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�is special issue aims to investigate both classical and
quantum approaches to black holes. �e result is a collection
of eighteen original research articles submitted by authors
representing fi	een countries across Asia, Europe, North
America, and South America.

In their article “An Alternative Approach to the Static
Spherically Symmetric, Vacuum Global Solution to the Ein-
stein Equations”, L. Herrera and L. Witten propose an alter-
native description of the Schwarzschild black hole solution
by extending the solution outside the horizon to its interior.
Indeed, based on the requirement that the solution is static
not only outside but also inside the horizon, the authors
consider the entire space-time resulting from the union of
two static 4-manifolds, one for 0 < 𝑅 < 2𝑚with signature (+ -
- -) and one for 2𝑚 < 𝑅 < ∞with signature (- + + +) with the
horizon as a common boundary. In this way, the entire space-
time is described by a complete 4-manifold for the interior
and a complete 4-manifold for the exterior, and a global static
solution is obtained representing a “phase transition” on the
horizon with a different symmetry on both sides of the latter.
�e horizon surface R = 2m is excluded from both manifolds
whichmeet there only for 𝜃= 0. As a result, within the horizon
the time independence is kept but the spatial symmetry is
changed. �en, by examining test particles, it is concluded
that the complete picture of their motion near the horizon
cannot be fully understood by use of Einstein’s field equations
alone and the need of a quantum theory approach is stressed.

When sound perturbations are trapped in a supersonic
fluid flow system, they behave similarly to trapped photons in
black holes and the system considered is a black hole analogue
called acoustic (or sonic) black hole or simply dumb hole.
�e border at which the fluid speed changes from greater to
lesser than the local speed of sound is the event horizon of the
acoustic black hole. �e article “Interactions in an Acoustic
World: Dumb Hole”, by I. Simaciu et al., is a follow-up to
earlier published work on the so-called “acoustic world”, the
latter being defined as the finite volume of a fluid or of a solid
containing the fluid, together with the processes occurring
within this volume. By assuming that the acoustic processes
are similar to the processes occurring in vacuum, the authors
examine interactions between inhomogeneities of an acoustic
medium that are produced by acoustic perturbations trav-
elling in this medium. In this context, the inhomogeneities
induced by a wave or a wave packet are studied and the dumb
hole corresponding to the acoustic wave packet is examined.

�e polymer quantization procedure was developed in
background independent approaches to quantumfield theory
and its name relied on the fact that the basic quantum excita-
tions of gravity and gauge field theories are one-dimensional,
polymer-like excitations. In loop quantum gravity space-time
exhibits a granular structure, thus supporting the existence
of a fundamental length in the theory. Polymer quantization
comes forward as an effective theory that uses a minimal
length scale and, in fact, one is led to polymer quantization
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in mini-superspace models of quantum cosmology. Now, the
polymeric length (that shows the scale of the segments of
granular space-time) plays the role of the minimal length of
the theory and labels the granular properties of space enter-
ing, as an additional quantum parameter, the Hamiltonian
of the system deforming it into the polymeric Hamiltonian.
In the article “Classical Polymerization of the Schwarzschild
Metric”, B. Vakili studies how the Schwarzschild black hole
metric is modified by applying the classical polymerization
procedure. �e energy-momentum tensor of the matter
field corresponding to the new polymerized metric and
some of its thermodynamic properties are examined, while
radial null as well as time-like geodesics are also exam-
ined and some interesting conclusions are drawn showing
that the polymerized metric still describes a black hole
space-time.

In their paper “Localization of Energy-Momentum for
a Black Hole Spacetime Geometry with Constant Topolog-
ical Euler Density”, I. Radinschi et al. address the topic
of energy-momentum localization in General Relativity by
using various energy-momentum complexes. �ey calculate
the energy and momentum of a four-dimensional black
hole space-time geometry with constant topological Euler
density with the aid of the Einstein and Møller prescriptions.
�e energy obtained depends on the mass M and the
charge q of the black hole, the cosmological constant 𝜆,
and the radial coordinate r, while in both prescriptions all
the momenta vanish. Some limiting and particular cases
are analyzed and discussed, illustrating the rather extraor-
dinary character of the space-time geometry studied. �e
conclusion is that the Einstein and Møller prescriptions
may provide an instructive tool for the energy-momentum
localization.

In recent years, two issues of great interest that are exten-
sively studied are the black hole information paradox and the
black hole entropy. In his article “Revisiting the Black Hole
Entropy and the Information Paradox”, O. C. Stoica revisited
some paradoxes and also the black hole complementarity and
the rewall proposals, with an emphasis on the less obvious
assumptions. In order to carry out this study, arguments used
in the literature are reviewed, and also some new counter-
arguments are presented. Furthermore, some less considered
less radical possibilities are examined, and the subject of
an interesting discussion is a conservative solution, which
is more consistent with the principle of equivalence from
General Relativity and also with the unitarity from quantum
theory.

In their article “Nonlocal Black Hole Evaporation and
Quantum Metric Fluctuations via Inhomogeneous Vacuum
Density”, A. Y. Yosifov and L. G. Filipov examine the
back-reaction of a Schwarzschild black hole to the highly
inhomogeneous vacuum density. Also, the authors argue that
the fluctuations lead to deviations from General Relativity
in the near-horizon region. It has been found that vacuum
fluctuations onto the horizon trigger an adiabatic release of
quantum information. In the vicinity of the horizon vacuum
fluctuations produce potentially observable metric fluctua-
tions of the order of the Schwarzschild radius. �e authors
propose a form of strong nonviolent nonlocality in which

it is possible to obtain simultaneously a nonlocal release of
quantum information and observable metric fluctuations.

In the paper “Tunneling Glashow-Weinberg-Salam
Model Particles from Black Hole Solutions in Rastall
�eory”, A. Övgün et al. solve an equation of motion
for the Glashow-Weinberg-Salam model with the aid of
the semiclassical WKB approximation and the Hamilton-
Jacobi method. �is is especially useful for understanding
the unified gauge-theory of weak and electromagnetic
interactions. In this light, the tunneling rate of the massive
charged W-bosons in the background of an electromagnetic
field has been calculated, in order to study the Hawking
temperature in the case of black holes surrounded by a
perfect fluid in Rastall theory. Further, the quantum gravity
effects on the generalized Proca equation with generalized
uncertainty principle (GUP) on this background have
been examined. It is demonstrated that quantum gravity
effects leave their remnants on the Hawking temperature.
Also, it is proved that the Hawking radiation becomes
nonthermal.

In the letter “�ermodynamic Volume Product in Spher-
ically Symmetric and Axisymmetric Spacetime”, P. Prad-
han investigates the thermodynamic volume products for
spherically symmetric and axisymmetric space-time in the
framework of extended phase space. �ese volume products
are expressed in terms of the outer and inner horizons of black
holes and, together with other thermodynamic expressions
like volume sum, volume minus, and volume division, are
useful in the case of different spherically symmetric space-
times and axisymmetric space-times. �e thermodynamic
volume products for the outer horizon and for the inner
horizon of several classes of spherically symmetric and
axisymmetric black holes including the AdS black hole
metric are calculated. In these cases, it is found that the
simple volume product of 𝐻± is not mass independent,
but more complicated volume functional relations are mass
independent.

Due to its multifunctional properties the entropic force
attracts a lot of interest. In their paper “Rainbow Gravity
Corrections to the Entropic Force”, Z.-W. Feng and S.-Z.
Yang, employing the new kind of rainbow gravity model
of Magueijo and Smolin, investigate the quantum gravity
corrections to the entropic force. In order to make this
study, they derive themodified thermodynamics of a rainbow
black hole via its surface gravity, and a	er this the quantum
corrections to the entropic force are obtained according
to Verlinde’s theory. �e conclusion is that the modified
entropic force is related to both the properties of the black
hole and the Planck length 𝑙p and the rainbow parameter 𝛾.
Also, modified Einstein’s field equations and the modified
Friedmann equation are obtained based on the rainbow
gravity corrected entropic force.

In their paper “Perfect Fluid Dark Matter Influence
on �ermodynamics and Phase Transition for a Reissner-
Nordstrom-Anti-de Sitter Black Hole”, Z. Xu et al. have
studied the thermodynamics and phase transition by extend-
ing the phase space defined by the charge square and
the conjugate quantity, with the latter being a function of
the horizon radius. �ey found that the thermodynamics
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systems are similar to van der Waals systems and can be
explained by mean field theory. �e Ruppeiner thermody-
namic geometry feature and the connection withmicroscopic
structure have also been studied. �e authors found that in
extended phase space there are singularity points of Rup-
peiner curvature and these points could be explained as phase
transitions.

In their paper “New Phase Transition Related to the
Black Hole’s Topological Charge”, the authors S.-Q. Lan et
al. performed a study about a new phase transition related
to the topological charge in Einstein-Maxwell theory. �ey
derived the explicit solutions corresponding to the divergence
of specific heat in order to determine the phase transition
critical point. Furthermore, the curves T-r and T-S are
investigated and found to exhibit an interesting van derWaals
system’s behavior. Also, a van der Waals system’s swallow tail
behavior is observed when the topological charge is greater
than the corresponding value in the critical point in the F-
T graph. �e analytic phase transition coexistence lines have
been obtained by using the Maxwell equal area law and free
energy analysis, the results of which are consistent with each
other.

In his paper “A Covariant Canonical Quantization of
General Relativity” S. Marongwe presents a Hamiltonian
formulation of General Relativity within the context of the
Nexus Paradigm of quantum gravity. He demonstrates that
the Ricci flow in a compact matter free manifold serves as the
Hamiltonian density of the vacuumaswell as a time evolution
operator for the vacuum energy density. An interpretation
of General Relativity in terms of the fundamental concepts
of quantum mechanics has been possible in the condition of
the metric tensor of General Relativity expressed in terms
of the Bloch energy eigenstate functions of the quantum
vacuum.

In the work “𝜆 Phase Transition in Horava Gravity”
the author W. Xu has presented a superfluid black hole
containing a 𝜆 phase transition in the context of Horava
gravity. A	er studying the extended thermodynamics of
general dimensional Horava-Lifshitz AdS black holes, it is
found that only the one with a spherical horizon in four
and five dimensions has a 𝜆 phase transition, which is a
line of (continuous) second-order phase transitions and was
famous in the discussion of the superfluidity of liquid 4He.
�e “superfluid” black hole phase and the “normal” black hole
phase are also distinguished. Particularly, six-dimensional
Horava-Lifshitz AdS black holes exhibit infinitely many
critical points in 𝑃 − ] plane and the divergent points for
specific heat, for which they only contain the “normal” black
hole phase while the “superfluid” black hole phase disappears
due to the physical temperature constraint and therefore
there is no similar phase transition. In this context, the
author has shown that, in more than six dimensions, there
is no 𝑃 − ] critical behavior. A	er choosing the appropriate
ordering field, the author studied the critical phenomena in
different planes of thermodynamical phase space along with
a calculation of the critical exponents, which are the same as
for the van der Waals fluid.

In the investigation “Anti-de-Sitter-Maxwell-Yang-Mills
Black Holes �ermodynamics from Nonlocal Observables

Point of View”, H. El Moumni analyzes the thermody-
namic properties of the Anti-de-Sitter black hole in the
Einstein-Maxwell-Yang-Mills- (EMYM-) AdS gravity via
many approaches and for different thermodynamical ensem-
bles (canonical/grand canonical). First, the author gives a
concise overview of this phase structure in the entropy-
thermal diagram for fixed charges and then he investigates
this thermodynamical structure for the fixed potentials
ensemble. �e next relevant step is recalling the nonlocal
observables such as holographic entanglement entropy and
two-point correlation function to show that both observables
exhibit a van der Waals-like behavior in numerical accuracy
and just near the critical line as the case of the thermal
entropy for fixed charges by checking Maxwell’s equal area
law and the critical exponent. In the light of the grand
canonical ensemble, the author also finds a new phase
structure for such a black hole where the critical behavior
disappears in the thermal picture as well as in the holographic
one.

�e thermodynamic property of a charged AdS black
hole is studied in rainbow gravity. In their article entitled
“�ermodynamics of Charged AdS Black Holes in Rainbow
Gravity”, P. Li et al. got a deformed temperature in a charged
AdS black hole using no-zero mass of a test particle. �eir
result shows that the phase structure has a relationship
to an AdS radius l. In particular, an analogy between the
charged AdS black hole in the rainbow gravity and the liquid-
gas system is discussed. Finally, the Gibbs free energy has
been examined and a characteristic “swallow tail” has been
obtained that can be the explanation of a first-order phase
transition.

In thework “ParticleMotion aroundChargedBlackHoles
in Generalized Dilaton-Axion Gravity”, the authors S. Sarkar
et al. have studied the behavior of massive and massless test
particles around asymptotically and spherically symmetric,
charged black holes in the context of generalized dilaton-
axion gravity in four dimensions. �e motion of a massive
and charged test particle in the gravitational field of a charged
black hole in generalized dilaton-axion gravity has been
examined by exploiting the Hamilton-Jacobi equation.

In mid 2010's, full discreteness of the Hawking radiation
spectrumand theMaxwell-Boltzmannnature of theHawking
radiation spectrum were found. So, a new area spectrum
is presented. In his paper entitled “Hawking Radiation of
a Single-Partition Black Hole”, Y. Yoon showed what the
thermodynamics of a single-partition black hole implies
about the degeneracy of the area spectrum. As a consequence,
the decay time of a single-partition black hole is roughly
constant.

In the article “Spectroscopy of z = 0 Lifshitz Black Hole”
G. Tokgoz and I. Sakalli have studied the thermodynamics
and spectroscopy of a 4-dimensional, z = 0 Lifshitz black
hole. �e entropy/area spectra of the z = 0 Lifshitz black
hole are computed. �e quantum spectra of the z = 0 Lifshitz
black hole were studied using the Maggiore method, which is
based on the adiabatic invariant quantity. �eir finding is in
agreement with Bekenstein’s conjecture, and the equispacing
of the entropy/area spectra of the z = 0 Lifshitz black hole
supports Kothawala et al.’s hypothesis.
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Based on Reissner-Nordstrom-anti-de Sitter(RN-AdS) black hole surrounded by perfect fluid dark matter, we study the
thermodynamics and phase transition by extending the phase space defined by the charge square 𝑄2 and the conjugate quantity𝜓, where 𝜓 is a function of horizon radius. The first law of thermodynamics and the equation of state are derived in the form𝑄2 = 𝑄2(𝑇, 𝜓). By investigating the critical behaviour of perfect fluid dark matter around Reissner-Nordstrom-anti-de Sitter black
hole, we find that these thermodynamics system are similar to Van der Waals system and can be explained by mean field theory.
We also explore the Ruppeiner thermodynamic geometry feature and their connection with microscopic structure. We find that in
extended phase space there are existence singularity points of Ruppeiner curvature and they could explained as phase transitions.

1. Introduction

Black hole thermodynamics are one of the most important
topics in modern physics research and have been widely
studied in recent years. The laws of black hole dynamics and
thermodynamics were analyzed by Bekenstein and Hawking
[1–5]. The four laws of black hole thermodynamics have
been discussed [6]. Since the Hawking-Page phase transition
was discovered, phase transitions have become a important
topic in the black hole area. There are lots of work on the
phase transition of different black holes, such as Reissner-
Nordstrom black hole, Kerr black hole, and Kerr-Newman
black hole [7–10]. These works have also been generalized
to other black holes or applied to general situations [11–16].
Recently, several studies have considered the cosmological

constant as a dynamical variable which is similar to thermo-
dynamical pressure [17]. Utilizing this method, some works
have obtained the phase transition in AdS-black hole, in
which the analogy between the critical behaviours of the Van
der Waals gas and the RN-AdS black hole have been found
[18–22].

From recent observations, we know that our universe
is dominated by Dark Energy and Dark Matter [23, 24].
The dark energy makes the universe to be in accelerated
expansion, and its state of equation is very close to the
cosmological constant or the vacuum energy [25]. But the
dynamics of dark energy are more like quintessence or other
dynamical dark energy in behaviour [26]. The dark energy
with quintessence could affect the black hole spacetime [27].
For the Schwarzschild black hole in quintessence field, the
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modified black hole metric has been obtained by Kiselev
[28, 29]. Recently the rotational quintessence black hole
and Kerr-Newman-AdS black hole solutions have also been
obtained [30, 31]. For the Schwarzschild black hole sur-
rounded by quintessence matter, the thermodynamics and
phase transition have been discussed inTharanath et al. [32];
Ghaderi & Malakolkalami [33, 34]. For rotational black
hole surrounded by quintessence case, the thermodynamics
and phase transition have been studied recently by Xu &
Wang [35].TheRerssner-Nordstromblack hole andRerssner-
Nordstrom-dS black hole have been studied by Ghaderi
& Malakolkalami [34]; Wei & Chu [36]; Wei & Ren [37];
Thomas et al. [38]; Mandal & Biswas [39]; Ma et al. [40];
the thermodynamics [41, 42] and phase transition through
holography framework for Reissner-Nordstrom-AdS black
hole have been investigated [43]. Following these works,
the cold dark matter around black hole in phantom field
background have been obtained by Li & Yang [44], and ref-
erences therein. In this paper, we study the thermodynamics
and phase transition of Reissner-Nordstrom-AdS black hole
surround by perfect fluid dark matter.

This paper focuses on the study of the influence of
perfect fluid dark matters on thermodynamics and phase
transition for Reissner-Nordstrom-anti-de Sitter black hole.
In Section 2, we introduce the Reissner-Nordstrom-anti-de
Sitter black holewith perfect fluid darkmatter background. In
Section 3, we study the thermodynamical features, the equa-
tion of state in (𝑄2, 𝜓) space, and the critical behaviour. In
Section 4, we study the Ruppeiner thermodynamic geometry
and their connection with microscopic structure for these
black hole systems. We summarize our results in Section 5.

2. The Spacetime of Perfect Fluid Dark Matter
around Reissner-Nordstrom-AdS Black Hole

We consider the dark matter field minimally coupled to
gravity, electromagnetic field, and cosmological constant [28,
29, 44, 45]:𝑆 = ∫𝑑4𝑥√−𝑔( 116𝜋𝐺𝑅 − 18𝜋𝐺Λ + 14𝐹𝜇]𝐹𝜇]+L𝐷𝑀) , (1)

where𝐺 is theNewton gravity constant,Λ is the cosmological
constant, 𝐹𝜇] is the Faraday tensor of electromagnetic field,
L𝐷𝑀 is the dark matter Lagrangian density, and this dark
matter can be any dark matter model. By variation, we obtain
the field equation from action principle as𝑅𝜇] − 12𝑔𝜇]𝑅 + Λ𝑔𝜇] = −8𝜋𝐺 (𝑇𝜇] + 𝑇𝜇] (𝐷𝑀))= −8𝜋𝐺𝑇𝜇],𝐹𝜇] ;] = 0,𝐹𝜇];𝛼 + 𝐹]𝛼;𝜇 + 𝐹𝛼𝜇;] = 0

(2)

where 𝑇𝜇] is the energy-momentum tensors of ordinary
matter and 𝑇𝜇](𝐷𝑀) is the energy-momentum tensors of

dark matter. In the case of black holes surrounded by dark
matter, we assume that dark matter is perfect fluid. The
energy-momentum tensors can bewritten as𝑇𝑡𝑡 = −𝜌, 𝑇𝑟𝑟 =𝑇𝜃𝜃 = 𝑇𝜙𝜙 = 𝑝 (where 𝑇𝜇𝜇 = 𝑔𝜇]𝑇𝜇]). In addition, for the
simpliest case, we assume 𝑇𝑟𝑟 = 𝑇𝜃𝜃 = 𝑇𝜙𝜙 = 𝑇𝑡𝑡(1 − 𝛿),
where 𝛿 is a constant. We refer to such dark matter as the
“perfect fluid dark matter” in this work.

For the Reissner-Nordstrom-AdS spacetime metric in
perfect fluid DM, the black hole solution is as follows [28, 29,
44]:𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑓−1 (𝑟) 𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) , (3)

where 𝑓 (𝑟) = 1 − 2𝑀𝑟 + 𝑄2𝑟2 + 13Λ𝑟2 + 𝛼𝑟 ln( 𝑟|𝛼|) , (4)

where 𝛼 is a parameter describing the intensity of the perfect
fluid DM, 𝑀 is the black hole mass, and 𝑄 is the charge of
black hole. This solution corresponds to a specific case of the
general solution in Kiselev [28, 29] and Li & Yang [44]. It is
interesting to note that this black hole solution implies that
the rotational velocity is asymptotically flat in the equatorial
plane, which could explain the observed rotation curves in
spiral galaxies [28, 29, 44].

3. Thermodynamics of Dark Matter around
Reissner-Nordstrom-AdS Black Hole

In Section 2, we have obtained the metric of spherically sym-
metric Reissner-Nordstom-AdS black hole in perfect fluid
dark matter. These black holes have three horizons which
are Cauchy horizon 𝑟−, event horizon 𝑟+, and cosmological
horizon 𝑟Λ. In this work, we always use event horizon 𝑟+. The
black hole mass𝑀 can be expressed in event horizon 𝑟+ as𝑀 = 𝑟+2 + 𝑄22𝑟+ + 16Λ𝑟3+ + 𝛼2 ln( 𝑟+|𝛼|) . (5)

The semi-hawking temperature and the entropy are given by

𝑇 = 14𝜋 𝑑𝑓 (𝑟)𝑑𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟+
= 𝑟+ (2𝑀 + 𝛼 (1 − ln (𝑟+/ |𝛼|)) + (2/3) Λ𝑟3+) − 2𝑄24𝜋𝑟3+
= 𝑟+ (𝛼 + 𝑟+ + Λ𝑟3+) − 𝑄24𝜋𝑟3+ ,

(6)

𝑆 = ∫𝑟+
0

1𝑇 (𝜕𝑀𝜕𝑟+ )𝑑𝑟+ = 𝜋𝑟2+. (7)

Now we study the thermodynamical properties of the
black hole with perfect fluid dark matter by extending to new
phase space. This phase space is constructed by the entropy𝑆, the perfect fluid dark matter density 𝛼, the charge square𝑄2, and the pressure 𝑃 = −Λ/8𝜋 corresponding to the
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cosmological constant Λ. Therefore the black hole mass can
be expressed as

𝑀(𝑆,𝑄2, 𝑃, 𝛼) = 12√ 𝑆𝜋 + 𝑄22 √𝜋𝑆 − 43𝑃𝑆√ 𝑆𝜋
+ 𝛼2 ln( 1|𝛼|√ 𝑆𝜋) . (8)

The intensive parameters are defined by

𝑇 = 𝜕𝑀𝜕𝑆 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃,𝑄2,𝛼 ,𝜓 = 𝜕𝑀𝜕𝑄2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆,𝑃,𝛼 ,𝑉 = 𝜕𝑀𝜕𝑃 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆,𝑄2 ,𝛼 ,Π = 𝜕𝑀𝜕𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆,𝑄2 ,𝑃 ,
(9)

where 𝑇 denotes the temperature and the new physical
quantity 𝜓 is related to the specific volume as 𝜓 = 1/V,
where V = 2𝑟+. In thermodynamical space, the volume is𝑉 = 4𝜋𝑟3+/3 and the quantity Π = (1/2) ln(𝑟+/|𝛼|). The
generalized first law of black hole thermodynamics in this
extended phase space is expressed by𝑑𝑀 = 𝑇𝑑𝑆 + 𝜓𝑑𝑄2 + 𝑉𝑑𝑃 + Π𝑑𝛼, (10)

and the generalized Smarr formula is given by𝑀 = 2𝑇𝑆 + 𝜓𝑄2 − 2𝑉𝑃 + Π𝛼. (11)

For the first law of black hole thermodynamics, the term𝜓𝑑𝑄 becomes 𝜓𝑑𝑄2 in this phase space, where 𝜓 represents
the electric potential. This change leads to the interesting
behaviour with 𝑑𝑀 = 𝑆𝑑𝑇 + 𝜓𝑑𝑄 in formal phase space.
When the perfect fluid dark matter is around black hole, the
phase transition of black hole occurs in (𝑃, V) plane. We can
discuss this phase transition in (𝑄2, 𝜓) plane, including the
critical point, Gibbs free energy, and critical exponents under
the effect of perfect fluid dark matter. Through calculations,
we obtain the state equation 𝑄2(𝑇, 𝜓) as𝑄2 = 𝑟+ (𝛼 + 𝑟+ + Λ𝑟3+ − 4𝜋𝑟2+𝑇)= 12𝜓 [𝛼 + 12𝜓 + 38𝜓3𝑙2 − 𝜋𝜓2𝑇] , (12)

where 𝑙2 = 3/Λ. The above equation describes the behaviours
of 𝑄2 for different 𝑇, 𝜓 and 𝛼.𝑄2 and 𝜓 also satisfy the Maxwell equal area theorem
given by Spallucci & Smailagic [46]:

∮𝜓𝑑𝑄2 = 0. (13)

For 𝑇 > 𝑇𝑐, where 𝑇𝑐 critical temperature, there is an
inflection point which is similar to the Van derWaals system.
From generalmethod, the coordinates of the critical point are
determined by the following:𝜕2𝑄2𝜕𝜓2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇𝑐 = 0,𝜕𝑄2𝜕𝜓 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇𝑐 = 0.

(14)

We then obtain the following equations:154𝜓3𝑐 𝑙2 + 𝛼 + 32𝜓𝑐 − 6𝜋𝜓2𝑐 𝑇𝑐 = 0,− 32𝜓3𝑐 𝑙2 − 𝛼 − 1𝜓𝑐 + 3𝜋𝜓2𝑐 𝑇𝑐 = 0. (15)

We then get the equation of critical 𝜓𝑐 and 𝑇𝑐 as𝛼𝜓3𝑐 + 12𝜓2𝑐 − 34𝑙2 = 0,𝑇𝑐 = 𝜓2𝑐3𝜋 ( 32𝜓3𝑐 𝑙2 + 𝛼 + 1𝜓𝑐) . (16)

The universal number is𝜌𝑐 = 𝑄2𝑐𝑇𝑐𝜓𝑐= 𝜓2𝑐3𝜋 (𝛼 + 14 + 32𝜓3𝑐 𝑙2)(𝛼3 + 112𝜓𝑐 − 116𝜓3𝑐 𝑙2) , (17)

where 0 < 𝛼 < 2 for perfect fluid dark matter. When 𝛼 = 0,
we have the following values:

𝑇𝑐 = √63𝜋𝑙 ,𝑄2𝑐 = 𝑙236 ,𝜓𝑐 = √ 32𝑙2 ,
(18)

which have been obtained by Dehyadegari et al. [47].
Now we study the critical behaviour near the phase

transition with perfect fluid dark matter in new phase space.
We first define 𝜓𝑟 = 𝜓/𝜓𝑐, 𝑄2𝑟 = 𝑄2/𝑄2𝑐 , and 𝑇𝑟 = 𝑇/𝑇𝑐; we
then get 𝜓𝑟 = 1 + 𝜒, 𝑄2𝑟 = 1 + 󰜚, and 𝑇𝑟 = 1 + 𝑡, where 𝜒, 󰜚
and 𝑡 represent the deviations away from critical points. The
thermodynamics quantities are defined as𝐶𝜓 = |𝑡|−𝑎 ,𝜂 = |𝑡|𝑏 ,𝜅𝑇 = |𝑡|−𝑐󵄨󵄨󵄨󵄨󵄨𝑄2 − 𝑄2𝑐 󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝜓 − 𝜓𝑐󵄨󵄨󵄨󵄨𝑑

(19)
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where 𝑎, 𝑏, 𝑐 and 𝑑 are the critical exponents. The critical
exponent 𝑎 is derived by fixing potential 𝜓 for heat capacity
as 𝐶𝜓 = 𝑇 𝜕𝑆𝜕𝑇󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜓 = 0,𝑎 = 0. (20)

The critical exponent 𝑏 is derived from 𝑄2 as
𝑄2𝑟 = 12𝑄2𝑐𝜓𝑐𝜓𝑟 (𝛼 + 12𝜓𝑟𝜓𝑐 + 38𝑙2𝜓3𝑟𝜓3𝑐 − 𝜋𝑇𝑐𝜓2𝑟𝜓2𝑐 𝑇𝑟)= 𝐹1 (𝜓𝑐)𝜓𝑟 + 𝐹2 (𝜓𝑐)𝜓2𝑟 + 𝐹3 (𝜓𝑐)𝜓3𝑟 + 𝐹4 (𝜓𝑐)𝜓4𝑟 𝑇𝑟, (21)

where 𝐹1(𝜓𝑐) = 𝛼/(2𝑄2𝑐𝜓𝑐), 𝐹2(𝜓𝑐) = 1/(4𝑄2𝑐𝜓2𝑐 ), 𝐹3(𝜓𝑐) =3/(16𝑄2𝑐𝜓4𝑐 𝑙2), 𝐹4(𝜓𝑐) = −𝜋𝑇𝑐/(2𝑄2𝑐𝜓3𝑐 ), and the critical
points 𝜓𝑐, 𝑄2𝑐 , 𝑇𝑐 are functions of 𝛼, 𝑙2. In order to obtain
critical exponent, we expand the equation near the critical
point using 𝜓𝑟 = 1 + 𝜒, 𝑇𝑟 = 1 + 𝑡 and 𝑄2𝑟 = 1 + 󰜚, and
obtain󰜚 = 𝐹4 (𝜓𝑐) 𝑡 − 4𝐹4 (𝜓𝑐) 𝑡𝜒− (𝐹1 (𝜓𝑐) + 4𝐹2 (𝜓𝑐) + 4𝐹3 (𝜓𝑐) + 50𝐹4 (𝜓𝑐)) 𝜒3+ ℎ𝑖𝑔ℎ 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚. (22)

Through differentiating (22) with respect to 𝜒
and 𝜒, and using (13), we obtain 𝜒𝑠 = −𝜒𝑙 =√−4𝐹4(𝜓𝑐)𝑡/(𝐹1(𝜓𝑐) + 4𝐹2(𝜓𝑐) + 4𝐹3(𝜓𝑐) + 50𝐹4(𝜓𝑐)),
where 𝑙 and 𝑠 represent large and small black hole phase,
respectively. We then find that󵄨󵄨󵄨󵄨𝜒𝑠 − 𝜒𝑙󵄨󵄨󵄨󵄨 = 2𝜒𝑠

= √ −16𝐹4 (𝜓𝑐)𝐹1 (𝜓𝑐) + 4𝐹2 (𝜓𝑐) + 4𝐹3 (𝜓𝑐) + 50𝐹4 (𝜓𝑐) 𝑡1/2,𝑏 = 12 .
(23)

The critical exponent 𝑐 is derived from isothermal compress-
ibility coefficient 𝜅𝑇 as𝜅𝑇 = 𝜕𝜓𝜕𝑄2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇 ∝ 𝜓𝑐−4𝐹4 (𝜓𝑐) 𝑄2𝑐 𝑡 , 𝑐 = 1, (24)

The critical exponent 𝑑 is obtained from (22) as󰜚󵄨󵄨󵄨󵄨𝑡=0= − (𝐹1 (𝜓𝑐) + 4𝐹2 (𝜓𝑐) + 4𝐹3 (𝜓𝑐) + 50𝐹4 (𝜓𝑐)) 𝜒3,𝑑 = 3. (25)

From the above analysis, we find that these critical
exponents resemble those in Van derWaals system, implying
that the critical phenomenon can be explained by mean

field theory [17]. These critical exponents satisfy the scale
symmetry given by

𝑎 + 2𝑏 + 𝑐 = 2,𝑎 + 𝑏 (𝑑 + 1) = 2,𝑐 (𝑑 + 1) = (2 − 𝑎) (𝑑 − 1) ,𝑐 = 𝑏 (𝑑 − 1) .
(26)

The perfect fluid dark matters around black holes could
explain the formation of supermassive black holes in approx-
imate stationary situation. In the past decades, some high
redshift quasars have been discovered and the centre super-
massive black hole with the mass beyond 10 billion of solar
masses. Usually such black hole is difficult to form in the Uni-
verse less than one billion years old. Because perfect fluid dark
matter black holes satisfy the first law of thermodynamics,
the perfect fluid dark matter could accelerate the formation
of supermassive black holes.

4. Geothermodynamics of Dark Matter around
Reissner-Nordstrom-AdS Black Hole

In the black hole thermodynamics, the thermodynamic
geometry method is a usual tool to understand the prop-
erty of black hole thermodynamics system. In the work,
we use the Ruppeiner metric to study the thermody-
namical effect of the perfect fluid dark matter on the
microscopical structure of Reissner-Nordstrom-AdS black
hole [48]. We define the metric on (𝑀,𝑄2) space given
by

𝑔𝜇] (𝑅) = 1𝑇 𝜕2𝑀𝜕𝑋𝜇𝜕𝑋] = ( 1𝑇 𝜕2𝑀𝜕𝑆2 1𝑇 𝜕2𝑀𝜕𝑆𝜕𝑄21𝑇 𝜕2𝑀𝜕𝑆𝜕𝑄2 1𝑇 𝜕2𝑀𝜕𝑄4 ) (27)

where𝑋𝜇 = (𝑆, 𝑄2).
From (5) and (6), we find that 𝑀(𝑆,𝑄2) and 𝑇(𝑆, 𝑄2) in(𝑀,𝑄2) space are given by

𝑀(𝑆,𝑄2) = 12√ 𝑆𝜋 + 𝑄22 √𝜋𝑆 + 12𝑙2𝜋𝑆√ 𝑆𝜋
+ 𝛼2 ln( 1|𝛼|√ 𝑆𝜋) , (28)

𝑇 (𝑆, 𝑄2) = 𝛼4𝑆 + 34𝜋𝑙2√ 𝑆𝜋 + 14𝜋√𝜋𝑆 − 𝑄24𝑆 √𝜋𝑆 . (29)

From geometry, the Ricci scalar can be calculated for
perfect fluid dark matter around Reissner-Nordstrom-AdS
black holes by
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𝑅 (𝑅𝑁 − 𝐴𝑑𝑆𝐷𝑀) = 𝑅𝜇]𝜌𝜎𝑅𝜇]𝜌𝜎
= 𝐻2(−𝑙2𝜋2𝑄2 − 2𝛼𝑙2√𝜋3𝑆 + 𝑙2𝜋𝑆 + 3𝑆2)2
= 𝐻2(−𝑙2𝜋2𝑄2 − 𝛼𝑙2𝜋2𝜓 + 𝑙2𝜋34𝜓2 + 3𝜋216𝜓4)2 ,

(30)

where𝐻 are function of 𝛼, 𝑙2, 𝑄2 and 𝑆. From above equation,
we find that the phase transition occurs when the following
condition is satisfied:−𝑙2𝜋2𝑄2 − 𝛼𝑙2𝜋2𝜓 + 𝑙2𝜋34𝜓2 + 3𝜋216𝜓4 = 0. (31)

We know that the sign of the Ricci scalar 𝑅 can be
explained by intermolecular interaction in thermodynamical
system. The positive sign refers to the repulsive interaction
between the constituents of the thermodynamical system,
while the negative sign refers to the attractive interaction
between the constituents of the thermodynamical system
([42] and references therein). For perfect fluid dark matter
around Reissner-Nordstrom-AdS black hole, the interactions
are absent in the thermodynamical system for a null Ricci
scalar 𝑅, which is similar to that in classical ideal gas [49].

5. Summary

In the paper, we study the perfect fluid dark matter influ-
ence on thermodynamics and phase transition of Reissner-
Nordstrom-AdS black hole by extending phase space defined
by the charge square 𝑄2 and conjugate quantity 𝜓. The first
law of thermodynamics and the equation of state are derived
in the form of 𝑄2 = 𝑄2(𝑇, 𝜓). We analyze the critical
behaviour of dark matter around Reissner-Nordstrom-AdS
black hole andfind that these thermodynamics system resem-
ble theVan derWaals systemwhich can be explained bymean
field theory. We also find that the critical exponents satisfy
the scale law of thermodynamical system. Using Ruppeiner
thermodynamic geometry, we study the geometric property
of perfect fluid dark matter around black holes. We find that,
in extended phase space, some singular points appear on the
Ruppeiner curvature, which can be explained as the critical
points of phase transitions.

The Reissner-Nordstrom-AdS black hole surrounded by
darkmatters could appear in the Universe. In the future work
we plan to study the observed effects of perfect fluid dark
matter on black holes and the influence of perfect fluid dark
matter on gravitational lensing and the evolution of dark
matter in the universe.
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In this paper we analyze the thermodynamic properties of the Anti-de-Sitter black hole in the Einstein-Maxwell-Yang-Mills-
AdS gravity (EMYM) via many approaches and in different thermodynamical ensembles (canonical/grand canonical). First, we
give a concise overview of this phase structure in the entropy-thermal diagram for fixed charges and then we investigate this
thermodynamical structure in fixed potentials ensemble. The next relevant step is recalling the nonlocal observables such as
holographic entanglement entropy and two-point correlation function to show that both observables exhibit a Van der Waals-like
behavior in our numerical accuracy and just near the critical line as the case of the thermal entropy for fixed charges by checking
Maxwell’s equal area law and the critical exponent. In the light of the grand canonical ensemble, we also find a newly phase structure
for such a black hole where the critical behavior disappears in the thermal picture as well as in the holographic one.

1. Introduction

Over the last years, a great emphasis has been put on
the application of the Anti-de-Sitter/conformal field theory
correspondence [1, 2] which plays a pivotal role in recent
developments of many physical themes [3–5]; in this particu-
lar context the thermodynamics of Anti-de-Sitter black holes
become more attractive for investigation [6].

In general, black hole thermodynamics has emerged as a
fascinating laboratory for testing the predictions of candidate
theories of quantum gravity. It has been figured that black
holes are associated thermodynamically with a entropy and
a temperature [7] and a pressure [8]. This association has led
to a rich structure of phase picture and a remarkable critical
behavior similar to van der Waals liquid/gas phase transi-
tion [9–19]. Another confirmation of this similarity appears
when we employ nonlocal observables such as entanglement
entropy,Wilson loop, two-point correlation function, and the
complexity growth rate [20–33]. Meanwhile, these tools are
used extensively in quantum information and to characterize
phases and thermodynamical behavior [21, 23, 34–41].

The black hole charge finds a deep interpretation in
the context of the AdS/CFT correspondence linked to con-
densed matter physics; the charged black hole introduces
a charge density/chemical potential and temperature in the
quantum field theory defined on the boundary [42]. In this
background, the charged black hole can be viewed as an
uncondensed unstable phase which develops a scalar hair at
low temperature and breaks 𝑈(1) symmetry near the black
hole horizon reminiscing the second-order phase transition
between conductor and superconductor phases [43]; this situ-
ation is called the ”s-wave” holographic superconductor. It has
also been shown that ”p-wave” holographic superconductor
corresponds to vector hair models [44, 45]. The simplest
example of p-wave holographic superconductors may be
provided by an Einstein-Yang-Mills theory with 𝑆𝑈(2) gauge
group and no scalar fields, where the electromagnetic gauge
symmetry is identified with an 𝑈(1) subgroup of 𝑆𝑈(2). The
other components of the 𝑆𝑈(2) gauge field play the role of
charged fields dual to some vector operators that break the𝑈(1) symmetry, leading to a phase transition in the dual field
theory.
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Motived by all the ideas described above, although the
Yang-Mills fields are confined to acting inside nuclei while the
Maxwell field dominates outside, the consideration of such
theory where the two kinds of field live is encouraged by the
existence of exotic and highly dense matter in our universe.
In this work, we try to contribute to this rich area by revisiting
the phase transition of Anti-de-Sitter black holes in Einstein-
Maxwell-Yang-Mills (EMYM) gravity. More especially, we
investigate the first- and second-order phase transition by
different approaches including the holographic one and in
different canonical ensembles.

This work is organized as follow: First, we present
some thermodynamic properties and phase structure of the
EMYM-AdS black holes in (temperature, entropy)-plane in
canonical and grand canonical ensemble. Next, we show in
Section 3 that the holographic approach exhibits the same
behavior; in other words we recall the entanglement entropy
and two-point correlation function to check the Maxwell’s
equal area law and calculate the critical exponent of the spe-
cific heat capacity which is consistent with that of the mean
field theory of the Van der Waals in the canonical ensemble
near the critical point. In the grand canonical one, a new
phase structure arises where the critical behavior disappears
in the thermal as well as the holographic framework.The last
section is devoted to a conclusion.

2. Critical Behavior of Einstein-Maxwell-Yang-
Mills-AdS Black Holes in Thermal Picture

2.1. Canonical Ensemble. We start this section by writing
the 𝑁-dimensional for Einstein-Maxwell-Yang-Mills gravity
with a cosmological constant Λ described by the following
action [46, 47]

I = 12 ∫
M

𝑑𝑥𝑁√−𝑔(𝑅 − (𝑁 − 1) (𝑁 − 2)3 Λ −F𝑀

−F𝑌𝑀) ,
(1)

where 𝑅 is the Ricci scalar while Λ is the cosmological con-
stant. Also F𝑀 = 𝐹𝜇]𝐹𝜇] and F𝑌𝑀 = Tr(𝐹(𝑎)𝜇] 𝐹(𝑎)𝜇]) are the
Maxwell invariant and the Yang-Mills invariant, respectively;
the trace element stands for Tr(.) = ∑(𝑁−1)(𝑁−2)/2𝑎=1 (.). Varying
the action (1) with respect to the metric tensor 𝑔𝜇], the
Faraday tensor 𝐹𝜇], and the YM tensor 𝐹(𝑎)𝜇] , one can obtain
the following field equations

𝐺𝜇] + Λ𝑔𝜇] = 𝑇𝑀𝜇] + 𝑇𝑌𝑀𝜇] (2)

∇𝐹𝜇] = 0 (3)

𝐷𝜇𝐹(𝑎)𝜇] = ∇𝜇𝐹(𝑎)𝜇] + 1Θ𝜀(𝑎)(𝑏)(𝑐)𝐴(𝑏)𝜇 𝐹(𝑐)𝜇] = 0 (4)

where𝐺𝜇] is the Einstein tensor, the quantity 𝜀(𝑎)(𝑏)(𝑐)’s stands for
the structure constants of the ((𝑁 − 1)(𝑁 − 2)/2)-parameters
Lie group 𝐺, Θ is coupling constant, and 𝐴(𝑎)𝜇 denotes the𝑆𝑂(𝑁 − 1) gauge groupe YM potential. We also note that the

internal indices {𝑎, 𝑏, 𝑐, ⋅ ⋅ ⋅ } do not differ whether in covariant
or contravariant form. In addition, 𝑇𝑀𝜇] and T𝑌𝑀𝜇] are the
energy momentum tensor of Maxwell and YM fields with the
following formula

𝑇𝑀𝜇] = −12𝑔𝜇]𝐹𝜌𝜎𝐹𝜌𝜎 + 2𝐹𝜇𝜆𝐹𝜆] (5)

𝑇𝑌𝑀𝜇] = (𝑁−1)(𝑁−2)/2∑
𝑎=1

[−12𝑔𝜇]𝐹(𝑎)𝜌𝜎 𝐹(𝑎)𝜌𝜎 + 2𝐹(𝑎)𝜇𝜆 𝐹(𝑎)𝜆] ] (6)

𝐹(𝑎)𝜇] = 𝜕𝜇𝐴(𝑎)] − 𝜕]𝐴(𝑎)𝜇 + 12Θ𝜀(𝑎)(𝑏)(𝑐)𝐴𝑏𝜇𝐴𝑐], (7)

𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇. (8)

where 𝐴𝜇 is the usual Maxwell potential. The metric for such𝑁 dimensional spherical black hole may be chosen to be [47]

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 1𝑓 (𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2𝑛 (9)

in which 𝑑Ω2𝑛 represents the volume of the unit 𝑛-sphere
which can be expressed in the standard spherical form

𝑑Ω2𝑁−2 = 𝑑𝜃21 + 𝑁−3∑
𝑖=2

Π𝑖−1𝑗=1sin2𝜃𝑗𝑑𝜃2𝑖
where 0 ≤ 𝜃1 ≤ 𝜋, 0 ≤ 𝜃𝑖 ≤ 2𝜋.

(10)

In order to find the electromagnetic field, we recall the
following radial gauge potential ansatz 𝐴𝜇 = ℎ(𝑟)𝛿0𝜇 which
obeys the Maxwell field equations (3) with the following
solution

𝑑ℎ (𝑟)𝑑𝑟 = 𝑐𝑟𝑁−2 (11)

where 𝑐 is an integration constant related to electric charge𝐶 of the solutions. To solve the YM field, (4), we use the
magnetic Wu–Yang ansatz of the gauge potential [48, 49]
given by

𝐴(𝑎) = 𝑄𝑟2 (𝑥𝑖𝑑𝑥𝑗 − 𝑥𝑗𝑑𝑥𝑖)
2 ≤ 𝑖 ≤ 𝑁 − 1,
1 ≤ 𝑗 ≤ 𝑖 − 1
1 ≤ (𝑎) ≤ (𝑁 − 1) (𝑁 − 2)2

(12)
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where we imply (to have a systematic process) that the super
indices 𝑎 are chosen according to the values of 𝑖 and 𝑗 in order.
For instance, we present some of them

𝐴(1) = 𝑄𝑟2 (𝑥2𝑑𝑥1 − 𝑥1𝑑𝑥2)
𝐴(2) = 𝑄𝑟2 (𝑥3𝑑𝑥1 − 𝑥1𝑑𝑥3)
𝐴(3) = 𝑄𝑟2 (𝑥3𝑑𝑥2 − 𝑥2𝑑𝑥3)
𝐴(4) = 𝑄𝑟2 (𝑥4𝑑𝑥1 − 𝑥1𝑑𝑥4)
𝐴(5) = 𝑄𝑟2 (𝑥4𝑑𝑥2 − 𝑥2𝑑𝑥4)
𝐴(6) = 𝑄𝑟2 (𝑥4𝑑𝑥3 − 𝑥3𝑑𝑥4)
𝐴(7) = 𝑄𝑟2 (𝑥5𝑑𝑥1 − 𝑥1𝑑𝑥5)
𝐴(8) = 𝑄𝑟2 (𝑥5𝑑𝑥2 − 𝑥2𝑑x5)
𝐴(9) = 𝑄𝑟2 (𝑥5𝑑𝑥3 − 𝑥3𝑑𝑥5)
𝐴(10) = 𝑄𝑟2 (𝑥5𝑑𝑥4 − 𝑥4𝑑𝑥5)

⋅ ⋅ ⋅

(13)

in which 𝑟2 = ∑𝑁−1𝑖=1 𝑥2𝑖 .The YM field 2-forms are defined by
the expression

𝐹(𝑎) = 𝑑𝐴(𝑎) + 12𝑄𝜀(𝑎)(𝑏)(𝑐)𝐴(𝑏) ∧ 𝐴(𝑐). (14)

In general for 𝑁 we must have (𝑁 − 1)(𝑁 − 2)/2 gauge
potentials. The integrability conditions

𝑑𝐹(𝑎) + 1𝑄𝜀(𝑎)(𝑏)(𝑐)𝐴(𝑏) ∧ 𝐹(𝑐) = 0 (15)

are easily satisfied by using (28). The YM equations

𝑑 ∗ 𝐹(𝑎) + 1𝑄𝜀(𝑎)(𝑏)(𝑐)𝐴(𝑏) ∧ ∗𝐹(𝑐) = 0 (16)

also are all satisfied. The energy-momentum tensor (4)
becomes after

(𝑁−1)(𝑁−2)/2∑
𝑎=1

[𝐹(𝑎)𝜆𝜎 𝐹(𝑎)𝜆𝜎] = (𝑁 − 3) (𝑁 − 2)𝑄2𝑟4 (17)

with the nonzero components

𝑇00 = (𝑁 − 3) (𝑁 − 2)𝑄2𝑓 (𝑟)2𝑟4
𝑇11 = −(𝑁 − 3) (𝑁 − 2)𝑄22𝑟4𝑓 (𝑟)
𝑇22 = −(𝑁 − 3) (𝑁 − 6)𝑄22𝑟2
𝑇𝐴𝐴 = −(𝑁 − 3) (𝑁 − 6)𝑄22𝑟2 Π𝐴−2𝑖=1 sin2𝜃𝑖

2 < 𝐴 ≤ 𝑁 − 1.

(18)

Using (2) and after some simplifications, one can find that
the metric function 𝑓(𝑟) has the following form given by

𝑓 (𝑟) = 1 − 2𝑚𝑟𝑛−1 − Λ3 𝑟2 + 2 (𝑛 − 1) 𝐶2𝑛𝑟2𝑛−2 − (𝑛 − 1)𝑄2(𝑛 − 3) 𝑟2 , (19)

where 𝑁 = 𝑛 + 2; one can note in the particular case
for 𝑛 = 3 that the last term of (19) diverges, involving an
unusual logarithmic term in Yang-Mills charge [46]. For this
gravity background the parameter𝑚 is related to the mass of
such black hole, while 𝐶 and 𝑄 are the charges of Maxwell
field and Yang-Mills field, respectively. Following previous
literature [8, 9], one can find a close connection between the
cosmological constant and pressure as 𝑃 = −Λ/8𝜋, leading
to the following expressions of Hawking temperature, mass,
and entropy of such black hole in terms of the horizon radius𝑟+

𝑇 = 𝑓󸀠 (𝑟+)4𝜋 = 𝑛 − 14𝜋𝑟+ + 2 (𝑛 + 1) 𝑃3 𝑟+ − (𝑛 − 1)𝑄24𝜋𝑟3
− (𝑛 − 1)2 𝐶22𝜋𝑛𝑟2𝑛−1+ ,

(20)

𝑀 = 𝑛𝜔𝑛48𝜋 (8𝜋𝑃𝑟𝑛+1+ + 3 (𝑛 − 1)𝑄2𝑟𝑛−33 − 𝑛 + 3𝑟𝑛−1+
+ 6 (𝑛 − 1) 𝐶2𝑛𝑟𝑛−1+ ) ,

(21)

𝑆 = 𝜔𝑛𝑟𝑛+4 , (22)

TheYang-Mills potentialΦ𝑄 and the electromagnetic oneΦ𝐶 can be written as

Φ𝑄 = (𝜕𝑀𝜕𝑄 )
𝐶,𝑃,𝑟+

= 𝜔𝑛 (𝑛 − 1) 𝑛𝑄8𝜋 (3 − 𝑛) 𝑟𝑛−3+ , (23)

Φ𝐶 = (𝜕𝑀𝜕𝐶 )
𝑄,𝑃,𝑟+

= 𝜔𝑛 (𝑛 − 1) 𝐶4𝜋𝑟𝑛−1+ , (24)

where 𝜔𝑛 = 2𝜋(𝑛+1)/2/Γ((𝑛 + 1)/2) is the volume of the unit𝑛-sphere. In fact, according to the interpretation of the black
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Figure 1: The temperature as a function of the entropy for different values of charge 𝐶. (Left) 𝐶 = 0. (Right) 𝐶 ̸= 0.
hole mass 𝑀 as an enthalpy [8] in the extended phase space
context, the free energyF of black hole can be written as

F = 𝑀 − 𝑇 ⋅ 𝑆 (25)

and the heat capacity is given by

𝐶𝑄 = 𝑇 𝜕𝑆𝜕𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑄 (26)

It is straightforward to show that obtained quantities (20),
(21), and (22) obey the first law of black hole thermodynamics
in the extended phase space

𝑑𝑀 = 𝑇𝑑𝑆 + Φ𝑄𝑑𝑄 + Φ𝐶𝑑𝐶 + 𝑉𝑑𝑃, (27)

where 𝑉 is the Legendre transform of the pressure, which
denotes the thermodynamic volume with

𝑉 = (𝜕𝑀𝜕𝑃 )
𝑆,Φ𝑄,Φ𝐶

= 𝑛𝜔𝑛𝜋3 𝑟𝑛+1. (28)

In addition to this, using scaling argument, the corresponding
Smarr formula is

𝑀 = 𝑛𝑛 − 1𝑇𝑆 + Φ𝐶𝐶 + 1(𝑛 − 1)Φ𝑄𝑄 − 2𝑛 − 1𝑉𝑃. (29)

Without loss of generality, inserting (22) into (20), we can get
the entropyHawking temperature relation of such black hole,
namely,

𝑇 = 112𝜋𝑛 [6𝐶 (𝑛 − 1)2 (41/𝑛 ( 𝑆𝜔𝑛)
1/𝑛)1−2𝑛

+ 𝜋22/𝑛+3𝑛 (𝑛 + 1) 𝑃( 𝑆𝜔𝑛)
1/𝑛

− 3 (𝑛 − 1) 𝑛𝑄24−3/𝑛 ( 𝑆𝜔𝑛)
−3/𝑛

+ 3 4−1/𝑛 (𝑛 − 1) 𝑛 ( 𝑆𝜔𝑛)
−1/𝑛]

(30)

This relation is depicted in Figure 1; indeed it has been
shown that there is a Van der Waals-like phase transition;
furthermore a direct confirmation comes from the solution
of the following system

(𝜕𝑇𝜕𝑆 )𝑄 = (𝜕2𝑇𝜕𝑆2 )
𝑄

= 0. (31)

which reveal the existence of a critical point. The critical
charge, entropy, and temperature are given in Table 1; for all
the rest of the paper we keep 𝑛 = 2.

An important remark that can be observed here is that
both quantities𝑇𝑐 and 𝑆𝑐 are insensible with the charge𝐶.The
behavior of the free energyFwith respect to the temperature
may be investigated by plotting in Figure 2 the graph F − 𝑇
for a fixed value of charge 𝑄 under the critical one. From
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Figure 2:The Helmholtz free energy in function of the entropy for EMYM-AdS black holes for different values of the charge 𝐶. (Left) 𝐶 = 0.
(Right) 𝐶 ̸= 0.

Table 1: Coordinates of the critical points for different values of 𝐶 in (𝑇, 𝑆)-diagram.

𝑄𝑐 𝑆𝑐 𝑇𝑐
C = 0 12√3 𝜋2 √23𝜋
C ̸= 0 16√3 − 36𝐶2 𝜋2 √23𝜋

Table 2: Check of the equal area law in the 𝑇 − 𝑆 plane for different 𝐶.
C 𝑇⋆ 𝑆1 𝑆2 𝑆3 𝐴1 𝐴20 0.15376 0.638237 1.52994 3.13241 0.383499 0.3835014 150965 1.05043 11.54616 2.25932 00.18248 0.1825

this plot, we can observe the characteristic swallow-tail which
guarantees the existence of the Van der Waals-like phase
transition.

Using Figure 2, we can derive numerically the coexistence
temperature 𝑇⋆ needed in the Maxwell’s equal area law
construction

𝐴1 ≡ ∫𝑆2
𝑆1

𝑇 (𝑆) 𝑑𝑆 − 𝑇⋆ (𝑆2 − 𝑆1)

= 𝑇⋆ (𝑆3 − 𝑆2) − ∫𝑆3
𝑆2

𝑇 (𝑆) 𝑑𝑆 ≡ 𝐴2,
(32)

where 𝑆3, 𝑆2, and 𝑆1 are the solutions of 𝑇(𝑆) = 𝑇⋆ in
descending order, in addition to the numerical values of these
points, and we report in Table 2 the areas 𝐴1 and 𝐴2 in
Maxwell’s law (32)

Obviously, the area 𝐴1 equals area 𝐴2 for different 𝐶,
so the equal area law does not break. For the second phase
transition, we know that, near the critical point, there is
always a linear relation with slope equal to 3 [47, 50]

log 󵄨󵄨󵄨󵄨𝑇 − 𝑇𝑐󵄨󵄨󵄨󵄨 = 3 log 󵄨󵄨󵄨󵄨𝑆 − 𝑆𝑐󵄨󵄨󵄨󵄨 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (33)

in this context, the heat capacity behaves like

𝐶𝑄 ∼ (𝑇 − 𝑇𝑐)−2/3 (34)

where the critical exponent of the second-order phase is−2/3,
which is consistent with the mean field theory.

2.2. Grand Canonical Ensemble. Having described the ther-
modynamical behavior of the EMYM-AdS black hole with
a fixed charge, by showing the occurrence of the first and
second phase transition, we will focus this section on the
phase structure when the potentials are kept fixed.

To facilitate the calculation of relevant quantities, it is
convenient to reexpress the Hawking temperature as a func-
tion of entropy, Yang-Mills, and electromagnetic potentials,
inserting (23) and (24) into (30); one can write
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𝑇 = 13𝜋22(𝑛+1)/𝑛 ( 𝑆𝜔𝑛)
−1/𝑛 × [[[

96𝜋2 (−2(𝑛+8)/𝑛 (𝑛 − 3)2Φ2𝑄 (41/𝑛 (𝑆/𝜔𝑛)1/𝑛)−2𝑛 (𝑆/𝜔𝑛)4/𝑛 / (𝑛 − 1) − 𝑛Φ2𝑐)𝑛2𝜔2𝑛
− 161/𝑛Λ (𝑛 + 1) ( 𝑆𝜔𝑛)

2/𝑛 + 3 (𝑛 − 1)]]]

(35)

In our assumptions, where 𝑛 = 2 andΛ = −1, (35) reduces
to

𝑇 = 𝑆 − 𝜋 (Φ2𝑐 + Φ2𝑄 − 1)4𝜋3/2√𝑆 (36)

which is in agreement with the result of [51, 52] if we setΦ𝑄 =0. Now we are able to write easily

(𝜕𝑇𝜕𝑆 )Φ𝑄,Φ𝑐 =
−𝑆 − 3𝜋 (Φ2𝑐 + Φ2𝑄 − 1)16𝜋3/2𝑆5/2 (37)

(𝜕2𝑇𝜕𝑆2 )
Φ𝑄,Φ𝑐

= 𝑆 + 𝜋 (Φ2𝑐 + Φ2𝑄 − 1)8𝜋3/2𝑆3/2 (38)

The solution of (𝜕𝑇/𝜕𝑆)Φ𝑄,Φ𝑐 = 0 can be derived as

𝑆1 = −𝜋 (Φ2𝑐 + Φ2𝑄 − 1) (39)

where the condition Φ2𝑐 + Φ2𝑄 < 1 should be verified to
ensure that the entropy in (39) is positive. In the other caseΦ2𝑐+Φ2𝑄 > 1, one cannot findmeaningful root of the equation(𝜕𝑇/𝜕𝑆)Φ𝑄,Φ𝑐 = 0. Substituting (39) into (38) we obtain the
following constraint

(𝜕2𝑇𝜕𝑆2 )
Φ𝑄,Φ𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆=𝑆1 =
1

8𝜋3 (−Φ2𝑐 − Φ2𝑄 + 1)3/2 > 0 (40)

implying that no critical point is observed in the 𝑇 − 𝑆
diagram. This observation differs from the result in the pre-
vious section where the charges are kept fixed, consolidating
the assertion that the thermodynamics in the grand canonical
ensemble is quite different from that in the canonical one.
In Figure 3, we depict the Hawking temperature for both the
casesΦ2𝑐 +Φ2𝑄 < 1 andΦ2𝑐 +Φ2𝑄 > 1 and one can see that there
exists minimum temperature for the left panel. Substituting
(39) into (36), the minimum temperature can be obtained as

𝑇𝑚𝑖𝑛 = √−Φ2𝑐 − Φ2𝑄 + 1
2𝜋 . (41)

However, the Hawking temperature increases monotonically
in the right panel.

Having obtained the phase picture of the thermal entropy
of the AdS-Maxwell-Yang-Mills black hole, the canoni-
cal/grand canonical ensemble, we will now revisit the phase

structure of the entanglement entropy and two-point correla-
tion function to seewhether they have similar phase structure
in each thermodynamical ensemble.

3. Phase Transitions of
Einstein-Maxwell-Yang-Mills-AdS
Black Holes in Holographic Picture

3.1. Holographic Entanglement Entropy. First, let us provide
a concise review of some generalities about the holographic
entanglement entropy. For a given quantum field theory
described by a density matrix 𝜌, with 𝐴 being some region
of a Cauchy surface of spacetime and 𝐴𝑐 standing for
its complement, the von Neumann entropy traduces the
entanglement between these two regions

𝑆𝐴 = −Tr𝐴 (𝜌𝐴 log 𝜌𝐴) , (42)

with 𝜌𝐴 being the reduced density matrix of given by 𝐴 𝜌𝐴 =
Tr𝐴𝑐(𝜌). Ryu and Takayanagi propose a simple geometric way
to evaluate the entanglement entropy as [53, 54]

𝑆𝐴 = Area (Γ𝐴)4𝐺𝑁 , (43)

in which Γ𝐴 denotes a codimension-2 minimal surface with
boundary condition 𝜕Γ𝐴 = 𝜕𝐴 and 𝐺𝑁 stands for the
gravitational Newton’s constant. In our black hole model we
choose the region 𝐴 to be a spherical cap on the boundary
delimited by 𝜃 ≤ 𝜃0, and the minimal surface can be
parametrized by the function 𝑟(𝜃). According to definition of
the area and (9) and (43), one can show that the holographic
entanglement entropy is governed by

𝑆𝐴 = 𝜔𝑛−24 ∫𝜃0
0

𝑟𝑛−2sin𝑛−2𝜃√ (𝑟󸀠)2𝑓 (𝑟) + 𝑟2𝑑𝜃, (44)

where the notation prime denotes the derivative with respect
to 𝜃; e.g., 𝑟󸀠 ≡ 𝑑𝑟/𝑑𝜃. Treat (44) as a Lagrangian and solve the
equation of motion given by

𝑟󸀠 (𝜃)2 [sin 𝜃𝑟 (𝜃)2 𝑓󸀠 (𝑟) − 2 cos 𝜃𝑟󸀠 (𝜃)] − 2𝑟 (𝜃) 𝑓 (𝑟)
⋅ [𝑟 (𝜃) (sin 𝜃𝑟󸀠󸀠 (𝜃) + cos 𝜃𝑟󸀠 (𝜃)) − 3 sin 𝜃𝑟󸀠 (𝜃)2]
+ 4 sin (𝜃) 𝑟 (𝜃)3 𝑓 (𝑟)2 = 0.

(45)
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Figure 3: The temperature as a function of the entropy for different potentials. (Left)Φ2𝑐 + Φ2𝑄 < 1. (Right)Φ2𝑐 + Φ2𝑄 > 1.

Due to the difficulty to find an analytical form of the solution𝑟(𝜃), we will perform a numerical calculation with adopting
the following boundary conditions

𝑟󸀠 (𝜃) = 0,
𝑟 (0) = 𝑟0. (46)

Knowing that the entanglement entropy is divergent at
the boundary, we regularized it by subtracting the area of the
minimal surface in pure AdS whose boundary is also 𝜃 = 𝜃0
with

𝑟𝐴𝑑𝑆 (𝜃) = 𝐿(( cos 𝜃
cos 𝜃0)

2 − 1)−1/2 . (47)

We label the regularized entanglement entropy by Δ𝑆𝐴 and
for our numerical calculation we choose 𝜃0 = 0.2 and 0.3
while Ultra Violet cutoff is chosen to be 𝜃𝑐 = 0.199 and0.299, respectively. To compare with the phase structure in
the thermal picture, we will study the relation between the
entanglement entropy and the Hawking temperature repre-
senting the temperature of the dual field theory; this relation
is depicted in Figure 4 for different values ofMaxwell’s charge
with a fixed Yang-Mills one near the critical point and the
chosen 𝜃0.

For each panel, the red lines are associated with a
charge less than the critical one while the ones equal to
the critical charge are depicted in black dashed lines and
green lines correspond to a charge upper than the critical
one. Particularly, the first-order phase transition temperature𝑇⋆ and second-order phase transition temperature 𝑇𝑐 are
plotted by magenta and orange dashed line, respectively.
As can be seen in all these plots, the Van der Waals-like
phase structure can also be observed in the 𝑇 − Δ𝑆𝐴diagram.
Particularly, the coexistence temperature 𝑇⋆ and second-
order phase transition temperature 𝑇𝑐 are exactly the same
as those in the thermal entropy structure.

Adopting the same steps as in the thermal picture, we
will also check numerically whether Maxwell’s equal area law
holds

𝐴1 = ∫Δ𝑆(2)𝐴
Δ𝑆(1)
𝐴

𝑇 (Δ𝑆𝐴, 𝑄) 𝑑Δ𝑆𝐴 − 𝑇∗ (Δ𝑆(2)𝐴 − Δ𝑆(1)𝐴 ) (48)

𝐴2 = 𝑇∗ (Δ𝑆(3)𝐴 − Δ𝑆(2)𝐴 ) − ∫Δ𝑆(3)𝐴
Δ𝑆(2)
𝐴

𝑇 (Δ𝑆𝐴, 𝑄) 𝑑Δ𝑆𝐴 (49)

with the quantities Δ𝑆(1)𝐴 , Δ𝑆(2)𝐴 , and Δ𝑆(3)𝐴 being roots
of the equation 𝑇∗ = 𝑇(Δ𝑆𝐴, 𝑄) in ascending order. The
Maxwell’s equal area law stipulates that

𝐴1 = 𝐴2. (50)

We tabulate in Table 3 the values of the both areas 𝐴1 and𝐴2 for the chosen 𝜃0 and the charge 𝐶 as well as the relative
error between 𝐴1 and 𝐴2 taken to be the difference between𝐴1 and 𝐴2 divided by their average.

Based on Table 3, we can see that, as the pressure
approaches the critical one, the relative error which translates
the disagreement between Maxwell’s areas decreases. We can
claim that the first-order phase transition of the holographic
entanglement entropy obeys Maxwell’s equal area law just
near the critical point and within our numerical accuracy.

The next obvious step in our investigation is the check
of the critical exponent of the second-order phase transition
by analyzing the slope of the relation between log |𝑇 − 𝑇𝑐|
and log |Δ𝑆𝐴 −Δ𝑆𝐴𝑐 |, where Δ𝑆𝐴𝑐 is the critical entanglement
entropy found numerically by an equation 𝑇(Δ𝑆𝐴) = 𝑇𝑐. We
also introduce the definition of an analog to heat capacity by
writing

C𝑄 = 𝑇𝜕 (Δ𝑆𝐴)𝜕𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑄 . (51)

Taking 𝜃0 = 0.2 and for different charge 𝐶, we plot
the relationship between log |𝑇 − 𝑇𝑐| and log |Δ𝑆𝐴 − Δ𝑆𝐴𝑐 |
inFigure 5, and the analytical relation can be fitted as
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Table 3: Comparison of 𝐴1 and 𝐴2 for the EMPYM-AdS black hole using entanglement entropy.

𝐶 𝑄𝑄𝑐 𝜃0 Δ𝑆(1)𝐴 Δ𝑆(2)𝐴 Δ𝑆(3)𝐴 𝐴1 𝐴2 Relative error

0 0.9 0.2 0.00339417 0.00490769 0.00755095 2.271 × 10−6 2.218 ×10−6 2.36 %
0.3 0.011477 0.0164978 0.0254236 6.563 × 10−6 6.407 ×10−6 2.4%

0.5 0.2 0.00161291 0.0042458 0.0130777 0.00007432 0.00005560 28.81%

14 0.9 0.2 0.00425941 0.00502275 0.00617356 9.961 × 10−8 1.023 ×10−7 2.66%
0.3 0.0151665 0.0169359 0.0208834 1.601 × 10−7 1.631 ×10−7 1.85%

0.5 0.2 0.00339968 0.00496717 0.00743883 2.12718 × 10−6 1.76781 ×10−6 18.44%

log 󵄨󵄨󵄨󵄨𝑇 − 𝑇𝑐󵄨󵄨󵄨󵄨
= {{{{{

14.2558 + 3.09904 log 󵄨󵄨󵄨󵄨󵄨Δ𝑆𝐴 − Δ𝑆𝐴𝑐 󵄨󵄨󵄨󵄨󵄨 (𝐶 = 0)
2.9293 + 3.031061 log 󵄨󵄨󵄨󵄨󵄨Δ𝑆𝐴 − Δ𝑆𝐴𝑐 󵄨󵄨󵄨󵄨󵄨 (𝐶 = 14)

(52)

The slope of (52) is around 3 indicating that the critical
exponent is−2/3 in total concordancewith that in (33); there-
fore the critical exponent for second-order phase transition of
the holographic entanglement entropy agrees with that of the
thermal entropy in the canonical ensemble [47, 50].

Now, we turn our attention to the grand canonical ensem-
ble; we adopt the same analysis and the chosen values of the
previous subsection, by writing (19) and (45) as a function
of the potentials Φ𝑄 and Φ𝑐; taking the same boundary

conditions (46), we perform the numerical calculations used
in the plot of Hawking temperature as a function of the
holographic entanglement entropy with fixed potentials in
Figure 6.

Comparing Figure 3 with Figure 6, one may find that the
thermal picture shares the same behavior of the holographic
entanglement entropy; we can also observe the same mini-
mum value of the temperature 𝑇𝑚𝑖𝑛 = 0.155125. Then the
holographic framework reproduces the same attitude of the𝑇 − 𝑆 diagram in the grand canonical ensemble.

Now, after showing that the holographic entanglement
entropy shears the same phase picture as that of the thermal
entropy for grand canonical and just near the critical point
for the canonical ensemble since the relative disagreement
betweenMaxwell’s areas can become significantly large at low
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Table 4: Comparison of 𝐴1 and 𝐴2 for the EMYM-AdS black hole using two-point correlation function.

𝐶 𝑄𝑄𝑐 𝜃0 Δ𝐿(1)𝐴 Δ𝐿(2)𝐴 Δ𝐿(3)𝐴 𝐴1 𝐴2 relative error

0 0.9 0.2 1.34978 1.34987 1.35003 0.000287 0.000300 4.42%0.3 0.881705 0.881911 0.882274 0.000197 0.000208 5.43%
0.4 0.2 1.34967 1.34983 1.35043 0.001431 0.001812 23.49%

14 0.9 0.2 1.34983 1.34988 1.34995 0.000142 0.000138 2.85%
0.3 0.881822 0.881926 0.882085 0.000209 0.000216 3.29%

0.4 0.2 1.34978 1.34987 1.35003 0.0003907 0.0004653 17.42%
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Figure 5: The relation between log |𝑇 − 𝑇𝑐| and log |Δ𝑆𝐴 − Δ𝑆𝐴𝑐 | for different 𝐶. (Left) 𝐶 = 0. (Right) 𝐶 ̸= 0.

pressure, we attempt in the next section to explore whether
the two-point correlation function has similar behavior to
that of the entanglement entropy.

3.2. Two-Point Correlation Function. According to the Anti-
de-Sitter/conformal fields theory correspondence, the time
two-point correlation function can be written under the
saddle-point assumption and in the large limit of Δ as [55]

⟨O (𝑡0, 𝑥𝑖)O (𝑡0, 𝑥𝑗)⟩ ≈ 𝑒−Δ𝐿, (53)

where Δ is the conformal dimension of the scalar operator
O in the dual field theory and the quantity 𝐿 stands for
the length of the bulk geodesic between the points (𝑡0, 𝑥𝑖)
and (𝑡0, 𝑥𝑗) on the AdS boundary. Taking into account the
symmetry of the considered black hole spacetime, we can
simply use 𝑥𝑖 = 𝜃 with the boundary 𝜃0 and employ it to
parameterize the trajectory. In this case, the proper length can
be expressed as

𝐿 = ∫𝜃0
0

L (𝑟 (𝜃) , 𝜃) 𝑑𝜃,
L = √ (𝑟󸀠 (𝜃))2𝑓 (𝑟 (𝜃)) + 𝑟 (𝜃)2, where 𝑟󸀠 = 𝑑𝑟𝑑𝜃

(54)

Treating L as Lagrangian and 𝜃 as time, one can write the
equation of motion for 𝑟(𝜃) as

𝑟󸀠 (𝜃)2 𝑓󸀠 (𝑟 (𝜃)) − 2𝑓 (𝑟 (𝜃)) 𝑟󸀠󸀠 (𝜃) + 2𝑟 (𝜃) 𝑓 (𝑟 (𝜃))2
= 0. (55)

Recalling the boundary conditions of (46) we attempt to
solve this equation by choosing the same background of
the previous section, in other words the same values of the
parameter 𝜃0 with the same UV cutoff values in the dual
field theory.The regularized two-point correlation function is
labeled asΔ𝐿𝐴 = 𝐿−𝐿0, where𝐿0 denotes the geodesic length
in pure AdS under the same boundary region. In Figure 7
we depict the behavior of the temperature 𝑇 in function ofΔ𝐿𝐴; all plots show the Van derWaals-like phase transition as
in the case of the thermal and the holographic entanglement
entropy portrait.

As in the case of the holographic entanglement entropy,
the relevant calculated results are listed in Table 4 which are
the 𝜃0 values, the ΔL𝐴1,2,3 , and the areas 𝐴1 and 𝐴2.

The results of Table 4 tell us that under our numerical
accuracy and just near the critical point Maxwell’s equal area
law still is verified implying that 𝐴1 and 𝐴2 are equal in the
proximity to the critical pressure. These remarks consolidate
the behavior of all panels of Figure 7. At this point, one can
conclude that, like the entanglement entropy, the two-point
correlation function also exhibits apparently a first-order
phase transition as that of the thermal entropy. However,
exploring broader ranges of the pressure has revealed the fact
that the equal area law does not also hold.

For the second phase transition, we will be interested in
the quantities log |𝑇−𝑇𝑐| and log |Δ𝐿𝐴−Δ𝐿𝐴𝑐 | in whichΔ𝐿𝐴𝑐
is obtained numerically by the equation 𝑇(Δ𝐿𝐴) = 𝑇𝑐. The
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relations between the logarithms of |𝑇−𝑇𝑐| and |Δ𝐿𝐴−Δ𝐿𝐴𝑐 |
are shown in Figure 8

The straight blue line in each panel of Figure 8 is fitted
following the linear equations

log 󵄨󵄨󵄨󵄨𝑇 − 𝑇𝑐󵄨󵄨󵄨󵄨
= {{{{{

19.056 + 3.03594 log 󵄨󵄨󵄨󵄨󵄨Δ𝐿𝐴 − Δ𝐿𝐴𝑐 󵄨󵄨󵄨󵄨󵄨 (𝐶 = 0)
14.25487 + 3.04967 log 󵄨󵄨󵄨󵄨󵄨Δ𝐿𝐴 − Δ𝐿𝐴𝑐 󵄨󵄨󵄨󵄨󵄨 (𝐶 = 14)

(56)

Again, we found a slope around 3; then the critical
exponent of the specific heat capacity is consistentwith that of

the mean field theory of the Van der Waals as in the thermal
and entanglement entropy portraits [47, 50]. Therefore, we
conclude that the two-point correlation function of the Anti-
de-Sitter-Maxwell-Yang-Mills black hole exists in a second-
order phase transition at the critical temperature 𝑇𝑐.

For the grand canonical ensemble, we also plot the
temperature𝑇 in function ofΔ𝐿𝐴 in Figure 9, fromwhich we
can see that thermodynamical behavior is held as the thermal
and the holographic entanglement entropy frameworks.

At this level we remark that radical rupture appears when
we change the thermodynamical ensemble (canonical/grand
canonical). The complete comprehension of such different
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behaviors is not yet completely understood.We believe that it
is typical of such system [41].

4. Conclusion

In this work We have investigated the phase transition of
Anti-de-Sitter black hole in the Einstein-Maxwell-Yang-Mills
gravity considering the canonical and the grand canonical
ensemble. We first studied the phase structure of the thermal
entropy in the (𝑇, 𝑆)-plane for fixed charges and found that
the phase structure agrees with the study made in [47]
when the electrodynamics is linear. The authors consider
the thermodynamics of such black hole in the (𝑃, 𝑉)-plane,
notably the critical behavior and the analogy with the Van der
Waals gas. We also have shown that this behavior disappears
in the grand canonical ensemble where the potentialsΦ𝑄 andΦ𝑐 are kept fixed.

Then, we found that this phase structure of the EMYM-
AdS black hole can be probed by the two-point correlation
function and holographic entanglement entropy in each
thermodynamical ensemble, which reproduce the same ther-
modynamical behavior of the thermal portrait just for a range
of the pressure near the critical one where the equal area law
holds within our numerical accuracy; for broader ranges the
disagreement between Maxwell’s areas becomes significant.

These remarks remain open questions while this approach
provides a new step in our understanding of the black
hole phase structure from the point of view of holography.
Considering the high dimensional solutions or additional
hairs by adding Yang-Mills fields and taking into account
their confinement can be the object of a future publication.
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The topological charge 𝜖 of AdS black hole is introduced by Tian et al. in their papers, where a complete thermodynamic first law is
obtained. In this paper, we investigate a new phase transition related to the topological charge in Einstein-Maxwell theory. Firstly,
we derive the explicit solutions corresponding to the divergence of specific heat𝐶𝜖 and determine the phase transition critical point.
Secondly, the 𝑇 − 𝑟 curve and 𝑇 − 𝑆 curve are investigated and they exhibit an interesting van der Waals system’s behavior. Critical
physical quantities are also obtained which are consistent with those derived from the specific heat analysis.Thirdly, a van derWaals
system’s swallow tail behavior is observed when 𝜖 > 𝜖𝑐 in the 𝐹 − 𝑇 graph. What is more, the analytic phase transition coexistence
lines are obtained by using the Maxwell equal area law and free energy analysis, the results of which are consistent with each other.

1. Introduction

Black hole is a complicated object; there are Hawking radi-
ation, entropy, phase transition, etc. Although black hole’s
microscopic mechanism is still not clear, its thermodynamic
properties can be systematically studied as it is a thermo-
dynamic system which is described by only few physical
quantities, such as mass, charge, angular momentum, tem-
perature, and entropy. Since the establishing of the four laws
of black hole by Bardeen, Carter, and Hawking [1], black
hole thermodynamics has become an exciting and extensively
studied topic. Especially, in the anti-de Sitter space, there
exists Hawking-Page phase transition [2] which is explained
as the confinement/deconfinement phase transition of a
gauge field [3] due to the AdS/CFT duality [4–6] and phase
transition between small and large charged black holes
which is reminiscent to the liquid-gas phase transition of
van der Waals system [7]. This close relation between AdS
black holes and van der Waals liquid-gas system has been
further enhanced by the seminal work of Kubiznak and
Mann in [8] where the cosmological constant is identified as
thermodynamic pressure and the mass of the black hole is
identified as the enthalpy [9].The 𝑃−𝑉 curves and the Gibbs
free energy graphs in this extended phase space are shown

to exhibit an interesting van der Waals systems behavior.
For a review on this topic, one can refer to [10] and the
references therein. However, in this paper, we will treat the
cosmological constant as a constant, leaving the other case
for future investigation [11].

Generally, the thermodynamic quantities are described
on the horizon and they are related by the first law. However,
they can be generalised on surface out of the horizon [12–
14]. This has gotten new attention with the development of
AdS/CFT, since the black hole thermodynamics on holo-
graphic screen has acquired a new and interesting interpreta-
tion as a duality of the correspondence field theory [15]. In [16,
17], a maximally symmetric black hole thermodynamics on
holographic screen are studied in Einstein-Maxwell’s gravity
and Lovelock-Maxwell theory. The author found a topolog-
ical charge naturally arisen in holography. Together with all
other known charges (electric charge,mass, and entropy [18]),
they satisfy an extended first law and the Gibbs-Duhem-like
relation as a completeness. Based on the extended first law
in Einstein-Maxwell’s gravity, we will investigate the black
hole’s possible phase transition phenomenon related to the
topological charge. Actually, we found that the 𝑇 − 𝑆 curves
and the free energy graphs also exhibit an interesting van
der Waals systems behavior as the extended phase space case
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does. This result is unexpected, noting that the cosmological
constant is not treated as thermodynamic pressure here.

This paper is organized as follows. In Section 2 we will
briefly review how the extended first law is obtained in [17]. In
Section 3, by analysing the specific heat, the phase transition
of AdS black hole in 4-dimensional space-time is studied and
the critical point is determined. Then the van der Waals like
behavior of temperature is observed in both 𝑇 − 𝑟 graph and𝑇 − 𝑆 graph in Section 4. In Section 5 we use the Maxwell
equal area law and free energy to have obtained a consistent
phase transition coexistence line. Conclusions are drawn in
Section 6.

2. Review of the Topologically
Charged AdS Black Holes

Ad-dimensional space-time AdS black hole solution with the
extra topological charge in the Einstein-Maxwell theory was
investigated in [16, 17]. The metric reads

𝑑𝑠2 = 𝑑𝑟2𝑓 (𝑟) − 𝑓 (𝑟) 𝑑𝑡2 + 𝑟2𝑑Ω(𝑘)2𝑑−2 , (1)

where

𝑓 (𝑟) = 𝑘 + 𝑟2𝑙2 − 𝑚𝑟𝑑−3 + 𝑞2𝑟2𝑑−6 ,
𝑑Ω(𝑘)2𝑑−2 = 𝑔(𝑘)𝑖𝑗 (𝑥) 𝑑𝑥𝑖𝑑𝑥𝑗,

𝐴 = − √𝑑 − 2𝑞√2 (𝑑 − 3)𝑟𝑑−3𝑑𝑡.
(2)

𝑚, 𝑞, 𝑙 are related to the ADMmass𝑀, electric charge 𝑄, and
cosmological constant Λ by

𝑀 = (𝑑 − 2)Ω(𝑘)𝑑−216𝜋 𝑚,
𝑄 = √2 (𝑑 − 2) (𝑑 − 3)(Ω(𝑘)

𝑑−28𝜋 ) 𝑞,
Λ = −(𝑑 − 1) (𝑑 − 2)2𝑙2 ,

(3)

and Ω(𝑘)
𝑑−2

is the volume of the “unit” sphere, plane, or hyper-
bola and 𝑘 stands for the spatial curvature of the black hole.
Under suitable compactifications for 𝑘 ≤ 0, we assume that
the volume of the unit space is a constant Ω𝑑−2 = Ω(𝑘=1)𝑑−2
hereafter [16, 17].

Following [17], the first law can be obtained. Considering
an equipotential surface 𝑓(𝑟) = 𝑐 with fixed 𝑐, which can be
rewritten as

𝑓 (𝑟, 𝑘, 𝑚, 𝑞) − 𝑐 = 𝑘 + 𝑟2𝑙2 − 𝑚𝑟𝑑−3 + 𝑞2𝑟2𝑑−6 − 𝑐, (4)

defining 𝐾 ≡ 𝑘 − 𝑐, we have
𝑑𝑓 (𝑟, 𝑘,𝑚, 𝑞) = 𝜕𝑓𝜕𝑟 𝑑𝑟 + 𝜕𝑓𝜕𝐾𝑑𝐾 + 𝜕𝑓𝜕𝑚𝑑𝑚 + 𝜕𝑓𝜕𝑞𝑑𝑞

= 0. (5)

Noting

𝜕𝑟𝑓 = 4𝜋𝑇,
𝜕𝐾𝑓 = 1,
𝜕𝑚𝑓 = − 1𝑟𝑑−3 ,
𝜕𝑞𝑓 = 2𝑞𝑟2𝑑−6 ,

(6)

we obtain

𝑑𝑚 = 4𝜋𝑇𝑑 − 2𝑑𝑟𝑑−2 + 𝑟𝑑−3𝑑𝐾 + 2𝑞𝑟𝑑−3𝑑𝑞. (7)

Multiplying both sideswith a constant factor (𝑑−2)Ω𝑑−2/16𝜋,
the above equation becomes

𝑑𝑀 = 𝑇𝑑𝑆 + (𝑑 − 2)Ω𝑑−216𝜋 𝑟𝑑−3𝑑𝐾 + Φ𝑑𝑄, (8)

where 𝑇 = 𝜕𝑟𝑓/4𝜋 is the Unruh-Verlinde temperature [12,
19], 𝑆 = (Ω𝑑−2/4)𝑟𝑑−2 is the Wald-Padmanabhan entropy
[18, 20], and Φ = √(𝑑 − 2)/2(𝑑 − 3)(𝑞/𝑟𝑑−3) is the electric
potential. If we introduce a new “charge” as in [16, 17]

𝜖 = Ω𝑑−2𝐾(𝑑−2)/2, (9)

and denote its conjugate potential as 𝜔 = (1/8𝜋)𝐾(4−𝑑)/2𝑟𝑑−3,
then the generalized first law is

𝑑𝑀 = 𝑇𝑑𝑆 + 𝜔𝑑𝜖 + Φ𝑑𝑄. (10)

This new charge 𝜖 is called the last (lost) charge of a black
hole, and it together with all other known charges satisfies the
Gibbs-Duhem-like relation as a completeness relation [17].

3. A New Phase Transition of AdS Black Hole

From the generalized first law, we see there is a topological
charge 𝜖. In this section, we will investigate the phase transi-
tion of AdS black hole in 𝑑 = 4 dimensional space-time in
canonical ensemble related to the topological charge rather
than the electric charge. To do so, one can observe the behav-
ior of the specific heat at constant topological charge [21].

The Unruh-Verlinde temperature is

𝑇 = 𝑓󸀠 (𝑟)4𝜋 = 14𝜋𝑟 (𝐾 − 𝑞2𝑟2 + 3𝑟2𝑙2 )
= 𝑆𝜖 − 4𝜋2𝑄2 + 12𝑆2/𝑙28𝜋Ω1/22 𝑆3/2

(11)

Setting 𝑙 = 1,𝑄 = 1,Ω2 = 4𝜋 hereafter, the corresponding
specific heat with topological charge 𝜖 fixed can be calculated
as

𝐶𝜖 = 𝑇( 𝜕𝑆𝜕𝑇)
𝜖

= 24𝑆3 + 2𝜖𝑆2 − 8𝜋2𝑆12𝑆2 − 𝜖𝑆 + 12𝜋2
= 2𝜋𝑟2 (12𝜋𝑟4 + 𝜖𝑟2 − 4𝜋)12𝜋𝑟4 − 𝜖𝑟2 + 12𝜋

(12)

From the denominator, we can conclude the following.
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Figure 1: The specific heat 𝐶𝜖 versus 𝑟 for 𝜖 = 30𝜋 > 𝜖𝑐 which has two divergent points, 𝜖 = 24𝜋 = 𝜖𝑐 which has only one divergent point,
and 𝜖 = 10𝜋 < 𝜖𝑐 which has no divergent point.

(1)When 𝜖 > 24𝜋, 𝐶𝜖 has two diverge points at
𝑆± = 𝜖 ± √𝜖2 − (24𝜋)224 , (13)

which corresponds to

𝑟± = √ 𝜖 ± √𝜖2 − (24𝜋)224𝜋 . (14)

(2)When 𝜖 = 𝜖𝑐 = 24𝜋, 𝐶𝜖 has only one diverge point at
𝑆 = 𝑆𝑐 = 𝜋, (15)

which corresponds to

𝑟 = 𝑟𝑐 = 1. (16)

The temperature is 𝑇𝑐 = 2/𝜋.(3)When 𝜖 < 24𝜋, 𝐶𝜖 > 0.
Figure 1 shows the behavior of specific heat for the cases𝜖 > 𝜖𝑐, 𝜖 = 𝜖𝑐, 𝜖 < 𝜖𝑐. For 𝜖 > 𝜖𝑐, there are two divergent

points on the specific heat curve; they divide the region
into three parts: the large radius region, the medium radius
region, and the small radius region. With positive specific
heat, both the large radius region and the small radius region
are thermodynamically stable. While with negative specific
heat, themedium radius region is unstable. So there is a phase
transition taking place between small black hole and large
black hole. For 𝜖 = 𝜖𝑐, the curve of specific heat has only one
divergent point and is always positive which denote that 𝜖𝑐

is the phase transition critical point. While, for 𝜖 < 𝜖𝑐, the
curve of specific heat has no divergent point and is always
positive, which denote that the black holes are stable and no
phase transition will take place.

4. Van der Waals Like
Behavior of Temperature

It was shown in [8] that when the cosmological constant is
identified as thermodynamic pressure [9],𝑃−V graph exhibits
van der Waals like behavior. Since this pioneering work, this
universal property is discovered in various black holes [22–
45]. Here, we find that, for different topological charges,
temperature of AdS black holes also possess the interesting
van der Waals like property.

In 𝑇 − 𝑟 curve, the possible critical point can be obtained
by

(𝜕𝑇𝜕𝑟 )
𝜖=𝜖𝑐,𝑟=𝑟𝑐

= 0,
(𝜕2𝑇𝜕𝑟2 )

𝜖=𝜖𝑐,𝑟=𝑟𝑐

= 0. (17)

Solving the above equations, one can obtain

𝜖𝑐 = 24𝜋,
𝑟𝑐 = 1, (18)
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Figure 2: 𝑇 versus 𝑟 (left graph) and 𝑇 versus 𝑆 (right graph) for different topological charge 𝜖. There is an oscillating behavior when 𝜖 > 𝜖𝑐 =24𝜋 for both 𝑇(𝑟) and 𝑇(𝑆) which is reminiscent of the van der Waals phase transition behavior.

which are exactly the same critical point we obtained by
analysing the divergent behavior of specific heat.

In 𝑇 − 𝑆 curve, the possible critical point can be obtained
by

(𝜕𝑇𝜕𝑆 )
𝜖=𝜖𝑐,𝑆=𝑆𝑐

= 0,
(𝜕2𝑇𝜕𝑆2 )

𝜖=𝜖𝑐,𝑆=𝑆𝑐

= 0. (19)

Solving the above equations, one can obtain

𝜖𝑐 = 24𝜋,
𝑆𝑐 = 𝜋, (20)

which are also exactly the same critical point we obtained
by analysing the divergent behavior of specific heat. As the
entropy 𝑆 is proportional to 𝑟2, the 𝑇 − 𝑟 behavior will be
similar to the 𝑇 − 𝑆 behavior. However 𝑟 and 𝑆 are different
physical quantities, so we show the𝑇−𝑟 graph and𝑇−𝑆 graph
in the same figure to demonstrate their minor differences.

Figure 2 shows the temperature behavior as a function
of 𝑟 or 𝑆 for different values of topological charge 𝜖. When𝜖 > 𝜖𝑐, the curve can be divided into three branches. The
slopes of the large radius branch and the small radius branch
are both positive, while the slope of the medium radius
branch is negative. When 𝜖 < 𝜖𝑐, the temperature increases
monotonically as 𝑟 or 𝑆 increases. This phenomenon is
analogous to that of the van der Waals liquid-gas system.

From above, one can find that, by analysing the specific
heat curves, the 𝑇−𝑟 curves, and the 𝑇−𝑆 curves, the critical
points are obtained and they are consistent with each other. In
the above section, we have shown that both the large radius
branch and the small radius branch are stable with positive
specific heat, while the medium radius branch is unstable
with negative specific heat. As argued in [25], one can use
the Maxwell equal area law to remove the unstable branch in𝑇−𝑆 curve with a bar vertical to the temperature axis 𝑇 = 𝑇∗
and obtain the phase transition point (𝑇∗, 𝜖). In the next
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Figure 3: 𝑇 versus 𝑆 at 𝜖 = 30𝜋 > 𝜖𝑐. The dashed line 𝑇 = 0.7465
equally separates the oscillating part. According to the Maxwell’s
equal area law, the phase transition point is (𝑇 = 0.7465, 𝜖 = 30𝜋).

section, we will use the Maxwell equal area law and analyse
the free energy to determine the phase transition coexistence
line.

5. Maxwell Equal Area Law, Free Energy,
and Phase Diagram

In Figure 3, for fixed topological charge 𝜖 > 𝜖𝑐, temperature𝑇(𝑆, 𝜖) curve shows an oscillating behavior which denotes a
phase transition. The oscillating part needs to be replaced by
an isobar (denote as 𝑇∗) such that the areas above and below
it are equal to each other. This treatment is called Maxwell’s
equal area law. In what follows, we will analytically determine
this isobar 𝑇∗ for fixed 𝜖 [25, 26].

Maxwell’s equal area law is manifested as

𝑇∗ (𝑆2 − 𝑆1) = ∫𝑆2
𝑆1

𝑇 (𝑆, 𝜖) 𝑑𝑆 = 18𝜋3/2 (4𝑆3/22 + 𝜖𝑆1/22
+ 4𝜋2𝑆−1/22 − 4𝑆3/21 − 𝜖𝑆1/21 + 4𝜋2𝑆−1/21 ) . (21)
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At points (𝑆1, 𝑇∗), (𝑆2, 𝑇∗), we have two equations:
𝑇∗ = 𝑇 (𝑆1, 𝜖)

= 116𝜋3/2 (12𝑆1/21 + 𝜖𝑆−1/21 − 4𝜋2𝑆−3/21 ) ,

𝑇∗ = 𝑇 (𝑆2, 𝜖)
= 116𝜋3/2 (12𝑆1/22 + 𝜖𝑆−1/22 − 4𝜋2𝑆−3/22 ) .

(22)

The above three equations can be solved as

𝑆1 = 𝜖 − 16𝜋 − √(𝜖 − 16𝜋)2 − 64𝜋28 ,
𝑆2 = 𝜖 − 16𝜋 + √(𝜖 − 16𝜋)2 − 64𝜋28 ,
𝑇∗ = 𝜖2 − 𝜖√𝜖2 − 32𝜋𝜖 + 192𝜋2 − 28𝜋𝜖 + 12𝜋√𝜖2 − 32𝜋𝜖 + 192𝜋2 + 160𝜋2√2𝜋3/2 (𝜖 − 16𝜋 − √𝜖2 − 32𝜋𝜖 + 192𝜋2)3/2 .

(23)

The last equation 𝑇∗(𝜖) is the phase transition curve we are
looking for.

To double-check the phase transition curve obtained by
Maxwell’s equal area law, we will probe the behavior of free
energy, which is derived as

𝐹 = 𝑀 − 𝑇𝑆 = 12𝜋2 + 𝜖𝑆 − 4𝑆216𝜋3/2√𝑆 . (24)

Since temperature is also a function of 𝑆 and 𝜖, we can plot 𝐹
versus𝑇 in Figure 4.When 𝜖 > 24𝜋 = 𝜖𝑐, 𝐹−𝑇 curve shows a
swallow tail behavior which is reminiscent of 𝐺−𝑇 curve for
the van der Waals system. In this sense, the free energy here
should be regarded as Gibbs free energy, and the inner energy𝑀 should be regarded as enthalpy. Anyway, the cross point is
determined by the equations below.

𝑇∗ = 𝑇 (𝑆1, 𝜖) = 𝑇 (𝑆2, 𝜖) ,

𝐹∗ = 𝐹 (𝑆1, 𝜖) = 𝐹 (𝑆2, 𝜖) .
(25)

The right side equations can be rewritten as

116𝜋3/2 (12𝑆1/21 + 𝜖𝑆−1/21 − 4𝜋2𝑆−3/21 )
= 116𝜋3/2 (12𝑆1/22 + 𝜖𝑆−1/22 − 4𝜋2𝑆−3/22 ) ,
116𝜋3/2 (12𝜋2𝑆−1/21 + 𝜖𝑆1/21 − 4𝑆3/21 )
= 116𝜋3/2 (12𝜋2𝑆−1/22 + 𝜖𝑆1/22 − 4𝑆3/22 ) .

(26)

These equations can be solved as

𝑆1 = 𝜖 − 16𝜋 − √(𝜖 − 16𝜋)2 − 64𝜋28 ,
𝑆2 = 𝜖 − 16𝜋 + √(𝜖 − 16𝜋)2 − 64𝜋28 ,
𝐹∗ = 𝜖 − √𝜖2 − 32𝜋𝜖 + 192𝜋2 − 8𝜋2√2𝜋√𝜖 − 16𝜋 − √𝜖2 − 32𝜋𝜖 + 192𝜋2 ,
𝑇∗ = 𝜖2 − 𝜖√𝜖2 − 32𝜋𝜖 + 192𝜋2 − 28𝜋𝜖 + 12𝜋√𝜖2 − 32𝜋𝜖 + 192𝜋2 + 160𝜋2√2𝜋3/2 (𝜖 − 16𝜋 − √𝜖2 − 32𝜋𝜖 + 192𝜋2)3/2 .

(27)
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Figure 5: The phase transition coexistence line 𝑇∗ − 𝜖 for fixed
electric charge 𝑄 = 1 and AdS radius 𝑙 = 1.

They are consistent with the results obtained by Maxwell’s
equal area law.

Finally, we can show the phase transition coexistence line
in Figure 5 for fixed electric charge 𝑄 and AdS radius 𝑙. This
kind of phase transition is special, as the critical point is at the
small value of (𝑇∗, 𝜖) in phase diagram.

6. Conclusion

In this paper, the phase transition phenomenon of Reissner-
Nordstr ̈𝑜mAdS black holes relating to the topological charge𝜖 in canonical ensemble in 4-dimensional space-time are
studied. As we are interested in the effects of the topological
charge, so the electric charge is fixed 𝑄 = 1. Firstly, the black
hole’s specific heat 𝐶𝜖 is calculated and the corresponding
divergence solutions are derived. The two solutions merge
into one denoting the critical point where 𝜖𝑐 = 24𝜋, 𝑟𝑐 = 1.
When 𝜖 > 𝜖𝑐, the curve of specific heat has two divergent
points and is divided into three regions. The specific heat
is positive for both the large radius region and the small
radius region which are thermodynamically stable, while it
is negative for the medium radius region which is unstable.

When 𝜖 < 𝜖𝑐, the specific heat is always positive implying the
black holes are stable and no phase transition will take place.

Secondly, the behavior of temperature in both the 𝑇 − 𝑟
graph and 𝑇− 𝑆 graph is studied. They exhibit the interesting
van de Waals gas-liquid system’s behavior. The critical points
correspond to the inflection points of 𝑇 − 𝑟 curve and 𝑇 − 𝑆
curve, and they are consistent with that derived from the
specific heat analysis. When 𝜖 > 𝜖𝑐, the curves can be
divided into three regions. The slopes of the large radius
regions and the small radius regions are positive while those
of the medium radius region are negative. When 𝜖 < 𝜖𝑐, the
temperature increase monotonically.

Thirdly, a van der Waals system’s swallow tail behavior is
observed when 𝜖 > 𝜖𝑐 in the 𝐹 − 𝑇 graph. What is more,
by using the Maxwell’s equal area law and analysing the free
energy, the analytic phase transition coexistence lines are
obtained, and they are consistent with each other.

From the above detailed study, one can find that this
van der Waals like system exhibits phase transition of special
property. The phase transition take place at large topological
charge 𝜖 > 𝜖𝑐 and high temperature which can be clearly
seen from the phase transition coexistence line in Figure 5.
Whether this phase transition property is universal in other
gravity theories (such as the Lovelock, Gauss-Bonnet theory)
and different dimensional space-time is unknown.

There are some other interesting topics that are worth
investigating, such as the holographic duality in the field
theory of this kind of phase transition; the cases of space-
time dimension 𝑑 > 4, as the topological charge’s conjugate
potential 𝜔 = (1/8𝜋)𝐾(4−𝑑)/2𝑟𝑑−3 decayed to 1/8𝜋𝑟 which is
irrelevant to 𝐾 at 𝑑 = 4 dimensional space-time, the black
hole thermodynamics in the extended phase space where
the cosmological constant is identified as thermodynamic
pressure and the spatial curvature of black hole is treated as
topological charge.
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A Hamiltonian formulation of General Relativity within the context of the Nexus Paradigm of quantum gravity is presented. We
show that the Ricci flow in a compact matter free manifold serves as the Hamiltonian density of the vacuum as well as a time
evolution operator for the vacuum energy density. �e metric tensor of GR is expressed in terms of the Bloch energy eigenstate
functions of the quantum vacuum allowing an interpretation of GR in terms of the fundamental concepts of quantum mechanics.

1. Introduction

�e gravitational field which is elegantly described by Ein-
stein’s field equations has so far eluded a quantum descrip-
tion. Much effort has been placed into formulating General
Relativity (GR) in terms of Hamilton’s equations since a
Hamiltonian formulation of a classical field theory leads
naturally to its quantization. �e earliest such attempt is the
ADM formalism [1], named for its authors Richard Arnowitt,
Stanley Deser, and Charles W. Misner first published in
1959. �is formalism starts from the assumption that space
is foliated into a family of time slices Σ𝑡, labeled by their
time coordinate t and with space coordinates on each slice
given by 𝑥𝑘. �e dynamic variables of this theory are then
taken to be the metric tensor of three-dimensional spatial
slices 𝛾𝑖𝑗(𝑡.𝑥𝑘) and their conjugate momenta 𝜋𝑖𝑗(𝑡.𝑥𝑘). Using
these variables it is possible to define a Hamiltonian and
thereby write the equations of motion for GR in Hamilton's
form. �e time slices are then welded together using four
Lagrange multipliers and components of a shi
 vector field.
An extensive review of this formalism can be found in the
literature notably in [2–5].

�eADM formalismwas first applied by BryceDeWitt in
1967 [6] to quantize gravitywhich resulted in theWheeler–De
Witt equation of quantum gravity. It is a functional differen-
tial equation in which the three-dimensional spatial metrics
have the form of an operator acting on a wave function.
�is wave function contains all of the information about

the geometry and matter content of the universe of each
time slice. However, the Hamiltonian no longer determines
the evolution of the system and leads to the problem of
timelessness [7, 8]. Hawking rightly points out that the very
act of splitting space-time into space and time destroys the
spirit of GR (general covariance) and therefore not much
can be gained from this approach to quantization of gravity.
Perturbative covariant approaches to the problemof quantum
gravity have an inherent weakness in that they depend on
a fine classical background. It is therefore difficult to obtain
a self-consistent quantum theory of gravity with a classical
background space-time. Steven Carlip [9, 10] and Claus
Kiefer [11, 12] have made excellent and extensive reviews of
the problems faced by current approaches to the problem
of quantum gravity. Carlip [9] in particular singles out the
lack of a firm conceptual understanding of the foundational
concepts of quantum gravity as the source of much of the
difficulty in understanding quantum gravity. �ese deep
conceptual issues result in technical problems in the attempt
to develop a consistent quantum theory of gravity.

In this paper we report a successful covariant canonical
quantization of the gravitational field which preserves the
success of GR while simultaneously explaining Dark Energy
(DE) and Dark Matter (DM). �is approach to quantization
takes place in 4-space of metric signature (-1,1,1,1) in which
the quanta are excitations of the quantum vacuum called
Nexus gravitons. �ough the Nexus Paradigm has been
introduced in the following papers [13–15], the aim of this
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study is to explicitly express the Hamiltonian formulation
of the theory using the Bloch eigenstate functions of the
quantum vacuum.�ese wave functions contain information
about the energy state of the quantum vacuum which in turn
dictates the geometry of space-time.

2. Methods

Our first step towards a covariant canonical quantization
begins with defining a quantized space-time and its quanta.
We thenmodify Einstein’s vacuum equations to be consistent
with the quantized space-time followed by the defining of
Hamilton’s equations of the quantized space-time. �is step
is then followed by the Poisson brackets which provide the
bridge between classical and quantum mechanics (QM). �e
covariant canonical quantization procedure is carried out
within the context of theNexus Paradigmof quantumgravity.

2.1. Quantization of 4-Space and the Nexus Graviton. �epri-
mary objective of physics is the study of functional relation-
ships amongst measurable physical quantities. In particular,
a unifying paradigm of physical phenomena should reveal
the functional relationship between the fundamental physical
quantities of 4-space and 4-momentum. Currently GR and
QM offer the best predictions of the results of measurement
of physical phenomena in their respective domains using
different languages. GR describes gravitation in the language
of geometry and thus far, it has been difficult to apply
the the language of wave functions used in QM to give
it a QM description. �e problem of quantum gravity is
therefore to interpret GR in terms of the wavefunctions of
QM.Translating the language ofmeasurement ofGR into that
of QM becomes the primary objective of this present attempt
to resolve the problem of quantum gravity.

Measurements in GR take place in a local patch of a
Reimannian manifold. �is local patch can be considered
as a flat Minkowski space. �e line element in Minkowski
space which is the subject of measurement can be computed
through the inner product of the local coordinates as

Δ𝑥𝜇Δ𝑥𝜇 = Δ𝑥2 + Δ𝑦2 + Δ𝑧2 − 𝑐2Δ𝑡2= (𝐴Δ𝑥 + 𝐵Δ𝑦 + 𝐶Δ𝑧 + 𝑖𝐷𝑐Δ𝑡)
⋅ (𝐴Δ𝑥 + 𝐵Δ𝑦 + 𝐶Δ𝑧 + 𝑖𝐷𝑐Δ𝑡)

(1)

On multiplying the right hand side we see that to get all the
cross terms such as Δ𝑥Δ𝑦 to cancel out we must assume

𝐴𝐵 + 𝐵𝐴 = 0
𝐴2 = 𝐵2 = ⋅ ⋅ ⋅ = 1 (2)

�e above conditions therefore imply that the coefficients(𝐴, 𝐵, 𝐶,𝐷) generate a Clifford algebra and therefore must
be matrices. We rewrite these coefficients in the 4-tuple
form as (𝛾1, 𝛾2, 𝛾3, 𝛾0) which may be summarized using the
Minkowski metric on space-time as follows:

{𝛾𝜇, 𝛾]} = 2𝜂𝜇] (3)
�e gammas are of course the Dirac matrices. �us in order
to satisfy (1) we can express a displacement 4-vector as

Δ𝑥𝜇 = 𝑎𝛾𝜇 (4)

where 𝑎 is the amplitude of a displacement vector in
Minkowski space. If we consider the Hubble diameter as
the maximum dimension of the local patch of space then𝑎 = 𝑟𝐻𝑆 where 𝑟𝐻𝑆 is the Hubble radius. �is choice of a
maximum amplitude is justified from the fact that we cannot
physically interact with objects beyond the Hubble 4-radius.
It is important to note that the line element is the square
of the amplitude of the displacement 4-vector. �us if we
are to express GR in terms of the language of QM we must
make the radical assumption that the displacement vectors
in Minkowski space are pulses of 4-space which can be
expressed in terms of Fourier functions as follows:

Δ𝑥𝜇𝑛 = 2𝑟𝐻𝑆𝑛𝜋 𝛾𝜇 ∫∞
−∞

sinc (𝑘𝑥) 𝑒𝑖𝑘𝑥𝑑𝑘
= 𝛾𝜇 ∫∞

−∞
𝑎𝑛𝑘𝜑(𝑛𝑘𝑥)𝑑𝑘

(5)

Where
2𝑟𝐻𝑆𝑛𝜋 = 𝑘=+∞∑

𝑘=−∞

𝑎𝑛𝑘 (6)

Here 𝜑(𝑛𝑘𝑥) = sinc(𝑘𝑥)𝑒𝑖𝑘𝑥 are Bloch energy eigenstate
functions. �e Bloch functions can only allow the four wave
vector to assume the following quantized values:

𝑘𝜇 = 𝑛𝜋𝑟𝜇𝐻𝑆 𝑛 = ±1, ±2 . . . 1060 (7)

�e minimum 4-radius in Minkowski space is the Planck 4-
length since it is impossible to measure this length without
forming a black hole. �e 1060 states arise from the ratio of
Hubble 4-radius to the Planck 4-length. �e displacement 4-
vectors in each eigenstate of space-time generate an infinite
Bravais 4-lattice. Also, condition (7) transforms (5) to

Δ𝑥𝜇𝑛 = 𝛾𝜇 ∫𝑛𝑘1
−𝑛𝑘1

𝑎𝑛𝑘𝜑(𝑛,𝑘,𝑥)𝑑𝑘 (8)

�e second assumption wemake is that each displacement 4-
vector is associatedwith a conjugate pulse of four-momentum
which can also be expressed as a Fourier integral

Δ𝑝(𝑛)𝜇 = 2𝑛𝑝1𝜋 𝛾𝜇 ∫𝑛𝑘1
−𝑛𝑘1

𝜑(𝑛,𝑘,𝑥)𝑑𝑘
= 𝛾𝜇 ∫𝑛𝑘1

−𝑛𝑘1

𝑐𝑛𝑘𝜑(𝑛,𝑘,𝑥)𝑑𝑘
(9)

where 𝑝(1)𝜇 is the four-momentum of the ground state.
A displacement 4-vector and its conjugate 4-momentum

satisfy the Heisenberg uncertainty relation

Δ𝑥𝑛Δ𝑝𝑛 ≥ ℎ2 (10)

�e Uncertainty Principle plays the important role of gener-
ating a vector bundle, out of the total uncertainty space E of
trivial displacement 4-vectors from which a closed compact
manifold X is formed, i.e., (𝜋 : 𝐸 󳨀→ 𝑋). Each point on the
manifold is associated with a vector which is along a normal
to the manifold.
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�ewave packet described by (8) is essentially a particle of
four-space. �e spin of this particle can be determined from
the fact that each component of the four-displacement vector
transforms according to the law

Δ𝑥󸀠𝜇𝑛 = exp(18𝜔𝜇𝜐 [𝛾𝜇, 𝛾𝜐])Δ𝑥𝜇𝑛 (11)

where𝜔𝜇𝜐 is an antisymmetric 4x4matrix parameterizing the
transformation.

�erefore, each component of the 4-vector has a spin half.
A summation of all the four half spins yields a total spin of
2. We give the name the Nexus graviton to this particle of 4-
space since the primary objective of quantumgravity is to find
the nexus between the concepts of GR and QM.

From (7) the norm squared of the 4-momentum of the
n-th state graviton is

(ℎ)2 𝑘𝜇𝑘𝜇 = 𝐸2𝑛𝑐2 −
3 (𝑛ℎ𝐻0)2𝑐2 = 0 (12)

where H0 is the Hubble constant (2.2 x 10
−18 s−1) and can be

expressed in terms of the cosmological constant, Λ, as
Λ 𝑛 = 𝐸2𝑛(ℎ𝑐)2 =

3𝑘2𝑛(2𝜋)2 = 𝑛2Λ (13)

We infer from (13) that the Nexus graviton (or displacement
4-vector) in the n-th quantum state forms a trivial vector
bundle via the Uncertainty Principle which generates a
compact Riemannian manifold of positive Ricci curvature
that can be expressed in the form

𝐺(𝑛𝑘)𝜇𝜐 = 𝑛2Λ𝑔(𝑛,𝑘)𝜇𝜐 (14)

where 𝐺(𝑛𝑘)𝜇𝜐 is the Einstein tensor of space-time in the
n-th state. Equation (14) depicts a contracting geodesic
ball and as explained in [13–15] this is DM which is an
intrinsic compactification of the elements space-time in the
n-th quantum state. �is compactification is a result of the
superposition of several plane waves as described by (8) to
form an increasingly localized wave packet as more waves are
added. Similary the converse is also true.�e loss of harmonic
waves expands the elements of space-time which gives rise to
DE. �us the DE arises from the emission of a ground state
graviton such that (14) becomes

𝐺(𝑛𝑘)𝜇𝜐 = (𝑛2 − 1)Λ𝑔(𝑛,𝑘)𝜇𝜐 (15)

�ese are Einstein’s vacuum field equations in the quantized
space-time. If the graviton field is perturbed by the presence
of baryonic matter then (15) becomes

𝐺(𝑛𝑘)𝜇𝜐 = 𝑘𝑇𝜇] + (𝑛2 − 1)Λ𝑔(𝑛,𝑘)𝜇𝜐
= 𝑘𝑇𝜇] + (𝑛2 − 1) 𝑘𝜌𝐷𝐸𝑔(𝑛,𝑘)𝜇𝜐 (16)

where 𝜌𝐷𝐸 is the density of DE.
From [14] the static solution to (14) for a spherically

symmetric Nexus graviton is computed as

𝑑𝑠2 = −(1 − ( 2𝑛2 )) 𝑐2𝑑𝑡2 + (1 − ( 2𝑛2 ))
−1 𝑑𝑟2

+ 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑2) (17)

�ere are no singularities in (17). At high energies, character-
ized by microcosmic scale wavelengths of the Nexus graviton
and high values of n, space-time is flat and highly compact.
�is implies a continuous length contraction of the local
coordinates via the addition of more waves resulting in an
increase in localization. Also, from aworld line perspective of
a test particle, it implies that the deviation from a rectilinear
trajectory due to uncertainities in its location in 4-space is
small. �us at microcosmic scales, in the realm of subatomic
particles space-time is extremely flat. �e world line begins
to substantially deviate from a well defined rectilinear path at
low energies as the uncertainities in its location are increased.
�at is, at low values of n, the world line becomes degenerate
allowing amultiplicity of trajectorieswhich inGRare averaged
by the Ricci curvature tensor. �us gravity is a low energy
phenomenonwhich vanishes asymptotically at high energies.

�e gravitational effects of the Nexus graviton manifest
at large scales and for galaxies, these effects begin to manifest
when the density of DE is equal to the density of baryonic
matter as described by (16) or when the acceleration due to
baryonic matter is equal and opposite to the acceleration due
to the emission of the ground state graviton as described in
[14]. A solution to eqn (16) from [14] in the weak field at
galactic scale radii is

𝑑2𝑟𝑑𝑡2 = 𝐺𝑀(𝑟)𝑟2 + 𝐻0V𝑛 − 𝐻0𝑐 (18)

Here c is the speed of light.
�e first term on the right is the Newtonian gravitational

acceleration, the second term is a radial acceleration due to
space-time in the n-th quantum state, and the final term is
acceleration due to DE.�e dynamics becomes strongly non-
Newtonian when

𝐺𝑀(𝑟)𝑟2 = 𝐻0𝑐 = V2𝑛𝑟 (19)

�ese are conditions in which the acceleration due to bary-
onic matter is annulled by that due to the DE. Under such
conditions

𝑟 = V2𝑛𝐻0𝑐 (20)

Substituting for r in (19) yields
V4𝑛 = 𝐺𝑀(𝑟)𝐻0𝑐 (21)

�is is the Baryonic Tully–Fisher relation. �e conditions
permitting the DE to cancel out the acceleration due to
baryonic matter leave quantum gravity as the unique source
of gravity. �us condition (19) reduces (18) to

𝑑2𝑟𝑑𝑡2 = 𝑑V𝑛𝑑𝑡 = 𝐻0V𝑛 (22)

from which we obtain the following equations of galactic and
cosmic evolution:

𝑟𝑛 = 1𝐻0 𝑒
(𝐻0𝑡) (𝐺𝑀 (𝑟)𝐻0𝑐)1/4 (23)
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V𝑛 = 𝑒(𝐻0𝑡) (𝐺𝑀 (𝑟)𝐻0𝑐)1/4 (24)

𝑎𝑛 = 𝐻0𝑒(𝐻0𝑡) (𝐺𝑀 (𝑟)𝐻0𝑐)1/4 (25)

Here 𝑟𝑛 is the radius of curvature of space-time in the n-
th quantum state (which is also the radius of the n-th state
nexus graviton), V𝑛 the radial velocity of objects embedded in
that space-time, and 𝑎𝑛 their radial acceleration within it.�e
amplification of the radius of curvature with time explains
the existence of ultra-diffuse galaxies and the spiral shapes
of most galaxies. �e increase in radial velocity with time
explains why early type galaxies composed of population II
stars are fast rotators. Equation (25) explains late time cosmic
acceleration which began once condition (19) was satisfied or
equivalently from (16), when the density of baryonic matter
was at the same value as that of DE. �us condition (19) also
explains the Coincidence Problem.

2.2. Canonical Transformations in the Nexus Paradigm. In
classical mechanics, a system is described by n indepen-
dent coordinates (𝑞1, 𝑞2, . . . 𝑞𝑛) together with their conjugate
momenta (𝑝1, 𝑝2, . . . 𝑝𝑛). In the Nexus Paradigm, the labeling𝑞𝑛 refers to a creation of a Nexus graviton in the n-th
quantum state associated with a conjugate momentum 𝑝𝑛.
�e Hamiltonian equation

̇𝑞𝑛 = 𝜕𝐻𝜕𝑝𝑛 (26)

refers to the rate of expansion or contraction of space-time
generated by the addition or emission of harmonic waves to
the Nexus graviton and

𝑝̇𝑛 = −𝜕𝐻𝜕𝑞𝑛 (27)

refers to the force field associated with the addition or
emission of harmonic waves to the Nexus graviton. It is
important to note that this force field generates an isotropic
expansion or contraction of space-timewithin the spatiotem-
poral dimensions of the graviton.

We can also rewrite the Hamiltonian equations in terms
of Poisson brackets which are invariant under canonical
transformations as ̇𝑞𝑛 = {𝑞𝑛, 𝐻} ,𝑝̇𝑛 = {𝑝𝑛, 𝐻} (28)

�ePoisson brackets provide the bridge between classical and
QM and in QM, these brackets are written aṡ̂𝑞𝑛 = [𝑞𝑛, 𝐻̂] ,̇̂𝑝𝑛 = [𝑝𝑛, 𝐻̂] (29)

and obey the following commutation rules
[𝑞𝑛, 𝑞𝑠] = 0,[𝑝𝑛, 𝑝𝑠] = 0,[𝑞𝑛, 𝑝𝑠] = 𝛿𝑛𝑠

(30)

2.3. �e Hamiltonian Formulation for the Quantum Vacuum.
�e Nexus graviton is a pulse of 4-space which can only

expand or contract and does not execute translationalmotion
implying that the Hamiltonian density of the system is equal
to the Lagrangian density. 𝐻 = 𝐿 (31)

GR is a metric field in which the energy density in four-
space determines its value. Since the Bloch energy eigenstate
functions determine the energy of space-time, we must
seek to express the metric in terms of the Bloch wave
functions. To this end we shall express the eigenstate four-
space components of the Nexus graviton in the k-th band as

Δ𝑥𝜇
𝑛,𝑘

= 𝑧𝜇
𝑛,𝑘

= 𝑎𝑛𝑘𝛾𝜇sinc (𝑘𝑥) 𝑒𝑖𝑘𝑥 (32)

such that an infintesimal four-radius within the k-th band is
computed as

𝑑𝑟𝑛,𝑘 = 𝜕𝑧𝜇
𝑛,𝑘𝜕𝑘𝜇 𝑑𝑘𝜇 = 𝑖𝑥𝑎𝑛𝑘𝛾𝜇sinc (𝑘𝑥) 𝑒𝑖𝑘𝑥𝑑𝑘 (33)

In (33) the first-order derivative of the periodic sinc function
is equal to zero for all integral values of n. �e interval within
the band is then computed as

𝑑𝑠2 = 𝑑𝑟2𝑛,𝑘 = 𝜕𝑧𝜇
𝑛,𝑘𝜕𝑘𝜇
𝜕𝑧𝜇
𝑛,𝑘𝜕𝑘] 𝑑𝑘𝜇𝑑𝑘]= 𝛼𝛽𝛾𝜇𝛾]𝜑(𝑛,𝑘,𝑥)𝜑(𝑛,𝑘,𝑥)𝑑𝑘𝜇𝑑𝑘]

(34)

Here the interval is described in terms of the reciprocal lattice
with 𝛼 = 𝑖𝑥𝜇𝑎𝑛𝑘 and 𝛽 = 𝑖𝑥]𝑎𝑛𝑘. �e metric tensor of
four-space in the k-th band is therefore associated with the
Bloch energy eigenstate functions of the quantum vacuum as
follows: 𝑔𝜇]

(𝑛,𝑘)
= 𝛾𝜇𝛾]𝜑(𝑛,𝑘,𝑥)𝜑(𝑛,𝑘,𝑥) = 𝜂𝜇]𝜑(𝑛,𝑘,𝑥)𝜑(𝑛,𝑘,𝑥) (35)

Equation (35) translates the geometric language of GR into
the wave function language of QM.

We initiate the translation procedure of GR into QM by
first finding the Lagrange density for the quantized vacuum
from (15) which following Einstein and Hilbert is found to be

𝐿𝐸𝐻 = 𝑘 (𝑅 − 2 (𝑛2 − 1)Λ) (36)

Given that the Einstein tensor in a compact manifold is equal
to the Ricci flow

−𝜕𝑡𝑔𝜇] = Δ𝑔𝜇] = 𝑅𝜇] − 12𝑅𝑔𝜇] = 𝐺𝜇] (37)

therefore the equations of motion of the quantum vacuum
obtained from (36) yield the following quantized field equa-
tions: − 𝜕𝑡 (𝛾𝜇𝜑(𝑛,𝑘,𝑥)𝛾]𝜑(𝑛.𝑘.𝑥))

= (𝑛2 − 1)Λ𝛾𝜇𝜑(𝑛,𝑘,𝑥)𝛾]𝜑(𝑛,𝑘,𝑥) (38)

which can be written as𝜕𝑡 (𝛾𝜇𝜑(𝑛−1,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑘,𝑥))
= −𝑖2
(2𝜋)2∇𝜇∇]𝛾𝜇𝜑(𝑛−1,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑘,𝑥)

= 14𝜋2∇𝜇∇]𝛾𝜇𝜑(𝑛−1,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑘,𝑥)
(39)

where

𝜑(𝑛−1,𝑘,𝑥) = sinc ((𝑛 − 1) 𝑘1𝑥) 𝑒𝑖(𝑛−1)𝑘1𝑥 (40)
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𝜑(𝑛+1,𝑘,𝑥) = sinc ((𝑛 + 1) 𝑘1𝑥) 𝑒𝑖(𝑛+1)𝑘1𝑥 (41)

3𝑘21(2𝜋)2 = Λ (42)

For large values of n the Bloch functions statisfy the condition
𝜑(𝑛−1,𝑘,𝑥) ≈ 𝜑(𝑛,𝑘,𝑥) ≈ 𝜑(𝑛+1,𝑘,𝑥) (43)

�equantumvacuumcan therefore be interpreted as a system
in which there are a constant annihilation and creation of
quanta as implied by (40) and (41) which causes the Nexus
graviton to either expand or contract.

2.4. �e Hamiltonian Formulation in the Presence of Matter
Fields. We now seek to introduce matter fields into the
quantum vacuum. If we compare the quantized metric of
(17) describing the gravity within a Nexus graviton with
the Schwarzschild metric describing the gravitational field
around baryonic matter, we notice that we can describe the
gravitational field around baryonic matter in terms of the
quantum state of space-time through the relation

2𝑛2 = 2𝐺𝑀𝑐2𝑟 (44)

�is yields a relationship between the quantum state of space-
time and the amount of baryonic matter embedded within it
as follows:

𝑛2 = 𝑐2𝑟𝐺𝑀 = 𝑐2
V2

(45)

Equation (45) reveals a family of concentric stable circular
orbits 𝑟𝑛 = 𝑛2𝐺𝑀/𝑐2 with corresponding orbital speeds of
V𝑛 = 𝑐/𝑛. �us in the Nexus Paradigm, unlike in GR, the
innermost stable circular orbit ocurrs at 𝑛 = 1 or at half
the Schwarzchild radius which implies that the event horizon
predicted by the Nexus Paradigm is half the size predicted
in GR. Also (45) reveals how the Nexus graviton in the n-
th quantum state imitates DM if M is considered as the
apparent mass of the DM.�rough this comparision, we can
also deduce that the deflection of light through gravitational
lensing by space-time in the n-th quantum state is

𝛼 = 4𝑛2 (46)

�us gravitational lensing can be used to constrain the value
of the quantum state n of space-time within a lensing system.

Having obtained the relationship between the quantum
state of space-time and the amount of baryonic matter
embedded within it, the result of (45) is then added to (39)
to yield the time evolution of the quantum vacuum in the
presence of baryonic matter as

𝜕𝑡 (𝛾𝜇𝜑(𝑛−1,𝑛,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑛,𝑘,𝑥))
= 14𝜋2∇𝜇∇]𝛾𝜇𝜑(𝑛−1,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑘,𝑥)− 𝑛2Λ𝛾𝜇𝜑(𝑛,𝑘.𝑥)𝛾]𝜑(𝑛,𝑘,𝑥)

(47)

�us the time evolution of the quantum vacuum in the
presence of matter resembles thermal flow in the presence of

a heat sink.�e second term on the R.H.S. of (47) is an 8-cell
or 4-cube that operates as a sinc filter with a four-wave cut-off
of

𝑘𝑐 = 𝑛𝑘1 = 2𝜋√Λ3 ∙ 𝑐2𝑟𝐺𝑀 (48)

�e filtration of high frequencies from the vacuum lowers
the quantum vacuum state and generates a gravitational field
in much the same way as the Casimir Effect is generated.
�e physical process of filtration occurs as follows: A 4-cube
with baryonic matter embedded with in it acquires inertia.
�e inertia gives the cell inductive impedance and becomes
less reponsive to high frequency vibrations of the quantum
vacuum. �us the heavier the cell, the lower the cut-off fre-
quency. Equation (48) shows that when the radius of the cell
is equal to half the Schwarzschild radius, the only permited
frequency is that of the ground state.�us the inside of a black
hole is in the ground state having a negative metric signature.

We now introduce a test particle of mass m, into the
quantum vacuumperturbed bymatter fields.�e particle will
flow along with the Ricci flow and the Hamiltonian of the
system becomes

𝐻̂ (𝛾𝜇𝜑(𝑛−1,𝑛,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑛,𝑘,𝑥))
= P̂𝜇P̂]2𝑚 (𝛾𝜇𝜑(𝑛−1,𝑘,𝑥)𝛾]𝜑( 𝑛+1,𝑘,𝑥))
− 𝑉 (𝛾𝜇𝜑(𝑛,𝑘,𝑥)𝛾]𝜑(𝑛,𝑘,𝑥))

(49)

Here

𝑉 = 𝑛2 ℎ22𝑚Λ = 𝑟𝑐2𝐺𝑀.3ℎ2𝑘212𝑚 (50)

𝑃̂𝜇 = −𝑖ℎ∇𝜇 (51)

𝐻̂ = −𝑖ℎ𝜕𝑡 (52)

Equation (49) is equivalent to (31) in which the Hamiltonian
is equal to the Lagrangian.

𝐻̂ (𝛾𝜇𝜑(𝑛−1,𝑛,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑛,𝑘,𝑥))
= L (𝛾𝜇𝜑(𝑛−1,𝑛,𝑘,𝑥)𝛾]𝜑(𝑛+1,𝑛,𝑘,𝑥)) (53)

�eLagrangian is not relativistic because the energy reference
frames or space-time states involved in the transition dynam-
ics 𝑛 − 1, 𝑛, and 𝑛 + 1 are separated by a small energy gap,𝐸 = √3 ∙ ℎ𝐻0. �e exchanged quantum of energy between
states is responsible for “welding” them together.

Equation (50) is the gravitational interaction in reciprocal
space-time. �e weakness of the gravitational interaction is
due to the small value of the cosmological constant.

3. Line Elements and Information in K-Space

A close inspection of (34) reveals the relationship between a
line element in 4-space and its conjugate line in K-space

𝑑𝑠2 = 𝛼𝛽𝑑𝜅2 (54)
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Figure 1: Shadow of Sagittarius A∗.

where

𝑑𝜅2 = 𝛾𝜇𝜑(𝑛,𝑘,𝑥)𝛾]𝜑(𝑛,𝑘,𝑥)𝑑𝑘𝜇𝑑𝑘] (55)

�e term 𝛾𝜇𝜑(𝑛,𝑘,𝑥)𝛾]𝜑(𝑛,𝑘,𝑥) refers to the normalized infor-
mation flux density passing through an elementary surface𝑑𝑘𝜇𝑑𝑘] in K-space.�e gradient of the flux density yields the
baseband bandwidth 𝑘(𝑛)𝜇.

𝜕𝜇𝛾𝜇𝜑(𝑛,𝑘,𝑥)𝛾]𝜑(𝑛,𝑘,𝑥) = 𝑘(𝑛)𝜇𝛾𝜇𝜑(𝑛,𝑘,𝑥)𝛾]𝜑(𝑛,𝑘,𝑥) (56)

�is gradient is also a measure of the acutance or sharpness
of the information. A large bandwidth provides detailed
information while a small bandwidth provides diffuse infor-
mation. Equation (49) describes the diffusion of information
as it flows into a gravitational well. Unitarity is preserved if
the flux is summed over the total diffusion surface.

∬Σ
0
𝛾
𝜇𝜑(𝑛,𝑘,𝑥)𝛾^𝜑(𝑛,𝑘,𝑥)𝑑𝑘𝜇𝑑𝑘] = 1 (57)

Here the integral implies that one bit of information is found
on a surface Σ = 𝑘2𝑛 in K-space which corresponds to an
area 𝐴𝑛 = 4𝜋2/𝑘2𝑛 in 4-space. �e 𝑘1 bandwidth permitted
within a black hole generates the smallest elementary surface
or pixel in K-space of 𝑘21 suggesting that information inside
a blackhole is diluted to one bit per area equivalent to the
square of the Hubble 4-radius in 4-space or from (48) the
information surface density is 𝑘21 = 4𝜋2Λ/3. �us the
cosmological constant can also be interpreted as a unit of
information surface density.�e ratio of the Planck surface in
K-space to the smallest elementary surface in K-space yields
10120. �is huge number represents the maximum number of
pixels that can fit on the largest surface in K-space. Hence
the expression 𝑊 = 𝑘2p/𝑘2n represents the number of empty

pixel slots available in the n-th quantum state or the number
of degenerate energy levels.

󵄨󵄨󵄨󵄨𝜑⟩𝑛 = 𝑐1 󵄨󵄨󵄨󵄨𝜓1⟩𝑛 + 𝑐2 󵄨󵄨󵄨󵄨𝜓2⟩𝑛 . . . 𝑐𝑊 󵄨󵄨󵄨󵄨𝜓𝑊⟩𝑛 . (58)

�e entropy of the n-state therefore becomes

𝑆 = 𝑘𝐵 ln𝑊 = 𝑘𝐵 ln 𝑘
2
p𝑘2n = 𝑘𝐵 ln 𝐴𝑛𝑙2p = 𝑘𝐵 ln 𝑐3𝐴𝑛Gℎ (59)

Here we observe that objects fall into a gravitational field
because it leads to an increase in entropy. In strong fields the
information is delocalized. A black hole does not annihilate
information; it simply diffuses or dilutes it by increasing the
entropy. It can also be interpreted as a low pass filter that
permits one bit of information to pass per Hubble time.
Since information is delocalized close to a black hole, then
we do not expect the Event Horizon Telescope to observe a
silhouette surrounded by a well defined accretion disc but
a circular silhouette surrounded by a cloud of degenerate
(delocalized) matter (grey area) as depicted in Figure 1.

�e radii are calculated from (45) and the magnification
factor, 5.2/2, arises from gravitational lensing. �e silhouette
is half the size predicted in GR.

4. Discussion

A successful covariant canonical quantization of the gravita-
tional field has been presented in which we find that gravity
is akin to a thermal flow of space-time and that space-time
can also be described in terms of a reciprocal lattice. �e
presence of matter creates an impure lattice and a potential
well arises in the region of perturbation through filtration of
high frequencies from the quantum vacuum. A test particle
flows along with the quantum vacuum and the presence of
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a potential well will cause it to flow towards the sink. �is
formulation will find important applications in high energy
lattice gauge field theories where it may help expand the
standard model of particle physics by eliminating divergent
terms in the current theory and predicting hitherto unknown
phenomena.
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In this paper, the thermodynamic property of charged AdS black holes is studied in rainbow gravity. By the HeisenbergUncertainty
Principle and the modified dispersion relation, we obtain deformed temperature. Moreover, in rainbow gravity we calculate the
heat capacity in a fixed charge and discuss the thermal stability. We also obtain a similar behaviour with the liquid-gas system in
extending phase space (including 𝑃 and 𝑟) and study its critical behavior with the pressure given by the cosmological constant and
with a fixed black hole charge𝑄. Furthermore, we study the Gibbs function and find its characteristic swallow tail behavior, which
indicates the phase transition. We also find that there is a special value about the mass of test particle which would lead the black
hole to zero temperature and a diverging heat capacity with a fixed charge.

1. Introduction

It is knownLorentz symmetrywhich is one ofmost important
symmetries in nature; however, some researches indicate that
the Lorentz symmetry might be violated in the ultraviolet
limit [1–5]. Since the standard energy-momentum dispersion
relation relates to the Lorentz symmetry, the deformation of
Lorentz symmetry would lead to the modification of energy-
momentum dispersion relation. In fact, some calculations
in loop quantum gravity have showed the dispersion rela-
tions may be deformed. Meanwhile, based on the deformed
energy-momentum dispersion relation the double special
relativity has arisen [6, 7]. In this theory, in addition to
the velocity of light being the maximum velocity attainable
there is another constant for maximum energy scale in
nature which is the Planck energy 𝐸�푃. It gives different
picture for the special relativity in microcosmic physics. The
theory has been generalized to curved spacetime by Joao
Magueijo and Lee Smolin, called gravity’s rainbow [8]. In
their theory, the geometry of spacetime depends on the
energy of the test particle and observers of different energy
would see different geometry of spacetime. Hence, a family
of energy-dependent metrics named rainbow metrics will
describe the geometry of spacetime, which is different from

general gravity theory. Based on the nonlinear of Lorentz
transformation, the energy-momentum dispersion relation
can be rewritten as

𝐸2𝑓2 ( 𝐸𝐸�푃) − 𝑝2𝑔2 ( 𝐸𝐸�푃) = 𝑚2, (1)

where 𝐸�푃 is the Planck energy. The rainbow functions𝑓(𝐸/𝐸�푃) and 𝑔(𝐸/𝐸�푃) are required to satisfy

lim
�퐸/�퐸𝑃�㨀→0

𝑓( 𝐸𝐸�푃) = 1,
lim
�퐸/�퐸𝑃�㨀→0

𝑔( 𝐸𝐸�푃) = 1.
(2)

In this case, the deformed energy-momentum dispersion
relation equation (1) will go back to classical one when the
energy of the test particle is much lower than 𝐸�푝. Due to this
energy-dependent modification to the dispersion relation,
the metric ℎ(𝐸) in gravity’s rainbow could be rewritten as [9]

ℎ (𝐸) = 𝜂�푎�푏𝑒�푎 (𝐸) ⊗ 𝑒�푏 (𝐸) , (3)
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where the energy dependence of the frame fields is

𝑒0 (𝐸) = 1𝑓 (𝐸/𝐸�푃) 𝑒0,
𝑒�푖 (𝐸) = 1𝑔 (𝐸/𝐸�푃) 𝑒�푖,

(4)

and here the tilde quantities refer to the energy-independent
frame fields. This leads to a one-parameter Einstein equation

𝐺�휇] ( 𝐸𝐸�푃) + Λ( 𝐸𝐸�푃)𝑔�휇] ( 𝐸𝐸�푃)
= 8𝜋𝐺( 𝐸𝐸�푃)𝑇�휇] ( 𝐸𝐸�푃) ,

(5)

where 𝐺�휇](𝐸/𝐸�푃) and 𝑇�휇](𝐸/𝐸�푃) are energy-dependent Ein-
stein tensor and energy-momentum tensor and Λ(𝐸/𝐸�푃)
and 𝐺(𝐸/𝐸�푃) are energy-dependent cosmological constant
and Newton constant. Generally, many forms of rainbow
functions have been discussed in literatures; in this paper we
will mainly employ the following rainbow functions:

𝑓( 𝐸𝐸�푃) = 1,
𝑔 ( 𝐸𝐸�푃) = √1 − 𝜂( 𝐸𝐸�푃)

�푛,
(6)

which has been widely used in [10–18].
Recently, Schwarzschild black holes, Schwarzschild AdS

black holes, and Reissner-Nordstrom black holes in rain-
bow gravity [19–21] have been studied. Ahmed Farag Alia,
Mir Faizald, and Mohammed M. Khalile [15] studied the
deformed temperature about charged AdS black holes in
rainbow gravity based on Heisenberg Uncertainty Principle
(HUP),𝐸 = Δ𝑝 ∼ 1/𝑟+. In this paper, we study the thermody-
namical property about the charged AdS black holes in
rainbow gravity based on the usual HUP, 𝑝 = Δ𝑝 ∼ 1/𝑟+.
Moreover, we study how the mass of test particle influences
thermodynamical property for charged AdS black holes.

The paper is organized as follows. In the next section,
by using the HUP and the modified dispersion relation, we
obtain deformed temperature, and we also calculate heat
capacity with a fixed charge and discuss the thermal stability.
In Section 3, we find the charged AdS black holes have similar
behaviour with the liquid-gas system with the pressure given
by the cosmological constant while we treat the black holes
charge𝑄 as a fixed external parameter, not a thermodynamic
variable. We also calculate the Gibbs free energy and find
characteristic swallow tail behavior. Finally, the conclusion
and discussion will be offered in Section 4.

2. The Thermal Stability

In rainbow gravity the line element of the modified charged
AdS black holes can be described as [15]

𝑑𝑠2 = − 𝑁𝑓2𝑑𝑡2 + 1𝑁𝑔2𝑑𝑟2 + 𝑟
2

𝑔2𝑑Ω2, (7)

where

𝑁 = 1 − 2𝑀𝑟 + 𝑄
2

𝑟2 + 𝑟
2

𝑙2 . (8)

Generally, −3/𝑙2 = Λ which is cosmological constant.
Because all energy dependence in the energy-independent
coordinates must be in the rainbow functions 𝑓 and 𝑔, 𝑁
is independent on the energy of test particle [8]. In gravity’s
rainbow, the deformed temperature related to the standard
temperature 𝑇0 was [15]

𝑇 = − 14𝜋 lim
�푟�㨀→�푟+
√−𝑔11𝑔00 (𝑔

00)�耠𝑔00 = 𝑔 (𝐸/𝐸�푃)𝑓 (𝐸/𝐸�푃)𝑇0, (9)

where 𝑟+ is horizon radius.
In gravity’s rainbow, although the metric depends on the

energy of test particle, the usual HUP can be still used [19].
For simplicity we take 𝑛 = 2 in the following discussion, by
combining (1) with (6) we can get

𝑔 = √1 − 𝜂𝐺0𝑚2√ 𝑟2+𝑟2+ + 𝜂𝐺0 , (10)

where 𝐺0 = 1/𝐸2�푃, 𝑚 is the mass of test particle, and 𝜂 is a
constant parameter.

Generally, the standard temperature was given by [22]

𝑇0 = 14𝜋 ( 1𝑟+ + 3𝑟+𝑙2 − 𝑄
2

𝑟3+ ) . (11)

When using (6) and (10), we can get the temperature of
charged AdS black holes in rainbow gravity

𝑇 = 𝑔𝑇0 = 14𝜋𝑘√ 𝑟2+𝑟2+ + 𝜂𝐺0 ( 1𝑟+ + 3𝑟+𝑙2 − 𝑄
2

𝑟3+ ) , (12)

where 𝑘 = 1/√1 − 𝜂𝐺0𝑚2. It is easy to find 𝑇 = 𝑇0 when𝜂 = 0. Equation (12) shows that there are two solutions
when 𝑇 = 0, one corresponds to extreme black hole and
the other to 𝑚2 = 1/𝜂𝐺. The second solution indicates the
temperature of black holes completely depends on the mass
of test particle when the black holes keep with fixed mass,
charge, and anti-de Sitter radius. The bigger the mass of test
particle is, the smaller the temperature of black holes is.When𝑚2 = 1/𝜂𝐺, the temperature keeps zero. Generally, due to
gravity’s rainbow, aminimum radius with respect to the black
hole is given and is related to a radius of black hole remnant
when the temperature tends to zero [15]. However, our paper
shows all black holes can keep zero temperature when the test
particle mass approaches a value, such as𝑚2 = 1/𝜂𝐺. But due
to𝑚 ≪ 𝑀�푃 in general condition, it may be difficult to test the
phenomenon with zero temperature about black holes.

In general, the thermal stability can be determined by
the heat capacity, which is also used to the systems of black
holes [17, 23–25]. In other words, the positive heat capacity
corresponds to a stable state and the negative heat capacity
corresponds to unstable state. In following discussions, we
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will focus on the heat capacity to discuss the stability of black
holes. When𝑁 = 0, the mass of charged AdS black holes can
be calculated as

𝑀 = 12 (𝑟+ + 𝑄
2

𝑟+ + 𝑟
3
+𝑙2 ) . (13)

Based on the first law 𝑑𝑀 = 𝑇𝑑𝑆 with the deformed
temperature [20], the modified entropy can be computed

𝑆 = ∫ 𝑑𝑀𝑇
= 𝜋𝑘𝑟+√𝑟2+ + 𝜂𝐺0 + 𝜋𝑘𝜂𝐺0 ln (𝑟+ + √𝑟2+ + 𝜂𝐺0) .

(14)

Note that the next leading order is logarithmic as 𝑆 ≈𝜋𝑟2+ + (1/2)𝜋𝜂𝐺0 ln(4𝑟2+), which is similar to the quantum
correction in [26–31]. With 𝐴 = 4𝜋𝑟2+ we can get 𝑆 ≈ 𝐴/4 +(1/2)𝜋𝜂𝐺0 ln(𝐴/𝜋). We can find the result is in agreement
with the standard entropy 𝑆 = 𝐴/4 when 𝜂 = 0, which is
standard condition.

The heat capacity with a fixed charge can be calculated as

𝐶�푄 = 𝑇 𝑑𝑆𝑑𝑇 = (𝜕𝑀/𝜕𝑟+𝜕𝑇/𝜕𝑟+ )
= 2𝜋𝑘 (−𝑄2𝑙2𝑟2+ + 𝑙2𝑟4+ + 3𝑟6+) (𝑟2+ + 𝜂𝐺0)3/23𝑟7+ + (6𝜂𝐺0 − 𝑙2) 𝑟5+ + 3𝑄2𝑙2𝑟3+ + 2𝜂𝐺0𝑄2𝑙2𝑟+ ,

(15)

which shows that 𝐶�푄 reduces to standard condition [22]
with 𝜂 = 0. Obviously, the heat capacity is diverging when𝑚2 = 1/𝜂𝐺. Generally, when the temperature vanishes, the
heat capacity also tends to zero. However, our paper shows
a different and anomalous phenomenon. Fortunately, the
phenomenon is just an observation effect; the result gives
us a way to test the theory of rainbow gravity. Some of the
conditions above indicate that the mass of test particle does
not influence the forms of temperature, entropy, and heat
capacity but only changes their amplitudes.

Thenumerical methods indicate there are three situations
corresponding to zero, one, and two diverging points of heat
capacity respectively, which have been described in Figures
1, 2, and 3. Figure 1 shows a continuous phase and does not
appear phase transition with 𝑙 < 𝑙�푐. In Figure 2, there are
one diverging point and two stable phases for 𝐶�푄 > 0 with𝑙 = 𝑙�푐, phase 1 and phase 2, which individually represent a
phase of large black hole (LBH) and a small black hole (SBH).
In Figure 3, one can find there are three phases and two
diverging points with 𝑙 > 𝑙�푐. Phase 1 experiences a continuous
process from a unstable phase 𝐶�푄 < 0 to a stable phase 𝐶�푄 >0; phase 2 is a pure unstable phase with 𝐶�푄 < 0; phase 3 is a
stable phase with 𝐶�푄 > 0. It is easy to see phase 1 represents
the phase of SBH and phase 3 represents the phase of LBH.
However, there is a special unstable phase 2 between phase 1
and phase 3. This indicates when the system evolutes from
phase 3 to phase 1, the system must experience a medium
unstable state which could be explained as an exotic quark-
gluon plasma with negative heat capacity [32, 33].
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Figure 1:𝐶�푄−𝑟+ diagram of chargedAdS black holes in the rainbow
gravity. It corresponds to 𝑙 = 6. We have set 𝑄 = 1, 𝜂 = 1,𝑚 = 0.
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Figure 2:𝐶�푄−𝑟+ diagram of chargedAdS black holes in the rainbow
gravity. It corresponds to 𝑙 = 7.05. We have set 𝑄 = 1, 𝜂 = 1,𝑚 = 0.

3. The Phase Transition of Charged AdS Black
Holes in Extending Phase Space

Surprisingly, although rainbow functions modify theΛ(𝐸/𝐸�푃) term, they do not affect thermodynamical pressure
related to the cosmological constant [17, 34]. So we can take
the following relation:

𝑃 = −Λ (0)8𝜋 = 38𝜋𝑙2 . (16)

Since David Kubiznak and Robert B. Mann have showed
the critical behaviour of charged AdS black holes and com-
pleted the analogy of this system with the liquid-gas system
[22], in what follows we will study whether the critical
behavior of the charged AdS black holes system in rainbow
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Figure 3: 𝐶�푄 − 𝑟+ diagram of charged AdS black holes in the rainbow gravity. It corresponds to 𝑙 = 8, right one corresponds to an extending
part of near 𝑟+ = 1. We have set 𝜂 = 1, 𝑄 = 1,𝑚 = 0.
gravity is kept. Using (12) and (16) in extended phase space,
we can get

𝑃 = 𝑘2√ 𝑟
2
+ + 𝜂𝐺0𝑟4+ 𝑇 − 18𝜋 1𝑟2+ + 18𝜋 𝑄

2

𝑟4+ . (17)

Similarly with [17], the critical point is obtained from

𝜕𝑃𝜕𝑟+ = 0,
𝜕2𝑃𝜕𝑟2+ = 0,

(18)

which leads to
𝑟�푐
= √ 24/3𝜂𝐺0𝑄2 + 24/3𝑄4 + 2𝑄2 (𝑥 + 𝑦)1/3 + 22/3 (𝑥 + 𝑦)2/3(𝑥 + 𝑦)1/3 ,
𝑇�푐 = 12𝜋𝑘 𝑟

2
�푐 − 2𝑄2𝑟4�푐 + 2𝜂𝐺0𝑟2�푐 √𝑟2�푐 + 𝜂𝐺0,

𝑃�푐 = 𝑟4�푐 − 3𝑄2𝑟2�푐 − 2𝜂𝐺0𝑄28𝜋𝑟4�푐 (𝑟2�푐 + 2𝜂𝐺0) ,

(19)

where 𝑥 = 𝜂𝐺0𝑄2(𝜂𝐺0 + 𝑄2) and 𝑦 = 𝑄2(𝜂𝐺0 + 𝑄2)(𝜂𝐺0 +2𝑄2). We can obtain

𝑃�푐𝑟�푐𝑇�푐 = 𝑘 𝑟
4
�푐 − 3𝑄2𝑟2�푐 − 2𝜂𝐺0𝑄24𝑟�푐 (𝑟2�푐 − 2𝑄2)√𝑟2�푐 + 𝜂𝐺, (20)

which shows the critical ratio is deformed due to the existence
of rainbow gravity. It is notable that (20) will back to the usual
ratio with 𝜂 = 0. Generally, for charged AdS black holes, the
pressure and temperature are demanded as positive real value.
From (19), when 𝑃�푐 > 0 and 𝑇c > 0, we have

𝑟4�푐 − 3𝑄2𝑟2�푐 − 2𝜂𝐺0𝑄2 > 0,
𝑟�푐 > √2𝑄, (21)

which indicates a restriction between 𝑄 and 𝜂. The 𝑃 − 𝑟+
diagram has been described in Figure 4. From Figure 4, we
can find that charged AdS black holes in rainbow gravity have
an analogy with the Van-der-Waals system and have a first-
order phase transition with 𝑇 < 𝑇�푐. Namely, when consid-
ering rainbow gravity with the form of (6), the behavior like
Van-der-Waals system can also be obtained.

Based on [14, 35] the black hole mass is identified with
the enthalpy, rather than the internal energy, so the Gibbs free
energy for fixed charge in the rainbow gravity will be

𝐺 = 𝐻 − 𝑇𝑆
= 12 (𝑟+ + 𝑄

2

𝑟+ + 𝑟
3
+𝑙2 ) − 𝑘𝑇(𝜋𝑟+√𝑟2+ + 𝜂𝐺0

+ 𝜋𝜂𝐺0 ln(𝑟+ + √𝑟2+ + 𝜂𝐺0) ,
(22)

which has been showed in Figure 5. Because the picture of 𝐺
demonstrates the characteristic swallow tail behaviour, there
is a first-order transition in the system.

4. Conclusion

In this paper, we have studied the thermodynamic behavior of
charged AdS black holes in rainbow gravity. By the modified
dispersion relation andHUP,we got deformed temperature in
charged AdS black holes using no-zero mass of test particle.
We have discussed the divergence about the heat capacity
with a fixed charge. Our result shows that the phase structure
has a relationship with AdS radius 𝑙. When 𝑙 = 𝑙�푐, there
is only one diverging point about heat capacity; when 𝑙 >𝑙�푐, we have found there are two diverging points and three
phases including two stable phases and one unstable phase.
In particular, an analogy between the charged AdS black
holes in the rainbow gravity and the liquid-gas system is
discussed. We have also showed 𝑃 − 𝑟+ critical behavior
about the charged AdS black holes in the rainbow gravity.The
consequence shows there is the Van-der-Waals like behavior
in the rainbow gravity when 𝜂 and 𝑄 coincide with (21).
The rainbow functions deform the forms of critical pressure,
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Figure 5: Gibbs free energy of charged AdS black holes in rainbow
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temperature, and radius. At last, we have discussed the Gibbs
free energy and have obtained characteristic “swallow tail”
behaviour which can be the explanation of first-order phase
transition.

We find the mass of test particle does not influence the
forms of temperature, entropy, and heat capacity but only

changes their amplitudes. Moreover, there is a special value
about themass of test particle encountered𝑚2 = 1/𝜂𝐺, which
would lead to zero temperature and diverging heat capacity
for charged AdS black holes in rainbow gravity.
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Inhomogeneity of the actual value of the vacuum energy density is considered in a black hole background. We examine the back-
reaction of a Schwarzschild black hole to the highly inhomogeneous vacuum density and argue the fluctuations lead to deviations
from general relativity in the near-horizon region. In particular, we found that vacuum fluctuations onto the horizon trigger
adiabatic release of quantum information, while vacuum fluctuations in the vicinity of the horizon produce potentially observable
metric fluctuations of order of the Schwarzschild radius. Consequently, we propose a form of strong nonviolent nonlocality in
which we simultaneously get nonlocal release of quantum information and observable metric fluctuations.

1. Introduction

Recently, Unruh et al. argued (see [1]) the observed small
nonnegative cosmological constant can be achieved without
introducing new degrees of freedom, e.g., negative-pressure
scalar field. Instead, they address the cosmological constant
problem by embracing the diverging value of the vacuum
energy density as predicted by quantum field theory, without
applying any renormalization procedures. Interestingly, by
studying the gravitational effects of the constantly fluctuating
vacuum, they found its local energy density to be highly
inhomogeneous. As a result of this inhomogeneity, the spatial
distance between a pair of neighboring points undergoes con-
stant phase transitions in the form of rapid changes between
expansion and contraction. Also, the singular expectation
value of the local energy density of the vacuum was argued to
be harmless at the energy levels of effective field theory since
the fluctuations lead to huge cancellations on cosmological
scales and ultimately to the observed accelerating expansion
of the universe.

In a separate work [2], we studied the back-reaction of a
Schwarzschild black hole geometry to quantum vacuum fluc-
tuations. We examined how the black hole metric back-reacts
to vacuum fluctuations in two regions, onto the horizon,

and in the vicinity of the black hole. We considered vacuum
fluctuations with local energy density below and above a
certain threshold 𝜁. We found that “strong” quantum fluctu-
ations (considered onto the horizon) lead to brief nonviolent
departures from classicality, which allow for adiabatic leakage
of low-temperature Hawking quanta at the necessary rate.
In addition, we argued that quantum information can begin
leaking out of the black hole as early as 𝑟�푆 log 𝑟�푆 after the initial
collapse.The “weak” quantum fluctuations (considered in the
vicinity of the black hole) were argued to be the microscopic
source, which on scales of order of the Schwarzschild radius
O(𝑟�푆) accumulates and produces metric fluctuations [2, 3].

The current model questions the classical black hole
picture of local quantum field theory on a semiclassical
geometry. In this work we apply the Unruh et al. model to
Schwarzschild geometry; namely, we rewrite the equations of
[1] in that background and study the gravitational effects of
the inhomogeneous vacuumdensity. As a result, we propose a
formof strong nonviolent nonlocalitywhich yields significant
modifications to thewell-known general relativistic picture of
black holes. The conjectured deviations from classicality lead
simultaneously to nonlocal release of Hawking particles and
quantummetric fluctuations. In fact, the presentworkmay be
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thought of as the microscopic origin of the initially proposed
by Giddings nonviolent nonlocality model [4–6].

The paper is organized as follows. In Section 2 we
summarize the relevant work. In Section 3 we rewrite the
equations of [1] in Schwarzschild black hole background and
show that we can derive nontrivial modifications to general
relativity in the near-horizon region.

2. Summary of Related Work

Tomake the paper self-contained, we begin bymaking a brief
review of the main results of [1, 2]. Note the Unruh et al.
model will serve as a basis for the scenario we will present
later in Section 3. In Section 2.1 we demonstrate the phys-
ical interpretation of the conjectured in [1] inhomogeneous
microscopically diverging vacuum energy density, and its
effects on cosmological scales.Then, in Section 2.2, we review
[2] to show how we initially derived the “soft” but nontrivial
modifications to general relativity in the near-horizon region.

2.1. Accelerating Expansion via Inhomogeneous QuantumVac-
uum Density. In the generic ΛCDM model of the universe
the vacuum energy density is considered to be constant and
homogeneous throughout space. As it was pointed out in [1],
however, this basic assumption is only true for the expecta-
tion value of the vacuum energy density. Its actual value, i.e.,
the one obtained by performing repeated measurements at a
particular spatial point, constantly fluctuates. Consequently,
we get a picture, where although the expectation value
is effectively constant and homogeneous on cosmological
scales, the actual value is rapidly changing in both time, as
well as from point to point. Physically, this inhomogeneity
of the vacuum density implies the spatial distance between
any pair of nearby points constantly changes between phases
of expansion and contraction. As we show in greater detail
later, this leads to very important results in a black hole
background.

Taking the constantly fluctuating inhomogeneous vac-
uum density as a starting point, we now briefly demonstrate
its effects in a general spacetime [1]. Note that in Section 3 we
apply those results to Schwarzschild black hole geometry.

Suppose the local energy density 𝜌�푥,�푥󸀠 between a pair of
neighboring spatial points 𝑥 and 𝑥�耠 in some general metric𝑔�휇] is [1]

𝜌�푥,�푥󸀠 = cov(𝑇00 (𝑥) , 𝑇00 (𝑥�耠)𝜎�푥𝜎�푥󸀠 (1)

where

𝜎�푥 = √⟨(𝑇00 (𝑥) − ⟨𝑇00 (𝑥)⟩)2⟩ (2)

Here, 𝑇00(𝑥) and 𝑇00(𝑥�耠) are the local vacuum densities
defined at the spatial points 𝑥 and 𝑥�耠, respectively.

Evidently from (1), the value of 𝜌�푥,�푥󸀠 is determined by
the covariant vacuum densities, defined at the neighboring
spatial coordinates, namely, 𝑇00(𝑥) and 𝑇00(𝑥�耠). Effectively,
one can think of 𝜌�푥,�푥󸀠 as a 2-point correlation function.
That is, in order for 𝜌�푥,�푥󸀠 to have a nontrivial value, it

must always be evaluated between close spacetime points.
Otherwise, 𝜌�푥,�푥󸀠 󳨀→ 0 as the separation between 𝑥 and 𝑥�耠
becomes large, in which case𝑇00(𝑥) and 𝑇00(𝑥�耠) are no longer
correlated and thus evolve independently. The requirement
that 𝑥 and 𝑥�耠 are close comes from the limited domain of
dependence of individual vacuum fluctuations, that is, their
high momentum/short wavelength.

Assuming 𝜌�푥,�푥󸀠 is nonvanishing, then in order for it to
be positive/negative, both 𝑇00(𝑥) and 𝑇00(𝑥�耠) need to be,
respectively, above/below the zero threshold of ⟨𝑇00⟩ [1]

𝜌�푥,�푥󸀠 = {{{
> 0 𝑖𝑓 𝑇00 (𝑥) , 𝑇00 (𝑥�耠) > 0
< 0 𝑖𝑓 𝑇00 (𝑥) , 𝑇00 (𝑥�耠) < 0 (3)

Therefore, the coefficient 𝜌�푥,�푥󸀠 shows the correlation between
vacuum densities defined between a pair of nearby points𝑥 and 𝑥�耠. One should note that since in this model we do
not apply any renormalization procedures, we cannot use the
generic stress-energy tensor as a source in the Einstein field
equations. Instead, we must slightly modify the stress tensor
in order to account for the diverging expectation value of the
vacuum fluctuations.

Studying the gravitational effects of the inhomogeneous
vacuum density requires inhomogeneity of the underlying
metric as well. So in this scenario, the scale factor has to
have an extra stochastic component which would allow it to
account for that inhomogeneity. Therefore, following (1), the
generic scale factor of the standard Friedmann-Robertson-
Walker metric is modified as

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 (𝑡, 𝑥) (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) (4)

As a result of the vacuum inhomogeneity, the scale factor𝑎(𝑡, 𝑥) now has additional degrees of freedom in the form of a
space-dependent coupling term. That is, when the local scale
factor is evaluated at a given spacetime point, its dynamics
is dictated (sourced) by the stochastically varying vacuum
fluctuations at that point. This richer structure of the scale
factor allows for a pair of nearby points to be expanding or
contracting, depending on the sign of 𝜌�푥,�푥󸀠 , (3). In particular,
for 𝜌�푥,�푥󸀠 > 0 the spatial separation between the pair of points
increases, while for 𝜌�푥,�푥󸀠 < 0, the spatial separation decreases.

It was then shown in [1] that one could consider a local
Hubble rate term and evaluate it between the neighboring 𝑥
and 𝑥�耠

∇𝐻 = −4𝜋𝐺𝐽 (5)

where 𝐻 ≡ ̇𝑎/𝑎 is the Hubble parameter and 𝐽 denotes the
energy flux of the vacuum, which accumulates over a given
region of space. Hence 𝐽 can be thought of as a functional
of the local energy density in that neighborhood ⟨𝐽(𝑥, 𝑥�耠)⟩ ∼
∫�푥󸀠
�푥
𝜌�푥,�푥󸀠 .
Interestingly enough, following the extra degrees of free-

domof 𝑎(𝑡, 𝑥),∇𝐻was found to be constantly fluctuatingwith
energy, sourced by the accumulation of the vacuum density.

The general solution of (5) reads

𝐻(𝑡, 𝑥) = 𝐻 (𝑡, 𝑥0) − 4𝜋𝐺∫�푥
󸀠

�푥
𝐽 (𝑡, 𝑥�耠) (𝑑𝑥�耠, 𝑑𝑦�耠, 𝑑𝑧�耠) (6)



Advances in High Energy Physics 3

As (6) shows, the local Hubble rate depends on the spatial
accumulation of 𝐽 in the region between 𝑥 and 𝑥�耠. To be
more precise, we expect there may be some dissipation of
the accumulated energy to nearby coordinates. For simplicity,
however, throughout the paper we ignore all such effects and
focus solely on individual 2-point functions.

Using this more complex spacetime dynamics induced by
the inhomogeneous vacuum density, it was proposed that the
equation of motion of ∇𝐻 goes as

̈𝑎 + Ω2 (𝑡, 𝑥) 𝑎 = 0 (7)

where

Ω2 (𝑡, 𝑥) = 4𝜋𝐺3 (𝜌 + 3∑
�푖=1

𝑃�푖) , 𝜌 = 𝑇00, 𝑃�푖 = 𝑇�푖�푖𝑎2 (8)

In this case, (7) simply states that ∇𝐻 has the behavior
of a harmonic oscillator. That is, it constantly fluctuates
around its equilibrium point. Of course, every crossing of the
equilibrium point is associated with a change of sign.

Let us briefly summarize the spacetime back-reaction to
the conjectured in [1] constantly fluctuating inhomogeneous
vacuum density. Physically, (5) and (7) describe a picture
where the separation between a pair of neighboring points,Δ𝑥 ≡ |𝑥 − 𝑥�耠|, is constantly fluctuating between phases
of expansion and contraction. In fact, when Δ𝑥 (herein
defined as the proper distance) is expanding in some region,
a neighboring region must be contracting, and vice versa.
When a vacuum fluctuation with local energy density above
its equilibrium point is considered between 𝑥 and 𝑥�耠, Δ𝑥
(i.e., the proper distance) grows. On the other hand, if the
local energy density is below the equilibriumpoint, the proper
distance Δ𝑥 decreases. This enhanced spacetime dynamics
is characterized by constant local phase transitions between
expansion and contraction which happen as the local energy
density of the vacuum goes through its equilibrium point and
changes sign as it does so.Those constant phase changes accu-
mulate and lead to massive cancellations on cosmological
scales. However, assuming a slight positive excess, we get the
observed cosmological expansion. Although the microscopic
values of 𝜌 may be huge, their infrared effects are small,
i.e., the wild fluctuations do not lead to O(1) corrections in
weak gravitational regimes. Besides, (8) tell us that the scale
factor 𝑎(𝑡, 𝑥), in a given neighborhood, depends on the time-
dependent frequency Ω(𝑡, 𝑥) which exhibits quasiperiodic
dynamics.

2.2. Unitary Black Hole Evolution and Horizon Fluctuations
via Quantum Vacuum Fluctuations. In [2] we argued that
treating gravity in the near-horizon region of Schwarzschild
black hole as a field theory and considering its coupling to
the matter fields in this region ∫𝜙�휇]𝑇�휇] produce fluctuations
whichmodify the general relativistic description. We consid-
ered fluctuations with local energy density below and above𝜁, where 𝜁 is an arbitrary threshold. We then studied how
the black hole geometry back-reacts to those fluctuations in
two distinct regions, i.e., onto the horizon and just outside the
black hole.

More precisely, we studied how the horizon geometry
back-reacts to “strong” quantum fluctuations and how the
near-horizon region back-reacts to “weak” fluctuations. The
analysis was carried out under the assumptions that (i) black
holes are fast scramblers [7], (ii) quantum information is
found in the emitted Hawking particles, and (iii) the scram-
bled infallen information need not be embedded uniformly
across the horizon.

Let us now precisely define what wemean by “strong” and
“weak” quantum fluctuations.

(A) In a broader sense, we take a fluctuation to be strong
if, when considered at asymptotic infinity, its local energy
density leads to a localized particle production

𝑎†�푖 | 0⟩ = |𝑥⟩ (9)

Therefore, if we had a measuring apparatus counting the
strong fluctuations in a given spacetime region Σ at asymp-
totic infinity, its results would be consistent with the expecta-
tion value of the number operator ⟨𝑁⟩ in that region

⟨𝑁⟩ = N∑
�푖

∫
∑
𝜑�푠�푡�푟�표�푛�푔�푖 (10)

More specifically, in a black hole background, we argue a
“strong” quantum fluctuation onto the horizon yields brief
departure from local quantum field theory.

(B) A quantum fluctuation is taken as weak if its local
energy density is below the threshold 𝜁. Because of the small
local energy density, we assume the back-reaction of the
backgroundmetricwould be negligible if we consideredweak
fluctuations in a relatively small part of the near-horizon
region.That is why we are interested in how the near-horizon
metric back-reacts when the weak fluctuations are taken on
scale O(𝑟�푆).

We argue that weak fluctuations on scale O(𝑟�푆) lead
to nonperturbative effects which manifest in potentially
observable metric fluctuations that can play an important
role in observer complementarity and in gravitational wave
astronomy in the form of detectable “echoes” and deviations
from general relativity close to the horizon. We assume that
away from a black hole the weak fluctuations do not lead to
perturbations and leave the geodesic equation invariant. One
should keep in mind that, although effectively negligible at
infinity, when examined locally, the weak fluctuations still
cause a pair of points to rapidly change phases between
expansion and contraction.

To demonstrate how we define the weak fluctuations in
the vicinity of the horizon we adopted the following analogy.
Suppose we interpret individual fluctuations as harmonic
oscillators, denoted by 𝜒�푖. Imagine we place the harmonic
oscillators on a string in the vicinity of the horizon, Figure 1.
Using an arbitrary normalized spacing 𝜖, we can generally
describe the string as

�푁∑
�푖=1

∫
�푆2
𝑑𝜑 (𝑛�푖𝜑�푖) (11)

where𝜑�푖 is the oscillation frequency of the different harmonic
oscillators.
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In this picture we get an ensemble of fluctuations which,
as we will argue later, yield coherent Schwarzschild-scale
metric fluctuations. We assume separate harmonic oscillators
need not have the same frequency. In fact, due to their
limited domain of dependence (of order of the wavelength
of the fluctuation), even neighboring harmonic oscillators
have different frequencies. Thus an evolution equation for a
particular spacetime region can be given in terms of a linear
combination of the harmonic oscillators in that region. Like
we mentioned earlier, despite the arbitrarily high (diverging)
oscillating frequency a single harmonic oscillator may have
microscopically, its effect in an infrared cut-off is negligible,
and we do not expect O(1) corrections to the background
metric.

Our analysis in [2] lead us to the following two main
results.

First, we found that “strong” fluctuations, considered
onto the horizon, lead to nonlocal release of quantum infor-
mation via substantial deviations from classicality (for similar
results [4–6]). We also demonstrated the model achieves
Page-like evaporation spectrum [8, 9] and predicts black
holes begin emitting Hawking particles in time, logarithmic
in the entropy, i.e., 𝑡∗ ∼ O(𝑟�푆 log 𝑟�푆), where 𝑡∗ ≪ 𝑀3.

Second, we found that “weak” quantum fluctuations,
considered in the vicinity of the horizon, produce metric
fluctuations which, although locally negligible, were shown
to accumulate and on scale of order of the Schwarzschild
radius lead to significant modifications to general relativity.
Physically, the horizon periodically shifts (with frequency 𝜔)
radially outward with an amplitude 𝛿, where 𝑙�푃 ≪ 𝛿 < 𝑀. In
Schwarzschild coordinates themetric fluctuations translate to
shift of the horizon from 𝑟 = 2𝑀 to 𝑟 = 2𝑀+𝛿. One can think
of the weak fluctuations as exerting a drag-like force on the
black hole which produces observable macroscopic quantum
gravity effects. Schematically

𝜔 ∼ 𝑀−1�퐵�퐻 (12)

where 𝜔 is the frequency of the metric fluctuations.
The inverse proportionality between the frequency of

the metric fluctuations and the mass of the black hole was
argued to lead to thermodynamic instability at late times.
Imagine a freely evaporating Schwarzschild black hole with
no perturbations being introduced to it. Given 𝑀�퐵�퐻 = 1/𝑇,
we expect 𝑇 to monotonically increase as the black hole
evaporates. As we can see, (12) dictates that, as the black
hole loses mass, 𝜔 steadily increases. Tracing that evolution
to the final stages of the evaporation we assume the black
hole becomes thermodynamically unstable as𝑀�퐵�퐻 󳨀→ 𝑚�푃,
where 𝑚�푃 is the Planck mass. At that point, the black hole
was conjectured to explode [10]. Here, late-time black hole
evolution is in agreement with the thermodynamic instability
first proposed in [10].

Recently, the authors of [11] numerically solved the
Einstein equations modified with metric fluctuations. Similar
to the current work, they showed that the proposed metric
fluctuations lead to major deviations from the traditional
general relativistic black hole description. In agreement with
our results (in particular (12)), their analysis shows there is

an inverse proportionality between the frequency of the fluc-
tuations, and black hole’s mass, where for a black hole binary
merger, the overlap between the classical and the modified
pictures of the waveform of the emitted gravitational waves
decreases as the mass of the binary gets smaller. That is, as
the frequency of the metric fluctuations increases, the near-
horizon region deviates from general relativity even more
significantly.

3. The Quantum Vacuum Origin of Metric
Fluctuations and Nonlocal Evaporation

In the current section we adopt the Unruh et al. model
and study its effects in Schwarzschild background. Conse-
quently, we propose a dynamical mechanism for a form of
strong nonviolent nonlocality which significantly modifies
the traditional field theory picture in the near-horizon region.
Specifically, we demonstrate how the conjectured in [1] inho-
mogeneous vacuumdensity leads simultaneously to quantum
metric fluctuations [2, 4–6, 11–13] and nonlocal release of
quantum information. One should note we do not attempt
to quantize gravity in the current paper. Although the con-
sidered vacuum fluctuations may not be normalized, which
modifies the stress-energy tensor and makes it nongeneric,
they still contribute to its expectation value.

We aim to make the transition from cosmological scales
to a black hole case more consistent. That is why we would
like to first expand more on the implications of (1) for black
hole backgrounds.

So let us now focus in more detail on how a pair
of neighboring spacetime points 𝑥 and 𝑥�耠 is affected by
the suggested extremely inhomogeneous vacuum density.
Consider the following [1]:

Δ𝜌2 (Δ𝑥) = ⟨{𝑇00 (𝑡, 𝑥) − 𝑇00 (𝑡, 𝑥�耠))2}⟩
(4/3) ⟨𝑇00 (𝑡, 𝑥)⟩2 (13)

where 𝑇00(𝑥) is the vacuum density at 𝑥 and Δ𝑥 ≡ |𝑥 − 𝑥�耠|
denotes the separation between 𝑥 and 𝑥�耠.

Recall our earlier discussion about the evolution of the
local energy density. Specifically, 𝜌 󳨀→ 0 as Δ𝑥 gets large, in
which case 𝑇00(𝑥) and 𝑇00(𝑥�耠) evolve independently.

Keeping that in mind, suppose a classical Schwarzschild
solution

𝑑𝑠2 = −(1 − 2𝑀𝑟 ) 𝑑𝑡2 + (1 − 2𝑀𝑟 )−1 𝑑𝑟2 + 𝑟2𝑑Ω2 (14)

where 𝑑Ω2 = (𝑑𝜃2 + sin2𝜃𝑑𝜙2).
Particularly, we are interested in rewriting (13) in

Schwarzschild geometry.Working in a black hole background
requires us to take into account the large gradientwith respect
to the horizon

𝜌 = 𝜕�푟 (𝜕�푟𝜙)2 (15)

where 𝜌 is the local energy density and 𝜙 is the gravitational
potential. Thus near a matter source (15) is very sensitive to
changes in the radial coordinate.
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Therefore, by taking into account (15), we can rewrite (13)
in Schwarzschild background as

∫
�푅
∫�푥󸀠
�푥
𝐽2 = ∫

�푅
∫�푥󸀠
�푥

⟨{𝜕�푟𝐽 (𝑡, 𝑥) − 𝜕�푟𝐽 (𝑡, 𝑥�耠))2}⟩
(4/3) ⟨𝜕�푟𝐽 (𝑡, 𝑥)⟩2 (16)

where𝑅 denotes the near-horizon region and 𝐽 is the vacuum
accumulation term.

Notice that since we no longer work on cosmological
scales, (15) becomes relevant, and so we substituted the vac-
uum energy density terms, defined on particular spacetime
points, with 𝐽. Both terms 𝐽(𝑥) and 𝐽(𝑥�耠) are calculated with
respect to the horizon. Here, 𝐽 is very sensitive to radial
changes because of (15). In case 𝑥 and 𝑥�耠 both lie on the same𝑟 = 𝑐𝑜𝑛𝑠𝑡 surface, the expectation value of 𝐽 between them
varies stochastically.

Because 𝐽 is of particular importance in the near-horizon
neighborhood, let us now focus on its general properties.

Since the local energy density in a spacetime regionwhich
includes a black hole exhibits Gaussian-like distribution (15),
we assume that as 𝑟 󳨀→ ∞, ⟨𝐽⟩ 󳨀→ 0. Although this may
be true for the expectation value of 𝐽, its actual value must
still constantly fluctuate due to the extremely inhomogeneous
vacuum density. Clearly, we can see that, in the near-horizon
region, 𝐽 has a nonzero expectation value ∫

�푅
⟨𝐽⟩ ≫ 0.

Therefore, the strongly radial-dependent behavior of 𝐽 in the
near-horizon region is trivially given as

∫
�푅

𝜕 ⟨𝐽⟩𝜕𝑟 (17)

Where depending on 𝑟 with respect to the horizon, the
general solutions to (17) are

∫
�푅

𝜕 ⟨𝐽⟩𝜕𝑟 = {{{
0 𝑓𝑜𝑟 𝑟 > 𝑟�푆
> 0 𝑓𝑜𝑟 2𝑀 < 𝑟 < 𝑟�푆 (18)

Lastly, we can easily extend (17) to include an arbitrary
number of gauge fields as

∫
�푅
⟨𝑇�휇]⟩ + 𝜕𝜆𝜕𝑟 (19)

where 𝜆 is the vacuum and 𝑇�휇] is the stress-energy tensor.
Note that, at constant 𝑟 from the horizon, the energy

density of the vacuum fluctuations depends on the internal
degrees of freedom of the black hole and varies stochastically.

3.1. Metric Fluctuations: Weak Quantum Fluctuations = Local
Phase Transitions. In this subsection we demonstrate how
the proposed inhomogeneous vacuum density can modify
the classical near-horizon physics and thus yield metric fluc-
tuations. Specifically, by embracing the harmonic-oscillator-
like constant phase transitions of ∇𝐻, we rewrite (5) in
Schwarzschild background and study how the metric back-
reacts. Hence, we show that in this scenario one can obtain
the conjectured quantum corrections to general relativity in
the region just outside the black hole. Like we saw earlier, the

r=0

r=2M

S1
S2

Figure 1: The bold red line is the singularity, and the bold black
line, 𝑟 = 2𝑀, is the horizon. Imagine that 𝑆1 coincides with the
horizon, and thus modes located on 𝑆1 are spacelike separated from
an observer outside the black hole. Further, imagine that 𝑆2 is placed
in the vicinity of the horizon.

microscopically extremely inhomogeneous vacuum density
gives freedom to the scale factor to be locally expanding or
contracting. Recall that in (5) we defined a local Hubble rate
term∇𝐻 and argued that, due to the inhomogeneous vacuum
density, it has the dynamics of a harmonic oscillator (7).
Namely, it constantly changes between phases of expansion
and contraction.

For the sake of completeness we will examine coarse-
grained and fine-grained version of the argument.

3.1.1. Coarse-Grained. In the particular case we neglect con-
tributions coming from individual degrees of freedom and
instead only focus on the effective (macroscopic) back-
reaction on scale of order of the Schwarzschild radius.

Keeping in mind the large field-strength radial depen-
dence in this region (15), we can rewrite (5) as

∫�푆2
�푆1
∇𝐻 = −4𝜋𝐺∫�푆2

�푆1
𝜕�푡 ⟨𝐽⟩ (20)

Unlike earlier, where we considered ∇𝐻 between the neigh-
boring points 𝑥 and 𝑥�耠, we now evaluate it in the region
between S2 and S1 (the horizon), Figure 1.

To better demonstrate the back-reaction of the near-
horizon geometry (20), consider the following gedanken
experiment. Imagine S2 is a timelike hypersurface the size of
the Schwarzschild radius just outside the black hole, coupled
to the horizon degrees of freedom. Suppose we wish to
evaluate the constant ∇𝐻 phase transitions in the region
between the hypersurface and the horizon. We assume this
region constantly undergoes uniform phase transitions with
characteristic oscillation cycle time 𝑇, where by “uniform” we
mean that, once every 𝑇, a phase change of ∇𝐻 in that region
takes place. Unlike the cosmological case [1], here we assume
that on every 𝑇 the phase transitions average out to a small
negative value. Here, 𝑇 is given as

𝑇 = 2𝜋Ω (21)

where Ω is time-dependent frequency which depends on⟨𝑇00⟩.
That constant change between phases of expansion and

contraction just outside the black hole (assuming a slight
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Figure 2: Similar to Figure 1, imagine 𝑆1 coincides with the
horizon. The dotted line, 𝑆2, is an artificial (nonphysical) timelike
hypersurface in the vicinity of the horizon. Note that the blue dots𝑥�푖 and 𝑥�耠�푖 are pairs of corresponding points, where 𝑥�푖 ∈ 𝑆1, 𝑥�耠�푖 ∈ 𝑆2,
and 𝑥�푖, 𝑥�耠�푖 ∈ 𝑆�푖. Also,∑�푖 𝑥�푖 ≡ 𝑆1 and∑�푖 𝑥�耠�푖 ≡ 𝑆2.

negative excess every 𝑇) yields the dragging-like effect on
the horizon. For simplicity, one can imagine the conjectured
dynamics outside the black hole as the back-reaction of the
horizon to a vector field coupled to matter fields in Rindler
space, wherewe consider only contributions frommodes very
close to the horizon.

Physically, the back-reaction of the near-horizon region
manifests as a slight outward shift of the horizon from 𝑟 = 2𝑀
to 𝑟 = 2𝑀 + 𝛿 in Schwarzschild coordinates.

Imagine a far-away observer who cannot probe the region
near the horizon. As far as she is concerned, she may
effectively interpret thosemetric fluctuations as a Planck scale
structure just outside the horizon (similar to the stretched
horizon in observer complementarity or gravitational wave
“echoes”). Different proposals have recently been made
regarding the possibility of observing such quantum gravity
effects (see [11–13]).

In conclusion, we can see that by rewriting (5) in a
Schwarzschild black hole background we can effectively
derive the proposed in [2–6, 11–13] metric fluctuations.

3.1.2. Fine-Grained. In this case we focus on contributions
coming from individual degrees of freedom, i.e., phase tran-
sitions of ∇𝐻 between a pair of corresponding points (say, 𝑥
and 𝑥�耠), where both lie on the same spacelike hypersurface𝑆�푖 in the near-horizon region. Namely, 𝑥 ∈ 𝑆1, 𝑥�耠 ∈ 𝑆2, and𝑥, 𝑥�耠 ∈ 𝑆�푖, Figure 2.

Suppose we foliate the black hole spacetime into 𝑡 = 𝑐𝑜𝑛𝑠𝑡
spacelike hypersurfaces. The particular foliation F forms
a family of extrinsically flat slicing. The slicing is generic
and compatible with the Killing symmetries of the spheri-
cally symmetric spacetime. Thus F preserves the spherical
symmetry of the horizon geometry. The foliation can be

intuitively identified with a family of observers that only
have time and radial components. We have chosen this more
trivial geometry-preserving foliation as we aim to make the
study of the back-reaction of the metric to individual 2-point
functions easier.

Considering the particular foliation, we can straightfor-
wardly rewrite (20) as

N∑
�푖=1

∇𝐻�푖 = −4𝜋𝐺N∑
�푖=1

⟨𝐽 (𝑥�푖, 𝑥�耠�푖)⟩ (22)

where 𝑥 and 𝑥�耠 lie on the same spacelike hypersurface 𝑆�푖
and also ∑�푖 𝑥�푖 ≡ 𝑆1 and ∑�푖 𝑥�耠�푖 ≡ 𝑆2. We think of S2 as
an artificial (nonphysical) 𝑟 = 𝑐𝑜𝑛𝑠𝑡 timelike hypersurface,
and we assume it respects the same foliation as the horizon,
Figure 2.

Evidently from (22), and in agreement with what we have
argued earlier (5), the phase transitions of ∇𝐻 between a pair
of neighboring points depend on the vacuum accumulation
term 𝐽 between them. Note that, due to the stochastic
nature of the inhomogeneous vacuum density, the r.h.s. of
(22) fluctuates constantly with field strength of order of
the expectation value of the vacuum density in the region
⟨𝐽(𝑥, 𝑥�耠)⟩ ≈ ∫�푥󸀠

�푥
⟨𝑇00⟩.

However, (22) does not suffice for a complete description
of the near-horizon dynamics. In addition, we also need to
examine the evolution of the local scale factor. The equation
of motion of 𝑎(𝑡, 𝑥) away frommatter source is given as [1]

tanΘ�푥 = Ω (0, 𝑥)Ω (0, 𝑥�耠) tanΘ�푥
+ 4𝜋𝐺Ω (0, 𝑥�耠) ∫

�푥󸀠

�푥
𝐽 (0, 𝑥�耠) 𝑑𝑙�耠

(23)

whereΘ�푥 is the initial phase of 𝑎(𝑡, 𝑥) at some arbitrary 𝑥.
Similar to what we did with (22), we now wish to express

the equation ofmotion of 𝑎(𝑡, 𝑥) in the vicinity of the horizon.
We do that in terms of the vacuum accumulation between a
pair of corresponding points both of which lie on the same
spacelike hypersurface. Neglecting the initial phase of 𝑎(𝑡, 𝑥)
because of its constant fluctuations, we get

tanΘ�푥,�푥󸀠 = ∫�푥
󸀠

�푥

Ω(𝑥)Ω (𝑥�耠) tanΘ�푥,�푥󸀠 + 4𝜋𝐺Ω(𝑥�耠) ⟨𝐽 (𝑥, 𝑥�耠)⟩ (24)

where ⟨𝐽(𝑥, 𝑥�耠)⟩ ≈ ∫�푥󸀠
�푥
⟨𝑇00⟩. One should recall we focus on

the small negative excess of the fluctuations every 𝑇.
The back-reaction of the near black hole geometry to the

fluctuations between a pair of points on a single slice (22) is
negligible, regardless of their microscopically singular expec-
tation value. However, the spatial separation between the
pair, Δ𝑥, is constantly fluctuating in a harmonic-oscillator-
like manner between phases of expansion and contraction
due to the inhomogeneous vacuum density. Consequently,
by considering the constant fluctuations of Δ𝑥 on all hyper-
surfaces of order of the Schwarzschild radius and assuming a
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subtle negative excess on each slice every 𝑇 = 2𝜋/Ω, the back-
reaction accumulates and leads to deviations from general
relativity which manifest in metric fluctuations.

In case 𝑀�퐵�퐻 = 𝑐𝑜𝑛𝑠𝑡, then ⟨𝐽(𝑥, 𝑥�耠)⟩ depends on the
dimensionality of the internal Hilbert space of the black hole
and thus fluctuates stochastically

⟨𝐽 (𝑥, 𝑥�耠)⟩ ∼ ∫�푥󸀠
�푥
⟨𝑇00⟩ ∼ dim (H�푖�푛�푡) (25)

Therefore, following (15) and considering the microscopic
back-reaction of the metric to the constantly fluctuating
inhomogeneous vacuum density, the action for the near-
horizon region reads

𝐼�푛�푒�푎�푟 = ∫
�푅
∫𝑑𝑥∫𝑑𝑡 [𝜕�푟𝜆 + 𝑇00 (𝑥, 𝑥�耠) 𝜕�푟 (𝑥, 𝑥�耠) 𝜕�푡𝜆] (26)

where the radial-dependent term of the vacuum 𝜕�푟𝜆 is given
by (15). The time-dependent vacuum term 𝜕�푡𝜆 is taken on a𝑟 = 𝑐𝑜𝑛𝑠𝑡 surface with respect to the horizon and varies with
the change in the mass of the black hole. The action is given
in terms of couplings between the inhomogeneous constantly
fluctuating and radially dependent vacuum term 𝜆 and the
local energy density.

In summary, we demonstrated that when we consider
the accumulated back-reaction of the background metric
to the weak quantum vacuum fluctuations (i.e., constant
phase transitions of ∇𝐻 on different hypersurfaces) across
the whole horizon area,O(𝑟�푆), we effectively get the proposed
quantum metric fluctuations. The current derivation of these
“soft” quantum modifications to the effective black hole
geometry may be thought of as the microscopic origin of the
metric fluctuations proposed by Giddings [4–6].

3.2. Nonlocal Black Hole Evaporation via Strong Quantum
Vacuum Fluctuations. In this subsection we continue the
study of the back-reaction of a Schwarzschild black hole to
the constantly fluctuating inhomogeneous vacuum density.
More precisely, we examine what effects the conjectured in
[2] strong quantum vacuum fluctuations have, when they are
considered onto the horizon. Specifically, we focus on how the
locality constraint of local quantum field theory is modified
due to the back-reaction of the metric to those fluctuations.
As a result, we argue the horizon geometry need not always
respect locality.

Given the fundamental degrees of freedom are not con-
tinuously distributed, we assume the semiclassical geometry
to be just an effective field theory. Thus we expect the local
quantum field theory evolution to only be approximately
correct. As a result, deviations from it should be present
in high energy regimes. For instance, black holes are one
such place where we expect nonlocal corrections to manifest.
That is the case since due to the large field-strength radial
dependence in the near-horizon region, ⟨𝑇00 (𝑥)⟩ ≫ ⟨𝑇00(𝑦)⟩,
where 2𝑀 ≤ 𝑥 ≤ 𝑅 and 𝑦 > 𝑅.

The particular strong vacuum fluctuations are assumed
to have high enough local energy density as to yield “soft”
(i.e., brief and highly localized) nonlocal corrections to

local quantum field theory. Similar to [1], we assume these
soft corrections manifest in the form of local singularity
points.

Because in [1] the local scale factor 𝑎(𝑡, 𝑥), defined at each
spacetime point, was argued to have a harmonic-oscillator-
like behavior, as it changes phases, 𝑎(𝑡, 𝑥) must inevitably go
through zero, i.e., yield a local singularity point. However,
this was shown to not be physically problematic. Since we
interpret the local scale factor as a harmonic oscillator,𝑎(𝑡, 𝑥) = 0 is just a generic part of the oscillation cycle which
takes place every 𝑇. Namely, a harmonic oscillator cannot
change sign (phase) without passing through zero.Therefore,
in a generic oscillation cycle a singularity point disappears
almost immediately.

Similarly here, because we interpret individual strong
vacuumfluctuations onto the horizon as harmonic oscillators,
the microscopically singular expectation value (as predicted
by quantum field theory) of a single strong fluctuation at
a given point on the horizon should not be problematic.
Likewise, we assume the local singularity point disappears
almost immediately.

Physically, a strong vacuum fluctuation on the hori-
zon briefly violates the generic locality constraint of local
quantum field theory in that small region. As a result, this
deviation from classicality allows quantum information to
escape to asymptotic infinity at the necessary rate. Due to the
small domain of dependence and brief lifespan of the local
singularity points, their effects on a freely falling observer
are negligible.These nonlocal corrections to the semiclassical
geometry, although “soft,” have significant effect on the
black hole over periods compared to its lifetime. That being
said, we assume that, since the inhomogeneous vacuum
density is constantly fluctuating, it will carry out quantum
information at a rate of O(1) per light-crossing time as to
restore unitary quantum mechanics. Such local quantum
field theory modifications allow evaporation of information-
carryingHawking particles to begin as early as the scrambling
time.

Let us clarify what we mean when we characterize the
nonlocal corrections as “soft.”The local quantum field theory
deviations (i.e., local singularity points) are “brief” in the
sense that they have very short lifespan of order of the lifetime
of the fluctuation. Furthermore, the deviations are considered
to be “highly localized” (i.e., short wavelength/high momen-
tum) since they manifest on scales of order of the wavelength
of the fluctuation. Thus a strong vacuum fluctuation has
a limited domain of dependence, and cannot lead to O(1)
corrections to the background metric of a solar mass black
hole.

Let us now point out an important distinction between
the local singularity points on cosmological scales (away from
a black hole) [1] and onto the horizon. We claim there is
an intrinsic difference in the stage of the oscillation cycle
during which a singularity point is produced. More precisely,
a strong vacuum fluctuation (onto the horizon) produces
a local singularity when, during an oscillation cycle 𝑇, it
reaches the maximum of its local energy density, which also
happens to be above a certain threshold 𝜁. On the other hand,
the local scale factor 𝑎(𝑡, 𝑥) (away fromablack hole) produces
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a singularity point when it reaches zero during its oscillation
cycle.

Moreover, the local singularity points, although similar,
should not be mistaken with spacetime defects (see [14, 15]).
For instance, (i) at a local singularity point/spacetime defect
the curvature is divergent, and (ii) particle passing through
(near) a spacetime defect/local singularity will be scattered
off, i.e., experience a local Lorentz boost.

4. Casimir Stress Interpretation

In [1] the Casimir effect was used as a tool for illustrating
the effects of vacuum fluctuations. In the current Section
we present a toy model in which we restate the conjectured
quantum metric fluctuations in terms of the Casimir effect in
the near-horizon region. Specifically, we present the metric
fluctuations in the language of the Casimir effect just outside
the black hole (between S1 and S2, Figure 1).

Likewise, we will examine two distinct cases: coarse-
grained and fine-grained.

In its general form, the Casimir stress equation is given as
[1]

𝑆 (𝑡, 𝑥, 𝑦) = 𝑇�푖�푛�푠�푖�푑�푒�푧�푧 − 𝑇�표�푢�푡�푠�푖�푑�푒�푧�푧 (27)

In this picture, imagine the role of the pair of conducting
plates is played by S1 and S2, Figure 1.

4.1. Coarse-Grained. Similar to Section 3, we are only inter-
ested in the effective (macroscopic) dynamics and thus
neglect contributions from individual degrees of freedom.

We can straightforwardly expand (27) in the near-horizon
region as

∫�푆2
�푆1
𝑆 (𝑡, 𝑥, 𝑦) = ∫�푆2

�푆1
⟨𝜕�푟𝜌�푖�푛⟩ − ∫∞

�푆2
⟨𝜕�푟𝜌�표�푢�푡⟩ (28)

where, as we showed earlier, the expectation value of the
radially dependent local energy density ⟨𝜕�푟𝜌�푖�푛⟩ is of order of
the vacuum accumulation term in that region

∫�푆2
�푆1
⟨𝜕�푟𝜌�푖�푛⟩ ∼ ∫�푆2

�푆1
𝜕�푟 ⟨𝐽⟩ (29)

Following (18), we expect ∫
�푅
⟨𝐽⟩ ≫ 0 and ∫

∞
⟨𝐽⟩ = 0. That is,

the second termon the r.h.s. of (28) vanishes at the asymptotic
limit; namely ⟨𝜌�표�푢�푡⟩ 󳨀→ 0 as 𝑟 󳨀→ ∞.

Therefore, we generally get

⟨𝑇�푖�푛�푠�푖�푑�푒�푧�푧 ⟩ ≫ ⟨𝑇�표�푢�푡�푠�푖�푑�푒�푧�푧 ⟩ (30)

One should keep in mind that, regardless of whether ⟨𝐽⟩
vanishes or not, it constantly fluctuates due to the inhomo-
geneous vacuum density.

Notice that (30) is in agreement with the general con-
struction of the Casimir effect (27).

Considering the microscopic back-reaction of the spheri-
cally symmetric background metric that we discussed earlier
and the greater energy density in the vicinity of the horizon
(30), one can easily see how the proposed quantum metric
fluctuations of order of the Schwarzschild radius emerge in
this setting.

4.2. Fine-Grained. Similar to our approach in Section 3.1.2,
we begin by foliating the horizon region into individual
spacelike hypersurfaces. As a result, we can now express the
l.h.s. of (28) as

∫
�푅
𝑆 (𝑡, 𝑥, 𝑦) = N∑

�푖=1

⟨𝐽 (𝑥�푖, 𝑥�耠�푖)⟩ (31)

Evidently, the nonvanishing l.h.s. of (28) can straightfor-
wardly be rewritten as a linear combination of vacuum
accumulation terms, defined on individual slices.

Due to the inhomogeneous vacuum density, Δ𝑥 on any
given slice constantly fluctuates between phases of expan-
sion and contraction. Moreover, because of the strong field
gradient (15) and considering (30), we assume that in the
large N limit (i.e., of order of the Schwarzschild radius) the
accumulated back-reaction is positive. Thus, an observer at
asymptotic infinity sees oscillations of the horizon as a back-
reaction of the underlying black hole metric.

In summary, we see that with minimal assumptions
one can restate our earlier argument about quantum metric
fluctuations in terms of the Casimir effect in a near black hole
region.

5. Conclusions

In the current work we studied how a Schwarzschild black
hole back-reacts to the constantly fluctuating inhomogeneous
vacuum density proposed in [1]. More precisely, embracing
the microscopically singular expectation value of the local
energy density of the inhomogeneous vacuum fluctuations
(predicted by quantum field theory), we examined how a
black hole metric back-reacts in two distinct regions: the
vicinity of the black hole and onto the horizon. As a result, we
demonstrated that vacuum fluctuations above a given thresh-
old, considered onto the horizon, cause deviations from local
quantum field theory. Meanwhile, fluctuations below that
threshold, considered in the vicinity of the horizon, lead
to potentially observable metric fluctuations of order of the
Schwarzschild radius.

Physically, the conjectured modifications of local quan-
tum field theory, induced by the strong vacuum fluctuations
onto the horizon, were argued to lead to nonlocal release of
information-carrying Hawking particles. In fact, we argued
that in this scenario a black hole can begin radiating quantum
information to infinity as early as the scrambling time [2].

On the other hand, we argued that weak fluctuations in
the near-horizon region yield observable macroscopic quan-
tum gravity effects in the form of metric fluctuations of order
of the Schwarzschild radius, that is, constant oscillations
of the horizon between 𝑟 = 2𝑀 and 𝑟 = 2𝑀 + 𝛿. As
far as a distant observer is concerned, we assume she may
interpret the conjectured metric fluctuations as a physical
membrane just outside the horizon.Thus the proposedmetric
fluctuations may serve as the microscopic origin of the
stretched horizon in observer complementarity [16]. Also, we
assume the proposed metric fluctuations play a significant
role in binary black hole mergers. In particular, they may
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produce observable postmerger gravitational wave “echoes”
similar to [17].

The recent advances in gravitational wave astronomyhave
opened new possibilities for experimentally testing models,
similar to this one, which predict deviations from general
relativity in the near-horizon region. In addition, the current
scenario could also be approached from an accretion disk
perspective as we believe the metric fluctuations may have
measurable effects on accretion disk flows around a black
hole.
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The evaluation of the energy-momentum distribution for a new four-dimensional, spherically symmetric, static and charged
black hole spacetime geometry with constant nonzero topological Euler density is performed by using the energy-momentum
complexes of Einstein andMøller.This black hole solution was recently developed in the context of the coupled Einstein–nonlinear
electrodynamics of the Born-Infeld type. The energy is found to depend on the mass 𝑀 and the charge 𝑞 of the black hole, the
cosmological constant Λ, and the radial coordinate 𝑟, while in both prescriptions all the momenta vanish. Some limiting and
particular cases are analyzed and discussed, illustrating the rather extraordinary character of the spacetime geometry considered.

1. Introduction

The issue of energy-momentum localization systematised
researchers’ work in a special way. Looking deeply into
the problem, it was clear that the main difficulty consists
in the lack of a proper definition for the energy density
of gravitational backgrounds. In this light, much research
work has been done over the last years concerning the
best tools used for the energy-momentum localization. A
brief survey points out the leading role played notably by
super-energy tensors [1–4], quasi-local expressions [5–10],
and the famous energy-momentum complexes of Einstein
[11, 12], Landau-Lifshitz [13], Papapetrou [14], Bergmann-
Thomson [15], Møller [16], and Weinberg [17]. Among the
aforementioned computational tools, the energy-momentum
complexes have been proven to be interesting and useful as
well due to the diverse and numerous reasonable expressions
that can be obtained by their application. Some observations

are in order here. First, according to their underlying math-
ematical mechanism, their construction involves the use
of two parts, one for the matter and the other for the
gravitational field. Second, despite the fact that the energy-
momentum complexes allow one to obtain many interesting
and physically meaningful results for different space-time
geometries, their construction is connected to an inherent
central problem, namely, their coordinate dependence. As
it is well-known from the relevant literature, this problem
has found a solution in the case of the Møller energy-
momentum complex. Indeed, the calculations for the energy-
momentum of a given gravitational background in theMøller
prescription enable the use of any coordinates such that
the energy density component transforms as a four-vector
density under purely spatial coordinate transformations for
metrics with a line element of the form 𝑑𝑠2 = 𝑔00𝑑𝑡2 −𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗. As for the other energy-momentum complexes,
the Schwarzschild Cartesian coordinates and the Kerr-Schild
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Cartesian coordinates have to be utilised for the calculations
providing physically reasonable results for the cases of space-
time geometries in (3+1), (2+1), and (1+1) dimensions (see,
e.g., [18–34] and references therein). At this point it should
be noticed that, in order to avoid the coordinate dependence,
an alternative method for the computation of the energy
and momentum distributions is provided by the teleparallel
equivalent of general relativity and certain modified versions
of the teleparallel theory (see, e.g., [35–40] and references
therein).

Regarding the Einstein, Landau-Lifshitz, Papapetrou,
Bergmann-Thomson,Weinberg, andMøller energy-momen-
tum complexes there is an agreement with the definition
of the quasi-local mass introduced by Penrose [41] and
developed by Tod [42] for some gravitational backgrounds.
We point out that some rather recent works show that several
energy-momentum complexes “provide the same results”
for any metric of the Kerr-Schild class and indeed even
for solutions that are more general than those of the Kerr-
Schild class (see, e.g., [43, 44] and the interesting article [45]
on the subject). Further, the entire historical development
of the energy-momentum complexes that started with the
formulation of their definitions also includes the attempts
made for their rehabilitation [46–49]. In this sense, perhaps
the most interesting issue was the fact that different energy-
momentum complexes yield the same results for the energy-
momentum distribution in the case of various gravitating
systems.

Thepresent paper has the following structure: in Section 2
we describe the new class of four-dimensional spherically
symmetric, static, and charged black hole solutions with
constant nonzero topological Euler density which we will
consider. Section 3 focuses on the presentation of the Einstein
and Møller prescriptions used for performing the calcu-
lations. In Section 4 we present the calculations and the
results obtained for the energy andmomentum distributions.
Finally, in the discussion provided in Section 5, we give a brief
description of the results obtained as well as some limiting
and particular cases. Throughout we use geometrized units
(𝑐 = 𝐺 = 1) and the signature chosen is (+, −, −, −). Further,
the calculations are performed by using the Schwarzschild
Cartesian coordinates {𝑡, 𝑥, 𝑦, 𝑧} for the Einstein energy-
momentum complex and the Schwarzschild coordinates{𝑡, 𝑟, 𝜃, 𝜑} for theMøller energy-momentumcomplex. Finally,
Greek indices run from 0 to 3, while Latin indices range from1 to 3.
2. Description of the New Black Hole Solution
with Constant Topological Euler Density

This section deals with the presentation of the new four-
dimensional spherically symmetric, static, and charged black
hole solution with constant topological Euler density [50]
examined in the present study. Connecting geometry with
topology, from the generalised Gauss–Bonnet theorem (see,
e.g., [51]) applied to four dimensions the Euler–Poincaré
characteristic is obtained by the integral of the Euler density

G = 132𝜋2 (𝑅𝜅𝜆𝜇]𝑅𝜅𝜆𝜇] − 4𝑅𝜅𝜆𝑅𝜅𝜆 + 𝑅2) , (1)

where 𝑅𝜅𝜆𝜇] is the Riemann curvature tensor, 𝑅𝜅𝜆 is the
Ricci tensor, and 𝑅 is the Ricci scalar (often the topological
Euler density is given without the factor 1/32𝜋2 (see, e.g.,
[52]). In fact, the terms in the parenthesis constitute the so-
called “quadraticGauss-Bonnet term” in the Lovelock gravity
Lagrangian). For a general, spherically symmetric and static
geometry described by the line element

𝑑𝑠2 = 𝑓 (𝑟) 𝑑𝑡2 − 𝑓 (𝑟)−1 𝑑𝑟2 − 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜑2) (2)

(1) becomes

G = 4𝑟2 {𝑓󸀠 (𝑟)2 + [𝑓 (𝑟) − 1] 𝑓󸀠󸀠 (𝑟)} , (3)

where the constant 32𝜋2 has been absorbed inG. For constant
topological density G = 𝛼 ̸= 0, (3) gives for the metric
function

𝑓 (𝑟) = 1 ± (1 − 2𝐴 + 𝐵𝑟 + 𝛼𝑟424 )
1/2 , (4)

with 𝐴, 𝐵 arbitrary constants. In what follows, we will keep
only the negative sign of (4), as it is the one leading to black
hole solutions.

The new solution derived in [50] is based on the coupling
of gravity to nonlinear electromagnetic fields as described
by the nonlinear generalisation of Maxwell’s electrodynamics
according to the Born–Infeld theory.Thus, in the chosen case
of electrovacuum, the radial electric field,

𝐸 (𝑟) = 𝑟24𝑞 (4𝑅𝜇]𝑅𝜇] − 𝑅2)1/2 (5)

where 𝑞 is the electric charge, solves the Einstein–nonlinear
electrodynamics coupled system with the Ricci tensor 𝑅𝜇]
and the Ricci scalar 𝑅 calculated by using the line element
(2) and the metric function (4). In fact, with the values𝐴 = 1/2 + 𝑞2Λ/3, 𝐵 = 4𝑀Λ/3, and 𝛼 = 8Λ2/3, with Λ
being the cosmological constant and𝑀 being the mass of the
black hole, the line element (2) with the metric function (4)
becomes

𝑑𝑠2 = [[1 −
√ 4𝑀Λ𝑟3 + Λ2𝑟49 − 2𝑞2Λ3 ]

]𝑑𝑡
2

− [[1 −
√4𝑀Λ𝑟3 + Λ2𝑟49 − 2𝑞2Λ3 ]

]
−1

𝑑𝑟2
− 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑2) ,

(6)

describing a Reissner–Nordström–de Sitter black hole space-
time geometry.

Now one can distinguish between two different cases,
namely, the massive case (𝑀 ̸= 0) and the massless case
(𝑀 = 0). In the first case, (6), when 𝑞 = 0 and Λ > 0,
shows that the geometry is regular everywhere except at the
origin 𝑟 = 0. However, this case has no particular interest
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from the electrodynamic viewpoint. Black hole solutions
with zero mass were proposed as a conjecture by A. Stro-
minger [53] in order to explain conifold singularities in the
context of string theory. In particular, the ten-dimensional
IIA (resp., IIB) string theory admits black D2- (resp., D3-)
brane solutions with a mass proportional to their area. After
applying a Calabi-Yau compactification these solutions may
wrap around minimal 2-surfaces (resp., 3-surfaces) in the
Calabi-Yau space and they appear as four-dimensional black
holes. As the area of the surface around which they wrap is let
to go to zero, the corresponding extremal black holes become
massless, topologically stable, structures. In fact, the existence
of stable black hole solutions with zero ADM mass was
shown in [54] although their relation to themassless solutions
suggested in [53] is still not clarified. Indeed, since then
there has been an increasing interest in massless black hole
solutions (see, e.g., [55, 56] and references therein). Recently,
massless black hole solutions were obtained from the dyonic
black hole solution of the Einstein–Maxwell–dilaton thery
[57]. Although the black hole solution examined here does
not originate from string theory we will proceed to the
consideration of the massless (𝑀 = 0) case despite its
physically dubious character.

Thus for𝑀 = 0, the line element (6) becomes

𝑑𝑠2 = [[1 −
√Λ2𝑟49 − 2𝑞2Λ3 ]

]𝑑𝑡
2

− [[1 −
√Λ2𝑟49 − 2𝑞2Λ3 ]

]
−1

𝑑𝑟2
− 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑2) .

(7)

Here, when 𝑞 = 0 andΛ ̸= 0 the de Sitter solution is obtained,
while for 𝑞 ̸= 0 but Λ = 0 one gets the Minkowski solution.
In the case 𝑞 ̸= 0 and Λ < 0, an event horizon exists and the
spacetime is singular at the origin 𝑟 = 0, while the electric
field is everywhere regularisable. An overall detailed study
of the black hole’s behavior in the massive as well as in the
massless case is presented in [50].

3. Einstein and Møller
Energy-Momentum Complexes

In this section we outline the definitions of the Einstein and
Møller energy-momentum complexes.

The expression for the Einstein energy-momentum com-
plex [11] in the case of a (3+1)-dimensional gravitational
background was later found to be given by

𝜃𝜇] = 116𝜋ℎ𝜇𝜆],𝜆. (8)

The Freud superpotentials ℎ𝜇𝜆] in (8) are calculated by the
compact formula (found by Landau and Lifshitz)

ℎ𝜇𝜆] = 1√−𝑔𝑔]𝜎 [−𝑔 (𝑔𝜇𝜎𝑔𝜆𝜅 − 𝑔𝜆𝜎𝑔𝜇𝜅)],𝜅 (9)

and satisfy the antisymmetric property

ℎ𝜇𝜆] = −ℎ𝜆𝜇] . (10)

We notice that in the Einstein prescription the local conser-
vation law is respected:

𝜃𝜇],𝜇 = 0. (11)

Consequently, the energy and momentum can be calculated
in Einstein’s prescription by

𝑃] =∭𝜃0]𝑑𝑥1𝑑𝑥2𝑑𝑥3. (12)

Here, 𝜃00 and 𝜃0𝑖 represent the energy and momentum density
components, respectively.

Applying Gauss’ theorem, the energy-momentum reads

𝑃𝜇 = 116𝜋 ∬ℎ0𝑖𝜇 𝑛𝑖𝑑𝑆, (13)

with 𝑛𝑖 being the outward unit normal vector over the surface𝑑𝑆. In (13) the component 𝑃0 represents the energy.
According to [16], the Møller energy-momentum com-

plex is

J
𝜇
] = 18𝜋𝑀𝜇𝜆],𝜆, (14)

with the Møller superpotentials𝑀𝜇𝜆] given by

𝑀𝜇𝜆] = √−𝑔(𝜕𝑔]𝜎𝜕𝑥𝜅 − 𝜕𝑔]𝜅𝜕𝑥𝜎 )𝑔𝜇𝜅𝑔𝜆𝜎. (15)

The Møller superpotentials 𝑀𝜇𝜆] satisfy the antisymmetric
property

𝑀𝜇𝜆] = −𝑀𝜆𝜇] . (16)

As in the case of the Einstein prescription, in the Møller
prescription the local conservation law is also satisfied:

𝜕J𝜇]𝜕𝑥𝜇 = 0. (17)

In (17) the component J00 represents the energy density and
J0𝑖 gives the momentum density components.

For the Møller energy-momentum complex, the energy-
momentum distributions are given by

𝑃] =∭J
0
]𝑑𝑥1𝑑𝑥2𝑑𝑥3. (18)

In particular, the energy distribution can be computed by

𝐸 =∭J
0
0𝑑𝑥1𝑑𝑥2𝑑𝑥3. (19)

Using Gauss’ theorem one gets

𝑃] = 18𝜋 ∬𝑀0𝑖] 𝑛𝑖𝑑𝑆, (20)

where, again, 𝑛𝑖 is the outward unit normal vector over the
surface 𝑑𝑆.
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4. Energy and Momentum Distribution
for the Black Hole Solution with Constant
Topological Euler Density

To compute the energy and momenta with the Einstein
energy-momentumcomplex, we have to transform themetric
given by the line element (6) in Schwarzschild Cartesian
coordinates by using the coordinate transformation 𝑥 =𝑟 sin 𝜃 cos𝜑, 𝑦 = 𝑟 sin 𝜃 sin 𝜑, 𝑧 = 𝑟 cos 𝜃. Thus, we obtain
a new form for the line element:

𝑑𝑠2 = 𝑓 (𝑟) 𝑑𝑡2 − (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)
− 𝑓−1 (𝑟) − 1𝑟2 (𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 𝑧𝑑𝑧)2 . (21)

In Schwarzschild Cartesian coordinates for ] = 0, 1, 2, 3 and𝑖 = 1, 2, 3 we find the following vanishing components of the
superpotentials ℎ0𝑖] :

ℎ011 = ℎ021 = ℎ031 = 0,
ℎ012 = ℎ022 = ℎ032 = 0,
ℎ013 = ℎ023 = ℎ033 = 0.

(22)

In order to compute the nonvanishing components of the
superpotentials in the Einstein prescription we use (9) and
we obtain the following expressions:

ℎ010 = 2𝑥𝑟2 √4𝑀Λ𝑟3 + Λ2𝑟49 − 2𝑞2Λ3 , (23)

ℎ020 = 2𝑦𝑟2 √4𝑀Λ𝑟3 + Λ2𝑟49 − 2𝑞2Λ3 , (24)

ℎ030 = 2𝑧𝑟2 √4𝑀Λ𝑟3 + Λ2𝑟49 − 2𝑞2Λ3 . (25)

With the aid of the line element (21), the expression for
the energy given by (13), and the expressions (23)-(25) for
the superpotentials, we get the energy distribution for the
examined black hole in the Einstein prescription:

𝐸𝐸 = 𝑟2√4𝑀Λ𝑟3 + Λ2𝑟49 − 2𝑞2Λ3 . (26)

In order to calculate the momentum components we employ
(13) and (22) and performing the calculations we find that all
the momenta vanish:

𝑃𝑥 = 𝑃𝑦 = 𝑃𝑧 = 0. (27)

In the Møller prescription we perform the calculations in
Schwarzschild coordinates {𝑡, 𝑟, 𝜃, 𝜑} with the aid of the line
element (6) and we find only one nonvanishing superpoten-
tial:

𝑀010 = −16 12𝑀Λ + 4Λ2𝑟3
√12𝑀Λ𝑟 + Λ2𝑟4 − 6𝑞2Λ𝑟

2 sin 𝜃. (28)

Table 1: Limiting behavior of the energy of the massive (𝑀 ̸= 0)
black hole solution in the Einstein and Møller prescriptions.

Energy 𝑟 󳨀→∞ 𝑞 = 0
𝐸𝐸 ∞ 𝑟2√ 4𝑀Λ𝑟3 + Λ2𝑟49
𝐸𝑀 − ∞ − 𝑟212 12𝑀Λ + 4Λ2𝑟3√12𝑀Λ𝑟 + Λ2𝑟4

Using the above expression for the superpotential and the
expression for the energy obtained from (20), we get the
energy in the Møller prescription:

𝐸𝑀 = − 𝑟212 12𝑀Λ + 4Λ2𝑟3
√12𝑀Λ𝑟 + Λ2𝑟4 − 6𝑞2Λ. (29)

Finally, all the momenta are found to be zero:

𝑃𝑟 = 𝑃𝜃 = 𝑃𝜑 = 0. (30)

5. Discussion

Our paper focuses on the analysis of the energy-momentum
localization for a new four-dimensional, spherically
symmetric, static, and charged black hole spacetime
geometry with constant nonzero topological Euler density,
given by the line element (6). The solution describes a
Reissner–Nordström–de Sitter spacetime geometry as the
result of the coupling of Einstein gravity with nonlinear
electrodynamics of the Born–Infeld type. For 𝑞 = 0 the
solution has a near-de Sitter behavior, while for Λ > 0 the
solution is regular everywhere except at the origin 𝑟 = 0.
To perform our study we use the Einstein and Møller
energy-momentum complexes. The calculations provide
the well-defined expressions (26) and (29) for the energy
distribution in both prescriptions. These energy distributions
depend on the mass𝑀 and the charge 𝑞 of the black hole, the
cosmological constant Λ, and the radial coordinate 𝑟, while
in both energy-momentum complexes all the momenta
vanish.

In order to study the limiting behavior of the energy dis-
tributions obtained by the Einstein and Møller prescriptions,
we consider the energy for 𝑟 󳨀→ ∞ in the uncharged case𝑞 = 0 for the massive (𝑀 ̸= 0) black hole and for 𝑟 󳨀→ ∞,Λ = 0, and 𝑞 = 0 for the massless (𝑀 = 0) black hole.

Starting with the massive black hole (𝑀 ̸= 0) the results
for the limiting cases 𝑟 󳨀→ ∞ and 𝑞 = 0 are presented in
Table 1.

For the charged (𝑞 ̸= 0) black hole without cosmological
constant (Λ = 0), the spacetime geometry becomes the
Minkowski geometry. If the black hole is uncharged (𝑞 = 0)
and the cosmological constant is nonzero (Λ > 0), then the
spacetime is regular everywhere except at the origin 𝑟 = 0, as
it is inferred from the calculation of the curvature invariants
(Kretschmann andRicci) in [50]. Indeed, the fact that, despite
the regular behavior of the metric, the energy diverges at
infinity in both prescriptions can possibly be attributed to
the de Sitter like asymptotic behavior of the solution. The
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Figure 1: Evolution of the Einstein energy 𝐸𝐸 (left) and of the Møller energy 𝐸𝑀 (right) with respect to the 𝑟 coordinate for the massive and
charged black hole. In both cases we have chosen𝑀 = 1 and 𝑞 = 1, while the red line and the green line correspond to Λ = 1 and Λ = −1,
respectively.

evolution of the Einstein energy and of the Møller energy
with respect to the 𝑟 coordinate, as given by (26) and (29), is
presented for Λ > 0 and Λ < 0 in Figure 1. In fact, the Møller
energy given by (29) is negative for a large range of values for𝑟 and the parameters 𝑀, Λ, and 𝑞. The observed negativity
of the energy might sound a note of warning regarding
the physical interpretation of this result and, consequently,
the merits of the Møller complex despite the physically
acceptable results obtained by the latter in many other cases.
Furthermore, if one considers the behavior of the energy
regarding 𝑟, one concludes that the fourth-degree polynomial12𝑀Λ𝑟 + Λ2𝑟4 − 6𝑞2Λ in the denominator of (29) vanishes
for several sets of values for the parameters𝑀, Λ, and 𝑞 with
its roots consisting in two real and two complex conjugate
solutions. As a result, at finite distances from the black hole
the Einstein energy, given by (26), vanishes, while the Møller
energy, given by (29), diverges. Equally interesting is the
vanishing of the third-degree polynomial 12𝑀Λ + 4Λ2𝑟3 in
the nominator of (29). In this case, one real and two complex
conjugate solutions are obtained for every finite value of the
mass parameter𝑀 and Λ < 0. As a result, the Møller energy
vanishes at finite distances from the black hole. We have not
found any plausible explanation for this rather pathological
behavior of the energy in the two prescriptions, beside the
fact that the black hole solution considered is quite peculiar.
Some more light could be shed on this strange state of
things through the comparison of the present results with the
energy calculated, for example, by the Landau-Lifshitz and
the Weinberg energy-momentum complexes for the metric
considered, a task left for future work.

In the massless case (𝑀 = 0), when the black hole is
charged (𝑞 ̸= 0) and the cosmological constant is nonzero
(Λ ̸= 0), the spacetime geometry is described by the line
element (7). In fact, an event horizon appears at 𝑟eh = [9/Λ2+

Table 2: Energy of the massless (𝑀 = 0) black hole solution in the
Einstein and Møller prescriptions.

Energy 𝑞 ̸= 0, Λ ̸= 0 𝑞 = 0, Λ ̸= 0
𝐸𝐸 𝑟2√Λ2𝑟49 − 2𝑞2Λ3 𝑟2√Λ2𝑟49
𝐸𝑀 −13 Λ2𝑟5

√Λ2𝑟4 − 6𝑞2Λ −13 Λ2𝑟5√Λ2𝑟4

6𝑞2/Λ]1/4 for a negative cosmological constant Λ < −3/(2𝑞2).
Further, when Λ > 0, at the position 𝑟𝑠 = (6𝑞2/Λ)1/4 a
singularity appears, while, when Λ < 0, this singularity can
be avoided but there appears another singularity at 𝑟 = 0 (see
[50]). If this massless black hole has no charge (𝑞 = 0) but the
cosmological constant in nonzero (Λ ̸= 0), then a de Sitter
spacetime geometry is obtained:

𝑑𝑠2 = (1 − √Λ2𝑟49 )𝑑𝑡2 − (1 − √Λ2𝑟49 )
−1

𝑑𝑟2

− 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑2) ,
(31)

with a cosmological horizon appearing at 𝑟ch = √3/Λ.
The energy of the massless black hole for the charged and
the uncharged case, computed in the Einstein and Møller
prescriptions, is presented in Table 2.

In Table 3 we present the limiting behavior of the Einstein
energy and the Møller energy for the charged and the
uncharged massless (𝑀 = 0) black hole as 𝑟 󳨀→ ∞. In both
cases the cosmological constant is nonzero.
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Table 3: Limiting behavior of the energy of the massless black hole
solution in the Einstein and Møller prescriptions.

Energy 𝑞 ̸= 0, Λ ̸= 0, 𝑟 󳨀→ ∞ 𝑞 = 0, Λ ̸= 0, 𝑟 󳨀→ ∞𝐸𝐸 ∞ ∞𝐸𝑀 −∞ −∞

According to the obtained results, we come to the
conclusion that the Einstein and Møller energy-momentum
complexes may provide an instructive tool for the study of
the energy-momentum localization of gravitating systems,
although in this work we cannot reach a definite answer to
the problem of localization. That being said, the investigation
of the problem of the energy-momentum localization in
the context of the black hole solution considered here,
by applying other energy-momentum complexes as well as
the teleparallel equivalent of general relativity (TEGR), is
planned as a future perspective.
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The black hole information paradox and the black hole entropy are currently extensively researched. The consensus about the
solution of the information paradox is not yet reached, and it is not yet clear what can we learn about quantum gravity from these
and the related research. It seems that the apparently irreducible paradoxes force us to give up on at least one well-established
principle or another. Since we are talking about a choice between the principle of equivalence from general relativity and some
essential principles from quantum theory, both being the most reliable theories we have, it is recommended to proceedwith caution
and search more conservative solutions. These paradoxes are revisited here, as well as the black hole complementarity and the
firewall proposals, with an emphasis on the less obvious assumptions. Some arguments from the literature are reviewed, and new
counterarguments are presented. Some less considered less radical possibilities are discussed, and a conservative solution, which is
more consistent with both the principle of equivalence from general relativity and the unitarity from quantum theory, is discussed.

1. Introduction

By applying general relativity and quantum field theory on
curved spacetime, Hawking arrives at the conclusion that the
information is lost in the black holes, and this breaks the
predictability [1]. Apparently, no matter how was formed and
what information was contained in the matter falling in a
black hole, the only degrees of freedom characterizing it are
its mass, angular momentum, and electric charge, so black
holes are “hairless” [2–5]. This means that the information
describing the matter crossing the event horizon is lost,
because nothing outside the black hole reminds us of it. In
general relativity, this information loss is irreversible, not
only because we cannot extract it from beyond the event
horizon, but also because in a finite time the infalling matter
reaches the singularity of the black hole. And the occurrence
of singularities is unavoidable, according to the singularity
theorems [6–8]. This already seemed to be a problem, but it
would not be so severe if we at least know that the information
is still there, censored behind the horizon [9, 10]. But we are
not even left with this possibility, since Hawking proved that
quantum effects make the black holes evaporate [11]. It was
already expected that black holes should radiate, after the

realization that they have entropy and temperature [11, 12],
and these should be part of an extension of thermodynamics
which includes matter as well. This evaporation is thermal,
and after the black hole reaches a planckian size, it explodes
and reveals to the exterior world that the information is
indeed lost. In addition, if the quantum state prior to the
formation of the black hole was pure, the final state is mixed,
increasing the drama even more. Moreover, a problem seems
to occur long before the complete evaporation, since the black
hole entropy seems to increase during evaporation, until the
Page time is reached [13]. Some consider this to be the real
black hole information paradox [14].

Mainly for general relativists the information loss seemed
to be definitive and yet not a big problem [15], position
initially endorsed by Hawking too. On the other hand, for
high energy physicists, loss of unitarity was considered a
problem, and various proposals to fix it appeared (see, e.g.,
[16–18] and references therein). For example, remnants were
proposed, containing the information remaining in the black
hole after evaporation. The remnant is in a mixed state but
together with the Hawking radiation forms a pure state. A
possible cause for remnants is the yet unknown quantum
corrections expected to occur when the black hole becomes
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too small, comparable to the Plank scale, and the usual anal-
ysis of Hawking radiation no longer applies [19–21]. There
are other possibilities, some being discussed in the above-
mentioned reviews. For example, it was proposed that the
information leaks out of the black hole through evaporation,
including by quantum tunneling, that it escapes at the final
explosion or that it leaks out of the universe in a baby
universe [22, 23]. Another possibility is that the information
escapes as Hawking radiation by quantum teleportation [24],
which actually happens as if the particle zig-zags forward and
backward in time to escape without exceeding the speed of
light. This is not so unnatural, if we assume that the final
boundary condition at the future singularity of the black hole
forces the maximally entangled particles to be in a singlet
state. There are also bounce scenarios [25] or by using local
scale invariance to avoid singularities [26]. Some bounce
scenarios are based on loop quantum gravity, like [27, 28],
as well as black hole to white hole tunneling scenarios in
which quantum tunneling is supposed to break the Einstein
equation, and the apparent horizon is prevented to evolve into
an event horizon [29, 30]. It would take a long review to do
justice to the various proposals, and this is beyond the scope
of this article.

The dominating proposed solution was, for two decades,
black hole complementarity [31–33]. This was later challenged
by the firewall paradox [34]. The debate is not settled down
yet, but the dominant opinion seems to be that we have to
give up at least one principle considered fundamental so far,
and the unlucky one ismost likely the principle of equivalence
from general relativity. One of the objectives of the present
article is to show that we can avoid this radical solution while
keeping unitarity.

The problems related to the black hole information loss
are considered important, being seen as a benchmark for the
candidate theories of quantum gravity, which are expected to
solve these problems.

The main purpose of this discussion is to identify the
main assumptions and see if it is possible to solve the
problem in a less radical way. I argue that some of the usually
made assumptions are unnecessary, that there are less radical
possibilities, and that the black hole information problem
is not a decisive test for candidate theories of quantum
gravity. New counterarguments to some popular models
proposed in relation to the black hole information problem
are the following. Black hole complementarity is discussed
in Section 3, in particular the fact that an argument by
Susskind, aiming to prove that no-cloning is satisfied by
the black hole complementarity, does not apply to most
black holes (Section 3.1), the fact that its main argument,
the “no-omniscience” proposal, does not really hold for
black holes in general (Section 3.3), and the fact that black
hole complementarity is also at odds with the principle of
equivalence (Section 3.2). As for the firewall proposal, in
Section 4.1, I explain why the tacit assumption that unitarity
should apply only to the exterior of the black hole, and that we
should ignore the interior, is not justified, and anyway if taken
as true, it imposes boundary conditions to the field, which is
why the firewall seems to emerge. Section 5 is dedicated to
black hole entropy. In Section 5.1, I present an argument based

on time symmetry that the true entropy is not necessarily
proportional to the area of the event horizon and at best in
the usual cases is bounded. This has negative implications to
the various proposals that the event horizon would contain
some bits representing the microstates of the black hole,
discussed in Section 5.4. This may also explain the so-called
“real black hole information paradox,” discussed in Section 6.
Section 5.2 contains an explanation of the fact that if the
laws of black hole mechanics should be connected with those
of thermodynamics, this happens already at the classical
level, so they are not necessarily indications of quantum
gravity or tests of such approaches. Section 5.3 contains
arguments that one should not read too much in the so-
called no-hair theorems; in particular they do not constrain,
contrary to a widespread belief, neither the horizon nor the
interior of a black hole. A major motivation invoked for the
theoretical research of the black hole information and entropy
is that these may provide a benchmark to test approaches
to quantum gravity, but in Section 5.5 I argue that these
features appear merely by considering quantum fields on
spacetime. Consequently, any approach to quantum gravity
which includes both quantum field theory and the curved
spacetime of general relativity, as aminimal requirement, will
also satisfy the consequences derived from them.

To my knowledge, the above-mentioned arguments, pre-
sented in more detail in the following, are new, and in
the cases when I was aware of other results seeming to
point in the same direction, I gave the relevant references.
While most part of the article may look like a review of the
literature, it is a critical review, aiming to point out some
assumptions which, in my opinion, drove us too far from
the starting point, which is just the most straightforward
and conservative combination of quantum field theory with
the curved background of general relativity. The entire
structure of arguments converges therefore towards a more
conservative picture than that suggested by the more popular
proposals. The counterarguments are meant to build up the
willingness to consider the less radical proposal that I made,
which follows naturally from my work on singularities in
standard general relativity ([35] and references therein) and
is discussed in Section 7.The background theory is presented
in Section 7.1, and a new, enhanced version of the proposal is
made in Section 7.2.

2. Black Hole Evaporation

Hawking’s derivation of the black hole evaporation [1, 11]
has been disputed and checked many times and redone in
different settings, and it turned valid, at most allowing some
improvements of the unavoidable approximations, as well as
mild generalizations. But the result is correct; the radiation
is as predicted and thermal in the Kubo-Martin-Schwinger
sense [36, 37]. Moreover, it is corroborated via the principle
of equivalence with the Unruh radiation, which takes place
in the Minkowski spacetime for accelerated observers [38].
Hawking’s derivation is obtained in the framework of quan-
tum field theory on curved spacetime, but since the black
hole is considered large and the time scale is also large, the
spacetime curvature induced by the radiation is ignored.
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The derivation, as well as the discussion surrounding
black hole information, requires the framework of quantum
field theory on curved spacetime [39–41]. Quantum field
theory on curved spacetime is a good effective limit of
the true but yet unknown theory of quantum gravity. On
curved background, there is no Poincaré symmetry to select
a preferred vacuum, so there is no canonical Fock space con-
struction of the Hilbert space. The stress-energy expectation
value of the quantum fields, ⟨𝑇̂�푎�푏(𝑥)⟩, is connected with the
spacetime geometry via Einstein’s equation,

𝑅�푎�푏 − 1
2𝑅𝑔�푎�푏 + Λ𝑔�푎�푏 =

8𝜋𝐺
𝑐4 ⟨𝑇̂�푎�푏 (𝑥)⟩ , (1)

where 𝑅�푎�푏 is the Ricci tensor, 𝑅 is the scalar curvature, 𝑔�푎�푏
is the metric tensor, Λ is the cosmological constant, 𝐺 is
Newton’s gravitational constant, and 𝑐 is the speed of light
constant.

But in the calculations of the Hawking radiation, the
gravitational backreaction is ignored, being very small. To
have well behaved solutions, the spacetime slicing is such
that the intrinsic and extrinsic curvatures of the spacelike
slices are considered small compared to the Plank length;
the curvature in a neighborhood of the spacelike surface
is also taken to be small. The wavelengths of particles are
considered large compared to the Plank length. The energy
andmomentum densities are assumed small compared to the
Plank density. The stress-energy tensor satisfies the positive
energy conditions. The solution evolves smoothly into future
slices that also satisfy these conditions.

The canonical (anti)commutation relations at distinct
points of the slice are imposed. A decomposition into
positive and negative frequency solutions is assumed to
which the Fock construction is applied to obtain the Hilbert
space. The renormalizability of the stress-energy expectation
value ⟨𝑇̂�푎�푏(𝑥)⟩ and the uniqueness of the 𝑛-point function
⟨𝜙(𝑥1) . . . 𝜙(𝑥�푛)⟩ are ensured by imposing the Hadamard
condition to the quantum states [41].This condition is needed
because when two of the 𝑛-points coincide, there is no
invariant way to define the 𝑛-point function on curved
spacetime. The Hadamard condition is imposed on the
Wightman function𝐺(𝑥, 𝑦) = ⟨𝜙(𝑥)𝜙(𝑦)⟩, and it is preserved
under time evolution. This condition is naturally satisfied in
the usual quantum field theory in Minkowski spacetime. It
ensures the possibility to renormalize the stress-energy tensor
and to prevent it from diverging.

The Fock space construction of the Hilbert space can be
made in many different ways in curved spacetime, since the
decomposition into positive and negative frequency solutions
depends on the choice of the slicing of spacetime into
spacelike hypersurfaces.

Suppose that a basis of annihilation operators is (𝑎]),
and they satisfy the canonical commutation relations if they
are bosons and the canonical anticommutation relations if
they are fermions. Another observer has a different basis
of annihilation operators (𝑏̂�휔), assuming that the spacetime
is curved or that one observer accelerates with respect to

the other. The two bases are related by the Bogoliubov
transformations,

𝑏̂�휔 = 1
2𝜋 ∫
∞

0
(𝛼�휔]𝑎] + 𝛽�휔]𝑎†] ) d], (2)

where 𝛼�휔] and 𝛽�휔] are the Bogoliubov coefficients.
The Bogoliubov transformation preserves the canonical

(anti)commutation relations and expresses the change of
basis of the Fock space, allowing us to move from one
construction to another. The Bogoliubov transformations are
linear but not unitary. They are symplectic for bosons and
orthogonal for fermions though. The number of particles is
not preserved, so there is no invariant notion of particles.

This is in fact the reason for both the Unruh effect
near a Rindler horizon and the Hawking evaporation near
a black hole event horizon. Because of the nonunitarity
of the Bogoliubov transformation relating the Fock space
representations of two distinct observers, particles can be
produced [38–40], including for black holes [11]. This means
that what is a vacuum state for an inertial observer is a state
with many particles for an accelerated one. This is true in
the Minkowski spacetime, if one observer is accelerated with
respect to the other, but also for two inertial observers, if the
curvature is relevant, as in the case of infalling and escaping
observers near a black hole.Moreover, themany-particle state
in which the vacuum of one observer appears to the other
is thermal. The particle and the antiparticle created in pair
during the evaporation are maximally entangled.

3. Black Hole Complementarity

While Hawking’s derivation of the black hole evaporation is
rigorous and the result is correct, the implication that the
information is definitively lost can be challenged. In fact,
most of the literature on this problem is trying to find a
workaround to restore the lost information and the unitarity.
The most popular proposals like black hole complementarity
and firewalls do not actually dispute the calculations, but
rather they add the requirement that the Hawking radiation
should contain the complete information.

Additional motivation for unitarity comes from the
AdS/CFT correspondence [43]. The AdS/CFT is not yet
rigorously proven, and it is in fact against the current
cosmological observations that the cosmological constant is
positive [44, 45], but it is widely considered true or standing
for a correct gauge-gravity duality, and it is likely that it
convinced Hawking to change his mind about information
loss [46].

The favorite scenario among high-energy physicists was,
for two decades, the idea of black hole complementarity [31–
33], which supposedly resolves the conflict between unitarity,
essential for quantum theory, and the principle of equivalence
fromgeneral relativity. Susskind and collaborators framed the
black hole information paradox as implying a contradiction
between unitarity and the principle of equivalence. They
proposed a radical solution of this apparent conflict by
admitting two distinct Hilbert space descriptions for the
infalling matter and the escaping radiation [31].
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Assuming that unitarity is to be restored by evaporation
alone, the infalling information should be found in the
Hawking radiation or should somehow remain above the
black hole event horizon, forming the stretched horizon [31],
similar to the membrane paradigm [47]. But since this infor-
mation falls in the black hole, it would violate the no-cloning
theorem of quantum mechanics [48–50]. If the cloning does
not happen, either the information is not recovered (and
unitarity is violated) or no information can cross the horizon,
whichwould violate the principle of equivalence fromgeneral
relativity, which implies that nothing dramatic should happen
at the event horizon, assuming that the black hole is large
enough. The black hole complementarity assumes that both
unitarity and the principle of equivalence hold true, by allow-
ing cloning, but the cloning cannot be observed, because
each observer sees only one copy. The infalling copy of the
information is accessible to an infalling observer only (usually
named Alice) and the escaping one to an escaping observer
(Bob). Susskind and collaborators conjectured that Alice and
Bob can never meet to confirm that the infalling quantum
information was cloned and the copy escaped the black hole.

At first sight, it may seem that the black hole comple-
mentarity solves the contradiction by allowing it to exist, as
long as no experiment is able to prove it. Alice and Bob’s
lightcones intersect, but none of them is included in the
other, and they cannot be made so.This means that whatever
slicing of spacetime they choose in their reference frames,
the Hilbert space constructions they make will be different.
So it would be impossible to compare quantum information
from the interior of the black hole with the copy of quantum
information escaping it. And it is impossible to conceive an
observer able to see both copies of information—this would
be the so-called omniscience condition, which is rejected by
Susskind and collaborator to save both unitarity and the
principle of equivalence.

3.1. No-Cloning andTimelike Singularities. Anearly objection
to the proposal that Alice and Bob can never compare the
two copies of quantum information was that the escaping
observer Bob can collect the escaping copy of the information
and jump into the black hole to collect the infalling copy.This
objection was rejected because, in order to collect a single
bit of infalling information from the Hawking radiation, Bob
should wait until the black hole loses half of its initial mass
by evaporation—the time needed for this to happen is called
the Page time [13]. So if Bob decides to jump in the black hole
to compare the escaping information with the infalling one, it
would be too late, because the infalling information will have
just enough time to reach the singularity.

The argument based on the Page time works well, but it
applies only to black holes of the Schwarzschild type (more
precisely this is an Oppenheimer-Snyder black hole [51]),
whose singularity is a spacelike hypersurface. For rotating or
electrically charged black holes, the singularity is a timelike
curve or cylinder. In this case, Alice can carry the infalling
information around the singularity for an indefinitely long
time, without reaching the singularity. So Bob will be able to
reach Alice and confirm that the quantum information was
cloned.

This objection is relevant, because for the black hole
to be of Schwarzschild type, two of the three parameters
defining the black hole, the angular momentum and the
electric charge, have to vanish, which is very unlikely. The
things are even more complicated if we take into account the
fact that, during evaporation or any additional particle falling
in the black hole, the type of the black hole changes. Usually
particles have nonvanishing electric charges and spin, and
even if an infalling particle is electrically neutral and has the
spin equal to 0, most likely it will not collide with the black
hole radially. This continuous change of the type of the black
holemay result in changes of type of the singularity, rendering
the argument based on the Page time invalid.

In Section 3.3, we will see that even if the black hole
somehow manages to remain of Schwarzschild type, the
cloning can be made manifest to a single observer.

3.2. No-Cloning and the Principle of Equivalence. Because
of the principle of equivalence, Susskind’s argument should
also hold for Rindler horizons in Minkowski spacetime.
The equivalence implies that Bob is an accelerated observer,
and Alice is an inertial observer, who crosses Bob’s Rindler
horizon. Because of the Unruh effect, Bob will perceive the
vacuum state as thermal radiation, while for Alice it would be
just vacuum. Bob can see Alice being burned at the Rindler
horizon by the thermal radiation, but Alice will experience
nothing of this sort. But since they are now in the Minkowski
spacetime, Bob can stop and go back to check the situation
with Alice, and he will find that she did not experience the
thermal bath he saw her experiencing. While we can just say
that the complementarity should be applied only to black
holes, to rule it out for the Rindler horizon and still maintain
the idea of stretched horizon only for black holes, this would
be at odds with the principle of equivalence which black hole
complementarity is supposed to rescue.

3.3. The “No-Omniscience” Proposal. The resolution pro-
posed by black hole complementarity appeals to the fact that
the Hilbert spaces constructed by Alice and Bob are distinct,
whichwould allowquantumcloning, as long as the two copies
belong to distinct Hilbert spaces and there is no observer
to see the violation of the no-cloning theorem. This means
that the patches of spacetime covered by Alice and Bob are
distinct, such that apparently no observer can cover both of
them. If there was such an “omniscient” observer, he or she
would see the cloning of quantum information and see that
the laws of quantum theory are violated.

Yet, there is such an observer, albeit moving backwards
in time (see Figure 1). Remember that the whole point of
trying to restore the loss information and unitarity is because
quantum theory should be unitary. This means not only
deterministic, but also that the time evolution laws have to
be time symmetric, as quantum theory normally is, so that
we can recover the lost information. So everything quantum
evolution does forward in time should be accessible by
backwards in time evolution. An observer going backwards
in time, Charlie, can then in principle be able to perceive both
copies of the information carried by Alice and Bob, so he is
“omniscient.”
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(a) (b)

Figure 1: (a) The Penrose diagram of black hole evaporation, depicting Alice and Bob and their past lightcones. (b) The Penrose diagram of
a backwards in time observer Charlie, depicting how he observes Alice and Bob, and the quantum information each of them caries, even if
this information is cloned, therefore disclosing a violation of quantum theory.

One can try to rule Charlie out, on the grounds that
he violates causality or more precisely the second law of
thermodynamics [52]. But from the point of view of quantum
theory, the von Neumann entropy is preserved by unitary
evolution, and the quantum evolution is reversible anyway,
so it is irrelevant that if in our real universe there is a
thermodynamic arrow of time, this does not invalidate a
principial thought experiment like this one.

4. The Firewall Paradox

After two decades since the proposal of black hole comple-
mentarity, this solution was disputed by the firewall paradox
[34], which suggested that the equivalence principle should
be violated at the event horizon, where a highly energetic cur-
tain or a singularity should form to prevent the information
falling inside the black hole.

The firewall argument takes place in the same settings
as the black hole complementarity proposal, but this time it
involves the monogamy of entanglement. More precisely, it is
shown that the late radiation has to be maximally entangled
with both the early radiation and the infalling counterpart
of the late radiation. Since the monogamy of entanglement
forbids this, it is proposed that one of the assumptions has to
go, most likely the principle of equivalence. The immediate
reaction varied from quick acceptance to arguments that the
paradox is solved too by the black hole complementarity
[53, 54]. After all, we can think of the late radiation as
being entangled with the early one in Bob’s Hilbert space
and with the infalling radiation in Alice’s Hilbert space. But
it turned out that, unlike the case of the violation of the
no-cloning theorem, the violation of monogamy cannot be
resolved by Alice and Bob having different Hilbert spaces
[55].

One can argue that if the firewall experiment is per-
formed, it creates the firewall, and if it is not performed, Alice

sees no firewall, so black hole complementarity is not com-
pletely lost. Susskind and Maldacena proposed the ER=EPR
solution, which states that if entangled particles are thrown
in different black holes, then they become connected by a
wormhole [56]; also see [57].The firewall idea also stimulated
various discussions about the relevance of complexity of
quantumcomputation and error correction codes in the black
hole evaporation and decoding the information from the
Hawking radiation using unitary operations (see [54, 58, 59]
and references therein).

Various proposals to rescue both the principle of equiv-
alence and unitarity were made, for example, based on the
entropy of entanglement across the event horizon in [60, 61].
Hawking proposed that the black hole horizons are only
apparent horizons and never actual event horizons [62].
Later, Hawking proposed that supertranslations allow the
preservation of information and further expanded the idea
with Perry and Strominger [63–65].

Having to give up the principle of equivalence or unitarity
is a serious dilemma, so it is worth revisiting the arguments
to find a way to save both.

4.1. The Meaning of “Unitarity”. In the literature about black
hole complementarity and firewalls, by the assumption or
requirement of “unitarity,” we should understand “unitarity
of the Hawking radiation” or, more precisely, “unitarity of
the quantum state exterior to the black hole.” Let us call this
exterior unitarity to emphasize that it ignores the interior of
the black hole. It is essential to clarify this, because when
we feel that we are forced to choose between unitarity and
the principle of equivalence, we are in fact forced to choose
between exterior unitarity and the principle of equivalence.
This assumption is also at the origin of the firewall proposal.
So no choice between unitarity and the principle of equiva-
lence is enforced to us, unless by “unitarity” we understand
“exterior unitarity.”
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The idea that unitarity should be restored from the
Hawking radiation alone, ignoring the interior of the black
hole, was reinforced by the holographic principle and the
idea of stretched horizon [31, 32, 66], a place just above
the event horizon which presumably stores the infalling
information until it is restored through evaporation, and it
was later reinforced even more by the AdS/CFT conjecture
[43]. But it is not excluded to solve the problem by taking
into consideration both the exterior and interior of the black
hole and the corresponding quantum states. A proposal
accounting for the interior in the AdS/CFT correspondence,
based on the impossibility to localize the quantum operators
in quantum gravity in a background-independent manner,
was made in [67]. A variation of the AdS/CFT leading to a
regularization was made in [68].

In fact, considering both the exterior and the interior of
the black hole is behind proposals like remnants and baby
universes. But we will see later that there is a less radical
option.

Exterior unitarity, or the proposal that the full infor-
mation and purity are restored from Hawking radiation
alone, simply removes the interior of the black hole from the
reference frame of an escaping observer, consequently from
his Hilbert space. This type of unitarity imposes a boundary
condition to the quantum fields, which is simply the fact that
there is no relevant information inside the black hole. So it is
natural that, at the boundary of the support of the quantum
fields, which is the black hole event horizon, quantum fields
behave as if there is a firewall. This is what the various
estimates revealing the existence of a highly energetic firewall
or horizon singularity confirm. Note that since the boundary
condition which aims to rescue the purity of the Hawking
radiation is a condition about the final state, sometimes
its consequences give the impression of a conspiracy, as
sometimes Bousso and Hayden put it [69].

While I have no reason to doubt the validity of the firewall
argument [34], I have reservations about assuming unitarity
as referring only to quantum fields living only to the exterior
of the black hole, while ignoring those from its interior.

4.2. Firewalls versus Complementarity. The initial Hilbert
spaces of Alice and Bob are not necessarily distinct. Even if
they and their Fock constructions are distinct, each state from
one of the spaces may correspond to a state from the other.
The reason is that a basis of annihilation operators in Alice’s
frame, say (𝑎]), is related to a basis of annihilation operators
in Bob’s frame, (𝑏̂�휔), by a Bogoliubov transformation (2). The
Bogoliubov transformation is linear, although not unitary.

Thus, one may hope that the Hilbert spaces of Alice
and Bob may be identified, even though through a very
scrambled vector space isomorphism, so that black hole
complementarity saves the day. However, exterior unitarity
imposes that the evolved quantum fields from the Hilbert
spaces have different supporting regions in spacetime. While
before the creation of the black hole they may have the
same support in the spacelike slice, they evolve differently
because of the exterior unitarity condition. Bob’s system
evolves so that his quantum fields are constrained to the

exterior of the black hole, while Alice’s quantumfields include
the interior too. Bob’s Hilbert space is different, because
when the condition of exterior unitarity was imposed, it
excluded the interior of the black hole. So even if the initial
underlying vector space is the same for both the Hilbert
space constructed by Alice and that constructed by Bob, their
coordinate systems diverged in time, so the way they slice
spacetime became different. While normally Alice’s vacuum
is perceived by Bob as loaded with particles in a thermal
state, this time in Bob’s frame Alice’s vacuum energy becomes
singular at the horizon. This makes the firewall paradox a
problem for black hole complementarity. A cleaner argument
based on purity rather than monogamy is made by Bousso
[70].

An interesting issue is that Bob can infer that if the modes
he detects passed very close to the event horizon, they were
redshifted. So, evolving the modes backwards in time, it must
be that the particle passes close to the horizon at a very high
frequency,maybe evenhigher than the Plank frequency.Does
this mean that Alice should feel dramatically this radiation?
There is the possibility that, for Alice, Bob’s high frequency
modes are hidden in her vacuum state.This is also confirmed
by acoustic black holes [71]. Only if thesemodes are somehow
disclosed, for example, if Bob, being accelerated, performs
some temperature detection nearby Alice, these modes may
become manifest due to the projection postulate; otherwise,
they remain implicit in Alice’s vacuum.

It seems that the strength of the firewall proposal comes
from rendering black hole complementarity unable to solve
the firewall paradox.They are two competing proposals, both
aiming to solve the same problem. While one can logically
think that proposals that take into account the interior of
black holes to restore unitarity are good candidates aswell and
that they may have the advantage of rescuing the principle of
equivalence, sometimes they are dismissed as not addressing
the “real” black hole information paradox. I will say more
about this in Section 6.

5. Black Hole Entropy

The purposes of this section are to prepare for Section 6 and
to discuss the implications of black hole entropy for the black
hole information paradox and for quantum gravity.

The entropy bound of a black hole is proportional to the
area of the event horizon [12, 72, 73],

𝑆�퐵�퐻 = 𝑘�퐵𝐴
4ℓ2�푃 , (3)

where 𝑘�퐵 is the Boltzmann constant, 𝐴 is the area of the event
horizon, and ℓ�푃 is the Plank length.

The black hole entropy bound (3) was suggested by
Hawking’s result that the black hole horizon area never
decreases [74], as well as the development of this result into
the four laws of black hole mechanics [72].

5.1. The Area of the Event Horizon and the Entropy. It is
tempting to think that the true entropy of quantum fields in
spacetime should also include the areas of the event horizons.



Advances in High Energy Physics 7

In fact, there are computational indications that the black
hole evaporation leaks the right entropy to compensate the
decrease of the area of the black hole event horizon.

But there is a big difference between the entropy of
quantum fields and the areas of horizons. First, entropy is
associated with the state of the matter (including radiation, of
course). If we look at the phase space, we see that the entropy
is a property of the state alone, so it is irrelevant if the system
evolves in one direction of time or the opposite; the entropy
corresponding to the state at a time 𝑡 is the same. The same is
true for quantumentropy, associatedwith the quantum states,
which in fact is preserved by unitary evolution and is the same
in either time direction.

On the other hand, the very notion of event horizon in
general relativity depends on the direction of time. By looking
again at Figure 1(b), this time without being interested in
black hole complementarity, we can see that for Charlie there
is no event horizon. But the entropy corresponding to matter
is the same independently of his time direction. So even if
we are able to put the area on the event horizon in the same
formulawith the entropy of the fields and still have the second
law of thermodynamics, the two terms behave completely
differently. So if the area of the event horizon is required
to compensate for the disappearance of entropy beyond the
horizon and for its reemergence as Hawking radiation, for
Charlie the things are quite different, because he has full
clearance to the interior of the black hole, which for him is
white. In other words, he is so omniscient that he knows the
true entropy of thematter inside the black hole and not amere
bound given by the event horizon.

This is consistent with the usual understanding of entropy
as hidden information; indeed, the true information about
the microstates is not accessible (only the macrostate), and
this is what entropy stands for. But it is striking, nevertheless,
to see that black holes do the same, yet in a completely time-
asymmetric manner. This is because the horizon entropy is
just a bound for the entropy beyond the horizon; the true
entropy is a property of the state.

5.2. Black Hole Mechanics and Thermodynamics: Matter or
Geometry? The four laws of black hole mechanics are the
following [72, 75]:

(i) 0th law: the surface gravity 𝜅 is constant over the
event horizon

(ii) 1st law: for nearby solutions, the differences in mass
are equal to differences in area times the surface
gravity, plus some additional terms similar to work

(iii) 2st law: in any physical process, the area of the event
horizon never decreases (assuming positive energy of
matter and regularity of spacetime)

(iv) 3rd law: there is no procedure, consisting of a finite
number of steps, to reduce the surface gravity to zero.

The analogy between the laws of black hole mechanics
and thermodynamics is quite impressive [75]. In particular,
enthalpy, temperature, entropy, and pressure correspond,
respectively, to the mass of the black hole, its surface gravity,
its horizon area, and the cosmological constant.

These laws of black hole mechanics are obtained in purely
classical general relativity but were interpreted as laws of
black hole thermodynamics [11, 76, 77].Their thermodynam-
ical interpretation occurs when considering quantum field
theory on curved spacetime, and it is expected to followmore
precisely from the yet to be found quantum gravity.

Interestingly, despite their analogy with the laws of ther-
modynamics, the laws of black hole mechanics hold in purely
classical general relativity. While we expect general relativity
to be at least a limit theory of a more complete, quantized
one, it is a standalone and perfectly selfconsistent theory.
This suggests that it is possible that the laws of black hole
mechanics already have thermodynamic interpretation in the
geometry of spacetime. And this turns out to be true, since
black hole entropy can be shown to be the Noether charge
of the diffeomorphism symmetry [78]. This works exactly
for general relativity, and it is different for gravity modified
so that the action is of higher order in terms of curvature.
In addition, we already know that Einstein’s equation can
be understood from an entropic perspective, which has a
geometric interpretation [79, 80].

This is not to say that the interpretations of the laws of
black hole mechanics in terms of thermodynamics of quan-
tum fields do not hold, because there are strong indications
that they do. My point is rather that there are thermody-
namics of the spacetime geometry, which are tied somehow
with the thermodynamics of quantum matter and radiation.
This connection is probably made via Einstein’s equation or
whatever equation whose classical limit is Einstein’s equation.

5.3. Do Black Holes Have No Hair? Classically, black holes
are considered to be completely described by their mass,
angular momentum, and electric charge. This idea is based
on the no-hair theorems. These results were obtained for the
Einstein-Maxwell equations, assuming that the solutions are
asymptotically flat and stationary. While it is often believed
that these results hold universally, they are in fact similar
to Birkhoff ’s theorem [81], which states that any spherically
symmetric solution of the vacuum field equations must be
static and asymptotically flat; hence the exterior solution
must be given by the Schwarzschild metric. Werner Israel
establishes that the Schwarzschild solution is the unique
asymptotically flat static nonrotating solution of Einstein’s
equation in vacuum, under certain conditions [2]. This was
generalized to the Einstein-Maxwell equations (electrovac)
[3–5], the result being the characterization of static asymptot-
ically flat solutions only by mass, electric charge, and angular
momentum. It is conjectured that this result is general, but
counterexamples are known [82, 83].

In classical general relativity, the black holes radiate
gravitational waves and are expected to converge to a no-hair
solution very fast. If this is true, it happens asymptotically,
and the gravitational waves carry the missing information
about the initial shape of the black hole horizon, because
classical general relativity is deterministic on regular globally
hyperbolic regions of spacetime.

Moreover, it is not known what happens when quantum
theory is applied. If the gravitational waves are quantized
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(resulting in gravitons), it is plausible to consider the possi-
bility that quantum effects prevent such a radiation, like in
the case of the electron in the atom. Therefore, it is not clear
that the information about the infalling matter is completely
lost in the black hole, even in the absence of Hawking
evaporation. So we should expect at most that black holes
converge asymptotically to the simple static solutions, but if
they would reach them in finite time, there would be no time
reversibility in GR.

Nevertheless, this alone is unable to provide a solution
to the information loss paradox, especially since spacetime
curvature does not contain the complete information about
matter fields. But we see that we have to be careful when we
use the no-hair conjecture as an assumption in other proofs.

5.4. Counting Bits. While black hole mechanics suggest that
the entropy of a black hole is limited by the Bekenstein bound
(3), it is known that the usual classical entropy of a system can
be expressed in terms of its microstates:

𝑆�푄 = −𝑘�퐵∑
�푖

𝑝�푖 ln𝑝�푖, (4)

where 𝑝�푖 denotes the number of microstates which cannot be
distinguished because of the coarse graining,macroscopically
appearing as the 𝑖-th macrostate. A similar formula gives
the quantum von Neumann entropy, in terms of the density
matrix 𝜌:

𝑆 = −𝑘�퐵tr (𝜌 ln 𝜌) . (5)

Because of the no-hair theorem (see Section 5.3), it
is considered that classical black holes can be completely
characterized by the mass, angular momentum, and electric
charge, at least from the outside. This is usually understood
as suggesting that quantum black holes have to contain
somewhere, most likely on their horizons, some additional
degrees of freedom corresponding to their microstates, so
that (3) can be interpreted in terms of (4).

It is often suggested that there are some horizon
microstates, either floating above the horizon but not falling
because of a brick wall [84–86] or being horizon gravitational
states [87].

Other counting proposals are based on counting string
excited microstates [88–90]. There are also proposals of
counting microstates in LQG, for example, by using a Chern-
Simons field theory on the horizon, as well as choosing a
particular Immirzi parameter [91].

Another interesting possible origin of entropy comes
from entropy of entanglement resulting by the reduced density
matrix of an external observer [92, 93]. This is proportional
but for short distances requires renormalization.

But, following the arguments in Section 5.1, I think that
the most natural explanation of black hole entropy seems to
be to consider the internal states of matter and gravity [94].
A model of the internal state of the black hole similar to
the atomic model was proposed in [95–97]. Models based
on Bose-Einstein condensates can be found in [98–100] and
references therein.

Since in Section 5.1 it was explained that the horizons
just hide matter, and hence entropy, and are not in fact the
carriers of the entropy, it seems more plausible to me that the
structure of the matter inside the black hole is just bounded
by the Bekenstein bound, and does not point to an unknown
microstructure.

5.5. A Benchmark to Test Quantum Gravity Proposals? The
interest in the black hole information paradox and black
hole entropy is not only due to the necessity of restoring
unitarity. This research is also motivated by testing various
competing candidate theories of quantum gravity. Quantum
gravity seems to be far from our experimental possibilities,
because it is believed to become relevant at very small scales.
On the other hand, black hole information loss and black
hole entropy pose interesting problems, and the competing
proposals of quantum gravity are racing to solve them. The
motivation is that it is considered that black hole entropy and
information loss can be explained by one of these quantum
gravity approaches.

On the other hand, it is essential to remember how black
hole evaporation and black hole entropy were derived. The
mathematical proofs are done within the framework of quan-
tum field theory on curved spacetime, which is considered
a good effective limit of the true but yet to be discovered
theory of quantum gravity. The calculations are made near
the horizon; they do not involve extreme conditions like
singularities or planckian scales, where quantum gravity is
expected to take the lead. The main assumptions are

(1) quantum field theory on curved spacetime
(2) the Einstein equation, with the stress-energy ten-

sor replaced by the stress-energy expectation value
⟨𝑇̂�푎�푏(𝑥)⟩ (see (1))

For example, when we calculate the Bekenstein entropy
bound, we do this by throwing matter in a black hole and see
how much the event horizon area increases.

These conditions are expected to hold in the effective limit
of any theory of quantum gravity.

But since both the black hole entropy and the Hawking
evaporation are obtained from the two conditions mentioned
above, this means that any theory in which these conditions
are true, at least in the low energy limit, is also able to imply
both the black hole entropy and the Hawking evaporation. In
other words, if a theory of quantum gravity becomes in some
limit the familiar quantum field theory and also describes
Einstein’s gravity, it should also reproduce the black hole
entropy and the Hawking evaporation.

Nevertheless, some candidate theories to quantum grav-
ity do not actually work in a dynamically curved spacetime,
being, for example, defined on flat or AdS spacetime, yet
they still are able to reproduce a microstructure of black
hole entropy. This should not be very surprising, given
that, even in nonrelativistic quantum mechanics, quantum
systems bounded in a compact region of space have discrete
spectrum. So it may be very well possible that these results
are due to the fact that even in nonrelativistic quantum
mechanics entropy bounds hold [101]. In flat spacetime, we
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can think that the number of states in the spectrum is
proportional with the volume. However, when we plug in the
masses of the particles in the formula for the Schwarzschild
radius (which incidentally is the same as Michell’s formula in
Newtonian gravity [102]), we should obtain a relation similar
to (3).

The entropy bound (3) connects the fundamental con-
stants usually considered to be characteristic for general
relativity, quantum theory, and thermodynamics. This does
not necessarily mean that the entropy of the black hole
witnesses about quantum gravity.This should be clear already
from the fact that the black hole entropy bound was not
derived by assuming quantum gravity but simply from the
assumptions mentioned above. It is natural that if we plug the
information and the masses of the particles in the formula for
the Schwarzschild radius, we obtain a relation between the
constants involved in general relativity, quantum theory, and
thermodynamics. It is simply a property of the system itself,
not a witness of a deeper theory. But, of course, if a candidate
theory of quantum gravity fails to pass even this test, this may
be a bad sign for it.

6. The Real Black Hole Information Paradox

Sometimes it is said that the true black hole information
paradox is the one following fromDon Page’s article [13]. For
example, Marolf considers that here lies the true paradoxical
nature of the black hole information, while he calls the
mere information loss and loss of purity, “the straw man
information problem” [14]. Apparently, the black hole von
Neumann entropy should increase with one bit for each
emitted photon. At the same time, its area decreases by
losing energy, so the black hole entropy should also decrease
by the usual Bekenstein-Hawking kind of calculation. So
what happens with the entropy of the black hole? Does it
increase or decrease? This problem occurs much earlier in
the evolution of the black hole, when the black hole area is
reduced to half of its initial value (the Page time), so we do
not have to wait for the complete evaporation to notice this
problem. Marolf put it as follows[14]:

This is now a real problem. Evaporation causes the
black hole to shrink and thus to reduce its surface
area. So 𝑆�퐵�퐻 decreases at a steady rate. On the other
hand, the actual von Neumann entropy of the black
hole must increase at a steady rate. But the first must
be larger than the second. So some contradiction is
reached at a finite time.

I think there are some assumptions hidden in this
argument. We compare the von Neumann entropy of the
black hole calculated during evaporation with the black hole
entropy calculated by Bekenstein and Hawking by throwing
particles in the black hole. While the proportionality of the
black hole entropy with the area of the event horizon has
been confirmed by various calculations for numerous cases,
the two types of processes are different, so it is natural that
they lead to different states of the black hole and hence to
different values for the entropy. This is not a paradox; it is
just an evidence that the entropy contained in the black hole

depends on the way it is created, despite the bound given by
the horizon. So it seems more natural not to consider that
the entropy of the matter inside the black hole reached the
maximumbound at the beginning but rather that it reaches its
maximum at the Page time, due to the entanglement entropy
with the Hawking radiation. Alternatively, we may still want
to consider the possibility of having more entropy in the
black hole than the Bekenstein bound allows. In fact, Rovelli
made another argument pointing in the same direction that
the Bekenstein-Bound is violated, by counting the number of
states that can be distinguished by local observers (as opposed
to external observers) using local algebras of observables
[103]. This argument provided grounds for a proposal of a
white hole remnant scenario discussed in [104].

7. A More Conservative Solution

We have seen in the previous sections that some important
approaches to the black hole information paradox and the
related topics assume that the interior of the black hole is
irrelevant or does not exist, and the event horizon plays the
important role. I also presented arguments that if it is to
recover unitarity without losing the principle of equivalence,
then the interior of the black hole should be considered as
well, and the event horizon should not be endowed with
special properties. More precisely, given that the original
culprit of the information loss is its supposed disappear-
ance at singularities, then singularities should be closely
investigated. The least radical approach is usually considered
the avoidance of singularity, by modifying gravity (i.e., the
relation between the stress-energy tensor and the spacetime
curvature as expressed by the Einstein equation), so that one
or more of the three assumptions of the singularity theorems
[6–8] no longer hold. In particular, it is hoped that this may
be achieved by the quantum effects in a theory of quantum
gravity. However, it would be even less radical if the problem
could be solved without modifying general relativity, and
such an approach is the subject of this section.

But singularities are accompanied by divergences in
the very quantities involved in the Einstein equation, in
particular the curvature and the stress-energy tensor. So even
if it is possible to reformulate the Einstein equation in terms
of variables that do not diverge, remaining instead finite at the
singularity, the question remains whether the physical fields
diverge or break down. In other words, what are in fact the
true, fundamental physical fields, the diverging variables, or
those that remain finite?This questionwill be addressed soon.

An earlier mention of the possibility of changing the
variables in the Einstein equation was made by Ashtekar,
for example, in [105] and references therein, where it is
also proposed that the new variables could remain finite at
singularities even in the classical theory. However, it turned
out that one of his two new variables diverges at singularities
(see, e.g., [106]). Eventually this formulation led to loop
quantum gravity, where the avoidance is instead achieved on
some toy bounce models (see e.g., [28, 29]). But the problem
whether standard general relativity can admit a formulation
free of infinities at singularities remained open for a while.
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7.1. Singular General Relativity. In [107, 108], the author
introduced a mathematical formulation of semi-Riemannian
geometry which allows a description of a class of singularities
free of infinities. The fields that allowed this are invariant,
and in the regions without singularities they are equivalent to
the standard formulation. To understand what the problem
is and how it is solved, recall that in geometry the metric
tensor is assumed to be smooth and regular, that is, without
infinite components and nondegenerate, which means that
its determinant is nonvanishing. If the metric tensor has
infinite components or if it is degenerate, the metric is called
singular. If the determinant is vanishing, one cannot define
the Levi-Civita connection, because the definition relies on
the Christoffel symbols of the second kind,

Γ�푖�푗�푘 fl 1
2𝑔
�푖�푠 (𝑔�푠�푗,�푘 + 𝑔�푠�푘,�푗 − 𝑔�푗�푘,�푠) , (6)

which involve the contraction with 𝑔�푖�푠, which is the inverse
of the metric tensor 𝑔�푖�푗; hence it assumes it to be nonde-
generate. This makes it impossible to define the covariant
derivative and the Riemann curvature (hence the Ricci and
scalar curvatures as well) at the points where the metric
is degenerate. These quantities blow up while approaching
the singularities. Therefore, Einstein’s equation as well breaks
down at singularities.

However, it turns out that, on the space obtained by
factoring out the subspace of isotropic vectors, an inverse
can be defined in a canonical and invariant way and that
there is a simple condition that leads to a finite Riemann
tensor, which is defined smoothly over the entire space,
including at singularities. This allows the contraction of a
certain class of tensors and the definition of all quantities
of interest to describe the singularities without running
into infinities and is equivalent to the usual, nondegenerate
semi-Riemannian geometry outside the singularities [107].
Moreover, it works well for warped products [108], allowing
the application for big bang models [109, 110]. This approach
also works for black hole singularities [42, 111, 112], allowing
the spacetime to be globally hyperbolic even in the presence
of singularities [113]. More details can be found in [35, 114]
and the references therein. Here I will first describe some of
the already published results and continuewith new andmore
general arguments.

An essential difficulty related to singularities is given
by the fact that, despite the Riemann tensor being smooth
and finite at such singularities, the Ricci tensor 𝑅�푖�푗 fl 𝑅�푠�푖�푠�푗
usually continues to blow up. The Ricci tensor and its trace,
the scalar curvature 𝑅 = 𝑅�푠�푠, are necessary to define the
Einstein tensor, 𝐺�푖�푗 = 𝑅�푖�푗 − (1/2)𝑅𝑔�푖�푗. Now here is the part
where the physical interpretation becomes essential. In the
Einstein equation, the Einstein tensor is equated to the stres-
energy tensor. So they both seem to blow up, and indeed
they do. Physically, the stress-energy tensor represents the
density of energy andmomentum at a point. However, what is
physically measurable is never such a density at a point but its
integral over a volume. The energy or momentum in a finite
measure volume is obtained by integrating with respect to
the volume element. And the quantity to be integrated, for

example, the energy density 𝑇00dV�표�푙, where 𝑇00 = 𝑇(𝑢, 𝑢) for
a timelike vector 𝑢 and dV�표�푙 fl √−det𝑔d𝑥0 ∧d𝑥1 ∧d𝑥2 ∧d𝑥3,
is finite, even if 𝑇00 󳨀→ ∞, since dV�표�푙 󳨀→ 0 in the proper
way. The mathematical theory of integration on manifolds
makes it clear that what we integrate are differential forms,
like𝑇00dV�표�푙, and not scalar functions like𝑇00. So I suggest that
we should do in physics the same as in geometry, because it
makesmore sense to consider the physical quantities to be the
differential forms rather than the scalar components of the
fields [109]. This is also endorsed by two other mathematical
reasons. On one hand, when we define the stress-energy 𝑇�푖�푗,
we do it by functional derivative of the Lagrangian with
respect to the metric tensor, and the result contains the
volume element, which we then divide out to get 𝑇�푖�푗. Should
we keep it, we would get instead 𝑇�푖�푗dV�표�푙. Also, when we derive
the Einstein equation from the Lagrangian density 𝑅, we in
fact vary the integral of the differential form 𝑅dV�표�푙 and not of
the scalar 𝑅. And the resulting Einstein equation has again a
factor dV�표�푙, which we leave out of the equation on the grounds
that it is never vanishing. Well, at singularities it vanishes, so
we should keep it, because otherwise we divide by 0 and we
get infinities. The resulting densitized form of the Einstein
equation,

𝐺�푖�푗dV�표�푙 + Λ𝑔�푖�푗dV�표�푙 = 8𝜋𝐺
𝑐4 𝑇�푖�푗dV�표�푙, (7)

is equivalent to Einstein’s outside singularities, but, as already
explained, I submit that it better represents the physical
quantities and not only because these quantities remain finite
at singularities. I call this densitized Einstein equation, but
they are in fact tensorial as well; the fields involved are
tensors, being the tensor products between other tensors and
the volume form, which itself is a completely antisymmetric
tensor. Note that Ashtekar’s variables are also densities,
and they are more different from the usual tensor fields
involved in the semi-Riemannian geometry and Einstein’s
equation, yet they were proposed to be the real variables
both for quantization and for eliminating the infinities in the
singularities [105]. But the formulation I proposed remains
finite even at singularities, and it is closer as interpretation to
the original fields.

Another difficulty this approach had to solve was that
it applies to a class of degenerate metrics, but the black
holes are nastier, since the metric has components that
blow up at the singularities. For example, the metric tensor
of the Schwarzschild black hole solution, expressed in the
Schwarzschild coordinates, is

d𝑠2 = −(1 − 2𝑚
𝑟 ) d𝑡2 + (1 − 2𝑚

𝑟 )
−1

d𝑟2 + 𝑟2d𝜎2, (8)

where𝑚 is the mass of the body, the units were chosen so that
𝑐 = 1 and 𝐺 = 1, and

d𝜎2 = d𝜃2 + sin2𝜃d𝜙2 (9)

is the metric of the unit sphere 𝑆2.
For the horizon 𝑟 = 2𝑚, the singularity of the metric can

be removed by a singular coordinate transformation; see, for
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example, [115, 116]. Nothing of this sort could be done for
the 𝑟 = 0 singularity, since no coordinate transformation
can make the Kretschmann scalar 𝑅�푖�푗�푘�푙𝑅�푖�푗�푘�푙 finite. However,
it turns out that it is possible to make the metric at the
singularity 𝑟 = 0 into a degenerate and analytic metric
by coordinate transformations. In [111], it was shown that
this is possible, and an infinite number of solutions were
found, which lead to an analytic metric degenerate at 𝑟 = 0.
Among these solutions, there is a unique one that satisfies
the condition of semiregularity from [107], which ensures the
smoothness and analyticity of the solution for the interior of
the black hole. This transformation is

𝑟 = 𝜏2

𝑡 = 𝜉𝜏4
(10)

and the resulting metric describing the interior of the
Schwarzschild black hole is

d𝑠2 = − 4𝜏4
2𝑚 − 𝜏2 d𝜏

2 + (2𝑚 − 𝜏2) 𝜏4 (4𝜉d𝜏 + 𝜏d𝜉)2

+ 𝜏4d𝜎2.
(11)

This is not to say that physics depend on the coordinates.
It is similar to the case of switching from polar to Cartesian
coordinates in plane or like the Eddington-Finkelstein coor-
dinates. In all these cases, the transformation is singular at
the singularity, so it is not a diffeomorphism. The atlas, the
differential structure, is changed, and in the new atlas, with
its new differential structure, the diffeomorphisms preserve,
of course, the semiregularity of themetric. And just like in the
case of the polar or spherical coordinates and the Eddington-
Finkelstein coordinates, it is assumed that the atlas in which
the singularity is regularized is the real one, and the problems
were an artifact of the Schwarzschild coordinates, which
themselves were in fact singular.

Similar transformations were found for the other types of
black holes (Reissner-Nordström, Kerr, and Kerr-Newman)
and for the electrically charged ones the electromagnetic field
also no longer blows up [42, 112].

7.2. Beyond the Singularity. Returning to the Schwarzschild
black hole in the new coordinates (11), the solution extends
analytically through the singularity. If we plug this solution in
the Oppenheimer-Snyder black hole solution, we get an ana-
lytic extension depicting a black hole which forms and then
evaporates, whose Penrose-Carter diagram is represented in
Figure 2.

The resulting spacetime does not have Cauchy horizons,
being hyperbolic, which allows the partial differential equa-
tions describing the fields on spacetime to be well posed and
continued through the singularity. Of course, there is still the
problem that the differential operators in the field equations
of the matter and gauge fields going through the singularity
should be replaced with the new ones. Such formulations
are introduced in [117], and sufficient conditions are to be
satisfied by the fields at the singularities so that their evolution
equations work was given, in the case of Maxwell and Yang-
Mills equations.

Figure 2: An analytic extension of the black hole solution beyond
the singularity.

It is an open problemwhether the backreaction will make
the spacetime to curve automatically so that these conditions
are satisfied for all possible initial conditions of the field.This
should be researched in the future, including for quantum
fields. It is to be expected that the problem is difficult, and
what is given here is not the general solution but rather a
toy model. Anyway, no one should expect very soon an exact
treatment of real case situations, so the whole discussion here
is in principle to establish whether this conservative approach
is plausible enough.

However, I would like to propose here a different, more
general argument, which avoids the difficulties given by
the necessity that the field equations should satisfy at the
singularities special conditions like the sufficient conditions
found in [117] and also the open problem of which are
the conditions to be satisfied by the fermionic fields at
singularities.

First consider Fermat’s principle in optics. A ray of light in
geometric optics is straight, but if it passes from one medium
to another having a different refraction index, the ray changes
its direction and appears to be broken. It is still continuous,
but the velocity vector is discontinuous, and it appears that
the acceleration blows up at the surface separating the two
media. But Fermat’s principle still allows us to know exactly
what happens with the light ray in geometric optics.

On a similar vein, I think that, in the absence of a proof
that the fields satisfy the exact conditions [117] when crossing
a singularity, we can argue that the singularities are not a
threat to the information contained in the field by using the
least action principle instead.

The least action principle involves the integration of the
Lagrangian densities of the fields. While the conditions the
fields have to satisfy at the singularity in order to behave
well are quite restrictive, the Lagrangian formulation is much
more general. The reason is that integration can be done over
fields with singularities, also on distributions, and the result
can still be finite.

Consider first classical, point-like particles falling in the
black hole, crossing the singularity, and exiting through the
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Figure 3: (a) The causal structure of the Schwarzschild black hole in coordinates (𝜏, 𝜉) from (10). (b) The causal structure of the Reissner-
Nordström black hole, in coordinates (𝜏, 𝜌) playing a similar role (see [42]).

white hole which appears after the singularity disappears.The
history of such a test particle is a geodesic, and to understand
the behavior of geodesics, we need to understand first the
causal structure. In Figure 3, the causal structures of (a) a
Schwarzschild black hole and (b) a Reissner-Nordström black
hole are represented in the coordinates which smoothen the
singularity (see [118]).

If the test particle is massless, its path is a null geodesic. In
[118], I showed that, for the standard black holes, the causal
structure at singularities is not destroyed. The lightcones will
be squashed, but they will remain lightcones. Therefore, the
history of a massless particle like a photon is, if we apply
the least action principle, just a null geodesic crossing the
singularity and getting out.

If the test particle is massive, its history is a timelike
geodesic. In this case, a difficulty arises, because in the
new coordinates the lightcones are squashed. This allows for
distinct geodesics to intersect the singularity at the same
point and to have the same spacetime tangent direction. In
the Schwarzschild case, this does not happen for timelike
geodesics, but in the Reissner-Nordström case [42] all of
the timelike geodesics crossing the singularity at the same
point become tangent. Apparently, this seems to imply that
a geodesic crossing a timelike singularity can get out of it in
any possible direction in a completely undetermined way. To
fix this, one may want to also consider the second derivative
or to use the local cylindrical symmetry around the timelike
singularity.

But the least action principle allows this to be solved
regardless of the specific local solution of the problem at
the singularity. The timelike geodesics are tangent only at
the singularity, which is a zero-measure subset of spacetime.
So we can apply the least action principle to obtain the
history of a massive particle and obtain a unique solution.
The least action principle can be applied for classical test
particles because a particle falling in the black hole reaches
the singularity in finite proper time, and similarly a finite
proper time is needed for it to get out. Moreover, the path
integral quantization will consider anyway all possible paths,

so even if there would be an indeterminacy at the classical
level, it will be removed by integrating them all.

For classical fields, the same holds as for point-like
classical particles; only the paths are much more difficult to
visualize. The least action principle is applied in the con-
figuration space even for point-like particles, and the same
holds for fields, the only difference being the dimension of
the configuration space and the Lagrangian. The points from
the singularity formagain a zero-measure subset compared to
the full configuration space, so finding the least action path
is similar to the case of point-like particles. The Lagrangian
density is finite at least at the points of the configuration space
outside the singularities, which means almost everywhere.
But the volume element vanishes at singularities, which
improves the situation. So its integral can very well be finite,
even if the Lagrangian density would be divergent at the
singularities. It may be the case that the fields have singular
Lagrangian density at the singularity and that when we
integrate them it is not excluded that even the integral may
diverge, but in this case the least action principle will force us
anyway to choose the paths that have a finite action density
at the singularities, and such paths exist, for example, those
satisfying the conditions found in [117].

So far we have seen that the principle of least action allows
determining the history of classical, point-like particles or
fields, from the initial and final conditions, even if they cross
the singularity. This is done so far on fixed background, so
no backreaction via Einstein’s equation is considered, only
particles or fields. But the Lagrangian approach extends easily
to include the backreaction; we simply add the Hilbert-
Einstein Lagrangian to that of the fields or point-like particles.
So now we vary not only the path of point-like particles
or fields in the configuration space but also the geometry
of spacetime in order to find the least action history. This
additional variation gives even more freedom to choose the
least action path, so even if on fixed background the initial
condition of a particular field will not evolve to become, at
the singularity, a field satisfying the conditions from [117],
because the spacetime geometry is varied as well to include
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backreaction; the spacetime adjusts itself to minimize the
action, and it is not too wild to conjecture that it adjusts itself
to satisfy such conditions.

Now let us consider quantum fields. When moving to
quantum fields on curved background, since the proper time
of all classical test particles is finite, we can apply the path
integral formulation of quantum field theory [119, 120]. Since
the proper time is finite along each path 𝜑 joining two points,
including for the paths crossing a singularity, and since the
action 𝑆(𝜑, 𝑡) is well defined for almost all times 𝑡, then
𝑒(�푖/ℏ)�푆(�휑,�푡) is also well defined. So at least on fixed curved
background, even with singularities, it seems to exist little
difference from special relativistic quantum field theory via
path integrals.

Of course the background geometry should also depend
on the quantum fields. Can we account for this, in the
absence of a theory of quantum gravity? We know that
at least the framework of path integrals works on curved
classical spacetime (see, e.g., [121]), where the Einstein equa-
tion becomes (1). To also include quantized gravity is more
difficult because of its nonrenormalizability by perturbative
methods. Add to this the fact that at least for the Standard
Modelwe know that in flat background renormalization helps
and even on curved background without singularities. But
what about singularities? Is not it possible that they make
renormalization impossible? In fact, quite the contrary may
be true: in [122], it is shown that singularities improve the
behavior of the quantum fields, including for gravity, at UV
scales. These results are applied to already existing results
obtained by various researchers who use various types of
dimensional reduction to improve this behavior for quantum
fields, including gravity. In fact, some of these approaches
improve the renormalizability of quantum fields so well that
even the Landau poles disappear even for nonrenoramlizable
theories [123, 124]. But the various types of dimensional
reduction are, in these approaches, postulated somehow ad
hoc, for no other reason than to improve perturbative renor-
malizability. On the contrary, if the perturbative expansion is
made in terms of point-like particles, these behave like black
holes with singularities, and some of the already postulated
types of dimensional reduction emerge automatically, with
no additional assumption, from the properties of singularities
[122]. Thus, the very properties of the singularities lead
automatically to improved behavior at the UV scale, even for
theories thought to be perturbatively nonrenormalizable.

The proposal I described in this section is still at the
beginning, compared to the difficulty of the remaining
open problems to be addressed. First, there is obviously
no experimental confirmation, and it is hard to imagine
that the close future can provide one. The plausibility rests
mainly upon making as few new assumptions as possible,
in addition to those coming from general relativity and
quantum theory, theories well established and confirmed, but
not in the regimes where both become relevant. For some
simple examples, there are mathematical results, but a truly
general proof, with fully developed mathematical steps and
no gaps, does not exist yet. And, considering the difficulty of
the problem, it is hard to believe that it is easy to have very

soon a completely satisfying proof in this or other approaches.
Nevertheless, I think that promising avenues of research are
opened by this proposal.
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Brian Kong and the present author recently presented a new area spectrum and showed that the new area spectrum implies that the
decay time of a single-partition black hole (i.e., a black hole with the area not big enough to have two or more partitions) is roughly
constant. In this article, we show why the decay time of a single-partition black hole is roughly constant.

1. Introduction

It is now very well-known that black hole emits particles
thanks to Hawking’s semiclassical treatment of black hole [1].
However, as Rovelli and Smolin discovered loop quantum
gravity as a possible method to quantize gravity in late 80s
[2], it was destined that Hawking’s semiclassical treatment of
Hawking radiation needed some modification. Soon, it was
discovered that area is discrete according to loop quantum
gravity [3–5], and Rovelli found the first connection between
the Bekenstein-Hawking entropy and loop quantum gravity
in his seminal paper in 1996 [6]. Soon, Hawking radiation
spectrum was also approached from the loop quantum
gravity framework using the discreteness of area [7–9]. In
mid-2010s, the present author approached the problem of
Hawking radiation spectrum from the discreteness of area
as well and found surprising results such as full discreteness
of Hawking radiation spectrum [10] andMaxwell-Boltzmann
nature of Hawking radiation spectrum [11]. Also, Brian Kong
and the present author suggested a new area spectrum in [12],
boldly claiming that the conventional area spectrum known
in loop quantum gravity community could be wrong, if one
considers that, for area two-form, one needs to use Levi-
Civita tensor instead of Levi-Civita symbol as conventionally
used in loop quantum gravity community.This consideration
predicted that the area spectrum was the square root of
the conventional one. As for the evidence of this area
spectrum, we showed that the Bekenstein-Hawking entropy
was approximately satisfied (we conjectured that it would be

exactly satisfied if the effect of extra dimension is considered,
which can lead to the prediction of fine structure constant)
and found a strange, coincidental numerical relation that
implied that the decay time of a single-partition black hole
is roughly constant. In this article, we show why the decay
time of a single-partition black hole is roughly constant.
This new further evidence will give another support the area
spectrum proposed by Brian Kong and us. The organization
of this paper is as follows. In Section 2, we briefly review
loop quantum gravity and its approach toHawking radiation,
particularly focusing on our previous work. In Section 3,
we briefly review Brian Kong and the present author’s work
on new area spectrum focusing on the strange, coincidental
numerical relation. In Section 4, we explain our own work
onHawking radiation briefly mentioned in Section 2 in more
detail. In Section 5, we explain what is special about single-
partition black hole. In Section 6, we derive the constancy of
decay time for single-partition black hole. In Section 7, we
conclude our paper.

2. Loop Quantum Gravity and Its
Approach to Hawking Radiation

According to loop quantum gravity, the eigenvalues of the
area operator are quantized [3–5] and the black hole area,
as much as any area, is the sum of these eigenvalues. For
example, let us say that we have the following area eigenvalues
(i.e., the unit areas):

𝐴 𝑖 = 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 . . . . (1)
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Table 1: C(A).

y A K(A) I(A) C(A)
1 17.8 4 767.4 191.8
2 21.1 14 2740 195.7
3 23.4 32 5552 173.5
4 25.1 50 9276 185.5
5 26.6 72 14000 194.4
6 27.8 110 19814 180.1
7 28.9 154 26817 174.1
8 29.9 204 35109 172.1
9 30.8 262 44797 171.0
10 31.6 326 55990 171.7
11 32.4 388 68803 177.3
12 33.1 474 83353 175.8
13 33.7 584 99761 170.8
14 34.4 684 118155 172.7
15 35.0 804 138664 172.5

Then, the black hole area 𝐴 must be given by the following
formula:

𝐴 = ∑
𝑖

𝑁𝑖𝐴 𝑖, (2)

where 𝑁𝑖s are nonnegative integers. Here, we can regard the
black hole as having ∑𝑁𝑖 partitions, each of which has one of
the 𝐴 𝑖 as its area.

In [10], the present author showed that the black hole area
decrease upon a single emission of photon during Hawking
radiation must be given by the unit area. In other words, we
have

Δ𝐴 = −𝐴 𝑖 (3)

As the Bekenstein-Hawking entropy is given by 𝑆 = 𝑘𝐴/4,
[1, 13] and we know Δ𝑄 = 𝑇Δ𝑆, the energy decrease is given
by

Δ𝑄 = −𝐴 𝑖4 𝑘𝑇 (4)

Since this energy must be equal to the energy of photon
emitted (i.e., Δ𝑄 = −𝐸𝑝ℎ𝑜𝑡𝑜𝑛) the energy of the photon
emitted during the Hawking radiation is given by

𝐸𝑝ℎ𝑜𝑡𝑜𝑛 = 𝐴 𝑖4 𝑘𝑇 (5)

In particular, the Hawking radiation spectrum is discrete.

3. Area Spectrum and Single-Partition
Black Holes

In [12] (see also [14]), Brian Kong and the present author
showed that the area spectrum (i.e., the unit areas) in black
hole horizon is given by

𝐴
= 8𝜋∑

𝑖

√1
2√2𝑗𝑢𝑖 (𝑗𝑢𝑖 + 1) + 2𝑗𝑑𝑖 (𝑗𝑑𝑖 + 1) − 𝑗𝑡𝑖 (𝑗𝑡𝑖 + 1) (6)

with the degeneracy (2𝑗𝑢𝑖 + 1) + (2𝑗𝑑𝑖 + 1) where 𝑗𝑢𝑖 , 𝑗𝑑𝑖 , and𝑗𝑡𝑖 satisfy the triangle inequality (i.e., 𝑗1𝑖 + 𝑗2𝑖 ≥ 𝑗3𝑖 ) and
𝑗𝑡𝑖 is an integer, and both 𝑗𝑢𝑖 and 𝑗𝑑𝑖 are integers or half-
integers at the same time. We want to remark that (6) is not
a conventional one and it has an extra square root compared
to [14]. However, Brian Kong and the present author argued
in [12] that we arrive at this formula, if we use, in the
equation for the area two-form, a Levi-Civita tensor instead of
a Levi-Civita symbol as conventionally done in loop quantum
gravity community.

Using this, we calculated the degeneracy of area spectrum
using Java. This yielded 𝐾(𝐴) in Table 1 where 𝐾(𝐴) is the
number of states for area equal to or below 𝐴, and 𝐼(𝐴) is
given by

𝐼 (𝐴) = ∫𝐴
𝐴𝑐𝑢𝑡

√𝐴󸀠 (𝑒𝐴󸀠/4 − 1)𝑑𝐴󸀠 (7)

and 𝑦 is conveniently defined as follows:

𝑦 = 2𝑗𝑢𝑖 (𝑗𝑢𝑖 + 1) + 2𝑗𝑑𝑖 (𝑗𝑑𝑖 + 1) − 𝑗𝑡𝑖 (𝑗𝑡𝑖 + 1) (8)

Of course, using 𝑦, we have the following relation:
𝐴 (𝑦) = 8𝜋√1

2√𝑦 (9)

𝐶(𝐴) is given by

𝐶 (𝐴) = 𝐼 (𝐴)
𝐾 (𝐴) (10)

The point of this table is that 𝐶(𝐴) is roughly constant. We
found this accidentally. Of course𝐶(𝐴) is not exactly but only
approximately constant, but the biggest value for 𝐶(𝐴) in our
result is 195.7, deviating from the “right value” of 𝐶, i.e., the
value of 𝐶 for large 𝐴 by only about 13 percent. As 𝐾(𝐴) at
this biggest value of 𝐶(𝐴) is only 14, it necessarily has a big
“statistical” variation. Therefore, 195.7 is not a big deviation.
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Then, in Sections X and XI of the same paper, we
showed that this constancy can be explained if the decay
time of a single-partition black hole is constant. Let us briefly
summarize some of the main reasonings.

Let us denote the average number of photons emitted
from a black hole during the infinitesimal time Δ𝑡 by 𝑗Δ𝑡.
Then, we have

𝑗Δ𝑡 = Δ𝑡
𝜏 (11)

For macroscopic black hole, if 𝑑𝑛𝑝ℎ𝑜𝑡𝑜𝑛 is the number
of photons with a frequency between ] and ] + 𝑑] emitted
during unit time, from Planck’s blackbody radiation formula,
we have

𝑑𝑛photon = 2𝜋]2
𝑐2

𝐴𝐵𝐻𝑑]𝑒ℎ]/𝑘𝑇 − 1 (12)

where 𝐴𝐵𝐻 is the area of black hole. Of course, we naturally
have

1
𝜏 = ∫𝑑𝑛𝑝ℎ𝑜𝑡𝑜𝑛 (13)

Now let us say that, during the time Δ𝑡, the number of
emitted photons which correspond to a decrease in the black
hole area by amount 𝑎 is given by 𝑥𝑎(𝑦),Δ𝑡. Here, 𝑦 is given by
(8), and 𝑎(𝑦) is given by (9).

Then, in section XI, by some calculations we showed

𝑥𝑎,Δ𝑡 = 3√𝜋𝑐
2√𝐴𝐵𝐻

1
𝑒𝑎/4 − 1Δ𝑡 (14)

We proceeded by borrowing the idea from a paper by
Bekenstein and Mukhanov [7]. The idea is that 𝑥𝑎,Δ𝑡/𝑗Δ𝑡
is proportional to the degeneracy of the black hole after
emission divided by the degeneracy of the black hole before
emission. Let us denote the degeneracy of the black hole with
area 𝐴𝐵𝐻 by 𝑊(𝐴𝐵𝐻). Then, from (11) and (14), we have

𝑊(𝐴𝐵𝐻 − 𝑎)
𝑊 (𝐴𝐵𝐻) ∝ 𝜏

√𝐴𝐵𝐻
1

𝑒𝑎/4 − 1 (15)

Now, if a black hole is a single-partition black hole (a black
hole not big enough to have two or more partitions), upon
emission of a photon, there is no other value for area decrease
than 𝑎 = 𝐴𝐵𝐻. Plugging this value to the above formula, we
get

𝑊(0)
𝑊 (𝐴𝐵𝐻) ∝ 𝜏

√𝐴𝐵𝐻
1

𝑒𝐴𝐵𝐻/4 − 1 (16)

which implies

𝑊(𝐴𝐵𝐻) ∝ √𝐴𝐵𝐻𝜏 (𝑒A𝐵𝐻/4 − 1) (17)

If 𝜏 is constant for single-partition black hole, then it is
precisely our earlier relations (7) and (10). Also, one thing
very noticeable is that these relations do not hold for

multipartitioned black holes. Theminimum area a black hole
can have is given by 𝐴(𝑦 = 1) = 4𝜋√2. For it to be a
single-partition black hole, its area should be smaller than2𝐴(𝑦 = 1) = 𝐴(𝑦 = 16). Our relations suddenly do not hold
beginning from 𝑦 = 16 even though it holds very well for𝑦 < 16. This is the reason why the table is presented up to𝑦 = 15.

However, we later realized formula (14), whichwe derived
in section XI of [12], is due to an error. Nevertheless, we
obtained a strong hint that Table 1 is due toHawking radiation
of single-partition black hole.

4. Quantum Corrections to the
Hawking Radiation Spectrum

As mentioned in Section 2, the present author showed in
[10] that, upon emission of a single photon during Hawking
radiation, only single area quanta can decrease. Let us briefly
repeat the main argument in that paper. (In an earlier work
[11], the author showed that Hawking radiation should fol-
low Maxwell-Boltzmann statistics rather than Bose-Einstein
statistics as considered in [10]. We adjust our presentation
here considering this earlier work.)

Consider the following problem [15].
Let us say that the unit areas 𝐴1, 𝐴2, 𝐴3, ⋅ ⋅ ⋅ have degen-

eracies 𝑑1, 𝑑2, 𝑑3, ⋅ ⋅ ⋅ . Suppose we have a black hole with area𝐴 which satisfies 𝐴 = ∑𝑖𝑁𝑖𝐴 𝑖 as explained before in (2).
For a given configuration (𝑁𝑖 = 𝑁1, 𝑁2,𝑁3, ⋅ ⋅ ⋅ ), how many
different ways can this be achieved?”

According to Rovelli [6], the area quanta are distinguish-
able, as they have fixed location on the black hole horizon,
and, only if they are so, the Bekenstein-Hawking entropy can
be satisfied. Using this distinguishability, the answer to the
above question is given by

𝑄 = 𝑁! ∞∏
𝑖=1

𝑑𝑁𝑖𝑖𝑁𝑖! (18)

where 𝑁 = ∑𝑖𝑁𝑖.
By maximizing 𝑄 and using (5), one obtains that the

Hawking radiation for macroscopic black hole is given by the
following Maxwell-Boltzmann distribution:

𝑁𝑖 = 𝑁𝑑𝑖𝑒−ℎ𝑓𝑖/(𝑘𝑇) = 𝑁𝑑𝑖𝑒−𝐴𝑖/4 (19)

(Note that if we do not follow the present author’s earlier work
[11], this would be the familiar Einstein-Bose distribution of
Hawking radiation, namely, 𝑁𝑖/𝑁 = 𝑑𝑖/(exp(ℎ𝑓𝑖/𝑘𝑇) − 1).)

We can do better than this. We can express the above
expression in terms of the black hole horizon area 𝐴. By
plugging the above formula to (2), we get

𝑁 = 𝐴
∑𝑖 𝑑𝑖𝐴 𝑖𝑒−𝐴𝑖/4 (20)

By plugging the above formula back to (19), we get

𝑁𝑖 = 𝐴𝑑𝑖𝑒−𝐴𝑖/4∑𝑖 𝑑𝑖𝐴 𝑖𝑒−𝐴𝑖/4 (21)
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Notice that the above expression is proportional to the black
hole horizon area𝐴.Therefore, we conclude that theHawking
radiation for macroscopic black hole is proportional to the
area of black hole, as much as Planck’s blackbody radiation
spectrum is proportional to the area of blackbody.

5. Single-Partition Black Hole

Let us see what happens for (2) for a single-partition black
hole. In such a case we have 𝑁 = 1. This implies 𝑁𝑖 = 1
for the concerned 𝑖 and 0 for other unconcerned values of 𝑖.
Now, remember what 𝑁𝑖 meant in (19). It is exactly Hawking
radiation spectrum of given frequency. As the sum of 𝑁𝑖 is𝑁, 𝑁 is the sum of Hawking radiation of every frequency,
namely, total Hawking radiation. Thus, we conclude that the
decay time of the single-partition black hole is constant as 𝑁,
which is 1, is constant. In other words, 𝜏 is constant as desired.
6. Derivation

In this section, we derive (7) and (10) using the correct
method.

At the end of Section 4, we showed that Hawking radia-
tion is proportional to the black hole area 𝐴. However, this is
only half correct as this holds true only if the temperature of
black hole were fixed constant. In reality, the temperature of
black hole depends on the black hole area 𝐴.

So, let us consider this dependence. The number of black
hole area quanta is given by (20), and the number of photons
emitted per a second is given by (12) and (13). That is,

1
𝜏 = 𝐴𝐵𝐻 2𝜋

𝑐2 ∫∞
𝜋√2

𝑢2𝑑𝑢
𝑒𝑢 − 1 (𝑘𝑇

ℎ )3 (22)

where the integration range is not from 0 but from 𝜋√2
because the minimum unit area satisfies 𝐴(𝑦 = 1)/4 = 𝜋√2
which is nonzero. As 𝑘𝑇 = 1/(8𝜋𝑀) and 𝐴 = 16𝜋𝑀2 (in this
article and earlier ones we only consider Schwarzschild black
hole for simplicity), we can write

1
𝜏 = 𝑁 𝛼0

𝐴3/2𝐵𝐻 (23)

for some constant𝛼0 calculable from (20) and (22).Therefore,
for macroscopic black hole, we can write

𝑥𝐴𝑖,Δ𝑡Δ𝑡 = 𝑁𝑖 𝛼0
𝐴3/2𝐵𝐻 (24)

which, when plugged in (21), is given by

𝑥𝐴𝑖 ,Δ𝑡Δ𝑡 = 𝑑𝑖𝑒−𝐴𝑖/4√𝐴𝐵𝐻 ( 𝛼0∑𝑖 𝑑𝑖𝐴 𝑖𝑒−𝐴𝑖/4) (25)

Now, let us assume that this formula holds for single-partition
black hole and further assume that the left-hand side of the
above equation is constant, which is reasonable as 𝑁𝑖, being
1, is constant. Then, as the factors in the parenthesis in the
above equation are merely constant, we immediately see that
(7) and (10) are reproduced.

7. Discussions and Conclusions

Onemay argue that the table is not fitted correctly as it is fitted
with Bose-Einstein distribution factor 𝑒𝐴/4 −1 while the table
should be fitted with the Maxwell-Boltzmann distribution
factor 𝑒𝐴/4 if author’s earlier work [11] is correct. This is true,
but the difference is insignificant as the lowest value for 𝑒𝐴/4 is
about 85, whichmeans that extra “−1” would not significantly
affect the fitting.

In this paper, we showed what the thermodynamics of
single-partition black hole implies about the degeneracy of
area spectrumup from𝑦 = 1 to𝑦 = 15. For your information,
the number of degeneracies for𝐴(𝑦) up to 𝑦 = 65 is available
at (http://youngsubyoon.com/65.csv). If you add them up,
you get 𝐾(𝐴).

In conclusion, we strongly believe that the extremely
strange behaviors of Table 1 (the approximate constancy of𝐶 and the relation not holding beginning from exactly 𝑦 =16) are not a mere coincidence, instead they indicate the
correctness of the area spectrum presented in [12].
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The data are available at youngsubyoon.com/65.csv.
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We study a spherically symmetric setup consisting of a Schwarzschild metric as the background geometry in the framework of
classical polymerization. This process is an extension of the polymeric representation of quantum mechanics in such a way that
a transformation maps classical variables to their polymeric counterpart. We show that the usual Schwarzschild metric can be
extracted from a Hamiltonian function which in turn gets modifications due to the classical polymerization. Then, the polymer
corrected Schwarzschildmetricmaybe obtainedby solving the polymer-Hamiltonian equations ofmotion. It is shown thatwhile the
conventional Schwarzschild space-time is a vacuum solution of the Einstein equations, its polymer-corrected version corresponds
to an energy-momentum tensor that exhibits the features of dark energy. We also use the resulting metric to investigate some
thermodynamical quantities associated with the Schwarzschild black hole, and in comparison with the standard Schwarzschild
metric the similarities and differences are discussed.

1. Introduction

One of the most important arenas that show the power of
general relativity in describing the gravitational phenomena
is the classical theory of black hole physics. However, when
we introduce the quantum considerations to study of a
gravitational systems, general relativity does not provide a
satisfactory description of the physics of the system. The
phenomena such as black hole radiation and all kinds of
cosmological singularities are among the phenomena in
which the use of quantum mechanics in their description is
inevitable. This means that although general relativity is a
classical theory, in itsmost important applications, the system
under consideration originally obeys the rules of quantum
mechanics. Therefore, any hope in the accurate description
of gravitational systems in high energies depends on the
development of a complete theory of quantum gravity. That
is why the quantum gravity is one of the most important
challenges in theoretical physics which from its DeWitt’s
traditional canonical formulation [1] to the more modern
viewpoints of string theory and loop quantum gravity (LQG)
[2–4] has gone a long way. One of the main features of
the space-time proposed in LQG is its granular structure

which in turn, supports the idea of existence of a minimal
measurable length. In the absence of a full theory of quantum
gravity, effective theories which somehow exhibit quantum
effects in gravitational systems play a significant role. These
are theories which show some phenomenological aspects
of quantum gravity and usually use a certain deformation
in their formalism. For example, theories like generalized
uncertainty principles and noncommutative geometry are in
this category [5–13].

Among the effective theories that also use a minimal
length scale in their formalism, we can mention the polymer
quantization [14], which uses the methods very similar to the
effective theories of LQG [15]. In polymer quantum approach
a polymer length scale, 𝜆, which shows the scale of the
segments of the granular space, enters into the Hamiltonian
of the system to deform its functional form into a so-called
polymeric Hamiltonian. This means that, in a polymeric
quantized system in addition of a quantum parameter ℏ,
which is responsible to canonical quantization of the system,
there is also another quantum parameter 𝜆 that labels the
granular properties of the underlying space. This approach
then opened new windows for the theories which are dealing
with the quantum gravitational effects in physical systems
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such as quantum cosmology and black hole physics; see, for
instance [16–31] and the references therein.

To polymerize a dynamical system one usually begins
with a classical system described by Hamiltonian 𝐻. The
canonical quantization of such a system transforms itsHamil-
tonian to an Hermitian operator, which now contains the
parameter ℏ, in such a way that in the limit ℏ 󳨀→ 0, the quan-
tum Hamiltonian 𝐻ℏ returns to its classical counterpart. By
polymerization, the Hamiltonian gets an additional quantum
parameter𝜆, which is rooted in the ideas of granular structure
of the space-time. Therefore, by taking the classical limit of
the resulting Hamiltonian 𝐻ℏ,𝜆, we arrive at a semiclassical
theory in which the parameter 𝜆 is still present. To achieve
the initial classical theory, one should once again take the
limit 𝜆 󳨀→ 0 from this intermediate theory. It is believed that
such effective classical theories𝐻𝜆 have enough rich structure
to exhibit some important features of the system related
to the quantum effects without quantization of the system.
The process by which the theory 𝐻𝜆 is obtained from the
classical theory is called classical polymerization. A detailed
explanation of this process with some of its cosmological
applications can be found in [32].

In this paper, we are going to study how the metric
of the Schwarzschild black hole gets modifications due
to the classical polymerization. Since the thermodynami-
cal properties of the black hole come from its geometrical
structure, the corrections to the black hole’s geometry yield
naturally modifications to its thermodynamics. To do this,
we begin with a general form of a spherically symmetric
space-time and then construct a Hamiltonian in such a
way that the Schwarzschild metric is resulted from the
corresponding Hamiltonian equations of motion. We then
follow the procedure described above and by applying it to
the mentioned Hamiltonian we get the classical polymer-
ized Hamiltonian, by means of which we expect to obtain
the polymer-corrected Schwarzschild metric. The paper is
organized as follows. In Section 2 we have presented a brief
review of the polymer representation and classical polymer-
ization. Section 3 is devoted to the Hamiltonian formalism
of a general spherically symmetric space time. We show
in this section that the resulting Hamiltonian equations of
motion yield the Schwarzschild solution. In Section 4, we will
apply the classical polymerization on the Hamiltonian of the
spherically symmetric space-time given in Section 3 to get the
polymerized Hamiltonian. We then construct the deformed
Hamiltonian equations of motion and solve them to arrive
the polymer corrected Schwarzschild metric. The energy-
momentum tensor of the matter field corresponding to this
metric as well as some of its thermodynamical properties
are also presented in this section. The radial geodesics of the
light and particles are obtained in Section 5 and, finally, we
summarize the results in Section 6.

2. Classical Polymerization: A Brief Review

As is well known, in Schrödinger picture of quantum
mechanics, the coordinates and momentum representations
are equivalent and may be easily converted to each other

by a Fourier transformation. However, in the presence of
the quantum gravitational effects the space-time may take a
discrete structure so that such well-defined representations
are no longer applicable. As an alternative, polymer quan-
tization provides a suitable framework for studying these
situations [14, 15]. The Hilbert space of this representation
of quantum mechanics is Hpoly = 𝐿2(𝑅𝑑, 𝑑𝜇𝑑), where 𝑑𝜇𝑑 is
the Haar measure and 𝑅𝑑 denotes the real discrete line whose
segments are labeled by an extra dimension-full parameter 𝜆
such that the standard Schrödinger picture will be recovered
in the continuum limit 𝜆 󳨀→ 0. This means that, by a
classical limit ℏ 󳨀→ 0, the polymer quantum mechanics
tends to an effective 𝜆-dependent classical theory which is
somehow different from the classical theory from which we
have started. Such an effective theory may also be obtained
directly from the standard classical theory, without referring
to the polymer quantization, by using of the Weyl operator
[32]. The process is known as polymerization with which we
will deal with in the rest of this paper.

According to the mentioned above form of the Hilbert
space of the polymer representation of quantum mechan-
ics, the position space (with coordinate 𝑞) has a discrete
structure with discreteness parameter 𝜆. Therefore, the asso-
ciated momentum operator 𝑝, which is the generator of
the displacement, does not exist [15]. However, the Weyl
exponential operator (shift operator) corresponding to the
discrete translation along 𝑞 is well defined and effectively
plays the role of momentum associated to 𝑞 [14]. This allows
us to utilize theWeyl operator to find an effective momentum
in the semiclassical regime. So, considering a state 𝑓(𝑞), its
derivative with respect to the discrete position 𝑞 may be
approximated by means of the Weyl operator as [32]

𝜕𝑞𝑓 (𝑞) ≈ 12𝜆 [𝑓 (𝑞 + 𝜆) − 𝑓 (𝑞 − 𝜆)]
= 12𝜆 (𝑒𝑖𝑝𝜆 − 𝑒−𝑖𝑝𝜆)𝑓 (𝑞) = 𝑖𝜆 ̂sin (𝜆𝑝)𝑓 (𝑞) ,

(1)

and similarly the second derivative approximation will be

𝜕2𝑞𝑓 (𝑞) ≈ 1𝜆2 [𝑓 (𝑞 + 𝜆) − 2𝑓 (𝑞) + 𝑓 (𝑞 − 𝜆)]
= 2𝜆2 ( ̂cos (𝜆𝑝) − 1)𝑓 (𝑞) .

(2)

Having the above approximations at hand, we define the
polymerization process for the finite values of the parameter𝜆 as

𝑝 󳨀→ 1𝜆 ̂sin (𝜆𝑝),
𝑝2 󳨀→ 2𝜆2 (1 − ̂cos (𝜆𝑝)) .

(3)

This replacement suggests the idea that a classical theory may
be obtained via this process, but now without any attribution
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to theWeyl operator.This iswhat is dubbed usually as classical
Polymerization in literature [14, 32]:

𝑞 󳨀→ 𝑞,
𝑝 󳨀→ sin (𝜆𝑝)

𝜆 ,
𝑝2 󳨀→ 2𝜆2 [1 − cos (𝜆𝑝)] ,

(4)

where now (𝑞, 𝑝) are a pair of classical phase space variables.
Hence, by applying the transformation (4) to theHamiltonian
of a classical system we get its classical polymerized counter-
part. A glance at (4) shows that the momentum is periodic
and varies in a bounded interval as 𝑝 ∈ [−𝜋/𝜆, +𝜋/𝜆). In the
limit 𝜆 󳨀→ 0, one recovers the usual range for the canonical
momentum 𝑝 ∈ (−∞,+∞). Therefore, the polymerized
momentum is compactified and topology of the momentum
sector of the phase space is 𝑆1 rather than the usual 𝑅
[33]. Our set-up to explain the classical polymerization of
a dynamical system is now complete. In Section 4, we will
return to this issue by somemore explanations and apply it to
the Hamiltonian dynamics of a spherically symmetric space-
time.

3. Hamiltonian Model of the Spherically
Symmetric Space-Time

We start with the general spherically symmetric line element
as (it can be shown that, by introducing of new radial and
time coordinates as 𝑏(𝑟) 󳨀→ 𝑟󸀠 and 𝐼(𝑟)[𝑎(𝑟)𝑑𝑡 −𝐵(𝑟)𝑑𝑟] 󳨀→𝑑𝑡󸀠, this metric takes the standard form of static spherically
symmetric line elements: 𝑑𝑠2 = −𝐴(𝑟)𝑑𝑡2+𝐶(𝑟)𝑑𝑟2+𝑟2(𝑑𝜗2+
sin2𝜗𝑑𝜑2)) [34, 35]

𝑑𝑠2 = −𝑎 (𝑟) 𝑑𝑡2 + 𝑁 (𝑟) 𝑑𝑟2 + 2𝐵 (𝑟) 𝑑𝑡 𝑑𝑟
+ 𝑏2 (𝑟) (𝑑𝜗2 + sin2𝜗𝑑𝜑2) , (5)

where 𝑎(𝑟),𝐵(𝑟),𝑁(𝑟), and 𝑏(𝑟) are some functions of 𝑟. Upon
substitution this metric into the Einstein-Hilbert action

S = 116𝜋𝐺 ∫𝑑4𝑥√−𝑔R, (6)

the action taking the form

S = ∫𝑑𝑡 ∫𝑑𝑟𝐿 (𝑎, 𝑏, 𝑛) , (7)

where [34, 35]

𝐿 = 2√𝑛(𝑎󸀠𝑏󸀠𝑏𝑛 + 𝑎𝑏󸀠2𝑛 + 1) (8)

is an effective Lagrangian in which the primes denote differ-
entiation with respect to 𝑟 and the Lagrange multiplier 𝑛 is
given by

𝑛 (𝑟) = 𝑎 (𝑟)𝑁 (𝑟) + 𝐵2 (𝑟) . (9)

In metric (5) the function 𝑁(𝑟) plays the role of a lapse
function with respect to the 𝑟-slicing in the ADM termi-
nology; see [34–36]. On the other hand, according to the
relation (9), the functions𝑁 and 𝐵 are related to the Lagrange
multiplier 𝑛whichmeans thatwe can arbitrarily choose them.
This is a reflection of this fact that we have freedom in the
definition of the coordinates 𝑟 and 𝑡 in the metric (5). Hence,
the only independent variables that can be determined by
the Einstein field equations are the functions 𝑎(𝑟) and 𝑏(𝑟).
In order to write the Hamiltonian the momenta conjugate to
these variables should be evaluated, that is,

𝑝𝑎 = 𝜕𝐿𝜕𝑎󸀠 = 2𝑏𝑏󸀠√𝑛 ,

𝑝𝑏 = 𝜕𝐿𝜕𝑏󸀠 = 2(2𝑎𝑏󸀠 + 𝑎󸀠𝑏)
√𝑛 .

(10)

Also, the momentum associated with 𝑛 vanishes which gives
the primary constraint

𝑝𝑛 = 𝜕𝐿𝜕𝑛󸀠 = 0. (11)

In terms of these conjugate momenta the canonical Hamilto-
nian is given by its standard definition 𝐻 = ∑𝑞=𝑎,𝑏,𝑛 𝑞󸀠𝑝𝑞 − 𝐿,
leading to

𝐻 = √𝑛(𝑝𝑎𝑝𝑏2𝑏 − 𝑎2𝑏2𝑝2𝑎 − 2) + Λ𝑝𝑛, (12)

in which due to existence of the constraint (11) we have added
the last term that is the primary constraints multiplied by
an arbitrary functions Λ(𝑟). The Hamiltonian equation for 𝑛
then reads

𝑛󸀠 = {𝑛,𝐻} = Λ. (13)

Now, let us restrict ourselves to a certain class of gauges,
namely, 𝑛 = const., which is equivalent to the choice Λ = 0.
With a constant 𝑛 we assume 𝑛 = 1 without losing general
character of the solutions. By this choice, the Hamiltonian
equations of motion for the other variables are as

𝑎󸀠 = {𝑎,𝐻} = 𝑝𝑏2𝑏 − 𝑎𝑏2𝑝𝑎,
𝑝󸀠𝑎 = {𝑝𝑎, 𝐻} = 𝑝2𝑎2𝑏2 ,
𝑏󸀠 = {𝑏,𝐻} = 𝑝𝑎2𝑏 ,
𝑝󸀠𝑏 = {𝑝𝑏, 𝐻} = 𝑝𝑎𝑝𝑏2𝑏2 − 𝑎𝑏3𝑝2𝑎.

(14)

From the second and third equations of (14) we obtain

𝑝𝑎 = 𝑘1𝑏, (15)

from which one gets

𝑏 (𝑟) = 𝑘12 𝑟 + 𝑘2,
𝑝𝑎 (𝑟) = 𝑘212 𝑟 + 𝑘1𝑘2,

(16)
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where 𝑘1 and 𝑘2 are integration constants. Upon substituting
these results into the first and fourth equations of the system
(14), we arrive at the following system:

𝑎󸀠 = 1𝑘1𝑟 + 2𝑘2𝑝𝑏 −
2𝑘1𝑘1𝑟 + 2𝑘2 𝑎,

𝑝󸀠𝑏 = 𝑘1𝑘1𝑟 + 2𝑘2𝑝𝑏 −
2𝑘21𝑘1𝑟 + 2𝑘2 𝑎,

(17)

which results 𝑝󸀠𝑏 = 𝑘1𝑎󸀠 and then 𝑝𝑏 = 𝑘1𝑎 + 𝑘3. Therefore,

𝑎󸀠 (𝑟) = − 𝑘1𝑎 + 𝑘3𝑘1𝑟 + 2𝑘2 , (18)

In which after integration we obtain

𝑎 (𝑟) = 𝑘3𝑘1 +
𝑘1𝑘4𝑘1𝑟 + 2𝑘2 , (19)

and

𝑝𝑏 (𝑟) = 2𝑘3 + 𝑘21𝑘4𝑘1𝑟 + 2𝑘2 , (20)

with 𝑘3 and 𝑘4 being integration constants. Now, all of the
above results should satisfy the constraint equation 𝐻 = 0.
Thus, with the help of (12) we get 𝑘1𝑘3 = 4, where we fix them
as 𝑘1 = 𝑘3 = 2. Also, 𝑘2 and 𝑘4 remain arbitrary where we
take their values as 𝑘2 = 0 and 𝑘4 = −2𝑀 with 𝑀 being a
constant. Therefore, the metric functions take the form

𝑎 (𝑟) = 1 − 2𝑀𝑟 ,
𝑏 (𝑟) = 𝑟,

(21)

and their conjugate momenta are

𝑝𝑎 (𝑟) = 2𝑟,
𝑝𝑏 (𝑟) = 4 − 4𝑀𝑟 . (22)

Finally, with using these relations in (5) and (9), the metric is
obtained as

𝑑𝑠2 = −(1 − 2𝑀𝑟 )𝑑𝑡2 + 𝑁 (𝑟) 𝑑𝑟2

+ 2 [1 − (1 − 2𝑀𝑟 )𝑁 (𝑟)]1/2 𝑑𝑡 𝑑𝑟
+ 𝑟2 (𝑑𝜗2 + sin2 𝜗𝑑𝜑2) .

(23)

In the final stage we have to eliminate the function𝑁(𝑟).This
function should be interpreted as a Lagrange-multiplier and,
thus, cannot be considered as a real dynamical variable. As
we mentioned before, one may freely choose it. From the
physical point of view the function 𝑁(𝑟) corresponds to a
gauge freedom in choice of coordinates 𝑟 and 𝑡 in the above

metric. If we choose the lapse function as𝑁(𝑟) = (1−2𝑀/𝑟)−1
this metric takes its canonical form

𝑑𝑠2 = −(1 − 2𝑀𝑟 )𝑑𝑡2 + (1 − 2𝑀𝑟 )−1 𝑑𝑟2
+ 𝑟2 (𝑑𝜗2 + sin2 𝜗𝑑𝜑2) ,

(24)

which is nothing but the familiar form for the metric of the
Schwarzschild black hole. However, we may identify the line
element (23) with the Eddington-Finkelstein metric

𝑑𝑠2 = −(1 − 2𝑀𝑟 )𝑑𝑡2 + 4𝑀𝑟 𝑑𝑡 𝑑𝑟 + (1 + 2𝑀𝑟 )𝑑𝑟2
+ 𝑟2 (𝑑𝜗2 + sin2 𝜗𝑑𝜑2) ,

(25)

for𝑁(𝑟) = 1 + 2𝑀/𝑟, or with some other kinds of spherically
symmetric metrics for 𝑁 = 1; see [37]. In summary, from
physical viewpoint choosing different gauge functions𝑁(𝑟) is
actually looking at a space-time from a different perspective.
For example, the metric (25) can be obtained from (24) by
introducing a new time coordinate 𝑡 = 𝑡 + 2𝑀 ln(𝑟 − 2𝑀)
in which the radial null geodesics (see Section 5) become
straight lines. In this sense, the two metrics may differ from
some aspects. While the Schwarzschild metric is singular at𝑟 = 2𝑀 the Eddington-Finkelstein metric is regular not only
at 𝑟 = 2𝑀 but also for the whole range 0 < 𝑟 < 2𝑀. Indeed,
the coordinate range is extended from 2𝑀 < 𝑟 < ∞ to0 < 𝑟 < ∞.

From now on we focus on Schwarzschild black hole
metric and to justify the meaning of the constant 𝑀, noting
that the Newtonian gravitational potential of a point mass 𝑚
situated at the origin is given by the relation 𝜙 = −𝐺𝑚/𝑟. On
the other hand in the weak-field limit the 𝑔00 component of
the metric takes the form 𝑔00 = −(1 + 2𝜙/𝑐2) [38]. Therefore,
comparing this with (24) we see that𝑀 = 𝐺𝑚/𝑐2.Thismeans
that wemay interpret the constant𝑀 as due to themass of the
above mentioned point particle in relativistic units.

4. Polymerization of the Model

As explained in the second section the method of polymer-
ization is based on the modification of the Hamiltonian to
get a deformed Hamiltonian 𝐻𝜆, where 𝜆 is the deforma-
tion parameter. Quantum polymerization of the spherically
symmetric space-time is studied in [39, 40] in which the
interior of the Schwarzschild black hole as described by a
Kantowski-Sachs cosmological model is quantized by loop
quantization method. For our system this method will be
done by applying the transformation (4) on the Hamiltonian
(12). However, since all of the thermodynamical properties
of the black hole are encoded in the function 𝑎(𝑟), we will
polymerize only the 𝑎(𝑟)-sector of the Hamiltonian. So, by
means of the transformation

𝑝𝑎 󳨀→ 1𝜆 sin (𝜆𝑝𝑎) , 𝑎 󳨀→ 𝑎,
𝑝𝑏 󳨀→ 𝑝𝑏, 𝑏 󳨀→ 𝑏

(26)
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the Hamiltonian takes the form

𝐻𝜆 = − 𝑎2𝑏2
sin2 (𝜆𝑝𝑎)𝜆2 + 𝑝𝑏2𝑏

sin (𝜆𝑝𝑎)𝜆 − 2. (27)

As we mentioned earlier, by this one-parameter 𝜆-dependent
classical theory, we expect to address the quantum features
of the system without a direct reference to the quantum
mechanics. Indeed, here instead of first dealing with the
quantum pictures based on the quantum Hamiltonian oper-
ator, one modifies the classical Hamiltonian according to the
transformation (4) and then deals with classical dynamics of
the system with this deformed Hamiltonian. In the resulting
classical system the discreteness parameter 𝜆 plays an essen-
tial role since its supports the idea that the 𝜆-correction to
the classical theory is a signal from quantum gravity. Under
these conditions the Hamiltonian equations of motion for the
above Hamiltonian are

𝑎󸀠 = {𝑎,𝐻𝜆}
= 𝑝𝑏2𝑏cos (𝜆𝑝𝑎) − 𝑎𝜆𝑏2 sin (𝜆𝑝𝑎) cos (𝜆𝑝𝑎) ,

𝑝󸀠𝑎 = {𝑝𝑎, 𝐻𝜆} = sin2 (𝜆𝑝𝑎)2𝜆2𝑏2 ,
𝑏󸀠 = {𝑏,𝐻𝜆} = sin (𝜆𝑝𝑎)2𝜆𝑏 ,
𝑝󸀠𝑏 = {𝑝𝑏, 𝐻𝜆} = 𝑝𝑏2𝜆𝑏2 sin (𝜆𝑝𝑎) − 𝑎𝜆2𝑏3 sin2 (𝜆𝑝𝑎) .

(28)

The second and the third equations of this system give𝑑𝑝𝑎/𝑑𝑏 = sin(𝜆𝑝𝑎)/𝜆𝑏, integration of which results in 𝑏 =𝐶1 tan((1/2)𝜆𝑝𝑎), where 𝐶1 is an integration constant. We
note that, in the limit 𝜆 󳨀→ 0, this relation should back to𝑏 = (1/2)𝑝𝑎, obtained in the previous section. So, taking this
limit fixes the integration constant as 𝐶1 = 1/𝜆. Therefore,

𝑏 = 1𝜆 tan (12𝜆𝑝𝑎) . (29)

Now, we may use this result in the second equation of (28) to
arrive at

𝑝󸀠𝑎 = 2 cos4 (12𝜆𝑝𝑎) , (30)

whose integral is

23
tan ((1/2) 𝜆𝑝𝑎)𝜆 + 13

tan ((1/2) 𝜆𝑝𝑎)𝜆 cos2 ((1/2) 𝜆𝑝𝑎) = 𝑟. (31)

From (29) we get cos2((1/2)𝜆𝑝𝑎) = (1 + 𝜆2𝑏2)−1. With the
help of these relations (31) takes the following algebraic form
for the function 𝑏(𝑟):

𝜆2𝑏3 + 3𝑏 − 3𝑟 = 0, (32)

which admits the exact solution

𝑏 (𝑟) = [3𝜆𝑟 + √4 + 9𝜆2𝑟2]2/3 − 22/3
21/3𝜆 [3𝜆𝑟 + √4 + 9𝜆2𝑟2]1/3 . (33)

Up to second order of 𝜆, we have
𝑏 (𝑟) = 𝑟 − 13𝜆2𝑟3 + O (𝜆3) . (34)

Now, let us go back to the first and the fourth equations of the
system (28). Using (29), they take the form

𝑎󸀠 = 𝑝𝑏2𝑏 1 − 𝜆2𝑏21 + 𝜆2𝑏2 − 2𝑎𝑏 1 − 𝜆2𝑏2
(1 + 𝜆2𝑏2)2 , (35)

and

𝑝󸀠𝑏 = 𝑝𝑏𝑏 11 + 𝜆2𝑏2 − 4𝑎𝑏 1
(1 + 𝜆2𝑏2)2 , (36)

inwhichwe have used the trigonometric relations: sin(𝜆𝑝𝑎) =2𝜆𝑏/(1 + 𝜆2𝑏2) and cos2(𝜆𝑝𝑎) = (1 − 𝜆2𝑏2)/(1 + 𝜆2𝑏2). From
these two equations we get

𝑝󸀠𝑏 = 21 − 𝜆2𝑏2 𝑎󸀠, (37)

where up to second order of 𝜆, using (34) is
𝑝󸀠𝑏 = 2 [1 + 𝜆2𝑟2 + O (𝜆3)] 𝑎󸀠, (38)

and thus

𝑝𝑏 = 2∫ (1 + 𝜆2𝑟2) 𝑎󸀠𝑑𝑟. (39)

We may use this relation in (35) to get a differential equation
for 𝑎(𝑟). However, since the resulting equation seems to be
too complicated to have an exact solution, we rely on an
approximation according to which we ignore all powers of 𝜆
in the r.h.s. of (35) and so obtain

𝑎󸀠 (𝑟) = 1𝑟 ∫ (1 + 𝜆2𝑟2) 𝑎󸀠𝑑𝑟 − 2𝑟 𝑎, (40)

or after differentiation of both sides

𝑟𝑎󸀠󸀠 (𝑟) = (𝜆2𝑟2 − 2) 𝑎󸀠, (41)

with solution

𝑎 (𝑟) = 𝐶2 + 𝐶3 [−1𝑟 𝑒𝜆
2𝑟2/2 + 𝜆√𝜋2 erfi( 𝜆𝑟√2)] , (42)

where 𝐶2 and 𝐶3 are two integration constant and erfi(𝑧) is
the imaginary error function. Up to second order of 𝜆 this
expression has the form

𝑎 (𝑟) = 𝐶2 − 𝐶3𝑟 + 12𝐶3𝜆2𝑟, (43)
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comparison of which with (21) suggests that the integration
constants should fix as 𝐶2 = 1 and 𝐶3 = 2𝑀. So,

𝑎 (𝑟) = 1 + 2𝑀[−1𝑟 𝑒𝜆
2𝑟2/2 + 𝜆√𝜋2 erfi( 𝜆𝑟√2)] . (44)

Therefore, by choosing the lapse function in the form𝑁(𝑟) =𝑎−1(𝑟) (see the discussion after (23)), the polymerized metric
takes the form

𝑑𝑠2 = −𝑎 (𝑟) 𝑑𝑡2 + 𝑎−1 (𝑟) 𝑑𝑟2
+ 𝑏2 (𝑟) (𝑑𝜗2 + sin2𝜗𝑑𝜑2) , (45)

where 𝑎(𝑟) and 𝑏(𝑟) are given in (44) and (34), respectively. It
is seen that in the limit𝜆 󳨀→ 0 the line element (45) returns to
the usual Schwarzschild metric (24). However, its asymptotic
behavior, which comes from the expansion

𝑎 (𝑟) = 1 − 2𝑀𝑟
+𝑀𝜆2𝑟 [1 + 112 (𝜆𝑟)2 + 1120 (𝜆𝑟)4 + ⋅ ⋅ ⋅] ,

(46)

shows that, in spite of the Schwarzschild case, the metric
is not flat for large values of 𝑟. Later in this section, we
attribute such an asymptotic behavior to the matter field that
created this metric. In what follows, we will deal with the
physical properties, including thermodynamics, of the space-
time (45). Since such properties of a black hole can be derived
from its geometry, we expect that the deformed forms of these
properties return to their ordinary form in the limit 𝜆 󳨀→ 0.

At first, let us take a look at the horizon(s) radius of the
metric (45)whichmay be deduced from the roots of equation𝑎(𝑟) = 0. Up to the leading order of parameter 𝜆, the positive
root of this equation is

𝑟𝐻 ≃ √1 + 8𝑀2𝜆2 − 12𝑀𝜆2 . (47)

On the other hand since 𝑑𝑎(𝑟)/𝑑𝑟 = 2𝑀𝑒𝜆2𝑟2/2/𝑟2 > 0,
the function 𝑎(𝑟) is monotonically increasing and thus the
metric cannot have more than one horizon whose radius is
approximately given in (47). To see the behavior of the above
metric near the Schwarzschild essential singularity 𝑟 = 0, we
may evaluate some scalars associated with the metric such
as Ricci scalar 𝑅, 𝑅𝜇]𝑅𝜇], and the Kretschmann scalar 𝐾 =
𝑅𝜇]𝜎𝛿𝑅𝜇]𝜎𝛿. A straightforward calculation shows that

𝑅 = 2𝜆𝑀𝑟2 𝑒𝜆2𝑟2/2 [𝜆𝑟 + 2√2𝐹( 𝜆𝑟√2)] , (48)

where 𝐹(𝑥) = 𝑒−𝑥2 ∫𝑥
0
𝑒𝑦2𝑑𝑦 is the Dawson function. Near𝑟 = 0, the above relation behaves as 6𝑀𝜆2/𝑟, so given

that the value of the parameter 𝜆 is also very small we have
lim𝑟󳨀→0𝑅 ≃ O(𝜆). Computing of the scalar 𝑅𝜇]𝑅𝜇] shows the

similar behavior near 𝑟 = 0, while the Kretschmann scalar
takes the form

𝐾 = 4𝑀2𝑒𝜆2𝑟2𝑟6 [4𝜆2𝑟2 (2𝐹( 𝑟𝜆√2)
2 − 1)

− 8√2𝜆𝑟𝐹( 𝑟𝜆√2) + 𝜆4𝑟4 + 12] ,
(49)

which behaves as 𝐾 ≃ 48𝑀2/𝑟6 + 20𝑀2𝜆4/3𝑟2 + O(𝜆5).
Thus near 𝑟 = 0 we have 𝐾 ≃ 48𝑀2/𝑟6. This shows that
the space-time described by the metric (45) has an essential
singularity at 𝑟 = 0, which cannot be removed by a coordinate
transformation.

Now, let us investigate the properties of the matter
corresponding to the metric (45). Considering the Einstein
equations 𝐺𝜇] = 𝑅𝜇] − (1/2)𝑅𝛿𝜇] ∼ 𝑇𝜇] , the components of the
energy-momentum tensor become

𝑇𝜇] = diag (−𝜌, 𝑝𝑟, 𝑝⊥, 𝑝⊥)
= diag(−√2𝜋𝜆𝑀 erfi (𝜆𝑟/√2)

𝑟2 ,

− √2𝜋𝜆𝑀 erfi (𝜆𝑟/√2)
𝑟2 , −𝜆2𝑀𝑒𝜆2𝑟2/2𝑟 ,

− 𝜆2𝑀𝑒𝜆2𝑟2/2𝑟 ) .

(50)

Before going any further, a remark is in order. The usual
Schwarzschild metric is often considered a vacuum solution
since it solves 𝑅𝜇] = 0 which is equivalent to the Einstein
vacuum field equations 𝐺𝜇] = 0. However, as (50) explicitly
shows the polymer corrected metric (45) is not a vacuum
solution. Then, a question arises: what mechanism made it
possible starting froma vacuum solutionwe get a nonvacuum
solution? To deal with this question note that any vacuum
solution must be found in the absence of matter, strictly
speaking, only the Minkowski metric can be considered as a
vacuum solution. As shown in [41], in the Schwarzschild case
there is a source term (energy-momentum tensor) concen-
trated on the origin, the origin which usually excluded from
the space-time manifold. So we are faced with an unaccept-
able physical situation in which a curved metric is generated
by a zero energy-momentum tensor. In [41] with more
accurate calculations based on distributional techniques the
energy-momentum tensor of the Schwarzschild geometry
is obtained and it has been shown that its Ricci scalar
is equal to 8𝜋𝑀𝛿(𝑟) which yields an energy-momentum
tensor proportional to 𝑀𝛿(𝑟). Now, what is happening in
the effective theories such as noncommutative, see [42], and
polymeric counterparts of the Schwarzschild solution is that
the concentrated matter on the origin will spread throughout
space by the polymer parameter 𝜆 (or noncommutative
parameter 𝜃 in noncommutative theories).

The energy-momentum tensor (50) shows a fluid with
radial pressure 𝑝𝑟 = −𝜌 and tangential pressure 𝑝⊥ =−𝜌 − (𝑟/2)𝜕𝑟𝜌. In comparison with the conventional perfect
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Figure 1: Left: Temperature versus mass. The solid line shows the qualitative behavior of the relation (53) while the dashed line refers to the
conventional temperature of the Schwarzschild black hole. Right: the density of the matter distribution versus 𝑟. The figures are plotted for𝜆 = 0.1 and𝑀 = 1.

fluid with isotropic pressure the above energy-momentum
tensor shows an unusual behavior since its pressure exhibits
an anisotropic behavior. At short distances the difference
between 𝑝𝑟 and 𝑝⊥ is of order 𝜆2, which shows that the fluid
behaves approximately like a perfect fluid. However, when𝑟 grows the anisotropy between the pressure’s components
increases and the behavior of the fluid is far from the
perfect fluid behavior. The nonvanishing radial pressure of
the above anisotropic fluid may be interpreted as a result
of the quantum fluctuation of given space-time. The large
amount of this pressure near the origin prevents the matter
collapsing into this point. Such an unusual equation of state
for fluids also appeared in the noncommutative theories
of black holes [42]. In view of the validity of the energy
conditions, we see that

𝜌 + 𝑝𝑟 + 2𝑝⊥ = −2𝜆2𝑀𝑒𝜆2𝑟2/2𝑟 < 0, (51)

which shows the violation of the strong energy condition for
this exotic distribution of matter. On the other hand, in view
of the weak energy conditions, while the relation 𝜌 + 𝑝𝑟 ≥ 0
is always satisfied, the condition 𝜌+𝑝⊥ ≥ 0 is violated for 𝑟 >
O(1/𝜆).The violation of the energy conditions shows that the
classical description of this type of matter field is not credible
and thus the corresponding gravity should be described by
an effective quantum theory (here the polymerized theory)
rather than the usual general relativity.

Finally, let us take a quick look at thermodynamics of the
metric (45). According to the Hawking formulation the black
hole’s temperature is proportional to the surface gravity at the
black hole horizon. It can be shown that for a diagonal metric
such as (45) the surface gravity is [43]

𝜅 = √−14𝑔𝑡𝑡𝑔𝑟𝑟 (𝜕𝑔𝑡𝑡𝜕𝑟 )2 = 𝑀𝑟2 𝑒𝜆
2𝑟2/2. (52)

Evaluating this expression at the horizon radius (47) gives the
temperature as

𝑇 ∝ 4𝜆4𝑀3𝑒(√8𝜆2𝑀2+1−1)2/8𝜆2𝑀2

(√8𝜆2𝑀2 + 1 − 1)2 . (53)
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Figure 2: The entropy versus mass. The figure is plotted for 𝜆 = 0.1
and𝑀 = 1.

In Figure 1 we have plotted the qualitative behavior of the
above results. As this figure shows near the origin the matter
has a dense core like its conventional Schwarzschild counter-
part.Thus, the temperature changes like Schwarzschild in this
regime. However, in a global look, the exotic properties of
the matter cause different behavior for temperature. Unlike
the usual Schwarzschild case, by decreasing the mass, the
radiation temperature first decreases to a minimum value
and then exhibits the normal behavior; i.e., the temperature
increases while the mass is decreasing. The reason for this
abnormal behavior in the temperature of the radiation may
be found in the nature of the dark energy-like of the matter
field described by the energy-momentum tensor (50). Now,
by the second law of thermodynamics 𝑑𝑆 = 𝑑𝑀/𝑇, we may
compute the entropy as

𝑆 = ∫ 𝑒−(√8𝜆2𝑀2+1−1)2/8𝜆2𝑀2 (√8𝜆2𝑀2 + 1 − 1)2
4𝜆4𝑀3 𝑑𝑀. (54)

We see that this integral cannot be evaluated analytically.
In Figure 2, employing numerical methods, we have shown
the approximate behavior of the entropy for typical values of
the parameters. As the figure shows with decreasing mass,
the entropy grows from negative values up to a maximum
positive value and then behaves like the Schwarzschild case
and decreases to zero.
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Figure 3: Left: the outgoing (dashed line) and incoming (solid line) geodesics for 𝑟 < 𝑟𝐻. Right:tThe outgoing (solid line) and incoming
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5. Geodesics of the Polymerized Metric

In this section we are going to study how light and particles
will move in the geometrical background given by metric
(45). This is important because from the classical trajectories
of light or falling particles we understand that the corre-
sponding space-time behaves really like a black hole. First,

consider the radial null geodesics are defined by 𝑑𝑠 = 0 and𝑑𝜗 = 𝑑𝜑 = 0. Therefore, we have

−𝑎 (𝑟) 𝑑𝑡2 + 𝑎−1 (𝑟) 𝑑𝑟2 = 0 󳨐⇒
𝑑𝑡 = ± 𝑑𝑟𝑎 (𝑟) .

(55)

In order to get an analytical solution we use the approximate𝑎(𝑟) ∼ 1 − 2𝑀/𝑟 +𝑀𝜆2𝑟, for which we obtain

𝑡 − 𝑡0 = ±2 󵄨󵄨󵄨󵄨󵄨tanh−1 ((2𝑀𝑟𝜆2 + 1) /√8𝑀2𝜆2 + 1)󵄨󵄨󵄨󵄨󵄨 /√8𝜆2𝑀2 + 1 + log 󵄨󵄨󵄨󵄨󵄨𝑀𝑟2𝜆2 − 2𝑀 + 𝑟󵄨󵄨󵄨󵄨󵄨2𝜆2𝑀 . (56)

For 𝑟 > 𝑟𝐻, the above expression with positive (negative)
sign shows that 𝑟 increases (decreases) as 𝑡 increases and
thus the corresponding curve is an outgoing (incoming) radial
null geodesics. For 𝑟 < 𝑟𝐻, the situation is reversed; i.e., the
positive and negative signs correspond to the incoming and
outgoing curves, respectively; see Figure 3. A glance at this
figure makes it clear that none of the null geodesics can pass
through the horizon which shows the black hole nature of
the underlying space-time. It is clear that in comparison with
region 𝑟 > 𝑟𝐻 the local light cones tip over in region 𝑟 < 𝑟𝐻.
This is because while the coordinates 𝑟 and 𝑡 are space-like
and time-like, respectively, in region 𝑟 > 𝑟𝐻 and in region𝑟 < 𝑟𝐻 they reverse their character. The orientation of the
light cones inside the horizon shows that nothing can stay at
rest in this region but will be forced tomove towards the black
hole center.

To complete our geodesics analysis, let us now consider
the radial trajectory of a falling free particle. It moves along
the time-like geodesics which results the following equations
of motion [38]:

𝑎 (𝑟) ̇𝑡 = 𝑘, (57)

𝑎 (𝑟) ̇𝑡2 − 𝑎−1 (𝑟) ̇𝑟2 = 1, (58)

where a dot denotes differentiation with respect to the proper
time 𝜏 and 𝑘 is a constant that depends on the initial

conditions. If we assume that the particle begins to fall with
zero initial velocity from a distance 𝑟0 for which 𝑎(𝑟0) = 1,
then 𝑘 = 1. Also, for the motion around this region we havė𝑡 ≃ 1 󳨐⇒ 𝑡 ≃ 𝜏. Therefore, we may analyse the path of the
particle in view of a comoving observer which uses the proper
time. Then, (57) and (58) give

𝑑𝜏𝑑𝑟 = − ( 𝑟2𝑀 −𝑀𝜆2𝑟2 )
1/2 , (59)

in which we have used the same previous approximation for𝑎(𝑟). Upon integration we get

𝜏 − 𝜏0 = −13𝑟√4 − 2𝜆2𝑟2 2𝐹1 (12 , 34 ; 74 ; 𝑟
2𝜆22 )

⋅ √ 𝑟2𝑀 − 𝜆2𝑀𝑟2 ,
(60)

where 𝜏0 is an integration constant and 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) is a
Hypergeometric function. The above equation shows that in
view of the proper observer no singular behavior occurs at
the horizon radius and the particle falls to the center of the
black hole; see Figure 4. If instead one describes the motion
in terms of the coordinate time 𝑡, the situation becomes like
the null geodesics; i.e., in view of a distance observer the
particle cannot pass through the horizon and it takes infinite
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Figure 4: The trajectory of an infalling particle in terms of the
proper time 𝜏.The particle falls continuously to the singularity 𝑟 = 0
in a finite proper time.The figure is plotted for 𝜆 = 0.1 and𝑀 = 1.

time for the falling particle to reach the horizon, so that 𝑟𝐻 is
approached but never passed. All of these results show that in
terms of light and particles motion the space-time given by
the metric (45) behaves like a black hole as its Schwarzschild
counterpart.

6. Summary

In this paper we have studied the classical polymerization
procedure applied on the Schwarzschild metric. This pro-
cedure is based on a classical transformation under which
the momenta are transformed like their polymer quantum
mechanical counterpart. After a brief review of the polymer
representation of quantum mechanics, we have introduced
the classical polymerization by means of which the Hamilto-
nian of the theory under consideration gets modification in
such a way that a parameter 𝜆, coming from polymer quan-
tization, plays the role of a deformation parameter. In order
to apply this mechanism on the Schwarzschild black hole, we
first presented a Hamiltonian function for a general spher-
ically symmetric space-time and showed that the resulting
Hamiltonian equations yield the conventional Schwarzschild
metric. Then, we have applied the polymerization on this
minisuperspacemodel and solved theHamiltonian equations
once again to achieve the polymer corrected Schwarzschild
metric. We saw that while the usual Schwarzschild metric
is a vacuum spherical symmetric solution of the Einstein
equations, this is not the case for its polymerized version
obtained by the above mentioned method. Interestingly, the
energy-momentum tensor of the matter field corresponding
to the polymerized metric has anisotropic negative pressure
sector with a dark energy-like equation of state. As expected,
the unusual behavior of such a matter field resulted in an
uncommon behavior for the thermodynamical quantities
like temperature and entropy in comparison with the tra-
ditional Schwarzschild solution. Finally, to clarify that the
polymerized metric has also the black hole nature, we have
investigated the null geodesics and verified that the outgoing
and incoming geodesics curves can never pass through the
horizon. Also, we proved that in view of a comoving observer
which uses the proper time an infalling particle continuously
falls to the center 𝑟 = 0, without experiencing something

passing through the horizon. All these indicate that the
underlying space-time in which the light and particles are
traveling is really a black hole.
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The behaviour ofmassive andmassless test particles around asymptotically flat and spherically symmetric, charged black holes in the
context of generalized dilaton-axion gravity in four dimensions is studied. All the possible motions are investigated by calculating
and plotting the corresponding effective potential for the massless and massive particles as well. Further, the motion of massive
(charged or uncharged) test particles in the gravitational field of charged black holes in generalized dilaton-axion gravity for the
cases of static and nonstatic equilibrium is investigated by applying the Hamilton-Jacobi approach.

1. Introduction

Recently, scientists have focused their attention on the black
hole solutions in various alternative theories of gravity,
particularly theories of gravitation with background scalar
and pseudoscalar fields. In the low energy effective action,
usually string theory based-models are comprised of two
massless scalar fields, the dilaton, and the axion (see, e.g.,
[1]). Sur, Das, and SenGupta [2] employed the dilaton and
axion fields coupled to the electromagnetic field in a more
generalized coupling with Einstein and Maxwell theory in
four dimensions in the low energy action. Exploiting this new
idea, they have found asymptotically flat and nonflat dilaton-
axion black hole solutions. The vacuum expectation values
of the various moduli of compactification are responsible
for these couplings. These black hole solutions have been
studied extensively in the literature; e.g., their thermody-
namics has been investigated [3], thin-shell wormholes have
been constructed from charged black holes in generalized
dilaton-axion gravity [4], the energy of charged black holes
in generalized dilaton-axion gravity has been calculated [5],
the statistical entropy of a charged dilaton-axion black hole
has been examined [6], and the superradiant instability of a

dilaton-axion black hole under scalar perturbation has been
investigated [7]. Among various properties of such black
hole solutions, a subject of great interest is the study of the
behaviour of a test particle in the gravitational field of such
black holes.

In this paper, we study the behaviour of the time-like and
null geodesics in the gravitational field of a charged black
hole in generalized dilaton-axion gravity. The solution under
study describes an asymptotically flat black hole and the
motions of both massless and massive particles are analyzed.
The effective potentials are calculated and plotted for various
parameters in the cases of circular and radial geodesics. The
motion of a charged test particle in the gravitational field of a
charged black hole in generalized dilaton-axion gravity is also
investigated using the Hamilton-Jacobi approach.

Thepresent paper has the following structure: in Section 2
the charged black hole metric in generalized dilaton-axion
gravity is presented. Section 3 focuses on the geodesic equa-
tion in the cases of massless particle motion (𝐿 = 0) and
massive particle motion (𝐿 = −1). In Section 4 the effective
potential is studied in both cases of the massless and the
massive particle. Section 5 is devoted to the study of the
motion of a test particle in static equilibrium as well as in
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nonstatic equilibrium. For the latter case, a chargeless (𝑒 =0) and a charged test particle are considered. Finally, in
Section 6, the results obtained in this paper are discussed.

2. Charged Black Hole Metric in Generalized
Dilation-Axion Gravity

Recently, Sur, Das, and SenGupta [2] have discovered a new
black hole solution for the Einstein-Maxwell scalar field
system inspired by low energy string theory. In fact, they have
considered a generalized action in which two scalar fields are
minimally coupled to the Einstein-Hilbert-Maxwell field in
four dimensions (in the Einstein frame, see, e.g., [8, 9]) having
the form

𝐼 = 12𝜅 ∫ 𝑑4𝑥√−𝑔[𝑅 − 12𝜕𝜇𝜑𝜕𝜇𝜑 − 𝜔 (𝜑)2 𝜕𝜇𝜁𝜕𝜇𝜁
− 𝛼 (𝜑, 𝜁) 𝐹𝜇]𝐹𝜇] − 𝛽 (𝜑, 𝜁) 𝐹𝜇] ∗ 𝐹𝜇]] , (1)

where 𝜅 = 8𝜋𝐺, R is the curvature scalar, 𝐹𝜇] describes
the Maxwell field strength and 𝜑, 𝜁 are two massless
scalar/pseudoscalar fields depending only on the radial coor-
dinate 𝑟 which are coupled to the Maxwell field through the
functions 𝛼 and 𝛽. Here, 𝜁 acquires a nonminimal kinetic
term of the form 𝜔(𝜑) due to its interaction with 𝜑 (𝜑, 𝜁 can
be identifiedwith the scalar dilaton field and the pseudoscalar
axion field, respectively), while ∗𝐹𝜇] = (1/2)𝜀𝜇]𝜅𝜆𝐹𝜅𝜆 is the
Hodge-dual Maxwell field strength.

Indeed, with the action described by (1), a much wider
class of black hole solutions has been found, whereby two
types of metrics, asymptotically flat and asymptotically non-
flat, for the black hole solutions have been obtained.

For our study we use the asymptotically flat solution to
analyze the behaviour of massive and massless test particles
around a spherically symmetric, charged black hole in gen-
eralized dilaton-axion gravity. The asymptotically flat metric
considered is given by

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑓 (𝑟) + ℎ (𝑟) 𝑑Ω2, (2)

with

𝑓 (𝑟) = (𝑟 − 𝑟−) (𝑟 − 𝑟+)(𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛 (3)

and

ℎ (𝑟) = (𝑟 + 𝑟0)2𝑛(𝑟 − 𝑟0)(2𝑛−2) . (4)

In (3) and (4), according to [2], in order to have nontrivial𝜑 and 𝜁 fields, the exponent 𝑛 is a dimensionless constant
strictly greater than 0 and strictly less than 1. The other
various parameters are given as follows:

𝑟± = 𝑚0 ± √𝑚20 + 𝑟20 − 18 (𝐾1𝑛 + 𝐾21 − 𝑛), (5)

𝑟0 = 116𝑚0 (𝐾1𝑛 − 𝐾21 − 𝑛) , (6)

𝑚0 = 𝑚 − (2𝑛 − 1) 𝑟0, (7)

𝐾1 = 4𝑛 [4𝑟20 + 2𝑟0 (𝑟+ + 𝑟−) + 𝑟+𝑟−] , (8)

𝐾2 = 4 (1 − 𝑛) 𝑟+𝑟−, (9)

and

𝑚 = 116𝑟0 (𝐾1𝑛 − 𝐾21 − 𝑛) + (2𝑛 − 1) 𝑟0, (10)

where 𝑚 is the mass of the black hole and 0 < 𝑛 < 1. The
parameters 𝑟+ and 𝑟− determine the inner and outer event
horizons, respectively. Also, for 𝑟 = 𝑟0, there is a curvature
singularity and the parameters obey the condition 𝑟0 < 𝑟− <𝑟+.
3. Geodesic Equation

The geodesic equation for the metric (2) describing the
motion in the plane 𝜃 = 𝜋/2 is as follows [10]:

(𝑑𝑟𝑑𝜏)2 = 𝐿𝑓 (𝑟) + 𝐸2 − 𝐽2𝑓 (𝑟)ℎ (𝑟) , (11)

𝑑𝜙𝑑𝜏 = 𝐽ℎ (𝑟) , (12)

𝑑𝑡𝑑𝜏 = 𝐸𝑓 (𝑟) , (13)

where 𝐿 is known as the Lagrangian having the values 0 for
a massless particle and −1 for a massive particle and 𝐸, 𝐽
are constants identified as the energy per unit mass and the
angular momentum, respectively.

Nowweproceed to discuss themotion of themassless and
the massive particle for the radial geodesic.

The radial geodesic equation (𝐽 = 0) is
(𝑑𝑟𝑑𝜏)2 = 𝐸2 + 𝐿𝑓 (𝑟) . (14)

Using (13), (14) becomes

(𝑑𝑟𝑑𝑡 )2 = (𝑓 (𝑟))2 (1 + 𝑓 (𝑟) 𝐿𝐸2) . (15)

Then, by inserting 𝑓(𝑟) from (3), (15) reads

(𝑑𝑟𝑑𝑡 )2 = ( (𝑟 − 𝑟−) (𝑟 − 𝑟+)(𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛)
2

⋅ (1 + (𝑟 − 𝑟−) (𝑟 − 𝑟+)(𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛 𝐿𝐸2) .
(16)

3.1. Massless Particle Motion (𝐿 = 0). For the motion of a
massless particle the Lagrangian 𝐿 vanishes. In this case the
equation for the radial geodesic (16) becomes

(𝑑𝑟𝑑𝑡 )2 = ( (𝑟 − 𝑟−) (𝑟 − 𝑟+)(𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛)
2 . (17)
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Figure 1: Graphs of 𝑡 − 𝑟 (left) and 𝜏 − 𝑟 (right) for a massless particle.

After integrating we get

±𝑡 = 𝑟 + ln (𝑟 − 𝑟−) 𝑟2𝑟− − 𝑟+ − ln (𝑟 − 𝑟−) 𝑟20𝑟− − 𝑟+
− ln (𝑟 − 𝑟+) 𝑟2+𝑟− − 𝑟+ + ln (𝑟 − 𝑟+) 𝑟20𝑟− − 𝑟+ . (18)

Again from (14) we obtain for 𝐿 = 0
(𝑑𝑟𝑑𝜏)2 = 𝐸2, (19)

from which we have a 𝜏 − 𝑟 relationship
±𝜏 = 𝑟𝐸 . (20)

In Figure 1 (left) 𝑡 is plotted with respect to the radial
coordinate 𝑟 and in Figure 1 (right) the proper time (𝜏) is
plotted with respect to radial coordinate 𝑟 for a massless
particle.

3.2. Massive Particle Motion (𝐿 = −1). For a massive particle
the Lagrangian 𝐿 is −1 and from (14) and (15) we obtain for
the motion of a massive particle the relationships between 𝑡
and 𝑟 and 𝜏 and 𝑟, respectively, as

±𝑡 = ∫ 𝐸𝑑𝑟((𝑟 − 𝑟−) (𝑟 − 𝑟+) / (𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛) (𝐸2 − (𝑟 − 𝑟−) (𝑟 − 𝑟+) / (𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛)1/2 (21)

±𝜏 = ∫ (𝑟 − 𝑟0)(1−𝑛) (𝑟 + 𝑟0)𝑛 𝑑𝑟(𝐸2 (𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛 − (𝑟 − 𝑟−) (𝑟 − 𝑟+))1/2 . (22)

In Figure 2 the graphs of 𝑡 with respect to the radial
coordinate 𝑟 (left) and of the proper time 𝜏with respect to the
radial coordinate 𝑟 (right) for amassive particle are presented.

4. The Effective Potential

From the geodesic equation (11) we have12 (𝑑𝑟𝑑𝜏)2 = 12 [𝐸2 − 𝑓 (𝑟) ( 𝐽2ℎ (𝑟) − 𝐿)] . (23)

After comparing the above equation with the well known
equation (1/2)(𝑑𝑟/𝑑𝜏)2 + 𝑉eff = 0, we obtain the following
expression for the effective potential:

𝑉eff = −12 [𝐸2 − 𝑓 (𝑟) ( 𝐽2ℎ (𝑟) − 𝐿)] . (24)

From (24) one can see that the effective potential depends
on the energy per unit mass, 𝐸, and the angular momentum,𝐽.
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Figure 2: Graphs of 𝑡 − 𝑟 (left) and 𝜏 − 𝑟 (right) for a massive particle.

4.1. Massless Particle Case (𝐿 = 0). For the radial geodesics
(𝐽 = 0), (24) yields

𝑉eff = −𝐸22 (25)

and the particle behaves like a free particle if 𝐸 = 0.
Now we consider the circular geodesics (𝐽 ̸= 0). The

corresponding effective potential is given by

𝑉eff = −𝐸22 + 𝐽22 (𝑟 − 𝑟−) (𝑟 − 𝑟+)(𝑟 + 𝑟0)4𝑛 . (26)

For 𝐸 ̸= 0 and 𝐽 = 0 we infer from (26) that the effective
potential does not depend on the charge and the mass of the
black hole in generalized dilaton-axion gravity. The shape of
the effective potential for 𝐸 ̸= 0 is shown in Figure 3 (left)
for 𝐽 = 6 (solid curve) and 𝐽 = 0 (dotted line). We notice
that for a nonzero value of 𝐽, the effective potential acquires
a minimum, implying that stable circular orbits might exist.
For 𝐽 = 0, there are no stable circular orbits.

Now if we consider 𝐸 = 0 and circular geodesics, i.e.,𝐽 ̸= 0, then, from (26), it is clear that the roots of the
effective potential are the same as the horizon values. Further,
the effective potential is negative between its two roots, i.e.,
between the horizons. Hence, since the effective potential
has a minimum value stable circular orbits must exist, a
conclusion that is confirmed in Figure 3 (right).

4.2. Massive Particle Case (𝐿 = −1). The effective potential
for the massive particle is obtained from (24) as

𝑉eff = −12 [𝐸2 − 𝑓 (𝑟)( 𝐽2ℎ (𝑟) + 1)] . (27)

Now, for the radial geodesics with 𝐽 = 0, 𝐸 = 0, the above
equation yields

𝑉eff = 12 (𝑟 − 𝑟−) (𝑟 − 𝑟+)(𝑟 − 𝑟0)(2−2𝑛) (𝑟 + 𝑟0)2𝑛 . (28)

From (28) we notice that the solutions for the effective
potential coincidewith the horizon values for radial geodesics
with 𝐸 = 0, which is demonstrated graphically in Figure 4
(left). Further, from Figure 4 (left), one can see that the
motion of the particle is bounded in the interior region of the
black hole. The behaviour of the effective potential for 𝐸 ̸= 0
is depicted in the bottom part of Figure 4 (left). In this case,
we also deduce that a bound orbit is possible for the massive
particle.

Next we will consider the motion of a test particle with
nonzero angular momentum. For 𝐸 = 0, the roots of the
effective potential coincide with the horizons (see Figure 4
(right)). Thus the particle is bounded in the interior region
of the black hole.

5. Motion of a Test Particle

In this sectionwe study themotion of a test particle ofmass𝑀
and charge 𝑒 in the gravitational field of a charged black hole
in generalized dilaton-axion gravity. The Hamilton-Jacobi
equation [11] is

𝑔𝑖𝑘 ( 𝜕𝑆𝜕𝑥𝑖 + 𝑒𝐴 𝑖)( 𝜕𝑆𝜕𝑥𝑘 + 𝑒𝐴𝑘) +𝑀2 = 0, (29)

where 𝑔𝑖𝑘, 𝐴 𝑖 are the metric potential and the gauge poten-
tial, respectively, and 𝑆 is Hamilton’s standard characteristic
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Figure 3: Graphs of 𝑉eff − 𝑟 with 𝐸 = 10, 𝐽 = 6 and 𝐽 = 0 (left) and 𝑉eff − 𝑟 with 𝐸 = 0 and 𝐽 = 1 (right), for a massless particle.
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Figure 4: Graphs of 𝑉eff − 𝑟 with 𝐽 = 0, 𝐸 = 0, and 𝐸 = 1.5 (left) and 𝑉eff − 𝑟 with 𝐽 = 1 and 𝐸 = 0 (right), for a massive particle.

function. The explicit form of the Hamilton-Jacobi equation
for the line element (2) is

− 1𝑓 (𝑟) (𝜕𝑠𝜕𝑡 + 𝑒𝑄𝑟 )2 + 𝑓 (𝑟) (𝜕𝑆𝜕𝑟)2 + 1ℎ (𝑟) (𝜕𝑆𝜕𝜃)2
+ 1ℎ (𝑟) sin2𝜃 ( 𝜕𝑆𝜕𝜙)2 +𝑀2 = 0,

(30)

where 𝑄 is the charge of the black hole. To solve the
above partial differential equation, let us assume a separable
solution in the form

𝑆 (𝑡, 𝑟, 𝜃, 𝜙) = −𝐸𝑡 + 𝑆1 (𝑟) + 𝑆2 (𝜃) + 𝐽𝜙, (31)

where 𝐸 and 𝐽 are the energy and angular momentum of the
particle, respectively. After some simplification we obtain
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𝑆1 (𝑟) = 𝜖∫ [(𝐸 − 𝑒𝑄/𝑟)2𝑓2 − 𝑝2𝑓ℎ − 𝑀2𝑓 ]
1/2 , (32)

𝑆2 (𝜃) = 𝜖∫ (𝑝2 − 𝐽2cosec2𝜃)1/2 , (33)

where 𝜖 = ±1 and 𝑝 is the separation constant also known as
the momentum of the particle.

The radial velocity of the particle is given by

𝑑𝑟𝑑𝑡 = 𝑓2 (𝐸 − 𝑒𝑄𝑟 )−1
⋅ [ 1𝑓2 (𝐸 − 𝑒𝑄𝑟 )2 − 𝑝2𝑓ℎ − 𝑀2𝑓 ]

1/2 . (34)

The turning points of the trajectory are obtained by the
vanishing of the radial velocity, 𝑑𝑟/𝑑𝑡 = 0, which yields

(𝐸 − 𝑒𝑄𝑟 )2 − 𝑝2𝑓ℎ −𝑀2𝑓 = 0. (35)

After solving this equation for 𝐸, we get
𝐸 = 𝑒𝑄𝑟 + √𝑓(𝑝2ℎ +𝑀2)

1/2 . (36)

The effective potential is obtained from the relation 𝑉(𝑟) =𝐸/𝑀 as follows:

𝑉 = 𝑒𝑄𝑀𝑟 + √𝑓( 𝑝2𝑀2ℎ + 1)
1/2 . (37)

Using (3) and (4) the effective potential becomes

𝑉(𝑟) = 𝑒𝑄𝑀𝑟 + (1 + 𝑝2 (𝑟 − 𝑟0)
2𝑛−2

𝑀2 (𝑟 + 𝑟0)2𝑛 )
⋅ ( √(𝑟 − 𝑟) (𝑟 − 𝑟+)(𝑟 − 𝑟0)1−𝑛 (𝑟 + 𝑟0)𝑛).

(38)

In the stationary system (𝑑𝑉/𝑑𝑟 = 0) we obtain
− 𝑒𝑄𝑀𝑟2 + 12 ((𝑟 − 𝑟−) (𝑟 − 𝑟+))

1/2 (𝑝2 (𝑟 − 𝑟0)2𝑛−2 (2𝑛 − 2) /𝑀2 (𝑟 − 𝑟0) (𝑟 + 𝑟0)2𝑛 − 2𝑝2𝑛 (𝑟 − 𝑟0)2𝑛−2 /𝑀2 (𝑟 + 𝑟0)2𝑛+1)(1 + 𝑝2 (𝑟 − 𝑟0)2𝑛−2 /𝑀2 (𝑟 + 𝑟0)2𝑛)1/2 (𝑟 − 𝑟0)1−𝑛 (𝑟 + 𝑟0)𝑛
+ 12 (2𝑟 − 𝑟+ − 𝑟−) (1 + 𝑝

2 (𝑟 − 𝑟0)2𝑛−2 /𝑀2 (𝑟 + 𝑟0)2𝑛)1/2((𝑟 − 𝑟−) (𝑟 − 𝑟+))1/2 (𝑟 − 𝑟0)1−𝑛 (𝑟 + 𝑟0)𝑛
− (1 − 𝑛) (1 + 𝑝2 (𝑟 − 𝑟0)2𝑛−2 /𝑀2 (𝑟 + 𝑟0)2𝑛)1/2 ((𝑟 − 𝑟−) (𝑟 − 𝑟+))1/2(𝑟 − 𝑟0)2−𝑛 (𝑟 + 𝑟0)𝑛
− 𝑛 (1 + 𝑝2 (𝑟 − 𝑟0)2𝑛−2 /𝑀2 (𝑟 + 𝑟0)2𝑛)1/2 ((𝑟 − 𝑟−) (𝑟 − 𝑟+))1/2(𝑟 − 𝑟0)1−𝑛 (𝑟 + 𝑟0)𝑛+1 = 0.

(39)

In order to use a more simplified equation and thus be able to
visualize it by plotting its graph, one may select some specific
value for 𝑛. Here we choose 𝑛 = 0.5 (since 0 < 𝑛 < 1) and the
simplified form of equation (39) is given by

𝛼 (𝑟)
fl
2𝑒𝑄 (𝑟2 − 𝑟20)1/2𝑀𝑟2
+ 2𝑟 ((𝑟 − 𝑟−) (𝑟 − 𝑟+))1/2(𝑟2 − 𝑟20) ( 𝑝2𝑀2 (𝑟2 − 𝑟20) 𝛽 + 𝛽)
− (2𝑟 − 𝑟+ − 𝑟−) 𝛽((𝑟 − 𝑟−) (𝑟 − 𝑟+))1/2 = 0,

(40)

where 𝛽 = (1 + 𝑝2/𝑀2(𝑟2 − 𝑟20))1/2.

5.1. Test Particle in Static Equilibrium. The momentum 𝑝
must be zero in the static equilibrium system; thus from (40)
we get

(4𝑒2𝑄2 −𝑀2 (2𝑟−𝑟+ + 𝑟2+ − 𝑟2−)) 𝑟8
+ (−4𝑒2𝑄2 (𝑟− + 𝑟+)
+ 4𝑀2 (𝑟20𝑟− + 𝑟20𝑟+𝑟2−𝑟+ + 𝑟−𝑟2+)) 𝑟7
+ (4𝑒2𝑄2 (𝑟−𝑟+ − 3𝑟20)
− 2𝑀2 (6𝑟20𝑟−𝑟+ + 𝑟20𝑟2− + 𝑟2−𝑟2+ + 𝑟20𝑟2+ − 𝑟40)) 𝑟6
+ (12𝑒2𝑄2𝑟20 (𝑟− + 𝑟+)
+ 4𝑀2𝑟20 (𝑟+𝑟2− + 𝑟2+𝑟− + 𝑟20 (𝑟+ + 𝑟−))) 𝑟5
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+ (12𝑒2𝑄2𝑟20 (𝑟20 − 𝑟+𝑟−)
−𝑀2𝑟40 (2𝑟+𝑟− + 𝑟2+ + 𝑟2−)) 𝑟4 − 12𝑒2𝑄2𝑟40 (𝑟+ + 𝑟−)
⋅ 𝑟3 + 4𝑒2𝑄2𝑟40 (3𝑟+𝑟− − 𝑟20) 𝑟2 + 4𝑒2𝑄2𝑟60 (𝑟+ + 𝑟−)⋅ 𝑟 − 4𝑒2𝑄2𝑟60𝑟+𝑟− = 0.

(41)

We notice that the last term of the above equation is
negative. So, this equation has at least one positive real root.
Consequently, a bound orbit is possible for the test particle,
i.e., the test particle can be trapped by a charged black hole in
generalized dilaton-axion gravity. In other words, a charged
black hole in generalized dilaton-axion gravity exerts an
attractive gravitational force on matter.

5.2. Test Particle in Nonstatic Equilibrium

5.2.1. Test Particle without Charge (𝑒 = 0). In this case (40)
becomes

𝑀2 (𝑟− + 𝑟+) 𝑟4 − 2 (𝑟20𝑀2 + 𝑟−𝑟+𝑀2 + 𝑝2) 𝑟3+ 3𝑝2 (𝑟+ − 𝑟−) 𝑟2+ 2 (𝑟4𝑀2 − 𝑟20𝑝2 + 𝑟20𝑀2𝑟+𝑟− − 2𝑝2𝑟+𝑟−) 𝑟
+ 𝑟20 (𝑟+𝑝2 + 𝑟−𝑝2 −𝑀2𝑟20𝑟+ −𝑀2𝑟20𝑟−) = 0.

(42)

If 𝑀2𝑟20𝑟+ + 𝑀2𝑟20𝑟− > 𝑟+𝑝2 + 𝑟−𝑝2, one can see that
the last term of the above equation is negative. Therefore,
this equation must have at least one positive real root.
Consequently, a bound orbit for the uncharged test particle
is possible. If 𝑀2𝑟20𝑟+ + 𝑀2𝑟20𝑟− = 𝑟+𝑝2 + 𝑟−𝑝2, then (42)
changes to a third-degree equation with two changes of sign.
By Descarte’s rule of sign, this equation must have either two
positive roots or no positive roots at all. Thus, a bound orbit
for the uncharged test particle may or may not be possible.
For𝑀2𝑟20𝑟+ +𝑀2𝑟20𝑟− < 𝑟+𝑝2 + 𝑟−𝑝2, (42) has two changes of
sign. Here, again a bound orbit for the uncharged test particle
may or may not be possible.

5.2.2. Test Particle with Charge (𝑒 ̸= 0). For a charged test
particle with 𝑛 = 0.5, the stationary system (𝑑𝑉/𝑑𝑟 = 0)
yields the form given in (40). As this equation is algebraically
very complicated, we use the graph of 𝛼(𝑟) in order to find out
whether there exist any real positive roots. From Figure 5 one
can see that, for different values of the test particle’s charge,𝛼(𝑟) given by (40) does not intersect the 𝑟-axis. Hence, no
real positive roots are possible. As a result, no bound orbit for
the charged test particle is possible.

6. Discussion

In the present investigation, we have analyzed the behaviour
of massless and massive particles in the gravitational field of
a charged black hole in generalized dilaton-axion gravity in
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Figure 5: Graph of 𝛼(𝑟) given in (40) for different values of the test
particle’s charge.

four dimensions. To this purpose, we have studied themotion
of a massless particle (𝐿 = 0) and a massive particle (𝐿 = −1).
We have plotted the graphs of 𝑡 and the proper time 𝜏 with
respect to the radial coordinate 𝑟. For the massless particle 𝑡
increases nonlinearly with 𝑟 (Figure 1 (left)), while the proper
time 𝜏 increases linearlywith 𝑟 (Figure 1 (right)). In the case of
themassive particle motion both 𝑡 and 𝜏 decrease nonlinearly
with 𝑟 (Figure 2).

Further, studying the effective potential we ended upwith
(24) fromwhich we conclude that 𝑉eff depends on the energy
per unit mass 𝐸 and the angular momentum 𝐽. For a massless
test particle we found that 𝑉eff = −𝐸2/2 in the case of radial
geodesics (𝐽 = 0), while if 𝐸 = 0 the particle behaves like a
free particle. In the case of circular geodesics (𝐽 ̸= 0), 𝑉eff is
given by (26). In Figure 3 the behaviour of 𝑉eff is presented
for zero and nonzero 𝐸 and various values of 𝐽. From these
graphs it can be inferred that for 𝐸 ̸= 0 and 𝐽 ̸= 0 the effective
potential 𝑉eff has a minimum and circular orbits are possible,
while for𝐸 ̸= 0 and 𝐽 = 0 no stable circular orbits can exist. In
the cases 𝐸 = 0 and 𝐽 ̸= 0 the effective potential 𝑉eff changes
sign two times between the horizons and stable circular orbits
must exist.

From the examination of the calculated effective poten-
tial, (27) for a massive particle, we have considered the radial
geodesics for the cases 𝐽 = 0 and 𝐸 = 0, 𝐽 = 0 and 𝐸 ̸= 0,
and 𝐽 ̸= 0 and 𝐸 = 0. It is seen (Figure 4) that in the
first case the roots of the effective potential coincide with
the horizons’ positions and the particle’s orbit is bound in
the black hole’s interior. In the second case, a bound orbit is
also possible. Finally, in the third case, i.e., when the particle’s
angular momentum does not vanish, the roots of the effective
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potential coincide again with the horizons’ positions and the
particle’s orbit is bound again in the black hole’s interior.

As a last step we have examined the motion of a massive
and charged test particle in the gravitational field of a charged
black hole in generalized dilaton-axion gravity by exploiting
the Hamilton-Jacobi equation. The latter is set up for the
space-time geometry considered and is analytically solved
by applying additive separation of variables. As a result, the
particle’s radial velocity and the effective potential are deter-
mined in closed form. Then the case of static equilibrium
is examined and it is found that the charged test particle
may have a bound orbit; i.e., it can be trapped by a charged
black hole in this context or, stated differently, the charged
black hole exerts an attractive gravitational force upon the
charged particle in generalized dilaton-axion gravity. In the
case of nonstatic equilibrium, we have distinguished between
an uncharged and a charged test particle. In the former case,
conditions have been found for the possibility of existence
of the particle’s bound orbit. Finally, when the test particle
carries a charge, it is seen graphically (Figure 5) that no bound
orbit is possible.

An interesting perspective for future work would be the
study of the motion of charged or uncharged test particles
and the behaviour of geodesics for rotating black hole
solutions or for black hole solutions in more than four space-
time dimensions in the context of generalized dilaton-axion
gravity.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Farook Rahaman would like to thank the authorities of
the Inter-University Centre for Astronomy and Astro-
physics, Pune, India, for providing research facilities. Farook
Rahaman and Susmita Sarkar are also grateful to DST-
SERB (Grant No.: EMR/2016/000193) and UGC (Grant No.:
1162/(sc)(CSIR-UGC NET, DEC 2016)), Govt. of India, for
financial support, respectively.

References

[1] T. Ort́ın,Gravity and Strings, Chapter 16, Cambridge University
Press, 2004.

[2] S. Sur, S. Das, and S. SenGupta, “Charged black holes in gener-
alized dilaton-axion gravity,” Journal of High Energy Physics, vol.
10, article no. 064, 2005.

[3] T. Ghosh and S. SenGupta, “Thermodynamics of dilation-axion
black holes,”Physical ReviewD, vol. 78, no. 12, Article ID 124005,
2008.

[4] A. A. Usmani, Z. Hasan, F. Rahaman, S. A. Rakib, S. Ray, and P.
K. Kuhfittig, “Thin-shell wormholes from charged black holes

in generalized dilaton-axion gravity,” General Relativity and
Gravitation, vol. 42, no. 12, pp. 2901–2912, 2010.

[5] I. Radinschi, F. Rahaman, and A. Ghosh, “On the energy
of charged black holes in generalized dilaton-axion gravity,”
International Journal of Theoretical Physics, vol. 49, no. 5, pp.
943–956, 2010.

[6] Z. M. Yang, X.-L. Li, and Y. Gao, “Entanglement entropy
of charged dilaton-axion black hole and quantum isolated
horizon,” European Physical Journal Plus, vol. 131, no. 9, p. 304,
2016.

[7] T. Ghosh and S. SenGupta, “Tunneling across dilaton-axion
black holes,” European Physics Letters, vol. 120, no. 5, Article ID
50003, 2017.

[8] A. S. Bhatia and S. Sur, “Dynamical system analysis of dark
energymodels in scalar coupled metric-torsion theories,” Inter-
national Journal of Modern Physics D, vol. 26, no. 13, Article ID
1750149, 2017.

[9] S. Sur and A. S. Bhatia, “Weakly dynamic dark energy via
metric-scalar couplings with torsion,” Journal of Cosmology and
Astroparticle Physics, vol. 2017, no. 7, p. 39, 2017.

[10] M.Kalam, F. Rahaman, and S.Mondal, “Particlemotion around
tachyon monopole,” General Relativity and Gravitation, vol. 40,
no. 9, pp. 1849–1861, 2008.

[11] S. Chakraborty and M. F. Rahaman, “Motion of test particles
around gauge monopoles or near cosmic strings considering
semiclassical gravitational effects,” International Journal ofMod-
ern Physics D, vol. 9, no. 2, pp. 155–159, 2000.



Research Article
An Alternative Approach to the Static Spherically Symmetric,
Vacuum Global Solution to the Einstein Equations

Luis Herrera 1 and LouisWitten2

1 Instituto Universitario de Fisica Fundamental y Matematicas, Universidad de Salamanca, Salamanca, Spain
2Department of Physics, University of Florida, Gainesville, FL 32611, USA

Correspondence should be addressed to Luis Herrera; lherrera@usal.es

Received 21 June 2018; Accepted 23 August 2018; Published 12 September 2018

Academic Editor: Theophanes Grammenos

Copyright © 2018 Luis Herrera and Louis Witten. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited. The publication of this article was funded by SCOAP3.

We propose an alternative description of the Schwarzschild black hole based on the requirement that the solution is static not only
outside the horizon but also inside it. As a consequence of this assumption, we are led to a change of signature implying a complex
transformation of an angle variable. There is a “phase transition” on the surface 𝑅 = 2𝑚, producing a change in the symmetry as
we cross this surface. Some consequences of this situation on the motion of test particles are investigated.

1. The Schwarzschild Solution

The Schwarzschild solution of the Einstein gravitational field
equations for empty space is the unique static, spherically
symmetric, asymptotically flat solution. These statements
have a gauge independent meaning.

Indeed, by “static” it is meant that the metric tensor
satisfies the Killing equations for the timelike vector field 𝜒(0)

L𝜒(0)𝑔𝛼𝛽 = 0, (1)

where L denotes the Lie derivative with respect to the
vector field 𝜒(0) = 𝜕t, which, besides being timelike, is also
hypersurface orthogonal.

Then, adapting our timelike coordinate to the vector 𝜒(0),
we must demand

𝜕𝑔𝜇]
𝜕𝑡 = 𝑔0𝑎 = 0, (2)

and in the above, Greek indices run from 0 to 3, whereas Latin
indices run from 1 to 3.

On the other hand, spherical symmetry implies that the
solution admits three additional Killing vectors, describing
invariance under rotations; namely,

𝜒(1) = 𝜕𝜙,
𝜒(2) = − cos 𝜙𝜕𝜃 + cot 𝜃 sin 𝜙𝜕𝜙
𝜒(3) = sin 𝜙𝜕𝜃 + cot 𝜃 cos 𝜙𝜕𝜙.

(3)

Then, as is well known, the line element can be written in
polar coordinates in the form (𝑅 > 2𝑚)

𝑑𝑠2 = −(1 − 2𝑚
𝑅 ) 𝑑𝑡2 + 𝑑𝑅2

(1 − 2𝑚/𝑅) + 𝑅2𝑑Ω2,
𝑑Ω2 = 𝑑𝜃2 + sin2𝜃𝑑𝜙2,

(4)

where the time coordinate 𝑡 is adapted to the timelike Killing
vector (1). This is a static solution with the (𝜃, 𝜙) curved 2-
surface describing a space with a positive Gaussian curvature.

When 𝑅 < 2𝑚, the signature changes from (-, +, +, +) to
(+, -, +, +). Although mathematically a solution, this does not
describe a physical solution as we wish it to be described.

Since there is no algebraic singularity at the horizon (𝑅 =
2𝑚) (the physically meaningful components of the Riemann
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tensor are regular), there are coordinate transformations that
yield acceptable solutions of the Einstein equations with an
unchanged signature over the entire resultant space-time.
These coordinate transformations yield acceptable solutions
of the Einstein equations over the entire manifold but they
are not static.

As stressed by Rosen [1], any transformation that main-
tains the static form of the Schwarzschild metric is unable to
remove the singularity in the line element. Indeed, various
coordinate transformations have been found that allow the
manifold to extend over the whole region 0 < 𝑅 < ∞,
although all of them necessarily are nonstatic (for 𝑅 < 2𝑚)
and require all incoming geodesics (test particles) to end at
the central singularity (see, for example, [2–7]).

The point is that, for (4), 𝑅 = 2𝑚 is also a Killing horizon,
implying that the timelike Killing vector 𝜒(0) becomes null on
that surface and, still worse, becomes spacelike, inside it.

From a physical point of view, the existence of a static
solution would be expected over the whole space-time of a
vacuum, as an equilibrium final state of a physical process is
expected to be static. Furthermore, we should recall that, in
obtaining the Schwarzschild solution, being static is not an
additional assumption but follows from the sphericity and the
vacuum condition.

In this work we deviate from the classical approach which
consists in extending the solution outside the horizon to the
interior. We recognize that this is a legitimate possibility but
the resultant space-time is necessarily not static. We insist on
a static solution everywhere and this will require a radically
different description of the significance of the horizon. The
resultant static solution describes the space-time as consisting
of a complete four-dimensional manifold on the exterior
side and a second complete four-dimensional solution in the
interior.The two-dimensional R-t submanifold forms a single
continuous topological manifold; the addition of a metric
requires a change in signature at the horizon. The 𝜃 − 𝜙
submanifolds have a spherical symmetry on the exterior and
hyperbolic symmetry in the interior. The two meet only at
a single curve, 𝑅 = 2𝑚, 𝜃 = 0. Passage of a geodesic from
one side of the 𝑅 − 𝑡 manifold to the other is possible only
on a point on this curve. The horizon has significance as a
horizon only for static geodesic observers. A geodesic particle
may start at 𝑅 = ∞ and travel a distance to a position 𝑅𝑚𝑖𝑛
and remain there or return to 𝑅 = ∞. 𝑅𝑚𝑖𝑛 may be interior
or exterior to the horizon position 𝑅 = 2𝑚, depending on the
energy of the particle; for great enough energy, it will proceed
all the way to 𝑅 = 0. The horizon has no significance for such
a particle. Similarly a geodesic particle may travel from 𝑅 = 0
to 𝑅𝑚𝑎𝑥 and remain there or return to 𝑅 = 0 and 𝑅𝑚𝑎𝑥 will
be related to the particles energy and not to 𝑅 = 2𝑚. The
particles may pass 𝑅 = 2𝑚 as described only at 𝜃 = 0. In this
paper we do not discuss the motions when 𝜃 is not = 0.

2. The Solution inside the Horizon

Our main point is that one should certainly expect that
static vacuum should be allowed inside the horizon as well
as outside and one should be able to describe a manifold

that permits this. As we shall show in this note, this is in
fact the case, although for doing that, we should permit for
a change in symmetry, from elliptic (spherical) outside the
horizon to hyperbolic inside the horizon. This requires the
transformation 𝑑Ω2 󳨀→ −𝑑Ω2 which obviously calls for
a detour through the complex plane. Doing so, we have a
static solution everywhere, but the symmetry of the 𝑅 = 2𝑚
surface is different at both sides of it. Furthermore, as we
stated before, we have to consider two different manifolds
at both sides of the horizon. Accordingly no match of both
solutions at 𝑅 = 2𝑚 surface is needed.

Thus, for 𝑅 < 2𝑚 we have

𝑑𝑠2 = (2𝑚𝑅 − 1)𝑑𝑡2 − 𝑑𝑅2
(2𝑚/𝑅 − 1) − 𝑅2𝑑Ω2,

𝑑Ω2 = 𝑑𝜃2 + sinh2𝜃𝑑𝜙2.
(5)

Just as when 𝑅 > 2𝑚, this is also a static solution with the
(𝜃, 𝜙) space describing a positiveGaussian curvature andwith
the time coordinate 𝑡 adapted to the Killing vector (1).

The above metric obviously admits the timelike Killing
vector 𝜒(0) = 𝜕t and three additional Killing vectors which
are

𝜒(1) = 𝜕𝜙,
𝜒(2) = − cos 𝜙𝜕𝜃 + coth 𝜃 sin 𝜙𝜕𝜙,
𝜒(3) = sin 𝜙𝜕𝜃 + coth 𝜃 cos 𝜙𝜕𝜙.

(6)

The above Killing vectors, of course, differ from the Killing
vectors (3) and define a different symmetry in the inner
region. Such change of symmetry comes up through the
transformation 𝜃 󳨀→ 𝑖𝜃.

The differences in the spatial 𝜃, 𝜙 subspaces for the
external metric (𝑅 > 2𝑚) and the internal metric (𝑅 < 2𝑚)
become clear when the 2 subspaces are embedded in a flat
3-space.

Thus, for the external metric, we have

𝑥 = sin 𝜃 cos 𝜙;
𝑦 = sin 𝜃 sin 𝜙;
𝑧 = cos 𝜃,

(7)

with a Euclidean metric.
The interior embedding is

𝑥 = sinh 𝜃 cos 𝜙;
𝑦 = sinh 𝜃 sin 𝜙;
𝑧 = cosh 𝜃,

(8)

with −1 = 𝑥2 + 𝑦2 − 𝑧2 and 𝑑𝑠2 = −𝑑𝑥2 − 𝑑𝑦2 + 𝑑𝑧2.
The exterior 2-surface is, as expected, a sphere. The

interior 2-surface is a hyperboloid of two sheets. At the
horizon, they meet only at 𝑅 = 2𝑚, 𝜃 = 0. This intersection is
not in the space-time 4d manifold because it is not contained
in an open set within the manifold. Let us now take a look
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at the motion of a test particle as a function of its own
proper time. All particles have their proper time differences
correlated, although they are free to choose the starting
proper time for their clocks. The paths in the two manifolds
may be continuous across the horizon as themetric in the 𝑡−𝑅
plane has a continuous form.

Obviously, motion from the exterior to the interior is
possible only when the two manifolds meet at 𝜃 = 0. Thus
we will assume radial motion. The entire plane is a single
mathematical manifold but the change in signature would
lead one to expect that, from the standpoint of physical
observations, it represents two differentmanifolds, and itmay
be called a single manifold with a “phase change” at 𝑅 = 2𝑚.

Of interest then is the path of a geodesic between 𝑅 =
0 and 𝑅 = ∞. Whether we are interested in the path a
particle takes in its proper time or in the observers time, we
see that the velocity will be given as a square. So wherever
a particle went past a point going in one direction, it went
past the same point going in the opposite direction at some
other time. It was of course always traveling in the positive
time direction, so it went past the same point while going in
different directions at two different times.

At constant 𝜃 = 0 the geodesics may be obtained, and
because 𝜕𝑡 is a Killing vector, there will be a constant of
motion

𝜅 = (1 − 2𝑚
𝑅 ) 𝜕𝑡

𝜕𝑠 . (9)

From the metric we get the velocity

(𝑑𝑅
𝑑𝑠 )
2

= 𝜅2 − 1 + 2𝑚
𝑅 (10)

Depending on 𝜅 there are three possible solutions of (10),
stated parametrically:

(1) 𝜅2 − 1 = 0.
𝑅 = (2𝑚)1/3 (32)

2/3 𝑠2/3. (11)

(2) 𝜅2 − 1 > 0.
𝑅 = 𝑚

𝜅2 − 1 (cosh 𝜂 − 1) ,
𝑚

(𝜅2 − 1)3/2 (sinh 𝜂 − 𝜂) = 𝑠 − 𝑠0

𝑠0 = 𝜋𝑚
(󵄨󵄨󵄨󵄨𝜅2 − 1󵄨󵄨󵄨󵄨)3/2

.
(12)

(3) 𝜅2 − 1 < 0.
𝑅 = 𝑚󵄨󵄨󵄨󵄨𝜅2 − 1󵄨󵄨󵄨󵄨 (1 − cos 𝜂) ,

𝑚
(󵄨󵄨󵄨󵄨𝜅2 − 1󵄨󵄨󵄨󵄨)3/2

(sin 𝜂 − 𝜂) = 𝑠 − 𝑠0,

𝑠0 = − 𝑚
(󵄨󵄨󵄨󵄨𝜅2 − 1󵄨󵄨󵄨󵄨)3/2

(sinh 𝜂 − 𝜂) ,

cos 𝜂 = 3,

(13)

where for convenience the constants 𝑠0 have been chosen such
that particles coming from 𝑅 = 0 and 𝑅 = ∞ meet at 𝑅 =
2𝑚/|𝜅2 − 1|; at the same time 𝑠 = 0.

The proper time, 𝑠,, is taken to be 0 when the particle
comes to rest at 𝑑𝑅/𝑑𝑠 = 0. As an aid in tracing the paths of
geodesics, we see that all three cases have the same limiting
behavior when the particle is at rest. All satisfy (10) in this
limit, independently of the value of 𝜅2 − 1.

We first discuss the motion of a particle with 𝜅2 − 1 < 0.
We assume it enters at 𝑅 = 0. The behavior there is given
by (13), while the behavior of the velocity as given by (10) is
(𝑑𝑅/𝑑𝑠) ∼ 𝑠−1/3, so the particle comes into the origin at 𝜂 = 0
and immediately curves around, to reemerge at once. At 𝜂 =
𝜋 the particle is at its maximum distance, 𝑅 = 2𝑚/|𝜅2 − 1|,
whichmay be larger or smaller than 2𝑚. It comes to rest here,
emerges on a cusplike path, and returns along the same path
it entered.

In the above, we started out assuming the geodesic begins
at 𝑅 = 0. Let us now consider the case when it begins at 𝑅 =
∞.

Then, for the radial geodesic at 𝜃 = 0 we may write

1 = (2𝑚𝑅 − 1)(𝑑𝑡
𝑑𝑠)
2

− 1
(2𝑚/𝑅 − 1) (𝑑𝑅/𝑑𝑠)2 ; (14)

denoting now by 𝑞 the constant of motion (the energy)
associated with the timelike Killing vector and feeding it back
into (14), we get

(𝑑𝑅𝑑𝑠 )
2

= 𝑞2 + 1 − 2𝑚
𝑅 . (15)

The geodesic comes in from infinity with a velocity 𝑞2 + 1,
reaches to a minimum zero velocity at 𝑅 = 2𝑚/(𝑞2 + 1), and
turns around immediately in a cusplike path and returns to
infinity with the same speed as it left.

The end goal of starting both at 𝑅 = 0 and 𝑅 = ∞ is to
see what happens when two particles meet at the same point
at the same time. Unfortunately, Einstein’s theory does not
tell us if one geodesic bounces back to infinity and the other
bounces back to 0 or if each continues forward. In this latter
case, the particle must gain energy or lose energy depending
onwhichway it crosses𝑅 = 2𝑚.Theymay alsomeet, interact,
and scatter and then return from whence they came.

The particles will met when 𝑠 = 0 if 𝜅2 − 1 = 1 − 𝑞2. If the
vacuum level of a zero energy particle in one manifold is −1,
it may be +1 on the other side due to the change in signature,
so 𝑞2 = −𝜅2, and one may be the antiparticle of the other. If
one is the antiparticle of the other, they may annihilate.

Of course a full understanding of the picture described
above requires a quantum theory.

On the other hand let us look at the singularity 𝑅 = 0. It
is the inverse curvature of a sphere and indicates that the cur-
vature is infinite. However it stays at infinity for zero length
of time. It is equivalent to a sphere reducing its radius very
rapidly to 0 and immediately, in zero time, expanding again.
We would say that this singularity is physically ignorable.
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3. Conclusions

In [1] the region 𝑅 < 2𝑚 was considered as nonphysical
and thereby excluded. According to Rosen, such an exclusion
was justified by two reasons: on the one hand because the
coordinates𝑅 and 𝑡 change from spacelike to timelike (𝑅) and
inversely (𝑡); on the other hand, he concluded that particles
reaching the surface 𝑅 = 2𝑚 from the outside are reflected
back.

In this work, we have considered the whole space-
time. However, instead of sacrificing the staticity in the
region inside the horizon (as in [2–6]), we keep the time
independence but change the spatial symmetry.

For doing that we have to consider the whole space-
time as consisting of two distinct 4-manifolds, each of which
corresponds to a static space-time. Each has the horizon as
a boundary; each is a complete manifold. Complete means
that a geodesic has a closed path or terminates at a boundary
which is singular or infinite. One 4-manifold has the range
2𝑚 < 𝑅 < ∞ with the signature (− + ++) and the second
manifold has the range 0 < 𝑅 < 2𝑚 with the signature
(+ − − −). Proceeding in this way we obtain a global static
solution, which presents a “phase transition” on the horizon,
being endowed with different symmetry at both sides of it.
Both manifolds exclude the 𝑅 = 2𝑚 surface. They meet at
𝑅 = 2𝑚, only when 𝜃 = 0. The acceptability of our setup
is supported by the fact that from purely physical arguments
we should expect a static solution to exist in the “whole space-
time” (in the sense above).

Indeed, for 𝜃 = 0, as we have seen that the theory permits
one geodesic to rebound to infinity and the other to bounce
back towards 0. However each may continue in a straight
path, one from 𝑅 = 0 to 𝑅 = ∞ and the other in the opposite
direction. One would gain two units of energy along the way
and the other would lose two units; 𝜅 and 𝑞 refer to two
different test particles. They may backscatter with different
energies.The times ofmeetingmay have been adjusted so that
the twoparticlesmeet at the same time, 𝑠 = 0.The zero energy
of one vacuum is +1 and because of the change in signature,
the zero energy of the other is−1. Since at 𝑠 = 0, 𝜅2−1 = 𝑞2+1,
the energy 𝜅 is the negative of the energy 𝑞 and the two may
be antiparticles.

If the particles were antiparticles, there would be another
level of complexity and uncertainty added to themix.Wehave
described the particle with the greater energy as falling from
infinity and the one with the lesser as rising from 𝑅 = 0. It
could just as well be the other way as far as the theory tells
us.

On the other hand, 𝑅 = 0 seems to be harmless. As
an observable quantity, 𝑅 is a measure of the curvature of
the surface it represents. A particle may, with a probability
of measure 0 in a finite proper time, reach a surface of
zero curvature with infinite proper velocity and remain
there for infinitesimal time. To verify that this statement is
valid requires a study of the geodesics including particles
with nonzero angular momentum, which we have not done
here.

The main lesson to extract from the comments above
is that there is no way to understand the complete picture

of the motion of test particles in the neighborhood of the
horizon from Einstein’s equations alone. A quantum theory
is needed to understand it. The two curved surfaces of the
metric that meet at the horizon at 𝜃 = 0 are continuous with
continuous first derivatives but not second derivatives, so a
particle cannot cross at the horizon except at this one point.
However, it is almost certain that a quantum theory would
permit a particle to tunnel across.

It may look strange that we have described a geodesic that
comes in from infinity with the metric for 𝑅 < 2𝑚. However
this becomes intelligible if we recall that we are dealing only
with 𝜃 = 0. The behavior is similar coming in from either
direction. Either side could have been the starting point if 𝜅 =
𝑞 = 0.

It should be pointed out that we have not considered the
behavior of nonradial geodesics. They need major consider-
ation as the nonradial geodesics will be able to penetrate the
horizon only by tunneling.

Also, it is worth noticing that we have not specified
a source for the vacuum parameter 𝑚, which usually (as
measured from the vacuum solution) is associated with a
singular (pointlike) source. However, an alternative origin for
𝑚 might be considered here. Indeed, we have already said
that we need quantum mechanics to understand the horizon.
Then, if the vacuum has a “mass”, the vacuum mass could
come from quantum mechanics. When students first learn
about quantum mechanics and its zero point energy, they
frequently ask why this does not show up in gravity. We
speculate that our𝑚might be a quantum mechanics residue.

Finally we would like to notice that an approach similar
to the one presented here could be proposed for the global
interpretation of the Kerr metric [8].

To summarize, we have shown that there is a static
solution of Einstein’s equations with the symmetry of a sphere
or of a paraboloid and that the symmetry changes at the
horizon. 𝑅 > 2𝑚 is a geodetically complete manifold in
that each geodesic may be continued to a singularity or to a
boundary. 𝑅 < 2𝑚 is also a geodetically complete manifold.
We recognize that our approach represents a radical depar-
ture from the standard description. The standard description
insists on keeping the curved two surfaces involved (𝜃, 𝜙
surface) unchanged but does not describe an everywhere
vacuum, static situation. We have no difficulty with this
description and furthermore are fully aware of the fact that
it had produced an impressive wealth of research work (just
as a sample see [9–17] and references therein). However, we
do believe that a static vacuum at all times and places should
be possible.
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We present another example of superfluid black hole containing 𝜆 phase transition in Horava gravity. After studying the extended
thermodynamics of general dimensional Horava-Lifshitz AdS black holes, it is found that only the one with spherical horizon in
four and five dimensions has 𝜆 phase transition, which is a line of (continuous) second-order phase transitions and was famous in
the discussion of superfluidity of liquid 4He.The “superfluid” black hole phase and “normal” black hole phase are also distinguished.
Particularly, six-dimensional Horava-Lifshitz AdS black holes exhibit infinitelymany critical points in𝑃−] plane and the divergent
points for specific heat, for which they only contain the “normal” black hole phase and the “superfluid” black hole phase disappears
due to the physical temperature constraint; therefore there is no similar phase transition. In more than six dimensions, there is
no 𝑃 − ] critical behavior. After choosing the appropriate ordering field, we study the critical phenomena in different planes of
thermodynamical phase space. We also calculate the critical exponents, which are the same as the van der Waals fluid.

1. Introduction

Black hole thermodynamics always provides valuable insight
into quantum properties of gravity, and it has been studied
extensively for quite a long time, especially for the quantum
andmicroscopic interpretation of black hole temperature and
entropy (see [1, 2], for example). Besides, thermodynamics
and phase transitions of AdS black holes have been of great
interest since the Hawking-Page phase transition [3] between
stable large black hole and thermal gas is explained as the
confinement/deconfinement phase transition of gauge field
[4] inspired by the AdS/CFT correspondence [5–7].

After treating the cosmological constant as a pressure
with its conjugate quantity being the thermodynamic vol-
ume in thermodynamic phase space of charged AdS black
holes [8–14], the small/large black hole phase transition
is established in [15], which is exactly analogous to the
liquid/gas phase transition of the van der Waals fluid. This
kind of black hole phase transitions has attracted much
attention (see the recent review papers [16, 17]). Besides, this
semiclassical method of analogue is generalized to study the
microscopic structure of black holes and sheds some light on
the black hole molecules [18] and microscopic origin of the

black hole reentrant phase transition [19]. The study is also
extended to the quantum statistic viewpoint, as the superfluid
black holes are reported recently [20]. In Lovelock gravity
with conformally coupled scalar field, the authors present
the first example of 𝜆 phase transition, which is a line of
(continuous) second-order phase transitions and was famous
for the successful quantum andmicroscopic interpretation of
superfluidity of liquid 4He.

In this paper, we present another example of black holes
containing 𝜆 phase transition in Horava gravity, which is a
candidate of quantum gravity in ultrahigh energy [21]. The
Horava-Lifshitz (HL) black hole solutions, thermodynamics,
and phase transitions have attracted a lot of attention [22–29]
(see [30] for a review on the recent development of various
areas). The general dimensional HL black hole solutions
are also introduced [31]. We will consider the extended
thermodynamics of general dimensional HLAdS black holes.
It is shown that only the one with spherical horizon in four
and five dimensions has 𝜆 phase transition. Note that the first
example of “superfluid” black holes always has a hyperbolic
horizon [20]. Particularly, six-dimensional HL AdS black
holes exhibit infinitely many critical points in 𝑃 − ] plane
and the divergent points for specific heat, for which they only
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contain the “normal” black hole phase and the “superfluid”
black hole phase disappears due to the physical temperature
constraint; therefore there is no similar phase transition. In
more than six dimensions, there is no 𝑃 − ] critical behavior.
After identifying parameter 𝜖 as the ordering field instead of
pressure and temperature, we study the critical phenomena
in different planes of thermodynamical phase space. We also
obtain the critical exponents, which are the same as the van
der Waals fluid.

The paper is structured as follows: in next section,
we present the extended thermodynamics of generalized
topological HL black holes. Then we study 𝑃 − 𝑉 criticality
in Section 3. We show the 𝜆 phase transition for four and five
dimensions and the discussion for six dimensions in Sections
4 and 5, respectively. In Sections 6 and 7, we discuss the
critical phenomena and calculate the critical exponents in
different planes. In final section, some concluding remarks
are given.

2. Extended Thermodynamics of
Generalized HL Black Holes

In this section, we present the extended thermodynamics of
generalized topological HL black holes in (𝑑 + 1) dimensions
(𝑑 ≥ 3). We begin with the action of HL gravity at the 𝑧 = 3
UV fixed point, which can be reexpressed as [31]

𝑆 = ∫ d𝑡 [𝐿0 + (1 − 𝜖2) 𝐿1] ,
𝐿0 ≡ ∫ d𝑑𝑥√𝑔𝑁[ 2𝜅2 (𝐾𝑖𝑗𝐾𝑖𝑗 − 𝜆𝐾2)
+ 𝜅28𝜅4𝑊 Λ𝑊1 − 𝑑𝜆 ((𝑑 − 2) 𝑅 − 𝑑Λ𝑊)] ,

𝐿1 ≡ ∫ d𝑑𝑥√𝑔𝑁 𝜅28𝜅4𝑊 11 − 𝑑𝜆 [(1 − 𝑑4 − 𝜆)𝑅2
− (1 − 𝑑𝜆)𝑅𝑖𝑗𝑅𝑖𝑗] ,

(1)

where the first two terms in the 𝐿0 are the kinetic actions,
while the residue corresponds to the potential actions. 𝑅𝑖𝑗 is
the Ricci tensor, 𝑅 is the Ricci scalar, and 𝐾𝑖𝑗 is defined by𝐾𝑖𝑗 = (1/2𝑁)(𝑔̇𝑖𝑗 − ∇𝑖𝑁𝑗 − ∇𝑗𝑁𝑖), which are based on the
ADM decomposition of the higher dimensional metric, i.e.,
d𝑠2𝑑+1 = −𝑁2d𝑡2 + 𝑔𝑖𝑗(d𝑥𝑖 − 𝑁𝑖d𝑡)(d𝑥𝑗 − 𝑁𝑗d𝑡). Here the
lapse, shift, and 𝑑-metric𝑁,𝑁𝑖, and 𝑔𝑖𝑗 are all functions of 𝑡
and 𝑥𝑖, and a dot denotes a derivative with respect to 𝑡. There
are five constant parameters in the action: Λ𝑊, 𝜆, 𝜖, 𝜅, and𝜅𝑊. Λ = (𝑑/2(𝑑 − 2))Λ𝑊 is the cosmological constant. 𝜅 and𝜅𝑊 have their origin as the Newton constant and the speed
of light. 𝜆 represents a dynamical coupling constant which
is susceptible to quantum corrections. We will fix 𝜆 = 1 in
the following paper, only for which general relativity can be
recovered in the large distance approximation. In addition,
we will only consider the general values of 𝜖 in the region

0 ≤ 𝜖2 ≤ 1, as 𝜖 = 0 corresponds to the so-called detailed-
balance condition, and HL gravity with 𝜖 = 1 returns back to
general relativity.

Action Eq. (1) admits arbitrary dimensional topological
AdS black holes with the metric

d𝑠2 = −𝑓 (𝑟) d𝑡2 + d𝑟2𝑓 (𝑟) + 𝑟2dΩ2𝑑−1,𝑘 (2)

and the horizon function [23, 31]

𝑓 (𝑟)
= 𝑘 − 2Λ𝑊(1 − 𝜖2) 𝑟2(𝑑 − 1) (𝑑 − 2)
− 𝑟2−𝑑/2√ 𝑐0(1 − 𝜖2) + 𝜖2(1 − 𝜖2)2 4Λ2𝑊𝑟𝑑(𝑑 − 1)2 (𝑑 − 2)2 ,

(3)

where dΩ2𝑑−1,𝑘 denotes the line element of a (𝑑 − 1)-
dimensional manifold with constant scalar curvature (𝑑−1)𝑘,
and 𝑘 = 0, ±1 indicates different topology of the spatial space.𝑐0 is integration constant, which is related to the black hole
mass

𝑀 = −Ω2𝑑−1,𝑘𝑐316𝜋𝐺𝑁 1(𝑑 − 2) Λ𝑊 𝑐0 = − 𝑐0Λ𝑊 , (4)

where we have chosen the natural units and Ω2𝑑−1,𝑘 = 16(𝑑 −2)𝜋.
In AdS space-time, the cosmological constant is intro-

duced as the thermodynamical pressure [15]:

𝑃 = − Λ8𝜋 = − 𝑑16𝜋 (𝑑 − 2)Λ𝑊. (5)

Then we can rewrite the horizon function as

𝑓 (𝑟)
= 𝑘 + 32𝜋𝑃𝑟2(1 − 𝜖2) 𝑑 (𝑑 − 1)
− 4𝑟2−𝑑/2√ (𝑑 − 2)𝑀𝑃𝜋𝑑 (1 − 𝜖2) + 64𝜖2𝑃2𝜋2𝑟𝑑(1 − 𝜖2)2 𝑑2 (𝑑 − 1)2 ,

(6)

and the mass is

𝑀 = 64𝑃𝜋𝑟𝑑+(𝑑 − 1)2 (𝑑 − 2) 𝑑 + (1 − 𝜖
2) 𝑑𝑘2𝑟𝑑−4+16𝑃 (𝑑 − 2) 𝜋

+ 4𝑘𝑟𝑑−2+(𝑑 − 2) (𝑑 − 2) ,
(7)

where 𝑟+ denotes the event horizon which is the largest
positive root of 𝑓(𝑟) = 0. The conjugate thermodynamic
volume of pressure is

𝑉 = 64𝜋𝑟𝑑+(𝑑 − 1)2 (𝑑 − 2) 𝑑 − (1 − 𝜖
2) 𝑑𝑘2𝑟𝑑−4+𝑃2 (𝑑 − 2) 𝜋 . (8)
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The entropy and temperature are presented in [31] with the
following forms:

𝑆 =
{{{{{{{{{{{
4𝜋𝑟2+ (1 + 𝑘𝑑 (1 − 𝜖2) ln (𝑟+)8 (𝑑 − 2) 𝑃𝜋𝑟2+ ) + 𝑆0, 𝑑 = 3,

16𝜋𝑟𝑑−1+(𝑑 − 1)2 (𝑑 − 2) (1 + 𝑘𝑑 (𝑑 − 1)2 (𝑑 − 2) (1 − 𝜖2)32 (𝑑 − 2) (𝑑 − 3) 𝑃𝜋𝑟2+ ) + 𝑆0, 𝑑 ≥ 4, (9)

𝑇 = 1024𝑃2𝜋2𝑟4+ + 64𝑘 (𝑑 − 1) (𝑑 − 2) 𝑃𝜋𝑟2+ + 𝑘2𝑑 (𝑑 − 1)2 (𝑑 − 4) (1 − 𝜖2)8 (𝑑 − 1) 𝜋𝑟+ (32𝜋𝑃𝑟2+ + 𝑘𝑑 (𝑑 − 1) (1 − 𝜖2)) . (10)

It is easy to check the first law of thermodynamics:

d𝑀 = 𝑇d𝑆 + 𝑉d𝑃, (11)

while the Smarr relation always fails to exist. This can be
easily found because of the existence of 𝑆0 (and logarithmic
term for 𝑑 = 3) in black hole entropy, which is not fixed
and may be calculated by invoking the quantum theory of
gravity as argued in [23].Note that 𝜖 scales as [𝐿]0, and there is
no other dimensional quantity in extended thermodynamic
phase space. In this meaning, the validity of the Smarr
relation will bring another physical consideration on the
parameter 𝑆0.

In order to analyze the global thermodynamic stability
and phase transition of the HL black hole, it is always to study
the Gibbs free energy:

𝐺 = 𝐻 − 𝑇𝑆 = 𝑀 − 𝑇𝑆, (12)

as the black holemass𝑀 should be considered as the enthalpy𝐻 in the extended thermodynamic phase space. For the local
thermodynamic stability, one can turn to the specific heat of
black hole

𝐶 = d𝑀
d𝑇 = d𝑀/d𝑟+

d𝑇/d𝑟+ . (13)

We present the above two quantities in the Appendix, as their
forms are very complicated.

3. 𝑃−𝑉 Criticality

According to (10), we can obtain the equation of state (EOS):

1024𝑃2𝜋2𝑟4+ + 64𝑘 (𝑑 − 1) (𝑑 − 2) 𝑃𝜋𝑟2+
+ 𝑘2𝑑 (𝑑 − 1)2 (𝑑 − 4) (1 − 𝜖2)
− 8 (𝑑 − 1) 𝜋𝑟+ (32𝑃𝜋𝑟2+ + 𝑘𝑑 (𝑑 − 1) (1 − 𝜖2)) 𝑇

= 0,
(14)

which reflects the double-valuedness of the pressure in the
extended thermodynamic phase space. On the other hand,
we can derive the pressure 𝑃(𝑇, 𝑟+) as
𝑃 (𝑇, 𝑟+) = (𝑑 − 1)32𝜋𝑟2+ (−𝑘𝑑 + 2 (𝑘 + 2𝜋𝑟+𝑇)
+ √4 (𝑘 + 2𝜋𝑟+𝑇)2 − 𝑘𝑑𝜖2 (4𝑘 − 𝑘𝑑 + 8𝜋𝑟+𝑇)) ,

(15)

while another one is the negative pressure branch. After
taking a series expansion, it leads to

𝑃 = (𝑑 − 1) 𝑇4𝑟+ − 𝑘 (𝑑 − 1) (𝑑𝜖2 + 𝑑 − 4)32𝜋𝑟2+ + O (𝑟−3+ ) . (16)

Comparing the above equation with the Van der Waals
equation

𝑃 = 𝑇
] − 𝑏 − 𝑎

]2
≃ 𝑇

]
+ 𝑏𝑇

]2
− 𝑎
]2
+ O (]−3) , (17)

one can easily find the specific volume ] ∝ 𝑟+. Therefore
we will just use the horizon radius 𝑟+ in EOS instead of
the specific volume ] and study the 𝑃 − 𝑟+ behavior in the
following paper.

To consider the 𝑃 − 𝑉 criticality, we can focus on

𝜕𝑃𝜕𝑟+ = 0,
𝜕2𝑃𝜕𝑟2+ = 0,

(18)

to find the critical points. As the direct differentiation of 𝑃
(see (15)) is too complicated, we prefer to employ the implicit
differentiation onEOS (see (14)) and the above equations, and
we can derive two simple conditions:

512𝑃2𝜋𝑟3+ + 16 (𝑑 − 1) (𝑘 (𝑑 − 2) 𝑟+ − 6𝜋𝑟2+𝑇)𝑃
− 𝑘𝑑 (𝑑 − 1)2 (1 − 𝜖2)𝑇 = 0, (19)

96𝑃𝜋𝑟2+ − 12 (𝑑 − 1) 𝜋𝑟+𝑇 + (𝑑 − 1) (𝑑 − 2) 𝑘 = 0. (20)
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Table 1: The critical points of HL AdS spherical black holes.

Dimensions 𝑃𝑐 𝑇𝑐 𝜖𝑐 critical relation𝑃𝑐𝑟+/𝑇𝑐
Four

2√3 − 148𝜋𝑟2+
√36𝜋𝑟+ ±29√9 + 6√3 6 − √324 ≈ 0.178

Five
18𝜋𝑟2+ 12𝜋𝑟+ ±23√2 14

Six
18𝜋𝑟2+ 12𝜋𝑟+ ±25√5 14

They lead to the critical points:

𝑃𝑐 = 𝑘 (𝑑 − 1) (12𝜋𝑋 + 2 − 𝑑)96𝜋𝑟2+ , (21)

𝑇𝑐 = 𝑘𝑋𝑟+ , (22)

by which, the EOS (see (14)) is simplified as an equation of 𝜖
and results in the following condition:

𝜖𝑐 = ±2√ (2 (𝑑 − 5)𝑋𝜋 + 2𝑑 − 7)3𝑑 (𝑑 − 4) , (23)

where

𝑋 = 3 (𝑑 − 3) ± √−3 (𝑑 − 1) (𝑑 − 5)12𝜋 . (24)

It is interesting that there is no critical volume or horizon
radius, but the critical parameter 𝜖. To start the physical
discussion, we should firstly calculate the physical critical
points with real and positive pressure and temperature, which
lead to the constraint 1 ≤ 𝑑 ≤ 5. (25)

Namely, there is 𝑃 − 𝑉 criticality only in four, five, and six
dimensions. Besides, the physical critical points are simplified
as

𝑃𝑐 = 𝑘 (2√3𝛾 − 1)48𝜋𝑟2+ ,
𝑇𝑐 = √3𝑘𝛾6𝜋𝑟+ ,
𝜖𝑐 = ±29√9 + 6√3𝛾,𝑑 = 3;
𝑃𝑐 = 𝑘8𝜋𝑟2+ ,
𝑇𝑐 = 𝑘2𝜋𝑟+ ,
𝜖𝑐 = ±23√2,𝑑 = 4;

𝑃𝑐 = 𝑘8𝜋𝑟2+ ,
𝑇𝑐 = 𝑘2𝜋𝑟+ ,
𝜖𝑐 = ±25√5,𝑑 = 5,

(26)

where 𝛾 = ±1. It is easy to find that positive pressure and
temperature require the conditions (𝑘 = 1, 𝛾 = 1). In four
dimensions (𝑑 = 3), the critical behavior is studied in [29].

Totally, we conclude that only four-, five-, and six-
dimensional HL AdS black holes with spherical horizon have
physical critical points, as shown in Table 1.

In next sections, we will give the physical discussion
about the critical phenomena, i.e., the infinitely critical points
and continuous second-order phase transitions. Especially
for four-dimensional case, it is reported in [29], which is
called “peculiar critical phenomena”. In Section 4, we will
conclude that they are actually the famous 𝜆 phase transition
after studying the specific heat 𝐶𝑃 of HL black holes. We
also present the 𝜆 phase transition in five dimensions. In
Section 5, it is found that six-dimensional HL AdS black
holes only contain “normal” black hole phase and thus no
similar phase transition. In Sections 6 and 7, we discuss the
critical phenomena and calculate the critical exponents in
different planes, by identifying parameter 𝜖 as the ordering
field instead of pressure and temperature, respectively.

4. 𝜆 Phase Transition in Four and
Five Dimensions

In this section, we discuss phase transitions in four and
five dimensions. Back to the critical points in Table 1, it is
interesting that there is no critical volume or horizon radius,
but the critical parameter 𝜖. Moreover, the 𝑃 − 𝑟+ oscillatory
behavior and the classical “swallow tail” characterizing the
first-order phase transition are controlled by the parameter𝜖, instead of the temperature 𝑇, which is clearly shown
in Figure 1. The 𝑃 − 𝑟+ diagrams are plotted at the same
temperature 𝑇 and 𝐺 − 𝑇 diagrams are plotted at the same
pressure 𝑃. When 𝜖 > 𝜖𝑐, there exist the small/large black
holes phase transition in both four and five dimensions,
which is exactly the same as the liquid/gas phase transition



Advances in High Energy Physics 5

P-r+ diagram for different  in four dimensions P-r+ diagram for different  in five dimensions

 = c
 < c
 > c

 = c
 < c
 > c

 = c
 < c
 > c

 = c
 < c
 > c

0.010

0.015

0.020

0.025

0.030

1 2 3 40

r+

0

0.01

0.02

0.03

0.04

0.05

2 4 6 8 100

r+

0 0.1 0.2 0.3 0.4

T

0.1 0.2 0.3 0.5 0.60.4
TG-T diagram in four dimensions for different 

G-T diagram in five dimensions for different 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G

G

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

−0.8

−0.9

−1

Figure 1: Curves of 𝑃−𝑟+ at the same temperature𝑇 = 1/10 and𝐺−𝑇 at the same pressure𝑃 = 1/10 in four and five dimensions for different𝜖. When 𝜖 > 𝜖𝑐, there are the 𝑃 − 𝑟+ oscillatory behavior and the classical “swallow tail” characterizing the small/large black holes phase
transition. When 𝜖 = 𝜖𝑐, the second-order phase transition emerges and the dotted lines highlight the points where the second derivative of
the Gibbs free energy 𝐺 diverges.

of van der Waals fluid. Especially for 𝜖 = 𝜖𝑐, the 𝑃− 𝑟+ curves
become a critical isotherm having an inflection point, and the
second-order phase transition emerges.

On the other hand, black holes with spherical horizon and
arbitrary mass𝑀 always have event horizon 𝑟+ > 0, which is
arbitrary as well. As a result, four and five dimensional HL
AdS black holes with 𝜖 = 𝜖𝑐 exhibit infinitely many critical
points with arbitrary temperature 𝑇𝑐 and horizon radius 𝑟+ as

𝑃𝑐 = (2√3 − 1) 𝜋4 𝑇2𝑐 ,
𝑇𝑐 = √36𝜋𝑟+ ,

𝑑 = 3;
𝑃𝑐 = 𝜋2𝑇2𝑐 ,𝑇𝑐 = 12𝜋𝑟+ ,𝑑 = 4.

(27)
Namely, every isotherm in 𝑃 − 𝑟+ diagrams is a critical
isotherm, which has an inflection point at

𝑟+ = {{{{{{{
√36𝜋𝑇, 𝑑 = 3;12𝜋𝑇 , 𝑑 = 4. (28)
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Figure 2: Curves of 𝑃 − 𝑟+ at the different temperature 𝑇 and 𝐺 − 𝑇 at the different pressure 𝑃 in four and five dimensions for 𝜖 = 𝜖𝑐. Every
isotherm in 𝑃−𝑟+ diagrams is a critical isotherm, and the dotted lines describe the position of all critical points. A line of second-order phase
transitions is shown in 𝐺 − 𝑇 diagrams, and the dashed lines describe the position of all phase transition points.

One can find it easily in Figure 2, and the dotted lines in𝑃−𝑟+
diagrams describe the position of all critical points (see (28))
at arbitrary temperature 𝑇. Besides, in 𝐺 − 𝑇 diagrams, there
is no first-order phase transition but rather a line of second-
order phase transitions, for which the phase transition points
are highlighted by the dotted lines in Figure 2. The dashed
lines in 𝐺 − 𝑇 diagrams describe the position of all phase
transition points

𝑇 = {{{{{{{{{
√ 4𝑃(2√3 − 1)𝜋 , 𝑑 = 3;
√2𝑃𝜋 , 𝑑 = 4 (29)

at arbitrary pressure 𝑃, where the second derivative of the
Gibbs free energy 𝐺 diverges.

To study the continuous second-order phase transitions,
we focus on the specific heat 𝐶𝑃 of black holes with 𝜖 = 𝜖𝑐.
From the 𝐶𝑃 − 𝑇 diagrams in Figure 3, one can obtain that
the specific heat𝐶𝑃 always diverges at the critical temperature
(see (29)). This is the classical 𝜆 line, i.e., the line of second-
order phase transitions, in 𝐶𝑃 − 𝑇 diagrams, which was
famous in the discussion of superfluidity of liquid 4He.
Similarly, in the 𝑃 − 𝑇 parameter space (right two plots of
Figure 3), a line of critical points, i.e., the 𝜆 line, separates
the two phases of system, which are the “superfluid” black
hole phase and “normal” black hole phase. To determine
the two phases, we consider the 𝑆 − 𝑃 diagrams, i.e., the
middle two plots in Figure 3. The dashed lines highlight
the critical pressure (see (27)). One can observe that the
entropy of black holes with pressure smaller than the critical
pressure is bigger, corresponding to the “normal” black hole
phase. Another one is the “superfluid” black hole phase
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Figure 3: Curves of 𝐶𝑃 − 𝑇 and 𝑆 − 𝑃 and 𝑃 − 𝑇 parameter space of black holes with 𝜖 = 𝜖𝑐 in four and five dimensions. The 𝜆 line in 𝐶𝑃 − 𝑇
and 𝑃 − 𝑇 plots indicates the second-order phase transitions between “superfluid” black hole phase and “normal” black hole phase, which
are distinguished in the 𝑆 − 𝑃 plots by the dashed lines.

having smaller entropy and corresponding to black holes with
pressure larger than the critical pressure. Particularly, the
entropy of “superfluid” black hole phase is almost vanishing
in five dimensions, while it seems to be negative in four
dimensions.Note that the positivity of entropy depends on 𝑆0 ,
which is not clear and could be fixed by counting microscopic
degrees of freedom in quantum theory of gravity as argued in
[23].

Finally, we conclude that this continuous second-order
phase transition between small/large black holes corresponds
to the phase transition between “superfluid” black hole and
“normal” black hole, which is firstly reported in Lovelock
gravity with conformally coupled scalar field [20].

5. (Normal) Black Hole Phase in
Six Dimensions

In six dimensions, there are critical points in 𝑃 − 𝑟+ plane as
presented in Table 1. Actually, they describe infinitely many
critical points with arbitrary temperature 𝑇𝑐 and horizon

radius 𝑟+ for HL black holes with 𝜖 = 𝜖𝑐 = ±(2/5)√5;
i.e.,

𝑃𝑐 = 𝜋2𝑇2𝑐 ,𝑇𝑐 = 12𝜋𝑟+ ,
(30)

which is exactly the same as the one in five dimensions.
However, from Figure 4, it is strange that there is no 𝑃 − 𝑟+
oscillatory behavior and classical “swallow tail” for different𝜖; especially for 𝜖 = 𝜖𝑐, one can never find the second-order
phase transitions. This is different from the cases in four and
five dimensions, and six-dimensional black holes seem to
have no phase transition.

To interpret the strange critical point, we could study the
specific heat 𝐶𝑃. One can look at the 𝐶𝑃−𝑇 curve in the right
plot of Figure 5. The specific heat 𝐶𝑃 diverges at the critical
point (phase transition point)

𝑇 = √2𝑃𝜋 , (31)
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Figure 4: Curves of 𝑃− 𝑟+ and𝐺−𝑇 in six dimensions for different 𝜖 and 𝜖 = 𝜖𝑐. There is no 𝑃− 𝑟+ oscillatory behavior and phase transition.
while the dashed line highlighting a lower bound of temper-
ature destroys the 𝜆 line. It is easy to calculate the minimal
temperature of six-dimensional HLAdS spherical black holes
with 𝜖 = 𝜖𝑐, for which the temperature is reduced to

𝑇 (𝑟+) = 64𝑃2𝜋2𝑟4+ + 48𝑃𝜋𝑟2+ + 18𝜋𝑟+ (1 + 8𝑃𝜋𝑟2+) . (32)

Considering the first-order derivative

𝑇󸀠 = (8𝑃𝜋𝑟2+ − 1)38𝜋𝑟2+ (1 + 8𝑃𝜋𝑟2+)2 , (33)

it leads to the minima at 𝑟+ = 1/√8𝜋𝑃; i.e.,
𝑇𝑚𝑖𝑛 = √2𝑃𝜋 , (34)

which is exactly the phase transition point (see (31)). This
temperature bound could be treated as a physical temperature
constraint, which cancels the “superfluid” black hole phase.
This physical temperature constraint is equivalent to a upper
bound of pressure, i.e., 𝑃 ≤ 𝜋𝑇2/2, for arbitrary temperature.
Then in the 𝑆 − 𝑃 diagram in the middle one of Figure 5,
one can also observe that there are no (“superfluid”) black
holes for 𝑃 > 𝜋𝑇2/2, which correspond to the exact 𝜆 line
in 𝑃 − 𝑇 parameter space as shown in the right plot in
Figure 5.Therefore, even six-dimensional HLAdS black holes
exhibit infinitely many critical points in 𝑃 − ] plane and the
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Figure 5: Curves of 𝐶𝑃 − 𝑇 and 𝑆 − 𝑃 and 𝑃 − 𝑇 parameter space of black holes with 𝜖 = 𝜖𝑐 in six dimensions. The dashed lines highlight the
minimal temperature, which could be treated as a physical temperature constraint and cancel the “superfluid” black hole phase. Therefore
there is no 𝜆 phase transition in six dimensions even when the specific heat diverges.

divergent points for specific heat; there does not exist 𝜆 phase
transition, as they only contain the “normal” black hole phase
and the “superfluid” black hole phase disappears in the 𝑃−𝑇
parameter space due to the physical temperature constraint
(see (34)).

6. Critical Phenomena in 𝜖 − 𝑟+ Plane
Because of the existence of infinite critical points, it is
not able to calculate the critical exponents. Actually, to
study the critical exponents for 𝜆 phase transitions of liquid
4He, thermodynamic pressure is no longer the appropriate
ordering field [32]. For the “superfluid” black hole, pressure
should be instead of other parameters [20]. As for HL AdS
black holes, there is only one option for the appropriate
ordering field, i.e., parameter 𝜖. Though 𝜖 is a dimensionless
quantity, it does characterize the critical phenomena for four-
and five-dimensional HL AdS black holes as shown later.

Firstly, we study the critical points in 𝜖 − 𝑟+ plane, for
which the thermodynamic variables of EOS should be 𝜖,𝑟+(i.e., ]), 𝑇. Thus, we should firstly rewrite the EOS by
rearranging the expression for temperature Eq. (10) for the
chosen ordering field 𝜖, which behaves as
𝜖 (𝑇, 𝑟+)
= ±√ (𝑑 (𝑑 − 1) 𝑘 + 32𝜋𝑃𝑟2+)𝑑 (𝑑 − 1)2 𝑘 ((𝑑 − 1) − 32𝜋𝑃𝑟2+8𝜋𝑟+𝑇 − (𝑑 − 4) 𝑘).

(35)

We follow the conditions 𝜕𝜖𝜕𝑟+ = 0,
𝜕2𝜖𝜕𝑟2+ = 0,

(36)

to find the critical points. However, the direct differentiation
of 𝜖 is too complicated; we also prefer to employ the implicit

differentiation on EOS (see (14)) and the above equations.
After a careful calculation, we obtain the same two conditions
(19) and (20). Thus, one can easily get the critical point:

𝜖𝑐 = ±2√ (2 (𝑑 − 5)𝑋𝜋 + 2𝑑 − 7)3𝑑 (𝑑 − 4) , (37)

𝑟𝑐 = 14√𝑘 (𝑑 − 1) (12𝜋𝑋 + 2 − 𝑑)6𝜋𝑃 , (38)

𝑇𝑐 = 4𝑘𝑋√ 6𝜋𝑃𝑘 (𝑑 − 1) (12𝜋𝑋 + 2 − 𝑑) , (39)

where 𝑋 has the value as (24) and 𝑃 is a positive constant
indicating AdS space-time.

Following the discussions in Section 3, it is shown that
only four-, five-, and six-dimensional HL AdS black holes
with spherical horizon have physical critical point, as shown
inTable 2. Besides, in four and five dimensions, there exist the𝜖 − 𝑟+ oscillatory behavior when 𝑇 > 𝑇𝑐 as shown in Figure 6
and the classical “swallow tail” characterizing the small/large
black holes phase transition when 𝜖 > 𝜖𝑐 as shown in 𝐺 − 𝑇
diagrams of Figure 1. In six dimensions, it is easy to check that
the critical point leads to 𝜕3𝜖/𝜕𝑟3+ = 0. As a result, one can
never find the 𝜖−𝑟+ oscillatory behavior as shown in Figure 6,
and no first-order phase transition exists as shown in 𝐺 − 𝑇
diagrams of Figure 4.

Finally, we consider the critical exponents in four and five
dimensions. After introducing the dimensionless quantities

Ξ = 𝜖𝜖𝑐 ,
𝜔 = 𝑟+𝑟𝑐 − 1,
𝑡 = 𝑇𝑇𝑐 − 1,

(40)
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Table 2: The critical point of HL AdS spherical black holes in 𝜖 − 𝑟+ plane.
Dimensions 𝜖𝑐 𝑟𝑐 𝑇𝑐
Four ±29√9 + 6√3 √ (2√3 − 1)48𝜋𝑃 √ 4𝑃(2√3 − 1)𝜋
Five ±23√2 √ 18𝜋𝑃 √2𝑃𝜋
Six ±25√5 √ 18𝜋𝑃 √2𝑃𝜋
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Figure 6: Curves of 𝜖 − 𝑟+ with 𝑃 = 1/10 in four, five, and six dimensions for different temperature. In four and five dimensions, one can
observe the 𝜖 − 𝑟+ oscillatory behavior when 𝑇 > 𝑇𝑐, while no oscillatory behavior for six dimensions is observed.

the ordering field can be expanded near the critical point as

Ξ
= {{{{{

1 + 0.115𝑡 + 0.234𝑡𝜔 − 0.042𝜔3 + O (𝑡𝜔2, 𝜔4) , 𝑑 = 3,
1 + 14𝑡 + 38𝑡𝜔 − 116𝜔3 + O (𝑡𝜔2, 𝜔4) , 𝑑 = 4,

(41)

where the coefficients for four-dimensional case all have
complicated forms, and their approximate values are given.
The above expansions both have the same form as that for
the van der Waals fluid and the RN-AdS black hole [15]. As
the system can be characterized by the critical exponents

𝐶𝜔 ∝ |𝑡|−𝛼 ,
𝜔 ∝ |𝑡|𝛽 ,
𝜅𝑡 = −𝜔−1 (𝜕𝜔𝜕Ξ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡 ∝ |𝑡|−𝛾 ,
Ξ ∝ |𝜔|𝛿 ,

(42)

one can obtain that 𝛼 = 0,
𝛽 = 12 ,𝛾 = 1,
𝛿 = 3.

(43)

Particularly, 𝜔 ∝ √𝑡 indicates that phase transition appears
when 𝑇 > 𝑇𝑐. Moreover, it is easy to check that they obey the
scaling symmetry like the ordinary thermodynamic systems
and in particular coincide with those for a superfluid [32].

7. Critical Phenomena in 𝑃− 𝑟+ Plane with
(Temperature) 𝜖

It is interesting to find that the parameter 𝜖 controls the 𝑃−𝑟+
oscillatory behavior instead of the temperature 𝑇, other than
the pressure 𝑃, as shown in 𝑃 − 𝑟+ diagrams of Figure 1. This
indicates that there is still a critical phenomenon in 𝑃 − 𝑟+
plane. For this case, pressure could still be treated as the
ordering field, while 𝜖 should be considered as “temperature”.
This is different from that for the first “superfluid” black holes
[20].
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Table 3: The critical point of HL AdS spherical black holes in 𝑃 − 𝑟+ plane with “temperature” 𝜖.
Dimensions 𝑃𝑐 𝑟𝑐 𝜖𝑐
Four (2√3 − 1)𝜋𝑇24 √36𝜋𝑇 ±29√9 + 6√3
Five 𝜋𝑇22 12𝜋𝑇 ±23√2
Six 𝜋𝑇22 12𝜋𝑇 ±25√5

To study the corresponding critical phenomena, we can
still follow the procedure studying 𝑃 − 𝑟+ criticality in
Section 3, which leads to the same three critical equations:
(14), (19), and (20). As the thermodynamic variables of EOS
for this case should be 𝑃, 𝑟+ (i.e., ]), 𝜖, we can find the
following critical point:

𝑃𝑐 = (𝑑 − 1) (12𝜋𝑋 + 2 − 𝑑)96𝜋𝑘𝑋2 𝑇2, (44)

𝑟𝑐 = 𝑘𝑋𝑇 , (45)

with the critical “temperature”

𝜖𝑐 = ±2√ (2 (𝑑 − 5)𝑋𝜋 + 2𝑑 − 7)3𝑑 (𝑑 − 4) , (46)

where𝑋 takes the value as (24) and 𝑇 is a positive constant.
As similar as the discussions in Section 3, one can find

that only four-, five-, and six-dimensionalHLAdS black holes
with spherical horizon have physical critical point, as shown
in Table 3. In four and five dimensions, when “temperature”𝜖 > 𝜖𝑐, there exist the 𝑃 − 𝑟+ oscillatory behavior (Figure 1)

and the classical “swallow tail” characterizing the small/large
black holes phase transition as shown in 𝐺 − 𝑃 diagrams of
Figure 7. As for the case of six dimensions, it is easy to find
that the critical point leads to 𝜕3𝑃/𝜕𝑟3+ = 0. Therefore, one
can not observe the 𝑃 − 𝑟+ oscillatory behavior as shown in
Figure 4, and no first-order phase transition exists as shown
in Figure 7.

Then, we can also calculate the critical exponents in four
and five dimensions near the critical point. Similarly, we
begin with the following dimensionless quantities:

𝑝 = 𝑃𝑃𝑐 ,
𝜔 = 𝑟+𝑟𝑐 − 1,
𝜏 = 𝜖𝜖𝑐 − 1.

(47)

The EOS can be reduced to the dimensionless case, for which
its Taylor series expansion at the critical point takes the
following forms:

𝑝 = {{{{{{{{{
1 − (56√3 + 94)11 𝜏 + (10√3 + 18) 𝜏𝜔 − (√3 − 1) 𝜔3 + O (𝜏𝜔2, 𝜔4) , 𝑑 = 3,
1 − 8𝜏 + 12𝜏𝜔 − 12𝜔3 + O (𝜏𝜔2, 𝜔4) , 𝑑 = 4. (48)

They still both have the same form as that for the van der
Waals fluid and theRN-AdSblack hole [15]. After introducing
the critical exponents

𝐶𝜔 ∝ |𝜏|−𝛼 ,
𝜔 ∝ |𝜏|𝛽 ,
𝜅𝜏 = −𝜔−1 (𝜕𝜔𝜕𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏 ∝ |𝜏|−𝛾 ,
𝑝 ∝ |𝜔|𝛿 ,

(49)

it is easy to find

𝛼 = 0,
𝛽 = 12 ,
𝛾 = 1,
𝛿 = 3,

(50)

which satisfy the scaling laws of the ordinary thermodynamic
systems. Besides, 𝜔 ∝ √𝜏 indicates that phase transition
appears when 𝜖 > 𝜖𝑐.
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Figure 7: Curves of 𝐺− 𝑃 with 𝑇 = 1/10 in four, five, and six dimensions for different “temperature” 𝜖. In four and five dimensions, one can
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8. Discussion
In this paper, we study the extended thermodynamics of
general dimensional HLAdS black holes and present another
example of “superfluid” black holes. It is found that only
four- and five-dimensionalHLAdS black holes with spherical
horizon have the 𝜆 phase transition, which correspond to
the phase transition between “superfluid” black hole and
“normal” black hole. After considering the behavior of
entropy, the “superfluid” black hole phase and “normal” black
hole phase are distinguished. Particularly, six-dimensional
HL AdS black holes exhibit infinitely many critical points
in 𝑃 − ] plane and the divergent points for specific heat,
for which they only contain the “normal” black hole phase
and the “superfluid” black hole phase disappears due to the
physical temperature constraint; therefore there is no similar
phase transition. In more than six dimensions, there is no𝑃 − 𝑉 critical behavior. After identifying parameter 𝜖 as the
ordering field instead of pressure and temperature, we study

the critical phenomena in different planes of thermodynami-
cal phase space. We also obtain the critical exponents in both
planes, which are the same as the van der Waals fluid.

The “superfluid” black hole is firstly reported in Lovelock
gravity with conformally coupled scalar field [20], which
contains at least four free parameters in the action of theory.
Comparing with it, the one in Horava gravity has only one
free parameter 𝜖. It is interesting to consider the necessary
and sufficient conditions for general “superfluid” black hole;
i.e., a black hole EOS must satisfy to display similar 𝜆
phase transition, which is still unclear. Besides, could the
“superfluid” black holes appear in Einstein gravity? These are
all interesting and left to be the future tasks.

Appendix

Gibbs Free Energy and Capacity

TheGibbs free energy is

𝐺

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

3𝑘2 (1 − 𝜖2)16𝑃𝜋𝑟+ + 2𝑘𝑟+ + 163 𝑃𝜋𝑟3+ − (1024𝑃
2𝜋2𝑟4+ + 128𝑘𝑃𝜋𝑟2+ − 12𝑘2 (1 − 𝜖2))16𝜋𝑟+ (32𝑃𝜋𝑟2+ + 6𝑘 (1 − 𝜖2))

×(4𝜋𝑟2+ (1 + 3𝑘 (1 − 𝜖2) ln (𝑟+)8𝜋𝑟2+ ) + 𝑆0) , 𝑑 = 3;
𝑘2𝑑𝑟𝑑−4+ (1 − 𝜖2)16 (𝑑 − 2) 𝑃𝜋 + 4𝑘𝑟𝑑−2+(𝑑 − 1) (𝑑 − 2) + 64𝑃𝜋𝑟6+𝑑 (𝑑 − 1)2 (𝑑 − 2) − 1024𝑃

2𝜋2𝑟4+ + 64𝑘 (𝑑 − 1) (𝑑 − 2) 𝑃𝜋𝑟2+ + 𝑘2𝑑 (𝑑 − 1)2 (𝑑 − 4) (1 − 𝜖2)8 (𝑑 − 1) 𝜋𝑟+ (32𝑃𝜋𝑟2+ + 𝑘𝑑 (𝑑 − 1) (1 − 𝜖2))
×( 16𝜋𝑟𝑑−1+(𝑑 − 1)2 (𝑑 − 2) (1 + 𝑘𝑑 (𝑑 − 1)2 (𝑑 − 2) (1 − 𝜖2)32 (𝑑 − 2) (𝑑 − 3) 𝑃𝜋𝑟4+ ) + 𝑆0) , 𝑑 ≥ 4.

(A.1)

The specific heat is

𝐶𝑃 = 𝑟𝑑−3+2 (𝑑 − 1) (𝑑 − 2) 𝑃 (32𝑃𝜋𝑟2+
+ 𝑘𝑑 (𝑑 − 1) (1 − 𝜖2))2 × (1024𝑃2𝜋2𝑟4+

+ 64𝑘 (𝑑 − 1) (𝑑 − 2) 𝑃𝜋𝑟2+
+ 𝑘2𝑑 (𝑑 − 1)2 (𝑑 − 4) (1 − 𝜖2)) × (32768𝑃3𝜋3𝑟6+
− 1024𝑘 (𝑑 − 1) (3𝑑𝜖2 − 𝑑 − 4)𝑃2𝜋2𝑟4+
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− 32𝑘2𝑑 (𝑑 − 1)2 (𝑑 − 8) 𝑃𝜋𝑟2+ (1 − 𝜖2)
− 𝑘3𝑑2 (𝑑 − 1)3 (𝑑 − 4) (1 − 𝜖2)2)−1 .

(A.2)
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Using the semiclassical WKB approximation and Hamilton-Jacobi method, we solve an equation of motion for the Glashow-
Weinberg-Salam model, which is important for understanding the unified gauge-theory of weak and electromagnetic interactions.
We calculate the tunneling rate of the massive charged W-bosons in a background of electromagnetic field to investigate the
Hawking temperature of black holes surrounded by perfect fluid in Rastall theory. Then, we study the quantum gravity effects on
the generalized Proca equation with generalized uncertainty principle (GUP) on this background. We show that quantum gravity
effects leave the remnants on the Hawking temperature and the Hawking radiation becomes nonthermal.

1. Introduction

General relativity is analogously linked to the thermody-
namics and quantum effects which strongly support it [1–
3]. Black holes are the strangest objects in the Universe and
they arise in general relativity, a classical theory of gravity,
but it is needed to include quantum effects to understand the
nature of the black holes properly. After Bekenstein found
a relation between the surface area and entropy of a black
hole [4], Hawking theoretically showed that black holes with
the surface gravity 𝜅 radiate at temperature 𝜅/2𝜋 [5–7]. On
the other hand, Bekenstein-Hawking radiation causes the
information loss paradox because of the thermal evaporation.
To solve the information paradox, recently soft-hair idea has
been proposed by Hawking et al. [8].

Since Bekenstein and Hawking great contribution to
the black hole’s thermodynamics, the radiation from the
black hole gets attention from researchers. There are many
different methods to obtain the Bekenstein-Hawking radi-
ation using the quantum field theory or the semiclassical
methods. The quantum tunneling method is one of them [9–
16]. Nozari and Mehdipour [17] have studied the Hawking

radiation as tunneling phenomenon for Schwarzschild BH
in noncommutative space-time. Nozari and Saghafi [18]
have investigated the tunneling of massless particles for
Schwarzschild BH by considering quantum gravity effects.
The semiclassical tunneling method by using the Hamilton-
Jacobi ansatz with WKB approximation is another way to
obtain the Bekenstein-Hawking temperature and the tun-
neling rate as Γ ≈ exp[−2𝐼𝑚𝑆] [19]. Different kinds of
particles such as bosons, fermions, and vector particles are
used to study the tunneling of the particles from the black
holes and wormholes and obtain their Hawking temperature
[20–46]. Nozari and Sefidgar [47] have discussed quantum
corrections approach to study BH thermodynamics. Nozari
and Etemadi [48] have investigated the KMM seminal work
in case of a maximal test particles momentum. They showed
that, in the presence of both minimal length and maximal
momentum, there is no divergence in energy spectrum
of a test particle. Moreover, the uncertainty principle is
modified as a generalized uncertainty principle (GUP) [49,
50] to work on the effect of the quantum gravity which
is applied to different areas. The important contribution of
the GUP is to remove the divergences in physics. On the
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other hand, GUP can be used to modify Proca equation and
Klein-Gordon equation to obtain the effects of the GUP on
the Hawking temperature and check if it leaves remnants
[51–54]. Nozari and Mehdipour [55] have discussed BH
remnants and their cosmological constraints.Moreover, GUP
is used to modify the thermodynamics of N-dimensional
Schwarzschild-Tangherlini black hole, speed of graviton, and
the Entropic Force. Feng et al. [56] have studied the difference
between the propagation speed of gravitons and the speed
of light by using GUP. They have also investigated the
modified speed of graviton by considering GUP. Rama [57]
has studied the consequences of GUP which leads to varying
speed of light and modified dispersion relations, which are
likely to have implications for cosmology and black hole
physics.

Since Maxwell, it was the dream of theoretical physicist
to unify the fundamental forces in the nature in a single
equation. Glashow, Weinberg, and Salam unified the theory
of weak and electromagnetic interactions as an electroweak
interaction in the 1960s. They assumed that the symmetry
between the two different interactions would be clear at very
large momentum transfers. However, at low energy, there is a
mass difference between the photon and the𝑊+,𝑊−, and 𝑍0

bosons which break the symmetry.
This paper is organized as follows: In Section 2, we

investigate the Hawking temperature of the black hole solu-
tions surrounded by perfect fluid in Rastall theory using the
tunneling of the massive vector particles. For this purpose we
solve the equation of the motion of the Glashow-Weinberg-
Salam model using the semiclassical WKB approximation
with Hamilton-Jacobi method. In Section 3. we use the GUP-
corrected Proca equation to investigate the tunneling of
massive uncharged vector particles for finding the corrected
Hawking temperature of the black hole solutions surrounded
by perfect fluid in Rastall theory. In Section 4, we conclude
the paper with our results.

2. Tunneling of Charged Massive
Vector Bosons

In this section, we study the tunneling of the chargedmassive
bosons from the different types of black holes surrounded by
the perfect fluids in Rastall theory.

2.1. The Black Hole Surrounded by the Dust Field in Rastall
Theory. First we study the line element of the black hole
surrounded by the dust field [58]:

𝑑𝑠2 = −(1 − 2𝑀𝑟 + 𝑄2

𝑟2 − 𝑁𝑑𝑟(1−6𝜅𝜆)/(1−3𝜅𝜆))𝑑𝑡2
+ 𝑑𝑟21 − 2𝑀/𝑟 + 𝑄2/𝑟2 − 𝑁𝑑/𝑟(1−6𝜅𝜆)/(1−3𝜅𝜆)
+ 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) ,

(1)

where𝑀 is a mass of black hole, 𝜅 and 𝜆 are the Rastall geo-
metric parameters, 𝑁𝑑 is the dust field structure parameter,

and𝑄 is a charge of black hole. Now, we can rewrite (1) in the
following form:

𝑑𝑠2 = −𝐺 (𝑟) 𝑑𝑡2 + 𝐵 (𝑟) 𝑑𝑟2 + 𝐶 (𝑟) 𝑑𝜃2 + 𝐷 (𝑟) 𝑑𝜙2, (2)

where 𝐺(𝑟), 𝐵(𝑟), 𝐶(𝑟), and𝐷(𝑟) are given below:

𝐺 (𝑟) = 1 − 2𝑀𝑟 + 𝑄2

𝑟2 − 𝑁𝑑𝑟(1−6𝜅𝜆)/(1−3𝜅𝜆) ,
𝐶 (𝑟) = 𝑟2,
𝐵 (𝑟) = 11 − 2𝑀/𝑟 + 𝑄2/𝑟2 − 𝑁𝑑/𝑟(1−6𝜅𝜆)/(1−3𝜅𝜆) ,
𝐷 (𝑟) = 𝑟2sin2𝜃.

(3)

The equation ofmotion for theGlashow-Weinberg-Salam
model [59–61] is

1√−g𝜕𝜇 (√−gΦ]𝜇) + 𝑚2

ℎ2 Φ] + 𝑖ℎ𝑒𝐴𝜇Φ]𝜇 + 𝑖ℎ𝑒𝐹]𝜇Φ𝜇

= 0, (4)

where |g| is a coefficients matrix,𝑚 is particles mass, andΦ𝜇]

is antisymmetric tensor, since

Φ]𝜇 = 𝜕]Φ𝜇 − 𝜕𝜇Φ] + 𝑖ℎ𝑒𝐴]Φ𝜇 − 𝑖ℎ𝑒𝐴𝜇Φ],
𝐹𝜇] = 󳵻𝜇𝐴] − 󳵻]𝐴𝜇, (5)

where𝐴𝜇 is the vector potential of the charged black hole and𝐴0 and 𝐴3 are the components of 𝐴𝜇, 𝑒 is the charge of the
particle, and 󳵻𝜇 is covariant derivative. The values of Φ𝜇 andΦ]𝜇 are given by

Φ0 = Φ0𝐺 ,
Φ1 = Φ1𝐵 ,
Φ2 = Φ2𝐶 ,
Φ3 = Φ3𝐷 ,
Φ01 = Φ01𝐺𝐵 ,
Φ02 = Φ02𝐺𝐶 ,
Φ03 = Φ03𝐺𝐷 ,
Φ12 = Φ12𝐵𝐶 ,
Φ13 = Φ13𝐵𝐷 ,
Φ23 = Φ23𝐶𝐷 .

(6)
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UsingWKB approximation for the wave function ansatz [62],
i.e.,

Φ] = 𝑐] exp[[
𝑖ℏ𝐼0 (𝑡, 𝑟, 𝜃, 𝜙) +

𝜁=𝑛∑
𝜁=1

ℏ𝜁𝐼𝜁 (𝑡, 𝑟, 𝜃, 𝜙)]] , (7)

to the Lagrangian (4) (where 𝐼0 and 𝐼𝑖 correspond to particles
action, for 𝑖 = 1, 2, 3, . . .) and neglecting the higher order
terms, we get the following set of equations given below:

1𝐵 [𝑐1 (𝜕0𝐼0) (𝜕1𝐼0) + 𝑒𝐴0𝑐1 (𝜕1𝐼0) − 𝑐0 (𝜕1𝐼0)2]
+ 1𝐶 [𝑐2 (𝜕0𝐼0) (𝜕2𝐼0) − 𝑐0 (𝜕2𝐼0)2 + 𝑒𝐴0𝑐2 (𝜕2𝐼0)]
+ 1𝐷 [𝑐3 (𝜕0𝐼0) (𝜕3𝐼0) + 𝑒𝐴0𝑐3 (𝜕3𝐼0) − 𝑐0 (𝜕3𝐼0)2]
+ 𝑒𝐴3𝐷 [𝑐3 (𝜕0𝐼0) + 𝑒𝐴0𝑐3 − 𝑐0 (𝜕3𝐼0)] − 𝑚2𝑐0 = 0,

(8)

1𝐺 (𝑟) [𝑐0 (𝜕0𝐼0) (𝜕1𝐼0) − 𝑒𝐴0𝑐1 (𝜕0𝐼0) − 𝑐1 (𝜕0𝐼0)2]
− 1𝐶 [𝑐2 (𝜕1𝐼0) (𝜕2𝐼0) − 𝑐1 (𝜕2𝐼0)2]
+ 1𝐷 [𝑐3 (𝜕1𝐼0) (𝜕3𝐼0) − 𝑐1 (𝜕3𝐼0) − 𝑒𝐴3𝑐1 (𝜕3𝐼0)]
+ 𝑒𝐴3𝐷 [𝑐3 ((𝜕1𝐼0) − 𝑒𝐴3) 𝑐1 − 𝑐1 (𝜕3𝐼0)] − 𝑚2𝑐1
= 0,

(9)

1𝐺 (𝑟) [𝑐0 (𝜕0𝐼0) (𝜕2𝐼0) − 𝑐2 (𝜕0𝐼0)2 − 𝑒𝐴0 (𝜕0𝐼0) 𝑐2]
− 1𝐵 [𝑐2 (𝜕1𝐼0)2 − 𝑐1 (𝜕1𝐼0) (𝜕2𝐼0)]
− 1𝐷 [𝑐3 (𝜕2𝐼0) (𝜕3𝐼0) − 𝑐2 (𝜕3𝐼0)2 − 𝑒𝐴3𝑐2 (𝜕3𝐼0)]
+ 𝑒𝐴0𝐺 (𝑟) [𝑐0 (𝜕2𝐼0) − 𝑐2 (𝜕0𝐼0) − 𝑐2𝑒𝐴0]
+ 𝑒𝐴3𝐷 [𝑐3 (𝜕2𝐼0) − 𝑐2 (𝜕3𝐼0) − 𝑒𝐴3𝑐2] − 𝑚2𝑐2 = 0,

(10)

1𝐺 (𝑟) [𝑐0 (𝜕0𝐼0) (𝜕3𝐼0) − 𝑐3 (𝜕0𝐼0)2 + 𝑒𝐴3𝑐0 (𝜕0𝐼0)
− 𝑒𝐴0𝑐3 (𝜕0𝐼0)] + 1𝐵 [𝑐1 (𝜕1𝐼0) (𝜕3𝐼0) − 𝑐3 (𝜕1𝐼0)2
+ 𝑒𝐴3𝑐1 (𝜕1𝐼0)] + 1𝐶 [𝑐2 (𝜕2𝐼0) (𝜕3𝐼0) − 𝑐3 (𝜕2𝐼0)2
+ 𝑒𝐴3𝑐2 (𝜕2𝐼0)] + 𝑒𝐴0𝐺 (𝑟) [𝑐0 (𝜕3𝐼0) − 𝑐3 (𝜕0𝐼0)
+ 𝑒𝐴3𝑐0 − 𝑒𝐴0𝑐3] − 𝑚2𝑐3 = 0.

(11)

We can choose 𝐼0 by using separation of variables technique,
i.e.,

𝐼0 = − (𝐸 − 𝜔̃Ω̃) 𝑡 + 𝑊 (𝑟) + 𝜔̃𝜙 + 𝜐 (𝜃) , (12)

where Ω̃ is the angular momentum of the BH and 𝐸 and 𝜔̃
represent particle energy and angular momentum, respec-
tively. From (8)–(11), we can obtain the following matrix
equation:

𝐾̃ (𝑐0, 𝑐1, 𝑐2, 𝑐3)𝑇 = 0, (13)

which provides “𝐾̃” as a matrix of order 4 × 4 and its
components are given by

𝐾̃00 = −𝑊̇2

𝐵 − 𝜔̃𝐶 − ̇𝜐𝐷 − ̇𝜐𝑒𝐴3 − 𝑚2,
𝐾̃01 = −𝑊̇ (𝐸 − 𝜔̃Ω̃)𝐵 + 𝑊̇𝑒𝐴0𝐵
𝐾̃02 = ̇𝜐 (𝐸 − 𝜔̃Ω̃)𝐶 ,
𝐾̃03 = ̇𝜐 (𝐸 − 𝜔̃Ω̃)𝐷 + 𝑒𝐴0 ̇𝜐 + 𝑒𝐴3 (𝐸 − 𝜔̃Ω̃) + 𝑒𝐴0,
𝐾̃10 = (𝐸 − 𝜔̃Ω̃) 𝑊̇𝐺 (𝑟) ,
𝐾̃11 = − (𝐸 − 𝜔̃Ω̃)

2

𝐺 (𝑟) − (𝐸 − 𝜔̃Ω̃) 𝑒𝐴0𝐺 (𝑟) − 𝜔̃2𝐶 − ̇𝜐𝐷
− 𝑒𝐴3 ̇𝜐𝐷 − 𝑒𝐴3 ̇𝜐 − 𝑒2𝐴2

3 − 𝑚2,
𝐾̃12 = 𝑊̇𝜔̃𝐶 ,
𝐾̃13 = ̇𝜐𝑊̇𝐷 + 𝑒𝐴3𝑊̇,
𝐾̃20 = ̇𝜐 (𝐸 − 𝜔̃Ω̃)𝐴 + 𝑒𝐴0

̇𝜐𝐺 (𝑟) ,
𝐾̃21 = −𝑊̇ ̇𝜐,
𝐾̃22 = − 1𝐺 (𝑟) [(𝐸 − 𝜔̃Ω̃)2 + 𝑒𝐴0 (𝐸 − 𝜔̃Ω̃)] + 1𝐵𝑊̇

− 1𝐷 [ ̇𝜐 − 𝑒𝐴3 ̇𝜐] − 𝑒𝐴3𝐷 [ ̇𝜐 + 𝑒𝐴3] − 𝑚2,
𝐾̃23 = 1𝐷𝜔̃ ̇𝜐 + 𝑒𝐴3𝜔̃𝐷 ,
𝐾̃30 = 1𝐺 (𝑟) [(𝐸 − 𝜔̃Ω̃) ̇𝜐 + 𝑒𝐴3 (𝐸 − 𝜔̃Ω̃)]

+ 𝑒𝐴0𝐺 (𝑟) [ ̇𝜐 + 𝑒𝐴3] ,
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𝐾̃31 = 1𝐵 [𝑊̇ ̇𝜐 + 𝑒𝐴3𝑊̇] ,
𝐾̃32 = 1𝐶 [𝜔̃ ̇𝜐 + 𝑒𝐴3 ̇𝜐] ,
𝐾̃33 = − 1𝐺 (𝑟) [(𝐸 − 𝜔̃Ω̃)2 + (𝐸 − 𝜔̃Ω̃) 𝑒𝐴0] − 1𝐵𝑊̇2

− ̇𝜐2𝐶 − 𝑒𝐴0𝐺 (𝑟) [(𝐸 − 𝜔̃Ω̃) + 𝑒𝐴0] − 𝑚2,
(14)

where 𝑊̇ = 𝜕𝑟𝐼0, ̇𝜐 = 𝜕𝜃𝐼0, and 𝜔̃ = 𝜕𝜙𝐼0. For the nontrivial
solution |K̃| = 0 and solving above equations one can yield

Im𝑊± = ±∫√ (𝐸 − 𝑒𝐴0 − 𝜔̃Ω̃ − 𝑒𝐴3)2 + 𝑋𝐺 (𝑟) 𝐵−1 𝑑𝑟, (15)

where + and− represent the outgoing and incoming particles,
respectively, whereas, “𝑋” is the function which can be
defined as

𝑋 = −𝐺 (𝑟)𝐶 ̇𝜐2 − 𝑚2𝐺 (𝑟) + 2𝑒𝐴3 (𝐸 − 𝜔̃Ω̃)
+ 2𝑒2𝐴0𝐴3 − 𝑒2𝐴2

3

(16)

and 𝜔̃ is the angular velocity at event horizon.
By integrating (15) around the pole, we get

Im𝑊± = ±𝑖𝜋(𝐸 − 𝑒𝐴0 − 𝜔̃Ω̃ − 𝑒𝐴3)2𝜌 (𝑟+) , (17)

where the surface gravity 𝜅(𝑟+) of the charged black hole is
given by

𝜅 (𝑟+) = [2𝑀𝑟2 − 2𝑄2

𝑟3 + 1 − 6𝜅𝜆1 − 3𝜅𝜆𝑁𝑑𝑟3𝜅𝜆/(3𝜅𝜆−1)]2
𝑟=𝑟+

. (18)

The tunneling probability Γ for outgoing charged vector
particles can be obtained by

Γ (Im𝑊+) = Prob [emission]
Prob [absorption] = exp [−2 (Im𝑊+ + ImΦ)]

exp [−2 (Im𝑊− − ImΦ)] = exp [−4Im𝑊+]
= exp[− 2𝜋 (𝐸 − 𝑒𝐴0 − 𝜔̃Ω̃ − 𝑒𝐴3)(2𝑀/𝑟2 − 2𝑄2/𝑟3 + ((1 − 6𝜅𝜆) / (1 − 3𝜅𝜆))𝑁𝑑𝑟3𝜅𝜆/(3𝜅𝜆−1))2] .

(19)

Now, we can calculate the 𝑇̃𝐻(Im𝑊+) by comparing theΓ̃(Im𝑊+) with the Boltzmann formula Γ̃𝐵(Im𝑊+) ≈𝑒−(𝐸−𝑒𝐴0−𝜔̃Ω̃−𝑒𝐴3)/𝑇̃𝐻(Im𝑊+), and we get

𝑇𝐻 (Im𝑊+)
= [ 𝑀𝜋𝑟2 − 𝑄

2

𝜋𝑟3 + 1 − 6𝜅𝜆2𝜋 (1 − 3𝜅𝜆)𝑁𝑑𝑟3𝜅𝜆/(3𝜅𝜆−1)]2
𝑟=𝑟+

. (20)

The result shows that the Γ̃(Im𝑊+) is dependent on 𝑟, the
vector potential components (𝐴0 and 𝐴3), energy 𝐸, angular
momentum Ω̃, and mass of black hole 𝑀; 𝜅 and 𝜆 are the
Rastall geometric parameters; and 𝑁𝑑 and 𝑄 are dust field
structure parameter and charge of black hole, respectively.

2.2. The Black Hole Surrounded by the Radiation Field.
Second example of the line element of black hole surrounded
by the radiation field [58] is given below:

𝑑𝑠2 = −(1 − 2𝑀𝑟 + 𝑄2 − 𝑁𝑟𝑟2 )𝑑𝑡2
+ 𝑑𝑟2(1 − 2𝑀/𝑟 + (𝑄2 − 𝑁𝑟) /𝑟2)
+ 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) ,

(21)

where𝑀 is a mass of black hole,𝑁𝑟 is the negative radiation
structure parameter, and 𝑄 is a charge of black hole.

Following the procedure given in Section 2.1 for this
line element, we can obtain the surface gravity 𝜅(𝑟+) of this
charged black hole surrounded by the radiation field in the
following form:

𝜅 (𝑟+) = [2𝑀𝑟2 − 2𝑄2

𝑟3 − 𝑟2𝑁̇𝑟 − 2𝑟𝑁𝑟𝑟4 ]2
𝑟=𝑟+

, (22)

where 𝑁̇𝑟 = 𝜕𝑁𝑟/𝜕𝑟. The tunneling rate of particles can be
calculated as

Γ̃ (Im𝑊+) = exp[[−
4𝜋 (𝐸 − 𝑒𝐴𝜇 − 𝜔̃Ω̃) 𝑟6[2𝑀𝑟 − 2𝑄2 − 𝑟𝑁̇𝑟 + 2𝑁𝑟]2]] (23)

and the corresponding Hawking temperature at horizon can
be obtained as

𝑇̃ (𝑟+) = 14𝜋𝑟6 [2𝑀𝑟 − 2𝑄2 − 𝑟𝑁̇𝑟 + 2𝑁𝑟]2󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟+ . (24)

This temperature depends on radiation structure parameter𝑁𝑟, mass𝑀, and black hole charge 𝑄.
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2.3. The Black Hole Surrounded by the Quintessence Field.
Third example of the line element of the black hole sur-
rounded by the quintessence field [58] is given below:

𝑑𝑠2 = −(1 − 2𝑀𝑟 + 𝑄2

𝑟2 − 𝑁𝑞𝑟(−1−2𝜅𝜆)/(1−𝜅𝜆))𝑑𝑡2
+ 𝑑𝑟2(1 − 2𝑀/𝑟 + 𝑄2/𝑟2 − 𝑁𝑞/𝑟(−1−2𝜅𝜆)/(1−𝜅𝜆))
+ 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) ,

(25)

where 𝑁𝑞 is a quintessence field structure parameter. By
following the same process and using the vector potential for
this black hole, the surface gravity can be derived as

𝜅 (𝑟+)
= [2𝑀𝑟2 − 2𝑄2

𝑟3 − (1 + 2𝜅𝜆1 − 𝜅𝜆 )𝑁𝑞𝑟3𝜅𝜆/(1−𝜅𝜆)]2
𝑟=𝑟+

. (26)

The corresponding tunneling probability

Γ = exp[ −4𝜋 (𝐸 − 𝑒𝐴𝜇 − 𝜔̃Ω̃)[2𝑀/𝑟2 − 2𝑄2/𝑟3 + ((1 − 6𝜅𝜆) / (1 − 3𝜅𝜆))𝑁𝑑𝑟3𝜅𝜆/(3𝜅𝜆−1)]2] (27)

and Hawking temperature

𝑇 = [[
(2𝑀/𝑟2 − 2𝑄2/𝑟3 − ((1 + 2𝜅𝜆) / (1 − 𝜅𝜆))𝑁𝑞𝑟3𝜅𝜆/(1−𝜅𝜆−))24𝜋 ]]𝑟=𝑟+

(28)

are derived and given in the above expressions.The Hawking
temperature depends on 𝑀, 𝑄, and 𝑁𝑞, i.e., quintessence
field structure parameter, mass, and charge of black hole,
respectively.

2.4. The Black Hole Surrounded by the Cosmological Constant
Field. Fourth example of the line element of black hole
surrounded by the cosmological constant field is given below
[58]:

𝑑𝑠2 = −(1 − 2𝑀𝑟 + 𝑄2

𝑟2 − 𝑁𝑐𝑟2)𝑑𝑡2
+ 𝑑𝑟2(1 − 2𝑀/𝑟 + 𝑄2/𝑟2 − 𝑁𝑐𝑟2)
+ 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) ,

(29)

where𝑁𝑐 is a cosmological constant field structure parameter.
For this black hole, the surface gravity at outer horizon is
obtained by following the above-mentioned similar proce-
dure; i.e.,

𝜅 (𝑟+) = [2𝑀𝑟2 − 2𝑄2

𝑟3 − 2𝑁𝑐𝑟]2
𝑟=𝑟+

. (30)

Moreover, the required tunneling probability of particles

Γ̂ = exp[ −4𝜋 (𝐸 − 𝑒𝐴𝜇 − 𝜔̃Ω̃)(2𝑀/𝑟2 − 2𝑄2/𝑟3 − 2𝑁𝑐𝑟)2] , (31)

and their corresponding Hawking temperature is calculated
in the following expression:

𝑇̂ = [[
(2𝑀/𝑟2 − 2𝑄2/𝑟3 − 2𝑁𝑐𝑟)24𝜋 ]]𝑟=𝑟+

. (32)

This temperature depends on𝑁𝑐,𝑀, and𝑄, i.e., cosmological
constant field structure parameter, mass, and charge of black
hole, respectively.

2.5. The Black Hole Surrounded by the Phantom Field. Last
example of the line element of black hole surrounded by the
phantom field is [58]

𝑑𝑠2 = −(1 − 2𝑀𝑟 + 𝑄2

𝑟2 − 𝑁𝑝𝑟(−3+2𝜅𝜆)/(1+𝜅𝜆))𝑑𝑡2
+ 𝑑𝑟2(1 − 2𝑀/𝑟 + 𝑄2/𝑟2 − 𝑁𝑝/𝑟(−3+2𝜅𝜆)/(1+𝜅𝜆))
+ 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) ,

(33)

where𝑁𝑝 is a phantom field structure parameter. For vector
potential 𝐴𝜇 of this black hole, the surface gravity can be
derived as

𝜅 (𝑟+)
= [2𝑀𝑟2 − 2𝑄2

𝑟3 − (3 − 2𝜅𝜆1 + 𝜅𝜆 )𝑁𝑝𝑟(2−3𝜅𝜆)/(1+𝜅𝜆)]2 . (34)
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The tunneling probability of particles

Γ̌ = exp[[
−4𝜋 (𝐸 − 𝑒𝐴𝜇 − 𝜔̃Ω̃)(2𝑀/𝑟2 − 2𝑄2/𝑟3 − ((3 − 2𝜅𝜆) / (1 + 𝜅𝜆))𝑁𝑝𝑟(2−3𝜅𝜆)/(1+𝜅𝜆))2]] (35)

and the required Hawking temperature of particles can be
obtained as given below:

𝑇̌ = [[
(2𝑀/𝑟2 − 2𝑄2/𝑟3 − ((3 − 2𝜅𝜆) / (1 + 𝜅𝜆))𝑁𝑝𝑟(2−3𝜅𝜆)/(1+𝜅𝜆))24𝜋 ]]𝑟=𝑟+

. (36)

The Hawking temperature depends on𝑀, 𝑄, and 𝑁𝑝; these
are phantom field structure parameter, mass, and charge of
black hole, respectively.

3. GUP-Corrected Proca Equation and
the Corrected Hawking Temperature

In this section, we focus on the effect of the GUP on the
tunneling of massive uncharged vector particles from the
black hole solutions surrounded by perfect fluid in Rastall
theory. Firstly we use the GUP-corrected Lagrangian for the
massive uncharged vector field 𝜓𝜇 given by [63]

𝐿𝐺𝑈𝑃 = −12 (𝐷𝜇𝜓] − 𝐷]𝜓𝜇) (𝐷𝜇𝜓] − 𝐷]𝜓𝜇)
− 𝑚2

𝑊ℏ2 𝜓𝜇𝜓𝜇. (37)

One can derive the equation of the motion for the GUP-
corrected Lagrangian of massive uncharged vector field as
follows [63]:

𝜕𝜇 (√−𝑔𝜓𝜇]) − √−𝑔𝑚2
𝑊ℏ2 𝜓]

+ 𝛽ℏ2𝜕0𝜕0𝜕0 (√−𝑔𝑔00𝜓0])
− 𝛽ℏ2𝜕𝑖𝜕𝑖𝜕𝑖 (√−𝑔𝑔𝑖𝑖𝜓𝑖]) = 0,

(38)

with

𝜓𝜇] = (1 − 𝛽ℏ2𝜕2𝜇) 𝜕𝜇𝜓] − (1 − 𝛽ℏ2𝜕2]) 𝜕]𝜓𝜇. (39)

It is noted thatwe use the Latin indices for themodified tensor𝜓𝑖𝜇 as follows: 𝑖 = 1, 2, 3; on the other hand, for 𝜓0𝜇, we use
the 0 for the time coordinate. Moreover, we note that 𝛽 =1/(3𝑀2

𝑓), where 𝑀𝑓 is the Planck mass and 𝑚𝑊 stands for
the mass of the particle.

3.1. The Black Hole Surrounded by the Dust Field in Rastall
Theory. Themetric is given by

𝑑𝑠2 = −𝐺 (𝑟) (𝑟) 𝑑𝑡2 + 𝐵 (𝑟) 𝑑𝑟2 + 𝐶 (𝑟) 𝑑𝜃2
+ 𝐷 (𝑟) 𝑑𝜙2, (40)

where 𝐺(𝑟), 𝐵(𝑟), 𝐶(𝑟), and𝐷(𝑟) are given below:

𝐺 (𝑟) = 1 − 2𝑀𝑟 + 𝑄2

𝑟2 − 𝑁𝑑𝑟(1−6𝜅𝜆)/(1−3𝜅𝜆) ,
𝐶 (𝑟) = 𝑟2, (41)

𝐵 (𝑟) = 1𝐺 (𝑟)
= 11 − 2𝑀/𝑟 + 𝑄2/𝑟2 − 𝑁𝑑/𝑟(1−6𝜅𝜆)/(1−3𝜅𝜆) ,

𝐷 (𝑟) = 𝑟2sin2𝜃.
(42)

Using the WKB method, we define the 𝜓𝜇 as follows:
Ψ𝜇 = 𝑐𝜇 (𝑡, 𝑟, 𝜃, 𝜙) exp [ 𝑖ℏ𝐼 (𝑡, 𝑟, 𝜃, 𝜙)] , (43)

where 𝐼 is defined as𝐼 (𝑡, 𝑟, 𝜃, 𝜙) = 𝐼0 (𝑡, 𝑟, 𝜃, 𝜙) + ℏ𝐼1 (𝑡, 𝑟, 𝜃, 𝜙)
+ ℏ2𝐼2 (𝑡, 𝑟, 𝜃, 𝜙) + ⋅ ⋅ ⋅ . (44)

We use (43), (44), and the metric (40) into (38), and then
we only consider the lowest order terms in ℏ to calculate the
equations with the corresponding coefficients 𝑐𝜇:
𝐺 (𝑟) [𝑐0 (𝜕𝑟𝐼0)2 A2

1 − 𝑐1 (𝜕𝑟𝐼0) (𝜕𝑡𝐼0)A1A0]
+ 1𝐶 (𝑟) [𝑐0 (𝜕𝜃𝐼0)2 A2

2 − 𝑐2 (𝜕𝜃𝐼0) (𝜕𝑡𝐼0)A2A0]
+ 1𝐷 (𝑟) [𝑐0 (𝜕𝜙𝐼0)2A2

3 − 𝑐3 (𝜕𝜙𝐼0) (𝜕𝑡𝐼0)A3A0]
+ 𝑐0𝑚2

𝑊 = 0,

(45)
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− 1𝐺 (𝑟) [𝑐1 (𝜕𝑡𝐼0)2A2
0 − 𝑐0 (𝜕𝑡𝐼0) (𝜕𝑟𝐼0)A0A1]

+ 1𝐶 (𝑟) [𝑐1 (𝜕𝜃𝐼0)2A2
2 − 𝑐2 (𝜕𝜃𝐼0) (𝜕𝑟𝐼0)A2A1]

+ 1𝐷 (𝑟) [𝑐1 (𝜕𝜙𝐼0)2 A2
3 − 𝑐3 (𝜕𝜙𝐼0) (𝜕𝑟𝐼0) 𝐴3A1]

+ 𝑐1𝑚2
𝑊 = 0,

(46)

− 1𝐺 (𝑟) [𝑐2 (𝜕𝑡𝐼0)2A2
0 − 𝑐0 (𝜕𝑡𝐼0) (𝜕𝜃𝐼0)A0A2]

+ 𝐺 (𝑟) [𝑐2 (𝜕𝑟𝐼0)2A2
1 − 𝑐1 (𝜕𝑟𝐼0) (𝜕𝜃𝐼0)A1A2]

+ 1𝐷 (𝑟) [𝑐2 (𝜕𝜙𝐼0)2 A2
3 − 𝑐3 (𝜕𝜙𝐼0) (𝜕𝜃𝐼0)A3A2]

+ 𝑐2𝑚2
𝑊 = 0,

(47)

− 1𝐺 (𝑟) [𝑐3 (𝜕𝑡𝐼0)2A2
0 − 𝑐0 (𝜕𝑡𝐼0) (𝜕𝜙𝐼0)A0A3]

+ 𝐺 (𝑟) [𝑐3 (𝜕𝑟𝐼0)2A2
1 − 𝑐1 (𝜕𝑟𝐼0) (𝜕𝜙𝐼0)A1A3]

+ 1𝐶 (𝑟) [𝑐3 (𝜕𝜃𝐼0)2 A2
2 − 𝑐2 (𝜕𝜃𝐼0) (𝜕𝜙𝐼0)A2A3]

+ 𝑐3𝑚2
𝑊 = 0,

(48)

where theA𝜇s are defined as

A0 = 1 + 𝛽 1𝐺 (𝑟) (𝜕𝑡𝑆0)2 ,
A1 = 1 + 𝛽𝐺 (𝑟) (𝜕𝑟𝑆0)2 ,
A2 = 1 + 𝛽 1𝐶 (𝑟) (𝜕𝜃𝑆0)2 ,
A3 = 1 + 𝛽 1𝐷 (𝑟) (𝜕𝜙𝑆0)2 .

(49)

Using the semiclassical Hamilton-Jacobi method with WKB
ansatz, we separate the variables as follows:

𝐼0 = −𝐸𝑡 + 𝑅 (𝑟) + Θ (𝜃, 𝜙) + 𝑘. (50)

Note that the energy of the radiated particle is defined with𝐸. Afterwards, we obtain a matrix equation as follows:

∪ (𝑐0, 𝑐1, 𝑐2, 𝑐3)𝑇 = 0, (51)

where ∪ is a 4 × 4matrix, the elements of which are

∪11 = 𝐺 (𝑟) 𝑅󸀠2A2
1 + 𝐽𝜃2𝐶 (𝑟)A2

2 + 𝐽𝜙2𝐷(𝑟)A2
3 + 𝑚2

𝑊,
∪12 = −𝐺 (𝑟) 𝑅󸀠 (−𝐸)A1A0,

∪13 = −𝐽𝜃 (−𝐸)𝐶 (𝑟) A2A0,
∪14 = −𝐽𝜙 (−𝐸)𝐷 (𝑟) A3A0,
∪21 = (−𝐸) 𝑅󸀠𝐺 (𝑟) A0A1,
∪22 = −(−𝐸)2𝐺 (𝑟) A2

0 + 𝐽𝜃2𝐶 (𝑟)A2
2 + 𝐽2𝜙𝐷 (𝑟)A2

3 + 𝑚2
𝑊,

∪23 = − 𝐽𝜃𝑅󸀠𝐶 (𝑟)A2A1,
∪24 = − 𝐽𝜙𝑅󸀠𝐷 (𝑟)A3A1,
∪31 = −𝐸𝐽𝜃𝐺 (𝑟)A0A2,
∪32 = −𝐺 (𝑟) 𝑅󸀠𝐽𝜃A1A2,
∪33 = −(−𝐸)2𝐺 (𝑟) A2

0 + 𝐺 (𝑟) 𝑅󸀠2A2
1 + 𝐽2𝜙𝐷(𝑟)A2

3 + 𝑚2
𝑊,

∪34 = − 𝐽𝜃𝐽𝜙𝐷 (𝑟)A3A2,
∪41 = (−𝐸) 𝐽𝜙𝐺 (𝑟) A0A3,
∪42 = −𝐺 (𝑟) 𝑅󸀠𝐽𝜙A1A3,
∪43 = − 𝐽𝜃𝐽𝜙𝐶 (𝑟)A2A3,
∪44 = −(−𝐸)2𝐺 (𝑟) A2

0 + 𝐺 (𝑟) 𝑅󸀠2𝐴2
1 + 𝐽2𝜃𝐶 (𝑟)A2

2 + 𝑚2
𝑊,

(52)

where 𝑅󸀠 = 𝜕𝑟𝑅, 𝐽𝜃 = 𝜕𝜃Θ, and 𝐽𝜙 = 𝜕𝜙Θ.
It is noted that, for the condition of det∪ = 0, we find the

nontrivial solution of (51). First, we consider only the lowest
order terms of 𝛽 and then calculate the det∪ = 0. Our main
aim is to obtain the radial part of the equation so that we
integrate it using the complex integral method around the
event horizon as follows:

Im𝑅± (𝑟)
= ±Im∫𝑑𝑟√− 𝑚2

𝐺 (𝑟) + 𝐸2𝐺 (𝑟)2 −
𝐽2𝜃 + 𝐽2𝜙𝐺 (𝑟)𝐷 (𝑟) (1

+ T1

T2

𝛽) ,
(53)

where

T1 = −3𝐺 (𝑟)𝑚4𝐶 (𝑟) + 6𝑚2𝐶 (𝑟) (𝐸)2
− 6𝐺 (𝑟)𝑚2(𝐽2𝜃 + 𝐽2𝜙𝐷 (𝑟)) − 6𝐺 (𝑟) 𝐽

4
𝜃𝐶 (𝑟)
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+ 6 (𝐸)2(𝐽2𝜃 + 𝐽2𝜙𝐷 (𝑟)) − 7𝐺 (𝑟) 𝐽
2
𝜃𝐽2𝜙𝐷 (𝑟)

− 3𝐺 (𝑟) 𝐽4𝜃𝐽2𝜙2𝑚2𝐷 (𝑟)2 −
5𝐺 (𝑟) 𝐽4𝜙csc4𝜃𝐶 (𝑟)

+ 3𝐺 (𝑟) 𝐽2𝜃𝐽4𝜙2𝑚2𝐷 (𝑟)2 ,
(54)

T2 = −𝐺 (𝑟)𝑚2𝑟2 + 𝑟2 (𝐸)2 − 𝐺 (𝑟)(𝐽2𝜃 + 𝐽2𝜙𝐷 (𝑟)) . (55)

We rewrite themetric close to the event horizon to obtain
solution for the integral:

𝐺 (𝑟ℎ) ≈ Δ ,𝑟 (𝑟ℎ)𝑟ℎ2 (𝑟 − 𝑟ℎ) . (56)

Afterwards we manage to obtain the solution of the
integral (53) for the radial part as follows:

Im𝑅± (𝑟) = ±𝑖𝜋 𝑟2ℎΔ ,𝑟 (𝑟ℎ) (𝐸) × (1 + 𝛽Ξ) , (57)

where Ξ = 6𝑚2 + (6/𝑟2ℎ)(𝐽2𝜃 + 𝐽2𝜙csc2𝜃).
It is quite clear that Ξ > 0. We note that 𝑅+ represents

the radial function for the outgoing particles and𝑅− is for the
ingoing particles. Thus, the tunneling rate of𝑊 bosons near
the event horizon is

Γ = 𝑃𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑃𝑖𝑛𝑔𝑜𝑖𝑛𝑔 = exp [− (2/ℏ) (Im𝑅+ + ImΘ)]
exp [− (2/ℏ) (Im𝑅− + ImΘ)]

= exp [−4ℏ Im𝑅+]
= exp[−4𝜋ℏ 𝑟2ℎΔ ,𝑟 (𝑟ℎ) (𝐸) × (1 + 𝛽Ξ)] .

(58)

If we set ℏ = 1, we find the corrected Hawking temperature
as follows:

𝑇𝑒−𝐻 = Δ ,𝑟 (𝑟ℎ)4𝜋𝑟2ℎ (1 + 𝛽Ξ) = 𝑇0 (1 − 𝛽Ξ) , (59)

where 𝑇0 = [𝑀/𝜋𝑟2 − 𝑄2/𝜋𝑟3 + ((1 − 6𝜅𝜆)/2𝜋(1 − 3𝜅𝜆))𝑁𝑑𝑟3𝜅𝜆/(3𝜅𝜆−1)]2𝑟=𝑟+ is the original Hawking temperature of
a corresponding black hole. We find the corrected Hawking
temperature with the effect of quantum gravity. In addition,
the Hawking temperature is increased if one uses the quan-
tum gravity effects, but then these effects are canceled in some
point and black hole remnants occur.

3.2. The Black Hole Surrounded by the Radiation Field.
Following the procedure given in Section 2.1 for this line
element, we obtain the corrected Hawking temperature with
the effect of quantum gravity for this charged black hole
surrounded by the radiation field in the following form:

𝑇𝑒−𝐻 = Δ ,𝑟 (𝑟ℎ)4𝜋𝑟2ℎ (1 + 𝛽Ξ) = 𝑇0 (1 − 𝛽Ξ) , (60)

where original Hawking temperature is

𝑇0 = 14𝜋𝑟6 [2𝑀𝑟 − 2𝑄2 − 𝑟𝑁̇𝑟 + 2𝑁𝑟]2󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟+ . (61)

This temperature depends on radiation structure parameter𝑁𝑟, mass𝑀, and black hole charge𝑄. Moreover, the quantum
effects explicitly counteract the temperature increases during
evaporation, which will cancel it out at some point. Naturally,
black hole remnants will be left.

3.3. The Black Hole Surrounded by the Quintessence Field.
By following the same process, we calculate the corrected
Hawking temperature under the effect of quantum gravity as
follows:

𝑇𝑒−𝐻 = Δ ,𝑟 (𝑟ℎ)4𝜋𝑟2ℎ (1 + 𝛽Ξ) = 𝑇0 (1 − 𝛽Ξ) , (62)

with the original Hawking temperature

𝑇0 = [[
(2𝑀/𝑟2 − 2𝑄2/𝑟3 − ((1 + 2𝜅𝜆) / (1 − 𝜅𝜆))𝑁𝑞𝑟3𝜅𝜆/(1−𝜅𝜆−))24𝜋 ]]𝑟=𝑟+

, (63)

derived and given in above expressions. The Hawking tem-
perature depends on 𝑀, 𝑄, and 𝑁𝑞, i.e., quintessence field
structure parameter, mass, and charge of black hole, respec-
tively. Naturally, black hole remnants will be left.

3.4. The Black Hole Surrounded by the Cosmological Constant
Field. One can repeat the process just for this black hole to
calculate the corresponding corrected Hawking temperature
with the quantum gravity effects as follows:

𝑇𝑒−𝐻 = Δ ,𝑟 (𝑟ℎ)4𝜋𝑟2ℎ (1 + 𝛽Ξ) = 𝑇0 (1 − 𝛽Ξ) , (64)

with

𝑇0 = [[
(2𝑀/𝑟2 − 2𝑄2/𝑟3 − 2𝑁𝑐𝑟)24𝜋 ]]𝑟=𝑟+

. (65)
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This temperature depends on 𝑁𝑐, 𝑀, and 𝑄, i.e., cos-
mological constant field structure parameter, mass, and
charge of black hole, respectively. Again here, remnants are
left.

3.5. The Black Hole Surrounded by the Phantom Field. Last
example is the line element of black hole surrounded by the

phantom field. Now we again repeat the same process to
obtain the following corrected Hawking temperature:

𝑇𝑒−𝐻 = Δ ,𝑟 (𝑟ℎ)4𝜋𝑟2ℎ (1 + 𝛽Ξ) = 𝑇0 (1 − 𝛽Ξ) , (66)

with

𝑇̌ = [[
(2𝑀/𝑟2 − 2𝑄2/𝑟3 − ((3 − 2𝜅𝜆) / (1 + 𝜅𝜆))𝑁𝑝𝑟(2−3𝜅𝜆)/(1+𝜅𝜆))24𝜋 ]]𝑟=𝑟+

. (67)

The Hawking temperature depends on𝑀, 𝑄, and 𝑁𝑝; these
are phantom field structure parameter, mass, and charge of
black hole, respectively.

4. Conclusions

In this research paper, we have successfully analyzed the
GUP-corrected Hawking temperature of 𝑊± boson vector
particles using the equation of motion for the Glashow-
Weinberg-Salam model. First of all, we analyzed the mod-
ified Hamilton-Jacobi equation by resolving the modified
Lagrangian equation utilized for the magnetized particles in
the space-time. We have analyzed the GUP effect on the
radiation of black holes surrounded by perfect fluid in Rastall
theory.

As the original Hawing radiation, the Hawking tempera-
ture 𝑇𝐻 of the black holes is associated with its mass𝑀 and
charged 𝑄. However, these results indicated that the effect of
quantum gravity is counted and the behavior of the tunneling
boson vector particle on the event horizon is observed
from the original event. The Hawking temperature 𝑇𝐻 and
tunneling probability Γ quantities are not just sensitively
dependent on the mass 𝑀 and charged 𝑄 of the black
hole. The Hawking temperature 𝑇𝐻, tunneling probability Γ,
and surface gravity 𝜅 are only dependent on the geometry
(structure parameter) of black hole. Moreover, the corrected
Hawking temperature 𝑇𝑒−𝐻 = 𝑇0(1 − 𝛽Ξ) has been calculated
with the effect of quantum gravity.TheHawking temperature
is increased if one uses the quantum gravity effects, but
then these effects are canceled in some point and black hole
remnants occur.
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We studied the thermodynamics and spectroscopy of a 4-dimensional, 𝑧 = 0 Lifshitz black hole (𝑍0LBH). Using Wald’s entropy
formula and the Hawking temperature, we derived the quasi-local mass of the 𝑍0LBH. Based on the exact solution to the near-
horizon Schrödinger-like equation (SLE) of the massive scalar waves, we computed the quasi-normal modes of the 𝑍0LBH via
employing the adiabatic invariant quantity for the 𝑍0LBH. This study shows that the entropy and area spectra of the 𝑍0LBH are
equally spaced.

1. Introduction

Ever since the publication of the seminal papers of Bekenstein
and Hawking [1–3], it has been known that black hole
(BH) entropy (𝑆𝐵𝐻) should be quantized in discrete levels as
discussed in detail by Bekenstein [4–7]. The proportionality
between 𝑆𝐵𝐻 and BH area (A𝐵𝐻) is justified from the adia-
batic invariance [8] properties of area, that is, 𝑆𝐵𝐻 = A𝐵𝐻/4.
Therefore,A𝐵𝐻 should also be quantized in equidistant levels
to account for the discrete 𝑆𝐵𝐻. Bekenstein [5, 6] proposed
that, for the family of Schwarzschild BHs, A𝐵𝐻 should have
the following discrete, equidistant spectrum:

A𝐵𝐻 = 𝜖ℏ𝑛, 𝑛 = 0, 1, 2, . . . , (1)

where 𝜖 is known as the undetermined dimensionless con-
stant. According to (1), the minimum increase in the horizon
area becomes ΔAmin = 8𝜋ℏ for the Schwarzschild BH (𝜖 =8𝜋) [9–11]. Following the seminal works of Bekenstein, new
methods have been developed to derive the entropy/area
spectra of the numerousBHs (see [12] and references therein).
Among them, Maggiore’s method (MM) [9] fully supports
Bekenstein’s result (1). In fact, MM [9] was based on Kunstat-
ter’s study [13], inwhich the adiabatic invariant quantity (𝐼𝑎𝑑𝑏)
is expressed as follows:

𝐼𝑎𝑑𝑏 = ∫ 𝑑𝑀Δ𝜔 , (2)

where Δ𝜔 = 𝜔𝑛−1 − 𝜔𝑛 denotes the transition frequency
between the successive levels of a BHhavingmass𝑀. Further,
(2) was generalized to the hairy BHs (massive, charged, and
rotating ones) as follows (see [14] and references therein):

𝐼𝑎𝑑𝑏 = ∫ TH𝑑𝑆𝐵𝐻Δ𝜔 , (3)

where TH is the temperature of the BH. Bohr-Sommerfeld
quantization rule [15] states that 𝐼𝑎𝑑𝑏 acts as a quantized
quantity (𝐼𝑎𝑑𝑏 ≃ 𝑛ℏ) when the highly excited modes (𝑛 󳨀→∞) are considered. In such a case, the imaginary part of the
frequency dominates the real part of the frequency (𝜔𝐼 ≫𝜔𝑅), implying that Δ𝜔 ≃ Δ𝜔𝐼. Meanwhile, for the first time,
Hod [16, 17] argued that the quasi-normal modes (QNMs)
[18, 19] can be used for computing transition frequency.
Hod’s arguments inspired Maggiore who considered the
Schwarzschild BH as a highly damped harmonic oscillator
(i.e., Δ𝜔 ≃ Δ𝜔𝐼) and managed to rederive Bekenstein’s
original result (1) using a different method. Today, there are
numerous studies in the literature in which MM has been
employed for various BHs (see, e.g., [20–25]).

This study mainly explores the entropy/area spectra of
a four-dimensional Lifshitz BH [26] possessing a particular
dynamical exponent 𝑧 = 0. To analyze the physical features
of the 𝑧 = 0 Lifshitz BH (𝑍0LBH) geometry, we first calculate
its quasi-local mass 𝑀𝑄𝐿 [27] and temperature via Wald’s
entropy [28] and statistical Hawking temperature formula
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[29, 30], respectively. QNM calculations of the 𝑍0LBH must
be performed in order to implement the MM successfully. To
this end, we consider the Klein-Gordon equation (KGE) for a
massless scalar field in the𝑍0LBH background. Separation of
the angular and the radial equations yields a Schrödinger-like
wave equation (SLE) [31]. Asymptotic limits of the potential
(36) show that the effective potential may diverge beyond the
BH horizon for the massive scalar particle; thus, in the far
region, the QNMs might not be perceived by the observer.
Hence, following a particular method [23, 32–35], we focus
our analysis on the near-horizon (NH) region and impose the
boundary conditions (45): ingoing waves at the event horizon
and no wave at spatial infinity (since at infinity the effective
potential of Schrödinger-like wave equation is divergent).
After getting NH form of the SLE, we show that the radial
equation is reduced to a confluent hypergeometric (CH)
differential equation [36]. Performing some manipulations
on the NH solution and using the pole structure of the
Gamma functions [36], we showhowone finds out theQNMs
as in [32, 33, 37–40].The imaginary part of the QNMs is used
in (3), and the quantum spectra of entropy and area of the𝑍0LBH are obtained.

The following statements elaborate on the organization
of this study. In Section 2, we briefly introduce the 𝑍0LBH
metric. In addition, we present the derivation of 𝑀𝑄𝐿 of
the 𝑍0LBH based on Wald’s entropy formula. Section 3 is
devoted to the separation of the KGE and finding the effective
potential 𝑉𝑒𝑓𝑓(𝑟). Next, we solve the NH SLE and show how
QNMs are calculated. Then, we compute the entropy/area
spectra of the 𝑍0LBH. Finally, we draw our conclusions in
Section 4 (throughout this work, the geometrized unit system
is used: 𝐺 = 𝑐 = 𝑘𝐵 = 1 and ℓ2𝜌 = ℏ).

2. 𝑍0LBH Spacetime

In this section, we introduce the four-dimensional Lifshitz
spacetime and its special case, that is, 𝑍0LBH [26]. Con-
formal gravity (CG) covers gravity theories that are invari-
ant under Weyl transformations. CG, which is adapted to
static and asymptotically Lifshitz BH solutions, has received
intensive attention from the researchers studying condensed
matter and quantum field theories [41]. The Lifshitz BHs
are invariant under anisotropic scale and characterize the
gravitational dual of strange metals [42].

The action of the Einstein-Weyl gravity [26] is given by

S = 12𝜅2 ∫√−𝑔𝑑4𝑥(𝑅 − 2Λ + 12𝛼 󵄨󵄨󵄨󵄨𝑊𝑒𝑦𝑙󵄨󵄨󵄨󵄨2) , (4)

where 𝜅2 = 8𝜋𝐺, |𝑊𝑒𝑦𝑙|2 = 𝑅𝜇]𝜌𝜎𝑅𝜇]𝜌𝜎 − 2𝑅𝜇]𝑅𝜇] + (1/3)𝑅2,
and 𝛼 = (𝑧2 + 2𝑧 + 3)/4𝑧(𝑧 − 4) (constant), which diverges
(𝛼 = ∞) with 𝑧 = 0 and/or 𝑧 = 4. The Lifshitz BH solutions
exist in the CG theory for both 𝑧 = 4 and 𝑧 = 0 [26, 43];
however, when 𝑧 = 3 and 𝑧 = 4, Lifshitz BHs appear in the
Horava–Lifshitz gravity [26, 44, 45].

Now, we focus on the 𝑍0LBH of the CG theory whose
metric is given by [26]:

𝑑𝑠2 = −𝑓𝑑𝑡2 + 4𝑑𝑟2𝑟2𝑓 + 𝑟2𝑑Ω22,𝑘, (5)

where the metric function 𝑓 is defined by

𝑓 = 1 + 𝑐𝑟2 + 𝑐
2 − 𝑘23𝑟4 . (6)

In the above metric, which is conformal to (A)dS (AdS if𝑐 + 2𝑘 < 1 and dS if 𝑐 + 2𝑘 > 1) [26], 𝑘 = 0, 𝑘 = 1, and 𝑘 = −1
stand for 2-torus (𝑑𝜃2+𝑑𝜙2), unit 2-sphere (𝑑𝜃2+ sin2 𝜃𝑑𝜙2),
and unit hyperbolic plane (𝑑𝜃2 + sinh2 𝜃𝑑𝜙2), respectively
[45]. The metric solution has a curvature singularity at 𝑟 = 0,
which becomes naked for 𝑘 = 0.There is an event horizon for𝑘 = ±1 solution expressed as follows [26, 45]:

𝑟2ℎ = 16 (√3 (4 − 𝑐2) − 3𝑐) . (7)

Note that the requirement of 𝑟2ℎ ≥ 0 is conditional on this
inequality: −2 ≤ 𝑐 < 1. When 𝑐 = −2, the solution becomes
extremal. Throughout this study, for simplicity, we consider
the choice of 𝑐2 = 𝑘2 = 1 for which the solution corresponds
to a dS BH.Thus, the metric function 𝑓 becomes

𝑓 = 1 − 𝑟2ℎ𝑟2 . (8)

Thus, at spatial infinity, the Ricci and Kretschmann
scalars of the 𝑍0LBH can be found as follows:

𝑅 = 𝑅𝜆𝜆 ∼ 5 (𝑐4 − 2𝑐2 + 1)
12𝑟8 ,

𝐾 = 𝑅𝜇]𝜌𝜎𝑅𝜇]𝜌𝜎 ∼ 25 (𝑐4 − 2𝑐2 + 1)
12𝑟8 .

(9)

By performing the surface gravity calculation [1, 2, 30], we
obtain

𝜅 = 12 . (10)

Therefore, the Hawking or BH temperature [30] of the𝑍0LBH reads

TH = 𝜅2𝜋 = 14𝜋 . (11)

2.1. Mass Computation of Z0LBH viaWald’s Entropy Formula.
The GR unifies space, time, and gravitation and the gravita-
tional force is represented by the curvature of the spacetime.
Energy conservation is a sine qua non in GR as well. Because
the metric (5) of 𝑍0LBH represents a non-asymptotically-
flat geometry, one should consider the quasi-local mass𝑀𝑄𝐿
[27], which measures the density of matter/energy of the
spacetime. In this section, we shall employ Wald’s entropy
calculation [29, 30] and derive 𝑀𝑄𝐿 using Wald’s entropy
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formula. To this end, we follow the study of Eune and Kim
[28].

Starting with the time-like Killing vector 𝜉𝜇, which
describes the symmetry of time translation in a spacetime,
Wald’s entropy is expressed by [29, 30] as

𝑆𝐵𝐻 = 2𝜋𝜅 ∫
Σ
𝑑2𝑥√ℎ𝛽, (12)

where

𝛽 = 𝜖𝜇]𝐽𝜇],
𝜖𝜇] = 12 (𝑛𝜇𝑢] − 𝑛]𝑢𝜇) .

(13)

Here, 𝜅 and ℎ are the surface gravity and the induced
metric on a hypersurfaceΣ of the horizon (here 2-sphere with√ℎ = 𝑟2ℎ sin 𝜃), respectively. 𝑢𝜇 is the four-vector velocity
defined as the proper velocity of a fiducial observer moving
along the orbit of 𝜉𝜇 = 𝛾(𝜕/𝜕𝑡) (where 𝛾 is a normalization
constant), which must satisfy 𝑔𝜇]𝜉𝜇𝜉] = −1 at spatial infinity.
Thus, one can immediately see that 𝛾 = 1. 𝐽𝜇] is called the
Noether potential [46, 47], which is given by

𝐽𝜇] = −2Θ𝜇]𝜌𝜎 (∇𝜌𝜉𝜎) + 4 (∇𝜌Θ𝜇]𝜌𝜎) 𝜉𝜎, (14)

with

Θ𝜇]𝜌𝜎 = 132 (𝑔𝜇𝜌𝑔]𝜎 − 𝑔𝜇𝜎𝑔]𝜌) . (15)

The surface gravity 𝜅 can be calculated by [30]

𝜅 = lim
𝑟󳨀→𝑟ℎ

√𝜉𝜇∇𝜇𝜉]𝜉𝜌∇𝜌𝜉]−𝜉2 = 12 . (16)

To have an outward unit vector 𝑛𝜇 on Σ, the equality𝑛𝜇𝑛𝜇 = 1must also be satisfied. Hence, one can get

𝑛𝑟 = 1𝑛𝑟 = 2
√(𝑟2 − 𝑟2

ℎ
) . (17)

On the contrary, 𝑢𝜇 is the four-vector velocity and is given
by

𝑢𝜇 = 1𝛼𝜉𝜇, (18)

with

𝛼 = √−𝜉𝜇𝜉𝜇. (19)

Therefore, the nonzero components of 𝜖𝜇] are found to be
𝜖𝑡𝑟 = −𝜖𝑟𝑡 = −1𝑟 . (20)

In sequel, the four-vector velocity reads

𝑢𝑡 = 𝑟
√𝑟2 − 𝑟2

ℎ

. (21)

The nonzero components of Θ𝜇]𝜌𝜎 (15) are obtained as
follows:

Θ𝑡𝑟𝑡𝑟 = Θ𝑟𝑡𝑟𝑡 = −Θ𝑡𝑟𝑟𝑡 = −Θ𝑟𝑡𝑡𝑟 = −𝑟2128𝜋 ,
Θ𝜃𝑟𝜃𝑟 = Θ𝑟𝜃𝑟𝜃 = −Θ𝜃𝑟𝑟𝜃 = −Θ𝑟𝜃𝜃𝑟 = 𝑟2 − 𝑟2ℎ128𝜋𝑟2 ,
Θ𝜙𝑟𝜙𝑟 = Θ𝑟𝜙𝑟𝜙 = −Θ𝜙𝑟𝑟𝜙 = −Θ𝑟𝜙𝜙𝑟 = 𝑟2 − 𝑟2ℎ128𝜋𝑟2 sin2 𝜃 ,
Θ𝜃𝜙𝜃𝜙 = Θ𝜙𝜃𝜙𝜃 = −Θ𝜃𝜙𝜙𝜃 = −Θ𝜙𝜃𝜃𝜙 = 132𝜋𝑟4 sin2 𝜃 ,
Θ𝑡𝜙𝑡𝜙 = Θ𝜙𝑡𝜙𝑡 = −Θ𝑡𝜙𝜙𝑡 = −Θ𝜙𝑡𝑡𝜙

= −132𝜋 (𝑟2 − 𝑟2
ℎ
) sin2 𝜃 ,

Θ𝜃𝑡𝜃𝑡 = Θ𝑡𝜃𝑡𝜃 = −Θ𝜃𝑡𝑡𝜃 = −Θ𝑡𝜃𝜃𝑡 = −132𝜋 (𝑟2 − 𝑟2
ℎ
) .

(22)

One can verify that ∇𝜌Θ𝜇]𝜌𝜎 = 0. The latter result
yields that the second term of the Noether potential vanishes.
Therefore, we have

𝐽𝜇] = −2Θ𝜇]𝜌𝜎 (∇𝜌𝜉𝜎) = −2Θ𝜇]𝜌𝜎𝐶𝜌𝜎, (23)

The nonzero components of 𝐶𝜌𝜎 = ∇𝜌𝜉𝜎 are as follows:
𝐶𝑡𝑟 = −𝐶𝑟𝑡 = −𝑟2ℎ𝑟3 . (24)

After substituting those findings into (14), we find the
nonzero components of the Noether potential:

𝐽𝑡𝑟 = −𝐽𝑟𝑡 = −𝑟2ℎ32𝜋 . (25)

Thus, from (20) and (25), 𝛽 is found as

𝛽 = 𝑟2ℎ16𝑟2𝜋, (26)

and, in sequel computing the entropy through the integral
formulation (12), we obtain

S = 𝜋𝑟2ℎ = Aℎ4 . (27)

The above result is fully consistent with the Bekenstein-
Hawking entropy. The quasi-local mass𝑀𝑄𝐿 can be derived
from this entropy by integrating the first law of thermody-
namics 𝑑𝑀𝑄𝐿 = TH𝑑𝑆𝐵𝐻. After some manipulation, one
easily finds the following result:

𝑀𝑄𝐿 = 𝑟2ℎ4 . (28)

which matches with the quasi-local mass computation of
Brown and York [27].
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Figure 1: Effective potential versus tortoise coordinate graph for
various orbital quantum numbers.

3. QNMs and Spectroscopy of 𝑍0LBH
In this section, we shall study the QNMs and the entropy of a
perturbed𝑍0LBHviaMM[9].QNMsof a consideredBHcan
be derived by solving the eigenvalue problem of the KGEwith
the proper boundary conditions. The boundary condition at
the horizon implies that there are no outgoing waves at the
event horizon (i.e., only ingoing waves carry the QNMs at the
event horizon) and the boundary condition at spatial infinity
imposes that only outgoing waves are allowed to survive at
spatial infinity.The second boundary condition is appropriate
for bumpy shape effective potential that dies off at the two
ends. Yet, as seen in (36) and shown in Figure 1, the potential
never terminates at spatial infinity; instead it diverges for
very massive (𝑚 󳨀→ ∞) scalar particles. Thus, the potential
blocks the waves that come off from the BH and prevents
them from reaching spatial infinity. Hence, in this section, we
will consider the very massive scalar particles and employ the
particularmethod of [23, 32–35], inwhich only theQNMs are
defined to be those for which one has purely ingoing plane
wave at the horizon and no wave at spatial infinity (see (44).
Namely, we will find the QNMs of the𝑍0LBHusing their NH
boundary condition. For this purpose, we first consider the
massive KGE: 1√−𝑔𝜕𝜇 (√−𝑔𝑔𝜇]𝜕]) Ψ − 𝑚2Ψ = 0, (29)

where Ψ adopts the ansatz for the above wave equation
chosen as

Ψ = 1𝑟𝐹 (𝑟) 𝑒𝑖𝜔𝑡𝑌𝑙𝑚 (𝜃, 𝜙) , (30)

in which 𝐹(𝑟) is the function of 𝑟 and 𝑌𝑙𝑚(𝜃, 𝜙) represents
the spherical harmonics with the eigenvalues −𝑙(𝑙 + 1) and𝑚. After performing some straightforward calculations, the
radial part of the KGE reduces to a SLE [31]:

[− 𝑑𝑑𝑟∗2 + 𝑉𝑒𝑓𝑓]𝐹 (𝑟) = 𝜔2𝐹 (𝑟) , (31)

where 𝑉𝑒𝑓𝑓 and 𝑟∗ are called the effective potential and the
tortoise coordinate, respectively. The tortoise coordinate 𝑟∗
can be found by the following integral:

𝑟∗ = 2∫ 𝑑𝑟𝑟𝑓 , (32)

which results in

𝑟∗ = ln(𝑟2𝑟2
ℎ

− 1) . (33)

One may check that the limits of 𝑟∗ admit the following:

lim
𝑟󳨀→𝑟ℎ

𝑟∗ = −∞,
lim
𝑟󳨀→∞

𝑟∗ = ∞. (34)

The effective potential seen in (33) is obtained as

𝑉𝑒𝑓𝑓 = 𝑓{𝑙 (𝑙 + 1)𝑟2 + 14 [𝑓 + 𝑟𝑑𝑓𝑑𝑟 ] + 𝑚2} , (35)

which admits these limits:

lim
𝑟󳨀→𝑟ℎ

𝑉𝑒𝑓𝑓 (𝑟) = 0,
lim
𝑟󳨀→∞

𝑉𝑒𝑓𝑓 (𝑟) = 𝑚2 + 14 .
(36)

It is clear that, for any constant𝑚, the potential is finite at
infinite radius (see Figure 1). The potential diverges when the
scalar particle is very massive. In other words, the waves tend
to cease as𝑚 󳨀→ ∞.

3.1. Entropy/Area Spectra of Z0LBH. In this section, we
shall nudge (perturb) the 𝑍0LBH by the massive scalar
fields propagating near the event horizon and read their
corresponding QNM frequencies.

We can expand 𝑍0LBH’s metric function 𝑓 to a series
around 𝑟ℎ and express it in terms of the surface gravity 𝜅 as

𝑓 = 𝑓 (𝑟ℎ) + 𝑓󸀠 (𝑟ℎ) (𝑟 − 𝑟ℎ) + 𝑂 [(𝑟 − 𝑟ℎ)2] ≈ 2𝜅𝑦, (37)

where 𝑦 = 𝑟 − 𝑟ℎ and prime (󸀠) denotes the derivative with
respect to 𝑟. After substituting (37) into (35) and performing
Taylor expansion, the NH form of the effective potential is
obtained as

𝑉
= 4𝜅𝐺𝑦 [𝐺2 (1 − 2𝐺𝑦) 𝑙 (𝑙 + 1) + 𝜅 (1 + 2𝐺𝑦) + 𝑚2] , (38)

with the parameter 𝐺 = 1/𝑟ℎ. The tortoise coordinate in the
NH region becomes 𝑟∗ ≃ (1/2𝜅) ln𝑦, which enables us to find
the NH form of the one-dimensional SLE:

[−4𝜅2𝑦(𝑦 𝑑2𝑑𝑦2 + 𝑑𝑑𝑦) + 𝑉 − 𝜔2]𝐹 (𝑦) = 0. (39)

The solutions to the above equation can be expressed in
terms of the CH functions of the first and second kinds [36]
as follows:

𝐹 (𝑦) = 𝑦𝑖𝜔/2𝜅𝑒−𝑧/2 [𝐶1𝑀(𝑎, 𝑏, 𝑧) + 𝐶2𝑈 (𝑎, 𝑏, 𝑧)] , (40)



Advances in High Energy Physics 5

with the parameters

𝑎 = 𝜆√𝛿 +
𝑏2 ,

𝑏 = 1 + 𝑖𝜔𝜅 ,
𝑧 = 2𝑖𝐺√𝛿𝑦,

(41)

where

𝜆 = 12 {1 + 1𝜅 [𝑙 (𝑙 + 1) 𝐺2 + 𝑚2]} ,
𝛿 = 2 [𝑙 (𝑙 + 1) 𝐺2𝜅 − 1] .

(42)

With the aid of the limiting forms of the CH functions
[36], one can find the NH limit of solution (40) as

𝐹 (𝑦) ∼ [𝐶1 + 𝐶2 Γ (1 − 𝑏)Γ (1 + 𝑎 − 𝑏)] 𝑦𝑖𝜔/2𝜅

+ 𝐶2 Γ (𝑏 − 1)Γ (𝑎) 𝑦−𝑖𝜔/2𝜅.
(43)

We can alternatively represent (43) in terms of 𝑟∗ (𝑦 ≃𝑒2𝜅𝑟∗). Thus, the NH ingoing and outgoing waves are distin-
guished:

Ψ ∼ [𝐶1 + 𝐶2 Γ (1 − 𝑏)Γ (1 + 𝑎 − 𝑏)] 𝑒𝑖𝜔(𝑡+𝑟
∗)

+ 𝐶2 Γ (𝑏 − 1)Γ (𝑎) 𝑒𝑖𝜔(𝑡−𝑟∗).
(44)

For QNMs, imposing the boundary conditions that the
outgoing waves must vanish at the horizon and no wave at
the spatial infinity, that is,

𝐹 (𝑟∗)𝑄𝑁𝑀 ∼ 𝑒𝑖𝜔𝑟∗ at 𝑟∗ 󳨀→ −∞
0 at 𝑟∗ 󳨀→ ∞, (45)

the solution having coefficient 𝐶2 should be terminated. By
using the pole structure of the Gamma function for the
denominator of the second term, the outgoing waves vanish
for 𝑎 = −𝑛 (𝑛 = 0, 1, 2, ..). The latter remark yields the
frequencies of the QNMs of the 𝑍0LBH as

𝜔𝑛 = 2𝜅 [(𝑛 + 12) 𝑖 + 𝜆√𝛿] , (46)

where 𝑛 is known as the overtone quantum number [48].
Accordingly, the transition frequency between two highly
excited subsequent states (𝜔𝐼 ≫ 𝜔𝑅) is easily obtained as
follows:

Δ𝜔 ≈ Δ𝜔𝐼 = 2𝜅 = 4𝜋THℏ . (47)

Subsequently, using the adiabatic invariant quantity (3)
and Bohr-Sommerfeld quantization rule,

𝐼𝑎𝑑𝑏 = ℏ4𝜋 ∫ 𝑑𝑀
TH

= ℏ4𝜋𝑆𝐵𝐻 = ℏ𝑛, (48)

we can read the entropy/area spectra of the𝑍0LBHas follows:

𝑆𝐵𝐻𝑛 = A𝑛4ℏ = 4𝜋𝑛, A𝑛 = 16𝜋ℏ𝑛. (49)

Therefore, the minimum spacing of the BH area becomes

ΔAmin = 16𝜋ℏ. (50)

Our finding is in agreement with Bekenstein’s conjecture
[7], and the equispacing of the entropy/area spectra of the𝑍0LBH supports Kothawala et al.’s hypothesis [21], which
states that BHs should have equally spaced area spectrum in
Einstein’s gravity theory.

4. Conclusions

In this work, the quantum spectra of the𝑍0LBHwere studied
using the MM, which is based on the adiabatic invariant
quantity (3). After separating the radial and angular parts
of the massive KGE on the 𝑍0LBH background, we have
found the SLE (31) and its corresponding effective potential
(35). We have checked the behaviors of the potential around
horizon and at the spatial infinity [see (36)]. In addition, we
have depicted the effective potential for different values and
have shown that the potential never terminates at the spatial
infinity.The SLE associated with the𝑍0LBH is approximated
to a CH differential equation. We have derived QNMs of
the 𝑍0LBH using the pole feature of the Gamma functions.
The MM is applied for the highly excited modes (𝑛 󳨀→ ∞)
and the entropy/area spectra are calculated. Both spectra
are evenly spaced and independent of the parameters of
the BH as expected. On the contrary, we obtained different
area equispacing with dimensionless constant 𝜖 = 16𝜋 in
comparison to the usual value (𝜖 = 8𝜋 [9–11]). However, as
shown by Hod [17], the spacing between two adjacent levels
might be different depending on which method is applied for
studying the BH quantization. Besides, our findings are in
agreement with both Bekenstein’s conjecture [7] and Wei et
al. and Kothawala et al.’s studies [21, 49].

In addition, 𝑀𝑄𝐿 of the 𝑍0LBH is also investigated via
Wald’s entropy formula (12) by integrating the total energy
(mass). The result obtained is in agreement with the BH
thermodynamics [50]. Our next target is to study the Dirac
QNMs of the 4-dimensional 𝑍0LBH and analyze the spin
effect on the area/entropy quantization.
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We have examined the thermodynamic volume products for spherically symmetric and axisymmetric spacetime in the framework
of extended phase space. Such volume products are usually formulated in terms of the outer horizon (H+) and the inner horizon
(H−) of black hole (BH) spacetime. Besides volume product, the other thermodynamic formulations like volume sum, volume
minus, and volume division are considered for a wide variety of spherically symmetric spacetime and axisymmetric spacetime. Like
area (or entropy) product of multihorizons, the mass-independent (universal) features of volume products sometimes also fail. In
particular, for a spherically symmetric AdS spacetime, the simple thermodynamic volume product ofH± is not mass-independent.
In this case, more complicated combinations of outer and inner horizon volume products are indeed mass-independent. For a
particular class of spherically symmetric cases, i.e., Reissner Nordström BH of Einstein gravity and Kehagias-Sfetsos BH of Hořava
Lifshitz gravity, the thermodynamic volume products of H± are indeed universal. For axisymmetric class of BH spacetime in
Einstein gravity, all the combinations are mass-dependent. There has been no chance to formulate any combinations of volume
product relation to be mass-independent. Interestingly, only the rotating BTZ black hole in 3D provides that the volume product
formula is mass-independent, i.e., universal, and hence it is quantized.

1. Introduction

It has been examined by a number of researchers that the
area (or entropy) product of various spherically symmetric
and axisymmetric BHs are mass-independent (universal) [1–
9]. For instance, Ansorg and Hennig [1] demonstrated that
for a stationary and axisymmetric class of Einstein-Maxwell
gravity the area product formula satisfied the universal
relation as

AℎA𝑐 = (8𝜋𝐽)2 + (4𝜋𝑄2)2 . (1)

Aℎ and A𝑐 are area of outer horizon (OH) or event horizon
(EH) and inner horizon (IH) or Cauchy horizon (CH). The
parameters, 𝐽 and 𝑄, are denoted as the angular momentum
and charge of the black hole (BH), respectively.

On the other hand, Cveti ̆c et al. [2] extended this
work for a higher dimensions spacetime and showed that

for multihorizon BHs the area product formula should be
quantized by satisfying the following relation:

AℎA𝑐 = (8𝜋ℓ2𝑝𝑙)2𝑁, 𝑁 ∈ N. (2)

ℓ𝑝𝑙 is the Planck length. This relation indicates that the
product relation is indeed universal in nature. This is a very
fascinating topic of research since 2009.

Aspects of BH thermodynamic properties have started
by the seminal work of Hawking and Page [10]; they first
proposed that certain type of phase transition occurs between
small and large BHs in case of Schwarzschild-AdS BH.
This phase transition is now called the famous Hawking-
Page phase transition. For a charged AdS BH, the study of
thermodynamic properties is initiated by Chamblin et al. [11,
12], where the authors demonstrated the critical behaviour
of Van der Waal like liquid-gas phase transitions. This has
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been brought into a new form by Kubizňák and Mann [13]
by examining the thermodynamic properties, i.e., 𝑃 − 𝑉
criticality of Reissner Nordström AdS BH in the extended
phase space. They determined the BH equation of state and
computed the critical exponent by using themeanfield theory
and also computed the other thermodynamic features.

Motivated by the above-mentioned work and our pre-
vious investigation [14] in which we have considered the
extended phase space framework for a wide variety of spher-
ically symmetric AdS spacetime. In the present work, we
would like to extend our study for various classes of spheri-
cally symmetric BHs and axisymmetric BHs. In the extended
phase formalism, the cosmological constant is treated as ther-
modynamic pressure 𝑃 and its conjugate variable as thermo-
dynamic volumeV [13, 15–17]. They are defined as

𝑃 = − Λ8𝜋 = 38𝜋ℓ2 . (3)

and

V = (𝜕𝑀𝜕𝑃 )
𝑆,𝑄,𝐽

(4)

The extended phase space is more meaningful than con-
ventional phase space due to the following reasons. The
conventional phase space allows the physical parameters like
temperature, entropy, charge, and potential, whereas the ex-
tended phase space allows the parameters like pressure, vol-
ume, and enthalpy (rather than internal energy). In addition
to that, the mass parameter should be considered there as
enthalpy of the system, which is useful to study the critical
behaviour of the thermodynamic system.The BH equation of
state could be used to study for comparisons with the classical
thermodynamic equation of state (Van der-Waal equation).
Once the BH thermodynamic equation of state is in hand,
then one may compute different thermodynamic quantities
like isothermal compressibility, specific heat at constant pres-
sure, and so forth.

This thermodynamic volume (there are different types of
definitions regarding the volume of a BH in the literature; the
idea regarding the BH volume was first introduced by Parikh
[18]; for other types of definition like dynamical volume and
vector volume, see [19–21]; here we are particularly interested
regarding the thermodynamic volume [22]) of a spherically
symmetric BH and for OH should read

Vℎ = 43𝜋𝑟3ℎ = Aℎ𝑟ℎ3 . (5)

𝑟ℎ is OH radius. Similarly, this volume for IH should be

V𝑐 = 43𝜋𝑟3𝑐 = A𝑐𝑟𝑐3 . (6)

It should be noted that the thermodynamic volume of CH
can be obtained by using the symmetric properties [14] of OH
radius 𝑟ℎ and IH radius 𝑟𝑐, i.e.,

V𝑐 = 𝑉ℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 . (7)

Another important point in the extended phase space is
that the ADMmass should be treated as the total enthalpy of
the thermodynamic system, i.e.,𝑀 = 𝐻 = 𝑈 + 𝑃V, where𝑈
is thermal energy of the system [15].Therefore the first law of
BH thermodynamics in this phase space for any spherically
symmetric spacetime and for OH should be

𝑑𝐻 = 𝑇ℎ𝑑𝑆ℎ +Vℎ𝑑𝑃 + Φℎ𝑑𝑄. (8)

The quantities 𝑇ℎ, 𝑆ℎ, and Φℎ are denoted as the BH temper-
ature, entropy, and electric potential of OH.The parameter𝑄
is denoted as the charge of a BH.

Analogously, the first law of BHmechanics for IH should
be

𝑑𝐻 = −𝑇𝑐𝑑𝑆𝑐 +V𝑐𝑑𝑃 + Φ𝑐𝑑𝑄. (9)

Thequantities𝑇𝑐, 𝑆𝑐, andΦ𝑐 are denoted as the corresponding
BH temperature, entropy, and electric potential which could
be defined on the IH.

When we add the rotation parameter, the first law of BH
thermodynamics in the extended phase space (for axisym-
metric spacetime and for OH) becomes

𝑑𝐻 = 𝑇ℎ𝑑𝑆ℎ +Vℎ𝑑𝑃 + Φℎ𝑑𝑄 + Ωℎ𝑑𝐽. (10)

Ωℎ and 𝐽 are the angular velocity defined on the OH and the
angular momentum of BH. For IH, the first law becomes

𝑑𝐻 = −𝑇𝑐𝑑𝑆𝑐 +V𝑐𝑑𝑃 + Φ𝑐𝑑𝑄 + Ω𝑐𝑑𝐽. (11)

Ω𝑐 is the angular velocity defined on the IH. Using symmetric
features of 𝑟ℎ and 𝑟𝑐, one can determine the following ther-
modynamic relations for IH:

A𝑐 = Aℎ
󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,

S𝑐 = Sℎ
󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,Ω𝑐 = Ωℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,Φ𝑐 = Φℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐𝑇𝑐 = −𝑇ℎ󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 ,

V𝑐 = Vℎ
󵄨󵄨󵄨󵄨𝑟ℎ↔𝑟𝑐 .

(12)

However in this work, we wish to extend our study by
computing the volume product, volume sum, volume minus,
and volume division in the extended phase space for various
spherically symmetric BHs and axisymmetric BHs (including
the various AdS spacetime). By evaluating these quantities
we prove that for a spherically symmetric AdS spacetime the
simple volume product is notmass-independent. In this case,
somewhat complicated combination of volume functional
relations of OH and IH are indeed mass-independent. For
instance, we have derived the mass-independence volume
functional relation for RN-AdS BH as

𝑓 (Vℎ,V𝑐) = ℓ2, (13)
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where𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑄2/3)(VℎV𝑐)1/3
− ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(14)

For simple Reissner Nordström BH (which is a spherically
symmetric solution of Einstein equation) of Einstein gravity
and Kehagias-Sfetsos BH of Hořava Lifshitz gravity, the ther-
modynamic volume products of H± are mass-independent.
Therefore they behave as a universal character by its own
features. Moreover, we have derived the thermodynamic
volume functional relation for Hořava Lifshitz-AdS BH and
phantom AdS BH. The phantom fields are exotic because
they were produced via negative energy density. Furthermore
we have derived volume functional relation for regular BH.
Regular BH is a kind of BHwhich is free from a curvature sin-
gularity.

Whereas for axisymmetric class of BHs including AdS
spacetime there has been no chance to formulate any possible
combinations of thermodynamic volume product to bemass-
independent, it should be noted that, for a KN-AdS BH, there
may be a possibility of formulating the area (or entropy)
product relations to be mass-independent.The reason is that,
for a simple Kerr BH, the area (or entropy) product is univer-
sal, i.e., mass-independent, while the volume product is not!
This is because the thermodynamic volume is proportional
to the spin parameter. That is why there has been no chance
to produce any combinations of volume product of H± to be
mass-independent. Therefore the axisymmetric BHs show
no universal behaviour for volume products. Interestingly,
only rotating BTZ BH shows the mass-independent feature.
Thus only axisymmetric BHs in 3D provided the universal
character of thermodynamic volume product.

In our previous investigation [8, 9], we computed the BH
area (or entropy) products, BH temperature products, Komar
energy products, and specific heat products for various
classes of BHs. Besides the area (or entropy) product, it should
be important to study whether the thermodynamic volume
product, volume sum, volume minus, and volume division for
all the horizons are universal or not and whether they should
be quantized or not. This is the main motivation behind this
work.

The structure of the paper is as follows. In Section 2,
we shall compute the various thermodynamic volume prod-
ucts for spherically symmetric BHs and conclude that the
product is mass-independent. In Section 3, we compute
various thermodynamic volume products for axisymmetric
spacetime and conclude that the product is mass-dependent.
Interestingly, for the spinning BTZ BH, the said volume
product ismass-independent.

2. Spherically Symmetric BH

In this section, we would consider various spherically sym-
metric BHs.

2.1. Reissner Nordström BH. We begin with charged BH with
zero cosmological constant which is a solution of Einstein
equation. The metric form is given by

𝑑𝑠2 = −Z (𝑟) 𝑑𝑡2 + 𝑑𝑟2
Z (𝑟) + 𝑟2𝑑Ω22, (15)

where

Z (𝑟) = 1 − 2𝑀𝑟 + 𝑄2𝑟2 , (16)

and 𝑑Ω22 is metric on the unit sphere in two dimensions.
The OH (there are several definitions of horizons for a

static spherically symmetric spacetime; we have used Killing
horizons for computations of thermodynamic volume) radius
and IH radius read

𝑟ℎ = 𝑀 + √𝑀2 − 𝑄2 (17)

𝑟𝑐 = 𝑀 − √𝑀2 − 𝑄2. (18)

𝑀 and 𝑄 denote the mass and charge of BH, respectively.
When𝑀2 > 𝑄2, it describes a BH; otherwise it has a naked
singularity. The thermodynamic volume for OH and IH
should read

Vℎ = 43𝜋𝑟3ℎ (19)

V𝑐 = 43𝜋𝑟3𝑐 . (20)

The thermodynamic volume (in the limit 𝑄 = 0, one obtains
the thermodynamic volume for Schwarzschild BH; since in
this case the BH has only OH located at 𝑟ℎ = 2𝑀, therefore
the volume should beVℎ = (32/3)𝜋𝑀3; thus for an isolated
Schwarzschild BH, the thermodynamic volume should be
mass-dependent; therefore it is not universal and not quan-
tized in nature by its own character) product for OH and IH
should be

VℎV𝑐 = 169 𝜋2𝑄6. (21)

It is indeedmass-independent; thus it is universal in character
and it is also quantized.

The volume sum for OH and IH is calculated to be

Vℎ +V𝑐 = 323 𝜋𝑀3 (1 − 34 𝑄2𝑀2) . (22)

Similarly, one can compute the volumeminus for OH and IH
as

Vℎ −V𝑐 = 323 𝜋𝑀2√𝑀2 − 𝑄2 (1 − 𝑄24𝑀2) , (23)

and the volume division should be

Vℎ

V𝑐
= (𝑀 + √𝑀2 − 𝑄2𝑀−√𝑀2 − 𝑄2)

3 . (24)
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It follows from the calculation that all these quantities are
mass-dependent so they are not universal in nature by its
own right. From (23) and (24), we can easily see that, in the
extremal limit𝑀2 = 𝑄2, one obtainsVℎ = V𝑐. This is a new
condition of extreme limit in spherically symmetric cases.

2.2. Hořava Lifshitz BH. In this section, we would briefly
review the UV complete theory of gravity which is a nonrel-
ativistic renormalizable theory of gravity known as Hořava
Lifshitz [23–25] gravity. It reduces to Einstein’s gravity at large
scales for the value of dynamical coupling constant 𝜆 = 1.
Using ADM formalism, one could write the metric as

𝑑𝑠2 = −𝑁2𝑑𝑡2 + 𝑔𝑖𝑗 (𝑑𝑥𝑖 − 𝑁𝑖𝑑𝑡) (𝑑x𝑗 − 𝑁𝑗𝑑𝑡) . (25)

In addition for a spacelike hypersurface with a fixed time the
extrinsic curvature𝐾𝑖𝑗 is given by

𝐾𝑖𝑗 = 12𝑁 ( ̇𝑔𝑖𝑗 − ∇𝑖𝑁𝑗 − ∇𝑗𝑁𝑖) . (26)

Adot represents a derivativewith respect to 𝑡.The generalized
action for Hořava Lifshitz could be written as

𝑆 = ∫𝑑𝑡𝑑3𝑥√𝑔𝑁[ 2𝜅2 (𝐾𝑖𝑗𝐾𝑖𝑗 − 𝜆𝐾2)
+ 𝜅2𝜇2 (Λ𝑤𝑅 − 3Λ2𝑤)8 (1 − 3𝜆) + 𝜅2𝜇2 (1 − 4𝜆)32 (1 − 3𝜆) 𝑅2
− 𝜅22𝑤4 (𝐶𝑖𝑗 − 𝜇𝑤22 𝑅𝑖𝑗)(𝐶𝑖𝑗 − 𝜇𝑤22 𝑅𝑖𝑗) + 𝜇4𝑅] .

(27)

Here 𝜅2, 𝜆, 𝜇, 𝑤, and Λ are the constant parameters and the
cotton tensor, 𝐶𝑖𝑗, is defined to be

𝐶𝑖𝑗 = 𝜖𝑖𝑘𝑙∇𝑘 (𝑅𝑗𝑙 − 14𝜖𝑖𝑘𝑗𝜕𝑘𝑅) . (28)

As compared with Einstein's general relativity, one could
obtain the speed of light, Newtonian constant, and the cos-
mological constant as

𝑐 = 𝜅2𝜇4 √ Λ𝑤1 − 3𝜆 (29)

𝐺 = 𝜅232𝜋𝑐 (30)

Λ = 32Λ𝑤, (31)

respectively. It should be mentioned here that when 𝜆 = 1,
the first three terms in (27) reduce to that one obtains as in
Einstein's gravity. It must also be noted that 𝜆 is a dynamic
coupling constant and for 𝜆 > 1/3, the cosmological constant
should be a negative one.However, it could bemade a positive
one if one could give a following transformation like 𝜇 →𝑖𝜇 and 𝑤2 → −𝑖𝑤2. Here we restrict ourselves that the BH

solution is in the limit of Λ𝑤 → 0. That is why, we have to set𝑁𝑖 = 0 and to get the spherically symmetric solution we have
to choose the metric ansatz as

𝑑𝑠2 = −𝑁2 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑔 (𝑟) + 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) . (32)

In order to get the spherically symmetric solution, substitute
the metric ansatz 32 into the action and one obtains reduced
Lagrangian as

L = 𝜅2𝜇2𝑁8 (1 − 3𝜆)√𝑔 [(2𝜆 − 1) (𝑔 − 1)2𝑟2 − 2𝜆𝑔 − 1𝑟 𝑔󸀠
+ 𝑔 − 12 𝑔󸀠2 − 2𝜔 (1 − 𝑔 − 𝑟𝑔󸀠)] , (33)

where 𝜔 = 8𝜇2(3𝜆 − 1)/𝜅2. Here we are interested to investi-
gate the situation 𝜆 = 1, i.e., 𝜔 = 16𝜇2/𝜅2. Then one finds the
solution of the metric [26] as

𝑁2 (𝑟) = 𝑔 = 1 − √4𝑀𝜔𝑟 + 𝜔2𝑟4 + 𝜔𝑟2, (34)

where𝑀 is an integration constant related to themass param-
eter. Thus the static, spherically symmetric solution is given
by

𝑑𝑠2 = −𝑔 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑔 (𝑟) + 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) . (35)

For 𝑟 ≫ (𝑀/𝜔)1/3, one gets the usual behaviour of a Schwarz-
schild BH.The BH horizons correspond to 𝑔(𝑟) = 0. The OH
radius and IH radius should read

𝑟ℎ = 𝑀 + √𝑀2 − 12𝜔 (36)

𝑟𝑐 = 𝑀 − √𝑀2 − 12𝜔 , (37)

where𝑀 and𝜔 denote themass and coupling constant of BH,
respectively. When𝑀2 > 1/2𝜔, it describes a BH and when𝑀2 < 1/2𝜔, it describes a naked singularity.

The thermodynamic volume product for KS BH should
be

VℎV𝑐 = 2𝜋29𝜔3 . (38)

It indicates that it is mass-independent; therefore it is uni-
versal in nature and it also be quantized. We do not calculate
other possible combinations because it is clear that these com-
binations are surely mass-dependent as we have seen in case
of RN BH. It should be mentioned that the Smarr formula is
satisfied in case of Einstein-Aether theory and some variants
of infrared HL gravity [27]. It would be interesting if one
could examine what the status of HL gravity is when the
extended phase space formalism is applied. It could be found
elsewhere.
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2.3. Nonrotating BTZ BH. Thenonrotating BTZ BH is a solu-
tion of Einstein-Maxwell gravity in three spacetime dimen-
sions. The metric form is given by

𝑑𝑠2 = −(𝑟2ℓ2 −𝑀)𝑑𝑡2 + 𝑑𝑟2(𝑟2/ℓ2 −𝑀) + 𝑟2𝑑𝜙2. (39)

𝑀 is the ADM mass of the BH and −Λ = 1/ℓ2 = 8𝜋𝑃𝐺3
denotes the cosmological constant. Here we have set 𝑐 = ℏ =𝑘 = 1. The BH OH is located at 𝑟ℎ = √8𝐺3𝑀ℓ (we have
already mentioned that in the extended phase space ℓ =√3/8𝜋P; in the subsequent expression, we have to put this
condition to obtain the results in terms of thermodynamic
pressure). 𝐺3 is 3D Newtonian constant. Interestingly, the
thermodynamic volume for 3D static BTZ BH is computed
in [17]

Vℎ = 𝜋𝑟2ℎ = 8𝜋𝐺3𝑀ℓ2 (40)

This is an isolated case and the thermodynamic volume is
mass-dependent; thus it is not quantized as well as it is not
universal. Λ = −1/ℓ2 is cosmological constant.

2.4. Schwarzschild-AdS BH. This BH is a solution of Einstein
equation. The form of the metric function is given by

Z (𝑟) = 1 − 2𝑀𝑟 + 𝑟2ℓ2 , (41)

where Λ = −3/ℓ2 is cosmological constant. The horizon radii
could be calculated from the following equation:

𝑟3 + ℓ2𝑟 − 2𝑀ℓ2 = 0. (42)

Among the three roots, only one root is real. Therefore the
BH possesses only one physical horizon which is located at

𝑟ℎ = (ℓ3)2/3 (9𝑀 + √3√ℓ2 + 27𝑀2)1/3
− (ℓ43 )1/3 1(9𝑀 + √3√ℓ2 + 27𝑀2)1/3 .

(43)

The thermodynamic volume is computed to be

Vℎ = 43𝜋𝑟3ℎ = 43
⋅ 𝜋[[(

ℓ3)2/3 (9𝑀 + √3√ℓ2 + 27𝑀2)1/3

− (ℓ43 )1/3 1(9𝑀 + √3√ℓ2 + 27𝑀2)1/3]]
3 .

(44)

Since it is an isolated case and the thermodynamic volume
is mass-dependent, therefore it is not universal nor does
it quantized. We do not consider the other AdS spacetime
because it has already been discussed in [14].

2.5. RN-AdS BH. For this BH, the metric function is given by

Z (𝑟) = 1 − 2𝑀𝑟 + 𝑄2𝑟2 + 𝑟2ℓ2 . (45)

The horizon radii could be found from the following equa-
tion:

𝑟4 + ℓ2𝑟2 − 2𝑀ℓ2𝑟 + ℓ2𝑄2 = 0. (46)

Among the four roots, two roots are real and two roots are
imaginary. Thus the OH and IH radii become

𝑟ℎ,𝑐 = 12√ 13 (𝑥2)1/3 + ( 2𝑥)1/3 ℓ
2 (ℓ2 + 12𝑄2)3 − 2ℓ23 ± 12

⋅ √ 4𝑀ℓ2√(1/3) (𝑥/2)1/3 + (2/𝑥)1/3 ℓ2 (ℓ2 + 12𝑄2) /3 − 2ℓ2/3 − 13 (𝑥2)1/3 − ( 2𝑥)1/3 ℓ
2 (ℓ2 + 12𝑄2)3 − 4ℓ23 , (47)

where

𝑥 = 2ℓ6 + 108𝑀2ℓ4 − 72ℓ4𝑄2
+ √(2ℓ6 + 108𝑀2ℓ4 − 72ℓ4𝑄2)2 − 4ℓ6 (ℓ2 + 12𝑄2)3 (48)

The thermodynamic volume product of RN-AdS BH for OH
and IH is computed to be

VℎV𝑐 = 𝜋236 [[[
23 (𝑥2)1/3 + ( 2𝑥)1/3 2ℓ

2 (ℓ2 + 12𝑄2)3 + 2ℓ23
− 4𝑀ℓ2√(1/3) (𝑥/2)1/3 + (2/𝑥)1/3 ℓ2 (ℓ2 + 12𝑄2) /3 − 2ℓ2/3]]]

3

.
(49)

It is clearly evident from the above expression that the
product is strictly mass-dependent. Thus the product is
not universal. But below we would like to determine that
somewhat complicated function of inner and outer horizon
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volume is indeed mass-independent. To proceed it we would
like to use Vieta's theorem. Therefore from (46), we get

4∑
𝑖=1

𝑟𝑖 = 0. (50)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2. (51)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑀ℓ2. (52)

4∏
𝑖=1

𝑟𝑖 = ℓ2𝑄2. (53)

Hence the mass-independent volume sum and volume
product relations are

4∑
𝑖=1

V𝑖
1/3 = 0. (54)

∑
1≤𝑖<𝑗≤4

(V𝑖V𝑗)1/3 = ( 332𝜋)1/3 8𝜋ℓ23 . (55)

4∏
𝑖=1

(V𝑖)1/3 = (𝜋6 )1/3 8𝜋ℓ2𝑄23 . (56)

The mass-independent volume functional relations in
terms of two horizons are

𝑓 (Vℎ,V𝑐) = ℓ2, (57)

where𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑄2/3)(VℎV𝑐)1/3
− ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(58)

These are explicitly mass-independent volume functional
relations in the extended phase space.

2.6. Hořava Lifshitz-AdS BH. Themetric function for Hořava
Lifshitz BH in AdS space [28, 29] is given by

Z (𝑟) = 1 + (1 − 2Λ3𝜔)𝜔𝑟2 − 𝜔𝑟2√1 − 4Λ3𝜔 + 4𝑀𝜔𝑟3 . (59)

The horizon radii could be calculated from the following
equation:

4𝑟4 + 2 (𝜔ℓ2 + 2) ℓ2𝑟2 − 4𝑀𝜔ℓ4𝑟 + ℓ4 = 0. (60)

Similarly, among the four roots, two roots are real and two
roots are imaginary. Thus the OH and IH radii become

𝑟ℎ = (𝑎 + 𝑏)2 ,
𝑟𝑐 = (𝑎 − 𝑏)2 , (61)

where

𝑎 = √ 21/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) − (ℓ2/3) (𝜔ℓ2 + 2)3𝑦1/3 + 112 (𝑦2 )1/3 (62)

𝑏 = √ 2𝑀𝜔ℓ4𝑎 − 112 (𝑦2 )1/3 − [21/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) + (2/3) ℓ2 (𝜔ℓ2 + 2)]3𝑦1/3 (63)

and

𝑦 = 1728𝑀2𝜔2ℓ8 − 576ℓ6 (𝜔ℓ2 + 2) + 16ℓ6 (𝜔ℓ2 + 2)3
+ √[1728𝑀2𝜔2ℓ8 − 576ℓ6 (𝜔ℓ2 + 2) + 16ℓ6 (𝜔ℓ2 + 2)3]2 − 256ℓ12 (𝜔2ℓ4 + 4𝜔ℓ2 + 16)3. (64)

The thermodynamic volume for this BH is quite different
from RN-AdS spacetime and it has been calculated in [29]: Vℎ = 43𝜋𝑟3ℎ [ 4ℓ2 + 2𝜔𝑟2

ℎ

] (65)
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and

V𝑐 = 43𝜋𝑟3𝑐 [ 4ℓ2 + 2𝜔𝑟2𝑐 ] . (66)

The volume product is calculated to be

VℎV𝑐

= 16𝜋29 [24/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) + (ℓ2/3) (𝜔ℓ2 + 2)3𝑦1/3
+ 16 (𝑦2 )1/3 − 2𝑀𝜔ℓ4𝑎 ]
× [[

14ℓ4 {2
4/3 (𝜔2ℓ8 + 4𝜔ℓ6 + 16ℓ4) + (ℓ2/3) (𝜔ℓ2 + 2)3𝑦1/3

+ 16 (𝑦2 )1/3 − 2𝑀𝜔ℓ4𝑎 }2 + 1𝜔2 + 1𝜔ℓ2 {2𝑀𝜔ℓ4𝑎
− ℓ2 (𝜔ℓ2 + 2)3𝑦1/3 }]] .

(67)

From the above expression, we can conclude that the volume
product for Hořava Lifshitz BH in AdS space is strictly mass-
dependent. Thus this product is not a universal quantity.
Below we will derive more complicated function of inner and
outer horizon volume that is indeed mass-independent. To
compute it, we should apply Vieta's theorem.Thus from (60),
we find

4∑
𝑖=1

𝑟𝑖 = 0. (68)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = 𝜔ℓ42 (1 + 2𝜔ℓ2 ) . (69)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 𝑀𝜔ℓ4. (70)

∑
1≤𝑖<𝑗<𝑘<𝑙≤4

𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑙 = ℓ44 . (71)

Eliminating the mass parameter in terms of two horizons,
one could obtain the following mass-independent volume
functional relation:

𝑔 (Vℎ,V𝑐) = 𝜔ℓ42 (1 + 2𝜔ℓ2 ) , (72)

where

𝑔 (Vℎ,V𝑐) = (ℓ4/4)𝑟ℎ𝑟𝑐 − (𝑟2ℎ + 𝑟2𝑐 + 𝑟ℎ𝑟𝑐) , (73)

where the parameters 𝑟ℎ and 𝑟𝑐 could be obtained by solving
(65) and (66) in terms of thermodynamic volume as

𝑟ℎ = 12 [(𝑢ℎ9 )1/3 1𝜔 − 2ℓ2(3𝑢ℎ)1/3] , (74)

𝑟𝑐 = 12 [(𝑢𝑐9 )1/3 1𝜔 − 2ℓ2(3𝑢𝑐)1/3] , (75)

and

𝑢ℎ = √3√8𝜔3ℓ6 + 27ℓ4𝜔6 + 27ℓ4𝜔6 (3𝑉ℎ4𝜋 )3
− 9ℓ2𝜔3 (3𝑉ℎ4𝜋 ) , (76)

𝑢𝑐 = √3√8𝜔3ℓ6 + 27ℓ4𝜔6 + 27ℓ4𝜔6 (3𝑉𝑐4𝜋 )3
− 9ℓ2𝜔3 (3𝑉𝑐4𝜋 ) . (77)

Now (72) is completely mass-independent volume functional
relation.

2.7. Thermodynamic Volume Products for Phantom BHs. In
this section, we would like to discuss the thermodynamic vol-
ume products for phantom AdS BH [30]. The phantom fields
are exotic fields in BH physics. They could be generated via
negative energy density. They could explain the acceleration
of our universe.Thus one could expect that these exotic fields
might have an important role in BH thermodynamics. We
want to study here what is the key role of these phantom
fields in thermodynamic volume functional relation? This is
the main motivation behind this work. For phantom BH, the
metric function is given by

Z (𝑟) = 1 − 2𝑀𝑟 − Λ3 𝑟2 + 𝜂𝑄2𝑟2 , (78)

where the parameter 𝜂 determines the nature of electromag-
netic (EM) field. For 𝜂 = 1, one obtains the classical EM
theory but when 𝜂 = −1, one obtains theMaxwell field which
is phantom.

Therefore for phantom BH, the horizon radii could be
found from the following equation:

𝑟4 + ℓ2𝑟2 − 2𝑀ℓ2𝑟 − ℓ2𝑄2 = 0. (79)

The above equation has four roots; among them the two roots
are real and other two roots are imaginary. Thus the OH and
IH radii are
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𝑟ℎ,𝑐 = 12√13 (𝑧2)1/3 + (2𝑧)1/3 ℓ
2 (ℓ2 − 12𝑄2)3 − 2ℓ23 ± 12

⋅ √ 4𝑀ℓ2√(1/3) (𝑧/2)1/3 + (2/𝑧)1/3 ℓ2 (ℓ2 − 12𝑄2) /3 − 2ℓ2/3 − 13 (𝑧2)1/3 − (2𝑧)1/3 ℓ
2 (ℓ2 − 12𝑄2)3 − 4ℓ23 , (80)

where

𝑧 = 2ℓ6 + 108𝑀2ℓ4 + 72ℓ4𝑄2
+ √(2ℓ6 + 108𝑀2ℓ4 + 72ℓ4𝑄2)2 − 4ℓ6 (ℓ2 − 12𝑄2)3 (81)

Nowwe compute the thermodynamic volume product which
turns out to be

VℎV𝑐 = 𝜋236 [[[
23 (𝑧2)1/3 + (2𝑧)1/3 2ℓ

2 (ℓ2 − 12𝑄2)3 + 2ℓ23
− 4𝑀ℓ2√(1/3) (𝑧/2)1/3 + (2/𝑧)1/3 ℓ2 (ℓ2 − 12𝑄2) /3 − 2ℓ2/3]]]

3

.
(82)

The above product indicates that it is strictlymass-dependent.
Therefore the product is not universal. Below we would like
to prove that more complicated function of inner and outer
horizon volume is indeed mass-independent.

To do thiswewould like to useVieta's theorem.Thus from
(79), we find

4∑
𝑖=1

𝑟𝑖 = 0. (83)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2. (84)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑀ℓ2. (85)

4∏
𝑖=1

𝑟𝑖 = −ℓ2𝑄2. (86)

Thus the mass-independent volume sum and volume product
relations should read

4∑
𝑖=1

V𝑖
1/3 = 0. (87)

∑
1≤𝑖<𝑗≤4

(V𝑖V𝑗)1/3 = ( 332𝜋)1/3 8𝜋ℓ23 . (88)

4∏
𝑖=1

(V𝑗)1/3 = (𝜋6 )1/3 8𝜋ℓ2𝑄23 . (89)

Therefore the mass-independent volume functional relations
in terms of two horizons are

𝑓 (Vℎ,V𝑐) = −ℓ2, (90)

where

𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑄2/3)(VℎV𝑐)1/3
+ ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(91)

These are explicitly mass-independent volume functional
relations in the extended phase space.

2.8. Thermodynamic Volume Products for AdS BH in 𝑓(𝑅)
Gravity. In this section, we are interested in deriving the
thermodynamic volume products for a static, spherically
symmetric AdSBH in𝑓(𝑅) gravity. To some extent, it is called
modified gravity. It is a very crucial tool for explaining the
current and future status of the accelerating universe. Thus it
is very important to investigate the thermodynamic volume
products for this gravity. The metric [14, 31] function for this
kind of gravity can be written as

Z (𝑟) = 1 − 2𝑚𝑟 + 𝑞2𝛼𝑟2 − 𝑅012 𝑟2, (92)

where 𝛼 = 1 + 𝑓󸀠(𝑅0). The parameters𝑚 and 𝑞 are related to
the ADM mass, 𝑀, and electric charge, 𝑄, by the following
expression:

𝑚 = 𝑀𝛼 ,
𝑞 = √𝛼𝑄. (93)

In this gravity, the thermodynamic pressure could be written
as 𝑃 = −(Λ/8𝜋)𝛼 = 3/8𝜋ℓ2 and the scalar curvature constant
as 𝑅0 = −12/ℓ2 = 4Λ. Thus the horizon equation for 𝑓(𝑅)
gravity becomes

𝑟4 + ℓ2𝑟2 − 2𝑚ℓ2𝑟 + ℓ2𝑞2𝛼 = 0. (94)
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The EH radius and CH radius are

𝑟ℎ = (𝑎 + 𝑏)2 ,
𝑟𝑐 = (𝑎 − 𝑏)2 , (95)

where

𝑎 = √ 13𝛼 (𝜇2)1/3 + (2𝜇)1/3 ℓ
2 (𝛼ℓ2 + 12𝑞2)3 − 2ℓ23 (96)

and

𝑏
= √ 4𝑚ℓ2𝑎 − 13𝛼 (𝜇2)1/3 − (2𝜇)1/3 ℓ

2 (𝛼ℓ2 + 12𝑞2)3 − 4ℓ23 , (97)

where

𝜇 = 2𝛼3ℓ6 + 108𝛼3𝑚2ℓ4 − 72𝛼2ℓ4𝑞2
+ √(2𝛼3ℓ6 + 108𝛼3𝑚2ℓ4 − 72𝛼2ℓ4𝑞2)2 − 4ℓ6 (𝛼2ℓ2 + 12𝛼𝑞2)3 (98)

The volume products for 𝑓(𝑅) gravity are derived to be

VℎV𝑐 = 𝜋236 [ 23𝛼 (𝜇2)1/3

+ (2𝜇)1/3 2ℓ
2 (𝛼ℓ2 + 12𝑞2)3 + 2ℓ23 − 4𝑚ℓ2𝑎 ]3 .

(99)

It indicates that the volume product is notmass-independent.
Now we shall give an alternative approach where we would
see that more complicated function of volume functional
relation is quite mass-independent. To derive it, we should
use Vieta's theorem; then one could find

4∑
𝑖=1

𝑟𝑖 = 0. (100)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2. (101)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑚ℓ2. (102)

4∏
𝑖=1

𝑟𝑖 = 𝑞2ℓ2𝛼 . (103)

Eliminating third and fourth roots, the mass-independent
volume functional relation is derived as

𝑓 (Vℎ,V𝑐) = ℓ2, (104)

where𝑓 (Vℎ,V𝑐)
= ( 332𝜋)1/3 (8𝜋ℓ

2𝑞2/3)𝛼 (VℎV𝑐)1/3
− ( 34𝜋)2/3 [Vℎ2/3 +V𝑐

2/3 + (VℎV𝑐)1/3] .
(105)

This equation is explicitly mass-independent.

2.9.Thermodynamic Volume Products for Regular BH. In this
section,we compute the thermodynamic volumeproducts for
a regular BH derived by Ayón-Beato and Garćıa (ABG) [32,
33]. It is a spherically symmetric solution of Einstein's general
relativity and it is a curvature singularity free solution. The
metric function form of ABG BH is given by

Z (𝑟) = 1 − 2𝑚𝑟2(𝑟2 + 𝑞2)3/2 + 𝑞2𝑟2(𝑟2 + 𝑞2)2 . (106)

𝑚 is the mass of the BH and 𝑞 is the monopole charge. The
horizon radii could be found from the following equation:

𝑟8 + (6𝑞2 − 4𝑚2) 𝑟6 + (11𝑞4 − 4𝑚2𝑞2) 𝑟4 + 6𝑞6𝑟2
+ 𝑞8 = 0. (107)

This is a polynomial equation of order 8𝑡ℎ. This could be re-
duced to fourth-order polynomial equation by putting 𝑟2 = 𝑧;
then one obtains [33]

𝑧4 + (6𝑞2 − 4𝑚2) 𝑧3 + (11𝑞4 − 4𝑚2𝑞2) 𝑧2 + 6𝑞6𝑧
+ 𝑞8 = 0. (108)

The EH and CH are located at

𝑟ℎ = √ (2𝑚2 − 3𝑞2)2 + 𝑎2 + 𝑏2 (109)

𝑟𝑐 = √ (2𝑚2 − 3𝑞2)2 − 𝑎2 − 𝑏2 (110)

and the other horizons (we have considered only here EH and
CH; the other horizons are discarded) are located at

𝑟ℎ𝑐 = √ (2𝑚2 − 3𝑞2)2 + 𝑎2 − 𝑏2 (111)

𝑟𝑐ℎ = √ (2𝑚2 − 3𝑞2)2 − 𝑎2 + 𝑏2 (112)

where
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𝑎 = √4𝑚2𝑞2 − 11𝑞4 + (2𝑚2 − 3𝑞2)2 + (11𝑞4 − 4𝑚2𝑞2)3 + (2𝛿)1/3 (16𝑚
4𝑞4 − 16𝑚2𝑞6 + 25𝑞8)3 + 13 (𝛿2)1/3 (113)

and

𝑏 = √𝑐 (114)

where

𝑐 = 4𝑚2𝑞2 − 11𝑞4 + 2 (2𝑚2 − 3𝑞2)2 + (4𝑚2𝑞2 − 11𝑞4)3

− (2𝛿)1/3 (16𝑚
4𝑞2 − 16𝑚2𝑞6 + 25𝑞8)3 − 13 (𝛿2)1/3

+ {48𝑞6 − 8 (2𝑚2 − 3𝑞2)3 + 8 (2𝑚2 − 3𝑞2) (11𝑞4 − 4𝑚2𝑞2)}4𝑎
(115)

and

𝛿 = 624𝑚4𝑞8 − 128𝑚6𝑞6 − 240𝑚2𝑞10 + 250𝑞12 + √324864𝑚8𝑞16 − 110592𝑚10𝑞14 − 193536𝑚6𝑞18 + 172800𝑚4𝑞20. (116)

The volume product ofH± is evaluated to be

VℎV𝑐 = 𝜋236 [(2𝑚2 − 3𝑞2)2 − (𝑎 + 𝑏)2] . (117)

As usual, the volume product is not mass-independent.
Now we would see below that somewhat more complicated
function of inner and outer horizon volume is indeed mass-
independent. To derive it, we have to apply Vieta's theorem
in (108); thus one obtains

4∑
𝑖=1

𝑧𝑖 = 4𝑚2 − 6𝑞2. (118)

∑
1≤𝑖<𝑗≤4

𝑧𝑖𝑧𝑗 = 11𝑞4 − 4𝑚2𝑞2. (119)

∑
1≤𝑖<𝑗<𝑘≤4

𝑧𝑖𝑧𝑗𝑧𝑘 = −6𝑞2. (120)

4∏
𝑖=1

𝑧𝑖 = 𝑞8. (121)

Eliminating the mass parameter, one obtains the mass-
independent equation in terms of two horizons

𝑧1𝑧2 (𝑧1 + 𝑧2) + 6𝑞2𝑧1𝑧2 − 𝑞8 (𝑧1 + 𝑧2)𝑧1𝑧2
− 1𝑧1 + 𝑧2 + 𝑞2 [(𝑧1 + 𝑧2)2 + 6𝑞2 (𝑧1 + 𝑧2) − 𝑧1𝑧2
− 𝑞8𝑧1𝑧2 + 11𝑞4] = 6𝑞6.

(122)

It should be noted that the symbols (ℎ, 𝑐) and (1, 2) both have
the same meaning. Now in terms of volume ofH± the mass-
independent volume functional relation becomes𝑓 (Vℎ,V𝑐) = 6𝑞6, (123)

where

𝑓 (Vℎ,V𝑐) = ( 34𝜋)2 (VℎV𝑐)2/3 {V2/3ℎ +V
2/3
𝑐 }

+ 6𝑞2 ( 34𝜋)4/3 (VℎV𝑐)2/3 − 𝑞8 (4𝜋3 )2/3
⋅ (V2/3ℎ +V2/3𝑐 )(VℎV𝑐)2/3 − ( 34𝜋)2/3
⋅ (VℎV𝑐)2/3{V2/3
ℎ

+V
2/3
𝑐 + (4𝜋3 )2/3 𝑞2}

× [( 34𝜋)4/3 (V2/3ℎ +V
2/3
𝑐 )2

+ 6𝑞2 ( 34𝜋)2/3 (V2/3ℎ +V
2/3
𝑐 )

− ( 34𝜋)4/3 (VℎV𝑐)2/3 − (4𝜋3 )2/3 𝑞8(VℎV𝑐)2/3
+ 11𝑞4]

(124)

Now we are moving to axisymmetric spacetime, to see what
happens there?

3. Axisymmetric Spacetime

In this section, we have considered only the various axisym-
metric BHs. It is easy to compute volume products for
spherically symmetric cases because of Vℎ ∝ Aℎ𝑟ℎ for
OH and V𝑐 ∝ A𝑐𝑟𝑐 for IH. For axisymmetric spacetime,
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this proportionality is quite different because here the spin
parameter is present. Now see what happens in this case by
starting with Kerr BH.

3.1. Kerr BH. The Kerr BH is a solution of Einstein equation.
The OH radius and IH radius for this BH should read

𝑟ℎ = 𝑀 + √𝑀2 − 𝑎2 (125)

𝑟𝑐 = 𝑀 − √𝑀2 − 𝑎2, (126)

where 𝑎 = 𝐽/𝑀. 𝐽 is angular momentum of the BH. When𝑀2 > 𝑎2, it describes a BH; when 𝑀2 < 𝑎2, it describes a
naked singularity. The thermodynamic volume for OH [34]
and IH [14] becomes

Vℎ = Aℎ𝑟ℎ3 [1 + 𝑎22𝑟2
ℎ

] (127)

V𝑐 = A𝑐𝑟𝑐3 [1 + 𝑎22𝑟2c ] . (128)

The thermodynamic volume product of Kerr BH for OH and
IH is calculated to be

VℎV𝑐 = 1289 𝜋2𝐽2𝑀2 (1 + 𝑎28𝑀2) . (129)

The volume sum for OH and IH is

Vℎ +V𝑐 = 323 𝜋𝑀3 (1 − 𝑎24𝑀2) . (130)

Similarly, the volume minus for OH and IH is

Vℎ −V𝑐 = 323 𝜋𝑀2√𝑀2 − 𝑎2. (131)

The volume division is

Vℎ

V𝑐
= (4𝑀2 − 𝑎2 + 4𝑀√𝑀2 − 𝑎24𝑀2 − 𝑎2 − 4𝑀√𝑀2 − 𝑎2) . (132)

It indicates that the volume product, volume sum, volume
minus, and volume division for Kerr BH aremass-dependent.
Therefore the product, the sum, the minus, and the division
all are not universal.

3.2. Kerr-AdS BH. The horizon function for Kerr-AdS BH
[35] is given by

Δ 𝑟 = (𝑟2 + 𝑎2)(1 + 𝑟2ℓ2) − 2𝑀𝑟 = 0, (133)

which gives the quartic order of horizon equation

𝑟4ℓ2 + (1 + 𝑎2ℓ2) 𝑟2 − 2𝑚𝑟 + 𝑎2 = 0. (134)

The quantities𝑚 and 𝑎 are related to the parameters mass𝑀
and angular momentum 𝐽 as follows:𝑚 = 𝑀Ξ2,

𝑎 = 𝐽𝑚Ξ2 (135)

where Ξ = 1 − 𝑎2/ℓ2. To obtain the roots of (134), we apply
Vieta's theorem, and we find

4∑
𝑖=1

𝑟𝑖 = 0. (136)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2 (1 + 𝑎2ℓ2) . (137)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑚ℓ2. (138)

4∏
𝑖=1

𝑟𝑖 = 𝑎2ℓ2. (139)

There are at least two real zeros of (134) which is OH radius
and IH radius. After some algebraic computation, we have

𝑟ℎ + 𝑟𝑐 = 2𝑚ℓ2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 , (140)

𝑟ℎ𝑟𝑐 = 𝑎2ℓ2 − (𝑟ℎ𝑟𝑐)2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 . (141)

The area of the BH for OH is

Aℎ = 4𝜋 (𝑟2ℎ + 𝑎2)Ξ , (142)

and for IH is

A𝑐 = 4𝜋 (𝑟2𝑐 + 𝑎2)Ξ . (143)

The thermodynamic volume for OH [17, 22] becomes

Vℎ = 2𝜋 [(𝑟2ℎ + 𝑎2) (2𝑟2ℎℓ2 + 𝑎2ℓ2 − 𝑟2ℎ𝑎2)]3𝑟ℎℓ2Ξ2 . (144)

And we derive that the thermodynamic volume for IH
becomes

V𝑐 = 2𝜋 [(𝑟2𝑐 + 𝑎2) (2𝑟2𝑐 ℓ2 + 𝑎2ℓ2 − 𝑟2𝑐𝑎2)]3𝑟𝑐ℓ2Ξ2 . (145)

The thermodynamic volume product for Kerr-AdS BH is
calculated in

VℎV𝑐 = 4𝜋2 {𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4}9Ξ4𝑟ℎ𝑟𝑐× [3𝑟2ℎ𝑟2𝑐 + 2𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + Ξ2𝑟2ℎ𝑟2𝑐 ] .
(146)
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Using (140), (141), (142), and (143), we observe that there is no
way to eliminate themass parameter from (146); therefore the
volume product for Kerr-AdS BH is not mass-independent;
thus it is not universal and not quantized.

3.3. Kerr-Newman BH. It is an axisymmetric solution of
Einstein-Maxwell equations. The OH radius and IH radius
for this BH become

𝑟ℎ = 𝑀 + √𝑀2 − 𝑎2 − 𝑄2 (147)

𝑟𝑐 = 𝑀 − √𝑀2 − 𝑎2 − 𝑄2. (148)

The thermodynamic volume for OH [17] is

Vℎ = 2𝜋 [(𝑟2ℎ + 𝑎2) (2𝑟2ℎ + 𝑎2) + 𝑎2𝑄2]3𝑟ℎ . (149)

And we derive that the thermodynamic volume for IH is

V𝑐 = 2𝜋 [(𝑟2𝑐 + 𝑎2) (2𝑟2𝑐 + 𝑎2) + 𝑎2𝑄2]3𝑟𝑐 . (150)

The thermodynamic volume product for KN BH is
computed to be

VℎV𝑐 = 16𝜋29
× [𝐽2 (8𝐽2 + 𝑎4 − 𝑎2𝑄2 − 2𝑄4 + 8𝑀2𝑄2) + 𝑄4 (𝑎2 + 𝑄2)2]𝑎2 + 𝑄2 .

(151)

It also indicates that the thermodynamic volume for KN BH
is mass-dependent. Thus the volume product is not universal
for any axisymmetric spacetime. In the appropriate limit, i.e.,
when 𝑎 = 𝐽 = 0, one obtains the thermodynamic volume
product for Reissner Nordström BH and when 𝑄 = 0, one
obtains the volume product for Kerr BH.

3.4. Kerr-Newman-AdS BH. The horizon function for Kerr-
Newman-AdS BH [36] reads

Δ 𝑟 = (𝑟2 + 𝑎2)(1 + 𝑟2ℓ2) − 2𝑀𝑟 + 𝑞2 = 0, (152)

which has the quartic order of horizon equation

𝑟4ℓ2 + (1 + 𝑎2ℓ2) 𝑟2 − 2𝑚𝑟 + 𝑎2 + 𝑞2 = 0. (153)

The quantity 𝑞 is related to the charge parameter 𝑄 as𝑞 = 𝑄Ξ (154)
To determine the roots of (153) again we apply Vieta's rule;
then one obtains

4∑
𝑖=1

𝑟𝑖 = 0. (155)

∑
1≤𝑖<𝑗≤4

𝑟𝑖𝑟𝑗 = ℓ2 (1 + 𝑎2ℓ2) . (156)

∑
1≤𝑖<𝑗<𝑘≤4

𝑟𝑖𝑟𝑗𝑟𝑘 = 2𝑚ℓ2. (157)

4∏
𝑖=1

𝑟𝑖 = (𝑎2 + 𝑞2) ℓ2. (158)

Similarly, there are at least two real zeros of (153) which is
OH radius and IH radius. After some algebraic derivation,
one gets

𝑟ℎ + 𝑟𝑐 = 2𝑚ℓ2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 , (159)

𝑟ℎ𝑟𝑐 = (𝑎2 + 𝑞2) ℓ2 − (𝑟ℎ𝑟𝑐)2𝑎2 + ℓ2 + 𝑟2
ℎ
+ 𝑟2𝑐 . (160)

The area of this BH for OH is

Aℎ = 4𝜋 (𝑟2ℎ + 𝑎2)Ξ (161)

and for IH is

A𝑐 = 4𝜋 (𝑟2𝑐 + 𝑎2)Ξ . (162)

The thermodynamic volume for OH [17, 22] becomes

Vℎ

= 2𝜋 [(𝑟2ℎ + 𝑎2) (2𝑟2ℎℓ2 + 𝑎2ℓ2 − 𝑟2ℎ𝑎2) + ℓ2𝑞2𝑎2]3𝑟ℎℓ2Ξ2 . (163)

And we derive that the thermodynamic volume for IH
becomes

V𝑐

= 2𝜋 [(𝑟2𝑐 + 𝑎2) (2𝑟2𝑐 ℓ2 + 𝑎2ℓ2 − 𝑟2𝑐𝑎2) + ℓ2𝑞2𝑎2]3𝑟𝑐ℓ2Ξ2 . (164)

The thermodynamic volume product for Kerr-Newman-AdS
BH is computed in
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VℎV𝑐 = 4𝜋29Ξ4𝑟ℎ𝑟𝑐 × [{𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4}2 + {𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4} {2𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 )}]
+ 4𝜋2 [𝑎2𝑞2 {𝑟4ℎ + 𝑟4𝑐 + 2𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 2𝑎4} + Ξ2𝑟2ℎ𝑟2𝑐 {𝑟2ℎ𝑟2𝑐 + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 ) + 𝑎4}]9Ξ4𝑟ℎ𝑟𝑐
+ 4𝜋2 [𝑎2𝑞2Ξ {𝑟4ℎ + 𝑟4c + 𝑎2 (𝑟2ℎ + 𝑟2𝑐 )} + 𝑎4𝑞4]9Ξ4𝑟ℎ𝑟𝑐 .

(165)

Again using (159), (160), (161), and (162), we speculate that
there has been no chance to eliminate the mass parameter
from (165); thus the volume product for Kerr-Newman-AdS
BH is not mass-independent; therefore it is not universal and
not quantized.

3.5. Spinning BTZ BH. The metric for rotating BTZ BH [37]
in 2 + 1 dimension is given by

𝑑𝑠2 = −(𝑟2ℓ2 + 𝐽24𝑟2 −𝑀)𝑑𝑡2
+ 𝑑𝑟2(𝑟2/ℓ2 + 𝐽2/4𝑟2 −𝑀)
+ 𝑟2 (− 𝐽2𝑟2 𝑑𝑡 + 𝑑𝜙)2 .

(166)

𝑀 and 𝐽 represent the ADM mass and the angular momen-
tumof the BH.−Λ = 1/ℓ2 = 8𝜋𝑃𝐺3 denotes the cosmological
constant. Here we have set 8𝐺3 = 1 = 𝑐 = ℏ = 𝑘. When 𝐽 = 0,
one obtains the static BTZ BH.

The BH OH radius and IH radius are [37, 38]

𝑟ℎ = √𝑀ℓ22 (1 + √1 − 𝐽2𝑀2ℓ2). (167)

𝑟𝑐 = √𝑀ℓ22 (1 − √1 − 𝐽2𝑀2ℓ2). (168)

The thermodynamic volume for 3D spinning BTZBH forOH
and IH is

Vℎ = (𝜕𝑀𝜕𝑃 )
𝐽

= 𝜋𝑟2ℎ (169)

V𝑐 = (𝜕𝑀𝜕𝑃 )
𝐽

= 𝜋𝑟2𝑐 (170)

The thermodynamic volume product is computed to be

VℎV𝑐 = 𝜋2𝐽2ℓ24 . (171)

Interestingly, the thermodynamic volume product for rotat-
ing BTZ BH ismass-independent, i.e., universal, and it is also

quantized. This is the only example for rotating cases; the
volume product is universal. This is an interesting result of
this work.

4. Discussion

In this work, we have demonstrated the thermodynamic
products, in particular thermodynamic volume products, of
spherically symmetric spacetime and axisymmetric space-
time by incorporating the extended phase space formalism.
In this formalism, the cosmological constant should be
considered as a thermodynamic pressure and its conjugate
parameter as thermodynamic volume. In addition to that, the
mass parameter should be treated as enthalpy of the system
rather than internal energy. Then in this phase space the first
law of BH thermodynamics should be satisfied for both the
OH and IH.

We explicitly computed the thermodynamic volume
products both for OH and IH of several classes of spheri-
cally symmetric and axisymmetric BHs including the AdS
spacetime. In this case, the simple volume product of H±
is not mass-independent. Rather slightly more complicated
volume functional relations are indeed mass-independent.
We have proved that, for simple Reissner Nordström BH of
Einstein gravity and Kehagias-Sfetsos BH of Hořava Lifshitz
gravity, the thermodynamic volume product ofH± is indeed
universal. Such products aremass-independent for spherically
symmetric cases because of Vℎ ∝ Aℎ𝑟ℎ for OH and V𝑐 ∝
A𝑐𝑟𝑐 for IH.

Axisymmetric spacetime does not satisfy this propor-
tionality due to presence of the spin parameter; thus such
spacetime shows no mass-independent features except the
rotating BTZ BH; the only axisymmetric spacetime in 3𝐷
showed universal features; thus it has been quantized in this
sense. We also computed thermodynamic volume sum but
they are always mass-dependent so they are not universal as
well as they are not quantized.

Like area (or entropy) products, the simple thermo-
dynamic volume product of H± is not mass-independent;
rather more complicated function of volume functional
relation is indeed mass-independent. This is often true for
spherically symmetric BHs including AdS spacetime. This
scenario for axisymmetric spacetime (except 3D BTZ BH )
is quite different. In this case, the area functional relation
becomes mass-independent whereas the volume functional
relation is not mass-independent. For volume products, this
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is the main difference between spherically symmetric space-
time and axisymmetric spacetime. To sum up, the volume
functional relation that we have studied in this work in
spherically symmetric cases (but not for axisymmetric cases)
further provides some universal properties of the BH which
gives some insight into microscopic origin of BH entropy of
both outer and inner horizons.
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The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing
the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations
travelling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave
packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an
interaction between the wave and plane wave packet. In specific conditions, the wave packet behaves as an acoustic black hole.

1. Introduction

Acoustic waves carry energy, momentum, angular momen-
tum, and also physical information regarding the source and
the medium through which they propagate. Therefore one
can say that the acoustic waves intermediate interactions
occurring within the medium. Nowadays extended theoret-
ical [1–18] and experimental [19–26] research work is being
carried out to study the interactions induced by acoustic
waves.

One can distinguish two types of interactions induced
by acoustic waves. The former type are those which are
the interactions between solids, liquids, and gases (cavities,
bubbles, and drops) immersed into fluid and contained into
a solid.

The latter are those interactions which occur between the
inhomogeneities of the medium and which are induced by
acoustic waves.

The first type of interactions mentioned above were early
studied by Basset [1] and substantiated by Bjerknes [2, 3].

In what follows wewill assume that the acoustic processes
are similar to the processes occurring into vacuum. That
is why we will study those processes occurring within a
medium, produced by acoustic perturbations. When waves
interfere they generate wave packets. These wave packets
behave like the inhomogeneities of the medium. Also these

inhomogeneities induce new inhomogeneities due to the
combined process diffraction-interference-absorption.

Cavities may appear in the core of the wave packets [8]
when the energy of the oscillations is of the same order as
the binding energy of the particles of the liquid. All these
extended inhomogeneities behave as sources for oscillations
and as diffracting objects.

The container where the fluid is, or the boundaries of
the solid, plays an important role for these processes. The
container behaves like a cavity which reflects the acoustic
waves inwards. We name an acoustic world the finite volume
of the fluid or of the solid together with the processes
occurring within [27]. Within the acoustic world the micro-
scopic parameters of the inhomogeneities and the container
parameters are related. For this reason, the microscopic
parameters of the inhomogeneities and of the enclosure are
dependent on each other. Their relationship is similar to
the one between the parameters of the elementary particles
and those of the universe [28], according to the present
approaches.

In this paper we aim to study which features of the
interactions may be generated by an inhomogeneity which is
induced by a wave or a wave packet.

In the second section of the paper we infer the expression
of the wave propagation velocity in a fluid when the density
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and the pressure vary adiabatically. Using this expression, we
infer the acoustic expression of the refractive index.

In the third section we deduce the expression of the
acoustic index of refraction of a fluid perturbed by a prop-
agating wave and a standing wave.

In the fourth section we achieve the expression of the
acoustic index of refraction of a fluid perturbed by a station-
ary wave packet. The averaged refractive index depends on
the position related to the centre of the wave packet.

In the fifth section we argue that a wave which propagates
into a fluid, whose properties were changed by a wave packet,
deviates from its initial direction of propagation. Also we
analyze the possible existence of the acoustic black hole. The
radius of the acoustic black hole depends on the wavelength
and of the oscillation amplitude of the acoustic wave packet.

Sixth section is dedicated to conclusions.

2. Phase Velocity in the Presence of
an Inhomogeneity

2.1. Phase Velocity. In prior papers [27, 29, 30] we have
studied the issue of the dual behaviour ofmatter related to the
longitudinal waves. In what follows we will study how these
waves may change the density of the medium through which
they travel. According to Landau and Lifchitz [31, Ch. 8, §
63], the propagation of amechanical wave through amedium
changes the local density 𝜌 = 𝜌0+𝛿𝜌, the pressure𝑝 = 𝑝0+𝛿𝑝,
and the temperature 𝑇 = 𝑇0 + 𝛿𝑇.

The phase velocity in a fluid is

𝑢 = √(𝜕𝑝𝜕𝜌)𝑆. (1)

In the case of an ideal gas, the process of thewave propagation
is adiabatic and the pressure is related to the density according
to the relation

𝑝 = 𝑝0 ( 𝜌𝜌0)
𝛾 , (2a)

𝜌 = 𝜌0 ( 𝑝𝑝0)
1/𝛾 . (2b)

Using (2a) and (2b) into (1) we can find the velocity of a wave
travelling in modified medium, due to the presence of an
adiabatic perturbation, as

𝑢 = 𝑢0√( 𝜌𝜌0)
𝛾−1 = 𝑢0 (1 + 𝛿𝜌𝜌0 )

(𝛾−1)/2

(3a)

or

𝑢 = 𝑢0√( 𝑝𝑝0)
(𝛾−1)/𝛾 = 𝑢0 (1 + 𝛿𝑝𝜌0 )

(𝛾−1)/2𝛾 . (3b)

For a compressible liquid [32, p. 44] the dependency between
the phase velocity and the density is

𝑢 = 𝑢0 ( 𝜌𝜌0)
(𝛽−1)/2 = 𝑢0 (1 + 𝛿𝜌𝜌0 )

(𝛽−1)/2

(4a)

or

𝑢 = 𝑢0 ( 𝑝𝑝0)
(𝛽−1)/2𝛽 = 𝑢0 (1 + 𝛿𝑝𝑝0 )

(𝛽−1)/2𝛽 , (4b)

with 𝛽, constant which depends on the liquid type.
One notices the difference between these two expressions

of velocities, (3a), (3b), (4a), and (4b), due to the difference𝛽 ̸= 𝛾. One can generalize the phase velocity of a longitudinal
wave for all states of the matter

𝑢 = 𝑢0 (1 + 𝛿𝜌𝜌0 )
𝜁

(5a)

or

𝑢 = 𝑢0 (1 + 𝛿𝑝𝑝0 )
𝜁/(2𝜁+1) . (5b)

For a gaseous state of the matter 𝜁 = (𝛾 − 1)/2 is subunitary
and for a liquid state of the matter, it is greater than 1 (e.g., for
water 𝛽 ≅ 7 and hence 𝜁 = (𝛽 − 1)/2 ≅ 3 [32, p. 44]).

According to relations (3a)–(5b), for every state of the
matter, the increasing of the density (𝛿𝜌 > 0), due to the
deformation, implies a growth of the velocity. Conversely, the
decreasing of the density (𝛿𝜌 < 0) leads to a decrease in
velocity.

2.2. The Acoustic Index of Refraction. We will assign an
acoustic index of refraction to the perturbed medium as

𝑛𝑎 = 𝑢0𝑢 . (6)

According to (5a) and with 𝛿𝜌 ≪ 𝜌0, the above definition
leads to

𝑛𝑎 (𝜌) = (1 + 𝛿𝜌𝜌0 )
−𝜁 ≅ 1 − 𝜁𝛿𝜌𝜌0 + 𝜁 (𝜁 + 1)2 (𝛿𝜌𝜌0 )

2

(7a)

and, according to (5b), with 𝛿𝑝 ≪ 𝑝0,
𝑛𝑎 (𝑝) = (1 + 𝛿𝑝𝑝0 )

−𝜁/(2𝜁+1)

≅ 1 − 𝜁2𝜁 + 1 𝛿𝑝𝑝0 + 𝜁 (3𝜁 + 1)2 (2𝜁 + 1)2 (𝛿𝑝𝑝0 )
2 .

(7b)

The averaged expressions of the acoustic index of refraction
are

⟨𝑛𝑎 (𝜌)⟩ ≅ 1 − 𝜁⟨𝛿𝜌⟩𝜌0 + 𝜁 (𝜁 + 1)2 ⟨(𝛿𝜌)2⟩𝜌20 , (8a)

⟨𝑛𝑎 (𝑝)⟩ ≅ 1 − 𝜁2𝜁 + 1 ⟨𝛿𝑝⟩𝑝0 + 𝜁 (3𝜁 + 1)2 (2𝜁 + 1)2
⟨(𝛿𝑝)2⟩𝑝20 . (8b)
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According to the results of [31, Ch. 8, § 64], there are the
relations

⟨𝛿𝜌⟩ = ⟨(𝛿𝑝)2⟩2 (𝜕2𝜌𝜕𝑝2)
𝑆,𝑝=𝑝0

= −𝜁𝜌0 ⟨𝜐2⟩𝑢20 , (9a)

⟨𝛿𝑝⟩ = 0, (9b)

⟨(𝛿𝜌)2⟩ = 𝜌20 ⟨𝜐2⟩𝑐20 , (9c)

⟨(𝛿𝑝)2⟩ = 𝜌20𝑐20 ⟨𝜐2⟩ . (9d)

By replacing relations (9a), (9b), (9c), and (9d) in the
expression of the averaged acoustic index of refraction (8b),
it yields

⟨𝑛𝑎 (𝜌)⟩ ≅ 1 + 𝜁 (3𝜁 + 1)2 ⟨𝜐2⟩𝑢20 . (10a)

The same result is obtained by replacing relations (9a), (9b),
(9c), and (9d) in the expression of the averaged acoustic index
of refraction (8a)

⟨𝑛𝑎 (𝑝)⟩ ≅ 1 + 𝜁 (3𝜁 + 1)2 (2𝜁 + 1)2
⟨(𝛿𝑝)2⟩𝑝20 = ⟨𝑛𝑎 (𝜌)⟩ . (10b)

Hence, we find that the index of refraction is a measure of the
inhomogeneity of the medium.

3. The Inhomogeneity Induced by a Wave

According to [31, Ch. 8, § 63], the relative variance of the
density, in the presence of a wave, is the ratio between the
velocity of the vibration ̇𝑞(𝑥, 𝑡) and the phase velocity 𝑢0

𝛿𝜌𝜌 = 𝜐𝑢0 = ̇𝑞𝑢0 ≪ 1. (11)

Substituting (11) in (10a), with 𝛾𝑝0 = (2𝜁 + 1)𝑝0 = 𝜌0𝑢20, the
expression of the index of refraction becomes

⟨𝑛𝑎⟩ ≅ 1 + 𝜁 (3𝜁 + 1)2 ⟨ ̇𝑞2⟩𝑢20 . (12)

For a plane wave Ψ(𝑧, 𝑡) = 𝑞𝑧 = 𝑞0𝑧 sin(𝜔𝑡 − 𝑘𝑧), the velocity
of the oscillation is

̇𝑞𝑧 = 𝑞0𝑧𝜔 cos (𝜔𝑡 − 𝑘𝑧) . (13)

Averaging, in time, the square velocity, one obtains

⟨ ̇𝑞2𝑧⟩𝑡 = 𝑞20𝑧𝜔𝑇 ∫𝑇
0
cos2 (𝜔𝑡 − 𝑘𝑧) 𝑑 (𝜔𝑡) = 𝑞20𝑧𝜔22 , (14a)

⟨ ̇𝑞2𝑧⟩𝑡𝑢20 = 𝑞20𝑧𝜔22𝑢20 = 2𝜋2𝑞20𝑧𝜆20 ≪ 1 or 𝑞0𝑧 ≪ 𝜆. (14b)

Substituting (14a) and (14b) in (12), the expression of the
index of refraction becomes

⟨𝑛𝑎⟩𝑡 ≅ [1 + 𝜁 (3𝜁 + 1)2 (𝑞0𝑧𝜔𝑢0 )
2] > 1. (15)

Hence for a standing wave, Ψ𝑠(𝑧, 𝑡) = 𝑞𝑧𝑠 =𝑞0𝑧𝑠 sin(𝑘𝑧) sin(𝜔𝑡) [33], with the velocity of oscillation

̇𝑞𝑧𝑠 = 𝑞0𝑧𝑠𝜔 sin (𝑘𝑧) cos (𝜔𝑡) . (16)

The averaged velocity of oscillation through time is zero, but
the averaged square velocity of oscillation through time is not
zero.

⟨ ̇𝑞2𝑧𝑠⟩𝑡 = 𝑞20𝑧𝑠𝜔 sin2 𝑘𝑧𝑇 ∫𝑇
0
cos2 (𝜔𝑡) 𝑑 (𝜔𝑡)

= 𝑞20𝑧𝑠𝜔22 sin2 𝑘𝑧.
(17)

Now, according to (15), the following expressions occur:

⟨𝑛𝑎⟩𝑡 ≅ [1 + 𝜁 (3𝜁 + 1)4 (𝑞0𝑧𝑠𝜔𝑢0 sin 𝑘𝑧)2] (18)

which depicts the dependence of the index to the position 𝑧.
Also the process mentioned above involves the change of the
optical index, due to the changes of the mass density of the
medium. This phenomenon is used as a diffraction grating
[34, 35].

Performing a spatial average ⟨sin2 𝑘𝑧⟩𝑧 = 1/2, it yields
⟨𝑛𝑎⟩𝑡𝑠 ≅ 1 + 𝜁 (3𝜁 + 1)8 (𝑞0𝑧𝑠𝜔𝑢0 )

2

= 1 + 𝜁 (3𝜁 + 1)2 (𝑞0𝑧𝜔𝑢0 )
2 ,

(19)

since the amplitude of the standing wave is double of the
amplitude of the nonstanding wave 𝑞0𝑧𝑠 = 2𝑞0𝑧. Relations
(15), (18), and (19) display how a longitudinal wave changes
the acoustic index of a medium.

4. Inhomogeneity Induced by a Wave Packet

4.1. The Acoustic Index of Refraction in the Presence of a
Wave Packet. If we assume a three-dimensional standing
wave packet, Ψ𝑝(𝑟, 𝑡) = 𝑞𝑝 = 𝑞0𝑝[sin(𝑘0𝑟)/𝑘0𝑟] ⋅ sin(𝜔0𝑡). Its
velocity of oscillation is

̇𝑞𝑝 = 𝑞0𝑝𝜔0 sin (𝑘0𝑟)𝑘0𝑟 cos (𝜔0𝑡)
= 𝑢0𝑞0𝑝 sin (𝑘0𝑟)𝑟 cos (𝜔0𝑡) .

(20)
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We will assume that the medium becomes spatially and
temporally inhomogeneous. Its temporal averaged velocity of
oscillation is null. But its averaged square velocity is not

⟨ ̇𝑞2𝑝⟩𝑡 = 𝑞
2
0𝑝𝜔0 sin2 𝑘0𝑟(𝑘0𝑟)2 𝑇0 ∫𝑇0

0
cos2 (𝜔0𝑡) 𝑑 (𝜔0𝑡)

= 𝑞20𝑝𝜔202 sin2 𝑘0𝑟(𝑘0𝑟)2 .
(21)

Now we can express the temporal averaged acoustic index as

⟨𝑛𝑎⟩𝑡 ≅ [1 + 𝜁 (3𝜁 + 1)4 (𝑞0𝑝 sin 𝑘0𝑟𝑟 )2] > 1. (22)

Hence, according to (22), the index of refraction depends on
the position (𝑟).
5. Acoustic Dumb Hole

5.1. The Deflection of the Acoustic Waves. Using the above
index of refraction one can infer the deflection of a wave
which travels through a medium, when the medium is
modified by the wave packet. A simple calculus [36, 37]
can be performed if one assumes an analogy between the
medium with variable index and a spherical lens, with radius
of curvature 𝑅1 = −𝑅2 = 𝑟 and the index of refraction from
(22).

The focal length of the acoustic lens is [38, Ch. 27.3]

1𝑓 = 2𝑟 (⟨𝑛𝑎⟩𝑡 − 1) = 𝜁 (3𝜁 + 1)2𝑟 (𝑞0𝑝 sin 𝑘0𝑟𝑟 )2 > 0. (23)

Hence, the lens is a converging lens. For small angles, the
deflection of the wave (which far away from the lens is null
and where 𝑟 is the impact parameter) is

𝜑 ≅ tan𝜑 = 𝑟𝑓 = 2 (⟨𝑛⟩𝑡𝑟𝑚 − 1)
= 𝜁 (3𝜁 + 1)2 (𝑞0𝑝 sin 𝑘0𝑟𝑟 )2 . (24)

From (22) one can see that the wave deviates from initial
direction and this deflection can be interpreted as an attrac-
tion of the wave by the wave packet.This interaction is similar
to the interaction between light and a body with gravitational
mass.

5.2.The Radius of Acoustic Horizon. Thewave packet behaves
like a dumb hole (acoustic black hole, sonic black hole) where
the focal length of the lens is equal to the acoustic impact
parameter

𝑓 = 𝑟 = 𝑟𝑎. (25)

The acoustic hole corresponding to the acoustic wave packet
is static. This hole is different from the acoustic black hole or
acoustic wormhole generated by fluid flow [39–41].

Replacing the focal length (25) into expression (23), we
obtain the equation for the radius of the acoustic black hole
or the radius of the acoustic horizon

sin 𝑘0𝑟𝑎𝑘0𝑟𝑎 = 1𝑘0𝑞0𝑝√ 2𝜁 (3𝜁 + 1) . (26)

For small angles 𝑘0𝑟𝑎 < 𝜋/36, with the approximation
sin 𝑘0𝑟𝑎 ≅ 𝑘0𝑟𝑎[1 − (𝑘0𝑟𝑎)2/6], the physical solution is

𝑟𝑎 = 6𝑘0√1 − 1𝑘0𝑞0𝑝√ 2𝜁 (3𝜁 + 1)
= 3𝜆0𝜋 √1 − 𝜆0𝑞0𝑝 1𝜋√2𝜁 (3𝜁 + 1) .

(27)

The solution given by (27) is real if

𝜆0𝑞0𝑝 < 𝜋√2𝜁 (3𝜁 + 1). (28)

For the liquid, with 𝜁 ≅ 3, it yields
𝜆0𝑞0𝑝 < √60𝜋. (29)

If we take into account the relationship between the wave
packet parameters and the fluid parameters [27, § 3.1] and [29,
§ 5.3]

𝑞0𝑝 < 𝑎,
𝜆0 ≥ 2𝑎, (30)

it follows that 𝑎𝜋√15 < 𝑞0𝑝 < 𝑎. (31)

Those restrictive requirements addressed to the oscillation
amplitude and the wavelength are related to the binding
energy of the liquid particles (molecules). When the wave-
length and the amplitude meet the boundaries one generates
a bubble in the centre of the wave packet. It follows that
the acoustic black hole (dumb hole) is associated with the
generation of a bubble. The bubbles are able to interact each
other in the presence of the acoustic waves and therefore in
the presence of the waves background of the acoustics world.
Then a further development of the papers [1–26] can be done
starting from this issue.

The restrictive requirement (14b) is in contradiction with
the requirement (29). In order to achieve an appropriate
study of the existence of the acoustic black hole we have to
address the issue of the acoustic refractive index related to
high density variation (i.e., 𝛿𝜌 ≤ 𝜌0).
6. Conclusions

We have proved that a fluid becomes inhomogeneous in
interaction with a wave or a wave packet.The inhomogeneity
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involves the change of the propagation velocity of a plane
wave. The change of the speed of propagation of a wave is
similar to the existence of an acoustic refractive index.

For a spherical wave packet, the refractive index depends
on the position from the centre of the wave packet. The
spherical wave packet induces a change in the trajectory
of the acoustic plane wave. Following the approach of the
gravitational deviation of the light we computed the deviation
of a plane wave in the presence of the wave packet. According
to the principle of causality, an interactionmay obey between
the wave and the plane wave packet.

The deviation depends on the wave packet parameters:
the wavelength and the amplitude of oscillations and the
position relative to the centre of the wave packet. The
existence of the deviation of the plane wave travelling in the
fluid (modified for spherical wave packet) suggests that, for
certain values of the impact parameter, the plane wave has a
circular trajectory. This is an acoustic black hole.

In our approach we have adopted the same frequency for
the plane wave as for the waves of the wave packets which
disturb the fluid. In a forthcoming paper we will analyze the
consequences which can arise from the assumption that the
plane wave has another angular frequency and therefore the
average is done for a period corresponding to this angular
frequency.
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The entropic force attracts a lot of interest for its multifunctional properties. For instance, Einstein’s field equation, Newton’s law
of gravitation, and the Friedmann equation can be derived from the entropic force. In this paper, utilizing a new kind of rainbow
gravity model that was proposed by Magueijo and Smolin, we explore the quantum gravity corrections to the entropic force. First,
we derive the modified thermodynamics of a rainbow black hole via its surface gravity. Then, according to Verlinde’s theory, the
quantum corrections to the entropic force are obtained. The result shows that the modified entropic force is related not only to
the properties of the black hole but also to the Planck length ℓ𝑝 and the rainbow parameter 𝛾. Furthermore, based on the rainbow
gravity corrected entropic force, the modified Einstein field equation and the modified Friedmann equation are also derived.

1. Introduction

Prior research generally confirms that black holes have ther-
mal properties [1–4]. This idea started out with an analogy
connecting the laws of thermodynamics and those of gravity.
In 1973, Bekenstein proved that the entropy of a black hole 𝑆
is proportional to its horizon area𝐴; that is, 𝑆 = 𝐴𝑘𝐵𝑐3/4ℏ2𝐺,
where ℏ is the Planck constant, 𝑘𝐵 is the Boltzmann constant,
and 𝐺 is the Newton’s gravitational constant, respectively [1,
2]. Subsequently, inspired by Bekenstein’s theory of entropy,
Hawking first showed that the temperature of Schwarzschild
black hole is 𝑇 = 𝜅/2𝜋 with surface gravity 𝜅 [3]. After
years of continuous efforts, the authors in [5] established the
laws of black hole thermodynamics, which imply that the
thermodynamics of black holes have profound connections
with gravity.

In the past twenty years, several theories have been
proposed to study the deeper-seated relation between gravity
and thermodynamics [6–11]. Among these perspectives, the
entropic force approach, which was introduced by Verlinde,
has attracted a lot of attention. In [11], Verlinde claimed
that gravity is not a fundamental force; instead, it would be
explained as an entropic force, which arises from changes
in the information associated with the positions of material

bodies. This idea turns out to be very powerful. First, with
the help of the entropic force approach and the Unruh
temperature, one can obtain Newton’s second law. Second,
Newton’s law of gravitation can be derived by incorporating
the entropic force approach together with the holographic
principle and the equipartition law of energy.Third, andmost
importantly, the entropic force approach results in Einstein’s
equation. Subsequently, according to this new proposal of
gravity,many relevantworks appeared. In [12–16], the authors
derived the Friedmann equation of a Friedmann-Robertson-
Walker (FRW) universe via the entropic force approach. In
[17], the holographic dark energy has been investigated in
the context of the entropic force approach. Nozari et al. used
the entropic force approach to study the Hamiltonians of the
quantum systems in quasi-space [18]. Shi et al. noted that
entanglement entropy in loop quantum gravity can be used
to derive an entropic force [19]. Moreover, it should be noted
that the effect of quantum gravity can influence the entropic
force. Based on the entropic force approach, Aragão and Silva
obtained Newtonian gravity in loop quantum gravity [20].
In addition, the generalized uncertainty principle (GUP)
corrected entropic force has been investigated in [21–23].

On the other hand, it is well known that rainbow
gravity (RG) is also motivated by quantum gravity [24]. RG
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originates from the modified dispersion relation (MDR). In
many quantum gravity theories, it is found that the Planck
length is variable, which conflicts with previous conclusions
[25–27]. To resolve this contradiction, the standard energy-
momentum dispersion relation must be changed to a MDR.
Interestingly, the MDR can modify special relativity. Cur-
rently, special relativity is called double special relativity
(DSR) since it has two invariants: the velocity of light
and the Planck length [28]. In 2004, Magueijo and Smolin
generalized DSR to curved space-time and obtained RG. In
RG, the space-time background is related to the energy of
a test particle. Therefore, the background of this space-time
can be described by a family of metrics (rainbow metrics)
parameterized by 𝐸ℓ𝑝. In [29, 30], Hendi et al. studied the
RG-corrected thermodynamics of black holes. Sefiedgar used
the RG model that was introduced by Amelino-Camelia et
al. in [31, 32] to study the modified entropy-area law [33].
His work showed that the modifications are related to the
rainbow functions. As a matter of fact, there are many works
demonstrating that the RG model is not unique. According
to different phenomenological motivations, a series of RG
models can be obtained. Based on the varying speed of light
theory, which is a model that can explain the cosmological
horizon, flatness, and cosmological constant problems of Big-
Bang cosmology, Magueijo and Smolin proposed a kind of
MDR:

𝐸2
(1 − 𝛾𝐸ℓ𝑝)2 − 𝑝

2 = 𝑚2, (1)

where 𝛾, ℓ𝑝, and 𝑚 represent the rainbow parameter, the
Planck length, and the mass of the test particle, respectively.
Obviously, (1) indicates that space-time has an energy-
dependent velocity 𝑐(𝐸) = 𝑑𝐸/𝑑𝑝 = 1 − 𝐸ℓ𝑝. Comparing
it with the general form of MDR, namely, 𝐸2𝑓2(𝐸ℓ𝑝) −𝑝2𝑔2(𝐸ℓ𝑝) = 𝑚2, one can easily obtain a new model of RG,
whose rainbow functions are expressed as follows [34, 35]:

𝑓 (𝐸ℓ𝑝) = 1(1 − 𝛾𝐸ℓ𝑝) ,
𝑔 (𝐸ℓ𝑝) = 1.

(2)

It should bementioned the rainbow functions are responsible
for the modification of the energy-momentum relation in the
ultraviolet regime. Besides, (2) satisfies

lim
𝐸ℓ𝑝→0

𝑓 (𝐸ℓ𝑝) = 1,
lim
𝐸ℓ𝑝→0

𝑔 (𝐸ℓ𝑝) = 1. (3)

Using (2), Zhao and Liu calculated the modified thermody-
namics of black objects [36].The results showed that the effect
of rainbow gravity leads to new mass-entropy relations. In
addition to that, we showed that (2) can influence the phase
transition of black holes [37]. Inspired by those works, it
is interesting to investigate the RG-corrected entropic force.

Therefore, in this paper, using the rainbow functions that
were introduced by Magueijo and Smolin, we calculate the
modified Hawking temperature and entropy of a black hole.
Then, extending the work of Verlinde, the RG-corrected
entropic force is yielded. Furthermore, according to the
modified entropic force, the deformed Einstein field equation
and the deformed Friedmann equation are derived.

The organization of the paper is as follows. In Section 2,
we calculate the modified Hawking temperature and entropy
via the surface gravity from RG. In Section 3, the modified
entropic force is derived. Sections 4 and 5 are devoted to
the derivation of the deformed Einstein field equation and
the deformed Friedmann equation, respectively. Finally, the
results are briefly discussed in Section 6.

Throughout the paper, the natural units of 𝑘𝐵 = 𝑐 = ℏ = 1
are used.

2. The Impact of Rainbow Gravity
on Black Hole Thermodynamics

Generally, in order to obtain the modified metric of black
holes in rainbow gravity, one can simply make the replace-
ments d𝑡 → d𝑡/𝑓(𝐸ℓ𝑝) for time coordinates and d𝑥𝑖 →
d𝑥𝑖/𝑔(𝐸ℓ𝑝) for all spatial coordinates. Therefore, the metric
of a static spherically symmetric black hole without charge in
the framework of RG is

d𝑠2 = −1 − (2𝐺𝑀/𝑟)𝑓2 (𝐸ℓ𝑝) d𝑡2 + 𝑑𝑟2[1 − (2𝐺𝑀/𝑟)] 𝑔2 (𝐸ℓ𝑝)
+ 𝑟2𝑔2 (𝐸ℓ𝑝)dΩ

2,
(4)

where𝑀,𝐺, and dΩ2 are themass of a static spherically sym-
metric black hole, Newton’s gravitational constant, and line
elements of hypersurfaces, respectively [24]. The vanishing
of [1 − (2𝐺𝑀/𝑟)]/𝑓2(𝐸ℓ𝑝) at point 𝑟𝐻 = 2𝐺𝑀 indicates the
presence of an event horizon. Equation (4) reproduces the
standard static spherically symmetric black hole if (3) holds.
According to (4), surface gravity on the event horizon is given
by

𝜅 = −12 lim
𝑟→𝑟𝐻

√−𝑔11𝑔00
(𝑔00)󸀠
𝑔00 = 𝑔 (𝐸ℓ𝑝)𝑓 (𝐸ℓ𝑝)

14𝐺𝑀, (5)

where (𝑔00)󸀠 = 𝜕𝑡(𝑔00). The above equation indicates that the
surface gravity is modified by RG. It is well known that the
Hawking temperature is defined in terms of surface gravity;
that is, 𝑇𝐻 = 𝜅/2𝜋. Using the Hawking temperature-surface
gravity relation, the RG-corrected Hawking temperature can
be expressed as

𝑇𝐻 = 𝑔 (𝐸ℓ𝑝)𝑓 (𝐸ℓ𝑝)
18𝜋𝐺𝑀 = 18𝜋𝐺𝑀 (1 − 𝛾𝐸ℓ𝑝) . (6)

According to [38–41], in the vicinity of the Schwarzschild
surface, there is a relationship between the minimum value
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of position uncertainty Δ𝑥 of emitted particles and the
Schwarzschild radius 𝑟𝐻; namely, Δ𝑥 ≃ 𝑟𝐻. Then, by consid-
ering that the Heisenberg uncertainty principle Δ𝑝Δ𝑥 ≥ 1
still holds in RG, the energy uncertainty can be expressed asΔ𝐸 = 1/Δ𝑥. Therefore, one can obtain the following relation:

𝐸 ≥ 1Δ𝑥 ≃ 1𝑟𝐻 = 12𝐺𝑀, (7)

where 𝐸 is a lower bound on the energy of emitted particles.
With the help of (7), the RG-corrected Hawking temperature
can be rewritten as

𝑇𝐻 = 𝑇0 (1 − 𝛾ℓ𝑝2𝐺𝑀) = 18𝜋𝐺𝑀 (1 − 𝛾ℓ𝑝2𝐺𝑀) , (8)

where 𝑇0 = 1/8𝜋𝐺𝑀 is the original Hawking temperature.
Using the first law of black hole thermodynamics, the modi-
fied entropy is given by

𝑆 = ∫𝑇−1𝐻 d𝑀
= 4𝜋𝐺𝑀2 + 4𝜋𝛾𝑀ℓ𝑝 + 2𝜋𝛾

2ℓ2𝑝𝐺 ln (2𝐺𝑀 − 𝛾ℓ𝑝)
= 𝐴4ℓ2𝑝 [1 + 4𝛾ℓ𝑝√

𝜋𝐴 + 8𝜋𝛾2ℓ2𝑝𝐴 ln(√ 𝜋4𝐴 − 𝛾ℓ𝑝)] .
(9)

In the above expression, we use the area of horizon 𝐴 =16𝜋𝐺2𝑀2. It is clear that themodified entropy is related to the
area of horizon 𝐴, Planck length ℓ𝑝, and rainbow parameter𝛾. Furthermore, there is a logarithmic correction term in (9),
which is coincident with those results achieved in previous
works (e.g., [42, 43]). When 𝛾 = 0, (9) reduces to the original
entropy; namely, 𝑆 = 𝐴/4ℓ2𝑝.
3. The Modified Newton Law of Gravitation
due to the Rainbow Gravity

In the framework of quantum gravity, it is believed that infor-
mation can be stored on a volume of space. This viewpoint
is known as the holographic principle, which is supported
by black hole physics and the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence. Now, following the idea
of Verlinder, one can assume there is a screen in space and
it can separate points. When the particles move from one
side of the screen to the other side, the information is stored
on the screen. In [11], this screen is called a holographic
screen. Therefore, according to the holographic principle
and the second law of thermodynamics, when a test particle
approaches a holographic screen, the entropic force of a
gravitational system obeys the following relation:

𝐹Δ𝑥 = 𝑇Δ𝑆, (10)

where 𝐹, 𝑇, Δ𝑆, and Δ𝑟 represent the entropic force, the
temperature, the change of entropy on holographic screen,
and the displacement of the particle from the holographic
screen, respectively. Equation (10)means that a nonzero force

leads to a nonzero temperature. Motivated by an argument in
[1], which posits that the change in entropy is related to the
information on the boundary, that is, Δ𝑆 = 2𝜋𝑚Δ𝑟 with the
mass of particle 𝑚, hence, a linear relation between the Δ𝑆
and Δ𝑟 is given by

Δ𝑆 = 2𝜋𝑚Δ𝑟, (11)

whereΔ𝑟 = 1/𝑚with themass of the elementary component.
In [44], Hooft demonstrated that the horizon of black holes
can be considered as a storage device for information.
Assuming that the amount of information is𝑁 bits, and com-
bining the equipartition law of energy with the holographic
principle, the number of bits 𝑁 and area of horizon 𝐴 obey
the following relation:

𝑁 = 𝐴𝐺. (12)

Substituting the entropy-area law 𝑆 = 𝐴/4𝐺 and modified
entropy (9) into (12), the relation between 𝑁 and 𝐴 can be
rewritten as
𝑁 = 4𝑆
= 𝐴ℓ2𝑝 [1 + 4𝛾ℓ𝑝√

𝜋𝐴 + 8𝜋𝛾2ℓ2𝑝𝐴 ln(√ 𝜋4𝐴 − 𝛾ℓ𝑝)] . (13)

In the above equation, we utilize the natural units, which says𝐺 = ℓ2𝑝. Next, by adopting the equipartition law of energy, the
total energy of the holographic system can be written as

𝐸 = 𝑁𝑇2 . (14)

Now, substituting the relations 𝐸 = 𝑀 and 𝐴 = 4𝜋𝑟2, and
(10)–(13) into (14), the entropic force becomes

𝐹 = 4𝜋𝑀𝑚𝑁
= 𝐹0 [1 − 2𝛾𝑟 ℓ𝑝 − 2𝛾2𝑟2 ln( 14𝑟 − 𝛾ℓ𝑝) ℓ2𝑝]
= 𝐺𝑀𝑚𝑟2 [1 − 2𝛾𝑟 ℓ𝑝 − 2𝛾2𝑟2 ln( 14𝑟 − 𝛾ℓ𝑝) ℓ2𝑝] .

(15)

Obviously, (15) is the modified Newton law of gravitation,
and 𝐹0 = 𝐺𝑀𝑚/𝑟2 is the original Newton law of gravitation.
One can find that the modification is dependent not only
on the mass of two bodies 𝑀 and 𝑚, the distances between
the two bodies 𝑟, and Newton’s gravitational constant 𝐺 but
also on the Planck length ℓ𝑝 and the rainbow parameter 𝛾.
It illustrates that the modified Newton law of gravitation is
valid at small scales due to the effect of rainbow gravity (or
the effect of quantum gravity). Moreover, when 𝛾 = 0, (15)
reduces to the conventional one.

4. The Modified Einstein Field Equation
due to the Rainbow Gravity

In previous work, people found that Einstein’s field equation
can be derived from the entropic force approach. Therefore,
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in this section, we derive the modified Einstein field equation
via the RG-corrected entropic force. Taking into account
(13), one can generalize the entropy-corrected relation to the
following form:

d𝑁 = d𝐴𝐺 [1 + 2𝛾√𝜋𝐺𝐴 − 4𝐺𝜋3/2𝛾2
𝐴(√𝜋 − 2𝛾√𝐴𝐺)] , (16)

which is the bit density on a holographic screen. Next,
consider a certain static mass configuration with total mass𝑀 enclosed in the holographic screenS, and take the energy
associated with it divided over 𝑁 bits. It is easy to find that
each bit carries a mass equal to 𝑇/2. Hence, the total mass
can be expressed as

𝑀 = 12 ∫S 𝑇 d𝑁, (17)

and the local temperature on the screen is

𝑇 = 𝑒𝜙𝑛𝑏∇𝑏𝜙2𝜋 , (18)

where 𝑒𝜙 is the redshift factor as the local temperature 𝑇
is measured by an observer at infinity [45]. Inserting the
identifications for d𝑁 and 𝑇, (17) can be rewritten as

𝑀 = 14𝜋𝐺 ∫
S

𝑒𝜙

⋅ ∇𝜙 [1 + 2𝛾√𝜋𝐺𝐴 − 4𝐺𝜋3/2𝛾2
𝐴(√𝜋 − 2𝛾√𝐴𝐺)] .d𝐴,

(19)

where the right hand side (RHS) of (19) is the modified
Komar mass while the original Komar mass is 𝑀K =1/4𝜋𝐺∫

S
𝑒𝜙∇𝜙 d𝐴 [11]. Now, combining the Stokes theorem

with the killing equation ∇𝑎∇𝑎 = −𝑅𝑏𝑎𝜉𝑎, one can express the
original Komar mass in terms of the Ricci tensor 𝑅𝑎𝑏 and the
killing vector 𝜉𝑎 [12, 13]:

𝑀K = 14𝜋𝐺 ∫
Σ
𝑅𝑎𝑏𝑛𝑎𝜉𝑏d𝑉. (20)

Equating (19) and (20), one obtains

𝑀 = 14𝜋𝐺 ∫
Σ
𝑅𝑎𝑏𝑛𝑎𝜉𝑏d𝑉 + 14𝜋𝐺𝑒𝜙

⋅ ∇𝜙∫
S

[2𝛾√𝜋𝐺𝐴 − 4𝐺𝜋3/2𝛾2
𝐴(√𝜋 − 2𝛾√𝐴𝐺)]

.d𝐴.
(21)

In the above equation, Σ represents the three-dimensional
volume bounded by the holographic screen and 𝑛𝑎 is the
volume’s normal. On the other hand, following the viewpoint
that was proposed by Sefiedgar, the total mass 𝑀 can be
expressed as the stress-energy 𝑇𝜇] [33]; that is,

𝑀 = 2∫
Σ
d𝑉(𝑇𝜇] − 12𝑇𝑔𝜇]) 𝑛𝑎𝜉𝑏. (22)

Putting (22) into (21), one can obtain the following expres-
sion:

∫
Σ
[𝑅𝑎𝑏 − 8𝜋𝐺(𝑇𝑎𝑏 − 12𝑇𝑔𝑎𝑏)] 𝑛𝑎𝜉𝑏d𝑉
= −∫

S

𝑒𝜙∇𝜙[2𝛾√𝜋𝐺𝐴 − 4𝐺𝜋3/2𝛾2
𝐴(√𝜋 − 2𝛾√𝐴𝐺)] .d𝐴.

(23)

The RHS of (23) is a correction term, which is caused by
quantum gravity. In order to obtain Einstein’s field equation,
the RHS should be rewritten as [46]

− ∫
S

𝑒𝜙∇𝜙[2𝛾√𝜋𝐺𝐴 − 4𝐺𝜋3/2𝛾2
𝐴(√𝜋 − 2𝛾√𝐴𝐺)] .d𝐴

= −𝐺𝑀[2𝛾√𝜋𝐺𝐴 − 4𝐺𝜋3/2𝛾2
𝐴(√𝜋 − 2𝛾√𝐴𝐺)] .

(24)

Substituting (22) and (24) into (23), one has

∫
Σ
{𝑅𝑎𝑏 − 8𝜋𝐺(𝑇𝑎𝑏 − 12𝑇𝑔𝑎𝑏)

+ 2𝐺[2𝛾√𝜋𝐺𝐴 − 4𝐺𝜋3/2𝛾2
𝐴(√𝜋 − 2𝛾√𝐴𝐺)]

⋅ (𝑇𝑎𝑏 − 12𝑇𝑔𝑎𝑏)}𝑛𝑎𝜉𝑏d𝑉 = 0.
(25)

Finally, the deformed Einstein field equation is

𝑅𝑎𝑏 = 8𝜋𝐺(𝑇𝑎𝑏 − 12𝑇𝑔𝑎𝑏)
⋅ [1 + 𝛾2√ 𝐺𝜋𝐴 − 𝐺𝜋1/2𝛾2

𝐴(√𝜋 − 2𝛾√𝐴𝐺)] .
(26)

It is obvious that this field equation is affected by the
geometry of space-time, the energy-momentum tensor, and
the rainbow parameter 𝛾. If 𝛾 vanishes or the horizon area
becomes too large, (26) reduces to the original Einstein field
equation.

5. The Modified Friedmann Equation
due to Rainbow Gravity

In this section, according to the methods which were pro-
posed in [12–16, 23, 29, 30], the RG-corrected Friedmann
equation is derived via the modified entropic force approach.
First, let us consider a 4-dimensional rainbow FRWuniverse,
whose linear element is given by

d𝑠2 = − d𝑡2𝑓2 (𝐸ℓ𝑝) +
𝑎 (𝑡)2𝑔2 (𝐸ℓ𝑝) (

d𝑟21 − 𝑘𝑟2 + 𝑟2dΩ2) , (27)

where dΩ2 = d𝜃2 + sin2𝜃 d𝜑2 represents the metric of a two-
dimensional unit sphere, 𝑎 is scale factor of the universe, and
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𝑘 is the spatial curvature constant. According to [47, 48], it
is suitable to use the notion 𝑟 = 𝑓(𝐸ℓ𝑝)𝑎(𝑡)𝑟/𝑔(𝐸ℓ𝑝) and
relation ℎ𝜇]𝜕𝜇𝑟𝜕]𝑟 = 0; the modified dynamical apparent
horizon of FRW space-time becomes

𝑟𝑎 = 1
√𝐻2 + (𝑓 (𝐸ℓ𝑝) 𝑘/𝑔 (𝐸ℓ𝑝) 𝑎2) , (28)

where 𝐻 = ̇𝑎/𝑎 is the Hubble parameter with ̇𝑎 = 𝜕𝑡𝑎.
Significantly, (28) recovers the original apparent horizon of
FRW space-time when 𝑓(𝐸ℓ𝑝) = 1 and 𝑔(𝐸ℓ𝑝) = 1. If
one assumes that the matter source in the FRW universe is
a perfect fluid, the tress-energy tensor of this fluid can be
expressed as

𝑇𝜇] = (𝜌 + 𝑝) 𝑢𝜇𝑢] + 𝑝𝑔𝜇]. (29)

Hence, the following continuity equation can be derived from
the conservation law of energy-momentum:

̇𝜌 + 3𝐻 (𝜌 + 𝑝) = 0. (30)

For obtaining the modified Friedmann equation, we need
to consider a compact spatial region with volume 𝑉 =(4/3)𝜋𝑟3. By incorporating the Newton second law with the
gravitational force, one has

𝐹 = 𝑚𝜕2𝑟𝜕𝑡2 = 𝑚 ̈𝑎𝑟𝑓 (𝐸ℓ𝑝)𝑔 (𝐸ℓ𝑝) = −𝐺
𝑀𝑚𝑟2 𝜒 (ℓ𝑝, 𝛾) , (31)

where 𝜒(ℓ𝑝, 𝛾) = 1 − 2𝛾ℓ𝑝/𝑟 − 2𝛾2 ln(1/4𝑟 − 𝛾ℓ𝑝)ℓ2𝑝/𝑟2.
Substituting (31) into (30), one can obtain the following
acceleration equation with some manipulations:

̈𝑎𝑎 = −43𝜋𝐺𝜌𝜒 (ℓ𝑝, 𝛾) . (32)

Furthermore, the total physical𝑀 can be defined as

𝑀 = ∫
V

d𝑉(𝑇𝜇]𝑢𝜇𝑢]) = 43𝜋𝑟3𝜌, (33)

with energy density of the matter 𝜌 = 𝑀/𝑉, and the volume
becomes 𝑉 = 4𝜋[𝑎𝑟𝑓(𝐸ℓ𝑝)]3/3𝑔3(𝐸ℓ𝑝). However, in order
to get the Friedmann equation, one should use the active
gravitational massM = 4𝜋𝜌[𝑎𝑟𝑓(𝐸ℓ𝑝)]3/3𝑔3(𝐸ℓ𝑝) to replace
the total mass 𝑀. Then, following the agreement of [13, 16],
the active gravitational mass is given by

M = 2∫
V

(𝑇𝜇] − 12𝑇𝑔𝜇]) 𝑢𝜇𝑢]d𝑉
= 43 [

𝜋𝑟𝑓 (𝐸ℓ𝑝)𝑔 (𝐸ℓ𝑝) ]
3

(𝜌 + 3𝑝) .
(34)

Next, using the active gravitational mass instead of the total
mass in (33), the modified acceleration equation for the
dynamical evolution of the FRW universe becomes

̈𝑎𝑎 = −43𝜋𝐺 (𝜌 + 3𝑝) 𝜒 (ℓ𝑝, 𝛾) . (35)

It should be noted that the effect of correction terms in (35)
is too small to detect because the apparent horizon radius 𝑟
is very large. However, according to the viewpoint in [16], the
rainbow gravity parameter 𝛾 can be investigated by using the
modified acceleration equation for the dynamical evolution
of the FRW universe.

As we know, prior research and observational data sub-
stantiates that our universe is accelerating [49, 50]. One of
the possible explanations for this fact is that our universe is
dominated by dark energy. Therefore, we can constrain the
rainbow parameter 𝛾with themodified acceleration equation
at the late time.When assuming our universe is dominated by
the dark energy, themodified acceleration equation at the late
time satisfies the following expression:

̈𝑎𝑎 = −43𝜋𝐺 (𝜌 + 3𝑝) (1 −
2𝛾ℓ𝑝𝑟 ) , (36)

where 𝑝 = 𝑤𝜌. For the sake of discussion, we only retain the
terms up to O(𝛾). Since dark energy has negative pressure,
one has the relationship 1 + 3𝑤 < 0. Hence, the upper bound
of 𝛾 is given by

𝛾 < 𝑟ℓ𝑝2 . (37)

Furthermore, when considering a universe dominated by
dust, the modified acceleration equation at the late time is
given by

̈𝑎𝑎 = −43𝜋𝐺𝜌(1 − 2𝛾ℓ𝑝𝑟 ) . (38)

In the equation above, we ignore the higher order terms of
O(𝛾2). For obtaining an accelerating universe, it is required
that ̈𝑎/𝑎 > 0. Therefore, the lower bound of the rainbow
parameter turns out to be

𝛾 > 𝑟ℓ𝑝2 . (39)

Next, substituting the continuity equation (30) into the
modified acceleration equation (35), and multiplying both
sides with ̇𝑎𝑎, then integrating, one yields [51, 52]

𝑑 ( ̇𝑎2)
𝑑𝑡 = 8𝜋𝐺3

𝑑 (𝜌𝑎2)
𝑑𝑡 𝜒 (ℓ𝑝, 𝛾) . (40)

Integrating both sides for each term of (40), the result is

𝐻2 + 𝑘𝑎2 = 8𝜋𝐺3 𝜌{1 + 1𝜌𝑎2
⋅ ∫ [−2𝛾𝑟𝑎 ℓ𝑝 − 2𝛾2(𝑟𝑎)2 × ln( 14𝑟𝑎 − 𝛾ℓ𝑝)]
⋅ ℓ2𝑝𝑑 (𝜌𝑎2)} ,

(41)

where 𝐻 means the Hubble parameter and 𝑘 is the spatial
curvature. For 𝑘 = 1, 𝑘 = −1, and 𝑘 = 0, one
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has a hyperspherical, hyperbolic, and flat FRW universe,
respectively. According to the time-independent constant
(or equation of state parameter) 𝑤 = 𝑝/𝜌, the continuity
equation (33) is integrated to give

𝜌 = 𝜌0𝑎−3(1+𝑤), (42)

where 𝜌0 is an integration constant. By incorporating (42)
with (41), then integrating, one has

𝐻2 + 𝑘𝑎2 = 8𝜋𝐺3 𝜌{1 + (1 + 3𝑤){− 2𝛾𝑟 (2 + 3𝑤)ℓ𝑝
+ 2𝛾29𝑟2 (1 + 𝑤)2 [1 − 3 (1 + 2) ln( 14𝑟 − ℓ𝑝𝛾)]
⋅ ℓ2𝑝}} ,

(43)

whereO(𝛾3, ℓ3𝑝) is the higher order correction terms.With the
help of the expression of dynamical apparent horizon 𝑟𝑎, (43)
can be rewritten as

(𝐻2 + 𝑘𝑎2){{{1 − (1 + 3𝑤)
{{{−

2𝛾(2 + 3𝑤)√𝐻2 + 𝑘2𝑎2 ℓ𝑝

+ 2𝛾29 (1 + 𝑤)2 (𝐻2 + 𝑘2𝑎2)[[1 − 3 (1 + 𝑤)

× ln(14√𝐻2 + 𝑘2𝑎2 − ℓ𝑝𝛾)ℓ2𝑝]]
}}}
}}} = 8𝜋𝐺3 𝜌.

(44)

Finally, we derive the modified Friedmann equation from
the RG-corrected entropic force. Equation (44) shows that
the deformed Friedmann equation is related not only to the
spatial curvature 𝑘, Hubble parameter 𝐻, scale factor of the
universe 𝑎, and equation of state parameter 𝜔 but also to the
rainbow parameter 𝛾 and Planck length ℓ𝑝. It means that the
Friedmann equation is observer-dependent. Due to the effect
of rainbow gravity, the deformed Friedmann equation (44)
becomes susceptible when the apparent horizon approaches
the order of Planck scale. Therefore, our result can be used
to analyze the early stage of the universe. In addition, when
the apparent horizon radius becomes too large or 𝛾 = 0, (44)
recovers the original Friedmann equation.

6. Conclusions

In the paper, we studied the RG-corrected entropic force.
First, we investigated the RG-corrected thermodynamics and
found that RG leads to a new mass-entropy relation. Then,
following Verlinde’s new perspective on the relation between
gravity and thermodynamics, the quantum corrections to the
entropic force and Newton’s law of gravitation are obtained.
Moreover, we further extended our study to the relativistic
case as well as cosmological case; hence, we derived the
modified Einstein field equation and themodified Friedmann

equation via the RG-corrected entropic force. Our results
reveal that the modified Newton law of gravitation, modified
Einstein’s field equation, and the modified Friedmann equa-
tion are influenced by the effect of rainbow gravity (rainbow
parameter 𝛾). In other words, the results are observer-
dependent. Meanwhile, it has been found that the results are
sensitive to a scale that is comparable to the Planck energy
scale. However, when rainbow parameter 𝛾 vanishes or the
scale becomes too large, the modifications reduce to the
original cases. Therefore, one can use the modified Newton
law of gravitation and Einstein’s field equation to investigate
the gravitational interaction between objects at the sub-𝜇𝑚
scale and analyze the properties of the early universe by using
the modified Friedmann equation. Moreover, according to
the observational data of today’s astronomy, one can also
constrain the rainbow parameter 𝛾 by various energy com-
binations of the universe. Furthermore, it is easily found that
our results are different from those in [16] since we adopt a
newRGmodel, whichwas proposed byMagueijo and Smolin.
Recently, the authors in [50] show that velocity of light in
the early universe was faster than it is now, and RG model
we used in this paper just fits their view point. Therefore, we
think our results aremore suitable for the study of the physical
properties of the early universe.
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