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Nonlinear time series plays a fundamental role in var-
ious fields of sciences and engineering, ranging from
physical and life sciences to telecommunication engineer-
ing.

One of the most challenging tasks of research is to face
nonlinear problems which nonlinearly depend on a large
number of parameters and/or are based on unpredictable,
random, or fractal-like behavior. Some of the more intrigu-
ing and modern topics such as telecommunication, traffic
dynamics, complex networks, optimization, and fractional
dynamics, can be described by nonlinear time series. How-
ever, the extraction of useful information from the nonlinear
time series by the commonly used analytical techniques is
often difficult due the presence of noise in the signals. In
this issue, we have selected papers on the main theme of
identifying correct methods for the optimal understanding
of the relevant information hidden in a signal representing
a nonlinear phenomenon. We believe that there is a strong
interest on this topic, although a widely accepted methodol-
ogy for a proper investigation of nonlinear time series is still
an open question. Through the collected papers of this issue
we want to illustrate some of the interesting approaches and
smart techniques which we hope can be regarded as a small
step towards a systematic method for analyzing nonlinear
time series.

This special issue collects 16 papers with respect to
nonlinear time series, its computations, and applications.

M. Li and W. Zhao’s paper entitled “Convergence of sam-
ple autocorrelation of long-range dependent traffic” exhibits

a radical property of teletraffic time series. The paper “Iden-
tification of nonstandard multifractional Brownian motions
under white noise by multiscale local variations of its sample
paths” by K. Ahn and I. Lee provides stable and simultaneous
estimators of two parameters for nonstandardmultifractional
Brownian motions under white noise. M. Li’s paper “On the
long-range dependence of fractional Brownian motion” clari-
fies that fractional Brownianmotion is long-range dependent
on the Hurst parameter 0 < 𝐻 < 1. The paper by Li
and Zhao, entitled “Wild fluctuations of random functions
with the Pareto distribution,” introduces the terms wild and
wildest fluctuations of time series that follow heavy-tailed
distributions, such as the Pareto distribution.

Peng et al.’s paper “Topology identification of complex
network via chaotic ant swarm algorithm” studies the issue
of topology identification from the point of view of param-
eter optimization for complex networks. It is a pioneering
work revealing an important phenomenon of Lorenz chaotic
equation that was used in their simulation of the 𝑖th node
from a view of the golden ratio with respect to chaotic ant
swarm algorithm. M. Pinchas’ two papers, entitled “Symbol
error rate as a function of the residual ISI obtained by blind
adaptive equalizers for the SIMO and fractional Gaussian
noise case” and “Residual ISI obtained by nonblind adaptive
equalizers and fractional noise,” provide examples of applying
fractional Gaussian noise to communication engineering.
These two papers provide of a set of theories of adaptive
equalizers essential to communication systems. The paper
“Adaptive synchronization of complex dynamical multilinks
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networks with similar nodes” by W. Wang et al. proposes a
novel method of adaptive synchronization to describe the
similarity of similar nodes in complex multilinks networks.
The paper entitled “A reconfigurable logic cell based on a
simple dynamical system” by L. Li et al. introduces a new
scheme to achieve a dynamic logic gate that can be flexibly
varied to obtain different logic functions by adjusting specific
parameters of a dynamical system, discovering that it is
resistant to system noise. In addition, the paper contributes
a significant result in electronics engineering that the system
can be considered as a leaky integrator.

O. C. Yolcu’s paper entitled “A hybrid fuzzy time
series approach based on fuzzy clustering and artificial neu-
ral network with single multiplicative neuron model” stud-
ies fuzzy time series forecasting by using artificial neu-
ral networks with single multiplicative neuron model in
the identification of fuzzy relation such that the archi-
tecture selection problem can be eliminated without the
need for defuzzification step by constituting target val-
ues from real observations of time series. The paper “An
ARMA type fuzzy time series forecasting method based
on particle swarm optimization” by E. Egrioglu et al.
discusses fuzzy time series forecasting. Its novelty in time
series prediction is in presenting a novel first-order fuzzy
time series by taking into account both autoregressive and
moving average structures. Its practical significance is that
the proposed model is time invariant. The paper by C. Kocak
“First-order ARMA type fuzzy time series method based on
fuzzy logic relation tables” attempts to carry out fuzzy time
series prediction a step further by considering autoregressive
moving average ARMA (1, 1) in order to eliminate the
deficiency of conventional fuzzy time series predictors. The
paper “Set pair analysis based on phase space reconstruction
model and its application in forecasting extreme temperature”
by Y. Zhang et al. establishes a forecasting approach called set
pair analysis based on phase space reconstruction model to
improve forecasting precision of a time series.

Z. Chen et al. in their paper “Sensor scheduling with
intelligent optimization algorithm based on quantum theory”
proposes an improved particle swarm optimization (PSO)
algorithm using a best dimension mutation technique. M.
Carlini et al.’s paper “Italian residential buildings: economic
assessments for biomass boilers plants” deals with the eco-
nomic feasibility of biomass boiler plants with specific regard
to an existing residential building. It further investigates an
Italian case that focuses on the attention on European and
national regulations on energy efficiency and considers the
recent public incentives and supporting measures. The paper
by S. Wanqing et al., “Tool wear detection using Lipschitz
exponent and harmonic wavelet,” explains singularity analysis
with harmonic wavelet for data processing.
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The paper researches a novel engineering application of Lipschitz exponent function and harmonic wavelet for detecting tool condi-
tion. Tool wear affects often the quality grade of products and is gradually formed during cutting process. Meanwhile, since cutting
noise is very strong, we think tool wear belongs to detecting weak singularity signals in strong noise. It is difficult to obtain a reliable
worn result by raw sampled data. We propose singularity analysis with harmonic wavelet for data processing and a new concept of
Lipschitz exponent function. The method can be quantitative tool condition and make maintaining decision. Test result was vali-
datedwith 27 kinds of cutting conditionswith the sharp tool and theworn tool; 54 groupdata are sampled by acoustic emission (AE).

1. Introduction

In recent years, great achievements in tool wear monitoring
have beenmade based on the advancedmathematical models
[1–8], even though none of these methods was successful
online monitoring due to the complex performance of the
machining processes. How to be quantitative tool condition
monitoring is very important for practical engineering appli-
cations. This is a signal process problem that detects weak
singularity signals in strong noise. However, the classical
signal process is Fourier theory which has four defects [9–
11]: (1) suits stationary stochastic signal, this kind of signal
does not almost exists in engineering; (2) for discrete Fourier,
Fourier analysis is precise with time series long from zero
to infinite, otherwise truncation error is made; (3) weak
singularity signal, relatively strange signal, is omitted in FFT
however, weak singularity signal often contains important
fault information; (4) when signal frequency happen a sud-
den changewith adjacent time intervals, Fouriermethod only
obtains two frequencies, it cannot display the moment two
frequency changes or occurs (i.e., the singularities) in fre-
quency domain. In order to overcome the above four defects
to improve themeasuring precision of weak singular signal in
strong noise, we propose the combination between Lipschitz
exponent index and complex wavelet for the detection of
quantitative tool wear.

Lipschitz functions appear almost everywhere in math-
ematics [12]. Lipschitz functions are an important class of
strong variations originating from smooth deformations of
corresponding nonsmooth function [13]; the local regularity
is often measured by Lipschitz exponents (LE); the sin-
gular variations can be viewed as combinations of weak
increasing and decreasing variations; it means the case of
discontinuity occurence on smooth function. Since the paper
[14] is published in 1992 to detect signal’s singularities,
which proposed that the instantaneous frequencies can be
approximately identified from the modulus maxima of a real
wavelet based on general maxima, which are the locations
of the largest modulus along maxima lines through an
extension of [14], the complex-wavelet modulus maxima can
detect and characterize singularities [15, 16] and has taken
excellent result for measuring weak singularities of signal.
Harmonic wavelet is one kind of complex wavelet; it is very
sensitive to singularity feature of the signal that contains
weak faults [17–20] and satisfies multiwavelets frames with
arbitrary integer dilation factor [21]. The paper combines
the modulus maxima of using a harmonic wavelet, and
Lipschitz functions can be quantitative tool condition during
cutting process. By 27 kinds of cutting conditions and turning
experiments on HL-32 NC turning center, 54 group data are
sampled by acoustic emission (AE). We have demonstrated
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Figure 1: Real (thick line) and imaginary (thin line).

that combining the modulus maxima of harmonic wavelet
and Lipschitz functions is better for detecting and estimating
tool wear when a worn tool generates a singular signal in a
strong noise.

2. Harmonic Wavelet Transform Algorithm

Discrete harmonic wavelets are given by

𝜓
𝑛

𝑘
(2
𝑛

𝑥 − 𝑘)
def
=

exp (4𝜋𝑖 (2𝑛𝑥 − 𝑘)) − exp (2𝜋𝑖 (2𝑛𝑥 − 𝑘))

2𝜋𝑖 (2
𝑛𝑥 − 𝑘)

,

(1)

where 𝑛 = −1, 0, 1, 2, . . . , 𝑁. 𝑛 is different levels (scale), and
𝑘 is different steps (time). The functions of its scale and time
are given by Figure 1.

The Fourier transform of (1) is as below:

󵄨󵄨󵄨󵄨𝜓̂
𝑛

𝑘
(𝜔)

󵄨󵄨󵄨󵄨 =

{

{

{

1

2𝜋2𝑛
, 2𝜋2

𝑛

≤ 𝜔 ≤ 2𝜋2
𝑛+1

,

0, other.
(2)

The amplitude-frequency characteristics of (2) is exactly like
a boxwith band limited, as shownFigure 2.This characteristic
is the best than any real wavelets for decomposed signal to
difference frequency band.



Mathematical Problems in Engineering 3

Level-1

Level 0

Level 1

0

Level 2

Level 3

A
m

pl
itu

de
|𝜓

x k
(𝜔

)|

𝜋 2𝜋
4𝜋

8𝜋
Frequency (𝜔)

16𝜋 32𝜋

Figure 2: Amplitude-frequency characteristics of the discrete har-
monic wavelets.

0 200 400 600 800

0

2

t

−2

(a) Sine function with two singular points

0 50 100 150 200 250
0

1

2

3

4

5

t

Li
ps

ch
itz

 ex
p

(b) 𝛼(𝑡) along the temporal axis 𝑡

Figure 3: Extracting Lipschitz exponent function 𝛼(𝑡).

3. The Definition of Lipschitz Exponent

Lipschitz is from Taylor formula [16, 22, 23] Suppose that
function 𝑓(𝑥) is 𝑚 times differentiable in [𝑥

0
− ℎ, 𝑥

0
+ ℎ];

then, Taylor expands in the neighborhood of 𝑥
0
:

𝑓
𝑥0
(𝑥) =

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(𝑥
0
)

𝑘!
(𝑥 − 𝑥

0
)
𝑘 (3)

exists one approximate error:

𝑒 (𝑥) = 𝑓 (𝑥) − 𝑓
𝑥0
(𝑥) (4)
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which satisfies:

∀𝑥 ∈ [𝑥
0
− ℎ, 𝑥

0
+ ℎ] ,

|𝑒 (𝑥)| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨

𝑚

𝑚!
sup

𝜁∈[𝑥0−ℎ,𝑥0+ℎ]

󵄨󵄨󵄨󵄨𝑓
𝑚

(𝜁)
󵄨󵄨󵄨󵄨 .

(5)

The 𝑚th order differentiability of 𝑓(𝑥) in the neighborhood
of 𝑥
0
yields an upper bound on the error 𝑒(𝑥) when 𝑥 tends

to 𝑥
0
. The Lipschitz regularity refines this upper bound with

noninteger exponents.The definition of Lipschitz exponent is
as follows: a function𝑓(𝑥) is of Lipschitz 𝛼 at 𝑥

0
, if and only if

there exists a constant A such that for all 𝑥 in a neighborhood
of 𝑥
0

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥
0
)
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨

𝛼

. (6)

We say that 𝑓(𝑥) is uniformly Lipschitz 𝛼 for all 𝑥. Equation
(6) is a kind of fractional order [20]. In a neighborhood of
𝑥
0
, 𝑓(𝑥) is singular when 𝛼 ̸= 1, and 𝑓(𝑥) is continuous when

𝛼 > 0. In other words, If 𝑓(𝑥) is discontinuous and bounded
in a neighborhood of 𝑥

0
, then 𝛼 = 0. If 𝑓(𝑥) is continuously

differentiable then 𝛼 = 1 and 𝑓(𝑥) is not singular.

4. Modulus Maxima of Wavelet

Reference [14] depicts the modulus maxima of real wavelet
to detect singular signal, and [15] extends to the modulus
maxima of complex wavelet, and algorithm is deduced in
detail. We say a function 𝑓(𝑥) is a modulus maximum of
wavelet at the point (2𝑛, 𝑥

0
); then,

󵄨󵄨󵄨󵄨𝜓𝑓 (2
𝑛

, 𝑥)
󵄨󵄨󵄨󵄨 <

󵄨󵄨󵄨󵄨𝜓𝑓 (2
𝑛

, 𝑥
0
)
󵄨󵄨󵄨󵄨 (7)

or

𝜕𝜓𝑓 (2
𝑗

, 𝑥
0
)

𝜕𝑥
= 0, (8)

where 𝑥 belongs to either the right or the left neighborhood
of 𝑥
0
. A maxima line is consisted of a connected curve of the
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Table 1: Experimental cutting conditions.

No. Speed Depth of cut Feed No. Speed Depth of cut Feed
r/min mm mm/r r/min mm mm/r

1 1500 1 0.1 15 1000 0.2 0.05
2 1500 0.5 0.1 16 800 1 0.05
3 1500 0.2 0.1 17 800 0.5 0.05
4 1000 1 0.1 18 800 0.2 0.05
5 1000 0.5 0.1 19 1500 1 0.02
6 1000 0.2 0.1 20 1500 0.5 0.02
7 800 1 0.1 21 1500 0.2 0.02
8 800 0.5 0.1 22 1000 1 0.02
9 800 0.2 0.1 23 1000 0.5 0.02
10 1500 1 0.05 24 1000 0.2 0.02
11 1500 0.5 0.05 25 800 1 0.02
12 1500 0.2 0.05 26 800 0.5 0.02
13 1000 1 0.05 27 800 0.2 0.02
14 1000 0.5 0.05
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Figure 6: Waveform of wear tool in first condition.

modulus maxima in the scale space 𝑛 = −1, 0, 1, 2, . . . , 𝑁.
These multiscale modulus maxima are used to locate discon-
tinuities [16], and if 𝜓𝑓(2𝑛, 𝑥) has no modulus maxima at
fine scales, then 𝑓(𝑥) is locally regular. Singular point can be
recognized by modulus maxima.

5. Lipschitz Exponent Based on Modulus
Maxima of Harmonic Wavelet

It has been shown that the Lipschitz exponent of a local
singularity can be characterized by being placed on their
local modulus maxima at each scale [14, 16]. References
[15, 24] extend to using the modulus maxima of a complex
wavelet. Here, we research that the modulus maxima of
harmonic wavelet can be used to detect singularities, by
means of a Lipschitz exponent of a function, and quantitative
analysis on signal’s singularities is measured. By examining
the asymptotic decay of wavelet modulus maxima from
coarser scale to finer scale, the strength of the singularity can
be characterized by Lipschitz exponent.

Let 𝑠 = 2
𝑛

, 𝑛 = −1, 0, . . . , 𝑁, in terms of [15, 25], function
𝑓(𝑥), 𝑥 ∈ (𝑎, 𝑏), and let 𝑛th (𝑛 > 0) derivative of Re(𝜓𝑓(𝑠, 𝑥))
and Im(𝜓𝑓(𝑠, 𝑥)) be finite deviations for each scale 𝑠. If a scale
𝑠
0
> 0 and constants𝐶 and𝐴 exist such that for 𝑥 ∈ (𝑎, 𝑏) and

𝑠 > 𝑠
0
, all the modulus maxima of 𝜓𝑓(𝑠, 𝑥) belong to a cone

defined by

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑠 (9)

such that at each modulus maxima (𝑠, 𝑥) in the cone

󵄨󵄨󵄨󵄨𝜓𝑓 (𝑠, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐴𝑠

𝛼 (10)

then 𝑓(𝑥) is uniformly Lipschitz 𝛼 at 𝑥 when 𝑥 ̸=𝑥
0
, and

𝑓(𝑥) is Lipschitz 𝛼 at 𝑥
0
when 𝛼 < 𝑛, and 𝛼 is a noninteger.

Equation (10) takes the logarithm on both sides:

log
2

󵄨󵄨󵄨󵄨𝜓𝑓 (𝑠, 𝑥)
󵄨󵄨󵄨󵄨 ≤ log

2
𝐴 + 𝛼log

2
𝑠. (11)

In [15, 24], 𝐴 and 𝛼 are computed by

min
𝐴,𝛼

∑

𝑠

[log
2

󵄨󵄨󵄨󵄨𝑊𝑓 (𝑠, 𝑥)
󵄨󵄨󵄨󵄨 − log

2
𝐴 − 𝛼 ∗ log

2
𝑠]
2

. (12)

The problem of estimating 𝛼 transforms into optimization
based on a nonlinear least squared, and when (12) is mini-
mized at all scale, 𝐴 and 𝛼 are obtained.

According to [24] description of the results, we use 𝑠 = 2
𝑛

instead of 𝑠, we get the following:

𝛼 (𝑥)

= (

𝑁

∑

𝑛=−1

(log
2

󵄨󵄨󵄨󵄨𝑊𝑓 (2
𝑛

, 𝑥)
󵄨󵄨󵄨󵄨 ∗ log

2
2
𝑛

)

−

(∑
𝑁

𝑛=−1
log
2

󵄨󵄨󵄨󵄨𝑊𝑓 (2
𝑛

, 𝑥)
󵄨󵄨󵄨󵄨) (∑
𝑁

𝑛=−1
log
2
2
𝑛

)

𝑁
)

× (

𝑁

∑

𝑛=−1

(log
2
2
𝑛

)
2

−
∑
𝑁

𝑛=−1
(log
2
2
𝑛

)
2

𝑁
)

−1

.

(13)
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Figure 7: Continued.
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Figure 7: Lipschitz exponent function of 54 group data.

𝛼(𝑥) is called Lipschitz exponent function that describes the
change of Lipschitz exponent value 𝛼 along the temporal
axis 𝑥. The variable 𝑥 is sampling point by acoustic emission
(AE) during cutting process. Figure 5 is a simulation example
of extracting Lipschitz exponent function 𝛼(𝑥) on a sine
function with singular points. Here, we set𝑁 = 10 in (13).

Figure 3 demonstrates the potential ability of singularity
detection (or fault detection) with Lipschitz exponent func-
tion 𝛼(𝑥).

6. Application Platform

In turning experiments, the feasibility for tool condition
monitoring is demonstrated by 27 kinds of cutting conditions
(see Table 1); 54 group data are sampled by AE; they are
shaper1∼shaper27 and wear1∼wear27, respectively. Machin-
ing tests were carried out on HL-32 NC turning center [26].
Theworkmaterial was chosen for ease ofmachining, allowing
for generation of surfaces of varying quality without the use
of cutting fluids. The experiment equipment is shown in
Figure 4. Currently, AE-based sensing technology is the area
of most intense research activity for developing intelligent
tool condition systems. The reason is that the sensitivity of
AE to tool wear and fracture is coupled with a high response
rate of the signal. Sharp1 signal and wear1 signal show Figures
5 and 6, respectively in time domain.

According to (13), we set harmonic wavelet decomposed
level 𝑁 = 10, and Lipschitz exponent function 𝛼(𝑥) of 54
group data is shown in Figure 7.

In Figure 7, all sharp tools are of positive Lipschitz
exponent function 𝛼(𝑡) > 0, and all wear tools are of a
negative Lipschitz exponent function 𝛼(𝑡) < 0. Wear tool
and sharp tool can be distinguished by Lipschitz exponent
function 𝛼(𝑡). A threshold value 𝛼(𝑡) = 0 is obtained as
a criterion of the tool condition monitoring during cutting
process.

7. Conclusion

The proposed research provides a new theoretical basis and
a new engineering application on the online tool monitoring
which can distinguish between worn tool and sharp tool dur-
ing cutting process. The results of experiment demonstrate
that this method is more precise and robust.

The method which was described in this paper can be
used as a valuable method for tool condition monitoring. In
comparison to conventional data processing, the advantages
of Lipschitz exponent and harmonic wavelet were shown.
The zero threshold is determined conveniently which can
distinguish between worn tool and sharp tool. For the
future development of the presented techniques in laboratory,
several approaches will be tested, including new broadband
sensors application.
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Particularly in recent years, artificial intelligence optimization techniques have been used to make fuzzy time series approaches
more systematic and improve forecasting performance. Besides, some fuzzy clustering methods and artificial neural networks with
different structures are used in the fuzzification of observations and determination of fuzzy relationships, respectively. In approaches
considering themembership values, themembership values are determined subjectively or fuzzy outputs of the system are obtained
by considering that there is a relation betweenmembership values in identification of relation.This necessitates defuzzification step
and increases themodel error. In this study, membership values were obtainedmore systematically by using Gustafson-Kessel fuzzy
clustering technique.The use of artificial neural network with single multiplicative neuron model in identification of fuzzy relation
eliminated the architecture selection problem as well as the necessity for defuzzification step by constituting target values from
real observations of time series. The training of artificial neural network with single multiplicative neuron model which is used for
identification of fuzzy relation step is carried out with particle swarm optimization. The proposed method is implemented using
various time series and the results are compared with those of previous studies to demonstrate the performance of the proposed
method.

1. Introduction

Nowadays, it is of vital importance tomake predictions about
the future in terms of planning and strategy formulation.
This can be realized by accurate and realistic analysis of
information and data that have emerged from past to present.
Different approaches, namely, stochastic and nonstochastic
approaches, have been proposed in the literature for the anal-
ysis of time series. Nowadays, the use of nonstochasticmodels
such as fuzzy time series approach for the analysis of time
series has become widespread. In some cases, expressing the
observations of time series by linguistic values or fuzzy sets
is more realistic. These types of time series are called fuzzy
time series and their analysis should be made via fuzzy time
series analysismethods rather than traditional ones. In recent
years, to analyse the nonlinear time series such as time series
of 1/f noise time series, Li et al. [1], Li et al. [2], and Li and
Zhao [3] presented different approaches which are expressed

as stochastic models. In addition, Li et al. [4] stated that a suf-
ficient condition for 1/f noise type time series to be predictable
is that variance of its predications errors exists and described
that there are some challenges in prediction of 1/f noise type
time series. The main advantage of fuzzy time series
approaches is that they do not need assumptions that stochas-
tic models do. Particularly, since fuzzy time series methods
do not need linear model assumption and probability distri-
bution assumption, they can be effectively used to analyse the
nonlinear time series which is frequently encountered in the
real-world problems.

The concept of fuzzy time series was first introduced by
Song and Chissom [5] based on fuzzy set theory proposed
by Zadeh [6]. Fuzzy time series can be evaluated under two
main headings as time-variant and time-invariant. Song and
Chissom [5] have reported that internal relations belonging
to fuzzy time series are supposed to change over time in
time-variant fuzzy time series but not in time-invariant ones.
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Song andChissom [7] proposed an algorithm for the solution
of time-invariant fuzzy time series which are the subject of
almost all the studies in the literature. As the subject of this
study is time-invariant fuzzy time series, in the remainder of
the paper the term of “fuzzy time series” will be used instead
of “time-invariant fuzzy time series.” As in fuzzy inference
systems, fuzzy time series forecasting models consist of three
steps as fuzzification, identification of fuzzy relation, and
defuzzification which have an influence on forecasting per-
formance of the method. Many researchers have carried out
studies using different approaches on these three steps.

Universe of discourse has been used in fuzzification step
until recently. Song and Chissom [5, 7, 8] and Chen [9,
10] determined fixedly interval lengths arbitrarily whereas
Huarng [11] used average and distribution-based and Egri-
oglu et al. [12] used optimization-basedmethods. In addition,
for the analysis of time series containing trend, a ratio-based
length of intervals is proposed by Huarng and Yu [13]. Fur-
thermore, Yolcu et al. [14] proposed a new approach and used
a single-variable constrained optimization to determine the
ratio for the length of intervals which change in time in parti-
tion of universe of discourse.More recently, Kuo et al. [15, 16],
Davari et al. [17], Park et al. [18], Hsu et al. [19], and Egrioglu
et al. [20] used particle swarm optimization whereas Chen
and Chung [21] and Lee et al. [22, 23] proposed methods
using genetic algorithms for determination of the changing
length of intervals.

Although subjective judgments are avoided in these stud-
ies using optimization techniques, membership values are
still determined subjectively and all membership values are
not considered. The problem that membership values are
determined subjectively may eliminate by using some fuzzy
clustering techniques. In this regard, Cheng et al. [24], Li et al.
[25], Aladag et al. [26], Alpaslan et al. [27], Egrioglu et al.
[12, 28], and Alpaslan and Cagcag [29] eliminated by using
fuzzy C-means (FCM) andGustafson-Kessel fuzzy clustering
techniques, respectively.

Identification of fuzzy relation is the step in which the
appropriate model is determined. Therefore, this step plays
the most important role in forecasting performance. In this
stage, Song and Chissom [5, 7, 8] used fuzzy relation matrix
and represented the fuzzy logic relations with only one
matrix. Sullivan and Woodall [30] used transition matrices
based on Markov chain instead of using fuzzy logic relation
matrix. Chen [9] proposed a simpler approach using fuzzy
logic group relationships tables by claiming that matrix cal-
culations are based on complex processes.The approach pro-
posed by Chen [9] is the most commonly used approach in
the literature.Huarng andYu [31] proposed a first-order fuzzy
time series approachwhich uses feedforward neural networks
(FFANN) in this step. Aladag et al. [32] developed the
approach proposed by Huarng and Yu [31] and proposed a
high-order fuzzy time series forecasting model which uses
FFANN in the determination of fuzzy relations. In all of these
approaches, when determining the fuzzy relations represent-
ing the internal relation of fuzzy time series, only the fuzzy
set having the highest membership value was considered and
membership values were ignored. Although Yu and Huarng
[33] proposed an approach which considers the membership

values, their approach has determined membership values
subjectively. Alpaslan et al. [27] and Yolcu et al. [34] used
FCM technique instead of determining the membership
values subjectively. The use of ANN in identification of fuzzy
relations has many advantages and disadvantages as well.
Determination of unit number in hidden layer (architecture
structure) and excessive number of parameters to be used
during the analysis are the most prominent ones. Although
Aladag [35] eliminated this problem by using artificial neural
network with single multiplicative neuron model (SMNM-
ANN) in the determination of fuzzy relations, membership
values were not considered. Nevertheless, as the system out-
put of these approaches consists of fuzzy set number ormem-
bership values, fuzzification step is necessary. This may be a
factor that increases themodel error. An approach not requir-
ing defuzzification stepwould eliminate forecasting error that
may occur in this step and improve the performance of the
method.

Almost all approaches proposed in the literature focus
on autoregresive (AR) model; in other words, in these
approaches it is supposed that time series is affected by
only its own lagged variables. Otherwise, there are various
approaches which included autoregressive moving average
(ARMA) model such as the method proposed by Egri-
oglu et al. [20] and seasonal autoregressive moving average
(SARIMA) model such as methods proposed by Egrioglu
et al. [36], Uslu et al. [37], Aladag et al. [38], and Alpaslan
et al. [27].

The proposed method uses Gustafson-Kessel fuzzy clus-
tering technique in fuzzification step andmembership values
are obtained more systematically. The use of SMNM-ANN in
identification of fuzzy relations eliminates architecture selec-
tion problem and the need for defuzzification step by con-
stituting the target values from observations of the real-time
series. The training of SMNM-ANN which was used in the
determination of fuzzy relations is carried out with particle
swarm optimization. The proposed method comprises first-
order fuzzy time series model and it can be referred to as an
ARmodel. Main differences of proposedmethod from previ-
ous studies are that it does not need the defuzzification stage
and also identification of architecture of ANN.

The rest of this paper is designed as follows. In Section 2,
the basic concepts of fuzzy time series are briefly reviewed. In
Section 3, PSO, Gustafson-Kessel fuzzy clustering technique,
and SMNM-ANN are briefly presented under the related
methods main heading. In Section 4, we introduce new
hybrid fuzzy time series method. In Section 5, we apply the
proposed method to different time series and make a com-
parison of the forecasted results of the proposedmethod with
that of the existing methods. In the last section, the conclu-
sions are discussed.

2. Fuzzy Time Series

The fuzzy time series was firstly introduced by Song and
Chissom [5].The fuzzy time series and time-variant and time-
invariant fuzzy time series definitions are given below by
Song and Chissom [5].
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Definition 1. Let𝑌(𝑡)(𝑡 = . . . , 0, 1, 2, . . .), a subset of real num-
bers, be the universe of discourse onwhich fuzzy sets𝑓

𝑗
(𝑡) are

defined. If 𝐹(𝑡) is a collection of 𝑓
1
(𝑡), 𝑓
2
(𝑡), . . ., then 𝐹(𝑡) is

called a fuzzy time series defined on 𝑌(𝑡).

Definition 2. Suppose that 𝐹(𝑡) is caused by 𝐹(𝑡−1) only; that
is, 𝐹(𝑡 − 1) → 𝐹(𝑡). Then, this relation can be expressed as
𝐹(𝑡) = 𝐹(𝑡−1)∘𝑅(𝑡, 𝑡−1), where𝑅(𝑡, 𝑡−1) is the fuzzy relation-
ship between𝐹(𝑡−1) and𝐹(𝑡), and𝐹(𝑡) = 𝐹(𝑡−1)∘𝑅(𝑡, 𝑡−1) is
called the first-order model of 𝐹(𝑡). “∘” represents max-min
composition of fuzzy sets.

Definition 3. Suppose that 𝑅(𝑡, 𝑡 − 1) is a first-order model of
𝐹(𝑡). If for any 𝑡, 𝑅(𝑡, 𝑡 − 1) is independent of 𝑡, that is, for any
𝑡,𝑅(𝑡, 𝑡−1) = 𝑅(𝑡−1, 𝑡−2), then𝐹(𝑡) is called a time-invariant
fuzzy time series; otherwise, it is called a time-variant fuzzy
time series.

Song and Chissom [7] firstly introduced an algorithm
based on the first-order model for forecasting time-invariant
𝐹(𝑡). In Song and Chissom’s work [7], the fuzzy relationship
matrix 𝑅(𝑡, 𝑡 − 1) = 𝑅 is obtained by many matrix oper-
ations. The fuzzy forecasts are obtained based on max-min
composition as follows:

𝐹 (𝑡) = 𝐹 (𝑡 − 1) ∘ 𝑅. (1)

The dimension of 𝑅matrix is dependent number of fuzzy
sets which are partition number of universe and discourse. If
wewant to usemore fuzzy sets, we need differentmatrix oper-
ations to obtain 𝑅matrix.

3. Related Methods

3.1. Particle SwarmOptimization (PSO). Particle swarm opti-
mization, which is a population-based heuristic algorithm,
was firstly proposed by Eberhart and Kennedy [39]. Distin-
guishing feature of this heuristic algorithm is that it simulta-
neously examines different points in different regions of the
solution space to find the global optimum solution. Local
optimum traps can be avoided because of this feature.

In the literature, it was shown that using some time-
varying parameters can increase the convergence speed of the
algorithm.Ma et al. [40] employed time-varying acceleration
coefficient in standard particle swarm optimization method.
In another study, Shi and Eberhart [41] used time-varying
inertia weight. In the modified particle swarm optimization,
this time-varying constituents are used together. This is
the only difference between standard and modified particle
swarm optimization methods.

Algorithm 4.Themodified particle swarm optimization.

Step 1. Positions of each 𝑘th, (𝑘 = 1, 2, . . . , 𝑝𝑛) particles’
positions are randomly determined and kept in a vector 𝑋

𝑘

given as follows:

𝑋
𝑘
= {𝑥
𝑘

1
, 𝑥
𝑘

2
, . . . , 𝑥

𝑘

𝑑
} , 𝑘 = 1, 2, . . . , 𝑝𝑛, (2)

where 𝑥𝑘
𝑖
(𝑖 = 1, 2, . . . , 𝑑) represents 𝑖th position of 𝑘th parti-

cle. 𝑝𝑛 and 𝑑 represent the numbers of particles in swarm and
positions, respectively.

Step 2. Velocities are randomly determined and stored in a
vector 𝑉

𝑘
as follow:

𝑉
𝑘
= {V𝑘
1
, V𝑘
2
, . . . , V𝑘

𝑑
} , 𝑘 = 1, 2, . . . , 𝑝𝑛. (3)

Step 3.According to the evaluation function, 𝑝best and 𝑔best
particles given in (4), respectively, are determined:

𝑝best
𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑑
) 𝑖 = 1, 2, . . . , 𝑑,

𝑝best
𝑔
= 𝑔best = (𝑝

𝑔1
, 𝑝
𝑔2
, . . . , 𝑝

𝑔𝑑
) ,

(4)

where 𝑝best is a vector which stores the positions corre-
sponding to the 𝑘th particle’s best individual performance
and 𝑔best represents the best particle, which has the best
evaluation function value, found so far.

Step 4. Let 𝑐
1
and 𝑐

2
represent cognitive and social coef-

ficients, respectively, and 𝑤 is the inertia parameter. Let
(𝑐
1𝑖
, 𝑐
1𝑓
), (𝑐
2𝑖
, 𝑐
2𝑓
), and (𝑤

1
, 𝑤
2
) be the intervals which include

possible values for 𝑐
1
, 𝑐
2
, and𝑤, respectively. At each iteration,

these parameters are calculated by using the following formu-
las:

𝑐
1
= (𝑐
1𝑓
− 𝑐
1𝑖
)

𝑡

max 𝑡
+ 𝑐
1𝑖
,

𝑐
2
= (𝑐
2𝑓
− 𝑐
2𝑖
)

𝑡

max 𝑡
+ 𝑐
2𝑖
,

𝑤 = (𝑤
2
− 𝑤
1
)
max 𝑡 − 𝑡
max 𝑡

+ 𝑤
1
,

(5)

where max 𝑡 and 𝑡 represent maximum iteration number and
current iteration number, respectively.

Step 5.Values of velocities and positions are updated by using
the following formulas.

V𝑘+1
𝑖𝑗

= [𝑤 × V𝑘
𝑖𝑗
+ 𝑐
1
× rand

1
× (𝑝best

𝑖𝑗
− 𝑥
𝑖𝑗
)

+𝑐
2
× rand

2
× (𝑔best

𝑗
− 𝑥
𝑖𝑗
)] ,

(6)

𝑥
𝑘+1

𝑖𝑗
= 𝑥
𝑖𝑗
+ V𝑘+1
𝑖𝑗

, (7)

where rand
1
and rand

2
are random values from the interval

[0 1].

Step 6. Steps 3 to 5 are repeated until a predetermined max-
imum iteration number (max 𝑡) is reached.

3.2. The Gustafson-Kessel Fuzzy Clustering Technique. The
algorithm of Gustafson-Kessel fuzzy clustering is firstly pro-
posed by Gustafson and Kessel [42]. Let Σ

𝑖
be the covariance

matrix of the cluster, 𝑐
𝑖
the center of the 𝑖th cluster, 𝑢

𝑖𝑗
the

membership degree, and𝛽 fuzziness index. For the 𝑖th cluster,
its associated Mahalanobis distance is defined as

𝑑
2

(𝑥
𝑗
, 𝑐
𝑖
, Σ
𝑖
) = (𝑥

𝑗
− 𝑐
𝑖
)
𝑇

−1

∑

𝑖

(𝑥
𝑗
− 𝑐
𝑖
) . (8)
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The covariance matrices are computed as follows:

∑

𝑖

=
∑
∗

𝑖

𝑝
√det (∑∗

𝑖
)

,

∗

∑

𝑖

=

∑
𝑛

𝑗=1
𝑢
𝑖𝑗
(𝑥
𝑗
− 𝑐
𝑖
) (𝑥
𝑗
− 𝑐
𝑖
)
𝑇

∑
𝑛

𝑗=1
𝑢
𝑖𝑗

.

(9)

The objective function is defined as

𝐽 (𝑋, 𝐶, Σ, 𝑈) =

𝑐

∑

𝑖=1

𝑛

∑

𝑗=1

𝑢
𝛽

𝑖𝑗
𝑑
2

(𝑥
𝑗
, 𝑐
𝑖
, Σ
𝑖
) . (10)

The objective function 𝐽(𝑋, 𝐶, Σ, 𝑈) is, then, minimized
under the following constraints:

0 ≤ 𝑢
𝑖𝑗
≤ 1, ∀ 𝑖, 𝑗,

0 <

𝑛

∑

𝑗=1

𝑢
𝑖𝑗
≤ 𝑛, ∀ 𝑖,

𝑐

∑

𝑖=1

𝑢
𝑖𝑗
= 1.

(11)

In this minimization problem, the center 𝑐
𝑖
and the mem-

bership degrees 𝑢
𝑖𝑗
are updated according to the expressions

given below:

𝑐
𝑖
=

∑
𝑛

𝑗=1
𝑢
𝛽

𝑖𝑗
𝑥
𝑗

∑
𝑛

𝑗=1
𝑢
𝛽

𝑖𝑗

,

𝑢
𝑖𝑗
=

1

∑
𝑐

𝑘=1
(𝑑 (𝑥
𝑗
, 𝑐
𝑖
) /𝑑 (𝑥

𝑗
, 𝑐
𝑘
))
2/(𝛽−1)

.

(12)

3.3. Single Multiplicative Neuron Model. In neurons of feed-
forward neural networks, the input signal is calculated based
on addition function. Yadav et al. [43] proposed a single
multiplicative neuronmodel. In themodel, the input signal of
the neuron is estimated by the multiplication function. Yadav
et al. [43] showed that single multiplicative neuron model
gives better forecasting performance for time series forecast-
ing. Zhao andYang [44] recommended the use of PSO instead
of backpropagation learning algorithm proposed by Yadav et
al. [43] in the training of single multiplicative neuron model.
The structure of single multiplicative neuron model for 5
inputs is given in Figure 1.

This model has a single neuron, and unlike feed forward
neural network, multiplication is performed to the signal
coming into the neuron. Function Ω(𝑥, 𝜃) is the product of
theweighted inputs.Themultiplicative neuralmodelwith five
inputs given in Figure 1 (𝑥

𝑖
, 𝑖 = 1, 2, . . . , 5) has 10 weights.

Of these, five are the weights corresponding to the inputs
(𝑤
𝑖
, 𝑖 = 1, 2, . . . , 5) and five to the sides of the weights (𝑏

𝑖
, 𝑖 =

1, 2, . . . , 5). Suppose that activation function is taken as
logistic given below:

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
. (13)

x1

x2

x3

x4

x5

f yΩ(x, 𝜃)

Figure 1: The structure of single multiplicative neuron model.

In this case, the net value of the neuron is obtained as follows:

net = Ω (𝑥, 𝜃) =

5

∏

𝑖=1

(𝑤
𝑖
𝑥
𝑖
+ 𝑏
𝑖
) . (14)

Thus, as the net value passes through activation function, out-
put of the weight is obtained as 𝑦 = 𝑓(net). The fitness func-
tion to be calculated during the training ofmultiplicative neu-
ron model with PSO can be used as a criterion as the sum of
squares which was calculated from the difference between
output values for all learning samples and target values:

SSE =
𝑛

∑

𝑖=1

(𝑑
𝑖
− 𝑦
𝑖
)
2

, (15)

where 𝑑
𝑖
and 𝑦

𝑖
represent the target value and the output of

the network corresponding to 𝑖th learning sample.

4. Proposed Method

In fuzzy time series approaches, each stage plays a decisive
role in the forecasting performance of the method. Many
studies on these steps have been conducted in the literature.
As well as more systematical approaches in fuzzification step,
flexible and superior calculation abilities of ANN in identifi-
cation of fuzzy relation have been widely used recently.These
studies have many advantages and disadvantages as well such
as determination of unit number in hidden layer (architecture
structure), identification of membership values subjectively,
and excessive number of parameters to be used during the
analysis. In this study, it was aimed to propose a model which
is free from all these problems. In the proposed method,
membership values were obtained more systematically by
using Gustafson-Kessel fuzzy clustering technique in fuzzifi-
cation step.The use of SMNM-ANN in identification of fuzzy
relation eliminated architecture selection problem and the
necessity for defuzzification step by constituting target values
from real observations of time series; thus, the forecasting
performance of the method was improved. The training of
artificial neural network with single multiplicative neuron
model which was used in identification of fuzzy relations
is carried out with particle swarm optimization. The main
advantages of the proposed method can be summarized as
follows.

(i) With the use of fuzzy clustering method in fuzzifica-
tion step, subjective judgments are not needed any-
more.
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Table 1: An example of fuzzification.

Center of Set 1
(V
1
)

Center of Set 2
(V
2
)

Center of Set 3
(V
3
)

25.4718 51.3607 79.4108

𝑡 X(t) Memberships of Observations to Fuzzy Sets
Set 1 (𝐿

1
) Set 2 (𝐿

2
) Set 3 (𝐿

3
)

1 20 0.9625 0.0293 0.0082
2 30 0.9494 0.0427 0.0080
3 40 0.3608 0.5901 0.0490
4 30 0.9494 0.0427 0.0080
5 20 0.9625 0.0293 0.0082
6 50 0.0031 0.9948 0.0021
7 60 0.0497 0.7932 0.1571
8 80 0.0001 0.0004 0.9995

(ii) With the use of ANN in identification of fuzzy rela-
tion, complex matrix operations and complex fuzzy
relation tables are not needed. In addition, one may
benefit from the flexiblemodeling advantage of ANN.

(iii) The use of SMNM-ANN eliminates the problem of
determining the number of units in hidden layer.

(iv) Again, having inputs of SMNM-ANN which is used
for identification of fuzzy relation from membership
values leads to increases in the amount of information
used in the solution process and thus providing a
more appropriate approach for fuzzy set theory.

(v) Defuzzification step is no longer needed by constitut-
ing SMNM-ANN target valueswith real values of time
series and thus forecasting error thatmay occur in this
step is prevented and forecasting performance of the
method is improved.

The algorithm of the proposed method is given below in
steps.

Step 1. For 2 ≤ 𝑐 ≤ 𝑛, where 𝑐 is the number of fuzzy sets,
Gustafson-Kessel algorithm is applied to the crisp time series.
The centers of fuzzy sets and membership degrees, which are
calculated for every observation according to this center, are
obtained. Finally, ordered fuzzy sets, 𝐿

𝑟
, 𝑟 = 1, 2, . . . , 𝑐, are

obtained according to the ascending order centers, which are
denoted by V

𝑟
, 𝑟 = 1, 2, . . . , 𝑐.

For better understanding, we consider a time series data
with 8 observations such as 20, 30, 40, 30, 20, 50, 60, and 80.
Let 𝑐, the number of fuzzy sets, be 3. When we applied the
method of Gustafson-Kessel to this data, the centroid of the
fuzzy sets and the membership degrees of each observation,
which denote the belonging degree of that observation to the
related fuzzy set, are given in Table 1. According to Table 1, the
membership degree of belonging to the second fuzzy set (𝐿

2
)

of the first observation (𝑡 = 1) is 𝜇
𝐿2(𝑋(1))

= 0.0293.

Step 2. Define the fuzzy relationship with SMNM-ANN.

The number of inputs of SMNM-ANN, used for deter-
mining fuzzy relationships, is equal to the number of fuzzy

𝜇L1
(X(t − 1))

𝜇L2
(X(t − 1))

𝜇L𝑐
(X(t − 1))

w1

w2

wc

Ω = net f X̂(t)...

Figure 2: The structure of SMNM-ANN.

Table 2: An example of determine fuzzy relation.

Training
Sample 𝑡

Input 1
𝜇
𝐿1(𝑋(𝑡−1))

Input 2
𝜇
𝐿2(𝑋(𝑡−1))

Input3
𝜇
𝐿3(𝑋(𝑡−1))

Target

1 2 0.9625 0.0293 0.0082 30
2 3 0.9494 0.0427 0.0080 40
3 4 0.3608 0.5901 0.0490 30
4 5 0.9494 0.0427 0.0080 20
5 6 0.9625 0.0293 0.0082 50
6 7 0.0031 0.9948 0.0021 60
7 8 0.0497 0.7932 0.1571 80

sets (𝑐). The architecture of the network is shown in Figure 2.
In Figure 2, 𝜇

𝐿 𝑖
(𝑋(𝑡 − 1)) denotes the membership degree

of belonging to 𝑖th fuzzy set of related observation of time
series𝑋(𝑡−1).Then, the target values of SMNM-ANNare real
observation of time series at 𝑡while the inputs of the networks
are every membership degree of belonging to 𝑐 fuzzy sets of
the observation of time series at 𝑡 − 1.

For example, suppose that we consider the time series
given in Table 1. When we defined the architectural structure
as given in Figure 2, the input and the targets of ANN would
be as in Table 2.

FunctionΩ is comprised ofmultiplication of theweighted
inputs and is obtained by (16), where 𝑓 is the activation func-
tion and 𝑋(𝑡) is the output of the model. The output of the
model is calculated as in (17):

Ω(𝜇, 𝑤, 𝑏) = net =
𝑐

∏

𝑖=1

[𝑤
𝑖
× 𝜇
𝐿𝑐
(𝑋 (𝑡 − 1)) + 𝑏

𝑖
] , (16)

𝑋 (𝑡) = 𝑓 (net) = 1

1 + exp (−net)
. (17)

In the case where the number of fuzzy sets defined for the
fuzzification process is 𝑐, there are 2 × 𝑐 variables to be opti-
mized by PSO. The position of these variables for a particle
can be shown as in Figure 3, where 𝑤

𝑖
, 𝑖 = 1, 2, . . . , 𝑐, and

𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑐, are weights and biases of SMNM-ANN,

respectively.
The training SMNM-ANNgiven in Figure 2 is carried out

via PSO with the following substeps.

Step 2.1.Theparameters of PSO algorithm (𝑐
1𝑖
, 𝑐
1𝑓
, 𝑐
2𝑖
, 𝑐
2𝑓
, 𝑤
1
,

𝑤
2
, 𝑝𝑛,max 𝑡, V𝑚) are determined. (𝑐

1𝑖
, 𝑐
1𝑓
), (𝑐
2𝑖
, 𝑐
2𝑓
), and

(𝑤
1
, 𝑤
2
) are the possible starting and end values for cognitive

component coefficient (𝑐
1
), social component coefficient (𝑐

2
),

and inertia parameter (𝑤), respectively. max 𝑡 represents the
maximum number of iterations, 𝑡 is the number of the valid



6 Mathematical Problems in Engineering

Weights of     
SMNM-ANN

Biases of         
SMNM-ANN

w1 w2 . . . wc b1 b2 . . . bc

Figure 3: The structure of a particle.

iterations, and V𝑚 is the velocities of each particle for weights
and biases of SMNM-ANN, respectively.

Step 2.2. Starting positions of the variables to be optimized
by PSO are randomly generated. Positions of each 𝑘th (𝑘 =

1, 2, . . . , 𝑝𝑛) particle’s positions and velocities are randomly
determined and kept in vectors𝑋

𝑘
and 𝑉

𝑘
given as follows:

𝑋
𝑘
= {𝑥
𝑘,1
, 𝑥
𝑘,2
, . . . , 𝑥

𝑘,2×𝑐
} ,

𝑉
𝑘
= {V
𝑘,1
, V
𝑘,2
, . . . , V

𝑘,2×𝑐
} ,

(18)

where 𝑥
𝑘,𝑖
(𝑖 = 1, 2, . . . , 2 × 𝑐) represent 𝑖th position of 𝑘th

particle for weights and biases of SMNM-ANN. 𝑝𝑛 and 𝑑 =

2×𝑐 represent the number of particles in swarmandpositions,
respectively. The initial positions and velocities of each par-
ticle in a swarm are randomly generated from uniform dis-
tribution (0, 1) and (−V𝑚, V𝑚), respectively.

Step 2.3.Evaluation function values for each particle are com-
puted. Rootmean square error (RMSE) given below is used as
evaluation function:

RMSE = √ 1

𝑇

𝑇

∑

𝑡=1

(𝑋 (𝑡) − 𝑋 (𝑡))
2

, (19)

where 𝑇 represents the number of learning sample for
SMNM-ANN and 𝑋(𝑡) and 𝑋(𝑡) are real observation and
forecasting of time series at 𝑡, respectively.

Step 2.4. 𝑃best
𝑘
, (𝑘 = 1, 2, . . . , 𝑝𝑛) and 𝐺best are determined

according to evaluation function values calculated in the pre-
vious step. 𝑃best

𝑘
is a vector stores the positions correspond-

ing to the 𝑘th particle’s best individual performance, and
𝐺best is the best particle, which has the best evaluation func-
tion value, found so far:

𝑃best
𝑘
= {𝑝
𝑘,1
, 𝑝
𝑘,2
, . . . , 𝑝

𝑘,𝑑
} , (𝑘 = 1, 2, . . . , 𝑝𝑛) ,

𝐺best = {𝑝
𝑔,1
, 𝑝
𝑔,2
, . . . , 𝑝

𝑔,𝑑
} ,

(20)

function values for each particle are computed.

Step 2.5.New values of positions and velocities are calculated.
New values of positions and velocities for each particle are
computed by using the following formulas:

V𝑡+1
𝑖,𝑑

= [𝑤 × V𝑡
𝑖,𝑑
+ 𝑐
1
× rand

1
× (𝑝
𝑖,𝑑
− 𝑥
𝑖,𝑑
)

+𝑐
2
× rand

2
× (𝑝
𝑔,𝑑

− 𝑥
𝑖,𝑑
)] ,

𝑥
𝑡+1

𝑖,𝑑
= 𝑥
𝑖,𝑑
+ V𝑡+1
𝑖,𝑑
,

(21)

where rand
1
and rand

2
are randomly generated fromuniform

distribution (0, 1).
Steps 2.1–2.5 are repeating the number of maximum

iteration times. Finally, the elements of𝐺best are taken as the
optimal solution.

5. Applications

Theproposedmethodwas applied to five different time series,
namely, Taiwan stock index (TAIEX) in years 2000, 2001,
2002, 2003, and 2004. In the analysis of TAIEX, we used
observations of the last three months as the out-of-sample
observations (test data). Therefore, we carried out five dif-
ferent analyses to evaluate of performance of the proposed
method.

In the implementation of the proposed method, a new
time series which was constituted from first-order differences
of time series rather than time series was used as in Yu and
Huarng’s study [33]. The creation of new time series can be
summarized as follows.

Firstly, the differences between every two consecutive
observations at 𝑡 and 𝑡 − 1 are obtained:

𝑑 (𝑡 − 1, 𝑡) = observation (𝑡) − observation (𝑡 − 1) . (22)

The differences may turn out to be negative. To ensure that all
the universes of discourse are positive, we add different pos-
itive constants to the differences for different years:

𝑑
󸀠

(𝑡 − 1, 𝑡) = 𝑑 (𝑡 − 1, 𝑡) + constant. (23)

On behalf of a better understanding of the implementation
of the proposed method, let us examine the time series of the
TAIEX in 2004. The stock index for 2000/1/5 is 6125.42 and
that for 2004/1/6 is 6144.01. Hence,

𝑑 (2004/1/5, 2004/1/6) = observation (2004/1/6)

− observation (2004/1/5)

= 6144.01 − 6125.42 = 18.59.

(24)

For the year 2004, the minimum of all the differences is
−455.17. Hence, 500 is considered to be appropriate as the
constant for the year 2004:

𝑑
󸀠

(2004/1/5, 2004/1/6)

= 𝑑 (2004/1/5, 2004/1/6) + constant

= 18.59 − 500

= 518.59.

(25)

Moreover, the outputs from the SMNM-ANN are the fore-
casted for the next difference. For example, when the
forecasted difference between 10/4 and 10/5 is obtained as
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𝑓𝑑(2004/10/4, 2004/10/5) = 498.66, the forecast is calcu-
lated as follows:

𝑓𝑑
󸀠

(2004/10/4, 2004/10/5)

= 𝑓𝑑 (2004/10/4, 2004/10/5) − constant

= 498.66 − 500

= −1.34.

(26)

Hence,

forecast (2004/10/5)

= 𝑓𝑑
󸀠

(2004/10/4, 2004/10/5) + observation (2004/10/4)

= −1.34 + 6077.96

= 6076.62.

(27)

700, 300, 300, 200, and 500 are considered to be appropriate
as the constant for the years 2000, 2001, 2002, 2003, and 2004,
respectively. Moreover, in the analysis of all TAIEX data, the
number of fuzzy sets is varied between 5 and 15 and param-
eters of PSO are determined as (𝑐

1𝑖
, 𝑐
1𝑓
) = (2, 3), (𝑐

2𝑖
, 𝑐
2𝑓
) =

(2, 3), (𝑤
1
, 𝑤
2
) = (0.4, 0.9), and V𝑚 = 10.

RMSE criteria were used in the evaluation of the results
obtained by the analyses and the other methods in the
literature.

The optimal results are obtained from nine, thirteen, six,
seven, and five fuzzy sets for TAIEX data of years 2000, 2001,
2002, 2003, and 2004, respectively. Prediction error for the
optimal results obtained from the proposedmethod as well as
prediction error of other fuzzy time series methods is pre-
sented in Table 3.

Considering Table 3, it can be concluded that forecasting
performances of the proposed method for all TAIEX data are
better than those found in the literature with respect to RMSE
criterion.

6. Conclusions and Discussion

It is of vital importance to make predictions about the future
in terms of planning and strategy formulation. This can be
realized by accurate and realistic analysis of information and
data that have emerged from past to present. Expressing
observations of time series with linguistic and fuzzy clusters
and analyzing these types of time series via fuzzy time series
methods rather than conventional ones would provide more
realistic approaches and more accurate outcomes.

Many studies aiming at making fuzzy time series more
systematic approaches have been introduced in the litera-
ture. Therefore, some fuzzy clustering methods and artificial
neural networks with different structures are used in the
fuzzification of observations and determination of fuzzy rela-
tionships, respectively. Consideringmembership values espe-
cially in identification of fuzzy relations seems to be a factor
that improves the forecasting performance of the method. In
approaches considering themembership values, themember-
ship values are determined subjectively or fuzzy outputs of

Table 3: Performance evaluation of methods for RMSE criteria.

Methods Years
2000 2001 2002 2003 2004

Chen (1996) [9] 176 148 101 74 84
Huarng and Yu (2006) [31] 152 130 84 56 116
Huarng et al. (2007) [45] 154.42 124.02 93.48 65.51 72.35
Yu and Huarng (2010) [33] 131 130 80 58 67
Chen and Chang (2010) [46] 129.42 113.33 66.82 53.51 60.48
Chen and Chen (2011) [47] 123.62 115.33 71.01 58.06 57.73
Chen et al. (2012) [48] 119.98 114.47 67.17 52.49 52.27
The Proposed Method 99.19 98.53 59.34 41.25 44.15

the system are obtained by considering that there is a relation
betweenmembership values in identification of relation.This
necessitates defuzzification step and increases model error.
The study aimed to overcome all these problems. For this
purpose, membership values were obtained more systemat-
ically by using Gustafson-Kessel fuzzy clustering technique
in fuzzification step. In identification of fuzzy relations, prob-
lems such as architecture selection were eliminated by using
artificial neural network with single multiplicative neuron
SMNM-ANN and defuzzification step is no longer needed by
constituting target values with real values of time series. The
training of artificial neural network with single multiplicative
neuron model is carried out with particle swarm optimiza-
tion. Main differences of proposed method from previous
studies are that it does not need the defuzzification and
also identification of architecture of artificial neural network.
In conclusion, considering the advantages and the superior
forecasting performance of the method proved via different
solutions, it can be argued that the proposed method would
be applicable and make contributions to the fuzzy time series
literature. In the future studies, proposed method can be
extended to the high order structure. Moreover feedback
mechanism can be added tomodel likemoving average terms
in ARMA.
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Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions
and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water.Themost common
applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the
ambitious targets set by the European Directives on Renewable Sources.Thus, the present paper deals with the economic feasibility
of biomass boiler plants with specific regard to an existing residential building. An Italian case study is further investigated, focusing
the attention onEuropean andnational regulations on energy efficiency and considering the recent public incentives and supporting
measures. The main thermoclimatic parameters—that is, heating degree days (HDDs), building thermal insulation and thermal
needs—are taken into account. Moreover, the following economic indicators are calculated: cumulative cash flow, discounted
cumulative cash flow, payback period (PP), net present value (NPV), Internal rate of return (IRR), discounted payback period
(DPP), and profit index (PI).

1. Introduction

The problem of global warming, the growing pollutant
emissions, and the increasing energy demand together with
the reduction of fossil fuel sources have led many countries
to consider and develop the Renewable Energy Sources sector
and Europe to adopt some specific regulations on this matter
[1, 2].

The EuropeanDirective 2009/28/EC—also well known as
“Directive 20-20-20”—setmany climate and energy targets in
order to achieve and ensure a clean and sustainable living for
the future generations: reduction of greenhouse gases emis-
sions by 20%, energy production from renewable sources in
percentage of 20%, and improvement of the energy efficiency
by 20% in order to reduce the energy consumption [3, 4].

In this context, the biomass represents a good solution
for RES developing since it is widespread in many different
areas; indeed, it encompasses all organic matter of vegetable
or animal origin. Biomass from plant is a product of pho-
tosynthesis process and can be considered carbon neutral

since the amount of the released carbon, during its energetic
conversion process, is similar to the quantity absorbed during
its life time [5–7]. The cycle from biomass and fossil fuel
to energy can be shortly represented as follows: biomass
consumes CO

2
through photosynthesis, which is the process

used by plants and other organisms to capture sun’s energy,
and the solar energy is stored in the chemical bonds of their
structural components; when this energy is extracted, CO

2

becomes available to produce new biomass; the process is
cyclical. Burning fossil fuels, old biomass (whose conversion
took millions of years), is exploited, so that new CO

2
is gen-

erated through the combustion, increasing the greenhouse
effect. In contrast, burning new biomass does not add new
CO
2
since replanting new biomass permits carbon dioxide

to be absorbed and returned cyclically [8]. For this reason,
biomass can be seen as a neutral fuel: combustion produces
the same amount of CO

2
which is absorbed during the whole

life cycle of plants [9, 10]. Furthermore, during the biomass
conversion into energy, low pollutants are emitted. Polycyclic
Aromatic Hydrocarbons (PAHs) and CO

2
emissions can be
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reduced by simply varying some parameters of conversion
technologies [11]; moreover, since biomass has low nitrogen
and sulphur contents, low emissions of NO

𝑥
and SO

𝑥
occur

[12, 13]. In addition, biomass has a small content of pollutants
and ashes, despite the possible variations of some chemical
components and moisture [14].

In order to convert biomass into energy, several categories
of processes can be exploited depending on biomass char-
acteristics, namely, thermochemical conversion, biochemical
conversion, and mechanical extraction. Direct combustion,
gasification, and pyrolysis belong to the first category [15, 16].
Combustion is the most widespread process, and it mainly
exploits wood biomass; the most common and commercial
application is represented by biomass boiler, using wood or
pellet.

In the present work, an economic assessment of a biomass
boiler installation in Italian residential buildings has been
investigated using the main financial indicators: cumulative
cash flow, discounted cumulative cash flow, payback period
(PP), net present value (NPV), internal rate of return (IRR),
discounted payback period (DPP), and profit index (PI).

A two-storey single building located in Viterbo has been
considered. In the current condition, the building has a
methane traditional boiler for heating and domestic hotwater
(DHW) supply. A study on the energy improvement has
been carried out considering the replacement of the methane
boiler with a biomass one. The DHW demand has been
covered with a solar collector. The study has been carried out
on two different cases concerning the thermal insulation of
the building.

Case 1. A not well thermally insulated building, for which a
replacement of the fixtures and an insulation cover for the
external walls have been considered in order to lead it to
Case 2 conditions; in the economical assessment, the thermal
insulation costs have been taken into account.

Case 2. A thermally insulated building for which the thermal
insulation costs are not to be considered.

The use of the biomass boiler and the solar collector
permits us to gain access to the Italian Renewable Heat
Incentive. In the following paragraph, a brief description of
the European and Italian Regulations and the supporting
measures are reported.

1.1. European Regulations and Italian Incentive Measures.
Energy efficiency improvement in Italian buildings is an
extremely important aspect to ensure energy saving and
green-house gases (GHGs) emissions reduction. According
to ENEA, most of the dwellings in our country were built
before the first law on reducing building energy consumption
(Legislative Decree 373/76) came into force. More than 2.7
million residential buildings, heterogeneously distributed in
the whole territory and mostly belonging to the coldest
climatic areas and having a low-thermal performance build-
ing envelope, are present in Italy. This is the reason why
the residential sector is characterised by the highest energy
consumptions corresponding to 36% (48 262 ktoe) of the

Table 1: Eligible projects included in category 1 (Legislative Decree
28th December 2012).

Project identification
code Eligible projects

1.A Thermal insulation of opaque enclosures
1.B Replacement of transparent enclosures

1.C Replacement of existing winter heating
systems with condensing heat generator

1.D Shadowing and shielding systems for
transparent enclosures

national demands and whose mean value is equal to 150–
200 kWh/(m2× year).The thermal need represents 85% of the
building energy demand, including space heating (70%) and
domestic hot water (15%) (year 2007) [17, 18].

Hence, in order to speed up the transition from exist-
ing heating systems towards more efficient alternatives, in
recent years, many incentive schemes have been adopted in
Italy [19]. In more detail on 28th December 2012 the so-
called “Renewable Energy for Heating and Cooling Support
Scheme” has been established; it represents the Italian Sup-
porting Measures and implements the previous Legislative
Decree number 28 of 3rd March 2011. This policy strongly
encourages the use of wood and pellet boilers [20]. Indeed,
according to the European Directive 2009/28, public support
is needed to reach the community’s purposes on renewable
energy sources (RES) use [21].

The Italian incentive mechanism carefully defines the
supporting scheme for small-scale projects concerning
energy efficiency improvements in existing buildings (called
“category 1”) and thermal energy production by the use of
RES and high efficiency systems (“category 2”), as shown in
Tables 1 and 2.The term “replacement”means the substitution
of an existing power system with a new solution, whose
capacity must not exceed more than 10% of the old system. If
this constraint is not respected, the corresponding incentive
will not be awarded [20].

According to the national regulation, two different par-
ties are eligible, namely, public administrations and private
parties. The first parties may apply for both categories, while
private parties may require incentives only for category 2.
Moreover, focusing the attention on new buildings or on
those subject to major renovation, the supporting measure
will cover only the part of the project exceeding the manda-
tory targets set by LegislativeDecree number 28.The support-
ing measures will be granted only for those projects which do
not benefit other incentives from the government [20].

In order to further improve the energy efficiency in
new or existing buildings—both for thermal behaviour and
heating/cooling systems—it is fundamental to analyse the
thermal and electrical needs.This goal is successfully reached
by carrying out the so-called Energy Performance Certificate
(EPC) which was laid down by the European Directive
2002/91.With regards to the regulation, “energy performance
of a building” is meant as the amount of energy actually
consumed or estimated tomeet the different needs associated
with a standardised use of the building itself, which may
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Table 2: Eligible projects included in category 2 (Legislative Decree 28th December 2012).

Project identification
code Eligible projects

2.A Replacement of existing winter heating systems with heat pumps, whose thermal capacity must be less than
1000 kW

2.B Replacement of existing heating or cooling systems for greenhouses or agricultural buildings with heat generators
supplied by biomass, whose thermal capacity must be less than 1000 kW

2.C Solar thermal collector, whose total area must not exceed 1000m2

2.D Replacement of electrical boilers with heat pump boilers

include heating, hot water heating, cooling, ventilation, and
lighting.When buildings are constructed, sold, or rented out,
the EPC is made available to the owner or by the owner to the
prospective buyer or tenant, as the case might be.The validity
of the certificate should not exceed 10 years [22].

The above-mentioned regulation was repealed by the
European Directive 2010/31 with effect from 1 February 2012.
Since buildings account for 40% of total energy consumption
in the Union and the sector is still expanding, member states
should ensure that all new buildings occupied and owned
by public authorities are nearly zero-energy buildings, by
31 December 2020 and 31 December 2018, respectively. In
more detail, a “nearly zero-energy building” is referred to,
a very high energy performance structure as determined in
accordance with Annex I. A very limited amount of energy
required should be covered—to a very significant extent—by
energy from renewable sources, especially on-site or nearby
[23].

The European Directive 2012/27 establishes a common
framework of measures for promoting energy efficiency
within the Union in order to ensure the achievement of the
Union’s 2020 20% headline target on energy efficiency and
to pave the way for further energy efficiency improvements
beyond that date [24].

With specific regard to Italy, the concepts of energy
savings in buildings, rational utilisation of energy, and sus-
tainable use of RES were introduced by the National Law
10/91 [25]. In recent years, the legislative framework has been
further developed and is still changing in order to comply
with the above-described EuropeanDirectives.The following
national regulations must be taken into account to carry out
the Energy Performance Certificate.

(i) Legislative Decree 192/05 on energy efficiency of
buildings [26].

(ii) Legislative Decree 311/06 which encompasses correc-
tions and integrations to the Legislative Decree 192/05
[27].

(iii) Presidential Decree 59/09 which enforced Legislative
Decree 192/05 [28].

(iv) National guidelines for energy performance set by the
Ministerial Decree 26/06/2009 [29].

(v) Ministerial Decree 22/11/2012, including corrections
and integrations to theMinisterial Decree 26/06/2009
[30].

In order to benefit the incentives laid down by the
Renewable Energy for Heating and Cooling Support Scheme,
the EPCmust be carried out in case of replacement of existing
winter heating systems with biomass boiler if the renovation
is applied to the whole building, having a nominal power
more than 100 kW.

2. Materials and Methods

Thesystem considered in the present study consists of a single
building located in Viterbo (Northern Latium, Central Italy).
The structure is a 2-storey, rectangular-shaped building,
with external gross dimensions of 6m × 10m. The total
footprint area is 102m2, leading to a total heated volume
of 275.4m3 since each floor is 2.7m high. External walls
are made of 28 cm of brick elements, without any insulation
cover. Moreover, an internal and external layer of plaster—
whose thickness is equal to 20mm in both cases—is added.
Table 3 shows the main thermal parameters of the current
wall layers in the building. The roof and the ground floor
consist of ordinary concrete structure. Windows are 1 or
2 double glass panes-solutions with wooden frame and are
located in the eastern, southern, and western sides of the
considered dwelling.The overall thermal transmittance of the
transparent enclosures is equal to 2.8W/(m2× K). Windows
account for 19.48m2, corresponding to 10% of the external
wall surface. Space heating and domestic hot water (DHW)
are supplied by means of a 24 kW methane-traditional heat
generator, whose parameters are summarized in Table 4. The
heat distribution system is ensured by traditional radiators.
The building in this condition represents the studied Case 1
in the present paper.

Since the dwelling is represented by a residential building
(belonging to category E1 according to the Presidential
Decree 412/93), the set point for indoor temperature is
assumed to be equal to 20∘C to ensure thermal comfort [31].

Broadly speaking, the working period of the heating
systems depends on climatic conditions and on the so-called
heat degree days (HDDs). The heating requirements for a
given structure at a specific location are considered to be
directly proportional to the number of HDDs at that location.
HDDs are defined relative to a base temperature which is the
outside temperature above which a building does not need
heating. In order to evaluateHDD, an approximationmethod
is used by taking the average temperature on any given day
and subtracting it from the base temperature. If the value is
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Table 3: Main thermal parameters for the current wall stratigraphy of the building (Case 1—ante operam).

Materials Thickness
(mm)

Thermal conductivity
(W/m × K)

Density
(kg/m3)

Resistance factor
(dimensionless)

Specific heat
(J/kg × ∘C)

Thermal resistance
(m2
× K/W)

Overall thermal
transmittance (W/m2

×

K)
Internal plaster 20 0.35 1200 10 835 0.057

1.642Brick 280 0.777 1800 15 835 0.36
External plaster 20 0.9 1800 20 835 0.022

Table 4: Main parameters of the traditional heat generator (Case
1—ante operam).

Parameters Values
Nominal power for heating (min/max) 11.0/24.6 kW
Nominal power for DHW (min/max) 11.0/24.6 kW
Useful power output (min/max) 9.6/22.9 kW
Temperature range for heating 82/40∘C
Temperature range for DHW 60/36∘C
Efficiency considering the nominal power 93.0%
Efficiency considering 30% of the nominal power 92.8%

Table 5: HDD, heating hours per day, and heating period (Decree
412/93).

Climatic
area HDD Maximum heating

hours per day Heating period

A <600 6 December 1–March 15
B 601–900 8 December 1–March 31
C 901–1400 10 November 15–March 31
D 1401–2100 12 November 1–April 15
E 2101–3000 14 October 15–April 15
F >3000 No limitations No limitations

less than or equal to zero, that day has zero HDD; if the value
is positive, that number represents the number of HDDs on
that day. Thus, only the positive differences of temperature
must be considered. HDDs are calculated with (1) [32] as
follows:

HDD =
nhd
∑

𝑖=1

(𝑇
0
− 𝑇
𝑖
) , (1)

where 𝑖 is value varying from 1 to the number of heating days
(nhd),𝑇

0
is the base temperature (∘C), and𝑇

𝑖
is themeandaily

external temperature (∘C). According to the value given by
(1), Italy is divided into six different areas—from zone A (the
hottest one) to zone F (the coldest one)—as shown in Table 5.
More precisely, HDDs increase when the climate becomes
colder. Viterbo belongs to zone D, having 1989 HDDs.

Considering all the input data mentioned in Tables 3,
4, and 5, the software DoCeT has been used in order to
calculate the total primary energy consumption for space
heating,DHW, and electrical purposes and, as a consequence,
the energy class of the building. The obtained results are
summarized in Table 6 [33].

Table 6: Output data generated by DoCeT for the residential
building (Case 1—ante operam).

Output data Case 1
Primary energy for space heating 299.5 kWh/m2

Primary energy for DHW 21.8 kWh/m2

Primary energy for electrical uses 4.1 kWh/m2

Total primary energy consumption 325.4 kWh/m2

Thermal need for space heating 204.9 kWh/m2

Thermal need for DHW 17.1 kWh/m2

Cooling need 18.6 kWh/m2

Global energy class (space heating and DHW) G
Partial energy class with regard to heating and
cooling G

Building envelope performance II
Partial energy class with regard to DHW E
CO2 emissions 88.2 kg/m2

In order to improve the energy and thermal performance
of the building, the following actions can be carried out:

(i) insulation layer within the external wall;
(ii) supplyingDHWdemand by installing solar collectors

on the roof;
(iii) providing space heating and DHW by means of a

pellet boiler.

With specific regard to the first stage, Tables 7 and 8
show the main thermal parameters of the building in case
of insulating the external wall and the improvements of the
building envelope in terms of thermal behaviour. In order to
access the 65% tax deduction regulation, the overall transmit-
tance of the wall must not exceed the limit values reported in
the Ministerial Decree 59/09, if the project is carried out in
climatic areas belonging to classes C, D, E, and F [34].

The transparent enclosures may be replaced by double
glass panes-solutions with PVC frame, whose overall thermal
transmittance is given by 1.1W/m2× K.

An energy analysis has been carried out with DoCet
software for the thermally insulated building too, considering
a methane boiler for heating and DHW supply. The building
in these conditions represents Case 2 studied in the present
paper. The results are reported in Table 9.

For both Cases 1 and 2, the installation of solar collectors
and pellet boiler has been evaluated in order to enhance the
energy properties of the building.
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Table 7: Main thermal parameters for the current wall stratigraphy of the building (Case 1—post operam and Case 2).

Materials Thickness
(mm)

Thermal conductivity
(W/m × K)

Density
(kg/m3)

Resistance factor
(dimensionless)

Specific heat
(J/kg × ∘C)

Thermal resistance
(m2
× K/W)

Overall thermal
transmittance (W/m2

× K)
Internal plaster 20 0.35 1200 10 835 0.057

0.359Brick 280 0.777 1800 15 835 0.36
Insulating layer 50 0.023 38 89900 1392 2.174
External plaster 20 0.9 1800 20 835 0.022

Table 8: Overall transmittance of the building envelope (Case 1—post operam and Case 2).

Overall transmittance Case
1—post operam and Case 2
(W/m2
× K)

Limit value according to
Presidential Decree 59/2009

Overall transmittance Case
1—ante operam (W/m2

× K)

Overall transmittance
reduction (W/m2

×

K)
0.359 0.36 1.642 −1.283

Table 9: Output data generated by DoCeT software for the residen-
tial building (Case 2—ante operam).

Output data Case 2
Primary energy for space heating 160 kWh/m2

Primary energy for DHW 21.8 kWh/m2

Primary energy for electrical uses 4.1 kWh/m2

Total primary energy consumption 186 kWh/m2

Thermal need for space heating 102 kWh/m2

Thermal need for DHW 17.1 kWh/m2

Cooling need 19.7 kWh/m2

Global energy class (space heating and DHW) F
Partial energy class with regard to heating and
cooling F

Building envelope performance II
Partial energy class with regard to DHW E
CO2 emissions 37 kg/m2

Table 10: Main characteristics of the biomass boiler.

Characteristics Values
Fuel Pellet
Rated power (𝑃

𝑛
) 12 kW

Efficiency 93%
Consumption 0.9–2.75 kg/h
Heatable volume 315m3

Water buffer tank 600 L

The solar collectors to be located on the roof have
been preliminarily designed assuming 4 occupants and
50 L/person as water demand. This leads us to calculate the
collector surface (3m2) and the diameter of the pipe within
the collector (16mm). The tank volume is equal to 220 L.

As for the heating system, the chosen biomass boiler has
the characteristics reported in Table 10 (according to UNI EN
303-5-2012 standard).

Considering all the above-mentioned input data and the
results coming from the design procedures, the software
DoCeT has leds us to calculate an approximate estimation

Table 11: Output data generated by DoCeT for the residential
building (post operam both Cases 1 and 2).

Output data Values
Primary energy for space heating 137.3 kWh/m2

Primary energy for DHW 0kWh/m2

Primary energy for electrical uses 4.2 kWh/m2

Total primary energy consumption 141.5 kWh/m2

Thermal need for space heating 102 kWh/m2

Thermal need for DHW 17.1 kWh/m2

Cooling need 19.7 kWh/m2

Global energy class (space heating and DHW) E
Partial energy class with regard to heating and
cooling F

Building envelope performance II
Partial energy class with regard to DHW A
CO2 emissions 0.3 kg/m2

of the total primary energy consumption for space heating,
DHW, and electrical purposes and, as a consequence, the
energy class of the buildings in post operam conditions, as
summarized in Table 11 [33].

The chosen solar collectors and biomass boiler fulfil the
technical requirements set by the Renewable Energy for
Heating and Cooling Support Scheme.

With specific regard to the cases described, the EPC
is not needed. However, it has been carried out since it
is fundamental to understand the current energy class of
the dwelling and the future and possible improvements by
modifying the building envelope and the energy supply plants
[19]. As it is commonly known, the energy efficiency is
given on a scale from A+—the most efficient homes—to G—
the most energy consuming one. According to the national
regulations, the EPC can be successfully carried out using
the software DoCeT in case of existing residential buildings
whose total area does not exceed 3000m2 [26–31].

The biomass boiler fulfils the technical requirements set
by the support scheme, such as the observance of class 5 of
the EN 303-5 technical standard, the efficiency higher than
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Table 12: Utilization coefficient ℎ
𝑟
(Decree 28th December 2012).

Climatic zone ℎ
𝑟
(hours)

A 600
B 850
C 1100
D 1400
E 1700
F 1800

Table 13: Coefficient 𝐶
𝑖
(Decree 28th December 2012).

<35KW 35–500 kW >500 kW
Biomass
boilers 0.045 [C/kWh

𝑡
] 0.020 [C/kWh

𝑡
] 0.018 [C/kWh

𝑡
]

Table 14:𝐶
𝑒
coefficient values depending on the primary particulate

emissions (Decree 28th December 2012).

PPBT (mg/Nm3) 𝐶
𝑒

20 < emissions ≤ 30 1
10 < emissions ≤ 20 1.2
emissions ≤ 10 1.5

Table 15: Yearly incentive calculation for biomass boiler.

Parameters Values
𝐼
𝑎,tot 907.2 C/year
𝑃
𝑛

12 kW
ℎ
𝑟

1400 hours
𝐶
𝑖

0.045 C/kWh
𝐶
𝑒

1.2
PPBT 10 ÷ 20

87 + log(𝑃
𝑛
), and the observance of the pellet characteristics

according to classes A1 and A2 of EN 14961-2.
According to the Italian supporting measures, the incen-

tive for biomass boilers has been calculated as follows [20]:

𝐼
𝑎,tot = 𝑃𝑛 × ℎ𝑟 × 𝐶𝑖 × 𝐶𝑒, (2)

where

𝐼
𝑎,tot is the yearly awarded incentive (C/year),
𝑃
𝑛
is thermal power of the plant (kW),
ℎ
𝑟
is the utilization coefficient in hours (Table 12),
𝐶
𝑖
is a coefficient depending on the thermal power of

the plant (Table 13),
𝐶
𝑒
is a coefficient depending on the particulate

emissions (Table 14).

The primary particulate emissions can be determined by
following the CEN/TS 15883 or EN 13284-1 standards and
with a formula described in Decree 28th December 2012.

The parameters and the yearly incentive for the biomass
boiler are reported in Table 15.

Table 16: Incentive calculation for solar collectors.

Parameters Values
𝐼
𝑎,tot 510 C/year
𝐶
𝑖

170 C/m2

𝑆
𝑙

3m2

The yearly incentive (𝐼
𝑎,tot) awarded for the installation of

the solar collectors is reported in Table 16 and is defined by
the following formula [20]:

𝐼
𝑎,tot = 𝑆𝑙 ⋅ 𝐶𝑖, (3)

where 𝑆
𝑙
is the gross surface of the solar collectors (m2) and𝐶

𝑖

is a coefficient depending on the total surface of the system.
Thus, the total yearly incentive is 1 417.2 C/year, and it is

dispensed in two years.
Furthermore, private partiesmight benefit of the support-

ing measures for the energy efficiency improvement in the
existing residential buildings by accessing the so-called “65%
tax deduction,” laid down by the recent Legislative Decree
number 63 of 6th June 2013. The latter awards incentives for
those projects which will be carried out until 31st December
2012 or 30th June 2014 in case of block apartments and
involving the building envelope (both opaque and trans-
parent enclosures), the installation of solar collectors, or
the replacement of existing heating generators by means
of a condensing boiler [34]. Thus, the tax deduction on
the thermal insulation of the building has been taken into
account for the studied Case 1.

3. Results

All costs for the above-described installations are reported for
both Cases 1 and 2 in Table 17.

The energy consumption costs before and after installing
biomass boiler and solar collector are reported in Table 18 for
both Cases 1 and 2.

The benefits of the investment are shown for both cases in
Table 19.

All the above-listed costs and benefits are useful in order
to calculate the main financial parameters.

The cash flows (𝐶𝐹∗
𝑡
) are obtained by adding all the costs

(𝐶
𝑖,𝑡
) and all the profits (𝑃

𝑖,𝑡
) related to the generic 𝑡th year, as

shown in (4) [3] as follows:

CF∗
𝑡
= ∑

𝑖

𝑃
𝑖,𝑡
−∑

𝑖

𝐶
𝑖,𝑡
. (4)

The discounted cash flows have been calculated by [3]

CF
𝑡
=

CF∗
𝑡

(1 + 𝑟)
𝑡
, (5)

where 𝑟 represents the weighted average cost of capital
(WACC). It refers to the index which defines the average
expected return considering the assets of the plant’s owner.
The cumulative cash flow and the discounted cumulative cash
flow are reported in Figures 1, 2, 3, and 4.
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Table 17: Table of costs for studied Case 1 and Case 2.

References Components Costs Total (C) Operating maintenance
(C)

Market research Pellet boiler 2750 C 2750 100
Market research Water buffer tank 1300 C 1300 6.5

Latium region price list 2012
CODES A.11.02.1.c1
A.11.02.1.c2

Thermal insulation for
external walls (Polyiso)

40.16 C/m2

(up to 2 cm)
2.83 C/m2

(for additional cm)

8393 —

Latium region price list 2012
CODE E.1.17.4 Solar collector 516.46 C/m2 1549.38 —

Market research Water tank 1250 C 1250 7.74
Latium region price list 2012
CODE A.16.01.a-b-c-d Transparent enclosures 380 C/m2 702 —

Total costs Case 1 22645 127
Total costs Case 2 6850 127

Table 18: Costs for energy consumption (Case 1 and Case 2).

Energy consumption before installing biomass boiler and solar collector
Consumption (kWh/year) Cost of methane (C/kWh) Total (C/year)

Case 1
Heating + DHW 20899.8 0.093 2105.9
Case 2
Heating + DHW 12148.2 0.093 1129.78

Energy consumption after installing biomass boiler and solar collector
Consumption (kWh/year) Pellet cost (C/kWh) Total (C/year)

Heating + DHW 12148.2 0.058 704
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Case 1–cumulative cash flow

Figure 1: Trend of the cumulative cash flow for Case 1.

It can be easily seen that the payback period (PP) of the
investment is 9 years for Case 1 and 13 for Case 2.

The net present value (NPV) has been evaluated using [3]

NPV =
𝑁

∑

𝑡=1

CF
𝑡

∗

(1 + 𝑟)
𝑡
− 𝐶
0

=
𝑃
1
− 𝐶
1

(1 + 𝑟)
1
+ ⋅ ⋅ ⋅ +
𝑃
𝑁
− 𝐶
𝑁

(1 + 𝑟)
𝑁
− 𝐶
0
,

(6)

where𝑁 is the lifetime of the investment, considered equal to
20 years.

The discounted payback period (DPP) can be observed in
Figures 5 and 6.
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Figure 2: Trend of discounted cumulative cash flow for Case 1.

The internal rate of return (IRR) can be calculated
through the following conditions:

NPV =
𝑁

∑

𝑡=0

CF∗
𝑡

(1 + IRR)𝑡
= 0,

PI =
∑
𝑁

𝑡=0
(𝑃
𝑡
/(1 + IRR)𝑡)

∑
𝑁

𝑡=0
(𝐶
𝑡
/(1 + IRR)𝑡)

= 1.

(7)

The values of the IRR can be observed in Figures 7 and 8.
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Table 19: Table of the benefits for studied Case 1 and Case 2.

Benefits C/year Period
Italian renewable heat incentive for biomass boiler 907.2 2 years
Italian renewable heat incentive for solar collector 510 2 years
65%-tax deduction—thermal insulation for external walls—Case 1 545.55 10 years
65%-tax deduction—transparent enclosures—Case 1 481.13 10 years
Annual cost saving for energy production—Case 2 425.2
Annual cost saving for energy production—Case 1 1401.3
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Figure 3: Trend of cumulative cash flow for Case 2.

4000

2000

0

−2000

−4000

−6000

−8000

1 3 5 7 9 11 13 15 17 19 21 23 25

Years(C
)

Case 2–discounted cumulative cash flow

Figure 4: Trend of discounted cumulative cash flow for Case 2.

The profitably index has been calculated using the follow-
ing:

PI =
∑
𝑁

𝑡=0
(𝑃
𝑡
/(1 + 𝑟)

𝑡

)

∑
𝑁

𝑡=0
(𝐶
𝑡
/(1 + 𝑟)

𝑡

)

=
𝑃
0
/(1 + 𝑟)

0

+ ⋅ ⋅ ⋅ + 𝑃
𝑁
/(1 + 𝑟)

𝑁

𝐶
0
/(1 + 𝑟)

0

+ ⋅ ⋅ ⋅ + 𝐶
𝑁
/(1 + 𝑟)

𝑁
.

(8)

The main financial parameters are summarized in
Table 20.

4. Conclusion

Two analyses have been carried out in order to assess the eco-
nomical feasibility of biomass boiler plants in standard Italian
residential buildings located in Viterbo.The first case studied
concerns a not well thermally insulated building for which
the following actions have been considered: energy efficiency
improvement through insulation of the external walls and
replacement of the transparent enclosures; installation of a
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Figure 6: Trend of NPV depending on time for Case 2.

Table 20: Main financial indicators for both Case 1 and, Case 2.

Case 1
Lifetime of the investment 20 years
PP 9 years
NPV 10170.11 C
DPP 10 years
IRR 7.5%
PI 1.41

Case 2
Lifetime of the investment 20 years
PP 14 years
NPV 782.12 C
DPP 15.7 years
IRR 3.7%
PI 1.08

solar collector to supply DHW; and installation of a pellet
boiler to provide space heating and DHW if needed. The
second case studied involves the same thermally insulated
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Figure 8: IRR for Case 2.

building for which the actions concern the solar collector and
pellet boiler installations only.

All the installations fulfil the technical requirements set
by the Italian Renewable Energy for Heating and Cooling
Support scheme (Decree 28th December 2012) and 65% tax
deduction (Legislative Decree no. 63 of 6th June 2013).

The supporting measures permit us to obtain good eco-
nomic indicators for Case 1 which represents the condition
with the highest investment costs. This is possible especially
thanks to the 65% tax deduction and to the consumption
reduction due to the energy efficiency improvement of the
building.

In both studied cases, the major advantages are due to the
energy and economic saving achievedwith solar collector and
pellet boiler installation compared to the use of the methane
boiler.

However, the economic subsidy represents a fundamental
tool for the payback period reduction and the dissemination
of renewable energy sources for heating purposes and domes-
tic hot water supply.
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The Hurst exponent and variance are two quantities that often characterize real-life, high-frequency observations. Such real-life
signals are generally measured under noise environments. We develop a multiscale statistical method for simultaneous estimation
of a time-changingHurst exponent𝐻(𝑡) and a variance parameter𝐶 in amultifractional Brownianmotionmodel in the presence of
white noise.Themethod is based on the asymptotic behavior of the local variation of its sample paths which applies to coarse scales
of the sample paths. This work provides stable and simultaneous estimators of both parameters when independent white noise is
present. We also discuss the accuracy of the simultaneous estimators compared with a few selected methods and the stability of
computations with regard to adapted wavelet filters.

1. Introduction

Fractional Brownian motion (fBm) has been commonly
used to characterize a wide range of complex signals in
natural phenomena that exhibit self-similarity and long-
range dependence since the pioneering work of Mandelbrot
and Van Ness [1]. Examples of such complex signals in time
are abundant in medicine, economics, and geoscience, to list
a few. The fBm model is characterized by two parameters
of the regularity level and the variance level of a signal. The
regularity attribute, also called the Hurst exponent, expresses
the strength of statistical similarity atmany different frequen-
cies, and the variance attribute describes an order of energy
magnitude.

To model path regularity varying with time, multifrac-
tional Brownian motion (mBm) has been proposed as a
generalization of fractional Brownian motion (fBm). The
theory and applications of both fBm and mBm models have
attracted the interests of researchers in numerous problems
of, for example, sea level fluctuations [2], currency exchange
rates [3], and network traffic [4–6]. To model mBm, Lévy-
Véhel and Peltier [7] proposed a mean average approach,
and Benassi et al. [8] introduced a spectral approach. Lim

and Muniandy [9, 10] also proposed a mBm model based on
the fBm defined by the Riemann-Liouville type of fractional
integral. The proposed models represent mBm as a Gaussian
process 𝑊(𝑡) with a covariance function involving Hurst
exponent 𝐻 by a function of time, 𝐻(𝑡), and variance
parameter 𝐶. Specifically, a Gaussian process (𝑊(𝑡))

𝑡≥0
is

called mBm with Hurst function 𝐻(𝑡) and its variance level
(scaling factor) 𝐶 if its covariance function is represented as

E [𝑊 (𝑡)𝑊 (𝑠)]

=
𝐶
2

2
𝑔 (𝐻 (𝑡) ,𝐻 (𝑠))

× {|𝑡|
𝐻(𝑡)+𝐻(𝑠)

+ |𝑠|
𝐻(𝑡)+𝐻(𝑠)

− |𝑡 − 𝑠|
𝐻(𝑡)+𝐻(𝑠)

}

(1)

for 𝐻 ∈ C𝜂([0, 1]); 𝑡, 𝑠 ∈ [0, 1]; 𝑔(𝑥, 𝑦) = √𝐾(2𝑥)𝐾(2𝑦)/

𝐾(𝑥 + 𝑦); and 𝐾(𝛼) = Γ(𝛼 + 1) sin(𝛼𝜋/2)/𝜋, 0 < 𝛼 < 2.
The process is well defined, or square-integrable, if function
𝐻(𝑡) is the Hölderian of order 0 < 𝜂 ≤ 1 on [0, 1]. Clearly,
the process𝑊(𝑡) is not weakly stationary since the covariance
functionE[𝑊(𝑡)𝑊(𝑠)]does not depend on 𝑡−𝑠 only. From (1),
we have E[𝑊(𝑡)

2

] = 𝐶
2

𝑡
𝐻(𝑡), and consequently, Var[𝑊(1)] =

𝐶
2. In this sense, 𝐶 is called the variance level of the process.
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The time-changingHurst exponent𝐻(𝑡) characterizes the
path regularity of process 𝑊 at time 𝑡 since sample paths
near 𝑡 with small 𝐻(𝑡), close to 0, are space filling and
highly irregular, while paths with large 𝐻(𝑡), close to 1, are
very smooth.The variance constant 𝐶 determines the energy
level of the process. Alternatively, a spectral representation of
mBm is given by

𝑊(𝑡) = 𝐶√
𝐾 (2𝐻 (𝑡))

2
∫

R

𝑒
i𝑡𝜆

− 1

|𝜆|
𝐻(𝑡)+1/2

𝑑𝐵 (𝜆) , (2)

where 𝐶 is a constant scale (variance) parameter and 𝐵 the
standard Brownian [7].

Several approaches were proposed to estimate time-
changing Hurst exponent 𝐻(𝑡) and variance 𝐶 from sample
paths of mBm signals. Benassi et al. [8] investigated estima-
tion of a continuously differentiable 𝐻(𝑡) without the direct
estimation of 𝐶. A local version of quadratic variations was
used in several researches to estimate the constant Hurst
exponent [11–13]. Recently Fhima et al. [14] adopted the
increment ratio statistic method for 𝐻(𝑡) estimation only.
For an overview of estimating constant 𝐻(𝑡), the reader is
also referred to Beran [15] including various statistical meth-
ods or Bardet and Bertrand [16] concentrating on wavelet
approaches. Estimation of both𝐻(𝑡) and variance parameter
𝐶 has received little attention from the statistics community
while 𝐶 is mostly treated as a nuisance parameter. When a
signal is modeled with mBm, the estimation of 𝐻(𝑡) can be
improved by the accurate estimation of 𝐶 from covariance
structures involving both 𝐻(𝑡) and 𝐶. For that purpose,
the application of a local version of quadratic variations for
estimating 𝐻(𝑡) and 𝐶 in mBm was discussed in Coeurjolly
[17], in which 𝐶 was, however, locally estimated in each
sample path.Moreover, the existence of noise inmBm signals
has not been dealt with in the literature though real-life
signals are commonly measured under noise environments.

The main objective of this paper is to develop a stable
and accurate estimation procedure for unknown parameters
(𝐻(𝑡), 𝐶) given a path of𝑊(𝑡) in the presence of independent
white noise. Previous approaches by Coeurjolly [17] relied on
local sample paths in the absence of white noise that resulted
in estimators of 𝐶 sensitive to the sampled paths. It is widely
accepted that noise occurs from a variety of sources such as
measurement devices.

In this paper, we assume that mBm signals are con-
taminated by a moderate amount of noise. We extend the
quadratic variations method to estimate 𝐻(𝑡) and 𝐶 simul-
taneously for mBm by applying dilated high-pass filters to all
sampled paths (all subsample paths from a given sample path)
and aggregating all local conditions from the previous filter-
ing step.Thismethod includes filtering all sampled pathswith
a dilated filter possessing a sufficient number of vanishing
moments to capture regularity conditions at associated coarse
scales and generating stationary filtered signals. The method
further calculates empirical moments of the filtered signals
and then estimates 𝐻(𝑡) and 𝐶 simultaneously together with

a noise level in a regression setup specified by the empirical
moments.

This paper is organized as follows. Section 2 introduces
local variations in a mBm setting, discussing the proce-
dures and justification for the simultaneous estimators of
unknown parameters. Section 3 discusses numerical simula-
tions and computational issues with adapted wavelet filters.
The appendix presents proofs for the propositions in the
preceding sections.

2. Multiscale Local Variations of
Multifractional Brownian Motion

Let us consider a case inwhich a discretized sample path (W󸀠)
is given by

𝑊
󸀠

(
𝑖

𝑁
) = 𝑊(

𝑖

𝑁
) + 𝜎𝜀 (

𝑖

𝑁
) , 𝑖 = 1, . . . , 𝑁, (3)

in which 𝜀(𝑖/𝑁) is independent white noise and 𝜎 is the noise
level. Hurst function 𝐻(𝑡), generated by 𝑊(𝑖/𝑁), is assumed
to be Hölderian function of order 0 < 𝜂 ≤ 1 on [0, 1].
In addition, noise magnitude 𝜎 is assumed to be sufficiently
small compared to the variance of mBm. The covariance
function of (W󸀠) is

E [𝑊
󸀠

(𝑡)𝑊
󸀠

(𝑠)] =
𝐶
2

2
𝑔 (𝐻 (𝑡) ,𝐻 (𝑠))

× {|𝑡|
𝐻(𝑡)+𝐻(𝑠)

+ |𝑠|
𝐻(𝑡)+𝐻(𝑠)

−|𝑡 − 𝑠|
𝐻(𝑡)+𝐻(𝑠)

} + 𝜎
21 (𝑡 = 𝑠) ,

(4)
where 1(𝐴) is an indicator of relation 𝐴 and 𝑔(𝑥, 𝑦) =

√𝐾(2𝑥)𝐾(2𝑦)/𝐾(𝑥 + 𝑦) as defined above. From the above
covariance function, we have E[𝑊(𝑡)

2

] = 𝐶
2

𝑡
2𝐻(𝑡)

+ 𝜎
2,

and consequently, Var[𝑊(1)] = 𝐶
2

+ 𝜎
2. Noticeably the

estimation of 𝐶 is nontrivial because of the dependence
structure from the covariance function; that is to say, the
sample variance of a sample path does not lead to the direct
expression of 𝐶 alone but to an expression mixed with all
unknown parameters. The entries in (4) generate covariance
matrix Σ, which depends on unknown parameters 𝜃 :=

(𝐻(𝑡), 𝐶, 𝜎) ∈ 𝑅
𝑁+2.The covariancematrix consists of𝑁(𝑁+

1)/2 parameters (due to symmetry) that can be organized
into an 𝑁(𝑁 + 1)/2 × 1 vector Γ(𝜃). Model (4) is locally
identifiable almost everywhere if Jacobian matrix 𝜕Γ(𝜃)/𝜕𝜃

󸀠,
which is𝑁(𝑁 + 1)/2 × (𝑁 + 2), has full column rank [18].

In order to weaken the dependence in 𝑊
󸀠

(𝑡) in (3), a
differencing filter a of length 𝑙 + 1 and order 𝑝 > 1 (the
number of vanishing moments) is applied. Filter a is defined
by its taps (𝑎

0
, . . . , 𝑎

𝑙
) such that

𝑙

∑

𝑞=0

𝑎
𝑞
𝑞
𝑖

= 0, 𝑖 = 0, . . . , 𝑝 − 1,

𝑙

∑

𝑞=0

𝑎
𝑞
𝑞
𝑖

̸= 0, 𝑖 = 𝑝.

(5)
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Let us also introduce a(𝑚) based on filter a, defined by

𝑎
(𝑚)

𝑖
=

{

{

{

𝑎
𝑖/𝑚

,
𝑖

𝑚
is an integer,

0, otherwise.
(6)

We observe that a(𝑚), the filter a dilated 𝑚 times, focuses on
a resolution at a low frequency, corresponding to a coarse
space, as 𝑚 increases. For 𝑚 = 1, it captures the finest level
of detail. For example, a(1) = a by definition, and for a
second-order filter a := (1, −2, 1), a(2) becomes (1, 0, −2, 0, 1).
Furthermore, we can choose a as high-pass wavelet filters
corresponding to orthogonal wavelets such as Daubechies
and Symlet wavelets. A detailed discussion of wavelet filters
can be found in Daubechies [19] and Vidakovic [20].

Let (V󸀠a(𝑚)) be a process consisting of (W
󸀠) filtered by a(𝑚),

that is,

𝑉
󸀠

a(𝑚) (
𝑗

𝑁
) =

𝑚𝑙

∑

𝑞=0

𝑎
(𝑚)

𝑞
𝑊
󸀠

(
𝑗 − 𝑞

𝑁
) , for 𝑗 = 𝑚𝑙 + 1, . . . , 𝑁.

(7)

For example, when a is (1, −2, 1), the filter is of order 2, and
(𝑉
󸀠

a ) represents the second-order differences of (𝑊
󸀠

). The
process (Va(𝑚)) is defined similarly with (W) instead of (W󸀠):
(Va(𝑚)) is a process consisting of (W) filtered by a(𝑚). The
filtering by a(𝑚) breaks the dependence structure between
observations. Specifically the process (V󸀠a(𝑚)) is stationary due
to the vanishing moment property of filter a(𝑚). To verify
it, we need to introduce a sufficiently small neighborhood
covering 𝑗. Let ](𝑡) be an index set of a neighborhood of 𝑡,
defined as

] (𝑡) = {𝑗 ∈ Z | 𝑙 < 𝑗 ≤ 𝑁,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

𝑁
− 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜖} (8)

for a parameter 𝜖 > 0. We set 𝜖 to be a function of 𝑁 in
such a way that 𝜖 → 0, 𝜖𝑁 → ∞, and 𝜖

𝜂 log(𝑁) → 0

as 𝑁 → ∞. In other words, for a sufficiently large 𝑁,
the size of one neighbor becomes sufficiently small while
maintaining the summation of the sizes of all the neighbors
that are sufficiently large. In addition, it is possible to make
𝜖
𝜂 converge to zero faster than log(𝑁) grows. Then we derive
the covariance of (V󸀠a(𝑚)) as follows.

Proposition 1. Let 𝑗
1
∈ ](𝑡
1
), 𝑗
2
∈ ](𝑡
2
). Then, the covariance

of 𝑉
󸀠

a(𝑚)(𝑗/𝑁) in (7), E[𝑉󸀠a(𝑚)(𝑗1/𝑁)𝑉
󸀠

a(𝑚)(𝑗2/𝑁)], depends on
𝑗
1
− 𝑗
2
as follows:

E [𝑉
󸀠

a(𝑚) (
𝑗
1

𝑁
)𝑉
󸀠

a(𝑚) (
𝑗
2

𝑁
)]

=
𝐶
2

𝑔 (𝐻 (𝑡
1
) ,𝐻 (𝑡

2
))

𝑁𝐻(𝑡1)+𝐻(𝑡2)

× 𝜋a(𝑚) ,𝐻(𝑡1)/2+𝐻(𝑡2)/2 (𝑗1 − 𝑗
2
)

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
(𝑚)

𝑝
𝑎
(𝑚)

𝑞
+ O (𝜖

𝜂 log𝑁) ,

(9)

where

𝜋a(𝑚) ,ℎ (𝑘) = −
1

2

𝑚𝑙

∑

𝑝,𝑞=0

𝑎
(𝑚)

𝑝
𝑎
(𝑚)

𝑞

󵄨󵄨󵄨󵄨𝑘 − 𝑝 + 𝑞
󵄨󵄨󵄨󵄨

2ℎ

. (10)

The above proposition states that 𝑉
󸀠

a(𝑚)(𝑗/𝑁) is weakly
stationary as Gaussian. Particularly for 𝑗

1
= 𝑗
2

= 𝑗, as
𝑁 → ∞, it simplifies to

𝐸[𝑉
󸀠

a(𝑚)(
𝑗

𝑁
)

2

] = 𝐶
2

(
𝑚

𝑁
)

2𝐻(𝑡)

𝜋a,𝐻(𝑡) (0) + 𝜎
2

∑

𝑞

𝑎
2

𝑞
. (11)

Observably the above proposition deals with two pointwise
positions, 𝑗

1
and 𝑗
2
, for two neighborhoods near 𝑡

1
and 𝑡
2
,

respectively. Thus an aggregate behavior of each neighbor-
hood is analyzed via the following setup.

Let us define the second empirical moment of the filtered
signal 𝑉󸀠a(𝑚) as follows:

𝑆
󸀠

(𝑡, a(𝑚)) =
1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉
󸀠

a(𝑚)(
𝑗

𝑁
)

2

, for 𝑡 ∈ [0, 1] ,

(12)

which represents the average squared energy of the a(𝑚)-
filtered signal in the neighborhood of 𝑡. We notice that
𝑆
󸀠

(𝑡, a(𝑚)) is random because 𝑉
󸀠

a(𝑚)(𝑗/𝑁) is random and its
expectation 𝐸[𝑆

󸀠

(𝑡, a(𝑚))] equals that of 𝑉󸀠a(𝑚)(𝑗/𝑁)
2 because

𝑉
󸀠

a(𝑚)(𝑗/𝑁) is weakly stationary. That is to say,

𝐸 [𝑆
󸀠

(𝑡, a(𝑚))] = 𝐸[𝑉
󸀠

a(𝑚)(
𝑗

𝑁
)

2

]

= 𝐶
2

(
𝑚

𝑁
)

2𝐻(𝑡)

𝜋a,𝐻(𝑡) (0) + 𝜎
2

∑

𝑞

𝑎
2

𝑞
.

(13)

Now, to relate 𝑆󸀠(𝑡, a(𝑚)) to 𝐸[𝑆
󸀠

(𝑡, a(𝑚))]more specifically, we
define a statistic 𝑉(𝑡, a(𝑚)), called the 𝑚-scale local variation
of (W), as

𝑉(𝑡, a(𝑚)) =
1

|] (𝑡)|
∑

𝑗∈](𝑡)

{

{

{

𝑉a(𝑚)(𝑗/𝑁)
2

E [𝑉a(𝑚)(𝑗/𝑁)
2

]

− 1

}

}

}

, (14)

where |](𝑡)| is the cardinal number of ](𝑡). The statistic
𝑉(𝑡, a(𝑚)) captures the amount of deviations of the a(𝑚)-
filtered signal from the standard normal distribution near
𝑡 because 𝑉a(𝑚) is normalized by its standard deviation, the
square root of E[𝑉a(𝑚)(𝑗/𝑁)

2

]. The definition based on the
second order can be extended to the 𝑘th order Hermite
polynomial in the summation of (14): the second Hermite
polynomial is defined by 𝑡

2

− 1. In this paper, we use
local variations based on the second Hermite polynomial as
the minimum asymptotic variance estimators, as shown in
Coeurjolly [13] for fBm settings. Next, we connect the 𝑚-
scale local variation 𝑉(𝑡, a(𝑚)) with the empirical moment
𝑆
󸀠

(𝑡, a(𝑚)) through the following relationship.
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Figure 1: Tested Hurst functions are shown in (a) step-function𝐻(𝑡) and (c) straight-line𝐻(𝑡); their illustrations of signals are shown in (b)
and (d), correspondingly.

Proposition 2. Let 𝑚-scale local variation 𝑉(𝑡, a(𝑚)) and the
empirical moment 𝑆

󸀠

(𝑡, a(𝑚)) be defined by (14) and (12),
respectively, given 𝑊

󸀠

(𝑡) as above and a of order > 1. Then

log 𝑆󸀠 (𝑡, a(𝑚)) = logE [𝑆
󸀠

(𝑡, a(𝑚))] + 𝑉 (𝑡, a(𝑚)) (1 + 𝑜 (1)) ,

𝑎𝑠 𝑁 󳨀→ ∞.

(15)

The proposition connects the empirical moment 𝑆
󸀠

(𝑡, a(𝑚))
and the log of its expectation through𝑚-scale local variation
𝑉(𝑡, a(𝑚)). Since the𝑚-scale local variation converges almost
surely to 0 and its distribution follows normal distribu-
tion asymptotically [17], the above relationship establishes
a regression setup. We also note that a filter of an order of
at least 2 ensures asymptotic normality for all the values of
the function 𝐻(𝑡). For a filter of order 1, this convergence is
available if and only if 0 < sup

𝑡
𝐻(𝑡) < 3/4.

Next the relationship between the log of the expectation
of the empirical moment 𝑆

󸀠

(𝑡, a(𝑚)) and the parameters of
interest (𝐻(𝑡), 𝐶, and 𝜎) is derived naturally in the light of
Proposition 2 and (13). Thus for 𝑡

1
, . . . , 𝑡

𝑑
∈ [0, 1] we obtain a

regression model for log 𝑆󸀠(𝑡
𝑖
, a(𝑚)) as𝑁 → ∞:

log 𝑆󸀠 (𝑡
𝑖
, a(𝑚)) ∼ log(𝐶

2

(
𝑚

𝑁
)

2𝐻(𝑡𝑖)

𝜋a,𝐻(𝑡𝑖) (0) + 𝜎
2

∑

𝑞

𝑎
2

𝑞
) ,

∀𝑖, 𝑚,

(16)

which is nonlinear with respect to 𝐻(𝑡
𝑖
), 𝐶, and 𝜎. In

particular, when the noise level 𝜎 is considered to be zero, the
regression model simplifies to, for all 𝑖 and𝑚,

log 𝑆󸀠 (𝑡
𝑖
, a(𝑚)) ∼ 2 log𝐶 + 2𝐻 (𝑡

𝑖
) log(𝑚

𝑁
)

+ log (𝜋a,𝐻(𝑡𝑖) (0))
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Figure 2: Illustrations of the estimators: in panel (a), variance 𝐶 was 2; in panel (b), variance 𝐶 was 4; the best match to the true 𝐻(𝑡) was
the method of S-K-var among the four.

= [1 2 log(𝑚

𝑁
)]

× [
2 log𝐶 + log (𝜋a,𝐻(𝑡𝑖) (0))

𝐻 (𝑡
𝑖
)

] ,

(17)

which turns out to be linear with respect to 𝐻(𝑡
𝑖
) with inter-

cept 2 log𝐶, if log(𝜋a,𝐻(𝑡𝑖)(0)) is negligible. The above regres-
sion model possesses a computational advantage though
ignoring the presence of noise.

When 𝜎 is nonzero, the following least square estimator
of (H, 𝐶, 𝜎) is introduced:

(Ĥ, 𝐶, 𝜎̂) = argmin
(H,𝐶,𝜎)

×

𝑑

∑

𝑖=1

𝑀

∑

𝑚=1

(log 𝑆 (𝑡
𝑖
, a(𝑚)) − logE [𝑆 (𝑡

𝑖
, a(𝑚))])

2

.

(18)

The computation of the least-square estimator is feasible
because, based on (16), for fixed 𝐶 as 𝐶

𝑜
and 𝜎 as 𝜎

𝑜
, the

computation ofH is separable into each𝐻(𝑡
𝑖
). In otherwords,

a solution of𝐻(𝑡
𝑖
) is given by

𝐻̂ (𝑡
𝑖
) = argmin

ℎ

×

𝑀

∑

𝑚=1

( log 𝑆󸀠 (𝑡
𝑖
, a(𝑚))

− log(𝐶
2

𝑜
(
𝑚

𝑁
)

2ℎ

𝜋a,ℎ (0) + 𝜎
2

𝑜
∑

𝑞

𝑎
2

𝑞
))

2

.

(19)

Numerical approaches such as the bisection method can be
used for the above procedure, which is nonlinear in ℎ. The
bisection method achieves a desired precision level, 𝜏, for
𝐻̂(𝑡
𝑖
) with the number of iterations greater than log

2
𝜏
−1. In

other words, 10 iterations, for example, results in precision
𝜏 < 0.001.

3. Simulations and Comparisons

We present here a simulation study of the performance of
the approach suggested in this paper, denoted by S-K-var.
Simulation is done with the “known truth” of Hurst function
𝐻(𝑡) the controlled signal variance and the signal-to-noise
(SNR) ratio. Test functions are shown in Figure 1 with the
step function for 𝐻(𝑡) in Figure 1(a) and the straight-line
function in Figure 1(c).Their illustrations of𝑊󸀠(𝑡) are shown
in Figures 1(b) and 1(d), correspondingly. For the sake of
comparison, we chose several popular methods such as the
local spectra slope, which is summarized in Gao [21] and
denoted by LSS, and 𝑘-variation of variance-uncorrected,
denoted by K-var, and the 𝑘-variation of variance-corrected
version inCoeurjolly [13], denoted by K-var-VC.The average
mean squared error (AMSE) was used as a performance
measure to capture the difference between true 𝐻(𝑡) and
estimated 𝐻̂(𝑡). To simulate a sample path from a fBm on
[0, 1], we used the method of Wood and Chan [22]. One can
simulate a standard mBm𝑊 with covariance matrix 𝐶

𝐻(⋅)
by

generating 𝑍 ∼ 𝑁(0, 𝐼
𝑁
) and estimating 𝑊 := 𝐶

1/2

𝐻(⋅)
𝑍. This

method is exact in theory and sufficiently fast for a reasonable
sample size𝑁.

In this section we will use the following notations regard-
ing filters: Diff.i denoting the filter of differences of order 𝑖,



6 Mathematical Problems in Engineering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

t

C

True C
K-var-VC

(a) K-var-VC, no noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

t

C

True C
S-K-var

(b) S-K-var, no noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

t

C

True C
K-var-VC

(c) K-var-VC, SNR 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

t

C

True C
S-K-var

(d) S-K-var, SNR 10

Figure 3: Estimation of 𝐶 by K-var-VCwith empirical 95% confidence intervals in blue is shown in (a) for no noise and (c) for SNR 10 when
true 𝐶 = 2. Similarly, estimation of 𝐶 by S-K-var in red is shown in (b) for no noise and (d) for SNR 10. S-K-var yields more stable and
shorter confidence intervals.

Db.i denoting a Daubechies wavelet filter of order 𝑖, and
Sym.i denoting a Symlet wavelet filter of order 𝑖.We generate
1,000 series of length 𝑁 = 4096 for step-function 𝐻(𝑡) and
𝑁 = 1024 for straight-line function𝐻(𝑡). A simple difference
filter [1 −2 1] (Diff.2) was used for straight-line𝐻(𝑡), and
Db.6 was used for step-function 𝐻(𝑡). For the local spectra
slope of LSS, the length of the subsignal was set to be 512,
which is sufficient for its numerical stability, and the two
levels, by which spectral slopes are calculated, were 3 and 7.
The size of a neighborhood of 𝑡, ](𝑡) in (8), is set to be 50 for
S-K-var, K-var, and K-var-VC.

Illustrations of the estimators under no noise are shown
in Figure 2. Estimation by K-var-VCmost accurately follows
true 𝐻(𝑡) among the tested methods. Estimation results by

K-var, considering no scale parameter 𝐶, notably deviate
from true 𝐻(𝑡). We note that the distance between K-var
estimation and true 𝐻(𝑡) relates to 𝐶. Estimators by LSS
are bumpy because it assumes that subsignals during its
computation follow fBm without considering the variability
of𝐻(𝑡).We also observe thatK-var-VC ismore unstable than
S-K-var.

Regarding the estimation of 𝐶, the comparison between
K-var-VC and S-K-var is shown in Figure 3, in which
empirical confidence intervals for true 𝐶 = 2 are shown
with the upper panels for no noise and the lower panels
for SNR 10. We sampled 1000 series of 𝑊

󸀠

(𝑡) with 𝐶 =

2 and straight-line 𝐻(𝑡) under white noise of SNR 10.
Consistently, the estimation results by S-K-var at the right
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Figure 4: Performance according to different filters with straight-line 𝐻(𝑡); in panel (a), box plots for estimations of 𝐶 = 2; in (b), box plots
for AMSE of𝐻(𝑡). Filter numbers represent the following: 1, Diff.1; 2, Diff.2; 3, Diff.3; 4, Diff.4; 5, Sym.4; 6, Sym.6; 7, Sym.8; 8, Db.2;
9, Db.3; and as well as 10, Db.4.

Table 1: Average mean squared error for the S-K-var, K-var-VC, and K-var methods in various settings of variance constant 𝐶 and
SNR levels based on 1000 sample paths of 𝑊󸀠(𝑡) for each of step-function and straight-line 𝐻(𝑡). The asterisk marks show that S-K-var
outperformed the other methods.

Parameters
Average mean squared error

Step-function𝐻(𝑡) Straight-line𝐻(𝑡)

S-K-var K-var-VC K-var S-K-var K-var-VC K-var

𝐶 = 1, SNR 10 31.54∗ 178.6 107.1 84.62 215.5 81.31
30 22.85∗ 89.64 64.59 25.48 147.8 23.53
∞ 9.940∗ 26.31 48.16 .8242∗ 9.508 .9376
𝐶 = 4, SNR 10 15.56∗ 212.5 82.29 46.16∗ 176.9 175.2
30 4.406∗ 152.2 39.91 36.11∗ 92.07 120.2
∞ .9706∗ 10.00 8.173 10.04∗ 24.73 93.21
𝐶 = 10, SNR 10 61.80∗ 178.2 281.5 89.94∗ 216.5 223.9
30 55.97∗ 87.35 237.0 42.21∗ 150.9 144.6
∞ 33.86∗ 26.08 193.1 1.425∗ 9.288 77.32

panels are more accurate, and their confidence intervals are
sharper than those by K-var-VC. We also note that the
confidence intervals by S-K-var in Figures 3(b) and 3(d) are
constant in time since S-K-var employs a global constant
in regression model (16). A noise level of SNR 10 heavily
worsened the estimation results by K-var-VC while those by
S-K-var yielded a slight increase in the confidence intervals.
Accurate estimation of variance level 𝐶 by K-var-VC leads
to accurate estimation of 𝐻(𝑡), which will be demonstrated
in the following tests.

We compared S-K-var with K-var-VC and K-var in
terms of AMSE in various settings. The method LSS was
dropped due to obvious poor performance as is shown in
Figure 2. We varied the levels of variance 𝐶 from 1 to 4

and 10 under SNR levels of 10, 30, and the infinity. The
number of sample path 𝑊

󸀠

(𝑡) was 1000 in each setting, and
AMSE was computed for each of the methods. The results
are shown in Table 1 for each step-function and straight-
line 𝐻(𝑡). We observe that our proposed method S-K-var

consistently outperforms the other methods except for only
a few settings. Overall, there was little difference between
K-var-VC and K-var in performance. This experimental
result is not surprising since S-K-var reflects the existence
of white noise and globally includes variance constant 𝐶.

The effects of adapted filters are summarized in Figure 4.
The experiments were done with straight-line 𝐻(𝑡), variance
𝐶 = 2, and SNR = 7. We observe that the performance
of S-K-var on the estimation of 𝐶 does not change much
depending on the filter it uses. However, we mention that the
variance of AMSEs tends to increase according to the filter
size.

4. Conclusion

To conclude, we proposed the joint estimators of the time-
changing Hurst exponent 𝐻(𝑡) and its variance coefficient
𝐶 for mBm under white noise. The proposed method is
based on filtering sampled paths with dilated high-pass
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filters to derive regularity conditions at associated scales.
The second empirical moment, average squared energy, of
the filtered signals near a time position is connected to the
theoretical expectation and used to establish a regression
setup through the asymptotic distribution of multiscale local
variation statistics. The effectiveness of the approach was
verified through numerical experiments that compared it
with that of several other approaches. Simulation results show
that the proposed approach yields more precise and stable
estimation of Hurst exponents and variance constants under
noiseless or noised conditions.

Appendices

A. Proof of Proposition 1

Let 𝐺(𝑡) denote 𝐶√𝐾(2𝐻(𝑡))/2 for the sake of simplicity.
Then, the covariance E[𝑉󸀠a (𝑗1/𝑁)𝑉

󸀠

a (𝑗2/𝑁)] becomes, by 𝑢 =

𝜆/𝑁,

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞
(𝐺(

𝑗
1
− 𝑝

𝑁
)𝐺(

𝑗
2
− 𝑞

𝑁
)

× ∫
exp (i ((𝑗

1
− 𝑝) /𝑁) 𝜆) − 1

|𝜆|
𝐻((𝑗1−𝑝)/𝑁)+1/2

×
exp (−i ((𝑗

2
− 𝑞) /𝑁) 𝜆) − 1

|𝜆|
𝐻((𝑗2−𝑞

󸀠
)/𝑁)+1/2

𝑑𝜆

+𝜎
2

E [𝜀 (
𝑗
1
− 𝑝

𝑁
) 𝜀 (

𝑗
2
− 𝑞

𝑁
)])

= ∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 ((𝑗
1
− 𝑝) /𝑁)𝐺 ((𝑗

2
− 𝑞) /𝑁)

𝑁𝐻((𝑗1−𝑝)/𝑁)+𝐻((𝑗2−𝑞)/𝑁)

× ∫
exp (i (𝑗

1
− 𝑝) 𝑢) − 1

|𝑢|
𝐻((𝑗1−𝑝)/𝑁)+1/2

×
exp (−i (𝑗

2
− 𝑞) 𝑢) − 1

|𝑢|
𝐻((𝑗2−𝑞)/𝑁)+1/2

𝑑𝑢

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
.

(A.1)

By Taylor’s expansion and Hölderian order 𝜂 of 𝐻(𝑡), for
𝑗
1
−𝑝 in the neighborhood of 𝑡

1
we approximate𝐺((𝑗

1
−𝑝)/𝑁)

with

𝐺(
𝑗
1
− 𝑝

𝑁
) = 𝐺 (𝑡

1
) + O(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻(
𝑗
1
− 𝑝

𝑁
) − 𝐻 (𝑡

1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

= 𝐺 (𝑡
1
) + O (𝜖

𝜂

) .

(A.2)

Similarly, 𝐺((𝑗
2

− 𝑞)/𝑁) is approximated with 𝐺((𝑗
2

−

𝑞)/𝑁) = 𝐺(𝑡
2
) + O(𝜖

𝜂

). In addition, by Taylor’s expansion

of 𝑁
𝑥

/ log(𝑁)𝑁
𝑘 around the point 𝑘, 𝑁

𝑥

/ log(𝑁)𝑁
𝑘

=

1/ log(𝑁) + O(|𝑥 − 𝑘|), we have
1

𝑁𝐻((𝑗1−𝑝)/𝑁)+𝐻((𝑗2−𝑞)/𝑁)
=

1

𝑁𝐻(𝑡1)+𝐻(𝑡2)
(1 + O (𝜖

𝜂 log𝑁)) ,

1

|𝑢|
𝐻((𝑗1−𝑝)/𝑁)+𝐻((𝑗2−𝑞)/𝑁)

=
1

|𝑢|
𝐻(𝑡1)+𝐻(𝑡2)

(1 + O (𝜖
𝜂 log 𝑢)) .

(A.3)

Using also 𝜖
𝜂

→ 0 as 𝑁 goes to infinity, the covariance can
be written as follows:

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 (𝑡
1
) 𝐺 (𝑡
2
)

𝑁𝐻(𝑡1)+𝐻(𝑡2)

× ∫
exp (i (𝑗

1
− 𝑝) 𝑢) − 1

|𝑢|
𝐻(𝑡1)+1/2

×
exp (−i (𝑗

2
− 𝑞) 𝑢) − 1

|𝑢|
𝐻(𝑡2)+1/2

𝑑𝑢

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁) .

(A.4)

Since the order of filter a is at least 1,∑
𝑞
𝑎
𝑞
= 0, (A.4) becomes

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 (𝑡
1
) 𝐺 (𝑡
2
)

𝑁𝐻(𝑡1)+𝐻(𝑡2)
∫
cos ((𝑗

1
− 𝑝 − 𝑗

2
+ 𝑞) 𝑢) − 1

|𝑢|
𝐻(𝑡1)+𝐻(𝑡2)+1

𝑑𝑢

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁) .

(A.5)

Since𝐾(𝛼) ∫((1−cos(𝜅𝑢))/|𝑢|𝛼+1)𝑑𝑢 = |𝜅|
𝛼, for all 𝜅, 0 < 𝛼 <

2,

E [𝑉
󸀠

a (
𝑗
1

𝑁
)𝑉
󸀠

a (
𝑗
2

𝑁
)] = −∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 (𝑡
1
) 𝐺 (𝑡
2
)

𝑁𝐻(𝑡1)+𝐻(𝑡2)

×

󵄨󵄨󵄨󵄨𝑗1 − 𝑝 − 𝑗
2
+ 𝑞

󵄨󵄨󵄨󵄨

𝐻(𝑡1)+𝐻(𝑡2)

𝐾(𝐻 (𝑡
1
) + 𝐻 (𝑡

2
))

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁)

= −
𝐶
2

𝑔 (𝐻 (𝑡
1
) ,𝐻 (𝑡

2
))

𝑁𝐻(𝑡1)+𝐻(𝑡2)

×∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

2

󵄨󵄨󵄨󵄨𝑗1 − 𝑝 − 𝑗
2
+ 𝑞

󵄨󵄨󵄨󵄨

𝐻(𝑡1)+𝐻(𝑡2)

+ 𝜎
2

∑

𝑝−𝑞=𝑗−𝑗
󸀠

𝑎
𝑞
𝑎
󸀠

𝑞
+ O (𝜖

𝜂 log𝑁)

=
𝐶
2

𝑔 (𝐻 (𝑡
1
) ,𝐻 (𝑡

2
))

𝑁𝐻(𝑡1)+𝐻(𝑡2)

× 𝜋a,𝐻(𝑡1)/2+𝐻(𝑡2)/2 (𝑗1 − 𝑗
2
)

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁) ,

(A.6)



Mathematical Problems in Engineering 9

where 𝜋a,ℎ(𝑘) = −(1/2)∑
𝑙

𝑝,𝑞=0
𝑎
𝑝
𝑎
𝑞
|𝑘 − 𝑝 + 𝑞|

2ℎ. When we
replace a with a(𝑚), the proof is completed.

B. Proof of Proposition 2

Let 𝐴 and 𝐵 denote, respectively,

𝐴 =
1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑙

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞
𝑊(

𝑗 − 𝑝

𝑁
) 𝜀 (

𝑗 − 𝑞

𝑁
) ,

𝐵 =
1

|] (𝑡)|
∑

𝑗∈](𝑡)

(

𝑙

∑

𝑞

𝑎
𝑞
𝜀 (

𝑗 − 𝑞

𝑁
))

2

.

(B.1)

Then log 𝑆󸀠(𝑡, a) can be written as

log 𝑆󸀠 (𝑡, a) = log 1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉
󸀠

a(
𝑗

𝑁
)

2

= log 1

|] (𝑡)|

× ∑

𝑗∈](𝑡)

((

𝑙

∑

𝑞

𝑎
𝑞
𝑊(

𝑗 − 𝑞

𝑁
))

2

+ 2𝜎

𝑙

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞
𝑊(

𝑗 − 𝑝

𝑁
) 𝜀 (

𝑗 − 𝑞

𝑁
)

+𝜎
2

(

𝑙

∑

𝑞

𝑎
𝑞
𝜀 (

𝑗 − 𝑞

𝑁
))

2

)

= log 𝑆 (𝑡, a) + (2𝜎
𝐴

𝑆 (𝑡, a)
+ 𝜎
2

𝐵

𝑆 (𝑡, a)
)

× (1 + 𝑜 (1))

(B.2)

by Taylor’s expansion of log(1 + 𝑥) = 𝑥(1 + 𝑜(1)) near 𝑥 = 0.
Similarly, logE[𝑆󸀠(𝑡, a)] is expressed as

logE [𝑆
󸀠

(𝑡, a)] = log(E [𝑆 (𝑡, a)] + 𝜎
2

𝑙

∑

𝑞

𝑎
2

𝑞
)

= log (E [𝑆 (𝑡, a)]) + (

𝜎
2

∑
𝑙

𝑞
𝑎
2

𝑞

E [𝑆 (𝑡, a)]
)

× (1 + 𝑜 (1)) .

(B.3)

Using independence of 𝑊(𝑡) and 𝜀(𝑡), the property of white
noise 𝜀(𝑡), and the convergence of 𝑆(𝑡, a) to E[𝑆(𝑡, a)] almost
surely as 𝑁 → ∞, we approximate 𝐴 → 0, 𝐵 →

∑
𝑙

𝑞
𝑎
2

𝑞
, and 𝜎

2

(𝐵/𝑆(𝑡, a)) → 𝜎
2

(∑
𝑙

𝑞
𝑎
2

𝑞
/E[𝑆(𝑡, a)]). Then the

difference between log 𝑆󸀠(𝑡, a) in (B.2) and logE[𝑆󸀠(𝑡, a)] in
(B.3) becomes

log 𝑆󸀠 (𝑡, a) − logE [𝑆
󸀠

(𝑡, a)]

= log 𝑆 (𝑡, a) − logE [𝑆 (𝑡, a)] + 𝑜 (1)

= log( 1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉a(𝑗/𝑁)
2

E [𝑆 (𝑡, a)]
) + 𝑜 (1)

(by the definition of 𝑆 (𝑡, a))

= log( 1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉a(𝑗/𝑁)
2

E [𝑉a(𝑗/𝑁)
2

]

) + 𝑜 (1)

(by the stationarity of 𝑉a)

= ((
1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉a(𝑗/𝑁)
2

E [𝑉a(𝑗/𝑁)
2

]

) − 1) (1 + 𝑜 (1))

(by Taylor’s expansion)

= 𝑉 (𝑡, a) (1 + 𝑜 (1)) .

(B.4)
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Henri Poincaré B, vol. 33, no. 4, pp. 407–436, 1997.

[12] J. T. Kent and A. T. A. Wood, “Estimating the fractal dimension
of a locally self-similar gaussian process by using increments,”
Journal of the Royal Statistical Society B, vol. 59, no. 3, pp. 679–
699, 1997.

[13] J. F. Coeurjolly, “Estimating the parameters of a fractional
brownian motion by discrete variations of its sample paths,”
Statistical Inference for Stochastic Processes, vol. 4, no. 2, pp. 199–
227, 2001.

[14] M. Fhima, A. Guillin, and P. R. Bertrand, “Fast change point
analysis on the Hurst index of piecewise fractional Brownian
motion,” http://arxiv.org/abs/1103.4029.

[15] J. Beran, Statistics for Long-Memory Processes, vol. 61 of Mono-
graphs on Statistics and Applied Probability, Chapman & Hall,
London, UK, 1994.

[16] J.M. Bardet and P. Bertrand, “Definition, properties and wavelet
analysis of multiscale fractional Brownian motion,” Fractals,
vol. 15, no. 1, pp. 73–87, 2007.

[17] J.F. Coeurjolly, “Identification of multifractional brownian
motion,” Bernoulli, vol. 11, no. 6, pp. 987–1008, 2005.

[18] A. Shapiro, “Statistical inference of moment structures,” in
Handbook of Latent Variable and Related Models, pp. 229–260,
2007.

[19] I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS-
NSF Regional Conference Series in Applied Mathematics, SIAM,
Philadelphia, Pa, USA, 1992.

[20] B. Vidakovic, Statistical Modeling by Wavelets, Wiley Series in
Probability and Statistics: Applied Probability and Statistics,
John Wiley & Sons, Hoboken, NJ, USA, 1999.

[21] J. Gao,Multiscale Analysis of Complex Time Series: Integration of
Chaos and Random Fractal Theory, and Beyond, John Wiley &
Sons, Hoboken, NJ, USA, 2007.

[22] A. Wood and G. Chan, “Simulation of stationary gaussian
processes in [0, 1] d,” Journal of Computational and Graphical
Statistics, vol. 3, no. 4, pp. 409–432, 1994.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 735189, 7 pages
http://dx.doi.org/10.1155/2013/735189

Research Article
A Reconfigurable Logic Cell Based on
a Simple Dynamical System

Lixiang Li,1,2,3 Chunyu Yang,2 Sili Hui,2 Wenwen Yu,2 Jürgen Kurths,4

Haipeng Peng,2 and Yixian Yang5

1 Institute of Network Coding, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
2 Information Security Center, State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China

3 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518063, China
4 Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
5 School of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China

Correspondence should be addressed to Lixiang Li; li lixiang2006@163.com

Received 21 June 2013; Accepted 7 July 2013

Academic Editor: Ming Li

Copyright © 2013 Lixiang Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper introduces a new scheme to achieve a dynamic logic gate which can be adjusted flexibly to obtain different logic functions
by adjusting specific parameters of a dynamical system. Based on graphical tools and the threshold mechanism, the distribution
of different logic gates is studied, and a transformation method between different logics is given. Analyzing the performance of
the dynamical system in the presence of noise, we discover that it is resistant to system noise. Moreover, we find some part of
the system can be considered as a leaky integrator which has been already widely applied in engineering. Finally, we provide a
proof-of-principle hardware implementation of the proposed scheme to illustrate its effectiveness. With the proposed scheme in
hand, it is convenient to build the flexible, robust, and general purpose computing devices such as various network coding routers,
communication encoders or decoders, and reconfigurable computer chips.

1. Introduction

For years, the construction of integrated circuits has required
a vast amount of time and money for combining different
logic gates. In 1985, when the first field-programmable gate
array (FPGA)was introduced to the world, the era of reusable
“field-programming” began which led to a more flexible
implementation of integrated circuits. However, the speed
of an FPGA reconfigurable scheme is typically slow, since it
needs some time for “rewiring” [1].

In 1998, a novel way of configuring dynamic logic gates
was introduced by Sinha and Ditto [2]. Based on a threshold
mechanism and chaotic maps, they proposed a scheme to
construct dynamic computing systems with flexible logic
functions.Their method permitted faster switching (typically
within only 0.5 clock cycle) between any two kinds of logics.
Nowadays, more schemes have been conducted to construct

new types of dynamic logic gates, including synchronization
of a nonlinear system [3] as well as the interplay of square
waves and noise [4]. Recently, piecewise linear systems were
also suggested to construct the dynamic logic architecture [5].
The development of dynamic computing has brought about
the appearance of commercial chaotic computer [6].

In this work, we propose a scheme to obtain dynamic
logic functions by controlling simple dynamical systems.
Based on the threshold mechanism, we give a transformation
method between different logics and analyze its antinoise and
time-delay characteristics. We find that the scheme is robust
to system noise. Furthermore, the main part of the system
can be designed based on the leaky integrator which has been
applied into different research fields, such as in neuronal or
cell analysis and filters related to signal processing. Finally,
the scheme is proved to be effective by simulation results of a
logic gate circuit.
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Figure 1: (Color online) the judgingmethod of the system output, where the navy blue, green, red, and baby blue lines represent the situations
of inputs (0, 0), (0, 1), (1, 0), and (1, 1), respectively.

2. A Scheme of Dynamic Logic Gate

We now propose a new method to change the function of
a logic gate flexibly by altering only one parameter or two
specific parameters. The formula of its implementation is

̇𝑥 = −𝑝𝑥 + 𝑝(𝐼 − 𝑘)
2

, (1)

where𝑥 is the state of system (1), 𝐼 is the input of the logic gate,
𝑝 > 1 determines the convergence rate of the system, and 𝑘
is the control parameter to achieve a transformation between
different logics.

When system (1) is stable, its state 𝑥 will converge to the
constant as follows:

𝑥 = (𝐼 − 𝑘)
2

. (2)

Based on the threshold mechanism introduced byMurali
et al. [4], the output of the logic gate can be determined by

𝐼out = 0 if 𝑥 < 𝛽; 𝐼out = 1 else. (3)

To implement the dynamic logics, the most significant
step is to set 𝑝, 𝑘, and 𝛽 based on some specific applications.
A general situation will be discussed in this paper.

3. Explanation and Discussion of
the Proposed Scheme

Typically, we consider that a logic gate has two inputs and one
output, for example, we suppose that

𝐼 = 𝑎 ⋅ 𝐼
0
+ 𝑏 ⋅ 𝐼

1
, (4)

where 𝐼
0
and 𝐼
1
are two logic inputs being either 0 or 1, and

𝑎 and 𝑏 are the parameters. (𝐼
0
, 𝐼
1
) has four possible values.

The relationship between the inputs and the output is shown
in Table 1.

Figure 1(a) shows the situation of 𝑏 = 2𝑎, while in Figure
1(b), 𝑎 and 𝑏 do not have to have any relationships. We can
see that both Figures 1(a) and 1(b) can be divided into four
logical areas based on the intersections among these four
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Figure 2: (Color online) the influences of input and system noises on the performance of the system, where (a) in a noiseless case; (b) in the
presence of input noise whose range is [−0.2, +0.2]V; (c) in the presence of input noise whose range is [−0.5, +0.5]V; (d) in the presence of
system noise whose range is [−0.5, +0.5]V; and (e) in the presence of system noise whose range is [−10, +10]V.

Table 1: The relationship between the inputs and the output.

(a) For arbitrary 𝑎 and 𝑏

Input 0 0 0 1 1
Input 1 0 1 0 1
Output 0 𝑏 𝑎 𝑎 + 𝑏

(b) For 𝑏 = 2𝑎

Input 0 0 0 1 1
Input 1 0 1 0 1
Output 0 2𝑎 𝑎 3𝑎

curves, which states that there are four possible ranges for the
threshold 𝛽. Similarly, it can be easily concluded that when
𝑏 = 2𝑎 or 𝑎 = 2𝑏, possible logic functions can be uniformly
distributed along the 𝑘-axis. Hence, when 𝑏 = 2𝑎 or 𝑎 = 2𝑏,
the logic values are clearly determined, and a confusion is
less likely to occurr. To simplify the problem and avoid some
confusion, 𝑏 = 2𝑎 will be used in this paper. Then, the value
of 𝐼 is simply 𝐼 = 𝑎 ⋅ (𝐼

0
+ 2𝐼
1
).

Figures 1(c)-1(d) show the judging method for the system
output, where the logic value of the system is determined
by a curve intersection method, for example, different points
in these figures show different states of the system, and the
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Table 2: All available logic gates for the system.

Region 𝛽 𝑘/𝑎 Logic gate

I (0,
1

16
]

(−∞, −√𝛽) 1

(−√𝛽,√𝛽) OR

(√𝛽,
1

2
− √𝛽) 1

(
1

2
− √𝛽,
1

2
+ √𝛽) 𝐼

1
+ 𝐼
󸀠

0

(
1

2
+ √𝛽, 1 − √𝛽) 1

(1 − √𝛽, 1 + √𝛽) 𝐼
󸀠

1
+ 𝐼
0

(1 + √𝛽,
3

2
− √𝛽) 1

(
3

2
− √𝛽,
3

2
+ √𝛽) NAND

(
3

2
+ √𝛽, +∞) 1

II (
1

16
,
1

4
]

(−∞, −√𝛽) 1

(−√𝛽,
1

2
− √𝛽) OR

(
1

2
− √𝛽,√𝛽) 𝐼

1

(√𝛽, 1 − √𝛽) 𝐼
1
+ 𝐼
󸀠

0

(1 − √𝛽,
1

2
+ √𝛽) XNOR

(
1

2
+ √𝛽,
3

2
− √𝛽) 𝐼

󸀠

1
+ 𝐼
0

(
3

2
− √𝛽, 1 + √𝛽) 𝐼

󸀠

1

(1 + √𝛽,
2

3
+ √𝛽) NAND

(
2

3
+ √𝛽, +∞) 1

III (
1

4
,
9

16
]

(−∞, −√𝛽) 1

(−√𝛽,
1

2
− √𝛽) OR

(
1

2
− √𝛽, 1 − √𝛽) 𝐼

1

(1 − √𝛽,√𝛽) AND

(√𝛽,
3

2
− √𝛽) XNOR

(
3

2
− √𝛽,
1

2
+ √𝛽) NOR

(
1

2
+ √𝛽, 1 + √𝛽) 𝐼

󸀠

1

(1 + √𝛽,
3

2
+ √𝛽) NAND

(
3

2
+ √𝛽, +∞) 1

Table 2: Continued.

Region 𝛽 𝑘/𝑎 Logic gate

IV (
9

16
, +∞)

(−∞, −√𝛽) 1

(−√𝛽,
1

2
− √𝛽) OR

(
1

2
− √𝛽, 1 − √𝛽) 𝐼

1

(1 − √𝛽,
3

2
− √𝛽) AND

(
3

2
− √𝛽,√𝛽) 0

(√𝛽,
1

2
+ √𝛽) NOR

(
1

2
+ √𝛽, 1 + √𝛽) 𝐼

󸀠

1

(1 + √𝛽,
3

2
+ √𝛽) NAND

(
3

2
+ √𝛽, +∞) 1

functionality of the system can be altered by changing 𝑘.
For each case of these four possible ranges of 𝛽, when 𝑘
is known, the logic value can be determined. For example,
when 1/4 ≤ 𝛽 < 9/16, for √𝛽 < 𝑘 < 2/3 − √𝛽 and
1 − √𝛽 < 𝑘 < √𝛽, which are shown in Figures 1(c)-1(d),
respectively. There are four intersection points between the
straight line of 𝑘 and these four curves. In Figure 1(c), since
the values of point A and point B are higher than that of 𝛽,
we get 𝐼out = 1 by (3); similarly, since the values of point
C and point D are lower than that of 𝛽, we get 𝐼out = 0.
Hence, for inputs (0, 0) and (1, 1), the output is 1; while for
inputs (0, 1) and (1, 0), the output is 0. The corresponding
logic gate is an XNOR gate. Similarly, for Figure 1(d), the
output for input (1, 1) is 1 and that for inputs (0, 0), (0, 1),
and (1, 0), is 0. That is, the function of AND gate is achieved.
It is worth noting that the transformation fromXNOR gate to
AND can be realized by only changing the control parameter
𝑘.

By a similar analytical method, all the logic gates can be
achieved by the proposed scheme as summarized in Table 2.
It is clearly seen that, by only altering the value of 𝑘, eight
types of logic gates can be achieved. For example, when 𝛽 ∈
(1/16, 1/4], the possible logic functions that can be achieved
are 1, OR, 𝐼

1
, 𝐼
1
+ 𝐼
󸀠

0
, XNOR, 𝐼󸀠

1
+ 𝐼
0
, 𝐼󸀠
1
, NAND.

3.1. Analysis in the Presence of Noise. In reality, noise is
unavoidable. Generally, there are two types of noise: input
noise and system noise. Figure 2(a) shows the output results
of systemwithout noise.When the system is addedwith input
noise, then ̇𝑥 = −𝑝𝑥 + 𝑝(𝐼 + 𝐷𝜂(𝑡) − 𝑘)2, and its steady state
is

𝑥 = [𝐼 + 𝐷𝜂 (𝑡) − 𝑘]
2

, (5)

where 𝜂(𝑡) is the additive white Gaussian noise (AWGN) and
𝐷 is its intensity. Figures 2(b)-2(c) show the simulation results
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dx/dt(I(t) − k(t))2
+

−

x
P

Figure 3: The system block diagram of a leaky integrator.

in the presence of input noise, where (b) the noise range is
[−0.2, +0.2]V and (c) the noise range is [−0.5, +0.5]V. It can
be clearly seen that when the input noise increases, the system
becomes more fluctuating.

When the system is added with system noise, then ̇𝑥 =
−𝑝𝑥 + 𝑝(𝐼 − 𝑘)

2

+𝐷𝜂(𝑡), and the steady state of the system is

𝑥 = [𝐼 − 𝑘]
2

+
𝐷𝜂 (𝑡)

𝑝
. (6)

Figures 2(d)-2(e) show the simulation results in the
presence of system noise, where (d) the noise range is
[−0.5, +0.5]V and(e) the noise range is [−10, +10]V. We can
see fromFigures 2(d)-2(e) that the system is strongly resistant
to system noise which is one of its most important advantage.
Therefore, if we want to build a robust logic gate, then we
should put the best effort to minimize the input noise.

3.2. Analysis of Delay. The parameter 𝑝 has an important
influence on the response time of the system. The system
equation ̇𝑥 = −𝑝𝑥 + 𝑝(𝐼 − 𝑘)2 can be rearranged into

1

𝑝
⋅
𝑑𝑥

𝑑𝑡
= −𝑥 (𝑡) + (𝐼 (𝑡) − 𝑘 (𝑡))

2

. (7)

Hence, we can obtain a system of a leaky integrator whose
block diagram is shown in Figure 3. It was proposed as a vital
digital signal processing filter which has been very popular in
different areas. It has been used to investigate biological and
artificial learning processes. Moreover, its famous application
in neuron network has made the computation much easier
andmore powerful [7].The system here is applicable to study
further details in timing and delays.

Note that 1/𝑝 is the time constant of the system.Then, we
get from (7)

𝑥 (𝑡) = 𝑒
−𝑡/𝜏

𝑥 (0) + 𝑝∫

𝑡

0

𝑒
−𝑝(𝑡−𝜏)

(𝐼 (𝑡 − 𝜏) − 𝑘 (𝑡 − 𝜏))
2

𝑑𝜏.

(8)

If (𝐼(𝑡) − 𝑘(𝑡))2 is defined as a constant (e.g., 𝐶), then the
relationship between 𝑝 and 𝑥(𝑡) is

𝑥 (𝑡) = 𝑒
−𝑝𝑡

𝑥 (0) + 𝐶 (1 − 𝑒
−𝑝𝑡

) . (9)

Figure 4 shows the evolution of 𝑥(𝑡) as 𝑝 = 1, 3, 5, 10. We
can see from Figure 4 that the larger the value of 𝑝 is, the
shorter the time lag to reach a constant result is, or the
more accurate the desired output is. If 𝑝 is very small, the
system may not fully response to an input and cannot reach
a stable state before the next input starts. This indicates that

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x
(t
)

(t)

Delay of different p

p = 1

p = 3

p = 5

p = 10

Figure 4: (Color online) the evolution of 𝑥(𝑡) as 𝑝 = 1, 3, 5, 10,
respectively.

the response time of each transformation will be longer than
the output intervals, and errors will occurr. Therefore, we
can say that larger 𝑝 means a faster response time and a
more accurate output. However, it is not the larger the better.
In practice, larger 𝑝 also means higher energy-consuming
amplifier. Users should design a system based on specific
applications to make the system work more effectively.

3.3. Circuit Implementation. The physical implementation of
a logic cell is an important step for successful applications
[8, 9]. Figure 5 shows the equivalent circuit of system (1) by
simulation with multisim software.

In Figure 5, there are two parts which are the compu-
tation part and the judgment one serving for computing
the solution of system (1) as well as judging whether the
solution exceeds the threshold, respectively. The left part
of Figure 5 corresponds to the computation part in which
there are two subtractors, one multiplexer, one amplifier,
and one integrator. The right part of Figure 5 corresponds to
the judgment one in which there is an operational amplifier
serving as the voltage comparator. For subtractor 1, the output
is𝑉
𝑡
= 𝐼
0
+2𝐼
1
−𝑘 and, for subtractor 2, the output is (𝐼−𝑘)2−𝑥.

For the voltage comparator, we can change the threshold by
altering the value of the DC source.

By (1) and (3), all the parameters in the circuit of Figure 5
can be calculated. Therefore, certain circuits can be designed
according to specific applications. For example, if all the
parameters are set properly, then we can achieve an OR logic
gate. Figure 6 gives the stream of input signals 𝐼

0
, 𝐼
1
and the

output 𝐼out for the OR logic gate. The inputs 𝐼
0
and 𝐼
1
are

square waves with 10Vp amplitudes and 2 kHz and 4 kHz
frequencies, respectively. The voltage values of 𝐼

0
, 𝐼
1
, and 𝐼out

are shown in Figure 6 with 200 us/Div time base and 5V/Div
scale.

Similar results can be achieved as the frequencies of the
inputs increases. When the frequencies of the inputs become
large enough, the lag time must be taken into consideration.
As discussed above, the increment of 𝑝 leads to smaller lag



6 Mathematical Problems in Engineering

R3

4 kΩ

U1

OP37AJ

3

2

4

7

6

81

15 V

V1
15 V 

R5 12 kΩ

R7 10 kΩ

R6 6 kΩ

R1

4 kΩ

A1

1 V/V 0 V 1 V/V 0 V 

Y

X R2

5 kΩ

U2

OP37AJ

3

2

4

7

6

81

15 V

R8 5 kΩ

R4 5 kΩ

R9
5 kΩ

D1

1BH62

A2A3

100 V/V 

In Out

U3
MAX4100ESA

3

2
4

7

6

15 V

V2
5 V 

R10
10 kΩ

R11

10 kΩ

−15V
−15V

−15V

+

−

+

−

+

−

VDD

VDD VDD

VSS
VSS

VSS

Figure 5: (Color online) the circuit diagram of the system (1).
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Figure 6: (Color online) simulation results of an OR gate.

time and faster convergence.This phenomenon is obvious for
larger frequency inputs.

The proposed method can be used to other systems such
as fractional oscillators [10, 11], and we may obtain some
potential interesting results.

4. Conclusion

To sum up, a scheme to realize a dynamic logic gate is
introduced in this paper. Based on the proposed scheme, all
available logics and its transformation method are discussed.
Besides, the noise and lag characteristics of the system are

studied. We find that the system is resistant to system noise
and its response time can be easily controlled. Finally, a
circuit implementation for an OR logic gate is provided as an
example. Other feasible logic gates can be achieved similarly.
The scheme is both straightforward and robust which enables
a strong flexible hardware implementation with very low
cost. This dynamic logic gate can be applied as a universal
basic hardware element to build various kinds of commu-
nication encoders and decoders, network coding routers,
specific reconfigurable computer chips, graphics processor
units, reconfigurable multimedia video cards, or specific sys-
tems that require frequent transformations between different
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logics.Moreover, there are some further significant directions
to be investigated such as all kinds of reconfigurable network
coding routers and reconfigurable cyclic code encoder or
decoder based on the proposed reconfigurable dynamic logic
gate. Communication and computer hardware devices based
on such dynamic logic scheme may be more flexible and
robust than the existing statically wired hardware.
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Nowadays, the topology of complex networks is essential in various fields as engineering, biology, physics, and other scientific fields.
We know in some general cases that there may be some unknown structure parameters in a complex network. In order to identify
those unknown structure parameters, a topology identification method is proposed based on a chaotic ant swarm algorithm in this
paper. The problem of topology identification is converted into that of parameter optimization which can be solved by a chaotic
ant algorithm. The proposed method enables us to identify the topology of the synchronization network effectively. Numerical
simulations are also provided to show the effectiveness and feasibility of the proposed method.

1. Introduction

So far, most researches on complex networks are based on
their exact structure dynamics. However, there is often vari-
ous unknown or uncertain information in complex networks
of the real world. This information including the topology
connection of networks, and dynamical parameters of nodes,
is always partially known and also changes continuously in
many real complex networks such as gene networks, protein-
DNA structure network, power grid networks, and biological
neural networks [1–4]. Knowledge about the identification
of the topology of complex networks is the prerequisite
to analyze, control, and predict their dynamical behaviors.
Therefore, this topic has drawn great attention of many
researchers, since it is of great theoretical and practical
significance to use the dynamics of observed nodes for the
identification of the network structure [5–7].

The problem of topology identification can be formulated
as a gray box model. From this viewpoint, a basic mathe-
matical model of the topology for the complex network can
be constructed, although its exact structure peculiarities are

not entirely known. In the model of a complex network,
there are often some unknown structure parameters which
can be completed via topology identification. Therefore, if
the basic mathematical model of its topological structure is
built, then we only need to identify the unknown structure
parameters of this network. Recently, some research on
topology identification of complex networks has emerged
to identify some complex networks and some time-delay
networks [8].These researchersmainly used an adaptive feed-
back control algorithm to solve the problem of topological
identification. But this algorithm may fail if the network
is in a synchronous regime. In [9], an improved adaptive
feedback controlmethodwas proposed tomake it identifiable
in synchronous complex networks. However, this improved
method should change the coupling mode of its topology. In
addition, to adapt this improved adaptive feedback control
method, the dynamical parameter of each node must be
observable, which is especially difficult to realize in most
real networks such as metabolic networks and power grid
networks.
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In this paper, a method of topology identification for
complex networks is proposedwhich is based on a chaotic ant
swarm (CAS) algorithm.The problem of topology identifica-
tion is converted into that of parameter optimization which
could be solved by the CAS optimization algorithm [10]. The
CAS algorithm was inspired by biological experiments of
single ant’s chaotic behavior. This CAS method is different
from those of ant colony optimization (ACO), since the CAS
algorithm combines chaotic and self-organizing behaviors of
ants with the advantages of swarm-based algorithms. The
CAS algorithm is a global optimization algorithm, and it
can deal with topology identification of complex networks
effectively when they are in a nonsynchronous and evenwhen
they are in a synchronous regime.

The remainder of this paper is organized as follows. In
Section 2, the problem formulation of topology identification
for complex networks is presented. In Section 3, the chaotic
ant swarm algorithm is introduced. In Section 4, results of
numerical simulations are given. Finally, some conclusions
about the proposed method are drawn in Section 5.

2. Problem Formulation

To demonstrate the topology identification of complex
networks, in this paper, we consider a general complex
dynamical network as in [1] with each node being an 𝑛-
dimensional dynamical system, and it is described by a
differential equation of the following form

𝑋
𝑖
= 𝐹
𝑖
(𝑋
𝑖
) +

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝐻𝑋
𝑗
, 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑁 denotes the number of nodes in the dynamical
network and 𝑋

𝑖
= (𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
) ∈ 𝑅

𝑛
is the state

vector associated with the 𝑖th node. The function 𝐹
𝑖
is the

corresponding nonlinear vector field.𝐻 is the inner-coupling
matrix. 𝐶 = (𝑐

𝑖𝑗
)
𝑁×𝑁

is the coupling topology of the network.
If there exists a coupling connection between node 𝑖 and node
𝑗 (𝑖 ̸= 𝑗), 𝑐

𝑖𝑗
̸= 0; otherwise, 𝑐

𝑖𝑗
= 0. In this paper, 𝐶 does not

need to be symmetric or irreducible.
The coupling matrix 𝐶 fully represents the topological

information of the complex network. Consequently, the
problem of topology identification for a complex network
can be converted into that of identification of the unknown
coupling matrix 𝐶. To identify the coupling matrix 𝐶, here,
we assume that 𝐻 and 𝐹

𝑖
can be experimentally measured

in advance. Next, a drive-response network should be built.
Equation (1) is taken as the driving network. Then, the
response network can be designed as

̇𝜂
𝑖
= 𝐹
𝑖
(𝜂
𝑖
) +

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝐻𝜂
𝑗
, (2)

where 𝑐
𝑖𝑗
is the estimated parameter of 𝑐

𝑖𝑗
. 𝜂
𝑖
is obtained by

simulating the network (1) with the estimated coupling
matrix element 𝑐

𝑖𝑗
.

To identify the topology of the complex network, the
following objective function is introduced as

𝑉 =

𝑀

∑

𝑘=0

𝑁

∑

𝑖=1

𝐷

∑

𝑑=1

(𝑥
𝑖𝑑
(𝑘) − 𝜂

𝑖𝑑
(𝑘))
2

, (3)

where𝑀 is the termination time of numerical simulation,𝑁
indicates the number of nodes, 𝐷 denotes the dimensions of
each node’s dynamical system, and 𝑘 is the discrete time. 𝑥

𝑖𝑗
is

the state vector of the driving network. 𝜂
𝑖𝑗
is the state vector

of the response network with initial value 𝜂
𝑖𝑗
= 𝑥
𝑖𝑗
and the

estimated coupling matrix element 𝑐
𝑖𝑗
.

Hence, the problem of topology identification is con-
verted into that of a parameter optimization by the search of
the minimal value of 𝑉. The topology matrix 𝐶 can be well
identified through the method of objective function.

3. Chaotic Ant Swarm Algorithm

In recent years, a swarm intelligent optimization algorithm
called chaotic ant swam (CAS) algorithm is proposed to
solve the optimization problem based on chaos theory [10].
The mathematical model of CAS algorithm is described as
follows:

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡 − 1)

(1+𝑟𝑖),

𝑧
𝑖𝑑
(𝑡) = Δ exp ((1 − exp (−𝑎𝑦

𝑖
(𝑡))) (3 − Ψ

𝑑
Δ))

−
7.5

Ψ
𝑑
× 𝑉
𝑖

+ exp (−2𝑎𝑦
𝑖
(𝑡) + 𝑏)

× (𝑝best
𝑑
(𝑡 − 1) − 𝑧

𝑖𝑑
(𝑡 − 1)) ,

(4)

where 𝑦
𝑖
(𝑡) is the organization variable of the CAS model

and Δ = 𝑧
𝑖𝑑
(𝑡 − 1) + 7.5/(Ψ

𝑑
× 𝜙
𝑖
). It controls the chaotic

behavior of an individual ant. In this paper, 𝑦
𝑖
(0) = 0.999.

𝑟
𝑖
is the organization parameter of individual ant which is a

positive constant less than 1. 𝑎 is a very large positive constant;
here, 𝑎 is set to be 200. 𝑏 is a positive constant, where 0 ≤

𝑏 ≤ 2/3. Ψ
𝑖
determines the searching range of the 𝑖th ant in

𝑑th dimension. 𝜙
𝑖
controls the moving proportion of the 𝑖th

ant searching space. 𝑝best(𝑡 − 1) is the best position that the
individual ant and its neighbors have ever found within 𝑡 − 1
time steps. Here the neighbors are set to be global neighbors;
that is, all the ants are the neighbors of each other.

The ants usually exchange information via certain direct
or indirect communication methods. As a result of effective
communication, the impact of the organization becomes
stronger as time evolves. Finally, all the ants walk through
the best path to forage food. Equation (4) shows the foraging
process of CAS model. As time increases, the effect of the
organization variable 𝑦

𝑖
(𝑡) on the behavior of each ant is

becoming stronger via the organization parameter 𝑟
𝑖
. Finally,

by the effect of both 𝑝best
𝑑
(𝑡 − 1) and 𝑦

𝑖
(𝑡), the state of 𝑧

𝑖𝑑
(𝑡)

will converge to the best global position.
𝑟
𝑖
andΨ

𝑑
are two important parameters. 𝑟

𝑖
has an effect on

the converging speed of the CAS algorithm. If 𝑟
𝑖
is very large,

then the converging speed of the CAS algorithm will be very
fast so that the optimal solution might not be found. If 𝑟

𝑖
is
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very small, then the converging speed of the CAS algorithm
will be very slow and the runtimewill be longer. If 𝑟

𝑖
is set to be

zero, then the behavior of one ant will be chaotic all the time
and the CAS algorithm cannot converge to a fixed position.
Furthermore, since small changes of organization effect are
desired, 𝑟

𝑖
is set to be 0 ≤ 𝑟

𝑖
≤ 0.5. The concrete formula

of 𝑟
𝑖
depends on the specific problem as well as runtime.

In order to enable each ant to have a different organization
parameter, we set 𝑟

𝑖
= 0.1 + 0.2 × rand, where rand is a

uniformly distributed random number in the interval [0, 1].
Ψ
𝑑
has an effect on the searching range of the CAS algorithm.

If the value of Ψ
𝑑
is very large, then the searching range will

be small. If Ψ
𝑑
is very small, then the searching range will be

very large.The searching range is set to be [−𝑤
𝑑
/2, 𝑤
𝑑
/2], and

then 𝑤
𝑑
≈ 7.5/Ψ

𝑑
.

Based on the above discussions about the CAS algorithm,
the detailed procedure for identifying the topology structure
of a complex network is described as follows.

Step 1. To identify the topology parameter of a complex
network, some important parameters of the CAS algorithm
should be firstly initialized. In this paper, the positive constant
𝑎 is set to be 200; the organization factor 𝑟

𝑖
of each node is set

as 𝑟
𝑖
= 0.1 + 0.2 × rand, where 𝑖 is the 𝑖th ant in the whole 𝑄

ants; 𝜙
𝑖
is set properly to control the moving proportion. The

organization variable of each node 𝑦
𝑖
is set to be 0.999. Ψ

𝑑
is

set properly to control the searching range of 𝑧
𝑖𝑑
, where 𝑑 is

the 𝑑th dimension of the ant local position.

Step 2. Generate the initial position of the 𝑖th ant 𝑧
𝑖
(𝑘 = 0) =

(𝑧
𝑖1
, 𝑧
𝑖2
, . . . , 𝑧

𝑖𝑑
)
𝑇 randomly in the searching space. 𝑘 = 0

denotes the initial time point.

Step 3. By setting the initial time state vector 𝑥
𝑖
(0) =

(𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
), the fourth-order Runge-Kutta algorithm is

used in the driving network (1) to obtain a series of 𝑥
𝑖
(𝑘).

Step 4. By setting the initial time state vector 𝜂
𝑖
(0) = 𝑥

𝑖
(0),

𝑖 = 1, 2, . . . , 𝑁, the well-known fourth-order Runge-Kutta
algorithm is used in the response network (2) to obtain a
series of 𝜂

𝑖
(𝑘), 𝑖 = 1, 2, . . . , 𝑁. The coupling matrix 𝐶 can be

estimated by the ant colony 𝑧
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑄.

Step 5. Compute 𝑦
𝑖
for each ant.Then, update the position of

each ant via (4).

Step 6. Compute the value of objective function for each ant
𝑧
𝑖
, and compare each value with previous 𝑓𝑝best of each ant.

If the current value is smaller than the previous 𝑓𝑝best, then
it is updated by the current value, and set the value of 𝑝best
to be the current individual location. Finally, compare each
𝑓𝑝best with 𝑓𝑔best. If the value of 𝑓𝑝best is smaller than
𝑓𝑔best, then 𝑓𝑔best is updated by 𝑓𝑝best of this ant. Then,
the 𝑝𝑔best = (𝑝𝑔best

1
, 𝑝𝑔best

2
, . . . , 𝑝𝑔best

𝑑
) is replaced by

the current global best position.

Step 7. Go to Step 5 until the ending condition is satisfied.
Then output the global best location of each ant, whichmeans
the couplingmatrix𝐶 can be identified by theCAS algorithm.

4. Numerical Simulation

In this section, we present several numerical simulation
results to illustrate the effectiveness of the proposed method.
Lorenz chaotic equation is taken as the node dynamical
system of the 𝑖th node, which is described as

̇𝑥
1
= 𝜃
1
(𝑥
2
− 𝑥
1
) ,

̇𝑥
2
= (𝜃
2
− 𝑥
3
) 𝑥
1
− 𝑥
2
,

̇𝑥
3
= 𝑥
1
𝑥
2
− 𝜃
3
𝑥
3
,

(5)

where 𝑥
1
, 𝑥
2
, and 𝑥

3
are the state variables; 𝜃

1
= 10, 𝜃

2
= 28,

𝜃
3
= 8/3 are positive constants. For the CAS algorithmmodel

(4), we set 𝑎 = 200, 𝑏 = 2/3, and 𝜙
𝑖
= 0. To calculate

the objective function 𝑉, 𝑀 = 20 successive vectors are
set in both driving and response networks. In order to show
the effectiveness and feasibility of the proposed method, two
examples are provided as follows to identify the topology
structure of complex networks.
Note. There is an interesting phenomenon. Let 𝜑 be the
golden ratio, which is approximately equal 1.618. Then, 𝑏
approximately equals 1/𝜑, and 𝜃

3
approximately equals to 𝜑2.

Why such an interesting phenomenon exist? We should give
further study in our future work. The basic concept of the
golden ratio is given in [11–13] and [14] for the spectra used
in [11, 12].

Example 1. First of all, a nonsymmetric and non-
synchronous diffusive network is considered, which includes
three nodes with the topology matrix 𝐶. The elements of the
topology matrix 𝐶 are 𝑐

1,2
= 4, 𝑐
2,1

= 5, 𝑐
2,3

= 3, and 𝑐
3,2

= 2.
The other elements are 𝑐

𝑖,𝑗
= 0 (𝑖 ̸= 𝑗) and 𝑐

𝑖,𝑖
= −∑ 𝑐

𝑖,𝑗
. 𝐻

is an identical matrix 𝐼
3
. Here, the initial state is set to be

𝑋(0) = [−6, 3, 7; −14, 3, −4; 5, −3, 4]. The population size is
40. The maximum time step is set as 200. Obviously, there
are 6 independent variables, so the dimension of each ant
position is set to be 6. We set Ψ

1
= Ψ
3
= 1.25, Ψ

2
= 1,

Ψ
4
= 1.85, and Ψ

5
= Ψ
6
= 10. 𝜂

𝑖𝑑
is in the interval [0, 7.5].

The estimated process is shown as follows.

Figure 1 shows that the coupling matrix 𝐶 can be well
identified as the time increases. When the time step is
approximately 200, the estimated coupling matrix converges
to the true value where the population size is 40. To compare
the CAS algorithm with the QPSO algorithm, we also use the
definition of [15] to identify the topology of Example 1. Then,
the evolution curve of the objective function against the time
can be obtained, and their comparative result between these
two algorithms is shown in Figure 2. We can see that the
objective function𝑉 converges rapidly to the global optima as
time evolves. Besides, the converging speed and the precision
of the CAS algorithm aremuch better than those of theQPSO
algorithm.

Example 2. In this example, a symmetric synchronous net-
work is introduced to show the effectiveness of the proposed
method. The parameters of the topology structure are set as
𝑐
1,2

= 𝑐
2,1

= 3, 𝑐
1,3

= 𝑐
3,1

= 6, 𝑐
1,4

= 𝑐
4,1

= 2, 𝑐
2,3

= 𝑐
3,2

= 4,
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Figure 1: (Color online) Estimation of nonsynchronous network
topology showing the value 𝑐(𝑡) against time step 𝑡.
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Figure 2: Estimation of nonsynchronous network topology show-
ing the objective function value 𝑉 against time step 𝑡.

𝑐
3,4

= 𝑐
4,3

= 5, and the other 𝑐
𝑖,𝑗
= 0 (𝑖 ̸= 𝑗) and 𝑐

𝑖,𝑖
= −∑ 𝑐

𝑖,𝑗
.

𝐻 is an identical matrix 𝐼
3
. Here, the initial state is 𝑋(0) =

[−6, 3, 7; −14, 3, −4; −3, 4, 5; −5, 6, 1].The population size is
30.Themaximal time step is set as 300. Obviously, there are 6
independent variables, so the dimension of each ant position
is set to be 6.Ψ

1
is set to be 1.875.Ψ

2
is set to be 0.75.Ψ

3
is set

to be 1.875. Ψ
4
is set to be 1.25. Ψ

5
is set to be 0.9375, and Ψ

6

is set to be 10. Figure 3 shows the identification results.

We can see that the topology matrix 𝐶 can be identified
precisely as the time increases. To compare CAS algorithm
with QPSO algorithm, we use the definition of [15] to identify
the topology of Example 2.The comparative result is shown in
Figure 4. From Figure 4 and Table 1, we can see that although
the converging speed of QPSO algorithm is a little faster than
that of CAS algorithm, the converging precision of QPSO is
much less than that of CAS algorithm. Obviously, the CAS-
based topology identification method is more effective than
the QPSO-based topology identification method. Compared
with the adaptive synchronization identification approach,
the CAS algorithm does not need to change the coupling
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ĉ2,4 ĉ4,2
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Figure 3: (Color online) Estimation of a synchronous network
topology showing the value 𝑐(𝑡) against time step 𝑡.
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Figure 4: Estimation of nonsynchronous network topology show-
ing the objective function value 𝑉 against time step 𝑡.

Table 1: Comparison between two algorithms.

Algorithms Objective value
CAS 0.317
QPSO 2.082

modes of the network topology, which has advantages in
some real identification cases, for example, the biological
neural network.

5. Conclusion

In this paper, a topology identification method is proposed
based on the CAS algorithm. The problem of topology iden-
tification is converted into that of parameter optimization.
Compared with the constraints of identifying synchronous
complex networks via adaptive feedback control method and
the relatively poorer converging precision via QPSO-based
topology identification method, the proposed method based
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on CAS algorithm can identify the topology structure of
complex network effectively.
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The particle swarm optimization (PSO) algorithm superiority exists in convergence rate, but it tends to get stuck in local optima.
An improved PSO algorithm is proposed using a best dimension mutation technique based on quantum theory, and it was applied
to sensor scheduling problem for target tracking. The dynamics of the target are assumed as linear Gaussian model, and the sensor
measurements show a linear correlationwith the state of the target.This paper discusses the single target tracking problemwithmul-
tiple sensors using the proposed best dimensionmutation particle swarmoptimization (BDMPSO) algorithm for various cases. Our
experimental results verify that the proposed algorithm is able to track the target more reliably and accurately than previous ones.

1. Introduction

Nowadays, the optimization problems of real-world increase
rapidly, and they are almost nonlinear and often have several
local optima, so it is very hard to find the global optimal solut-
ion fast. For example in target tracking [1, 2] system, manage-
ment of different kinds of sensors to get desired result within
acceptable time is a very difficult task.

Heuristic search strategies can acquire faster solutions as
they need not require the objective functions to be continu-
ous or differentiable. For recent years the particle swarm opti-
mization (PSO) algorithm in terms of social and cognitive
behavior with heuristic search strategy has been successfully
used in many real applications [3, 4] since it was proposed
by Kennedy and Eberhart [5]. Like most biologically inspired
algorithms, the PSO is population based, and the individuals
whichmake up the population are referred to as particles.The
main advantage of PSO algorithm is that it has fewer param-
eters to adjust, but when the search space is high its conver-
gence speed will become very slow near the global optimum
and get into local optima. PSO algorithm also shows poor
quality results when it deals with large and complex data sets,
and it often failed in searching for a global optimal solution

when the objective function has a large number of dimen-
sions. The reason for this phenomenon is not only the exis-
tence of the local optimal solutions especially for somemulti-
modal functions, but also the velocities of the particles some-
times lapsed into degeneracy, so that the successive range was
restricted in the subplain of the whole search space [6].

Although it was confirmed that the PSO algorithm has
potential to find global optimal solution on some benchmark
functions [7], it could get stuck in local optima. So the issue
of local optima in PSO algorithmhas been studiedwidely and
many different variants of PSO algorithmwere proposed. For
example, by dynamically adjusting the inertia weight 𝑤 and
acceleration weights 𝑐

1
, 𝑐
2
in PSO algorithm, the convergence

speed is increased and the swarm is encouraged to escape
from local optimal [8]. Some other mutation techniques are
used to mutate the positions of some particles in order to
diverge the swarm [9]. However, it is still difficult for the
modified methods above to find the global solutions for
some complex applications. In this paper, a new mutation
method called best dimension mutation (BDM) is proposed,
and it enables the particles to converge to global optimum
fast and easily escape from local optima. A new perturbation
technique inspired by quantummechanics is also introduced
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Figure 1: Single target tracking system with multiple sensors.

into original POS algorithm which is used to reinitialize
the particles positions without distorting the ongoing search
strategy when the particles are too close from each other. By
combining the twoproposedmethodologies, the particles can
escape from local optima more easily.

The rest of the paper is organized as follows. Section 2
discusses the tracking of single target using multiple noisy
sensors. Section 3 presents the BDMPSO (best dimension
mutated particle swarm optimization) algorithm. Section 4
shows our experimental results. Section 5 concludes the
paper.

2. Sensor Scheduling for Target Tracking

Figure 1 illustrates such a scene where a single target moves
across a geographical area and several sensors are used
to track the target simultaneously. The target state 𝑋

𝑘
=

[𝑥
𝑘

̇𝑥
𝑘
𝑦
𝑘

̇𝑦
𝑘
]
󸀠 is unknown and the brief target model is

considered as

𝑋
𝑘+1
= 𝐴𝑋

𝑘
+ 𝐵𝜔
𝑘
, (1)

where 𝜔
𝑘
is white Gaussian process noise with covariance

matrix 𝑄. The target state kinematics equation is modeled
by system matrix 𝐴 and the noise intensity is determined
by matrix 𝐵. The target state is observed by several sensors
and the measurement results are impaired by Gaussian noise.
At given time 𝑘, the measurement from the 𝑛th sensor is a
column vector given by

𝑍
𝑛

𝑘
= 𝐻
𝑛

𝑋
𝑘
+ V𝑛
𝑘
, (2)

where V𝑛
𝑘
is the measurement noise of each sensor, which

is assumed to be independent of other sensors and of the
process noise.Wemake an assumption that covariancematrix
𝑅
𝑛 and observation matrix𝐻𝑛 are previously known, and the

Kalman filtering techniques [10–13] are used to estimate the
state of the target. For a given initial error covariance 𝑃

0
, the

estimated error covariance of the state is given by

𝑃
𝑘|𝑘
= 𝑃
𝑘|𝑘−1

− 𝑃
𝑘|𝑘−1

𝐻
󸀠

𝑆
𝑛−1

𝑘
𝐻𝑃
𝑘|𝑘−1

, (3)

where

𝑃
𝑘|𝑘−1

= 𝐴𝑃
𝑘−1|𝑘−1

𝐴
󸀠

+ 𝐵𝑄𝐵
󸀠

,

𝑆
𝑛

𝑘
= 𝐻𝑃
𝑘|𝑘−1

𝐻
󸀠

+ 𝑅
𝑛
.

(4)

The base station (BS), which schedules the sensors to
be active or asleep, collects the latest information about the
deleted and newly added sensors as soon as the parameters
of the target have been obtained. In our work, we assume
that only one sensor is scheduled to estimate the state of the
target at any time. Therefore, there is only one sensor to be
activated by the BS at a time. Let 𝑁 describe the number
of latest available sensors to take measurements and 𝜇(𝑇) =
{𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑇
} represent the sensor scheduling sequence for

𝑘 = 1, 2, . . . , 𝑇, and let 𝑢
𝑘
∈ {1, . . . , 𝑁} be the activated sensor

at time step 𝑘. Our goal is to minimize the total estimated
error of the target states given by theKalman filter when 𝑘 = 1
to 𝑇 and to weigh the total sensor usage cost. Calculating the
trace of amatrix provides a cheaper andmore effectivemeans
of defining a scaler based on the estimated error covariance
than those of the other ways. Therefore, the trace of the error
covariance matrix is considered as our scaler. By using a
positive weighting factor 𝑤, we can weigh the cost between
error and usage. If the cost function 𝐽

𝑇
is defined to measure

the performance of the state’s cumulative root mean square
error and to weigh sensor usage cost for the time horizon
{1, 2, . . . , 𝑇}, then

𝐽
𝑇
=

𝑇

∑

𝑘=1

{𝑃 (𝑢
𝑘
) + 𝑤𝑐

𝑘
(𝑢
𝑘
)} , (5)

where 𝑃(𝑢
𝑘
) = √trace(𝑃

𝑘|𝑘
(𝑢
𝑘
)) represents the square root of

the error covariance associated with the selected sensor 𝑢
𝑘

at instant time 𝑘. The 𝑛th sensor usage cost at 𝑘th instant
time is 𝑐

𝑘
(𝑛) and 𝜔 ∈ 𝑅

+ is a constant weight coefficient.
Our objective is to find an optimal sensor sequence which
can produce the minimum cost at the entire time horizon.
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The optimal sensor sequence is described as 𝜇∗(𝑇) = {𝑢∗
1
,

𝑢
∗

2
, . . . , 𝑢

∗

𝑇
}:

𝜇
∗

(𝑇) = argmin
∀𝑢𝑘

{

𝑇

∑

𝑘=1

{𝑃 (𝑢
𝑘
) + 𝑤𝑐

𝑘
(𝑢
𝑘
)}} . (6)

From (6), we can see that there are total 𝑁𝑇 possible
combinations to schedule the sensors. Up to now many
optimal algorithms have been proposed to solve this sensor
sequence problem.Dynamic programming (DP) and branch-
and-bound (BB) were used to solve such problem, but the
computational cost rose exponentially alongwith the increase
in the number of sensors and the sequence length [14].

Rollout Algorithm (RA) is closely approximate to a
dynamic programming method which can overcome the
exponential computational cost problem [15], and it can pro-
duce attractive suboptimal results not worse than traditional
heuristic methods.

SlidingWindow (SW) is another suboptimal method and
its window size will balance the computational cost and final
results.

The PSO algorithm can be used to solve above target
tracking problem [16], but the quality will dramatically
decreasewith the increment of the sensors. An improved PSO
algorithm will be proposed in Section 3 and it will produce
acceptable global optimization result.

3. Best Dimension Mutated Particle
Swarm Optimization

3.1. Best DimensionMutation. Our goal is to develop a meth-
odology which is able to converge faster than PSO algorithm
while ensuring the solution is near optimal. In GA (genetic
algorithm) or any hybridized PSO algorithm, dimensions of
particles are just selected by an assigned probability 𝑃 for
mutation. The performance of PSO algorithm varies with
different values of 𝑃 for different cases. High value of 𝑃 may
result in the swarm divergence and misleading results in
some applications. Our methodology aims to speed up the
searching process with simple and useful mutation ways.The
proposed technique inspired from quantum theory is the key
measure to improve the performance of PSOalgorithmwhich
can perturb the particles when they are too close from each
other.

The PSO algorithm performs very rapid convergence rate
at the beginning and will slow down during the remaining
searching process [17], and sometimes the velocity of a
particle will be zero at the end.This brings about the particles
stagnated in local optima [18]. The new mutation technique
will relocate the particles to new positions and keep moving
around the searching space. The conventional mutation is
carried out by selecting one or more dimensions of a particle
probabilistically and then added a disturbance factor with
special distribution [19, 20].

We developed a new mutation technique called best
dimension mutation (BDM) which will find the best dimen-
sion to perform mutation at each iteration step, and the
selected dimension will be replaced by a random value from
the searching space as follows:

(1) randomly select one particle𝑋
𝑖
from the swarm pop-

ulation𝑋
𝑖𝑡
= (𝑋
1

𝑖
, 𝑋
2

𝑖
, . . . , 𝑋

𝐷

𝑖
);

(2) randomly select 𝑠 number of dimensions in position
vector of the selected particle and perform mutation
for all selected dimensions separately. The mutated
particles 𝑋

𝑀
are given by 𝑋

𝑀
= (𝑋

𝑀1
, 𝑋
𝑀2
, . . . ,

𝑋
𝑀𝑠
), where 𝑋

𝑀𝑚
= (𝑋
1

𝑖
, . . . , 𝑋

𝑑−1

𝑖
, 𝑟, 𝑋
𝑑+1

𝑖
, . . . , 𝑋

𝐷

𝑖
)

and 𝑟 = rand𝑑
𝑖
(max𝑋 −min𝑋) +min𝑋;

(3) select the particle denoted by 𝑋∗
𝑀𝑚

with the best
performance out of 𝑠 number of mutated particles
𝑋
𝑀
and the parent particle 𝑋

𝑖𝑡
, considering problem

𝑋
∗

𝑀𝑚

= argmin
∀𝑋
𝑓(𝑋),𝑋 ∈ {𝑋

𝑖𝑡
, 𝑋
𝑀
};

(4) update position of the particle by the best mutated
one. The velocity of the particle can be calculated as
𝑋
𝑖𝑡+1
= 𝑋
∗

𝑀𝑚

, V
𝑖𝑡+1
= 𝑋
𝑖𝑡+1
− 𝑋
𝑖𝑡
.

Figure 2 illustrates the flowchart of the proposed BDM
procedure. It was observed that if more number of dimen-
sions were selected at the beginning of the search process,
the particles would find better solution in a short time period
and the divergence of the swarm was more efficient. How-
ever, the computational complexity will increase with more
dimensions.Therefore, we experimentally found that the per-
formance and computational efficiency of the algorithm can
be increased by selecting all of dimensions for a short period
and gradually decreases toward the end of the search process.
Figure 3 illustrates the selection of number of dimensions
as number of iterations increase. The maximum number of
iterations is denoted by 𝐼MAX. The mutation is carried out
only for one particle in the swarm and it makes an additional
𝑠 number of fitness evaluation at each iteration step.

3.2. Refreshing Particles Based on QuantumTheory. The per-
formance of the BDM methodology above can be increased
by selecting all of the dimensions for a short period of time
at the beginning and gradually decreasing toward the end
of the searching process. However, the problem of getting
stuck in local optima would occur inevitably. Therefore,
a perturbation technique is applied to the particles when
they are too close from each other. The particle’s position
can be reinitialized with two different strategies as fol-
lows.

(1) Use Gaussian distribution with the mean as global
best solution 𝐺

𝑡
and the variance as 𝐿% of the search

space to generate the particles:

𝑋
𝑖𝑡

∼
𝑋𝑖𝑡
̸=𝐺𝑡

𝑁(𝐺
𝑡
, 𝐿) . (7)

(2) Use the delta potential well distribution to generate
the particles as used in [21]:

𝑋
𝑖𝑡

∼
𝑋𝑖𝑡
̸=𝐺𝑡

𝐺
𝑡
±

lg (1/𝑢)
2𝑔 ln√2

𝐿, (8)

where 𝑢 is a random number in the range (0, 1] and 𝑔
is a constant variable.
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Figure 2: The flowchart of the proposed method of best dimension mutation (BDM).
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Figure 3: Selection of number of dimensions with number of
iterations.

The particles generated by delta potential well distribu-
tion and Gaussian distribution are denoted by Qps and Gps,
respectively, in Figure 4. Both quantum distribution (delta
potential well) andGaussian distribution have a great chances

to generate particles close to gbest (global best) position as
shown in Figure 4. However, the delta potential distribution
produces some particles significantly far away from gbest
position. This is the tunneling effect; that is, particles have
a great chance to reach the global optima even if the global
optima should be far away from the local optima [21]. We
tested the performance of the PSO algorithm with both par-
ticles generating techniques. We experimentally found that
the particles generatedwith quantumbased technique in PSO
algorithm produce better results than those produced with
Gaussian techniques. Therefore, we will use delta potential
well to generate the particles when they are too close to each
other in this paper.

The parameter 𝐿 decides the position of the particles
around gbest position. We can see from Figure 5 that the
particles generated with larger 𝐿 value are comparatively far
away from gbest (where 𝐺

𝑡
= 0). We assigned larger 𝐿 from

the start and linearly reduced it to zero with the increment
of iterations to ensure the convergence of the particles. The
algorithmwill be very slow if the positions of the particles are
calculated in each iteration, so we refresh the particles after
𝑡cap predefined iterations. We investigated the impact of 𝑡cap
on final results and the value was chosen empirically.
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Figure 4: Particles generated with Gaussian distribution and Delta
potential well distribution (𝐿 = 3, 𝐺
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= 0, and 𝑔 = 2.5).
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Figure 5: Particles generated with different 𝐿 values (𝐿
1
= 2, 𝐿

2
= 5,

𝐺
𝑡
= 0, and 𝑔 = 2.5).

3.3. Sensor Scheduling by BDMPSO. We assumed that we
did not know the target parameters such as system matrix
𝐴, noise intensity 𝐵, and covariance matrix 𝑄 until the
target appeared in the sensor field. Once the target has been
detected the base station will awaken available sensors for
target observing. After all information about the target and
sensors has been collected, there will be a short period of time
to schedule the sensor sequence. Therefore, the BDMPSO
algorithmwill be applied to produce optimal sensor sequence
with the minimum iterations. As the number of sensors is
discrete, we use rounding method to discretize the dimen-
sions. Also the replacement mechanism is used when a parti-
cle goes beyond the search space as shown below:

𝑋
𝑑

𝑖𝑡

= round [rand𝑑
𝑖
(max𝑋 −min𝑋) +min𝑋] . (9)

The flowchart of the proposed BDMPSO is illustrated in
Figure 6.

The entire procedure of BDMPSO procedure for sensor
scheduling can be described as below.

(1) At 𝑡 = 1 randomly select particles from {𝑥
𝑖1
∈ {𝑢
1
, 𝑢
2
,

. . . , 𝑢
𝑇
}}
𝑛𝑝

𝑖=1
, and each ofwhich indicates a correspond-

ing feasible sensor sequence. Initialize velocity 𝑉
𝑖0
,

own best position𝑝
𝑖0
, and global best position𝐺

0
, and

set temp = 0.
(2) At iteration 𝑡, if temp = 𝑡cap (a predefined number of

iterations), refresh all the particles except the global
best one using delta potential well distribution and set
temp = 0; else goto Step 3.

(3) Randomly select a particle𝑋
𝑖𝑡
from the swarm popu-

lation and perform the BDM and go to Step 4.
(4) Evaluate the fitness value and update the own best 𝑝

𝑖𝑡
,

global best 𝐺
0
, velocity 𝑉

𝑖𝑡
, and position𝑋

𝑖𝑡
for all 𝑛

𝑝

particles. Increment temp by one and go to Step 5.
(5) If 𝑡 = 𝐼MAX then go to Step 6; else increment 𝑡 by one

and go to Step 2.
(6) The optimal sensor sequence of the problem is

returned by the global best particle at the end of the
{𝑢
∗

1
, 𝑢

V
2
, . . . , 𝑢

∗

𝑇
} = 𝐺
𝐼MAX.

4. Simulation Results

In this section, we tested a single target tracking in a 2-dimen-
sional Cartesian space, and the state of the target evolved
with linear Gaussian dynamics. Our experiments used the
constant velocity in target model. Therefore, the covariance
matrix 𝑄 and system matrix A can be described as follows:

𝐴 =

[
[
[

[

1 Δ𝑡 0 0

0 1 Δ𝑡 0

0 0 1 Δ𝑡

0 0 0 1

]
]
]

]

,

𝑄 = 𝑞Δ𝑡 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Δ𝑡
2

4

Δ𝑡

2
0 0

Δ𝑡

2
1

Δ𝑡

2
0

0 0
Δ𝑡
2

4

Δ𝑡

2

0 0
Δ𝑡

2
1

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(10)

where the scalar quantity 𝑞 dominates the intensity of system
noise and the state updates with time step Δ𝑡. We assigned
𝑞 = 20 and Δ𝑡 = 1 for all of the experiments.The sensor mea-
surement showed a linear correlation of the target state and
was impaired bywhiteGaussian noise in (2). All of the sensors
are homogeneous, and the error covariances and usage costs
differ from one another. The observation matrix 𝐻 is a unit
matrix with 4 by 4 for all sensors. There are 24 sensors used
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Figure 6: The flowchart of the proposed procedure for the BDMPSO algorithm.

for the experiments all together and the error covariances of
which can be described as follows:

𝑅
1
= 10
3
[
[
[

[

2 0 0 0

0 1.5 0 0

0 0 200 0

0 0 0 1.5

]
]
]

]

,

𝑅
2
= 10
3
[
[
[

[

2.5 0 0 0

0 0.5 0 0

0 0 100 0

0 0 0 0.5

]
]
]

]

,

𝑅
3
= 10
3
[
[
[

[

150 0 0 0

0 0.5 0 0

0 0 1.5 0

0 0 0 1.5

]
]
]

]

,

𝑅
4
= 10
3
[
[
[

[

200 0 0 0

0 1.5 0 0

0 0 200 0

0 0 0 1.5

]
]
]

]

,

(11)

where the other sensors’ error covariance eigenvalues are
larger thanR

4
. Among the entire timehorizon, the usage costs

are defined as 𝑐(1) = 65, 𝑐(2) = 25, 𝑐(3) = 40, and 𝑐(𝑛) =
60, for all 𝑛 ≥ 4. Therefore, the optimal solution including
𝑅
1
, 𝑅
2
, 𝑅
3
, and 𝑅

4
produced by sensors such that 𝑛 > 4

should be the same as that produced by four sensors only.
The intention in generating these covariances is to change the

landscape of the problemwith the global solution unchanged.
For all experiments the weighting factor𝑤 in (5) is assigned 1.
We have measured the performance of the proposed method
in contrast to PSO with time varying parameters (PSO-
tp), Comprehensive Learning PSO [22] (CLPSO), Rollout
Algorithm using PSO (RA1), Rollout Algorithm using one
step-look-ahead (RA2), and SlidingWindow (SW) approach.
The set values of BDMPSO are 𝑡cap = 30, 𝐿 = 2%, 𝑐 = 40, and
𝑛
𝑝
= 30 and the rest parameters are the same as in [23].
Firstly, we tested the ability of proposed algorithms with

the length of the sensor scheduling sequences varying. Table 1
shows the average results over 30 independent runs for
all six different methods in different time horizons (the
best costs are highlighted). For the algorithms above, the
maximumfitness evaluation (FE) is 20000 with the exception
of BDMPSO, being 15000. We can see from Table 1 that the
performances of the RA2, SW, and PSO-tp decrease with the
sequence length increasing. However, the performances of
BDMPSO will not be affected by the increasing number of
dimensions. By combining best dimensionmutation and new
refreshment technology, the performance of the BDMPSO
algorithm makes a much more enhancement than others.

Secondly, we analyzed the performance of the PSOs (PSO
algorithms) by varying numbers of sensors. Table 2 shows
the average results over 30 independent runs for (the best
costs are highlighted) all six different methods. The fitness
evaluations (FEs) are assigned to 20000 for all the PSOs. As
the SW and RA2 are deterministic means, the results are
the same for different cases. The performances of RA2 and
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Table 1: Comparison of cumulative cost for different time horizons.

𝑇
SW
(103)

RA1
(103)

RA2
(103)

PSO-tp
(103)

CLPSO
(103)

BDMPSO
(103)

30 2.576 2.641 2.498 2.479 2.542 2.396
40 3.295 3.592 3.426 3.192 3.252 3.159
50 4.315 3.971 4.201 3.859 3.883 3.736
60 4.855 4.732 5.076 4.621 4.597 4.527
70 5.662 5.319 6.125 5.302 5.304 5.204
80 6.174 6.201 6.823 6.343 5.902 5.842
90 6.822 6.924 7.418 6.912 6.587 6.721
100 7.252 7.427 8.421 7.724 7.403 7.196
110 8.961 8.093 9.381 8.581 8.067 8.036
120 9.382 8.801 10.24 9.304 8.812 8.512

Table 2: Comparison of cumulative cost for different numbers of
sensors.

𝑁
SW
(103)

RA1
(103)

RA2
(103)

PSO-tp
(103)

CLPSO
(103)

BDMPSO
(103)

3 7.476 7.324 7.389 7.395 7.557 7.242
6 7.476 7.406 7.389 7.413 7.562 7.392
9 7.476 7.364 7.389 7.630 7.642 7.331
12 7.476 7.426 7.389 7.598 7.585 7.329
15 7.476 7.524 7.389 7.621 7.612 7.326
18 7.476 7.631 7.389 7.655 7.620 7.346
21 7.476 7.630 7.389 7.623 7.632 7.363
24 7.476 7.762 7.389 7.692 7.593 7.379

BDMPSO are better than the others’. However, it can be seen
from Table 2 that the performances of PSO-tp and CLPSO
decrease when the number of sensors increases, and easily
get stuck in local optima. The BDMPSO produces the better
results for all of the cases.

Thirdly, we compared the performance of PSOs with
different numbers of FEs. The parameters were assigned to
the same numbers except for the FEs which varied from
10000 to 40000. Table 3 shows the average results over 30
independent runs for (the best costs are highlighted) all six
different methods with sequence length of 100 units. It can be
seen fromTable 3 that the proposed BDMPSOachieves better
result than other variant PSO algorithms and it converges to
desired results in fewer iterations, but other PSOs will need
considerably more numbers of FEs to achieve comparative
result. Therefore, the proposed BDMPSO algorithm is more
suitable for nearly linear problems in less time.

5. Conclusions

Wehave presented an improved PSO algorithm and applied it
to the target tracking problem.The best dimension mutation
methodwith quantumbased reinitialization techniquemakes
the particles escape from the local optima correspondingly
easier and accelerates the convergence rate. Relatively this

Table 3: Comparison of cumulative cost for different FEs.

FEs PSO-tp (103) CLPSO (103) BDMPSO (103)
Number of sensors𝑁 = 3

10000 7.812 7.509 7.348
15000 7.712 7.496 7.337
20000 7.712 7.400 7.315
30000 7.702 7.327 7.298
40000 7.642 7.307 7.297

Number of sensors𝑁 = 6
10000 7.713 8.904 7.405
15000 7.532 7.987 7.359
20000 7.501 7.640 7.313
30000 7.487 7.462 7.297
40000 7.486 7.462 7.297

Number of sensors𝑁 = 9
10000 9.387 9.846 7.409
15000 9.346 9.105 7.412
20000 8.615 8.510 7.406
30000 8.559 7.559 7.413
40000 8.578 7.542 7.357

Number of sensors𝑁 = 12
10000 11.762 10.824 7.768
15000 11.516 9.637 7.422
20000 11.327 9.120 7.425
30000 10.678 8.249 7.516
40000 10.519 7.348 7.496

Number of sensors𝑁 = 15
10000 12.513 11.305 8.098
15000 12.249 10.190 7.416
20000 12.301 9.598 7.387
30000 12.209 8.315 7.375
40000 11.879 7.627 7.375

Number of sensors𝑁 = 18
10000 14.138 11.467 8.304
15000 14.030 10.654 7.412
20000 13.975 10.213 7.327
30000 13.567 8.649 7.310
40000 13.439 7.781 7.309

Number of sensors𝑁 = 21
10000 14.725 11.496 8.398
15000 14.098 10.912 7.406
20000 14.134 10.146 7.378
30000 13.320 8.697 7.294
40000 13.140 8.416 7.292

Number of sensors𝑁 = 24
10000 15.412 11.849 8.792
15000 14.678 11.102 7.509
20000 14.355 10.534 7.376
30000 14.297 8.912 7.324
40000 14.295 8.246 7.324
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methodology does not increase the computational cost sig-
nificantly compared with the original PSO algorithm and
also it is more easily to implement. To sum up, the proposed
BDMPSO algorithm shows better performance and achieves
the results faster than other existing ones for target tracking
problem. We plan to focus on shortening the convergence
time of BDMPSO algorithm in further work.
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Fuzzy time series approaches have an important deficiency according to classical time series approaches. This deficiency comes
from the fact that all of the fuzzy time series models developed in the literature use autoregressive (AR) variables, without any
studies that also make use of moving averages (MAs) variables with the exception of only one study (Egrioglu et al. (2013)). In order
to eliminate this deficiency, it is necessary to have many of daily life time series be expressed with Autoregressive Moving Averages
(ARMAs) models that are based not only on the lagged values of the time series (AR variables) but also on the lagged values of the
error series (MA variables). To that end, a new first-order fuzzy ARMA(1,1) time series forecastingmethod solution algorithm based
on fuzzy logic group relation tables has been developed. The new method proposed has been compared against some methods in
the literature by applying them on Istanbul Stock Exchange national 100 index (IMKB) and Gold Prices time series in regards to
forecasting performance.

1. Introduction

Fuzzy time series approaches not necessitating many of the
limitations seen in classical time series approaches such
as linearity, stationarity, and number of observations have
increased the interest towards these approaches. Fuzzy time
series concept first mentioned in the literature by Song and
Chissom [1] was based on the fuzzy set theory of Zadeh
[2]. Song and Chissom [3, 4] divided fuzzy time series into
two groups, namely, time variant and time invariant. A vast
majority of the studies in the literature are methods proposed
for solving time invariant fuzzy time series. Because models
are significantly effective on the forecasting performances
during the determination of fuzzy relations stage, different
approaches have been proposed in the literature. In the
studies of Song andChissom [1, 3, 4], relations are determined
with complex matrix operations. In order to eliminate this
complexity, a new first-order fuzzy time series model has
been proposed where fuzzy logic group relation tables are
used in Chen’s [5] study with simplified operations not
necessitating complex matrix processes. This approach of
Chen [5] is used in many studies due to its positive effect

on forecasting performance. Therefore, Chen [6] developed
a new approach by using the fuzzy logic relation tables also
in high-order fuzzy time series models. Because the methods
proposed in the studies of Chen [5, 6] necessitate obtainment
of many fuzzy logic group relation tables, they require
numerous operations.Thus, studies where fuzzy relations are
determined with artificial neural networks are commonly
seen. Some Studies where artificial neural networks are used
for determining fuzzy relations may be listed as the studies of
Huarng and Yu [7], Aladag et al. [8], Yu and Huarng [9], and
Yolcu et al. [10].

In majority of the studies in the literature, interval
lengths are specified intuitively. In his study, Huarng [11]
has proposed two separate approaches based on average and
distribution to specify optimal interval length. The optimal
interval lengths determined by the approach of Huarng [11]
may be obtained to be very large values. Thus, Egrioglu et
al. [12] proposed approaches based on the optimisation of
interval length. Different from these studies, Huarng and
Yu [13] proposed an approach based on ratio with interval
length varying exponentially instead of determining a fixed
interval length in the solution of first-order fuzzy time series.
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Determining the ratio in the study of Huarng and Yu [13]
requires many complex calculations. Therefore, Yolcu et al.
[14] proposed a new approach that improves the approach of
Huarng and Yu [13], based on the optimisation of ratio.

There are 3 most commonly used models in the anal-
ysis of single variable time series in classical time series
approach. These are autoregressive (AR), moving averages
(MAs), and mixed autoregressive moving averages (ARMAs)
models. However, fuzzy time series methods developed in
the literature focus on the AR model of the classical time
series theory, without any study conducted on the utilisation
of MA and ARMA models except Uslu et al. [15], Alpaslan
et al. [16], and Aladag et al. [17]. These studies [15–17] on
the other hand are methods that have been proposed for the
solution of seasonal time series. No study has been made on
the inclusion of error variable to the model for nonseasonal
fuzzy time series with the exception of Egrioglu et al. [18]
study. This study [18] is the first study developed as first
order fuzzy ARMA type model based on particle swarm
optimization for the solution of nonseasonal time series in the
literature. All of the models in the literature have mentioned
issues such as the use of universe of discourse partitioning,
membership order, model order, and artificial intelligence
approaches. However, the fuzzy time series models proposed
in the literature only including AR variables which may lead
to a model specification error. In many modelling of the
real life time series, MA variables are also required. In this
sense, use of only AR variables for the solution of fuzzy time
series requiring also MA variables for modelling becomes
insufficient regarding the forecasting performance.

For the purpose of eliminating the adverse effects men-
tioned, a solution algorithm for a new first-order fuzzy
ARMA(1,1) time series forecast model where fuzzy relations
are determined based on fuzzy logic group relations has been
proposed in this study. The logic for determining fuzzy rela-
tions in the proposed method is an approach similar to that
of the study of Chen [5], aiming to show that the forecasting
performance can be significantly improved when the model
specification error in the method of Chen [5], accepted as a
fundamental approach in literature, is eliminated. For many
real life time series, performance can be increased through
the use of high-order fuzzy time series models due to the
ability to realise solution with more information. However,
because the proposed fuzzy ARMA(1,1) model uses a second
variable (error variable), it utilises more information to the
extent it eliminates the model error, and although just a first
order model, it occurs to have a better forecasting perfor-
mance than that of high order fuzzy time series methods.

In this paper, the time series which were used in applica-
tion are examined according to long-range dependence. Time
series can be classified short range or long-range dependence
time series. Many time series have long-range dependence.
The long-range dependence time series are forecasted differ-
ent methods like autoregressive fractionally integrated mov-
ing average (ARFIMA). ARFIMA models have fractionally
differencing parameter. First studies were concerned with
estimation of fractional differencing parameter in fractional
white noise processes. 𝑅/𝑆 statistic was proposed in Hurst
[19].The other important studies about fractional differenced

processes are Li and Zhao [20, 21], Li [22], Stanley et al. [23],
Werner [24], Beran [25], Ivanov et al. [26], Podobnik et al.
[27], Zevallos and Palma [28], and Bhansali and Kokoszka
[29].

In the second section of the study, basic definitions
regarding fuzzy time series have been provided. In the third
section, the proposed fuzzy time series forecasting model has
been defined and the solution algorithm has been provided.
In the fourth section, the proposed method has been applied
to Istanbul Stock Exchange (IMKB) national 100 index time
series and gold prices in 2009 taken from Turkish Republic
Central Bank (TCMB) website, comparing it to some other
methods in the literature regarding forecasting performance.
An in-depth comparison has beenmade in this section. In the
fifth section, the study has been summed up by discussing the
results obtained.

2. Definition of Fuzzy Time Series

Fuzzy time series concepts and definitions have been devel-
oped in accordance to the lagged variables of times series
(AR, autoregressive) in all studies conducted in the literature.
Main time series definitions developed usingAR variables are
listed below.

Definition 1. Let 𝑋(𝑡) (𝑡 = . . . , 0, 1, 2, . . .), a subset of real
numbers, be the universe of discourse on which fuzzy sets
𝑓
𝑗
(𝑡) are defined. If 𝐹(𝑡) is a collection of 𝑓

1
(𝑡), 𝑓
2
(𝑡), . . . then

𝐹(𝑡) is called a fuzzy time series defined on 𝑋(𝑡) [1, 3, 4].

Definition 2. Let us consider the fuzzy relation between
𝑅(𝑡, 𝑡 − 1), 𝐹(𝑡 − 1), and 𝐹(𝑡). For any 𝑡 value, if 𝑅(𝑡, 𝑡 − 1)

is independent from 𝑡, then 𝑅(𝑡, 𝑡 − 1) = 𝑅(𝑡 − 1, 𝑡 − 2). In this
case, 𝐹(𝑡) is called the time invariant fuzzy time series, while
otherwise called as time variant fuzzy time series [1].

Definition 3. If the 𝐹(𝑡) fuzzy time series is only affected by
one lagged 𝐹(𝑡 − 1) fuzzy time series, then the fuzzy relation
between 𝐹(𝑡 − 1) and 𝐹(𝑡) is expressed as

𝐹 (𝑡 − 1) 󳨀→ 𝐹 (𝑡) . (1)

This is called as a first-order fuzzy time series forecasting
model. Then this relation can be expressed as

𝐹 (𝑡) = 𝐹 (𝑡 − 1) ∘ 𝑅 (𝑡, 𝑡 − 1) . (2)

The “∘” operator in (2) had been determined as the max-min
operator by Song and Chissom [1, 3, 4].

Definition 4. If 𝐹(𝑡) fuzzy time series is affected by the lagged
fuzzy time series of 𝐹(𝑡 − 1), 𝐹(𝑡 − 2), . . . , 𝐹(𝑡 − 𝑝), then the
fuzzy relation between𝐹(𝑡) fuzzy time series and𝐹(𝑡−1), 𝐹(𝑡−

2), . . . , 𝐹(𝑡 − 𝑝) fuzzy time series may be expressed as

𝐹 (𝑡 − 𝑝) , . . . , 𝐹 (𝑡 − 2) , 𝐹 (𝑡 − 1) 󳨀→ 𝐹 (𝑡) (3)

and is called the𝑝th order fuzzy time series forecastingmodel
[6].
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3. The Proposed Method

Based on the definition of fuzzy AR(1) given in Definition 3,
the definition of the main fuzzy time series to represent the
fuzzy ARMA(1,1) model is expressed as follows.

Definition 5. Let 𝐹(𝑡) be a fuzzy time series and let 𝜀(𝑡) be the
fuzzy error series obtained from 𝐹(𝑡) fuzzy time series. If 𝐹(𝑡)
is affected by one lagged 𝐹(𝑡−1) and one lagged 𝜀(𝑡−1) fuzzy
time series, then the relationship can be expressed as

𝐹 (𝑡 − 1) , 𝜀 (𝑡 − 1) 󳨀→ 𝐹 (𝑡) . (4)

This is called as first-order fuzzy autoregressive moving
averages (ARMA(1,1)) time series forecasting model [18].

In this study, an algorithm has been proposed for solving
the ARMA(1,1) fuzzy time series forecasting model defined
in (4). In the algorithm proposed, initially the AR(1) fuzzy
time series model defined in (1) is estimated. Later on, errors
are calculated by taking the differences between the observed
values of the times series and the forecasts obtained through
the solution of fuzzy AR(1). By using these errors, the fuzzy
ARMA(1,1) model defined in (4) is estimated. The algorithm
of the proposed approach is given below.

Algorithm 6. The proposed method’s algorithm.

Step 1 (the universe of discourse (𝑈) and subintervals
(𝑢
𝑖
, 𝑖 = 1, 2, . . . 𝑏) are defined). Thebeginning and the ending

points of the universe of discourse for time series are
determined.Then𝑈 is divided into subintervals according to
appropriate interval length. Definition of interval length is up
to the researcher. It should not be forgotten that the interval
length to be determined affects the number of subintervals.
If the smallest value of the time series is taken as 𝑋min, the
largest value as𝑋max, and two arbitrary values as𝐷

1
and𝐷

2
,

the universal set may be defined as the closed interval of

𝑈 = [𝑋min − 𝐷
1
, 𝑋max + 𝐷

2
] . (5)

𝑢
𝑖
subintervals determined for 𝑖 = 1, 2, . . . 𝑏 are the subinter-

vals of the universal set 𝑈, which is defined as

𝑈 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑏
} . (6)

For example, for𝑋min = 43 and𝑋max = 96when𝑈 is selected
as [40, 100] and interval length is selected as 10, subintervals
are specified as 𝑢

1
= [40, 50], 𝑢

2
= [50, 60], 𝑢

3
= [60, 70],

𝑢
4
= [70, 80], 𝑢

5
= [80, 90], and 𝑢

6
= [90, 100].

Step 2. For the time series, fuzzy sets are defined according
to the universal set (𝑈) and the divisions of (𝑢

𝑖
). These fuzzy

sets are expressed as

𝐴
𝑖
=

𝑓
𝐴𝑖

(𝑢
1
)

𝑢
1

+

𝑓
𝐴𝑖

(𝑢
2
)

𝑢
2

+ ⋅ ⋅ ⋅ +

𝑓
𝐴𝑖

(𝑢
𝑏
)

𝑢
𝑏

,

for 𝑖 = 1, 2, . . . , 𝑏.

(7)

For 𝑖 = 1, 2, . . . 𝑏,

𝑓
𝐴𝑖

(𝑢
𝑖
) =

{{

{{

{

1, 𝑘 = 𝑖

0.5, 𝑘 = 𝑖 − 1, 𝑖 + 1

0, otherwise.
(8)

For example, according to (7) and (8), the fuzzy set of𝐴
3
can

be expressed as 0/𝑢
1
+ 0.5/𝑢

2
+ 1/𝑢
3
+ 0.5/𝑢

4
+ 0/𝑢
5
+ 0/𝑢
6
.

Step 3 (observations are fuzzified). Subintervals (𝑢
𝑖
) where

each observation occurs are defined. Then the fuzzy set 𝐴
𝑖

where the defined sub-interval has the highest membership
value is determined.The fuzzy value of the observation is this
𝐴
𝑖
fuzzy set defined.

Step 4. For the purpose of determining fuzzy relations, fuzzy
logic relations are identified and a fuzzy logic group relation
table is formed.

For example, where the fuzzy logic relations are as𝐴
2

→

𝐴
3
, 𝐴
2

→ 𝐴
3
, 𝐴
2

→ 𝐴
5
, according to Chen method

[5], the fuzzy logic group relation for 𝐴
2
fuzzy value is as

𝐴
2

→ 𝐴
3
, 𝐴
5
. In the proposed method, this relation occurs

to be as 𝐴
2

→ 𝐴
3
, 𝐴
3
, 𝐴
5
. Thus, a little improvement has

been realised in the fuzzy AR(1) model of Chen [5] with the
proposed method.

Step 5 (fuzzy forecasts are obtained). As 𝐹(𝑡 − 1) = 𝐴
𝑖

and 𝐹(𝑡) = 𝐴
𝑗
, 3 possible situations regarding forecast

obtainment are as follows.

Situation 1. If a relation of 𝐴
𝑖

→ 𝐴
𝑗
, . . . , 𝐴

𝑗
is valid on the

fuzzy group relation table where 𝐴
𝑖
affects only 𝑎 pieces of

𝐴
𝑗
, then the fuzzy forecast is 𝐴

𝑗
. For example, if the group

relation for 𝐴
1
is as 𝐴

1
→ 𝐴
2
that this relation is repeated a

few times in the time series, then the fuzzy forecast is specified
as 𝐴
2
.

Situation 2. If a relation of 𝐴
𝑖

→ 𝐴
𝑗
, . . . , 𝐴

𝑗
, 𝐴
𝑘
, . . . , 𝐴

𝑘
,

𝐴
𝑙
, . . . , 𝐴

𝑙
is valid on the fuzzy group relation table where

𝐴
𝑖
affects 𝑎 pieces of 𝐴

𝑗
, 𝑏pieces 𝐴

𝑘
and 𝑐 pieces 𝐴

𝑙
,

then the fuzzy forecast is 𝐴
𝑗
, . . . , 𝐴

𝑗
, 𝐴
𝑘
, . . . , 𝐴

𝑘
, 𝐴
𝑙
, . . . , 𝐴

𝑙
,

comprising of 𝑎 + 𝑏 + 𝑐 pieces of fuzzy values. For example; if
the group relation for𝐴

2
is as𝐴

2
→ 𝐴
2
, 𝐴
3
, 𝐴
3
, 𝐴
5
, 𝐴
5
, 𝐴
5
,

then the fuzzy forecast is specified as 𝐴
2
, 𝐴
3
, 𝐴
3
, 𝐴
5
, 𝐴
5
, 𝐴
5
.

Situation 3. If𝐴
𝑖
→ 𝑒𝑚𝑝𝑡𝑦 on the fuzzy group relation table,

the fuzzy forecast occurs to be 𝐴
𝑖
. For example, if the group

relation for𝐴
3
is𝐴
3

→ 𝑒𝑚𝑝𝑡𝑦, then the fuzzy forecast is𝐴
3
.

Step 6 (defuzzification process is executed). In this step,
centralisation method is used. When the fuzzy forecast for
Situation 1 and Situation 3 defined in Step 5 is 𝐴

𝑗
, then the

defuzzy forecast should be the middle point of the 𝑢
𝑗
sub-

interval that has the highest membership value within the
fuzzy set𝐴

𝑗
. For Situation 2, the defuzzy forecast is calculated

with theweighted average formula below, by using themiddle
points (𝑚

𝑗
, 𝑚
𝑘
, . . . , 𝑚

𝑙
) of the 𝑢

𝑗
, 𝑢
𝑘
, . . . , 𝑢

𝑙
intervals that have
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Table 1: An example to the fuzzy AR(1) solution of the proposed method.

Years Data Fuzzy value Fuzzy forecast
1

——
1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

2 1 1 1 2

3 3 3

2 2 2

3 3 3

2 2 2

Defuzzy forecast

the highest membership value of each of the 𝐴
𝑗
, 𝐴
𝑘
, . . . , 𝐴

𝑙

fuzzy sets. Consider

𝑥 (𝑡) =

𝑎 × 𝑚
𝑗
+ 𝑏 × 𝑚

𝑘
+ 𝑐 × 𝑚

𝑙

𝑎 + 𝑏 + 𝑐
. (9)

On an example time series, when solutions are made accord-
ing to the proposed method from Step 1 to Step 6 as per the
determined subintervals of 𝑢

1
= [40, 50], 𝑢

2
= [50, 60], and

𝑢
3
= [60, 70], the solutions displayed in Table 1 are obtained.

Step 7. Errors are calculated by taking the differences between
the observed time series values and the defuzzified forecast
values obtained in Step 6. Real values of the time series are
𝑥(𝑡) and the defuzzified forecast values obtained in Step 6 are
𝑥(𝑡); the error series 𝑒(𝑡) is calculated as follows:

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) . (10)

Step 8. For the errors, the universe of discourse set is defined
as (𝑉) and subintervals are defined as (V

𝑖
, 𝑖 = 1, 2, . . . 𝑏).

The same partition of the universe of discourse processes
done in Step 1 is made for the error series.

Step 9. Fuzzy sets based on the universal set (𝑉) and
partitions (V

𝑖
) are defined for the errors. The fuzzy sets are

expressed as

𝐵
𝑗
=

𝑓
𝐵𝑗

(V
1
)

V
1

+

𝑓
𝐵𝑗

(V
2
)

V
2

+ ⋅ ⋅ ⋅ +

𝑓
𝐵𝑗

(V
𝑐
)

V
𝑐

,

for 𝑗 = 1, 2, . . . , 𝑐.

(11)

For 𝑗 = 1, 2, . . . 𝑐,

𝑓
𝐵𝑗

(V
𝑗
) =

{{

{{

{

1, 𝑘 = 𝑗

0.5, 𝑘 = 𝑗 − 1, 𝑗 + 1

0, otherwise.
(12)

For example, according to (11) and (12), the fuzzy set of𝐵
3
can

be specified as 0/V
1
+ 0.5/V

2
+ 1/V
3
+ 0.5/V

4
+ 0.5/V

5
.

Step 10 (error series 𝑒(𝑡) is fuzzified). Subintervals (V
𝑗
) for

each observation are determined.Then the fuzzy set𝐵
𝑗
where

the determined sub-interval has the highest membership
value is defined. The fuzzy value of the observation is this
fuzzy set 𝐵

𝑗
.

Step 11 (fuzzy relations are determined and fuzzy logic group
relation table is formed). The fuzzy value 𝐴

𝑖
of the fuzzy

relations time series and the fuzzy value 𝐵
𝑗
of the error series

are determined by taking the fuzzy values into consideration
together. For the one lagged fuzzy value of the 𝑡th observation
being𝐹(𝑡−1) = 𝐴

𝑖
, one lagged error value being 𝜀(𝑡−1) = 𝐵

𝑗
,

and the fuzzy value being 𝐹(𝑡) = 𝐴
𝑘
, the fuzzy relation given

in (4) occurs to be (𝐴
𝑖
, 𝐵
𝑗
) → 𝐴

𝑘
. Thus, the fuzzy values are

formed of (𝐴
𝑖
, 𝐵
𝑗
) ordered pairs, and a relation in themanner

of one lagged time series and error affecting the time series is
mentionable. For example, when the fuzzy logic relations are
as (𝐴
2
, 𝐵
3
) → 𝐴

2
, (𝐴
2
, 𝐵
3
) → 𝐴

2
, (𝐴
2
, 𝐵
3
) → 𝐴

4
, the

fuzzy logic group relation for (𝐴
2
, 𝐵
3
) fuzzy value occurs to

be (𝐴
2
, 𝐵
3
) → 𝐴

2
, 𝐴
2
, 𝐴
4
.

Step 12 (fuzzy forecasts are obtained). As 𝐹(𝑡 − 1) = 𝐴
𝑖
ve

𝜀(𝑡 − 1) = 𝐵
𝑗
and 𝐹(𝑡) = 𝐴

𝑘
, 3 possible situations regarding

forecast obtainment are as follows.

Situation 1. If a relation of (𝐴
𝑖
, 𝐵
𝑗
) → 𝐴

𝑘
, . . . , 𝐴

𝑘
is valid

on the fuzzy group relation table where (𝐴
𝑖
, 𝐵
𝑗
) affects only

𝑎 pieces of 𝐴
𝑘
, then the fuzzy forecast is 𝐴

𝑘
. For example, if

the group relation for (𝐴
1
, 𝐵
2
) is as (𝐴

1
, 𝐵
2
) → 𝐴

2
that this

relation is repeated within a few times in the time series, then
the fuzzy forecast is determined as 𝐴

2
.

Situation 2. If a relation of (𝐴
𝑖
, 𝐵
𝑗
) → 𝐴

𝑘
, . . . , 𝐴

𝑘
, 𝐴
𝑙
, . . . , 𝐴

𝑙
,

𝐴
𝑚
, . . . , 𝐴

𝑚
is valid on the fuzzy group relation table where

(𝐴
𝑖
, 𝐵
𝑗
) affects 𝑎 pieces of 𝐴

𝑘
, 𝑏 pieces 𝐴

𝑙
and 𝑐 pieces 𝐴

𝑚
,

then the fuzzy forecast is𝐴
𝑘
, . . . , 𝐴

𝑘
, 𝐴
𝑙
, . . . , 𝐴

𝑙
, 𝐴
𝑚
, . . . , 𝐴

𝑚
,

comprising of 𝑎 + 𝑏 + 𝑐 pieces of fuzzy values. For example,
if the group relation for (𝐴

1
, 𝐵
2
) is as (𝐴

1
, 𝐵
2
) → 𝐴

2
, 𝐴
3
,

𝐴
3
, 𝐴
5
, 𝐴
5
, 𝐴
5
, then the fuzzy forecast is determined as

𝐴
2
, 𝐴
3
, 𝐴
3
, 𝐴
5
, 𝐴
5
, 𝐴
5
.

Situation 3. If (𝐴
𝑖
, 𝐵
𝑗
) → 𝑒𝑚𝑝𝑡𝑦 on the fuzzy group relation

table, the fuzzy forecast occurs to be 𝐴
𝑖
. For example, if the

group relation for (𝐴
1
, 𝐵
2
) is (𝐴

1
, 𝐵
2
) → 𝑒𝑚𝑝𝑡𝑦, then the

fuzzy forecast is 𝐴
1
.

Step 13 (defuzzification process ismade). In this step, central-
isation method is used. When the fuzzy forecast for Situation
1 and Situation 3 defined in Step 5 is 𝐴

𝑗
, then the defuzzy

forecast should be the middle point of the 𝑢
𝑗
sub-interval

that has the highest membership value within the fuzzy set
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Table 2: An application of the proposed method on an example time series.

Years Data Error Fuzzy value Fuzzy forecas Defuzzy forecast
1 2

) ——
−

1 1 1

−
1 1 1 1 2

−
1 1 1 1 2

2 3 1 1 2

3 2 3

2 2 2

− 3 1 3

−
2 1 2

𝐴
𝑗
. For Situation 2, the defuzzy forecast is calculated with the

weighted average formula given in (9).
On an example time series, when solutions are made

according to the proposed method as per the determined
time series subintervals of 𝑢

1
= [40, 50], 𝑢

2
= [50, 60], and

𝑢
3

= [60, 70] and error series subintervals of V
1

= [−5, 0],
V
2
= [0, 5], and V

3
= [5, 10], solutions displayed in Table 2 are

obtained.

4. Application

The performance indicators of the root mean square error
(RMSE), mean average percentage error (MAPE), and direc-
tion accuracy (DA) values used for comparison of the results
obtained are as follows:

RMSE =
√

∑
𝑛

𝑡=1
(𝑌
𝑡
− 𝑌̂
𝑡
)
2

𝑛
,

MAPE =
1

𝑛

𝑛

∑

𝑡=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑌
𝑡
− 𝑌̂
𝑡

𝑌
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

DA =
1

𝑛 − 1

𝑛−1

∑

𝑡=1

{
1, (𝑌

𝑡+1
− 𝑌
𝑡
) (𝑌̂
𝑡+1

− 𝑌
𝑡
) > 0,

0, otherwise.

(13)

Data is divided into two within the applications, assigning
the first part as training set and the second part as test set
obtained through taking the last observations into consid-
eration of which number was predetermined. By looking
up the fuzzy relation table obtained for the training set as
per the Steps 5 and 12 of the proposed method, the fuzzy
forecast of the test set and from there the defuzzy forecasts
of the test set are calculated by utilizing Steps 6 and 13.
After, the RMSE, MAPE, and DA values for the test set
are calculated. Therefore, the future performances of the
methods are determined. As the forecasts with the lowest
RMSE value calculated for the test set provide the best result
of the used method, the future performances of the forecasts
are obtained along with the aid of MAPE and DA values.

Solution of vast majority of some fuzzy forecasting
methods in the literature is realised according to the specified
number of fuzzy sets, and some are realised according to
interval lengths. For the purpose of maintaining consistency

during the comparison of forecast performances, the interval
length to be used at fuzzification stage is determined as to
have the number of fuzzy sets 5 as the lowest and 35 as
the highest for each application data and for all methods.
Therefore, in case the universal set division is realised in
accordance to interval length, the interval lengths to be tried
have been specified by calculation with the formula below:

Interval Length =
max (data) −min (data)
Number of Fuzzy Sets

. (14)

The operations below have been realised when making
solution via the proposed method.

(i) The last 𝑘 number of data has been specified as test
set, aiming to increase the future performances.

(ii) During the fuzzification of time series stage of
the proposed method, different time series interval
lengths for the division of universal set 𝑈 have been
tried. Data have been solved from Step 1 to Step 6
according to these intervals lengths. And so, a lot of
forecasts have been obtained.The test set forecast with
the smallest RMSE value among these forecasts has
been determined as the best result of the fuzzy AR(1)
model.

(iii) The error value of the first observation of data has
been assumed as 0, while the error values of other
observations have been calculated with the formula
(9) by using the training set and test set forecasts
obtained through the best result of the fuzzy AR(1)
model. Thus the error series has been obtained.

(iv) Different time series interval lengths and different
error series interval lengths have been tried by solving
data fromStep 1 to Step 13. Among these trials, the test
set forecast with the smallest RMSE value has been
determined as the best result of the fuzzy ARMA(1,1)
model.

For the purpose of comparing the proposed method
with the other fuzzy time series methods in the literature, 2
different data sets comprising of less observations (smaller
sample size) and more observations (larger sample size)
have been used. One of these data sets is the IMKB time
series seen in Figure 1 comprising of 53 observations between



6 Mathematical Problems in Engineering

IMKB

58.000
60.000
62.000
64.000
66.000
68.000
70.000
72.000
74.000

17
.1

2.
20

10

10
.1

2.
20

10

03
.1

2.
20

10

26
.1

1.
20

10

19
.1

1.
20

10

12
.1

1.
20

10

05
.1

1.
20

10

29
.1

0.
20

10

22
.1

0.
20

10

15
.1

0.
20

10

08
.1

0.
20

10

01
.1

0.
20

10

Figure 1: Graph of IMKB time series.
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Figure 2: Graph of gold prices.

the dates of 01.10.2010 and 23.12.2010. The second data set
is the gold prices time series seen in Figure 2 comprising
of 248 observations received from Turkish Republic Central
Bank (TCMB) website between the dates of 02.01.2009 and
31.12.2009.

In the solution of the IMKB data given in Figure 1 via the
methods in the literature by taking the last 7 observations and
the last 15 observations as test set, one has the following.

(i) During the fuzzification stage of the Song and
Chissom [1] first-order fuzzy time series method,
among the 31 different results obtained from increas-
ing the fuzzy set number between 5 and 35, the test set
forecast that has the minimum RMSE value has been
determined as the best result of the method from this
results.

(ii) For each of the 2nd-, 3rd-, 4th-, and 5th-order
models of Chen [5] first-order fuzzy time series
forecast method, Chen [6] high order fuzzy time
series forecast method, and Aladag et al. [8] high
order fuzzy time series forecast method, the RMSE
values have been found for different intervals lengths
being increased 100 units between 300 and 2300. The
test set forecasts that have theminimumRMSE values
among these 21 trials have been determined as the best
results of the methods.

(iii) By using the optimal interval lengths calculated with
the distribution-based approach of Huarng [11] and
the average-based approaches, solution has been exe-
cuted as per the first-order fuzzy time series forecast
method of Chen [5]. Thus, the best results of the
test set from the distribution based approach and the
average-based approaches have been obtained via a
single trial.

(iv) In the application of the ratio-based approach of
Huarng and Yu [13], alpha parameter has been taken
as 0.50, obtaining the best result for the test set of the
method in one trial.

In the solution of the IMKB time series seen in Figure 1
via the proposed method by taking the number of test sets 7
and 15, one has the following.

(i) The division of universal set 𝑈 have been taken dif-
ferent values as increasing the interval length between
300 and 2300 by 100 units and different forecasts have
been obtained by solving from Step 1 to Step 6. The
test set forecast with the smallest RMSE value among
these forecasts has been determined as the best result
of the fuzzy AR(1) model.The best fuzzy AR(1) results
have been obtained when the interval length is 300
for 7 as the number of test sets and when the interval
length is 900 for 15 as the number of test sets.

(ii) The error value of the first observation of data has
been assumed as 0, while the error values of other
observations have been calculated via the formula (9)
by utilising data and forecasts obtained through the
best result of the fuzzy AR(1) model. Thus the error
series has been obtained for 53 observations.

(iii) Different trials have been made by increasing the
interval length between 300 and 2300 by 100 units for
the time series and by increasing the interval length
between 300 and 2100 by 100 units for the error series
by solving from Step 1 to Step 13. Among these trials,
the test set forecast with the smallest RMSE value
has been determined as the best result of the fuzzy
ARMA(1,1) model.

During the application of the proposed method and
the methods in the literature on IMKB time series, the
parameters with which the forecasts with the best test set
performance for 7 and 15 numbers of test sets occurred to be

(i) for the application of Song and Chissom [1] method,
when the number of fuzzy sets is 9 for 7 and 20 for 15,

(ii) for the application of Chen [5] method, when the
interval length is 300 for 7 and 900 for 15,

(iii) for the application of distribution-based Huarng [11]
approach, when the interval length is 1000, and for
the application of average based approach, when the
interval length is 200,

(iv) for the application of ratio-based Huarng and Yu [13]
approach, when the sample percentile alpha = 0.5,
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Table 3: The best results obtained for 7-observation test set of IMKB data.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

15.12.2010 65499 65356 66550 65900.0 67400 66500 66784.7 67300 66266.7
16.12.2010 64429 65356 66250 65900.0 65400 66300 66178.0 64900 63700.0
17.12.2010 63524 65975 64450 64800.0 65900 64500 65878.7 64900 63700.0
20.12.2010 63502 64737 63550 64066.7 64900 63500 63514.3 64300 63700.0
21.12.2010 64820 64737 63550 63700.0 64900 63500 63514.3 63700 65900.0
22.12.2010 65440 65975 65800 64800.0 65900 65500 65878.7 65500 65900.0
23.12.2010 66219 65356 66250 65900.0 65400 66300 66178.0 66700 66266.7

RMSE 1161.91 1001.70 928.70 1365.14 1014.73 1317.77 1034.06 606.07
MAPE 0.01387 0.01217 0.01283 0.01773 0.01175 0.01593 0.01350 0.00762
DA 0.50000 0.50000 0.33333 0.50000 0.50000 0.66667 0.66667 0.83333

∗The best situation.

(v) for the application of Chen [6] method, when the
interval length is 2200 in 3rd-order model for 7 and
1400 in 2nd-order model for 15,

(vi) For the application of Aladag et al. [8] method, when
the interval length is 600 on 2nd-degree model and
unit number of artificial neural network hidden layers
is 5 for 7, and when the interval length is 1500 on 2nd-
degree model and unit number of artificial neural
network hidden layers is 6 for 15,

(vii) For the application of the proposed fuzzy ARMA(1,1)
method, when the interval length of time series is
2200 and the interval length of error series is 1400 for
7, and when the interval length of time series is 1400
and the interval length of error series is 400 for 15.

Best forecasts and forecast performances of all methods
in result of IMKB time series solution for 7 observation test
set are summarised in Table 3.

When Table 3 is analyzed, it is seen in result of the
solution of IMKB time series for 7 observation test set that the
proposedmethod produced the best forecasting performance
with a minimum RMSE value of 606.07, minimum MAPE
value of 0.762%, andmaximum direction accuracy of 83.33%.
The graphs of the last 7 observations of IMKB time series
along with the 7-observation test set forecasts obtained with
the proposed method are shown together in Figure 3.

Best forecasts and forecast performances of all methods
in result of IMKB time series solution for 15-observation test
set are summarised in Table 4.

When Table 4 is analyzed, it is seen that the proposed
method produced the best forecasting performance with a
minimum RMSE value of 865.28, minimum MAPE value of
1.029%, and maximum direction accuracy of 71.43% in result
of the solution of IMKB time series for 15-observation test set.
The graphs of the last 15 observations of IMKB time series
along with the 15-observation test set forecasts obtained with
the proposed method are shown together in Figure 4.

In result of the solutions of IMKB time series, it has been
observed that the proposed method significantly increased

62000

15
.1

2.
20

10

16
.1

2.
20

10

17
.1

2.
20

10

18
.1

2.
20

10

19
.1

2.
20

10

20
.1

2.
20

10

21
.1

2.
20

10

22
.1

2.
20

10

23
.1

2.
20

10

62500
63000
63500
64000
64500
65000
65500
66000
66500

Test set
Proposed method

Figure 3:The graphs of the 7-observation test set of IMKB data and
the forecasts of the test set obtained with the proposed method.

the future forecasting performance compared to other meth-
ods. Also in the graphs within Figures 3 and 4, the results of
the proposed method are seen to be considerably similar to
the test set values.

In the solution of the gold prices data given in Figure 2
via the methods in the literature by taking the last 30
observations and the last 45 observations as test set, one has
the following.

(i) Gold prices solution of Song andChissom [1], Huarng
[11], and Huarng and Yu [13] methods has been
conducted just as previously done on the abovemen-
tioned IMKB time series.

(ii) For each of the 2nd-, 3rd-, 4th-, and 5th-ordermodels
of Chen [5] first-order fuzzy time series forecast
method, Chen [6] high-order fuzzy time series fore-
cast method, and Aladag et al. [8] high order fuzzy
time series forecast method, the RMSE values have
been found for different lengths being increased 100
units between 500 and 3500. The test set forecasts
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Table 4: The best results obtained for 15-observation test set of IMKB data.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

01.12.2010 66156 65695.5 66250 64833.3 65900.0 65300 66328.8 65650 66000
02.12.2010 66939 66438.2 65800 66700.0 65566.7 64100 66164.2 67150 67633
03.12.2010 66860 67088.0 67450 66700.0 67233.3 66700 67143.8 67150 66700
08.12.2010 67705 67088.0 67450 66700.0 67233.3 66700 67143.8 67150 66700
09.12.2010 65914 66252.5 66250 67633.3 65900.0 67700 66328.8 67150 68100
10.12.2010 64759 65695.5 65800 66233.3 65566.7 65900 65791.4 64150 65300
13.12.2010 66380 65695.5 65350 66700.0 65900.0 64700 65258.3 65650 65300
14.12.2010 66510 66438.2 65800 66700.0 65566.7 67100 66164.2 65650 66700
15.12.2010 65499 66438.2 65800 66700.0 67233.3 66500 66164.2 67150 66700
16.12.2010 64429 65695.5 66250 65766.7 65566.7 66300 66328.8 64150 65300
17.12.2010 63524 65695.5 65350 64366.7 65900.0 64500 65258.3 65650 63900
20.12.2010 63502 65138.5 63550 63900.0 64900.0 63500 63684.8 65650 63900
21.12.2010 64820 65138.5 63550 63900.0 64900.0 63500 63684.8 65650 63900
22.12.2010 65440 65695.5 65350 64833.3 65900.0 65500 65258.3 65650 65300
23.12.2010 66219 65695.5 66250 66700.0 65566.7 66300 66328.8 65650 66000

RMSE 919.47 925.42 954.17 1052.90 1283.18 896.96 1060.12 865.28
MAPE 0.01124 0.01081 0.01245 0.01285 0.01558 0.01085 0.01312 0.01029
DA 0.71429 0.57143 0.64286 0.50000 0.57143 0.64286 0.64286 0.71429

∗The best result.
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Figure 4:The graphs of the 15-observation test set of IMKBdata and
forecasts of the test set obtained with the proposed method.

that have the minimum RMSE values among these 31
trials have been determined as the best results of the
methods.

In the solution of the gold prices data given in Figure 2 via
the proposed method by taking the last 30 observations and
the last 45 observations as test set, one has the following.

(i) During the fuzzification of time series of the proposed
method, interval lengths of 𝑈 have been tried as
increasing the interval length between 500 and 3500
by 100 units by solving from Steps 1 and 6.The test set

forecast with the smallest RMSE value among these
forecasts has been determined as the best result of the
fuzzy AR(1) model.

(ii) The error series have been obtained via the formula
(9) for 248 observations with the same calculation
made previously in the application of IMKB data.

(iii) Different trials have been made by increasing the
interval length between 500 and 3500 by 100 units for
the time series and by increasing the interval length
between 100 and 1100 by 50 units for the error series
by solving from Step 1 to Step 13. Among these trials,
the test set forecast with the smallest RMSE value
has been determined as the best result of the fuzzy
ARMA(1,1) model.

During the application of the proposed method and the
methods in the literature on gold prices time series, the
parameters with which the forecasts with the best test set
performance for 30 and 45 test sets occurred to be the
following:

(i) for the application of Song and Chissom [1] method,
when the number of fuzzy sets is 10 for both 30 and
45 test sets,

(ii) for the application of Chen [5] method, when the
interval length is 600 for 30 and 1700 for 45,

(iii) for the application of distribution-based Huarng
approach [11], when the interval length is 400, and for
the application of average based approach, when the
interval length is 200,
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Table 5: The best results obtained for 30-observation test set of gold prices.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

17.11.2009 53935 53157 53300 53000.0 53200 53200 53356.4 53300 53400
18.11.2009 54550 53157 53900 53666.7 54000 53900 53894.0 53900 54200
19.11.2009 54495 53157 52400 54066.7 52400 51500 51715.7 54500 54200
20.11.2009 54830 53157 52400 54200.0 52400 51500 51715.7 53900 54200
23.11.2009 55950 53157 55100 54600.0 54800 54900 55017.3 54500 55000
24.11.2009 56285 52294 55700 55266.7 56000 55900 55779.2 55100 55800
25.11.2009 56430 52294 56300 56066.7 56400 56300 56164.1 55700 56600
01.12.2009 57635 52294 56300 56466.7 56400 56500 56551.6 55100 56600
02.12.2009 58330 53157 57500 57000.0 57600 57700 57730.3 55700 57400
03.12.2009 58150 53157 58100 57666.7 58400 58300 58529.8 56300 58200
04.12.2009 56630 53157 58100 58066.7 58000 58100 58128.7 56300 58200
07.12.2009 54820 53157 56900 57400.0 56800 56700 56551.6 55100 56600
08.12.2009 55660 53157 55100 56066.7 54800 54900 51715.7 55100 55000
09.12.2009 55110 52294 55700 55666.7 55600 55700 55779.2 55100 55800
10.12.2009 54180 52294 55100 55266.7 55200 55100 55017.3 54500 55000
11.12.2009 54580 53157 53900 54733.3 54000 54100 53157.9 53900 54200
14.12.2009 54190 53157 52400 54333.3 52400 51500 51715.7 54500 54200
15.12.2009 54120 53157 53900 54200.0 54000 54100 53157.9 53300 54200
16.12.2009 54855 53157 53900 54200.0 54000 54100 53157.9 53900 54200
17.12.2009 54430 53157 55100 54600.0 54800 54900 55017.3 54500 55000
18.12.2009 53750 53157 52400 54466.7 52400 51500 53157.9 54500 54200
21.12.2009 54570 53157 53900 53933.3 53200 53700 53894.0 53300 53400
22.12.2009 53400 53157 52400 53933.3 52400 51500 51715.7 54500 54200
23.12.2009 52990 53157 53300 53666.7 53200 53200 53356.4 53300 53400
24.12.2009 53575 52294 53150 53133.3 53200 53200 53524.7 52700 53400
25.12.2009 53450 53157 53300 53133.3 53200 53200 53356.4 53300 53400
28.12.2009 53795 53157 53300 53266.7 53200 53200 53356.4 53300 53400
29.12.2009 53515 53157 53900 53400.0 53200 53700 53894.0 53900 53400
30.12.2009 53095 53157 53300 53400.0 53200 53200 53356.4 52700 53400
31.12.2009 52920 52294 53300 53400.0 53600 53100 53524.7 53300 53400

RMSE 2410.96 1031.12 857.34 1045.23 1288.80 1412.66 1003.50 707.71
MAPE 0.03339 0.01512 0.01245 0.01530 0.01713 0.01935 0.01382 0.01028
DA 0.55172 0.55172 0.51724 0.55172 0.62069 0.55172 0.48276 0.62069

∗The best result.

(iv) for the application of ratio-based Huarng and Yu [13]
approach, when the sample percentile alpha = 0.5,

(v) for the application of Chen method [6], when the
interval length is 1900 in 5th order model for 30 and
800 in 3rd-order model for 45,

(vi) for the application of Aladag et al. [8], when the
interval length is 600 on 5th-degree model and unit
number of artificial neural network hidden layers is
5 for 30, and when the interval length is 800 on 3rd
degree model and unit number of artificial neural
network hidden layers is 4 for 45,

(vii) for the application of the proposed fuzzy ARMA(1,1)
method, when the interval length of time series is 800
and the interval length of error series is 2500 for 30,
and when the interval length of time series is 900 and
the interval length of error series is 1000 for 45.

Best forecasts and forecast performances of all methods
in result of gold prices time series solution for 30-observation
test set are summarised in Table 5.

When Table 5 is observed, it is seen in result of the
solution of gold prices time series for 30 observation test set
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Table 6: The best results obtained for 45-observation test set of gold prices.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

17.10.2009 50162 50568 50350 49933.3 50800.0 50420.0 50829.1 50200 50450
18.10.2009 50355 50568 50350 50066.7 50800.0 51100.0 50829.1 50200 50450
19.10.2009 50020 50568 50350 50120.0 50000.0 49900.0 50051.5 50200 50450
20.10.2009 50030 50568 50350 51000.0 50800.0 51100.0 50829.1 50200 50450
23.11.2009 50700 50568 50350 51000.0 50800.0 51100.0 50829.1 50200 50450
24.11.2009 51230 50568 50350 51800.0 51066.7 51500.0 50824.1 51000 50450
25.11.2009 52490 50568 52050 50866.7 51200.0 51500.0 51128.5 51000 52250
01.11.2009 52150 52294 52050 51800.0 52666.7 54300.0 54499.6 52600 52550
02.11.2009 52125 52294 52050 51933.3 50600.0 52100.0 51916.0 51800 52550
03.11.2009 52500 52294 52050 51933.3 50600.0 52100.0 51916.0 51800 52550
04.11.2009 52165 52294 52050 52200.0 52666.7 54300.0 54499.6 52600 52550
07.11.2009 52560 52294 52050 52066.7 50600.0 52100.0 51916.0 51800 52550
08.11.2009 52972 52294 52050 52333.3 52666.7 54300.0 54499.6 52600 52550
09.11.2009 52800 52294 52900 52466.7 52800.0 52900.0 52867.3 52600 52250
10.11.2009 53500 52294 52050 54200.0 52800.0 52900.0 52867.3 52600 53150
17.11.2009 53935 53157 52900 53000.0 53200.0 53200.0 53205.5 53400 54950
18.11.2009 54550 53157 52900 53666.7 54000.0 53900.0 53840.7 53400 54050
19.11.2009 54495 53157 52900 54066.7 52400.0 51500.0 52393.3 54200 54950
20.11.2009 54830 53157 52900 54200.0 52400.0 51500.0 52393.3 54200 54050
23.11.2009 55950 53157 55450 54600.0 54800.0 54900.0 54832.0 54200 54950
24.11.2009 56285 52294 55450 55266.7 56000.0 55900.0 55841.6 54200 55850
25.11.2009 56430 52294 55450 56066.7 56400.0 56300.0 56182.2 55000 55850
01.12.2009 57635 52294 57150 56466.7 56400.0 56500.0 56524.9 55000 56750
02.12.2009 58330 53157 57150 57000.0 57600.0 57700.0 57565.6 55000 57650
03.12.2009 58150 53157 58850 57666.7 58400.0 58300.0 58270.1 55000 58550
04.12.2009 56630 53157 58850 58066.7 58000.0 58100.0 58270.1 55800 58550
07.12.2009 54820 53157 57150 57400.0 56800.0 56700.0 56524.9 55800 56750
08.12.2009 55660 53157 55450 56066.7 54800.0 54900.0 54832.0 55000 54950
09.12.2009 55110 52294 55450 55666.7 55600.0 55700.0 55503.0 54200 55850
10.12.2009 54180 52294 55450 55266.7 55200.0 55100.0 55166.5 54200 54950
11.12.2009 54580 53157 52900 54733.3 54000.0 54100.0 54169.1 54200 54050
14.12.2009 54190 53157 52900 54333.3 52400.0 51500.0 52393.3 54200 54950
15.12.2009 54120 53157 52900 54200.0 54000.0 54100.0 54169.1 54200 54050
16.12.2009 54855 53157 52900 54200.0 54000.0 54100.0 54169.1 54200 54050
17.12.2009 54430 53157 55450 54600.0 54800.0 54900.0 54832.0 54200 54950
18.12.2009 53750 53157 52900 54466.7 52400.0 51500.0 52393.3 54200 54050
21.12.2009 54570 53157 52900 53933.3 53200.0 53700.0 53840.7 53400 54050
22.12.2009 53400 53157 52900 53933.3 52400.0 51500.0 52393.3 53400 54950
23.12.2009 52990 53157 52900 53666.7 53200.0 53200.0 53205.5 53400 53150
24.12.2009 53575 52294 52900 53133.3 52800.0 52900.0 52867.3 52600 53150
25.12.2009 53450 53157 52900 53133.3 53200.0 53200.0 53205.5 53400 52250
28.12.2009 53795 53157 52900 53266.7 53200.0 53200.0 53205.5 53400 53150
29.12.2009 53515 53157 52900 53400.0 53200.0 53700.0 53840.7 53400 54050
30.12.2009 53095 53157 52900 53400.0 53200.0 53200.0 53205.5 53400 53150
31.12.2009 52920 52294 52900 53400.0 53600.0 53100.0 53514.3 53400 53150

RMSE 2009.32 1028.39 787.71 1022.13 1200.24 1041.74 1068.71 719.69
MAPE 0.02556 0.01499 0.01146 0.01499 0.01628 0.01517 0.01328 0.01072
DA 0.54545 0.52273 0.54545 0.52273 0.61364 0.59091 0.54545 0.50000

∗The best result.
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Figure 5: The graphs of the 30-observation test set of gold prices
and forecasts of the test set obtained with the proposed method.
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Figure 6: The graphs of the 45-observation test set of gold prices
and forecasts of the test set obtained with the proposed method.

that the proposed method produced the best forecasting per-
formance with a minimum RMSE value of 707.71, minimum
MAPE value of 1.028%, and maximum direction accuracy of
62.07%. The graphs of the last 30 observations of gold prices
time series along with the 30-observation test set forecasts
obtained with the proposed method are shown together in
Figure 5.

Best forecasts and forecast performances of all methods
in result of gold prices time series solution for 45-observation
test set are summarised in Table 6. Furthermore, the graphs
of the last 45 observations of gold prices time series along
with the 45-observation test set forecasts obtained with the
proposed method are shown together in Figure 6.

When Table 6 is evaluated, it is seen in result of the
solution of gold prices time series for 45 observation test set
that the proposed method produced the best forecasting per-
formance with a minimum RMSE value of 719.69, minimum
MAPE value of 1.072%.

In result of the solutions of gold prices time series, it
has been observed that the proposed method significantly
increased the future forecasting performance compared to

Table 7: 𝑅/𝑆 test results.

Data 𝑅/𝑆 statistics 𝑃 < 0.01

IMKB 1.6523 No
Gold price 1.9560 No

other methods. Also in the graphs within Figures 5 and 6, the
results of the proposed method are seen to be considerably
similar to the test set values.

5. Discussion and Conclusion

MAvariables are not included in the fuzzy time series forecast
models proposed in the literature whereas real life time series
are also influenced from MA variables in addition to AR
variables. Therefore, redefining fuzzy times series methods
as models including also MA variables are a more realistic
act. In this study, a solution algorithm for a new first-order
fuzzy ARMA(1,1) time series forecast model containing not
only AR but also MA variables is proposed based on group
relation tables. The method proposed is a basic algorithm
similar to Chen [5] approach, aiming at eliminating the
model specification error formed due to the exclusion of
MA variables. In conclusion of the applications, it has been
observed that the proposed method has higher forecasting
performance than many of the fuzzy time series forecasting
methods commonly used in the literature. It is an impor-
tant finding that although the proposed method is a basic
method based on group relation tables, it may have a higher
forecasting performance even than the high order fuzzy time
seriesmethods based on artificial neural networks.Therefore,
it is obvious that forecasting performance is going to increase
significantly when fuzzy ARMAmodels are developed where
fuzzy relations are specified with artificial neural networks
and artificial intelligence methods or where membership
values are used for specification of fuzzy relations. Thus, the
proposed method may be provided with a more systematic
structure and higher forecasting performance with improve-
ments that may be done on various stages of the method
during future studies. Moreover, there is no linear model
assumption in the proposed fuzzy time series method. Thus,
the proposed method and other fuzzy time series methods
can be applied to nonlinear time series. In the application,
proposed method is applied to short range dependent time
series. In the future studies, it will be researched about
the performance of the proposed method for long range
dependent time series.

Appendix

The 𝑅/𝑆 test was applied to two time series which are used
in the application. 𝑅/𝑆 test was applied by using “FinMetrics
module of S-PLUSpackage program”.Theobtained results are
shown in Table 7. It is obtained that both of time series have
short range dependence.
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Recently, a closed-form approximated expression was derived by the same author for the achievable residual intersymbol
interference (ISI) case that depends on the step-size parameter, equalizer’s tap length, input signal statistics, signal to noise ratio
(SNR), and channel power and is valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of
0.5 ≤ 𝐻 < 1. But this expression was obtained for the blind adaptive case and cannot be applied to the nonblind adaptive version.
Up to now, the achievable residual ISI for the non-blind adaptive case could be obtained only via simulation. In this paper, we
derive a closed-form approximated expression (or an upper limit) for the residual ISI obtained by non-blind adaptive equalizers
valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of 0.5 ≤ 𝐻 < 1. This new obtained
expression depends on the step-size parameter, equalizer’s tap length, input signal statistics, SNR, channel power, and the Hurst
exponent parameter. Simulation results indicate that there is a high correlation between the calculated results (obtained from the
new obtained expression for the residual ISI) and those obtained from simulating the system.

1. Introduction

We consider a nonblind deconvolution problem in which we
observe the output of an unknown, possibly nonminimum
phase, linear system (single-input-single-output (SISO) FIR
system) from which we want to recover its input (source)
using an adjustable linear filter (equalizer) and training
symbols. During transmission, a source signal undergoes a
convolutive distortion between its symbols and the channel
impulse response. This distortion is referred to as ISI [1,
2]. It is well known that ISI is a limiting factor in many
communication environments where it causes an irreducible
degradation of the bit error rate thus imposing an upper limit
on the data symbol rate. In order to overcome the ISI problem,
an equalizer is implemented in those systems [1–12].

In this paper, we consider the nonblind adaptive equalizer
where training sequences are needed to generate the error
that is fed into the adaptive mechanism which updates the
equalizer’s taps [9–12].Thenonblind adaptive approach yields
in most cases a better equalization performance considering
convergence speed and equalization quality compared with
the blind adaptive version [6]. In addition, the blind adaptive

version has a higher computational cost compared with its
nonblind approach [6].

The equalization performance from the residual ISI point
of view depends on the channel characteristics, on the added
noise, on the step-size parameter used in the adaptation
process, on the equalizer’s tap length and on the input signal
statistics [13, 14]. Fast convergence speed and reaching a
residual ISI where the eye diagram is considered to be open
(for the communication case) are the main requirements
from a blind or nonblind equalizer. Fast convergence speed
may be obtained by increasing the step-size parameter. But,
increasing the step-size parameter may lead to a higher resid-
ual ISI which might not meet the system’s requirements any
more. Recently [2], a closed-form approximated expression
was derived for the achievable residual ISI case that depends
on the step-size parameter, equalizer’s tap length, input signal
statistics, SNR, Hurst exponent, and channel power. But this
expression is valid only for the blind adaptive case and cannot
be used for the nonblind version.

Up to now, the achievable residual ISI for the nonblind
adaptive case (for the noisy or noiseless case) could be
obtained only via simulation. Thus, the system designer had
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to spend a lot of time in simulating the whole system in
order to find the best values for the step-size parameter and
equalizer’s tap length that meet the system’s requirements
from the residual ISI point of view. In this paper, we derive
a closed-form approximated expression (or an upper limit)
for the residual ISI obtained by nonblind adaptive equalizers
that depends on the step-size parameter, equalizer’s tap
length, input signal statistics, SNR, channel power, and Hurst
exponent parameter. This expression is valid for fGn input
where the Hurst exponent is in the region of 0.5 ≤ 𝐻 < 1.
Please note,𝐻 = 1 is the limit case, which does not havemuch
practical sense [15–17]. It should be pointed out that a white
Gaussian process is a special case (𝐻 = 0.5) of the fractional
Gaussian noise (fGn) model [18]. FGn with 𝐻 ∈ (0.5, 1)

corresponds to the case of long-range dependency (LRD)
[18]. Thus, the new obtained expression for the achievable
residual ISI is not only valid for the special case of white
Gaussian process but also covers those cases that correspond
to the case of LRD.

The paper is organized as follows. After having described
the system under consideration in Section 2, the closed-form
approximated expression (or upper limit) for the residual ISI
is introduced in Section 3. In Section 4, simulation results are
presented, and the conclusion is given in Section 5.

2. System Description

The system under consideration is illustrated in Figure 1,
where we make the following assumptions.

(1) The input sequence 𝑥[𝑛] belongs to a two indepen-
dent quadrature carriers case constellation input with
variance 𝜎2

𝑥
, where 𝑥

𝑟
[𝑛] and 𝑥

𝑖
[𝑛] are the real and

imaginary parts of 𝑥[𝑛], respectively, and 𝜎2
𝑥𝑟

is the
variance of 𝑥

𝑟
[𝑛].

(2) The unknown channel ℎ[𝑛] is a possibly nonmini-
mum phase linear time-invariant filter in which the
transfer function has no “deep zeros”; namely, the
zeros lie sufficiently far from the unit circle.

(3) The equalizer 𝑐[𝑛] is a tap-delay line.

(4) The noise 𝑤[𝑛] consists of 𝑤[𝑛] = 𝑤
𝑟
[𝑛] + 𝑗𝑤

𝑖
[𝑛],

where 𝑤
𝑟
[𝑛] and 𝑤

𝑖
[𝑛] are the real and imagi-

nary parts of 𝑤[𝑛], respectively, and 𝑤
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[𝑛] and 𝑤

𝑖
[𝑛]

are independent. Both 𝑤
𝑟
[𝑛] and 𝑤

𝑖
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tional Gaussian noises (fGn) with zero mean. Note
that 𝜎2
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= 𝐸[𝑤
2
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], where 𝐸[⋅] denotes the expectation
operator on (⋅) and𝐻 is the Hurst exponent.

(5) The variance of 𝑤[𝑛] is denoted as 𝐸[𝑤[𝑛]𝑤∗[𝑛]] =
𝜎
2

𝑤
, where 𝜎2
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= 2𝜎
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= 2𝜎
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and (⋅)∗ is the conjugate
operation on (⋅).

h[n] c[n]

w[n]

x[n] y[n] z[n]+
+

Adaptive equalizer

Figure 1: Block diagram of a baseband communication system.

The transmitted sequence 𝑥[𝑛] is sent through the chan-
nel ℎ[𝑛] and is corrupted with noise 𝑤[𝑛]. Therefore, the
equalizer’s input sequence 𝑦[𝑛]may be written as

𝑦 [𝑛] = 𝑥 [𝑛] ∗ ℎ [𝑛] + 𝑤 [𝑛] , (1)

where “∗” denotes the convolution operation. The equalized
output signal can be written as

𝑧 [𝑛] = 𝑥 [𝑛] + 𝑝 [𝑛] + 𝑤 [𝑛] , (2)

where 𝑝[𝑛] is the convolutional noise, namely, the residual
intersymbol interference (ISI) arising from the difference
between the ideal equalizer’s coefficients and those chosen in
the system and 𝑤[𝑛] = 𝑤[𝑛] ∗ 𝑐[𝑛]. The ISI is often used as
a measure of performance in equalizers’ applications, defined
by

ISI =
∑
𝑚̃

󵄨󵄨󵄨󵄨𝑠𝑚̃
󵄨󵄨󵄨󵄨

2

− |𝑠|
2

max

|𝑠|
2

max
, (3)

where |𝑠|max is the component of 𝑠, given in (4), having the
maximal absolute value. Consider that

𝑠 [𝑛] = 𝑐 [𝑛] ∗ ℎ [𝑛] = 𝛿 [𝑛] + 𝜁 [𝑛] , (4)

where 𝛿 is the Kronecker delta function and 𝜁[𝑛] stands for
the difference (error) between the ideal and the actual value
used for 𝑐[𝑛].

Next, we turn to the adaptation mechanism of the
equalizer which is based on training symbols [9–12, 19]:

𝑐eq [𝑛 + 1] = 𝑐eq [𝑛] − 𝜇 (𝑧 [𝑛] − 𝑥 [𝑛]) 𝑦
∗

[𝑛] , (5)

where 𝜇 is the step-size parameter, 𝑐eq[𝑛] is the equalizer
vectorwhere the input vector is𝑦[𝑛] = [𝑦[𝑛] ⋅ ⋅ ⋅ 𝑦[𝑛−𝑁+1]]𝑇,
and𝑁 is the equalizer’s tap length. The operator ( )𝑇 denotes
for transpose of the function ( ). Please note that for the
nonblind adaptive case, during the training period, a known
data sequence is transmitted. A replica of this sequence is
made available at the receiver in proper synchronism with
the transmitter, thereby making it possible for adjustments to
be made to the equalizer coefficients in accordance with the
adaptive filtering algorithm employed in the equalizer design
[19].

3. Residual ISI for Fractional Gaussian
Noise Input

In this section, a closed-form approximated expression (or an
upper limit) is derived for the residual ISI valid for the fGn
input case.
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Theorem 1. Noted the following assumptions.

(1) The convolutional noise 𝑝[𝑛] is a zero mean, white
Gaussian process with variance 𝜎2

𝑝
= 𝐸[𝑝[𝑛]𝑝

∗

[𝑛]].
The real part of𝑝[𝑛] is denoted as𝑝

𝑟
[𝑛] and𝐸[𝑝2

𝑟
[𝑛]] =

𝑚
𝑝
.

(2) The source signal 𝑥[𝑛] is a rectangular Quadrature
Amplitude Modulation (QAM) signal (where the real
part of 𝑥[𝑛] is independent of the imaginary part of
𝑥[𝑛]) with known variance and higher moments.

(3) The convolutional noise 𝑝[𝑛] and the source signal are
independent.

(4) The gain between the source and equalized output
signal is equal to one.

(5) The convolutional noise 𝑝[𝑛] is independent of 𝑤[𝑛].
(6) The added noise is fGn with zero mean.
(7) The channel ℎ[𝑛] has real coefficients.
(8) The Hurst exponent is in the range of 0.5 ≤ 𝐻 < 1.

The residual ISI expressed in dB units may be defined as

ISI = 10 log
10
(𝑚
𝑝
) − 10 log

10
(𝜎
2

𝑥𝑟

) , (6)

where𝑚
𝑝
is defined by
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and𝑅 is the channel length,𝜎2
𝑤𝑟

is the variance of𝑤
𝑟
[𝑛] (𝑤

𝑟
[𝑛]

is the real part of𝑤[𝑛]), and SNR is given by SNR = 𝜎2
𝑥𝑟

/𝜎
2

𝑤𝑟

=

𝜎
2

𝑥
/𝜎
2

𝑤
.

Comments. It should be pointed out that assumptions (1)–(5)
from above are precisely the same assumptions made in [2,
14].

Proof. Let us first recall the expression for the adaptation
mechanism of the equalizer given in (5). Then, we substitute
(2) into (5) and obtain

𝑐eq [𝑛 + 1] = 𝑐eq [𝑛] − 𝜇 (𝑝 [𝑛] + 𝑤 [𝑛]) 𝑦
∗

[𝑛] . (8)

Next, we recall from [14] the expression for 𝐸[Δ(𝑝2
𝑟
)],

where 𝑝
𝑟
is the real part of 𝑝[𝑛] andΔ(𝑝2

𝑟
) = 𝑝
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[𝑛 − 𝑚])]

+ 𝐸[

[

(−𝜇𝑃
𝑟
(𝑧)

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗

[𝑛 − 𝑚])

2

]

]

,

(9)

where 𝑃
𝑟
(𝑧) is the real part of 𝑃(𝑧) and is given in our case as

𝑃 (𝑧) =𝑧 [𝑛]− 𝑥 [𝑛] = 𝑝 [𝑛] + 𝑤 [𝑛] 󳨐⇒ 𝑃
𝑟
(𝑧) = 𝑝

𝑟
+ 𝑤
𝑟
[𝑛] .

(10)

According to [13, 14], when the equalizer has converged,
we may assume that 𝐸[Δ(𝑝2

𝑟
)] ≅ 0. Therefore, by setting

𝐸[Δ(𝑝
2

𝑟
)] = 0 into (9), we obtain

− 2𝜇𝑚
𝑝
𝐸[

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗

[𝑛 − 𝑚]]

+ 𝜇
2

(𝑚
𝑝
+ 𝜎
2

𝑤𝑟

)

× 𝐸[

[

(

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗

[𝑛 − 𝑚])

2

]

]

= 0

⇓

𝑚
𝑝
= 𝜎
2

𝑤𝑟

(𝜇𝐸[

[

(

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗

[𝑛 − 𝑚])

2

]

]

× (2𝐸[

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗

[𝑛 − 𝑚]] − 𝜇𝐸

×[

[

(

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗

[𝑛 − 𝑚])

2

]

]

)

−1

).

(11)

In [13], the expression 𝐸[(∑𝑚=𝑁−1
𝑚=0

𝑦[𝑛 − 𝑚]𝑦
∗

[𝑛 − 𝑚])
2

]

was approximated as (𝐸[∑𝑚=𝑁−1
𝑚=0

𝑦[𝑛 − 𝑚]𝑦
∗

[𝑛 − 𝑚]])
2.

It should be pointed out that this approximation fits the
MPSK case where QPSK is a special case of it. However,
satisfying results were obtained in [13] for the 16QAM and
64QAM cases in spite of the fact that the above mentioned
approximation was applied. Thus, it makes sense to use the
same approximation also here for our case. The expression
𝐸[∑
𝑚=𝑁−1

𝑚=0
𝑦[𝑛 − 𝑚]𝑦

∗

[𝑛 − 𝑚]]may be written as

𝐸[

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗

[𝑛 − 𝑚]] = 𝑁𝜎
2

𝑥

𝑘=𝑅−1

∑

𝑘=0

ℎ
2

𝑘
[𝑛] +

𝑁𝜎
2

𝑥

SNR
.

(12)
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Figure 2: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel1 for
SNR = 10 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 13 and 0.0006 respectively.

Next, we turn to find a closed-form approximated expression
for𝜎2
𝑤𝑟

.The real part of𝑤[𝑛], namely,𝑤
𝑟
[𝑛], may be expressed

as

𝑤
𝑟
[𝑛] =

𝑘=𝑁−1

∑

𝑘=0

𝑐
𝑘
[𝑛] 𝑤
𝑟
[𝑛 − 𝑘] . (13)

Thus, the variance of 𝑤
𝑟
[𝑛] is given by:

𝜎
2

𝑤𝑟

= 𝐸[

𝑘=𝑁−1

∑

𝑘=0

𝑐
𝑘
[𝑛] 𝑤
𝑟
[𝑛 − 𝑘]

𝑚=𝑁−1

∑

𝑚=0

𝑐
𝑚
[𝑛] 𝑤
𝑟
[𝑛 − 𝑚]]

=

𝑘=𝑁−1

∑

𝑘=0

𝑚=𝑁−1

∑

𝑚=0

𝑐
𝑘
[𝑛] 𝑐
𝑚
[𝑛] 𝐸 [𝑤

𝑟
[𝑛 − 𝑘]𝑤

𝑟
[𝑛 − 𝑚]] ,

(14)

which can be also written as

𝜎
2

𝑤𝑟

= 𝜎
2

𝑤𝑟

𝑘=𝑁−1

∑

𝑘=0

𝑐
2

𝑘
[𝑛]

+

𝑘=𝑁−1

∑

𝑘=0,𝑘 ̸=𝑚

𝑚=𝑁−1

∑

𝑚=0,𝑘 ̸=𝑚

𝑐
𝑘
[𝑛] 𝑐
𝑚
[𝑛]𝐸[𝑤

𝑟
[𝑛 − 𝑘]𝑤

𝑟
[𝑛 − 𝑚]] .

(15)

According to [2], expression (15) can be approximately
written as

𝜎
2

𝑤𝑟

≅

𝜎
2

𝑥𝑟

SNR∑𝑘=𝑅−1
𝑘=0

ℎ
2

𝑘
[𝑛]

[1 + √𝑁 − 1𝐻 (2𝐻 − 1)] , (16)
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Figure 3: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel1 for
SNR = 8 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 13 and 0.0006 respectively.

by using assumption (4) from the system description section,
assumptions (4) and (6)–(8) from this section, the Holder
inequality [20], and the following approximation [21]:

0.5 [(|𝑚 − 𝑘| − 1)
2𝐻

− 2(|𝑚 − 𝑘|)
2𝐻

+ (|𝑚 − 𝑘| + 1)
2𝐻

]

≃ 𝐻 (2𝐻 − 1) |𝑚 − 𝑘|
2𝐻−2

.

(17)

Now, by substituting (12) and (16) into (11) we obtain (7).This
completes our proof.

4. Simulation

In this section, we test our new proposed expression for the
residual ISI for the 16QAM case (a modulation using ±{1, 3}
levels for in-phase and quadrature components) with the
algorithm described in (5) for different SNR, step-size, and
equalizer’s tap length values and for two different channel
types.The following two channels were considered. Channel1
(initial ISI = 0.44): the channel parameters were determined
according to [22]

ℎ
𝑛
= (0 for 𝑛 < 0; −0.4 for 𝑛 = 0

× 0.84 ⋅ 0.4
𝑛−1 for 𝑛 > 0) .

(18)

Channel2 (initial ISI = 0.88) the channel parameters were
determined according to

ℎ
𝑛
= (0.4851, −0.72765, −0.4851) . (19)

The equalizer was initialized by setting the center tap equal to
one and all others to zero.



Mathematical Problems in Engineering 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration number

IS
I (

dB
)

Simulated for H = 0.5

Calculated for H = 0.5

Simulated for H = 0.7

Calculated for H = 0.7
Simulated for H = 0.9

Calculated for H = 0.9

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Figure 4: A comparison between the simulated and calculated residual ISI for the 16QAM source input going through channel1 for SNR = 10
[dB].The averaged results were obtained in 100Monte Carlo trials.The equalizer’s tap length and step-size parameter were set to 27 and 0.0006
respectively.
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Figure 5: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 13 and 0.0006 respectively.

In the following, we denote the residual ISI performance
according to (6) with (7) as “Calculated ISI.” Figure 2 to
Figure 8 show the ISI performance as a function of the
iteration number of our proposed expression (6) with (7)
for the achievable residual ISI compared with the simulated
results for two different channels and equalizer’s tap length
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Figure 6: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 27 and 0.0006 respectively.

and various values for 𝐻, SNR and step-size parameter.
According to Figures 2, 3, 5, 6, 7, and 8, a high correlation is
observed between the simulated and calculated results even
for 𝐻 = 0.9. According to Figure 4, the calculated ISI may
be considered as an upper limit for the simulated results for
𝐻 > 0.5.
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Figure 7: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 27 and 0.0004 respectively.
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Figure 8: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 27 and 0.0002 respectively.

5. Conclusion

In this paper, we proposed a closed-form approximated
expression (or an upper limit) for the residual ISI obtained
by nonblind adaptive equalizers valid for the fGn input case
where the Hurst exponent is in the region of 0.5 ≤ 𝐻 <

1. This new obtained expression depends on the step-size
parameter, equalizer’s tap length, input signal statistics, SNR,
channel power, and theHurst exponent parameter. According

to simulation results, a high correlation is obtained between
the calculated and simulated results for the residual ISI for
some cases, while for others the new obtained expression is a
relative tight upper limit for the averaged residual ISI results.
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This paper provides the fluctuation analysis of random functions with the Pareto distribution. By the introduced concept of wild
fluctuations, we give an alternativeway to classify the fluctuations from thosewith light-tailed distributions.Moreover, the suggested
term wildest fluctuation may be used to classify random functions with infinite variance from those with finite variances.

1. Introduction

The Pareto distribution is typically a type of heavy-tailed
distributions gaining research interests and applications in
many fields of sciences and technologies, ranging from
financial engineering to geosciences; see, for example, [1–
9]. By heavy tail of a probability distribution density (PDF)
function, we mean that the PDF is in the form of a certain
power function instead of exponential functions, such as the
Poisson distribution and Gaussian distribution. The subject
of heavy-tailed PDFs, including the Pareto one, may be in the
field of power laws, which has been attracted by researchers
in various fields; see, for example, [10–16].

Though Pareto reported his distribution in 1895 [17, 18]
from a view of economics, its applications to the other fields
are widely reported from a view of fractals in particular. Due
to the fact that the Pareto distribution plays a role in so many
areas, we give an introductive description about it from a view
of its fluctuations in comparison with some common PDFs,
such as Gaussian distribution.

The remainder of this paper is organized as follows.
Section 2 briefs the study background. The wild fluctuations
of random functions with the Pareto distribution are dis-
cussed in Section 3. Conclusions are given in Section 4.

2. Background

Denote by 𝑝(𝑥) the PDF of a second-order random function
(random function for short) 𝑥(𝑡). Then, its mean, that is,
its first moment, and its variance, that is, its second central
moment, play a role in characterizing 𝑥(𝑡).

Without generality losing in the discussions, we assume
that 𝑥(𝑡) is stationary. Let 𝜇 and 𝜎2 be the mean and the
variance of 𝑥(𝑡). Then, 𝜇 and 𝜎2 are expressed by (1) and (2),
respectively;

𝜇 = 𝐸 [𝑥 (𝑡)] = ∫

∞

−∞

𝑥𝑝 (𝑥) 𝑑𝑥, (1)

𝜎
2

= 𝐸 {[𝑥 (𝑡) − 𝜇]
2

} = ∫

∞

−∞

[𝑥 (𝑡) − 𝜇]
2

𝑝 (𝑥) 𝑑𝑥. (2)

Note that 𝜇 represents the average value around which
𝑥(𝑡) fluctuates. On the other side, 𝜎2 is a parameter for
measuring the dispersion or fluctuation of 𝑥(𝑡) around 𝜇.
Two parameters are essential. For instance, in the field of
measurements, an accurate measurement implies that the
variance of that measurement should be small [19–21].

Now, we consider two random functions 𝑥(𝑡) and 𝑦(𝑡).
Suppose that their means are equal. Denote by 𝜎2

𝑥
and 𝜎2

𝑦
the
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variances of 𝑥(𝑡) and 𝑦(𝑡), respectively. Then, in engineering,
one may say that 𝑥(𝑡) is more random than 𝑦(𝑡) if

𝜎
2

𝑥
> 𝜎
2

𝑦
. (3)

In otherwords, onemay also say that𝑥(𝑡) ismore diverse than
𝑦(𝑡) if (3) holds [21, 22]. Using the term fluctuation, one may
say that the fluctuation range of 𝑥(𝑡) is larger than that of 𝑦(𝑡)
when (3) holds. As a matter of fact, variance analysis plays a
role in statistics [23, 24].

Note that if 𝑥(𝑡) is Gaussian, its PDF is uniquely deter-
mined by its 𝜇 and 𝜎2 because

𝑝 (𝑥) =
1

√2𝜋𝜎

exp[−
(𝑥 − 𝜇)

2

2𝜎2
] , −∞ < 𝑥 < ∞. (4)

The particularly useful result by using 𝜎2 can be explained as
follows. Though −∞ < 𝑥 < ∞ in general, the fluctuation of
a Gaussian random function 𝑥(𝑡) can be simply determined
with a certain probability. For example, it is well known that,
with probability 95%, the fluctuation interval of 𝑥(𝑡) is given
by

− (𝜇 − 3𝜎) < 𝑥 < 𝜇 + 3𝜎. (5)

It is obvious that the tool of variance analysis may work
if variances to be studied exist. In fact, one may use (3) to
identify whether the fluctuation of 𝑥(𝑡) is more severe than
that of 𝑦(𝑡) if both variances of 𝑥(𝑡) and 𝑦(𝑡) exist.

3. Fluctuation Analysis of Random Function
with the Pareto PDF

Recall that the necessary and sufficient condition for a
function 𝑝(𝑥) to be a PDF is 𝑝(𝑥) ≥ 0 and

∫

∞

−∞

𝑝 (𝑥) 𝑑𝑥 = 1. (6)

Denote by 𝑝Pareto(𝑥) the PDF of the Pareto distribution.Then,

𝑝Pareto (𝑥) =
{

{

{

𝑎𝑏
𝑎

𝑥𝑎+1
, 𝑥 ≥ 𝑏,

0, otherwise.
(7)

In the above, 𝑎 and 𝑏 are positive parameters (http://math-
world.wolfram.com/ParetoDistribution.html).

Note 1 (heavy tail). The function 𝑝Pareto(𝑥) decays hyper-
bolically. Hence, heavy tail is compared to PDFs that are
exponentially decayed.

The mean and variance of 𝑥(𝑡) that follows 𝑝Pareto(𝑥) are,
respectively, given by

𝜇Pareto = ∫
∞

𝑏

𝑥𝑝Pareto (𝑥) 𝑑𝑥 =
𝑎𝑏

𝑎 − 1
, (8)

Var (𝑥)Pareto =
𝑎𝑏
2

(𝑎 − 1)
2

(𝑎 − 2)

. (9)

Note 2 (infinite variance). If 𝑎 → 1 or 𝑎 → 2, Var(𝑥)Pareto
→ ∞ as can be seen from (9).

Since the heavy tails of random functions imply their
larger fluctuation ranges than those with light tails, that is,
exponential type distributions, such as the Gaussian or Pois-
son distribution, we specifically, though informal, introduce
a term “wild fluctuation,” in comparison with those with light
tails. In addition, because infinite invariance implies that the
fluctuation range of a random function is infinite, we, though
informal again, introduce another term “wildest fluctuation,”
in comparison with those with finite variances.

Remark 1 (wildest fluctuation). The fluctuation of a random
function 𝑥(𝑡) that follows 𝑝Pareto(𝑥)may be wildest if 𝑎 → 1
or 𝑎 → 2.

Case Study 1. Suppose that there are two different random
functions 𝑥(𝑡) and 𝑦(𝑡). Both obey the Pareto distribution.
When 𝑥(𝑡) is with 𝑎 = 1 while 𝑦(𝑡) is with 𝑎 = 2, we have
Var(𝑥) → ∞ and Var(𝑦) → ∞. In this case, one may
fail to identify whether the fluctuation of 𝑥(𝑡) is more severe
than that of 𝑦(𝑡) based on the tool of variance analysis. More
precisely, variance analysis that plays a role in conventional
statistics fails to be used for the fluctuation analysis of random
functions with infinite variance.

4. Conclusions

We have explained our introduction of the term wild fluc-
tuation and wildest one by using the Pareto distributions.
Though the present analysis is based on the Pareto distribu-
tion, it may yet be an alternative material to shortly describe
the fact that caution should be paid to variance analysis of a
random function with a heavy-tailed distribution unless its
variance exists.

Acknowledgments

This work was supported in part by the 973 plan under the
Project Grant no. 2011CB302800 and by the National Natural
Science Foundation of China under the Project Grant nos.
61272402, 61070214, and 60873264.

References

[1] V. Pisarenko and M. Rodkin, Heavy-Tailed Distributions in
Disaster Analysis, Springer, New York, NY, USA, 2010.

[2] S. I. Resnick,Heavy-Tail Phenomena Probabilistic and Statistical
Modeling, Springer Series in Operations Research and Financial
Engineering, Springer, New York, NY, USA, 2007.

[3] R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds., A Practical
Guide to Heavy Tails: Statistical Techniques and Applications,
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In order to improve the precision of forecasting a time series, set pair analysis based on phase space reconstruction (SPA-PSR)model
is established. In the newmodel, by using chaos analysis, we reconstruct the phase space with delay time and embedding dimension.
Based on it, we rebuilt history sets and current sets in the SPA-PSR model. Two cases of forecasting extreme temperature in Mount
Wutai andDatong are taken to examine the performance of SPA-PSRmodel.The results indicate that themean relative error (MRE)
of SPA-PSRmodel has decreased by 65.97%, 59.32%, and 7.79% in the case ofMountWutai and 29.11%, 32.82%, and 9.03% in the case
of Datong, respectively, compared with autoregression (AR) model, rank set pair analysis (R-SPA) model, and Back-Propagation
(BP) neural network model. It gives a theoretical support for set pair analysis and improves precision of numerical forecasting.

1. Introduction

Theglobal and regional climates have already begun changing
[1], and as the important factor of climate change, temper-
ature plays a significant role in human’s daily life [2, 3]. It
is important to forecast extreme temperature accurately [4].
Temperature change process is usually nonlinear, complex,
and dynamic, so the accurate prediction of extreme temper-
ature is faced with a high degree of scientific uncertainty,
which traditional deterministic mathematical model cannot
solve perfectly. And numerical simulation method can solve
the problem better [4–6].

Auto regression (AR) model is the traditional method
used to deal with the time series forecasting [7]; for example,
Bańbura et al. used Bayesian vector autoregressions for com-
mercial forecasting [8]. In recent years, artificial neural
network (ANN) algorithms are widely used to deal with fore-
casting meteorological objects [9]. Based on the genetic
algorithm (GA) and particle swarm algorithm, Yang designed
the Back-Propagation (BP) neural networks to establish the
multifactor time series forecasting model [10]. At the same

time, set pair analysis (SPA) model which is easy to operate
and gives good prediction results is also popular in meteoro-
logical forecast field [5, 6]. Yang et al. gave the set pair analysis
based on similarity forecast (SPA-SF) model for forecasting
water resources changing process, and the application results
showed that the statistic and physical concepts of SPA-SF
were distinct and its precision was high [9]. Recently, Mei et
al. used SPA to find an optimal choice of Bioretention media
[11] and Guo et al. employed it to assess the ecoenvironment
quality for uncertain problems [12]. Because SPA model
does not provide a unified standard of quantifying the
set element symbols, the rank set pair analysis (R-SPA)model
is presented by using the rank set pair analysis [5, 9, 10], and
the results are proved to be better.

However, for SPA (including R-SPA) [5, 9], there is
no accurate method to determine the dimension of his-
tory sets and currant sets, which is used to calculate the
connection degree and affects prediction results. And by
finding the most similar history set, SPA model uses sub-
sequent value as the forecasting value of current set, while
it does not give a satisfying theoretical proof. Phase space
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reconstruction, based on chaos time series analysis, is the
newest development to deal with nonlinear time series [13–
17]. It has an excellent description of the system’s dynamic
behavior by applying the nonlinear dynamics theory and
fractal theory. In particular chaos systems are dynamical
systems that defy synchronization. They are ubiquitous in
nature, and most of them do not have an explicit dynamical
equation and can be only understood through the available
time series [18]. Under some circumstances, such processes
can create time series that appear to be completely random—
the corollary of this is that some seemingly random series
are in fact chaotic and thus to a certain extent predictable
[14]. In 2012, Khatibi et al. studied the chaos in river time
series [16] and Di et al. discussed the chaos control and
synchronization of a nonlinear system [17]. Based onmultiple
criteria decision making (MCDM), Yang et al. presented
using the chaotic Bayesian method for forecasting nonlinear
hydrological time series [19]. Comparedwith the results of the
add-weighted one-rank local-region method (AOLM), the
method can improve the forecast accuracy of daily runoffs.
And by analyzing the chaos of time series, She and Yang also
used the new adaptive local linear prediction in hydrological
time [20].

As discussed above, to have a more accurate numerical
forecasting of extreme temperature, by using chaos time
series analysis, a set pair analysis based on phase space recon-
struction (SPA-PSR) model is proposed in the paper: we
use the Takens embedding theory [21] to embed the rebuilt
history sets and current sets in SPA so that the parameter
(dimension of history sets) can be calculated and both kinds
of sets have theoretical meanings for prediction. Two cases
of forecasting extreme temperature in Mount Wutai and
Datong stations are taken to examine the efficiency of SPA-
PSR model.

2. The Method of Phase Space
Reconstruction (PSR)

For a scalar time series, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, according to Takens

embedding theory [21], the phase space can be reconstructed
to amultidimensional space and the coordinate delaymethod
is commonly used.The constructed𝑚 dimension state vector
𝑌
𝑖
is

𝑌
𝑖
= (𝑥
𝑖
, 𝑥
𝑖+𝜏
, . . . , 𝑥

𝑖+(𝑚−1)𝜏
) , (1)

where 𝑛 is the length of time series, 𝜏 is the delay time and
𝑚 is the embedding dimension 𝑖 = 1, 2, . . . ,𝑀,𝑀 is the total
points number of the phase-space, and 𝑀 = 𝑛 − (𝑚 − 1)𝜏.

2.1.TheDetermination ofDelay Time. In this study,we use the
autocorrelation function to determine the delay time 𝜏 [22–
24]. As for time series 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, the autocorrelation

coefficient function with the lag time 𝑡 is [20, 25, 26]

𝐶 (𝑡) =
1

𝑛 − 𝑡

∑
𝑛−𝑡

𝑖=1
(𝑥
𝑖
− 𝜇) (𝑥

𝑖+𝑡
− 𝜇)

𝜎2 (𝑥)
, (2)

where 𝜇 and 𝜎 are the mean and standard variation of the
time series respectively. Drawing the plot of 𝑡−𝐶(𝑡), the delay

time 𝜏 is selected when the autocorrelation coefficient has
dropped to (1 − 1/𝑒) [22] of its initial value (𝑒 is the base of
natural logarithm).

2.2. The Determination of Embedding Dimension. There are
also many ways to decide the embedding dimension [27–31].
In order to have a good predicting result, we choose the min-
imum prediction error method [27] to assure embedding
dimension.

For a scalar time series 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, reconstruct it with

(1). According to Takens embedding theory, when 𝜏 and𝑚 are
the best delay time and best embedding dimension, respec-
tively, there is a mapping that existed: 𝐹 : 𝑅𝑚 → 𝑅

𝑚, such
that

𝑌
𝑖+1
= 𝐹 (𝑌

𝑖
) . (3)

At this time, the average prediction error (also can be the
maximum prediction error, or other prediction errors):

𝐸 (𝑚, 𝜏) =
1

𝑀 − 1

𝑀−1

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖+1+(𝑚−1)𝜏

− 𝑥
𝜂(𝑖)+1+(𝑚−1)𝜏

󵄨󵄨󵄨󵄨󵄨
(4)

should be the minimum. In formula (4), 𝜂(𝑖) is assured by
finding the nearest neighbor spot 𝑌

𝜂(𝑖)
of 𝑌
𝑖
, and the way is

shown as follows:
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑌
𝜂(𝑖)
− 𝑌
𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
= min
𝑗=1,2,...,𝑀; 𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑗
− 𝑌
𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
, (5)

where ||𝑌
𝜂(𝑖)
−𝑌
𝑖
||means the Euclidian distance (the norm in

certain space) between 𝑌
𝜂(𝑖)

and 𝑌
𝑖
, and we take the norm of

𝐿
∞

space:
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑌
𝜂(𝑖)
− 𝑌
𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
= min
𝑗=1,2,...,𝑀; 𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑗
− 𝑌
𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

= min
𝑗=1,2...𝑀; 𝑗 ̸= 𝑖

max
1≤𝑙≤𝑚−1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗+𝑙𝜏

− 𝑥
𝑖+𝑙𝜏

󵄨󵄨󵄨󵄨󵄨
.

(6)

According to the existence of the largest Lyapunov expo-
nents and noise, with embedding dimension 𝑚 increasing,
the value of 𝐸(𝑚, 𝜏) will be heavily influenced. So we make
𝑚 increase from two, taking the first minimum point in
𝐸(𝑚, 𝜏) − 𝑚 curve as the best embedding dimension [27].

The PSR algorithm is shown as follows.

(1) For a scalar time series 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, first, take a

smaller value of embedding dimension 𝑚 = 2; then
the corresponding phase space reconstruction state
vectors are

𝑌
𝑖
= (𝑥
𝑖
, 𝑥
𝑖+𝜏
, . . . , 𝑥

𝑖+(𝑚−1)𝜏
) 𝑖 = 1, 2, . . . . (7)

(2) Using formula (5) to find the 𝑌
𝑖
’s nearest neighbor

spot, 𝑌
𝜂(𝑖)

, 𝑖 = 1, 2, . . . 𝑁, and then taking them
into formula (4), calculate the corresponding value
of 𝐸(𝑚, 𝜏).

(3) Increase the embedding dimension, take 𝑚 + 1 →

𝑚, and repeat Steps 1 and 2.
(4) Find the first minimum value of 𝐸(𝑚, 𝜏), and the cor-

responding value of𝑚 is the embedding dimension.
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2.3. Verification of the Chaos of Time Series. In order to
verify whether time series is chaotic, we calculate the largest
Lyapunov exponent of our studied time series by using the
delay time and embedding dimension above [22].The largest
Lyapunov exponent is defined by the value of its nearest
neighbor divergence rate on average

ln𝐷
𝑖
(𝑘) = ln𝐶

𝑖
+ 𝜆 ⋅ (𝑘 ⋅ Δ𝑡) , (8)

where 𝐷
𝑖
(𝑘) represents the distance between 𝑖th point and its

nearest neighbor after 𝑘 time units, and

𝐷
𝑖
(0) = min

𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑖
− 𝑌
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
, (9)

where |𝑖 − 𝑗| > 𝑤 and 𝐶
𝑖
is the initial distance. So the slope

𝜆 can represent the largest Lyapunov exponent, which can be
calculated by using the least square method.

If the largest Lyapunov exponent 𝜆 is greater than 0, the
time series is chaotic. If not, the Takens embedding theory
is not tenable, and the set pair analysis based on phase space
reconstruction model (SPA-PSR) model could not be used.

3. Set Pair Analysis Based on Phase Space
Reconstruction (SPA-PSR) Model

By analyzing the chaotic time series, the reconstructed phase
space is applied to set pair analysis.The set pair analysis based
on phase space reconstruction (SPA-PSR) model is shown as
follows.

Step 1 (the phase space reconstruction). According to the
methods mentioned in Section 2, the reconstructed phase
space is established, and the corresponding state vector 𝑌

𝑖
is

𝑌
𝑖
= (𝑥
𝑖
, 𝑥
𝑖+𝜏
, . . . , 𝑥

𝑖+(𝑚−1)𝜏
) (10)

according to Takens embedding theory: when 𝜏 and𝑚 are the
best delay time and best embedding dimension, respectively;
another corresponding smooth function existed, 𝐹

1
: 𝑅
𝑚

→

𝑅:

𝑥
𝑖+1+(𝑚−1)𝜏

= 𝐹
1
(𝑌
𝑖
) , (11)

where 𝐹
1
represents the state transformation of studied time

series in𝑚 dimension space.

Step 2 (rebuilt set pair (𝐴
𝑖
, 𝐵)). According to the similarity

for development theory, the SPA model uses the history sets’
subsequent value to predict future values. So based on the
phase space reconstruction with delay time 𝜏 and embed-
ding dimension 𝑚 in Step 1, we can obtain the dimension 𝑇
and rebuilt history sets and the current set: the dimension
𝑇 = 𝑚, the history set 𝐴

𝑖
is 𝑌
𝑖
= (𝑥
𝑖
, 𝑥
𝑖+𝜏
, . . . , 𝑥

𝑖+(𝑚−1)𝜏
),

𝑖 = 1, 2, . . . 𝑁, current set 𝐵 = (𝑥
𝑖
, 𝑥
𝑖+𝜏
, . . . , 𝑥

𝑖+(𝑚−1)𝜏
), and all

are shown in Table 1.

Then, we got the rank transformation of the rebuilt
sets 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑀−1
. If some elements have the same rank,

we mark them according to their average rank and round off
the value. We could obtain the rank set 𝐴󸀠

1
, 𝐴
󸀠

2
, . . . , 𝐴

󸀠

𝑀−1
.

By combining the set 𝐵󸀠 with 𝑀 − 1 set 𝐴󸀠
𝑖
separately, we

get the rank set pair (𝐴󸀠
𝑖
, 𝐵
󸀠

).The sets (𝐴󸀠
𝑖
, 𝐵
󸀠

) are the rebuilt
set pair in constructed phase space. Simply, we make (𝐴

𝑖
, 𝐵)

represent (𝐴󸀠
𝑖
, 𝐵
󸀠

).

Step 3 (the calculation of connection degree). According to
the connection degree formula of 𝐴

𝑖
, 𝐵 [5, 9],

𝑈
𝐴𝑖−𝐵

=
𝑆

𝑁
+
𝐹

𝑁
𝑖 +

𝑃

𝑁
𝑗, (12)

where 𝑁 is the number of elements in set 𝐴
𝑖
or 𝐵, 𝑆 rep-

resents the number of identical elements, 𝑃 represents the
number of contrary elements, 𝐹 represents the number of
discrepant elements, 𝑖 and 𝑗 represent discrepancy degree and
contrary degree, respectively.

Use 𝑑(𝑎
𝑘
, 𝑏
𝑘
) = |𝑎
𝑘
−𝑏
𝑘
|, (𝑎
𝑘
, 𝑏
𝑘
) ∈ (𝐴

𝑖
, 𝐵) to describe dif-

ferences between sets (𝐴
𝑖
, 𝐵), and the codomain of 𝑑(𝑎

𝑘
, 𝑏
𝑘
)

is [0,𝑀 − 1]. So the 𝑈
𝐴𝑖−𝐵

is calculated as follows.

(1) When 𝑑(𝑎
𝑘
, 𝑏
𝑘
) = 0, add 1 to the element number in

set 𝑆.
(2) When 0 < 𝑑(𝑎

𝑘
, 𝑏
𝑘
) ≤ (𝑀 − 2), add 1 to the element

number in set 𝐹.
(3) When 𝑑(𝑎

𝑘
, 𝑏
𝑘
) = 𝑀−1, add 1 to the element number

in set 𝑃.

According the three principle above, take 𝑁 = 𝑚; using
formula (12), the 𝑈

𝐴𝑖−𝐵
can be obtained.

Step 4 (the determination of similar set and prediction).
According to the connection degree maximum principle [5,
9], some 𝐴

𝑘
similar to 𝐵 are chosen from all the history sets.

Thus, the forecast value of 𝑥
𝑀+(𝑚−1)𝜏

, namely, the 𝑥
𝑛+1

, is
𝑥
𝑛+1

as follows:

𝑥
𝑛+1

=
1

𝑚

𝑚

∑

𝑘=1

𝑤
𝑘
𝑥
𝑘+(𝑚−1)𝜏+1

, (13)

where 𝑤
𝑘
denotes the ratio of mean of elements in 𝐵 to mean

of elements in 𝐴
𝑘
.

4. Applications in Extreme Temperature

4.1. Case 1

(1) Study Area and Data Description. The SPA-PSR model
is applied to the highest temperature prediction of Mount
Wutai in July 1956∼2010, which is relatively more accurate in
measurement, easy to get, and useful in practice [32, 33].

We use the temperatures in 1956–1999 as known data
and thus obtain the time series 𝑥

1
, 𝑥
2
, . . . , 𝑥

44
. Then we will

forecast the highest temperature of Mount Wutai in July
2000–2010.

(2) The Phase Space Reconstruction. For the scalar time series
of the highest temperature prediction of Mount Wutai in
July 𝑥

1
, 𝑥
2
, . . . , 𝑥

44
, we use the autocorrelation method and

minimum prediction error method to calculateMountWutai
highest temperature in July’s corresponding delay time and
embedding dimension, which is shown in Figure 1.
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Figure 1: Autocorrelation coefficient in Case 1 (the dash line pre-
sents the situation where the autocorrelation function value is (1 −
1/𝑒) of its initial value).
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Figure 2:The corresponding prediction error function, when delay
time 𝜏 = 1.

In Figure 1, we calculate the autocorrelation of the highest
temperature in July of Mount Wutai. When the autocorrela-
tion coefficient has dropped to (1 − 1/𝑒) of its initial value,
the corresponding 𝑡 < 1, it indicates that the best delay time is
less than 1. However, in reality, the highest temperature in July
appears in every other year, which means that 𝜏 ≥ 1; thus, we
take the nearest time to be the delay time, which is 𝜏 = 1.

From Figure 2, it is obvious that when 𝜏 = 1, 𝑚 = 3, the
prediction error function 𝐸(𝑚, 𝜏) attains its first minimum
point, which indicates that 𝑚 = 3 is the best embedding
dimension for the reconstruction of phase space. Taking 𝑤 =
2, with the largest Lyapunov exponent 𝜆 = 0.00086 > 0,

Table 1: The rebuilt history sets 𝐴
𝑖
and the current set 𝐵.

Sets Elements in 𝐴
𝑖
, 𝐵 Subsequent value

𝐴
1

𝑥
1

𝑥
1+𝜏

⋅ ⋅ ⋅ 𝑥
1+(𝑚−1)𝜏

𝑥
1+(𝑚−1)𝜏+1

𝐴
2

𝑥
2

𝑥
2+𝜏

⋅ ⋅ ⋅ 𝑥
2+(𝑚−1)𝜏

𝑥
2+(𝑚−1)𝜏+1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐴
𝑖

𝑥
𝑖

𝑥
𝑖+𝜏

⋅ ⋅ ⋅ 𝑥
𝑖+(𝑚−1)𝜏

𝑥
𝑖+(𝑚−1)𝜏+1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐴
𝑀−1

𝑥
𝑀−1

𝑥
𝑀−1+𝜏

⋅ ⋅ ⋅ 𝑥
𝑀−1+(𝑚−1)𝜏

𝑥
𝑖+(𝑚−1)𝜏+1

𝐵 𝑥
𝑀

𝑥
𝑀+𝜏

⋅ ⋅ ⋅ 𝑥
𝑀+(𝑚−1)𝜏

𝑥
𝑀+(𝑚−1)𝜏+1

which indicates that the time series ofMountWutai is chaotic
and satisfies the Takens embedding series.

In sum, with the delay time 𝜏 = 1 and embedding dimen-
sion𝑚 = 3, the phase space of the highest temperature in July
ofMountWutai is reconstructed, and the corresponding state
vector 𝑌

𝑖
= (𝑥
𝑖
, 𝑥
𝑖+1
, 𝑥
𝑖+2
).

(3) Set Pair Analysis Based on Phase Space Reconstruction
(SPA-PSR). Based on the reconstruction of phase space in
formula (1), the number of reconstructed spots 𝑀 = 𝑛−(𝑚−

1) ⋅ 𝜏 = 44 − 2 = 42 and the rebuilt set pairs of (𝐴
𝑖
, 𝐵) of

the highest temperature of Mount Wutai in July time series
𝑥
1
, 𝑥
2
, . . . , 𝑥

44
is shown as follows:

𝐴
1
= (𝑥
1
, 𝑥
2
, 𝑥
3
) ,

𝐴
2
= (𝑥
2
, 𝑥
3
, 𝑥
4
) ,

...

𝐴
41
= (𝑥
41
, 𝑥
42
, 𝑥
43
) ,

(14)

and the corresponding current set 𝐵 is

𝐵 = (𝑥
42
, 𝑥
43
, 𝑥
44
) (15)

then using the method mentioned in Section 3, We can have
the 𝑥
45
value, namely, the prediction of the highest tempera-

ture of Mount Wutai in July 2000.

(4) The Prediction Results and Analysis. Prediction results of
the highest temperature (P) in Mount Wutai in July 2000∼
2010 and the corresponding relative error (RE) are shown in
Table 1.

Moreover, to verify the prediction effect of SPA-PSR
model, we take R-SPA model, AR model, and BP model to
make comparisons. To be the same, in AR model [7], it uses
the temperatures in 1946∼1999 in every 6 years to obtain the
regression linear equation of Mount Wutai, and by using the
equation, we can predict the corresponding data in 2000∼
2010; in BP model [10], the temperatures in 1956∼1999 are
used as trained sets, and the data in 2000∼2010 are tested sets,
with 500 trained times and the study rate 0.3; in R-SPAmodel
[9], it uses the pervious 6 years as the history sets to predict
the temperatures in 2000∼2010.

Compared with the results of AR model, R-SPA model,
and BP model, SPA-PSR model has the smallest deviation
(RE) with the measured value in those 11 years in general as
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Table 2: Prediction results and the corresponding relative errors (REs).

Year Measured value (0.1/∘C) AR model BP model R-SPA model SPA-PSR model
P (0.1/∘C) RE (%) P (0.1/∘C) RE (%) P (0.1/∘C) RE (%) P (0.1/∘C) RE (%)

2000 250 177.91 28.84 172.66 30.94 220.89 11.64 208.91 16.43
2001 239 182.30 23.72 182.74 23.54 208.08 12.94 258.14 8.01
2002 241 183.82 23.73 183.67 23.79 212.71 11.74 239.92 0.45
2003 233 173.99 25.33 202.02 13.30 236.92 1.68 254.56 9.25
2004 216 173.07 19.88 184.38 14.64 242.55 12.29 244.02 12.97
2005 241 178.01 26.14 210.23 12.77 253.00 4.98 228.12 5.35
2006 227 179.06 21.12 192.55 15.17 243.40 7.23 248.73 9.57
2007 234 173.69 25.77 192.24 17.85 247.74 5.87 214.79 8.21
2008 232 181.48 21.78 184.54 20.46 247.80 6.81 243.74 5.06
2009 236 178.04 24.56 179.79 23.82 274.66 16.38 234.01 0.84
2010 286 176.15 38.41 179.06 37.39 253.15 11.48 232.09 18.85

Table 3: The error analysis in four models.

Models AR model BP model R-SPA model SPA-PSR model
MRE (%) 25.39 21.24 9.37 8.64
MAE 61.59 51.92 22.57 21.12

shown in Table 2. AR model and R-SPA model does not have
the prediction in which relative errors are below 10%, while in
R-SPA model and SPA-PSR model are 5 and 8, respectively.
According to those points, SPA-PSR model has a better
forecasting result.

To make it clear, the precision of prediction is evaluated
by two measurement indices in this paper, namely, the mean
relative error (MRE) and Mean absolute error (MAE). The
results are calculated in Table 3.

In Table 3, we can find that AR model and BP model do
not have good forecasting results of Mount Wutai, for that
their MREs are all above 20%, and MAEs are above 50, while
for R-SPA and SPA-PSR, the prediction error is reduced a lot.
Compared with AR model, BP model, and R-SPA model, the
MRE of SPA-PSR model is relatively decreased by 65.97%,
59.32%, and 7.79%, respectively, and the MAE is also the
lowest, which relatively decreased by 65.71%, 59.32%, and
6.42%.The two measurement indices both indicate that SPA-
PSR model has the best forecasting results.

4.2. Case 2

(1) Study Area and Data Description.We also apply SPA-PSR
model to predict results of the highest temperature in Datong
in July 2000∼2010, known data in 1955–2010.

(2) The Phase Space Reconstruction. For the scalar time series
of the highest temperature prediction of Mount Wutai in
July 𝑥

1
, 𝑥
2
, . . . , 𝑥

45
, the samemethods are used to reconstruct

phase space. The corresponding delay time and embedding
dimension are shown in Figures 3 and 4.

From Figure 3, we find that similar to Mount Wutai, the
Datong corresponding autocorrelation coefficient sharpen
decreased from 𝑡 = 0; when it has dropped to (1 − 1/𝑒) of
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Figure 3: The autocorrelation coefficient in Case 2 (the dash line
presents the situation where the autocorrelation function value is
(1 − 1/𝑒) of its initial value).

its initial value, the corresponding 𝑡 < 1, in the same way,
we take 𝜏 = 1 as the delay time. In Figure 4, when 𝜏 =

1 and𝑚 = 5, the prediction error function 𝐸(𝑚, 𝜏) attains its
first minimum point, so the best embedding dimension for
Datong is 𝑚 = 5. And taking 𝑤 = 2, the largest Lyapunov
exponent 𝜆 = 0.00024 > 0, which indicates that the Datong’s
time series is chaotic and satisfies the Takens embedding
series.

In sum, with the delay time 𝜏 = 1 and embedding
dimension 𝑚 = 5, the phase space of the highest temperature
in July of Datong is reconstructed, and the corresponding
state vector is 𝑌

𝑖
= (𝑥
𝑖
, 𝑥
𝑖+1
, 𝑥
𝑖+2
, 𝑥
𝑖+3
, 𝑥
𝑖+4
). Being similar

to Mount Wutai, the set pairs are rebuilt according to phase
space reconstruction and used to forecast the highest temper-
ature of Datong in July 2000–2010.

(3) The Prediction Results and Analysis. Prediction results of
the highest temperature (P) in Datong in July 2000∼2010 and
the corresponding relative error (RE) are shown in Table 4.
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Table 4: Prediction results and the corresponding relative errors (REs).

Year Measured value (0.1/∘C) AR model BP model R-SPA model SPA-PSR model
P (0.1/∘C) RE (%) P (0.1/∘C) RE (%) P (0.1/∘C) RE (%) P (0.1/∘C) RE (%)

2000 361 325.44 9.85 338.18 6.32 313.79 13.08 331.21 8.25
2001 355 310.31 12.59 312.06 12.10 334.54 5.76 317.05 10.69
2002 357 320.83 10.13 324.77 9.03 338.44 5.20 354.39 0.73
2003 324 310.33 4.22 278.54 14.03 350.04 8.04 345.62 6.67
2004 333 323.09 2.98 323.39 2.89 351.28 5.49 345.68 3.81
2005 341 325.48 4.55 280.00 17.89 365.02 7.05 335.29 1.67
2006 335 320.68 4.27 322.46 3.74 327.98 2.10 344.97 2.98
2007 345 328.86 4.68 346.26 0.37 343.53 0.43 367.30 6.46
2008 379 327.16 13.68 321.26 15.23 328.10 13.43 336.75 11.15
2009 360 310.04 13.88 332.43 7.66 347.50 3.47 326.48 9.31
2010 392 310.39 20.82 321.35 18.02 332.37 15.21 351.54 10.32
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Figure 4:The corresponding prediction error function, when delay
time 𝜏 = 1.

The computational methods of the other three models are
similar to Case 1.

Compared with the results of AR model, R-SPA model,
and BP model, SPA-PSR model has the smallest deviation
(RE) with the measured value in those 11 years in general.
The numbers of relative errors below 10% in threemodels are,
respectively, 6, 6, 8, and 8. And the majority of forecasting
results in SPA-PSR model is below 5%. According to those
points, SPA-PSR model is better to be used to forecast.

In Table 5, it indicates that AR model and BP model
have better forecasting results for Datong than for Mount
Wutai, due to that the corresponding MRE is within 10% and
the MAE is also decreased. What is more, the BP model is
not better than AR model; the reason is likely to be train
function or other factors. At the same time, the two indices all
indicate that SPA-PSR model has the best forecasting results.
Compared with AR model, BP model, and R-SPA model, the
MRE of SPA-PSR model is relatively decreased by 29.11%,
32.82%, and 9.03%, respectively, and the MAE is relatively
decreased by 29.93%, 32.56%, and 9.53%.

Table 5: The error analysis in four models.

Models AR model BP model R-SPA model SPA-PSR model
MRE (%) 9.24 9.75 7.20 6.55
MAE 33.58 34.89 26.01 23.53

5. Conclusions

To obtain the optimum prediction results, set pair analysis
based onphase space reconstruction (SPA-PSR)model is pro-
posed, in which the phase space with embedding dimension
and the delay time is reconstructed and prediction results are
gotten by combing SPAandphase space reconstructmethods.
Two cases of forecasting the highest temperature in July of
Mount Wutai and Datong stations are studied by using the
new model. The main conclusions are shown as follows.

(1) By combining the chaotic time series analysis and SPA
analysis in the SPA-PSRmodel, we have amore clearly
depiction of the complexity nonlinear dynamical
behavior of original forecasting system of extreme
temperature, which is a good foundation to make
nonlinear forecasting.

(2) Cases applications indicate that the SPA-PSR model
can have a better result for forecasting the highest
temperature in July of Mount Wutai and Datong sta-
tions. In two cases, compared with AR model, BP
model, andR-SPAmodel, theMREof SPA-PSRmodel
is relatively decreased by 65.97%, 59.32%, and 7.79%
in the case of Mount Wutai and 29.11%, 32.82%,
and 9.03% in the case of Datong, respectively, and
the MAE is relatively decreased by 65.71%, 59.32%,
and 6.42% in the case of Mount Wutai and 29.93%,
32.56%, and 9.53% in the case of Datong, respectively.
The results indicate that SPA-PSRmodel has the better
forecasting values.

(3) Due to the widely use of SPA [5, 6] and ubiquity of
chaotic time series [18], the SPA-PSR model can also
be used in predicting other nonlinear time series in
the future and it will be further studied.
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A nonzero residual intersymbol interference (ISI) causes the symbol error rate (SER) to increase where the achievable SER may
not answer any more on the system’s requirements. In the literature, we may find for the single-input-single-output (SISO) case a
closed-form approximated expression for the SER that takes into account the achievable performance of the chosen blind adaptive
equalizer from the residual ISI point of view and a closed-form approximated expression for the residual ISI valid for the single-
input-multiple-output (SIMO) case. Both expressions were obtained by assuming that the input noise is a white Gaussian process
where the Hurst exponent (H) is equal to 0.5. In this paper, we derive a closed-form approximated expression for the residual ISI
obtained by blind adaptive equalizers for the SIMO case, valid for fractional Gaussian noise (fGn) input where the Hurst exponent
is in the region of 0.5 ≤ 𝐻 < 1. Based on this new expression for the residual ISI, a closed-form approximated expression is obtained
for the SER valid for the SIMO and fGn case. In this paper, we show via simulation results that the SER might get improved for
increasing values of H.

1. Introduction

We consider a blind deconvolution problem in which we
observe the multiple output of a finite impulse-response
(FIR) single-input multiple-output (SIMO) channel from
which we want to recover its input using adjustable linear
filters (equalizers). In the field of communication, SIMO
channels appear either when the signal is oversampled at
the receiver or from the use of an array of antennas in the
receiver [1–5]. It should be pointed out that for the SIMO
case, the same information is transmitted through different
subchannels, and all received sequences will be distinctly
distorted versions of the same message, which accounts for
a certain signal diversity [6]. Therefore, it is reasonable to
assume that more information about the transmitted signal
will be available at the receiver end [6]. SIMO transmission is
widely replacing single-input-single-output (SISO) approach
to enhance the performance via diversity combining [7]. It
is well known that intersymbol interference (ISI) is a limiting
factor inmany communication environments where it causes

an irreducible degradation of the bit error rate (BER) and
symbol error rate (SER) thus imposing an upper limit on the
data symbol rate [1]. In order to overcome the ISI problem,
an equalizer is implemented in those systems. Recently [1],
a closed-form approximated expression was derived for the
achievable residual ISI obtained by blind adaptive equalizers
in a SIMO systemwhere the error that is fed into the adaptive
mechanism which updates the equalizer’s taps is expressed as
a polynomial function of order three of the equalized output.
But, this expression was obtained by assuming that the input
noise is a white Gaussian process where the Hurst exponent
(𝐻) is equal to 0.5. A white Gaussian process is a special case
(𝐻 = 0.5) of the fractional Gaussian noise (fGn) model [8].
FGn with𝐻 ∈ (0.5, 1) corresponds to the case of long-range
dependency (LRD) [8]. As stated in [9], LRD implies heavy-
tailed probability density functions, which in general imply
more random; see [10–13]. This point of view was recently
detailed by [14, 15]. In the literature, we may also find a
closed-form approximated expression for the SER valid for
the SISO case [16] that takes into account the performance
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of the chosen blind adaptive equalizer from the residual ISI
point of view. But, this expression is not valid for the SIMO
case and is based again on the assumption that the input noise
is a white Gaussian process where the Hurst exponent (𝐻) is
equal to 0.5. Up to now, there is no closed-form approximated
expression for the SER valid for the SIMO and fGn input case
where the Hurst exponent is in the region of 0.5 ≤ 𝐻 < 1

that takes into account the performance of the chosen blind
adaptive equalizer from the residual ISI point of view. Thus,
the system designer still has to carry out many simulations in
order to find those system parameters such as the equalizer’s
tap length and step-size parameter that will lead the system
to the required SER.

In this paper, we propose for the real and two indepen-
dent quadrature carriers case, a closed-form approximated
expression for the achievable residual ISI obtained by blind
adaptive equalizers for the SIMO and fGn input case that
depends on the step-size parameter, equalizer’s tap length,
input constellation statistics, channel power, and the number
of receive antennas used in the SIMO system and on 𝐻. The
new closed-form approximated expression is applicable for
type of blind adaptive equalizers used in a SIMO FIR channel
where the error that is fed into the adaptive mechanism
which updates the equalizer’s taps can be expressed as a
polynomial function of order three of the equalized output.
Based on this new expression for the residual ISI, a closed-
form approximated expression is obtained for the SER valid
for the SIMO and fGn case. As already mentioned, fGn with
𝐻 ∈ (0.5, 1) corresponds to the case of LRD. Thus, it could
be thought that the SER might increase as the value for 𝐻
increases due to the noise dependency from the different
receive paths. But, according to simulation results, improved
SER performance is seen for higher values of𝐻.

The paper is organized as follows. After having described
the system under consideration in Section 2, the closed-form
approximated expressions for the residual ISI and SER are
introduced in Section 3. In Section 4, simulation results are
presented, and the conclusion is given in Section 5.

2. System Description

The system under consideration, illustrated in Figure 1, is the
same system described in [1] (except for the input noise issue
which will be discussed later on in this paper). In this paper,
we make the following assumptions.

(1) The source sequence 𝑥[𝑛] belongs to a real or two
independent quadrature carriers case constellation
input with variance 𝜎2

𝑥
, where 𝑥

𝑟
[𝑛] and 𝑥

𝑖
[𝑛] are the

real and imaginary parts of 𝑥[𝑛], respectively.
(2) The unknown subchannel ℎ(𝑚)[𝑛] (𝑚 = 1, 2, 3, . . . ,𝑀

where𝑀 is the number of subchannels) is a possibly
nonminimumphase linear time-invariant filter.There
is no common zero among all the subchannels.

(3) Each equalizer 𝑐(𝑚)[𝑛] (𝑚 = 1, 2, 3, . . . ,𝑀) is a tap-
delay line.

(4) The noise 𝑤
(𝑚)

[𝑛] (𝑚 = 1, 2, 3, . . . ,𝑀) consists
of 𝑤
(𝑚)

[𝑛] = 𝑤
(𝑚)

𝑟
[𝑛] + 𝑗𝑤

(𝑚)

𝑖
[𝑛], where 𝑤

(𝑚)

𝑟
[𝑛]

and 𝑤
(𝑚)

𝑖
[𝑛] are the real and imaginary parts of

𝑤
(𝑚)

[𝑛], respectively, and 𝑤
(𝑚)

𝑟
[𝑛] and 𝑤

(𝑚)

𝑖
[𝑛] are

independent. Both𝑤(𝑚)
𝑟

[𝑛] and𝑤(𝑚)
𝑖

[𝑛] are fractional
Gaussian noises (fGn) with zero mean. For 𝑚 = 𝑘,
we have 𝐸[𝑤

(𝑚)

𝑟
[𝑛]𝑤
(𝑘)

𝑟
[𝑛]] = 𝜎

2

𝑤𝑟

𝛿[𝑛 − 𝑛] and
𝐸[𝑤
(𝑚)

𝑖
[𝑛]𝑤
(𝑘)

𝑖
[𝑛]] = 𝜎

2

𝑤𝑖

𝛿[𝑛 − 𝑛]. For 𝑚 ̸= 𝑘, we have
𝐸[𝑤
(𝑚)

𝑟
[𝑛]𝑤
(𝑘)

𝑟
[𝑛]] = (𝜎

2

𝑤𝑟

/2)[(|𝑚 − 𝑘| − 1)
2𝐻

−

2(|𝑚 − 𝑘|)
2𝐻

+ (|𝑚 − 𝑘| + 1)
2𝐻

]𝛿[𝑛 − 𝑛] and
𝐸[𝑤
(𝑚)

𝑖
[𝑛]𝑤
(𝑘)

𝑖
[𝑛]] = (𝜎

2

𝑤𝑖

/2)[(|𝑚 − 𝑘| − 1)
2𝐻

−

2(|𝑚 − 𝑘|)
2𝐻

+ (|𝑚 − 𝑘| + 1)
2𝐻

]𝛿[𝑛 − 𝑛], where
𝐸[⋅] denotes the expectation operator on (⋅), 𝛿 is
the Kronecker delta function, and 𝐻 is the Hurst
exponent. In the following, we assume that 𝜎2

𝑤𝑖

= 𝜎
2

𝑤𝑟

.

According to Figure 1, the 𝑚th observation 𝑦
(𝑚)

[𝑛]

(𝑦(𝑚)[𝑛] = 𝑥[𝑛] ∗ ℎ
(𝑚)

[𝑛] + 𝑤
(𝑚)

[𝑛]) is the result of a
linear convolution between the source signal 𝑥[𝑛] and the
corresponding channel response ℎ(𝑚)[𝑛], corrupted by noise
𝑤
(𝑚)

[𝑛], where “∗” denotes the convolution operation. The
equalizer’s output 𝑧[𝑛] is derived as follows:

𝑧 [𝑛] =

𝑚=𝑀

∑

𝑚=1

𝑧
(𝑚)

[𝑛] =

𝑚=𝑀

∑

𝑚=1

𝑦
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛]

=

𝑚=𝑀

∑

𝑚=1

(𝑥 [𝑛] ∗ ℎ
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] + 𝑤
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛])

= 𝑥 [𝑛] + 𝑝 [𝑛] + 𝑤 [𝑛] ,

(1)

where 𝑝[𝑛] is the convolutional noise (𝑝[𝑛] = 𝑥[𝑛] ∗

𝜉[𝑛]), 𝜉[𝑛] = ∑
𝑚=𝑀

𝑚=1
ℎ
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] − 𝛿[𝑛], and 𝑤[𝑛] =

∑
𝑚=𝑀

𝑚=1
𝑤
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛]. Next, we turn to the adaptation
mechanism of the equalizer in each subchannel which is
based on a predefined cost function 𝐹[𝑛] that characterizes
the intersymbol interference; see, for example, [17–23]:

𝑐
(𝑚)

[𝑛 + 1] = 𝑐
(𝑚)

[𝑛] − 𝜇
(𝑚)

𝜕𝐹 [𝑛]

𝜕𝑧 [𝑛]
𝑦
(𝑚)
∗

[𝑛] , (2)

where 𝜇
(𝑚) is the step-size parameter in the subchannel,

𝑐
(𝑚)

[𝑛] is the equalizer vector, where the input vector is
𝑦
(𝑚)

[𝑛] = [𝑦
(𝑚)

[𝑛] ⋅ ⋅ ⋅ 𝑦
(𝑚)

[𝑛 − 𝑁 + 1]]
𝑇, and 𝑁 is the

equalizer’s tap length. The operator (⋅)𝑇 and (⋅)
∗ denote for

transpose and conjugate of the function (⋅), respectively.
Recently [1], a closed-form approximated expression was
derived for the achievable residual ISI, valid for the SIMO
case that depends on the step-size parameter, equalizer’s
tap length, input signal statistics, SNR, number of receive
antennas, and channel power and is given in (dB) units by
[1]:

ISI ≅ 10 log
10
(𝑚
𝑝
) − 10 log

10
(𝜎
2

𝑥𝑟

) , (3)
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Figure 1: Block diagram of a baseband SIMO communication system.

where

𝑚
𝑝
= min [Sol𝑚𝑝1

1
, Sol𝑚𝑝1
2

] for Sol𝑚𝑝1
1

> 0, Sol𝑚𝑝1
2

> 0

or 𝑚
𝑝
= max [Sol𝑚𝑝1

1
, Sol𝑚𝑝1
2

] for Sol𝑚𝑝1
1

⋅ Sol𝑚𝑝1
2

< 0,

where Sol𝑚𝑝1
1

=

−𝐵
1
+ √𝐵
2

1
− 4𝐴
1
𝐶
1
𝐵

2𝐴
1

;

Sol𝑚𝑝1
2

=

−𝐵
1
− √𝐵
2

1
− 4𝐴
1
𝐶
1
𝐵

2𝐴
1

,

(4)

𝐴
1
= (𝐵 (45𝜎

2

𝑥𝑟

𝑎
2

3
+18𝜎
2

𝑥𝑟

𝑎
3
𝑎
12
+6𝑎
1
𝑎
3
+9𝜎
2

𝑥𝑟

𝑎
2

12
+ 2𝑎
1
𝑎
12
)

− 2 (3𝑎
3
+ 𝑎
12
)) + 𝐵 (45𝑎

2

3
+ 18𝑎
3
𝑎
12
+ 9𝑎
2

12
) 𝜎
2

𝑤𝑟

,

(5)

𝐵
1
= (𝐵 (12(𝜎

2

𝑥𝑟

)
2

𝑎
3
𝑎
12
+ 6(𝜎

2

𝑥𝑟

)
2

𝑎
2

12
+ 12𝜎

2

𝑥𝑟

𝑎
1
𝑎
3

+ 4𝜎
2

𝑥𝑟

𝑎
1
𝑎
12
+ 𝑎
2

1
+ 15E [𝑥

4

𝑟
] 𝑎
2

3

+2E [𝑥
4

𝑟
] 𝑎
3
𝑎
12
+ E [𝑥

4

𝑟
] 𝑎
2

12
)

−2 (𝑎
1
+ 3𝜎
2

𝑥𝑟

𝑎
3
+ 𝜎
2

𝑥𝑟

𝑎
12
))

+ 𝐵 (45𝑎
2

3
+ 16𝑎
3
𝑎
12
+ 9𝑎
2

12
) 𝜎
4

𝑤𝑟

+ (𝐵 (90𝑎
2

3
𝜎
2

𝑥𝑟

+ 36𝑎
3
𝑎
12
𝜎
2

𝑥𝑟

+ 12𝑎
1
𝑎
3
+ 18𝑎

2

12
𝜎
2

𝑥𝑟

+ 4𝑎
1
𝑎
12
) − 2𝑎

12
− 6𝑎
3
) 𝜎
2

𝑤𝑟

,

(6)

𝐵 = 𝑁𝜎
2

𝑥

𝑀

∑

𝑚=1

𝜇
𝑚

(

𝑘=𝑅−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2

+
1

SNR
) , (7)

𝐶
1
= (2(𝜎

2

𝑥𝑟

)
2

𝑎
1
𝑎
12
+ 𝜎
2

𝑥𝑟

𝑎
2

1
+ 2E [𝑥

4

𝑟
] 𝜎
2

𝑥𝑟

𝑎
3
𝑎
12

+E [𝑥
4

𝑟
] 𝜎
2

𝑥𝑟

𝑎
2

12
+ 2E [𝑥

4

𝑟
] 𝑎
1
𝑎
3
+ E [𝑥

6

𝑟
] 𝑎
2

3
)

+ (15𝑎
2

3
+ 6𝑎
3
𝑎
12
+ 3𝑎
2

12
) 𝜎
6

𝑤𝑟

+ (45𝑎
2

3
𝜎
2

𝑥𝑟

+18𝑎
3
𝑎
12
𝜎
2

𝑥𝑟

+6𝑎
1
𝑎
3
+9𝑎
2

12
𝜎
2

𝑥𝑟

+2𝑎
1
𝑎
12
) 𝜎
4

𝑤𝑟

+ (𝑎
2

1
+ 12𝑎
1
𝑎
3
𝜎
2

𝑥𝑟

+ 4𝑎
1
𝑎
12
𝜎
2

𝑥𝑟

+ 15𝑎
2

3
E [𝑥
4

𝑟
]
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+ 12𝑎
3
𝑎
12
(𝜎
2

𝑥𝑟

)
2

+ 2𝑎
3
𝑎
12
E [𝑥
4

𝑟
]

+ 𝑎
2

12
E [𝑥
4

𝑟
] + 6𝑎

2

12
(𝜎
2

𝑥𝑟

)
2

) 𝜎
2

𝑤𝑟

,

(8)

where ℎ(𝑚)
𝑘

[𝑛] denotes the 𝑘th tap of the 𝑚th subchannel at
time index 𝑛, 𝑅 is the subchannel length, and

𝜎
2

𝑤𝑟

≅

𝑚=𝑀

∑

𝑚=1

𝜎
2

𝑥𝑟

𝑀2SNR∑
𝑘=𝑅−1

𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2
, (9)

where SNR = 𝜎
2

𝑥
/𝜎
2

𝑤
and 𝑎
1
, 𝑎
12
, and 𝑎

3
are properties of the

chosen equalizer and found by

R(
𝜕𝐹 [𝑛]

𝜕𝑧 [𝑛]
)

= (𝑎
1
(𝑧
𝑟
[𝑛]) + 𝑎

3
(𝑧
𝑟
[𝑛])
3

+ 𝑎
12
(𝑧
𝑟
[𝑛]) (𝑧

𝑖
[𝑛])
2

) ,

(10)

where R(⋅) is the real part of (⋅) and 𝑧
𝑟
, 𝑧
𝑖
are the real and

imaginary parts of the equalized output 𝑧[𝑛], respectively.
As it was already implied earlier in this paper, the closed-

form approximated expression for the residual ISI [1] was
obtained by assuming that the noise 𝑤

(𝑚)

[𝑛] is an additive
Gaussian white noise (𝐻 = 0.5). Thus, it is not applicable
for the fGn case (for 0.5 ≤ 𝐻 < 1). Therefore, in order to
derive the expression for the SER applicable for the SIMOand
fGn (0.5 ≤ 𝐻 < 1) case, a new expression for the achievable
residual ISI is needed.

3. Residual ISI and SER for the SIMO and
Fractional Gaussian Noise Case

In this section, a closed-form approximated expression is
derived for the residual ISI valid for the SIMO and fGn case.
Based on this new expression, the SER is obtained.

3.1. Derivation of the Residual ISI

Theorem 1. Consider the following assumptions.

(1) The convolutional noise 𝑝[𝑛] is a zero mean, white
Gaussian process with variance 𝜎

2

𝑝
= 𝐸[𝑝[𝑛]𝑝

∗

[𝑛]].
The real part of𝑝[𝑛] is denoted as𝑝

𝑟
[𝑛] and𝐸[𝑝2

𝑟
[𝑛]] =

𝑚
𝑝
.

(2) The source signal 𝑥[𝑛] is a rectangular quadrature
amplitude modulation (QAM) signal (where the real
part of 𝑥[𝑛] is independent with the imaginary part of
𝑥[𝑛]) with known variance and higher moments.

(3) The convolutional noise 𝑝[𝑛] and the source signal are
independent.

(4) 𝜕𝐹[𝑛]/𝜕𝑧[𝑛] can be expressed as a polynomial function
of the equalized output of order three.

(5) The gain between the source and equalized output
signal is equal to one.

(6) The convolutional noise 𝑝[𝑛] is independent with𝑤[𝑛].

(7) Theadded noise is fGn as defined in the previous section
in assumption (4).

(8) The Hurst exponent is in the range of 0.5 ≤ 𝐻 < 1.

The residual ISI expressed in (dB) units may be defined as
(3), (4), (5), (6), (7), and (8), where SNR = 𝜎

2

𝑥
/𝜎
2

𝑤
, 𝑎
1
, 𝑎
12
, 𝑎
3

are properties of the chosen equalizer and found by (10) and

𝜎
2

𝑤𝑟

≅

𝑀

∑

𝑚=1

𝜎
2

𝑥𝑟

𝑀2SNR∑
𝑘=𝑅−1

𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2
(1+𝐻 (2𝐻 − 1) (𝑀 − 1)) .

(11)

Comments. Please note that for 𝐻 = 0.5 (Gaussian white
noise case), the expressions for 𝜎2

𝑤𝑟

given in (11) and (9) are
equivalent. By repeating the steps in [1] for the calculation
of the expression of the residual ISI the only place where
the difference between the assumption of 𝑤

𝑟
(𝑛) and 𝑤

𝑖
(𝑛)

being Gaussian white noises or fractional Gaussian noises
has a major role on the total result of the approximated
derived expression for the residual ISI, is in the calculation
of 𝜎2
𝑤𝑟

. Thus, we bring here only the various steps that led to
(11).

It should be pointed out that assumptions (1)–(6) from
above, are precisely the same assumptions made in [1].

Proof. The real part of 𝑤[𝑛], namely, 𝑤
𝑟
[𝑛]may be expressed

as follows:

𝑤
𝑟
[𝑛]

=

𝑀

∑

𝑚=1

𝑘=𝑁−1

∑

𝑘=0

(𝑐
(𝑚)

𝑟
[𝑘] 𝑤
(𝑚)

𝑟
[𝑛 − 𝑘] − 𝑐

(𝑚)

𝑖
[𝑘] 𝑤
(𝑚)

𝑖
[𝑛 − 𝑘]) ,

(12)

where 𝑐(𝑚)
𝑟

[𝑘] and 𝑐
(𝑚)

𝑖
[𝑘] are the real and imaginary parts of

𝑐
(𝑚)

[𝑘], respectively. The variance of 𝑤
𝑟
[𝑛]may be expressed

by

𝜎
2

𝑤𝑟

=𝐸[

𝑀

∑

𝑚=1

𝑘=𝑁−1

∑

𝑘=0

(𝑐
(𝑚)

𝑟
[𝑘] 𝑤
(𝑚)

𝑟
[𝑛 − 𝑘]− 𝑐

(𝑚)

𝑖
[𝑘] 𝑤
(𝑚)

𝑖
[𝑛− 𝑘])

⋅

𝑀

∑

𝑝=1

𝑘𝑘=𝑁−1

∑

𝑘𝑘=0

(𝑐
(𝑝)

𝑟
[𝑘𝑘]𝑤

(𝑝)

𝑟
[𝑛 − 𝑘𝑘]

−𝑐
(𝑝)

𝑖
[𝑘𝑘]𝑤

(𝑝)

𝑖
[𝑛 − 𝑘𝑘]) ]

(13)
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which can be also written as follows:

𝜎
2

𝑤𝑟

=

𝑀

∑

𝑚=1

𝜎
2

𝑤𝑟

𝑘=𝑁−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝑐
(𝑚)

[𝑘]
󵄨󵄨󵄨󵄨󵄨

2

+

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝑘=𝑁−1

∑

𝑘=0

𝐸 [𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘]

⋅ 𝑤
(𝑚)

𝑟
[𝑛 − 𝑘]𝑤

(𝑝)

𝑟
[𝑛 − 𝑘]

+ 𝑐
(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]

⋅ 𝑤
(𝑚)

𝑖
[𝑛 − 𝑘]𝑤

(𝑝)

𝑖
[𝑛 − 𝑘]]

(14)
or by

𝜎
2

𝑤𝑟

=

𝑀

∑

𝑚=1

𝜎
2

𝑤𝑟

𝑘=𝑁−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝑐
(𝑚)

[𝑘]
󵄨󵄨󵄨󵄨󵄨

2

+

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝜎
2

𝑤𝑟

2
[(
󵄨󵄨󵄨󵄨𝑚−𝑝

󵄨󵄨󵄨󵄨− 1)
2𝐻

− 2(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨)
2𝐻

+(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 + 1)
2𝐻

]

⋅

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]] .

(15)
According to [24],

0.5 [(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 − 1)
2𝐻

− 2(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨)
2𝐻

+ (
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 + 1)
2𝐻

]

≃ 𝐻 (2𝐻 − 1)
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨

2𝐻−2

.

(16)
Thus, substituting (16) into (15) yields to

𝜎
2

𝑤𝑟

≅

𝑀

∑

𝑚=1

𝜎
2

𝑤𝑟

𝑘=𝑁−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝑐
(𝑚)

[𝑘]
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜎
2

𝑤𝑟

𝐻(2𝐻 − 1)

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

󵄨󵄨󵄨󵄨𝑚 − 𝑝
󵄨󵄨󵄨󵄨

2𝐻−2

×

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]] .

(17)

This expression (17) can be upper limited by

𝜎
2

𝑤𝑟

≤

𝑀

∑

𝑚=1

𝜎
2

𝑤𝑟

𝑘=𝑁−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝑐
(𝑚)

[𝑘]
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜎
2

𝑤𝑟

𝐻(2𝐻 − 1) max
𝑝 ̸=𝑚,𝑝,𝑚=1:𝑀

[
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨

2𝐻−2

]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘]

+𝑐
(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(18)

According to the triangle inequality [25], we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘]]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(19)

According to the holder inequality [25], we may write
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (𝑀 − 1)

𝑀

∑

𝑚=1

(𝑐
(𝑚)

𝑟
[𝑘])
2

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑚=1,𝑚 ̸=𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝑐
(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (𝑀 − 1)

𝑀

∑

𝑚=1

(𝑐
(𝑚)

𝑖
[𝑘])
2

.

(20)

By taking into account that max
𝑝 ̸=𝑚,𝑝,𝑚=1:𝑀

|𝑚 − 𝑝|
2𝐻−2

= 1

for 0.5 ≤ 𝐻 < 1, we may write with the help of (18), (19), and
(20) as follows:

𝜎
2

𝑤𝑟

≤

𝑀

∑

𝑚=1

𝜎
2

𝑤𝑟

𝑘=𝑁−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝑐
(𝑚)

[𝑘]
󵄨󵄨󵄨󵄨󵄨

2

(1 + 𝐻 (2𝐻 − 1) (𝑀 − 1)) .

(21)

As already mentioned in the system description section,
∑
𝑚=𝑀

𝑚=1
ℎ
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] = 𝜉[𝑛] + 𝛿[𝑛], where 𝜉[𝑛] stands
for the error not having perfect equalization. Therefore,
the expression ℎ

(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] could have been written
as ℎ
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] = 𝛿[𝑛]/𝑀 + 𝜉
(𝑚)

[𝑛], where 𝜉[𝑛] =

∑
𝑚=𝑀

𝑚=1
𝜉
(𝑚)

[𝑛].Thus, for the case where the variance of 𝜉(𝑚)[𝑛]
can be considered as very small we may write

𝑘=𝑁−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝑐
(𝑚)

[𝑘]
󵄨󵄨󵄨󵄨󵄨

2

≅
1

𝑀2∑
𝑘=𝑅−1

𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2
. (22)

Now, substituting (22) into (21) yields to

𝜎
2

𝑤𝑟

≤

𝑀

∑

𝑚=1

𝜎
2

𝑥𝑟

𝑀2SNR∑
𝑘=𝑅−1

𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2
(1+𝐻 (2𝐻− 1) (𝑀− 1)) .

(23)

In practice, the variance of 𝜉(𝑚)[𝑛] is not so small. Thus,
the expression for ∑𝑘=𝑁−1

𝑘=0
|𝑐
(𝑚)

[𝑘]|
2

is higher than that given
in (22). Therefore, we may define 𝜎

2

𝑤𝑟

as given in (11). This
completes our proof.

3.2. Derivation of the SER for the SIMO Case. In this subsec-
tion, we derive the SER for a source signal 𝑥[𝑛] belonging to a
rectangular QAM constellation, applicable for the SIMO and
fGn case.
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Figure 2: SER comparisonwith the following parameters: 𝑑 = 1, the
step-size parameter 𝜇 = 0.000005, 𝑁 = 17, and 𝐻 = 0.6, channel
case A; the results were obtained for 1600000 symbols.
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SE
R
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Calculated without equalizer, H = 0.7

Calculated with equalizer, H = 0.7
Simulated, H = 0.7

Figure 3: SER comparisonwith the following parameters: 𝑑 = 1, the
step-size parameter 𝜇 = 0.000005, 𝑁 = 17, and 𝐻 = 0.7, channel
case A; the results were obtained for 1600000 symbols.

Theorem 2. Based on the assumptions given in the previous
subsection, the SER for the SIMO and fGn case may be defined
as follows:

𝑆𝐸𝑅
𝑄𝐴𝑀

= 4
𝑀̃ − 1

𝑀̃

𝑄(
𝑑

𝜎
𝑇

)(1 −
𝑀̃ − 1

𝑀̃

𝑄(
𝑑

𝜎
𝑇

)) , (24)

where 𝑀̃ = √𝑀
𝑄𝐴𝑀

and𝑀
𝑄𝐴𝑀

is the number of signal points
for a 𝑀

𝑄𝐴𝑀
-ary QAM constellation, 𝑑 is half the distance

8 9 10 11 12 13 14 15 16
SNR

SE
R

100

10− 1
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10−4

Calculated without equalizer, H = 0.8

Calculated with equalizer, H = 0.8
Simulated, H = 0.8

Figure 4: SER comparisonwith the following parameters: 𝑑 = 1, the
step-size parameter 𝜇 = 0.000005, 𝑁 = 17, and 𝐻 = 0.8, channel
case A; the results were obtained for 1600000 symbols.
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Calculated without equalizer, H = 0.9

Calculated with equalizer, H = 0.9
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Figure 5: SER comparisonwith the following parameters: 𝑑 = 1, the
step-size parameter 𝜇 = 0.000005, 𝑁 = 17, and 𝐻 = 0.9, channel
case A; the results were obtained for 1600000 symbols.

between adjacent √𝑀
𝑄𝐴𝑀

-ary pulse amplitude modulation
(PAM) signals:

𝜎
𝑇
= √𝑚

𝑝
+ 𝜎
2

𝑤𝑟

; 𝑄 (
𝑑

𝜎
𝑇

) =
1

√2𝜋

∫

∞

𝑑/𝜎𝑇

𝑒
−𝑢
2
/2

𝑑𝑢,

(25)

and𝑚
𝑝
, 𝜎2
𝑤𝑟

are according to (4) and (11), respectively.
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Figure 6: SER comparisonwith the following parameters: 𝑑 = 1, the
step-size parameter 𝜇 = 0.000005,𝑁 = 17, and𝐻 = 0.9, 0.8, 0.7, 0.6,
channel case A; the results were obtained for 1600000 symbols.
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Figure 7: SER comparison with the following parameters: 𝑑 = 1,
the step-size parameter 𝜇 = 0.00002,𝑁 = 13, and𝐻 = 0.6, channel
case B; the results were obtained for 1600000 symbols.

Proof. According to (1), the equalized output is given by
𝑧[𝑛] = 𝑥[𝑛] + 𝑝[𝑛] + 𝑤[𝑛]. The expression for the equalized
output for the SISO and white Gaussian case (case one) looks
quite similar to the expression for the equalized output for
the SIMO and fGn case (case two). The difference between
the two cases (case one and case two) lies in the fact that the
variance of 𝑝[𝑛] and 𝑤[𝑛] is very different. For each case, the
expressions for the variance of the real part of 𝑝[𝑛] (named
in this paper as 𝑚

𝑝
) and 𝜎

2

𝑤𝑟

are different. Recently [16],

8 9 10 11 12 13 14 15 16
SNR

SE
R

100

10−1

10−2

10−3

10−4

10−5

Calculated without equalizer, H = 0.7

Calculated with equalizer, H = 0.7
Simulated, H = 0.7

Figure 8: SER comparison with the following parameters: 𝑑 = 1,
the step-size parameter 𝜇 = 0.00002,𝑁 = 13, and𝐻 = 0.7, channel
case B; the results were obtained for 1600000 symbols.
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Simulated, H = 0.9

Figure 9: SER comparison with the following parameters: 𝑑 = 1,
the step-size parameter 𝜇 = 0.00002,𝑁 = 13, and𝐻 = 0.9, channel
case B; the results were obtained for 1600000 symbols.

a closed-form approximated expression was obtained for the
SER, based on 𝑧[𝑛] = 𝑥[𝑛] + 𝑝[𝑛] + 𝑤[𝑛], valid for the SISO
and white Gaussian (𝐻 = 0.5) case. The recently obtained
expression for the SER [16] is recalled in (24), (25), where𝑚

𝑝

and 𝜎
2

𝑤𝑟

were taken for the SISO and white Gaussian case.
In order to obtain a closed-form approximated expression
for the SER valid for the SIMO and fGn case, the recently
obtained expression for the SER [16] was used with 𝑚

𝑝
and
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Figure 10: SER comparison with the following parameters: 𝑑 =

1, the step-size parameter 𝜇 = 0.00002, 𝑁 = 13, and 𝐻 =

0.9, 0.8, 0.7, 0.6, channel case B; the results were obtained for
1600000 symbols.

𝜎
2

𝑤𝑟

valid for the SIMO and fGn case. This completes our
proof.

4. Simulation

In this section, we test our new proposed expression for the
SER for the 16 QAM case (a modulation using ±{1, 3} levels
for in-phase and quadrature components) with Godard’s
algorithm [17] for different values of SNR and equalizer’s tap
length and for two different channel cases. The equalizer taps
for Godard’s algorithm [17] were updated according to the
following:

𝑐
𝑚
[𝑛 + 1] = 𝑐

𝑚
[𝑛] − 𝜇

𝐺
(|𝑧 [𝑛]|

2

−

𝐸 [|𝑥 [𝑛]|
4

]

𝐸 [|𝑥 [𝑛]|
2

]

)

× 𝑧 [𝑛] 𝑦
∗

[𝑛 − 𝑚] ,

(26)

where 𝜇
𝐺
is the step size. The values for 𝑎

1
, 𝑎
12
, and 𝑎

3

corresponding to Godards’s [17] algorithm are given by

𝑎
1
= −

𝐸 [|𝑥 [𝑛]|
4

]

𝐸 [|𝑥 [𝑛]|
2

]

; 𝑎
12

= 1; 𝑎
3
= 1. (27)

In the following, we consider two channel cases.Channel case
A which is a four-channel model with channel coefficients
determined according to the following:

ℎ
1
= [−0.0318 + 𝑗0.2330 0.3128 − 𝑗0.3693 − 0.3609 + 𝑗0.3810 0.6490 − 0.1110 + 𝑗0.0396] ,

ℎ
2
= [0.3005 − 𝑗0.0247 0.6784 0.6248 − 𝑗0.1316 0.1282 − 𝑗0.1411 − 0.0590 − 𝑗0.0366] ,

ℎ
3
= [−0.1351 − 𝑗0.2061 − 0.1274 + 𝑗0.5876 0.6401 − 0.1818 − 𝑗0.3354 0.0871 − 𝑗0.1216] ,

ℎ
4
= [0.2835 + 𝑗0.0204 0.6799 0.5936 + 𝑗0.0986 0.1938 + 𝑗0.2101 − 0.0333 + 𝑗0.1095] .

(28)

Channel case B which is a two-channel model with channel
coefficients determined according to the following:

ℎ
1
= [−0.4000 0.8000 0.3200 0.1280 0.0512 0.0205 0.0082 0.0033 0.0013

0.0005 0.0002 0.0001 0.0000] ,

ℎ
2
= [1.3000 0.6000 − 𝑗0.6364 0 0 0 0 0 0 0 0 0 0 0] .

(29)

Please note that channel case B was also used in [1]. The
equalizer was initialized by setting the center tap equal to one
and all others to zero.

In the following, we denote the SER performance accord-
ing to (24) as “calculated with equalizer.” In addition, we
wish to show the SER performance for the case where the
residual ISI is not taken into account. Therefore, we denote
in the following the SER performance that does not take
into account the residual ISI as “calculated without equalizer.”

Figures 2, 3, 4, and 5 and Figures 7, 8, and 9 show the
SER performance for different values of 𝐻 as a function of
SNR of our proposed expression (24) compared with the
simulated results and with those calculated results that do
not take into account the residual ISI. According to Figure 2
to Figure 5 and Figure 7 to Figure 9, a high correlation is
observed between the simulated and calculated results (24),
while the opposite is seen by comparing the simulated and
those calculated results that do not take into account the
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residual ISI. Figures 6 and 10 show the SER performance
for different values of 𝐻 in the range of 0.5 < 𝐻 < 1 as
a function of SNR for channel cases A and B, respectively.
It is reasonable to think that the SER might increase as the
value for 𝐻 increases due to the noise dependency from the
different receive paths. But, according to simulation results
(Figures 6 and 10), improved SER performance is seen for
higher values of𝐻.

5. Conclusion

In this paper, we proposed for the real and two indepen-
dent quadrature carrier cases, a closed-form approximated
expression for the SER that takes into account the residual
ISI obtained by blind adaptive equalizers and is applicable
for the SIMO and fGn (0.5 ≤ 𝐻 < 1) input case. This
new expression is applicable for the type of blind adaptive
equalizers used in a SIMO FIR channel where the error
that is fed into the adaptive mechanism which updates the
equalizer’s taps can be expressed as a polynomial function of
order three of the equalized output. The expression for the
SERdepends on the system’s parameters (step-size parameter,
equalizer’s tap length, input constellation statistics, channel
power, and number of receive antennas used in the SIMO
system and on 𝐻). Thus, there is no need anymore to carry
out any simulation in order to find those system’s parameters
that will lead to the required SER performance. According
to the simulation results, a high correlation is obtained
between the calculated and simulated results for the SER.
FGn with 𝐻 ∈ (0.5, 1) corresponds to the case of LRD.
Thus, it could be thought that the SER might increase as
the value for 𝐻 increases due to the noise dependency from
the different receive paths. But, according to the simulation
results, improved SER performance is seen for higher values
of𝐻.

References

[1] M. Pinchas, “A closed-form approximated expression for the
achievable residual ISI obtained by blind adaptive equalizers
in a SIMO FIR channel,” in Proceedings of the IEEE 27th
Convention of Electrical and Electronics Engineers in Israel,
Hilton Queen of Sheba, Eilat, Israel, November 2012.

[2] I. Moazzen, A. M. Doost-Hoseini, and M. J. Omidi, “A novel
blind frequency domain equalizer for SIMO systems,” in Pro-
ceedings of the International Conference on Wireless Commu-
nications and Signal Processing (WCSP ’09), pp. 1–6, Nanjing,
China, November 2009.

[3] D. Peng, Y. Xiang, Z. Yi, and S. Yu, “CM-based blind equaliza-
tion of time-varying SIMO-FIR channel with single pulsation
estimation,” IEEE Transactions on Vehicular Technology, vol. 60,
no. 5, pp. 2410–2415, 2011.

[4] A. Coskun and I. Kale, “Blind multidimensional matched fil-
tering techniques for single input multiple output communica-
tions,” IEEE Transactions on Instrumentation andMeasurement,
vol. 59, no. 5, pp. 1056–1064, 2010.

[5] S. Van Vaerenbergh, J. Via, and I. Santamaria, “Blind identi-
fication of SIMO wiener systems based on kernel canonical
correlation analysis,” IEEE Transactions on Signal Processing,
vol. 61, no. 9, pp. 2219–2230, 2013.

[6] http://books.google.co.il/books?id=bimBH2czOZ0C.
[7] S. Chen, A. Wolfgang, and L. Hanzo, “Constant modulus

algorithm aided soft decision directed scheme for blind space-
time equalisation of SIMO channels,” Signal Processing, vol. 87,
no. 11, pp. 2587–2599, 2007.

[8] M. Li and W. Zhao, “Quantitatively investigating locally weak
stationarity of modified multifractional Gaussian noise,” Phys-
ica A, vol. 391, no. 24, pp. 6268–6278, 2012.

[9] M. Pinchas, “Residual ISI obtained by blind adaptive equalizers
and fractional noise,” Mathematical Problems in Engineering,
vol. 2013, Article ID 972174, 11 pages, 2013.

[10] B. B. Mandelbrot, Multifractals and 1/f noise, Springer, New
York, NY, USA, 1999.

[11] B. B. Mandelbrot and J. R. Wallis, “Noah, Joseph, and opera-
tional hydrology,” Water Resources Research, vol. 4, no. 5, pp.
909–918, 1968.

[12] R. J. Adler, E. Raisa Feldman, andM. S. Taqqu, Eds., A Practical
Guide to Heavy Tails: Statistical Techniques and Applications,
Birkhäuser, Boston, Mass, USA, 1998.

[13] A. Mura, M. S. Taqqu, and F. Mainardi, “Non-Markovian
diffusion equations and processes: analysis and simulations,”
Physica A, vol. 387, no. 21, pp. 5033–5064, 2008.

[14] M. Li and W. Zhao, “On 1/𝑓 noise,” Mathematical Problems in
Engineering, vol. 2012, Article ID 673648, 23 pages, 2012.

[15] M. Li and W. Zhao, “Visiting power laws in cyber-physical
networking systems,” Mathematical Problems in Engineering,
vol. 2012, Article ID 302786, 13 pages, 2012.

[16] M. Pinchas, “Symbol error rate as a function of the residual
ISI obtained by blind adaptive equalizers,” in Proceedings of
the Pervasive and Embedded Computing and Communication
Systems (PECCS ’13), Barcelona, Spain, February 2013.

[17] D. N. Godard, “Self-recovering equalization and carrier track-
ing in two-dimensional data communication systems,” IEEE
Transactions on Communications Systems, vol. 28, no. 11, pp.
1867–1875, 1980.

[18] S. Haykin, “Blind deconvolution,” in Adaptive Filter Theory, S.
Haykin, Ed., Chapter 20, Prentice-Hall, Englewood Cliffs, NJ,
USA, 1991.

[19] M. Pinchas, “A MSE optimized polynomial equalizer for
16QAM and 64QAM constellation,” Signal, Image and Video
Processing, vol. 5, no. 1, pp. 29–37, 2011.

[20] O. Shalvi and E. Weinstein, “New criteria for blind decon-
volution of nonminimum phase systems (channels),” IEEE
Transactions on Information Theory, vol. 36, no. 2, pp. 312–321,
1990.

[21] M. Pinchas,TheWhole Story Behind Blind Adaptive Equalizers/
Blind Deconvolution, e-books Publications Department Ben-
tham Science Publishers.

[22] M. Pinchas andB. Z. Bobrovsky, “Amaximumentropy approach
for blind deconvolution,” Signal Processing, vol. 86, no. 10, pp.
2913–2931, 2006.

[23] M. Pinchas, “What are the analytical conditions for which a
blind equalizer will loose the convergence state?” Signal, Image
and Video Processing, vol. 6, no. 2, pp. 325–340, 2012.

[24] M. Li andW. Zhao, “On bandlimitedness and lag-limitedness of
fractional Gaussian noise,” Physica A, vol. 392, no. 9, pp. 1955–
1961, 2013.

[25] M. R. Spiegel,Mathematical Handbook of Formulas and Tables,
SCHAUM’s Outline Series, McGRAW-HILL, New York, NY,
USA, 1968.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 935815, 12 pages
http://dx.doi.org/10.1155/2013/935815

Research Article
An ARMA Type Fuzzy Time Series Forecasting Method Based on
Particle Swarm Optimization

Erol Egrioglu,1 Ufuk Yolcu,2 Cagdas Hakan Aladag,3 and Cem Kocak4

1 Department of Statistics, Ondokuz Mayıs University, 55139 Samsun, Turkey
2Department of Statistics, Ankara University, 06100 Ankara, Turkey
3 Department of Statistics, Hacettepe University, 06100 Ankara, Turkey
4Medical High School, Hitit University, 19000 Çorum, Turkey
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In the literature, fuzzy time series forecasting models generally include fuzzy lagged variables. Thus, these fuzzy time series models
have only autoregressive structure. Using such fuzzy time series models can cause modeling error and bad forecasting performance
like in conventional time series analysis. To overcome these problems, a newfirst-order fuzzy time series which forecasting approach
including both autoregressive andmoving average structures is proposed in this study. Also, the proposedmodel is a time invariant
model and based on particle swarm optimization heuristic. To show the applicability of the proposed approach, some methods
were applied to five time series which were also forecasted using the proposed method. Then, the obtained results were compared
to those obtained from other methods available in the literature. It was observed that the most accurate forecast was obtained when
the proposed approach was employed.

1. Introduction

Fuzzy time series firstly proposed by Song and Chissom [1]
can be divided into two subclasses time variant and time
invariant. Fuzzy time seriesmethod generally embodies three
stages such as fuzzification, determination of fuzzy relations,
and defuzzification stages. In the fuzzification stage, obser-
vations of time series are fuzzified. Fuzzy relations between
the observations are defined in the stage of determination
of fuzzy relations. Finally, the calculated fuzzy forecasts are
defuzzified in the defuzzification phase. If one or more of
these stages can be improved, the performance of themethod
will increase. Therefore, new fuzzy time series approaches
have been proposed by making contributions to these stages
in the literature.

In the literature, various methods have been proposed to
fuzzify observations. While fixed interval lengths are used in
Song and Chissom [1–3], Chen [4], Huarng [5], Chen [6],
Tsaur et al. [7], Singh [8], and Egrioglu et al. [9, 10], dynamic
length of interval lengths is employed in Huarng and Yu [11],
Davari et al. [12], Yolcu et al. [13], Kuo et al. [14, 15], Park et al.

[16], Hsu et al. [17], and Huang et al. [18] in order to partition
the universe of discourse. Also, Cheng et al. [19], Li et al. [20],
Egrioglu et al. [21], Chen and Tanuwijaya [22], and Bang and
Lee [23] used some methods based on clustering algorithms.

Song and Chissom [3] exploited feed forward neural
networks to defuzzify fuzzy forecasts. Chen [4], Huarng [5],
and Huarng and Yu [11] utilized centroid method in the
defuzzification stage. Besides, Cheng et al. [24] and Aladag
et al. [25] used a different technique based on adaptive
expectation and centroid methods for fuzzification.

Establishing fuzzy relations plays important role in the
forecasting performance of the method. In this phase, Song
and Chissom [1] utilized fuzzy relationship matrix, and
Sullivan and Woodall [26] used transition matrices based on
Markov chain instead of fuzzy relationship matrix. Chen [4]
suggested an approach in which fuzzy logic group relation-
ship tables are employed to define fuzzy relations, and Cheng
et al. [24], Huarng [5], Huarng and Yu [11], Yu [27], and
Egrioglu et al. [21] also used fuzzy logic group relationship
tables. Huarng and Yu [28] and Aladag et al. [29] preferred to
utilize feed forward artificial neural networks in this stage.
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Aladag et al. [30] used a different type of artificial neural
networks which is Elman recurrent neural networks. In the
determination of fuzzy relations, Yu and Huarng [31] and
Yolcu et al. [32] proposed different approaches in which feed
forward artificial neural networks using membership values
are used. Eğrioğlu [33] utilized genetic algorithms to define
fuzzy relations. Moreover, many soft computing techniques
have been used for forecasting in the literature. Yang et al.
[34], and Yang et al. [35], and Yang et al. [36] are some of
them.

In all of the studies mentioned previously, fuzzy time
series forecasting models have autoregressive (AR) structure.
However, many real life fuzzy time series can contain both
autoregressive and moving average (MA) structures. Using
forecastingmodels that have only AR structure for these time
series can produce insufficient results. To analyze such time
series, it is needed to use an ARMA type fuzzy time series
forecasting model that includes both AR and MA structures.
In this study, a novel fuzzy time series forecasting approach
based on ARMA type fuzzy time series forecasting model is
proposed to increase forecasting accuracy. Some fuzzy time
series approaches in which fuzzy logic group relationship
tables are employed disregard the fuzzy set theory since fuzzy
sets’ elements whose membership value is 1 are only taken
into account in the fuzzification phase. Therefore, informa-
tion loss occurs, and it is expected to decrease the explanation
power of the model. In order to overcome these problems,
the particle swarm optimization method is employed in the
proposed approach to establish fuzzy relations. In addition,
the computational cost of the proposed approach is very
reasonable since it does not need to perform complex matrix
operations when the particle swarm optimization method
is used. Another advantage of the proposed method is
that it uses the fuzzy 𝑐-means clustering method in the
fuzzification phase. In the fuzzification phase of the fuzzy
time series approach, there are some common problems
such as the decision of the number of intervals, arbitrary
determination of interval length, and arbitrary choice of
degrees of membership. Since the fuzzy 𝑐-means clustering
technique is employed in the proposed approach, it works in
a systematic way.

In the real life, some time series have long-range depen-
dence. Long-range-dependent time series is forecasted by
using special linearmodels. ARFIMAmodels, which are used
to forecast long-range-dependent time series, were firstly
introduced by Granger and Joyeux [37]. General properties
of ARFIMA models were given by Hosking [38, 39] and
Beran [40]. First studies are concerned with estimation of
fractional differencing parameter in fractional white noise
processes. 𝑅/𝑆 statistic was proposed in Hurst [41]. Egrioglu
and Gunay [42], and Li [43], Li and Zhao [44] are important
papers about fractional processes. In this study, time series
are examined by using 𝑅/𝑆 hypothesis test to determine
long-range dependence in the application. The performance
of proposed method is examined according to long-range
dependence.

The next section presents basic definitions of fuzzy time
series and fuzzy-c means clustering method. In Section 3,
the modified particle swarm optimization algorithm is given.

Section 4 introduces the proposed approach based onARMA
type fuzzy time series forecasting model and particle swarm
optimization. The implementation is given in Section 5.
Finally, the last section concludes the paper.

2. Fuzzy Time Series Basic Definitions and
Fuzzy 𝐶-Means Clustering

The fuzzy time series was firstly introduced by Song and
Chissom [1].The fundamental definitions of fuzzy time series,
time variant, and time invariant fuzzy time series definitions
are presented in what follows.

Definition 1. Let 𝑌(𝑡) (𝑡 = . . . , 0, 1, 2, . . .), a subset of real
numbers, be the universe of discourse on which fuzzy sets
𝑓
𝑗
(𝑡) are defined. If 𝐹(𝑡) is a collection of 𝑓

1
(𝑡), 𝑓
2
(𝑡), . . ., then

𝐹(𝑡) is called a fuzzy time series defined on 𝑌(𝑡).

Definition 2. Suppose that 𝐹(𝑡) is caused by 𝐹(𝑡−1) only; that
is, 𝐹(𝑡 − 1) → 𝐹(𝑡). Then, this relation can be expressed as
𝐹(𝑡) = 𝐹(𝑡 − 1) ∘ 𝑅(𝑡, 𝑡 − 1), where 𝑅(𝑡, 𝑡 − 1) is the fuzzy
relationship between 𝐹(𝑡 − 1) and 𝐹(𝑡) and 𝐹(𝑡) = 𝐹(𝑡 − 1) ∘

𝑅(𝑡, 𝑡−1) is called the first-order model of 𝐹(𝑡). “∘” represents
max-min composition of fuzzy sets.

Definition 3. Suppose that 𝑅(𝑡, 𝑡 − 1) is a first-order model of
𝐹(𝑡). If for any 𝑡, 𝑅(𝑡, 𝑡 − 1) is independent of 𝑡; that is, for any
𝑡, 𝑅(𝑡, 𝑡−1) = 𝑅(𝑡−1, 𝑡−2); then𝐹(𝑡) is called a time invariant
fuzzy time series; otherwise, it is called a time variant fuzzy
time series.

Song and Chissom [2] firstly introduced an algorithm
based on the first-order model for forecasting time invariant
𝐹(𝑡). In Song and Chissom [2], the fuzzy relationship matrix
𝑅(𝑡, 𝑡 − 1) = 𝑅 is obtained by many matrix operations. The
fuzzy forecasts are obtained based on max-min composition
as in what follows:

𝐹 (𝑡) = 𝐹 (𝑡 − 1) ∘ 𝑅. (1)

The dimension of 𝑅 matrix depends on the number of
fuzzy sets. The number of fuzzy sets equals the number of
intervals that is composed of universe of discourse.Themore
fuzzy sets are used, the more matrix operations are needed to
obtain 𝑅matrix. When the number of fuzzy set is high, using
the method proposed by Song and Chissom [2] considerably
increases the computational cost.

For fuzzification, partition of universe of discourse
method is used in the method proposed by Song and
Chissom [1]. However, there are several problems related to
the decomposition of universe of discourse. These problems
are the determination of the number of intervals, arbitrarily
choice of interval length, and membership degrees. In order
to deal with these problems, Cheng et al. [19] and Li et al.
[20] used fuzzy c-means clustering method for fuzzification.
The fuzzy c-means clustering method was firstly introduced
by Bezdek [45]. This clustering method is the most widely
used one. In this method, fuzzy clustering is conducted by
minimizing the least squared errors within groups. Let 𝑢

𝑖𝑗
be

the membership values, V
𝑖
the center of cluster, 𝑛 the number
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of variables, and 𝑐 the number of clusters. Then, the objective
function, which is minimized in fuzzy clustering, is

𝐽
𝛽
(𝑋, 𝑉,𝑈) =

𝑐

∑

𝑖=1

𝑛

∑

𝑗=1

𝑢
𝛽

𝑖𝑗
𝑑
2

(𝑥
𝑗
, V
𝑖
) , (2)

where 𝛽 is a constant (𝛽 > 1) and called the fuzzy index.
𝑑(𝑥
𝑗
, V
𝑖
) is a similarity measure between an observation

and the center of corresponding fuzzy cluster. The objective
function 𝐽

𝛽
is minimized subject to constraints given in what

follows:

0 ≤ 𝑢
𝑖𝑗

≤ 1, ∀𝑖, 𝑗,

0 <

𝑛

∑

𝑗=1

𝑢
𝑖𝑗

≤ 𝑛, ∀𝑖,

𝑐

∑

𝑖=1

𝑢
𝑖𝑗

= 1, ∀𝑗.

(3)

In fuzzy 𝑐-means clustering method, to solve the mini-
mization problem given previously, an iterative algorithm is
used. In each iteration, the values of V

𝑖
and 𝑢
𝑖𝑗
are updated by

using the formulas given in (4) and (5), respectively:

V
𝑖
=

∑
𝑛

𝑗=1
𝑢
𝛽

𝑖𝑗
𝑥
𝑗

∑
𝑛

𝑗=1
𝑢
𝛽

𝑖𝑗

, (4)

𝑢
𝑖𝑗

=
1

∑
𝑐

𝑘=1
(𝑑 (𝑥
𝑗
, V
𝑖
) /𝑑 (𝑥

𝑗
, V
𝑘
))
2/(𝛽−1)

. (5)

3. The Particle Swarm Optimization

Particle swarm optimization, which is a population-based
heuristic algorithm, was firstly proposed by Kennedy and
Eberhart [46]. Distinguishing feature of this heuristic algo-
rithm is that it simultaneously examines different points in
different regions of the solution space to find the global
optimum solution. Local optimum traps can be avoided
because of this feature.

In a few fuzzy time series studies, particle swarm
optimization method has been exploited in fuzzification
phase. While the particle swarm optimization method was
employed by Davari et al. [12] for fuzzification in the first-
order fuzzy time series forecasting model, Kuo et al. [14]
utilized themethod in high-ordermodels. In the fuzzification
phase, Kuo et al. [15] utilized the particle swarm optimization
method in both the first- and the high-order models. Park et
al. [16] used the samemethod for fuzzification in a two-factor
high-order model. However, the particle swarm optimization
method has never been used to establish fuzzy logic relations
in the literature. In time variant fuzzy time series forecasting
method proposed in this study, the modified particle swarm
optimization whose algorithm is given later is exploited. The
modified particle swarm optimization algorithm has time
varying inertia weight like in Shi and Eberhart [47]. In a
similar way, this algorithm also has time varying acceleration
coefficient like in Ma et al. [48].

Algorithm 4. The algorithm of the modified particle swarm
optimization.

Step 1. Positions of each 𝑘th (𝑘 = 1, 2, . . . , 𝑝𝑛) particles’
positions are randomly determined and kept in a vector 𝑋

𝑘

given as follows:

𝑋
𝑘
= {𝑥
𝑘,1

, 𝑥
𝑘,2

, . . . , 𝑥
𝑘,𝑑

} , 𝑘 = 1, 2, . . . , 𝑝𝑛, (6)

where 𝑥
𝑘

𝑖
(𝑖 = 1, 2, . . . , 𝑑) represents 𝑖th position of 𝑘th

particle. 𝑝𝑛 and 𝑑 represent the number of particles in a
swarm and positions, respectively.

Step 2. Velocities are randomly determined and stored in a
vector 𝑉

𝑘
given in what follows:

𝑉
𝑘
= {V
𝑘,1

, V
𝑘,2

, . . . , V
𝑘,𝑑

} , 𝑘 = 1, 2, . . . , 𝑝𝑛. (7)

Step 3. According to the evaluation function,𝑃best and𝐺best
particles given in (8) and (9), respectively, are determined:

𝑃best
𝑘
= (𝑝
𝑘,1

, 𝑝
𝑘,2

, . . . , 𝑝
𝑘,𝑑

) , 𝑘 = 1, 2, . . . , 𝑝𝑛, (8)

𝐺best = (𝑝
𝑔,1

, 𝑝
𝑔,2

, . . . , 𝑝
𝑔,𝑑

) , (9)

where 𝑃best
𝑘
is a vector that stores the positions corre-

sponding to the 𝑘th particle’s best individual performance
and 𝐺best represents the best particle, which has the best
evaluation function value, found so far.

Step 4. Let 𝑐
1
and 𝑐

2
represent cognitive and social coef-

ficients, respectively, and 𝑤 is the inertia parameter. Let
(𝑐
1𝑖
, 𝑐
1𝑓

), (𝑐
2𝑖
, 𝑐
2𝑓

), and (𝑤
1
, 𝑤
2
) be the intervals which include

possible values for 𝑐
1
, 𝑐
2
, and𝑤, respectively. At each iteration,

these parameters are calculated by using the formulas given
in (10):

𝑐
1
= (𝑐
1𝑓

− 𝑐
1𝑖
)

𝑡

max 𝑡
+ 𝑐
1𝑖
,

𝑐
2
= (𝑐
2𝑓

− 𝑐
2𝑖
)

𝑡

max 𝑡
+ 𝑐
2𝑖
,

𝑤 = (𝑤
2
− 𝑤
1
)
max 𝑡 − 𝑡

max 𝑡
+ 𝑤
1
,

(10)

where max 𝑡 and 𝑡 represent maximum iteration number and
current iteration number, respectively.

Step 5. Values of velocities and positions are updated by using
the formulas given in (11) and (12), respectively.

V𝑡+1
𝑖,𝑑

= [𝑤 × V𝑡
𝑖,𝑑

+ 𝑐
1
× rand

1
× (𝑝
𝑖,𝑑

− 𝑥
𝑖,𝑑

)

+ 𝑐
2
× rand

2
× (𝑝
𝑔,𝑑

− 𝑥
𝑖,𝑑

)] ,

(11)

𝑥
𝑡+1

𝑖,𝑑
= 𝑥
𝑖,𝑑

+ V𝑡+1
𝑖,𝑑

, (12)

where rand
1
and rand

2
are random values from the interval

[0 1].

Step 6. Steps 3 to 5 are repeated until a predetermined
maximum iteration number (max 𝑡) is reached.
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We would like to note that the aim of this study is not to
propose a new particle swarm optimization algorithm. In the
literature, it was shown that using some time varying parame-
ters can increase the convergence speed of the algorithm (Shi
and Eberhart [47]; Ma et al. [48]). Therefore, we just used
both the time varying acceleration coefficient (Ma et al. [48])
and the time varying inertia weight (Shi and Eberhart [47])
in the standard particle swarm optimization as mentioned
previously. Then, this modified particle swarm optimization
method was utilized to calculate membership values in the
fuzzy relationship matrix as addressed in the next section.
It is not claimed in the paper that a better particle swarm
optimization algorithm was improved.

4. The Proposed Approach

The fuzzy time series forecasting methods in the literature
have only AR structure that includes lagged fuzzy variables.
On the other hand, it will be wiser to use a model which
includes both AR and MA structures in order to forecast real
life time series that contain both structures. In the literature,
we firstly define a new model which includes both AR and
MA terms in Definition 5.

Definition 5. Let fuzzy time series 𝐹(𝑡) be caused by lagged
fuzzy time series𝐹(𝑡−1) and lagged absolute fuzzy error series
𝜀(𝑡 − 1); then the relationship can be expressed as

𝐹 (𝑡 − 1) , 𝜀 (𝑡 − 1) 󳨀→ 𝐹 (𝑡) . (13)

This model given in (13) is called an ARMA(1,1) fuzzy time
series forecasting model. Thus, definition of fuzzy relations
for this model is presented in Definition 6.

Definition 6. Suppose that 𝐹(𝑡) is caused by only 𝐹(𝑡 − 1) and
𝜀(𝑡 − 1); that is, 𝐹(𝑡 − 1), 𝜀(𝑡 − 1) → 𝐹(𝑡). Then, this relation
can be expressed as

𝐹 (𝑡) = (𝐹 (𝑡 − 1) ∘ 𝑅
1
(𝑡, 𝑡 − 1)) ∩ (𝜀 (𝑡 − 1) ∘ 𝑅

2
(𝑡, 𝑡 − 1)) ,

(14)

where 𝑅
1
(𝑡, 𝑡 − 1) (𝑅

1
= [𝑟
𝑖𝑗1

], 𝑖 = 1, 2, . . . , 𝑐, 𝑗 = 1, 2, . . . , 𝑐) is
the fuzzy relationship matrix between 𝐹(𝑡 − 1) and 𝐹(𝑡) and
𝑅
2
(𝑡, 𝑡 − 1) (𝑅

2
= [𝑟
𝑖𝑗2

], 𝑖 = 1, 2, . . . , 𝑐, 𝑗 = 1, 2, . . . , 𝑐) is the
fuzzy relationship matrix between 𝜀(𝑡 − 1) and 𝐹(𝑡).

In this study, a new fuzzy time series forecasting approach
is suggested to forecast ARMA(1,1) fuzzy time series fore-
casting model in (13). The proposed approach provides some
advantages which can be given as follows.

(i) Since the model given in (13) is employed in the pro-
posed approach, it is more proper to use this method
for forecasting real life time series that contain both
AR and MA structures.

(ii) Since fuzzy 𝑐-means clustering method is utilized for
fuzzification in the proposed approach, the number
of intervals, the interval length, and the degrees of
memberships is not arbitrarily determined in the
fuzzification phase, so the proposed approach is a
systematic method.

(iii) The methods in the literature that exploit fuzzy
logic group relationship tables disregard the fuzzy set
theory since only some elements of fuzzy sets are
taken into account in the fuzzification phase. Thus,
information loss occurs and it is expected to decrease
the explanation power of the model. However, in
the proposed method, particle swarm optimization
method is used to calculate membership values in
the fuzzy relationship matrix, so information loss
and decrease in explanatory power of the model are
prevented.

(iv) In the proposed method, instead of using centroid
method, a method which considers all membership
degrees is employed. Therefore, information loss that
occurs in the defuzzification stage is avoided.

(v) Since the proposed approach provides the advantages
given previously, it is expected that the suggested
method has high forecasting accuracy.

The algorithm of the proposed method is given later step
by step.

Algorithm 7. The proposed method’s algorithm.

Step 1. Fuzzify time series by using the fuzzy 𝑐-means
clustering, and define fuzzy sets for absolute values of errors.

Let 𝑐 be the number of fuzzy set, such that 2 ≤ 𝑐 ≤ 𝑛. The
fuzzy c-means clustering algorithm in which the number of
fuzzy sets is 𝑐 is applied to the time series which consists of
crisp values. After this application, the center of each fuzzy
set is determined. Then, the degrees for each observation,
which denote a degree of belonging to a fuzzy set for that
observation, are calculatedwith respect to the obtained values
of center of fuzzy sets. Finally, ordered fuzzy sets, 𝐿

𝑟
(𝑟 =

1, 2, . . . , 𝑐), are obtained according to the ascending ordered
centers, which are denoted by V

𝑟
(𝑟 = 1, 2, . . . , 𝑐).

Fuzzy sets for absolute values of errors are defined in
accordance with predetermined length of interval. Subinter-
vals that contain absolute values of errors are generated. The
number of clusters is taken as 𝑐 which equals the number of
cluster of time series. Thus, the number of subintervals is 𝑐.
The upper bound of the last subinterval is always open.While
the first subinterval has the minimum absolute error, the
subsequent subintervals have comparatively greater absolute
errors. Generally, subintervals can be defined by

𝑢
1
= [0, 𝑙𝑎] ,

𝑢
2
= [𝑙𝑎, 2 × 𝑙𝑎] , . . . , 𝑢

𝑐
= [(𝑐 − 1) × 𝑙𝑎,∞] ,

(15)

where 𝑙𝑎 represents the length of interval. In accordance with
these subintervals, fuzzy sets for absolute errors are defined
as follows:

𝐴
1
=

1

𝑢
1

+
0.5

𝑢
2

, 𝐴
2
=

0.5

𝑢
1

+
1

𝑢
2

+
0.5

𝑢
3

,

𝐴
𝑐−1

=
0.5

𝑢c−2
+

1

𝑢c−1
+

0.5

𝑢c
, 𝐴

𝑐
=

0.5

𝑢c−1
+

1

𝑢c
.

(16)
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Table 1: An example time series 𝑋
𝑡
.

Date 𝑋
𝑡

Membership values
V
1
= 13000 V

2
= 13500 V

3
= 14000 V

4
= 14500 V

5
= 15000

1971 13055 0.7 0.2 0.1 0 0
1972 13563 0.2 0.7 0.1 0 0
1973 13867 0.1 0.4 0.5 0 0

R1 R2

r111 r121 r112 r122rcc1 rcc2· · · · · ·

Figure 1: The structure of a particle.

Step 2. Determine the parameters of particle swarm opti-
mization.

Some parameters of particle swarm optimization are
possible intervals for social coefficient (𝑐

1𝑖
, 𝑐
1𝑓

), cognitive
coefficient (𝑐

2𝑖
, 𝑐
2𝑓

), and inertia weight (𝑤
1
, 𝑤
2
). The other

parameters are swarm size (𝑝𝑛) andmaximum iterationnum-
ber (max 𝑡). Evaluation function is RMSE criterion which is
computing as in what follows:

RMSE =
√

∑
𝑛

𝑡=1
(𝑥
𝑡
− 𝑥
𝑡
)
2

𝑛
,

(17)

where 𝑥
𝑡
is crisp time series, 𝑥

𝑡
is defuzzified forecasts, and 𝑛

is the number of forecasts.

Step 3. Generate a random initial population.
Elements of each particle are elements of 𝑅

1
and 𝑅

2
fuzzy

relation matrices given in Definition 6. Since both 𝑅
1
and 𝑅

2

matrices consist of 𝑐2 elements (𝑅
𝑘
= [𝑟
𝑖𝑗𝑘

], 𝑖 = 1, 2, . . . , 𝑐, 𝑗 =

1, 2, . . . , 𝑐, 𝑘 = 1, 2), the number of elements in a particle
equals to 2𝑐

2. For the number of fuzzy sets 𝑐, representation
of a particle is illustrated in Figure 1.

In this step, 𝑟
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑐) values of all particles
are randomly generated from the interval [0, 1] to generate
a random initial population.

Step 4. Calculate the evaluation function values of all parti-
cles in the current swarm.

Themethod for calculating RMSE for any particle is given
in Steps 4.1, 4.2, and 4.3.

Step 4.1. 𝑅
1
and 𝑅

2
fuzzy relation matrices are designed from

positions of particles. Each 𝑐 position sets are the rows of 𝑅
1

and 𝑅
2
matrices.

Step 4.2. Fuzzy forecasts are calculated by using (14). After 𝑅
1

and 𝑅
2
relation matrices are estimated, fuzzy forecasts can

be obtained by using fuzzy errors and fuzzy observations.
When the first forecast is calculated, it is assumed that the
error equals to zero since this assumption is also valid in
conventional time series analysis.

For instance, some observations of a time series 𝑋
𝑡
,

correspondingmembership values of these observations, and
the center values (V

𝑖
, 𝑖 = 1, 2, 3, 4, 5) for each fuzzy set are

given in Table 1.
Let the relations matrices be as follows:

𝑅
1
=

[
[
[
[
[

[

1 0.5 0 0 0

0 0 1 0 0

0 0 0 0.5 0

0 0 0 0 0

1 0 0 0 0

]
]
]
]
]

]

, 𝑅
2
=

[
[
[
[
[

[

1 0.5 0 0 0

0.5 0 1 0 0

0.3 0 0 0.05 0

0 0 0 0 0

1 0 0 0 0

]
]
]
]
]

]

.

(18)

Thus, fuzzy forecast for 1972 can be calculated as follows:

𝐹 (1972) = 𝐹 (1971) ∘ 𝑅
1
∩ 𝜀 (1971) ∘ 𝑅

2

= [0.7 0.5 0.2 0 0]

= [0.7 0.2 0.1 0 0] ∘

[
[
[
[
[

[

1 0.5 0 0 0

0 0 1 0 0

0 0 0 0.5 0

0 0 0 0 0

1 0 0 0 0

]
]
]
]
]

]

∩ [1 0.5 0 0 0] ∘

[
[
[
[
[

[

1 0.5 0 0 0

0.5 0 1 0 0

0.3 0 0 0.05 0

0 0 0 0 0

1 0 0 0 0

]
]
]
]
]

]

.

(19)

After this procedure, fuzzy forecasts are defuzzified by
using the rules given in what follows.

(i) If the memberships of fuzzy forecast have only one
maximum, then select the center of this cluster as the
defuzzified forecasted value.

(ii) If memberships of fuzzy forecast have two or more
consecutive maximums, then select arithmetic mean
of centers of corresponding clusters as the defuzzified
forecasted value.

(iii) Otherwise, standardize the fuzzy output, and use the
center of the fuzzy sets as the forecasted value.

For example, defuzzified forecast for 1972 can be calcu-
lated as follows. Since thememberships of fuzzy forecast have
only one maximum, defuzzified forecast value is taken as the
center value (V

1
= 13000) of the first fuzzy set which has the

maximummembership value. This can be expressed by

𝑋
1972

= Def (𝐹 (1972)) = 13000. (20)
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Then, absolute error value for 1972 is calculated given as
follows:

𝐸
1972

=
󵄨󵄨󵄨󵄨󵄨
𝑋
1972

− 𝑋
1972

󵄨󵄨󵄨󵄨󵄨
= |13055 − 13000| = 55. (21)

Absolute error value is fuzzified by using corresponding
fuzzy set which has the maximum membership value for the
intervalwhich includes this absolute error value. For instance,
for the time series given in Table 1, when the interval length
of absolute error is taken as 50, 5 subintervals are as follows:

𝑢
1
= [0, 50] , 𝑢

2
= [50, 100] , 𝑢

2
= [100, 150] ,

𝑢
2
= [150, 200] , 𝑢

5
= [200,∞) .

(22)

Since the absolute error value 55 is in the second interval
𝑢
2
, defuzzified absolute error is 𝐴

2
. Thus, for 1972, the

absolute error is obtained given as follows:

𝜀 (1972) = [0.5 1 0.5 0 0] . (23)

Then, the forecast for 1973 can be calculated as follows:

𝐹 (1973) = 𝐹 (1972) ∘ 𝑅
1
∩ 𝜀 (1972) ∘ 𝑅

2
. (24)

In the same way, other forecasts for other years can be
obtained.

Step 4.3. RMSE is computed using the formula given in (17).

Step 5. Update cognitive coefficient 𝑐
1
, social coefficient 𝑐

2
,

and inertia parameter 𝑤 at each iteration by using formulas
in (10).

Step 6. New positions of the particles are calculated by using
the formulas given in (11) and (12).

Step 7. Repeat Steps 4 to 7 until maximum iteration bound
(max 𝑡) is reached.

5. Application of the Proposed Method

Firstly, the proposed method was applied to Alabama Uni-
versity enrollment data (1971–1992) that is well-known data
in the literature. The enrollment data is presented in Table 2.

The algorithm of the proposed method was coded in
MATLAB 7.9 version. In the application of the proposed
method, we used seven fuzzy sets (𝑐 = 7) in Step 1 since the
same number has been employed in other studies available
in the literature (Cheng et al., 2008). The centers of clusters
and the membership values which are obtained from FCM
algorithm in Step 1 are given in Tables 3 and 4, respectively. In
the fuzzification process of the absolute error, if the interval
length is too small, aggregation will arise in the last fuzzy set.
If it is too big, aggregation will occur in the first fuzzy set.
Therefore, the length of interval for absolute error is picked

Table 2: The enrollment data.

Years Actual Years Actual
1971 13055 1982 15433
1972 13563 1983 15497
1973 13867 1984 15145
1974 14696 1985 15163
1975 15460 1986 15984
1976 15311 1987 16859
1977 15603 1988 18150
1978 15861 1989 18970
1979 16807 1990 19328
1980 16919 1991 19337
1981 16388 1992 18876

Table 3: The centers of clusters obtained from FCM algorithm in
Step 1.

V
1

V
2

V
3

V
4

V
5

V
6

V
7

13458.81 14700.56 15379.31 15904.31 16412.94 16889.11 19075.31

as 300.Then, 7 fuzzy sets for absolute errors can be defined as
follows:

𝑢
1
= [0, 300) , 𝑢

2
= [300, 600) , 𝑢

3
= [600, 900) ,

𝑢
4
= [900, 1200) , 𝑢

5
= [1200, 1500) ,

𝑢
6
= [1500, 1800) , 𝑢

7
= [1800,∞) .

(25)

In the literature, there are no general rules to determine
parameter values of particle swarm optimization. Param-
eter values for this method have been generally specified
intuitively due to the data in most of the applications.
Therefore, the parameters of particle swarm optimization
used in this study were intuitively determined like in other
studies available in the literature (Ma et al., 2006). The
parameters of the modified particle swarm optimization are
determined according to trial and errormethod.Thedifferent
values of the parameters were employed.The best parameters
of the modified particle swarm optimization are determined
as follows: (𝑐

1𝑖
, 𝑐
1𝑓

) = (2, 3), (𝑐
2𝑖
, 𝑐
2𝑓

) = (2, 3), (𝑤
1
, 𝑤
1
) =

(1, 2), 𝑝𝑛 = 30, and max 𝑡 = 200. The optimal 𝑅
1
and 𝑅

2

matrices obtained fromourmethods are given later.The fuzzy
and defuzzified forecasts of the proposedmethod are given in
Table 5:

𝑅
1
=

[
[
[
[
[

[

1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.4540

0.0000 0.7525 0.0000 0.0458 0.0000 0.0000 0.0000

0.3374 1.0000 1.0000 1.0000 1.0000 0.7000 1.0000

1.0000 0.0000 1.0000 1.0000 0.8283 0.0000 0.0000

0.4271 0.0000 1.0000 0.3627 0.0000 0.0000 1.0000

0.0000 1.0000 1.0000 1.0000 0.1443 1.0000 0.4579

0.0000 0.0000 1.0000 0.0000 1.0000 0.4002 0.0000

]
]
]
]
]

]

,

(26)
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Table 4: The memberships of the observations obtained from FCM algorithm in Step 1.

Years Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
1971 0.8768 0.0528 0.0265 0.0176 0.0127 0.0097 0.0039
1972 0.9839 0.0083 0.0032 0.0019 0.0013 0.0010 0.0004
1973 0.7128 0.1709 0.0519 0.0286 0.0183 0.0130 0.0044
1974 0.0000 0.9999 0.0000 0.0000 0.0000 0.0000 0.0000
1975 0.0015 0.0107 0.9463 0.0312 0.0068 0.0030 0.0005
1976 0.0013 0.0121 0.9679 0.0128 0.0037 0.0018 0.0003
1977 0.0063 0.0354 0.5767 0.3178 0.0440 0.0174 0.0024
1978 0.0003 0.0014 0.0079 0.9824 0.0060 0.0017 0.0002
1979 0.0006 0.0014 0.0031 0.0078 0.0410 0.9448 0.0012
1980 0.0001 0.0002 0.0004 0.0009 0.0035 0.9948 0.0002
1981 0.0001 0.0002 0.0006 0.0026 0.9939 0.0025 0.0001
1982 0.0007 0.0052 0.9769 0.0127 0.0029 0.0013 0.0002
1983 0.0029 0.0193 0.8823 0.0737 0.0146 0.0063 0.0010
1984 0.0133 0.1919 0.6905 0.0658 0.0236 0.0125 0.0025
1985 0.0118 0.1599 0.7306 0.0622 0.0219 0.0115 0.0022
1986 0.0009 0.0036 0.0163 0.9388 0.0324 0.0073 0.0006
1987 0.0001 0.0002 0.0004 0.0010 0.0045 0.9936 0.0002
1988 0.0176 0.0325 0.0504 0.0767 0.1281 0.2432 0.4516
1989 0.0004 0.0006 0.0009 0.0012 0.0017 0.0025 0.9928
1990 0.0018 0.0029 0.0040 0.0053 0.0073 0.0104 0.9684
1991 0.0019 0.0031 0.0042 0.0056 0.0077 0.0110 0.9664
1992 0.0013 0.0022 0.0032 0.0044 0.0064 0.0098 0.9728

Table 5: The forecasts produced by the proposed methods.

Years Fuzzy forecasts Defuzzified forecasts
1972 0.8768 0.5000 0.1475 0.0458 0.5824 0.0000 0.4540 13458.81
1973 0.9839 0.5000 0.1475 0.0458 0.5824 0.0000 0.4540 13458.81
1974 0.5000 0.7128 0.1709 0.1709 0.5000 0.5000 0.5000 14700.56
1975 0.9999 0.2359 0.9999 0.0458 0.4169 0.0000 0.4540 15395.91
1976 0.7084 0.3526 0.9463 0.0458 0.0312 0.0000 0.4540 15379.31
1977 0.7084 0.3526 0.9679 0.0458 0.0128 0.0000 0.4540 15379.31
1978 0.5767 0.3526 0.5767 0.0458 0.3178 0.0000 0.4540 15673.54
1979 0.5122 0.5000 0.7212 0.0079 0.9824 0.0000 0.4540 16412.94
1980 0.0078 0.0410 0.2108 0.0031 0.5000 0.0078 0.5000 17217.39
1981 0.0009 0.0035 0.2108 0.0004 0.9019 0.0000 0.4540 16412.94
1982 0.0026 0.5000 0.9939 0.0006 0.1144 0.0000 0.0026 15379.31
1983 0.7084 0.3526 0.9769 0.0458 0.0127 0.0000 0.4540 15379.31
1984 0.7084 0.3526 0.8823 0.0458 0.0737 0.0000 0.4540 15379.31
1985 0.6905 0.3526 0.6905 0.0458 0.1919 0.0000 0.4540 15517.4
1986 0.5000 0.3526 0.5000 0.5000 0.1599 0.5000 0.5000 15987.15
1987 0.5122 0.5000 0.7212 0.0163 0.9388 0.0000 0.4540 16412.94
1988 0.0010 0.0045 0.2108 0.0004 0.5000 0.0010 0.5000 17318.67
1989 0.3198 0.1281 0.2108 0.0504 0.2432 0.0767 0.4516 19075.31
1990 0.3198 0.0017 0.1446 0.0009 0.0025 0.0000 0.4540 19075.31
1991 0.3198 0.0073 0.1446 0.0040 0.0104 0.0000 0.4540 19075.31
1992 0.3198 0.0077 0.1446 0.0042 0.0110 0.0000 0.4540 19075.31
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Table 6: The obtained results for the enrollment data.

Method MSE
[2] 412499
[26] 386055
[4] 407507
[49] (𝑤 = 2) 333274
[49] (1998) (𝑤 = 3) 299634
[49] (1998) (𝑤 = 4) 321418
[7] 134923
[8] 133700
[19] 228918
[24] 192086
The proposed method 85089

𝑅
2
=

[
[
[
[
[

[

1.0000 1.0000 0.1475 0.1273 0.5824 1.0000 1.0000

1.0000 0.2359 1.0000 0.6483 0.4169 0.2619 1.0000

0.7084 0.3526 1.0000 1.0000 0.0000 1.0000 1.0000

0.5122 1.0000 0.7212 0.0000 1.0000 1.0000 0.8676

0.0000 1.0000 1.0000 0.0000 0.1144 0.0000 0.0000

0.0000 0.0000 0.2108 0.0000 0.9019 0.0000 1.0000

0.3198 0.0000 0.1446 0.0000 0.0000 0.0000 0.6737

]
]
]
]
]

]

.

(27)

The mean square error (MSE) value of the proposed
method is given in Table 6. For comparison, the forecasting
results of some other well-known fuzzy time series forecast-
ing approaches are also presented in Table 6. When Table 6
was examined, it is seen that the proposed method gives the
most accurate forecasts in terms of MSE criterion.

Secondly, to examine the forecasting performance of the
proposed approach on test set, it was also applied to four
different data sets. The first data set is index 100 in stocks
andbonds exchangemarket of İstanbul (ISBEMI)whose daily
observations are between May 20, 2008 and September 29,
2008. This data is called ISBEMI Set 1. The second data is
index 100 in stocks and bonds exchange market of İstanbul
(ISBEMI) whose daily observations are between October
3, 2008 and December 31, 2008. The second data is called
ISBEMI Set 2. The third one is ISBEMI Set 3, and its daily
observations are fromOctober 01, 2009 to December 31 2009.
ISBEMI Set 1, ISBEMI Set 2, and ISBEMI Set 3 have 95, 59,
and 63 observations, respectively. For comparison, these time
series were also forecasted using other well-known fuzzy time
series method proposed by Song and Chissom [2], Chen [4],
Chen [6], Huarng [5], Huarng and Yu [11], and Aladag et
al. [29]. In the implementation, the last 15 of ESBEMI Set 1,
7 observations of ISBEMI Set 2, and 7 observations and 15
observations of ISBEMI Set 3 were used for test sets.

It is a well-known fact that there are no general rules
to determine the parameters such as the length of interval
or the number of fuzzy sets for some methods used in the
implementation. Thus, related parameters were determined
using trial and error method like in other studies available
in the literature. To find the best length of interval for the
methods introduced in [4], Chen [6], and Aladag et al.
[29], the values between 200 and 2500 were examined with

increment 100. The interval lengths in the methods given in
Huarng [5] and Huarng and Yu [11] were determined when
the methods were progressing because of the nature of these
methods.The number of fuzzy sets was experienced between
5 and 25 for the proposed approach and Song and Chissom
[2]. When the methods proposed by Chen [5] and Aladag
et al. [29] were employed, models order 2, 3, 4, and 5 were
examined since time series have daily observations. Finally,
the number of neurons in hidden layer was changed from
1 to 10 when the approach proposed by Aladag et al. [29]
was applied. After practicing, the forecasts obtained from the
case where we have got the best result for the test data and
the error criteria related to those forecasts are presented in
Tables 7 and 8 for ISBEMI Sets 1 and 2, respectively.

For Table 7, the cases in which the superlative results were
obtained are

(i) the number of the fuzzy sets was 12 for the Song-
Chissom method [2];

(ii) the interval length was 1200 for the Chenmethod [4];
(iii) the interval length was 800 for the Huarng distribu-

tion-based method [5];
(iv) the interval length was 200 for the Huarng average-

based method [5];
(v) the ratio sample percentile was 0.5 for theHuarng and

Yu ratio-based method [11];
(vi) the number of the fuzzy sets was five for the Cheng

et al. method [19];
(vii) the number of the fuzzy sets was 11 and the number

of the neurons in the hidden layer was five for Yolcu
et al. [32];

(viii) the number of the fuzzy sets was 5 in the proposed
method.

For Table 8, the cases in which the superlative results were
obtained are

(i) when the number of fuzzy sets is 12, for the method
of Song and Chissom [2];

(ii) when the length of interval is 1900 for the method of
[4];

(iii) when the length of interval is 2200 and the model
order is 2 for the method of Chen [6];

(iv) when the length of interval is 800 for the method of
Huarng distribution based [5];

(v) when the length of interval is 200 for the method of
Huarng average based [5];

(vi) when the ratio sample percentile is 0.5 for themethod
of Huarng and Yu ratio based [11];

(vii) when the length of interval is 1000, the model order is
2, and number of neurons in hidden layer is 7 for the
method proposed by Aladag et al. [29];

(viii) when the number of fuzzy sets is 5 in the proposed
method.
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Table 7: The obtained results for ISBEMI Set 1.

Date The test data [2] [4] [5] distribution-based
method

[5] average-based
method [11] [32] The proposed

method
23.12.2008 26294 26410 26400 26200 26100 26091 26274 26 343
24.12.2008 26055 26410 26400 26200 26367 26091 26273 26 292
25.12.2008 26059 26410 26400 26200 26100 26091 26339 25 983
26.12.2008 26499 26410 26400 26200 26100 26091 26337 26 255
29.12.2008 26424 26410 26400 26200 26500 26608 26565 26 513
30.12.2008 26411 26410 26400 26200 26500 26608 26429 26 192
31.12.2008 26864 26410 26400 26200 26500 26091 26460 26 513

RMSE 261.0109 259.7625 310.4688 251.2390 354.7194 219.2734 207.91
MAPE 0.0075 0.0075 0.0096 0,0080 0.0098 0.0067 0.0067
DA 0.6667 0.6667 0.8333 0.5000 0.5000 0.6667 0.6667

Table 8: The obtained results for ISBEMI Set 2.

Date The test data [2] [4] [6] [5] distribution-based
method

[5] average-based
method [11] [29] The proposed

method
09.09.2008 40124.6 39958.4 40550 39700 40000 39967 40547 40500 40457.3
10.09.2008 39295.0 40294.2 40550 37500 40000 39800 40126 39500 40457.3
11.09.2008 37388.1 39431.8 38650 37500 40000 39100 39603 39500 39335.3
12.09.2008 37033.9 37656.1 36750 37500 37200 37500 37602 38500 39335.3
15.09.2008 35081.4 37272.4 36750 37500 37200 37100 36955 37500 36339.1
16.09.2008 33736.4 35024.0 34850 35300 34533 34700 34881 35500 33234.8
17.09.2008 32727.6 33954.4 33900 33100 34400 33700 34037 33500 33234.8
18.09.2008 32216.4 33638.4 33900 33100 32400 32700 32266 32500 33234.8
19.09.2008 36370.2 37746.4 33900 35300 32400 32300 32221 35500 36339.1
22.09.2008 36183.6 36450.8 36750 35300 36800 37700 36711 35500 36339.1
23.09.2008 35454.2 36166.4 36750 35300 36800 36100 35225 35500 36339.1
24.09.2008 35177.1 35072.6 34850 35300 35600 35100 35634 35500 33234.8
25.09.2008 36361.8 35024.0 34850 35300 34533 34700 34881 35500 36339.1
26.09.2008 36556.6 36450.8 36750 35300 36800 37700 36711 37500 36339.1
29.09.2008 36051.3 36450.8 36750 37500 36800 35900 36711 35500 36339.1

RMSE 1155.3 1229.7 1143.6 1579.1 1483.0 1484.9 1145.9 1107.2
MAPE 0.0268 0.0299 0.0261 0.0327 0.0308 0.0298 0.0255 0.0233
DA 0.4286 0.5000 0.5714 0.4286 0.7143 0.4286 0.6429 0.5714

Table 9: The obtained results (last 7 observations are test set) for ISBEMI Set 3.

Date The test data [2] [4] [5] distribution-based
method

[5] average-based
method [11] [32] The proposed

method
23.12.2009 51162 51137 52150 51900 51573 51033 51317 51684
24.12.2009 51461 51137 50850 50700 50373 51033 51317 51109
25.12.2009 51661 51137 50850 50700 51240 51033 51317 51684
28.12.2009 51619 51137 52150 51900 51573 51033 51317 51684
29.12.2009 51786 51137 52150 51900 51573 51033 51317 51684
30.12.2009 51668 51137 52150 51900 51773 52004 51317 51684
31.12.2009 52825 51137 52150 51900 51573 51033 51317 51684

RMSE 771.0155 666.5039 659.9450 671.4803 830.4429 640.4131 494.5180
MAPE 0.0116 0.0123 0.0111 0.0097 0.0128 0.0090 0.0061
DA 0.3333 0.3333 0.3333 0.3333 0.1667 0.5000 0.6667
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Table 10: The obtained results (last 15 observations are test set) for ISBEMI Set 3.

Date The test data [2] [4] [5] distribution-based
method

[5] average-based
method [11] [32] The proposed

method
11.12.2009 49386 49872 50250 49500 49100 49748 49516 49982.39
14.12.2009 50198 48606 48750 49500 49300 49316 50064 49982.39
15.12.2009 50450 49872 50250 49900 50500 50405 50942 50833.82
16.12.2009 50817 50294 50250 49900 48900 48886 50217 50833.82
17.12.2009 49963 50294 50250 50300 50900 48886 49641 50833.82
18.12.2009 50138 49872 50250 49900 49900 49748 49619 49613.83
21.12.2009 51281 49872 50250 49900 50500 50405 50932 51390.68
22.12.2009 51533 51137 51000 50300 50967 50625 50817 51390.68
23.12.2009 51162 51137 51000 51900 51500 51065 51100 51390.68
24.12.2009 51461 51137 51000 50300 50550 50625 50646 51390.68
25.12.2009 51661 51137 51000 50300 51500 51065 51073 51390.68
28.12.2009 51619 51137 51000 51900 51700 51065 51117 51390.68
29.12.2009 51786 51137 51000 51900 51700 51065 51114 51390.68
30.12.2009 51668 51137 51000 51900 51700 51963 51119 51390.68
31.12.2009 52825 51137 51000 51900 51700 51065 51117 51390.68

RMSE 810.8493 820.5748 815.9879 760.7710 917.1070 662.3497 522.0852
MAPE 0.0128 0.0133 0.0134 0.0110 0.0147 0.0106 0.0075
DA 0.2857 0.5000 0.2857 0.5000 0.3571 0.5000 0.6429

The best cases for the results given in Table 9 resulted
when

(i) Song-Chissom method [2] was applied with nine
fuzzy sets;

(ii) interval length was 1300 for the Chen method [4];
(iii) interval length was 800 for the Huarng distribution-

based method [5];
(iv) interval length was 200 for the Huarng average-based

method [5];
(v) ratio sample percentile was 0.50 for the Huarng and

Yu ratio-based method [11];
(vi) the number of the fuzzy sets was 13 and the number

of the neurons in the hidden layer was seven for Yolcu
et al. [32];

(vii) when the number of fuzzy sets is 5 in the proposed
method.

The best cases for the results given in Table 10 resulted
when

(i) Song-Chissom [2] method was applied with nine
fuzzy sets;

(ii) interval length was 1500 for the Chen method [4];
(iii) interval length was 800 for the Huarng distribution-

based method [5];
(iv) interval length was 200 for the Huarng average-based

method [5];
(v) ratio sample percentile was 0.50 for the Huarng and

Yu ratio-based method [11];

(vi) the number of the fuzzy sets was seven and the
number of the neurons in the hidden layer was three
for Yolcu et al. [32];

(vii) the number of the fuzzy sets was five in the proposed
method.

When Tables 6–10 are examined, it is obvious that the
most accurate forecasts are obtained for all data sets when the
proposed forecasting approach is used.

6. Conclusion and Discussion

In this study, an ARMA type fuzzy time series forecasting
model is firstly introduced in the literature. In addition, to
analyze this model, a novel approach based on fuzzy 𝑐-means
and particle swarm optimizationmethods is suggested in this
study. To show the forecasting performance of the proposed
forecasting approach, the enrollments of Alabama University
are applied to a well-known data and obtained forecasting
results are compared to those produced by other fuzzy
time series forecasting methods available in the literature.
In addition, to evaluate the forecasting performance of the
proposed forecasting approach on test set, two different time
series are forecasted by utilizing the proposed method and
other approaches available in the literature. As a result of the
comparison, it is observed that the proposed approach gives
the most accurate forecasts.

In the literature, the proposed method is the first method
based on a fuzzy time series forecastingmodelwhich contains
both AR and MA terms. In the linear stochastic ARMA
models, the AR(∞) model is equal to MA(1) model. But this
result is only valid for linear ARMAmodels.There is no such
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Table 11: Results of R/S test.

Data R/S statistics 𝑃 < 0.01

ISBEMI Set 1 1.2966 No
ISBEMI Set 2 1.5937 No
ISBEMI Set 3 1.6523 No
Enrollment data 1.0969 No

kind of result for fuzzy time series model, artificial neural
network model, and nonlinear stochastic models. Because of
this, adding MA terms to fuzzy time series forecasting model
is really important. Also, in the proposed method, particle
swarm optimizationmethod is used to calculate membership
values in the fuzzy relationship matrix, so information
loss and decrease in explanatory power of the model are
prevented. Besides, since fuzzy 𝑐-means clustering method
is employed in the fuzzification process, the number of
intervals, the interval length, and the degrees ofmemberships
are not arbitrarily determined, so the proposed approach
works in a systematic way. In addition, information loss
which occurs in the defuzzification stage is avoided by using
a method which takes all membership degrees into account
instead of using centroid method. Therefore, the proposed
method has high forecasting accuracy.

Moreover, long-range dependence was determined for all
time series by using 𝑅/𝑆 tests, and results are given in the
appendix. All of the time series are short-range dependent. In
the future studies, the performance of the proposed method
will be able to research for long-range time series. But in the
proposed fuzzy time series method, any linear model was
not used. Fuzzy time series methods can be used to forecast
nonlinear time series. In the fuzzy time series methods, the
relations are employed instead of functions.

The proposed forecasting approach is suggested to fore-
cast a first-order model including both AR and MA terms.
In future studies, high-order models can be defined. Then, it
is possible to extend the proposed approach to forecast high
order models.

Appendix

𝑅/𝑆 test was applied to five time series to determine long-
range dependence. The test results are given in Table 11.
As a result of hypotheses tests, all data sets are short-
range dependent. The tests were applied in S-PLUS package
program.
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We depict our work on a fundamental issue in the theory of long-range dependent traffic in the aspect of the convergence of sample
autocorrelation function (ACF) of real traffic. The present results suggest that the sample ACF of traffic is convergent. In addition,
we show that the sample size has considerable effects in estimating the sample ACF of traffic.More precisely, a sample ACF of traffic
tends to be smoother when the sample size increases.

1. Introduction

Start with the meaning of the convergence of a sample
autocorrelation function (ACF) of a stationary random
function 𝑥(𝑡) for 𝑡 ∈ (0,∞). Denote by 𝑥

𝑇
(𝑡) a sample

record of 𝑥(𝑡) with length 𝑇, that is, 𝑥
𝑇
(𝑡) = 𝑥(𝑡) for 𝑡 ∈

(0, 𝑇). Let 𝑟
𝑇
(𝜏) be the ACF of 𝑥

𝑇
(𝑡), meaning 𝑟

𝑇
(𝜏) =

𝐸[𝑥
𝑇
(𝑡)𝑥
𝑇
(𝑡 + 𝜏)] for 𝑡, 𝑡 + 𝜏 ∈ (0, 𝑇). Then, we say that

𝑟
𝑇
(𝜏) is convergent if lim

𝑇→
𝑟
𝑇
(𝜏) = 𝑟(𝜏) exists, where 𝑟(𝜏)

is the ACF of 𝑥(𝑡). Otherwise, 𝑟
𝑇
(𝜏) is divergent or does

not exist. In the discrete case, 𝑥(𝑡) is replaced by 𝑥(𝑖) (𝑖 =
0, . . . ,∞), 𝑥

𝑇
(𝑡) is substituted by 𝑥

𝐼
(𝑖) for 𝑖 = 0, . . . , 𝐼 − 1,

and 𝑟
𝑇
(𝜏) is replaced with 𝑟

𝐼
(𝑘) (𝑘 = 0, . . . , 𝐼 − 1). When

lim
𝐼→∞
𝑟
𝐼
(𝑘) = 𝑟(𝑘) exists, where 𝑟(𝑘) is the ACF of 𝑥(𝑖),

we say that 𝑟
𝐼
(𝑘) is convergent. That is the meaning of the

convergence or existence of a sample ACF of a random
function.

The issue described above may be unnecessary to treat
in the field of conventional second-order random functions
because an ACF of a conventional 2-order random function
generally exists [1–6]. However, the issue whether a sample
ACF of teletraffic (traffic for short) time series with long-
range dependence is convergent or not is worth discussing.

The research by Resnick et al. [7] stated that the sample
ACF of stable random functions with infinite variance may
be random when the sample size approaches infinity instead
of being convergent. The example of such a type of random
functions includes 𝛼-stable processes with infinite variance
[7, Page 798]. Recall that traffic modeling using 𝛼-stable
processes was described by reports, such as Karasaridis and
Hatzinakos [8], Barbe and McCormick [9]. On the other
side, the reports by Field et al. [10, 11] discussed the traffic
modeling using the standard Cauchy distribution, which
implied that traffic is of infinite variance because variance
of a random function obeying the Cauchy distribution is
infinite [2–4]. Therefore, a sample ACF of traffic may be
divergent if it is of infinite variance. Nonetheless, correlations
of traffic play a role in practice; see, for example [12–22],
just to cite a few. Consequently, the answer to the question
whether a sampleACF of traffic is convergent or not is desired
from the point of view of the theory of traffic. This paper
aims at exhibiting that sample ACFs of real-traffic data are
convergent.

The rest of the paper is organized as follows. Problem
statement is described in Section 2. Results are explained
in Section 3. Discussions are given in Section 4, which is
followed by conclusions.
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2. Problem Statement

Inwhat follows, we assume that traffic𝑥(𝑖) is causal. By causal,
we mean that 𝑥(𝑖) is defined for 𝑖 ≥ 0 and 𝑥(𝑖) = 0 if 𝑖 < 0. In
the interval [0, 𝐼], the sample ACF of 𝑥

𝐼
(𝑖) is given by

𝑟
𝐼
(𝑘) =
1

𝐼

𝐼−1

∑

𝑖=0

𝑥 (𝑖) 𝑥 (𝑖 + 𝑘) . (1)

For 𝐼
𝑙
̸= 𝐼
𝑚
, assuming 𝐼

𝑙
< 𝐼
𝑚
, we have,

𝑟
𝐼𝑙
(𝑘) ̸= 𝑟

𝐼𝑚
(𝑘) , 𝑘 = 0, . . . , 𝐼

𝑙
− 1. (2)

What is previously mentioned may be expressed by

𝑟
𝐼𝑙
(𝑘) + Δ

𝐼𝑙
(𝑘) = 𝑟

𝐼𝑚
(𝑘) , 𝑘 = 0, . . . , 𝐼

𝑙
− 1, (3)

where Δ
𝐼𝑙
(𝑘) is a fluctuation noise. Further, For 𝐼

𝑙
̸= 𝐼
𝑚
̸= 𝐼
𝑛
,

assuming 𝐼
𝑙
< 𝐼
𝑚
< 𝐼
𝑛
, we have

𝑟
𝐼𝑚
(𝑘) + Δ

𝐼𝑚
(𝑘) = 𝑟

𝐼𝑛
(𝑘) , 𝑘 = 0, . . . , 𝐼

𝑙
− 1. (4)

In general, if 𝑟
𝐼
(𝑘) is convergent, we have

𝐼𝑙−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
Δ
𝐼𝑚
(𝑘)
󵄨󵄨󵄨󵄨󵄨
≤

𝐼𝑙−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
Δ
𝐼𝑙
(𝑘)
󵄨󵄨󵄨󵄨󵄨
. (5)

More precisely, in the case of 𝑟
𝐼
(𝑘) being convergent, we have

lim
𝐼𝑙→∞

𝑟
𝐼𝑙
(𝑘) = lim

𝐼𝑚→∞

𝑟
𝐼𝑚
(𝑘) = 𝑟 (𝑘) . (6)

Consequently, the above means that

lim
𝐼𝑙→∞

Δ
𝐼𝑙
(𝑘) = 0. (7)

Since a real-traffic data series is always of finite length and
because the true ACF of 𝑥(𝑖) is never achieved, the issue we
treat in this research is to investigate whether 𝑟

𝐼
(𝑘) tends

smoother when 𝐼 becomes larger. If that is so, we infer that
𝑟
𝐼
(𝑘) is convergent. If not, it is divergent.

3. Results

Before showing the results, we brief the real-traffic data used
in this section. Let 𝑥(𝑡(𝑖)) be a sample record of traffic, where
𝑡(𝑖) is the series of timestamps, indicating the timestamp of
the 𝑖th packet arriving at a server.Thus, 𝑥(𝑡(𝑖)) represents the
packet size of the 𝑖th packet recorded at time 𝑡(𝑖). Note that the
pattern of 𝑥(𝑡(𝑖)) is consistent with that of 𝑥(𝑖) that represents
the size of the 𝑖th packet on a packet-by-packet basis.

We use two real-traffic traces. One is named BC-
pOct89 that contains 1,000,000 packets. It was recorded
on an Ethernet at the Bellcore Morristown Research and
Engineering Facility [23], which is now Telcordia Tech-
nologies (http://en.wikipedia.org/wiki/Telcordia Technolo-
gies), made by Will Leland and Dan Wilson. The other is
DEC-PKT-1 with 3.3 million packets. It was made by Jeff
Mogul of Digital’s Western Research Lab [24]. The former
was used in the pioneering research of the fractal statistics of

traffic in [25, 26]. The latter was utilized by Paxson and Floyd
in [27]. We cite relatively recent articles [28–30] for the nice
description of the basic statistics of traffic.

Figure 1 is the plot of the first 2048 data points of traffic
trace BC-pOct89. Figure 2 indicates the plots of sample ACFs
of BC-pOct89 with different sample sizes as follows.

(i) Figure 2(a): sample ACF of BC-pOct89 with the
sample size 𝐼 = 211 = 2048.

(ii) Figure 2(b): sample ACF of BC-pOct89 with the
sample size 𝐼 = 212 = 4096.

(iii) Figure 2(c): sample ACF of BC-pOct89 with the
sample size 𝐼 = 213 = 8192.

(iv) Figure 2(d): sample ACF of BC-pOct89 with the
sample size 𝐼 = 214 = 16384.

(v) Figure 2(e): sample ACF of BC-pOct89 with the
sample size 𝐼 = 215 = 32768.

(vi) Figure 2(f): sample ACF of BC-pOct89 with the
sample size 𝐼 = 216 = 65536.

(vii) Figure 2(g): sample ACF of BC-pOct89 with the
sample size 𝐼 = 217 = 131027.

From Figure 2, we obtain the following observations.

Observation 1. The sample ACF of BC-pOct89 with different
sample sizes obeys a certain deterministic function.

Observation 2. The fluctuation of a sample ACF of BC-
pOct89 decreases as the sample size increases.

In order to refine Observation 2, we demonstrate the first
1024 points of the sample ACFs in the sense of zoom as shown
in Figure 3. Thus, comes the following consequence.

Consequence 1. The sample ACF of BC-pOct89 is convergent.

The demonstrations of the sample ACF ofDEC-PKT-1 are
given in the appendix.

4. Discussions

The modeling of the sample ACF of BC-pOct89 may be
fractional Gaussian noise (fGn), which is appropriate when
the time scaling is large [31, 32], or the generalized fGn [33].
Both BC-pOct89 and DEC-PKT-1 may be well described by
the generalized Cauchy (GC) correlation structure [34]. The
theme of this research is the convergence of sample ACF of
traffic instead of correlation modeling of traffic. From the
present results, nevertheless, one may infer that (5), (6), and
(7) hold.

The data used on this research were measured in the
last century, more precisely, BC-pOct89 in 1989 and DEC-
PKT-1 in 1995. However, the research by Borgnat et al.
[35] suggested that statistics of traffic remain identical
from the early age of the Internet to today. Therefore, we
infer that sample ACF of traffic today may be conver-
gent.
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Figure 1: Plot of packet-size series of traffic trace BC-pOct89 on a packet-by-packet basis.
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Figure 2: Sample ACFs of BC-pOct89 with the different sample sizes. (a) Sample ACF of BC-pOct89 with the sample size 𝐼 = 2048. (b)
Sample ACF of BC-pOct89 with 𝐼 = 4096. (c) Sample ACF of BC-pOct89 with 𝐼 = 8192. (d) Sample ACF of BC-pOct89 with 𝐼 = 16384. (e)
Sample ACF of BC-pOct89 with 𝐼 = 32768. (f) Sample ACF of BC-pOct89 with 𝐼 = 65536. (g) Sample ACF of BC-pOct89 with 𝐼 = 131027.
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Figure 3: First 1024 points of sample ACFs of BC-pOct89 with the different sample sizes. (a) First 1024 points of sample ACF of BC-pOct89
with the sample size 𝐼 = 4096. (b) First 1024 points of sample ACF of BC-pOct89 with 𝐼 = 8192. (c) First 1024 points of sample ACF of
BC-pOct89 with 𝐼 = 16384. (d) First 1024 points of sample ACF of BC-pOct89 with 𝐼 = 32768. (e) First 1024 sample ACF of BC-pOct89 with
𝐼 = 65536. (f). First 1024 sample ACF of BC-pOct89 with 𝐼 = 131027.

0 256 512 768 1024 1280 1536 1792 2048
0

1000

2000

i

x
(i
)

(b
yt

es
)

Figure 4: First 2048 points of packet-size series of traffic trace DEC-
PKT-1 on a packet-by-packet basis.

Though we utilized traffic data in this research, the
methodology described in this research might be possi-
ble for investigating the convergence of sample ACFs of
other data series, for example, those in [36–43]. Finally,
we note that this research does not imply something that
might deviate from the point of view in traffic modeling
using Levy stable structure, such as stable Levy motion
[44], Levy flights [45], 𝛼-stable models [8] or the stan-
dard Cauchy distribution [10, 11], when those correspond
to random functions with infinite variance such that they

may yield divergent sample ACF. Rather, we suppose that
it seems still faraway to thoroughly understand the statis-
tics of traffic, without contradictions, with its commonly
used models that may not be enough as Mandelbrot stated
for modeling fractal random functions in general [46],
but things may need developing; see, for example, Cohen
and Lindner [47], Denby et al. [48], and Lazarou et al.
[49].

5. Conclusions

We have exhibited that the sample ACFs of real-traffic data
are convergent. Consequently, the sample ACFs of traffic
exist. We have shown that the sample ACFs of traffic become
smoother when the sample size increases.

Appendix

One More Case Study

The purpose of this appendix is to provide one more case
study to demonstrate the convergence of the sample ACF of
traffic using the real-traffic trace DEC-PKT-1.
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Figure 5: Plots of sample ACFs of DEC-PKT-1 with the different sample sizes. (a) Sample ACF of DEC-PKT-1 with the sample size 𝐼 = 2048.
(b) Sample ACF of DEC-PKT-1 with 𝐼 = 4096. (c) Sample ACF of DEC-PKT-1 with 𝐼 = 8192. (d) Sample ACF of DEC-PKT-1 with 𝐼 = 16384.
(e) Sample ACF of DEC-PKT-1 with 𝐼 = 32768. (f) Sample ACF of DEC-PKT-1 with 𝐼 = 65536. (g) Sample ACF of DEC-PKT-1 with
𝐼 = 131027.

The first 2048 data points of DEC-PKT-1 are plotted
in Figure 4. Figure 5 shows its plots of sample ACFs with
different sample sizes from 𝐼 = 211 = 2048 to 𝐼 = 217 =
131027.

Figure 5 implies that the sample ACF of DEC-PKT-1 with
different sample sizes is a deterministic function. Besides, the
fluctuation of its sample ACF decreases as the sample size
increases. We refine the observation that the fluctuation of its
sample ACF decreases as the sample size increases in Figure 6
by indicating the first 1024 points of each sampleACF,making

the result that the sample ACF of DEC-PKT-1 is convergent
clearer.
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This paper studies the synchronization of complex dynamical networks with multilinks and similar nodes. The dynamics of all
the nodes in the networks are impossible to be completely identical due to the differences of parameters or the existence of
perturbations. Networks with similar nodes are universal in the real world. In order to depict the similarity of the similar nodes,
we give the definition of the minimal similarity of the nodes in the network for the first time. We find the threshold of the minimal
similarity of the nodes in the network. If the minimal similarity of the nodes is bigger than the threshold, then the similar nodes
can achieve synchronization without controllers. Otherwise, adaptive synchronization method is adopted to synchronize similar
nodes in the network. Some new synchronization criteria are proposed based on the Lyapunov stability theory. Finally, numerical
simulations are given to illustrate the feasibility and the effectiveness of the proposed theoretical results.

1. Introduction

Complex dynamical networks have attracted increasing
attention in recent years, since they have been widely
exploited to model many complex systems in the science,
engineering, and society [1, 2]. Synchronization of complex
network has been found to be a universal phenomenon in
nature and it has important potential applications to real-
word dynamical systems. As an important and interesting
collective behavior, synchronization of complex network has
been studied extensively [3–8], such as complete synchro-
nization, projective synchronization [9], impulsive synchro-
nization [10, 11], exponential synchronization [12], adaptive
synchronization [13–15], and pinning synchronization [16–
21].

Most previous research assumes that the dynamics of
all nodes are identical. Consequently, the synchronization
problem is significantly simplified. However, the assumption

that the nodes are completely identical is not realistic inmany
real-world networks [22], such as in the neural networks,
where the internal neurons in the nervous system are impos-
sible to be completely identical due to the differences of the
parameters. And the authors of [23, 24] studied synchro-
nization of complex dynamical networks with nonidentical
nodes. While, in normal circumstances, the neurons are not
completely identical or completely nonidentical. They are
similar to each other and they will achieve synchronization to
transmit information which shows that the neural system has
certain robustness. At this time, we want to know the answers
of the following questions, which have a practicalmeaning for
us to analyze and controlmany realistic networkswith similar
nodes. How to depict the similarity of the similar nodes?
What is the condition that the similar nodes have to satisfy
in the network in order to achieve synchronization without
controllers? If there is a mutation or a pathological change,
then some neurons may have many different characteristics,
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and they can not synchronize with other neurons. When the
similarity of the similar nodes is broken, how to synchronize
the nodes in the network?

Furthermore, enormous works have been done on the
synchronization in complex networks with single-link, and
a lot of meaningful conclusions have been obtained. The
authors of [19] propose that single-link network is a special
case of multilinks network. Therefore, research on multi-
links networks are more representative. Multilinks means
that there is more than one link between two nodes and
each of them has its own property. For instance, there
are relationship networks, transportation networks, World
Wide Web, and so forth. The transportation network as an
example of a network with multilinks, which is made up
by combining the corresponding airline network, railway
network, and highway network. We can split the multilinks
networks intomany subnetworks based on the property of the
connections. For a transportation network, the transmission
speed is different among airline network, railway network,
and highway network. In our previous work [19], time-delay
was introduced to split complex dynamical networks into
subnetworks, upon which a model of complex networks with
multilinks has been constructed. However, the important
issue of synchronization for complex dynamical networks
with similar nodes and multilinks has so far received little
attention. The study of the synchronization problem with
similar nodes in the complex multilinks network becomes an
interesting and challenging topic.

In this paper, we give a model of complex multilinks
networks with similar nodes. A definition of similar nodes
is given and the minimal similarity of similar nodes in the
network is analyzed for the first time. We find a threshold
of the minimal similarity of similar nodes. If the minimal
similarity of similar nodes is bigger than the threshold in the
network, then the similar nodes can achieve synchronization.
Otherwise, we should add some controllers to the nodes
in order to get synchronization. Then some new adaptive
synchronization criteria are proposed. Finally, numerical
simulations of dynamical networks with similar nodes are
presented to demonstrate the feasibility and the effectiveness
of the results.

2. Model and Preliminaries

The model of complex multilinks network consisting of 𝑁

similar nodes with𝑚 kinds of properties can be described by

̇𝑥
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗
(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑥
𝑗
(𝑡 − 𝜏
𝑙
) , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑁
(𝑡))
𝑇 is the state vector of

node 𝑖, 𝐴
𝑖
is a matrix, 𝑓(𝑥

𝑖
(𝑡)) is a smooth nonlinear vector

function, 𝑐 > 0 is the coupling strength, Γ
0
and Γ

𝑙
are the

inner-coupling matrices, 𝐵
𝑙
= (𝑏
(𝑙)𝑖𝑗

)
𝑁×𝑁

, 0 ≤ 𝑙 ≤ 𝑚 − 1

represents the topological structure of the 𝑙th subnetwork,

and 𝜏
𝑙
is the time-delay of the 𝑙th subnetwork compared with

the basic network (𝜏
0

= 0). We define 𝑏
(𝑙)𝑖𝑗

= 𝑏
(𝑙)𝑗𝑖

= 1 if
there is a connection between node 𝑖 and node 𝑗 (𝑗 ̸= 𝑖) in the
𝑙th subnetwork, otherwise 𝑏

(𝑙)𝑖𝑗
= 𝑏
(𝑙)𝑗𝑖

= 0. And we define
𝑏
(𝑙)𝑖𝑖

= −∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑏
(𝑙)𝑖𝑗

.
Network (1) is in a state of asymptotical synchronization,

if

𝑥
1
(𝑡) = 𝑥

2
(𝑡) = ⋅ ⋅ ⋅ = 𝑥

𝑁
(𝑡) 󳨀→ 𝑠 (𝑡) (2)

as 𝑡 → ∞ (1 ≤ 𝑖 ≤ 𝑁), where 𝑠(𝑡)𝜖𝑅
𝑛 is a synchronous

solution of the node system ̇𝑥
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑓(𝑥

𝑖
(𝑡)). We

define the error vectors as

𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠

𝑖
(𝑡) . (3)

Hereafter, the definitions of similar nodes and the min-
imal similarity of the similar nodes are given, and a useful
assumption and two lemmas are introduced.

Definition 1. If 𝐴
𝑖
and 𝐴

𝑗
are matrices with the similar

element values, then the node 𝑖 and 𝑗 are similar nodes. In
the network (1), we define 𝐴 as the matrix of basic node and
𝐴
𝑖
(1 ≤ 𝑖 ≤ 𝑁 − 1) as matrices of other nodes. Because 𝐴

and 𝐴
𝑖
are matrices with similar element values, we define

𝛿
𝑖
= 1 − (‖𝐴 − 𝐴

𝑖
‖
𝐹
/‖𝐴‖
𝐹
), ] = min(𝛿

𝑖
), (1 ≤ 𝑖 ≤ 𝑁 − 1), and

] (0 < ] < 1) represents the minimal similarity of the nodes
in the network.Thenormofmatrix𝐴 is ‖𝐴‖

𝐹
= (∑
𝑁

𝑖,𝑗=1
𝑎
2

𝑖𝑗
)
1/2,

and 𝑎
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 𝑁) are elements of matrix 𝐴.

Remark 2. From Definition 1, we know ] is an important
parameter.When ] approaches to 1, the nodes in the network
are similar. If ] satisfies a certain condition, then the similar
nodes of the network can achieve synchronization without
controllers. On the contrary, when ] is far away from 1, the
nodes in the network become not similar, so the nodes cannot
achieve synchronization without controllers. That is to say,
there exists a threshold, if ] is bigger than the threshold; then
the similar nodes in the network can get synchronization
without controllers. And the threshold is what we tried to find
in the following.

Assumption 3. The smooth nonlinear function 𝑓(⋅) satisfies
the following Lipschitz condition:

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡))

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑠 (𝑡)

󵄩󵄩󵄩󵄩 , (4)

where 𝐿 is a positive constant.

Lemma 4. For any two vectors 𝑥 and 𝑦, and a matrix 𝑄 > 0

with compatible dimensions, one has

2𝑥
𝑇

𝑦 ≤ 𝑥
𝑇

𝑄𝑥 + 𝑦
𝑇

𝑄
−1

𝑦. (5)

Lemma 5. If 𝐴𝜖𝐶
𝑁×𝑁, the eigenvalues of 𝐴 are 𝜆

𝑖
(𝑖 =

1, 2, . . . , 𝑁), then max(𝜆
𝑖
) ≤ ‖𝐴‖, where ‖𝐴‖ is an arbitrary

matrix norm.

3. Synchronization Analysis

In this section, suppose there is not a control scheme to
synchronize a delayed complex multilinks network with
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similar nodes. According to system (1), the error dynamical
system can be derived as

̇𝑒
𝑖
(𝑡) = 𝐴

𝑖
𝑒
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗
(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
) ,

(6)

where 𝐴
𝑖
= 𝐴 + Δ𝐴

𝑖
, 𝐴
𝑖
is the matrix of node 𝑖, and 𝐴 is

the matrix of basic node. Because𝐴 and𝐴
𝑖
are matrices with

similar element values, Δ𝐴
𝑖
= 𝐴
𝑖
−𝐴. It is easy to see that the

synchronization of the complex network (1) is achieved if the
zero solution of the error system (6) is globally asymptotically
stable, which is ensured by the following theorem. And we
find that the minimal similarity of the similar nodes satisfies
an inequality for synchronization.

Theorem 6. Consider network (1), if the minimal similarity of
the nodes ] is bigger than the threshold, where the threshold of
] is

(𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) +
𝑐

2

𝑙=𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)

+
𝑐

2
(𝑚 − 1) + ‖𝐴‖

𝐹
)(‖𝐴‖

𝐹
)
−1

,

(7)

and it also satisfies the following inequality:

𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) + (𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max (𝑃𝑙𝑃

𝑇

𝑙
)

‖𝐴‖
𝐹

+
(𝑐/2) (𝑚 − 1) + ‖𝐴‖

𝐹

‖𝐴‖
𝐹

< ] < 1,

(8)

then the system (1) is synchronized without controllers.

Proof. Construct the following Lyapunov function:

𝑉 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) +

𝑐

2

𝑚−1

∑

𝑙=1

∫

𝑡

𝑡−𝜏𝑙

𝑁

∑

𝑖=1

𝑒
𝑖
(𝜃)
𝑇

𝑒
𝑖
(𝜃) 𝑑𝜃. (9)

We get

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

̇𝑒
𝑖
(𝑡)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝑁

∑

𝑖=1

[𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) − 𝑒

𝑖
(𝑡 − 𝜏
𝑙
)
𝑇

𝑒
𝑖
(𝑡 − 𝜏
𝑙
)]

=

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝐴𝑒
𝑖
(𝑡) +

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

Δ𝐴
𝑖
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡) [𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡))]

+

𝑁

∑

𝑖=1

𝑐𝑒
𝑖
(𝑡)
𝑇

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗
(𝑡)

+

𝑁

∑

𝑖=1

𝑐𝑒
𝑖
(𝑡)
𝑇

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
)

+
𝑐

2

𝑁

∑

𝑖=1

𝑚−1

∑

𝑙=1

𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡)

−
𝑐

2

𝑁

∑

𝑖=1

𝑚−1

∑

𝑙=1

𝑒
𝑖
(𝑡 − 𝜏
𝑙
)
𝑇

𝑒
𝑖
(𝑡 − 𝜏
𝑙
) .

(10)

Let 𝑒(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)), then we get

𝑉 (𝑡) ≤ [𝑒(𝑡)
𝑇

𝐴𝑒 (𝑡) + 𝑒(𝑡)
𝑇

Δ𝐴
𝑖
𝑒 (𝑡) + 𝐿𝑒(𝑡)

𝑇

𝑒 (𝑡)]

+ 𝑐𝑒(𝑡)
𝑇

(𝐵
0
⊗ Γ
0
) 𝑒 (𝑡)

+ 𝑐𝑒(𝑡)
𝑇

(𝐵
1
⊗ Γ
1
) 𝑒 (𝑡 − 𝜏

1
)

+ 𝑐𝑒(𝑡)
𝑇

(𝐵
2
⊗ Γ
2
) 𝑒 (𝑡 − 𝜏

2
)

+ ⋅ ⋅ ⋅ + 𝑐𝑒(𝑡)
𝑇

(𝐵
𝑚−1

⊗ Γ
𝑚−1

) 𝑒 (𝑡 − 𝜏
𝑚−1

)

+
𝑐

2
(𝑚 − 1) 𝑒(𝑡)

𝑇

𝑒 (𝑡)

−
𝑐

2
𝑒(𝑡 − 𝜏

1
)
𝑇

𝑒 (𝑡 − 𝜏
1
) −

𝑐

2
𝑒(𝑡 − 𝜏

2
)
𝑇

𝑒 (𝑡 − 𝜏
2
)

− ⋅ ⋅ ⋅ −
𝑐

2
𝑒(𝑡 − 𝜏

𝑚−1
)
𝑇

𝑒 (𝑡 − 𝜏
𝑚−1

) .

(11)

Let

𝑃
0
= 𝐵
0
⊗ Γ
0
,

𝑃
1
= 𝐵
1
⊗ Γ
1
,

𝑃
2
= 𝐵
1
⊗ Γ
2
,

...

𝑃
𝑚−1

= 𝐵
𝑚−1

⊗ Γ
𝑚−1

,

(12)

where ⊗ represents the Kronecker product. Then by
Lemma 4, we have

𝑉 (𝑡) ≤ 𝜆max (𝐴) 𝑒(𝑡)
𝑇

𝑒 (𝑡) + 𝜆max (Δ𝐴
𝑖
) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+ 𝐿𝑒(𝑡)
𝑇

𝑒 (𝑡) + 𝑐𝜆max (𝑃0) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+
𝑐

2
𝜆max (𝑃1𝑃

𝑇

1
) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+
𝑐

2
𝜆max (𝑃2𝑃

𝑇

2
) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+ ⋅ ⋅ ⋅ +
𝑐

2
𝜆max (𝑃𝑚−1𝑃

𝑇

𝑚−1
) 𝑒(𝑡)
𝑇

𝑒 (𝑡)
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+
𝑐

2
(𝑚 − 1) 𝑒(𝑡)

𝑇

𝑒 (𝑡)

≤ [𝜆max (𝐴) +
󵄩󵄩󵄩󵄩Δ𝐴
𝑖

󵄩󵄩󵄩󵄩𝐹
+ 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1)] 𝑒(𝑡)

𝑇

𝑒 (𝑡)

≤ [𝜆max (𝐴) + (1 − ]) ‖𝐴‖
𝐹
+ 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1)] 𝑒(𝑡)

𝑇

𝑒 (𝑡) .

(13)

Therefore, if we have

𝜆max (𝐴) + (1 − ]) ‖𝐴‖
𝐹
+ 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 0,

(14)

then 𝑉(𝑡) ≤ 0. So we get the synchronization criterion as
follows:

𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) + (𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max (𝑃𝑙𝑃

𝑇

𝑙
)

‖𝐴‖
𝐹

+
(𝑐/2) (𝑚 − 1) + ‖𝐴‖

𝐹

‖𝐴‖
𝐹

< ] < 1.

(15)

If ] satisfies (15), the nodes are synchronized. Thus we
complete the proof.

Remark 7. Thematrix of basic node can be chosen at random
from 𝐴

𝑖
(1 ≤ 𝑖 ≤ 𝑁). No matter which one we choose,

Theorem 6 also holds.
Furthermore, noise plays an important role in the process

of synchronization. Here we consider the influence of the
noise. If there is an additive noise in the system (1) in the form
of

̇𝑥
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗
(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑥
𝑗
(𝑡 − 𝜏
𝑙
) + 𝜂
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(16)

where 𝜂
𝑖
(𝑡)𝜖𝑅
𝑛 is the zeromean bounded noise. Using system

(16), we can easily get the following error system:

̇𝑒
𝑖
(𝑡) = (𝐴 + Δ𝐴

𝑖
) 𝑒
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗
(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
) + 𝜂
𝑖
(𝑡) ,

(17)

then we get

𝐸 ( ̇𝑒
𝑖
(𝑡)) = (𝐴 + Δ𝐴

𝑖
) 𝐸 [𝑒
𝑖
(𝑡)] + 𝐸 [𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡))]

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝐸 [𝑒
𝑗
(𝑡)]

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝐸 [𝑒
𝑗
(𝑡 − 𝜏
𝑙
)] + 𝐸 [𝜂

𝑖
(𝑡)] .

(18)

Finally, we get the theorem as follows.

Theorem8. When there is a noise or perturbation, considering
the network (16), if the following condition holds

𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) + (𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max (𝑃𝑙𝑃

𝑇

𝑙
)

‖𝐴‖
𝐹

+
(𝑐/2) (𝑚 − 1) + ‖𝐴‖

𝐹

‖𝐴‖
𝐹

< ] < 1,

(19)

then 𝐸[𝑒
𝑖
(𝑡)] approaches to zero.

The proof process of Theorem 8 is similar to the proof
process of Theorem 6, so here it is omitted.

4. Adaptive Synchronization

In this section, a control scheme is developed to synchronize
a delayed complex multilinks network with similar nodes,
which do not satisfy the synchronization criterion (15). And
the following adaptive controllers are used:

𝑢
𝑖
= −𝑑
𝑖
𝑒
𝑖
(𝑡) , 1 ≤ 𝑖 ≤ 𝑁. (20)

And the updating laws are

̇𝑑
𝑖
= 𝑘
𝑖
𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) , 1 ≤ 𝑖 ≤ 𝑁, (21)

where 𝑘
𝑖
(1 ≤ 𝑖 ≤ 𝑁) are positive constants. The adaptive

controllers (20) are widely used in solvingmany synchronous
problems.
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Then the controlled network can be characterized as

̇𝑥
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗
(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑥
𝑗
(𝑡 − 𝜏
𝑙
) + 𝑢
𝑖
,

𝑖 = 1, 2, . . . , 𝑁.

(22)

According to system (22), the following error dynamical
system can be derived:

̇𝑒
𝑖
(𝑡) = (𝐴 + Δ𝐴

𝑖
) 𝑒
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
) − 𝑑
𝑖
𝑒
𝑖
(𝑡) .

(23)

It is clear to see that the synchronization of the controlled
complex network (22) is achieved if the zero solution of the
error system (23) is globally asymptotically stable, which is
ensured by the following theorem.

Theorem 9. Consider the network (22) under the actions of
the controllers (20) and the updating laws (21). If the following
condition holds:

𝜆max (𝐴) + (1 − ]) ‖𝐴‖
𝐹
+ 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑙=𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 𝑑

∗

,

(24)

where 𝑑
∗ is a sufficiently large positive constant to be deter-

mined, then the system (1) is synchronized.

Proof. Construct the following Lyapunov function:

𝑉 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡)

+
𝑐

2

𝑚−1

∑

𝑙=1

∫

𝑡

𝑡−𝜏𝑙

𝑁

∑

𝑖=1

𝑒
𝑖
(𝜃)
𝑇

𝑒
𝑖
(𝜃) 𝑑𝜃

+
1

2

𝑁

∑

𝑖=1

(𝑑
𝑖
− 𝑑
∗

)
2

𝑘
𝑖

.

(25)

Clearly, 𝑉(𝑡) is positive. Then the derivative of 𝑉(𝑡) is
obtained as

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

̇𝑒
𝑖
(𝑡)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝑁

∑

𝑖=1

[𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡)

−𝑒
𝑖
(𝑡 − 𝜏
𝑙
)
𝑇

𝑒
𝑖
(𝑡 − 𝜏
𝑙
)]

+

𝑁

∑

𝑖=1

[𝑑
𝑖
𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) − 𝑑

∗

𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡)]

=

𝑁

∑

𝑖=1

{𝑒
𝑖
(𝑡)
𝑇

𝐴𝑒
𝑖
(𝑡) + 𝑒

𝑖
(𝑡)
𝑇

Δ𝐴
𝑖
𝑒
𝑖
(𝑡) + 𝑒

𝑖
(𝑡)

× [𝑓 (𝑥
𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡))]

+ 𝑐𝑒
𝑖
(𝑡)
𝑇

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗
(𝑡)

+ 𝑐𝑒
𝑖
(𝑡)
𝑇

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
)

− 𝑑
𝑖
𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) +

𝑐

2

𝑚−1

∑

𝑙=1

𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡)

−
𝑐

2

𝑚−1

∑

𝑙=1

𝑒
𝑖
(𝑡 − 𝜏
𝑙
)
𝑇

𝑒
𝑖
(𝑡 − 𝜏
𝑙
)

+𝑑
𝑖
𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) − 𝑑

∗

𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) } .

(26)

Let 𝑒(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)), then we get

𝑉 (𝑡) ≤ [𝑒(𝑡)
𝑇

𝐴𝑒 (𝑡) + 𝑒(𝑡)
𝑇

Δ𝐴
𝑖
𝑒 (𝑡) + 𝐿𝑒(𝑡)

𝑇

𝑒 (𝑡)]

+ 𝑐𝑒(𝑡)
𝑇

(𝐵
0
⊗ Γ
0
) 𝑒 (𝑡)

+ 𝑐𝑒(𝑡)
𝑇

(𝐵
1
⊗ Γ
1
) 𝑒 (𝑡 − 𝜏

1
) + 𝑐𝑒(𝑡)

𝑇

× (𝐵
2
⊗ Γ
2
) 𝑒 (𝑡 − 𝜏

2
)

+ ⋅ ⋅ ⋅ + 𝑐𝑒(𝑡)
𝑇

(𝐵
𝑚−1

⊗ Γ
𝑚−1

) 𝑒 (𝑡 − 𝜏
𝑚−1

)

+
𝑐

2
(𝑚 − 1) 𝑒(𝑡)

𝑇

𝑒 (𝑡) −
𝑐

2
𝑒(𝑡 − 𝜏

1
)
𝑇

𝑒 (𝑡 − 𝜏
1
)

−
𝑐

2
𝑒(𝑡 − 𝜏

2
)
𝑇

𝑒 (𝑡 − 𝜏
2
)

− ⋅ ⋅ ⋅ −
𝑐

2
𝑒(𝑡 − 𝜏

𝑚−1
)
𝑇

𝑒 (𝑡 − 𝜏
𝑚−1

) − 𝑑
∗

𝑒(𝑡)
𝑇

𝑒 (𝑡) .

(27)
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Figure 1: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3

(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑒
𝑖1
are shown by the red line, 𝑒

𝑖2
are

shown by the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. (a) 𝐵

0
and 𝐵

1
are small-world network models, and the rewiring

probability among nodes is 0.3 and 0.6. (b) 𝐵
0
and 𝐵

1
are scale-free network models, and their minimum degrees are 2 and 3. (c) 𝐵

0
and 𝐵

1

are random network models, and their connection probability among nodes is 0.1 and 0.3. (d) 𝐵
0
is a small-world network model, and the

rewiring probability among nodes is 0.3. 𝐵
1
is a scale-free network model, and the minimum degree is 2. Those similar nodes can achieve

synchronization without controllers (color online).

Let
𝑃
0
= 𝐵
0
⊗ Γ
0
,

𝑃
1
= 𝐵
1
⊗ Γ
1
,

𝑃
2
= 𝐵
1
⊗ Γ
2
,

...
𝑃
𝑚−1

= 𝐵
𝑚−1

⊗ Γ
𝑚−1

,

(28)

where ⊗ represents the Kronecker product. Then by
Lemma 4, we have

𝑉 (𝑡) ≤ 𝜆max (𝐴) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+ 𝜆max (Δ𝐴
𝑖
) 𝑒(𝑡)
𝑇

𝑒 (𝑡) + 𝐿𝑒(𝑡)
𝑇

𝑒 (𝑡)

+ 𝑐𝜆max (𝑃0) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+
𝑐

2
𝜆max (𝑃1𝑃

𝑇

1
) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+ ⋅ ⋅ ⋅ +
𝑐

2
𝜆max (𝑃𝑚−1𝑃

𝑇

𝑚−1
) 𝑒(𝑡)
𝑇

𝑒 (𝑡)

+
𝑐

2
(𝑚 − 1) 𝑒(𝑡)

𝑇

𝑒 (𝑡) − 𝑑
∗

𝑒(𝑡)
𝑇

𝑒 (𝑡)

≤ [𝜆max (𝐴) +
󵄩󵄩󵄩󵄩Δ𝐴
𝑖

󵄩󵄩󵄩󵄩𝐹
+ 𝐿

+ 𝑐𝜆max (𝑃0) +
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)

+
𝑐

2
(𝑚 − 1) − 𝑑

∗

] 𝑒(𝑡)
𝑇

𝑒 (𝑡)

≤ [𝜆max (𝐴) + (1 − ]) ‖𝐴‖
𝐹
+ 𝐿

+ 𝑐𝜆max (𝑃0) +
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)

+
𝑐

2
(𝑚 − 1) − 𝑑

∗

] 𝑒(𝑡)
𝑇

𝑒 (𝑡) .

(29)
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Figure 2: The similar nodes can achieve synchronization without controllers when the Brownian motion satisfies 𝐸𝜔(𝑡) = 0, 𝐷𝜔(𝑡) = 1.
And separate synchronous variables 𝑒

𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑒

𝑖1
are shown by the red line, 𝑒

𝑖2
are shown by

the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. The network models of (a)–(d) are the same with Figures 1(a)–1(d) (color

online).

Therefore, if we have

𝜆max (𝐴) + (1 − ]) ‖𝐴‖
𝐹
+ 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 𝑑

∗

,

(30)

then 𝑉(𝑡) ≤ 0. Here we complete the proof.

Remark 10. If there is not a nonlinear function in system (1),
then the network (1) is transferred into

̇𝑥
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑥
𝑗
(𝑡 − 𝜏
𝑙
) ,

𝑖 = 1, 2, . . . , 𝑁.

(31)

Likewise, we can design the controllers as in (20) and (21). If
the following condition holds:

𝜆max (𝐴) + (1 − ]) ‖𝐴‖
𝐹
+ 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 𝑑

∗

,

(32)

then the system (31) is synchronized, where 𝑑∗ is a sufficiently
large positive constant to be determined.

Remark 11. The single-link network is a special case of mul-
tilinks networks [19]. When there is not a delay, the network
(1) is transferred into the following single-link network:

̇𝑥
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(33)
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Figure 3: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(1 ⩽ 𝑖 ⩽ 30) of different networkmodels where 𝑒

𝑖1
are shown by the red line, 𝑒

𝑖2
are shown

by the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. The dynamics of nodes satisfy the Lü system. The nodes of the network

cannot achieve synchronization without controllers. The network models of (a)–(d) are the same with Figures 1(a)–1(d) (color online).

and the controllers are designed as in (20)-(21). If the
following condition holds:

𝜆max (𝐴) + (1 − ]) ‖𝐴‖
𝐹
+ 𝐿 + 𝑐𝜆max (𝑃0) < 𝑑

∗

, (34)

then the system (33) is synchronized, where𝑑∗ is a sufficiently
large positive constant to be determined.

5. Numerical Simulation

In this section, we use some examples to explain the influence
of the proposed criteria, andwe consider a network consisting
of 30 similar nodes.Themultilinks network with 2 properties
can be described as follows:

̇𝑥
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

30

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗
(𝑡)

+ 𝑐

30

∑

𝑗=1

𝑏
(1)𝑖𝑗

Γ
1
𝑥
𝑗
(𝑡 − 𝜏) ,

(35)

where 1 ⩽ 𝑖 ⩽ 30, 𝐵
0
= (𝑏
(0)𝑖𝑗

)
30 × 30

, and 𝐵
1
= (𝑏
(1)𝑖𝑗

)
30 × 30

are symmetrically diffusive coupling matrixes with 𝑏
(0)𝑖𝑗

,

𝑏
(1)𝑖𝑗

= 0 or 1. Γ
0

= Γ
1

= diag(1, 1, 1), 𝑐 = 2, 𝜏 = 0.01,
𝑓(𝑥
𝑖
(𝑡)) = (0.6 sin(𝑥

𝑖1
), 0.6 sin(𝑥

𝑖2
), 0.6 sin(𝑥

𝑖3
))
𝑇. According

to Assumption 3, we can know that 𝐿 = 0.6:

𝐴
𝑖
= (

−10 + 0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand −10 + 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand 0.1 ∗ rand −10 + 0.1 ∗ rand

) ,

(36)

where the function of rand can produce a random number
between 0 and 1. According to the definition of similar nodes,
we know𝐴

𝑖
, 1 ⩽ 𝑖 ⩽ 30 arematrices of the similar nodes. And

𝐴 = (

−10 0 0

0 −10 0

0 0 −10

) (37)

is the matrix of the basic node. So

Δ𝐴
𝑖
= (

0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand

) . (38)

According to the precise calculation, 𝜆max(𝐴) = −10,
𝜆max(𝑃0) = 0, 𝜆max(𝑃

𝑇

1
𝑃
1
) = 18.5139. Based on
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Figure 4: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3

(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑒
𝑖1
are shown by the red line, 𝑒

𝑖2
are

shown by the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. The dynamics of nodes satisfy the Lü system. The nodes are

controlled by the adaptive controllers (20) and (21). The network models of (a)–(d) are the same with Figures 1(a)–1(d) (color online).

the stability analysis, we get (𝜆max(𝐴) + 𝐿 + 𝑐𝜆max(𝑃0) +

(𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max(𝑃𝑙𝑃

𝑇

𝑙
) + (𝑐/2)(𝑚 − 1) + ‖𝐴‖

𝐹
)(‖𝐴‖
𝐹
)
−1

=

(−100 + 0.6 + 18.5139 + 1 + √30000)/√30000 = 0.5388.
According to (38), because 0 < rand < 1, the biggest changes
are

Δ𝐴
𝑖
= (

0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

) . (39)

Then we compute the ] = 0.9983, 0.5388 < ] <

1, so the similar nodes can achieve synchronization which
satisfiesTheorem 6. From Figures 1(a)–1(d), we know that the
similar nodes in the network achieved synchronization under
different network models.

Furthermore, in order to verify Theorem 9, we choose
the model (16) as the second example, where the Brownian
motion satisfies 𝐸𝜔(𝑡) = 0, 𝐷𝜔(𝑡) = 1, and the parameters
are the same with the first example. Figures 2(a)–2(d) plot
the synchronous errors converge to 0 in finite time under

different network models with noise, which reflects that
similar nodes have a certain robustness. In our future work,
we will consider the model (35) with Gaussian noise [25]
or 1/𝑓 noise [26], and the stochastic bounded model like
[27] in the complex network with similar nodes will be
studied.

Next, another example as the third one describes the
controlled network using Lü systems and considers the
network consisting of 30 nodes. The node dynamical system
is ̇𝑥
𝑖

= (−36𝑥
𝑖1

+ 36𝑥
𝑖2
; 20𝑥

𝑖2
− 𝑥
𝑖1
𝑥
𝑖3
; −3𝑥
𝑖3

+ 𝑥
𝑖1
𝑥
𝑖2
),

for 𝑖 = 1, 2, . . . , 30. And Δ𝐴
𝑖
are the same with the first

example. Since Lü attractor is bounded, we suppose that all
nodes are running in the given bounded region. There exists
the constants 𝑀

1
= 25, 𝑀

2
= 30, 𝑀

3
= 45 satisfying

‖𝑥
𝑖𝑗
‖
2

, ‖𝑠
𝑗
‖
2

⩽ 𝑀
𝑗
for 1 ⩽ 𝑖 ⩽ 30 and 1 ⩽ 𝑗 ⩽ 3 [28]. Thus we

have
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑖
) − 𝑓 (𝑠)

󵄩󵄩󵄩󵄩 ≤ √2𝑀
2

1
+ 𝑀
2

2
+ 𝑀
2

3

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩2

≈ 64.6142
󵄩󵄩󵄩󵄩𝑒𝑖

󵄩󵄩󵄩󵄩2
,

(40)
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Figure 5: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑐 = 2, 𝜏 = 0.01, and 𝜏

1
= 0.01. (a) 𝐵

0
, 𝐵
1
,

and 𝐵
2
are small-world network models, the rewiring probability among nodes is 0.3, 0.6, and 0.7. (b) 𝐵

0
, 𝐵
1
, and 𝐵

2
are scale-free network

models, and their minimum degrees are 1, 2, and 3. (c) 𝐵
0
, 𝐵
1
, and 𝐵

2
are random network models, and their connection probability among

nodes is 0.1, 0.3, and 0.5. (d) 𝐵
0
is a small-world network model, and the rewiring probability among nodes is 0.3. 𝐵

1
is a scale-free network

model, and the minimum degree is 2. 𝐵
2
is a random network model, and the connection probability among nodes is 0.1. The dynamics of

nodes satisfy the Lü system. The multilinks network can achieve synchronization under the adaptive controllers (color online).

then we can know that 𝐿 = 64.6142. And other parameters
are the same with the first example. We have 𝜆max(𝐴) = 20,
and

(𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑙=𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)
𝑐

2
(𝑚 − 1) + ‖𝐴‖

𝐹
)(‖𝐴‖

𝐹
)
−1

=
20 + 64.6142 + 18.5139 + 1 + √3001

√3001

= 2.9008.

(41)

It does not satisfyTheorem 6. So the nodes cannot achieve
synchronization without controllers. Simulation results are
given in Figures 3(a)–3(d) which show the evolution process

of 30 state variables in three dimensions. And it verified that
the similar nodes cannot achieve synchronization without
controllers.

According to the adaptive synchronization criteria, we
add the adaptive controllers (20) and (21) to these similar
nodes of the network. 𝑘

1
= 𝑘
2
= 𝑘
3
= 1. The curves of error

vectors 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(𝑖 = 1, 2, 3) are shown in Figures 4(a)–4(d).

To be more persuadable, with the same calculation
method, Figures 5(a)–5(d) plot the synchronous errors of
networks with links owning 3 properties. Figures 5(a)–
5(d) have different network models, and 𝜏

1
= 0.01. This

demonstrates that our theorem is not only applicable to
multilinks network owning two links properties but also to
real networks with multiple links. From Figures 1(a)–1(d) to
Figures 5(a)–5(d), we attain that our theorems are feasible
in different network models under different conditions. This
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result is more helpful to real networks not just to model
networks. From the above simulation results, we can see that
these similar nodes can achieve synchronization under the
impacts of the adaptive controllers. In the future, we will
consider the possible application of this paper to packet delay
issue in computer communications.

6. Conclusion

In this paper, we present the definition of similar nodes
and analyze their minimal similarity in the network for the
first time. We find the threshold of the minimal similarity
of the similar nodes if it is bigger than the threshold,
then the similar nodes can achieve synchronization without
controllers. Otherwise, we have to add some controllers in
order to get synchronization. So some new adaptive synchro-
nization criteria are proposed to realize the synchronization
of multilinks networks with similar nodes. Finally, numerical
simulations are provided to show the effectiveness and the
correctness of the proposed criteria. The model and the
principles designed in this paper are very useful to analyze
and control the dynamical multilinks networks with similar
nodes, such as heart cells networks and neural networks.
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This paper clarifies that the fractional Brownian motion, 𝐵
𝐻
(𝑡), is of long-range dependence (LRD) for the Hurst parameter 0 <

𝐻 < 1 except 𝐻 = 1/2. In addition, we note that the fractional Brownian motion is positively correlated for 0 < 𝐻 < 1 except
𝐻 = 1/2. Moreover, we present a theorem to state that the differential or integral of a random function, 𝑋(𝑡), may substantially
change the statistical dependence of 𝑋(𝑡). One example is that the differential of 𝐵

𝐻
(𝑡), in the domain of generalized functions,

changes the LRD of 𝐵
𝐻
(𝑡) to be of short-range dependence (SRD) when 0 < 𝐻 < 0.5.

1. Introduction

Fractional Brownian motion (fBm) is widely used [1–10]. Its
theory and applications attract the interests of researchers in
various fields, ranging from telecommunications to biomedi-
cal engineering; see, for example, [11–44], simply citing a few.

There is a set of statistical properties of fBm, such as
nonstationarity and being nondifferentiable in the domain of
ordinary functions [45]. Two properties, namely, nonstation-
arity and nondifferentiable property, are the basic properties
of standard Brownian motion (Bm) [46–52], which is well
known in the fields of time series as well as stochastic pro-
cesses [53, 54]. As the substantial generalization of Bm, fBm
has a property that Bm lacks, that is, its statistical dependence
[1–4, 45]. The measure of the statistical dependence of fBm is
characterized by the Hurst parameter𝐻 ∈ (0, 1).

Note that the fBm for the Hurst parameter 𝐻 ∈ (0, 1)

and 𝐻 ̸=1/2 is of LRD [11, 12, 45, 55, 56]. In addition,
fBm is positively correlated for 𝐻 ∈ (0, 1) but 𝐻 ̸=1/2

[57]. However, the LRD property of fBm may be sometimes
conservatively expressed. For example, the LRD property of
fBm was restricted by 𝐻 ∈ (0.5, 1) as can be seen from [58,
page 2341] and [59, page 708]. For this reason, it may be
meaningful to clarify, which this paper aims at.

The remaining paper is organized as follows. In Section 2,
we describe that the range of 𝐻 for fBm to be of LRD is
𝐻 ∈ (0, 1) and𝐻 ̸=1/2. Discussions are in Section 3, which is
followed by conclusions.

2. FBm Is LRD for 0 < 𝐻 < 1 except 𝐻 = 0.5

In what follows, a random function in general is denoted by
𝑋(𝑡) for 𝑡 ∈ (0,∞). We denote 𝐵

𝐻
(𝑡) for 𝑡 ∈ (0,∞) as fBm

with𝐻 ∈ (0, 1).
Without generality losing, we assume that 𝑋(𝑡) is a ran-

dom function with mean zero. The autocorrelation function
(ACF) of𝑋(𝑡) is, for 𝑡, 𝑠 ∈ (0,∞), denoted by

𝐶
𝑋𝑋
(𝑡, 𝑠) = 𝐸 [𝑋 (𝑡)𝑋 (𝑠)] . (1)

By LRD [1, 2], we mean that

∫

∞

0

𝐶
𝑋𝑋
(𝑡, 𝑠) 𝑑𝑡 = ∞. (2)

If

∫

∞

0

𝐶
𝑋𝑋
(𝑡, 𝑠) 𝑑𝑡 < ∞, (3)

𝑋(𝑡) is of short-range dependence (SRD).
Denote by 𝑆

𝑋𝑋
(𝜔, 𝑡) the power spectrumdensity function

(PSD) of 𝑋(𝑡). Denote by 𝐹 the operator of the Fourier
transform. Then [60–64],

𝑆
𝑋𝑋
(𝜔, 𝑡) = 𝐹 [𝐶

𝑋𝑋
(𝑡, 𝑠)] . (4)

The LRD condition described in the frequency domain is
expressed by

lim
𝜔→0

𝑆
𝑋𝑋
(𝜔, 𝑠) = ∞. (5)
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The above expression implies the property of 1/𝑓 noise
regarding random functions with LRD [1–4, 65–70]. On the
other hand,𝑋(𝑡) is of SRD if

lim
𝜔→0

𝑆
𝑋𝑋
(𝜔, 𝑠) < ∞. (6)

Let 𝑊−V be the Weyl integral of order V > 0. Then, for
random function𝑋(𝑡); see, for example, [71–75], one has

𝑊
−V
𝑋(𝑡) =

1

Γ (V)
∫

∞

𝑡

(𝑢 − 𝑡)
V−1
𝑋 (𝑢) 𝑑𝑢. (7)

Thus, the fBm of the Weyl type is in the form:

𝐵
𝐻
(𝑡) − 𝐵

𝐻
(0) =

1

Γ (𝐻 + 1/2)

× {∫

0

−∞

[(𝑡 − 𝑢)
𝐻−0.5

− (−𝑢)
𝐻−0.5

] 𝑑𝐵 (𝑢)

+∫

𝑡

0

(𝑡 − 𝑢)
𝐻−0.5

𝑑𝐵 (𝑢)} .

(8)

Following [76], the PSD of the fBm of the Weyl type is
expressed by

𝑆
𝐵𝐻𝐵𝐻

(𝜔, 𝑡) =
1

|𝜔|
2𝐻+1

(1 − 2
1−2𝐻 cos 2𝜔𝑡) . (9)

Therefore, we have the following theorem.

Theorem 1. FBm is of LRD for𝐻 ∈ (0, 1) except𝐻 = 1/2.

Proof. Because lim
𝜔→0

𝑆
𝐵𝐻𝐵𝐻

(𝜔, 𝑡) = ∞ for all 𝑡 > 0 and for
𝐻 ∈ (0, 1) except𝐻 = 1/2, the theorem holds.

As a matter of fact, fBm reduces to the standard Bm if
𝐻 = 1/2. The PSD of BM, see [11], is given by

𝑆
𝐵1/2𝐵1/2

(𝑡, 𝜔) =
1

𝜔2
(1 − cos 2𝜔𝑡) . (10)

Thus,

lim
𝜔→0

𝑆
𝐵1/2𝐵1/2

(𝑡, 𝜔) = 2𝑡
2

̸=∞. (11)

From the theorem, we have the following corollary.

Corollary 2. FBm is not SRD for𝐻 ∈ (0, 1).

In passing, we mention that the ACF of 𝐵
𝐻
(𝑡) of theWeyl

type is in the form:

𝐶
𝐵𝐻𝐵𝐻

(𝑡, 𝑠) =
𝑉
𝐻

(𝐻 + 1/2) Γ (𝐻 + 1/2)

× [|𝑡|
2𝐻

+ |𝑠|
2𝐻

− |𝑡 − 𝑠|
2𝐻

] ,

(12)

where 𝑉
𝐻
is the strength of 𝐵

𝐻
(𝑡). It is given by

𝑉
𝐻
= Var[𝐵

𝐻
(1)] = Γ (1 − 2𝐻)

cos𝜋𝐻
𝜋𝐻

. (13)

Following [57, page 4], we have the following remark.
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Figure 1: ACF of fBm for 𝑡, 𝑠 = 0, 1, . . . , 30 and𝐻 = 0.2.
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Figure 2: ACF of fBm for 𝑡, 𝑠 = 0, 1, . . . , 30 and𝐻 = 0.4.

Remark 3. The ACF of fBm is positively correlated for 𝐻 ∈

(0, 1) except 𝐻 = 1/2. That is, 𝐶
𝐵𝐻𝐵𝐻

(𝑡, 𝑠) ≥ 0 for 𝑡, 𝑠 ∈
(0,∞). Figures 1 and 2 indicate the plots of 𝐶

𝐵𝐻𝐵𝐻
(𝑡, 𝑠) for

𝑡, 𝑠 = 0, 1, . . . , 30 with𝐻 = 0.2 and 0.4, respectively.

3. Discussions

Let𝐺
𝐻
(𝑡) be the fractional Gaussian noise (fGn).Then, in the

domain of generalized functions over the Schwartz space of
test functions [45], we write

𝐺
𝐻
(𝑡) =

𝑑𝐵
𝐻
(𝑡)

𝑑𝑡
. (14)
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Denote by 𝐶
𝐺𝐻𝐺𝐻

(𝜏, 𝑠) the ACF of 𝐺
𝐻
(𝑡). Then, for 𝜀 > 0 [19,

45], one has

𝐶
𝐺𝐻𝐺𝐻

(𝜏; 𝜀) =
𝑉
𝐻
𝜀
2𝐻−2

2

× [(
|𝜏|

𝜀
+ 1)

2𝐻

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

|𝜏|

𝜀
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝐻

− 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝐻

] .

(15)

From the contents in Section 2, we have the following
theorem.

Theorem 4. Let𝑋(𝑡) be a random function.Then, the statisti-
cal dependence of 𝑑𝑋(𝑡)/𝑑𝑡 may substantially differ from that
of 𝑋(𝑡), where the differential is in the domain of generalized
functions.

Proof. To prove the theorem, we only need an example to
show it. Let 𝑋(𝑡) = 𝐵

𝐻
(𝑡). Then, 𝑑𝑋(𝑡)/𝑑𝑡 = 𝐺

𝐻
(𝑡). It is

well known that fGn is LRD when 𝐻 ∈ (0.5, 1) as 𝐶
𝐺𝐻𝐺𝐻

is
nonintegrable if 𝐻 ∈ (0.5, 1). On the other hand, for 𝐻 ∈

(0, 0.5), the integral of𝐶
𝐺𝐻𝐺𝐻

is zero. Hence, fGn is SRDwhen
𝐻 ∈ (0, 0.5). In passing, we note that 𝐶

𝐺𝐻𝐺𝐻
(𝜏; 𝜀) changes

its sign and becomes negative for some 𝜏 proportional to 𝜀
in this parameter domain [45, page 434]. Since 𝐵

𝐻
(𝑡) is LRD

for 𝐻 ∈ (0, 1) except 𝐻 = 1/2, the statistical dependence of
𝐺
𝐻
(𝑡) substantially differs from that of 𝐵

𝐻
(𝑡). This completes

the proof.

From Theorem 4, we immediately obtain the corollary
below.

Corollary 5. Let 𝑋(𝑡) be a random function. Then, the
statistical dependence of𝐷−1𝑋(𝑡)may substantially differ from
that of 𝑋(𝑡), where𝐷−1 is the integral operator of order one.

Proof . Let 𝑋(𝑡) = 𝐺
𝐻
(𝑡). Then, 𝐷−1𝑋(𝑡) = 𝐵

𝐻
(𝑡). Since

𝐵
𝐻
(𝑡) is LRD for𝐻 ∈ (0, 0.5) while 𝐺

𝐻
(𝑡) is SRD when𝐻 ∈

(0, 0.5), one sees that the statistical dependence of 𝐷−1𝑋(𝑡)
substantially differs from that of 𝑋(𝑡). Thus, Corollary 5
results.

4. Conclusions

We have clarified that fBm is LRD and positively correlated
for 𝐻 ∈ (0, 1) except 𝐻 = 1/2. In addition, we have proved
that the differential or integral of a random function may
considerably change its statistical dependence.
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