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DNA contains the genetic information for the synthesis of proteins and RNA, and it is an indispensable substance in living
organisms. DNA-binding proteins are an enzyme, which can bind with DNA to produce complex proteins, and play an
important role in the functions of a variety of biological molecules. With the continuous development of deep learning, the
introduction of deep learning into DNA-binding proteins for prediction is conducive to improving the speed and accuracy of
DNA-binding protein recognition. In this study, the features and structures of proteins were used to obtain their
representations through graph convolutional networks. A protein prediction model based on graph convolutional network and
contact map was proposed. The method had some advantages by testing various indexes of PDB14189 and PDB2272 on the
benchmark dataset.

1. Introduction

The sequence of a protein determines its structure and
different structures determine different functions. There is
about 18% of the weight of protein in the human body. As
the carrier of life, it plays a very important role in human
production and life. As a major component of life, proteins
are involved in almost all activities of cells, including DNA
replication and transcription, chromatin formation, cell
growth, and a series of activities, all of which cannot be
separated by specific proteins [1]. These proteins that bind
to and interact with DNA are called DNA-binding proteins.
It has a strong affinity with single-stranded DNA, but a small
affinity with double-stranded DNA. Therefore, DNA-
binding proteins are also called helical instability proteins,
single-stranded DNA-binding proteins [2].

With the development of gene sequencing, various
sequencing studies have left many DNA and proteins, includ-
ing DNA-binding proteins. Using machine learning and deep

learning methods to predict DNA-binding proteins has
reached a good level, but there is still room for improvement.

At present, many methods based on machine learning
have emerged to distinguish DNA-binding proteins, which
are divided into structure and sequence methods. Yubo
et al. [3] proposed a DBD-Hunter method that combines
structural comparison with an assessment of statistical
potential to measure the interaction between DNA bases
and protein residues. Zhou et al. [4] used random forest
for classification by adopting amino acid preservation
pattern, potential electrostatic, and other features. However,
these methods are too dependent on the protein structure, so
the practical operation is difficult. Therefore, sequence-based
studies were carried out. Liu et al. [5] proposed a new
method for predicting DNA-binding proteins, IDNA-Pro,
by integrating features into pseudoamino acids from protein
sequences and classifying them through random forest.
Zhao et al. [6] classified DNA-binding proteins based on
the physicochemical properties of amino acids by using
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random forest to recognize the sequence features generated
by PseAcc. Although the method based on machine learn-
ing can identify DNA-binding proteins well, it needs a lot
of human intervention in the process of feature selection
and could not properly grasp the relationship between data
and features. To overcome this difficulty, deep learning
techniques were introduced into protein prediction. Loo
et al. [7] proposed a new prediction method MsDBP, which
input the fused multiscale features into a deep neural net-
work for learning and classification. The classification was
tested with 67% accuracy on a separate dataset PDB2272.
Compared with machine learning method, it can save the
necessary manual intervention, but the prediction result
needs to be improved.

Although there are many methods used to predict DNA-
binding proteins at present, the results still have room for
improvement. The main problem is how to obtain the
high-precision protein structure from the protein sequence,
because the accuracy of protein structure and feature has a
great impact on the prediction results. In addition, the graph
convolution network (GCN) has been widely used in the
research of bioinformatics. Graph composed of nodes and
edges serves as the input of the network without any require-
ments on size and format [8]. In order to improve the accu-
racy of structure and prediction, combining with the current
developing trend of the technology of deep learning, a DNA-
binding protein prediction model based on GCN and
contact map was proposed. The protein graph depends on
the sequence of the results of the comparison, so first intro-
ducing the preprocess of the dataset, including sequence
comparison and filtering; the part of the output is used to
calculate the features, and the other part as the input of
Pconsc4 model [9], which is used to predict protein contact
map, so the inputs of the model are feature matrix and
adjacency matrix. We use them for training and prediction.
The experimental results show that the prediction perfor-
mance of DNA-binding proteins can be obtained by the
method described. The research content of this paper is
shown in Figure 1.

2. Materials and Methods

The prediction of DNA-binding proteins is divided into
three parts: data preprocessing, training model, and testing.
GCN differs from neural networks in that it introduces a
graph structure to represent proteins, which can better rep-
resent the structure of proteins. The main purpose of protein
sequence preprocessing is to obtain the features and struc-
tures of proteins. For the protein processing, the contact
map is obtained by predicting the sequence through
Pconsc4, and its output exactly corresponds to the adjacency
matrix of GCN [10].

2.1. The Dataset. The DNA-binding protein dataset selected
is the internationally common dataset. PDB14189 and
PDB2272 were established by Gomes et al. [11]. Among
them, the PDB14189 dataset was divided into 7129 DNA-
binding protein sequences and 7060 DNA-unbinding
protein sequences, and the PDB2272 dataset was divided

into 1153 DNA-binding proteins and 1119 nonbinding pro-
teins. PDB14189 was taken as the training set and PDB2272
as the test set. The dataset is detailed in Table 1 below.
Among them, positive represents DNA-binding proteins,
while negative represents non-DNA-binding proteins.

2.2. Protein Representation. The representation of proteins is
generally divided into spatial structure and feature. The
long-chain stable structure of protein also contains hydro-
gen bonds, hydrophobic bonds, salt bonds, and so on [12].
Each protein contains lots of atoms, if each atom is viewed
as a node, then the protein graph will be very large, which
will increase the pressure of training and is not easy to
achieve. However, there are about hundreds of residues in
a protein, and there is no other spatial information between
residues, so it is more suitable to be used as nodes to repre-
sent structural features. The spatial structure of a protein can
be represented by a contact map; it represents the two-
dimensional structure of the protein; each element in the
matrix represents the probability of contact at the corre-
sponding position [13]; the value is between 0 and 1.
Figure 2 shows a protein contact map.

Predicting the structure of a protein from its sequence is
the purpose of introducing contact map. Specifically, assum-
ing that the length of protein sequence is M, the size of its
contact map is M ∗M. Mði, jÞ represents the probability of
contact between the ith residue and the jth residue. If the
value is less than the threshold value, it can be considered
that they are in contact. Pconsc4 is a fast and efficient
method to predict contact map. Since its output is a proba-
bility value between 0 and 1, the threshold value of 0.5 was
set for the obtained contact maps, and the probability value
greater than or equal to 0.5 was set as 1.The rest were set as
0, so that the structural information of the protein could be
well extracted, corresponding to the adjacency matrix as the
input GCN network [14].

The next step is the extraction of protein features. Since
residues are used as nodes, the properties of residues are
selected as features. Due to the differences in the R group,
different features are displayed, including aromaticity, polar-
ity, and explicit valence [15]. Position-specific scoring
matrix (PSSM) is a commonly used representation of pro-
tein features, in which the results of each element depend
on the results of sequence comparison, and these results
represent the feature of proteins [16]. Other features were
also used, such as the primary thermal coding of the remain-
ing symbols, whether the residue was aromatic, whether the
residue was acidic charged, and whether it was extremely
neutral, etc. [17], as shown in Table 2. In summary, the total
number of features is 54, so the protein’s feature matrix
dimension is ðM, 54Þ.

For PSSM, the basic position frequency matrix (PFM)
[18] is calculated by the number of occurrence of residues
at each position in the sequence of sequence alignment
results. Equation (1) is as follows:

MPFM
k,j = 〠

N

i=1
I Ai,j = k
� �

, ð1Þ
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where A represents a set of alignment sequences equal to
the target protein length, k is the set of residues, i = ð1, 2
⋯ ,NÞ, j = ð1, 2,⋯LÞ, and iðxÞ is the indicator function
when the condition is met or not. Equation (2) is used to
obtain the position probability matrix (PPM):

MPPM
k,j =

MPFM
k,j + p/4ð Þ
N + p

: ð2Þ

In order to prevent the matrix entries from appearing
0, according to human experience, the pseudocount [19]
p was set 0.8, so that PPM was regarded as a part of the
node features.

2.3. Model Architecture. Although traditional convolution
techniques perform well for Euclidean data, they perform
poorly for non-Euclidean data [20]. Therefore, graph convo-
lution technology came into being. For a graph, the edges of
each node are related to other nodes and this information
can be used to capture interdependencies between instances,
so the node can aggregate its own features and its neighbor
features to generate a new representation of the node [21].
With the continuous development of graph learning, there
are many variations, like GAT, GAE, and GGN [22]. All
these network models can extract the feature; for using the
GCN layer, each layer convolution operation is as shown
in Equation (3):

Hl+1 = f Hl, A
� �

= σ D∧−1/2ÂD∧−1/2HlWl+1
� �

: ð3Þ

Among them, A is the adjacency matrix of node features,
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Figure 1: The processing of proteins, including the preprocessing of sequence, the generation of graph structures, and feature extraction,
Pconsc4 was used to extract protein structural information. Finally, protein graph was generated higher-level feature graph through GCN.

Table 1: Introduction to the dataset.

Number\dataset PDB14189 PDB2272

Positive 7129 1153

Negative 7060 1119

Total 14189 2272
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Figure 2: The contact map of protein.
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assuming that the node number is m, then its adjacency
matrix is ðm,mÞ, D̂ is the degree of matrix ðm,mÞ, which
represents the connection relationship between residues, D̂
=D + I, I is a unit matrix, considers itself features, Wl+1 is
the first l + 1 layer of weighting matrix, Hl is the output of
the first layer of l, and H0 = X, X is the input of the feature
matrix, Figure 3 shows the architecture of the model.

The protein graph contained much information about
the interactions and positions of each residue pair, which
was important for feature learning and predicting DNA-
binding proteins. It was input into the GCN to extract the
features. After convolution of multiple GCN layers, the
representation of protein was effectively extracted. Then,
the overall features of protein for prediction were obtained.
The prediction includes two full connection layers. The
results were presented as probabilities.

Using GCN to map proteins to the representation of rich
features has also become a method of protein feature extrac-
tion. In addition, there were many factors affecting the
experimental results, such as dropout, epoch, and batch.

Table 2: Node features.

Label Feature Size

1 One-hot encoding of the residue symbol 21

2 Position-specific scoring matrix (PSSM) 21

3 Whether the residue is aliphatic 1

4 Whether the residue is aromatic 1

5 Whether the residue is polar neutral 1

6 Whether the residue is acidic charged 1

7 Whether the residue is basic charged 1

8 Residue weight 1

9 The negative of the logarithm of the dissociation constant for the –COOH group 1

10 The negative of the logarithm of the dissociation constant for the –NH3 group 1

11 The negative of the logarithm of the dissociation constant for any other group in the molecule 1

12 The pH at the isoelectric point 1

13 Hydrophobicity of residue (pH = 2) 1

14 Hydrophobicity of residue (pH = 7) 1

Total 54

... ......

Input

Convolution
Layer 1

Convolution
Layer 2

ReLU ReLU
Global

Pooling 

Full connection
Layer1+ReLU+

Dropout

Full connection
Layer2+ReLU+

Dropout

Output

Figure 3: The structure of the GCN network, graphs of DNA-binding proteins through the GCN to get their representation.

Table 3: The hyperparameter settings using human experience.

Hyperparameter Setting

Epoch 1000

Batch size 128

Learning rate 0.001

Optimizer Adam

The number of convolution layers 3

Fully connected layers after GCN 2

Table 4: Combinations of GCN models on PDB14189.

Model Number of layers
Layer1
(in, out)

Layer2
(in, out)

Layer3
(in, out)

GCN 1 (54,54) — —

GCN 2 (54,54) (54,108) —

GCN 3 (54,54) (54,108) (108,216)

4 BioMed Research International



The setting of some hyperparameters were compared and
determined through experiments.

3. Results and Discussion

The experiment was built on PyTorch [23], an open source
deep learning framework. The GCN model was based on
its PyG implementation [24], PDB14189 was used for testing
to find the optimal super parameters, and PDB2272 was
used to test model performance.

3.1. The Evaluation Index. Accuracy (ACC), Matthews cor-
relation coefficient (MCC), sensitivity (SN), and specificity
(SP) were used as the evaluation indexes of the model [25],
these indexes were widely used in the studies of biological
sequences, as shown in

SN =
TP

TP + FN
,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ × TN + FPð Þ × TP + FPð Þ × TN + FNð Þp :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Among them, TP is the number of the correctly pre-
dicted positive samples, TN is the number of the correctly
predicted negative samples, FP is the number of the wrongly
predicted positive samples, and FN is the number of the
wrongly predicted negative samples. SN represents the
percentage of correctly predicted positive samples, SP repre-
sents the percentage of correctly predicted negative samples,
ACC represents the percentage of correctly predicted sam-
ples in total samples, and MCC represents the prediction

quality of the binary classification model, with a range of
½−1, 1�. The larger the MCC is, the better the prediction
quality of the model is.

3.2. The Setting of Hyperparameters. Training an optimal
model requires constantly adjusting the hyperparameters of
the model, which can be modified based on human experi-
ence. Some of the hyperparameters were shown in Table 3.
In this model, according to human experience, the GCN
layer was set to three, dimensions of input and output for
each layer were shown in Table 4. Some other parameters
were compared in the following experiences.

3.3. Model Performance when Selecting Different Dropouts.
After protein feature extraction, in order to better improve
the accuracy of classification, two full connection layers were
added to the ends to improve the learning ability of the
model. In the fully connected layer, in order to avoid overfit-
ting of the model, dropout was introduced to shut down
some neurons with a probability value. Different probability
values will affect the performance of prediction. To evaluate
the impact of different dropout values, Figure 4 shows the
performance of the model according to different dropout
values. When the dropout is 0.2, the model has the highest
performance compared to other parameters.

3.4. Whether PSSM Is Included in Feature Selection. The
selection of protein feature greatly affects the accuracy of
prediction. Since the dimension of PSSM matrix constructed
by features was very small, the experiment was carried out
with PSSM or without PSSM. Figure 4 shows the results of
various indicators under the condition. PSSM depends on
the sequence correlation results, which contains much
evolutionary information about the sequence, and ultimately
determines the protein features. As can be seen from
Figure 5, PSSM can effectively represent the features of
proteins and effectively improve the prediction performance.
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Figure 4: Comparison of prediction performance of different dropout probabilities.
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3.5. Analysis of Experimental Results. In the independent test
dataset, PDB14189 was used as the training dataset to train
the model, and PDB2272 was used as the test dataset.
According to the optimal experimental parameters, the final
DNA-binding protein classification model was constructed:
the number of GCN layers were three, dropout was
0.2, PSSM was selected as the feature, the input and
output dimensions of each layer were ð54, 54Þ, ð54,108Þ,
and ð108,216Þ. Other methods were compared with the
method, and the method reached ACC (78.49%), SN
(92.59%), SP (64.15%), and MCC (59.27%). Under certain
conditions, the method has certain advantages compared
with the existing methods, as shown in Table 5.

4. Conclusions

DNA-binding proteins are enzymes, which can bind with
DNA to produce complex proteins and play important roles
in the functions of a variety of biological molecules. In order
to improve the accuracy of prediction of DNA-binding
protein, a DNA-binding protein prediction model based on
GCN and contact map was proposed. In this model, the
dataset was preprocessed by sequence alignment; then, the
structural information is extracted by Pconsc4 model; PSSM
and some biological characteristics are used as features.
Finally, the GCN model was constructed to train and predict

DNA-binding protein data. The protein graph contained
information about the interactions and positions of each
residue pair, which was important for feature learning and
predicting binding proteins. The protein graph was input
into the GCN to extract the features, and the prediction
included two full connection layers. Using GCN to map pro-
teins to the representation of rich features has also become a
method of protein feature extraction. Through training and
parameter tuning, the performance of GCN model was
better than some existing methods. It also provides some
thoughts for other fields of biological information.

In the future, we plan to carry out a research on feature
extraction and network model to improve the accuracy of
DNA-binding proteins and related prediction. Different
biological features can be combined, and methods such as
attention mechanism can be considered to improve the
model, in order to achieve the goal of improving the predic-
tion effect and other indicators.

Data Availability

The datasets can be found in the references.
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Figure 5: Comparison of performance results with or without PSSM.

Table 5: Comparison between the proposed method and existing
methods on PDB2272.

Methods ACC (%) MCC (%) SN (%) SP (%)

Qu et al. [26] 48.33 3.34 48.31 48.35

Local-DPP [27] 50.57 4.56 8.76 93.66

Pse-DNA-Pro [28] 61.88 24.30 75.28 48.08

DPP-Pse-AAC [29] 58.10 16.25 56.63 59.61

Ms-DBP [30] 66.99 33.97 70.69 63.18

GCN-method 78.49 59.27 92.59 64.15
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Statins can help COVID-19 patients’ treatment because of their involvement in angiotensin-converting enzyme-2. The main
objective of this study is to evaluate the impact of statins on COVID-19 severity for people who have been taking statins before
COVID-19 infection. The examined research patients include people that had taken three types of statins consisting of
Atorvastatin, Simvastatin, and Rosuvastatin. The case study includes 561 patients admitted to the Razi Hospital in Ghaemshahr,
Iran, during February and March 2020. The illness severity was encoded based on the respiratory rate, oxygen saturation,
systolic pressure, and diastolic pressure in five categories: mild, medium, severe, critical, and death. Since 69.23% of participants
were in mild severity condition, the results showed the positive effect of Simvastatin on COVID-19 severity for people that take
Simvastatin before being infected by the COVID-19 virus. Also, systolic pressure for this case study is 137.31, which is higher
than that of the total patients. Another result of this study is that Simvastatin takers have an average of 95.77mmHg O2Sat;
however, the O2Sat is 92.42, which is medium severity for evaluating the entire case study. In the rest of this paper, we used
machine learning approaches to diagnose COVID-19 patients’ severity based on clinical features. Results indicated that the
decision tree method could predict patients’ illness severity with 87.9% accuracy. Other methods, including the K-nearest
neighbors (KNN) algorithm, support vector machine (SVM), Naïve Bayes classifier, and discriminant analysis, showed accuracy
levels of 80%, 68.8%, 61.1%, and 85.1%, respectively.

1. Introduction

In late December 2019, a previously unidentified coronavi-
rus, currently named the 2019 novel β-coronavirus, emerged
from Wuhan, China, the provincial capital of Hubei Prov-
ince. The virus was later named severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [1]. The World Health
Organization (WHO) first declared the coronavirus disease
(named COVID-19) as an international public health emer-
gency and then as a pandemic [2]. The disease’s incubation
period is from 2 to 14 (average 4 to 7) days [1], and its initial

manifestations are related to viremia. The clinical manifesta-
tions of COVID-19, which appear after an incubation period
of around 5-6 days, are associated with the release of cyto-
kines and cytokine storm syndrome in severe cases. The clin-
ical spectrum of the disease varies from asymptomatic or
mild (in more than 80%) to severe cases, which lead to acute
respiratory syndrome, respiratory failure, and death. Clinical
features of the disease include fever, coughing, fatigue, sweat-
ing, myalgia, sore throat, dry mouth, dry cough, shortness of
breath, chest pain, hemoptysis, abdominal pain, nausea, and
diarrhea [3]. According to the disease onset, the essential
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radiographic manifestations include scattered subpleural
ground glass lesions, crazy paving lesions, and consolidation
[1]. The definitive diagnosis of the disease is made by virus
detection through RT-PCR. For this purpose, a sample of
the pharyngeal swab, nasopharynx or oropharynx, and a
sample of tracheal secretions are needed [3]. The most criti-
cal laboratory evidence of COVID-19 patients includes lym-
phocytopenia and increased CRP. Also, the most important
risk factors include old age; diabetes; high blood pressure;
chronic heart, lung, liver, and kidney diseases; cardiovascular
disease; immunodeficiency; and cancers [1]. Severity criteria
of the disease are SpO2 < 93% on room air at sea level, a
respiratory rate > 30 breaths/min, PaO2/FiO2 < 300mmHg,
or lung infiltrates > 50% within 48 h [3]. Oxygen therapy,
using a nasal cannula or a high-flow oxygen device, should
be administered immediately. So far, there has been no con-
clusive evidence for the effectiveness of current antiviral ther-
apies. In this regard, chloroquine or hydroxychloroquine and
ritonavir/lopinavir (Kaletra) are used in most treatment pro-
tocols, and antiviral drugs, including Favipravir, Remdesivir,
Arbidol, Sofosbuvir, and Ribavirin, are currently used in clin-
ical trials [3].

Statins are inhibitors of the enzyme hydroxyl methylglu-
taryl coenzyme A (HMG-CoA reductase) and are responsible
for accelerating the early stages of cholesterol biosynthesis.
These compounds are multivalent cardioprotective drugs
increasingly recognized as mediators with direct cellular
effects beyond their cardiac role. Statins can block some
downstream molecules such as farnesyl pyrophosphate
(FPP) and geranylgeranyl pyrophosphate (GGPP), which
play a vital role in infecting viruses like influenza. They have
also been discussed in terms of intercellular, intracellular,
inflammatory, and proinflammatory signals in some studies.
Some research has reported their anti-inflammatory and
immunomodulatory properties and upregulation for ACE2
receptors and statins [4]. It appears that lipid-lowering phar-
macological interventions, in particular statins, might reduce
the risk of cardiovascular complications caused by COVID-
19 and might potentially have an additional antiviral activity.
Several studies have shown that lipid rafts are involved in the
life cycle of different viruses, including coronaviruses. Evi-
dence of the cholesterol importance for viral entry into host
cells suggests a role for cholesterol-lowering therapies in
reducing viral infectivity. Statins have pleiotropic impacts,
including anti-inflammatory, immunomodulatory, and anti-
thrombotic activities, in addition to their lipid reduction and
plaque stability effects. In some studies that examine statin
therapy in influenza infection, lower mortality rates, and
intubation, statin treatment demonstrated improved blood
viral clearance throughout chronic hepatitis C infection. Sta-
tins also are used to monitor critical inhibitors of SARS-CoV-
2 as a potentially SARS-CoV-2 protease [5]. Nevertheless, no
proper antiviral treatment has been found for this disease so
far, and all medications used are based on hypotheses that do
not provide adequate evidence to support them. Due to the
very high prevalence of the virus and its relatively high mor-
tality rate, finding factors that can prevent or accelerate the
onset or exacerbation of the disease and its complications
can provide significant help in reducing the mortality of this

disease in the current pandemic. Besides, it can be helpful for
the treatment of subsequent possible seasonal epidemics such
as influenza.

The present study investigates the effect of using standard
doses of statins in the months before infection in patients with
COVID-19 admitted to the Razi Hospital in Ghaemshahr,
Iran, during February and March 2020, to reduce the severity
of the disease and mortality rate of COVID-19. Overall, using
statins may be a good guideline in the initial months of the
COVID-19 epidemic.

2. Literature Review

Virani [6] conducted a review study to assess whether
ongoing statin therapy enhances the overall cardiovascular
outcomes of virally infected patients, like COVID-19.
According to this paper, none of the studies reported adverse
effects of this therapy. Fedson et al. [7] indicated the positive
effects of statin adjuvant therapy in Sierra Leone in the 2014
outbreak of Ebola treatments. Zhang et al. [8] assessed the
risk of entering COVID-19 with the decrease in ACE2
expression. A retrospective analysis was presented in 13,981
COVID-19 patients, including 1219 statins, in Hubei Prov-
ince, China. Based on a mixed-effect Cox model, after the
tendency match, the probability of all-cause death for 28 days
was 5.2% and 9.4%, with an adjusted hazard ratio of 0.58 for
both the matched statin and nonstatin classes. The lower
mortality risks involved with statin use were recorded in
Cox’s time-varying method and marginal structural model
study. The possible significant improvements of statins on
COVID-19 patients were addressed by Rodrigues-Diez
et al. [9]. Overall, they could target infected cell virus
receivers, replications, degrading, and downstream reactions
by discussing central and epidemiological proof. According
to their results, statins might modulate virus entrance, acting
on the SARS-CoV-2 receptors, ACE2 and CD147, and the
involvement of lipid rafts. Besides, statins may control viral
replication or degradation and have protective effects by
inducing autophagic activation.

By closing multiple molecular pathways, including NF-
κB and NLRP3 inflammasomes, the well-known anti-
inflammatory effects of statins might restrict the cytokine
storm in extreme COVID-19 patients associated with fatal
outcomes. In conclusion, statin moderation of stimulation
of coagulation reaction can also help boost the results of
COVID-19. According to Castiglione et al. [10], statins are
low-cost, widely tested, and well-tolerated medicines. These
compounds are less likely to be affected due to health emer-
gencies such as the ongoing COVID-19 pandemic, including
in low-income countries, where therapy with costly medi-
cines is not feasible. Adjuvant therapy and further treatment
of preestablished statins might enhance the clinical success of
COVID-19 patients through either immunomodulatory
behavior or cardiovascular damage prevention. Subir et al.
[11] have shown that statin can minimize the seriousness of
lung injury and mortality from extreme acute respiratory
syndrome-coronavirus 2 (SARS-CoV2) infections because
of its immunomodulatory, anti-inflammatory, antithrom-
botic, and antioxidant properties. Upregulation of statin-
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induced angiotensin-converting enzyme-2 (ACE2) can also
minimize lung damage due to excess angiotensin II. Statins
can reduce viral entry into cells by disturbing lipid rafts.
Daniels et al. [12] examined the relationship using statin/an-
giotensin-converting enzyme inhibitors/ARB in patients hos-
pitalized for COVID-19 in the month before hospitalization.
This study incorporated factors such as the risk of the severe
result and time for the extreme outcome or disease treatment.
They show that obesity and diabetes are potentially severe
consequences of COVID-19.

Further, the predicted effects of the male sex consistently
lead to an increased risk. A relationship was obtained
between COVID status and obesity in COVID-negative and
COVID-positive patients as a protective and risk factor.
One new research in this regard shows that a shorter recovery
period is associated with a younger generation. It may repre-
sent a more robust population and the fact that younger
individuals subsequently present disease over time. While
current smoking was more prominent in moderate rather
than serious COVID-19, this cohort was questionable for
its validity due to the very low prevalence of smoking (only
eight current smokers have been found). Reiner et al. [13]
suggested that statins could be effective inhibitors of SARS-
CoV-2 M pro, based on binding energy from pitavastatin,
Rosuvastatin, Lovastatin, and Fluvastatin. This claim is sup-
ported by the fact that certain statins (especially pitavastatin)
have an even more considerable binding energy than prote-
ase or polymerase inhibitors.

3. Methods and Materials

3.1. Mechanism of Statin Action with COVID-19. The pri-
mary way of COVID-19 virus infection in body cells is
ACE2, which downregulates this enzyme in the cells and
lowers its protection properties. The virus triggers the
response of the proinflammatory host based on MYD88,
TLR, and NF-κB pathway activations. Statins are widely
accessible, inexpensive, healthy, fat-reducing, and immuno-
modulatory medicines. These compounds prevent proin-
flammation of the MYD88-NF-μB and facilitate the
upregulation of ACE2 in experimental models. Statins can
be effective in the treatment of COVID-19 patients through
these pathways. Statins also counteract hyperlipidemia trig-
gered by some therapies commonly used in antiviral and
immunosuppressive COVID-19 [10].

Like avian influenza viruses, by causing an extreme pro-
inflammatory host reaction, beta-coronaviruses cause serious
respiratory diseases. Some immunomodulatory treatments
have proven to be successful in SARS, MERS, and COVID-
19 cases. For instance, tocilizumab, an anti-interleukin-6
receptor humanized monoclonal antibody, was beneficial as
maintenance care in selected patients with COVID-19 [14].
The interaction of SARS-CoV-1 with Toll-like receptors on
the host cell membrane dramatically enhances the activity
of the gene MYD88, whose output stimulates the occurrence
of NF-κB-causing inflammatory processes [15]. In a murine
model of SARS-CoV-1 infection, inhibition of NF-κB caused
a reduction in lung infection and improved the survival rate
of the disease [16]. Observational models suggest that statins

stabilize MYD88 following a proinflammatory stimulus,
including hypoxia [17]. Also, NF-κB activation was signifi-
cantly decreased within 48h in murine cells (relating to the
plasma levels obtained with a healthy human dose of 40mg
[18]). Based on this information, the use of statins can be
considered an immunomodulatory treatment in patients
with COVID-19.

Statins also interrupt the signaling of ACE2. After initial
entry via ACE2, SARS-CoV-2 downregulates the expression
of ACE2. As a result, it may foster original infiltration by
innate immune cells and trigger an uncontested accumula-
tion of angiotensin II, injuring the organ [14]. Both statins
and ARBs are considered epigenetic modifications to regulate
ACE2 (Figure 1) [7] experimentally. Regarding the improv-
ing effects of ACE2 on COVID-19 patients, there are cur-
rently activated RCTs with recombinant human ACE2 or
ARBs1, and biological plausibility is also present in the study
of statins [7].

3.2. Clinical Criteria and Variables. Indications for COVID-
19 hospitalization are respiratory rate ðRRÞ > 24, oxygen
saturation ðO2SatÞ < 93, significant lesion on CXR CT scan,
pulmonary infiltration, and clinical judgment of a physician
[9]. Criteria for severe disease include the number of
breaths ≥ 30 times perminute, arterial oxygen saturation <
93 when the patient breathes in room air, and severe multifo-
cal pulmonary involvement increases by more than 50%
within 48 h [3].

4. Results and Discussion

4.1. Gathering Data. The present study investigates the effect
of using standard doses of statins in the months before infec-
tion in patients with COVID-19 admitted to the Razi Hospi-
tal in Ghaemshahr (Mazandaran Province, Iran) during
February and March 2020 in reducing the severity of the dis-
ease and mortality rate of COVID-19. The recorded variables
and patients are illustrated in Table 1.
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Figure 1: Statin action against COVID-19 virus.

3BioMed Research International



Table 1: Data descriptive analysis.

N Minimum Maximum Mean Std. deviation Unit

Age

<50 = 1

561 1 3 1.88 0.821 Year group50‐65 = 2
>65 = 3

Gender

F = 1
561 1 2 1.56 0.497 M/F

M= 2
Duration of hospitalization 561 0 24 5.51 3.823 Days

Death 561 0 1 0.17 0.375 +/-

Diabetes 561 0 1 0.28 0.449 +/-

Hypertension 561 0 1 0.26 0.440 +/-

Heart failure 561 0 1 0.03 0.176 +/-

Chronic kidney disease 561 0 1 0.04 0.194 +/-

Chronic liver disease 561 0 1 0.01 0.119 +/-

History of transplantation

Solid‐organ transplant = 1
561 0 1 0.01 0.119 +/-

Hematological = 2
Ischemic heart disease 561 0 1 0.13 0.335 +/-

Dyslipidemia 561 0 1 0.07 0.261 +/-

Thalassemia major 561 0 1 0.01 0.103 +/-

Allergic asthma 561 0 1 0.02 0.145 +/-

Hepatoid 561 0 1 0.06 0.232 +/-

History of radiotherapy 561 0 1 0.01 0.119 +/-

History of chemotherapy 561 0 1 0.01 0.103 +/-

Solid organs 561 0 1 0.00 0.060 +/-

Bone marrow 561 0 0 0.00 0.000 +/-

Steroid therapy 561 0 1 0.02 0.132 +/-

Steroid dosage

>20mil = 1

561 0 5 0.04 0.346 Mil>20mil = 2
Prednisolone total > 300 = 3

Contact history 561 0 1 0.02 0.132 +/-

Hemodialysis 561 0 1 0.02 0.151 +/-

Another underlying disease 561 0 1 0.18 0.386 +/-

Atorvastatin 560 0 1 0.17 0.379 +/-

Simvastatin 561 0 1 0.02 0.151 +/-

Rosuvastatin 561 0 1 0.01 0.073 +/-

Binary statin (statin or not) 561 0 1 0.18 0.388 +/-

History of addiction 561 0 1 0.01 0.084 +/-

Smokers 561 0 1 0.02 0.126 +/-

Fever 561 0 1 0.61 0.488 +/-

Chills 561 0 1 0.42 0.494 +/-

Rhinorrhea 561 0 1 0.08 0.266 +/-

Dry cough 561 0 1 0.49 0.500 +/-

Productive cough 561 0 1 0.16 0.362 +/-

Weakness 561 0 1 0.23 0.422 +/-

Anorexia 561 0 1 0.17 0.375 +/-
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Table 1: Continued.

N Minimum Maximum Mean Std. deviation Unit

Sweating 561 0 1 0.08 0.269 +/-

Headaches 561 0 1 0.09 0.288 +/-

Myalgia 561 0 1 0.30 0.461 +/-

Loss of taste 561 0 1 0.06 0.245 +/-

Anosmia 561 0 1 0.00 0.042 +/-

Hematemesis 561 0 1 0.00 0.042 +/-

Diarrhea 561 0 1 0.09 0.283 +/-

Stomachache 561 0 1 0.03 0.181 +/-

Epigastric pain 561 0 1 0.01 0.103 +/-

Dizziness 561 0 1 0.02 0.156 +/-

Throat itching 561 0 1 0.01 0.073 +/-

Nausea 561 0 1 0.19 0.393 +/-

Vomiting 561 0 1 0.15 0.359 +/-

Shortness of breathing 561 0 1 0.13 0.341 +/-

Dyspnea 561 0 1 0.45 0.498 +/-

Tachypnea 561 0 1 0.12 0.325 +/-

Wheezing 561 0 1 0.00 0.060 +/-

Chest pain 561 0 1 0.04 0.190 +/-

Fatigue 561 0 1 0.06 0.232 +/-

Heart palpitations 561 0 1 0.00 0.042 +/-

Chest tightness 561 0 1 0.02 0.126 +/-

Sore throat 561 0 1 0.02 0.156 +/-

Temp 561 32.7 39.7 37.202 0.8102 °C

Sys 561 70 220 119.22 22.879 mmHg

Dias 561 0 120 72.59 13.838 mmHg

RR 561 10 75 20.76 5.682 Br/min

HR 561 1.0 170.0 93.766 21.0701 BPM

O2Sat on admission 561 30 100 92.42 8.117 mmHg

CT scan

gloss opacity and increase in thickness
between lobules or inside=1

561 0 7 0.32 0.920 0-7

Multiple alveolar consolidation = 2A
Alveolar consolidation local = 2B
Reversed halo = 3
Bronchovascular thickening in the lesion = 4
Tractional bronchiectasis = 5
Fiber tapes = 6
Acute respiratory distress syndrome = 7

Intensive cares

1 = primary hospitalization in ICU
561 0 2 0.32 0.686 0-2

2 = transfer from another part to ICU

Noninvasive ventilation

Nasal O2 = 1

561 0 4 0.30 0.763 0-4
Mask O2 = 2
CPAP = 3
BIPAP = 4

Mechanical ventilation 561 0 2 0.14 0.350 0-2
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This study investigates whether the severity of COVID-
19 disease differs from patients who have previously taken
statins due to hyperlipidemia or cardiovascular disease com-
pared to patients who did not take statins before. In other

words, the main objective is to explore if the history of taking
statins has a positive effect on the COVID-19 disease process.
It is of note that during the study, the patients did not use any
statin during hospitalization. Table 1 shows the descriptive

Table 1: Continued.

N Minimum Maximum Mean Std. deviation Unit

Vasopressor

Norepinephrine = 1

561 0 3 0.08 0.394 0-3Dopamine = 2
Dobutamine = 3

Severity 561 1 5 2.48 1.592 1-5
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Figure 2: Frequency statistic vital signs of COVID-19 patients in admission.
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statistics of the patients who participated in this clinical
research. The demographic data consist of age and gender,
which were encoded to numerical values. Also, other criteria
are past medical history; underlying diseases such as diabetes,
hypertension, heart failure, chronic kidney disease (CKD),
and chronic liver disease; history of transplantation; ischemic
heart disease; dyslipidemia; thalassemia major; allergic
asthma; hypothyroidism; history of radiotherapy; history of
chemotherapy; solid organ involvement in cancer; bone mar-
row involvement; history of contact with COVID-19
patients; hemodialysis; and other underlying diseases such
as favism, rheumatoid arthritis (RA), asthma, and stroke.
Other variables are the history of steroid treatment, steroid
dose, and history of addiction or smoking.

The mentioned features were encoded binary. These
encoded features, along with other features, are presented
in Table 1. Clinical signs for which the patient has referred
to the hospital include fever, chills, rhinorrhea, dry cough,
productive cough, weakness, anorexia, sweating, headaches,
myalgia, loss of taste, anosmia, hematemesis, diarrhea, stom-
achache, epigastric pain, dizziness, throat itching, nausea,
vomiting, shortness of breathing, dyspnea, tachypnea,
wheezing, chest pain, fatigue, heart palpitations, chest tight-
ness, and sore throat. Moreover, vital signs of the patient
include body temperature (Temp), systolic pressure (Sys),
diastolic pressure (Dias), respiratory rate (RR), heart rate
(HR), and oxygen saturation (O2Sat). Figure 2 shows the fre-

quency statistics of vital signs of all COVID-19 patients par-
ticipating in this research. Based on the results, some of the
patients have fever temperatures between 36.4 and 37.7°C.
Also, systolic pressure for all of the patients is between 90
and 130mmHg. The respiratory rate for most patients is in
the range of 17-21Br/min, which is not in tachypnea condi-
tion. Regarding oxygen saturation as the essential factor of
COVID-19 severity, its value is between 80 and 100mmHg
for most target patients.

4.2. Investigation of Effects of Statins on COVID-19 Severity.
The most critical factor in this study is calculating the
COVID-19 severity in numerical analysis. Based on the clin-
ical sign of the patients, we encode the seriousness as follows:

1 else Mild,

2 90% < O2Sat ≤ 93% Medium,

3 88% < O2Sat ≤ 90%, RR > 30 Severe,

4O2Sat ≤ 88%, Sys < 90, Dias < 60mmHg Critical,

5 Death Death:

8
>>>>>>>><

>>>>>>>>:

ð1Þ

This study tried to evaluate the severity of all patients
according to the history of statin taking of the patients,

Table 2: Description statistic of disease severity of the patients that take statins of Atorvastatin, Simvastatin, and Rosuvastatin.

Severity
Total

1 2 3 4 5

Atorvastatin

0
Count 219 60 29 75 80 463

% of total 47.30% 12.96% 6.26% 16.20% 17.28% 82.7%

1
Count 36 12 9 25 15 97

% of total 37.1% 12.4% 9.3% 25.8% 15.4% 17.3%

Simvastatin

0
Count 246 72 37 99 94 548

% of total 44.89% 13.14% 6.75% 18.07% 17.15% 97.7%

1
Count 9 1 1 1 1 13

% of total 69.23% 7.69% 7.69% 7.69% 7.69% 2.3%

Rosuvastatin

0
Count 255 73 38 98 94 558

% of total 45.70% 13.08% 6.81% 17.56% 16.85% 99.5%

1
Count 0 0 0 2 1 3

% of total 0.00% 0.00% 0.00% 66.67% 33.33% 0.5%

Total
Count 255 73 38 100 95 561

% of total 45.5% 13.0% 6.8% 17.8% 16.9% 100.0%

Table 3: Results of Spearman correlation for the effects of statin history on COVID-19 severity.

Atorvastatin Simvastatin Rosuvastatin Severity

Atorvastatin Correlation coefficient Sig. (1-tailed) 1.000 -0.071∗ (0.048) -0.034 (0.214) 0.065 (0.063)

Simvastatin Correlation coefficient Sig. (1-tailed) 1.000 -0.011 (0.395) -0.072∗ (0.044)

Rosuvastatin Correlation coefficient Sig. (1-tailed) 1.000 0.080∗ (0.028)

Severity Correlation coefficient Sig. (1-tailed) 1.000
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and the obtained results are described in Table 2. The exam-
ined research patients include people that had taken three
types of statins consisting of Atorvastatin, Simvastatin, and
Rosuvastatin. Of 561 patients, 17.3%, 2.3%, and 0.5% of
them have used Atorvastatin, Simvastatin, and Rosuvastatin
statins, respectively, for past disease treatment. Of all people
who take Atorvastatin, 37.1% have mild COVID-19, and
25.8% have critical conditions. For Simvastatin, 69.23% of
the patients have mild COVID-19. However, most people
taking Rosuvastatin are in a critical situation.

One method for evaluating the relationship between
statins’ effects and severity is the statistical correlation test.
Table 3 presents the correlation test findings based on
Spearman’s methods. The results show an indirect rela-
tionship between taking Simvastatin and severity. Regard-
ing these findings, people who have taken Simvastatin
are of lower severity than others. Moreover, most of them
(69%) had mild severity. On the other hand, most patients
who take Rosuvastatin are in critical condition. Further-
more, there is no significant relationship between Atorva-
statin users and COVID-19 severity.

According to the results, Simvastatin reduced COVID-19
severity significantly. In Table 4, these people have been eval-
uated based on vital signs. For the entire case study, the aver-
age fever temperature of patients is 37.2°C. However, the
number of Simvastatin users is 36.831, which is lower than
the total number of patients (i.e., 372°C). Moreover, systolic
pressure for this case study is 137.31, which is higher than
that of total patients.

Based on the obtained results, diastolic pressure for both
groups is almost equal. Also, the heart rate for Simvastatin
takers is lower than the entire case study, and the respiratory
rate is high in Simvastatin takers. The most critical parameter
of patients for this comparison is oxygen saturation. In this
respect, Simvastatin takers have a 95.77mmHg O2Sat, which
puts them in the mild group. However, in evaluating the
complete case study, the O2Sat is 92.42, putting them in the
category of patients with medium severity.

In conclusion, we can estimate the positive influence of
Simvastatin on COVID-19 severity for people that take Sim-
vastatin before infection to the COVID-19 virus. The results
of studying clinical symptoms are illustrated in Figure 3. The
vertical axis shows the percentage of people with particular
symptoms or historical illnesses for both case studies. Based
on these results, 28% of all patients have diabetes, while only

15.38% of Simvastatin takers are involved in diabetes. More-
over, 61.14% of all patients have a fever in admission, while
100% of Simvastatin takers have a fever. None of the patients
who have taken Simvastatin statin had a dry cough, while
49.20% (almost half) showed dry cough symptoms. In addi-
tion, no one has weakness, headache, anosmia, vomiting
blood, diarrhea, epigastric pain, dizziness, throat itching,
nausea, wheezing, chest pain, heart palpitations, chest tight-
ness, and sore throat, among Simvastatin takers.

The significant signs of this subgroup are tachypnea or
respiratory rate higher than 20 breaths per minute, given that
84.62% have tachypnea. Besides, 61.54% of Simvastatin
takers lost their taste ability. Moreover, 69.23% of this case
study has a productive cough in admission.

4.3. Diagnosis of COVID-19 Severity Based on Machine
Learning Methods. Computer-aided diagnosis (CAD) tools
have been recently used to study various features’ impact
and identify various diseases from the patient data [19].
Computationally efficient artificial neural networks (ANNs)
[20, 21] have been utilized to monitor the patients’ health

Table 4: Study of patients taking Simvastatin and comparison with
the total case study based on vital signs.

Taking Simvastatin All patients
N Mean Std. deviation No. Mean Std. deviation

Temp 13 36.831 0.6033 561 37.202 0.8102

Sys 13 137.31 25.869 561 119.22 22.879

Dias 13 75.31 25.650 561 72.59 13.838

RR 13 21.92 6.538 561 20.76 5.682

HR 13 91.77 16.233 561 93.766 21.0701

O2Sat 13 95.77 2.127 561 92.42 8.117

Severity 13 1.77 1.363 561 2.48 1.592
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status and diagnose various diseases such as COVID-19 and
mental health disorders [21] using smartphones and smart-
watches. Machine learning methods, particularly ANNs,
have also been used on lung X-ray images to detect
COVID-19 in the lung tissue and detect the infected areas.

Inspired by machine learning applications in intelligent
healthcare and investigating various aspects of COVID-19

disease, we designed machine learning networks to diag-
nose the severity of COVID-19 patients based on the var-
iables (features) mentioned before. In this regard, initially,
there are 69 features as independent variables. However, to
obtain the best and uncomplex nonparametric classifica-
tion, we should reduce this number. Therefore, principal
component analysis (PCA) was used to reduce the number
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Figure 5: Confusion matrixes of classification using machine learning approaches.
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of initial features. The results of the PCA method are
shown in Figure 4. Based on eigenvalues resulting from
PCA, the number of features is reduced to 5, suggesting
that we should use five features to classify and diagnose
the patients’ severity.

Besides, the severity factor consists of categorical labels
from 1 to 5 according to Equation (1). It is also assigned as
a dependent variable for diagnosis. Here, it is aimed to find
machine learning architectures to diagnose COVID-19
patients’ severity based on clinical signs.

To diagnose the patients’ severity, we used six types of
machine learning classifiers, including multilayer perceptron
(MLP), K-nearest neighbors (KNN), support vector machine
(SVM), Naïve Bayes classifier (NBC), decision tree (DT), and
discriminant analysis (DA). The confusion matrixes of the
classification methods are illustrated in Figure 5. These
matrixes consist of 5 × 5 class matrixes (red) that its orthog-
onal elements are true values (green), and red elements are
false detection values. In these matrixes, gray elements show
the method’s sensitivity (horizontal) and precision (vertical).

The low corner element indicates the classification accu-
racy. For example, in Figure 5, at MLP matrix, from 255
patients with mild severity condition, 181 are diagnosed cor-
rectly. In other words, the sensitivity for this class is 71%.
However, 66 of them are diagnosed as medium severity.
The MLP architecture consists of three hidden layers with
20, 10, and 1 neuron(s), in the order of their appearance.
The absolute accuracy for the MLP approach is 58.8%
(41.2% loss). In the DT method, the final accuracy is 87.9%,
which is higher than that of other KNN, SVM, NBC, and
DA (i.e., 80%, 68.8%, 61.1%, and 85.1%, respectively). In
the DT method, the highest sensitivity belongs to mild
patients. In other words, 94.5% of mild patients are diag-
nosed correctly. Regarding other severity groups, the sensi-
tivity is 89%, 76.3%, 86%, and 75.8% for medium, severe,
critical, and death people, respectively. Finally, it can be con-
cluded that the DT methods are the best classifier among
machine learning methods for diagnosing COVID-19
patients from clinical features.

5. Limitations

In this study, medical information may face limitations
that can prevent some of the use or disclosure. For exam-
ple, there are certain restrictions on using specific catego-
ries of information (i.e., HIV testing or treatment of
mental illness). Also, government medical insurances
restrict the disclosure of beneficiary information for pur-
poses not related to these insurances. These limitations
have made it very difficult to access all COVID-19 patient
information in this study. To deal with this shortcoming,
we chose patients with complete health information. The
other limitation is the lack of personal information from
the patient to our specialist doctors.

6. Conclusion

Statins aremultivalent cardioprotective drugs increasingly rec-
ognized as mediators with direct cellular effects beyond their

cardiac role. These drugs inhibit the enzyme hydroxyl meth-
ylglutaryl coenzyme A (HMG-CoA reductase) and are
responsible for accelerating the early stages of cholesterol
biosynthesis. In this study, the role and possible anti-
inflammatory effects of this drug are investigated. Statins
that are commonly prescribed in Iran include Atorvastatin
and Simvastatin. This investigation is a retrospective
descriptive-analytical cross-sectional study based on the
medical records of patients. According to the preliminary
information of the project implementers, more than 1500
patients with COVID-19 have been hospitalized at this cen-
ter from February and March 2020. In this study, the med-
ical records of the patients were examined. Next, their
clinical and laboratory characteristics, including the history
of taking statins before the onset of the disease, were
entered into a previously prepared and reproduced form
of information. Only patients who make a definitive diagno-
sis based on virus isolation by RT-PCR with a swab of the
throat, nasopharynx, or oropharynx and a sample of tra-
cheal secretions or typical radiological findings were
included. Severity criteria include the number of breaths
equal to or more than 30 beats per minute, arterial oxygen
saturation less than 93 (when the patient breathes in-room
air), severe multifocal pulmonary involvement (which
increases by more than 50% within 48h), and the need
for intubation and mechanical ventilation, CPAP, and
BIPAP. This paper evaluated the effects of statin taking
before infection on COVID-19 severity. Moreover, machine
learning methods were used to diagnose COVID-19 severity
based on clinical features. Overall, the results can be sum-
marized as follows:

(i) There is an indirect (positive) relationship between
taking Simvastatin and COVID-19 severity

(ii) People who have taken Simvastatin are of lower
severity than others

(iii) About 69% of Simvastatin takers are of mild
severity

(iv) There is no significant relationship between Ator-
vastatin users and COVID-19 severity

(v) Most patients who take Rosuvastatin are in critical
condition

(vi) The average fever temperature of all case studies is
37.2°C

(vii) The average fever temperature of Simvastatin
takers is 36.8°C

(viii) The systolic pressure for Simvastatin takers is
137.31mmHg

(ix) The heart rate for Simvastatin takers is lower than
the entire case study

(x) The respiratory rate is high in Simvastatin takers

(xi) Simvastatin takers have a 95.77mmHg oxygen sat-
uration, placing them in mild severity conditions
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(xii) The average oxygen saturation of all case studies is
92.42mmHg, which puts them in mild severity
conditions

(xiii) About 84.62% of Simvastatin takers have tachypnea

(xiv) About 61.54% of Simvastatin takers lost their taste
ability

(xv) Principle component analysis (PCA) was used to
reduce initial features from 71 to 5

(xvi) The accuracy of the decision tree method is 87.9%,
which is higher than that of other approaches

(xvii) The accuracy of KNN, SVM, NBC, and DA is
80%, 68.8%, 61.1%, and 85.1%, respectively

(xviii) The sensitivity of the DT method for patient diag-
nosis is 89%, 76.3%, 86%, and 75.8% for medium,
severe, critical, and dead people, respectively

In conclusion, we can estimate the positive influence of
Simvastatin on COVID-19 severity for people that take
Simvastatin before infection to the COVID-19 virus. Fur-
thermore, it was found that the decision tree method is an
effective tool to predict the patients’ severity based on clinical
symptoms.

Data Availability

The present study investigates the effect of using standard
doses of statins in the months before infection in patients
with COVID-19 admitted to Razi Hospital in Ghaemshahr
(Mazandaran Province, Iran), and the data of the article
is unpublishable due to the preservation of patients’
information.
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As one of important epigenetic modifications, DNA N4-methylcytosine (4mC) plays a crucial role in controlling gene replication,
expression, cell cycle, DNA replication, and differentiation. The accurate identification of 4mC sites is necessary to understand
biological functions. In the paper, we use ensemble learning to develop a model named i4mC-EL to identify 4mC sites in the
mouse genome. Firstly, a multifeature encoding scheme consisting of Kmer and EIIP was adopted to describe the DNA
sequences. Secondly, on the basis of the multifeature encoding scheme, we developed a stacked ensemble model, in which four
machine learning algorithms, namely, BayesNet, NaiveBayes, LibSVM, and Voted Perceptron, were utilized to implement an
ensemble of base classifiers that produce intermediate results as input of the metaclassifier, Logistic. The experimental results on
the independent test dataset demonstrate that the overall rate of predictive accurate of i4mC-EL is 82.19%, which is better than
the existing methods. The user-friendly website implementing i4mC-EL can be accessed freely at the following.

1. Introduction

As a chemical modification occurring on DNA sequences,
DNA methylation can change genetic properties under the
condition that the order of DNA sequences remains
unchanged. DNA methylation has many manifestations,
such as 5-methylcytosine (5mC for short), N6-
methyladenine (6mA for short), and N4-methylcytosine
(4mC for short) [1]. Among them, the 5mCs are widely pres-
ent in prokaryotes and eukaryotes and are of great signifi-
cance for controlling gene differentiation and gene
expression, maintaining chromosome stability and cell struc-
ture [2, 3]. They also can cause some diseases such as cancer
[4–6]. The 6mAs are also widely distributed in prokaryotes
and eukaryotes, which play a crucial role in replication,
expression, and transcription of gene [7]. The 4mCs which
were found in 1983 mainly exist in prokaryotes, and they
can control DNA replication, gene expression, and cell cycle
[8]. However, compared with 5mCs and 6mAs, the current
research on 4mCs is still insufficient. To make up for this
defect and further understand 4mCs’ biological properties
and functions, the first thing we need to do is to identify

4mCs from various DNA sequences, which is still a hot
research topic so far.

In order to identify 4mCs, many biology-based
approaches have been explored. Single molecule real-time
sequencing technology (SMRT for short) [9, 10] detects opti-
cal signals of bases matching the template at the single-
molecule level to identify 4mCs. 4mC-Tet-assisted-bisulfite-
sequencing technology (4mC-Tet for short) [11] identifies
4mCs by using bisulfite to convert unmethylated cytosine
in the DNA sequences into uracil while to keep methylated
cytosine unchanged. However, this kind of technologies is
time-consuming and resource-intensive. Moreover, the
explosive growth of DNA sequences also makes it more diffi-
cult to achieve whole-genome sequencing through these
technologies. Therefore, using machine learning (ML for
short) to identify 4mCs shows more advantages. Up to
now, there are many models using machine learning to iden-
tify 4mCs. iDNA4mC [12], the earliest model for 4mC iden-
tification, is primarily used to identify 4mCs from the
genomes of six species, A.thaliana, C.elegans, D.melanoga-
ster, E.coli, G.pickeringii, and G.subterraneus, and its posi-
tive data containing 4mCs were obtained from a reliable
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database called MethSMRT [13]. Soon afterwards, several
other models, 4mcPred [14], 4mcPred-SVM [15],
4mcPred-IFL [16], and Meta-4mcPred [17], were proposed
successively, which used the same dataset as iDNA4mC
[12] for 4mCs identification of the genomes of these six
species. i4mC-Rose [18] is the first and the only model
for 4mCs identification in the genome of Rosaceae, and
it derived positive dataset from the MDR [19] and the
other reliable database for storing 4mC data. For the
mouse genome we wanted to study, there have been cur-
rently two models, 4mCpred-EL [20] and i4mC-Mouse
[21]. Among them, their samples containing 4mCs were
also obtained from the MethSMRT database. In addition,
4mCpred-EL selected 4 ML algorithms and 7 feature
encoding schemes to generate 28 sets of results as the final
coding. Subsequently, 4mCpred-EL trained 4 submodels
through the final coding and these 4 ML algorithms and
then combined the 4 submodels into the final model by
majority voting. i4mC-Mouse trained 6 submodels using
6 feature encoding schemes and random forest (RF for
short) algorithm, and then the 6 submodels were com-
bined into the final model by weighted voting. Compared
with 4mCpred-EL, i4mC-mouse has better performance
according to the indicators, ACC and MCC. Although
exciting results have been achieved in 4mCpred-EL and
i4mC-Mouse, the performance is able to be further
increased. In this paper, to further improve the prediction
capability, we propose a new mouse’s 4mCs predictor,
i4mC-EL.

2. Materials and Methods

2.1. Framework of i4mC-EL. In the present study, a novel
model named i4mC-EL is proposed to indentify mouse’s
4mCs, and we can see the framework of it in Figure 1.
First, using two different feature encoding schemes, Kmer
and EIIP, each DNA sequence was encoded into a 1364-
dimensional vector and a 41-dimensional vector, respec-
tively. Next, the 1364-dimensional vector and the 41-
dimensional vector of each DNA sequence were combined
to form a 1405-dimensional multifeature vector. Finally, a
two-stage stacked ensemble learning classifier with these
multifeature vectors as input was constructed. The ensem-
ble classifier used BayesNet, NavieBayes Multinomial,
LibSVM, and Voted Perceptron as base classifiers and
used Logistic as metaclassifier. i4mC-EL’s datasets and fea-
ture encoding schemes and classifiers will be described
detailly below.

2.2. Dataset. This paper adopted the benchmark dataset
constructed by Hasan’steam [21]. In this dataset, the pos-
itive samples containing mouse’s 4mCs were obtained
from the MethSMRT [17] database, and the negative sam-
ples were taken from chromosome DNA sequences. They
were all fragments of DNA sequences consisting of 41
nucleotides with a “C” in the middle. Only the sequences
whose modQV value greater than or equal to 20 were con-
sidered to obtain the high-quality dataset. To prevent the
predictor from overfitting, the threshold of CD-HIT [22]

was set to 70% to remove redundant sequences [23]. The
dataset contained 1,812 DNA sequences, 906 of which
were 4mCs and 906 were non-4mCs. About 80% of the
dataset was randomly selected as the training dataset,
and the remaining about 20% was used as the independent
test dataset. The training dataset (train-1492) consisted of
746 4mCs and 746 non-4mCs. And the independent test
dataset (test-320) included 160 4mCs and 160 non-4mCs.

2.3. Feature Encoding. Transforming DNA sequences into
vectors that can make a distinction between 4mCs and
non-4mCs availably is the first step to build an ensemble
learning-based predictor to identify 4mCs [24–29]. Here,
a multifeature encoding scheme composed of Kmer [30–
33] and EIIP [34] was used to encode DNA sequences.
Kmer represented the DNA sequences as the occurrence
frequencies of k adjacent nucleotides. EIIP encoded each
nucleotide in DNA sequences with its corresponding
electron-ion energy. In the experiment of Section 3, we
will find that this multifeature is able to encode DNA
sequences availably. The following parts are detailed
descriptions of Kmer and EIIP.

2.3.1. Kmer. This encoding scheme refers to the frequency of
k-nucleotides composed of k continuous nucleotides in each
sequence. For sequence D = d1d2d3 ⋯ dL−2dL−1dL, each ele-
ment of each feature vector is calculated by Equation (1):

f Xð Þ = F Xð Þ
L − k + 1

, ð1Þ

where X is one of the k-nucleotide, FðXÞand f ðXÞ are the
count and frequency of X in D, respectively, and L is D’s
length. After Kmer, sequences are transformed into 4k
-dimensional vectors. For example, when the k-mer para-
meter k = 2, the value of AA in the 16-dimensional (42) fea-
ture vector of sequence D1 = AAACTAGTC is 0.25.

In the present study, we choose the values of the param-
eter k to be 1, 2, 3, 4, and 5, generating 1364-dimensional
(41 + 42 + 43 + 44 + 45) feature vectors.

2.3.2. EIIP. EIIP is the short name of electron-ion interaction
pseudopotential. The encoding scheme based on EIIP was
proposed by Nair and Sreenadhan in 2006. Through it, each
nucleotide in each sequence is replaced by its corresponding
electron-ion interaction pseud potential value (Table 1). For
example, the result of sequence D2 = AACTG after EIIP
encoding is (0.1260, 0.1260, 0.1340, 0.1335, 0.0806). In the
present study, each sequence is transformed into a 41-
dimensional feature vector.

2.4. Classifier. As an open data mining platform, Weka has
assembled a large number of machine learning algorithms
that can undertake data mining tasks. In the present paper,
the classifiers we used were all implemented by Weka, such
as BayesNet, NaiveBayes, SGD, SimpleLogistic, SMO, IBk,
JRip, J48, and ensemble learning. Finally, we chose the
ensemble learning, and the results of related experiment will
be presented in section 3.
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According to different combination strategies, bagging,
boosting, and stacking are the three main types of
ensemble learning. Ensemble learning is widely used in
bioinformatics because it can improve the prediction per-
formance of classifiers, such as protein-protein interaction
[35], disease prediction [36], type III secreted effectors
prediction [37], and protein subcellular location predic-
tion [38]. In detail, we used two-stage stacked ensemble
learning.

In the two-stage stacked ensemble learning, the base
classifiers used in this paper include BayesNet [39], Voted
Perceptron [40], Naive Bayes Multinomial [41], and
LibSVM [42], and the metaclassifier was Logistic. At the
first stage of the ensemble learning classifier, based on
the multifeature vectors proposed in this paper, four base
classifiers are, respectively, trained to relabel the training
dataset and the independent test dataset. At the second
stage, the outputs of base classifiers are utilized as input
for the metaclassifier.

Figure 2 gives the detailed process of model generation
and result output, the steps are as follows.

Step 1. Partition dataset. Divide the training dataset into ten
parts and mark them as train 1, train 2,…, train 10. The inde-
pendent test dataset remains unchanged.

Final
training set

&
Independent test set

feature vectors

Training set
&

independent test set

Feature Extraction By k-mer+EIIP

MethSMRT Chromosomal
DNA sequence

4mC
samples

non-4mC
samples

Final
dataset

Original
dataset

Independent test set
4mCs = 160

Non-4mCs = 160

Training set
4mCs = 746

Non-4mCs = 746

41bp DNA sequences 41bp DNA sequence

Reduce Redundancy by CD-HIT

Randomly select 80 Remaining 20

BayesNet

LibSVM

NaiveBayesMultinomial

Votedperceptron

Results1

Results2

Results3

Results4

New Set of
feature
vectors

Final model Logistic

Independent test set
feature vectors

Final model

ACC 0.822
MCC 0.644

Sn 0.806
SP 0.838

Input

Performance Evaluation

Training set
feature
vectors

Figure 1: The framework of i4mC-EL.

Table 1: The electron-ion interaction pseudopotential values for
DNA nucleotides.

NT A C G T

EIIP 0.1260 0.1340 0.0806 0.1335
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Step 2. Train base classifiers. In the present paper, we chose
BayesNet, Voted Perceptron, Naive Bayes Multinomial,
and LibSVM as base classifiers. For one base classifier such
as BayesNet, 10-fold crossvalidation is performed. In
detail, train 1, train 2, …, train 10 are used as validation
dataset in turn, the other nine parts are used as the train-
ing dataset, and prediction is made on the independent
test dataset. This would get 10 predictions from the train-
ing dataset together with another 10 predictions on the
independent test dataset. Combine the 10 predictions on
the training dataset vertically to get A1 and take the aver-
age of the 10 predictions on the independent test dataset
to get B1. Similarly, we could get A2, B2 from NavieBayes
Multinomial, A3, B3 from LibSVM, and A4, B4 from
Voted Perceptron.

Step 3. Train metaclassifiers. Use the predictive values of the 4
base classifiers on the training dataset, A1, A2, A3, and A4, as
4 features to train the logistic classifier.

Step 4. Predict new data. Use the trained model to make pre-
dictions on the 4 features, B1, B2, B3, and B4, constructed
from the predicted values of the independent test dataset of

the 4 base classifiers, and then the final prediction results
are obtained.

2.5. Performance Evaluation. For the sake of validating the
quality of our classification predictor, we used four indicators
widely adopted in the field of bioinformatics for evaluation
[43–53]. These indicators can be calculated using the

Figure 2: Working diagram of ensemble learning.

Table 2: The contrast of performance for dissimilar feature
encoding schemes under 10-fold crossvalidation.

Schemes ACC MCC Sn Sp

BPF 0.668 0.335 0.665 0.670

DPE 0.614 0.228 0.619 0.609

RFHC 0.658 0.316 0.669 0.647

RevKmer 0.755 0.511 0.745 0.765

PseKNC 0.794 0.589 0.786 0.803

k-mer + BPF 0.724 0.448 0.729 0.718

k-mer + RFHC 0.747 0.493 0.744 0.749

RevKmer+DBE 0.738 0.476 0.723 0.753

RevKmer+EIIP 0.779 0.558 0.764 0.794

k-mer + BPF +DPE 0.732 0.464 0.741 0.723

Our method 0.803 0.606 0.784 0.822

4 BioMed Research International



formulas below:

ACC =
TN + TP

TN + FN + FP + TP
,

MCC =
TN × TP − FN × FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FNð Þ × FN + TPð Þ × TP + FPð Þ × FP + TNð Þp
,

Sn =
TP

FN + TP
,

Sp =
TN

FP + TN
,

ð2Þ

where TP indicates the number of the sequences that they are
actually 4mCs, and that they are identified as 4mCs by the
model, FP indicates the number of the sequences that they
are actually non-4mCs but that they are identified as
4mCs by the model, TN indicates the number of the
sequences that they are actually non-4mCs, and that they
are identified as non-4mCs by the model, FN indicates
the number of the sequences that they are actually 4mCs
but that they are identified as non-4mCs by the model.
The Sn refers to the prediction accuracy of 4mCs. The
Sp refers to the prediction accuracy of non-4mCs. ACC

refers to the prediction accuracy of both 4mCs and non-
4mCs. MCC represents the reliability of the prediction
results. The higher the values of the above four indicators
have, the more superior the capability of the predictor
would be.
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Figure 3: ROC curves for dissimilar feature encoding schemes under 10-fold crossvalidation.

Table 3: The contrast of performance for dissimilar classifiers
under 10-fold crossvalidation.

Classifiers ACC MCC Sn Sp

BayesNet 0.727 0.453 0.739 0.714

NaiveBayes 0.752 0.504 0.751 0.753

SGD 0.712 0.424 0.710 0.713

SimpleLogistic 0.761 0.522 0.753 0.768

SMO 0.702 0.405 0.706 0.698

IBk 0.637 0.276 0.584 0.690

JRip 0.707 0.414 0.692 0.723

J48 0.665 0.330 0.674 0.655

RandomForest 0.770 0.541 0.753 0.787

AdaBoostM1 0.713 0.427 0.739 0.688

Bagging 0.729 0.459 0.744 0.714

Our method 0.803 0.606 0.784 0.822
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3. Results and Discussion

3.1. Crossvalidation Results of TRAIN-1492. To find the fea-
tures that can adequately represent the structure and func-
tion of the DNA sequences, we attempted to contrast
numerous feature encoding schemes. And to achieve the
optimal accuracy, we also tried to train the model using sev-
eral different classification algorithms. The results of relevant
comparative experiments are as below.

3.1.1. Feature Encoding Comparison on Crossvalidation. AS
shown in section of “feature encoding,” we encode the
DNA sequences with a multifeature, which combines k-mer
and EIIP feature encoding method. To verify the validity of
the proposed multifeature, we compare the proposed multi-
feature with BPF, DPE, RFHC, RevKmer, and PseKNC fea-
ture encoding schemes and their combinations using
ensemble learning classification. Among them, BPF and
DPE are encoding schemes based on nucleotide positions,
in which BPF takes mononucleotides as its encoding targets,
while DPE takes dinucleotides as its encoding targets. RFHC
is an encoding scheme based on the physicochemical proper-
ties of nucleotides. RevKmer is a variant of Kmer that con-
siders not only the current k-nucleotides themselves, but
also their reverse complementary nucleotides. PseKNC is a

method to integrate continuous local and global k-tuple
nucleotide information into the feature vectors of DNA
sequences.

Table 2 displays experimental results, in which “our
method” denotes the multifeature mentioned in the section
“feature encoding.” As shown in Table 2, from the perspec-
tive of ACC and MCC, the index values of our method are
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Figure 4: ROC curves for dissimilar classifiers under 10-fold crossvalidation.

Table 4: The contrast of performance for dissimilar feature
encoding schemes on TEST-320.

Schemes ACC MCC Sn Sp

BPF 0.753 0.530 0.606 0.900

DPE 0.697 0.401 0.600 0.794

RFHC 0.716 0.438 0.631 0.800

RevKmer 0.666 0.335 0.744 0.588

PseKNC 0.781 0.563 0.788 0.775

k-mer + BPF 0.772 0.553 0.681 0.863

k-mer + RFHC 0.800 0.614 0.694 0.906

RevKmer+DBE 0.756 0.516 0.700 0.813

RevKmer+EIIP 0.713 0.427 0.763 0.663

k-mer + BPF +DPE 0.772 0.553 0.681 0.863

Ourmethod 0.822 0.644 0.806 0.838
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higher than those of all other feature encoding schemes,
which indicates that our method has a better overall perfor-
mance. From the perspective of Sp, the index value of our
method is still the highest, which indicates that it is more
dominant to identify non-4mC from negative samples. These
conclusions demonstrate that our method has good validity.

To further illustrate the prediction capability of our
selected multifeature encoding scheme, the ROC curves for
dissimilar feature encoding schemes under 10-fold crossvali-
dation are displayed in Figure 3. From Figure 3, we can see
that our method has the largest area under ROC curve
(AUC), which demonstrates that our method can represent
mouse’s DNA sequences better than others.

3.1.2. Classifier Comparison on Crossvalidation. As shown in
the section “classifier,” we inputted the multifeature com-
posed of k-mer and EIIP into an ensemble learning classifier
called stacking, then obtained a predictor which is used for
identifying mouse’s 4mCs. To verify the validity of stacking
used in this paper, on the basis of the multifeature used in
this paper, we compared stacking with eleven commonly
used classifiers, BayesNet, Naive Bayes, SGD, Simple Logistic,
SMO, IBK, JRip, J48, Random Forest, AdaBoostM1, and Bag-
ging. Among them, BayesNet characterizes the dependencies
among attributes with the aid of directed acyclic graphs and

uses conditional probability tables to describe the joint prob-
ability distribution of attributes. NaiveBayes is a simple prob-
abilistic classifier based on Bayes’ theorem under the
assumption that each attribute is independent of each other.
SGD implements a regularized linear support vector machine
classifier with stochastic gradient descent learning. Simple
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Figure 5: ROC curves for dissimilar feature encoding schemes on TEST-320.

Table 5: The contrast of performance for dissimilar classifiers on
TEST-320.

Classifiers ACC MCC Sn Sp

BayesNet 0.769 0.547 0.675 0.863

NaiveBayes 0.788 0.577 0.744 0.831

SGD 0.688 0.379 0.756 0.619

Simple Logistic 0.728 0.456 0.738 0.719

SMO 0.675 0.353 0.744 0.606

IBk 0.600 0.201 0.563 0.638

JRip 0.769 0.541 0.713 0.825

J48 0.663 0.325 0.656 0.669

Random Forest 0.778 0.558 0.738 0.819

AdaBoostM1 0.791 0.581 0.794 0.788

Bagging 0.781 0.564 0.744 0.819

Our method 0.822 0.644 0.806 0.838
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Logistic is a linear logistic regression classifier with only one
independent variable. SMO is a support vector machine clas-
sifier using a continuous minimum optimization algorithm.
IBk classifies the data point by determining the category of
k data points closest to it. JRip is a classifier based on rule
induction. J48 is a decision tree classifier that uses informa-
tion gain rate to select attributes for partitioning. Random
Forest refers to a classifier that utilizes multiple trees to train
and predict a sample. AdaBoostM1 is a classifier that enables
the previously incorrectly predicted training samples to
receive more attention at follow-up by adjusting their distri-
bution. Bagging uses bootstrap sampling to obtain m (m is
the predetermined number of base classifiers) sample data-
sets from the original dataset, which are used to train m base
classifiers that are then integrated by voting.

The results of these comparative experiments are dis-
played in Table 3, where “our method” refers to the stacking
classifier. From Table 3, we can see that our method outper-
forms the other classifiers in all indicators.

To further illustrate the classification capability of our
selected stacking classifier, the ROC curves for dissimilar
classifiers under 10-fold crossvalidation are displayed in
Figure 4. From Figure 4, we can see that the area under
ROC curve (AUC) of our method is the largest, which proves
that our proposed method has better prediction performance

for identifying 4mCs in the mouse genome than other
methods.

3.2. Independent Validation Results of TEST-320. In this sec-
tion, a comparative experiment on the independent test data-
set (TEST-320) will be conducted to show the generalization
capability of our selected multifeature and stacking classifier.
The rationale for this is that this model is trained and tested
on two different datasets, which is the equivalent of perform-
ing a real prediction task with the generated model.

3.2.1. Feature Encoding Comparison on Independent
Validation. Using the stacking classifier, we, respectively,
evaluate the generalization capability of various feature
encoding schemes described in Section 3.1.1 on TEST-320.
Table 4 displays these comparison experimental results.
From Table 4, among the compared feature encoding
schemes, our method performed best in ACC, Sn, and
MCC, which were 82.19%, 0.806, and 0.644, respectively.
Although the Sp of our method is lower than that of BPF, k
-mer +BPF, k-mer +RFHC, k-mer +BPF+DPE, and
PseKNC+EIIP+RFHC, the other three indicators of our
method are higher than theirs.

For the sake of further describing the generalization capa-
bility of our selected multifeature encoding scheme, Figure 5
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Figure 6: ROC curves for dissimilar classifiers on TEST-320.

8 BioMed Research International



displays the ROC curves for dissimilar feature encoding
schemes on TEST-320. From Figure 5, we can see that the
AUC of our method is the largest, and the ROC curve of
our method is closer to the upper left, which demonstrates
that our selected multifeature is more suitable than other
schemes to encode the DNA sequences used to recognize
mouse’s 4mC.

3.2.2. Classifier Comparison on Independent Validation. We
compared stacking classifier used in this paper with other
eleven classifiers on TEST-320 under the condition of using
the multifeature combing k-mer and EIIP as the input of
the stacking. The results of these comparative experiments
are displayed in Table 5, from which we can see that although
the Sp of BayesNet is a little higher than that of our method,
our method outperforms other classifiers in ACC, Sn, and
MCC. Overall, our selected stacking classifier performs better
than the others, indicating that it is effective for identifying
mouse’s 4mC.

For the sake of further describing the generalization capa-
bility of our selected stacking classifier, the ROC curves for
dissimilar classifiers on TEST-320 are displayed in Figure 6,
where we can get the conclusion that the AUC of our method
is the largest too, which proves that our proposed stacking-
based ensemble classifier method is more suitable for the
identification of mouse’s 4mCs than other classifiers.

3.3. Contrast with Extant Models on TEST-320.Here, we con-
trasted i4mC-EL with 4mCpred-EL and i4mC-Mouse on
TEST-320 for the sake of further evaluating its performance.
Table 6 displays these contrast experimental results, in which
the data of 4mCpred-EL and i4mC-Mouse are from refer-
ence. From Table 6, we can see that i4mC-EL is superior to
4mcPred-EL and i4mC-Mouse in three indexes which are
ACC, Sp, and MCC. Although the Sn of i4mC-Mouse is a lit-
tle higher than that of our method, our method outperforms
i4mC-Mouse in the other three indexes. All in all, i4mC-EL
performs better than extant methods.

4. Conclusions

In the present paper, an ensemble learning model called
i4mC-EL which was able to identify mouse’s 4mC sites was
designed. In the process of constructing i4mC-EL, to deter-
mine the optimal combination of feature encoding schemes
and classifiers, we conducted abundant comparative experi-
ments on dissimilar features and classifiers. Finally, we
encoded DNA sequences with multifeatures combing k-mer
and EIIP, then used two-stage stacked ensemble learning as
classifier. We used BayesNet, NavieBayes Multinomial,

LibSVM, and VotedPerceptron as base classifiers and Logis-
tic as metaclassifier.

In addition, we contrasted i4mC-EL with existing models
for the sake of proving its effectiveness. The results show that
i4mC-EL is better than the existing models and has better
generalization capability. In summary, i4mC-EL is effective
in predicting the 4mC sites in the mouse genome, which
helps us to understand the biochemical properties of 4mC.

We will use adaptive feature vectors to donate DNA
sequences to optimize the feature encoding scheme [54, 55]
in the future work. Furthermore, other improvements,
encoding schemes, classifier algorithms, and intelligent com-
puting models to identify 4mC sites will also be considered.

Data Availability

The datasets used during the present study are available from
the corresponding author upon reasonable request, or can be
downloaded from http://106.12.83.135:8080/i4mC-EL/.
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Lysine succinylation is a typical protein post-translational modification and plays a crucial role of regulation in the cellular process.
Identifying succinylation sites is fundamental to explore its functions. Although many computational methods were developed to
deal with this challenge, few considered semantic relationship between residues. We combined long short-term memory (LSTM)
and convolutional neural network (CNN) into a deep learning method for predicting succinylation site. The proposed method
obtained a Matthews correlation coefficient of 0.2508 on the independent test, outperforming state of the art methods. We also
performed the enrichment analysis of succinylation proteins. The results showed that functions of succinylation were conserved
across species but differed to a certain extent with species. On basis of the proposed method, we developed a user-friendly web
server for predicting succinylation sites.

1. Introduction

Protein post-translational modification (PTM) refers to the
chemical interaction occurring prior to protein biosynthesis
and after mRNAs are translated into polypeptide chains.
PTM has different categories and is very prevalent in the
cells. More than 450 categories of PTMs were discovered to
date, such as phosphorylation, methylation, and acetylation
[1–3]. PTM increases diversity of protein structures and
functions, viewed as one of most regulating mechanisms in
the cellular process. Lysine succinylation is a type of protein
TPMs, in which a succinyl group (-CO-CH2-CH2-CO2H)
is attached to lysine residue of proteins [4]. Succinylation is
reversible, dynamic, and evolutionarily conserved, widely
existing in the prokaryote and the eukaryotes cells [5, 6].
The succinylation of proteins induces shift in the charge
and the structural alteration and thus would yield effects on
functions of proteins [6]. Growing evidences also showed
aberrant succinylations were involved in the pathogenesis
of some diseases including cancers [7], metabolism disease
[8, 9], and nervous system diseases [10]. Thus, identifying

succinylation sites and understanding its mechanism are cru-
cial to develop drugs for related diseases.

Identifying succinylation sites has two main routes:
experimental and computational methods. The experimental
methods were represented by mass spectrometry, which con-
tributed to the validation of succinylation and collection of
first-hand data. On the other hand, the experimental
methods are labor-intensive and time-consuming without
assist of the computational methods. The computational
methods are based on data yielded by the experimental
methods and build machine learning-based models to pre-
dict new succinylations. Therefore, identifying succinylation
is a cyclic iterative process from experiment to computation
and again from computation to experiment. We focused on
the computational methods to predict succinylation. In the
past decades, more than ten computational methods have
been developed for identifying succinylation [11–29]. Most
of these computational methods extracted features directly
from protein sequences, which were subsequently used for
training model. For example, Zhao et al. [11] used the auto-
correlation functions, the group weight-based encoding, the
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normalized van der Waals volume, and the position weight
amino acid composition. Kao et al. [25] exploited the amino
acid composition and informative k-spaced amino acid pairs.
Xu et al. [12] and Jia et al. [13, 19] employed pseudo amino
acid composition. Dehzangi et al. [23] exploited the structure
information. Hasan et al. [28] compared 12 types of feature
as well as two learning methods: random forest and support
vector machine for succinylation prediction. Different fea-
tures have different performance with species. So does the
learning methods. The best performance was no more than
0.83 AUC (area under receiver operating characteristic
curve) for independent test. Like sentences of language, the
protein sequences should have semantic. However, all the
methods above failed to seize semantic relationship hidden
among residues. Thapa et al. [29] presented a convolutional
neural network- (CNN-) based deep learning method Deep-
SuccinylSite for predicting succinylation. Different from tra-
ditional methods, the DeepSuccinylSite exploited word
embedding which translated word into vector, which was
an extensively used method in the field of natural language
process. The CNN is a widely used method to extract local
features especially in the field of image processing. Inspired
by the DeepSuccinylSite and loss of semantic relationship
between residues, we fused long short-term memory (LSTM)
and CNN into a deep learning method for succinylation
prediction.

2. Data

All the succinylated proteins were downloaded from the
PLMD (Protein Lysine Modifications Database) database
which is dedicated to specifically collect protein lysine mod-
ification [30–32]. The PLMD has evolved to version 3.0,
housing 284780 modification events in 53501 proteins for
20 types of lysine modification. We extracted 6377 proteins
containing 18593 succinylation sites. To remove dependency
of the proposed method on the homology, we used the soft-
ware CD-Hit [33, 34] to cluster 6377 protein sequences.
The sequence identify cut-off was set to 0.4, and we obtained
3560 protein sequences, of which any two kept sequence sim-
ilarity less than 0.4. We randomly divided these 3560 pro-
teins into the training and the testing samples at the ratio
of training to testing 4 : 1, resulting in 712 testing and 2848
training sequences. For each protein sequence, we extracted
all the peptides which centered the lysine residue with 15
amino acid residues in the downstream/upstream of it. For
peptides less than 15 amino acid residues, we prefixed or suf-
fixed “X” to supply it. The length of the amino acids is influ-
ential in prediction of succinylation sites. The short amino
acid peptides would miss key information, while the long
peptides would include noise or redundancy. Whether the
short or the long peptides would cause low accuracy of pre-
diction. Among methods to predict succinylation sites,
iSuc-PseAAC [12] adopted the shorter peptides of 15 amino
acid residues; SuccinSite2.0 [20] and GPSuc [22] adopted the
longer 41 amino acid residues, while the most methods
including SSEvol-Suc [23], Success [24], iSuc-PseOpt [13],
pSuc-Lys [19], SucStruct [18], and PSSM-Suc [17] adopted
peptides of 31 amino acid residues, which is of moderate

length. Thus, we chose 31 amino acid residues as basic pep-
tides. The peptides with succinylation sites were viewed pos-
itive samples and the others as negative ones. For the training
set, the negative samples extremely outnumbered the positive
ones. Unbalanced training set would cause preference to neg-
ative samples in the process of prediction. Therefore, we ran-
domly sampled the same size of negative examples as the
positive ones. Finally, the training set comprised 6512 posi-
tive and 6512 negative samples, while the testing set 1479
positive and 16457 negative samples. All the experimental
data are freely available to scientific communities.

3. Method

As shown in Figure 1, the proposed deep learning network
consisted mainly of embedding, 1D convolution, pooling,
bidirectional LTSM, dropout, flatten, and fully connected
layers. Peptides with 31 amino acid residues were entered
to the embedding layer and were translated into vectors with
shape of (31, 64). Then, two different network structures,
respectively, took the embedding as input, and their outputs
were concatenated as input to the fully connected layer. One
structure was the convolution neural network, and another
was the bidirectional LSTM neural network. The final output
was a neuron representing probability of belonging to the
positive sample. The parameters and the shape of output of
each layers in the deep neural network are listed in Table 1.
The total number of trainable parameters is 336,897.

3.1. Embedding Layer. Most machine learning-based
methods for predicting protein post-translational modifica-
tion generally required an encoding step which translated
sequences into vector representation. For example, the fre-
quently used encoding schemes included position specific
scoring matrix [35], amino acid composition, composition
of k-space amino acid pair [14], and pseudo amino acid com-
position [36]. For sequences of text, these methods might lose
hidden semantic. The word2vec [37, 38] is different from the
above methods, embedding word into vector. The word2vec
is capable of extracting semantic of word. An interesting
example is that King –Man +Woman = Queen. Similar to
the word2vec [37, 38], the embedding layer translated words
into vector representations. In this method, the character of
amino acid corresponds to word.

3.2. 1D Convolution Layer. The convolution neural network
(CNN) proposed by LeCun et al. [39, 40] is a feed forward
network. Compared with the conventional neural network,
the CNN has two notable properties: local connectivity and
parameter sharing. The local connectivity lies that two neigh-
boring layers are not fully connected but locally connected.
That is to say, the neuron in a layer is not connected to all
neurons in the neighboring layers. The CNN implemented
the parameter sharing via the filter (also called convolution
kernel). The filter slides on the image and convoluted with
all sections in image. The filter is shared by the image. In
the last ten years, many deep convolution neural networks
such as AlexNet [41], VGG [42], GoogleNet [43], and ResNet
[44] have been proposed and applied to computer vision. The
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CNN achieved significant advance in terms of classification
error in comparison with the previous deep neural network.
The convolution is of 1-dimension, 2-dimension, or more
than 2 dimensions. Here, we used 1D convolution. Suppose
a discrete sequence was α = ½a1, a2,⋯,an�, and the convolu-
tion kernel was β = ½b1, b2,⋯bm�. The 1D convolution prod-
uct of α and β was expressed by

α ∗ β = 〠
m

i=1
ajd+i−1bi

" #
, j = 1, 2,⋯, k, ð1Þ

where d was the stride of convolution and k was the
length of the output sequence. Generally, kwas the most inte-
ger less than or equal to ðn −mÞ/d + 1.

3.3. Pooling Layer. The pooling operation firstly appeared in
the AlexNet [41] and is increasingly becoming one of compo-
nents of the deep CNN architecture. The pooling operation
has such categories as max pooling, min pooling, and mean
pooling. The role of pooling operation included removal of
redundancy information and reduction of overfitting. Here,

we used the max pooling operation. Given an n-channel
input A = ðai,j,kÞ, the max pooling operation was defined by

max
j

ai,j,k
� �

: ð2Þ

3.4. Bidirectional LSTM Layer. Recurrent neural network
(RNN) [45, 46] is a different framework of neural network
from multiple layer perception. The RNN shares weights
and is especially suitable to the field of sequence analysis such
as language translation and semantic understanding. An
unfolded RNN model was shown in Figure 2(a). The hidden
stateHt at the time step t was not only dependent on the cur-
rent input but also on the previous hidden state, which was
computed by

Ht = f XtW +Ht−1U + αð Þ, ð3Þ

where f was an activation function and α was a bias. The out-
put Ot at the time step t was computed by

Ot = g HtS + βð Þ, ð4Þ

where g was also an activation function and β was a bias. For
long sequences, there was a fatal question with the RNN, i.e.,
vanishing gradient. Among all the solutions to the vanishing
gradient, the LSTM [47] is one of the better. The LSTM con-
tains a candidate memory cell and three gates: forget gate,
input gate, and output gate, as shown in Figure 2(b). The for-
get gate Ft , the input gate It , and the output gate Pt at the
time step t were computed, respectively, by

Ft = σ XtWx,f +Ht−1Wh,f + bf
� �

,

It = σ XtWx,i +Ht−1Wh,i + bið Þ,
Pt = σ XtWx,o +Ht−1Wh,o + boð Þ,

ð5Þ

1D convolution layer Pooling layer

Embedding layer Bidirectional
LSTM layer Dropout layer Fully connected layer

Output

Amino acid sequences

Input

Flatten layer

Figure 1: Flowchart of the proposed method.

Table 1: Number of parameters and shape of output in the
LSTMCNNsucc.

Layers Parameters Output

Embedding 1472 (None, 31, 64)

Bidirectional LSTM 197632 (None, 31, 256)

Dropout 0 (None, 31, 256)

Flatten 0 (None, 7936)

1D convolution 10272 (None, 27, 32)

Pooling 0 (None, 32)

Dense (16) 127504 (None, 16)

Dense (1) 17 (None, 1)
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where Wx,f and Wh,f were weights of the LSTM from input
to forget gate and from the hidden state to the forget gate,
respectively. Wx,i and Wh,i were link weights from input to
input gate and from the hidden state to the input gate, respec-
tively.Wx,o andWh,o were link weights from input to output
gate and from the hidden state to the output gate, respec-
tively. bf , bi, and bo were the bias of the forget and the input
and the output gate, respectively. σ was the activation func-
tion. The candidate memory cell was calculated by

�Ct = tanh XtWx,c +Ht−1Wh,c + bcð Þ, ð6Þ

whereWx,c andWh,c were weights of the LSTM from input to
the candidate memory and from the hidden state to the can-
didate memory, respectively, and bc was the bias. The mem-
ory cell at the time step t was computed by

Ct = Ft⨂Ct−1 + It⨂�Ct , ð7Þ

where ⨂ was defined as element-wise multiplication. The
hidden state was updated by

Ht = It⨂tanh Ctð Þ: ð8Þ

The previous RNN was forward. The output at the time
step t was only dependent on the preceding inputs and the
hidden state. In fact, the output might be relevant to the latter
input and the hidden state. Schuster et al. [48] proposed a
bidirectional RNN to model this relationship, showed in

Figure 2(c). The forward hidden state at the time step t was
computed by

Hf
t = σ XtW

f
x,h +Hf

t−1W
f
h,h + bfh

� �
, ð9Þ

while the backward hidden state was computed by

Hb
t = σ XtW

b
x,h +Hb

t+1W
b
h,h + bbh

� �
: ð10Þ

The output at the time step t was computed by

Ot = Hf
t ,Hb

t

h i
Wh,o + bo: ð11Þ

3.5. Dropout Layer. The deep neural network is prone to lead
to overfitting when the number of training samples was too
less. To deal with this issue, Hinton et al. [49] proposed the
dropout concept. Due to its effect and efficiency, the dropout
is increasingly becoming the frequently used trick in the deep

xt–1 xt xt+1

W W W

Ot–1 Ot Ot+1

U U U
Ht–1

U
S S S

(a)

𝜎 𝜎 tanh

Ct

𝜎

⊗ ⊗

⊗ ⊕

Input gate

Ct–1

Xt

Ht–1

Output gate

tanh

Ct

Ht

Forget gate

(b)

HbTHb1 Hb2

X1 XTX2

O1 O2 OT

Hf1 Hf2 HfT

(c)

Figure 2: The structure of neural networks: (a) for RNN, (b) for LSTM, and (c) for directional LSTM.

Table 2: Comparison with state of the art methods.

Method SN SP ACC MCC

LSTMCNNsucc 0.5916 0.7957 0.7789 0.2508

SuccinSite [15] 0.3977 0.8635 0.8272 0.1925

iSuc-PseAAC [12] 0.1258 0.8929 0.8296 0.0165

DeepSuccinylSite [29] 0.7438 0.6879 0.6923 0.2438
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learning area [41, 50–53]. The neurons were dropped out at a
certain rate of dropout, and parameters of only preserved
neurons were updated in the training stage, while all the neu-
rons were used in the predicting stage.

3.6. Flatten Layer and Fully Connected Layer. The role of flat-
ten layer was only to convert the data into one-dimension
and then facilitated connection of the fully connected layer.
No parameters were trainable in the flatten layer. The fully
connected layer was similar to hidden layer in the MLP, each
neuron connected to the neurons in the preceding layer.

4. Metrics

We adopted to evaluate the predicted result these frequently
used metrics in the binary classification questions such as
sensitivity (SN), specificity (SP), accuracy (ACC), and Mat-
thews correlation coefficient (MCC), which were defined by

SN =
TP

TP + FN
,

SP =
TN

FP + TN
,

ACC =
TP + TN

TP + FN + FP + TN
,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ TP + FPð Þ TN + FNð Þ TN + FPð Þp ,

ð12Þ

where TP and TN were defined as numbers of the true posi-
tive and the true negative samples, respectively, FP and FN,
respectively, as numbers of the false positive and the false
negative samples in the prediction. SN reflected the accuracy
of the correctly predicted positive samples, SP accuracy of the
correctly predicted negative samples, and ACC the average
accuracy of the correctly predicted samples. SN, SP, and
ACC ranged from 0 to 1, larger meaning better performance.
MCC was Matthews correlation coefficient, representing cor-
relation between the true class and the predicted class. MCC
ranged from -1 to 1. 1 meant perfect prediction, 0 random
prediction, and -1 meant that the prediction was completely
opposite to the true.

5. Results

Table 2 showed the predicting performance of the trained
model on the 712 testing sequences. Although more than ten
approaches or tools for predicting succinylation have been pro-
posed in the past ten years, either they did not provide online
predicting server or the web server could not work. We com-
pared the proposed method to three methods whose web pre-
dicting server still can work [28]: SuccinSite [15], iSuc-
PseAAC [12], and DeepSuccinylSite [29]. 712 testing sequences
were used to examine three approaches. Among 712 testing
sequences, at least 225 sequences repeated in the training set
of the SuccinSite, and at least 223 repeated in the training set
of DeepSuccinylSite. These minus 225 sequences were used to
examine the SuccinSite and these minus 223 sequences to test
the DeepSuccinylSite. iSuc-PseAAC [12] obtained best SP and
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Figure 3: The numbers of shared terms (a) for biological process, (b) cellular component, and (c) molecular function.
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Table 3: Significant KEGG pathway terms.

Species KEGG terms Benjamini

E. coli

Metabolic pathways 3.30E-08

Biosynthesis of amino acids 1.00E-06

Biosynthesis of secondary metabolites 2.40E-04

Biosynthesis of antibiotics 7.40E-04

Lysine biosynthesis 3.30E-03

H. sapiens

Biosynthesis of antibiotics 3.70E-10

Metabolic pathways 2.80E-09

Ribosome 3.40E-08

Valine, leucine, and isoleucine degradation 1.30E-06

Carbon metabolism 6.20E-06

Oxidative phosphorylation 1.10E-05

Parkinson’s disease 2.60E-05

Citrate cycle (TCA cycle) 1.00E-04

Huntington’s disease 4.10E-04

Alzheimer’s disease 7.80E-04

Aminoacyl-tRNA biosynthesis 1.00E-03

Butanoate metabolism 3.40E-03

Proteasome 8.20E-03

M. musculus

Metabolic pathways 6.20E-26

Parkinson’s disease 8.50E-11

Oxidative phosphorylation 3.40E-10

Nonalcoholic fatty liver disease (NAFLD) 1.00E-09

Huntington’s disease 2.80E-09

Alzheimer’s disease 1.40E-08

Ribosome 3.30E-07

Peroxisome 1.80E-06

Glycine, serine, and threonine metabolism 1.50E-05

Pyruvate metabolism 9.00E-05

Propanoate metabolism 2.40E-04

Valine, leucine, and isoleucine degradation 1.90E-03

Glyoxylate and dicarboxylate metabolism 3.10E-03

Biosynthesis of antibiotics 5.60E-03

M. tuberculosis

Metabolic pathways 1.00E-04

Microbial metabolism in diverse environments 2.50E-04

Biosynthesis of antibiotics 4.40E-04

Biosynthesis of secondary metabolites 1.00E-02

Propanoate metabolism 1.00E-02

S. cerevisiae

Metabolic pathways 5.20E-05

Biosynthesis of amino acids 3.30E-04

2-Oxocarboxylic acid metabolism 7.90E-04

Biosynthesis of antibiotics 3.50E-03

Oxidative phosphorylation 3.50E-03

7BioMed Research International



best ACC but worst SN and worst MCC. The SuccinSite [15]
reached better SP and better ACC but worse MCC and worse
SN. The iSuc-PseAAC [12] and the SuccinSite [15] were in
favor of predicting the negative samples. The DeepSuccinylSite
[29] was better than the LSTMCNNsucc in terms of SN, worse
than the LSTMCNNsucc in terms of sp. The overall perfor-
mance of the LSTMCNNsucc was slightly better than that of
the DeepSuccinylSite.

5.1. Functional Analysis. We used the statistical over-
representation test of gene list analysis in the PANTHER clas-
sification system [54, 55] to perform function enrichment
analysis of the succinylated proteins. The significant biological
process, the molecular function, and the cellular component
terms (p value≤0.01) were listed in the supplementary mate-
rials 1 and 2. For five species, Escherichia coli (E. coli), Homo
sapiens (H. sapiens), Mus musculus (M. musculus), Mycobac-
terium tuberculosis (M. tuberculosis), and Saccharomyces cer-
evisiae (S. cerevisiae), they shared some common functions,
but they had also own specific functions. The numbers of
shared terms among five species are shown in Figure 3. H.
sapiens and M. musculus shared 36 significant biological pro-
cess terms and 35 cellular component terms, much more than
the numbers of shared terms between any other two species
(Figures 3(a) and 3(b)). Five species shared eight biological
process GO terms: “biosynthetic process (GO:0009058)”, “car-
boxylic acid metabolic process (GO:0019752)”, “organic acid
metabolic process (GO:0006082)”, “organic substance biosyn-
thetic process (GO:1901576)”, “organonitrogen compound
biosynthetic process (GO:1901566)”, “organonitrogen com-
pound metabolic process (GO:1901564)”, “oxoacid metabolic
process (GO:0043436)”, and “small molecule metabolic pro-
cess (GO:0044281)”; 5 cellular component GO terms: “cyto-
plasm (GO:0005737)”, “cytoplasmic part (GO:0044444)”,
“cytosol (GO:0005829)”, “intracellular (GO:0005622)”, and
“intracellular part (GO:0044424)”; and twomolecular function
GO terms: “catalytic activity (GO:0003824)”, and “molecular_
function (GO:0003674)”. H. sapiens had much more own spe-
cific functions than other species, with 75 specific biological
process GO terms, 14 GO cellular component terms, and 21
molecular function GO terms. No specific functions existed
in bothM. tuberculosis and S. cerevisiae whether for biological
process, cellular component, or molecular functions.

We also performed enrichment analysis of Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway by functional
annotation in the DAVID tool [56, 57] to investigate in which
pathway the succinylated proteins were involved. The statisti-
cally significant KEGG terms (Benjamini ≤ 0:01) are listed in
Table 3. Different species were involved in some identical
pathways. For example, both metabolic pathways and biosyn-
thesis of antibiotics were enriched in the succinylated proteins
for five species, implying the universal role of succinylation.
On the other hand, different pathways were involved in differ-
ent species. H. sapiens andM. musculus shared more pathway
and had more pathways than other three species, implying
species-specific role of the succinylation.

5.2. LSTMCNNsucc Web Server.We built a web server of the
proposed LSTMCNNsucc at http://8.129.111.5/. Users either

directly input protein sequences in a fasta format or upload a
file of fasta format to perform prediction. When both protein
sequences and files were submitted, the file was given to pri-
ority of prediction.

6. Conclusion

We presented a bidirectional LSTM and CNN-based deep
learning method for predicting succinylation sites. The
method absorbed semantic relationship hidden in the succi-
nylation sequences, outperforming state-of-the-art method.
The functions of succinylation proteins were conserved to a
certain extent across species but also were species-specific.
We also implemented the proposed method into a user-
friendly web server which is available at http://8.129.111.5/.
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Identifying the interactions of the drug-target is central to the cognate areas including drug discovery and drug reposition.
Although the high-throughput biotechnologies have made tremendous progress, the indispensable clinical trials remain to be
expensive, laborious, and intricate. Therefore, a convenient and reliable computer-aided method has become the focus on
inferring drug-target interactions (DTIs). In this research, we propose a novel computational model integrating a pyramid
histogram of oriented gradients (PHOG), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) classifier for
identifying DTIs. Specifically, protein primary sequences are first converted into PSSMs to describe the potential biological
evolution information. After that, PHOG is employed to mine the highly representative features of PSSM from multiple
pyramid levels, and the complete describers of drug-target pairs are generated by combining the molecular substructure
fingerprints and PHOG features. Finally, we feed the complete describers into the RF classifier for effective prediction. The
experiments of 5-fold Cross-Validations (CV) yield mean accuracies of 88.96%, 86.37%, 82.88%, and 76.92% on four golden
standard data sets (enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear receptor, respectively). Moreover, the
paper also conducts the state-of-art light gradient boosting machine (LGBM) and support vector machine (SVM) to further
verify the performance of the proposed model. The experimental outcomes substantiate that the established model is feasible
and reliable to predict DTIs. There is an excellent prospect that our model is capable of predicting DTIs as an efficient tool on a
large scale.

1. Introduction

The identification of interacting drug-target pairs is of cardi-
nal significance in pharmaceutical science. Previous develop-
ment of genomics, protein engineering, and molecular
biology dynamically helps researchers in finding the poten-
tial therapeutic drugs and explaining the by-effect of a trial.
In past decades, the Food and Drug Administration (FDA)
declared that the demand for new drugs is hard to meet
due to the adverse clinical outcomes of some candidate
drugs [1]. Classifying DTIs remains to be a critical step for
better developing and applying novel molecule-targeted
drugs. Previously, researchers utilized clinical experiments
as the main approach to discover DTIs. Nevertheless, the

traditional experiments are still cumbersome, costly, and
time-consuming. Meanwhile, it also has to confront the con-
tingency and inefficiency of the results. Therefore, novel
computer-aided drug development (CADD) methods need
to be advanced for effectively avoiding these drawbacks [2].

With the progress of protein primary sequence detection
technologies and spectral techniques in determination of the
chemical composition structure of drugs, the public database
has had an explosive growth in size. These databases which
provide multiple download formats comprehensively con-
struct a reliable data platform for researchers. Different kinds
of databases, such as the Therapeutic Target Database (TTD)
[3], DrugBank [4], ChEMBL [5], and KEGG [6], collect the
information of the protein primary structure, drug molecular
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structure, and drug-target pairs with known interactions to
assist establishing the prediction model of DTIs. In the past
years, researchers have made many achievements in predict-
ing DTIs by combining traditional computing methods and
bioinformatics. The most widespread applications are based
on molecular docking, genome, and pharmacophore [7].
Molecular docking simulation is utilized to detect the opti-
mal binding position between drug molecules and targets
based on energy matching. This method also requires com-
plete three-dimensional (3D) substructures of proteins, but
they are hard to explore by Nuclear Magnetic Resonance
(NMR), electron microscopy, and X-ray crystallography [8].
Pharmacophores are a characteristic element of drug-active
molecules that play a pivotal role in the prediction of DTIs
[9]. Researches suggested that the pharmacophore method
can effectively inspect the multitarget drug design and
reduce the blindness of screening. The difficulty of match-
ing molecular pharmacophores is determined by the num-
ber of pharmacophore characteristics. In addition, whether
the molecule can match the pharmacophore is also related
to the conformations of the molecules [10]. When the con-
formation changes, the molecule will not match the existing
pharmacophore model. Therefore, the establishment of the
pharmacophore model is still not comprehensive for further
bioassay. At the same time, this method does not take 3D
structures of targets into account, which declines the accu-
racy of the pharmacophore model [11]. In general, it is
exceedingly urgent to develop more robust and universal
methods for the prediction of DTIs without a ligand and
3D target structure.

Up to now, many learning-based models are developed to
detect potential DTIs. For instance, Ding et al. [12] developed
a fuzzy bipartite local model (FBLM) based on fuzzy least
square support vector machine and multiple kernel learning
(MKL) for predicting DTIs. Specifically, MKL is employed
to fuse multiple kernels of drugs and targets, and FBLM is
adopted to infer the unknown DTIs. Krisztian et al. [13] uti-
lized the Modified Linear Regression (MOLIERE) to predict
the potential DTIs based on asymmetric loss models
(ALM). Ye et al. [14] proposed a new prediction framework
based on Adversarial Bayesian Personalized Ranking (AdvB).
More specially, the latent factor matrices of drugs and targets
are trained by partial order relationships. Then, the scores of
inner products of factors are trained to predict DTIs. Mar-
yam et al. [15] developed an effective model named the
Coupled Tensor-Matrix Completion (CTMC) to repurpose
drug molecules by constructing drug-drug and target-target
tensors. Pliakos and Vens [16] proposed to address DTI
prediction as a multioutput prediction task by learning
ensembles of multioutput biclustering trees (eBICT) on
reconstructed networks. An et al. [17] combined Weighted
Extreme Learning Machine (WELM) and Speed Up Robot
Features (SURF) to predict DTIs. Laarhoven et al. [18] pro-
posed the Kronecker Regularized Least Square- (Kron-RLS-
) based predictive models, which employed the Kronecker
product to fuse drug and target feature spaces. Gönen [19]
proposed a joint Bayesian formulation of projecting drug
compounds and target proteins into a unified subspace, and
this formulation combines dimensionality reduction, matrix

factorization, and binary classification for predicting drug-
target interaction networks. Zheng et al. [20] proposed a fac-
tor model, named Multiple Similarity Collaborative Matrix
Factorization (MSCMF) which is an extension of weighted
low-rank approximation for one-class collaborative filtering.
In this model, drugs and proteins are projected onto low
dimensional feature space, and the weights of low-rank
matrix and similarity matrix are estimated by alternating
least square method to predict DTIs.

In this study, we present a novel computational method
which exploits protein primary sequence and molecular fin-
gerprints of drug compounds. More specially, this model
numerically characterizes different amino acids as PSSMs to
carry biological evolution information. Then, the proposed
model employs the PHOG approach to extract the 680-
dimensional local features of PSSM from different pyramid
levels. Finally, the RF classifier is employed to effectively pre-
dict DTIs based on the fusion which contains PHOG descrip-
tors of PSSMs and drug fingerprints. This experiment also
evaluates the prediction performance by conducting 5-fold
Cross-Validation (CV) on enzyme, ion channel, G protein-
coupled receptors (GPCRs), and nuclear receptor data sets.
For the sake of verifying the reliability of the model, we also
carried out the state-of-the-art LGBM and SVM on bench-
mark data sets. The overall results of the experiments illus-
trate that the established model is practicable in providing
accurate candidates for clinical experiments by predicting
DTIs. Figure 1 depicts the workflow of the proposed model.

2. Materials and Methods

2.1. Data Sets. In this paper, entire experiments were per-
formed on benchmark data sets, viz., enzyme, ion channel,
GPCRs, and nuclear receptor. All data sets originate from
the databases of DrugBank [4], SuperTarget [21], BRENDA
[22], and KEGG BRITE [6]. The statistical quantities of exist-
ing drugs are 445, 233, 210, and 54, respectively. The num-
bers of known proteins are 664, 95, 204, and 26,
respectively. The counts of the DTIs which have been proven
are 2926, 635, 1476, and 90, respectively. The number of
known DTIs which were regarded as positive sample data
set is 5127. Table 1 fully lists the statistical amounts of drugs,
target proteins, and DTIs.

In this section, the bipartite graph is employed to display
the DTI network. The nodes of the graph denote drugs and
proteins, the edges which connect the nodes denote the rela-
tionships between drugs and targets. The interacting drug-
target pairs are considered as positive samples; the others
are regarded as negative samples in the sparse network. Tak-
ing the ion channel data set as an instance, there are 42840
(210 × 204) edges existing in the graph. The verified 1476 real
drug-target interactions construct the positive sample set,
and the residual 41364 (42840-1476) pairs represent the neg-
ative samples. It is obvious that there is a big quantity gap
between positive samples and negative samples. For attaining
sample balance, a downsampling algorithm is adopted in
uncorrelated pairs to form the negative set which contains
the same number of samples as the positive one. In consider-
ation of the scale of the sparse network and the large ratio of
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differences, the possibility that the drug-target pairs with real
interactions are collected in the negative data set can be
ignored. Therefore, the sample quantities of four negative
data sets are 2926, 1476, 635, and 90, respectively.

2.2. Drug Substructure Characterization. In recent years,
many physical and chemical properties are utilized to
describe the drug compound information including geome-
try, topology, and quantum chemistry [23, 24]. At present,
the researchers demonstrate that molecular fingerprints can
effectively characterize the drug substructure. The finger-
prints of structural bonds represent the drugs as Boolean
substructure vectors by separating the drug molecular struc-
ture into a variety of segments. Although the molecule is
sliced into individual segments, it still retains the entire struc-
ture information of the drug [25, 26]. These printers reduce
the information loss and error accumulation in the process
of description and screening. Specifically, the predefined dic-
tionary which contains all substructures matches all frag-
ments of the given drug molecule. If the fragment exists in
the dictionary, the corresponding position in the carrier is
set to 1; otherwise, it is set to 0. The complete fingerprint
database provides an effective way to describe the molecular
structure of drugs as binary fingerprint vectors. We utilized
the chemical structure map from the PubChem system in
the website https://pubchem.ncbi.nlm.nih.gov/, and the
map contains 881 molecular substructures [27]. Hence, the

feature describers of the drug molecular structure take the
form of an 881-dimensional binary vector.

2.3. Position-Specific Scoring Matrix (PSSM). In general,
researchers took many physicochemical approaches to
numerically describe target proteins [28]. The effective
descriptors will differentially convert proteins to enhance
the performance of the classifier. Within the experiment,
the Position-Specific Scoring Matrix (PSSM) is utilized to
represent the biological evolution of proteins [29], and this
matrix contains the probability information of 20 amino
acids at each position in the original protein sequence. In
the practical process, the Position-Specific Iterated Basic
Local Alignment Search Tool (PSI-BLAST) is employed to
generate the corresponding PSSM for different sorts of amino
acids. The matrix is as follows:

PSSM =

ℓ1,1 ℓ1,2 ⋯ ℓ1,20

ℓ2,1 ℓ2,2 ⋯ ℓ2,20

⋮ ⋮ ⋱ ⋮

ℓn,1 ℓn,2 ⋯ ℓn,20

2
666664

3
777775
, ð1Þ

where the PSSM is expressed as a matrix of L × 20 and L
denotes the length of the amino acid. ℓi,j denotes the evolu-
tionary score that the ith residue mutates into the jth amino
acid in the evolutionary process. The experiments also opti-
mized the parameters of PSI-BLAST to obtain more reliable
homologous sequences. In summary, parameter e which rep-
resents the noise of protein matching is assigned to 0.001,
and the frequency of iterations is set to 3.

2.4. Pyramid Histogram of Oriented Gradients. The pyramid
histogram of oriented gradients (PHOG) is a feature extrac-
tion method which describes the local features by counting
the distribution of the gradient direction histogram from

PSSM Matrix

PSI-BLAST

HOG
describers

PHOG

A C V
S1

...

... ...

...

Sn

680 Dimensional vector 881 Dimensional vector

PHOG features
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Figure 1: Workflow for the proposed model to predict DTIs.

Table 1: The statistical quantities for drugs, target proteins, and
DTIs.

Data set Drugs Target proteins Interactions

Enzyme 445 664 2926

Ion channel 210 204 1467

GPCRs 223 95 635

Nuclear receptor 54 26 90
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different pyramid levels [30]. Meanwhile, this method has
strong antinoise performance and antirotation ability [31].
Firstly, the given original image F is segmented into i × i spa-
tial grids in the ith pyramid level. Then, the histogram of ori-
ented gradient (HOG) vectors of each grid should be
calculated. Herein, we adopted Sobel operators to detect the
edges and reduce the noise of the image. The Sobel operators
can be defined as follows:

Sobelx =

1

0

−1

2
664

3
775 × 1 2 1½ � =

1 2 1

0 0 0

−1 −2 −1

2
664

3
775, ð2Þ

Sobely =

1

2

1

2
664

3
775 × 1 0 −1½ � =

1 0 −1

2 0 −2

1 0 −1

2
664

3
775, ð3Þ

where Sobelx and Sobely represent the horizontal operator
and the vertical operator individually [32]. Then, the first-
order differential Sobel operator is utilized to convolute the
given image as follows:

Gx = F ∗ Sobelx, ð4Þ

Gy = F ∗ Sobely, ð5Þ
where Gx denotes the convolution of picture F in the x-axis
direction, where Gy denotes the convolution of image F in
the y-axis direction. After convolution, the image F is con-
verted into I which can be obtained as follow:

I =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x +G2

y

q
: ð6Þ

The gradient magnitude g and direction θ of pixels in grids
can be obtained by the following formulas:

g φ, ωð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx φ, ωð Þ2 + gy φ, ωð Þ2

q
, ð7Þ

θ φ, ωð Þ = arctan
gy φ, ωð Þ
gx φ, ωð Þ , ð8Þ

where gx and gy can be computed as follows:

gx φ, ωð Þ = I φ + 1, ωð Þ − I φ − 1, ωð Þ, ð9Þ

gy φ, ωð Þ = I φ, ω + 1ð Þ − I φ, ω − 1ð Þ, ð10Þ

where φ and ω represent the coordinate position of a pixel in
the picture. The [0-360] orientation is divided intom regions,
and the pixels are divided into m regions to count HOG by
gradient direction. Then, the HOG eigenvectors which con-
tain m values have to be normalized by the following for-
mula:

V =
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vk k22 + ε2
q , ð11Þ

where V represents the HOG feature vector and ε is a small
constant. Finally, HOG features of each spatial grid from all
pyramid levels are concatenated to be PHOG feature descrip-
tors. In this experiment, we set parameters L = 3 and m = 8.
The number of grids in four levels is 85 (1 + 2 × 2 + 4 × 4 +
8 × 8), and converted the PSSM into a 680 (85 × 8) dimen-
sional vector. Figure 2 gives an example of merging HOG
describers into PHOG describers.
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2.5. Rotation Forest (RF). Rodriguez et al. developed the early
integrated forest into the rotation forest (RF) [33]. Rotation
forest works well on difference promotions and classifica-
tions of small sample data sets [34]. In particular, the RF clas-
sifier has outstanding performance on balancing the diversity
and accuracy of the base classifier by rotating the subsets.
Meanwhile, the model also preserves the efficiency, interpret-
ability, and simplicity of the decision tree. In this paper, we
employ RF to predict DTIs. The detailed process is shown
as follows.

In practical terms, the data is randomly separated into K
subsets containing disjoint features. Afterward, the bootstrap
and Principal Component Analysis (PCA) method are
applied in subsets to obtain rotation matrices with high

diversity. Finally, these matrixes are fed into the correspond-
ing base classifier, and the scores of each decision tree are
counted. The matrix X of n ×m is treated as a training feature
set which contains m features of n samples, and T =
ðt1, t2,⋯,tnÞT stores the corresponding labels of n samples.
RF has L base classifiers Di. The detailed training process of
the base classifier is as follows.

(I) After optimizing the model, the data set M is sepa-
rated into K disjoint subsets at random, and each
subset has C =m/k features

(II) LetMi,j represent the jth subset ofM, and Xi,j is the
corresponding feature set of Mi,j. Then, calculate

Table 2: 5-fold CV performance of our approach on the enzyme data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 88.89 88.31 88.93 88.85 77.77

2 90.34 91.85 89.27 91.49 80.71

3 89.83 91.61 88.07 91.65 79.73

4 87.69 88.19 86.99 88.40 75.39

5 88.03 88.83 86.34 89.65 76.07

Average 88:96 ± 1:13 89:76 ± 1:82 87:92 ± 1:25 90:01 ± 1:50 77:93 ± 2:29

Table 3: 5-fold CV performance of our approach on the ion channel data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 86.44 86.13 87.83 84.97 72.85

2 84.74 84.67 85.23 84.25 69.49

3 88.64 87.95 89.46 87.84 77.30

4 84.24 83.88 82.37 85.90 68.35

5 87.80 88.55 87.38 88.24 75.60

Average 86:37 ± 1:90 86:24 ± 2:02 86:45 ± 2:74 86:24 ± 1:75 72:72 ± 3:84

Table 4: 5-fold CV performance of our approach on the GPCR data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 85.04 82.96 88.19 81.89 70.22

2 81.89 84.85 81.16 82.76 63.73

3 81.50 77.50 82.30 80.85 62.86

4 83.79 84.35 80.83 86.47 67.49

5 82.21 85.83 80.15 84.62 64.58

Average 82:88 ± 1:49 83:10 ± 3:30 82:53 ± 3:26 83:32 ± 2:24 65:78 ± 3:03

Table 5: 5-fold CV performance of our approach on the nuclear receptor data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 75.00 75.12 70.59 78.95 49.77

2 77.78 77.78 77.89 77.65 55.56

3 86.11 85.71 90.00 81.25 71.81

4 77.14 72.73 88.89 64.71 55.44

5 68.57 60.90 87.50 52.63 42.12

Average 76:92 ± 6:30 74:45 ± 9:01 82:97 ± 8:43 71:04 ± 12:14 54:94 ± 10:91
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the new training feature set Xi,j′ by bootstrap sam-
pling on 75% of Xi,j

(III) Perform PCA on Xi,j′ to get the principal component

coefficients which can be represented as að1Þi,j , a
ð2Þ
i,j ,

⋯a
ðCjÞ
i,j

(IV) These coefficients construct the sparse rotation
matrix Zi as follows:

Zi =

a 1ð Þ
i,1 , a

2ð Þ
i,1 ,⋯a C1ð Þ

i,1 0 ⋯ 0

0 a 1ð Þ
i,2 , a

2ð Þ
i,2 ,⋯a C2ð Þ

i,2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ a 1ð Þ
i,K , a

2ð Þ
i,K ,⋯a Ckð Þ

i,K

2
6666664

3
7777775
:

ð12Þ

In the process of classification, the possibility that sample
x belongs to category yi is di,jðxZa

i Þ generated by base classi-
fier Di. Subsequently, count the confidence degrees that x
belongs to each class by mean combination as follows:

μj xð Þ = 1
L
〠
L

i=1
di,j xZ

a
ið Þ: ð13Þ

The sample x will be distributed into the most possible
class in accordance with the degree.

3. Results and Discussion

3.1. Evaluation Criteria. Throughout the experiments, accu-
racy (Acc.), sensitivity (Sen.), precision (Pre.), specificity
(Spec.), and Matthews correlation coefficient (MCC) com-
prehensively appraise the prediction performance. These cri-
teria can be defined as follows:

Acc: =
TP + TN

TP + FP + TN + FN
, ð14Þ

Sen: =
TP

TP + TN
, ð15Þ

Pre: =
TP

FP + TP
, ð16Þ

Spec: =
TN

TP + FP
, ð17Þ

MCC =
TN × TP − FN × FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FNð Þ × TP × FPð Þ × TN + FPð Þ × TP × FNð Þp ,

ð18Þ
where true positive (TP) represents the sum of interacting
drug-target pairs with correct predictions, true negative (TN)
reflects the aggregate of noninteracting drug-target pairs with
correct predictions, false positive (FP) denotes the count of
noninteracting drug-target pairs with incorrect classifications,
and false negative (FN) represents the count of interacting
drug-target pairs with incorrect classifications. Furthermore,
receiver operating characteristic (ROC) curves are employed
to depict results [35], and the area under the curve (AUC) is
calculated to justify the prediction feasibility [36].

3.2. Parameter Discussion. In this experiment, parameters K
and L are relevant to the results of the model. The K value
and L value represent the numbers of the feature subsets
and decision trees of RF, respectively. We applied the grid
search algorithm to get the optimum parameters [37]. The
method indicates that the accuracy ascends with the growth
of the L value. When K = 28 and L = 26, the model has the
best performance. Hence, we set the K value and the L value
as 28 and 26, respectively. Figure 3 shows the accuracy sur-
face of the RF classifier influenced by parameters K and L.

3.3. Fivefold CV Results on Four Data Sets. This section
applied 5-fold CV on enzyme, ion channel, GPCR, and
nuclear receptor data sets to obtain evaluation results for fur-
ther verifying the reliability of our model. During the valida-
tion, the data set was broken into five subsets on average.
Specifically, each subset took turns to be regarded as the test-
ing part; the other four subsets merged into the training part
in five repetitive experiments. Tables 2–5 list the results of
validations on benchmark data sets.

It is obvious that the model worked well on four golden
standard data sets from Tables 2–5. In terms of the results
yielded by the enzyme data set, the average accuracy, preci-
sion, sensitivity, specificity, and MCC are 88.96%, 89.76%,
87.92%, 90.01%, and 77.93% with standard deviations of
1.13%, 1.82%, 1.25%, 1.50%, and 2.29%, respectively. As for
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Figure 4: ROC curves performed by our approach on the enzyme
data set.
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the results yielded on the ion channel data set, the accuracy,
precision, sensitivity, specificity, and MCC come to be
86.37%, 86.24%, 86.45%, 86.24%, and 72.72% with standard
deviations of 1.90%, 2.02%, 2.74%, 1.75%, and 3.84%, respec-
tively. When performing the model on the GPCR data set, we
obtained the average accuracy, precision, sensitivity, specific-
ity, and MCC of 82.88%, 83.10%, 82.53%, 83.32%, and
65.78% with standard deviations of 1.49%, 3.30%, 3.26%,
2.24%, and 3.03%, respectively. When verifying the proposed

model on the nuclear receptor data set, the model generates
average accuracy, precision, sensitivity, specificity, and
MCC of 76.92%, 74.45%, 82.97%, 71.04%, and 54.94% with
standard deviations of 6.30%, 9.01%, 8.43%, 12.14%, and
10.91%, respectively. The difference between the sample
quantities caused the gap of the evaluating criteria and stan-
dard deviations between four benchmark data sets. The aver-
age AUC of the proposed model were 0.9509, 0.9284, 0.9040,
and 0.8486, respectively. Figures 4–7 give the ROC curves for
the four benchmark data sets.

3.4. Comparison between the Models with PHOG Descriptor
and LPQ Descriptor. For fairly evaluating the performance
of the PHOG descriptor, we also conducted the experiments
with local phase quantization (LPQ) which has a wide appli-
cation prospect in spatial fuzzy image texture description
processing for blurred-invariant property [38, 39]. Table 6
displays the comparison between PHOG and LPQ with rota-
tion forest. The summarized table clearly indicates that the
model with PHOG descriptors has a performance promotion
than the LPQ descriptors on four golden standard data sets.
In particular, the precision, sensitivity, specificity, and MCC
all improved in the ion channel and GPCR data sets.
Figure 8 plots the ROC curves of the PHOG and LPQmodels
on four data sets with mean AUC values. As can be noted, the
AUC values of the PHOG model are higher than the LPQ
model. Especially in the GPCR and nuclear receptor data sets,
AUC gaps attend to 1.81% and 2.75%, respectively. Hence,
our model can effectively describe PSSM to identify potential
interacting drug-target pairs.

3.5. Comparison with Other Classifiers. At present, the classi-
fiers which were used in predicting DTIs are mainly based on
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Figure 7: ROC curves performed by our approach on the nuclear
receptor data set.
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traditional machine learning methods. In this section, we
adopted advanced SVM and LGBM to combine PHOG
descriptors. In the rotation forest, we set parameters K = 28
and L = 26 by utilizing the grid search method. After param-
eter optimization, SVM embedded Gaussian kernel function
with parameters C = 0:2 and Gamma = 40. Parameter C pre-
vents SVM from over fitting, and Gamma determines the
number of support vectors. LGBM is based on a gradient
boosting framework, and it is widely used in classification
in industrial practice for it is time-saving and memory-
conserving. After conducting grid method searching, the best
results can be obtained by setting the number of leaves to 60,
the learning rate to 0.05, and the number of training rounds
to 40.

Figure 9 gives the results of RF, SVM, and LGBM on the
enzyme, ion channel, GPCR, and nuclear receptor data sets,

and it clearly reports that RF has a better performance with
the PHOG descriptor than the other classifiers on verifying
interacting drug-target pairs. The mean accuracy of RF is
8.30%, 8.07%, 11.43%, and 9.56% higher than SVM on the
four golden standard data sets. Compared with the LGBM
algorithm, the accuracy of RF improved 3.90%, 4.34%,
1.65%, and 8.33%, respectively. Figures 10 and 11 depict the
ROC curves of the benchmark data sets generated by the
rates of true positive (TP) and false positive (FP). In addition,
mean AUC values are also attached to each graph for more
intuitively describing the effect of different classifiers. The
reliability of predicting DTIs of the model is proportional
to the value of AUC. It can be observed that RF has perfor-
mance promotions of 9.27%, 9.63%, 12.52%, and 11.49%
against SVM on the four benchmark data sets. The value gaps
of AUC between RF and LGBM are 8.97%, 7.59%, 9.38%, and
11.48%, respectively, on the four data sets. Accordingly, RF is
more competitive than the other models in predicting DTIs.

3.6. Comparison with Other Methods. To date, many
researchers have innovatively provided effective solutions
for the prediction of DTIs. In order to further validate the
efficiency of our model, we selected such previous models
as MLCLE [40], NetCBP [41], SIMCOMP [42], WNN-GIP
[43], AM-PSSM [44], NetLapRLS [45], MSCMF [20], and
Bigram-PSSM [46] to analyze the performance of the pro-
posed model. Meanwhile, all of these models are under the
5-fold CV framework on benchmark data sets. The average
AUC values of these methods obviously indicate that the
effect of our model has a significant enhancement in predic-
tion in Table 7. In terms of the enzyme, ion channel, and
GPCR data sets, the growths of the AUC reached 0.0029,
0.0119, and 0.0320, respectively. With regard to the nuclear
receptor data set, Bigram-PSSM has the best performance
with an AUC improvement of 0.0204 than our model. The
results illustrate that the model which embeds PHOG
descriptors and rotation forest is competent to effectively
identify DTIs.

4. Conclusion

In this paper, we fused the pyramid histogram of oriented
gradients (PHOG), Position-Specific Scoring Matrix (PSSM),

Table 6: The comparison between LPQ and PHOG with rotation forest in terms of accuracy (Acc.), precision (Pre.), sensitivity (Sen.),
specificity (Spec.), and Matthews correlation coefficient (MCC) on four types of benchmark data sets.

Data set Method Acc. (%) Prec. (%) Sen. (%) Spec. (%) MCC (%)

Enzyme
LPQ+RF 88:48 ± 0:87 90:30 ± 1:92 87:10 ± 1:52 90:65 ± 1:87 77:79 ± 1:76

PHOG+RF 88:96 ± 1:13 89:76 ± 1:82 87:92 ± 1:25 90:01 ± 1:50 77:93 ± 2:29

Ion Channel
LPQ+RF 85:36 ± 1:00 85:22 ± 1:84 85:53 ± 1:37 85:13 ± 2:15 70:70 ± 2:00

PHOG+RF 86:37 ± 1:90 86:24 ± 2:02 86:45 ± 2:74 86:24 ± 1:75 72:72 ± 3:84

GPCRs
LPQ+RF 82:02 ± 2:82 81:59 ± 5:65 82:34 ± 3:43 81:62 ± 4:39 63:92 ± 5:56

PHOG+RF 82:88 ± 1:49 83:10 ± 3:30 82:53 ± 3:26 83:32 ± 2:24 65:78 ± 3:03

Nuclear receptor
LPQ+RF 75:78 ± 6:78 75:66 ± 6:80 77:62 ± 6:17 72:93 ± 14:28 50:89 ± 15:46

PHOG+RF 76:92 ± 6:30 74:45 ± 9:01 82:97 ± 8:43 71:04 ± 12:14 54:94 ± 10:91
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Figure 8: Performance comparison between LPQ and PHOG on
four golden standard data sets.
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and rotation forest (RF) into a novel computational model to
predict the interactions between drugs and targets. To prove
the reliability of the proposed model, a series of experiments
have been conducted. Specifically, we first altered the feature
extraction method of the proposed model with LPQ to assess

the feature description ability of PHOG. This paper also
experimented on state-of-the-art LGBM and SVM with the
same features to validate the performance of RF. Among
them, the proposed model achieves mean accuracies of
88.96%, 86.37%, 82.88%, and 76.92% on the enzyme, ion
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Figure 9: Comparison of experimental outcomes of RF, SVM, and LGBM on four benchmark data sets with six evaluating indicators: (a)
accuracy; (b) precision; (c) sensitivity; (d) specificity; (e) MCC; (f) AUC.
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channel, G protein-coupled receptor (GPCR), and nuclear
receptor data sets. The results obviously illustrate that the
PHOG features can trace the local characteristics and
assist the model to improve the accuracy even compared
with LPQ. Meanwhile, the model is considered to be an

extraordinarily suitable tool for providing candidates of drug
discovery. In the subsequent work, we will experiment with
more methods to further raise the feasibility of the prediction
model.

5. Limitation and Future Work

Although the model shows an improved prediction ability
than other models, we still noticed the singleness of the local
feature, and the noise existing in features also has an adverse
effect on forming describers. The main limitations of the
model can be explained from two aspects. On the one side,
the utilized feature extraction method is sensitive to local fea-
ture information. However, it is hard to excavate the global
feature information of samples. On another side, the same
number of unlabelled samples is randomly selected to be neg-
ative samples as the known interacting drug-target pairs;
hence, the model wastes a large number of unselected nega-
tive samples. The feature studies will mainly focus on the
processes of feature extraction and classification. The exter-
nal edge features which have an excellent application pros-
pect in the field of image tamper prevention will integrate
the internal features to comprehensively describe bioinfor-
mation with less noise. Meanwhile, unsupervised learning
models will be adopted to confront the waste of data sets,
and it will make full use of high-throughput unbalanced data.
These improvements will bring new challenges and opportu-
nities to develop robust prediction tools for enhancing the
model prediction accuracy.
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Table 7: The comparison of AUC values obtained by the proposed
model and other advanced model on four benchmark data sets.

Model Enzyme Ion channel GPCRs Nuclear receptor
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SIMCOMP 0.863 0.776 0.867 0.856
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NetLapRLS 0.9013 0.9165 0.7711 0.6772
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Our method 0.9509 0.9284 0.9040 0.8486
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Rheumatoid arthritis (RA) is a severe chronic pathogenic inflammatory abnormality that damages small joints. Comprehensive
diagnosis and treatment procedures for RA have been established because of its severe symptoms and relatively high morbidity.
Medication and surgery are the two major therapeutic approaches. Infliximab (IFX) is a novel biological agent applied for the
treatment of RA. IFX improves physical functions and benefits the achievement of clinical remission even under discontinuous
medication. However, not all patients react to IFX, and distinguishing IFX-sensitive and IFX-resistant patients is quite difficult.
Thus, how to predict the therapeutic effects of IFX on patients with RA is one of the urgent translational medicine problems in
the clinical treatment of RA. In this study, we present a novel computational method for the identification of the applicable and
substantial blood gene signatures of IFX sensitivity by liquid biopsy, which may assist in the establishment of a clinical drug
sensitivity test standard for RA and contribute to the revelation of unique IFX-associated pharmacological mechanisms.

1. Introduction

Rheumatoid arthritis (RA) is a severe chronic pathogenic
inflammatory abnormality that damages small joints [1, 2].
Some patients with severe and progressive RAmay also suffer
from pathogenic lesions in various body systems, including
the skin, eyes, lungs, and blood vessels [1]. According to the
statistics provided by the American College of Rheumatology
in 2008, more than 1.3 million people in the USA suffer from
pathogenic rheumatoid arthritis with typical symptoms [3,
4]; thus, RA is the leading cause of arthritis among multiple
pathogeneses.

Comprehensive diagnosis and treatment procedures for
RA have been established because of its severe symptoms
and relatively high morbidity [1, 5–8]. The diagnosis of RA

can be divided into two major procedures: symptom-
dependent diagnosis [9] and clinical laboratory examinations
[10]. A group of typical symptoms can be used to preliminary
screen for RA. The typical symptoms of RA include the swell-
ing of small joints (which may further extend to larger joints,
such as the hips and shoulders), fatigue, fever, and anemia,
which are quite easy to identify and recognize [11, 12]. How-
ever, the types and severity of these symptoms vary among
patients. Thus, RA is difficult to diagnose based only on clin-
ical symptoms. Apart from clinical symptoms, blood tests
and imaging tests have also been applied for the accurate
diagnosis of RA. Erythrocyte sedimentation rate [13] and
C-reactive protein [13] are nonspecific biomarkers for the
diagnosis and progression monitoring of RA that reflect the
degree of inflammatory responses in the whole body. The
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gold standard for RA diagnosis is clinical liquid biopsy, and
rheumatoid factor [14] and anticyclic citrullinated peptide
[15] antibodies are the specific biomarkers for the blood test
screening of RA. Pathogenic lesions in the joints can be
regarded as a diagnosis measurement for RA and can be eas-
ily identified by X-ray [16], ultrasound [17], and magnetic
resonance imaging [18].

Medication and surgery are the two major therapeutic
approaches for RA [19, 20]. Different from surgery-based
approaches, which focus on the direct relief of joint damage,
most medications focus on the prevention of abnormal inflam-
matory immune responses and therefore indirectly relieve sys-
temic symptoms. Four subgroups of medications are clinically
applied, namely, nonsteroidal anti-inflammatory drugs, ste-
roids, disease-modifying antirheumatic drugs, and biological
agents [21]. Among these drugs, infliximab (IFX) is a novel bio-
logical agent applied for the treatment of RA. As a chimeric
monoclonal antibody, IFX has been approved by the Food
and Drug Administration (FDA) for the treatment of multiple
immune-associated diseases, including RA, early in 2007 [22].
IFX targets one of the pathogenic proinflammatory cytokines,
tumor necrosis factor-alpha (TNF-α), and thus has been
applied in classical TNF antagonist therapy against multiple
chronic autoimmune inflammatory diseases, including RA
[23]. The clinical application of IFX has been studied for nearly
30 years; IFX greatly improves physical functions and is bene-
ficial for the achievement of clinical remission even under dis-
continuous medication [24, 25]. However, not all patients react
to IFX, and its anti-inflammatory effects vary among patients
with RA. IFX-sensitive and IFX-resistant patients are difficult
to distinguish based on traditional clinical examination; thus,
how to predict the therapeutic effects of IFX on patients with
RA is one of the urgent translational medicine problems in
the clinical treatment of RA.

With the development of liquid biopsy and high-
throughput sequencing technologies, a recent study [26]
revealed that patients with different drug susceptibility
against IFX have different pretherapeutic blood expression
patterns; thus, liquid biopsy and the transcriptomic profiling
of patients’ blood may help predict the therapeutic effects of
IFX in RA and therefore assist in clinical medication. How-
ever, the application of whole transcriptome sequencing on
every patient with RA is not feasible; therefore, the identifica-
tion of accurate and efficient transcriptomic biomarkers and
their respective pathogenic expression pattern would be the
priority. In this study, we presented a novel computational
method to identify the applicable and substantial blood gene
biomarkers of IFX sensitivity by liquid biopsy. This study may
assist in the establishment of a test standard for clinical drug
sensitivity for RA treatment and contribute to the revelation
of unique IFX-associated pharmacological mechanisms.

2. Materials and Methods

2.1. Data. The blood gene expression profiles of 140
patients with RA before IFX treatment were downloaded
from the Gene Expression Omnibus under accession num-
ber GSE78068 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE78068) [26]. Among the patients, 42 showed

remission and 98 showed nonremission. 19595 genes were
involved to constitute the blood gene expression profiles. Pre-
dicting the response of patients with RA to IFX before therapy
using their blood will help in deciding previse treatments,
which is the ultimate goal of precision medicine. We would
like to build such IFX response prediction models for patients
with RA based on their blood gene expression profiles.

2.2. Monte Carlo Feature Selection (MCFS). In this work, the
MCFS method, which is a decision tree- (DT-) based feature
selection method [27–29], was used to select important gene
candidates. MCFS can randomly select a few feature subsets
from the original features. Each feature subset consists of a
small number of features from the original ones. One boot-
strap sample dataset can be induced from this feature subset,
and then, multiple DTs can be learned and tested on this
bootstrap sample datasets. The process is repeated several
times to produce many feature subsets. Each feature subset
can help learn the same number of DTs.

The contribution of each feature in these DTs can be
evaluated by the relative importance (RI) score, which is
calculated as follows:

RIf = 〠
pt

τ=1
wAccð Þu 〠

nf τð Þ
IG nf τð Þ� � no: in nf τð Þ

no: in τ

� �v

, ð1Þ

where wAcc indicates the weighted accuracy and nf ðτÞ repre-
sents a node of feature f in DT τ. The information gain of
nf ðτÞ in the DT is measured by IG½nf ðτÞ�, and no:innf ðτÞ
points the number of training samples in node nf ðτÞ. In addi-
tion, the weighting factors u and v have a value of 1 by default.

After each feature was assigned a RI value, we ranked all
features in a list with the decreasing order of their RI values.
In addition to the feature list, the MCFS method also outputs
some most important features, called informative features,
which are some top features in the list. These features are
accessed by determining a threshold of RI values via a per-
mutation test on class labels and one-sided Student’s t-test.

This study used theMCFS program retrieved from http://
www.ipipan.eu/staff/m.draminski/mcfs.html. Its default
parameters were used.

2.3. Incremental Feature Selection (IFS). IFS is widely used to
determine the optimal number of features for constructing a
classification model with an integrated supervised classifier
[30]. On the basis of a ranked feature list obtained from
MCFS, a series of feature subsets are produced with a step
interval of 10. For example, the first feature subset includes
the top 10 features and the second feature subset includes
the top 20 features. For each feature subset, a classifier (e.g.,
support vector machine (SVM)) is trained on a training data
induced from this feature subset. An optimal feature subset is
selected when it has the highest performance among the can-
didate feature subsets, where performance is evaluated by the
Matthews correlation coefficients (MCC) [31] under 10-fold
cross-validation [32]. The classifier with such optimal feature
subset can be built and was called the optimum classifier in
this study.
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2.4. Support Vector Machine (SVM). SVM is a classification
algorithm suitable for linear and nonlinear data [33–39].
For a dataset with two classes, SVM tries to find out an opti-
mum hyperplane, which can divide samples in two classes
with a maximum margin. However, in many cases, such
hyperplane is not easy or impossible to be discovered. SVM
employs a kernel trick to convert the original sample in a
low-dimensional space to a new sample in some high-
dimensional space, in which the optimum hyperplane can
be easily constructed. For a new sample, it is also mapped
into the high-dimensional space and its class is determined
according to the side of the hyperplane it lies. In this study,
we used the tool “SMO” in Weka [40, 41] to quickly imple-
ment SVM. Such SVM is optimized by the sequential mini-
mum optimization algorithm [42]. For convenience, default
parameters were adopted, where the kernel was a polynomial
function.

2.5. Random Forest (RF). RF [43] is a metaclassifier that is
widely applied in biological and biomedical researches [44–
52]. RF includes many DTs as members. To construct a
DT, a dataset, in which samples are randomly selected, with
replacement, from the original dataset, is constructed. Such
dataset has the same size of the original dataset. The DT is
grown at each node by determining an optimal splitting
way on some features, which were randomly selected from
all features. Given a new sample, each DT gives its prediction.
RF integrates these predictions with majority voting. Similar
to SVM, we also employed a tool “RandomForest” in Weka
[40, 41], which implements RF. Likewise, the default param-
eters were used, where the number of DTs was set to ten.

2.6. Rule Learning. In addition to “black-box” classification
algorithms, the interpretable rules for a classification model
can also be extracted to explain the feature differences
between groups of patients with particular response to drug
treatment. To accelerate this procedure, we directly picked
up the informative features extracted by the MCFS method.
These features were further filtered by the Johnson Reducer
algorithm [53]. The remaining features were fed into the
repeated incremental pruning to produce error reduction
(RIPPER) algorithm [54] to extract classification rules.
Obtained rules were represented by IF-ELSE rules. The above
rule learning procedures were also integrated in the MCFS
program, which was directly adopted in this study.

2.7. Measurement. The MCC [31] within 10-fold cross-
validation was applied in this work to evaluate the classifica-
tion performance of different classification models. The
MCC for the binary problem is calculated as follows:

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FNð Þ × TN × FPð Þ × TP + FNð Þ × TP + FPð Þp ,

ð2Þ

where TP, TN, FP, and FN represent the number of true-pos-
itive, true-negative, false-positive, and false-negative samples,
respectively. As a measurement for the classification model,
the MCC value ranges from −1 to +1, where a value of +1

indicates that the classification model has the best perfor-
mance. To date, it has wide application in bioinformatics
for evaluating the performance of different classification
models [55–61].

Besides, we also employed other five measurements to
give a full evaluation on different classification models. They
were sensitivity (SN), specificity (SP), accuracy (ACC), preci-
sion, and F1-measure, which can be calculated by the follow-
ing equations:

SN = TP
TP + FN

,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + FN + TN + FP
,

Precision =
TP

TP + FP
,

F1‐measure =
2 ⋅ Recall ⋅ Precision
Recall + Precision

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð3Þ

3. Results

In this study, we gave a computational investigation on the
blood gene expression profiles of patients with RA before
IFX treatment. The entire procedures are illustrated in
Figure 1. This section gave the results of all procedures.

3.1. Results of MCFS. The blood gene expression profiles were
first analyzed by the MCFS method. As a result, each feature
was assigned a RI value, which indicated its importance. The
RI values of all features are listed in Table S1. Accordingly, all
features were ranked in a list by the decreasing order of
features’ RI values. Such list is also provided in Table S1.

3.2. Results of IFS. Based on the feature list obtained in the
above section, the IFS method is followed. It first constructed
several feature subsets. Then, on each feature subset, a classi-
fier was built using SVM or RF as the classification algorithm.
Each classifier was evaluated by 10-fold cross-validation. Six
measurements (see equations (2) and (3)) were obtained for
each classifier, which are listed in Tables S2 and S3. For an
easy observation, a curve was plotted for each classification
algorithm, as shown in Figure 2, in which MCC was set as
the y-axis and the number of features was set as the x-axis.
It can be observed that for SVM, the highest MCC was
0.760 when top 1260 features were used. Thus, these 1260
features constituted the optimum feature subset of SVM
and the SVM classifier with these features was the optimum
SVM classifier. Other measurements of such classifier are
listed in Table 1. As for RF, the highest MCC was 0.611
when only top ten features were adopted. An optimum RF
classifier was built based on these top ten features. The MCC
of the optimum RF classifier was much lower than that of
the optimum SVM classifier. Other five measurements of
such RF classifier are provided in Table 1. Evidently, each
measurement was inferior to that of the optimum SVM
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Figure 1: Entire procedures to investigate the blood gene expression profiles of rheumatoid arthritis patients. Profiles are retrieved from Gene
Expression Omnibus, which are analyzed by the Monte Carlo feature selection method. A feature list is obtained, which is fed into the
incremental feature selection method to construct efficient classifiers and extract essential genes. On the other hand, informative features,
which are some top features in the list, are used to construct classification rules via Johnson Reducer and RIPPER algorithms.
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Figure 2: IFS curves with different classification algorithms on different numbers of features (genes). The support vector machine yields the
highest MCC of 0.760 when top 1260 features are used, whereas the random forest generates the highest MCC of 0.611 when top 10 features
are adopted.

Table 1: Performance of some key support vector machine (SVM) and random forest (RF) classifiers.

Classification algorithm Number of features Sensitivity Specificity Accuracy Precision F1-measure

SVM 1260 0.690 0.990 0.900 0.967 0.806

SVM 60 0.619 0.980 0.871 0.929 0.743

RF 10 0.643 0.929 0.843 0.794 0.711
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classifier. Therefore, it can be concluded that the optimum
SVM classifier is better than the optimum RF classifier.

As mentioned above, the optimum SVM classifier needed
much more features than the optimum RF classifier. In fact,
the SVM classifier can yield good performance when much
less features were used. As shown in Figure 3, when top 60
features were used, the SVM classifier can generate the
MCC of 0.686, which was still higher than that of the opti-
mum RF classifier. The detailed performance of such SVM
classifier is listed in Table 1. It can be seen that all measure-
ments, except SN, of this SVM classifier were higher than
those of the optimum RF classifier. Thus, we picked up such
SVM classifier as the proposed classifier because it can pro-
vide good performance and was much more efficient than
the optimum SVM classifier.

3.3. Rule Learning Results. The optimum SVM and RF classi-
fiers gave good performance. However, they were black-box
algorithms. Few medical insights can be captured from these
classifiers. In view of this, we further employed a rule learn-
ing procedure. The informative features yielded by MCFS
were processed by the Johnson Reducer and RIPPER algo-
rithms one by one. As a result, three rules were constructed,
as shown in Table 2, where two rules were for prediction of
IFX-sensitive patients and the last one was for identification
of IFX-resistant patients. We counted two measurements:
support and accuracy for each rule, as listed in Table 2. Each
rule covered some samples, and all accuracies were quite
high, implying the utility of the rules.

Furthermore, to test the effectiveness of the above rule
learning procedures, we did the 10-fold cross-validation
three times. Six measurements calculated by equations (2)
and (3) were counted. The MCC was 0.439, and other five
measurements were 0.421 (SN), 0.939 (SP), 0.783 (ACC),

0.746 (precision), and 0.538 (F1-measure), respectively.
Clearly, the rule classifier was inferior to the optimum SVM
and RF classifiers. However, it can explain the detailed gene
expression pattern for distinguishing patients with RA who
respond to IFX treatment or not.

4. Discussion

IFX is one of the major clinically applied drugs for RA. How-
ever, the sensitivity and effectiveness of this drug vary among
patients. Recent publications confirmed that the sensitivity of
this drug against RA can be predicted by obtaining the
expression profiling pattern of patients’ pretherapeutic blood.
However, the core signatures/biomarkers for the prediction
and understanding of IFX sensitivity are difficult to identify.
We identified gene signatures for drug therapeutic effect
evaluation and established a series of quantitative rules that
explain the detailed accurate recognition of patients with dif-
ferent IFX sensitivity using a novel computational approach
on the expression profiling of pretherapeutic blood. All the
identified signatures have been confirmed by recent publica-
tions, and the detailed analysis of the representative genes
and rules is discussed below.

4.1. Gene Signatures Associated with IFX Response. In this
study, with some computational methods, several genes asso-
ciated with IFX response were identified. Here, we selected
some of them for detailed analysis, which are listed in
Table 3.

DISC1, which encodes a scaffold protein, participates in
the synthesis of hemoglobin in peripheral blood [62, 63].
Although no direct evidence confirmed that the blood
expression ofDISC1may directly contribute to the pathogen-
esis of RA, recent publications validated that DISC1 may
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Figure 3: IFS curves with different classification algorithms on top 10-200 features. The support vector machine (SVM) yields the MCC of
0.686 when only top 60 features are used. It is still higher than the highest MCC yielded by the optimum random forest (RF) classifier.
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participate in TNF-α-associated biological processes [64, 65].
A further study on the biological processes of TNF-α recep-
tors reported that our predicted gene, DISC1, may be func-
tionally related to MIPT3, a microtubule-interacting
protein associated with TNF receptors; thus, DISC1 has
potential regulatory effects on TNF-associated biological pro-
cesses [66]. The therapeutic effects of IFX rely on the phar-
macological regulation on TNF-α-associated biological
processes [67, 68]; therefore, as a regulator for the TNF
receptor, the different expression patterns of DISC1 can indi-
cate different TNF-related biological processes and affect the
pharmacological effects of IFX.

SAMD11, as a transcription coactivator, contributes to
the development of a photoreceptor [69]. In 2009, SAMD11
was identified as a susceptibility gene for RA by high-
throughput genotyping techniques [70]. Multiple publica-
tions have also confirmed its specific role in inflammatory
regulation [71, 72] and even validated its functional relation-
ship with IL17 [73, 74]. The pharmacological effects of IFX
are mediated by TNF-α inhibition; thus, IFX is functionally
related to the regulation of immune responses via the
interactions between IL17 and TNF-α [75, 76]. As a specific
regulator of IL17, our candidate gene, SMAD11, may also
participate in the regulation of IFX-mediated pharmacologi-
cal responses in patients with RA. Therefore, the expression
level of SMAD11 in the blood may indirectly reflect the
reactiveness of IFX in patients with RA.

EID2B, as an RA-associated gene, participates in MyoD-
dependent transcription, glucocorticoid receptor-dependent
transcription, and muscle differentiation as a functional
repressor [77, 78]. MyoD-associated biological functions
induce muscle lesions by interacting with abnormal regulation
on TNF-α pathways, targeted by IFX during the initiation and
progression of RA [79]. Further studies on the pharmacologi-

cal effects of IFX confirmed that MyoD may directly partici-
pate in IFX-associated therapeutic metabolism in Crohn’s
disease, which is another autoimmune disease [80]. Our pre-
dicted gene EID2B may also participate in the regulation of
the therapeutic effects of IFX by interacting with the core reg-
ulator, MyoD. Therefore, the expression level of EID2B in the
peripheral blood may reflect EID2B expression in mesenchy-
mal cells and immune cells in the blood and may also be a
novel parameter for the prediction of the prognosis of IFX-
dependent therapeutics.

NTS, which encodes a common precursor for peptides
neuromedin N and neurotensin, participates in the regulation
of fat metabolism in muscles [81, 82]. A recent research con-
firmed its specific pathogenic role in the pathophysiology of
RA [83]. As for its distinctive role for the sensitivity of IFX,
NTS participates in TNF-α-associated biological processes
[84, 85]. Considering that IFX acts as the inhibitor of TNF-
α-associated biological processes [23], the therapeutic effects
of IFX are functionally associated with the abnormal
activation status of TNF-α-associated biological processes.
Therefore, as an effective participator of TNF-α-associated
biological processes, the expression pattern of NTS may reflect
the activation status of TNF-α-associated biological processes
and therefore indicates the therapeutic effects of IFX.

STAT2, as an effective member of the STAT protein fam-
ily, participates in the transcriptional regulation mediated by
type I interferons (IFNs) [86] and the Jak kinase signaling
cascade [87, 88]. The treatment effects of IFX are functionally
connected to the IFN signaling cascade [89–91]; hence, IFN-
associated biological processes may be crucial for the
pharmacological effects of IFX. Therefore, as a transcrip-
tional regulator at the downstream of IFN-associated biolog-
ical processes, the expression level of our predicted gene
STAT2 may also be an alternative following the expression
alteration of genes in the type I IFN-associated pathways.
This finding indicates the potential identification ability of
STAT2 on the therapeutic effects of IFX.

TheHELZ gene can encode a member of the RNA helicase
superfamily I class. HELZ participates in RNA hydrolysis in
multiple tissues [92]. In fact, TNF-α and its related immune
regulatory functions are regulated by multiple RNA helicases,
including helicase with zinc finger (HELZ) [93–95]. Therefore,
the expression pattern of HELZmay also affect the therapeutic
effects of IFX by interfering with TNF-α-associated biological
processes. Similarly, SUMO2 also affects IFX sensitivity by
interfering with TNF-α-associated biological processes [96, 97].

Apart from unannotated RNA transcripts with no vali-
dated protein products, all the predicted genes have been
confirmed to be functionally related to TNF-α-associated

Table 2: Classification rules yielded by RIPPER.

Index Condition Result Support# Accuracy$

1 DISC1 ≤ 5:2301 IFX-sensitive patient 7.86% 90.91%

2 SAMD11 ≥ 4:2938 IFX-sensitive patient 7.14% 90.00%

3 Others IFX-resistant patient 85.00% 80.67%
#Support is defined as the proportion of samples satisfying the rule to all samples. $Accuracy is defined as the proportion of correctly predicted samples to the
samples satisfying the rule.

Table 3: Some top genes associated with IFX response.

Gene
symbol

Description
RI

score

DISC1 DISC1 scaffold protein 0.0506

SAMD11 Sterile alpha motif domain containing 11 0.0410

EID2B
EP300 interacting inhibitor of

differentiation 2B
0.0345

NTS Neurotensin 0.0257

STAT2
Signal transducer and activator of

transcription 2
0.0233

HELZ Helicase with zinc finger 0.0198

SUMO2 Small ubiquitin-like modifier 2 0.0190
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biological processes in either physical or pathological condi-
tions. Therefore, these genes may further affect the therapeu-
tic effects and sensitivity of IFX in patients with RA. This
finding validates the efficacy and accuracy of our prediction
method and analysis.

4.2. Signature Rules Associated with IFX Response. Apart
from the qualitative analysis of each top-ranked gene
signatures in our prediction list, we also set up a series of
quantitative recognition rules for the detailed and accurate
recognition of IFX-sensitive and IFX-resistant patients. The
first rule involves only the DISC1 gene. A low DISC1 expres-
sion (<5 FPKM) indicates that the patient may be sensitive to
IFX. Based on the analysis, a low DISC1 expression may indi-
cate abnormal TNF-α-associated immune activation status in
RA [66]. Therefore, patients with a low DISC1 expression
pattern may have an activated TNF-associated signaling
pathway and are definitely sensitive to therapeutic effects. The
expression level of DISC1 is quite high in normal conditions
(>10 FPKM). Therefore, our thresholdmay indicate lowDISC1
expression level and corresponds to our analysis above.

The second rule involves the SAMD11 gene. Different
from DISC1, a high SAMD11 expression level may indicate
an activated inflammatory status in the whole body and a
high TNF-α expression level [75, 76]. Therefore, the thera-
peutic effects of IFX may also be more effective in conditions
with more potential pharmacological targets. This finding
corresponds to our prediction rules. According to recent
publications, the expression level of SAMD11 in normal
whole blood is <1 FPKM. Therefore, under the predicted
conditions, the expression level of SAMD11 may be upregu-
lated and result in the stronger activation of the TNF-α sig-
naling pathway. Patients with specific SAMD11 expression
levels that follow our rules would be sensitive to IFX. By con-
trast, patients with expression profiling that does not follow
these quantitative rules may be resistant to IFX-mediated
RA therapeutics.

5. Conclusions

The identified blood gene signatures participate in IFX-
sensitive pharmacological processes in patients with RA.
Thus, these genes may be potential biomarkers for the dis-
tinction of IFX-sensitive and IFX-resistant patients at the
transcriptomic level. Several quantitative signature rules for
the distinction of patients have also been verified by other
recent publications. Therefore, our newly presented method
provides comprehensive qualitative and quantitative predic-
tion standards for prognosis guidance on the clinical applica-
tion of IFX on patients with RA.
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Background. Colon cancer has high morbidity and mortality rates among cancers. Existing clinical staging systems cannot
accurately assess the prognostic risk of colon cancer patients. This study was aimed at improving the prognostic performance of
the colon cancer clinical staging system through knowledge-based clinical-molecular integrated analysis. Methods. 374 samples
from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset were used as the discovery set. 98 samples
from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset were used as the validation set. After converting
gene expression data into pathway dysregulation scores (PDSs), the random survival forest and Cox model were used to identify
the best prognostic supplementary factors. The corresponding clinical-molecular integrated prognostic model was built, and the
improvement of prognostic performance was assessed by comparing with the clinical prognostic model. Results. The PDS of 14
pathways played important roles in prognostic prediction together with clinical prognostic factors through the random survival
forest. Further screening with the Cox model revealed that the PDS of the pathway hsa00532 was the best clinical prognostic
supplementary factor. The integrated prognostic model constructed with clinical factors and the identified molecular factor was
superior to the clinical prognostic model in discriminative performance. Kaplan-Meier (KM) curves of patients grouped by PDS
suggested that patients with a higher PDS had a poorer prognosis, and stage II patients could be distinctly distinguished.
Conclusions. Based on the knowledge-based clinical-molecular integrated analysis, a clinical-molecular integrated prognostic
model and corresponding nomogram for colon cancer overall survival prognosis was built, which showed better prognostic
performance than the clinical prognostic model. The PDS of the pathway hsa00532 is a considerable clinical prognostic
supplementary factor for colon cancer and may represent a potential prognostic marker for stage II colon cancer. The PDS
calculation involves only 16 genes, which supports its potential for clinical application.

1. Introduction

Colon cancer is one of the top cancers in terms of incidence
and mortality in both China and America [1, 2]. Recent
global surveillance of cancer trends revealed that further
research on colon cancer is needed, as the age-standardized
5-year net survival of colon cancer ranges from approxi-
mately 15% to 75% in different countries [3].

Currently, the tumor, node, and metastasis (TNM) stage
system proposed by the American Joint Committee on Can-
cer (AJCC) is the most commonly used clinical staging tool
for colon cancer. However, the accuracy of the 7th TNM
staging system for assessing the prognostic risk of colorectal
cancer patients still needs to be improved, especially for stage
II and stage IIIA patients [4]. The 8th edition of the TNM
staging system was aimed at building an important bridge
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from a “population-based” to a more “personalized”
approach to cancer stage [5]. The 8th edition of the TNM
staging system for breast cancer did so by including the
HER2 and ER statuses in its prognostic staging [6]. Several
studies claimed that modifications of the TNM staging sys-
tem for colorectal cancer showed improved prognostic per-
formance [4, 7, 8]. However, no structural changes were
made in the 8th edition of the TNM staging system for colon
cancer [9]. Therefore, to achieve a more personalized prog-
nosis for colon cancer patients, incorporating more prognos-
tic factors in addition to current clinical prognostic factors
would be a considerable choice.

Incorporating molecular factors, such as gene expression
data, would be a considerable option for improving the per-
formance of colon cancer prognosis. However, in gene
expression-based analyses of heterogeneous diseases, a single
gene often provides weak information [10]. However, the
gene set obtained directly by analyzing a large number of
genes is not stable and will change with changes in the train-
ing samples [11]. Several studies about the prognosis of colon
cancer tried to select hypoxia-related genes or tumor
microenvironment-related genes through literature reviews,
but further screenings of these selected genes were still
required in subsequent prognostic analyses [12, 13]. There-
fore, the introduction of representative functional units, such
as gene sets or pathways, may yield a more stable perfor-
mance and may simultaneously provide certain biological
annotations to improve the interpretability of the results
[14–17]. In addition, converting the gene expression profile
into personalized pathway activities showed a better predic-
tion performance than using the origin gene expression pro-
file in previous studies [18, 19].

In recent years, machine learning methods have been
widely used for cancer prognostic analysis. When performing
prognostic analyses through machine learning methods, the
introduction of prior knowledge, such as pathway informa-
tion, can further improve the performance of the model
[20]. In most associated studies, molecular prognostic fea-
tures were obtained by considering only the molecular fea-
tures; therefore, new molecular features obtained through
analysis may not be effectively combined with clinical fea-
tures [21].

In this study, we conducted a knowledge-based clinical-
molecular integrated analysis through a machine learning
method, identified new pathway-based molecular prognostic
factors to supplement the clinical TNM staging system for
colon cancer overall survival prognosis prediction, and veri-
fied the improved performance of the clinical-molecular inte-
grated prognostic models compared to the clinical prognostic
model.

2. Materials and Methods

2.1. Data Acquisition and Processing. Gene mRNA expres-
sion data from primary tumors and related clinical data of
452 patients in The Cancer Genome Atlas Colon Adenocar-
cinoma (TCGA-COAD) project were obtained from cBio-
Portal as the discovery set, and gene expression data from
normal adjacent tissues of 41 patients in the TCGA-COAD

were obtained from the UCSC Xena as the reference set
[22]. The mRNA sequence data of the discovery set and ref-
erence set used in this study were generated with the Illumina
HiSeq 2000 platform and processed by the RNAseqV2 pipe-
line, which uses RNA-Seq by expectation maximization
upper quartile (RSEM-UQ) for quantification. To validate
the prognostic performance of the identified pathway-based
factors, one independent dataset that offered identical clinical
data and gene mRNA expression from primary tumors gen-
erated with a similar pipeline of 106 colon cancer patients
was obtained from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) from the LinkedOmics as the valida-
tion set [23]. The mRNA sequence data of the validation set
used in this study were generated with the Illumina HiSeq
4000 platform and processed by the RNAseqV2 pipeline with
RSEM-UQ for quantification. Both datasets can be used for
an integrated analysis of clinical data and omics data.

Patients with primary tumors with both clinical data and
gene expression data in the discovery set and validation set
were included in this study. All data were cleaned and
checked after data acquisition. The clinical data included T,
N, and M stages and overall survival information. Other clin-
ical prognostic factors, such as age and location, were not
included because this study is focused on supplementing
the clinical TNM staging system. The T stage was categorized
into T1, T2, T3, and T4 stages (1=T1, 2=T2, 3=T3, and
4=T4 in subsequent analyses); the N stage was categorized
into N0, N1, and N2 stages (0 =N0, 1=N1, and 2=N2 in
subsequent analyses); and the M stage was categorized into
M0 and M1 stages (0 =M0 and 1=M1 in subsequent analy-
ses). All gene expression data values were further log-
transformed (Log2 ðvalue + 1Þ) for subsequent analysis.

The following exclusion criteria were applied to the sam-
ples: containing Tis, N1c, or MX; lack of clear T, N, and M
stages; and invalid survival information. In gene expression
data, genes that could not be targeted with accurate HUGO
Gene Nomenclature Committee (HGNC) symbols in the dis-
covery set, validation set, and reference set were removed.
Besides, genes with missing expression values or zero values
were removed as well.

2.2. Study Design. First, we converted the gene expression
data into pathway dysregulation scores (PDSs) based on
prior knowledge from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) human pathway database. Then, we
conducted a clinical-molecular integrated analysis by com-
bining machine learning methods and survival analysis to
identify the best molecular prognostic factors among the
converted pathway-based factors. Finally, a clinical-
molecular integrated prognostic model was constructed
using clinical factors and the identified molecular factors
for overall survival prediction and compared with the corre-
sponding clinical prognostic model. The overall pipeline of
this study is shown in Figure 1.

2.3. PDS Calculation. Among the pathway-based approaches,
two methods, PARADIGM and Pathifier, are widely used to
estimate the pathway dysregulation information in a particu-
lar sample [24, 25]. However, PARADIGM requires pathway
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mechanisms and is inappropriate for complex or incomplete
pathways. Pathifier requires only the expression data of genes
involved in each pathway and is more suitable for this study.
In addition, previous studies confirmed that the PDS calcu-
lated by this method can effectively characterize pathway
abnormalities [17, 19, 24, 26]. The PDS quantifies the biolog-
ical difference of a specific pathway between a diseased sample
and normal samples with a numeric value range from 0 to 1,
and it is transformed from the gene expression data by the R
package Pathifier [24]. The PDS in each sample indicates the
distance of deviation between the projection of a specific path-
way and the projection of normal samples on the principle
component curve. The pathway information was obtained
from KEGG with the R package KEGGREST (version 1.26.1).

In this study, the PDSs of 327 human pathways obtained
from KEGG were calculated based on this method.

2.4. Identification of Molecular Prognostic Factors. In this
study, the random survival forest was used to screen prog-
nostic factors that could supplement clinical prognosis, and
then the multicovariate Cox model was used to identify prog-

nostic factors that could be the best supplementary factors for
clinical prognostic factors.

2.4.1. Identification with Random Survival Forest. The ran-
dom survival forest is an ensemble tree-based method used
to analyze right-censored survival data [27]. The nonpara-
metric random survival forest model can assess the nonlinear
effects of variables and explore the complex interactions
between variables. In addition, variables in the random sur-
vival forest model that do not have prognostic ability can
be filtered by variable importance. The variable selection pro-
cedure through the random survival forest in this study con-
sists of the following three steps:

(A) Construct a random survival forest model with can-
didate variables. The numbers of trees that offer the
lowest error rate were chosen

(B) In the constructed random survival forest model,
variables with importance greater than 0 are selected
and recorded
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Figure 1: The overall pipeline of the study. Step 1: calculation of PDS; step 2: identification of molecular prognostic factors; step 3:
construction of clinical-molecular integrative prognostic model; step 4: assessment of the integrative prognostic model.
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(C) Considering the existence of random processes, steps
A and B would be repeated 100 times to generate a
matrix of variables with a variable importance value

greater than 0. The prognostic factors that were
recorded as important prognostic factors multiple
times were regarded as important prognostic factors

Table 1: Detailed information of the data used for analysis.

Characteristic
Discovery set Validation set Reference set
TCGA-COAD CPTAC Normal samples

Patients, n 374 98 41

Survival status, n (%)

Alive 293 (78.3) 90 (91.8) 29 (70.7)

Dead 81 (21.7) 8 (8.2) 12 (29.3)

Agea in years, mean (SD, range) 66.75 (12.73, 31-90) 65.43 (11.56, 35-93) 70.34 (13.23, 40-90)

Gender, n (%)

Male 199 (53.2) 41 (41.8) 20 (48.8)

Female 175 (46.8) 57 (58.2) 21 (51.2)

Overall survival time in months, mean (median, range) 30.24 (24.27, 0.47-150.07) 27.96 (30, 1-44) 27.66 (24.37, 0-101.40)

T stage, n (%)

Not available

T1 9 (2.4) 0 (0)

T2 65 (17.4) 12 (12.2)

T3 258 (69.0) 73 (74.5)

T4 42 (11.2) 13 (13.3)

N stage, n (%)

Not available
N0 226 (60.4) 52 (53.1)

N1 84 (22.5) 31 (31.6)

N2 64 (17.1) 15 (15.3)

M stage, n (%)

Not availableM0 315 (84.2) 91 (92.9)

M1 59 (15.8) 7 (7.1)

Number of genes, n 10877 10877 10877
aThe characteristic “Age” refers to the age at initial diagnosis in the discovery set and reference set but refers to the age at procurement in the validation set. SD:
standard deviation.

Table 2: Description of the pathways identified by the random survival forest.

KEGG
pathway ID

Pathway name
Number of genes involved in the pathway

in this study

hsa00450 Selenocompound metabolism—Homo sapiens (human) 13

hsa00532
Glycosaminoglycan biosynthesis—chondroitin sulfate/dermatan

sulfate—Homo sapiens (human)
16

hsa02010 ABC transporters—Homo sapiens (human) 24

hsa04380 Osteoclast differentiation—Homo sapiens (human) 105

hsa04614 Renin-angiotensin system—Homo sapiens (human) 14

hsa04750 Inflammatory mediator regulation of TRP channels—Homo sapiens (human) 65

hsa04911 Insulin secretion—Homo sapiens (human) 41

hsa04971 Gastric acid secretion—Homo sapiens (human) 40

hsa04975 Fat digestion and absorption—Homo sapiens (human) 13

hsa05032 Morphine addiction—Homo sapiens (human) 38

hsa05133 Pertussis—Homo sapiens (human) 56

hsa05152 Tuberculosis—Homo sapiens (human) 128

hsa05167 Kaposi sarcoma-associated herpesvirus infection—Homo sapiens (human) 148

hsa05321 Inflammatory bowel disease (IBD)—Homo sapiens (human) 34
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In this study, identification of molecular prognostic fac-
tors through the random survival forest was implemented
with the following procedures. First, we performed a rough
screening on all molecular factors. The clinical prognostic
factors and all molecular factors were used as variables in
the random survival forest. Variables that showed positive
prognostic power more than 90 times according to the vari-
able selection procedure were identified as the potential
important prognostic factors. Then, we tried to identify
robust molecular prognostic factors that could supplement
the clinical prognostic factors. The potential important prog-
nostic factors identified by the rough screening were screened
again. Here, the identified potential important molecular fac-
tors and the clinical prognostic factors were used as variables
of the random survival forest. The variable selection proce-
dure was repeated 10 times to ensure the robustness. In each
repetition, variables that showed positive prognostic power
over 95 times were recorded as important prognostic factors.

Finally, molecular factors that were recorded as important
prognostic factors in all 10 repetitions were regarded as the
final important prognostic factors identified by the random
survival forest.

2.4.2. Identification with Multicovariate Cox Model.Multico-
variate Cox models were constructed to identify the best
molecular factors for clinical prognostic supplementation.
These models were constructed with clinical prognostic fac-
tors and different combinations of molecular prognostic fac-
tors identified in Section 2.4.1. The models in which
molecular factors showed no statistical significance of prog-
nostic importance (with a P value of the covariate larger than
0.05) were excluded. The discrimination performance of the
remaining models was measured by the bias-corrected con-
cordance index (C-index). Molecular prognostic factors in
the model with the best discrimination performance were
regarded as the best molecular prognostic factors. If multiple

Table 3: Bias-corrected C-indexes of 27 different clinical-molecular integrated models.

Covariates used in the model Bias-corrected Harrell’s C-index (±95% CI)

T, N, M, hsa00532, hsa04911, hsa05133, hsa05152 0:775 ± 0:0038

T, N, M, hsa00532 0:773 ± 0:0038

T, N, M, hsa00532, hsa04911, hsa05133 0:773 ± 0:0038

T, N, M, hsa02010, hsa05152, hsa05321 0:773 ± 0:0038

T, N, M, hsa02010, hsa05167, hsa05321 0:772 ± 0:0037

T, N, M, hsa00532, hsa04380, hsa04911, hsa05133 0:772 ± 0:0039

T, N, M, hsa00532, hsa05133, hsa05152 0:772 ± 0:0040

T, N, M, hsa00532, hsa04380, hsa04971, hsa05133 0:771 ± 0:0039

T, N, M, hsa00532, hsa05133, hsa05167 0:771 ± 0:0040

T, N, M, hsa00532, hsa04975, hsa05133 0:770 ± 0:0041

T, N, M, hsa02010, hsa04911, hsa05133, hsa05152 0:768 ± 0:0040

T, N, M, hsa02010, hsa05133, hsa05152 0:768 ± 0:0040

T, N, M, hsa00532, hsa04971, hsa05133 0:767 ± 0:0038

T, N, M, hsa00532, hsa04380, hsa05133 0:766 ± 0:0041

T, N, M, hsa02010, hsa04911, hsa05133 0:764 ± 0:0038

T, N, M, hsa02010, hsa05133, hsa05167 0:764 ± 0:0040

T, N, M, hsa00532, hsa04750, hsa05133 0:764 ± 0:0041

T, N, M, hsa02010, hsa04911 0:763 ± 0:0037

T, N, M, hsa02010, hsa04380, hsa04911, hsa05133 0:763 ± 0:0040

T, N, M, hsa05133, hsa05152 0:761 ± 0:0042

T, N, M, hsa02010, hsa04750, hsa05133 0:759 ± 0:0040

T, N, M, hsa00450, hsa04911 0:758 ± 0:0036

T, N, M, hsa04380, hsa05133 0:758 ± 0:0043

T, N, M, hsa04911, hsa05133 0:756 ± 0:0039

T, N, M, hsa00450, hsa04911, hsa05133, hsa05152 0:756 ± 0:0040
T, N, M, hsa04380, hsa04911, hsa05133 0.754± 0.0041
T, N, M, hsa05133, hsa05167 0.754± 0.0042
T, N, M 0.746± 0.0040
CI: confidence interval.
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Figure 2: Observation of the PDS of the pathway hsa00532 in the discovery set. (a) Density distribution of the PDS of the pathway hsa00532
in the discovery set. (b) KM curve plotted based on two groups of patients in the discovery set divided by the PDS with a threshold of 0.6779.
(c) KM curve plotted based on three groups of patients in the discovery set divided by the PDS with thresholds of 0.5 and 0.6779. (d) KM curve
plotted based on two groups of stage II patients in the discovery set divided by the PDS with a threshold of 0.6779.
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models showed similar discrimination performance, the
molecular factors that used the least number of genes were
regarded as the best molecular prognostic factors.

2.5. Construction of the Clinical-Molecular Integrated
Prognostic Model. The clinical prognostic factor T, N, and
M stages and the identified best molecular prognostic factors
were used to construct the clinical-molecular integrated
prognostic model. Therefore, a multicovariate Cox model
was built, with the formula as follows:

h tð Þ = h 0ð Þ exp α1 T stageð Þ + α2 N stageð Þ + α3 M stageð Þ+〠βnMn

� �
,

ð1Þ

where hðtÞ is the risk of death at time t, hð0Þ is the baseline
risk, α is the regression coefficient of clinical prognostic fac-
tors, β is the regression coefficient of molecular prognostic
factors, and M is the identified molecular prognostic factor.
In addition, identical clinical prognostic factors and molecu-
lar prognostic factors were used to construct the correspond-
ing clinical prognostic model and molecular prognostic
model. Comparisons of these models were performed to eval-
uate the improvement of prognostic performance between
the clinical-molecular integrated prognostic model and the
clinical prognostic model. Finally, a nomogram was con-
structed based on the clinical-molecular integrated prognos-
tic model to predict the 3-year colon cancer overall survival.

2.6. Assessment of the Clinical-Molecular Integrated
Prognostic Model. First, according to the distribution of the
PDS of the corresponding molecular factors identified,
patients in the discovery set were divided into different
groups. The grouping was based on the highest degree of dif-
ferentiation of survival curves. These findings could provide a
direct observation of the relevance of the identified molecular
prognostic factors and survival.

Second, based on the clinical prognostic factors and iden-
tified molecular prognostic factors, one clinical prognostic
model, one molecular prognostic model, and one clinical-
molecular integrated prognostic model were constructed on
the discovery set. Internal validation through bootstrapping
with 200 iterations was used to assess the discrimination per-
formance of these models on the discovery set. External val-
idation through stratified bootstrapping with 200 iterations
was used to assess the discrimination performance of these
models on the validation set. As the mean survival time of
patients with metastasis was shorter than that of patients
without metastasis, the performance of the prognostic model
might have been affected. Therefore, models for nonmeta-
static patients were built with the same prognostic factors
and compared with the same assessment.

Finally, to compare the prognostic performance of
directly using gene expression data and using converted
PDS in this study, genes involved in the pathways were com-
bined with clinical prognostic factors in the clinical-
molecular integrated prognostic model. Comparisons
between the gene-based integrated prognostic model and
pathway-based integrated prognostic model were conducted.

The constructed integrated prognostic model had a
potential problem of overfitting as it contains multiple covar-
iates. The bias-corrected Harrell’s C-index which overcomes
the problem of overfitting was chosen to evaluate the overall
discriminative performance of the models in internal valida-
tion [28]. The origin Harrell’s C-index was used in external
validation of the overall discriminative performance. Uno’s
C-index, which is free of censoring, was chosen to evaluate
the discriminative performance of the models at the 3-year
time point [29]. A two-sided Wilcoxon signed-rank test was
used to compare the 200 C-indexes generated from the 200
iterations of the bootstrapping procedure to quantify the dis-
criminative difference of the C-index between different
models.

2.7. Statistical Analysis. All statistical analyses were per-
formed using R statistical software (version 3.5.3). Construc-
tion of Cox models and the nomogram and internal
validation of Harrell’s C-index and calibration plot were per-
formed with the rms R package. External validation of Har-
rell’s C-index was performed with the Hmisc R package.
Uno’s C-index was calculated with the survC1 R package.
The Wilcoxon signed-rank test was performed with the stats
R package. The random survival forest was performed with
the randomForestSRC R package.

3. Results

3.1. Results of Data Processing. After data acquisition and
processing, this study included 374 cases in the TCGA-
COAD data as the discovery set, 98 colon cancer cases in
the CPTAC as the validation set, and 41 colon cancer normal
adjacent tissue data from the TCGA as the reference set. Both
the discovery set and the validation set included the T, N, and
M stages with identical categories and overall survival infor-
mation including overall survival time and overall survival
status. The detailed information of the final dataset used for
analysis is shown in Table 1.

Table 4: Regression coefficients of the knowledge-based clinical-
molecular integrated prognostic model.

Covariate Coefficient ± SE HR 95% CI P value

T stage

T2 −1:62 ± 1:42 0.20 0.012-3.18 .25

T3 0:38 ± 1:02 1.47 0.20-10.79 .71

T4 1:22 ± 1:05 3.38 0.43-26.37 .25

N stage

N1 −0:01 ± 0:31 0.99 0.54-1.80 .96

N2 0:67 ± 0:30 1.95 1.07-3.54 .03

M stage

M1 1:02 ± 0:28 2.78 1.60-4.82 <.001
hsa00532∗ 2:86 ± 1:42 17.53 1.08-283.24 .04

SE: standard error; HR: hazard ratio; CI: confidence interval. ∗Covariate
hsa00532 used in the model is the PDS of pathway has00532.
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3.2. Identification of Molecular Prognostic Factors. Through
the random survival forest, a total of 14 pathways were
screened as potential molecular prognostic factors as shown
in Table 2. After further screening through the multicovariate
Cox model, 27 combinations of different pathways were
found to have significant prognostic effects in the integrated
models. Based on the bias-corrected C-indexes of these 27
different clinical-molecular integrated models shown in
Table 3, and the numbers of genes used in the analysis of each
pathway shown in Table 2, we concluded that the PDS of the
pathway has00532 should be the best molecular prognostic
factor to supplement clinical prognosis among these 14 path-
ways. In this study, 16 genes were included in the analysis:
XYLT1, XYLT2, B4GALT7, B3GALT6, B3GAT3, CSGAL-
NACT1, CSGALNACT2, CHSY1, CHPF, CHPF2, DSE,
CHST11, CHST12, CHST3, CHST15, and CHST14. The
other 4 genes, CHSY3, CHST13, CHST7, and UST, were
removed during data processing as these four genes were
not matched in the validation set. These 16 genes were used
for gene-based model construction in subsequent analyses.

Observation of the distribution of the PDS of the pathway
hsa00532 in the discovery set suggested that it approximately
obeyed a normal distribution as shown in Figure 2(a). There-
fore, patients in the discovery set were divided into a high-PDS
group and a low-PDS group. Based on the difference in
Kaplan-Meier (KM) curves between different patient groups,
a threshold of 0.6779 was considered to most clearly separate
these two groups, with the corresponding KM curves shown
in Figure 2(b). In addition, several peaks at approximately less
than 0.5 of the density distribution led us to separate the
patients into three groups according to thresholds of 0.5 and
0.6779, with the corresponding KM curves shown in
Figure 2(c). The high-PDS and low-PDS groups divided by
0.6779 showed significant survival differences in stage II colon
cancer patients, as shown in Figure 2(d).

3.3. Constructed Knowledge-Based Clinical-Molecular
Integrated Prognostic Model. With the identified
knowledge-based prognostic factor, the PDS of the pathway
hsa00532, and clinical prognostic factor T, N, and M stages,
our knowledge-based clinical-molecular integrated prognos-
tic model was built. To assess the improvement of our model
compared with the clinical prognostic model, the corre-
sponding clinical prognostic model based on T, N and M
stages and the molecular prognostic model based on the
PDS of pathway has00532 were constructed. The multico-
variate Cox model was used to determine the regression coef-
ficients of the models, with the coefficients of the knowledge-
based clinical-molecular integrated prognostic model sum-
marized in Table 4 and regression coefficients of the other
models summarized in Table S1, Table S2, and Table S3. A
corresponding nomogram that predicts the 3-year overall
survival was constructed and is shown in Figure 3.

3.4. Assessment of the Prognostic Models for all Colon Cancer
Patients. The discriminative performance of different models
was measured with both Harrell’s C-index for overall perfor-
mance and 3-year Uno’s C-index for performance at specific
time points and is shown in Figure 4. In the internal valida-
tion, our model outperformed in terms of overall prognostic
performance compared to the clinical prognostic model
(0.773 vs 0.746, P < :001) and the molecular prognostic
model (0.773 vs 0.619, P < :001) as shown in Figure 4(a). In
the external validation, our model again outperformed in
terms of overall prognostic performance compared to the
clinical prognostic model (0.893 vs 0.808, P < :001) and the
molecular prognostic model (0.893 vs 0.810, P < :001) as
shown in Figure 4(b).

The prognostic performance of our model at the 3-year
time point was assessed by Uno’s C-index and calibration
plot. The 3-year Uno’s C-index in the discovery set suggested
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Figure 3: Nomogram for predicting the 3-year overall survival of colon cancer patients. To use the nomogram, first, the position of each
variable of an individual patient on the corresponding axis should be found. Next, a line to the point axis for the number of points should
be drawn upwards to determine the number of points of each variable. Then, the points from all the variables should be added. Finally, a
line from the total point axis should be drawn downward to determine the likelihood of 3-year survival probabilities at the lower line of
the nomogram.
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that our model has the best discriminative performance com-
pared to the clinical model (0.793 vs. 0.762, P < :001) and the
molecular model (0.793 vs. 0.619, P < :001) as shown in
Figure 4(a), whereas in the validation set, the comparison
results were 0.899 vs. 0.816 (P < :001) compared to the clini-
cal model and 0.899 vs. 0.816 (P < :001) compared to the
molecular model as shown in Figure 4(b). The calibration
plot of these models also showed that our model has a supe-
rior calibration performance compared with the clinical
model at a 3-year time point as shown in Figure 5.

3.5. Assessment of the Prognostic Models for Nonmetastatic
Colon Cancer Patients. Because the mean survival time of
metastatic patients is shorter than that of nonmetastatic

patients, the prognostic performance of the prognostic
models may be affected. Therefore, the clinical prognostic
model, molecular prognostic model, and clinical-molecular
integrated prognostic model were constructed with the same
prognostic factors used for nonmetastatic patients. The same
assessments were performed on these models for nonmeta-
static patients, with nonmetastatic patients in the discovery
set and the validation set. In the internal validation, the inte-
grated model outperformed in terms of overall prognostic
performance compared to the clinical prognostic model
(0.712 vs. 0.665, P < :001 for bias-corrected Harrell’s C-index,
0.763 vs. 0.709, P < :001 for the 3-year Uno’s C-index) and the
molecular prognostic model (0.712 vs. 0.655, P < :001 for bias-
corrected Harrell’s C-index, 0.763 vs. 0.659, P < :001 for the 3-
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Figure 4: C-index of our pathway-based integrated model and other models for patients in the discovery set (a) and validation set (b).
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year Uno’s C-index) as shown in Figure 6(a). In the external
validation, the integrated model again outperformed in terms
of overall prognostic performance compared to the clinical
prognostic model (0.824 vs. 0.720, P < :001 for Harrell’s C-
index, 0.829 vs. 0.743, P < :001 for the 3-year Uno’s C-index)
and the molecular prognostic model (0.824 vs. 0.791, P <
:001 for Harrell’s C-index, 0.829 vs. 0.799, P < :001 for the 3-
year Uno’s C-index) as shown in Figure 6(b).

3.6. Pathway-Based Model Is Superior to the Gene-Based
Model. Previous studies have claimed that the introduction
of representative functional units should improve gene
expression-based studies [10, 14–16, 30]. Therefore, genes
involved in the pathway hsa00532 were used to construct a
gene-based clinical-molecular integrated prognostic model.
The regression coefficients of the gene-based model sug-
gested that only two genes (CSGALNACT1 and DSE) were
prognostically related when combined with clinical factors,

and they are summarized in Table S3. Compared with our
knowledge-based integrated model, the C-indexes of the
gene-based integrated model in the discovery set were
lower, with 0.721 vs. 0.773 (P < :001) for the bias-corrected
C-index, 0.783 vs. 0.793 (P < :001) for the 3-year Uno’s C-
index in the discovery set, 0.825 vs. 0.893 (P < :001) for
Harrell’s C-index, and 0.826 vs. 0.899 (P < :001) for the 3-
year Uno’s C-index in the validation set as shown in
Figure 4. These results suggest that the pathway-based
integrated model is superior to the gene-based integrated
model in discriminative performance because the gene-
based integrated model might include too many redundant
prognostic factors.

4. Discussion

4.1. Principal Results. Through knowledge-based clinical-
molecular integrated analysis by the random survival forest
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Figure 5: Calibration plot of our pathway-based integrated model (a) and clinical model (b) at the 3-year time point.
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and multicovariate Cox model, this study successfully identi-
fied the PDS of the pathway hsa00532 as the best molecular
prognostic factor for supplementing the prognostic perfor-
mance of the T, N, and M stages in overall survival predic-
tion. The results of internal validation and external
validation suggested that the knowledge-based clinical-

molecular integrated prognostic model had the best discrim-
inative performance and improved calibration performance
than the clinical prognostic model. The regression coeffi-
cients of the covariate in different models in Table 4,
Table S1, and Table S2 indicated that tiny changes were
observed for the clinical prognostic factors, while the
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Figure 6: C-index of our pathway-based integrated model and other models for nonmetastatic patients in the discovery set (a) and the
validation set (b).
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molecular prognostic factor keeps as an independent
prognostic factor in the final clinical-molecular integrated
prognostic model. These further indicated that our final
clinical-molecular integrated prognostic model does satisfy
the aim of our study. In addition, the pathway-based
models were superior to the gene-based model, which
indicates that the incorporation of pathway information
can make more use of the expression information of genes
involved in a pathway rather than directly using the
expression information of genes.

The observation of the KM curves based on patient
groups divided by thresholds of 0.5 and 0.6779 suggested that
patients with higher PDSs had worse survival. In addition,
the KM curves of stage II patients divided into high-PDS
and low-PDS groups could be distinctly distinguished, indi-
cating that the PDS of the pathway hsa00532 might be a
potential biomarker for separating high-risk stage II colon
cancer patients.

The pathway hsa00532 is named glycosaminoglycan
biosynthesis-chondroitin sulfate/dermatan sulfate on the
KEGG website, and it is related to the biosynthesis of chon-
droitin sulfate and dermatan sulfate. Previous studies have
indicated that the dermatan sulfate chain is different between
colon cancer and normal colonic mucosa, and chondroitin
sulfate is associated with tumor metastasis [31–34]. However,
the PDS of the pathway hsa00532 showed no relevance to the
metastasis status, with a Pearson correlation coefficient of
0.04 for the discovery dataset. In addition, the pathway
hsa00532 showed considerable supplementary power in
the models for both all-stage and nonmetastatic colon can-
cer patients, while the metastasis status and the PDS of the
pathway hsa00532 were regarded as independent signifi-
cant prognostic factors in the constructed model. One pos-
sible explanation for this finding is that although the PDS
in this study is generated from gene expression data, a
series of regulatory and expression biology processes from
the transcriptome is still needed to generate the actual
pathway products. Two genes, CSGALNACT1 and DSE,
involved in the pathway hsa00532 might be potential
markers for colon cancer prognosis because only these
two genes showed a potential prognostic effect in the
gene-based integrated model based on the regression coef-
ficients of the gene-based model summarized in Table S3.
Further validation is required to validate the prognostic
effect of these two genes as currently published papers
have not mentioned them in conjunction with colon
cancer prognosis.

Recent studies on colon cancer prognosis mainly focused
on finding better molecular prognostic features, while our
study was aimed at supplementing the current clinical stag-
ing system with molecular features [12, 13, 35]. Compared
to a recent colon cancer prognosis study which incorporated
both clinical prognostic features and gene expression profiles,
our study integrated the clinical prognostic features and gene
expression profile in a conditional way rather than joining
the two types of features independently [12]. The conditional
modelling strategy is more suitable for our study as this study
was aimed at supplementing the prognosis performance of
the current TNM staging system.

4.2. Limitations. There are still limitations in this study. The
clinical prognostic factors in this study involved only the T,
N, and M stages, while in the actual clinical treatment of
colon cancer, there are many other factors that need to be
considered, such as the patient’s physical condition and the
chemotherapy or radiotherapy regimen. In addition, due to
the short follow-up time of the validation set, it was not pos-
sible to further validate the performance of our model on
long-term prognosis. The conditional modelling strategy for
clinical-molecular integration could satisfy the demand of
the current study, although it could not fully utilize the cor-
relation structure between clinical and molecular factors
[36]. Further studies about how to make better use of molec-
ular features should be considered. The current study used
only gene expression data from the transcriptome, and the
addition of other types of omics data, such as genome or epi-
genome data, may further improve the accuracy of molecular
features and better supplement the clinical prognosis. How-
ever, with the current technology, how to balance the
improvement in discriminative performance and the cost of
sequencing remains to be considered.

Through cooperation with local hospitals, we can collect
more real-world follow-up patients and sequence their tumor
samples to generate more molecular data. Therefore, further
validation of our model could be conducted. The involve-
ment of more clinical prognostic factors in clinical-
molecular analysis could make a more detailed and specific
supplement to clinical prognosis. New integrative models
based on a conditional strategy or even a joint modelling
strategy would be required to deal with new data. In addition,
considering that the PDS of the pathway hsa00532 can effec-
tively distinguish the risk of stage II patients, further research
and validation should be performed with more data. After
further validation with real data, further research related to
the PDS of the pathway has00532, such as immunohisto-
chemistry and other methods appropriate for clinical use,
should be conducted, with corresponding web-based tools
being developed.

5. Conclusions

In conclusion, this study identified that the PDS of the path-
way hsa00532 can be used as a supplementary prognostic fac-
tor for the three clinical prognostic factor T, N, and M stages.
The clinical-molecular integrated prognostic model con-
structed with these three clinical prognostic factors and the
identified molecular prognostic factor is superior to the clin-
ical prognostic model, molecular prognostic model, or gene-
based integrated prognostic model in prognostic perfor-
mance. A corresponding nomogram including the three clin-
ical prognostic factors and the identified molecular
prognostic factor was constructed for possible clinical use.
In addition, the PDS of the pathway hsa00532 showed a sig-
nificant ability to distinguish high risk stage II colon cancer
patients and is a potential prognostic marker. The PDS calcu-
lation of the pathway hsa00532 involves only 16 genes; there-
fore, it has good prospects for clinical use after further
validation with real data.
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Lung cancer has a higher incidence rate and mortality rate than all other cancers. Early diagnosis and treatment of lung cancer
remain a major challenge, and the 5-year survival rate of its patients is only 15%. Basic and clinical research, especially the
discovery of biomarkers, is crucial for improving the diagnosis and treatment of lung cancer patients. To identify novel
biomarkers for lung cancer, we used the iTRAQ8-plex labeling technology combined with liquid chromatography-tandem mass
spectrometry (LC-MS/MS) to analyze the serum and urine of patients with different stages of lung adenocarcinoma and healthy
individuals. A total of 441 proteins were identified in the serum, and 1,161 proteins were identified in the urine. The levels of
elongation factor 1-alpha 2, proteasome subunit alpha type, and spermatogenesis-associated protein increased significantly in
the serum of patients with lung cancer compared with those in healthy controls. The levels of transmembrane protein 143,
cadherin 5, fibronectin 1, and collectin-11 decreased significantly in the serum of patients with metastases compared with those
of nonmetastatic lung cancer patients. In the urine of stage III and IV lung cancer patients, the prostate-specific antigen and
prostatic acid phosphatase decreased significantly, whereas neutrophil defensin 1 increased significantly. The results of LC-
MS/MS were confirmed by enzyme-linked immunosorbent assay (ELISA) for transmembrane protein 143, cadherin 5,
fibronectin 1, and collectin-11 in the serum. These proteins may be a potential early diagnosis and metastasis biomarkers for
lung adenocarcinoma. Furthermore, the relative content of these markers in the serum and urine could be used to determine the
progression of lung adenocarcinoma and achieve accurate staging and diagnosis.

1. Introduction

The incidence and mortality rates of lung cancer are higher
than those of other cancers [1]. The overall 5-year survival
rate for lung cancer is only 15% [2]. Lung cancer is divided
into small cell carcinoma (SCLC) and non-small-cell carci-
noma (NSCLC). SCLC accounts for 10%-15% of lung cancers
and is sensitive to radiotherapy and chemotherapy [3, 4].
However, approximately 85% of lung cancers are NSCLC
[5]. The median survival time of patients with advanced lung

cancer is only 10 months [6]. Although the diagnosis and
treatment of lung cancer have significantly improved, the
current treatment methods are still not satisfactory. Improved
early diagnosis and targeted treatment of lung cancer are
required in clinical practices to improve patient outcomes.

Proteomics is the science of studying protein composi-
tion and alterations in cells, tissues, and organisms. Proteo-
mics is widely used in basic and clinical medical research
[7] for the identification of biomarkers [8, 9], posttransla-
tional protein modifications [10], and the regulation of
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signaling pathways [11]. Proteomics research of lung cancer
has focused on the classification of lung cancer [12], the
correlation between protein and gene expressions [13, 14],
identification of new molecular targets [15, 16], and the
development of new drugs [17, 18]. Early diagnostic markers
for lung cancer [19, 20] have been identified, but the markers
still lack accuracy and sensitivity. Therefore, exploration and
discovery of reliable and sensitive markers for the early diag-
nosis of lung cancer are a research priority.

Quantitative proteomics can determine relative changes in
protein content. Based on this technology, differences in pro-
tein abundance between healthy individuals and patients with
cancer can be defined to identify disease markers. Proteomics
has been widely used in human disease research [21]. The
postlabeling analysis of proteins using the iTRAQ8-plex tech-
nology, combined with Data Dependent Acquisition (DADA),
is currently the standard labeling method used in quantitative
proteomics [18, 22, 23]. The iTRAQ8-plex technology is also a
commonly used quantitative method, which can be applied to
quantitative analysis in proteomics research [24, 25].

For the first time, we combined iTRAQ8-plex labeling
with liquid chromatography-tandem mass spectrometry
(LC-MS/MS) as a quantitative proteomics analysis approach
to compare protein abundance in the serum and urine
samples of healthy controls to that in the serum and urine
samples of stage I, II, III, and IV lung adenocarcinoma
patients. The purpose of this study was to identify a set of
biomarkers for the early diagnosis and metastasis prediction
in patients with lung adenocarcinoma using serum and urine.

2. Materials and Methods

2.1. Chemicals and Reagents. Pierce™ Top12 Abundant Protein
Depletion Spin Columns, dithiothreitol (DTT), indole-3-
acetic acid (IAA), a bicinchoninic acid (BCA) kit, iTRAQ
reagents, and Ziptip solid-phase microextraction reagents
were purchased from Thermo Fisher Scientific, Inc. (Wal-
tham, MA, USA). Trypsin was obtained from Promega. All
organic reagents were high-performance liquid chromatogra-
phy (HPLC) grade, and Milli-Q ultrapure water was used in
all experiments (Millipore, Bradford, USA). Other reagents
were analytical grade reagents, unless otherwise indicated.

2.2. Collection and Storage of Serum and Urine Samples.
Serum and urine samples were collected from patients that
were diagnosed with lung adenocarcinoma at the General
Hospital of the Chinese People’s Liberation Army from June
2017 to June 2018. The discovery set consisted of 30 healthy
individuals and 70 lung adenocarcinoma patients at early
stages (stage Ia1, n = 10; stage Ia2, n = 10; stage Ia3, n = 10;
stage Ib, n = 10; and stage II, n = 10) and late stages (stage
III, n = 10; stage IV, n = 10). Healthy controls were age- and
gender-matched to the lung adenocarcinoma patients
(Table 1). Of note, serum and urine samples were collected
before the 70 lung adenocarcinoma patients had undergone
chemical or medical treatment. All samples were collected
from patients with an empty stomach in the morning. All
participants provided signed informed consent, and samples
were collected following the protocol approval. All methods

were carried out in accordance with the approved guidelines,
and all experimental protocols were approved by the ethics
committee of the Chinese PLA General Hospital (Number
S2018-007-001). Each serum sample was allowed to clot for
45min and then centrifuged at 2,000 rpm for 10min. For
urine samples, a morning midstream urine specimen was
collected and centrifuged at 1,500 rpm for 5min. All samples
were aliquoted and stored at −80°C until use.

2.3. Sample Preparation and Enzyme Digestion. For the LC-
MS analysis, frozen serum and urine samples were thawed
on ice. Serum samples with each group (100μL of serum)
were merged; the urine samples within each group (2mL of
urine) were merged. Pierce™ Top12 Abundant Protein Deple-
tion Spin Columns were used to remove high-abundance pro-
teins from the serum samples of each group. The filtrate was
collected and denatured with 8M urea. DTT and IAA were
added to reduce alkylation, and 1μg of Trypsin was then
added at a ratio of 1 : 30 (enzyme : protein). The sample was
hydrolyzed overnight at 37°C.Urine samples were precipitated
with precooled acetone, and urea was used to redissolve the
precipitate, followed by protein quantification using a BCA
kit. Lastly, 3.3μg Trypsin was added to 100μg protein from
each group, and the samples were enzymatically hydrolyzed
(1 : 30, enzyme : protein).

2.4. Use of the iTRAQ-8plex for Labeling and Separation.
After digestion, iTRAQ113-119 was used to separately label
the serum and urine of stage Ia1-IV, and iTRAQ121 was used
to label the serum and urine of the normal control group. For
iTRAQ-8plex labeling, 150μL isopropanol was added to each
labeling reagent, and the mixture was added to each polypep-
tide sample (100μg) after shaking and mixing. The reaction
was carried out at room temperature for 2 hours. Then, water
(100μL) was added to terminate the reaction, and samples
were freeze-dried after mixing.

The labeled peptide fragments were mixed, and 15 com-
ponents were separated using the Agilent 1200 HPLC separa-
tion system. The chromatographic column was a high-pH RP
C18 (4:6mm × 250mm, 5μm, 300 A). Mobile phase A was
the aqueous phase containing 20mM ammonium acetate
(pH10). Mobile phase B was ACN/water containing 20mM
ammonium acetate (ACN/Water, 9/1, v/v, pH10). The
mobile phase gradient was 5% B to 35% B and 35%–40% B
to 90% B; 90% B was then maintained for 10 minutes. The
fractionated samples were desalinated using Ziptip solid-
phase microextraction and analyzed.

2.5. SDS-PAGE. Serum samples were loaded onto a 10%
sodium dodecyl sulfate- (SDS-) polyacrylamide gel electro-
phoresis (SDS-PAGE gel) (Invitrogen™, Thermo Fisher
Scientific, Inc., New York, USA) and run at 100V for
100min in a running buffer. A prestained protein standard
(Solarbio Science & Technology Co., Ltd., Beijing, China)
was used to track protein migration. The resulting gels were
stained with a fast silver stain kit (Beyotime, Beijing, China).
The protocol was previously described [26].

2.6. LC-MS/MS Analysis. The prepared samples were separated
and identified by liquid chromatography- (Ultimate3000,
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Thermo Fisher Scientific, Inc.) tandem mass spectrometry (Q-
Exactive, Thermo Fisher Scientific, Inc.). Samples were first
loaded separately on a trap column (150 μm× 20mm) packed
with SP-300-ODS-AP (3μm particle diameter; 100nm pore
size in house). Each sample was eluted into an analytical col-
umn (75 μm× 15mm), packed with SP-300-ODS-AP, and sep-
arated at a flow rate of 500nL∙min−1 with an elution gradient
consisting of mobile phase B (80% acetonitrile, 20% H2O,
0.1% formic acid) and mobile phase A (99.9% H2O, 0.1%
formic acid). Elution gradient solutions were added as follows:
B was increased from 4% to 10% in 5 minutes, from 10% to
12.5% in 10 minutes, from 12.5% to 27.5% in 75 minutes, from
27.5% to 50% in 110 minutes, and from 50% to 95% in 10
minutes. The LC system was automatically equilibrated with
mobile phase A for approximately 10 minutes before the next
analysis. Fractions were continuously detected in the Q-
Exactive hybrid quadrupole-orbitrap mass spectrometer with
a nanoelectrospray ionization source at a capillary temperature
of 250°C and a spray voltage of 2,500V.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA) Analysis.
The 100 serum samples in the experiment were analyzed
using an ELISA for transmembrane protein 143, cadherin
5, fibronectin 1, and collectin-11 according to the manufac-
turer’s instructions.

2.8. Data Analysis. The MS/MS spectra were searched using
the Proteome Discoverer 2.2 against a nonredundant Sequest
database (released in January 2010; Homo sapiens, 20,367
entries). For protein identification, we set thresholds of
10 ppm for intact peptide tolerance masses and 0.02Da for
fragment ions. The analysis allowed for two missed cleavages
from the trypsin digest, and iTRAQ (N-terminal, 144Da),
iTRAQ (Lys, 144Da), oxidized methionine (16Da), and
carbamidomethyl (C, 57Da) were set as potential variable
modifications. Each peptide integrated intensity was normal-
ized to the sum of its channel intensities. The normalized
channels were averaged over all peptides of a protein, and
the standard deviation of the mean was determined for each
normalized channel of a peptide. The results of the
SEQUEST database search for each reversed-phase elution
were further analyzed (Table S1, serum; Table S2, urine). A
difference multiple greater than 1.3 or less than 0.77 in serum
and that greater than 1.5 or less than 0.67 in urine were
considered statistically significant. The clinical characteristics
were compared using Student’s t test, Fisher’s exact test, or
Wilcoxon rank test, whichever was appropriate. The

concentrations of transmembrane protein 143, cadherin 5,
fibronectin 1, and collectin-11 in the different stages of lung
cancer were compared to those of the control group using
Student’s t test. Data are expressed as the mean ± standard
deviation (SD). Results were analyzed using SPSS 8.0 software
and Origin 8.5 statistics. The analysis of variance was
performed to determine any significant differences (P ≤ 0:05).

3. Results

3.1. Identification of Removed High-Abundance Proteins.We
used Pierce™ Top 12 Abundant Protein Depletion Spin
Columns to remove high-abundance proteins from each
serum group, as indicated by SDS-PAGE electrophoresis
(Figure 1). After the removal of high-abundance proteins,
the distribution of protein bands was significantly better than
that of samples without the removal of high-abundance
proteins. The eight samples separated well after removal of
high-abundance proteins; the bands were similar, and the
color depth was consistent among the samples.

3.2. Identification of Polypeptides in Serum and Urine
Samples.We examined the iTRAQ labeling efficiency. A total
of 12,155 peptides were identified in the urine sample, and
12,153 peptides were labeled using the iTRAQ reagent. Thus,
the labeling efficiency of iTRAQ was 99.9%. The labeling effi-
ciency of the serum sample reached 99.86%.

According to the LC-MS analysis (Table S1, serum;
Table S2, urine), the relative molecular mass distribution of
proteins was mainly concentrated below 200kDa in the
serum and urine samples, because the experiment used the
classic bottom-up technique (Figures 2(a) and 2(b)). Proteins
with molecular weights of up to 540 kDa were identified.
Peptide sequence lengths ranged from 10 to 13 peaks;
polypeptide lengths were concentrated in the 6–25 range,
and 90% of peptide lengths were within 24kDa, as expected
(Figures 2(c) and 2(d)). The theoretical distribution was
fitted to a sixth degree polynomial, and R2 was greater than
0.95. On the polypeptide m/z distribution map, the abscissa
is m/z, and the ordinate is the number of polypeptides. Most
of the polypeptides had an m/z of 400–1,200, and as m/z
gradually increased, the number of identified polypeptides
gradually decreased, as expected (Figures 2(e) and 2(f)). In the
final correlation analysis, the normalized protein abundance
values were used to analyze the correlation between the
samples. Figures 2(g) and 2(h) are the correlation map and
correlation coefficient matrix analysis of serum and urine

Table 1: Clinical profiles and demographics of healthy controls and lung adenocarcinoma patients with different stages.

Demographics Control Stage Ia1 Stage Ia2 Stage Ia3 Stage Ib Stage II Stage III Stage IV

n 30 10 10 10 10 10 10 10

Age 55 ± 8:32 53 ± 5:91 55:9 ± 6:79 54:3 ± 4:06 57:4 ± 8:37 57:9 ± 6:35 57:2 ± 5:39 57:8 ± 9:96
Male 21 7 7 7 7 7 7 7

Female 9 3 3 3 3 3 3 3

Smoking history 12 4 4 4 4 4 4 4

Ethnicity Han (30) Han (10) Han (10) Han (10) Han (10) Han (10) Han (10) Han (10)

121: healthy control; 113: stage Ia 1; 114: stage Ia2; 115: stage Ia3; 116: stage Ib; 117: stage II; 118: stage III; 119: stage IV.
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samples. Correlation between the samples was very high, and
the correlation coefficient was close to 1.

3.3. Identification of Differentially Expressed Proteins in the
Urine. In the urine, 1,161 proteins were identified. Urine
samples from healthy controls were compared to urine sam-
ples from different lung adenocarcinoma groups to obtain
differential protein levels. Proteins that were upregulated by
>1.5-fold or downregulated by <0.67-fold in urine were
considered significant. Based on this rule, levels of 461 urine
proteins were increased, and levels of 332 proteins were
decreased (Table 2 and Table S3, urine). Changes in urine
proteins are indicated on a heat map (Figure 3(a)). We had
carried on the thorough analysis to the result and discovered
the expression of the prostate-specific antigen, and prostatic
acid phosphatase decreased significantly in the metastatic
group (stages III and IV) and neutrophil defensin 1 increased
significantly in the metastatic group compared to the
nonmetastatic group (stages I and II) (Figures 3(c)–3(e)).
Changes in these proteins were consistent with those reported
in the literature.

3.4. Identification of Differentially Expressed Proteins in the
Serum. A total of 441 proteins were identified in serum sam-
ples. Serum samples from healthy controls were compared to
serum samples from different lung adenocarcinoma groups
to obtain differential protein levels. Proteins that were upreg-
ulated by >1.3-fold or downregulated by <0.77-fold in serum
were considered significant. Based on this rule, 425 proteins
increased, and 73 proteins decreased (Table 3 and Table S4
serum), and then we made the heat map for the changed in
serum proteins (Figure 3(b)). Elongation factor 1-alpha 2
(Q05639), proteasome subunit alpha type (B2RDG0), and a
spermatogenesis-associated protein (A0A0R4J2F1) were
significantly increased (>1.3-fold) in all stages of lung
adenocarcinoma compared with those of healthy controls
(Figures 4(a)–4(c)). Transmembrane protein 143 (Q96AN5),
cadherin 5 (Q59EA3), fibronectin 1 (A0A024R462), and
collectin-11 (Q9BWP8) were significantly lower (<0.77-fold)
in adenocarcinoma cancer stages III and IV compared with

the level of expression in stages I and II (untransferred)
(Figures 4(d)–4(g)). ELISAs were used to verify the four
proteins, and the results were consistent with those of the
LC-MS/MS (Figures 4(h)–4(k)).

3.5. Bioinformatics Analysis of Differential Proteins in Serum
Samples. Significantly differentially expressed proteins from
the LC-MS/MS were analyzed by Blast2Go and clusterProfi-
ler software with Human as the background library, followed
by GO annotations, including a biological process (BP), a
cellular component (CC), and a molecular function (MF)
(Figures 5(a)–5(c)).

In the BP analysis (Figure 5(a)), the biological processes
associated with cell proliferation, including DNA replication,
chromosome assembly, and organization, as well as beta-
catenin-TCF complex assembly, were significantly altered
relative to normal samples. Changes in biological processes
also changed cellular components and molecular functions.
In the CC analysis (Figure 5(b)), significant changes in cancer
patients included the interaction of cellular genetic material
and DNA proteins. In the MF analysis (Figure 5(c)), changes
in histone binding were most pronounced, because histidine
is abundantly present in the cell chromatin, and the protein
regulates changes in genetic material by binding to histones.
Taken together, the GO analysis demonstrated significant
changes in protein function in lung cancer patients, particu-
larly those associated with cell proliferation, differentiation,
and metastasis.

3.6. Bioinformatics Analysis of the Differential Proteins in
Urine Samples. In urine samples, we used Blast2Go and
clusterProfiler software to analyze differentially expressed
proteins with human as the background library, followed by
GO annotations, including BP, CC, and MF (Figures 6(a)–
6(c)). The results of the BP analysis were similar to those
for the serum samples, which are consistent with changes
in DNA replication and chromosome assembly, and they
verify the rapid infinite value added by cancer cells
(Figure 6(a)). However, in CC and MF analyses, urine sam-
ples still exhibited changes different from serum. In the CC
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Figure 1: SDS-PAGE electrophoresis of removal high-abundance proteins. 0: nothing was done; 1: healthy control; 2: stage Ia1; 3: stage Ia2; 4:
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Figure 2: Continued.
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analysis (Figure 6(b)), the result of urine analysis differed
from the serum result, mainly reflecting the fact that in the
urine, the vesicle lumens changed significantly in the lung
cancer group. In the MF analysis (Figure 6(c)), changes in
histone binding and protein heteromerization were consis-
tent with the results in the serum.

4. Discussion

Using iTRAQ8-plex labeling combined with liquid
chromatography-tandem mass spectrometry as a quantita-
tive proteomics analysis method of analyzing the serum and
urine samples of healthy controls and stage I, II, III, and IV
non-small-cell lung adenocarcinoma patients, we identified
a total of 441 proteins in serum samples and 1,161 proteins
in urine. In the serum samples, elongation factor 1-alpha 2,
proteasome subunit alpha type, and the spermatogenesis-
associated protein increased significantly in all stages of lung
adenocarcinoma compared with healthy controls. In stage III
and IV patients, the expression levels of transmembrane pro-
tein 143, cadherin 5, fibronectin 1, and collectin-11 decreased
significantly compared with those in stages I and II. In urine
samples, the prostate-specific antigen and prostatic acid

phosphatase levels were significantly decreased, whereas neu-
trophil defensin 1 was significantly elevated in stage III and
IV lung adenocarcinoma patients. These results are consis-
tent with previous reports verifying that the method is
reliable. Moreover, these differentiated proteins may serve
as potential diagnostic markers for the early diagnosis of lung
adenocarcinoma. In addition, combining the markers in
serum and urine may distinguish different stages of lung
adenocarcinoma.

Due to the rapid division and proliferation of cancer cells,
the synthesis and metabolism of nucleic acids and proteins
are increased compared with those in normal cells. Thus,
the associated protein content is increased [26, 27] relative
to normal cells. Elongation factor 1-alpha 2 has been
reported in the literature as a potential marker for cancer
[17]. The proteasome subunit alpha type is significantly
increased in all cancers, consistent with literature reports
[17, 27, 28]. Protein ubiquitination and subsequent proteoly-
sis and degradation by the proteasome are important mech-
anisms in the cell cycle, cell growth and differentiation,
gene transcription, signal transduction, and apoptosis [29].
Proteasomes hydrolyze cells and control apoptosis. Proteo-
somes bind to the p21 protein and inhibit p21 protein activity
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Figure 2: (a) Molecular weight distribution of serum. (b) Molecular weight distribution of urine. (c) The number of peptides of different
lengths in the serum specimen. (d) The number of peptides of different lengths in the urine specimen. (e) The distribution of PSMs m/z in
the serum specimen. (f) The distribution of PSMs m/z in the urine specimen. (g) The diagram of correlation coefficient array in the serum
specimen. (h) The diagram of correlation coefficient array in the urine specimen.

Table 2: Differential protein statistics of urine samples from different stages of lung adenocarcinoma.

113/121 114/121 115/121 116/121 117/121 118/121 119/121

Upregulated 142 74 47 33 38 77 50

Downregulated 10 42 197 14 6 26 37

121: control group; 113: stage Ia 1; 114: stage Ia2; 115: stage Ia3; 116: stage Ib; 117: stage II; 118: stage III; 119: stage IV.
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[30], leading to cell cycle disorders and, ultimately, cancer.
Therefore, the increased expression of this protein in cancer
cells inhibits the tumor-suppressing effect of p21. The pro-
teasome subunit alpha type may be significantly associated
with the protein metabolism in the body, and its expression
is associated with cancer [30, 31]. The spermatogenesis-

associated protein is a spermatogenesis-related protein that
is mainly found in mammalian tissues and is significantly
elevated in prostate cancer tissues [32], testicular cancer
tissues [32, 33], and breast cancer tissues [34]. The expression
of spermatogenesis-associated 6 (SPATA6) is significantly
elevated in testicular cancer, and inhibition of SPATA6
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Figure 3: Statistical analysis of differentially expressed proteins and urine protein markers with significant differences between early and late
stage lung adenocarcinomas. (a) The heat map of changed in urine proteins. (b) The heat map of changed in serum proteins. (c) Prostate-
specific antigen expression in lung adenocarcinoma groups was significantly lower in the metastatic groups than in the non-metastasis
groups. (d) Prostatic acid phosphatase expression of the metastatic groups was significantly lower than that of the nonmetastatic groups in
lung adenocarcinoma. (e) The expression of neutrophil defensin in the lung adenocarcinoma groups was significantly higher than that in
the metastatic group than that in the nonmetastatic groups.

Table 3: Differential protein statistics of serum samples from different stages of lung adenocarcinoma.

iTRAQ 113/121 114/121 115/121 116/121 117/121 118/121 119/121

Upregulated 93 41 98 78 51 35 29

Downregulated 5 4 4 8 5 8 39

121: control group; 113: stage Ia 1; 114: stage Ia2; 115: stage Ia3; 116: stage Ib; 117: stage II; 118: stage III; 119: stage IV.

7BioMed Research International



150
Elongation factor 1-alpha 2

100

50

0
HC Ia 1 Ia 2 Ia 3 Ib II III IV

Re
la

tiv
e a

bu
nd

an
ce

(a)

Proteasome subunit alpha type
200

150

100

50

0
HC Ia 1 Ia 2 Ia 3 Ib II III IV

Re
la

tiv
e a

bu
nd

an
ce

(b)

Spermatogenesis-associated protein
100

80

60

40

20

0
HC Ia 1 Ia 2 Ia 3 Ib II III IV

Re
la

tiv
e a

bu
nd

an
ce

(c)

Transmembrane protein 143
500

400

300

200

100

0
HC Ia 1 Ia 2 Ia 3 Ib II III IV

Re
la

tiv
e a

bu
nd

an
ce

(d)

Cadherin 5
800

600

400

200

0
HC Ia 1 Ia 2 Ia 3 Ib II III IV

Re
la

tiv
e a

bu
nd

an
ce

(e)

Fibronectin 1
20000

15000

10000

5000

0
HC Ia 1 Ia 2 Ia 3 Ib II III IV

Re
la

tiv
e a

bu
nd

an
ce

(f)

Collectin-11
50

40

30

20

10

0
HC Ia 1 Ia 2 Ia 3 Ib II III IV

Re
la

tiv
e a

bu
nd

an
ce

(g)

300

200

100

0
CH Ia 1 Ia 2 Ia 3 Ib II III IV

Tr
an

sm
em

br
an

e p
ro

te
in

14
3 

(p
g/

m
L)

⁎ ⁎

⁎

⁎ ⁎

(h)

400

300

200

100

0
CH Ia 1 Ia 2 Ia 3 Ib II III IV

Ca
dh

er
in

 5
 (p

g/
m

L)

⁎ ⁎

⁎

⁎
⁎

(i)

400

300

200

100

0
CH Ia 1 Ia 2 Ia 3 Ib II III IV

Fi
br

on
ec

tin
 1

 (p
g/

m
L) ⁎

⁎
⁎

⁎

⁎

(j)

Figure 4: Continued.
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expression can cause cancer cells to die [35]. SPATA20 is
significantly elevated in cholangiocarcinoma [36]. Our
results are consistent with those reported in the literature.

The prostate-specific antigen (PSA) and prostatic acid
phosphatase are markers for the diagnosis of prostate cancer
[37]; elevated total PSA (tPSA) and free PSA (fPSA) and
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Figure 4: Differences the proteins in serum samples. (a–c) The level of expression elongation factor 1-alpha 2, proteasome subunit alpha type,
and spermatogenesis-associated in each group. (d–g) LC-MS/MS of transmembrane protein 143, cadherin 5, fibronectin 1, and collectin-11;
(h, k) ELISA of transmembrane protein 143, cadherin 5, fibronectin 1, and collectin-11. ∗P < 0:05.
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Figure 5: The GO analysis the protein markers in the serum samples. (a) Serum biological process (BP). (b) Serum cellular component (CC).
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decreased tPSA/fPSA indicate prostate cancer [38]. We dem-
onstrated a significant downregulation of PSA in metastatic
lung cancer urine relative to nontransfer of lung cancer. Neu-
trophil defensin 1 protein is important in the neutrophil
defense system and has antitumor effects [39]. In advanced
metastatic lung cancer, the metabolism and activity of the
tumor are increased, and neutrophil defensin 1 is part of its
defense system. Thus, neutrophil defensin 1 can be used as
an indicator of cancer prognosis.

Transmembrane protein 143 was present at different
levels in different stages of lung cancer and may be important
in the early diagnosis and prognosis of cancer. These results
are novel and have not been reported. E-cadherin acts as an
invasion suppressor and a classical tumor suppressor gene.
E-cadherin is a biomarker for cancer [18, 40] and is attenu-
ated and reduced in many cancers [41–43], especially in lung
and breast cancers. E-cadherin loss in tumor cells leads to
decreased adhesion between tumor cells, which favors
epithelial-mesenchymal transition [44] and promotes the
ability of tumor cells to invade and metastasize. In metastatic
lung cancer (stages III and IV), E-cadherin protein levels

were significantly lower than those in nonmetastatic stages
(I and II). Fibronectin can regulate cancer and the migration
of cancer cells, which is closely associated with the prognosis
of tumor formation and development. However, the mecha-
nisms underlying this relationship are unclear [45]. Fibro-
nectin is a biomarker [18, 45–48], which is upregulated in
cancer, and our results are consistent with the literature.
Fibronectin 1 can bind to cancer cells and favors metastasis
and invasion [48, 49]. Cancer prognosis studies demonstrate
that the higher the level of fibronectin 1 in vivo, the worse the
prognosis and survival rate [45]. When cancer occurs, fibro-
nectin 1 expression increases, promoting adhesion and inva-
sion of cancer cells and increasing the damage to normal
tissues. Therefore, fibronectin 1 is also an important indica-
tor of cancer prognosis. After cancer treatment, if fibronectin
1 levels are still high, the prognosis is poor.

Collectin-11 decreased significantly in stage III and IV
adenocarcinomas compared to earlier stages. Collectins are
a family of collagenous calcium-dependent defense lectins
in animals [50]. Collectins are humoral molecules of the
innate immune system that modulate inflammatory and
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allergic responses, the adaptive immune system, and clear-
ance of apoptotic cells [51, 52]. Collectin-11 is directly related
to cancer and the human immune system. In stage I and stage
II lung cancer, collectin-11 is elevated because the human
immune system is still in the early stage of cancer develop-
ment. In stage III and stage IV cancer, collectin-11 is
decreased, by the massive proliferation and metastasis of
cancer cells, a process that destroys the normal immune
system. This report is the first to identify changes in
collectin-11 in lung cancer, which can be used as a marker
for staging non-small-cell lung cancer.

Based on the biological analysis of differential proteins in
serum and urine, the protein changes in serum and urine
were similar, indicating that the biological processes of blood
and urine were interrelated and consistent. In the CC analy-
sis, the changes in urine vesicles in the lung cancer group
were more pronounced compared to those in the blood.
The results of serum and urine are partially consistent, but
urine and serum also have unique characteristics, so the com-
bination provides a better reference for the selection of bio-
markers. In summary, these differentiated proteins may be
potential diagnostic markers for lung adenocarcinoma and
may serve as a basis for the early diagnosis of lung adenocar-
cinoma. Further research is required to verify the experimen-
tal results.
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The immune system is a complicated defensive system that comprises multiple functional cells and molecules acting against
endogenous and exogenous pathogenic factors. Identifying immune cell subtypes and recognizing their unique immunological
functions are difficult because of the complicated cellular components and immunological functions of the immune system. With
the development of transcriptomics and high-throughput sequencing, the gene expression profiling of immune cells can provide a
new strategy to explore the immune cell subtyping. On the basis of the new profiling data of mouse immune cell gene expression
from the Immunological Genome Project (ImmGen), a novel computational pipeline was applied to identify different immune
cell subtypes, including αβ T cells, B cells, γδ T cells, and innate lymphocytes. First, the profiling data was analyzed by a powerful
feature selection method, Monte-Carlo Feature Selection, resulting in a feature list and some informative features. For the list, the
two-stage incremental feature selection method, incorporating random forest as the classification algorithm, was applied to
extract essential gene signatures and build an efficient classifier. On the other hand, a rule learning scheme was applied on the
informative features to construct quantitative expression rules. A group of gene signatures was found as qualitatively related to the
biological processes of four immune cell subtypes. The quantitative expression rules can efficiently cluster immune cells. This
work provides a novel computational tool for immune cell quantitative subtyping and biomarker recognition.

1. Introduction

The immune system is a complicated defensive system that
comprises multiple functional cells and molecules acting
against endogenous and exogenous pathogenic factors [1–
3]. With organism evolution, the immune system gradually
becomes complicated and finally forms layered defensive
mechanisms, including innate and adaptive immune sys-
tems, in advanced creatures such as mammals [4, 5]. Both
these immune systems are complicated and constitute cellu-
lar (immune cells) and noncellular components (immuno-

regulatory molecules) [6]. The cellular component is
diverse on structural and functional levels [6]. In particular,
each single immune response could involve multiple sub-
types of immune cells, and each immune cell subtype may
play various important roles in multiple immune responses,
thereby constituting a complicated regulatory network on
the cellular level [6].

Identifying the subtypes of immune cells and recognizing
their unique immunological functions are difficult due to the
complicated cellular components and immunological func-
tions of the immune system. The only standards are the
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typical molecular markers recognized by cytobiology [7–9].
However, such biomarkers cannot accurately reflect the com-
ponents of immune cells and reveal their immunoregulatory
mechanisms in vivo.With the development of transcriptomics
and high-throughput sequencing [10, 11], the gene expression
profiling of immune cells can provide a new strategy to explore
the complicated immunoregulatory mechanisms, e.g., detailed
immune cell subtyping. Gene expression profiling with tran-
scriptomic analysis can reflect the typical gene expression pat-
tern of each cell subgroup. In accordance with the central
dogma of molecular biology, cells with different gene expres-
sion patternsmay have varying proteomic features and biolog-
ical functions and therefore must be clustered into different
cell subtypes [12, 13]. Differentially expressed genes or tran-
scripts may be potential biomarkers for the identification of
a given cell subgroup/subtype. Therefore, transcriptomic
sequencing is a novel technique for immune cell subtyping
through the recognition of cell subgroups and their respective
biomarkers and functions.

The Immunological Genome Project (ImmGen) [14, 15]
is aimed at establishing a systematic panorama of gene
expression and regulatory networks of all immune cells by
using a mouse model. Initiated in 2008, this collaborative
study [15] has analyzed the differentiation, maturation,
active responses, effector stages, tissue localizations, and
genetic variations of more than 250 subtypes of immune cells
in mouse models. A systematic immunoregulatory network
in mice, which encompasses the innate and adaptive immune
systems, has been established by this project through system-
atic quality check control and standardized analyzed condi-
tions. The analyzed data and constructed networks can be
accessed by using a dedicated data browser, and the raw
sequencing and microarray data can be accessed in a public
database [16]. This project provides reliable resources for
immune cell gene expression profiling for further exploration
and research.

As reported by various previous publications, the immune
system is composed by multiple immune cell subtypes which
are impossible for us to study one by one. For further analyses
on the mouse immune cell gene expression profiling, we
focused on four basic subtypes of immune cells: αβ T cells
[17], B cells [18], γδ T cells [19], and innate lymphocytes
[20]. Among them, αβ T cells are the majority of T cells with
αβ TCR, contributing to immune-mediated cell death as
adaptive immune responders [21]. As for γδ T cells, as quite
a functioning minority of T cells, which are different from αβ
T cells mainly functioning for adaptive immune responses,
there are three major functions for γδ T cells: (1) regulating
other immune cells for central and peripheral immune
responses [22, 23], (2) contributing to thermogenesis to
maintain body temperature [23], and (3) regulating autoim-
mune responses [24]. B cells are the main participator for
antibody medicated adaptive humoral immune responses
with complicated activation processes relying either on T
cells or not [25]. Innate lymphocytes are a group of immune
cells that participate in the innate immune responses with
cytotoxic natural killer (NK) cells in the circulating system
and innate lymphoid cells (ILCs) in the tissue-resident
microenvironment [26]. Therefore, as introduced above, the

four major subgroups of immune cells have quite different
biological functions, controlling the basic biological func-
tions of the immune system: innate and adaptive immune
responses. Therefore, considering the significance of such
four subgroups of cells in the immune system, we selected
such immune cell subtypes for detailed classification studies
on the murine transcriptomic level in this study.

A new batch of profiling data for mouse immune cell
gene expression has been released by ImmGen on the Gene
Expression Omnibus (GEO) database provided by NCBI
[16]. On the basis of these data, a novel computational pipe-
line was applied to distinguish different immune cell sub-
types including αβ T cells, B cells, γδ T cells, and innate
lymphocytes. These four subtypes of immune cells are the
major effective immune cells in mouse immune systems,
contribute to different immune responses, and constitute a
complicated immunoregulatory system by playing unique
roles and interacting with each other. The powerful feature
selection method, the Monte-Carlo Feature Selection
(MCFS) [27], was first applied to the profiling data. We
obtained a feature list and some informative features. Of
the feature list, the two-stage incremental feature selection
(IFS) [28] method with random forest (RF) [29] as the classi-
fication algorithm was executed to extract essential gene sig-
natures and build an efficient RF classifier. Furthermore,
some quantitative expression rules were constructed on the
informative features via a rule learning scheme. Extensive
analysis on gene signatures and rules were performed by lit-
erature review. All in all, we recognized the typical gene sig-
natures and rules of each key immune cell subtype, which
were helpful to explore the complicated regulatory mecha-
nisms of immune systems.

2. Materials and Methods

2.1. Dataset. The system-wide mouse RNA-Seq data released
by the Immunological Genome Project (ImmGen) were
downloaded from GEO (Gene Expression Omnibus) under
accession number of GSE109125 [30]. The reads were
mapped to the mouse reference genome (mm10), and then
the uniquely mapped reads were assigned to genes according
to GENCODE annotation (vM12). The genes were quanti-
fied as counts per million (CPM) using edgeR [31]. A total
of 49,480 genes and 112 samples were obtained from the four
types of cells: 46 αβ T cells, 33 B cells, 13 γδ T cells, and 20
innate lymphocytes. The original dataset included more sam-
ples and cell types (46 αβT cells, 33 B cells, 20 innate lympho-
cytes, 13 γδ T cells, 12 stromal cells, 11 stem cells, 8 dendritic
cells, 7 macrophages, 6 granulocytes, and 1 mast cell). Since
the sample sizes of many cell types was extremely small, we
only kept the top four cell types with enough samples (46
αβ T cells, 33 B cells, 20 innate lymphocytes, and 13 γδ T
cells). The gene expression signatures were identified for such
four major types of immunological cells.

2.2. Feature Selection. The MCFS [27] was first used to iden-
tify interpretable information about gene discrimination
among the different groups of immune cells. Then, the two-
stage IFS [28] method was applied to obtain genes with
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strong classification ability to improve the component recog-
nition for the immune system.

2.2.1. Monte-Carlo Feature Selection. MCFS is a classic fea-
ture selection method for distinguishable features and ranks
the features through guided sampling. For specific steps,
multiple feature subsets withm features were arbitrarily cho-
sen from the original M features (m < <M), the bootstrap
dataset was trained for each specific feature subset, and the
generated p decision trees were evaluated. The p × t decision
trees were obtained by repeating the above steps t times. The
accuracy weights of generated multiple decision trees provide
a relative importance (RI) score for each feature, which was
calculated as below.

RIf = 〠
pt

τ=1
wAccð ÞuIG nf τð Þ� � no:in nf τð Þ

no:in τ

� �v

, ð1Þ

where wAcc is the weighted accuracy and nf ðτÞ is a node of
feature f in decision tree τ. The information gain of nf ðτÞ
is expressed as IGðnf ðτÞÞ, no:in nf ðτÞ is the number of train-
ing samples in nf ðτÞ, and u and v are the two weighting fac-
tors. Here, we adopted the MCFS program obtained from
http://www.ipipan.eu/staff/m.draminski/mcfs.html. For con-
venience, default parameters were used.

After obtaining the RI scores of all features, we ranked all
features in a list with the decreasing order of their RI scores.
In addition to the feature list, the MCFS method also yields
some most important features, called informative features
in this study, which are some top features in the list. These
features are accessed by a permutation test on class labels
and one-sided Student’s t-test.

2.2.2. Two-Stage Incremental Feature Selection. IFS is a fea-
ture selection method that accurately distinguishes samples
from different classes by screening a set of optimal features.
The features in the ranked list from MCFS can be sorted in
a descending order according to their RI scores as mentioned
above. Such feature list can help the classification algorithm
in producing optimal performance. The original IFS must
test all possible feature subsets, which are constructed from
the feature list, to filter out the optimal feature subset that
can identify samples’ classes with best performance. Here,
due to the large number of features (~50000), inducing lots
of time to test all feature subsets, we designed a two-stage
IFS method. In the first stage, we constructed candidate fea-
ture subsets with a large step size. Taking 10-step size as an
example, in N feature subsets F = ½F1

1, F1
2,⋯, F1

N �, the i-th
feature subset contains i × 10 high-ranked features, denoted
as F1

i = ½ f1, f2,⋯, f i×10�. Classifiers on samples with each
feature subset were learned, which were further tested with
10-fold cross-validation [32–37]. Then, the feature interval
containing the feature subset with the highest performance
was determined and denoted as [min, max]. In the second
stage, a series of feature subsets which contained top min,
min+ 1,…, max-1, max features were constructed. Likewise,
a classifier for each feature subset was built and evaluated
by 10-fold cross-validation. Accordingly, the classifier with

the best performance can be found and termed as the optimal
classifier. The corresponding feature subset is defined as the
optimal feature subset. In this study, we selected RF to con-
struct classifiers.

2.3. Random Forest. RF [29] is a classic machine learning
algorithm, which contains a large number of decision tree
classifiers, that is RF is an assemble classification algorithm.
It is widely used in computational biology as one of the most
common machine learning methods [38–43]. The output
sample class/category of RF is determined by these tree clas-
sifiers (i.e., decision trees) in an aggregating vote manner. A
RF consists of multiple decision trees with subtle differences.
Thus, the mean of the predictions of all decision trees is usu-
ally taken as the final consensus results. Although this
approach can lead to interpretability loss and slight increase
in the model bias, it can avoid overfitting and improve the
performance robustness. To quickly implement RF, the tool
“RandomForest” in Weka [44, 45] was employed. Such a tool
was executed with its default parameters.

2.4. Rule Learning Scheme. The IFS method with RF is helpful
to construct a powerful classifier. However, such a classifier is
absolutely a black-box classifier. It is very hard to capture the
classification principle from such a classifier. Thus, we fur-
ther employed a rule learning scheme to extract classification
rules from the cell expression data.

To save time, we directly used the informative features
yielded by the MCFS method. These features were first proc-
essed by the Johnson reducer algorithm [46, 47]. Some non-
essential features were discarded, and the remaining features
had the similar classification ability to the original informa-
tive features. Then, the repeated incremental pruning to pro-
duce the error reduction (RIPPER) algorithm [48] was
applied on the remaining features to construct rules. The
RIPPER algorithm is a specific method for constructing
rule-based classifiers. The main frame of the RIPPER algo-
rithm is based on IF-ELSE rules and consists of two parts:
rule generation and rule optimization. The rule generation
is a two-layer loop: the outer loop generates a rule each time
after pruning and adds it to the rule pool, and the inner loop
adds a predecessor to the rule each time. The rule optimiza-
tion constructs alternatives based on the rules in the pool
and finally selects the optimal rule to update the rule pool.

The above procedures are implemented and integrated in
the MCFS program downloaded from http://www.ipipan.eu/
staff/m.draminski/mcfs.html. We directly used it to produce
rules.

2.5. Performance Measurement. The Matthew Correlation
Coefficient (MCC) [49–57] is a common method used to
evaluate the performance of dissimilar classifiers. This vari-
able correlation coefficient calculates the correlation between
the target and prediction classes with return value between -1
and +1. MCC considers true and false positives and negatives
and is generally considered as a balanced measurement, even
when the sample categories have different sizes. In this study,
MCC within 10-fold cross-validation was used to evaluate
classification performance.
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Besides, we also employed accuracy on each cell type and
overall accuracy (ACC) to fully evaluate the performance of
different classifiers.

3. Results

In this study, we adopted several computational methods to
analyze the RNA-Seq data of mouse immunological cells.
The entire procedures are illustrated in Figure 1. The purpose
was to extract essential gene signatures and rules for different
immunological cell types. This section gives detailed results
of each step of the procedures.

3.1. Results of the MCFS Method. The RNA-Seq data was first
analyzed by the MCFS method. Accordingly, each feature
was assigned a RI score. Then, a feature list was constructed
with the decreasing order of their RI scores, which are pro-
vided in Table S1. Moreover, some informative features
were also yielded by the MCFS method, which were the top
84 features in the list provided in Table S1.

3.2. Results of the IFS with Random Forest. A two-stage IFS
method, incorporating RF as the classification algorithm,
was applied to the feature list. In the first stage, we ran IFS
with a step size of 10 on the feature list from MCFS. A RF
classifier was built based on each constructed feature subset.
Then, all classifiers were assessed by 10-fold cross-

validation. The predicted results were counted as MCCs,
accuracies on four types, and ACCs, which are available in
Table S2. For an easy observation, we plotted the obtained
MCCs on a coordinate system with the number of used
features as the x-axis, as shown in Figure 2(a). It can be
seen that when the top ten features were adopted, the RF
classifier gave a perfection prediction with MCC = 1. Thus,
we determined the min = 1 and max = 50 to do the second
IFS stage. Feature subsets containing the top 1-50 features
were built, on each of which a RF classifier was set up. Each
classifier was evaluated by 10-fold cross-validation. The
predicted results are provided in Table S3. Figure 2(b) listed
the performance of the RF classifier based on the top ten
feature subsets. The RF with the top six features yielded the
perfect classification. Thus, such RF classifier was called the
optimal classifier, and the corresponding feature subset was
termed as the optimal feature subset.

3.3. Results of the Rule Learning. Besides the RF black-box
classifier, we also used a rule learning scheme to give a clearer
description on the classification procedure, thereby evidently
elaborating the differences on four immunological cell types.

According to the MCFS results, 84 informative features
were obtained (see the first 84 features in Table S1). Then,
the Johnson reducer algorithm was applied on these
features to further select the most essential features. The
RIPPER algorithm followed to extract rules with the

Mouse immune cell

𝛼𝛽 T cell B cell 𝛾𝛿 T cell

Innate lymphocyte

Gene
Expression
Omnibus 

RNA-Seq data
Monte-Carlo

feature selection 

Feature
list Feature subsets

with step 10 

Incremental feature selection I

Random forest
10-fold cross-

validation

Feature subsets
with step 1 

Incremental feature selection II

Random forest
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Informative
features 

Repeated incremental
pruning to produce error

reduction algorithm 

Johnson reducer algorithm

Rule learning
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Results
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Figure 1: Entire procedures of the computational analysis on RNA-Seq data of mouse immunological cells. The data is retrieved from the
Gene Expression Omnibus and is analyzed by the Monte-Carlo Feature Selection method. One feature list and some informative features
are produced. A two-stage incremental feature selection method with random forest as the classification algorithm was applied on the
feature list to extract essential gene signatures and one efficient classifier. Furthermore, a rule learning scheme is executed on the
informative features for constructing classification rules.
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remaining features, resulting in four rules, which are listed in
Table 1. To indicate the utility of these rules, two
measurements, support and accuracy, were calculated for
each rule, which are also listed in Table 1. It can be seen
that each rule can cover several immunological cells, and
the efficiency of each rule was quite high.

Furthermore, to elaborate the utility of the procedures for
constructing the rules, we did the 10-fold cross-validation
three times. The accuracies on four cell types are shown in
Figure 3. Except the accuracy on the γδ T cell (82.05%), other
accuracies were all no less than 90%. The ACC was 93.15%

and MCC was 0.903. All these indicated that such a rule
learning scheme was quite effective to extract efficient rules,
also indicating the reliability of the rules in Table 1.

4. Discussion

We analyzed the following four typical cell subtypes in the
mouse immune system: αβ T cells, B cells, γδ T cells, and
innate lymphocytes, to screen detailed immune genes and
establish standards for cell subgrouping. Basing on the gene
expression profiling of individual cells, we performed
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Figure 2: Performance curve of incremental feature selection (IFS) with random forest (RF): (a) performance of RF classifiers with different
numbers of features in the first stage of IFS method; (b) performance of RF classifiers with different numbers of features in the second stage of
IFS method.
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qualitative prediction on cell subtypes, identification of can-
didate immune cell-associated genes (noted as ImmGen-
associated genes), and quantitative screening for the detailed
recognition criteria of each cell subtype in a rule manner.
According to recent publications, all identified ImmGen-
associated genes and quantitative rules can be supported
and confirmed by existing experiments and analysis, thus
validating the efficacy and accuracy of our prediction. The
detailed analysis of high-ranked ImmGen-associated genes
and corresponding quantitative rules can be seen below.

4.1. Cell Type-Specific Function of ImmGen-Associated Genes.
With the MCFS method, we ranked features (genes) in a list
(Table S1). Here, we selected the top ten genes, which are
listed in Table 2, for detailed analysis.

The top gene in the ranked feature list is Ighv1-72, which
encodes the variable region in the heavy chain of immuno-
globulin [58]. According to recent publications, this gene
participates in antigen-responding antibody synthesis [58].
All biological processes involving antibody synthesis mostly
occur in one of our candidate cell subtypes, i.e., B cells, but
not in the other cell subtypes [59–61]. Therefore, the expres-
sion pattern of Ighv1-72 in B cells may be different from those
in the other three cell subtypes. This finding validates the
potential distinguishing role of Ighv1-72.

The next high-ranked gene is Cd5, which encodes a
famous cluster of differentiation. In the mouse immune sys-
tem, Cd5 is a T-cell surface glycoprotein that regulates T cell
inhibition [76, 77]. According to recent publications, Cd5 is
expressed in αβ T cells and γδ T cells and is a potential bio-
marker for T cell subgroups [62, 63]. Although Cd5 has a spe-

cific role of encoding protein T cell surface glycoprotein, its
protein products are found on the surface of a specific
subgroup of B cells [64, 65]. This finding implies that this
biomarker may distinguish innate lymphocytes from the
other three immune cell subtypes.

The next predicted gene is Klrb1b, which encodes a spe-
cific lectin-like receptor on the surface of natural killer cells.
Our predicted gene Nlrb1b (Klrb1b) encodes a functional
subunit of a receptor-ligand system in NK cells and may reg-
ulate an MHC-independent immune surveillance mecha-
nism [66]. For its cell subtype specific expression pattern,
Nlrb1b plays an irreplaceable role in natural killer cells and
T cells [66], i.e., a key subtype of innate lymphocyte. Hence,
Nlrb1b may be a potential marker for innate lymphocytes.

Phka1 exhibits a differential expression pattern among
the different cell subtypes. Encoding an alpha chain of the
phosphorylase kinase, this gene has a differential expression
pattern in different T cells, B cells, and innate lymphocyte
subtypes and even under different cell activation status
[67–69]. Therefore, Phka1 is definitely a potential biomarker
for the distinction of four immune cell subtypes due to its
substantially biological functions and alternative expression
patterns in different immune cell subtypes under various
immune conditions.

Trdv5, Trbj1-2, Trbj1-3, Tcrg-V4, and Trbj1-7 are the fea-
ture genes encoding different regions of the T cell receptor
(TCR) [78, 79]. The differential expression pattern of these
genes in four cell subtypes indicates or reflects that of T cell
receptors in different cell subtypes. αβ T and γδ T cells have
a high expression of T cell receptors [80, 81]. These two cell
subtypes can be further distinguished according to feature
genes due to the differential expression pattern of Tcrg-V4,
which encodes a unique region of the gamma chain [82]. A
high expression pattern of Tcrg-V4 can be found in γδ T cells
but not in αβ T cells, thus confirming the distinguishing
capacity of our predicted gene signatures [72, 73]. For the
remaining cell subtypes, B cells and innate lymphocytes, the
former does not have the expression of all TCR-associated
genes. A specific subtype of innate lymphocyte, namely, nat-
ural killer T cells, has a unique expression pattern of T cell
receptors [70, 71]. All identified natural killer T cells with T
cell receptor expression would also have the specific αβ T cell
receptors but not the γδ T cell receptors [71]. Therefore,
some subgroups of innate lymphocytes may also have alter-
native expression patterns of Trdv5, Trbj1-2, Trbj1-3, and
Trbj1-7 but not Tcrg-V4. This finding reflects the distin-
guishing effects of our predicted ImmGen-associated genes
involved in T cell receptors.
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Figure 3: Performance of the rule learning scheme with 10-fold
cross-validation three times. The accuracy on each cell type is
quite high.

Table 1: Classification rules from RIPPER.

Rules Criteria Patients Supporta Accuracyb

Rule 1 Tcrg‐V4 ≥ 62:7560 γδ T cells 10.71% 100%

Rule 2 Aifm2 ≥ 14:9503 Innate lymphocytes 17.86% 95.00%

Rule 3 Abcb9 ≤ 10:6151 B cells 29.46% 96.97%

Rule 4 Others αβ T cells 43.75% 93.88%
aSupport is defined as the proportion of immunological cells satisfying the rule. bAccuracy is defined as the proportion of correctly predicted immunological
cells among the cells satisfying the rules.
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Various T cell receptor-associated genes can still be
found in the top-ranked genes of our feature gene list,
thereby implying the unique differential capacity of the T cell
receptor expression pattern and validating the efficacy and
accuracy of our prediction approach. In addition to T cell
receptor coding genes, we also identified a unique B cell rec-
ognizing gene named EBF1. Acting as a transcription factor,
this gene contributes to the maintenance of B cell identity
and prevention of alternative fates in committed cells, such
as transferring to the T cell lineage [74, 75]. Therefore, the
high expression pattern of EBF1 can only be identified in B
cells, implying its potential as a biomarker for this cell type.

Owing to the limitation of the article length, we cannot
individually analyze the discriminative genes. However, the
above-mentioned high-ranked genes have cell type-specific
expression patterns in immune cell subtypes, thus validating
the efficacy and accuracy of our prediction and analysis.

4.2. Cell Type-Specific Expression Pattern of ImmGen-
Associated Rules. Besides the gene signatures, we also
obtained some classification rules via a rule learning scheme
(Table 1). They were analyzed as follows. The analysis was
based on the expression level measured by Fragments Per
Kilobase of transcript per Million mapped reads (FPKM).

The first identified quantitative parameter is Tcrg-V4. As
a specific encoding gene for the γδ T cell receptors, this gene
may have high expression in γδ T cells. In accordance with
our predicted expression rules, the expression abundance of
Tcrg-V4 is higher than 62.755978 (FPKM) [72, 73]. Accord-
ing to the Mouse Genome Informatics database [83], the
expression level and relative expression quantity of Tcrg-V4
in the T cell subgroup, γδ T cells, basically conforms to our
predicted rules [84, 85], thereby validating the efficacy and
accuracy of our prediction.

The next classification rule of quantitative parameter
involves a specific gene named Aifm2, which contributes to
the identification of innate lymphocytes. According to the
Mouse Genome Informatics database [83], this gene may
have a unique higher expression pattern in mucosal tissues,
which are full of innate immune cells, than in the blood sys-
tem and lymphoid node, which are full of T cells and B cells
[86, 87]. Therefore, Aifm2 may be highly expressed in innate
lymphocytes with a threshold of approximately 15 FPKM.

Another quantitative parameter is Abcb9, whose low
expression (lower than 10 FPKM) is indicative of B cells
rather than T cells or innate lymphocytes. Mucosal tissues
are full of innate immune cells, and thymus tissues are full
of T cells. By contrast, the anatomic area, the spleen, is full
of mature B cells and thus has low expression level of Abcb9
(<5 FPKM) [83].

The cells that do not follow the three rules mentioned
above may be αβ T cells. Thus, all typical expression patterns
can be set up for corresponding immune cell subtypes and
have been confirmed by recent studies, thereby validating
the efficacy and accuracy of our analysis.

5. Conclusions

By using our newly presented computational approach, we
identified a group of signature genes that are qualitatively
related to the biological processes of four immune cell sub-
types. We also set up a set of quantitative expression rules
for the detailed clustering of immune cells based on the
absolute expression levels measured by FPKM. This work
provides a novel computational tool for the quantitative
subtyping of immune cells and biomarker recognition.
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Table 2: Information of top ten genes selected by Monte-Carlo Feature Selection method.

Rank Gene RI score Cell types Reference

1 Ighv1-72 0.7660 B cells [58–61]

2 Cd5 0.5902 αβ T cells/γδ T cells and B cells (with another specific pattern) [62–65] (for B cells)

3 Klrb1b 0.5720 Innate lymphocytes [66]

4 Phka1 0.5535 αβ T cells, γδ T cells, B cells, and innate lymphocytes (with different expression level) [67–69]

5 Trdv5 0.5223

αβ T cells/γδ T cells and innate lymphocytes (with another specific pattern) [70, 71]
6 Trbj1-2 0.4789

7 Trbj1-3 0.4752

9 Trbj1-7 0.4454

8 Tcrg-V4 0.4738 γδ T cells [72, 73]

10 EBF1 0.4403 B cells [74, 75]
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Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues.
SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial
in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in
proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO
sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will
provide insights into research on SNO site prediction.

1. Introduction

Protein S-nitrosylation (SNO) is one of the most important
and common posttranslational modifications (PTMs), as
shown in Figure 1, incorporating the covalent modification
of nitric oxide (NO) and its derivatives and cysteine residues
[1]. Numerous studies have shown that S-nitrosylation regu-
lates multiple physiological and pathological processes, such
as the immune response [2], cellular senescence [3], tran-
scription, and posttranslational regulation [4]. In addition,
abnormalities in protein S-nitrosylation and other posttrans-
lational modifications can also lead to many diseases, such as
Alzheimer’s disease [5–7] and breast cancer [8]. In recent
years, through molecular recognition and labelling of SNO
sites in proteins, many large-scale proteomics experimental
screenings have been completed, and the number of SNO
proteins verified by experiments is also increasing [9, 10].
As to other protein posttranslational modification sites [11–
18], the predicted SNO sites are time-wasting, strenuous,
and extortionate through large-scale experimental screening
methods. With continuous breakthroughs in sequence and

structural biology, computational biology using machine
learning has become an indispensable part of drug develop-
ment [19–36].

As an alternative to biochemical experiments, identifying
SNO sites in biological sequences with the least cost and effi-
ciency in recent years is a focus of current research. To help
researchers understand the development of this field, this
review will use Chou’s five-step rule as the literature selection
criteria [37]: (1) how to select or construct an effective
fiducial marker dataset subcellular location to train and test
predictors, (2) how to express the sample with an effective
formula that can truly reflect the intrinsic correlation
between the sample and predicted target, (3) how to intro-
duce or develop powerful algorithms to make predictions,
(4) how to correctly conduct cross-validation tests to
objectively evaluate the expected prediction accuracy, and
(5) how to build a user-friendly web server for forecasters.
In addition, to help researchers overcome the overall devel-
opment of this field, this review briefly introduces early
research on the identification of SNO sites using biochemical
methods.
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2. Materials

High-quality datasets are the cornerstone of scientific
research [38, 39]. With the development of proteomics and
the advancement of research by scientists, the number of
experimentally identified SNO sites is also increasing. In
the process of predicting S-nitrosylation sites, the dynamic
changes of the database and the dataset are sorted in this part.

2.1. Database. UniProt [40] (Universal Protein Resource) is a
high-quality, extensive, and open-access database of protein
sequences and functional annotations created and main-
tained by the UniProt Consortium, namely, EBI, SIB (Swiss
Institute of Bioinformatics), and PIR (Protein Information
Resource), an association of three institutions. It mainly
includes three parts: the UniProtKB knowledge base, Uni-
Parc archive library, and UniRef reference sequence set.
The UniProt database collects cysteine SNO sites from
different species. With the continuous addition of a large
number of experimentally verified SNO sites, the dataset
used by scientists to predict SNO sites is also updated accord-
ingly [41, 42].

dbSNO [43] (database of cysteine S-nitrosylation) is the
first database specifically designed to integrate experimen-
tally determined SNO sites and their structure or function
information. SNO peptide sequences collected from different
sources are heterogeneous, so dbSNO maps the identity of
these sequences to UniProtKB protein entry. In addition,
the dbSNO database also provides powerful structural and
functional analysis functions to help researchers better
understand the structural correlation and shared motifs of
these SNO peptide sequences. The dbSNO database is
divided into two versions: the first version ended in April
2012, and this version contains 43,000 experimentally veri-
fied SNO peptide sequences collected in numerous published
studies using text mining methods; the second version is
dbSNO2.0. In this version, dbSNO2.0 is also expanded to
explore the structural environment of low SNO sites and
the regulatory network resources of S-nitrosylation proteins.
In SNO site prediction experiments, many scientists have
also used the S-nitrosylation peptide sequence of the dbSNO
database [41, 44].

PRISMOID [45] is a newly established database focusing
on posttranslational modification and mutations with func-
tional impact. Compared with traditional databases that
focus on protein sequences, PRISMOID has added the real
3D structure of proteins and is equipped with various
friendly operation interactions for information visualization.
This database is the first version and contains 37 kinds of
PTM annotation data (323 nitrosylation sites) manually
compiled and is expected to be updated at least every 6
months. In addition, PRISMOID also integrates information
such as the protein secondary structure and protein disor-
dered regions to facilitate researchers to carry out scientific
research.

2.2. Datasets. With the continuous in-depth understanding
of the characteristics of S-nitrosylation, an increasing num-
ber of SNO peptide sequences have been identified, and the
datasets used to predict SNO sites are based on previous
studies. Dynamic changes are taking place. Therefore, the
datasets commonly used by researchers for the detection of
S-nitrosylation sites are chronologically explained in this
section.

SNOSID, the first bioinformatics tool for predicting
S-nitrosylation sites, was developed by Hao et al. [46]. In this
study, they used S-nitrosoglutathione-treated rat cerebellar
lysates. In 56 of the proteins, 68 cysteine sites were desig-
nated, and the initial limited 65 positive and negative samples
were selected in the random sampling process. Xue et al.
[47] also developed a predictor GPS-SNO for predicting
SNO sites. They collected 363 experimentally verified S-
nitrosylation sites published on PubMed using nitrosylated
or nitrosylation as keywords and then integrated the public
database SysPTM [48] and two large-scale S-nitrosylation
site surveys [46, 49]. Finally, 504 positive sites and 2581 neg-
ative sites were obtained through sequence identity threshold
setting [50] and protein sequence alignment [51]. A year
later, Li et al. [52] used GPS-SNO datasets to develop a
method for predicting SNO sites using SVM. Before long,
Lee et al. [53] also developed a tool for predicting SNO sites,
SNOSite. In this study, the training set and test set are from
Chen et al. [54] and GPS-SNO data, respectively. Chen
et al. used a high-throughput S-alkylating biotin conversion
method in SNAP/L cysteine-stimulated mouse endothelial
cells to obtain 586 positive sites and 2728 negative sites. In
addition, since the data came from different datasets, the test
set and training set may have the same homology. Therefore,
they first defined SNO sequences with more than 30% iden-
tity as homologous sequences and then used BLAST 2 [55]
to compare the fragment sequences. A test set containing
479 positive sites and 2501 negative sites was finally obtained.

In 2012, Li et al. [56] developed a method to predict and
analyse SNO sites using minimal-redundancy-maximal-
relevance and incremental feature selection. The dataset used
in this experiment had three sources. The first source of SNO
sites was the UniProt database [57] (version 2011_07) and
the second from GPS-SNO and the third from large-scale
S-nitrosylation site surveys [58–61] at that time to obtain
the remaining two datasets. Finally, a training set (784 posi-
tive sites and 1568 negative sites) and a test set (43 positive
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Figure 1: A schematic diagram of protein S-nitrosylation sites.
Protein fragments have many residues, of which C (cysteine) is
depicted as a circle. When NO and cysteine residues are covalently
modified, SNO is formed, which is represented by a warm color,
and the rest is gray.

2 BioMed Research International



sites and 121 negative sites) were obtained. In 2013, Xu et al.
[41] developed iSNO-PseAAC, a tool for predicting S-
nitrosylation sites. They randomly selected 438 proteins from
the dbSNO database, and the sequence identity of these
proteins was less than 40%. After comparison with the anno-
tations in the dbSNO database, 731 positive sites and 810
negative sites verified by experiments were collected in the
UniProt database [62] (version 2012_08). Xu et al. [63]
improved on the basis of iSNO-PseAAC and developed
iSNO-AAPair. This experiment used the original data of
S-nitrosylation sites from dbSNO (version 1.0) and the
UniProt database (version 2012_08). By using Chou’s pep-
tide formula [64–67], sequence identity setting, and random
selection, 2300 SNO-positive and SNO-negative sites verified
by experiments were obtained as training sets, and 81 posi-
tive and 100 negative sites were obtained as test sets.

In 2014, Jia et al. [68] developed a bioinformatics tool
named iSNO-ANBPB used to predict SNO sites. In this
experiment, they used the dataset constructed by Li et al.
[52] and iSNO-PseAAC and obtained 1229 positive sites
and 1223 negative sites by sequence identity setting and
clustering. Soon, Zhang et al. [44] also developed the experi-
mental tool PSNO. To reach a consensus assessment with
previous experiments, they first constructed a training set
containing 731 positive and 810 negative loci and a test set
containing 53 positive and 103 negative sites from the
dbSNO database. In addition, the 2302 positive sites selected
from the GPS-SNO dataset and the 81 positive sites and 100
negative sites selected from the iSNO-PseAAC dataset were
used as the test set.

After a brief stagnation, Xie et al. [69] used deep learning
technology to develop a bioinformatics tool, DeepNitro, to
predict SNO sites. They searched the relevant literature
published before June 30, 2015, from PubMed and obtained
a training set containing 20862 sites (3409 positive sites and
17453 negative sites) through residue modification and
sequence clustering. To reach a consensus with previous
research, they collected the latest data and eliminated the
repeated sequences in previous work. Finally, an independent
test set was built (485 positive sites and 4947 negative sites).

In 2019, Li et al. [70] predicted S-nitrosylation sites by
multifeature fusion. In this study, they used 731 positive sites
and 810 negative sites of iSNO-PseAAC and iSNO-AAPair as
the training set and 43 positive sites and 121 negative sites of
Li et al. as the test set. At the same time, Hasan et al. [71]
developed PreSNO and used the DeepNitro dataset. To avoid
overestimation of the prediction model, CD-HIT was used to
screen homology and eliminate SNO sequences with the
same window. Furthermore, to avoid prediction bias, they
adopted the method of randomly taking and merging the
sequences to balance the number of SNO-positive and
SNO-negative sites.

3. Research Review

For protein S-nitrosylation site prediction, the traditional
method is based on biochemical methods, but the SNO sites
predicted are time-wasting, strenuous, and extortionate.
With continuous breakthroughs in sequence and structural

biology, computing methods have gradually become the
mainstream of current research. This method is low cost
and efficient. This section focuses on computational methods
based on machine learning or deep learning to provide
researchers with a systematic understanding of the develop-
ment of this field. Traditional biochemical methods are also
briefly introduced.

3.1. Biochemical Methods. Jaffrey and Snyder [72] invented
biotin switch assay (BSA) technology. This method first
converts nitrosylated cysteine residues into biotinylated cys-
teine residues and then detects biotin or specific proteins by
Western blot [73] to detect the proteins labelled by biotin.
BSA not only greatly improves the feasibility of SNO protein
identification but also promotes the improvement of high-
throughput identification of SNO sites. In 2005, Gao et al.
[74] proposed using BSA and protein sequencing technology
to identify endogenous SNO sites. The method is simple and
rapid and can meet the needs of separation, purification, and
identification of SNO proteins.

In 2006, Hao et al. [46] extended the original biotin
method and proposed a new improved method, SNOSID.
SNOSID introduced a protein hydrolysis and digestion step
before capturing the antibiotin protein. This step was not like
the previous complete separation of the peptide fragment of
SNO protein but the selective separation of the residues con-
taining the SNO site before. SNOSID also introduced the
machine learning algorithm SVM for the first time. In addi-
tion, the original limited 65 positive samples and 65 negative
samples as training data, but the prediction results were not
ideal.

Although SNOSID technology can identify the target
proteins and target sites of S-nitrosylation, the degree of
protein nitrosamine cannot be accurately measured. With
the advancement of proteomics technology, Wu et al. [75]
and Fares (2014) developed a technology combining BSA
with an isotope-coded affinity tag (ICAT). This technique was
the first to achieve large-scale identification of S-nitrosylation
residues but is disadvantaged by its use of isotopes.

3.2. Computational Biology Methods. With the continuous
emergence of massive biological sequences in the postgene
era, traditional biochemical sequencing methods are far from
being able to meet the needs of development. However,
machine learning algorithms cannot directly deal with bio-
logical sequence data. Therefore, how to use discrete models
or a certain way to express biological sequences and fully
express their sequence information or key pattern features
has become the focus and content of research in compu-
tational biology [76–84]. Since Chou proposed the pseu-
doamino acid composition [85, 86] or PseAAC [87],
computational biology based on machine learning or deep
learning has also developed rapidly. The following introduces
the software and server based on Chou’s five-step rule to
predict protein S-nitrosylation sites through algorithms. See
Table 1 for details.

3.2.1. GPS-SNO. Xue et al. [47] developed GPS-SNO1.0, a
tool for predicting protein S-nitrosylation sites using the
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GPS3.0 algorithm. The software is developed on the basis of
the GPS2.0 algorithm [88] previously proposed. In this study,
they first used the amino acid substitution matrix to calculate
the nitrosylation peptide sequence and obtain the corre-
sponding score. Then, k-means clustering, peptide selection
(PS), weight training (WT), and matrix mutation (MaM)
were used to improve the performance. The accuracy of the
experiment under low threshold conditions was 75.80%, the
sensitivity was 53.57%, and the specificity was 80.14%. In
addition, the prediction ability of GPS-SNO on 485 potential
S-nitrosylation low positions was also tested, and 371 posi-
tions of these targets were successfully predicted. GPS-SNO
can be obtained for free from the website http://sno
.biocuckoo.org/.

3.2.2. CPR-SNO. GPS-SNO has initially explored its ability
on S-nitrosylated substrates. Although good results have
been achieved, there is still room for improvement. Li et al.
[52] developed CPR-SNO. In this study, they used SVM as
a classifier and used the coding scheme based on coupling
mode to realize the prediction system. In the performance
evaluation, the F-score is used to identify the effective coding
scheme, and referencing the work of Xue et al. [47], tenfold
cross-validation is used for verification. In addition, this
research solves the problem of existing coding schemes not
being able to provide enough information to predict SNO
sites. By using the F-score to identify effective coupling
modes, they proved that some coupling modes are not related
to S-nitrosylation. The CPR-SNO server is no longer in use.

3.2.3. SNOSite. Although traditional research on the charac-
teristics and mechanism of S-nitrosylation has made great
progress, the understanding of its substrate specificity is still
insufficient. In 2011, Lee et al. [53] made a breakthrough on
this issue and developed a new bioinformatics tool, SNOSite,
for predicting SNO sites. In this study, they used maximal
dependence decomposition (MDD) to serialize the nitrosyla-
tion sites into different subgroups and used SVM to generate
a prediction model for each MDD cluster motif. By using
fivefold cross-validation, the SVM using MDD clustering

achieves 90% accuracy. SNOSite can be used for free on the
website http://csb.cse.yzu.edu.tw/SNOSite/.

3.2.4. mRMR and IFS Method. Feature selection is useful for
machine learning-based biosequence analysis [22, 89–105],
including SNO prediction. Li et al. [56] developed a predictor
based on the nearest neighbour algorithm [106] (NNA),
which uses maximum relevance minimum redundancy
[107] (mRMR) for incremental feature selection [108–110]
(IFS). In this work, they generated 666 features from the pep-
tide sequences used in the experiment and then used mRMR
to rank the relevance and redundancy of these features in
order of importance. For the obtained feature rankings, the
best features are determined through IFS, and then, these fea-
tures are constructed into different feature sets. Finally, the
predictive evaluation performance of each feature set is gen-
erated by NNA. The best feature combination composed of
67 features is selected through the above method, and an
accuracy of 0.61607 is obtained in the test set. In addition,
this experiment also shows that the characteristics of the site
far from the central cysteine can help determine the S-
nitrosylation site. There is no online server for this predictor.

3.2.5. iSNO-PseAAC and iSNO-AAPair. Xu et al. [41] pro-
posed a new SNO site predictor iSNO-PseAAC. In this study,
they used PseAAC to represent protein sequence informa-
tion, constructed as a 21 × 20 position-specific amino acid
propensity (PSAAP) matrix, and finally used the conditional
random field (CRF) algorithm to construct a predictor for
predicting SNO sites. The cross-validation test of iSNO-
PseAAC on an independent dataset also achieved a success
rate of over 90%. iSNO-PseAAC can be obtained for free
on the website http://app.aporc.org/iSNO-PseAAC/. How-
ever, iSNO-PseAAC simply considers the positional orienta-
tion of each group of amino acids when predicting variables
but does not consider any correlation between them. The
amino acids in all proteins are processed individually. How-
ever, there must be some connection between them in phys-
iology or mechanism. To solve this problem, Xu et al. [63]
made improvements on the basis of iSNO-PseAAC, added
related influences when predicting protein SNO sites, and

Table 1: List of 13 predictors for predicting the SNO sites in protein sequences.

No. Name Link Time Refs

1 SNOSID Not provided 2006 [46]

2 GPS-SNO http://sno.biocuckoo.org/ 2010 [47]

3 CPR-SNO http://math.cau.edu.cn/CPR-SNO 2011 [52]

4 SNOSite http://csb.cse.yzu.edu.tw/SNOSite 2011 [53]

5 Li et al. Not provided 2012 [56]

6 iSNO-PseAAC http://app.aporc.org/iSNO-PseAAC 2013 [41]

7 iSNO-AAPair http://app.aporc.org/iSNO-AAPair 2013 [63]

8 iSNO-ANBPB Not provided 2014 [68]

9 PSNO http://59.73.198.144:8088/PSNO 2014 [44]

10 DeepNitro http://deepnitro.renlab.org 2018 [69]

11 PreSNO http://kurata14.bio.kyutech.ac.jp/PreSNO 2019 [71]

12 Li et al. Not provided 2019 [70]
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released a new SNO site prediction tool iSNO-AAPair. It
considers the coupling effects of all pairs formed by the clos-
est residues along the protein chain and the pairs formed by
the closest residues. The predictor was cross-validated on the
latest benchmark test set and achieved good performance.
iSNO-AAPair can be obtained for free on the website
http://app.aporc.org/iSNO-AAPair/.

3.2.6. iSNO-ANBPB. Jia et al. [68] proposed an iSNO-ANBPB
predictor based on support vector machines. In this study,
they constructed four feature extraction schemes and com-
bined Chou’s pseudoamino acid composition for model eval-
uation. The cross-validation of the basic SVM showed that
the combination scheme using ANBPB for feature extraction
obtained the best test results. In addition, studies [56] have
shown that examples of the static charge of amino acids in
cysteine residues and the secondary structure of amino acids
play a key role in the prediction of SNO sites. Therefore, in
addition to feature extraction, this study also considered the
physical and chemical information in the peptide sequence.
There is no online server for this predictor.

3.2.7. PSNO. In 2014, Zhang et al. [44] proposed a new bioin-
formatics tool, PSNO, for predicting SNO sites. In this study,
they studied various derived features of the experimental
sequence and integrated them into PseAAC to represent
the experimental sample. In addition, to prevent the increase
in the amount of information from increasing the difficulty of
feature dimensions and predictors [111], they used relative
entropy to discard noisy features from the high-level space
and then optimize the optimal feature subset. However, the
features of the optimal subset are different, so IFS is used here
to rank these features, and a classifier based on 10-fold cross-
validation is constructed for each of the optimal feature sub-
sets. Finally, the k-nearest neighbour algorithm is used to
predict the input sample and discriminate the prediction
samples. In 10-fold cross-validation, the accuracy of PSNO
was 75.67%, and the accuracy of MCC was 0.5119. With
the completion of the whole-genome sequencing project,
the gap in the sequence structure is rapidly expanding. In
the absence of a protein structure, sequence-based prediction
represented by PSNO can become a powerful supplement to
replace structure-based prediction. The server provided by
the software is now invalid.

3.2.8. DeepNitro. Since Hinton et al. [112] proposed the
hierarchical training strategy to solve the gradient diffusion
problem in 2006, deep learning technology has also been
widely used in computational biology [113–126] and drug
discovery [127–134]. In 2018, Xie et al. [69] used the deep
learning algorithm for the first time to develop the S-
nitrosylation site prediction bioinformatics tool DeepNitro.
DeepNitro is an eight-layer neural network. The first layer
is the data input layer, which is used to assign prediction
and training values to neurons; the second to seventh layers
are fully connected layers, of which the second to fourth
layers use the dropout algorithm to improve the generaliza-
tion ability of unknown data.

In the process of neural network design, to solve the
problem of gradient diffusion in the training process, the
ReLU function was used as the activation function, and the
log-likelihood probability was used as the loss function to
optimize the weights and other parameters in the neural
network. In the process of backpropagation, a minibatch
gradient descent algorithm is used to update the network
parameters. Compared with traditional optimization algo-
rithms, the momentum method is superior in optimizing
parameters such as weights, so the momentum method was
selected as the optimization function. In addition, L1 and
L2 regular terms are introduced as hyperparameters to pre-
vent overfitting. For the last layer, the softmax algorithm is
used to obtain the probability distribution of the prediction
results. Finally, through principal component analysis
(PCA), DeepNitro obtained an AUC value of 0.7437 on the
test set. DeepNitro uses deep learning algorithms, new
encoding algorithms, and a position-specific scoring matrix
[135] (PSSM) to greatly improve the accuracy of nitrosation
site prediction and provides a free website server (http://
deepnitro. http://renlab.org/) for academic research.

3.2.9. PreSNO. In 2019, Hasan et al. [71] proposed a predic-
tion tool, PreSNO, for predicting protein SNO sites by an
ensemble algorithm. The focus of the study was the use of
four different coding schemes, including the composition of
profile-based amino acids (CPA), K-space spectral amino
acid composition (SAC), tripeptide composition from the
PSSM (TCP), and physical-chemical properties of amino
acids (PPA). The four coding schemes use SVM and random
forest to calculate the probability score and then multiply it
by weight to calculate the prediction effect of PreSNO.
Through 5-fold cross-validation, PreSNO also achieved
excellent performance. The predictor can be obtained for free
on the website (http://kurata14.bio.kyutech.ac.jp/PreSNO/).

3.2.10. Multiple Features Combination Method. Soon, Li et al.
[70] proposed a method to predict protein S-nitrosylation
sites using multifeature mixing. This work improves predic-
tion performance by extracting nine sequence features, such
as parallel correlation pseudoamino acid composition (PC-
PseAAC), general parallel correlation pseudoamino acid
composition [136], and ANBPB. Then, the importance of
amino acids is evaluated by subtracting the given amino acids
from the information gain [137] (IG), and finally, the max-
relevance-max-distance [138] (MRMD) generates a feature
subset with lower redundancy and strong correlation with
the target category. In the cross-validation of the test set,
the ACC and MCC of this method were 73.17% and 0.3788,
respectively, which becomes a useful supplement to the exist-
ing SNO identification tools.

4. Concluding Remarks and Perspectives

Many physiological and pathological studies of SNO have
been reported in recent years. Therefore, accurate prediction
of SNO sites will pave the way to speed up related drug
development.
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Several exciting computational methods have been pro-
posed to predict SNO. Although these works promoted
research on SNO and facilitated the prediction of SNO sites,
the following challenges should be considered in future
works.

Although many predictors have been developed to pre-
dict SNO sites, some corresponding indicators have greatly
improved the space. This is because existing methods were
trained on the basis of an imbalanced dataset. To solve this
problem, it is necessary to collect many more positive SNO
sites to enlarge the number of SNO sites in the dataset and
balance it. In addition, the focus of future research in this
field is to use these new technologies and methods to predict
more nitrosylated target proteins and sites to reveal the
mechanism by which nitrosylation regulates various physio-
logical processes.
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The prediction of drug-target interaction (DTI) is a key step in drug repositioning. In recent years, many studies have tried to use
matrix factorization to predict DTI, but they only use known DTIs and ignore the features of drug and target expression profiles,
resulting in limited prediction performance. In this study, we propose a new DTI prediction model named AdvB-DTI. Within this
model, the features of drug and target expression profiles are associated with Adversarial Bayesian Personalized Ranking through
matrix factorization. Firstly, according to the known drug-target relationships, a set of ternary partial order relationships is
generated. Next, these partial order relationships are used to train the latent factor matrix of drugs and targets using the
Adversarial Bayesian Personalized Ranking method, and the matrix factorization is improved by the features of drug and target
expression profiles. Finally, the scores of drug-target pairs are achieved by the inner product of latent factors, and the DTI
prediction is performed based on the score ranking. The proposed model effectively takes advantage of the idea of learning to
rank to overcome the problem of data sparsity, and perturbation factors are introduced to make the model more robust.
Experimental results show that our model could achieve a better DTI prediction performance.

1. Introduction

Drug repositioning is to discover new indications for existing
drugs, which means that drug development based on
approved drugs does not need to consider the safety and
effectiveness of the original drug, effectively reducing the
time of drug development process and cost. Prediction of
drug-target interaction (DTI) which refers to the recognition
of interactions between chemical compounds and the protein
targets in the human body has become a key step in drug
repositioning [1].

Due to the high cost of conducting animal experiments
and clinical trials for a new drug [2], a large number of
machine learning-based methods have been widely used in
DTI prediction in recent years, and the cost of drug develop-
ment has been greatly reduced through rapid screening of
potential drug-target combinations [3, 4].

Existing machine learning-based methods often use the
features of drugs and targets for prediction [5, 6]. They treat

the prediction problem as a binary classification problem [7].
Drug-target pairs with interaction are considered positive
samples, while pairs without interaction are treated as nega-
tive samples. The output of the binary classification is the
label with higher prediction probability [8–10]. Bleakley
and Yamanishi used a support vector machine (SVM) frame-
work based on bipartite local models (BLM) to predict DTIs
[11]. Mei et al. improved the original DTI prediction frame-
work by integrate neighbor-based interaction-profile infer-
ring (NII) into the existing BLM method [12]. Buza and
Peška extended the BLM method to predict DTIs by using
the hubness-aware regression technique [13]. Laarhoven
et al. proposed a Gaussian interaction profiling (GIP) kernel
to represent the interactions between drugs and targets [14]
and then integrated the weighted nearest neighbor method
into it to predict DTIs [15]. Chen et al. proposed a Random
Walk with Restart-based method on the heterogeneous net-
work to infer potential DTI [16]. Some studies constructed
a heterogeneous network which integrates diverse drug-
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related information to predicted DTI [17, 18]. Thafar et al.
utilized graph embedding for DTI prediction [19]. Zhao
et al. integrated graph convolutional network and Deep
Neural Network to predict DTI [20]. Since the number of
positive samples is small, the machine learning-based
methods can easily learn to predict unknown samples as
negative to reduce the training penalty [3]. Recommenda-
tion system is aimed at obtaining accurate prediction results
of unknown data even with a small amount of observed
data. Considering the problem of data sparseness, learning
to rank (LTR) in the recommendation system is able to
accurately predict even with a small amount of known data.
Therefore, in this study, we defined the DTI prediction
problem as a ranking problem. The following paragraph
introduces how we define the DTI prediction problem as a
ranking problem.

LTR implies a scoring mechanism in which interacting
drug-target pairs should have a higher score than those
without interaction. In this way, samples with higher scores
are treated as interacting drug-target pairs [21, 22].
Recently, there are some studies that apply the idea of
LTR to predict DTI [23, 24]. Bagherian et al. showed that
matrix factorization algorithms have outperformed other
methods in DTI prediction [25]. Thus, we utilized matrix
factorization of LTR to predict DTI in this study. Bayesian
Personalized Ranking (BPR) which is a matrix factorization
of LTR approach has been shown to be an excellent
approach for various preference learning tasks even when
data are sparse [26, 27].

However, the existing methods do not effectively com-
bine the features of drug and target with the matrix factor-
ization method. Thus, in this study, we propose a DTI
prediction model in which BPR is the core and combined
gene expression to improve the prediction performance.
In the proposed model, the principle of ordering is that
interacting drug-target pairs (i.e., positive samples) should
be ranked before noninteracting drug-target pairs (i.e., neg-
ative samples). Firstly, a set of ternary partial orders is gen-
erated based on the positive samples and the negative
samples. The set is divided into a training set and a test
set. Next, the Adversarial Bayesian Personalized Ranking
(ABPR) method is used to train the latent factors of drugs
and targets, and the drug-drug similarity and target-target
similarity are calculated based on their features, respec-
tively, to improve the training of the latent factors. Finally,
for each drug, the inner product of drug’s latent factor and
target’s latent factor is used as the score for ranking. The
top-ranked drug-target pairs are predicted with interaction,
and the bottom-ranked drug-target pairs are predicted
without interaction. This study has the following three
contributions:

(i) Aiming at the existing problem of DTI prediction,
the idea of matrix factorization of LTR is introduced
to process a sparse matrix

(ii) BPR is not robust and vulnerable to adversarial per-
turbations on its parameters [28]. Perturbation fac-
tors are introduced to make the model more robust

(iii) This study also uses the drug and target expression
profiles to calculate the drug-drug and target-target
similarity, respectively, to improve the training of
latent factors

Experimental results show that our method is signifi-
cantly better than the traditional DTI prediction methods,
such as Deep Neural Network (DNN) [8, 29], Generalized
Matrix Factorization (GMF) [30], and other state-of-the-art
LTR methods, like Neural Matrix Factorization (NeuMF)
[30] and Adversarial Matrix Factorization (AMF) [28].

2. Data and Definition

2.1. Data Source. The Library of Integrated Network-Based
Cellular Signatures (LINCS) project is a mutual fund project
administered by the National Institutes of Health (NIH).
This project uses L1000 technology to generate approxi-
mately one million gene expression profiles [31]. The L1000
technology uses the correlation between gene expressions to
drastically reduce the amount of gene expression that needs
to be measured, from more than 20,000 to 978. In this study,
we use the drug perturbation and gene knockout tran-
scriptome data from seven cell lines including A375, A549,
HA1E, HCC515, HEPG2, PC3, and VCAP. There are three
reasons to choose drug perturbation and gene knockout tran-
scriptome data as feature data of drugs and targets: (1) both
drug perturbation and gene knockout transcriptome data
are from LINCS project and are processed by using L1000
technology. So they are naturally suited to be combined as
the feature data. (2) There is a correlation between drug per-
turbation transcriptome data and the drug’s target gene
knockout transcriptome data. Pabon et al. have verified in
their work that drug perturbation-induced mRNA expres-
sion profile correlates with the knockout-induced mRNA
expression profile of the drug’s target gene and/or genes
on the same pathway(s) [32]. The correlation reveals
drug-target interactions. Therefore, the correlation based
on the expression profile suggests that we can treat the
expression profiles as feature data for dual similarity regu-
larization. (3) Transcriptome data can capture the complex-
ity of drug activity in cells. So the use of information
obtained from transcriptional profiling studies has a huge
impact on multiple areas of the drug discovery including
target identification, validation, compound selection,
pharmacogenomics, biomarker development, clinical trial
evaluation, and toxicology [33].

DrugBank is a comprehensive, freely available web
resource containing detailed drug, drug-target, drug action,
and drug interaction information about FDA-approved
drugs as well as experimental drugs going through the FDA
approval process [34]. To obtain complete DTI data, Pub-
Chem ID is used as the identifier of drug in the DrugBank
and LINCS databases.

The data volume for the seven cell lines is listed in
Table 1. The positive drug-target interactions from Drug-
Bank are used to generate interacting drug-target pairs. To
avoid treating unknown drug-target interactions in Drug-
Bank as negative interactions, we constructed the nontarget
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set that any member of this set has no interaction record with
any drug from the same cell line in DrugBank. That means
the pair of a nontarget and a drug from the same cell line
could be more likely to be treated as a negative sample.

2.2. Problem Definition. In this study, DTI prediction is
defined as a ranking problem of drug-target scores.

Definition 1. Dα = fdα1 , dα2 , dα3 ,⋯, dαmg represents the set of m
drugs in cell line α, where dαi = fdαi,1, dαi,2,⋯, dαi,978g represents
the expression profile of i-th drug.

Definition 2. Tα = ftα1 , tα2 , tα3 ,⋯, tαng represents the set of n
targets and nontargets in cell line α, where tαj = ftαj,1, tαj,2,⋯,
tαj,978g represents the expression profile of j-th target or
nontarget.

Definition 3. Yα represents the interaction relationship, and
yαi,j ∈ f0, 1g. If yαi,j =1, the pair of the drug dαi and target tαj is
a positive sample; otherwise, yαi,j = 0, and the pair of dαi and
tαj is a negative sample.

As shown in Table 1, the numbers of drugs, targets, and
interacting drug-target pairs in this study are all limited
(for each cell line). Therefore, Yα is a small-sized sparse
matrix.

All combinations of drug and target with interactions in
each cell line are used as positive samples; all drug and non-
target combinations are used to construct a negative sample
candidate set. Since the number of negative samples is much
larger than the number of positive samples in each cell line,
we randomly sampled some negative samples from the
negative sample candidate set to ensure that the number of
selected negative samples is consistent with the number of
positive samples within the same cell line.

Based on the known relationships of drug-target pairs,
the score of drug-target pairs is sorted. The drug-target pairs
with higher scores are more likely to interact. Conversely, the
drug-target pairs with lower scores are more likely not to
interact. Therefore, we transformed the DTI prediction prob-
lem into a problem that finds out a reasonable ranking strat-
egy for a drug-target pair. In this paper, the methods are
discussed in the same cell line, so the superscript α is omitted.

3. Methods

The proposed method (AdvB-DTI) is based on the method of
BPR. Firstly, according to the interaction relationship Y , a
ternary partial order set is generated as H = fHi ∣ 1 ≤ i ≤mg,
where Hi = fðdi, t j, tkÞ ∣ di ∈D, t j ∈ T , tk ∈ T , yi,j ∈ Y , yi,k ∈ Y ,
yi,j = 1, yi,k = 0g. Hi combines the target t j of one positive
sample and the target tk of the corresponding negative sam-
ple with the same drug di into a partially ordered triple ðdi,
t j, tkÞ, which means that ðdi, t jÞ should be ranked before
ðdi, tkÞ. Then, H is divided into two parts, the training set
and test set. Next, based on the training set, BPR is used to
train the latent factor matrix of drugs and targets (nontar-
gets). FD represents the latent factor matrix of the drug
(FD ∈ℝm×f , f is the size of latent factor), FT represents target
(nontarget) latent factor matrix (FT ∈ℝn×f , f is the size of
latent factor). Among them, FD

i ∈ℝ1×f represents the latent
factor of drug di, and FT

j ∈ℝ
1×f represents the latent factor

of target (nontarget) t j. ri,j = FD
i ∙F

T
j is the predicted score

for ranking the interaction of di and t j.
In order to improve the training of latent factors, we use

the dual similarity regularization method based on the simi-
larity theory to increase the latent distance between latent
factors to increase the gap between the scores of different
drug-target pairs.

Finally, gene expression data of LINCS project were
treated as the features of drugs and targets to calculate
drug-drug similarity and target-target similarity to improve
training latent factors which represented key features of gene
expression. Because the gene expression data are the
observed values obtained from experiment, thus, the error
between the observed value and the true value does exist.
Therefore, latent factors of the drug and target (i.e., the model
parameters) learned in this study can fluctuate within a cer-
tain range but the model’s prediction results should be stable.
Consequently, the perturbation factor Δ is introduced into
the training process of FD and FT to make the trained model
more robust. The overall process of model training is shown
in Figure 1.

After the model is trained, calculate the value of ri,j for all
drug-target pairs, and sort them in a descending order. The
top-ranked drug-target pairs are predicted as the interaction,
and the bottom ranked drug-target pairs are predicted as the
noninteraction. The prediction process is shown in Figure 2.
Next, we will introduce the related methods in detail.

3.1. Bayesian Personalized Ranking. BPR is a pairwise LTR
method. It learns in an implicit feedback manner through
personalized ranking and is widely used in the recommenda-
tion systems [26].

As shown in Table 1, the numbers of drugs, targets, and
interacting drug-target pairs in this study are all limited
(for each cell line). Since one partially ordered triple was gen-
erated based on one positive sample and the corresponding
negative sample, the number of partially ordered triples is
also limited. Therefore, what we faced in this study were
not only a small amount of partially ordered triples but also

Table 1: Data volume of seven cell lines.

Cell line Drug Target Nontarget
Interacting
drug-target

pair

Noninteracting
drug-target pair

A375 520 363 2,754 796 1,432,080

A549 525 366 2,648 805 1,390,200

HA1E 533 372 2,707 818 1,442,831

HCC515 471 334 2,516 689 1,185,036

HEPG2 370 356 2,520 557 932,400

PC3 643 378 2,866 963 1,842,838

VCAP 521 377 3,003 809 1,564,563
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high-dimensional data. BPR is able to accurately predict even
with a small amount of known data [26]. And BPR could
map both drugs and targets into a shared low-dimensional
latent feature space and to use this representation to calculate
the probability of drug-target interactions to overcome the
problem of high dimensionality [27].

According to the study of [26], BPR was derived for solv-
ing the personalized ranking task that only positive observa-
tions are available. In the problem of DTI prediction, only
positive drug-target interactions can be directly obtained
from the DrugBank database which is a key challenge in the
DTI prediction problem. Hence, these advantages make
BPR suitable for the DTI prediction problem.

In this study, we use this method to rank the score of
drug-target pairs.

For Hi of dið1 ≤ i ≤mÞ, we have

p θ ∣ t j>di
tk

� �
∝ p t j>di

tk ∣ θ
� �

p θð Þ, ð1Þ

where θ denotes the parameters of the model and t j>di
tk

denotes that for di the possibility of interacting with t j is
greater than the possibility of interacting with tk. Since the
interaction of di and t j has no interference on the interaction
of di and tk, all drug-target interactions are independent. The
likelihood estimates for parameter θ are
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Figure 1: The flowchart of model training. (1) Generating ternary partial order set H. (2) Splitting H into a training set and a test set. (3)
Calculating drug-drug and target-target similarity for improving latent factors. (4) Perturbation of latent factors for BPR. (5) Latent factor
training.

To rank

After training Before ranking After ranking

0 1

Score
ri,j

Drugs latent factors

1 2

3

Top ranking
pairs

Targets & Non-targets
latent factors

Fi
D· Fj

Tdi

t1~tn

di - t1 di - t1

di - t3

di - tn

di - t2

di - t3

di - t2

di - tn

Drug-target
interactions

Figure 2: The flowchart of model prediction. (1) Latent factor matrix of FD and FT after training. (2) Calculating ri, j for ranking. (3) Ranking
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Y
di ,t j,tkð Þ∈Hi

p t j>di
tk ∣ θ

� �
: ð2Þ

In order to calculate pðt j>di
tk ∣ θÞ, we use the logistic

sigmoid function [26]:

p t j>di
tk ∣ θ

� �
= σ ri,j − ri,k

� �
, ð3Þ

where σð∙Þ is the logistic sigmoid function and σðxÞ = 1/ð1
+ e−xÞ.

ðri,j − ri,kÞ captures the ranking relation between t j and tk
with the given di. If t j is more likely to interact with di than tk,
then ri,j ≥ ri,k and ðri,j − ri,kÞ ≥ 0. Otherwise, ðri,j − ri,kÞ ≤ 0.
Any standard collaborative filtering model can be applied
to predict the value of ðri,j − ri,kÞ. Matrix factorization has
been successfully applied in many studies [35–37]. Thus,
the matrix factorization model is used in this study.

Next, consider pðθÞ of formula (1). It is a Gaussian distri-
bution with zero mean and variance-covariance matrix λθI
[26], where λθ is a model-specific regularization parameter
and I is an identity matrix, so

p θð Þ ~N 0, λθIð Þ: ð4Þ

According to formulas (2)–(4), the maximum posterior
probability of the BPR method can now be rewritten as

max
θ

L = ln p θ ∣ t j>di
tk

� �
= ln p t j>di

tk ∣ θ
� �

p θð Þ
= 〠

di ,t j,tkð Þ∈Hi

lnp t j>di
tk ∣ θ

� �
− λθ θk k2

= 〠
di ,t j,tkð Þ∈Hi

lnσ ri,j − ri,k
� �

− λθ FD�� ��2 + FT�� ��2� �
,

ð5Þ

where k∙k2 is an L2 regularization term.
From the maximum likelihood estimation for parameter

θ in formula (5), an equivalent optimization objective for-
mula can be obtained:

min
θ

LBPR Hi ∣ θð Þ = 〠
d,ti ,t jð Þ∈Hi

− ln p t j>di
tk ∣ θ

� �
+ λθ θk k2

= 〠
di ,t j ,tkð Þ∈Hi

− ln σ ri,j − ri,k
� �

+ λθ FD�� ��2 + FT�� ��2� �
:

ð6Þ

3.2. Adversarial Bayesian Personalized Ranking. As men-
tioned, since the error between the observed value and the
true value does exist, in order to enhance the robustness of
the model, it is necessary to consider gene perturbations. It
is unreasonable to add noise (such as changing the labels of
training data) at the input layer. For example, modifying
the training data ðdi, t j, tkÞ to ðdi, tk, t jÞ means that the non-
interacting drug-target pair ðdi, tkÞ is ranked higher than
interacting drug-target pair ðdi, t jÞ. Obviously, the latent fac-

tors obtained by such training data are unreasonable. There-
fore, it is necessary to add perturbations to the latent factors.
For drug and target gene perturbations, we defined it as the
perturbation factor that are added to Bayesian Personalized
Ranking:

max
Δ, Δk k2≤ε

LBPR Hi ∣ θ + Δð Þ, ð7Þ

where Δ is the gene perturbations on model parameters, ε
controls the magnitude of adversarial perturbations, k∙k2
denotes the L2 norm, and θ denotes the current model
parameters (i.e., latent factors).

Δ can be optimal by adversarial perturbations Δadv as
follows [28]:

Δadv = ε
Γ

Γk k2 , Γ =
∂LBPR Hi ∣ θ + Δð Þ

∂Δ
: ð8Þ

Finally, we define the objective function of ABPR as
follows:

LAdvB−DTI Hi ∣ θð Þ = LBPR Hi ∣ θð Þ + λΔadv, ð9Þ

where λ controls the adversarial strength. The training
process of AdvB-DTI can be expressed as playing a minimax
game:

min
θ

max
Δ, Δk k2≤ε

LBPR Hi ∣ θð Þ + λLBPR Hi ∣ θ + Δð Þ, ð10Þ

where the learning algorithm for model parameter latent
factor θ is the minimizing player, which is aimed at obtaining
accuracy prediction results. And the perturbation factor Δ
acts as the maximizing player, which is aimed at identifying
the worst-case perturbations against the current model.
Finally, by playing this minimax game, it is able to make
the model robust and simulate the error.

3.3. Dual Similarity Regularization. In the process of latent
factors training, when drugs or targets are similar, their latent
distance should be small. Conversely, when drugs or targets
are different, their latent distance should be large. In order
to meet this requirement, dual similarity regularization was
introduced into this process.

In order to effectively combine the features of drugs and
targets with matrix factorization methods, a Gaussian
function needs to be introduced. Through this function, the
features of drugs and targets can effectively influence the
training of latent factors. Zheng et al. made the point that this
function is sensitive to the latent distance of similarity
between different drugs or targets [38]. The similarity
between drugs (or targets) is negatively related to their latent
distance. The function is defined as
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SimGaus SD, FD, di
� �

= 〠
m

j=1
SD i, jð Þ − e− FD

i −F
D
jk k2

� �2
,

SD i, jð Þ = SD j, ið Þ = Sim di, dj

� �
:

ð11Þ

where SD denotes drug-drug similarity matrix
(SD ∈ℝm×m), k∙k2 denotes latent distance, and Simð∙Þ is a
similarity calculation method.

Similarly, we can obtain

SimGaus ST , FT , t j
� �

= 〠
n

k=1
ST j, kð Þ − e− FT

j −F
T
kk k2

� �2
,

ST j, kð Þ = ST k, jð Þ = Sim t j, tk
� �

,
ð12Þ

where ST denotes target-target similarity matrix
(ST ∈ℝn×n).

Commonly used similarity calculation methods include
cosine similarity, Tanimoto coefficient, structural similarity
index, and Spearman’s rank correlation coefficient.

Tanimoto coefficient is an extension of Intersection over
Union. It can be used to measure the similarity of nonbinary
features. It calculates the degree of correlation based on the
magnitude of the feature vector. The closer the calculation
result is to 1, the more similar the two vectors are. It is
defined as

T x, yð Þ = xy

xk k2 + yk k2 − xy
: ð13Þ

Cosine similarity is determined by the angle between two
vectors. The smaller the angle is, the more similar the two
vectors are. It is defined as

cos x, yð Þ = xy
xk k yk k : ð14Þ

Structural similarity index is a common similarity calcu-
lation method used in computer vision to measure image
quality [39]. It is defined as

SSIM x, yð Þ =
2μxμy + c1

� �
2σxy + c2
� �

μ2x + μ2y + c1
� �

σ2x + σ2y + c2
� � , ð15Þ

where μ is the mean, σ2 is the variance, σxy is the covari-
ance, and c1 = 0:001 and c2 = 0:001 are constants to avoid the
denominator being 0. The closer the calculation result is to 1,
the more similar the two vectors are. Since technologies orig-
inating from computer vision have been widely used in DTI
prediction in recent years, we attempt to use these methods
to calculate the similarity between drugs and targets. Origi-
nally, μ is used as an estimate of the image brightness, σ2 is
an estimate of the image contrast, and σxy is the measure of

the similarity of the image structure. In our problem, μ is
used as an estimate of the amount of change in gene expres-
sion, σ2 is used as an estimate of the relative change in gene
expression, and σxy is used as an estimate of the change trend
in gene expression.

Spearman’s rank correlation coefficient is a similarity
calculation method based on the ranking of feature data. It
is defined as

sprm x, yð Þ = 1 −
6∑n

1g
2
i

n n2 − 1ð Þ , ð16Þ

where gi is the difference in the ranks of xi and yi and the
size of features is n. For example, if x = ð1, 0, 3Þ and y = ð1,
5, 2Þ, then the rank of x = ð2, 1, 3Þ and y = ð1, 3, 2Þ, thus g =
ð1,−2, 1Þ. Similarly, the closer the similarity value is to 1,
the more similar the two vectors are.

Because the Gaussian function is a numerically “sensi-
tive” function, which means it can increase the impact of sim-
ilarity on latent factor training. Thus, it can extend the latent
distance between drugs (or targets) to increase the scores of
different ðri,j − ri,kÞ, which is to increase the penalty for
wrong rankings and optimize the training latent factors.

We use stochastic gradient descent to optimize the final
objective formula:

min
θ

max
Δ, Δk k2≤ε

〠
Hi⊆H, di ,t j ,tkð Þ∈Hi

LBPR Hi ∣ θð Þ + λadvLBPR Hi ∣ θ + Δð Þ

+ λsim SimGaus SD, FD, di
� �

+ SimGaus ST , FT , t j
� �	

+ SimGaus ST , FT , tk
� �


,
ð17Þ

where λadv and λsim are adversarial and similar hyper-
parameters, respectively.

4. Experiment and Analysis

The experiments are designed to answer the following three
questions:

(i) How do different similarity calculation methods
affect the prediction results of the model?

(ii) How do different numbers of latent factors, λsim and
λadv, impact the model’s performance?

(iii) Will our model (AdvB-DTI) outperform other
prediction models?

4.1. Assessment Metrics. The assessment metrics used in the
experiment are AUC [26], Top_k [40], and AUPR. AUC is
defined as formula (18):

AUC =
1
Dj j 〠diϵD

∣ di, t j, tk
� �

∣ ri,j > ri,k, t j ∈ T , tk ∈ T , yi,j = 1, yi,k = 0
n o

∣

Hij j :

ð18Þ
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The set of interacting drug-target pairs is called the posi-
tive set, and the set of noninteracting drug-target pairs is
called the negative set. One drug-target pair is randomly
selected from the positive set and the negative set, respec-
tively. AUC means the probability that the model correctly
predicts that the score of the drug-target pair from the posi-
tive set is larger than that of the drug-target pair from the
negative set. AUC can better reflect the overall performance
of the model. The larger the value of AUC is, the better the
performance of the model is.

Topki means for drug di, among the k top-ranked drug-
target pairs, the proportion of targets that interact with di
in all the targets that interact with di, which is defined as

Top_ki =
t j tl ∣ ri,j ≤ ri,l,∀tl ∈ T , l ≠ j

� ��� ∣≤k − 1,∀t j ∈ T , yi,j = 1
n o 

t j∣∀t j ∈ T , yi,j = 1
n o  :

ð19Þ

Top_k is the average of all Top_ki ð1 ≤ i ≤m). This
assessment metric is equivalent to the recall rate. Top_k is
defined as

Top_k =
1
Dj j 〠diϵD

Top_ki: ð20Þ

The meaning of prec_ki is, for drug di, among the k top-
ranked drug-target pairs, the proportion of targets that inter-
act with di. Its definition is shown in

prec_ki =
t j tl ∣ ri,j ≤ ri,l ,∀tl ∈ T , l ≠ j

� ��� ∣≤k − 1,∀t j ∈ T , yi,j = 1
n o 

k
:

ð21Þ

prec_k is the average of all prec_kið1 ≤ i ≤m). This
assessment metric is equivalent to the precision rate. prec_k
is defined as

prec_k =
1
Dj j 〠diϵD

prec_ki: ð22Þ

With different k values, drug di has different (Top_ki,
prec_ki) pairs. Connecting all (Top_ki, prec_ki), we can
obtain a curve. The area enclosed by the obtained curve
and the coordinate axes is the AUPRi of di. AUPRi is also a
comprehensive assessment metric, which is defined as

AUPRi =∯di
σ∈Top_ki−prec_ki curve

dσ: ð23Þ

AUPR calculates the average of all AUPRið1 ≤ i ≤m).
The closer the value is to 1, the better the model performance.
It is defined as

AUPR =
1
Dj j 〠diϵD

AUPRi ð24Þ

4.2. Results and Analysis. We adopted 5-fold nested cross-
validation to evaluate the performance of the proposed
method, which means that when analyzing the impact of
hyperparameters, we only utilized the training set. For fair
comparison, we tuned the parameters of each method so that
they could achieve the best performance in comparison. The
hyperparameters used in the experiments and their values are
listed in Table 2.

Matrix factorization methods demonstrated their power
and versatility in bioinformatics, for example, in the predic-
tion of disease subtype alignment [41], drug repositioning
[42], and protease target prediction [37]. Thus, we treat a
state-of-the-art method which predicts DTI via DNN [8] as
baseline and compare it with other state-of-the-art matrix
factorization methods [28, 30].

4.2.1. Comparative Experiment of Different Similarity
Calculation Methods. Table 3 lists the results of comparative
experiments of different similarity calculation methods per-
formed independently in the seven cell lines. Four different
methods were used for comparison.

From Table 3, it can be found that the prediction
results of Tanimoto coefficient are better than those of
the other three methods in seven cell lines. The perfor-
mance based on Spearman’s rank correlation coefficient is
second to that of the Tanimoto coefficient in this experi-
ment, and they are very close. The traditional cosine simi-
larity calculation method was unstable in the experiment,
and AUC is under 90% in cell lines A549 and HEPG2.
The prediction performance of structural similarity index
is similar to that of Spearman’s rank correlation coefficient.
Except cosine similarity, three similarity calculation
methods all consider the value of the features in calculating
the similarity. Cosine similarity only considers the angle
between vectors. If two feature vectors have the same
direction, they are considered similar regardless of value
of the features. From the results of cosine similarity, it
can be inferred that ignoring feature values may cause
poor prediction performance. Therefore, based on the
above results, Tanimoto coefficient is more suitable to the
prediction problem.

4.2.2. Impact of Different Settings of Hyperparameters.
Figure 3 reflects the relationship between the number of
latent factors and the result of Top_10. For example, when
factor_size = 5, Top_10 ≈ 0:5. It means that ten top-ranked
drug-target pairs of a particular di predicted by the model

Table 2: The parameters and settings used in the experiments.

Hyperparameter Setting

factor_size [5, 10, 15, 20, 25, 30, 40, 50, 60]

λsim [0,0.3,0.5,0.9,1.25]

λadv [0,0.3,0.5,0.9]

ε 0.1

λθ 0.1

learning rate 0.03
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contain about half of all interacting drug-target pairs of this
drug (i.e., the recall rate is about 0.5). The meaning of latent
factors is to map high-dimensional feature vectors to low-
dimensional latent space and capture the implicit features
of gene expression. The larger the size of the low-
dimensional latent space, the more sufficient the feature
information of the original high-dimensional drug and target
expression can be that can be extracted. That is why the value
of Top_10 significantly rises with the increase of the latent
factor size. As shown in Figure 3, when the size of the latent

factor increases to a critical size (e.g., factor_size > 25), the
feature information is almost completely extracted, and the
performance of AdvB-DTI becomes stable.

Figure 4 shows the impact of λsim on the values of AUC.
When dual similarity regularization was not used (i.e., λsim
= 0), the values of AUC are lower than those using this
method, which indicates that the method can improve the
prediction performance.

Firstly, how does dual similarity regularization improve
the training of latent factors? ri,j is the score to rank. The
ranking interval between different drug-target pairs is calcu-
lated by the difference of different scores. If λsim is set to a
larger value, the latent distance between the drug and the tar-
get will also become large, and the same thing happens to dif-
ferent scores. Therefore, making the interval between
different drug-target pairs increase will aggravate the penalty
for the model when ranking errors occur during the training
process. Thus, dual similarity regularization improves the
training of latent factors.

Secondly, how to select a proper value for λsim? The dif-
ference in ri,j between different drug-target pairs increases
with λsim. Thus, the interval between different rankings
increases. In cell lines with fewer positive samples, the model
parameter θ will not be too large and increasing λsim can
effectively improve the prediction performance. However,
in cell lines with more positive samples, increasing λsim
means that θ needs to increase beyond the limit of its regular
term kθk2, so the model will be underfitting and the value of
AUC decreases, as shown in Figure 4. AUC increases with
λsim but decreases when λsim is greater than a critical value.

Therefore, in a cell line with fewer positive samples, a
larger λsim will improve the prediction performance; how-
ever, in a cell line with more positive samples, a smaller
λsim is suitable.

Table 3: The impact of different similarity calculation methods on
prediction performance in seven cell lines.

Cell line Tanimoto cos SSIM sprm

A375
AUC 0.9202 0.9088 0.9037 0.9119

AUPR 0.9437 0.9160 0.9389 0.9436

A549
AUC 0.9347 0.8944 0.9247 0.9192

AUPR 0.9477 0.9109 0.9425 0.9367

HA1E
AUC 0.9249 0.9174 0.9082 0.9035

AUPR 0.9450 0.9401 0.9380 0.9389

HCC515
AUC 0.9163 0.9018 0.9045 0.9045

AUPR 0.9403 0.9332 0.9377 0.9305

HEPG2
AUC 0.9259 0.8828 0.9144 0.9124

AUPR 0.9303 0.9161 0.9249 0.9279

PC3
AUC 0.9306 0.9090 0.9116 0.9228

AUPR 0.9581 0.9471 0.9459 0.9536

VCAP
AUC 0.9466 0.9102 0.9349 0.9349

AUPR 0.9645 0.9558 0.9453 0.9543
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Figure 3: Impact of different numbers of latent factors onTop_10.
Top_10 increases with factor_size and tends to be stable after
factor_size is greater than 25.
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Figure 4: Impact of λsim on AUC. AUC increases with λsim but
decreases when λsim is greater than a critical value.
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In HEPG2 cell line, the number of positive samples is the
smallest among the 7 cell lines. In PC3 cell lines, the number
of positive samples is the largest among 7 cell lines. There-
fore, in this experiment, we select these two cell lines as rep-
resentatives to study the impact of λadv on prediction
performance. In Figures 5(a) and 5(b), the curve of λadv = 0
represents that ABPR was not used in the model, and the
other curves represent that ABPR was used in the model. In
the early stages of training, the values of AUPR by using
ABPR are better than those by not using ABPR. This is
because when using ABPR, the parameters of the model
could change within a certain range without changing the
past prediction results, that is, learning new knowledge with-
out forgetting the knowledge learned in the past. Thus, the
prediction performance of the model can be effectively and
quickly improved in the early stages of model training. Using
ABPR as far as possible, the better performance will be
obtained in the early stage of training.

Because of using Dual Similarity Regularization, the dif-
ference of scores of different drug-target pairs will increase;
that is, the model parameters can withstand a certain range
of perturbations to improve the model prediction perfor-
mance. However, when the value of λadv exceeds a certain
range, due to the constraints of the regular terms of the
model parameters, they cannot resist excessive perturbations,
which leads to the model being underfitted. Therefore, if λadv
is given a large value, the model converges fast. The upper
bound of model convergence depends on the ability of model
parameters to resist the perturbations, which can be verified
in the PC3 cell line. As shown in Figures 5(a) and 5(b), the
larger λadv is, the lower the upper bound of model conver-
gence. When λadv = 0:3, the model obtained the best predic-
tion performance.

4.2.3. Comparison with Other Methods. AdvB-DTI was com-
pared with other state-of-the-art methods, and the prediction

performances are listed in Table 4. The comparison methods
include DNN [8], GMF [30], NeuMF [30], and AMF [28].

Xie et al. used a DNN framework [8] for DTI prediction
based on transcriptome data in the L1000 database gathered
from drug perturbation and gene knockout trials. We used
the same configurations for DNN training.

NeuMF [30] is a deep learning matrix factorization
framework for recommendation task with implicit feedback.
In this method, DNN’s input layer is defined as a latent vec-
tor instead of drug and target features. It is an improvement
of GMF and DNN. To compare with NeuMF and GMF fairly,
our model uses the same number of latent factors as NeuMF
and GMF.

AMF [28] is a state-of-the-art approach designed for item
recommendation with users’ implicit feedback. It introduces
the concept of ABPR and improves the method of BPR [26].

The results of DNN are used as baseline in Table 4. Since
the DTI data are too sparse that each drug only has interac-
tions with few targets, and DNN needs sufficient data for
training, the performance of DNN is not attractive. DNN uti-
lizes the transcriptome data as drug and target’s feature.
However, the transcriptome data has much noise, which also
limits its performance. As shown in Table 4, other state-of-
the-art matrix factorization methods’ performances are
better than that of the baseline.

When comparing AdvB-DTI with other state-of-the-art
matrix factorization methods (NeuMF, GMF, and AMF),
we could observe that only utilizing the relationship of drug
and target could not guarantee an ideal prediction
performance and efficiently exploiting the similarity of
drug-drug and target-target will has a positive impact on
the performance.

Notice that the performance of AMF is only second to
that of AdvB-DTI. It demonstrates that adding perturbations
to latent factors could make model learn noise, rather than
utilize noise data to train model like DNN. That is the reason
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Figure 5: Impact of λadv on AUPR. For cell lines HEPG2 and PC3, the best performance of AUPR is achieved when λadv = 0:3.
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that AMF could achieve a better performance than other
models except AdvB-DTI.

NDCG is mainly used for evaluating ranking methods
[43]. As our model is a ranking method, we compared
AdvB-DTI with AMF, which has the best performance in
Table 4 except AdvB-DTI, as shown in Table 5. It can be seen
from the results that AdvB-DTI outperforms AMF and it is
verified that AdvB-DTI can effectively deal with the class
imbalance problem and the problem of data sparsity.

Finally, we compared the computing resource consump-
tion of these methods. All the algorithms were written using
Python programming language and operated on a computer
(Ubuntu 16.04.4 LTS, Core i9-7900X CPU, 3.3GHz, 128GB
memory space). The algorithms were executed by CPU. We
conducted 10 experiments in the cell line of A549, and each
experiment concurrently executed 10 training procedures
with 5-fold cross-validation. The average results are shown
in Table 6.

It can be found that DNN has the largest memory cost
because of its many parameters. GMF is a traditional matrix
decomposition framework with simple structure and few
parameters, so its memory cost is minimum. NeuMF is the
framework of matrix decomposition combined with neural
network, so its memory cost is slightly higher than that of
GMF. AdvB-DTI improves AMF and NeuMF improves

GMF. Comparing the two groups of models based on
Tables 4 and 6, it can be found that the convergence time
of the model is related to its final prediction performance,
and the improvement of model performance may lead to
the increase of training time. In addition, the neural
network-based methods, such as DNN and NeuMF, take up
a lot of CPU resources.

In summary, AdvB-DTI efficiently utilizes the similarity
of drug-drug and target-target and the relationship of drugs
and targets to train latent factors for drugs and targets to
improve DTI prediction performance.

5. System Analysis of AdvB-DTI

After the comparison with other methods, we utilize top 1%
of all the prediction results to demonstrate the strength of our
method to predict novel DTIs. In order to verify our model,
all the known DTIs which have been utilized in our model
are removed for discussion in this section and the following
analysis is in A375.

5.1. Examination of Results. To validate whether our
prediction results are in accord with current knowledge, we
examined the predicted DTIs using other DTI database,
including TTD [44], IUPHARBPS [45], Matador [46],
STITCH [47], DGIdb [48], and CTD [49].

We used ri,j to rank all predicted DTIs and calculated pair
counts that overlap between the predicted results and the
interactions from other databases. Then, we counted the
number of overlapping pairs in the sliding bins of 500 con-
secutive interactions (as shown in Figure 6). It suggests that
our model can predict novel DTIs validated by known
knowledge in other databases. Considering that DTIs in
CTD database are curated from the published literature,
these interactions are both direct (e.g., “chemical binds to
protein”) and indirect (e.g., “chemical results in increased
phosphorylation of a protein” via intermediate events); it is
reasonable that CTD database covers a wider variety of
drug-target interactions than other DTI databases.

5.2. Enrichment Analysis. In this study, the DrugBank data-
base is considered the gold standard. The drug-target interac-
tions from the DrugBank database are the most accurate and
strict drug-target interactions. Besides the DrugBank data-
base, there are some other databases containing a large
amount of drug-target interaction data. These drug-target
interaction data are much larger than the gold standard we
used. Therefore, we compare our prediction results with the

Table 4: Comparison between AdvB-DTI and other methods.

Cell line DNN GMF NeuMF AMF AdvB-DTI

A375
AUC 0.8984 0.8733 0.9013 0.9253 0.9564

AUPR 0.8673 0.8385 0.8805 0.9350 0.9635

A549
AUC 0.9134 0.8927 0.9071 0.9246 0.9554

AUPR 0.8724 0.8495 0.8986 0.9319 0.9673

HA1E
AUC 0.8938 0.8874 0.9052 0.9074 0.9428

AUPR 0.8518 0.8424 0.8837 0.9137 0.9602

HCC515
AUC 0.8735 0.8912 0.8899 0.9009 0.9571

AUPR 0.8259 0.8429 0.8493 0.9177 0.9654

HEPG2
AUC 0.8901 0.8742 0.8835 0.8896 0.9464

AUPR 0.8135 0.8135 0.8297 0.8951 0.9624

PC3
AUC 0.8957 0.8774 0.8725 0.9205 0.9560

AUPR 0.8647 0.8631 0.8538 0.9309 0.9632

VCAP
AUC 0.8975 0.9033 0.8920 0.9095 0.9556

AUPR 0.8426 0.8388 0.8749 0.9126 0.9622

Table 5: Comparison of AdvB-DTI and AMF based on NDCG in
seven cell lines.

Cell line AdvB-DTI AMF

A375 0.9469 0.9149

A549 0.9413 0.9136

HA1E 0.9373 0.8813

HCC515 0.9455 0.8951

HEPG2 0.9566 0.8854

PC3 0.9517 0.9098

VCAP 0.9535 0.9041

Table 6: Resources consumed by AdvB-DTI and other methods in
the cell line of A549.

Method Time (m) ↓ Memory (MB) ↓ CPU (%) ↓

DNN 5 518 33.8

GMF 5 80 36.4

NeuMF 6 101 44.7

AMF 7 230 5.7

AdvB-DTI 12 180 5.3
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drug-target interactions contained in these databases. Here,
the drug-target interactions in the IUPHARBPS database,
STITCH database, CTD database, TTD database, Matador
database, and DGIdb database were used. If our prediction
results appear in other databases, it indicates that our predic-
tion results are consistent with prior knowledge.

In order to characterize and quantify the appearance of
predicted drug-target relationships (and known drug-target
interactions) in other databases, we used the enrichment
score and P value.

We calculated enrichment score (ES) as follows:

ES =
kN
nm

, ð25Þ

where k is the number of predicted drug-target interac-
tions that appear in the specified database (or the number
of known drug-target interactions (i.e., drug-target interac-
tions in our gold standard) that appear in the specified data-
base); N is the number of all possible interactions between
the drug set and the target set, that is, the drug-target interac-
tions when the drug set and the target set are fully connected;
n is the number of predicted drug-target interactions (or the
number of known drug-target interactions in our gold stan-
dard); and m is the number of drug-target interactions in a
specific database. And the interactions mentioned above only
concern drugs and targets present in the gold standard.

Then, we used the hypergeometric distribution to
calculate the P value as follows:

P X ≥ kð Þ = 〠
∞

x=k

m/xð Þ N −m/n − xð Þ
N/nð Þ : ð26Þ

FDR correction is used to correct the P values for multi-
testing [50].

As shown in Table 7, the known drug-target interactions
and the drug-target interactions predicted using AdvB-DTI
are significantly enriched on other datasets except for the
STITCH database. Obviously, the known drug-target inter-

actions (drug-target interactions in our gold standard) have
larger enrichment scores and smaller P value than predicted
drug-target interactions.

The results indicate that the drug-target interactions pre-
dicted by AdvB-DTI can be verified on other DTI datasets
and have a potential practical value.

5.3. Drug Treatment Property. Drug ATC (Anatomical Ther-
apeutic Chemical) label, which reflects drugs’ therapeutic,
pharmacological and chemical properties, is an important
label of drugs. By comparing the distribution of drug ATC
label in the known drug-target interactions and that of drug
ATC label in the predicted drug-target interactions, we can
find out which type of drug is more likely to be predicted to
be associated with targets.

The distribution of drug ATC label in the known drug-
target interactions and that of drug ATC label in the pre-
dicted drug-target interactions are illustrated in Figures 7(a)
and 7(b). The relative ratio between known and predicted
DTIs for each ATC label is shown in Figure 7(c). If there
are 25% of drugs with ATC label A in the gold standard
and 50% of drugs with ATC label A in the prediction result,
the relative ratio is 0:25/0:5 = 0:5. The smaller the ratio, the
more potential the drugs with that specific ATC label has to
target proteins. So, the drugs with that specific ATC label
should be studied further for broader use.

In Figure 7, the distributions of drug ATC labels for the
gold standard and for the predictions (note that only the
top 1% of all prediction results are taken) are almost the
same. Notably, drugs with ATC label “B” (Blood and Blood
Forming Organs) have a low relative ratio. In addition to
A375, in most other cell lines, we also predicted more targets
for drugs with ATC label “B”. The result suggests that drugs
with ATC label “B” have more potential to target proteins
and should be studied further for broader use.

6. Case Study

To illustrate the reliability of the prediction results of AdvB-
DTI, we studied several cases in this section. These examples
are all from our prediction results.

Olomoucine (CID: 4592) is a cyclin-dependent kinase
inhibitor. For Olomoucine, its predicted target is MAPK3
through AdvB-DTI.
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Figure 6: The overlap curves between predicted interactions and
known DTIs.

Table 7: Enrichment of drug-target interactions on other datasets.

ES PES EP-Value PEP-Value

TTD 107.91 3.60 292.06 1.20

STITCH 12.32 0.52 16.72 0.04

DGIdb 70.37 2.43 ∞ 2.88

CTD 9.18 1.73 134.46 6.10

Matador 59.28 5.87 131.13 6.10

IUPHARBPS 99.74 3.84 856.72 2.33

ES: enrichment score of known drug-target interactions; PES: enrichment
score of predicted drug-target interactions; EP-Value: enrichment P value
(after -lg10) of known drug-target interactions; PEP-Value: enrichment P
value (after -lg10) of predicted drug-target interactions.
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MAPK3 (Entrez ID: 5595) is a neighbor to the known tar-
get of Olomoucine (MAPK1, Entrez ID: 5594) in the protein-
protein interaction (PPI) network. The PPI network, which
contains 270,970 pairs of protein-protein interaction, is
obtained from the BioGRID database [51]. By observing

whether the edges (between two proteins) exist or not, we
can judge whether drug known targets and predicted targets
are neighbors in the PPI network. The closer two proteins are
in the PPI network, the more likely they share the same func-
tionality. Therefore, if the predicted targets are neighbors to
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Figure 7: Distribution of ATC labels between DTIs in the known (a) and predicted (b) interactions. The relative ratio between known and
predicted DTIs for each ATC label is shown in the right panel. ATC labels include the following: A—alimentary tract and metabolism;
B—blood and blood-forming organs; C—cardiovascular system; D—dermatological; G—genitourinary system and sex hormones;
H—systemic hormonal preparations, excluding sex hormones and insulins; J—anti-infectives for systemic use; L—antineoplastic and
immunomodulating agents; M—musculoskeletal system; N—nervous system; P—antiparasitic products; R—respiratory system;
S—sensory organs; and V—several others.
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the known targets of drugs, they might be targeted in the
same way as known targets and the prediction results would
be relatively reliable.

Indeed, recent research has shown that MAPK3 can be
substantially inhibited by Olomoucine [52, 53]. This indi-
cates that MAPK3 may be a novel target of Olomoucine.

Drug acetylsalicylic acid (commonly known or available
as Aspirin, CID: 2244) is used for the treatment of pain and
fever due to various causes. For acetylsalicylic acid, its pre-
dicted target is cyclin-dependent kinase-2 (CDK2) through
AdvB-DTI.

CDK2 (Entrez ID: 1017) is a neighbor to two known tar-
gets of acetylsalicylic acid in the PPI network (Entrez IDs:
7157, 6256). Recent research has shown that CDK2 may be
a novel target of acetylsalicylic acid [54]. This verifies our
prediction.

CDK2 is a member of protein kinase family. It plays an
important role in regulating various events of eukaryotic cell
division cycle. Accumulated evidence indicated that overex-
pression of CDK2 should cause the abnormal regulation of
cell-cycle, which would be directly associated with hyperpro-
liferation in cancer cells [55]. Moreover, the examination of
different kinds of human cancers, with definedmolecular fea-
tures, for their susceptibility to CDK2 inhibition has unveiled
the scope in which CDK2 might represent a good therapeutic
target [56–63].

Based on the above information, we speculate that acetyl-
salicylic acid, which is predicted to target CDK2, may have
potential anticancer effects. Interestingly, the results of vari-
ous studies have demonstrated that long-term use of acetyl-
salicylic acid may decrease the risk of various cancers,
including colorectal, esophageal, breast, lung, prostate, liver,
and skin cancer [64]. The predicted target CDK2 explains
acetylsalicylic acid’s anticancer effect to some extent.

Next example is the drug Panobinostat.
Panobinostat (CID: 6918837) is an oral deacetylase

(DAC) inhibitor approved on February 23, 2015, by the
FDA for the treatment of multiple myeloma. It acts as a non-
selective histone deacetylase inhibitor (HDACi).

Histone deacetylase inhibitors (HDACis) are promising
agents for cancer therapy. However, the mechanism(s)
responsible for the efficacy of HDACi have not yet to be fully
elucidated [65].

In this study, we predicted that Panobinostat’s target is
ATF3 through AdvB-DTI.

ATF3 (Entrez ID: 467) is a neighbor to six known targets
of Panobinostat in the PPI network (Entrez IDs: 3065,
10013, 83933, 9759, 10014, 8841). As a proapoptotic factor,
it plays a role in apoptosis and proliferation, two cellular
processes critical for cancer progression [66–68]. And
ATF3 has been postulated to be a tumor suppressor gene
because it coordinates the expression of genes that may be
linked to cancer [69].

Recent research has shown that ATF3 plays an important
role in HDACi-induced apoptosis in multiple cell types [70].
HDACi can induce upregulation of ATF3 expression, thus
eliciting the antitumor response [71].

Therefore, Panobinostat, as a HDACi, may treat mye-
loma by targeting ATF3.

Another interesting case is caffeine.
Caffeine (CID: 2519) is a widely consumed pharmacolog-

ically active product. It can be used for a variety of purposes,
including the short-term treatment of apnea of prematurity
in infants and pain relief and to avoid drowsiness [72].

For caffeine, its predicted targets include PTGS2 (Entrez
ID: 5743) and PPARG (Entrez ID: 5468) through AdvB-DTI.

PTGS2 is one of two cyclooxygenases in humans. As a
proinflammatory gene, it plays an important role in inflam-
mation. Recent research has shown that caffeine treatment
can reduce the expression of proinflammatory genes, includ-
ing PTGS2 [73]. And caffeine can bind to PTGS2 acetamino-
phen complex with high energy, therefore modulating
PTGS2 inhibition [74]. Furthermore, upregulation of PTGS2
is a critical oncogenic pathway in skin tumorigenesis. Han
et al. verified that caffeine could block UVB-induced PTGS2
upregulation [75]. All these studies show that PTGS2 is a
potential target for caffeine.

PPARG, another predicted target, is a ligand-activated
transcription factor and important modulator for inflamma-
tion and lymphocyte homeostasis. There is also a study
showing that PPARG were suppressed even with a low caf-
feine dose [76]. This suggests that PPARG is also a potential
target for caffeine.

The above cases illustrate that our prediction results have
a potential practical value and can provide clues to the
analysis of the mechanism of action of certain drugs.

7. Conclusion

In this paper, we propose a DTI prediction framework
named AdvB-DTI. Based on Bayesian Personalized Ranking,
it uses the method of matrix factorization to predict DTIs. In
order to solve the problem of existing DTI prediction
methods based on matrix factorization, the proposed method
combines the features of drugs and targets with the matrix
factorization method. The advantage of this method over
other similar methods is that BPR is combined with the per-
turbation factor and dual similarity regularization to make
the model more robust and the training results more accu-
rate. Experimental results verify that AdvB-DTI efficiently
utilizes the similarity of drug-drug and target-target and the
relationship of drugs and targets to train latent factors for
drugs and targets to improve DTI prediction performance.

This study has the following positive impacts on the bio-
medical research.

Firstly, by integrating transcriptome data from drugs and
genes, our model provides a practically useful and efficient
tool for DTI prediction. The results of our study demonstrate
that our method could discover reliable DTIs, thereby reduc-
ing the size of the search space for wet experiments and
improving the drug discovery process.

Secondly, effective DTI prediction is achieved based on
the transcriptome data. Our model used drug perturbation
and gene knockout transcriptome data from the L1000 data-
base of the LINCS project. Because the cost of experiments in
LINCS project is relatively low, our prediction based on
LINCS data not only ensures high accuracy but also has
low cost.
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Thirdly, our effective predictions verify that there is
indeed a correlation between drug perturbation and the
drug’s target gene knockout at the transcriptional level. This
correlation not only provides a basis for high-precision drug-
target predictions but also provides a transcriptional perspec-
tive for the interpretation of drug mode of action. The corre-
lation can also provide clues for future drug discovery.
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Dry weight is the normal weight of hemodialysis patients after hemodialysis. If the amount of water in diabetes is too much (during
hemodialysis), the patient will experience hypotension and shock symptoms. Therefore, the correct assessment of the patient’s dry
weight is clinically important. These methods all rely on professional instruments and technicians, which are time-consuming and
labor-intensive. To avoid this limitation, we hope to use machine learning methods on patients. This study collected demographic
and anthropometric data of 476 hemodialysis patients, including age, gender, blood pressure (BP), body mass index (BMI), years of
dialysis (YD), and heart rate (HR). We propose a Sparse Laplacian regularized Random Vector Functional Link (SLapRVFL) neural
network model on the basis of predecessors. When we evaluate the prediction performance of the model, we fully compare
SLapRVFL with the Body Composition Monitor (BCM) instrument and other models. The Root Mean Square Error (RMSE) of
SLapRVFL is 1.3136, which is better than other methods. The SLapRVFL neural network model could be a viable alternative of
dry weight assessment.

1. Introduction

Fluid overload in patients with chronic renal failure is closely
related to poor cardiovascular outcomes [1, 2]. Maintenance
of hemodialysis (HD) is the main method for patients with
renal failure [3]. However, the accurate assessment of body
water volume is still a concern [4]. At present, dry weight
has been used as an important indicator to assess the homeo-
stasis of fluids in hemodialysis patients. Medical staff can use
the patient’s dry weight to estimate the amount of water
needed for dialysis during hemodialysis. The conventional
clinical-based dry weight assessment method is time-
consuming and labor-intensive [1]. There are already some
methods based on bioelectrical impedance analysis (BIA)
[5] to determine dry weight, including body composition
monitor (BCM) [6] and lung ultrasound (LUS). However,
all the above methods require special instruments and pro-

fessional technicians to complete. Medical staff can use some
clinical data to build predictive models [7] to accurately
assess dry weight. Currently, machine learning (ML) or deep
learning has solved many common clinical problems in
medicine, such as brain diseases [8–10], cancer analysis,
and diabetes.

Some scholars have used artificial neural networks
(ANN) to predict the total water volume of hemodialysis
patients and have obtained better results than conventional
clinical calculation equations [11]. In addition, deep learning
methods are also emerging in clinical diagnosis, including
pixel-based convolutional neural networks to diagnose skin
cancer [12]. In the biological field, microbiology analysis
[13], CircRNAs [14], microRNAs, and cancer association
prediction [15–17], lncRNA-miRNA association prediction,
O-GlcNAcylation site prediction [18], DNA methylation site
[19–21], protein remote homology [22], function prediction
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of proteins [23–29], electron transport proteins [30], breast
cancer [31], cell-specific replication [32], osteoporosis diag-
noses [33], and drug complex network analysis [34–38].

In our previous research, a Multiple Kernel Support
Vector Regression (MKSVR) [39] predictor was proposed to
assess the dry weight and obtain good predictive performance.
Inspired by the previous work and baseline Random Vector
Functional Link (RVFL) network [40], we propose a new dry
weight assessment model, called Sparse Laplacian regularized
RVFL neural network with L2,1-norm (SLapRVFL), which
considers the topological relationship between samples and
more sparse connections between the input layer and the
hidden layer.

2. Materials and Methods

2.1. Materials. This work collects demographic and anthro-
pometric data and bioimpedance spectroscopy (BIS) from
historical data (2018-9 to 2019-9) fromWuxi people’s hospi-
tal and the northern Jiangsu people’s hospital. This study has
been approved by the ethics committees of the hospitals
(Nos. KYLLKS201813 and 2018KY-001). The collected
patient data meet the following requirements: age greater
than 18 years; ESRD for more than three months and main-
tenance hemodialysis [41]; no heart failure, no metal
implants, no pregnancy, no disability, no infection, and no
edema and other diseases; and hemodialysis treatment 3
times a week, 4 hours each time. Finally, we obtain a data
set of 476 hemodialysis patients. DW is the normal body
weight after clinical diabetes. DW is obtained by a clinician
under strict clinical supervision using a clinical scoring
system (using trial and error method) [42, 43].

We choose 7 features, including age, gender (binary fea-
ture), systolic blood pressure (SBP), diastolic blood pressure
(DBP), body mass index (BMI), heart rate (HR), and years
of dialysis (YD) to build our predictive model. Table 1 shows
the information of the data set. BMI is measured before
hemodialysis treatment.

2.2. Methods. The baseline RVFL was proposed for regression
or classification. The schematic diagram of RVFL is shown in
Figure 1. The basic information of the patient is put into the
RVFL neural network model for processing, and the
predicted dry weight is the output.

Suppose, there are N training samples with fxi, yig, i = 1,
2,⋯,N. The output value is yi ∈ R

1×c and the input data is xi
∈ R1×d. d denotes the dimension of xi. As per Figure 1, RVFL
randomly initializes all weights and deviations between the
hidden layer and the input layer. These parameters are fixed
during the training process and do not need to be tuned. There
are connections between the output layer, input layer, and hid-
den layer. This part of the weight needs to be obtained by train-
ing RVFL. The output layer of RVFL is connected to both the
input layer and the hidden layer, so as to ensure the nonlinear
and linear relationships between the input and the output. The
RVFL network with P hidden nodes are formulated as

Hβ = Y , ð1Þ

where β denotes the output weight matrix; H is the
concatenatedmatrix, which combines the output of the hidden
layer and the input layer; and Y denotes the label matrix. H
and β can be represented as

H = H1 H2½ �, ð2Þ

H1 =
x11 ⋯ x1d

⋮ ⋱ ⋮

xN1 ⋯ xNd

2
664

3
775
N×d

, ð3Þ

H2 =
G a1x1 + b1ð Þ ⋯ G aPx1 + bPð Þ

⋮ ⋱ ⋮

G a1xN + b1ð Þ ⋯ G aPxN + bPð Þ

2
664

3
775
N×P

, ð4Þ

β =

βT
1

βT
2

⋮

βT
d+P

2
666664

3
777775

d+Pð Þ×C

: ð5Þ

Table 1: The information of data set.

Feature Value r∗

Age (years) 54:17 ± 14:22 -0.2341

Gender (males/females) 312/164 -0.4489

BMI 22:96 ± 2:95 0.9558

Systolic blood pressure (mmHg) 150:64 ± 29:36 -0.1739

Diastolic blood pressure (mmHg) 88:32 ± 19:56 -0.1249

Heart rate (times/min) 73:41 ± 8:92 0.1862

Years of dialysis (years) 5:97 ± 3:22 -0.1069
∗Denotes that each feature correlated with dry weight using Pearson
correlation coefficient (r).

……

∫∫ ∫∫ ∫∫……∫∫

Input nodes

Hidden nodes
(enhanced
function)

Output nodes

Age Gender Years of
dialysis……

Dry weight

Figure 1: Schematic of our proposed method.
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In Equation (4), aj and bj are the weights and bias of the
hidden and input layers. C and P are numbers of output and
hidden layer nodes. In general, the activation function is a
Gaussian function: gðxÞ = e−x

2
. The activation function has a

nonlinear approximation effect. To consider the potential lin-
ear relationship between the input data and the output value,
RVFL adds a direct connection weight between the input layer
and the output layer. Therefore, RVFL is a model that contains
both linear and nonlinear approximations to improve predic-
tion performance. For optimal β, the RVFL can be formulated
as a regularized least-squares:

β∗ = arg min 1
2 Hβ − Yk k22 +

λ

2 βk k22, ð6Þ

where λ is the parameter of regularization term. The solution
of Equation (6) can be found by setting its gradient to 0:

β∗ = HTH + λI
� �−1

HTY , ð7Þ

where I denotes the identity matrix. However, the RVFL net-
work did not consider the topological relationship between
samples. For the output node, it must be connected to both
the input and the hidden layer.

In order to further improve the robustness of RVFL, we
propose Sparse Laplacian regularized RVFL neural network
with L2,1-norm (SLapRVFL). The objective function is

β∗ = arg min 1
2 Hβ − Yk k22 +

λ1
2 Tr Hβð ÞTLHβ

� �
+ λ2

2 βk k22,1,
ð8Þ

where L ∈ RN×N denotes the Laplacian matrix. λ1 and λ2 are
the coefficients of Laplacian regularization the and L21-norm
term, respectively. Laplacian regularization is used to indicate
the potential manifold between samples. It can better describe
the topological association between samples to improve the

generalization ability of the model. Since the third term of
kβk22,1 is not diversified, we convert Equation (8) to

β∗ = arg min 1
2 Hβ − Yk k22 +

λ1
2 Tr Hβð ÞTLHβ

� �

+ λ2
2 Tr βTGβ

� �
,

ð9Þ

where G ∈ Rðd+PÞ×ðd+PÞ denotes a diagonal matrix whose ith-
diagonal element

Gii =
1

2 βik k2
, i = 1, 2,⋯, d + Pð Þ: ð10Þ

We take the derivative of the formula Equation (10) as

HT Hβ − Yð Þ + λ1H
TLHβ + λ2Gβ = 0, ð11aÞ

HTHβ + λ1H
TLHβ + λ2Gβ =HTY , ð11bÞ

Require: Training set fxi, yig, i = 1, 2,⋯,N , test set fxtej g, j = 1, 2,⋯,M, the numbers of hidden layer nodes (P), the maximum num-
ber of iterations tmax, coefficients of λ1 and λ2;
Ensure: The predictive values of fytej g, j = 1, 2,⋯,M
(1) Randomly initializing all weights and deviations between the hidden layer and the input layer. Calculating the hidden layer output
matrix H (training set)and Laplacian matrix L by Equations (2), (12), and (13);
(2) Set t = 0, estimate the initial β0 using Equation (7);
Repeat
(3) Update the diagonal matrix G with

Gt+1 =
1/2kβt

1k2
⋱

1/2kβt
d+Pk2

2
664

3
775
ðd+PÞ×ðd+PÞ

,

(4) Update β via Equation (11d);
Untilt > tmax;
(5) Calculate the hidden layer output matrix Hte (test set);
(6) Estimate fytej g, j = 1, 2,⋯,M by Yte =Hteβ.

Algorithm 1. Algorithm of SLapRVFL

Numbers of of hidden layer nodes
0 20 40 60 80 100 120 140
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Figure 2: The RMSE under different numbers of hidden layer nodes
(SLapRVFL network).
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HTH + λ1H
TLH + λ2G

� �
β =HTY , ð11cÞ

β = HTH + λ1H
TLH + λ2G

� �−1
HTY : ð11dÞ

We use the baseline RVFL solution with Equation (7) as the
initial β0. In addition, the Laplacian matrix can be calculate as

L =D−1/2ΔD−1/2, ð12aÞ

Δ =D − S, ð12bÞ
where D is diagonal matrix, Dii =∑N

j=1Sij. Similarity matrix S is
built by Radial Basis Function (RBF):

Sij = exp −γ xi − xj
�� ��2� �

: ð13Þ

The process of SLapRVFL is list in Algorithm 1.

3. Results

We test our model on the benchmark data set and obtain the
optimal parameters of the predictor through cross-
validation. The SLapRVFL network is compared to other
machine learning-based models. In addition, the body com-
position monitor (BCM) device (Fresenius Medical Care,
Baden Humboldt, Germany) is also compared with the
SLapRVFL network.

3.1. Evaluation Measurements. The 10-fold cross-validation
(10-CV) is employed to evaluate the robustness of methods.
Root Mean Square Error (RMSE), R square, correlation coef-
ficient (R), Bland–Altman analysis, and Empirical Cumula-
tive Distribution Plot (ECDP) [44] are all used in our study.
To evaluate the agreement of two different methods, the
Bland–Altman analysis usually can obtain whether the two
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Figure 3: The RMSE of iterations on the training set.
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Figure 4: The RMSE under different λ1 and λ2.

4 BioMed Research International



Difference with DW
–8 –6 –4 –2 0 2 4 6 8

Ra
tio

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

–1 0 1
0.42

0.44

0.46

0.48

0.5

BCM
LR
ANN (BP)

MKRR
MKSVR
SLapRVFL

Figure 5: Folded empirical cumulative distribution plot between different methods.

Table 3: Bland–Altman plot analysis for different models.

Model
Differences with DW (%) Limits of agreement (%)

Mean SD 95% confidence interval Lower limit Upper limit
Number (ratio) of outside

agreement interval

BCM∗ -1.8232 2.7466 -2.0706 to -1.5759 -7.2066 3.5601 30/476 (6.30%)

LR∗ 0.0002 2.4269 -0.2184 to 0.2187 -4.7566 4.7569 21/476 (4.41%)

ANN (BP)∗ 0.1152 2.5139 -0.1112 to 0.3416 -4.8119 5.0424 22/476 (4.62%)

MKRR∗ -0.0801 2.5007 -0.3053 to 0.1451 -4.9814 4.8212 23/476 (4.83%)

MKSVR∗ -0.2638 2.3372 -0.4743 to -0.05329 -4.8446 4.3171 22/476 (4.62%)

SLapRVFL (our method) 0.0867 2.2202 -0.1133 to 0.2866 -4.2650 4.4383 20/476 (4.20%)
∗The results are from previous work on MKSVR [39].

Table 2: Comparison on existing methods via 10-fold cross-validation.

Method R R squared RMSE
Empirical cumulative distribution plot

Highest value Lowest value Median value

BCM∗ 0.9473 0.9137 1.9694 3.2235 -6.2776 -0.9863

LR∗ 0.9403 0.9308 1.4335 4.2524 -4.4014 0.1418

ANN (BP)∗ 0.9398 0.9295 1.4794 7.3661 -4.7447 0.1324

MKRR∗ 0.9399 0.9289 1.5015 4.9227 -4.2604 0.1104

MKSVR∗ 0.9412 0.9321 1.3817 4.3962 -4.1273 0.0082

RVFL 0.9389 0.9300 1.3828 6.7004 -4.3557 0.0704

SLapRVFL (our method) 0.9632 0.9501 1.3136 3.1940 -3.5066 0.1014
∗The results are from previous work on MKSVR [39].
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Figure 6: Bland–Altman plot analysis.
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methods can be substituted for each other (equivalence).
Evaluating the agreement of the two methods can answer
the question, “Can these two methods replace each other?”

3.2. Selection of Optimal Parameters. To get the optimal
parameters of the predictive method, we obtain them
through a grid search method. The parameters that need to
be determined include the numbers of hidden layer nodes P
, maximum iterations, and coefficients of λ1 and λ2. For the
numbers of hidden layer nodes P, we fix the iterations, λ1
and λ2. Setting the maximum number as 50, λ1 = 1 and λ2
= 1. The value of P is from 10 to 140 with step of 10. The
results are shown in Figure 2. From 10 to 100, the more neu-
rons in the hidden layer, the lower the RMSE. Since then,
RMSE has gradually increased. So, we get the lower RMSE
under P = 100.

Next, P = 100, λ1 = 1, and λ2 = 1. We gradually increase
the number of iterations from 1 to 100 (shown in Figure 3).
After the number of iterations reaches 10, the RMSE value
drops to a minimum and slightly oscillates within a certain
value. In our study, maximum number of iterations is 10.

Then, we use the better number of hidden layer nodes
and iterations to search for the best λ1 and λ2. The search
range of parameters is from 2−5 to 20 (with step of 20:5).
Figure 4 shows the results of different parameters. When λ1
and λ2 are 2−3 and 2−2:5, RMSE is the lowest.

3.3. Comparison to Other Predictive Models and BCM. To
evaluate our model, SLapRVFL is compared with our previ-
ous work of Multiple Kernel Support Vector Regression
(MKSVR) [39], Multikernel Ridge Regression (MKRR), Lin-
ear Regression (LR), Artificial Neural Network based on Back
Propagation algorithm (ANN with BP), and BCMmeasuring
instrument. Clinical dry weight is our reference standard
(also the regression target value of the prediction model).
The comparisons are listed in Table 2, which shows that
SLapRVFL achieves best performance of RMSE (1.3136).
Although the ECDP median value (peak) of MKSVR
(0.0082) is more close to zero, Figure 5 shows that SLapRVFL
has the least bias and much less tails than MKSVR (smaller
width). The RMSE of BCM is 1.9694, which is larger than
SLapRVFL.

3.4. Bland–Altman Analysis. Bland–Altman plot is a useful
tool to evaluate the agreement between predictive methods
and clinical DW. In Table 3 and Figure 6, SLapRVFL,
MKSVR, LR, ANN (BP), MKRR, and BCM are analyzed via
Bland-Altman difference plot. SLapRVFL achieves the smal-
lest range of 95% confidence interval (-0.1133 to 0.2866) and
standard deviation (2.2202). In addition, the number (ratio)
of outside agreement interval for predictive models is all less
than 24 (5%) predictive samples. These results of models are
clinically acceptable. SLapRVFL achieves least number (20)
of the outside agreement interval in Table 3. As shown in
Figure 6, two red horizontal dotted lines (upper and lower)
denote the upper and lower limits of the 95% agreement
limit, respectively. The middle blue solid line is the average
value of the difference (between measurement methods and
clinical DW). While one measurement method and clinical

method can be considered as a better agreement, they can
be substituted for each other (equivalence). If 95% of the
points of the data set are in the agreement range, the mea-
surement method (predictive model) is clinically acceptable.
The results of the evaluation show that SLapRVFL can help
clinicians assess DW with low cost.

4. Discussion

Due to the limitations of clinical and BCM measurement
(more time and cost), this study uses a machine learning
method to assess the dry weight of hemodialysis patients.
Based on the basic RVFL, we propose a sparse Laplace regu-
larized RVFL network (SLapRVFL) model. SLapRVFL is
compared not only with other machine learning methods
(such as LR, MKRR, ANN with BP, and MKSVR) but also
with BCM equipment (commonly used in hospitals). The
RMSE and Bland–Altman analysis of the model are better
than the BCM instrument. It is proven that the predictive
model driven by data can provide reference for clinical dry
weight assessment.

BCM requires the patient’s information on weight (before
hemodialysis) and height. It is a portable, inexpensive, and
noninvasive technology that has been used to measure DW
[45, 46]. For the Bland–Altman analysis, SLapRVFL achieves
the least number (20) of outside agreement interval. However,
BCM has 30/476 (6.30%) points (ratio) of the outside agree-
ment interval. Obviously, our method has better agreement
with the clinical method.

5. Conclusions

To further improve the robustness of RVFL, we introduce
sparse Laplacian regular term with L2,1-norm. In the training
process, the graph topology information and the sparse
weight matrix (output) are employed to improve the robust-
ness of the RVFL. In fact, our work provides a new idea for
assessing patients’ dry weight. Not only that, in the fields of
biology [47–57], pharmacy [58], and medicine [12, 59, 60],
machine learning methods have helped solve many analysis
tasks. In future research, we will consider collecting more
samples, introducing more patient personal information,
and building a predictor based on a deep learning model to
more accurately assess the dry weight of hemodialysis
patients.
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