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Increasingly wider availability of biomedical imaging modal-
ities, such as X-ray computed tomography (CT), magnetic
resonance imaging (MRI), ultrasonic imaging, positron
emission tomography (PET), single-photon emission com-
puted tomography (SPECT), and optical imaging, have led
to significant progresses in both biomedical research and
clinical practice. Advancements in imaging technology and
image informatics have facilitated and enabled quantitative
understanding of the biological structures, functional organ-
isms, and pathological mechanisms.

This special issue presents 14 latest research contribu-
tions in computational biomedical imaging. The focuses
have been on the computational principles, strategies, meth-
ods, and algorithms that create, extract, and understand
imaging data of biomedical significance.

The first group of papers has showcased the development
and applications of rigorous optimization techniques in
biomedical imaging. The work based on dual unscented
Kalman filtering provides a reliable and efficient platform to
understand the BOLD signals from fMRI. In the other paper,
the robust discrete particle swarm optimization algorithm is
adopted to solve the branch-cut phase unwrapping problem
of MRI data. Without the need for a regularization penalty
term, a semigreed method for bioluminescence tomography
reconstruction is fast and stable for small animal imaging.

The second group of papers has addressed image seg-
mentation and tissue characterization problems, ever pop-
ular among image analysis researchers. The work of L. Li
et al. applies machine learning techniques to characterize
lymph node metastasis in gastric cancer from gemstone
spectral imaging with much improved outcomes, while G.
V. Sanchez. Ferrero et al. make new advances in ultrasonic
speckle characterization using generalized Gama distribution
and generalized Gama mixture model.

In recent years, physically meaningful modeling and
simulation have become integral components for model-
constrained imaging and model-based image understanding.
Thus, the third group of papers has continued the stride
in this direction. The propagation of myocardial electrical
activation is simulated using a monodomain model, without
the need of explicit mesh constraints. In similar spirit, one
work performs forward modeling of 3D optical molecular
imaging with simplified spherical harmonics approximation
using extended finite element method.

The final group of papers has highlighted some new im-
aging modalities and their potential use in clinical practice.
The further development of ultrasound-based quantitative
imaging of Young’s modulus with high accuracy is presented
in this issue. And the novel Diffusion Kurtosis Imaging shows
that more detailed classification of brain tissues is clinical
significance.

We appreciate the many high quality submissions to
this special issue from leading researchers in computational
biomedical imaging. Because of space limitation, we can only
accept a small number of most exciting works. We sincerely
hope that the remaining interesting research outcomes will
be soon published in other venues.
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Pulmonary regurgitation (PR) is a common phenomenon in pulmonary arteries in patients after repair of tetralogy of Fallot (TOF).
The regurgitation fraction of left pulmonary artery (LPA) is usually greater than right pulmonary artery (RPA) according to clinic
data. It may be related to blood flow in pulmonary arteries. Therefore, understanding hemodynamics in pulmonary arteries helps
to comprehend the reason. The aim of this study is to use 3D reconstructed pulmonary artery models from magnetic resonance
imaging (MRI) and to use numerical approaches for simulation of flow variations in pulmonary arteries after repair of TOF. From
the numerical results, the blood flow is influenced by the bifurcation angles and geometry of pulmonary artery. The regurgitation
happens first in LPA after repair of TOF due to the small angle between LPA and main pulmonary artery (MPA). The recirculation
region which obstructs forward blood flow to the left lung is found in LPA during acceleration of systole. We also analyze the
pressure distribution; the extreme pressure variations are in dilation area of MPA. Numerical data including regurgitation in MPA,
LPA, and RPA are compared with phase contrast MR measured data. Good agreements are found between numerical results and

measured data.

1. Introduction

Tetralogy of Fallot (TOF) is the most common congenital
heart disease, accounting for 10% of all common con-
genital heart diseases. TOF is composed of (1) ventricular
septal defect, (2) pulmonary stenosis, (3) right ventricular
hypertrophy, and (4) overriding aorta. Surgerical correc-
tion is the fundamental treatment. However, the surgical
reconstruction of TOF usually complicates with pulmonary
regurgitation (PR) phenomena. PR is caused by incomplete
close and deformity of the pulmonary valve after surgical
reconstruction of the right ventricular outflow track in
repaired TOE. It causes complex blood flow in pulmonary
arteries, which is related to right ventricular dysfunction.
Phase contrast magnetic resonance (PC-MR) technology
is an established noninvasive technique to estimate blood
flow in the vessels and has been used to investigate the PR
phenomena in repaired TOF patients. According to Kang
et al’s [1] PC-MR measurements of repaired TOF, it was

found that the regurgitation fraction (RF, i.e., backward
flow volume/forward flow volume) of PR in left pulmonary
artery (LPA) is higher than right pulmonary artery (RPA)
in repaired TOFE. The reason causing this discrepancy of RF
is still not clear. We hypothesize that the surgically created
structure-fluid dynamical interaction is one of the possible
reasons. In this study, we utilize numerical modeling to
investigate the relation between the structure, fluid dynamic,
and PR in repaired TOE.

Ho et al. [2] reported many complications in 21
TOF patients after surgery according to their cardiac MR
measurements, for example, severe pulmonary regurgitation
(PR), right ventricular dilatation, right ventricular outflow
obstruction, ventricular septal defect patch leakage, and
arrhythmias. Kang et al. [1] discussed the difference of PR
between left and right pulmonary arteries from PC-MRI
measurements for 22 patients after repaired TOF surgery.
They found that the regurgitant fraction in LPA is greater
than that in RPA and MPA in most of repaired TOF



patients. Meanwhile, Kang et al. [1] also indicated that the
relationship between the regurgitant fraction and fraction of
regurgitant flow duration in MPA and RPA is linear. Wu et al.
[3] investigated the effect of pulmonary regurgitation on
perfusion of the lungs in 43 patients after repaired TOF using
PC-MRI. They calculated forward flow volume, backward
flow volume, net flow volume, and regurgitation fraction in
the left and right pulmonary arteries. Comparison of the per-
fusion between the left lung (L%) (L% = left lung/left + right
lung) was provided in their PC-MRI measurements. In terms
of the comparison, they also found that the PR phnomenon
of LPA is higher than RPA in repaired TOF patients.

Helbing et al. [4] explored the abnormalities in right ven-
tricular (RV) diastolic function with 19 children after repair
of TOF and 12 healthy volunteers by PC-MR technique. They
found that right ventricular end-diastolic volume (RVEDV)
of repaired TOF patients is larger than a healthy person’s.
Furthermore, it was revealed that right ventricular ejection
fraction of repaired TOF is lower than healthy children.
Frigiola et al. [5] demonstrated that RV systolic function in
124 patients with surgically treated TOF is affected by PR.
In all patients, right ventricular systolic function of repaired
TOF patients is poorer than healthy children. RV isovolumic
acceleration is inversely proportional to PR in Frigiola et al’s
results. van den Berg et al. [6] indicated that some risk factors
including RV abnormal dilation, long QRS duration, and
severe PR are associated with RV dysfunction in terms of
PC-MRI measurements and electrocardiogram (ECG) of 59
patients after repair of TOE. Grothoff et al. [7] described that
PR is an important factor influencing prolongation of QRS
duration in ECG measurements for 67 patients after repair of
TOE They indicated that PR phenomena usually accompany
QRS prolongation.

Pulmonary valve replacement (PVR) has been shown to
improve ventricular function, stabilize QRS duration, and
reduce atrial and ventricular arrhythmias in the following
studies. For instance, Vliegen et al. [8] confirmed that PVR
can reduce regurgitation and shunting defects in 26 patients
after repaired TOF using MRI. Their results showed that
the mean preoperative PR was 46 + 10%. 80% patients
had no residual PR after PVR. They also found that right
ventricular end-diastolic volume decreased from 305 + 87
to 210 + 62 mL and RV end-systolic volume also decreased
from 181 + 67 to 121 + 58 mL. van Huysduynen et al. [9]
showed that PVR can reduce QRS duration from 150 to 140
ms according to their cardiac MR and ECG measurements
for 26 patients after repair of TOE Sung et al. [10] used
particle flow visualization experiment to investigate the
effects of varying degree of pulmonary valvular stenosis
in transparent glass models. Porcine pulmonary arteries
and valve were considered to fabricate those glass models.
Dilatation existed in MPA and LPA of the glass models. They
found that significant secondary flows appear in MPA due
to its dilatation. They also observed that strength of the
secondary flows in the LPA and RPA increased as the degree
of valvular stenosis increased. Their results proved that the
geometry of MPA with dilatation and pulmonary valvular
stenosis have remarkable effects on the pulmonary artery
hemodynamics.

Computational and Mathematical Methods in Medicine

The variation of blood flow with pulmonary regurgi-
tation in pulmonary arteries is an important factor for
evaluation of TOF defects. Computational fluid dynamics
(CFD) is a useful and noninvasive method to calculate
blood flow in arteries. In recent years, CFD is commonly
applied to simulate cardiovascular complex flow. It provides
numerical solutions for accurate assessment of congenital
heart disease treatments. In addition, applications of CFD
on simulations of blood flow in pulmonary arteries can be
found in several technical papers. For example, Tang et al.
[11] used CFD to compare flow phenomena of two various
pulmonary artery models, spiral and Lecompte, (nonspiral)
which are usually used in arterial switch operation. They
explained that the spiral method is better than the Lecompte
method in terms of numerical results which reveals that the
spiral method has more uniform velocity distribution, wall
shear stress, and less power loss ratio than the Lecompte
model. Corno and Mickaily-Huber [12] compared two
different pulmonary artery models, circular and elliptical
models, of distal conduit anastomosis by CFD. Their study
proved that the anastomosis cross-sectional area has a great
impact on blood flow distribution in pulmonary artery. They
suggested that the elliptical anastomosis may be useful to
improve the morbidity and degree of distal stenosis at clinical
applications. Chern et al. [13] established in vitro pulmonary
artery models after repair of TOF and observed the flow
patterns with varying PR in pulmonary arteries after repair
of TOF patients by CFD simulations. They also confirmed
that the PR fraction in LPA is higher than in RPA and in LPA.
Also, they found that vortices move toward the pulmonary
valve during regurgitation in numerical results. The vortex
motion may damage the pulmonary valve.

Recently, many studies applied medical images to recon-
struct 3D arterial peripheral models for undertaking accurate
CFD simulations. Redaelli et al. [14] detailed reconstruction
of 3D vascular numerical models from magnetic reso-
nance images and performed CFD simulations using the
reconstructed vascular models. Moreover, Tang et al. [15]
combined MRI and CFD to analyze blood flow in normal
pulmonary arteries under resting and exercise states. They
reported wall shear stress (WSS), oscillatory shear index
(OSI), and the variation of energy efficiency due to exercise
in pulmonary arteries. They found the low mean WSS
regions in the distal pulmonary arteries no matter in rest or
exercise conditions. High OSI values occurred in those low
mean WSS regions and branching locations where swirling
flow and separation flow were observed. They discovered
the energy efficiency average decrease of 10% between rest
and exercise conditions. They concluded that this approach
is useful for investigation of the disease development and
applications of surgical planning. Das et al. [16] calculated
the total energy of the MPA to assess the RV performance
between after repaired TOF and normal pulmonary arteries
using MRI and CFD. Their results indicated that the repaired
TOF RV has lower stroke work than the normal one. They
also computed the net energy transferred at the MPA that in
normal case has higher net energy than repaired TOF case.
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CFD has been applied to surgical planning for pul-
monary arteries as well (see 17, 18]). For example, Hsia et al.
[19] studied the influence of various inferior vena cava
connected to pulmonary arteries on blood flow using CFD
simulations. They considered four basic TCPC geometries
which were reconstructed from angiographic measurements.
They demonstrated that the anastomosis in which extrac-
ardiac conduit is connected with left pulmonary artery has
the lowest energy loss among four various TCPC cases. They
also compared energy dissipation in five graft extracardiac
conduits with various diameters (10~30 mm) by CFD. They
found that the least energy dissipation occurs in the conduit
of diameter 20 mm. They confirmed that the geometry
of the surgically created pathway in the TCPC is very
important in terms of energy dissipation. Sun et al. [20]
investigated the influence of antegrade pulmonary blood
flow on bidirectional cavopulmonary anastomosis using
CFD. They considered four mean flow rates (0.5L/min,
1 L/min, 1.5 L/min, and 2 L/min) of MPA. They found that
the flow ratio of LPA/RPA increased when the amount
of antegrade pulmonary blood flow increased. Increasing
antegrade pulmonary blood flow may cause significant
different blood flows to two lungs. They also observed that
blood flow into LPA from MPA is larger than into RPA
because the angle between MPA and LPA is larger than
between MPA and RPA.

Furthermore, Pekkan et al. [21] showed that the flow
patterns at the normal fetal aortic arch and pulmonary
artery, which were obtained by CFD and in vitro exper-
iment methods, were similar to each other. They found
the swirling flow at the pulmonary artery during the
deceleration phase of a cardiac cycle both in the numerical
results and in the experimental flow visualization. Wang
et al. [22] utilized CFD technique and flow visualization
experiments to compare two types of TCPC including intra-
atrial connection and extracardiac inferior vena-cava- (IVC-)
to-MPA connection. Their results showed that more complex
unsteady flow structures occur in intra-atrial connection
model in experimental and computational results.

According to those studies mentioned previously, we
know the PR always happens in a repaired TOF patient and
the blood flow in LPA is less than in RPA from MRI statistical
analysis. It is found that the blood flow distribution highly
depends on the geometry of vascular vessels. Nevertheless,
variation of blood flow in real pulmonary arteries after repair
of TOF is not clear. Meanwhile, numerical prediction of
blood flow becomes popular in investigating the relation-
ship between hemodynamics and cardiovascular diseases as
mentioned in previous paragraphs. Hence, the aim of this
study is to observe the blood flow distribution and to discuss
the effect of geometry on PR in pulmonary arteries by CFD
simulation coupled with 3D reconstructed MRI pulmonary
artery models. Furthermore, to find the reason to cause
higher PR in LPA than in RPA, numerical simulations are
performed to provide distribution of pressure, mass flow
rate, regurgitation fraction, and blood flow streamlines in
pulmonary arteries after repair of TOE.

3
TABLE 1: Parameters of pulmonary arteries.

Case Normal Case 1 Case 2 Case 3
Lipa (cm) 5.23 3.99 4.93 527
Lips (cm) 2.71 3.60 2.36 2.39
Lypa (cm) 3.85 5.31 4.17 3.14
drpa (cm) 1.39 1.40 1.13 1.21
dipa (cm) 1.36 1.30 1.09 1.68
dipa/dLpa 0.98 0.92 0.96 1.39
0, (degree) 125° 134° 106° 136°
0, (degree) 112° 52° 83° 70°
0,/6, 1.12 2.58 1.28 1.94
Apprer (cm?) 3.48 4.58 4.89 5.83

2. Mathematical Formulae and
Numerical Model

In this study, the branching pulmonary artery geometry
obtained by MRI is utilized to establish a numerical model
in computational fluid dynamics. The pulmonary artery is
a Y shape bifurcate vessel including LPA and RPA. Various
pulmonary arteries after repair of TOF are measured by MRI
and considered to observe regurgitation phenomena. First
of all, MRI measurements of pulmonary arteries after repair
of TOF are reconstructed as CAD models. Subsequently,
mesh generation is undertaken in those reconstructed CAD
models. Blood flows are then simulated using a flow solver
in those numerical models of pulmonary arteries. Details are
demonstrated in the following sections.

2.1. MRI and Grid Generation. In order to establish a
realistic 3D numerical model of pulmonary artery, MRI mea-
surements are utilized to obtain peripheries of pulmonary
arteries after repair of TOF and a healthy person. Regions
of the branching pulmonary arteries are remarked in slice
planes of MR images based on DICOM format. Every slice
thickness of Cases 1-3 was 3.6 mm, 4.4 mm, and 4.4 mm,
respectively. The normal one was 4 mm. Those 2D remarked
regions are connected together be a complete 3D CAD
pulmonary artery model. Those features of four pulmonary
models are listed in Table 1 and shown in Figure 1. We found
that the MPA dilation phenomenon and an acute angle
between LPA and MPA appear in all reconstructed CAD
models of pulmonary arteries after repair of TOFE.

Subsequently, computational grids are generated inside
those reconstructed CAD models using ICEM-CFD software.
Since peripheries of the pulmonary arteries are too com-
plicated to generate structured grids, unstructured grids are
used in the numerical models. Figure 2 presents the proce-
dure to reconstruct CAD models from MRI measurements
and mesh generation.

2.2. Governing Equations. Blood flow obeys mass and
momentum conservation. In this study, few assumptions are
used to simplify equations for mass and momentum conser-
vation. Mathematical formulae of mass and momentum are
denoted as:
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Normal case Case 1

Case 2 Case 3

FIGURE 1
continuity equation: TaBLE 2: The regurgitation fraction (RF).
V-u=0, (1) Case RF
. . . MPA LPA RPA
and momentum equation (Navier-Stokes equation)

1 0.337 0.449 0.252
Ju 1 2 0.164 0.186 0.149
otV ()= _,SVP +V - V), @ 5 0.288 0.304 0.260

where u represents a velocity vector of flow, P is pressure,
t is time, p is density of blood, and v is kinematic viscosity
of blood. The density of blood, p, is set as 1060 kg-m~>.
The dynamic viscosity (4) of blood is set as a constant
as 0.004kg-m~!-s71. Although blood is non-Newtonian,
viscosity of blood varies with respect to shear rate and
vessel diameter. Given that shear rate is greater than 10057,
the blood viscosity can be regarded as a constant like a
Newtonian fluid in accordance with Pedley [23] and Berger
and Jou [24]. Because a pulmonary artery is a large vessel,
the non-Newtonian effect is not strong. Hence, blood in
pulmonary artery is considered as Newtonian fluid for
simplifying equations. According to Singh et al. [25], the wall
of vessels is regarded as a rigid tube. That is, compliance of
pulmonary artery is not considered.

2.3. Boundary Conditions. Regurgitation occurs in the pul-
satile blood flow of pulmonary arteries after repair of TOFE.
Regurgitation fraction, RF, is defined as the ratio of backward
blood volume to forward blood volume in a cardiac cycle. A
health person’s RF is usually without regurgitation or very
low. High RF indicates that abnormal blood flow behavior
occurs in pulmonary arteries. That is, low RF means that

most blood flows into lungs to exchange oxygen. RF is
defined as

Backward volume in a cardiac cycle, Qp
RF = B . >
Forward volume in a cardiac cycle, Qy

(3)

where Q, and Qy refer to backward and forward blood flow
volumes in a cardiac cycle, respectively.

Figure 3 shows boundaries of the established model. To
solve those equations, appropriate boundary conditions are
required. Blood flow velocity profiles of individual patients
were measured by phase contract MRI at the inlet boundary
of the MPA entrance. The PC-MR image matrix was 256
pixels x 256 pixels. The image voxel sizes of Cases 1-3 were
0.141 x 0.141, 0.078 % 0.078, and 0.082 x 0.082, respectively.
The normal case was 0.0625 X 0.0625. The measured
nonuniform flow is provided for the inlet condition. The
interpolation method is used to map the inlet velocity profile
to inlet grid points. Also, RFs of Cases 1-3 are 0.337, 0.164,
and 0.288 as shown in Table 2, respectively.

The atmospheric pressure is imposed at the exits of the
RPA and LPA. The wall of vessels is regarded as a rigid object.
Nonslip boundary conditions are imposed in vessel wall.
That is, velocity is zero in the wall. For the initial conditions
of the pulmonary artery, velocity is set as zero.

2.4. Parameters Setting. The software, CFD-ACE+, is based
on a finite volume method that is used to calculate the blood
flow in a pulmonary artery. The finite volume method has
been applied to solving the Navier-Stokes equations in many
engineering applications. For example, Georgios and Ioannis
[26] used the finite volume method in computation of radia-
tive heat transfer. Kabinejadian and Ghista [27] employed the
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DICOM format

Retrieve 2D
contours

Reconstruct a
3D pulmonary

artery model

Mesh
generation

Numerical
simulation

F1GURE 2: Flow chart of the reconstructed pulmonary artery model.

method to solve the NavierStokes equations for simulations
of blood flow in a coronary arterial bypass graft. Details
of the finite volume method for solving the Navier-Stokes
equations can be found in Versteeg and Malalasekera [28].
Computational grids mentioned in Section 2.1 are utilized
to discretize the Navier-Stokes equations. As a result, a set
of simultaneous algebraic equations for velocity and pressure
are obtained and solved implicitly. To observe complex blood
flow patterns in pulmonary artery, transient simulations are
undertaken. The second-order Crank Nicholson scheme is
employed to undertake the time marching procedure. The
time step size ranges from 0.01 to 0.015s. Four cardiac
cycles are conducted in each numerical simulation. The
total simulation time is different in each case because the
duration of a cardiac cycle is different in each person. The

mass residual tolerance for numerical solutions is set to
10~* at each time step. The SIMPLEC scheme proposed
by van Doormaal and Raithby [29] is used to obtain
pressure solutions. The Window-based PC cluster is utilized
to perform numerical simulations in this study. The average
total calculation time for each case is about 1~2 months.

2.5. Grid Independence. To ensure that the numerical solu-
tions do not vary with the grids, the grid-independence
tests must be performed. For example, Figure 4 shows that
the velocity profiles obtained by various computational cells
are close to each other in Case 1 when the number of the
cells exceeds 1110784. Therefore, we adopt 1110784 cells
to conduct the following numerical simulations in Case
1. Moreover, we chose the 1168920 and 1035407 cells for
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FIGURE 3: Boundary conditions.

Cases 2 and 3 according to results of grid-independence tests,
respectively. 1079490 cells are used in the healthy case.

3. Results and Discussion

3.1. Influences of Bifurcation Angles and Geometry of Pul-
monary Artery on Blood Flow. Pulmonary regurgitation is a
common phenomenon in patients after repair of TOF, but
its effect on pulmonary arteries is not clear. The established

numerical pulmonary artery models include one healthy and
three pulmonary arteries after repair of TOFE. Table 2 shows
that Cases 1-3 have smaller angles between LPA and MPA
than a healthy one. 6, indicating the angle between LPA
and MPA is 52°, 83°, and 70° in Cases 1-3, respectively.
Nevertheless, 0, in a normal pulmonary branch is 112°. On
the other hand, angles between RPA and MPA in Cases 1-3
are larger than the normal one. 0, indicating the angle
between RPA and MPA in Cases 1-3 are 134°, 106°, and
136°, respectively. The angle of the normal one is 125°.
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FIGURE 4: Grid-independence test.

Figure 5 describes streamlines of the healthy case in
a central vertical sectional plane within a cardiac cycle.
There is no regurgitation in healthy pulmonary arteries.
Figure 5(a) shows the flow pattern in the acceleration of
systole. A smooth forward flow pattern is found in this stage.
Subsequently, two recirculations occur in LPA and RPA due
to the deceleration of the forward flow in Figure 5(b). Those
two vortices grow and stay in entrances of LPA and RPA in
diastole of a cardiac cycle as shown in Figures 5(c) and 5(d).

Figure 6 is utilized to compare flow patterns of the
healthy one and Cases 1-3 in acceleration of systole and
maximum in a cardiac cycle. It is found that a recirculation
occurs in LPA in Cases 1-3 but not in the healthy one. It is
because 0, of Cases 1-3 is smaller than the healthy one. As
a result, separation happens in LPA even though the forward
flow in MPA is accelerated. The recirculation in LPA reduces
the blood flow volumetric rate to the left lung. Figure 7 (n-3),
(1-3), (2-3), and (3-3) present streamlines of the healthy one
and Cases 1-3 in deceleration of systole in a cardiac cycle.
The recirculation bubble in Cases 1-3 grows. As mentioned
in the previous paragraph and shown in Figure 7 (#-3), there

is also a recirculation appearing in the healthy one during
deceleration of systole. At the end of systole, very complex
flow patterns including several vortices are found in Cases 1—
3 as shown in Figure 7 (1-4), (2-4), and (3-4). Subsequently,
Figure 8 reveals flow patterns of the healthy one and Cases 1-
3 in diastole of a cardiac cycle. Regurgitation happens in MPA
of Cases 1-3. Obvious dilations of Cases 2 and 3 are found
in MPA. During regurgitation in MPA, a strong vortex is
formed in dilation of MPA of Cases 2 and 3. Nevertheless,
there are two vortices appearing in MPA of Case 1. No vortex
is found in MPA of the healthy one.

Since vortices are found in MPA of Cases 1-3 in regur-
gitation, it is interesting to investigate the flow structure
in specified cross-sections. Figure 9 shows flow patterns of
the healthy one and Cases 1-3 in specified cross-sections
of MPA, LPA, and RPA in diastole. According to Perry
and Steiner’s [30] definitions of larger vortex in 3D flow, a
stable node is found in the cross-section a-a’ of the healthy
MPA. Stable focuses appear in cross-sections b-b’ and c-¢’
of healthy RPA and LPA. The stable node in healthy does
not occur in Cases 1-3. One or more focuses are found in
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FIGURE 5: Evolution of streamlines in healthy pulmonary arteries within a cardiac cycle.

MPA of Cases 1-3. An unstable bifurcation line, a saddle
point, and a stable focus happen in the cross-section d-d" of
MPA of Case 1. A stable focus and another unstable focus are
observed in the cross-section i-i" of MPA of Case 2. In Case 3,
there are a saddle point and a stable focus presenting in the
cross-section q-q" of MPA. In addition, the focus appearing
in the healthy RPA is found in Cases 1-3. It is stable in the
healthy one and Cases 1 and 3, but it is unstable in Case 2.

The focus in healthy LPA does not appear in all Cases 1-3.
The flow pattern in LPA of Case 1 shows a very strong and
smooth and reversed flow. In Cases 2 and 3, the focus shrinks
because of the strong reversed flow.

In order to know whether regurgitation happens first
in LPA or not, Figure 10 exhibits the time of inception of
regurgitation in RPA and LPA in Cases 1-3. Figures 10(a),
10(c), and 10(e) present that regurgitation first occurs in LPA
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FIGURE 6: Flow patterns and velocity distribution in midacceleration of systole and maximum in a cardiac cycle.

of Cases 1-3. Also, an obvious recirculation appears in LPA
of Cases 1-3. In terms of Figures 10(b), 10(d), and 10(f), it
turns out that the time of inception of regurgitation in RPA
is nearly 0.03 seconds behind that in LPA of Cases 1-3.
According to Figures 6, 7, and 8, the complex flow
patterns always happen in regurgitation of MPA of Cases 1—
3. 3-D strong vortex motion is found in this stage as shown

in Figures 7 (1-4), (2-4), and (3-4) and 8 (1-6), (2-6), and (3-
6) in the ends of systole and diastole because the direction of
blood flow in MPA changes. The 3D vortex motion in MPA
may cause extraload in the right ventricle since the healthy
case does not have regurgitation and the vortex motion.

In clinical cases, there is no dilation in MPA before
repair of TOF. The dilation often occurs in MPA after repair
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FIGURE 9: Flow patterns and velocity distribution in minimum of a cardiac cycle.

of TOE In terms of numerical results, it is found that 3-
D strong vortex motion appears in dilation of MPA in
regurgitation. Therefore, the dilation causes abnormal flow
distribution in MPA during regurgitation period in a cardiac
cycle. Apparently, the dilation in MPA is an important factor
to influence variation of blood flow in diastole.

3.2. Analysis of Pressure Distribution. In our models, the
dilation occurs in MPA of all repaired TOF cases. However,
the reason causing dilation is not clear. Therefore, it is
necessary to investigate the dilated area. This section gives the
analysis of the pressure distribution in pulmonary arteries
in a cardiac cycle. Figure 11 shows pressure distributions of
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the healthy case and Cases 1-3 in the maximum of a cardiac
cycle. A high pressure region is found in the bifurcation
area for all cases. In addition, another high pressure region
is observed in the dilation of MPA of Cases 1-3. Pressures
distributions of Cases 1 and 2 are very nonuniform. It should
be noticed that there is a stenosis between the bifurcation and
MPA in Case 2, so the high pressure in the dilation of Case
2 is extreme and higher than other cases. Figure 12 displays
pressure distributions of the healthy one and Cases 1-3 in
diastole. A low pressure region is discovered in the dilation
area of MPA in Cases 1-3. It is caused by the 3-D vortex
motion as shown in Figure 8. According to Figures 11 and
12, the pressure varies extremely in the dilation of MPA
in a cardiac cycle. For example, the pressure change in the
dilation of Case 2 is around 12860 N/m?. Nevertheless, the
maximum pressure change in the healthy one is around
2100 N/m?. The large pressure variation in MPA would affect
the vessels wall in MPA after repaired TOF seriously.

In terms of Figures 11 and 12, large pressure change
may cause obvious deformation of MPA. As we mentioned,
the 3-D vortex motion due to regurgitation in MPA plays
an important role in the low pressure region. The situation
could lead to deterioration of dilation in the longer term.

Figure 13 presents time histories of inlet pressure of MPA
of Cases 1-3 and the healthy one in a cardiac cycle. The solid
curve presents the inlet pressure of the healthy one. The peak
value of pressure is around 2000 N/m? in systole. Very low
negative pressure occurs in diastole. Dashed curves present
pressure variations of Cases 1-3. It is found that the peak
values of pressure of Cases 1 and 2 are higher than the healthy
one in systole. Moreover, negative pressure happens in Cases
1 and 2 in the diastole since regurgitation happens. It is found
that the extreme prssure variation exists at the inlet of MPA
of Cases 1 and 2. The cardiac cycle of Case 3 is longer than
other cases, so the systole period of Case 3 is longer than
other cases as well. Due to the larger inlet cross-section of
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FiGure 11: Comparing the distribution of pressure in pulmonary arteries in maximum of a cardiac cycle.

Case 3 than other cases as shown in Table 3, the peak value
of inlet pressure of Case 3 is not so large as Cases 1 and
2. However, obvious negative pressure due to regurgitation
exists in Case 3 in diastole. It is known that the damage of the
semilunar valve is one of the complications in patients after
repaired TOF. Large inlet pressure variations shown in Cases
1 and 2 may be one of the reasons to induce dysfunction of
the pulmonary valve.

3.3. Mass Flow Rate and Regurgitation. The pulmonary
artery geometry effects the mass flow rate distributions in
MPA, LPA and RPA. Figure 14 shows time histories of mass
flow rates in LPA and RPA of Cases 1-3 in a cardiac cycle.
Solid and dashed curves represent mass flow rates in RPA
and LPA, respectively. Red curves show the variations of
mass flow rates in the healthy one. The mass flow rates in
LPA and RPA are very close in the healthy one. There is no

TaBLE 3: Regurgitation volume (cm?) in a cardiac cycle.

Regurgitation volume

Case LPA/RPA
MPA LPA RPA
47 27 20 1.35
32 17 15 1.1
33 24 9 2.67

regurgitation in LPA and RPA. Blue, black, and green curves
represent mass flow rates in Cases 1-3. Serious regurgitation
is found in RPA and LPA of Cases 1-3 in diastole. Also, it
is found that regurgitation always appears in LPA first in
three cases. The forward flow amount of LPA is less than
RPA in Cases 1 and 2. The phenomenon does not happen in
Case 3. It may be because the diameter of LPA is larger than
that of RPA as shown in Table 3. Meanwhile, the amount of
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FiGure 12: Comparing the distribution of pressure in pulmonary arteries in minimum of a cardia cycle.

reversed flow in LPA is larger than RPA in Cases 1-3. Table 3
presents regurgitation volumes of RPA and LPA of Cases 1-3
in a cardiac cycle. The ratio of regurgitation of LPA to RPA is
always higher than 1. Diameters of RPA and LPA of Cases 1
and 2 are close to each other (see Table 2). Nevertheless, the
ratio of 0 to 6, of Case 1 is larger than that of Case 2. As a
result, the ratio of regurgitation of LPA to RPA in Case 1 is
higher than Case 2.

3.4. Comparison between Numerical Results and Clinical PC-
MR Measurement Data. Clinical PC MR measurement data
from 34 patients after repair of TOF were provided by
Kaohsiung Veterans General Hospital. Regurgitation in MPA,

LPA, and RPA was determined in PC MR measurements.
Subsequently, the numerical results are compared with those
measurement data. Figure 15 shows that RF of MPA varies
from 0.1 to 0.6. Measurement data and numerical results are
denoted as black hollow and color symbols, respectively. The
ratio of LPA RF to RPA RF decreases as RF of MPA increases
in measurement data. It is found that numerical results are
close to measurement data. Figure 16 shows the relationship
between regurgitation of RPA and MPA. Essentially, the
regurgitation of RPA is proportional to that of MPA in
measurement data. The numerical results also show the
trend in Figure 16. Figure 17 reveals the relationship between
LPA RF and MPA RE Measurement data are scattered
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in the figure. Predicted results are within measurement
data as shown in the figure. Consequently, the numerical
computational values are acceptable based on RF analysis
with clinical measurement values as shown in Figures 15, 16,
and 17.

4. Conclusions

We utilize peripheric data of pulmonary arteries measured
by MRI to reconstruct 3-D models of pulmonary arteries
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of healthy person and patients after repair of TOF. Those
reconstructed models of three real pulmonary arteries are
used to simulate blood flow motion. The degree of pul-
monary regurgitation and geometry of pulmonary artery
have significant effects on the blood flow variation.

Flow patterns are visualized by streamlines and velocity
magnitude in numerical results. The recirculation region
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is found in LPA of all pulmonary arteries after repair of
TOF in acceleration of systole. It obstructs the blood flow
toward the left lung. The strong vortices are found in the
dilation area of MPA in repaired pulmonary arteries during
diastole of a cardiac cycle. Nevertheless, there is no such
vortex in healthy MPA in diastole. In the ends of systole and
diastole, 3-D complex vortices motion appears in repaired
TOF pulmonary arteries. The blood flow of the health one
is smoother than those. According to numerical results, it is
found that the dilation causes abnormal flow distribution in
MPA during regurgitation period in a cardiac cycle.

The comparison of the flow patterns and regurgitation
proves that regurgitation happens first in LPA. The amount
of regurgitation in LPA is larger than RPA in numerical
results. The effect of predicted pressure distribution is also
discussed. The dilation has extreme pressure change in a
cardiac cycle. Nevertheless, the health MPA does not have
such extreme pressure variation. The high pressure is one
of the important factors to generate pulmonary arteries
dilation.

We could understand the influence of pulmonary regur-
gitation and the blood flow patterns through this study. The
results will be a useful reference for medical doctors before
they perform operations for TOF patients.

Nomenclatures

Latin Symbols

m: Mass flow rate, kg-s~!

P: Pressure, Pa
Qp: Backward blood flow volume in a cardiac cycle, m?
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Qy: Forward blood flow volume in a cardiac cycle, m?
RF: Regurgitation fraction

t:  Time,s

u:  Velocity vector, m-s~L,

Greek Symbols

0: Bifurcation angle, degree
y: Viscosity, kg-m~! - s7!

v: Kinematic viscosity, m? - s
p: Density, kg-m™.
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Several statistical models have been proposed in the literature to describe the behavior of speckles. Among them, the Nakagami
distribution has proven to very accurately characterize the speckle behavior in tissues. However, it fails when describing the
heavier tails caused by the impulsive response of a speckle. The Generalized Gamma (GG) distribution (which also generalizes
the Nakagami distribution) was proposed to overcome these limitations. Despite the advantages of the distribution in terms of
goodness of fitting, its main drawback is the lack of a closed-form maximum likelihood (ML) estimates. Thus, the calculation of
its parameters becomes difficult and not attractive. In this work, we propose (1) a simple but robust methodology to estimate the
ML parameters of GG distributions and (2) a Generalized Gama Mixture Model (GGMM). These mixture models are of great
value in ultrasound imaging when the received signal is characterized by a different nature of tissues. We show that a better speckle
characterization is achieved when using GG and GGMM rather than other state-of-the-art distributions and mixture models.
Results showed the better performance of the GG distribution in characterizing the speckle of blood and myocardial tissue in

ultrasonic images.

1. Introduction

Among the noninvasive imaging modalities, probably, the
most widespread are the ultrasound imaging. The main
reason of its success is that it provides a low-cost way to help
diagnosing and can be used for many medical applications.
However, ultrasonic (US) images are characterized by the
presence of a peculiar granular pattern: the so-called speckle.

This term was adopted from the field of laser optics [1] in
the early 1960s due to the similarity of the patterns between
laser optics and ultrasonics. Although the nature of the
speckle in US images stems from a different phenomenon,
there still share some similarities. Both patterns come from
the random interference of many coherent wave components
reflected from different microscopic elements. In the case of
US, the volume, the number of effective scatterers, and the
acquisition process contribute to the formation of a speckle

[2].

The analysis of backscattered echo from tissues needs a
proper description of the ultrasonic signals. For this purpose,
and due to the random nature of the speckle, several statis-
tical models have been proposed in the literature. This char-
acterization can be used either for segmentation [3], classi-
fication [4] purposes or for filtering the speckle itself [5-8].
The latter usually considers the speckle as an undesired con-
sequence, since it degrades resolution and adds spatial noise
to the image. Thus, filtering is commonly applied as a prepro-
cessing step for further segmentation of regions of interest or
to extract relevant measures for physiological analysis.

The statistical description of US signals provide an
important information of the backscattered echo from tis-
sues. The parameters of the statistical models allow identify-
ing the features of tissues and provides important descriptors
for classification. Some of the filtering algorithms relay on
a Bayesian approach where an accurate statistical model



becomes necessary. As a consequence, modeling the ampli-
tude statistics of US signals has been a very active area.

Several statistical models have been proposed in the last
decades. Probably the most wellknown is the Rayleigh model,
which is a one-parameter distribution which describes the
so-called fully formed (or developed) speckle. This proba-
bilistic distribution describes the behavior of a speckle when
a high number of effective scatterers are present in the resol-
ution cell. However, real images show a deviation from this
model, this non-Rayleigh behavior can be due to a small
number of scatterers in the resolution cell or when there
are some dominant components in the cell. The most com-
monly accepted distributions that try to model non-Rayleigh
distributions are the Rice (fully resolved speckle), K (partially
formed speckle), and Homodyned K (partially resolved
speckle).

Although, those models are based on physical assump-
tions of the backscattering process, some other distributions
have proven to provide a good performance on real images.
This is the case of Gamma [9-11] and Nakagami [12] dis-
tributions. The first is proposed as a two-parameter distri-
bution that describes the result of interpolated/filtered fully
formed speckle [9] and also has shown good results in
empirical tests among other distributions [10, 11]. The Nak-
agami distribution proposed by Shankar for the case US cha-
racterization [12] is also a two-parameter distribution which
generalizes the Rayleigh distribution. This distribution was
adopted from the models proposed to describe the statistics
of the returned echo radar.

The capability of the Nakagami distribution to model
the backscattering from tissues for fully resolved and
fully formed speckle made it become the most commonly
accepted model for tissue characterization. However, the
tails of the probabilistic density functions of Nakagami, K,
Rayleigh, or Gamma do not show the impulsive response
of speckle which originate heavier tails. In order to describe
this impulsive response, a generalized Nakagami distribution
was proposed by Shankar in [13]. This is a three-parameter
model which has shown a better behavior than the Nakagami
or Rayleigh, an expected result since it is a generalization
of the other models. However, the generalized Nakagami
distribution does not have closed-form maximum likelihood
estimates (MLE) and, thus, it makes their use difficult.
Note that, though Shankar in [13] said that the MLE can
be obtained, the equations used were based on the results
from Stacy and Mihram [14], which were calculated by the
methods of moments and they also expressed the difficulties
of obtaining an MLE: “Closed expressions for solutions to
the maximum likelihood equations are highly unlikely.” It is
important to note that the results of [14] were obtained for
the estimation of the Generalized Gamma (GG) distribution
which is essentially the same as the generalized Nakagami
distribution but with another parametrization.

The different nature of tissues is reflected in a different
response of the speckle. Hence, a mixture model has shown
to be a natural strategy for statistically describing the features
of tissues. This approach has been previously used for seg-
mentation purposes in the case of Nakagami mixture models
(NMMs) by Destrempes et al. in [3], for classification with
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Rayleigh Mixture Models by Seabra et al. in [4], and for filter-
ing with a mixture of Gamma and Gaussian Mixture Models
in [8, 9]. All these approaches make use of the Expectation-
Maximization (EM) [15] algorithm to calculate the parame-
ters that better fit the empirical probability distribution func-
tion (PDF). This method is particularly useful when the MLE
exists since it maximizes the expected value of the log-like-
lihood function with respect to the condition of the belong-
ing to each tissue class for a given data.

The EM algorithm cannot be easily applied for the cal-
culation of a Generalized Gamma Mixture Model (GGMM)
without an MLE. However, some interesting results have
been recently published on the calculation of the MLE of the
Generalized Gamma which permit efficient computation of
the GGMM.

The aim of this work is to revitalize the use of the Gen-
eralized Gamma distribution (also called, Generalized Nak-
agami Distribution) for tissue characterization. For this pur-
pose, we present two main contributions: first, we propose
a simple methodology to calculate the ML estimate which
offers robust results comparing to the methods in the litera-
ture [14, 16, 17]. Second, two different methods were pro-
posed for the calculation of the GGMM parameters. Both
were developed by applying the EM method in the derivation
of the proposed ML method. Results when comparing both
methods to the GMM and NMM in real images showed the
better fitting of the GGMM. The GGMM provides a posterior
probability of belonging to each tissue class which can be of
help for further filtering, segmenting, or classifying methods.

The rest of the paper is structured as follows. In
Section 2.1, we introduce the distributions most commonly
used for characterizing speckle of ultrasonic images. There,
the GG distribution is motivated as a suitable generalization
of the Gamma and Nakagami distributions which fail in
describing the impulsive response of speckle. Then, in
Section 2.2, we analyze the methods proposed in the liter-
ature for estimating the parameters of the GG distribution
and a simple but robust method is proposed (Section 2.2.4).
One of the advantages of this method is that it can be easily
extended to estimate the parameters of a GGMM by means
of the EM algorithm. Section 2.3 is devoted to the extension
of the ML method to obtain the parameters of the GGMM
where two algorithms are proposed. The performance of the
ML estimate derived in Section 2.2.4 is compared to other
state-of-the-art methods in Section 3.1 for synthetic data and
for real cases in Section 3.2. The performance of the GGMM
is analyzed in Section 3.3, where the GGMM is compared to
NMM and GMM. Finally, we propose some applications for
the GGMM in Section 3.4. In Section 4, we conclude.

2. Materials and Methods

2.1. Statistical Models for Describing the Nature of Speckle.
The formation of US images begins with the emission of
a pulse packet which travels through the tissue. The back-
scattering produced by the scatterers in the resolution cell
contribute to the change of the pulse shape according to the
characteristics of the media, that is, the number of scatterers
as well as their size [4, 9, 12].
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The contribution of the backscattered echo, s(t), can be
treated as a random walk due to the random location of the
scatterers in the resolution cell [12]:

N

s(t) = Zocncos(wot+¢n), (1)

n=1

where wy is the mean frequency of excitation and N is the
number of effective scatterers in the resolution cell. The
phases, ¢, are usually modeled as uniformly distributed in
[0,27] and the amplitude is usually considered to be Normal
distributed.

The fully formed speckle model assumes a high number
of scatterers, so the Central Limit Theorem applies and the
backscattered echo can be expressed as

s(t) = X cos(wpt) + Y sin(wot), (2)

where X and Y are zero mean identically distributed Gaus-
sian distributions.

Then, the envelop of the backscattered signal echo, R =
VX2 + Y2 is Rayleigh distributed [1, 18]:

r 2792
falr) = —ze 27 u(r), (3)
where u(-) is the Heaviside step function defined as

x<0

u(x) = {0’ )

1, x=0.

Under the assumption of a high number of effective
scatterers but with the presence of resolvable structures in the
resolution cell (specular component, C), X and Y become
nonzero Gaussian distributions. The envelop does no longer
follow a Rayleigh distribution but a Rician one [18]:

filr) = Loy (K u, (5)
o o
where Iy(-) is the modified Bessel function of first kind.
When the number of scatterers decreases and the Cen-
tral Limit Theorem cannot be applied, more complicated
distributions are proposed to model the distribution of
the envelope. Concretely, the K distribution models the
case when the number of scatterers is a random variable
itself, which is modeled as a Poisson whose local mean
is Gamma distributed, this is equivalent to consider ¢ as
gamma distributed [2]:

ro _ 2 2
falr [ o) = —e "2 (r),

()
11 .
50 = St (35 )¢ 2 uto),
so, the PDF of R is
falr) = j falr | 9 fy(0)do
)

s ) (5)uo

where K,(-) is the modified Bessel function of the second
kind.

A generalization of the previous models appears when
a specular component is considered and the number of
scatterers, N, follows a negative binomial distribution. This
is the case of the homodyned-K distribution [19]:

i) = (| T b CORndx utr). ()

This PDF has no closed expression and this limits its use.

On a completely different approach, Shankar in [12] pro-
posed a Nakagami distribution as a “simpler universal model
for tissue characterization.” Unlike the previously reviewed
models, the Nakagami is not based on physical arguments or
on a bottom-up modeling of the scattering process. However,
it has empirically shown a better performance than the
Rayleigh and Rice distributions.

The Nakagami PDF is as follows:

zmermfl
fr(r) =

= W@ u(r). (9)

This distribution offers good properties to describe the
backscattered echo: the Rayleigh distribution is a particular
case of the Nakagami (m = 1) and, additionally, when m > 1
is similar to the Rice distribution. However, this distribution
has some limitations. The Nakagami model cannot fit the
heavier tails of the empirical PDFs due to the impulsive
nature of scatterers [13].

In order to describe the impulsive response of scatterers,
Shankar proposed in [13] a generalized Nakagami distribu-
tion which is essentially the same as a Generalized Gamma
distribution [14]. However, this distribution presents some
difficulties in the estimation of its parameters, since there are
no closed equations for the ML estimates.

In the next section, we describe some methods that
have been used in the literature with special attention to
methods that provide an ML estimate of the GG parameters.
Additionally, we propose a simple method to calculate the
ML estimates of the parameters. The results obtained in the
derivation of this ML method provide the foundations for
the development of the Generalized Gamma Mixture Model,
which is the main contribution of this work.

2.2. Estimation of Parameters of the Generalized Gamma

2.2.1. Moments Method. This method was proposed by Stacy
in [14]. For the derivation of the method, the following para-
metrization was adopted:

~6a)" (%), (10)

( -
f X | a)V)p) - papyr(v)e
where the parameters (g, v, p) are all positive.

This is the definition of the GG distribution hereafter. For
agiven p > 0, all moments E{X"} exist.

Now, let Z be the random variable (RV) defined as

p
Z =log (%) = p(log(X) —log(a)). (11)



For this RV, the central moments, y,(-), of rth order are
ur(Z) = p"pr (log X). (12)

Additionally, it is easy to show that, given a RV, X, which
follows a GG distribution (X ~ GG(a, 7, p)), the following
properties hold:

kX ~ GG(ka,»,p), k>0

) (13)
X" ~GG<am,v,f), m # 0.
m

So, a new RV Z can be defined as Z = log(X/a)” where
(X/a)? follows a Gamma distribution of parameter v. Hence,
the log-transformed distribution of the Gamma RV is the
following:

f2(2) = fec(e® | 1,v,1)e” = ﬁ exp(vz — exp(z)), (14)

where z € R.

The moment generating function of Z is easily calculated
as E{e'”} = (t+v)/v. Where E{-} is the expectation operator.
So, the rth moment of Z is the following:

F(’)(v)
T(v)

where W) is the polygamma function defined as

E{7"} = =y(y), (15)

m

gm+l
Y (x) = Ir log T(x). (16)

Finally, the three first central moments are defined as:

pE{logX —loga} = ¥,
Prur(logX) =¥, (17)

pus(logX) =¥,

These equations can be used to estimate the parameters
of the GG(a, v, p); a,7, p, by approximating the moments by
means of the sample moments:

i=exp(y - ¥OG)),

~ ) NA4RIC))
b= —SIgn(gy)Tv, (18)

“Jo] = G
g}’ - (\P(l)(/ﬁ))?)/z’

where ¥ = (1/N) zfil log x;, with {xi}f\il the set of samples
of X; Sf, is the sample variance of {y,-}ﬁil = {logx,-}?il, and
gy its sample skewness.

The estimates are derived by means of calculating the
value 7 from the last equation of (18). So, a numerical cal-
culation needs to be performed. In the original article [14],
Stacy and Mihran provided a graph representing W@ (v)/
(YW (v))** for a range v € [0.1,5].

This method, though provides a quite straight-forward
calculation of the parameters, can provide estimates which
are outside the parameter space. Yet, it is highly sensitive to
the number of samples.
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2.2.2. Heuristic Approaches. In order to avoid the problems
associated to the moments method, some heuristic methods
have been proposed in the literature. As examples, Gomes
et al. [16] proposed an iterative method which evaluates the
best performance of the y? goodness-of-fit test for a fixed
p (see the parametrization of (10)). The parameters of the
transformed samples Y = X?, which are Gamma distributed,
were calculated by the moments method. At the end of the
loop, the set of parameters with least P value is chosen.

This method presents some shortcomings. First, the
parameters of the Gamma distributed data were calculated
by the moments method, so the problems associated to
the moments method are not circumvent. However, even
if a good estimate is calculated, the y*> goodness-of-fit test
depends on the calculation of the estimated PDF which
strongly depends on the number of bins considered and the
assumption of a sample with sufficient large size.

Other heuristic method is the one presented by Wingo in
[20]. This method, based on the one proposed by Hager and
Bain [21], tries to solve the maximum likelihood equations
for the GG distribution. The log-likelihood, L £, ofa RV X ~
GG(a, v, p) for the parametrization presented in (10) is

LL(a,v,p | x)

p )” TSI (/)
10g(<amr(v) Ex’ ¢

= nlog(p) — npvlog(a) — nlog(T(v))

>(3)"

+(pv— l)ilogxi -
i=1 (19)

where x = {x;}]_, is the set of samples.

Now, calculating the derivatives with respect to the para-
meters and setting it equal to zero, one can obtain the ML
equations:

1 n
P — E P
ar = X;
ny<="t?

Xi

Ptil 10g<*> -n¥(») =0, (20)

s oos()-2(5) (7)o

i=1 i=1

Q

where ¥(x) = YO (x) = I (x)/T(x).
This system of equations can be reduced to a single non-
linear equation with p as the single unknown:

-¥(v) + %ilog(xi) —log (ix,}’) +log(nv) =0, (21)

i=1 i=1
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where

-1
P Siaf log(x;)
=\ = l i) — = >
’ (”z—zl A z?:le

1/p
1 <,
a = (WZx,) .

(22)

i=1

So, the problem is reduced to calculate p from (21). Some
authors reported the difficulty of solving this equation
with the conventional numerical methods such as Newton-
Raphson [21] and conclude that the MLE may not exist.

In [20], the author faced the problem by analyzing
the effect of inappropriate zero finding algorithms. So, an
heuristic method for isolating roots of a general scalar non-
linear equation was proposed. This method makes use of the
root-isolation technique proposed in [22], which uses only
function values to isolate the roots in a compact interval of
the real line.

Though this method can provide an ML estimate of the
parameter by solving (21), it has to heuristically divide the
intervals where p is searched and calculate whether a root is
in it or not by means of the mean value and variance of the
function in each of the intervals, so many evaluations of the
function are required.

2.2.3. ML Approach. A very interesting analysis was recently
published by Noufaily and Jones in [17], where an iterative
approach is proposed to solve the likelihood equations, (20),
in a way that the individual equations are uniquely solv-
able. This result provides a very promising technique for cal-
culating the MLE parameters of the GG.

In that work, the log-likelihood equations were calcu-
lated following the re-parametrization proposed in [23].
Concretely, for a RV X which is distributed, X ~ GG(a, v, p),
the new RV Y = logX is calculated, whose PDF is the fol-
lowing:

_ P (-
fY(y) - F(V) ab” eXp( ap)
1/V—I/Z (23)

_ _ w/ /v
= oTO) exp(ﬁw ve ),
where y € R, w = (y — u)/0o, 0 = 1/p./v and y = log(a) +
(1/p) log(»).

So, in the end, the following equations have to be solved:

y = 0+/vlogSo, (24)

_ So p— o _
R(O'):S*I—Y—ﬁfo, (25)
T(v) = log(v) — ¥(v) — % =0, (26)

where L = (u—Y)/oand S; = (1/n) XL, vl exp(yi/a /).
The important result of [17] is the demonstration that

both (25) and (26) are well behaved with unique solutions

in ¢ and v, respectively. So, an iterative method can be

developed to calculate 7 by (26) from an initial guest of the
parameters and then ¢ by solving (25). Finally, /i is calculated
by replacing the previous estimates in (24). These estimates
can be used to calculate a new L to compute the new log-
likelihood function. By repeating these steps until a desired
accuracy, the estimates are achieved [23].

This method provides a fundamental result about the
behavior of the log-likelihood equations, and guarantees
their solution. However, the method does not provide any
proof concerning its convergence or the uniqueness of the
ML. Yet, this method needs to solve two nonlinear equations
by numerical techniques, whereas the method proposed by
Wingo in [20], previously described, only needs to solve a
linear equation.

2.2.4. The Proposed Approach. We propose a simple but
efficient method to calculate the ML estimates of the GG
distribution. The main advantage of the method is that it
can be easily implemented and has the same properties of
the method of [17], that is, the equation to solve are well
behaved with unique solution. Additionally, the method just
needs the calculation of just one non-linear equation and,
thus, the computing time is considerably reduced.

The method consists in transforming the RV, X ~
GG(a, v, p) by the following transformation Y = X where
Po is a positive real number. So, the new PDF of Y is the fol-

lowing:
yP/PO
exp| =~ u(y). (27)

Note that this PDF follows a Gamma PDF when py = p.
Hence, a reasonable way to find the P value is to find the value
of po that maximizes the likelihood of the GG distribution
and also maximizes the Gamma distributed RV Y = X/o,

In order to see if this method provides a proper solution,
we first demonstrate that the ML estimate of the parameters
of the new random variable Y also maximizes the likelihood
of the GG distribution when py = p.

First, we calculate the ML estimates of the parameters of
(27) for py = p, whose log-likelihood is the following:

- ﬁy(p/pg)v—l
frly) = po aP’T(v)

LLy = —npvlog(a) — nlog(T'(v))

=

" (28)
+(v—1)> log(y;) — 4

i=1 i

Vi
laP

The maximum with respect to the parameter a is easily
calculated by taking the derivative with respect to the a and
setting it equal to zero:

1 n
p_ E )
aoy m}i:l)’z- (29)

Finally, (28) can be maximized with respect to v by intro-
ducing the value of ay:

log(v) — ¥(v) = log(rllZyi) - %Zlog(yi). (30)
o1 in1



Now, by introducing g in the log-likelihood function of
the GG distribution, (19):

n
LLx = nlog(p) — nvlog(nleyi) — nlog(I'(v))
=1
1 (31)
+ (v - 1>Zlog(y,-) — n.
PJiS

Now, by maximizing with respect to v, we obtain the fol-
lowing equation:

OLLy _ 1&
5, = nlog(nZy,) + nlog(v)

i=1

(32)
+ Zlog(y,-) - n¥(v) =0,

i=1
and finally, reordering terms, we obtain the same equation
for which vy is also a solution.

This result guarantees that there exists always a solution
for the ML estimate of the GG distribution (a, 7, p) and the
parameters a and 7 are those obtained for the ML estimate
for the transformed RV Y = X?. Hence, there is always a
solution for the MLE for a GG.

Additionally, since the MLE of a Gamma distribution
always exist for whatever positive y; values ((30) is well
behaved), the problem is reduced to finding the value p that
maximizes £Lx among the ones that maximize LLy.

The search method for p was implemented by the Nelder-
Mead method [24] while the Brent’s algorithm was applied
for calculating v [25].

This method does not demonstrate the uniqueness of p
as did not any of the methods in the literature. However, in
our experience, we agree with Noufaily and Jones [17] that
the global maximum of the LLx appears to be distant to
any other local maximum.

The main advantage of the method here proposed is that
it is easy to implement and only one non linear equation
has to be solved, whereas the method of [17] needs to solve
two non-linear equations in each iteration and [20] method
needs several calculations of non-linear equations for each
interval considered for the isolation root technique.

2.3. Generalized Gamma Mixture Model. An additional
advantage of the proposed method for the calculation of the
MLE parameters for the GG distribution is that it can be
easily adapted for the calculation of the parameters of GG
Mixture Models (GGMM).

There were some attempts in the literature to obtain the
parameters of a GGMM. Concretely, in [26], they calculated
the GGMM by means of the Nelder-Mead and Gradient
descent methods for maximizing the log-likelihood. How-
ever, that method is strongly sensitive to the number of
mixtures since it is just a direct optimization of the log-like-
lihood score equations of the mixture model.

In this section, we derive the GGMM by applying the
Expectation-Maximization methodology [15] and combin-
ing them with the method used to calculate the MLE of the
GG distribution.
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Let X = {x;}, 1 = i > N be a set of samples. These
samples are considered to be independent and identically dis-
tributed (IID) RVs. Now, the GGMM considers that these
samples result from the contributions of J distributions:

]
plxi1®) =D mjfx (x,» | ‘Dj)) (33)

j=1

where @ is a vector of the parameters of the GGMM
(715...577,01,...,0)) and ©; are the parameters of the PDF
(in our case the parameters of the GG, represented as a;, v;,
pj).

The joint distribution of IID samples is given by

N

pX10)=]]pxi|0©). (34)

i=1

The EM is applied here to maximize the log-likelihood
function when some hidden discrete random variables Z =
{Z;} are introduced into the model. These RVs take values
in {1,...,J} and indicate the class for which each sample x;
belongs.

Now, defining ®"™ as an estimate of the parameters of
the mixture in the nth iteration, the expectation step is per-
formed by calculating the expected value of the log-likeli-
hood LL(O | X,2Z):

Q(010") = Ezen{LL(® | X,2)}.  (35)

In the maximization step, the new estimate @) is
obtained by maximizing the expectation of the log-likelihood
function @(® | ®™). These steps are iterated until a stop
criterion such as @(® | @) —Q(® | @) < Tol for some
preestablished tolerance (Tol) is reached.

The application of the EM algorithm for estimating the
parameters of mixture models has been applied for several
distributions, see, for example, [15, 27]. However, to the best
of our knowledge, this is the first time a mixture model is
presented for GG distributions.

In order to derive the estimates of the parameters in each
iteration, we first define the joint distribution of IID samples
X and the hidden random variables, Z as

N
p(X,Z10) =] [plxizi | ©), (36)
i=1
where p(x;,z:0) = p(xizi, ®)p(z:0).
Now, the log-likelihood function can be defined in the
following way:

N
log(p(X,Z | ®)) = > log p(xi,zi | ©)

i=1

LLO|X,Z)

N N
= > logp(xi | z;,0) + > log p(z; | ©)

i=1 i=1

N N
= Zlogfx(xi | zi,®) + Zlognz,.
i=1 i=1

(37)
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The expectation of the log-likelihood function with
respect to the hidden RVs when data {x;} and the previous
estimate ®" are known as:

Q(©10™) = Ezen {£LL® | X,2)}

Z

= Z Z|em x,{long(xz | @ +108P(Zz | ®)}

I
Mz

J
>p(Zi=jlx0")

i=1j=1

X (logfx(Xi | @) +1°g”1'>’
(38)

where 71; = p(Z; = j | ©) is the probability of x; to belong to
the class j.

The probability p(Z; = j | x;, 0
applying the Bayes theorem as

Blato)n510%)
plxi | @)

™) can be calculated by

p(zi=j1x,0m) =

Note that (37) is composed of two terms, so the maxi-
mization step can be done to each term independently. For
the term depending on the 7; some constraints have to be

considered since they must hold Z§:1 nj = 1. An optimi-
zation via Lagrange’s multipliers can be done in a straight-
forward way and they guarantee a necessary condition for
optimality in this problem. The new Lagrange function with
A as the Lagrange multiplier is the following:

A(m,A) =

Zzyulogﬂﬁ)t(ZﬂJ )) (40)

i=1j=1
where we introduced y;; = p(Z; = j | x;,®™) to simplify
notation.
Now, calculating the derivative with respect to each 7;
and setting it equal to 0, the following expression is derived:

N

D ¥ij =

i=1

~\dj. (41)

By summing both terms of the equation over j, we
obtain A = — >V XLI yij = —N and the estimates for the
parameters 7; that maximize the Lagrange function (and the
likelihood function) are

1 N
ﬁ;)’w‘ =
i

For the calculation of the maximum of (37) with respect
to ®; = (aj,vj,p;j), we first calculate the derivative with
respect to a;:

o X!
a‘lz > Vij 108fx<xi | ®j)]> =0, (43)
aj i=1j=1

1< . (n)
Nizzlp(z,.:] | %,0™).  (42)

where the log-likelihood of p(x; | ®;) is the one described in
(19) for one sample x;:

log fx (x,- | ®j) = log p — pvlog(a) —logI'(v)
X\ (44)
+ (pv—1)logx; — <;) .
The result is
N o P
G — 2.im1 VijXi (45)

N .
Vi it Yi.j

Now, plugging (45) into (37) and deriving with respect
to v; and setting it equal to 0

Zf\f ) xPJ
Sy =00 (6)

5 (N
— yijlog fx | xi |
9; 2. 2.1 v Sy

i=1j=1
It results in the following equality:

o) () =tos( S )

i=1Vij

Sy log(x”)
S Vi
(47)

Note that (47) is essentially the same as (30), which is well
behaved and always has a unique solution. Thus, this non-
linear equation can be solved by numerical methods in the
same way as was performed in the MLE of the GG para-
meters. In our case, we also used the Brent’s algorithm [25].

The interval where the Brent’s algorithm is performed
can be derived by means of the following property:

2%’]’ < log(vj) - ‘{’(vj) < V—IJ (48)

So, the desired value of 17]- in the interval

1 1

T Vi < T (49)
= log(zﬁl Yi,jxfj) + v log<xf.’f)
S i S Vi

This property can be found in [28] and was also used in
[17] for the calculation of the ML estimates of the GG.

Now, the problem can be stated in the same way as
was done for the ML estimate proposed in Section 2.2.4.
We are interested in the parameter p; which maximizes the
likelihood for the component j € [1,]]. So, for each pj;, (45)
and (47) provide the estimate of a; and v;, respectively. By
applying the Nelder-Mead algorithm to maximize the log-
likelihood function for each component j, as was done for
the ML estimates in Section 2.2.4, one can obtain the desired
ML estimates. We will refer to this method as the GGMM;
method.

It is important to note that the parameter estimates can
be also solved by extending the ML method of [17]. For

where

(50)




this purpose, the parametrization proposed by Lawless [23]
can be applied to the mixture model as was explained in
Section 2.2.3.

The log-likelihood equations to be solved are completely
equivalent to (45) and (47) due to the invariance of the ML
estimates to the transformation Y = log(X). However, Law-
less’ parametrization allows us to extend the results of [17]
to the case of GGMM. For the sake of clarity, we rewrite the
parametrization:

Uj B ! 5
PiNi
1 (51)
i =logla;)+—log(v),
Hj g( J) i g( J)
kj = Vj.
With this parametrization, (45) becomes
fj= \/kjaj log<§o), (52)
where
o Nyt oo k)
8, = ZumtVuyie VIV (53)

S i
So, in the case of the parameter o; which maximizes the
log-likelihood of Y = log(X):

o [& S ~
%{2 Z)’i,j long()’i | /fljaaj;kj>} =0. (54)

i=1j=1

It results in

0. (55)

This equation is well behaved and all the theoretical
demonstrations obtained in [17] still hold: it is monotone
decreasing and, when limo; — 0, the function takes the
value

S i
SELVZ S 0,
izt Vij

As a conclusion, (55) has always a positive solution for
any y; and k;. Additionally, due to the invariance of the ML
estimates for the transformation Y = log(X), there always
exist a p; for any a; and v;.

The solution is in the interval

N P .
0<5j <\/k7j<ymax—W). (57)
i=1 /5]

(56)

ymax -

So, the value can be calculated by any numerical method. We
used here also the Brent’s algorithm.

So, finally, from an initial guess of p; one can calculate
k; = v; from (47) and then use it to calculate the estimate of
o from (55), in an iterative way until a desired tolerance is
reached.

This methodology generalizes the proposed method of
[17] for the case of GGMM and we will refer to it as the
GGMM,; method.
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2.4. Implementation Generalized Gamma Mixture Model. In
this section, we detail the implementation of both of the pro-
posed methods for the GGMM.

In Algorithm 1, the Nelder-Mead method [24] was used
for the calculation of p;") and the Brent’s algorithm [25] for
v;") in the interval given in (49).

In the case of Algorithm 2, the Brent’s algorithm [25] was
used for calculating ¢ and k in the intervals of (57) and (49),
respectively.

The computational complexity of the previous GGMM
methods when compared to the calculation of a simple GG
depends on the number of components, J, assumed by the
model. In each iteration of the EM algorithm, the expected
parameters of each component have to be calculated. So, if
the time consumed to estimate a GG is T, the calculation of
the expected parameters of the mixture is J x T.

When other mixture models such as RMM, NMM, and
GMM are considered, the complexity of the EM method is
similar to the GGMM. Note that both the GMM and the
NMM need to solve a non-linear equation similar to (47)
so the consumed time of the solution is the same. The addi-
tional cost of calculating the GGMM parameters is due to the

calculation of the estimate of the parameter p;”). If we define
the time to solve (47) and (45) as T4, and T as the time con-

sumed for solving p;"), the computational time for a simple
GG (Tgg) and a GGMM of ] components (Tggmm) would be

Tog =T+ Ty,

Toomm =J - (T1 + Ts).

(58)

The estimated times in a Matlab (R2011a) implemen-
tation running in an ASUS G53SW laptop (Intel Core
i7 2630QM Processor, 2.2 GHz, 8 GB RAM) were T} =
1.637ms and T, = 0.2056s.

3. Results and Discussion

3.1. Performance of the ML Method. In this section, we show
the performance of the proposed methods for calculating
the parameters of a GG distribution. For this purpose, we
performed 200 synthetic experiments and tested the methods
presented in Section 2.2. Concretely, we tested the method
of Stacy and Mihram [14], Gomes et al. [16], Noufaily and
Jones [17], and our proposed method of Section 2.2.4. We
will refer to them as Stacy, Gomes, Noufaily, and proposed
methods, respectively.

The synthetic data was calculated in the same way as was
done in [17]: a set of gamma-distributed random samples
are generated by means of the method proposed in [29] and
the GG-distributed data are obtained by taking the 1/pth
power of the samples. The parameters of the GG distribution
were also calculated from sets of parameters in a reasonable
dynamic range. The scale parameter a was set to 1 in all
the experiments since this parameter just affects to the scale
of the data. Both, the p parameter and the v parameter
were obtained from random samples of a uniform RV in the
interval [0.3,5].
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{x}Y, — Samples

] = Number of components
_ 0)

®<0 { ] y ] ,'V] ;P] }.:

each component

vij = p(Zi=j1x,0)

Tol — Tolerance
Err — oo
n < 0 Iterations counter

n—n+l
for j=1—7] do

pj

P
(n) - Zt 1)’sz

! V;n Zi:l Yij
— (UN) S,y
WY = p(Zi=j | x,0"
end for
err — [|@™ —
end while
Return O

— Initial guess of parameters for

maxlter — Maximum number of iterations

while err > Tol and #n < maxIter do

() S (n=1) ] .
pj —— argmax ,;y"f' og fx | xi |

— log(v;) — ¥(v;) = log

=D ||/[|@"-1|| Evaluate the relative tolerance

Zf\jl)’uxpj
J(PJ)Zt 1)”])}
zfvl)’uxpj )
Zz 1Yij
(n)

N P yi}{zlog(xij )
2t Vi

ArcoriTHM 1: Implementation of the GGMM; method.

We choose this interval since lower values than 0.3 make
the distribution to take values that tend to infinity as v get
closer to 0. This is an unrealistic situation when real images
are considered. Additionally, when p takes lower values, the
tail becomes heavier and the shape of the distribution also
becomes unrealistic. These effects are shown in Figure 1,
where some examples of the PDFs of the GG distribution are
depicted.

The number of iterations for the proposed method and
for the method of [17] was set to 100 and the tolerance
function to 1078, The number of bins where the y2-test was
performed in the method of [16] was 150 and the number
of samples per experiment was 10*. The comparisons of the
methods were performed by comparing the goodness-to-fit
of each distribution by means of two different measures:
Kullback-Leibler divergence (KL) and Kolmogorov-Smirnov
(KS) statistic. The former is a nonsymmetric measure of the
difference between two probability distributions defined as

an(z) log ’}8 (59)

Dx1(pn» fx)

where p, is the empirical PDF estimate and fx is the theo-
retical distribution (the GG distribution). For the empirical

estimate of the PDEF, the number of bins of the histogram was
set to 150.

The Kolmogorov-Smirnov statistic is the uniform norm
of the cumulative distribution function (CDF), defined as

Dys = sup| E(i) - (60)

where F is the empirical CDF of data and Fx the theoretical
CDF. The KS measure was chosen since it does not depend on
the PDF estimate and can be calculated with a few number of
samples. Additionally, the Glivenko-Cantelli theorem states
that if the samples are drawn from distribution FX, then Dgg
converges to 0 almost surely [30].

In Figure 2, the results for both measures are depicted.
It is clear that the moments method of Stacy gives poorer
results than the other methods for both measures. This
result was expected since the moments method depends on
moments of third-order, so the variance of the estimates
becomes higher. The rest of the methods performed well for
both measures. In the case of the Dy, they fit practically the
same while, in the case of Dks, there are some better results
for the method of Noufaily and the proposed one. This is the
effect of the approximation of the PDF for the y? test per-
formed by the method of Gomes: it calculates the best set of
parameters for an approximation of the empirical PDF which
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J
j j
each component
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m « 0 Iterations counter for ML
£OC§»O) — Calculate the log-likelihood for the jth component
while errML > ToIML and m < maxIterML do
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N Sy log(xd
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ArLgoriTHM 2: Implementation of the GGMM, method.

depends on the number of bins and the number of samples
of the dataset. So, as the number of samples is reduced or the
number of bins is reduced, the estimate becomes worse.

In order to see the effect of this, we also show in Figure 3
the relative error of the estimates for all the methods (the
relative error of an estimate @ is calculated as €rel = 16— 0 Il/6,
while the absolute error is €,5s = 110 — 0|). In the figure,

the whiskers show the dynamic range of the data which is
not considered an outlier. So, though the method of Gomes
provides good fitting, the variance of the estimates is higher
than the method of Noufaily and the proposed one. At
first sight, the results of Figure 3 demonstrate the better
performance of the proposed method in terms of variance of
the ML estimates with no appreciable bias in the estimates.
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FIGURE 1: Some examples of the GG distribution for the parameters of the synthetic dataset.

An example of the fitting performance of the methods is
shown in Figure 4 where the PDFs obtained with the meth-
ods are depicted as well as the absolute error and the relative
error of the PDFs.

Following, we analyze the dependence of the estimates
with the number of samples. The same experiment is
repeated considering 500 samples. The results of both good-
ness-to-fit measures are shown in Figure 5, and the relative
errors of the estimates are depicted in Figure 6. The perform-
ance for the Dx; measure is similar for all the methods.
However, note that the value is considerably higher than the
obtained for the case of 10* samples, this effect is caused by
the difficulties of estimating the PDF with so few samples.
Since the Gomes algorithm is based on the y* test, it is

expected that its performance decreases and the variance of
the parameter estimates increases. In the case of the Dgs
measure, the performance of all methods is comparatively
equal to the case of 10* samples but a higher variability is
observed in the Gomes method due to the sensitivity to the
number of samples.

The better performance of Noufaily and the proposed
methods are seen in Figure 6 where the variability of the
Noufaily method did not increase dramatically as the Gomes
method did. The proposed method also presented a very low
variance of the parameter estimates with no appreciable bias.
In the light of these results, we can conclude that the pro-
posed method is robust with respect to the number of
samples and it does not introduce any appreciable bias in
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FIGURE 2: Results for Dy, and Dgs for 10* samples. Methods: Stacy and Mihram [14], Gomes et al. [16], Noufaily and Jones [17], and the
proposed one of Section 2.2.4.
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FiGUure 4: Example of the fitting performance for 10* samples. Methods: Stacy and Mihram [14], Gomes et al. [16], Noufaily and Jones [17],
and the proposed one of Section 2.2.4. (a) Probability Density Functions, (b) Absolute error of the PDFs, and (c) Relative error of the PDFs.

the parameter estimates. The goodness-of-fit performance
of both the Noufaily and the proposed method are similar,
though the estimates are more accurate with the proposed
method. This can be due to the better convergence of the
Nelder-Mead method than the algorithm of the Noufaily
method.

3.2. Tissue Characterization in Real US Images. In this sec-
tion, we test the performance of the GG distribution for cha-
racterizing tissues of real images. For this purpose, we
used a set of 518 real US images (584 x 145, 8 bits)
obtained from 3 human subjects by means of a clinical mach-
ine GE Vivid 7 echographic system (GE Vingmed Ultrasound

AS, Horten, Norway). The images were acquired before the
Cartesian rearrangement. The image collection was super-
vised by specialists Marta Sitges and Etelvino Silva (Hospital
Clinic IDIBAPS Universitat de Barcelona, Spain). The sub-
jects were volunteers for a study of the reconstruction pro-
cess of ultrasonic images. The acquisition was done in the
Hospital Clinic of Barcelona with its approval. The images
were provided by Nicolas Duchateau (CISTIB-Universitat
Pompeu Fabra, Ciber-BBN, Barcelona, Spain) and Bart
Bijnens (Instituco Catalana de Recerca i Estudis Avan cats
(ICREA), Spain).

In Figure 7, an example of a real US images is shown
with its Cartesian rearrangement. The red contour is the
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TaBLE 1: Results of the t-test for blood.

Blood P value Hypothesis
Nakagami versus Gamma <1071 H,
Gamma versus GG 3.38 - 1077 H,
Nakagami versus GG <1071 H,

TaBLE 2: Results of the ¢-test for myocardial tissue.

Myocardial tissue P value Hypothesis
Nakagami versus Gamma 3.24-107* H,
Gamma versus GG 0.96 H,
Nakagami versus GG 2.74-107* H,

segmented areas of blood which are considered in the study,
while the green contour is the segmented areas of tissue. The
intersection of both regions was rejected in the study.

Additionally, the histogram of the image was depicted
for the blood region as well as the fitted distributions most
commonly used to characterize tissue. From the whole data
set, a total number of 3185 regions were segmented for myo-
cardial tissue while 1960 were segmented as blood. The sizes
of regions vary depending on the tissue. However, it is high
enough to provide a good estimate of the parameters. For
instance, the segmented region of Figure 7 has 18250 samples
for blood and 5529 for tissue.

In the case of Figure 7, the lower value of the histogram
shown is 19 since the intensity values in the blood area were
in the interval [19,156]. The number of bins used for the
representation of the histogram was set to 20 equally spaced
in that interval.

The performance of the GG distributions was tested by
estimating the PDFs for both tissue classes (myocardial tissue
and blood) for the following distributions: Exponential,
Rayleigh, Weibull, Normal, Nakagami, Gamma, and GG. The
PDFs were compared by means of both the Dy and the
Dgs measures. The results of the comparison are depicted
in Figure 8 where the better performance of the Gamma,
Nakagami, and GG becomes clear. In order to see whether
these measures are statistically significant, we carried out a
Welch t-test for the Gamma, Nakagami, and GG distribu-
tions for the Dgs measures. This test was chosen since no
equal variance should be assumed and the Dxs since it does
not depend on the empirical PDF estimate but just on the
samples. The assumed hypothesis Hy is that “both distribu-
tions have the same mean,” H; indicates that the null hypo-
thesis can be rejected at a 5% of significance level.

The results are shown in Tables 1 and 2. Note that all
the null hypothesis were rejected but just one: myocardial
tissue. In that case, the difference of the mean value of the
Gamma and the GG is not statistically significant. The mean
values of the Dks are represented in Table 3 where the lower
mean value of the GG for both tissues can be appreciated.
The results of the t-test of Tables 1 and 2, and the lower
mean values of the Dks evidence the better performance of
the GG than the rest of the distributions, with the exception
of the myocardial tissue, where a Gamma distribution offers
the same performance.
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TaBLE 3: Mean values for Ds.

Nakagami Gamma Generalized Gamma
Blood 5.5626 - 1072 4.4970 - 1072 4.2860 - 102
Myocardial 5.7711-10"% 5.5665 - 1072 5.5644 - 102

3.3. Performance of the GGMM Methods. In this section,
we test the performance of the proposed GGMM methods
in three different scenarios. First, we test the necessity of
using more than a simple GG for describing tissues with an
increasing echolucent response of the effective scatterers. The
case of a variation of the number of effective scatterers is
also considered. This behavior can be found in structures
with an increasing deterministic response that changes the
speckle nature from fully formed speckle to fully resolved
speckle. The variation of the number of effective scatterers
can be found in structures which change their scattering
cross-section.

In order to simulate B-mode US images, we followed the
same methodology proposed in [9]. This method scans an
image and records the data in a matrix which is corrupted
by means of the speckle formation model of (1) where the
tissue is modeled as a collection of scatters of size comparable
to the wavelength. The speckle pattern is obtained by means
of a random walk which does not assume any statistical
distribution in order to avoid any bias of the results. The
Cartesian arrangement is obtained by means of linear inter-
polation of the corrupted samples.

As a first example, we simulate an increasing echolucent
tissue which varies its intensity from 0 to 255 from left to
right. The sampling process and the resulting B-mode image
are shown in Figures 9(a)-9(b). The number of samples were
set to 50 angular samples and 100 radial samples, represented
as red points. The amplitude of each scatterer is defined as a
Normal distributed RV with zero mean and ¢ = 8. Note that,
along with the variation of intensities from left to right, a
specular component of the speckle will appear. The number
of scatterers was set 20 in order to simulate fully formed
speckle in regions with low echolucent response and fully
resolved speckle in regions with high echolucent response.
The resulting B-mode image is represented in Figure 9(b).

The fitted GG and GGMM with 2 components depicted
in Figure 9(c) show that one simple GG fails to model the
probabilistic behavior of a spatially variant echolucent tissue,
while a GGMM with 2 components properly describes the
echolucent variation.

As an additional experiment, in Figure 10, we represent
the spatial variation of the number of effective scatterers.
The simulation was performed with the same sampling para-
meters as was done in the previous experiment. In this case,
the echolucid response was set to be homogeneous with no
deterministic component. Thus, the nature of the speckle
changes from fully formed speckle to partially formed
speckle. The number of scatterers decreases from left to right
from 256 to 1. The amplitude of each scatterer is defined as a
Normal distributed RV with zero mean and ¢ = 8.

The speckle PDF in this case becomes more impulsive in
areas with more effective scatterers (left part of Figure 10(a)),
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FiGure 7: Example of an image of the data set. The red contour is the segmented areas of blood which are considered in the study, while the
green contour is the segmented areas of tissue. The intersection of both regions was rejected in the study.

this behavior is observed in a lower decay of the tail. Both the
simple GG and GGMM with 2 components were calculated
from the data and are depicted in Figure 10(b). In that figure,
the fitting of a simple GG clearly shows that one component
does not suffice to describe a spatial variation of number of
effective scatterers.

In the last synthetic experiment for testing the necessity
of GGMM, we simulate an anatomic phantom of a kidney
scan. For this purpose, we used the artificial kidney scan
proposed by Jensen [31]. The image can be downloaded from
the Field II website (http://field-ii.dk/). The sampling of the
kidney and the resulting B-mode image are represented in
Figure 11. In this case, a GGMM with 4 components was
used to fit the PDF of the image. The probability of belonging
to each component is represented in Figure 12 where the
differentiation of tissues can be easily observed. In this case, a
lower number of components fail to describe the kidney and
the surrounding tissue which have a similar speckle response.

For testing the performance of the proposed GGMM
methods with real data, we use the same data set used in
the previous section. The number of components is set to
two: blood and myocardial tissue. In order to compare the
performance of the GGMM methods, we also fit a Gamma
Mixture Model and a Nakagami Mixture model to the data
[3, 32, 33]. Both the Dg; and the Dyg where calculated for
the mixture models in each image. The number of iterations
for each mixture model was set to 100 and the tolerance to
1078

The lower values of Dgp and Dgs shown in Figure 13
evidences the better characterization of the GGMM when
compared to the NMM or the GMM. These results were
expected due to the results of the previous section. Again,
the t-tests were performed to the Dxgs measure of the data. All
the mixtures were statistically different with the exception of
the GGMM; and GGMM,. In that case, a P value of 0.4906
was obtained. These results show once more that the GG
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FIGURE 8: Results for the relative error of the estimates for 500 samples.

and Jones [17], and the proposed one of Section 2.2.4.

can characterize better than other commonly accepted distri-
butions and the differences are significant.

3.4. Potential Applications of the GGMM. A proper character-
ization of the speckle by means of suitable distributions can
be used to guide segmentation algorithms as the one in [3].
The parameters of the mixture model can be used as features
for developing a classifier as was done in [4]. Furthermore,
some filters use the probability of belonging to each tissue
class. As an example of the performance of the GGMM, we
show some results of the Probabilistic-Driven Oriented Spec-
kle Reducing Anisotropic Diffusion (POSRAD) [8].

This last filter includes the probability of belonging each
tissue class and adapts the diffusion tensor. Concretely, it cal-
culates the structure tensor of the posterior probability and
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Methods: Stacy Stacy and Mihram [14], Gomes et al. [16], Noufaily

detects the most probable edges of the image. This infor-
mation is used to define the diffusion tensor which provides
a better behavior in the boundaries of the image.

The structure tensor of the probability density function
for each tissue class is calculated as:

Tj(xi) = Gy

% (Vop(Zi=j1x,0) - Vop(Zi = j | x,0)7),
(61)
where G, is a Gaussian kernel of standard deviation o, and
Vep(Zi = j | x;,0) is the gradient of the probability den-
sity function for each tissue class filtered with a Gaussian ker-
nel of standard deviation o. Finally, let A > AJ be the eigen-
values and (v{,vé) their respective eigenvectors. The local
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F1Gure 9: Simulation of spatial variant echolucent response of tissue. (a) Sampling of an increasing echolucent tissue. (b) Resulting B-mode
image obtained by corrupting the samples by a random walk process of 20 scatterers per resolution cell, in order to simulate a fully formed
speckle in regions with low echolucent response and fully resolved speckle in regions with high echolucent response. (c) Histogram of (b)

and (a) GG and GGMM with 2 components.

orientation of the maximal variation of probability of the
class C; is given by v, and the local orientation of the mini-
mal variation is given by v&.

Let us consider the following diffusion equation:

u(x,0) = ug

ou (62)

i div(DVu),
where the matrix D is the diffusion tensor which can be
described by its eigenvectors (v, v;) and eigenvalues A4, A,.

Given a diffusion tensor, D, the diffusion of the intensity
values of the image is performed in the direction of eigen-
vectors with different diffusion coefficients. For each eigen-
vector, its eigenvalue defines the diffusion coefficient and,
thus, an anisotropic diffusion can be achieved.

As an example, when one eigenvalue is equal to 1 and the
other one is 0, a complete anisotropic diffusion is obtained,
since the intensity values diffuse in the direction of the
eigenvector associated to the eigenvalue equal to 1. This
would be the desired behavior of a filter in regions where
structures must be preserved. When both eigenvalues are
equal to 1, the diffusion process becomes isotropic and the
intensity levels diffuse equally in all directions. This case
would be the desired behavior for homogeneous regions
where no structures must be preserved.

The POSRAD philosophy makes use of the structure
tensors determined out of the probability maps to obtain
the most probable structures. In that case, the diffusion
filter should be anisotropic. When no probable structures are
detected, the diffusion should be isotropic.

Since we have ] structure tensors (each tissue class with
probability density function), we choose the eigenbase of the
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FiGure 10: Simulation of spatial variant density of scatterers. The number of scatterers per resolution cell decreases from left to right in order
to simulate fully formed speckle in regions with low density and partially resolved speckle in regions with high density.
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FIGure 11: Simulation of an anatomic phantom of a kidney scan.
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(b)
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FIGURE 12: Probability of belonging to each component of the GGMM fitted to the image in Figure 11(b). The components are sorted in
increasing mean value.
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structure tensor with maximal AJ: j = arg max : (A]). This  most probable boundary is preserved in the filtering process.

base gives the orientation of the maximal variation of pro-  In the basis of T}, namely, (e, e;), the diffusion matrix D is
bability among all the classes. defined as

The interpretation of this choice is that we choose as
boundary the one with the maximal gradient of the pro- D= E<A1 0 ) ET, (63)
bability density function over all tissue classes. This way, the 0 A
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(a) p(Zi =01 x;,0) (b) p(Zi=1]x,0)

FIGURE 14: Probability of belonging to each tissue class, where the class 0 describes the blood and the class 1 describes the myocardial tissue.

= 3 o= Z

FIGURE 15: Anisotropic behavior of the filter. The most probably edges of the image are described by the lower values of A, € [0, 1].

(a) Original image (b) Filtered image

FiGure 16: Results of the POSRAD filter. The anisotropic behavior of the filter is appreciated in the preserved details of the myocardial
tissues.
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Figure 17: Undirected graph. The nodes represent a random variable X and the edges’ relationships between nodes. Each random variable

can be classified as a tissue class J.

where
A=1- ||v€lyl7p(Zi =jl xi’®)||2
(64)
AZ =1,
and || - |I; is the 2-norm, V., is the directional derivative in

the direction e; filtered with a Gaussian kernel with a stand-
ard deviation o, and E is the matrix whose columns are
the eigenvectors (ej,e;). This definition performs a diffu-
sion filtering in the direction of the minimal variation of pro-
bability (e;) while preserves the maximal variation of
probability since ||V, op(Z;i = j | xi,®)l, will have a value
closed to 1. Note that the discrete approximations of
Ve op(Zi = j | x:,0)ll, is bounded in [0,1], thus A; €
[0,1].

In Figure 14, we show the probability of belonging to
each tissue class, p(Z; = j | xi,®), provided by the GGMM
method (the GGMM,; was used for this example). All the
figures of the example are represented in their Cartesian
arrangement in order to ease visualization of fine structures.
Note that the structures are clearly identified by each
posterior probability of each tissue class and the filter can
perform an efficient anisotropic diffusion. To see this, in
Figure 15, we represent A, which describes the anisotropic
behavior of the filter. When A; = 1, the filter acts like a con-
ventional isotropic filter, whereas the pure anisotropic behav-
ior is carried out when A, = 0.

Finally, the resulting image after 40 iterations is depicted
in Figure 16 in comparison to the original one.

As a final application of the GGMM, one can make use
of the pixel-wise probability of belonging to each tissue class
to obtain a spatially coherent probability by introducing an
undirected graph where the nodes (each pixel of the image)
represent a random variable and the edges of the graph rep-
resent the relationships between nodes as it is represented in
Figure 17. The problem is reduced to find the labels for each
node by taking into account the relationships between nodes
of the local neighborhood (the Markov property is assumed).
This problem, though is intractable in terms of direct proba-
bilistic inference, can be solved by means of the Loopy Belief

Propagation (LBP) algorithm introduced by Pear in [34].
This algorithm performs approximate inference of a graphi-
cal model. Although LBP does not guarantee to converge due
to the presence of loops in the graph, however it has shown
good experimental results and is commonly used [35].

In the end, the problem is faced as a discrete MRF where
the labels, Z, are each tissue class and the nodes are the pixels
of the image. The energy to be minimized by the LBP method
can be defined as

N
V(Z)=D>ViZ)+ D> ValZi Zk),
i=1 ken(i)

(65)
where 7(i) is the neighborhood of the ith node, V,(Z;) =
—log p(Z; = jx;,®), and

Va(ZiZk) = = > log p(Zk = zi | xx,®).
ken(i)

(66)

The output of the LBP is a belief of node i belongs to class
Z = j. Thus, the probability with spatial coherence can be
directly obtained from the outputs of the LBP algorithm. In
Figure 18, the probability of each tissue class when the spatial
coherence is introduced.

These coherent probability maps can be of help for clas-
sifying purposes or as prior information for segmentation
algorithms. The valuable information that they provide can
be seen in a simple experiment in which we consider the clas-
sification of two tissues (blood and myocardial tissue) and we
compare the results with the k-means algorithm applied to
the original image and a simple classifier consisting of assign-
ing the class with maximum posterior probability. The results
of this example are shown in Figure 19 where the identi-
fication of the myocardial tissue is clearly obtained by the
posterior probability of the GGMM, whereas the k-means
method cannot properly define a contour of each tissue.

4. Conclusions

Throughout this work we have analyzed the advantages of
using a GG distribution for characterizing the speckle in
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FIGURrk 18: Probability of belonging to each tissue class after the LBP, where the class 0 describes the blood and the class 1 describes the

myocardial tissue.

(a) Classification with k-means

(b) Classification with the GGMM probability maps
after LBP

FiGure 19: Simple example of the valuable information of the posterior probability obtained from the GGMM with spatial coherence.

ultrasound images. This distribution offers a suitable way
to deal with the impulsive behavior of speckle which causes
heavier tails in the distributions. Additionally, the GG is
a natural generalization for many distributions commonly
used to characterize the speckle: Rayleigh, Gamma, Nak-
agami, Weibull, Exponential, and Rician [13]. Thus, it has
all the advantages of these distributions and avoids some of
their generalization problems.

Although some approaches have used this distribution in
the literature, the inconveniences of estimating its parame-
ters make this option thorny and not attractive. The problem
stems from the inaccurate estimate of the moments method
proposed in [14] and the impossibility of obtaining a closed-
form ML estimates. Some solutions have been recently
proposed such as heuristic methods [16], which are strongly
dependent on the number of samples, and iterative methods
[17] which depend on the initial condition.

In this work, we have proposed a simple methodology
to calculate the ML estimate which offers robust results

comparing to the methods in the literature [14, 16, 17].
It is worth to mention that the fundamentals of the ML
method of [17] and the proposed one are the same since
both try to find the solution of three simultaneous non-linear
equations. However, the different optimization technique
makes the proposed method more robust. Additionally, the
performance for describing speckle was tested in a set of 518
real US images of the heart, in which 3185 regions were man-
ually segmented for myocardial tissue and 1960 for blood.

Results with t-tests applied to the Dgs goodness-of-fit
measure demonstrated the better behavior of the GG in most
of the cases and in those cases where there were no statistical
difference, the other distribution is a particularization of the
GG.

The formulation of the proposed method allows to gen-
eralize this methodology to a GGMM. These mixture models
are of great value due to the different nature of the echogenic
response of tissues in the received signal. Two different
methods were proposed for the calculation of the GGMM
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parameters GGMM; and GGMM,. Both were developed by
applying the EM method in the derivation of the proposed
ML method, the optimization technique for GGMM, follows
the same approach used for the proposed ML method. The
GGMM, method makes use of the optimization technique
proposed by [17]. Results when comparing both methods
to the GMM and NMM in real images showed the better
fitting of the GGMM. No statistical differences were detected
between GGMM; and GGMM,.

Through this paper we showed the better behavior of the
GGMM methods when compared to the RMM, NMM, and
GMM for the case of cardiac imaging. The potentials of mix-
ture models have proven a good classification performance in
intravascular ultrasonic images for RMM [4]. Additionally,
the NMM showed good results for segmentation in carotid
arteries [3]. In the case of filtering Cardiac imaging, the
mixture models have also shown good results [9].

We think the GGMM methods here proposed can be used
with good results in the aforementioned modalities since
they generalize the RMM, NMM, and GMM in a natural way
and allow to describe heavier tails of the PDFs that the RMM,
NMM, and GMM fail to fit. Many other US modalities such
as breast, liver, and kidney should be considered. We hope the
proposed GGMM methods can encourage future research for
tissue characterization in those different US modalities.

Finally, we want to recall that the potential applications
of GGMM do not confine to those proposed in this paper.
We hope the results of this work can revive the use of the GG
distribution and its extension, the GGMM, in many other
areas.
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An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified
spherical harmonics approximation (SPy). In XFEM scheme of SPy equations, the signed distance function is employed to
accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite
element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh
generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost
can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational
efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared
with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential

of the XFEM for optical imaging.

1. Introduction

Light propagation model in biological tissue is the foun-
dation of optical imaging. An accurate forward model is
important for location and quantification of target distri-
bution in the fields of optical imaging modalities, such as
diffusion optical tomography (DOT), fluorescence molecu-
lar tomography (FMT), bioluminescence tomography (BLT),
and Cerenkov luminescence tomography (CLT) [1-5]. The
propagation of the emission photons in tissue can be
accurately represented by the radiative transfer equation
(RTE) or Monte Carlo (MC) models, but they are extremely
computationally expensive. Therefore, the commonly used
mathematical model in optical imaging field is the diffusion
approximation (DA) to RTE. However, the DA model can
be used only in the highly scattering property of the
biological tissue, and is not suitable for the real mouse with
complex internal tissues. To reach a compromise between
the accuracy and efficiency, simplified spherical harmonics
approximation (SPy) to RTE is employed due to its capacity
in improving the solution in transport-like domains with
high absorption and small geometries [6, 7].

Owing to the complex and curvilinear geometries asso-
ciated with the biological tissues, the classical finite element
methods (FEM) with SPy approximation become necessary
for optical imaging, especially for heterogeneous tissues
[8-10]. In the FEM scheme, the region of heterogeneous
tissue is divided into small tetrahedron elements. The linear
functions of the tetrahedron element are employed in the
standard finite element basis function which requires the
homogeneity of tissue in one element. The fine triangle
mesh between the two tissues is required to conform to
the complex internal boundary for ensuring the calculation
accuracy of FEM. However, the generation of the internal
boundary mesh is a hard work and time consuming task.
Moreover, the fine mesh yields the excess cost in finite
element computation, especially with SPy approximation in
three dimensions. Fortunately, the extended finite element
method inherits all the advantages of standard FEM and
exempts the internal boundary mesh generation. Conse-
quently, the extend-finite element method (XFEM) may deal
with the problems of fine triangle mesh generation perfectly.

XFEM was first introduced in the literature [11], and
it has many applications in the area of mechanics [11, 12].



To the best of our knowledge, it has not been used with
SPy approximation for optical imaging. In this study, we
establish the mathematical framework of XFEM with SPy
approximation as the optical forward model. Specifically,
a mesh without the internal boundary conformation is
employed in the XFEM scheme. The distance relationship
between the tetrahedron vertex and the real tissue boundary
is reflected by a signed distance function which is used to
construct the enriched basis function. Then the enriched
function is added to the standard finite element basis
function, therefore a standard approximation of FEM is
thus “enriched” in the discretized region (usually cut by the
internal tissue boundary) of interest. In the weak form of SPy
equations, Gaussian quadrature is employed to calculate the
integrals and the linear system equations are established. As
a result, the calculation of XFEM can be carried out without
the time-consuming internal boundary mesh generation.
Moreover, the required overly fine mesh conforming to
the complex tissue boundary which leads to excess time
cost can be avoided. XFEM conveniences its application
to tissues with complex internal structure and improves
the computational efficiency. Numerical experiments with a
phantom and a digital heterogeneous mouse were carried out
to evaluate the performance of the proposed method. The
results were compared with that of standard FEM and MC
method to demonstrate the efficiency of XFEM.

The paper is organized as follows. In Section 2, the
detailed procedure of using XFEM for solving SPy equations
is derived. In Section 3, we evaluate the performance of the
proposed method by comparing with the standard FEM
and MC method in the experiments, and demonstrate the
efficiency of the method. Conclusions and discussions are
given in the last section.

2. Method

2.1. SPy Approximations. The general form of the (N +
1)/2 SPy equations and its (N + 1)/2 boundary conditions
for optical imaging in three dimensions are [13]:

(N+1)/2

~ V- Civg(r)Vei(r) + Y, Cip(r)ei(r)

j=1

-GN, Te0, ije [1, (N + 1)].

2
(N+1)/2

> Cloy (N7 - Vo(r)
j=1

(N+1)/2
=y Cf%(r)go,-(r)+ci,ssi(7);
j=1

redQ,i,je [1, (N;Ll)],

(1)
where ¢;(r) is the SPy composite moments of the radiances
in RTE, and Cjyy,(r), Ciy(r), Ciq(r), Cf’)wj(r), ijq,j(r),
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and C; s denote the coefficients which are related to V¢;(r),
¢i(r), Q,and S for SPy equations at each point r in the region
Q or boundary 0Q. These can be calculated by the absorp-
tion coefficient y,[mm™], scattering coefficient y[mm™],
anisotropy parameter g, and refractive index n. Q(r) is the
internal source, and it represents the bioluminescence source
in BLT or the fluorophore in and FMT. S;(r) is the external
source which represent the external laser source in DOT and
FMT. 7 represents the unit normal vector outward to the
boundary.

The exiting partial current J*[nW/mm?] can be obtained
from detector readings at the tissue boundary 0Q which can
be acquired by CCD camera in practical application, and we
have the general formulation:

(N+1)/2 R
Th= Y Cly (N7 -Ve(r)
j=1

(2)

(N+1)/2

£y CL (),
j=1

where C]Wj (r) and Céj (r) are the coefficients which can be

calculated for SPy equations. The detailed derivation of (1)—
(2) refers to the literature [13].

2.2. Extended Finite Element Discretization. The SPy equa-
tions and its boundary conditions can be solved using
Galerkin finite element scheme, the weak form of SPy
equations can be written as follows:

fo Civgi(r) - Voi(r) - Vv (r)dr

(N+1)/2

+ ; /(;Ci,q,j(r)(pj(r)-v(r)dr

(N+1)/2

_ Zl fmCi,va,j(r)vfn.?[(goj(r)).V(,)dr (3)

- [Q Cio(r)Q(r) -v(r)dr
v [ Cor (S (5ir)) - v(ryr,

where f..q,(9;(r)) and Cj, (r) are the coefficient matrices
with respect to ¢;(r) and fs,(S;(r)). v(r) is the test
function, and it is the same as the standard linear basis
function in elements. For finite element analysis in three
dimensions, tetrahedral elements have become popular in
numerical computation, because of their ability to describe
complex geometries such as heterogeneous tissues. Thus
the volumetric domain is discretized into small tetrahedral
elements, and the elements need to conform to the internal
tissue boundary as shown in Figures 1(a) and 1(b). When the
internal boundary is not smooth, the size of the element must
be small enough to ensure the accuracy and this may cause
difficulty in mesh generation and lead to huge computation
burden. In XFEM framework, mesh is generated as a region
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Enriched elements

(a) (c)

Internal boundary
edges and nodes

FIGURE 1: (a) Heterogeneous tissues. (b) Standard finite element mesh boundary conforms to the interface. (c) Enriched elements and nodes

of XFEM “cut” by the interface.

consists many different tissues, and the elements “cut” by
the actual tissue boundary are enriched as shown in Figures
1(a) and 1(c). Using the enriched basis functions constituted
by the signed distance functions, the boundary can be
determined.

2.3. Enriched Strategy. In XFEM scheme, the signed distance
function is adopted to depict the internal boundary of
different tissues. The definition of the signed distance
function N (r) is

N(r) = n}nrl”r - rb” sign(nS . (r - rb)).
if&€>0, )

. 1
Slgn(f):{ -1 ifé<o0,

where r% is the point at the internal boundary T, sign is
the signed function, and #; denotes the unit normal vector
outward to the internal boundary as shown in Figure 1(a).
Herein, the position relation between the discrete point
and the continuous boundary is completely reflected by the
function N(r).

The enriched basis function y;j(r) composed of the
signed distance function N(r) of the element at tetrahedron
node j can be derived, and the continuous N(r) is discretized
with its value at the node. The enrichment functions
introduce a discontinuity in the gradient of the radiances
field ¢;(r) or the distribution of optical parameters to T, thus
the following integral of enriched function is more accurate
than that of linear basis function:

y;i(r) = v (N (IN()] - [Nj])-

N() = SN s)
k=1
Nj =N(r;),

where v;(r) is the linear basis function of the tetrahedron
element. Using the enriched basis function y;(r), the

enriched approximation ¢(r) can be written as the following
form:

o(r) » Lpwm(r)
N ©)
9(r) = 9(r) + 2w (r) = V()9
j=1

where ¢(r) is the conventional approximation and N is the
number of nodes. ¢(r) is the extended approximation, a; is
the enriched degrees of freedom, and N, is the number of
the enriched nodes. It is clear that ¢(r) includes ¢(r) as a
special case, and each enriched element has eight degrees of
freedom. Rewrite the extended linear basis functions and the
discrete point value of ¢(r) in matrix form, we obtain

v(r) = [ (r),v2(r) - Vnean (7)]
= (), va(r)-vne (r)s yi (), ya (r) -y () ]

[ [Bi1s Pia-=Pins its Gin--ain, | (7)
N +1
i€ [1, ( bl )],
2

where ¥(r) and g, have N, + N. components for each variable
of SPy equations. This form can directly use to assemble the
finite element matrix.

2.4. Integrals and System Matrix. For finite element dis-
cretization, the matrix form of the (N + 1)/2 SPy equations
(3) can be written as follows:

mg, mig, MG a1y
Z mwl mz,@ mz’a(N-f-l)/Z
clom : : : :
M(N+1) /25, M(N+1)[275, m(N+1)/2’¢(N+1)/z (8)
P 91
7 b
X 90:2 = Z :2 >
_ elem| _ -
P(N+1)/2 b1y
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Internal boundary face

FIGURE 2: Gaussian quadrature in an enriched element.

where elem denotes all the elements in the region, for the

(N + 1)/2 variables  and b, each of which has N, +
N, components in total according to (7). mig, in the left

coefficient matrix is the small element matrix and can be
written in details:

m i@j

er Cive (1) -V - Vadr + [q, Cig, (1), - Vodr
= foo Civ s, (1) frogi(Vp) Vgdr, i=].
Jo, Cig, (r)v, - V,ydr
—faﬂ C,»,qu)j (”)f?-q)i (VP) Vedr, i#j,
9)

where v, and v, are the corresponding matrix elements of
V(r) in (7) in the finite element Q. p,q are the number
marks of the four points in element Q.. Similarly, Ei in the
right is

Ei = /(; Ci,Q(”)ap Vgdr + /a-n Ci,fsi (r) fs:(Si(r)) ~qu(r. :
10

In finite element framework, for ease of calculation,
the integrand is assumed continuous, and the Gaussian
quadrature can be used. In this paper, on the one hand, exact
integrals can be obtained for the standard linear elements.
On the other hand, the second order Gaussian quadrature
with four quadrature points is adopted for the remaining
enriched elements as showed in Figure 2. The Gaussian
quadrature formula in the standard element Q. is

fQ F(r)dr ~ 3 GIE(E), (11)
e i=1

where F(r) is the general integrand, G; is the coefficient and
all is 0.25, &; is the Gaussian quadrature point as showed in
Figure 2.

For the integrand F(r), the integrals of enriched function
can be calculated by the linear basis function v;(r), and v;(r)
at the Gaussian points is a constant as follows:

Vi ()=,
= vvi(r) - (IN(r)| - N;])

+vi(r)- V(|N(r)| - |N]-|)|,=5i.
4 (12)
N(r)|=g = };Vk(ei)Nk-

Vj(fi) =0.5854, i= ]

Vj(fi) =0.1382, i:/:j.

Incorporating (7) and (8), and assembling all the element
matrixes (8), after using the Gaussian quadrature to calculate
the enriched elements of (9), the linear system equations
of SPy equations is established and can be rewritten in the
matrix form:

M (NN 5 (N+1) /2, (Nt N 5 (N +1) 2P (NN 5 (N41) 2,1 (13)

= E(N(+Ne)*(N+1)/2,1)

where M is a matrix including (N.+N.) * (N +1)/2 rows and
(Nc+Ne) * (N +1)/2 columns, @ is the unknowns including
(Nc + N.) * (N +1)/2 components, and B is the source term
including (N + N.) * (N + 1)/2 components. Obtain the ®
of (13) and instead of ¢(r) in (2). The linear relationship
between the surface detector readings J* and the source S or
Q is established.

The goal of forward problem is to get the relationship
between the surface detector readings and the internal
sources. To have the general and particular comparison, the
correlation coefficient CORR(JY . Jfiye ) and the well known
mean relative numerical error MRNEg;,. of J© are both
defined to quantitatively evaluate the performance of XFEM
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or FEM on the coarse mesh with respect to the FEM on the
fine mesh:

CORR (/> Fine)
) I (] X/ TZX/F) (] trine =) :Fine)

- >

\/( Zisl (]:X/F - YZX/F)2) (Zi (]iTFine - 7:Fine)2)

(14)
MRNEF;se =

Ny
Zi=’1(]:X/F_]:Fine) iFine (15)
N, ’
where ]:X I is the J© compute by XFEM or FEM, ;.
is compute by FEM on the fine mesh. N; is the number

of the sampling point, 71+ x/r and TZFine is mean value of

]:X/F Jiine i (14). CORR(];/F,]ISEHQ) = 1 illustrates the two
data is identical after normalization and can be used to assess
the degree of closeness between the two data. Similarly, by
substituting the ;¢ for the J ;.. in (14) and (15), the mean
relative numerical error MRNEyc and correlation coefficient
CORR(J§ /g picr Jaic) of XFEM and FEM with respect to MC

method can be obtained for evaluation.

3. Results and Discussion

3.1. Regular Phantom Experiment Compared with Standard
FEM. The validation studies were performed using a cylin-
drical phantom of 30 mm height and 10mm radius to
model a mouse. It consisted of ellipsoids or cylinders to
represent the tissues of mouse as shown in Figure 3(a).
A solid sphere source of 1 mm radius and 0.238 nW/mm’
power density was centered at (3, 5, 0) inside the right
lung. The relevant optical parameters from literature [14] are
listed in Table 1. Numerical simulations are carried out to
compare the standard FEM and XFEM for SPy equations.
The coarse mesh containing 3459 nodes without internal
mesh boundary generation was used for XFEM and another
coarse mesh contained 3573 nodes for FEM as shown in
Figures 3(b) and 3(c). Because the precise analytic solutions
for heterogamous phantom is difficult to obtained, the FEM
on the fine mesh can get relative accurate solution according
to the classical finite element analysis:

lp-¢"| —0 ash—so, (16)

where the numerical solution ¢" of FEM converges to the
exact solution ¢ as the mesh size h decreases. We choose
the result of the FEM on the fine mesh containing 12312
nodes as the standard for comparison. The program of FEM
and XFEM is coded in MATLAB on the desktop computer
(Intel(R) Xeon(R) 2 CPU E5430 @ 2.66 GHz, and 8 G RAM).

345 interpolate points whose value is nonzero are
uniformly sampled around the phantom surface. Choosing
the FEM on the fine mesh as the standard, the absolute
value of exiting partial current J3 /p On the sampling points

are arranged in ascending order. Then the results of XFEM,

5
TaBLE 1: Optical parameters of phantom.
Material pha[mm™'] ps[mm™'] g
Muscle 0.01 4.0 0.9
Lung 0.35 23.0 0.94
Heart 0.2 16.0 0.85
Liver 0.002 20.0 0.9
Bone 0.035 6.0 0.9
TasLE 2: Results of XFEM and FEM for SPy approximations.
Method FEM XFEM
Number of nodes 3459 3573
Number of elements 15540 15987
DA 0.85 0.94
CORR(Ji  Jine) SP3 0.88 0.95
SP7 0.88 0.90
DA 31% 16%
MRNEEine SP3 22% 14%
SP7 22% 15%

and FEM on the comparable coarse mesh at these sampling
points can be obtained by interpolation. The comparison
results with Diffusion, SP3, SP; approximations are showed
in Figures 4(a), 4(b), and 4(c), respectively. Although the
curve has fluctuation caused by the discretization error, the
results have similar tendency. It is clear that the blue curve
of XFEM on coarse mesh is closer to the green curve of
FEM on fine mesh than that of FEM on the coarse mesh.
Compared with the FEM, the CORR(J¥ /P J&..) of XFEM is

closer to 1 for DA, SP3, and SP; with 0.94, 0.95, and 0.90.
The two methods is carried out on comparative mesh even
the XFEM on the slightly less coarse mesh (3459 nodes).
Thus the solution using XFEM is nearer to the true solution.
The MRNEg;,e of XFEM is 14%, 15%, and 16%, which is
much smaller than FEM, whose MRNEg,. is 31%, 22%,
and 22% for DA, SPs, and SP; equations respectively. The
results listed in Table 2 using the two evaluation indexes
demonstrate the validity of the proposed method for SPy
equations. Moreover, it indicates that the XFEM is superior
to the standard FEM and the solution of XFEM is more closer
to the true solution for SPy equations.

3.2. Digital Mouse Experiment Compared with Monte Carlo
Method. In this experiment, a digital heterogeneous mouse
from CT and cryosection data consisting of several organs
is adopted to evaluate the performance of the XFEM. The
mouse is shown in Figure 5(a) [15]. A cylinder source of
0.8 mm radius, 1.6 mm height, and 0.311 nW/mm? power
density was centered at (12, 7.5, 50.5) inside the liver.
The optical parameters of the organs at 670 nm wavelength
computed by the literature [14] are employed and shown in
Table 3. The experiments were conducted using XFEM on
the coarse mesh, FEM on the fine mesh, and classical MC
method. The surface detector readings using MC method
was achieved from MOSE [16] using 5 million photons. Since
there are still errors between the SPy equation and MC to
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FIGURE 3: (a) Heterogeneous phantom, (b) the element mesh of FEM, and (c) element mesh of XFEM without internal boundary generation,

red region is the enriched region.

depict the light propagation, the XFEM is compared with the
FEM and MC simultaneously.

As shown in Figure 4(d), it is clear that the blue and
green curves agree well. Considering the difference of the
results between SP; and SP; equations are very small, for
simplicity, only the SP; results are presented in Figure 6. The
absolute values on the surface using the FEM, XFEM and MC
methods agree well and have the similar tendency in general.
For detailed comparison, 521 points with nonzero values on
the mouse surface are sampled, and then the surface value of
these points using the three methods are obtained by inter-
polation and shown in Figure 7. Choosing the MC method

as standard, the mean relative numerical error MRNEyc and
correlation coefficient CORR(J JE/MC? Jiic) of XFEM and
FEM with respect to MC method are obtained and shown
in Table 4. The MRNEyc and CORR(J5 JFMC? Jiic) of FEM
is 0.86 and 44%, while those of XFEM is 0.93 and 45%. The
computational time of several modules that perform specific
computational tasks, mesh generation, matrix assembly and
solver. Since the XFEM does not have the complex mesh
generation as FEM, the total time cost of matrix assembly
and solver is considered for comparison. It is clear that the
time cost of XFEM is only 367 seconds on the coarser mesh
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FIGURE 4: Surface detector readings J* for SPy equations around the regular heterogeneous phantom using the two methods on the coarse
mesh compared with the FEM on the fine mesh. (a) DA equations. (b) SP3 equations. (c) SP; equations. (d) Comparison among the results

of XFEM for DA, SPs, and SP; equations.

while that of FEM is 2675 seconds with the similar accuracy
results. All the time cost of two methods are far less than
that of MC method. The XFEM has a distinct strength on
time-efficiency and this makes it more practical in imaging
process.

4. Conclusion

We have derived the extended finite element method with
SPy approximations for the forward model of the three

dimensional optical imaging. Considering the complex geo-
metric object, it is necessary to have the fined mesh to con-
form to the internal boundary. And the mesh conformation
is a difficult issue in the pretreatment in the FEM, moreover
the standard FEM on the fine mesh for SPy approximations
cost too much especially for the high order approximation.
Fortunately, the XFEM can deal with this problem. The
XFEM includes the standard FEM as a special case, which
does not require a geometric representation of the interface
or any boundary mesh generation. Use the signed distance
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FIGURE 5: (a) The digital mouse model. (b) The external and internal boundary mesh for FEM. (c) The external boundary mesh and enriched

region for XFEM.

TaBLE 3: Optical parameters of the mouse organs.

TaBLE 4: Comparison among the FEM, XFEM and MC method.

Organs pha[mm™"] ts[mm™'] g Method FEM XFEM MC method
Muscle 0.08697 4.29071 0.90 Number of nodes 24906 6541 /
Heart 0.05881 6.42581 0.85 Number of elements 132202 32398 /
Stomach 0.01139 17.96150 092 CORR(J /ppuc Jiic) 0.86 0.92 1

Liver 0.35182 6.28066 0.90 MRNEwmc 44% 45% 0
Kidney 0.06597 16.09293 0.86 Time cost [s] 2675 367 7292
Lung 0.19639 36.23141 0.94

functions add to the standard basis functions, the number
of nodes can keep unchanged. The interface can be well
depicted by the enriched functions, also the solution of SPy
equation is more accurate.

The XFEM is validated through the numerical experi-
ments. Phantom experiment was conducted and its results
agreed well with the well known classical FEM. Moreover,
compared with the FEM, XFEM can get more accurate result
even on the slightly coarse mesh, which is closer to the
FEM on the fine mesh. Digital mouse experiments further
indicate that XFEM is superior to the standard FEM. The
MC method was employed to evaluate the performance
the proposed method. Although the relative errors and
correlation coefficient using the XFEM with respect to MC
method is comparable to that of standard FEM, the time

cost of XFEM is greatly decreased due to the adoption of
coarser element mesh. All these indicate that the XFEM
is more suitable for SPy equations especially in complex
heterogeneous tissues.

Adaptive FEM method is often adopted for its high
efficiency [17, 18]. But nearly all the adaptive method is
based on the mesh refinement which is extremely complicate
especially in three dimensions. XFEM can also be seen as
an adaptive FEM method because it increases the degrees
of freedom near the internal boundary while using fixed
mesh, therefore the mesh refinement can be avoided. Thus
the process in each adaptive level is simplified and the
calculation cost is decreased. Moreover, the discretization
error of the forward model is improved, which is important
for the quantification reconstruction. XFEM may provide a
potential tool for reconstruction algorithm.
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F1GUrek 6: The surface detector readings with SP3 approximation (a) using FEM on the fine mesh, (b) using XFEM on the coarse mesh, and
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Increasing interest is drawn on hemodynamic parameters for classifying the risk of rupture as well as treatment planning of cerebral
aneurysms. A proposed method to obtain quantities such as wall shear stress, pressure, and blood flow velocity is to numerically
simulate the blood flow using computational fluid dynamics (CFD) methods. For the validation of those calculated quantities,
virtually generated angiograms, based on the CFD results, are increasingly used for a subsequent comparison with real, acquired
angiograms. For the generation of virtual angiograms, several patient-specific parameters have to be incorporated to obtain virtual
angiograms which match the acquired angiograms as best as possible. For this purpose, a workflow is presented and demonstrated

involving multiple phantom and patient cases.

1. Introduction

Cerebrovascular diseases are beneath cardiovascular diseases
the leading cause of death among industrialized countries
[1]. One clinical pathology concerning the cerebrovascular
system is intracranial aneurysms, abnormal bulges within the
vasculature. According to the study in [2], the prevalence
of unruptured intracranial aneurysms in the general pop-
ulation is estimated to be up to 5%. Aneurysms threaten
the patients’ health in case of rupture, which will lead to
a subarachnoid hemorrhage (SAH) and hence may cause a
hemorrhagic stroke with severe clinical consequences. For
the case of intracranial aneurysms, 30% of all patients will
die within the next 30 days, 30% will develop disabilities,
and only the remaining part will almost completely recover

[3, 4]. However, most of the aneurysms will never rupture.
For example, out of more than 10-12 million people in the
US which are estimated to have an intracranial aneurysm,
about 27,000 cases per year will suffer from subarachnoid
hemorrhage caused by rupture events [3].

In the management of unruptured intracranial aneury-
sms, different preventive treatment options are established.
In a neurosurgical procedure, a metal clip is placed during
an open surgery along the neck of the aneurysm to prevent
blood from flowing into the aneurysm dome and hence
disable the possibility of rupture [5]. In an endovascular
treatment, small coils are placed within the aneurysm dome.
The intention of those coils is to reduce the blood flow
inside the aneurysm, leading to thrombosis and finally to an
occlusion of the aneurysm. A recent interventional approach



is based on the placement of flow diverting devices within the
parent artery, which also aims at reducing blood flow inside
the aneurysm [5].

For endovascular treatment, X-ray angiography [6] is
mandatory to visualize the aneurysm as well as parent
vasculature. By intraarterially injecting contrast agent, vessel
structures can be visualized in addition to catheter devices.
Modern systems, where source and detector are mounted
at both ends of a movable, C-shaped fixture (C-arm), are
capable of acquiring 2D digital subtraction angiography
(DSA) images at high frame rates, which allows to observe
the distribution of injected contrast agent over time. Addi-
tional plane DSA sequences unveil a lot of flow dynamic
information about the hemodynamic behaviour. In addition,
by rotating the C-arm around the object, static volumes
can be reconstructed in a CT-like fashion (3D rotational
angiography, 3D RA) [7].

However, since all treatment options imply risks for the
patients, reliable parameters for aneurysm risk classification,
treatment planning, and assessment are needed. Besides
geometric properties of the aneurysm itself, an increasing
interest is shown for hemodynamic parameters such as
pressure, wall shear stress, and blood flow velocity. Due to
insufficient methods of measuring those quantities in vivo,
computational methods—that is, numerical simulations—
are investigated in order to obtain those quantities, as, for
example, given in [8, 9].

However, a reliable validation of the simulation results
is required prior to applications in clinical environments,
for which Ford et al. [10] suggested the generation of
virtual/synthetic angiograms based on CFD simulation
results, and a succeeding comparison of virtual and the
corresponding real angiograms. One major aspect concern-
ing this validation method for CFD simulation results is
the definition of patient-specific boundary conditions. Since
those patient-specific parameters are generally not available
for acquired 2D DSA sequences, in vitro studies based on
cerebral aneurysm phantoms have been performed, where
parameters such as blood flow velocities at vessels proximal
to the aneurysm are known [11, 12].

Furthermore, in certain DSA acquisitions, the injection
of the contrast agent is done manually which leads to
variations in the injection profile as well as in the timing
with respect to the patient’s heart phase. Using standardized
injection profiles for virtual angiography will then lead to
deviations of the virtual angiogram when compared to the
real one.

Beneath the aspect of validation, further studies have
been published using the virtual angiography technique;
for example, for visualizing outcomes of virtual treatment
techniques [13, 14] or for evaluating the outcome of CFD
simulation results [15-17]. Clinical applications may benefit
from virtual angiograms in a way that these image sequences
can be generated without the use of applying further X-ray
radiation dose and injecting additional contrast agent, and
they can be generated for arbitrary angulations, indepen-
dent of mechanical limitations such as unreachable C-arm
angulations. As a visionary future aspect—not taking into
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consideration the need for a validation of CFD approaches—
virtual angiograms may eventually completely replace real
angiograms, such that only a 3D RA is acquired for diag-
nostics, whereas all dynamic information is entirely based on
CFD simulation and virtual angiogram generation. Finally,
virtual angiography represents a familiar way for illustrating
CFD simulation results, which would be hard to interpret
otherwise.

In this paper, we extend the methods proposed in [10]
by further incorporating patient- and treatment-specific
parameters to obtain virtual angiograms aimed at matching
the corresponding real angiograms as accurately as possible.
Our basic workflow has already been published in [18].
The contributions of this extended work are an additional
synchronization of the heart state at the beginning of virtual
and acquired DSA sequences as well as a more detailed
examination of the accuracy of the results with respect to
quantitative error measurements.

Our paper is structured as follows. In Section 2, the
basics of the underlying CFD computations are presented,
the mathematical model of virtual contrast agent (contrast
medium) injection and propagation is demonstrated, and
methods for extracting several patient-individual parameters
are covered. Furthermore, Section 2 details the generation
of the virtual angiograms as well as our approaches towards
the quantitative comparison of virtual and real angiograms.
These methods are embedded in a workflow which is then
applied to both phantom and patient cases. In Section 3,
results are presented and discussed. We finally draw our
conclusions in Section 4.

2. Materials and Methods

Figure 1 provides a schematic overview of the distinct steps
for generating virtual angiograms. For these methods, two
different types of imaging data are used. On one hand, a
volumetric 3D RA image provides geometric information for
both the CFD simulation and the virtual angiography. On
the other hand, a 2D DSA sequence—ideally acquired at a
high frame rate (e.g., 30 frames per second or higher)—will
serve as input data for a patient-specific parameter extraction
and, afterwards, as ground truth for comparison. As a result,
virtual (synthetic) 2D DSA sequences from arbitrary viewing
directions are generated.

First, patient-specific information concerning the heart
rate and heart state will be extracted from the 2D DSA
sequence. This information will then be used for adapting
CFD simulation parameters. Second, as additional patient-
specific information, the contrast bolus injection profile is
extracted from the acquired angiogram. An individualized
virtual angiogram is subsequently created based on the CFD
output. Finally, the resulting virtual angiogram is compared
both qualitatively and quantitatively with the real angiogram.

This approach represents an essential step towards the
validation of the CFD results. If the virtual angiogram
matches the real angiogram closely, the user may become
confident of the application of CFD methods and hence
generate and evaluate further virtual angiograms from
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FIGURE 2: Vessel geometry for CFD simulation.

additional viewing directions without applying additional X-
ray dose to the patient and without injecting further contrast
medium. This means that, eventually, the computation of
further virtual angiograms might replace the acquisition of
further real angiograms. Note that, using virtual angiog-
raphy, even viewing directions are possible that cannot be

reached by the C-arm due to mechanical limitations (e.g.,
due to patient/table collision).

2.1. CFD Simulation—Hemodynamic Simulation of Cerebral
Blood Flow. For the computation of the flow in the cere-
bral vessels, the blood is modeled as a Newtonian fluid
with prespecified density (p = 1050 kg/m?) and viscosity
(4 = 0.004 Pa - s). The basic principles of conservation of
mass and momentum are applied by numerically solving
the Navier-Stokes equations under appropriate boundary
conditions. Under our simulation framework, the complex
vessel geometry, as shown in Figure 2(a), which is provided
as a surface mesh, is embedded in a Cartesian grid by
using a level set, compare Figure 2(b) [19]. This provides an
automatic domain setup and allows the user to bypass the
time-consuming step of mesh generation [20].

After computing a level set ¢ with positive values inside
the vessel, we solve the Navier-Stokes equations

0
p((p)(a%l +u- Vu) =—-Vp+u(p)Au+F,

V-u=0,
ple) =p'(9)H(p) +p*(9) (1= H(p)), ()
ule) = u'(9)H(p) +p* () (1 - H(gp)),

H(g) = {(1) #>0
, ¢<0.

The Heaviside function H distinguishes sharply between
the solid and the fluid components of the domain, while
we use second-order accurate spatial extrapolation across
the boundary when imposing boundary conditions. The
equations are discretized and solved iteratively for velocity
and pressure. We use a fractional step method [21] that
computes in a first step an intermediate velocity field using
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FIGURE 4: Particle smoothing for the sake of reprojection and the determination of contrast agent gradients.

the nonlinear advection-diffusion equation for velocity and
then projects the intermediate velocity onto the field of
divergence-free and tangent to the vessel boundary vector
fields.

For the velocity advection, we use a second-order upwind
Van-Leer slope limiting method, while for the diffusion force
components, we use a semi-implicit approach as in [22]
which is second-order accurate in space and unconditionally
stable in 3D. The pressure Poisson equation (PPE) is solved
using a multigrid preconditioned conjugate gradient solver.
After the PPE is solved and the updated pressure field
is determined, the fluid domain velocity is updated by
subtracting the pressure gradient. The body force field F
in (1) can be used to include forces due to flow diverter
embedded geometries, as we proposed in [23].

For applying the boundary conditions, the inlet is com-
pletely embedded inside the Cartesian grid, and Dirichlet
boundary conditions for velocity are enforced using linear
extrapolation from the interior of the domain using an
extrapolation routine adapted from [24]. A time-varying
velocity field is applied at the inlet, which is modeled
spatially as a plug profile. The outlets are modeled with
constant pressure boundary conditions. The computations
are performed using time steps constrained by the CFL

condition [25], while the spatial resolution was in the range
of 5 - 10° cells, chosen such that the velocity differs less than
1% when compared to the refined grid.

2.2. Virtual Angiography—Simulated Transport of Contrast
Agent and Its Visualization. In our approach, contrast agent
passing through the vascular territory under consideration is
modeled as a set of n discrete particles

Qz{pi}, p,ER’ i€l,...,n, nEN, (2)

The particles are assumed to be both mass- and dimen-
sionless; hence, there is no interaction between particles
(e.g., there are no (in)elastic collisions). Each particle p; is
defined by its location in R* and is freely movable within
space which means that its position is not restricted to grid
points. Note that other approaches towards the generation
of virtual angiograms are based on the numerical solution
of an advection-diffusion equation in order to simulate
the transport of contrast agent, see [10], for example. Our
particle-based method can be seen as a straightforward
alternative to a scheme that explicitly models the physics
of contrast medium propagation using a partial differential
equation [26]. By using this discrete scheme, additional
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the patient’s heart rate.

analysis based on the particle representation can be included
for flow quantification; for example, particle residence times
[27] or further visualization techniques such as streamlines,
streaklines, or pathlines may be employed.

Two distinct physical processes are involved in the
transport of contrast medium through the vasculature. On
one hand, an advective process propagates contrast agent
based on an underlying velocity field, which is generated
by the CFD solver. On the other hand, a diffusive process
causes the contrast agent to mix autonomously with blood,
which leads to a homogenization of both substances. Figure 3
illustrates the algorithm for performing the simulated trans-
port of contrast agent consisting of advection, diffusion,
and an additional smoothing procedure, which is used to
transform the discrete particle set Q into a corresponding
continuous representation. In each time step, the particle set
is processed sequentially. First, advection is applied to each
particle. The resulting particle set is then transformed into a
continuous representation (particle smoothing), from which
a concentration gradient field is then obtained. Finally, the
particle set is processed again according to the calculated
gradient (particle diffusion).

Adpvection. Taking into consideration only the advective part
of the transport process, the trajectory of a single particle p;
can be characterized independently from all other particles.
This trajectory can be described as the solution of the
ordinary differential equation (ODE)

pi(D) = f(t.pi(1)), 3)

where p, denotes the spatial position of the particle and ¢
represents the time. For a unique solution, an initial value

pi(ti=0)=p;, (4)

has to be specified. This value corresponds to the point
in space and time where the particle gets injected into the
vasculature.

In (3), f : R x R® — R? denotes the function repre-
senting the time- and space-dependent velocity field. The
function f itself is unknown; only the function values—
representing the velocities at the nodes of the computational
grid—are computed by the underlying CFD solver. Hence,
this equation is not solvable analytically and, consequently, a
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numerical solution has to be considered, for which an explicit
fourth-order Runge-Kutta scheme, given by

p,(t+8t) =p,(t) + é - (ki + 2ky + 2ks + ka),
where k] = 6t . f(t,P,(t))>

K = ot - f<t+ Sotp(n)+ %kl), (5)

ks = ot - f(t+ %St,pi(t) N %k2),

ki =8t f(t+8tp,(t) + ks),
is used [26].

For the choice of 8t, the CFL condition [25], which
correlates the time step, the given flow velocities, and the

resolution of the underlying computational grid, is taken as
a reference.

Due to the discretization in time, the particles may
be advected such that they leave the vessel through the
boundary, which corresponds to a flux of contrast agent
through a vascular wall. To prevent this, these particles will be
kept inside by bouncing them at the vascular wall back into
the vessel. This represents a physically reasonable approach
under the assumption of rigid vascular walls.

Diffusion. For simulating the diffusive process according to
Fick’s law [28], given by

a0(x, 1)
ox

voir(x, t) = =D (6)
the discrete particle set Q is transformed into a contin-
uous representation C(x,t) describing the concentration
of contrast agent (see Smoothing). According to (6), the
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FIGURE 12: Time-intensity curves for phantom data set, based on real and virtual angiograms. On the left side, the heart state is synchronized
and an injection bolus based on a capacitor function is used, whereas on the right side no synchronization is performed and a rectangular
bolus profile is used.
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FIGURE 13: Time-intensity curves for phantom data set, based on real and virtual angiograms. The curves are cropped to arterial phase.

direction and the magnitude of the diffusive movement vp;g
is obtained by calculating the spatial gradient of the con-
centration image C(x,t), scaled by a substance-dependent
diffusivity coefficient D. The resulting gradient image is
subsequently used as the velocity image for advancing the
particles according to diffusion.

Since contrast agent is restricted to the interior of
the vessels, high concentration differences will occur at
vessel boundaries, which in turn will generate large contrast
medium concentration gradients. Consequently, contrast
agent (i.e., particles) touching the boundary will keep on
diffusing strongly towards the boundary, which results in
those particles being bounced back into the vessel. Therefore,

an intermediate step is taken. After the discrete-continuous
transformation, zero gradients are assured at the vessel
boundary by extending the concentration from inside the
vessel over the boundaries. This is achieved through the
use of a distance transform [29], where each voxel outside
the vessel is assigned an additional vector pointing to the
closest voxel inside the vessel. This vector is then used to
copy the concentration values from voxels inside the vessel
to corresponding voxels outside the vessel.

Smoothing. For the reprojection, that is, the forward pro-
jection, of contrast agent concentration volumes as well
as for the simulated diffusion process (in particular, for
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FIGURE 14: Real (1st row) and virtual (2nd row) angiograms of patient A, projection 1, for different time steps, which are denoted below the
images. t = 0s corresponds to the beginning of the DSA sequence.
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the calculation of the gradient vector field), the discrete
particle representation is required to be transformed into
a continuous representation of contrast agent such that its
distribution is available on a regular grid. This is achieved by
the following smoothing step:

Ciscrete = 0(x) — Ceontinuous = Z f(X>Pi): (7)
P,EQ
where

1, ifx—p,=0, p,eQ, xR’
6<x>={ Pi=% P (8)

0, else.

This transformation describes a smearing (or smoothing)
operation of a particle over its spatial neighborhood. The
range and the way the particle gets smoothed is thereby
specified by the function f(x), for which a Gaussian
distribution, given by

1 Toy
f(xp,) = === VDCp) 2" xp))
(xr) (2m)’ (3| o
p,€EQ, xR,

is chosen. A smoothing parameter o is thereby used for the
covariance matrix ¥ = o - I3, where I3 denotes the identity
matrix, in order to parametrize the amount of smoothing.
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FIGURE 17: Real (1st row) and virtual (2nd row) angiograms of patient A, projection 2, for different time steps, which are denoted below the
images. t = 0's again corresponds to the beginning of the DSA sequence.

(a) (®)

FIGURE 18: Location of ROIs for patient A, projection 2, C-arm angulation (-91°, —0.2°).

As the mean value for the Gaussian distribution, the particle
position p; is used.

Taking all particles into consideration, the final con-
tinuous distribution is hence a mixture of single density
distributions (see Figure 4). This mixture density can then
be sampled on the desired grid, which is here chosen in
correspondence to the grid from the CFD solver (i.e., number
of grid points per dimension and grid spacing) to keep the
properties of the vessel geometry.

Using a Gaussian distribution as smoothing function
has several benefits. First, the exact position of the particle
between grid points is respected (by using it as the mean
value of the Gaussian distribution); other solutions, such
as assigning the particle to the nearest grid point, would
typically shift the original particle position. Second, the
Gaussian function allows to model a spatially symmetric
smoothing. Third, when varying the smoothing parameter
0, the integral of the Gaussian and hence the total amount of
spatially distributed contrast agent remains constant.

2.3. Patient-Specific Parameter Extraction

Heart Rate. The heart rate of each patient varies dependent
on the patient’s age, physical constitution, and so forth. For
assuring a synchronized pulsatile pattern of real and virtual
angiograms, the use of an average heart rate taken from
the medical literature should thus be avoided. Measuring
the patient-specific heart rate before treatment is also
disadvantageous, because differences may occur between the
resting heart rate and the heart rate during the treatment due
to physiological factors such as stress or medication. Hence, it
is desirable to have this information for the exact time when
the patient is being treated.

To obtain the patient-specific heart rate, a user-defined
line of interest (LOI) within the acquired 2D DSA series
(Figure 5) is used. For each image of the 2D DSA series, the
image intensities are integrated along this LOL This results in
a time-intensity curve which characterizes the concentration
of contrast agent over time. Succeeding intensity peaks of the
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FIGURE 19: Time-intensity curves for patient A, projection 2, based on real and virtual angiograms.

measured data are then identified, out of which the heart rate
h is calculated using

! i(pi_Pi*l)a

i=2

h=

I (10)

where p; denotes the time point of the ith intensity peak, and
n represents the total number of identified intensity peaks
within the DSA series (Figure 5).

This heart rate is then used for the CFD simulation; the
inflow velocity profile is adapted according to the calculated
duration.

Heart State. In order to generate virtual angiograms that
match the corresponding real angiograms as accurately as
possible, not only the duration of a cardiac cycle, but also the
state of the heart at the beginning of both angiograms, which
affects the blood flow velocities and hence the propagation of
contrast agent, must be synchronized.

For this purpose, the time-intensity curve based on the
proposed LOI (Figure 5(b)) is used and the intensity peaks
are identified. Under the assumption of a periodic heart

beat, these peaks are extrapolated backward in time to the
beginning of the time-intensity curve (Figure 6(a)).

Now, the positions of the extrapolated intensity peaks
next to the beginning of the acquired DSA signal are observed
(Figure 6(a), box 1). Based on these positions, the CFD
inflow velocity profile, which has already been adapted for
the patient-specific heart rate, is periodically shifted such
that this velocity profile would produce the same pulsatility
pattern and hence the same intensity peaks as acquired for
the patient. The relation between intensity peaks and inflow
velocity profile is given by a correspondence of high velocities
and low contrast agent intensities, since high velocities
cause a large amount of blood to pass the injection point
per time, but still absorbing the same amount of contrast
agent (assuming a constant injection rate). This leads to a
lowered contrast agent concentration and thus to reduced
intensities on the acquired DSAs. By shifting the inflow
profile, low velocities are assured to match the intensity peaks
(Figure 6(c)).

Inflow Velocities. Inflow velocities are estimated by subse-
quently performing CFD simulations with varying mean
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FIGURE 20: Time-intensity curves for patient A, projection 2, based on real and virtual angiograms. The curves are cropped to arterial phase.

inflow velocity. For each CFD simulation, a virtual angi-
ogram is generated, and time-intensity curves are acquired
at certain regions of interest for the real and virtual
angiogram; for example, proximal to the aneurysm. Based
on a comparison of these time-intensity curves, the mean
inflow velocity is optimized manually to match proximal flow
patterns.

Bolus Injection Profile. In angiographic procedures, injecting
contrast agent is either performed using a mechanical
injection regulator or an injection by hand. Especially for
manual injections, the profile (e.g., duration, pressure) at

which a certain amount of contrast agent is inserted into the
respective artery differs from injection to injection.

Therefore, it is not reasonable to use generic injection
boli for virtual angiography, but to gain this information
from the current patient case instead. Furthermore, addi-
tional physical and physiologic effects cause the injection
bolus to alter, which means that the bolus does not arrive
at the aneurysm as set up originally (e.g., constant injection
rate of 2 mL/s for 3 s, resulting in an ideal rectangular bolus).
These effects are, for instance, caused by the inner resistance
of the catheter [30] and the contrast agent diffusion, since
the point of injection is usually located at a certain distance
proximal to the aneurysm.
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FIGURE 21: Real (1st row) and virtual (2nd row) angiogram of patient B for different time steps, which are denoted below the images. t = 0's

corresponds to the beginning of the DSA sequence.

FIGURE 22: ROIs for patient B.

In order to consider these aspects for the virtual angiog-
raphy, the injection bolus profile that we use in our approach
is directly extracted from the acquired 2D DSA series. For
this purpose, a time-intensity curve—as used for extracting
heart rate and heart state information—is again employed,
whose LOI is supposed to be located at the inlet plane of the
CFD simulation, since that is where the virtual contrast agent
is injected, as shown in Figure 5.

However, due to its mixing with blood, the contrast
agent and hence the acquired time-intensity curve reflect the
pulsatility caused by the patient’s cardiac activity. Using this
time-intensity curve directly as injection bolus profile would
thus lead to the measured pulsatile pattern being included
in the virtual angiography simulation. Since the velocity
field generated by the CFD solver already implies a pulsatile

pattern itself, this means that pulsatility impact would in fact
be considered twice.

To eliminate this pulsatile pattern and further back-
ground noise, the measured data will be fit to a predefined
function. In order to determine the best-fit model param-
eters, the Levenberg-Marquardt optimization algorithm is
used [31], which iteratively solves least-square optimization
problems for nonlinear functions using a combination of the
steepest descent and the Gauss-Newton method.

For the sake of representing the profile of the bolus
injection over time, an adapted function based on [30] is
used. Analogous to the electrical behavior of a capacitor, this
function is given by

I(p,t)
t< P1 0,
CJt=piat<pitpr ps- (1_6—(t—p1)/p3>’
| else ps - (1 — e P/pr)
. (_e*(f*(Pl‘*'pz))/pl;) ,

(11)

where the parameter set p = {p;}, i € 1,...,5 describes the
curve according to Figure 7(b). To some extent, the curve
resembles a rectangular function and hence rather originates
from a constant contrast bolus injection which is just slightly
altered by diffusive and inner resistance of the catheter. In
Figure 7(a), an example of a capacitor curve fit is illustrated.

The fitted injection bolus curve I(¢) is finally resampled
at n points, where n denotes the number of time steps to
simulate. By normalizing >/ ; I; = 1, a multiplication of I;
with the total number of particles to be injected results in the
number of particles to be injected at time i.

2.4. 3D/2D Transformation—Forward Projection. Creating
2D projection images out of contrast agent concentration



Computational and Mathematical Methods in Medicine

100 T

80

60

Intensity

40 -

20 +

0o 07 13 2 26 33 4 46 53

Time (s)

—— Real angiogram
—— Virtual angiogram

(a) TIC for ROIO (inlet)

100 T T T T T T T T T T

80

60

Intensity

40

20

—— Real angiogram
—— Virtual angiogram

(c) TIC for ROI2 (outflow aneurysm)

17

100 T

Intensity

o 07 13 2 26 33 4 46 53 59 6.6
Time (s)

—— Real angiogram

— Virtual angiogram

(b) TIC for ROI1 (inflow aneurysm)

—_
(=1
(=]

(>
(=)
T

Intensity
(o))
(=}

T

'S
S
T

20

Time (s)

—— Real angiogram
—— Virtual angiogram

(d) TIC for ROI3 (aneurysm dome)

F1GURE 23: Time-intensity curves for patient B, based on real and virtual angiograms.

volumes can be described by a transformation T : R® —
R?, which corresponds to the X-ray acquisition in real
angiographic procedures. For the virtual angiography, the
simulated projection is supposed to be computed such that
the viewing directions of real and virtual angiograms match.

X-ray imaging is based on a source emitting and an
image detector collecting photons. Since the (idealized) X-
ray source is a point source, this system can geometrically be
described by a pinhole camera model based on perspective
projections [32]. Within this model, the mapping T of
a point p € R? located between the source and the
detector, onto the image plane can be expressed as a linear
transformation (in case homogeneous coordinates are used
[32]) and performed using matrix calculations. This allows
to represent T by

p],proj = T(P) =P P,a (12)

where p’ € R* is the homogeneous representation of the
point p, P € R’ ** is the projection matrix, and py,,; is the
projected point, given in homogeneous coordinates.

For the case of C-arm imaging in the angiography suite,
projection matrices are used for several applications; for
example, for the 3D image reconstruction process based on

3D RA acquisitions [33]. For that purpose, the individual
positions of the C-arm during the acquisition are specified by
the used protocol and hence known in advance, which allows
to generate the projection matrices within a calibration
run once when the system is installed or maintained [6].
However, the acquisition of 2D DSA series is in general
performed using an arbitrary C-arm angulation, for which
no calibrated projection matrix is available. Nevertheless,
those projection matrices are needed for generating the
virtual angiograms which correspond to the real ones
concerning the viewing direction.

According to the study in [34], the projection matrices
can generally be calculated based on available information
of the C-arm system. For this purpose, the angulation of
the C-arm in left/right (LAO/RAQO) as well as in head/feet
(CRAN/CAUD) direction, the pixel spacing of the detector,
the source-image-distance (SID), the source-to-isocenter
distance (SISOD), and the coordinates of the isocenter
related to the image plane are required. This information can
be retrieved from the DICOM header of the particular DSA
series.

For these calculations, an idealized projection geometry
of the system is supposed, which neglects for instance gantry
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FIGURE 24: Time-intensity curves for patient B, based on real and virtual angiograms. The curves are cropped to arterial phase.

motion as well as mechanical instabilities. This in general
leads to projection matrices being less accurate than the
calibrated ones, see [34] for details. The resulting virtual
projection images may then slightly differ from the acquired
images with respect to the viewing direction.

The calculated matrices are eventually used to project
the contrast medium concentration volume onto the virtual
image detector. Our framework uses an implementation
based on the ray casting technique [35], which generates a
ray for each pixel of the virtual image plane that intersects
the corresponding pixel, the virtual X-ray source, and the
concentration volume that is located between the virtual
source and the virtual detector. The rays are then sampled

equidistantly and the concentration values for these posi-
tions, which correspond to X-ray attenuation coefficients,
are added up. This summation corresponds to the numerical
approximation of the line integral of X-ray attenuation
values along the respective ray.

2.5. Comparison/Evaluation—Methods. In total, three differ-
ent cases were used for testing, each of them consisting of
a 3D RA data set and at least one high-speed DSA series
(30 fps) showing a complete bolus passage, see Table 1. For
one case (patient A), two DSA series are available, which
show the bolus injections from different C-arm angulations.
The first case (phantom data) is a medical phantom of a
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giant artificial aneurysm, whose shape is based on a real
patient case. The pulsatile blood flow is modeled using a
combination of a steady and a pulsatile pump. The other
cases (patient A, patient B) represent data from two patients
with aneurysms at the internal carotid artery. The data was
provided by Stony Brook University, New York (phantom
data), and the Department of Neuroradiology, University of
Erlangen-Nuremberg (patient A, patient B).

The evaluation is performed on a qualitative and a
quantitative basis. For qualitative comparisons, features such
as synchronization of time, a match of global flow patterns,
zones of recirculation, and the location of the inflow jet are
inspected.

For the comparison between virtual and real angiograms,
a pixelwise correspondence is not given (see Section 2.4):
Therefore, quantitative measurements are based on time-
intensity curves (TICs) of certain regions of interest (ROI).
These regions are selected by hand at corresponding posi-
tions of real and virtual angiograms.

In detail, the quantitative features, as depicted in
Figure 8, are as follows [17, 36]:

(i) Full width at half maximum (FWHM): this mea-
surement describes the duration dpwpam = t — h
between two points in time where the measured
intensities reach half of the maximum intensity
during wash-in and wash-out phases; that is, f(#;) =
f(t2) = (1/2) fmax. This parameter indicates the rate
at which blood (or contrast agent) is exchanged in the
selected region of interest and is practically used for
evaluating the outcome of a treatment by comparing
pre- and postmeasurements.

(ii) Time to peak (TTP): time to peak describes the
duration dprp until the maximum opacification fax,
that is, intensity, is reached. The duration is measured
from the time when the opacification reaches 10% of
total opacification for the first time. This parameter
quantifies the wash-in phase.

(iii) Average washin/washout: the average slope at which
the time-intensity curve increases and decreases,
respectively. For that purpose, the durations from
10% of maximum opacification until fmay is reached
and the decrease from fma to 10% of maximum
opacification is used. The parameter is taken for
describing the inflow and the outflow behavior,
respectively.

(iv) Relative root-mean-square error (rRMSE, [17])
between time-intensity curves of real and virtual
angiograms. The TIC corresponding to the real
angiogram is scaled such that its values lie in the
range between 0 and 100; the TIC of the virtual
angiogram is then shifted and scaled such that the
rRMSE measurement gets minimal. The rRMSE is
defined as

n PRp— . 2
rRMSE = %Z(P’ T’), (13)
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where P; and T; denote the (normalized) intensi-
ties of the TICs of real and virtual angiograms.
Ty, represents the mean value of the TIC of the
acquired angiogram. For certain patient cases, venous
structures may overlay the observed vascular segment
in the background, leading to a rerise of intensities
after a certain time. Since, for simulated cases, this
situation does not occur, this measurement may
be strongly corrupted by diverging time-intensity
curves between real and virtual angiograms when the
contrast agent reaches those venous structures. To
avoid that problem, this curve-based measurement
is restricted to a selected part of the time-intensity
curve only instead of the total simulated duration.

3. Results and Discussion

3.1. Arbitrary Projection Angles. As was mentioned in
Section 2.4, the used projection matrices are generated from
C-arm angulation information in order to reproject the
calculated contrast agent concentration volume according to
the projection direction of the acquired 2D DSA sequence.
This step is needed to compare the real and virtual
angiograms side by side for the purpose of validating CFD
simulation results.

In principle, by choosing arbitrary values for the C-
arm angulation (rotation in left/right and head/feet direc-
tion), arbitrary projection geometries are possible, compare
Figure 9; this particularly enables angulations which cannot
be reached in reality due to mechanical limitations.

It is important to note that the generation of additional
virtual angiograms requires no further X-ray exposure or
additional contrast agent delivery to the patient. Any number
of virtual angiograms can be generated from any desired
viewing angle without the need for additional imaging of the
patient, thus potentially becoming an important tool in the
treatment planning process for a number of cerebral vascular
disorders.

3.2. Comparison of Real and Virtual Angiograms—Phantom
Data. For the phantom data set, the simulated angiography
was performed using a total of 10° particles. 8¢ was chosen
to be 0.002s, the diffusivity coefficient D = 0.1, and
the smoothing parameter ¢ = 1.0. In total, 20.04s were
simulated, corresponding to the acquired DSA series (601
frames at 30 fps). The injection bolus was modeled using
the presented capacitor function (Figure 7, (11)). From the
acquired 2D DSA series, a heart rate of 84 bpm was extracted.
The underlying CFD simulation was performed using a
blood viscosity of 0.004 Pa-s with a density of 1050 kg/m?>.
The inflow profile was synchronized with the heart state as
described, with velocities ranging from 0.28 to 0.37 m/s and
an average of 0.31 m/s.

The real and the corresponding virtual angiogram is
shown in Figure 11. Overall, the angiograms show satisfying
accordance concerning the temporal synchronization and
global flow patterns. In both angiograms, the inflow jet
enters the aneurysm at t = 2.6 s and proceeds along the right
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TaBLE 1: Cases used for testing and evaluation.
3D RA data 2D DSA

Data set . . .

Size (voxel) Resolution (mm) Resolution (mm) Frame rate
Phantom data 512 x 512 X 512 0.46 x 0.46 x 0.46 0.308 x 0.308 30 fps
Patient A 512 x 512 X 396 0.28 x 0.28 x 0.28 0.308 x 0.308 30 fps
Patient B 512 x 512 X 396 0.1 x0.1x0.1 0.154 x 0.154 30 fps

TaBLE 2: Quantitative measurements for phantom data.

DSA ROI FWHM & Washin (rad) & Washout (rad) TTP rRMSE
Real ROIO, 2.74s 0.89 —0.84 2.54s 530
Virtual Inlet 2.67s 1.05 —-0.89 1.82s
Real ROI1, 3.17s 0.89 —0.66 2.51s 13.3%
Virtual Outletl 2.84s 0.89 -0.79 2.51s
Real ROI2, 3.10s 0.90 -0.59 2.44s 10.8%
Virtual Outlet2 2.71s 0.91 —-0.80 2.44s
Real ROI3, 3.17s 0.87 —0.61 2.67s 7.6%
Virtual Outlet 2.81s 0.90 —-0.80 2.44s
Real ROI4, 3.73s 0.90 -0.55 2.48s 9.3%
Virtual Aneurysm dome 3.20s 0.91 —-0.62 2.41s

aneurysm wall, as can be seen in Figures 11(a) and 11(b).
Within the aneurysm dome, the contrast agent further
circulates counter-clockwise Figures 11(c)-11(f). In Figures
11(c)-11(f), the real angiogram appears to have a slightly
faster filling of the aneurym with contrast agent; having a
closer look at the inflow jet, one can observe that the contrast
agent for the real angiogram is distributed homogeneously
very fast within the aneurysm dome, whereas the virtual
contrast agent stays dense on the right side of the aneurysm
Figure 11(d). Presumably, this different behavior might be
a mismatch of assumed and real properties of blood, for
instance viscosity, whose effects have not been observed
in this study. For both cases, the opacification in the
aneurysm reaches its maximum at approximately 4-5s,
compare Figures 11(g)-11(h). At t = 5.2s (h), the inflow
of contrast agent reduces and the remaining contrast agent
is flushed out of the aneurysm Figures 11(i)-11(n). The
outflow phase is well synchronized here. As can be seen
in Figures 11(k)-11(n), a small amount of contrast agent
remains at the bottom left side of the aneurysm in the real
angiogram.

For this case, multiple regions of interest for measuring
time-intensity curves are chosen, as depicted in Figure 10(a),
to measure certain effects. ROI0, which is placed at a short
distance behind the particle injection area, is supposed to
show that certain conditions (heart rate, heart state, contrast
bolus, synchronization of time) are in agreement for the
beginning of the simulated and the real domain. ROIl,
ROI2, and ROI3 measure the contrast bolus at the end of
the simulated domain. Assuming identical measurements
between real and virtual angiograms at ROIO, differences
which occur in one of these ROIs might indicate a different
behavior of contrast agent for the real and simulated

environment for preceding areas. Finally, ROI4 is chosen
to cover the whole aneurysm dome to measure the global
behavior of contrast agent within that domain.

In Figure 12, the measured time-intensity curves for the
regions of interest depicted in Figure 10(a) are shown. The
curves are normalized such that the measured intensities
range from 0 to 100 for both angiograms. For the real
angiogram, noise and motion cause the time-intensity curves
to appear more ragged.

To demonstrate the importance of extracting the
injection-specific bolus profile and the synchronization of
the virtual contrast agent injection with the patient’s cardiac
activity according to the presented methods, time-intensity
curves are additionally presented for a virtual angiography
based on a generic, rectangular injection bolus. For that
case, the duration of the injection is adapted to the FWHM
measurement of a time-intensity curve acquired at the LOI
shown in Figure 5(b).

In Figure 12(a), the time-intensity curves are given
for the region of interest located at a short distance
behind the particle injection area (ROIO). The curves are
well synchronized in shape and time, which indicates a
proper extraction of the contrast bolus injection profile,
see Figure 10(b). The pulsatility in both angiograms further
coincides well concerning the duration of the cardiac cycle
and the synchronization of the heart phase, as can be seen in
box 1, Figure 12(a). Differences in the height of the intensity
peaks are possibly caused by the inflow velocities which
are used for the CFD simulation. For this case, the range
of presumed inflow velocities (0.28-0.37 m/s) is propably
chosen too wide which may cause the intensities of the
virtual angiogram to oscillate stronger than those of the real
angiogram.
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TABLE 3: Quantitative measurements for patient A, projection 1.
DSA ROI FWHM & Washin (rad) @& Washout (rad) TTP rRMSE
Real ROIO, 1.29s 1.18 —1.28 1.29s 9.2%
Virtual Inlet 1.25s 1.42 —1.16 0.5s
R?al ROI1, 1.29s 1.20 —-1.29 1.22s 9.9%
Virtual Aneurysm inflow 1.22s 1.20 —1.34 1.22s
Real ROI2, 2.87s 1.20 -0.29 1.22s 16.2%
Virtual Aneurysm dome 1.72s 1.20 -0.93 1.22s
TaBLE 4: Quantitative measurements for patient A, projection 2.
DSA ROI FWHM & Washin (rad) & Washout (rad) TTP rRMSE
R?al ROIO, 1.29s 1.29 —1.20 1.29s 23.4%
Virtual Inlet 1.255 1.37 ~1.24 0.5
R?al ROI1, 2.21s 1.25 —-0.50 1.22s 33.6%
Virtual Complete aneurysm 1.65s 1.18 -0.92 1.22s
sieratl N ROI2, 2.61s 1.23 —0.44 1.22s 38.0%
U
aneurysm part 1.78's 1.18 ~0.88 1225
w/settling

5§ftlual ROI3, 1.95s 1.28 —0.78 1.22s 30.3%

aneurysm part w/o 1455 1.18 ~1.08 122

settling

The time-intensity curves for the outlets, that is, ROII,
Figure 12(b) and ROI2, Figure 12(c), show a strong cor-
respondence for the rising edge between real and vir-
tual angiograms, meaning that contrast agent arrives syn-
chronously in time within the real and virtual angiogram.

In Figure 12(d), the time-intensity curves are compared
for the region of interest covering the complete aneurysm
dome. According to this figure, the maximum opacification
is reached for both angiograms identically after 5 s, which has
also been observered in Figure 11.

Table 2 denotes the quantitative values for the measured
time-intensity curves. The measured FWHM is slightly
increased (0.53s) for the real aneurysm dome in contrast
to that from the virtual angiogram. The FWHM at ROIO
(inlet) is in good agreement (difference: 0.07 s), but for the
successive regions (outlet ROIs), an increased gap is detected
(differences: 0.33s—0.39 s).

The time to peak measurements coincide for ROI1-
ROI4; the large difference for the inlet ROI (ROI0) is caused
by the fact that the maximum opacification of the real curve
is reached at the third main intensity peak, while the one of
the virtual angiogram is already reached at the second peak,
see box 1 in Figure 12(a).

For the washin phase, the values correspond to a great
extent; the average washin for ROIO, which is increased
for the real angiogram, arises from the peak-to-peak shift
described above. Concerning the washout phase, the real
angiogram has a decreased average washout rate (ROIl1-
ROI4), which might be caused by the remaining contrast
agent within the aneurysm dome.

The calculated relative root mean square errors for the
arterial phase of the time-intensity curves, see Figure 13, are
in the range of 5.3%-13.3% and thus comparable to [17].

3.3. Comparison of Real and Virtual Angiograms—Patient A.
For patient A, who has a large/giant aneurysm at the internal
carotid artery, two angiograms with C-arm angulations, (0°,
0°; anteroposterior view) and (—91°,—0.2°; lateral view),
were evaluated. The parameter set is chosen for both cases
as follows: 10° particles were used, 8¢ was chosen to be
0.002s, diffusivity D = 1, and smoothing factor 0 = 1.
The acquired DSA sequence has a duration of 12.4s. The
extracted heart rate is 81 bpm. The CFD inflow velocities
have a mean of 0.31m/s, ranging from 0.25 to 0.42m/s.
Blood specific parameters were chosen identical as for the
phantom data.

3.3.1. Projection 1 (0° RAO/LAO, 0° CRAN/CAUD,).
Figure 14 shows both angiograms. The inflow of contrast
agent is well synchronized between the real and virtual
angiogram, Figures 14(a) and 14(b). The inflow jet, which
is clearly visible in both cases, pours into the aneurym at
the bottom side and circulates clockwise. The depicted part
of the vessel is homogeneously filled with contrast agent
in (c). At t = 2.93s, the inflow phase is finished for both
angiograms.

Major differences between the real and virtual angiogram
occur during the washout phase. In the virtual angiogram,
the contrast agent is flushed out quite fast, whereas in the
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TaBLE 5: Quantitative measurements for patient B.

DSA ROI FWHM & Washin (rad) & Washout (rad) TTP rRMSE
Real ROI0, 0.59s 1.42 -1.31 0.5s 35.2%
Virtual Inlet 0.56s 1.48 -1.39 0.3s

Real ROI1, 0.63s 1.41 -1.29 0.53s 42.8%
Virtual Aneurysm inflow 0.59s 1.44 —-1.37 0.43s

Real ROI2, 0.66s 1.41 -1.32 0.53s 54.6%
Virtual Aneurysm outflow 0.63s 1.42 —-1.37 0.50s

Real ROI2, 0.73s 1.41 -1.25 0.53s 27.9%
Virtual Aneurysm dome 0.63s 1.43 —-1.36 0.46s

real angiogram, a remaining part of contrast agent still stays
inside the aneurysm Figures 14(e)-14(g).

Identical characteristics can be observed for the time-
intensity curves in Figure 15 and the measured quantities
based on these curves, as denoted in Table 3. The synchro-
nization (time, heart rate, and heart state) for the inlet
(ROI0) is given to a great extent, compare Figure 15(b). The
full width at half maximum for that measurement differs
only by 0.04s or approximately by one image frame. The
deviation concerning the averaged washin and washout can
be explained by looking at the zoomed section, see box 1
in Figure 15(b). Both curves have two intensity peaks; for
the real angiograms, the measured intensity is larger at
the second peak, while the virtual angiogram reaches its
maximum at the first peak. This deviation is 0.69 s, which
causes the mentioned difference.

An additional effect, which can usually be avoided for
medical phantoms, but which is a common observation
for actual patient cases is the depicted rerise of intensity
values towards the end of the sequence, see TICs in
Figures 15(b) and 15(c), box 2. This effect is caused by
contrast agent in arteries and veins which are in the
background of the observed aneurysm, but do overlay with
the aneurysm on the 2D DSA images and hence contribute
to the opacification.

The rRMSE, which is calculated from the time-intensity
curves cropped to arterial phase (Figure 16), is comparable
for ROI0O and ROI1. For ROI12, the rRMSE is increased due to
the observed remaining contrast agent inside the aneurysm.

3.3.2. Projection 2 (—=91° RAO/LAO, —0.2° CRAN/CAUD).
The second projection provides a lateral view (rotated by
90° in left/right direction compared to projection 1) of the
aneurysm, see Figure 17. After the washin phase, the contrast
agent circulates in the left part of the aneurysm, both in the
real and virtual angiograms (c). As was observed in the first
projection, the contrast agent flushes out quite fast in the
virtual angiogram, whereas in the real angiogram, a small
portion remains within the aneurym, Figures 17(d)-17(f).
From this angulation, it is clearly visible that the contrast
agent is settling at the left side of the aneurysm (direction
of gravity). This effect, although not as intense, has also been
observed for the acquired angiogram of the phantom data,

compare Figures 11(k)—11(n). This settling of contrast agent
is a known physiological effect [37-39], but the reason for
that behavior has not finally been discovered yet.

For taking a closer look at this effect, we measured
time-intensity curves for the regions of interest depicted in
Figure 18 and derived quantitative values for these regions,
see Table 4. For the complete aneurysm (ROI1), the time-
intensity curve of the real angiogram, Figure 19(b), has a
sustained wash-out phase, similar to the corresponding curve
of the previous projection, compare Figure 15(d).

In Figures 19(c) and 19(d), this settling effect is further
investigated. The region of interest covering the complete
aneurysm dome (ROI1) is partitioned into two distinct
regions capturing the areas with (ROI2) and without
(ROI3) settled contrast agent. This partitioning is illustrated
in Figure 18. The corresponding time-intensity curves, as
depicted in Figures 19(c) and 19(d), are normalized with
respect to the normalization factors of the time-intensity
curves in Figure 19(b), meaning that the addition of the
corresponding curves in Figures 19(c) and 19(d) results in
the curves of Figure 19(b). As can been seen in the two
figures, we were able to separate the settling effect. The
trailing edge of the real curve in Figure 19(b) is almost
identical to the trailing edge for the curve in Figure 19(c)
in its shape and height. In comparison, the real curve in
Figure 19(d) has no extended outflow phase and fits quite
well to the virtual curve. The TICs cropped to arterial phase,
which are used for calculating the rRMSE, are provided in
Figure 20.

Consequently, the principle behavior of contrast agent
within the aneurysm is captured sufficiently. However,
additional effects such as this mixing/settling behaviour
occur in real environments and are not covered by our model

yet.

3.4. Comparison of Real and Virtual Angiograms—Patient B.
Patient B has a medium-sized aneurysm at the supraoph-
thalmic internal carotid artery. One acquired angiogram
is available (C-arm angulation 16.4°, 16.1°), which has a
duration of 6.7s. Contrast agent was injected for only a
small time period, resulting in a short measured injection
bolus. For the region of interest at a short distance behind
the inlet (ROIO, Figure 22), the FWHM of the measured
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time-intensity curve is 0.59 s, as given in Table 5—there was
no possibility to extract information about heart rate and
heart state, see Figure 23. Therefore, a heart rate of 69 bpm
was assumed, and the CFD velocity inflow profile could not
be synchronized with the acquired angiogram. The selected
inflow velocities range from 0.44 to 0.6 m/s, the average
velocity is 0.5 m/s. For the simulation, the parameters were
chosen as for the other patient case (10° particles, 0 = 1,
&t = 0.002 s), with a diffusivity coefficient D = 1.0.

Figure 21 shows the real and virtual angiograms. The
global flow patterns of both angiograms match, as can be
seen from the inflow jet entering the aneurysm, compare
Figure 21(b) for the real and Figure 21(c) for the virtual
angiogram, and the small amount of contrast agent in
the center of the aneurysm before it is washed out,
see Figure 21(f). Figures 21(a)-21(c) reveal that the filling of
the parent vessel and of the aneurysm itself is delayed for the
virtual angiogram compared to the real angiogram, which
presumably indicates an underestimation of inflow velocities
for the CFD simulation.

This observation can also be retrieved from the time-
intensity curves. From ROIO to ROI2, Figures 23(a)-23(c),
a shift between both curves is observable, which is progres-
sively growing with increasing distance from the injection
spot. The intensities of the real angiogram are thereby
registered sooner than those of the virtual angiogram.

In general, further calculated quantities based on time-
intensity curves cropped to arterial phase, Figure 24, show a
concordance between real and virtual angiograms, meaning
that the overall simulated behavior matches satisfactorily the
in vivo behavior, see Table 5. However, the delay strongly
affects the relative root mean square error, which is signifi-
cantly larger than for the previous cases under consideration.

4. Conclusion

In this paper, we have proposed a workflow to generate
patient-specific virtual angiograms based on CFD simulation
results.

We have used discrete particles in order to simulate the
transport of contrast agent and successfully demonstrated
that this approach can properly model the behavior of con-
trast agent, although this is not the predominant approach
used in related works [10, 30].

As a particular aspect, we have put particular
emphasis on a patient-individualized generation of virtual
angiograms, namely, the incorporation of the patient-
individual heart rate as well as the treatment-specific bolus
injection profile caused by manual contrast medium
injection, for example. As a consequence of this approach,
it is now possible to apply our virtual angiography method
without the need of using contrast injection systems or
taking care of specified contrast bolus profiles, which may
improve the future usability of this application in clinical
settings.

To obtain these parameters, we presented methods which
solely used the acquired 2D DSA data. Satisfying results
have been achieved with these methods to synchronize

23

the heart rate, heart state, and contrast bolus injection of
virtual and acquired angiograms. In general, the measured
quantitative differences are approximately in the same range
between real and virtual angiograms as given in [17]. Further
improvements of the results may be possible due to more
sophisticated methods for adapting the inflow velocities.

Finally, the overall correspondence offers the possibility
to use the presented virtual angiography workflow as a tool
towards the indirect validation of patient-individual CFD
simulation results.
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Compressive sensing microarrays (CSM) are DNA-based sensors that operate using group testing and compressive sensing
principles. Mathematically, one can cast the CSM as sparse nonnegative recovery (SNR) which is to find the sparsest solutions
subjected to an underdetermined system of linear equations and nonnegative restriction. In this paper, we discuss the /; relaxation
of the SNR. By defining nonnegative restricted isometry/orthogonality constants, we give a nonnegative restricted property
condition which guarantees that the SNR and the [; relaxation share the common unique solution. Besides, we show that any
solution to the SNR must be one of the extreme points of the underlying feasible set.

1. Introduction

Nowadays, with the rapid development of molecular biology
techniques, scientists use compressive sensing microarrays
to collect the gene expression changes of patients suffer
from specific diseases and test a lot of different drugs on
cells genetically to look for medicine being able to change
the abnormal gene expression [1, 2]. A DNA microarray
is a collection of microscopic DNA spots attached to a
solid surface. Each DNA spot contains a string of specific
DNA sequences, known as probes. These can be a short
section of a gene or other DNA element that are used
to hybridize an organism’s genetic sample under high-
stringency conditions. Probe-target hybridization is usually
detected and quantified by detection of chemiluminescence-
labeled targets to infer the genetic makeup in the test
sample.

Although the number of DNA sequences is extremely
large, not all agents are expected to be present in a significant
concentration at a given time and location. In traditional
microarrays, this results in many inactive probes during
sensing. On the other hand, we are often interested in
only a small quantity of certain harmful biological agents.
Therefore, it is important to not just detect the presence of
agents in a sample but also estimate the concentrations with
which they are present.

Assume that there are m spots and n labeled targets, and
we have far fewer spots than target agents such that m < n.
Mathematically, one can represent the DNA concentration
of each organism as an element in a vector x € R" and the
measurements as b € R™. Forl <i <mand1 < j < n,
the probe at spot i hybridizes to target j with probability
a;j. The target j occurs in the tested DNA sample with
concentration x;, which is clearly nonnegative. Denoting by
A := (aij)mxn> the process of DNA microarrays leads to
the sparse nonnegative recovery (SNR) which is to find the
sparsest solutions subjected to an underdetermined system
of linear equations and nonnegative constraints, with the
mathematical model as follows:

min || x||o,

(Po)

st. Ax=b, x=0,

where the variable vector x € R", ||x||, denotes the number
of the nonzero entries of x, A € R™ " is the measurement
matrix with full row rank, m < n,and b € R™.

SNR can be regarded as a special case of the sparse
recovery, which is related to program min{||x[ly | Ax = b}.
This program has sparked the significant concern and rapid
development in recent years [3—5] owing to its wide appli-
cations. However, with the nonnegativity prior information
about the object to be recovered in various applications



such as CSM, solutions on (Pg) tend to be closer to the actual
situations and lead to substantial improvements in the image
reconstruction. Moreover, with the nonnegative constraints,
the feasible set becomes a polyhedral set instead of an affine
subspace. This will bring us essential hardness in projecting
on the feasible set. Thus, (Py) is more likely difficult to solve.
Therefore, SNR deserves specific study.

Problem (Py) has been shown to be NP-hard [6, 7] in
general from the perspective of computational complexity.
One popular approach is to reconstruct the vector via the
relaxation, which refers to

min [|xll,,

(P1)

st. Ax=b, x=0.

Since (P;) is a standard linear program, it is easy to solve.
An important issue is how to guarantee the equivalence of
(Pp) and (P;) in the sense that they have the same unique k-
sparse solution under some conditions. Here, we call a vector
x k-sparse if the number of its nonzero entries is no more
than k. There has been some increasing interest and activity
in this area; see, for example, [8—14]. Donoho and Tanner
(9] firstly proposed that (Py) and (P;) share the common k-
sparse unique solution if the polytope AT is outwardly k-
neighborly, where T is the standard simplex in R”. Zhang
[13] proved that (Py) and (P;) share the common k-sparse
unique solution if the null space of A is strictly half k-balance.
Juditsky et al. [11] developed several different necessary
and sufficient conditions for the (Py)-(P;) equivalence in
the case of general type sign restrictions, including the
nonnegative constraints as its special case. When the feasible
set of (Py) is a singleton, the unknown can be recovered by
optimizing any objective function over this constraint set,
and (Py) and (P;) definitely get the same unique solution.
In this case, Bruckstein et al. [8] got the uniqueness of the
feasible solution under a sufficient condition that A has
a rowspan intersecting the positive orthant. Furthermore,
Wang et al. [14] proved that the above sufficient condition
is also necessary to the uniqueness of the feasible solution.
Donoho and Tanner [10] proved that the underlying feasible
set is a singleton if and only if the polytope AR” and R"
have the same number of k-faces. Khajehnejad et al. [12] gave
another equivalent condition of the uniqueness property by
characterizing the support size of vectors in the null space of
A.

For the /; relaxation of sparse recovery, one of the most
significant conditions is the restricted isometry property
(RIP), named by Candes and Tao [15] with the ground-
breaking work of Donoho et al. [16, 17]. However, to
the best of our knowledge, the nonnegative case of RIP
has not been investigated. This paper will deal with this
issue. We begin with investigating the solution property of
SNR and show that any solution to the SNR must be one
extreme point of its feasible set in Section 2. We prove in
Section 3 the nonemptiness and boundedness of the solution
set of (P;) and show that any solution of (P;) could be
stated as the convex combination of its optimal extreme
points. In Section 4, by defining the nonnegative restricted
isometry/orthogonality constants, we derive a sufficient
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condition for exact recovery of the sparsest nonnegative
image/signal via the linear program relaxation.

Now we give some notations used in the text. We use
sol(-) and v(-) to denote the solution set and optimal value
of problem (-). The e; € R"” would be the vector with only the
ith entry 1 and the rest all 0. ¢! € R! is the vector with each
entry equal to 1; we also use e to demonstrate that e” € R”
for short. The q; € R™ fori = 1,...,n denote the column
vectors of the matrix A and A; = (aj);ercqy,..

x € R", x; is the ith component and I(x) is the support set
of x; thatis, I(x) = {i | x;#0,i = 1,...,n}. For any subset

T c {1,...,n}, T¢ denotes the complement set of T out of
{1,...,n}.
2. Solution Property

Throughout the paper we assume that
$:={xeR'"|Ax=b,x>0} # . (1)

Apparently, 4 is a polyhedral set in R”. According to the
representation theorem, any x € 4 could be represented as
follows:

t q
x =2 Ax0+ > pd?, (2)

i=1 j=1

where zle)ti =1,1>0i=1,..,Hand {x? € R? | i =
1,2,...,t} are the extreme point setof 8;44; = 0, j = 1,..., ¢,
and {dY) € R" | j = 1,2,...,q} are the extreme direction set
of 8. Apparently, AX") = b, i = 1,...,; AdY) = 0, dV) >

0,j=1,...,9.
Define subsets of R" as follows:
Sy = sub{0},

S = {U sub{ei}]> \ So,

i=1

. 1
S, = <| U Sub{eil)eiz}} \US;
=0

i1in=1
(3)

" r—1
Sr:{ U Sub{eily--"eir}}\usj’

i1yensir =1

n—1

Sn = {subfer,...,es}} \ | S)

j=0

where sub{e;,...,e;} denotes the subspace spanned by the
vectors €;,,...,¢e;, k =1,...,n. Clearly, {S1,5,...,S,} forms
a partition of R”; that is, U;‘=1 S; = R"and SiNS; = O,
i# j. Moreover, ||x|[p = r for any x € S,. Along with the
nonemptiness of 4, it is easy to see that 4 must intersect one
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of these sets, hence v(Py) = min{r € R | $S, # &} and
sol(Py) # &. Furthermore, we have the following result for
the optimal value of (Py).

Lemma 1. Assume that v(Py) = k, one must have k < m.

Proof. Suppose that the conclusion is not true; that is, there is
x* € sol(Py) with [|x*|lg = k > m. Without loss of generality,
letx >0,i=1,...,k. We get

xfar+---+xfar=0. (4)

Meanwhile, rank(A) = m < k. Thus, {a; e R™ | i=1,...,k}
must be linearly dependent; that is, there exist d, ..., di, not
all zero, such that

d1a1 + -+ dkak =0. (5)

Assume that d, > 0. By denotingd = (dy,...,d,0,...,0)" €
R", we get Ad = 0. Taking § = min{x//d; | d; > 0,i =
1,...,k}, it holds that

A(x* —8d) = Ax™ — 5Ad = b,
x*—8d =0, (6)
% — 8d|)y < k — 1.

This is a contradiction with x* & sol(Py). We complete the
proof. O

To characterize property of the solution set sol(Py), we
need the next lemma. In particular, this brand new result will
play a key role in proposing the sufficient condition of the
uniqueness of sol(Py) in Section 4.

Lemma 2. Any two distinct solutions of (Py) must have
different support sets.

Proof. Assume for contradiction that x* and X are two
different solutions of (Py), x* #Xx. If I(x*) = I(X), we
have x > 0, X; > 0, for all i € I(x*). Set A =
min{minere) {x/%;}, minjee) {Xi/x}}. Since x* #£%, it
must hold A < 1. When A = x;/Xj,, take

1

-1 X. (7)

X =
It is easy to see that

| {{0},

AR, ie 1)\ fiok

i:i())

T T ®
Thus, we have Ax = b, x = 0 and ||X|lp < ||[x*|lp — 1. This is
a contradiction with the optimality of x*. When A = X} /x7},
just taking X = (1/(1—1))x—(A/(1—1))x* instead, we get the
contradiction by a similar way. The proof is completed. [

Now we are in a position to give the main theorem in this
section.

Theorem 3. Any solution of (Py) must be one of the extreme
points of 8.

Proof. Given any solution x* € sol(Py) with representation
x* = Z)Li*y(z) + Z ‘Llj(d(]), (9)
i=1 j=1

where Zle/\i* =1A" =0, x> 0, Ax? = b, foralli =
L. tuf =0, d7 > 0,AdV =0, forall j = 1,...,9. We
only need to prove that

e

Mf=1, Afef{01},i=1,..t
1 (10)

1

ur=0, j=1,...,q,

in (9). To this end, we have the following three steps.
Firstly, we claim that in (9),

I(0) = 1(x*), e {ilAf >0, i=1,..,t}
(11)
I(d(j))c[(x*), je{j\#;">0, j=1,...,q}.

According to the fact that x) >0,i=1,...,t and y;!‘ > 0,
d? >0,j=1,...,q,onehasforanyl € I(x"),i € {i | A} >
0,i=1,2,...,t},

t . q .
x = 20E+ Y urd” >0, (12)
i=1 j=1

which means that [ € I(x*). This implies I(x?) c I(x*).
Similarly, we get I(d/)) C I(x*). On the contrary, from the
optimality of x* and (9), we know that I(x*) C I =),

Secondly, we will show that y}k =0,j=1,...,q9. If this is
not true, there is an index jo such that y} > 0, then p; d')
has at least one positive component. Denoted = 1, ufd"/,
soAd=0and {d; >0 |1=1,...,n} # @.Notingthati(i) >
0, (11) implies the fact that I(3}_, A}x?) = I(x*),I(d) c
I(x*). Take 8 = min{(X/_, A*x)/dy | d) > 0,1 = 1,...,n},
and

t
X¥=>1x" - 5d. (13)
i=1

Without loss of generality, set 8 = (Xi_; A¥x"), /d;,. It is
easy to verify that

t .
~ —(i {0}) ] = IO
ST | sd,
? (Zl - )j M]e{ﬂh, i 16 thy, 1Y
hence
AX =0,
x>0, (15)

[1%llo = llx*{lo = 1,

which is a contradiction with the optimality of x*.



Thirdly, we will prove that 3/_  Af = 1, A* € {0,1},i =
1,...,t. Suppose that there exist Aj' > 0,13 > 0,and A +A) =
1 and two different extreme points of 4, say "), ), such
that

x* = AW + A5 x®, (16)

Based on (11), we have I(xV) = I(x®) = I(x*), hencex!)
sol (Py), 2 € sol (Py). Nevertheless, by Lemma 2, this is
impossible. Hence, we show that

x* e {70,5,.x0]. (17)

We complete the argument. O

Theorem 3 tells us that each solution of (Py) lies in the
extreme point set of 4. Here is a concrete example.

Example 4. Let A = (1} 3*),b = (3,). Obviously, the
solution set and optimal value of (Py) are

sol(Py) = {(2,1,0)}, v(Py) = 2, (18)

respectively. In this case, (2,1,0) is the only extreme point
of 4. While the solution set and optimal value of (P) :=
min{||x|ly | Ax = b} are

sol(P) = {(0,0,—1)}, y(P) =1, (19)

respectively.

At the end of this section, we consider the [, (0 < p < 1)
relaxation of (Py)

n
min x|y = >,
i=1

(Py)

st. Ax=0b,

x = 0.

Clearly, (Pp) is a concave relaxation of (Py). For the program

(Pp) , Ge et al. [7] derived the useful result as the following.

Lemma 5. The set of all extreme points of 8 is exactly the set of
all local minimizers to (P, ).

This lemma implies that any global solution of [, relax-
ation must be one of its extreme points. From Theorem 3 and
Lemma 5, we immediately draw a new proposition.

Proposition 6. For any p € (0,1), there exists an extreme
point of 8 that is both an exact solution of (Py) and a local

minimizer of (Pp>.

This is different from the result of Fung and Mangasarian
in [18], where they showed that for sufficiently small p €
(0, 1), there exists an extreme point X of the polyhedral set T,
obtained by lifting the set 4, such that X is an exact solution
of (Py) and a global solution of the /; relaxation.
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3. Linear Program Relaxation

Consider the linear program relaxation (P;). Since the linear
objective function (e, x) is bounded below over the feasible
set, based on the Frank-Wolfe theorem, the minimum of (P;)
is attainable. Among all the extreme points of 4, {x) € R" |
i=1,...,t} we call ¥V an optimal extreme point if it also
meets {e,x?) = v(P;).

Proposition 7. Any x* € sol (Py) could be stated as
the convex combination of optimal extreme points of (Pp).
Hence, sol (P;) is bounded.

Proof. Given any x* € sol(Py) with representation (9). If
there is iy € {1,...,t} such that x® is not an optimal
extreme point of (P1) and A} > 0, we have (e, ™)) > y(P)),
hence

v(P1) = (e)x*>

M=~

VR

AF <e, E(i>> +
1 j

u (ed”)

1

(20)

M~

=

AF <e, %(i)>

1

> S (P = w(Py),

i=1

which is a contradiction.
Similarly, if there is jo € {1,..
have p (e, dUn)y > 0, hence

.»q} such that /,t;!; > 0, we

t (21)

> Z/\i*V(Pﬂ = v(P1),

which is a contradiction. This completes the proof. O

From the above proposition, we know that linear pro-
gram (P;) has at least one optimal extreme point. Thus, we
could use simplex method or interior point method to solve
(P1).

4. Nonnegative Restricted Property

In the framework of [; relaxation, a significant problem is
how to guarantee the exact recovery of sparse image/signal
via the /; relaxation. One of the most important qualifica-
tions is the restricted isometry property; see [15]. Recall that
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the k-restricted isometry constants (RIC) 8k is the smallest
scalar satisfying

(1=80)llxl3 < IAxII5 < (1+80)lIxl5,  Vlixllo < k.

(22)

Similarly, the k, k"-restricted orthogonality constants (ROC)
Ok for k + k' < n is defined as the smallest scalar satisfying

[{(Ax, Ay) | < Op llxla]| ¥l

, (23)
Vixllo < ks V|lyll, < &,

where x and y have disjoint support sets. The RIC & and
ROC 6y measure how close each submatrix of A with
certain cardinality is behaving like an orthonormal system.
Under some restricted isometry property, one can get the
sparse recovery via its [, relaxation. Nevertheless, for the
nonnegative case, the sparse recovery may maintain new
characterizations. Above all, we define NRIC and NROC.

Definition 8. Let A € R™". We define the nonnegative
k-restricted isometry constants (NRIC) &) as the smallest
number satisfying

(1= 8f ) 13 = 1Ax13 < (1+6¢ ) 1113,
24)
Vx>0, |[xllo <k

Similarly, we define the nonnegative k, k"-restricted orthog-
onality constants (NROC) 6], for k + k" < n as the smallest
number satisfying

| {(Ax, Ay) | < 6 lIxlla| |yl
Vx =0, llxllo <k Vy=0,[yll, <k,

with I(x) and I(y) being disjoint sets.

Clearly,

5]: < 6k, 9]:](, < Gk,kr. (26)

Moreover, the numbers §; and 6;;, are nondecreasing in
kK.

By employing the projections of vectors in the null
space of A to R, we now provide a sufficient condition to
determine a solution of (Py).

Theorem 9. Suppose that k > 1 is such that §; + 07, | < 1
and x* € 8 with ||x* ||y = k. Then, x* is a solution of (Py).

Proof. We complete the proof by contradiction. If this is not
true, there exists x such that Ax = b, x > 0, ||x|lp < k — 1. Set
h = x* — Xx. Clearly, Ah = 0. Take h = h" — h™ with h" and
h~ being the projections of h and —h to R%, respectively. We
have h* = 0, h~ = 0, (h*,h™) = 0. In particular,

o (& =x),, ielx®),
(h); = {0, else,
(27)
(& -x) ., iel®),
(h7i = {0, else.

5
Therefore,
L= llkllo = [lx*{lo + %l < 2k — 1,
1 <||n*|], <k, (28)
0<|hllp<k-1
Thus, we get
0 = [l ARl
= ||AR* — AR7|];
= [|AR*|[3 + ||AR~ |13 - 2(AR*, AR")
= (187 IH*13 + (1 - o, ) In 11
(29)

= 0f . (I 15 +117113)
> (1-8¢ =68, ) 17113

+(1=8, = 601113
>0,

in which the first inequality is due to (24), (25), and the fact
that 2ab < a? + b?, and the last inequality is because of the
assumption of §; + 6/, | < I and the monotonicity of § in
k. This is a contradiction. Therefore, x* € sol(Py). O]

With the special result that any two solutions of (Py) have
different support sets, we next derive a sufficient condition
on the uniqueness of solution to (Py).

Theorem 10. Suppose that k > 1 is such that 6 + 07, < 1
and x* € 8 with ||x*|lg = k. Then, x* is the unique solution

of (Po).

Proof. Since §; + 0f, < 1 implies §; + 6, < 1, we know
that x* € sol(Py). Now we just need to verify that x* is the
unique solution of (Py). Assume that this is not true; that is,
there is another solution X # x*. According to Lemma 2, it
must hold I(X) #I(x*). Take h = x* — X. By the argument
similar to that in the proof of Theorem 9, we get

2 < Ihllo < [Jx*[lo + I%llo < 2k,

1< ||k, <k (30)
Ll < K,
and the contradiction. We conclude the proof. O

Now we are ready to give the main result of this paper,
which is called the nonnegative restricted property.

Theorem 11. Assume that k > 1 is such that
wt (V2+1)60, <1, (31)

and x* € 8 with ||x*|lo = k. Then x* is exactly the common
unique minimizer of (Py) and (Py).



Proof. Since (31) implies &) + 0, < 1, sol(Py) = {x*} by
Theorem 10.

Suppose that X is a solution of (P;). Take h = X — x*.
To get sol(P;) = {x*}, it suffices to verify that h = 0. The
proof includes three steps, the first two steps are parallel to
that in [19], in the third step, we utilize the technique of
projecting the null space of A on R; for details, see (42) and
the argument around it.

Firstly, we introduce a partition of {1,...,n}. Let Ty be
the support set of x*, T} the index set including the first k
large components of X in T, T, the index set including the
next k large components of ¥ in Tj \ T4, and so on. Thus,

HR

1| =k j=01,..,

(32)
. n
‘Tj‘Sk, ]:[E]
Moreover, for any j = 0, 1,..., [n/k], we define
]’li, i€ Tj,
(th)i B {0, else, (33)
which is exactly that for any j = 1,..., [n/k]
Xi xi*’ i€ To,
(hr,). = 1% i€ T (34)
0, else.
Therefore, Ah = 0,h = Z["/k hr,, and
. n
hTJ.ZO, ]:1,...,|:E:|,
(35)

ir], <k j=0,1,..., [%]

Next, we show that ||hr,ur,)ll, is bounded by [lA7, ;.
Note that for each j > 2,

HhTf ) S

\/EHhTJ o <

bl e

where the second inequality is because of the monotonicity
of h; on T§, and

[n/k] n/k]—1 1
2 [ |, ST zl s, = llesill - 57
This gives
[n/k] [n/k] 1
il = |50 | = 3 ol = Sl
Tilly 7

(38)
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In fact,

||, = 1L = 1xlh = []x* + Al

*
 t HxT5 + hrg 1

*
= HxTO + hTo

= Wy + [

ES *
> —
2|+ [l

[zl + ||z ]

- Hxi’ 1
which implies
ez

By applying (38) and (40), we have

=gl (40)

1 1
reromy]], < ﬁHhTs vt (41)
Finally, we show that [[hr,ur,ll, = 0. By utilizing the

projection h = h* — h~, where h" and h~ are projections

of h and —h on R%, we have hir,ur,) = herouTl) = hior)-
Moreover,
(%i_xi*)_p i€ T())
<h(+TnUT1)),' =1X ieT,
0, else,
(42)
(x; —xF)_, i€ Ty,
(h(TOUTl))i = 0’ S Tl’
0, else.
It is easy to see
[itromll, = 2%,
(43)
oy ||, = &
From Ah = 0, we compute
2
| Aeoroll> = (Ahror), Ah = Ahgryory)
(n/k) (44)

= — Z <Ah(T0uT1),Ath>-
=2

On one hand, based on the definition of NROC, (35), and
(43), for j = 2,

— (Ah¢rur,), Abr) )
= (bl Al ) + (Alryr, » Alir)

< | (Ahlromyp A )| + | (Ahcr,or, Al |

= O [omy |, - [l

ol

(45)

+ Olzk"h(TouTl)
< Ofaul [ |, - ([Btromoll, + o)

< ﬁ@,ﬁzthTsz Nlheryomlly

)
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where the last inequality is by the fact that (a + b)* < 2(a* +
b?). On the other hand, together with the definition of NRIC
and (43), one has

2
|Ahcr,omlly

= HAhz—TUUTl) - Ah(TOUTl)“j

2
;

= ||Ahrom,) ‘j + ||k, umy

- 2<Ah(+TnUT1)’Ah(_T0UT1)>

= (1030 [ [, + (1= 80) o |

2

- zelj,zth?TouTl)Hz : “h(TouTl)"z (46)

= (1 - 8;k)Hh(+TouT1)Hz * (1 - 81?)“}‘(}0”1)“2

([ )

o o,

= (1 -6 — eitzk)thrTuUTl)Hj
+ (107 = 6050 ||y,

= (1 - ;k - elj,zk)”h(TouTl)H;

2
\2

Therefore, we compute

2
(1 - 2+k - 61:,2k>||h(TnUT1)||2
< V200 yllhcr,omll,

[n/k]

) ;2 HhTf‘

, (by (44), (45), and (46))

(47)

< V20, i llheryoll, - (th

], by 7
< V260l - el (by (40)
= V20l hcromyl, - 1Al

= \/Eelj,zk”h(ToUTl)”;)

where the forth inequality is from the fact that ||k, H% <
kllh,]I5. Then the assumption &5 + (v/2 + 1)8; 5 < 1 forces

l|Acryumyll; = 0. (48)
Thus,
h(ToUT1) =0. (49)

Therefore, we get h(r,ur,)c = 0 by (41), hence ||| = 0. This
is exactly what we want. We complete the proof. O

5. Conclusion

In this paper, we have derived a nonnegative restricted
property condition, which ensures the exact recovery of
sparse nonnegative image/signal via the linear program
relaxation. Since the NRIC and NROC are defined in R”,
there may be more types of measurement matrices satisfying
the nonnegative restricted property than that in the case of
RIP, regardless of random matrices or deterministic matrices.
As a byproduct of the main result, we have investigated the
solution property of the sparse nonnegative recovery and
shown that any solution of (Py) must be one of the extreme
points of its feasible set. However, it is not clear whether a
given extreme point of the feasible set is a solution to (Py).
This can serve as a target for future work.
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Accurate tumor, node, and metastasis (TNM) staging, especially N staging in gastric cancer or the metastasis on lymph node
diagnosis, is a popular issue in clinical medical image analysis in which gemstone spectral imaging (GSI) can provide more
information to doctors than conventional computed tomography (CT) does. In this paper, we apply machine learning methods
on the GSI analysis of lymph node metastasis in gastric cancer. First, we use some feature selection or metric learning methods to
reduce data dimension and feature space. We then employ the K-nearest neighbor classifier to distinguish lymph node metastasis
from nonlymph node metastasis. The experiment involved 38 lymph node samples in gastric cancer, showing an overall accuracy
0f 96.33%. Compared with that of traditional diagnostic methods, such as helical CT (sensitivity 75.2% and specificity 41.8%) and
multidetector computed tomography (82.09%), the diagnostic accuracy of lymph node metastasis is high. GSI-CT can then be the

optimal choice for the preoperative diagnosis of patients with gastric cancer in the N staging.

1. Introduction

According to the global cancer statistics in 2011, an estimated
989,600 new stomach cancer cases and 738,000 deaths
occurred in 2008, which account for 8% of the total cases
and 10% of the total deaths. Over 70% of the new cases
and deaths were recorded in developing countries [1, 2].
The most commonly used staging system is the American
Joint Committee on Cancer Tumor, Node, and Metastasis
(TNM) [3-5]. The two most important factors that influence
survival among patients with resectable gastric cancer are
the depth of cancer invasion from the gastric wall and the
number of lymph nodes present. In areas not screened for
gastric cancer, late diagnosis reveals a high frequency of nodal
involvement. Even in early gastric cancer, the incidence of
lymph node metastasis exceeds 10%. The overall incidence
was reported to be 14.1% and 4.8% to 23.6% depending
on cancer depth [6]. The lymph node status must be pre-
operatively evaluated for proper treatment. However, the

various modalities could not obtain sufficient results. The
lymph node status is one of the most important prognostic
indicators of poor survival [7, 8].

Preoperative examinations, endoscopy, and barium meal
examinations are routinely used to evaluate cancerous lesions
in the stomach. Abdominal ultrasound, computed tomog-
raphy (CT) examination, and magnetic resonance imaging
(MRI) are commonly used to examine the presence of inva-
sion to other organs and metastatic lesions. However, their
diagnostic accuracy is limited. Endoscopic ultrasound has
been the most reliable nonsurgical method in the evaluation
of the primary tumor with 65% to 77% accuracy of N staging
due to the limited penetration ability of the ultrasound for
lymph node distant metastasis. In spite of the higher image
quality and dynamic contrast-enhanced imaging, MRI only
has an N staging accuracy of 65% to 70%. The multidetector
row computed tomography (MDCT) [9] scanner enables
for thinner collimation and faster scanning, which markedly
improves imaging resolution and enable rapid handling of



image reconstruction. Moreover, intravenous bolus admin-
istration of contrast material permits precise evaluation
of carcinoma enhancement, and the water-filling method
enables negative contrast to enhance the gastric wall. Thus,
MDCT has a higher N staging accuracy of up to 82% and has
become a main examination method for preoperative staging
of gastric cancer [10]. Fukuya et al. [11] showed in their study
for lymph nodes of at least 5 mm that sensitivity for detecting
metastasis positive nodes was 75.2% and specificity for
detecting metastasis negative nodes was 41.8%. A large-scale
Chinese study [10] conducted by Ruijin Hospital showed that
the overall diagnostic sensitivity, specificity, and accuracy of
MDCT for determining lymph node metastasis was 86.26%,
76.17%, and 82.09%, respectively. However, with clinically
valuable scanning protocols of the spectral CT imaging
technology, we can obtain more information with gemstone
spectral imaging (GSI) than with any conventional CT (e.g.,
MDCT).

In conventional CT imaging, we measure the attenuation
of the X-ray beam through an object. We commonly define
the X-ray beam quality in terms of its kilo voltage peak
(kVp) that denotes the maximum photon energy, as the
X-ray beam comprises a mixture of X-ray photon energies.
GSI [12] with spectral CT, and conventional attenuation
data may be transformed into effective material densities,
that enhance the tissue characterization capabilities of CT.
Furthermore, through the monochromatic representation
of the spectral CT, the beam-hardening artifacts can be
substantially reduced, which is a step toward quantitative
imaging with more consistent image measurements for
examinations, patients, and scanners.

In this paper, we intend to use the machine learning
method to handle the large amount information provided
by GSI and to improve the accuracy for the determination
of lymph node metastasis in gastric cancer.

The paper is arranged as follows, Section 2 describes the
details of the methods used in this paper, Section 3 presents
the experimental framework and the results, and Section 4
concludes the present study and discusses potential future
research.

2. Methodology

Figure 1 shows a flow chart illustrating the whole framework
of the classification on lymph node metastasis in gastric
cancer.

2.1. Pre-Processing. GSI-CT examination was performed
among patients using the GE Discovery CT750 HD (GE-
Healthcare) scanner [13]. Each patient received an intramus-
cular administration of 20 mg of anisodamine to decrease
peristaltic bowel movement and drank 1,000 to 1,200 mL tap
water for gastric filling 5 to 10 min before the scan. Patients
were in a supine position. After obtaining the localizer
CT radiographs (e.g., anterior-posterior and/or lateral), we
captured the unenhanced scan of the upper abdomen and
then employed the enhanced GSI scan in two phases. An
80 mL to 100 mL bolus of nonionic iodine contrast agent
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was administered to the ante-cubital vein at a flow rate
of 2mL/sec to 3 mL/sec through a 20-gauge needle using
an automatic injector. CT acquisitions were performed in
the arterial phase (start delay of 40s) and in the portal
venous phase (start delay of 70 sec). The arterial phase scans
the whole stomach and the portal venous phase examines
from the top of the stomach diaphragm to the abdominal
aortic bifurcation plane. The GSI-CT scanning parameters
are as follows: scan mode of spectral imaging with fast tube-
voltage switching between 80 kVp and 140 kVp, the currents
of 220 mA to 640 mA, slice thickness of 5 mm, rotation speed
of 1.6s t0 0.8 s, and pitch ratio of 0.984: 1.

2.2. Feature Extraction. Lymph node regions of interest
(ROIs) were delineated by experienced doctors. Not all the
lymph nodes could be captured in the images because of
the node size or location. Figure 2 shows lymph node and
aortic in the arterial phase and venous phase under 70 keV
monochromatic energy. The lymph node on Figure 2(b) is
difficult to find for its small size. The monochromatic values
(Hu) and the mean of material basis pairs (ug/cm?) were
calculated. The features used in this paper are monochro-
matic CT values (40 keV to 140 keV) and material basis pairs
(Calcium-Iodine, Calcium-Water, Iodine-Calcium, Iodine-
Water, Water-Calcium, Water-Iodine, Effective-Z).

During the image acquisition process, variations on
the injection speed, dose of the contrast agents and their
circulation inside the body of patients can cause differences
in the CT numerical values. To eliminate discrepancies, the
arterial CT value of the same slice was recorded at mean time,
and then normalization work was conducted by using the
following formula:

ROI mean CT value

= . 1
Norm Aortic mean CT value M

2.3. Feature Selection

2.3.1. mRMR Algorithm. Minimal redundancy maximal rel-
evance (mRMR) is a feature-selection scheme proposed by
[14] mRMR that uses the information theory as a standard
with better generalization and efficiency and accuracy for
feature selection. Each feature can be ranked based on its
relevance to the target variable, and the ranking process con-
siders the redundancy of these features. An effective feature is
defined as one that has the best trade-off between minimum
redundancy within the features and maximum relevance to
the target variable [15]. Mutual information (MI), which
measures the mutual dependence of two variables, is used to
quantify both relevance and redundancy in this method [16].
The two most used mRMR criteria are mutual information
difference (MID) and mutual information quotient (MIQ),

MID : max{H(i, ¢) - &ZH(:’,]’)],

i€, =
(2)
H(i,c)

MIQ : '
?é?f{ [(1/|S|) zjeSH(i’j)] }




Computational and Mathematical Methods in Medicine

Image acquisition

!

ROI segmentation and

feature extraction

!

Normalization

l l

Gemstone spectral imaging (GSI) system

Metric learning

Feature selection

| Incremental feature subset selection

Minimal redundancy maximal relevance

(mRMR)

Classification

—| K-nearest neighbor (KNN)

FiGURe 1: Flow chart classification on lymph node metastasis in gastric cancer.

(a) Arterial phase

: - &
. Lymph node

e
. O
g L~

-

(b) Venous phase

FIGURE 2: Gastric lymph node at 70 keV energy.

where H(i, c¢) is the MI between feature i and classification c,
H(i, j) is MI between features i and j, S is the current feature
set, and |S] is the length of the feature set.

2.3.2. SFS Algorithm. Sequential forward selection (SFS) is
a traditional heuristic feature selection algorithm [17, 18].
SES starts with an empty feature subset S;. In each iteration
only one feature is added to the feature subset. To determine
which feature to add, the algorithm tentatively adds an
unselected feature to the candidate feature subset and tests
the accuracy of the classifier built on the tentative feature
subset. The feature that exhibits the highest accuracy is
finally added to the feature subset. The process stops after
an iteration in which no features can be added, resulting in
an improvement in accuracy.

2.4. Metric Learning Algorithm. Learning good distance met-
rics in feature space is crucial to many machine learning

works (e.g., classification). A lot of existing works has shown
that properly designed distance metrics can greatly improve
the KNN classification accuracy compared to the standard
Euclidean distance. Depending on the feasibility of the
training samples, distance metric learning algorithms can
be divided into two categories: supervised distance metric
learning and unsupervised distance metric learning. Table 1
shows the several distance metric learning algorithms.
Among them, principal component analysis (PCA) is the
most commonly used algorithm for the problem of dimen-
sionality reduction of large datasets like in the application of
face recognition [19], image retrieval [20].

2.5. Classification. The K-nearest neighbor (KNN) [21, 26]
algorithm is among the simplest of all machine algorithms.
In this algorithm, an object is classified by a majority vote of
its neighbors. The object is consequently assigned to the class
that is most common among its KNN, where K is a positive
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TaBLE 1: Distance metric learning methods used in this work.

Unsupervised distance metric learning method

Principal component analysis (PCA) [19, 21]

Global

Supervised distance metric learning method

Local

Fisher discriminative analysis (FDA) [21]
Relevant component analysis (RCA) [22]

Neighborhood component analysis (NCA) [23]

Local fisher discriminative analysis (LFDA) [24]
Large margin nearest neighborhood (LMNN) [25]

integer that is typically small. If K = 1, then the object is
simply assigned to the class of its nearest neighbor.

The KNN algorithm is first implemented by introducing
some notations S = (x;, i), i = 1,2,... N is considered the
training set, where x; is the d-dimensional feature vector, and
yi € {+1,—1} is associated with the observed class labels. For
simplicity, we consider a binary classification. We generally
suppose that all training data are iid samples of random
variables (X, Y) with unknown distribution.

With previously labeled samples as the training set S, the
KNN algorithm constructs a local subregion R(x) < R? of
the input space, which is situated at the estimation point
x. The predicting region R(x) contains the closest training
points to x, which is written as follows:

R(x) = {x | D(x,%) < dw}, 3)

where d is the kth order statistic of {D(x,fc)}ll\], and
D(x,x) is the distance metric. k[y] denotes the number
of samples in region R(x), which is labeled y. The KNN
algorithm is statistically designed for the estimation of
posterior probability p(y | x) of the observation point x:

plylx) = p(x%g’(” N k[ky]_ W

For a given observation x, the decision g(x) is formulated by
evaluating the values of k[y] and selecting the class that has
the highest k[y] value

g(x) = {1_1

Thus, the decision that maximizes the associated posterior
probability is employed in the KNN algorithm. For a binary
classification problem in which y; € {+1,—-1}, the KNN
algorithm produces the following decision rule:

(5)

g(x) = sgn(avey,crx) yi)- (6)

3. Experimental Results and Discussion

3.1. Experiments. The image data used in our work were
acquired from GE Healthcare equipment in Ruijin Hospital
on April 2010. We collected got 38 gastric lymph node
datasets. Among the datasets were 27 lymph node metastasis
(positive) and 11 nonlymph node metastasis (negative). All
the lymph node data were pathology results obtained after
lymph node dissection (lymphadenectomy) in patients.

3.1.1. Univariate Analysis. In this study, we conduct univari-
ate analysis by exploring variables (features) one by one. We
analyze each feature by calculating its relevance to lymph
node metastasis. Here, we use the following measurements:

(i) Two-Tailed t-test: The two-tailed test is a statistical
test used in inference, in which a given statistical
hypothesis, HO (the null hypothesis), is rejected when
the value of the test statistic is either sufficiently small
or sufficiently large.

(ii) Point Biserial Correlation Coefficient (rpp):

Avg, — Av

= g P )
In regard to the p, g notation formula Avg, is the
mean for nondichotomous values in connection with
the variable coded 1, and Avg, is the mean for
the non-dichotomous values for the same variable-
coded 0. Std, is the standard deviation for all non-
dichotomous entries, and p and g are the proportions
of the dichotomous variable-coded 1 and 0, respec-
tively.

(iii) Information Gain (IG): IG is calculated by the
entropy of the feature X, H(X) minus the conditional
entropy of Y given X, H(X | Y)

IGX|Y)=HX)-HXIY). (8)

(iv) Area Under Curve (AUC).

(v) Symmetrical Uncertainty (SU): SU is the normaliza-
tion of IG within [0, 1], where the higher value of SU
shows a higher relevance for feature X and class Y (as
a measure of correlation between the features and the
concept target)

sup, ) = JEXK1D)

HX) + H(Y) ®)

The experimental results of the univariate analysis are
shown in Tables 2 and 3. Based on the table, the Iodine-
Water, Iodine-Calcium, Calcium-Iodine, and Effective-Z fea-
tures show high relevance to lymph node metastasis. Among
these features, high relevance to lymph node metastasis
was clinically confirmed for Iodine-Water and Effective-Z
features. Both Todine-Water and Iodine-Calcium features
reflect the concentration of the iodinated contrast media
uptake by the surrounding tissue, and thus they are related
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TaBLE 2: Univariate analyses of the features of gastric lymph node metastasis arterial phase.
No. Feature Mean & Standard P1 P2 o AUC su 1G
Negative Positive
1 40 keV 114.97 = 29.84 177.79 + 46.25 0.000 0.000 0.569 0.875 0.174 0.186
2 50keV 85.55 + 18.81 123.69 + 30.44 0.000 0.000 0.540 0.869 0.174 0.186
3 60 keV 67.49 + 13.36 90.63 = 21.15 0.000 0.002 0.488 0.845 0.186 0.208
4 70keV 56.74 £ 11.53 68.93 = 15.63 0.000 0.025 0.362 0.774 0.106 0.104
5 80keV 49.93 £ 11.53 54.84 + 13.68 0.001 0.302 0.172 0.596 0.070 0.071
6 90 keV 45.30 = 12.05 45.27 £ 13.55 0.025 0.994 —0.001 0.502 0.001 0.001
7 100 keV 42.01 £12.18 39.08 + 13.46 0.114 0.537 -0.103 0.552 0.013 0.015
8 110 keV 39.71 £ 12.37 34.68 + 13.54 0.272 0.295 -0.174 0.599 0.014 0.015
9 120 keV 38.13 £ 12.56 31.62 = 13.68 0.434 0.182 -0.221 0.623 0.025 0.027
10 130keV 36.83 +12.73 29.25 + 13.86 0.570 0.127 —0.252 0.653 0.079 0.086
11 140 keV 35.89 + 12.86 27.41 = 14.00 0.673 0.092 -0.277 0.660 0.079 0.086
12 Effective-Z 8.18 +0.26 8.71 £ 0.35 0.000 0.000 0.601 0.896 0.317 0.336
13 Calcium-Iodine 819.69 + 10.39 810.02 = 10.70 0.284 0.015 -0.391 0.754 0.126 0.127
14 Calcium-Water 14.05 £ 5.77 27.26 £9.12 0.000 0.000 0.594 0.899 0.315 0.343
15 Todine-Calcium —579.62 + 8.65 —568.30 + 9.31 0.000 0.001 0.500 0.822 0.174 0.165
16 Todine-Water 10.10 = 4.11 19.20 £ 6.22 0.000 0.000 0.596 0.896 0.315 0.343
17 Water-Calcium 1021.57 + 15.74 1000.17 = 18.21 0.000 0.002 —0.494 0.818 0.174 0.165
18 Water-Iodine 1030.55 += 13.74 1017.24 = 15.20 0.291 0.017 —0.386 0.734 0.174 0.165
TasLE 3: Univariate analyses of the features of gastric lymph node metastasis venous phase.
No. Feature Mean & Standard P1 P2 o AUC  SU 1G
Negative Positive

19 40 keV 168.56 = 45.67 199.95 = 51.33 0.000 0.087 0.282 0.684 0.070 0.072
20 50 keV 117.94 = 29.61 137.13 = 32.85 0.000 0.102 0.269 0.673 0.070 0.072
21 60 keV 86.91 +20.03 98.71 £ 22.14 0.000 0.135 0.247 0.653 0.086 0.092
22 70 keV 67.54 + 13.52 73.94 + 14.14 0.000 0.209 0.209 0.620 0.106 0.104
23 80 keV 55.09 = 11.10 57.96 + 11.31 0.000 0.481 0.118 0.559 0.110 0.122
24 90 keV 46.76 = 10.95 47.02 £ 11.50 0.000 0.949 0.011 0.535 0.018 0.018
25 100 keV 41.08 £ 11.04 39.90 = 12.06 0.000 0.781 —0.047 0.562 0.018 0.020
26 110 keV 37.08 £ 11.29 34.81 £ 12.73 0.003 0.611 —0.085 0.599 0.011 0.011
27 120 keV 34.25 + 11.56 31.27 £ 13.30 0.012 0.521 -0.107 0.613 0.011 0.011
28 130 keV 32.10 £ 11.86 28.56 £ 13.79 0.028 0.461 -0.123 0.613 0.011 0.011
29 140 keV 30.37 = 12.09 26.42 + 14.19 0.052 0.423 —0.134 0.626 0.018 0.019
30 Effective-Z 8.61 = 0.38 8.87 = 0.42 0.000 0.081 0.286 0.680 0.087 0.088
31 Calcium-Iodine 812.48 £ 9.36 807.83 = 11.88 0.651 0.254 -0.190 0.643 0.025 0.026
32 Calcium-Water 24.65 = 9.57 31.44 £ 11.52 0.000 0.093 0.276 0.673 0.086 0.087
33 Iodine-Calcium —570.78 + 8.89 —565.23 + 11.43 0.005 0.159 0.233 0.650 0.037 0.042
34 Iodine-Water 17.56 + 6.43 22.25+7.71 0.000 0.084 0.284 0.667 0.074 0.073
35 Water-Calcium 1005.60 += 17.73 994.85 + 22.22 0.011 0.162 —0.231 0.657 0.037 0.042
36 Water-Iodine 1021.14 + 13.95 1014.62 + 17.03 0.631 0.270 —0.184 0.636 0.011 0.011

to lymph node metastasis. The Calcium-Iodine feature
indicates tissue calcification, which rarely exists in lymph
nodes. However, experimental results show that the Calcium-
Iodine feature is highly related to lymph node metastasis,
which must be further verified by clinical results.

Based on the statistical results of r,,, AUC, SU, and IG,
compared with high monochromatic energy, low-energy

features have higher relevance to lymph node metastasis
according to clinical results. As shown in Figure 3, low-
energy images display a large difference between lymph node
metastasis (positive) and non-lymph node metastasis (neg-
ative), as monochromatic energy is associated with higher
energies that yield less contrast between materials and more
contrast with low energies. However, low-energy images
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FIGURE 3: Monochromatic energy CT value in the arterial and venous phases of gastric lymph node metastasis.
TaBLE 4: Classification performance of the SFS-KNN algorithm with different neighborhood sizes.
Neighborhood size K =1 K=3 K=5 K=7 K=9
14, 31, 5, 15, 26, 4, 27
P 2 14,31, 10, 36, 3, 12, 31, 23, 26, 3, 24,
Prenopm  clected features 14,16 21,24,9, 32,2, 25,8, 25,2 12,31,8,29,3,15,33, 1 30,16
28, 3,16
Accuracy 88.29% 93.68% 93.29% 91.71% 92.24%
12, 19, 29, 30, 8, 34,
12,19, 20, 30, 5, 18, 25
Selected features 12, 30 > 17> & DU 9y 105 &9,
Norm 20, 15,11, 30,5 12, 30, 31, 33, 14 17,34, 3, 32, 15, 24 33,25,15,6,24,7,
10, 20, 17
Accuracy 93.95% 96.45% 96.58% 96.18% 97.89%
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FIGURE 4: SFS-KNN feature selection procedures on raw and normalized data.
TasLE 5: Classification performance of mRMR-KNN (MIQ) with different neighborhood sizes.
Neighorhood size K=1 K=3 K=5 K=7 K=9
Sequence 14, 19, 5,17, 23, 12, 3, 16, 18, 22, 1, 15, 4, 2, 30, 13, 21, 32, 10, 33, 11, 34, 20, 35, 31, 25, 9, 29, 24,
E 8,7, 26, 36,27, 28,6
Prenorm Length 1 28 28 35 1
Accuracy 87.50% 89.74% 89.08% 87.24% 81.71%
Sequence 15,21, 3,30, 17, 24, 12, 14, 23,5, 16,22, 2, 18, 27, 1,20, 4, 33, 25, 13, 19, 6, 28, 35, 26,32, 7, 29,
a 34,8,31,9,11, 10, 36
Norm Length 4 2 2 2 10
Accuracy 90.00% 94.87% 94.87% 94.74% 95.66%

bring more noise with higher contrast. Therefore, doctors
usually select 70 keV as a tradeoff for clinical diagnosis.

3.1.2. SFS-KNN Results. Figure 4 and Table 4 present the
classification accuracy (ACC) of the KNN algorithm with
different neighborhood sizes and the SES algorithm with
increasing lengths of the feature set. ACC first increases
with the increasing length of the feature set, and then
decreases. After application of the SFS algorithm, the feature
set becomes shorter, whereas accuracy becomes higher
compared with the original feature set that explains the
effectiveness of SFS. From Table 4, we can examine ACC with
different neighborhood sizes and selected features. When
K =5, the performance remains stable before and after data
normalization, and ACC reaches 96.58% after normalization
and finally selects 12 (effective-Z in the arterial phase), 30
(effective-Z in the venous phase), 31 (Calcium-Iodine in the
venous phase), 33 (Iodine-Calcium in the venous phase), and
14 (Calcium-Water in the arterial phase) feature sets. These

selected features are highly related to the classification results
(lymph node metastasis). Among which the 12 (effective-Z
in the arterial phase), 30 (effective-Z in the venous phase),
33 (Iodine-Calcium in the venous phase) feature sets are
consistent with the pathology theory and clinical experience
of doctors. As for the other feature sets, their effectiveness
need to be further verified by studies. However, the SFS-
KNN algorithm is not a global optimized solution, and it may
lead to overfitting problems, which explain the decrease in
ACC. In our experiments, the amount of the samples is not
sufficient, so the large neighborhood size fails to reflect the
local characteristics of the KNN classifier. Therefore, K = 9
is not selected as the optimal size.

3.1.3. mRMR-KNN Results. Figure5 shows two feature
selection procedures with different mRMR criteria. Tables
5 and 6 reveal the classification performance of mRMR-
KNN (MIQ and MID) with different neighborhood sizes
[27]. We can see form the two tables that the two criteria
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TaBLE 6: Classification performance of mMRMR-KNN (MID) with different neighborhood sizes.
Neighborhood size K=1 K=3 K=5 K=7 K=9
Sequence 12,26,22, 18, 3, 30, 14, 6, 19, 16, 36, 2, 17, 5, 1, 24, 35, 15, 23, 4, 34, 13, 29, 21, 7, 31, 11, 32, 25,
q 20,9, 28, 33, 10, 8, 27
Prenorm Length 1 26 26 26 20
Accuracy 87.50% 90.39% 89.34% 87.11% 82.50%
Sequence 15,21, 2,30, 24, 17, 5, 14, 23, 12, 18, 22, 27, 4, 16, 33, 7, 1, 20, 25, 13, 3, 29, 19, 6, 35, 28, 31, 8, 32,
d 26,11, 34, 36,9, 10
Norm Length 4 2 16 8
Accuracy 89.74% 94.87% 94.87% 95.66% 95.26%
Feature selection procedure of mid-mRMR Feature selection procedure of mig-mRMR
0.05 T T T T T 1.4 T T - - .
0
—0.05 |
a —0.1} o
= =
-0.15
—0.2 +
—-0.25
-0.3 L L L L L L L
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Length of the base feature set Length of the base feature set
(a) MID (b) MIQ

FiGuRre 5: Feature selection procedures with different mRMR criteria.

of MIQ and MID acquire almost the same performances.
After normalization, the accuracy with all different K are
highly increased, thus demonstrate the positive effect of data
normalization. Among the feature sets, we can conclude
from the table that 15 (Iodine-Calcium in the arterial phase),
21 (60keV in the venous phase), 30 (Effective-Z in the
venous phase), and 3 (60keV in arterial phase) are closely
related to the lymph node metastasis, which highly agree with
the pathology theory and clinical experience of doctors. With
K = 5, the classification performance remains stable before
and after normalization, which further verifies the optimal K
(neighborhood size) value.

3.1.4. Metric Learning Results. Figure 6 shows 2D visualized
results of 6 different distance metric learning methods in
one validation. In the two-dimensional projection space, the
classes are better separated by the LDA transformation than
by other distance metrics. However, the result of KNN with
single distance metric is not very satisfying, that’s why we
consider combination.

Table 7 shows the classification accuracy of KNN algo-
rithm with different-distance metric learning methods.
Apparently, these results show that the data normalization

TaBLE 7: Classification performance of the KNN algorithm with
metric learning methods.

Data (length of feature set) Prenorm (4) Norm 01 (5)
KNN 80.79% 83.68%
without PCA 80.79% 83.68%
PCA 82.11% 81.84%
PCA + LDA 77.89% 96.33%
PCA + RCA 77.63% 96.33%
PCA + LFDA 76.97% 96.33%
PCA + NCA 76.58% 86.32%
PCA + LMNN 76.84% 96.33%

helps a lot on classification. Moreover, PCA is a popular
algorithm for data dimensionality reduction and operates
in an unsupervised setting without using the class labels of
the training data to derive informative linear projections.
However, PCA can still have useful properties as linear
preprocessing for KNN classification. By combining PCA
with other supervised distance metric learning methods (e.g.,
LDA, RCA), we can obtain greatly improved performance.
The accuracy of KNN classification depends significantly
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10

on the metric used to compute distances between different
samples.

3.2. Discussion. Based on the experimental results, the use
of machine learning methods can improve the accuracy of
clinical lymph node metastasis in gastric cancer. In our
study, we mainly used the KNN algorithm for classification,
which shows high efficiency. To improve effectiveness and
classification accuracy, we first employed several feature-
selection algorithms, such as mRMR and SFS methods,
which both show an increase in accuracy. We obtained
the highly related features of lymph node metastasis in
accordance with the validated results of clinical pathology.
Another way to improve accuracy is the use of distance
metric learning for the input space of the data from a
given collection of similar/dissimilar points that preserve
the distance relation among the training data, and the
application of the KNN algorithm in the new data patterns.
Some schemes used in our experiments attained the overall
accuracy of 96.33%.

4. Conclusions

The main contribution of our study is to prove the feasibility
and the effectiveness of machine learning methods for
computer-aided diagnosis (CAD) of lymph node metastasis
in gastric cancer using clinical GSI data. In this paper, we
employed a simple and classic algorithm called KNN that
combines several feature selection algorithms and metric
learning methods. The experimental results show that our
scheme outperforms traditional diagnostic means (e.g., EUS
and MDCT).

One limitation of our research is the insufficient number
of clinical cases. Thus, in our future work, we will conduct
more experiments on clinical data to improve further the
efficiency of the proposed scheme and to explore more useful
and powerful machine learning methods for CAD in clinical.
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A new method based on discrete particle swarm optimization (dPSO) algorithm is proposed to solve the branch-cut phase
unwrapping problem of MRI data. In this method, the optimal order of matching the positive residues with the negative residues is
first identified by the dPSO algorithm, then the branch cuts are placed to join each pair of the opposite polarity residues, and in the
last step phases are unwrapped by flood-fill algorithm. The performance of the proposed algorithm was tested on both simulated
phase image and MRI wrapped phase data sets. The results demonstrated that, compared with conventionally used branch-cut
phase unwrapping algorithms, the dPSO algorithm is rather robust and effective.

1. Introduction

In magnetic resonance imaging (MRI), the complex signal
contains both the magnitude and phase parts. Usually the
magnitude of the MRI signal has been mainly considered.
However, the phase of MRI signal offers very important
information on the velocity of the moving spins, and can also
be used to deduce useful information about the main By field
inhomogeneity and the magnetic susceptibility variations
[1]. In MRI, the phase information y;; is usually obtained
from a complex MRI dataset I;; = |I;;| exp(y;;) through
some mathematical operations, and the value always lies in
the principal interval of (-7, 7], consequently producing a
wrapped phase ¢; ;. This relationship can be described by
¢ij = W(yi;) = vij = 2k;jm, where k; ; is an integer and
W defines a wrapping operator that forces all values of its
argument into the range (—m, ] by adding or subtracting
an integral multiple of 27 radians from its argument. Phase
unwrapping is the process of estimating the true phase v; ;
from the wrapped phase ¢; ;. As an important tool, it can
not only be used for the three-point Dixon water and fat
separation, but also be applied to increase the dynamic range
of phase contrast MR velocity measurements [2]. If the
true phase gradients (i.e., the differences of y;;) between
contiguous pixels are less than 7 radians in magnitude

in the entire space, the true phase can be unwrapped in
a straightforward manner by just integrating the wrapped
phase gradients [3]. However, the presence of the noise,
undersampling, and/or object discontinuities often makes
this condition unavailable. Therefore, the problem of phase
unwrapping becomes complex in practice and difficult to
solve, although significant amount of research effort has
been devoted to date. In the literature, there are quite a
few existing phase unwrapping algorithms [4], which can be
grouped into two categories: path-following and minimum-
norm methods [5].

The branch-cut phase unwrapping method is one kind
of the path-following methods. Unlike the minimum-norm
methods, the branch-cut phase unwrapping technique offers
correct phase unwrapping with no solution approximations
[4]. In the operation, it locates residues, joins the residues
by branch cuts, and then unwraps all the pixels avoiding
those branch cuts. In the algorithm, residues are defined as
local inconsistencies, which mark the starting and end of 27
discontinuities. Corresponding to formula (1), that is, the
value nis 1 or —1 in a 2 X 2 closed-loop of the wrapped
phase gradients [4], as shown in Figure 1:

4
zAgo(i) = 27n. (1)

i=1



Ag(4)
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FiGURE 1: Residue calculation.

These wrapped phase gradients are computed counter-
clockwise:

Ag(1) = W((Pi+1,j - q)i,j))

Ap(2) = W(§0i+1,j+1 - §0i+1,j))
(2)
Agp(3) = W<(pi,j+1 - §0i+1,j+1):

£p(4) = W (g1) — gijn)-

In formula (1), when n = 1, we label it a residue with a
positive polarity. And when n = —1, the residue is labeled
with a negative polarity. Otherwise it indicates there is no
residue when n = 0. In this algorithm, the total length of
branch cuts must been minimized, resulting a decrease of the
amount of good pixels used as the branch cuts. This provides
more unwrapping paths in dense residue areas, leading to a
smoother result [5].

To achieve a minimum total length of branch cuts, vari-
ous techniques have been developed for the branch-cut phase
unwrapping method. These techniques include, for example,
the Goldstein’s algorithm [5, 6], the nearest-neighbor algo-
rithm [7], the minimum-cost matching (MCM) algorithm
[8], and the hybrid genetic algorithm (HGA) [4].

The nearest-neighbor algorithm is very efficient, but it
utilizes local heuristics, thus causing some long branch cuts
embedded in the phase image. Therefore, the distribution
of the branch cuts does not achieve the optimum, and the
resultant phase image is lack of the smoothness. The MCM
is a graph theory-based algorithm, which uses the Hungarian
algorithm to find the minimum total length of branch cuts.
Although powerful, it is computationally expensive. The
HGA employs a combination of global and local search
methods, and its solution is usually good. However, the
complexity of this algorithm tends to be a problem with the
increase of residues.

Compared with these three methods, which place the
branch cuts to connect pairs of residues of opposite polarity
(called dipoles), the Goldstein’s method joins the residues in
clumps instead of pairs [5]. The Goldstein’s algorithm is very
efficient, but often forms some isolated patches.

In this paper, we propose a new discrete particle-
swarm-optimization- (dPSO-) based branch-cut algorithm
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for phase unwrapping. The new dPSO algorithm is used to
find the best way in which the negative polarity residues
match with the positive ones, so that the overall length of
the branch cuts is minimized. The performance of the new
dPSO algorithm is compared with the Goldstein’s and MCM
algorithms.

2. Phase Unwrapping Using
the Proposed Algorithm

2.1. Overview of the Basic PSO Algorithm. As an artificial
intelligent algorithm, the particle swarm optimization (PSO)
[9, 10], is easy for implementation (only few parameters to
be adjusted) and converges fast.

In the PSO algorithm, the swarm consists of several
particles, and each contains N elements. Then each particle
is viewed as a point in an N-dimensional space. The ith
particle of swam is represented as U; = {uj1, Ui,..., Uin}.
All the particles share their information and move to find
the global optima. P; = {pi1, pi2,- .., pin} represents that the
local best position that the ith particle has reached, and P, =
{Pg1> Pe2s--.» pgn'} is the global best position. The velocity of
the ith particle is V; = {vi1,vi2,..., vin}. Each particle of the
swarm updates its velocity and position using the following
formulas:

VIl = w ok V! +¢; * rand() * (P! — U!)

(3)
+ ¢ % Rand() * (Pé - U,-‘),

Uit = Uf + Vit (4)

where ¢ denotes the iteration number, ¢; and ¢, are learning
factors (nonnegative constants), controlling (or regulating)
the influence of P; and Py, the function rand() and Rand()
generate a random number ([0~1]), and w is the inertia
weight factor.

A problem-specific fitness function (symbolized by f)
is employed to measure the performance of each particle.
Thereby, for a minimization problem, P; and P, can be found
in current iteration as follows:

W (PEOAEf(P) < f(UF)
B _SLU{ if £(PY) > f(U}), )
Py = argmin[ f (P)]. (6)

i

To date the PSO technique has been well developed for
the continuous problem, but not in discrete domain.

2.2. The dPSO Algorithm for Phase Unwrapping

2.2.1. Particle and Swarm Initialization. Any problem adopt-
ing the PSO algorithm has to be interpreted into PSO
particle form. For phase unwrapping, every particle should
be composed of some elements corresponding to the indexes
of residues. If we calculate all the residues in the wrapped
phase image at one stroke, sometimes the size of the particle
may be too large and the swarm size required may be
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enlarged accordingly. This may result in a poor solution
and/or extending the convergence time. To avoid this, the
whole image is divided into sub regions and therefore the
residues are set into different small groups.

The process can be described as follows.

(1) The image is partitioned on the basis of its phase
derivative variance map. The phase derivative vari-
ance is defined as follows [5]:

P v y 7\

\/Z (A‘Pi,]’ - Aq”r‘n,n) + \/Z <A¢i,j - Aq’m»") (7)

Zm,n = 2 >
where for each sum the indexes (i, j) cover over the
I x I window centered at the pixel (m, n). The terms
Ag;;and Ag; j are the wrapped phase gradients in the

I x I windows, and A%, , and Ag),. are the averages
of these wrapped phase gradients. In this paper [ = 3.

(2) Based on an appropriate threshold, the phase deriva-
tive variance map can be converted into a binary one,
where the low phase derivative variance values turns
out to be 0 and the high ones becomes to be 1. In
this way the image is divided into separate areas. To
obtain a proper threshold, a classical approach called
Otsu’s method [11] has been adopted in this study.

(3) It is observed that the majority of residues cluster in
the patches of value 1. Thus the residues are grouped
by taking the above steps.

In each region the indexes of the residues are inserted in
two arrays regardless of the order. One is a positive polarity
residue array, and the other is a negative polarity residue
array. Provided there are M positive polarity residues and
N negative polarity residues in one region, respectively, the
positive residue array and the negative one are accordingly
denoted as {si,s2,...,spm} and U; = {u;1, up,...,uin}. The
former will be fixed throughout all generations and serves
as a reference. And the later acts as a particle U; of the
initial swarm. The rest particles of the swarm are generated
via arranging the order of the elements in U; in a random
manner.

2.2.2. Fitness Estimate. From the abovementioned, it can be
easily seen that the dPSO algorithm is used to find out the
best matched order of the elements in the particle with the
reference array.

In dPSO, the quality of the current solution is judged by
the fitness function. Since the branch-cut phase unwrapping
must minimize the total length of branch cuts, the corre-
sponding fitness function is obviously for calculating the
total length of branch cuts in the wrapped phase image. Here
we employ Euclidian distance to assess the total cut length:

min(M,N

)
F= 3 s w) tn ) ®
]

where x and y denote the residue’s x-coordinate and y-
coordinate.

2.2.3. Velocity Update. Owing to the attribute of dPSO
algorithm for branch-cut phase unwrapping, the iterative
velocity in formula (3) should be a set of permutation
operators rather than a usual vector. Various permutation
operators have been introduced for discrete particle swarm
optimization. Here we choose the adjustment operator
[12], not the swap operator [13, 14], as the permutation
operator. This is because compared with the swap operator,
the adjustment operator avoids returning to the previous
position [12].

In addition, during all the iterations, w is set to be linearly
varied ([0.9~0.4]) [10]. This setting considers the global
searching capacity and convergence rate of the optimization:

W=09-05x (%) )

where T is the maximal iteration times.
To make formula (3) suitable for the dPSO operation,
some concepts are given as follows.

Definition 1. The adjustment operator AO(k,[) is defined as
deleting the element in the kth position and popping it in the
Ith position in the array.

For example, AO(5,3) acting on the array U; =
{5,1,4,2,3} getsaresult U; = {5,1,3,4,2}.

Definition 2. One or more adjustment operators make up
an adjustment sequence (AS). That is AS = {AO(k,]),
AO(k2, L), ..., AO(kn, 1)}

Acting an AS on an array means that every adjustment
operator of the sequence acts on the array in turn. Therefore,
in the AS, it is critical to properly arrange the order of
adjustment operators.

Definition 3. The plus sign “+” between ASs has its new
meaning. It is defined as forming a new longer AS by putting
the latter behind the former.

For example, AO(2, 4) + AO(5, 4) = {AO(2, 4),
AO(5, 4)}, {AO(2, 4), AO(5, 4)} + AO(3, 1) = {AO(2, 4),
AO(5, 4),A0(3, 1)}, {AO(2, 4), AO(5, 4)} + {AO(1, 3),
AO(5,4)} = {AO(2, 4), AO(5, 4), AO(1, 3), AO(5, 4)}. This
operation does not satisfy the commutative law.

Definition 4. The minus sign “—” between two arrays means
constructing an AS which can act on the array after minus
sign to obtain the array before.

Supposing there are two arrays, according to the array
before minus sign from left to right, this AS can be obtained
by adjusting the order of the array after. For example, in
W —R, W = {1,4,3,2,5} and R = {1,5,4,2,3}. W(2) =
R(3), so the first adjustment operator of AS is AO(3,2), and
the first new array R’ = {1,4,5,2,3}. Then W(3) = R'(5), so
the second adjustment operator is AO(5, 3), and the second
new array is R = {1,4,3,5,2}. W(4) = R”(5), so the third
adjustment operator is AO(5,4), and we finally obtain the
same array as W. Thus the calculation ends and AS = W —
R = {AO(3,2), AO(5,3), AO(5,4)}.

Definition 5. The multiplication sign “*” between two real
numbers is simply the operation of multiplication.



Definition 6. The sign “x” between a real number and an
AS means reserving a certam amount of the adjustment
operators in the AS in turn when the real number is in the
range (0, 1).

Given that the number of adjustment operators in the
AS denotes as ||AS]|, the number of retaining adjustment
operators is [b||AS||], which rounds the product of b and
[|AS]] to the nearest integer.

2.2.4. Position Update. Similarly, the formula (4) has to be
redeclared to fit the requirement of the dPSO.

Definition 7. The plus sign “+” between an array and an AS
means acting the adjustment operators of the AS on the array
in order. For example, given U; = {5,1,3,2,4} and AS =
{AO(2,1), AO(2,5)}, Ui+ AS = {1,3,2,4,5}.

It is obvious that the operations defined in Definitions 4
and 7 are inverse to each other.

2.2.5. The Procedure Description of dPSO Algorithm for Phase
Unwrapping. The process of using the dPSO algorithm for
phase unwrapping is summarized as follows.

(1) According to Section 2.2.1, the residues in the image
are divided into several clusters. Set h = 1.

(2) Do the following steps in the hth group of residues.

(3) Set values to the parameters of dPSO, which include
the learning factors (cj,c;), the maximal iteration
times (7'), and the number of particles in swarm, and
also the termination criteria.

(4) Initialize the swarm according to Section 2.2.1. Each
particle has its random velocity, that is, AS. Set t = 1.

(5) Evaluate the fitness of every particle according to
formula (8) and find the current P; P, by formula (5),
(6), respectively. Calculate the current inertia weight
factor according to formula (9).

(6) Sett = t + 1. Use formula (3) to get the new velocity
Vi. Then calculate the new position U; according to
formula (4).

(7) Repeat (5)-(6) until t = T or meeting the termination
criteria.

(8) Py is the best indexes order of the negative polarity
residues matched with the positive ones in this group.

(9) Set h = h + 1. Repeat (2)—(8) until & equals the
number of the residues groups plus 1.

2.3. Branch Cuts and Unwrapping. Once the best match in
every group has been found by dPSO, each pair of two
matching opposite polarity residues are connected by the
branch cuts. It is worth mentioning that, owing to that the
number of opposite polarity residues is not always equal to
each other, there are usually one or more residues left in each
group. Then the nearest-neighbor algorithm [7] is employed
to place branch cuts to balance these remaining residues. So
far all the residues have been balanced by branch cuts.
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Finally, the phase data can be unwrapped by flood-fill
algorithm [15, 16], without crossing the branch cuts as
follows:

(1) Choose a start pixel, whose phase value is stored as
an unwrapped phase value in the solution matrix.
The four neighboring pixels are unwrapped next
and their unwrapped phase values are placed in the
solution matrix. These four pixels are inserted in the
unwrapped list.

(2) Pick (and then eliminate) a pixel from the unwrapped
list. Unwrap the phase values of its four neighboring
pixels, avoiding pixels that have been unwrapped.
Insert these pixels in the unwrapped list and put their
unwrapped phase values in the solution matrix.

(3) Repeat (2) until the unwrapped list becomes empty.

In fact, it does not always mean that all the pixels
have been unwrapped when the unwrapped list becomes
empty. Because sometimes there are some pixels in the image
encircled by the branch cuts, they cannot be unwrapped if
not crossing the branch cuts.

2.4. Weighted L° Measure. Weighted L° measure, the most
general/practical error measure to consider [5], is used to
evaluate the quality of an unwrapped solution:

1S5

i=1j=1

(i+1,7) —y(ij)

- A(Pf’] 0

roc—1
w3 wlwii i+ 1) - v j) - agl|,

i=1j=1
(10)

where r and ¢ are the number of rows and columns, w" and

w ; are user-defined weights, and the L% norm measures a

count of the number of pixels at which the gradients of the
unwrapped solution mismatch the wrapped phase gradients.
In this paper the weights adopted are derived from the quality
map mentioned above, not just omitted (i.e., equal to 1).

3. Results and Discussion

We have tested the performance of the proposed algorithm
on both simulated and MRI phase data on a PC (Intel 2 Quad
CPU 2.39 GHz, MATLAB). We set both learning factors
(¢1,¢2) used in dPSO to be 2. The results were compared with
the well-known Goldstein’s and the MCM algorithms.

3.1. Simulation Results. The proposed algorithm was imple-
mented on a simulated wrapped phase image with salt and
pepper noise (the signal-to-noise ratio is 7.58 dB), which
has 2460 residues. Figure 2(a) shows the simulated wrapped
phase image. And its residue distribution is shown in
Figure 2(b), where the positive and negative residues are
marked as white and black pixels, respectively.

The resultant unwrapped phase image in Figure 3(a)
was achieved by dPSO using a swarm of 300 particles and
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(b)

FIGURE 2: (a) A 512 X 512 simulated wrapped phase image, (b) its residue distribution including 2460 residues, 1231 positive polarity

residues (white pixels), and 1229 negative polarity residues (black pixels).
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F1GURE 3: The top row is the unwrapped phase image for the simulated wrapped phase map in Figure 2(a) achieved by (a) dPSO, (b)
Goldstein’s, and (c) MCM algorithms. The bottom is the corresponding difference map got by (d) dPSO, (e) Goldstein’s, and (f) MCM

algorithms.

T = 1000. Figures 3(b) and 3(c) depict the correspond-
ing unwrapped phase images obtained by Goldstein’s and
MCM algorithms, respectively. We rewrapped these resultant
solutions and subtracted the original wrapped phase data
from them. The corresponding difference maps, which are
plotted in 3D visualization, are shown in Figures 3(d)-3(f).
As mentioned in Section 1, the difference between the
wrapped phase and the true phase is an integer multiples of

27. As a result, these curve surfaces of difference maps give
a visual representation of the deviations between the true
phases and the results, which can illustrate the accuracy of
the unwrapped solutions directly. The average value of the
difference map is called average difference.

The performance of dPSO with respect to the other two
algorithms can clearly be seen in Table 1. In terms of weight-
ed LY measure, average difference, and total cuts length,
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TasLg 1: Comparing dPSO with other algorithms for the simulated phase image in Figure 2(a) in terms of weighted L° measure, average

difference, total cuts length, and execution time.

Algorithm Weighted L° measure Average difference (radian) Total cuts length Execution time (s)
dpPSO 0.001301 0.873e -5 1310 1328
Goldstein’s 0.001384 3.77e =5 1313 79

MCM 0.001286 0.365¢ — 5 1298 3513

FIGURE 4: (a) A 44 X 44 displacement encoded MRI heart phase image, (b) its corresponding residue distribution involving 396 residues,

198 positive polarity residues, and 198 negative polarity residues.

the dPSO algorithm is better than the Goldstein’s, but not
as good as the MCM. On the other hand, the execution
time of dPSO is much less than that of the MCM, but not
comparable to that of the Goldstein’s.

3.2. Results of MRI Data. The proposed algorithm was also
executed on a displacement encoded MRI heart phase data
set [17] with 396 residues. The wrapped phase image and its
corresponding residue distribution are shown in Figure 4.
Figures 5(a)-5(c) depict the branch-cut distribution
achieved by the three algorithms, where the black pixels mark
the branch cuts. The dPSO result in Figure 5(d) was obtained
by using a swarm of 300 particles. And the results of the other
algorithms are shown in Figures 5(e) and 5(f), respectively.
In Figure 5(e) several patches are isolated, two large ones in
the upper part, two small ones in the middle, and a very
large one in the lower right part. Compared with Figures 4(b)
and 5(b), it is easy to observe that these patches are com-
pletely isolated by branch cuts, which would lead to an incor-
rect unwrapping. In addition, the isolated areas tend to arise
in the regions with dense residues, because in such regions
the branch cuts are often close to each other and have more
possibility to encircle some pixels. However, in Figures 5(d)
and 5(f) the isolated patches are much smaller and less.
The dipole branch-cut methods appear to be less likely to
isolate regions in the phase image by branch cuts, since the
branch cuts balance the residues in pairs not in clumps. The

difference maps of the three approaches are then generated
like in Section 3.1, shown in Figures 5(g)-5(i). Intuitively,
both the dPSO and MCM produce more desirable results
than the Goldstein’s.

As shown in Table 2, the Goldstein’s algorithm is ex-
tremely fast. Neither dPSO nor MCM is comparable to it. But
the proposed approach has the smallest weighted L° measure
and average difference. In addition, its total cuts length is the
shortest.

Another example is the MRI head phase data. The
wrapped phase image is shown in Figure 6(a). Figure 6(b)
depicts its residues distribution. The unwrapped phase
images achieved by the dPSO, Goldstein’s, and MCM algo-
rithms are displayed in Figures 7(a)-7(c), respectively.
Obviously, in Figure 7(b) the surrounding area was not
unwrapped at all. According to the previous analysis, the
Goldstein’s method isolates this area by branch cuts. In
comparison to Figure 6(a), the surrounding part roughly
is the back ground with dense noise. However, due to the
property of dipole branch-cut phase unwrapping method
the branch cuts could hardly enclose the surrounding area,
which certainly caused unwrapping phases in this area. The
same inferences can be also made according to the difference
maps of three methods shown in Figures 7(d)-7(f).

The weighted L° measure, average difference and total
cuts length are calculated over the whole image whether the
pixel is inside the region of interest (ROI) or background.
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FIGURE 5: The top row is the branch-cut distribution for the MRI heart phase image in Figure 4(a) achieved using (a) dPSO, (b) Goldstein’s,
and (c) MCM algorithms. The middle is the corresponding unwrapped phase result of (d) dPSO, (e) Goldstein’s, and (f) MCM algorithms.
The bottom is the corresponding difference map of (g) dPSO, (h) Goldstein’s, and (i) MCM algorithms.

TaBLE 2: Comparing dPSO with other algorithms for the displacement encoded MRI heart phase map in Figure 4(a) in terms of weighted
L° measure, average difference, total cuts length, and execution time.

Algorithm Weighted L° measure Average difference (radian) Total cuts length Execution time (s)
dpPSO 0.052223 0.056251 310 142
Goldstein’s 0.109667 0.294767 468 8

MCM 0.052490 0.076967 317 203

Thereby in these three respects, as shown in Table 3, the  Furthermore the former converges nearly 68% faster than the
dPSO and MCM algorithms are much better than the  latter.

Goldstein’s. Though the dPSO method does not get a better Viewing dPSO’s performance on these three exam-
solution than that of the MCM, there is little difference  ples, we can find that the dPSO algorithm takes more
between them. That is, dPSO is comparable to MCM.  time to achieve an optimal solution when plenty of residues
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(b)

FIGURE 6: (a) A 256 X 256 MRI head phase image, (b) its corresponding residue distribution containing 9795 residues, 4904 positive polarity
residues, and 4891 negative polarity residues.
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FIGURE 7: The top row is the unwrapped phase image for the MRI head phase image in Figure 6(a) achieved by (a) dPSO, (b) Goldstein’s,
and (c) MCM algorithms. The bottom is the corresponding difference map got by (d) dPSO, (e) Goldstein’s, and (f) MCM algorithms.

TasLe 3: Comparing dPSO with other algorithms for the MRI head phase map in Figure 6(a) in terms of weighted L° measure, average
difference, total cuts length, and execution time

Algorithm Weighted L° measure Average difference (radian) Total cuts length Execution time (s)
dPSO 0.064380 0.025642 9871 979
Goldstein’s 0.156827 0.665523 25533 41

MCM 0.063179 0.021957 9846 3052
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uniformly scatter throughout large areas. This is because the
pixels in each of these areas often have similar quality and
then the residues in each area can hardly be separated into
more than one group, which results in the increase of the
particle size for every group.

4. Conclusions

We have presented a new branch-cut phase unwrapping
method based on dPSO algorithm in this paper. Both
simulated and real wrapped phase data were used to test
the performance of the proposed algorithm. The results of
dPSO were compared with the Goldstein’s and the MCM
algorithms. It was found that the dPSO method is better
than Goldstein’s algorithm in terms of weighted L° measure,
average difference and total branch cuts length. Moreover,
the dPSO is much faster than the MCM algorithm in getting
a global optimum solution while it is comparable to the
latter in terms of weighted L measure, average difference
and total branch cuts length. Generally speaking, it has
been demonstrated to be robust, effective for the phase
unwrapping application.

In addition, it is capable of dealing with large branch-
cut problem with thousands of residues. The complexity of
the dPSO algorithm increases when the number of residues
in a group increases, as the length of the particle extends
which requires a larger swarm size. Future research will make
this algorithm to be more efficiently operated for the phase
unwrapping study.
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Deep tissue imaging has become state of the art in biology, but now the problem is to quantify spatial information in a global,
organ-wide context. Although access to the raw data is no longer a limitation, the computational tools to extract biologically
useful information out of these large data sets is still catching up. In many cases, to understand the mechanism behind a biological
process, where molecules or cells interact with each other, it is mandatory to know their mutual positions. We illustrate this
principle here with the immune system. Although the general functions of lymph nodes as immune sentinels are well described,
many cellular and molecular details governing the interactions of lymphocytes and dendritic cells remain unclear to date and
prevent an in-depth mechanistic understanding of the immune system. We imaged ex vivo lymph nodes isolated from both wild-
type and transgenic mice lacking key factors for dendritic cell positioning and used software written in MATLAB to determine
the spatial distances between the dendritic cells and the internal high endothelial vascular network. This allowed us to quantify
the spatial localization of the dendritic cells in the lymph node, which is a critical parameter determining the effectiveness of an

adaptive immune response.

1. Introduction

In recent years, 3D optical imaging techniques have become
popular (confocal microscopy, two-photon microscopy,
SPIM, OPT, and multifocel microscopy) [1-4]. Most of them
have become standard imaging techniques. There has also
been a concurrent trend towards high-resolution imaging
(SIM, STED, PALM, and STORM) [5-8]. These are all
capable of producing huge amounts of data in form of
3D data sets. But as the questions asked and the data sets
generated to address them are often very diverse, there are
few general interpretation tools available. There are a number
of standard image processing programs, both commercial
(Imaris, Volocity, Huygens, etc.) [9-11], freeware (MevisLab,
Drishti, etc.) [12, 13], as well as open source (Fiji, Image],
ICY, BiolmageXD, etc.) [14-17]; however, they are mostly
designed for visualization and some common analysis. Often
the tools or algorithms required to analyze a given data set

are not available off-the-shelf and must be implemented in-
house by the user. Quantification and spatial localization
in 3D data sets can tell us about interactions of the
structures imaged, which can be essential for deducing the
mechanisms underlying features visible in the images. Pure
data visualization in itself is often extremely informative, but
quantification and statistical analysis of the data can indicate
features or trends that are not readily apparent by visual
inspection.

During adaptive immune responses, specialized cells
located in the dermis called dendritic cells (DCs), use
lymphatic vessels to transport pathogen-derived material to
draining peripheral lymph nodes (PLNs), where they activate
T lymphocytes located close to the center of lymphoid tissue
(the T-cell zone or paracortex). DC migration from skin
to PLN requires expression of the promigratory receptor
CCR?7, which responds to secreted protein ligands CCL19
and CCL21 expressed both in lymphatic vessels as well as in



the T-cell zone [18]. During their journey, dermal DCs need
to cross the endothelial layer forming the lymphatic vessel
lumen in the dermis. After a largely passive transport to the
most proximal draining PLN, DCs cross a second barrier
in the outer rim of PLN, the subcapsular sinus (SCS) [19].
CCR?7 is thought to be involved in both the entry of dermal
DCs into lymphatic vessels as well as their transmigration
through the SCS into the deep T-cell zone. Experimentally,
this process can be recapitulated by subcutaneous injection
of in vitro activated DCs, which then migrate within the
following 12-36 hours towards the nearest draining PLNG.
Although such experiments uncovered an absolute require-
ment for CCR7 during this process, the precise contribution
of CCR7 and its ligands for either of the two processes—
lymphatic entry versus SCS egress—has thus far not been
thoroughly investigated.

We use selective plane illumination microscopy (SPIM)
to generate 3D voxel data sets of fluorescently labeled DCs
and high endothelial venules (HEV) in mouse lymph nodes.
To analyze this data, which has sufficient resolution to resolve
single DCs, we have implemented an algorithm in MATLAB
to quantify the spatial distributions of DCs and HEV within
the intact lymph node. We have used this algorithm to
compare the spatial distributions between wildtype mice and
the plt/plt mutant, which lacks the ligands for the CCR7
receptor. This allows us to quantify not only the number of
DCs in each PLN—a measure of their ability to migrate from
the dermis to the lymph node—but also their distribution
within the organ, which allows us to determine how effective
the DCs are at finding their way to the T-cell zone.

2. Materials and Methods

To achieve high-resolution imaging deep within intact
organs (millimeter-sized objects) or tissues [20], SPIM is the
most convenient imaging technique [2]. This technique is
based on illuminating fluorescent markers in the following
way: a laser light sheet penetrates the whole sample, illumi-
nating one plane in the imaged tissue. The emission signal
of the fluorophores is detected orthogonal to the incoming
light sheet. As only fluorophores located in the plane of the
light sheet are excited, we attain optical sectioning. Scanning
the sample through the light sheet results in a 3D voxel data
stack. An important prerequisite for this kind of imaging is
to have a transparent sample; as is the case for the lymph
nodes investigated in this study, if the tissue is opaque in
its native state, it has to be cleared chemically, enforcing ex
vivo imaging. For more detailed information about SPIM,
see [2]. Labeling distinct features in the sample with different
fluorescent markers generates 3D datasets with multiple
channels. We applied the SPIM technology to locate and
quantify leukocyte subpopulations and vascular networks
in intact murine lymphoid tissue in order to examine the
usefulness of our imaging approach to a biologically relevant
issue. In particular, we tested the relevance of CCR7 ligands
in lymphatic vessels and in the deep T-cell area for efficient
DC accumulation.
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To quantify DC accumulation and their relation to
the HEV, the distances to the center of the PLN and the
distance to the closest neighboring HEV are calculated. The
nearest neighbor calculation necessary for finding the closest
HEV is done by creating and comparing voxel lists, lists
of the coordinates of the centers of mass (CoMs) of the
segmented DCs, and of all the segmented voxels within the
HEV. After segmenting and filtering for intensity and size,
for every object p of CH1 (DCs) the coordinates of its
CoM is compared to the coordinates of all signal-containing
voxels i of CH2 (HEV), and their respective distances are
calculated as (d,; = \/(xp —x) + (yp — yi)2 +(zp — z) is
the Euclidian distance between the CoM of object p (CoM,)
and voxel i of CH2). The minimum distance of every object
p to a CH2 voxel, min;(d,;), is then used to construct the
histogram. Note, that the method presented is fast only for
sparse datasets (which applies here) but is not the most
efficient regarding nearest neighbor search (NNS) in general
(e.g., an Octree approach would be faster in denser cases).
For details, see Section 3 . The calculation of the distance to
the center of the lymph node works similarly: we assume the
center of the PLN to be the CoM of the HEV (CoMygy) and
then calculate dist (CoM,, CoMygy ) for every object p. CH2
effectively becomes a one-element voxel list, that one element
being CoMpugy.

Generation of dendritic cells from bone marrow
(BMDCs) and PLN sample preparation was done as follows:
DCs were generated by culturing bone marrow cells from
tibias and femurs of C57BL/6 mice for 7-8 days in RPMI
1640/10% fetal calf serum (FCS) supplemented with FLT3
ligand as DC maturation agent. During the final 24 hours
of culture BMDCs were stimulated with lipopolysaccharides
(LPS) (1 ug/mL; Sigma). Activated BMDCs were harvested
from the plates by vigorous pipetting and washing with
phosphate-buffered saline (PBS) w/o Ca?" and Mg?". Acti-
vation and phenotype of BMDCs were confirmed by flow
cytometry staining with the DC markers CD11c (HL3),
CD11b (M1/70), and CD86 (GL1) mAbs. Harvested BMDCs
in RPMI1640/10% FCS were labeled with CellTracker
Orange (CMTMR; 5uM for 30 min), washed and injected
subcutaneously (1 x 10° in 20 uL. RPMI 1640/10% FCS)
into the hind footpads of sex-matched recipient C57BL/6
mice or C57BL/6PPI' mice. One day after BMDCs transfer,
10-15 ug of Alexa594-coupled MECA-79 mAb was injected
intravenously into recipient mice in order to visualize the
HEV network in lymph nodes. Twenty minutes later, mice
were sacrificed, the footpad-draining popliteal PLNs were
excised and fixed in 0.4% PFA/PBS over night. Fixed PLNs
were transferred to ice-cold PBS and cleaned carefully from
the surrounding fat tissue under a stereomicroscope. Cleaned
and fixed PLNs were stored in 0.1% sodium azide/PBS at
4°C before dehydration in methanol and clearing in BABB
as described [21].

3. Results and Discussion

We imaged entire draining PLNs isolated from mice that
had received preactivated and fluorescently labeled DCs 18 h
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FIGURE 1: Images of PLNs from wildtype (a), (c), and (e) and plt/plt mutant mice (b) and (d), (f). HEV, red; DCs, green. (a), (b) Maximum-
value projections through the voxel data sets. The inset in (a) shows a higher magnification of the region indicated. White arrowheads show
the approximate positions of the afferent lymphatic vessels through which the DCs enter the PLNG. (c) and (d) Representative optical slices
through the central regions of the lymph nodes shown in (a) and (b). (e) and (f); surface renderings of the data in (a) and (b).

before the mice were sacrificed (our first channel: CH1). In
addition, we imaged the PLN-specific extensive postcapillary
network of HEVs as an anatomical landmark (our second
channel: CH2). As seen in Figure 1, SPIM reconstructions
clearly identified single DCs, which were mostly located
towards the center of wildtype mouse PLNs. We were also
able to detect a streak of DCs from the central accumulation
to a location near the edge of the PLN, where the SCS is
located. This streak most likely reflects the path that central
DCs have taken after their arrival from the SCS towards the
central T-cell zone.

Manual inspection of the single slices gives an idea of the
relative distribution of the channels in this particular slice,
but it is difficult to capture the 3D context (Figures 1(c) and
1(d)). A maximum value projection creates an image that

shows more of the sample, but it is impossible to tell anything
about the third dimension (Figures 1(a) and 1(b)). We
developed an algorithm to quantify the distance of adoptively
transferred DCs to the nearest point in the HEV network, as
well as to the center of the PLN as a surrogate marker for
accumulation in the deep T-cell area. To process the data, the
algorithm pipeline (Figure 2) uses standard image processing
methods, like 26-connectivity for segmentation of objects
and CoM or Volume (V) calculations for the segmented
objects. Intrinsic knowledge about the object size is used
to discard signal which survived the intensity thresholding
process. The choice of the threshold level influences the
accuracy and precision of CoM estimation [22], but will be
discussed later. In the left path of the processing pipeline
(CH1, where the data of the DCs is processed), small objects
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For every CoM:
Calculate distance to valid data of CH2 and filter min distance
Calculate distance to CoM of CH2 (~center of PLN)

Plot histogram of min distance // of distance to center
and
save data

FiGURE 2: Flow diagram of the quantification algorithm. In the left path (green) dendritic cells are processed, in the right path (red), the
vasculature data. The actual nearest neighbor search is done in the unified path (yellow). Abbreviations: center of mass (CoM), volume (V),
peripheral lymph node (PLN).
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either originate from pixel errors, tissue autofluorescence,
or other artefacts, whereas large objects can be fluorescent
impurities (e.g., dust) that have been embedded during the
sample mounting procedure [23]. Both cases have to be
excluded, leaving a window for objects in the size regime of
DCs. We have been conservative by specifying a window of
3.2pum to 18.5 ym for the DC diameter counting as a valid
signal, as the average DC diameter is about 12 + 2 ym [24].
In the right path in Figure 2 (CH2, HEV), there should be
ideally only one object, because it is a network of connected
tubes penetrating the whole PLN. As a result, small objects
can be excluded in the downstream calculations for CH2.

To explore the impact of the receptors for CCR7 on
immune function within the lymph node, we took advantage
of the C57BL6PPt (plt/plt) mice, a naturally occurring
mutant mouse strain, which lacks CCL19 and CCL21 protein
in the T-cell zone in PLN, while maintaining expression of
a second CCL21 isoform in lymphatic vessels. Although it
has been previously reported that subcutaneously injected
DCs accumulated with lower efficiency in the T-cell zone of
plt/plt PLNs as compared to wild type PLNs [25], it remains
unclear to what extent the decreased accumulation of DCs in
plt/plt PLN was due to impaired entry into dermal lymphatic
vessels versus decreased migration through the SCS barrier.
Therefore, we performed experiments where equal numbers
of DCs as used in wild type mice were injected into the
footpads of plt/plt mice, followed animal sacrifice 18 h later
and subsequent SPIM analysis.

Our whole-organ data revealed a significantly overall
reduced number of DCs in plt/plt PLN, suggesting that
migration of DCs into dermal lymphatic vessels was reduced
in the plt/plt mice (in our case we have 5700 and 7934
identified cells for the wt/wt mice compared to 2318 and
427 cells in the plt/plt mice). More importantly, the 3D
spatial distribution of DCs within plt/plt PLNs differed
dramatically from wild types, with most DCs retained in
the outer area in close proximity to or within the SCS. The
distinct distributions for the wild type and plt/plt PLNs in the
histograms in Figure 3 clearly show this effect. For the wild
type (Figures 3(a) and 3(c)), the mean distance of the DCs
from the center of the PLN is 330 + 130 um, whereas for the
plt/plt (Figures 3(b) and 3(d)) it is 500 + 150 ym. This result
is clear despite the fact that plt/plt PLNs are generally smaller
than those in wild type mice. Note that the specification of
the center of the PLN is a rough estimate. It does not have to
be precise in terms of specifying a real spatial center, so that
first our assumption to take the HEV for calculations holds
and secondly aiming for higher accuracy becomes obsolete.

To further quantify the difference between the behaviors
of DCs in wild type and mutant PLNs, we assessed the
distribution the DCs have concerning their minimal distance
to the next HEV, so that we have a NNS-problem in a 3D
dataset. The chosen method (comparing voxel coordinates)
is a tradeoff between computational cost and implementa-
tion time. It is a type of linear searching and is the simplest
approach to the NNS, as it has no spatial dependencies
to consider (we operate in a one-dimensional space where
only distances are considered). For the PLNs used in this
study, generation of the samples and their preparation and

scanning were a process requiring several days, whereas the
computational analysis performed with our algorithm typi-
cally required tens of minutes per sample. Thus, calculation
time is not the limiting factor in throughput in our system,
so a linear search algorithm is completely satisfactory. If
applications arise requiring reduced computational time, a
more efficient algorithm regarding computation time could
easily be implemented such as the use of octrees [26], or, as
we look for Euclidian distances, a method similar to the vp-
tree algorithm [27, 28].

In the wild type, DCs are expected to migrate from
their point of entry to paracortex (or T-cell zone), where
they will interact with T-cells to enable an adaptive immune
response. However, this migration is dependent on DC
response to the chemoattractant CCL21, which is generated
in the paracortex of wildtype PLN but absent in the plt/plt
mutant. We observe that the DCs in plt/plt mice, which
remain located close to their entry point—the peripheral
SCS—have both a smaller mean distance to the HEV (Figures
4(b) and 4(d)) and a larger distance from the center of the
lymph node (Figures 3(b) and 3(d)). They do not migrate
away from the peripheral region with its high HEV density (it
can be observed in Figure 1(d) that the HEV is very dense in
the periphery of the plt/plt PLN). With 39+ 31 ym, the plt/plt
mean distance is much smaller compared to the wt/wt mean
distance of 66 = 31 ym. The broader distribution in the wt/wt
(compare Figures 4(a) and 4(c) to Figures 4(b) and 4(d)) is
caused by DCs located both in the deep T-cell zone in the
core of the PLN (where the HEV network is not as dense as
in the periphery) and near the SCS (where the network is
very dense).

To validate our algorithm, we digitally dissected regions
of interest from the PLOs that were small enough for manual
counting of the DCs by visual inspection. Comparison of
the manual counts with the results of our algorithm yielded
agreement to within 2-3% (data not shown). We attribute the
discrepancies to statistical variations in the DC signal levels
and to the difficulty in distinguishing DCs that are very close
together. In any event, these small errors in DC identification
are not expected to have a significant effect on the results
of our analysis. The error induced by the CoM calculation
to determine positions of the DCs is small as we have an
almost spherical shape and a highly specific staining with
a pronounced signal. The thresholding process influences
the discretization bias and the averaging bias [22], but the
induced error is small compared to the measured distances
and does not affect our conclusions. For the same reason, we
did not aim for higher precision in localization using more
sophisticated localization methods.

4. Conclusions

In order to draw conclusions about the mechanisms behind
biological behaviors of interest, it is important to quantify
cell distributions comprehensively in an organ-wide context.
Quantification of spatial localization can be crucial for
proper understanding of the mechanisms of interactions
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FIGURE 3: Histograms of the distances from the DCs to the center of the PLN. (a) and (c) two representative wt-PLNs, (b) and (d) plt-PLNs.
The mean distance for the DCs in the wild type is smaller, indicating their location around the center of the PLN. In the plt/plt mutant,
DCs remain close to their entry point in the periphery of the PLN. The red vertical line marks the mean distance, the dashed lines mark the
standard deviation. (e) Schematic 2D depiction of the extent of the PLN (red) and DCs (cyan). The distances between the CoMs of the DCs

and that of the PLN are indicated by white arrows.

between distinct components of an organ. We have demon-
strated the application of quantitative computational analysis
to an immunological question, which could be used to study
3D cell-based mechanisms in general. Fast and reliable statis-
tics on 3D properties like the mutual distances of interacting
members of distinct sets of cell types and/or morphological
features in large data sets acquired in spatially extend organs

or tissues can help to reveal underlying mechanisms and their
functional significance. Our data quantifies the differences
in the behavior of DCs in wild type and plt/plt mouse
PLNs. It indicates that both the transport of DCs to PLNs
(as shown by the approximately 80% reduction of DCs
found in plt/plt PLNs), and their subsequent migration
within these organs (as indicated by the quantification of
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FIGURE 4: Histograms of the distances from the DCs to closest HEV, for the same PLNs as Figures 3(a) and 3(c) wt-PLN, (b) and (d) plt-PLN.
Mean distance for DCs in wt-PLN is much larger than for the plt/plt mutant, reflecting the high density of the HEV in the periphery. The
red vertical line marks the mean distance, the dashed lines mark the standard deviation. (e) Schematic 2D depiction of the HEV (red) and
DCs (cyan). The minimum distances between the CoMs of the DCs and the HEV are indicated by white arrows and dashed circles.

the distribution of the DCs, in particular the approximately
50% increased distance from the center of the PLN) is
compromised in the mutant mice. The approach can be
applied to a wide range of biological and medical questions
in context of disease mechanisms, especially considering
that data from novel deep tissue imaging techniques such
as SPIM are now becoming accessible. In particular, our
results now make previously challenging venues of research

feasible, such as the assessment of T-lymphocyte—DC
interaction frequencies with physiologically low numbers of
cells.
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By introducing the conflicting effects of dynamic changes in blood flow, volume, and blood oxygenation, Balloon model provides
a biomechanical compelling interpretation of the BOLD signal. In order to obtain optimal estimates for both the states and
parameters involved in this model, a joint filtering (estimate) method has been widely used. However, it is flawed in several aspects
(i) Correlation or interaction between the states and parameters is incorporated despite its nonexistence in biophysical reality. (ii)
A joint representation for states and parameters necessarily means the large dimension of state space and will in turn lead to huge
numerical cost in implementation. Given this knowledge, a dual filtering approach is proposed and demonstrated in this paper
as a highly competent alternative, which can not only provide more reliable estimates, but also in a more efficient way. The two
approaches in our discussion will be based on unscented Kalman filter, which has become the algorithm of choice in numerous

nonlinear estimation and machine learning applications.

1. Introduction

A thorough understanding of the dynamic relationship
between cerebral blood flow (CBF), cerebral blood volume
(CBV), and the blood oxygenation level dependent (BOLD)
signal is essential for the physiological interpretation of fMRI
activation data. The Balloon model described by Buxton et
al. (1998) [1] is the first biomechanical plausible model to
expound this relationship: increasing the flow (or perfusion
rate) generally leads to dilution of venous deoxyhemoglobin
(dHb), reducing the tendency of the blood to attenuate the
magnetic resonance signal. The resultant increase in signal
intensity is referred to as the BOLD response [2]. It is by
extending this model to cover the dynamic coupling between
CBF and synaptic activity, more sophisticated physiological
realities are incorporated, for example, oxygen metabolism
dynamics, both intra- and extravascular signal [3, 4], and
more intricate models obtained.

The Balloon model is an input-state-output model with
three state variables: blood flow, and volume, deoxyhe-
moglobin content and several biologically reasonable pa-
rameters. The problems of state estimation and parameter
estimation (sometimes referred to as system identification or

machine learning) associated with Balloon model are often
formulated in a state-space representation, where Balloon
model serves as a set of continuous-time system equations
to describe the hemodynamic process. The equations are
nonlinear, corresponding to the fact that Balloon model is
one of the numerous nonlinear approaches to characterizing
evoked hemodynamic response in fMRI.

Several work has utilized the Balloon model or its
enhanced versions in the analysis of fMRI response. Some
approaches, including expectation maximization (EM) [5, 6]
and maximum likelihood [7], model the BOLD observation
as deterministic hemodynamic process. However, a limi-
tation of these methods is that they can only deal with
measurement noise. Many promising approaches to the dual
estimation problem belong to filtering algorithm that is
able to account for both the physiological and measurement
noise. Riera et al. [8] addressed the data assimilation
problem in an extended Kalman filter (EKF) strategy. As EKF
might lead to the problem of divergence due to linearized
approximation, Johnston et al. proposed particle filter [9,
10] to avoid the flaw of linearization. Moreover, Hu et al.
[11-13] employed unscented Kalman filter (UKF) that also
outperforms EKF in terms of estimation error but with



roughly the same computational cost. Most recently, Friston
et al. described variational filtering to optimize the approxi-
mation of posterior density on hidden model variables, while
accumulating sufficient statistics to optimize the conditional
densities of parameters and precision [14, 15].

The approaches mentioned above have greatly improved
our ability to explore, and above all, to quantify the physi-
ological mechanism involved in neural activation. However,
they still have palpable defects. It is noteworthy that many
of them actually are in the spirit of joint filtering, in which
the underlying states and parameters are concatenated into
a single higher dimensional joint state space, a filter runs
for estimating both the states and parameters. Despite its
straightforwardness in theory and convenience in imple-
mentation, the weakness of joint filtering is obvious. The
objective of this paper is to introduce and develop an
estimator equally concise but with higher performance—
dual filtering. We will demonstrate the advantage of dual
filter from two aspects, by the example of dual UKF versus
joint UKE. (1) In terms of Balloon model, there is no inherent
biophysical correlation between the states and parameters. By
treating them separately, dual filtering can avoid undesired
transaction between them. (2) Larger dimension of state-
space vector implies much more computational expense.
Specifically, computational complexity for general state-
space problems is ©(L?) [16]. Although the frequency of
predict-update cycle required by dual filter is the twice of
that required by joint filter, dual estimate is much more
computational efficient.

2. Materials and Methods

2.1. Hemodynamic Model. Balloon model describes the
coupled kinetic changes from synaptic activity to the fMRI
BOLD signal at a given region. This model has been extended
by Friston et al. (2000) [5] to include the effects of external
inputs to an autoregulated vasodilatory signal, assuming
that the relationship between evoked neural activity and
blood flow is linear. The subsequent work added different
variations to this model, several of them were reviewed
and integrated in Stephan et al. (2004) [18] and Buxton
(2004) [19]. Based on fundamental physiology, rather than
empirical approaches, these enhanced models are able to
unify existing literature and provide insight into how the
underlying physiological mechanisms result in stable or/and
transit BOLD response. However, the original model pro-
posed by Buxton et al. and completed by Friston et al. is
sufficient to account for the nonlinear behaviors observed in
real-time series [5]. Too many state variables and parameters
will not serve our purpose here better.

The dynamic intertwinement between multiple physio-
logical variables, the cerebral blood flow (CBF) f, blood
venous volume v, and veins deoxyghemoglobin content g,
can be given as a set of nonlinear nondimensional differential
equations [1, 20]:

Byl
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where € is neuronal efficacy, reflecting the significance of
neuronal activity evoked by experimental event, hence it
varies with trial event; 7; and 7 represent time constant for
signal decay and autoregulatory feedback from blood flow,
respectively. The existence of feedback term can be inferred
from the poststimulus undershoots in CBF [21]. The degree
of nonlinearity of the BOLD signal is largely determined by
the stiffness parameter «, which characterizes the balloon-
like capacity of the venous compartment to expel blood at
a greater rate when distended [22]. Ey is resting net oxygen
extraction fraction. All variables are expressed in normalized
form, relative to resting values.

Noticing that the first equation has a second-order time
derivative, so we can write this input-state-output system
as a set of first-order ordinary differential equations by
introducing another variable s = f. By defining the state
vector as x(t) = [f,s,q, V]T, the system dynamic equation
can be constructed from (1):

x = f(x,0,u,v) v~N(0,Q), (2)
where 0 = {€, 75, 7, 70, &, Eo, Vo} € R! is system parameter,
the neuronal input u represents system input, and v is to
account for the process noise.

The observed signal can be taken as a nonlinear function
of volume v and deoxyghemoglobin g that comprises a
volume-weighted sum of intra- and extravascular signal:

(1) = Vo<k1(1 —q) +k2<1 - @) +hs(1 - v)),
v (3)
ki = 7E,  kr=2, ks =2F,—02,

appropriate for a 1.5 tesla magnet [1]. Vj is the resting blood
volume fraction, which generally varies across brain regions
and subjects. All parameters are independent of each other.
Their physiological definitions and probability distributions
are given in Table 1 [23].

The actual observation y is then composed of a determin-
istic part h(x, 6, t) and a stochastic part w:

y = h(x,5,w)

where y is the observation vector, w is measurement noise,
and f3 consists of ki, ky, and k3. Simultaneous estimation of
Vo and other parameters would be impossible, since their
product is settled for each sampled measurement yi. The
stiffness parameter « is a nominal factor to BOLD contrast, it
can be fixed to any value with its reasonable range in system
identification [17].

Equation (2) describes a continuous-time hemodynamic
process, and (4) models fMRI measurement as discrete
sampling of the continuous system states, together they have
formed a standard state-space representation for fMRI data
assimilation. Given yk, the physiological states x and the

w ~ N(0,R), (4)
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TaBLE 1: Hemodynamic model parameters and their probability
distribution.

Notation Definition Distribution

€ Neuronal efficacy € ~ N(0.54,0.1%)
T Signal decay 7, ~ N(1.54,0.25%)
5 Autoregulation 75 ~ N(2.46,0.25%)
7 Transit time 75 ~ N(0.98,0.25%)
« Stiffness parameter a ~ N(0.33,0.045%)
E, Resting oxygen extraction Ey ~ N(0.34,0.1%)
Vo Resting blood volume fraction ~ V, ~ N(0.02,0.005%)

optimal parameters for a certain voxel can be estimated
by use of UKF—a recursive minimum mean-square-error
(MMSE) estimator.

2.2. Dual UKF and Joint UKF. The unscented Kalman filter
has been applied extensively to the field of nonlinear estima-
tion for both states and parameters. The basic framework
of UKF involves estimation of the states of a discrete-time
nonlinear dynamic system:

Xir1 = F(xx, W, Vi),
(5)
Vi = H(xx, ng),

where x; represents the unknown system states, the system is
driven by a known exogenous input ux and process noise vi.
The observation noise is given by ny.

The UKF generally involves recursive utilization of a de-
terministic “sampling” approach. The sampled points (sigma
points) completely capture the true mean and covariance of
the variables, and when propagated through the nonlinear
system (F in this case), they are able to capture the posterior
mean and covariance accurately to the 2nd order of Taylor
series expansion [16].

Parameter estimation, or machine learning, on the other
hand, involves determining a nonlinear mapping:

Vi = G(xx, W), (6)

where x; is the input, yx is the output, and the nonlinear map
G(+) is parameterized by the vector w. Typically, a training
set is provided by sample pairs consisting of known input
and desired output, {xx,dx}. The goal of the learning can be
expressed to some degree as solving for w which minimizes
the error of the machine: e = dy — G(xx, w). In order to
estimate the parameters by utilizing UKF, a new state-space
representation can be written:

Wil = Wi + Tk,

(7)

di = G(xx, wi) + e,

where the parameters wy correspond to a stationary process
with identity state transition matrix, driven by process noise
rg.

Given that BOLD signal is the only output and obser-
vation of the system in terms of Balloon model, the dual

estimation problem, in which the system states and model
parameters must be estimated simultaneously, can be given
as follows:

Xk+1 = F(Xk,llk,Vk,Wk),
Wiil = Wk + %, (8)
Y& = G(xx, wi) + ey

Since standard UKF cannot be applied to this system imme-
diately, dual UKF and joint UKF have been proposed as two
alternatives. In the dual filtering method, two UKFs—one for
state estimation, the other for parameter estimation—run
in an alternate way. At each time step, the current estimate
of parameters Wy is used in the state filter as given input,
and likewise the current states estimate Xj is used in the
parameter filter. On the contrary, a single UKF runs for both
state and parameter estimation in the joint filtering. A higher

dimensional joint state vector is defined: % = [x¢"wi”]”,
and the state-space model is reformed as follows:
Xi1 = F(Xk, ug, Vi),
9)

vk = G(Xp, np).

The dual UKF and joint UKF approaches are illustrated in
Figure 1.

In this section, the framework of UKF is briefly reviewed,
a dual estimation problem with two approaches have been
presented. In the next section, we will focus on examining
the different performances of dual UKF and joint UKE, and
all of our discussion will be in the context of Balloon model.

3. Results and Discussion

3.1. Biophysical Interpretation. One of the most prominent
bifurcations between dual estimate and joint estimate is
whether to incorporate interaction or correlation between
states and parameters into filtering. As discussed earlier, the
joint filter concatenates the state and parameter random

variables into a single augmented state (i), so the cross-
covariance between states and parameters is effectively
modeled, that is,

s (- 3] (- £3))"] - 32 po ] w0

P Wi Xk Wik Wk

Dual filtering, on the other hand, decouples (in a sta-
tistical sense) the dual estimation problem by treating states
and parameters separately, which means Py,,, = Py, = 0.
For states and parameters involved in Balloon model, no
dynamic interaction or biophysical correlation between
them has been observed (they are uncorrelated variables),
therefore, it is reasonable to expect dual filtering to exhibit
more biophysical accuracy. Thus the fMRI experiments
substantiated our assumption.

The real fMRI data was acquired from 8 health subjects.
136 acquisitions in total were made (RT = 2s), in block of
8, giving 16 16-second blocks. The condition for successive



FIGURE 1: Schematic diagrams of joint filter (left) and dual filter
(right).

FIGURE 2: The greatest activated area of the group in the superior
temporal gyrus (GT) for data assimilation.

blocks alternated between rest and auditory stimulation,
starting with rest. Auditory stimulation was emotionally
neutral words presented at a rate of 60 per minute. We
selected the largest activated voxels in superior temporal
gyrus (GT) to implement data assimilation [24] (Figure 2).
Bias correction was performed using the method in [25].
The two algorithms were initialized in identical way on
experimental data and parameters.

Figure 3 shows the hemodynamic states given by joint
UKF and dual UKF. The lower peak of blood flow inferred
from joint UKF corresponds to the smaller neuronal efficacy
(€) in Figure 4.

Parameters estimated are shown in Figure 4. Signal decay,
autoregulation et al. remain unchanged (almost) during
dual filtering. While for joint UKF, the parameters do not
converge to their final values until the 4th ~ 5th block (60 ~
80 s after the first stimulation). This phenomenon is a strong
indicator for the introduced interaction between states and
parameters.

Real and estimated fMRI signals are plotted in Figure 5.
The simulated BOLD signal given by dual UKF shows a slight
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TaBLE 2: The fact that joint filtering requires half of the iterations
that are required by dual filtering has been taken into account.

Algorithm Dimension of state vector Total flops
Joint UKF L=L.+L,=9 285
Dual UKF L,=4L,=5 170

overshoot, followed by gradual return to reduced plateau,
and ending with a strong poststimulus undershoot. On the
other hand, joint UKF fails to some degree to reconstruct
a clean BOLD signal: the plateau is missing, neither does
the evolving pattern of the signal show itself in a stable
way in each block. The overestimated transit time (7o)
leads to a reduction in amplitude of the BOLD peak; the
less intense poststimulus undershoot can be explained by
the underestimated signal decay (7). Given the fact that
dual UKF and joint UKF have very similar performance
for state estimation, which is made clear in Figure 3, it is
safe to attribute the failure to the undesired fluctuations of
parameters (especially Ey, which affects the estimated signal
directly by (3)), or more precisely, the undesired interaction
between parameters and states.

3.2. Computational Interpretation. One of the most compu-
tationally expensive operations in UKF corresponds to calcu-
lating the new set of sigma points at each time update. This
requires taking a matrix squareroot of the state covariance
matrix, P € R, given by ST = P [16]. An efficient
implementation using a Cholesky factorization requires in
general O(L%/6) computations [26]. Therefore enlarging the
dimension of state-space vector will dramatically increase the
computational complexity (also can be referred to as time
complexity). In this subsection we will introduce two criteria
for evaluating the property of dual UKF and joint UKF in
time complexity.

Number of Floating-Point Operations (flops). In com-
puting, floating point can be thought of as a computer
realization of scientific notation, which is able to represent
a wide range of values. Flops number required by a given
algorithm or computer program is independent of the
computing platform, although its precise value may differ
under different counting rules. MATLAB (version before 6.0)
has provided us with a useful function flops to specify the
cumulative number of flops. For instance, if A and B are
N-by-N matrixes, then the output of flops (A + B) and
flops (AB) will approximately be N2 and 2N?.

Since Cholesky factorization is the only operation within
UKF whose time complexity is proportional to N7, it is
appropriate to consider that the flops number of Cholesky
factorization is sufficient to determine the flops of the whole
algorithm. For Balloon model, the dual estimation problem
is about determining four state variables (Ly = 4) and five
parameters (all the parameters except Vy and «, L, = 5)
at each time step. Table 2 shows the total flops number of
Cholesky factorization involved in each predict-update cycle
of UKE
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FIGURE 3: States estimated by dual and joint UKE. The dotted line corresponds to change of blood flow, the solid line shows venous volume
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FIGURE 4: Parameters estimated by joint UKF and dual UKFE. The mean values in Table 1 are used as initial values in our simulation. Apart
from E,, which grows sharply at the beginning and does not change afterwards, all the parameters obtained from dual UKF can be seen as
constants. Resting oxygen extraction V is the most important parameter in driving the model uncertainty [17], but simultaneous estimation
of V and other parameters would be impossible, as stated earlier. « is a nominal mechanism to BOLD signal. Therefore Vj, and & does not

enter filtering.
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TasLE 3: Flops number for augmented state vector.
Algorithm Dimension of state vector Total flops
Joint UKF L=L,+L,=19 2470
Dual UKF L,=91L,=11 1582

However, in practice by slightly restructuring the state
vector, the process and observation models, we may intro-
duce the noise with the same order of accuracy as the
uncertainty in the state. First, the state vector is augmented
togivea L* = L, + L, + L, dimensional vector;

xE= | v |. (11)

Then the process model is rewritten as a function of x,
x7,, = F(x}, ux); the unscented transform uses sigma points

that are drawn from

P, 0
0 0
0 R,

pe = , (12)

co”o

where R, and R, are the process and observation noise
covariance. In this situation, similarly we can derive Table 3.

For either case mentioned above, the flops number for
joint filtering is at least 56% larger than that for dual filtering.

Comparing to flops count, overall execution time is a
more tangible and practical criterion. We have tested our
programs on several computers and collected their execution
time data. Normally, a difference over 90% can be observed
(16s and 30s for dual UKF and joint UKE resp.). This
result is even more impressive than that related to flops
analysis, indicating that flops number is not the only
factor influencing the operation time. Even if we take the
rapid improvements in processing speed and memory into
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consideration, this variance is significant and should not be
ignored.

4. Conclusions

In this paper we brought forward the dual Kalman filter as a
reliable and efficient approach to estimating the states and
parameters involved in balloon model. Comparing to the
commonly used joint Kalman filter, its principle is in better
conformity with the physiological reality, and by decoupling
the dual estimation problem, it is much more calculational
efficient to implement. The result of experiments showed
good agreement with our conclusion.
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An element-free Galerkin method (EFGM) is proposed to simulate the propagation of myocardial electrical activation without
explicit mesh constraints using a monodomain model. In our framework the geometry of myocardium is first defined by a
meshfree particle representation that is, a sufficient number of sample nodes without explicit connectivities are placed in and
inside the surface of myocardium. Fiber orientations and other material properties of myocardium are then attached to sample
nodes according to their geometrical locations, and over the meshfree particle representation spatial variation of these properties
is approximated using the shape function of EFGM. After the monodomain equations are converted to their Galerkin weak form
and solved using EFGM, the propagation of myocardial activation can be simulated over the meshfree particle representation. The
derivation of this solution technique is presented along a series of numerical experiments and a solution of monodomain model
using a FitzHugh-Nagumo (FHN) membrane model in a canine ventricular model and a human-heart model which is constructed

from digitized virtual Chinese dataset.

1. Introduction

Myocardial contraction is driven by a sequence of propa-
gating electrical activations throughout the myocardium [1].
Propagation of electrical activations inside the myocardium
is a highly complicated process mainly due to the fibrous
structure of myocardium, as shown in many experiments [2].
There have been efforts in simulating myocardial electrical
activations using computational models with known physical
parameters, including the source intensities and locations,
material properties, and boundary conditions, because these
simulations can help to understand the measurement data,
suggest new experiments, and provide insights into the basic
mechanism of electrical activity in the heart. A number of
computational models have been developed to simulate the
macroscopic electrical propagation process [3, 4], such as
cellular automata and reaction-diffusion systems. A cellular
automaton is a discrete model which usually consists of a
regular grid of cells, each in one of a finite number of states.
Every cell has the same rule for updating, based on the states
in its neighborhood. Because the simplicity of states and
superior computational speed resulted from rules, cellular

automata have been applied in simulations of myocardial
electrical activity in the heart [5, 6], but such simplistic
and rule-based approaches cannot always properly capture
the shape of transmembrane potentials. A reaction-diffusion
system is a mathematical model that describes how the
concentration of one or more substances distributed in space
changes under the influence of two processes: local reactions
in which the substances are converted into each other and
diffusion which causes the substances to spread out in space.
This concept in the reaction-diffusion system is borrowed
and applied in the simulation of myocardial electrical
activity by turning local reactions into cellular models,
that is, ionic currents, and diffusion into transmission of
transmembrane potentials, that is, anisotropic propagation
through myofibers. Though the reaction-diffusion system
can more appropriately reproduce electrical activity of
excitable myocardium [3, 4, 7] than cellular automata, solv-
ing a reaction-diffusion system is computationally expensive
with realistic modelling of cardiac tissue properties and
cellular behaviors [3]. Recently, the Eikonal model [8, 9],
which is a simplified wavefront model, has also been solved
by FEMs in order to simulate anisotropic electrical activity



across myocardium [10]. The computational models have
been widely applied in understanding patients’ data [11-15].

In the context of modelling electrical activity in the heart,
one of challenges is to establish a numerical representation of
the complex geometry of the heart. This representation must
not only characterize geometric complexities but also be of
sufficient resolution to capture the activation wavefront and
perhaps cellular behaviours. In order to properly simulate
myocardial electrical activity by solving reaction-diffusion
systems accurately, a large number of numerical schemes
have been developed by representing the intrinsic structure
of the myocardium and the inhomogeneity/anisotropy in
different ways. By discretizing the diffusion tensor over the
problem domain, traditional FDMs can evolve electrical
activity over orthogonal and regular grids [16], but the
complex geometry of heart is always a great challenge
for FDMs. Thus, a few works have proposed the use of
irregular grids with FDMs to deal with complex geometry by
increasing the complexity of interpolation between grids [7,
17-19]. In FEMs, the integral form of the reaction-diffusion
system is discretized over a finite element representation of
the geometry. Typically low-order (linear Lagrange basis)
elements used in FEMs [20, 21] always lead to a high number
of elements in the complex geometry and a long time integra-
tion for a certain accuracy or remesh in changing geometry,
such as a beating heart. Therefore, high-order elements, such
as cubic Hermite basis elements [22] and quadratic Lagrange
basis elements, use more nodal parameters or nodes inside
one element to get better accuracy, but the size of system
matrix and the computational load are also increased largely.
Furthermore, meshing or remeshing for FEMs using high-
order elements still remains challenge.

EFGM is developed as a meshfree method in 1990s
[23] and has been successfully applied for a wide range of
mechanical applications [24, 25]. A series of publications
[26, 27] have explored the numerical capabilities of EFGM,
including parallelization and comparison with FEMs in
mechanical applications. Meshfree method has been applied
into simulation of myocardial electrical activity by authors
(28, 29]. However, the numerical performance of meshfree
method has not been well verified in the simulation of
myocardial electrical activity. Furthermore, the previous
work [28, 29] only used left ventricle segmented from
MR images with spurious fiber structure. Our aim of this
paper is to present EFGM as a computational tool to solve
reaction-diffusion systems for the simulation of myocardial
electrical activity. In this paper a new representation of
myocardial geometry and fiber structure by a cloud of nodes
without any explicit connectivity defined between them,
that is, meshfree particle representation, is first discussed.
Upon this representation, the numerical performance of
EFGM in solving the monodomain model [3, 4], a reaction-
diffusion system, is demonstrated through experiments. The
properties processed by EFGM provide quite a few advan-
tages, such as refinement can be accomplished by adding
or removing nodes in particular areas [23-25]. Moreover,
fiber orientation is interpolated with nodal parameters, not
inside the element any more. Hence, all the operations
inside the element of FEMs, such as coordinate transform
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from elemental coordinate to global coordinate and the
interpolation of elemental fiber orientation, are also avoided
in this approach. Furthermore, higher order approximation
of a meshfree shape function can be achieved without
rearranging nodal positions or adding extra degrees of
freedom in nodes for example, higher consistency and
continuity can be still maintained over the whole problem
domain, even with a linear basis, in EFGM [23-25]. Though
it has been demonstrated that EFGM can also handle
material inhomogeneities and discontinuities in mechanical
applications [24, 25], we cannot cover that in this paper
because of limited space.

Governing equations of electrical activity over the
myocardium are discussed in Section 2. A numerical scheme
based on EFGM in terms of representation, shape function
and the Galerkin weak form is established in Section 3.
Numerical experiments are presented and compared in
Section 4. And finally in Section 5, we discuss the strengths
and weaknesses of the current approach and state possible
future directions.

2. Governing Equations

The bidomain model [3, 4], a popular reaction-diffusion
system, divides the myocardium into intracellular and extra-
cellular space. Both spaces can be described by the same
coordinate system and are separated by the membrane at
each location:

V- ((Di+D)Vve) = =V - (DiVvy,) + Ly, (1)
Vi
V- (DiTvy) + 7 - (D;Tv,) = Am<CmW + Im) .
(2)

v 1s the transmembrane potential, v, is the extracellular
potential, D; is the conductivity in intracellular space, D, is
the conductivity in extracellular space, A, is the ration of the
membrane surface area to the volume, C,, is the membrane
capacitance, o, is sum of ionic currents, and I and I, are
external stimulus currents. There are a lot of cellular ionic
models [3, 4] that could be used in reaction-diffusion system.
If the conductivity in extracellular domain is assumed to
be infinitely large, or the conductivities of extracellular and
intracellular domains are assumed to be equally anisotropic,
for example, D; = k-D,, a bidomain model can be reduced to
a monodomain model, which turns (1) and (2) into a single
equation:

V - (DVvy,) = Am<cm‘%" +Iion) - I (3)

with natural boundary condition (DVv,) - n = 0 if
heart is considered as an isolated continuum. I is external
stimulus current, and D is the conductivity. The conductivity
variables, D,, D;, or D, at each point in space, are represented
by a tensor containing coefficients along and across fiber
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FIGURE 1: Meshfree representation of Auckland heart model.

orientation in that point. Let Djoy be a diffusion tensor of
a point in local fiber coordinate; then in 3D

gr 0 0
Diocal = 0 of O |, (4)
0 0 of

where oy along the fiber and o, across fiber. In some three-
dimensional simulation works, directions of sheet of fiber
and cross-sheet of fiber are treated differently [22, 30].

Hence the D of one point with & and f3 defining a rotation
around the z- and y-axis of the global coordinate system
according to the fiber orientation can be defined:

D= TDlocalT_l) T= RXZRX}/) (5)
cosa sina 0 cosff 0 sinf
Ry, = | —sina cosa 0 R, = 0 1 0
0 0 1 —sinff 0 cosf
(6)

3. Element-Free Galerkin Method

The reaction-diffusion system is a dynamic system controlled
by the diffusion term and reaction term. However, there
are too many cellular models, that is, reaction terms, which
are beyond the scope of this paper. Therefore, we choose
the monodomain model with polynomial cellular model
to verify the numerical performance of EFGM in this
paper: meshfree particle representation of geometry and
fiber structure by unstructured nodes is established first,
and then meshfree shape function is constructed from those
unstructured nodes; after obtaining Galerkin weak form
of the monodomain model using meshfree shape function
over meshfree particle representation, a regular background
mesh, served as an integration scheme, is applied to solve
Galerkin weak form of the monodomain model numerically.

3.1. Meshfree Particle Representation. In FEMs the problem
domain is always discretized by finite elements, such as
triangular meshes in 2D and tetrahedral meshes in 3D.
These elements are constructed through certain constraints,
such as connectivity and size. Then field variables, such as
potential or fiber direction, are interpolated by elemental

shape function. However in EFGM the problem domain
is represented by a cloud of unstructured nodes without
any predefined connectivity, named by meshfree particle
representation, and field variables are approximated by
meshfree shape function. In Figure 1, a meshfree represen-
tation of Auckland heart model and its fiber orientations is
shown from whole view, one slice to one section of muscle
wall. In meshfree particle representation all nodal positions
can be arbitrary, so irregular boundaries or interfaces of
inhomogeneity can be simply represented by nodes and
nodal positions can follow the changing of boundaries
or interfaces easily [23-25]. Several works also developed
different adaptive meshfree representations using level set
method [31], triangular meshing in 2D [25], or tetrahedral
meshing in 3D [25]. Moreover, refinement of EFGM could
be accomplished by adding or removing nodes into existing
representation according to the requirement of accuracy in
interested area, such as more nodes should be added into
interested area if the error is particularly large or higher
accuracy is required in this local area [24, 25].

3.2. Meshfree Shape Function. After meshfree particle rep-
resentation is established, approximation of field variables
can be computed using meshfree shape function and finite
nodal values. Construction of shape function is the kernel
of EFGM, which includes three steps: (1) determine the
size of influence domain of each Gaussian point and search
nodes (In this paper, the node only refers to the node of the
meshfree representation, Gaussian point always refers to the
quadrature point of Gaussian quadrature scheme.) which fall
inside the influence domain of Gaussian point from meshfree
particle representation, for example, x; (In this paper, x;
refers to index of coordinates, and x; refers to the index
of nodes) and I = 1,...,n; (2) choose proper weighting
parameters and calculate weight function; (3) compute
entries of meshfree shape function and its derivatives in the
position of each Gaussian point using moving least square
(MLS) approximation.

3.2.1. Influence Domain. The influence domain is used to
determine an influence area/supporting area of one point,
usually Gaussian point, inside the meshfree particle represe-
ntation. The shape of influence domain can be any arbitrary
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(b) Circular shape

FiGure 2: Examples of influence domains in 2D. (a) rectangular shape and (b) circular shape.

closed shape in space, while circle or rectangle in two
dimensions and sphere or cube in three dimensions are
commonly used [24, 25]. Examples of circle and rectangle
influence domains are shown in Figure2. The size of
influence domain should reflect the density of nodes (i.e.,
the size of influence domain in coarse area should be large
and the size of influence domain in dense area should be
small), and besides, influence domain of one point has to be
overlapped with influence domains of neighbouring points
to guarantee a smooth approximation of field variables
and their derivatives (C! continuity). The size of influence
domain of node x;, d,,,1, is calculated as

dmI = dmaxCIa (7)

where dmay is a scaling parameter which might vary between
different applications and could be determined by numerical
experiments [23, 25]. The distance ¢; is determined by
searching enough neighbouring nodes for the matrix A in
(22), which is discussed in the following subsection, to be
invertible, which is also a good strategy to reflect the density
of nodes. But influence domain of a point near to any
discontinuity should be cut by the discontinuity, including
boundary, if this influence domain crosses the discontinuity
during the construction of meshfree shape function [24, 25,
32], because the nodes in one side of discontinuity could not
affect the nodes or area in the other side of discontinuity.
Though cardiac tissue is discontinuous and fiber orientations
will not change smoothly at a certain scale any more [3],
the heart still could be modelled as a continuum for the
propagation of electrical activity, which will not damage
our purpose to demonstrate the numerical performance of
EFGM.

3.2.2. Weight Function. The weight function, a function of
distance ||x — x|, which obtains a compact support from

the influence domain, needs to be positive to guarantee all
meshfree shape functions unique, smooth and continuous
throughout the entire problem domain to fulfill the com-
patibility requirement so that the nodes further from x will
have smaller weights [23-25]. Cubic weight function and
quartic weight function are popularly used and they can be
replaced by each other in EFGM without rearrangement of
nodal positions. Cubic weight function is

W(HX—X;II)
dm]
2 1
3" 4r} +4r] for r; < 2
_ _la 4 1
= w(ry) §—4r1+4r,2—§r,3 for5<7’15 1,
0 for r; > 1,

(8)

where r; = ||x — x;||/d,,;;. And the spatial derivative of cubic
weight function in location x is:

d 1
(—8r + 12r12)d—Z for r; < >
dw(r;) _dw(r) drg

= dT’] 1
dxi drI dxl- (—4+ 8r; — 47’12)617}61 for E <r <1,
0 for r; > 1.

9)
Quartic weight function is

(lefxlll) () 1—61’IZ+81'I3—31‘;1 for r; < 1,
w|l———— ) =w(r) =

dmr ! 0 for r; > 1,

(10)
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where r; = [[x—xyl|/d,;. And the spatial derivative of quartic
weight function in location x is

dw(rr)
dxi
2 3 di’]
_dw(r) @ (—12r1 + 24r; — 12r1)a forr <1,
drpdxi | for r; > 1.
(11)

3.2.3. MLS Approximation. Let u"(x) be the approximation
of state variable uy at point x. In the MLS approximation:

ul(x) = D pi(x)ei(x) = PTe, (12)

i=1

where pi(x) are the polynomial basis functions, m the
number of terms in the basis functions, and e;(x) the
unknown coefficients which will be determined later. The
basis functions usually consist of monomials of the lowest
orders to ensure minimum completeness, and common ones
are linear basis:

pl =1{1,x} in 1D, pT ={1,x,y} in2D,
(13)
pT =1{1,x,9,z} in3D,
and the quadratic basis:
pl={Lx,x*} inI1D,
T =1{1,x,9,x%xy,y*} in2D, (14)

pl =1{1,x9,2,x% y%, 2%, xy,xz, yz} in 3D.

In EFGM, P” in (12) can be replaced by any other polynomial
basis PT without the rearrangement of nodal positions [24,
25]. The consistency of the MLS approximation depends on
the complete order of polynomial basis P”. If the complete
order of polynomial basis, PT, is m, the meshfree shape
function will possess C™ consistency [24, 25].

Given a set of n nodal values u(x;), u(xz),...,u(x,) of the
field variable u at a set of nodes {x;} = x1,x2,...,%,. The
coefficients a;(x) are obtained by minimizing the difference
between the local approximation u"(x) and the actual nodal
parameter u(x;) in location x:

J = S wir) [0 - utx)]”
I=1

. . 5 (15)
= ZW(T'I) [ZP:’(XI)&'(X) - ”(XI):| >
I=1

i=1

where w(ry) is the weighting function with compact sup-
port within the influence domain, which is defined in
Section 3.2.2 Equation (15) can be rewritten into matrix
form:

J = (Pe — u)"W(Pe — u), (16)

5
where
u= [ul,uz,...,un]T,
pix1) pa(xi) - pm(xi)
B p1(x2) Pz(Xz) Pm(Xz)
Pix) Pr(xa) e pm(xe) (17)
w(r) 0 -+ 0
0 w(r) --- 0
W= . . .
0 0 <o wir)

At point x, coefficients E(x) are chosen by minimizing the
weighted residual, which are realized through dJ/de = 0:

— =AE-Bu=0 (18)

therefore,
e = A"!Buy, (19)
where
A =P (x))W(r)P(x)), B =P (x)W(r). (20)
Substituting (19) into (12), the approximation u"(x)
becomes

u'(x) = D ¢r(x)ur = ¢(x)u, (21)
I=1

where the meshfree shape function ¢(x) is defined by
¢(x) = P(x)'A'B, (22)

with m the order of the polynomial in P(x). Note that m,
the number of terms of the polynomial basis, is usually
set to be much smaller than n, the number of nodes used
for constructing the meshfree shape function. The spatial
derivative of meshfree shape function in x is obtained by:
$(x), = (PT(x)A'B) =PL (x)ATB+P'(x)A]B

»Xi

(23)
+PT(x)ATB,,
where
B, = Wpe), (24)
dxi
and A}! is computed by
A;ﬁ] = —A_]A‘x[A_I, A= PT(XI)%P(XIL
(25)

where dW(r;)/dx; is defined in Section 3.2.2 Then the
approximation of first derivative of field variable u can be
obtained in x:

N
uh(x),, = D ¢(x) ,ur, (26)

i=1

and is continuous in the whole problem domain.



3.3. Construction of Galerkin Weak Form. In Galerkin weak
form differential equations are transformed into integral
form by using the weighted residual strategies so that they are
satisfied over a domain in an integral sense rather than every
point. Consider the integral form of (3), which also can be
easily applied to bidomain (1), we have

(e

JQI:V - (DVvn) = ot

+Iwn)]vd0 ~0, (27)

where v is the trial function. The exact solution of (3) should
always satisfy integral in (27). Substituting f = —A,,[ion and
evaluating integral in (27) using Green’s formulae

J A Con %deJrj va-DVde—D§ v%ds
S

= J frdQ,
Q
(28)

where S is the boundary of () and n is a vector normal
to boundary. Equation (28) can automatically fulfill zero
natural boundary condition, dv,,/on = 0, by eliminating
D§¢v(9v,,/0n)dS at boundary S, but an accurate numerical
integral scheme should be applied to the rest parts of (28) so
that zero natural boundary condition can be enforced cor-
rectly in numerical sense. In Galerkin weak form procedure,
trial function could be replaced by the shape function, ®7, of
EFGM here:

I AwC %CDTdQ+J vaDWDTdQ:J fOTdQ.
Q

(29)

To solve (29) we need to discrete them. Let v; be the
vector of nodal values of transmembrane potentials v,,, and
let f; be the vector of nodal values of f = —A,,Iion at node set
x7. Then v, = ®vy; and f = Of; and a continuous form of
(29) can be discretized:

AmC —J ®®TdQ+DVIJ vovoTdQ

(30)
= f,J ODTdQ.
Q
Rewrite equations previously mentioned with matrices:
A,Cpy ? +M™ 1I(V] =fi,
M, = J Te:dQ, K= I B/DB;dQ

)] qQ (/) ¢] J Q J (31)

¢i,x

Bi = ¢i,y >
¢i,z

with D the diffusion tensor transformed from fiber coor-
dinate (5), ¢ix, ¢iy, and ¢;, the derivatives of the shape
function with respect to x, y, and z, ¢; the matrix of shape
functions, and B; the differential matrix at the ith node.
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3.4. Integration Schemes. The shape function of EFGM
does not fulfill the property of strict interpolation, that is,
¢i(x;) # &ij, which implies that essential boundary condition
cannot be imposed directly, so penalty method and Lagrange
multiplier are proposed to enforce essential boundary con-
dition in EFGM [32, 33]. However, zero natural boundary
condition can be enforced in Galerkin weak form (Equation
(28)) by placing sufficient nodes along the boundaries and
then applying a correct integration scheme.

In EFGM, a regular background mesh, which consists of
nonoverlapping regular cells and covers the whole problem
domain, is a very popular choice to perform the integration
of computing M and K matrix in (29) because of its sim-
plicity. The regular cells of background mesh are commonly
squares in two dimension, and cubes in three dimensions.
The proper density of background mesh needs to be designed
to approximate solutions of desired accuracy. In each cell,
Gauss quadrature scheme is used. The number of quadrature
points, integration points, seems to depend on the number of
nodes in the cell. An empirical guideline of quadrature points
suggests [25]

ng = /n, +2 ng = yny+1

where 7, is the number of nodes in the cell and n, is the
number of quadrature points in one cell. Our experience
with Gauss quadrature in EFGM suggests that a lower order
quadrature (smaller n4) with finer background mesh may
be preferable to a higher order quadrature (larger n,) with
coarser background mesh. The background cells are usually
independent of the arrangement of sample nodes and large
enough to hold the whole problem domain, but in regular
domain with regular nodes, it can be coincided with problem
domain and depend on nodal positions. In the background
mesh, there may exist the cell that does not entirely belong
to the problem domain; that is, only a portion of this cell
would contribute to (29). This contribution could be realized
by counting the quadrature weights of those quadrature
points in this cell, which are inside problem domain, and
ignoring other quadrature points of this cell, which are
outside problem domain (Figure 3). Therefore, a scheme
that automatically detects the quadrature points of each
cell which lie inside of the problem domain is employed.
Hence the integral of (29) over irregular problem domain
is solved numerically in those quadrature points inside
problem domain. In [26], an irregular background mesh is
proposed to achieve higher accuracy, but the improvement
is not obvious and it may increase the time of assembling
system matrices. Finally we can give out the flow of EFGM:

in 2D, in 3D, (32)

(1) set up sample nodes,

(2) set up background mesh and quadrature points in all
cells,

(3) loop over all the quadrature points,

(a) if this quadrature point is outside the problem
domain, go to 3e,

(b) determine nodes whose influence domains
cover this quadrature point by searching
enough neighboring nodes,
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F1GURE 3: Dashed square cells consist of a background mesh, which
covers the whole problem domain—the area confined by solid lines.
In each cell, Gauss quadrature will be applied. Here only two cells
are marked to illustrate this process. Those Gauss points, indicated
by X marker, which are inside problem domain will be counted
during integration, but the other Gauss points, indicated by +
marker, which are out of problem domain, will not be counted.

(c) calculate quadrature weight, weight function
and shape function in this quadrature point,

(d) assemble M and K matrices in (29),
(e) end if,

(4) End loop.

4. Experiment

Numerical experiments are implemented by Matlab, and the
simulation of electrical propagation in Auckland heart model
is implemented by C++ and Matlab external C++ math
library in a Dell precision T3400 workstation with a quad
cores 2.4 GHz CPU and 4G DDR2 memory. Let II{ be
the analytical solution and let TT?™eri<?l be the numerical
solution in node i, respectively. To a set of nodes, from 1 to
N, root mean square (RMS) error is.

N
_ 1 " ical 2
RMS = NZ (H?xac _ H?umerlca ) ) (33)

i=1

The behaviour of reaction-diffusion equation is controlled
by the diffusion term and reaction term simultaneously.
The reaction term could have huge varieties in electrical
propagation applications [3, 4], and it is impossible to
evaluate EFGM’s performance over all the forms of reaction
term in this paper; however it would be valuable to compare
EFGM to FEM in approximating diffusion process. So a two-
dimensional heat conduction problem without reaction term
is first tested by FEM and EFGM:

?C _PC _1aC

T oo (34)

where C temperature, o diffusion tensor, and ¢ time. The
analytic solution of (34) in infinite media is [34]

_ C() xz
€= fnot EXP( 40t>’ (35)

where Cy is initial source in x = 0 at t = 0. The numerical
simulations are initialized by the analytic solution at t =
1, which can be calculated from (35) with Cy, = 1, and
then numerical solutions are obtained in t = 2 in 20 X 20
area in order to approximate the effect of infinite media
through a small time duration and a large enough area.
Though EFGM does not always require regular nodes, it is
convenient to determine the convergence rate by reducing
spacing between regular nodes. The convergence behaviour
of EFGM using different dpax and weight functions is also
evaluated. Euler forward method is applied from ¢t = 1
to t = 2 for time integration. To find a stable RMS error
in each spatial discretization, more than 10° time steps of
Euler method are used in our implementation. Because of
regular problem domain, 20 X 20 area, the nodes of EFGM
are chosen from grid points from 20 x 20 grids to 80 x 80
grids; that is, the spacing h is from 1 to 0.25. These grids
are also used as background mesh for EFGM, respectively;
for example, for 20 x 20 grids, there are 21 X 21 nodes for
EFGM and 20 X 20 cells in the background mesh, and for
80 x 80 grids, there are 81 x 81 nodes for EFGM and 80 x 80
cells in the background mesh. In all the cells of background
mesh, 4 X 4 Gaussian quadrature scheme is applied. The
same background meshes are used as meshes of linear FEM,
and the convergence curve of linear FEM is obtained using
the same Gaussian quadrature scheme for fair comparison.
The convergence curves of EFGM are displayed in Figure 4
along with the convergence curve of linear FEM. When
dmax = 1.1, both curves of cubic weight function and quartic
weight function in EFGM show almost identical convergence
behaviour as linear FEM. Without changing linear basis and
nodal positions in EFGM, the convergence rates of EFGM
become better in both weight functions when dp,x increases
from 1.1 to 3.0, and these curves are far below the curve of
linear FEM. However, the convergence behaviours of EFGM
do not become better when dpax has even bigger value. When
dmax = 4.0, the slopes of convergence curves (Figure 4)
are larger, but RMS errors increase sharply in coarse nodes.
A great value of dn,y, that is, oversized influence domain,
will produce oversmoothing effect as one huge element or
too coarse mesh in FEM, which is the reason that RMS
errors of EFGM increase largely in coarse nodes with too
bigger value of dn.x. Hence the suggested range of dmax is
between 1 and 3 [24, 25]. As shown by all the convergence
curves in Figure 4, EFGM shows much better behaviour than
linear FEM. Higher-order Gaussian quadrature scheme of
each cell of background mesh will help EFGM gain better
accuracy, but lower-order Gaussian quadrature scheme in
the cells of finer background meshes also works quite well.
Another experiment, with 2 X 2 Gaussian quadrature scheme
in each cell of background mesh and total number of cells
being 4 times as large as before, is compared to previous
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FIGURE 4: All the experiments, including FEM, use linear polynomial basis, and their convergence rates are indicated by slope. All the nodes
are regularly placed and so & is the spacing between nodes. 4 x 4 Gaussian quadrature scheme in each cell of background mesh is used for

numerical integration.

results in Figure 4. The convergence behaviours of lower-
order Gaussian quadrature scheme in finer mesh (indicated
by 2 X 2 in one cell in Figure 5) are better than higher-order
Gaussian quadrature scheme in coarse mesh (indicated by
4 x 4 in one cell in Figure 5).

An analytic result of reaction-diffusion system of cardiac
electrical activity seldom exists that allows the performance
of numerical methods to be verified. However, an analytic
solution of conduction velocity in a one-dimensional fiber
is available when a cubic polynomial ionic current model
is used as a reaction term of the monodomain model [35].
The conduction velocity is determined by each location’s
activation time, which is defined by the time at which

the maximum upstroke velocity occurs [3]. The cubic
polynomial ionic current model is given by
Iion :g|:vm<1_vm) (l_vm)j|> (36)
Vih Vp

and the analytic conduction velocity y is given by

AnC?, (s+ 1)’ (37)

a thh

where g is the membrane conductance. vy, and v, represent
the threshold potential and the plateau potential, respec-
tively. All the potential variables in cubic polynomial ionic
current model are expressed as deviations from the resting
potential. The parameters used in cubic current model are

listed in Table 1. Again, the same setting of nodes is used in
FDM, linear FEM, and EFGM (cubic weight function and
quartic weight function), and time integration is solved by
Euler forward method again. After activation times of all
nodes are available, RMS error of conduction velocity can
be calculated. In Figure 6, the relation between RMS errors
of different numerical methods and spatial discretization is
displayed. The convergence behaviours of EFGM are still
better than conventional methods, FDM and FEM, after a
cubic polynomial reaction term is included. In Table 2, that
the computational costs to reach a similar level of error for
conduction velocities of different ¢ values are shown. From
Table 2, it can be seen that EFGM could achieve similar level
of error using considerably less time. The computational
costs presented in Table 2 have been split into “assemble” (the
time taken to assemble the global system of equations) and
“propagation” (the time taken to solve the global system of
equations) times.

To explore the further ability of EFGM in simulation
of cardiac electrical activity, one published monodomain
model, a modified FHN model [7], is solved by EFGM. This
FHN model [7] is

W £y ion) + 7 - (DY),
ot
aIion _ T (38)
at - b(vm dIan))

f(vm: Iion) = Clvm(Vm - a)(l - Vm) = &Vmlion,

with natural boundary condition (DVv,,) - n = 0. Values of
parameters are taken from [7], which are listed in Table 3.
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FIGURE 6: Results of conduction velocity using FDM, FEM, and EFGM. F is the spacing between nodes and RMS is the error measure. It
shows that EFGM still has better convergence rate after the reaction term is included than FEM and FDM. 2 X 2 Gaussian quadrature scheme

in each cell of one finer background mesh is applied.

TABLE 1: Parameters of cubic current model.

Parameter Vrest Vth Vp

8 Cin A

Value -85.0mV -75.0mV

15.0mV

0.004 mSmm=2 0.01 uF mm™? 200 uF mm™"
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TaBLE 2: Comparison of computational costs.

RMS h (mm) Assemble (sec) Propagation (sec)
o=0.5
FDM 3.30e — 04 0.05 n/a 258.31
FEM 2.3le — 04 0.05 0.20 248.26
EFGM(cubic, dpax = 1.5) 4.56e — 04 0.2 0.11 39.50
EFGM(cubic, dim.y = 2.0) 2.60e — 04 0.8 0.05 41.33
EFGM(quartic, dmax = 1.5) 3.40e — 04 0.2 0.07 38.83
EFGM(quartic, dmax = 2.0) 1.49¢ — 04 0.8 0.04 40.60
o=0.25

FDM 6.06e — 04 0.05 n/a 580.11
FEM 4.60e — 04 0.05 0.21 591.42
EFGM (cubic, diax = 1.5) 8.12e — 04 0.2 0.10 48.23
EFGM(cubic, dpax = 2.0) 5.80e — 04 0.8 0.04 50.90
EFGM(quartic, dmax = 1.5) 5.20e — 04 0.2 0.08 47.81
EFGM(quartic, dmax = 2.0) 3.00e — 04 0.8 0.02 50.90
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Ficure 7: The convergence of the velocity of propagation wave with increasing density of regular sample nodes. (a) 2 X 2 X 2 quadrature
points in each background cell; (b) 3 x 3 x 3 quadrature points in each background cell.

FIGURE 8: (a) 3 X 3 X 3 grid points (solid) and 2* quadrature points (stars) in each background cell; (b) 3 X 3 X 3 grid points (solid) and 3°
quadrature points (stars) in each background cell; (c) meshfree representation of cube with irregular sample nodes (1106 nodes); (d) all the
fiber directions are (0.57735, 0.57735, —0.57735); (e) all the fiber directions are (0.57735, —0.57735, 0.57735); (f) half is (0.57735, 0.57735,
—0.57735) and half is (0.57735, 0.57735, —0.57735). Red points in the front side are stimulated at the beginning.
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(a) 47 ms

(b) 95ms

(c) 176 ms

(d) 236 ms

FIGURE 9: Propagation wave at 47 ms, 95 ms, 176 ms, and 236 ms with regular sample nodes (10 x 10 X 10 nodes). Fiber orientation from
column 1 to column 5: (0.57735, 0.57735, —0.57735); (0.57735, —0.57735, 0.57735); halfis (0.57735, 0.57735, —0.57735) and halfis (0.57735,
0.57735, —0.57735); isotropic; isotropic. Except 3° quadrature points in each background cell are applied in column 5, 2° quadrature points
in each background cell are applied in other columns. In each column total 10° background cells are used for integration of Galerkin weak
form. Diffuse parameter: column 1, 2, and 3: dy = 4, des = 1, column 4 and 5: dy = dis = 1. Red color represents active state and blue color

represents quiescent state.

State variable v,, is the excitation variable which corresponds
to the transmembrane voltage, Iion is the recovery current
variable, n is the normal of the boundary, f (v, Lion) is the
excitation term, a, b, cl, ¢2, and d are parameters that define
the shape of action potential. These parameters are constant
over time but not necessary in space. The changes of state
variables are determined by the excitation term f(vy, fion)
and diffusion term V - (DVv,,), and D is defined in (5).

In order to find out a proper density of sample nodes
in EFGM for a stable propagation wave of the FHN model
in heart, two series of isotropic plane waves of electrical
propagation with increasing regular sample nodes in a cube,
whose size is 60mm X 60mm X 60 mm, are solved by
setting an initial potential, 0.5, to one side of cube, and
then the conduction velocity is calculated by activation
time. A fourth-order Runge-Kutta method, which can select
time step automatically, is applied for time integration. Two
series of the isotropic electrical propagation with regular
sample nodes, which change from 3 x 3 x 3 grid nodes to
16 x 16 x 16 grid nodes, and correspondingly the regular
background mesh, whose background cells change from
2 X2 x2to15x 15 x 15, are simulated, but one uses 23
quadrature points in each background cell and the other uses
33 quadrature points in each background cell. Convergence

curves of conduction velocity are plotted in Figure 7, and a
stable speed of propagation wave is achieved in both curves
after sample nodes are equal to or greater than 10 x 10 x 10.

In Figure 9 propagations with different fiber orientations
using 10 X 10 x 10 regular sample nodes are displayed in
different time instants. A fourth-order Runge-Kutta method,
which can select time step automatically, is still used for
time integration. The fiber orientations from column 1 to
column 3 are illustrated from Figure 8(d) to Figure 8(f). In
these first three columns dy is set to 1, and d.¢ is set to 4. In
column 4 and column 5 isotropic propagations, but different
quadrature points, are displayed. In Figure 10 propagations
with 1106 irregular sample nodes are displayed in different
time instants. In Figure 8(c) the positions of these irregular
sample nodes are shown. In Figure 10 fiber orientations in
the first three columns are the same as the fiber orientations
in the first three columns in Figure 9 accordingly. Two
isotropic propagations with different quadrature points are
also tested in irregular sample nodes, which are displayed
in column 4 and column 5 of Figure 10. From Figures 9
and 10, almost identical propagations can be seen between
corresponding two columns, which demonstrate that the
performance of EFGM in solving FHN model will not be
damaged by using irregular nodes.
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(a) 47 ms

(b) 95ms

(c) 176 ms

(d) 236 ms

FIGURE 10: Propagation wave at 47 ms, 95 ms, 176 ms, and 236 ms with irregular sample nodes (1106 nodes). Fiber orientation from column 1
to column 5: (0.57735, 0.57735, —0.57735); (0.57735, —0.57735, 0.57735); half is (0.57735, 0.57735, —0.57735) and half is (0.57735, 0.57735,
—0.57735); isotropic; isotropic. Except 3* quadrature points in each background cell are applied in column 5, 2° quadrature points in each
background cell are applied in other columns. In each column total 10° background cells are used for integration of Galerkin weak form.
Diffuse parameter: column 1, 2 and 3: d; = 4, ds =1, column 4 and 5: d; = d.¢ = 1. Red color represents active state and blue color represents
quiescent state.

TABLE 3: Parameters of FHN model.

Parameter a b a I d of Ocf
Value 0.13 0.013 0.26 0.1 1.0 4.0 1.0

Finally we select 3164 sample nodes from Auckland heart
model and use 3° quadrature points in each background
cell as suggested by the experiment mentioned previously
(Figure 7). In Auckland heart model, oy is set to 4 and
o.f is set to 1 as we did in the cube. Purkinje network is
manually chosen on endocardium because of unavailable
Purkinje network locations. From Figure 11 ((with permis-
sion): http://www.bem.fi/book/) which is generated from
Durrer’s [36] measurements from isolated human hearts,
it can be seen that propagation of electrical activity starts
from several locations on the endocardium, that is, Purkinje
network extremities. Hence, a small set of nodes (around 6
nodes) around corresponding locations on the endocardium
of Auckland heart model are initialized with a starting
potential, 0.5 in our simulation, and the result solved by
EFGM is displayed in Figure 11 in different time instants.
It is reported that isolation of the heart would lead to an
increase in conduction velocity [36]. Actually durations of
QRS waveforms in healthy individuals vary from 80 ms to

100 ms since durations of QRS waveforms are determined
by depolarization processes in the healthy hearts. That is the
reason that the duration of propagation in Durrer’s data is
shorter than the duration of propagation in our simulation.
The activation process in our simulation is qualitatively close
to the published measurements as we can see in Figure 11.
Once cycle of simulate of electrical propagation in Auckland
heart model includes generating sample nodes, assembling
of matrices and time integration. The time integration is
done by the Runge-Kutta method using automatic time step.
It takes 21 minutes to simulate the whole cycle of electrical
propagation in Auckland hear model.

In the end, we also simulate the propagation in the
human left ventricle extracted from digitized virtual Chinese
dataset [37]. In this simulation, we only demonstrate the
ability of EFMG in simulating in different cardiac geometry
because of the lack of ground truth. The results are displayed
in Figure 12.
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FiGure 11: Comparison between Durrer’s measurements and our simulation results. (a) 5 ms (left) and 10 ms (right), (b) 15 ms (left) and
30 ms (right), (c) 25 ms (left) and 40 ms (right), (d) 50 ms (left) and 70 ms (right), (e) 65 ms (left) and 90 ms (right).
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(a)

FIGURE 12: Simulation of electrical propagation in a human left ventricle (a) and its color map (b).

5. Discussion

In this paper, a numerical method without mesh constraint,
EFGM, is adopted to solve reaction-diffusion equation
for simulating cardiac electrical activity. This work was
motivated by the successes of EFGM in mechanical mod-
ellings [24], but in our implementation, more aspects of
EFGM, including the effects of influence domain (dmax),
weight function, and integration scheme, in solving reaction-
diffusion equations are evaluated.

One of main attractions of EFGM is the meshfree
particle presentation, which provides not only a convenient
representation, particles without predefined connectivity,
of cardiac geometry and fiber orientation, but also high
interpolation accuracy for dynamical process. Our tests show
that convergence behaviour of EFGM will be mainly affected
by the size of influence domain. In a certain range, that
is, from 1 to 3 for dmax, the slope of convergence curve
will increase along with the value of dmax. However, too
small size of influence domain will cause singularity in
system matrices, and too large size of influence domain will
also introduce large error in coarse nodes and increase the
assembling cost hugely in dense nodes. We also found that
EFGM performance could be minimally affected by nodal
positions in simulation of propagation if the nodal density
does not change largely. Different weight functions also
affect the accuracy of EFGM, but the performance of cubic
weight function and quadratic weight function is closed,
which could be selected upon user’s opinion. The numerical
integration of EFGM is only evaluated on a popular regular
background mesh in this paper though some works proposed
irregular background meshes [24, 26], because the perfor-
mance of EFGM on regular background mesh is already good
enough. Especially in 3D, a lower-order Gaussian quadrature
scheme in one cell of regular and fine background mesh
not only saves time in assembling system matrices but also
achieves rational accuracy in the irregular problem domain.
Hence we would recommend regular background mesh

because of easy implementation and acceptable accuracy.
There has been the discussion about the construction of
FEMs shape function is faster than the construction of EFGM
shape function in the same spatial discretization [24], but
we found that EFGM can reach a certain level of error with
less computational cost than FEMs and FDMs because of
higher order accuracy of EFGM shape function. Moreover,
EFGM does not need to rearrange nodal positions if weight
functions or polynomial bases are changed.

To fully utilize the ability of EFGM is not an easy process
because wrong parameters will affect the performance of
EFGM a lot, especially in 3D simulation. However, the com-
putational cost of EFGM could be appropriately depressed
by proper adjustments. First a finer background mesh with
lower order quadrature, such as 2 X 2 X 2 Gauss points or
even one Gauss point in one background cell, is preferable
to a coarser background mesh with higher order quadrature
because of cheaper computation and acceptable accuracy.
Second the size of influence domain should be selected as
small as possible according to local nodal density, since
the time to compute shape functions and their derivatives
is proportional to the number of sample nodes inside
the influence domain of each Gaussian integration point.
The time to assemble mass matrix and stiff matrix will
also increase and the spareness of those matrix will be
destroyed as result of large size of influence domain. From
the point of view of accuracy, there is a minimum size
of influence domain to compute the shape functions and
their derivatives. In our implementation we choose a big
size of influence domain first and adjust the background
mesh. Then we fix the background mesh and adjust the
size of influence domain. After several rounds of such
adjustment, we can find suitable size of influence domain
and corresponding background mesh to obtain reasonable
accuracy with acceptable computational cost.

EFGM offers great potentials in simulation of cardiac
behaviour, especially electrical activity because of its mesh-
less property. This kind of numerical discretization is defined
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simply by placing unstructured nodes in interested area,
which not only offers great convenience in implementation
of adaptivity but also possibly decreases the complexity to
customize the patient-specific model a lot as reasonable
propagation of electrical activity in Auckland heart model
could be computed in a standard desktop computer. How-
ever, further experiments with more physiological meanings,
such as sustained reentry or sophisticated cellular models,
in EFGM will be demanded in the future. Furthermore, a
heart model with realistic geometry and components, such
as with atria, ventricles, Purkinje systems, and authentic fiber
structure, should be considered for better understanding of
electrical activity of the whole heart.
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Diffusion kurtosis imaging (DKI) is a new diffusion magnetic resonance imaging (MRI) technique to go beyond the shortages of
conventional diffusion tensor imaging (DTI) from the assumption that water diffuse in biological tissue is Gaussian. Kurtosis is
used to measure the deviation of water diffusion from Gaussian model, which is called non-Gaussian, in DKI. However, the high-
order kurtosis tensor in the model brings great difficulties in feature extraction. In this study, parameters like fractional anisotropy
of kurtosis eigenvalues (FAek) and mean values of kurtosis eigenvalues (Mek) were proposed, and regional analysis was performed
for 4 different tissues: corpus callosum, crossing fibers, thalamus, and cerebral cortex, compared with other parameters. Scatterplot
analysis and Gaussian mixture decomposition of different parametric maps are used for tissues identification. Diffusion kurtosis
information extracted from kurtosis tensor presented a more detailed classification of tissues actually as well as clinical significance,
and the FAek of D-eigenvalues showed good sensitivity of tissues complexity which is important for further study of DKI.

1. Introduction

Diffusion magnetic resonance imaging can detect the water
molecule diffusion in human tissues noninvasively, which
indicates the microstructure of biotissue such as one of the
most popular methods: diffusion tensor imaging (DTI), in
which the three-dimensional water diffusion probability dis-
tribution in an anisotropic medium has been quantified by
a 2-ranked tensor. The three eigenvectors of it are corre-
sponded to the axes of a triaxial diffusivity ellipsoid [1]. The
commonly employed rotationally invariant parameters are
derived from the diffusion tensor (DT) including the mean
diffusivity (MD) and fractional anisotropy (FA).

However, in the conventional diffusion tensor imaging
(DTI), water diffusion is assumed that diffusion appears to
be a free and nonrestricted environment within a Gaussian
distribution of diffusion displacement. Actually in biological
tissue, complex cellular microstructure makes water diffu-
sion a highly hindered or restricted and also non-Gaussian

process [2]. The diffusion tensor loses many details of the tis-
sues microstructure. There are many studies about the non-
Gaussian of diffusion in real tissues. DKI uses the kurtosis to
estimate this non-Gaussian distribution providing insights
into the microstructure of biological tissues. Recent studies
have demonstrated that DK (diffusion kurtosis) measures
offer an improved sensitivity in detecting developmental
and pathological changes in neuronal tissues, compared to
conventional DTI [3, 4]. In addition, directional kurtosis
analyses have been formulated to reveal directionally specific
information, such as the water diffusional kurtosis along the
direction parallel or perpendicular to the principle water
diffusion direction [5-8]. Because kurtosis is a measure of
the deviation of the diffusion displacement profile from a
Gaussian distribution, DKI analyses quantify the degree of
diffusion restriction or tissue complexity.

However, what is difficult is that the high-order (3-
dimensional 4-order) kurtosis tensor in DKI is complex to
analyses and it is an important feature like the diffusion



tensor in DTI (diffusion tensor imaging). This paper here is
to promote some parameters mapping of the kurtosis tensor.

2. Materials and Method

2.1. Theory

2.1.1. Diffusion Kurtosis Imaging. As DTI assumes Gaussian
diffusion, the apparent diffusivity (Dapp) is derived by linear-
ly fitting the DW signals acquired with one or more nonzero
b values to the following linear equation:

In [%] — bDyy. (1)

In DKI, logarithmic expansion of DW signal can estimate
both apparent diffusivity (D,pp) and diffusion kurtosis
(Kapp)> which keep an extra b-square term compared with
DTI. Thus, it forms a nonlinear equation [8]:

S(b) 1
11] [m] = _bDapp + (g)b2Dapp2Kapp,

Dypp = Dx?, (2)

2
MD
Foop = (Dapp> e

where S(b) is the DW signal intensity at a b value and S(0)
is the signal without diffusion gradient; x is the gradient
magnetic encoding directions; MD is the mean diffusivity;
here appear the diffusion tensor (D) and kurtosis tensor
(W), which characterize the different diffusion motion. The
theory also indicates that the apparent diffusional kurtosis
approaches the true diffusional kurtosis in the limit of short
gradient pulse durations, which is analogous to the relation-
ship between D, and the true water diffusion coefficient D.

2.1.2. D-Eigenvalues of Kurtosis Tensor. DKI model provides
a high-order tensor except a two-order diffusion tensor, so
that the problem becomes more knotty. Just like the eigen-
values and eigenvectors of diffusion tensor from which we
can easily get a visualized structure model, and also more
insights into the tissues microstructure, which is viable and
potential via this 4-order 3-dimensional fully symmetric
tensor, diffusion kurtosis tensor (DK) .

D-eigenvalues of the DK were proposed mathematically
with an assumption that D tensor is always positive definite
[9]. Then, a conversion was used:

D' (Wx®) = Ax,
(3)
Dx* = 1.

A number of D-eigenvectors are obtained using the Sylvester
formula of the resultant of a two variable system. The D-
eigenvalues values are

/1,‘ = Wx?. (4)
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2.2. Data Processing

2.2.1. Data Acquisition. The whole study and all the human
experiments have got the medical ethics authentication and
each subject or volunteer has knew it clearly. All human
experiments were conducted on a Siemens 3. 0T Scanner
System with the physicist and 20 volunteers were normal
adults in the age between 20 and 30. The DW data were
acquired with SE-EPI (single shot echo-echo planar imaging)
sequence, following 30 gradient magnetic encoding direc-
tions and three b values (0, 1000, 2000 ms/ym?). Additional
image parameters were that image orientation is transverse,
TR =10500 ms, TE = 103 ms, average = 1, TA = 11"14”, noise
level = 30, acquisition matrix = 128 x 128, FOV = 230 X
230 mm?, slice thickness = 1.8 mm, number of slices = 73, no
gap.

For each subject a 128 X 128 X 73 X 61 metric data
was acquired and prepared to fitting the tensors. Imaging
processing including eddy current correction and 3D motion
correction was conducted with FSL software. And for
accessibility the normalization to Standard brain was used
under SPM. Then the D,,, and K, were fitted using LMS
method and LS method to estimate the optimal components
of tensors.

2.2.2. Parameters Mapping. Although there is a way to anal-
yse the high kurtosis tensor, the number of D-eigenvalues is
random within the range between 3 and 13, even the practical
meaning of these vectors and values is not clear. Anyhow,
some parameters can be acquired for a further research.

In DKI, both DT and KT are obtained, and some kurtosis
parameters can be formed following DT’s method. Then the
DTI- & DKI-derived parametric maps were analysed on the
contrast between different tissues. Here are vD-eigenvalues
(Ai) or D-eigenvectors (x;) from kurtosis tensor, FAek (FA
about eigenvalues of kurtosis tensor), Mek (mean eigenvalues
of kurtosis tensor), AKC (apparent kurtosis coefficient),
AKCd (apparent diffusion kurtosis coefficient) are defined as

following:
v i ’
(Z(hi — Mek)?)
(v—l))l\/( (=27)

Mek = mean(A) (5)

FAek = ¢<

MK = mean(Kapp)

AKCd = AKC - MD?.

In the mapping of MK, these negative K, values are revised
as zeros as no medical significance. And for comparison, we
also get AKC (mean of K,pp) without revising. Except these
parameters above, this paper also considers FA (fractional
anisotropy) and MD (mean diffusivity) from DTI. And that
the MK (mean kurtosis) [6, 7] is considered as its popular
use. Figure 1 shows some parametric maps.

2.2.3. Data Analysis. For each subject, regions of interest
(ROIs) were manually defined in several transverse slices by
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FIGURE 1: Parametric mapping from a same anatomical slice, ((a)—(f)) FA, MD, FAek, Mek, MK, and AKCd.

referencing to the anatomical structure. Anatomical land-
marks were identified from both FA and MD. 6 WM struc-
tures were chosen, including the knee and the splenium of
corpus callosum (CC); 4 crossing fiber areas, 4 of which are
the extend areas along the knee and the splenium of CC and
where are full of crossing fibers; 2 areas of thalamus; 6 GM
structures, namely, 4 cerebral cortex CSE, more details from
Figure 2. Various properties such as diffusivity or kurtosis
can help to recognize the tissues [10, 11].

The mean and standard-variance were computed by vol-
ume averaging within the multislice ROIs for each structure.
For each parameter, analysis of variance (ANOVA) was per-
formed to compare the measurements among different tis-
sues, followed by independent-samples ¢-test to detect inter-
group differences.

Also in order to combining the whole image and the
relativity between each other, we scattered two of the param-
eters with their gray histogram curves. As we already know
that same tissues’ voxel gray values’ distribution is similarly
Gaussian, and that we can assume that the histogram curves
a first-order Gaussian mixed signal. The decomposition may
be some single independent parameter histogram curve and
also a scattered figure.

3. Results

3.1. Results of ROIs Analysis. The RIOs’ statistics are figured
in Figure 3. Different ROIs show pronounced average values
(P < 0.05), and mainly five kinds of tissues in the ROIs. In
a general view, the corpus callosum, cerebral cortex and
CSF can be recognized obviously, while ((c)—(f)) cannot

F1GURE 2: The ROIs selection according FA map. (1-2) the knee and
splenial of callosum; (3-6) the crossing fibers; (7-8) the thalamus;
(9-12) the cerebral cortexes; 13 is CSE.

distinguish the crossing fiber tissues and thalamus. In detail,
the first two ROIs, which are two parts of corpus callosum:
the knee and the splenium, result in pronounced different
values (P < 0.05). As the fibers in the splenium are mostly
more slender than the knee, and its diffusion environment
is more restricted or non-Gaussian. The MK shows similar
values of the two parts (1.94 + 0.15, 1.96 + 0.14), but it is
MK that can only differs from the crossing fiber (1.67 + 0.16)
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FIGURE 3: Mean variance of every ROIs, (1-2) the knee and splenial of callosum; (3-6) the crossing fibers; (7-8) the thalamus; (9-12) the

cerebral cortexes; 13 is CSE.

and thalamus (1.42 = 0.17) which is full of both cytons and
fibers. The cerebral cortex, which mainly consists of cytons or
cell membranes is which all parameters can obviously differ
from white matter but the CSF in FA. What is special is that
Mek is just showing the index number of the mean of D-
eigenvalues, as the values is very large and resulting in a lower
gray contrast between different tissues.

Having a whole picture of these ROIs tissues’ structure
and considering the diffusion environment, we can select the
freest and the most restricted: CSF and corpus callosum espe-
cially the splenium. Then the following crossing fiber area,
basal ganglia (thalamus here) and cerebral cortex are less
free successively. Freer the environment is, more Gaussian
the Diffusion displacement distribution is. So, MK gives a
good distinguish, but not very precise; FAek distinguishes
different tissues more in details. Compared with AKCd, MK
does not show stably to specific structure while the AKCd
performances better.

Figure 4 gives a visualized comparison of different tissues
about the same property (anisotropy and kurtosis) with spe-
cific method. From the figure, FAek also performances sim-
ilarly with FA, but gains better contrast in cerebral cortex
(0.28 = 0.03). FAek shows high sensibility to gray matter
as well as that like thalamus. Considering Figure 4(b), the
kurtosis, MK shows low gray contrast, and AKCd and MK
are better recognized, but MK shows a significant difference
between crossing fibers and thalamus.

3.2. Results of Histogram Analysis. With the principle that the
gray values or parameters of the same characteristic tissues
will be under a displacement of Gaussian function and inde-
pendent from different tissues, the parametric map’s his-
togram is decomposed using first-order Gaussian mixed
signals. The mask was used in order to ignore the zeros back-
ground. MD map can gives a practical view of the tissues, so
FA, FAek, Mek, and AKCd are compared with it in Figure 5,
and also the kurtosis parameters’ relativity are shown in
Figures 5(e) and 5(f).

In Figure 5(a), FA has a wide range when MD is low
which represents white matter mainly, and MD shows also a
wide range when FA is low which represent gray matter and
CSF mainly. But there is no relativity between them and most
information is distributed where both FA and MD are low.
Following Figure 5(b), FAek has more balanced distribution
of histogram, an obvious subpeak, so the most information
distributes where higher FAek and low MD, which indicates
more sensitive to white matter. And there has some negative
correlation. In Figures 5(c) and 5(d), MK and AKCd have
the similar distribution with MD, while MK shows more
balanced with its MK value range is wider than AKCd. But
in Figures 5(e) and 5(f), the decompositions of AKCd’s his-
togram are much independent and signi orientation is trans-
verseficant, while the MK’s are much overlapped with others.
As known that Mek has low gray contrast, and here it has
an obvious negative correlation with MD in Figure 5(d),
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FIGURE 4: Anisotropy and kurtosis. In (a) several anisotropy values (FA, FAek) were detected averaging the volume value in different ROIs
(knee of callosum, splenium callosum, crossing fiber, dorsal thalamus, cerebral cortex, CES) as well as in (b) about kurtosis values; the

statistical significance is all P < 0.05.

0.8

0.6

FA

0.4

0.2

0.5 1 1.5 2 2.5 3
MD (ym?/ms)

()

3.5

MK

0.5 1 1.5 2 2.5 3
MD (um?/ms)
(c)

3.5

15 2 2.5
MK
(e)

FA

AKCd

FAek

08
0.6
0.4

0.2 F

1.5 2 2.5 3
MD (um?/ms)
(b)

3.5

081
0.6
0.4

021

1.5 2 2.5 3
MD (um?/ms)

(d)

3.5

1 1.5 2 2.5

FIGURE 5: Scatterplot analysis. ((a)—(f)) give a visualized relationship between different parameter maps, and the Gaussian decomposition
of the histogram is drew along the axis. Previous ROIs for different tissues’ data were also marked on it.



because the points are distributed along a similar line with
MD increasing.

4. Discussion

As known theoretically, the DKI specifically the kurtosis
tensor characterizes more detailed information and can show
us a real insight into the microstructure of brain tissues.
Practically, many work about kurtosis using DKI were carried
out verifying that kurtosis provides more information and
is more sensitive than diffusivity, but the kurtosis absolutely
because of its complexity.

It is obvious that MK has great potential in biotissues
mapping, such as tumor diagnosis and other Nerve damage
disease, and kurtosis tensor can also provide an insight into
the brain tissues’ microstructure especially for white matter.
These D-eigenvalues of kurtosis indicate more information
about tissues microstructure where diffusivity cannot. How-
ever, FAek performs much better than MEK, that is to say
that these D-eigenvalues can really indicate the complexity
of the microenvironment but the average level of kurtosis is
less sensitive. Here the cause maybe the number of the D-
eigenvalues or the algorithm. What is common and impor-
tant is that all kurtosis information gives more information
or sensitivity about white matter microstructures [3-8].

From the black triangles in Figures 5(a) and 5(b), we can
see FA recognizing cortex and thalamus as the same, but FAek
recognizes crossing fibers and thalamus as the same, and
FAek differs from the cortex and CSF obviously. In Figures
5(e) and 5(f), the difference is that MK recognizes the thala-
mus and cortex which is better than AKCd.

In the Figure 5(c), MK is the directly kurtosis calculation
while the Mek is from D-eigenvalues of kurtosis tensor,
which the “D-” means diffusion in original paper [9]. That is
to say MK is the real kurtosis information but not accurate,
but Mek is the “diffusivity” information of kurtosis tensor,
because there is a stronger relativity between Mek and
MD. Here “diffusivity” means the level of 2-order diffusion
coefficient. But it shows actually different evaluation of the
tissues, maybe just the level of complexity. In the results
other parameters’ classification between the crossing fibers
and thalamus show that they are likely the same complexity
while not exactly the diffusivity in some degree, except MK.

Kurtosis information can be used to get a more delicate
classify of the tissues [12, 13]. The scatter figure and the
Gaussian distribution classifying can give us ideas about
image segmentation of different tissues. Within Figure 5 dif-
ferent two parameters put the tissues in different locations.
In this part, FAek associated with AKCd and MD classified
the typical tissues well. According to this, Figure 6 shows a
different cluster of the scatter points.

In Figure 6, with previous knowledge, these 4 Gaussian
distribution represent 4 kinds of tissues: CSE, Gray matter,
crossing fibers; single diffusion orientation areas (corpus cal-
losum). However, the third Gaussian class has a wide range
which represents a collection of all crossing fiber areas as
their complicated various fiber structures.

For achieving better jobs, there are several aspects need
be considered further.
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Firstly, the calculation of kurtosis anisotropy is just sim-
ilar to DT. However, the D-eigenvalues and vectors have no
clear meaning, and even more important is that DT’s three
eigenvectors are always of orthogonal to each other while
the D-eigenvectors’ orientation are random here. For exam-
ple, same eigenvalues with different eigenvectors give differ-
ent anisotropy properties.

Secondly, these parameters in this paper are just aimed at
the contrast or discrimination between different anatomical
structures at the 2-D imaging level. Anyhow this work is a
start, and what’s need more is the white matter microstruc-
ture and 3D space reconstruction. Several studies about the
partition of diffusion or ODF have carried out aiming at the
3D space diffusion property distribution [13, 14].

Thirdly, clearer relationship between DT and KT should
be clearer and what to do with them should be clear. For
example, how the 4-order statistic kurtosis is related prac-
tically to the 2-order variance which suggests that diffusion
coefficient here should be clear. About this, popular speaking
think the kurtosis can revise or make up the deviation from
Gaussian, but not in a specific way. Another idea about this
is that DKI gives the Gaussian diffusion and non-Gaussian
diffusion.

Finally, not least, the imaging processing to reducing
noises or advancing SNR before fitting (2) is most important.
Because high-order kurtosis is more sensitive to errors than
diffusivity such as what appears as error spots in Figures 1(e)
and 1(f) though using appropriate pre- and postprocessing.
What is worse is that it will reduce the fitting results. So
better signal processing is needed, or just increase the repeat
times of signal acquisition (AVERAGE or NEX) but losing
acquisition time (TA) for better signals from the view of
experiment setting [15].

5. Conclusion

DKI is a straightforward extension of DW signals that pro-
vides a sensitive measurement of tissue structure by quanti-
tying the non-Gaussian degree of water diffusion. DKI has
been demonstrated to be highly sensitive and directionally
specific in detecting brain maturation processes, and the
parametric analysis of kurtosis tensor was carried out in this
paper. The results indicated that more detailed insights of the
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microstructure can be detected and differed from diffusivity
of diffusion tensor by the kurtosis tensor.

The D-eigenvalues of kurtosis tensor give the diffusivity
information about tissues complexity which is different from
diffusion coefficient, but the FAek (fractional anisotropy of
these eigenvalues) shows more different properties than FA of
diffusion tensor, which means the level of tissues complexity.
Multiparameters analysis can give more detailed tissues of
human brain. Diffusion kurtosis tensor can show a more
comprehensive and sensitive detection of subtle difference,
but more energy should be paied for this kurtosis tensor.
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This paper presents a novel two-step approach that incorporates fuzzy c-means (FCMs) clustering and gradient vector flow (GVF)
snake algorithm for lesions contour segmentation on breast magnetic resonance imaging (BMRI). Manual delineation of the
lesions by expert MR radiologists was taken as a reference standard in evaluating the computerized segmentation approach. The
proposed algorithm was also compared with the FCMs clustering based method. With a database of 60 mass-like lesions (22 benign
and 38 malignant cases), the proposed method demonstrated sufficiently good segmentation performance. The morphological
and texture features were extracted and used to classify the benign and malignant lesions based on the proposed computerized
segmentation contour and radiologists’ delineation, respectively. Features extracted by the computerized characterization method
were employed to differentiate the lesions with an area under the receiver-operating characteristic curve (AUC) of 0.968, in
comparison with an AUC of 0.914 based on the features extracted from radiologists’ delineation. The proposed method in current
study can assist radiologists to delineate and characterize BMRI lesion, such as quantifying morphological and texture features and

improving the objectivity and efficiency of BMRI interpretation with a certain clinical value.

1. Introduction

Breast cancer is the most common cancer and a leading cause
of deaths in cancer for women worldwide [1]. In the United
States, the chance of developing invasive breast cancer in a
woman’s life is nearly 1 in 8 [2]. Medical imaging, specifically,
magnetic resonance imaging (MRI) plays a crucial role in
detecting and diagnosing breast lesions and tumors. While
mammography, as recently reported, might fail to spot up to
20 percent of tumors, MRI can detect breast cancer missed
by mammography [3, 4]. Because of MRDs effectiveness
in detecting breast cancer, American Cancer Society has
published the guidelines for recommending women with
high risk of breast cancer to receive MRI screening [5].

With its high sensitivity and variable specificity, MRI
has been increasingly used for a breast cancer detection and
characterization [6-8]. As a result, there is an urgent need

to develop a computer-aided diagnosis system to release
radiologists from the heavy works of medical image analysis.
Unfortunately, compared with mammography, relatively
fewer automated CADs have been developed specifically for
breast MRI. Chen et al. [9] applied the region-growing
method to segment lesions and later they [10] proposed
a semiautomated algorithm based on the fuzzy c-means
(FCMs) clustering with the shortcoming oversensitivity to
noise; Liney et al. [11] presented a user-interaction-threshold
method to extract the region of interest (ROI), requiring
manual intervention; Stoutjesdijk et al. [12] designed an
automated computer program to select the ROIs on the basis
of a mean-shift-clustering method, the method is an accurate
method to automatically determine a contiguous region of
interest. Shi et al. [13] used the FCMs clustering algorithm
followed by a 3D level set (LS) method for segmentation
refinement, and a recent paper by Meinel et al. [14] reported



a computerized segmentation method for mass-like breast
MRI lesion involving robust seed-point selection, which is
more reproducible than manual method in measuring the
size and shape of a lesion. Because MR images are a sequence
of two-dimensional images, the segmentation in 2D is still
important and the basis of 3D segmentation.

Texture analysis is extensively utilized to quantify image
characteristics (i.e., homogeneity and regularity with diag-
nosis potential in MR images). Gray level cooccurrence
matrix (GLCM) method, proposed by Haralick et al. [15],
is instrumental in medical image analysis. Various studies on
texture analysis have been reported, including brain disease
[16], bone [17], and abdominal tumor [18]. The GLCM
method is also applied to the analysis of breast cancer. Chan
etal. [19] put forward a method based on the texture features
for discriminating mammography lesions by using linear
discriminant analysis. Gibbs and Turnbull [20] manually
delineated the breast MRI lesions, and then employed the
GLCM method to differentiate benign and malignant lesions.

Computer-extracted morphological features have dem-
onstrated to be of certain usefulness for characterizing
breast lesions [11, 21, 22]. Breast Imaging Reporting and
Data System (BI-RADS) lexicon has been introduced to
categorize lesion appearance. However such lexicons are
subject to radiologists’ assessment. The objective computer-
extracted features may benefit a radiologist to improve the
interpretation and acceptability of a distinguishing feature.

In this study, we investigate systematically the segmen-
tation and characterization of both benign and malignant
breast lesions inside breast MR images using a computerized
segmentation and characterization package we developed
specifically for Breast MRI. The computational results of
both segmentation and characterization of breast lesions
are also compared with the manual delineation and the
pathological results given by experienced radiologists.

2. Materials and Methods

Figure 1 shows the flowchart for our computerized breast
lesion segmentation and characterization method. Our com-
puter program performs an automated segmentation and an
image analysis consequently after the manual lesion identi-
fication of a breast MRI (2D) is input. In the computerized
segmentation section, FCMs clustering based method is used
to produce an initial segmentation of the input image, while
the gradient vector flow (GVF) snake model is applied to
the initial segmentation to obtain the final segmentation.
The initial segmentation method is referred to as the FCMs-
based and the final segmentation method is referred to as
the GVF-FCMs for short. The segmentation performance
of both methods is evaluated with manual segmentation
by experienced radiologists on dynamic contrast-enhanced
(DCE) MRI. In the computerized characterization section,
we extract morphological and texture features from both the
GVEF-FCMs method and radiologists’ delineation. Finally,
Fisher stepwise discriminant analysis (FSDA) is applied to
select the features extracted by the GVF-FCMs and the
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Ficure 1: Flowchart of computerized lesion segmentation and
characterization on breast MRI.

radiologists’ manual delineation in differentiating between
benign and malignant lesions.

2.1. Breast Lesions Database. This study consists of 22 benign
and 38 malignant breast lesions which have been examined
with a final histopathology confirmation (age range = 27—
65 years old, mean age =+ standard deviation = 42 + 9
years). Only mass-like lesions that showed strong contrast
enhancements were selected for this study. The database of
the images for each case includes one sagittal postcontrast
image slice that shows an obvious contrast enhancement and
demonstrates the maximum dimension of a mass lesion. The
size of the image is 512 X 512 pixels with a 256-gray level.
MR imaging was performed on a 1.5T superconduc-
tive magnetic system (GE, Signa, HDx). A breast-specific
4-channel phased-array surface coil was used. Contrast
medium was injected through a hand venipuncture tech-
nique. Patients were scanned in the prone position with
bilateral breast naturally hanging into the two holes of the
coil and their feet were first placed into the machine. A cross-
sectional FSE TIWI was first employed using the following
parameters: TR = 650 ms, TE: Min Full, ETL = 2, and BW =
20.83. The cross-sectional and sagittal FSE T2WI were then
employed using the following parameters: TR = 4650 ms, TE
= 85ms, ETL = 16 and BW = 20.83, THK = 6 mm, spacing
= 1 mm, and FOV was adjusted based on the breast size,
ranging from 18cm to 28 cm, matrix = 320 X 224, Frep
DIR = A/P and NEX = 2. Except cross-sectional TIWI, all
other sequences were fat suppression sequence. DCE-MRI
was conducted after plain scan as following: (1) dynamic
scanning was initiated after satisfied image quality was
obtained in prescanning by simultaneously push the high-
pressure syringe button and the dynamic scan button; (2)
using MRI-specific high-pressure syringe (Medrad injector
system, Pittsburgh) to inject 0.1 mmol/kg body weight con-
trast medium gadolinium diethylenetriamine penta-acetic
acid (Gd-DTPA) using hand venipuncture technique at rate
of 3 mL/s and then inject 10 mL saline at 3 mL/s to wash the
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tube; (3) all patients accepted sagittal vibrant multitemporal
DCE-MRI using 3D Fast FSPGR pulse sequence and the
following parameters: FA = 12, BW = 83.33, matrix = 288
% 288, FOV = 38 mm, phase FOV = 0.90, Frep DIR = A/P,
multiphase = 8~10, Zip = 2, THK = 3.4 mm and locs per
slab = 50 mm; (4) the initial section of the dynamic study
was obtained in the sagittal plane at 20 second intervals for
11 minutes. After that, cross-sectional and sagittal MRI was
employed using fat-suppressed enhanced T1WI sequence.

2.2. Initial Segmentation. Segmentation accuracy has a con-
siderable influence on the subsequent characterization used
to differentiate between benign and malignant breast lesions.
Because of this reason, an experienced radiologist is included
to identify the suspicious areas of breast lesions by firstly
locating and defining a rectangle region of interest, as shown
in Figure 2(a). The regions of interest serve as an input
to the following sections. Then a two-step segmentation
method is used to find out the accurate contour of a
lesion. FCMs clustering based method is used to produce
an initial segmentation of the ROI before the GVF snake for
refinement is carried out.

The FCMs is an unsupervised machine learner in the
pattern-recognition field and it has been widely used in
image processing as well [23]. MR images always present
overlapping intensities for different tissues because of the
noise and blur in acquisition. The borders between different
tissues are intrinsically fuzzy. The conventional (hard)
clustering methods forces pixels to belong exclusively to one
class. Therefore, fuzzy c-means clustering (FCMs) method
allows uncertain belonging by a varying membership map
and turns out to be particularly suitable for the segmenta-
tions of MR images.

In this study, the FCMs method is applied to the ROI for
building the likelihood membership map (cluster number, 2;
weighting exponent, 2; stop criteria, 0.0005, max iteration,
100). To binarize the membership map, we have referred
to some articles [10, 13] and experimentally determined a
likelihood threshold T = 0.5. Within the binary member-
ship map, the processes including hole-filling, morpholog-
ical opening, and two-dimensional connected-component
labeling (8-connected objects) are carried out to remove
the disconnections from the main lesion part. Finally, an
initial segmentation is obtained with a slightly reduced size.
Figure 2(b) shows an initial lesion segmentation using the
FCMs-based method.

2.3. GVF Segmentation. In this study, the gradient vector
flow (GVF) snake model is applied to further refine the
initial segmentation. Here the word “snake” refers to a curve
that can deform under the influence by both “internal”
and “external” forces [24]. GVF snake model are commonly
applied to medical images because they can capture the irreg-
ular shapes and shape deformations found in anatomical
structures. Its main contributions are to overcome leakage
at weak boundaries in progressing snakes into concave
boundary regions. As for the GVF snake model, the external
force field is defined as a diffusion of the gradient vectors of

a gray-level edge map derived from the image [25]. The edge
map f(x, y) derived from an image I(x, y) is defined as

floy) = |VI(xy)|% (1)

The GVF external field is the vector field v(x,y) =
(u(x, ), v(x, y)) that minimizes the energy functional

e= H‘u(ui+ui+v§+v§)+ IV v—Vf|*dxdy,
(2)

where y is a regularization parameter governing the tradeoff
between the first term and the second term in (2). According
to [25], we chose y = 0.1 experimentally for the segmenta-
tion task in our study.

A GVF snake is a parameter curve defined as

x(s) = (x(s), y(5)), (3)

where s denotes an arc length parameter. The curve deforms
iteratively until reaching a balance between the internal force
Fin: and the external force Fei. The internal and external
forces are

Fine = ax”/(s) — Bx"""' (),
(4)
Fext = V(.X, y)’

where a and f are weighting parameters that control the
snake’s tension and rigidity and experimentally set as 0.01
and 0 according to [24, 25]. Double and quadruple primes
represent the second- and fourth-order derivatives of x(s),
respectively. The GVF snake model is solved numerically
by discretization and iteration in similar fashion to the
traditional snake [24]. In the iterative procedure, the inter-
nal force prevents the snake contour from stretching and
bending excessive [25], while the external force pulls the
snake toward the real contour. We will set the max iterations
when the snake is iterating to reach a balance. It is hard
to reach a balance when the image is quite blurred and
complex. Figure 2(c) shows the deformation of the GVF
snakes initialized by an FCMs-based method.

2.4. Feature Extraction

2.4.1. Texture Features. Texture is one of the intrinsic
characteristics of an object, and it is important for medical
image analysis [26]. Various textural algorithms have been
proposed by researchers, such as fractal-based description,
texture spectrum, and Markov random field model [27-29].
The GLCM texture method is widely used in medical image
processing through utilizing the relative positions of pixels
[15]. The matrix element pg 4(i, j) of the GLCM is the joint
probability density of the occurrence for a pixel pair in an
ROI with a defined distance d, direction 0, and gray levels i
and j. We calculated thirteen textural measures for the near-
est pixels (distance: 1 pixel) in four limited directions, 0°, 45°,
90° and 135°, respectively. Thirteen features derived from
the GLCM are angular second moment, contrast, correlation,
inverse difference moment, sum average, sum variance, sum
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(a)

FIGURE 2: Lesion segmentation on a breast MRI scan: (a) locate a rectangle ROI box that contained a postcontrast breast MRI lesion; (b)
initial segmentation by the FCMs-based method; (c) deformation of GVF snake using FCMs-based contour for initialization; (d) radiologists’
manual delineation. The average time cost and dynamic memory cost of the method we proposed are 2.4180 seconds and 1256.75 KB.

entropy, entropy, difference average, difference variance,
difference entropy, information measure of correlation 1,
and information measure of correlation 2, respectively.
Owing to the isotropic texture of the images investigated, the
features we evaluated in the current study are the averages
over the four directions. These texture features contain some
important information on homogeneity, contrast, and other
organized structures of images.

2.4.2. Morphological Features. Eight morphological features,
including compactness, spiculation, extent, elongation,
solidity, circularity, and entropy of radial length distribution,
are selected and computed to describe the morphological
properties f as defined in the Breast Imaging Reporting and
Data System lexicon. Listed below are the definitions of these
features.

p1: Compactness
P2
p1 = TTIS’

where P and S are the perimeter length and area for a
given breast MRI lesion contour, respectively.

(5)

p2: Spiculation

N
1

pr= =Dt —rintl, tNe1 =11, (6)
N5

where N is the number of pixels on the lesion contour
and r; is the individual radial length. The individual
radial length is defined as the Euclidean distance from
the object’s center to each of contour pixels.

p3: Extent

S
pPs = Sbox’

(7)
where Spox is the area of the smallest rectangle
containing the given lesion contour.

pa: Elongation

_ min(H,L)
P = max(H,L)’ (8)

where H and L are the vertical and horizontal length
of the smallest rectangle containing the given lesion
contour.

ps: Solidity
S

Sconvex

ps = , 9)

where Sconvex 15 the area of the smallest convex
polygon that can contain the given lesion contour.

pe: Circularity

Ps = szri — Urs (10)

where y, is the average of r;.

p7: Entropy of radial length distribution

pr=~2.p(r)log(p(r)), (11)
where p(r;) is the probability density of a given r;.
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ps: Eccentricity

Eccentricity is a scalar that specifies the eccentricity of
the ellipse that has the same second-moments as the
lesion region. It is the ratio of the distance between
the foci of the ellipse and its major axis length.

2.5. Segmentation Performance Measure. It is somewhat
difficult to appraise the segmentation performance of a com-
puterized segmentation method, because there is no golden
truth in delineating accurate contour. In this paper, we
take the manual delineation by two experienced radiologists
in interpreting BMRI as a reference standard. All images
were manually delineated by the two radiologists who were
blinded to the histological results, and the disagreements
were resolved by consensus. Figure 2(d) demonstrates the
delineation of the radiologists.

The lesion areas extracted by the FCMs-based ini-
tial segmentation and the GVF-FCMs are compared with
their counterparts segmented manually by the radiologists.
Pearson’s correlation coefficient (Pearson’s r) and Paired
Student’s ¢-test are used to evaluate the consistency between
computerized and manual segmentation. In the following
discussion, Ac and A denote the lesion area calculated by
computer and radiologists for a given lesion, respectively.
Ac N Ar means an intersection set of the lesion areas
returned from both methods, while Ac U AR means a
union set. AOR; and AOR; are defined as two overlapping
measures to compare the computerized segmentation with
the radiologists’ delineation [10, 13] as follows:

Ac N AR
AOR) = ———,
1 AR
s N (12)
N AR
AOR, = ==&,
OR; Ac U Ag

We calculate the AOR; and AOR; to evaluate the segmen-
tation performance of the FCMs-based initial segmentation
and the GVF-FCMs methods, respectively. Generally, a better
segmentation attains when the AOR value approaches one.

2.6. Fisher Stepwise Discriminant Analysis Model. Discrimi-
nant analysis involves deriving a variate, which is a linear
combination of the independent variables that would dis-
criminate the best from a priori defined groups [30]. The
method transforms the coordinates of the initial data to
realize the least overlapping of the projections of data points
in different groups for maximizing the diagnostic accuracy.

2.7. Statistical Analysis. The FSDA involves entering and
removing features to get a statistically significant subset that
predicts malignancy well, according to the discriminatory
power of the subset adding to the group membership
prediction [30]. Referring to [31], we set the value of
the entering critical probability and the removal critical
probability as P = 0.10 and P = 0.15, respectively. The
FSDA is used to do the selection and classification of the
features. In this study, a single database has been used for
both training and testing, with the use of a “leave-one-out

cross validation” method to avoid overfit. All the diagnostic
performance details were calculated by the “leave-one-out
cross validation” method.

The accuracy of a model in making predictions is evalu-
ated regularly using a ROC analysis. An ROC curve is gener-
ated by combining the true positive fraction (sensitivity) and
false positive fraction (1-specificity) with different setting
decision thresholds. The area under an ROC curve (AUC)
is taken to estimate the classification accuracy. Generally, a
larger AUC stands for a better predictive performance.

3. Results and Discussion

While an accurate delineation of lesions on breast MRI is
crucial for diagnosis and associated image-guided biopsy,
a slice-by-slice manual delineation by radiologists is both
time-consuming and subject to interobserver and intraob-
server variations [32]. Our current study involves both
computerized segmentation and characterization. This study
is aimed at overcoming these problems.

3.1. Segmentation Performance. Table 1 summarizes the
mean values and standard deviations of the areas from the
lesion contours which were segmented by the FCMs-based,
GVEF-FCMs and the radiologists’ manual delineation, respec-
tively. The differences between the computerized method
and radiologists’ manual delineation are analyzed using the
Pearson’s correlation coefficient (Pearson’s r) and Paired
Student’s ¢-test (Table 1). The original hypothesis is that there
is no significant difference between the two groups of lesion
areas segmented by different methods.

Pearson’s r between the lesion areas segmented by the
FCMs-based method and the radiologists’ manual delin-
eation was 0.891 while the paired ¢-test between the areas
extracted by the two methods achieves a P value of 0.105. The
result indicates that the areas worked out by the two methods
are highly correlated without a significant difference at the
averages. After refined by the GVF method, the r and
P values were both increasing, which still showed highly
correlation between the areas without a significant difference
at averages (P > 0.05). These results indicate that both
the two computerized methods have certain potentials to
help radiologists in an accurate delineation, and the GVEF-
FCMs method showed the better performance among the
two methods.

Figure 3 shows the log-log scatter plot of the areas mea-
sured using the computerized method versus radiologists’
manual segmentation. The lesion area is the pixels numbers
in the lesion region. We drew the log-log scatter plot because
the range of lesion area is wide. Judged by the distribution of
the data points in Figure 3, the computerized methods have
somewhat underestimated the lesion area when compared
with the radiologists’ reference area, since the most of the
data points are distributed below the reference diagonal
line. The GVF-FCMs method has the smaller underesti-
mated. One drawback of the FCMs implementation is that
the method depends simply on the intensity information
and does not include the pixels’ spatial relationships. For
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TABLE 1: Areas, statistical comparisons and area overlap measures of computerized delineation and radiologists’ manual delineation.

Segmentation method Area . Pearsor.l’s t-test AOR, AOR,
(mean = SD pixels) correlation P value (mean + SD) (mean + SD)
FCM-based 1599.5 + 1355.4 0.891 0.105 0.75 £ 0.13 0.72 £0.12
GVE-FCM 1815.3 + 1722.2 0.976 0.437 0.81 = 0.10 0.78 £ 0.08
Radiologists’ manual 2114.9 +2093.8 — — — —
o 3.2. Feature Selection and Performance of the Fisher Stepwise
10000 o Discriminant Analysis Model. For the computerized char-
s o, acterization part, morphological and texture features are
I _ assessed to find out whether they can be used for classifying

1000 ‘tﬁyg

Area by computerized segmentation

100 _— —
100 1000 10000

Area by radiologists’ manual segmentation

0 FCM-based
O GVF-FCM

FIGURE 3: Scatter plot of the lesion areas segmented by comput-
erized and radiologists’ manual delineation. The diagonal line is
represented the most perfect segmentation performance. Square is
for areas segmented by FCMs-based initial method, circle is for areas
extracted from GVF-FCMs method.

a more complicated lesion enhancement, it is difficult for the
FCMs-based method to locate the contour that approaches
near to the realistic lesion contour. The GVF-FCMs method
improves the initial segmentation when deforming to a
balance of internal and external forces.

Figure 4 exhibits the histograms of the overlap measures
on the computerized methods: the FCMs-based and the
GVEF-FCMs. It turns out that all lesions segmented by the
GVF-FCMs method have the values of AOR; and AOR; over
0.6. The GVE-FCMs method has the better performance in
overlap measures, too. From [10], 3D segmentation over
the threshold value 0.4 indicates that this method has a
successful segmentation of the lesion. The threshold should
be stricter in 2D segmentation and is set to 0.6. At the overlap
threshold, mass lesions were all segmented correctly after
the refinements by GVF method. Two sets of overlap value
were compared by using the Paired Student’s t-test, and the
P value between AOR; was 0.064, while AOR, was 0.005.
AOR; values were found to be statistically significant in aver-
age between the two computerized segmentation methods
(P < 0.05).

breast lesions, and whether the features from computerized
segmentation method can have a better diagnostic perfor-
mance in discriminating between benign and malignant
lesions. Within the two training sets, features extracted by the
two methods both had no statistically significant correlations
between pairs of features.

3.2.1. Features Extracted by GVF-FCMs Method. Among
two computerized segmentation methods, the GVF-FCMs
method achieves the better segmentation performance. Thus
GVF-FCMs method is therefore adopted in the follow-
ing analysis as a preferred method for the computerized
characterization. When morphological features are taken
into account alone, the classifier involves three features:
spiculation, eccentricity, and solidity, with an AUC of 0.883.
When using GLCM texture features, however, the classifier
contains four features: entropy, difference average, difference
variance and information measure of correlation 1, and the
classifier could attain an AUC of 0.921. When combining all
the morphological and texture features, five features were
selected by the classifier with the improved AUC of 0.968.
They were entropy, correlation, sum average, difference
average and solidity. The diagnostic measure details are
shown in Table 2.

3.2.2. Features Extracted by Radiologists’ Manual Delineation.
The classifier selects only one morphological feature: spic-
ulation with an AUC of 0.836. In view of the GLCM
texture features, the classifier selects three features: entropy,
difference average, and information measure of correlation 1
for ROC analysis with an AUC of 0.914. When combining
the morphological and texture features, only the three
aforementioned texture features were selected without any
morphological feature. So the AUC was the same as only
using texture features. The details of diagnostic performance
are given in Table 2.

3.2.3. Comparison of the Diagnostic Performance Based on
Computerized and Manual Segmentation Methods. Different
morphological features are selected when using different
segmentation methods. Spiculation, eccentricity, and solidity
are selected when GVF-FCMs segmentation method is
applied, whereas only the spiculation is selected by means of
radiologists’ delineations. These features are both weighting
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FIGURE 4: Histograms of the overlap measures on computerized methods: (a) AOR;; (b) AOR,. The closer the AOR value approximates to
one, the better the segmentation performs. The GVF-FCMs method has the better performance among the two methods.

TABLE 2: Diagnostic performance details of the segmentation by computerized and manual delineation methods.

Segmentation Method Features Accuracy (%) Sensitivity (%) Specificity (%)
Morphology (three selected) 83.3 84.2 81.2
GVF-FCM GLCM (four selected) 86.7 86.8 86.3
Combing all features (five selected) 88.3 86.8 90.9
Morphology (one selected) 75.0 73.7 77.3
Radiologists’ manual GLCM (three selected) 81.7 84.2 77.3
Combing all features (three selected) 81.7 84.2 77.3

the irregularity of the contour. Generally, a spiculated con-
tour and irregular shape are attributed to a malignant lesion
while smooth contour and circle-like shape are attributed
to a benign one. The computerized segmentation method
can improve the discriminatory power of morphological
features, comparing with the results from radiologists’
delineations.

When considering texture features, the features selected
by the two segmentation methods are nearly the same.
entropy, difference average, and information measure of cor-
relation 1 are all selected by the two methods, but difference
variance only selected by the computerized method. Entropy
is related with the heterogeneity and complexity of lesion
texture. The texture feature is presumably associated with
a smooth margin, homogeneous, and lower enhancements
of a benign lesion in comparison with an irregular margin,
heterogeneous, and higher enhancements of a malignant
lesion. The diagnostic performance is similar between the
texture features from different segmentation methods.

By combining the morphological and texture features,
none of morphological features is selected based on the
radiologists’ delineation while solidity is selected by the

computerized segmentation method. This possibly could
be due to the coarse polygon-like contour delineated by
radiologists, and the morphological features only have mod-
erate discriminatory powers. Since the GVF-FCMs method
involves stretching and bending contour until the force
balance, it can fit in with the real lesion contour well, and
therefore the features from the GVF-FCMs method are more
eligible for the classification of a breast lesion.

3.3. Comparison of the Areas under the ROC Curve. Figure 5
displays the ROC curves of the two discriminant functions.
Applying the method by Delong et al. [33], no significant
difference on the two AUCs is observed between the two
classifiers (P = 0.231). The result yields two implications:
firstly, the features extracted by the computerized segmenta-
tion method have the similar discriminant power with the
situation when the contour is given by radiologists; secondly,
the computerized characterization of a lesion probably
provides a more efficient and objective method to quantify
both the appearance (texture) and shape (morphology)
features.
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FIGURE 5: The ROC curves of classifer based on FSDA method by
different features extracted by GVE-FCMs and radiologists’ manual
segmentation methods, respectively. The dotted line represented
the ROC curve from radiologists’ manual segmentation method
with AUC of 0.914. The dash line denoted the ROC curve from
computerized method (GVF-FCMs) with AUC of 0.968.

4. Conclusion

In this study, we have developed an approach based on FCMs
clustering and the GVF snake model for mass-like lesion
contour segmentation and computerized characterization on
breast MRI. The segmentation performance measures show
that the two step computerized segmentation method is an
accurate method to automatically determine a suspicious
lesion region and can help radiologists in their detec-
tion and delineation of breast MRI. At the computerized
characterization part, Fisher stepwise discriminant analysis
is used to select morphological and texture features and
make classifications with the use of a “leave-one-out cross
validation” method. The predictive performance based on
the GVF-FCMs segmentation is better than the radiologists’
manual method, but the difference is insignificant with
the use of ROC curve analysis. The application of the
breast MRI computerized segmentation and characterization
package we developed may help radiologists to quantify
the morphological and texture features and improve the
objectivity and efficiency in interpreting breast MRI. In
future, we intend to do further verification and assessment
on a larger independent database.

#(0y), (x+Ax,y+Ay) | €S fx,y) =i f(x+Ax, y +Ay) = j}
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Appendices
A. Fuzzy c-Means Clustering Algorithm

The fuzzy c-means clustering is an unsupervised learning
method in pattern recognition [23]. The algorithm is used
to minimize the objective function J as follows:

N
J=> >ulillxi — &l (A1)
k=1i=1
with constraints
c
D=1, 1<i<N,
k=1
up €0,1], 1<i<N,1<k<g (A.2)
N
O<Zuk, <N, l<k=g

where N is the number of pixels in the region of interest
(ROI); c is the number of clusters (the value is set to 2); bis a
weighting exponent (A.2); x; is the gray-level of a pixel in the
ROI; ¢ is the cluster center (start with random assignment);
uik is the likelihood that the pixel x; belongs to cluster j; the
[| - || denotes the Fuclidean distance.

The objective function may minimize only if

1
Uki = 2/(b-1)°
S5y (I = el = <) (A3)
1<i<N,1<k<cg,
SN wlx;
= TINI :2 ! (A.4)
i=1 "ki

The values of uy; and ¢ will iteratively update with the (A.3)
and (A.4). The iteration will stop when the stop criterion is
reached (|J,.+1 — J.| < 0.0005) or the max iteration is reached
(100).

B. Gray-Level Cooccurrence Matrix (GLCM)
and Features Extracted from GLCM

Spatial gray-level cooccurrence matrix estimates image prop-
erties related to the second-order statistics [15]. Each element
(i, j) in GLCM specifies the number of times that the pixel
with gray-level value i occurred adjacent to a pixel with value
j at a given offset (Ax, Ay). Mathematically, GLCM element
over an image S is given as

p(i,j) =

S , (B.1)
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where # represented the number of specific pixel-pair. If N is
the number of distinct gray levels of an image, we denote that

N
px(l):Zp(l:])) i=12,...,N,

j=1

- gp(w'),

ji=1,2,...,N,

> > p(is ),

i=1j=1

=2 2000 j),

i=1j=1

Prry(k) = k=i+j=2,3,...,2N,

Px—y(k) k=1]i-j|=01,...,N-1
(B.2)

Then the thirteen texture features are calculated as
follows.

fi: Angular second moment

= 23pG)° (B3)
ij
f>: Contrast
N-1
fa= Z ksz—y(k)~ (B.4)
k=0
f5: Correlation
N N
= Z Z = Uxfhys (B.5)

axay

where p, and o, are the mean and standard deviations
of py, respectively; u, and o, are the mean and
standard deviations of p,, respectively.

fa: Inverse difference moment

f4—ZZ

2p1’)

- J) (B.6)

f5: Sum average

2N
f5 = kax+y(k) (B.7)
k=2

fe: Sum variance

2N

fﬁ = Z (k - fS)pr+y(k)-

k=2

(B.8)

f7: Sum entropy

2N

= Pery(k) log( pasy (k) ).

k=2

(B.9)

9
fs: Entropy
ZZP i, j) log(p (i, j)). (B.10)
fo: Difference average
u 2
fo=2(i— ) pali), (B.11)
i=1
where u is the average of p(i, j).
fro: Difference variance
N-1
fio =D (k= d)px—y(k), (B.12)
k=0
where d is the mean of p, .
fi1: Difference entropy
N-1
fir = = 3 pe-y(k) log(pe-y (k). (B.13)
k=0
fi2: Information measure of correlation 1
e fo+ 2% p(iv j) log(pe(i)py (7))
max( > Px(i)log(px(i)), — 2 py(z)log<py(z)))
(B.14)
fi3: Information measure of correlation 2
fis =1 —exp(-2(E - fy)), (B.15)

where E =

= 2 2 px(D)py () 1og(px () py(j))-
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Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young’s modulus
of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson’s ratio using Hayes’ equa-
tion. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling
medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration
of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue
from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and
the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element
model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes” equation has
been derived by introducing a new scaling factor which is dependent on Poisson’s ratios v, aspect ratio a/h (the radius of the
indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young’s modulus of soft tissue can be
quantitatively evaluated and imaged with the error no more than 2%.

1. Introduction

Physiologic processes may change tissue properties signifi-
cantly. Tissue elasticity is one of the typical mechanical prop-
erties which generally correlate with pathological changes
[1], such as cancer [2] and osteoarthritis [3]. During the
past a few decades, there have been many efforts to develop
various techniques to measure or image the elasticity of soft
tissue, such as elastography [4-6], indentation [7-9], and
atomic force elasticity microscopy [10-12].

Indentation is one of the most commonly used method
to measure mechanical properties of soft tissues in situ or
in vivo, because it does not require special preparation of
regular shaped tissues and can be employed to perform tests
on small specimens [13]. A typical application of indentation
is to assess the degeneration of articular cartilage (AC). AC is

often characterized as a single phase, isotropic, homogeneous
linear elastic model when no interstitial fluid flows during
instantaneous, and equilibrium responses [7, 8]. Rigid cylin-
drical flat-ended or spherical indenters have been employed
in early models of indentation, and the Young’s modulus of
soft tissues [14-16] can be calculated using the following
equation given by Hayes et al. [7]:

(1-v%)

F
" 2ak(v,a/h)  d’ ()

where F is the indentation force, v is the Poisson’s ratio of soft
tissues, a is the radius of indenter, h is the tissue thickness,
d is the indentation depth, and k is a scaling factor, which
depends on aspect ratio a/h and Poisson’s ratio v. It is
emphasized that the deformation was assumed to be small,



which is difficult to be controlled when indentation test is
performed manually [9]. Zhang et al. developed a finite
element model using (1) by including the effects of large
deformation up to15% strain, and a new set of k values were
calculated [14].

Young’s modulus can be calculated from (1) by using
experimentally obtained data of F and d. The indentation
force F is normally recorded by a force sensor. The defor-
mation d can be measured by optical [17, 18], needle probe
[19-21] or ultrasound [9, 22-25] methods. Poisson’s ratio
v is conventionally assumed to be an assigned value [7, 15]
or separately measured using other methods [13, 16, 26].
Among them, ultrasound measurement provides a non-
invasive and accurate tool for obtaining both tissue thickness
and deformation simultaneously. Nevertheless, traditional
ultrasound indentation typically operates at the frequency
range between 2 and 10 MHz and is normally used to meas-
ure the mechanical properties of entire tissue layers. Its
resolution is not sufficient to map the mechanical properties
of soft tissues with fine structures. Moreover, most of current
indentation instruments use a contact way, so that tissue
damage caused by the measurement instrumentation cannot
be avoided. High frequency ultrasound can improve the
resolution to a microscopic level. However, for some tech-
nical reason, high frequency ultrasound transducers are not
suitable for traditional contact indentation [27]. Considering
that ultrasound can propagate through water with very small
attenuation, Lu et al. [28] developed a water jet system to
achieve noncontact high frequency (20-50 MHz) ultrasound
indentation. Water jet not only serves as a soft indenter but
also as the coupling medium for high-frequency ultrasound.

The ultrasound water jet indentation system has been
employed to obtain modulus image of soft tissues [27], to
assess articular cartilage degeneration [29] and to evaluate
the bone-tendon junction healing progress [28], which has
shown great potential to image the modulus distribution of
soft tissues for clinical assessment and diagnosis, and/or to
perform indentation tests on small specimens at microscopic
levels for biological tissues and other materials. However, all
the studies mentioned above measured the stiffness ratio of
soft tissue as an indicator of tissue pathological state, which
is not the intrinsic property of soft tissue. There’s still large
discrepancy between the values of stiffness ratio and Young’s
modulus.

In this study, we simulated the water jet indentation using
finite element (FE) analysis to investigate the interaction bet-
ween fluid (water jet) and solid (soft tissue). With this FE
model, the Young’s modulus of soft tissue can be calculated
using an improved indentation solution based on Hayes’
equation by introducing the geometry-, material- and defor-
mation-dependent factor k. A new set of scaling factor k is
presented by considering the finite deformation effect of
indentation.

2. Methods

The water jet indentation system consists of a 3D translating
device (Arthroscopic supporting arm, Medtronic Inc., MN,
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FiGure 1: Diagram of the noncontact ultrasound indentation sys-
tem. The 3D translating device facilitated the system to move easily
and monitor the deformation of the phantom. Water flowed from
the water pipe and water jet was used as an indenter. Focused high-
frequency ultrasound was transmitted through water. The central
square region, including a long water pipe, a bubbler, a nozzle, and
the soft phantom, was modeled in ANSYS WORKBENCH (see
Figure 2). Pressure sensor was located 60 mm from the middle of the
bubbler. The dimensions of the important components are: nozzle
diameter 1.7 mm, water supply pipe diameter 2 mm, the height of
nozzle is 8.5 mm and the distance from the nozzle to tissue approxi-
mately 0.95 mm.

USA), a water container, a pressure sensor (EPB-C12, Entran
Devices, Inc., Fairfield, NJ, USA), a water pipe, an ultrasound
transducer (SEUT-506, Acoustic Sensor Co., Ltd., Taiwan), a
bubbler, and a nozzle (Figure 1). The 3D translating device
facilitates the system to move easily to adjust the distance
from the transducer to the tissue sample, and to apply C-scan
to obtain modulus image of the region of interest. Focused
high-frequency ultrasound is transmitted through the bub-
bler when it is filled up with water. The central frequency
of the ultrasound transducer is 50 MHz, with focal length at
12 mm, and aperture size at 6 mm. The dimensions of the
important components are nozzle diameter 1.7 mm, water
supply pipe diameter 2 mm, the height of nozzle is 8.5 mm,
and the distance from the nozzle to tissue approximately
0.95 mm which is determined by adjusting the ultrasound
beam focused at tissue surface. Pressure sensor was located
60 mm from the middle of the bubbler.

A three-dimensional finite element (FE) model whose
geometry was as same as the experimental system was estab-
lished using ANSYS (version 11.0, Canonsburg, PA, USA)
to simulate indentation (Figure 2). The interaction between
the water jet and soft tissue involves fluid and structural
solid coupling, therefore, the simulation was performed by
computational fluid dynamics (CFD) analysis that was per-
formed in ANSYS CEX 11 and ANSYS 11 structural codes,
coupled through the ANSYS MFX solver. One-way fluid-
structure interaction (FSI) theory was applied in this prob-
lem.

2.1. Model Geometries. The fluid domain model is shown as
Figure 2. The dimensions of the important components are
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FIGURE 2: Model of the water jet indentation in ANSYS. The upper
part represents fluid domain, which included a long water pipe with
60 mm in length, a bubbler, and a nozzle. To make the outlet clearer,
an enlarged part was displayed at the right bottom. Radius of inlet
was 1 mm and outlet 0.85 mm. Point 1, the upper point of inlet, and
Point 2, the central point of outlet, were set as two monitoring
points. The lower part represents solid domain. Diameters of the tis-
sue phantom was 25 mm and its thickness was 5 mm.

totally same as the experimental system described above. The
CFX-Mesh method was applied to mesh the fluid domain.
With consideration of velocity gradients in near-wall regions,
inflation theory was used. In our study, when the flow rate
at the inlet was increased from 1m/s to 10 m/s, different
meshes influenced the results significantly. After a proper
grid sensitivity analysis, the number of inflated layers was set
as 11 and the maximum thickness of inflated boundary was
set as 0.1 mm. Triangle elements were generated outside of
the boundary layer regions. Refinement of the mesh is imple-
mented at the boundaries. Totally a mesh of 665242 nodes
and 2877024 elements were employed for all simulations.

The model of solid part is built up as a cylinder soft
tissue with its thickness at 5mm and diameter at 25 mm.
The patch conforming mesher under tetrahedrons is used.
Regular meshes consisting of about 101911 nodes and
65034 elements were adopted, after a proper grid sensitivity
analysis, for all the models developed.

2.2. Boundary Conditions. The simulated indentation test
considers a specimen supported by a rigid impermeable plate
and indented by water jet from the nozzle. One-way FSI
was adopted in our study, therefore, the fluid part and solid
part were modeled separately. After fluid models were solved,
pressure calculated from fluid outlet was mapped to the
contact region of soft tissue.

The following boundary conditions were imposed on all
the fluid models. (1) Inlet boundary was adopted at the
beginning of the water pipe, with speed varied from 1m/s
to 10 m/s and intensity of 5% of turbulence model was used.
(2) Outlet boundary was defined at the interface of fluid
and relative pressure was 0 Pa. (3) Wall influence on flow is

defined as no slip and wall roughness as smooth wall. As to
the solid model, the nodes were constrained in the vertical
direction at the bottom of the specimen and pressure was
mapped from the fluid outlet to specimen surface.

2.3. Material Properties. Water at 22°C was used for the fluid
models. Soft tissue was assumed to be a linear-elastic, homo-
geneous, and isotropic thin layer adhere to a rigid foundation
[15, 16]. The mechanical properties were described by
Young’s modulus E and Poisson’s ratio v. Different values
of Young’s modulus obtained from literature review and our
previous studies, 10 kPa, 52 kPa, 146 kPa, 270 kPa, 740 kPa,
and 1000 kPa were assigned to the tissue model in FE analysis
to mimic human normal liver, human diseased liver, breast
benign lesion, breast malignant lesion, cancerous skin, and
articular cartilage, respectively, [30-32]. Density of the soft
tissue was 1060 kg/m?>.

2.4. Extract of Young’s Modulus of Soft Tissue. Different from
the traditional indentation, our water-jet indenter can be
regarded as a “soft indenter”, therefore, Hayes’ equation can-
not be used to derive Young’s modulus from the force-
displacement curve obtained with our experimental system
anymore. An improved indentation solution was proposed
by taking into account the finite deformation effect as

(1-v) F

= 2ak(v,a/h,d/h) - d’ @
therefore,
ady (1-v) F
k(”’h’h) T TwmE @ 3

where E is Young’s modulus, F is the indentation force which
was calculated by the FE simulation, v is the Poisson’s ratio
of soft tissues which was generally assumed as the values
reported by literature review, a is the radius of indenter and
h is the tissue thickness which can be obtained in advance
before an indentation test, d is the indentation depth which
was assigned to the nodes on the upper surface of the
indenter during the simulation of indentation test, and k is
a scaling factor, which depends on aspect ratio a/h, defor-
mation ratio d/h, and Poisson’s ratio v.

The simulated force-deformation data were used to cal-
culate the Young’s modulus and then derive the k value.
These new k values were calculated using (3). Then the
Young’s modulus of the soft tissues under water jet inden-
tation can be calculated by substituting these new k-values to
(2). Different fixed Poisson’s ratio (v = 0.1-0.5), indentation
depth (0.1%-10%), and aspect ratio a/h (0.17, 0.4, 0.6, 0.8,
and 1) were also assigned to the tissue model to investigate
the effects of these factors on the estimation of Young’s
modulus. Therefore, we have a total of 1650 simulation pro-
cesses in this study.

3. Results

First, the relationship between the pressure (or flow rate)
measured at the inlet and the total force applied to the soft
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FIGURE 3: The relationship between the flow rate measured from
Point 1 at inlet and the force calculated from Point 2 at outlet.

tissue was analyzed. This relationship is crucial because it is
difficult for us to directly measure the force applied to the
soft tissue by water jet during experiment. Two measurement
points were set at the inlet and outlet (Points 1 and 2 as
indicated in Figure 2), respectively. Figure 3 shows a quad-
ratic function that fit the flow rate measured from Point 1 at
inlet and the force calculated from Point 2 at outlet. Figure 4
shows the relationship between the flow rate and the pressure
measured both at Point 1 at inlet. The nonlinear but mono-
tonic relationship indicates that we may measure only pres-
sure or flow rate at the inlet to calculate the force applied to
the soft tissue. It will highly facilitate the water jet indentation
when it is used in clinical applications.

Table 1 shows the k values with different aspect ratios
(0.17-1.0), Poisson’s ratios (0.1-0.5), and deformation ratios
(0.01-0.1). The k values increased with the increase of aspect
ratios and Poisson’s ratios. However, the nonlinear and non-
monotonic relationships between the k values and deforma-
tion ratio were found.

In comparison with the ground truth, the percentage
errors of the calculated Young’s moduli are between —0.07%
and —1.47% when the aspect ratio varied from 0.17 and 1,
which suggested a quite good agreement between the actual
and calculated values of Young’s modulus.

4. Discussion

In this study, a 3D FE model was constructed to simulate the
water jet indentation on soft tissues. One-way fluid-solid
coupling analysis was conducted to find the relationship
among the parameters of the indentation force, tissue defor-
mation, tissue Young’s modulus and Poisson’s ratio and the
aspect parameters, including the indenter size and tissue
sample size. An improved Hayes’ equation was developed
to calculate Young’s modulus of soft tissue from the force-
deformation curve by introducing a new scaling factor k. A
new set of k values for different Poisson’s ratio v, aspect ratio
a/h, and strain level d/h were calculated. We also investigated
the relationship of the water parameters, such as pressure
and flow rate, in the water jet indentation system and the
influence of these parameters on the indentation force. The
percentage errors of the estimated Young’s modulus ranged
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FIGURE 4: The correlation between the pressure and the flow rate
measured both at Point 1 from inlet.

from —0.07% to —1.47% in comparison with the assigned
values in FE simulation when the aspect ratio a/h ranged
from 0.17 to 1. This robustness of the estimation could be
further improved by averaging the parameters calculated
using different deformation levels.

It has been demonstrated that our system can measure
the Young’s modulus of the soft tissue under water jet
indentation at one single site. As shown in Figure 1, a flexible
arm is used as the supporting arm to control the water
jet indenter in this system. This arm, actually utilized the
system to conduct C-scan over the tissue sample easily. C-
scan imaging provides a useful view of an object, showing
a plane perpendicular to the ultrasound beam. It has been
widely used in the aerospace industry to detect the surface
corrosion, delaminations, voids, cracks and other faults in
aging aircraft [33, 34]. In our study, it’s easy to apply C-scan
with different water pressures for C-scan sequences. After
analyzing both the ultrasound signal and flow rate collec-
ted from different C-scans, the modulus image could be
obtained.

The water jet ultrasound indentation system has been
proven that it is useful for the assessment of tissue pathology.
Tissue elasticity is one important parameter which generally
correlates with tissue pathological changes. This study, for
the first time, extracts Young’s modulus of soft tissue from
water jet indentation using FE analysis. In our FE model, soft
tissue is assumed as a linear elastic, homogeneous and
isotropic material. However, biphasic theory suggests that
most tissues are composed of solid and fluid materials, and
they possess very complicated structure-function behaviors
and exhibit time-dependent behavior, that is, nonlinear or
visco-elastic, heterogeneous and anisotropic behavior. Nor-
mally, solid matrix represents the elastic properties while
fluid materials represent the viscous properties. In order
to interpret these complicated behaviors of soft tissues, the
acquired force-deformation data should be interpreted care-
fully by taking the biphasic theory of soft tissue into accounts.

This study only focused on the nonlinear effect caused
by the finite deformation of indentation. The nonlinear
and visco-elastic properties of soft tissues have not been
addressed yet. Studies on nonlinear tissues’ models [35] and
indentation of anisotropic biomaterials [36] have been
reported. In the future study, the effects of nonlinear
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TasLE 1: The scaling factor (k) used in this study for different aspect ratios (a/h), Poisson’s ratios (v), and deformation ratios (d/h).
Poisson’s ratio
dlh 0.10 0.20 0.30 0.40 0.45 0.50
alh=0.17
0.001 0.8009 0.8050 0.8112 0.8215 0.8306 0.8379
0.01 0.7924 0.7967 0.8043 0.8171 0.8277 0.8385
0.05 0.7532 0.7565 0.7662 0.7858 0.8015 0.8248
0.07 0.7343 0.7354 0.7471 0.766 0.7825 0.8102
alh=0.4
0.001 0.9307 0.9422 0.9617 0.9963 1.0254 1.0909
0.01 0.9266 0.9384 0.9589 0.9957 1.0261 1.0961
0.05 0.9074 0.92 0.9437 0.9886 1.0261 1.1129
0.1 0.8827 0.8945 0.9199 0.9712 1.0149 1.1186
alh=0.6
0.001 1.0721 1.0918 1.1278 1.1948 1.2526 1.3683
0.01 1.0695 1.0896 1.1267 1.1965 1.2564 1.3782
0.05 1.0572 1.079 1.1204 1.2011 1.2715 1.4181
0.1 1.0407 1.0632 1.1087 1.2002 1.2822 1.4643
alh=0.8
0.001 1.2303 1.2628 1.3208 1.4338 1.5346 1.7026
0.01 1.2289 1.2621 1.3217 1.4368 1.542 1.7191
0.05 1.2225 1.2581 1.3240 1.4566 1.5771 1.7923
0.1 1.2135 1.2513 1.3237 1.4744 1.6152 1.8761
alh=1.0
0.001 1.4239 1.4715 1.5601 1.7385 1.9 2.197
0.01 1.4238 1.4722 1.5628 1.7465 1.9128 2.2257
0.05 1.4227 1.4746 1.5738 1.7803 1.973 2.3573
0.1 1.4204 1.4759 1.5847 1.8364 — —
visco-elaticity, inhomogeneity and anisotropy should be  References

considered. Another issue is about the structure of the tissue
model. In this study, tissue model with a single layer was
developed. However, in most cases, soft tissues are multi-
layers and behave complex. Our high frequency ultrasound
can differentiate tissue layers with high resolution. Hence,
for a further study, soft tissues with multi-layers should be
considered in the model, so that, both the depth-dependent
and site-dependent Young’s modulus distribution can be
imaged with our system. What’s more, experiments about
indentation with the water jet indentation system will be
conducted, and results will be compared with those obtained
from this FE study.
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Bioluminescence tomography (BLT) is a molecular imaging modality which can three-dimensionally resolve the molecular
processes in small animals in vivo. The ill-posedness nature of BLT problem makes its reconstruction bears nonunique solution and
is sensitive to noise. In this paper, we proposed a sparse BLT reconstruction algorithm based on semigreedy method. To reduce the
ill-posedness and computational cost, the optimal permissible source region was automatically chosen by using an iterative search
tree. The proposed method obtained fast and stable source reconstruction from the whole body and imposed constraint without
using a regularization penalty term. Numerical simulations on a mouse atlas, and in vivo mouse experiments were conducted to

validate the effectiveness and potential of the method.

1. Introduction

Due to its ability of monitoring physiological and patho-
logical activities at the molecular level, small animal optical
molecular imaging has become an important method for
biomedical research. Bioluminescence imaging, as one of
optical molecular imaging modalities, has attracted atten-
tion for its advantages in sensitivity, specificity, and cost
effectiveness in cancer research and drug development [1-
3]. Compared with planar bioluminescent imaging, BLT can
three-dimensionally reconstruct the bioluminescent probes
in small animals [4].

The generic BLT model is ill-posed. However, it has
been theoretically proven that the solution uniqueness
can be established under practical constraints using a
priori knowledge [5]. In most existing reconstructions,
multi spectral measurement [6-10], permissible source
region (PSR) [9-12], and sparse reconstruction [13-15]
are three common strategies to reduce ill posedness of BLT.
Although multi spectral techniques improve reconstruction

qualities to a certain degree by increasing the measurable
data, they in turn impose some limitations in practical
applications such as increased signal acquisition time and a
high computational cost [16]. Besides, the PSR strategy can
significantly improve the location accuracy of reconstructed
source and reduce the computational cost by limiting
the reconstruction region into a small area. However, in
practical applications, both the size and position of the
permissible region have significant impact on imaging
results [5]. Additionally, since the bioluminescent source
distribution is usually sparse in practical applications and
only insufficient boundary measurements are available, the
compressed sensing can bring benefits in spatial resolution
and algorithm stability to BLT reconstruction. Recently,
many sparse reconstruction methods have emerged in
BLT [17-19]. The majority of them reformulate the BLT
inverse problem into minimizing an objective functions
that integrate a sparse regularization term with a quadratic
error term and solve it via computationally tractable convex
optimization methods, such as linear programming and



TaBLE 1: Optical parameters for each organ in the mouse atlas [34].

Muscle Heart Lungs Liver Spleen Bone
Yo (mm~1)  0.032 0.022  0.071 0.128 0.075  0.002
po (mm~')  0.586 1.129 2305 0.646  2.178  0.935

gradient methods, However, the efficacy of the sparse
regularization methods strongly depends on the choice of
regularization parameter in practical applications [19].

The existing works have demonstrated that PSR can
improve reconstruction qualities by reducing the number
of unknown variables. Although the meaningful results
can be obtained by using the PSR that is based on the
bioluminescent signals and a priori knowledge available
from a specific biomedical application [4, 11, 12], in most
cases, it is rather difficultly to manually select such a small
and appropriate region. Recently, some optimal permissible
source region methods have emerged in BLI. Feng et al.
presented a reconstruction algorithm for a spectrally resolved
BLT based on an adaptive rough estimate of an optimal per-
missible source region and multilevel finite element method
approach (FEM), where Tikhonov regularization was used
to solve the constrained BLT inverse problem [9]. Naser
and Patterson proposed a two-step reconstruction algorithm
of bioluminescence, in which the permissible regions were
shrunk by using an iterative minimization solution based on
the L1 norm [10]. These works demonstrated the feasibility
and potential of the optimal PSR techniques with numerical
simulation. However, both of two previous reconstructions
also needed the regularization methods to reconstruct the
sources in the allowed region, which made the reconstruction
results also depend on the choice of regularization parameter.
Furthermore, they were demonstrated with only regular
phantoms simulations and presented no in vivo experiment
validation.

In this work, a novel BLT reconstruction algorithm based
on the semi greedy method was proposed. The optimal
PSR problem was cast into a search for the correct support
of source distribution among a number of dynamically
evolving candidate subsets, and the optimal PSR was chosen
automatically by using an iterative search tree. Therefore,
the columns of the system matrix were treated as the nodes
for building up the search tree where each path from the
root to a leaf node denoted a candidate. The search tree was
initialized with some unspecific nodes. At each iteration, new
nodes were appended to the most promising path, which
were selected to minimize the cost function based on the
residue. The permissible source region was expended by
adding nodes with high a probability to contribute to the
source. Among the system matrix, the columns that were
corresponding to the nodes contained in the most promising
path were selected to obtain the source distribution. By
automatically choosing an optimal PSR, the method reduced
the ill posedness of the problem and imposed constraint
without using a regularization penalty term.

This paper is organized as follows. In Section 2, the
forward photon propagation model, the inverse problem for
BLT with FEM, and the proposed algorithm are introduced.
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In Section 3, the numerical simulations in a mouse atlas
demonstrate the performance of the proposed method. In
Section 4, an in vivo mouse experiment is conducted to
further evaluate its reliability. Finally, we discuss the results
and conclude this paper.

2. Method

Light propagation in biological media is essentially the
transport of radiant energy. The radiative transfer equation
(RTE) can rigorously describe light transport in turbid media
[20]. Compared with the other approximations of RTE
such as simple spherical harmonics, spherical harmonics
and discrete ordinates, the following steady-state diffusion
approximate equation (DA) in (1) is the most popular one
as a result of its moderate computational efficiency and
explicit physical meaning [4, 5, 11, 15, 21]. Assuming that
the bioluminescence imaging experiment is performed in
a totally dark environment and no photon travels into
through the boundary 0Q, the equation is subject to the
Robin boundary condition in (2) as follows:

—V - D(r)VO(r) + pa(r)@(r) = S(r)  (r € Q), (1)

O(r)+2A(r;n,n )D(r)(v(r) - VO(r)) =0 (r € 0Q), (2)
where Q) is the domain of the problem, S(r) donates the
source energy distribution, @(r) represents the photo fluence
rate, p,(r) is the absorption coefficient, y¢(r) is the reduced
scattering coefficient, D(r) = 1/3(ua(r) + p;(r)) indicates the
optical diffusion coefficient, Q) donates the boundary of the
problem, and A(r, n,n") represents the mismatch coefficient
between Q and its surrounding medium. The measured
quantity on the boundary dQ is given by the outgoing
radiation as follows:

D(r)

Q(r) = =D(r)(v(r) - VO(r)) = QA(rmn)

(r € 0Q).
(3)

FEM is a powerful tool for solving the DA equation [4, 6—
10]. By using FEM to discretely approach the solving domain
and making a series of transformations and rearrangements,
the linear relationship links the source distribution inside the
heterogeneous medium, and the photon fluence rate on the
surface is established as follows:

M® = FX, (4)

where X is the source distribution of the interior nodes,
® is the measurable photon flux photon on the boundary
nodes, M is the positive definite matrix, and F is the
source weight matrix. The nonmeasurable entries in ® and
corresponding rows in M~'F can be removed. Then a new
linear relationship can be obtained as follows [4, 22]:

AX = ™, (5)

For BLI, the domains of the bioluminescent sources
are usually very small and sparse compared with the entire
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FIGURE 1: Reconstruction model with a single source. (a) The torso of the mouse atlas model with one source in the liver. (b) The simulated

photon distribution on the surface.

reconstruction domain. That means that there are only fewer
nonzero components in X. Therefore, the system matrix
A can be seen as the dictionary, and ®™ has a less-term
representation over the dictionary. As a consequence, the aim
of the proposed method is imposing the constraint on the
source space by choosing only the part that contributes to the
source distribution. In the language of sparse approximation,
greed pursuit algorithms are useful methods for solving
this problem [23, 24]. For instance, Orthogonal Matching
Pursuit (OMP) is to pick columns in a greedy fashion [25].
According to the introduction of OMP, the reconstruction
starts with an empty index set. At each iteration, we choose
the single column of A that is most strongly correlated with
the remaining part of ®”. Then, we subtract its contribution
to ®" and iterate on the residual. The reconstruction is
stopped after a number of iterations. Unfortunately, from
experimental results shown in Figure 2 and Table 2, we found
that OMP, as the single-path algorithm, could not achieve the
desired expectations for reconstructing the bioluminescent
source. In the experiments, when the computation of a single
path selects a wrong column, the correct one is still in the
set of candidate representations. Therefore, incorporation
of a multipath search strategy is motivated to improve
reconstruction. In this section, the semigreedy method was
used to search for the correct support of @ among a number
of dynamically evolving candidate subsets.

A general best first (GBF) is a search algorithm which
constructs a tree T' by expanding the most promising node
chosen according to a specified rule. Search algorithm A*,
as one of the most studied versions of GBE can find
path in combinatorial search. It selects an optimal path by
minimizing an additive evaluation function f(n) = g(n) +
h(n), where g(n) is the cost of the currently evaluated path
from start node s to n, and h(n) is a heuristic estimate of
the cost of the path remaining between n and some goal
nodes [26-29]. In our problem, the A* search tree was
iteratively built up by nodes which represent the dictionary
atoms. Each path from the root to a leaf node denoted a
subset of dictionary atoms which was a candidate support

for ®™. Let us define the notation. S; and C; denote the
atoms contained in path i and the vector of corresponding
coefficients obtained after orthogonal projection of the
residue onto the set of selected columns [25]. Similarly, s,,’ and
¢! represent the selected atom at the /th node on path S; and
corresponding coefficient.

The search tree starts with less unspecified nodes. A
simple way is selecting the I = N|500 nodes that have the
highest absolute inner product with ®™. In order to find
the fewest possible nodes, the search must constantly make
an evaluation to decide which available paths should be
expended next. Therefore, the evaluation function g(§') is
defined as follows:

1
g(s') =[], = -2 (6)

2

Beside the evaluation function, the auxiliary function is
also needed to assess the cost brought by adding a preferred
goal node to the path. Generally, according to the expectation
on average equal contribution of unopened nodes, the
auxiliary function can be built as follows:

= (-1

where coefficient ¢ is defined as t = aN—I. ais a ratio between
the number of the nonzero entries and the zero entries in the
solution X. It is well known that the sparse solution has only
less nonzero entries. Therefore, in most practical application,
a is very smaller than 1. Here, we selected &« = 0.005. If
the source distribution could be seen as the K-sparse signal,
Kcould be computed by K = [aN . The cost function can be
written as follows:
B(ln

1(8) =

where f3 is a constant. A lot of experiments for different
reconstruction models including 2D and 3D experiments
were performed to evaluate the impact of f on the

(7)

(8)
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FiGgure 2: Comparison of reconstruction results. (a), (b), (c) and (d) are the reconstruction results with OMP, FIST-L1 (with regularization
parameter set to be 4e-11), FIST-L1 (with regularization parameter set to be 4e-10), and the proposed method, respectively. The results are
shown in the form of isosurfaces for 40% of the maximum value (left column) and slice images in z = 47.29 mm plane (right column). The
small yellow sphere in the iso-surfaces view image and black circles in the slice images denote the real position of the bioluminescent source.

TaBLE 2: Quantitative comparisons of the reconstruction results.

Method Recon. location center (mm) Location error (mm) Recon. time (s) Maximum recon. value (nW/mm?)
OMP (15.61, 32.92, 47.48) 2.9605 0.798 0.00412
FIST-L1(1) (18.26,31.97, 47.28) 0.3995 16.94 0.01371
FIST-L1(2) (15.61, 32.92, 47.48) 2.9605 25.44 0.00414
The proposed method (18.26, 31.97, 47.28) 0.3995 12.20 0.01889
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source reconstruction. We found that better results could
be obtained when it varied in the interval [1.00, 1.25].
Therefore, in our experiments, its value was taken from the
interval and set to bel.05.

In practice, if all of the children of the most promising
partial path are added to the search tree at each iteration,
the tree might have too many search paths. Therefore, the
following pruning strategies are employed a guide on how
the tree grows.

The first one is about extensions per path. At each step,
it is not necessary to have all of the unopened atoms added
to the current optimal path. We can expand the search tree
only by the B children which have the highest absolute
inner-product with the residue to the selected path. This
pruning strategy decreases the upper bound to BX on the
number of paths. Practically, I and B are selected to be much
smaller than N, which can drastically decrease the paths
involved in the search. Although the number of extensions
per path is limited to B, it is also necessary to control the
size of path. That is because that adding new paths at each
iteration continues increasing required memory. Therefore,
to reduce memory requirements, we adopted the “beam
search” strategy [30] and limit the maximum number of
paths in the tree by the beam width P. When this limit
is exceeded, the paths with maximum cost are seen as the
worst paths and are removed from the tree until P paths
remain. Here, B and P were set to be 4 and 200, respectively.
Moreover, since order of nodes along a path is unimportant,
amalgamating the equivalent path is also important to
improve the search performance. For this purpose, we define
a path equivalency notion; Slf and Slzz are two paths with
different length I; < L. If all atoms of Slf can be found in Slzz

and these composed the continuous subset of Slf, we define
the above two paths as being equivalent. Consequently, the
insertion of Slzz into the tree is unnecessary.

After the growing of the search tree is finished, the linear
relationship between the observation @™ and the selected
PSR can be established as follows:

AgpiX = O™ (9)

Since the nodes contained in the optimal path can
be much smaller than the number of all nodes N, (9)
is an overdetermined linear equation. Therefore, a limited
memory variation of the Broyden Fletcher Goldfarb Shanno
(LBFGS) [31] was used to directly solve (9).

3. Simulation Studies in the Mouse Atlas

In this subsection, heterogeneous simulations were presented
to demonstrate the performance of the proposed method for
mouse applications. The experimental data were acquired
by a dual-modality BLT/micro-CT system developed in our
lab [32, 33]. By using image processing and interactive
segmentation technology, heterogeneous model including
heart, lungs, liver, bone, spleen, and muscle was built. The
optical coefficients for each organ are listed in Table 1 [34].
Here, the torso section with a height of 25 mm was selected
as the reconstruction region.

3.1. Reconstruction in a Single Source Case. In the exper-
iment, a spherical source with a 0.6 mm diameter was
placed in the liver with the center at (18.24 mm, 31.58 mm,
47.29 mm) as shown in Figure 1(a). The source was modeled
as isotropic point sources whose strength was set to be
2nW/mm?. As for the forward problem, the FEM was used
to obtain the synthetic measurements on the boundary.
The atlas model was discretized into a tetrahedral-element
mesh with 30892 nodes and 167841 elements. The generated
simulated photon distribution on the boundary is presented
in Figure 1(b). Then the forward solutions were projected
onto a single coarse mesh consisting of 20068 elements and
3098 nodes, which was used for reconstructing the source.

To better illustrate the performance of the proposed
method, we compared the proposed method with OMP
[25] and FIST-L1 [35, 36]. The former is a typical greedy
pursuit method for sparse signal recovery. The latter, as a
sparse regularization method, can be viewed as a standard
approach to ill-posed linear inverse problems and has been
used in fluorescence molecular tomography (FMT) and
BLT. Here, the step size in FIST-L1 was computed by
using the estimation algorithm introduced in [35]. Since
the regularization parameter plays an important role in the
regularization methods, we performed two experiments with
different regularization parameters that were set to be 4e-
11 and 4e-10, respectively. All of the reconstructions were
carried out on a personal computer with 3.2 GHz Intel Core2
duo CPU and 2 GB RAM.

The qualities of the reconstruction were quantitatively
assessed in terms of location error and the maximum
reconstructed intensity. The location error was defined as
Fuclidean distance between S;cai and Srecons, where Syeq and
Srecons Were the real locations of the source center and the
location of the node with the maximum reconstructed value,
respectively. The visual effects of the reconstruction results
are presented in the form of slice images and iso-surfaces,
as shown in Figure 2. Additionally, the detailed information
about parameters and the final quantitative reconstruction
results are summarized in Table 2.

We found that the reconstructed positions by L1 reg-
ularization with an optimal regularization parameter and
the proposed method were identical. Specifically, the recon-
structed center was (18.26 mm, 31.97 mm, 47.28 mm) with a
location error of 0.3995 mm from the actual source, whereas
the location error by OMP was 2.9605 mm. The performance
of OMP was inferior to the other two methods. L1 regu-
larization performed well and obtained satisfactory source
localizations and maximum reconstruction value. However,
the selection of the regularization parameter had a great
impact on the reconstruction results. As for the proposed
method, it performed slightly better than L1 regularization
with manually optimized regularization parameter in terms
of maximum reconstruction value. Moreover, it was also an
efficient reconstruction method.

The above experiments were performed without noise.
In order to evaluate the sensitivity of the proposed method
to various noise levels, six cases were carried out where
the measurements were added to 5%, 10%, 15%, 20%,
25% and 30% Gaussian noise, respectively. We also made
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F1GURE 3: The proposed method for different noise levels of 0%, 5%, 10%, 15%, 20%, 25%, and 30%.

TasLE 3: Quantitative results in a single source case with different noise levels.

Method Noise level Rieczzrk();?;()m Loca(trlr?;l; 0T Recon. Time (s) Max1n(1;1$ /ﬁ?j value
5% (18.26,31.97, 47.28) 0.3995 24.43 0.0122
10% (18.26, 31.97, 47.28) 0.3995 24.99 0.0085

FIST-L1 15% (18.26, 31.97, 47.28) 0.3995 24.77 0.0050
20% (15.61, 32.92, 47.48) 2.9605 24.82 0.0032
25% (15.61, 32.92, 47.48) 2.9605 24.94 0.0025
30% (15.61, 32.92, 47.48) 2.9605 24.60 0.0023
5% (18.26,31.97, 47.28) 0.3995 13.41 0.0192
10% (18.26, 31.97, 47.28) 0.3995 14.15 0.0234

The proposed method 15% (18.26,31.97, 47.28) 0.3995 16.37 0.0204
20% (18.26,31.97, 47.28) 0.3995 18.09 0.0223
25% (18.26, 31.97, 47.28) 0.3995 18.95 0.0116
30% (18.26, 31.97, 47.28) 0.3995 46.61 0.0054

0.007 0.0139 0.0208

F1GURE 4: Reconstruction results in double source case. The results are shown in the form of iso-surface for 40% of the maximum value (left
column) and slice image in z = 47.29 mm plane (right column). The small yellow sphere in the iso-surface view image and black circles in
the slice image denote the real position of the bioluminescent source.
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TABLE 4: Reconstruction results in double source case.

Source number  Actual position (mm)

Recon. location center (mm)

Location error (mm)  Maximum recon. value (nW/mm?)

1 (18.24, 31.58, 47.29)
2 (18.74, 39.15, 47.06)

(18.26, 31.97, 47.28)
(18.75, 39.20, 46.86)

0.3995
0.2064

0.0204
0.0208

0.007 0.0127 0.0222

FIGURE 5: Reconstruction results in multisource case. The results are shown in the form of iso-surface for 40% of the maximum value (left
column) and slice image in z = 47.29 mm plane (right column). The small yellow sphere in the iso-surface view image and black circles in

the slice image denote the real position of the bioluminescent source.

a comparison between the proposed method and FIST-L1
with the regularization parameter that was set to be 4e-11.
The reconstruction results under different noise levels are
compiled in Table 3 and Figure 3 showing that the proposed
method was robust to measurement noise.

3.2. Double Source Case and MultiSource Case. Dual source
setting was also considered in order to evaluate the proposed
method. Two sources have the same size as one used in
the single source case. Their strength and position were
set to be 2nW/mm? and (18.24 mm, 31.58 mm, 47.29 mm),
1 nW/mm? and (18.74 mm, 39.15 mm, 47.06 mm), respec-
tively. The reconstruction results are shown in Figure 4 and
Table 4.

Multiple sources setting simulation experiment was also
presented to further demonstrate the ability of the proposed
method. Based on the setting in double source case, the third
source with the same size and shape was added. Its strength
and position were set to be 1.5nW/mm?® and (23.60 mm,
37.94 mm, 47.45mm). The final reconstruction results are
presented in Figure 5 and Table 5. The result of two group
experiments indicated that the sources can be accurately
distinguished by using the proposed method.

4. In Vivo Experiment Validation

Besides the numerical simulations with mouse atlas, an in
vivo experiment was carried out on a mouse to further test
the proposed method. The experiment was also performed
with a dual-modality BLT/micro-CT system developed in our
lab [32, 33, 37]. A nude hairless mouse (Nu/Nu, Laboratory
Animal Center, Peking University, China) was used in this
experiment. To simulate a known bioluminescent source, a
home-made cylindrical light source about 3 mm long and
1.5 mm in diameter was implanted into the abdomen of the
mouse in this experiment. The source was made of a catheter
filled with luminescent liquid and emitted a red luminescent

light that had a similar emission spectrum with a firefly
luciferase-based source.

Before the beginning of the experiment, the CCD
(VersArray, Princeton Instruments, Trenton, NJ, USA) was
cooled to 110° by using liquid nitrogen. The mouse was
anesthetized and placed in a mouse holder. The mouse
holder was set to rotate to 0°, 90°, 180° and 270°. At each
of four positions, the mouse was photographed by the CCD
camera. After the optical data were acquired, the mouse was
scanned by using the micro-CT to obtain the anatomical
maps which could provide structural information for the
source reconstruction. Then the CT data were segmented
into five regions represent muscle, lungs, heart, liver, and
kidneys, respectively, as shown in Figure 6(a). The hetero-
geneous model including five tissues was discretized into the
mesh containing 11917 tetrahedral elements and 2557 nodes.
The optical parameters for different tissues were calculated
based on the literature as listed in Table 6 [34, 38]. The optical
data was registered with the volumetric mesh, and measured
data were mapped onto the surface of the mesh. The result of
mapped photon distribution is shown in Figure 6(b).

It took about 8 seconds to complete the reconstruction
using the proposed method. The final results are presented
in Figure 7, where the reconstruction source center is
(37.17 mm, 38.82mm, and 20.92mm) with a deviation
about 2mm to the actual center. As can be seen in the
reconstruction results, the proposed methods could obtain
satisfactory bioluminescent source localizations.

5. Discussion and Conclusion

In this paper, we have proposed a new method based
on the semigreedy for bioluminescence tomography. The
reconstruction results of the simulations on a mouse atlas
demonstrate that the proposed reconstruction method is
able to accurately and stably localize bioluminescent source
from whole body, even with noisy measurements. The in vivo
experiment further shows its performance.
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TaBLE 5: Reconstruction results in multiple source case.

Source number  Actual position (mm)

Recon. location center (mm)

Location error (mm)  Maximum recon. value (nW/mm?)

1 (18.24, 31.58, 47.29) (18.26, 31.97, 47.28)
2 (18.74, 39.15, 47.06) (18.75, 39.20, 46.86)
3 (23.60, 37.94, 47.45) (23.60, 37.97, 47.65)

0.3995 0.0195
0.2064 0.0226
0.2023 0.0300

0+
0.01
N
0.02 -
\ N
)
0.03 -
— i
N\
0.05 0.04 0.03 Q.QC" g
X

TABLE 6: Optical parameters for each organ in the heterogeneous
model [34, 38].

Muscle Heart Lungs Liver Kidneys
Yo (mm~1) 0.008 0.138 0.456 0.829 0.150
g, (mm™!) 1.258 1.076 2.265 0.735 2.507

The PSR strategy can significantly improve reconstruc-
tion qualities. However, in most cases, empirically selecting
such small and appropriate region is unconvenient, even
available. In this study, The optimal PSR problem is cast
into a search for the correct support of source distribution
among a number of dynamically evolving candidate subsets.
In view of the characteristics in BLT sparse distribution, only
the columns that contribute to the source reconstruction
are chosen automatically by using semi-greedy method.
The constraint imposed on the source space reduces the ill
posedness of the problem and computational cost.

It is noted that in vivo experiment is not as accurate
as simulations. Some reasons can be explained for this
phenomenon. First of all, the error was generated, when
the energy distribution was mapped from 2D images to
a 3D mouse surface. Secondly, there were only five main
segmented tissues used to build a heterogeneous model while
others simply were regarded as the muscle, which also led to
errors. Finally, the accuracy of the photon propagation model
was very important for source reconstruction. The diffusion

(®)

FIGURE 6: In vivo heterogeneous model. (a) The torso of the model. (b) The mapped photon distribution on the mouse surface.

approximation was used due to its moderate computational
efficiency and explicit physical meaning. However, it has
some limitations in certain regions, such as void or more
absorptive regions. Therefore, the error brought on by the
DA model is inevitable. As discussed above, our future
work will focus on studying more accurate forward models
to describe photon propagation in biological tissues and
improving the experimental procedures and imaging system
to further promote the reconstruction quality.
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