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Cesar S. López-Monsalvo, and Francisco Nettel
Volume 2013, Article ID 967618, 6 pages

Legendre Invariance and Geometrothermodynamics Description of the 3D Charged-Dilaton Black
Hole, Yiwen Han and XiaoXiong Zeng
Volume 2013, Article ID 865354, 5 pages

Geometrothermodynamics of Myers-Perry Black Holes, Alessandro Bravetti, Davood Momeni,
Ratbay Myrzakulov, and Aziza Altaibayeva
Volume 2013, Article ID 549808, 11 pages

Geometric Curvatures of Plane Symmetry Black Hole, Shao-WenWei, Yu-Xiao Liu, Chun-E. Fu,
and Hai-Tao Li
Volume 2013, Article ID 734138, 8 pages

Geometric Description of theThermodynamics of the Noncommutative Schwarzschild Black Hole,
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The role of geometry in understanding physical phenomena,
from large to small scales, has become an exciting arena of
research in the recent past. Novel geometric insights into
the phases of matter at different length scales indicate a
deep connection between properties of dissimilar physical
systems. The present issue contains original research articles
aimed towards furthering our understanding of these aspects.

The paper “A cosmological scaling relation for describ-
ing the late time dynamics” explores the relation between
quantum fluctuations and Cosmological dynamics. This is
obtained via a proposed scaling that arises from black hole
physics, between the mass and minimal information of a
given system. The emergence of dark energy is shown to
follow as a consequence of this scaling relation.

In the paper “On thermodynamics of charged and rotating
asymptotically AdS black strings,” the authors study the ther-
modynamics of charged, rotating black strings. This is done
by treating the Cosmological constant as pressure and using
its conjugate volume. Issues of stability of these systems is
analyzed, and it is established that they are stable and that they
do not undergo second order phase transitions.

In the paper “Two-dimensional Einstein manifolds in geo-
metrothermodynamics,” a Riemannian geometric analysis is
carried out for a class of thermodynamic systems, for which
the associated curvature is a constant. For a particular class
of such systems, a differential equation scheme is set up, and
a description of a polytropic fluid is obtained.

In “Legendre invariance and geometrothermodynamics
description of the 3D charged-dilaton black hole,” the authors
explore a Legendre invariant thermodynamic formalism for
charged dilatonic black holes. This is used to obtain the
phase properties of such black holes. Issues of stability are
also studied, and a comparative analysis of various geometric
approaches is made.

In the paper “Geometrothermodynamics of Myers-Perry
black holes,” thermodynamics and its Legendre invariant
formulation is studied for various cases in black holes of five
dimensions.A three-dimensional parametermanifold arising
out of such a construction is also discussed, which gives rise
to divergences in addition to the ones appearing due to the
phase structure of the theory, and a theoretical explanation
for these is offered.

The paper “Geometric curvatures of plane symmetry black
hole” studies the geometric structure of a class of black holes,
in different formalisms. First- and second-order phase transi-
tions are investigated, and the scalar curvatures calculated in
these cases. Local thermodynamic stability is also discussed
via the heat capacity.

In “Geometric description of the thermodynamics of the
noncommutative Schwarzschild black hole,” a Legendre invari-
ant thermodynamic formulation of a class of noncommuta-
tive black holes is discussed. Via the geometric structure of
the equilibrium state space, the authors analyze the phase
structure of the system, by treating the noncommutativity
parameter at par with other thermodynamic variables.
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This issue brings together a collection of research papers
on the application of geometric methods to a wide variety of
physical systems. We hope this will be a useful volume for
researchers working in related areas.

Tapobrata Sarkar
Hernando Quevedo

Rong-Gen Cai
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A scaling relation between mass and minimal information of a given system is inferred from primordial black holes. Extending its
validity, it is possible to describe different stages of the universe evolution. Particularly, the broad interest on matching the scaling
law, from early to late redshift regimes, may suggest the mechanism to relate quantum and classical aspects of gravity. Under this
hypothesis, the scaling relation is interpreted as a thermodynamic modification able to describe the cosmological dynamics at late
times. In this scheme, dark energy emerges, as a consequence of assuming the validity of our scale relation. The corresponding
equation of state reduces to a cosmological constant at early times and evolves in terms of the apparent horizon at late times.

1. Introduction

The challenge of reproducing the observed scales, from
small to high structures, has been extensively investigated
in the last decades [1]. It follows from the particular idea
that self-gravitating aggregated structures may be predicted
from prime principles [2]. This leads to intrinsic connections
between quantummechanics and gravity, providing a unified
scheme for quantum gravity. A similar approach has been
already employed several decades ago. In particular, it was
found a possible correspondence between proton and higher
sizes structure masses [3–5]. Even though this fact may
represent a first step for obtaining a self-comprehensive
theory, including quantum effects in gravitation, the strange
correspondence between proton and heaviermasses is not yet
clarified [6]. The corresponding problem is known in the lit-
erature as coincidence problem [7–10]. All the suggestions and
attempts spent to describe the latter coincidence appeared to
be nonconclusive in the framework of astrophysics. However,
more recently, an accurate explanation has been proposed,
dealing with a possible quantization relation for physical sys-
tems [11, 12]. If one assumes black holes as physical systems,
it follows that the main interest of the coincidence problem

lies on the possible connection of macroscopic scales to the
Planck constant ℎ [13]. In doing so, under the hypothesis
that the early time phases of the universe evolution could be
characterized by primordial black holes, one may infer the
observed structures as determined from a self comprehensive
common origin, depending on quantum fluctuations [14].
The importance of investigating the consequences of a new
quantization rule is to frame the large scale structures into
a unifying theory. To this end, it has been shown [15,
16] that it is possible to get a quantization relation which
has the meaning of scaling relation between mass and the
quantization number.

In this work, by supposing its validity, we describe the
consequences of it, at higher and smaller sizes, showing the
role played by quantum fluctuations and the corresponding
consequences at late time epochs. The observed dynamics
today could be influenced by such conditions. We there-
fore show that it is possible to get a characteristic length
of gravitational interaction, showing dark energy effects
from prime principles [17]. Moreover, we describe in detail
some thermodynamic consequences of our quantization
rule, showing that both entropy and temperature become
functions of the quantizing number, hereafter 𝑛. In doing so, it
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becomes evident that our scaling relation, although derived at
Planck scales, can be used for all self-gravitating astrophysical
systems, including the whole universe.

Thepaper is organized as follows. In Section 2we describe
in detail the main features of the quantization relation. In
Section 3 we extend the quantization law from minimal
physical regions to higher ones and we give emphasis to the
form of entropy and temperature. In Section 4 we highlight
a corresponding cosmological application of our framework,
which is able to predict the dark energy effects at late times,
without the need of introducing any further cosmological
fluid. Finally, Section 5 is devoted to conclusions and perspec-
tives of our work.

2. The Quantization Relation

In this section, we describe the main steps leading to the
quantization relation, derived from a black hole effective
potential, of the early phases of the universe evolution. In
this picture, one may assume that primordial black holes
dominated the whole universe dynamics [18, 19]. In doing so,
the corresponding scalar potential is

𝑉BH = 𝑒
2𝜙
(𝑄
𝑒
− 𝑎𝑄
𝑚
)
2

+ 𝑒
−2𝜙

𝑄
2

𝑚
, (1)

where𝑄
𝑒
and𝑄

𝑚
represent the electric andmagnetic charges,

respectively. The so-called dilaton field is defined by the
function 𝜙, while the axion field is here represented by 𝑎.

This framework is restricted to the so-called extremal
black holes, in which the event horizons degenerate. It is
worth noticing to focus on this case, following the work of
[11, 12]. Let us consider

𝑉
CFT
eff = 𝑅

2

𝑐
(𝑄
𝑒
−

𝜃

2𝜋
𝑄
𝑚
)

2

+
1

𝑅2
𝑐

𝑄
2

𝑚
, (2)

where 𝑅
𝑐
is the compactification radius of the so-called

Fubini scalar field. Once the effective potential is defined, it
is easy to get the following identifications:

𝑅
2

𝑐
= 𝑒
2𝜙
,

𝜃

2𝜋
= 𝑎. (3)

Having considered one component charge in (1), stability
requirements lead to 𝑎 = 𝜃/2𝜋 = 0, which describes the case
in which only the dilaton field is present, giving as the black
hole potential the following simplified expression [20]:

𝑉BH = 𝑒
2𝜙
𝑄
2

𝑒
+ 𝑒
−2𝜙

𝑄
2

𝑚
. (4)

Furthermore, by considering 𝜙 as a constant field the follow-
ing relation between black hole mass and effective potential
gets implemented [21]:

𝐺𝑀
2
= 𝑉BH. (5)

By imposing the stability 𝜕𝑉BH/𝜕𝜙 = 0, one gets

𝑒
2𝜙𝐻 =

𝑄
𝑚

𝑄
𝑒

= 𝑅
2

𝐻
, (6)

with 𝜙
𝐻
and 𝑅

𝐻
referring to as their values at the horizon of

the black hole. By recasting the mass in terms of the product
of the two charges, that is, 𝐺𝑀2 = 2𝑄

𝑒
𝑄
𝑚
, and assuming the

Dirac quantization condition 2𝑄
𝑒
𝑄
𝑚
= 𝑛ℎ𝑐, with 𝑛 a positive

integer, we finally get

𝐺𝑀
2
= 𝑛ℎ𝑐. (7)

For 𝑛 = 1, we obtain the lowest mass allowed for a quantum
black hole (primordial black hole)𝑀BH ≡ 𝑀Planck.

Here, our main purpose is to relate thermodynamics to
(7). In doing so, we show that the physical meaning of 𝑛, if it
becomes a function of the size of the system, that is, R =

R(𝑡), becomes that of an information parameter. In other
words, by employing 𝑛 = 𝑛(R), as the minimal information
of a given space time region, it is possible to recover the
holographic principle and the Verlinde’s recipe [22–26]. This
will be highlighted in the next sections.

3. Extending the Quantization Law to
Minimal Physical Regions

By following the pioneering work of [11, 12], we extend
the quantizing relation, proposed for primordial black hole
dominated era, to different epochs along the universe evo-
lution. In particular, we find that one possibility to relate
our formula to higher radii, is to consider a continuous 𝑛,
function of the Hubble radius R = R(𝑡), with 𝑡 the cosmic
time. After cumbersome algebra, one is able to depict a
model which shows a redshift evolution that predicts, at late
time, an accelerating universe under some conditions. The
holographic principle could be recovered if 𝑛 is reviewed as
the functional termwhich describes theminimal information
of the space time region under exam.

3.1.The Entropy Representation. Theconcept of entropy turns
out to be very useful to describe the thermodynamical pro-
cesses which imply an increasing disorder. In astrophysics,
all the processes are expected to occur only if the entropy
increases as the universe expands. However, that is mainly
true for all astrophysical systems. It follows that the use
of entropy leads to numerous applications, spanning from
virialized systems, to black hole physics. It is commonly
believed that the black hole entropy depends on its area,
rather than its volume, as in standard thermodynamics. In
the context of black hole physics, this turns out to be a natural
consequence of the macroscopic horizon, associated to every
black hole. The net energy content is assumed to be confined
within the horizon itself, and then the corresponding first and
second laws of thermodynamics can be easily inferred if one
considers the area as 𝐴bh = 4𝜋𝑅

2

bh, with 𝑅bh the black hole
radius (In this section, we omit the units ℎ, 𝑐, and 𝐺 for the
sake of clearness. In the incoming sections we will restore
their use.).

It is easy to show that the totalmass contained into a black
hole is𝑑𝑀 = (𝜅/8𝜋)𝑑𝐴bh, where 𝜅 is the surface gravity of the
black hole which can be computed in a model independent
way, showing that it is not necessary to fix a priori the black
hole mass through a ruler constant. For our purposes, the
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first law of thermodynamics reads 𝑑𝐸 = 𝑇𝑑𝑆, which naturally
defines a corresponding black hole temperature

𝑇bh =
1

8𝜋𝑀
(

ℎ𝑐
3

𝐺𝑘
𝐵

) (8)

that can be recasted as

𝑇bh =
𝜅

2𝜋
, (9)

showing a simple connection between the black hole surface
gravity and its temperature. After cumbersome algebra, it is
possible to define a net entropy of the form 𝑆bh = (1/4)𝐴bh,
which provides a second law

𝑑𝑆bh ≥ −𝑑𝑆matter, (10)

commonly called the generalized second law. In the next
subsection, we adopt the validity of (9) and (10) to relate 𝑛 to
current observable universe, with particular attention to the
validity of (10), studying the consequences of introducing an
incoming particle into the physical system under interest.

3.2. The Generalized Scaling Relation. To get a scaling inde-
pendent relation, applicable in modern cosmology, we must
fulfill the conditions on entropy, emphasized in the above
sections. Particularly, we can assume

𝐺𝑀
2
= 𝑛 (R) ℎ𝑐, (11)

where a functional dependence of 𝑛 on the radius of black
holes has been introduced. Under this hypothesis, we get

2𝐺𝑀𝑑𝑀 = 𝑑𝑛ℎ𝑐, (12)

so, recalling (7), we infer the density 𝜌 ≡ 𝑑𝑀/𝑑𝑉, given by

𝜌
2
=
ℎ𝑐

𝐺

𝑑𝑛

𝑑𝑉2
, (13)

where we made use of the fact that 𝜌 ≈ 𝑀/𝑉. Equation
(13) differs from the approaches proposed in [27, 28], since
our relation has been obtained in terms of a generic black
hole radius, R. In other words, since the validity of (11) is
general, as one can see in [11, 12], our relation corresponds to
a quantization rule valid for gravitational quantum systems.
For these reasons, we want to demonstrate, in what follows,
that the use of our quantization relation, in observational
cosmology, may lead to accelerate the universe today, without
invoking a priori a dark energy term, as responsible for the
cosmic speed up.

Together with (13) we are able to assume that

𝑑𝑀 =
𝜆
𝑀

𝑐

𝑅𝑀
𝑆

𝑀𝑑𝑛, (14)

in which we used the definitions of Compton length and
Schwarzschild radius, that is, 𝜆

𝑀

𝑐
and 𝑅

𝑀

𝑆
, respectively.

Equation (14) can be rewritten as

𝑘
𝐵
𝑇 =

1

2𝜋

ℎ

𝑐

𝐺𝑀

𝑅2
𝑆

, (15)

and together with the quantization relation, we have

𝑘
𝐵
𝑇 =

1

8𝜋

𝑀𝑐
2

𝑛
, (16)

and then one infers

𝑆

𝑘
𝐵

= 4𝜋𝑛. (17)

The entropy of a given region of space time is therefore
associated to 𝑛(R). By combining𝑁 = 4𝜋𝑛 and (17) with the
expression for the degrees of freedom, one gets

𝑁𝑘
𝐵
𝑇 =

1

2
𝑀𝑐
2
, (18)

which relates the temperature to the mass of the universe.
Since the Unruh temperature is recovered under our picture,
it is easy to notice that our quantized rule appears to satisfy
the basic demands of thermodynamics.

3.3. Information of Incoming Particles. From another point
of view, one can wonder whether the information due to the
introduction of 𝑛(R) allows us to recover the first principle of
thermodynamics, if one adds energy to the system. As a toy
model, let us assume the simplest case of one black hole. By
assuming that 𝑛 scales with respect to the radius of our black
hole we get

𝑇𝑑𝑆 =
1

8𝜋

ℎ𝑐
3

𝐺𝑀𝑘
𝐵

4𝜋𝑑𝑛𝑘
𝐵
=
1

2

𝑀𝑐
2

𝑛
𝑑𝑛, (19)

which represents the first principle in terms of the entropy 𝑆.
Easily we have 𝑑𝑛 = 2(𝐺𝑀𝑑𝑀/ℎ𝑐). So that, by substituting
the definition of 𝑛 into (19)

𝑇𝑑𝑆 = 2𝐹
𝑁
𝑅
𝑆
, (20)

we define 𝐹
𝑁
as the standard Newtonian law. Equation (20)

is compatible with the Newtonian dependence on the radius
R, because it reproduces the Uhruh law without corrections;
that is,

𝑇𝑑𝑆 = 2 (𝑑𝑀)𝑅
𝑆
, (21)

giving

𝑑𝑆 = 4𝜋𝑘
𝐵
𝑑𝑀 ⋅

2𝜋𝑐

ℎ
𝑅
𝑆
= 4𝜋𝑘

𝐵

𝑅
𝑀

𝑆

𝜆𝑀
𝑐

, (22)

which is compatible with (17) for the definition, 𝑅𝑀
𝑆
= 𝑑𝑛𝜆

𝑀

𝑐
.

On the other side, for an incoming particle, assuming that the
volume of a BH is fixed,

𝑑𝑈 = 𝑑𝑀𝑐
2
, (23)

therefore, noticing that

𝑑𝑈 = 𝑐
2 ℎ𝑐

2𝐺𝑀
=
𝑑𝑛

2

ℎ𝑐

𝐺𝑀2
𝑀𝑐
2
=
1

2
𝑀𝑐
2 𝑑𝑛

𝑛
(24)
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that reproduces the first principle 𝑑𝑈 = 𝑇𝑑𝑆 when one
takes the fixed volume evolution.Moreover, the identity holds
𝐹
𝑁
𝑅
𝑆
= 𝑈/2 = (1/2)𝑀𝑐

2. The origin of the factor 1/2 arises
because we are considering a fixed mass𝑀.

In other words, by evaluating the integral
−∫
0

𝑅𝑆

(𝐺𝑀(R)𝑑𝑀/R2)𝑑R, with 𝑀 = 𝜌 ⋅ (4/3)𝜋R3, we
cannot reproduce the exact expression for the Newtonian
law, which is instead recovered if

𝑀(R) = 𝜌 ⋅ 4𝜋R
2
, (25)

showing that the internal density scales as R−2. Relating
𝑀(R) to the 𝑛 term, it is easy to show that 𝑛 contains the
physical information of a certain system, in analogy with the
minimal size identified in the holographic principle.

In other words, by considering the quantizing relation
and the fact that one adds physical information to the system,
it is possible to reobtain the Newtonian law, if 𝑛 is associated
to the total energy budget.

4. Connection with Cosmology

An important consequence arises by assuming that the scale
relation could be associated to the net energy budget of
the whole universe. In other words, one may consider the
universe, as the physical system under exam. So that, by
keeping in mind the validity of the anthropic principle,
in a Friedmann-Robertson-Walker metric, we consider the
apparent horizon, that is, R ∝ H−1 [29, 30], as physical
radius. Hence, for reproducing the corresponding expression
for the entropy 𝑆, we notice that

𝑛 ∝ R
2
, (26)

which reproduces the form of the holographic principle in
the limiting case in which the apparent horizon corresponds
to the universe size, and 𝑛 to the minimal energy. This
represents an important result of ourmodel, since holography
seems to be recovered in a simple and concise way, by only
postulating the validity of (13), for the whole universe, in
whichwe considered the temperature as given by the standard
Hawking radiation, in terms of the apparent horizon.Thus, by
assuming that the volume of the universe scales as 𝑉 ∝ R3

[31, 32], we obtain

𝑛 ∝
1

H2
, (27)

in which we considered the fact that the apparent horizon
is proportional to the inverse square of the Hubble rate. By
considering the Friedmann equations,

H
2
=
8𝜋𝐺

3
𝜌
𝑡
, Ḣ +H

2
= −

4𝜋𝐺

3
(3𝑃 + 𝜌

𝑡
) , (28)

where 𝜌
𝑡
and 𝑃 are, respectively, the total energy budget and

pressure of the universe, through the use of the continuity
equation: that is,

𝑑𝜌

𝑑𝑧
=
3 (𝑃 + 𝜌)

1 + 𝑧
. (29)

We are able to infer the conditions that relate𝜌with 𝑛 and𝑉. If
𝜌
𝑡
= 𝜌
𝑚,0

(1+𝑧)
3
+𝜌, with 𝜌

𝑚,0
(1+𝑧)

3 the standard pressureless
matter term, by postulating that 𝜌 represents the dark energy
counterpart and assuming the standard definition of energy
in thermodynamics [33], that is, 𝜌 ≡ 𝑛/𝑉, we find

𝜌 ∝ 𝑛
−1/2

, (30)

which is equivalent to require 𝜌 ∝ H. The corresponding
equation of state of the dark species associated to 𝑛 reads

𝜔 ≡
𝑃

𝜌
, (31)

and we can rewrite it, as follows:

𝜔 = −[1 +
(1 + 𝑧)

6

𝑑 ln 𝑛
𝑑𝑧

] , (32)

which is actually negative, mimicking the dark energy effects,
when the first derivative of 𝑛 with respect to the redshift 𝑧

is positive. If 𝑑𝑛/𝑑𝑧 > 0, the 𝑛 parameter should increase
as the universe expands, in agreement with the hypothesis
that at early times a significative contribution due to 𝑛

is significative, and the universe is black hole dominated.
Moreover, (32) provides a dark energy term, reproducing a
late time acceleration, which can be matched with current
observations; that is, −1 ≤ 𝜔 < 0, when 1 + 𝜔 ∝

𝑑 ln𝑉/𝑑𝑧. In addition, if the volume is negligibly small, at
early times, we have 𝜔 ≈ −1. This turns out to give us an
early time cosmological constant contribution. Nevertheless,
as 𝑧 → ∞, a cosmological constant term does not influence
the early pressure perturbations, that is, 𝛿𝑃 ≈ 0, since
matter dominates over dark energy. However, at late times,
an evolving dark energy term is expected, since 𝜔 strongly
depends on the form of 𝑉 in terms of H. Hence, our model
reduces to a cosmological constant dark energy at early times,
and to a late time evolving dark energy.

5. Conclusions and Perspectives

In this work, we propose a quantum scaling relation, derived
fromblack hole physics.Wepostulate that our scaling relation
is able to describe the universe dynamics, by considering
prime principles only. In particular, it is possible to show that,
under the hypothesis that 𝑛 is not a integer number, but a
function of the apparent horizon of the universe, one infers
the Newtonian law, in agreement with the first principle of
thermodynamics. This is analogous to the Verlinde’s recipe
in which gravity appears as a derived effect. So that, by
extending this result to cosmological scales, one finds the
interesting fact that dark energy arises as an emerging
effect due to our scaling relation. In other words, from our
basic demands, it is easy to show that volume, force, and
thermodynamics functions can be reobtained in a simple
and compact picture. Our goal is to recover the holographic
principle, by postulating that 𝑛 ∝ R2, where R represents
the apparent horizon of the universe.The corresponding dark
energy model predicts an evolving equation of state at late
times, reducing to a cosmological constant at early times.
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Future efforts will be devoted to constrain the cosmological
model with current data and to extend the validity of our
scaling relation to different cosmological scales.
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In this paper, we study thermodynamics of cylindrically symmetric black holes and calculate the equation of states and heat
capacity of charged and rotating black strings. In the process, we treat the cosmological constant as a thermodynamic pressure
and its conjugate quantity as a thermodynamic volume. It is shown that, when taking the equivalence between the thermodynamic
quantities of black strings and the ones of general thermodynamic system, the isothermal compressibility and heat capacity of
black strings satisfy the stability conditions of thermodynamic equilibrium and no divergence points exist for heat capacity. Thus,
we obtain the conclusion that the thermodynamic system relevant to black strings is stable and there is no second-order phase
transition for AdS black holes in the cylindrically symmetric spacetime.

1. Introduction

Black hole physics, especially black hole thermodynamics,
refers to many fields such as theories of gravitation, statistical
physics, particle physics, and field theory, which makes the
profound and fundamental connection between the theories,
andmuch attention has been paid to the subject. It can be said
that black hole physics has become the laboratory of many
relevant theories. The pioneering works of Bekenstein and
Hawking have openedmany interesting aspects of unification
of quantum mechanics, gravity, and thermodynamics. These
are known for the last forty years [1–5]. The black hole
thermodynamics has the similar forms to the general ther-
modynamics, which attracted great attention. In particular
the case with negative cosmological constant (AdS case) has
concernedmany physicists [6–22]. Asymptotically, AdS black
hole spacetimes admit a gauge duality description and are
described by dual conformal field theory. Correspondingly,
one has a microscopic description of the underlying degrees
of freedomat hand.This duality has been recently exploited to
study the behavior of quark-gluon plasmas and for the qual-
itative description of various condensed matter phenomena
[12].

Recently, the studies on black hole thermodynamics in
spherically symmetric spacetime by considering cosmolog-
ical constant as the variable have got many attentions [12–
16, 23–25]. In the previous works on the AdS black hole,
cosmological constant corresponds to pressure in general
thermodynamic system, the relation is [12, 13, 15]

𝑃 = −
1

8𝜋
Λ =

3

8𝜋

1

𝑙2
, (1)

and the corresponding thermodynamic volume is

𝑉 = (
𝜕𝑀

𝜕𝑃
)

𝑆,𝑄𝑖 ,𝐽𝑘

. (2)

In [16], the relation between cosmological constant and
pressure is given in the higher dimensional AdS spherically
symmetric spacetime, which supplies the basis for the study
on the black hole thermodynamics in AdS spherically sym-
metric spacetime.

Theoretically, if we consider black holes in AdS spacetime
as a thermodynamic system, the critical behaviors and phase
transitions should also exist. Until now the statistical origin
of black hole thermodynamics is still unclear. Therefore,
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the search for the connection between kinds of thermo-
dynamic quantities in AdS spacetime is meaningful, which
may help to understand the entropy, temperature, and heat
capacity of black holes and to build the consistent theory for
black hole thermodynamics.

In this paper, we generalize the works of [12–19] and
research the charged and rotating cylindrically symmetric
spacetime. According to (1), we analyzed the thermodynamic
properties of charged and rotating black string, calculated the
heat capacity, and discussed the critical behaviors and phase
transition of black string.

2. Rotating Charged Black Strings

The asymptotically AdS solution of the Einstein-Maxwell
equations with cylindrical symmetry can be written as [26–
28]

𝑑𝑠
2
= −Ξ
2
(𝑓 (𝑟) −

𝑎
2
𝑟
2

Ξ2𝑙4
)𝑑𝑡
2
+

𝑑𝑟
2

𝑓 (𝑟)

− 2
𝑎Ξ𝑙

𝑟
(𝑏 −

𝑙

𝑟
𝜆
2
)𝑑𝑡 𝑑𝜙

+ [Ξ
2
𝑟
2
− 𝑎
2
𝑓 (𝑟)] 𝑑𝜙

2
+

𝑟
2

𝑙2
𝑑𝑧
2
,

𝐴
𝜇
= −Ξ

𝑙𝜆

𝑟
(𝛿
0

𝜇
−

𝑎

Ξ
𝛿
2

𝜇
) ,

(3)

where

𝑓 (𝑟) =
𝑟
2

𝑙2
−

𝑏𝑙

𝑟
+

𝜆
2
𝑙
2

𝑟2
, Ξ

2
= 1 +

𝑎
2

𝑙2
. (4)

𝑎, 𝑏, and 𝜆 are the constant parameters of the metric. The
entropy, mass, electric charge, and angular momentum per
unit length of black string are

𝑆 =
𝜋Ξ𝑟
2

+

2𝑙
, 𝑀 =

1

8
(3Ξ
2
− 1) 𝑏,

𝑄 =
Ξ𝜆

2
, 𝐽 =

3

8Ξ
𝑏𝑎,

(5)

where 𝑟
+
is the location of the event horizon of black hole,

which satisfies 𝑓(𝑟
+
) = 0. The Hawking temperature, angular

velocity, and electric potential of black string are

𝑇 =
3𝑟
4

+
− 𝜆
2
𝑙
4

4𝜋Ξ𝑙2𝑟3
+

, Ω
+
=

𝑎

Ξ𝑙2
, Φ =

𝜆𝑙

Ξ𝑟
+

. (6)

Expressing the mass per unit length of black string as the
function of entropy 𝑆, angular momentum 𝐽, electric charge

𝑄, and pressure𝑃 (cosmological constant 𝑙), from (4) and (5),
we have
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where 𝑌 = √16𝐽4𝑆2𝑙2𝜋6 + 81(𝑆2 + 𝑄2𝜋2𝑙2)
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From this we can get
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where 𝑌2 = −8𝐽
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𝑆𝑙𝜋
3
𝑌 + 81(𝑆

2
+ 𝑄
2
𝜋
2
𝑙
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4. From (9), we can

find that the thermodynamic quantities of black string satisfy
the first law of thermodynamics as

𝑑𝑀 = 𝑇𝑑𝑆 + Φ𝑑𝑄 + Ω𝑑𝐽 + 𝑉𝑑𝑃. (10)

From (10), one can deduce
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From (1), one can derive the corresponding “thermody-
namic” volume of black string as
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From (12), one can get
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Because of 𝑄 = 0, only the plus sign is kept, namely,
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From 𝐽 = (3/8)Ξ𝑏𝑎, we get
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3. Thermodynamics of Charged Black String

In this section, we discuss thermodynamics of static charged
black string. When 𝑎 = 0, Ξ = 1. From (12), one can get
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From this, we obtain
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𝑇,𝑄

< 0, the thermodynamic system is stable. When
𝑄 → 0, (𝜕𝑃/𝜕𝑉)

𝑇,𝑄
< 0, the thermodynamic system is

stable. Heat capacity at constant pressure is

𝐶
𝑃,𝑄

= 𝑇(
𝜕𝑆

𝜕𝑇
)

𝑃,𝑄

= 𝑇[
𝜋𝑟
+

3/4𝜋𝑙 + 3𝑙3𝑄2/𝜋𝑟4
+

] . (20)

According to (20), if 𝑇 > 0, namely, 3𝑟
+
/4𝑙
2
> 𝑄
2
𝑙
2
/𝑟
3

+
, 𝐶
𝑃,𝑄

will be greater than zero, which fulfills the stable condition
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Figure 1: Plots of the heat capacity at constant 𝑉 and 𝑄 versus the
𝑟
4

+
. The horizontal axis started from 4/3, because of 𝑇 > 0. The

intersection point of 𝐶
𝑉,𝑄

with the horizontal axis is 20/3, which
shows that when 𝑟

4

+
> (20/3)𝑄

2
𝑙
4 holds up, 𝐶

𝑉,𝑄
> 0.

of thermodynamic equilibrium.The heat capacity at constant
volume is

𝐶
𝑉,𝑄

= 𝑇(
𝜕𝑆

𝜕𝑇
)

𝑉,𝑄

= 𝑇((
𝜋𝑟
+

𝑙
(
3𝑟
5

+
+ 12𝑄

2
𝑙
4
𝑟
+

9𝑙𝑟4
+
+ 4𝑄2𝑙5

) −
𝜋𝑟
2

+

2𝑙2
)

× ((
3

4𝜋𝑙2
+

3𝑄
2
𝑙
2

𝜋𝑟4
+

) × (
3𝑟
5

+
+ 12𝑄

2
𝑙
4
𝑟
+

9𝑙𝑟4
+
+ 4𝑄2𝑙5

)

−(
3𝑟
+

2𝜋𝑙3
+

2𝑄
2
𝑙

𝜋𝑟3
+

))

−1

)

= 𝑇
10𝜋𝑄

2
𝑙
3
𝑟
2

+
− 3𝜋𝑟

6

+
/2𝑙

28𝑄4𝑙6/𝜋𝑟3
+
− 45𝑟5
+
/4𝜋𝑙2 − 6𝑄2𝑟

+
𝑙2/𝜋

= (
3𝑟
+

4𝑙2
−

𝑄
2
𝑙
2

𝑟3
+

)
10𝜋𝑄

2
𝑙
3
𝑟
2

+
− 3𝜋𝑟

6

+
/2𝑙

28𝑄4𝑙6/𝑟3
+
− 45𝑟5
+
/4𝑙2 − 6𝑄2𝑟

+
𝑙2
.

(21)

We can plot the curve of 𝐶
𝑉,𝑄

, which shows that only when
the condition 𝑟

4

+
> (20/3)𝑄

2
𝑙
4 holds up, 𝐶

𝑉,𝑄
> 0 will work.

See Figure 1.
From (20) and 𝑇 > 0, when 𝑟

4

+
> (4/3)𝑄

2
𝑙
4, 𝐶
𝑃,𝑄

will be greater than zero, which fulfills the stable condition
of thermodynamic equilibrium. When 𝑟

4

+
= (4/3)𝑄

2
𝑙
4,

the Hawking temperature of heat capacity is zero which
corresponds to the extreme case. However, for the 𝐶

𝑉,𝑄
only

the condition 𝑇 > 0 is not enough. One needs more strict
condition 𝑟

4

+
> (20/3)𝑄

2
𝑙
4, under which the 𝐶

𝑉,𝑄
is greater

than zero. This suggests that the thermodynamic system of
charged black strings does not have the first-order phase
transition only when 𝑟

4

+
> (20/3)𝑄

2
𝑙
4. On the other hand, the

second-order phase transition points of the thermodynamic
system of charged black strings turn up when heat capacities
diverge. In this charged black string spacetime, under the
given condition 𝑟

4

+
> (20/3)𝑄

2
𝑙
4, 𝐶
𝑉,𝑄

and 𝐶
𝑃,𝑄

are always

greater than zero, which suggests that the second-order phase
transition of black string will not happen. Whether the
phase transition exists when the condition breaks out will be
discussed later.

4. Thermodynamics of Rotating Black String

In this section, we discuss thermodynamics of stationary
rotating black string. When 𝑄 = 0, from (12) and (14), we
have

Ξ
2
=

2𝑙𝑉

𝜋𝑟3
+

, 𝑉(
2𝑙𝑉

𝜋𝑟3
+

− 1) =
32𝜋𝐽
2
𝑙
3

9𝑟3
+

,

𝑉 =
𝜋𝑟
3

+

4𝑙
+

𝜋

2

√
𝑟
6

+

4𝑙2
+

64𝐽
2
𝑙
2

9
,

(22)

𝑇 =
3𝑟
2

+√𝑟
+

4𝑙2√2𝜋𝑙𝑉
. (23)

From (22) and (23), we deduce

(
𝜕𝑙

𝜕𝑉
)

𝑇,𝐽

=
3 (20𝑙𝑉 − 8𝜋𝑟

3

+
) 𝑙

5𝜋 (9𝑉𝑟3
+
+ 32𝜋𝐽2𝑙3) − 30𝑙𝑉2

=
5𝑙𝑉 − 2𝜋𝑟

3

+

5𝑉
.

(24)

Thus,

(
𝜕𝑃

𝜕𝑉
)

𝑇,𝐽

=
3 (2𝜋𝑟

3

+
− 5𝑙𝑉)

20𝜋𝑙3𝑉
. (25)

From (22), we have 2𝑙𝑉 > 𝜋𝑟
3

+
, so (𝜕𝑃/𝜕𝑉)

𝑇,𝐽
< 0, which

satisfies the condition of thermodynamic equilibrium. We
can derive the heat capacities of rotating string at constant
pressure and constant volume as follows:

𝐶
𝑉,𝐽

= 𝑇(
𝜕𝑆

𝜕𝑇
)

𝑉,𝐽

= 𝑇((
1

6𝑟2
+
𝑉
(

𝜋𝑉

2𝑙𝑟
+

)

1/2

(
2𝑉
2

𝜋
−

32𝐽
2
𝑙
2

3
)

−
1

2𝑙
(
𝜋𝑉𝑟
+

2𝑙
)

1/2

)

× (
5

8𝑙2𝑉√2𝜋𝑙𝑉𝑟
+

(
2𝑉
2

𝜋
−

32𝐽
2
𝑙
2

3
)

−
15𝑟
5/2

+

8𝑙3√2𝜋𝑙𝑉
)

−1

)

= 𝑇
2𝜋𝑙𝑉√2𝜋𝑙𝑉𝑟

+

15𝑟3
+

=
𝜋

10

𝑉

𝑙
,
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𝐶
𝑃,𝐽

= 𝑇(
𝜕𝑆

𝜕𝑇
)

𝑃,𝐽

= 𝑇((
1

6𝑟2
+
𝑉
(

𝜋𝑉

2𝑙𝑟
+

)

1/2

(
4𝑙𝑉

𝜋
− 𝑟
3

+
) +

1

2
(
𝜋𝑟
+

2𝑙𝑉
)

1/2

)

×(
5

8𝑙2𝑉√2𝜋𝑙𝑉𝑟
+

(
4𝑙𝑉

𝜋
− 𝑟
3

+
)

−
3𝑟
5/2

+

8𝑙2𝑉√2𝜋𝑙𝑉
)

−1

)

=
1

2
(
𝜋𝑟
+
𝑉

2𝑙
)

1/2

(
2𝑙𝑉 − 𝜋𝑟

3

+

5𝑙𝑉 − 2𝜋𝑟3
+

) .

(26)

From (22), we have 𝑙𝑉 > 𝜋𝑟
3

+
/2, so 𝐶

𝑃,𝐽
> 0, which satisfies

the condition of thermodynamic equilibrium. The second-
order phase transition points of thermodynamic systems will
appear when heat capacities diverge. According to (26), the
heat capacities do not have divergent points; therefore, the
second-order phase transition of rotating black string also
cannot happen.

5. Thermodynamics of Charged and Rotating
Black String

In this section, we discuss thermodynamics of static charged
and rotating black string. The location 𝑟

+
of event horizon

satisfies

𝑟
2

+

𝑙2
−

𝑏𝑙

𝑟
+

+
𝜆
2
𝑙
2

𝑟2
+

= 0, (27)

where

𝑟
+
=

1

2
{𝛾
1/2

+ [−𝛾 + 2(𝛾
2
− 4𝜆
2
𝑙
4
)
1/2

]

1/2

} ,

𝛾 =
{

{

{

𝑏
2
𝑙
6

2
+ [(

𝑏
2
𝑙
6

2
)

2

+ (
4𝜆
2
𝑙
4

3
)

2

]

1/2

}

}

}

1/3

+
{

{

{

𝑏
2
𝑙
8

2
− [(

𝑏
2
𝑙
8

2
)

2

+ (
4𝜆
2
𝑙
4

3
)

2

]

1/2

}

}

}

1/3

.

(28)

For discussion purpose andwithout loss of generality, we take
𝑎(𝐽) and 𝑄 to be small quantities relative to 𝑀 or 𝑙 and 𝑟

+
,

namely, 𝑎2/𝑙2 ≪ 1, 𝑟2
+
≫ 𝑎
2. From (16), we have

𝐽 ≈
3

8
(
𝑟
3

+

𝑙3
+

4𝑄
2
𝑙

𝑟
+

)𝑎, (29)

and when 𝑄 is small

𝑎 ≈
8𝑙
3

3𝑟3
+

𝐽. (30)

From (12), we can get the approximate value of volume

𝑉 ≈
𝜋𝑟
3

+

2𝑙
−

2𝜋𝑄
2
𝑙
3

3𝑟
+

+
32𝜋𝑙
6

9𝑟6
+

𝐽
2
. (31)

According to (6), we can obtain the approximate Hawking
temperature

𝑇 ≈
3𝑟
+

4𝜋𝑙2
(1 −

32𝑙
4

𝑟6
+

𝐽
2
) −

𝑄
2
𝑙
2

𝜋𝑟3
+

. (32)

From this, we can deduce

(
𝜕𝑃

𝜕𝑉
)

𝑇,𝐽,𝑄

≈
3/4𝜋𝑙
2
+ 120𝑙

2
𝐽
2
/𝜋𝑟
6

+
+ 3𝑄
2
𝑙
2
/𝜋𝑟
4

+

16𝑙3𝐽2/𝑟6
+
− (15𝑟3

+
/8𝑙4 + 𝑄2/𝑟

+
+ 12𝐽2/𝑟3

+
)

×
3

4𝜋𝑙3
.

(33)

From (32), when requiring 𝑇 > 0, the following equation
should be satisfied:

3𝑟
+

4𝑙2
>

24𝑙
2
𝐽
2

𝑟5
+

+
𝑄
2
𝑙
2

𝑟3
+

. (34)

From (33), when

15𝑟
3

+

8𝑙4
>

16𝑙
3
𝐽
2

𝑟6
+

− (
12𝐽
2

𝑟3
+

+
𝑄
2

𝑟
+

) , (35)

we have (𝜕𝑃/𝜕𝑉)
𝑇,𝐽,𝑄

< 0, which satisfies the condition of
thermodynamic equilibrium. Substituting (34) into (33), we
can get 15𝑟3

+
/8𝑙
4
> 16𝑙
3
𝐽
2
/𝑟
6

+
− 3𝑟
3

+
/4𝑙
4, or

21𝑟
3

+

8𝑙4
>

16𝑙
3
𝐽
2

𝑟6
+

≈
9𝑎
2

4𝑙3
. (36)

From (28), one can deduce 𝑟
+
/𝑙 ∝ (4𝑀)

1/3
> 𝑎, 𝑟2

+
≫ 𝑎
2;

thus, (36) is satisfied.
In order to show the relation between 𝑃 and𝑉 clearly, we

plot the 𝑉-𝑃 curve. According to (1), (31), and (32), we can
depict the 𝑉-𝑃 curve of charged and rotating black strings
(Figure 2).

From this figure, we know that the𝑉-𝑃 curves of charged
and rotating black strings are smooth and continuous; there-
fore, under the condition of isothermality the first-order and
second-order phase transitions caused by the variation of
pressure or volume do not exist.

The approximate expression of entropy is

𝑆 =
𝜋Ξ𝑟
2

+

2𝑙
≈

𝜋𝑟
2

+

2𝑙
(1 +

𝑎
2

2𝑙2
) ≈

𝜋𝑟
2

+

2𝑙
(1 +

32𝑙
4

9𝑟6
+

𝐽
2
) . (37)
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Figure 2: Plots of the pressure 𝑃 versus the volume 𝑉. The curves
correspond to the parameters 𝑇 = 1, 𝐽 = 0.1, and 𝑄 = 0.0, 0.5, 1.0.
The three curves roughly coincide.

The heat capacity of charged and rotating black strings at
constant pressure and constant volume is

𝐶
𝑉,𝐽,𝑄

= 𝑇(
𝜕𝑆

𝜕𝑇
)

𝑉,𝐽,𝑄

≈ 𝑇((
5𝜋
2
𝑄
2
𝑙

3
−

𝜋
2
𝑟
4

+

𝑙3
−

22𝜋
2
𝑙
4
𝐽
2

3𝑟5
+

+
40𝜋
2
𝑙𝐽
2

9𝑟2
+

)

×(−
33𝑟
3

+

8𝑙4
−

𝑄
2

𝑟
+

+
16𝑙
3
𝐽
2

𝑟6
+

−
12𝐽
2

𝑟3
+

)

−1

) ,

𝐶
𝑃,𝐽,𝑄

= 𝑇(
𝜕𝑆

𝜕𝑇
)

𝑃,𝐽,𝑄

= 𝑇
𝜋𝑟
+
/𝑙 − (64𝜋𝑙

3
/9𝑟
5

+
) 𝐽
2

3/4𝜋𝑙2 + 120𝑙2𝐽2/𝜋𝑟6
+
+ 3𝑄2𝑙2/𝜋𝑟4

+

.

(38)

From (35), one can deduce𝜋2𝑟4
+
/𝑙
3
> 22𝑙
4
𝐽
2
/3𝑟
5

+
−(40𝑙𝐽

2
/9𝑟
2

+
+

5𝑄
2
𝑙/3), 33𝑟3

+
/8𝑙
4
> +16𝑙

3
𝐽
2
/𝑟
6

+
−(12𝐽

2
/𝑟
3

+
+𝑄
2
/𝑟
+
); therefore,

𝐶
𝑉,𝐽,𝑄

> 0, 𝐶
𝑃,𝐽,𝑄

> 0. (39)

Thuswe can consider the charged and rotating black strings as
a thermodynamic system and the system can satisfy the stable
conditions of equilibrium under the assumption of small 𝑎
and𝑄, because the second order phase transition points of the
thermodynamic system turn upwhen heat capacities diverge.
According to (39), the heat capacities are always greater than
zero, which suggests that the second-order phase transition
of black string will not happen when 𝑎 and 𝑄 are small
quantities.

6. Conclusion

In this paper, we study the thermodynamic properties of
charged and rotating black strings in cylindrically symmetric
AdS spacetime. Like the spherically symmetric case for the

charged and rotating black strings we take the cosmological
constant to correspond to the pressure in general thermody-
namic system. The relation is (1). We consider the identifica-
tion, because when solving Einstein equations the cosmolog-
ical constant 𝑙 is independent of the symmetry of spacetime
under consideration and the pressure in thermodynamic
system also has nothing to do with the surface morphology.
Thus the relation (1) should also be appropriate to the charged
and rotating cylindrically symmetric spacetime.

On the basis of (1), we analyze the corresponding ther-
modynamic quantities for charged and rotating black strings.
We find that, under some conditions, the heat capacities
are greater than zero and (𝜕𝑃/𝜕𝑉)

𝑇,𝐽,𝑄
< 0, which satisfy

the stable condition of thermodynamic equilibrium. Thus,
when the system is perturbed slightly and deviates from
equilibrium, some process will appear automatically and
makes the system restore equilibrium.

Compared with the works of [12–14], it is found that the
thermodynamic properties of black holes in spherically sym-
metric spacetime are different from the ones of black holes
in cylindrically symmetric spacetime, specially that the heat
capacities of black holes in cylindrically symmetric spacetime
do not have divergent points; thus, no second-order phase
transition occurs and no critical phenomena similar to Van
der Waals gas occur. At present, the problem cannot be
explained logically and it deserves further discussion.
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We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric
approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular,
for systems constrained by the vanishing of theHessian curvaturewewrite down the systems of partial differential equations. In such
a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives
of the isothermal coordinates.We conjecture that solutions on the characteristic circumference are of physical relevance, separating
them from those of puremathematical interest.We present the case of a one-parameter family of fundamental relations that—when
lying in the circumference—describe a polytropic fluid.

1. Introduction

The study of physical systems that admit a geometric descrip-
tion in terms of Riemannian manifolds is an interesting
and timely subject. Over the last few years, there have been
a number of efforts towards an integrated description of
thermodynamics in terms of Legendre invariant quantities. In
particular, analogously to the case of field theories, it has been
argued that the curvature of the appropriate manifold should
be linked to the notion of thermodynamic interaction [1].
There have been numerous proposals in this direction.On the
one hand, there are the conformally related metric theories
of Ruppeiner andWeinhold, where the metric takes the form
of a Hessian of the extensive parameters in the entropy and
energy representations, respectively [2, 3]. However, both fail
to comply with the spirit of the geometric construction of
field theories; that is, those are not invariant under the natural
set of transformations in thermodynamics. On the other
hand, the Geometrothermodynamics programme (GTD) has
successfully managed to provide us with a set of metrics

which are independent of the potential used [1] and the
fundamental representation one uses [4, 5]. Once the metric
parameters are fully specified the Riemannian manifold is
uniquely defined.

In theGTDprogramme one posits that the physical infor-
mation about a thermodynamic system cannot depend on
the potential used to describe it and that such information is
encoded in the curvature of the maximal integral manifold of
the Pfaffian system defining the first law of thermodynamics
(cf. (1)). We call such a manifold the space of equilibrium
states. The curvature of such manifold is obtained from the
first fundamental form, induced from a Legendre invariant
metric for the thermodynamic phase space [4]. In Section 2
we present a brief review of the programme; in particular, we
centre our attention on a metric whose curvature does not
depend on the fundamental representation.

Thus far, the GTD formalism has been applied to a num-
ber of thermodynamic systems in order to test the consistency
of the programme (e.g., ordinary thermodynamic systems
such as ideal gasses, van der Waals, Ising model [5], and
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black hole thermodynamics [6]) In this work, we take a
step forward and set ourselves to the task of finding those
systems which exhibit constant thermodynamic interaction.
That is, we will find the class of fundamental functions
producing a manifold of constant curvature. We will restrict
ourselves to the two-dimensional case; that is, we consider
only systems with two degrees of freedom.These systems are
interesting from the mathematical point of view since any
two-dimensional metric can be cast into a conformally flat
form.

The paper is organised as follows. In Section 2 we present
a brief account of theGeometrothermodynamics programme
and two-dimensional thermodynamic systems of constant
curvature. In Section 3 we analyse the system of partial differ-
ential equations to find the set of isothermal coordinates for
metrics with vanishing Hessian curvature. There we propose
a criterion to single out physical fundamental relations based
on a circumference-like equation in an abstract space related
to the system of differential equations for the isothermal
coordinates. To close this section we present an example
illustrating these matters. Finally, in Section 4 we present
a summary of the results and address future work on the
subject.

2. Two-Dimensional Thermodynamic Systems
of Constant Curvature

The GTD programme promotes the natural formalism of
thermodynamics in terms of contact manifolds to a Legendre
invariant Riemannian structure. Let us begin with a brief
review of the programme by considering the case of two
thermodynamic degrees of freedom. In this case, we need a
five-dimensionalmanifold which admits a set of local coordi-
nates corresponding to the collection of extensive and inten-
sive variables—denoted by 𝑞

𝑖 and 𝑝
𝑖
, respectively—together

with the thermodynamic potential, Φ, such that the kernel of
the 1-form

Θ = dΦ − 𝑝
1
d𝑞
1
− 𝑝
2
d𝑞
2 (1)

generates a maximally nonintegrable set of hyperplanes, 𝜉 ⊂

𝑇T. A manifold T together with the 1-form Θ is called a
contact manifold. In the present case we refer to it as the
thermodynamic phasespace. Of special interest is themaximal
integral submanifold,E ⊂ T, that is, the largest sub-manifold
which can be embedded in T such that 𝑇E ⊂ 𝜉. It is easy to
see that this is a two-dimensionalmanifold defined by the first
law of thermodynamics

dΦ = 𝑝
1
d𝑞
1
+ 𝑝
2
d𝑞
2
,

whereΦ = Φ (𝑞
1
, 𝑞
2
) , 𝑝

𝑖
=

𝜕Φ

𝜕𝑞
𝑖

≡ Φ
,𝑖
.

(2)

Thus, we see that if we know the fundamental function Φ =

Φ(𝑞
1
, 𝑞
2
), then we know how E is embedded in T. We call

the sub-manifold E the space of equilibrium states.
In addition, the GTD programme introduces a metric

structure for the thermodynamic phase space. Such a struc-
ture is constructed in order to satisfy the criterion of Legendre

invariance; that is, Legendre transformations correspond to
isometries. Within the GTD programme there have been
two distinct classes of metrics which have been studied
according to their invariance properties, those which are
invariant under every possible Legendre transformation and
those which are only invariant under total Legendre transfor-
mations. The metric structure of T induces a Riemannian
metric on E, its first fundamental form, whose intrinsic
curvature is associated with the thermodynamic interaction
of the system. In our two-dimensional scenario, this whole
information is contained in the curvature scalar of E.

If the curvature of the space of equilibrium states is to
give a faithful account of the thermodynamic interaction,
it should not depend on the choice of fundamental rep-
resentation; that is, one is free to work in the energy or
entropy representation indistinctly. It has been shown that
themetric compatible with both Legendre and representation
invariance is

𝐺
♮
= Θ ⊗ Θ +

1

𝑞
2
𝑝
2

(d𝑞
1
⊗ d𝑝
1
+ d𝑞
2
⊗ d𝑝
2
) . (3)

Thus, the induced metric on E is simply given by

𝑔
♮
= Ω (𝑞

1
, 𝑞
2
) ℎ. (4)

Here ℎ is the Hessian metric

ℎ = Φ
,11
d𝑞
1
⊗ d𝑞
1

+ (Φ
,12

+ Φ
,21

) d𝑞
1
⊗ d𝑞
2
+ Φ
,22
d𝑞
2
⊗ d𝑞
2
,

(5)

where we have used a coma to denote partial differentia-
tion with respect to the corresponding coordinate function
of E and the conformal factor is given by

Ω(𝑞
1
, 𝑞
2
) =

1

𝑞
2
Φ
,2

. (6)

The interested reader in the derivation of the metric (4)
is referred to [4] and to [5] for applications to ordinary
thermodynamic systems.

Note that the components of the metric (4) depend on
the second derivatives of the fundamental function Φ but
are otherwise unspecified. It is an interesting exercise to
find a class of fundamental functions for which the space of
equilibrium states E becomes an Einstein manifold for the
metric (4). That is, we look for solutions of the system

𝑅
♮

𝑎𝑏
= 𝐾𝑔
♮

𝑎𝑏
, (7)

where 𝑅
♮

𝑎𝑏
is the Ricci tensor associated with 𝑔

♮ and 𝐾 is
a constant, which in the present case corresponds to the
Gaussian curvature of E.

It is worth noting that (7) represents a system of three,
third order, nonlinear partial differential equations for the
thermodynamic potential Φ. Indeed, it is straightforward to
show that in two dimensions, the fourth order terms in the
curvature exactly cancel whenever the metric is the Hessian
of a scalar function.
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We can reduce the system (7) by raising one of the indexes
to obtain

𝑅
♮𝑏

𝑎
= 𝐾𝛿
𝑏

𝑎
. (8)

Thus, the system reduces to the single PDE

𝐹 (Φ
,𝑖
, Φ
,𝑖𝑗
, Φ
,𝑖𝑗𝑗

, Φ
,𝑖𝑖𝑖

) = 4𝐾
𝜌
2

Ω5 (𝑞
1
, 𝑞
2
)

with 𝑖, 𝑗 = 1, 2.

(9)

Here 𝜌 is the determinant of the metric (4) given by the
expression

𝜌 = Ω
2
(𝑞
1
, 𝑞
2
) (Φ
,11

Φ
,22

− Φ
2

,12
) , (10)

and the lhs of (9) is

𝐹 (Φ
,𝑖
, Φ
,𝑖𝑗
, Φ
,𝑖𝑗𝑗

, Φ
,𝑖𝑖𝑖

)

= Φ
2

,2
(𝐴Φ
2

,11
+ 𝐵Φ
,11

− 2𝑞
2
Φ
,211

Φ
2

,12
+ 𝐶Φ
,12

+ 𝐷Φ
,22

)

+ Φ
,2
(𝑞
2

2
Φ
,22

Φ
,222

Φ
2

,11
+ 𝐸Φ
,11

+ 2𝑞
2

2
Φ
3

,12
Φ
,221

−𝑞
2

2
Φ
2

,12
Φ
,22

Φ
,211

)

− 2𝑞
2

2
𝜌Ω
−2

(Φ
2

,22
Φ
,11

− Φ
2

,12
Φ
,22

) ,

(11)

where

𝐴 = −𝑞
2
Φ
,222

− 2Φ
,22

,

𝐵 = 2Φ
2

,12
+ 3𝑞
2
Φ
,12

Φ
,221

− 𝑞
2
Φ
,211

Φ
,22

+ 𝑞
2

2
Φ
2

,221
− 𝑞
2

2
Φ
,222

Φ
,211

,

𝐶 = −𝑞
2

2
Φ
,221

Φ
,211

+ 𝑞
2

2
Φ
,111

Φ
,222

+ 𝑞
2
Φ
,22

Φ
,111

,

𝐷 = −𝑞
2

2
Φ
,111

Φ
,221

+ 𝑞
2

2
Φ
2

211
,

𝐸 = −2𝑞
2

2
Φ
,22

Φ
,12

Φ
,221

− 𝑞
2

2
Φ
2

,12
Φ
,222

+ 𝑞
2

2
Φ
2

,22
Φ
,211

.

(12)

Motivated by the results of a previous work by the authors
(c.f. Section III.D in [5, 7]), we know that a solution to (8) is
given by the fundamental relation

Φ = Φ
0
log (𝑞

𝛼

1
+ 𝑐𝑞
𝛼

2
) . (13)

Since we are working in two dimensions, the Gaussian
and scalar curvature are proportional and we see that the
constancy of 𝐾 is satisfied and has the value

𝐾 = −
1

4

𝛼
2

𝛼 − 1
. (14)

Thus, we can propose a general solution of the form

Φ = 𝑓 (𝜉𝑞
1
+ 𝜒𝑞
2
) . (15)

Here 𝑓 is a sufficiently differentiable function of the sum of
the extensive parameters, where 𝜉 and 𝜒 are constants. This

type of ansatz does solve (11). However, a quick inspection
to the metric determinant reveals the degeneracy of this case
(c.f. (17), below). Therefore, let us propose the more general
solution

Φ = 𝑓 (𝜉𝑞
𝛼

1
+ 𝜒𝑞
𝛼

2
) , (16)

where 𝛼 is a constant different from one hence the case of
the dark fluid cannot be analysed with this metric. Now, the
metric determinant is in general different from zero and has
the form

𝜌 =
𝑎 − 1

𝜒𝑞
2+𝑎

2
𝑞2
1
𝑓

[𝑓

+ 𝜉𝑎𝑞
𝑎

1
(𝜉𝑞
𝛼

1
+ 𝜒𝑞
𝛼

2
) 𝑓

] , (17)

where 𝑓
 and 𝑓

 are the first and second total derivatives of
the fundamental relation (16) evaluated at (𝜉𝑞

𝛼

1
+ 𝜒𝑞
𝛼

2
). Now

we can clearly see the degeneracy for 𝛼 = 1.
Substituting our ansatz (16) into (8) we obtain again the

same result as in the case of (13), that is, the Gaussian cur-
vature is the same constant, (14); regardless of the particular
form of the function 𝑓 as long as the argument is (𝜉𝑞

𝛼

1
+

𝜒𝑞
𝛼

2
). Therefore, the generalised Chaplygin gas, (13), belongs

to a class of thermodynamic systems with the same type of
interaction given by (16). Moreover, the Hessian metric for
the logarithmic form of this type of fundamental relation
has vanishing curvature. In this case it becomes a simpler
problem to find the set of isothermal coordinates for the space
of equilibrium states.

3. Isothermal Coordinates

It is a well-known result that every two-dimensional Rieman-
nian manifold is conformally flat. That is, we can always find
a set of coordinates for which the metric takes the form

𝑔 = Ω̃
2
(𝑥, 𝑦) 𝑔

♭
, where 𝑔

♭
= d𝑥 ⊗ d𝑥 + d𝑦 ⊗ d𝑦. (18)

Such a coordinate system is called isothermal. In this section
we find the isothermal coordinates for the space of equi-
librium states (E, 𝑔

♮
) under the assumption of the Hessian

flatness, that is, by demanding that the curvature scalar of the
Hessian part of the metric (4) vanishes.

Let us consider the diffeomorphism 𝜑 : E → E
accounting for the change of coordinates 𝑥 = 𝑥(𝑞

1
, 𝑞
2
) and

𝑦 = 𝑦(𝑞
1
, 𝑞
2
). Then we can pull back the metric 𝑔

♭ (c.f. (18))
and solve the equation

𝜑
∗
𝑔
♭
− ℎ = 0 (19)

for the coordinate functions 𝑥, 𝑦 and the thermodynamic
potential Φ. This will provide us thermodynamic fundamen-
tal relations with zero Hessian curvature together with their
isothermal coordinates. Equation (19) above corresponds to
the system of equations

𝑥
2

,1
+ 𝑦
2

,1
= Φ
,11

,

𝑥
,1
𝑥
,2
+ 𝑦
,1
𝑦
,2

= Φ
,12

,

𝑥
2

,2
+ 𝑦
2

,2
= Φ
,22

.

(20)
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There is a large family of solutions for such a system. In
particular, for separable fundamental relations,

Φ = 𝑆 (𝑞
1
) + 𝑇 (𝑞

2
) , (21)

we have that the change of coordinates is given by

𝑥 = ∫√(1 − 𝑐2) 𝑆d𝑞
1
+ 𝑐∫√ ̈𝑇d𝑞

2
,

𝑦 = ∫√(1 − 𝑐2) ̈𝑇d𝑞
2
− 𝑐∫√𝑆 d𝑞

1
,

(22)

where 𝑐 is a constant and the primes and dots denote differ-
entiation with respect to 𝑞

1
and 𝑞

2
, respectively.

A more general solution is given by those fundamental
functions satisfying the third order system of PDE’s

Φ
,211

=
Φ
,222

Φ
2

,12

Φ2
,22

, Φ
,1,22

=
Φ
,222

Φ
1,2

Φ
22

. (23)

In this case, the isothermal coordinates must satisfy the
system

𝑥
2

,1
=

1

Φ
,22

(2Φ
,12

𝑥
,1
𝑥
,2
+ Φ
,11

Φ
,22

− 𝑥
2

,2
Φ
,11

− Φ
2

,12
) , (24)

𝑥
,22

=
1

2

Φ
,222

𝑥
,2

Φ
,22

, (25)

𝑦 = ∫√Φ
,22

− 𝑥2
,2
d𝑞
2
+

1

2
∫

1

√Φ
,22

− 𝑥2
,2

×
[
[

[

√Φ
,22

− 𝑥2
,2
∫

2𝑥
,2
𝑥
,12

− Φ
,221

√Φ
,22

− 𝑥2
,2

d𝑞
2

−2𝑥
,1
𝑥
,2
+ 2Φ
,12

]
]

]

d𝑞
1
.

(26)

One can verify that a fundamental relation of the form
(15) is a solution of (23). We have seen that this type of
functions generates degenerate Hessian metrics. However,
we can use them to learn some properties about the space
of solutions of the system (20). For example, consider the
fundamental relations given by

Φ = log (𝜉𝑞
1
+ 𝜒𝑞
2
) . (27)

In this case we can solve the pair of equations for 𝑥, that is,
(24), and (25) to obtain

𝑥 = 𝑐 log(𝑞
2
+

𝜉

𝜒
𝑞
1
) , (28)

and substitution in (26) yields

𝑦 = √− (1 + 𝑐2) log (𝜉𝑞
1
+ 𝜒𝑞
2
) . (29)

Thus we see that, indeed, this type of fundamental relation
fails to produce a real change of coordinates satisfying (19).
Moreover, note that we can find particular solutions to the
system (20) if we restrict ourselves to a circumference in an
abstract 𝑋𝑌 plane. Thus, we have

𝑋
2
+ 𝑌
2
= 𝑅
2
, (30)

where

𝑋
2
= (𝑥
,1
+ 𝑥
,2
)
2

,

𝑌
2
= (𝑦
,1
+ 𝑦
,2
)
2

,

𝑅
2
= Φ
,11

+ 2Φ
,12

+ Φ
,22

.

(31)

From this point of view, we observe that the fundamental
relation (27) corresponds to an “imaginary” radius of the
circumference (30); that is

𝑅
2
= −

(𝜉 + 𝜒)
2

(𝜉𝑞
1
+ 𝜒𝑞
2
)
2
. (32)

This is not surprising since we knew that the Hessian
corresponding to this fundamental relation is degenerate and
thus the system is not well posed except for the case 𝜉 = −𝜒 =

1, for which 𝑅 = 0.
We can use this geometric construction to probe the space

of solutions for a fixed fundamental relation by noting that
a solution to the system (20) must lie on the circumference
associated with the particular fundamental relation we use
(c.f. (32)), but not every solution lying on the circumference
solves the system we are probing.

Example 1. To see how this construction works, let us
choose a family of fundamental relations in the form of (13)
parametrised by the exponent 𝛼. We work in the entropy
representation using molar quantities. Thus we set by 𝑞

1
=

𝑢 the specific energy and 𝑞
2
= V is the specific volume. The

fundamental relation is written as

𝑠
𝛼
= log (𝑢

𝛼
+ V𝛼) . (33)

Each of these functions defines a Hessian metric of zero
curvature and a natural metric of constant thermodynamic
interaction (c.f. (14)). The change to isothermal coordinates
for this type of functions cannot be expressed analytically.
However, we can use the circumference to classify the various
types of differential equations obtained for each value of 𝛼.

The squared radii of the circles associated with each
function are given by

𝑅
2

𝛼
= −

𝛼

𝑢2V2 (𝑢𝛼 + V𝛼)

× [𝑢
2𝛼V2 − V𝛼𝑢𝛼

× ((𝛼 − 1) 𝑢
2
− 2𝛼𝑢V + V2 (𝛼 − 1)) + V2𝛼𝑢2] .

(34)
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Figure 1:The three qualitatively different types of radial functions.The horizontal axis corresponds to the energy, while the vertical represents
the radius of the circumference. We observe that only the curves corresponding to negative values of the exponent 𝛼 are positive definite in
the full physical domain, that is, positive values of energy and volume.

Thus, fixing the volume of the system, we find the subset
of fundamental functions for which the PDE represented by
the circumference (30) is well defined.The three qualitatively
different types of behaviour are depicted in Figure 1. It is
easy to observe that for 𝛼 > 0, even in the case when 𝛼 <

1 (c.f. Figure 2), the PDE is ill defined; thus, only fundamental
relations for which 𝛼 < 0 are meaningful. This corresponds
to a positive thermodynamic curvature as can be seen from
(14). Furthermore, noticing the symmetry of 𝑢 and V in the
expression for the circumference radius (34), it is easy
to observe that the PDE also restrict the domain of the
thermodynamic variables to 𝑢, V > 0. The fundamental
relationwith 𝛼 < 0 describes a polytropic fluidwith equation
of state given by

𝑃 = 𝜌
1−𝛼

, (35)

where 𝜌 = 𝑢/V is the energy density of the fluid. It is a simple
task to obtain the heat capacity at constant volume for these
systems

𝑐V =
𝑎𝑢
𝛼

𝑢𝛼 + (1 − 𝛼) V𝛼
. (36)

From this expression we observe that the heat capacity
remains finite for any value of the thermodynamic variables
and is always negative whenever 𝛼 < 0.

4. Closing Remarks

In this paper we studied two-dimensional Einstein man-
ifolds for the Geometrothermodynamics programme. We
found the differential equation that must be satisfied by the
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Figure 2: These plots correspond to the radial function for −1 ≤ 𝛼 ≤ 1. We observe that only those values of 𝛼 < 0 can be associated with
physical systems.

fundamental relation in order to describe a system with
constant thermodynamic interaction, that is, a fundamental
relation producing a representation invariant metric whose
associated curvature is constant. In particular, building on
previous work (c.f. [5]) we analysed the one-parameter family
of fundamental relations given by (16).

Noting the conformal structure of 𝑔♮ (see (4)), we centre
our study in the class of functions whose associated Hessian
metric has vanishing curvature. With this assumption, we
set up the system of differential equations defining the set of
isothermal coordinates. As expected, we found an analytic
expression for the change of coordinates for the case in
which the fundamental function is separable. An interesting
exercise allowed us to explore some properties of the space
of solutions of (19), that is, the set of isothermal coordinates
with their corresponding fundamental relation of vanishing
Hessian curvature.

Observing the algebraic structure of the system (20),
we note that there will be a class of fundamental relations
satisfying the Hessian curvature constraint for which we can
build a characteristic circumference onwhich the solutions of
the PDE system lie.This can be donewhenever the derivatives
of the fundamental relation define a positive squared radial
function. Moreover, we conjecture that only the set of fun-
damental relations for which such a construction is possible
can describe physical systems of constant thermodynamic
interaction. In particular, we work out the example given
by (13). Here, we work in specific thermodynamic variables
in the entropy representation of a system characterised by
the exponent 𝛼. Indeed, only those systems for which 𝛼 <

0 correspond to a polytropic fundamental relation.
In sum, we have analysed a particular class of funda-

mental relations of constant thermodynamic curvature. It
remains to explore the larger class of functions within the
set of solutions of (19) and study their thermodynamic
implications. This will be done in a forthcoming article.
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We first reviewWeinhold information geometry and Ruppeiner information geometry of 3D charged-dilaton black hole. Then, we
use the Legendre invariant to introduce a 2-dimensional thermodynamic metric in the space of equilibrium states, which becomes
singular at those points. According to the analysis of the heat capacities, these points are the places where phase transitions occur.
This result is valid for the black hole, therefore, provides a geometrothermodynamics description of black hole phase transitions in
terms of curvature singularities.

1. Introduction

Since Ferrara et al. [1] investigated the critical points of mod-
uli space by usingWeinholdmetric andRuppeinermetric; the
black hole thermodynamic in geometry framework becomes
a hot spot of theoretical physics.

It is well known that an equilibrium thermodynamic
system poses interesting geometric features. An interesting
inner product on the equilibrium thermodynamic state space
in the energy representation was provided by Weinhold as
the Hessian matrix of the internal energy 𝑈 with respect to
the extensive thermodynamic variables𝑁𝑎, namely, [2] 𝑔𝑊

𝑖𝑗
=

𝜕
𝑖
𝜕
𝑗
𝑀(𝑈,𝑁

𝑎
). However, there was no physical interpretation

associated with this metric structure. As a modification,
Ruppeiner introduced Riemannian metric into thermody-
namic system once more and defended it as the second
derivative of entropy 𝑆 (here, entropy is a function of
internal energy 𝑈 and its extensive variables 𝑁𝑎) [3] 𝑔𝑅

𝑖𝑗
=

− 𝜕
𝑖
𝜕
𝑗
𝑆(𝑈,𝑁

𝑎
). An interesting phenomenon is that these two

metrics are conformally related, that is, 𝑔𝑊
𝑖𝑗

= 𝑇𝑔
𝑅

𝑖𝑗
, and the

conformal factor is the temperature, 𝑇 = 𝜕𝑀/𝜕𝑆. It has
been applied to all kinds of thermodynamic models, for
example, the ideal gas, the van der Waals gas, and the two-
dimensional Fermi gas et al. Studies showed that Ruppeiner

geometry can overcome the covariant and self-consistent
problemof general thermodynamics. Based on theRuppeiner
and Weinhold metrics, consideration of different black hole
families under various assumptions has led to numerous
puzzling results for both metrics [4–13]. So it is then natural
to try to describe the phase transitions of black holes in
terms of curvature singularities in the space of equilibrium
states. Unfortunately, the obtained results, at least some, are
contradictory. For instance, for Reissner-Nordström black
hole, the Ruppeiner metric is flat [14], whereas the Wein-
hold metric presents a curvature singularity. Similarly, the
3D charged-dilaton black hole also showed similar result
[15]. Nevertheless, a simple change of the thermodynamic
potential [16] affects Ruppeiner’s geometry in such a way
that the resulting curvature singularity now corresponds to
a phase transition. A dimensional reduction of Ruppeiner’s
curvature seems to affect its properties too [17]. However, it is
well known that ordinary thermodynamics does not depend
on the thermodynamic potential.

Recently, Quevedo [18] proposed a formalism of geom-
etrothermodynamics (GTDs) as a geometric approach that
incorporates Legendre invariance in a natural way and allows
us to derive Legendre invariant metrics in the space of
equilibrium states. Since Weinhold and Ruppeiner metrics
are not Legendre invariant, one of the first results in the
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context of GTDwas the derivation of simple Legendre invari-
ant generalizations of these metrics and their application to
black hole thermodynamics [19–26]. These results end the
controversy regarding the application of geometric structures
in black hole thermodynamics. The phase transition struc-
ture contained in the heat capacity of black holes becomes
completely integrated in the scalar curvature of the Legendre
invariant metric so that a curvature singularity corresponds
to a phase transition.

In this paper, we first review Weinhold information ge-
ometry and Ruppeiner information geometry of 3D charged-
dilaton black hole. Then, based on our previous work,
the thermodynamics scalar curvature of the black hole is
described. We explored the geometrothermodynamics of 3D
charged-dilaton black hole.

The organization of this paper is outlined as follows. In
Section 2, we review Weinhold information geometry and
Ruppeiner information geometry of the 3D charged-dilaton
black hole. Then, in Section 3, geometrothermodynamics of
the charged black hole ise described. Finally, some discus-
sions and conclusions are given in Section 4.Throughout the
paper, the units (𝐺 = 𝑐 = ℎ = 1) are used.

2. Information Geometry Description of
3D Charged-Dilaton Black Hole

Let us first review Weinhold information geometry and
Ruppeiner information geometry of the 3D charged-dilaton
black hole.

The starting action with the dilaton field 𝜙 is given by [27]

𝑆 = ∫𝑑
3
𝑥√−𝑔 [𝑅 + 2𝑒

4𝜙
Λ + 4(∇𝜙)

2

− 𝑒
−4𝜙

𝐹
𝜇]𝐹
𝜇]
] . (1)

The cosmology constant Λ > 0 for anti-de Sitter space-time.
This action is conformably related to the low-energy string
action black hole that is given by

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+

4𝑟
2

𝛾4𝑓 (𝑟)
𝑑𝑟
2
+ 𝑟
2
𝑑
2
𝜑,

𝜙 =
1

4
ln [ 𝑟

𝛾2
] ; 𝐹

𝑟𝑡
=
𝑄

𝑟2
,

(2)

where the metric function 𝑓(𝑟) = −2𝑀𝑟 + 8Λ𝑟
2
+ 8𝑄
2 and

an integration constant 𝛾 with dimension [𝐿]
1/2 is necessary

to have correct dimensions.
In our previous work, the mass and electric charge of the

3D charged-dilaton black hole have been expressed in terms
of the inner and outer horizons as [15]

𝑀 = 4Λ (𝑟
+
+ 𝑟
−
) , 𝑄

2
= Λ𝑟
+
𝑟
−
, (3)

and, the electric potential is given by

Φ = (
𝜕𝑀

𝜕𝑄
)

𝑆

=
8𝑄

𝑟
+

. (4)

According to the energy conservation law,

𝑑𝑀 = 𝑇𝑑𝑆 + Φ𝑑𝑄. (5)

The temperature is

𝑇 = (
𝜕𝑀

𝜕𝑆
)

𝑄

=
2Λ

𝑟2
+

(𝑟
+
− 𝑟
−
) . (6)

By using the area law, the entropy of the black hole is given by

𝑆 =
𝑘
𝐵

4
𝐴 = 𝑘

𝐵
𝜋𝑟
2

+
= 𝑟
2

+
, (7)

with 𝑘
𝐵
Boltzmann’s constant, and 𝑘

𝐵
= 1/𝜋. In its natural

coordinates, theWeinhold metric can be obtained as follows:

𝑑𝑠
2

𝑊
=

1

𝑟3
+

(
3𝑄
2

𝑟2
+

− Λ)𝑑𝑆
2
− 8𝑄𝑑𝑆 𝑑𝑄 + 𝑟

2

+
𝑑𝑄
2
, (8)

where the index 𝑊 denotes the Weinhold information
geometry. Here, we have made the choice that the mass 𝑀
corresponds to the thermodynamic potential; entropy 𝑆 and
charge 𝑄 correspond to the extensive variables, from which
it can be shown that the Weinhold scalar curvature in the
entropy representation becomes

R
𝑊
= −

𝑟
+

4Λ(𝑟
+
− 𝑟
−
)
2
. (9)

We see that the curvatureR
𝑊
naively diverges at the extreme

limit of the black hole, where 𝑟
+

= 𝑟
−
, which is of less

interest physically since at the extreme limit, the Hawking
temperature vanishes, and the thermodynamics description
breaks down as mentioned above. We interpret this result
as an indication of the limit of applicability of geometric
thermodynamics as a geometric model for equilibrium ther-
modynamics.

By using the coordinate transformation 𝑢 = 𝑄/𝑟
+
[14, 15],

we obtain the diagonalized Ruppeiner metric for the 3D
charged-dilaton black hole as follows:

𝑑𝑠
2

𝑅
=

1

𝑇
𝑑𝑠
2

𝑊
= −

1

2𝑆
𝑑𝑆
2
+

4𝑆

Λ − 𝑢
𝑑𝑢
2
. (10)

Let us do a new transformation as follows:

𝜏 = √2𝑆, √Λ sin( 𝜎

√2
) = 𝑢. (11)

Then, the Ruppeiner metric can be written in the above
Rindler coordinates as

𝑑𝑠
2

𝑅
= −𝑑𝜏 + 𝜏

2
𝑑𝜎
2
. (12)

Obviously, this is a flat metric; its curvature is zero. The
vanished thermodynamic curvature implies that no phase
transition points exist and no thermodynamic interactions
appear. This result implies that the Ruppeiner curvature
cannot describe the phase transitions of the black hole either.

3. Geometrothermodynamics Description of
3D Charged-Dilaton Black Hole

In this section, we turn to use the recent geometric formula-
tion of extended thermodynamic behavior of the 3D charged-
dilaton black hole.
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The formulation of GTD is based on the use of contact
geometry as a framework for thermodynamics [18]. Consider
the (2𝑛 + 1)-dimensional thermodynamic phase space I
coordinated by the thermodynamic potential Φ, extensive
variables 𝐸

𝑎, and intensive variables 𝐼
𝑎
(𝑎 = 1, . . . , 𝑛).

Consider on I a nondegenerate metric 𝐺 = 𝐺(𝑍
𝐴
), with

𝑍
𝐴
= {Φ, 𝐸

𝑎
, 𝐼
𝑎
}, and the Gibbs1-form Θ = 𝑑Φ − 𝛿

𝑎𝑏
𝐼
𝑎
𝑑𝐸
𝑏,

with 𝛿
𝑎𝑏

= diag(1, 1, . . . , 1). The set (I, Θ, 𝐺) defines a
contact Riemannian manifold if the condition Θ ∧ (𝑑Θ)

𝑛
̸= 0

is satisfied. Moreover, the metric 𝐺 is Legendre invariant
if its functional dependence on 𝑍

𝐴 does not change under
a Legendre transformation. The Gibbs 1g-form Θ is also
invariant with respect to Legendre transformations. Legendre
invariance guarantees that the geometric properties of 𝐺
do not depend on the thermodynamic potential used in its
construction.

The thermodynamic phase space I which in the case
of the 3D charged-dilaton black hole can be defined as a 4-
dimensional space with coordinates 𝑍𝐴 = {𝑀, 𝑆, 𝑇, 𝑄}, 𝐴 =

0, . . . , 4. Equation (3) represents the fundamental relationship
𝑀 = (𝑆, 𝑄) from which all the thermodynamic information
can be obtained; therefore, we would like to consider a 5-
dimensional phase space I with coordinates (𝑀, 𝑆, 𝑇, 𝑄,Φ),
a contact one-form

Θ = 𝑑𝑀 − 𝑇𝑑𝑆 − Φ𝑑𝑄, (13)
and an invariant metric

𝐺 = (𝑑𝑀 − 𝑇𝑑𝑆 − Φ𝑑𝑄)
2
+ (𝑇𝑆 + Φ𝑄) (−𝑑𝑇𝑑𝑆 + 𝑑Φ𝑑𝑄) .

(14)
The triplet (I, Θ, 𝐺) defines a contact Riemannian mani-

fold that plays an auxiliary role in GTD. It is used to properly
handle the invariance with respect to Legendre transfor-
mations. In fact, for the charged black hole, a Legendre
transformation involves in general all the thermodynamic
variables𝑀, 𝑆, 𝑄, 𝑇, andΦ so that they must be independent
from each other as they are in the phase space. We introduce
also the geometric structure of the space of equilibrium states
𝜀 in the following manner: 𝜀 is a 2-dimensional submanifold
ofI that is defined by the smooth embeddingmap𝜑 : 𝜀 → I,
satisfying the condition that the “projection” of the contact
form Θ on 𝜀 vanishes, namely, 𝜑∗(Θ) = 0, where 𝜑∗ is the
pullback of 𝜑, and that𝐺 induces a Legendre invariant metric
𝑔 on 𝜀 by means of 𝜀. In principle, any 2-dimensional subset
of the set of coordinates of I can be used to label 𝜀. For the
sake of simplicity, we will use the set of extensive variables
𝑆 and 𝑄 which in ordinary thermodynamics corresponds to
the energy representation.Then, the embedding map for this
specific choice is

𝜑 : {𝑆, 𝑄} → {𝑀(𝑆, 𝑄) , 𝑆, 𝑄,
𝜕𝑀

𝜕𝑆
,
𝜕𝑀

𝜕𝑄
} . (15)

The condition 𝜑
∗
(Θ) = 0 is equivalent to (5) (the

first law of thermodynamics) and (4), (6) (the conditions of
thermodynamic equilibrium); the inducedmetric is obtained
as follows:

𝑔 = (𝑆
𝜕𝑀

𝜕𝑆
+ 𝑄

𝜕𝑀

𝜕𝑄
)(−

𝜕
2
𝑀

𝜕𝑆2
𝑑𝑆
2
+
𝜕
2
𝑀

𝜕𝑄2
𝑑𝑄
2
) . (16)

This metric determines all the geometric properties of the
equilibrium space 𝜀. We see that in order to obtain the
explicit form of the metric, it is only necessary to specify the
thermodynamic potential 𝑀 as a function of 𝑆 and 𝑄. In
ordinary thermodynamics, this function is usually referred
to as the fundamental equation from which all the equations
of state can be derived. From (3), the fundamental equation
𝑀 = 𝑀(𝑆, 𝑄) is given by

𝑀(𝑆,𝑄) = 4Λ√𝑆(1 +
𝑄
2

Λ𝑆
) . (17)

The first-order and the second-order partial differentials can
be expressed, respectively, as

𝜕𝑀

𝜕𝑆
=

2

𝑟
+

(Λ −
𝑄
2

𝑟2
+

) ,
𝜕𝑀

𝜕𝑄
=
8𝑄

𝑟
+

,

𝜕
2
𝑀

𝜕𝑆2
= −

1

𝑟3
+

(Λ −
3𝑄
2

𝑟2
+

) ,
𝜕
2
𝑀

𝜕𝑄2
=

8

𝑟
+

.

(18)

Substituting (18) into (16), the lines of GTD for the 3D
charged-dilaton black hole are written as

𝑑𝑆
2

𝐺
=

2

𝑟6
+

(Λ𝑟
4

+
− 9𝑄
4
) 𝑑𝑆
2
+
16

𝑟2
+

(Λ𝑟
2

+
+ 3𝑄
2
) 𝑑𝑄
2
, (19)

where the index 𝐺 denotes the geometrothermodynamics.
Thus, the curvature scalar can be obtained by

R
𝐺
=

9𝑟
+
𝑟
−
(𝑟
+
− 𝑟
−
)

2Λ4(3𝑟
−
− 𝑟
+
)
2

(𝑟
+
+ 3𝑟
−
)
3
. (20)

We see in our setup that the scalar curvatureR
𝐺
vanishes

only at the extremal limit to where 𝑟
+
= 𝑟
−
. In a general case,

the scalar curvature R
𝐺
does not vanish and it goes positive

infinity when 𝑟
+

= 3𝑟
−
, which stands for a kind of phase

transition or long rang correlation of the system according
to the Ruppeiner theory [28]. It is interesting to note that the
divergence point of the scalar curvature is just the transition
point of Davies [29]. In the fact, it is easy to check this by
calculating the heat capacity with a fixed charge as follows:

𝐶
𝑄
= 𝑇(

𝜕𝑆

𝜕𝑇
)

𝑄

=
2𝑟
2

+
(𝑟
+
− 𝑟
−
)

3𝑟
−
− 𝑟
+

, (21)

which is singular at 𝑟
+
= 3𝑟
−
corresponding to𝑀2 = 266𝑄

2
/3

and indicates that the black hole has a second-order phase
transition.Moreover, we see that all thermodynamic variables
arewell behaved, except perhaps in the extremal limit 𝑟

+
= 𝑟
−
,

at this point, changes sign and the scalar curvature diverge.
Therefore, there will be a phase transitionR

𝐺
.

4. Discussion and Conclusions

In this work, we investigated the Weinhold metric and the
Ruppeiner metric as well as the geometrothermodynamics
of a 3D Charged-Dilaton Black Hole. In all these cases,
our results showed that the thermodynamic curvature is in
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general different, indicating the presence of thermodynamic
interaction. For instance, the scalar curvature R

𝑊
indicates

the presence of second-order transition points in 𝑟
+
= 𝑟
−
.

Nevertheless, the scalar curvatureR
𝑅
is zero, indicating that

no phase transitions can occur, and the scalar curvature R
𝑅

lost the information about charge 𝑄. Moreover, the scalar
curvatureR

𝐺
indicates more physical interest since the first-

order phase transition point and the second-order transition
both occur in the extremal limit at 𝑟

+
= 𝑟
−
and 𝑟
+
= 3𝑟
−
.

In addition, the thermodynamic metric proposed in this
work has been applied to the case of black hole configura-
tions in four dimensions with and without the cosmolog-
ical constant. It has been shown that this thermodynamic
metric correctly describes the thermodynamic behavior of
the corresponding black hole configurations. One additional
advantage of this thermodynamic metric is its invariance
with respect to total Legendre transformations. This means
that the results are independent of the thermodynamic
potential used to generate the thermodynamicmetric. A very
interesting result is that it can recreate the lost information
in Ruppeiner metric by using Legendre transformation.
In summary, all of the above thermodynamic geometries
leading to different results indicate that it is still unresolved to
introduce geometrical concepts into all kinds of black holes;
we also expect that this unified geometry description may
give more information about a thermodynamic system.
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We consider the thermodynamics and geometrothermodynamics of the Myers-Perry black holes in five dimensions for three
different cases, depending on the values of the angular momenta. We follow Davies approach to study the thermodynamics of
black holes and find a nontrivial thermodynamic structure in all cases, which is fully reproduced by the analysis performed with
the techniques of Geometrothermodynamics. Moreover, we observe that in the cases when only one angular momentum is present
or the two angular momenta are fixed to be equal, that is, when the thermodynamic system is two dimensional, there is a complete
agreement between the divergences of the generalized susceptibilities and the singularities of the equilibrium manifold, whereas
when the two angular momenta are fully independent, that is, when the thermodynamic system is three dimensional, additional
singularities in the curvature appear. However, we prove that such singularities are due to the changing from a stable phase to an
unstable one.

1. Introduction

Black holes are very special thermodynamic systems. They
are thermodynamic system since they have a temperature,
the celebrated Hawking temperature [1], and a definition of
entropy via the Bekenstein area law [2], from which one
can prove that the laws of thermodynamics apply to black
holes [3]. On the other side, they are very special thermo-
dynamic systems, and since, for instance, the entropy is not
extensive, they cannot be separated into small subsystems,
and perhaps the worst fact, their thermodynamics does not
possess a microscopic description yet (see, e.g., [4] for a clear
description of these problems).

In this puzzling situation, one of the most successful and
at the same time discussed approach to the study of black
holes phase transitions is the work of Davies [5]. According
to Davies, black holes can be regarded as ordinary systems,
showing phase transitions right at those points where the
generalized susceptibilities, that is, second-order derivatives
of the potential, change sign most notably through an
infinite discontinuity. Since there is no statistical mechanical
description of black holes as thermodynamic systems, it is

hard to verify Davies approach with the usual technique of
calculating the corresponding critical exponents (although
very interesting works on this subject exist, see, e.g., [4, 6–
18]). In fact, the main drawback of this approach is that one
has to choose arbitrarily the order parameter for black holes.

A possible resolution to this situation can then come from
the use of thermodynamic geometry. Since the pioneering
works of Gibbs [19] and Carathéodory [20], techniques
from geometry have been introduced into the analysis of
thermodynamics. In particular, Fisher [21] and Radhakr-
ishna Rao [22] proposed a metric structure in the space of
probability distributions which has been extensively used
both in statistical physics and in economics (for a recent
review see [23]). Later, Weinhold [24] introduced an inner
product in the equilibrium space of thermodynamics based
on the stability conditions of the internal energy, taken as the
thermodynamic potential. The work of Weinhold was then
developed by Ruppeiner [25] from a different perspective.
Ruppeiner moved from the analysis of fluctuations around
equilibrium and from the gaussian approximation of the
probability of fluctuations and found a thermodynamic
metric which is defined as (minus) the hessian of the entropy
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of the system. Remarkably, Ruppeiner geometry was found
to be conformally related to the one proposed by Weinhold.
Moreover, Ruppeiner metric is intrinsically related to the
underlying statistical model, and in fact the scalar curvature
of the Riemannian manifold representing the system using
Ruppeiner metric happens to have exactly the same exponent
as the correlation volume for ordinary systems (see, e.g., [26]
for a review).

All these approaches have been widely used to study
ordinary systems, and in particular Ruppeiner metric has
been also used to study many black holes configurations (see
[27] and refernces therein).This is because one can argue that
being Ruppeiner metric defined only from thermodynamic
quantities and on the other side giving information about the
statistical model, then it can provide some hints towards the
resolution of the long standing problem of understanding the
microscopic properties of black holes (see, e.g., [27]).

On the other side, the problem with the use of thermo-
dynamic geometries to study black holes thermodynamics
is that black holes are not ordinary systems, as we argued
previous. For instance, Ruppeiner metric in many cases
gives exactly the same results of Davies approach (which is
based upon ordinary thermodynamics), while in some other
important cases it does not converge to the same results, as
it happens for example, in the Reissner-Nordström and Kerr
cases (see, e.g., [27–29]). One can argue either that Davies
approach is inaccurate or that the application of Ruppeiner
metric to black holes may be imperfect, due to the strange
nature of black holes as thermodynamic systems. In fact,
there is still an open debate on this topic (see, e.g., the
discussion in [27, 30]).

Furthermore, in the recent years, a new approach in the
context of thermodynamic geometry has been proposed by
Quevedo [31], known as geometrothermodynamics (GTD).
According to this approach, the Riemannian structure to be
introduced in the equilibrium space should be consistent
with the property of Legendre invariance, a property which
is at the core of ordinary thermodynamics. In GTD some
families of metrics have been found that share the Legendre
invariance property, and they have also been proven to
interpret in a consistent manner the thermodynamic prop-
erties of ordinary systems, chemical interactions, black holes
configurations, and cosmological solutions (see [31–39]). In
particular, the correspondence between the divergences of
the scalar curvature of the equilibriummanifold of GTD and
the phase transition points signaled by the divergences of the
heat capacity (i.e., phase transitions à la Davies) seems to be
a general fact, according to the variety of systems analyzed so
far and to the general expressions given in [40]. In addition,
a recent study [41] of the thermodynamics of the Reissner-
Nordström andKerr black holes in any dimensions suggested
that the GTD approach can detect not only the points of
phase transitions due to singularities of the heat capacities
but also divergences of the full spectrum of the generalized
susceptibilities.

On the other side, the thermodynamic properties of
the Myers-Perry black holes in five dimensions have been
extensively studied in the literature from completely different
points of view (see, e.g., [4, 29, 42–46]). In this work, we

give special emphasis on the relation between divergences
of the generalized susceptibilities and curvature singularities
of the metric from GTD. For example, we do not consider
here possible phase transitions related to change in the
topology of the event horizon, an intriguing question which
was addressed, for example, in [4]. We find out that the
GTD thermodynamic geometry is always curved for the
considered cases, showing the presence of thermodynamic
interaction and that its singularities always correspond to
divergences of the susceptibilities or to points where there is a
change from a stable to an unstable phase.Thiswill allow us to
infer new results on the physical meaning of the equilibrium
manifold of GTD.

The work is organized as follows. In Section 2, we
present the basic aspects of GTD and introduce all the
mathematical concepts that are needed. In Section 3, we
perform the parallel between the thermodynamic quantities
and the Geometrothermodynamic description of the five-
dimensionalMyers-Perry black holes for three different cases,
depending on the values of the angular momenta. Finally, in
Section 4, we comment on the results and discuss possible
developments.

2. Basics of Geometrothermodynamics

Geometrothermodynamics (GTD) is a geometric theory
of thermodynamics recently proposed by Quevedo [31]. It
makes use of contact geometry in order to describe the
phase space T of thermodynamic systems and express the
first law of thermodynamics in a coordinate-free fashion.
Furthermore, GTD adds a Riemannian structure 𝐺 to the
phase space and requests 𝐺 to be invariant under Legendre
transformations, in order to give it the same properties which
one expects for ordinary thermodynamics. Moreover, GTD
introduces the manifold of the equilibrium space E as the
maximum integral submanifold of the contact structure of
T, characterized by the validity of the first law of thermo-
dynamics [31]. At the same time, GTD prescribes also to pull
back the Riemannian structure 𝐺 to the equilibrium space.
This results in a naturally induced Riemannian structure 𝑔
in E, which is supposed to be the geometric counterpart
of the thermodynamic system. Such a description has been
proposed in order to give thermodynamic geometry a new
symmetrywhichwas not present in previous approaches, that
is, the Legendre invariance.

Let us see now the mathematical definitions of the GTD
objects that we shall use in this work. If we are given a system
with 𝑛 thermodynamic degrees of freedom, we introduce
first a (2𝑛 + 1)-dimensional spaceT with coordinates 𝑍𝐴 =
{Φ, 𝐸
𝑎
, 𝐼
𝑎
}, with 𝐴 = 0, . . . , 2𝑛 and 𝑎 = 1, . . . , 𝑛, which is

known as the thermodynamic phase space [31]. We make use
of the phase space T in order to correctly handle both the
Legendre transformations and the first law of thermodynam-
ics. In fact, in classical thermodynamics, we can change the
thermodynamic potential using a Legendre transformation,
which is defined in T as the change of coordinates given by
[47]:

{Φ, 𝐸
𝑎
, 𝐼
𝑎
} → {Φ̃, 𝐸

𝑎
, 𝐼
𝑎
} ,
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Φ = Φ̃ − 𝛿
𝑘𝑙
𝐸
𝑘
𝐼
𝑙

, 𝐸
𝑖
= −𝐼
𝑖

, 𝐸
𝑗
= 𝐸
𝑗
,

𝐼
𝑖
= 𝐸
𝑖
, 𝐼

𝑗
= 𝐼
𝑗
,

(1)

where 𝑖 ∪ 𝑗 can be any disjoint decomposition of the set of
indices {1, . . . , 𝑛} and 𝑘, 𝑙 = 1, . . . , 𝑖. We remark that Legen-
dre transformations are change of coordinates in T and that
they are not defined in the equilibrium space. Moreover, the
phase space T is equippedwith a canonical contact structure
called the Gibbs 1-form defined as

Θ = 𝑑Φ − 𝛿
𝑎𝑏
𝐼
𝑏
𝑑𝐸
𝑎
= 𝑑Φ − 𝐼

𝑎
𝑑𝐸
𝑎
, (2)

which extremely resembles the first law of thermodynamics
and hence will be the starting point to define the equilibrium
space.

Furthermore, the equilibrium spaceE is the 𝑛-dimension-
al submanifold of T defined by the embedding 𝜑 : E → T
under the condition

𝜑
∗
(Θ) = 0, that is, 𝑑Φ = 𝐼

𝑎
𝑑𝐸
𝑎
, 𝐼
𝑎
=
𝜕Φ

𝜕𝐸𝑎
, (3)

where 𝜑∗ is the pullback of 𝜑. It follows immediately from
(2) that (3) represents both the first law and the equilibrium
conditions for the thermodynamic system under analysis, so
that E results to be (by definition) the submanifold of points
where the first law and the equilibrium conditions hold, that
is, the geometric counterpart of the thermodynamic system.
It also follows that the coordinates {𝑍𝐴} ofT assume a phys-
ical meaning in E. In fact, the set {𝐸𝑎}, with 𝑎 = 1, . . . , 𝑛, can
be identified with the extensive thermodynamic variables,
while Φ = Φ(𝐸

𝑎
) with the fundamental equation for the

thermodynamic potential, and finally the coordinates {𝐼𝑎} =
{𝐼
𝑎
(𝐸
𝑎
)} ≡ {𝜕

𝐸
𝑎Φ}, 𝑎 = 1, . . . , 𝑛 represent the intensive

quantities corresponding to the extensive set {𝐸𝑎} (see, e.g.,
[48] for these definitions).

Now, let us add the Riemannian structure. Since we want
the Riemannian structure to share the same properties of the
first law and since the first law is invariant under Legendre
transformations, we introduce in the phase spaceT a metric
𝐺 which is invariant under Legendre transformations. In
GTD, there are several families of metrics which have this
property (for a recent work on this topic see [49]). Among
them, one has been proven particularly successful to describe
systems with second-order phase transitions, as black holes
are supposed to be.Thus, the candidate metric we shall use in
this work is

𝐺 = (𝑑Φ − 𝐼
𝑎
𝑑𝐸
𝑎
)
2

+ Λ (𝜉
𝑎𝑏
𝐸
𝑎
𝐼
𝑏
) (𝜒
𝑐𝑑
𝑑𝐸
𝑐
𝑑𝐼
𝑑
) , (4)

where 𝜉
𝑎𝑏

and 𝜒
𝑎𝑏

are diagonal constant tensors and Λ is
an arbitrary Legendre invariant function of the coordinates
{𝑍
𝐴
}. In particular, we choose to fix Λ = 1, 𝜉

𝑎𝑏
= 𝛿
𝑎𝑏
≡

diag(1, . . . , 1) and 𝜒
𝑎𝑏
= 𝜂
𝑎𝑏
≡ diag(−1, 1, . . . , 1) in order to

get the exact expression for the metric describing black holes
phase transitions (see also [33]).

On the other side, we are not interested in the geometric
representation of the phase space, while we care about the

geometric properties of the thermodynamic system, which is
paralleled by the equilibrium spaceE. Thus, we pull back the
metric 𝐺 onto E and obtain a Riemannian structure for the
equilibrium space which reads

𝑔
𝐼𝐼
≡ 𝜑
∗
(𝐺) = (𝐸

𝑎 𝜕Φ

𝜕𝐸𝑎
)(𝜂
𝑐

𝑏

𝜕
2
Φ

𝜕𝐸𝑐𝜕𝐸𝑑
𝑑𝐸
𝑏
𝑑𝐸
𝑑
) , (5)

where 𝜑
∗ is the pullback of 𝜑 as in (3) and 𝜂

𝑐

𝑏
=

diag(−1, 1, . . . , 1). We remark that 𝑔𝐼𝐼 is (by definition)
invariant under (total) Legendre transformations (see, e.g.,
[33]). Moreover, we also note that 𝑔𝐼𝐼 can be calculated
explicitly once the fundamental equation Φ = Φ(𝐸

𝑎
) is

known.
The main thesis of GTD is that the thermodynamic

properties of a system described by a fundamental equation
Φ(𝐸
𝑎
) can be translated into geometrical features of the

equilibrium manifold E, which in our case is described by
the metric 𝑔𝐼𝐼. For example, the scalar curvature ofE should
give information about the thermodynamic interaction. This
means that systems without interaction shall correspond
to flat geometries and systems showing interaction and
phase transitions should correspond to curved equilibrium
manifolds having curvature singularities. It has been tested
in a number of works (see, e.g. [31–35]) that indeed such
correspondence works. Furthermore, a previous work [41]
studying the thermodynamics and GTD of the Reissner-
Nordström and of the Kerr black holes in any dimensions,
highlighted that curvature singularities of 𝑔𝐼𝐼 are exactly
at the same points where the generalized susceptibilities
diverge.

In this work, we extend the work in [41] to the case of
Myers-Perry black holes in five dimensions, with the aim of
both to analyze their thermodynamic geometry from a new
perspective and to focus on the idea of checkingwhat happens
with a change of the potential from Φ = 𝑀 to Φ = 𝑆

in the GTD analysis and when the equilibrium manifold is
3 dimensional. The investigation of the phase structure of
Myers-Perry black holes in five dimensions is thus a matter
which is interesting by itself and that will provide us with
the necessary ground for a new test of the correspondence
between the thermodynamic geometry 𝑔𝐼𝐼 of GTD and black
holes thermodynamics.

3. Myers-Perry Black Holes

TheKerr black hole can be generalized to the case of arbitrary
dimensions and arbitrary number of spins. It turns out
that, provided, 𝑑 is the number of spacetime dimensions,
that the maximum number of possible independent spins
is (𝑑 − 1)/2 if 𝑑 is odd and (𝑑 − 2)/2 if 𝑑 is even [50].
Such general configurations are called Myers-Perry black
holes. They deserve a special interest because they are the
natural generalization of the well-known Kerr black hole
to higher number of spins and because they are shown to
coexist with the Emparan-Reall black ring solution for some
values of the parameters, thus providing the first explicit
example of a violation in a dimension higher than four of
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the uniqueness theorem (see, e.g., [51] for more details).
The line element of the Myers-Perry black hole with an
arbitrary number of independent angularmomenta in Boyer-
Lindquist coordinates for 𝑑 = 2𝑛 + 1 (i.e., odd 𝑑) reads [50]

𝑑𝑠
2
= −𝑑𝑡

2
+
𝜇𝑟
2

Π𝐹
(𝑑𝑡 +

𝑛

∑

𝑖=1

𝑎
𝑖
𝜇
2

𝑖
𝑑𝜙
𝑖
)

2

+
Π𝐹

Π − 𝜇𝑟2
𝑑𝑟
2

+

𝑛

∑

𝑖=1

(𝑟
2
+ 𝑎
2

𝑖
) (𝑑𝜇
2

𝑖
+ 𝜇
2

𝑖
𝑑𝜙
2

𝑖
) ,

(6)

with

𝐹 ≡ 1 −

𝑛

∑

𝑖=1

𝑎
2

𝑖
𝜇
2

𝑖

𝑟2 + 𝑎2
𝑖

, Π ≡

𝑛

∏

𝑖=1

(𝑟
2
+ 𝑎
2

𝑖
) ,

𝜇 ≡
16𝜋𝐺𝑀

(𝑑 − 2)Ω
(𝑑−2)

, 𝑎
𝑖
≡
(𝑑 − 2)

2

𝐽
𝑖

𝑀
,

(7)

where Ω
(𝑑−2)

= 2𝜋
𝑛
/Γ(𝑛),𝑀 is the mass of the black

hole, 𝐽
𝑖
= 𝐽
1
, . . . , 𝐽

𝑛
are the (𝑑 − 1)/2 independent angular

momenta, and the constraint ∑𝑛
𝑖=1
𝜇
2

𝑖
= 1 holds. Solving the

equation 𝑔𝑟𝑟 = 1/𝑔
𝑟𝑟
= 0, one finds the radius of the event

horizon (in any dimensions) and thus derives the area and
the corresponding entropy, using Bekenstein area law [29].

In particular, in this work, we are interested in the five
dimensional case, that is, when 𝑑 = 5. Myers-Perry black
holes in five-dimensions can have up to 2 independent
angularmomenta, and the general equation for the area reads
[29]

𝐴 =
2𝜋
2

𝑟
+

(𝑟
2

+
+ 𝑎
2

1
) (𝑟
2

+
+ 𝑎
2

2
) , (8)

where 𝑟
+
is the radius of the event horizon. From the previous

expression the entropy can be calculated, being

𝑆 =
𝑘
𝐵
𝐴

4𝐺
=
1

𝑟
+

(𝑟
2

+
+ 𝑎
2

1
) (𝑟
2

+
+ 𝑎
2

2
) , (9)

where we choose 𝑘
𝐵
and 𝐺 such that 𝑆 simplifies as in the

second equality in (9).
Since it is rather complicated to calculate explicitly the

previous expression for the entropy, we will use the 𝑀
representation throughout the paper.This is possible since the
mass can be written in terms of 𝑆, 𝐽

1
, and 𝐽

2
as [29]

𝑀(𝑆, 𝐽
1
, 𝐽
2
) =

3

4
𝑆
2/3
(1 + 4

𝐽
2

1

𝑆2
)

1/3

(1 + 4
𝐽
2

2

𝑆2
)

1/3

. (10)

Equation (10) thus represents the fundamental equation
for the Myers-Perry black hole in five dimensions as a
thermodynamic system. Starting from (10), we can analyze
both the thermodynamic properties and their geometrother-
modynamic counterparts. We will split the work in order to
consider the three most interesting cases, that is, when one
of the two angular momenta is zero, when they are both
nonzero but equal, and finally when they are both nonzero
and different among each other.

3.1. The Case 𝐽
2
= 0. If either 𝐽

1
= 0 or 𝐽

2
= 0, we

obtain the Kerr black hole in 5 dimensions, which has been
analyzed in [41]. We briefly review here some of the results
presented there and improve the analysis, including the
investigation of the response functions defined in the total
Legendre transformation of the mass 𝑀, which we will call
the Gibbsian response functions, in analogy with standard
thermodynamics [48]. Therefore, let us suppose that 𝐽

2
=

0. According to our previous results [41], we know that the
response functions defined in the mass representation read

𝐶
𝐽1
= −

3𝑆 (𝑆
2
+ 4𝐽
2

1
)

𝑆2 − 12𝐽2
1

, 𝜅
𝑆
=
3(𝑆
2
+ 4𝐽
2

1
)
5/3

2𝐽
1
(3𝑆2 − 4𝐽2

1
)
,

𝛼
𝑆
= −

3

8

(𝑆
2
+ 4𝐽
2

1
)
5/3

𝐽2
1
𝑆

,

(11)

where we make use of the notation 𝑀
𝐸
𝑎 ≡ 𝜕𝑀/𝜕𝐸

𝑎 and
𝑀
𝐸
𝑎
𝐸
𝑏 ≡ 𝜕

2
𝑀/𝜕𝐸

𝑎
𝜕𝐸
𝑏, for 𝐸𝑖 = 𝑆, 𝐽

1
. It follows that

𝛼
𝑆
does not show any singularity (apart from the extremal

limit 𝑆 = 0), while 𝐶
𝐽1
diverges at the Davies point 𝑆2 =

12𝐽
2

1
and 𝜅

𝑆
shows an additional possible phase transition at

3𝑆
2
= 4𝐽
2

1
. As it was pointed out in [41], both singularities

of the heat capacity and of the compressibility are in the
black hole region and hence are physically relevant. It was
also shown that the GTD geometry (5) with fundamental
equation (10) (with 𝐽

2
= 0) is curved, indicating the presence

of thermodynamic interaction, and that the singularities of
the scalar curvature are situated exactly at the same points
where the response functions 𝐶

𝐽1
, and 𝜅

𝑆
diverge, both in the

mass and in the entropy representations. Furthermore, it was
also commented that Weinhold geometry is flat in this case
and Ruppeiner thermodynamic metric diverges only in the
extremal limit 𝑆 = 0 (see, e.g., [29] for a complete analysis
using these metrics).

Moreover, since the thermodynamics of black holes can
depend on the chosen ensemble (see, e.g., [52, 53]), we now
proceed to calculate the Gibbsian response functions, which
can possibly give new information about the phase structure.
Using the relations between thermodynamic derivatives (see,
[48]), we find out that the expressions for such response
functions in the coordinates (𝑆, 𝐽

1
) used here are

𝐶
Ω1
= −

𝑆 (3𝑆
2
− 4𝐽
2

1
)

𝑆2 + 4𝐽2
1

, 𝜅
𝑇
= −

𝑆
2
− 12𝐽
2

1

2𝐽
1
(𝑆2 + 4𝐽2

1
)
1/3
,

𝛼
Ω1
= −

8𝑆

(𝑆2 + 4𝐽2
1
)
1/3
.

(12)

It is immediate to see that 𝐶
Ω1

never diverges and it
vanishes exactly at the same points where 𝜅

𝑆
diverges. On the

other side, 𝜅
𝑇
is never divergent and it vanishes exactly where

𝐶
𝐽1

diverges, while 𝛼
Ω1

is always finite. It follows that the
Gibbsian response functions do not add any information to
the knowledge of the phase structure of this configuration, as
they change the sign exactly at the points that we have already
analyzed; therefore, we conclude that the divergences of the
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scalar curvature of the metric (5) match exactly the points of
second-order phase transitions.

Let us now add a second spin parameter and show that
there is still a concrete correlation between the geometric
description performed with 𝑔

𝐼𝐼 and the thermodynamic
properties. To do so, we first focus on the special case of (10)
in which 𝐽

1
= 𝐽
2
= 𝐽, and afterwards we will consider the

completely general case, that is, with 𝐽
1
and 𝐽

2
both different

from zero and from each other. In particular, in the latter
case, we will get a 3-dimensional thermodynamic manifold
labelled by (𝐸1 = 𝑆, 𝐸

2
= 𝐽
1
, 𝐸
3
= 𝐽
2
), and hence we will

consider the 3-dimensional version of the metric (5).

3.2. The Case 𝐽
1
= 𝐽
2
≡ 𝐽. Another special case in (10) which

is of interest is the case in which the two angular momenta
are fixed to be equal, that is, 𝐽

1
= 𝐽
2
≡ 𝐽. This is interesting

from the mathematical and physical point of view since it is
the only case inwhich the angularmomenta are both different
from zero, and at the same time the thermodynamicmanifold
is 2-dimensional. In fact, the mass fundamental equation (10)
in this case is given by

𝑀(𝑆, 𝐽) =
3

4
𝑆
2/3
(1 + 4

𝐽
2

𝑆2
)

2/3

, (13)

and the response functions can then be accordingly calcu-
lated to give

𝐶
𝐽
= −

3𝑆 (𝑆
4
− 16𝐽
4
)

𝑆4 − 32𝐽2𝑆2 − 80𝐽4
, 𝜅

𝑆
=
3𝑆
2/3
(𝑆
2
+ 4𝐽
2
)
4/3

4𝐽 (3𝑆2 + 4𝐽2)
,

𝛼
𝑆
= −

3

16

𝑆
5/3
(𝑆
2
+ 4𝐽
2
)
4/3

𝐽2 (𝑆2 + 2𝐽2)
.

(14)

From (14), it follows that in this case 𝛼
𝑆
and 𝜅

𝑆
do not

show any singularity, while 𝐶
𝐽
diverges at the roots of the

denominatorD
𝐶
= 𝑆
4
− 32𝐽
2
𝑆
2
− 80𝐽
4. We also observe that

the temperature of this black hole is given by

𝑇 ≡ (
𝜕𝑀

𝜕𝑆
)

𝐽

=
1

2

𝑆
2
− 4𝐽
2

𝑆5/3(𝑆2 + 4𝐽2)
1/3
, (15)

therefore, the extremal limit 𝑇 = 0 is reached when 𝐽2/𝑆2 =
1/4.

SolvingD
𝐶
= 0, we find that the singularities of the heat

capacity are situated at a value 𝑆critical for the entropy such that

𝐽
2

𝑆2

𝑆=𝑆critical

=
√21 − 4

20
, (16)

which is less than the extremal limit. Therefore Davies point
of phase transition belongs to the black hole region and we
shall investigate it.

It is convenient also in this case towrite the full set of ther-
modynamic response functions, including theGibbsian ones.

Again, making use of the relations between thermodynamic
derivatives, we find out that they read

𝐶
Ω
= −

𝑆 (𝑆
2
− 4𝐽
2
) (3𝑆
2
+ 4𝐽
2
)

(𝑆2 + 4𝐽2)
2

,

𝜅
𝑇
= −

𝑆
2/3

4𝐽

D
𝐶

(𝑆2 + 4𝐽2)
5/3
,

𝛼
Ω
=
8𝑆
5/3
(𝑆
2
+ 2𝐽
2
)

(𝑆2 + 4𝐽2)
5/3

.

(17)

In this case, we observe that the only divergence of the
response functions in (14), that is, the divergence of 𝐶

𝐽
, is

again controlled by the vanishing of 𝜅
𝑇
. Furthermore, both

𝐶
𝐽
and 𝐶

Ω
vanish at the extremal limit, but this does not

correspond to any divergence of 𝜅
𝑆
, and hence we expect the

curvature of the thermodynamicmetric to diverge only at the
points whereD

𝐶
= 0.

From the point of view of Geometrothermodynamics,
given the fundamental equation (13) and the general metric
(5), we can calculate the particular metric and the scalar
curvature for the equilibrium manifold of the MP black hole
with two equal angular momenta, both in themass and in the
entropy representations.

The metric in the𝑀 representation reads

𝑔
𝐼𝐼

𝑀
=

1

𝑆4/3(𝑆2 + 4𝐽2)
2/3

× {
1

12

D
𝐶

𝑆2
𝑑𝑆
2
+
2 (3𝑆
2
+ 4𝐽
2
)

3
𝑑𝐽
2
} .

(18)

Therefore, its scalar curvature is

𝑅
𝑀
= 24𝑆

10/3
(𝑆
2
+ 4𝐽
2
)
2/3

× (5𝑆
6
+ 48𝐽
2
𝑆
4
− 368𝐽

4
𝑆
2
− 896𝐽

6
)

× (D
2

𝐶
(3𝑆
2
+ 4𝐽
2
)
2

)
−1

.

(19)

The numerator is a not very illuminating function that never
vanishes when the denominator is zero, and D

𝐶
is exactly

the denominator of the heat capacity 𝐶
𝐽
. Therefore, the

singularities of 𝑅
𝑀

correspond exactly to those of 𝐶
𝐽
(resp.,

to the vanishing of 𝜅
𝑇
). We remark that the factor 3𝑆2+4𝐽2 in

the denominator of 𝑅
𝑀
, despite being always different from

0 (thus not indicating any phase transition in this case), is
exactly the denominator of the compressibility 𝜅

𝑆
(resp., a

factor in the numerator of 𝐶
Ω
).

To continue with the analysis, in [49], a general relation
was presented (see (34) therein) to express 𝑔𝐼𝐼with Φ = 𝑆

(i.e., in the 𝑆 representation) in the coordinates of the 𝑀
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representation (i.e., {𝐸𝑎} = (𝑆, 𝐽)). Such relation in the present
case reads

𝑔
𝐼𝐼

𝑆
=
𝑀 − 𝐽Ω

𝑇3

× [𝑇𝑀
𝑆𝑆
𝑑𝑆
2
+ 2Ω𝑀

𝑆𝑆
𝑑𝑆 𝑑𝐽

+ (2Ω𝑀
𝑆𝐽
− 𝑇𝑀

𝐽𝐽
) 𝑑𝐽
2
] ,

(20)

where 𝑇 ≡ 𝜕𝑀/𝜕𝑆 is the temperature, Ω ≡ 𝜕𝑀/𝜕𝐽 is the
angular velocity at the horizon and 𝑀

𝐸
𝑎
𝐸
𝑏 ≡ 𝜕

2
𝑀/𝜕𝐸

𝑎
𝜕𝐸
𝑏,

for 𝐸𝑖 = 𝑆, 𝐽. Using (20) and (13) for the mass in terms
of 𝑆 and 𝐽, we can calculate the expression for metric 𝑔𝐼𝐼

𝑆
in

the coordinates (𝑆, 𝐽), which reads

𝑔
𝐼𝐼

𝑆
=

1

3 (𝑆2 + 4𝐽2) (𝑆 + 2𝐽)
2
(𝑆 − 2𝐽)

2

× {−
3𝑆
2
− 4𝐽
2

2
D
𝐶
𝑑𝑆
2
+

+
8𝑆𝐽 (3𝑆

2
− 4𝐽
2
)

(𝑆 + 2𝐽) (𝑆 − 2𝐽)
D
𝐶
𝑑𝑆𝑑𝐽 − 4𝑆

2

×
9𝑆
6
+ 156𝑆

4
𝐽
2
+ 112𝑆

2
𝐽
4
− 448𝐽

6

(𝑆 + 2𝐽) (𝑆 − 2𝐽)
𝑑𝐽
2
} .

(21)

Consequently, the scalar curvature is

𝑅
𝑆
=

N
𝑆

(3𝑆2 − 4𝐽2)
3

(𝑆2 + 4𝐽2)
2

D2
𝐶

, (22)

where N
𝑆
is again a function which never vanishes at the

points where the denominator is zero. From (22), we see that
the denominator of 𝐶

𝐽
is present in the denominator of 𝑅

𝑆
.

Furthermore, the factor 𝑆2 + 4𝐽2 is never zero, and hence it
does not give any additional singularity. On the other hand,
the factor 3𝑆2 − 4𝐽2 is clearly vanishing when 𝐽2/𝑆2 = 3/4,
which is readily greater than the extremal limit 𝐽2/𝑆2 = 1/4,
and hence it has no physical relevance in our analysis.

We thus conclude that also in this case the GTD
geometry 𝑔𝐼𝐼 exactly reproduces the phase transition struc-
ture of the Myers-Perry black holes both in the mass and in
the entropy representation. We comment that in the entropy
representation there is an additional singularity which does
not correspond to any singularity of the response functions.
However, such singularity is situated out of the black hole
region, and thus it is not to be considered here. We also
remark that Ruppeiner curvature in this case reads 𝑅 =

−𝑆(𝑆
2
+ 12𝐽

2
)/(𝑆
4
− 16𝐽

4
), and hence it diverges only in the

extremal limit, while Weinhold metric is flat.
In the next subsection, we will analyze the general case of

the Myers-Perry black hole in five dimensions, that is, when
the two angular momenta are allowed to vary freely.

3.3. The General Case in Which 𝐽
1
̸= 𝐽
2
̸= 0. Perhaps the most

interesting case is the most general one, in which the two
angular momenta are allowed to vary freely. In this case,

the thermodynamic manifold is 3 dimensional and the mass
fundamental equation is given by (10).

The generalized susceptibilities can then be accordingly
calculated.The heat capacity at constant angular momenta 𝐽

1

and 𝐽
2
reads

𝐶
𝐽1 ,𝐽2

=
𝑀
𝑆

𝑀
𝑆𝑆

= −
3𝑆 (𝑆

2
+ 4𝐽
2

1
) (𝑆
2
+ 4𝐽
2

2
) (𝑆
4
− 16𝐽
2

1
𝐽
2

2
)

D
𝐶

,

(23)

where

D
𝐶
= 𝑆
8
− 12 (𝐽

2

1
+ 𝐽
2

2
) 𝑆
6
− 320𝐽

2

1
𝐽
2

2
𝑆
4

− 576𝐽
2

1
𝐽
2

2
(𝐽
2

1
+ 𝐽
2

2
) 𝑆
2
− 1280𝐽

4

1
𝐽
4

2
.

(24)

Furthermore, one can define the 3 analogues of the adiabatic
compressibility as

(𝜅
𝑆
)
11
≡ (

𝜕𝐽
1

𝜕Ω
1

)

𝑆

=
3𝑆
2/3
(𝑆
2
+ 4𝐽
2

1
)
5/3

2(𝑆2 + 4𝐽2
2
)
1/3

(3𝑆2 − 4𝐽2
1
)

,

(𝜅
𝑆
)
22
≡ (

𝜕𝐽
2

𝜕Ω
2

)

𝑆

=
3𝑆
2/3
(𝑆
2
+ 4𝐽
2

2
)
5/3

2(𝑆2 + 4𝐽2
1
)
1/3

(3𝑆2 − 4𝐽2
2
)

,

(𝜅
𝑆
)
12
≡ (

𝜕𝐽
1

𝜕Ω
2

)

𝑆

=
3

16

𝑆
2/3
(𝑆
2
+ 4𝐽
2

1
)
2/3

(𝑆
2
+ 4𝐽
2

2
)
2/3

𝐽
1
𝐽
2

.

(25)

Finally, the analogues of the expansion are given by

𝛼
𝑆,𝐽2

≡ (
𝜕𝐽
1

𝜕𝑇
)

𝑆

= −
3

8

𝑆
5/3
(𝑆
2
+ 4𝐽
2

1
)
5/3

(𝑆
2
+ 4𝐽
2

2
)
2/3

𝐽
1
(𝑆4 + 6𝑆2𝐽2

2
+ 8𝐽2
1
𝐽2
2
)

,

𝛼
𝑆,𝐽1

≡ (
𝜕𝐽
1

𝜕𝑇
)

𝑆

= −
3

8

𝑆
5/3
(𝑆
2
+ 4𝐽
2

2
)
5/3

(𝑆
2
+ 4𝐽
2

1
)
2/3

𝐽
2
(𝑆4 + 6𝑆2𝐽2

1
+ 8𝐽2
1
𝐽2
2
)

.

(26)

In this case, neither (𝜅
𝑆
)
12

nor the expansions show any
singularity, while 𝐶

𝐽1,𝐽2
diverges when D

𝐶
= 0 and the

compressibilities (𝜅
𝑆
)
11
and (𝜅

𝑆
)
22
diverge when 3𝑆2−4𝐽2

1
= 0
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Figure 1: The difference between the extremal limit (𝐽
1
𝐽
2
/𝑆
2
= 1/4)

and the value of 𝐽
1
𝐽
2
/𝑆
2 at the critical point of the heat capacity,

plotted for values of 𝐽
1
and 𝐽
2
in the interval [0, 10].

and 3𝑆2−4𝐽2
2
= 0, respectively. Furthermore, the temperature

reads

𝑇 =
1

2𝑆5/3

𝑆
4
− 16𝐽
2

1
𝐽
2

2

(𝑆2 + 4𝐽2
1
)
2/3

(𝑆2 + 4𝐽2
2
)
2/3
. (27)

Hence; the extremal limit is reached for 𝐽
1
𝐽
2
/𝑆
2
= 1/4. The

heat capacity diverges when D
𝐶
= 0, which is an algebraic

equation of degree 8 in 𝑆. We can solve numerically such
equation and obtain the critical value 𝑆 = Scritical in terms of
𝐽
1
and 𝐽
2
. Taking only the roots which are real and positive,

we can compare them with the extremal limit by doing

𝐽
1
𝐽
2

𝑆2

𝑆=Sextremal
−
𝐽
1
𝐽
2

𝑆2

𝑆=Scritical
=
1

4
−
𝐽
1
𝐽
2

𝑆2

𝑆=Scritical
. (28)

The plot of the result is given in Figure 1 for some values
of 𝐽
1
and 𝐽
2
. As we can see from Figure 1, the difference in

(28) is always positive, and hence the point of phase transition
signaled by the divergence of the heat capacity is always in the
black hole region.

In the same way, we can solve 3𝑆2 − 4𝐽2
1
= 0 and see

whether the divergence of (𝜅
𝑆
)
11
lies in the black hole region

or not. It turns out that the denominator of (𝜅
𝑆
)
11
vanishes for

values of 𝑆 such that 𝐽2
1
/𝑆
2
= 3/4, whichmeans that 𝐽

1
𝐽
2
/𝑆
2
=

(3/4)(𝐽
2
/𝐽
1
). Therefore, we have that (1/4) − (3/4)(𝐽

2
/𝐽
1
) is

positive provided that 𝐽
1
> 3𝐽
2
for 𝐽
1
> 0 or 𝐽

1
< 3𝐽
2

for 𝐽
1
< 0. Summing up, the divergences of (𝜅

𝑆
)
11

can be
in the black hole region for appropriate values of 𝐽

1
and 𝐽
2
.

Analogously, the divergences of (𝜅
𝑆
)
22
can also be in the black

hole region.
As in the preceding sections, we will now focus on the

Gibbsian response functions, in order to make the analysis

complete. The heat capacity at constant angular velocities
read

𝐶
Ω1 ,Ω2

≡ 𝑇(
𝜕𝑆

𝜕𝑇
)

Ω1 ,Ω2

= −3𝑆 (𝑆
4
− 16𝐽
2

1
𝐽
2

2
) (3𝑆
2
− 4𝐽
2

1
)

× (3𝑆
2
− 4𝐽
2

2
) (𝑆
2
+ 4𝐽
2

1
) (𝑆
2
+ 4𝐽
2

2
)

× (D (𝑆, 𝐽
1
, 𝐽
2
))
−1

,

(29)

where the denominator is given by

D (𝑆, 𝐽
1
, 𝐽
2
) = 9𝑆

12
+ 72 (𝐽

2

1
+ 𝐽
2

2
) 𝑆
10

+ 16 (9𝐽
4

1
+ 95𝐽
2

1
𝐽
2

2
+ 9𝐽
4

2
) 𝑆
8

+ 5376𝐽
2

1
𝐽
2

2
(𝐽
2

1
+ 𝐽
2

2
) 𝑆
6

− 256𝐽
2

1
𝐽
2

2
(9𝐽
4

1
− 101𝐽

2

1
𝐽
2

2
+ 9𝐽
4

2
) 𝑆
4

− 6144𝐽
4

1
𝐽
4

2
(𝐽
2

1
+ 𝐽
2

2
) 𝑆
2
− 53248𝐽

6

1
𝐽
6

2
.

(30)

Furthermore, one can define three generalized susceptibili-
ties, analogous to the isothermal compressibility, as

(𝜅
𝑇
)
11
≡ (

𝜕𝐽
1

𝜕Ω
1

)

𝑇

, (𝜅
𝑇
)
12
≡ (

𝜕𝐽
1

𝜕Ω
2

)

𝑇

,

(𝜅
𝑇
)
22
≡ (

𝜕𝐽
2

𝜕Ω
2

)

𝑇

.

(31)

For the Myers-Perry black hole it can be written as

(𝜅
𝑇
)
11

= −
𝑆
2/3

2
(D
𝐶
((𝑆
2
+ 4𝐽
2

1
)
1/3

(𝑆
2
+ 4𝐽
2

2
)
1/3

× (𝑆
6
− 12𝐽
2

2
𝑆
4
+ 48𝐽
2

1
𝐽
2

2
𝑆
2
+ 192𝐽

2

2
𝐽
4

2
) )

−1

) ,

(𝜅
𝑇
)
22

= −
𝑆
2/3

2
(D
𝐶
((𝑆
2
+ 4𝐽
2

1
)
1/3

(𝑆
2
+ 4𝐽
2

2
)
1/3

× (𝑆
6
− 12𝐽
2

1
𝑆
4
+ 48𝐽
2

1
𝐽
2

2
𝑆
2
+ 192𝐽

2

2
𝐽
4

1
) )

−1

) ,

(32)

while (𝜅
𝑇
)
12

has a more cumbersome expression and we
will not write it here, since it has the same properties
of (𝜅
𝑇
)
11

and (𝜅
𝑇
)
22

as regards to our analysis; that is, it is
proportional to the denominator of 𝐶

𝐽1,𝐽2
defined in (24) and

it has a nontrivial denominator (one can also introduce the
two analogues of the thermal expansion, but for the sake of
simplicity, we are not going to write them here, since they do
not show any singularities, and hence they do not play any
role in our analysis).
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Therefore, from the thermodynamic point of view, we
remark that the divergences of 𝐶

𝐽1,𝐽2
are matched by the

vanishing of the three quantities (𝜅
𝑇
)
𝑖𝑗
, while the diver-

gences of (𝜅
𝑆
)
11

and (𝜅
𝑆
)
22

are reproduced as zeroes of
the heat capacity 𝐶

Ω1 ,Ω2
. This behavior is in agreement

with the analysis of the preceding sections. Furthermore,
in this case, the heat capacity 𝐶

Ω1 ,Ω2
and the generalized

compressibilities (𝜅
𝑇
)
𝑖𝑗
possibly show additional phase tran-

sitions, which is a further indication of the fact that black
holes exhibit different thermodynamic behavior in different
potentials.

Now, let us turn to the GTD analysis. Given the fun-
damental equation (10) and the general metric (5), we can
calculate the particular metric and the scalar curvature for
the MP black hole with two free angular momenta, both in
the mass and in the entropy representations. The metric in
the 𝑀 representation reads

𝑔
𝐼𝐼

𝑀
=

1

3𝑆4/3(𝑆2 + 4𝐽2
1
)
1/3

(𝑆2 + 4𝐽2
2
)
1/3

× {−
1

4

D
𝐶

𝑆2 (𝑆2 + 4𝐽2
1
) (𝑆2 + 4𝐽2

2
)
𝑑𝑆
2

+
(3𝑆
2
− 4𝐽
2

1
) (𝑆
2
+ 4𝐽
2

2
)

𝑆2 + 4𝐽2
1

𝑑𝐽
2

1

+
(3𝑆
2
− 4𝐽
2

2
) (𝑆
2
+ 4𝐽
2

1
)

𝑆2 + 4𝐽2
2

𝑑𝐽
2

2

+16𝐽
1
𝐽
2
𝑑𝐽
1
𝑑𝐽
2
} .

(33)

Hence, its scalar curvature is

𝑅
𝑀
=N
𝑀

× (D
2

𝐶
[3𝑆
4
− 4𝑆
2
(𝐽
2

1
+ 𝐽
2

2
) − 16𝐽

2

1
𝐽
2

2
]
2

× (𝑆
2
+ 4𝐽
2

1
)
2/3

(𝑆
2
+ 4𝐽
2

2
)
2/3

)

−1

,

(34)

where D
𝐶
is as usual the denominator of 𝐶

𝐽1 ,𝐽2
defined in

(24). Since there is no term in the numerator N
𝑀

which
cancels out the divergences that happen when D

𝐶
= 0, we

can conclude that every phase transition related to the heat
capacity 𝐶

𝐽1 ,𝐽2
is properly reproduced by the scalar curvature

𝑅
𝑀
. In addition, in this case, the factor 3𝑆4 − 4𝑆

2
(𝐽
2

1
+

𝐽
2

2
) − 16𝐽

2

1
𝐽
2

2
can also vanish, possibly giving an additional

singularity which does not correspond to the ones shown by
the response functions. It is easy to calculate that 3𝑆4−4𝑆2(𝐽2

1
+

𝐽
2

2
) − 16𝐽

2

1
𝐽
2

2
= 0 for values of 𝑆 such that

𝐽
1
𝐽
2

𝑆2
=
1

8

(−𝐽
2

1
− 𝐽
2

2
+ √𝐽4
1
+ 14𝐽2
1
𝐽2
2
+ 𝐽4
2
)

𝐽
1
𝐽
2

.
(35)

We can thus calculate the difference between the extremal
limit 𝐽

1
𝐽
2
/𝑆
2
= 1/4 and the critical value (35). The result is

1

4
−
1

8

(−𝐽
2

1
− 𝐽
2

2
+ √𝐽4
1
+ 14𝐽2
1
𝐽2
2
+ 𝐽4
2
)

𝐽
1
𝐽
2

= −
1

48
(((𝐽
2

1
+ 𝐽
2

2
− 6𝐽
1
𝐽
2
+ √𝐽4
1
+ 14𝐽2
1
𝐽2
2
+ 𝐽4
2
)

×(𝐽
2

1
+ 𝐽
2

2
− √𝐽4
1
+ 14𝐽2
1
𝐽2
2
+ 𝐽4
2
))

×(𝐽
2

1
𝐽
2

2
)
−1

) ,

(36)

which can be positive for appropriate values of 𝐽
1
and 𝐽

2
.

Therefore, such points of divergence of 𝑅
𝑀

are in the black
hole region for some values of the parameters. Hence, we
conclude that the behavior of 𝑅

𝑀
perfectly matches the

behavior of 𝐶
𝐽1 ,𝐽2

, but in this case, it does not reproduce
the additional possible phase transitions indicated by the
singularities of the compressibilities (𝜅

𝑆
)
11

and (𝜅
𝑆
)
22

and
possibly shows some additional unexpected singularities.

However, we can give a precise physical meaning to such
additional singularities. In fact, if we evaluate the determinant
of the Hessian of the mass with respect to the angular
momenta 𝐽

1
and 𝐽
2
, we get

det (Hess(𝑀)
𝐽1𝐽2
) ≡ 𝑀

𝐽1𝐽1
𝑀
𝐽2𝐽2

−𝑀
2

𝐽1𝐽2

=
4

3

3𝑆
4
− 4𝑆
2
(𝐽
2

1
+ 𝐽
2

2
) − 16𝐽

2

1
𝐽
2

2

𝑆4/3(𝑆2 + 4𝐽2
1
)
4/3

(𝑆2 + 4𝐽2
2
)
4/3
,

(37)

from which we can see that the numerator is exactly the
factor in the denominator of 𝑅

𝑀
whose roots give the

additional singularities. Since the Hessians of the energy
in thermodynamics are related to the stability conditions,
we suggest that the physical meaning of such additional
divergences of 𝑅

𝑀
is to be found in a change of stability of

the system, for example, from a stable phase to an unstable
one.

On the other side, using the relation (20) for 𝑔𝐼𝐼 between
the 𝑀 and the 𝑆 representations, naturally extended to the
3-dimensional case with coordinates (𝑆, 𝐽

1
, 𝐽
2
), that is,

𝑔
𝐼𝐼

𝑆
=
𝑀 − 𝐽

1
Ω
1
− 𝐽
2
Ω
2

𝑇3

× [𝑇𝑀
𝑆𝑆
𝑑𝑆
2
+ 2Ω
1
𝑀
𝑆𝑆
𝑑𝑆 𝑑𝐽

1
+ 2Ω
2
𝑀
𝑆𝑆
𝑑𝑆 𝑑𝐽

2

+ (2Ω
1
𝑀
𝑆𝐽1
− 𝑇𝑀

𝐽1𝐽1
) 𝑑𝐽
2

1

+ (2Ω
2
𝑀
𝑆𝐽2
− 𝑇𝑀

𝐽2𝐽2
) 𝑑𝐽
2

2

−2 (𝑇𝑀
𝐽1𝐽2

− Ω
1
𝑀
𝑆𝐽2
− Ω
2
𝑀
𝑆𝐽1
) 𝑑𝐽
1
𝑑𝐽
2
] ,

(38)
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we cannowcalculate themetric in the 𝑆 representation,which
reads

𝑔
𝐼𝐼

𝑆
=

[3𝑆
4
+ 4𝑆
2
(𝐽
2

1
+ 𝐽
2

2
) − 16𝐽

2

1
𝐽
2

2
]D
𝐶

3 (𝑆2 + 4𝐽2
1
) (𝑆2 + 4𝐽2

2
) (𝑆2 − 4𝐽

1
𝐽
2
)
2

(𝑆2 + 4𝐽
1
𝐽
2
)
2

× {
1

2
𝑑𝑆
2
+ 4

𝑆𝐽
1
(𝑆
2
+ 4𝐽
2

2
)

(𝑆2 − 4𝐽
1
𝐽
2
) (𝑆2 + 4𝐽

1
𝐽
2
)
𝑑𝑆𝑑𝐽
1

+ 4
𝑆𝐽
2
(𝑆
2
+ 4𝐽
2

1
)

(𝑆2 − 4𝐽
1
𝐽
2
) (𝑆2 + 4𝐽

1
𝐽
2
)
𝑑𝑆𝑑𝐽
2

− 2 (𝑆
2
(𝑆
2
+ 4𝐽
2

2
)
2

× [3𝑆
6
+ 26𝑆

4
𝐽
2

1
+ 144𝑆

2
𝐽
2

1
𝐽
2

2
+ 320𝐽

4

1
𝐽
2

2
]

×(D
𝐶
(𝑆
2
− 4𝐽
1
𝐽
2
) (𝑆
2
+ 4𝐽
1
𝐽
2
))
−1

) 𝑑𝐽
2

1

− 2 (𝑆
2
(𝑆
2
+ 4𝐽
2

1
)
2

× [3𝑆
6
+ 26𝑆

4
𝐽
2

2
+ 144𝑆

2
𝐽
2

1
𝐽
2

2
+ 320𝐽

4

2
𝐽
2

1
]

× (D
𝐶
(𝑆
2
− 4𝐽
1
𝐽
2
) (𝑆
2
+ 4𝐽
1
𝐽
2
))
−1

) 𝑑𝐽
2

2

− 32 (𝑆
2
𝐽
1
𝐽
2
(𝑆
2
+ 4𝐽
2

1
) (𝑆
2
+ 4𝐽
2

2
)

× [5𝑆
4
+ 12𝑆

2
(𝐽
2

1
+ 𝐽
2

2
) + 16𝐽

2

1
𝐽
2

2
]

× (D
𝐶
(𝑆
2
− 4𝐽
1
𝐽
2
)

×(𝑆
2
+ 4𝐽
1
𝐽
2
))
−1

)) 𝑑𝐽
1
𝑑𝐽
2
} .

(39)

The scalar curvature can thus be calculated to obtain

𝑅
𝑆
=N
𝑆
× (D
2

𝐶
[3𝑆
4
+ 4𝑆
2
(𝐽
2

1
+ 𝐽
2

2
) − 16𝐽

2

1
𝐽
2

2
]
3

× 𝑆
2
(𝑆
2
+ 4𝐽
2

1
) (𝑆
2
+ 4𝐽
2

2
) )
−1

.

(40)

In this case, we see again that the denominator of the
heat capacity D

𝐶
is present in the denominator of 𝑅

𝑆
.

Furthermore, the second factor, which is slightly different
from the factor in the denominator of𝑅

𝑀
, vanishes for values

of 𝑆 such that

𝐽
1
𝐽
2

𝑆2
=
1

8

𝐽
2

1
+ 𝐽
2

2
+ √𝐽4
1
+ 14𝐽2
1
𝐽2
2
+ 𝐽4
2

𝐽
1
𝐽
2

. (41)

The earlier discussion for the additional singularity of 𝑅
𝑀

does not apply in this case, since one can easily show that
the points described by (41) do not belong to the black hole
region for any values of 𝐽

1
and 𝐽
2
. However, we comment

in passing that such additional singularities are still related
to the vanishing of the determinant of the Hessian of the

entropy 𝑆 with respect to the angular momenta 𝐽
1
and 𝐽

2
.

Therefore, they still indicate the points where the Hessian
vanishes, although they are not situated in the black hole
region in this case. We infer from these results that the
physical meaning of the divergences of the scalar curvature of
themetric 𝑔𝐼𝐼 for such a 3-dimensional equilibriummanifold
is related to the divergences of the heat capacity at constant
angular momenta and to the zeroes of the Hessian of the
potential with respect to those momenta, both in the mass
and in the entropy representations. On the other side, from
the full analysis of the divergences of the generalized response
functions, we see that there are other possible points of phase
transitions related to divergences of the compressibilities,
which appear to be not enclosed by the analysis given with
𝑔
𝐼𝐼. We also comment that we could have used the potential
Φ = 𝐺 ≡ 𝑀 − 𝑇𝑆 − 𝐽

1
Ω
1
− 𝐽
2
Ω
2
in writing the metric

(5) to study the GTD analysis in the 𝐺 representation, but
such investigation would have led to exactly the same results,
as it has to be, since the metric (5) is invariant under total
Legendre transformations.

To conclude, we observe that in [29] the case of the
full Myers-Perry black hole thermodynamics has been
investigated using Weinhold and Ruppeiner thermodynamic
geometries. The authors proved that both Weinhold and
Ruppeiner scalar curvatures only diverge in the extremal
limit.

4. Conclusions

In this work, we have analyzed the thermodynamics and
thermodynamic geometry of different Myers-Perry black
holes configurations in five dimensions, classifying them
according to the values of the two possible independent
angular momenta.

To this end, we followed the approach of Davies for
the standard analysis of the thermodynamic properties in
different potentials and used the approach of GTD for the
thermodynamic geometric investigation. The present work
has been carried out with the twofold aim of understand-
ing the phase structure of Myers-Perry black holes in five
dimensions and inferring new conclusions on the physical
meaning of themetric𝑔𝐼𝐼, both in themass and in the entropy
representations.

Our results indicate that the Myers-Perry black holes
in five dimensions have a nontrivial phase structure in the
sense of Davies. In particular, the analysis of the response
functions indicates that both the heat capacities and the
compressibilities defined in the𝑀 potential diverge at some
points, which is usually interpreted as the hallmark of a phase
transition. Interestingly, such a behavior is matched by the
vanishing of the corresponding Gibbsian response functions
in all the cases studied here. Moreover, in the most general
case when the two angular momenta vary freely, we have
shown that the Gibbsian response functions provide some
additional singularities, indicating that the analysis in the𝑀
potential is different from that performed in the 𝐺 potential.

In all the cases studied in this work, the phase transi-
tions are well reproduced by the GTD analysis, while they
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are not reproduced by the thermodynamic geometries of
Weinhold and Ruppeiner, whose analysis has been observed
to correspond to other approaches (see e.g., [4]). We have
also found that the scalar curvature of the metric 𝑔𝐼𝐼 shows
a very similar behavior in the 𝑀 representation to that of
the 𝑆 representation. In particular, for the cases in which we
have only two degrees of freedom we argue that no physical
difference has been detected and we have shown that not
only the phase transitions indicated by 𝐶

𝐽
are reproduced,

but also the ones indicated by divergences of 𝜅
𝑆
. Moreover, a

detailed analysis of the Gibbsian response functions showed
that such divergences correspond to points where 𝜅

𝑇
and

𝐶
Ω
vanish and change their character. We therefore conclude

that for such cases the divergences of the scalar curvature of
𝑔
𝐼𝐼 reproduce the full set of second order phase transitions

considered here.
On the other side, it seems that analyzing the general

case in which both angular momenta are switched on, that
is, a thermodynamic system with three degrees of freedom,
some differences might appear. In fact, the phase transitions
signaled by 𝐶

𝐽1 ,𝐽2
are still obtained as curvature singularities

in both representations. Nevertheless, the scalar curvature
has some additional divergences, which for the case of
the 𝑀 representation can be in the black hole region for
appropriate values of the angular momenta and that appar-
ently are not directly related to the response functions of the
system. However, we claim that such additional divergences
are linked to the vanishing of the Hessian determinant of
the potential 𝑀 with respect to the two angular momenta,
and therefore they mark the transition from a stable phase
to an unstable one. In our opinion, this means that the
physical meaning of the scalar curvature of themetric 𝑔𝐼𝐼 for
thermodynamic systems with three degrees of freedom goes
beyond the well-established correspondence with the gener-
alized susceptibilities, that is, second-order derivatives of the
potential, encompassing also questions of stability related to
their mutual relation, that is, determinants of the Hessian of
the potential. This is also supported by the analysis of the
scalar curvature in the 𝑆 representation, which again shows
singularities exactly at those points where the Hessian of the
entropy with respect to the two angular momenta vanishes,
so from the mathematical point of view the situation is
basically the same. It is interesting, however, to note that in
the 𝑆 representation such points are not in the black hole
region, a direct evidence of the fact that black hole ther-
modynamics strictly depends on the potential being used.
Moreover, in the completely general case, some additional
divergences appear when considering the Gibbsian response
functions, which are not present in the thermodynamic
analysis in the 𝑀 potential nor are indicated as curvature
singularities of 𝑔𝐼𝐼. The study of such additional singularities
goes beyond the scope of this work and may be the mat-
ter of further investigation. We also expect to extend this
work in the nearest future and find a number of further
examples which support (or discard) the interpretation of
the thermodynamic metric 𝑔𝐼𝐼 for thermodynamic systems
with 3 degrees of freedom given here.
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We study the properties and thermodynamic stability of the plane symmetry black hole from the viewpoint of geometry. We find
that theWeinhold curvature gives the first-order phase transition at𝑁 = 1, whereN is a parameter of the plane symmetry black hole
while the Ruppeiner one shows first-order phase transition points for arbitrary𝑁 ̸=1. Considering the Legendre invariant proposed
by Quevedo et al., we obtain a unified geometry metric, which contains the information of the second-order phase transition. So,
the first-order and second-order phase transitions can be both reproduced from the geometry curvatures. The geometry is also
found to be curved, and the scalar curvature goes to negative infinity at the Davie phase transition points beyond semiclassical
approximation.

1. Introduction

Several decades ago, the original work of Bekenstein and
Hawking showed that the black hole is indeed a thermody-
namics system [1, 2]. It was also found that the black hole
satisfies four laws of the elementary thermodynamics with
regarding the surface gravity and the outer horizon area as
its temperature and entropy, respectively [3]. Although, it is
widely believed that a black hole is a thermodynamic system,
the statistical origin of the black hole entropy is still one of
the most fascinating and controversial subjects today.

The investigation of thermodynamic properties of black
holes is also a fascinating subject. Much of work had been
carried out on the stability and phase transitions of black
holes. It is generally thought that the local stability of a black
hole is mainly determined by its heat capacity. Negative heat
capacity usually gives a thermodynamically unstable system,
and the positive one implies a local stable one. The divergent
points of the heat capacity are usually consistent with the
Davies points, where the second-order phase transition takes
place [4–6].

The properties and phase transitions of a thermodynamic
system can also be studied with the idea of geometry.
Weinhold [7] first introduced the geometrical concept into
the thermodynamics. He suggested that a Riemannianmetric
can be defined as the second derivatives of internal energy 𝑈

with respect to the entropy and other extensive quantities of a
thermodynamic system.However, it seems that theWeinhold
geometry has not much physical meanings. Few years later,
Ruppeiner [8] introduced anothermetric, which is analogous
to the Weinhold one. The thermodynamic potential of the
Ruppeiner geometry is the entropy 𝑆 of the thermodynamic
system rather than the internal energy 𝑈. In fact, the two
metrics are conformally related to each other:

𝑑𝑠
2

𝑅
=

1

𝑇
𝑑𝑠
2

𝑊
, (1)

with the temperature 𝑇 as the conformal factor. The Rup-
peiner geometry had been used to study the ideal gas and the
van der Waals gas. It was shown that the curvature vanishes
for the ideal gas, whereas for the van der Waals gas, the
curvature is nonzero and diverges only at those points where
the phase transitions take place (for details see the review
paper [9]). The black hole, as a thermodynamics system,
has been extensively investigated. The Weinhold geometry
and the Ruppeiner geometry were obtained for various black
holes and black branes [4–30]. In particular, it was found
that the Ruppeiner geometry carries the information of
phase structure of a thermodynamic system. In general, its
curvature is singular at the points, where the phase transition
takes place. However, for the Banados-Teitelboim-Zanelli
(BTZ) and Reissner-Nordström (RN) black holes, the cases
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are quite different. The Ruppeiner geometries give a van-
ished curvature, which means there exist no thermodynamic
interactions and no phase transition points.There exist phase
transition points for the two kinds of black hole. For the
contradiction, much research has been carried out to explain
it. The main focus is on the thermodynamic potential, which
is generally believed to be the internal energy 𝑈 rather than
the mass 𝑀. For the Reissner-Nordström black hole, it was
argued in [18] that the thermodynamic curvature should be
reproduced from the Kerr-Newmann anti-de sitter black hole
with the angular momentum 𝐽 → 0 and cosmological
constant Λ → 0. Another explanation of the contradiction
was presented by Queved et al. few years ago [31, 32]. They
pointed out that the origin of the contradiction is that the
Weinhold metric and Ruppeiner metric are not Legendre
invariants. A Legendre invariant metric was introduced by
them, which could reproduce correctly the behavior of the
thermodynamic interactions and second-order phase tran-
sitions for the BTZ and RN black holes [33, 34] and other
black hole configurations and models [35–38]. Inspired by
the thermodynamic geometry, Liu et al. recently proposed a
free energymetric [39], which can give a better description on
the phase transition for a black hole.The authors also showed
that, for a systemwith 𝑛-pairs of intensive/extensive variables,
different thermodynamicmetrics can be embedded into a flat
(𝑛, 𝑛)-dimensional space. The method has been extended to
different black holes [40–44].

Another interesting and important question of this field is
how the geometry behaves beyond semiclassical approxima-
tion. It is generally believed that there will be a logarithmic
corrected term to the entropy when the semiclassical black
hole extends to its quantum level [45, 46]. Considering the
correction term, the geometry structure was studied in [33,
47] for the BTZblack hole. Especially, its Ruppeiner curvature
will be nonzero beyond semiclassical approximation.The aim
of this paper is to study the phase transitions and geometry
structure of the plane symmetry black hole. Firstly, we study
the thermodynamic stability of the plane symmetric black
hole. It is shown that there always exist locally thermody-
namically stable phases and unstable phases for the plane
symmetric black hole due to suitable parameter regimes.
Then, three different geometry structures are obtained. The
Weinhold curvature gives phase transition points, which
correspond to that of the first-order phase transition only at
𝑁 = 1, while the Ruppeiner one shows first-order phase tran-
sition points for arbitrary 𝑁 ̸=1. Considering the Legendre
invariant, we obtain a unified geometry metric, which gives
a correct behavior of the thermodynamic interactions and
phase transitions. It is found that the curvature constructed
from the unifiedmetric goes to negative infinity at theDavies’
points, where the second-order phase transition takes place.
The geometry structure is also studied as the logarithmic
correction is included. The results show that the unified
geometry behaviors differ when logarithmic correction term
is included. However, it has no effect on the unified geometry
depicting the phase transitions of the plane symmetric black
hole.

The paper is organized as follows. In Section 2, we
first review some thermodynamic quantities of the plane

symmetric black hole. The thermodynamic stability is also
studied. In Section 3, both the Weinhold and Ruppeiner
geometry structures are obtained. However, they fail to give
the information about the second-order phase transition
points. For the reason, we give a detailed analysis and obtain
a new Legendre invariant metric structure which could give
a good description of the thermodynamic interactions and
phase transitions in Section 4. Unified geometry structure
beyond semiclassical approximation is also considered in
Section 5. Finally, the paper ends with a brief conclusion.

2. Thermodynamic Quantities and
Thermodynamic Stability of the Plane
Symmetric Black Hole

In this section, we will present the thermodynamic quantities
and other properties of the plane symmetric black hole. The
local thermodynamic stability of it is also discussed. The
action depicting the plane symmetric black hole is given by

𝑆 =
1

16𝜋
∫𝑑
4
𝑥√−𝑔 (R − 2(∇𝜑)

2

− 2Λ𝑒
2𝑏𝜑

− 𝑒
−2𝑎𝜑

𝐹
2
) ,

(2)

where 𝜑 is a dilaton field and 𝑎, 𝑏 are constants. The negative
cosmological constant is Λ = −3𝛼

2. Static plane symmetric
black hole solutions in this theory were first given in [48]
(some detail work for the black hole can also be found in [49–
53]). Consider the following:

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+ 𝑓
−1

(𝑟) 𝑑𝑟
2
+ 𝑔 (𝑟) (𝑑𝑥

2
+ 𝑑𝑦
2
) . (3)

The metric functions are given by, respectively,

𝑓 (𝑟) = −
4𝜋𝑀

𝑁𝛼𝑁
𝑟
1−𝑁

+
6𝛼
2

𝑁(2𝑁 − 1)
𝑟
𝑁

+
2𝑄
2

𝑁𝛼2𝑁
𝑟
−𝑁

,

𝑔 (𝑟) = (𝑟𝛼)
𝑁
.

(4)

The dilaton field 𝜑 reads

𝜑 (𝑟) = −
√2𝑁 − 𝑁2

2
ln 𝑟. (5)

And the constant 𝑎 = 𝑏 = √2𝑁 − 𝑁2/𝑁. From (5), one easily
finds the parameter 𝑁 ∈ (1/2, 2). The scalar curvature of this
spacetime can be calculated as

𝑅 = 12𝛼
2
𝑟
𝑁−2

+
(2𝑁 − 𝑁

2
)

2𝑟2
𝑓 (𝑟) . (6)

Obviously, 𝑅 diverges at 𝑟 = 0 for any value of 𝑁, which
implies that 𝑟 = 0 plane is a singularity plane. From
Figure 1, we see that the scalar curvature 𝑅 is a monotonically
decreasing function of 𝑟 for different 𝑁. It is also clear that 𝑅
has a large value for small value of 𝑁 near 𝑟 = 0.

The parameters 𝑀 and 𝑄 are the mass and charge of the
black hole. The event horizon is located at 𝑓(𝑟

ℎ
) = 0 and the

radius 𝑟
ℎ
satisfies

3𝛼
2

2𝑁 − 1
𝑟
2𝑁

ℎ
−

2𝜋𝑀

𝛼𝑁
𝑟
ℎ
+

𝑄
2

𝛼2𝑁
= 0. (7)
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Figure 1:The behavior of scalar curvature𝑅with 𝛼 = √3/3,𝑄 = 10,
and𝑀 = 1. The full line, dashed line, and dashed-dotted line are for
𝑁 = 0.6, 1, and 1.8, respectively.

In general, there exist two horizons, the inner horizon and
the outer horizon. Under the extreme case, the two horizons
will merge into one. Here, we have denoted 𝑟

ℎ
as the radius

of outer horizon. The surface area of the outer horizon
corresponds to unit 𝑥-𝑦 plane is [52]. One may consider the
following:

A = (𝛼𝑟
ℎ
)
2𝑁

. (8)

From (7), the mass can be expressed in the form

𝑀 =
3𝛼
𝑁+2

2𝜋 (2𝑁 − 1)
𝑟
2𝑁−1

ℎ
+

𝑄
2

2𝜋𝛼𝑁
𝑟
−1

ℎ
. (9)

With the relation between area and entropy, that is, 𝑆 = A/4,
we can obtain

𝑟
ℎ

=
1

𝛼
(4𝑆)
1/2𝑁

. (10)

Substituting (10) into (9), the mass can be obtained as a
function of entropy 𝑆 and charge 𝑄 in the form

𝑀 =
3𝛼
3−𝑁

2𝜋 (2𝑁 − 1)
(4𝑆)
(2𝑁−1)/2𝑁

+
𝑄
2

2𝜋𝛼𝑁−1
(4𝑆)
−1/2𝑁

. (11)

From the energy conservation law of the black hole

𝑑𝑀 = 𝑇𝑑𝑆 + 𝜙𝑑𝑄, (12)

the relevant thermodynamic variables, the temperature, and
electric potential are obtained

𝑇 = (
𝜕𝑀

𝜕𝑆
)

𝑄

=
(12𝛼
2
𝑆 − 𝑄
2
) 𝛼
1−𝑁

22+1/𝑁𝜋𝑁𝑆1+1/2𝑁
,

𝜙 = (
𝜕𝑀

𝜕𝑄
)

𝑆

=
𝛼
1−𝑁

𝑄

21/𝑁𝜋𝑆1/2𝑁
.

(13)

For a given charge 𝑄, the heat capacity has the expression

𝐶
𝑄

= −
2𝑁𝑆 (12𝛼

2
𝑆 − 𝑄
2
)

12𝑆𝛼2 − (1 + 2𝑁)𝑄2
, (14)

with the zeropoints and singular points

𝑄
2
= 12𝛼

2
𝑆, (zero points), (15)

𝑄
2
=

12𝛼
2
𝑆

2𝑁 + 1
, (singular points), (16)

respectively. The heat capacity 𝐶
𝑄
goes to zero at 𝑄2 = 12𝛼

2
𝑆

continuously, which is considered to be the first-order phase
transition point. On other hand, it is generally believed that
the Davies’ points where the second-order phase transition
takes place correspond to the diverge points of heat capacity.
So the heat capacity 𝐶

𝑄
may indicate that the second-order

phase transition takes place at 𝑄
2

= 12𝛼
2
𝑆/(2𝑁 + 1).

The heat capacity also contains the information of the local
stability of the black hole thermodynamics. The negative
heat capacity always implies an unstable thermodynamics
system, and the positive one shows a stable system. Here,
we would like to give a brief discussion about the local
stability of the plane symmetric black hole. For 𝑄

2
> 12𝛼

2
𝑆,

the numerator of the heat capacity (14) is negative, while
the denominator is positive, which gives a negative heat
capacity. For 𝑄

2
< 12𝛼

2
𝑆/(2𝑁 + 1), the numerator is

positive, but the denominator turns to be negative, which also
shows a negative heat capacity. So, in both cases, the heat
capacity 𝐶

𝑄
implies an unstable black hole thermodynamics.

However, when |𝑄| ∈ (2√3𝛼√𝑆/(2𝑁 + 1), 2√3𝛼√𝑆), both
the numerator and denominator are positive, which implies
a stable black hole thermodynamics.The behavior of the heat
capacity 𝐶

𝑄
can be directly found from Figure 2. For larger

and smaller values of |𝑄|, the heat capacity 𝐶
𝑄
is negative.

While in the middle zone, it is positive, which means that
the black hole can be in stable thermal equilibrium with an
arbitrary volume heat bath. In summary, we have found that
there always exist locally thermodynamically stable phases
and unstable phases for the plane symmetric black hole due
to suitable parameter regimes.

3. Weinhold Geometry and Ruppeiner
Geometry of the Plane Symmetric Black
Hole

In this section, we would like to study the Weinhold and
Ruppeiner geometries of the plane symmetric black hole. In
the first step, we will calculate the Weinhold geometry. Then,
using the conformal relation, we could obtain the Ruppeiner
geometry naturally.TheWeinhold geometry is charactered by
the metric

𝑑𝑠
2

𝑊
=

𝜕
2
𝑀

𝜕𝑆2
𝑑𝑆
2
+ 2

𝜕
2
𝑀

𝜕𝑆𝜕𝑄
𝑑𝑆𝑑𝑄 +

𝜕
2
𝑀

𝜕𝑄2
𝑑𝑄
2
, (17)

where the index𝑊 denotes theWeinhold geometry. Here, the
thermodynamic potential is the mass 𝑀, and the entropy 𝑆

and charge 𝑄 are the extensive variables.
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Figure 2: The behavior of the heat capacity 𝐶
𝑄
, with 𝑁 = 1, 𝛼 =

√3/3, and 𝑆 = 100. 𝐶
𝑄
is singular at 𝑄 = ±11.5470 and vanishes at

𝑄 = ±20.

Using (11), the Weinhold metric can be obtained in the
form

𝑔
𝑊

= −
𝛼
1−𝑁

21/𝑁𝑆1/2𝑁
(

12𝛼
2
𝑆 − (2𝑁 + 1)𝑄

2

8𝜋𝑁2𝑆2

𝑄

2𝜋𝑁𝑆
𝑄

2𝜋𝑁𝑆
−

1

𝜋

) .

(18)

Its determinant is det(𝑔) = −𝛼
2−2𝑁

[12𝛼
2
𝑆 − (2𝑁 − 1)𝑄

2
]/

2
3+2/𝑁

𝑆
2+1/𝑁

𝜋
2
𝑁
2. Note that the determinant disappears as

the heat capacity vanishes only at𝑁 = 1. A simple calculation
shows that the Christoffel symbols are

Γ
𝑆

𝑆𝑆
= −

(2𝑁 + 1) [12𝛼
2
𝑆 − (4𝑁 − 1)𝑄

2
]

4𝑁𝑆 [12𝛼2𝑆 − (2𝑁 − 1)𝑄2]
,

Γ
𝑆

𝑄𝑆
= Γ
𝑆

𝑆𝑄
= −

2𝑁𝑄

12𝛼2𝑆 − (2𝑁 − 1)𝑄2
,

Γ
𝑆

𝑄𝑄
= −

2𝑁𝑆

12𝛼2𝑆 − (2𝑁 − 1)𝑄2
,

Γ
𝑄

𝑆𝑆
= −

(2𝑁 + 1)𝑄
3

4𝑁𝑆2 [12𝛼2𝑆 − (2𝑁 − 1)𝑄2]
,

Γ
𝑄

𝑆𝑄
= Γ
𝑄

𝑄𝑆
= −

12𝛼
2
𝑆 + (2𝑁 + 1)𝑄

2

4𝑆 [12𝑁𝛼2𝑆 − 𝑁 (2𝑁 − 1)𝑄2]
,

Γ
𝑄

𝑄𝑄
=

𝑄

12𝛼2𝑆 − (2𝑁 − 1)𝑄2
,

(19)

where the Christoffel symbols are calculated with

Γ
𝜆

𝜇] =
1

2
𝑔
𝜆𝜏

(𝑔]𝜏,𝜇 + 𝑔
𝜇𝜏,] − 𝑔

𝜇],𝜏) . (20)

The Riemannian curvature tensor, Ricc curvature, and scalar
curvature are given, respectively,

𝑅
𝜇

𝜎]𝜏 = Γ
𝜇

𝜎],𝜏 − Γ
𝜇

𝜎𝜏,] + Γ
𝜇

𝜆,𝜏
Γ
𝜆

𝜎,] − Γ
𝜇

𝜆,]Γ
𝜆

𝜎,𝜏
,

𝑅
𝜇] = 𝑅

𝜆

𝜇𝜆],

𝑅 = 𝑔
𝜇]

𝑅
𝜇].

(21)

With (21), we get the scalar curvature

R
𝑊

= −
24 2
1/𝑁

𝑁𝜋𝑆
1+1/2𝑁

𝛼
1+𝑁

[12𝛼2𝑆 − (2𝑁 − 1)𝑄2]
2
. (22)

This curvature is always negative for any values of charge 𝑄

and positive entropy 𝑆. It also diverges at 𝑄2 = 12𝛼
2
𝑆/(2𝑁 +

1), which consists with the first-order transition points (15)
reproduced from the capacity 𝐶

𝑄
only at 𝑁 = 1. Its behavior

can be seen in Figure 3. However, it implies no information
about the second-order phase transition. So, it is natural to
ask how the Ruppeiner curvature behaves. Could it give the
proper phase transition points?

With that question, we now turn to the Ruppeiner
geometry of the plane symmetric black hole. Recalling the
conformal relation (1) between the Ruppeiner geometry and
the Weinhold geometry, we obtain the Ruppeiner metric

𝑔
𝑅

=
1

𝑇
𝑔
𝑊

= (

−
12𝛼
2
𝑆 − (2𝑁 + 1)𝑄

2

2𝑁𝑆 (12𝛼2𝑆 − 𝑄2)
−

2𝑄

12𝛼2𝑆 − 𝑄2

−
2𝑄

12𝛼2𝑆 − 𝑄2
−

4𝑁𝑆

12𝛼2𝑆 − 𝑄2

),

(23)

where the index 𝑅 denotes the Ruppeiner geometry. After
some calculations, we obtain the Ruppeiner curvature

R
𝑅

= −
12𝛼
2
𝑄
2
(𝑁 − 1) [36𝑆𝛼

2
− (4𝑁 − 1)𝑄

2
]

(12𝛼2𝑆 − 𝑄2) [12𝑆𝛼2 − (2𝑁 − 1)𝑄2]
2

. (24)

It is obvious that the curvature will be zero at 𝑁 = 1.
The vanished thermodynamic curvature R

𝑅
implies that

there exist no phase transition points and no thermodynamic
interactions. So, the Ruppeiner curvature is not proper to
describe the phase transitions of the plane symmetric black
hole at 𝑁 = 1. The divergence of the Ruppeiner curvature
is at 𝑄

2
= 12𝛼

2
𝑆/(2𝑁 + 1) and 𝑄

2
= 12𝛼

2
𝑆, which can

be seen from Figure 4. The points 𝑄
2

= 12𝛼
2
𝑆 consist with

the zero-points (15) of the heat capacity 𝐶
𝑄
. This means

that the Ruppeiner curvature always implies the first-order
phase transition points. Like the Weinhold curvature, the
Ruppeiner curvature also implies no any information about
the second-order phase transition.

4. Unified Geometry of the Plane Symmetric
Black Hole

In the previous section, we show that theWeinhold curvature
implies the first-order phase transition points only at 𝑁 = 1,
while the Ruppeiner curvature implies the first-order phase
transition points except 𝑁 = 1. Both of the geometry
structures gave no information about the second-order phase
transition points of the plane symmetric black hole. Quevedo
pointed out that the two geometries are not Legendre
invariants, which makes them inappropriate to describe the
geometry of thermodynamic systems [34]. Considering the
Legendre invariant, a unified geometry was presented in
[35], where the metric structure can give a good description
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versus the charge𝑄
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𝑄 = ±20.
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Figure 4: The negative Ruppeiner curvature R
𝑅
versus the charge

𝑄 with 𝑁 = 3/2, 𝛼 = √3/3, and 𝑆 = 100. The divergence points are
at 𝑄 = ±20, ±14.1421.

of various types of black hole thermodynamics. So, in this
section, we would like to discuss the unified geometry of the
plane symmetric black hole, and we want to know whether it
works.

Here, we still take the mass 𝑀 as the thermodynamic
potential.Then the unified geometry metric can be expressed
as

𝑑𝑠
2

𝐿
= (𝑆

𝜕𝑀

𝜕𝑆
+ 𝑄

𝜕𝑀

𝜕𝑄
)(

−
𝜕
2
𝑀

𝜕𝑆2
0

0
𝜕
2
𝑀

𝜕𝑄2

)(
𝑑𝑆
2

𝑑𝑄
2)

=
𝛼
2−2𝑁

[12𝛼
2
𝑆 − (2𝑁 + 1)𝑄

2
] [12𝛼

2
𝑆 + (4𝑁 − 1)𝑄

2
]

25+2/𝑁𝜋2𝑁3𝑆2+1/𝑁

× 𝑑𝑆
2
+

𝛼
2−2𝑁

(12𝛼
2
𝑆 + (4𝑁 − 1)𝑄

2
)

22(𝑁+1)/𝑁𝜋2𝑁𝑆1/N
𝑑𝑄
2
.

(25)

The index 𝐿 denotes the curvature reproduced from the
Legendre invariant metric.
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Figure 5: The negative unified geometric curvature R
𝐿
versus the

charge𝑄with𝑁 = 1, 𝛼 = √3/3, and 𝑆 = 100. The divergence points
are at𝑄 = ±11.5470, which are consistent with the divergence points
of the heat capacity 𝐶

𝑄
. The positive curvature region is at |𝑄| ≥ 20

and it is not shown in this figure.

This diagonal metric reproduces the thermodynamic
curvatureR

𝐿
, which turns out to be non-zero and the scalar

curvature is

R
𝐿

=
192 4

1/𝑁
𝜋
2
𝛼
2𝑁

𝑁𝑆
1+1/𝑁

[12𝛼2𝑆 − (2𝑁 + 1)𝑄2]
2

[12𝛼2𝑆 + (4𝑁 − 1)𝑄2]
3

⋅ {(4𝑁 − 1)𝑄
2
[(𝑁 (4𝑁

2
− 6𝑁 − 3) − 1)𝑄

2

− 12 ((𝑁 − 5)𝑁 − 2) 𝛼
2
𝑆]

+ 144(𝑁 − 1)
2
𝛼
4
𝑆
2
} .

(26)

The thermodynamic curvature vanishes at 𝑄
2

= 12𝑆𝛼
2

when 𝑁 = 1, which are just the points of the first-order
phase transition. It is shown that the diverge points are
at 𝑄
2

= 12𝛼
2
𝑆/(2𝑁 + 1), which implies that there exist

second-order phase transitions at these points. This result
exactly consists with that of the heat capacity (14). The
detail behavior of R

𝐿
can be found in Figure 5, where the

singularities are just the divergence points of the heat capacity
𝐶
𝑄
. Now, we can see that the thermodynamic curvature

R
𝐿
reproduced from the Legendre invariant metric (25)

could give an exact description of the second-order phase
transitions of a thermodynamics system. Beside this, we also
expect that this unified geometry description may give more
information about a thermodynamics system.

5. Unified Geometry beyond
Semiclassical Approximation

In this section, we will discuss the unified geometry of the
plane symmetric black hole beyond semiclassical approxi-
mation. With the idea, each quantity of the black hole will
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Figure 6:The negative unified geometric curvatureR
𝐿
versus the charge𝑄, including the logarithmic correction with𝑁 = 1, 𝛼 = √3/3, and

𝑆 = 100. The parameter 𝛾 is set to 1/2 (left), 5/6 (middle), and 3/2 (right), respectively. The divergence points are at𝑄 = ±11.3756, ±11.2613,
and ±11.0326.

be modified accordingly. For general, we suppose that the
corrected entropy is of the form

𝑆

= 𝑆 − 𝛾 ln 𝑆. (27)

The parameter 𝛾 is a constant. In fact, the origin of the
logarithmic correction term can be accounted by the uncer-
tainty principle or the tunneling method. With (27), the heat
capacity (14) is also modified to

𝐶


𝑄
=

2𝑁𝑆 (𝑆 − 𝛾) (𝑆 − 𝛾 ln 𝑆) (12𝑆𝛼
2
− 𝑄
2
− 12𝛼

2
𝛾 ln 𝑆)

𝐴
2
𝑄2 − 𝐴

1

,

(28)

with

𝐴
1
= 12𝛼

2
(𝑆 − 𝛾 ln 𝑆) [(1 + 2𝑁 ln 𝑆) 𝛾

2
− 2 (𝑁+1) 𝑆𝛾+𝑆

2
] ,

𝐴
2
=[2𝑁 (1+ln 𝑆)+1] 𝛾

2
−2 (3𝑁+1) 𝑆𝛾 + (2𝑁+1) 𝑆

2
.

(29)

The singular points of the heat capacity are determined by
𝐴
2
𝑄
2
− 𝐴
1
= 0 and are given by

𝑄
2
=

𝐴
1

𝐴
2

. (30)

If 𝛾 = 0, the singular points of the heat capacity will reduce to
(14). Following Section 4, we obtain the curvatureR

𝐿
:

R


𝐿
=

ℎ (𝑆, 𝑄,𝑁, 𝛾)

𝐾3(𝐴
2
𝑄2 − 𝐴

1
)
2
, (31)

where𝐾 = [4𝑁(𝑆 − 𝛾 ln 𝑆) + 𝛾 − 𝑆]𝑄
2
+ 12𝛼

2
(𝑆 − 𝛾)(𝑆−𝛾 ln 𝑆)

and ℎ(𝑆, 𝑄,𝑁, 𝛾) is a complex function and we do not write
it here. It is found that the divergence points for the heat
capacity 𝐶



𝑄
and the curvature R

𝐿
consist with each other,

which means that the curvature gives proper points, where
second-order phase transitions take place. So, it is easy to
summarize that the logarithmic correction term does not
affect the unified geometry to depict the plane symmetry
black hole’s phase transitions.

Now, we would like to discuss how the geometry behaved
as the parameter 𝛾 takes different values. For simplicity, we
turn back to the case 𝑁 = 1. The Legendre invariant metric
for this case is

𝑔
𝐿

= (

−
𝐵𝐶

128𝜋2𝑆2(𝑆 − 𝛾 ln 𝑆)
4

0

0
𝐵

16𝜋2𝑆2(𝑆 − 𝛾 ln 𝑆)
2

),

(32)

where 𝐵 = 𝐾|
𝑁=1

and 𝐶 = (𝐴
2
𝑄
2

− 𝐴
1
)|
𝑁=1

. After
some tedious calculations, we can obtain the curvature. The
numerator of the curvature is a cumbersome expression and
can not be written in a compact form.While the denominator
of it is proportional to the determinant of the metric (32) and
is given by

𝐷 = 𝐵
3
⋅ 𝐶
2
. (33)

Fixing the parameters 𝛼 and entropy 𝑆, the characteristic
behavior of the curvature is depicted in Figure 6, where the
parameter 𝛾 is set to 1/2, 5/6 and 3/2, respectively.The values
of the charge 𝑄 at the divergence points of the curvatureR

𝐿

are given as

𝑄 = ±2√3𝛼√
(𝑆 − 𝛾 ln 𝑆) [(1 + 2 ln 𝑆) 𝛾

2
− 4𝑆𝛾 + 𝑆

2
]

[2 (1 + ln 𝑆) + 1] 𝛾2 − 8𝑆𝛾 + 3𝑆2
. (34)

When Δ = 3 − 2 ln 𝑆 ≥ 0, there are three points of 𝛾 for the
vanished charge 𝑄:

𝛾
1
=

𝑆

ln 𝑆
, 𝛾

±
=

2 ± √3 − 2 ln 𝑆

1 + 2 ln 𝑆
𝑆. (35)

In general, we consider 𝑆 ≫ 1, which leads to Δ < 0. So, the
vanished charge 𝑄 is only at 𝛾 = 𝛾

1
.

6. Conclusion

In this paper, we study the phase transitions and geome-
try structure of the plane symmetry black hole. The local



Advances in High Energy Physics 7

thermodynamic stability of it is also discussed through
the heat capacity 𝐶

𝑄
. It is shown that there always exist

locally thermodynamically stable phases and unstable phases
for plane symmetric black hole due to suitable parame-
ter regimes. The Weinhold geometry and the Ruppeiner
geometry are obtained. The Weinhold curvature gives phase
transition points, which correspond to that of the first-
order phase transition only at 𝑁 = 1, while the Ruppeiner
one shows first-order phase transition points for arbitrary
𝑁 ̸=1. Both of which give no information about the second-
order phase transition. Quevedo et al. first pointed out
that the two geometry metrics are not Legendre invariant
and they introduced a Legendre invariant metric, which
can give a good description of various types of black hole
thermodynamics. Considering the Legendre invariant, we
obtain a unified geometry metric, which gives a correct
behavior of the thermodynamic interaction and second-
order phase transition. Including the logarithmic corrected
term, we study the geometry structure of the plane symmetry
black hole. The result shows that the logarithmic correction
term does not affect the unified geometry to depict the phase
transitions. In this paper, we show that the unified geometry
description gives a good description of the second-order
phase transitions of the plane symmetry black hole. We also
expect that this unified geometry description may give more
information about a thermodynamic system.
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The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed
formalism of geometrothermodynamics (GTD). Using a thermodynamic metric which is invariant with respect to Legendre
transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond
to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar.This further indicates that
the curvature of the thermodynamic metric is a measure of thermodynamic interaction.

1. Introduction

Thework ofHawking [1] gives rise to an extensive study of the
thermodynamics of black holes. One of the most interesting
aspects of such study is the notion of critical behaviour
that has arisen in several contexts, for example, Hawking
and Page’s [2] phase transition in AdS space and the idea
that the extremal limit of different black hole families might
themselves be regarded as genuine critical points [3–6]. A
complete explanation for the final state of the black hole after
the evaporation is important, but it has not been achieved,
presumably because there is not yet a full quantum gravity
theory. Today, one of the strongest candidates for quantum
gravity is string theory, in which coordinates of the target
spacetime become noncommuting operators on a D-brane as

[𝑥
𝜇
, 𝑥

]
] = 𝑖𝜃

𝜇]
, (1)

where 𝜃
𝜇] is an antisymmetric matrix which determines the

fundamental cell discretization of spacetime in the same way
as the Planck constant discretizes the phase space. It has
also been shown that Lorentz invariance and unitary can be
achieved by assuming 𝜃𝜇] = 𝜃 diag(𝜖

1
, . . . , 𝜖

𝑛/2
), where 𝑛 is the

dimension of spacetime, and √𝜃 is a constant that provides
a minimum scale. A noncommutative static and spherically
symmetric black hole solution whose commutative limit is

the Schwarzschild metric has been found in [7–11]. The
thermodynamics and evaporation process of this black hole
have been studied in [12], while the entropy issue is discussed
in [13, 14] and its Hawking radiation in [15].

On the other hand, the use of geometry in statisti-
cal mechanics was pioneered by Ruppeiner [16, 17] and
Weinhold [18, 19], who suggested that the curvature of a
metric defined on the space of parameters of a statistical
mechanical theory could provide information about the
phase structure. However, when these methods are applied
to the study of black hole thermodynamics, some puzzling
anomalies appear. A possible solution to these issues was
suggested by Quevedo’s geometrothermodynamics (GTD),
whose starting point [20] was the observation that standard
thermodynamics was invariant with respect to Legendre
transformations, and an interesting aspect in this formalism
is that it indicates that phase transitions occur at those points
where the thermodynamic curvature is singular.

In this paper, we apply the GTD formalism to the
noncommutative Schwarzschild black hole to investigate the
behaviour of the thermodynamical curvature in the search
of phase transitions. This noncommutative black hole has
two horizons and an evaporation process that ends up in
a extremal zero-temperature configuration. Thus, similar
evaporation process and thermodynamical properties when
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compared with the behaviour of Reissner-Nordström black
hole are expected as stressed in [21, 22]. Since the non-
commutative Schwarzschild black hole is described by the
thermodynamical variables mass, temperature, and entropy,
the space of equilibrium thermodynamic states has just
two dimensions, making it impossible to analyse the phase
transitions structure from the curvature scalar. Therefore,
we need to treat the noncommutative parameter 𝜃 as a
thermodynamical variable, playing a similar role to that
of the electric charge in Reissner-Nordström solution. This
consideration can be justified from the point of view of
the quantum fluctuations of geometry which are naturally
expected to arise from the noncommutativity of spacetime.

2. Geometrothermodynamics in Brief

Let T be the (2𝑛 + 1)-dimensional thermodynamic phase
spacewith coordinates given by the thermodynamic potential
Φ, the extensive variables 𝐸

𝑎, and the intensive variables
𝐼
𝑎. These coordinates will be noted as 𝑍

𝐴
= {Φ, 𝐸

𝑎
, 𝐼
𝑎
}

with 𝑎 = 1, . . . , 𝑛. We define on T a nondegenerate metric
𝐺 = 𝐺(𝑍

𝐴
) and Gibbs 1-form Θ = 𝑑Φ − 𝛿

𝑎𝑏
𝐼
𝑎
𝑑𝐸
𝑏. If the

conditionΘ∧(𝑑Θ)
𝑛

̸= 0 is satisfied, the set (T, Θ, 𝐺) is called a
contact Riemannian manifold. Gibbs 1-form is invariant with
respect to Legendre transformations, while the metric 𝐺 is
Legendre invariant if its functional dependence on 𝑍

𝐴 does
not change under a Legendre transformation. Following the
GTD formalism, we will impose this invariance in order to
guarantee that the geometric properties of 𝐺 do not depend
on the thermodynamic potential used for its construction.We
introduce the 𝑛-dimensional subspaceE ⊂ T called the space
of equilibrium thermodynamic states through the following
smooth mapping:

𝜑 : E → T,

(𝐸
𝑎
) → (Φ, 𝐸

𝑎
, 𝐼
𝑎
) ,

(2)

with Φ = Φ(𝐸
𝑎
) and subject to the condition 𝜑

∗
(Θ) = 0

which gives the following relations:

𝑑Φ = 𝛿
𝑎𝑏
𝐼
𝑎
𝑑𝐸
𝑏
, (3)

𝜕Φ

𝜕𝐸𝑎
= 𝛿
𝑎𝑏
𝐼
𝑏
. (4)

Equation (3) corresponds to the first law of thermody-
namics, whereas (4) is usually known as the condition for
thermodynamic equilibrium, that is, the intensive thermody-
namic variables are dual to the extensive ones.The second law
of thermodynamics is equivalent to the convexity condition
on the thermodynamic potential,

𝜕
2
Φ

𝜕𝐸𝑎𝜕𝐸𝑏
≥ 0. (5)

The mapping 𝜑 implies that the equation Φ = Φ(𝐸
𝑎
),

known as the fundamental equation, must be explicitly given
and from this relation all the thermodynamical information

can be derived. The potential satisfies the homogeneity con-
ditionΦ(𝜆𝐸

𝑎
) = 𝜆
𝛽
Φ(𝐸
𝑎
), with 𝜆 and 𝛽 constant parameters,

so it also satisfies Euler’s identity as follows:

𝛽Φ (𝐸
𝑎
) = 𝛿
𝑎b𝐼
𝑏
𝐸
𝑎
. (6)

Using the first law of thermodynamics, this equation
becomes Gibbs-Duhem relation:

(1 − 𝛽) 𝛿
𝑎𝑏
𝐼
𝑎
𝑑𝐸
𝑏
+ 𝛿
𝑎𝑏
𝐸
𝑎
𝑑𝐼
𝑏
= 0. (7)

A thermodynamic system is described by a thermo-
dynamic metric 𝐺 if it is invariant with respect to trans-
formations which do not modify the contact structure of
T. In particular, 𝐺 must be invariant with respect to
Legendre transformations in order for GTD to describe
thermodynamic properties in terms of geometric concepts.
A Legendre invariant metric 𝐺 induces a Legendre invariant,
nondegenerate metric structure 𝑔 onE through the pullback
𝜑
∗ as 𝑔 = 𝜑

∗
(𝐺) [20].

The results of Quevedo et al. [23–25] showed that if the
curvature of the thermodynamic metric is to be considered
as a measure of the thermodynamic interaction, this metric
should be flat only for systems with no thermodynamic
interaction. Hence, phase transitions must occur at those
points where the thermodynamic curvature is singular.There
is a vast number of metrics on T that satisfy the Legendre
invariance condition, and some results seem to show that the
metric structure of the phasemanifold determines the type of
systems that can be described by a specific thermodynamic
metric. For instance, a pseudo-Euclidean structure of the
form

𝐺 = Θ
2
+ (𝛿
𝑎𝑏
𝐸
𝑎
𝐼
𝑏
) (𝜂
𝑐𝑑
𝑑𝐸
𝑐
𝑑𝐼
𝑑
) (8)

with 𝜂
𝑐𝑑

= diag(−1, 1, 1, . . . , 1) is Legendre invariant and
induces the following metric:

𝑔 = (𝐸
𝑓 𝜕Φ

𝜕𝐸𝑓
)(𝜂
𝑎𝑏
𝛿
𝑏𝑐 𝜕
2
Φ

𝜕𝐸𝑐𝜕𝐸𝑑
𝑑𝐸
𝑎
𝑑𝐸
𝑑
) , (9)

which appears to describe thermodynamical systems charac-
terized with second-order phase transitions.

3. The Noncommutative Schwarzschild
Black Hole

In a commutative space, the mass density of a point particle
is expressed as a product of its mass with the Dirac delta
function, but in a noncommutative space, it is expected
that such a description of point mass is not possible due
to the fuzziness of space which arises as a consequence of
position-position uncertainty relation. To introduce the non-
commutative correction in the expression of mass density, we
replace the Dirac delta function by a Gaussian distribution of
minimal width√𝜃,

𝜌
𝜃
=

𝑀

(4𝜋𝜃)
3/2

𝑒
−𝑟
2
/4𝜃

, (10)
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where the noncommutativity parameter 𝜃, which defines the
minimum scale, is considered to be a small positive number.
Consequently, the mass of the black hole can be determined
by integrating (10) over a volume of radius 𝑟,

𝑚
𝜃
(𝑟) = ∫

𝑟

0

4𝜋𝑟
2
𝜌
𝜃
(𝑟

) 𝑑𝑟

=

2𝑀

√𝜋
𝛾(

3

2
,
𝑟
2

4𝜃
) , (11)

where 𝛾 (3/2, 𝑟
2
/4𝜃) is the lower incomplete gamma function,

𝛾 (𝑎, 𝑧) = ∫

𝑧

0

𝑡
𝑎−1

𝑒
−𝑡
𝑑𝑡. (12)

In the commutative limit, 𝜃 → 0, 𝛾 (3/2, 𝑟
2
/4𝜃) becomes

the usual gamma function Γ (3/2) and 𝑚
𝜃
(𝑟) → 𝑀. Substi-

tuting this result in themass term of the Schwarzschild’s solu-
tion, we obtain the noncommutative Schwarzschild metric,

𝑑𝑠
2

= −(1 −
4𝑀

𝑟√𝜋
𝛾(

3

2
,
𝑟
2

4𝜃
))𝑑𝑡

2

+(1 −
4𝑀

𝑟√𝜋
𝛾(

3

2
,
𝑟
2

4𝜃
))

−1

𝑑𝑟
2
+ 𝑟
2
𝑑Ω
2
.

(13)

The classical Schwarzschild’s metric is obtained from (13)
in the limit 𝑟/√𝜃 → ∞, and event horizon(s) can be found at
points where𝑔

00
(𝑟
𝐻
) = 0, which corresponds to the following

condition:

𝑟
𝐻

=
4𝑀

√𝜋
𝛾(

3

2
,
𝑟
2

𝐻

4𝜃
) . (14)

The analysis of (14) determines that, instead of a single-
event horizon, there are three different possibilities depend-
ing on a critical mass𝑀

0
= 1.9√𝜃, [9]:

(1) two distinct horizons for𝑀 > 𝑀
0
,

(2) one degenerate horizon at 𝑟
0
= 3.0√𝜃, when𝑀 = 𝑀

0

(corresponds to the extremal black hole),

(3) no horizon for𝑀 < 𝑀
0
.

Equation (14) can be conveniently rewritten in terms of
the gamma function as

𝑟
𝐻

= 2𝑀[1 −
2

√𝜋
Γ(

3

2
,
𝑀
2

𝜃
)] , (15)

where the first term in the right hand side is the Schwarzschild
radius, while the second term brings in noncommutative
corrections. The area of the event horizon can be written as

𝐴 = 4𝜋𝑟
2

𝐻
= 16𝜋𝑀

2
[1 −

2

√𝜋
Γ(

3

2
,
𝑀
2

𝜃
)]

2

(16)

and, hence, the entropy associated with the black hole is
simply

𝑆 =
𝐴

4
= 4𝜋𝑀

2
[1 −

2

√𝜋
Γ(

3

2
,
𝑀
2

𝜃
)]

2

. (17)

The Hawking temperature may be calculated as usual,
giving the temperature of Schwarzschild’s black hole plus a
correction term,

𝑇 =
1

4𝜋

𝑑𝑔
00

𝑑𝑟

𝑟=𝑟𝐻

=
1

4𝜋𝑟
𝐻

[1 −
𝑟
3

𝐻

4𝜃3/2

𝑒
−𝑟
2

𝐻
/4𝜃

𝛾 (3/2, 𝑟2
𝐻
/4𝜃)

] .

(18)

As is well known, in the commutative case, the tem-
perature diverges, putting a limit on the validity of the
conventional description of Hawking radiation. However,
the temperature obtained in (18) includes noncommutative
effects which are relevant at small distances, making 𝑇 to
deviate from the standard hyperbola and, instead of diverge,
it reaches a maximum value at the radius 𝑟

𝑐
≃ 4.7√𝜃 or

correspondingly at the mass 𝑀
𝑐
≃ 2.4√𝜃 and then quickly

drops to zero temperature for 𝑟
𝐻

= 𝑟
0
, which corresponds

to the radius of the extremal black hole. This behaviour of
the evaporation precession is typical of black holes with two
horizons as, for example, Reissner-Nordström’s solution.

From (14), we may write

𝑀 =
√𝑆

4𝛾 (3/2, 𝑆/4𝜋𝜃)
, (19)

which may be considered as the fundamental thermody-
namical equation 𝑀 = 𝑀(𝑆, 𝜃) which relates the total
energy of the black hole, 𝑀, with the extensive variables,
entropy, and noncommutativity parameter, and from which
all the thermodynamical information can be derived. The
inclusion of the parameter 𝜃 as a thermodynamical variable
is justified from the analogy between the noncommuta-
tive Schwarzschild’s black hole and the Reissner-Nordström
solution which has been commented in [21] and studied
extensively in [22], where the authors showed that the
noncommutativity parameter plays a similar role with the
electric charge. Even more, the authors showed that the
thermodynamical properties and the evaporation process are
similar in both solutions.

In the geometric formulation of thermodynamics, we
will choose the extensive variables as 𝐸

𝑎
= {𝑆, 𝜃} and the

corresponding intensive variables as 𝐼𝑎 = {𝑇,Ψ}, where 𝑇 is
the temperature, and Ψ is the generalised variable conjugate
to the state parameter 𝜃. Therefore, the coordinates that we
will use in the 5-dimensional thermodynamical space T are
𝑍
𝐴
= {𝑀, 𝑆, 𝜃, 𝑇, Ψ}. The contact structure ofT is generated

by the 1-form,

Θ = 𝑑𝑀 − 𝑇𝑑𝑆 − Ψ𝑑𝜃. (20)

To obtain the induced metric in the space of equilibrium
states E, we will introduce the following smooth mapping:

𝜑 : {𝑆, 𝜃} → {𝑀(𝑆, 𝜃) , 𝑆, 𝜃, 𝑇 (𝑆, 𝜃) , Ψ (𝑆, 𝜃)} (21)
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along with the condition 𝜑
∗
(Θ) = 0 that corresponds to the

first law 𝑑𝑀 = 𝑇𝑑𝑆 + Ψ𝑑𝜃. The conjugate variables to 𝑆 and
𝜃 are evaluated as

𝑇 =
𝜕𝑀

𝜕𝑆

=
1

8√𝑆𝛾 (3/2, 𝑆/4𝜋𝜃)

[

[

1−
1

4
√(

𝑆

𝜋𝜃
)

3
𝑒
−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)

]

]

,

Ψ =
𝜕𝑀

𝜕𝜃
=

𝑆
2

32√𝜋3𝜃5

𝑒
−𝑆/4𝜋𝜃

𝛾2 (3/2, 𝑆/4𝜋𝜃)
.

(22)

Using (8),T becomes aRiemannianmanifold by defining

𝐺 = (𝑑𝑀 − 𝑇𝑑𝑆 − Ψ𝑑𝜃)
2
+ (𝑆𝑇 + Ψ𝜃) (−𝑑𝑆𝑑𝑇 + 𝑑Λ𝑑𝜃) .

(23)

This metric has nonzero curvature, and its determinant is
det[𝐺] = (𝑆𝑇 + Ψ𝜃)

4
/16. To obtain the induced metric in the

space of equilibrium states E, we use (9), obtaining

𝑔 = (𝑆𝑀
𝑆
+ 𝜃𝑀
𝜃
) (

−𝑀
𝑆𝑆

0

0 𝑀
𝜃𝜃

) , (24)

where subscripts represent partial derivative with respect to
the corresponding coordinate. Clearly, the determinant of
this metric is

det [𝑔] = −𝑀
𝑆𝑆
𝑀
𝜃𝜃

(𝑆𝑀
𝑆
+ 𝜃𝑀
𝜃
) . (25)

4. Phase Transitions and the Curvature Scalar

Phase transitions are an interesting subject in the study of
black holes thermodynamics because there is no unanimity in
their definition. As is well known, ordinary thermodynamics
defines phase transitions by looking for singular points in
the behaviour of thermodynamical variables. For example,
Davies [26, 27] showed that divergences in the heat capacity

𝐶 = 𝑇
𝜕𝑆

𝜕𝑇
=

𝑀
𝑆

𝑀
𝑆𝑆

(26)

indicate phase transitions. From these arguments one can
expect that phase transitions occur at 𝑀

𝑆𝑆
= 0. In geomet-

rothermodynamics, the apparition of phase transitions is
related with the divergences of the curvature scalar 𝑅 in the
space of equilibrium states E. This can be understood by
remembering that 𝑅 always contains the determinant of the
metric 𝑔 in the denominator, so that zeros of det[𝑔] could
lead to curvature singularities if those zeros are not canceled
by the zeros of the numerator.

The metric given by (24) has the determinant (25) which
is proportional to 𝑆

𝑀𝑀
and 𝑆

𝜃𝜃
. This fact makes clear the

coincidence with the divergence of the heat capacity. Even
more, the curvature scalar 𝑅 for the metric 𝑔 has the
denominator

𝐷 = (𝑆𝑀
𝑆
+ 𝜃𝑀
𝜃
)
3

𝑀
2

𝑆𝑆
𝑀
2

𝜃𝜃
, (27)

which makes 𝑅 diverge when 𝑆
𝑀𝑀

= 0 or 𝑆
𝜃𝜃

= 0, whereas
the numerator is a rather cumbersome expression that cannot
be written in a compact form. From (19), we have

𝑀
𝑆𝑆

= −
1

16√𝑆3𝛾 (3/2, 𝑆/4𝜋𝜃)

× [

[

1 +
1

6

√(
𝑆

𝜋𝜃
)

3
𝑒
−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)

−
1

8

√(
𝑆

𝜋𝜃
)

5
𝑒
−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)

−
1

8
(

𝑆

𝜋𝜃
)

3
𝑒
−𝑆/2𝜋𝜃

𝛾2 (3/2, 𝑆/4𝜋𝜃)

]

]

,

𝑀
𝜃𝜃

=
5𝑆
2

64√𝜋3𝜃7
[1 −

𝑆

10√𝜋2𝜃
−

𝑆√𝑆

10√𝜋3𝜃3

𝑒
−𝑆/4𝜋𝜃

𝛾 (3/2, 𝑆/4𝜋𝜃)
]

×
𝑒
−𝑆/4𝜋𝜃

𝛾2 (3/2, 𝑆/4𝜋𝜃)
.

(28)

A numerical analysis shows that singularities in the
curvature scalar 𝑅 appear exactly at the same points where
the behaviour of the heat capacity indicates the presence of
phase transitions (see Figure 1). In Figure 2, we show the
particular phase transition for 𝜃 = 0.5 and located at the
approximate value 𝑆 = 57. For all analysed values of the
noncommutativity parameter 𝜃, it was obtained a similar
behaviour, showing that, in fact, the points where phase
transitions occur are characterised by curvature singularities
of the thermodynamic metric.

5. Conclusion

Geometrothermodynamics is a differential geometry formal-
ism whose objective is to describe in an invariant manner
the properties of thermodynamic systems using geometric
concepts. In this work, we reformulated the thermodynamics
of the noncommutative Schwarzschild’s black hole under
the GTD formalism and considered the noncommutativity
parameter 𝜃 as a new thermodynamical state variable. The
total mass of the black hole is interpreted as its total energy,
and the formalism gives a curvature scalar that diverges
exactly at the point at which the heat capacity indicates
the presence of a phase transition. Thus, we conclude that
the curvature of the space of thermodynamic equilibrium
states can be interpreted as a measure of the thermodynamic
interaction.

These results clearly confirm that the phasemanifold con-
tains information about thermodynamic systems; however,
a further exploration is necessary in order to understand
how the thermodynamic information is encoded in the
geometrical properties. For example, it is really interesting
to address the problem of describing the black hole in
an isolated cavity which is bigger than its Schwarzschild
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Figure 1: (a) Characteristic behaviour of the heat capacity as a function of 𝑆 and 𝜃. (b) Characteristic behaviour of the thermodynamic
curvature scalar 𝑅 as a function of 𝑆 and 𝜃. Note that the singularities follow the same pattern in both functions, indicating the presence of
phase transitions.
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Figure 2: (a) Characteristic behaviour of the heat capacity as a function of the entropy 𝑆. The divergence indicates the point of a phase
transition. (b) Behaviour of the thermodynamic curvature scalar 𝑅 as a function of the entropy 𝑆. The singularity is located at the point of the
phase transition. In both figures, the noncommutativity parameter is set to 𝜃 = 0.5.

radius. As is known, the asymptotically flat solution has an
unstable behaviour, because of the negative heat capacity;
but when introducing the cavity, the temperature is fixed
at a finite spatial boundary, and it is expected that the
black hole reaches the thermodynamical equilibriumwith the
surrounding radiation if the total energy 𝐸 of the system is
greater than some critical value 𝐸

𝑐
, depending on the volume

of the cavity and the number of fields in the radiation [28].

It is well known that asymptotic flatness is not satisfied in
reality and therefore, it is important to consider this situation
in the specific case of the noncommutative black hole for
which the heat capacity becomes positive for certain ranges
of the horizon radius, making stable small and large black
holes [22]. In a forthcoming paper, we will analyse how the
GTD formalism describes this kind of system and how to
implement the cavity in the geometric model.
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