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,is paper investigates the effect of the field winding interturn short-circuit (FWISC) position on the rotor vibration properties in
turbo generators. Different from the previous studies which focused on the influence of the short-circuit degree, this work pays
much attention to the impact of the short-circuit position on the rotor unbalanced magnetic pull (UMP) properties and vibration
characteristics. ,e theoretical UMP model is firstly deduced based on the analysis of the magnetic flux density (MFD) variation.
,en, the finite element analysis (FEA) is performed to calculate the UMP data. Finally, the rotor vibrations are tested on a CS-5
prototype generator which has two poles and a rated capacity of 5 kVA. It is shown that the occurrence of FWISC will greatly
increase the UMP as well as the rotor vibration. In addition to the short-circuit degree, the short-circuit position will also affect the
UMP and vibration. ,e nearer the short-circuit position is to the big rotor teeth, the larger the UMP and vibration will be. ,e
proposed study in this paper will be beneficial for the monitoring and diagnosis of FWISC faults.

1. Introduction

Field winding interturn short circuit (FWISC) is a common
electrical fault in synchronous generators and has been
studied by scholars for a long time since the 1960s [1]. ,is
fault can be caused due to many reasons [2] such as residual
particles in the slot and the interturn insulation degrading.
Luckily, it will not significantly affect the performance of the
generator when the short-circuit degree is light. However,
this fault will develop into an earth fault if without carrying
out proper measures.

Scholars have made a lot of efforts in studying the
electromagnetic properties. For instance, Dirani et al.
studied the impact of the FWISC degree on the primary
parameters such as the radial magnetic flux density (MFD),

the radial force density, and the UMP of a 74MVA industrial
large hydrogenerator with 76 poles [3]. As a supplement, the
authors of this paper have also studied the magnetic field
variation due to FWISC, finding that both the short-circuit
degree and the short-circuit position will affect MFD [4, 5]
and the stator voltage/current [6]. It is found that the oc-
currence of FWISC will generally decrease the MFD [4, 5]
and break the symmetric components of the stator voltage/
current into asymmetric ones [6].

Besides the magnetic and the electrical parameters,
scholars have also found that FWISC will still affect the
frame/housing vibrations [7, 8] and the stator winding vi-
brations [9, 10]. Since the vibration and the electromagnetic
torque are both in proportion to the square of the magnetic
flux which can be considerable by FWISC, not only the
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stator/housing vibration but also the electromagnetic torque
will be influenced by such a fault. Typically, Hao et al. in-
vestigated the electromagnetic torque characteristics before
and after FWISC [11], indicating that the torque ripples will
be greatly strengthened by the interturn short circuit.

Based on the faulty electromagnetic properties, scholars and
engineers have proposed various methods to monitor and
diagnose the FWISC fault. For instance, Yucai and Yonggang
calculated the difference between the virtual power and the
actual electromagnetic power to detect the occurrence and the
FWISC degree in turbine generators [12], while Hao et al.
employed the rotor and the stator current to monitor the very
fault based on multiloop theory [13]. To distinguish the rotor
winding fault from the mechanical faults, Salomon et al. used
themethod of symmetrical components and proposed a simple,
low-cost, and low intrusive condition monitoring system which
only relied on stator electrical quantities [6], whilemore scholars
alternatively employed the magnetic flux difference for pattern
recognition [14].

It has been found that the saturable effect will affect the
electromagnetic parameters due to its nonlinear effect [15]. As a
typical technical method, Milasi et al. [16], Ehya and Nysveen
[14], Yun et al. [17], and Yucai et al. [18] employed the non-
invasive flux sensors to detect the FWISC fault in salient-pole
[14, 16, 17] and nonsalient-pole synchronous generators [18],
respectively, while Valavi et al. used the spectral analysis of
stator voltage and current to diagnose the very fault [19].
Additionally, Li et al. used the circulating current inside the
stator parallel branches to detect the interturn short circuit
[20–22], while He et al. [23] and Wan et al. [22, 24] employed
the stator and rotor vibrations to diagnose FWISC. To detect
FWISCmore quickly, intelligent methods such as digital neural
network [25] are employed and have gained a satisfied effect.

,e aforementioned studies have set up a good basis for
the FWISC fault detection and monitoring. However, most
of the studies primarily focus on the electromagnetic
property variations due to the short-circuit degree, while the
impact of the short-circuit position on the key electrome-
chanical characteristics such as the rotor vibration has been
rarely investigated in detail. As an improvement, in this
paper, we focus on the rotor UMP and vibration properties
under varied FWISC position cases in synchronous gen-
erators. Specifically, a nonsalient-pole prototype generator,

which has two poles and a rated capacity of 5 kVA, is taken as
the study object. ,e remainder of this paper is arranged as
follows. Section 2 puts forward the theoretical analysis
model of the rotor UMP, while Section 3 carries out the finite
element analysis (FEA) and the experimental study on the
CS-5 prototype generator to obtain the UMP values and the
rotor vibrations for a validation. Finally, the main conclu-
sions based on the theoretical analysis, FEA calculation, and
experimental studies are drawn up in Section 4.

2. Theoretical Model

In turbo generators, the field winding is connected in series
and embedded in the rotor slots, as indicated in Figures 1(a)
and 1(b). As FWISC occurs, the exciting current If will no
longer pass through the shorted turns, which means the
current inside the shorted turns will be reduced to almost
zero. Consequently, the rotor magnetomotive force (MMF)
will be decreased due to the reduction of the exciting turns,
as illustrated in Figure 1(c). Assuming that FWISC occurs in
slot 1-1’ (position 1) and 3-3’ (position 2), respectively, with
the same short-circuit turns, it is obvious that MMF will be
decreased more in position 2 since αr2 is larger than αr1. In
Figure 1(c), the shadows represent the reduced amounts of
MMF for the two different shorted position cases.

To concisely study the impact of FWISC on MMF, we
add reversed If to the shorted turns so that the final current
in these shorted turns can be turned to zero. ,en, the
analysis on the effect of the short circuit can be changed to
the investigation on the impact of such a reversed current.
According to the Gauss flux theorem, the positive magnetic
flux produced by the reversed current should be equal to the
negative magnetic flux, i.e., the yellow part in Figure 1(e)
should have the same area as the green part. ,en, the
amplitudes of the yellow part and the green part can be
calculated; see Figure 1(e), where nm is the number of short-
circuit turns. Finally, the rotor MMF will be changed from
Figure 1(d) to Figure 1(f ). More details about the calculation
process can be found in [4].

As investigated in [4, 5], the rotor MMF Fr is (90 +ψ)
degree in front of the stator MMF Fs, as indicated in
Figure 2(a), and the composite MMF can be written as

f αm, t( 􏼁 � Fs cos ωt − αm − ψ − 0.5π( 􏼁 + Fr cos ωt − αm( 􏼁 � Fc cos ωt − αm − β( 􏼁

Fc �

����������������������

F
2
scos

2 ψ + Fr − Fs sin ψ( 􏼁
2

􏽱

β � arctan
Fs cos ψ

Fr − Fs sin ψ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (1)

where αm is the mechanical angle to indicate the circum-
ferential position of the air gap, ω is the electrical angular
frequency (for turbo generators, it is equal to the mechanical

angular frequency of the rotor ωr), ψ is the internal power
angle of the generator, and Fc is the vector summation of Fs
and Fr. Since the occurrence of FWISC decreases Fr, the
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statorMMFwill also be reduced, as illustrated in Figure 2(b).
Consequently, the compositeMMFwill be decreased from Fc
to Fcs.

Since different MMF harmonics (both the rotor MMF
and the stator MMF) rotate at varied speeds, for the sake of
clarification, in Figure 2, all of the MMFs are the 1st ones.
,e higher-order harmonics have the similar situation as the

1st ones and therefore are not illustrated in this figure due to
the limitation of the space. In Figure 2(b), Fd1 is the 1st
harmonic of the inversed MMF produced by the short-
circuit turns, and it can be obtained based on the perfor-
mance of Fourier series decomposition.

,en, the composite MMF illustrated in Figure 2(b) can
be written as

f αm, t( 􏼁 � Fss cos ωt − αm − ψ − 0.5π( 􏼁 + Fr − Fd1( 􏼁cos ωt − αm( 􏼁 � Fcs cos ωt − αm − c( 􏼁. (2)

To indicate the short-circuit position, the angle between
the two slots where FWISC takes place is employed; see αr in
Figures 1(c) and 1(e).,e larger value of αr indicates that the
short-circuit position moves away farther from the big tooth

of the rotor. Qualitatively, the larger αr is, the larger Fd1 will
be, but, on the contrary, the smaller Fcs will be.

,e unbalanced magnetic pull (UMP) on the rotor can
be obtained via [22, 24].
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Figure 1: Rotor MMF variation: (a) rotor structure, (b) field winding connection, (c) MMF reduction due to FWISC in two different
positions, (d) normal rotor MMF, (e) inversed MMF by short-circuit turns, and (f) MMF after FWISC.
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FX � LR􏽚
2π

0
q αm, t( 􏼁cos αm dαm

FY � LR􏽚
2π

0
q αm, t( 􏼁sin αm dαm

q αm, t( 􏼁 �
B
2 αm, t( 􏼁

2μ0

B αm, t( 􏼁 � f αm, t( 􏼁Λ0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (3)

where FX and FY are the UMPs in the X (horizontal) di-
rection and the Y (vertical) direction, respectively, q is the
magnetic pull per unit area, B is the magnetic flux density
(MFD), and Λ0 is the permeance per unit area.

Feed (1) and (2) into (3), respectively; the rotor UMP in
normal and FWISC cases can be written as

FX �

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal

−FCsFd2LRΛ20π
2μ0

cos ωt + c − 2φ2( 􏼁 . . . FWISC

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FY �

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal

−FCsFd2LRΛ20π
2μ0

sin ωt + c − 2φ2( 􏼁 . . . FWISC

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(4)

where Fd2 is the 2nd harmonic of the reversed MMF pro-
duced by the short-circuit turns, Fcs is the composite MMF
in the FWISC case (see Figure 2(b)), and φ2 is the angle
between Fd2 and the X-axis.

According to (4), the occurrence of FWISC will bring in the
extra 1st UMPharmonic to the rotor, resulting in the intensified
vibration at ω. Moreover, it is suggested from Figure 1(c),
Figure 2(b), and equation (3) that the increment of αr will
decrease Fcs and B. Consequently, the UMPs FX and FYwill also
be decreased. Briefly, for the rotor UMP and vibration, the
nearer short-circuit position to the big tooth with the same
short-circuit degree has the similar effect as the severer short-
circuit degree at the same shorted position. ,e short-circuit
degree is defined as

f d �
nm

N
× 100%, (5)

where nm is the number of short-circuit turns, while N is the
number of total exciting turns.

3. FEA and Experimental Study

3.1. FEA and Experimental Setup. FEA and experiments are
carried out on a CS-5 prototype generator in the State Key
Laboratory of Alternate Electrical Power Systems with Re-
newable Energy Sources, P. R. China, as illustrated in
Figure 3(a). ,e prototype generator has two poles and a rated
rotating speed of 3000 rpm. ,e primary parameters of the
prototype generator are listed in Table 1.

On the generator, there is a plate with several interturn
short-circuit taps for the field windings, as shown in Figure 3(a).
During the experiment, L0-L1, L1-L2, and L2-L3 are connected,
respectively, to simulate 5% FWISC at varied positions. Two
PCB accelerometers with very little volume and mass are fixed
to the horizontal direction and the vertical direction of the
bearing block, respectively, to test the vibration signals of the
rotor, as shown in Figure 3(b).

2D FEA is carried out, with the parameter settings the
same as the experimental ones.,e finite element models are
illustrated in Figure 3(c), while the external coupling circuit
models are shown in Figure 3(d). During FEA, four groups
of calculations are carried out:

(1) Normal condition: no FWISC is set, as illustrated in
the first figure in Figure 3(c).,e data are collected as
the reference for further comparison with the faulty
cases.

(2) 5% FWISC at position 1 with minimal αr (hereafter,
it is written as FWISC5%-1), as illustrated in the
second figure in Figure 3(c).

(3) 5% FWISC at position 2 (hereafter, it is written as
FWISC5%-2), as illustrated in the third figure in
Figure 3(c).

(4) 5% FWISC at position 3 with maximal αr (hereafter,
it is written as FWISC5%-3), as illustrated in the
fourth figure in Figure 3(c).

,e aforementioned four cases are also carried out for at
least three times in the experiment, respectively, to get
sufficient test data. ,e experimental results show a general
consistency, with only small value variations in the vibration
amplitudes. More details about the FEA data and the ex-
perimental results can be specifically found in Section 3.2.

3.2. Results and Discussion. ,e MFD and the phase current
variations before and after FWISC are illustrated in Figures 4(a)
and 4(b), respectively. It is shown that MFD and the phase
current at FWISC cases will have smaller amplitudes than the
normal condition. As the short circuit goes away from the big
tooth, namely, αr increases, MFD as well as the phase current
will be decreased.,e larger αr is, themoreMFD/current will be
decreased. Such a result is consistent with Figures 1(c)–1(f).

,e UMPs in the X-direction and Y-direction by FEA are
illustrated in Figures 5(a) and 5(b), respectively, while the tested
vibrations in X- and Y-directions are indicated in Figures 6(a)
and 6(b), respectively. It is shown that, as the short-circuit
positionmoves away from the big tooth, namely, αr goes bigger,
the UMPs in both X-direction and Y-direction will be de-
creased. Correspondingly, the rotor vibrations in X- and Y-
directions will also be decreased. ,e very reason is that the
magnetic pull is in proportion toMFD, as indicated in equation
(3); bigger αr will make MFD to decrease more, as illustrated in
Figures 1(c) and 1(e). Although the rotor UMPs and the vi-
brations will be decreased as the increment of αr, they are still
larger than those in the normal condition since the occurrence
of FWISC will break down the magnetic pull balance between
the two poles.
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,e UMP and the vibration spectra are shown in
Figures 5(c) and 5(d) and Figures 6(c) and 6(d), respectively. As
indicated in Figures 5(c) and 5(d), the primary UMP com-
ponents are the odd harmonics, primarily the 1st, 5th, and 7th.

Such a result is in good accordance with equation (4). In
equation (4), the UMP result mainly takes into account the
interaction between the 1st composite MMF and the 2nd
inversed MMF harmonic (Fd2), while actually, there are still
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Figure 3: Experiment and FEA setup on a CS-5 prototype generator: (a) picture of the generator set, (b) accelerometers’ setup for the rotor
vibration test, (c) FE models: from left to right, for normal condition and FWISC cases at position 1, 2, and 3, respectively, and (d) external
coupling winding circuits.
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other odd composite MMF harmonics such as the 3rd, 5th, and
7th harmonics. Consequently, the square operation in equation
(3) will produce odd UMP harmonics. However, for the ex-
perimental vibration spectra, the cases are muchmore complex.
As indicated in Figures 6(c) and 6(d), the rotor vibrations still
have even harmonics in addition to the odd harmonics since the
stator vibrations (mainly even harmonics) will be transferred to
the rotor through the foundation and the bearings [23]. It is also
suggested from Figure 6 that there are some asymmetric factors
inside the generator since the rotor has vibrations of each
harmonic in even normal condition. ,e vibration spectra in
the X-direction do not strictly follow the theoretical developing
tendency since vibration is a complex phenomenon which can
be affected by many factors. However, the vibrations in the Y-
direction present a much better result. ,eoretically, the 3rd
vibration harmonic should not have that large amplitude; please
see Figures 6(c) and 6(d). ,e authors have repeated the ex-
periments for several times but generally obtained similar data.
After comprehensive analysis and test, it is found that the
bearing blocks have a natural frequency at about 150Hz.

Tomore vividly present the action of the UMP on the rotor,
the force distributions by FEA are illustrated in Figure 7. It is
shown that, in the normal condition, the magnetic forces at the

two poles are generally symmetric, as indicated in Figure 7(a).
However, the occurrence of FWISC will break down such
symmetry. As αr goes bigger, namely, the short-circuit position
goes farther away from the big tooth, the amplitude of the edge
forcewill be decreased, but the general UMP (difference value of
the summing edge force between two sides) on the whole rotor
will be increased. Such a result is consistent with the afore-
mentioned analysis.

Since the vibration is actually the periodic deformation/
movement with respect to a central position, the rotor
deformation/movement amplitude represents the vibration
amplitudes. We also carry out a quick calculation to obtain
the rotor deformation under the action of the UMPs. During
the calculation, we perform the approximated constraint and
load on the rotor. Physically, the rotor is restrained by the
bearings. However, since we carry out a 2D FEA in which it
is hard to simulate the fix effect of the bearings in two
different axial positions, we approximately fix the rotor on
one side and apply the UMP on the other side, as illustrated
in Figure 8(a).

,e rotor deformation results at the same moment are
illustrated in Figures 8(b)–8(e). Since this is an equivalent
fast calculation, the deformation result may not be so

Table 1: Key parameters of the CS-5 prototype generator.

Parameter Value
Rated capacity 5KVA
Rated voltage 380 v
Rated rotating speed 3000 rpm
Number of pole pairs 1
Connection mode of the stator winding 2 Y
Pitch 14
Number of stator slots 36
Power factor 0.8
Number of rotor slots 16
Number of turns per rotor slot 60
Outer diameter of the rotor 142.6mm
Inner diameter of the stator 145mm
Rated stator current 7.6 A
Length of the stator and rotor 130mm
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accurate, but the deformation tendency should be the same
as the practical one. It shows that, in FWISC cases, the rotor
will have a larger deformation than in the normal condition.
As the short-circuit position goes farther away from the big
tooth, the deformation amplitude will be decreased, indi-
cating that the rotor vibration magnitudes will be reduced.
Such a trend follows the previous analysis well.

4. Conclusions

,is paper investigates the impact of the field winding
interturn short-circuit position on the rotor UMPs and
vibrations. ,e whole work is based on the theoretical
analysis, the finite element calculation, and the experimental
test. ,e primary contribution of this paper mainly lies in
two aspects: (1) the influence of the FWISC position onMFD
and the exact way about how such an influence takes place
are comprehensively studied, while other research studies
mainly focused on the impact of FWISC degrees; (2) the
impact of the FWISC position on the rotor UMPs and vi-
brations is investigated, finding out the UMP/vibration

developing tendency/regularity, while other scholars have
rarely paid attention to this field.

,e primary conclusions based on the study proposed in
this work can be drawn up as follows:

(1) Normally, the rotor UMP is very little due to the
symmetric distribution of the magnetic force.

(2) ,e occurrence of FWISC will increase the rotor
UMPs in both X- and Y-directions. Consequently,
the rotor vibrations in these two directions will be
amplified.

(3) As the FWISC position goes farther away from the
big tooth, the rotor UMPs as well as the rotor vi-
brations will be decreased, but are still larger than
those in the normal condition.

Since the findings in this paper include the rotor UMP/
vibration developing regularity due to varied FWISC po-
sitions, they are highly potential to be employed as a sup-
plement to the current knowledge base and will be beneficial
for the condition monitoring and the failure prevention in
turbo generators. Moreover, the aforementioned study
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results can also be extended to other similar generators that
have wound rotors, regardless of the pole numbers. For
instance, the conclusion can be applied to the hydro-
generators which have multi-salient-poles and the nuclear
turbine generators which have two nonsalient-pole pairs.
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Aiming at the problem that the vibration signals of the hydrogenerator unit are nonlinear and nonstationary and it is difficult to
extract the signal features due to strong background noise and complex electromagnetic interference, this paper proposes a dual
noise reduction method based on intrinsic time-scale decomposition (ITD) and permutation entropy (PE) combined with
singular value decomposition (SVD). Firstly, the vibration signals are decomposed by ITD to obtain a series of PRC components,
and the permutation entropy of each component is calculated. Secondly, according to the set permutation entropy threshold, the
PRC components are selected for reconstruction to achieve a noise reduction effect. On this basis, SVD is carried out, and the
appropriate reconstruction order is selected according to the position of the singular value difference spectrummutation point for
reconstruction, so as to achieve the secondary noise reduction effect. .e proposed method is compared with the LMD-PE-SVD
and EMD-PE-SVD dual noise reduction method by simulation, taking the correlation coefficient and signal-to-noise ratio to
evaluate the noise reduction performance and finding that the ITD-PE-SVD noise reduction has good noise reduction and pulse
effect. Furthermore, this method is applied to the analysis of the upper guide swing data in the X-direction and Y-direction of a
unit in a hydropower station in China, and it is found that this method can effectively reduce noise and accurately extract signal
features, thus determining the vibration cause, which is helpful to improve the turbine fault recognition rate.

1. Introduction

As a clean and renewable energy, hydropower has mature
development technology, which meets the needs of China’s
energy strategic development. As the core equipment of
hydropower energy conversion, the operation state of hy-
dropower units directly affects the efficiency of energy
conversion. If an abnormality or failure occurs, it will lead to
the reduction of power transmission quality and the dis-
turbance of power grid frequency, endangering the safety
and stability of units and power plants. In severe cases, it will
cause huge economic losses and casualties. .erefore, the
stability of its operation has always been the focus of re-
search. Due to the nonlinearity and nonstationarity of the

signal are more intense when the hydropower unit is in
unsteady operation, and at the same time, due to the in-
fluence of strong background noise and complex electro-
magnetic interference, the collected signal contains larger
noise components, thus affecting the accurate extraction of
vibration signal features. In the practical engineering ap-
plication of unit condition monitoring and fault diagnosis,
in order to extract the most representative fault features and
improve the accuracy of diagnosis and analysis, the key first
step is to process vibration signals. .erefore, the effective
noise reduction of the collected vibration signals is of great
significance to accurately judge the fault function of the unit.

At present, there are many methods for nonstationary
signal processing, such as short-time Fourier transform
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(STFT) [1], wavelet transform (WT) [2], empirical mode
decomposition (EMD) [3], and local mean decomposition
(LMD) [4]. .e basic idea of short-time Fourier transform is
to realize the quasi-stationary performance of nonstationary
signal through time window function and then obtain the
time-varying law of signal frequency domain characteristics.
As a generalization of Fourier transform, this method retains
the characteristics of linear transformation and has good
effect in processing quasi-stationary signals, but it is not
ideal for processing nonstationary signals [5–7]. Wavelet
transform inherits and expands the localization idea of
STFT, effectively overcomes the defect of fixed window area,
and can focus on arbitrary details of signals, which is a real
multiresolution analysis and is widely used. However, its
noise reduction performance is greatly affected by the se-
lection of wavelet bases, and there is no unified standard for
selecting wavelet bases at present [8–10]. Aiming at the
shortcomings of wavelet transform, the scholars have pro-
posed EMD analysis methods [11, 12], which can adaptively
decompose the signal into a series of IMF components with
definite frequency amplitude according to the time domain
characteristics of the signal itself. However, the EMD de-
composition can easily lead to modal aliasing and large
iterative computation [12, 13]. .e adaptive signal decom-
position method of local mean decomposition proposed in
[4] can overcome the defects of EMD method after im-
provement, and the iteration times and operation speed are
better than EMD, but the problem of modal aliasing has not
been fundamentally solved [14–16]. In addition, considering
the complexity of the real signal and its application in
practical engineering, it is more effective to extract the useful
signals from strong interference by using the hybrid method
than by using one method alone [17–19].

Based on the above analysis, aiming at the problem that it
is difficult to extract the vibration signal characteristics of
hydrogenerator units under the background of strong noise
and complex electromagnetic interference, combined with
the advantages of inherent time-scale decomposition, per-
mutation entropy and singular value, a dual noise reduction
method based on ITD-PE-SVD is proposed. Intrinsic time-
scale decomposition (ITD) is an adaptive signal time-fre-
quency analysis method proposed by Frei et al. in 2007
[20, 21]. .is method decomposes the nonstationary com-
plex signal into a series of intrinsic rotation components
(PRC) and a residual trend component (RTC), which
overcomes the edge effect of EMD and weakens the mode
mixing and other phenomena. .e calculation speed is
significantly improved compared with EMD and LMD, and
the feature information of nonstationary can be extracted
more accurately and efficiently [22, 23]. .e permutation
entropy (PE) is an algorithm for measuring the complexity
of time series. Compared with sample entropy and ap-
proximate entropy, it has the advantages of simple calcu-
lation process, prominent anti-interference ability, andmore
sensitive to mutation signals. It can be used to deal with the
problems of complex vibration signal components and weak
fault signal of hydropower units [24–26]. Singular value
decomposition (SVD) is based onmatrix decomposition and
transformation; it decomposes the signal into the

superposition of a series of linear components and has the
advantages that the waveform is not easy to be distorted, and
the zero-phase shift is small. It can effectively detect the weak
information mutation in the signal under complex back-
ground and has outstanding effect in feature information
extraction and noise reduction [27–29].

.erefore, the ITD-PE-SVD proposed in this paper
combines the advantages of the above three algorithms, so
as to realize the dual noise reduction of the vibration
signal of the unit under the background of strong noise
and complex electromagnetic interference and accurately
extract the weak fault feature information of the unit, so as
to accurately determine the vibration reason of the unit
and provide theoretical basis for the subsequent fault
diagnosis.

.e first part of this paper describes the principle of this
noise reduction method, the second part uses this method to
carry out simulation and comparative analysis, and the third
part selects the upper guide swing data in X-direction and Y-
direction of a hydropower station in China for example
verification. Finally, the application of this method in vi-
bration signal feature extraction of hydrogenerator units
under strong noise background is summarized and
prospected.

2. Principle of the ITD-PE-SVD Method

2.1. Principle of InherentTime-ScaleDecomposition. .e ITD
adaptively decomposes nonlinear nonstationary signals into
multiple proper rotation components (PRC) and a residual
trend component (RTC). .e main idea of constructing the
baseline signal is to perform linear transformation between
any two adjacent maximum or minimum signal segments
[20–22].

Suppose the fault signal Xt, t� 0, 1, 2, L is defined as the
baseline extraction operator and the decomposition process
is expressed as follows:

Xt � LXt +(1 − L)Xt � Lt + Ht. (1)

Lt is the baseline component and contains local relatively
low frequency information in the fault signal; Ht is the
appropriate rotational component and contains the local
relative high-frequency information in the fault signal.

Remove the high-frequency rotating component after
one decomposition, then take the baseline component signal
as the next signal to be decomposed, and finally iterate the
above decomposition process until the monotone trend
component signal shows trouble signal Xt. .e whole de-
composition process of Xt is defined as follows:

Xt � HXt + LXt � HXt +(H + L)LXt

� H 􏽘
N−1

k�0
L

K
+ L

N⎛⎝ ⎞⎠Xt.
(2)

LXt is the linear baseline extraction operator, HXt is the
intrinsic rotation component extraction operator, HLKXt is
the k + 1 rotation component, and LNXt is the monotone
trend component.
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2.2. Principle of Permutation Entropy. Permutation entropy
is sensitive to mutated signals, and it is an algorithm to
describe the complexity of time series [23, 24]. .e principle
is as follows:

Given sequence X(K), K � 1, 2, . . . , N{ }, and the phase
space reconstruction is performed:

Z �

x(1) x(1 + τ) · · · x(1 +(d − 1)τ)

x(2) x(2 + τ) · · · x(2 +(d − 1)τ)

⋮ ⋮ ⋮ ⋮

x(K) x(K + τ) · · · x(K +(d − 1)τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

d is the embedded dimension, τ is the delay time, and k is
the reconstructed component.

Put the matrix Z each row in the sequence is arranged in
ascending order:

x t + R1τ( 􏼁≤ x t + R2τ( 􏼁≤ · · · ≤ x t + Rdτ( 􏼁. (4)

t is the number of columns indexed, and R1, R2, . . . , Rd is
the location of each element in the X(K).

Define xd
i as any set of reconstructed sequences,

0≤R≤ d!. For the d-dimensional phase space mapping,
there are the possibility of d! arrangement and the possibility
P1, P2, . . . , Pi of each sequence calculated. For the time series
X(K), there are i arrangement modes of Hp:

Hp(d) � − 􏽘 Pi ln Pi( 􏼁. (5)

When P � m!, Hp(d) will reach the maximum value of
ln(m!); in order to facilitate the comparison, the permu-
tation entropy is often normalized:

Hp �
Hp(d)

ln(m!)
. (6)

.e size of Hp represents the random degree of time
series..e smallerHp is, the more regular the corresponding
time series is, and vice versa.

It should be noted that when the permutation entropy
algorithm is carried out, the time delay τ has little effect on
the time series, while the insertion dimension d is too small
or too large, which will affect the construction accuracy of
the reconstruction matrix. Bandt [30, 31] suggested that the
dimension should be selected from 3 to 7; the results of the
sample entropy obtained by calculation are highly reason-
able in statistical theory. .erefore, the insertion dimension
d � 5, and the time delay τ � 1.

2.3. Principle of Singular Value Decomposition. As a non-
linear filtering method, SVD decomposes the matrix con-
taining signal information into a series of singular values and
time-frequency subspaces corresponding to singular value
vectors from the perspective of matrix, which can eliminate
noise to the maximum extent and retain useful information
with fault signals, and has been widely used in the field of
signal analysis [27, 28].

Suppose there is a signal to be decomposed
Y � (y(1), y(2), . . . , y(n)); an m × n-order Hankel matrix
is constructed for this signal:

H �

y(1) y(2) · · · y(n)

y(2) y(3) · · · y(n + 1)

⋮ ⋮ ⋮ ⋮

y(N − n + 1) y(N − n + 2) · · · y(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

N is the length of the signal to be decomposed, 1< n<N;
m � N − n + 1; H ∈ Rm∗n.

SVD decomposes the resulting matrix as follows:

H � USV
T

. (8)

S �
diag σ1, σ2, . . . , σq􏼐 􏼑, 0􏼐 􏼑, m≤ n,

diag σ1, σ2, . . . , σq􏼐 􏼑, 0􏼐 􏼑
T
, m> n.

⎧⎪⎨

⎪⎩
(9)

U � (u1, u2, . . . , um) ∈ Rm∗n and V � (v1, v2, . . . ,

vn) ∈ Rm∗n are two orthogonal matrices; S ∈ Rm∗n, deter-
mined by the relationship between m and n, 0 stands for zero
matrix, q � min(m, n), and then the singular value of matrix
H is σ1 ≥ σ2 ≥ · · · ≥ δq ≥ 0, σi � (i � 1, 2, . . . , q).

It should be noted that when creating a signal through
the Hankel matrix, the number of rows m and columns n can
be determined according to the following principles [27, 28];
when the signal length N is even, take m � (N + 1)/2,
n � N/2; q takes the maximum value q � N/2. When the
signal length N is odd, take m � (N + 1)/2, n � (N + 1)/2; q

takes the maximum value q � (N + 1)/2.
.e sequence formed by the singular value of the

descending order is set as δi � (i � 0, 1, 2, . . . , q); then the
former singular values are subtracted from the latter singular
values; that is, bi � δi − δi+1 � 0, 1, 2, . . . , q − 1; then, the new
sequence composed of bi is the singular value difference
spectrum. It can automatically select the effective order
according to the difference of contribution of useful signal
and noise signal to singular value energy. If the maximum
mutation occurs at the position of the S point, the noise
reduction can be realized when the reconstruction order is
selected before the S point [28, 29].

2.4. Steps of the Signal Noise Reduction Method for ITD-PE-
SVD

(1) Firstly, carry out ITD decomposition on collected
vibration signals to obtain a series of PRC
components

(2) According to formulas (4)–(6), calculate the ar-
rangement entropy of PRC components

(3) According to the results of many simulation ex-
periments and the principle of permutation entropy
calculation, the threshold value of permutation en-
tropy is set to 2, and the appropriate PRC component
is selected for reconstruction, so as to achieve a noise
reduction effect

(4) Perform SVD decomposition on the reconstructed
signal again according to formula (8), and select
suitable singular values to reconstruct the charac-
teristic signal again according to the decomposed
singular value differential spectrogram, so as to
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achieve the secondary noise reduction effect and
obtain the final denoised signal

(5) Analyze the characteristic frequency of the final
denoised signal to judge the fault reason of the unit

.e technical route is shown in Figure 1.

3. Simulation Signal and Analysis

In order to preliminarily judge the rationality of this method,
the simulation signal is constructed according to the fre-
quency characteristics of the hydraulic turbine under actual
operating conditions.

Assuming that the unit frequency is 2Hz and the
sampling frequency is 500Hz, the simulation signal without
noise x1 contains four characteristic frequencies, namely,
1Hz, 2Hz, 4Hz, and 7.5Hz. .e simulated noiseless
waveform and spectrum diagram are shown in Figure 2.
Consider adding a random white Gaussian noise x2 and a
pulse signal x3; the signal after noise addition is x, and the
waveform and spectrum after noise addition are shown in
Figure 3. .e formula for setting the simulation waveform is
shown in the following:

x1 � 6 sin(4πt) + 1.5 sin(15πt) + 4.5 sin(8πt) + 1.8 sin(2πt),

x2 � 20randn(1: 5000),

x3 � 35∗ pulstran(T, D, ’tripuls’, 0.0000001, 0),

x � x1 + x2 + x3.

(10)

T is the time axis, generally a one-dimensional array, and
D is the sampling interval.

It can be seen from the figures that when the simulated
signal contains noise and abnormal pulse, the waveform is
abnormally disorderly, and there are many interference
frequencies in the spectrum diagram. Because of the exis-
tence of interference frequencies, the fault features are
difficult to extract in the spectrum diagram, which may lead
to misjudgment of the actual unit fault.

.e proposed ITD-PE-SVD denoising method is used to
process the noised signal. At the same time, in order to verify
the effectiveness and superiority of the proposedmethod, the
LMD-PE-SVD and EMD-PE-SVD are used to process the
noised signal. .e waveform and spectrum diagram of the
three methods are shown in Figures 4–6.

It can be seen from Figures 4–6 that the simulated
frequencies of 1Hz, 2Hz, 4Hz, and 7.5Hz are all extracted
after being processed by four methods. However, after being
processed by LMD-PE-SVD and EMD-PE-SVD, there are
many interference frequencies around the signal, and the
overall information is not fully reflected. After EMD-PE-
SVD method, due to the presence of modal aliasing in the
EMD decomposition process, the waveform is distorted.

After the ITD-PE-SVD denoising processing, not only
the characteristic frequency can be clearly observed, but
also the waveform diagram is almost completely close to
Figure 2 (simulation without noise waveform and spec-
trum diagram), with smaller error, less surrounding

interference, and better signal integrity, which fully
demonstrates the effectiveness of the ITD-PE-SVD noise
reduction method.

In order to quantitatively analyze the noise reduction
performance, correlation coefficient (R) and signal-to-noise
ratio (SNR) are taken as quantitative analysis indexes. .e
correlation coefficient refers to the correlation degree be-
tween the original signal and the denoised signal. .e closer
the value is to 1, the better the fitting degree between the
denoised signal and the original signal is, and the more
useful information of the original signal is retained [32–34].
.e signal-to-noise ratio refers to the ratio of the original
signal energy to the noise energy. .e higher the signal-to-
noise ratio, the better the denoising effect is [34–36]. .e
formula is as follows:

R �
􏽐

N
i�1 vi 􏽢vi������������

􏽐
N
i�1 v

2
i 􏽐

N
i�1

􏽢
v
2
i

􏽱 ,

SNR � 10 lg
􏽐

N
i�1 v

2
i

􏽐
N
i�1 vi − 􏽢vi( 􏼁

2.

(11)

N is the number of signal sampling points, vi is the
original signal, 􏽢vi is the estimation of vi, and lg is the log-
arithm based on 10.

.e noise reduction performance indexes of each
method are shown in Table 1. It can be seen that after ITD-
PE-SVD denoising method is used to process the data
containing noise and pulse, the data correlation is as high as
0.9956 and the signal-to-noise ratio is larger, and the
comprehensive performance index is better than LMD-PE-
SVD and EMD-PE-SVD, which shows the effectiveness of
this method. At the same time, it also shows that the method
maximizes the elimination of noise and retains useful in-
formation with fault signals and has a good effect on the data
containing noise and pulse.

4. Engineering Examples

In order to verify the feasibility and effectiveness of this
method in practical engineering application, the X-direction
and Y-direction swing vibration data at the rated output of a
hydropower station in China are selected to collect. .e
turbine model is HL220-LJ-410, the unit speed is 136r/min,
and the acquisition frequency is 500Hz. Some continuous
data are selected and processed by ITD-PE-SVD.

.e waveform and spectrum are shown in Figures 7–10.
Among them, Figures 7 and 8 are the upper guide X-di-
rection swing data waveform, spectrum diagram, and the
upper guide X-direction swing waveform and spectrum
diagram after the ITD-PE-SVD noise reduction. Figures 9
and 10 are the upper guide Y-direction swing data wave-
form, spectrum diagram, and the upper guide Y-direction
swing waveform and spectrum diagram after the ITD-PE-
SVD noise reduction.

It can be seen from the figures that the swing signal of the
unit contains a large amount of background noise, and the
noise distribution is uneven. After the denoising processing
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Calculation of permutation entropy of PRC 
components a�er decomposition

Signal to be decomposed

ITD decomposition

Component reconstruction is selected according to 
permutation entropy threshold

SVD decomposition of the reconstructed signal

Select component to reconstruct again according 
to singular value difference spectrum

Frequency extraction of reconstructed signal to 
judge unit fault

Figure 1: Denoising flowchart.
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Figure 2: Simulation without noise waveform and spectrum diagram. (a) Waveform diagram. (b) Spectrogram.
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Figure 3: Simulation of noise addition waveform and spectrum diagram. (a) Waveform diagram. (b) Spectrogram.
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Figure 4: (a) Waveform diagram and (b) spectrogram after LMD-PE-SVD noise reduction.
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Figure 5: (a) Waveform diagram and (b) spectrogram after EMD-PE-SVD noise reduction.
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of the ITD-PE-SVD method proposed in this paper, the
background noise is well filtered, and the waveform diagram
is very clear, which further verifies the effectiveness of the
method in engineering.

According to the frequency spectrum analysis of the
denoised data of the unit, the frequency characteristics are

1, 2, 4, and 6 times of the frequency conversion of the unit,
and there is no influence of other interference frequencies.
According to [37], it can be seen that the vibration am-
plitude of the unit exceeds the specified standard due to
mechanical factors, and the reason may be caused by the
asymmetry or mass imbalance of the unit.
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Figure 6: (a) Waveform diagram and (b) spectrogram after ITD-PE-SVD noise reduction.

Table 1: Related index values.

Correlation coefficient Signal-to-noise ratio
LMD-PE-SVD 0.9906 17.2549
EMD-PE-SVD 0.9910 18.2341
ITD-PE-SVD 0.9956 20.5502
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Figure 7: (a) Waveform diagram and (b) spectrogram of the upper guide X-direction swing data.

Mathematical Problems in Engineering 7



-25

-20

-15

-10

-5

0

5

10

15

20

25
A

m
pl

itu
de

 (K
pa

)

983 6 100 21 54 7
Time (s)

(a)

f

2f

4f

6f

4010 15 20 25 30 35 500 455
Frequency (Hz)

0

1

2

3

4

5

6

7

8

9

10

A
m

pl
itu

de
 (K

pa
)

(b)

Figure 8: (a) Waveform diagram and (b) spectrogram of the upper guide X-direction swing data after ITD-PE-SVD noise reduction.
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Figure 9: (a) Waveform diagram and (b) spectrogram of the upper guide Y-direction swing data.
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Figure 10: (a) Waveform diagram and (b) spectrogram of the upper guide Y-direction swing data after ITD-PE-SVD noise reduction.
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5. Conclusion

In this paper, by combining the advantages of inherent time-
scale decomposition, permutation entropy, and singular
value decomposition, a denoising method based on ITD-PE-
SVD is proposed to solve the problem that it is difficult to
extract the vibration signal features of hydrogenerator unit
under the background of strong background noise and
complex electromagnetic interference.

(1) .e ITD-PE-SVD denoising method is compared with
LMD-PE-SVD and EMD-PE-SVD denoising methods
through simulation experiments. At the same time, the
correlation coefficient and signal-to-noise ratio are
taken as quantitative indicators to analyze the noise
reduction performance. It is found that after signal
noise reduction processing by this method, data with
correlation coefficient as high as 0.9956 and larger
signal-to-noise ratio can be obtained, which can
eliminate noise to the maximum extent while retaining
useful information with fault signals. It has good noise
reduction and pulse effect and avoids the modal ali-
asing in the EMD decomposition process.

(2) .rough the analysis of the measured X- and Y-
direction swing data of the upper guide of the
hydrogenerator unit, it is found that this method can
effectively reduce the noise of the measured unit data
and accurately extract the characteristic frequency of
the vibration signal, so as to determine the vibration
reason of the unit through the frequency.

(3) .e ITD-PE-SVD denoising method proposed in
this paper can effectively extract the vibration signal
characteristics of hydrogenerator units under the
background of strong background noise and com-
plex electromagnetic interference and provide a
theoretical basis for subsequent fault diagnosis. It is
convenient scientific and reasonable formulation of
condition-based maintenance plans, greatly reduces
the diagnosis time of power plants for complex
hydraulic faults in actual operation, and thus im-
proves the power generation efficiency and promotes
the safety and stability of units and power grids.
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