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In this paper, the methane hydrate phase transition process in deep-sea methane hydrate-bearing soil under heating and
compression was simulated by the molecular dynamics method. *e evolution of deep-sea methane hydrate-bearing soil’s
microstructure, system energy, intermolecular interaction energy, and radial distribution function during heating and com-
pression was investigated. *e micromechanism of the influence of the methane hydrate phase transition on the mechanical
properties of deep-sea methane hydrate-bearing soil was analyzed. *e results demonstrated that the methane hydrate disso-
ciation starts from both sides to the middle and the void spaces between the soil particles had nearly no change during the heating
process. For the compression process, the methane hydrate on both sides and the middle dissociated at the same time, and the void
spaces became smaller. *e methane hydrate phase transition on the effects of mechanical properties of the deep-sea methane
hydrate-bearing soil is mainly caused by three aspects. (1) the dissociation of methane hydrate incurs the decrease of methane
hydrate saturation.*e free water and methane molecules generated cannot migrate in time and thus lead to the increase of excess
pore water press and excess pore gas press. (2) *e dissipated energy causes the decrease of the effective stress between the soil
particles. (3) Due to the methane hydrate decomposition, the free water molecules increase, which reduces the friction of
soil particles.

1. Introduction

Methane hydrates, ice-like substances, are formed in the
deep-sea soil with high-pressure and low-temperature
conditions especially under the seabed on the continental
slopes. For simplicity, the sediments containing natural
methane hydrate in the deep-sea soil are defined as deep-sea
methane hydrate-bearing soil (MHBS) [1]. It is a kind of
multiphase and multicomponent complex porous medium.
Its mechanical behaviors have strong nonlinearity and
complicated structural properties and have a significant
correlation to temperature and pressure [2].*e exploitation
of methane hydrates, which is related to methane hydrates
dissociation, can easily lead to the deterioration of

mechanical properties of MHBS [3]. *ere are usually four
suggested methods to produce methane by methane hy-
drates dissociation: depressurizing, thermal stimulation,
chemical injection, and gas swapping [4]. While depres-
surization is used for gas production, MHBS is consolidated
due to the increasing effective stress, which could trigger
marine slope failure and increase the risk of tsunamis [5].
Considering the gas diffusion and fluid expansion, high pore
fluid pressure generation is anticipated because of the
thermal stimulation [6]. As a result, a number of massive
slides have been caused by the methane hydrate decom-
position [7]. Currently, these problems have attracted in-
creasing interests of the researchers all over the world.
Kataoka et al. [8], Santamarina [9], Puppel et al. [10], and
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Francisca et al. [11] studied the effects of methane hydrates
on the physical and mechanical properties of MHBS by site
sampling and experiments. *e results indicated that the
mechanical properties of MHBS deteriorated after the de-
composition of methane hydrates. Kajiyama et al. [12] ex-
amined the mechanical properties of MHBS with methane
hydrate-bearing sands generated with rounded glass beads
and natural sands in the lab. *e effects of the particle
characteristics on the mechanical response of MHBS were
studied from a grain-scale viewpoint. Based on several
empirical relationships of granular materials, Wu et al. [13]
proposed a simple constitutive model to describe the stress-
strain relationship of MBHS, which could model the me-
chanical properties of MBHS. Holtzman et al. [14] built a
constitutive model of MHBS to evaluate the effects of
methane hydrate dissociation by variational approaches.
Several possible dissociation scenarios were calculated by
this model. It was shown that the solid support of the
skeleton could be lost due to the methane hydrate disso-
ciation, which could cause seafloor landslide and subsidence.
Considering the critical role of the stability of MHBS to the
safe exploitation of methane gas, Wu et al. [15] improved the
previous MHBS constitutive models by introducing hydrate
saturation. A new three-dimensional critical state surface
was identified, and it could be used to determine the state
parameters of MHBS. Rutqvist and Moridis [16], Xu and
Germanovich [17], and Jiang and Gong [18] simulated the
methane hydrate decomposition process by establishing a
hydrate cementation model using discrete element method.
*e results showed that the hydrate dissociation has sig-
nificant impacts on the mechanical properties of MHBS. Li
[19] observed the formation of methane hydrate in sands on
pore-scale by a nano-focus X-ray computed tomography (X-
CT). *e gas/water/hydrate distributions and the pore
structure characteristics were investigated. Kneafsey et al.
[20] performed a series of tests to investigate the heat
transfer and the hydrate dissociation kinetics on a partially
saturated sand. *roughout the processes, both the tem-
perature and the pressure played a vital role.

As mentioned above, the deterioration of mechanical
properties of MHBS is mainly caused by the dissociation of
the methane hydrate. *erefore, a deep understanding of
methane hydrate phase transition on the effects of me-
chanical properties of MHBS especially from a micro-
perspective is beneficial to study and explain their
macromechanical properties. However, monitoring and
controlling the methane hydrate formation and dissociation
processes through experimental works are very difficult and
it is nearly impossible to reach equal conditions as the deep
marine environments [21]. To overcome the current limi-
tations of sampling and experimentation, molecular dy-
namic (MD) simulations have been utilized to investigate the
growth, nucleation, structure, dissociation, and thermody-
namic and mechanical characteristics of methane hydrate. Ji
et al. explored the formation mechanisms and decomposi-
tion strategies of methane hydrates in the heterogeneous
sediment environments with the MD model [22]. Li et al.
studied the effects of different thermodynamic parameters,
temperatures, pressure, and gas concentrations on methane

hydrate dissociation with the MD method [23]. Wang et al.
investigated the microstructure changes and mechanical
properties of methane hydrate under the condition of
compression and tension by using MD simulation [24].
Accurately understanding the microscopic deterioration
mechanism could help us to exploit and utilize MHBS in the
right way. Nonetheless, most of the studies were focused on
methane hydrate dissociation and dissociation processes.
*e effects of methane hydrate phase transition on the
mechanical properties of MHBS need to be more explored.

In this paper, the microstructure evolutions of MHBS
under heating and compression processes were simulated
with the MD model. *e details of phase transition and
water and methane molecules movements during the
methane hydrate phase transition processes were observed.
*e microscopic mechanism of the deterioration of me-
chanical properties of MHBS was analyzed.

2. Model and Computational Method

2.1. Simulation Model. *e structure I hydrate unit, which
consists of two 512 small cages and six 51262 large cages, was
selected to form a methane hydrate model in this study [25].
Its cubic unit contained 8 methane molecules and 46 water
molecules arranged in the cubic box of 12×12×12 Å3. *e
simple point-charge (SPC) model was selected for water. A
silica surface was abstracted to represent the real geologic
conditions [26]. *e quartz slab was generated with a se-
quence of α-quartz formed by an orthorhombic unit cell, and
then, a fully coordinated surface (Si-O-Si bridged surface)
was created by a series of quartz slabs. *e α-quartz was
characterized by a hexagonal structure with a space group
P3121. *e lattice parameters were A�B� 4.904 Å and
C� 5.4218 Å [27]. In total, 1× 1× 4 supercells of structure I
hydrate and two 3× 3×10 of α-quartz layers were combined
to investigate the effects of the microscopic mechanism of
the methane hydrate dissociation and phase transition
process under heating and compression conditions. Because
MHBS was water saturated, the surfaces of quartz layers
were hydroxylated [28]. To build the hydrophilic silica
surface, the bulk crystal of α -quartz along the [0 0 1] di-
rection was cleaved. After that, on the fresh silica surface, H
atoms were manually added, and the H atoms were linked
with the O atoms [26]. Finally, the simulation model of
deep-sea methane hydrate-bearing soil was formed as shown
in Figure 1. *e top and bottom layers were α-quartz, and
the middle layer was the hydrate layer.*e cell length was16,
45, and 70 Å in the x, y, and z directions, respectively.

*e MD simulations were performed using LAMMPS,
which is open-source software for parallel simulations. *e
Lennard-Jones potential was adopted as the force field,
where

μ rij􏼐 􏼑 �
Cqiqj

εrij

+ 4ε
σ
rij

􏼠 􏼡

12

+
σ
rij

􏼠 􏼡⎡⎣ ⎤⎦

6

, (1)

where μ is the potential energy; C is an energy-conversion
constant, q is the partial charge, and ε is the dielectric
constant. rij is the distance between two interplay particles i
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and j, and σ is the distance at which the particle-particle
energy is zero [24]. *e force field parameters are given in
Table 1 [25, 27, 29].

2.2. Computational Parameters. *e simulation systems
were established based on energy minimization. Periodic
boundary conditions were used in the three directions for all
simulations. *e cutoff radius for short-range interaction
was 9.5 Å, and the long-range Coulomb interactions were
calculated using the PPPM algorithm. Before the heating and
compression processes, the quartz layers were fixed. After
that, the NPT ensemble was used to relax for 50 fs at 273K
with the time Step 0.001 fs. *e pressure in the x-direction
and z-direction was controlled at 3MPa while it was free in
the y-direction, which was used to simulate the environment
300meters under sea level. *e system reached the equi-
librium state, loosened the fixed quartz layers, and made the
whole system achieve equilibrium. As shown in Figure 2, the
energy of the whole system reached equilibrium at 50 fs.
Afterward, the heating or compression processes were
conducted. *e total simulation time was 600 fs with time
Step 0.001 fs. During the heating process, the temperature
increased from 273K to 300K in 600 fs. For the compression
process, the model was tested with a strain rate of 0.001/fs
under a constant temperature of 273K.

3. Results and Discussion

3.1. Effects of Temperature. Figure 3 shows the microscopic
structure evolution of MHBS with the temperature rising.
Figure 3(a) was the initial stage when the temperature was
273K and the cage structures of methane hydrate were
complete. As the temperature increased to 276K, the
methane hydrate began to dissociate (Figure 3(b)). *e cage

structures, which were located on the upper and lower sides
of methane hydrate, began to dissociate at the same time,
and then, a passage was formed by the damaged cage
structures (Figures 3(b) and 3(c)). *e methane molecules
moved outside as bubbles along the passage. Due to the
constraint of the quartz layers on both sides, the methane
molecules moved only through the z-direction. After that,
the decomposition of the methane hydrate moved from both
sides to the middle part as the temperature rose. As shown in
Figure 3(d), the hydrate cage structure in the middle
remained relatively intact when the temperature reached
300K. In addition, it could be observed in Figure 3 that the
void spaces between the soil particles did not change, and the
molecular structure of quartz layers changed slightly. *is
was because even though the temperature rose and the
molecular motion intensified, the molecular structure of
quartz layers remained relatively intact due to the quartz
layers’ strong molecular interactions.

In conclusion, the microstructural evolution and the
migration law of methane molecules under rising temper-
ature can be described as follows: the methane hydrate inside
MHBS firstly dissociates from both sides because the heat
spreads from outside to inside with rising temperature. *e
methane molecules escape while the cage structures are
destroyed. As the temperature continues to increase, the
cage structure in the middle part begins to break and then a
passage is formed together with the notch generated on both
sides. After that, the methane molecules inside the middle
part of MHBS escape through the passage. However, there
are still a small number of methane molecules left inside the
MHBS when the heating process is finished, which is named
soil gas. Since the methane hydrate decomposes from both
sides to the middle part and the voids of the soil are relatively
stable, the rising temperature is beneficial for methane
hydrate exploitation.

y

Si

O

H

C

x
z

Figure 1: Simulation model of deep-sea methane hydrate-bearing soil.
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Figure 4 shows the stress evolution of MHBS with in-
creasing temperature. *e stress in the y-direction kept
decreasing as the temperature increased. At the initial stage,
the stress decreased at a higher rate, which meant that the
methane hydrate was sensitive to temperature. With the
escape of methane molecules after hydrate dissociation, the
methane hydrate saturation decreased, which led to a de-
crease in soil strength. Meanwhile, due to the limitation of
adjacent soil particles s and the tendency for volume ex-
pansion associated with methane hydrate dissociation,
methane and water liberated were aggregated and caused
excess pore water pressure and excess pore gas pressure in
the system. Excess pore pressure within MHBS can result in
a mechanical weakening of the MHBS [17, 30]. After that,

the stress kept decreasing at a relatively stable rate. Since the
methane hydrate was beneficial to the strength of MHBS, it
was reasonable that the strength of MHBS decreased after
the methane hydrates were dissociated. *e stress nearly
disappeared after the massive decomposition of hydrates
when the temperature reached 281K.

Figure 5 shows the energy evolution during the heating
process, where the negative sign represents the interatomic
attraction between atoms. In Figure 5(a), the energy of the
total system gradually decreased during the heating process.
It was obvious that the energy decreasing rate at the initial
stage of methane hydrate decomposition (<285K) was faster
due to the energy lost with the escaping methane molecules
during the heating process. Considering the effects of

Table 1: Lennard-Jones potential parameters [25, 27, 29].

Molecule Atom ε (kJ/mol) σ (Å) q (e)

H2O
O 0.1555 3.488 −0.82
H 0 0 0.41

CH4
C 0.066 3.5 −0.4
H 0.03 2.5 0.41

α-quartz

Si 0.5335 3.795 2.4
O (SiO2) 0.6487 3.154 −0.82

H (at α-quartz boundary) 0 0 0.41
O (at α-quartz boundary) 0.1555 3.488 −0.82
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Figure 2: Equilibrium of energy in the initial system.

z
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Figure 3: Microstructure changes of MHBS during the heating process. (a) Initial stage. (b) Methane hydrate dissociation. (c) Methane
hydrate migration. (d) *e stage at 300K.
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modeling, the microscopical model represents only “one
point.”*emacroscopical materials are formed by a series of
“one point.” So, the energy dissipated from “one point”
could work on the neighborhood point or be released
outside. While the energy released from “one point” and
“one point” is applied to the MHBS, the effective stress
between the soil particles decreases.

Figure 5(b) shows the intermolecular interaction energy
variation between silicon atoms and water molecules, and
methane molecules and methane molecules during the
heating process. *e interaction energy between silicon
atoms and water molecules increased with increasing
temperature, which indicated that the free water molecules
generated during the heating process kept interacting with
quartz layers. *e interaction increased with the rise in
temperature. *is was consistent with the phenomenon in
macroscale, where the free water increased and affected the
soil particle’s friction. *e mechanical properties of MHBS
decreased consequently. In addition, Figure 5(b) shows that
the interaction energy between methane molecules and
methane molecules decreased gradually with increasing
temperature. *e reduction was small and stable, which was
consistent with the escape of methane molecules through the
passage formed in MHBS.

*erefore, during the heating process, the effects of
changes in methane hydrate on the mechanical properties of
MHBS mainly contain three aspects. Firstly, the water and
methane molecules generated by the decomposition of
methane hydrate cannot escape due to the constrain of the
soil particles, which results in excess pore water pressure and
excess pore gas pressure, and thus, the MHBS strength
decreases. Secondly, the dissipated energy cannot be released
outside and accumulated in the soil. While it works on the
soil particles, the effective stress between the soil particles
decreases. *irdly, the free water molecules generated from
the hydrate dissociation were equal to the addition of lu-
bricants between soil particles and thus decreased the
friction of the soil particles.

Figure 6(a) shows the radial distribution function (RDF)
of silica atoms in quartz and oxygen atoms in the water
molecules of methane hydrate. Due to the high thickness of

quartz layers, water molecules were less likely to appear
within the statistical radius. However, according to RDF, the
water molecules surrounding the quartz layers kept in-
creasing. It could be explained by the fact that the free water
molecules generated from methane hydrate decomposition
moved to the quartz layer. *e quartz layers constrained
water molecules’ movement and thus they interacted with
each other. *is was consistent with the increasing inter-
action energy between silica atoms and water molecules
(Figure 5(b). In addition, two peak values were observed
except at temperature 280K.*e disappeared peak value was
caused by the fact that the quartz layers’ hydroxy surfaces
were dissociated while the temperature increased to 280K,
and the water and methane molecules still did not escape at
this time. *is was also why the RDF had the highest value
under 280K. Figure 6(b) shows the carbon atom distribution
to reflect the distribution of methane molecules. *ere were
multiple peaks, which indicated that methane molecules
were tightly packed. *e highest value came out at 280K
because the water and methane molecules still did not
migrate at this time. It was also consistent with the fact that
the methane molecules migrated and escaped only through
the passage in the Z-direction.

3.2. Effects of Compression. Figure 7 shows the microscopic
structure evolution of MHBS during the compression
process. Figure 7(a) was the initial stage of the compression
process. As the compression process started (Figure 7(b)),
the methane hydrate began to dissociate, and a passage was
formed as the hydrate cage structure was destroyed si-
multaneously. *e methane molecules at both sides began to
escape. As the compression process continued (Figure 7(c)),
the dissociated methane molecules from the middle of the
hydrate began to move outside from the passage and the
saturation of MHBS decreased. While the compression
processes were completed (Figure 7(d)), all the hydrate cage
structures were destroyed. *e free water molecules and
methane molecules generated coexisted inside MHBS.
Obviously, the void spaces between the soil particles de-
creased, and the quartz layers were kept relatively stable
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Figure 4: Stress evolution of MHBS in the y-direction during the heating process.
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during the compression process even though small defor-
mations came out in the final compression stage. *e in-
teraction of quartz layers with water and methane molecules
mainly existed at the interface of quartz layers and methane
hydrate.

According to the microstructure evolution during the
compression process, the migration law of methane mole-
cules can be summarized as follows: during the compression
process, the methane hydrate inside the MHBS undergoes
the soil pressure from both sides, and then, the cage
structures of methane hydrate are damaged, which forms the
passage for the migration of methane molecules. *e
methane molecules on both sides and in the middle escape
through the passage at the same time. However, the void

spaces between the soil particles become small because of the
compression. As a result, the methane molecules located in
the middle part of MHBS cannot escape in time and float
inside MHBS and then become air in the soil. While the fact
that the damage of cage structures at the same time and the
decrease in soil porosity due to compression occur simul-
taneously, during the compression process, the mining ef-
ficiency could be reduced.

Figure 8 shows the stress evolution of MHBS in the y-
direction during the compression process. *e stress kept
decreasing and then came to a stable state. *e stress de-
creasing rate was high at the initial stage since the dissociated
methane molecules could not escape in a short time and thus
caused excess pore water pressure and excess pore gas
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pressure in the system. As the compression process went on,
the methane molecules escaped through the passage con-
tinuously. *e escaping methane molecules decreased the
excess pore pressure in the system, which reduced the de-
creasing rate of microstrength of MHBS until the strength
reached a stable state. Currently, the corresponding axial
strain is 0.08.

Figure 9(a) shows the energy evolution during the
compression process. *e energy of the total system grad-
ually decreased during the compression process. According
to the “one point” view, the dissipated energy could decrease
the effective stress and the mechanical properties of MHBS.

Compared with the heating process, the energy de-
creased during the compression process was small. It was
because methane hydrate underwent soil pressure from both
sides and the void spaces in soil decreased at the same time.
Under these conditions, the decomposition rate of methane
hydrate decreased, and thus, the energy dissipation de-
creased. However, during the heating process, the methane
hydrate dissociated from both sides to the middle. *e
molecule bonds were very sensitive to temperature variation.
*us, the methane hydrate was damaged and decomposed at

a high rate. In addition, the molecule bonds of quartz layers
were also affected, which was another reason for decreasing
the energy dissipation rate.

Figure 9(b) shows the intermolecular interaction energy
variation between silicon atoms and water molecules, and
methane molecules and methane molecules during the
compression process. *e interaction energy between silica
atoms and water molecules increased with the compression
process which reduced the soil particle friction which was
similar to the heating process. *e interaction energy be-
tween methane molecules and methane molecules decreased
slightly at a steadily decreasing rate. It was due to the mi-
gration and escape of methane molecules through the
passage of MHBS. *e interaction came to a relatively stable
state. However, the continuous escape of the methane
molecules made the interaction decrease.

From the compression process, it could be inferred that
the decomposed water molecules and methane molecules
could not migrate outside in time and thus led to increasing
pore water pressure and pore gas pressure in the MHBS. At
the same time, the escape of the methane molecules de-
creased the saturation of methane hydrate. Meanwhile, the
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Figure 7: Microstructure changes ofMHBS during the compression process. (a) Initial stage. (b)Methane hydrate dissociation. (c)Methane
molecules escape. (d) Compression finished.
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Figure 8: Strain–stress curve in the y-axis during the compression process.
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effective stress decreased due to the accumulation of the
dissipated energy in the soil. In addition, the free water
molecules increased due to the methane hydrate decom-
position. All these three aspects have led to the deterioration
of MHBS strength.

Figure 10(a) shows RDF of silica atoms in quartz and
oxygen atoms in the water molecules in the water molecule
of hydrate. It has a similar trend to Figure 6. According to
RDF, the water molecules surrounding the quartz layers kept
increasing. and two peak values were observed. *e peak
values were higher than the values in Figure 6, which was
caused by the compression of quartz layers on methane
hydrate and the distance between two quartz layers

becoming smaller continuously. Even so, the interactions for
the compression and heating processes were different.
During the heating process, the movement rate of free water
molecules generated from methane hydrate became faster
and interacted with the quartz layer. It was the water
molecules that impacted the quartz layers. In the com-
pression process, the free water molecules were generated
from the methane hydrate damaged by the compression of
quartz layers. In this process, the quartz molecules impacted
the water molecules.

Figure 10(b) shows the carbon atom distribution, which
reflected the distribution of methane molecules. *ere were
multiple peaks, which indicated that methane molecules
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Figure 9: Energy evolution of MHBS during the compression process. (a) Variation curve of system energy. (b) Variation curve of
intermolecular interaction energy.

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

g 
(r

)

r (Å)

t=100fs
t=200fs
t=300fs

t=400fs
t=500fs
t=600fs

(a)

r (Å)

t=100fs
t=200fs
t=300fs

t=400fs
t=500fs
t=600fs

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20
22

g 
(r

)

(b)

Figure 10: Radial distribution function of different atoms. (a) RDF of Si-O(H2O). (b) RDF of C-C.
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were tightly packed. At 10w steps, MHBS was just at the
beginning of the methane hydrate dissociation and RDF had
the highest value. As the compression process continued, the
methane molecules began to escape, and the peak value
became decreasing. It was consistent with the fact that the
methane molecules migrate and escape only through the
passage in the Z-direction.

4. Conclusions

In this paper, the microscopic mechanism of the effects of
the methane hydrate phase transition on the mechanical
properties of MHBS under heating and compression was
studied by the MD method. *e evolutions of MHBS’s
microstructure, system energy, intermolecular interaction
energy, and RDF during the dissociation process were in-
vestigated. *e detailed conclusions are summarized as
follows:

(1) With the rising temperature, the methane hydrate
dissociation starts from both sides to the middle and
the void spaces in soil have nearly no change. Under
compression, the methane hydrate on both sides and
the middle dissociates at the same time, and the void
spaces become smaller.

(2) During the heating and compression processes, the
methane hydrates inside MHBS decompose. *e
methane molecules and water molecules generated
migrate along the passage formed by the damaged
cage structures and MHBS’s mechanical properties
deteriorate consequently.

(3) *e microscopic mechanism of the effects of
methane hydrate dissociation on the mechanical
properties of the MHBS is mainly caused by three
aspects. (1) *e dissociation of methane hydrate
incurs the decrease of methane hydrate saturation.
*e free water and methane molecules generated
cannot migrate in time and thus lead to the increase
of excess pore water pressure and the excess pore gas
pressure. (2) *e dissipated energy causes the de-
crease of the effective stress between the soil parti-
cles. (3) Due to the methane hydrate decomposition,
the free water molecules increase, which reduces the
friction of soil particles.
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