the
stochastic stability of the system, which will be introduced in
the numerical example.

Compared to the previous work [1–7], a new class of
random switching signal is proposed and more general views
of switching signals are given. Compared to [12], the stochas-
tic stability is considered in discrete-time system. When the
systemmatrices contain zero eigenvalues, the proof of equiv-
alence between the stochastic stability of system and its aux-
iliary system is technically difficult, which is solved by using
the Jordan decompositions of the systemmatrices. Moreover,
the results in this paper also lay a foundation for novel hybrid
controller design.

The remainder of this paper is organized as follows. The
mathematical model of the concerned system is formulated
and some preliminaries are given in Section 2. In Section 3,
a Markov jump switched linear system with state transitions
at switching time is proposed, whose stochastic stability is
proved to be equivalent to that of the original system. A
necessary and sufficient condition is given in Section 4. A
numerical example is provided in Section 5.

Notation. The notation used throughout this paper is fairly
standard. The superscript 𝑇 stands for matrix transposition.
N and Z

+
denote the set of positive integers and the set of

nonnegative integers, respectively. R𝑛, R𝑚×𝑛, and S+ denote
the 𝑛-dimensional Euclidean space, the set of 𝑚 × 𝑛 real
matrices, and the set of 𝑛 × 𝑛 real symmetric positive definite
matrices, respectively. The notation 𝑃 > 0 means that 𝑃
is real symmetric and positive definite, and 𝐴 > 𝐵 means
𝐴 − 𝐵 > 0. For a 𝑛 × 𝑛matrix 𝐴, denote ‖𝐴‖ and 𝜎(𝐴) as the
2-norm and the set of eigenvalues of 𝐴, respectively. Let the
space (Ω,F,Pr) be a complete probability space.𝐸{⋅} and 𝜎{⋅}
denote the mathematical expectation and the generated 𝜎-
algebra.

2. Problem Information and Preliminaries

Consider the following discrete-time linear switched system
defined on the complete probability space (Ω,F,Pr):

𝑥 (𝑡 + 1) = 𝐴
𝑟(𝑡)
𝑥 (𝑡) , (1)

where 𝑡 ∈ Z
+
and 𝑥(𝑡) ∈ R𝑛 is the state vector. Switching

signal 𝑟(𝑡), governing the switching among different system

modes, takes values in the finite setM = 1, 2, . . . , 𝑚. Suppose
that the system switches its operation mode to 𝑖 ∈ M at time
𝑡
𝑘
, which means that 𝑟(𝑡

𝑘
− 1) ̸= 𝑖 and 𝑟(𝑡

𝑘
) = 𝑖, and the

switching signal 𝑟(𝑡) could be descried as follows. For the time
𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘
+𝑑
𝑖
), where 𝑑

𝑖
∈ Z
+
, no switching is allowed almost

surely; that is,

Pr {𝑟 (𝑡) = 𝑗 | 𝑟 (𝑡
𝑘
) = 𝑖} =

{

{

{

0 if 𝑗 ̸= 𝑖,

1 if 𝑗 = 𝑖,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘
+ 𝑑
𝑖
) .

(2)

For 𝑡 ≥ 𝑡
𝑘
+𝑑
𝑖
, mode switching occurs according to the mode

transition probabilities given by

Pr {𝑟 (𝑡 + 1) = 𝑗 | 𝑟 (𝑡) = 𝑖} = 𝜋
𝑖𝑗
, (3)

where 𝜋
𝑖𝑗
≥ 0 and ∑𝑚

𝑠=1 𝜋𝑖𝑠 = 1. The mode transition prob-
ability matrix is denoted by 𝜋 ≜ [𝜋

𝑖𝑗
]. If the next switching

occurs at time 𝑡
𝑘+1 > 𝑡

𝑘
, we can define 𝜂

𝑖
≜ 𝑡
𝑘+1 − (𝑡𝑘 + 𝑑𝑖).

The dwell time of the system in mode 𝑖 is defined as 𝜏
𝑖
≜

𝑡
𝑘+1 − 𝑡𝑘 = 𝑑

𝑖
+ 𝜂
𝑖
, which indicates the total time length of

the system has been in mode 𝑖.

Remark 1. The parameter 𝑑
𝑖
, which is a fixed number for

every mode 𝑖, plays the roles of “dwell time” in deterministic
switched systems and is called thefixed dwell time of system in
(1). According to (3), 𝜂

𝑖
is a random variable and is called the

random dwell time of the system.The discrete-time switching
signal 𝑟(𝑡) is motivated by the continuous-time case in [12].
There are some differences between the discrete-time and the
continuous-time case. In continuous-time case, at the time
𝑡
𝑘
+ 𝑑
𝑖
, the next switching might occur after a short time

interval, but in discrete-time case, when the system switches
its operationmode at time 𝑡

𝑘
, themodemay not change in the

time interval [𝑡
𝑘
, 𝑡
𝑘
+ 1), which means 𝜂

𝑖
≥ 1, even if the

parameter 𝑑
𝑖
= 0.

Remark 2. System (1) with the switching signal 𝑟(𝑡) is no
longer a traditionalMarkov jump linear systembecause of the
fixed dwell time𝑑

𝑖
.This type of systemhas been studied in [1],

in which the switching rule is a Markov chain. Here, a mod-
ified model setting technique, in which the fixed dwell time
𝑑
𝑖
is needed for every mode 𝑖, is proposed in order to relax

the restrictions on switching signal. Obviously, if for every
mode 𝑖 ∈ M, 𝑑

𝑖
= 0, which means that there does not exist

the fixed dwell time for every [𝑡
𝑘
, 𝑡
𝑘+1), then the switching

signal 𝑟(𝑡) reduces into a Markov chain.

The following Lemma is useful to study the property of
random dwell time 𝜂

𝑖
.

Lemma3. ∀𝑠 ∈ N, we have Pr{𝜂
𝑖
= 𝑠} = 𝜋

𝑠−1
𝑖𝑖
(1−𝜋
𝑖𝑖
), ∀𝑖 ∈ M.
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Figure 1: A sample path of the switching signal 𝑟(𝑡).

Proof. Consider

Pr {𝜂
𝑖
= 𝑠} = Pr {𝑟 (𝑡

𝑘
+𝑑
𝑖
+ 1)

= 𝑖, . . . , 𝑟 (𝑡
𝑘
+𝑑
𝑖
+ 𝑠 − 1) = 𝑖, 𝑟 (𝑡

𝑘
+𝑑
𝑖
+ 𝑠)

̸= 𝑖 | 𝑟 (𝑡
𝑘
) = 𝑖} = Pr {𝑟 (𝑡

𝑘
+𝑑
𝑖
+ 1) = 𝑖 | 𝑟 (𝑡

𝑘
+𝑑
𝑖
)

= 𝑖} ⋅ ⋅ ⋅Pr {𝑟 (𝑡
𝑘
+𝑑
𝑖
+ 𝑠 − 1) = 𝑖 | 𝑟 (𝑡

𝑘
+𝑑
𝑖
+ 𝑠 − 2)

= 𝑖} ⋅Pr {𝑟 (𝑡
𝑘
+𝑑
𝑖
+ 𝑠) ̸= 𝑖 | 𝑟 (𝑡

𝑘
+𝑑
𝑖
+ 𝑠 − 1) = 𝑖}

= 𝜋
𝑠−1
𝑖𝑖

(1−𝜋
𝑖𝑖
) .

(4)

The proof is completed.

According to Lemma 3, we can get that 𝜂
𝑖
is a random

variable of geometric distribution with parameter 𝜋
𝑖𝑖
.

An example is given to illustrate the property of the
switching signal 𝑟(𝑡).

Example 4. Suppose that the mode setM = {1, 2, 3} and the
fixed dwell time 𝑑1 = 0, 𝑑2 = 2, and 𝑑3 = 1. A sample
path of the switching signal 𝑟(𝑡) is given in Figure 1, in which
the symbols “+” and “∗” denote the modes at the fixed dwell
time and random dwell time, respectively. When the system
switches intomode 2 at time 𝑡

𝑘
, from Figure 1, we can get that

the mode switching will not happen almost surely at the time
[𝑡
𝑘
, 𝑡
𝑘
+ 𝑑2), which contains 𝑑

𝑖
time intervals. After the time

𝑡
𝑘
+ 𝑑2, the system is allowed to switch modes and obey the

switching rules (3). Although themodemay not change in the
time [𝑡

𝑘
+𝑑2, 𝑡𝑘+𝑑2+1), which seems to be a part of the fixed

dwell time interval, the time 𝑡
𝑘
+𝑑2 + 1 is set into the random

dwell time interval.

For linear switched system (1), the following definition
will be adopted in the rest of this paper.

Definition 5. The discrete-time linear switched system in (1)
is said to be stochastically stable, if for any initial condition
𝑥(0) = 𝑥0, 𝑟0 ∈ M, the following inequality holds

𝐸{

∞

∑

𝑡=0
𝑥
𝑇

(𝑡) 𝑥 (𝑡) | 𝑥0, 𝑟0} < ∞. (5)

The above stochastic stability definition is also a uniform
stability in the sense that inequality (5) is required to be true
over all the switching signal defined by (2) and (3).

When the fixed dwell time 𝑑
𝑖
= 0, ∀𝑖 ∈ M, system (1)

becomes a well-knownMarkov jump linear system in [1] and
the definition of stochastic stability becomes the definition in
[1]. Somequestions are naturally put forward: Is the stochastic
stability of system (1) in this paper equivalent to that of the
Markov jump linear system in [1]? Will the values of 𝑑

𝑖
affect

the stochastic stability of the system? An example is given as
follows to answer the above two questions.

Example 6. Suppose the mode setM = {1, 2} and the system
matrices 𝐴1 = [

0 1
0 0 ] and 𝐴2 = [ 2 0

2 2 ]. The mode transition
probability matrix is given by 𝜋 = [

0 1
0.5 0.5 ]. We consider the

following two situations.

Situation 1 (𝑑1 = 𝑑2 = 0). Easily, we can get that
𝐸{∑
∞

𝑡=0 ‖𝑥(𝑡)‖
2
} = +∞. System (1) is not stochastically stable.

Situation 2 (𝑑1 = 2, 𝑑2 = 0). 𝜋21 = 0.5, for every initial
condition 𝑥0 ∈ R𝑛, 𝑟0 ∈ M, and it is almost sure that there
exists time �̃� > 0 such that 𝑟(�̃�) = 1. Then, 𝑥(�̃� + 𝑑1) =

𝐴
2
1𝑥(�̃�) = 0, which follows that 𝑥(𝑡) = 0, ∀𝑡 ≥ �̃� + 𝑑1. We have

𝐸{∑
∞

𝑡=0 ‖𝑥(𝑡)‖
2
} ≤ 𝐸{∑

�̃�+𝑑1−1
𝑡=0 ‖𝑥(𝑡)‖

2
} < ∞. System (1) is

stochastically stable.

Remark 7. From Example 6, we can get that the values of
the fixed dwell time 𝑑

𝑖
may affect the stochastic stability of

system.

3. Markov Jump Linear System with
State Transitions

In this section, we will study the stochastic stability of system
(1) with dwell time (2) and (3). The difficulty is how to deal
with the system states in the fixed dwell time interval [𝑡

𝑘
, 𝑡
𝑘
+

𝑑
𝑖
). Thus, a Markov jump linear system with state transitions

is constructed in which the state transitions at switching time
are used to replace the system states in the fixed dwell time
intervals.Moreover, the stochastic stability of the constructed
system is shown to be equivalent to that of system (1).

For each switching time 𝑡
𝑘
> 0, denote 𝑟

𝑘
= 𝑟(𝑡
𝑘
) as the

operation mode at time 𝑡
𝑘
. Then we have the system state

𝑥(𝑡) that will evolve from 𝑥(𝑡
𝑘
) at time 𝑡

𝑘
to 𝑥(𝑡

𝑘
+ 𝑑
𝑟𝑘
) =

𝐴
𝑑𝑟𝑘

𝑟𝑘
𝑥(𝑡
𝑘
) at time 𝑡

𝑘
+ 𝑑
𝑟𝑘
almost surely. An auxiliary system

is built, in which there is a state transition from 𝑥(𝑡
𝑘
) to

𝐴
𝑑𝑟𝑘

𝑟𝑘
𝑥(𝑡
𝑘
) at time 𝑡

𝑘
, to squeeze the fixed dwell time interval

[𝑡
𝑘
, 𝑡
𝑘
+ 𝑑
𝑖
). According to this idea, the auxiliary system with

state transitions can be written as
𝜁 (�̃� + 1) = 𝐴

𝜌(�̃�)
𝜉 (�̃�) ,

𝜉 (�̃�
𝑘
) = 𝐴
𝑑𝜌𝑘

𝜌𝑘
𝜁 (�̃�
𝑘
) , 𝑘 ∈ Z

+
,

𝜉 (�̃�) = 𝜁 (�̃�) , �̃� ̸= �̃�
𝑘
, 𝑘 ∈ Z

+
,

(6)

where 𝜉(�̃�) is the system state and 𝜁(�̃�) is the auxiliary variable
of the state 𝜉(�̃�). �̃�

𝑘
, 𝑘 ∈ Z

+
, denotes the time when the
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auxiliary system switches its operation modes. The Markov
chain {𝜌(�̃�), �̃� ∈ Z

+
}, which governs the switching among

different system modes inM, is described by a discrete-time
homogeneous Markov chain with mode transition probabili-
ties. Consider

Pr {𝜌 (�̃� + 1) = 𝑗 | 𝜌 (�̃�) = 𝑖} = 𝜋
𝑖𝑗
, (7)

where𝜋
𝑖𝑗
are the same as those in (3). Suppose that system (6)

switches to mode 𝜌
𝑘
≜ 𝜌(�̃�
𝑘
) at time �̃�

𝑘
, and the dwell time of

the system inmode 𝜌
𝑘
is denoted by 𝜂

𝜌𝑘
= �̃�
𝑘+1−�̃�𝑘. According

to Lemma 3, we can get that 𝜂
𝜌𝑘

is a random variable of
geometric distribution with parameter 𝜋

𝑖𝑖
. According to term

(7), it is easy to get that 𝜂
𝜌𝑘
in the auxiliary system equals the

random dwell time 𝜏
𝑟𝑘
in system (1), and the two system sam-

ple state paths of system (1) and auxiliary system (6) satisfy
the following properties for every 𝑘 ∈ Z

+
:

(i) 𝜉(0) = 𝐴𝑑𝜌0𝜌0 𝑥(0), �̃�0 = 𝑡0 = 0.

(ii) 𝑟
𝑘
= 𝑟(𝑡
𝑘
) = 𝜌(�̃�

𝑘
) = 𝜌
𝑘
.

(iii) 𝑡
𝑘+1 = ∑

𝑘

𝑙=0(𝑑𝑟𝑘 + 𝜂𝑟𝑘) = ∑
𝑘

𝑙=0 𝑑𝑟𝑙 + �̃�𝑘+1.

(iv) 𝜉(�̃�
𝑘
+ 𝜏) = 𝑥(𝑡

𝑘
+ 𝑑
𝑟𝑘
+ 𝜏), 𝜏 = 0, 1, . . . , 𝜂

𝜌𝑘
− 1.

The fourth property is a direct result of the first three
properties: 𝜉(�̃�

𝑘
+ 𝜏) = 𝐴

𝜏

𝜌𝑘

𝜉(�̃�
𝑘
) = 𝐴

𝜏

𝜌𝑘

𝐴
𝑑𝜌𝑘

𝜌𝑘
𝑥(𝑡
𝑘
) =

𝐴
𝜏+𝑑𝜌𝑘

𝜌𝑘
𝑥(𝑡
𝑘
) = 𝑥(𝑡

𝑘
+ 𝑑
𝑟𝑘
+ 𝜏).

In order to get the equivalence of the stochastic stability
between system (1) and its auxiliary system (6), we need the
following lemma.

Lemma 8. Given a geometrically distributed random variable
𝜂 with the parameter 𝑝 ∈ [0, 1) and a constant 𝑎 > 0 satisfied
𝑎𝑝 < 1, then

𝐸{

𝜂−1

∑

𝜏=0
𝑎
𝜏

} =
1

1 − 𝑎𝑝
. (8)

Proof. 𝜂 is a geometrically distributed random variable with
𝑝; by Lemma 3, we have Pr{𝜂 = 𝑖} = 𝑝𝑖−1(1−𝑝), ∀𝑖 = 1, 2, . . ..
It follows that

𝐸 {𝑎
𝜂

} =

∞

∑

𝑖=1
𝑎
𝑖

⋅ 𝑝
𝑖−1

(1−𝑝) = 𝑎 (1−𝑝)
∞

∑

𝑖=0
(𝑎𝑝)
𝑖

=
𝑎 − 𝑎𝑝

1 − 𝑎𝑝
.

(9)

Thus,

𝐸{

𝜂−1

∑

𝜏=0
𝑎
𝜏

} = 𝐸{
1 − 𝑎𝜂

1 − 𝑎
} =

1
1 − 𝑎

(1−𝐸 {𝑎𝜂})

=
1

1 − 𝑎
(1−

𝑎 − 𝑎𝑝

1 − 𝑎𝑝
) =

1
1 − 𝑎𝑝

.

(10)

The proof is completed.

For the systems in (1) and (6), we define the filtrations
F
𝑡
≜ 𝜎{𝑥(𝜏), 𝑟(𝜏) | 𝜏 = 0, 1, . . . , 𝑡}, and G

�̃�
≜ 𝜎{𝜉(𝜏), 𝜌(𝜏) |

𝜏 = 0, 1, . . . , �̃�}, respectively. First result of this paper which
establishes the equivalence between system (1) and Markov
switched system (6) with state transitions is proposed as
follows.

Theorem9. System (1) is stochastically stable, if and only if the
system (6) is stochastically stable.

Proof.

Necessity. Suppose that system (1) is stochastically stable; that
is, for every 𝑥(0) and 𝑟(0), we have 𝐸{∑∞

𝑡=0 ‖𝑥(𝑡)‖
2
| 𝑥0, 𝑟0} <

+∞. Then, based on the properties (i)–(iv), we have

𝐸{

∞

∑

�̃�=0

𝜉 (�̃�)


2
| 𝜉 (0) , 𝜌0}

= 𝐸
{

{

{

∞

∑

𝑘=0

{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘

𝜉 (�̃�)


2}
}

}

| 𝜉0, 𝜌0
}

}

}

= 𝐸
{

{

{

∞

∑

𝑘=0

{

{

{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘+𝑑𝑟𝑘

‖𝑥 (𝑡)‖
2}
}

}

| 𝑥0, 𝑟0
}

}

}

≤ 𝐸{

∞

∑

𝑘=0
{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
} | 𝑥0, 𝑟0}

= 𝐸{

∞

∑

𝑡=0
‖𝑥 (𝑡)‖

2
| 𝑥0, 𝑟0} < +∞.

(11)

It follows that system (6) is stochastically stable.

Sufficiency. In order to prove the sufficiency, two cases are
considered as follows, respectively.

Case 1. All of 𝐴
𝑖
have no zero eigenvalues, which means that

𝐴
𝑖
are nonsingular, ∀𝑖 ∈ M.
Then, there exists a constant 0 < 𝑎 < 1, such that ∀𝑖 ∈ M,

𝑎𝜋
𝑖𝑖
< 1 and min

𝜆∈𝜎(𝐴
𝑇
𝐴)
{𝜆} ≥ 𝑎. It follows that ‖𝐴𝑑

𝑖
𝑥‖
2
≥

𝑎
𝑑
‖𝑥‖
2, ∀𝑥 ∈ R𝑛, 𝑑 ∈ Z

≥0. Thus, for any 𝑥(𝑡
𝑘
) and 𝑟

𝑘
∈ M,

we have

𝐸
{

{

{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘+𝑑𝑟𝑘

‖𝑥 (𝑡)‖
2
| 𝑥 (𝑡
𝑘
) , 𝑟 (𝑡

𝑘
) = 𝑟
𝑘

}

}

}

= 𝐸
{

{

{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘+𝑑𝑟𝑘


𝐴
𝑡−𝑡𝑘

𝑟𝑘

𝑥 (𝑡
𝑘
)


2
| 𝑥 (𝑡
𝑘
) , 𝑟 (𝑡

𝑘
) = 𝑟
𝑘

}

}

}

= 𝐸
{

{

{

𝑑𝑟𝑘
+𝜂𝑟𝑘
−1

∑

𝜏=𝑑𝑟𝑘


𝐴
𝜏

𝑟𝑘

𝑥 (𝑡
𝑘
)


2
| 𝑥 (𝑡
𝑘
) , 𝑟
𝑘

}

}

}

≥ 𝐸
{

{

{

𝑑𝑟𝑘
+𝜂𝑟𝑘
−1

∑

𝜏=𝑑𝑟𝑘

𝑎
𝜏
}

}

}

𝑥 (𝑡𝑘)


2
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= 𝐸
{

{

{

𝜂𝑟𝑘
−1

∑

𝜏=0
𝑎
𝜏

| 𝑟
𝑘

}

}

}

𝑎
𝑑𝑟𝑘
𝑥 (𝑡𝑘)



2

=
1

1 − 𝑎𝜋
𝑟𝑘𝑟𝑘

𝑎
𝑑𝑟𝑘
𝑥 (𝑡𝑘)



2
≥ 𝑎

𝑥 (𝑡𝑘)


2
,

(12)

where 𝑎 ≜ min{𝑎𝑑𝑟𝑘 /(1 − 𝑎𝜋
𝑟𝑘𝑟𝑘

)} > 0. The last “=” holds
because of the properties of 𝜂

𝑟𝑘
, 𝑎𝜋
𝑟𝑘𝑟𝑘

< 1, and Lemma 8. If

𝑑
𝑟𝑘
= 0, set 𝐸{∑

𝑡𝑘+𝑑𝑟𝑘
−1

𝑡=𝑡𝑘
‖𝑥(𝑡)‖

2
| 𝑥(𝑡
𝑘
), 𝑟
𝑘
} = 0. If 𝑑

𝑘
∈ N, we

can obtain that

𝐸
{

{

{

𝑡𝑘+𝑑𝑟𝑘
−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| 𝑥 (𝑡
𝑘
) , 𝑟
𝑘

}

}

}

= 𝐸
{

{

{

𝑡𝑘+𝑑𝑟𝑘
−1

∑

𝑡=𝑡𝑘


𝐴
𝑡−𝑡𝑘

𝑟𝑘

𝑥 (𝑡
𝑘
)


2
| 𝑥 (𝑡
𝑘
) , 𝑟
𝑘

}

}

}

=

𝑑𝑟𝑘
−1

∑

𝜏=0


𝐴
𝜏

𝑟𝑘

𝑥 (𝑡
𝑘
)


2
≤ 𝑎𝑑

𝑥 (𝑡𝑘)


2

≤ 𝑀1𝐸
{

{

{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘+𝑑𝑟𝑘

‖𝑥 (𝑡)‖
2
| 𝑥 (𝑡
𝑘
) , 𝑟 (𝑡

𝑘
) = 𝑟
𝑘

}

}

}

,

(13)

where 𝑑 = max
𝑖∈M𝑑𝑖, 𝑎 = max

𝑖∈M{max
𝑗=0,1,...,𝑑𝑖‖𝐴

𝑗

𝑖
‖
2
}, and

𝑀1 = 𝑎𝑑/𝑎. The last inequality holds because of term (12).

Case 2.There exists 𝐴
𝑖
, whose eigenvalues contain zeros.

Suppose that system (1) switches its mode to 𝑑
𝑟𝑘
at time

𝑡
𝑘
and the eigenvalues of 𝐴

𝑟𝑘
contain zeros. Using Jordan

decompositions of the matrices, there exists a nonsingular
matrix 𝑇

𝑟𝑘
, such that 𝑇−1

𝑟𝑘

𝐴
𝑟𝑘
𝑇
𝑟𝑘
= [
𝐽𝑟𝑘1
𝐽𝑟𝑘2

], in which 𝐽
𝑟𝑘1 ∈

R𝑛𝑟𝑘×𝑛𝑟𝑘 is the Jordanmatrixwhose diagonal blocks are Jordan
blocks with eigenvalue 0 and 𝐽

𝑟𝑘2 is that with the other
nonzero eigenvalues. Under the coordination transformation
𝑥(𝑡) = 𝑇

−1
𝑟𝑘

𝑥(𝑡), denote that 𝑥(𝑡) = [
𝑥1(𝑡)
𝑥2(𝑡)

], in which 𝑥1(𝑡) ∈
R𝑛𝑟𝑘 . We have

𝑥
𝑖
(𝑡 + 1) = 𝐽

𝑟𝑘𝑖
𝑥
𝑖
(𝑡) 𝑖 = 1, 2; 𝑡 = 𝑡

𝑘
, . . . , 𝑡

𝑘+1 − 1. (14)

Similarly, denoting 𝜉(�̃�) = 𝑇−1
𝑟𝑘

𝜉(�̃�) ≜ [
𝜉1(�̃�)

𝜉2(�̃�)
], one can obtain

𝜉
𝑖
(�̃� + 1) = 𝐽

𝑟𝑘𝑖
𝜉1 (�̃�)

𝑖 = 1, 2; 𝑡 = �̃�
𝑘
, �̃�
𝑘
+ 1, . . . , �̃�

𝑘+1 − 1,

𝜉
𝑖
(�̃�
𝑘
) = 𝐽
𝑑𝑟𝑘

𝑟𝑘𝑖
𝑥
𝑖
(𝑡
𝑘
) 𝑖 = 1, 2.

(15)

Because 𝐽
𝑟𝑘2 contains no zero eigenvalues, together with

the conclusion of Case 1, there exists a constant �̃� > 0, such
that

𝐸
{

{

{

𝑡𝑘+𝑑𝑟𝑘
−1

∑

𝑡=𝑡𝑘

𝑥2 (𝑡)


2
| F
𝑡𝑘

}

}

}

≤ �̃�𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘


𝜉2 (�̃�)



2
| G
�̃�𝑘

}

}

}

≤ �̃�𝑇𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘

𝜉 (�̃�)


2
| G
�̃�𝑘

}

}

}

,

(16)

where 𝑇 = max
𝑖∈M‖𝑇

−1
𝑖
‖
2.

𝐽
𝑟𝑘1 is Jordan matrix whose blocks are Jordan blocks with

eigenvalue 0; thenwe have ‖𝐽
𝑟𝑘1𝑦‖ ≤ ‖𝑦‖,∀𝑦 ∈ R𝑛𝑟𝑘 . It follows

that

𝐸
{

{

{

𝑡𝑘+𝑑𝑟𝑘
−1

∑

𝑡=𝑡𝑘

𝑥1 (𝑡)


2
| F
𝑡𝑘

}

}

}

≤ 𝐸 {𝑑
𝑟𝑘

𝑥1 (𝑡𝑘)


2
| F
𝑡𝑘
} ≤ 𝑑𝑇


𝐴
𝑟𝑟𝑘−1

𝑥 (𝑡
𝑘
− 1)



2

≤ 𝑑𝑇𝑎
𝑥 (𝑡𝑘 − 1)



2
≤ 𝑑𝑇𝑎

𝑡𝑘−1

∑

𝑡=𝑡𝑘−1+𝑑𝑘−1

‖𝑥 (𝑡)‖
2

= 𝑑𝑇𝑎𝐸
{

{

{

�̃�𝑘−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| G
�̃�𝑘

}

}

}

.

(17)

By (16) and (17),

𝐸{

𝑡𝑘+𝑑𝑘−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| F
𝑡𝑘
}

≤ 𝑇𝐸{

𝑡𝑘+𝑑𝑘−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| F
𝑡𝑘
}

= 𝑇(𝐸{

𝑡𝑘+𝑑𝑘−1

∑

𝑡=𝑡𝑘

𝑥1 (𝑡)


2
| F
𝑡𝑘
}

+𝐸{

𝑡𝑘+𝑑𝑘−1

∑

𝑡=𝑡𝑘

𝑥2 (𝑡)


2
| F
𝑡𝑘
})

≤ 𝑀2𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| G
�̃�𝑘

}

}

}

,

(18)

where 𝑇 = max
𝑖∈M‖𝑇𝑖‖

2 and𝑀2 = 𝑇(�̃�𝑇 + 𝑑𝑇𝑎).
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Using (13) and (18), we have

𝐸{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| F
𝑡𝑘
}

= 𝐸
{

{

{

𝑡𝑘+𝑑𝑟𝑘
−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| F
𝑡𝑘

}

}

}

+𝐸
{

{

{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘+𝑑𝑟𝑘

‖𝑥 (𝑡)‖
2
| F
𝑡𝑘

}

}

}

≤ 𝑀𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| G
�̃�𝑘

}

}

}

+𝐸
{

{

{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘+𝑑𝑟𝑘

‖𝑥 (𝑡)‖
2
| F
𝑡𝑘

}

}

}

≤ (1+𝑀)𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| G
�̃�𝑘

}

}

}

,

(19)

where𝑀 = max{𝑀1,𝑀2}. The first “≤” holds because of (13)
and (18), and the second “≤” holds because of property (iv).

Together with the fact that

𝐸{𝐸{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| F
𝑡𝑘
} | 𝑥0, 𝑟0}

= 𝐸{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| 𝑥0, 𝑟0} ,

𝐸
{

{

{

𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| G
�̃�𝑘

}

}

}

| 𝜉0, 𝜌0
}

}

}

= 𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| 𝜉0, 𝜌0

}

}

}

,

(20)

we have

𝐸{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| 𝑥0, 𝑟0}

≤ (1+𝑀)𝐸
{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| 𝜉0, 𝜌0

}

}

}

.

(21)

Thus,

𝐸{

∞

∑

𝑡=0
‖𝑥 (𝑡)‖

2
| 𝑥0, 𝑟0}

= 𝐸{

∞

∑

𝑘=0
(

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
) | 𝑥0, 𝑟0}

=

∞

∑

𝑘=0
(𝐸{

𝑡𝑘+1−1

∑

𝑡=𝑡𝑘

‖𝑥 (𝑡)‖
2
| 𝑥0, 𝑟0})

≤ (1+𝑀)

∞

∑

𝑘=0
(𝐸

{

{

{

�̃�𝑘+1−1

∑

�̃�=�̃�𝑘−1

𝜉 (�̃�)


2
| 𝜉0, 𝜌0

}

}

}

)

≤ 2 (𝑀+ 1) 𝐸{
∞

∑

�̃�=0

𝜉 (�̃�)


2
| 𝜉0, 𝜌0} ,

(22)

which means that system (1) is stochastically stable.
The proof is completed.

Remark 10. In the proof of sufficiency, two cases are consid-
ered. When there exist some 𝐴

𝑖
whose eigenvalues contain

zero, we need to use the state information in [𝑡
𝑘−1, 𝑡𝑘) to

estimate that in [𝑡
𝑘
, 𝑡
𝑘+1), which is different from and more

technically difficult than the continuous-time system in [12].

Remark 11. From Theorem 9, we can get that the stochastic
stability of system (1) is equivalent to stochastic stability of
system (6). The switching signal of system (6) is a Markov
chain; thus we can use Lyapunov approach to study the
stochastic stability of system (1).

4. A Necessary and Sufficient Condition of
Stochastic Stability

In this section, a necessary and sufficient condition of the
stochastic stability of system (1) is proposed.

Theorem 12. System (1) is stochastically stable if and only if
there exist matrices 𝑃

𝑖
> 0, 𝑖 ∈ M, such that

𝐴
𝑇

𝑖
(𝜋
𝑖𝑖
𝑃
𝑖
+∑

𝑗 ̸=𝑖

𝜋
𝑖𝑗
(𝐴
𝑑𝑗

𝑗
)

𝑇

𝑃
𝑗
𝐴
𝑑𝑗

𝑗
)𝐴
𝑖
−𝑃
𝑖
< 0,

∀𝑖 ∈ M.

(23)

Proof. It follows from (6) and (7) that

Pr {𝜉 (�̃� + 1) =𝐴
𝑖
𝜉 (�̃�) | 𝜉 (�̃�) , 𝜌 (�̃�) = 𝑖} = 𝜋

𝑖𝑖
,

Pr {𝜉 (�̃� + 1) =𝐴𝑑𝑗
𝑗
𝐴
𝑖
𝜉 (�̃�) | 𝜉 (�̃�) , 𝜌 (�̃�) = 𝑖} = 𝜋

𝑖𝑗
,

Pr {𝑃
𝜌(�̃�+1) =𝑃𝑖 | 𝜉 (�̃�) , 𝜌 (�̃�) = 𝑖} = 𝜋𝑖𝑖,

Pr {𝑃
𝜌(�̃�+1) =𝑃𝑗 | 𝜉 (�̃�) , 𝜌 (�̃�) = 𝑖} = 𝜋𝑖𝑗.

(24)
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According to Theorem 9, the stochastic stability of sys-
tems (1) and (6) is equivalent.

Necessity. If system (6) is stochastically stable, we will show
that there exist 𝑃

𝑖
such that (23) holds. Given any positive

matrices 𝑄
𝑖
> 0, 𝑖 ∈ M, define a function 𝑃(𝜔 − �̃�, 𝜌(�̃�)) such

that

𝜉
𝑇

(�̃�) 𝑃 (𝜔− �̃�, 𝜌 (�̃�)) 𝜉 (�̃�)

= 𝐸{

𝜔

∑

𝜏=�̃�

𝜉
𝑇

(�̃�) 𝑄
𝜌(𝜏)

𝜉 (𝜏) | 𝜉 (�̃�) , 𝜌 (�̃�)} .

(25)

Obviously, because 𝑄
𝑖
> 0, ∀𝑖 ∈ M, we have that the left side

of (25) is nondecreasing on 𝜔. It is also bounded as 𝜔 → ∞,
because of the stochastic stability of system (6).Then the limit
of the left side exists as 𝜔 → ∞. Define a newmatrix-valued
function 𝑃

𝜌(�̃�)
of 𝜌(�̃�), such that

𝜉
𝑇

(�̃�) 𝑃
𝜌(�̃�)

𝜉 (�̃�) = lim
𝜔→∞

𝜉
𝑇

(�̃�) 𝑃 (𝜔− �̃�, 𝜌 (�̃�)) 𝜉 (�̃�)

> 0,
(26)

for any 𝜉(�̃�) and 𝜌(𝑡) ∈ M. Then one can obtain

𝑃
𝜌(�̃�)

= lim
𝜔→∞

𝑃 (𝜔− �̃�, 𝜌 (�̃�)) > 0. (27)

By (25),

𝐸 {𝜉
𝑇

(�̃� + 1) 𝑃 (𝜔− (�̃� + 1) , 𝜌 (�̃� + 1)) 𝜉 (�̃� + 1) | 𝜉 (�̃�) ,

𝜌 (�̃�)} = 𝐸{𝐸{

𝜔

∑

𝜏=�̃�+1
𝜉
𝑇

(𝜏) 𝑄
𝜌(𝜏)

𝜉 (𝜏) | 𝜉 (�̃� + 1) ,

𝜌 (�̃� + 1)} | 𝜉 (�̃�) , 𝜌 (�̃�)} = 𝐸{

𝜔

∑

𝜏=�̃�+1
𝜉
𝑇

(𝜏)

⋅ 𝑄
𝜌(𝜏)

𝜉 (𝜏) | 𝜉 (�̃�) , 𝜌 (�̃�)} ,

(28)

the last “=” holds because (𝜉(�̃�), 𝜌(�̃�)) is a Markov chain.
Therefore,

𝐸 {𝜉
𝑇

(�̃� + 1) 𝑃 (𝜔− (�̃� + 1) , 𝜌 (�̃� + 1)) 𝜉 (�̃� + 1)

− 𝜉
𝑇

(�̃�) 𝑃 (𝜔− �̃�, 𝜌 (�̃�)) 𝜉 (�̃�) | 𝜉 (�̃�) , 𝜌 (�̃�)}

= 𝐸{

𝜔

∑

𝜏=�̃�+1
𝜉
𝑇

(𝜏) 𝑄
𝜌(𝜏)

𝜉 (𝜏) | 𝜉 (�̃�) , 𝜌 (�̃�)}

−𝐸{

𝜔

∑

𝜏=�̃�

𝜉
𝑇

(𝜏) 𝑄
𝜌(𝜏)

𝜉 (𝜏) | 𝜉 (�̃�) , 𝜌 (�̃�)} = − 𝜉 (�̃�)

⋅ 𝑄
𝜌(�̃�)

𝜉 (�̃�) .

(29)

On the other hand, we have

𝐸 {𝜉
𝑇

(�̃� + 1) 𝑃 (𝜔− (�̃� + 1) , 𝜌 (�̃� + 1)) 𝜉 (�̃� + 1)

− 𝜉
𝑇

(�̃�) 𝑃 (𝜔− �̃�, 𝜌 (�̃�)) 𝜉 (�̃�) | 𝜉 (�̃�) , 𝜌 (�̃�) = 𝑖}

= 𝜉
𝑇

(�̃�)(𝜋
𝑖𝑖
𝐴
𝑇

𝑖
𝑃 (𝜔− �̃� − 1, 𝑖) 𝐴

𝑖

+∑

𝑗 ̸=𝑖

𝜋
𝑖𝑗
𝐴
𝑇

𝑖
(𝐴
𝑑𝑗

𝑗
)

𝑇

𝑃 (𝜔− �̃� − 1, 𝑗) 𝐴𝑑𝑗
𝑗
𝐴
𝑖

−𝑃 (𝜔− �̃�, 𝑖)) 𝜉 (�̃�) .

(30)

Together with lim
𝜔→∞

𝑃(𝜔 − �̃� − 1, 𝑖) = 𝑃
𝑖
, lim
𝜔→∞

𝑃(𝜔 − �̃� −

1, 𝑗) = 𝑃
𝑗
, and (29), taking limit on the right side of (30), for

every 𝑖 ∈ M, we can get

𝐴
𝑇

𝑖
(𝜋
𝑖𝑖
𝑃
𝑖
+∑

𝑗 ̸=𝑖

𝜋
𝑖𝑗
(𝐴
𝑑𝑗

𝑗
)

𝑇

𝑃
𝑗
𝐴
𝑑𝑗

𝑗
)𝐴
𝑖
−𝑃
𝑖
= −𝑄

𝑖
< 0. (31)

Sufficiency. ∀𝑖 ∈ M, denote that

𝑄
𝑖
= −(𝐴

𝑇

𝑖
(𝜋
𝑖𝑖
𝑃
𝑖
+∑

𝑗 ̸=𝑖

𝜋
𝑖𝑗
(𝐴
𝑑𝑗

𝑗
)

𝑇

𝑃
𝑗
𝐴
𝑑𝑗

𝑗
)𝐴
𝑖
−𝑃
𝑖
)

> 0.

(32)

We only need to prove that system (6) is stochastically stable.
Consider the following Lyapunov function:

𝑉 (𝜉 (�̃�) , 𝜌 (�̃�)) = 𝜉
𝑇

(�̃�) 𝑃
𝜌(�̃�)

𝜉 (�̃�) . (33)

Then we have

𝐸 {𝑉 (𝜉 (�̃� + 1) , 𝜌 (�̃� + 1))

−𝑉 (𝜉 (�̃�) , 𝜌 (�̃�)) | 𝜉 (�̃�) , 𝜌 (�̃�) = 𝑖}

= 𝐸 {𝜉
𝑇

(�̃� + 1) 𝑃
𝜌(�̃�+1)𝜉 (�̃� + 1) | 𝜉 (�̃�) , 𝜌 (�̃�) = 𝑖}

− 𝜉
𝑇

(�̃�) 𝑃
𝑖
𝜉 (�̃�) = 𝜋 (𝜉

𝑇

(�̃�) 𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖
𝜉 (�̃�))

+∑

𝑗 ̸=𝑖

𝜋
𝑖𝑗
(𝜉
𝑇

(�̃�) 𝐴
𝑇

𝑖
(𝐴
𝑑𝑗

𝑗
)

𝑇

𝑃
𝑗
𝐴
𝑑𝑗

𝑗
𝐴
𝑖
𝜉 (�̃�)) − 𝜉

𝑇

(�̃�)

⋅ 𝑃
𝑖
𝜉 (�̃�) ≤ − 𝜉

𝑇

(�̃�) 𝑄
𝑖
𝜉 (�̃�) ≤ − 𝛽

𝜉 (�̃�)


2
,

(34)

where 𝛽 = min
𝑖∈M{min

𝜆∈𝜎(𝑄𝑖)
𝜆}. For any 𝜉(�̃�) and 𝜌(�̃�) ∈ M,

we have

𝜉 (�̃�)


2
≤ −

1
𝛽
𝐸 {𝑉 (𝜉 (�̃� + 1) , 𝜌 (�̃� + 1))

−𝑉 (𝜉 (�̃�) , 𝜌 (�̃�)) | 𝜉 (�̃�) , 𝜌 (�̃�)} .

(35)
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Thus,

𝐸{

∞

∑

�̃�=0

𝜉 (�̃�)


2
| 𝜉0, 𝜌0} ≤ −

1
𝛽
𝐸{

∞

∑

�̃�=0
𝐸

⋅ {𝑉 (𝜉 (�̃� + 1) , 𝜌 (�̃� + 1))

−𝑉 (𝜉 (�̃�) , 𝜌 (�̃�)) | 𝜉 (�̃�) , 𝜌 (�̃�)} | 𝜉0, 𝜌0}

≤ −
1
𝛽
( lim
�̃�→∞

𝐸 {𝑉 (𝜉 (�̃�) , 𝜌 (�̃�)) | 𝜉0, 𝜌0}) +
1
𝛽

⋅ 𝑉 (𝜉0, 𝜌0) < +∞,

(36)

which means that system (6) is stochastically stable.
The proof is completed.

5. Numerical Example

In this section, a numerical example is given to demonstrate
the validity and applicability of the developed theoretical
result.

Consider a 2-dimensional discrete-time linear switched
system (1) consisting of 3 operation modes with the fixed
dwell time 𝑑

𝑖
, 𝑖 = 1, 2, 3. The system matrices are given as

follows:

𝐴1 = [
0.6 0
0.2 0.7

] ,

𝐴2 = [
0.4 0.2
0 −0.8

] ,

𝐴3 = [
1.4 1
0 1.4

] .

(37)

The transition probability matrix is given by

𝜋 =
[
[

[

0.3 0.4 0.3
0.5 0.2 0.3
0.2 0.5 0.3

]
]

]

(38)

and the initial condition is chosen as 𝑥(0) = [10, 20].
For the Markov jump linear system with fixed dwell time

𝑑0 = 𝑑2 = 𝑑3 = 0, using the LMI toolbox of Matlab, we
can get that there do not exist positive definite matrices 𝑃

𝑖
,

such that term (23) holds, which means that the system is not
stochastically stable. The switching modes and the sampled
system state trajectories with fixed dwell time 𝑑0 = 𝑑2 = 𝑑3 =
0 are shown in Figures 2 and 3, respectively.

If we set the fixed dwell time, 𝑑1 = 2, 𝑑2 = 1, and 𝑑3 = 0,
using the LMI toolbox of Matlab, we can get that there exist

M
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Figure 2: System switching modes with random samplings (𝑑0 =

𝑑2 = 𝑑3 = 0).
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Figure 3: System state trajectories of 𝑥1 and 𝑥2 (𝑑0 = 𝑑2 = 𝑑3 = 0).

3 positive definite matrices 𝑃
𝑖
, 𝑖 = 1, 2, 3, such that term (23)

holds, where

𝑃1 = [
4.8832 6.8271
6.8271 15.8834

] ,

𝑃2 = [
1.5705 −1.3768
−1.3768 16.3751

] ,

𝑃3 = [
5.8646 12.8518
12.8518 70.7197

] .

(39)

According to Theorem 12, one can obtain that system (1)
is stochastically stable. Figure 4 shows the switching signal
between mode 1 and mode 3, in which the symbols “+” and
“∗” denote themode at the fixed dwell time and randomdwell
time, respectively. Figure 5 shows that the sampled system
state trajectories of 𝑥1 and 𝑥2 tend to the zero equilibrium.
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Figure 4: System switching modes with random samplings (𝑑0 = 2,
𝑑2 = 1, and 𝑑3 = 0).
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Figure 5: System state trajectories of 𝑥1 and 𝑥2 (𝑑0 = 2, 𝑑2 = 1, and
𝑑3 = 0).
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Partially observed microstructure models, containing stochastic volatility, dynamic trading noise, and short-term inertia, are
introduced to address the following questions: (1) Do the observed prices exhibit statistically significant inertia? (2) Is stochastic
volatility (SV) still evident in the presence of dynamical trading noise? (3) If stochastic volatility and trading noise are present,
which SVmodel matches the observed price data best? Bayes factor methods are used to answer these questions with real data and
this allows us to consider volatility models with very different structures. Nonlinear filtering techniques are utilized to compute the
Bayes factor on tick-by-tick data and to estimate the unknown parameters. It is shown that our price data sets all exhibit strong
evidence of both inertia and Heston-type stochastic volatility.

1. Introduction

Financial analysts list speculation, finiteness of assets, interest
rates, tick size, price inertia, price clustering, belief het-
erogeneity, asymmetric information, greed and fear, and so
forth as causes for price fluctuations over time. Yet, popular
models like geometric Brownian motion (GBM) (e.g., Black
and Scholes [1], Merton [2]) or the Cox-Ross-Rubinstein
model [3] try to handle all these factors in an overly
simple framework, resulting in unnatural phenomena like
the volatility smile. Consequently, stochastic volatility, which
has been observed in real prices, is often added to the price
value evolution (e.g., Heston [4], Jachwerth and Rubinstein
[5], Hull andWhite [6], andNelson [7]) to avoid the volatility
smile. However, which stochastic volatility model fits the
market data best?

Nowadays, many authors talk about the misspecification
of stochastic price-volatility models (including the Heston
model which we show favorably herein) so much. It leads us
to wonder whether there aremissing ingredients to these very
simple models. Even combined stochastic value-volatility
models do not address tick size, price inertia, price clustering,
hidden liquidity, and fear-greed cycles that traders, especially
high frequency traders, must deal with. To handle these

issues, one is drawn to tick-by-tick microstructure models
and left with the perplex question: How should one model
price inertia in continuous time? We are using the term
price inertia instead of the related term price momentum
because we are not weighting transaction prices by volume.
Fractional Brownian motion (FBM), best known for its long
memory properties, exhibits inertia and has been used to
model markets (Mandelbrot [8], Shiryaev [9]) even though
these models allow arbitrage strategies. We speculate that
FBM’s success inmodeling observed data is more attributable
to inertia than long memory. However, we introduce an
alternative inertia process and show that this new process
better satisfies the desired properties of inertia than FBM.
We then show strong statistical evidence of price inertia that
lasts for hours or days using Bayes estimates and Bayes factor
on real price data. We do not consider the possibility of
arbitrage nor determine derivative prices for our models but
rather leave these interesting mathematical finance questions
to the experts. (See Capinski and Zastawniak [10] for an
excellent introduction to these types of questions and to
mathematical finance in general.) Also, we leave the difficult
task of obtaining theoretical error bounds for our particle
filter methods to other works. (See, e.g., Kouritzin and Zeng
[11] and Del Moral et al. [12] for related work on approximate
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filters.) Our focus is solely on modeling observed stock price
data and the methodology of determining which of a class of
models best fits the observed data.

High frequency data contains complete market-
participant trading activities (Engle [13]) and is modeled
using microstructure (Black [14], Chan and Lakonishok
[15], Hasbrouck [16, 17], Engle and Russell [18], Engle [13],
and Bandi and Russell [19]). Unlike the macrostructure
market, the trading noise in the microstructure market is
not negligible; thus, the intrinsic asset value is not readily
discernable. In this paper, we introduce a class of dynamic
microstructure models, where the transaction price is
formulated as a distorted and color-noise corrupted variant
of the intrinsic asset value with the intrinsic asset value being
a traditional stochastic value-volatility process. Indeed, we
view the transaction price data as random counting-measure
observations of intrinsic value corrupted by microstructure
trading noise with such things as inertia and fear-greed cycles
built in. However, trading noise sources themselves introduce
volatility to transaction prices. This raises the question, “Do
we need to model stochastic volatility explicitly in the
presence of dynamic microstructure trading noise?” We will
give strong evidence of the presence of stochastic volatility
through Bayes factor methods and stochastic filtering theory.
Moreover, we also utilize model selection to provide strong
evidence of Heston-type volatility over competing stochastic
volatility models based on the observed transaction data in
a microstructure market. This suggests that the common
viewpoint of the Heston model being highly misspecified
might be better stated as overly simplistic macrostructure-
only models are underspecified. Bayes factor (see, e.g., Kass
and Raftery [20]) is our preferred model selection method
since it provides statistical comparisons in real time as to
which model best fits the market data while allowing the
stochastic value-volatility (signal) models to be singular to
one another. Indeed, to use the Bayes factor method, we need
only to be able to transform all microstructure asset-price
observation models of interest into the same canonical
process via Girsanov-type measure change.

Previously, Zeng [21] studied a filtering equation for infer-
ring the intrinsic value process in a microstructure model
while Xiong and Zeng [22] proposed a branching particle
approximation to this equation. Kouritzin and Zeng [23]
derived a Bayes factor equation and discussed the Bayesian
model selection problem to determinewhether financial data,
such as stock prices, display jump-type stochastic volatility.
However, all theseworks are based on a restrictedmicrostruc-
ture model and thus cannot be applied to our general setting.
Moreover, our problems of showing statistical evidence of
inertia and determining which of the classical stochastic
volatility models best represents real data in the presence of
microstructure noise were not considered. We also propose a
new inertia process, explain its role in modeling prices, and
show its statistical significance with real tick-by-tick data.

Section 2 is devoted to explaining our model. First, our
five standard value-volatility models (GBM, Hull-White, Log
Ornstein-Uhlenbeck, continuous GARCH, and Simplified
Heston) are given followed by our microstructure inertia
process and its properties and then the other components

of our dynamic microstructure model. Together the value-
volatility and microstructure components form our price
evolutionmodel, which, at the end of Section 2, is interpreted
as a filtering model. In Section 3, we discuss model calibra-
tion and fair price/value estimation through Bayesian filter
estimation. A filtering equation and a branching particle filter
approximation algorithm are first given and explained.Then,
their use to identify parameters and come up with initial state
estimates is discussed. Finally, numeric parameter and initial
state estimates for each model are given. As a byproduct,
it is demonstrated that proper modeling and estimation of
fair price (as is done herein) can provide information about
overbought conditions and help avoid financial loss (see
Figure 4). Section 4 is dedicated to Bayesian model selection.
We first motivate the use of Bayes factor for model selection
and explain how to estimate Bayes factor from unnormalized
particle filters.Then,we establish strong statistical evidence of
inertia andHeston-type volatility in all our price data through
model selection using the Bayes factor method to test which
fair price-volatility model and what amount of inertia best fit
the observed price data.

2. The Partially Observed Market Model

In this section, we build our stochastic model that has
macrostructure and microstructure components and inter-
pret this model in terms of a signal that needs to be estimated
in real time and observations which are used to form the
signal estimates. The macrostructure model consists of fair
price, volatility, and related parameters and will be denoted
by (𝑋, 𝜃) in the sequel, with 𝑋 = (𝑆, 𝑉) being price
and volatility and 𝜃 being the parameters for this model.
Unlike macrostructure models, we do not assume access to
(𝑋, 𝜃), but rather we take it to be part of the signal to be
estimated. Indeed, a model would be judged to be better if
the macrostructure price 𝑆 (which represents a “fair” price)
is quite different than the observed price and we can use
filtering to determine overbought and oversold situations.

The microstructure price construction converts the
macrostructure model into the observed price. Such things
as inertia (or momentum), fear-greed cycles, and whole-
price clustering (or rounding), which are not part of the
fair price, are incorporated into the microstructure model.
A distinguishing feature in our microstructure is dynamic
state: To allow the microstructure to influence price over
a period of time so that the observed microstructure price
can differ from fair price significantly, one needs to add and
then estimatemicrostructure state𝑍. In particular, the inertia
process, characterized by a parameter ℎ, is introduced to
capture price inertia thatmight be caused by hidden liquidity;
various reaction and access times to information as well as
momentum traders themselves. This inertia process is not
Markov, so we will have to consider the historical version 𝑍ℎ
of this state. Further,𝑍ℎ is also unobservable and hence must
be added to the signal along with microstructure parameters
𝜗 and all must be estimated as nuisance parameters.

Thenondynamic part of themicrostructure noise consists
of rounding and clustering noise. It is widely observed in
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markets that more trades occur at more even prices like
whole nickel or whole dollar levels. Therefore, to match
observed prices well, we should have a mechanism to con-
vert evenly distributed raw prices into whole-price-biased
observed prices. This is done by binning raw prices into sets
𝐷1,𝐷2,𝐷3,𝐷4, and𝐷5 depending on how even they are and
then randomlymoving rawprices in the less even bins to close
prices in the more even bins in order to match the observed
prices.

The observations then become the marked counting
process of the number of trades that occur at the various
prices. We will later use these observations to select and
calibrate models and to estimate the augmented signal:

(𝑋, 𝜃, 𝜗, 𝑍
ℎ
) . (1)

The whole point of the microstructure is to allow the
macrostructure price to distinguish itself from the observa-
tions and rather to represent fair value. We then use filtering
on asset prices to estimate implied value (hereafter called fair
price) and thereby judge whether an asset is overbought or
oversold.

2.1. General Notation. Let [0, 𝑇] be a fixed time period and let
(Ω,F, (F𝑡)0≤𝑡≤𝑇,P) be a complete filtered probability space.
For any stochastic process 𝜌, its natural filtration, defined as
F

𝜌

𝑡
≐ 𝜎{𝜌𝑢 : 0 ≤ 𝑢 ≤ 𝑡}, represents the information in 𝜌 up

to time 𝑡. N0 denotes the set of nonnegative integers and, for
any Polish space 𝐸, 𝐵(𝐸) is the set of all bounded measurable
R-valued functions on 𝐸.

2.2. Common Macrostructure State Models. We use a
macrostructure model 𝑀 = (𝑋, 𝜃) for the unobservable
fair price together with its volatility and parameters. Here,
𝑋 ∈ R𝑛

𝑥 is the macrostructure financial state (fair price plus
volatility) with macrostructure parameter 𝜃 ∈ R𝑛

𝜃 for some
𝑛𝑥, 𝑛𝜃 ∈ N0. We let 𝜇 be a probability distribution on R𝑛

𝑥
+𝑛
𝜃 ,

takeA to be a generator with domainD(A) ⊂ 𝐵(R𝑛
𝑥
+𝑛
𝜃), and

assume (𝑋, 𝜃) satisfies the martingale problem.

Definition 1. (𝑋, 𝜃) is the unique solution of the R𝑛
𝑥
+𝑛
𝜃-

valued martingale problem for A with initial distribution 𝜇.
That is,

(i) 𝜇 = P ∘ (𝑋0, 𝜃)
−1
,

(ii) 𝑀𝑓

𝑡
= 𝑓 (𝑋𝑡, 𝜃) − 𝑓 (𝑋0, 𝜃) − ∫

𝑡

0

A𝑓 (𝑋𝑠, 𝜃) 𝑑𝑠

(2)

is {F𝑋,𝜃

𝑡
}-martingale for each 𝑓 ∈ D(A).Moreover, if (𝑋, 𝜃)

also satisfies (i) and (ii), then (𝑋, 𝜃) and (𝑋, 𝜃) have the same
finite dimensional distributions.

Remark 2. While 𝜃 does not vary in time, we include it in
our macrostructure model to be estimated because it is still
unknown. Nevertheless, the operator A does not act on the
variable 𝜃 since 𝑑𝜃𝑡/𝑑𝑡 = 0 for our fixed parameters.

Themartingale problem formulation (2) (see Stroock and
Varadhan [24], Ethier and Kurtz [25] for more details) is

general enough to cover most interesting financial models.
In this paper, the macrostructure state 𝑋 consists of two
components: the fair price 𝑆 and the stochastic volatility 𝑉
(if any). The most common example of (𝑆, 𝑉, 𝜃) in finance is
the “geometric Brownianmotion” (GBM) utilized in the clas-
sical Black-Scholes option pricing formula. Throughout this
section, 𝑊 and 𝐵 are two independent standard Brownian
motions and (𝑠, V, 𝜃) ∈ R𝑛

𝑥
+𝑛
𝜃 .

Example 3 (GBM model; see Black and Scholes [1], Merton
[2]). We have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡, (3)

with parameters 𝜃 = (𝜇, 𝜎), corresponds to our martingale
problem with the generator

A(1)
𝑓 =

1

2
𝜎
2
𝑠
2 𝑑

2𝑓

𝑑𝑠2
+ 𝜇𝑠

𝑑𝑓

𝑑𝑠
. (4)

In GBM model, the volatility 𝜎 is a constant. To account
for the “volatility smile” commonly observed in market
option prices (see Jackwerth and Rubinstein [5] for a detailed
survey), the GBMmodel is generalized to stochastic volatility
(SV) models, where 𝜎 itself is replaced by a stochastic process
{𝑉

1/2

𝑡
, 𝑡 ≥ 0}. Some of the popular SV models include the

following.

Example 4 (Hull-White model; see Hull and White [6]).
Consider

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉𝑡

𝑉𝑡
= ]𝑑𝑡 + 𝜅𝑑𝐵𝑡,

(5)

with parameters 𝜃 = (𝜇, ], 𝜅) and generator

A(2)
𝑓 =

1

2
V𝑠2
𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V2

𝜕2𝑓

𝜕V2
+ ]V

𝜕𝑓

𝜕V
. (6)

Example 5 (Logarithmic Ornstein-Uhlenbeck model; see
Scott [26]). We have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉1/2

𝑡

𝑉
1/2

𝑡

= (
1

2
]2 −  (ln𝑉1/2

𝑡
− 𝜛)) 𝑑𝑡 + 𝜅𝑑𝐵𝑡,

(7)

with parameters 𝜃 = (𝜇, ], , 𝜛, 𝜅) and generator

A(3)
𝑓 =

1

2
V2𝑠2

𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V2

𝜕2𝑓

𝜕V2

+ V (
1

2
]2 −  (ln V − 𝜛))

𝜕𝑓

𝜕V
.

(8)



4 Mathematical Problems in Engineering

Example 6 (continuous GARCH model; see Nelson [7]). We
have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉𝑡 = (] − 𝑉𝑡) 𝑑𝑡 + 𝜅𝑉𝑡𝑑𝐵𝑡,
(9)

with parameters 𝜃 = (𝜇, ], , 𝜅) and generator

A(4)
𝑓 =

1

2
V𝑠2
𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V2

𝜕2𝑓

𝜕V2

+ (] − V)
𝜕𝑓

𝜕V
.

(10)

Example 7 (simplified Heston model; see Heston [4]). We
have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉𝑡 = (] − 𝑉𝑡) 𝑑𝑡 + 𝜅𝑉
1/2

𝑡
𝑑𝐵𝑡,

(11)

with parameters 𝜃 = (𝜇, ], , 𝜅) and generator

A(5)
𝑓 =

1

2
V𝑠2
𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V
𝜕2𝑓

𝜕V2
+ (] − V)

𝜕𝑓

𝜕V
. (12)

We label this example as simplified because we do not
allow 𝐵 and 𝑊 to be correlated as Heston did. There is
no mathematical issue by including this correlation, but
it would add a parameter to the model, which increases
computation time. The Heston model already performed
the best without this parameter. GBM (with microstructure)
plays a special role in our study as it is our no stochastic
volatility model. We will compare our other models against
it on real data to determine whether stochastic volatility is
present. In summary, refer to Table 1.

Remark 8. ThecontinuousGARCHmodel is the continuous-
time limit of many classical GARCH-type discrete-time
processes (Nelson [7], Drost and Werker [27]). We did not
consider jumping stochastic volatility models (e.g., Elliott
et al. [28], Kouritzin and Zeng [23], Duffie et al. [29], Eraker
et al. [30], and Eraker [31]) or models where 𝑊, 𝐵 are
correlated, due to our need to dedicate our limited com-
puter resources to handling our complicated (non-Markov)
microstructure with inertia. Still, we want to emphasize that
the computational complexitywe experienced is fundamental
to the fact that we are using non-Markov (inertia)models and
has little to dowith our particularmethods. Indeed, our Bayes
factor filtering methods are what makes the computations
possible on an inexpensive contemporary desktop computer.

2.3. Construction of Microstructure Price. The fair price-
volatility models account for the random variances of the
intrinsic asset value; thus, the selection of proper SV model
is crucial for investing, derivative pricing, and hedging. On
the other hand, microstructure noise (see Black [14], Hansen
and Lunde [32], Duan and Fulop [33], etc.) causes random

Table 1

Name Model Macrostate Macroparameter Generator
GBM 𝑀(1) 𝑆 (𝜇, 𝜎) A(1)

Hull-White 𝑀
(2)

(𝑆, 𝑉) (𝜇, ], 𝜅) A(2)

Log O-U 𝑀(3) (𝑆, 𝑉) (𝜇, ], , 𝜛, 𝜅) A(3)

GARCH 𝑀(4) (𝑆, 𝑉) (𝜇, ], , 𝜅) A(4)

Heston 𝑀
(5)

(𝑆, 𝑉) (𝜇, ], , 𝜅) A(5)

perturbations of transaction price from its intrinsic value and
the disregard of such trading noise introduces severe bias into
stochastic volatility estimation (seeDuan and Fulop [33]).We
incorporate microstructure trading noise into traditional fair
price-volatility models and use statistical filtering to reveal
such things as short-term inertia in the trading noise and
stochastic volatility in the intrinsic value.

In microstructure markets, the price changes occur only
at irregularly spaced transaction times 𝑡1, 𝑡2, . . . with total
trading intensity 𝑎(𝑡) (see Engle [13]). Here, we assume 𝑎(𝑡)
is just a time-varying measurable function as the empirical
analysis illustrates that there is no need to consider more
general structures. At each transaction time 𝑡𝑖, the transaction
price 𝑌𝑡

𝑖

is formulated as

𝑌𝑡
𝑖

= 𝐹 (𝑋𝑡
𝑖

, 𝑡𝑖) , (13)

where𝐹 is some nonlinear randomfieldmodeling the trading
noise. Formulation (13) is similar to that of Hasbrouck [16],
where 𝑋 is the intrinsic and permanent component while 𝐹
introduces the transitory component.

The empirical evidence reported by Hansen and Lunde
[32] suggests strongly that the trading noise is serially
correlated. Similar results can be found in Aı̈t-Sahalia et
al. [34]. Indeed, there exist situations in which the trading
noise variance estimate is zero if the trading noise is simply
assumed to be independent (see Duan and Fulop [33]).
This does not mean there is no trading noise but rather
that the trading noise is autocorrelated. To characterize this
correlation, Hansen and Lunde [32] assume the trading
noise to be some Gaussian random sequence with stationary
covariance and finite dependence. However, this model is
most suitable for the low-frequency data and ignores many
crucial microstructure effects. We build correlation into
our microstructure information noise through inertia and
mean-reversion while utilizing microstructure rounding and
clustering noise to explain the discreteness and whole-price
biasing.

2.3.1. Inertia. The idea ofmomentumor inertia has been used
in many studies (see Jegadeesh and Titman [35], Moskowitz
and Grinblatt [36], Grundy and Martin [37], Grundy et al.
[38], etc.). Basically, there is the tendency for a stock to
continue tomove in one direction. To illustrate our approach,
we introduce the following definition.
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Definition 9. A process (𝑍𝑡) is said to have stochastic inertia
at time 𝑡 if

𝐼
𝑍

𝑡
≐ lim

𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝑍𝑢𝑍𝑡] ∈ (0,∞] . (14)

𝐼𝑍
𝑡
is called the inertia function.

The idea behindour definition is that for inertiawe should
expect𝑍𝑢+𝑟−𝑍𝑢 and𝑍𝑡−𝑍𝑡−𝑘 to have the same sign for 𝑢 > 𝑡,
but close to 𝑡 and 𝑟, 𝑘 > 0 small. We strengthen this condition
to

lim
𝑢↘𝑡

lim
𝑘→0

lim
𝑟→0

𝐸 [(𝑍𝑢+𝑟 − 𝑍𝑢) (𝑍𝑡 − 𝑍𝑡−𝑘)]

𝑟𝑘
> 0

⇐⇒ lim
𝑢↘𝑡

lim
𝑘→0

[ lim
𝑟→0

𝐸 [(𝑍𝑢+𝑟 − 𝑍𝑢) 𝑍𝑡]

𝑟𝑘

− lim
𝑟→0

𝐸 [(𝑍𝑢+𝑟 − 𝑍𝑢) 𝑍𝑡−𝑘]

𝑟𝑘
] > 0

⇐⇒ lim
𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
𝐸 [𝑍𝑢𝑍𝑡] > 0.

(15)

Many processes have inertia. However, to model the stock
price effect of the information reaching all market partici-
pants, wewant the following five properties: (1)𝑍𝑡 is Gaussian
and driftless and Var(𝑍𝑡) is proportional to 𝑡 so 𝑍 resembles
Brownian motion; (2) 𝐼𝑍

𝑡
is finite, not infinite, indicating that

the influence of past values on immediate future is not too
strong; (3) 𝑍𝑡 makes sense from informational and hidden
liquidity points of view; more precisely, it can explain well
the price effects due to the reactions of all market participants
to information and rumor being diffused and simulated over
a period of time as well as due to the purchases or sales of
an agent spreading out a large change in his/her position
over time; (4) 𝑍 is easy to simulate using, for example, the
Gaussian property; (5) 𝑍 is easy to analyze.

Neither a Brownianmotion𝐵normore generally a square
integrablemartingale has inertia. Brownianmotionwith drift
𝑍𝑡 = 𝑍0 +∫

𝑡

0
𝑚(𝑍𝑠)𝑑𝑠 + 𝐵𝑡 has inertia 𝐼

𝑍

𝑡
= 𝐸[𝑚2(𝑍𝑡)] but we

do not want drift. For fractional Brownianmotion (FBM) 𝐵ℎ,

E [𝐵
ℎ

𝑡
𝐵
ℎ

𝑢
] =

1

2
(|𝑡|

2ℎ
+ |𝑢|

2ℎ
− |𝑢 − 𝑡|

2ℎ
) , (16)

where ℎ ∈ (0, 1) is the Hurst parameter. Therefore,

lim
𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝐵

ℎ

𝑡
𝐵
ℎ

𝑢
] = lim

𝑢↘𝑡
((2ℎ − 1) ℎ (𝑢 − 𝑡)

2ℎ−2
) = ∞

if ℎ > 1
2
.

(17)

Thus, the inertia function of 𝐵ℎ is infinity for all 𝑡 if ℎ >

1/2 (and is −∞ if ℎ < 1/2). Neither case satisfies our five
properties. Still, standard representations of FBM motivate
the creation of driftless inertia by convolving a Brownian
motion with the desired impulse response for information
dissemination. With this in mind, we consider the following
inertia process.

Definition 10. Our stochastic inertia process is

𝜉
ℎ

𝑡
= √ℎ∫

𝑡

0

tanh((𝑡 − 𝑠)
Δ

) 𝑑𝐵
𝜉

𝑠
+ √1 − ℎ𝑊

𝜉

𝑡
, (18)

where (𝐵𝜉,𝑊𝜉) is a 2-dimensional standard Brownian
motion, Δ > 0, and 0 ≤ ℎ ≤ 1.

Remark 11. 𝜉ℎ
𝑡
is a weighted average of the historical infor-

mation (the first term) and fundamental information (the
second term). In fact, tanh(𝑡/Δ) can be viewed as the impulse
response on price created by market participants receiving
and simulating the “information” 𝑑𝐵𝜉

𝑡
and Δ determines the

diffusion speed in the market. This formulation captures the
idea that news or rumor and its ramifications require time
to be fully disseminated and understood. When ℎ = 1, it
represents the case of only historical information resulting in
the strongest inertia in prices. Alternatively, we can use inertia
to explain “hidden liquidity.” If everybody knew that an agent
was going to make a big change in a position, then the price
would immediately jump. However, if the agent breaks up
the desired change into small transactions, then it takes time
for this extra buying or selling pressure to be recognized in
the market. In this case, ℎ = 1 represents the case, where
all changes in position are done over a period of time and Δ
represents the time to effect 58% of the positional change.

Note that 𝜉ℎ
𝑡
is a centered Gaussian process such that the

autocovariance

E [𝜉
ℎ

𝑡
𝜉
ℎ

𝑢
] = ℎ∫

𝑡

0

tanh((𝑡 − 𝑠)
Δ

) tanh((𝑢 − 𝑠)
Δ

) 𝑑𝑠

+ (1 − ℎ) 𝑡

(19)

is positive for any 𝑢 ≥ 𝑡. In particular,

Var (𝜉ℎ
𝑡
)

𝑡
=
ℎ

𝑡
∫
𝑡

0

tanh2 ((𝑡 − 𝑠)
Δ

) 𝑑𝑠 + (1 − ℎ)

= 1 − ℎΔ
tanh (𝑡/Δ)

𝑡
.

(20)

Thus, Var(𝜉ℎ
𝑡
)/𝑡 converges to 1 as 𝑡 → ∞ with speed

determined byΔ. (Hence, informational noise increases at the
same asymptotic rate as Brownian motion.) Moreover,

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝜉

ℎ

𝑡
𝜉
ℎ

𝑢
]

=
ℎ

Δ2
∫
𝑡

0

sech2 ((𝑡 − 𝑠)
Δ

) sech2 ((𝑢 − 𝑠)
Δ

) 𝑑𝑠

(21)

and, using standard antiderivatives,

lim
𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝜉

ℎ

𝑡
𝜉
ℎ

𝑢
] =

ℎ

Δ2
∫
𝑡

0

sech4 ( 𝑠
Δ
) 𝑑𝑠

=
ℎ

Δ
[tanh( 𝑡

Δ
) −

tanh3 (𝑡/Δ)
3

] .

(22)
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Thus, the inertia function of our inertia process is 𝐼𝜉
ℎ

𝑡
=

(ℎ/Δ)[tanh(𝑡/Δ) − tanh3(𝑡/Δ)/3], the steady-state inertia is

lim
𝑡→∞

ℎ

Δ
[tanh( 𝑡

Δ
) −

tanh3 (𝑡/Δ)
3

] =
2ℎ

3Δ
, (23)

and this happens quickly for small Δ. We can thus verify that
𝜉ℎ, defined in (18), satisfies our five desired properties. One
can also look upon Δ as the time for new information to be
disseminated to fifty-eight percent of the market. Below, we
consider three different dissemination times:Δ = 40minutes,
Δ = 2 hours, and Δ = 1/2 day on real stock data. Finally, the
fact that 𝜉ℎ is Gaussian eases its simulation greatly.

2.3.2. Information Noise and Augmented State. Hitherto, we
have focused on constructing inertia processes. Now, we
include all informational noise into asset prices. Information
noise is introduced to represent trading noises due to things
like inertia, fear-greed cycles, belief heterogeneity, and asym-
metric information. For the 𝑖th-transaction occurring at 𝑡𝑖,
the raw priceY𝑡

𝑖

is defined by

lnY𝑡
𝑖

=
{

{

{

ln 𝑆𝑡
𝑖

+ 𝑍ℎ,Δ
𝑡
𝑖

+ 𝜖𝜁𝑖, dynamical microstructure,

ln 𝑆𝑡
𝑖

+ 𝜖𝜁𝑖, nondynamical,

(24)

𝑑𝑍
ℎ,Δ

𝑡
= −𝜙𝑍

ℎ

𝑡
𝑑𝑡 + 𝑑𝜉

ℎ

𝑡
, 𝑍

ℎ,Δ

0
= 𝑧0, (25)

where 𝑍ℎ,Δ is the dynamical part of the microstructure
through which inertia is introduced (with our inertia process
𝜉ℎ) and 𝑋 = (𝑆, 𝑉). The case 𝑍ℎ,Δ ≡ 0 is of particular
importance in the sequel as it represents the nondynamical
microstructure case and is used as a calibration model.

The information noise consists of two parts: 𝜁 = {𝜁𝑖}
∞

𝑖=1

is a sequence of independent standard Gaussian random
variables, 𝜖 > 0; 𝑍ℎ is Ornstein-Uhlenbeck- (O-U-) like
inertia velocity process with mean-reverting parameter 𝜙 >
0. Here, 𝜉ℎ, 𝜁, and 𝑋 are independent and 𝑧0 is a constant.
𝑍ℎ provides an intuitive continuous-time model that accom-
modates the joint presence of the inertia andmean-reversion.
Our information noise is more reasonable than that of Zeng
[21] in that (1) we preclude the possibility of negative prices by
using multiplicative noise; (2) the stochastic inertia process
𝜉
ℎ captures the empirical feature of the inertia observed in
transaction prices (e.g., Jegadeesh and Titman [35]); (3) the
mean-reverting structure of 𝑍ℎ when combined with the
inertia captures the cyclic property of prices (e.g., Black [14]).
𝑍ℎ is not a Markov process, so we introduce its historical
process as

𝑍
ℎ

𝑡
(𝜏) ≐ 𝑍

ℎ

𝑡∧𝜏
, (26)

which is Markovian. Moreover, 𝑍ℎ
𝑡
∈ 𝐶[0, 𝑇], the space of

all continuous functions on [0, 𝑇], since the paths of 𝑍ℎ are
continuous. Consequently, we augment the state vector to be

(𝑋, 𝜃, 𝜗, 𝑍
ℎ
) , (27)
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Figure 1: Clustering for 3 stocks in April 2010.

where 𝜗 = (𝜖, 𝜙) is the microstructure noise parameter set.
The advantage of this formulation is that we can estimate
𝑍ℎ and thus 𝑍ℎ jointly with other components using particle
filtering methods. The generalized state incorporates fair
price, volatility, parameters, and the historical trading noise
𝑍ℎ while keeping the tractability of a Markovian framework.

Remark 12. We include neither ℎ nor Δ into the model
parameters but rather consider different models correspond-
ing to different values of ℎ andΔ aswell as different SVmodels
1–5. Indeed, we will provide evidence of inertia in the sequel
by usingBayesianmethods to select amodelwith a large value
of ℎ based upon tick-by-tick stock data.

2.3.3. Rounding and Clustering Noise. Our final modeling
goal is to convert uniform raw price into observed whole-
price-biased price. While raw price Y𝑡

𝑖

can take any value,
the trading price 𝑌𝑡

𝑖

is restricted to multiples of the tick,
{𝑦0 = 0, 𝑦1 = 1/𝑀, . . . ,𝑦𝑗 = 𝑗/𝑀, . . .}, for some positive
integer𝑀. The tick size in New York Stock Exchange (NYSE)
was switched to $1/16 from $1/8 in June 24, 1997, and then
further to $0.01 from January 29, 2001. The empirical studies
suggest that the tick size 1/𝑀 plays an important role in
microstructure market analysis (e.g., Huang and Stoll [39]).
Since we are concerned with price clustering for decimal
pricing in stock markets, we let𝑀 = 100.

It is well documented that there is price clustering tomore
whole prices. To quantify this price clustering, we examine
the price behavior for three NYSE-listed stocks over April
2010 (Figure 1 and Table 2). (In a larger study, we considered
eight NYSE stocks in different sectors. However, we only
report on three here to conserve space. The results for the
other five were similar in nature.)

The transaction data of these stocks shows there ismodest
clustering at multiples of 5 cents as shown in Figure 1, plotted
in terms of pennies. Supposing the raw price Y𝑡

𝑖

falls in
the interval [𝑦𝑗 − 1/2𝑀, 𝑦𝑗 + 1/2𝑀), then if there was no
clustering noise, the trading price 𝑌𝑡

𝑖

would just be 𝑦𝑗. Thus,
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Table 2

NYSE stock Ticker symbol
Goldman Sachs GS
International Business Machines Corporation IBM
PepsiCo Inc. PEP

the probability of trading at 𝑦𝑗 with no clustering noise given
𝑋𝑡
𝑖

= 𝑥, 𝑍𝑡
𝑖

= 𝑧 would be

𝑅 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) ≐ 𝑃 (Y𝑡
𝑖

= 𝑦𝑗 | 𝑋𝑡
𝑖

= 𝑥, 𝑍𝑡
𝑖

= 𝑧, 𝜗)

=

{{{{

{{{{

{

∫
ln((𝑦
𝑗
+1/2𝑀)/(𝑥⋅𝑒

𝑧

))

ln((𝑦
𝑗
−1/2𝑀)/(𝑥⋅𝑒𝑧))

1

√2𝜋𝜖
𝑒
−𝑢
2

/2𝜖
2

𝑑𝑢 dynamic microstructure

∫
ln((𝑦
𝑗
+1/2𝑀)/𝑥)

ln((𝑦
𝑗
−1/2𝑀)/𝑥)

1

√2𝜋𝜖
𝑒
−𝑢
2

/2𝜖
2

𝑑𝑢 nondynamical.

(28)

Equivalently, we can write 𝑅 in terms of the historical process
as

𝑅 (𝑦𝑗 | 𝑋𝑡
𝑖

, Π𝑡
𝑖

𝑍
ℎ

𝑡
𝑖

, 𝜗)

= ∫
ln((𝑦
𝑗
+1/2𝑀)/𝑋

𝑡
𝑖

𝑒
Π
𝑡
𝑖
𝑍
ℎ

𝑡
𝑖 )

ln((𝑦
𝑗
−1/2𝑀)/𝑋

𝑡
𝑖

𝑒
Π
𝑡
𝑖
𝑍
ℎ

𝑡
𝑖 )

1

√2𝜋𝜖
𝑒
−𝑢
2

/2𝜖
2

𝑑𝑢,

(29)

where Π𝑡
𝑖

is the projection onto time 𝑡𝑖; that is,

Π𝑡
𝑖

𝑍
ℎ

𝑡
𝑖

= 𝑍
ℎ

𝑡
𝑖

(𝑡𝑖) = 𝑍
ℎ

𝑡
𝑖
∧𝑡
𝑖

= 𝑍
ℎ

𝑡
𝑖

. (30)

Clearly, 𝑅(𝑦𝑗 | 𝑥, 𝑧, 𝜗) is a smooth function of (𝑥, 𝑧, 𝜗) for
each fixed 𝑦𝑗.

To build the observed whole-price bias into our model,
we introduce the following sets:

𝐷1 = {The integers in (0, 100]

that are not multiples of 5} ,

𝐷2 = {The integers in (0, 100]

that are multiples of 5 but not of 25} ,

𝐷3 = {25, 75} ,

𝐷4 = {50} ,

𝐷5 = {100} .

(31)

While the raw price will be uniformly distributed over 𝐷1 ∪

𝐷2∪𝐷3∪𝐷4∪𝐷5 (or rather the continuous interval (0, 100]),
the observed price model must bias 𝐷2 over 𝐷1, 𝐷3 over
either𝐷2 or𝐷1, and so forth.Wedistribute the observed price
randomly over 𝐷1 ∪ 𝐷2 ∪ 𝐷3 ∪ 𝐷4 ∪ 𝐷5 based upon the raw
price in a biased manner favoring the more whole-price ticks
in 𝐷2 ∪ 𝐷3 ∪ 𝐷4 ∪ 𝐷5. In particular, if the fractional part
of the raw price 𝑦 rounded to the nearest cent is in 𝐷1, then
the observed value will stay at the same price with probability
1 − 𝛼 or move to the closest multiple of 5 cents, that is, the
closest tick level in 𝐷2 ∪ 𝐷3 ∪ 𝐷4 ∪ 𝐷5 with probability 𝛼.
Then, if the fractional part of the price 𝑦 is in 𝐷2, it will stay
in the same level with probability 1−𝛽 or move to the closest

tick level in 𝐷3 ∪ 𝐷4 ∪ 𝐷5 with probability 𝛽. Finally, if the
fractional part of the price 𝑦 is in 𝐷3, then it will stay in the
same level with probability 1 − 𝛾1 − 𝛾2 or move to the closest
tick level in𝐷4 with probability 𝛾1 and the closest tick level in
𝐷5 with probability 𝛾2. In summary, the transition probability
function is obtained iteratively by the following.

Case 1. If the fractional part of 𝑦𝑗 belongs to𝐷1,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) (1 − 𝛼) . (32)

Case 2. If the fractional part of 𝑦𝑗 belongs to𝐷2,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗) (1 − 𝛽) , (33)

where
𝑅
∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

≐ 𝑅 (𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛼 (𝑅 (𝑦𝑗−1 | 𝑥, 𝑧, 𝜗) + 𝑅 (𝑦𝑗−2 | 𝑥, 𝑧, 𝜗))

+ 𝛼 (𝑅 (𝑦𝑗+1 | 𝑥, 𝑧, 𝜗) + 𝑅 (𝑦𝑗+2 | 𝑥, 𝑧, 𝜗)) .

(34)

Case 3. If the fractional part of 𝑦𝑗 belongs to𝐷3,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗) (1 − 𝛾1 − 𝛾2) , (35)

where
𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

≐ 𝑅
∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛽 (𝑅
∗
(𝑦𝑗−5 | 𝑥, 𝑧, 𝜗) + 𝑅

∗
(𝑦𝑗−10 | 𝑥, 𝑧, 𝜗))

+ 𝛽 (𝑅
∗
(𝑦𝑗+5 | 𝑥, 𝑧, 𝜗) + 𝑅

∗
(𝑦𝑗+10 | 𝑥, 𝑧, 𝜗)) .

(36)

Case 4. If the fractional part of 𝑦𝑗 belongs to𝐷4,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛾1 (𝑅
∗∗
(𝑦𝑗−25 | 𝑥, 𝑧, 𝜗) + 𝑅

∗∗
(𝑦𝑗+25 | 𝑥, 𝑧, 𝜗)) .

(37)

Case 5. If the fractional part of 𝑦𝑗 belongs to𝐷5,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛾2 (𝑅
∗∗
(𝑦𝑗−25 | 𝑥, 𝑧, 𝜗) + 𝑅

∗∗
(𝑦𝑗+25 | 𝑥, 𝑧, 𝜗)) .

(38)

Moreover, we have to handle the case 𝑗 = 0 separately to avoid
negative prices.

Case 6. For 𝑗 = 0,

𝑝 (𝑦0 | 𝑥, 𝑧, 𝜗)

= 𝑅 (𝑦0 | 𝑥, 𝑧, 𝜗)

+ 𝛼 (𝑅 (𝑦1 | 𝑥, 𝑧, 𝜗) + 𝑅 (𝑦2 | 𝑥, 𝑧, 𝜗))

+ 𝛽 (𝑅
∗
(𝑦5 | 𝑥, 𝑧, 𝜗) + 𝑅

∗
(𝑦10 | 𝑥, 𝑧, 𝜗))

+ 𝛾2𝑅
∗∗
(𝑦25 | 𝑥, 𝑧, 𝜗) .

(39)
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Table 3

Clustering parameters Estimate
𝛼 0.060475
𝛽 0.046883
𝛾1 0.03883
𝛾2 0.16525

Remark 13. Our clustering setup is designed to work well for
intrinsic prices over $1. For real penny stocks, our setupwould
introduce positive bias and should be modified slightly.

Using relative frequency analysis on the aggregate of our
three stocks, we found the values presented in Table 3.

The large degree of clustering exhibited, especially to
the whole dollar, might be considered surprising. However,
earlier studies of Huang and Stoll [39], Chung et al. [40],
and Chung et al. [41] also showed significant clustering.
Moreover, the degree of price clustering in NYSE is weaker
than that of NASDAQ. For example, Barclay [42] examined
472 stocks from NASDAQ before and after their listing in
NYSE or American Stock Exchange (AMEX): before the
listing, the average fraction of even-eighths (0, 1/4, 1/2, 3/4)
is 78% while thereafter it drops to about 56%.

2.4. Nonlinear Filtering Model. Our price process can be
formulated as a marked point process �⃗�: a sequence of
random vectors �⃗� = (𝑡𝑖, 𝑌𝑡

𝑖

, 𝑖 ≥ 1), where 𝑡𝑖 ∈ [0, 𝑇] denotes
the time of 𝑖th-trade and 𝑌𝑡

𝑖

the corresponding trading price.
Accordingly, the mark space of �⃗� is (𝐸,E), where 𝐸 = N0 and
E is all its subsets. Here, 𝑗 ∈ 𝐸 corresponds to the 𝑗th-tick
level 𝑗/𝑀. For each𝐴 ∈ E, we associate the counting process

𝑌𝑡 (𝐴) ≐ ∑
𝑖≥1

1{𝑌
𝑡
𝑖

∈𝐴}1{𝑡
𝑖
≤𝑡} (40)

to count the trades in tick level set𝐴up to time 𝑡. In particular,
for 𝑗 ∈ 𝐸,

𝑌𝑗 (𝑡) ≐ 𝑌𝑡 ({𝑗}) = ∑
𝑖≥1

1{𝑌
𝑡
𝑖

=𝑗}1{𝑡
𝑖
≤𝑡} (41)

denotes the total trades at 𝑗th-tick level 𝑗/𝑀 until time 𝑡.
Equivalently, we can introduce the random countingmeasure
𝑌(𝑑𝑧 × 𝑑𝑡) on E ⊗B[0, 𝑇] by

𝑌 (𝜔, 𝐴 × (𝑠, 𝑡]) ≐ 𝑌𝑡 (𝜔, 𝐴) − 𝑌𝑠 (𝜔, 𝐴) ,

∀𝜔 ∈ Ω, 𝑠 ≤ 𝑡 ∈ [0, 𝑇] , 𝐴 ∈ E.
(42)

The natural filtration, that is, information content, of 𝑌 is

F
𝑌

𝑡
≐ 𝜎 (𝑌𝑠 (𝐴) , 0 ≤ 𝑠 ≤ 𝑡, 𝐴 ∈E) . (43)

Now, we assume the following.
(C1)The total trade process𝑌𝑡 = 𝑌𝑡(𝐸) admits an intensity

𝑎(𝑡) for some positive measurable function 𝑎.
Therefore, using the conditional probabilities defined in

the previous subsection, we find that 𝑌𝑗(𝑡) has intensity

𝜆𝑗 (𝑋𝑡, 𝑍
ℎ

𝑡
, 𝜗, 𝑡) = 𝑎 (𝑡) ⋅ 𝑝 (𝑦𝑗 | 𝑋𝑡, 𝑍

ℎ

𝑡
, 𝜗) . (44)

To simplify the notation, we rewrite (44) as 𝜆𝑗 = 𝑎 ⋅ 𝑝𝑗.
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Figure 2: Intertrade duration in seconds.

For our present work, we estimated total intensity func-
tion 𝑎(𝑡) from intertrade data allowing for intraday variation.
Figure 2 is the intertrade duration histogram of our 3 NYSE-
listed stocks averaged over all times of the day.We divided the
intertrade data into half-hour periods over the course of the
day and took 𝑎 to be constant over these half-hour periods:

𝑎 (𝑡) =
Average number of trades in period

1800 seconds
(45)

for 𝑡 in that daily period.
(C2) There exist some positive constants 𝛿, 𝐶 such that

𝛿 ≤ 𝑎(𝑡) ≤ 𝐶 for all 𝑡.
Based on representation (40), (44), (𝑋, 𝜃, 𝜗, 𝑍ℎ; 𝑌) is

framed by a partial-observation model, where (𝑋, 𝜃, 𝜗, 𝑍ℎ)
is the state (signal), which is partially observed through the
infinite dimensional counting process 𝑌. One difficulty in
calibrating these models is that their transition probability
functions are usually unknown in closed form, so maximum
likelihood estimation (MLE) methods are difficult to use (see
Aı̈t-Sahalia and Kimmel [43] for further details). Instead,
we use Bayesian filtering because (1) Bayes estimates do not
require the availability or regularity of the full likelihood
functions; (2) Bayes estimates can be computed recursively
for our tick-by-tick data; (3) Bayesian hypothesis tests can
be conducted through Bayes factor, which is the ratio of
marginal likelihoods and is easily computed even when the
signals are of different dimension or, more generally, singular
to each other.

3. Model Calibration

Our foremost goal is to contribute to the process of model
building for financial markets both by suggesting elements
to be included in the models and proposing methods to
select models based on real observation data. To be able to
do this effectively, we need to be able to tune each possible
model effectively to get good prior (probability distribution)
estimates for the complete signal (𝑋, 𝜃, 𝜗, 𝑍ℎ) before the
test period. We do this through nonlinear filtering and in
particular through particle filtering. In this section, we first
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introduce the filtering equations for our problem. Then,
we introduce a branching particle filter algorithm that is
an approximation to the unnormalized filter and can be
implemented on a computer. Next, we explain how we did
the calibration (i.e., came up with this prior distribution) and
finally we give the results for the models of interest herein.

3.1. Nonlinear Filtering Equations. The available information
about (𝑋𝑡, 𝜃, 𝜗, 𝑍

ℎ

𝑡
) is the observation filtration F𝑌

𝑡
⊂ F𝑡,

defined in (43), and the primary goal of nonlinear filtering
is to characterize the conditional distribution

𝜋𝑡 (⋅) = P [(𝑋𝑡, 𝜃, 𝜗, 𝑍
ℎ

𝑡
) ∈ ⋅ | F

𝑌

𝑡
] (46)

or, equivalently,

𝜋𝑡 (𝑓) = E [𝑓 (𝑋𝑡, 𝜃, 𝜗, 𝑍
ℎ

𝑡
) | F

𝑌

𝑡
] (47)

for 𝑓 ∈ 𝐵(R𝑛
𝑥
+𝑛
𝜃
+2 × 𝐶[0, 𝑇]). Here, 𝜗 = (𝜖, 𝜙), 𝑍ℎ is the

long memory portion of our information noise and (𝑋, 𝜃) is
the state and parameter of our fair price-volatility martingale
problem.

Remark 14. Actually, we often only want to estimate
P[(𝑋𝑡, 𝜃) ∈ ⋅ | F

𝑌

𝑡
], but there is no simple recursive formula

for this marginal. The filter is naturally model dependent, so
we can produce different filtering processes for each model,
that is, for each SV choice (1–5), each value of Δ, and each
value of ℎ in our inertia process.

Suppose 𝜅𝑧 is a positive constant for each 𝑧 ∈ N0 such
that 𝜅 ≐ ∑

∞

𝑧=0
𝜅𝑧 < ∞, and consider the continuous-time

likelihood function

𝐿 𝑡 = 𝐿 𝑡 (𝑋, 𝜗, 𝑍
ℎ
)

= exp(∫
𝑡

0

∫
𝐸

ln


𝜆𝑧 (𝑋𝑠, 𝜗, 𝑍
ℎ

𝑠
, 𝑠)

𝜅𝑧



𝑌 (𝑑𝑧, 𝑑𝑠)

− ∫
𝑡

0

(𝑎 (𝑠) − 𝜅) 𝑑𝑠) .

(48)

𝐿 𝑡 is a martingale under Condition (C2) andQ, defined by

𝑑Q

𝑑P

F
𝑇

= 𝐿
−1

𝑇
(i.e. Q (𝐴) = ∫

𝐴

𝐿
−1

𝑇
𝑑P for 𝐴 ∈F𝑇) ,

(49)

is called the reference measure. Under Q, the observations
are just a Poisson measure, independent of the state vector
(𝑋, 𝜃, 𝜗, 𝑍ℎ), with mean measure 𝜂(𝐴 × (0, 𝑡]) = ∑

𝑧∈𝐴
𝜅𝑧 ×

(0, 𝑡]. To make the likelihoods more manageable in the
particle filters to follow, we choose 𝜅 to be a long time average
value (1/𝑇) ∫𝑇

0
𝑎(𝑠)𝑑𝑠 of 𝑎(𝑠) and 𝑧 → 𝜅𝑧 to be highest

where the trades will be more concentrated. Bayes Theorem

(see Bremaud [44], p. 165) then links the desired (real-world)
conditional distribution 𝜋𝑡 with the unnormalized filter 𝜎𝑡 by

𝜋𝑡 (𝑓) =
𝜎𝑡 (𝑓)

𝜎𝑡 (1)
, (50)

where the unnormalized filter 𝜎𝑡 is defined by

𝜎𝑡 (𝑓) ≐ E
Q
[𝑓 (𝑋𝑡, 𝜃, 𝜗, 𝑍

ℎ

𝑡
) 𝐿 𝑡 | F

𝑌

𝑡
] (51)

for all 𝑓 ∈ 𝐵(R𝑛
𝑥
+𝑛
𝜃
+2 ⊗ 𝐶[0, 𝑇]). Now, we can give the

evolution equation for 𝜎𝑡.

Theorem 15. Under (C1) and (C2), the unnormalized filter 𝜎𝑡
is the unique measure-valued solution of the stochastic filtering
equation

𝜎𝑡 (𝑓) = 𝜎0 (𝑓) + ∫
𝑡

0

𝜎𝑠 ((A − 𝑎 (𝑠) + 𝜅) 𝑓) 𝑑𝑠

+ ∫
𝑡

0

∫
𝐸

𝜎𝑠− ((
𝜆𝑧 (𝑠−)

𝜅𝑧
− 1)𝑓)𝑌 (𝑑𝑧, 𝑑𝑠) ,

(52)

for 𝑡 > 0 and 𝑓 ∈ D(A).

This theorem is a modest generalization of prior results
and can be obtained in much the same manner as results in
Kouritzin and Zeng [23] and Xiong and Zeng [22]. Here,A is
the generator of the joint martingale problem to (𝑋, 𝜃, 𝜗, 𝑍ℎ)
obtained from A, the generator of state (𝑋, 𝜃) and A𝑍, the
generator of the historical process 𝑍ℎ. We do not need an
explicit formula for A. Instead, we can use particle filters to
approximate 𝜎𝑡.

Henceforth, it is convenient to think of the reference
measure Q as the standard measure from which we can
construct the measure P𝑘,𝜃,𝜗,ℎ,Δ corresponding to model
𝑘 ∈ {1, . . . , 5} with parameters 𝜃 and microstructure with
parameters 𝜗, ℎ, and Δ.

3.2. Particle Filter. Theweighted filter is the simplest of parti-
cle filters. The idea behind the weighted filter is that, by the
independence of signal (𝑋, 𝜃, 𝜗, 𝑍ℎ) from the observations
𝑌 under Q, we can create an infinite collection of particles
{𝑃

𝑘}
𝑁

𝑘=1
= {(𝑋𝑘, 𝜃𝑘, 𝜗𝑘, 𝑍ℎ,𝑘)}

𝑁

𝑘=1
, each having the same law

as (𝑋, 𝜃, 𝜗, 𝑍ℎ) that are also independent of the observations.
Then, it follows from the law of large numbers that for Q-
almost all 𝑌we have the weak convergence of finite measures

𝜎
𝑁,𝑊

𝑡
≐
1

𝑁

𝑁

∑
𝑘=1

𝐿 𝑡 (𝑋
𝑘
, 𝜗

𝑘
, 𝑍

ℎ,𝑘
) 𝛿

(𝑋𝑘
𝑡
,𝜃𝑘,𝜗𝑘 ,𝑍

ℎ,𝑘

𝑡
)
⇒ 𝜎𝑡. (53)

Unfortunately, it is well known that theweighted particle filter
may not work well for a fixed number of particles𝑁. Roughly
speaking, most of the particles diffuse away, do not track the
signal well, are assigned low likelihoods, and do not really
affect the average 𝜎𝑁,𝑊

𝑡
. Meanwhile, very few particles do

match the observations better and have likelihoods that are
orders of magnitude higher than of the majority of particles.
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𝜎𝑁,𝑊
𝑡

essentially becomes an average over too few particles to
reflect 𝜎𝑡 well.

To fix the weighted filter particle spread problem, we add
particle resampling, resulting in following novel particle filter.
(See Gordon et al. [45], Del Moral et al. [46], Del Moral
et al. [12], and Ballantyne et al. [47] for earlier algorithms.)
For some large 𝑁 ∈ N0, the particle system {𝑃𝑘}

𝑁

𝑘=1
=

{(𝑋𝑘, 𝜃𝑘, 𝜗𝑘, 𝑍ℎ,𝑘)}
𝑁

𝑘=1
is constructed as follows.

3.2.1. Initialization. At the initial time 𝑡0 = 0, we generate
independent particles {𝑃𝑘

0
}
𝑁

𝑘=1
from the joint prior distribu-

tion 𝜋0(⋅) of (𝑋0, 𝜃, 𝜗, 𝑍
ℎ

0
) ∈ R𝑛

𝑥
+𝑛
𝜃
+2 ×𝐶[0, 𝑇]. The empirical

measure at 𝑡0 is

𝜎
𝑁

0
=
1

𝑁

𝑁

∑
𝑘=1

𝛿
𝑃𝑘
0

(⋅) , (54)

where 𝛿𝑥(⋅) is the Dirac measure at 𝑥. By the strong law of
large numbers,

lim
𝑁→∞

(𝜎
𝑁

0
, 𝑓) = 𝜎0 (𝑓)

∀𝑓 ∈ 𝐵 (R
𝑛
𝑥
+𝑛
𝜃
+2
⊗ 𝐶 [0, 𝑇]) ,

(55)

so 𝜎𝑁
0
⇒ 𝜎0 for almost all 𝑌. Here, (𝜇, 𝑓) ≐ ∫𝑓(𝑦)𝜇(𝑑𝑦) for

measures 𝜇 so

(𝜎
𝑁

0
, 𝑓) =

1

𝑁

𝑁

∑
𝑘=1

𝑓 (𝑃
𝑘

0
) . (56)

Remark 16. When 𝐿0 = 1, 𝜋0(𝑓) = 𝜎0(𝑓). Note that 𝑍
ℎ

0
is a

constant function defined on [0, 𝑇]. Whereas most particle
filters approximate the filter 𝜋𝑡, we will approximate the
unnormalized filter 𝜎𝑡 to facilitate Bayesian model selection
without the storage of prior filter estimates.

We also initialize the number of particles to N0 = 𝑁 and
particle likelihoods all to A0 = 1.

3.2.2. Evolution. Between observations at 𝑡𝑖−1 and 𝑡𝑖, the par-
ticles, {(𝑋𝑘, 𝜃𝑘, 𝜗𝑘, 𝑍ℎ,𝑘)}

N
𝑖−1

𝑘=1
, move independently as samples

from the transition probability of (𝑋, 𝜃, 𝜗, 𝑍ℎ). In particular,
we use the Euler scheme (see, e.g., Kloeden andPlaten [48]) to
evolve the dynamics, Examples 3–7 and (25).We let �̂�𝑡

𝑖

denote
the evolved version of 𝑃𝑡

𝑖−1

.

3.2.3. ParticleWeights andAverageWeight. Wesimulate using
the referencemeasureQ andwe incorporate the observations

based upon (48). At the 𝑖th observation (𝑡𝑖, 𝑌𝑡
𝑖

), the 𝑘th
particle’s weight is multiplied by

𝜔
𝑘

𝑖
≐ exp(∫

𝑡
𝑖

𝑡
𝑖−1

∫
𝐸

ln
𝜆𝑧 (𝑋

𝑘

𝑠
, 𝜗𝑘, 𝑍ℎ,𝑘

𝑠
, 𝑠)

𝜅𝑧
𝑌 (𝑑𝑧, 𝑑𝑠)

− ∫
𝑡
𝑖

𝑡
𝑖−1

(𝑎 (𝑠) − 𝜅) 𝑑𝑠)

= exp(ln
𝜆𝑧
𝑖

(𝑋𝑘

𝑡
𝑖

, 𝜗𝑘, 𝑍ℎ,𝑘
𝑡
𝑖

, 𝑡𝑖)

𝜅𝑧
𝑖

− ∫
𝑡
𝑖

𝑡
𝑖−1

(𝑎 (𝑠) − 𝜅) 𝑑𝑠) ≗ 𝛼𝑖 (�̂�
𝑘

𝑡
𝑖

, 𝑡𝑖, 𝑡𝑖−1) ,

(57)

where 𝑧𝑖 = 𝑌𝑡
𝑖

. Hence, the 𝑘th particle’s weight becomes

L̂
𝑘

𝑖
= 𝜔

𝑘

𝑖
A𝑖−1

(58)

and the average weight is

A𝑖 =
1

𝑁

N
𝑖−1

∑
𝑘=1

L̂
𝑘

𝑖
. (59)

Note that (𝑋𝑘

𝑡
𝑖
−
, 𝑍ℎ,𝑘

𝑡
𝑖
−
, 𝑡𝑖−) = (𝑋𝑘

𝑡
𝑖

, 𝑍ℎ,𝑘
𝑡
𝑖

, 𝑡𝑖) in (57) by contin-
uous paths. Here, 𝜔𝑘

𝑖
depends on the observation 𝑌 and the

increment of likelihood ratio of measure P over measure Q
defined by (48) given the simulated particle path realized
on the interval [𝑡𝑖−1, 𝑡𝑖). These weights do not depend upon
the parameters 𝜃 directly. This is common and is why the
observations are often called partial observations. We still
can estimate 𝜃 and include these parameters as part of the
particles’ states since they do affect stock price 𝑆, which is
observed in the presence of noise and distortion.The weights
are stored along with the states of particles before resampling.

3.2.4. Resampling. After weighting, we resample the particles
pruning the unlikely ones and duplicating the better ones
in an unbiased manner. In particular, we let 𝜌𝑘

𝑖
be (L̂𝑘

𝑖
/A𝑖 −

⌊L̂𝑘
𝑖
/A𝑖⌋)-Bernoulli random variable independent of every-

thing and produce ⌊L̂𝑘
𝑖
/A𝑖⌋ + 𝜌

𝑘

𝑖
particles at location �̂�𝑘

𝑡
𝑖

. We
then give all the particles weight 𝐴 𝑖 and let

N𝑖 ≐

N
𝑖−1

∑
𝑘=1

{⌊
L̂𝑘
𝑖

A𝑖

⌋ + 𝜌
𝑘

𝑖
} . (60)

3.2.5. Unnormalized Filter. Now, we can estimate the unnor-
malized filter at the 𝑖th observation time, 𝜎𝑡

𝑖

, by

𝜎
𝑁

𝑡
𝑖

= 𝐴 𝑖

N
𝑖

∑
𝑘=1

𝛿
𝑃𝑘
𝑡
𝑖

. (61)

The actual algorithm that was implemented is as follows.

Initialize. {𝑃𝑘
0
}𝑁
𝑘=1

are independent samples of 𝜋0, N0 = 𝑁,
N𝑛 = 0, for all 𝑛 ∈ N, and L𝑘

0
= 1 for 𝑘 = 1, . . . , 𝑁.
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Repeat. For 𝑛 = 0, 1, 2, . . ., do

(1) evolve 𝑃𝑘
𝑡
𝑛

to �̂�𝑘
𝑡
𝑛+1

independently of other particles;

(2) weight by observation: L̂𝑘
𝑛+1

= 𝛼𝑛+1(�̂�
𝑘

𝑡
𝑛+1

, 𝑡𝑛+1, 𝑡𝑛)A𝑛

for 𝑘 = 1, 2, . . . ,N𝑛;

(3) estimate 𝜎𝑡
𝑛+1

by 𝜎𝑁
𝑡
𝑛+1

=
1

𝑁
∑

N
𝑛

𝑘=1
L̂𝑘
𝑛+1
𝛿
�̂�𝑘
𝑡
𝑛+1

;

(4) average weight: A𝑛+1 = 𝜎
𝑁

𝑡
𝑛+1

(1);

(5) repeat: for 𝑘 = 1, 2, . . . ,N𝑛 do

(a) offspring number: N𝑘

𝑛+1
= ⌊L̂𝑘

𝑛+1
/A𝑛+1⌋ + 𝜌

𝑘

𝑛
,

with 𝜌𝑘
𝑛
being ((L̂𝑘

𝑛+1
/A𝑛+1) − ⌊L̂𝑘

𝑛+1
/A𝑛+1⌋)-

Bernoulli independent of everything;
(b) resample: 𝑃N

𝑛+1
+𝑗

𝑡
𝑛+1

= �̂�𝑘
𝑡
𝑛+1

for 𝑗 = 1, . . . ,N𝑘

𝑛+1
;

(c) add offspring number: N𝑛+1 = N𝑛+1 + N𝑘

𝑛+1
.

Remark 17. (i) We extract our estimate before resampling to
avoid excess noise. (ii) The key step is (5) that determines
the new number of particles N𝑛+1 and weights L𝑘

𝑛+1
in

an unbiased manner. The result is zero or more particles
all having the average weight at the same location as the
parent. (iii) The particle evolution would typically be done
via Newton’s or Milstein’s method.

Since the above algorithm produces unbiased resampling
of the weighted particle filter, it is quite reasonable to believe
the following result.

Theorem 18. Under (C1) and (C2), 𝜎𝑁
𝑡
𝑖

⇒ 𝜎𝑡
𝑖

for any 𝑖 and
almost all observation paths.

The technicality of this result’s proof would detract from
our applications so it is omitted.

3.2.6. Bayesian Estimation. By Bayes rule (50), the particle
approximation of the normalized filter 𝜋(⋅) is

𝜋
𝑁

𝑡
𝑖

(𝑓) =
𝜎𝑁
𝑡
𝑖

(𝑓)

𝜎𝑁
𝑡
𝑖

(1)
(62)

for all 𝑓 ∈ 𝐵(R𝑛
𝑥
+𝑛
𝜃
+2 × 𝐶[0, 𝑇]). To get our parameter

estimates, we can just set 𝑓(𝑋, 𝜃, 𝜗, 𝑍ℎ) to one component of
these parameters, that is, 𝜃𝑖 or 𝜗𝑗.

3.3. Calibration and Historical Training. To keep the problem
size manageable, we just used the clustering parameter
estimates of 𝛼, 𝛽, 𝛾1, and 𝛾2 given above as the actual values
throughout our simulations.

One is often faced with the problem of estimating initial
distributions for fair price, volatility, and the parameters prior
to filtering over the time interval of interest (April 2010 here).
Our approach was to make arbitrary assignments very far
in the past (January 3, 2000, to be precise) and then do an
excessive amount of prior particle filtering, relying on the
ability of the filter to forget its starting point and to produce

$25.00

$30.00

$35.00

$40.00

$45.00

$50.00

$55.00

$60.00

$65.00

$70.00

$75.00

1/
3/

20
00

5/
3/

20
00

9/
3/

20
00

1/
3/

20
01

5/
3/

20
01

9/
3/

20
01

1/
3/

20
02

5/
3/

20
02

9/
3/

20
02

1/
3/

20
03

5/
3/

20
03

9/
3/

20
03

1/
3/

20
04

5/
3/

20
04

9/
3/

20
04

1/
3/

20
05

5/
3/

20
05

9/
3/

20
05

1/
3/

20
06

5/
3/

20
06

9/
3/

20
06

1/
3/

20
07

5/
3/

20
07

9/
3/

20
07

1/
3/

20
08

5/
3/

20
08

9/
3/

20
08

1/
3/

20
09

5/
3/

20
09

9/
3/

20
09

1/
3/

20
10

5/
3/

20
10

PEP
S
∗
t (with dynamics)

S
∗
t (without dynamics)

Figure 3: Long-term value estimation of PEP.

reasonable distributions at a much later point, April 1, 2010.
(See, e.g., Ocone and Pardoux [49], Delyon and Zeitouni
[50], and Atar [51] for mathematical results regarding this
phenomenon.) This had to be done for every model, namely,
every combination of our three stocks, five SV models,
andmultiple microstructure models, characterized by inertia
parameters. Our main purpose in this historical training was
to get a starting joint distribution for (𝑋, 𝜃, 𝜗, 𝑍ℎ) as of April
1, 2010, under each model combination. Due to the large
number of cases this produced, we first display and discuss
two models: the nondynamical microstructure Heston case
and the median inertia dynamical case where ℎ = 1/2 and
Δ = 7200 s (i.e., 2 hrs) in the inertia microstructure model.
Also, to ensure that 𝜃 and 𝜗 did not converge to a single value,
we made them vary slightly in a random manner; that is, we
replaced the equation 𝑑𝜃 = 0 with 𝑑𝜃𝑡 = 𝑑V𝑡 for a very low
variance Brownian motion V.

In Figure 3, we illustrate our prior filtering of PepsiCo.
The choppiest curve is the actual stock price while the
smoothest curve is the filter’s fair price estimate 𝐸[𝑆𝑡 | F

𝑌

𝑡
]

using the Heston SV model with (median) microstructure
inertia. The middle curve is the filter’s fair price estimate
𝐸[𝑆𝑡 | F

𝑌

𝑡
] using the Heston SV model without dynamics in

the microstructure; that is, 𝑍ℎ = 0. These curves go beyond
April 1, 2010. However, the required initial distributions were
taken from the filter at that point.

Notice from Figure 3 that the implied fair price process
estimate is far less volatile in the presence of dynamical
microstructure than without. This lower volatility for fair
price is highly desirable. It does not make sense that the
fair price of a stock should fluctuate dramatically from day
to day or within a day in the absence of an event, but
rather these short-term fluctuations are better explained by
trading noise. Moreover, fair price is a mathematically more
optimal version of moving averages, which are used to judge
value and momentum from, and so fair price estimates
should inherit the smooth nature of such moving averages.
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Table 4

PEP GBM HW LOU Nelson Heston
𝜇 1.51𝐸 − 06 1.47𝐸 − 06 1.52𝐸 − 06 1.44𝐸 − 06 1.49𝐸 − 06

] 𝜎 = 2.86𝐸 − 06 1.17𝐸 − 09 9.55𝐸 − 06 1.06𝐸 − 10 1.07𝐸 − 11

𝜅 — 1.59𝐸 − 03 1.80𝐸 − 03 1.94𝐸 − 03 2.58𝐸 − 07

 — — 4.75𝐸 − 03 6.51𝐸 − 03 6.02𝐸 − 03

𝜛 — — 4.84𝐸 − 06 — —

Table 5

PEP GBM HW LOU Nelson Heston
𝜇 1.05𝐸 − 06 1.02𝐸 − 06 9.92𝐸 − 07 1.03𝐸 − 06 1.01𝐸 − 06

] 𝜎 = 2.21𝐸 − 06 5.50𝐸 − 10 5.13𝐸 − 06 6.32𝐸 − 11 5.94𝐸 − 12

𝜅 — 2.18𝐸 − 03 1.87𝐸 − 03 2.12𝐸 − 03 2.26𝐸 − 07

 — — 2.25𝐸 − 03 2.90𝐸 − 03 3.23𝐸 − 03

𝜛 — — 2.60𝐸 − 06 — —
𝜖 2.43𝐸 − 09 2.05𝐸 − 09 2.33𝐸 − 09 2.31𝐸 − 09 2.46𝐸 − 09

𝜙 2.13𝐸 − 09 2.31𝐸 − 09 2.23𝐸 − 09 2.33𝐸 − 09 2.31𝐸 − 09

From a modeling perspective, this fair price smoothness
indicates that dynamical microstructure (with inertia) can
replace much of what stochastic volatility tries to do and
leads to one of our central questions addressed below. Is
stochastic volatility necessary in the presence of dynamical
microstructure?

3.4. Numerical Results. The data is one month (April 2010) of
transaction prices of our three NYSE-listed stocks. Our filter
produces Bayes estimates to the macro- and microparameter
vectors 𝜃 and 𝜗, respectively. These estimates in the nondy-
namical microstructure case (i.e., using the simpler form in
(24)) for PepsiCo are as shown in Table 4.

All parameters are estimated using time in seconds. Our
PepsiCo Bayes estimates in the median inertia case are as
shown in Table 5.

While it is difficult to read much from these numbers,
we can see that the main volatility parameters ], 𝜅, and  are
mostly smaller when dynamics is included in themicrostruc-
ture. This further justifies our conjecture that at least some
stochastic volatility is better replaced by microstructure with
dynamics.

Figures 4 and 5 show the conditional expectation fair
price estimation for Goldman Sachs and PepsiCo, respec-
tively, in the cases of no dynamics andmedian inertia dynam-
ics for each of our SV models. There are a total of eleven
curves in both figures. The most volatile curve is the stock
price itself over this month. The smoothest curves somewhat
separated from the stock price are the fair price estimates
using the five SV models with (median inertia) dynamical
microstructure.The remaining five curves (that hug the stock
price in Figures 4 and 5) are our fair price estimates for
our five SV models with nondynamical microstructure. In
this last case, the microstructure does not have the power
to separate the fair price and actual stock price to any large
degree.
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Figure 4: Value estimation of GS, April 2010.
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Figure 5: Value estimation of PEP, April 2010.

It is important to realize that these pictures are really just
a one-month snapshot of a much bigger multiyear filtering
process. This explains why many of the fair price processes
are significantly different than the actual stock price on April
1, 2010: The filter is estimating that the difference is due to
the microstructure. It is apparent that adding dynamics to
the microstructure allows the estimated fair price process
to differ significantly from the stock price. Indeed, there is
a significant correction of all three stock prices (especially
Goldman Sachs) towards estimated fair price of the models
with (median inertia) dynamical microstructure. This pro-
duces a compelling reason to usemodels withmicrostructure
dynamics. You would be estimating that the stocks were
significantly overvalued before the correction if you used
the model with microstructure dynamics and this could be
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Table 6: Volatility estimation, April 2010.

Without dynamics With dynamics
PEP (2 hrs, ℎ = 0.6) 1.58416𝐸 − 09 1.01312𝐸 − 11

GS (1/2 day, ℎ = 0.4) 4.14645𝐸 − 08 4.3005𝐸 − 10

IBM (1/2 day, ℎ = 1) 8.21731𝐸 − 10 4.03211𝐸 − 11

used as a warning to lessen ones exposure. You have no
such warning when the microstructure does not contain
(inertia) dynamics as the estimated fair price is very close
to the observed price. It is interesting to ponder what this
possible discrepancy would mean to option prices.

The filters provide conditional distributions and esti-
mates for more than just fair price and parameters. Table 6
shows the average volatility estimates without microstruc-
ture dynamics (see (24)) and with (the best performing)
microstructure inertia using the simplifiedHeston SVmodel.
We only highlighted Heston here because (1) we will show
evidence below that Heston performs the best and (2) the
volatility estimates of the other SV models behave similarly.
The amount of stochastic volatility estimated when there is
(median inertia) dynamics in the microstructure shrank to a
couple of percent of what it was without.This really suggested
that by far the primary use of stochastic volatility is as a
proxy for microstructure with dynamics and further raises
the question about the need for stochastic volatility in the
presence of microstructure dynamics.

The final and most difficult quantity the filter estimates
(in the dynamical microstructure case) is the historical noise.
For practical purposes, we can not let the historical path go
back all the way to year 2000, but we found that there is
not much loss if we just update discrete samples over the
previous three years, which is still a tremendous amount of
data. Also, we can not plot these historical paths so we just
plot the projection onto the current time; that is, we just plot
𝑍
ℎ

𝑡
even though we must propagate the Markov process 𝑍ℎ

𝑡

in the filter. Figure 6 shows the noise estimate for PepsiCo. In
this graph, we look at the effect of inertia. The curves where
ℎ = 0 represent the no-inertia case, so 𝑍0

𝑡
is just an Ornstein-

Uhlenbeck process. Conversely, the case ℎ = 1 represents the
one hundred percent inertia case and 𝑍1

𝑡
is not Markov. We

see from these graphs that the amount of estimated noise is
very similar indicating that the amount of inertia modeled
might not be that significant. However, the noise processes
where ℎ = 1 are far smoother due to the inertia. Below, we
will produce strong evidence that inertia is important and
find that the best ℎ is in the range [0.4, 1], depending upon
the stock.We compare the behavior of ourmodels in terms of
the SV models and the inertia parameters ℎ and Δ within the
Bayesianmodel selection framework in the following section.

4. Evidence for Inertia and
Stochastic Volatility

The main objective of this section is to use Bayes factor to
investigate the model selection in microstructure markets.
To use the Bayes factor method, we need only to be able to
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Figure 6: Noise process estimation of PEP, April 2010.

transform all observation models of interest into the same
canonical process via Girsanov measure change. The signal
models can be singular to one another. Kouritzin and Zeng
[23] discuss the Bayesian model selection problem. However,
their equations do not apply to our models.

4.1. Model Selection and Bayes Factor. Consider our five SV
macrostructure fair price-volatility models

𝑀
(𝑘)
≐ (𝑋

(𝑘)
, 𝜃

(𝑘)
) ∈ R

𝑛
(𝑘)

𝑥
+𝑛
(𝑘)

𝜃 , (63)

where the generators of the martingale problem to𝑀(𝑘) are,
respectively, A(𝑘) for 𝑘 = 1, 2, 3, 4, 5. Normally, we would
have to consider a multitude of parameters 𝜃 resulting in a
plethora of models. However, by our calibration process we
have reduced the setting to one parameter set per martingale
problem so we have a base of five models. However, we
still have to consider the various choices for our inertia. For
simplicity, we restrict ourselves to three distinct values for Δ,
eleven choices for ℎ, and we use the calibration process to
estimate the other microstructure parameters 𝜗. Therefore,
we have a total of 5 × 3 × 11 = 165models to test.

The likelihood of 𝑌 being produced by model (𝑘, ℎ, Δ) up
until time 𝑡 is

𝐿
(𝑘,ℎ,Δ)

𝑡
= 1 + ∫

𝑡

0

∫
𝐸

(
𝜆𝑧 (𝑋

(𝑘)

𝑠
, 𝑍ℎ,Δ

𝑠
, 𝜗, 𝑠)

𝜅𝑧
− 1)

⋅ 𝐿
(𝑘,ℎ,Δ)

𝑠−
(𝑌 (𝑑𝑧, 𝑑𝑠) − 𝜅𝑧𝑚(𝑑𝑧) 𝑑𝑠) .

(64)

Here,𝑚(𝑑𝑧) is the countingmeasure on 𝐸 = N0 and the same
observations and observation rate information are used for
all models. One can think of 𝐿(𝑘,ℎ,Δ)

𝑡
as the likelihood ratio of

the model𝑀(𝑘,ℎ,Δ) with distribution P(𝑘,ℎ,Δ) characterized by
(𝑘, ℎ, Δ) to the simple (or null) model 𝑀0 with distribution
Q where the observation prices just arrive according to a
Poisson measure with intensity measure 𝜇(𝐴) = ∫

𝐴
𝑘𝑧𝑚(𝑑𝑧),

that is, with rate independent of any macrostructure model
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and independent of any microstructure state. In other words,
(𝐿(𝑘,ℎ,Δ)

𝑡
)
−1
= (𝑑Q/𝑑P(𝑘,ℎ,Δ))|F

𝑡

then transforms the observa-
tions into the same Poisson measure with intensity measure
𝜇(𝐴) = ∫

𝐴
𝑘𝑧𝑚(𝑑𝑧) regardless of (𝑘, ℎ, Δ). Unfortunately,

𝐿(𝑘,ℎ,Δ)
𝑡

depends upon 𝑋(𝑘)

𝑠
, 𝑍ℎ,Δ

𝑠
, which are unknown so we

can not select models via the likelihood.

4.2. Bayes Factor. The available information in microstruc-
ture market is the observation process 𝑌, which represents
the cumulative transaction records throughout all tick price
levels.The normalized filter 𝜋(𝑘,ℎ,Δ)

𝑡
, 𝑘 = 1, 2, 3, 4, 5, ℎ ∈ [0, 1],

Δ > 0, satisfies

𝜋
(𝑘,ℎ,Δ)

𝑡
(𝑓𝑘) =

𝜎(𝑘,ℎ,Δ)
𝑡

(𝑓𝑘)

𝜎
(𝑘,ℎ,Δ)

𝑡 (1)
, (65)

where 𝑓𝑘 ∈ 𝐵(R
𝑛
(𝑘)

𝑥
+𝑛
(𝑘)

𝜃
+2 ⊗ 𝐶[0, 𝑇]) for 𝑘 = 1, 2, 3, 4, 5, the

unnormalized filter 𝜎(𝑘,ℎ,Δ)
𝑡

is

𝜎
(𝑘,ℎ,Δ)

𝑡
(𝑓𝑘)

≐ E
Q
[𝑓𝑘 (𝑋

(𝑘)

𝑡
, 𝜃

(𝑘)
, 𝜗, 𝑍

ℎ,Δ

𝑡
) 𝐿

(𝑘,ℎ,Δ)

𝑡
| F

𝑌

𝑡
] ,

(66)

and 𝜎(𝑘,ℎ,Δ)
𝑡

(1) is the integrated (or marginal) likelihood of 𝑌
for model (𝑘, ℎ, Δ).

Now, we use Bayes factor to compare models. The Bayes
factor determines which model best fits this observed data by
doing pairwise comparisons.We define Bayes factor ofmodel
𝑀

(𝑘,ℎ,Δ) to the null model by the conditional likelihood:

E
Q
[
𝑑P(𝑘,ℎ,Δ)

𝑑Q
| F

𝑌

𝑡
] = 𝜎

(𝑘,ℎ,Δ)

𝑡
(1) , (67)

which is consistent with more basic definitions of Bayes
factor. It then follows that the Bayes factors for two models,
characterized by (𝑘1, ℎ1, Δ 1) and (𝑘2, ℎ2, Δ 2), are the ratios

𝐵12 (𝑡) =
𝜎1
𝑡
(1)

𝜎2
𝑡 (1)

,

𝐵21 (𝑡) =
𝜎
2

𝑡
(1)

𝜎1
𝑡 (1)

,

(68)

with the integrated likelihoods 𝜎1
𝑡
(1) = 𝜎

(𝑘
1
,ℎ
1
,Δ
1
)

𝑡
(1), 𝜎2

𝑡
(1) =

𝜎
(𝑘
2
,ℎ
2
,Δ
2
)

𝑡
(1) that can be approximated using the algorithm

of Section 3.2.5. Kass and Raftery [20] demonstrate how to
interpret Bayes factor shown in Table 7.

4.3. Numerical Results on Stochastic Volatility. First, we con-
sider the problem of selecting the best of our five fair price-
volatility models,

𝑀
(𝑘)
≐ (𝑋

(𝑘)
, 𝜃

(𝑘)
) , (69)

and the resulting partially observed market models,

(𝑋
(𝑘)
, 𝑍

ℎ,Δ
, 𝜃

(𝑘,ℎ,Δ)
, 𝜗; 𝑌) . (70)
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Figure 7: Bayes factor for PEP SVmodel determination, April 2010.

Table 8: Bayes factor for model determination, April 2010.

Heston GARCH Log O-U HW GBM
PEP (2 hrs, ℎ = 0.6) 27.30 25.23 21.31 17.04 6.08
GS (1/2 day, ℎ = 0.4) 19.14 18.91 18.77 18.59 10.18
IBM (1/2 day, ℎ = 1) 49.94 45.43 40.75 37.07 16.16
PEP∗ (2 hrs, ℎ = 0.6) 1.08 1.07 1.06 1.04 1.00
GS∗ (1/2 day, ℎ = 0.4) 1.06 1.04 1.06 1.06 1.00
IBM∗ (1/2 day, ℎ = 1) 1.06 1.04 1.06 1.03 1.00
∗Without dynamics.

We compare these five models to determine which can
best represent the market data. More precisely, we run all
unnormalized filters as explained in Section 3.2 with the
optimal parameters discovered and reported earlier. Then,
we choose Model 𝑖 if 𝜎(𝑖,ℎ,Δ)

𝑇
is the largest. Naturally, this

corresponds to the model whose Bayes factor ends up greater
than one when compared to any other model. While we have
five basic models, we also consider different market ingestion
times Δ and inertia magnitude parameters ℎ for each model.

Using GBM with nondynamic microstructure (i.e., 𝑍ℎ =
0) as the benchmark, we determine which combination of
SV model and inertia parameters outperforms GBM most.
We first focus on the candidate models (Examples 3–7). In
each case, we pick the inertia parameters from the sets Δ ∈

{30mins, 2 hrs, 1/2 day} and ℎ ∈ {0, 0.1, 0.2, . . . , 0.9, 1} that
would yield the highest Bayes factor against the calibration
model.The data is the transaction price of PepsiCo, IBM, and
Goldman Sachs, April 2010. Figure 7 and Table 8 summarize
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Figure 8: Bayes factor for PEP ingestion time determination, April
2010.

Table 9: Bayes factor for ingestion time determination, April 2010.

Heston∗ 40mins 2 hrs 1/2 day
GS (ℎ = 0.4) 1.000 15.083 17.578 18.100
PEP (ℎ = 0.6) 1.000 19.066 25.259 24.187
IBM (ℎ = 1) 1.00 31.152 42.744 46.988
∗Without dynamics.

the Bayes factor performance. The Bayes factors computed
in this table give strong evidence (based upon the Kass and
Raftery criterion mentioned before) for the Heston model
based on a full month of real tick-by-tick stock price data.
Indeed, as we will see below, there would still be strong
evidence supporting Heston if we used different values of
ℎ and Δ. It is also interesting that the order of the models
did not change over our three stock selections, with Heston
always being preferred and GBM always performing the
worst. Recall that all models are tuned to have their best
parameters 𝜃 and 𝜗.

4.4. Numerical Results on Inertia. Next, we look at the
ingestion time Δ using nondynamic microstructure Hes-
ton as the calibration model. Figure 8 and Table 9 show
the effect of varying Δ over {30mins, 2 hrs, 1/2 day} for
ℎ ∈ {0, 0.1, 0.2, . . . , 0.9, 1} fixed to give the highest Bayes
factor. There is a drop in the Bayes factor values from
the model determination experiment which is entirely
due to the change of calibration model from GBM with
nondynamic microstructure to Heston with nondynamic
microstructure. Our results show that the best ingestion
times for Goldman Sachs, PepsiCo, and International Busi-
ness Machines stocks are, respectively, 1/2 day, 2 hours,
and 1/2 day. The fact that the data supports long-time
ingestion might add merit to the case of the momentum
trader.
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Figure 9: Bayes factor for PEP inertia determination, April 2010.

Table 10: Bayes factor for inertia determination, April 2010.

ℎ ∗ 0 0.1 0.2 0.3 0.4

PEP (2 hrs) 1.00 3.745 5.875 6.950 11.693 16.733
GS (1/2 day) 1.00 11.578 13.507 16.194 17.746 18.100
IBM (1/2 day) 1.00 3.822 7.100 8.816 10.927 13.522
ℎ 0.5 0.6 0.7 0.8 0.9 1.0

PEP (2 hrs) 23.524 25.259 24.386 22.322 19.347 17.548
GS (1/2 day) 17.878 17.184 16.515 16.225 16.008 15.612
IBM (1/2 day) 16.707 20.611 25.388 31.225 38.345 46.988
∗Without dynamics.

Finally, we investigate the optimal amount of iner-
tia. Figure 9 and Table 10 show the effect of varying the
amount of inertia ℎ over {0, 0.1, 0.2, . . . , 0.9, 1} for Δ ∈

{30mins, 2 hrs, 1/2 day} fixed to give the highest Bayes factor.
The table shows that inertia is important. In fact, the best ℎ
was always at least ℎ = 0.4 and was even ℎ = 1 in the case of
IBM so all microstructure dynamics should be driven by the
inertia process.

5. Conclusions

Herein, we considered five popular SV models to represent
intrinsic or fair price and stochastic volatility of this price.
These SV models are free of inertia or momentum. We then
addedmicrostructure noise with possible dynamics and iner-
tia to these SV models to accommodate trading noise, trend
following, information dispersion, and the slow unwinding
of big positions. We used Bayesian model selection tech-
niques to determine which of these combined models fits
real NYSE data best. In the process of selecting the best
model we also investigated characteristics likemicrostructure
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dynamics, inertia, and stochastic volatility. For the stock data
considered, we can conclude the following:

(1) Bayesian model selection through particle filtering
provides a computationally effectivemeans to identify
the best finance models on real tick-by-tick data.

(2) The SV and inertia components of the financial mod-
els compared can be singular to each other as long
as the microstructure can be changed into the same
canonical Poisson measure process for all models
considered.

(3) There is strong evidence of dynamicalmicrostructure
noise.

(4) Adding dynamics to the microstructure allowed
much greater deviations of price from intrinsic value,
which can be detected by filtering and used as a
warning sign to investors and traders.

(5) The simplified Heston stochastic volatility model
with microstructure dynamics and significant inertia
performed the best in all cases.

(6) There is strong statistical evidence that such sim-
plified Heston stochastic volatility models with
microstructure dynamics and inertia match the
data better than the classical geometrical Brownian
motion.

(7) The amount of inertia ℎ and the time it lastedΔ varied
a little from stock to stock but in all cases there was
significant inertia that lasted for hours.

More complicated SV models can be investigated in our
future work. One could also postulate more complicated
microstructure dynamics and consider additional real data
analysis.
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This paper is concernedwith the problemof stability analysis forMarkovian jump systemswith time-varying delays. By constructing
a newly augmented Lyapunov-Krasovskii functional and combining Wirtinger-based integral inequality, an improved delay-
dependent stability criterion within the framework of linear matrix inequalities (LMIs) is introduced. Based on the result of delay-
dependent stability criterion, when linear systems have fast time-varying delays, a corresponding stability condition is given. Via
three numerical examples, the improvements of the proposed criteria are shown by comparing maximum delay bounds provided
by our theorems with the recent results.

1. Introduction

Stability analysis of dynamic systems is a prerequisite and
essential job before designing a controller to achieve the
prescribed specifications. In particular, a great concern of
stability analysis for systems with time-delays has been
received due to the fact that time-delay naturally occurs
in many practical systems such as networked control sys-
tem, chemical processing, hot rolling mill, synchronization
between chaotic systems, neural networks, and multiagent
systems. For instance, see [1, 2] and references therein.

The main issue in delay-dependent stability analysis
for time-delay systems with the framework of LMIs is
how to increase maximum delay bounds for guaranteeing
the asymptotic stability of systems. Thus, the choosing of
Lyapunov-Krasovskii functional (LKF) and some techniques
in estimating an upper bound of time-derivative value of the
constructed LKF are themost important factors in enhancing
the stability feasible region. In the LKF aspect, quadratic
form, single integral, and double integral of quadratic form
are the most utilized functionals. Recently, since the triple
integral form of LKF was introduced in [3], this form of LKF
has been utilized in many works such as [4–6]. Moreover, in

[4, 5], it was shown that some augmented LKFs can increase
the feasible region of stability criteria. In estimating an upper
bound of time-derivative value of LKF, Jensen’s inequality
[7], free-weighting matrix technique [8], and reciprocally
convex optimization theory [9] make big impacts on the
enhancement of delay-dependent stability and stabilization.
Seuret and Gouaisbaut [10] proposed the Wirtinger-based
integral inequality which provides more tight lower bounds
than Jensen’s inequality and showed that the utilization of
Wiritinger-based integral inequality can improve maximum
delay bounds in many systems such as systems with constant
and known delay, systems with a time-varying delay, systems
with a constant distributed delay, and sampled-date systems.
Cheng and Xiong [11] reduced conservative condition of
stabilization criteria for continuous-time systems with time-
varying input by introducing a new integral inequality.
Recently, in [12, 13], for neural network with time-varying
delay, it can be confirmed that the utilization of Wirtinger-
based integral inequality in obtaining an upper bound of
time-derivative values of some augmented LKFs can pro-
vide larger delay bounds than some other literatures. Very
recently, in [14], it was shown that the results obtained by [10]
can be further improved by choosing some new augmented
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LKFs. From the statementsmentioned above, one can see that
the choosing of LKF and some techniques play key roles to
reduce the conservatism of stability criteria.

On the other hand, increasing attention has been paid
to Markovian jumping systems (MJSs) which are a special
sort of hybrid systems and driven by Markov chain. MJSs
may undergo unexpected changes in their structure and
parameters including economic systems, aerospace systems,
power systems, and networked control system [15, 16]. Very
recently, a survey on recent developments of modeling,
analysis, and design of MJSs was reported in Shi and Li [17].

In this regard, many researchers put their times and
efforts into stability and stabilization of Markovian jumping
systems with time-delays. In [18], the problems of robust
H
∞

control and H
∞

filtering for uncertain MJSs with
time-varying delays were investigated by utilizing bounded
real lemma. In [19], some new results on stabilization of
MJSs with time-delays were proposed based on a delay-
partitioning approach.Wu et al. [20] investigated the problem
of stability and H

∞
filtering for singular Markovian jump

systems with time-delay via a delay-dependent bounded real
lemma. Li et al. [21] utilized an input-output approach to
stability and stabilization of MJSs with time-varying delays
and showed the reduction of conservatism of the concerned
criteria by a precise approximation of time-varying delay. By
constructing new LKFs having distinct Lyapunov matrices
for different modes, the mean square exponential stability
and stabilization problems were studied in [22] forMJSs with
constant time-delays. In [23], improved delay-dependent
stability and H

∞
control for singular Markovian jump

systems with time-delay by utilizing delay-partitioning tech-
nique with a tuning parameter. Zhu [24] derived some new
conditions for ensuring the asymptotic stability of singular
nonlinear MJSs with unknown parameters and continuously
distributed delays. Recently, some new augmented LKFs and
techniques in estimating upper bounds of time-derivative
of LKFs were introduced in [25] in studying stability and
H
∞
performance analysis of MJSs with time-varying delays.

Very recently, in [26], an input-output approach to the delay-
dependent stability analysis and H

∞
control for MJSs with

time-varying delays and deficient transition descriptions.The
problem of finite-timeH

∞
estimation for a class of discrete-

time Markov jump systems with time-varying transition
probabilities subject to average dwell time switching was
investigated in [27]. However, as mentioned in [17], the
results on stability have still some conservativeness. Thus,
there are rooms for further reduction of conservativeness
caused by time-delays with the construction of a newly
augmented Lyapunov-Krasovskii functional and utilization
of a Wirtinger-based integral inequality [10].

Motivated by [17] and based on the result of [25], the
goal of this paper is to propose a further improved result of
delay-dependent stability for MJSs with time-varying delays.
In Theorem 5, a new and improved stability criterion will
be proposed based on the results of [25]. To derive less
conservative results, Wirtinger-based integral inequality is
applied to the augmented LKFs and some new techniques
are introduced. When an upper bound of time-derivative
value of time-varying delay is larger than one or unknown, a

corresponding result will be presented in Corollary 6 by con-
structing some part of LKF utilized inTheorem 5. Comparing
with the result of [25], the constructed Lyapunov-Krasovskii
functionals inTheorem 5 andCorollary 6 are simple since the
triple and quadruple integral form of Lyapunov-Krasovskii
functionalswill not be utilized.Via three numerical examples,
the advantage and effectiveness of the proposed results will be
explained by comparing maximum delay bounds with some
recent results presented in other literatures.

Notation. Throughout this paper, the following notations
will be used. 𝑋 > 0 (𝑋 ≥ 0) means that 𝑋 is a real
symmetric positive definitive matrix (positive semidefinite).
The subscript “𝑇” represents the transpose. 𝑋⊥ denotes a
basis for the null-space of 𝑋. R𝑛 denotes the 𝑛-dimensional
Euclidean space and R𝑚×𝑛 is the set of all 𝑚 × 𝑛 real
matrix. C

𝑛,ℎ
= C([−ℎ, 0],R𝑛) denotes the Banach space of

continuous functions mapping the interval [−ℎ, 0] into R𝑛

with the topology of uniform convergence.L2[0,∞)means
the space of square-integrable vector functions over [0,∞).
E{⋅} denotes the expectation operator with respect to some
measure P. 𝐼

𝑛
, 0

𝑛
, and 0

𝑚⋅𝑛
denote 𝑛 × 𝑛 identity matrix

and 𝑛 × 𝑛 and 𝑚 × 𝑛 zero matrices, respectively. ‖ ⋅ ‖ refers
to the induced matrix 2-norm. diag{⋅ ⋅ ⋅ } denotes the block
diagonal matrix. 𝑋

[𝑓(𝑡)]
∈ R𝑚×𝑛 means that the elements

of matrix 𝑋
[𝑓(𝑡)]

include the scalar value of 𝑓(𝑡). For any
matrix𝑀, Sym{𝑀}means𝑀+𝑀𝑇. col{𝑥1, 𝑥2, . . . , 𝑥𝑛}means
[𝑥
𝑇

1 , 𝑥
𝑇

2 , . . . , 𝑥
𝑇

𝑛
]
𝑇.

2. Problem Statement and Preliminaries

Consider the Markovian jump system with time-varying
delays:

�̇� (𝑡) = 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) +𝐴
𝑑
(𝑟 (𝑡)) 𝑥 (𝑡 − ℎ (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−ℎ
𝑈
, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝜙(𝑡) which belongs
to C

𝑛,ℎ𝑈
means the initial function, 𝐴(𝑟(𝑡)) and 𝐴

𝑑
(𝑟(𝑡))

are known system matrices with appropriate dimensions,
and 𝑟(𝑡) denotes a finite state Markovian jump process
representing the systemmode.That is, 𝑟(𝑡) takes values in the
finite discrete setS = {1, 2, . . . , 𝑁}with transition probability
matrix Π = [𝜋

𝑖𝑗
].

The transition probability is described as

Pr {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖}

=

{

{

{

𝜋
𝑖𝑗
𝛿 + 𝑜 (𝛿) , 𝑗 ̸= 𝑖,

1 + 𝜋
𝑖𝑗
𝛿 + 𝑜 (𝛿) , 𝑗 = 𝑖,

(2)

where 𝛿 > 0, lim
𝛿→ 0+(𝑜(𝛿)/𝛿)=0, 𝜋𝑖𝑗 ≥ 0 for 𝑗 ̸= 𝑖 and 𝜋

𝑖𝑖
=

−∑
𝑗 ̸=𝑖
𝜋
𝑖𝑗
.

The delay in states, ℎ(𝑡), is a time-varying and continuous
function satisfying

0 ≤ ℎ (𝑡) ≤ ℎ
𝑈
,

ℎ̇ (𝑡) ≤ ℎ
𝐷
,

(3)
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where ℎ
𝑈
is a known positive scalar and ℎ

𝐷
is any constant

one.
For simplicity, a matrix 𝑀(𝑟(𝑡)) of 𝑖th node is denoted

by 𝑀
𝑖
for each possible 𝑟(𝑡) = 𝑖, 𝑖 ∈ S in the rest of this

paper. For example, 𝐴(𝑟(𝑡)) and 𝐴
𝑑
(𝑟(𝑡)) of 𝑖th node will be

represented as 𝐴
𝑖
and 𝐴

𝑑𝑖
, respectively. Let 𝑥

𝑡
= 𝑥(𝑡 + 𝑠) for

𝑠 ∈ [−ℎ
𝑈
, 0]. From [28], it should be noted that {(𝑥

𝑡
, 𝑟(𝑡))}

is a Markov process for 𝑡 ≥ 0. Then, its weak infinitesimal
operatorL acting on a functional 𝑉(𝑥

𝑡
, 𝑖) is defined by

L𝑉 (𝑥
𝑡
, 𝑖)

= lim
𝛿→ 0+

1
𝛿
[E {𝑉 (𝑥

𝑡+𝛿
, 𝑟 (𝑡 + 𝛿) | 𝑥

𝑡
, 𝑟 (𝑡) = 𝑖)}

−𝑉 (𝑥
𝑡
, 𝑖)] .

(4)

In stability analysis of system (1), the following definition will
be utilized.

Definition 1 (see [29]). For any finite 𝜙(𝑡) ∈ C
𝑛,ℎ𝑈

, and the
initial condition of the mode 𝑟0 ∈ S, the system �̇�(𝑡) =

𝐴(𝑟(𝑡))𝑥(𝑡) + 𝐴
𝑑
(𝑟(𝑡))𝑥(𝑡 − ℎ(𝑡)) is said to

(a) be stochastically stable if there exists a constant
𝑇(𝑟0, 𝜙(𝑡)) such that

E{∫
∞

0
‖𝑥 (𝑡)‖

2
| 𝑟0, 𝜙 (𝑡)} ≤ 𝑇 (𝑟0, 𝜙 (𝑡)) , (5)

(b) be mean square stable if

lim
𝑡→∞

E ‖𝑥 (𝑡)‖
2
= 0, (6)

hold for any initial condition (𝑟0, 𝜙(𝑡)),
(c) be mean exponentially stable if there exist constants
𝛼 > 0 and 𝛽 > 0 such that the following holds for any
initial condition (𝑟0, 𝜙(𝑡)):

E {‖𝑥 (𝑡)‖
2
| 𝑟0, 𝜙 (𝑡)} ≤ 𝛼

𝜙 (𝑡)
 𝑒
−𝛽𝑡

. (7)

Based on the results of [25], the objective of this paper is to
develop further improved delay-dependent stability criteria
of system (1) which will be conducted in next section.

The following lemmas will be utilized in deriving main
results.

Lemma 2. Consider a given matrix 𝑀 > 0. Then, for all
continuous function 𝜂 in [𝑎, 𝑏] → R𝑛, the following inequality
holds:

∫

𝑏

𝑎

𝜂
𝑇

(𝑠)𝑀𝜂 (𝑠) 𝑑𝑠 ≥
1
𝑏 − 𝑎

(∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠)

𝑇

⋅𝑀(∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠)

+
3
𝑏 − 𝑎

(∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠 −
2
𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑏

𝑠

𝜂 (𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

⋅𝑀(∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠 −
2
𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑏

𝑠

𝜂 (𝑢) 𝑑𝑢 𝑑𝑠) .

(8)

Proof. From the original Wirtinger-based integral inequality
[10], since

∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠 −
2
𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑠

𝑎

𝜂 (𝑢) 𝑑𝑢 𝑑𝑠

= ∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠

−
2
𝑏 − 𝑎

∫

𝑏

𝑎

(∫

𝑏

𝑎

𝜂 (𝑢) 𝑑𝑢 −∫

𝑏

𝑠

𝜂 (𝑢) 𝑑𝑢)𝑑𝑠

= ∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠 −
2
𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑏

𝑎

𝜂 (𝑢) 𝑑𝑢 𝑑𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1/(𝑏−𝑎)) ∫𝑏
𝑎
𝜂(𝑠)𝑑𝑠

+
2
𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑏

𝑠

𝜂 (𝑢) 𝑑𝑢 𝑑𝑠

= −∫

𝑏

𝑎

𝜂 (𝑠) 𝑑𝑠 +
2
𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑏

𝑠

𝜂 (𝑢) 𝑑𝑢 𝑑𝑠,

(9)

inequality (8) holds.

Lemma 3 (see [30]). Let 𝜁 ∈ R𝑛, Φ = Φ
𝑇

∈ R𝑛×𝑛, and
𝐵 ∈ R𝑚×𝑛 such that rank(𝐵) < 𝑛. Then, the following two
statements are equivalent:

(a) 𝜁𝑇Φ𝜁 < 0, 𝐵𝜁 = 0, 𝜁 ̸= 0,

(b) (𝐵⊥)𝑇Φ𝐵⊥ < 0, where 𝐵⊥ is a right orthogonal
complement of 𝐵.

Lemma 4 (see [31]). For the symmetric appropriately dimen-
sional matrices Ω > 0, Ξ, an any matrix Λ, the following two
statements are equivalent:

(a) Ξ − Λ𝑇ΩΛ < 0,

(b) there exists a matrix of appropriate dimension Ψ such
that

[
Ξ + Λ

𝑇

Ψ + Ψ
𝑇

Λ Ψ
𝑇

Ψ −Ω

] < 0. (10)

3. Main Results

In this section, improved delay-dependent stability criteria
forMJSs (1) will be proposed. To express vectors andmatrices
in simple forms, block entrymatrices 𝑒

𝑖
(𝑖 = 1, . . . , 9) ∈ R9𝑛×𝑛

will be used. For example, 𝑒3 means [0
𝑛⋅2𝑛, 𝐼𝑛, 0𝑛⋅6𝑛]

𝑇. And
some of scalars, vectors, and matrices are defined as

𝜁 (𝑡) = col{𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)) , 𝑥 (𝑡 − ℎ
𝑈
) , �̇� (𝑡) ,

�̇� (𝑡 − ℎ
𝑈
) , ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠, ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠,
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∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠, ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠} ,

𝜂 (𝑡) = col{𝑥 (𝑡) , 𝑥 (𝑡 − ℎ
𝑈
) , ∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠,

∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠} ,

𝛼 (𝑡, 𝑠) = col{�̇� (𝑠) , 𝑥 (𝑠) , ∫
𝑡

𝑠

�̇� (𝑢) 𝑑𝑢} ,

𝛽 (𝑡, 𝑠) = col{𝑥 (𝑠) , ∫
𝑡

𝑠

�̇� (𝑢) 𝑑𝑢} ,

Qaug1 = Q+
[
[

[

0
𝑛
𝑃1 0

𝑛

𝑃1 0
𝑛

0
𝑛

0
𝑛

0
𝑛

0
𝑛

]
]

]

,

Qaug2 = Q+
[
[

[

0
𝑛
𝑃2 0

𝑛

𝑃2 0
𝑛

0
𝑛

0
𝑛

0
𝑛

0
𝑛

]
]

]

,

Ξ1𝑖 = Sym {[𝑒1, 𝑒3, 𝑒6 + 𝑒7, 𝑒8 + 𝑒9]

⋅R
𝑖
[𝑒4, 𝑒5, 𝑒1 − 𝑒3, ℎ𝑈𝑒1 − 𝑒6 − 𝑒7]

𝑇

} ,

+ [𝑒1, 𝑒3, 𝑒6 + 𝑒7, 𝑒8 + 𝑒9](
𝑠

∑

𝑗=1
𝜋
𝑖𝑗
R
𝑗
)[𝑒1, 𝑒3, 𝑒6 + 𝑒7, 𝑒8

+ 𝑒9]
𝑇

,

Ξ2𝑖 = [𝑒4, 𝑒1, 09𝑛⋅𝑛]N𝑖
[𝑒4, 𝑒1, 09𝑛⋅𝑛]

𝑇

− [𝑒5, 𝑒3, 𝑒1 − 𝑒3]

⋅N
𝑖
[𝑒5, 𝑒3, 𝑒1 − 𝑒3]

𝑇

+ Sym {[𝑒1 − 𝑒3, 𝑒6 + 𝑒7, ℎ𝑈𝑒1 − 𝑒6 − 𝑒7]

⋅N
𝑖
[09𝑛⋅𝑛, 09𝑛⋅𝑛, 𝑒4]

𝑇

} ,

Ξ3𝑖[ℎ(𝑡)] = [𝑒1, 09𝑛⋅𝑛]G𝑖 [𝑒1, 09𝑛⋅𝑛]
𝑇

− (1− ℎ
𝐷
) [𝑒2, 𝑒1

− 𝑒2]G𝑖 [𝑒2, 𝑒1 − 𝑒2]
𝑇

+ Sym {[𝑒6, ℎ (𝑡) 𝑒1 − 𝑒6]

⋅G
𝑖
[09𝑛⋅𝑛, 𝑒4]

𝑇

} ,

Ξ4 = [𝑒4, 𝑒1, 09𝑛⋅𝑛] (ℎ
2
𝑈
Q) [𝑒4, 𝑒1, 09𝑛⋅𝑛]

𝑇

+ 2ℎ
𝑈
[ℎ

𝑈
𝑒1

− 𝑒6 − 𝑒7, 𝑒8 + 𝑒9, (
ℎ
2
𝑈

2
) 𝑒1 − 𝑒8 − 𝑒9]Q [09𝑛⋅𝑛,

09𝑛⋅𝑛, 𝑒4]
𝑇

,

Ξ5 = ℎ𝑈 (𝑒1𝑃1𝑒
𝑇

1 − 𝑒2𝑃1𝑒
𝑇

2 + 𝑒2𝑃2𝑒
𝑇

2 − 𝑒3𝑃2𝑒
𝑇

3 ) ,

Λ 1[ℎ(𝑡)] = [𝑒1 − 𝑒2, 𝑒6, ℎ (𝑡) 𝑒1 − 𝑒6, ℎ (𝑡) (−𝑒1 − 𝑒2)

+ 2𝑒6, ℎ (𝑡) 𝑒6 − 2𝑒8, 2𝑒8 − ℎ (𝑡) 𝑒6]
𝑇

,

Λ 2[ℎ(𝑡)] = [𝑒2 − 𝑒3, 𝑒7, (ℎ𝑈 − ℎ (𝑡)) 𝑒1 − 𝑒7, (ℎ𝑈 − ℎ (𝑡))

⋅ (−𝑒2 − 𝑒3) + 2𝑒7, (ℎ𝑈 − ℎ (𝑡)) 𝑒7 − 2𝑒9,

− (ℎ
𝑈
− ℎ (𝑡)) (2𝑒6 + 𝑒7) + 2𝑒9]

𝑇

,

Λ 3[ℎ(𝑡)] = [Λ
𝑇

1[ℎ(𝑡)], Λ
𝑇

2[ℎ(𝑡)]]
𝑇

,

Θ1𝑖 = Qaug1 −(
1
ℎ
𝑈

)

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
−(

1
ℎ
𝑈

)

⋅
[
[

[

0
𝑛

0
𝑛⋅2𝑛

02𝑛⋅𝑛
𝑠

∑

𝑗=1
𝜋
𝑖𝑗
G
𝑗

]
]

]

,

Θ2𝑖 = Qaug2 −(
1
ℎ
𝑈

)

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
,

Ω1𝑖 =
[
[

[

Θ1𝑖 03𝑛

03𝑛
(3Θ1𝑖)

ℎ
2
𝑈

]
]

]

,

Ω2𝑖 =
[
[

[

Θ2𝑖 03𝑛

03𝑛
(3Θ2𝑖)

ℎ
2
𝑈

]
]

]

,

Ω3𝑖 = [
Ω1𝑖 S

S𝑇 Ω2𝑖
] ,

Υ
𝑖
= [𝐴

𝑖
, 𝐴

𝑑𝑖
, 0
𝑛
, − 𝐼

𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
] ,

Σ
𝑖[ℎ(𝑡)]

= Ξ1𝑖 +Ξ2𝑖 +Ξ3𝑖[ℎ(𝑡)] +Ξ4 +Ξ5,

Φ
𝑖[ℎ(𝑡)]

= (Υ
⊥

𝑖
)
𝑇

(Σ
𝑖[ℎ(𝑡)]

) (Υ
⊥

𝑖
) + Sym {(Υ⊥

𝑖
)
𝑇

⋅ (Λ 3𝑖[ℎ(𝑡)])
𝑇

Ψ} .

(11)

Now, we have the following theorem.

Theorem 5. For given scalars ℎ
𝑈
> 0 and ℎ

𝐷
, system (1) is

stochastically stable for 0 ≤ ℎ(𝑡) ≤ ℎ
𝑈
and ℎ̇(𝑡) ≤ ℎ

𝐷
if there

exist positive definite matricesR
𝑖
∈ R4𝑛×4𝑛,N

𝑖
∈ R3𝑛×3𝑛,G

𝑖
∈

R2𝑛×2𝑛, and Q ∈ R3𝑛×3𝑛, any matrices S ∈ R6𝑛×6𝑛 and Ψ ∈
R12𝑛×8𝑛, and any symmetric matrices𝑃1 ∈ R𝑛×𝑛 and𝑃2 ∈ R𝑛×𝑛
satisfying the following LMIs for all 𝑟(𝑡) = 𝑖, 𝑖 ∈ S:

[
Φ
𝑖,𝑘

Ψ
𝑇

Ψ −Ω3𝑖
] < 0, 𝑘 = 1, 2, (12)

where {Φ
𝑖,𝑘
}
2
𝑘=1 means the two vertices of Φ

𝑖[ℎ(𝑡)]
with the

bounds of 0 ≤ ℎ(𝑡) ≤ ℎ
𝑀
. That is, Φ

𝑖,1 = Φ
𝑖[ℎ(𝑡)=0] and

Φ
𝑖,2 = Φ𝑖[ℎ(𝑡)=ℎ𝑈].
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Proof. For each 𝑟(𝑡) = 𝑖, 𝑖 ∈ S, let us consider the Lyapunov-
Krasovskii functional candidate:

𝑉 (𝑥
𝑡
, 𝑖) =

4
∑

𝑗=1
𝑉
𝑗
(𝑥
𝑡
, 𝑖) , (13)

where

𝑉1 (𝑥𝑡, 𝑖) = 𝜂
𝑇

(𝑡)R
𝑖
𝜂 (𝑡) ,

𝑉2 (𝑥𝑡, 𝑖) = ∫
𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)N
𝑖
𝛼 (𝑡, 𝑠) 𝑑𝑠,

𝑉3 (𝑥𝑡, 𝑖) = ∫
𝑡

𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)G
𝑖
𝛽
𝑇

(𝑡, 𝑠) 𝑑𝑠,

𝑉4 (𝑥𝑡, 𝑖) = ∫
𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝛼
𝑇

(𝑡, 𝑢)Q𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠.

(14)

From the following relationship:

𝜂 (𝑡)

=

[
[
[
[
[
[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 + ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

]
]
]
]
]
]
]
]

]

= [𝑒1, 𝑒3, 𝑒6 + 𝑒7, 𝑒8 + 𝑒9]
𝑇

𝜁 (𝑡) ,

̇𝜂 (𝑡) =

[
[
[
[
[
[
[
[

[

�̇� (𝑡)

�̇� (𝑡 − ℎ
𝑈
)

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
𝑈
)

ℎ
𝑈
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∫

𝑡

𝑡−ℎ(𝑡)
𝑥(𝑠)𝑑𝑠+∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥(𝑠)𝑑𝑠

]
]
]
]
]
]
]
]

]

= [𝑒4, 𝑒5, 𝑒1 − 𝑒3, ℎ𝑈𝑒1 − 𝑒6 − 𝑒7]
𝑇

𝜁 (𝑡) ,

(15)

L𝑉1(𝑥𝑡, 𝑖) can be represented as

L𝑉1 (𝑥𝑡, 𝑖) = 2𝜂𝑇 (𝑡)R ̇𝜂 (𝑡)

+ 𝜂
𝑇

(𝑡)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
R
𝑗
)𝜂 (𝑡)

= 𝜁
𝑇

(𝑡) Ξ1𝑖𝜁 (𝑡) ,

(16)

where Ξ1𝑖 is defined in (11).

Note that

∫

𝑡

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠 = ∫

𝑡

𝑡−ℎ𝑈

[
[
[

[

�̇� (𝑠)

𝑥 (𝑠)

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]
]
]

]

𝑑𝑠

=

[
[
[
[
[
[
[

[

∫

𝑡

𝑡−ℎ𝑈

�̇� (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

ℎ
𝑈
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

]
]
]
]
]
]

]

= [𝑒1 − 𝑒3, 𝑒6 + 𝑒7, ℎ𝑈𝑒1 − 𝑒6 − 𝑒7]
𝑇

𝜁 (𝑡) .

(17)

From (17), calculation ofL𝑉2(𝑥𝑡, 𝑖) leads to

L𝑉2 (𝑥𝑡, 𝑖) = 𝛼
𝑇

(𝑡, 𝑡)N
𝑖
𝛼 (𝑡, 𝑡) ⋅

𝑑

𝑑𝑡
(𝑡) − 𝛼

𝑇

(𝑡, 𝑡

− ℎ
𝑈
)N

𝑖
𝛼 (𝑡, 𝑡 − ℎ

𝑈
)
𝑇

⋅
𝑑

𝑑𝑡
(𝑡 − ℎ

𝑈
)

+∫

𝑡

𝑡−ℎ𝑈

𝑑

𝑑𝑡
(𝛼
𝑇

(𝑡, 𝑠)N
𝑖
𝛼 (𝑡, 𝑠))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝛼𝑇(𝑡,𝑠)N𝑖(𝑑𝛼(𝑡,𝑠)/𝑑𝑡)

𝑑𝑠 +∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)

⋅ (

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
)𝛼 (𝑡, 𝑠) 𝑑𝑠 = 𝜁

𝑇

(𝑡) {[𝑒4, 𝑒1, 09𝑛⋅𝑛]

⋅N
𝑖
[𝑒4, 𝑒1, 09𝑛⋅𝑛]

𝑇

− [𝑒5, 𝑒3, 𝑒1 − 𝑒3]N𝑖
[𝑒5, 𝑒3, 𝑒1

− 𝑒3]
𝑇

+ Sym {[𝑒1 − 𝑒3, 𝑒6 + 𝑒7, ℎ𝑈𝑒1 − 𝑒6 − 𝑒7]

⋅N
𝑖
[09𝑛⋅𝑛, 09𝑛⋅𝑛, 𝑒4]

𝑇

}} 𝜁 (𝑡) +∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)

⋅ (

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
)𝛼 (𝑡, 𝑠) 𝑑𝑠 = 𝜁

𝑇

(𝑡) Ξ2𝑖𝜁 (𝑡)

+∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
)𝛼 (𝑡, 𝑠) 𝑑𝑠.

(18)

An upper bound ofL𝑉3(𝑥𝑡, 𝑖) can be obtained as

L𝑉3 (𝑥𝑡, 𝑖) ≤ [
𝑥 (𝑡)

0
𝑛⋅1
]

𝑇

G
𝑖
[

𝑥 (𝑡)

0
𝑛⋅1
]− (1− ℎ

𝐷
)

⋅
[
[

[

𝑥 (𝑡 − ℎ (𝑡))

∫

𝑡

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠

]
]

]

𝑇

G
𝑖

[
[

[

𝑥 (𝑡 − ℎ (𝑡))

∫

𝑡

𝑡−ℎ(𝑡)

�̇� (𝑠) 𝑑𝑠

]
]

]
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+ 2∫
𝑡

𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)G
𝜕𝛽 (𝑡, 𝑠)

𝜕𝑡
𝑑𝑠 +∫

𝑡

𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)

⋅ (

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
G
𝑗
)𝛽 (𝑡, 𝑠) 𝑑𝑠 = 𝜁

𝑇

(𝑡)

⋅ {[𝑒1, 09𝑛⋅𝑛]G𝑖 [𝑒1, 09𝑛⋅𝑛]
𝑇

− (1− ℎ
𝐷
) [𝑒2, 𝑒1 − 𝑒2]G𝑖 [𝑒2, 𝑒1 − 𝑒2]

𝑇

+ Sym {[𝑒6, ℎ (𝑡) 𝑒1 − 𝑒6]G𝑖 [09𝑛⋅𝑛, 𝑒4]
𝑇

}} 𝜁 (𝑡)

+∫

𝑡

𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
G
𝑗
)𝛽 (𝑡, 𝑠) 𝑑𝑠 = 𝜁

𝑇

(𝑡)

⋅ Ξ3𝑖[ℎ(𝑡)]𝜁 (𝑡)

+∫

𝑡

𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
G
𝑗
)𝛽 (𝑡, 𝑠) 𝑑𝑠.

(19)

Inspired by the work of [32], for any symmetric matrices 𝑃
𝑖
∈

R𝑛×𝑛 (𝑖 = 1, 2), the following two zero equalities are satisfied:

0 = ℎ
𝑈
{𝑥

𝑇

(𝑡) 𝑃1𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑃1𝑥 (𝑡 − ℎ (𝑡))

− 2∫
𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃1�̇� (𝑠) 𝑑𝑠} ,

0 = ℎ
𝑈
{𝑥

𝑇

(𝑡 − ℎ (𝑡)) 𝑃2𝑥 (𝑡 − ℎ (𝑡))

− 𝑥
𝑇

(𝑡 − ℎ
𝑈
) 𝑃2𝑥 (𝑡 − ℎ𝑈)

− 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃2�̇� (𝑠) 𝑑𝑠} .

(20)

By summing the two zero equalities in (20), we have

0 = 𝜁𝑇 (𝑡) Ξ5𝜁 (𝑡) − 2ℎ𝑈∫
𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃1�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃2�̇� (𝑠) 𝑑𝑠.

(21)

Let𝜑(𝑡, 𝑠) = ∫𝑡
𝑠

𝛼
𝑇

(𝑡, 𝑢)Q𝛼(𝑡, 𝑢)𝑑𝑢. By using the similarmeth-
ods presented in (18) to (19), the calculation ofL𝑉4(𝑥𝑡, 𝑖) can
be represented as

L𝑉4 (𝑥𝑡, 𝑖) = ℎ𝑈𝜑 (𝑡, 𝑠)
𝑠=𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

0

− ℎ
𝑈
𝜑 (𝑡, 𝑠)

𝑠=𝑡−ℎ𝑈

+ ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

𝜕𝜑 (𝑡, 𝑠)

𝜕𝑡
𝑑𝑠 = −ℎ

𝑈
𝜑 (𝑡, 𝑠)

𝑠=𝑡−ℎ𝑈

+ ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

{𝛼
𝑇

(𝑡, 𝑡)Q𝛼 (𝑡, 𝑡)

+ 2∫
𝑡

𝑠

𝛼
𝑇

(𝑡, 𝑢)Q
𝜕𝛼 (𝑡, 𝑢)

𝜕𝑡
𝑑𝑢} 𝑑𝑠 = ℎ

2
𝑈
𝛼
𝑇

(𝑡, 𝑡)

⋅Q𝛼 (𝑡, 𝑡) − ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)Q𝛼 (𝑡, 𝑠) 𝑑𝑠

+ 2ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝛼
𝑇

(𝑡, 𝑢)Q
𝜕𝛼 (𝑡, 𝑢)

𝜕𝑡
𝑑𝑢 𝑑𝑠 = 𝜁

𝑇

(𝑡)

⋅ {[𝑒4, 𝑒1, 09𝑛⋅𝑛] (ℎ
2
𝑈
Q) [𝑒4, 𝑒1, 09𝑛⋅𝑛]

𝑇

+ 2ℎ
𝑈
[ℎ

𝑈
𝑒1

− 𝑒6 − 𝑒7, 𝑒8 + 𝑒9, (
ℎ
2
𝑈

2
) 𝑒1 − 𝑒8 − 𝑒9]

⋅Q [09𝑛⋅𝑛, 09𝑛⋅𝑛, 𝑒4]
𝑇

} 𝜁 (𝑡) − ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)

⋅Q𝛼 (𝑡, 𝑠) 𝑑𝑠 = 𝜁
𝑇

(𝑡) Ξ4𝜁 (𝑡) − ℎ𝑈∫
𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)

⋅Q𝛼 (𝑡, 𝑠) 𝑑𝑠.

(22)

Here, the following equations are utilized in (22):

2ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝛼
𝑇

(𝑡, 𝑢)Q
𝜕𝛼 (𝑡, 𝑢)

𝜕𝑡
𝑑𝑢 𝑑𝑠 = 2ℎ

𝑈
∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

[
[
[

[

�̇� (𝑢)

𝑥 (𝑢)

∫

𝑡

𝑢

�̇� (𝑢) 𝑑𝑢

]
]
]

]

𝑇

Q[

[

0
𝑛⋅1
0
𝑛⋅1
�̇� (𝑡)

]

]

𝑑𝑢 𝑑𝑠

= 2ℎ
𝑈

[
[
[
[
[
[
[

[

∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

∫

𝑡

𝑢

�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

]
]
]
]
]
]
]

]

𝑇

Q[

[

0
𝑛⋅1
0
𝑛⋅1
�̇� (𝑡)

]

]
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= 2ℎ
𝑈

[
[
[
[
[
[
[
[

[

ℎ
𝑈
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 + ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

(
ℎ
2
𝑈

2
)𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

]
]
]
]
]
]
]
]

]

𝑇

Q[

[

0
𝑛⋅1
0
𝑛⋅1
�̇� (𝑡)

]

]

.

(23)

With the consideration of ∫𝑡
𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)(∑
𝑠

𝑗=1 𝜋𝑖𝑗N𝑗
)𝛼(𝑡, 𝑠)𝑑𝑠

in (18), ∫𝑡
𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)(∑
𝑠

𝑗=1 𝜋𝑖𝑗G𝑗)𝛽(𝑡, 𝑠)𝑑𝑠 in (19), and

the two integral terms −2ℎ
𝑈
∫
𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠)𝑃1�̇�(𝑠)𝑑𝑠 and

−2ℎ
𝑈
∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠)𝑃2�̇�(𝑠)𝑑𝑠 in (21), the last integral term

−ℎ
𝑈
∫
𝑡

𝑡−ℎ𝑈

𝛼
𝑇

2 (𝑡, 𝑠)Q1𝛼2(𝑡, 𝑠)𝑑𝑠 at (22) with the addition of
integral terms mentioned above can be estimated by the
use of (a) in Lemma 2 and reciprocally convex optimization
approach [9] as

− ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)Q𝛼 (𝑡, 𝑠) 𝑑𝑠 − 2ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃1�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃2�̇� (𝑠) 𝑑𝑠

+∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
)𝛼 (𝑡, 𝑠) 𝑑𝑠

+∫

𝑡

𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
G
𝑗
)𝛽 (𝑡, 𝑠) 𝑑𝑠 = − ℎ

𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝛼
𝑇

(𝑡, 𝑠)

⋅
(
(

(

Qaug1 − (
1
ℎ
𝑈

)

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
− (

1
ℎ
𝑈

)
[
[

[

0
𝑛

0
𝑛⋅2𝑛

02𝑛⋅𝑛
𝑠

∑

𝑗=1
𝜋
𝑖𝑗
G
𝑗

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ1𝑖

)
)

)

⋅𝛼 (𝑡, 𝑠) 𝑑𝑠

− ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)(Qaug2 − (
1
ℎ
𝑈

)

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ2𝑖

)𝛼(𝑡, 𝑠) 𝑑𝑠,

(24)

where

Qaug1 = Q+
[
[

[

0
𝑛
𝑃1 0

𝑛

𝑃1 0
𝑛

0
𝑛

0
𝑛

0
𝑛

0
𝑛

]
]

]

,

Qaug2 = Q+
[
[

[

0
𝑛
𝑃2 0

𝑛

𝑃2 0
𝑛

0
𝑛

0
𝑛

0
𝑛

0
𝑛

]
]

]

,

(25)

which were defined in (11).

With the use of Lemma 2, the integral term
−ℎ

𝑈
∫
𝑡

𝑡−ℎ(𝑡)

𝛼
𝑇

(𝑡, 𝑠)Θ1𝑖𝛼(𝑡, 𝑠)𝑑𝑠 can be bounded as

− ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝛼
𝑇

(𝑡, 𝑠) Θ1𝑖𝛼 (𝑡, 𝑠) 𝑑𝑠 ≤ −
ℎ
𝑈

ℎ (𝑡)
(∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠)

𝑇

⋅ Θ1𝑖 (∫
𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠)

−
3ℎ
𝑈

ℎ (𝑡)
(∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠 −
2
ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

⋅ Θ1𝑖 (∫
𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠 −
2
ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

= −
ℎ
𝑈

ℎ (𝑡)
(∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠)

𝑇

Θ1𝑖 (∫
𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠)

−
3ℎ
𝑈

ℎ (𝑡)
(ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠 − 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

⋅ (
Θ1𝑖
ℎ2 (𝑡)

)

⋅ (ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠 − 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

≤ −
ℎ
𝑈

ℎ (𝑡)
(∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠)

𝑇

Θ1𝑖 (∫
𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠)

−
3ℎ
𝑈

ℎ (𝑡)
(ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠 − 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

⋅ (
Θ1𝑖
ℎ
2
𝑈

)

⋅ (ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝛼 (𝑡, 𝑠) 𝑑𝑠 − 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

= −
ℎ
𝑈

ℎ (𝑡)

[
[
[
[
[

[

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡))

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

ℎ (𝑡) 𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

]
]
]
]
]

]

𝑇

⋅ Θ1𝑖

[
[
[
[
[

[

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡))

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

ℎ (𝑡) 𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

]
]
]
]
]

]
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−
3ℎ
𝑈

ℎ (𝑡)

[
[
[
[
[
[
[

[

ℎ (𝑡) (−𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡))) + 2∫
𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 − 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 − ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

]
]
]
]
]
]
]

]

𝑇

⋅ (
Θ1𝑖
ℎ
2
𝑈

)

[
[
[
[
[
[
[

[

ℎ (𝑡) (−𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡))) + 2∫
𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 − 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 − ℎ (𝑡) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

]
]
]
]
]
]
]

]

= −
ℎ
𝑈

ℎ (𝑡)
𝜁
𝑇

(𝑡) Λ
𝑇

1[ℎ(𝑡)]Ω1𝑖Λ 1[ℎ(𝑡)]𝜁 (𝑡) ,

(26)

where

Λ 1[ℎ(𝑡)] = [𝑒1 − 𝑒2, 𝑒6, ℎ (𝑡) 𝑒1 − 𝑒6, ℎ (𝑡) (−𝑒1 − 𝑒2)

+ 2𝑒6, ℎ (𝑡) 𝑒6 − 2𝑒8, 2𝑒8 − ℎ (𝑡) 𝑒6]
𝑇

,

Ω1𝑖 =
[
[

[

Θ1𝑖 03𝑛

03𝑛
(3Θ1𝑖)

ℎ
2
𝑈

]
]

]

.

(27)

The other integral term −ℎ
𝑈
∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)Θ1𝑖𝛼(𝑡, 𝑠)𝑑𝑠 can be
estimated as

− ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠) Θ2𝑖𝛼 (𝑡, 𝑠) 𝑑𝑠

≤ −
ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

(∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠)

𝑇

⋅ Θ2𝑖 (∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠)

−
3ℎ
𝑈

ℎU − ℎ (𝑡)
(∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠

−
2

ℎ
𝑈
− ℎ (𝑡)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

⋅ Θ2𝑖 (∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠

−
2

ℎ
𝑈
− ℎ (𝑡)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

= −
ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

(∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠)

𝑇

⋅ Θ2𝑖 (∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠)

−
3ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

((ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠

− 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

(
Θ2𝑖

(ℎ
𝑈
− ℎ (𝑡))

2)

⋅((ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠

− 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

≤ −
ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

(∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠)

𝑇

⋅ Θ2𝑖 (∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠)

−
3ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

((ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠

− 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

(
Θ2𝑖
ℎ
2
𝑈

)

⋅((ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠

− 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠) .

(28)

Since

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼 (𝑡, 𝑠) 𝑑𝑠 =

[
[
[
[
[
[

[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡−ℎ(t)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢 𝑑𝑠

]
]
]
]
]
]

]

= [𝑒2 − 𝑒3, 𝑒7, (ℎ𝑈 − ℎ (𝑡)) 𝑒1 − 𝑒7]
𝑇

𝜁 (𝑡) ,

2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡ℎ(𝑡)

𝑠

∫

𝑡

𝑢

�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

= 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

(𝑥 (𝑡) − 𝑥 (𝑢)) 𝑑𝑢 𝑑𝑠 = 2

⋅
(ℎ
𝑈
− ℎ (𝑡))

2

2
𝑥 (𝑡) − 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡−ℎ(𝑡)

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

− 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 + 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

= (ℎ
𝑈
− ℎ (𝑡))

2
𝑥 (𝑡) − 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

s
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

+ 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=2⋅(ℎ𝑈−ℎ(𝑡)) ∫
𝑡

𝑡−ℎ(𝑡)
𝑥(𝑠)𝑑𝑠

,

(29)
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from (28) to (29), we have

− ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠) Θ2𝑖𝛼 (𝑡, 𝑠) 𝑑𝑠 ≤ −
ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

[
[
[
[
[
[

[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

(ℎ
𝑈
− ℎ (𝑡)) 𝑥 (𝑡) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

]
]
]
]
]
]

]

𝑇

⋅ Θ2𝑖

[
[
[
[
[
[

[

𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

(ℎ
𝑈
− ℎ (𝑡)) 𝑥 (𝑡) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑s

]
]
]
]
]
]

]

−
3ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

[
[
[
[
[
[
[
[

[

(ℎ
𝑈
− ℎ (𝑡)) (−𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ

𝑈
)) + 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

(ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠 − 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 + 2 (ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

− (ℎ
𝑈
− ℎ (𝑡)) (2∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠) + 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

]
]
]
]
]
]
]
]

]

𝑇

(
Θ2𝑖
ℎ
2
𝑈

)

⋅

[
[
[
[
[
[
[
[

[

(ℎ
𝑈
− ℎ (𝑡)) (−𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ

𝑈
)) + 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

(ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠 − 2∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 + 2 (ℎ
𝑈
− ℎ (𝑡)) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

− (ℎ
𝑈
− ℎ (𝑡)) (2∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠) + 2∫
𝑡

𝑡−ℎ(𝑡)

∫

𝑡

s
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

]
]
]
]
]
]
]
]

]

= −
ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

𝜁
𝑇

(𝑡)

⋅ Λ
𝑇

2[ℎ(𝑡)]Ω2𝑖Λ 2[ℎ(𝑡)]𝜁 (𝑡) ,

(30)

where

Λ 2[ℎ(𝑡)] = [𝑒2 − 𝑒3, 𝑒7, (ℎ𝑈 − ℎ (𝑡)) 𝑒1

− 𝑒7, (ℎ𝑈 − ℎ (𝑡)) (−𝑒2 − 𝑒3) + 2𝑒7, (ℎ𝑈 − ℎ (𝑡)) 𝑒7

− 2𝑒9, − (ℎ𝑈 − ℎ (𝑡)) (2𝑒6 + 𝑒7) + 2𝑒9]
𝑇

,

Ω2𝑖 =
[
[

[

Θ2𝑖 03𝑛

03𝑛
(3Θ2𝑖)

ℎ
2
𝑈

]
]

]

.

(31)

From (22) to (30), by utilizing reciprocally convex optimiza-
tion approach [9], it can be confirmed that

L𝑉4 (𝑥𝑡, 𝑖) − 2ℎ𝑈∫
𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃1�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃2�̇� (𝑠) 𝑑𝑠

+∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
)𝛼 (𝑡, 𝑠) 𝑑𝑠

+∫

𝑡

𝑡−ℎ(𝑡)

𝛽
𝑇

(𝑡, 𝑠)(

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
G
𝑗
)𝛽 (𝑡, 𝑠) 𝑑𝑠

≤ 𝜁
𝑇

(𝑡) (Ξ4 −Λ
𝑇

3[ℎ(𝑡)]Ω3𝑖Λ 3[ℎ(𝑡)]) 𝜁 (𝑡) ,

(32)

where Λ 3[ℎ(𝑡)] = [Λ
𝑇

1[ℎ(𝑡)], Λ
𝑇

2[ℎ(𝑡)]]
𝑇 andΩ3𝑖 = [

Ω1𝑖 S

S𝑇 Ω2𝑖
] > 0.

From (13) to (32), an upper bound of L𝑉(𝑥
𝑡
, 𝑖) with the

addition of (21) can be represented as

L𝑉 (𝑥
𝑡
, 𝑖) + 𝜁

𝑇

(𝑡) Ξ5𝜁 (𝑡)

− 2ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃1�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃2�̇� (𝑠) 𝑑𝑠 ≤ 𝜁
𝑇

(𝑡)
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⋅

{{{

{{{

{

Ξ1𝑖 + Ξ2𝑖 + Ξ3𝑖[ℎ(𝑡)] + Ξ4 + Ξ5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ𝑖[ℎ(𝑡)]

−Λ
𝑇

3[ℎ(𝑡)]Ω3𝑖Λ 3[ℎ(𝑡)]

}}}

}}}

}

𝜁 (𝑡) .

(33)

By utilizing Lemma 3, the following inequality

𝜁
𝑇

(𝑡) (Σ
𝑖[ℎ(𝑡)]

−Λ
𝑇

3[ℎ(𝑡)]Ω3𝑖Λ 3[ℎ(𝑡)]) 𝜁 (𝑡) < 0 (34)

subject to 0 = Υ
𝑖
𝜁(𝑡) is equivalent to

(Υ
⊥

𝑖
)
𝑇

(Σ
𝑖[ℎ(𝑡)]

−Λ
𝑇

3[ℎ(𝑡)]Ω3𝑖Λ 3[ℎ(𝑡)]) Υ
⊥

𝑖
< 0. (35)

By Lemma 4, condition (35) can be casted into the following
inequality with an appropriate dimension Ψ:

[
(Υ
⊥

𝑖
)
𝑇

(Σ
𝑖[ℎ(𝑡)]

) Υ
⊥

𝑖
+ Sym {(Υ⊥

𝑖
)
𝑇

(Λ 3[ℎ(𝑡)])
𝑇

Ψ} Ψ
𝑇

Ψ −Ω3𝑖
]

< 0.

(36)

It should be noted that inequality (36) is affinely dependent
on ℎ(𝑡). Therefore, if inequalities (12) hold for 𝑘 = 1, 2, then
inequality (36) is satisfied for 0 ≤ ℎ(𝑡) ≤ ℎ

𝑈
. Furthermore,

one can see that Ω3𝑖 > 0 holds if inequalities (12) are
satisfied. Therefore, if condition (12) holds, then there exists
a sufficiently small positive scalar 𝜀 such that L𝑉(𝑥

𝑡
, 𝑖) <

−𝜀‖𝑥(𝑡)‖
2. Thus, by using the similar method in [33] and

Definition 1, system (1) is stochastically stable.This completes
our proof.

In many cases, the information about an upper bound
of ℎ̇(𝑡) is unknown. For this case, based on the result of
Theorem 5, the corresponding stability condition will be
presented in Corollary 6. In Corollary 6, for simplicity of
matrix notations, some of vectors and matrices are redefined
as

Θ̃1𝑖 = Qaug1 −(
1
ℎ
𝑈

)

𝑠

∑

𝑗=1
𝜋
𝑖𝑗
N
𝑗
,

Ω̃1𝑖 =
[
[
[

[

Θ̃1𝑖 03𝑛

03𝑛
(3Θ̃1𝑖)

ℎ
2
𝑈

]
]
]

]

,

Ω̃3𝑖 = [
Ω̃1𝑖 S

S𝑇 Ω2𝑖
] ,

Σ̃
𝑖[ℎ(𝑡)]

= Ξ1𝑖 +Ξ2𝑖 +Ξ4 +Ξ5,

Φ̃
𝑖[ℎ(𝑡)]

= (Υ
⊥

𝑖
)
𝑇

(Σ̃
𝑖[ℎ(𝑡)]

) (Υ
⊥

𝑖
)

+ Sym {(Υ⊥
𝑖
)
𝑇

(Λ 3𝑖[ℎ(𝑡)])
𝑇

Ψ} .

(37)

Except the above notations, all the notations defined in (11)
will be used in Corollary 6. Now, the following result is given
by Corollary 6.

Corollary 6. For a given scalar ℎ
𝑈
> 0, system (1) is

stochastically stable for 0 ≤ ℎ(𝑡) ≤ ℎ
𝑈
if there exist positive

definite matricesR
𝑖
∈ R4𝑛×4𝑛,N

𝑖
∈ R3𝑛×3𝑛, and Q ∈ R3𝑛×3𝑛,

any matricesS ∈ R6𝑛×6𝑛 andΨ ∈ R12𝑛×8𝑛, and any symmetric
matrices 𝑃1 ∈ R𝑛×𝑛 and 𝑃2 ∈ R𝑛×𝑛 satisfying the following
LMIs for all 𝑟(𝑡) = 𝑖, 𝑖 ∈ S:

[

Φ̃
𝑖,𝑘

Ψ
𝑇

Ψ −Ω̃3𝑖
] < 0, 𝑘 = 1, 2, (38)

where {Φ̃
𝑖,𝑘
}
2
𝑘=1 means the two vertices of Φ̃

𝑖[ℎ(𝑡)]
with the

bounds of 0 ≤ ℎ(𝑡) ≤ ℎ
𝑀
. That is, Φ̃

𝑖,1 = Φ̃
𝑖[ℎ(𝑡)=0] and

Φ̃
𝑖,2 = Φ̃𝑖[ℎ(𝑡)=ℎ𝑈].

Proof. Let us choose LKF as

𝑉 (𝑥
𝑡
, 𝑖) = 𝜂

𝑇

(𝑡)R
𝑖
𝜂 (𝑡) +∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)N
𝑖
𝛼 (𝑡, 𝑠) 𝑑𝑠

+∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝛼
𝑇

(𝑡, 𝑢)Q𝛼 (𝑡, 𝑢) 𝑑𝑢 𝑑𝑠.

(39)

The proof of Corollary 6 is very similar to the proof of
Theorem 5.Thus, it is omitted.This completes our proof.

Remark 7. Theorem 5 and Corollary 6 are derived based on
the result of [25]. LKFs 𝑉5(𝑥𝑡, 𝑖), 𝑉6(𝑥𝑡, 𝑖) of Theorem 1 in
[25] are not included in this paper. Instead, an upper bound
ofL𝑉4(𝑥𝑡, 𝑖) is derived by utilizing Wirtinger-based integral
inequality.

Remark 8. Unlike the previous results [12–14], the inte-
gral terms ∫𝑡

𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠, ∫𝑡−ℎ(𝑡)
𝑡−ℎ𝑈

𝑥(𝑠)𝑑𝑠, ∫𝑡
𝑡−ℎ(𝑡)

∫
𝑡

𝑠

𝑥(𝑢)𝑑𝑢 𝑑𝑠,

and ∫𝑡−ℎ(𝑡)
𝑡−ℎ𝑈

∫
𝑡

𝑠

𝑥(𝑢)𝑑𝑢 𝑑𝑠 which were utilized as elements
of augmented vector 𝜁(𝑡) are not multiplied by 1/ℎ(𝑡) or
1/(ℎ

𝑈
− ℎ(𝑡)). As shown in [10], the appearance of the

terms (1/ℎ(𝑡)) ∫𝑡
𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠 and (1/(ℎ
𝑈
−ℎ(𝑡))) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥(s)𝑑𝑠 is
unavoidable in utilizing Wirtinger-based integral inequality.
However, with the terms (1/ℎ(𝑡)) ∫𝑡

𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠 and (1/(ℎ
𝑈
−

ℎ(𝑡))) ∫
𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥(𝑠)𝑑𝑠 as elements of augmented vector, the

derivation of L{𝜂𝑇(𝑡)R
𝑖
𝜂(𝑡)} +L{∫

𝑡

𝑡−ℎ𝑈

𝛼
𝑇

(𝑡, 𝑠)N
𝑖
𝛼(𝑡, 𝑠)𝑑𝑠}

is more difficult than the case of the terms ∫𝑡
𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠 and

∫
𝑡

𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠 as elements of augmented vector. In this paper,
with the process shown in (26), the utilized integral terms
in augmented vector are not multiplied by 1/ℎ(𝑡) or 1/(ℎ

𝑈
−

ℎ(𝑡)).

4. Numerical Examples

In this section, three numerical examples are introduced to
show the improvements of the proposed methods. In the
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Table 1: Maximum delay bounds ℎ
𝑈
with ℎ

𝐷
= 0 and various 𝜋11

(Example 1).

Methods 𝜋11 = −0.1 𝜋11 = −0.5 𝜋11 = −0.8 𝜋11 = −1
[18] 0.6797 0.5794 0.5562 0.5465
[19] (𝑚 = 5) 0.8232 0.7327 0.7039 0.6934
[22] (𝑚 = 2) 1.2550 0.8816 0.8065 0.7783
[25] 1.2132 0.9797 0.9345 0.8986
Theorem 5 1.3954 1.1138 1.0566 1.0367
∗

𝑚 is delay-partitioning number.

examples, MATLAB, YALMIP, and SeDuMi 1.3 are used to
solve LMI problems.

Example 1. Consider Markovian jump system (1) with the
parameters

𝐴1 = [
−3.4888 0.8057
−0.6451 −3.2684

] ,

𝐴2 = [
−2.4898 0.2895
1.3396 −0.0211

] ,

𝐴
𝑑1 = [

−0.8620 −1.2919
−0.6841 −2.0729

] ,

𝐴
𝑑2 = [

−2.8306 0.4978
−0.8436 −1.0115

] .

(40)

In Table 1, when 𝜋22 = −0.8 and ℎ
𝐷
= 0, the obtained

maximum delay bounds by Theorem 5 are compared with
some recent results and [25] under some various 𝜋11. From
Table 1, one can see thatTheorem 5 significantly improves the
feasible region of stability, which shows the advantages of the
proposedTheorem 5.

Example 2. Consider Markovian jump system (1) where

𝐴1 = [
−2.3 0.8
1.0 −2.9

] ,

𝐴2 = [
−1.9 0.2
0.6 −0.8

] ,

𝐴
𝑑1 = [

0.8 1.2
0.7 −3.5

] ,

𝐴
𝑑2 = [

−1.3 −2.6
0.5 −1.4

] .

(41)

When ℎ
𝐷
is unknown and 𝜋22 = −0.8, in Table 2, maximum

delay bounds obtained by Corollary 6 are compared with
those of [18, 21, 25]. Table 2 shows the less conservatism of
Corollary 6.

Table 2: Maximum delay bounds ℎ
𝑈
with unknown ℎ

𝐷
and various

𝜋11 (Example 2).

Methods 𝜋11 = −0.1 𝜋11 = −0.5 𝜋11 = −0.8 𝜋11 = −1
[18] 0.271 0.271 0.271 0.271
[21] 0.500 0.496 0.493 0.492
[25] 0.6003 0.5909 0.5862 0.5836
Corollary 6 0.6209 0.6166 0.6152 0.6146

Table 3: Maximum delay bounds ℎ
𝑈
with ℎ

𝐷
= 0.9 and various 𝜋11

(Example 3).

Methods 𝜋11 = −0.1 𝜋11 = −0.5 𝜋11 = −0.8 𝜋11 = −1
[18] 1.0224 1.0148 1.0141 1.0130
[26] 1.3671 1.3565 1.3541 1.3535
[25] 1.7858 1.7006 1.6803 1.6713
Theorem 5 1.8270 1.7320 1.7093 1.6999

Example 3. Consider Markovian jump system (1) with the
parameters

𝐴1 = [
−2 0
0 −0.9

] ,

𝐴2 = [
−1 0
−1 −1

] ,

𝐴
𝑑1 = [

−1 0.5
0.1 −1

] ,

𝐴
𝑑2 = [

−1 0
0.1 −1

] .

(42)

In Table 3, the results of maximum delay bounds ℎ
𝑈
obtained

by Theorem 5 with ℎ
𝐷
= 0.9, 𝜋22 = −0.8, and various 𝜋11 are

listed and some recent results [18, 25, 26] are also listed. The
results in Table 3 also show that Theorem 5 provides larger
delay bound than those of very recent results such as [26].

Example 4. Consider Markovian jump system (1) with the
parameters

𝐴1 = [
−3.5 0.8
−0.6 −3.3

] ,

𝐴2 = [
−2.5 0.3
1.4 −0.1

] ,

𝐴
𝑑1 = [

−0.9 −1.3
−0.7 −2.1

] ,

𝐴
𝑑2 = [

−2.8 0.5
−0.8 −1.0

] .

(43)

In Table 4, when ℎ
𝐷
= 0 and 𝜋22 = −0.8, maximum delay

bounds ℎ
𝑈
obtained by Theorem 5 are listed and compared
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Table 4: Maximum delay bounds ℎ
𝑈
with ℎ

𝐷
= 0 and various 𝜋11 (Example 4).

Methods 𝜋11 = −0.4 𝜋11 = −0.55 𝜋11 = −0.7 𝜋11 = −0.85 𝜋11 = −1.00
[20] 0.6708 0.5894 0.5768 0.5675 0.5603
[23] 0.6322 0.6120 0.5981 0.5881 0.5805
[25] 1.0328 0.9933 0.9681 0.9523 0.9429
Theorem 5 1.1826 1.1335 1.1016 1.0799 1.0650

with those of [20, 23, 26] for various 𝜋11. From the result of
Table 4, the superiority of Theorem 5 can be verified.

5. Conclusion

In this paper, further improved results on stability forMarko-
vian jump systems with time-varying delays were proposed
in Theorem 5 and Corollary 6. With simple LKFs comparing
with [25], it was shown that from three numerical examples,
all the results obtained by Theorem 5 and Corollary 6 are
larger than those of [25] by applyingWirtinger-based integral
inequality and some new techniques to L𝑉4(𝑥𝑡, 𝑖). With
the ideas proposed in this paper, stability and stabilization
for various systems such as multiagent systems, complex
networks, and neural networks will be conducted in future
works.
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A robust control problem for discrete-time uncertain stochastic systems is discussed via gain-scheduled control scheme subject to
𝐻
∞
attenuation performance. Applying Linear ParameterVarying (LPV)modeling approach and stochastic difference equation, the

uncertain stochastic systems can be described by combining time-varyingweighting function and linear systemswithmultiplicative
noise terms. Due to the consideration of stochastic behavior, the stability in the sense of mean square is applied for the system.
Furthermore, two kinds of Lyapunov functions are employed to derive their corresponding sufficient conditions to solve the
stabilization problems of this paper. In order to use convex optimization algorithm, the derived conditions are converted into
Linear Matrix Inequality (LMI) form. Via solving those conditions, the gain-scheduled controller can be established such that the
robust asymptotical stability and 𝐻

∞
performance of the disturbed uncertain stochastic system can be achieved in the sense of

mean square. Finally, two numerical examples are applied to demonstrate the effectiveness and applicability of the proposed design
method.

1. Introduction

In control problems, accurate parameters of dynamic system
are always important premised assumption. Unfortunately,
the accurate parameters are hardly to be obtained in practical
applications due to modeling errors and natural perturba-
tions. For this reason, robust control schemes [1–12] were
proposed to guarantee stability of dynamic system with
admissible uncertainties. Through [1–3], the uncertainty of
system is described by norm bounded time-varying function.
On the other hand, based on LPV modeling approach [4–
6], the uncertain systems can be interpreted by combining
several subsystems and chosen time-varying weighting func-
tion. Referring to [4–6, 9], LPV system can be established
to completely represent the uncertain systems by using
LPV modeling approach. Furthermore, Lyapunov stability
theory has been widely applied for stability analysis and
synthesis of LPV systems. In the Lyapunov stability theory,
the choice of Lyapunov function to present the system energy
is an important issue that will influence conservatism of the
derived stability criterion. Generally, Parameter Independent

Lyapunov Function (PILF) [4, 7] and Parameter Dependent
Lyapunov Function (PDLF) [10, 11] are applied to propose
their stability criteria for LPV systems. In this paper, both
PILF and PDLF are, respectively, applied to derive the cor-
responding stability criterion for the considered LPV system.

Referring to the literature [13, 14], gain-scheduled design
scheme provides powerful tool to deal with stabilization
problems of the LPV systems. Moreover, based on the gain-
scheduled design scheme, robustness of LPV systems can be
increased due to a gain-table designed by numerous opera-
tion points. Besides, it is well known that external disturbance
often causes poor control performance and unstable source of
controlled systems.Therefore,𝐻

∞
gain-scheduled controller

designmethods have been proposed by [8, 14–16] to constrain
the effect of external disturbance on LPV systems. With𝐻

∞

control theory, the performance index can cope with the
worst case as the effect of external disturbance.

Practically, stochastic behavior of dynamic systems often
appears around operating environment. Due to unmea-
surable and unpredictable property, stability of stochastic
system is difficult to be analyzed and discussed. Referring
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to [17, 18], the stochastic behavior is considered as external
disturbance or unknown perturbation. On the other hand,
stochastic difference equation has been proposed by [19] to
formulate the stochastic behavior into multiplicative noise
term expressed by multiplication of states and noises. Via the
multiplicative noise term, the stochastic behavior of system is
more representative and understandable than that described
by disturbance or perturbation. Therefore, many efforts [20–
27] have been developed to discuss stability analysis and
synthesis of stochastic systems. Referring to [26, 27], the
uncertainty is described by specific norm bounded time-
varying function that limits the description of uncertain
stochastic system. In order to extend stability criterion to
uncertain stochastic systems, the LPV stochastic system is
proposed and considered in this paper.

To the best of our knowledge, there have been less
works on discussing robust stabilization problems of the LPV
stochastic systems subject to 𝐻

∞
performance. The main

purpose of this paper is thus to develop the gain-scheduled
controller design methods for the LPV stochastic systems.
According to the consideration of stochastic behavior, the
robust stability criterion proposed in this paper is more
general than the one in [4, 8, 14]. And both PILF and PDLF
are applied to derive their corresponding sufficient conditions
that are converted into the LMI form. Via solving those
conditions, the feasible solutions can be obtained to establish
the corresponding gain-scheduled controller to guarantee
the asymptotical stability and 𝐻

∞
performance of the LPV

stochastic system in the sense of mean square. For discussing
the conservatism of proposed design methods, a numerical
example is proposed to find the minimum performance
index of the derived conditions. In addition, a ship autopilot
servosystem is proposed to show the effectiveness and appli-
cability of the proposed design methods.

The paper is organized as follows. In Section 2, disturbed
discrete-time LPV stochastic systems and its stabilization
problems are described. The gain-scheduled 𝐻

∞
controller

design method is proposed in Section 3. And less conser-
vative stability criterion is proposed in Section 4. Finally,
two numerical examples are employed to demonstrate effec-
tiveness and application of the proposed design methods in
Section 5. Some conclusions are stated in Section 6.

2. Systems Description and
Problem Formulation

In this section, the following discrete-time disturbed uncer-
tain stochastic system is proposed:

𝑥 (𝑡 + 1) = A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡))

⋅ 𝑤 (𝑡)

+ (A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡))

⋅ 𝛽 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the
control input vector, 𝑤(𝑡) ∈ R𝑝 is the exogenous disturbance
input, and 𝛽(𝑡) is a discrete type scalar Brownian motion

satisfying the independent increment property [19]; that is,
𝐸{𝑥(𝑡)𝛽(𝑡)} = 0. And the covariance of𝛽(𝑡) can be assumed as
𝐸{𝛽
𝑇

(𝑡)𝛽(𝑡)} = 𝜏
2, where the 𝜏 is intensity level of themotion.

𝐸{⋅} denotes the expected value of ⋅.A(𝛼(𝑡)) ∈ R𝑛×𝑛,B(𝛼(𝑡)) ∈
R𝑛×𝑚, E(𝛼(𝑡)) ∈ R𝑛×𝑝, A(𝛼(𝑡)) ∈ R𝑛×𝑛, B(𝛼(𝑡)) ∈ R𝑛×𝑚,
and E(𝛼(𝑡)) ∈ R𝑛×𝑝 which are matrices depending on time-
varying parameters vector 𝛼(𝑡) = [𝛼1(𝑡) 𝛼2(𝑡) ⋅ ⋅ ⋅ 𝛼

𝑟
(𝑡)].

Referring to [12], the time-varying parameter 𝛼(𝑡) can be
expressed as a convex combination. Thus, the matrices of
system (1) depending on the 𝛼(𝑡) can be reconstructed by the
following equation:

[

A (𝛼 (𝑡)) B (𝛼 (𝑡)) E (𝛼 (𝑡))

A (𝛼 (𝑡)) B (𝛼 (𝑡)) E (𝛼 (𝑡))
]

=

𝑁

∑

𝑖=1
𝜗
𝑖
(𝑡) [

A
𝑖
B
𝑖
E
𝑖

A
𝑖
B
𝑖
E
𝑖

] ,

(2)

where 𝑁 = 2𝑟 and 𝜗
𝑖
(𝑡) is measurable at each time instant.

Moreover, 𝜗
𝑖
(𝑡) satisfies ∑𝑁

𝑖=1 𝜗𝑖(𝑡) = 1 and 0 ≤ 𝜗
𝑖
(𝑡) ≤ 1. The

A
𝑖
,B
𝑖
,E
𝑖
,A
𝑖
,B
𝑖
, andE

𝑖
are constantmatriceswith appropriate

dimensions. Based on (2), system (1) can be rewritten as
follows:

𝑥 (𝑡 + 1) =
𝑁

∑

𝑖=1
𝜗
𝑖
(𝑡) (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)

+ (A
𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) .

(3)

Based on the LPV modeling approach and stochastic differ-
ence equation, the LPV stochastic system (3) is structured to
substitute the uncertain stochastic system (1) to develop gain-
scheduled controller design methods. Moreover, the design
methods are proposed to satisfy the𝐻

∞
performance such as

𝐸

{

{

{

𝑡𝑓

∑

0
𝑥
𝑇

(𝑡) S𝑥 (𝑡)
}

}

}

< 𝐸

{

{

{

𝜂
2
𝑡𝑓

∑

0
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

}

}

}

(4)

for 𝑤(𝑡) ̸= 0 and 𝑥(0) = 0, in which 𝑡
𝑓
is the terminal time of

control, 𝜂 is a prescribed value which denotes the worst case
effect of 𝑤(𝑡) on 𝑥(𝑡), and S is a positive definite weighting
matrix. Besides, in case such as 𝑤(𝑡) = 0, the robust stability
of (3) is an important issue. The concerned stability of (3) is
thus provided as the following definition by the sense ofmean
square [20, 23].

Definition 1. For LPV stochastic system (3) with zero external
disturbance 𝑤(𝑡) = 0, the solution with admissible robust
uncertainties is asymptotically mean square stable if 𝐸{𝑥(𝑡)}
and state correlation matrix 𝐸{𝑥

𝑇

(𝑡)𝑥(𝑡)} are converged to
zero as 𝑡 → ∞.

In next section, both PILF and PDLF are applied to derive
their corresponding sufficient condition into LMI problem
for applying the convex optimization algorithm [28, 29].
Through solving the condition, the gain-scheduled controller
can be established to achieve robust asymptotical stability and
𝐻
∞

performance of (3) in the sense of mean square.
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3. Stability Criterion for Disturbed LPV
Stochastic Systems

In this section, the gain-scheduled control scheme [14] is
employed to discuss the stabilization problem of (3). Thus,
the following gain-scheduled controller is proposed:

𝑢 (𝑡) = − F (𝛼 (𝑡)) 𝑥 (𝑡) (5a)

or

𝑢 (𝑡) =

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) (−F

𝑗
𝑥 (𝑡)) . (5b)

Substituting (5a)-(5b) into (1), the following closed-loop
system can be inferred:

𝑥 (𝑡 + 1) = (A (𝛼 (𝑡)) −B (𝛼 (𝑡)) F (𝛼 (𝑡))) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡) + ((A (𝛼 (𝑡)) −B (𝛼 (𝑡)) F (𝛼 (𝑡)))

⋅ 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡) = R (𝛼 (𝑡)) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡) + (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡))

⋅ 𝛽 (𝑡) =

𝑁

∑

𝑖=1
𝜗
𝑖
(𝑡)((A

𝑖
−B
𝑖

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)𝑥 (𝑡)

+E
𝑖
𝑤 (𝑡)

+((A
𝑖
− B
𝑖

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)𝑥 (𝑡) +E

𝑖
𝑤 (𝑡))𝛽 (𝑡))

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) (R

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (R

𝑖𝑗
𝑥 (𝑡)

+E
𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(6)

where R(𝛼(𝑡)) = A(𝛼(𝑡)) − B(𝛼(𝑡))F(𝛼(𝑡)), R(𝛼(𝑡)) =

A(𝛼(𝑡))−B(𝛼(𝑡))F(𝛼(𝑡)),R
𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
, andR

𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
.

For closed-loop system (6), the following sufficient condition
is derived via the PILF.

Theorem 2. With given positive scalars 𝜏 and 𝜂, if there exist
gains F

𝑗
, positive definite matrices P and S, and value 𝜂 >

0 satisfying the following inequality, the robust asymptotical
stability and𝐻

∞
performance of the closed-loop system (6) are

achieved in the sense of mean square:

[

[

[

[

[

[

[

[

[

−Q ∗ ∗ ∗ ∗

0 −𝜂
2I ∗ ∗ ∗

A
𝑖
Q − B

𝑖
Y
𝑗

E
𝑖

−Q ∗ ∗

𝜏 (A
𝑖
Q − B

𝑖
Y
𝑗
) 𝜏 (E

𝑖
) 0 −Q ∗

Q 0 0 0 −U

]

]

]

]

]

]

]

]

]

< 0,

𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

(7)

where Q = P−1, Y
𝑗
= F
𝑗
Q, U = S−1, the ∗ denotes the

transposed elements of the symmetric position, and I denotes
identity matrix.

Proof. Choosing a Lyapunov function as 𝑉(𝑥(𝑡)) =

𝑥
𝑇

(𝑡)P𝑥(𝑡), one can obtain first forward difference of
the 𝑉(𝑥(𝑡))

Δ𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (𝑡 + 1)) −𝑉 (𝑥 (𝑡)) = (R (𝛼 (𝑡)) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡) + (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡))

⋅ 𝛽 (𝑡))

𝑇

P (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)) − 𝑥
𝑇

(𝑡)

⋅P𝑥 (𝑡) =
𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡)

⋅ ((R
𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (R

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡))

𝑇

⋅P (R
𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (R

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)))

− 𝑥
𝑇

(𝑡)P𝑥 (𝑡) ,

(8)

where R(𝛼(𝑡)), R(𝛼(𝑡)), R
𝑖𝑗
, and R

𝑖𝑗
are defined in (6).

Taking expectation of (8), the following equation can be
obtained with the independent increment property of Brow-
nian motion; that is, 𝐸{𝑥(𝑡)𝛽(𝑡)} = 0 and 𝐸{𝛽(𝑡)𝛽(𝑡)} = 𝜏

2.
Consider

𝐸 {Δ𝑉 (𝑥 (𝑡))} = 𝐸

{

{

{

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡)

⋅ (𝑥
𝑇

(𝑡) (R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
−P) 𝑥 (𝑡)

+𝑤
𝑇

(𝑡) (E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗
) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) (R𝑇
𝑖𝑗
PE
𝑖
+ 𝜏

2R𝑇
𝑖𝑗
PE
𝑖
)𝑤 (𝑡)

+𝑤
𝑇

(𝑡) (E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
)𝑤 (𝑡))

}

}

}

= 𝐸 {Ψ} ,

(9)

where

Ψ =

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) [

𝑥 (𝑡)

𝑤 (𝑡)

]

𝑇

⋅
[

[

R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
− P ∗

E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗

E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖

]

]

[

𝑥 (𝑡)

𝑤 (𝑡)

] .

(10)

Let us define the following performance function:

𝐽
𝐷
=

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡)) . (11)
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Then, one has the following relations with zero initial condi-
tions:

𝐽
𝐷
= 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡))

+

𝑡𝑓

∑

0
(Δ𝑉 (𝑥 (𝑡))) −𝑉 (𝑥 (𝑡))

}

}

}

≤ 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

+Δ𝑉 (𝑥 (𝑡)))

}

}

}

= 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡)

− 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡) +Ψ)

}

}

}

= 𝐸

{

{

{

𝑡𝑓

∑

0
𝐿 (𝑥, 𝑤, 𝑡)

}

}

}

.

(12)

According to (9), one has

𝐿 (𝑥, 𝑤, 𝑡)

= 𝐸

{

{

{

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) [

𝑥 (𝑡)

𝑤 (𝑡)

]

𝑇

Λ[

𝑥 (𝑡)

𝑤 (𝑡)

]

}

}

}

,

(13)

where

Λ

=
[

[

R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
− P + S ∗

E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗

E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
− 𝜂

2I
]

]

.

(14)

Applying Schur complement [28], the following inequal-
ity can be obtained from (7):

[

[

(A
𝑖
Q − B

𝑖
Y
𝑗
)

𝑇

Q−1 (A
𝑖
Q − B

𝑖
Y
𝑗
) + 𝜏

2
(A
𝑖
Q − B

𝑖
Y
𝑗
)

𝑇

Q−1 (A
𝑖
Q − B

𝑖
Y
𝑗
) −Q +QU−1Q ∗

E𝑇
𝑖
Q−1 (A

𝑖
Q − B

𝑖
Y
𝑗
) + 𝜏

2E𝑇
𝑖
Q−1 (A

𝑖
Q − B

𝑖
Y
𝑗
) E𝑇

𝑖
Q−1E
𝑖
+ 𝜏

2E𝑇
𝑖
Q−1E
𝑖
− 𝜂

2I
]

]

< 0.

(15)

Due to definitions as Q = P−1, Y
𝑗
= F
𝑗
Q, and U = S−1,

inequality (15) can be rewritten as follows:

[

[

P−1R𝑇
𝑖𝑗
PR
𝑖𝑗
P−1 + 𝜏

2P−1R𝑇
𝑖𝑗
PR
𝑖𝑗
P−1 − P−1 + P−1SP−1 ∗

E𝑇
𝑖
PR
𝑖𝑗
P−1 + 𝜏

2E𝑇
𝑖
PR
𝑖𝑗
P−1 E𝑇

𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
− 𝜂

2I
]

]

< 0. (16)

Multiplying both sides of (16) with diag{P, I}, where the
diag{⋅, ⋅} denotes a block-diagonal matrix with element ⋅, one
can obtain the following inequality:

[

[

R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
− P + S ∗

E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗

E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
− 𝜂

2I
]

]

< 0.

(17)

Obviously, the left-hand side of inequality (17) is equal to
Λ in (13). Thus, Λ < 0 is found if condition (7) holds.
And 𝐿(𝑥, 𝑤, 𝑡) < 0 can be obtained from (13) with Λ < 0.
According to 𝐿(𝑥, 𝑤, 𝑡) < 0, the following inequalities can be
inferred from (12) as follows:

𝐽
𝐷
< 0 (18)

or

𝐸

{

{

{

𝑡𝑓

∑

0
𝑥
𝑇

(𝑡) S𝑥 (𝑡)
}

}

}

< 𝐸

{

{

{

𝜂
2
𝑡𝑓

∑

0
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

}

}

}

. (19)

Because (19) is equivalent to (4), it is easy to show that
the closed-loop system (6) with controller (5a)-(5b) satisfies
𝐻
∞

performance when the condition (7) holds. Next, the
asymptotical stability is necessary to be proven. By assuming
𝑤(𝑡) = 0, the following inequality can be found from
𝐿(𝑥, 𝑤, 𝑡) < 0 if the condition inTheorem 2 holds:

𝐸 {Ψ+𝑥
𝑇

(𝑡) S𝑥 (𝑡)} < 0 (20a)

or

𝐸 {Ψ} < 𝐸 {−𝑥
𝑇

(𝑡) S𝑥 (𝑡)} . (20b)

According to S > 0, one can find 𝐸{Ψ} < 0. From (9),
𝐸{Ψ} < 0 implies𝐸{Δ𝑉(𝑥(𝑡))} < 0. According toDefinition 1,
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the asymptotical stability of the closed-loop system (6) can be
achieved via controller (5a)-(5b) in the sense of mean square
due to 𝐸{Δ𝑉(𝑥(𝑡))} < 0. Thus, the proof of this theorem is
complete.

Based on the PILF, the sufficient conditions are derived in
Theorem 2. Via finding the feasible solutions, the controller
(5a)-(5b) is designed to guarantee the asymptotical stability
and 𝐻

∞
performance of the closed-loop system (6) in the

sense of mean square. However, Theorem 2 processes con-
servatism in finding a common matrix P to satisfy sufficient
condition (7) for 𝑖, 𝑗 = 1, 2, . . . , 𝑁. For this reason, the less
conservative sufficient conditions than the ones inTheorem 2
are proposed in the next section.

4. Relaxed Stability Criterion for Disturbed
LPV Stochastic Systems

Referring to [10, 11], the PDLF is proposed to derive relaxed
stability criterion for LPV systems. The reason for reducing
conservatism in solving stabilization problem of the system
(1) is that the PDLF consists of state and multiple positive
definite matrices. Based on the PDLF, a relaxed stability
criterion for system (1) is proposed in this section. Besides,
arbitrary matrices G

𝑖
are introduced to reduce conservatism

of the proposed stability criterion in this section. Thus, the
following gain-scheduled controller is proposed:

𝑢 (𝑡) = − F (𝛼 (𝑡))G−1 (𝛼 (𝑡)) 𝑥 (𝑡) , (21a)

or

𝑢 (𝑡) = −(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

𝑥 (𝑡) . (21b)

Remark 3. According to the arbitrary matrices G
𝑖
, the

freedom of searching feasible solutions of Theorem 4 is
increased. Moreover, the sufficient conditions of Theorem 4
can be converted into extended LMI form by using the
arbitrary matrices G

𝑖
. Referring to [16], the extended form

possesses less conservatism than standard LMI form as
in (7). Thus, the structure of (21a)-(21b) is applied to the
proposed relaxed gain-scheduled controller design method
for disturbed uncertain stochastic systems (1).

Substituting (21a)-(21b) into system (1), the correspond-
ing closed-loop system can be represented as follows:

𝑥 (𝑡 + 1) = X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡)

⋅ (X
𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (X

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(22)

where

X (𝛼 (𝑡)) = A (𝛼 (𝑡)) 𝑥 (𝑡)

−B (𝛼 (𝑡)) F (𝛼 (𝑡))G−1 (𝛼 (𝑡)) ,

X (𝛼 (𝑡)) = A (𝛼 (𝑡)) 𝑥 (𝑡)

−B (𝛼 (𝑡)) F (𝛼 (𝑡))G−1 (𝛼 (𝑡)) ,

X
𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

,

X
𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

.

(23)

For stability problemof closed-loop system (22), the sufficient
conditions are derived by 𝐻

∞
performance definition and

PDLF.

Theorem 4. With given positive scalars 𝜏 and 𝜂, if there exist
feedback gains F

𝑖
, positive definite matrices P

𝑖
and S, and

arbitrary matrices G
𝑖
to satisfy the following conditions, then

the asymptotical stability and 𝐻
∞

performance of the closed-
loop system (22) are guaranteed in the sense of mean square.
Consider

[

[

[

[

[

[

[

[

[

[

Q
𝑖
− G𝑇
𝑖
− G
𝑖

∗ ∗ ∗ ∗

0 −𝜂
2I ∗ ∗ ∗

A
𝑖
G
𝑗
− B
𝑖
F
𝑗

E
𝑖

−Q
𝑘

∗ ∗

𝜏 (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) 𝜏E

𝑖
0 −Q

𝑘
∗

G
𝑖

0 0 0 −U

]

]

]

]

]

]

]

]

]

]

< 0,

𝑓𝑜𝑟 𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑁,

(24)

whereQ
𝑘
= P−1
𝑘

and U = S−1.

Proof. Choosing a Lyapunov function as 𝑉(𝑥(𝑡)) =

𝑥
𝑇

(𝑡)P(𝛼(𝑡))𝑥(𝑡), the first forward difference of the 𝑉(𝑥(𝑡))
can be obtained, such as

Δ𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (𝑡 + 1)) −𝑉 (𝑥 (𝑡))

= (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡))

𝑇

⋅P (𝛼 (𝑡 + 1)) (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)) − 𝑥
𝑇

(𝑡)

⋅P (𝛼 (𝑡)) 𝑥 (𝑡) .

(25)

In this paper, P(𝛼(𝑡+1)) is defined by the following equation:

P (𝛼 (𝑡 + 1)) =
𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡 + 1)P

𝑗
= (

𝑁

∑

𝑘=1
𝜀
𝑘
(𝑡)P
𝑘
) , (26)
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where 𝜀(𝑡) is the time-varying parameter satisfying
∑
𝑁

𝑘=1 𝜀𝑘(𝑡) = 1 and 0 ≤ 𝜀
𝑘
(𝑡) ≤ 1. Due to (26), (25) can

be rewritten as in the following equation:

Δ𝑉 (𝑥 (𝑡)) = (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡))

𝑇

P (𝜀 (𝑡))

⋅ (X (𝛼 (𝑡)) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)) − 𝑥
𝑇

(𝑡)

⋅P (𝛼 (𝑡)) 𝑥 (𝑡) .

(27)

Taking expectation of (27), the following equation can be
found with the independent increment property of Brownian
motion:

𝐸 {Δ𝑉 (𝑥 (𝑡))} = 𝐸 {𝑥
𝑇

(𝑡)

⋅ (X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))

+ 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))) 𝑥 (𝑡) +𝑤

𝑇

(𝑡)

⋅ (E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))

+ 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))) 𝑥 (𝑡) + 𝑥

𝑇

(𝑡)

⋅ (X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡))

+ 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)))𝑤 (𝑡) +𝑤

𝑇

(𝑡)

⋅ (E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡))

+ 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)))𝑤 (𝑡) − 𝑥

𝑇

(𝑡)

⋅P (𝛼 (𝑡)) 𝑥 (𝑡)} .

(28)

Applying the cost function (11), one can find the following
relations:

𝐽
𝐷
= 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡))

+

𝑡𝑓

∑

0
Δ𝑉 (𝑥 (𝑡)) −𝑉 (𝑥 (𝑡

𝑓
))

}

}

}

≤ 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

+Δ𝑉 (𝑥 (𝑡)))

}

}

}

= 𝐸

{

{

{

𝑡𝑓

∑

0
Φ (𝑥, 𝑤, 𝑡)

}

}

}

.

(29)

According to (28), one has

Φ (𝑥, 𝑤, 𝑡) = [

𝑥 (𝑡)

𝑤 (𝑡)

]

𝑇

Ξ[

𝑥 (𝑡)

𝑤 (𝑡)

] , (30)

where

Ξ

= [

X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) − P (𝛼 (𝑡)) + S ∗

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) + 𝜏

2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) − 𝜂
2I

] .

(31)

Applying the Schur complement, one has the following
inequality from (24):

[

[

Q
𝑖
− G𝑇
𝑖
− G
𝑖
+ G𝑇
𝑖
U−1G

𝑖
+ (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) ∗

E𝑇
𝑖
Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2E𝑇
𝑖
Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) E𝑇

𝑖
Q−1
𝑘
E
𝑖
+ 𝜏

2E𝑇
𝑖
Q−1
𝑘
E
𝑖
− 𝜂

2I
]

]

< 0.

(32)

According to the fact that P−1
𝑖

− G𝑇
𝑖
− G
𝑖
≥ −G𝑇

𝑖
P
𝑖
G
𝑖
, the

following inequality holds from (32)with definitionQ
𝑘
= P−1
𝑘

and U = S−1

[

[

−G𝑇
𝑖
P
𝑖
G
𝑖
+ G𝑇
𝑖
SG
𝑖
+ (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) ∗

E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) E𝑇

𝑖
P
𝑘
E
𝑖
+ 𝜏

2E𝑇
𝑖
P
𝑘
E
𝑖
− 𝜂

2I
]

]

< 0.

(33)
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Since 𝜗
𝑖
≥ 0 and ∑

𝑁

𝑖=1 𝜗𝑖 = 1, the following inequality can be
inferred from (33):

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) 𝜀
𝑘
(𝑡)

⋅
[

[

−G𝑇
𝑖
P
𝑖
G
𝑖
+ G𝑇
𝑖
SG
𝑖
+ (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) ∗

E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) E𝑇

𝑖
P
𝑘
E
𝑖
+ 𝜏

2E𝑇
𝑖
P
𝑘
E
𝑖
− 𝜂

2I
]

]

< 0.

(34)

And inequality (34) can be rewritten as follows:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−G𝑇 (𝛼 (𝑡))P (𝛼 (𝑡))G (𝛼 (𝑡)) + G𝑇 (𝛼 (𝑡)) SG (𝛼 (𝑡))

+ (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))𝑇 P (𝜀 (𝑡))

⋅ (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

+𝜏
2
(A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

𝑇

P (𝜀 (𝑡))

⋅ (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

∗

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡)) (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

+𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡)) (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡))

+𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) − 𝜂

2I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (35)

Before and after multiplying (35) by diag{G−𝑇(𝛼(𝑡)), I} and
diag{G−1(𝛼(𝑡)), I}, one has

[

X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) − P (𝛼 (𝑡)) + S ∗

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) + 𝜏

2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) − 𝜂
2I

]

< 0.

(36)

Obviously, if condition (24) holds, then (36) can be obtained.
And Ξ < 0 can be also found from (31) due to (36). According
to Ξ < 0, Φ(𝑥, 𝑤, 𝑡) < 0 can be inferred from (30). Due
to Φ(𝑥, 𝑤, 𝑡) < 0 and (29), the following inequalities can be
obtained:

𝐽
𝐷
< 0 (37)

or

𝐸

{

{

{

𝑡𝑓

∑

0
𝑥
𝑇

(𝑡) S𝑥 (𝑡)
}

}

}

< 𝐸

{

{

{

𝜂
2
𝑡𝑓

∑

0
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

}

}

}

. (38)

Because (38) is equivalent to (4), it is easy to show that
the closed-loop system (22) driven by (21a)-(21b) satisfies
𝐻
∞
performance for all nonzero external disturbances. Next,

the asymptotical stability of the closed-loop system (22) is
proven. If the condition of this theorem is satisfied, then

Φ(𝑥, 𝑤, 𝑡) < 0 is held. By assuming 𝑤(𝑡) = 0, the following
inequality can be found from (29):

𝐸 {Δ𝑉 (𝑥 (𝑡)) + 𝑥
𝑇

(𝑡) S𝑥 (𝑡)} < 0 (39)

or

𝐸 {Δ𝑉 (𝑥 (𝑡))} < 𝐸 {−𝑥
𝑇

(𝑡) S𝑥 (𝑡)} . (40)

According to S > 0, one can deduce that 𝐸{Δ𝑉(𝑥(𝑡))} < 0.
And then the closed-loop system (22) is asymptotically stable
in the sense of mean square according to 𝐸{Δ𝑉(𝑥(𝑡))} < 0
and Definition 1. The proof of this theorem is complete.

In this section, the sufficient conditions are derived
by PDLF for discussing the stabilization problems of the
closed-loop system (22).Through the several positive definite
matrices and arbitrary matrices G

𝑖
, the conservatism of

Theorem 4 can be reduced in finding the feasible solutions
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of conditions (24). In the following section, two numerical
examples are proposed to demonstrate the effectiveness and
application of the proposed design method.

5. Simulation Results

In this section, two numerical examples are proposed. The
first example is employed to discuss the conservatism of the
proposed design methods. Another example is to discuss the
stabilization problem of disturbed ship autopilot servosystem
with multiplicative noise to show the application of the
proposed design methods. Moreover, the design method
of [14] is employed to compare with the proposed design
methods of this paper.

Example 5. Consider the following disturbed stochastic LPV
system:

𝑥 (𝑡 + 1) = A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡))

⋅ 𝑤 (𝑡) + (A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡) =

2
∑

𝑖=1
𝜗
𝑖
(𝑡) (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡)

+E
𝑖
𝑤 (𝑡) + (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(41)

where

A1 = [

2 −0.1
0.5 1.65

] ,

A2 = [

2 −0.1
0.5 0.35

] ,

B1 = [

1
−0.95

] ,

B2 = [

1
0.35

] ,

E1 = [

0.1
0
] ,

E2 = [

0.2
0
] ,

A1 = [

0.03 0
0.004 0.0165

] ,

A2 = [

0.03 0
0.004 0.0035

] ,

B1 = [

0.01
−0.0075

] ,

B2 = [

0.01
0.0055

] ,

E1 = [

0.001
0

] ,

E2 = [

0.002
0

] ,

𝜗1 (𝑡) = |sin (𝑡)| ,

𝜗2 (𝑡) = 1− |sin (𝑡)| .
(42)

In this numerical example, the intensity level is given as 𝜏 = 1.
For discussing the conservatism of Theorems 2 and 4, the
positive definite matrix S is determined as identity matrix to
find the minimum available value of 𝜂. Applying the convex
optimization algorithm [29], the minimum available value of
𝜂 for the sufficient condition of the theorems is shown in
Table 1. From Table 1, the minimum available value of 𝜂 to
satisfy Theorem 2 is 1.5166. In case such as 𝜂 = 1.5166, the
following feasible solutions of condition (7) can be obtained:

P = [

57.1827 34.8967
34.8967 22.9765

] ,

F1 = [4.2194 1.4732] ,

F2 = [1.8602 0.0691] .

(43)

Based on (43), the gain-scheduled controller can be designed
such as

𝑢 (𝑡) = −

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
𝑥 (𝑡) . (44)

Applying (44), the responses of (41) are stated in Figure 1
with initial condition 𝑥(𝑡) = [5 −3]𝑇. And the external
disturbance𝑤(𝑡) is chosen as zero-meanwhite noisewith unit
variance. For checking satisfaction of (4), the following ratio
is obtained via using the simulation results:

𝐸 {∑

𝑡𝑓=5
0 𝑥
𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=5
0 𝑤

𝑇
(𝑡) 𝑤 (𝑡)}

= 1.696. (45)

Obviously, the ratio in (45) is smaller than the obtained value
𝜂
2
= 2.3 with 𝜂 = 1.5166. From Figure 1 and (45), system (41)

driven by (44) is robust asymptotically stablewith attenuation
𝜂 in the sense of mean square.

Besides, from Table 1, the minimum available value of 𝜂
for satisfying Theorem 4 is 1.4. In the case such as 𝜂 = 1.4,
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Table 1: Comparing results for Theorems 2 and 4.

𝜂 ⋅ ⋅ ⋅ 1.5166 1.5133 1.4 ⋅ ⋅ ⋅

Theorem 2 Feasible Feasible Infeasible Infeasible Infeasible
Theorem 4 Feasible Feasible Feasible Feasible Infeasible

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

6

5

4

3

2

1
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−3

−4

Time (s)

x1

x2

Figure 1: Responses of Example 5 with controller (44).

the feasible solutions of conditions (24) can be obtained such
as

P1 = [

48.989 30.9426
30.9426 21.0296

] ,

P2 = [

12.7423 7.8087
7.8087 6.5371

] ,

G1 = [

0.2637 −0.3887
−0.4104 0.6518

] ,

G2 = [

0.2650 −0.3890
−0.3259 0.5924

] ,

F1 = [0.5621 −0.7445] ,

F2 = [0.4703 −0.6790] .

(46)

With the above feasible solutions, gain-scheduled controller
(21a)-(21b) is established as follows:

𝑢 (𝑡) = −(

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)(

2
∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

𝑥 (𝑡) . (47)

Based on controller (47), the responses of (41) are stated in
Figure 2 with the same initial condition and𝑤(𝑡) of the above

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

6

5

4

3

2

1

0

−1

−2

−3

−4

Time (s)

x1

x2

Figure 2: Responses of Example 5 with controller (47).

case. Based on the simulation results, the following ratio value
can be obtained:

𝐸 {∑

𝑡𝑓=5
0 𝑥
𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=5
0

𝑤
𝑇
(𝑡) 𝑤 (𝑡)}

= 1.675. (48)

Obviously, the value of (48) is smaller than 𝜂
2
= 1.96 with

𝜂 = 1.4. From Figure 2 and (48), the asymptotical stability
and 𝐻

∞
performance of system (41) can be achieved via the

controller (46).
From the simulation results of this example, the proposed

design methods are useful tools to design gain-scheduled
controller for stabilizing the LPV stochastic system (41).
Besides, from Table 1, it is obvious to show that the minimum
available value of Theorem 2 is bigger than the one of
Theorem 4. Thus, the sufficient conditions of Theorem 4 are
less conservative than the one in Theorem 2 for discussing
stability issue of LPV systems.

Example 6. In this example, the ship autopilot servosystem
is applied to show applicability of the proposed controller
design methods. Referring to [30], the discretization dif-
ferential equation of ship motion is proposed. Considering
the practical operations, the parameter 𝑇1 in the system is
assumed as time-varying parameter 𝑇1(𝑡) in this section.
According to 𝑇1(𝑡), the ship autopilot system belongs to
uncertain system. Moreover, a multiplicative noise term is
added to describe the stochastic behavior of the system. And
an external disturbance is added to simulate random force
from outside. Thus, the disturbed ship autopilot servosystem
with multiplicative noise is considered as follows:

𝑥1 (𝑡 + 1) = 𝑥1 (𝑡) + 𝑥2 (𝑡) × Δ𝑡, (49a)

𝑥2 (𝑡 + 1) = 𝑥2 (𝑡) + 𝑥3 (𝑡) × Δ𝑡

+ 0.0002 (1+ 0.1𝛽 (𝑡)) 𝑤 (𝑡) ,

(49b)
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𝑥3 (𝑡 + 1) = −𝐾 × Δ𝑡

𝑇1 (𝑡) 𝑇2
𝑥2 (𝑡)

+(

− (𝑇1 (𝑡) + 𝑇2) × Δ𝑡

𝑇1 (𝑡) 𝑇2
+ 1)𝑥3 (𝑡)

+

𝐾 (𝑇
𝐸
− 𝑇3) × Δ𝑡

𝑇1 (𝑡) 𝑇2𝑇𝐸
𝑥4 (𝑡)

+

𝐾𝑇3 × Δ𝑡

𝑇1 (𝑡) 𝑇2𝑇𝐸
𝑢 (𝑡) ,

(49c)

𝑥4 (𝑡 + 1) = 0.2𝛽 (𝑡) 𝑥2 (𝑡) + 0.1𝛽 (𝑡) 𝑥3 (𝑡)

+ (

−1 × Δ𝑡

𝑇
𝐸

+ 1)𝑥4 (𝑡)

+

1 × Δ𝑡

𝑇
𝐸

(1+ 0.6𝛽 (𝑡)) 𝑢 (𝑡) ,

(49d)

where 𝑥1(𝑡) represents the difference of the heading angle
and desires heading angle of ship; 𝑥2(𝑡) represents the
navigational angle velocity; 𝑥3(𝑡) represents the navigational
angle acceleration; 𝑥4(𝑡) represents the actual rudder angle of
ship; 𝑢(𝑡) represents the steering angle; and 𝑤(𝑡) is chosen as
zero-mean white noise with unit variance. In order to achieve
all possible values of variation of the parameter 𝑇1(𝑡), the
time-varying range of 𝑇1(𝑡) is determined as follows:

𝑇1 (𝑡) ∈ [36.25 108.75] . (50)

Besides, the constant parameters 𝑇2 = 8.54, 𝑇3 = 17.61,
and 𝑇

𝐸
= 2.5, rudder gain 𝐾 = 0.1141, and sampling time

Δ𝑡 = 0.4 are given in this section. According to the LPV
modeling approach, system (49a)–(49d) can be described as
the following disturbed LPV stochastic system:

𝑥 (𝑡 + 1) = A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡))

⋅ 𝑤 (𝑡) + (A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡) =

2
∑

𝑖=1
𝜗
𝑖
(𝑡) (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡)

+E
𝑖
𝑤 (𝑡) + (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(51)

where

A1 =

[

[

[

[

[

[

1 0.4 0 0
0 1 0.4 0
0 −0.000064 0.9508 −0.000296
0 0 0 0.8521

]

]

]

]

]

]

,

A2 =

[

[

[

[

[

[

1 0.4 0 0
0 1 0.4 0
0 −0.00013 0.9438 −0.00088
0 0 0 0.8521

]

]

]

]

]

]

,

B1 =

[

[

[

[

[

[

0
0

0.0003
0.1363

]

]

]

]

]

]

,

B2 =

[

[

[

[

[

[

0
0

0.0010
0.1363

]

]

]

]

]

]

,

E1 =

[

[

[

[

[

[

0
0.0002

0
0

]

]

]

]

]

]

,

E2 = E1,

A1 =

[

[

[

[

[

[

0 0 0 0
0 0 0 0
0 0 0 0
0 0.2 0.1 0

]

]

]

]

]

]

,

A2 = A1,

B1 =

[

[

[

[

[

[

0
0
0

0.01

]

]

]

]

]

]

,

B2 = B1,

E1 =

[

[

[

[

[

[

0
0.00002

0
0

]

]

]

]

]

]

,

E2 = E1,

𝜗1 (𝑡) = |sin (𝑡)| ,

𝜗2 (𝑡) = 1− |sin (𝑡)| .
(52)

For (51), the performance index 𝜂 is given by 0.0032 and
the intensity level 𝜏 = 1 is given. Employing the convex
optimization algorithm, the feasible solutions of Theorem 2
can be obtained as follows:

P =

[

[

[

[

[

0.0033 0.0723 0.4088 −0.0004
0.0723 3.1263 21.1886 −0.0308
0.4088 21.1886 148.4819 −0.2240
−0.0004 −0.0308 −0.2240 0.0006

]

]

]

]

]

× 10−3,
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S =

[

[

[

[

[

[

0.2227 0.0452 −0.0042 −0.0030
0.0452 0.8313 0.0099 0.0059
−0.0042 0.0099 0.9017 −0.0012
−0.0030 0.0059 −0.0012 0.1516

]

]

]

]

]

]

× 10−7,

F1 = [0.5172 23.2092 150.4117 −0.9578] ,

F2 = [1.2392 57.8210 390.6686 −1.2176] .
(53)

According to the above feasible solutions, the following gain-
scheduled controller can be designed:

𝑢 (𝑡) = −

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑖
𝑥 (𝑡) . (54)

Based on the gain-scheduled controller (54), the responses
of system (51) are stated in Figures 3–6 via initial condition
𝑥(0) = [𝜋/2 0 0 0]𝑇. For checking the achievement of
(4), one can find the following values by substituting the
simulated responses into the following ratio function:

𝐸 {∑

𝑡𝑓=100
0 𝑥

𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=100
0 𝑤

𝑇
(𝑡) 𝑤 (𝑡)}

= 7.199× 10−7. (55)

It is easy to know that the ratio value in (55) is smaller than the
given 𝜂2 = 1×10−6 with 𝜂 = 0.001.Thus, the𝐻

∞
performance

of system (49a)–(49d) can be achieved via controller (54).
And, from Figures 3–6, one can find that system (49a)–(49d)
driven by (54) is asymptotically stable in the sense of mean
square.

Besides, applying Theorem 4, the following feasible solu-
tions of condition (24) are obtained:

P1 =

[

[

[

[

[

[

0.0029 0.0655 0.3755 −0.0004
0.0655 3.1063 21.4553 −0.0321
0.3755 21.4553 152.8154 −0.2360
−0.0004 −0.0321 −0.2360 0.0006

]

]

]

]

]

]

× 10−4,

P2 =

[

[

[

[

[

[

0.0028 0.0585 0.3261 −0.0003
0.0585 2.7418 18.8854 −0.0292
0.3261 18.8854 134.7003 −0.2158
−0.0003 −0.0292 −0.2158 0.0006

]

]

]

]

]

]

× 10−4,

S =

[

[

[

[

[

[

0.1817 0.0219 −0.0022 −0.0032
0.0219 0.4025 0.0026 0.0015
−0.0022 0.0026 0.4152 −0.0003
−0.0032 0.0015 −0.0003 0.1365

]

]

]

]

]

]

× 10−8,

G1 =

[

[

[

[

[

[

4.3444 −0.5847 0.0703 −0.7245
−0.5848 0.0899 −0.0111 0.0508
0.0703 −0.0111 0.0014 0.0012
−0.7242 0.0506 0.0013 4.2746

]

]

]

]

]

]

× 107,

G2 =

[

[

[

[

[

[

4.3445 −0.5847 0.0703 −0.7229
−0.5848 0.0900 −0.0111 0.0503
0.0703 −0.0111 0.0014 0.0020
−0.7233 0.0503 0.0018 4.3617

]

]

]

]

]

]

× 107,

F1 = [−0.0393 0.0594 −0.0121 −3.1880] × 107,

F2 = [−0.0370 0.0585 −0.0099 −2.7806] × 107.

(56)

And the following gain-scheduled controller can be designed
with the feedback gains in (56):

𝑢 (𝑡) = −(

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑖
)(

2
∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑖
)

−1

𝑥 (𝑡) . (57)

Applying the controller (57), the responses of system (51) are
stated in Figures 3–6 via the same initial condition. From the
simulation results, the effect of the disturbance on the system
driven by (57) can be criticized as follows:

𝐸 {∑

𝑡𝑓=100
0 𝑥

𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=100
0 𝑤

𝑇
(𝑡) 𝑤 (𝑡)}

= 6.587 × 10−8. (58)

It is easy to know that the ratio value in (58) is smaller than the
given 𝜂2 = 1×10−6 with 𝜂 = 0.001.Thus, the𝐻

∞
performance

of system (49a)–(49d) can be achieved via controller (57).
And, from Figures 3–6, one can find that system (49a)–(49d)
driven by (57) is asymptotically stable in the sense of mean
square.

In order to emphasize the advantages of this paper,
the design method of [14] is applied to compare with the
proposed methods in this paper. Referring to [14], the 𝐻

∞

gain-scheduled controller design method was proposed for
LPV systems without consideration of stochastic behavior.
On the other hand, the same PDLF was used to derive
the sufficient condition in Theorem 8 of [14]. Applying the
design method of [14], the corresponding controller can be
established as follows:

𝑢 (𝑡) =

2
∑

𝑗=1
𝜗
𝑗
(𝑡)K
𝑖
𝑥 (𝑡) , (59)

where K1 = [−0.0188 −1.5204 −15.2101 0.5341] and K2 =
[1.9481 30.4800 145.7313 0.5315]. With the same initial
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Figure 3: Responses for 𝑥1(𝑡) of Example 6.
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Figure 4: Responses for 𝑥2(𝑡) of Example 6.

condition, the responses of (49a)–(49d) driven by (59) are
stated in Figures 3–6. From Figures 3–6, one can find that
controllers (57) provide better performance in both short
term and long term characteristics than others. Besides, the
overshoot and setting time of system (49a)–(49d) driven by
the controller designed by this paper are smaller than those
driven by controller (59). Therefore, the controller designed
by [14] provides the worst control performance to stabilize
system (49a)–(49d) due to stochastic behavior. Through the
simulation results, the proposed design methods provide
some improvements for [14] in stabilizing the disturbed
uncertain stochastic system (49a)–(49d).
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Figure 5: Responses for 𝑥3(𝑡) of Example 6.
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Figure 6: Responses for 𝑥4(𝑡) of Example 6.

6. Conclusion

The𝐻
∞
gain-scheduled controller designmethods have been

proposed in this paper for discrete-time disturbed uncertain
stochastic systems described by LPV stochastic system. By
choosing the Lyapunov functions, the sufficient conditions
were derived to establish the corresponding gain-scheduled
controller. And the 𝐻

∞
attenuation performance has been

considered to constrain the effect of external disturbance
on the considered systems. Applying the proposed design
methods, the simulation results have been proposed to show
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the effectiveness and applicability of this paper. From the
simulation results, the robust asymptotical stability and 𝐻

∞

performance of uncertain stochastic systems can achieve the
designed gain-scheduled controller in the sense of mean
square.
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With the development of cloud computing and virtualization, a physical router can be multiplexed as a large number of virtual
routers. TCP-based interactive applications have an incentive to improve their performance by padding “junk packets” into the
network among real communication packets. This padding misbehavior will upgrade short TCP flows from “mice” to “elephants”
and consequently lead to network congestion and breakdown.This paper presents a detailed solution and analysis for describing the
normal behavior and padding misbehavior of virtual routers. In particular, a systemmodel for analyzing behavior of virtual routers
is based on evolutionary game model, and, through analyzing the stability of the equilibrium points, the stable point is the solution
to the problem.The clear evolutionary path of network applications with the normal behavior and paddingmisbehavior is analyzed
by the corresponding graph.Then this paper gives the behavior control suggestions to effectively restrain the padding misbehavior
and maintain stable high-throughputs of the router. The simulation results demonstrate that our solution can effectively restrain
the padding misbehavior and maintain stable high-throughputs of the router simultaneously compared with the classical queue
management.

1. Introduction

During the past decade, cloud computing has been signif-
icantly developed, which provides a large number of cloud
services. Lots of cloud computing service providers appear,
such as Amazon and Google. The basis of cloud computing
is to build virtual networks to meet the needs of the cloud
services, and the deployment of virtual network requires
virtual routers [1]. An ideal goal of virtualization is that
large numbers of virtual routers can simultaneously run on
the same physical platform. Scaling to virtual routers poses
serious challenges to the performance of routers, such as low
memory access, low false positive probability, flexibility of
update, and high scalability. With the rapid development of
processor architecture and virtual networks, the operational
mode has changed dramatically. First, the physical routing
platform has been transforming from single-core processors
to multicore processors. Second, a physical router needs
to be multiplexed as a large number of virtual routers, as
Figure 1 shows.Therefore, it is significant to study the efficient

algorithm of a physical router to support scalable virtual
routers [2].

However, with the increasing demands of network band-
width, network applications are also facing challenges. The
challenges are to solve the problemof bandwidth competition
in data transmission [3]. It is a more serious problem that
a cloud computing service provider synchronously provides
services for large numbers of different applications. In tra-
ditional network, it is well known that short TCP flows
may experience significant performance degradations when
they multiplex with long-lived TCP flows and UDP flows.
The reason is that they tend to occupy more bandwidth
resources for a long time and usually seize bandwidth in
an unfriendly way [4]. Consequently, a new phenomenon
appears. In order to obtain enough bandwidth resources,
TCP-based interactive applications, such as gaming, telnet,
or persistent HTTP, have an incentive to improve their
performance. In particular, they send “junk packets” into
the network among real communication packets, which is
called padding misbehavior. This kind of misbehavior may
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Figure 1: Padding misbehavior of network applications.

guarantee the bandwidth benefits of short TCP flows, but it is
a tragedy to the cloud network, because the misbehavior will
upgrade short TCP flows from “mice” to “elephants,” leading
to network congestion eventually [5].

Unfortunately, whether at the transportation or the appli-
cation levels, it is easy to upgrade an interactive application
to a fully backlogged flow. The TCP-based interactive appli-
cations realize the padding misbehavior by utilizing virtual
routers on one physical router. As shown in Figure 1, in a
card game application, there are three terminals, Host A,
Host B, and Host C, and they play cards together. The card
game applications activate three virtual routers in the cloud
computing network for the hosts playing the game. The red
blocks are the real packets for their card game, while the
black blocks are the junk packets. The three hosts apply this
kind of paddingmisbehavior in order to continuously occupy
the network bandwidth and improve their performance. On
account of consuming huge bandwidth resources of the net-
work, suchmisbehavior easily lead to network congestion [6].

In recent years, the studies of the above problems focus on
the queue management schemes which are generally based
on two packet processing types, Drop-tail and RED [7], for
instance, ARED [8], BLUE [9], PI [10], and PAQM [11] algo-
rithms. However, both network-based and endpoint-based
mechanisms that check for TCP-friendliness are incapable
of detecting any violation, simply because all flows are TCP
friendly. In these methods several packets would be dropped
without considering the padding misbehavior. So the exiting
schemes could not effectively avoid such misbehavior and
the terminals could not apply appropriate communication
behavior.

Game theory has been a mature and hot topic with
many applications in various research fields. In order to
solve the above mentioned problems, the evolutionary game
theory which extends traditional game analysis is utilized
in this paper. Evolutionary game theory which was first
developed by Fisher to explain the approximate equality
of the sex ratio in mammals in 1930 has been used to
explain a number of aspects of human behavior [12]. In
the evolutionary game theory, the decision-making behavior

is based on the interaction among agents and helps the
system to realize utility maximization. Affected by internal
and external factors, participants’ strategies and game’s results
will be presented in different states [13].These features enable
the game theory to well model the interaction of short TCP
flows and obtain the solution of the padding misbehavior of
virtual routers.

The main contributions of this paper can be summarized
as follows:

(1) We built a novel game model which is based on
the evolutionary game for describing the normal
behavior and padding misbehavior of virtual routers.

(2) This paper analyses the stability of the equilibrium
points which depends on the value of Δ𝐽 ⋅ tr𝐽, and the
stable point is the solution to the problem.

(3) This paper analyses the corresponding evolutionary
path of network applications with the normal behav-
ior and padding misbehavior and gives the behavior
control suggestions of padding misbehavior.

The rest of the paper is organized as follows. In Section 2,
we build a game model of virtual routers for describing
behavior. Section 3 gives the stability analysis of our evo-
lutionary game model. Section 4 is further discussions and
control suggestions. Section 5 is Simulation Experiment and
Result Analysis. Finally, Section 6 concludes the paper.

2. System Model and Problem Analysis

2.1. Motivation. This paper, respectively, proposes a model
and an algorithm on the basis of the evolutionary game
theory. Comparing with the other game theories, the evo-
lutionary game theory has four characteristics which can be
described by a dynamic process for virtual routers to select
normal behavior and paddingmisbehavior in our problem. In
the stable equilibrium of the evolutionary game, none of the
virtual routers is able to obtain the global utility information
in our problem, so it is an appropriate choice to model our
problem based on the evolutionary game.

(1) Dynamics selection: in evolutionary games, players
can observe other players’ behavior, learn from obser-
vation, andmake the best decisions according to their
knowledge. Furthermore, dynamic equations can be
utilized to analyze how players adjust their behavior
to achieve the desired solution.

(2) Bounded rationality: in the evolutionary game, play-
ers slowly change their strategies in order to achieve
ideal solution comparingwith the players in a classical
single-play and noncooperative game; this is due to
the lack of global information, which is leading the
player’s inadequate rationality.

(3) Efficient solution: in the evolutionary game theory,
evolutionary equilibrium provides such an efficient
solution, and it ensures the stability which means all
the playerswill not change their chosen strategies over
time.
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Figure 2: The obtained throughput of virtual routers.

(4) Stability: in Nash equilibrium, no player will change
his or her strategy. Because they could not get benefits
by changing his or her chosen strategy while other
players maintain theirs unchanged [14].

2.2. System Model for Describing Behavior of Virtual Routers.
This paper considers an evolutionary game model for virtual
routers as Figure 2 shows, and there are a set of virtual routers
VR𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛}. The virtual routers can be activated or
inactivated by different TCP-based interactive applications.
Usually, the applications adopt normal behavior and a single
packet loss can force a short-lived TCP flow to experience
long retransmission, so some interactive applications adopt
paddingmisbehavior by virtual routers for data transmission.
The problems we want to solve are how to restrain the
padding misbehavior and what the condition of the selection
convergence is. So we model the problem by using a dynamic
evolutionary game.

The evolutionary game model can be described by the
elements as follows.

(1) Players: virtual routers VR𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛} are the
players of the evolutionary game.

(2) Strategy: the strategies of the players are the two
kinds of behavior: normal behavior and padding
misbehavior.

(3) Input packet rate: it is assumed that the average packet
arrival rate of the virtual routers obey the Poisson
distribution. As shown in Figure 2, 𝜆𝑖 is the input rate
of VR𝑖.

(4) Drop packet probability: the algorithm is designed
to use drop probability to manage the packet flows
which pass through the ports of the physical router.
When network congestion occurs, the algorithm will
drop some packets with drop probability. Different
behavior has different drop probabilities. It is assumed
that the drop probability of virtual routers which

adopt normal behavior is 𝑝, and the drop probability
of virtual routers which adopt padding behavior is 𝑞.
Obviously, the values’ relationship of the two behavior
is 𝑞 > 𝑝.

(5) Output packet rate: it is the throughput of the virtual
routers and is also the player’s departure rate of
passing through the physical router port. As shown
in Figure 2, 𝑢𝑖 is the input rate of VR𝑖.

(6) Payoff: the payoff is the obtained throughput of a flow
when it departs from the virtual router. It is also the
characteristic value of the noncooperative TCP-based
interactive applications, and the Nash equilibrium of
the whole system could be reached by these values.

In cloud computing network, there are lots of applica-
tions. They belong to two kinds: one kind is UDP-based
applications and the other kind is TCP-based interactive
applications. An application choosing normal behavior con-
centrates on mutual benefits, which is willing to share the
stability networking in the data transmission process. An
application choosing padding misbehavior tends to obtain
more and more network bandwidth and this will cause net-
work congestion [15]. During data’s transmission, we assume
that any application in the network has the opportunity to
adopt padding misbehavior, which is used to achieve the goal
of maximizing the benefits of the application.

Let𝑋 denote the proportion of applications which choose
normal behavior in the TCP-based interactive applications;
then 1−𝑋denote the proportion of applicationswhich choose
padding misbehavior in the TCP-based interactive applica-
tions. Let 𝑌 denote the proportion of applications which
choose normal behavior in the UDP-based applications; then
1 − 𝑌 denote the proportion of applications which choose
padding misbehavior in the UDP-based applications.

We assume the following. (1) Whether it is TCP-based
interactive applications or UDP-based applications, as long
as both game participants adopt normal behavior, then they
both gain 𝑢𝑖 = 𝜆𝑖(1 − 𝑝). The gain obeys the linear
pricing model, and the reason is that, with the drop package
probability increasing, more packages will be dropped, and
the number of nondropped packages will decrease.The linear
pricing model is beneficial to avoid congestion and improve
the systemperformance. (2)Whether it is TCP-based interac-
tive applications or UDP-based applications, as long as both
gameparticipants adopt paddingmisbehavior, then they both
gain 𝑢𝑖 = 0. In this case, the whole network will go into
congestion state and breakdown. (3)Whether it is TCP-based
interactive applications or UDP-based applications, as long
as one chooses padding misbehavior and the other chooses
normal behavior; then the participants who choose normal
behavior gain 𝑢𝑖 = 𝜆𝑖(1 − 𝑝) + 𝐶, where 𝐶 denotes the
benefit because of the penalty of padding misbehavior. The
participants who choose padding misbehavior gain 𝑢𝑖 = (1 −

𝐾𝑖)𝜆𝑖(1 − 𝑞), where 𝐾𝑖 is the padding factor which equals
the percentage of padding packets in the whole packets,
and 𝑞 > 𝑝, which means that this misbehavior will obtain
punishment. So we can get the payoff matrix of TCP-based
interactive applications or UDP-based applications as shown
in Table 1.
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Table 1: The payoff matrix of TCP-based interactive applications or UDP-based applications.

TCP-based interactive applications
Normal behavior (𝑋) Padding misbehavior (1 − 𝑋)

UDP-based applications
Normal behavior (𝑌) (𝜆𝑖(1 − 𝑝), 𝜆𝑗(1 − 𝑝)) (𝜆𝑖(1 − 𝑝) + 𝐶, (1 − 𝐾𝑗)𝜆𝑗(1 − 𝑞))
Padding misbehavior (1 − 𝑌) ((1 − 𝐾𝑖)𝜆𝑖(1 − 𝑞), 𝜆𝑗(1 − 𝑝) + 𝐶) (0, 0)

3. Solution and Stability Analysis of the Model

It is assumed that an evolutionary game has 𝑚 strategies.
At time 𝑡, the number of individuals that choose strategy
𝑖 (𝑖 = 1, 2, . . . , 𝑚) is denoted by 𝑛

𝑖
(𝑡), so the total number

of individuals is denoted by 𝑁 = ∑
𝑚

𝑖=1 𝑛𝑖(𝑡). Then the state
of each strategy is given by 𝑋(𝑡) = {𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑘(𝑡)},
where 𝑥

𝑖
= 𝑛
𝑖
/𝑁 is the proportion of strategy 𝑖. In our game

model, the replicator dynamics can be defined as follows
[16]:

𝑑 (𝑥
𝑖 (𝑡))

𝑑𝑡
= 𝑥
𝑖 (𝑡) ∗ [𝑈

𝑖 (𝑡) −𝑈 (𝑡)] , 𝑖 ∈ {1, 2, . . . , 𝐼} . (1)

By the utility 𝑈
𝑖
(𝑡), the average utility 𝑈(𝑡), and

𝑑(𝑥
𝑖
(𝑡))/𝑑𝑡 = 0, we can obtain the fixed points of the dif-

ferential equations.The stable fixed points form a proportion
distribution which is the evolutionary equilibrium, and the
dynamic evolutionary game will converge to the equilibrium.

Based on the replicator equation (1), we can get the
dynamic equations for the evolution of the padding misbe-
havior and normal behavior in the network

𝑑𝑋
𝑅

𝑑𝑡
= 𝑋
𝑅
⋅ (𝐸
𝑅
−𝐸)

= 𝑋
𝑅
⋅ [𝐸
𝑅
−𝑋
𝑅
⋅ 𝐸
𝑅
− (1−𝑋

𝑅
) ⋅ 𝐸
𝑂
]

= 𝑋
𝑅
⋅ (1−𝑋

𝑅
) ⋅ (𝐸
𝑅
−𝐸
𝑂
) ,

(2)

where 𝑋
𝑅

denotes the proportion of applications which
choose normal behavior, 0 ≤ 𝑋

𝑅
≤ 1, 1−𝑋

𝑅
denotes the pro-

portion of applications which choose padding misbehavior,
𝐸
𝑅
denotes the expected revenue of the applications which

choose normal behavior, 𝐸
𝑂
denotes the expected revenue of

the applications which choose padding misbehavior, and 𝐸

denotes the average expected revenue of all applications.
Based on the payoff matrix in Table 1, we can get

𝑑𝑋

𝑑𝑡
= 𝑋 (1−𝑋) [𝑌𝜆𝑖 (1−𝑝)

+ (1−𝑌) (1−𝐾𝑖) 𝜆𝑖 (1− 𝑞) −𝑌𝜆𝑖 (1−𝑝) −𝑌𝐶]

= 𝑋 (1−𝑋) [(1−𝑌) (1−𝐾𝑖) 𝜆𝑖 (1− 𝑞) −𝑌𝐶] ,

𝑑𝑌

𝑑𝑡
= 𝑌 (1−𝑌) [𝑋𝜆𝑗 (1−𝑝)

+ (1−𝑋) (1−𝐾𝑗) 𝜆𝑗 (1− 𝑞) −𝑋𝜆𝑗 (1−𝑝) −𝑋𝐶]

= 𝑌 (1−𝑌) [(1−𝑋) (1−𝐾𝑗) 𝜆𝑗 (1− 𝑞) −𝑋𝐶] .

(3)

Let 𝑑𝑋/𝑑𝑡 = 0, 𝑑𝑌/𝑑𝑡 = 0, and we can get five
equilibrium points of the model: 𝑂(0, 0), 𝐴(0, 1), 𝐵(1, 0),
𝐶(1, 1), and 𝐷(1 − 𝐶/((1 − 𝐾𝑗)𝜆𝑗(1 − 𝑞) + 𝐶), 1 − 𝐶/((1 −

𝐾𝑖)𝜆𝑖(1 − 𝑞) + 𝐶)).
The stability of the equilibrium point is obtained by local

stability analysis of the Jacobian matrix of the system [17].
When Δ𝐽 ⋅ tr𝐽 < 0, the equilibrium point is stable; when
Δ𝐽⋅tr𝐽 > 0, the equilibriumpoint is not stable; whenΔ𝐽⋅tr𝐽 =

0, the equilibrium point is a saddle point. Based on formulas
(3), we can get the Jacobian 𝐽:

𝐽 =
[
[
[

[

𝜕 (𝑑𝑋/𝑑𝑡)

𝜕𝑋

𝜕 (𝑑𝑋/𝑑𝑡)

𝜕𝑌

𝜕 (𝑑𝑌/𝑑𝑡)

𝜕𝑋

𝜕 (𝑑𝑌/𝑑𝑡)

𝜕𝑌

]
]
]

]

= [

[

(1 − 2𝑋) [(1 − 𝑌) (1 − 𝐾𝑖) 𝜆𝑖 (1 − 𝑞) − 𝑌𝐶] −𝑋 (1 − 𝑋) [(1 − 𝐾𝑖) 𝜆𝑖 (1 − 𝑞) + 𝐶]

−𝑌 (1 − 𝑌) ((1 − 𝐾𝑗) 𝜆𝑗 (1 − 𝑞) + 𝐶) (1 − 2𝑌) [(1 − 𝑋) (1 − 𝐾𝑗) 𝜆𝑗 (1 − 𝑞) − 𝑋𝐶]

]

]

.

(4)

So we can get

Δ𝐽 = (1− 2𝑋) [(1−𝑌) (1−𝐾𝑖) 𝜆𝑖 (1− 𝑞) −𝑌𝐶]

⋅ (1− 2𝑌) [(1−𝑋) (1−𝐾𝑗) 𝜆𝑗 (1− 𝑞) −𝑋𝐶]

−𝑌 (1−𝑌) ((1−𝐾𝑗) 𝜆𝑗 (1− 𝑞) +𝐶)

⋅𝑋 (1−𝑋) [(1−𝐾𝑖) 𝜆𝑖 (1− 𝑞) +𝐶] ,

tr𝐽 = (1− 2𝑋) [(1−𝑌) ((1−𝐾𝑖) 𝜆𝑖 (1− 𝑞) −𝑌𝐶]

+ (1− 2𝑌) [(1−𝑋) (1−𝐾𝑗) 𝜆𝑗 (1− 𝑞) −𝑋𝐶] .

(5)
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Thenwe can get the stability of the five equilibriumpoints.

(1) To the first equilibrium point𝑂(0, 0): Δ𝐽 > 0, tr𝐽 > 0,
so Δ𝐽 ⋅ tr𝐽 > 0; the equilibrium point is not stable.
When the initial state is at point 𝑂(0, 0), the whole
network will go into another stable state.

(2) To the second equilibrium point 𝐴(0, 1): Δ𝐽 > 0,
tr𝐽 < 0, so Δ𝐽 ⋅ tr𝐽 < 0; the equilibrium point is
stable. When the initial state is at point 𝐴(0, 1), the
evolutionary game will converge.

(3) To the third equilibriumpoint𝐵(1, 0):Δ𝐽 > 0, tr𝐽 < 0,
so Δ𝐽 ⋅ tr𝐽 < 0; the equilibrium point is stable. When
the initial state is at point 𝐵(1, 0), the evolutionary
game will converge.

(4) To the fourth equilibrium point 𝐶(1, 1): Δ𝐽 > 0, tr𝐽 >

0, so Δ𝐽 ⋅ tr𝐽 > 0; the equilibrium point is not stable.
When the initial state is at point 𝐶(1, 1), the whole
network will go into another stable state.

(5) To the fifth equilibrium point𝐷(1−𝐶/((1−𝐾𝑗)𝜆𝑗(1−
𝑞)+𝐶), 1−𝐶/((1−𝐾𝑖)𝜆𝑖(1−𝑞)+𝐶)): Δ𝐽 < 0, tr𝐽 = 0,
so Δ𝐽 ⋅ tr𝐽 = 0; the equilibrium point is not stable, and
it is a saddle point.

4. Further Analysis and
Behavior Control Suggestions

The active queue management schemes, for instance, RED
[7], ARED [8], BLUE [9], PI [10], and PAQM [11], are
generally based on twopacket processing types,Drop-tail and
RED. But in thesemethods several packets would be dropped
without considering the padding misbehavior. Therefore,
network congestion could not be effectively avoided and
the terminals could not apply appropriate communication
behavior. So it is necessary to design a new scheme to avoid
congestion caused by padding misbehavior and maintain
stable high-throughputs of the router system.

From the above analysis, we can learn that penalty cost
is a good way to avoid padding misbehavior. The larger the
penalty cost, the more the willingness of the applications to
choose normal behavior. On the other hand, there are also
other factors that will affect the padding misbehavior in the
cloud computing network. Figure 3 shows the corresponding
evolutionary path of network applications with the normal
behavior and padding misbehavior. The four fixed points
𝐴, 𝐵, 𝐶, and𝐷 are the vertices of a square. To the saddle point
𝐷(1−𝐶/((1−𝐾𝑗)𝜆𝑗(1−𝑞)+𝐶), 1−𝐶/((1−𝐾𝑖)𝜆𝑖(1−𝑞)+𝐶)), it
is clear that there are four curves, and they divide the square
into four parts: Ι, ΙΙ, ΙΙΙ, and ΙV. And the position of the
point 𝐷 depend on the parameters 𝐶, 𝐾𝑗, 𝐾𝑖, 𝜆𝑖, and 𝑞. It
is clear that the different initial states of the game can lead to
different results. When the initial state is in the areas Ι and ΙΙ,
the gamewill converge to the stable equilibriumpoint𝐵(1, 0).
When the initial state is in the areas ΙΙΙ and ΙV, the game will
converge to the stable equilibrium point 𝐴(0, 1).

To avoid network congestion, the queue management
algorithms could restrain padding misbehavior effectively.

I 

III

II
IV D

A(0, 1)

O(0, 0) B(1, 0)

C(1, 1)

dX/dt

d
Y
/d
t

(

D(1 − C

(1 − Kj)𝜆j(1 − q) + C
, 1 − C

(1 − Ki)𝜆i(1 − q) + C
)

Figure 3: Evolutionary path of network applications.

Therefore, we provide the suggestions aiming at each applica-
tion to adopt normal behavior in the real network. For TCP-
based interactive applications andUDP-based applications, if
they both adopt normal behavior, the whole network will run
effectively by the network congestion control mechanism; if
one of them adopts padding misbehavior, the input packet
rate 𝜆𝑖 or 𝜆𝑗 is bigger than the normal case, and in order
to make the state close to the stable point 𝐴(0, 1) or 𝐵(1, 0),
the queue management algorithms should drop all the input
packets of the applications with padding misbehavior. This
way is different from the traditional queue management
algorithms dropping packets randomly.

5. Simulation Experiment and Result Analysis

In this section, we present the software simulation exper-
iments on NS-2 (Network Simulator version 2) to test the
performance of our solution [18]. NS2 is a discrete event sim-
ulator targeted at networking research. It provides substantial
support for simulation of TCP, routing, and multicast proto-
cols over wired and wireless (local and satellite) networks. It
consists of the following modules: flow generation module,
event queue manager module, statistics collection and query
module, and so on. The simulation topology is shown in
Figure 1, andmultiple TCP-based interactive applications and
UDP-based applications share links between two physical
routers. We compare the performance and effectiveness of
our solution with RED solution introduced in Section 1.

In the simulation, it is assumed that the throughputs of
Host A, Host B, and Host C are, respectively, set to 100Kbp,
200Kbps, and 300Kbps. The link capacity is 700Kbps, and
each host has the intention to pad “junk packets” in its
TCP connection which means everyone applies the padding
misbehavior in order to seize more bandwidth. The hosts
realized the padding misbehavior by activating the corre-
sponding virtual routers, and the behavior of virtual routers
may dynamically transfer from normal behavior to padding
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Figure 4: The hosts’ throughputs of our solution.
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Figure 5: Comparison of the router throughput.

misbehavior. In order to verify that our solution is able to
handle this complex scenario, the experimental results show
the four hosts’ changes of behavior and the whole throughput
of the router.

Figures 4 and 5, respectively, show the three hosts’
throughputs and the total throughput of RED solution and
our solution. As shown in Figure 4, each host’s throughput is
not stable from 0 s to 50 s, and every host wants to seize band-
width through padding “junk packets.” However, any host
which used the paddingmisbehavior will be punished, which
means that the corresponding drop probability will increase.
Finally, the hosts’ throughputs will remain unchanged. As
shown in Figure 5, in our solution the total throughput is
stable and the congestion is successfully avoided. By contrast,
the total throughput of RED solution obviously decreases as

the time increases which means that congestion occurs, and
RED solution could not restrain the padding misbehavior.

The experiment results show that our solution is able to
effectively restrain the padding misbehavior and maintain
stable high-throughputs of the router simultaneously com-
pared with the classical queue management.

6. Conclusion

The core issue of network virtualization is to run multi-
ple virtual router instances on a common physical router
hardware platform, and this poses serious challenges to the
performance of routers. In this paper, we built a novel game
modelwhich is based on the evolutionary game for describing
the normal behavior and padding misbehavior of virtual
routers and discusses the stability of the equilibrium points
which depends on the value of Δ𝐽 ⋅ tr𝐽, and the stable
point is the solution to the problem. Then we analyze the
corresponding evolutionary path of network applications
with the normal behavior and padding misbehavior and
give the control suggestions of padding misbehavior. The
study shows that the behavior control suggestions are able
to effectively restrain the padding misbehavior and maintain
stable high-throughputs of the router.
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This paper first investigates the problem of finite-time boundedness of Markovian jump system with piecewise-constant transition
probabilities via dynamic output feedback control, which leads to both stochastic jumps and deterministic switches. Based on
stochastic Lyapunov functional, the concept of finite-time boundedness, average dwell time, and the coupling relationship among
time delays, several sufficient conditions are established for finite-time boundedness and𝐻

∞
filtering finite-time boundedness.The

system trajectory stays within a prescribed bound. Finally, an example is given to illustrate the efficiency of the proposed method.

1. Introduction

Markovian jump systems were introduced as a class of
stochastic switched systems, which can be governed by a
Markov chain in a finite mode set of linear dynamics. In
recent years, because it is appropriate tomodel many physical
systems with economics, random failures, and networked
control systems, more and more people draw their attention
to Markovian jump systems [1–4]. As a special class of
stochastic systems in the finite operation modes, Markovian
jump systems can switch from one to another at different
time. Up to now, many important results in the literature
are based on the assumption that the complete knowledge
of transition probabilities is available in the jump process.
However, at mode observation instants, the Markovian jump
modes of the systems cannot be accurately obtained, and to
get the ideal information on all transition rates is hard or
generally expensive in reality, and the obtained results are not
accurate. Therefore, it is very important to consider systems
based on the assumption that transition probabilities are
completely unknown. Recently, the Markovian jump systems
subject to partially known transition probabilities have been

reported [5–10]. However, the Markov processes are time-
invariant in most of aforementioned obtained results.

Nowadays, piecewise-homogeneous (namely, time-
varying transition probabilities) Markovian jump systems
are developed for practical applications, affecting not only
the time-varying transition probabilities but also the state
dynamics. The evolution between two operating modes
with time-varying transition probabilities was proposed in
economy systems [11, 12]. Because of the important issue
of the possibility in measuring the variations, up till now, a
few people in view of stochastic Markovian jump systems
with time-varying transition probabilities except in [13–19].
In [14], there is a bounded real lemma for Markovian jump
linear systems with time-varying transition probabilities in
discrete-time domain.TheMarkov switching is employed for
sustainability of US external debt in [15]. The linear matrix
inequalities are used for control theory in Markov switching
[16]. In [19], newly Lyapunov functional is proposed with
piecewise-constant transition probabilities. It should be
noted that average dwell time switching is very important
in dynamic systems [20–23]. In [20], the average dwell time
switching and uncertainties are considered. Correspondingly,
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a dependent average dwell time approach is proposed in [21].
The piecewise-homogeneous is taken into account which
makes the considering dynamic of the Markovian jump
systems more controllable and optimizes the performance of
systems.

Furthermore, in a finite horizon, the practical application
problems tend to care about the described systems’ transient
characteristics state, especially the transient performances of
control systems. It is necessary to consider the state in a
fixed region; therefore, the concept of finite-time stability was
introduced [22, 23]. Some research results in finite-time case
for Markovian jump systems can be found in [24–30]. For
example, the finite-time stabilization with output feedback
control is introduced in [24]. Finite-time boundedness is
considered with state-dependent switching strategy in [26].
In [27], finite-time 𝐻

∞
control is proposed for nonlinear

jump systems. In [29], the partially unknown transition
rates are introduced for finite-time filtering of stochastic
systems. It is noted that, in the engineering area, there are
still some problems related to stochastic systems to be solved.
In order to make the finite-time behaviour of stochastic
Markovian jump systems more reasonable and satisfy the
requirements, the finite-time boundedness of Markov jump
systems with piecewise-constant transition probabilities via
dynamic output feedback control has not been studied. The
problem is interesting but also challenging, which motivates
us to conduct this study.

The main contribution of this paper is that we present
a novel approach for finite-time boundedness of Markovian
jump system with piecewise-constant transition probabilities
via dynamic output feedback control. We establish a more
general model to extend the existing results into more
feedback control systems. The deterministic switches and
stochastic jumps are taken into account at the same times.
The finite-time stability is an independent concept, which is
different from Lyapunov stability and can be determined by
switching. By selecting the appropriate Lyapunov-Krasovskii
functional, under average dwell time constraint on switching
signals, the sufficient conditions among average dwell times,
transition probabilities, and time-varying delay are derived
to guarantee finite-time boundedness of theMarkovian jump
systems.

2. Preliminaries

In this paper, fixing the probability space (Ω,F,P), we
consider the following Markovian jump system described by

�̇� (𝑡) = 𝐴
𝑟
𝑡

𝑥 (𝑡) + 𝐴
𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏) + 𝐵
𝑟
𝑡

𝑢 (𝑡) + 𝐷
𝑟
𝑡

𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑟
𝑡

𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of the system, 𝑦(𝑡) ∈ R𝑙 is
the measured output, and 𝜔(𝑡) ∈ 𝐿

𝑞

2
[0,∞] is the exogenous

noise signal. 𝐴
𝑟
𝑡

, 𝐴
𝜏𝑟
𝑡

, 𝐵
𝑟
𝑡

, 𝐷
𝑟
𝑡

, and 𝐶
𝑟
𝑡

are constant real

matrices with appropriate dimension. 𝜏 represent the con-
stant delay and 𝜙(𝑡) is the differentiable vector-valued initial
function on [−𝜏, 0]. Let the random form process 𝑟

𝑡
, 𝑡 ≥ 0

be the Markov stochastic process taking values on a finite set
N = {1, 2, . . . , 𝑁}, governing the switching from mode 𝑖 at
time 𝑡 to mode 𝑗 at time 𝑡 + Δ𝑡 with the following transition
probabilities:

𝑃
𝑖𝑗
= Pr (𝑟

𝑡+Δ𝑡
= 𝑗 | 𝑟

𝑡
= 𝑖)

=

{

{

{

𝜇
(𝜎
𝑡
)

𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 ̸= 𝑗,

1 + 𝜇
(𝜎
𝑡
)

𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 = 𝑗,

(2)

with transition rates 𝜇
(𝜎
𝑡
)

𝑖𝑗
≥ 0, ∀𝑖, 𝑗 ∈ N, ∑𝑁

𝑗=1
𝜇
(𝜎
𝑡
)

𝑖𝑗
= 0,

Δ𝑡 > 0, and lim
Δ𝑡→0

(𝑜(Δ𝑡)/Δ𝑡) → 0. Here, 𝜇(𝜎𝑡)
𝑖𝑗

is now
a function of 𝜎

𝑡
. By 𝜎

𝑡
, we mean that the transition rates

are time-varying. Moreover, 𝜎
𝑡
is assumed to be piecewise-

constant function of time 𝑡, and transition rates Π𝜎𝑡 can be
defined by
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. (3)

Furthermore, to determine the time-varying property, 𝜎
𝑡

represents a high-level average dwell time switching signal.
𝜎
𝑡
is a given initial condition sequence. For simplicity, let 𝑚

represent 𝜎
𝑡
as a piecewise-constant function of time, which

takes values in the finite setM ≡ {1, 2, . . . ,𝑀}. At an arbitrary
time 𝑡, 𝜎 may be dependent on 𝑡 or 𝑥(𝑡), or both, or other
logic rules. For a switching sequence 𝑡

0
< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ ,
𝜎 is continuous from right everywhere and maybe either
autonomous or controlled.When 𝑘 ∈ [𝑡

𝑙
, 𝑡
𝑙+1

), we say that the
𝜎
𝑡
𝑙

th transition probabilitiesmatrix is active and therefore the
trajectory 𝑥

𝑡
of system (1) is trajectory of system (1) with the

𝜎
𝑡
𝑙

th transition probabilities matrix.
In this paper, our goal is to design the following dynamic

output feedback controller, which can guarantee the system
is finite-time boundness:

�̇�
𝑓
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𝑓𝑟
𝑡
,𝜎
𝑡

𝑥
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𝑥
𝑓
(𝑡) + 𝐷

𝑓𝑟
𝑡
,𝜎
𝑡
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𝑥
𝑓
(𝑡) = 0,

𝑡 ≤ 0,

(4)

where 𝐴
𝑓𝑟
𝑡
,𝜎
𝑡

, 𝐵
𝑓𝑟
𝑡
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𝑡
,𝜎
𝑡

, and 𝐷
𝑓𝑟
𝑡
,𝜎
𝑡

are matrices to be
determined.
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Substituting (4) into (1) and ∀𝑟
𝑡
= 𝑖, 𝑖 ∈ N, 𝜎

𝑡
= 𝑚, and

𝑚 ∈ M, we have

̇𝜂 (𝑡) = 𝐴
𝑖,𝑚

𝜂 (𝑡) + 𝐴
𝜏𝑖
𝜂 (𝑡 − 𝜏) + 𝐵

𝑖
𝜔 (𝑡) ,

𝜂 (𝑡) = 𝜓 (𝑡) ,

𝑡 ∈ [−𝜏, 0] ,

(5)

where

𝐴
𝑖,𝑚
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𝜂 (𝑡) = [
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𝑥
𝑓
(𝑡)

] .

(6)

Throughout the paper, suppose that the matrices𝐶
𝑟
𝑡

have
full row rank, in other words, rank(𝐶

𝑟
𝑡

) = 𝑞. Then we have
the singular decomposition of 𝐶

𝑖
as

𝐶
𝑖
= 𝑈
𝑖
[𝑆
𝑖
, 0] 𝑉
⊺

𝑖
, (7)

where 𝑆
𝑖
∈ 𝑅
𝑞×𝑞 is a diagonal positive matrix and 𝑈

𝑖
∈ 𝑅
𝑞×𝑞

and 𝑉
𝑖
∈ 𝑅
𝑛×𝑛 are unitary matrices.

Remark 1. In this paper, matrices 𝐶
𝑖
are singular decomposi-

tion as unitary matrices, which reduce the conservatism.

First of all, we will give definitions and lemmas about
system (5), which plays an important role in the derivation
of our result.

Definition 2 (see [29]). System (5) is said to be finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅, 𝑑, 𝜎), where 𝑑 ≥ 0, 𝑅 is

positive define matrix, and 𝜎
𝑡
is a switching signal. We have

sup
−𝜏≤𝑡
0
≤0
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0
)}
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1
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2
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(8)

where 𝑐
2
> 𝑐
1
≥ 0, ∀𝜔(𝑡) : ∫𝑇

0

𝜔
⊺

(𝑠)𝜔(𝑠) 𝑑𝑠 ≤ 𝑑.

Definition 3 (see [21]). For any 𝑇
2
> 𝑇
1
≥ 0, let 𝑁

𝜎
(𝑇
1
, 𝑇
2
)

denote the switching number of 𝜎(𝑡) during (𝑇
1
, 𝑇
2
). If
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1
, 𝑇
2
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0
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2
− 𝑇
1
)/𝑇
𝑎
holds for𝑁

0
≥ 0 and 𝑇

𝑎
> 0,

then𝑁
0
and𝑇
𝑎
are called chattering bound and average dwell

time, respectively. Here we assume 𝑁
0
= 0 for simplicity as

commonly used in the literature.

Definition 4 (see [31]). Consider𝑉(𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) as the stochastic

Lyapunov function of the resulting system (4); its weak
infinitesimal operator is defined as
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𝜕

𝜕𝑥
𝑉 (𝜂
𝑡
, 𝑖, 𝑚) ̇𝜂

𝑡

+

𝑁

∑

𝑗=1

𝜇
(𝑚)

𝑖𝑗
𝑉 (𝜂
𝑡
, 𝑗, 𝑚) .

(9)

Definition 5 (see [32]). The jump rates of the visited modes
from a given mode 𝑖 are assumed to satisfy

0 < min𝜇
𝑖
≤ 𝜇
𝑖𝑗
≤ max 𝜇

𝑖
, ∀𝑖, 𝑗 ∈ R, 𝑖 ̸= 𝑗, (10)

where min 𝜇
𝑖
and max 𝜇

𝑖
are known parameters for a given

mode 𝑖 and represent the lower and upper bounds when all
the jump rates are known; that is, 0 < min 𝜇

𝑖
= min{𝜇

𝑖𝑗
̸=

0, 𝑖 ̸= 𝑗, 𝑗 ∈ R} and min𝜇
𝑖
≤ max 𝜇

𝑖
. Meanwhile, the

number of the visited modes from a given mode 𝑖 is denoted
by𝑁
𝑖
including the mode itself.

Lemma 6 (Schur complement [14]). Given constant matrices
𝑋, 𝑌, and 𝑍, where 𝑋 = 𝑋

⊺ and 0 < 𝑌 = 𝑌
⊺, then

𝑋 + 𝑍
⊺

𝑌
−1

𝑍 < 0 if and only if

[

𝑋 𝑍
⊺

∗ −𝑌
] < 0

𝑜𝑟 [

−𝑌 𝑍

∗ 𝑋
] < 0.

(11)

3. Finite-Time Boundedness Analysis

Theorem 7. System (5) is finite-time stochastic boundedness
(FTSB) with respect to (𝑐

1
, 𝑐
2
, 𝑅, 𝑑, 𝑇) if there exist matrices

𝑃
𝑖,𝑚
, 𝐻, and 𝑄

𝑚
and constants 𝛼 ≥ 0, 𝜇 > 1, and 𝜆

𝑠
> 0

(𝑠 = 1, 2, . . . , 4), such that we have the following linear matrix
inequalities:

[
[
[

[

𝐴
⊺

𝑖,𝑚
𝑃
−1

𝑖,𝑚
+ 𝑃
−1

𝑖,𝑚
𝐴
𝑖,𝑚

+ 𝑄
−1

𝑚
+ 𝑃
𝑖,𝑚

− 𝛼𝑃
−1

𝑖,𝑚
𝑃
−1

𝑖,𝑚
𝐴
𝜏𝑖

𝑃
−1

𝑖,𝑚
𝐵
𝑖

∗ −𝑒
𝛼𝜏

𝑄
−1

𝑚
0

∗ ∗ −𝛼𝐻

]
]
]

]

< 0,

(12)

[
[
[
[

[

−𝜆
1
𝑐
2
𝑒
−𝛼𝑇

+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

) 𝜆
2
𝑐
1

𝜆
3
𝑐
1

∗ −𝜆
2
𝑐
1

0

∗ ∗ −
1

𝜏
𝜆
3
𝑐
1
𝑒
−𝛼𝜏

]
]
]
]

]

< 0, (13)
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[
−𝑃
−1

𝑖,𝑚
𝜆
1
𝑃
−1

𝑖,𝑚
𝑅

∗ −𝜆
1
𝑅

] < 0,

[

−𝜆
2
𝑅 𝐼

∗ −𝑃
−1

𝑖,𝑚

] < 0,

∀𝑖 ∈ N

(14)

𝑃
𝑖,𝑚

< 𝜇𝑃
𝑖,𝑛
,

𝑄
𝑚
≤ 𝑄
𝑛
,

∀𝑖, 𝑗 ∈ N, 𝑚, 𝑛 ∈ M,

(15)

𝜆
1
𝑐
2
𝑒
−𝛼𝑇

> (𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

) , (16)

with the average dwell time of the switching signal 𝜎 satisfying

𝜏
𝑎

> 𝜏
∗

𝑎

=
𝑇 ln 𝜇

ln (𝜆
1
𝑐
2
) − ln [(𝜆

2
+ 𝜏𝑒𝛼𝜏𝜆

3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒−𝛼𝑇)] − 𝛼𝑇

,

(17)

where

𝑃
𝑖,𝑚

= − (𝑁
𝑖
− 1) (min𝜇

𝑚

𝑖
) 𝑃
𝑖,𝑚

+ (max 𝜇𝑚
𝑖
)

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑃
𝑗,𝑚

,

�̃�
𝑖,𝑚

= 𝑅
−1/2

𝑃
𝑖,𝑚

𝑅
−1/2

,

𝑄
𝑚
= 𝑅
−1/2

𝑄
𝑚
𝑅
−1/2

,

𝜆
3
= 𝜆max (𝑄𝑚) ,

𝜆
4
= 𝜆max (𝐻) .

(18)

Proof. We consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) = 𝜂
⊺

𝑡
𝑃
−1

𝑟
𝑡
,𝜎
𝑡

𝜂
𝑡
+ ∫

𝑡

𝑡−𝜏

𝜂
⊺

𝑠
𝑒
𝛼(𝑡−𝑠)

𝑄
−1

𝜎
𝑠

𝜂
𝑠
𝑑𝑠. (19)

Taking the time derivative of 𝑉(𝜂
𝑡
, 𝑟
𝑡
, 𝜎(𝑡)) along the

trajectory of the system (5), one has

m𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
)

= 𝜂
⊺

𝑡
(𝐴
⊺

𝑖,𝑚
𝑃
−1

𝑖,𝑚
+ 𝑃
−1

𝑖,𝑚
𝐴
𝑖,𝑚

+ 𝑄
−1

𝑚
+

𝑁

∑

𝑗=1

𝜇
(𝑚)

𝑖𝑗
𝑃
𝑗,𝑚

)𝜂
𝑡

+ 2𝜂
⊺

𝑡
𝑃
−1

𝑖,𝑚
𝐴
𝜏𝑖,𝑚

𝜂
𝑡−𝜏

+ 2𝜂
⊺

𝑡
𝑃
−1

𝑖,𝑚
𝐵
𝑖
𝜔
𝑡

− 𝑒
𝛼𝜏

𝜂
⊺

𝑡−𝜏
𝑄
−1

𝑚
𝜂
𝑡−𝜏

+ 𝛼∫

𝑡

𝑡−𝜏

𝜂
⊺

𝑠
𝑒
𝛼(𝑡−𝑠)

𝑄
−1

𝜎
𝑠

𝜂
𝑠
𝑑𝑠.

(20)

Moreover, we have

𝑁

∑

𝑗=1

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑗,𝑚
= 𝜇
𝑚

𝑖𝑖
𝑃
−1

𝑖,𝑚
+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑗,𝑚

= −

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑖,𝑚
+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑗,𝑚

≤ − (𝑁
𝑖
− 1) (min 𝜇

𝑚

𝑖
) 𝑃
−1

𝑖,𝑚

+ (max 𝜇𝑚
𝑖
)

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑃
−1

𝑗,𝑚
.

(21)

Assuming that condition (12) is satisfied, we obtain

m𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) − 𝛼𝑉 (𝜂

𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) < 𝛼𝜔

⊺

𝑡
𝐻𝜔
𝑡
. (22)

Notice that

𝑑

𝑑𝑡
(𝑒
−𝛼𝑡

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
)) < 𝛼𝑒

−𝛼𝑡

𝜔
⊺

𝑡
𝐻𝜔
𝑡
. (23)

Integrate (23) from 𝑡
𝑘
to 𝑡, from which we can get that

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) < 𝑒
𝛼(𝑡−𝑡
𝑘
)

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

)

+ 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠.

(24)

Noting that ∀𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

], where 𝑡
𝑘
is the 𝑘th switching

instant and 𝑥
𝑡
𝑘

= 𝑥
𝑡
−

𝑘

, from condition (15) it yields

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

) ≤ 𝜇𝑉 (𝜂
𝑡
−

𝑘

, 𝑟
𝑡
−

𝑘

, 𝜎
𝑡
−

𝑘

) . (25)

From condition (24) and (25), we can easily have

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

) < 𝜇𝑒
𝛼(𝑡−𝑡
𝑘
)

𝑉(𝜂
𝑡
−

𝑘

, 𝑟
𝑡
−

𝑘

, 𝜎
𝑡
−

𝑘

)

+ 𝛼𝜇∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠.

(26)

Thus, from (24)–(26), it yields

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) ≤ 𝑒
𝛼(𝑡−𝑡
𝑘
)

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

)

+ 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠
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≤ 𝜇𝑒
𝛼(𝑡−𝑡
𝑘−1
)

𝑉(𝜂
𝑡
−

𝑘−1

, 𝑟
𝑡
−

𝑘−1

, 𝜎
𝑡
−

𝑘−1

)

+ 𝛼𝜇∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 + 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

≤ 𝜇
2

𝑒
𝛼(𝑡
𝑘
−𝑡
𝑘−2
)

𝑉(𝜂
𝑡
−

𝑘−2

, 𝑟
𝑡
−

𝑘−2

, 𝜎
𝑡
−

𝑘−2

)

+ 𝛼𝜇
2

∫

𝑡
𝑘−1

𝑡
𝑘−2

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

+ 𝛼𝜇∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 + 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

≤ ⋅ ⋅ ⋅ ≤ 𝜇
𝑁
𝜎
(0,𝑡)

𝑒
𝛼𝑡

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝛼𝜇
𝑁
𝜎
(0,𝑡)

∫

𝑡
1

0

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

+ 𝛼𝜇
𝑁
𝜎
(𝑡
1
,𝑡)

∫

𝑡
2

𝑡
1

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 + ⋅ ⋅ ⋅

+ 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 = 𝜇

𝑁
𝜎
(0,𝑡)

𝑒
𝛼𝑡

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝛼∫

𝑡

0

𝑒
𝛼(𝑡−𝑠)

𝜇
𝑁
𝜎
(𝑠,𝑡)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

≤ 𝜇
𝑁
𝜎
(0,𝑡)

𝑒
𝛼𝑡

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

) + 𝛼𝜇
𝑁
𝜎
(0,𝑡)

𝑑𝜆max (𝐻)

⋅ 𝑒
𝛼𝑡

∫

𝑡

0

𝑒
−𝛼𝑠

𝑑𝑠 ≤ 𝜇
𝑁
𝜎
(0,𝑇)

𝑒
𝛼𝑇

{𝑉 (𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝑑𝜆max (𝐻) 𝛼∫

𝑇

0

𝑒
−𝛼𝑠

𝑑𝑠}

≤ 𝜇
𝑇/𝜏
𝑎𝑒
𝛼𝑇

{𝑉 (𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝑑𝜆max (𝐻) (1 − 𝑒
−𝛼𝑇

)} .

(27)

Note that

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

= 𝜂
⊺

𝑡
0

𝑃
𝑟
𝑡0
,𝜎(𝑡
0
)
𝜂
𝑡
0

+ ∫

0

−𝜏

𝜂
⊺

𝑠
𝑒
−𝛼𝑠

𝑄
𝜎
𝑠

𝜂
𝑠
𝑑𝑠

≤ 𝜆max (�̃�𝑖,𝑚) 𝜂
⊺

𝑡
0

𝑅𝜂
𝑡
0

+ 𝜏𝑒
𝛼𝜏

𝜆max (𝑄𝑚) sup
−𝜏≤𝜃≤0

{𝜂
⊺

𝜃
𝑅𝜂
𝜃
}

≤ (𝜆max (�̃�𝑖,𝑚) + 𝜏𝑒
𝛼𝜏

𝜆max (𝑄𝑚)) sup
−𝜏≤𝜃≤0

{𝜂
⊺

𝜃
𝑅𝜂
𝜃
}

≤ (𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) sup
−𝜏≤𝜃≤0

{𝜂
⊺

𝜃
𝑅𝜂
𝜃
}

≤ (𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
.

(28)

Thus

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) ≤ 𝜇
𝑇/𝜏
𝑎𝑒
𝛼𝑇

{(𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1

+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)}

= 𝑒
(𝛼+((ln 𝜇)/𝜏

𝑎
))𝑇

{(𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1

+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)} .

(29)

On the other hand

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) ≥ 𝜆max (�̃�𝑟

𝑡
,𝜎
𝑡

) 𝜂
⊺

𝑡
𝑅𝜂
𝑡
= 𝜆
1
𝜂
⊺

𝑡
𝑅𝜂
𝑡
. (30)

Substituting (29) and (30) into (19), one obtains

𝑥
⊺

(𝑡) 𝑅𝑥 (𝑡)

≤

(𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)

𝜆
1

𝑒
(𝛼+((ln 𝜇)/𝜏

𝑎
))𝑇

.

(31)

When 𝜇 = 1, which is the trivial case, from (17), 𝜂⊺
𝑡
𝑅𝑥
𝑡
<

𝑐
2
𝑒
−𝛼𝑇

𝑒
𝛼𝑇

= 𝑐
2
. When 𝜇 > 1, from (17), ln(𝜆

1
𝑐
2
) − ln[(𝜆

2
+

𝜏𝑒
𝛼𝜏

𝜆
3
)𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)] − 𝛼𝑇 > 0 we have

𝑇
𝑓

𝜏
𝑎

<

ln (𝜆
1
𝑐
2
) − ln [(𝜆

2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)] − 𝛼𝑇

ln 𝜇

=

ln (𝜆
1
𝑐
2
𝑒
−𝛼𝑇

/ ((𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)))

ln 𝜇
.

(32)

Substituting (32) into (31) yields

𝜂
⊺

𝑡
𝑅𝜂
𝑡
< 𝑐
2
. (33)

The proof is completed.

Remark 8. It should be noted that the linear feedback control
subject to piecewise constant transition probability is first
considered in the paper, and it is classical and effective to
stabilize the Markov jump system.

4. Finite-Time 𝐻
∞

Performance Analysis

Theorem 9. For a given constant 𝑇 > 0, 𝛼 > 0, system (5)
is robustly finite-time stochastic boundedness with respect to
(0, 𝑐
2
, 𝑁, 𝑅, 𝑑, 𝜎), if there exist positive definite matrices 𝑋

𝑖,𝑚
,

𝑄
1𝑚
, 𝑄
2𝑚
,𝐻, and 𝜇 > 1, such that the following linear matrix

inequalities
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11𝑖,𝑚

Σ
12𝑖,𝑚

𝐴
𝜏𝑖
𝑄
1𝑚

0 𝐷
𝑖

𝑋
𝑖,𝑚

0 Σ
18𝑖

Σ
19𝑖

∗ Σ
22𝑖,𝑚

0 0 0 0 𝑋
𝑖,𝑚

0 0

∗ ∗ −𝑒
𝛼𝜏

𝑄
1𝑚

0 0 0 0 0 0

∗ ∗ ∗ −𝑒
𝛼𝜏

𝑄
2𝑚

0 0 0 0 0

∗ ∗ ∗ ∗ −𝛼𝐻 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄
1𝑚

0 0 0

∗ ∗ ∗ ∗ ∗ 0 −𝑄
2𝑚

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
88𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
99𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

∀𝑖, 𝑗 ∈ N, 𝑚, 𝑛 ∈ M,

(34)

𝑋
𝑖,𝑚

≤ 𝜇𝑋
𝑖,𝑛
,

𝑄
𝑘𝑚

≤ 𝑄
𝑘𝑛
,

(𝑘 = 1, 2) ∀𝑖, 𝑗 ∈ N, 𝑚, 𝑛 ∈ M,

(35)

𝛼𝑐
2
> 𝑑𝜆
4
𝑒
𝛼𝑇

(1 − 𝑒
−𝛼𝑇

) , (36)

where

Σ
11𝑖

= 𝐴
𝑖
𝑋
𝑖,𝑚

+ 𝑋
⊺

𝑖,𝑚
𝐴
𝑖
+ 𝐵
𝑖
𝑌
4𝑖,𝑚

𝐶
𝑖
+ 𝐶
⊺

𝑖
𝑌
⊺

4𝑖,𝑚
𝐵
⊺

𝑖
− 𝛼𝑋
𝑖,𝑚

− (𝑁
𝑖
− 1)max 𝜇

𝑖
𝑋
𝑖,𝑚

,

Σ
12𝑖

= 𝐶
⊺

𝑖
𝑌
⊺

2𝑖,𝑚
+ 𝐵
𝑖
𝑌
3𝑖,𝑚

,

Σ
22𝑖

= 𝑌
1𝑖,𝑚

+ 𝑌
⊺

1𝑖,𝑚
− 𝛼𝑋
𝑖,𝑚

,

Σ
18𝑖

= Σ
19𝑖

=
[
[

[

𝑁
𝑖
−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
√max 𝜇

𝑖
𝑋
𝑖,𝑚

, √max 𝜇
𝑖
𝑋
𝑖,𝑚

, . . . , √max 𝜇
𝑖
𝑋
𝑖,𝑚

]
]

]

,

Σ
88𝑖

= Σ
99𝑖

= − diag {𝑋
1,𝑚

, . . . , 𝑋
𝑖−1,𝑚

, 𝑋
𝑖+1,𝑚

, . . . , 𝑋
𝑁,𝑚

} .

(37)

with the average dwell time of the switching signal 𝜎 satisfying

𝜏
𝑎
> 𝜏
∗

𝑎
=

𝑇 ln 𝜇

ln (𝛼𝑐
2
) − ln [𝑑𝜆

4
(1 − 𝑒−𝛼𝑇)] − 𝛼𝑇

, (38)

and the feasible solutions are given as follows:

𝐴
𝑓𝑖,𝑚

= 𝑌
1𝑖,𝑚

𝑋
−1

𝑖,𝑚
,

𝐵
𝑓𝑖,𝑚

= 𝑌
2𝑖,𝑚

𝑈
𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
⊺

𝑖
,

𝐶
𝑓𝑖,𝑚

= 𝑌
3𝑖,𝑚

𝑋
−1

𝑖,𝑚
,

𝐷
𝑓𝑖,𝑚

= 𝑌
2𝑖,𝑚

𝑈
𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
⊺

𝑖
.

(39)

Then the closed-loop systems (5) are finite-time boundedness
with respect to (0, 𝑐

2
, 𝑇, 𝑑, 𝑅, 𝜎).

Proof. Pre- and postmultiply inequality (12) by diag{𝑃−1
𝑖,𝑚

,

𝐼, 𝐼}, it yields that

[
[
[

[

𝑃
𝑖,𝑚

𝐴
⊺

𝑖,𝑚
+ 𝐴
𝑖,𝑚

𝑃
𝑖,𝑚

+ 𝑃
𝑖,𝑚

𝑃
𝑖,𝑚

𝑃
𝑖,𝑚

− 𝛼𝑃
𝑖,𝑚

+ 𝑃
𝑖,𝑚

𝑄
−1

𝑚
𝑃
𝑖,𝑚

𝐴
𝜏𝑖

𝐵
𝑖

∗ −𝑒
𝛼𝜏

𝑄
−1

𝑚
0

∗ ∗ −𝛼𝐻

]
]
]

]

< 0. (40)
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Denote 𝑃
𝑖,𝑚

= diag{𝑋
𝑖,𝑚

, 𝑋
𝑖,𝑚

}, 𝑄
𝑚

= diag{𝑄
1𝑚

, 𝑄
2𝑚

};
using Schur complement, we can obtain

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11𝑖,𝑚

Σ
12𝑖,𝑚

𝐴
𝜏𝑖
𝑄
1𝑚

0 𝐷
𝑖

𝑋
𝑖,𝑚

0 Σ
18𝑖

Σ
19𝑖

∗ Σ
22𝑖,𝑚

0 0 0 0 𝑋
𝑖,𝑚

0 0

∗ ∗ −𝑒
𝛼𝜏

𝑄
1𝑚

0 0 0 0 0 0

∗ ∗ ∗ −𝑒
𝛼𝜏

𝑄
2𝑚

0 0 0 0 0

∗ ∗ ∗ ∗ −𝛼𝐻 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄
1𝑚

0 0 0

∗ ∗ ∗ ∗ ∗ 0 −𝑄
2𝑚

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
88𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
99𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (41)

where

Σ
11𝑖

= 𝐴
𝑖
𝑋
𝑖,𝑚

+ 𝑋
⊺

𝑖,𝑚
𝐴
𝑖

+ 𝐵
𝑖
𝐷
𝑓𝑖,𝑚

𝑈
−⊺

𝑖
𝑆
𝑖
𝑋
1𝑖,𝑚

𝑆
−1

𝑖
𝑈
−1

𝑖
𝐶
𝑖

+ 𝐶
⊺

𝑖
𝑈
−⊺

𝑖
𝑆
−⊺

𝑖
𝑋
⊺

1𝑖,𝑚
𝑆
⊺

𝑖
𝑈
−1

𝑖
𝐵
𝑖
𝐷
⊺

𝑓𝑖,𝑚
− 𝛼𝑋
𝑖,𝑚

− (𝑁
𝑖
− 1)max 𝜇

𝑖
𝑋
𝑖,𝑚

,

Σ
12𝑖

= 𝐶
⊺

𝑖
𝑈
−⊺

𝑖
𝑆
−⊺

𝑖
𝑋
𝑖,𝑚

𝑆
⊺

𝑖
𝑈
−1

𝑖
𝐵
⊺

𝑓𝑖,𝑚
+ 𝐵
𝑖
𝐶
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

,

Σ
22𝑖

= 𝐴
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

+ 𝑋
𝑖,𝑚

𝐴
⊺

𝑓𝑖,𝑚
− 𝛼𝑋
𝑖,𝑚

.

(42)

Define

𝑌
1𝑖,𝑚

= 𝐴
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

,

𝑌
2𝑖,𝑚

= 𝐵
𝑓𝑖,𝑚

𝑈
−⊺

𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
−1

𝑖
,

𝑌
3𝑖,𝑚

= 𝐶
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

,

𝑌
4𝑖,𝑚

= 𝐷
𝑓𝑖,𝑚

𝑈
−⊺

𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
−1

𝑖
.

(43)

And𝑋
𝑖,𝑚

≤ 𝜇𝑋
𝑖,𝑛
can guarantee that 𝑃

𝑖,𝑚
≤ 𝜇𝑃
𝑖,𝑛
; then we

can obtain (34).

5. Illustrative Example

Consider the system as follows:

𝐴
1
=
[
[

[

−2.0 −1.5 −1.2

0.7 −1.6 0.5

−1.3 0.5 −1.1

]
]

]

,

𝐴
𝜏1

=
[
[

[

0.2 0.0 0.1

0.1 0.3 0.1

0.3 0.1 0.2

]
]

]

,

𝐵
1
=
[
[

[

1

0.5

2

]
]

]

,

𝐷
1
=
[
[

[

0.3

0.5

0.2

]
]

]

,

𝐶
1
= [−1.2 0.5 0.9] ,

𝐴
2
=
[
[

[

−1.5 −1.2 −1.5

0.2 −1.5 0.4

−0.7 1.1 −1.2

]
]

]

,

𝐴
𝜏2

=
[
[

[

0.2 0.0 0.0

0.1 0.2 0.1

0.1 0.1 0.3

]
]

]

,

𝐵
2
=
[
[

[

0.5

0.7

1.5

]
]

]

,

𝐷
2
=
[
[

[

0.4

0.2

0.3

]
]

]

,

𝐶
2
= [−1.0 1.2 0.5] .

(44)
The piecewise-constant transition probabilities matrices

are given as

Π
1

= [

0.1 −0.1

−0.9 0.9
] ,

Π
2

= [

0.2 −0.2

−0.6 0.6
] .

(45)
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Choosing𝛼 = 0.05, 𝜏 = 0.2, 𝑐
2
= 30,𝑇 = 10, and𝑑 = 0.01,

by solving the matrix equalities in Theorem 9, we have the
following filter parameters:

𝐴
𝑓1,1

=
[
[

[

2.6498 0.1514 −3.48944

−1.4622 −3.1536 3.9281

−5.2184 −3.2024 −8.9715

]
]

]

,

𝐵
𝑓1,1

=

[
[
[

[

0

0

0

]
]
]

]

,

𝐶
𝑓1,1

= [0 0 0] ,

𝐷
𝑓1,1

= −46.3725,

𝐴
𝑓2,1

=

[
[
[

[

−8.1617 10.4852 14.5961

−19.9581 38.1415 64.6288

−10.6012 19.4270 28.2844

]
]
]

]

,

𝐵
𝑓2,1

=

[
[
[

[

0

0

0

]
]
]

]

,

𝐶
𝑓2,1

= [0 0 0] ,

𝐷
𝑓2,1

= −48.6350,

𝐴
𝑓1,2

=

[
[
[

[

−2.8214 1.9349 5.6510

6.9619 −6.9841 −9.9841

4.3016 −10.9846 −17.9894

]
]
]

]

,

𝐵
𝑓1,2

=

[
[
[

[

0

0

0

]
]
]

]

,

𝐶
𝑓1,2

= [0 0 0] ,

𝐷
𝑓1,2

= −48.3364,

𝐴
𝑓2,2

=
[
[

[

−7.2081 4.0201 11.3047

−6.3204 8.6193 16.2141

−4.3612 17.7841 12.9564

]
]

]

,

𝐵
𝑓2,2

=
[
[

[

0

0

0

]
]

]

,

𝐶
𝑓2,2

= [0 0 0] ,

𝐷
𝑓2,2

= −46.0053.

(46)
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Figure 1: 𝜂⊺
𝑡
𝑇𝜂
𝑡
.
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Figure 2: State trajectories of subsystem 1.

From (38), we have 𝜇 = 5.0216. Moreover, we can obtain
the average dwell time

𝜏
𝑎
> 𝜏
∗

𝑎
= 8.1023. (47)

By Theorem 9, through the program 𝑓minsearch in the
optimization toolbox of MATLAB, the optimal bound with
minimum value of 𝑐

2
relies on the parameter 𝛼. We can find

feasible solution when 𝛼 ∈ [0, 0.05]. Figure 1 shows the
solution trajectory of the system. The state trajectory of the
closed-loop system is shown in Figures 2–4, where the initial
state 𝜂

0
= [0, 0]

⊺. From Figures 2–4, it is easy to see that the
system is finite-time boundedness.

6. Conclusions

In this paper, the problems of finite-time boundedness of
Markovian jump system with piecewise-constant transition
probabilities via dynamic output feedback control is con-
cerned. By allowing new Lyapunov-Krasovskii functional,
the switching signal is constraint by average dwell time,
and a numerical example is also given to demonstrate the
effectiveness of the proposed approach.
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Figure 3: State trajectories of subsystem 2.
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Figure 4: The closed-loop system.
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This paper is devoted to the problem of asynchronous H
∞

estimation for a class of two-dimensional (2D) nonhomogeneous
Markovian jump systems with nonlocal sensor nonlinearity, where the nonlocal measurement nonlinearity is governed by a
stochastic variable satisfying the Bernoulli distribution. The asynchronous estimation means that the switching of candidate filters
may have a lag to the switching of system modes, and the varying character of transition probabilities is considered to reside in a
convex polytope. The jumping process of the error system is modeled as a two-component Markov chain with extended varying
transition probabilities. A stochastic parameter-dependent approach is provided for the design ofH

∞
filter such that, for randomly

occurring nonlocal sensor nonlinearity, the corresponding error system is mean-square asymptotically stable and has a prescribed
H
∞
performance index. Finally, a numerical example is used to illustrate the effectiveness of the developed estimation method.

1. Introduction

Two-dimensional (2D) systems have recently received con-
siderable attention from scientific communities for their
potential applications in various areas, such as image data
processing and transmission, multidimensional digital fil-
tering, and process control [1]. The analysis and synthesis
of 2D systems are much more complicated than those of
one-dimensional systems due primarily to their structural
complexity. As a result, a great amount of effort has been
invested in such systems, andmany interesting and important
results have been derived so far [2–6]. In the context of state
estimation, filtering problems for 2D systems have also been
deeply studied. Tomention a few, theminimummean-square
state estimation has been addressed in [7, 8], theH

∞
filtering

problem has been tackled in [9–19], and the 𝑙
2
− 𝑙
∞

filtering
problem has been considered in [20].

As is well known, Markovian jump linear systems, which
were first introduced in [21], have been widely used to model
a large variety of physical systems that experience abrupt

changes in their structure and parameters. The transition
probabilities play a crucial role in determining the behavior
and performance of Markovian jump systems. In the case
of time-varying transition probabilities, the Markov chain is
viewed as nonhomogeneous. Most recently, a number of out-
standing analysis and design results have been obtained for
Markovian jump systems with nonhomogeneous transition
probabilities [22, 23].

In particular, the filter design for Markovian jump sys-
tems has also been extensively investigated [23–25]. A popu-
lar solution is to find less conservativemode-dependent filters
such that the resulting filtering error system is stable and
satisfies certain performance. Most of the mode-dependent
methods available rely on the ideal assumption that the
switches of filters are strictly synchronized with those of
the system modes. However, perfect synchronization is not
always possible in practical situations owing to operations
related to identifying the system mode and specifying the
matched filter [26]. Thus, it seems more practicable and
significant to design asynchronous filters forMarkovian jump
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systems, especially for nonhomogeneous Markovian jump
systems.

Moreover, sensor nonlinearities arise frequently under
harsh filtering environments including both uncontrollable
elements and aggressive conditions. It is worth pointing out
that filtering techniques concerning the sensor nonlinearities
usually provide a relatively reliable solution. State estimation
related to Markov jump systems with sensor nonlinearities
has been developed in terms of many sorts of methods [27].
However, to the best of the authors’ knowledge, the problem
of asynchronous H

∞
estimation for 2D nonhomogeneous

Markovian jump systems with nonlocal sensor nonlinearity
has not been fully resolved, despite its deep practical implica-
tions.

Therefore, in this paper, we will handle the problem
of asynchronous H

∞
estimation for 2D nonhomogeneous

Markovian jump systems with randomly occurring nonlo-
cal sensor nonlinearity. A stochastic variable satisfying the
Bernoulli binary distribution is employed to characterize
the nonlocal nonlinear measurement behavior. The varying
character of transition probabilities is described by means
of a specified polytope, and the jumping process of the
error system is represented by a two-component Markov
chain with extended varying transition probabilities. The
H
∞

analysis result is derived by a stochastic parameter-
dependent approach. The existence condition of the desired
filter is then obtained such that, for randomly occurring
nonlocal sensor nonlinearity, the corresponding error system
is mean-square asymptotically stable and has a guaranteed
H
∞

performance level. A numerical example is provided to
show the effectiveness of the proposed design method.

Notations. The notation used throughout the paper is fairly
standard. The superscript 𝑇 stands for matrix transposition,
R𝑛 denotes the 𝑛-dimensional Euclidean space, and 𝑃 >

0 means that 𝑃 is real symmetrical and positive definite.
E{⋅} stands for the expectation operation. 𝑙

2
{[0,∞), [0,∞)} is

the space of square summable sequences on {[0,∞), [0,∞)}.
diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix, for a vector 𝑥

the diagonal matrix defined by the entries of 𝑥 is denoted
by diag(𝑥). For any symmetric matrix, (∗) represents a
symmetric term. Moreover, for each integer 𝑞, 1

𝑞
denotes

the vector in R𝑞 defined by 1
𝑞

= [1 ⋅ ⋅ ⋅ 1]
𝑇. Matrices, if

their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem Formulation

Consider the 2D Markovian jump system with sensor non-
linearity in the Roesser model:

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

] = 𝐴 (𝑟
𝑖,𝑗
) [

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

] + 𝐵 (𝑟
𝑖,𝑗
)𝑤
𝑖,𝑗
,

𝑦
𝑖,𝑗

= (1 − 𝛿
𝑘
) 𝐶 (𝑟
𝑖,𝑗
) [

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

+ 𝛿
𝑘
𝜑(𝐶 (𝑟

𝑖,𝑗
) [

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]) + 𝐷(𝑟
𝑖,𝑗
)𝑤
𝑖,𝑗
,

𝑧
𝑖,𝑗

= 𝐻(𝑟
𝑖,𝑗
) [

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

] + 𝐿 (𝑟
𝑖,𝑗
)𝑤
𝑖,𝑗
,

(1)

where 𝑥
ℎ

𝑖,𝑗
∈ R𝑛1 and 𝑥

V
𝑖,𝑗

∈ R𝑛2 represent the horizontal and
vertical states, respectively, 𝑦

𝑖,𝑗
∈ R𝑟 is the measured output,

𝑧
𝑖,𝑗

∈ R𝑝 is the objective signal to be estimated, and 𝑤
𝑖,𝑗

∈

R𝑞 is the noise signal which belongs to 𝑙
2
{[0,∞), [0,∞)}.The

systemmatrices are functions of 𝑟
𝑖,𝑗
, which is a discrete-time,

discrete-state Markov chain taking values in a finite set I =

{1, 2, . . . , 𝑠} with mode transition probabilities:

𝜋
𝑖𝑗

𝑚𝑛
= Pr {𝑟

𝑖+1,𝑗
= 𝑛 | 𝑟

𝑖,𝑗
= 𝑚}

= Pr {𝑟
𝑖,𝑗+1

= 𝑛 | 𝑟
𝑖,𝑗

= 𝑚} ,

(2)

where 𝜋
𝑖𝑗

𝑚𝑛
≥ 0 and ∑

𝑠

𝑛=1
𝜋
𝑖𝑗

𝑚𝑛
= 1. To simplify the notation,

the system matrices are denoted by S
𝑚

= (𝐴
𝑚
, 𝐵
𝑚
, 𝐶
𝑚
, 𝐷
𝑚
,

𝐻
𝑚
, 𝐿
𝑚
), when 𝑟

𝑖,𝑗
= 𝑚 ∈ I. Here, 𝜋𝑖𝑗

𝑚𝑛
are the entries of the

transition matrix Π
𝑖𝑗, which is assumed to be of the form

Π
𝑖𝑗

=

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
Π
𝑔

, (3)

where 𝛼
𝑖𝑗

𝑔
≥ 0, ∑

𝑁

𝑔=1
𝛼
𝑖𝑗

𝑔
= 1 andΠ

𝑔 denote the vertices of the
polytope.

Remark 1. It is worth stressing that, different from the
homogeneousMarkov chain concerned in the recently devel-
oped techniques for asynchronous filter design [18, 19, 27],
the polytopic time-varying model of Markov chain under
consideration is more practicable in the Markovian jump
systems field. The homogeneous Markov chain has a critical
assumption that the transition probabilities need to be known
exactly. This ideal requirement sometimes inevitably limits
the application of the derived results, since it can be hard or
costly to obtain the precise information about the transition
probabilities in practice. In view of that, it seems more
reasonable to consider that the transition probabilities are
affected by varying parameters.

The function 𝜑 represents the nonlocal sensor nonlinear-
ity satisfying the following nonlocal sector condition [28]:

(𝜑 (𝜃) − 𝐾
1
𝜃 − 𝐹
1
)
𝑇

(𝜑 (𝜃) − 𝐾
2
𝜃 − 𝐹
2
) ≤ 0,

𝜃 ∈ R
𝑛

, ‖𝜃‖ ≥ V
𝑐
,

(4)

where 𝐾
1
and 𝐾

2
are matrices, 𝐹

1
and 𝐹

2
are vectors, and V

𝑐

is a positive real number. Moreover, the nonlinear function
𝜑(𝜃) can be decomposed into a linear and a nonlinear part as

𝜑 (𝜃) = 𝜑
𝑝
(𝜃) + 𝐾

1
𝜃 + 𝐹
1
, (5)

where the nonlinearity 𝜑
𝑝
(𝜃) satisfies

𝜑
𝑇

𝑝
(𝜃) (𝜑

𝑝
(𝜃) − 𝐾𝜃 − 𝐹) ≤ 0 (6)
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with𝐾 = 𝐾
2
−𝐾
1
and 𝐹 = 𝐹

2
−𝐹
1
. The stochastic variable 𝛿

𝑘
,

which is introduced to account for the phenomena of ran-
domly occurring nonlocal sensor nonlinearity, is Bernoulli
sequence taking the values of 1 and 0 with

Pr {𝛿
𝑘
= 1} = E {𝛿

𝑘
} = 𝜇,

Pr {𝛿
𝑘
= 0} = 1 − E {𝛿

𝑘
} = 1 − 𝜇.

(7)

Remark 2. It can be found that when 𝐹
1

= 0, 𝐹
2

=

0, and V
𝑐

= 0, the nonlocal sector nonlinearity in (4)
reduces to the conventional sector nonlinearity [27], which
implies that the nonlocal sector nonlinearity in (4) covers the
conventional sector nonlinearity as a special case. Hence, the
case considered in the sequel is more general.

For the asynchronous phenomenon considered, we are
interested in estimating the objective signal 𝑧

𝑖,𝑗
by a filter as

follows:

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

] = [(1 − 𝜎
𝑘
) 𝐴
𝑓𝑚

+ 𝜎
𝑘
𝐴
𝑓𝑧

] [

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

+ [(1 − 𝜎
𝑘
) 𝐵
𝑓𝑚

+ 𝜎
𝑘
𝐵
𝑓𝑧

] 𝑦
𝑖,𝑗
,

�̂�
𝑖,𝑗

= [(1 − 𝜎
𝑘
) 𝐶
𝑓𝑚

+ 𝜎
𝑘
𝐶
𝑓𝑧

] [

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

+ [(1 − 𝜎
𝑘
)𝐷
𝑓𝑚

+ 𝜎
𝑘
𝐷
𝑓𝑧

] 𝑦
𝑖,𝑗
,

(8)

where 𝑥
ℎ

𝑖,𝑗
∈ R𝑛1 and 𝑥

V
𝑖,𝑗

∈ R𝑛2 are the filter states, �̂�
𝑖,𝑗

∈ R𝑝

is the estimation of 𝑧
𝑖,𝑗
, F
𝑚

= (𝐴
𝑓𝑚

, 𝐵
𝑓𝑚

, 𝐶
𝑓𝑚

, 𝐷
𝑓𝑚

) and
F
𝑧
= (𝐴
𝑓𝑧
, 𝐵
𝑓𝑧
, 𝐶
𝑓𝑧
, 𝐷
𝑓𝑧

) are the filter gains corresponding
to the current and previous stages, respectively, ∀𝑚, 𝑧 ∈ I,
and 𝜎

𝑘
is a Bernoulli distributed white sequence specified by

Pr {𝜎
𝑘
= 1} = E {𝜎

𝑘
} = 𝜂,

Pr {𝜎
𝑘
= 0} = 1 − E {𝜎

𝑘
} = 1 − 𝜂.

(9)

In addition, 𝜎
𝑘
, 𝛿
𝑘
, and 𝑟

𝑖,𝑗
are mutually independent.

In view of (1) and (8), the estimation error 𝑧
𝑖,𝑗

= 𝑧
𝑖,𝑗

− �̂�
𝑖,𝑗

can be described by the following model:

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

] = 𝐴
𝑚,𝑙

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

] + 𝑀
𝑙
𝜑
𝑝
(𝐶
𝑚

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]) + 𝑀
𝑙
𝐹
1

+ 𝐵
𝑚,𝑙

𝑤
𝑖,𝑗

+ (𝜇 − 𝛿
𝑘
)

⋅ (𝐴
𝑚,𝑙

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

] + �̂�
𝑙
𝜑
𝑝
(𝐶
𝑚

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]) + �̂�
𝑙
𝐹
1
) ,

𝑧
𝑖,𝑗

= 𝐶
𝑚,𝑙

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

] + 𝑁
𝑙
𝜑
𝑝
(𝐶
𝑚

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]) + 𝑁
𝑙
𝐹
1

+ 𝐷
𝑚,𝑙

𝑤
𝑖,𝑗

+ (𝜇 − 𝛿
𝑘
)

⋅ (𝐶
𝑚,𝑙

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

] + �̂�
𝑙
𝜑
𝑝
(𝐶
𝑚

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]) + �̂�
𝑙
𝐹
1
) ,

(10)

where 𝑥
ℎ

𝑖,𝑗
= [𝑥
ℎ𝑇

𝑖,𝑗
𝑥
ℎ𝑇

𝑖,𝑗
]

𝑇

, 𝑥
V
𝑖,𝑗

= [𝑥
V𝑇
𝑖,𝑗

𝑥
V𝑇
𝑖,𝑗

]

𝑇

and

𝐴
𝑚,𝑙

= Λ
𝑇

[

𝐴
𝑚

0

(1 − 𝜇) 𝐵
𝑓𝑙
𝐶
𝑚

+ 𝜇𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

𝐴
𝑓𝑙

]Λ,

𝑀
𝑙
= Λ
𝑇

[

0

𝜇𝐵
𝑓𝑙

] ,

𝐴
𝑚,𝑙

= Λ
𝑇

[

0 0

𝐵
𝑓𝑙
𝐶
𝑚

− 𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

0

]Λ,

�̂�
𝑙
= Λ
𝑇

[

0

−𝐵
𝑓𝑙

] ,

𝐵
𝑚,𝑙

= Λ
𝑇

[

𝐵
𝑚

𝐵
𝑓𝑙
𝐷
𝑚

] ,

𝐶
𝑚,𝑙

= [𝐻
𝑚

− (1 − 𝜇)𝐷
𝑓𝑙
𝐶
𝑚

− 𝜇𝐷
𝑓𝑙
𝐾
1
𝐶
𝑚

−𝐶
𝑓𝑙
] Λ,

𝑁
𝑙
= −𝜇𝐷

𝑓𝑙
,

𝐶
𝑚,𝑙

= [𝐷
𝑓𝑙
𝐾
1
𝐶
𝑚

− 𝐷
𝑓𝑙
𝐶
𝑚

0]Λ,

�̂�
𝑙
= 𝐷
𝑓𝑙
,

𝐷
𝑚,𝑙

= 𝐿
𝑚

− 𝐷
𝑓𝑙
𝐷
𝑚
,

Λ = [

Λ
1

Λ
2

] =

[

[

[

[

[

𝐼 0 0 0

0 0 𝐼 0

0 𝐼 0 0

0 0 0 𝐼

]

]

]

]

]

,

∀𝑚, 𝑙 ∈ I.

(11)

Interestingly, the jumping process {S
𝑚
,F
𝑙
} of the error

system in (10) forms a two-component Markov chain 𝑟
𝑖,𝑗
on

I × I with the extended varying transition probabilities
𝜋
𝑖𝑗

(𝑚,𝑙)(𝑛,𝑢)
= Pr{S

𝑛
,F
𝑢
| S
𝑚
,F
𝑙
} given by

𝜋
𝑖𝑗

(𝑚,𝑙)(𝑛,𝑢)
=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜋
𝑔

𝑚𝑛
, 𝑢 = 𝑛, 𝑢 = 𝑙,

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜂𝜋
𝑔

𝑚𝑛
, 𝑢 ̸= 𝑛, 𝑢 = 𝑙,

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
(1 − 𝜂) 𝜋

𝑔

𝑚𝑛
, 𝑢 = 𝑛, 𝑢 ̸= 𝑙,

0, 𝑢 ̸= 𝑛, 𝑢 ̸= 𝑙.

(12)

The following definitions for the error system in (10) are
necessary to formulate the considered problem. For more
details, refer to [15] and the references therein.

Definition 3. System (10) is said to bemean-square asymptot-
ically stable if for𝑤

𝑖,𝑗
= 0 and bounded boundary conditions,

the following holds:

lim
𝑖+𝑗→∞

E {






𝑥
𝑖,𝑗







2

} = 0, (13)

where 𝑥
𝑖,𝑗

= [𝑥
ℎ𝑇

𝑖,𝑗
𝑥
V𝑇
𝑖,𝑗

]

𝑇

.
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Definition 4. Given a scalar 𝛾 > 0, system (10) is said to be
mean-square asymptotically stable with an H

∞
disturbance

attenuation level 𝛾, if it is mean-square asymptotically stable,
and under zero initial conditions satisfies






𝑧
𝑖,𝑗





𝐸

< 𝛾






𝑤
𝑖,𝑗





2

, (14)

for all nonzero 𝑤
𝑖,𝑗
, where






𝑧
𝑖,𝑗





𝐸

= √E
{

{

{

∞

∑

𝑖=0

∞

∑

𝑗=0






𝑧
𝑖,𝑗







2}

}

}

,






𝑤
𝑖,𝑗





2

= √

∞

∑

𝑖=0

∞

∑

𝑗=0






𝑤
𝑖,𝑗







2

.

(15)

Then, the estimation problem of interest is stated as
follows: given 𝛾 > 0, design a filter of the form in (8) such
that the error system in (10) with extended varying transition
probabilities (12) is mean-square asymptotically stable and
has a prescribedH

∞
performance level 𝛾.

3. H
∞

Filter Design

This section provides a procedure for designing the asyn-
chronous H

∞
filter, which guarantees that the error system

with extended varying transition probabilities ismean-square
asymptotically stable and has a prescribed disturbance atten-
uation level in theH

∞
sense. First, we derive anH

∞
analysis

criterion to check if the H
∞

norm of the error system in
(10) is bounded by the asynchronous filter.The corresponding
analysis result is summarized in the following theorem.

Theorem 5. Consider system (10) with extended varying
transition probabilities (12) and let 𝛾 > 0 be a given constant.
If there exist matrices 𝑃

𝑔

𝑚,𝑙
= diag{𝑃ℎ𝑔

𝑚,𝑙
, 𝑃

V𝑔
𝑚,𝑙

} > 0 and scalars
𝜏
𝑔

𝑚,𝑙
> 0, 𝜌𝑔

𝑚,𝑙
> 0, 𝑔 = 1, . . . , 𝑁, ∀(𝑚, 𝑙) ∈ I × I, such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−P𝑞
𝑛,𝑢

0 0 0 0 Ω
16

Ω
17

Ω
18

Ω
19

∗ −P𝑞
𝑛,𝑢

0 0 0 Ω
26

Ω
27

Ω
28

0

∗ ∗ −𝐼 0 0 𝐶
𝑚,𝑙

𝑁
𝑙

Ω
38

𝐷
𝑚,𝑙

∗ ∗ ∗ −𝐼 0 Ω
46

Ω
47

Ω
48

0

∗ ∗ ∗ ∗ Ω
55

Ω
56

0 0 0

∗ ∗ ∗ ∗ ∗ −

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝑃
𝑔

𝑚,𝑙
Ω
67

0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω
77

Ω
78

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
88

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(16)

where

P
𝑞

𝑛,𝑢
= ∑

(𝑛,𝑢)∈I×I

𝑁

∑

𝑔=1

𝑁

∑

𝑞=1

𝛼
𝑖𝑗

𝑔
𝛽
𝑖𝑗

𝑞
𝜋
𝑔

(𝑚,𝑙)(𝑛,𝑢)
𝑃
𝑞

𝑛,𝑢
,

𝛼
𝑖𝑗

𝑔
≥ 0,

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
= 1, 𝛽

𝑖𝑗

𝑞
≥ 0,

𝑁

∑

𝑞=1

𝛽
𝑖𝑗

𝑞
= 1,

Ω
16

= P
𝑞

𝑛,𝑢
𝐴
𝑚,𝑙

,

Ω
17

= P
𝑞

𝑛,𝑢
𝑀
𝑙
,

Ω
18

= P
𝑞

𝑛,𝑢
𝑀
𝑙
diag (𝐹

1
) ,

Ω
19

= P
𝑞

𝑛,𝑢
𝐵
𝑚,𝑙

,

Ω
26

= √𝜆P
𝑞

𝑛,𝑢
𝐴
𝑚,𝑙

,

Ω
27

= √𝜆P
𝑞

𝑛,𝑢
�̂�
𝑙
,

Ω
28

= √𝜆P
𝑞

𝑛,𝑢
�̂�
𝑙
diag (𝐹

1
) ,

Ω
38

= 𝑁
𝑙
diag (𝐹

1
) ,

Ω
46

= √𝜆𝐶
𝑚,𝑙

,

Ω
47

= √𝜆�̂�
𝑙
,

Ω
48

= √𝜆�̂�
𝑙
diag (𝐹

1
) ,

Ω
55

= −𝜇

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜏
𝑔

𝑚,𝑙
𝐼,

Ω
56

= 𝜇

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜏
𝑔

𝑚,𝑙
𝐶
𝑚
Λ
1
,

Ω
67

= 𝜇

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜌
𝑔

𝑚,𝑙
Λ
𝑇

1
𝐶
𝑇

𝑚
𝐾
𝑇

,

Ω
77

= −2𝜇

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜌
𝑔

𝑚,𝑙
𝐼,

Ω
78

= 𝜇

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜌
𝑔

𝑚,𝑙
diag (𝐹) ,

Ω
88

= −𝜇

V2
𝑐

𝑟

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜏
𝑔

𝑚,𝑙
𝐼,

(17)

and 𝜆 = 𝜇(1 − 𝜇), then the system in (10) is mean-square
asymptotically stable and has a prescribed H

∞
performance

index 𝛾.

Proof. First, we handle the stochastic stability of system (10)
with 𝑤

𝑖,𝑗
≡ 0. Construct the following index:
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L
𝑖,𝑗

= E
{

{

{

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

]

𝑇

[

[

𝑃
ℎ

(𝑟
𝑖+1,𝑗

) 0

0 𝑃
V
(𝑟
𝑖,𝑗+1

)

]

]

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

]

− 𝑥
𝑇

𝑖,𝑗
𝑃 (𝑟
𝑖,𝑗
) 𝑥
𝑖,𝑗

| 𝑥
𝑖,𝑗
, 𝑟
𝑖,𝑗

= (𝑚, 𝑙)

}

}

}

,

(18)

where 𝑃(𝑟
𝑖,𝑗
) = diag{𝑃ℎ(𝑟

𝑖,𝑗
), 𝑃

V
(𝑟
𝑖,𝑗
)}, which is represented

as 𝑃
𝑚,𝑙

when 𝑟
𝑖,𝑗

= (𝑚, 𝑙). It follows from expression (18) that

L
𝑖,𝑗

= [

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

]

𝑇

∑

(𝑛,𝑢)∈I×I

(

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜋
𝑔

(𝑚,𝑙)(𝑛,𝑢)
)

⋅ (

𝑁

∑

𝑞=1

𝛽
𝑖𝑗

𝑞
𝑃
𝑞

𝑛,𝑢
)[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

] − 𝑥
𝑇

𝑖,𝑗

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝑃
𝑔

𝑚,𝑙
𝑥
𝑖,𝑗
.

(19)

Collectively considering expression (19) and system (10) with
𝑤
𝑖,𝑗

≡ 0, we have

L
𝑖,𝑗

= [𝐴
𝑚,𝑙

𝑥
𝑖,𝑗

+ 𝑀
𝑙
𝜑
𝑝
+ 𝑀
𝑙
𝐹
1
]

𝑇

⋅ P
𝑞

𝑛,𝑢
[𝐴
𝑚,𝑙

𝑥
𝑖,𝑗

+ 𝑀
𝑙
𝜑
𝑝
+ 𝑀
𝑙
𝐹
1
]

+ 𝜆 [𝐴
𝑚,𝑙

𝑥
𝑖,𝑗

+ �̂�
𝑙
𝜑
𝑝
+ �̂�
𝑙
𝐹
1
]

𝑇

⋅ P
𝑞

𝑛,𝑢
[𝐴
𝑚,𝑙

𝑥
𝑖,𝑗

+ �̂�
𝑙
𝜑
𝑝
+ �̂�
𝑙
𝐹
1
]

− 𝑥
𝑇

𝑖,𝑗

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝑃
𝑔

𝑚,𝑙
𝑥
𝑖,𝑗
.

(20)

It is inferred from the sensor nonlinearity constraint in (6)
that

𝜉
1
= 2𝜇

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜌
𝑔

𝑚,𝑙
𝜑
𝑇

𝑝
(𝐶
𝑚

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

])

⋅ (𝜑
𝑝
(𝐶
𝑚

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]) − 𝐾𝐶
𝑚

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

] − 𝐹) ≤ 0,

𝜉
2
= 2𝜇

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝜏
𝑔

𝑚,𝑙
(V2
𝑐
− 𝑦
𝑇

𝑖,𝑗
𝑦
𝑖,𝑗
) ≤ 0.

(21)

By the Schur complement property, the inequality in (16)
yieldsL

𝑖,𝑗
− 𝜉
1
− 𝜉
2
< 0, which means that

lim
𝑖+𝑗→∞

E {






𝑥
𝑖,𝑗







2

} = 0. (22)

Therefore, the system is mean-square asymptotically stable.

Next, to establish theH
∞
performance for the system, we

introduce the following index:

J
𝑖,𝑗

= E
{

{

{

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

]

𝑇

⋅
[

[

𝑃
ℎ

(𝑟
𝑖+1,𝑗

) 0

0 𝑃
V
(𝑟
𝑖,𝑗+1

)

]

]

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

] − 𝑥
𝑇

𝑖,𝑗
𝑃 (𝑟
𝑖,𝑗
)

⋅𝑥
𝑖,𝑗

+ 𝑧
𝑇

𝑖,𝑗
𝑧
𝑖,𝑗

− 𝛾
2

𝑤
𝑇

𝑖,𝑗
𝑤
𝑖,𝑗

| 𝑥
𝑖,𝑗
, 𝑟
𝑖,𝑗

= (𝑚, 𝑙)

}

}

}

.

(23)

It is shown from (23) that

J
𝑖,𝑗

= 𝜁
𝑇

𝑖,𝑗
Φ
𝑚,𝑙

𝜁
𝑖,𝑗
, (24)

where 𝜁
𝑖,𝑗

= [𝑥
𝑇

𝑖,𝑗
𝜑
𝑇

𝑝
1
𝑟

𝑤
𝑇

𝑖,𝑗
]

𝑇

and

Φ
𝑚,𝑙

= Σ
𝑇

1
P
𝑞

𝑛,𝑢
Σ
1
+ Σ
𝑇

2
P
𝑞

𝑛,𝑢
Σ
2
+ Σ
𝑇

3
Σ
3
+ Σ
𝑇

4
Σ
4
− Σ
5
, (25)

with

Σ
1
= [𝐴
𝑚,𝑙

𝑀
𝑙

𝑀
𝑙
diag (𝐹

1
) 𝐵
𝑚,𝑙

] ,

Σ
2
= [√𝜆𝐴

𝑚,𝑙
√𝜆�̂�

𝑙
√𝜆�̂�

𝑙
diag (𝐹

1
) 0] ,

Σ
3
= [𝐶
𝑚,𝑙

𝑁
𝑙

𝑁
𝑙
diag (𝐹

1
) 𝐷
𝑚,𝑙

] ,

Σ
4
= [√𝜆𝐶

𝑚,𝑙
√𝜆�̂�
𝑙

√𝜆�̂�
𝑙
diag (𝐹

1
) 0] ,

Σ
5
=

[

[

[

[

[

[

[

[

[

𝑁

∑

𝑔=1

𝛼
𝑖𝑗

𝑔
𝑃
𝑔

𝑚,𝑙
0 0 0

0 0 0 0

0 0 0 0

0 0 0 𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

.

(26)

By applying Schur’s complement again, the inequality in (16)
guarantees J

𝑖,𝑗
− 𝜉
1
− 𝜉
2

< 0, which implies that ‖𝑧
𝑖,𝑗
‖
𝐸

<

𝛾‖𝑤
𝑖,𝑗
‖
2
. Thus, the system is mean-square asymptotically

stable and has a prescribedH
∞
performance level.The proof

is completed.

Remark 6. In Theorem 5, an H
∞

analysis criterion for the
underlying system is established by considering a nonhomo-
geneous Markovian process under asynchronous switching.
By a closer inspection, it is found that the obtained condition
reveals the relationship between the asynchronous switching
and theH

∞
performance level.

The developments above lead to the asynchronous filter-
ing result in the next theorem.

Theorem 7. The system in (10) with extended varying transi-
tion probabilities (12) is mean-square asymptotically stable and
has a prescribed H

∞
performance index 𝛾 > 0, if there exist

matrices 𝑃
𝑔

1𝑚,𝑙
= diag{𝑃ℎ𝑔

1𝑚,𝑙
, 𝑃

V𝑔
1𝑚,𝑙

} > 0, 𝑃𝑔
3𝑚,𝑙

= diag{𝑃ℎ𝑔
3𝑚,𝑙

,

𝑃
V𝑔
3𝑚,𝑙

} > 0, 𝑃𝑔
2𝑚,𝑙

= diag{𝑃ℎ𝑔
2𝑚,𝑙

, 𝑃
V𝑔
2𝑚,𝑙

}, 𝑋
𝑙
, 𝑆
𝑙
, 𝑈
𝑙
, 𝐴
𝑓𝑙
, 𝐵
𝑓𝑙
, 𝐶
𝑓𝑙
,



6 Mathematical Problems in Engineering

𝐷
𝑓𝑙
, and scalars 𝜏𝑔

𝑚,𝑙
> 0, 𝜌𝑔

𝑚,𝑙
> 0, 𝑔 = 1, . . . , 𝑁, ∀(𝑚, 𝑙) ∈

I × I, such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ψ
11

Ψ
12

0 0 0 0 0 Ψ
18

𝜇𝐵
𝑓𝑙

𝜇𝐵
𝑓𝑙
diag (𝐹

1
) Ψ

19

∗ Ψ
22

0 0 0 0 0 Ψ
28

𝜇𝐵
𝑓𝑙

𝜇𝐵
𝑓𝑙
diag (𝐹

1
) Ψ

29

∗ ∗ Ψ
11

Ψ
12

0 0 0 Ψ
38

−√𝜆𝐵
𝑓𝑙

−√𝜆𝐵
𝑓𝑙
diag (𝐹

1
) 0

∗ ∗ ∗ Ψ
22

0 0 0 Ψ
38

−√𝜆𝐵
𝑓𝑙

−√𝜆𝐵
𝑓𝑙
diag (𝐹

1
) 0

∗ ∗ ∗ ∗ −𝐼 0 0 Ψ
58

−𝜇𝐷
𝑓𝑙

−𝜇𝐷
𝑓𝑙
diag (𝐹

1
) Ψ

59

∗ ∗ ∗ ∗ ∗ −𝐼 0 Ψ
68

√𝜆𝐷
𝑓𝑙

√𝜆𝐷
𝑓𝑙
diag (𝐹

1
) 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜇𝜏
𝑔

𝑚,𝑙
𝐼 Ψ
78

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ
88

Ψ
89

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝜇𝜌
𝑔

𝑚,𝑙
𝐼 𝜇𝜌

𝑔

𝑚,𝑙
diag (𝐹) 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜇

V2
𝑐

𝑟

𝜏
𝑔

𝑚,𝑙
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (27)

where

Ψ
11

= ∑

(𝑛,𝑢)∈I×I

𝜋
𝑔

(𝑚,𝑙)(𝑛,𝑢)
𝑃
𝑞

1𝑛,𝑢
− 𝑋
𝑇

𝑙
− 𝑋
𝑙
,

Ψ
12

= ∑

(𝑛,𝑢)∈I×I

𝜋
𝑔

(𝑚,𝑙)(𝑛,𝑢)
𝑃
𝑞

2𝑛,𝑢
− 𝑈
𝑇

𝑙
− 𝑆
𝑙
,

Ψ
22

= ∑

(𝑛,𝑢)∈I×I

𝜋
𝑔

(𝑚,𝑙)(𝑛,𝑢)
𝑃
𝑞

3𝑛,𝑢
− 𝑈
𝑇

𝑙
− 𝑈
𝑙
,

Ψ
18

= [𝑋
𝑇

𝑙
𝐴
𝑚

+ (1 − 𝜇) 𝐵
𝑓𝑙
𝐶
𝑚

+ 𝜇𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

𝐴
𝑓𝑙
] ,

Ψ
19

= 𝑋
𝑇

𝑙
𝐵
𝑚

+ 𝐵
𝑓𝑙
𝐷
𝑚
,

Ψ
28

= [𝑆
𝑇

𝑙
𝐴
𝑚

+ (1 − 𝜇) 𝐵
𝑓𝑙
𝐶
𝑚

+ 𝜇𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

𝐴
𝑓𝑙
] ,

Ψ
29

= 𝑆
𝑇

𝑙
𝐵
𝑚

+ 𝐵
𝑓𝑙
𝐷
𝑚
,

Ψ
38

= [√𝜆𝐵
𝑓𝑙
𝐶
𝑚

− √𝜆𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

0] ,

Ψ
58

= [𝐻
𝑚

− (1 − 𝜇)𝐷
𝑓𝑙
𝐶
𝑚

− 𝜇𝐷
𝑓𝑙
𝐾
1
𝐶
𝑚

−𝐶
𝑓𝑙
] ,

Ψ
59

= 𝐿
𝑚

− 𝐷
𝑓𝑙
𝐷
𝑚
,

Ψ
68

= [√𝜆𝐷
𝑓𝑙
𝐾
1
𝐶
𝑚

− √𝜆𝐷
𝑓𝑙
𝐶
𝑚

0] ,

Ψ
78

= [𝜇𝜏
𝑔

𝑚,𝑙
𝐶
𝑚

0] ,

Ψ
88

= [

−𝑃
𝑔

1𝑚,𝑙
−𝑃
𝑔

2𝑚,𝑙

∗ −𝑃
𝑔

3𝑚,𝑙

] ,

Ψ
89

= [

𝜇𝜌
𝑔

𝑚,𝑙
𝐶
𝑇

𝑚
𝐾
𝑇

0

] .

(28)

In this case, the admissible filter gains are given by

𝐴
𝑓𝑙

= 𝑈
−𝑇

𝑙
𝐴
𝑓𝑙
,

𝐵
𝑓𝑙

= 𝑈
−𝑇

𝑙
𝐵
𝑓𝑙
,

𝐶
𝑓𝑙

= 𝐶
𝑓𝑙
,

𝐷
𝑓𝑙

= 𝐷
𝑓𝑙
.

(29)

Proof. First, consider the system in (10) and define the
matrices

𝑃
ℎ𝑔

𝑚,𝑙
=

[

[

𝑃
ℎ𝑔

1𝑚,𝑙
𝑃
ℎ𝑔

2𝑚,𝑙

∗ 𝑃
ℎ𝑔

3𝑚,𝑙

]

]

,

𝑃
V𝑔
𝑚,𝑙

= [

𝑃
V𝑔
1𝑚,𝑙

𝑃
V𝑔
2𝑚,𝑙

∗ 𝑃
V𝑔
3𝑚,𝑙

] ,

𝐺
𝑙
= [

𝐺
1𝑙

𝐺
2𝑙

𝐺
4𝑙

𝐺
3𝑙

] ,

𝐺
𝑖𝑙
= [

𝑋
𝑖𝑙

𝑆
𝑖𝑙

𝑈
𝑖𝑙

𝑈
𝑖𝑙

] , 𝑖 = 1, . . . , 4.

(30)

Notice that

Λ𝑃
𝑔

𝑚,𝑙
Λ
𝑇

= [

𝑃
𝑔

1𝑚,𝑙
𝑃
𝑔

2𝑚,𝑙

∗ 𝑃
𝑔

3𝑚,𝑙

] ,

Λ𝐺
𝑙
Λ
𝑇

= [

𝑋
𝑙

𝑆
𝑙

𝑈
𝑙

𝑈
𝑙

] ,
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Λ𝐺
𝑇

𝑙
𝐴
𝑚,𝑙

Λ
𝑇

=
[

[

𝑋
𝑇

𝑙
𝐴
𝑚

+ (1 − 𝜇) 𝐵
𝑓𝑙
𝐶
𝑚

+ 𝜇𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

𝐴
𝑓𝑙

𝑆
𝑇

𝑙
𝐴
𝑚

+ (1 − 𝜇) 𝐵
𝑓𝑙
𝐶
𝑚

+ 𝜇𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

𝐴
𝑓𝑙

]

]

,

Λ√𝜆𝐺
𝑇

𝑙
𝐴
𝑚,𝑙

Λ
𝑇

=
[

[

√𝜆𝐵
𝑓𝑙
𝐶
𝑚

− √𝜆𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

0

√𝜆𝐵
𝑓𝑙
𝐶
𝑚

− √𝜆𝐵
𝑓𝑙
𝐾
1
𝐶
𝑚

0

]

]

,

Λ𝐺
𝑇

𝑙
𝑀
𝑙
= [

𝜇𝐵
𝑓𝑙

𝜇𝐵
𝑓𝑙

] ,

Λ𝐺
𝑇

𝑙
𝑀
𝑙
diag (𝐹

1
) = [

𝜇𝐵
𝑓𝑙
diag (𝐹

1
)

𝜇𝐵
𝑓𝑙
diag (𝐹

1
)

] ,

Λ√𝜆𝐺
𝑇

𝑙
�̂�
𝑙
= [

−√𝜆𝐵
𝑓𝑙

−√𝜆𝐵
𝑓𝑙

] ,

Λ√𝜆𝐺
𝑇

𝑙
�̂�
𝑙
diag (𝐹

1
) = [

−√𝜆𝐵
𝑓𝑙
diag (𝐹

1
)

−√𝜆𝐵
𝑓𝑙
diag (𝐹

1
)

] ,

Λ𝐺
𝑇

𝑙
𝐵
𝑚,𝑙

= [

𝑋
𝑇

𝑙
𝐵
𝑚

+ 𝐵
𝑓𝑙
𝐷
𝑚

𝑆
𝑇

𝑙
𝐵
𝑚

+ 𝐵
𝑓𝑙
𝐷
𝑚

] ,

𝐶
𝑚,𝑙

Λ
𝑇

= [𝐻
𝑚

− (1 − 𝜇)𝐷
𝑓𝑙
𝐶
𝑚

− 𝜇𝐷
𝑓𝑙
𝐾
1
𝐶
𝑚

−𝐶
𝑓𝑙
] ,

√𝜆𝐶
𝑚,𝑙

Λ
𝑇

= [√𝜆𝐷
𝑓𝑙
𝐾
1
𝐶
𝑚

− √𝜆𝐷
𝑓𝑙
𝐶
𝑚

0] ,

𝑁
𝑙
= −𝜇𝐷

𝑓𝑙
,

𝑁
𝑙
diag (𝐹

1
) = −𝜇𝐷

𝑓𝑙
diag (𝐹

1
) ,

√𝜆�̂�
𝑙
= √𝜆𝐷

𝑓𝑙
,

√𝜆�̂�
𝑙
diag (𝐹

1
) = √𝜆𝐷

𝑓𝑙
diag (𝐹

1
)

𝜇𝜏
𝑔

𝑚,𝑙
𝐶
𝑚
Λ
1
Λ
𝑇

= [𝜇𝜏
𝑔

𝑚,𝑙
𝐶
𝑚

0] ,

𝜇𝜌
𝑔

𝑚,𝑙
𝐾𝐶
𝑚
Λ
1
Λ
𝑇

= [𝜇𝜌
𝑔

𝑚,𝑙
𝐾𝐶
𝑚

0] ,

𝐷
𝑚,𝑙

= 𝐿
𝑚

− 𝐷
𝑓𝑙
𝐷
𝑚
.

(31)

Further let the following matrices of the filter

𝐴
𝑓𝑙

= 𝑈
𝑇

𝑙
𝐴
𝑓𝑙
,

𝐵
𝑓𝑙

= 𝑈
𝑇

𝑙
𝐵
𝑓𝑙
,

𝐶
𝑓𝑙

= 𝐶
𝑓𝑙
,

𝐷
𝑓𝑙

= 𝐷
𝑓𝑙
.

(32)

Then, in terms of the condition in (27), we get

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11

0 0 0 0 Ω
16

Ω
17

Ω
18

Ω
19

∗ Ω
11

0 0 0 Ω
26

Ω
27

Ω
28

0

∗ ∗ −𝐼 0 0 𝐶
𝑚,𝑙

𝑁
𝑙

Ω
38

𝐷
𝑚,𝑙

∗ ∗ ∗ −𝐼 0 Ω
46

Ω
47

Ω
48

0

∗ ∗ ∗ ∗ Ω
55

Ω
56

0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑔

𝑚,𝑙
Ω
67

0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω
77

Ω
78

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
88

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(33)

where

Ω
11

= P
𝑞

𝑛,𝑢
− 𝐺
𝑇

𝑙
− 𝐺
𝑙
,

Ω
16

= 𝐺
𝑇

𝑙
𝐴
𝑚,𝑙

,

Ω
17

= 𝐺
𝑇

𝑙
𝑀
𝑙
,

Ω
18

= 𝐺
𝑇

𝑙
𝑀
𝑙
diag (𝐹

1
) ,

Ω
19

= 𝐺
𝑇

𝑙
𝐵
𝑚,𝑙

,

Ω
26

= √𝜆𝐺
𝑇

𝑙
𝐴
𝑚,𝑙

,

Ω
27

= √𝜆𝐺
𝑇

𝑙
�̂�
𝑙
,

Ω
28

= √𝜆𝐺
𝑇

𝑙
�̂�
𝑙
diag (𝐹

1
) ,

Ω
55

= −𝜇𝜏
𝑔

𝑚,𝑙
𝐼,

Ω
56

= 𝜇𝜏
𝑔

𝑚,𝑙
𝐶
𝑚
Λ
1
,

Ω
67

= 𝜇𝜌
𝑔

𝑚,𝑙
Λ
𝑇

1
𝐶
𝑇

𝑚
𝐾
𝑇

,

Ω
77

= −2𝜇𝜌
𝑔

𝑚,𝑙
𝐼,

Ω
78

= 𝜇𝜌
𝑔

𝑚,𝑙
diag (𝐹) ,

Ω
88

= −𝜇

V2
𝑐

𝑟

𝜏
𝑔

𝑚,𝑙
𝐼,

P
𝑞

𝑛,𝑢
= ∑

(𝑛,𝑢)∈I×I

𝜋
𝑔

(𝑚,𝑙)(𝑛,𝑢)
𝑃
𝑞

𝑛,𝑢
.

(34)

Multiplying inequality (33) by the adequate coefficients and
adding the resulting inequalities, together with the consid-
eration of the fact that P𝑞

𝑛,𝑢
− 𝐺
𝑇

𝑙
− 𝐺
𝑙

≥ −𝐺
𝑇

𝑙
(P𝑞
𝑛,𝑢

)
−1

𝐺
𝑙
,

yield inequality (16) in Theorem 5. Therefore, it follows from
Theorem 5 that system (10) with extended varying transition
probabilities (12) is mean-square asymptotically stable and
has a prescribedH

∞
performance level.Meanwhile, the filter

gains in (29) follow immediately from (32). This completes
the proof.
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Remark 8. According to Theorem 7, the asynchronous H
∞

filter can be designed for the addressed Markovian jump
system with varying transition probabilities in the presence
of randomly occurring nonlocal sensor nonlinearity. By
solving the convex problem contained inTheorem 7, theH

∞

performance 𝛾 can be optimized in terms of the feasibility
of the corresponding condition. The result in Theorem 7
indicates that the different 𝜂 in (12) sparks off the different
optimal 𝛾 achieved for the system in (10). Thus, the effect of
the asynchronous behavior can be readily comprehended by
comparing theH

∞
performance indexes.

4. Numerical Example

In this section, an example is presented to demonstrate the
merits of the proposed approach. Consider a 2D Markovian
jump system with two operation modes and the parameters
as follows:

𝐴
1
= [

0.12 0

1 0.29

] ,

𝐴
2
= [

0.83 0

1 0.92

] ,

𝐶
1
= [0.12 1] ,

𝐶
2
= [0.83 1] ,

𝐵
1
= 𝐵
2
= [

1 0

0 0

] ,

𝐷
1
= 𝐷
2
= [0 1] ,

𝐻
1
= 𝐻
2
= [0 1] ,

𝐾
1
= 0,

𝐾
2
= 5,

𝐹
1
= 0,

𝐹
2
= −1,

V
𝑐
= 0.25.

(35)

The varying transition probability matrix is assumed to be
included in a polytope defined by its vertices:

Π
1

= [

0.27 0.73

0.35 0.65

] ,

Π
2

= [

0.59 0.41

0.85 0.15

] .

(36)

Moreover, the probabilities 𝜇 and 𝜂 are set as 0.2 and 0.35,
respectively.

1

2

0 10 20 30 40 50 60 70 80 90 100
Steps

Sy
ste

m
 m

od
es

0 10 20 30 40 50 60 70 80 90 100
Steps

0

1

𝜎
k

0 10 20 30 40 50 60 70 80 90 100
Steps

0

1

𝛿
k

Figure 1: Paths of 𝑟
𝑖,𝑗
, 𝜎
𝑘
, and 𝛿

𝑘
.

By applying the filter design method in Theorem 7, the
minimum H

∞
cost is obtained 𝛾

∗

= 10.7273 as well as the
resulting filter gain matrices:

𝐴
𝑓1

= [

0.0602 0.0163

0.2327 0.3538

] ,

𝐵
𝑓1

= [

−0.0069

−0.0681

] ,

𝐶
𝑓1

= [−0.7647 −0.8920] ,

𝐴
𝑓2

= [

0.1724 0.0834

1.0948 0.4952

] ,

𝐵
𝑓2

= [

−0.0238

−0.0982

] ,

𝐶
𝑓2

= [−1.0738 −0.7933] .

(37)

Given paths of 𝑟
𝑖,𝑗
, 𝜎
𝑘
, and 𝛿

𝑘
demonstrated in Figure 1,

the system initial condition 𝑥
V
𝑖,0

= 1, 0 ≤ 𝑖 ≤ 29, the
disturbance signal

𝑤
𝑖,𝑗

=

{

{

{

0.3𝑒
−0.3𝑗 sin (0.5𝜋𝑗) , 1 ≤ 𝑖 ≤ 15, 1 ≤ 𝑗 ≤ 15,

0, otherwise,

(38)

and the sensor nonlinearity 𝜑(𝜃) = 𝐾
2
𝜃 + 𝐹
2
, by using the

achieved filter, it is seen that 𝑧
𝑖,𝑗
of the error system converges
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z
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Figure 2: Filtering error response 𝑧
𝑖,𝑗
.

to zero, shown in Figure 2, which means that the obtained
filter is effective in spite of the asynchronous switching and
randomly occurring nonlocal sensor nonlinearity.

5. Conclusion

This paper has addressed the problem of asynchronous H
∞

estimation for a class of 2D Markovian jump systems with
varying transition probabilities in the presence of randomly
occurring nonlocal sensor nonlinearity.The jumping process
of the estimation error system is modeled by the Markov
chain with extended varying transition probabilities. The
existence condition of asynchronous H

∞
filters has been

derived to ensure the mean-square asymptotic stability and
H
∞

performance level of the error system. A numerical
example has been provided that highlights the effectiveness
of the developed estimation approach.
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This paper dealswith the robust𝐻
∞
filter design problem for a class of uncertain neutral stochastic systemswithMarkovian jumping

parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability
condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed𝐻

∞

performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linearmatrix inequalities
which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less
conservative and less complicated in computation.

1. Introduction

Time delay exists extensively in chemical process systems,
communication systems, economic systems, microwave
oscillator, and networked control systems. Meanwhile,
because of the modeling inaccuracies and changes in the
environment of the model parameter, uncertainties are
unavoidable in the process of modeling. The appearance of
time delay and uncertainties in many systems can often bring
instability, oscillation, and poor performance; considerable
attention has been focused on the stability analysis of
uncertain time delays systems; see [1–6] and the references
therein. On the other hand, a real system is often affected
by external disturbances such as stochastic perturbations.
The stochastic effects can also lead to oscillation, divergence,
or other poor performances. Therefore, the stability study
of stochastic systems with time delay has been paid
great attention and a lot of significant results have been
reported in the literature; see [7–12] and the references
therein.

In the past few decades, filtering problem has been a hot
issue in the fields of signal processing. Kalman filtering has
been successfully applied in many fields such as manufac-
turing systems, economic systems, and maneuvered target
tracking.However, the exact requirement of knowndynamics
system and precise noise statistics have restricted its practical

application. In such a case, we can resort to𝐻
∞
filtering [13–

22] and 𝐿2-𝐿∞ filtering [23–25]; see the references therein.
Markovian jump systems, originally raised by Krasovskii

and Lidskii [26], are famous for the description of many
dynamical practical systems whose structure and parame-
ters are subject to random changes. Therefore, the stability
analysis and filtering problem for Markovian jump systems
have been studied [27–34]. For example, the stability analysis
of impulsive stochastic neural networks with Markovian
jump are studied in [27, 29, 31, 34]; 𝐻

∞
control and mode-

dependent 𝐻
∞

filtering for discrete-time Markovian jump
linear systems with partly unknown transition probabilities
are, respectively, investigated in [28, 30, 32]. The design of
reduced-order 𝐻

∞
filter for Markovian jumping systems

with time delay is studied in [15]. The 𝐿2-𝐿∞ filter design
for stochastic time-varying delay systems with Markovian
jumping parameters is considered in [33].

Many methods are proposed in the process of robust
stochastic stability analysis and filtering design, which devel-
ops from the early solving Riccati equation to model trans-
formation method and cross-terms bounding technique [5],
free-weighting matrices method [11, 32], slack matrix vari-
ables [17–19, 24, 28], and delay-partitioning method [20].
However, model transformations may give rise to additional
dynamics of the original systems [13], and cross-terms
bounding techniques can bring conservatism. Moreover, as
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pointed out in [33], under certain circumstance, free matrix
variables may not lessen the conservatism. In recent years,
another popular method called Finsler Lemma is carried out
so as to decrease the computational cost as well [5], and
the Finsler Lemma in deterministic setting is extended to
generalized Finsler Lemma in stochastic systems in [5, 33, 34].

On the other hand, many dynamical systems can be
modeled by neutral systems which are organized by neutral
functional differential equations. Other than retarded time
delay systems containing delays only in states, a neutral
time delay system contains delays in both its state and its
derivatives of state. Recently, for neutral stochastic time delay
systems, the stability analysis and filter design problem are
mainly addressed in [4, 9, 19]. It is necessary to point out
that the delay-dependent robust 𝐻

∞
filtering for uncertain

neutral stochastic time delay system is studied in [19, 24].
Robust 𝐻

∞
filter design for neutral stochastic uncertain

systems with time-varying delay is studied in [13]. To the
best of the authors’ knowledge, the𝐻

∞
filtering problem has

not been reported about uncertain neutral stochastic systems
with Markovian jumping parameters and time delay, which
motivates the present study.

Motivated by the works in [5, 13, 17, 18], the robust 𝐻
∞

filtering for uncertain neutral stochastic systems withMarko-
vian jumping parameters and time delay is considered in this
paper. By generalized Finsler Lemma, the robust stochastic
stability condition is obtained. The presented condition is
simple and efficient. Finally, the effectiveness of the approach
is verified by illustrative examples including a comparison
with some recent results.

Throughout this paper, R𝑛 denotes the 𝑛-dimensional
Euclidean space. R𝑛×𝑚 is the set of 𝑛 × 𝑚 real matrices. 𝐼 is
the identity matrix. | ⋅ | denotes Euclidean norm for vectors
and ‖ ⋅ ‖ denotes the spectral norm of matrices. 𝑁 denotes
the set of all natural numbers; that is, 𝑁 = {0, 1, 2, . . .}.
(Ω,F, {F

𝑡
}
𝑡≥0,P) is a complete probability space with filtra-

tion {F
𝑡
}
𝑡≥0 satisfying the usual conditions.𝑀

𝑇 stands for the
transpose of the matrix𝑀. For symmetric matrices𝑋 and 𝑌,
the notation 𝑋 > 𝑌 (resp., 𝑋 ≥ 𝑌) means that the 𝑋 − 𝑌

is positive definite (resp., positive semidefinite). ∗ denotes a
block that is readily inferred by symmetry. E{⋅} stands for the
mathematical expectation operator with respect to the given
probability measureP.

2. Problem Description

Consider the following uncertain neutral stochastic systems
with Markovian jumping parameters and time delay:

𝑑 [𝑥 (𝑡) −𝐺 (𝑟
𝑡
) 𝑥 (𝑡 − ℎ)] = [𝐴 (𝑡, 𝑟

𝑡
) (𝑡) 𝑥 (𝑡)

+𝐴1 (𝑡, 𝑟𝑡) (𝑡) 𝑥 (𝑡 − ℎ) + 𝐵 (𝑟𝑡) V (𝑡)] 𝑑𝑡

+ [𝐷 (𝑡, 𝑟
𝑡
) (𝑡) 𝑥 (𝑡) +𝐷1 (𝑡, 𝑟𝑡) (𝑡) 𝑥 (𝑡 − ℎ)

+𝐷2 (𝑟𝑡) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑑𝑦 (𝑡) = [𝐶 (𝑟
𝑡
) 𝑥 (𝑡) +𝐶1 (𝑟𝑡) 𝑥 (𝑡 − ℎ) +𝐶2 (𝑟𝑡) V (𝑡)] 𝑑𝑡

+ [𝐸 (𝑟
𝑡
) (𝑡) 𝑥 (𝑡) + 𝐸1 (𝑟𝑡) 𝑥 (𝑡 − ℎ) +𝐸2 (𝑟𝑡) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿1 (𝑟𝑡) 𝑥 (𝑡) + 𝐿2 (𝑟𝑡) 𝑥 (𝑡 − ℎ) + 𝐿3 (𝑟𝑡) V (𝑡) ,

𝑥 (𝜃) = 𝜓 (𝜏) ,

𝑟
𝑡
= 𝑟0 ∈ 𝑆, ∀𝜏 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑚 is themeasured
output, V(𝑡) ∈ R𝑞 is the disturbance input in 𝐿2[0,∞),
and 𝑧(𝑡) ∈ R𝑝 is the signal to be estimated. 𝐴(𝑡, 𝑟

𝑡
)(𝑡),

𝐴1(𝑡, 𝑟𝑡)(𝑡), 𝐵(𝑟𝑡),𝐷(𝑡, 𝑟𝑡)(𝑡),𝐷1(𝑡, 𝑟𝑡)(𝑡),𝐷2(𝑟𝑡),𝐶(𝑟𝑡),𝐶1(𝑟𝑡),
𝐶2(𝑟𝑡), 𝐸(𝑟𝑡), 𝐸1(𝑟𝑡), 𝐸2(𝑟𝑡), 𝐿1(𝑟𝑡), 𝐿2(𝑟𝑡), and 𝐿3(𝑟𝑡) are the
matrix functions of the random jumping process 𝑟(𝑡), where
𝑟(𝑡) is a finite-state Markovian jump process representing
the system mode; that is, 𝑟(𝑡) takes discrete values in given
finite set S = 1, 2, . . . , 𝑁. Here 𝜓(⋅) is the initial condition
and is assumed to be continuously differentiable on [−ℎ, 0].
Consider ℎ > 0 indicates the time delay. 𝑤(𝑡) is a scalar
Brownian motion (Wiener process) defined on the complete
probability space (Ω,F, {F

𝑡
}
𝑡≥0,P) satisfying

E {𝑑𝑤 (𝑡)} = 0,

E {𝑑𝑤2
(𝑡)} = 𝑑𝑡.

(2)

The transition probability matrix of systems (1) is given by

𝑃
𝑟
(𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖) =

{

{

{

𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑗 ̸= 𝑖

1 + 𝜋
𝑖𝑖
Δ + 𝑜 (Δ) , 𝑗 = 𝑖,

(3)

where Δ > 0, lim
Δ→ 0(𝑜(Δ)/Δ) = 0, 𝜋

𝑖𝑗
≥ 0, ∀𝑗 ̸= 𝑖, is the

transition rate from mode 𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + Δ,
and

𝜋
𝑖𝑖
= −

𝑗=𝑁

∑

𝑗=1,𝑗 ̸=𝑖
𝜋
𝑖𝑗
< 0. (4)

For the purpose of simplicity, in this paper, for each 𝑟(𝑡) =
𝑖 ∈ S, 𝐴(𝑡, 𝑟

𝑡
)(𝑡), 𝐴1(𝑡, 𝑟𝑡)(𝑡), and 𝐵(𝑟𝑡) are denoted by 𝐴

𝑖
(𝑡),

𝐴1𝑖(𝑡), 𝐵𝑖, and so on. In systems (1),

𝐴
𝑖
(𝑡) = 𝐴

𝑖
+Δ𝐴
𝑖
(𝑡) ,

𝐴1𝑖 (𝑡) = 𝐴1𝑖 +Δ𝐴1𝑖 (𝑡) ,

𝐷
𝑖
(𝑡) = 𝐷

𝑖
+Δ𝐷
𝑖
(𝑡) ,

𝐷1𝑖 (𝑡) = 𝐷1𝑖 +Δ𝐷1𝑖 (𝑡) ,

(5)

and 𝐴
𝑖
, 𝐴1𝑖, 𝐵𝑖, 𝐷𝑖, 𝐷1𝑖, 𝐷2𝑖, 𝐶𝑖, 𝐶1𝑖, 𝐶2𝑖, 𝐸𝑖, 𝐸1𝑖, 𝐸2𝑖, 𝐿1𝑖,

𝐿2𝑖, and 𝐿3𝑖 are known real constant matrices with appro-
priate dimensions. Δ𝐴

𝑖
(𝑡), Δ𝐴1𝑖(𝑡), Δ𝐷𝑖(𝑡), and Δ𝐷1𝑖(𝑡) are

unknown matrices representing norm-bounded parameter
uncertainties, which are assumed to satisfy

[

Δ𝐴
𝑖
(𝑡) Δ𝐴1𝑖 (𝑡)

Δ𝐷
𝑖
(𝑡) Δ𝐷1𝑖 (𝑡)

] = [

𝑀1𝑖

𝑀2𝑖
]𝐹
𝑖
(𝑡) [𝑁1𝑖 𝑁2𝑖] , (6)

where 𝑀1𝑖, 𝑀2𝑖, 𝑁1𝑖, and 𝑁2𝑖 are known real constant
matrices and 𝐹

𝑖
(⋅) : R → R𝑘×𝑙 is an unknown time-varying

matrix function satisfying

𝐹
𝑇

𝑖
(𝑡) 𝐹
𝑖
(𝑡) ≤ 𝐼, ∀𝑡. (7)
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The parameter uncertainties Δ𝐴
𝑖
(𝑡), Δ𝐴1𝑖(𝑡), Δ𝐷𝑖(𝑡), and

Δ𝐷1𝑖(𝑡) are said to be admissible if both (6) and (7) hold.
In this paper, we make the following assumption on the

matrix 𝐺
𝑖
in systems (1).

Assumption 1. Thematrix 𝐺
𝑖
in systems (1) satisfies

𝜌 (𝐺
𝑖
) < 1, (8)

where the notation 𝜌(𝐺
𝑖
) denotes the spectral radius of 𝐺

𝑖
.

We now consider a full-order filter for systems (1) with
the following form:

(Σ
𝑓
) : 𝑑𝑥 (𝑡) = 𝐴

𝑓𝑖
𝑥 (𝑡) 𝑑𝑡 + 𝐵

𝑓𝑖
𝑑𝑦 (𝑡) ,

�̂� (𝑡) = 𝐶
𝑓𝑖
𝑥 (𝑡) ,

(9)

where 𝑥(𝑡) ∈ R𝑛 is the filter state, �̂�(𝑡) ∈ R𝑝 is the estimation
of 𝑧(𝑡), and 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, and 𝐶

𝑓𝑖
(𝑖 ∈ S) are the filter parameters

with compatible dimensions to be determined.
Define

𝜉 (𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)]

𝑇

,

𝑒 (𝑡) = 𝑧 (𝑡) − �̂� (𝑡) .

(10)

Then the filtering error systems can be obtained as follows:

𝑑 [𝜉 (𝑡) −𝐺
𝑖
𝐾𝜉 (𝑡 − ℎ)] = [𝐴

𝑖
(𝑡) 𝜉 (𝑡)

+𝐴1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ) + 𝐵𝑖V (𝑡)] 𝑑𝑡 + [𝐷𝑖 (𝑡) 𝜉 (𝑡)

+𝐷1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ) +𝐷2𝑖V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑒 (𝑡) = 𝐿1𝑖𝜉 (𝑡) + 𝐿2𝑖𝐾𝜉 (𝑡 − ℎ) + 𝐿3𝑖V (𝑡) ,

(11)

where

𝐴
𝑖
(𝑡) = 𝐴

𝑖
+Δ𝐴
𝑖
(𝑡) ,

𝐴1𝑖 (𝑡) = 𝐴1𝑖 +Δ𝐴1𝑖 (𝑡) ,

𝐷
𝑖
(𝑡) = 𝐷

𝑖
+Δ𝐷
𝑖
(𝑡) ,

𝐷1𝑖 (𝑡) = 𝐷1𝑖 +Δ𝐷1𝑖 (𝑡)

(12)

with

𝐴
𝑖
= [

𝐴
𝑖

0
𝐵
𝑓𝑖
𝐶
𝑖
𝐴
𝑓𝑖

] ,

Δ𝐴
𝑖
(𝑡) = [

Δ𝐴
𝑖
(𝑡) 0

0 0
] ,

𝐴1𝑖 = [
𝐴1𝑖

𝐵
𝑓𝑖
𝐶1𝑖
] ,

Δ𝐴1𝑖 (𝑡) = [
Δ𝐴1𝑖 (𝑡)

0
] ,

𝐵
𝑖
= [

𝐵
𝑖

𝐵
𝑓𝑖
𝐶2𝑖
] ,

𝐷
𝑖
= [

𝐷
𝑖

0
𝐵
𝑓𝑖
𝐸
𝑖
0
] ,

Δ𝐷
𝑖
(𝑡) = [

Δ𝐷
𝑖
(𝑡) 0

0 0
] ,

𝐷1𝑖 = [
𝐷1𝑖

𝐵
𝑓𝑖
𝐸1𝑖
] ,

Δ𝐷1𝑖 (𝑡) = [
Δ𝐷1𝑖 (𝑡)

0
] ,

𝐷2𝑖 = [
𝐷2𝑖

𝐵
𝑓𝑖
𝐸2𝑖
]𝐾 = [𝐼 0] ,

𝐿1𝑖 = [𝐿1𝑖 −𝐶𝑓𝑖] ,

𝐺
𝑖
= [

𝐺
𝑖

0
] .

(13)

Then the problem of robust 𝐻
∞

filtering to be addressed
in this paper is formulated as follows: given the uncertain
stochastic delay systems (1) and a prescribed attenuation level
𝛾 > 0, design linear stochastic filter (Σ

𝑓
) as the form of

(9) such that the filtering error systems (11) are robustly
stochastically stable and under zero initial conditions, the
following inequality holds:

‖𝑒 (𝑡)‖2 < 𝛾 ‖V (𝑡)‖2 (14)

for all nonzero V(𝑡) ∈ 𝐿2[0,∞) and all admissible uncertain-
ties.

Before concluding this section, we introduce the follow-
ing Lemmas, which will be used in the derivation of ourmain
results in the next section.

Lemma 2. For any vectors 𝑥, 𝑦 ∈ R𝑛 and any scalar 𝜖 > 0,
matrices 𝐷, 𝐹, 𝐸 are real matrices of appropriate dimensions
with 𝐹𝑇𝐹 ≤ 𝐼, then the following inequality hold:

2𝑥𝑇𝐷𝐹𝐸𝑦 ≤ 𝜖−1𝑥𝑇𝐷𝐷𝑇𝑥+ 𝜖𝑦𝑇𝐸𝐸𝑇𝑦. (15)

Proposition 3 ([5], generalized Finsler Lemma (GFL)). Con-
sider stochastic vector 𝜃 ∈ R𝑛, symmetric and positive matrix
Θ ∈ R𝑛×𝑛, and matrixB ∈ R𝑚×𝑛 with rank (B) = 𝑟 < 𝑛. Let
B⊥ represent the right orthogonal complement of B, that is,
BB⊥ = 0, then the following four statements are equivalent:

(𝑇1) E{𝜃𝑇Θ𝜃} < 0, ∀𝜃 ̸= 0, 𝑡 > 𝑡0, E{B𝜃} = 0;
(𝑇2) B⊥𝑇ΘB⊥ < 0;
(𝑇3) ∃𝜖 ∈ R : Θ − 𝜖B𝑇B < 0;
(𝑇4) ∃Λ ∈ R𝑛×𝑚 : Θ + ΛB +B𝑇Λ𝑇 < 0.
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Remark 4. Based on generalized Finsler Lemma, the stability
of neutral stochastic systems with time delay has been
studied in [5, 34]. In addition, it should be noted that
the stochastic systems in [5, 34] are not Markovian jump
systems. And the filtering problem for stochastic time delay
systems with Markovian jumping parameters is considered
in [20]. However, it should be pointed out that the systems
in [20] do not include any analysis of neutral phenomena. So
𝐻
∞

filtering for neutral stochastic systems with Markovian
jumping parameters and time delay is considered in this
paper.

3. Main Results

Theorem 5. Consider the uncertain neutral stochastic Marko-
vian jump systems (1). For given scalars 𝛾 > 0, ℎ > 0,
systems (1) are robustly stochastically stable for all admissible
uncertainties satisfying (6) and (7), if there exist symmetric
positive matrices 𝑃

𝑖
> 0, 𝑅 > 0, 𝑄 = [

𝑄1 𝑄2
∗ 𝑄3

] > 0, and scalar
𝜖
𝑖
> 0 satisfying

Ω
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω11𝑖 Ω12𝑖 −𝐾
𝑇

𝑅𝐺
𝑖

𝑃
𝑖
𝐵
𝑖

ℎ𝐴

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

𝑖
𝑃
𝑖
𝐿

𝑇

1𝑖 𝑃
𝑖
𝑀1𝑖

∗ Ω22𝑖 Ω23𝑖 −𝐺

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
ℎ𝐴

𝑇

1𝑖𝐾
𝑇

𝑅 𝐷

𝑇

1𝑖𝑃𝑖 𝐿
𝑇

2𝑖 −𝐺
𝑇

𝑖
𝑃
𝑖
𝑀1𝑖

∗ ∗ Ω33𝑖 0 0 0 0 0

∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

2𝑖𝑃𝑖 𝐿
𝑇

3𝑖 0

∗ ∗ ∗ ∗ −𝑅 0 0 ℎ𝑅𝐾𝑀1𝑖

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0 𝑃
𝑖
𝑀2𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖

𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (16)

where

Ω11𝑖 = 𝑃𝑖𝐴𝑖 +𝐴
𝑇

𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+𝐾
𝑇

𝑄1𝐾+ 𝜖𝑖�̃�
𝑇

1𝑖�̃�1𝑖

−𝐾
𝑇

𝑅𝐾,

Ω12𝑖 = 𝑃𝑖𝐴1𝑖 −𝐴
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖
−

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐾
𝑇

𝑄2

+ 𝜖
𝑖
�̃�
𝑇

1𝑖𝑁2𝑖 +𝐾
𝑇

𝑅 (𝐺
𝑖
+ 𝐼) ,

Ω22𝑖 = −𝐺
𝑇

𝑖
𝑃
𝑖
𝐴1𝑖 −𝐴

𝑇

1𝑖𝑃𝑖𝐺𝑖 +𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝑄3 −𝑄1

+ 𝜖
𝑖
𝑁
𝑇

2𝑖𝑁2𝑖 − (𝐺𝑖 + 𝐼)
𝑇

𝑅 (𝐺
𝑖
+ 𝐼) ,

Ω23𝑖 = −𝑄2 + (𝐺𝑖 + 𝐼)
𝑇

𝑅𝐺
𝑖
,

Ω33𝑖 = −𝑄3 −𝐺
𝑇

𝑖
𝑅𝐺
𝑖
,

�̃�1𝑖 = 𝑁1𝑖𝐾 = [𝑁1𝑖 0] ,

𝑀1𝑖 = [
𝑀1𝑖

0
] ,

𝑀2𝑖 = [
𝑀2𝑖

0
] .

(17)

Proof. For the purpose of convenience, the following nota-
tions are adopted:

𝑧 (𝑡) = 𝜉 (𝑡) −𝐺
𝑖
𝐾𝜉 (𝑡 − ℎ) ,

𝑓V (𝑡, 𝜉 (𝑡) , 𝑖) = 𝐴𝑖 (𝑡) 𝜉 (𝑡) +𝐴1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ)

+ 𝐵
𝑖
V (𝑡) ,

𝑔V (𝑡, 𝜉 (𝑡) , 𝑖) = 𝐷𝑖 (𝑡) 𝜉 (𝑡) +𝐷1𝑖 (𝑡) 𝐾𝜉 (𝑡 − ℎ)

+𝐷2𝑖V (𝑡) ,

(18)

and then the filtering error systems (11) become

𝑑𝑧 (𝑡) = 𝑓V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑡 + 𝑔V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑤 (𝑡) . (19)

Choose the Lyapunov-Krasovskii functional candidate as
follows:

𝑉 (𝑡, 𝜉 (𝑡) , 𝑖) = 𝑧
𝑇

(𝑡) 𝑃
𝑖
𝑧 (𝑡) +∫

𝑡

𝑡−ℎ

𝜂
𝑇

(𝑠) 𝐾
𝑇

𝑄𝐾𝜂 (𝑠) 𝑑𝑠

+ ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝛽

𝑓
𝑇

V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇

𝑅𝐾𝑓V (𝑠, 𝜉 (𝑠) , 𝑖) 𝑑𝑠𝑑𝛽,

(20)

where 𝜂(𝑡) = [𝜉𝑇(𝑡) 𝜉𝑇(𝑡 − ℎ)]
𝑇

. According to Itô’s differen-
tial formula, the stochastic differential along systems (11) is

𝑑𝑉 (𝑡, 𝜉 (𝑡) , 𝑖) =L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑡

+ 2𝑧𝑇 (𝑡) 𝑃
𝑖
𝑔V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑑𝑤 (𝑡) ,

(21)
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where

L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)

= 2𝑧𝑇 (𝑡) 𝑃
𝑖
𝑓V (𝑡, 𝜉 (𝑡) , 𝑖)

+ 𝑔
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝑃𝑖𝑔V (𝑡, 𝜉 (𝑡) , 𝑖)

+ 𝑧
𝑇

(𝑡)

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝑧 (𝑡) + 𝜂

𝑇

(𝑡) 𝐾
𝑇

𝑄𝐾𝜂 (𝑡)

− 𝜂
𝑇

(𝑡 − ℎ)𝐾
𝑇

𝑄𝐾𝜂 (𝑡 − ℎ)

+ ℎ
2
𝑓
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝐾
𝑇

𝑅𝐾𝑓V (𝑡, 𝜉 (𝑡) , 𝑖)

−∫

𝑡

𝑡−ℎ

𝑓
𝑇

V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇

ℎ𝑅𝐾𝑓V (𝑠, 𝜉 (𝑠) , 𝑖) 𝑑𝑠.

(22)

Firstly, we show that the filtering error systems (11) with
V(𝑡) = 0 are robustly stochastically stable.

Taking mathematical expectation on both sides of system
(19) and by virtue of E{𝑑𝑤(𝑡) = 0}, we obtain

E {𝑑𝑧 (𝑡)} = E {𝑓V (𝑡, 𝜉 (𝑡) , 𝑖)} 𝑑𝑡. (23)

Integrating both sides of (23) from 𝑡 − ℎ to 𝑡, we have

∫

𝑡

𝑡−ℎ

E {−𝐼𝜉 (𝑡) + (𝐺
𝑖
𝐾+ 𝐼) 𝜉 (𝑡 − ℎ) −𝐺

𝑖
𝐾𝜉 (𝑡 − 2ℎ)

+ ℎ𝑓V (𝑠, 𝜉 (𝑠) , 𝑖)} 𝑑𝑠 = 0.
(24)

From the definition of 𝑓V(𝑡, 𝜉(𝑡), 𝑖)with V(𝑡) = 0 and (24), it is
easy to obtain

∫

𝑡

𝑡−ℎ

E {B
𝑖
𝜍
𝑖
} 𝑑𝑠 = 0, (25)

where

B
𝑖
= [

−𝐼 𝐴
𝑖
(𝑡) 𝐴1𝑖 (𝑡) 0 0

0 −𝐾 𝐾𝐺
𝑖
+ 𝐼 −𝐾𝐺

𝑖
ℎ𝐼

] ,

𝜍
𝑖
= [𝑓
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − ℎ)𝐾
𝑇

𝜉
𝑇

(𝑡 − 2ℎ)𝐾𝑇 𝑓𝑇V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇

]

𝑇

.

(26)

The right orthogonal complements ofB
𝑖
is

B
⊥

𝑖
=

[

[

[

[

[

[

[

[

[

[

[

𝐴

𝑇

𝑖
(𝑡) 𝐼 0 0 𝐾

𝑇

ℎ

𝐴

𝑇

1𝑖 (𝑡) 0 𝐼 0 −

(𝐾𝐺
𝑖
+ 𝐼)

ℎ

𝑇

0 0 0 𝐼

(𝐾𝐺
𝑖
)

ℎ

𝑇

]

]

]

]

]

]

]

]

]

]

]

𝑇

. (27)

Taking mathematical expectation on both sides of (21)
and then substituting (22) into (21), we have

[𝑑E𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)]
𝑑𝑡

= E {L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)}

≤ E{1
ℎ

∫

𝑡

𝑡−ℎ

𝜍
𝑇

𝑖
Γ
𝑖
𝜍
𝑖
𝑑𝑠}

=

1
ℎ

∫

𝑡

𝑡−ℎ

E {𝜍𝑇
𝑖
Γ
𝑖
𝜍
𝑖
} 𝑑𝑠,

(28)

where

Γ
𝑖
=

[

[

[

[

[

[

[

[

[

ℎ
2
𝐾
𝑇

𝑅𝐾 𝑃
𝑖
−𝑃
𝑖
𝐺
𝑖

0 0
∗ Γ22𝑖 Γ23𝑖 0 0
∗ ∗ Γ33𝑖 −𝑄2 0
∗ ∗ ∗ −𝑄3 0

∗ ∗ ∗ ∗ −ℎ
2
𝑅

]

]

]

]

]

]

]

]

]

,

Γ22𝑖 =
𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷
𝑖
(𝑡) +𝐾

𝑇

𝑄1𝐾,

Γ23𝑖 = −
𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷1𝑖 (𝑡) +𝐾

𝑇

𝑄2,

Γ33𝑖 = 𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷1𝑖 (𝑡) +𝑄3 −𝑄1.

(29)

In order to prove the robust stochastic stability of the filtering
error systems (11) with V(𝑡) = 0, it suffices to show

E {𝜍𝑇
𝑖
Γ
𝑖
𝜍
𝑖
} < 0. (30)

By virtue of Proposition 3, (30) is equivalent to

E {Γ̂
𝑖
} = E {B⊥𝑇

𝑖
Γ
𝑖
B
⊥

𝑖
} < 0, (31)
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where

Γ̂
𝑖
=

[

[

[

[

Γ̂11𝑖 Γ̂12𝑖 −𝐾
𝑇

𝑅𝐾𝐺
𝑖

∗ Γ̂22𝑖 Γ̂23𝑖

∗ ∗ Γ̂33𝑖

]

]

]

]

,

Γ̂11𝑖 = ℎ
2
𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅𝐾𝐴
𝑖
(𝑡) + 𝑃

𝑖
𝐴
𝑖
(𝑡) +𝐴

𝑇

𝑖
(𝑡) 𝑃
𝑖

+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷
𝑖
(𝑡) + 𝑘

𝑇

𝑄1𝐾

−𝐾
𝑇

𝑅𝐾,

Γ̂12𝑖 = ℎ
2
𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅𝐾𝐴1𝑖 (𝑡) + 𝑃𝑖𝐴1𝑖 (𝑡) −𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐺
𝑖

−

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷1𝑖 (𝑡) +𝐾

𝑇

𝑄2

+𝐾
𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Γ̂22𝑖 = ℎ
2
𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅𝐾𝐴1𝑖 (𝑡) −𝐺
𝑇

𝑖
𝑃
𝑖
𝐴1𝑖 (𝑡)

−𝐴

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐺𝑖 +𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖

+𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷1𝑖 (𝑡) +𝑄3 −𝑄1

− (𝐾𝐺
𝑖
+ 𝐼)

𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Γ̂23𝑖 = −𝑄2 + (𝐾𝐺𝑖 + 𝐼)
𝑇

𝑅𝐾𝐺
𝑖
,

Γ̂33𝑖 = −𝑄3 − (𝐾𝐺𝑖)
𝑇

𝑅𝐾𝐺
𝑖
.

(32)

It is obvious that Γ̂
𝑖
< 0 are implied by (16) according to Schur

complements.Therefore, if (16) is feasible, then filtering error
systems (11) with V(𝑡) = 0 are robustly stochastically stable.

Next, we will establish the 𝐻
∞

performance for the
filtering error systems (11) under the zero initial condition.

From the definition of𝑓V(𝑡, 𝜉(𝑡), 𝑖) and together with (24),
it implies

∫

𝑡

𝑡−ℎ

E {BV𝑖𝜍V𝑖} 𝑑𝑠 = 0, (33)

where

BV𝑖 = [
−𝐼 𝐴

𝑖
(𝑡) 𝐴1𝑖 (𝑡) 0 0 𝐵

𝑖

0 −𝐾 𝐾𝐺
𝑖
+ 𝐼 −𝐾𝐺

𝑖
ℎ𝐼 0

] ,

𝜍V𝑖 = [𝑓
𝑇

V (𝑡, 𝜉 (𝑡) , 𝑖) 𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − ℎ)𝐾
𝑇

𝜉
𝑇

(𝑡 − 2ℎ)𝐾𝑇 𝑓𝑇V (𝑠, 𝜉 (𝑠) , 𝑖) 𝐾
𝑇 V𝑇 (𝑡)]

𝑇

.

(34)

The right orthogonal complements ofBV𝑖 are

B
⊥

V𝑖 =

[

[

[

[

[

[

[

[

[

[

[

[

𝐴

𝑇

𝑖
(𝑡) 𝐼 0 0 𝐾

𝑇

ℎ

0

𝐴

𝑇

1𝑖 (𝑡) 0 𝐼 0 −

(𝐾𝐺
𝑖
+ 𝐼)

ℎ

𝑇

0

0 0 0 𝐼

(𝐾𝐺
𝑖
)

ℎ

𝑇

0

𝐵

𝑇

𝑖
0 0 0 0 𝐼

]

]

]

]

]

]

]

]

]

]

]

]

𝑇

. (35)

Noticing (21)-(22) together with E{𝑑𝑤(𝑡)} = 0, we can
obtain

[𝑑E𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)]
𝑑𝑡

= E {L𝑉 (𝑡, 𝜉 (𝑡) , 𝑖)}

≤ E{1
ℎ

∫

𝑡

𝑡−ℎ

𝜍
𝑇

V𝑖ΓV𝑖𝜍V𝑖𝑑𝑠}

=

1
ℎ

∫

𝑡

𝑡−ℎ

E {𝜍𝑇V𝑖ΓV𝑖𝜍V𝑖} 𝑑𝑠,

(36)

where

ΓV𝑖 = [
Γ
𝑖
ΓV

∗ Γ66𝑖
] ,

ΓV = [0 Γ
𝑇

26𝑖 Γ
𝑇

36𝑖 0 0]
𝑇

,

Γ26𝑖 = 𝐷
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷2𝑖,

Γ36𝑖 = 𝐷
𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷2𝑖,

Γ66𝑖 = 𝐷
𝑇

2𝑖𝑃𝑖𝐷2𝑖,

(37)

and set

𝐽 = E{∫
∞

0
[𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 𝛾
2V𝑇 (𝑡) V (𝑡)] 𝑑𝑡} . (38)

Adding the right side of (38) to both sides of (36) and
integrating both sides of (36) from 0 to ∞ and then taking
the zero initial condition into account, we can acquire

𝐽 ≤

1
ℎ

∫

∞

0
∫

𝑡

𝑡−ℎ

E {𝜍𝑇V𝑖HV𝑖𝜍V𝑖} 𝑑𝑠 𝑑𝑡, (39)
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where

HV𝑖 = ΓV𝑖 +Π
𝑇

Π+ diag {0, 0, 0, 0, 0, − 𝛾2𝐼} , (40)

and Π = [0 𝐿1𝑖 𝐿2𝑖 𝐾 0 0 𝐿3𝑖].
According to Proposition 3, E{𝜍𝑇V𝑖HV𝑖𝜍V𝑖} < 0 is equivalent

to

Θ
𝑖
=B
⊥𝑇

V𝑖 HV𝑖B
⊥

V𝑖 =

[

[

[

[

[

[

Θ11𝑖 Θ12𝑖 −𝐾
𝑇

𝑅𝐾𝐺
𝑖
Θ14𝑖

∗ Θ22𝑖 Θ23𝑖 Θ24𝑖

∗ ∗ Θ33𝑖 0
∗ ∗ ∗ Θ44𝑖

]

]

]

]

]

]

< 0,

(41)

where

Θ11𝑖 = Γ̂11𝑖 +𝐿
𝑇

1𝑖𝐿1𝑖,

Θ12𝑖 = Γ̂12𝑖 +𝐿
𝑇

1𝑖𝐿2𝑖,

Θ22𝑖 = Γ̂22𝑖 +𝐿
𝑇

2𝑖𝐿2𝑖,

Θ23𝑖 = Γ̂23𝑖,

Θ33𝑖 = Γ̂33𝑖,

Θ14𝑖 = ℎ
2
𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅𝐾𝐵
𝑖
+𝑃
𝑖
𝐵
𝑖
+𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷2𝑖

+𝐿

𝑇

1𝑖𝐿3𝑖,

Θ24𝑖 = ℎ
2
𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅𝐾𝐵
𝑖
−𝐺

𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐷2𝑖

+𝐿
𝑇

2𝑖𝐿3𝑖,

Θ44𝑖 = ℎ
2
𝐵

𝑇

𝑖
𝐾
𝑇

𝑅𝐾𝐵
𝑖
+𝐷

𝑇

2𝑖𝑃𝑖𝐷2𝑖 +𝐿
𝑇

3𝑖𝐿3𝑖 − 𝛾
2
𝐼.

(42)

According to Schur complement and (12), we can obtain

Θ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π11𝑖 Π12𝑖 −𝐾
𝑇

𝑅𝐺
𝑖

𝑃
𝑖
𝐵
𝑖

ℎ𝐴

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

𝑖
𝑃
𝑖
𝐿

𝑇

1𝑖

∗ Π22𝑖 Π23𝑖 −𝐺
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
ℎ𝐴

𝑇

1𝑖𝐾
𝑇

𝑅 𝐷

𝑇

1𝑖𝑃𝑖 𝐿
𝑇

2𝑖

∗ ∗ Π33𝑖 0 0 0 0

∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵

𝑇

𝑖
𝐾
𝑇

𝑅 𝐷

𝑇

2𝑖𝑃𝑖 𝐿
𝑇

3𝑖

∗ ∗ ∗ ∗ −𝑅 0 0
∗ ∗ ∗ ∗ ∗ −𝑃

𝑖
0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Θ11𝑖 Θ12𝑖 0 0 ℎΔ𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
0

Θ21𝑖 Θ22𝑖 0 0 ℎΔ𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ℎ𝑅𝐾Δ𝐴
𝑖
(𝑡) ℎ𝑅𝐾Δ𝐴1𝑖 (𝑡) 0 0 0 0 0

𝑃
𝑖
Δ𝐷

𝑇

𝑖
(𝑡) 𝑃

𝑖
Δ𝐷1𝑖 (𝑡) 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(43)

where

Π11𝑖 = 𝑃𝑖𝐴𝑖 +𝐴
𝑇

𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑘
𝑇

𝑄1𝐾−𝐾
𝑇

𝑅𝐾,

Π12𝑖 = 𝑃𝑖𝐴1𝑖 −𝐴
𝑇

𝑖
𝑃
𝑖
𝐺
𝑖
−

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝐾
𝑇

𝑄2

+𝐾
𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Π22𝑖 = −𝐺
𝑇

𝑖
𝑃
𝑖
𝐴1𝑖 −𝐴

𝑇

1𝑖𝑃𝑖𝐺𝑖 +𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
𝐺
𝑖
+𝑄3

−𝑄1 − (𝐾𝐺𝑖 + 𝐼)
𝑇

𝑅 (𝐾𝐺
𝑖
+ 𝐼) ,

Π23𝑖 = −𝑄2 + (𝐾𝐺𝑖 + 𝐼)
𝑇

𝑅𝐾𝐺
𝑖
,

Π33𝑖 = −𝑄3 − (𝐾𝐺𝑖)
𝑇

𝑅𝐾𝐺
𝑖
,

Θ11𝑖 = 𝑃𝑖Δ𝐴𝑖 (𝑡) + Δ𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
,

Θ12𝑖 = 𝑃𝑖Δ𝐴1𝑖 (𝑡) − Δ𝐴
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐺
𝑖
,

Θ21𝑖 = Δ𝐴
𝑇

1𝑖 (𝑡) 𝑃𝑖 −𝐺
𝑇

𝑖
𝑃
𝑖
Δ𝐴
𝑖
(𝑡) ,

Θ22𝑖 = −𝐺
𝑇

𝑖
𝑃
𝑖
Δ𝐴1𝑖 (𝑡) − Δ𝐴

𝑇

1𝑖 (𝑡) 𝑃𝑖𝐺𝑖.

(44)
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Then by Lemma 2, it can be seen that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Θ11𝑖 Θ12𝑖 0 0 ℎΔ𝐴

𝑇

𝑖
(𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

𝑖
(𝑡) 𝑃
𝑖
0

Θ21𝑖 Θ22𝑖 0 0 ℎΔ𝐴

𝑇

1𝑖 (𝑡) 𝐾
𝑇

𝑅 Δ𝐷

𝑇

1𝑖 (𝑡) 𝑃𝑖 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ℎ𝑅𝐾Δ𝐴
𝑖
(𝑡) ℎ𝑅𝐾Δ𝐴1𝑖 (𝑡) 0 0 0 0 0

𝑃
𝑖
Δ𝐷

𝑇

𝑖
(𝑡) 𝑃

𝑖
Δ𝐷1𝑖 (𝑡) 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= Υ𝐹
𝑖
(𝑡) Ω+Ω

𝑇

𝐹
𝑖
(𝑡)
𝑇

Υ
𝑇

≤

1
𝜖
𝑖

ΥΥ
𝑇

+ 𝜖
𝑖
Ω
𝑇

Ω, (45)

where Υ = [𝑀

𝑇

1𝑖𝑃𝑖 −𝑀
𝑇

1𝑖𝑃𝑖𝐺𝑖 0 0 ℎ𝑀1𝑖𝐾
𝑇

𝑅 𝑀

𝑇

2𝑖𝑃𝑖 0]
𝑇

,
Ω = [�̃�1𝑖 𝑁2𝑖 0 0 0 0 0].

By (41), (46), and Schur complements,Θ
𝑖
< 0 holds if and

only ifΩ
𝑖
< 0. This completes the proof.

Remark 6. Theorem 5 is established based on GFL. For the
sake of reducing the computational complexity, similar to [6,
8, 10], the first two equivalent conditions of Proposition 3 are
adopted in this paper.

Now we are in a position to present the 𝐻
∞

fil-
ter design for uncertain neutral stochastic system with

Markovian jumping parameters and time delay based on
Theorem 5.

Theorem 7. Consider systems (1), for given scalars ℎ > 0,
𝛾 > 0; then there exists a linear stochastic full-order filter
with the form (9), such that filter error systems (11) are robustly
stochastically stable and satisfy prescribed 𝐻

∞
disturbance

attenuation level 𝛾 for all admissible uncertainties (6) and (7)
if there exist symmetric positive matrices 𝑋

𝑖
> 0, 𝐹

𝑖
> 0,

𝑄 = [
𝑄1 𝑄2
∗ 𝑄3

] > 0, and 𝑅 > 0 and matrices 𝐴
𝐹𝑖
, 𝐵
𝐹𝑖
, 𝐶
𝐹𝑖
,

scalars 𝜖
𝑖
> 0, such that the following LMI holds:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Υ11𝑖 Υ12𝑖 Υ13𝑖 −𝑅𝐺𝑖 Υ15𝑖 ℎ𝐴
𝑇

𝑖
𝑅 Υ17𝑖 Υ18𝑖 𝐿

𝑇

1𝑖 − 𝐶
𝑇

𝐹𝑖
Υ110𝑖

∗ Υ22𝑖 Υ23𝑖 0 Υ25𝑖 0 0 0 −𝐶
𝑇

𝐹𝑖
−𝐹
𝑖
𝑀1𝑖

∗ ∗ Υ33𝑖 Υ34𝑖 Υ35𝑖 ℎ𝐴
𝑇

1𝑖𝑅 Υ37𝑖 Υ38𝑖 𝐿
𝑇

2𝑖 −𝐺
𝑇

𝑖
𝑋
𝑖
𝑀1𝑖

∗ ∗ ∗ Υ44𝑖 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵

𝑇

𝑖
𝑅 Υ57𝑖 Υ58𝑖 𝐿

𝑇

3𝑖 0
∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0 ℎ𝑅𝑀1𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝑋
𝑖
+ 𝐹
𝑖

0 0 Υ710𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐹
𝑖

0 −𝐹
𝑖
𝑀2𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖

𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (46)

where

Υ11𝑖 = (𝑋𝑖 −𝐹𝑖) 𝐴 𝑖 +𝐴
𝑇

𝑖
(𝑋
𝑖
−𝐹
𝑖
) +

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
(𝑋
𝑗
−𝐹
𝑗
)

+𝑄1 −𝑅+ 𝜖𝑖𝑁
𝑇

1𝑖𝑁1𝑖,

Υ12𝑖 = −𝐴
𝑇

𝑖
𝐹
𝑖
+𝐶
𝑇

𝑖
𝐵
𝑇

𝐹𝑖
+𝐴
𝑇

𝐹𝑖
,

Υ22𝑖 = 𝐴𝐹𝑖 +𝐴
𝑇

𝐹𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝐹
𝑗
,

Υ13𝑖 = (𝑋𝑖 −𝐹𝑖) 𝐴1𝑖 −𝐴
𝑇

𝑖
𝑋
𝑖
𝐺
𝑖
+𝐶
𝑇

𝑖
𝐵
𝑇

𝐹𝑖
𝐺
𝑖
+𝐴
𝑇

𝐹𝑖
𝐺
𝑖

+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
(𝐹
𝑗
−𝑋
𝑗
)𝐺
𝑖
+𝑄
2
+𝑅 (𝐺

𝑖
+ 𝐼) + 𝜖

𝑖
𝑁
𝑇

1𝑖𝑁2𝑖,

Υ23𝑖 = −𝐹𝑖𝐴1𝑖 +𝐵𝐹𝑖𝐶1𝑖 +𝐴
𝑇

𝐹𝑖
𝐺
𝑖
+

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝐹
𝑗
𝐺
𝑖
,

Υ33𝑖 = −𝐺
𝑇

𝑖
𝑋
𝑖
𝐴1𝑖 −𝐴

𝑇

1𝑖𝑋
𝑇

𝑖
𝐺
𝑖
+𝐺
𝑇

𝑖
𝐵
𝐹𝑖
𝐶1𝑖 +𝐶

𝑇

1𝑖𝐵
𝑇

𝐹𝑖
𝐺
𝑖

+𝐺
𝑇

𝑖

𝑁

∑

𝑗=1
𝜋
𝑖𝑗
𝑋
𝑗
𝐺
𝑖
+𝑄3 −𝑄1 − (𝐺𝑖 + 𝐼)

𝑇

𝑅 (𝐺
𝑖
+ 𝐼)

+ 𝜖
𝑖
𝑁
𝑇

2𝑖𝑁2𝑖,
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Υ34𝑖 = −𝑄2 + (𝐺𝑖 + 𝐼)
𝑇

𝑅𝐺
𝑖
,

Υ44𝑖 = −𝑄3 −𝐺
𝑇

𝑖
𝑅𝐺
𝑖
,

Υ15𝑖 = (𝑋𝑖 −𝐹𝑖) 𝐵𝑖,

Υ25𝑖 = −𝐹𝑖𝐵𝑖 +𝐵𝐹𝑖𝐶2𝑖,

Υ35𝑖 = −𝐺
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
+𝐺
𝑇

𝑖
𝐵
𝐹𝑖
𝐶2𝑖,

Υ17𝑖 = 𝐷
𝑇

𝑖
(𝑋
𝑖
−𝐹
𝑖
) ,

Υ37𝑖 = 𝐷
𝑇

1𝑖 (𝑋𝑖 −𝐹𝑖) ,

Υ57𝑖 = 𝐷
𝑇

2𝑖 (𝑋𝑖 −𝐹𝑖) ,

Υ18𝑖 = −𝐷
𝑇

𝑖
𝐹
𝑖
+𝐸
𝑇

𝑖
𝐵
𝑇

𝐹𝑖
,

Υ38𝑖 = −𝐷
𝑇

1𝑖𝐹𝑖 +𝐸
𝑇

1𝑖𝐵
𝑇

𝐹𝑖
,

Υ58𝑖 = −𝐷
𝑇

2𝑖𝐹𝑖 +𝐸
𝑇

2𝑖𝐵
𝑇

𝐹𝑖
,

Υ110𝑖 = (𝑋𝑖 −𝐹𝑖)𝑀1𝑖,

Υ710𝑖 = (𝑋𝑖 −𝐹𝑖)𝑀2𝑖.

(47)

Meanwhile, the filter parameters are given by

𝐴
𝑓𝑖
= 𝐹
−1
𝑖
𝐴
𝐹𝑖
,

𝐵
𝑓𝑖
= 𝐹
−1
𝑖
𝐵
𝐹𝑖
,

𝐶
𝑓𝑖
= 𝐶
𝐹𝑖
.

(48)

Proof. We note that, from (48), it is easy to see [ 𝑋𝑖 −𝐹𝑖
−𝐹𝑖 𝐹𝑖

] > 0,
and𝑋

𝑖
> 𝐹
𝑖
> 0. Define

𝑃
𝑖
= [

𝑋
𝑖
−𝐹
𝑖

−𝐹
𝑖
𝐹
𝑖

] ; (49)

then applying Schur complement,𝑋
𝑖
− 𝐹
𝑖
𝐹
−1
𝑖
𝐹
𝑖
= 𝑋
𝑖
− 𝐹
𝑖
> 0

guarantees 𝑃
𝑖
> 0. Let

J = diag {𝑇, 𝐼, 𝐼, 𝐼, 𝐼, 𝑇, 𝐼, 𝐼, 𝐼} , (50)

where 𝑇 = [
𝐼 0
𝐼 𝐼
]. Substituting 𝑃

𝑖
and (12) into (16), then

pre- and postmultiplying (16) byJ𝑇 andJ, respectively, and
using (51), the desired result (48) follows immediately. This
completes the proof.

Remark 8. Theorem 7 considers the 𝐻
∞

filtering problem
for uncertain neutral stochastic time delay systems with

Markovian jumping parameters. It should be noted that
the proposed conditions are formulated in terms of LMIs.
Therefore, by MATLAB LMI toolbox, for given different ℎ
or 𝛾, the lower bound of performance index 𝛾 and the upper
bound of ℎ can be efficiently obtained by solving a generalized
eigenvalue problem.

Nowwe would like to proceed to present the𝐻
∞
filtering

for uncertain neutral stochastic time delay systems without
Markovian jumping parameters. Considering the system (Σ)

without the Markovian jumping parameters, the following
systems can be obtained:

(Σ
𝐷
) : 𝑑 [𝑥 (𝑡) −𝐺𝑥 (𝑡 − ℎ)]

= [𝐴 (𝑡) 𝑥 (𝑡) +𝐴1 (𝑡) 𝑥 (𝑡 − ℎ) + 𝐵V (𝑡)] 𝑑𝑡

+ [𝐷 (𝑡) 𝑥 (𝑡) +𝐷1 (𝑡) 𝑥 (𝑡 − ℎ) +𝐷2V (𝑡)] 𝑑𝑤 (𝑡) ,

(51)

𝑑𝑦 (𝑡)

= [𝐶𝑥 (𝑡) +𝐶1𝑥 (𝑡 − ℎ) +𝐶2V (𝑡)] 𝑑𝑡

+ [𝐸𝑥 (𝑡) + 𝐸1𝑥 (𝑡 − ℎ) +𝐸2V (𝑡)] 𝑑𝑤 (𝑡) ,

(52)

𝑧 (𝑡) = 𝐿1𝑥 (𝑡) + 𝐿2𝑥 (𝑡 − ℎ) + 𝐿3V (𝑡) , (53)

𝑥 (𝜃) = 𝜓 (𝜏) ,

𝑟
𝑡
= 𝑟0 ∈ 𝑆, ∀𝜏 ∈ [−ℎ, 0] ,

(54)

where

𝐴 (𝑡) = 𝐴+Δ𝐴 (𝑡) ,

𝐴1 (𝑡) = 𝐴1 +Δ𝐴1 (𝑡) ,

𝐷 (𝑡) = 𝐷+Δ𝐷 (𝑡) ,

𝐷1 (𝑡) = 𝐷1 +Δ𝐷1 (𝑡) ,

(55)

andΔ𝐴(𝑡),Δ𝐴1(𝑡),Δ𝐷(𝑡), andΔ𝐷1(𝑡) are unknownmatrices
satisfying

[

Δ𝐴 (𝑡) Δ𝐴1 (𝑡)

Δ𝐷 (𝑡) Δ𝐷1 (𝑡)
] = [

𝑀1

𝑀2
]𝐹 (𝑡) [𝑁1 𝑁2] . (56)

We can obtain the following Corollary 9 for system (Σ
𝐷
).

Corollary 9. Consider the system (Σ
𝐷
), for given scalars ℎ > 0,

𝛾 > 0; then there exists a linear stochastic full-order filter with
the form (9), if there exist symmetric positive matrices 𝐹 > 0,
𝑋 > 0, 𝑅 > 0, 𝑄 = [

𝑄1 𝑄2
∗ 𝑄3

] > 0, matrices 𝐴
𝐹
, 𝐵
𝐹
, 𝐶
𝐹
, and

scalar 𝜖 > 0, such that the following LMI holds:



10 Mathematical Problems in Engineering

Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ11 Ξ12 Ξ13 −𝑅𝐺 Ξ15 ℎ𝐴
𝑇

𝑅 Ξ17 Ξ18 𝐿
𝑇

1 − 𝐶
𝑇

𝐹
(𝑋 − 𝐹)𝑀1

∗ Ξ22 Ξ23 0 Ξ25 0 0 0 −𝐶
𝑇

𝐹
−𝐹𝑀1

∗ ∗ Ξ33 Ξ34 Ξ35 ℎ𝐴
𝑇

1𝑅 Ξ37 Ξ38 𝐿
𝑇

2 −𝐺
𝑇

𝑋𝑀1

∗ ∗ ∗ Ξ44 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 ℎ𝐵
𝑇

𝑅 Ξ57 Ξ58 𝐿
𝑇

3 0
∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0 ℎ𝑅𝑀1

∗ ∗ ∗ ∗ ∗ ∗ −𝑋 + 𝐹 0 0 (𝑋 − 𝐹)𝑀2

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐹 0 −𝐹𝑀2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (57)

where

Ξ11 = (𝑋−𝐹)𝐴+𝐴
𝑇

(𝑋−𝐹) +𝑄1 −𝑅+ 𝜖𝑁
𝑇

1𝑁1,

Ξ12 = −𝐴
𝑇

𝐹+𝐶
𝑇

𝐵
𝑇

𝐹
+𝐴
𝑇

𝐹
,

Ξ13 = (𝑋−𝐹)𝐴1 −𝐴
𝑇

𝑋𝐺+𝐶
𝑇

𝐵
𝑇

𝐹
𝐺+𝐴

𝑇

𝐹
𝐺

+ 𝜖𝑁
𝑇

1𝑁2 +𝑄2 +𝑅 (𝐺+ 𝐼) ,

Ξ15 = (𝑋−𝐹) 𝐵,

Ξ17 = 𝐷
𝑇

(𝑋−𝐹) ,

Ξ18 = −𝐷
𝑇

𝐹+𝐸
𝑇

𝐵
𝑇

𝐹
,

Ξ22 = 𝐴𝐹 +𝐴
𝑇

𝐹
,

Ξ23 = −𝐹𝐴1 +𝐵𝐹𝐶1 +𝐴
𝑇

𝐹
𝐺,

Ξ25 = −𝐹𝐵+𝐵𝐹𝐶2,

Ξ33 = −𝐺
𝑇

𝑋𝐴1 −𝐴
𝑇

1𝑋𝐺+𝐺
𝑇

𝐵
𝐹
𝐶1 +𝐶

𝑇

1𝐵
𝑇

𝐹
𝐺+𝑄3

−𝑄1 − (𝐺+ 𝐼)
𝑇

𝑅 (𝐺+ 𝐼) + 𝜖𝑁
𝑇

2𝑁2,

Ξ34 = −𝑄2 + (𝐺+ 𝐼)
𝑇

𝑅𝐺,

Ξ35 = −𝐺
𝑇

𝑋𝐵+𝐺
𝑇

𝐵
𝐹
𝐶2,

Ξ37 = 𝐷
𝑇

1 (𝑋−𝐹) ,

Ξ38 = −𝐷
𝑇

1𝐹+𝐸
𝑇

1𝐵
𝑇

𝐹
,

Ξ44 = −𝑄3 −𝐺
𝑇

𝑅𝐺,

Ξ57 = 𝐷
𝑇

2 (𝑋−𝐹) ,

Ξ58 = −𝐷
𝑇

2𝐹+𝐸
𝑇

2𝐵
𝑇

𝐹
;

(58)

then the robust𝐻
∞

filtering problem is solvable. Furthermore,
the parameters of the desired robust𝐻

∞
filter can be given as

𝐴
𝑓
= 𝐹
−1
𝐴
𝐹
,

𝐵
𝑓
= 𝐹
−1
𝐵
𝐹
,

𝐶
𝑓
= 𝐶
𝐹
.

(59)

Remark 10. The proof of Corollary 9 follows the same lines
as that in the proof of Theorem 7, so the detailed procedure
is omitted here. When 𝐷2 = 0, 𝐸 = 0, 𝐸1 = 0, and 𝐸2 =
0, systems (52)–(55) in this paper reduces to systems (1) in
[18]. It is noticed that the filtering problem studied in [18] is a
special case of this paper. For comparisons of our results with
that in [18], see Example 1 in detail.

4. Numerical Examples

In this section, numerical examples and simulations are
given to illustrate the validity and benefits of the proposed
approach.

Example 1. Consider systems (52)–(55) without Markovian
jumping parameters as follows:

𝐴 = [

−1 0
0 −0.9

] ,

𝐴1 = [
−1 0
−1 −1

] ,

𝐵 = [

0.2 0
−0.1 0.1

] ,

𝐷 = [

0.2 0
0 0.2

] ,

𝐷1 = [
0.1 0
0.3 −0.2

] ,

𝐷2 = [
0.2 0
0 0.2

] ,
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Table 1: Upper bounds of ℎ for different 𝛾 (Example 1).

𝛾 0.3 0.8 1.2 1.8 2.4 3.0
ℎ by Corollary 9 1.079 1.786 1.954 2.089 2.167 2.219

𝐶 = [

0.1 0
0 0.1

] ,

𝐶1 = [
0 0.15
−0.1 0.1

] ,

𝐶2 = [
0.2 0.1
0 0.1

] ,

𝐸 = [

0.5 0.5
1.0 0

] ,

𝐸1 = [
1.0 0.2
0.3 −1

] ,

𝐸2 = [
0.2 0.5
0.3 0.4

] ,

𝐿1 = [
−0.1 0.1
0 −0.1

] ,

𝐿2 = [
0.1 −0.15
0 0.15

] ,

𝐿3 = [
0.2 0
−0.15 0.1

] ,

𝑀1 = [
0.2 0
0 0.2

] ,

𝑀2 = [
0.1 0.1
0 0.2

] ,

𝐺 = [

0.1 0
0.1 0.1

] ,

𝑁1 = [
0.1 0
0 0.1

] ,

𝑁2 = [
0.1 0.1
0 0.1

] .

(60)

For different given noise attenuation levels 𝛾, the upper
bounds of delay for systems (52)–(55) in Corollary 9 of this
paper are presented in Table 1. For different given time delays,
the lower bounds of noise attenuation level 𝛾 for systems (52)–
(55) in Corollary 9 of this paper are provided in Table 2.

In particular, when 𝐷2 = 0, 𝐸 = 0, 𝐸1 = 0, and
𝐸2 = 0, systems (52)–(55) in this paper reduce to systems

Table 2: Lower bounds of 𝛾 for different ℎ (Example 1).

ℎ 0.5 1.0 1.5 2.0 2.2 2.4
𝛾 by Corollary 9 0.275 0.291 0.473 1.364 2.745 10.940

Table 3: Upper bounds of ℎ for different 𝛾 (Example 1).

𝛾 0.3 0.8 1.2 1.8 2.4 3.0
ℎ byTheorem 3 [18] 1.157 1.808 1.926 1.991 2.025 2.046
ℎ by Corollary 9 1.409 2.138 2.263 2.335 2.371 2.394

Table 4: Lower bounds of 𝛾 for different ℎ (Example 1).

ℎ 0.5 1 1.5 2 2.1 2.2
𝛾 byTheorem 3 [18] 0.264 0.270 0.630 1.919 8.235 infeasible
𝛾 by Corollary 9 0.264 0.266 0.340 0.712 0.766 0.925

(1) in [18]. For different given noise attenuation levels 𝛾,
the comparison of the upper bounds of delay in [18] with
our results is presented in Table 3, and, for different given
time delays, the lower bounds of noise attenuation level 𝛾 for
systems (1) in [18] and the same systems in this paper are
provided in Table 4.

Besides,Theorem 2 in [13] fails to give a feasible solution.
The number of decision variables of Theorem 3 in [18] is
(13𝑛2 + 5𝑛 + 2)/2, which is the same as that in Corollary 9 of
this paper. From Tables 3 and 4, we can see that our proposed
method is less conservative than that in [18].

Now in the case when 𝛾 = 2.4, ℎmax = 2.167, we resort to
theMATLAB LMI control toolbox to solve the LMI (59), and
the feasible solution can be obtained as follows:

𝑑𝑥 (𝑡) = [

−2.6806 −0.1892
−8.4386 −2.0417

]𝑥 (𝑡) 𝑑 (𝑡)

+ [

0.0232 0.0476
−0.1573 0.3199

]𝑑𝑦 (𝑡) ,

�̂� (𝑡) = [

−0.3127 0.0474
0.1536 −0.0621

]𝑥 (𝑡) .

(61)

The initial conditions are also taken as 𝑥(0) = [1 −1]𝑇 and
𝑥(0) = [−2 2]𝑇. The simulation results of the state response
of the system are plotted in Figures 1–3. The filter state 𝑥1(𝑡)
and its estimation𝑥1(𝑡) and state𝑥2(𝑡) and its estimation𝑥2(𝑡)
are given in Figures 1 and 2, respectively. Figure 3 depicts
the estimation error 𝑒(𝑡) = 𝑧(𝑡) − �̂�(𝑡). The simulation
results demonstrate that the designed𝐻

∞
filters are feasible,

effective and the stochastic stability of the error systems is
ensured.
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Figure 1: State 𝑥1(𝑡) and its estimation 𝑥1(𝑡) in Example 1.
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Figure 2: State 𝑥2(𝑡) and its estimation 𝑥2(𝑡) in Example 1.

Example 2. Consider systems (1) with Markovian jumping
parameters as follows.

Mode 1. Consider

𝐴1 = [
−2.0 0
0 −1.9

] ,

𝐴11 = [
−1 0
−1 −1

] ,

𝐵1 = [
0.15 0.4
0.2 0.3

] ,

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

e1

e2

Figure 3: The error responses 𝑒1(𝑡) and 𝑒2(𝑡) in Example 1.

𝐷1 = [
−0.1 0
0 −0.1

] ,

𝐷11 = [
0.2 0
0 0.2

] ,

𝐺1 = [
−0.5 0
0 −0.5

] ,

𝐶1 = [
0.2 0
0 0.2

] ,

𝐶11 = [
0.2 0
0 0.2

] ,

𝐶21 = [
0.3 0.9
0.2 0.1

] ,

𝐸1 = [
1.0 0.2
0.3 −1

] ,

𝐸11 = [
0.2 0.5
0.3 0.4

] ,

𝐸21 = [
0.5 0.5
1.0 0

] ,

𝐿11 = [
0.8 0.6
0.4 0.3

] ,

𝐿21 = [
0.4 0.6
0.5 0.8

] ,

𝐿31 = [
0.6 0.5
0.3 0.4

] ,
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𝑀11 = [
0.2 0
0 0.2

] ,

𝑀21 = [
0.2 0
0 0.2

] ,

𝑁11 = [
0.1 0
0 0.1

] ,

𝑁21 = [
0.3 0
0 0.3

] .

(62)
Mode 2. Consider

𝐴2 = [
0.5 0
0 0.3

] ,

𝐴12 = [
−1.0 0
−1.0 −0.5

] ,

𝐵2 = [
0.15 0.4
0.2 0.31

] ,

𝐷2 = [
0.2 0
0 0.3

] ,

𝐷12 = [
0.3 0
0 0.3

] ,

𝐺2 = [
−0.6 0
0 −0.6

] ,

𝐶2 = [
0.1 0
0 0.1

] ,

𝐶12 = [
0.1 0
0 0.1

] ,

𝐶22 = [
0.3 0.9
0.2 0.15

] ,

𝐸2 = [
0.5 0.6
1.2 0

] ,

𝐸12 = [
1.0 0.3
0.4 −1.0

] ,

𝐸22 = [
0.25 0.5
0.3 0.4

] ,

𝐿12 = [
0.8 0.5
0.6 0.8

] ,

Table 5: Upper bounds of ℎ for different 𝛾 (Example 2).

𝛾 0.5 2 3 4 5
ℎ byTheorem 7 0.104 0.232 0.311 0.343 0.361

Table 6: Lower bounds of 𝛾 for different ℎ (Example 2).

ℎ 0.1 0.2 0.3 0.4
𝛾 byTheorem 7 1.493 1.806 2.774 15.047

𝐿22 = [
0.4 0.8
0.3 0.5

] ,

𝐿32 = [
0.5 1.0
0.6 0.4

] ,

𝑀12 = [
0.3 0
0 0.3

] ,

𝑀22 = [
0.1 0
0 0.1

] ,

𝑁12 = [
0.2 0
0 0.2

] ,

𝑁22 = [
0.2 0
0 0.2

] ,

𝜋11 = − 1,

𝜋22 = − 2,

𝜋12 = 1,

𝜋21 = 2.
(63)

In this section, the purpose of this example is to design a
full-order filter in the form of (9) such that the filtering
error system is robustly stochastically stable for all admissible
uncertainties and satisfies the required 𝐻

∞
performance

level.
ByTheorem 7, for different given noise attenuation levels

𝛾, the upper bounds of delay for systems (1) are presented
in Table 5. For different given time delays, the lower bounds
of noise attenuation level 𝛾 for systems (1) are provided in
Table 6.

Now in the case when 𝛾 = 2, ℎmax = 0.232, we resort to
theMATLAB LMI control toolbox to solve the LMI (48), and
we obtain the solution as follows:

𝑄1 = [
9.6525 −1.9471
−1.9471 1.6603

] ,

𝑄2 = [
−10.1587 −0.2297
2.2216 −1.6233

] ,
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𝑄3 = [
10.8069 −0.0873
−0.0873 2.3599

] ,

𝑅 = [

39.1583 −0.3727
−0.3727 8.8082

] ,

𝑋1 = [
2.8376 0.1553
0.1553 2.4043

] ,

𝑋2 = [
4.3724 0.4730
0.4730 5.8205

] ,

𝐹1 = [
0.2942 0.2896
0.2896 1.1395

] ,

𝐹2 = [
1.2783 0.9020
0.9020 2.8727

] ,

𝜖1 = 1.1107,

𝜖2 = 8.1439,

𝐴
𝐹1 = [

−0.9169 −0.6283
−1.6111 −2.5633

] ,

𝐵
𝐹1 = [

0.1262 0.0730
0.2392 0.3601

] ,

𝐶
𝐹1 = [

0.5690 0.9257
0.4004 1.0310

] ,

𝐴
𝐹2 = [

−1.4295 −1.3599
−2.9406 −2.5256

] ,

𝐵
𝐹2 = [

1.8563 −0.7369
3.0463 −1.0766

] ,

𝐶
𝐹2 = [

1.1602 1.1086
0.7364 0.9807

] .

(64)

Therefore, the full-order stochastic filter parameters are
given as follows:

𝐴
𝑓1 = [

−2.3001 0.1251
−0.8294 −2.2813

] ,

𝐵
𝑓1 = [

0.2963 −0.0837
0.1346 0.3373

] ,

𝐶
𝑓1 = [

0.5690 0.9257
0.4004 1.0310

] ,

𝐴
𝑓2 = [

−0.5087 −0.5697
−0.8639 −0.7003

] ,

0 2 4 6 8 10
t (s)
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x̂1
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Figure 4: State 𝑥1(𝑡) and its estimation 𝑥1(𝑡) in Example 2.

𝐵
𝑓2 = [

0.9043 −0.4008
0.7765 −0.2489

] ,

𝐶
𝑓2 = [

1.1602 1.1086
0.7364 0.9807

] .

(65)

The initial conditions are also taken as 𝑥(0) = [−1 1.5]𝑇 and
𝑥(0) = [−0.5 1]𝑇.The simulation results of the state response
of the system are plotted in Figures 4–7. The filter state 𝑥1(𝑡)
and its estimation 𝑥1(𝑡) and state 𝑥2(𝑡) and its estimation
𝑥2(𝑡) are, respectively, given in Figures 4 and 5. Assuming the
simulation step sizeΔ = 0.1, one of the possible realizations of
the Markovian jumping mode is plotted in Figure 6. Figure 7
depicts the estimation error 𝑒(𝑡) = 𝑧(𝑡) − �̂�(𝑡). It is clearly
observed from the simulation results that the designed 𝐻

∞

filter satisfies the specified requirements and the expected
objectives are well achieved.

Remark 3. In order to reduce conservatism, many methods
such as cross-terms bounding techniques, free-weighting
matrices method, and cross-terms bounding techniques are
often adopted in the stability analysis of stochastic systems.
In this paper, the generalized Finsler Lemma is utilized in
uncertain neutral stochastic systems, which can bring the low
conservatism and less computational cost.

5. Conclusions

In this paper, the robust filtering problem for a class of
uncertain neutral stochastic systems with Markovian jump-
ing parameters and time delay has been considered. Based on
the Lyapunov-Krasovskii functional theory and generalized
Finsler Lemma, a delay-dependent sufficient condition is
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Figure 5: State 𝑥2(𝑡) and its estimation 𝑥2(𝑡) in Example 2.
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Figure 7: The error responses 𝑒1(𝑡) and 𝑒2(𝑡) in Example 2.

proposed for the existence of 𝐻
∞

filters which reduces
the conservatism. The obtained result ensures the robust
stability and a prescribed 𝐻

∞
performance level of the

filtering error system for all admissible uncertainties. Two
numerical examples and simulations have been presented to
demonstrate the usefulness and effectiveness of the proposed
filter design method.
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Taking full advantage of the strengths of 𝐺-𝐻 distribution, Copula function, and GARCH model in depicting the return
distribution of financial asset, we construct the multivariate time-varying𝐺-𝐻Copula GARCHmodel which can comprehensively
describe “asymmetric, leptokurtic, and heavy-tail” characteristics, the time-varying volatility characteristics, and the extreme-tail
dependence characteristics of financial asset return. Based on the conditional maximum likelihood estimator and IFM method,
we propose the estimation algorithm of model parameters. Using the quantile function and simulation method, we propose the
calculation algorithm of VaR on the basis of this model. To apply this model on studying a real financial market risk, we select
the SSCI (China), HSI (Hong Kong, China), TAIEX (Taiwan, China), and SP500 (USA) from January 3, 2000, to June 18, 2010, as
the samples to estimate the model parameters and to measure the VaRs of various index risk portfolios under different confidence
levels empirically. The results of the application example are in line with the actual situation and the risk diversification theory of
portfolio. To a certain extent, these results also justify the feasibility and effectiveness of the multivariate time-varying𝐺-𝐻 Copula
GARCHmodel in depicting the return distribution of financial assets.

1. Introduction

Financial market risk has always been one of the hottest
topics in the field of financial investment, and many financial
researchers put forward many different financial market risk
measurement methods. Among them, Value-at-Risk (VaR)
management technology is an assessment and measurement
method of financial risk that has risen in recent years, playing
an increasingly important role in the risk management and
investment decision. It has been widely adopted by the major
banks, nonbank financial intermediaries, corporations, and
financial regulators in the world and has become the standard
of risk measurement and risk management in financial
industry. Accurate calculation of VaR is one of the keys
to estimate the probability distribution of future return on
financial assets. Usually, it is assumed that financial asset
returns are independent of each other and obey the normal
distribution in the calculation of VaR, but the movement of
financial asset return in the financial market is extremely
complex. The return of all kinds of financial assets usually

does not satisfy the normal distribution hypothesis. However,
it often shows “asymmetric, leptokurtic, and heavy-tail”
characteristics [1–4]. At the same time, various financial asset
returns do not satisfy the multivariate normal distribution
hypothesis and present the extreme-tail dependence. On this
occasion, a large error would be made by using normal
distribution to fit financial asset return, and the estimation
of the VaR may be overestimated or underestimated. To
solve this problem, many scholars have proposed a lot of
leptokurtic and heavy-tail distributions in recent years, such
as the logistic distribution, Student’s 𝑡-distribution, and the
𝐺-𝐻 distribution. The logistic distribution and Student’s 𝑡-
distribution can comprehensively describe the leptokurtic
characteristics of financial asset return series, but they could
notmake a good explanation for the heavy-tail characteristics
of financial asset return series [5]. The 𝐺-𝐻 distribution can
comprehensively describe the asymmetric, leptokurtic, and
heavy-tail characteristics of financial asset return series and
it has a good fitting of the univariate unconditional return
distribution of some financial assets; however, it could not
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reflect the time-varying volatility characteristics of financial
asset return and the extreme-tail dependence characteristics
of various financial assets return [6, 7]. Meanwhile, Copula
function can connect the joint distribution and the marginal
distribution of multiple random variables to construct flex-
ible multivariate distribution functions, which can be used
to measure the extreme-tail dependence of multiple financial
assets return. GARCH model can comprehensively describe
the time-varying volatility characteristics of financial asset
return. Therefore, building the multivariate time-varying 𝐺-
𝐻 Copula GARCH Model by combining the 𝐺-𝐻 distribu-
tion with Copula function and GARCH model can not only
comprehensively describe the “asymmetric, leptokurtic, and
heavy-tail” characteristics, the time-varying volatility, and
extreme-tail dependence characteristics of the financial asset
return and make measurement of VaR more accurately, but
also enrich and expand the risk measurement theory and
method of financial market theoretically and improve the
risk control ability of investors, corporations, financial insti-
tutions, and policy authorities and reduce their unnecessary
losses in practice.

The 𝐺-𝐻 distribution, Copula function, and GARCH
model, as well as the financial risk measurement model
based on them, have been researched in the existing relevant
literatures. A lot of innovative research results with reference
value have been brought out. Zhu and Pan [8] proposed
three kinds of 𝐺-𝐻 VaR methods based on the portfolio
gains, losses, and extreme losses according to the statistical
characteristics of 𝐺-𝐻 distribution. Their empirical results
showed that this method is superior to the commonly used
delta-normal method. Kuester et al. [9] believed that the 𝐺-
𝐻 distribution can describe skewness and kurtosis of the
financial asset return simultaneously and it plays a very
important role of VaR measurement of financial asset return.
Degen et al. [10] discussed the application of𝐺-𝐻distribution
in operational riskmeasurement. Jondeau andRockinger [11],
Rodriguez [12], Fischer et al. [13], and Sun et al. [14] combined
time series model with various Copulas functions by using
the Sklar theorem to build a lot of highly flexible multivariate
time-varying models for risk measurement of portfolios. Liu
et al. [15] proposed a GARCH-𝑀model with a time-varying
coefficient of the risk premium.Their study indicated that the
coefficient of the risk premium varies with the time, and even
in a mature market the conditional skewness in the return
distribution is negatively correlated with the time-varying
coefficient of the risk premium. Wen et al. [16] built a 𝐷-
GARCH-𝑀 model by separating investors’ return into gains
and losses on the basis of the characteristics of investors’
risk preference.They found that investors become risk averse
when they gain and risk-seeking when they lose, which
effectively explains the inconsistent risk-return relationship.
And the degrees of investors’ risk aversion and risk-seeking
are both in direct proportion to the value of gains and losses,
respectively. Wen et al. [17] adopted aggregative indices of
14 representative stocks around the world as samples and
established a TVRA-GARCH-𝑀 model to investigate the
influence of prior gains and losses on current risk attitude.
The empirical results indicated that the prior gains increase
people’s current willingness to take risk asset at the whole

market level. Huang et al. [18] combined Student’s 𝑡-marginal
distribution with Archimedean Copula functions to build the
conditional Copula GARCH model. They used this model
to estimate the VaR of portfolios. Ghorbel and Trabelsi [19]
built the conditional extremum Copula GARCH model by
using extreme value theory (EVT) and measured the risk of
financial asset according to this model. Chollete et al. [20]
used multivariate regime-switching Copula function to build
international financial asset return model and accordingly
put forward the VaR calculation method. Huggenberger and
Klett [21] proposed a measurement model of multivari-
ate risk asset return VaR based on 𝐺-𝐻 distribution and
Copula function. They used DAX30 (Germany), FTSE100
(UK), and CAC40 (French) from January 2000 to May
2010 as samples to test empirically. Wang et al. [22] applied
the Gumbel Copula function in multivariate Archimedean
Copula functions family to construct the joint distribution
function which can describe the actual distribution and the
correlation of various financial asset returns. They also used
the Monte Carlo simulation technology to analyze the port-
folios VaR and its composition under different confidence
levels. The result showed that using the multidimensional
Gumbel Copula function to construct the risk measurement
model of financial asset can make the assets chosen by
investors more robust, and it can also help investors to
diversify and control the overall risk of the portfolios. Dai
and Wen [23] proposed a computationally tractable robust
optimization method for minimizing the CVaR of a portfolio
under a general affine data perturbation uncertainty set.
And they presented some numerical experiments with real
market data to illustrate the behavior of robust optimiza-
tion model. Liu et al. [24] proposed a pricing model for
convertible bonds based on the utility-indifference method
and got access to the empirical results by use of Information
Technology. Furthermore, using the proposed theoretical
model, they presented an empirical pricing study of China’s
market. They found that the theoretical prices are higher
than the actual market prices 0.24–4.58% and the utility-
indifference prices are better than the Black-Scholes (B-S)
prices.

Based on the aforementioned analyses, the VaR is still
the mainstream measurement method of financial mar-
ket risk. In order to achieve the purpose of measuring
VaR more precisely, it has been the hot issue of existing
research literatures to construct the distribution functions
as comprehensive as possible to describe the “asymmetric,
leptokurtic, and heavy-tail” characteristics, the time-varying
volatility characteristics, and the extreme-tail dependence
characteristics of financial asset return through a variety of
mathematicalmethods. However, in the process of construct-
ing the return distribution model and measuring VaR of
financial asset, existing results only grasp some characteristics
of financial asset return distribution. They are not able to
comprehensively describe the “asymmetric, leptokurtic, and
heavy-tail” characteristics, the time-varying volatility charac-
teristics, and the extreme-tail dependence characteristics of
the financial asset return.The rationality and accuracy of VaR
calculated based on the existing distribution models have a
large space for further improvement.
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In this paper, we would take full advantage of the
strengths of𝐺-𝐻 distribution, Copula function, andGARCH
model in depicting the return distribution of financial asset to
build multivariate time-varying𝐺-𝐻Copula GARCHmodel
which can simultaneously describe “asymmetric, leptokurtic,
and heavy-tail” characteristics, the time-varying volatility
characteristics, and the extreme-tail dependence character-
istics of financial asset return and propose the estimation
method of model parameters and the calculation algorithm
of VaR. Then, this paper selects the SSCI (China), HSI
(Hong Kong, China), TAIEX (Taiwan, China), and SP500
(USA) from January 3, 2000, to June 18, 2010, as samples to
estimate the parameters and calculate the VaRs of various
index portfolios under different confidence levels.

2. 𝐺-𝐻 Distribution, Copula Function,
and Its Tail Dependence Index

2.1. 𝐺-𝐻 Distribution

2.1.1. 𝐺 Distribution. Assuming that random variable 𝑍

obeys the standard normal distribution and 𝑔 is a real
number, then the random variable 𝑌𝑔 = 𝐺𝑔(𝑧) obeys 𝐺

distribution. Consider

𝐺𝑔 (𝑧) =
𝑒
𝑔𝑧

− 1
𝑔

, 𝑧 ∼ 𝑁 (0, 1) , (1)

where 𝑔 controls the skewness of 𝐺 distribution. When 𝑔 →

0, 𝐺𝑔(𝑧) → 𝑧 and 𝐺 distribution tends to be symmetric.
With the increase of the absolute value of 𝑔, the degree of
asymmetry increases. Changing the sign of 𝑔 can change
the asymmetric direction of 𝐺 distribution, but it does not
change its degree of asymmetry.

2.1.2. 𝐻 Distribution. Assuming that random variable 𝑍

obeys the standard normal distribution and ℎ is a real
number, then the random variable 𝑌ℎ = 𝐻ℎ(𝑧) obeys 𝐻

distribution. Consider

𝐻ℎ (𝑧) = 𝑒
ℎ𝑧

2
/2
, 𝑧 ∼ 𝑁 (0, 1) . (2)

𝐻 distribution stretches the tail of the standard normal
distribution. ℎ controls the tail heaviness of 𝐻 distribution.
The larger the ℎ is, the heavier the tail is. Because 𝐻ℎ(𝑧)

is an even function, 𝐻 distribution is symmetric. But the
heaviness of its tail changes compared to the standard normal
distribution.

2.1.3. 𝐺-𝐻 Distribution. The random variable 𝑌𝑔,ℎ can be
obtained by introducing both functions 𝐺𝑔(𝑧) and 𝐻ℎ(𝑧) to
revise standard normal random variable 𝑍. Consider

𝑌𝑔,ℎ = 𝐺𝑔 (𝑧)𝐻ℎ (𝑧) =
𝑒
𝑔𝑧

− 1
𝑔

𝑒
ℎ𝑧

2
/2
. (3)

Then, 𝑋𝑔,ℎ can be obtained through linear transformation of
𝑌𝑔,ℎ. Consider

𝑋𝑔,ℎ = 𝐴+𝐵
𝑒
𝑔𝑧

− 1
𝑔

𝑒
ℎ𝑧

2
/2
, 𝑧 ∼ 𝑁 (0, 1) . (4)

The distribution of the random variable𝑋𝑔,ℎ obeys the𝐺-
𝐻 distribution. 𝐴, 𝐵, 𝑔, and ℎ are real numbers. 𝑔 describes
the asymmetry of 𝐺-𝐻 distribution, and ℎ describes the
heavy-tail characteristics of 𝐺-𝐻 distribution. Obviously, (3)
is a special form of (4). The random variable 𝑌𝑔,ℎ in (3)
is the random variable of 𝐺-𝐻 distribution after central
standardization.

2.2. Copula Function and Its Tail Dependence Index. Assum-
ing that marginal distribution of random vector 𝑢𝑖 = 𝐹𝑖(𝑥𝑖)

(𝑖 = 1, 2, . . . , 𝑝) obeys uniformdistribution𝑈(0, 1), according
to the Sklar theorem, the joint distribution function of 𝑃-
dimensional random vectors 𝐹(𝑥1, . . . , 𝑥𝑝) can be repre-
sented as the following formula:

𝐹 (𝑥1, . . . , 𝑥𝑝) = 𝐶 (𝐹1 (𝑥1) , . . . , 𝐹𝑝 (𝑥𝑝)) , (5)

where 𝐶 is the Copula function of 𝐹, which is a hyper-
cube [0, 1]𝑝 multivariate density function defined on 𝑃-
dimensional space R𝑝. If the marginal distribution is contin-
uous, there is a unique Copula function 𝐶. Then

𝐶 (𝑢1, . . . , 𝑢𝑝) = 𝐹 (𝐹
−1
1 (𝑢1) , . . . , 𝐹

−1
𝑝

(𝑢𝑝)) . (6)

On the contrary, given 𝑃-dimensional Copula func-
tion 𝐶(𝑢1, . . . , 𝑢𝑝) and its marginal distribution function
𝐹1(𝑥1), . . . , 𝐹𝑝(𝑥𝑝), the density function of 𝑃-dimensional
joint distribution function is

𝑓 (𝑥1, . . . , 𝑥𝑝) = 𝑐 (𝐹1 (𝑢1) , . . . , 𝐹𝑝 (𝑢𝑝))

𝑝

∏

𝑖=1
𝑓𝑖 (𝑥𝑖) . (7)

If 𝑓𝑖(𝑥𝑖) is the edge density, 𝑐(𝑢1, . . . , 𝑢𝑝) denotes Copula
density derived from (6). Thus,

𝑐 (𝑢1, . . . , 𝑢𝑝) =

𝑓 (𝐹
−1
1 (𝑢1) , . . . , 𝐹

−1
𝑝

(𝑢𝑝))

∏
𝑝

𝑖=1𝑓𝑖 (𝐹
−1
𝑖

(𝑢𝑖))
. (8)

Since the joint distribution function of random vari-
ables defines the correlation among its components, Copula
function determines the dependent structure among random
variables uniquely. The upper tail index 𝜆𝑢 and lower tail
index 𝜆𝑙 of tail dependence indicators can be defined as
follows:

𝜆𝑢 = lim
𝑞→ 1

1 − 2𝑞 + 𝑐 (𝑞, 𝑞)

1 − 𝑞
,

𝜆𝑙 = lim
𝑞→ 0

𝑐 (𝑞, 𝑞)

𝑞
.

(9)

According to Nelsen [25], Gauss Copula function gen-
erated by multivariate normal distribution function whose
correlation matrix is R can be represented as follows:

𝐶
𝐺𝑢

R (𝑢1, . . . , 𝑢𝑝)

= ∫

Φ
−1
1 (𝑢1)

−∞

⋅ ⋅ ⋅ ∫

Φ
−1
𝑝

(𝑢
𝑝

)

−∞

1

√(2𝜋)𝑝 |R|

exp{
−uR−1u

2
}𝑑u,

(10)
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where u = (𝑢1, . . . , 𝑢𝑝) and Φ
−1 is the inverse function

of single normal distribution. Because the Gauss Copula
function does not have the characteristics of tail dependence,
we often use the𝑇-Copula function whose degree of freedom
is 𝜂 and correlation matrix is R to measure tail dependence
structure of risk asset in empirical analysis; that is,

𝐶
𝑡

𝜂,R (𝑢1, . . . , 𝑢𝑝)

= ∫

𝑡
−1
𝜂

(𝑢1)

−∞

⋅ ⋅ ⋅ ∫

𝑡
−1
𝜂

(𝑢
𝑝

)

−∞

Γ ((𝜂 + 𝑝) /2) (1 + uR−1u/2)
−(𝜂+𝑝)/2

Γ (𝜂/2)√(𝜋𝜂)
𝑝
|R|

𝑑u,
(11)

where 𝑡
−1
𝜂

is the inverse function of simple standard Student’s
𝑡-distribution whose degree of freedom is 𝜂. When 𝜂 → ∞,
𝑇-Copula function degenerates to Gauss Copula function. Its
tail index 𝜆𝑢 = 𝜆𝑙 = 0; that is, the tail is independent. The tail
index of 𝑇-Copula function is

𝜆𝑢 = 𝜆𝑙 = 2𝑡𝜂+1 (−

√(𝜂 + 1) (1 − 𝜌)

√1 + 𝜌
) , (12)

where 𝑡𝜂+1 is simple standard Student’s 𝑡-distribution whose
degree of freedom is 𝜂 + 1. Considering that the innovation
impacts on the price of risk asset in varying degrees at differ-
ent times, 𝜂 and 𝜌 should have time-varying characteristics.
For this reason, tail index also has the same characteristics.

3. Multivariate Time-Varying 𝐺-𝐻 Copula
GARCH Model

Let r𝑡 = (𝑟1,𝑡, . . . , 𝑟𝑝,𝑡) denote return time series of 𝑝 risk
assets. The prior information set before time 𝑡 is

I𝑡−1 = {r𝑡−1, h𝑡−1, r𝑡−2, h𝑡−2, . . .} =

𝑝

∏

𝑖=1
I𝑖,𝑡−1, (13)

where I𝑖,𝑡−1 = {𝑟𝑖,𝑡−1, ℎ𝑖,𝑡−1, 𝑟𝑖,𝑡−2, ℎ𝑖,𝑡−2, . . .}. ℎ𝑖,𝑡 is conditional
volatility of 𝑟𝑖,𝑡 about single asset prior information set I𝑖,𝑡−1.
Let 𝐶(⋅ | I𝑡−1) denote 𝑃-dimensional conditional Copula
function and 𝐹𝑖(𝑟𝑖,𝑡 | I𝑖,𝑡−1) be the conditional distribution
of the 𝑖th component. According to Sklar theorem, the
conditional joint distribution of 𝑝 risk assets return is

𝐹 (r𝑡 | I𝑡−1)

= 𝐶 (𝐹1 (𝑟1,𝑡 | I1,𝑡−1) , . . . , 𝐹𝑝 (𝑟𝑝,𝑡 | I𝑝,𝑡−1) | I𝑡−1) .

(14)

Numerous empirical studies show that the risk asset
return series obey GARCH (1, 1) model. Based on this,
assuming that 𝑟𝑖,𝑡 satisfies the GARCH (1, 1) model, we can
get the following 𝐺-𝐻 Copula GARCH (1, 1) model which
describes the time-varying dependence structure of 𝑝 risk

assets return after filtering the time-varying characteristics of
single series:

𝑟𝑖,𝑡 = 𝜇𝑖 + 𝜀𝑖,𝑡, 𝑖 = 1, 2, . . . , 𝑝,

𝜀𝑖,𝑡 = √ℎ𝑖,𝑡𝑧𝑖,𝑡,

ℎ𝑖,𝑡 = 𝜛𝑖 +𝛼𝑖𝜀
2
𝑖,𝑡−1 +𝛽𝑖ℎ𝑖,𝑡−1,

𝐹 (z𝑡 | I𝑡−1)

= 𝐶 (𝐹1 (𝑧1,𝑡 | I1,𝑡−1) , . . . , 𝐹𝑝 (𝑧𝑝,𝑡 | I𝑝,𝑡−1) | I𝑡−1) ,

(15)

where the parameters satisfy the conditions 𝜛𝑖, 𝛼𝑖, 𝛽𝑖 > 0
and 𝛼𝑖 + 𝛽𝑖 < 1. These parameters can ensure the stability
of conditional volatility series. The innovation series {z𝑡}
obey 𝐺-𝐻 distribution whose parameter is (𝑔, ℎ) in (4). But
in order to simplify the analysis, we only consider 𝐺-𝐻
distribution after central standardization given by (3) and its
density function is written as 𝑓𝑌

𝑖

(𝑦𝑖). The Copula function
𝐶(⋅ | I𝑡−1) is given by (11) and its density 𝑐(⋅) can be
represented as the following time-varying𝑇-Copula function
whose degree of freedom is 𝜂:

𝑐
𝑡

𝜂,𝜌
𝑡

(𝑢1,𝑡, . . . , 𝑢𝑝,𝑡)

=

𝑓
𝑡

𝜂,𝜌
𝑡

(𝑓
−1
V1 (𝑢1,𝑡) , . . . , 𝑓

−1
V
𝑝

(𝑢𝑝,𝑡))

∏
𝑝

𝑖=1𝑓𝜂 (𝑓
−1
V
𝑖

(𝑢𝑖,𝑡))

,

(16)

where 𝑓
𝑡

𝜂,𝜌
𝑡

denotes the multivariate Student’s 𝑡-distribution
whose degree of freedom is 𝜂 and time-varying correlation
matrix is 𝜌

𝑡
= (𝜌𝑖,𝑗,𝑡)𝑝×𝑝, and

𝜌𝑖,𝑖,𝑡 = 1,

𝑓V
𝑖

(𝑢𝑖,𝑡) =
Γ ((V𝑖 + 1) /2)
Γ (V𝑖/2)√V𝑖𝜋

(1+
𝑢
2
𝑖,𝑡

V𝑖
)

−(V
𝑖

+1)/2

.

(17)

The joint density function of 𝑝 risk assets return is

𝑓 (y | u, h𝑡) = 𝑐
𝑡

𝜂,𝜌
𝑡

(𝑥1,𝑡, . . . , 𝑥𝑝,𝑡)

𝑝

∏

𝑖=1
𝑓𝑌
𝑖

(𝑦𝑖)

= Γ (
𝜂 + 𝑝

2
) Γ (

𝜂

2
)

𝑝−1
(1+

x
𝑡
𝜌
𝑡
x𝑡

𝜂
)

−(𝜂+𝑝)/2

⋅ (
𝜌𝑡

)
−1/2
𝑝

∏

𝑖=1
(1 +

𝑥
2
𝑖,𝑡

𝜂
)

(𝜂+1)/2 𝑝

∏

𝑖=1
𝑓𝑌
𝑖

(𝑦𝑖) ,

(18)



Mathematical Problems in Engineering 5

where x𝑡 = (𝑥1,𝑡, . . . , 𝑥𝑝,𝑡) and 𝑥𝑖,𝑡 = 𝑡
−1
𝜂

(𝑡V
𝑖

(𝜀𝑖,𝑡)). Then the
likelihood function of overall samples is

𝑙 (𝜃 | y) =

𝑇

∏

𝑡=1
Γ (

𝜂 + 𝑝

2
) Γ (

𝜂

2
)

𝑝−1

⋅ (1+
x
𝑡
𝜌
𝑡
x𝑡

𝜂
)

−(𝜂+𝑝)/2

(
𝜌𝑡

)
−1/2

Γ (
𝜂 + 1
2

)

−𝑝

⋅

𝑝

∏

𝑖=1
(1+

𝑥
2
𝑖,𝑡

𝜂
)

(𝜂+1)/2 𝑝

∏

𝑖=1
𝑓𝑌
𝑖

(𝑦𝑖) ,

(19)

where 𝜃 = {(𝜇𝑖, 𝜛𝑖, 𝛼𝑖, 𝛽𝑖, V𝑖)
𝑝

𝑖=1, 𝑎, 𝑏,𝜌𝑡, 𝜂} and x𝑡 = (𝑥1,𝑡, . . . ,
𝑥𝑝,𝑡).The value of correlationmatrix 𝜌

𝑡
is similar to the time-

varying correlation matrix of multivariate Copula GARCH
model proposed by Jondeau and Rockinger [11]. That is, 𝜌

𝑡

satisfies the following evolution equation

𝜌
𝑡
= (1− 𝑎− 𝑏)𝜌+ 𝑎Ψ𝑡−1 + 𝑏𝜌

𝑡−1, (20)

where 0 ≤ 𝑎, 𝑏 ≤ 1, 𝑎 + 𝑏 ≤ 1. 𝜌 is a positive definite matrix
whose main diagonal elements are 1 and other elements are
static correlation coefficients.Ψ𝑡−1 is a 𝑝×𝑝matrix, in which
every element

𝜓𝑖,𝑗,𝑡−1 =
∑
𝑚

𝑙=1 𝑥𝑖,𝑡−𝑙𝑥𝑗,𝑡−𝑙

√∑
𝑚

𝑙=1 𝑥
2
𝑖,𝑡−𝑙

√∑
𝑚

𝑙=1 𝑥
2
𝑗,𝑡−𝑙

, 𝑖, 𝑗 = 1, 2, . . . , 𝑝 (21)

denotes the correlation coefficients of 𝑝 risk asset returns,
(𝑚 ≥ 𝑝 + 2), 𝑥𝑡 = (𝑥1,𝑡, . . . , 𝑥𝑝,𝑡) = (𝑡

−1
V1 (𝑓V1(𝑧1,𝑡)), . . . ,

𝑡
−1
V
𝑝

(𝑓V
𝑝

(𝑧𝑝,𝑡))). Each element 𝜌𝑖,𝑗,𝑡 of 𝜌𝑡 satisfies −1 ≤ 𝜌𝑖,𝑗,𝑡 ≤ 1.

4. Parameter Estimation Algorithm of
the Multivariate Time-Varying 𝐺-𝐻 Copula
GARCH Model

On the basis of Huggenberger and Klett [21], this section will
use dynamic correlation matrix 𝜌

𝑡
instead of static correla-

tion matrix in the multidimensional discrete-time stochastic
process to estimate the parameters of multivariate time-
varying𝐺-𝐻CopulaGARCHmodel established in Section 3.
Assuming thatΘ denotes the parameter space defined by the
model and (r1, r2, . . . , r𝑇) denotes the log return samples of
𝑃-dimensional risk asset which is generated by multivariate
conditional density function𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃0), where 𝜃0 ∈

Θ, I𝑡−1 is 𝜎 algebra of time 𝑡 − 1 and before, the maximum
likelihood estimation of parameter vector 𝜃 can be calculated
by the following equation:

�̂� = argmax
𝜃∈Θ

𝑇

∑

𝑡=1
log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃) , (22)

where 𝑓𝜌
𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃) can be obtained by calculating the
derivative of (5). Let 𝑐𝜃 denote Copula density function.Thus

𝑓𝜌
𝑡

|I
𝑡−1

(𝑟1,𝑡, . . . , 𝑟𝑝,𝑡 | I𝑡−1, 𝜃)

= 𝑐𝜃 (𝐹1,𝑡 (𝑟1,𝑡, 𝜃) , . . . , 𝐹𝑝,𝑡 (𝑟𝑝,𝑡, 𝜃))

⋅

𝑝

∏

𝑖=1
𝑓𝑖,𝑡 (𝑟𝑡,𝑖, 𝜃) .

(23)

The probability density function and distribution func-
tion can be obtained in the process ofmodel built in Section 3.
Using the IFM method proposed by Joe [26], we can convert
(22) into an optimization problem. Therefore, we need to
divide the parameter vector 𝜃 into two subparameter vectors
𝜃𝑐 and 𝜃𝑟: that is 𝜃 = (𝜃𝑐, 𝜃𝑟), where 𝜃𝑟 = (𝜃𝑟1

, . . . , 𝜃𝑟
𝑝

),
𝜃𝑟
𝑖

is the parameter vector of 𝑖th marginal distribution, and
𝜃𝑐 is the parameter vector of Copula function. Because IFM
method is a two-step likelihood estimation method, the
model parameters should be estimated through the following
two steps.

Step 1. Solving the maximum likelihood estimator of the
parameter vector of each risk asset return,

�̂�𝑟
𝑖

= argmax
𝜃
𝑟

𝑖

𝑇

∑

𝑡=1
log𝑓𝑖,𝑡 (𝑟𝑖,𝑡 | 𝜃𝑟

𝑖

) 𝑖 = 1, 2, . . . , 𝑝. (24)

Thismeans that we need to estimate parameters vector �̂�𝑟
𝑖

of 𝑝 distributions continuously.

Step 2. Taking each �̂�𝑟
𝑖

into the likelihood equation (22), we
can obtain the parameter vector 𝜃𝑐 of Copula function and its
maximum likelihood estimator �̂�𝑐. Consider

�̂�𝑐

= argmax
𝜃
𝑐

𝑇

∑

𝑡=1
log 𝑐𝜃

𝑐

(𝐹1,𝑡 (
𝑟1,𝑡

 �̂�𝑟1
) , . . . , 𝐹𝑝,𝑡 (


𝑟𝑝,𝑡


�̂�𝑟
𝑝

)) .

(25)

In themaximum likelihood estimation,weneed to use the
derivative function of the density function of 𝐺-𝐻 marginal
distribution with respect to the component of parameter
vector. Because the density function of 𝐺-𝐻 marginal distri-
bution is very complex, this paper uses the implicit function
differentiation rule to take its derivative. The estimator �̂�2𝑠
of parameter vector 𝜃 obtained by the above-mentioned
two-step method obeys normal distribution consistently
and asymptotically under the standard regularity conditions
proposed inHuggenberger andKlett [21], Joe [26], andPatton
[27]; that is,

√𝑇(�̂�2𝑠,𝑇 − 𝜃0)
𝑑

→
𝑇→∞

𝑁(0,Ω−1ΣΩ) , (26)
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where

Ω = −𝐸(
𝜕
2

𝜕𝜃𝜕𝜃

log𝑓𝜌

𝑡

|I
𝑡−1

(𝜌
𝑡
| I𝑡−1, 𝜃0)) ,

Σ = 𝐸(
𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(𝜌
𝑡
| I𝑡−1, 𝜃0))

⋅
𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(𝜌
𝑡
| I𝑡−1, 𝜃0))



) .

(27)

Because the matrixes Σ and Ω can be estimated by the
estimated parameter vector consistently,

Ω̂𝑇 = −𝑇
−1
𝑇

∑

𝑡=1

𝜕
2

𝜕𝜃𝜕𝜃

log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, �̂�2𝑠,𝑇) ,

Σ̂𝑇 = 𝑇
−1
𝑇

∑

𝑡=1

𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, �̂�2𝑠,𝑇))

⋅
𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, �̂�2𝑠,𝑇))


.

(28)

Thus (26) can be used to calculate the standard deviation
of the estimator �̂�2𝑠,𝑇.

5. VaR Algorithm Based on the Multivariate
Time-Varying 𝐺-𝐻 Copula GARCH Model

After estimating the parameters of multivariate time-varying
𝐺-𝐻 Copula GARCH model, VaR of the risk portfolio can
be measured. VaR of risk portfolio indicates the expected
maximum losses of risk portfolio held by investors within a
given confidence level and a certain period of time. Assuming
that r𝑡 = (𝑟1,𝑡, . . . , 𝑟𝑝,𝑡) (𝑡 = 1, 2, . . . , 𝑇) are the return samples
of 𝑝 risk assets which satisfy themultivariate time-varying𝐺-
𝐻 Copula GARCH (1, 1)model in Section 3 and∑

𝑝

𝑖=1 𝜆𝑖𝑟𝑖,𝑡 is
the portfolio of 𝑝 risk assets in which the weight of the risk
asset 𝑖 is 𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑝) that can be less than 0 because of
permitting short-purchasing and short-selling the risk assets
and meet ∑

𝑝

𝑖=1 𝜆𝑖 = 1, the VaR of risk portfolio under
confidence level 𝑞 at time 𝑡 should satisfy Pr(∑𝑝

𝑖=1 𝜆𝑖𝑟𝑖,𝑡 ≤

VaR𝑡) = 𝑞. The confidence level 𝑞 can reflect the different
risk preferences of investors or financial institutions to a
certain extent. Choosing a larger confidence level means that
investors or financial institutions have greater risk aversion,
and they hope to get a forecast result with larger probability.

Although the conditional distributions of 𝑟1,𝑇+1, 𝑟2,𝑇+1,
. . . , 𝑟𝑝,𝑇+1 can be calculated through the known marginal
distributions, it is very difficult to calculate quantile from
time-varying Copula density function, and it is adverse to
measure and calculate the VaR of risk portfolio. Therefore,
this paper measures the dynamic risk of portfolio and its esti-
mation value approximately through simulating𝐺-𝐻Copula
GARCH model. Based on the parameters 𝜃(𝑛) of the sample,
the return series of risk assets {[𝑟

(𝑛,𝑚)

1,1+𝑇, . . . , 𝑟
(𝑛,𝑚)

𝑝,1+𝑇], 𝑚 =

1, . . . ,𝑀} and the one-step measurement and estimation
values of VaR of their portfolios can be obtained through esti-
mating (ℎ(𝑛)1,𝑇+1, . . . , ℎ

(𝑛+1)
𝑝,𝑇+1) according to the volatility equation

Table 1: Moment estimation results of the daily log return of SSCI,
HSI, TAIEX, and SP500.

Types of stock index Mean Std. Skewness Kurtosis
SSCI 2.5078𝑒 − 004 0.0181 −0.2144 7.4467
HSI 7.4505𝑒 − 005 0.0177 −0.2765 11.6866
TAIEX 3.9511𝑒 − 005 0.0140 −0.9091 17.2823
SP500 −9.7173𝑒 − 005 0.0148 −0.3701 12.0177

of𝐺-𝐻 Copula GARCHmodel and calculating 𝜌
(𝑛)

𝑇+1 by using
Copula dynamic evolution equation and then repeating the
following algorithm for 𝑀 times (𝑀 ≥ 3𝑝).

Step 1. It is simulating 𝑀 groups of random vectors
[𝑢
(𝑛,𝑚)

1,𝑇+1, . . . , 𝑢
(𝑛,𝑚)

𝑝,𝑇+1] according to the multivariate 𝑇-Copula
density function whose degree of freedom is 𝜂(𝑛) and correla-
tion matrix is 𝜌(𝑛)

𝑇+1.

Step 2. Calculating 𝑟
(𝑛,𝑚)

𝑖,𝑇+1 = 𝜇
(𝑛)

𝑖
+ 𝑧
(𝑛,𝑚)

𝑖,𝑇+1√ℎ
(𝑛)

𝑖,𝑇+1, 𝑖 = 1, . . . , 𝑝.

Step 3. Firstly, one calculates the return rate of risk portfolio
that is equal to ∑

𝑝

𝑖=1 𝜆𝑖𝑟
(𝑛,𝑚)

𝑖,𝑇+1 , 𝑚 = 1, 2, . . . ,𝑀. Secondly, one
evaluates its 𝑞-quantile VaR(𝑛)

𝑇+1. Thirdly, one measures the
VaR of the risk portfolio by VaR𝑇+1 = (1/𝑁)∑

𝑁

𝑛=1 VaR
(𝑛)

𝑇+1.

6. Application of the Multivariate Time-
Varying 𝐺-𝐻 Copula GARCH Model

6.1. Date Sample and Moment Estimation. USA and China,
as the most developed capitalism country and the largest
developing country in the world, respectively, rank top two of
the world economy. Their stock markets should have strong
representation in the world. At the same time, due to the
historical reasons, there exist several regions with different
political systems such as Mainland China, Hong Kong,
Taiwan, and Macau in Greater China. Macau is similar to
Hong Kong on the whole. For the above-mentioned reasons,
this paper selects the SSCI (China), HSI (HongKong, China),
TAIEX (Taiwan, China), and SP500 (USA) from January
3, 2000, to June 18, 2010, as data samples to estimate the
VaR of various index portfolios under different confidence
levels by using the multivariate time-varying 𝐺-𝐻 Copula
GARCHmodel.The data comes fromYahoo Financewebsite:
http://finance.yahoo.com/.

The moment estimation results of the daily log return of
SSCI, HSI, TAIEX, and SP500 are shown in Table 1.

Table 1 shows that the skewness of daily log returns of
SSCI, HSI, TAIEX, and SP500 is less than 0 and their kurtosis
is much larger than that of standard normal distribution
which is equal to 3. These results demonstrate that the
daily log returns of these indices have the right skew and
leptokurtic characteristics. Therefore, it is appropriate to fit
the daily log return of SSCI, HSI, TAIEX, and SP500 by
applying 𝐺-𝐻 distribution which has leptokurtic, heavy-tail
characteristics, and it is reasonable to apply the multivariate
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Table 2: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on SSCI index risk asset.

Model parameters 𝜇
1

𝜔
1

𝛼
1

𝛽
1

Estimate 0.00025∗∗∗ 0.0551∗∗∗ 0.0617∗∗∗ 0.8583∗∗∗

𝑇-statistic 4.8653 4.6851 6.5764 4.4009
Note: ∗∗∗ in the table denotes that the parameter is significant at 1% level.

Table 3: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on HSI index risk asset.

Model parameters 𝜇
2

𝜔
2

𝛼
2

𝛽
2

Estimate 0.000075
∗∗∗

0.0342
∗∗∗

0.0586
∗∗∗

0.8987
∗∗∗

𝑇-statistic 4.6539 4.8518 6.1796 6.6079
Note: ∗∗∗ in the table denotes that the parameter is significant at 1% level.

Table 4: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on TAIEX index risk asset.

Model parameters 𝜇
3

𝜔
3

𝛼
3

𝛽
3

Estimate 0.00040∗∗∗ 0.0343
∗∗∗

0.0517
∗∗∗

0.9054
∗∗∗

𝑇-statistic −6.4538 4.3523 5.9817 6.5935
Note: ∗∗∗ in the table denotes that the parameter is significant at 1% level.

Table 5: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on SP500 index risk asset.

Model parameters 𝜇
4

𝜔
4

𝛼
4

𝛽
4

Estimate −0.0001
∗∗∗

0.0251
∗∗∗

0.0861
∗∗∗

0.8738
∗∗∗

𝑇-statistic −3.3873 5.2684 7.6324 6.3786
Note: ∗∗∗in the table denotes that the parameter is significant at 1% level.

time-varying 𝐺-𝐻 Copula GARCH model to measure their
VaR.

6.2. Parameter Estimates of the Multivariate Time-Varying
𝐺-𝐻 Copula GARCH Model. Based on the parameter esti-
mation algorithm proposed in Section 4, the parameters of
the multivariate time-varying 𝐺-𝐻 Copula GARCH model
with SSCI, HSI, TAIEX, and SP500 can be estimated. The
parameter estimation results are shown in Tables 2, 3, 4, 5,
and 6.

From Tables 2 to 6, the following results can be obtained:

(1) Consider 𝛼1 + 𝛽1 = 0.92, 𝛼2 + 𝛽2 = 0.9573, 𝛼3 +

𝛽3 = 0.9571, and 𝛼4 + 𝛽4 = 0.9599. This shows that
the volatility persistence of Shanghai stock market is
the strongest, Taiwan and Hong Kong stock market
rank second and third, and the volatility persistence
of USA stock market is minimum. It indicates that
the investors’ expectation of risk compensation in
the emerging markets represented by China’s stock
market is stronger than that in the mature markets
represented by the USA’s stock market and the price
discovery efficiency of innovation in the emerging
markets represented by China’s stock market is lower
than that in the mature markets represented by USA’s
stockmarket. In addition, the sumof the coefficients𝛼

and𝛽 is very close to 1, which indicates that the impact
and shock of innovation on the index volatility of each
stock market has a long memory.

(2) The degree of freedom 𝜂 = 14.57 and the correlation
coefficients 𝜌𝑖𝑗 of 𝑇-Copula in Table 6 show that
there exists the strongest correlation between Hong
Kong stock market and Taiwan stock market, and
the correlation between Shanghai stock market and
Hong Kong stock market is also relatively large.
The above-mentioned facts indicate that the extreme
events probably result in the phenomena that Hong
Kong stock market and Taiwan stock market are up
and down synchronously, and there exist comoving
behaviors between Shanghai stock market and Hong
Kong stock market.

(3) The time-varying coefficient 𝑏 = 0.987 indicates
that the time-varying correlation coefficient of 𝐺-
𝐻 Copula GARCH model has a long memory; that
is, the impact of historical values of each other’s
correlation coefficient among SSCI, HSI, TAIEX, and
SP500 on the expected correlation is relatively large.

6.3. VaR Measurement Based on the Multivariate Time-
Varying 𝐺-𝐻 Copula GARCH Model. Based on the multi-
variate time-varying𝐺-𝐻 Copula GARCHmodel with SSCI,
HSI, TAIEX, and SP500 whose parameters have been esti-
mated, the VaRs of various index portfolios under different
confidence levels can be measured. The measurement results
are shown in Table 7.

From Table 7, the following results can be obtained:

(1) The inequalities VaR (SSCI) < VaR (HSI) < VaR
(SP500) < VaR (TAIEX) can be satisfied for any
confidence level. It shows that the risk of extreme
losses in Shanghai stock market is higher than that in
Hong Kong stock market, Taiwan stock market, and
USA stock market. This measurement result is in line
with the actual situation that thematurity of Shanghai
stockmarket is far lower than that ofHongKong stock
market, Taiwan stock market, and USA stock market.

(2) For any confidence level, the extreme losses risk of
the investors who equally allocate their total assets
among SSCI, HSI, TAIEX, and SP500 is lower than
that of the investors who put their total assets into one
index asset. The extreme losses risk of the investors
increases with the concentration of risk asset in the
index portfolios. This measurement result is consis-
tent with the risk diversification theory of portfolio.

7. Conclusion

Considering the “asymmetric, leptokurtic, and heavy-tail”
characteristics, the time-varying volatility characteristics,
and extreme-tail dependence characteristics of financial
asset return, this paper combined the 𝐺-𝐻 distribution,
Copula function, and GARCH model to construct a mul-
tivariate time-varying 𝐺-𝐻 Copula GARCH model which
can comprehensively describe the “asymmetric, leptokurtic,
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Table 6: Estimates of correlation coefficients, time-varying parameters, and degree of freedom of four-variate time-varying G-H Copula
GARCH (1, 1) model based on SSCI, HSI, TAIEX, and SP500.

Model parameters 𝜌
12

𝜌
13

𝜌
14

𝜌
23

𝜌
24

𝜌
34

a b 𝜂

Estimate 0.256
∗∗∗

0.139
∗∗∗

0.021
∗∗∗

0.528
∗∗∗

0.193
∗∗∗

0.128
∗∗

0.008
∗∗∗

0.987
∗∗∗

14.57
∗∗∗

𝑇-statistic 13.51 11.02 3.431 5.763 9.564 2.529 5.179 3.561 6.871
Note: ∗∗∗ and ∗∗ in the table denote that the parameter is significant at 1% and 5% level, respectively.

Table 7: VaR estimation results based on the four-variate time-varying G-H Copula GARCHmodel with SSCI, HSI, TAIEX, and SP500.

Ratio of index portfolio 1% 5% 10% 15% Ratio of index portfolio 1% 5% 10% 15%
0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086 0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086
0.50 : 0.00 : 0.25 : 0.25 −0.0329 −0.0177 −0.0128 −0.0093 0.25 : 0.50 : 0.00 : 0.25 −0.0361 −0.0189 −0.0132 −0.0100

0.75 : 0.00 : 0.00 : 0.25 −0.0418 −0.0226 −0.0157 −0.0116 0.25 : 0.75 : 0.00 : 0.00 −0.0426 −0.0236 −0.0165 −0.0123

1.00 : 0.00 : 0.00 : 0.00 −0.0536 −0.0285 −0.0199 −0.0150 0.00 : 1.00 : 0.00 : 0.00 −0.0491 −0.0269 −0.0190 −0.0138

0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086 0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086
0.25 : 0.25 : 0.50 : 0.00 −0.332 −0.0176 −0.0119 −0.0093 0.00 : 0.25 : 0.50 : 0.50 −0.0359 −0.0181 −0.0128 −0.0094

0.00 : 0.25 : 0.75 : 0.00 −0.0403 −0.0196 −0.0127 −0.0097 0.00 : 0.00 : 0.25 : 0.75 −0.0402 −0.0206 −0.0146 −0.0108

0.00 : 0.00 : 1.00 : 0.00 −0.0420 −0.0211 −0.0139 −0.0101 0.00 : 0.00 : 0.00 : 1.00 −0.0425 −0.0230 −0.0157 −0.0119

Note: the ratio of index portfolio is ranked by the sequence of SSCI : HSI : TAIEX : SP500 in Table 7.

and heavy-tail” characteristics, the time-varying volatility
characteristics, and extreme-tail dependence characteristics
of financial asset return. It proposed the parameter estimation
algorithm of the multivariate time-varying 𝐺-𝐻 Copula
GARCH model by using condition maximum likelihood
method and IFM two-step method. An algorithm was con-
structed to calculate VaR by using the quantile function
and the simulation method based on 𝐺-𝐻 Copula GARCH
model. In addition, this paper selected the daily log return
of SSCI (China), HSI (Hong Kong, China), TAIEX (Taiwan,
China), and SP500 (USA) from January 3, 2000, to June
18, 2010, as samples to estimate the parameters of the
multivariate time-varying 𝐺-𝐻 Copula GARCH model, and
it also estimated theVaR for various index risk asset portfolios
under different confidence levels.The research results showed
that the multivariate time-varying 𝐺-𝐻 Copula GARCH
model constructed in this paper could reasonably estimate
and measure the extreme losses of risk portfolios in financial
market, and the measurement results were in line with the
actual situation of stock market and the risk diversification
theory of portfolio. The achievement of this paper provided
a practical and effective method for measuring the extreme
losses of financial market.
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The paper aims at discussing techniques for administering one implementation issue that often arises in the application of particle
filters: sample impoverishment. Dealing with such problem can significantly improve the performance of particle filters and can
make the difference between success and failure. Sample impoverishment occurs because of the reduction in the number of truly
distinct sample values. A simple solution can be to increase the number of particles, which can quickly lead to unreasonable
computational demands, which only delays the inevitable sample impoverishment. There are more intelligent ways of dealing with
this problem, such as roughening and prior editing, procedures to be discussed herein. The nonlinear particle filter is based on the
bootstrap filter for implementing recursive Bayesian filters.The application consists of determining the orbit of an artificial satellite
using real data from theGPS receivers.The standard differential equations describing the orbitalmotion and theGPSmeasurements
equations are adapted for the nonlinear particle filter, so that the bootstrap algorithm is also used for estimating the orbital state.
The evaluation will be done through convergence speed and computational implementation complexity, comparing the bootstrap
algorithm results obtained for each technique that deals with sample impoverishment.

1. Introduction

The orbit of an artificial satellite is determined using real data
from the Global Positioning System (GPS) receivers. In the
orbit determination process of artificial satellites, the nature
of the dynamic system and the measurements equations are
nonlinear. As a result, it is necessary tomanage a fully nonlin-
ear problem in which the disturbing forces as well as themea-
surements are not easilymodelled. In this orbit determination
problem, the variables that completely specify a satellite
trajectory in the space are estimated, with the processing of
a set of pseudorange measurements related to the body.

A spaceborne GPS receiver is a powerful resource to
determine orbits of artificial Earth satellites by providing
many redundantmeasurements, which ultimately yields high

degree of the observability to the problem.The Jason satellite
is a nice example of usingGPS for space positioning.Through
an on-boardGPS receiver, the pseudoranges (error corrupted
distance from satellite to each of the tracked GPS satellites)
can be measured and used to estimate the full orbital state.

The bootstrap filter is a particle filter whose central idea
is to express the required probability density function (PDF)
as a set of random samples, instead of a function over state
space [1–3].

Numerous strategies have been developed for solving the
particles degeneracy (or sample impoverishment) problem
that often arises in particle filter applications like introduction
of a risk-sensitive particle filter as an alternative approach
to mitigate sample impoverishment based on constructing
explicit risk functions from a general class of factorizable
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functions [4]; incorporation of genetic algorithms into a
particle filter [5, 6]; and many others [7–9]. All these strate-
gies, although extremely interesting and suitable for the orbit
determination problem, are not in the scope of this work.
Here, the option was done for studying two classical methods
to solve (or try to solve) the degeneracy problem: roughening
and prior editing.

Herein, the main goal is to analyze the bootstrap fil-
ter behavior for the highly nonlinear orbit determination
problem. Its simulation results are compared taking into
account the sample impoverishment. A reference solution is a
bootstrap particle filter (BPF) applied to orbit determination
that has already been compared to the unscented Kalman
filter solution for the same problem and works well for the
analysis of the sample impoverishment issue [10].

2. Particle Filter

The particle filter was designed to numerically implement
the Bayesian estimator [2].The Bayesian approach consists of
constructing the PDF of the state based on all the available
information, and, for nonlinear or non-Gaussian problem,
the required PDF has no closed form. The bootstrap filter
represents the required PDF as a set of random samples,
which works as an alternative to the function over state space.
This filter is a recursive algorithm for propagation and update
of these samples for the discrete time problem. The Bayes
rule, the key update stage of the method, is implemented as a
weighted bootstrap [1].

The main idea of the BPF is intuitive and direct. At the
beginning, 𝑁 particles 𝑥

+

0,𝑖
(𝑖 = 1, . . . , 𝑁) are randomly

generated, based on the known initial PDF 𝑝(𝑥
0
). At each

step of time 𝑘, the particles are propagated to the next
step using the dynamics equation [2]. After receiving the
measurement at time 𝑘, the PDF 𝑝(𝑦

𝑘
| 𝑥
𝑖

𝑘−1
) is evaluated.

That is, the conditional relative likelihood of each particle 𝑥−
𝑘,𝑖

is calculated. If an 𝑚-dimensional measurement equation is
given as 𝑦

𝑘
= ℎ (𝑥

𝑘
)+V
𝑘
and V
𝑘
is a Gaussian random variable

with a mean of zero and a variance of 𝑅, V
𝑘
∼ 𝑁(0, 𝑅), then

a relative likelihood 𝑞
𝑖
that the measurement is equal to a

specific measurement 𝑦∗, given the premise that 𝑥
𝑘
is equal

to the particle 𝑥𝑖
𝑘−1

, can be computed as follows [2]:

𝑞
𝑖
= 𝑝 (𝑦

𝑘
= 𝑦
∗

| 𝑥
𝑘
= 𝑥
𝑖

𝑘−1
) = 𝑝 ⌊V

𝑘
= 𝑦
∗

− ℎ (𝑥
𝑖

𝑘−1
)⌋

∼
1

(2𝜋)
𝑚/2

|𝑅|
1/2

⋅ exp(
−[𝑦
∗
− ℎ (𝑥

𝑖

𝑘−1
)]

T
𝑅
−1
[𝑦
∗
− ℎ (𝑥

𝑖

𝑘−1
)]

2
) .

(1)

In (1), the symbol ∼means that the probability is directly
proportional to the right side. So if the equation is used for
all particles 𝑥

−

𝑘,𝑖
, then the relative likelihood that the state

is equal to each particle is correct. The relative likelihood
values are normalized to ensure that the sum of all likelihood
values is equal to one. Next, a new set of randomly generated
particles 𝑥

+

𝑘,𝑖
is computed from the relative likelihood 𝑞

𝑖
.

In the resampling step, roughening was used, in order to
prevent sample impoverishment. At this point, there is a set
of particles 𝑥

+

𝑘,𝑖
that are distributed according to the PDF

𝑝(𝑥
𝑘
| 𝑦
𝑘
), and any desired statistical measure of it can be

computed [2].
The particle filter, adjusted to the orbit determination

problem, can be summarized as follows.

(1) The dynamic and the measurement equations are
given as

x
𝑘+1

= f
𝑘
(x
𝑘
) + w
𝑘
,

y
𝑘
= h
𝑘
(x
𝑘
) + ^
𝑘
,

(2)

where w
𝑘
and ^

𝑘
are independent white noise pro-

cesses with known PDFs.
(2)𝑁 initial particles x+

0,𝑖
(𝑖 = 1, . . . , 𝑁) are randomly

generated on the basis of the known initial state PDF
𝑝(x
0
).𝑁 is a parameter chosen as a trade-off between

computational cost and estimation accuracy [2].
(3) For 𝑘 = 1, 2, . . .,

(a) in the time propagation step, obtain a priori
(predicted) particles x−

𝑘,𝑖
, using the dynamics

equation and the PDF of the process noise, both
known:

x−
𝑘,𝑖

= f
𝑘−1

(x+
𝑘−1,𝑖

) + w𝑖
𝑘−1

, 𝑖 = 1, . . . , 𝑁, (3)

where each noise vector, w𝑖
𝑘−1

, is randomly
generated on the basis of the known PDF of
w
𝑘−1

;
(b) compute the relative likelihood 𝑞

𝑖
of each

particle 𝑥
−

𝑘,𝑖
, conditioned on the measurement

y
𝑘
, using the nonlinear measurement equation

and the PDF of themeasurement noise, as in (1);
(c) normalize the relative likelihood values:

𝑞
𝑖
=

𝑞
𝑖

∑
𝑁

𝑗=1
𝑞
𝑗

; (4)

(d) in the resampling step, generate a set of a
posteriori (resampled) particles x+

𝑘,𝑖
, on the basis

of the relative likelihood 𝑞
𝑖
;

(e) now, there is a set of particles x+
𝑘,𝑖
distributed

according to the PDF 𝑝(x
𝑘

| y
𝑘
), and mean

and covariance statistical measures can be com-
puted.

In the implementation of the bootstrap filter, there is only
a small overlap between the prior and the likelihood.

There are some procedures that may be implemented
for combating the consequent reduction in the number of
truly distinct sample values, such as increasing the number of
particles, roughening, and prior editing [1]. Here, they were
implemented: a bootstrap particle filter with resampling (PF);
a PF with roughening (PFR); and a PFR with prior editing
(PFPE), in order to evaluate roughening and prior editing
strategies for dealing with sample impoverishment.
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2.1. Roughening. Roughening will be the first remedy for
sample impoverishment to be discussed. It restrains the
resampled particles spread (a posteriori particles) by adding
random noise to them, which is similar to adding artifi-
cial process noise to the Kalman filter [2]. In roughening
approach, the a posteriori particles are modified, after the
resampling step, as follows:

x+
𝑘,𝑖
(𝑚) = x+

𝑘,𝑖
(𝑚) + Δx (𝑚) , 𝑚 = 1, . . . , 𝑛,

Δx (𝑚) ∼ (0, 𝐾M (𝑚)𝑁
−1/𝑛

) .

(5)

Δx(𝑚) is a zero-mean random variable (usually Gaussian);𝐾
is a constant tuning parameter;𝑁 is the number of particles;
𝑛 is the state space dimension; and M is a vector of the
maximum difference between the particle elements before
roughening. The𝑚th element of theM vector is given as

M (𝑚) = max
𝑖,𝑗


x+
𝑘,𝑖
(𝑚) − x+

𝑘,𝑗
(𝑚)


, 𝑚 = 1, . . . , 𝑛, (6)

where 𝑘 is the step time and 𝑖 and 𝑗 are particle numbers.
The tuning parameter 𝐾 choice is a compromise. Being

too large, a value would blur the distribution, but being too
small, it would produce tight clusters of points around the
original particles [1]. In this paper,𝐾 = 0.1.

2.2. Prior Editing. Prior editing can be tried if roughening
does not prevent sample impoverishment. Such approach
edits the a posteriori particles from the prior time instant,
x+
𝑘−1,𝑖

(after roughening), if the a priori particle from actual
instant, x−

𝑘,𝑖
, does not satisfy a coarse, pragmatic acceptance

test [1]. Therefore, this procedure artificially boosts the
number of samples of the prior editing in the neighborhood
of the likelihood, for if an a priori particle is in a region of
state space with small 𝑞

𝑖
, it is rejected. Then, the a priori

rejected particle can be roughened asmany times as required,
according to (5), until it is in a region of significant 𝑞

𝑖
[2].The

prior editing was implemented as follows [1]:

(a) Pass the resampled sample from previous instant,
x+
𝑘−1

, through roughening and system model to gen-
erate the predicted sample from current instant, x−

𝑘
.

(b) Calculate 𝜐
𝑘,𝑖

= 𝑧
𝑘
− h(x−

𝑘,𝑖
), the residual between

the true and the predicted measurements, for the 𝑖th
particle of the sample, considering that the actual
instant observation is available.

(c) If the magnitude of 𝜐
𝑘,𝑖

is higher than six standard
deviations of the measurement noise, then it is highly
unlikely that x−

𝑘,𝑖
is chosen as an a posteriori particle.

In this case, x−
𝑘,𝑖

is rejected, and x+
𝑘−1,𝑖

is roughened
again and passes one more time through dynamic
model to generate a new a priori particle x−

𝑘,𝑖
. As x+
𝑘−1,𝑖

has already passed through roughening and generated
a rejected predicted particle, this procedure may be
repeated while x−

𝑘,𝑖
is in a region of no negligible

probability.

Due to the high computational cost involving prior
editing, such approach was done only once. It is important
to make it clear that, here, the 𝑖th particle is, in fact, an 𝑛-
dimensional vector, while a sample is a 𝑛 × 𝑁 matrix, where
the 𝑛th state variable is represented by𝑁 particles.

The accommodation of roughening and prior editing in
the bootstrap particle filter algorithm can be schematized as
Figure 1 shows.

3. Orbit Determination

The orbit determination is a process for obtaining values
of the parameters that completely specify the motion of an
orbiting body (as an artificial satellite), based on a set of
observations of the body. It involves nonlinear dynamical
and nonlinear measurement systems, which depends on
the tracking system and the estimation technique [11, 12].
The dynamical system model consists of describing satellite
orbital motion, which includes Earth’s rotation effects and
perturbationmodels andmeasurements models.These mod-
els depend on the state variables initial conditions, as well as a
variety of parameters which affect both the dynamic motions
as themeasurement process [13]. Due to the complexity of the
appliedmodels, usually it is not possible to solve suchmodels
equations directly for any of these parameters from a given
set of observations.

The observationmay be obtained from the ground station
networks using laser, radar, Doppler, or space navigation
systems, as the GPS. The choice of the tracking system
depends on a compromise between the goals of the mission
and the available tools. In the case of the GPS, the advantages
are global coverage, high precision, low cost, and autonomous
navigation resources. The GPS may provide orbit deter-
mination with accuracy at least as good as the methods
using ground tracking networks.The latter provides standard
precision around tens of meters and the former can provide
precision as tight as some centimetres.TheGPS provides, at a
given instant, a set of many redundant measurements, which
makes the orbit position observable geometrically.

After some advances of technology, the single frequency
GPS receivers provide a good basis to achieve fair precision at
relatively low cost, still attaining the accuracy requirements
of the mission operation. The GPS allows the receiver to
determine its position and time, geometrically, anywhere
at any instant, with data from at least four satellites. The
principle of navigation by satellites is based on sending signals
and data from theGPS satellites to a receiver located on board
the satellite whose orbit needs to be determined.This receiver
measures the travel time of the signal and then calculates the
distance between the receiver and the GPS satellite. Those
measurements of distances are called pseudoranges.

The instantaneous orbit determination using GPS satel-
lites is based on the geometric method. In such method, the
observer knows the set ofGPS satellites position in a reference
frame, obtaining its ownposition in the same reference frame.

3.1. Dynamics Model. In the case of orbit determination via
GPS, the ordinary differential equations which represent the
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Figure 1: Roughening and prior editing accommodation in the BPF algorithm.

dynamic model are, in its simplest form, given traditionally
as follows:

̇r = k,

k̇ = −𝜇
r
𝑟3

+ a + wV,

�̇� = 𝑑,

̇𝑑 = 𝑤
𝑑
,

(7)

wherein the variables are placed in the inertial reference
frame. In (7), r is the vector of the position components
(𝑥, 𝑦, 𝑧); k is the velocity vector; a represents the modelled
perturbing accelerations; wV is the white noise vector with
covariance Q; 𝑏 is the user satellite GPS clock bias; 𝑑 is the
user satellite GPS clock drift; and 𝑤

𝑑
is the noise associated

with the GPS clock. The GPS receiver clock offset was not
taken into account, so as not to obscure the conclusions
drawn in this paper due to introduction of clock offsetmodels
in the filters. Indeed, the receiver clock offset was beforehand

obtained and used to correct the GPS measurements, so
that the measurements are free from the error derived from
receiver clock offset.

3.2. Forces Model. There are gravitational and nongravi-
tational forces that affect the orbit of an Earth’s artificial
satellite. The main disturbing forces of gravitational nature
are the nonuniform distribution of Earth’s mass; ocean and
terrestrial tides; and the gravitational attraction of the Sun
and the Moon. And the principal nongravitational effects are
Earth atmospheric drag; direct and reflected solar radiation
pressure; electric drag; emissivity effects; relativistic effects;
and meteorites impacts.

The disturbing effects are, in general, included according
to the physical situation presented and to the accuracy that is
intended for the orbit determination. Here, only a minimum
set of perturbations was included which enable analyzing the
performance of the particle filter [14]: geopotential [15]; direct
solar radiation pressure [16, 17]; and third body point mass
effect of the Sun and the Moon [18, 19].
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3.3. Observations Model. The nonlinear equation of the
observation model is

y
𝑘
= h
𝑘
(x
𝑘
, 𝑡
𝑘
) + ^
𝑘
, (8)

where, at instant 𝑡
𝑘
, y
𝑘
is the vector of𝑚 observations; h

𝑘
(x
𝑘
)

is the nonlinear function of state x
𝑘
, with dimension 𝑚;

and ^
𝑘
is the observation errors vector, with dimension 𝑚

and covariance R
𝑘
. For the present application, the ion-free

pseudorange measurements from the Jason-2 GPS receiver
are used. Also, the receiver clock offset was computed
before and used to correct the pseudorange measurements.
Additionally, the nonlinear pseudorange measurement was
modelled according to [20].

4. Results

The tests and the analysis for the bootstrap particle filter
and two procedures for avoiding sample impoverishment
(roughening and prior editing) are presented. To validate
and to analyze the methods, real GPS data from the Jason-
2 satellite are used. Ocean Surface Topography Mission
(OSTM)/Jason-2 is a follow-on altimetry mission to the very
successful TOPEX/Poseidon mission and Jason-1. It is a joint
mission between NASA and CNES (French space agency),
launched June 20, 2008. Jason-2 has a repeat period of
approximately 10 days with 254 passes per cycle. Its nodal
period is 6,745.72 sec (near 1.87 hours). Sometimes there may
be anomalous or missing data. Occasionally Jason-2 must
perform maneuvers to maintain orbit. When the satellite
detects something abnormal, it will go into safe hold and will
turn off all instruments and no data will be collected [21].

The filters estimated position and velocity are compared
with Jason-2 precise orbit ephemeris (POE) from JPL/NASA.
The test conditions consider real ion-free pseudorange data,
collected by the GPS receiver on-board Jason-2, on October
22, 2010, presenting up to 12 GPS satellites tracked. The tests
were limited to 5.5 hours of GPS data spaced 10 s. After that,
there was an undesirable data gap which could spoil the
test case. Such 5.5-hour arc (near 3 Jason-2 orbital periods)
was considered sufficient for evaluating the bootstrap particle
filter and roughening and prior editing approaches, in this
orbit determination application.

The force model comprises perturbations due to geopo-
tential up to order and degree 50 × 50; direct solar radiation
pressure; and Sun-Moon gravitational attraction. This model
of forces is suitable for implementation in orbit determination
because of the low computational cost added compared
to the improvement in the results accuracy [22–24]. The
pseudorange measurements were corrected to the first order
with respect to ionosphere.

This work is not a search for results accuracy. It aims
at analyzing the application of a bootstrap filter to the orbit
determination problem. The analysis is based on comparing
the errors in position (translated to the orbital radial, normal,
and along-track RNT components) among three solutions:

(1) The bootstrap particle filter with resampling, applied
without any sample impoverishment procedure
(named “PF” in the results).

(2) The bootstrap particle filter applied with roughening
(named “PFR” in the results).

(3) The bootstrap particle filter applied with roughening
and prior editing (named “PFPE”in the results).

The RNT system interpretation is straightforward: the
radial component “R” points to the nadir direction; the nor-
mal “N” is perpendicular to orbital plane; and the transversal
(along-track) “T” is orthogonal to “R” and “N,” and it is
also the velocity component. Thus, it is possible to analyze
what happens with the orbital RNT components and the
orbit evolution as well. There is also interest for processing
time, in order to analyze the computational efforts face to the
accuracy achieved by each algorithm.

Regarding time of processing, 𝑡CPU, it was expected that
the time required for the bootstrap particle filter algorithm
was increasing in two scenarios: if the number of particles
rises and if roughening and prior editing were added to the
algorithm. According to the estimator nature, each element
of the state was replaced by an array of 𝑁 particles, where
𝑁 is a trade-off between computational cost and estimation
accuracy. Here, tests were done for 17, 100, 300, and 700
particles.

As said before, prior editing recomputes any particle that
does not match a specific criterion. Therefore, a relevant
test is to observe the instant when each algorithm starts
rejecting particles which will be presented. The goal is to
verify whether, as a procedure is included, it delays the
rejection process. It will also be analyzedwhether the number
of particles affects the particle rejection, that is, whether
its increase may work as an approach for avoiding sample
impoverishment.

If 𝑁 is set (so the analysis is per line in Table 1), it is
noticeable that 𝑡CPU, CPU time, measured for PF and PFR is
very similar, with a maximum 3% of difference. However, the
algorithm that includes prior editing, PFPE, is significantly
more costly, reaching 39% of increase. This was expected
for PFPE, because of the particles that do not pass the
acceptance test and need to return to prior instant. Regarding
the effects of increasing the number of particle, for the same
algorithm (so the analysis is per column in Table 1), the raise
in processing time was 83% from 17 to 100 particles, 67%
from 100 to 300, and 59% from 300 to 700. Considering that,
for 17, 100, 300, and 700 particles, the increase in 𝑁 is 6, 3,
and 2.3 times, respectively; then, 𝑡CPU increase is not directly
proportional to the number of particles used. Therefore, the
CPU time and the increase in the number of particles show
that the time of processing is related to the chosen number
of particles only when the number of particles changes, but it
has no relation with the estimator implemented.

For computing time of processing and for all the simu-
lations shown, a computer Intel Core i5-2430M processor of
2.40GHz, with 2.70GB of RAM, was used. The program was
coded in FORTRAN 77 within operating system Windows
XP and compiler Compaq Visual Fortran version 6.1.

When some particles do not reach prior editing criterion
(i.e., the magnitude of 𝜐

𝑘,𝑖
is higher than six standard

deviation of the measurement noise), they need to be edited
in the prior instant of time.The first instant when any particle



6 Mathematical Problems in Engineering

Table 1: Time of processing.

𝑁 PF PFR PFPE

𝑡CPU

17 44 s 45 s 1min 23 s
100 4min 16 s 4min 19 s 7min 07 s
300 12min 49 s 13min 05 s 20min 56 s
700 31min 09 s 31min 27 s 50min 31 s

Table 2: Instant of the first rejection of particles occurrence.

𝑁 PF PFR PFPE

𝑡PE

17 16min 00 s 26min 40 s 26min 40 s
100 10min 00 s 45min 50 s 45min 50 s
300 9min 20 s 45min 50 s 45min 50 s
700 9min 00 s 45min 50 s 45min 50 s

needed to be edited, 𝑡PE, was computed, for each algorithm
and𝑁, as can be verified in Table 2.

In Table 2, the rejection of particles was first detected
in the PF algorithm, despite the number of particles used.
This was expected, since no procedure in order to combat
the number of truly distinct samples reduction was used
in this algorithm. And the instant when the first rejection
occurred in PFR and PFPE concurred for all changing in
the number of particles. This is considerably consistent,
since prior editing procedure depends first on roughening
implementation. Regarding the increase in the number of
particles (from 17 to 100), it is noticeable that, when proce-
dures for avoiding sample impoverishment are adopted (in
PFR and PFPE cases), the instant when the first rejection of
particles is detected is delayed in 42%. Nevertheless, for the
other cases analyzed (300 and 700 particles), such instant
remains the same. This suggests that increasing 𝑁 as an
approach for minimizing the sample impoverishment issue
is a little efficient, with a very high computational burden,
as seen in Table 1. For PF, the results were not conclusive.
It seems that the higher the number of particles, the faster
their impoverishment if nothing is done for avoiding sample
impoverishment.

As said before, the number of particles is chosen as a
trade-off between computational cost and estimation accu-
racy. The results in Table 3 present mean and standard
deviation of the errors in RNT components evaluated for
𝑁 = 17; 100; 300; and 700. If only these statistics are
analyzed, it is clear that the estimation accuracy improves
as the number of particles increases. The largest standard
deviation occurred for PFPE (𝑁 = 17). In the along-track
component, a divergence occurrence in all algorithms (𝑁 =

17) was detected, which can be verified by the high mean
and standard deviation values obtained in the three cases.
Such divergence disappears when𝑁 is increased. When𝑁 =

700, the statistics and the errors behavior were very similar
in the results obtained by PFR and PFPE versions. By the
information presented, it is possible to conclude that if the
number of particles is very small, any sample impoverishment
avoidance procedure will not be effective. Even more, the
PFPE approach as used here (particles edition executed only
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Figure 2: Errors in RNT coordinates for PFPE simulation (𝑁 = 17).
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Figure 3: Errors in RNT coordinates for PFR simulation (𝑁 = 300).

once) does not present any significant improvement facing
the PFR procedure, no matter the number of particles used.
And taking into account the higher computational cost for
only one edition of particles, if the PFPE is implemented as
many times as necessary, the computation burden is enough
to contraindicate this procedure use, even if the results are
improved.

In order to show the behavior of the errors in terms
of RNT coordinates, Figures 2, 3, and 4 are presented.
Figure 2 shows the worst result, the solution obtained for
PFPE algorithm considering 𝑁 = 17, where the divergence
in along-track coordinate is shown. Figure 3 shows a PFR
solution for 𝑁 = 300, while Figure 4 presents the 𝑁 = 700

solution. It was chosen to introduce PFR solutions because
this is the algorithm with better performance during orbit
determination process. The errors decrease considerably in
all implementations, for 100 or more particles (see Table 3),
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Table 3: Mean and standard deviation statistics.

Estimator 𝑁
Mean ± standard deviation (m)

R N T

PF

17 −5.940 ± 36.276 −1.821 ± 17.869 120.504 ± 212.955
100 −10.289 ± 14.711 −0.238 ± 9.961 94.695 ± 119.586
300 −1.065 ± 9.367 0.139 ± 7.333 −9.177 ± 50.723
700 −1.031 ± 8.089 0.038 ± 7.047 −1.792 ± 34.949

PFR

17 27.666 ± 64.094 6.011 ± 31.725 37.537 ± 343.973
100 −6.876 ± 19.706 −2.935 ± 12.435 2.562 ± 11.078
300 −6.105 ± 16.806 −2.335 ± 5.478 1.066 ± 6.198
700 −5.246 ± 12.361 −1.322 ± 4.574 −0.051 ± 3.486

PFPE

17 −101.686 ± 63.379 −1.322 ± 75.400 1394.298 ± 902.146
100 −9.833 ± 15.272 −1.813 ± 7.972 1.290 ± 9.093
300 −5.839 ± 15.008 −1.890 ± 7.615 0.602 ± 3.953
700 −5.250 ± 12.675 −1.669 ± 4.164 −0.243 ± 4.043
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Figure 4: Errors in RNT coordinates for PFR simulation (𝑁 = 700).

despite an incongruous behavior close to 1 and 5 hours of
processing, from which the filters recover later. This anoma-
lous behavior is detected in all simulations results. In the
graphics, blue curves correspond to radial component (R);
red to normal (N); and green to along-track (T). Increasing
𝑁 from 300 to 700 was more meaningful to along-track
component, as its mean and standard deviation had higher
improvement (decreasing in values) and less significant to
normal coordinate.

According to Figures 3 and 4, the results for 𝑁 = 300

are as competitive as for 𝑁 = 700. And if computational
burden of implementing 700 particles is taken into account,
300 particles are sufficient for the evaluation proposed in this
paper.

Despite the undesirable data gap near 5.5 hours of GPS
data, in order to properly evaluate the fittest algorithm
(PFR) regarding number of particles, two other graphics
were generated. Figures 5 and 6 present Δ𝑟 and ΔV, the
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Figure 5: Δ𝑟 (m) obtained in the PFR simulation.
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Figure 6: ΔV (m/s) obtained in the PFR simulation.

errors in position and velocity, respectively, for 24 hours of
implementation. The results obtained for 𝑁 = 300 (green
curves) are compared with 𝑁 = 17 (dark blue curves).
According to the results, it is clear that a higher number of
particles are important for improving the results, since the
amplitude of errors diminished considerably when 𝑁 = 300
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was used. And despite the troublesome data, for 300 particles
case, PFR can recover and continue the estimation process,
without divergence, which is an indication of the particle filter
robustness. In each figure, Δ𝑟 and ΔV represent, respectively,
the absolute value of the errors in position and in velocity,
in the ECEF (Earth-Centered Earth-Fixed) reference frame,
also known as ECR (Earth-Centered Rotational).

5. Conclusions

A Bayesian bootstrap particle filter was applied for the satel-
lite orbit determination problem, using a set of GPSmeasure-
ments. The development was evaluated taking into account
performance and computational burden. The bootstrap filter
results, implemented with resampling, were compared with
two other versions, which include roughening and prior
editing, aiming at avoiding sample impoverishment.

With regard to time of processing, results showed that
PFPE algorithm requires greater time than PF, which is as
competitive as PFR. Since the number of particles is chosen
as a trade-off between computational cost and estimation
accuracy, the CPU time is related to the variation in number
of particles chosen.

When the number of particles used is analyzed, it is
also possible to conclude that if it is very small, any sample
impoverishment avoidance procedure will not be effectual.
And since PFPE approach executes particles edition only
once here, it does not present any significant improvement
facing the PFR procedure, no matter the number of particles
used. Additionally, if the computational costs between PFR
and PFPE (as implemented) are compared, the computation
burden is enough to contraindicate PFPE implementation as
many times as necessary, even if the results are improved.

Results confirm that the greater the number of particles,
the better the estimation accuracy. The best result was
achieved for𝑁 = 700, in the three versions of the estimator,
although a higher computational effort was demanded in this
case. Therefore, when results are compared, it is possible to
assure that 300 particles are enough to achieve the accuracy
level aimed in this paper.

In order to obtain a better bootstrap particle filter
performance, especially in terms of estimation accuracy,
adjustments in the many filter variants might be done for
improving its efficiency. Such adjustments are directly related
to the knowledge about the filter. Other strategies can also
be tried for solving implementation issues such as sample
impoverishment. Another approach for improving particle
filtering is to combine it with another filter such as extended
Kalman filter or unscented Kalman filter. In this approach,
each particle is updated at the measurement time using the
extended or the unscented filter, and then resampling is
performed using the measurements.
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Based on priority differentiation and efficiency of the system, we consider an 𝑁 + 1 queues’ single-server two-level polling system
which consists of one key queue and 𝑁 normal queues. The novel contribution of the present paper is that we consider that the
server just polls active queues with customers waiting in the queue. Furthermore, key queue is served with exhaustive service and
normal queues are served with 1-limited service in a parallel scheduling. For this model, we derive an expression for the probability
generating function of the joint queue length distribution at polling epochs. Based on these results, we derive the explicit closed-
form expressions for the mean waiting time. Numerical examples demonstrate that theoretical and simulation results are identical
and the new system is efficient both at key queue and normal queues.

1. Introduction

In this paper, we study a class of𝑁+1 queues’ polling systems
that consists of one key queue, 𝑄ℎ, and 𝑁 normal queues,
𝑄1, 𝑄2, . . . , 𝑄𝑁, which are attended by a single server. Studies
on the polling systems have attracted extensive attentions
in the last years due to their vast area of applications in
communication network, production, and transportation.
Excellent surveys on polling systems analysis and their
applications may be found in [1–4]. However, many studies
in the literatures assume that the server visit the queues in a
fixed, cyclic order. This might not be a realistic assumption,
as queues might have different priority level; queues with
high priority should be visit more frequently than the lower
ones; sometime queues might be empty and then there is
no need to visit. As such, we study the case where the
server just visits active queues with customers. Note that as a
consequence, after skipping the empty queues, server could
provide more visit opportunity to active queues with cus-
tomers. Furthermore, parallel process of service period and
switch-over period allows a successive service between two
active queues without the duration of switch-over time. To
provide priority differentiation service, queues are separated

as one key queue and𝑁normal queues. Two-level route order
and mixed service scheme are used to provide high priority
to key queue.

It is observed that in the wide body of literature on
polling system hardly can any studies be found that take the
consideration of queue state-dependent routing and service
priority simultaneously.The reason for this may lie in the fact
that the analysis of state-dependent routing polling model
is much more complex than that of cyclic polling model,
especially in priority differentiated model. In particular,
waiting time and queue length analysis of two-level priorities
polling systems can be found in [5–7], in which the server
visits queues in a two-level route; that is, the server polls
key queue with exhaustive scheme after each gated service to
normal queue [5].This work is extended in [6] with assigning
1-limited service discipline to normal queues. More recently,
Yang et al. set the exhaustive service for normal queue and
gated service for key queue to ensure fairness but just acquire
the first moment performance of the system as mean queue
length at the polling epoch and the mean cyclic time [7]. The
parallel discipline is used to improve the delay performance in
[8], in which when the current polling queue has customers
in storage the server will process service while switching to
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the successive queue simultaneously and begins to serve the
successor once it finishes the service of the current one. This
scheme could improve polling efficiency in high traffic cases.
However, the parallelmechanismwill be invalidwhen there is
no customer in the queue. In low traffic cases, useless polling
to idle queue becomes an obvious liability in cyclic polling
model. Routing depends on the event whether a queue is
empty or it is not helpful to this problem [9]. In this paper,
we consider the special setting to a two-level mixed service
polling model, where the key queue is served exhaustively
while normal queues are served in 1-limited mechanism.
Furthermore, the server no longer checks all the stations
in a fixed order; only active stations with transfer require-
ments could be served and then the switch-over period
and service period are processed paralleled. This mechanism
increases the system utilization and reduces themeanwaiting
time.

Although the exhaustive service discipline in principle
fits the branching property, the present model involves 1-
limited service discipline, which does not satisfy the above-
mentioned branching property. The explicit analysis of non-
branching service disciplines is mostly in special setting,
such as [10, 11] studied on two-queue polling systems and
[12] studied on symmetric 1-limited model. In this paper,
we follow the special setting in [8] and analyze the mean
waiting time of the present model under the assumption on
the symmetrical characteristic among normal queues, as will
be described in greater detail in Section 2.

Initially, we follow an approach similar to the analysis of
[5], which uses a recursive iteration of a functional equation,
for the probability generating function (PGF) of the joint
queue-length distribution at moments the server starts a visit
period.

The main contributions of this paper can be summarized
as follows. Firstly, we extend the parallel two-level poling
system in [8] by using queue state-dependent routing, in
which only active queues with customers could be visited
by server. This scheme is helpful to avoid the consumptions
induced by idle visit. Secondly, under the assumption of a
stable system, we obtain the explicit expressions for the PGF
for the joint queue length distribution at polling epochs as
a starting point of key queue and normal queue separately.
Thirdly, we achieve the exact closed-form expression of the
mean waiting time under the assumption on the symmetrical
characteristic of normal queue.

The rest of the paper is structured as follows. In Section 2,
we give a formal description of the polling model that we
study and we introduce the necessary notation. Based on
this, in Section 3, we derive the expressions for the mean
waiting time of the present model under the assumption of a
semisymmetric (symmetrical characteristic of normal queue)
stable system, by taking a functional equation for the PGF
for the joint queue length distribution at polling epochs as a
starting point. In Section 4, numerical results obtained with
the proposed analytical models are shown and their very
good agreement with realistic simulation results is discussed.
Finally, concluding remarks anddirections for future research
are given in the end.

2. Model Description

Consider a discrete time (timeline is divided into time slot)
polling system consisting of𝑁 (𝑁 ≥ 2) infinite-buffer queues
𝑄1, 𝑄2, . . . , 𝑄𝑁, and𝑄ℎ. The single server visits active queues
in a two-level state-dependent routing order and serves the
customers with mixed service discipline.

In the arrival process, type-𝑗 (𝑗 = 1, 2, . . . , 𝑁, ℎ) customers
arrive at 𝑄𝑗 according to an independent Poisson arrival
process.The generating function of arrival process in queue 𝑗

is 𝐴𝑗(𝑧𝑗), with the variance of 𝜎2
𝜆𝑗

= 𝐴


𝑗
(1) + 𝜆𝑗 − 𝜆

2

𝑗
and the

arrival rate of 𝜆𝑗 = 𝐴


𝑗
(1).The total arrival rate is∑𝑁

𝑖=1
𝜆𝑖+𝜆ℎ.

In the service process, we assume that customers in queue
𝑗 (𝑗 = 1, 2, . . . , 𝑁, ℎ) receive individual service. The service
time of a customer at each queue is independent of each
other. Their generating function is 𝐵𝑗(𝑧𝑗), with the variance
of 𝜎
2

𝛽𝑗
= 𝐵


𝑗
(1) + 𝛽𝑗 − 𝛽

2

𝑗
and the mean value 𝛽𝑗 = 𝐵



𝑗
(1).

We propose a two-level server routing make the high priority
queue be visited more frequently than others and add mix-
service discipline to ensure the high priority of 𝑄ℎ. The load
offered to 𝑄𝑗 is 𝜌𝑗 = 𝜆𝑗𝛽𝑗, and the total offered load is equal
to ∑
𝑁

𝑖=1
𝜌𝑖 + 𝜌ℎ.

State-Dependent Routing. Queues are partitioned as active
queue and idle queue by their buffer condition. Only active
queues with customers waiting in the buffer could be visited
by the server in order. Idle queue with empty buffer would be
skipped in the current polling round.

Two-Level Polling.Theserver visits queues governed by a two-
level routing. In the first polling level, the server polls between
the high priority queue𝑄ℎ and an active normal queue; in the
second level, for each time after the exhaustive service at 𝑄ℎ,
one normal active queue is visited in a cyclic order; that is, the
server routing in this model is 1 → ℎ → ⋅ ⋅ ⋅ → 𝑖 → ℎ →

𝑖 + 1 → ⋅ ⋅ ⋅ → ℎ → 𝑁.
In the switch-over process, a parallel mechanism is used.

When the server polls an active queue at time with customers
in its buffer, the server will provide service and inquire the
next active queue simultaneously and then switch to serve
the successor immediately without the switch-over time once
it has finished the current service. Combined with the state-
dependent routing scheme, over the course of a visit period,
the server serves the active queues and normal queue in
sequence continuously until the entire system is empty; there
will be no consumption of switch-over time anymore in
the present model. More especially, we assume the server
consume one time slot to confirm the system state when the
system is entirely empty.

Mix-Service Discipline. Exhaustive discipline is specified for
the key queue and 1-limited discipline for normal queues, so
that the entire customers in the key queue could be served
in the present server round, while those who are in normal
queues might need several rounds when there are more than
one customer in the buffer. Let 𝐹ℎ denote the duration of a
service period for the customers arrive during arbitrary time
slot in 𝑄ℎ. This service period consists of the services of its
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ancestral customers arriving during the exact slot and the
services of the offspring line of the ancestral customers [13].
The generating function of 𝐹ℎ is denoted by 𝐹ℎ(𝑧ℎ) = 𝐸[𝑧

𝐹ℎ

ℎ
].

Such a functional equation has already been derived in [14]
as 𝐹ℎ(𝑧ℎ) = 𝐴ℎ(𝐵ℎ(𝑧ℎ𝐹(𝑧ℎ))).

In the remainder of this paper, we are interested in the
queue length distributions at the polling epoch of 𝑄𝑖 and 𝑄ℎ.
Let 𝜉𝑗(𝑛) denote the number of customers present at 𝑄𝑗 at
𝑡𝑛 when the server starts a visit period at 𝑄𝑖, and let 𝜉𝑗(𝑛

∗
)

denote the number of customers present at 𝑄𝑗 at 𝑡
∗

𝑛
when

the server starts a visit period at 𝑄ℎ successively with the
service of 𝑄𝑖. The joint distribution of 𝜉𝑗(𝑛 + 1) and 𝜉𝑗(𝑛

∗
) is

represented by the 𝑁-dimensional PGF 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)

and 𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ).
We analyze the system under stability conditions

(∑𝑁
𝑖=1

𝜌𝑖 + 𝜌ℎ < 1) [12]. Normal queues in the present model
are served in a 1-limited manner, which does not satisfy
the well-known branching property in polling systems.
Therefore, more specifically, in the analyses of mean waiting
time, we assume the normal queues are symmetric; that
is, normal queues have the same customer arrival rate and
service rate.

3. Analysis for Steady-State Systems

In this section, we derive explicit expression for the joint
queue length distribution. In Section 3.1, we first obtain
expressions for 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ) and 𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ),
the joint queue length PGF at the polling epoch at 𝑄𝑖+1 and
𝑄ℎ.These results ultimately lead in Section 3.2 to the first and
second moment of the PGF, and obtain the expressions for
𝐸[𝑊𝑖] and 𝐸[𝑊ℎ], the mean waiting time of type-𝑖 and type-ℎ
customers that arrive at an arbitrary point in time.

3.1. Joint Queue Length Distribution at Polling Epoch. Assum-
ing that the server begin the service of 𝑄𝑖 at 𝑡𝑛, define
a random variable 𝜉𝑗(𝑛) as the number of type-𝑗 (𝑗 =

1, 2, . . . , 𝑁, ℎ) customers at time 𝑡𝑛. Then the status of
the entire polling model at time 𝑡𝑛 can be represented as
{𝜉1(𝑛), . . . , 𝜉𝑁(𝑛), 𝜉ℎ(𝑛)}. Denote 𝜉𝑗(𝑛 + 𝑘) as the number of
type-𝑗 customers at 𝑡𝑛+𝑘, the polling epoch of𝑄𝑖+𝑘. The status
of the entire polling model at time 𝑡𝑛+𝑘 can be represented as
{𝜉1(𝑛+𝑘), . . . , 𝜉𝑁(𝑛+𝑘), 𝜉ℎ(𝑛+𝑘)}while 𝜉𝑖(𝑛

∗
) is the number of

type-𝑗 customers in at time 𝑡∗
𝑛
, at which the server begins pro-

viding service to𝑄ℎ and the status of the entire pollingmodel
at time 𝑡

∗

𝑛
can be represented as {𝜉1(𝑛

∗
), . . . , 𝜉𝑁(𝑛

∗
), 𝜉ℎ(𝑛

∗
)}.

Under the necessary and sufficient condition for the stability
of the system ∑

𝑁

𝑖=1
𝜌𝑖 + 𝜌ℎ < 1, the probability distribution is

defined as

lim
𝑛→∞

𝑃 [𝜉𝑗 (𝑛) = 𝑥𝑗; 𝑗 = 1, . . . , 𝑁, ℎ]

= 𝜋𝑖 (𝑥1, . . . , 𝑥𝑁, 𝑥ℎ) ,

lim
𝑛→∞

𝑝 [𝜉𝑗 (𝑛
∗
) = 𝑦𝑗; 𝑗 = 1, . . . , 𝑁, ℎ]

= 𝜋𝑖ℎ (𝑦1, . . . , 𝑦𝑁, 𝑦ℎ) .

(1)

The generating functions at 𝑡𝑛 and 𝑡
∗

𝑛
are

𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑛

𝑁
𝑧
𝑥ℎ

ℎ
𝜋𝑖 (𝑥1, . . . , 𝑥𝑁, 𝑥ℎ)

𝑖 = 1, 2, . . . , 𝑁,

𝐺𝑖ℎ (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)

=

∞

∑

𝑦1=0

⋅ ⋅ ⋅

∞

∑

𝑦𝑁=0

∞

∑

𝑦ℎ=0

𝑧
𝑦1

1
⋅ ⋅ ⋅ 𝑧
𝑦𝑛

𝑁
𝑧
𝑦ℎ

ℎ
𝜋𝑖ℎ (𝑦1, . . . , 𝑦𝑁, 𝑦ℎ)

𝑖 = 1, 2, . . . , 𝑁.

(2)

According to the proposed mechanism, the system vari-
ables have the following equations. When the server begins
the service on 𝑄𝑖+1 at 𝑡𝑛+1, we have

𝜉𝑗 (𝑛 + 1) =
{

{

{

𝜉𝑗 (𝑛
∗
) + 𝜂𝑗 (]ℎ) 𝑗 ̸= ℎ

0 𝑗 = ℎ.

(3)

V𝑗(𝑛) is the service time in 𝑄𝑗 and 𝜂𝑘(V𝑗) is the number of
arrivals to 𝑄𝑘 during V𝑗(𝑛).

The server just finishes the service of 𝑄ℎ in an exhaustive
manner and starts the polling on 𝑄𝑖+1 at 𝑡𝑛+1. Such a
functional equation of exhaustive service has already been
derived in [12]. Applying these results to our case, we obtain

𝐺𝑖+1 (𝑧1, 𝑧2, . . . , 𝑧𝑁, 𝑧ℎ) = lim
𝑛→∞

𝐸[

[

𝑁

∏

𝑗=1

𝑧
𝜉𝑖(𝑛+1)

𝑗
𝑧
𝜉ℎ(𝑛+1)

ℎ
]

]

= 𝐺𝑖ℎ(𝑧1, 𝑧2, . . . , 𝑧𝑁,

𝐵ℎ(

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗) 𝐹ℎ(

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗)))) .

(4)

The expression can be interpreted as follows. At the start
of the visit period at 𝑄𝑖+1, type-𝑖 customers are those at
the polling epoch of 𝑄ℎ plus the new customers arriving at
each queue during the service period of the 𝑄ℎ in exhaustive
scheme, and no type-ℎ customer resumes at that moment.

When the server begins the service on 𝑄ℎ at 𝑡
∗

𝑛
, we have

𝜉𝑗 (𝑛
∗
) =

{{{{

{{{{

{

𝜉𝑗 (𝑛) + 𝜂𝑗 (]𝑖) , 𝑗 ̸= 𝑖 ̸= ℎ,

𝜉𝑖 (𝑛) + 𝜂𝑖 (]𝑖) − 1, 𝑗 = 𝑖 𝜉𝑖 (𝑛) ̸= 0,

𝜂𝑗 (]𝑖) , 𝑗 = ℎ,

𝜉𝑗 (𝑛
∗
) =

{{{{

{{{{

{

𝜉𝑗 (𝑛) , 𝑗 ̸= 𝑖 ̸= ℎ,

0, 𝑗 = 𝑖 𝜉𝑖 (𝑛) = 0,

0, 𝑗 = ℎ

(5)
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]𝑗(𝑛) is the service time in 𝑄𝑗, and 𝜂𝑘(]𝑗) is the number of
arrivals to 𝑄𝑘 during ]𝑗(𝑛).

In our case, for normal queues, the server just polls the
active queues with customers in parallel 1-limitedmanner. To
gain more insight in the state-dependent service discipline,
let 𝑃𝑖 denote the queue length at the service epoch in an
M/G/1 queue with the same arrival process and service-time
distribution as 𝑄𝑖. We assume that the 𝑘 customers have
waited in 𝑄𝑖 at the start of the busy period with probability
𝑝𝑘 ∈ [0, 1), ∑∞

𝑘=0
𝑝𝑘 = 1. Then we can acquire the queue

length generating function at the service epoch as 𝑃𝑖(𝑧𝑖) =

𝐴 𝑖(𝑧𝑖) ∑
∞

𝑘=0
𝑝𝑘𝑧
𝑘

𝑖
, where 𝐴 𝑖(𝑧𝑖) is the PGF of the arrival

process as defined in Section 2. Specifically, the server does
not provide service when the queue length is zero, so we
assume that 𝑘∗ customers resumed after the end of the busy
time in 1-limited service with the probability of 𝑝∗

𝑘
∈ [0, 1),

and 𝑝
∗

𝑘
= 𝑝𝑘+1 for 𝑘 = 0, 1, . . .. Consequently, the probability

space could be rebuilt as

𝑃
∗

𝑖
(𝑧𝑖) = 𝐵𝑖 (𝐴 𝑖 (𝑧𝑖)) 𝐴 𝑖 (𝑧𝑖)(𝑝0 +

∞

∑

𝑘=0

𝑝
∗

𝑘
𝑧
𝑘

𝑖
)

= 𝐵𝑖 (𝐴 𝑖 (𝑧𝑖)) (
∑
∞

𝑘=0
𝑝𝑘𝑧
𝑘

𝑖
− 𝑝0𝑧

0

𝑖

𝑧𝑖

+ 𝑝0𝑧
0

𝑖
) .

(6)

With the definition of 𝑃𝑖(𝑧𝑖), we have

𝑃
∗

𝑖
(𝑧𝑖) = 𝐵𝑖 (𝐴 𝑖 (𝑧𝑖))

(𝑃𝑖 (𝑧𝑖) − 𝑃𝑖 (𝑧𝑖)
𝑧𝑖=0

)

𝑧𝑖

+ 𝑃𝑖 (𝑧𝑖)
𝑧𝑖=0

.

(7)

Applying these results to our case, we obtain

𝐺𝑖ℎ (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ) = lim
𝑛→∞

𝐸[

[

𝑁

∏

𝑗=1

𝑧
𝜉𝑖(𝑛
∗
)

𝑗
𝑧
𝜉ℎ(𝑛
∗
)

ℎ
]

]

=
1

𝑧𝑖

⋅ 𝐵𝑖(

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗)𝐴ℎ (𝑧ℎ))

⋅ [𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ) − 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧𝑖=0

]

+ 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧𝑖=0

− 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧1 ,...,𝑧𝑁,𝑧ℎ=0

+

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗)𝐴ℎ (𝑧ℎ) 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧1 ,...,𝑧𝑁,𝑧ℎ=0

.

(8)

The expression can be interpreted as follows. At the start
of the visit period at𝑄ℎ, in the case that the former𝑄𝑖 is active,
one type-𝑖 customer would have been served at 𝑡∗

𝑛
and new

customers arrived at each queue during the service period of
the exact type-𝑖 customer. The server would skip 𝑄𝑖 to 𝑄𝑖+1

when𝑄𝑖 is empty; in that case, the distribution of the number
of customers in the systems is represented by the generating
function 𝐺𝑖(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁−1, 𝑧ℎ)|𝑧𝑖=0

, with the exception
as the system is entirely empty, which is represented by the
generating function 𝐺𝑖(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁−1, 𝑧ℎ)|𝑧1 ,...,𝑧𝑁−1,𝑧ℎ=0

.
When the system is entirely empty, the server will stop
providing service for one time slot until new customers
arrive during this time slot, and this number of customers is
represented by the last partition of the addition formula.

3.2. Expression for the Mean Waiting Time. Now we have
derived expressions for the PGF 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

and 𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ) pertaining to the queue length
at polling epoch of𝑄𝑖+1 and𝑄ℎ, we use these results to obtain
𝐸[𝑊𝑖], the mean waiting time of type-𝑖 normal customers,
and 𝐸[𝑊ℎ], the mean waiting time of type-ℎ high priority
customers.

3.2.1. The First and Second Moment of 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑖, . . .,
𝑧𝑁, 𝑧ℎ) and𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ). To start the analysis of
mean waiting time of type-𝑗 customers, we need to calculate
the generating functions and its derivation at the point
z = 1, z is the abbreviation of the (1 × 𝑁 + 1) vector of
(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ), and 1 is the (1 × 𝑁 + 1) vector with 1.

𝐺𝑖+1(z) is the PGF of the joint queue length at the polling
epoch of 𝑄𝑖, so we have

𝐺𝑖 (𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑖=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑖

𝑖
⋅ ⋅ ⋅ 𝑧
𝑥𝑛

𝑁
𝑧
𝑥ℎ

ℎ
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑖 (𝑛) = 𝑥𝑖, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ)

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑖=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑖

𝑖
⋅ ⋅ ⋅ 𝑧
𝑥𝑛

𝑁
𝑧
𝑥ℎ

ℎ
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑥𝑖) 𝑃 (𝜉𝑖 (𝑛) = 𝑥𝑖) .

(9)

Taking the 𝑘th derivative with respect to 𝑧𝑖 yields

𝜕
𝑘
𝐺𝑖 (𝑧1, 𝑧2, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

𝜕𝑧
𝑘

𝑖

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑖−𝑘

𝑖
⋅ ⋅ ⋅ 𝑧
𝑥𝑁

𝑁
𝑧
𝑥ℎ

ℎ

⋅
𝑥𝑖!

(𝑥𝑖 − 𝑘)!
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑥𝑖) 𝑃 (𝜉𝑖 (𝑛) = 𝑥𝑖) .

(10)
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Setting 𝑧𝑖 = 0 yields

𝜕
𝑘
𝐺𝑖 (𝑧1, 𝑧2, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

𝜕𝑧
𝑘

𝑖

𝑧𝑖=0

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝑥𝑁

𝑁
𝑧
𝑥ℎ

ℎ
𝑘!𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑘) 𝑃 (𝜉𝑖 (𝑛) = 𝑘)

= 𝑘!𝑃 (𝜉𝑖 (𝑛) = 𝑘)

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝑥𝑁

𝑁
𝑧
𝑥ℎ

ℎ
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑘)

= 𝑘!𝑃 (𝜉𝑖 (𝑛) = 𝑘) 𝐸 [𝑧
𝜉1(𝑛)

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝜉𝑁(𝑛)

𝑁
𝑧
𝜉ℎ(𝑛)

ℎ
| 𝜉𝑖 (𝑛) = 𝑘] .

(11)

Rearranging terms and setting 𝑘 = 0, we have

𝐺𝑖 (𝑧1, 𝑧2, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧𝑖=0

= 𝑃 (𝜉𝑖 (𝑛) = 0)

⋅ 𝐸 [𝑧
𝜉1(𝑛)

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝜉𝑁(𝑛)

𝑁
𝑧
𝜉ℎ(𝑛)

ℎ
| 𝜉𝑖 (𝑛) = 0] ,

𝐺𝑖 (1𝑖) = 𝑃 (𝜉𝑖 (𝑛) = 0) .

(12)

Extending this result we have

𝐺𝑖 (0) = 𝑃 {𝜉1 (𝑛) = 0, . . . , 𝜉𝑖 (𝑛) = 0, . . . , 𝜉𝑁 (𝑛)

= 0, 𝜉ℎ (𝑛) = 0} .

(13)

0 is the (1 × 𝑁 + 1) vector with 0, and 1𝑗 is the (1 × 𝑁 + 1)

vector with 0 in 𝑗th position and 1 in all other entries.
Define the first derivative of 𝐺𝑖(z) and 𝐺𝑖ℎ(z) at z = 1 as

𝑔𝑖 (𝑗) = lim
𝑧1 ,...,𝑧𝑖 ,...,𝑧𝑁,𝑧ℎ→1

𝜕𝐺𝑖 (z)
𝜕𝑧𝑗

,

𝑔𝑖ℎ (𝑗) = lim
𝑧1 ,...,𝑧𝑖 ,...,𝑧𝑁,𝑧ℎ→1

𝜕𝐺𝑖ℎ (z)
𝜕𝑧𝑗

,

𝑗, 𝑘 = 1, 2, . . . , 𝑁, ℎ.

(14)

𝑔𝑖ℎ (𝑗) = 𝛽𝑖𝜆𝑗 [1 − 𝐺𝑖 (1𝑖)] + 𝑔𝑖 (𝑗) + 𝜆𝑗𝐺𝑖 (0) (15)

𝑔𝑖ℎ (𝑖) = (𝛽𝑖𝜆𝑖 − 1) [1 − 𝐺𝑖 (1𝑖)] + 𝑔𝑖 (𝑖) + 𝜆𝑖𝐺𝑖 (0) (16)

𝑔𝑖ℎ (ℎ) = 𝛽𝑖𝜆ℎ [1 − 𝐺𝑖 (1𝑖)] + 𝜆ℎ𝐺𝑖 (0) (17)

𝑔𝑖+1 (𝑖) = 𝑔𝑖ℎ (𝑖) + 𝑔𝑖ℎ (ℎ) 𝛽ℎ𝜆𝑖 (1 + 𝐹


ℎ
(1)) (18)

𝑔𝑖+1 (𝑗) = 𝑔𝑖ℎ (𝑗) + 𝑔𝑖ℎ (ℎ) 𝛽ℎ𝜆𝑗 (1 + 𝐹


ℎ
(1)) . (19)

Calculate ∑
𝑁

𝑗=1
𝑔𝑗+1(𝑘) yields

1 − 𝐺𝑖 (1𝑖) =
𝑁𝜆𝑖𝐺𝑖 (0)

1 − 𝜌ℎ − 𝑁𝜌
. (20)

Define the second derivative of 𝐺𝑖(z) and 𝐺𝑖ℎ(z) at z = 1 as

𝑔𝑖 (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑖,...,𝑧𝑁,𝑧ℎ→1

𝜕
2
𝐺𝑖 (z)

𝜕𝑧𝑗𝜕𝑧𝑘

𝑔𝑖0 (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑖−1,𝑧𝑖+1,...,𝑧𝑁,𝑧ℎ→1

𝜕
2
𝐺𝑖 (z)

𝑧𝑖=0

𝜕𝑧𝑗𝜕𝑧𝑘

𝑔𝑖00 (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑁,𝑧ℎ→0

𝜕
2
𝐺𝑖 (z)

𝑧1 ,...,𝑧𝑁,𝑧ℎ=0

𝜕𝑧𝑗𝜕𝑧𝑘

𝑔𝑖ℎ (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑁,𝑧ℎ→1

𝜕
2
𝐺𝑖ℎ (z)

𝜕𝑧𝑗𝜕𝑧𝑘

𝑖 = 1, 2, . . . , 𝑁 𝑗, 𝑘 = 1, 2, . . . , 𝑁, ℎ.

(21)

Substitute (4) and (8) into the above second derivative
formulas.

We assume the𝑁 normal queues are symmetrical; that is,
𝜆𝑖 = 𝜆, 𝛽𝑖 = 𝛽, 𝑖 = 1, 2, . . . , 𝑁. Then simplifying these we get
the second derivative of 𝐺𝑖(z) and 𝐺𝑖ℎ(z) at z = 1 as follows:

𝑔𝑖ℎ (ℎ, ℎ) = 𝐵

(1) 𝜆
2

ℎ
(1 − 𝐺𝑖 (1𝑖)) + 𝛽𝐴



ℎ
(1) (1

− 𝐺𝑖 (1𝑖)) + 𝐴


ℎ
(1) 𝐺𝑖 (0) .

(22)

𝑔𝑖 (𝑖) =
1 − 𝐺𝑖 (1𝑖)

2
{

1

(1 − 𝜌ℎ − 𝑁𝜌) (1 − 𝜌ℎ)
[𝜌ℎ

⋅
𝐴

(1)

𝜆
(1 − 𝜌

2

ℎ
+ 𝐴


ℎ
𝛽
2

ℎ
+ 𝜆ℎ𝐵



ℎ
) + 𝑁𝐵


(1) 𝜆
2

+ 𝑁𝛽𝐴

(1)] +

𝜆

(1 − 𝜌ℎ)
+

𝜆ℎ𝜆𝐵


ℎ
(1)

1 − 𝜌ℎ − 𝑁𝜌
} + 1

− 𝐺𝑖 (1𝑖) .

(23)

Remark 1. Though 𝑔𝑖(𝑖) is the first derivative at z = 1 𝐺𝑖(z)
in definition, it is clear that it contains the second moment
parameter as 𝐴



𝑗
(1) and 𝐵



𝑗
(1). So, 𝑔𝑖(𝑖) is a second moment

parameter for the system performance.



6 Mathematical Problems in Engineering

3.2.2. Analysis of 𝐸[𝑊ℎ] and 𝐸[𝑊𝑖]. Define 𝑊ℎ and 𝑊𝑖 as the
waiting time of type-ℎ and type-𝑖 customers, which denotes
the time from the epochwhen a customer arrives at the queue
to the time it is served. In the present model, high priority
type-ℎ customers are served in the exhaustive service and
normal type-𝑖 customers are served in 1-limited service. Based
on the related research works in [14], the mean waiting time
of type-ℎ customers 𝐸[𝑊ℎ] and the type-𝑖 customers 𝐸[𝑊𝑖]

can be calculated as follows:

𝐸 [𝑊ℎ] =
𝑔𝑖ℎ (ℎ, ℎ)

2𝜆ℎ𝑔𝑖ℎ (ℎ)
−

𝐴


ℎ
(1)

2𝜆
2

ℎ
(1 + 𝜌ℎ)

+
𝜆ℎ𝐵


ℎ
(1)

2 (1 − 𝜌ℎ)
, (24)

𝐸 [𝑊𝑖] =
1

𝜆 (1 − 𝐺𝑖 (1𝑖))
𝑔𝑖 (𝑖) −

1

𝜆
−

𝐴

(1)

2𝜆2
. (25)

Taking (17), (22) in (24) in the above expressions, we have

𝐸 [𝑊ℎ] =
1

2 (1 − 𝜌ℎ)
(1 − 𝜌ℎ + 𝑁𝜆𝐵


(1) + 𝜆ℎ𝐵



ℎ
(1))

−
1

2𝜆ℎ
2
(1 + 𝜌ℎ)

𝐴


ℎ
(1) .

(26)

Taking (17), (22), and (23) in (25) in the above expres-
sions, we have

𝐸 [𝑊𝑖] =
1

2𝜆
{

1

(1 − 𝜌ℎ − 𝑁𝜌) (1 − 𝜌ℎ)
[𝜌ℎ

⋅
𝐴

(1)

𝜆𝑖

(1 − 𝜌
2

ℎ
+ 𝐴


ℎ
𝛽
2

ℎ
+ 𝜆ℎ𝐵



ℎ
) + 𝑁𝐵


(1) 𝜆
2

+ 𝑁𝛽𝐴

(1)] +

𝜆

(1 − 𝜌ℎ)
+

𝜆ℎ𝜆𝐵


ℎ
(1)

1 − 𝜌ℎ − 𝑁𝜌
}

−
𝐴

(1)

2𝜆2
.

(27)

4. Numerical Study

In this section we study the accuracy of the theoretical
analysis and compare the mean waiting time of the present
model with two existing two-level polling models. Consider
an𝑁+ 1 queues’ model with one high priority queue𝑄ℎ and
𝑁 normal queues 𝑄𝑖 (𝑖 = 1, . . . , 𝑁) defined as follows: the
service times of all customers are exponentially distributed
with mean 𝛽 in 𝑄𝑖 and 𝛽ℎ in 𝑄ℎ. The arrival processes are
Poisson process with rate 𝜆 in 𝑄𝑖 and 𝜆ℎ in 𝑄ℎ. The relative
parameter values are listed in Table 1, in which {𝑎 : 𝑘 : 𝑏}

means the parameter is varied between 𝑎 and 𝑏 in steps of 𝑘.
From Figure 1, we can clearly see that, firstly, the theoreti-

cal value and the simulation result coincided with each other.
Secondly, when the total offered load grew with the arrival
rate, service time, and the number of queues, with the mean
waiting time increasing distinctly in 𝑄𝑖, while the perfor-
mances in 𝑄ℎ are much better, both queue and mean waiting
time are much lower than normal queues, and the growth in
𝑄ℎ with the total offered load presents much more smoothly.

It is worth considering whether the state-dependent
mechanism improves the performance of the system compar-
ing with the existing two-level polling systems. In order to
answer this question, we compare a classical two-level system
with switch-over time [6], abbreviated as classical system and
a parallel two-level system [8], abbreviated as parallel system
in Figure 2. The service discipline in the comparisons is 1-
limited service for normal queues and exhaustive service for
the key queue. Overall models have the same test bed as
shown in Table 1. We just vary the working mechanism.

Figure 2 shows the mean waiting time of normal queues
in (a) and mean waiting time of key queue in (b). Comparing
with the forgoing, the state-dependent system achieves a
better performance in delay guarantee and stability. It is clear
in Figure 2(a), for lower load, in most of the cases, that there
is no customer in the buffers; thus a switch-over time is
necessary when the server switches between𝑄𝑖 and𝑄ℎ in the
classical and parallel system, while the empty queues would
be skipped in the present model. Therefore, customers in the
state-dependent system achieve a lower mean waiting time,
which is under 20% of the forgoing. In the heavy traffic,
the server could not provide service in the necessary switch-
over time for the classical system; consequently, it becomes
unstable when the arrival rate of 𝑄𝑖 grows over 0.06 in this
case.Theparallel system and the state-dependent systemhave
better performance in system stability; especially in state-
dependent system, the mean waiting time of the normal
customers has less than 50%ofwhich in the parallel system.A
conclusion can be drawn from a comparison between Figures
2(a) and 2(b), which is that for all three two-level models the
mean waiting time of the customers in key queue is signifi-
cantly lower than that in normal queues, and as illustrated in
Figure 2(b), the mean waiting time for ℎ-type customers in
state-dependent system is lower than that of the others.

5. Conclusion

When comparing the model of the present paper with the
existing literature, the contribution of the present paper is
twofold. One of the most striking differences is the queues
which are partitioned as active queue and idle queue by
their buffer condition, and only active queues with customers
waiting in the buffer could be visited by the server in a two-
level order. As illustrated in the numerical example, both
𝑖-type customers in normal queues and ℎ-type customers
in key queue acquire better delay performance than those
in systems without queue-stated differentiation. Another
notable contribution of the paper is that we achieve the
closed-form exact expressions of the mean waiting time
for customers in normal queues and key queue, under the
assumption of the symmetric of normal queues. The total
unknowns in these equations are all first moments of random
variables and, thus, no correlation terms are required.
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Figure 1:Theoretical and simulation values of𝐸[𝑊
ℎ
] and𝐸[𝑊

𝑖
] from different values of the load increasing with the increasing of the number

of normal queues. (a) is the total offered load increasingwith the growth of the number of normal queues. (b) is the total offered load increasing
with the growth of the arrival rate of𝑄ℎ. (c) is the total offered load increasing with the growth of the arrival rate of𝑄𝑖. (d) is the total offered
load increasing with the growth of the service time of 𝑄ℎ. (e) is the total offered load increasing with the growth of the service time of 𝑄𝑖.
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Table 1: Test bed used to compare the mean waiting time.

Parameter Number of normal queues Arrival rate Service time Switch over time
Notation value 𝑁 𝜆 𝜆

ℎ
𝛽 𝛽

ℎ
𝛾

Figure 1(a) {1 : 1 : 9} 0.04 0.1 2 2
Figure 1(b) 4 0.02 {0.1 : 0.05 : 0.4} 1 2 —
Figure 1(c) 4 {0.02 : 0.02 : 0.18} 0.1 1 2 —
Figure 1(d) 4 0.02 0.1 2 {1 : 1 : 9} —
Figure 1(e) 4 0.02 0.1 {1 : 1 : 10} 2 —
Figure 2 4 {0.01 : 0.01 : 0.09} 0.1 2 2 1
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Figure 2: Comparing ofmeanwaiting time among the classical two-level system [6], the parallel two-level system [8], and the state-dependent
two-level system. (a) is the theoretical value comparison of 𝐸[𝑊𝑖] with the growth of the arrival rate in 𝑄𝑖. (b) is the theoretical value
comparison of 𝐸[𝑊ℎ] with the growth of the arrival rate in 𝑄𝑖.
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Chinese agriculture is facing an aging workforce which could negatively impact the industry. In this context, research is needed on
how work preferences and age of farmers affect agricultural output. This paper attempts to investigate these factors to more fully
understand the impact of an aging agricultural labor population on agricultural production. The results show that, in this context
of aging, changes in the working-age households have a significant impact on agricultural output. Despite the fact that the impacts
of intention to abandon land management were not significant, we can ignore this preference in the workforce. The combination
of changes in the composition of the working-age households indicates that 58.53 percent of the agricultural producers will likely
quit. This is a potential threat for the future of agricultural development. We also found that elderly farmers who do not intend to
abandon farming had higher agricultural output compared to other farmers.This indicates that the adverse effects of changes in the
agricultural population age result more from the agricultural output of older farmers who intend to give up farming.This intention
adversely affected other elements and reduced investment. Therefore, various forms of training should increase efforts to cultivate
modern professional farmers and policies should be simultaneously developed to increase agricultural production levels.

1. Introduction

Aging agricultural labor forces are the trend in many parts
of the world including China. Both the second national
agricultural census and preliminary research have shown
that Chinese agriculture is facing an aging workforce; the
share of older population in the total labour force reaches
32.5%. In this context, people are increasingly worried about
how the aging of the agricultural labor force will affect the
output of agricultural land and whether aging agricultural
producers will continue to engage in agricultural production
[1]. There is a substantial body of scholarly literature on
aging agricultural labor forces. Tang and MacLeod suggested
that older workers are, on average, less productive than
younger workers and that labor force aging has a modest
negative direct impact on productivity growth in Canada [2].
The research of Li and Zhao showed that the agricultural
labor force in Liaoning Province of China exhibited an
“aging” phenomenon and that agricultural labor “aging” is
not conducive to the overall development of agricultural
production [3]. In particular, Siliverstovs et al. found that an

increase in aging exerts a statistically significant adverse effect
on the employment shares in agriculture, manufacturing,
construction, and mining and quarrying industries [4]. Yang
et al. have studied the impact of agricultural labor force age
on agricultural land use efficiency in regions with different
levels of economic development, and their conclusion was
that the households with primarily young labors have lower
land use efficiency than the households where the labor is
mainly done by older individuals [5].Woodsong found that in
Jamaica, where agriculture occupies an important place in the
life course of many elders, the rural concentration of elders
may have negative consequences for agricultural production
[6]. Zhang et al. found, surprisingly, that the household
proportion of males among agricultural laborers did not
significantly influence the occurrence of land abandonment
at the parcel level, probably due to the male agricultural
laborers being overwhelmingly old (average age greater than
56 years) [7]. These scholars believe that the aging of the
existing agricultural labor force has an impact on agricultural
production. However, a study by Hu and Zhong using
rural fixed observation point data to quantify the planting
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decisions and investment levels of elderly farmers and young
farmers concluded that rural aging at this stage does not have
a negative impact on China’s grain production [8]. Another
study by these two authors concluded that crops with less
collective decision making and a lower degree of mechaniza-
tion experience a greater impact from aging [9]. In previous
studies, the potential spatial spillover effect of transportation
infrastructure on economic output in the US agricultural
sector has not been properly taken into account given the
sector’s importance in the economy and dependence on
transportation. The results of Tong and other researchers
suggest that road disbursement in a given state has positive
direct effects on its agricultural output [10]. Based upon the
China Health and Nutrition Survey, a multivariate analysis
demonstrated that the migration of household members
increased the time spent on farmwork and domestic work by
the remaining elderly and children [11]. Chen et al. showed
that the combined effect of rural household population
aging and the transfer of rural labor force is a premature
aging of the rural population and excessive reduction in the
primary sector employees which will affect industry growth
[12]. He hypothesizes that the aging agricultural labor force
has a negative impact on effective use of land resources,
food security agricultural modernization, the reproduction
of agricultural emotions, and the rural grass-roots support
system [13]. The research of L. Li and Y. Li reached a similar
conclusion [14]. Today, the European Union is consequently
faced with a dual problem: the scarcity of new and young
farmers and the rapid aging of the farmer population. Given
the context of an aging agricultural labor force, the future of
the farmers’ profession must be ensured. Manton examined
sociodemographic and health conditions in Brazil, Russia,
India, and China and the potential effects of population and
labor force aging on economic growth [15].

Few studies explicitly look at how farmer preferences
(give up farmland or not) affect agricultural output. Research
in this area has mainly focused on macroscopic factors,
including agricultural subsidies, agricultural production
prices, food prices, and industrialmanagement [16–18]. Clark
et al. hypothesize that industrial changes such as a decline
in the proportion of the labor force employed in agriculture
will lower the proportion of older persons in the labor
force [19]. Given the background of aging labor forces,
it is necessary to conduct research on the impact of an
aging agricultural labor population on farmland output as
this is related to the sustainable development of agriculture
and food security issues in China. Roberts conjectured that
village-based networks are important in channeling migrants
into particular occupations and destinations, undermining
the notion of a “blind” migration from rural areas to
coastal cities during China’s rapid economic transition [20].
D’Antoni et al. found that, from 1939 to 2007, increased
direct government payments resulted in greater migration of
labor from agriculture [21]. As Goletti and Chabot report,
more research is called for on input and output market
efficiency, private sector development, the effects of reform
on farmers, sequencing issues, comparative advantage, water
management, land tenure, and farm size [22]. From 1939
to 2007, increased direct government payments resulted in

greatermigration of labor from agriculture [23]. Government
policy appears to have had limited success at sustaining the
agricultural labor force.

In summary, the effect of agricultural labor force aging
on agricultural production, as well as the influence of farmer
preferences on agricultural production, has been rarely con-
sidered. This paper attempts to develop an analytical frame-
work to more comprehensively study the agricultural labor
force in the context of aging farmers and the impact of farmer
preferences. The rest of the paper is organized as follows. In
Section 2, this paper attempts to give an theoretical analysis,
and Section 3 introduces data and does some analysis, and
finally conclusions and discussion are done in Section 4.

2. Theoretical Analysis

Agricultural production depends on natural conditions, fac-
tor input, and the prevailing level of technology. Natural
conditions for agricultural production are not controllable,
so the analysis of influencing factors of agricultural real
estate is concentrated mainly on factor input, technical level,
and other indirect factors. The agricultural population aging
concerns in this paper are among the indirect factors.

Furthermore, agricultural production requires the joint
participation of labor, machinery, fertilizers, pesticides, and
land and among elements. Agricultural producers will adjust
these elements depending on the conditions of rational
expectations and judgment experience. In theory, farmers
that expect to continue production in the future will have sig-
nificantly different factor input compared to farmers who do
not intend to continue to engage in agricultural production.
Furthermore, agricultural producers of different ages make
different choices regarding input elements.

Physical strength is required during the process of agri-
cultural production. For adult producers, there is first an
increase in physical strength that culminates in middle age.
Thedecline in physical strength aftermiddle age necessitates a
greater investment of labor for the same production activities.
However, the experience of older farmers leads to more
efficient combinations of input, which makes a unit of labor
more effective.

Agricultural production requires not only labor input, but
also technological development. On the one hand an aging
agricultural production needs technology to compensate for
physical deficiency. On the other hand, nonfarm payrolls
make the opportunity cost of agricultural labor input large.
This may incline them to invest in the use of machinery
instead of labor input.

Agricultural knowledge and skills in agriculture, such
as production, operation, and management, increase with
age. The accumulated knowledge and skills help farmers
maximize the efficient use of agricultural input, such as
pesticides and fertilizers, as well as labor input.

Land is the basis for agricultural production. Currently,
rural land is implemented under the Household Contract
Responsibility System, which is a basic land institution in
rural China. From the farmers’ perspective, a different family
will manage different agricultural land area caused by its
population. Although many Chinese rural villages stopped
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Table 1: Study region.

Region Municipal city County Number of samples Effective sample size

Northern Jiangsu
Yancheng Yandu, Dongtai, Sheyang 261 211
Suqian Suyu, Siyang, Sihong 261 183
Xuzhou Tongshan, Xinyi, Fengxian 261 191

Central Jiangsu Nantong Gangzha, Haimen, Rugao 261 140
Yangzhou Jiangdu, Yizheng, Baoying 261 159

Southern Jiangsu Suzhou Wuzhong, Changshu, Kunshan 261 25
Zhenjiang Zhenjiang New Area, Dantu, Danyang 261 70

farmland adjustments, the agricultural producers can still
select planting acreage, and the agricultural producers of
different age groups will select modest acreage according to
their own conditions.

Individual preferences and the overall labor force are
employed to analyze the effect of age, but combining the two
to analyze the situation of agricultural real estate will yield
new insights. We separated the farmers into four categories:
old farmers who do not intend to abandon farming (ONA),
old farmers who intend to abandon farming (OA), young
farmers who intend to give up farming (YA), and young
farmers who do not intend to give up farming (YNA). For
YA farmers, interest in the agricultural production is not
high and incentives to increase output from the agricultural
land are not high; plus they lack experience in agricultural
production. Thus, YA farmers would be less concerned
about agricultural land, and input will be insufficient. For
ONA farmers, they lack physical strength, but they are still
reluctant to give up agricultural production. Thus, they will
try to compensate for their lack of physical strength through
additional supplies, and so forth. Thus, ONA farmers desire
production input more than other groups and they possess
long-term production experience. These factors should lead
to higher levels of input and outputs compared to other
groups. For YNA, they are willing to engage in agricultural
production and usually benefit from family experience as
most agriculture is the same as that done traditionally. So
they will not reduce the input, and their output can be
higher than YA. For OA farmers, their interest to continue in
agricultural production is not high, so they do not focus on
improving the agricultural land and pursue more short-term
benefits. Their advantage lies in the long-term accumulation
of experience in agricultural production, input configuration
is relatively reasonable, and the output of agricultural land
will be relatively moderate.

In addition, based on previous studies, there are also
many other factors which can affect farmer input and agri-
cultural output. Farmer’s cultural level and skills [24], the
degree of farmland fragmentation [25, 26], and farmland
transfer cases [26] also affect the situation of farmers. In
China, farmland transfer usually means that farmland moves
from one farmer to another farmer which increases the total
farmland of the latter.Therefore, a study from the perspective
of farmer preferences needs to examine the impact of the
cultural level of farmers and the degree of land fragmentation
on agricultural output.

Based on the above analysis, this study uses econometric
models to analyze the impact of farmer preferences on
agricultural output.

3. Data and Analysis

3.1. Study Area. This study uses the data from the Jiangsu
Provincial Department and was conducted in cooperation
with Nanjing Agricultural University, Jiangsu province, rural
land issues hundred villages research. The survey involved
a total of seven municipal cities in Jiangsu; a total of
1827 questionnaires were collected by a random sampling.
And 3 counties are selected in every municipal city which
represent various economic development level. We excluded
questionnaires that were invalid for purposes of this study.
This left 979 household level questionnaires which were used
to meet the research needs of this paper (Table 1).

Jiangsu province is located on the eastern coast of China.
It spans 116∘18–121∘57 longitude and 30∘45–35∘20 latitude
with an area of 102,600 km2. It accounts for at least 1.06 per-
cent of China’s per capita land area in Chinese provinces and
autonomous regions. Jiangsu has become the province with
the highest level of development as China has entered the
“upper-middle” level of developed countries. Different cities
in Jiangsu differ in economic development. Generally, the
economic development is best in the southern cities, includ-
ing Nanjing, Zhenjiang, Changzhou, Wuxi, and Suzhou;
moderate in the central cities, including Yangzhou, Nantong,
andTaizhou; and lowest in northern cities, includingXuzhou,
Lianyungang, Suqian, Huai’an, and Yancheng.

3.2. Descriptive Analysis

3.2.1. The Basic Characteristics of Household Age. The age of
farmers used herein refers to the average age of themain labor
force engaged in agricultural production. A study by Burton
supports the reasonableness of this treatment method [27].
Figure 1 shows the age distribution of the main labor force
in agricultural production in the northern part of Jiangsu,
central Jiangsu, and southern Jiangsu classification.

The total average age was 56.6 years. The average in the
area with the highest degree of economic development in
the southern region was 54.8 years old, the average in the
least developed economies in the north was 55.8 years old,
and the average in the central region was 58.6 years old. We
conjecture that the economically developed southern portion
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Table 2: Agricultural factor input of different types of farmers.

API (RMB/mu) AA (years) EL LI (person) AOA (mu) OFB (blocks) SI (RMB/mu) PI (RMB/mu) FI (RMB/mu)
OA 1924.31 66.69 2.29 1.54 4.79 3.62 122.97 131.26 262.35
ONA 2215.90 66.14 2.38 1.57 6.53 3.89 149.64 156.29 310.58
YA 1631.56 49.33 3.19 1.27 7.94 3.76 133.64 97.52 243.26
YNA 1883.34 49.19 3.24 1.40 13.14 5.28 137.84 125.79 261.62
GF 1776.91 58.01 2.74 1.40 6.37 3.69 128.30 114.39 252.80
NGF 2048.61 57.67 2.81 1.48 9.84 4.59 143.74 141.04 286.10
OF 2068.78 66.41 2.34 1.55 5.66 3.76 136.30 143.77 286.46
YF 1756.74 49.26 3.22 1.33 10.54 4.52 135.74 111.66 252.44
Note: GF refers to the farmers who want to give up farmland and NGF refers to the farmers who do not want to give up farmland. OF signifies old farmers and
YF signifies young farmers. API refers to agriculture operating income in 2012. AA refers to average age. EL refers to education level. LI refers to labor input.
AOA refers to actual operating area. OFB refers to operating farmland blocks. SI refers to seed input. PI refers to pesticide input. FI refers to fertilizer input.
mu is a popular area unit in China which equals 0.067 ha. The age and education level are the averages of the major agricultural labor households. Less than
30 years old is considered young in this research, and the age more than 60 is considered old.
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Figure 1: The age proportion distribution in different regions of
Jiangsu province.

of Jiangsu attracted workers away from the central region,
thereby exacerbating the aging of the rural workforce in
the central region. This may help explain why the central
region has a higher average farmer age compared to the less
economically developed northern region.

We can see from Figure 1 that the phenomenon of an
aging agricultural labor force is an objective reality.The peaks
were mainly in the 50 to 60 and the 60 to 70 age categories.
The agricultural producers in northern and southern Jiangsu
have age distribution peaks between 50 and 60 years, but the
central region has its peak in the 60 to 70 age category. This
also confirms that the agricultural labor force aging in the
Jiangsu central region is more serious than the other regions.

3.2.2. Different Types of Farmers in Agricultural Production
Factor Input Feature. To further examine the impact of age
on agricultural production, we investigated old farmers who
do not intend to abandon farming (ONA), old farmers
who intend to abandon farming (OA), young farmers who

intend to give up farming (YA), and young farmers who do
not intend to give up farming (YNA) to discover potential
differences in input and output.

After comparing the different types of farmers in terms
of agricultural production and input-output (see Table 2),
we found that the differences were not great. ONA farmers
had the highest operating income in agriculture, in terms
of average per mu of view. This may partly reflect greater
experience in production but also may indicate additional
investment. YA farmers had the lowest operating income;
it may be that YA farmers are more inclined to engage in
nonagricultural industries and pursuit income from nona-
gricultural sectors. However, YNA have a much higher total
agricultural operating income compared to the other three
groups. This is mainly because they have expanded their
producing land area, and the proportion of the YNA group
reached 41.47% in the whole sample.

From the investment point of view, most of the operating
area is attributable to YNA farmers, followed by YA, and
relatively little attributable to elderly farmers.Thismay be due
to a physical decline in elderly farmers. ONA farmers had the
greatest investment in seeds, fertilizers, and pesticides. This
might be to compensate for a decrease in labor input. OA and
YNA farmers had comparable values for seed, fertilizer, and
pesticide input.However, the total values forOA farmerswere
far below other groups. YA farmers invested the least amount
of labor.

Input and outputs were lower for those intending to
abandon farming regardless of age, indicating that this inten-
tion is not conducive to improving agricultural production.
However, the influence of this negative effect requires further
analysis. Although older farmers have higher input than the
young farmers do, they also have higher output than young
farmers. Thus, we cannot conclude from this statistical data
how the aging agricultural population will affect the use of
agricultural land.

Simply examining the descriptive statistics is not suf-
ficiently comprehensive. However, the descriptive statistics
appear to support our analytical framework.
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From the general description of the above simple analysis,
we cannot accurately separate the impacts of farmer prefer-
ences. Therefore, we used an econometric model to analyze
the above conclusions more fully.

3.3. Econometric Analysis

3.3.1. Model Selection. In this paper, an extended production
function is used to study the problems associated with the
aging of the agriculture labor force. The model is built on
the C-D production function, but its form is altered for more
flexibility. The basic form of the model is as follows:

ln𝑌
𝑖
= 𝛽0 +∑

𝑗

𝛽
𝑗
ln𝑥
𝑖𝑗
+
1
2
∑

𝑗

∑

𝑚

𝛽
𝑗𝑚

ln𝑥
𝑖𝑗
ln𝑥
𝑖𝑚
+ 𝛿, (1)

where 𝑌 represents the operating income of farmers, 𝑥 repre-
sents farmers’ factor input, and 𝑖 indicates individual farmers.
𝑗 and 𝑚 represent input element number. We modified the
basic equation (1) with the introduction of relevant variables.
In this way, we obtained the model shown in
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(2)

where 𝑐 represents the constant term, 𝑡 indicates land
investment, 𝑙 represents labor input, 𝑧 represents the seed
investment, 𝑓 represents fertilizer input, 𝑛 represents pes-
ticide input, 𝑑 represents the type of farmers (𝑎 refers to
ONA farmers and 𝑏 refers to YA farmers), 𝑜 represents
age, 𝑤 represents education level, 𝑠 indicates the degree of
land fragmentation represented by the number of blocks, 𝑙𝑧
indicates whether the land is transferred (1 indicates transfer
and 0 indicates no transfer), 𝑑𝑠 indicates whether they intend
to give up land management (1 signifies yes and 0 signifies
no), and the other symbols are the same as above.

3.3.2.Model Estimation Results. The investigationwas related
to farmers in agricultural production data into (2); derived
model estimation results are shown in Table 3.

The 𝑅-squared of the model was 0.634456. The ONA
farmers, labor input, seed investment, land investment, farm-
ers age, education level of farmers, land fragmentation degree,

Table 3: Extended production function parameter estimates.

The independent
variables Parameters 𝑡 value

𝑑𝑠 −0.090977 −1.043367
ln(𝑓) −0.253916 −0.793467
ln(𝑓) × ln(𝑓) 0.145951∗∗ 2.020194
ln(𝑙) 0.967351∗ 1.872886
ln(𝑙) × ln(𝑓) −0.063184 −0.557116
ln(𝑙) × ln(𝑙) −0.143250 −0.402932
ln(𝑙) × ln(𝑛) 0.042504 0.418499
ln(𝑙) × ln(𝑡) 0.052057 0.527355
ln(𝑙) × ln(𝑧) −0.106429 −1.110889
ln(𝑛) −0.163946 −0.576910
ln(𝑓) × ln(𝑛) −0.032321 −0.562985
ln(𝑛) × ln(𝑛) 0.073402 1.271503
𝑠 −0.007494∗ −1.665416
𝑑𝑏 −0.120524 −1.256796
ln(𝑡) 1.691591∗∗∗ 7.545998
ln(𝑡) × ln(𝑓) −0.183415∗∗∗ −2.955062
ln(𝑡) × ln(𝑛) 0.076468 1.263808
ln(𝑡) × ln(𝑡) 0.170023∗∗∗ 3.318696
ln(𝑡) × ln(𝑧) −0.111609∗∗ −2.257393
𝑤 0.048475∗ 1.695400
ln(𝑧) −0.374512∗ −1.716832
ln(𝑧) × ln(𝑓) 0.002678 0.057721
ln(𝑧) × ln(𝑛) −0.016682 −0.383357
ln(𝑧) × ln(𝑧) 0.122659∗∗∗ 2.919681
𝑑𝑎 0.138489∗ 1.840943
𝑜 −0.288300∗ −1.794592
𝑙𝑧 −0.106429 −1.110889
𝑐 1.04𝐸 − 10 4.60𝐸 − 09

Note: the symbols ∗ ∗ ∗, ∗∗, and ∗, respectively, indicate 1%, 5%, and 10%
confidence levels via significant testing, Log-likelihood = −1031.225.

fertilizer input secondary effect, secondary effects of land
investment, secondary effects of seed investment, and land
and fertilizer interaction, as well as interaction of land and
seeds show a significant impact on agricultural production.
The impacts of other factors on agricultural output were not
significant.

The regression coefficient for the age of individual farm-
ers is −0.288300 and is significant at the 10% confidence
level. This indicates that older farmers negatively affected
agricultural. Increased age is not conducive to improving
agricultural output. The additional input and experience of
the older farmers are not enough to compensate for the
adverse effect of their age. In addition, elderly farmers appear
to resist new technologies in agricultural production. When
asked whether they make use of machinery, young farmers
(84.331%) answered that they mainly used machinery at a
higher rate than older farmers (77.566%). The regression
coefficient of “intention to abandon land management”
variable was −0.090977, indicating that this intention has
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a negative effect on agricultural output. We can imagine that,
sometime in the future, those who intend to give up farming
will reduce spending on agriculture. The data in Table 2 also
show that farmers who intended to abandon the profession
had lower investment in seed, fertilizer, and pesticides input.
Objectively speaking, we can presume that both those who
intend to abandon farming and older farmers who do not
intend to abandon farming will gradually withdraw from
active or passive agricultural production. Although YNA
farmers make up 41.47% of the total, nearly 58.53% of the
agricultural producers will likely exit agricultural production
in the near future. On the one hand, YNA farmers may
take the initiative to seek another income. On the other
hand, older farmers are faced with the situation of retirement
regardless of intentions.Thus, although our analysis indicates
that this effect is not significant at present, the problem of
agricultural production successors still requires attention.
However, older farmers who do not intend to abandon the
profession significantly improve agricultural output at the
10% level. We conjecture that this is because of their greater
experience and higher levels of investment in factor input.
Young people who intend to abandon farming do not help
improve agricultural output, but this effect is not significant.

We also found that labor, seed, and land investment have
a significant impact on agricultural output. In addition, a
higher educational level and reducing the degree of frag-
mentation of land are conducive to improving agricultural
productivity. The secondary effects of fertilizer input, the
secondary effects of land investment, and the secondary
effects of seed investment, land, and fertilizer interaction,
as well as the interaction of land and seeds also show a
significant impact on agricultural output, which indicates
that a reasonable mix of factor input can increase agricultural
output.

4. Conclusions and Discussion

These results show that in the context of an aging agricultural
labor force, changes in the working-age households have a
significant impact on agricultural output. Concern is needed
for such adverse effects. Although the influence of intention
to abandon land management was not significant, we cannot
ignore this effect because changes in the composition of the
working-age households suggest that 58.53 percent of the
agricultural producers will likely exit agricultural production.
This represents a potential threat to the future development
of agriculture. We also found that the elderly who do not
intend to abandon the farmers compared to other farmers
more conducive to agricultural output, indicating that the
adverse effects of changes in the agricultural population age
more agricultural output from older farmers intend to give
up, and this negative impact can be reduced by an additional
investment in other elements.

The aging agricultural labor force trend has become
widely accepted. To reduce the adverse impact on agricultural
output caused by aging in the context of food security is the
current problem we are facing. We believe policy proposal
should start with the following considerations.

First, increase the intensity of various forms of training to
nurture professional farmers. In the next few years, the trend
of urbanization will transfer more young people from rural
areas and exacerbate the aging problem. Various training
should be conducted to improve scientific and technological
level as well as cultural attitudes. This training should equip
them with more modern agricultural production skills to
make up for the problems caused by aging.

Secondly, develop different policies to increase agricul-
tural production levels for different types of farmers. For
example, farmers intending to abandon the profession should
be encouraged to carry out the land transfer and split the
land contract and management rights, thus promoting large-
scale production agriculture. We should help young people
who do not intend to abandon the farming to improve
their skills, increase financial support, expand operation
scale, and ultimatelymodernize and industrialize agricultural
production.
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Stochastic multiagent systems have attractedmuch attention during the past few decades.This paper concerns the continuous-time
consensus of a network of agents under directed switching communication topologies governed by a time-homogeneousMarkovian
process. The agent dynamics are described by linear time-invariant systems, with random noises as well as time-varying delays.
Two types of network-induced delays are considered, namely, delays affecting only the output of the agents’ neighbors and delays
affecting both the agents’ own output and the output of their neighbors. We present necessary and sufficient consensus conditions
for these two classes of multiagent systems, respectively. The design method of consensus gains allows for decoupling the design
problem from the graph properties. Numerical simulations are implemented to test the effectiveness of our obtained results as well
as the tightness of necessary/sufficient conditions.

1. Introduction

In the past few years, distributed coordination of multiagent
systems has been considered by many researchers due to its
broad applications in such areas as swarming of animals/
robots, cooperative unmanned aerial/underwater vehicles,
distributed computation, air traffic control, and distributed
sensor networks. One of the important issues in coordinated
control is network based consensus protocol design. In this
setting, consensus refers to every agent achieving agreement
about some common or shared quantity by exchanging
information according to a set of rules.

For the purpose of reaching consensus, important inter-
action details of agents in a system are mostly encoded by the
communication graph of the system, which gives a general
setting to study consensus and allows for the application of
graph-theoretical notations and tools. Distributed computa-
tion over networks has been studied in the pioneering work
of Tsitsiklis [1] and Chatterjee and Seneta [2] in systems
and ergodicity theory. More recently, analytical frameworks
for solving consensus problems were introduced by Olfati-
Saber and Murray [3] and Jadbabaie et al. [4] based on graph
andmatrix theory. Since then numerous consensus protocols

have been proposed, mostly for simple single- and double-
integrator dynamics (see, e.g., [5–9] and references therein).
It is pointed out that [10] design of consensus protocols for
agent dynamics delineated, more generally, by linear time-
invariant systems ismore challenging due to the possible exis-
tence of strictly unstable eigenvalues (poles) in the open-loop
matrix. Necessary and sufficient consensus conditions for lin-
ear time-invariant systems were explored in [11–14] recently.

Inmany cases, the communication between agents is sub-
ject to stochastic perturbation—the connections change with
time due to packet drops, agent failure, and various external
disturbances. Therefore, the communication graphs under-
pinning the physical systems are better characterized by ran-
dom switching networks. Stochastic consensus with single-
and double-integrator dynamics has been well researched
[15–21]. For example, asymptotic agreement of continuous-
time single-integrator agent dynamics over Poisson random
graphs is considered in [15]. The results are further extended
in [16] to solve mean square consensus under directed and
weighted independently switching random graphs.When the
communication topology is described by a strictly stationary
ergodic graph process, a necessary and sufficient condition
for almost sure consensus of single-integrator agents is shown
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to be the connectivity of the mean topology with respect to a
stationary distribution of the process [17]. For both discrete-
time and continuous-time multiagent systems with single-
integrator dynamics and balanced communication graphs,
it has been shown in [21] that the ergodic Markov jump
linear system achieves average consensus almost surely if and
only if the union of topologies corresponding to the states
of the Markov process is strongly connected. Similarly, for
second-order discrete systems with (not necessarily ergodic)
Markovian switching topologies, the necessary and sufficient
condition for mean square consensus becomes that each
union of graphs corresponding to the closed sets of positive
recurrent states has a spanning tree [20]. Recently, this result
is extended to linear time-invariant agent dynamics in [10] for
both discrete- and continuous-time consensus.

It is well documented in the literature [22] that unmod-
eled delay effects in a feedbackmechanismmay destabilize an
otherwise stable system. In multiagent systems, time-varying
delays may arise naturally due to the asymmetry of interac-
tions, the congestion of the communication channels, and
the finite transmission speed. Moreover, noise/uncertainty
frequently occurs to agents through, for example, communi-
cation errors and spurious measurements in communication
systems. Therefore, it would be desirable to understand
consensus problems in the setting of Markovian switching
topologies with interactions affected by both time-varying
delays and random noises.

In this paper, we investigate consensus problems for con-
tinuous-time multiagent systems with linear time-invariant
agent dynamics underMarkovian switching topologies, time-
varying delays, and stochastic noises. In particular, we con-
sider two types of communication delays: delays affecting
both the state of the agents and that of their neighbors and
delays affecting only the state of the agents’ neighbors. A
unified framework that considers these delays in contin-
uous-time multiagent systems with fixed topology is first
established in [23]. It is worth noting that although other
interesting delay-dependent robustness results are reported
in, for example, [24–26], the communication topologies
considered are either static or switch deterministically.

This work deals with a group of identical agent dynamics,
each of which follows a linear time-invariant system with
white noises input. The information flow between agents
is modeled by a time-homogenous Markov process, whose
state space corresponds to all the possible communica-
tion patterns (directed graphs). We establish necessary and
sufficient conditions to guarantee all agents asymptotically
achieve an agreement in the mean square sense and in the
almost sure sense for both types of time delays, respectively.
When each graph corresponding to a state of the Markov
process contains a spanning tree or is 𝑑-regular for a fixed
𝑑 ≥ 1, we show that the agents can reach consensus for
suitable time-varying delays in terms of 𝑀-matrices if the
agent dynamics is stabilizable. Conversely, if the consensus
is achieved, the agent dynamics must be stabilizable and each
union of graphs corresponding to the closed sets of positive
recurrent states of the Markov process contains a spanning
tree. The main mathematical techniques used here are based
on the stability analysis of Markovian jump linear systems,

stochastic differential delay equations, and graph and matrix
theory.

The rest of the paper is organized as follows. Section 2
contains the problem formulation. Section 3 presents the
main results. A couple of numerical examples are given in
Section 4. The conclusion is drawn in Section 5.

Notation. Let 1
𝑛
and 0
𝑛
be the 𝑛-dimensional column vectors

of all ones and all zeros, respectively. 𝐼
𝑛
represents an 𝑛 × 𝑛

identity matrix. If the dimension is clear from the context,
we sometimes suppress the subscript 𝑛. The sets of real and
complex numbers are denoted by R and C, respectively. The
closed right half plane is signified by C+. We say 𝐴 > 𝐵

(𝐴 ≥ 𝐵) if 𝐴 − 𝐵 is positive definite (semidefinite), where
𝐴 and 𝐵 are symmetric matrices of the same dimensions.
𝐴
𝑇 means the transpose of matrix 𝐴, while 𝐴

𝐻 means its
conjugate transpose. For a vector 𝑥, ‖𝑥‖ refers to its Euclidean
norm; for amatrix𝐴, ‖𝐴‖ = √trace(𝐴𝑇𝐴) represents its trace
norm. Let ‖⋅‖max represent themax norm of amatrix, namely,
themaximumof the absolute values of elements. For amatrix
𝐴 ∈ R𝑛×𝑛, its null space is designated by Null(𝐴) = {𝑥 ∈

R𝑛 : 𝐴𝑥 = 0}. By 𝐴 ⊗ 𝐵 we denote the Kronecker product
of matrices 𝐴 and 𝐵, which admits the following properties:
(𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷, (𝐴 ⊗ 𝐵)

−1
= 𝐴
−1

⊗ 𝐵
−1, and

(𝐴 ⊗ 𝐵)
𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇. Denote by {𝜆

𝑖
(𝐴)}
𝑛

𝑖=1 the eigenvalues
of a matrix 𝐴 ∈ C𝑛×𝑛. Throughout this paper, we will order
them in a nondecreasing order according to their modules:
|𝜆1(𝐴)| ≤ |𝜆2(𝐴)| ≤ ⋅ ⋅ ⋅ ≤ |𝜆

𝑛
(𝐴)|.

2. Problem Formulation and
Preliminary Results

2.1. Graph and Consensus Properties. LetG = (V,E,A) rep-
resent a directed graph of order𝑁, whereV = {V1, V2, . . . , V𝑁}
is the set of nodes (agents) and E ⊆ V × V is the set
of directed edges. The ordered pair (V

𝑖
, V
𝑗
) ∈ E denotes

a directed edge from node V
𝑖
to node V

𝑗
, indicating that

the information can be sent from agent V
𝑖
to agent V

𝑗
. The

weighted adjacency matrix A = (𝑎
𝑖𝑗
) ∈ R𝑁×𝑁 is defined by

𝑎
𝑖𝑗
> 0 if (V

𝑗
, V
𝑖
) ∈ E and 𝑎

𝑖𝑗
= 0 otherwise. Define the in-

degree matrix as a diagonal matrix D = diag(𝑑in1 , . . . , 𝑑
in
𝑁
),

with 𝑑in
𝑖
= ∑
𝑁

𝑗=1 𝑎𝑖𝑗 being the in-degree of agent V𝑖. Similarly,
the out-degree of agent V

𝑖
is defined by 𝑑out

𝑖
= ∑
𝑁

𝑗=1 𝑎𝑗𝑖. G is
said to be balanced if 𝑑in

𝑖
= 𝑑

out
𝑖

for all 𝑖 = 1, . . . , 𝑁 [3]. Define
the graph Laplacian matrix asL = (𝑙

𝑖𝑗
) = D −A, which has

all row sums equal to zero.
A sequence of edges (V

𝑖1
, V
𝑖2
), (V
𝑖2
, V
𝑖3
), . . . , (V

𝑖𝑘−1
, V
𝑖𝑘
), with

(V
𝑖𝑗−1
, V
𝑖𝑗
) ∈ E for 𝑗 = 2, . . . , 𝑘, is called a directed path from

agent V
𝑖1
to agent V

𝑖𝑘
. We say that G contains a spanning tree

if there is an agent (called root) such that every other agent
can be connected by a directed path starting from the root.
By Lemma 3.3 of [6],G contains a spanning tree if and only if
0 = 𝜆1(L) < |𝜆2(L)|. Let 𝑠 be a positive integer.The union of
𝑠 graphs G1 = (V,E1,A1), . . . ,G𝑠 = (V,E

𝑠
,A
𝑠
) is denoted

by⋃𝑠
𝑖=1 G𝑖 = {V, ⋃

𝑠

𝑖=1 E𝑖, ∑
𝑠

𝑖=1 A𝑖}.
For 𝑡 ≥ 0, let 𝜏(𝑡) ≥ 0 be a differentiable function

which will stand for the time-varying communication delay.
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For 𝑖 = 1, . . . , 𝑁, the dynamics of each agent V
𝑖
in continuous

time takes the following two different forms:

(i) with self-delay:

�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝐵𝑢

𝑤

𝑖
(𝑡) +𝐴𝑥

𝑖
(𝑡 − 𝜏 (𝑡)) �̇�

𝑖
(𝑡)

+ 𝐵�̂�
𝑤

𝑖
(𝑡) ,

(1)

(ii) without self-delay:

�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝐵𝑢

𝑜

𝑖
(𝑡) +𝐴𝑥

𝑖
(𝑡) �̇�
𝑖
(𝑡) + 𝐵�̂�

𝑜

𝑖
(𝑡) , (2)

where 𝑥
𝑖
(𝑡) ∈ R𝑛 represents the state of agent V

𝑖
at time 𝑡,

𝑢
𝑤

𝑖
(𝑡), �̂�
𝑤

𝑖
(𝑡), 𝑢
𝑜

𝑖
(𝑡), �̂�
𝑜

𝑖
(𝑡) ∈ R𝑚 are control inputs of agent V

𝑖

given by

𝑢
𝑤

𝑖
(𝑡) = 𝐾

𝑁

∑

𝑗=1
𝑎
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) , (3)

�̂�
𝑤

𝑖
(𝑡)

= �̂�

𝑁

∑

𝑗=1
𝜎
𝑖𝑗
(𝑡) �̇�
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) ,

(4)

𝑢
𝑜

𝑖
(𝑡) = 𝐾

𝑁

∑

𝑗=1
𝑎
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡)) , (5)

�̂�
𝑜

𝑖
(𝑡) = �̂�

𝑁

∑

𝑗=1
𝜎
𝑖𝑗
(𝑡) �̇�
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡)) , (6)

respectively, 𝐴,𝐴 ∈ R𝑛×𝑛, 𝐵, 𝐵 ∈ R𝑛×𝑚 are system matrices,
and {𝑤

𝑖
(𝑡), 𝑤
𝑖𝑗
(𝑡) : 𝑖, 𝑗 = 1, 2, . . . , 𝑁} are independent stan-

dardwhite noises. Here,𝐾, �̂� ∈ R𝑚×𝑛 are common consensus
gains to be designed later, and 𝜎

𝑖𝑗
are referred to as the inten-

sity of noise. To highlight the presence of noise, it is natural
to define a noise graph Ĝ = (V,E, Â) with the adjacency
matrix Â = (𝜎

𝑖𝑗
) ∈ R𝑁×𝑁 satisfying 𝜎

𝑖𝑗
> 0 if (V

𝑗
, V
𝑖
) ∈ E

and 𝜎
𝑖𝑗
= 0 otherwise. By definition, if viewing G and Ĝ as

unweighted graphs, that is, the adjacency matrices are taken
as binary ones, we have G = Ĝ. Likewise, the correspond-
ing degree and Laplacian matrices are denoted by D̂ =

diag(𝜎1, . . . , 𝜎𝑁) with 𝜎
𝑖
= ∑
𝑁

𝑗=1 𝜎𝑖𝑗 and L̂ = (̂𝑙
𝑖𝑗
) = D̂ − Â,

respectively.

Remark 1. The above dynamical models characterize system
uncertainties with Gaussian white noise appearing as an
exogenous input (similar treatment can be found in, e.g., [27–
30]). To see this, take 𝐴 = 𝜁1𝐴 and 𝐵 = 𝜁2𝐵 (𝜁1, 𝜁2 > 0).
System (1), for example, can be recast as

�̇�
𝑖
(𝑡) = 𝐴 (1+ 𝜁1�̇�𝑖 (𝑡)) 𝑥𝑖 (𝑡 − 𝜏 (𝑡))

+ 𝐵

𝑁

∑

𝑗=1
(𝐾𝑎
𝑖𝑗
(𝑡) + �̂�𝜁2𝜎𝑖𝑗 (𝑡) �̇�𝑖𝑗 (𝑡))

⋅ (𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) .

(7)

The perturbations are represented by a linear combination of
gain matrices𝐾 and �̂� to be determined. Moreover, if 𝜁1 = 1,
we take �̂� = 𝐾. (Although other choices are theoretically
allowed as per Theorem 8 below, we make them equal in
practice since one usually is not able to separate out the noise
from the rest of the state.) Thus, the uncertainty reduces
to the conventional form 𝑎

𝑖𝑗
(𝑡) + 𝜁2𝜎𝑖𝑗(𝑡)�̇�𝑖𝑗(𝑡). We mention

that other commonly studied uncertainties pertaining to the
consensus problems include the measurement noises which
only affect the received neighbors’ states (e.g., [18]) and the
additive plant noises (e.g., [31]).

Multiagent system (2) with consensus protocols (5) and
(6) considers only propagation delays for information trans-
mitted from agent V

𝑗
to agent V

𝑖
on the communication

network. Propagation delay has been addressed previously,
for example, in works [24, 32–35]. Multiagent system (1)
with consensus protocols (3) and (4) models both self-delay
and neighboring delay. This scheme is relevant for dynamic
agents with computation or reaction delays; see, for example,
[3, 25, 26, 36, 37]. Although it would be more realistic to
explore heterogeneous delays, we consider the uniform delay
𝜏(𝑡) as a first step, and this simplifies the derivation.

In the current work, we deal with delay robustness in
bothmultiagent systems (1) and (2) over a stochastically time-
varying interaction topology G(𝑡) as well as its associated
noise topology Ĝ(𝑡), which is governed by a homogeneous
continuous-time Markov process 𝜃(𝑡), taking value in the
finite set 𝑆 = {1, 2, . . . , 𝑠}. More precisely,G(𝑡) ∈ {G1, . . . ,G𝑠}

and Ĝ(𝑡) ∈ {Ĝ1, . . . , Ĝ𝑠};G(𝑡) = G
𝑖
and Ĝ(𝑡) = Ĝ

𝑖
if and only

if 𝜃(𝑡) = 𝑖. For each 𝑖, the adjacency, degree, and Laplacian
matrices forG

𝑖
(Ĝ
𝑖
, resp.) will be denoted byA

𝑖
,D
𝑖
, andL

𝑖

(Â
𝑖
, D̂
𝑖
, and L̂

𝑖
, resp.), respectively.

Definition 2. System (1) ((2), resp.) under control protocols
(3) and (4) ((5) and (6), resp.) achieves consensus if there exist
consensus gains𝐾, �̂� such that, for any 𝑥

𝑖
(0) ∈ R𝑛 and initial

distribution of 𝜃(0),

lim
𝑡→∞

E (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)


2
) = 0 (8)

for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}.

We say matrix 𝐴 in (1) and (2) is Hurwitz (or stable) if
every eigenvalue of 𝐴 has strictly negative real part; that is, it
belongs toC \C+.The pair (𝐴, 𝐵) is called stabilizable if there
exists 𝐶 ∈ R𝑚×𝑛 such that 𝐴 + 𝐵𝐶 is Hurwitz [38].

Assumption 3. The following assumptions aremade through-
out the paper:

(a) Communication graphsG1,G2, . . . ,G𝑠 are balanced.
(b) Matrix 𝐴 is not Hurwitz.

(c) The white noises 𝑤
𝑖
(𝑡)

d
= 𝑤
𝑖𝑗
(𝑡) for all 𝑖, 𝑗 = 1, . . . , 𝑁,

where d
=means equality in distribution.

(d) The Markov process 𝜃(𝑡) is independent of the Brow-
nian motions 𝑤

𝑖
(𝑡) (𝑖 = 1, . . . , 𝑁).
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Item (a) in Assumption 3 is also used in [10, 21]. Item (b)
is meant to eliminate the triviality, since consensus can be
reached by setting zero consensus gains if𝐴 isHurwitz. In this
paper, we assume a special sort of noise—possibly due to the
homogeneity of the communication channels between each
agent and its neighbors—in which 𝑤

𝑖𝑗
(𝑡) is independent of 𝑗

as item (c) indicated.The consensus in Definition 2 is defined
in the sense ofmean square convergence.This implies that the
consensus can also be achieved in the almost sure sense in
view of item (d) and the homogeneity of the Markov process
(see Corollary 3.46 of [39, 40]).

2.2. Exponential Stability for Delay Markovian Jump Systems.
Denote by (Ω,F,P) the underlying common probability
space for the Markov process and Brownian motions dis-
cussed above. The homogeneous continuous-time Markov
process 𝜃(𝑡) with generator𝑄 = (𝑞

𝑖𝑗
) ∈ R𝑠×𝑠 is formally given

by

P (𝜃 (𝑡 + ℎ) = 𝑗 | 𝜃 (𝑡) = 𝑖)

=
{

{

{

𝑞
𝑖𝑗
ℎ + 𝑜 (ℎ) , if 𝑖 ̸= 𝑗,

1 + 𝑞
𝑖𝑖
ℎ + 𝑜 (ℎ) , if 𝑖 = 𝑗,

(9)

where ℎ > 0 and ℎ → 0. Here 𝑞
𝑖𝑗
is the transition rate from 𝑖

to 𝑗 if 𝑖 ̸= 𝑗, while 𝑞
𝑖𝑖
= −∑

𝑗 ̸=𝑖
𝑞
𝑖𝑗
. As is known, the state space

𝑆 = {1, 2, . . . , 𝑠} of 𝜃(𝑡) can be decomposed uniquely into the
form 𝑆 = {𝐽 ∪ 𝑆1 ∪ ⋅ ⋅ ⋅ ∪ 𝑆

𝑟
}, where each 𝑆

𝑗
(𝑗 = 1, . . . , 𝑟) is

a closed communication class (i.e., closed set in the Markov
process) of positive recurrent states and 𝐽 is a set of transient
states [41].

Let 𝑥(𝑡) ∈ R𝑛 for 𝑡 ≥ 0. Consider a stochastic differential
delay equation with Markovian switching of the form

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝜃 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝜃 (𝑡)) 𝑑𝑤 (𝑡) ,

(10)

where 𝑤(𝑡) is an 𝑚-dimensional standard Brownian motion
and 𝑓 : R𝑛 ×R𝑛 × 𝑆 → R𝑛 and 𝑔 : R𝑛 ×R𝑛 × 𝑆 → R𝑛×𝑚 are
locally Lipschitz continuous satisfying the following.

Assumption 4. For each 𝑖 ∈ 𝑆, there exist constants 𝛼
𝑖
∈ R

and 𝜌
𝑖
, 𝛾
𝑖
, 𝛽
𝑖
≥ 0 such that, for all 𝑥, 𝑦 ∈ R𝑛,

(a) 2𝑥𝑇𝑓(𝑥, 0, 𝑖) ≤ 𝛼
𝑖
‖𝑥‖

2;
(b) ‖𝑓(𝑥, 0, 𝑖) − 𝑓(𝑥, 𝑦, 𝑖)‖ ≤ 𝜌

𝑖
‖𝑦‖;

(c) ‖𝑔(𝑥, 𝑦, 𝑖)‖2 ≤ 𝛾
𝑖
‖𝑥‖

2
+ 𝛽
𝑖
‖𝑦‖

2.

Define𝐹 = diag(−𝛼1−𝜌1−𝛾1, . . . , −𝛼𝑠−𝜌𝑠−𝛾𝑠)−𝑄 ∈ R𝑠×𝑠.
A square matrix 𝐹 is called a nonsingular𝑀-matrix if all the
off-diagonal entries are nonpositive and 𝐹−1 is a nonnegative
matrix. A list of equivalent conditions for 𝑀-matrix can be
found in [41].The following result establishes the exponential
stability of system (10).

Lemma 5 (see [42]). Assume that 𝐹 is a nonsingular 𝑀-
matrix and ((𝜌1 + 𝛽1)

−1
, . . . , (𝜌

𝑠
+ 𝛽
𝑠
)
−1
)
𝑇

− 𝐹
−11
𝑠
∈ R𝑠 is

a positive vector. Then the trivial solution 𝑥(𝑡) ≡ 0 of (10) is
exponentially stable in mean square if

̇𝜏 (𝑡) < 1− 𝜅, (11)

for all 𝑡 ≥ 0, where 𝜅 = max1≤𝑖≤𝑠𝑏𝑖(𝜌𝑖 + 𝛽
𝑖
) and (𝑏1, . . . , 𝑏𝑠)

𝑇

=

𝐹
−11.

It is obvious that 𝜅 < 1.Therefore, unbounded time delay
is allowed. This is a desirable feature, for example, in delayed
cellular neural networks, where delays are variable and in
effect unbounded [43–46].

Remark 6. The existence of solutions to dynamical systems
(1) and (2), in an even more general nonlinear setting, has
been studied in [47]. Let 𝑍(𝑡) = (𝑥

𝑇

1 (𝑡), . . . , 𝑥
𝑇

𝑁
(𝑡))
𝑇

∈ R𝑛𝑁.
For 𝜏 > 0, let 𝜏(𝑡) : [0,∞) → [0, 𝜏] be a continuous function.
Denote by𝐶([−𝜏, 0];R𝑛𝑁) the family of continuous functions
from [−𝜏, 0] toR𝑛𝑁. It is shown that [47] for any bounded and
F-measurable initial condition 𝑍0 ∈ 𝐶([−𝜏, 0];R𝑛𝑁) system
(1) (as well as (2)) has a unique continuous solution 𝑍(𝑡; 𝑍0)
on 𝑡 ≥ −𝜏. Our strategy in the sequel is to first transfer the
systems to error dynamics (see (13) and (26) below) and then
address the stability of zero solution utilizing Lemma 5.

The objective of this paper is to reveal how stability anal-
ysis of differential delay equations, together with techniques
used in matrix, Markov chain, and graph theory, can be
applied to investigate stochastic consensus problems (1) and
(2).

3. Main Results

In this section, we derive necessary and sufficient conditions
for reaching consensus of noisy linear systems (1) and (2)
under Markovian switching topologies and time-varying
delays.

3.1. Consensus Conditions for Systems with Self-Delay. We
first considermultiagent system (1) with protocols (3) and (4),
where both self-delay and neighboring delay are factored in.

Let L(𝑡) = (𝑙
𝑖𝑗
(𝑡)) and L̂(𝑡) = (̂𝑙

𝑖𝑗
(𝑡)) signify the Lapla-

cian matrices for the switching topologies G(𝑡) and Ĝ(𝑡) at
time 𝑡. For 𝑖 = 1, . . . , 𝑁, define the disagreement error for
agent V

𝑖
as 𝛿
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥(𝑡), where 𝑥(𝑡) = (1/𝑁)∑

𝑁

𝑖=1 𝑥𝑖(𝑡)
is the average state vector. Rearranging (1) with (3) and (4)
gives

̇𝛿
𝑖
(𝑡) = 𝐴𝛿

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝐵𝐾

𝑁

∑

𝑗=1
𝑙
𝑖𝑗
(𝑡) 𝛿
𝑗
(𝑡 − 𝜏 (𝑡))

+(𝐴𝛿
𝑖
(𝑡 − 𝜏 (𝑡)) + 𝐵�̂�

𝑁

∑

𝑗=1
�̂�
𝑖𝑗
(𝑡) 𝛿
𝑗
(𝑡 − 𝜏 (𝑡)))

⋅ �̇�
𝑖
(𝑡) ,

(12)

where we have used Assumption 3(a). Set 𝛿(𝑡) = (𝛿
𝑇

1 (𝑡), . . . ,

𝛿
𝑇

𝑁
(𝑡))
𝑇

∈ R𝑛𝑁 and 𝑤(𝑡) = (𝑤1(𝑡), . . . , 𝑤𝑁(𝑡))
𝑇

∈ R𝑁.
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Moreover, let 𝛿(𝑡) = diag(𝛿1(𝑡), . . . , 𝛿𝑁(𝑡)) be an 𝑛𝑁 × 𝑁

block diagonal matrix. Consequently, (12) can be recast as

𝑑𝛿 (𝑡)

= (𝐼
𝑁
⊗𝐴−L (𝑡) ⊗ 𝐵𝐾) 𝛿 (𝑡 − 𝜏 (𝑡)) 𝑑𝑡

+ (𝐼
𝑁
⊗𝐴− L̂ (𝑡) ⊗ 𝐵�̂�) 𝛿



(𝑡 − 𝜏 (𝑡)) 𝑑𝑤 (𝑡) .

(13)

Theorem 7 (necessary conditions). Suppose that Assumption
3 holds and system (1) with protocols (3) and (4) achieves
consensus. Furthermore, assume that there exist 𝜉

𝑖
> 0 for

𝑖 = 1, . . . , 𝑠, and 𝜁1, 𝜁2 > 0 such that Â
𝑖
= 𝜉
𝑖
A
𝑖
, 𝐴 = 𝜁1𝐴,

and 𝐵 = 𝜁2𝐵. Then

(a) each union of the graphs G
𝑖
(𝑖 = 1, . . . , 𝑠) correspond-

ing to all the states in the closed set 𝑆
𝑗
for 𝑗 = 1, . . . , 𝑟

has a spanning tree;
(b) (𝐴, 𝐵) is stabilizable.

Proof. To prove (a), let G
𝑆1

= ⋃
𝑖∈𝑆1

G
𝑖
be the union graph

corresponding to the closed set 𝑆1. Without loss of generality,
assume thatG

𝑆1
does not contain a spanning tree. Denote by

L
𝑆1
its Laplacian matrix. By Assumption 3(a), L𝑇

𝑆1
is also a

Laplacian matrix. It follows from Corollary 4.2 of [48] that
there is a unit vector 𝑐 = (𝑐1, . . . , 𝑐𝑁)

𝑇

∈ R𝑁 such that 𝑐𝑇1 = 0
andL𝑇

𝑆1
𝑐 = 0. Using Lemma 3.5 of [21], we obtain

Null (−L𝑇
𝑆1
) = ⋂

𝑖∈𝑆1

Null (−L𝑇
𝑖
) . (14)

Hence, L𝑇
𝑖
𝑐 = 0 for any 𝑖 ∈ 𝑆1. There exists some Φ1 such

thatΦ = (1/√𝑁, 𝑐, Φ1) ∈ R𝑁×𝑁 is an orthogonal matrix.
Define 𝛿(𝑡) = (Φ

−1
⊗ 𝐼
𝑛
)𝛿(𝑡). By partitioning 𝛿(𝑡) in line

with 𝛿(𝑡), that is, 𝛿(𝑡) = (𝛿
𝑇

1 (𝑡), . . . , 𝛿
𝑇

𝑁
(𝑡))
𝑇 with each 𝛿

𝑖
(𝑡) ∈

R𝑛, we get 𝛿1(𝑡) ≡ 0 and 𝛿2(𝑡) = ∑
𝑁

𝑖=1 𝑐𝑖𝛿𝑖(𝑡) by definition.
Moreover, by using (13) we have for 𝑡 ≥ 0

̇̃
𝛿 (𝑡) = (Φ

−1
⊗𝐴) 𝛿 (𝑡 − 𝜏 (𝑡))

− (Φ
−1
L (𝑡) ⊗ 𝐵𝐾) 𝛿 (𝑡 − 𝜏 (𝑡))

+ (Φ
−1
⊗𝐴) 𝛿



(𝑡 − 𝜏 (𝑡)) �̇� (𝑡)

− (Φ
−1
L̂ (𝑡) ⊗ 𝐵�̂�) 𝛿



(𝑡 − 𝜏 (𝑡)) �̇� (𝑡) .

(15)

If the initial value 𝜃(0) ∈ 𝑆1, thenL(𝑡) ∈ {L
𝑖
}
𝑖∈𝑆1

and L̂(𝑡) ∈

{L̂
𝑖
}
𝑖∈𝑆1

. Using the assumption Â
𝑖
= 𝜉
𝑖
A
𝑖
, we derive

̇̃
𝛿2 (𝑡) = 𝐴𝛿2 (𝑡 − 𝜏 (𝑡)) +𝐴

𝑁

∑

𝑖=1
𝑐
𝑖
𝛿
𝑖
(𝑡 − 𝜏 (𝑡)) �̇�

𝑖
(𝑡) (16)

for 𝑡 ≥ 0.
If 𝐴 ̸= 0, take 𝛿2(−𝜏(0)) ∉ Null(𝐴). Thus,

lim
𝑡→∞

E‖𝛿2(𝑡)‖ ̸= 0 under Assumption 3(b). This contra-
dicts with the consensus definition.

If 𝐴 = 0, we obtain E ̇̃
𝛿2(𝑡) = 0 and recall 𝛿2(𝑡) =

∑
𝑁

𝑖=1 𝑐𝑖𝛿𝑖(𝑡). Since 𝑐
𝑇1 = 0, there exist two components 𝑐

𝑖
̸= 0

and 𝑐
𝑗

̸= 0 satisfying 𝑐
𝑖

̸= 𝑐
𝑗
. Take 𝛿

𝑖
(0) = 1, 𝛿

𝑗
(0) = −1,

and 𝛿
𝑘
(0) = 0 for all 𝑘 ∈ {1, . . . , 𝑁} \ {𝑖, 𝑗}. It yields that

lim
𝑡→∞

E‖𝛿2(𝑡)‖ ̸= 0. Again, it results in a contradiction.
To prove (b), assume that (𝐴, 𝐵) is not stabilizable.Then𝐴

has an unstable and uncontrollablemode, denoted by 𝜆 ∈ C+.
It follows from the Popov-Belevitch-Hautus controllability
test [38] that there exists some complex vector 𝑐 ̸= 0 satisfying
𝑐
𝐻

𝐴 = 𝑐
𝐻

𝜆 and 𝑐𝐻𝐵 = 0.
Let 𝑦(𝑡) = (𝑦1(𝑡), . . . , 𝑦𝑁(𝑡))

𝑇

= (𝐼
𝑁
⊗ 𝑐)
𝐻

𝛿(𝑡) ∈ R𝑁. By
means of (13) and the assumptions that𝐴 = 𝜁1𝐴 and 𝐵 = 𝜁2𝐵,
we derive

̇𝑦 (𝑡)

= (𝐼
𝑁
⊗ 𝑐
𝐻

𝐴) 𝛿 (𝑡 − 𝜏 (𝑡))

− (L (𝑡) ⊗ 𝑐
𝐻

𝐵𝐾) 𝛿 (𝑡 − 𝜏 (𝑡))

+ (𝐼
𝑁
⊗ 𝑐
𝐻

𝐴) 𝛿


(𝑡 − 𝜏 (𝑡)) �̇� (𝑡)

− (L̂ (𝑡) ⊗ 𝑐
𝐻

𝐵�̂�) 𝛿


(𝑡 − 𝜏 (𝑡)) �̇� (𝑡)

= 𝜆𝑦 (𝑡 − 𝜏 (𝑡))

+ 𝜆𝜁1 diag (𝑦1 (𝑡 − 𝜏 (𝑡)) , . . . , 𝑦𝑁 (𝑡 − 𝜏 (𝑡))) �̇� (𝑡) .

(17)

Taking 𝑦(−𝜏(0)) ̸= 0, we see that lim inf
𝑡→∞

E‖𝑦(𝑡)‖ >

0 since 𝜆 is unstable. This contradicts with the consensus
definition.

Note that the assumption Â
𝑖
= 𝜉
𝑖
A
𝑖
(𝑖 = 1, . . . , 𝑠) is only

used in the proof of statement (a), while the assumptions𝐴 =

𝜁1𝐴 and 𝐵 = 𝜁2𝐵 are only used in the proof of statement (b).
If (𝐴, 𝐵) is stabilizable, there exists an 𝑛 × 𝑛matrix 𝑃 > 0

such that

𝑃 > 𝐴
𝑇

𝑃𝐴−𝐴
𝑇

𝑃𝐵 (𝐵
𝑇

𝑃𝐵)
−1
𝐵
𝑇

𝑃𝐴 (18)

by the Riccati inequality [49]. Similarly, if (𝐴, 𝐵) is stabiliz-
able, there exists an 𝑛 × 𝑛matrix �̂� > 0 such that

�̂� > 𝐴
𝑇

�̂�𝐴 −𝐴
𝑇

�̂�𝐵 (𝐵
𝑇

�̂�𝐵)
−1
𝐵
𝑇

�̂�𝐴. (19)

Theorem8 (sufficient conditions). Suppose thatAssumption 3
holds, both (𝐴, 𝐵) and (𝐴, 𝐵) are stabilizable, and G

𝑖
contains

a spanning tree for every 𝑖 ∈ 𝑆. If 𝐹 = −𝜌𝐼
𝑠
−𝑄 is a nonsingular

𝑀-matrix and (𝜌 + 𝛽)
−11
𝑠
− 𝐹
−11
𝑠
is a positive vector, then

system (1) with protocols (3) and (4) achieves consensus for 𝜏(𝑡)
satisfying

̇𝜏 (𝑡) < 1− (𝜌 +𝛽) ⋅ 𝐹
−11
𝑠

max , (20)

where 𝜌 = √𝜆
𝑛
(𝑃)/𝜆1(𝑃), 𝛽 = 𝜆

𝑛
(�̂�)/𝜆1(�̂�), and 𝑃 and �̂� are

given by (18) and (19), respectively.
Moreover, feasible consensus gains 𝐾 and �̂� are given by

𝐾 = 𝜂(𝐵
𝑇

𝑃𝐵)
−1
𝐵
𝑇

𝑃𝐴 with 𝜂 ≥ 1/min2≤𝑗≤𝑁, 1≤𝑖≤𝑠|𝜆𝑗(L𝑖)| and
�̂� = 𝜂(𝐵

𝑇

�̂�𝐵)
−1
𝐵
𝑇

�̂�𝐴 with 𝜂 ≥ 1/min2≤𝑗≤𝑁, 1≤𝑖≤𝑠|𝜆𝑗(L̂𝑖)|,
respectively.
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Proof. The idea is to apply Lemma 5 to the error dynamics
(13). It suffices to check Assumption 4 holds.

For item (a), 𝛼
𝑖
= 0 for all 𝑖 ∈ 𝑆 clearly. To check

item (b), we take a unitary matrix for each 𝑖 ∈ 𝑆: Φ
𝑖
=

(1
𝑁
/√𝑁, 𝜙

𝑖,2, . . . , 𝜙𝑖,𝑁), where 𝜙𝑖,𝑗 ∈ C𝑁 satisfies L
𝑖
𝜙
𝑖,𝑗

=

𝜆
𝑗
(L
𝑖
)𝜙
𝑖,𝑗

for 𝑗 = 2, . . . , 𝑁. Given 𝑖 ∈ 𝑆, by setting 𝛿 =

(Φ
𝐻

𝑖
⊗ 𝐼
𝑛
)𝛿 (and partitioning it in conformity with that of 𝛿

as in Theorem 7), we derive that

𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

−L
𝑇

𝑖
⊗𝐾
𝑇

𝐵
𝑇

) (𝐼
𝑁
⊗𝑃)

⋅ (𝐼
𝑁
⊗𝐴−L

𝑖
⊗𝐵𝐾) 𝛿

= 𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

𝑃𝐴−L
𝑇

𝑖
L
𝑖
⊗𝐾
𝑇

𝐵
𝑇

𝑃𝐵𝐾) 𝛿

= 𝛿
𝐻

(𝐼
𝑁
⊗𝐴
𝑇

𝑃𝐴−Φ
𝐻

𝑖
L
𝐻

𝑖
L
𝑖
Φ
𝑖
⊗𝐾
𝑇

𝐵
𝑇

𝑃𝐵𝐾) 𝛿

=

𝑁

∑

𝑗=2
𝛿
𝐻

𝑗

⋅ (𝐴
𝑇

𝑃𝐴−

𝜆
𝑗
(L
𝑖
)


2
𝜂
2
𝐴
𝑇

𝑃𝐵 (𝐵
𝑇

𝑃𝐵)
−1
𝐵
𝑇

𝑃𝐴) 𝛿
𝑗

≤

𝑁

∑

𝑗=1
𝛿
𝐻

𝑗
𝑃𝛿
𝑗
= 𝛿
𝑇

(𝐼
𝑁
⊗𝑃) 𝛿,

(21)

where we have taken 𝐾 = 𝜂(𝐵
𝑇

𝑃𝐵)
−1
𝐵
𝑇

𝑃𝐴 with 𝜂 ≥

1/min2≤𝑗≤𝑁, 1≤𝑖≤𝑠|𝜆𝑗(L𝑖)| and used inequality (18). Note that
𝜂 is well defined, since G

𝑖
contains a spanning tree, and thus

there is only one zero eigenvalue ofL
𝑖
[48].

Since 𝑃 > 0, using (21) we obtain

(𝐼𝑁 ⊗𝐴−L
𝑖
⊗𝐵𝐾) 𝛿


2
≤

1
𝜆1 (𝑃)

⋅ 𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

−L
𝑇

𝑖
⊗𝐾
𝑇

𝐵
𝑇

) (𝐼
𝑁
⊗𝑃)

⋅ (𝐼
𝑁
⊗𝐴−L

𝑖
⊗𝐵𝐾) 𝛿 ≤

1
𝜆1 (𝑃)

𝛿
𝑇

(𝐼
𝑁
⊗𝑃) 𝛿

≤
𝜆
𝑛
(𝑃)

𝜆1 (𝑃)
‖𝛿‖

2
.

(22)

Hence, we take 𝜌 = 𝜌
𝑖
= √𝜆
𝑛
(𝑃)/𝜆1(𝑃) independent of 𝑖.

To verify item (c), note that

(𝐼
𝑁
⊗𝐴− L̂

𝑖
⊗𝐵�̂�) 𝛿




2

= trace (𝛿𝑇 (𝐼
𝑁
⊗𝐴
𝑇

− L̂
𝑇

𝑖
⊗ �̂�
𝑇

𝐵
𝑇

)

⋅ (𝐼
𝑁
⊗𝐴− L̂

𝑖
⊗𝐵�̂�) 𝛿



) = 𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

− L̂
𝑇

𝑖

⊗ �̂�
𝑇

𝐵
𝑇

) (𝐼
𝑁
⊗𝐴− L̂

𝑖
⊗𝐵�̂�) 𝛿

=

(𝐼
𝑁
⊗𝐴− L̂

𝑖
⊗𝐵�̂�) 𝛿



2
.

(23)

Therefore, similarly as in the proof of (21) and (22) we obtain


(𝐼
𝑁
⊗𝐴− L̂

𝑖
⊗𝐵�̂�) 𝛿




2
≤
𝜆
𝑛
(�̂�)

𝜆1 (�̂�)
‖𝛿‖

2
, (24)

where we have taken �̂� = 𝜂(𝐵
𝑇

�̂�𝐵)
−1
𝐵
𝑇

�̂�𝐴 with 𝜂 ≥

1/min2≤𝑗≤𝑁, 1≤𝑖≤𝑠|𝜆𝑗(L̂𝑖)|. Since the fact that G
𝑖
contains a

spanning tree implies that Ĝ
𝑖
also contains a spanning tree,

𝜂 is well defined with the same reason as above. Hence, we
take 𝛾

𝑖
= 0 and 𝛽 = 𝛽

𝑖
= 𝜆
𝑛
(�̂�)/𝜆1(�̂�) for all 𝑖 ∈ 𝑆.

Remark 9. (a) The design of consensus gains 𝐾 and �̂� splits
the design problem from the underlying communication
topology. For example, 𝐾 is constructed based on the system
matrices (18) and a multiplicative coefficient 𝜂 depending
only on the graphs. Such a design procedure decouples
the effects of agent dynamics and the network topologies,
which simplifies the consensus design for the cases where the
number of agents is large (see also [10, 13]).

(b) When 𝑛 = 𝑚,𝐴 = 0, and 𝐵 = 𝐼
𝑛
, we reproduce single-

integrator agent dynamics, and (18) and (19) always hold true.
This can be viewed as a generalization of results in [21] by
introducing random noise and time delay.

(c) The assumption in Theorem 8 about 𝐹 being a non-
singular 𝑀-matrix and (𝜌 + 𝛽)

−11
𝑠
− 𝐹
−11
𝑠
having positive

entries is easy to verify. Indeed, all the off-diagonal entries are
nonpositive by the definition of generator 𝑄. Thus, it suffices
to show that 𝐹−1 is nonnegative (this always holds if 𝑛 = 1)
and ensure that every row sum of it is less than (𝜌 + 𝛽)

−1.
(d) There is a gap pertaining to graph connectivity

between sufficient conditions (Theorem 8) and necessary
conditions (Theorem 7). Comparing with the previous work
[10] for noise-free and delay-free systems, we understand
that the stronger connectivity requirement—each graph G

𝑖

contains a spanning tree—is introduced to accommodate the
added noises and time-varying delays. Notice that the results
are based on Lemma 5, which is about nonlinear systems.
This also suggests the conditions derived here could be
conservative. Notwithstanding, the study of weaker sufficient
condition (e.g., using some algebraic methods) comparable
to that of the necessary condition is an interesting future
research.

3.2. Consensus Conditions for Systems without Self-Delay.
Next, we study multiagent system (2) with protocols (5) and
(6), where only neighboring delay is considered.

Similarly as above, for 𝑖 = 1, . . . , 𝑁, define the dis-
agreement error for agent V

𝑖
as 𝛿
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥(𝑡), and

𝑥(𝑡) = (1/𝑁)∑
𝑁

𝑖=1 𝑥𝑖(𝑡) is the average state vector. Under
Assumption 3(a), (2) together with (5) and (6) yields

̇𝛿
𝑖
(𝑡) = 𝐴𝛿

𝑖
(𝑡) + 𝐵𝐾

𝑁

∑

𝑗=1
𝑎
𝑖𝑗
(𝑡) (𝛿
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝛿

𝑖
(𝑡))

+(𝐴𝛿
𝑖
(𝑡 − 𝜏 (𝑡))

+ 𝐵�̂�

𝑁

∑

𝑗=1
𝜎
𝑖𝑗
(𝑡) (𝛿
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝛿

𝑖
(𝑡))) �̇�

𝑖
(𝑡) .

(25)
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Let 𝛿(𝑡) = (𝛿
𝑇

1 (𝑡), . . . , 𝛿
𝑇

𝑁
(𝑡))
𝑇

∈ R𝑛𝑁, 𝑤(𝑡) = (𝑤1(𝑡), . . . ,

𝑤
𝑁
(𝑡))
𝑇

∈ R𝑁, and 𝛿(𝑡) = diag(𝛿1(𝑡), . . . , 𝛿𝑁(𝑡)). We rewrite
(25) in a compact form as

𝑑𝛿 (𝑡) = ((𝐼
𝑁
⊗𝐴−D (𝑡) ⊗ 𝐵𝐾) 𝛿 (𝑡)

+ (A (𝑡) ⊗ 𝐵𝐾) 𝛿 (𝑡 − 𝜏 (𝑡))) 𝑑𝑡

+ ((𝐼
𝑁
⊗𝐴− D̂ (𝑡) ⊗ 𝐵�̂�) 𝛿



(𝑡)

+ (Â (𝑡) ⊗ 𝐵�̂�) 𝛿


(𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) .

(26)

Theorem 10 (necessary conditions). Suppose that Assump-
tion 3 holds and system (2) with protocols (5) and (6) achieves
consensus for some constant delay 𝜏. Furthermore, assume that
there exist 𝜉

𝑖
> 0 for 𝑖 = 1, . . . , 𝑠, and 𝜁1, 𝜁2 > 0 such that

Â
𝑖
= 𝜉
𝑖
A
𝑖
, 𝐴 = 𝜁1𝐴, and 𝐵 = 𝜁2𝐵. Then

(a) each union of the graphs G
𝑖
(𝑖 = 1, . . . , 𝑠) correspond-

ing to all the states in the closed set 𝑆
𝑗
for 𝑗 = 1, . . . , 𝑟

has a spanning tree;
(b) (𝐴, 𝐵) is stabilizable.

Proof. Since consensus is achieved, we have lim
𝑡→∞

‖𝛿(𝑡) −

𝛿(𝑡 − 𝜏)‖ = 0 and lim
𝑡→∞

‖𝛿


(𝑡) − 𝛿


(𝑡 − 𝜏)‖ = 0 for fixed 𝜏.
Therefore, system (26) can be recast as

𝑑𝛿 (𝑡) = ((𝐼
𝑁
⊗𝐴−L (𝑡) ⊗ 𝐵𝐾) 𝛿 (𝑡 − 𝜏)

+𝑂 (‖𝛿 (𝑡) − 𝛿 (𝑡 − 𝜏)‖) ⋅ 1
𝑁𝑛
) 𝑑𝑡

+ ((𝐼
𝑁
⊗𝐴− L̂ (𝑡) ⊗ 𝐵�̂�) 𝛿



(𝑡 − 𝜏)

+𝑂 (

𝛿


(𝑡) − 𝛿


(𝑡 − 𝜏)

) ⋅ 1
𝑁𝑛
) 𝑑𝑤 (𝑡) .

(27)

Hence, Theorem 10 can be proved by the same reasoning as
inTheorem 7.

As is noted below Theorem 7, the assumption Â
𝑖

=

𝜉
𝑖
A
𝑖
(𝑖 = 1, . . . , 𝑠) is only used in the proof of statement (a),

while the assumptions 𝐴 = 𝜁1𝐴 and 𝐵 = 𝜁2𝐵 are only used in
the proof of statement (b).

Recall that if (𝐴, 𝐵) is stabilizable, there exists a𝐶 ∈ R𝑚×𝑛

such that 𝐴 + 𝐵𝐶 is Hurwitz. Therefore, by the Lyapunov
stability theorem, there exists an 𝑛 × 𝑛 matrix 𝑃 > 0 such
that

(𝐴 +𝐵𝐶) 𝑃+𝑃 (𝐴+𝐵𝐶)
𝑇

= − 𝐼. (28)

Define a symmetric matrix 𝑅 ∈ R𝑛×𝑛 by

𝑅 = (𝐴+𝐵𝐶)
𝑇

𝑃+𝑃 (𝐴+𝐵𝐶) . (29)

Theorem 11 (sufficient conditions). Suppose that Assumption
3 holds, both (𝐴, 𝐵) and (𝐴, 𝐵) are stabilizable, and G

𝑖
is

𝑑-regular (𝑑 ≥ 1) for any 𝑖 ∈ 𝑆. If 𝐹 = −(𝛼 + 𝛾)𝐼
𝑠
−

diag(𝜌1, . . . , 𝜌𝑠) − 𝑄 is a nonsingular 𝑀-matrix and ((𝜌1 +

𝛽1)
−1
, . . . , (𝜌

𝑠
+𝛽
𝑠
)
−1
)
𝑇

−𝐹
−11
𝑠
is a positive vector, then system

(2) with protocols (5) and (6) achieves consensus for 𝜏(𝑡)

satisfying

̇𝜏 (𝑡) < 1−max
1≤𝑖≤𝑠

𝑏
𝑖
(𝜌
𝑖
+𝛽
𝑖
) , (30)

where (𝑏1, . . . , 𝑏𝑠)
𝑇

= 𝐹
−11, 𝛼 = (𝜆

𝑛
(𝑅) − 1)/(2𝜆1(𝑃)),

𝛾 = 2𝜆
𝑛
(�̂�)/𝜆1(�̂�), 𝜌𝑖 = √𝜆

𝑁𝑛
(A𝑇
𝑖
A
𝑖
⊗ 𝐾𝑇𝐵𝑇𝐵𝐾), and 𝛽

𝑖
=

2𝜆
𝑁𝑛
(Â𝑇
𝑖
Â
𝑖
⊗ �̂�
𝑇

𝐵
𝑇

𝐵�̂�). Here, 𝑃, �̂�, and 𝑅 are given by (28),
(19), and (29), respectively.

Moreover, feasible consensus gains 𝐾 and �̂� are given
by 𝐾 = −𝐶/𝑑 and �̂� = 𝜂(𝐵

𝑇

�̂�𝐵)
−1
𝐵
𝑇

�̂�𝐴 with 𝜂 ≥

1/min1≤𝑖≤𝑠, 1≤𝑗≤𝑁𝜎
𝑖

𝑗
, respectively. Here, D̂

𝑖
= diag(𝜎𝑖1, . . . , 𝜎

𝑖

𝑁
)

for 𝑖 = 1, . . . , 𝑠.

Proof. As in the proof of Theorem 8, we will apply Lemma 5
to the error dynamics (26).

To check item (a) in Assumption 4, we note that

2𝛿𝑇 (𝐼
𝑁
⊗𝐴−D

𝑖
⊗𝐵𝐾) 𝛿 = 𝛿

𝑇

(𝐼
𝑁
⊗𝐴−D

𝑖
⊗𝐵𝐾

+ 𝐼
𝑁
⊗𝐴
𝑇

−D
𝑖
⊗𝐾
𝑇

𝐵
𝑇

) 𝛿 ≤ 𝜆
𝑁𝑛

(𝐼
𝑁
⊗𝐴−D

𝑖

⊗𝐵𝐾+ 𝐼
𝑁
⊗𝐴
𝑇

−D
𝑖
⊗𝐾
𝑇

𝐵
𝑇

) ‖𝛿‖
2
= 𝜆
𝑛
(𝐴

−𝑑𝐵𝐾+ (𝐴−𝑑𝐵𝐾)
𝑇

) ‖𝛿‖
2
,

(31)

where we have used the assumption that G
𝑖
is 𝑑-regular and

the Rayleigh quotient inequality. Taking 𝐾 = −𝐶/𝑑 in (31)
and utilizing (28) and (29), we get

2𝛿𝑇 (𝐼
𝑁
⊗𝐴−D

𝑖
⊗𝐵𝐾) 𝛿 ≤ 𝜆

𝑛
(𝐴+𝐵𝐶

+ (𝐴+𝐵𝐶)
𝑇

) ‖𝛿‖
2

=
1

2𝜆1 (𝑃)

⋅ 𝜆
𝑛
((𝐴+𝐵𝐶+ (𝐴+𝐵𝐶)

𝑇

) 𝜆1 (𝑃) 𝐼

+ 𝜆1 (𝑃) 𝐼 (𝐴+𝐵𝐶+ (𝐴+𝐵𝐶)
𝑇

)) ‖𝛿‖
2
≤

1
2𝜆1 (𝑃)

⋅ 𝜆
𝑛
((𝐴+𝐵𝐶+ (𝐴+𝐵𝐶)

𝑇

) 𝑃

+𝑃 (𝐴+𝐵𝐶+ (𝐴+𝐵𝐶)
𝑇

)) ‖𝛿‖
2
=

1
2𝜆1 (𝑃)

𝜆
𝑛
(𝑅

− 𝐼) ‖𝛿‖
2
.

(32)

Therefore, we take 𝛼 = 𝛼
𝑖
= (𝜆
𝑛
(𝑅)−1)/(2𝜆1(𝑃)) for all 𝑖 ∈ 𝑆.

For item (b), again by applying the Rayleigh quotient
inequality we derive

(A𝑖 ⊗𝐵𝐾) 𝛿

2
= 𝛿
𝑇

(A
𝑇

𝑖
⊗𝐾
𝑇

𝐵
𝑇

) (A
𝑖
⊗𝐵𝐾) 𝛿

≤ 𝜆
𝑁𝑛

(A
𝑇

𝑖
A
𝑖
⊗𝐾
𝑇

𝐵
𝑇

𝐵𝐾) ‖𝛿‖
2

=
1
𝑑2
𝜆
𝑁𝑛

(A
𝑇

𝑖
A
𝑖
⊗𝐶
𝑇

𝐵
𝑇

𝐵𝐶) ‖𝛿‖
2
.

(33)

Therefore, we take 𝜌
𝑖
= (1/𝑑)√𝜆

𝑁𝑛
(A𝑇
𝑖
A
𝑖
⊗ 𝐶𝑇𝐵𝑇𝐵𝐶) for 𝑖 ∈

𝑆.
To show (c), we recall the simple norm inequality ‖𝑎 +

𝑏‖
2
≤ 2(‖𝑎‖2 + ‖𝑏‖

2
). It suffices to find suitable 𝛾

𝑖
and 𝛽

𝑖
so

that the following two inequalities hold for 𝑖 ∈ 𝑆:

2 (𝐼𝑁 ⊗𝐴− D̂
𝑖
⊗𝐵�̂�) 𝛿




2
≤ 𝛾
𝑖


𝛿



2
, (34)

2 (Â𝑖 ⊗𝐵�̂�) 𝛿



2
≤ 𝛽
𝑖


𝛿



2
. (35)
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Since (𝐴, 𝐵) is stabilizable, we get �̂� > 0 such that (19)
holds. Hence,

𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

− D̂
𝑇

𝑖
⊗ �̂�
𝑇

𝐵
𝑇

) (𝐼
𝑁
⊗ �̂�)

⋅ (𝐼
𝑁
⊗𝐴− D̂

𝑖
⊗𝐵�̂�) 𝛿

= 𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

�̂�𝐴 − D̂
𝑇

𝑖
D̂
𝑖
⊗ �̂�
𝑇

𝐵
𝑇

𝐵�̂�) 𝛿 =

𝑁

∑

𝑗=1
𝛿
𝑇

𝑗

⋅ (𝐴
𝑇

�̂�𝐴 − (𝜎
𝑖

𝑗
)
2
𝜂
2
𝐴
𝑇

�̂�𝐵 (𝐵
𝑇

�̂�𝐵)
−1
𝐵
𝑇

�̂�𝐴) 𝛿
𝑗

≤

𝑁

∑

𝑗=1
𝛿
𝑇

𝑗
�̂�𝛿
𝑗
= 𝛿
𝑇

(𝐼
𝑁
⊗ �̂�) 𝛿,

(36)

where we have taken �̂� = 𝜂(𝐵
𝑇

�̂�𝐵)
−1
𝐵
𝑇

�̂�𝐴 with 𝜂 ≥

1/min1≤𝑖≤𝑠, 1≤𝑗≤𝑁𝜎
𝑖

𝑗
. Here {𝜎𝑖

𝑗
} are defined as in the statement

of Theorem 11. Since 𝑑 ≥ 1, we have 𝜎𝑖
𝑗
> 0 for all 𝑖 and 𝑗.

Therefore, 𝜂 is well defined.
Note that

(𝐼
𝑁
⊗𝐴− D̂

𝑖
⊗𝐵�̂�) 𝛿




2

= trace (𝛿𝑇 (𝐼
𝑁
⊗𝐴
𝑇

− D̂
𝑇

𝑖
⊗ �̂�
𝑇

𝐵
𝑇

)

⋅ (𝐼
𝑁
⊗𝐴− D̂

𝑖
⊗𝐵�̂�) 𝛿



) = 𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

− D̂
𝑇

𝑖

⊗ �̂�
𝑇

𝐵
𝑇

) (𝐼
𝑁
⊗𝐴− D̂

𝑖
⊗𝐵�̂�) 𝛿

=

(𝐼
𝑁
⊗𝐴− D̂

𝑖
⊗𝐵�̂�) 𝛿



2
.

(37)

Using (36) we obtain


(𝐼
𝑁
⊗𝐴− D̂

𝑖
⊗𝐵�̂�) 𝛿




2
≤

1
𝜆1 (�̂�)

⋅ 𝛿
𝑇

(𝐼
𝑁
⊗𝐴
𝑇

− D̂
𝑇

𝑖
⊗ �̂�
𝑇

𝐵
𝑇

) (𝐼
𝑁
⊗ �̂�)

⋅ (𝐼
𝑁
⊗𝐴− D̂

𝑖
⊗𝐵�̂�) 𝛿 ≤

1
𝜆1 (�̂�)

𝛿
𝑇

(𝐼
𝑁
⊗ �̂�) 𝛿

≤
𝜆
𝑛
(�̂�)

𝜆1 (�̂�)
𝛿
𝑇

𝛿 ≤
𝜆
𝑛
(�̂�)

𝜆1 (�̂�)


𝛿



2
.

(38)

Therefore, (34) holds by taking 𝛾 = 𝛾
𝑖
= 2𝜆
𝑛
(�̂�)/𝜆1(�̂�) for

any 𝑖 ∈ 𝑆.
Similarly, (35) is true with 𝛽

𝑖
= 2𝜆
𝑁𝑛
(Â𝑇
𝑖
Â
𝑖
⊗ �̂�
𝑇

𝐵
𝑇

𝐵�̂�)

by using the Rayleigh quotient inequality.

Remark 12. (a) Similar comments in Remark 9 can be
applied here. In addition, we note that the requirement in
Theorem 11—G

𝑖
are 𝑑-regular graphs for all 𝑖—is somewhat

restrictive. If this condition is violated, we might use Weyl’s
inequality (see, e.g., [50]) to bound the maximum eigenvalue
in (31), which nonetheless will lead to a more cumbersome
expression.

(b) Interestingly, sufficient conditions in Theorem 11 do
not explicitly mention connectivity assumptions, whereas

1 2

34

1 2

34

1 2

34

𝒢3

𝒢1 𝒢2

Figure 1: Communication topologiesG1,G2, andG3 for system (1).

necessary conditions in Theorem 10 clearly state certain
connectivity assumption. To see how some connectivity is
implicitly required in Theorem 11, we consider a special case
with 𝑛 = 𝑚 = 1, 𝑆 = {1, 2}, andG

𝑖
(𝑖 ∈ 𝑆)being not connected

and having two connected components, out of which one is a
complete graph with 𝑑 + 1 nodes. We can show that matrix 𝐹
in Theorem 11 is not a nonsingular 𝑀-matrix, violating the
assumption of Theorem 11. Indeed, it is straightforward to
check that 𝛾 = 2, 𝜌1 = 𝜌2 = 𝑑|𝐵𝐾|, and 𝛼 = 2(𝐴 + 𝐵𝐶) < 0
with 𝐴 ≥ 0. Setting 𝑄 = (

−𝑎 𝑎

𝑏 −𝑏
) with 𝑎, 𝑏 > 0, we obtain the

2× 2 matrix 𝐹. 𝐹 being a nonsingular𝑀-matrix is equivalent
to the fact that all its leading principal minors are positive
[41], which in turn yields −2(𝐴 + 𝐵𝐶) − 2 − 𝑑|𝐵𝐾| > 0.
However, this inequality does not hold for any 𝐾 ∈ R when
𝐴 + 𝐵𝐶 ≥ −1.

4. Simulation Examples

In this section, we present several examples to illustrate
the availability of the proposed results. We consider all the
adjacency matrices as binary 0-1 matrices in the following.

Example 1 (system with self-delay). Consider multiagent
system (1) with𝑁 = 4 agents.The communication topologies
will randomly switch amongst the triad G1, G2, and G3 of
Figure 1 following a homogeneous Markovian process with
generator

𝑄 = (

−2 1 1
1 −4 3
1 1 −2

) (39)

and state space 𝑆 = {1, 2, 3}. Note that each of these
three graphs is balanced and contains a spanning tree. For
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0 10 20 30

0

0.5

1

1.5

t

Th
ird

 co
m

po
ne

nt
 o

f𝛿
i

Agent 1
Agent 2

Agent 3
Agent 4

−1.5

−1

−0.5

(c) 𝜏(𝑡) = 0.05sin2(𝑡)

−15

−10

−5

0 5 10 15 20 25

0

5

10

15

t

Th
ird

 co
m

po
ne

nt
 o

f𝛿
i

Agent 1
Agent 2

Agent 3
Agent 4

(d) 𝜏(𝑡) = 0.2sin2(𝑡)

Figure 2: Consensus errors of multiagent system (1) with respect to different time-delay 𝜏(𝑡).

𝑖 = 1, 2, 3, we choose Â
𝑖
= 0.01 ⋅A

𝑖
. Take 𝑛 = 3, 𝑚 = 1 and

let the agent dynamics be specified as

𝐴 = (

−0.5 0 0
0 1 0
0 1 0

),

𝐵 = 𝐵 = (

0

1

0

) ,

(40)

and 𝐴 = 0.01 ⋅ 𝐴. Since 𝐴 + 𝐵𝐶 and 𝐴 + 𝐵𝐶 are Hurwitz by
choosing 𝐶 = (−1, −2, −1) and 𝐶 = 0.01 ⋅ 𝐶, both pairs (𝐴, 𝐵)
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and (𝐴, 𝐵) are stabilizable. Since Riccati inequalities (18) and
(19) can be written as linear matrix inequalities (LMIs) (see,
e.g., [51]), we obtain 𝑃 = �̂� = diag(1, 1.1, 1) by using LMI
Toolbox in MATLAB. We calculate

𝐹
−1

= (

0.1807 0.1295 0.0904
0.3168 0.0565 0.0132
0.0168 0.2832 0.0681

), (41)

which is a nonnegativematrix. In view ofTheorem 8, we solve
the consensus gains as𝐾 = �̂� = (2, 2.5, 2).

According to Theorem 8, multiagent system (1) with
protocols (3) and (4) achieves consensus for 𝜏(𝑡) satisfying

̇𝜏 (𝑡) < 1− (𝜌 +𝛽) ⋅ 𝐹
−11
𝑠

max

= 1− (√1.1+ 1.1) × 0.4006 = 0.1392.
(42)

With the initial state of each agent being taken randomly
from [−1, 1], we show in Figures 2(a)–2(c) a sample path
of the consensus errors 𝛿

𝑖
(𝑖 = 1, . . . , 4) by choosing

𝜏(𝑡) = 0.05sin2(𝑡). Clearly, (42) is satisfied, and consensus is
achieved. In Figure 2(d), we show only the third component
of 𝛿
𝑖
(𝑖 = 1, . . . , 4) with 𝜏(𝑡) = 0.2sin2(𝑡). This delay violates

condition (42), and consensus is not achieved.

Example 2 (system without self-delay). Consider multiagent
system (2) with𝑁 = 4 agents.The communication topologies
switch amongst G1, G2, and G3 of Figure 3 following the
same Markovian process as defined in Example 1. Note that
each of these three graphs is balanced and 𝑑-regular with
𝑑 = 1.G1 andG3 contain spanning trees butG2 does not.The
adjacency matricesA

𝑖
, Â
𝑖
(𝑖 = 1, 2, 3) and the agent dynam-

ics 𝐴, 𝐵, 𝐴, 𝐵 are taken as in Example 1. Solving Lyapunov
equation (28) by using LYAP function inMATLAB,we obtain

𝑃 = (

1 −0.2857 −0.5714
−0.2857 1.2857 −0.5000
−0.5714 −0.5000 2.3571

), (43)

and �̂� = diag(1, 1.1, 1) as in Example 1. It follows from (29)
that

𝑅 = (

−1 0.2857 0
0.2857 −2.5714 0

0 0 0
). (44)

We calculate 𝛼 = −0.9690, 𝛾 = 2.2, and a nonnegative matrix

𝐹
−1

= (

0.2307 0.1453 0.0786
0.1722 0.1204 0.2548
0.0470 0.3793 0.0682

). (45)

From Theorem 11, we solve the consensus gains as 𝐾 = �̂� =

(1, 2, 1).

1 2

34

1 2

34

1 2

34

𝒢3

𝒢1 𝒢2

Figure 3: Communication topologiesG1,G2, andG3 for system (2).

In light of Theorem 11, multiagent system (2) with proto-
cols (5) and (6) achieves consensus for 𝜏(𝑡) satisfying

̇𝜏 (𝑡) < 1−max
1≤𝑖≤3

𝑏
𝑖
(𝜌
𝑖
+𝛽
𝑖
)

= 1−max {0.2510, 0.7557, 0.0586} = 0.2443.
(46)

With the initial state of each agent being taken randomly
from [−1, 1], we show in Figures 4(a)–4(c) a sample path of
the consensus errors 𝛿

𝑖
(𝑖 = 1, . . . , 4) by choosing 𝜏(𝑡) =

0.1cos2(𝑡). Since (46) is satisfied, consensus is achieved. We
plot in Figure 4(d) only the third component of 𝛿

𝑖
(𝑖 =

1, . . . , 4)with 𝜏(𝑡) = 0.3cos2(𝑡). Condition (46) does not hold,
and consensus is not achieved.

Example 3 (tightness of bounds). In this example, we con-
sider multiagent system (1) with 𝑁 = 1000 agents. The
communication topologies will randomly switch amongst
10 random graphs G1, . . . ,G10 in the classical Erdős-Rényi
G(𝑁, 𝑝) model with 𝑝 being the connection probability
between any two nodes [52]. The generator of the underlying
Markovian process 𝜃(𝑡) with 𝑆 = {1, 2, . . . , 10} is taken as
𝑄 = −10𝐼10 + 1101𝑇10. The adjacency matrices A

𝑖
, Â
𝑖
(𝑖 =

1, 2, . . . , 10) and the agent dynamics 𝐴, 𝐵, 𝐴, 𝐵 are taken as
in Example 1. Moreover, we fix 𝜏(𝑡) ≡ 0.05.

The program stops if all components of 𝛿
𝑖
(𝑖 = 1, 2, . . . ,

10) are less than 10−5; if the program does not stop before
𝑡 = 104, we regard that the consensus is not achieved.
For each given 𝑝, we collect 500 samples (1 sample consists
of 10 graphs) to check whether the system finally achieves
consensus. The fraction of samples that reach consensus is
shown in Figure 5 as a function of 𝑝. The curve displays a
sigmoidal variation with respect to 𝑝, saturating at 1 when
𝑝 is just over 3.1 × 10−3. It is well known that [52] the
random graphs are not connected with high probability if
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Figure 4: Consensus errors of multiagent system (2) with respect to different time-delay 𝜏(𝑡).

𝑝 < (ln𝑁)/𝑁 (here, about 6.9 × 10−3) in the large 𝑁 limit.
Figure 5 reveals that consensus can still be achieved with
a much smaller 𝑝 than the connectivity threshold indicat-
ing that the sufficient condition regarding connectivity in
Theorem 8 can be weakened.

5. Conclusion

This paper has studied the continuous-time consensus prob-
lem of linear multiagent systems under Markovian switching
interaction topologies, random noises, and time-varying
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Figure 5: Probability of reaching consensus for multiagent system
(1) as a function of 𝑝 over Markovian switching random graphs
G(𝑁, 𝑝).

delays. The agent dynamics are described by linear time-
invariant systems, in which two types of network-induced
delays are considered, namely, delays affecting only the
output of the agents’ neighbors and delays affecting both
the agents’ own output and the output of their neighbors.
Necessary and sufficient consensus conditions have been
derived, respectively, for these two classes of multiagent
systems.The design of consensus gains has a computationally
advantageous decoupling feature. Numerical examples are
given to demonstrate the effectiveness of the proposed meth-
ods. Although there is a gap between necessary and sufficient
conditions, the necessary one seems to be tighter in view of
the simulations. Future research worth investigation could
be the heterogeneous time delays, general uncertainties, and
systems with different dynamics (see, e.g., [53]).
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[19] B. Touri and A. Nedić, “On ergodicity, infinite flow, and
consensus in randommodels,” IEEE Transactions on Automatic
Control, vol. 56, no. 7, pp. 1593–1605, 2011.



Mathematical Problems in Engineering 13

[20] G.Miao, S. Xu, and Y. Zou, “Necessary and sufficient conditions
for mean square consensus under Markov switching topolo-
gies,” International Journal of Systems Science, vol. 44, no. 1, pp.
178–186, 2013.

[21] I. Matei, J. S. Baras, and C. Somarakis, “Convergence results
for the linear consensus problem under Markovian random
graphs,” SIAM Journal on Control and Optimization, vol. 51, no.
2, pp. 1574–1591, 2013.

[22] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional
Differential Equations, Springer, New York, NY, USA, 1993.

[23] U.Münz, A. Papachristodoulou, and F.Allgöwer, “Delay robust-
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This paper extends the stochastic stability criteria of two measures to the mean stability and proves the stability criteria for a kind
of stochastic Itô’s systems. Moreover, by applying optimal control approaches, the mean stability criteria in terms of two measures
are also obtained for the stochastic systems with coefficient’s uncertainty.

1. Introduction

Lyapunov’smethod, whichmakes an essential use of auxiliary
functions (also called Lyapunov functions), is an important
approach to study the stability of differential systems includ-
ing ordinary differential equations (ODEs) and stochastic
differential equations (SDEs). This method started in Lya-
punov’s original work in 1892 [1] for demonstrating stability
of ODEs. In the 1960s, Movchan [2] studied the stability
with two measures; such works were also developed and can
be seen in [3]. In the past decades, Lyapunov’s method is
modified to the study of stability of Markovian processes [4],
stochastic differential systems based on Brownian motions
[5], semimartingales [6], or Lévy processes [7] and is also
developedwith the formof exponential stability [8] or LaSalle
theorem [9], and so forth. Recently, the stability for systems
with unknown parameters is also discussed [10], and the
theorems of stability are widely applied in aerospace [11],
state-feedback control [12], automatic control [13], neural
networks [14], and other fields.

In this paper, we will discuss the following stochastic Itô’s
systems:

𝑑𝑥 = 𝑓 (𝑡, 𝑥) 𝑑𝑡 + 𝜎 (𝑡, 𝑥) 𝑑𝐵
𝑡
,

𝑥 (𝑡
0
) = 𝑥
0
, 𝑡 ≥ 𝑡

0
∈ R
+
,

(1)

where 𝑓, 𝜎 satisfy the usual Lipschitzian conditions and 𝐵 is
𝑑-dimensional standard Brownian motion. It is well known
that, for a stochastic process𝑥(𝑡) and a given positive function
ℎ(𝑡, 𝑥), lim

𝑡→∞
ℎ(𝑡, 𝑥(𝜔, 𝑡)) = 0 almost surely discussed in

[15] does not imply that lim
𝑡→∞

Eℎ(𝑡, 𝑥(𝑡)) → 0. So, we
extend Lyapunov’s methods used by [3] for ODEs to the
stochastic cases and study the mean stability criteria in terms
of two measures for system (1).

This paper is organized as follows: In Section 2, we first
introduce Lyapunov’s derivatives for (1) and deduce the
basic comparison results in terms of Lyapunov’s function. In
Section 3, we prove the stochastic two-measure stability crite-
ria for Itô systems, which can be seen as the extension of that
of the ODEs. As described in [16], stability, robustness, and
optimality can be considered systematically and simultane-
ously. In Section 4, the optimal control approach is extended
to the stochastic systems with coefficient’s uncertainty.

2. Basic Comparison Results for Stochastic
Differential Equations

Let (Ω,F, 𝑃) be a given completed probability space, and
{𝐵
𝑡
}
𝑡≥0

is a standard Brownian motion with filtration:

F
𝑡
= 𝜎 (𝐵

𝑠
, 𝑠 ≤ 𝑡) . (2)
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Let 𝑓 ∈ 𝐶(R
+
× R𝑛,R𝑛), 𝜎 ∈ 𝐶(R

+
× R𝑛,R𝑛 × R𝑑)

be deterministic functions and satisfy the following Lipschitz
condition and linear growth condtion: there exists 𝐿 > 0, for
every 𝑥, 𝑦 ∈ R𝑛, such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 +

𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 ,

𝑓 (𝑡, 𝑥)
 ≤ 𝐿 (1 + ‖𝑥‖) .

(3)

For a given function 𝑉 ∈ 𝐶(R
+
×R𝑛,R), (𝑡, 𝑥) ∈ R

+
×R𝑛,

we denote

D
+
𝑉 (𝑡, 𝑥)

(1)
= lim sup
ℎ→0

+

1

ℎ

⋅ E [𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑓 (𝑡, 𝑥) + √ℎ𝜎 (𝑡, 𝑥) 𝜉)

− 𝑉 (𝑡, 𝑥)] ,

(4)

where 𝜉 represents a 𝑑-dimensional random variable with
standard normal distribution; that is, 𝜉 ∼ 𝑁(0, 𝐼) and 𝐼 is a
𝑑-order identity matrix.

Remark 1. We use the notationD+𝑉(𝑡, 𝑥)
(1)

to emphasize the
definition with respect to system (1). For convenience, we use
the shortened formD+𝑉 to substituteD+𝑉(𝑡, 𝑥)

(1)
.

Remark 2. If 𝑉 ∈ 𝐶
1,2
(R
+
× R𝑛,R

+
), D+𝑉(𝑡, 𝑥) is

Lyapunov’s operatorL associated with (1); that is,

D
+
𝑉
(1)
= L𝑉 := 𝑉

𝑡
+ ⟨𝑉
𝑥
, 𝑓⟩ +

1

2
⟨𝜎𝜎
𝑇
, 𝑉
𝑥𝑥
⟩ , (5)

where 𝑉
𝑡
is the partial derivative for 𝑡, 𝑉

𝑥
is the gradient of 𝑉

for 𝑥, and 𝑉
𝑥𝑥

is the Hessian matrix of 𝑉 for 𝑥.

Since (4) is dependent on expectation calculating, it is
not easy to check whether D+𝑉 exists or not. The following
lemma gives a condition for the existence ofD+𝑉.

Lemma 3. Let 𝑉 ∈ 𝐶(R
+
×R𝑛,R) be continuous one-order

differentiable for 𝑡 and also satisfy the following condition:

𝑉 (𝑡, 𝑥 + 𝑦) − 𝑉 (𝑡, 𝑥) − ⟨𝛼 (𝑡, 𝑥) , 𝑦⟩
 ≤ 𝐾 (𝑡)

𝑦

2

,

∀𝑥, 𝑦 ∈ R
𝑛
,

(6)

where 𝛼(𝑡, 𝑥) is continuous onR
+
×R𝑛 and𝐾(𝑡) ≥ 0 is locally

bounded for 𝑡. ThenD+𝑉(𝑡, 𝑥) exists at (𝑡, 𝑥).

Proof. Denote 𝑦 = ℎ𝑓(𝑡, 𝑥) + √ℎ𝜎(𝑡, 𝑥)𝜉; then, for fixed 𝑡, 𝑥,

1

ℎ
E [𝑉 (𝑡 + ℎ, 𝑥 + 𝑦) − 𝑉 (𝑡, 𝑥)]

=
1

ℎ
E [𝑉 (𝑡 + ℎ, 𝑥 + 𝑦) − 𝑉 (𝑡 + ℎ, 𝑥)]

+
1

ℎ
[𝑉 (𝑡 + ℎ, 𝑥) − 𝑉 (𝑡, 𝑥)] .

(7)

By (6) and distribution of 𝜉, we have the first item of the right
side of (7) that is bounded:

⟨𝛼 (𝑡, 𝑥) , 𝑓 (𝑡, 𝑥)⟩

− 𝐾 (𝑡, 𝑥, 𝑦)E

√ℎ𝑓 (𝑡, 𝑥) + 𝜎 (𝑡, 𝑥) 𝜉



2

≤
1

ℎ
E [𝑉 (𝑡 + ℎ, 𝑥 + 𝑦) − 𝑉 (𝑡 + ℎ, 𝑥)]

≤ ⟨𝛼 (𝑡, 𝑥) , 𝑓 (𝑡, 𝑥)⟩

− 𝐾 (𝑡)E

√ℎ𝑓 (𝑡, 𝑥) + 𝜎 (𝑡, 𝑥) 𝜉



2

.

(8)

Since𝑉 is differentiable for 𝑡, so the last item of the right side
of (7) is also bounded. Therefore, the supremum limit of (7)
exists; that is,D+𝑉(𝑡, 𝑥) exist exactly.

The following lemmas will be used later.

Lemma 4 (seeTheorem 7.1.2 in [6], orTheorems 4.3 and 4.4

in [17]). Suppose 𝑓, 𝜎 satisfy (3). Then, stochastic differential
equation (1) admits a unique strong solution {𝑥(𝑡), 𝑡 ≥ 0} such
that, for any ℎ > 0 ([𝑡, 𝑡 + ℎ] ⊂ [0, 𝑇], 𝑙 ≥ 2), there exists (𝐾

𝑇

is a constant dependent only on 𝑇, 𝑙, and 𝐿):

E sup
𝑡≤𝑠≤𝑡+ℎ

‖𝑥 (𝑠)‖
𝑙
≤ 𝐾
𝑇
(1 + 𝐸 ‖𝑥 (𝑡)‖

𝑙
) , (9)

E ‖𝑥 (𝑟) − 𝑥 (𝑠)‖
𝑙
≤ 𝐾
𝑇
(1 + 𝐸 ‖𝑥 (𝑠)‖

𝑙
) |𝑟 − 𝑠|

𝑙/2
. (10)

Lemma 5. Suppose 𝑉 satisfies (6), and 𝑥(𝑡) is the solution of
(1); let𝑚(𝑡) = E𝑉(𝑡, 𝑥(𝑡)); then

𝐷
+
𝑚(𝑡) ≤ ED

+
𝑉 (𝑡, 𝑥 (𝑡)) , (11)

where D+𝑉(𝑡, 𝑥(𝑡)) = D+𝑉(𝑡, 𝑥)|
𝑥=𝑥(𝑡)

and 𝐷
+
𝑚(𝑡) is the

usual right upper Dini derivative defined by

𝐷
+
𝑚(𝑡) = lim sup

ℎ→0
+

𝑚(𝑡 + ℎ) − 𝑚 (𝑡)

ℎ
. (12)

Proof. For small ℎ > 0, we have

𝑚(𝑡 + ℎ) − 𝑚 (𝑡) = E [𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ)) − 𝑉 (𝑡

+ ℎ, 𝑥 (𝑡) + ℎ𝑓 (𝑡, 𝑥 (𝑡)) + 𝜎 (𝑡, 𝑥 (𝑡)) (𝐵
𝑡+ℎ

− 𝐵
𝑡
))

+ 𝑉 (𝑡 + ℎ, 𝑥 (𝑡) + ℎ𝑓 (𝑡, 𝑥 (𝑡))

+ 𝜎 (𝑡, 𝑥 (𝑡)) (𝐵
𝑡+ℎ

− 𝐵
𝑡
)) − 𝑉 (𝑡, 𝑥 (𝑡))] .

(13)

We now prove that the first two items of the right side are the
higher infinitesimal of ℎ. By (1), we know that

𝑥 := 𝑥 (𝑡 + ℎ)

− (𝑥 (𝑡) + ℎ𝑓 (𝑡, 𝑥 (𝑡)) + 𝜎 (𝑡, 𝑥 (𝑡)) (𝐵
𝑡+ℎ

− 𝐵
𝑡
))

= ∫

𝑡+ℎ

𝑡

[𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑡, 𝑥 (𝑡))] 𝑑𝑠

+ ∫

𝑡+ℎ

𝑡

[𝜎 (𝑠, 𝑥 (𝑠)) − 𝜎 (𝑡, 𝑥 (𝑡))] 𝑑𝐵𝑠.

(14)
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For convenience, we denote 𝑓
𝑠
:= 𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑡, 𝑥(𝑡)),

similar meaning for �̂�
𝑠
. We have

E ‖𝑥‖
2
≤ 2(E



∫

𝑡+ℎ

𝑡

𝑓
𝑠
𝑑𝑠



2

+ E



∫

𝑡+ℎ

𝑡

�̂�
𝑠
𝑑𝐵𝑠



2

)

≤ 2[ℎ∫

𝑡+ℎ

𝑡

E

𝑓
𝑠



2

𝑑𝑠 + ∫

𝑡+ℎ

𝑡

E
�̂�𝑠


2

𝑑𝑠]

≤ 2𝐿 [ℎ∫

𝑡+ℎ

𝑡

E ‖𝑥 (𝑠) − 𝑥 (𝑡)‖
2
𝑑𝑠

+ ∫

𝑡+ℎ

𝑡

E ‖𝑥 (𝑠) − 𝑥 (𝑡)‖
2
𝑑𝑠] .

(15)

By Lemma 4 and inequality (10), we have

E ‖𝑥‖
2
≤ 2𝐿𝐾

𝑇
(1 + E ‖𝑥 (𝑡)‖

2
) (

1

2
ℎ
3
+ ℎ
2
) . (16)

Let 𝑥
𝑡
:= 𝑥(𝑡) + ℎ𝑓(𝑡, 𝑥(𝑡)) + 𝜎(𝑡, 𝑥(𝑡))(𝐵

𝑡+ℎ
− 𝐵
𝑡
); then (𝛼(𝑥)

replaces 𝛼(𝑡, 𝑥) for shortening)

E
𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ)) − 𝑉 (𝑡 + ℎ, 𝑥𝑡) − ⟨𝛼 (𝑥𝑡) , 𝑥⟩



≤ 𝐶 (ℎ) ℎ
2
.

(17)

Now we estimate the order of

E ⟨𝛼 (𝑥
𝑡
) , 𝑥⟩ = E ⟨𝛼 (𝑥 (𝑡)) , 𝑥⟩

+ E ⟨𝛼 (𝑥
𝑡
) − 𝛼 (𝑥 (𝑡)) , 𝑥⟩ .

(18)

Since E⟨𝛼(𝑥(𝑡)), 𝑥⟩ = E⟨𝛼(𝑥(𝑡)),E[𝑥 | F
𝑡
]⟩ and E[𝑥 | F

𝑡
] =

E[∫
𝑡+ℎ

𝑡
𝑓
𝑠
𝑑𝑠 | F

𝑡
], so

|E ⟨𝛼 (𝑥 (𝑡)) , 𝑥⟩| =



E⟨𝛼 (𝑥 (𝑡)) , ∫

𝑡+ℎ

𝑡

𝑓
𝑠
𝑑𝑠⟩



≤ 𝐶
1
(ℎ) ℎ
3/2
,

E ⟨𝛼 (𝑥𝑡) − 𝛼 (𝑥 (𝑡)) , 𝑥⟩
 ≤

𝛼 (𝑥𝑡) − 𝛼 (𝑥 (𝑡))
 ‖𝑥‖

≤ 𝐶
2
(ℎ) ℎ
3/2
,

(19)

where𝐶
1
(ℎ), 𝐶

2
(ℎ) are continuous positive functions. By (19),

we have
E ⟨𝛼 (𝑥𝑡) , 𝑥⟩

 ≤ 𝐶3 (ℎ) ℎ
3/2
. (20)

Since
E [𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ)) − 𝑉 (𝑡 + ℎ, 𝑥𝑡)]



≤ E
𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ)) − 𝑉 (𝑡 + ℎ, 𝑥𝑡) − ⟨𝛼 (𝑥𝑡) , 𝑥⟩



+
E ⟨𝛼 (𝑥𝑡) , 𝑥⟩

 ,

(21)

by (17) and (20), we see that the first two items of right side
are higher infinitesimal of 𝑡. So we have

lim
ℎ→0

+

1

ℎ

E [𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ)) − 𝑉 (𝑡 + ℎ, 𝑥𝑡)]
 = 0. (22)

For the last two items of (13), since 𝑥(𝑡) is independent of
𝐵
𝑡+ℎ

− 𝐵
𝑡
with normal distribution𝑁(0, ℎ), so we have

lim sup
ℎ→0

1

ℎ
E [𝑉 (𝑡 + ℎ, 𝑥 (𝑡) + ℎ𝑓 (𝑡, 𝑥 (𝑡))

+ 𝜎 (𝑡, 𝑥 (𝑡)) (𝐵
𝑡+ℎ

− 𝐵
𝑡
)) − 𝑉 (𝑡, 𝑥 (𝑡))]

≤ E{lim sup
ℎ→0

1

ℎ

⋅E [𝑉 (𝑡 + ℎ, 𝑦 + ℎ𝑓 (𝑡, 𝑦) + 𝜎 (𝑡, 𝑦) (𝐵
𝑡+ℎ

− 𝐵
𝑡
))

− 𝑉 (𝑡, 𝑦)]
𝑦=𝑥(𝑡)

} = E [D
+
𝑉 (𝑡, 𝑦)

𝑦=𝑥(𝑡)] .

(23)

This proves (11).

The following lemma will be used in the proof of
Theorem 7.

Lemma6 (seeTheorem 1.5.2 in [3]). Let𝑔 ∈ 𝐶(R
+
×R
+
,R)

and 𝑟(𝑡) be the maximal solution of

�̇� = 𝑔 (𝑡, 𝑢) ,

𝑢 (𝑡
0
) = 𝑢
0
,

(24)

existing on [𝑡
0
,∞). Suppose 𝑚 ∈ 𝐶(R

+
,R
+
) and 𝐷𝑚(𝑡) ≤

𝑔(𝑡, 𝑚(𝑡)), 𝑡 ≥ 𝑡
0
, where 𝐷 is any fixed Dini derivative. Then

𝑚(𝑡
0
) ≤ 𝑢
0
implies𝑚(𝑡) ≤ 𝑟(𝑡), 𝑡 ≥ 𝑡

0
.

Now we formulate the basic comparison results in terms
of Lyapunov function 𝑉.

Theorem 7. AssumeD+𝑉(𝑡, 𝑥) satisfies

D
+
𝑉 (𝑡, 𝑥) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥)) , (𝑡, 𝑥) ∈ R

+
×R
𝑛
, (25)

where 𝑔 ∈ 𝐶(R2
+
, 𝑅) is concave for 𝑢. Let 𝑟(𝑡) = 𝑟(𝑡, 𝑡

0
, 𝑢
0
) be

the maximal solution of the differential equation

�̇� = 𝑔 (𝑡, 𝑢) ,

𝑢 (𝑡
0
) = 𝑢
0
≥ 0.

(26)

Then, for every solution of (1) 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
),𝑉(𝑡
0
, 𝑥
0
) ≤ 𝑢
0

implies

E𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑟 (𝑡) , 𝑡 ≥ 𝑡
0
. (27)

Proof. Denote 𝑚(𝑡) = E𝑉(𝑡, 𝑥(𝑡)). By Lemma 5 and the
concave of 𝑔 we have

𝐷
+
𝑚(𝑡) ≤ 𝑔 (𝑡, 𝑚 (𝑡)) , 𝑚 (𝑡

0
) ≤ 𝑢
0
. (28)

By Lemma 6, we can obtain the result (27).

Remark 8. If 𝑉 ∈ 𝐶
1,2
(R
+
× R𝑛,R

+
), the inequality (25)

became

L𝑉 (𝑡, 𝑥) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥)) , (𝑡, 𝑥) ∈ R
+
×R
𝑛
. (29)
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3. Stability Criteria in terms of Two Measures

Now we discuss the two-measure stability criteria for the
stochastic differential system (1). We assume 𝑓(𝑡, 0) =

𝜎(𝑡, 0) = 0 for all 𝑡 ≥ 𝑡
0
. Firstly, we give some definitions

for stochastic stability.

Definition 9. The stochastic differential system (1) is said to
be

(𝑆
1
) mean (ℎ

0
, ℎ)-equistable, if for each 𝜖 > 0 and 𝑡

0
∈

R
+
, there exists a function 𝛿 = 𝛿(𝑡

0
, 𝜖) > 0 which is

continuous in 𝑡
0
for each 𝜖 such that

Eℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿 implies Eℎ (𝑡, 𝑥 (𝑡)) < 𝜖, 𝑡 ≥ 𝑡

0
, (30)

where 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is any solution of (1);

(𝑆
2
) mean (ℎ

0
, ℎ)-uniformly stable, if (𝑆

1
) holds with 𝛿

being independent of 𝑡
0
;

(𝑆
3
) mean (ℎ

0
, ℎ)-quasiequiasymptotically stable, if for

each 𝜖 > 0 and 𝑡
0
∈ R
+
, there exist positive number

𝛿
0
= 𝛿
0
(𝑡
0
) and 𝑇 = 𝑇(𝑡

0
, 𝜖) such that

Eℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿
0

implies Eℎ (𝑡, 𝑥 (𝑡)) < 𝜖, 𝑡 ≥ 𝑡
0
+ 𝑇;

(31)

(𝑆
4
) mean (ℎ

0
, ℎ)-quasiuniform asymptotically stable if

(𝑆
3
) holds with 𝛿

0
and 𝑇 being independent of 𝑡

0
;

(𝑆
5
) mean (ℎ

0
, ℎ)-asymptotically stable if (𝑆

1
) holds and,

given 𝑡
0
∈ R
+
, there exists a 𝛿

0
= 𝛿
0
(𝑡
0
) > 0 such that

Eℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿
0
implies lim

𝑡→∞

Eℎ (𝑡, 𝑥 (𝑡)) = 0; (32)

(𝑆
6
) mean (ℎ

0
, ℎ)-uniformly equiasymptotically stable, if

(𝑆
1
) and (𝑆

3
) hold together;

(𝑆
7
) mean (ℎ

0
, ℎ)-uniformly asymptotically stable if (𝑆

2
)

and (𝑆
4
) hold simultaneously;

(𝑆
8
) mean (ℎ

0
, ℎ)-unstable if (𝑆

1
) fails to hold.

The following classes of functions will be used in this
paper:

K = {𝑎 ∈ 𝐶(R
+
,R
+
) : 𝑎(𝑢) is strictly increasing in

𝑢 and 𝑎(0) = 0},
CK = {𝑎 ∈ 𝐶(R2

+
,R
+
) : 𝑎(𝑡, 𝑠) ∈ K for each 𝑡},

Γ = {ℎ ∈ 𝐶(R
+
×R𝑛,R

+
) : inf ℎ(𝑡, 𝑥) = 0}.

Definition 10. Let ℎ
0
, ℎ ∈ Γ. Then, we say that ℎ

0
is finer

than ℎ if there exists a function 𝜙 ∈ CK such that ℎ(𝑡, 𝑥) ≤
𝜙(𝑡, ℎ
0
(𝑡, 𝑥)). Furthermore, if 𝜙 is independent of 𝑡 then we

call ℎ
0
uniformly finer than ℎ.

Definition 11. Let 𝑉 ∈ 𝐶(R
+
× R𝑛,R

+
). If there exists a

function convex 𝑏 ∈ K such that 𝑏(ℎ(𝑡, 𝑥)) ≤ 𝑉(𝑡, 𝑥), then we
call 𝑉 ℎ-positive definite. If there exists a concave function
𝑎 ∈ K such that 𝑉(𝑡, 𝑥) ≤ 𝑎(ℎ(𝑡, 𝑥)), then we call 𝑉 ℎ-
decrescent.

Theorem 12. Assume that

(𝐴
0
) ℎ
0
, ℎ ∈ Γ and ℎ

0
is uniformly finer than ℎ,

(𝐴
1
) 𝑉 ∈ 𝐶(R

+
× R𝑛,R

+
), 𝑉(𝑡, 𝑥) satisfies (6), and 𝑉 is

ℎ-positive definite and ℎ
0
-decrescent,

(𝐴
2
) 𝑔 ∈ 𝐶(R2

+
,R) and 𝑔(𝑡, 0) ≡ 0,

(𝐴
3
) D+𝑉(𝑡, 𝑥) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑥)) for (𝑡, 𝑥) ∈ R

+
×R𝑛.

Then, the stability properties of the trivial solution of (26)
imply the corresponding (ℎ

0
, ℎ)-stability properties of (1).

Proof. Since 𝑉 is ℎ-positive definite, so there exists a convex
𝑏 ∈ K such that

𝑏 (ℎ (𝑡, 𝑥)) ≤ 𝑉 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ R
+
×R
𝑛
. (33)

Suppose the trivial solution of (26) is equistable and
𝑟(𝑡, 𝑡
0
, 𝑟(𝑡
0
)) (𝑡 ≥ 𝑡

0
) is its maximal solutions with initial time

𝑡
0
and initial value 𝑟(𝑡

0
) ≥ 0, then, for every 𝜖 > 0, there exists

𝛿
1
> 0, when 𝑟(𝑡

0
) < 𝛿
1
,

𝑟 (𝑡) = 𝑟 (𝑡, 𝑡
0
, 𝑟 (𝑡
0
)) < 𝑏 (𝜖) , 𝑡 ≥ 𝑡

0
. (34)

Let 𝑟(𝑡
0
) = E𝑉(𝑡

0
, 𝑥(𝑡
0
)); then, by Theorem 7, we have

E𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑟 (𝑡) , 𝑡 ≥ 𝑡
0
. (35)

Since 𝑉 is ℎ
0
-decrescent, there exists a concave 𝑎 ∈ K such

that

𝑉 (𝑡, 𝑥) ≤ 𝑎 (ℎ
0
(𝑡, 𝑥)) , (𝑡, 𝑥) ∈ R

+
×R
𝑛
. (36)

So

𝑟 (𝑡
0
) ≤ E𝑎 (ℎ

0
(𝑡
0
, 𝑥 (𝑡
0
))) ≤ 𝑎 (Eℎ

0
(𝑡
0
, 𝑥 (𝑡
0
))) . (37)

Since 𝑎 is continuous and strictly increasing, so let 𝛿 =

𝑎
−1
(𝛿
1
); then when Eℎ

0
(𝑡
0
, 𝑥(𝑡
0
)) < 𝛿, inequality (34) holds.

Combining (33), (34), and (35) and using the strictly increase
of 𝑏, we can gain

Eℎ (𝑡, 𝑡
0
, 𝑥 (𝑡
0
)) < 𝜖, 𝑡 ≥ 𝑡

0
, (38)

which implies (1) (ℎ
0
, ℎ)-equistability.

Remark 13. If 𝑉 ∈ 𝐶
1,2
(R
+
×R𝑛,R

+
), then condition (𝐴

3
)

can be replaced by

L𝑉 (𝑡, 𝑥) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥)) . (39)

Remark 14. The stabilities of auxiliary ordinary differential
equation (26) are defined by Definition 2.4.1 in [3].

Example 15. Consider the following 2-dimensional Itô’s sys-
tem:

𝑑𝑥
1
(𝑡) = 𝑥

2
(𝑡) 𝑑𝑡,

𝑑𝑥
2
(𝑡) = − (𝑏𝑥

1
(𝑡) + 𝑎𝑥

2
(𝑡)) 𝑑𝑡

+ (𝑐𝑥
2
(𝑡) + 𝑒𝑥

1
(𝑡)) 𝑑𝐵

𝑡
.

(40)
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Let ℎ(𝑡, 𝑥) = ℎ
0
(𝑡, 𝑥) = 𝑒

𝛾𝑡
(𝑥
2

1
+ 𝑥
2

2
); suppose 𝑉(𝑡, 𝑥) has

the form

𝑉 (𝑡, 𝑥) = 𝑒
𝛾𝑡
(𝛼𝑥
2

1
+ 2𝛽𝑥

1
𝑥
2
+ 𝑥
2

2
) . (41)

Then

L𝑉 = 𝑒
𝛾𝑠
[(𝛾𝛼 − 2𝛽𝑏 + 𝑒

2
) 𝑥
2

1

+ (2𝛾𝛽 + 2𝛼 − 2𝛽𝑎 − 2𝑏 + 2𝑐𝑒) 𝑥
1
(𝑠) 𝑥
2

+ (𝛾 + 2𝛽 − 2𝑎 + 𝑐
2
) 𝑥
2

2
] .

(42)

In order to make 𝑉(𝑡, 𝑥)ℎ-positive, we let

𝛼 > 0,

𝛼 − 𝛽
2
> 0.

(43)

Let 𝑔(𝑡, 𝑢) = −𝜃𝑢, 𝜃 > 0; in order to find 𝜃 > 0 to satisfy

L𝑉 ≤ 𝑔 (𝑡, 𝑉) , (44)

we set

2𝛽𝛾 + 2𝛼 − 2𝛽𝑎 − 2𝑏 + 2𝑐𝑒 = 0,

𝛾𝛼 − 2𝛽𝑏 + 𝑒
2
< 0,

𝛾 + 2𝛽 − 2𝑎 + 𝑐
2
< 0.

(45)

When 𝛾 < 𝑎, combining (43) and (45), we have that, when

max{1
2
[𝑎 − 𝛾 − √(𝛾 − 𝑎)

2

+ 4 (𝑏 − 𝑐𝑒)] ,

𝛾𝑏 − 𝛾𝑐𝑒 + 𝑒
2

𝛾2 + 2𝑏 − 𝛾𝑎
} < 𝛽 < min{𝑏 − 𝑐𝑒

𝛾 − 𝑎
, 𝑎

−
1

2
(𝛾 + 𝑐

2
) ,

1

2
[𝑎 − 𝛾 + √(𝛾 − 𝑎)

2

+ 4 (𝑏 − 𝑐𝑒)]} ,

(46)

there exists 𝜃 > 0 which satisfies (44). Moreover, the trivial
solution of

�̇� = −𝜃𝑢 (47)

is uniformly asymptotically stable; by Theorem 12, the
stochastic differential is mean-(ℎ

0
, ℎ)-asymptotically stable.

However, in practice, the coefficients maybe have some
uncertainty properties; that is, we only know the range
of the parameters 𝑎, 𝑏. Then how to discuss the stability
of such systems with uncertainty is still a very interesting
problem. The following section will introduce an optimal
control approach to discuss the stability of such systems with
uncertainty.

4. The Stability for Systems with Uncertainty

Consider the following stochastic differential equations with
uncertainty:

𝑑𝑥 = [𝑓 (𝑥) + 𝑔 (𝑥) 𝑘 (𝑥)] 𝑑𝑡 + 𝜎 (𝑥) 𝑑𝐵
𝑡
, (48)

where 𝑘(𝑥) is an uncertainty function, and 𝑓(0) = 𝑘(0) =

𝜎(0) = 0, that is, the trivial solution, is 0 of (48). Furthermore,
we also suppose there exists a function 𝑘max(𝑥) ≥ 0 such that

‖𝑘 (𝑥)‖ ≤ 𝑘max (𝑥) . (49)

Nowwe discuss how to determine the asymptotic stability
of system (48) for all uncertainty function 𝑘. Similar to the
methods applied by [18, 19], we can translate this stability
problem into an optimal problem.

For the nominal system

𝑑𝑥 = [𝑓 (𝑥) + 𝑔 (𝑥) 𝑢] 𝑑𝑡 + 𝜎 (𝑥) 𝑑𝐵
𝑡
, (50)

suppose we can find a state-feedback control 𝑢 = 𝑢(𝑥) that
minimizes the cost functional

𝐽 (𝑥 (⋅) , 𝑢) = E
𝑦
∫

∞

0

[𝑓
2

max (𝑥) + 𝜌ℎ0 (𝑥) + 3𝑢
𝑇
𝑢] 𝑑𝑡, (51)

where ℎ
0
∈ 𝐶(R𝑛,R

+
), 𝑦 is the initial value of (50), 𝜌 > 0,

and 𝑢 is admissible on [0, 𝑇] for each 𝑇 < ∞, and satisfies

𝐽 (𝑥 (⋅) , 𝑢) < ∞. (52)

Let the value function

𝑉 (𝑦) = min
𝑢
𝐽 (𝑥 (⋅) , 𝑢) . (53)

Theorem 16. Suppose 𝑢(𝑥) is an optimal control of problem
(53), and there exists 𝜌 ≤ 𝜌 satisfying

‖𝑢‖
2
≤
𝜌

2
ℎ
0
(𝑥) , (54)

and the value function 𝑉 ∈ 𝐶
2
(R𝑛,R

+
), 𝑉 is also ℎ positive,

and ℎ
0
is decrescent, then system (48) is uniformlymean (ℎ

0
, ℎ)

uniformly asymptotically stable for all uncertainties 𝑘(𝑥).

Proof. The values function 𝑉 satisfies the Hamilton-Jacobi-
Bellman equation:

min
𝑢∈R𝑝

(𝑓
2

max + 𝑥
𝑇
𝑥 + 𝑢
𝑇
𝑢 + ⟨𝑉

𝑥
, 𝑓 + 𝑔𝑢⟩

+
1

2
⟨𝜎𝜎
𝑇
, 𝑉
𝑥𝑥
⟩) = 0.

(55)

So, the optimal control 𝑢 satisfies

𝑓
2

max + 𝑥
𝑇
𝑥 + 𝑢
𝑇
𝑢 + ⟨𝑉

𝑥
, 𝑓 + 𝑔𝑢⟩ +

1

2
⟨𝜎𝜎
𝑇
, 𝑉
𝑥𝑥
⟩

= 0,

2𝑢
𝑇
+ 𝑉
𝑇

𝑥
𝑔 = 0.

(56)
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Then, the Lyapunov generator of (48) for 𝑉 is given as

L𝑉 (𝑥) := ⟨𝑉
𝑥
, 𝑓 + 𝑔𝑘⟩ +

1

2
⟨𝑉
𝑥𝑥
, 𝜎𝜎
𝑇
⟩

= ⟨𝑉
𝑥
, 𝑔𝑘⟩ − ⟨𝑉

𝑥
, 𝑔𝑢⟩ − ℎ

0
(𝑥) − 𝑘

2

max − 𝑢
𝑇
𝑢

≤ ‖𝑘‖
2
− 𝑘
2

max − (𝜌 − 𝜌) ℎ0 (𝑥)

≤ − (𝜌 − 𝜌) ℎ
0
(𝑥) .

(57)

So, for the solutions 𝑥(𝑡) of (48) with uncertainty 𝑘(𝑥),
applying Itô’s formula to 𝑉(𝑥(𝑡)), we have, when 𝑡 ≥ 𝑡

0
,

E𝑉 (𝑥 (𝑡)) − E𝑉 (𝑥 (𝑡
0
)) = E∫

𝑡

𝑡
0

L𝑉 (𝑥 (𝑠)) 𝑑𝑠

≤ − (𝜌 − 𝜌)E∫
𝑡

𝑡
0

ℎ
0
(𝑥) 𝑑𝑠.

(58)

Hence

E𝑉 (𝑥 (𝑡)) ≤ E𝑉 (𝑥 (𝑡
0
)) − E∫

𝑡

𝑡
0

ℎ
0
(𝑥 (𝑠)) 𝑑𝑠,

∀𝑡 ≥ 𝑡
0
.

(59)

So 𝑚(𝑡) = E𝑉(𝑥(𝑡)) is decreasing on [0,∞]. Now we show
𝑚(𝑡) → 0 when 𝑡 → ∞. Suppose 𝑚(𝑡) → 𝑚

0
> 0. Since

𝑉 is ℎ
0
decrescent, so there exists 𝑐 > 0 and 𝑡

0
> 0, such that

Eℎ
0
(𝑥(𝑡)) > 𝑐 > 0 (𝑡 ≥ 𝑡

0
) combining with (59); we have

E𝑉 (𝑥 (𝑡)) ≤ E𝑉 (𝑥 (𝑡
0
)) − 𝑐 (𝑡 − 𝑡

0
) → −∞,

𝑡 → ∞.

(60)

This contradicts the fact that 𝑉(𝑥) ≥ 0. This implies that sys-
tem (48) is uniformly mean (ℎ

0
, ℎ) uniformly asymptotically

stable.

Corollary 17. Specially, let

𝑓 (𝑥) = 𝐴𝑥,

𝑔 (𝑥) = 𝐺,

𝜎 (𝑥) = 𝐶𝑥,

𝑘max (𝑥) = 𝑀‖𝑥‖ .

(61)

The value function can be given by 𝑉(𝑥) = 𝑥
𝑇
𝑃𝑥 and the

optimal control 𝑢(𝑥) = −𝐺
𝑇
𝑃𝑥, where 𝑃 > 0 satisfies the

following Riccati equation:

(𝑀
2
+ 1) 𝐼 + 𝑃𝐴 + 𝐴

𝑇
𝑃 + 𝐶

𝑇
𝑃𝐶 − 𝑃𝐺𝐺

𝑇
𝑃 = 0. (62)

Let 𝜆max be the maximal eigenvalue of 𝑃𝐺𝐺𝑇𝑃. If 𝜆2max ≤ 𝜌/2,
then the corresponding system with uncertainty is uniformly
mean (ℎ

0
, ℎ)-equistable for all uncertainties 𝑘(𝑥) (which is also

mean square asymptotically stable for all uncertainties 𝑘(𝑥)).

Example 18. Consider (41) with uncertainty coefficients. In
(41), replace 𝑎, 𝑏 by 𝑎+ sin𝑥

1
and 𝑏+ cos𝑥

2
, respectively, and

𝑎 takes values in [1.4, 1.6], 𝑏 in [0.9, 1.1], 𝑐 = −1, and 𝑒 = 1.
Then the system with uncertainty is obtained:

𝑑𝑥
1
(𝑡) = 𝑥

2
(𝑡) 𝑑𝑡,

𝑑𝑥
2
(𝑡) = − [(𝑏 + 0.1 cos𝐵

𝑡
) 𝑥
1
(𝑡)

+ (𝑎 + 0.1 sin𝐵
𝑡
) 𝑥
2
(𝑡)] 𝑑𝑡 + (𝑐𝑥

2
(𝑡) + 𝑒𝑥

1
(𝑡)) 𝑑𝐵

𝑡
.

(63)

Let

𝐴 = [
0 1

−1 −1.5
] ,

𝐵 = [
0 0

1.5 − 𝑏 − 0.1 cos𝐵
𝑡
1 − 𝑎 − 0.1 sin𝐵

𝑡

] ,

𝐶 = [
0 0

1 −1
] ,

(64)

And let 𝐺 be the 2-order identical matrix. Let ℎ(𝑥) = ℎ
0
(𝑥) =

‖𝑥‖
2; then

𝑓 (𝑥) = 𝐴𝑥,

𝑔 (𝑥) = 𝐺,

𝑘 (𝑥) = 𝐵𝑥,

𝜎 (𝑥) = 𝐶𝑥.

(65)

We can take 𝑘max(𝑥) = 0.3√𝑥
2

1
+ 𝑥2
2
and the auxiliary optimal

problem is

𝑑𝑥 = (𝐴𝑥 + 𝐺𝑢) 𝑑𝑡 + 𝐶𝑥𝑑𝐵
𝑡
, (66)

with the cost functional

𝐽 (𝑥 (⋅) , 𝑢) = E
𝑦
∫

∞

0

[3𝑥
𝑇
𝑥 + 𝑢
𝑇
𝑢] 𝑑𝑡, (67)

𝜌 = 2.91, solving (62) with𝑀 = 0.3; we have

𝑃 = [
1 0

0 0.5
] . (68)

By Corollary 17, we can determine that the stochastic system
(63) is uniformly mean (ℎ

0
, ℎ) uniformly stable for all uncer-

tainties.

5. Conclusion

In this paper, we extend the stability criteria of two measures
to the mean stability situations for the stochastic systems
with uncertainty. For the usual SDE, we give the results
of mean stability criteria which are the basic criteria for
such systems. As far as the systems with uncertainty, in
order to resolve the difficulties coming from the coefficient
uncertainty, we use the optimal control results as an auxiliary
method to determine the mean stability. Furthermore, the
stability criteria in terms of twomeasures for other stochastic
systems, such as systems with Markovian jumps or Poisson
jumps, are worth further studying.
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We consider a dynamic inventory control and pricing optimization problem in a periodic-review inventory system with price
adjustment cost. Each order occurswith a fixed ordering cost; the ordering quantity is capacitated.We consider a sequential decision
problem, where the firm first chooses the ordering quantity and then the sale price tomaximize the expected total discounted profit
over the sale horizon. We show that the optimal inventory control is partially characterized by a (𝑠, 𝑠, 𝑝) policy in four regions,
and the optimal pricing policy is dependent on the inventory level after the replenishment decision. We present some numerical
examples to explore the effects of various parameters on the optimal pricing and replenishment policy.

1. Introduction

Traditional literature on the multistage inventory system
mainly focuses on replenishment decision with or without
setup cost. The well-known result is that the order-up-to
policy is optimal for the systems without setup cost and
the (𝑠, 𝑆) policy is optimal for the systems with setup cost.
Increasing researchers are devoted to the study of joint price
and inventory control in the multistage inventory system.
Our paper belongs to this stream, but our paper considers a
sequential decision problem in a periodic-review inventory
system with fixed ordering cost and price adjustment cost.
The ordering quantity is capacitated; this may be limited
by the storage capacity or the supply capability. The firm
first decides its inventory level and then chooses a sale price
to maximize its long-run profit. Our result shows that the
optimal inventory and pricing decision still preservers a
threshold-type structure.

Our paper is related to literature on the optimal control
of a single product system with finite capacity and setup cost.

Several studies have been devoted to this area. Shaoxiang and
Lambrecht [1] obtain the generally known result; that is, the
optimal policy can only be partially characterized in the form
of𝑋-𝑌 bands. In particular, when the inventory level is below
the first band 𝑋, then produce/order the capacity, and when
the inventory level is over the second band 𝑌, produce/order
nothing. If the inventory level is between the two bands, the
ordering policy is complicated and depends on the instance.
Gallego and Scheller-Wolf [2] extend their work. They derive
the structure of the policy between the bands. The optimal
policy is characterized by two numbers 𝑠 and 𝑠

 which divide
the state space into four possible regions. However, none
of them have studied the pricing problem in the inventory
control problem. Zhang et al. [3] consider a single-item,
finite-horizon, periodic-review coordinated decision model
on pricing and inventory control with capacity constraints
and fixed ordering cost. They show that the profit-to-go
function is strongly 𝐶𝐾-concave, and the optimal policy has
an (𝑠, 𝑆, 𝑃)-like structure. However, the price adjustment cost
has not been addressed. Chao et al. [4] recently consider
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the joint pricing and inventory decisions. They study a peri-
odic-review inventory system with setup cost and finite
ordering capacity in each period.They show that the optimal
inventory control is characterized by an (𝑠, 𝑠

, 𝑝) policy in
four regions of the starting inventory level. However, in their
paper, the selling price can be adjusted without any cost.

In reality, changing price is costly and incurs a price
adjustment cost. In the economics literature, there are two
major types of price adjustment costs: the managerial costs
and the physical costs. Rotemberg [5], Levy et al. [6], Slade
and Groupe de Recherche en Economie Quantitative d’Aix-
Marseille [7], Aguirregabiria [8], Bergen et al. [9], and
Zbaracki et al. [10] have stated that both types of costs are
significant in retailing and other industries. According to
these empirical studies, Chen et al. [11] consider a periodic-
review inventorymodel with price adjustment cost.The price
adjustment cost consists of both fixed and variable com-
ponents. They develop the general model and characterize
the optimal policies for two special scenarios, a model with
inventory carryover and no fixed price-change costs and
a model with fixed price-change costs and no inventory
carryover. Although there is price adjustment cost, they do
not consider the finite ordering capacity.

Under the assumption of random additive demand
model, our paper tries to investigate the structure of the
optimal inventory control and pricing policy in each period.
We show that the optimal inventory policy is partially
characterized by an (𝑠, 𝑠

, 𝑝) policy on four regions; in two of
these regions the optimal policy is completely specified while,
in the other two, it is partially specified. More specifically,
the optimal ordering quantity in the first region is the full
capacity, while in the last region it is optimal to order nothing;
in the two middle regions, the optimal decision is either
to order to the maximum capacity, to order to at least a
prespecified level 𝑠, or to order nothing.The optimal pricing
policy𝑝(𝑦) in each period is dependent on the inventory level
after the replenishment decision, 𝑦, which is in general not a
monotone function. The key concept utilized is strong 𝐶𝐾-
concavity, which is an extension of𝐾-concavity, and was first
introduced by Gallego and Scheller-Wolf [2].

The rest of this paper is organized as follows. In Section 2,
we induce themodel description.The structural properties of
the optimal inventory and pricing policy are characterized in
Section 3. We present some numerical examples to show the
effects of various parameters on the optimal control policy
in Section 4. Finally, we conclude with some future research
direction in Section 5.

2. The Model

Consider a periodic-review inventory system with finite
ordering capacity and price adjustment cost. There are 𝑁

periods, with the first period being 1 and last period being𝑁.
In each period, the sequence of events is given as follows: (1)
inventory level is reviewed and replenishment order is placed;
(2) replenishment order arrives; (3) a selling price is set; (4)
random demand is realized; and (5) all costs are computed.

In period 𝑛, the selling price is 𝑝
𝑛
, which is taken in

interval [𝑝
𝑙
, 𝑝
ℎ
], and the demand is 𝐷

𝑛
. We assume that the

demand 𝐷
𝑛
is sensitive to the selling price 𝑝

𝑛
. Moreover, we

consider an additive demand function.The demand function
is 𝐷
𝑛
(𝑝
𝑛
) = 𝑑(𝑝

𝑛
) + 𝜖
𝑛
, 𝑛 = 1, . . . , 𝑁, where 𝜖

𝑛
is a random

variable with mean zero and 𝑑(𝑝
𝑛
) is the average demand.

Furthermore, 𝑑(𝑝
𝑛
) is a decreasing linear function of 𝑝

𝑛
.

When the selling price 𝑝
𝑛
increases from 𝑝

𝑙
to 𝑝
ℎ
, the average

demand decreases from 𝑑
ℎ
to 𝑑
𝑙
; that is, 𝑑

ℎ
= 𝑑(𝑝

𝑙
) and

𝑑
𝑙
= 𝑑(𝑝

ℎ
). Each demand arrives requiring only one unit of

product and is satisfied from inventory if any. If the demand
cannot be satisfied from the on-hand inventory immediately,
then it is backlogged and incurs a backorder cost. The
structure of demand function indicates that determining the
selling price 𝑝

𝑛
is equivalent to setting the average demand

𝑑
𝑛
.
Each replenishment incurs a fixed ordering cost 𝐾 and

the variable unit ordering cost 𝑐. There is a finite ordering
capacity 𝐶 for each period, which means the ordering
quantity in each period cannot exceed 𝐶, where 𝐶 > 0. If
𝐶 is sufficiently large, it generalizes to the incapacitated case.
Let 𝑥
𝑛
be the inventory level at the beginning of period 𝑛

before placing an order and let 𝑦
𝑛
be the inventory level after

the order delivered. At the end of each period, the demand
is realized and a revenue is received. The expected revenue is
given by 𝑟

𝑛
(𝑑) = 𝑑

𝑛
⋅𝑝
𝑛
(𝑑
𝑛
), which is assumed to be a concave

function. Meanwhile, an inventory holding and shortage cost
occurs denoted by ℎ(𝑦

𝑛
− 𝑑
𝑛
). If 𝑥 ≥ 0, ℎ(𝑥) represents the

holding cost; if 𝑥 < 0, ℎ(𝑥) represents the shortage cost. For
ease of presentation, we let 𝐺(𝑦) = 𝐸[ℎ(𝑦 − 𝜖

𝑛
)]. Therefore,

given that the inventory level after replenishment is 𝑦
𝑛
and

the expected demand for period 𝑛 is 𝑑
𝑛
, the expected holding

and shortage cost is 𝐺(𝑦
𝑛
− 𝑑
𝑛
).

We assume that there is a fixed guide price𝑝
0
for deciding

the selling price 𝑝
𝑛
. Price changing from the guide price

to the actual price is costly. The cost of a price adjustment
from guide price to the actual selling price in period 𝑛

is denoted by 𝑈
𝑛
(𝑝
𝑛

− 𝑝
0
). Zbaracki et al. [10] and Chen

et al. [11] pointed out that as the price adjustment cost
becomes larger, it would cost more on decision and internal
communication. Here, we assume that the variable cost 𝑈

𝑛
(⋅)

is convex and increaseswith |𝑝
𝑛
−𝑝
0
|.The forms of𝑈

𝑛
(⋅) could

be either piecewise linear functions or quadratic functions.
The ordering quantity in period 𝑛 is𝑦

𝑛
−𝑥
𝑛
; therefore, we have

𝑥
𝑛
≤ 𝑦
𝑛
≤ 𝑥
𝑛
+ 𝐶 due to the capacitated ordering quantity 𝐶.

Therefore, the expected total cost incurs in period 𝑛 including
setup cost, ordering cost, holding and shortage cost and price
adjustment price is given by

𝐾1 [𝑦
𝑛
> 𝑥
𝑛
] + 𝑐 (𝑦

𝑛
− 𝑥
𝑛
) + 𝐺 (𝑦

𝑛
− 𝑑
𝑛
)

+ 𝑈
𝑛
(𝑝
𝑛
− 𝑝
0
) ,

(1)

where 1[𝐴] is the indicating function taking value 1 if
statement 𝐴 is true and zero otherwise.

We aim to obtain the optimal pricing and inventory
decisions in each period to maximize the expected total
discounted profit over the 𝑛 periods. Let 𝑉

𝑛
(𝑥) denote the

maximum expected total discounted profit from period 𝑛 to
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the end of the planning horizon with the starting inventory
level (before ordering decision) 𝑥. The optimality equation is

𝑉
𝑛
(𝑥) = max

𝑥≤𝑦≤𝑥+𝐶

max
𝑝∈[𝑝𝑙,𝑝ℎ]

{−𝐾1 [𝑦 > 𝑥] + 𝑟 (𝑝)

− 𝑐 (𝑦 − 𝑥) − 𝐺 (𝑦 − 𝑑) − 𝑈 (𝑝 − 𝑝
0
)

+ 𝛼𝐸 [𝑉
𝑛+1

(𝑦 − 𝑑 (𝑝) − 𝜖
𝑛
)]} ,

(2)

where 𝛼 is the one-period discount factor, 𝛼 ∈ [0, 1]. The
terminal condition is𝑉

𝑁+1
(𝑥) ≡ 0. Note that the price 𝑝

𝑛
can

be indicated in the form of demand 𝑑
𝑛
by the inverse demand

function; that is, 𝑝
𝑛

= 𝑝
𝑛
(𝑑
𝑛
), and the price adjustment

cost can be written in the form of 𝑑
𝑛
instead of 𝑝

𝑛
, that

is, 𝑈
𝑛
(𝑑
𝑛
− 𝑝
0
), such that optimizing over the selling price

𝑝
𝑛
is equivalent to optimizing over the average demand 𝑑

𝑛
.

Therefore, the optimality equation is rewritten as follows:

𝑉
𝑛
(𝑥) = max

𝑥≤𝑦≤𝑥+𝐶

max
𝑑∈[𝑑𝑙 ,𝑑ℎ]

{−𝐾1 [𝑦 > 𝑥] + 𝑟 (𝑑)

− 𝑐 (𝑦 − 𝑥) − 𝐺 (𝑦 − 𝑑) − 𝑈 (𝑑 − 𝑝
0
)

+ 𝛼𝐸 [𝑉
𝑛+1

(𝑦 − 𝑑 − 𝜖
𝑛
)]} .

(3)

For notation convenience, we define another function

𝑊
𝑛
(𝑦) = −𝐺 (𝑦) + 𝛼𝐸 [𝑉

𝑛+1
(𝑦 − 𝜖

𝑛
)] . (4)

Then the optimality equation is further simplified to

𝑉
𝑛
(𝑥) = 𝑐𝑥 + max

𝑥≤𝑦≤𝑥+𝐶

max
𝑑∈[𝑑𝑙 ,𝑑ℎ]

{−𝐾1 [𝑦 > 𝑥] + 𝑟
𝑛
(𝑑) − 𝑐𝑦 − 𝑈

𝑛
(𝑑 − 𝑝

0
) + 𝑊

𝑛
(𝑦 − 𝑑)} = 𝑐𝑥

+ max
𝑥≤𝑦≤𝑥+𝐶

{−𝐾1 [𝑦 > 𝑥] − 𝑐𝑦 + max
𝑑∈[𝑑𝑙,𝑑ℎ]

{𝑟
𝑛
(𝑑) − 𝑈

𝑛
(𝑑 − 𝑝

0
) + 𝑊

𝑛
(𝑦 − 𝑑)}} .

(5)

3. The Optimal Policy

In order to characterize the structural properties of the
optimal replenishment and pricing policy, we first introduce
the definition of strongly 𝐶𝐾-concave and properties of 𝐶𝐾-
concave functions as well, which is defined in Chao et al.
[4]. This definition and the properties are very important in
studying inventorymodels with finite capacity and setup cost.

Definition 1. A function 𝑔(⋅) : 𝑅 → 𝑅 is strongly 𝐶𝐾-
concave if, for all 𝑎 ≥ 0, 𝑏 > 0, and 𝑧 ∈ [0, 𝐶], we have

𝑧

𝑏
𝑔 (𝑦 − 𝑎) + 𝑔 (𝑦) ≥

𝑧

𝑏
𝑔 (𝑦 − 𝑎 − 𝑏) + 𝑔 (𝑦 + 𝑧) − 𝐾. (6)

The structure of strong 𝐶𝐾-concave function is shown
in Figure 1. If 𝐺(𝑥) is strong 𝐶𝐾-concave, it implies that the
slope of the line made of points (𝑥, 𝐺(𝑥)) and (𝑥 + 𝑧, 𝐺(𝑥 +

𝑧)−𝐾) is smaller than the slope of the linemade of points (𝑥−

𝑎 − 𝑏, 𝐺(𝑥 − 𝑎 − 𝑏)) and (𝑥 − 𝑎, 𝐺(𝑥 − 𝑎)).
Chao et al. [4] also pointed out that the strongly 𝐶𝐾-

concave function possesses some additional properties as
follows:

(1) If 𝐺 is strongly 𝐶𝐾-concave, then it is also strongly
𝐷𝐿-concave for 0 ≤ 𝐷 ≤ 𝐶 and 𝐿 ≥ 𝐾.

(2) If 𝐺 is concave, it is also strongly 𝐶𝐾-concave for any
nonnegative 𝐶 and 𝐾.

(3) If𝐺
1
is strongly𝐶𝐾

1
-concave and𝐺

2
is strongly𝐶𝐾

2
-

concave, then for 𝛼, 𝛽 ≥ 0, 𝛼𝐺
1
+ 𝛽𝐺
2
is strongly

𝐶(𝛼𝐾
1
+ 𝛽𝐾
2
)-concave.

(4) If 𝐺 is strongly 𝐶𝐾-concave and 𝑋 is a random
variable such that 𝐸[|𝐺(𝑦 − 𝑋)|] < ∞, then 𝐸[𝐺(𝑦 −

𝑋)] is also strongly 𝐶𝐾-concave.

In the following, we aim to show that 𝑉
𝑛
(𝑥) preservers

the property of strong 𝐶𝐾-concavity. Before going further,

we first show that each term on the right hand side of (3)
possesses some certain properties, which will facilitate our
analysis of objective function 𝑉

𝑛
(𝑥).

Lemma 2. 𝑈
𝑛
(𝑑 − 𝑝

0
) is convex in 𝑑.

Proof. Considering that𝑈
𝑛
(𝑑−𝑝
0
) is continuous and second-

order derivable, the convexity of𝑈
𝑛
(𝑑 − 𝑝

0
) can be proved by

its second derivative. We have

𝑑𝑈
𝑛
(𝑑 − 𝑝

0
)

𝑑𝑑
=

𝑑𝑈
𝑛
(𝑝 − 𝑝

0
)

𝑑𝑝

𝑑𝑝 (𝑑)

𝑑𝑑
,

𝑑
2𝑈
𝑛
(𝑑 − 𝑝

0
)

𝑑𝑑2
=

𝑑2𝑈
𝑛
(𝑝 − 𝑝

0
)

𝑑𝑝2
(
𝑑𝑝 (𝑑)

𝑑𝑑
)

2

+
𝑑𝑈
𝑛
(𝑝 − 𝑝

0
)

𝑑𝑝

𝑑2𝑝 (𝑑)

𝑑𝑑2
.

(7)

Since𝑑(𝑝
𝑛
) is linear anddecreasing on𝑝

𝑛
, whichmeans𝑝(𝑑

𝑛
)

is also linear and decreasing on 𝑑
𝑛
, then 𝑑2𝑝(𝑑)/𝑑𝑑2 = 0.

At the same time, due to the convexity of 𝑈
𝑛
(⋅), 𝑑2𝑈

𝑛
(𝑝 −

𝑝
0
)/𝑑𝑝2 ≥ 0. Therefore,

𝑑2𝑈
𝑛
(𝑑 − 𝑝

0
)

𝑑𝑑2
=

𝑑2𝑈
𝑛
(𝑝 − 𝑝

0
)

𝑑𝑝2
(
𝑑𝑝 (𝑑)

𝑑𝑑
)

2

≥ 0, (8)

which indicates that 𝑈
𝑛
(𝑑 − 𝑝

0
) is convex in 𝑑. Lemma 2 is

proved.

Lemma 3. Let 𝑑
𝑛
(𝑦) be the maximizer of 𝑟

𝑛
(𝑑) −𝑈

𝑛
(𝑑−𝑝

0
) +

𝑊
𝑛
(𝑦 − 𝑑); then 𝑦 − 𝑑

𝑛
(𝑦) is increasing in 𝑦.

Proof. Due to the concavity of 𝑟(⋅) and Lemma 2, Lemma 3
can be conducted directly by using the properties of super-
modularity.
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Figure 1: 𝐶𝐾-concave function.

Lemma 4. If 𝑊
𝑛
(𝑦) is strongly 𝐶𝐾-concave, then

𝑔 (𝑦) = max
𝑑∈[𝑑𝑙,𝑑ℎ]

{𝑟
𝑛
(𝑑) − 𝑈

𝑛
(𝑑 − 𝑝

0
) + 𝑊

𝑛
(𝑦 − 𝑑)} (9)

is also strongly 𝐶𝐾-concave.

The proof of Lemma 4 is similar to that in Chao et al. [4].
We omit it for simplicity.

Lemma 5. 𝑉
𝑛
(𝑥) is strongly 𝐶𝐾-concave.

Proof. Lemma 5 can be proved by induction.When 𝑛 = 𝑁+1,
we have 𝑉

𝑁+1
≡ 0, such that 𝑉

𝑁+1
is strongly 𝐶𝐾-concave.

Now suppose that 𝑉
𝑛+1

(𝑥) is strongly 𝐶𝐾-concave; then we
proceed to prove that 𝑉

𝑛
(𝑥) is also strongly 𝐶𝐾-concave.

Due to the property of strong 𝐶𝐾-concavity, we obtain
that𝛼𝐸[𝑉

𝑛+1
(𝑦−𝜖
𝑛
) is strongly𝐶(𝛼𝐾)-concave. Consider that

−𝐺
𝑛
(𝑦) is concave; then 𝑊

𝑛
(𝑦) is strongly 𝐶(𝛼𝐾)-concave,

which is also strongly𝐶𝐾-concave. Lemma 4 shows that 𝑔(𝑦)

is also strongly 𝐶𝐾-concave. Therefore,

𝑉
𝑛
(𝑥) = 𝑐𝑥 + max

𝑥≤𝑦≤𝑥+𝐶

{−𝐾1 [𝑦 > 𝑥] − 𝑐𝑦 + 𝑔 (𝑦)} (10)

is also strongly 𝐶𝐾-concave. Readers are referred to Gallego
and Scheller-Wolf [2] formore details. Lemma 5 is concluded.

The strong𝐶𝐾-concavity of𝑉
𝑛
(𝑥) characterizes the struc-

tural properties of the optimal inventory and pricing policy
for each period as given in the following theorem.

Theorem6. Suppose that𝑥 is the starting inventory level at the
beginning of period 𝑛.The optimal inventory policy is threshold-
type policy which is characterized by two numbers 𝑠

𝑛
and 𝑠
𝑛
,

where 𝑠
𝑛

≤ 𝑠
𝑛
. Furthermore, the optimal inventory policy

possesses the following additional properties:

(a) If 𝑠
𝑛
− 𝐶 ≤ 𝑠

𝑛
, then the optimal ordering policy is

(i) order capacity 𝐶 if 𝑥 < 𝑠
𝑛
− 𝐶;

(ii) order at least up to 𝑠


𝑛
if 𝑠
𝑛
− 𝐶 ≤ 𝑥 < 𝑠

𝑛
;

(iii) either order nothing or order at least up to 𝑠
𝑛
if

𝑠
𝑛
≤ 𝑥 < 𝑠

𝑛
;

(iv) order nothing if 𝑥 ≥ 𝑠
𝑛
.

(b) If 𝑠
𝑛
− 𝐶 > 𝑠

𝑛
, then the optimal ordering policy is

(i) order capacity 𝐶 if 𝑥 < 𝑠
𝑛
;

(ii) either order nothing or order𝐶 if 𝑠
𝑛
≤ 𝑥 < 𝑠

𝑛
−𝐶;

(iii) either order nothing or order at least up to 𝑠
𝑛
if

𝑠
𝑛
− 𝐶 ≤ 𝑥 < 𝑠

𝑛
;

(iv) order nothing if 𝑥 ≥ 𝑠
𝑛
.

The optimal pricing decision is characterized by 𝑝∗
𝑛
(𝑦),

which depends on the postorder inventory position 𝑦. Further-
more, the optimal pricing decision 𝑝

∗

𝑛
(𝑦), as well as the optimal

average demand 𝑑∗
𝑛
(𝑦), is in general not monotone in 𝑦.

Proof. Suppose

𝐻
𝑛
(𝑦)

= −𝑐𝑦

+ max
𝑑∈[𝑑𝑙,𝑑ℎ]

{𝑟
𝑛
(𝑑) − 𝑈

𝑛
(𝑑 − 𝑝

0
) + 𝑊

𝑛
(𝑦 − 𝑑)} .

(11)

Define 𝑠
𝑛
, 𝑆
𝑛
, and 𝑠

𝑛
by

𝑆
𝑛
= inf {𝑦 ∈ 𝑅 | 𝐺 (𝑦) = sup

𝑦∈𝑅

𝐻
𝑛
(𝑦)} ,

𝑠
𝑛
= inf {𝑥 | −𝐾 + sup

𝑥≤𝑦≤𝑥+𝐶

𝐻
𝑛
(𝑦) ≤ 𝐻

𝑛
(𝑥)} ,

𝑠


𝑛
= max{𝑥 ≤ 𝑆

𝑛
| −𝐾 + sup

𝑥≤𝑦≤𝑥+𝐶

𝐻
𝑛
(𝑦) ≥ 𝐻

𝑛
(𝑥)} .

(12)

Obviously, 𝑠
𝑛
≤ 𝑠
𝑛
.

The optimal pricing decision is determined by the maxi-
mizer in Lemma 4. Let

𝑑
∗

𝑛
(𝑦)

= arg max
𝑑∈[𝑑𝑙,𝑑ℎ]

{𝑟
𝑛
(𝑑) − 𝑈

𝑛
(𝑑 − 𝑝

0
) + 𝑊

𝑛
(𝑦 − 𝑑)} ,

(13)

which means that the optimal average demand in period 𝑛

depends on the replenished inventory level 𝑦. Since 𝑝 = 𝑝(𝑑)

is the inverse function of 𝑑 = 𝑑
𝑛
(𝑝), then we will obtain that

the optimal pricing decision is

𝑝
∗

𝑛
(𝑦) = 𝑝 (𝑑

∗

𝑛
(𝑦)) , (14)

when the replenished inventory level is 𝑦.Therefore, the opti-
mal selling price in period 𝑛 also depends on the replenished
inventory level 𝑦. However, 𝑝∗

𝑛
(𝑦) is not monotone in 𝑦. We

will give one example in Section 4.The proof ofTheorem 6 is
concluded.
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Figure 2: The structure of the optimal replenishment policy.

The structure of the optimal inventory policy is presented
in Figure 2.

Our results are similar to Gallego and Scheller-Wolf [2] in
that the optimal inventory policy can only be partially char-
acterized. When the inventory level before replenishment 𝑥
is less than min{𝑠

𝑛
− 𝐶, 𝑠

𝑛
}, the optimal ordering policy is to

order the full capacity. When 𝑥 is larger than 𝑠
𝑛
, the optimal

ordering policy is no order. When min{𝑠
𝑛
− 𝐶, 𝑠

𝑛
} ≤ 𝑥 < 𝑠

𝑛
,

the optimal strategy is complicated. When max{𝑠
𝑛
− 𝐶, 𝑠

𝑛
} ≤

𝑥 < 𝑠
𝑛
, the optimal strategy may be to either order nothing or

order at least up to 𝑠
𝑛
. When min{𝑠

𝑛
− 𝐶, 𝑠

𝑛
} ≤ 𝑥 < max{𝑠

𝑛
−

𝐶, 𝑠
𝑛
}, there would be two possibilities. If 𝑠

𝑛
− 𝐶 ≤ 𝑠

𝑛
, the

optimal policy is to order at least up to 𝑠
𝑛
. If 𝑠
𝑛

− 𝐶 > 𝑠
𝑛
, the

optimal policy is no order or ordering full capacity.Moreover,
the optimal pricing decision depends on the inventory level
after replenishment.

4. Numerical Tests

In order to explore the effects of the setup cost, the ordering
capacity, the guide price, and the adjustment cost function
on the optimal control policy, we conduct several numerical
experiments for a simple inventory problem with 𝑁 = 4

periods. In the subsequent numerical experiments, we use
the following basic settings: the discount factor is 𝛼 = 0.9,
purchasing unit cost 𝑐 = 3, guide price 𝑝

0
= 3, ordering

capacity 𝐶 = 10, and setup cost 𝐾 = 10. We adopt ℎ(𝑥) =

ℎmax{0, 𝑥} + 𝑏max{0, −𝑥} as the holding shortage cost rate
function, where ℎ = 2 and 𝑏 = 4. Suppose that 𝑈

𝑛
(⋅) is

piecewise linear, which means that𝑈
𝑛
(𝑝 −𝑝

0
) = 𝑎
1
max{𝑝

0
−

𝑝, 0} +𝑎
2
max{𝑝−𝑝

0
, 0}, where 𝑎

1
= 𝑎
2
= 0.5. The demand in

period 𝑛 is 𝐷
𝑛
(𝑝
𝑛
) = 𝑑(𝑝

𝑛
) + 𝜖
𝑛
, where 𝑑(𝑝

𝑛
) = 10 − 𝑝

𝑛
and

random error 𝜖
𝑛

∈ {−1, 1}, with probability mass function
𝑃{𝜖
𝑛

= 1} = 𝑃{𝜖
𝑛

= −1} = 0.5. Here, 𝑝
𝑛
takes values in
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Figure 3: Optimal replenished inventory level 𝑦 for different 𝐾.

[1, 9]. Thus, as 𝑝
𝑛
increases from 1 to 9, the average demand

decreases from 9 to 1.

4.1. Effect of Setup Cost. We study the effect of the setup cost
𝐾 on the optimal inventory and pricing policy.The results are
shown in Figures 3 and 4. In Figure 3, the 𝑥-axis represents
the inventory level before ordering 𝑥 and 𝑦-axis represents
the inventory level after ordering 𝑦. The value of 𝑥 goes from
−10 to 15, with the increment of 1. In Figure 4, the 𝑥-axis
represents the inventory level before ordering 𝑥 and 𝑦-axis
represents the optimal selling price𝑝.The value of 𝑥 also goes
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Figure 4: Optimal selling price 𝑝 for different 𝐾.

from −10 to 15, with the increment of 1. Here, we consider
𝐾 = 5, 𝐾 = 10, and 𝐾 = 15 separately.

Figure 3 shows that the higher setup cost𝐾 implies lower
inventory level at which the optimal ordering policy changes
from ordering to not ordering, while Figure 4 shows that the
higher setup cost indicates higher optimal selling price. The
results are intuitive. The trade-off is the setup cost, holding
cost, and sale revenue. When the setup cost is high, we will
decrease the replenishment frequency in order to reduce
the ordering cost. Hence, we would place no order at low
inventory level and order up to a higher inventory level if we
place an order. The other alternative way is to increase the
selling price to reduce the demand, in the purpose of saving
setup cost.

Observation 1. The optimal selling price 𝑝 is not always
monotonic in 𝑦.

When 𝐾 = 5 and the inventory level before ordering 𝑥

is no less than 2, the optimal replenished inventory level 𝑦 is
equal to 𝑥. Furthermore, in Figure 4, when 𝐾 = 5 and 𝑥 ≥ 2,
the optimal selling price 𝑝 is not monotonic in 𝑥; in other
words, 𝑝 is not monotonic in 𝑦.

4.2. Effect of Ordering Capacity. The effects of ordering
capacity 𝐾 on the optimal inventory and pricing policy are
shown in Figures 5 and 6. Higher ordering capacity means
that we may order more every time without increasing cost.
Particularly, when the inventory level is high enough, the
optimal policy is not to order.Then the ordering capacity has
no effect on the optimal ordering policy and selling price.
When the inventory level is small, higher ordering capacity
indicates higher optimal replenished inventory level and
lower optimal selling price, which induces higher demand.
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Figure 5: Optimal replenished inventory level 𝑦 for different 𝐶.
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Figure 6: Optimal selling price 𝑝 for different 𝐶.

4.3. Effect of Guide Price. The effects of guide price 𝑝
0
on the

optimal inventory and pricing policy are shown in Figures
7 and 8. Compared with no guide price, the existence of
the guide price indicates higher inventory level at which
the optimal ordering policy changes from ordering to not
ordering.The guide price has no obvious effect on the optimal
replenishment inventory level, but it influences the optimal
selling price. The optimal selling price would be closer to the
guide price compared with the initial optimal selling price
without guide price. For instance, when the guide price is 5,
the optimal selling price would be lower than the initial one
under small inventory level, while the optimal selling price
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Figure 8: Optimal selling price 𝑝 for different 𝑝
0
.

would be higher than the initial one under high inventory
level.

In Figure 8, when the inventory level is 15, the optimal
selling price is 5 when the guide price is 5, while the optimal
selling price is 4 when the guide price is 7. It leads to the
following observation.

Observation 2. Higher guide price does not indicate higher
optimal selling price.

4.4. Effect of Price Adjustment Cost Function. The effects of
price adjustment cost on the optimal ordering and pricing
policy are shown in Figures 9 and 10.We consider three cases:
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Figure 10: Optimal selling price 𝑝 for different 𝑎
1
and 𝑎

2
.

𝑎
1
= 1, 𝑎
2
= 9, 𝑎
1
= 𝑎
2
= 5, and 𝑎

1
= 9, 𝑎
2
= 1. From Figure 9,

we find that the price adjustment cost function has no obvious
effect on the optimal replenishment inventory level; however,
it influences the optimal selling price obviously. 𝑎

1
< 𝑎
2

implies that it would be more costly when the selling price
is higher than the guide price. 𝑎

1
> 𝑎
2
implies that it would

bemore costly when the selling price is smaller than the guide
price. 𝑎

1
= 𝑎
2
implies that it would be more costly when

the selling price is not equal to the guide price. Hence, in
Figure 10, under the same inventory level, the optimal selling
price is the highest when 𝑎

1
> 𝑎
2
, while the optimal selling

price is the smallest when 𝑎
1
< 𝑎
2
.
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5. Conclusions

In this paper, we consider a dynamic inventory control and
pricing optimization problem in a periodic-review inventory
system with fixed ordering cost and price adjustment cost.
At the same time, the ordering quantity is limited. Here, we
assume that the price adjustment cost functions are piecewise
linear. We show that the optimal inventory control, similar
to Chao et al. [4], is also partially characterized by (𝑠, 𝑠

, 𝑝)

policy in four regions, and the optimal pricing policy is
dependent on the inventory level after the replenishment
decision. From the numerical tests, we present some statis-
tical analysis to study the effects of various parameters on the
optimal control policy. For example, the higher setup cost 𝐾
implies lower inventory level at which the optimal ordering
policy changes from ordering to not ordering and higher
optimal selling price. When the inventory level is small,
higher ordering capacity indicates high optimal replenished
inventory level and lower optimal selling price. When the
inventory level is high enough, the optimal ordering policy
and selling price are the same under different inventory
level. Optimal selling price would be closer to the guide
price compared with the initial optimal selling price without
guide price, while higher guide price does not indicate higher
optimal selling price. Under the same inventory level, the
optimal selling price is the highest when it would be more
costly when the selling price is smaller than the guide price,
while the optimal selling price is the smallest when it would
be more costly when the selling price is larger than the guide
price.

There are still many interesting issues worth studying
in the future research. Our paper studied increasing convex
price adjustment cost; exploring price adjustment cost func-
tion with more complicated form may be one of potential
research directions. In our paper, the decision sequence is
first inventory decision and then price decision, but in reality
the firm may first set price to serve the target market and
then build up the inventory. In this case, what is the optimal
pricing and replenishment policy? Does the optimal control
policy still possess the similar structure?
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We consider a continuous-time mean-variance asset-liability management problem in a market with random market parameters;
that is, interest rate, appreciation rates, and volatility rates are considered to be stochastic processes. By using the theories of
stochastic linear-quadratic (LQ) optimal control and backward stochastic differential equations (BSDEs), we tackle this problem
andderive optimal investment strategies aswell as themean-variance efficient frontier analytically in terms of the solution of BSDEs.
We find that the efficient frontier is still a parabola in a market with random parameters. Comparing with the existing results, we
also find that the liability does not affect the feasibility of themean-variance portfolio selection problem. However, in an incomplete
market with random parameters, the liability can not be fully hedged.

1. Introduction

Mean-variance portfolio selection model was pioneered by
Markowitz [1] in the single-period setting. In his seminal
paper, Markowitz proposed the variance as the measure of
the risk. The advantage of using variance for measuring
the risk of a portfolio is due to the simplicity of com-
putation. Thus, the mean-variance approach has inspired
literally hundreds of extensions and applications and also
has been commonly used in practical financial decisions.
For example, Wang and Xia [2] gave an excellent review
on portfolio selection problem. Li and Ng [3] employed the
framework ofmultiobjective optimization and an embedding
technique to obtain the exact mean-variance efficient frontier
for multiperiod investment. Wu and Li [4] investigated a
multiperiod mean-variance portfolio selection with regime
switching and uncertain exit time. Zhou and Li [5] studied a
continuous-time mean-variance portfolio selection problem
under a stochastic LQ framework. Furthermore, Li et al.
[6] considered a continuous-time mean-variance portfolio
selection problem with no-shorting constraints. Under par-
tial information, Xiong and Zhou [7] and Wang and Wu

[8] considered a continuous-time mean-variance portfolio
selection problem and a problem of hedging contingent
claims by portfolios, respectively.

Among several extensions of the classic mean-variance
portfolio selection model, asset and liability management
problem is an important subject in both academic liter-
atures and the real world situations. In the real world,
liability is so important that almost all financial institutions
and individual investors should manage their debt. Thus,
incorporating liability into the portfolio selection model
can make investment strategies more practical. The research
on mean-variance asset-liability management also evokes
recent concern. Sharpe and Tint [9] first investigated mean-
variance asset-liability management in a single-period set-
ting. Leippold et al. [10] considered a multiperiod asset-
liabilitymanagement problemandderived both the analytical
optimal policy and the efficient frontier. Chiu and Li [11]
studied a mean-variance asset-liability management problem
in the continuous-time case where the liability was governed
by a geometric Brownian motion (GBM). Xie et al. [12]
also considered a continuous-time asset-liability manage-
ment problem under the mean-variance criterion where the
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dynamic of liability is a Brownian motion with drift. Further,
Xie [13] studied a mean-variance portfolio selection model
with stochastic liability in a Markovian regime switching
financial market. Zeng and Li [14] investigated an asset-
liability management problem in a jump diffusion market.
Yao et al. [15] studied continuous-time mean-variance asset-
liability management with endogenous liabilities. By using
the time-consistent approach, Wei et al. [16] considered
a mean-variance asset-liability management problem with
regime switching.

Among these studies, we note that all market parameters
are assumed to be deterministic. However, in the real world,
market parameters observed in many situations are always
uncertain (see, e.g., [17–20]). In order to capture the features
of optimal investment strategies with random parameters,
random parameter models have drawn more attention over
last few years. For example, Lim and Zhou [21] investigated
a mean-variance portfolio selection problem with random
parameters in a complete market and derived efficient invest-
ment strategies as well as the efficient frontier analytically in
terms of the solution of BSDEs. Further, Lim [22] extended
Lim and Zhou’s [21] results to the case where the market is
incomplete.

Up to now, the studies on the asset-liability management
problem are under a common assumption that all parameters
are assumed to be known with certainty. An interesting and
unexplored question is what happens in a more realistic
situation with random parameters. This is the main focus of
our research. In view of this, we study a mean-variance asset-
liability management problem with random parameters and
derive both the mean-variance optimal portfolio strategies
and the efficient frontier. Referring to Lim [22], we consider
a market where the related market parameters are random,
such as interest rate, the appreciation rates, and the volatility
rates of stocks’ price. Further, we routinely assume that the
liability is dynamically exogenous and evolves according to
a Brownian motion with drift. Note that this description of
liability has beenwidely used (see, e.g., [12, 23, 24]). Under the
above assumptions, we introduce an unconstrained stochas-
tic control problem with random parameters and derive the
optimal control strategies in terms of the solutions of BSDEs.
Then, by using the Lagrange multiplier technique, we derive
both the mean-variance optimal investment strategies and
the efficient frontier.

Our model is most closely related to the model of
Lim [22]. The main differences between our model and
Lim’s model are in two dimensions. Firstly, we consider a
portfolio selection problem with liability. Since the liability
is dynamically exogenous, the driving factors of the wealth
in our model include that of stocks’ price and liability, which
is an essential difficulty in our model but not encountered in
[22]. Secondly, due to the introduction of random liability,
the wealth process derived from our model is no longer
homogenous with respect to the control variables, whereas
the wealth process in the model without liability (see, e.g.,
[21, 22]) is homogenous.

This paper proceeds as follows. In Section 2, we give
some preliminaries and formulate a continuous-time mean-
variance portfolio selection model with liability and random

parameters. In Section 3, we introduce an unconstrained
stochastic LQ control problem andderive the optimal policies
and value function in closed forms in terms of the solution
of BSDEs. Further, Section 4 presents the optimal investment
strategies and the efficient frontier for the mean-variance
asset-liability management problem with random parame-
ters. Section 5 concludes the paper.

2. Model Formulation

In this section, we describe the financial market, the liability,
and the mean-variance asset-liability management problem,
respectively. Throughout this paper, let 𝑇 be a fixed terminal
time, (Ω,F, 𝑃) a complete probability space, and 𝑀

 the
transpose of the vector or matrix𝑀.

2.1. The Financial Market. Let (Ω,F, 𝑃, {F
𝑡
}
𝑡≥0

) be a filtered
complete probability space on which a standard {F

𝑡
}
𝑡≥0

-
adapted 𝑚 + 𝑑-dimensional Brownian motion 𝑊(𝑡) :=

(𝑊(𝑡)

, 𝐵(𝑡)

)


:= (𝑊
1
(𝑡), . . . ,𝑊

𝑚
(𝑡), 𝐵
1
(𝑡), . . . , 𝐵

𝑑
(𝑡))
 for

𝑚 ≥ 1 and 𝑑 ≥ 0 is defined. It is assumed thatF
𝑡
= 𝜎{𝑊(𝑠) :

𝑠 ≤ 𝑡}. In this paper, we use𝐵(𝑡) tomodel the financial market
incompleteness as Lim [22] did. When 𝑑 = 0, the financial
market corresponds to a complete market.

Consider a financial market with 𝑚 + 1 securities which
consists of a bond and 𝑚 stocks. The price of bond 𝐴

0
(𝑡)

satisfies the following differential equation:

𝑑𝐴
0

(𝑡) = 𝑟 (𝑡) 𝐴
0

(𝑡) 𝑑𝑡, 𝑡 ∈ [0, 𝑇] ,

𝐴
0

(0) = 𝐴
0

0
> 0,

(1)

where the interest rate is as follows: 𝑟(𝑡) > 0. The price of
the 𝑖th stock, 𝐴𝑖(𝑡), is described by the following stochastic
differential equation (SDE):

𝑑𝐴
𝑖

(𝑡) = 𝐴
𝑖

(𝑡) [

[

𝜇
𝑖

(𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

𝜎
𝑖𝑗

(𝑡) 𝑑𝑊
𝑗

(𝑡)]

]

,

𝐴
𝑖

(0) = 𝐴
𝑖

0
> 0,

(2)

where 𝜇𝑖(𝑡) > 0 and 𝜎𝑖(𝑡) := (𝜎
𝑖1
(𝑡), . . . , 𝜎

𝑖𝑚
(𝑡)) are apprecia-

tion rate and volatility rate of the 𝑖th stock, respectively. The
R𝑚×𝑚-valued process of volatility coefficients

𝜎 (𝑡) := (𝜎
1

(𝑡)

, . . . , 𝜎

𝑚

(𝑡)

)
 (3)

is known as the volatility. In addition, we assume that the
market parameters 𝑟(⋅), 𝜇𝑖(⋅), and 𝜎

𝑖𝑗
(⋅) are {F

𝑡
}
𝑡≥0

-adapted
stochastic processes.

2.2. Liability. We assume that an exogenous accumulative
liability 𝐿(𝑡) is governed by

𝑑𝐿 (𝑡) = 𝑢 (𝑡) 𝑑𝑡 + V (𝑡) 𝑑𝐵
𝐿
(𝑡) ,

𝐿 (0) = 𝐿
0
> 0,

(4)
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where𝐵
𝐿
(𝑡) is a one-dimensional standard Brownianmotion.

We assume that the diffusion term of the liability, 𝐵
𝐿
, is

correlated with 𝑊(𝑡), and 𝜌 = (𝜌
1
, . . . , 𝜌

𝑚+𝑑
)
 is the cor-

relation coefficient. Then, 𝐵
𝐿
(𝑡) can be further expressed as

follows (see (2.6) of [25] for more details):

𝐵
𝐿
(𝑡) = 𝜌


𝑊(𝑡) + √1 − 𝜌𝜌𝑊

0

(𝑡) , (5)

where 𝑊0(𝑡) is a standard Brownian motion which is inde-
pendent of𝑊(𝑡). It follows from Itô’s formula that

𝑑𝐵
𝐿
(𝑡) = 𝜌


𝑑𝑊 (𝑡) + √1 − 𝜌𝜌𝑑𝑊

0

(𝑡) . (6)

Thus, the liability 𝐿(𝑡) can be rewritten as

𝑑𝐿 (𝑡) = 𝑢 (𝑡) 𝑑𝑡 − 𝛿
1
(𝑡)

𝑑𝑊 (𝑡) − 𝛿

2
(𝑡)

𝑑𝐵 (𝑡)

− 𝛿
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

(7)

where 𝛿
1
(𝑡) := −V(𝑡)(𝜌

1
, . . . , 𝜌

𝑚
)
, 𝛿
2
(𝑡) := −V(𝑡)(𝜌

𝑚+1
, . . .,

𝜌
𝑚+𝑑

)
, and 𝛿

0
(𝑡) := −V(𝑡)√1 − 𝜌𝜌. Further, we assume

that 𝑢(⋅) and 𝛿(⋅) := (𝛿
1
(⋅)

, 𝛿
2
(⋅)

, 𝛿
0
(⋅))
 are {F̂

𝑡
}
𝑡≥0

-adapted
stochastic processes, where F̂

𝑡
:= 𝜎{(𝑊(𝑠)


,𝑊
0
(𝑠))

: 𝑠 ≤ 𝑡}.

Remark 1. When 𝐵
𝐿
(𝑡) is independent of𝑊(𝑡), that is, 𝜌 = 0,

𝐵
𝐿
(𝑡) is equal to𝑊0(𝑡). When 𝜌𝜌 = 1, 𝐵

𝐿
(𝑡) can be expressed

as a linear combination of𝑊1(𝑡), . . . ,𝑊𝑚(𝑡), 𝐵1(𝑡), . . . , 𝐵𝑑(𝑡).

Remark 2. Since 𝑟(⋅), 𝜇𝑖(⋅), and 𝜎
𝑖𝑗
(⋅) are the parameters for

describing the financial market and 𝑢(⋅) and V(⋅) are used to
describe the exogenous liability, it is reasonable to assume that
𝑟(⋅), 𝜇𝑖(⋅), and 𝜎

𝑖𝑗
(⋅) are {F

𝑡
}
𝑡≥0

-adapted for 𝑖, 𝑗 = 1, . . . , 𝑚,
and 𝑢(⋅), V(⋅), and 𝛿(⋅) are {F̂

𝑡
}
𝑡≥0

-adapted.

2.3. The Mean-Variance Asset-Liability Management Model.
Suppose that the trading of shares takes place continuously
in a self-financing fashion and there are no transaction costs.
We assume that an investor has an initial endowment 𝑤 and
a liability 𝐿(𝑡). We denote by 𝑋(𝑡) the net total wealth of the
investor at time 𝑡 ∈ [0, 𝑇] and by 𝜋

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚, the

market value of the investor’s wealth in the 𝑖th stock. Then,
𝜋(𝑡) := (𝜋

1
(𝑡), . . . , 𝜋

𝑚
(𝑡))
 is a portfolio. The net total wealth

satisfies the following equation:

𝑑𝑋 (𝑡) = (𝑟 (𝑡) 𝑋 (𝑡) + 𝑏 (𝑡) 𝜋 (𝑡) − 𝑢 (𝑡)) 𝑑𝑡

+ (𝜋 (𝑡)

𝜎 (𝑡) + 𝛿

1
(𝑡)

) 𝑑𝑊 (𝑡)

+ 𝛿
2
(𝑡)

𝑑𝐵 (𝑡) + 𝛿

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑋 (0) = 𝑋
0
= 𝑤 − 𝐿

0
,

(8)

where 𝑏(𝑡) = (𝜇
1
(𝑡) − 𝑟(𝑡), . . . , 𝜇

𝑚
(𝑡) − 𝑟(𝑡)).

Next, we introduce the following notations.
One has |𝑥| := √∑

𝑛

𝑖=1
𝑥
2

𝑖
, where 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)

∈ R𝑛.

L2F(0, 𝑇;R
𝑛
) is the set of {F

𝑡
}
𝑡≥0

-adapted, R𝑛-valued
stochastic processes on [0, 𝑇] such that

𝐸∫

𝑇

0

𝑓 (𝑡)


2

𝑑𝑡 < ∞. (9)

L∞F (Ω; 𝐶(0, 𝑇;R)) is the set of {F
𝑡
}
𝑡≥0

-adapted essen-
tially bounded stochastic processes on [0, 𝑇]with continuous
sample paths.

L2
F̂
(0, 𝑇;R𝑛) is the set of {F̂

𝑡
}
𝑡≥0

-adapted, R𝑛-valued
stochastic processes on [0, 𝑇] such that

𝐸∫

𝑇

0

𝑓 (𝑡)


2

𝑑𝑡 < ∞. (10)

L2
F̂
(Ω; 𝐶(0, 𝑇;R)) is the set of {F̂

𝑡
}
𝑡≥0

-adapted, R-
valued stochastic processes on [0, 𝑇] with 𝑃-a.s. continuous
sample paths such that 𝐸sup

𝑡∈[0,𝑇]
|𝑓(𝑡)|
2
< ∞.

L2,loc
F̂

(0, 𝑇;R𝑛) is the set of {F̂
𝑡
}
𝑡≥0

-adapted, R𝑛-valued
stochastic processes on [0, 𝑇] such that

∫

𝑇

0

𝑓 (𝑡)


2

𝑑𝑡 < ∞, 𝑃-a.s. (11)

L2
F̂𝑇

(Ω;R) is the set of F̂
𝑇
-measurable, square-integra-

ble random variables.
L∞

F̂
(0, 𝑇;R𝑚) is the set of {F̂

𝑡
}
𝑡≥0

-adapted essentially
bounded stochastic processes on [0, 𝑇].

Definition 3. A portfolio policy 𝜋(⋅) is said to be admissible if
𝜋(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚) and there exists a unique solution of (8).

In this case, we refer to (𝑋(⋅), 𝜋(⋅)) as an admissible pair.

In this paper, we study the classical mean-variance
asset-liability management problem where the liability is
an exogenous liability 𝐿(𝑡). The objective of the investor is
to find a portfolio 𝜋(⋅) to minimize his/her risk which is
measured by the variance of the net terminal wealth subject
to archiving a prescribed expected terminal wealth. Then,
the mean-variance asset-liability management problem can
be formulated as follows:

𝐽
∗
:=min Var (𝑋 (𝑇)) = 𝐸 [𝑋 (𝑇) − 𝑐]

2
,

subject to: 𝐸𝑋 (𝑇)

= 𝑐, (𝑋 (⋅) , 𝜋 (⋅)) is admissible for (8) ,

(12)

where 𝑐 ∈ R is the prescribed expected terminal wealth. It
is clear that (12) is a linearly constrained convex program
problem. Thus, it can be reduced to an unconstrained
problem by introducing a Lagrange multiplier. Therefore,
in Section 3, we first consider the following unconstrained
problem parameterized by 𝑙 ∈ R,

min 𝐸 [𝑋 (𝑇) − 𝑙]
2
,

subject to: (𝑋 (⋅) , 𝜋 (⋅)) is admissible for (8) ,

(13)

and approach it from the perspective of stochastic LQoptimal
control and BSDEs. Further, in Section 4, based on the results
in Section 3, we employ the Lagrange multiplier method to
derive the mean-variance efficient portfolio and the efficient
frontier.

In addition, we assume that the following assumptions are
satisfied throughout this paper.
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Assumption 4. Consider the following:

𝑟 (⋅) , 𝜇
𝑖

(⋅) , 𝜎
𝑖𝑗

(⋅) ∈ L
∞

F (0, 𝑇;R) , 𝑖, 𝑗 = 1, . . . , 𝑚;

𝑢 (⋅) , V (⋅) ∈ L
∞

F̂
(0, 𝑇;R) ;

𝛿 (⋅) ∈ L
∞

F̂
(0, 𝑇;R

𝑚+𝑑+1
) ;

𝜎 (𝑡) 𝜎 (𝑡)

≥ 𝜖𝐼
𝑚
,

∀𝑡 ∈ [0, 𝑇] , for some 𝜖 > 0,

(14)

where 𝐼
𝑚
is the 𝑚 × 𝑚 identity matrix. Note that 𝜎(𝑡)𝜎(𝑡) ≥

𝜖𝐼
𝑚
is the so-called nondegeneracy condition and implies that

𝜎(𝑡) is invertible.

3. The Unconstrained Asset-Liability
Management Problem

The aim of this section is to derive the optimal solution for
the unconstrained problem (13).

Consider the following BSDEs:

𝑑𝑝 (𝑡) = [(−2𝑟 (𝑡) + |𝜃 (𝑡)|
2
) 𝑝 (𝑡) + 2𝜃 (𝑡)


Λ
1
(𝑡)

+
1

𝑝 (𝑡)

Λ 1 (𝑡)


2

] 𝑑𝑡 + Λ
1
(𝑡)

𝑑𝑊 (𝑡) + Λ

2
(𝑡)

𝑑𝐵 (𝑡) ,

𝑝 (𝑇) = 1, 𝑝 (𝑡) > 0, ∀𝑡 ∈ [0, 𝑇] ,

(15)

𝑑ℎ (𝑡) = (𝑟 (𝑡) ℎ (𝑡) + 𝜃 (𝑡)

𝜂
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝜂
2
(𝑡)

− 𝑢 (𝑡) − 𝜃 (𝑡)

𝛿
1
(𝑡) + 𝛿

2
(𝑡)
 Λ 2 (𝑡)

𝑝 (𝑡)
) 𝑑𝑡 + 𝜂

1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝜂
2
(𝑡)

𝑑𝐵 (𝑡) + 𝜂

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

ℎ (𝑇) = 𝑙,

(16)

where 𝜃(𝑡) = 𝜎(𝑡)
−1
𝑏(𝑡)
. Throughout this paper, a pair of

processes (𝑝(⋅), Λ(⋅)) is called a solution of BSDE (15) if it
satisfies BSDE (15) and

Λ (⋅) = (Λ
1
(⋅)

, Λ
2
(⋅)

)


,

(𝑝 (⋅) , Λ (⋅)) ∈ L
∞

F (Ω; 𝐶 (0, 𝑇;R))

⋅L
2

F (0, 𝑇;R
𝑚+𝑑

) ,

1

𝑝 (⋅)
∈ L
∞

F (Ω; 𝐶 (0, 𝑇;R)) .

(17)

On the other hand, a pair (ℎ(⋅), 𝜂(⋅)) is called a solution of
BSDE (16) if (ℎ(⋅), 𝜂(⋅)) satisfies BSDE (16) and

𝜂 (⋅) = (𝜂
1
(⋅)

, 𝜂
2
(⋅)

, 𝜂
0
(⋅))


,

(ℎ (⋅) , 𝜂 (⋅)) ∈ L
2

F̂
(Ω; 𝐶 (0, 𝑇;R))

⋅L
2

F̂
(0, 𝑇;R

𝑚+𝑑+1
) .

(18)

Before deriving the optimal solution for problem (13), we
will prove the existence and uniqueness of solutions of BSDEs
(15) and (16), respectively. The following result can be found
in [22] (see Theorem 6.1 of [22]).

Lemma 5. If Assumption 4 holds, then the following BSDE,

𝑑𝑝 (𝑡) = [(−2𝑟 (𝑡) + |𝜃 (𝑡)|
2
) 𝑝 (𝑡) + 2𝜃 (𝑡)


Λ
1
(𝑡)

+

Λ 1 (𝑡)


2

𝑝 (𝑡)
] 𝑑𝑡 + Λ

1
(𝑡)

𝑑𝑊 (𝑡) + Λ̃

2
(𝑡)

𝑑𝐵 (𝑡) ,

𝑝 (𝑇) = 1, 𝑝 (𝑡) > 0, ∀𝑡 ∈ [0, 𝑇] ,

(19)

has a solution (𝑝(⋅), Λ̃(⋅)) where 𝐵(⋅) := (𝐵(⋅)

,𝑊
0
(⋅))
.

Moreover, if (𝑝(⋅), Λ(⋅)) and (𝑝(⋅), Λ̃(⋅)) are solutions of (19),
then 𝑝(⋅) ≡ 𝑝(⋅).

Here, we claim thatΛ(⋅) ≡ Λ̃(⋅) holds. In fact, by applying
Itô’s formula to Δ𝑝(𝑡) := 𝑝(𝑡) − 𝑝(𝑡), we have

𝑑Δ𝑝 (𝑡) = Δ𝐹 (𝑡) 𝑑𝑡 + ΔΛ
1
(𝑡)

𝑑𝑊 (𝑡)

+ ΔΛ
2
(𝑡)

𝑑𝐵 (𝑡) ,

Δ𝑝 (𝑇) = 0,

(20)

where ΔΛ
1
(⋅) := Λ̃

1
(⋅) − Λ

1
(⋅), ΔΛ

2
(⋅) := Λ̃

2
(⋅) − Λ

2
(⋅), and

Δ𝐹 (⋅) := (−2𝑟 (⋅) + |𝜃 (⋅)|
2
) Δ𝑝 (⋅) + 2𝜃 (⋅)


ΔΛ
1
(⋅)

+
1

𝑝 (⋅)
(

Λ̃
1
(⋅)


2

−

Λ
1
(⋅)


2

) .

(21)

Once again, it follows from Itô’s formula that

𝑑 (Δ𝑝 (𝑡))
2

= (2Δ𝑝 (𝑡) Δ𝐹 (𝑡) +
ΔΛ 1 (𝑡)



2

+
ΔΛ 2 (𝑡)



2

) 𝑑𝑡

+ 2Δ𝑝 (𝑡) ΔΛ
1
(𝑡)

𝑑𝑊 (𝑡)

+ 2Δ𝑝 (𝑡) ΔΛ
2
(𝑡)

𝑑𝐵 (𝑡) ,

(Δ𝑝 (𝑇))
2

= 0.

(22)
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Thus we have

− 𝐸 (Δ𝑝 (𝑡))
2

= 𝐸∫

𝑇

𝑡

(2Δ𝑝 (𝑠) Δ𝐹 (𝑠) +
ΔΛ 1 (𝑠)



2

+
ΔΛ 2 (𝑠)



2

) 𝑑𝑠.

(23)

From Lemma 5, we know that Δ𝑝(⋅) ≡ 0 and so

0 = 𝐸∫

𝑇

𝑡

(
ΔΛ 1 (𝑠)



2

+
ΔΛ 2 (𝑠)



2

) 𝑑𝑠. (24)

This implies that Λ(⋅) ≡ Λ̃(⋅) holds.
Since 𝑟(⋅) and 𝜃(⋅) are {F

𝑡
}
𝑡≥0

-adapted, BSDE (19) can
reduce to (15). This implies that BSDE (15) has a unique solu-
tion (𝑝(⋅), Λ(⋅)) under Assumption 4. Moreover, (𝑝(⋅), Λ̃(⋅)) is
the unique solution of BSDE (19), where Λ̃(⋅) = (Λ(⋅)


, 0)
.

From the discussion of Section 4 in [22], we have the
following lemma.

Lemma 6. If Assumption 4 holds, then

(

𝑋 (𝑡)

�̃� (𝑡)

) = (

𝑊(𝑡)

𝐵 (𝑡)

) + ∫

𝑡

0

(

𝜃 (𝑠)

−
Λ̃
2
(𝑠)

𝑝 (𝑠)

)𝑑𝑠 (25)

is a standard Brownian motion under 𝑃 where

𝑑𝑃

𝑑𝑃
:= exp{−∫

𝑇

0

𝜃 (𝑠)

𝑑𝑊 (𝑠) + ∫

𝑇

0

Λ̃
2
(𝑠)


𝑝 (𝑠)
𝑑𝐵 (𝑠)

−
1

2
∫

𝑇

0

(|𝜃 (𝑠)|
2
+



Λ̃
2
(𝑠)

𝑝 (𝑠)



2

)𝑑𝑠} .

(26)

For the existence anduniqueness of solution of BSDE (16),
we have the following result.

Proposition 7. If Assumption 4 holds, then BSDE (16) has a
unique solution.

Proof. The assumption guarantees that there is a unique
optimal control �̂�(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚) for (13). Denote by𝑋(⋅)

the net wealth process associated with the optimal control
�̂�(⋅). The optimal condition (see [26]) implies that

𝑏 (𝑡)

𝑦 (𝑡) + 𝜎 (𝑡) 𝑧

1
(𝑡) = 0, (27)

where (𝑦(⋅), 𝑧(⋅)) is the unique solution of the following linear
BSDE (called adjoint equation):

𝑑𝑦 (𝑡) = −𝑟 (𝑡) 𝑦 (𝑡) 𝑑𝑡 + 𝑧
1
(𝑡)

𝑑𝑊 (𝑡) + 𝑧

2
(𝑡)

𝑑𝐵 (𝑡)

+ 𝑧
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑦 (𝑇) = 𝑋 (𝑇) − 𝑙.

(28)

By using Itô’s formula, we have

𝑑(
1

𝑝 (𝑡)
) = (

2𝑟 (𝑡) − |𝜃 (𝑡)|
2

𝑝 (𝑡)
−
2𝜃 (𝑡)

Λ
1
(𝑡)

𝑝2 (𝑡)

+

Λ 2 (𝑡)


2

𝑝3 (𝑡)
) 𝑑𝑡 −

Λ
1
(𝑡)


𝑝2 (𝑡)
𝑑𝑊 (𝑡) −

Λ
2
(𝑡)


𝑝2 (𝑡)
𝑑𝐵 (𝑡) ,

𝑑 (
𝑦 (𝑡)

𝑝 (𝑡)
) = [

(𝑟 (𝑡) − |𝜃 (𝑡)|
2
) 𝑦 (𝑡)

𝑝 (𝑡)

−
2𝜃 (𝑡)

Λ
1
(𝑡) 𝑦 (𝑡) + Λ

1
(𝑡)

𝑧
1
(𝑡) + Λ

2
(𝑡)

𝑧
2
(𝑡)

𝑝2 (𝑡)

+
𝑦 (𝑡)

Λ 2 (𝑡)


2

𝑝3 (𝑡)
] 𝑑𝑡 + (

𝑧
1
(𝑡)


𝑝 (𝑡)
−
𝑦 (𝑡) Λ

1
(𝑡)


𝑝2 (𝑡)
) 𝑑𝑊 (𝑡)

+ (
𝑧
2
(𝑡)


𝑝 (𝑡)
−
𝑦 (𝑡) Λ

2
(𝑡)


𝑝2 (𝑡)
) 𝑑𝐵 (𝑡) +

𝑧
0
(𝑡)

𝑝 (𝑡)
𝑑𝑊
0

(𝑡) ,

𝑑 (𝑋 (𝑡) −
𝑦 (𝑡)

𝑝 (𝑡)
) = [𝑟 (𝑡) (𝑋 (𝑡) −

𝑦 (𝑡)

𝑝 (𝑡)
) + 𝜃 (𝑡)



⋅ (𝜎 (𝑡)

�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)] 𝑑𝑡

− [
Λ
2
(𝑡)


𝑝 (𝑡)
(𝛿
2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
) + 𝑢 (𝑡)

+ 𝜃


(𝑡) 𝛿
1
(𝑡) −

𝛿
2
(𝑡)

Λ
2
(𝑡)

𝑝 (𝑡)
] 𝑑𝑡 + [

𝑦 (𝑡) |𝜃 (𝑡)|
2

𝑝 (𝑡)

+
𝜃 (𝑡)

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) 𝜃 (𝑡)


Λ
1
(𝑡) + Λ

1
(𝑡)

𝑧
1
(𝑡)

𝑝2 (𝑡)
] 𝑑𝑡

+ (𝜎 (𝑡)

�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)



𝑑𝑊 (𝑡)

+ (𝛿
2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
)



𝑑𝐵 (𝑡) + (𝛿
0
(𝑡)

−
𝑧
0
(𝑡)

𝑝 (𝑡)
) 𝑑𝑊

0

(𝑡) .

(29)

It follows from (27) that 𝜃(𝑡)𝑦(𝑡) + 𝑧
1
(𝑡) = 0. Further,

𝑑(𝑋 (𝑡) −
𝑦 (𝑡)

𝑝 (𝑡)
) = [𝑟 (𝑡) (𝑋 (𝑡) −

𝑦 (𝑡)

𝑝 (𝑡)
) + 𝜃 (𝑡)



⋅ (𝜎 (𝑡)

�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)] 𝑑𝑡

− [
Λ
2
(𝑡)


𝑝 (𝑡)
(𝛿
2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
) + 𝑢 (𝑡)

+ 𝜃 (𝑡)

𝛿
1
(𝑡) −

𝛿
2
(𝑡)

Λ
2
(𝑡)

𝑝 (𝑡)
] 𝑑𝑡 + (𝜎 (𝑡)


�̂� (𝑡)

+ 𝛿
1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)



𝑑𝑊 (𝑡) + (𝛿
2
(𝑡)

−
𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
)



𝑑𝐵 (𝑡) + (𝛿
0
(𝑡) −

𝑧
0
(𝑡)

𝑝 (𝑡)
) 𝑑𝑊

0

(𝑡) .

(30)
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Comparing with BSDE (16), we conclude that (ℎ̃(⋅), 𝜂(⋅)) is a
solution of (16), where

ℎ̃ (𝑡) := 𝑋 (𝑡) −
𝑦 (𝑡)

𝑝 (𝑡)
,

𝜂
1
(𝑡) := 𝜎 (𝑡)


�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
,

𝜂
2
(𝑡) := 𝛿

2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
,

𝜂
0
(𝑡) := 𝛿

0
(𝑡) −

𝑧
0
(𝑡)

𝑝 (𝑡)
.

(31)

Now we show the uniqueness of the solution for (16).
Assume that (ℎ(⋅), 𝜂(⋅)) and (ℎ̃(⋅), 𝜂(⋅)) are two solutions of
BSDE (16). It follows from Itô’s formula that

𝑑Δℎ (𝑡)

= (𝑟 (𝑡) Δℎ (𝑡) + 𝜃 (𝑡)

Δ𝜂
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
Δ𝜂
2
(𝑡)) 𝑑𝑡

+ Δ𝜂
1
(𝑡)

𝑑𝑊 (𝑡) + Δ𝜂

2
(𝑡)

𝑑𝐵 (𝑡)

+ Δ𝜂
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

Δℎ (𝑇) = 0,

(32)

where Δℎ(⋅) := ℎ(⋅) − ℎ̃(⋅), Δ𝜂
1
(⋅) := 𝜂

1
(⋅) − 𝜂

1
(⋅), Δ𝜂

2
(⋅) :=

𝜂
2
(⋅) − 𝜂

2
(⋅), and Δ𝜂

0
(⋅) := 𝜂

0
(⋅) − 𝜂

0
(⋅).

By using the transformation defined by (25) to (32), we
have

𝑑Δℎ (𝑡) = 𝑟 (𝑡) Δℎ (𝑡) 𝑑𝑡 + Δ𝜂
1
(𝑡)

𝑑𝑋 (𝑡)

+ (Δ𝜂
2
(𝑡)

, Δ𝜂
0
(𝑡)) 𝑑�̃� (𝑡) ,

Δℎ (𝑇) = 0

(33)

which is a linear BSDE and has a unique solution (0, 0) under
Assumption 4. In consequence, we have ℎ(⋅) = ℎ̃(⋅) and 𝜂(⋅) =
𝜂(⋅).

This completes the proof.

The following lemma is a generalization of Lemma 3.1 in
[22].

Lemma 8. Suppose that Assumption 4 holds. Let 𝜋(⋅) ∈

L2,𝑙𝑜𝑐
F̂

(0, 𝑇;R𝑚) be given and fixed. If net wealth equation (8)
corresponding to 𝜋(⋅) has a unique solution 𝑋(⋅) such that
𝑋(⋅) ∈ L2

F̂
(0, 𝑇;R) and 𝑋(𝑇) ∈ L2

F̂𝑇
(Ω;R), then 𝜋(⋅) ∈

L2
F̂
(0, 𝑇;R𝑚) is admissible.

Proof. Assume that 𝜋(⋅) ∈ L2,loc
F̂

(0, 𝑇;R𝑚) is given and fixed
and SDE (8) corresponding to 𝜋(⋅) has a unique solution
𝑋(⋅) ∈ L2

F̂
(0, 𝑇;R). It follows from Itô’s formula that

𝑋 (𝑡)
2
= 𝑋 (0)

2
+ ∫

𝑡

0

2𝑋 (𝑠) (𝑟 (𝑠)𝑋 (𝑠) + 𝑏 (𝑠) 𝜋 (𝑠)

− 𝑢 (𝑠)) 𝑑𝑠 + ∫

𝑡

0

(

𝜎 (𝑠)

𝜋 (𝑠) + 𝛿

1
(𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠 + ∫

𝑡

0

2𝑋 (𝑠) 𝛿
1
(𝑠)

𝑑𝑊 (𝑠)

+ ∫

𝑡

0

2𝑋 (𝑠) 𝛿
2
(𝑠)

𝑑𝐵 (𝑠) + ∫

𝑡

0

2𝑋 (𝑠)

⋅ 𝛿
0
(𝑠) 𝑑𝑊

0

(𝑠) + ∫

𝑡

0

2𝑋 (𝑠)

⋅ (𝜎 (𝑠)

𝜋 (𝑠))



𝑑𝑊 (𝑠) .

(34)

Under Assumption 4, we have 2𝑋(⋅)𝛿
1
(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚),

2𝑋(⋅)𝛿
2
(⋅) ∈ L2

F̂
(0, 𝑇;R𝑑), and 2𝑋(⋅)𝛿

0
(⋅) ∈ L2

F̂
(0, 𝑇;R),

which imply that

∫

𝑡

0

2𝑋 (𝑠) 𝛿
1
(𝑠)

𝑑𝑊 (𝑠) + ∫

𝑡

0

2𝑋 (𝑠) 𝛿
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑋 (𝑠) 𝛿
0
(𝑠) 𝑑𝑊

0

(𝑠)

(35)

is a martingale and so

𝐸[∫

𝑡

0

2𝑋 (𝑠) 𝛿
1
(𝑠)

𝑑𝑊 (𝑠) + ∫

𝑡

0

2𝑋 (𝑠) 𝛿
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑋 (𝑠) 𝛿
0
(𝑠) 𝑑𝑊

0

(𝑠)] = 0.

(36)

Because 𝑋(⋅) is continuous (and bounded on
[0, 𝑇], a.s.), we have 2𝑋(⋅)𝜎(⋅)


𝜋(⋅) ∈ L2,loc

F̂
(0, 𝑇;R𝑚) and

∫
𝑡

0
2𝑋(𝑠)(𝜎(𝑠)


𝜋(𝑠))

𝑑𝑊(𝑠) is a local martingale. Therefore,

there exists a localizing sequence {𝜏
𝑖
} for the local martingale

such that

∫

𝑡∧𝜏𝑖

0

2𝑋 (𝑠) (𝜎 (𝑠)

𝜋 (𝑠))



𝑑𝑊 (𝑠) (37)

is a martingale.
Putting 𝑡 = 𝑇 ∧ 𝜏

𝑖
and taking expectations on both sides

of (34), we have

𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

= 𝑋 (0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) (𝑟 (𝑠)𝑋 (𝑠)

+ 𝑏 (𝑠) 𝜋 (𝑠) − 𝑢 (𝑠)) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

(

𝜎 (𝑠)

𝜋 (𝑠) + 𝛿

1
(𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠.

(38)
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Then it can be rewritten as

𝑋 (0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

= 𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝑟 (𝑠)𝑋 (𝑠)
2
𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝛿
1
(𝑠)

𝜎 (𝑠)

𝜋 (𝑠) 𝑑𝑠

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑏 (𝑠) 𝜋 (𝑠) 𝑑𝑠.

(39)

Since

− 2𝑋 (𝑠) 𝑏 (𝑠) 𝜋 (𝑠) = −2(√
4

𝜖
𝑋 (𝑠) 𝑏 (𝑠))(√

𝜖

4
𝜋 (𝑠))

≤
4

𝜖
𝑋 (𝑠)
2

|𝑏 (𝑠)|
2
+
𝜖

4
|𝜋 (𝑠)|

2
,

− 2𝛿
1
(𝑠)

𝜎 (𝑠)

𝜋 (𝑠)

= −2(√
4

𝜖
𝛿
1
(𝑠)

𝜎 (𝑠)

)(√

𝜖

4
𝜋 (𝑠))

≤
4

𝜖

𝜎 (𝑠) 𝛿1 (𝑠)


2

+
𝜖

4
|𝜋 (𝑠)|

2
,

(40)

we have

𝑋 (0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

≤ 𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝑟 (𝑠)𝑋 (𝑠)
2
𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

4

𝜖

𝜎 (𝑠) 𝛿1 (𝑠)


2

+
𝜖

4
|𝜋 (𝑠)|

2
𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

4

𝜖
𝑋 (𝑠)
2

|𝑏 (𝑠)|
2
+
𝜖

4
|𝜋 (𝑠)|

2
𝑑𝑠.

(41)

Rewriting the inequality above, we have

𝑋(0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

−
𝜖

2
𝐸∫

𝑇∧𝜏𝑖

0

|𝜋 (𝑠)|
2
𝑑𝑠

≤ 𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

+ 𝐸∫

𝑇∧𝜏𝑖

0

𝑋 (𝑠)
2
(−2𝑟 (𝑠) +

4

𝜖
|𝑏 (𝑠)|
2
)𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+
4

𝜖
𝐸∫

𝑇∧𝜏𝑖

0

𝜎 (𝑠) 𝛿1 (𝑠)


2

𝑑𝑠.

(42)

From Fatou’s lemma, we obtain

𝑋(0)
2
+ 𝐸∫

𝑇

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

+ 𝐸∫

𝑇

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

−
𝜖

2
𝐸∫

𝑇

0

|𝜋 (𝑠)|
2
𝑑𝑠 ≤ 𝐸𝑋 (𝑇)

2

+ 𝐸∫

𝑇

0

𝑋 (𝑠)
2
(−2𝑟 (𝑠) +

4

𝜖
|𝑏 (𝑠)|
2
)𝑑𝑠

+ 𝐸∫

𝑇

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠 +
4

𝜖
𝐸∫

𝑇

0

𝜎 (𝑠) 𝛿1 (𝑠)


2

𝑑𝑠

< +∞,

(43)

where the last inequality comes from Assumption 4 and
𝑋(⋅) ∈ L2

F̂
(0, 𝑇;R).

Since 𝜎(𝑡)𝜎(𝑡) ≥ 𝜖𝐼
𝑚
, we have

𝜖

2
𝐸∫

𝑇

0

|𝜋 (𝑠)|
2
𝑑𝑠

≤ 𝑋 (0)
2

+ 𝐸∫

𝑇

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

+ 𝐸∫

𝑇

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

−
𝜖

2
𝐸∫

𝑇

0

|𝜋 (𝑠)|
2
𝑑𝑠 < +∞

(44)

which implies that 𝜋(⋅) ∈ L2
F̂
(0, 𝑇;R𝑚) is admissible.

This completes the proof.
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The following result concerns the admissibility of (46).

Proposition 9. If Assumption 4 holds, then

𝑑𝑋 (𝑡) = {𝑟 (𝑡)𝑋 (𝑡) − 𝜃 (𝑡)

[𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)] − 𝑢 (𝑡)} 𝑑𝑡

+ [𝜂
1
(𝑡) − (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)]



𝑑𝑊 (𝑡)

+ 𝛿
2
(𝑡)

𝑑𝐵 (𝑡) + 𝛿

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑋 (0) = 𝑋
0

(45)

(replace (8) by (46)) has a unique solution with 𝑋(⋅) ∈

L2
F̂
(0, 𝑇;R) and 𝑋(𝑇) ∈ L2

F̂𝑇
(Ω;R). Moreover,

𝜋 (𝑡) := − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)]

(46)

is admissible.

Proof. Consider the following SDE:

𝑑𝑌 (𝑡) = −𝑟 (𝑡) 𝑌 (𝑡) 𝑑𝑡 − 𝑌 (𝑡) 𝜃 (𝑡)

𝑑𝑊 (𝑡)

+ [𝑌 (𝑡) 𝛼
1
(𝑡) + 𝛼

2
(𝑡)]


𝑑𝐵 (𝑡)

+ 𝛽
2
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑌 (0) = 𝑝 (0) (𝑋 (0) − ℎ (0)) ,

(47)

where

𝛼
1
(𝑡) =

Λ
2
(𝑡)

𝑝 (𝑡)
,

𝛼
2
(𝑡) = 𝑝 (𝑡) (𝛿

2
(𝑡) − 𝜂

2
(𝑡)) ,

𝛽
2
(𝑡) = 𝑝 (𝑡) (𝛿

0
(𝑡) − 𝜂

0
(𝑡)) .

(48)

It can be shown that

𝑌 (𝑡) = Φ (𝑡) [𝑝 (0) (𝑋 (0) − ℎ (0))

− ∫

𝑡

0

𝛼
1
(𝑠)

𝛼
2
(𝑠) Φ
−1

(𝑠) 𝑑𝑠] + Φ (𝑡)

⋅ (∫

𝑡

0

𝛼
2
(𝑠)

Φ
−1

(𝑠) 𝑑𝐵 (𝑠)

+ ∫

𝑡

0

𝛽
2
(𝑠) Φ
−1

(𝑠) 𝑑𝑊
0

(𝑠))

(49)

is the unique solution of (47), where

Φ (𝑡) = exp{−1
2
∫

𝑡

0

(|𝜃 (𝑠)|
2
+
𝛼1 (𝑠)



2

+ 2𝑟 (𝑠)) 𝑑𝑠

− ∫

𝑡

0

𝜃 (𝑠)

𝑑𝑊 (𝑠) + ∫

𝑡

0

𝛼
1
(𝑠)

𝑑𝐵 (𝑠)} .

(50)

By using Itô’s formula, we have that

𝑋 (𝑡) = ℎ (𝑡) +
𝑌 (𝑡)

𝑝 (𝑡)
(51)

is the unique solution of SDE (45).
It follows from Itô’s formula that

𝑑 (𝑋 (𝑡) − ℎ (𝑡)) = [𝑟 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))

− (𝑋 (𝑡) − ℎ (𝑡)) 𝜃 (𝑡)

(𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)

+
Λ
2
(𝑡)


𝑝 (𝑡)
(𝜂
2
(𝑡) − 𝛿

2
(𝑡))] 𝑑𝑡 − (𝑋 (𝑡) − ℎ (𝑡))

⋅ (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)



𝑑𝑊 (𝑡)

+ (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


𝑑𝐵 (𝑡) + (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

𝑑 (𝑋 (𝑡) − ℎ (𝑡))
2

= [(𝑋 (𝑡) − ℎ (𝑡))
2
(2𝑟 (𝑡) − |𝜃 (𝑡)|

2
+



Λ
1
(𝑡)

𝑝 (𝑡)



2

)

+ 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝜂
2
(𝑡) − 𝛿

2
(𝑡))
 Λ 2 (𝑡)

𝑝 (𝑡)
] 𝑑𝑡

+ (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡

− 2 (𝑋 (𝑡) − ℎ (𝑡))
2
(𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)



𝑑𝑊 (𝑡)

+ 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


𝑑𝐵 (𝑡) + 2 (𝑋 (𝑡)

− ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

𝑑𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (𝑡) (

𝛿2 (𝑡) − 𝜂
2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡 − 𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
(2𝜃 (𝑡)

+
Λ
1
(𝑡)

𝑝 (𝑡)
)



𝑑𝑊 (𝑡)

+ [2𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


+ (𝑋 (𝑡) − ℎ (𝑡))
2
Λ
2
(𝑡)

] 𝑑𝐵 (𝑡) + 2𝑝 (𝑡) (𝑋 (𝑡)

− ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) .

(52)
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Then, we have

𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (0) (𝑋 (0) − ℎ (0))

2

+ ∫

𝑡

0

𝑝 (𝑠) (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠

− ∫

𝑡

0

𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠))
2
(2𝜃 (𝑠)

+
Λ
1
(𝑠)

𝑝 (𝑠)
)



𝑑𝑊 (𝑠)

+ ∫

𝑡

0

[2𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
2
(𝑠) − 𝜂

2
(𝑠))


+ (𝑋 (𝑠) − ℎ (𝑠))
2
Λ
2
(𝑠)

] 𝑑𝐵 (𝑠) + ∫

𝑡

0

2𝑝 (𝑠)

⋅ (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
0
(𝑠) − 𝜂

0
(𝑠)) 𝑑𝑊

0

(𝑠) .

(53)

Taking𝑋(𝑡) = ℎ(𝑡)+𝑌(𝑡)/𝑝(𝑡) into account, we conclude that

− ∫

𝑡

0

𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠))
2
(2𝜃 (𝑠) +

Λ
1
(𝑠)

𝑝 (𝑠)
)



𝑑𝑊 (𝑠)

+ ∫

𝑡

0

2𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
2
(𝑠) − 𝜂

2
(𝑠))


𝑑𝐵 (𝑠)

+ ∫

𝑡

0

(𝑋 (𝑠) − ℎ (𝑠))
2
Λ
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
0
(𝑠) − 𝜂

0
(𝑠)) 𝑑𝑊

0

(𝑠)

= −∫

𝑡

0

𝑌 (𝑠)
2

𝑝 (𝑠)
(2𝜃 (𝑠) +

Λ
1
(𝑠)

𝑝 (𝑠)
)



𝑑𝑊 (𝑠)

+ ∫

𝑡

0

2𝑌 (𝑠) (𝛿
2
(𝑠) − 𝜂

2
(𝑠))


𝑑𝐵 (𝑠)

+ ∫

𝑡

0

𝑌 (𝑠)
2

𝑝 (𝑠)
2
Λ
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑌 (𝑠) (𝛿
0
(𝑠) − 𝜂

0
(𝑠)) 𝑑𝑊

0

(𝑠)

(54)

is a local martingale under Assumption 4. Let {𝜏
𝑖
} be a

localizing sequence for the local martingale above. Then, for
any 𝑡 ∈ [0, 𝑇],

𝐸 [𝑝 (𝑡 ∧ 𝜏
𝑖
) (𝑋 (𝑡 ∧ 𝜏

𝑖
) − ℎ (𝑡 ∧ 𝜏

𝑖
))
2

] = 𝑝 (0) (𝑋 (0)

− ℎ (0))
2
+ 𝐸∫

𝑡∧𝜏𝑖

0

𝑝 (𝑠)

⋅ (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠.

(55)

It follows from Fatou’s lemma and Assumption 4 that

𝐸 [𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
] ≤ 𝑝 (0) (𝑋 (0) − ℎ (0))

2

+ 𝐸∫

𝑡

0

𝑝 (𝑠)

⋅ (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠

≤ 𝑝 (0) (𝑋 (0) − ℎ (0))
2
+ 𝐸∫

𝑇

0

𝑝 (𝑠)

⋅ (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠.

(56)

Since 𝑝(⋅) > 0 and 1/𝑝(⋅) ∈ L∞F (Ω; 𝐶(0, 𝑇;R)), there exists a
constant 𝜀 > 0 such that, for any 𝑡 ∈ [0, 𝑇], 𝑝(𝑡) ≥ 𝜀. Thus, we
have

𝜀𝐸 [(𝑋 (𝑡) − ℎ (𝑡))
2
] ≤ 𝐸 [𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))

2
] ≤ 𝐻, (57)

where𝐻 := 𝑝(0)(𝑋(0) − ℎ(0))
2
+ 𝐸∫
𝑇

0
𝑝(𝑠)(|𝛿

2
(𝑠) − 𝜂

2
(𝑠)|
2
+

|𝛿
0
(𝑠) − 𝜂

0
(𝑠)|
2
)𝑑𝑠 < +∞.

Further, we have

𝐸 [(𝑋 (𝑇) − ℎ (𝑇))
2
] ≤

1

𝜀
𝐸 [𝑝 (𝑇) (𝑋 (𝑇) − ℎ (𝑇))

2
]

≤
𝐻

𝜀
< +∞,

𝐸 [∫

𝑇

0

(𝑋 (𝑡) − ℎ (𝑡))
2
𝑑𝑡] = ∫

𝑇

0

𝐸 (𝑋 (𝑡) − ℎ (𝑡))
2
𝑑𝑡

≤
𝐻

𝜀
𝑇 < +∞

(58)

which means that (𝑋(𝑇) − ℎ(𝑇)) ∈ L2
F̂𝑇

(Ω;R) and (𝑋(⋅) −

ℎ(⋅)) ∈ L2
F̂
(0, 𝑇;R).

Because ℎ(𝑇) ∈ L2
F̂𝑇

(Ω;R) and ℎ(⋅) ∈ L2
F̂
(0, 𝑇;R), we

have
𝑋(⋅) = (𝑋 (⋅) − ℎ (⋅)) + ℎ (⋅) ∈ L

2

F̂
(0, 𝑇;R) ,

𝑋 (𝑇) = (𝑋 (𝑇) − ℎ (𝑇)) + ℎ (𝑇) ∈ L
2

F̂𝑇
(Ω;R) .

(59)

Since Λ
1
(⋅) ∈ L2F(0, 𝑇;R

𝑚
) and ℎ(⋅) ∈ L2

F̂
(Ω; 𝐶(0, 𝑇;

R)), it follows from (46) that 𝜋(⋅) ∈ L2,loc
F̂

(0, 𝑇;R𝑚). Further,
we conclude from Lemma 8 that 𝜋(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚) and

𝜋(⋅) is admissible.
This completes the proof.

Next, we formulate the optimal control policy and the cost
for the unconstrained control problem (13).

Theorem 10. Let 𝜋(⋅) be given by (46). If Assumption 4 holds,
then 𝜋(⋅) is the unique optimal control policy for problem (13)
and

𝐽
∗
= 𝑝 (0) (𝑋 (0) − ℎ (0))

2
+ 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡

(60)

is the optimal cost.
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Proof. From Itô’s formula, (16) and (8) give

𝑑 (𝑋 (𝑡) − ℎ (𝑡)) = [𝑟 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) + 𝑏 (𝑡) 𝜋 (𝑡)

+ 𝜃 (𝑡)

(𝛿
1
(𝑡) − 𝜂

1
(𝑡)) +

Λ
2
(𝑡)


𝑝 (𝑡)
(𝜂
2
(𝑡) − 𝛿

2
(𝑡))] 𝑑𝑡

+ (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡))


𝑑𝑊 (𝑡) + (𝛿
2
(𝑡)

− 𝜂
2
(𝑡))


𝑑𝐵 (𝑡) + (𝛿
0

(𝑡) − 𝜂
0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

𝑑 (𝑋 (𝑡) − ℎ (𝑡))
2
= 2 (𝑋 (𝑡) − ℎ (𝑡))

⋅ [𝑟 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))

+ 𝑏 (𝑡) 𝜋 (𝑡) + 𝜃 (𝑡)

(𝛿
1
(𝑡) − 𝜂

1
(𝑡))

+
Λ
2
(𝑡)


𝑝 (𝑡)
(𝜂
2
(𝑡) − 𝛿

2
(𝑡))] 𝑑𝑡 + 2 (𝑋 (𝑡) − ℎ (𝑡))

⋅ (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡)

− 𝜂
1
(𝑡))


𝑑𝑊 (𝑡) + 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


𝑑𝐵 (𝑡)

+ 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡)

+ (

𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡)


2

+
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝜂

0
(𝑡))
2

) 𝑑𝑡.

(61)

By using Itô’s formula again, we have

𝑑𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (𝑡) {𝜋 (𝑡)


𝜎 (𝑡) 𝜎 (𝑡)


𝜋 (𝑡)

+ 2𝜋 (𝑡)

[𝜎 (𝑡) (𝛿

1
(𝑡) − 𝜂

1
(𝑡))

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝑏 (𝑡)

+
𝜎 (𝑡) Λ

1
(𝑡)

𝑝 (𝑡)
)]}𝑑𝑡

+ 𝑝 (𝑡) [
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

+
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+



𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)



2

]𝑑𝑡 + (𝑋 (𝑡)

− ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
1
(𝑡) + 2𝑝 (𝑡) (𝜎 (𝑡)


𝜋 (𝑡)

+ 𝛿
1
(𝑡) − 𝜂

1
(𝑡))]


𝑑𝑊 (𝑡) + (𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡)

− ℎ (𝑡)) Λ
2
(𝑡) + 2𝑝 (𝑡) (𝛿

2
(𝑡) − 𝜂

2
(𝑡))]


𝑑𝐵 (𝑡)

+ 2𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

(62)

or

𝑑𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (𝑡)

⋅ [(𝜋 (𝑡) − 𝜋 (𝑡))

𝜎 (𝑡) 𝜎 (𝑡)



(𝜋 (𝑡) − 𝜋 (𝑡))] 𝑑𝑡

+ 𝑝 (𝑡) [
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

] 𝑑𝑡

+ (𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
1
(𝑡)

+ 2𝑝 (𝑡) (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡))]


𝑑𝑊 (𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
2
(𝑡)

+ 2𝑝 (𝑡) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))]


𝑑𝐵 (𝑡) + 2𝑝 (𝑡) (𝑋 (𝑡)

− ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

(63)

where 𝜋(𝑡) is given by (46).
Then, by integrating from [0, 𝑇] and taking expectations,

we have

𝐸𝑝 (𝑇) (𝑋 (𝑇) − ℎ (𝑇))
2
= 𝑝 (0) (𝑋 (0) − ℎ (0))

2

+ 𝐸∫

𝑇

0

𝑝 (𝑡) [(𝜋 (𝑡) − 𝜋 (𝑡))

𝜎 (𝑡) 𝜎 (𝑡)



⋅ (𝜋 (𝑡) − 𝜋 (𝑡))] 𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (𝑡) (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡 + 𝐸∫

𝑇

0

(𝑋 (𝑡) − ℎ (𝑡))

⋅ [(𝑋 (𝑡) − ℎ (𝑡)) Λ
1
(𝑡) + 2𝑝 (𝑡)

⋅ (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡))]


𝑑𝑊 (𝑡)

+ 𝐸∫

𝑇

0

(𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
2
(𝑡)

+ 2𝑝 (𝑡) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))]


𝑑𝐵 (𝑡)

+ 𝐸∫

𝑇

0

2𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
0
(𝑡)

− 𝜂
0
(𝑡)) 𝑑𝑊

0

(𝑡) = 𝑝 (0) (𝑋 (0) − ℎ (0))
2

+ 𝐸∫

𝑇

0

𝑝 (𝑡) [(𝜋 (𝑡) − 𝜋 (𝑡))

𝜎 (𝑡) 𝜎 (𝑡)



⋅ (𝜋 (𝑡) − 𝜋 (𝑡))] 𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (𝑡) (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡.

(64)
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Due to the fact that 𝑝(𝑡) > 0 and 𝜎(𝑡)𝜎(𝑡) > 𝜖𝐼
𝑚
, we have

𝐸 [𝑋 (𝑇) − 𝑙]
2
= 𝐸𝑃 (𝑇) (𝑋 (𝑇) − ℎ (𝑇))

2
≥ 𝑝 (0)

⋅ (𝑋 (0) − ℎ (0))
2
+ 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡,

(65)

where the equality holds only when 𝜋(⋅) = 𝜋(⋅). This com-
pletes the proof.

Remark 11. If there is no liability, that is, 𝑢(⋅) = V(⋅) = 0 and
F
𝑡
= F̂
𝑡
, then 𝛿(⋅) = 0, and (16) boils down to

𝑑ℎ (𝑡) = (𝑟 (𝑡) ℎ (𝑡) + 𝜃 (𝑡)

𝜂
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝜂
2
(𝑡)) 𝑑𝑡

+ 𝜂
1
(𝑡)

𝑑𝑊 (𝑡) + 𝜂

2
(𝑡)

𝑑𝐵 (𝑡)

+ 𝜂
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

ℎ (𝑇) = 𝑙,

(66)

and the unique optimal control policy for problem (13) is

𝜋 (𝑡) = − (𝜎 (𝑡)
−1
)


⋅ [−𝜂
1
(𝑡) + (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)] ,

(67)

which is the same as (12) in Lim [22].

4. The Mean-Variance Asset-Liability
Management Problem

An admissible portfolio 𝜋 is said to be a feasible portfolio for
(12) if it satisfies the constraint in (12). Then, problem (12) is
said to be feasible if it has a feasible portfolio. Following the
methodology of Lim [22], we get a necessary and sufficient
condition for feasibility of problem (12) as follows.

Proposition 12. Let (Ψ(⋅), 𝜉(⋅)) be a unique solution of the
following BSDE:

𝑑Ψ (𝑡) = −𝑟 (𝑡) Ψ (𝑡) 𝑑𝑡 + 𝜉
1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝜉
2
(𝑡)

𝑑𝐵 (𝑡) ,

Ψ (𝑇) = 1.

(68)

If Assumption 4 holds, then mean-variance problem (12) is
feasible for any 𝑐 ∈ R if and only if

𝐸∫

𝑇

0


Ψ (𝑡) 𝑏 (𝑡)


+ 𝜎 (𝑡) 𝜉

1
(𝑡)


2

𝑑𝑡 > 0. (69)

Proof. Let𝜋(⋅) be admissible and �̃�(⋅) = 𝜆𝜋(⋅) for some 𝜆 ∈ R.
Assume that𝑋(⋅) is the solution of (8) corresponding to �̃�(⋅).
It follows from Itô’s formula that𝑋(𝑡) = 𝑍

1
(𝑡)+𝜆𝑍

2
(𝑡), where

𝑑𝑍
1
(𝑡) = (𝑟 (𝑡) 𝑍

1
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡 + 𝛿

1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝛿
2
(𝑡)

𝑑𝐵 (𝑡) + 𝛿

0

(𝑡) 𝑑𝑊
0

(𝑡) ,

𝑍
1
(0) = 𝑋

0
,

𝑑𝑍
2
(𝑡) = (𝑟 (𝑡) 𝑍

2
(𝑡) + 𝑏 (𝑡) 𝜋 (𝑡)) 𝑑𝑡

+ 𝜋 (𝑡)

𝜎 (𝑡) 𝑑𝑊 (𝑡) ,

𝑍
2
(0) = 0.

(70)

Then we have 𝐸𝑋(𝑇) = 𝐸𝑍
1
(𝑇) + 𝜆𝐸𝑍

2
(𝑇), where

𝐸𝑍
2
(𝑇) = 𝐸∫

𝑇

0

(Ψ (𝑡) 𝑏 (𝑡)

+ 𝜎 (𝑡) 𝜉

1
(𝑡))


𝜋 (𝑡) 𝑑𝑡, (71)

which has been shown in Yong and Zhou [27] (see pp. 353 of
[27]). If (69) holds, then we can choose 𝜋(𝑡) = Ψ(𝑡)𝑏(𝑡)


+

𝜎(𝑡)𝜉
1
(𝑡) such that

𝐸𝑍
2
(𝑇) = 𝐸∫

𝑇

0


Ψ (𝑡) 𝑏 (𝑡)


+ 𝜎 (𝑡) 𝜉

1
(𝑡)


2

𝑑𝑡 > 0. (72)

Hence, for any 𝑐 ∈ R, 𝜆
𝑐
= (𝐸𝑍

2
(𝑇))
−1
(𝑐 − 𝐸𝑍

1
(𝑇)) is well

defined and

𝐸𝑋 (𝑇) = 𝐸𝑍
1
(𝑇) + 𝜆

𝑐
𝐸𝑍
2
(𝑇) = 𝑐. (73)

This implies that (12) is feasible for any 𝑐 ∈ R.
Conversely, if (12) is feasible for any 𝑐 ∈ R, then, for any

𝑐 ∈ R, there exists an admissible portfolio 𝜋(⋅) such that
𝐸𝑋(𝑇) = 𝐸𝑍

1
(𝑇) +𝐸𝑍

2
(𝑇) = 𝑐. Since 𝐸𝑍

1
(𝑇) is independent

of𝜋(⋅), we conclude that𝐸𝑍
2
(𝑇) ̸= 0 for some𝜋(⋅). From (71),

we know that (69) is true.
This completes the proof.

Remark 13. The necessary and sufficient condition (69) is
the same as that in [22] in which Lim studied the mean-
variance portfolio problem without liability.This implies that
the liability does not affect the feasibility of mean-variance
problem.

Remark 14. As claimed in [22], necessary and sufficient
condition (69) is very mild.
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In the case of mean-variance asset-liability management
problem, we can replace the unique solution (ℎ(⋅), 𝜂(⋅)) of
BSDE (16) by

ℎ (𝑡) = ℎ (𝑇) 𝑔
1
(𝑡) + 𝑔

2
(𝑡) ,

𝜂
1
(𝑡) = ℎ (𝑇) 𝑞

1
(𝑡) + 𝑞

1
(𝑡) ,

𝜂
2
(𝑡) = ℎ (𝑇) 𝑞

2
(𝑡) + 𝑞

2
(𝑡) ,

𝜂
0
(𝑡) = 𝑞

0
(𝑡) ,

(74)

where (𝑔
1
(⋅), 𝑞(⋅)) and (𝑔

2
(⋅), 𝑞(⋅)) are the unique solutions of

the following BSDEs:

𝑑𝑔
1
(𝑡) = (𝑟 (𝑡) 𝑔

1
(𝑡) + 𝜃 (𝑡)


𝑞
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝑞
2
(𝑡)) 𝑑𝑡

+ 𝑞
1
(𝑡)

𝑑𝑊 (𝑡) + 𝑞

2
(𝑡)

𝑑𝐵 (𝑡) ,

𝑔
1
(𝑇) = 1,

(75)

𝑑𝑔
2
(𝑡) = (𝑟 (𝑡) 𝑔

2
(𝑡) + 𝜃 (𝑡)


𝑞
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝑞
2
(𝑡)

− 𝑢 (𝑡) − 𝜃 (𝑡)

𝛿
1
(𝑡) + 𝛿

2
(𝑡)
 Λ 2 (𝑡)

𝑝 (𝑡)
) 𝑑𝑡 + 𝑞

1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝑞
2
(𝑡)

𝑑𝐵 (𝑡) + 𝑞

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑔
2
(𝑇) = 0,

(76)

respectively.
By employing the results in Section 3 and Lagrange

multiplier technique (or duality theory), we give our main
result as follows.

Theorem 15. If Assumption 4 holds and (69) is satisfied,
then mean-variance asset-liability management problem (12)
is feasible for every 𝑐 ∈ R, and the inequality

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0) > 0 (77)

holds and the following constants,

𝑀 := 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡,

𝑘
1
:= 𝐸∫

𝑇

0

𝑝 (𝑡) 𝑞
2
(𝑡)

(𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡,

𝑘 :=
−𝑐 + 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0)) + 𝑘

1

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

,

𝐷 := 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ [
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

] 𝑑𝑡,

(78)

are well defined. The efficient frontier of problem (12) is given
by

Var𝑋∗ (𝑇) =
𝑀 + 𝑝 (0) 𝑔

2

1
(0)

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

[𝑐

−
𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))

𝑀 + 𝑝 (0) 𝑔
2

1
(0)

]

2

+ 𝐷

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

,

(79)

where 𝑐 = 𝐸𝑋
∗
(𝑇) and the optimal portfolio associated with

the expected net terminal wealth 𝑐 is given as follows:

𝜋
∗

(𝑡) = − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) − 𝑞

1
(𝑡) + 𝑘𝑞

1
(𝑡)

+ (𝑋 (𝑡) − 𝑔
2
(𝑡) + 𝑘𝑔

1
(𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)] .

(80)

Proof. It is easy to verify that problem (12) has a convex
constrained set and a convex cost which is bounded below.
These imply that (12) is a linearly constrained convex prob-
lem. Because problem (12) is feasible, it follows fromLagrange
multiplier technique (see [28] for more details) that

𝐽
∗
= max
𝜆∈R

inf
(𝑋(⋅),𝜋(⋅)) is admissible

𝐽 (𝜋 (⋅) , 𝜆) < +∞, (81)

where

𝐽 (𝜋 (⋅) , 𝜆) := 𝐸 (𝑋 (𝑇) − 𝑐)
2
+ 2𝜆 [𝐸𝑋 (𝑇) − 𝑐]

= 𝐸 (𝑋 (𝑇) − 𝑐 + 𝜆)
2
− 𝜆
2
.

(82)

For each fixed 𝜆, the unconstrained problem

𝐽 (𝜆) := inf
(𝑋(⋅),𝜋(⋅)) is admissible

𝐽 (𝜋 (⋅) , 𝜆) (83)

has the same form as (13). Then, it follows from Theorem 10
that

𝐽 (𝜆) = −𝜆
2
+ 𝑝 (0) (𝑋

0
− ℎ (0))

2

+ 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ [
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝜂

0
(𝑡))
2

] 𝑑𝑡

= 𝐸∫

𝑇

0

𝑝 (𝑡) [
𝛿2 (𝑡) − (𝑐 − 𝜆) 𝑞

2
(𝑡) − 𝑞

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

] 𝑑𝑡 − 𝜆
2
+ 𝑝 (0) [𝑋

0
− (𝑐 − 𝜆)

⋅ 𝑔
1
(0) − 𝑔

2
(0)]
2

,

(84)
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and the optimal investment strategy is

𝜋 (𝑡) = − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)] = − (𝜎 (𝑡)

−1
)


⋅ [𝛿
1
(𝑡) − (𝑐 − 𝜆) 𝑞

1
(𝑡)

− 𝑞
1
(𝑡)] − (𝜎 (𝑡)

−1
)


[𝑋 (𝑡) − (𝑐 − 𝜆) 𝑔
1
(𝑡)

− 𝑔
2
(𝑡)] (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
) .

(85)

Rewriting 𝐽(𝜆), we have

𝐽 (𝜆) = (𝜆 − 𝑐)
2
(−1 + 𝑝 (0) 𝑔

2

1
(0)

+ 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡) + 2 (𝜆 − 𝑐) [−𝑐

+ 𝑔
1
(0) 𝑝 (0) (𝑋

0
− 𝑔
2
(0))

+ 𝐸∫

𝑇

0

𝑝 (𝑡) 𝑞
2
(𝑡)

(𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡] − 𝑐

2

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

+ 𝐷 = (𝜆 − 𝑐)
2
(−1

+ 𝑝 (0) 𝑔
2

1
(0) + 𝑀) + 2 (𝜆 − 𝑐) [−𝑐

+ 𝑝 (0) 𝑔
1
(0) (𝑋

0
− 𝑔
2
(0)) + 𝑘

1
] − 𝑐
2
+ 𝑝 (0) (𝑋

0

− 𝑔
2
(0))
2

+ 𝐷.

(86)

Since 𝐽(𝜆) is quadratic in 𝜆 and 𝐽∗ is finite, we have

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0) > 0. (87)

In fact, if 1 − 𝑀 − 𝑝(0)𝑔
2

1
(0) = 0, then 𝐽

∗ can only be finite
when −𝑐+𝑔

1
(0)𝑝(0)(𝑋

0
−𝑔
2
(0))+𝑘

1
= 0 for any 𝑐, which is a

contradiction. So it must be the case that 1−𝑀−𝑝(0)𝑔
2

1
(0) >

0.
Rewriting (86), we have

𝐽 (𝜆) = − (1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)) (𝜆 − 𝑐 − 𝑘)

2

+ (1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)) 𝑘

2
− 𝑐
2

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

+ 𝐷.

(88)

Then we have the optimal 𝜆∗ = 𝑐 + 𝑘 for (81). Taking 𝜆∗ in
(88) and (85),

𝐽
∗
= (1 −𝑀 − 𝑝 (0) 𝑔

2

1
(0)) 𝑘

2
− 𝑐
2
+ 𝑝 (0) (𝑋

0

− 𝑔
2
(0))
2

+ 𝐷

=
[−𝑐 + 𝑘

1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

− 𝑐
2

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

+ 𝐷

=
𝑀 + 𝑝 (0) 𝑔

2

1
(0)

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

[𝑐

−
𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))

𝑀 + 𝑝 (0) 𝑔
2

1
(0)

]

2

+ 𝐷 + 𝑝 (0)

⋅ (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

,

𝜋
∗

(𝑡) = − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) + 𝑘𝑞

1
(𝑡) − 𝑞

1
(𝑡)

+ (𝑋 (𝑡) + 𝑘𝑔
1
(𝑡) − 𝑔

2
(𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)] .

(89)

This completes the proof.

We claim that𝐷+𝑝(0)(𝑋
0
−𝑔
2
(0))
2
−[𝑘
1
+𝑝(0)𝑔

1
(0)(𝑋

0
−

𝑔
2
(0))]
2
/(𝑀 + 𝑝(0)𝑔

2

1
(0)) ≥ 0. In fact, since

𝑝 (⋅) ∈ L
∞

F (Ω; 𝐶 (0, 𝑇;R)) ,

𝑞
2
(⋅) , 𝑞
2
(⋅) ∈ L

2

F̂
(0, 𝑇;R

𝑑
) ,

𝛿
2
(⋅) ∈ L

∞

F̂
(0, 𝑇;R

𝑑
) ,

(90)

we have √𝑝(⋅)|𝛿
2
(⋅) − 𝑞

2
(⋅)|, √𝑝(⋅)|𝑞

2
(⋅)| ∈ L2

F̂
(0, 𝑇;R).

Further, because L2
F̂
(0, 𝑇;R) is a Hilbert space, it follows

from Cauchy-Schwarz’s inequality that

[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

= [𝐸∫

𝑇

0

𝑝 (𝑡) 𝑞
2
(𝑡)


⋅ (𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡]

2

+ [𝑝 (0) 𝑔
1
(0) (𝑋

0

− 𝑔
2
(0))]
2

+ 2𝑝 (0) 𝑔
1
(0) (𝑋

0
− 𝑔
2
(0)) 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ 𝑞
2
(𝑡)

(𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡

≤ [𝐸∫

𝑇

0

(√𝑝 (𝑡)
𝛿2 (𝑡) − 𝑞

2
(𝑡)
)

⋅ (√𝑝 (𝑡)
𝑞2 (𝑡)

) 𝑑𝑡]

2

+ [𝑝 (0) 𝑔
1
(0) (𝑋

0
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− 𝑔
2
(0))]
2

+ 𝐸∫

𝑇

0

2 (√𝑝 (0) 𝑝 (𝑡)
𝑔1 (0)



⋅
𝛿2 (𝑡) − 𝑞

2
(𝑡)
) (

√𝑝 (0) 𝑝 (𝑡)
𝑋0 − 𝑔

2
(0)



⋅
𝑞2 (𝑡)

) 𝑑𝑡 ≤ 𝐸∫

𝑇

0

𝑝 (𝑡)
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

𝑑𝑡

⋅ 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡 + [𝑝 (0) 𝑔
1
(0) (𝑋

0

− 𝑔
2
(0))]
2

+ 𝐸∫

𝑇

0

𝑝 (0) 𝑝 (𝑡)
𝑔1 (0)



2 𝛿2 (𝑡)

− 𝑞
2
(𝑡)


2

𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (0) 𝑝 (𝑡)
𝑋0 − 𝑔

2
(0)



2

⋅
𝑞2 (𝑡)



2

𝑑𝑡,

(91)

and so

(𝑀 + 𝑝 (0) 𝑔
2

1
(0)){𝐷 + 𝑝 (0) (𝑋

0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

} = 𝑝 (0)

⋅ 𝑔
2

1
(0) 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ [
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

] 𝑑𝑡

+ [𝑝 (0) 𝑔
1
(0) (𝑋

0
− 𝑔
2
(0))]
2

+ 𝑝 (0) (𝑋
0

− 𝑔
2
(0))
2

𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

𝑑𝑡𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑝 (𝑡) (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

𝑑𝑡𝐸∫

𝑇

0

𝑝 (𝑡)

⋅
𝑞2 (𝑡)



2

𝑑𝑡 − [𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

≥ 𝑝 (0) 𝑔
2

1
(0) 𝐸∫

𝑇

0

𝑝 (𝑡) (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑝 (𝑡) (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

𝑑𝑡𝐸∫

𝑇

0

𝑝 (𝑡)

⋅
𝑞2 (𝑡)



2

𝑑𝑡 ≥ 0.

(92)

Since𝑀+ 𝑝(0)𝑔
2

1
(0) > 0, we have

𝐷 + 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

≥ 0.

(93)

Remark 16. Theorem 15 shows that efficient frontier (79) is
a parabola. Further, for a given mean target, the risk that
the investor has to bear is given by (79). In particular, if the
investor wants to take the global minimal risk, he/she can
obtain the expected terminal wealth (𝑘

1
+ 𝑝(0)𝑔

1
(0)(𝑋

0
−

𝑔
2
(0)))/(𝑀 + 𝑝(0)𝑔

2

1
(0)) by choosing the optimal strategy.

Remark 17. Theorem 15 also shows that the global minimal
risk is

𝐷 + 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

(94)

which is nonnegative. This implies that when the market
parameters are random and the financial market is incom-
plete, the liability can not be completely hedged.

Remark 18. Now we consider a financial market without
liability; that is, 𝑢(⋅) = V(⋅) = 0. Then, we have that 𝛿(⋅) = 0,
(0, 0) is the unique solution of BSDE (76) and the constants
in Theorem 15 are given by

𝑀 = 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡,

𝑘
1
= 0,

𝑘 =
−𝑐 + 𝑝 (0) 𝑔

1
(0)𝑋
0

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

,

𝐷 = 0.

(95)

It follows from Theorem 15 that the efficient frontier in this
case is given by

Var𝑋∗ (𝑇)

=
𝑀 + 𝑝 (0) 𝑔

2

1
(0)

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

(𝑐 −
𝑝 (0) 𝑔

1
(0)𝑋
0

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

)

2

+
𝑀𝑝 (0)𝑋

2

0

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

,

(96)

which is the same as that of Lim [22]. This implies that Lim’s
result is a special case of our results. Therefore, our results
generalize and improve Lim’s results.

5. Conclusions

This paper studies the mean-variance asset-liability manage-
ment problemwith randommarket parameters. Sincemarket
parameters observed in the real world are always uncertain,
it is more realistic to consider how to manage both assets
and liabilities in a market with random market parameters.
By using the theories of stochastic LQ control and BSDE,
we derive both optimal investment strategies and the mean-
variance efficient frontier. Comparedwith the existing results,
the efficient frontier is still a parabola and liability does not
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affect the feasibility of the mean-variance portfolio selection
problem in a complete market with random parameters.
However, the liability can not be fully hedged in an incom-
plete market with random parameters.

Future studies can go one step further by considering
this problem in a more complex market, whose prices are
governed by SDEs with Lévy noise or Markovian switching.
By using the methods and techniques proposed by Zhu
[29, 30], it would be more interesting to discuss the optimal
investment strategies and the efficient frontiers in the market
mentioned above.
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The distributed order concept, which is a parallel connection of fractional order integrals and derivatives taken to the infinitesimal
limit in delta order, has been themain focus inmany engineering areas recently. On the other hand, there are fewnumericalmethods
available for analyzing distributed order systems, particularly under stochastic forcing. This paper proposes a novel numerical
scheme for analyzing the behavior of a distributed order linear single input single output control system under random forcing.
Themethod is based on the operational matrix technique to handle stochastic distributed order systems.The existingMonte Carlo,
polynomial chaos, and frequency methods were first adapted to the stochastic distributed order system for comparison. Numerical
examples were used to illustrate the accuracy and computational efficiency of the proposed method for the analysis of stochastic
distributed order systems. The stability of the systems under stochastic perturbations can also be inferred easily from the moment
of randomoutput obtained using the proposedmethod. Based on the hybrid spectral framework, the optimal design was elaborated
on by minimizing the suitably defined constrained-optimization problem.

1. Introduction

Fractional/distributed order calculus is applied widely across
a range of disciplines, such as physics, biology, chemistry,
finance, physiology, and control engineering [1–6].Themem-
ory property of fractional order calculus provides a novel tool
tomodel real-world plants better than integer order ones such
as diffusion plants [5]. Fractional calculus has been used for
modeling of turbulence in [2]. In [3], the concept of fractional
calculus is used for interpreting the underlying mechanism
of dielectric relaxation. A method for design fractional order
PI𝜆D𝜇 controllers for deterministic systems is proposed in
[6].

The distributed order (DO) equation, which is a general-
ized concept fractional order, was first proposed by Caputo in
1969 [7] and solved by him in 1995 [8]. The general solution
of linear DO was then discussed systematically [9]. Later, the
DO concept was used to examine the diffusion equation [10],
the rheological properties of composite materials, and other
real complex physical phenomena [11–14]. Several different

methods for the time domain analysis of DO systems have
been reported [15–18]. On the other hand, a numerical
method for the analysis of a DO operator is still immature
and requires further development. In particular, there are
few methods to analyze DO systems under the excitation
of random processes. This motivated the theme of this
study: the development of a computational scheme for the
analysis basic of a DO system with stochastic settings. The
operational matrix (OP) has attracted considerable attention
for the analysis of a range of dynamic systems [19–21]. The
main characteristic of this technique is that different analysis
problems can be reduced to a system of algebraic equations
using different types of orthogonal functions, which greatly
simplifies the problem [19]. On the other hand, to the best of
the author’s knowledge, there are no reports on the analysis
of stochastic DO systems using an OP. Many natural systems
often suffer from stochastic noise that causes fluctuations
in their behavior, making them deviate from deterministic
models. Therefore, it is important to examine the statistical
characteristics of states (mean, variance) for those stochastic
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systems. This problem is often called statistical analysis (or
uncertainty quantification) of a system [22–24]. This paper
proposes a numerical scheme based on the OP technique for
the statistical analysis of DO systems.

The Monte Carlo (MC) method is commonly used to
simulate a stochastic model [25, 26]. The method relies on
the sampling of independent realizations of random inputs
according to their prescribed probability distribution. The
data is fixed for each realization and the problem becomes
deterministic. Solving the multiple deterministic realizations
builds an ensemble of solutions, that is, the realization of
random solutions, from which statistical information can be
extracted, for example, the mean and variance. Nevertheless,
this method typically reveals slow convergence and has a
large computational demand. For example, the mean values
typically converge as 1/√𝑀, where 𝑀 is the number of
samples.

Generalized polynomial chaos (gPC) [27–32] represents
a more recent tool for quantifying the uncertainty within
system models. The approach involves expressing stochastic
quantities as the orthogonal polynomials of random input
parameters. This method is actually a spectral representation
in random space and converges rapidly when the expanded
function depends smoothly on random parameters. On the
other hand, the stochastic inputs of many systems involve
random processes parameterized by truncated Karhunen-
Loeve (KL) expansions, and the dimensionality of the KL
expansions depends on the correlation lengths of these
processes. For input processes with low correlation lengths,
the number of dimensions required for an accurate represen-
tation can be extremely large.

The OP method [29], where a system is described by
a stochastic operator (operational matrix), is an alternative
approach for the simulation of stochastic integer order
systems. This method involves the inverse of the stochastic
operators as Neumann series and ismost effective for systems
with inputs with low correlation lengths. On the other hand,
it is restricted to small random parametric uncertainty.

In a recent study [33], the authors introduced a hybrid
spectral method, which combines the advantages of both
the OP and polynomial chaos (PC), to simulate single input
single output (SISO) stochastic fractional order systems. In
the present study, the method reported in [33] was extended
to the statistical analysis of DO systems affected by stochastic
fluctuations. Here, the stochastic operator was approximated
using PC instead of a Neumann series. This method provides
the algebraic relationships between the first- and second-
order stochasticmoments of the input and output of a system,
hence bypassing the KL expansions that can require large
dimensions for accurate results. In contrast to the traditional
OP method, the proposed method is not limited by the
magnitude of the uncertainty.

Section 2 briefly introduces aDOsystemand theOP tech-
nique for uncertainty quantification in this system, leading to
computation of the moments of random matrices. Section 3
summarizes the process of calculating the moments of the
random matrices using a stochastic collocation. Section 4
defines the suitable performance objectives coupled with

the spectral method for the design of a stochastic linear
DO system. Section 5 provides examples to demonstrate the
use of the proposed method. The results of the proposed
deterministic system with a DO were compared with those
of other existing numerical and analytical methods. To
assess a stochastic DO system, the MC, gPC, and frequency
methods were first adopted to the stochastic DO system for
comparison because the analytical results were unavailable.
The results from the proposed method were then compared
with the numerical results from the MC, gPC, and frequency
methods.

2. Preliminary of Fractional and Distributed
Order System

In this section, we give some necessary definitions and
preliminaries of the fractional calculus theory which will be
used in this paper.

2.1. Governing Equation for System Dynamics with Fractional
Order Dynamics. Fractional calculus considers the general-
ization of the integration and differentiation operator to a
noninteger order [34, 35]:

𝐷0

𝛼
=

{{{{{{

{{{{{{

{

𝑑
𝛼

𝑑𝑡
𝛼

𝛼 > 0

1 𝛼 = 0

∫

𝑡

0

(𝑑𝜏)
−𝛼

𝛼 < 0,

(1)

where 𝛼 ∈ 𝑅 is the order of the operator.
Among many formulations of the generalized derivative,

the Riemann-Liouville (RL) definition is used most often:

RL𝐷0

𝛼
𝑓 (𝑡) =

1

Γ (𝑚 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑚

∫

𝑡

0

𝑓 (𝜏)

(𝑡 − 𝜏)
1−(𝑚−𝛼)

𝑑𝜏, (2)

where Γ(𝑥) denotes the gamma function and 𝑚 is an integer
satisfying𝑚 − 1 < 𝛼 < 𝑚.

The RL fractional integral of a function 𝑓(𝑡) is defined as
follows:

RL𝐼0
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

𝑓 (𝜏)

(𝑡 − 𝜏)
1−𝛼
𝑑𝜏. (3)

Another popular definition of a fractional order derivative is
the Caputo (𝐶) definition [36],

𝐶𝐷𝑡

𝛼
=

1

Γ (𝑚 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑓
(𝑚)
(𝜏) 𝑑𝜏. (4)

The Laplace transform for a fractional order derivative under
zero initial conditions can be defined as 𝐿{𝐷0

𝛼
𝑓(𝑡)} = 𝑠

𝛼
𝐹(𝑠).

Note that, under a zero initial condition, the two
Riemann-Liouville and Caputo definitions are equivalent.

Therefore, a fractional order single input single output
(SISO) system can be described by a fractional order differ-
ential equation as 𝑎0𝐷0

𝛼0𝑦(𝑡)+𝑎1𝐷0

𝛼1𝑦(𝑡)+⋅ ⋅ ⋅+𝑎𝑙𝐷0

𝛼𝑙𝑦(𝑡) =

𝑏0𝐷0

𝛽0𝑢(𝑡) + ⋅ ⋅ ⋅ + 𝑏𝑚𝐷0

𝛽𝑚𝑢(𝑡) or by a transfer function:

𝐺 (𝑠) =
𝑌 (𝑠)

𝑈 (𝑠)
=
𝑏𝑚𝑠

𝛽𝑚 + ⋅ ⋅ ⋅ + 𝑏0𝑠
𝛽0

𝑎𝑙𝑠
𝛼𝑙 + ⋅ ⋅ ⋅ + 𝑎0𝑠

𝛼0
, (5)
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where 𝛼𝑖 and 𝛽𝑖 are the arbitrary real positive numbers
and 𝑢(𝑡) and 𝑦(𝑡) are the input and output of the system,
respectively.

2.2. DistributedOrder Systems. TheDOdifferential operation
is defined as follows [17]:

𝐷𝑡

𝜌(𝛼)
𝑓 (𝑡) = ∫

𝛾2

𝛾1

𝜌 (𝛼)𝐷𝑡

𝛼
𝑓 (𝑡) 𝑑𝛼, (6)

where 𝜌(𝛼) denotes the distribution function of order 𝛼.
Therefore, the general form of the DO differential equa-

tion is
𝑛

∑

𝑖=1

𝑎𝑖𝐷𝑡

𝜌𝑖(𝛼)
𝑦 (𝑡) =

𝑚

∑

𝑗=1

𝑏𝑗𝐷𝑡

𝜌𝑗(𝛼)
𝑢 (𝑡) . (7)

For time domain analysis of theDO system, the integral in (7)
is discretized using the quadrature formula as follows [16, 17]:

∫

𝛾2

𝛾1

𝜌 (𝛼)𝐷𝑡

𝛼
𝑓 (𝑡) 𝑑𝛼 ≈

𝑄

∑

𝑙=1

𝜌 (𝛼𝑙) (𝐷𝑡

𝛼𝑙
𝑓 (𝑡)) 𝜐𝑙, (8)

where 𝛼𝑙, 𝜐𝑙 are the node and weight from the quadrature
formula, respectively. In other words, the DO equation is
approximated as a multiterm fractional order equation and
can be rearranged as (5).

2.3. Operational Matrices of Block Pulse Function for the
Analysis of Distributed Order Systems. Block pulse functions
(BPFs) are a complete set of orthogonal functions that are
defined over the time interval, [0, 𝜏],

𝜓𝑖 =

{

{

{

1
𝑖 − 1

𝑁
𝜏 ≤ 𝑡 ≤

𝑖

𝑁
𝜏

0 elsewhere,
(9)

where𝑁 is the number of block pulse functions.
Therefore, any function that can be absolutely integrated

on the time interval [0, 𝜏] can be expanded to a series from
the block pulse basis as follows:

𝑓 (𝑡) = 𝜓
𝑁

𝑇
(𝑡) 𝐶𝑓 =

𝑁

∑

𝑖=1

𝑐𝑓𝑖
𝜓𝑖 (𝑡) , (10)

where𝜓
𝑁

𝑇
(𝑡) = [𝜓1(𝑡), . . . , 𝜓𝑁(𝑡)] constitutes the block pulse

basis. Fromhere, the subscript𝑁 of𝜓
𝑁

𝑇
(𝑡) is dropped out for

the convenience of notation.
The expansion coefficients (or spectral characteristics)

can be evaluated as follows:

𝑐𝑓𝑖
=
𝑁

𝜏
∫

(𝑖/𝑁)𝜏

[(𝑖−1)/𝑁]𝜏

𝑓 (𝑡) 𝜓𝑖 (𝑡) 𝑑𝑡. (11)

Furthermore, any function 𝑔(𝑡1, 𝑡2) that is absolutely inte-
grable on the time interval [0, 𝜏] × [0, 𝜏] can be expanded as
follows:

𝑔 (𝑡1, 𝑡2) =

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑐𝑖𝑗𝜓𝑖 (𝑡1) 𝜓𝑗 (𝑡2) = 𝜓
𝑇
(𝑡1) 𝐶𝑔𝜓 (𝑡2) , (12)

with expansion coefficients (or spectral characteristics) of

𝑐𝑖𝑗 = (
𝑁

𝜏
)

2

∫

(𝑖/𝑁)𝜏

[(𝑖−1)/𝑁]𝜏

∫

(𝑖/𝑁)𝜏

[(𝑖−1)/𝑁]𝜏

𝑔 (𝑡1, 𝑡2) 𝜓𝑖 (𝑡1)

⋅ 𝜓𝑗 (𝑡2) 𝑑𝑡1𝑑𝑡2.

(13)

Equation (3) can be expressed in terms of the OP [19],

𝐼0
𝛼
𝑓 (𝑡) = 𝜓 (𝑡)

𝑇
𝐴𝛼𝐶𝑓, (14)

where the generalized OP integration of the block pulse
function, 𝐴𝛼, is

𝐴𝛼 = 𝑃𝛼
𝑇

= (
𝜏

𝑁
)

𝛼
1

Γ (𝛼 + 2)
(

𝑓1 𝑓2 𝑓3 ⋅ ⋅ ⋅ 𝑓𝑁

0 𝑓1 𝑓2 ⋅ ⋅ ⋅ 𝑓𝑁−1

.

.

. d d d
.
.
.

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑓1

)

𝑇

.

(15)

The elements of the generalized OP integration can be given
by

𝑓1 = 1;

𝑓𝑝 = 𝑝
𝛼+1

− 2 (𝑝 − 1)
𝛼+1

+ (𝑝 − 2)
𝛼+1

for 𝑝 = 2, 3, . . . , 𝑁.

(16)

The generalized OP of a derivative of order 𝛼 is

𝐵𝛼𝐴𝛼 = 𝐼, (17)

where 𝐼 is the identity matrix.
The generalized OP of derivative can be used to approxi-

mate (2) as follows:

𝐷0

𝛼
𝑓 (𝑡) = 𝜓 (𝑡)

𝑇
𝐵𝛼𝐶𝑓. (18)

Therefore, using the OP, the discretization of DO can be
expressed as

𝐷𝑡

𝜌(𝛼)
𝑓 (𝑡) = ∫

𝛾2

𝛾1

𝜌 (𝛼)𝐷𝑡

𝛼
𝑓 (𝑡) 𝑑𝛼

≈

𝑄

∑

𝑙=1

𝜌 (𝛼𝑙) (𝐷𝑡

𝛼𝑙
𝑓 (𝑡)) 𝜐𝑙

=

𝑄

∑

𝑙=1

𝜐𝑙𝜌 (𝛼𝑙) (𝜓 (𝑡)
𝑇
𝐵𝛼𝑙
𝐶𝑓) .

(19)

TheDO system in (7) can be rewritten in terms of theOP,𝐴𝐺,
as follows:

𝐴𝐺

= [

𝑛

∑

𝑖=1

𝑎𝑖

𝑄

∑

𝑙=1

𝜐𝑙𝜌𝑖 (𝛼𝑙) 𝐵𝛼𝑙
]

−1

[

[

𝑚

∑

𝑗=1

𝑏𝑗

𝑄

∑

𝑙=1

𝜐𝑙𝜌𝑗 (𝛼𝑙) 𝐵𝛼𝑙
]

]

.

(20)



4 Mathematical Problems in Engineering

The input and output are related by the following equation:

𝐶𝑌 = 𝐴𝐺𝐶𝑈;

𝑌 (𝑡) = (𝐶𝑌)
𝑇
𝜓 (𝑡) ;

𝑈 (𝑡) = (𝐶𝑈)
𝑇
𝜓 (𝑡) .

(21)

2.4. Stochastic Analysis of Distributed Order Systems. Con-
sider the system described by (7), which has the spectral
characteristics of input andoutput linked by (21). Assume that
the system is excited by random forcing with a given mean
and covariance function as follows:

𝑀𝑈 (𝑡) = E [𝑈 (𝑡)] = (𝐶𝑚𝑈)
𝑇

𝜓 (𝑡) ,

𝜅𝑈𝑈 = E {[𝑈 (𝑡1) − 𝑀𝑈 (𝑡1)] [𝑈 (𝑡2) − 𝑀𝑈 (𝑡2)]}

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜓𝑖 (𝑡1) 𝜓𝑗 (𝑡2) 𝑐𝑖𝑗

= 𝜓 (𝑡1)
𝑇
𝐶𝐾𝑈𝑈
𝜓 (𝑡2) ,

(22)

where E[] denotes the expectation operator and the spectral
characteristics of the mean and covariance function of the
input are calculated in (11) and (13).

Using the OP, the spectral characteristics of the mean and
covariance of the output are given by the following [33] (the
details are available in Appendices):

𝐶𝑚𝑌
= E [𝐴𝐺] 𝐶𝑚𝑈

,

𝐶𝜅𝑌𝑌
= E [𝐴𝐺 {𝐶𝜅𝑈𝑈

+ (𝐶𝑚𝑈
) (𝐶𝑚𝑈

)
𝑇

}𝐴𝐺]

𝑇

− 𝐶𝑚𝑌
(𝐶𝑚𝑌

)
𝑇

.

(23)

Therefore,

𝑚𝑌 (𝑡) = 𝜓 (𝑡1)
𝑇
𝐶𝑚𝑌

= 𝜓 (𝑡1)
𝑇
E [𝐴𝐺] 𝐶𝑚𝑈

,

𝜅𝑌𝑌 (𝑡1, 𝑡2) = 𝜓 (𝑡1)
𝑇
𝐶𝜅𝑌𝑌
𝜓 (𝑡2) = 𝜓 (𝑡1)

𝑇

⋅ E [𝐴𝐺 {𝐶𝜅𝑈𝑈
+ (𝐶𝑚𝑈

) (𝐶𝑚𝑈
)
𝑇

}𝐴𝐺

𝑇
]𝜓 (𝑡2)

− 𝜓 (𝑡1)
𝑇
𝐶𝑚𝑌

(𝐶𝑚𝑌
)
𝑇

𝜓 (𝑡2) .

(24)

The random parameters 𝑎𝑖, 𝑏𝑗 result in the random OP 𝐴𝐺

in (23) and (24), and its (OP 𝐴𝐺) moment can be estimated
using a stochastic collocation method, which is described in
the next section.

When the parameters, 𝑎𝑖, 𝑏𝑗, are deterministic, (23) and
(24) become

𝑚𝑌 (𝑡) = 𝜓 (𝑡1)
𝑇
𝐴𝐺𝐶𝑚𝑈

,

𝜅𝑌𝑌 (𝑡1, 𝑡2)

= 𝜓 (𝑡1)
𝑇
𝐴𝐺 {𝐶𝜅𝑈𝑈

+ (𝐶𝑚𝑈
) (𝐶𝑚𝑈

)
𝑇

}𝐴𝐺

𝑇
𝜓 (𝑡2)

− 𝜓 (𝑡1)
𝑇
𝐶𝑚𝑌

(𝐶𝑚𝑌
)
𝑇

𝜓 (𝑡2) .

(25)

Remarks. The relationship in (25) is invariant with respect to
the orthogonal polynomial used to construct the OP of the
fractional order integral and derivative. The relationships in
(24) and (25) are only available for a linear system.

3. Stochastic Collocation for
the Operational Matrix

A stochastic collocation method, which is described briefly
below, is based on the gPC and can easily estimate the means
and variances of complex dynamics. Therefore, it has been
used to estimate the moment of the random matrix in (24).

(i) Assume that a random OP has the form, 𝐴 = 𝐴(𝜉),
where 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑛) is a vector of indepen-
dent random parameters with the probability density
functions 𝜌𝑖(𝜉𝑖) : Γ𝑖 → 𝑅

+. Vector 𝜉 has the joint
probability density function, 𝜌 = ∏

𝑛

𝑖=1
𝜌𝑖, with the

support, Γ ≡ ∏𝑛

𝑖=1
Γ𝑖 ∈ 𝑅

+𝑛.

(ii) Choose a suitable quadrature set {𝜉𝑖
(𝑚)
, 𝑤

(𝑚)
}
𝑞𝑖

𝑚=1
for

each random parameter according to the probabil-
ity density so that a one-dimensional integration
can be approximated as accurately as possible by
∫
Γ𝑖
𝐴(𝜉𝑖)𝜌𝑖(𝜉𝑖)𝑑𝜉𝑖 = ∑

𝑞𝑖

𝑖=1
𝐴(𝜉𝑖

(𝑚)
)𝑤𝑖

(𝑚), where 𝜉𝑖
(𝑚) is

the𝑚th node and 𝑤(𝑚) is the corresponding weight.

(iii) Construct a multidimensional cubature set by ten-
sorization of the one-dimensional quadrature set over
all the combined multi-index (𝑗1, . . . , 𝑗𝑛). Because
manipulation of the multi-index (𝑗1, . . . , 𝑗𝑛) is cum-
bersome in practice, a single index is preferable for
manipulating these equations. The multi-index is
often replaced by a graded lexicographic order index, j
[27]. Because the weighting functions of the cubature
are the same as the probability density functions, the
moment of the random matrix can be approximated
by

E [𝐴] = ∫
Γ

𝐴 (𝜉)𝜌 (𝜉) 𝑑𝜉 =

𝑄

∑

j=1
𝐴(𝜉

(j)
)w(j)

=

𝑞1

∑

𝑗1=1

⋅ ⋅ ⋅

𝑞𝑛

∑

𝑗𝑛=1

𝐴(𝜉1
(𝑗1)
, . . . , 𝜉𝑛

(𝑗𝑛)
) (𝑤1

(𝑗1)
, . . . , 𝑤𝑛

(𝑗𝑛)
) .

(26)

The Matlab suite, OPQ, can be used to obtain the one-
dimensional quadrature sets and their corresponding orthog-
onal polynomials (polynomial chaos) with respect to the
different density weights [36].

The algorithm of the proposed method for the analysis of
a stochastic system can be summarized as follows:

(a) Calculate the coefficients 𝐶𝑚𝑅 , 𝐶𝜅𝑅𝑅of the expansions
of the mean and covariance of the input as shown in
(11) and (13).

(b) Rewrite the DO differential equation in (7) in terms
of OP as (20).
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(c) The coefficients of expansions of themean and covari-
ance function of the output are obtained from (23). In
(23), the moments of several random matrices need
to be calculated. The moment of a random matrix
is calculated by the stochastic collocation method as
(26).

(d) Finally, the mean and covariance of the output are
obtained as (24).

For a clearer understanding of the algorithm, a similar
algorithm is depicted graphically in [33] for the analysis of
stochastic linear fractional order systems.

4. Optimal PI𝜆D𝜇 Controller Design

Assume that the system is described by (7), where coefficients
𝑎𝑖, 𝑏𝑗 are independent random variables with given distribu-
tions. The set point input is a random process with a given
mean and covariance function as follows:

𝑀𝑅 (𝑡) = E [𝑅 (𝑡)] = (𝐶𝑚𝑅)
𝑇

𝜓 (𝑡) ,

𝜅𝑅𝑅 = E {[𝑅 (𝑡1) − 𝑀𝑅 (𝑡1)] [𝑅 (𝑡2) − 𝑀𝑅 (𝑡2)]}

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜓𝑖 (𝑡1) 𝜓𝑗 (𝑡2) 𝑐𝑖𝑗
𝑅

= 𝜓 (𝑡1)
𝑇
𝐶𝐾𝑅𝑅
𝜓 (𝑡2) .

(27)

The system is in the closed loop configuration, as shown in
Figure 1, with a fractional order PI𝜆D𝜇 controller [35] 𝐶(𝑠) =
𝐾𝑝 + (𝐾𝑖/𝑠

𝜆
) + 𝐾𝑑𝑠

𝜇
.

The OP for this controller is

𝐴𝐶 = 𝐾𝑝𝐼 + 𝐾𝑖𝐴𝜆 + 𝐾𝑑𝐵𝜇, (28)

where 𝐼, 𝐴𝜆, and 𝐵𝜇 are the identity matrix, the integration
OP of fractional order, 𝜆, and the OP of the fractional order
derivative, 𝜇, respectively.

Denote the OP for the system as 𝐴𝐺. Using block algebra
for OP operator, the OP for a closed loop system can be
obtained as follows:

𝐴 = (𝐼 + 𝐴𝐺𝐴𝐶)
−1
𝐴𝐺𝐴𝐶. (29)

This closed loop OP can be used to obtain the first- and
second-order moment of the random output from (24).

The parameters of the PI𝜆D𝜇 controller can be obtained
by optimizing the cost function defined as [37]

min
𝐾𝑝,𝐾𝑖,𝐾𝑑,𝜆,𝜇

𝐽 = min
𝐾𝑝,𝐾𝑖,𝐾𝑑,𝜆,𝜇

E∫
𝑇

0

(𝑦𝑑 (𝑡) − 𝑦 (𝑡))
2
𝑑𝑡

= min
𝐾𝑝,𝐾𝑖,𝐾𝑑,𝜆,𝜇

∫

𝑇

0

{E [𝑦
2

𝑑
(𝑡)] + E [𝑦 (𝑡)

2
]

− 2E [𝑦𝑑 (𝑡)]E [𝑦 (𝑡)]} 𝑑𝑡,

(30)

where E[𝑦(𝑡)2] and E[𝑦(𝑡)] are obtained from (24).

R(s)
C(s)

U(s)
G(s)

Y(s)

N(s)

+
+

+
−

Figure 1: Closed loop control system.

5. Examples

Before going to detailed examples, let us give some infor-
mation about the existing methods. Ito calculus can be used
for the statistical analysis of integer order linear/nonlinear
systems only with ideal white noise (noise with direct delta
covariance function and infinite bandwidth). On the other
hand, the PC method can be used for a system with low
bandwidth noise. However, in the PC method the com-
putational load increases significantly as the bandwidth of
noise increases. The MC and Quasi-MC methods can be
used for arbitrary cases (i.e., with arbitrary type of noise).
However, they require a large computational effort for obtain-
ing accurate results. To overcome these limitations in each
existingmethod, a hybrid spectral method [33] was proposed
for the statistical analysis of fractional order linear SISO
systems with arbitrary type of random input. In this paper,
themethodology in [33] was extended to theDOcase. Several
different case studies were considered to show the efficiency
of the proposed method handling different kind of random
inputs in a unified frame work: band-limited white noise
(noise with low bandwidth), ideal white noise, and fractional
BrownianmotionwithHurst parameter𝐻. It should be noted
that when 𝐻 = 1/2, fractional Brownian motion becomes
Brownian motion, whose derivative is ideal white noise.

5.1. Examples 1(a) and 1(b): Band-Limited White Noise Input.
Because an integer order system can be considered as a special
case of DO systems, this example considers a simple linear
integer order system,𝐺(𝑠) = 1/(1+𝑇𝑠) from [38] with a band-
limited white noise as the input.

Let the input have a zero mean and covariance function
of 𝜅𝑈𝑈(𝑡1, 𝑡2) = (𝑊𝐵/𝜋) sinc((𝑡1 − 𝑡2)𝑊𝐵/𝜋), where the sinc
function is defined as

sinc (𝑥) =
{

{

{

sin (𝜋𝑥)
𝜋𝑥

elsewhere

1 for 𝑥 = 0.
(31)

The power spectral density of the input is

𝑆𝑈 (𝜔) =

{

{

{

1

(2𝜋)
|𝜔| ≤ 𝑊𝐵

0 |𝜔| > 𝑊𝐵,

(32)

where 𝑊𝐵 is known as bandwidth of the noise. As 𝑊𝐵

approaches to infinity, the process will become ideal white
noise.
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Therefore, the power spectral density function of stochas-
tic output is given by

𝑆𝑌 (𝜔) =

{

{

{

1

2𝜋

1

1 + (𝑇𝜔)
2

|𝜔| ≤ 𝑊𝐵

0 |𝜔| > 𝑊𝐵.

(33)

This is a linear system; the means of the input and output are
zero.

Using the frequency method, the exact steady state
variance of output can be expressed as [38]

𝐷𝑦ss
=
1

2𝜋
∫

𝑊𝐵

−𝑊𝐵

1

1 + (𝑇𝜔)
2
𝑑𝜔 =

1

𝜋𝑇
arctan (𝑊𝐵𝑇) . (34)

The OP for this linear system is

𝐴𝐺 = (𝑇𝐼 + 𝐴1)
−1
𝐴1, (35)

where I is the identity matrix; 𝐴1 is the OP of integration (of
order one), which was calculated using (15) and (16).

This system lacks random parameters. The covariance
function of the system output is approximated by (25). From
(25), it can be seen that the mean of the output by the
proposed method is zero.

Two numerical cases are considered.
(a) Consider𝑊𝐵 = 𝜋; 𝑇 = 2. Figure 2 shows the output

variance obtained by the proposed method for 𝑊𝐵 = 𝜋.
For comparison, the results by the gPC, MC, and frequency
methods are also given. Note that the frequency method in
(34) can provide the exact (analytical) steady state variance.
The random process input, 𝑈(𝑡), was parameterized using a
noncanonical decomposition [33, 39] (the details are available
in Appendices). The results from the proposed method were
quite satisfactory. Table 1 lists the simulation parameters and
computational times required for each method.

(b) Consider 𝑊𝐵 = 4𝜋; 𝑇 = 2. Figure 3 presents the
variance obtained by the proposed method for 𝑊𝐵 = 4𝜋.
If the number of cubature nodes is kept as in case (a),
the gPC method cannot obtain an accurate result in the
steady state. The result indicates that in the gPC method the
number of cubature nodes needs to increase with increasing
bandwidth of the noise, and the computational load increases
for obtaining the same accurate result accordingly.

Table 1 presents the computational times and simulation
parameters for all methods. From this table and Figures 2 and
3, the proposedmethod provides better performance in terms
of accuracy and computational load.

Remark. The gPC approaches can be divided into two
subcategories: intrusive Galerkin [27, 31] approaches and
nonintrusive projection approaches [27–30, 32]. The advan-
tage of nonintrusive approach is ease of implementation. For
this reason, nonintrusive (collocation)methods have become
very popular. The intrusive Galerkin method offers the most
accurate solutions involving the least number of equations in
multidimensional random spaces, but it is more cumbersome
to implement.Thus, in this paper, the nonintrusivemethod is
referred to as the gPC method.

Proposed (OP) Monte Carlo
gPC

D
y
(t
)

0
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0.1
0.15
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0.25

50 1510

t

Dyss (frequency method)

Figure 2: Variances of the output in Example 1(a).
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Figure 3: Variances of the output in Example 1(b).

5.2. Examples 2(a), 2(b), 2(c), and 2(d): Ideal White Noise

(a) Example 2(a): Double Delta Function Distributed Order
System. This example considers the statistical analysis of a
special case of DO integrator taken from the literature [40]
as follows:

𝐷𝑡

𝜌(𝛼)
𝑦 (𝑡) = 𝑢, (36)

where 𝜌(𝛼) = 𝑎1𝛿(𝛼 − 𝛼1) + 𝑎2𝛿(𝛼 − 𝛼2) and 𝛿() is the Dirac
delta function. Therefore, (36) is actually a double fractional
integrator,

𝑎1𝐷0

𝛼1
𝑦 (𝑡) + 𝑎2𝐷0

𝛼2
𝑦 (𝑡) = 𝑢 (𝑡) . (37)

The case where the input 𝑢(𝑡) is an ideal white noise with a
zero mean and covariance function was considered:

𝜅𝑈𝑈 (𝜏) = 𝛿 (𝜏) = 𝛿 (𝑡1 − 𝑡2) . (38)

The exact variance of the output is given by [40]

𝐷𝑦(𝑡) = 𝜎
2
(𝑡)

=
1

𝑎2
2
∫

𝑡

0

𝑢
2(𝛼2−1)

[E𝛼2−𝛼1 ,𝛼2
(−

𝑎1𝑢
(𝛼2−𝛼1)

𝑎2

)]

2

𝑑𝑢,

(39)

whereE𝛼2−𝛼1 ,𝛼2
() is the Mittag-Leffler function, which can be

calculated using the Matlab mlf.m function [41].
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Table 1: Simulation parameters and time profiles for obtaining the statistical characteristics by the MC, gPC, and proposed methods in
Examples 1(a), 1(b), 2(a), 2(b), 3, and 4(a).

Example Simulation parameters Computational time (sec.)
MC (Halton sampling) gPC Proposed MC gPC Proposed

Example 1(a) 10000
samples

400
cubature nodes 512 basis functions 205.30 1.10 0.01

Example 1(b) 10000
samples

1000
cubature nodes 512 basis functions 197.18 2.67 0.01

Example 2(a) 10000
samples N/A 512 basis functions 199.64 N/A 0.01

Example 2(b) 10000
samples N/A 2048 basis

functions 827.76 N/A 3.22

Example 3 10000
samples N/A 512 basis functions 210.66 N/A 0.01

Example 4(a) 10000
samples

625
cubature nodes 512 basis functions 4503.90 609.51 15.32

Exact
Proposed

D
y
(t
)
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t

42 6 8 100
t

0
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10
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rr
or

 (%
)

0

1

2

Figure 4: Variances of the output in Example 2(a) with 𝑎1 = 𝑎2 = 1,
𝛼1 = 3/4, and 𝛼2 = 1.

The OP for system (37) is given by

𝐴𝐺 = [

2

∑

𝑖=1

𝐵𝛼𝑖
𝑎𝑖]

−1

, (40)

where 𝐵𝛼𝑖 is the OP of derivative of order 𝛼𝑖.
This system does not have randomparameters.Therefore,

the covariance function of system output can be approxi-
mated by (25). The regularization technique [33] is used to
approximate the Dirac delta covariance function. Figure 4
presents the variance obtained using the proposed method
for 𝑎1 = 𝑎2 = 1, 𝛼1 = 3/4, and 𝛼2 = 1. The relative
error of the proposed method with respect to (39) is also
shown in Figure 4. The result by the proposed method is
quite satisfactory. Figure 5 compares the absolute error for
the output variance by the proposed and MC methods (with
respect to the exact variance in (39)). The simulation times

Proposed

Monte
Carlo0

0.005

0.01

Ab
s. 

er
ro

r

0

0.5

1

1.5

Ab
s. 

er
ro

r

6 80 2 104
t

2 53 410
t

×10−3

Figure 5: Absolute errors by the proposed and MC methods in
Example 2(a).

are listed in Table 1 for both methods. For MC simulations,
the Matlab code, fode sol.m, from [42] was used. Again,
Table 1 and Figure 5 show that the proposed method has
better accuracy with less computational burden than the MC
method.

Remarks. The fact that the gPC method becomes compu-
tationally intractable for ideal white noise input makes the
proposed method more attractive.

(b) Example 2(b): Uniform Distributed Order Integrator. This
example considers the statistical analysis of a DO integrator
taken from [40]:

𝐷𝑡

𝜌(𝛼)
𝑦 (𝑡) = 𝑢, 𝜌 (𝛼) = 1, 0 ≤ 𝛼 ≤ 1. (41)

Again, this study considered the case where the input 𝑢(𝑡) is
an idealwhite noisewith a zeromean and covariance function
as shown in (38).
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Figure 6: Output variance and absolute errors by the proposed and
MC methods in Example 2(b).

The variance of the output is given by the following [40]:

𝐷𝑦(𝑡) = 𝜎
2
(𝑡) = ∫

𝑡

0

[𝑒
𝑢
𝐸1 (𝑢)]

2
𝑑𝑢,

𝐸1 (𝑢) = ∫

∞

𝑢

𝑒
𝑦

𝑦
𝑑𝑦.

(42)

The OP for system (41) is given by

𝐴𝐺 = [

5

∑

𝑖=1

𝐵𝛼𝑖
𝑤𝑖]

−1

, (43)

where 𝐵𝛼𝑖 is the OP of derivative of order 𝛼𝑖 and {𝛼𝑖, 𝑤𝑖}
5

𝑖=1

are the nodes and weights from the Legendre quadrature.
Figure 6 shows the variance of the output by the proposed

method.The absolute error with respect to the exact variance
(42) is also shown.

(c) Example 2(c): 𝑃𝐼𝜆𝐷𝜇 Controller Design for Uniform Dis-
tributed Order Integrator with Stochastic Input. From the
examples above, it can be seen that the proposed method
for predicting the mean and variance of the system output
provides better accuracy and lower computational load than
the other methods such as the MC and gPC. Therefore, it is
more suitable for direct optimal design by minimization of
the objective function in (30).

Consider a PI𝜆D𝜇 controller as a closed loop configura-
tion with the uniform DO integrator above. The set point
𝑟(𝑡) is a random process with a unit mean and covariance
function 𝜅𝑅𝑅(𝜏) = 0.01𝛿(𝜏). This input 𝑟(𝑡) can be viewed as
a combination of the deterministic set point and zero mean
measurement noise [37].
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Figure 7:Mean and variances of the output of the system inExample
2(c) by the proposed controller.
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Figure 8: 500 responses of stochastic system in Example 2(c) by the
proposed controller.

The control objective is to track the deterministic unit
step input. This can be achieved by minimizing objective
function defined in Section 4. The search space for the
optimal parameters of the controller was limited to 0 ≤ 𝐾𝑝 ≤
5; 0 ≤ 𝐾𝑖 ≤ 5; 0 ≤ 𝐾𝑑 ≤ 5; 0.1 ≤ 𝜆 ≤ 1.9; 0.1 ≤ 𝜇 ≤ 1.9 for
simplicity, as in other studies on the probabilistic approach
[29, 37]. The resulting controller can be expressed as 𝐶1(𝑠) =
0.2805 + 1.1458/𝑠

0.6422.
Figure 7 shows mean and variance of system output with

this controller. Figure 8 shows 500 possible responses of the
uncertain system with the proposed controller. From the
finiteness of the output variance, the stability of system can
be determined.

(d) Example 2(d): Improved Mean Tracking Control with
Iterative Learning Control. Since the proposed method allows
lower computational time for prediction of the mean of
system output under random forcing, it can be used with
iterative learning control in which input sequence is refined
from one trial to next trial [43].

Consider a problem where the mean of closed loop
system in Example 2(c) needs to track desired mean 𝑚𝑌des

=

0.1𝑡(10 − 𝑡). The following iterative learning control scheme
can be used for refining the mean of set point input:

𝑚𝑌𝑘
(𝑡) = 𝜓 (𝑡)

𝑇
𝐶𝑚𝑌

= 𝜓 (𝑡)
𝑇
E [𝐴cl] 𝐶𝑚𝑅

𝑘

,

𝑒𝑘 (𝑡) = 𝑚𝑌des
(𝑡) − 𝑚𝑌𝑘

(𝑡) = 𝜓 (𝑡)
𝑇
𝐶𝑚𝑒
𝑘

,
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Figure 9: Mean and variances of the output of the system in
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Figure 10: 512 responses of stochastic system in Example 2(d) with
iterative learning control algorithm.

𝑚𝑅𝑘+1
(𝑡) = 𝑚𝑅𝑘

(𝑡) + 𝑒𝑘 (𝑡)

= 𝜓 (𝑡)
𝑇
𝐶𝑚𝑅
𝑘

+ 0.5𝜓 (𝑡)
𝑇
𝐶𝑚𝑒
𝑘

,

(44)

where 𝑘 ∈ {0, 1, 2, . . .} and 𝐴𝐺 is the closed loop OP.
Figure 9 shows the simulation results by the proposed

method. It can be seen from the figure that the iterative
learning algorithm in (44) improves the tracking error in
the mean as 𝑘 increases. The MC simulations with 512
sample responses are shown in Figure 10. It can be seen that
the designed control algorithm can track the desired mean
despite the random forcing.

Remarks. Note that the low computational cost of the pro-
posed method enables using the iterative learning control
algorithm.

5.3. Example 3: Linear Integer Order with Fractional Brow-
nian Motion Input. For each 𝐻 ∈ (0, 1), there is a
real-value Gaussian process (B𝐻(𝑡), 𝑡 ≥ 0) such that
𝑀B𝐻(𝑡)

= E(B𝐻(𝑡)) = 0 and the covariance function
of E(B𝐻(𝑡)B𝐻(𝑠)) = (1/2)[|𝑡|

2𝐻
+ |𝑠|

2𝐻
− |𝑡 − 𝑠|

2𝐻
],

𝑠, 𝑡 ∈ R+. This process is called standard fractional Brownian
motion with the Hurst parameter 𝐻. If 𝐻 = 1/2, then the
corresponding standard fractional Brownian motion is the
well-known standard Brownian motion.

Recently, there has been growing interest in linear systems
with fractional Brownianmotion input [44–46]. On the other
hand, in contrast to standard Brownian motion, where the
moment of output can be obtained by Ito calculus, there are
very few methods available for obtaining the moment of the
stochastic output of a general linear system with a fractional
Brownian motion input.

Consider a random process𝑋(𝑡) that satisfies the follow-
ing:

�̇� (𝑡) = −𝑋 (𝑡) +B𝐻 (𝑡) ,

𝑋 (0) = 0,

(45)

whereB𝐻(𝑡) is a fractional Brownian motion with the Hurst
parameter 𝐻. The mean of 𝑋(𝑡) is𝑀𝑋(𝑡) = 0. The variance
of𝑋(𝑡) satisfies a differential equation [44]:

�̇�𝑋 (𝑡) = −2𝐷𝑋 (𝑡) + 2𝑑 (𝑡, 𝑡) , (46)

where 𝑑(𝑡, 𝑡) is given by

𝑑 (𝑠, 𝑡) =
1

2
(𝑡
2𝐻
(1 − 𝑒

−𝑠
) + 𝑗1 (𝑠) + 𝑗2 (𝑠, 𝑡)) ,

𝑗1 (𝑠) = 𝑒
−𝑠
∫

𝑠

0

𝑢
2𝐻
𝑒
𝑢
𝑑𝑢,

𝑗2 (𝑠, 𝑡) = 𝑒
−𝑠
∫

𝑠

0

(𝑡 − 𝑢)
2𝐻
𝑒
𝑢
𝑑𝑢.

(47)

Figure 11 shows the evolution of variance of𝑋(𝑡) for𝐻 = 0.6

obtained from (46) and (47).
Equation (45) can be rewritten in terms of OP as follows:

𝐶𝑋 = (𝐼 + 𝐵)
−1
𝐶B = 𝐴𝐺𝐶B, (48)

where 𝐵 is the OP of the derivative of order one. Therefore,
one can easily obtain the covariance of the random process,
𝑋(𝑡), by utilizing the OP for this system, 𝐴𝐺 = (𝐼 + 𝐵)

−1,
and covariance function of fractional Brownian motion and
(25). Figure 11 shows the variance of 𝑋(𝑡) obtained using
the proposed method. Finally, the variance of 𝑋(𝑡) by a MC
estimation is also given in the same figure.

5.4. Example 4: Linear Distributed Order with Stochastic
Parametric and Additive Uncertainties

(a) Example 4(a). This case considers a DO system with both
random parameters and random forcing. The system can be
expressed as

𝐺 (𝑠) =
𝑌 (𝑠)

𝑈 (𝑠)
=

𝑘

𝜏 ∫
1

0
𝑠
𝛼
𝑑𝛼 + 1

, (49)

where 𝑘 and 𝜏 are uniform random variables in [0.5, 1.5].The
system is in a closed loop configuration with a fractional PI
controller, 𝐶1(𝑠) = 0.187 + 36.35/𝑠

1.216 from [46]. Note that
the controller, 𝐶1(𝑠), was designed for a nominal system, that
is, for 𝐺 = 1/(𝑠0.5 + 1). The input 𝑅(𝑡) is a band-limited white
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Figure 11: Variances of 𝑋(𝑡) in Example 3.
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Figure 12: Mean and variances of the output of the system in
Example 4(a).

noise process with a unit mean and covariance function of
the following: 𝜅𝑅𝑅(𝑡1, 𝑡2) = 0.02 sinc((𝑡1 − 𝑡2)𝑊𝐵/𝜋), where
𝑊𝐵 = 0.02𝜋.

Figure 12 compares the mean and variance of the output
calculated by the proposed method using (24) with the
results from the gPC and MC methods. In this study, the
gPC and MC methods were first applied to the DO systems
under stochastic forcing for comparison. In the MC and gPC
methods, the DO term was discretized first and the routine
fode sol.m [42] was then used to integrate the multiterm
fractional order version of theDO system. Again, the random
process input,𝑈(𝑡), was parameterized using a noncanonical
decomposition. Table 1 lists the simulation parameters and

D
y
(t
)

M
y
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0.1

2 40 1 53
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2 40 1 53
t
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Figure 13: Mean and variance of system output for Example 4(b) by
the proposed and initial controllers.

computational times needed for each method. Figure 12 and
Table 1 show that the proposed method can provide similar
accuracy with much less computational effort than the other
methods. The advantage of the proposed method lies in its
use of operational matrices: the mean and covariance of
the output can be obtained directly from those of the input
without parameterization of the input.

(b) Example 4(b). The proposed method was applied to the
design of fractional order PID controller for this system.
The covariance of the output can be obtained directly from
those of the input without parameterization of the input. The
control objective is to track the deterministic unit step input.
The search space for the parameters of the controller was
limited to 0 ≤ 𝐾𝑝 ≤ 5; 0 ≤ 𝐾𝑖 ≤ 50; 0 ≤ 𝐾𝑑 ≤ 5; 0.5 ≤ 𝜆 ≤ 1.5;
0.1 ≤ 𝜇 ≤ 1.5.The result is as follows:𝐶2(𝑠) = 5+50/(𝑠)+5𝑠

0.1.
Figure 13 shows the mean and variance of the system

output by the proposed controller and the controller, 𝐶1(𝑠) =
0.187 + 36.35/𝑠

1.216 from [46]. Figure 14 shows a bounded
region for 1000 possible responses of the uncertain system
with the proposed and initial controllers. The proposed
controller outperformed the initial controller.

6. Conclusions

A hybrid spectral method was proposed to analyze DO
systems in a stochastic setting with arbitrary random forcing
and parametric uncertainties. To analyze the system with
stochastic parameter perturbation, the stochastic collocation
was used to estimate the random operator.This combines the
advantages of both theOP technique and PCmethod.Theuse
of operational matrices explicitly provides the relationship
between the first- and second-order moment for the input
and output of a system, bypassing parameterization of the
random input when predicting the statistical characteris-
tics and reducing the dimensions of the random space.
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Figure 14: Bounded regions for 1000 MC simulations of the
stochastic system by the proposed and initial controllers in Example
4(b).

This can also effectively handle a system with a low corre-
lation length input (i.e., ideal white noise) by regularization.
The numerical examples show that the proposed method
provides superior accuracy and computational efficiency
for analyzing stochastic DO systems over other existing
methods, such as the gPC, MC, and frequency methods:
the frequency method can give the only result at the steady
state; the accuracy and efficiency of the gPC method are
degraded for a wideband process. Although the MC method
is straightforward, its accuracy and computational burden are
problematic. On the other hand, the explicit relationship in
(24) is only available for a linear system; the applicability of
the proposed method is restricted to linear systems.

Appendices

A. Derivation of (24)

Consider a system with its input and output linked by

𝐶𝑌 = 𝐴𝐺𝐶𝑈,

𝑈 (𝑡) = 𝜓 (𝑡)
𝑇
𝐶𝑈,

𝑌 (𝑡) = 𝜓 (𝑡)
𝑇
𝐶𝑈 = 𝜓 (𝑡)

𝑇
𝐴𝐺𝐶𝑈,

(A.1)

where 𝐴𝐺 is the OP of the system. The input and parameters
𝑎𝑖, 𝑏𝑗 are random.

Therefore, the mean of the input and the output in (A.1)
was calculated as

𝑚𝑈 (𝑡) = E [𝑈 (𝑡)] = 𝜓 (𝑡)
𝑇
E [𝐶𝑈] = 𝜓 (𝑡)

𝑇
𝐶𝑚𝑈

,

𝑚𝑌 (𝑡) = E [𝑌 (𝑡)] = 𝜓 (𝑡)
𝑇
E [𝐶𝑌] = 𝜓 (𝑡)

𝑇
𝐶𝑚𝑌

= 𝜓 (𝑡)
𝑇
E [𝐴𝐺𝐶𝑈] ,

(A.2)

where E[] denotes the expectation operator; 𝐶𝑚𝑈 = E[𝐶𝑈];
𝐶𝑚𝑌

= E[𝐶𝑌].
The statistical independence of 𝐴𝐺 and 𝐶𝑈 leads to

𝑚𝑌 (𝑡) = 𝜓 (𝑡)
𝑇
𝐶𝑚𝑌

= 𝜓 (𝑡)
𝑇
E [𝐴𝐺] 𝐶𝑚𝑈

. (A.3)

Therefore, the spectral characteristics (or expansion coeffi-
cients) of the mathematical expectations of input and output
are related by

𝐶𝑚𝑌
= E [𝐴𝐺] 𝐶𝑚𝑈

. (A.4)

Introducing the system’s signal in the spectral form leads to
an equation defining the correlation function of the output to
be written as follows:
𝜃𝑌𝑌 (𝑡1, 𝑡2) = E [𝑌 (𝑡1) 𝑌 (𝑡2)]

= E [𝜓 (𝑡1)
𝑇
𝐶𝑌𝐶𝑌

𝑇
𝜓 (𝑡2)]

= 𝜓 (𝑡1)
𝑇
E [𝐶𝑌𝐶𝑌

𝑇
]𝜓 (𝑡2)

= 𝜓 (𝑡1)
𝑇
E [𝐴𝐺𝐶𝑈 (𝐶𝑈)

𝑇
𝐴𝐺

𝑇
]𝜓 (𝑡2) .

(A.5)

Therefore, (A.5) becomes

𝜃𝑌𝑌 (𝑡1, 𝑡2) = 𝜓 (𝑡1)
𝑇
E [𝐴𝐺𝐶𝜃𝑈𝑈

𝐴𝐺

𝑇
]𝜓 (𝑡2) , (A.6)

where 𝐶𝜃𝑈𝑈 is the square matrix of expansion coefficients
(spectral characteristics) of the input’s correlation function,
which is given by

𝜃𝑈𝑈 (𝑡1, 𝑡2) = E [𝑈 (𝑡1) 𝑈 (𝑡2)]

= 𝜓 (𝑡1)
𝑇
E [𝐶𝑈 (𝐶𝑈)

𝑇
]𝜓 (𝑡2)

= 𝜓 (𝑡1)
𝑇
E [𝐶𝜃𝑈𝑈]𝜓 (𝑡2)

= 𝜓 (𝑡1)
𝑇
𝐶𝜃𝑈𝑈
𝜓 (𝑡2) .

(A.7)

The covariance function of the system’s input is defined as

𝜅𝑈𝑈 (𝑡1, 𝑡2)

= E {[𝑈 (𝑡1) − 𝑚𝑈 (𝑡1)] [𝑈 (𝑡2) − 𝑚𝑈 (𝑡2)]}

= E [𝑈 (𝑡1)𝑈 (𝑡2)] − 𝑚𝑈 (𝑡1)𝑚𝑈 (𝑡2)

= 𝜃𝑈𝑈 (𝑡1, 𝑡2) − 𝑚𝑈 (𝑡1)𝑚𝑈 (𝑡2) .

(A.8)

Expanding (A.8) in terms of the orthogonal functions gives
the following:

𝜅𝑈𝑈 (𝑡1, 𝑡2) = 𝜓 (𝑡1)
𝑇
𝐶𝜅𝑈𝑈
𝜓 (𝑡2)

= 𝜓 (𝑡1)
𝑇
𝐶𝜃𝑈𝑈
𝜓 (𝑡2)

− 𝜓 (𝑡1)
𝑇
𝐶𝑚𝑈

(𝐶𝑚𝑈
)
𝑇

𝜓 (𝑡2) .

(A.9)

The spectral characteristics of the input signal’s moments are
given by

𝐶𝜅𝑈𝑈
= 𝐶𝜃𝑈𝑈

− 𝐶𝑚𝑈
(𝐶𝑚𝑈

)
𝑇

. (A.10)
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Substituting (A.10) into (A.6) gives

𝜃𝑌𝑌 (𝑡1, 𝑡2) = 𝜓 (𝑡1)
𝑇
E [𝐴𝐺𝐶𝜃𝑈𝑈

𝐴𝐺

𝑇
]𝜓 (𝑡2)

= 𝜓 (𝑡1)
𝑇
E [𝐴𝐺 {𝐶𝜅𝑈𝑈

+ (𝐶𝑚𝑈
) (𝐶𝑚𝑈

)
𝑇

}𝐴𝐺

𝑇
]

⋅ 𝜓 (𝑡2) .

(A.11)

The covariance function of the system’s output is then given
by

𝜅𝑌𝑌 (𝑡1, 𝑡2) = 𝜓 (𝑡1)
𝑇
𝐶𝜅𝑌𝑌
𝜓 (𝑡2) = 𝜃𝑌𝑌 (𝑡1, 𝑡2)

− 𝑚𝑌 (𝑡1)𝑚𝑌 (𝑡2) = 𝜓 (𝑡1)
𝑇

⋅ E [𝐴𝐺 {𝐶𝜅𝑈𝑈
+ (𝐶𝑚𝑈

) (𝐶𝑚𝑈
)
𝑇

}𝐴𝐺

𝑇
]𝜓 (𝑡2)

− 𝜓 (𝑡1)
𝑇
𝐶𝑚𝑌

(𝐶𝑚𝑌
)
𝑇

𝜓 (𝑡2) ,

(A.12)

or in spectral form,

𝐶𝜅𝑌𝑌
= E [𝐴𝐺 {𝐶𝜅𝑈𝑈

+ (𝐶𝑚𝑈
) (𝐶𝑚𝑈

)
𝑇

}𝐴𝐺

𝑇
]

− 𝐶𝑚𝑌
(𝐶𝑚𝑌

)
𝑇

.

(A.13)

Equation (A.13) gives the relationship between the spectral
characteristics of the moments of the system’s output and
input. Equations (A.4) and (A.13) are then combined to form
(24) in the paper

B. Noncanonical Decomposition of Stationary
Random Processes [39]

Consider a stationary randomprocess withmean𝑚𝑋, covari-
ance 𝜅𝑋𝑋(𝑡1 − 𝑡2) = 𝜅𝑋𝑋(𝜏), and variance 𝜎𝑋

2
= 𝜅𝑋𝑋(0).

This process can be represented as𝑍(𝑡, 𝜉1, 𝜉2) = 𝜎𝑋(sin(𝜉2𝑡)+
𝜉1 cos(𝜉2𝑡)) + 𝑚𝑋 with

E [𝜉1] = 0;

E [𝜉1
2
] = 1;

𝑓 (𝜉2) =
𝑆𝑋𝑋 (𝜉2)

𝜎𝑋
2

,

(B.1)

where 𝜉1 and 𝜉2 are independent, 𝜉1 is Gaussian, and 𝜉2 is
a random variable with a probability density function (pdf)
given in (B.1).

Proof. 𝑍(𝑡) has a mean of

𝑚𝑍 = E [𝑍 (𝑡, 𝜉1, 𝜉2)]

= 𝜎𝑋∫

∞

−∞

sin (𝜉2𝑡) 𝑓 (𝜉2) 𝑑𝜉2 + 𝑚𝑋 = 𝑚𝑋

(B.2)

and a covariance function of

E [
𝑜

𝑍 (𝑡1)

𝑜

𝑍 (𝑡2)] = E [𝜎𝑋
2
{sin (𝜉2𝑡1) sin (𝜉2𝑡2)

+ 𝜉1
2 cos (𝜉2𝑡1) cos (𝜉2𝑡2)

+ 𝜉1 cos (𝜉2𝑡1) sin (𝜉2𝑡2)

+ 𝜉1 sin (𝜉2𝑡1) cos (𝜉2𝑡2)}] = 𝜎𝑋
2
E [sin (𝜉2𝑡1)

⋅ sin (𝜉2𝑡2) + cos (𝜉2𝑡1) cos (𝜉2𝑡2)]

= 𝜎𝑋
2
∫

∞

−∞

cos (𝜉2𝜏) 𝑓 (𝜉2) 𝑑𝜉2,

(B.3)

where
𝑜

𝑍 (𝑡) = 𝑍(𝑡)−𝑚𝑍 = 𝑍(𝑡)−𝑚𝑋 is the central component
of the randomprocess𝑍(𝑡). In (B.3), the properties ofE[𝜉1] =
0 and E[𝜉1

2
] = 1 and the independence of 𝜉1, 𝜉2 are used to

simplify the equation.
The covariance function also can be calculated as the

inverse Fourier transform of the power spectral density

𝜅𝑍𝑍 (𝜏) = 𝜅𝑋𝑋 (𝜏) = ∫

∞

−∞

𝑆𝑋𝑋 (𝜔) 𝑒
𝑗𝜔𝜏
𝑑𝜔

= ∫

∞

−∞

𝑆𝑋𝑋 (𝜔) cos (𝜔𝜏) 𝑑𝜔.
(B.4)

Comparing (B.3) and (B.4) gives the pdf of 𝜉2 in (B.1). Because
∫
∞

−∞
𝑆𝑋𝑋(𝜉2)/𝜎𝑋

2
𝑑𝜉2 = 1, 𝑓(𝜉2) is a proper pdf.

(A) A first-order Markov process with a mean 𝑚𝑅 and
exponential covariance 𝜅𝑅𝑅(𝜏) = 𝜎𝑋

2
𝑒
−𝛼|𝜏| can be

parameterized as 𝑅 = 𝜎𝑅(sin(𝜉2𝑡) + 𝜉1 cos(𝜉2𝑡)) +
𝑚𝑅(𝑡), where 𝜉1 is Gaussian, as in (B.1), and 𝑓(𝜉2) =
𝛼/𝜋(𝛼

2
+ 𝜉2

2
), 𝜉2 ∈ (−∞,∞).

(B) Band-limited white noise with amean𝑚𝑅 and covari-
ance 𝜅𝑅𝑅(𝜏) = 𝑐(𝑊𝐵/𝜋) sinc((𝑊𝐵/𝜋)𝜏) can be param-
eterized as𝑅 = √𝑐𝑊𝐵/𝜋(sin(𝜉2𝑡)+𝜉1 cos(𝜉2𝑡))+𝑚𝑅(𝑡),
where 𝜉1 is Gaussian, as in (B.1), and 𝑓(𝜉2) = 1/2𝑊𝐵,
𝜉2 ∈ [−𝑊𝐵,𝑊𝐵].
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