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As very powerful and important tools in the study of nonlin-
ear sciences, variational inequalities and vector optimization
have attracted so much attention. Over the last decades,
variational inequality and vector optimization techniques
have been applied extensively in such diverse fields as biology,
chemistry, economics, engineering, game theory, manage-
ment science, physics, and so on. The thorough study of
both theory and methods about variational inequalities and
vector optimization contained in the literature will help us
to find new variational inequalities and vector optimization
techniques for solving the practical problems.

The aim of this special issue is to present new approaches
and theories for variational inequalities and vector optimiza-
tion problems arising in mathematics and applied sciences.

This special issue includes 24 high-quality peer-reviewed
papers that deal with different aspects of variational inequal-
ities and vector optimization problems.These papers contain
some new, novel, and innovative techniques and ideas. We
hope that all the papers published in this special issue can
motivate and foster further scientific works and development
of the research in the area of the theory, algorithms, and
applications of variational inequalities and vector optimiza-
tion problems.
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We study a nondifferentiable fractional programming problem as follows: (𝑃)min
𝑥∈𝐾

𝑓(𝑥)/𝑔(𝑥) subject to 𝑥 ∈ 𝐾 ⊆ 𝑋, ℎ
𝑖
(𝑥) ≤

0, 𝑖 = 1, 2, . . . , 𝑚, where𝐾 is a semiconnected subset in a locally convex topological vector space𝑋, 𝑓 : 𝐾 → R, 𝑔 : 𝐾 → R
+
and

ℎ
𝑖
: 𝐾 → R, 𝑖 = 1, 2, . . . , 𝑚. If 𝑓, −𝑔, and ℎ

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are arc-directionally differentiable, semipreinvex maps with respect

to a continuous map 𝛾 : [0, 1] → 𝐾 ⊆ 𝑋 satisfying 𝛾(0) = 0 and 𝛾


(0
+

) ∈ 𝐾, then the necessary and sufficient conditions for
optimality of (𝑃) are established.

1. Introduction

In recent years, there has been an increasing interest in
studying the develpoment of optimality conditions for non-
differentiable multiobjective programming problems. Many
authors established and employed some different Kuhn and
Tucker type necessary conditions or other type necessary
conditions to research optimal solutions; see [1–27] and ref-
erences therein. In [7], Lai and Ho used the Pareto optimality
condition to investigate multiobjective programming prob-
lems for semipreinvex functions. Lai [6] had obtained the
necessary and sufficient conditions for optimality program-
ming problems with semipreinvex assumptions. Some Pareto
optimality conditions are established by Lai and Lin in [8].
Lai and Szilágyi [9] studied the programming with convex
set functions and proved that the alternative theorem is valid
for convex set functions defined on convex subfamily 𝑆 of
measurable subsets in 𝑋 and showed that if the system

𝑓 (Ω) ≪ 𝜃,

𝑔 (Ω) < 𝜃
(1)

has on solution,where 𝜃 stands for zero vector in a topological
vector space, then there exists a nonzero continuous linear
function (𝑦

∗, 𝑧∗) ∈ 𝐶∗ × 𝐷∗ such that

⟨𝑓 (Ω) , 𝑦
∗

⟩ + ⟨𝑔 (Ω) , 𝑧
∗

⟩ ≥ 0 ∀Ω ∈ 𝑆. (2)

In this paper, we study the following optimization problem:

min
𝑥∈𝐾

𝑓 (𝑥)

𝑔 (𝑥)

subject to 𝑥 ∈ 𝐾 ⊆ 𝑋, ℎ
𝑖
(𝑥) ≤ 0,

𝑖 = 1, 2, . . . , 𝑚,

(𝑃)

where 𝐾 is a semiconnected subset in a locally convex
topological vector space 𝑋, 𝑓 : 𝐾 → R, 𝑔 : 𝐾 → R

+
and

ℎ
𝑖
: 𝐾 → (−∞, 0], 𝑖 = 1, 2, . . . , 𝑚, are functions satisfying

some suitable conditions. The purpose of this study is dealt
with such constrained fractional semipreinvex programming
problem. Finally, we established the Fritz John type necessary
and sufficient conditions for the optimality of a fractional
semipreinvex programming problem.
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2. Preliminaries

Throughout this paper, we let 𝑋 be a locally convex topolog-
ical vector space over the real field R. Denote 𝐿1(𝑋) by the
space of all linear operators from 𝑋 into R.

Let𝑊 be a nonempty convex subset of𝑋. Let𝑓 : 𝑊 → R

be differentiable at 𝑥
0

∈ 𝐾. Then there is a linear operator
𝐴 = 𝑓(𝑥

0
) ∈ 𝐿1(𝑋), such that

lim
𝛼→0

𝑓 ((1 − 𝛼) 𝑥
0
+ 𝛼𝑥) − 𝑓 (𝑥

0
)

𝛼
= 𝑓


(𝑥
0
) (𝑥 − 𝑥

0
) . (3)

Recall that a function 𝑓 : 𝑊 → R is called convex on 𝑊, if

𝑓 ((1 − 𝛼) 𝑥
0
+ 𝛼𝑥) ≤ (1 − 𝛼) 𝑓 (𝑥

0
) + 𝛼𝑓 (𝑥) (4)

or

𝑓 ((1 − 𝛼) 𝑥
0
+ 𝛼𝑥) − 𝑓 (𝑥

0
)

𝛼
≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) . (5)

If 𝑓 : 𝑊 → R is convex and differentiable at 𝑥
0
∈ 𝐾, then by

(3) and (5), we have

𝑓


(𝑥
0
) (𝑥 − 𝑥

0
) ≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) . (6)

In 1981, Hanson [13, 14] introduced a generalized convexity
on𝑋, so-called invexity; that is, 𝑥 − 𝑥

0
is replaced by a vector

𝜏(𝑥
0
, 𝑥) ∈ 𝑋 in (6), or

𝑓


(𝑥
0
) 𝜏 (𝑥
0
, 𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) . (7)

So an invex function is indeed a generalization of a convex
differentiable function.

Definition 1 (see [6]). (1) A set 𝐾 ⊆ 𝑋 is said to be
semiconnected with respect to a given 𝜏 : 𝑋 × 𝑋 → R if

𝑥, 𝑦 ∈ 𝐾, 0 ≤ 𝛼 ≤ 1 ⇒ 𝑦 + 𝛼𝜏 (𝑥, 𝑦, 𝛼) ∈ 𝐾. (8)

(2) A map 𝑓 : 𝑋 → R is said to be semipreinvex on
a semiconnected subset𝐾 ⊂ 𝑋 if each (𝑥, 𝑦, 𝛼) ∈ 𝐾×𝐾×[0, 1]

corresponds a vector 𝜏(𝑥, 𝑦, 𝛼) ∈ 𝑋 such that

𝑓 (𝑥 + 𝛼𝜏 (𝑥, 𝑦, 𝛼)) ≤ (1 − 𝛼) 𝑓 (𝑥) + 𝛼𝑓 (𝑦) ,

lim
𝛼↓0

𝛼𝜏 (𝑥, 𝑦, 𝛼) = 𝜃,
(9)

where 𝜃 stands for the zero vector of 𝑋.

The following is an example of a bounded semiconnected
set in R, which is semiconnected with respect to a nontrivial
𝜏.

Example 2. Let 𝐴 := [4, 8], 𝐵 := [−8, −4] and 𝐾 := 𝐴 ∪ 𝐵 be
bounded sets. Let 𝜏 : 𝐾 × 𝐾 × [0, 1] → R be defined by

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐴 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐵 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
−8 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐵 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
4 − 𝑦

1 − 𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐴 × [0,

1

2
] ,

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐴 × [

1

2
, 1] ,

𝜏 (𝑥, 𝑦, 𝛼) =
𝑥 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐵 × [

1

2
, 1] ,

𝜏 (𝑥, 𝑦, 𝛼) =
−8 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐴 × 𝐵 × [

1

2
, 1] ,

𝜏 (𝑥, 𝑦, 𝛼) =
4 − 𝑦

𝛼
, for (𝑥, 𝑦, 𝛼) ∈ 𝐵 × 𝐴 × [

1

2
, 1] .

(10)

Then 𝐾 is a bound semiconnected set with respect to 𝜏.

Theorem 3 (see [6, Theorem 2.2]). Let 𝐾 ⊂ 𝑋 be a
semiconnected subset and 𝑓 : 𝐾 → R a semipreinvex map.
Then any local minimum of 𝑓 is also a global minimum of 𝑓
over 𝐾.

From the assumption in problem 9, there exists a positive
number 𝜆 such that

𝑓 (𝑦)

𝑔 (𝑦)
≥ 𝜆 ∀𝑦 ∈ 𝑋,

𝑓 (𝑦) − 𝜆𝑔 (𝑦) ≥ 0.

(11)

Consequently, we can reduce the problem 9 to an equivalent
nonfractional parametric problem:

𝜐 (𝜆) := min
𝑦∈𝑋

(𝑓 (𝑦) − 𝜆𝑔 (𝑦)) ≥ 0, (𝑃
𝜆
)

where 𝜆 ∈ [0,∞) is a parameter.
We will prove that the problem (𝑃) is equivalent to the

problem (𝑃
𝜆
∗) for the optimal value 𝜆∗. The following result

is our main technique to derive the necessary and sufficient
optimality conditions for problem (𝑃).

Theorem 4. Problem (𝑃) has an optimal solution 𝑦
0
with

optimal value 𝜆∗ if and only if 𝑣(𝜆∗) = 0 and 𝑦
0
is an optimal

solution of (𝑃
𝜆
∗).

Proof. If 𝑦
0
is an optimal solution of (𝑃) with optimal value

𝜆∗, that is,

𝜆
∗

:=
𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

= min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
≤

𝑓 (𝑧)

𝑔 (𝑧)
∀𝑧 ∈ 𝑋. (12)
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It follows from (12) that

𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧) ≥ 0 ∀𝑧 ∈ 𝑋,

𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = 0.

(13)

Thus, we have

0 ≤ min
𝑧∈𝑋

(𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧)) ≤ 𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = 0. (14)

Then, by (14), we get

𝜈 (𝜆
∗

) = min
𝑧∈𝑋

(𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧)) = 𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = 0.

(15)

Therefore, 𝑦
0
is an optimal solution of (𝑃

𝜆
∗) and 𝜈(𝜆∗) = 0.

Conversely, if 𝑦
0
is an optimal solution of (𝑃

𝜆
∗) with

optimal value 𝜈(𝜆∗) = 0, then

𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) = min
𝑧∈𝑋

(𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧)) = 0. (16)

So

𝑓 (𝑧) − 𝜆
∗

𝑔 (𝑧) ≥ 0 = 𝑓 (𝑦
0
) − 𝜆
∗

𝑔 (𝑦
0
) ∀𝑧 ∈ 𝑋. (17)

It follows from (17) that
𝑓 (𝑧)

𝑔 (𝑧)
≥ 𝜆
∗

∀𝑧 ∈ 𝑋,

𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

= 𝜆
∗

,

(18)

and hence

min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
≥ 𝜆
∗

,

min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
≤

𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

= 𝜆
∗

.

(19)

Therefore,

min
𝑧∈𝑋

𝑓 (𝑧)

𝑔 (𝑧)
= 𝜆
∗

=
𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

(20)

and we know 𝑦
0
is an optimal solution of (𝑃) with optimal

value 𝜆
∗.

3. The Existence of
the Necessary and Sufficient Conditions
for Semipreinvex Functions

Definition 5 (see [6]). A mapping 𝑓 : 𝐾 ⊂ 𝑋 → R is
said to be arcwise directionally (in short, arc-directionally)
differentiable at 𝑥

0
∈ 𝐾 with respect to a continuous arc

𝛽 : [0, 1] → 𝐾 ⊂ 𝑋 if 𝑥
0
+ 𝛽(𝑡) ∈ 𝐾 for 𝑡 ∈ [0, 1] with

𝛽 (0) = 𝜃, 𝛽


(0
+

) = 𝑢 (in 𝑋) , (21)

that is, the continuous function 𝛽 is differentiable from right
at 0, and the limit

lim
𝑡↓0

𝑓 (𝑥
0
+ 𝛽 (𝑡)) − 𝑓 (𝑥

0
)

𝑡
≅ 𝑓


(𝑥
0
; 𝑢) exists. (22)

Note that the arc directional derivative 𝑓
(𝑥
0
; ⋅) is a

mapping from 𝑋 into R. Moreover, how can we make 𝐾 to
be a semiconnected set? Indeed, we can construct a function
𝜏 concerned with 𝛽 defined as follows.

For any 𝑥, 𝑦 ∈ 𝐾 and 𝑡 ∈ [0, 1], we choose a vector

𝜏 (𝑥, 𝑦, 𝑡) :=
𝛽 (𝑡)

𝑡
=

𝛽 (𝑡) − 𝛽 (0)

𝑡 − 0
, (23)

then

lim
𝑡↓0

𝜏 (𝑥, 𝑦, 𝑡) = 𝛽


(0
+

) = 𝑢,

𝑑

𝑑𝑡
[𝑡𝜏 (𝑥, 𝑦, 𝑡)]

𝑡=0+
= 𝛽


(0
+

) = 𝑢.

(24)

Let 𝑓 : 𝑋 → R, −𝑔 : 𝑋 → R
−
and ℎ

𝑖
: 𝑋 → R

−
, 𝑖 =

1, 2, . . . , 𝑚, be semipreinvex maps on a semiconnected subset
𝐾 in 𝑋. Consider a constrained programming problem as
(𝑃).

The following Fritz John type theorem is essential in this
section for programming problem (𝑃).

Theorem 6 (Necessary Optimality Condition). Suppose that
𝑓,−𝑔 and ℎ

𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are arc-directionally differentiable

at 𝑥
0
∈ 𝐾 and semipreinvex on 𝐾 with respect to a continuous

arc 𝛽 defined as in Definition 5. If 𝑥
0
minimizes locally for the

semipreinvex programming problem (𝑃), then there exist 𝜆∗ ∈

(0,∞) and {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞) such that

𝑓


(𝑥
0
; 𝑢) − 𝜆

∗

𝑔


(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (25)

where 𝑢 = 𝛽(0+) and

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0. (26)

Proof. By Theorem 4, the minimum solution to (𝑃) is also
a minimum to (𝑃

𝜆
∗). Then 𝑥

0
is the local minimal solution

to (𝑃
𝜆
∗). By Theorem 3, we have 𝑥

0
is the global minimal

solution to (𝑃
𝜆
). It follows that the system

[𝑓 (𝑥) − 𝜆
∗

𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆
∗

𝑔 (𝑥
0
)] < 0,

ℎ
𝑖
(𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚

(27)

has no solution in 𝐾, then we have

[𝑓 (𝑥) − 𝜆
∗

𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆
∗

𝑔 (𝑥
0
)] +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥) < 0

(28)

has no solution in 𝐾 for any {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞). Thus for any

𝑥 ∈ 𝐾,

[𝑓 (𝑥) − 𝜆
∗

𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆
∗

𝑔 (𝑥
0
)] +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥) ≥ 0

(29)
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for some {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞). Putting 𝑥 = 𝑥

0
in (29), we get

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) ≥ 0. (30)

Since 𝛾
𝑖
≥ 0 and ℎ

𝑖
(𝑥
0
) ≤ 0, it follows that

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0. (31)

So (26) is proved.
As 𝐾 is a semiconnected set, for any 𝑥 ∈ 𝐾 and 𝑡 ∈ [0, 1],

we have

𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡) ∈ 𝐾. (32)

For 𝑡 ̸= 0, the point 𝑥 = 𝑥
0
+ 𝑡𝜏(𝑥

0
, 𝑥, 𝑡) ̸= 𝑥

0
does not solve

the system (27). So substituting 𝑥 in (29) and using the result
(26), we obtain

[𝑓 (𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡)) − 𝑓 (𝑥

0
)]

− 𝜆
∗

[𝑔 (𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡)) − 𝑔 (𝑥

0
)]

+

𝑚

∑
𝑖=1

𝛾
𝑖
(ℎ
𝑖
(𝑥
0
+ 𝑡𝜏 (𝑥

0
, 𝑥, 𝑡)) − ℎ

𝑖
(𝑥
0
)) ≥ 0.

(33)

Since𝑓 and 𝑔 are arc-directionally differentiable with respect
to 𝛽, choose a vector 𝜏(𝑥

0
, 𝑥, 𝑡) as (23), so that (24) hold. It

follows that if we divide (33) by 𝑡 ̸= 0 and take the limit as 𝑡 ↓ 0,
then we have

𝑓


(𝑥
0
; 𝑢) − 𝜆

∗

𝑔


(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (34)

which proves (25) and the proof of theorem is completed.

Theorem 7 (Sufficient Optimality Condition). Let 𝑓, −𝑔 and
ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 be arc-directionally differentiable at 𝑥

0
∈

𝐾 and semipreinvex on 𝐾 with respect to a continuous arc 𝛽

defined as inDefinition 5. If there exist𝜆 ∈ (0,∞) and {𝛾
𝑖
}
𝑚

𝑖=1
⊆

[0,∞) satisfying

𝑓


(𝑥
0
; 𝑢) − 𝜆𝑔



(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (35)

with 𝑢 = 𝛽(0+) and

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0, (36)

then 𝑥
0
is an optimal solution for problem (𝑃).

Proof. Suppose to the contrary that 𝑥
0
is not optimal for

problem (𝑃) and 𝜆 = 𝑓(𝑥
0
)/𝑔(𝑥
0
). Then 𝑓(𝑥

0
) − 𝜆𝑔(𝑥

0
) = 0.

Therefore,

0 ≤ min
𝑥∈𝑋

(𝑓 (𝑥) − 𝜆𝑔 (𝑥)) ≤ 𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
) = 0, (37)

thus 𝜈(𝜆) = min
𝑥∈𝑋

(𝑓(𝑥) − 𝜆𝑔(𝑥)) = 0.

ByTheorem 4, 𝑥
0
was not optimal for problem (𝑃

𝜆
).Then

there is an 𝑥 ∈ 𝑋 such that

𝑓 (𝑥) − 𝜆𝑔 (𝑥) < 𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
) ,

ℎ
𝑖
(𝑥) ≤ 0

(38)

for 𝑖 = 1, 2, . . . , 𝑚. Moreover, we have

[𝑓 (𝑥) − 𝜆𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
)] < 0, (39)

𝑚

∑
𝑖=1

𝛾
𝑖
[ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
)] ≤ 0 (since

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0)

(40)

for any {𝛾
𝑖
}
𝑚

𝑖=1
⊆ [0,∞). Thus

[𝑓 (𝑥) − 𝜆𝑔 (𝑥)] − [𝑓 (𝑥
0
) − 𝜆𝑔 (𝑥

0
)]

+

𝑚

∑
𝑖=1

𝛾
𝑖
[ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
)] < 0.

(41)

Since the semi-preinvex maps 𝑓, −𝑔 and ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑚

are arc-directionally differentiable, it follows that for
(𝑥, 𝑥
0
, 𝑡) ∈ 𝐾 × 𝐾 × [0, 1] there corresponds a vector

𝜏(𝑥, 𝑥
0
, 𝑡) ∈ 𝑋 such that

𝑓 (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) ≤ (1 − 𝑡) 𝑓 (𝑥

0
) + 𝑡𝑓 (𝑥) ,

−𝑔 (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) ≤ (1 − 𝑡) (−𝑔) (𝑥

0
) + 𝑡 (−𝑔) (𝑥) ,

ℎ
𝑖
(𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) ≤ (1 − 𝑡) ℎ

𝑖
(𝑥
0
) + 𝑡ℎ

𝑖
(𝑥) ,

(42)

and so

𝑓 (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) − 𝑓 (𝑥

0
)

𝑡
≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) ,

(−𝑔) (𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) + 𝑔 (𝑥

0
)

𝑡
≤ (−𝑔) (𝑥) + 𝑔 (𝑥

0
) ,

ℎ
𝑖
(𝑥
0
+ 𝑡𝜏 (𝑥, 𝑥

0
, 𝑡)) − ℎ

𝑖
(𝑥
0
)

𝑡
≤ ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
) .

(43)

Letting 𝑡 ↓ 0, we have lim
𝑡↓0

𝜏(𝑥, 𝑥
0
, 𝑡) = 𝛽(0+) = 𝑢 and the

last inequalities imply

𝑓


(𝑥
0
, 𝑢) ≤ 𝑓 (𝑥) − 𝑓 (𝑥

0
) ,

−𝑔


(𝑥
0
, 𝑢) ≤ − [𝑔 (𝑥) − 𝑔 (𝑥

0
)] ,

ℎ


𝑖
(𝑥
0
, 𝑢) ≤ ℎ

𝑖
(𝑥) − ℎ

𝑖
(𝑥
0
) .

(44)

Consequently, from (41) and (44), we obtain

𝑓


(𝑥
0
; 𝑢) − 𝜆𝑔



(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) < 0, (45)

which contradicts the fact of (35). Therefore 𝑥
0
is an optimal

solution of problem (𝑃).
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Since any global minimal is a local minimal, applying
Theorems 6 and 7, we can obtain the necessary and sufficient
conditions for problem (𝑃).

Theorem8. Suppose that𝑓,−𝑔 and ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are arc-

directionally differentiable at at 𝑥
0
∈ 𝐾 and semi-preinvex on

𝐾 with respect to a continuous arc 𝛽 defined as in Definition 5.
If 𝑥
0
minimizes globally for the semi-preinvex programming

problem (𝑃) if and only if there exists (𝜆, 𝛾
𝑖
) ∈ R+ × (R+ ∪ {0}),

𝑖 = 1, 2, . . . , 𝑚, such that

𝑓


(𝑥
0
; 𝑢) − 𝜆𝑔



(𝑥
0
; 𝑢) +

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ


𝑖
(𝑥
0
; 𝑢) ≥ 0, (46)

where 𝑢 = 𝛽(0+) and

𝑚

∑
𝑖=1

𝛾
𝑖
ℎ
𝑖
(𝑥
0
) = 0. (47)

Remark 9. Our results also hold for preinvex functions.
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Interval censored (IC) failure time data are often observed in medical follow-up studies and clinical trials where subjects can only
be followed periodically, and the failure time can only be known to lie in an interval. In this paper, we propose a weightedWilcoxon-
type rank test for the problem of comparing two IC samples. Under a very general sampling technique developed by Fay (1999),
the mean and variance of the test statistics under the null hypothesis can be derived. Through simulation studies, we find that the
performance of the proposed test is better than that of the two existing Wilcoxon-type rank tests proposed by Mantel (1967) and
R. Peto and J. Peto (1972). The proposed test is illustrated by means of an example involving patients in AIDS cohort studies.

1. Introduction

Interval censored (IC) failure time data often arise from
medical studies such as AIDS cohort studies and leukemic
blood cancer follow-up studies. In these studies, patients were
divided into two groups according to different treatments.
For example, in leukemic cancer studies, one group of the
patients was treated with radiotherapy alone, and the other
group of patients was treated with initial radiotherapy along
with adjuvant chemotherapy.The two groups of patients were
examined every month, and the failure time of interest is
the time until the appearance of leukemia retraction; the
object is to test the difference of the failure times between the
two treatments. Some of the patients missed some successive
scheduled examinations and came back later with a changed
clinical status, and they contributed IC observations. For
our convenience, we assume that in such a medical study,
the underlying survival function can be either discrete or
continuous, and there are only finitely many scheduled
examination times. IC data only provide partial information
about the lifetime of the subject, and the data is one kind of
incomplete data. To deal with such incomplete data, Turnbull
[1] introduced a self-consistent algorithm to compute the
maximum likelihood estimate of the survival function for
arbitrarily censored and truncated data. For IC data, there

have been some related studies in the literature as well.
For example, Mantel [2] extends Gehan’s [3, 4] generalized
Wilcoxon [5] test to interval censored data, and R. Peto and
J. Peto [6] also develop a different version. Sun [7] applied
Turnbull’s algorithm to estimate the number of failures and
risks of IC data and then propose a log-rank type test.

Fay [8], Sun [7], Zhao and Sun [9], Sun et al. [10], and
Huang et al. [11] extend the log-rank test to interval censored
data. Petroni andWolfe [12] and Lim and Sun [13] generalize
Pepe and Fleming’s [14] weighted Kaplan-Meier (WKM) [15]
test to interval censored data.

For the purpose of comparing the power of the test sta-
tistics, Fay [8] proposed a model for generating interval
censored observation. A similar selection scheme can also be
seen in the Urn model of Lee [16] and mixed cased model
of Schick and Yu [17]. In this paper, we propose a Wilcoxon-
type weighted rank test to compare with the existing two
Wilcoxon-type rank tests proposed byMantel [2] and R. Peto
and J. Peto [6]. We restrict ourselves to the Wilcoxon-type
rank tests because these tests are simple to use and have the
robustness property that their powers are fairly stable under
different lifetime distributions.

This paper is organized as follows. In Section 2, we
review the Turnbull’s [1] algorithm and introduce Fay’s [8]
selection model for generating interval censored data. This
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Table 1: The probability of selected interval.

True value of𝑋 Selected interval Probability
(0,1] 𝑝

1
𝑎
1

1 (0,2] 𝑝
1
(1 − 𝑎

1
)𝑎
2

(0,3] 𝑝
1
(1 − 𝑎

1
)(1 − 𝑎

2
)

(1,2] 𝑝
2
𝑎
1
𝑎
2

2 (0,2] 𝑝
2
(1 − 𝑎

1
)𝑎
2

(1,3] 𝑝
2
𝑎
1
(1 − 𝑎

2
)

(0,3] 𝑝
2
(1 − 𝑎

1
)(1 − 𝑎

2
)

(2,3] 𝑝
3
𝑎
2

3 (1,3] 𝑝
3
𝑎
1
(1 − 𝑎

2
)

(0,3] 𝑝
3
𝑎
1
(1 − 𝑎

1
)(1 − 𝑎

2
)

selection model can be extended to a more general one,
and the consistency property can be found in Schick and
Yu [17]. In Section 3, we introduce Mantel’s [2] and R. Peto
and J. Peto’s [6] generalized Wilcoxon-type rank tests and
propose our weighted rank test. In Section 4, a simulation
study is conducted to compare the performance of the three
tests under different configurations. Finally, an application to
AIDS cohort study is presented in Section 5.

2. Data Treatment

Assume that 𝑋 is the lifetime random variable of a survival
study, measured in discrete units and taking values 0 = 𝑥

0
<

𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑚
. Let 𝑈 = {(𝑥

𝑖
, 𝑥
𝑗
], 0 ≤ 𝑖 < 𝑗 ≤ 𝑚} be the

collection of all 𝑚(𝑚 + 1)/2 admissible intervals, and define
𝑝
𝑗
= 𝑃(𝑋 = 𝑥

𝑗
), where ∑𝑚

𝑗=1
𝑝
𝑗
= 1, so that 𝐹(𝑥) = ∑

𝑥
𝑗
≤𝑥

𝑝
𝑗
,

and 𝑆(𝑥) = ∑
𝑥
𝑗
>𝑥

𝑝
𝑗
. Note that the observed failure time data

in a clinical trial can be discretized if the underlying variable
is continuous.

2.1. Turnbull’s Algorithm. Suppose that there is a sample of
𝑛 i.i.d. observations (𝑋

𝑖

𝐿
, 𝑋𝑖
𝑅
] of 𝑋, 𝑖 = 1, 2, . . . , 𝑛. Here,

(𝑋𝑖
𝐿
, 𝑋𝑖
𝑅
] is the IC observation of the 𝑖th individual in the

sample, where 𝑋𝑖
𝐿
, 𝑋𝑖
𝑅

∈ {𝑥
0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
}, and 𝑋𝑖

𝐿
< 𝑋𝑖
𝑅
.

The case 𝑋𝑖
𝑅

= 𝑥
𝑚

is to denote that the failure time of
the 𝑖th subject occurs after the last examination time 𝑥

𝑚−1
.

Turnbull [1] proposed an algorithm to estimate the unknown
probabilities 𝑝 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
). The algorithm can be

described by the following four steps.

Step 1. Start with initial values 𝑝(0) = (𝑝
(0)

1
, 𝑝
(0)

2
, . . . , 𝑝(0)

𝑚
).

Step 2. Obtain improved estimates 𝑝(1)
𝑗

by setting

𝑝
(1)

𝑗
=

1

𝑛

𝑛

∑
𝑖=1

𝛼𝑖
𝑗
𝑝
(0)

𝑗

∑
𝑚

𝑙=1
𝛼𝑖
𝑙
𝑝
(0)

𝑙

, 𝑗 = 1, 2, . . . , 𝑚,

where 𝛼
𝑖

𝑗
= 𝐼 {𝑥

𝑗
∈ (𝑋
𝑖

𝐿
, 𝑋
𝑖

𝑅
]} .

(1)

Step 3. Return to Step 1 with 𝑝(1) replacing 𝑝(0).

Step 4. Stop when the required accuracy has been achieved.

Table 2: Selection probability 𝑄(𝐼) for all admissible intervals.

Interval 𝐼 Probability 𝑄(𝐼)

(0,1] 𝑝
1
𝑎
1

(1,2] 𝑝
2
𝑎
1
𝑎
2

(2,3] 𝑝
3
𝑎
2

(0,2] (𝑝
1
+ 𝑝
2
)(1 − 𝑎

1
)𝑎
2

(1,3] (𝑝
2
+ 𝑝
3
)𝑎
1
(1 − 𝑎

2
)

(0,3] (𝑝
1
+ 𝑝
2
+ 𝑝
3
)(1 − 𝑎

1
)(1 − 𝑎

2
)

The algorithm is simple and converges fairly rapidly. The
estimate 𝑝 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
) yielded from the iteration is

in fact the unique maximum likelihood estimate of 𝑝 =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) and is a self-consistent estimate.

2.2. Return Probability Model. To comply with the periodical
clinical inspection, Fay [8] proposed a simulation model
for generating IC data. He assumed that the probability
for a patient to return to the clinic for inspection at time
points 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚−1
are i.i.d. Bernulli random variables

𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚−1
; that is, 𝑃(𝐴

𝑖
= 1) = 𝑞, 𝑃(𝐴

𝑖
= 0) = 1 − 𝑞,

0 < 𝑞 < 1, 𝑖 = 1, 2, . . . , 𝑚 − 1. 𝐴
𝑖
= 1 means that the

patient returned to the clinic at the inspection time 𝑥
𝑖
, and

𝐴
𝑖

= 0 means that the patient missed the inspection. In
our model, we always assume that 𝐴

𝑚
= 1. The failure time

𝑋 is independent of (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚−1
), and the observable

random interval is

(𝑋
𝐿
, 𝑋
𝑅
]=(𝑥
𝑠
𝑗

, 𝑥
𝑡
𝑗

] , where 𝑠
𝑗
=max
𝑙

{0≤𝑙<𝑗 :𝐴
𝑙
=1} ,

𝑡
𝑗
=min
𝑙

{𝑗≤𝑙≤𝑚 :𝐴
𝑙
=1} ,

𝑥
𝑠
𝑗

< 𝑋 ≤ 𝑥
𝑡
𝑗

.

(2)

2.2.1. Model Consistency. Under Fay’s [8] selectionmodel, the
consistency property has been proved. This selection model
can be generalized to the case that the return probability at
each examination time pointmay be different; say that𝑃(𝐴

𝑖
=

1) = 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑚. To demonstrate the generalized

return model, we set 𝑚 = 3 and 𝑥
1

= 1, 𝑥
2

= 2, and
𝑥
3
= 3. The selection probabilities for all admissible intervals

are shown in Tables 1 and 2.
It is not difficult to see that the selection probability of the

interval 𝐼 = (𝑥
𝑢
, 𝑥
𝑣
] is

𝑄 {𝐼} = 𝑃 (𝐼) [𝑎
𝑢
×

𝑣−1

∏
𝑖=𝑢+1

(1 − 𝑎
𝑖
) × 𝑎
𝑣
] ,

𝑢 = 0, 1, 2, . . . , 𝑣 − 1, 𝑣 = 1, 2, . . . , 𝑚 − 1,

(3)

𝑄 {(𝑥
𝑢
, 𝑥
𝑚
]}

=𝑃 ((𝑥
𝑢
, 𝑥
𝑚
]) [𝑎
𝑢
×

𝑚−1

∏
𝑖=𝑢+1

(1−𝑎
𝑖
)] , 0≤𝑢≤𝑚−1,

(4)

where 𝑃(𝐼) = (𝑝
𝑢+1

+ 𝑝
𝑢+2

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
), 𝑥
0
= 0, and 𝑎

0
= 1.

For instance, the interval (0, 2] may be selected under two
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possibilities. First, the true value of 𝑋 is 𝑋 = 1, and the
patient who missed the inspection at 𝑥

1
= 1 then goes to

inspection at 𝑥
2
= 2; in this case, the interval is selected with

probability 𝑝
1
(1 − 𝑎
1
)𝑎
2
. Second, the true value of𝑋 is𝑋 = 2,

and the patient missed the inspection at 𝑥
1
= 1 then goes to

inspection at 𝑥
2
= 2; in this case, the interval is selected with

probability𝑝
2
(1−𝑎
1
)𝑎
2
, and therefore𝑄{(0, 2]} = (𝑝

1
+𝑝
2
)(1−

𝑎
1
)𝑎
2
.

The generalized return probability model can be viewed
as a special case of the mixed case model in Schick and
Yu [17]; under very mild conditions, the estimate of 𝑝 =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) computed by Turnbull’s algorithm is still

consistent.

3. Wilcoxon-Type Rank Tests for Interval
Censored Data

Two-sample Wilcoxon rank test is a well-known method to
test whether two samples of exact data come from the same
population.Themethod is constructed by ranking the pooled
samples and giving an appropriate rank to each observation.
However, this ranking technique is in general not admissible
for intervals. In this section, we will discuss how to generalize
the ranking technique and then propose a Wilcoxon-type
rank test for IC data to compare with two existing rank tests
proposed by Mantel [2] and R. Peto and J. Peto [6]. Suppose
that two samples of IC data for 𝑋 and 𝑌 are, respectively,
(𝑋
𝑖

𝐿
, 𝑋𝑖
𝑅
], 𝑖 = 1, 2, . . . , 𝑛

1
and (𝑌𝑖

𝐿
, 𝑌𝑖
𝑅
], 𝑖 = 1, 2, . . . , 𝑛

2
.

To test whether these two samples come from the same
population is equivalent to testing the equality of survival
functions 𝑆

𝑋
(𝑡) and 𝑆

𝑌
(𝑡), for all 𝑡 ≥ 0; that is,

𝐻
0
: 𝑆
𝑋
(𝑡) = 𝑆

𝑌
(𝑡) , ∀𝑡 ≥ 0. (5)

3.1. Mantel’s Test. Mantel [2] extended Gehan’s [3, 4] general-
ized Wilcoxon test to interval censored data by defining the
score of the 𝑘th observation as the number of observations
that are definitely greater than the 𝑘th observation minus the
number of observations that are definitely less than the 𝑘th
observation. He proposed the test statistic

𝑊 =

𝑛
1

∑
𝑘=1

𝑉
𝑘
, where 𝑉

𝑘
=

𝑛
1
+𝑛
2

∑
ℎ=1

𝑉
𝑘ℎ
,

𝑉
𝑘ℎ

=

{{

{{

{

1 if we know for sure obs-𝑘 > obs-ℎ,
−1 if we know for sure obs-𝑘 < obs-ℎ,
0 if not sure.

(6)

Under 𝐻
0
, the test statistic is approximately normal dis-

tributed with mean 0 and variance

Var (𝑊) = 𝑛
1
𝑛
2

𝑛
1
+𝑛
2

∑
𝑘=1

𝑉2
𝑘

(𝑛
1
+ 𝑛
2
) (𝑛
1
+ 𝑛
2
− 1)

. (7)

3.2. R. Peto and J. Peto’s Test. Different from the Mantel’s
generalized version, R. Peto and J. Peto [6] defined the score
of the 𝑖th observation as

𝑈
𝑖
=

𝑓 (𝑆 (𝑋𝑖
𝐿
)) − 𝑓 (𝑆 (𝑋𝑖

𝑅
))

𝑆 (𝑋𝑖
𝐿
) − 𝑆 (𝑋𝑖

𝑅
)

, (8)

where 𝑆 is the estimated survival function, 𝑓(𝑦) = 𝑦2 − 𝑦;
hence,𝑈

𝑖
= 𝑆(𝑋𝑖

𝐿
)+𝑆(𝑋𝑖

𝑅
)−1.They proposed the test statistic

𝑍
2

=
(𝑌2
1
/𝑛
1
+ 𝑌2
2
/𝑛
2
)

𝑠2
, where 𝑌

1
=

𝑛
1

∑
𝑖=1

𝑈
𝑖
,

𝑌
2
=

𝑛
1
+𝑛
2

∑
𝑖=𝑛
1
+1

𝑈
𝑖
,

𝑠
2

=
∑
𝑛
1
+𝑛
2

𝑖=1
𝑈2
𝑖

(𝑛
1
+ 𝑛
2
− 1)

.

(9)

Under𝐻
0
, the test statistic𝑍2 is approximately distributed as

𝜒2
1
.

3.3. Our Proposed Wilcoxon-Type Weighted Rank Test. To
transform an IC data to exact, we first assign each inspection
time 𝑥

𝑖
a primary rank 𝑅

𝑖
; for instance, 𝑅

𝑖
= 𝑖. Rewrite any

observation, say (𝑋
𝑗

𝐿
, 𝑋
𝑗

𝑅
], as (𝑋𝑗

𝐿
, 𝑋
𝑗

𝑅
] = (𝑥

𝑢
(𝑗) , 𝑥
𝑣
(𝑗)], where

𝑥
𝑢
(𝑗) , 𝑥
𝑣
(𝑗) ∈ {0, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
}, and 𝑥

𝑢
(𝑗) < 𝑥

𝑣
(𝑗) . Then, we

associate the observation (𝑋
𝑗

𝐿
, 𝑋
𝑗

𝑅
] with the weighted rank

rank ((𝑋𝑗
𝐿
, 𝑋
𝑗

𝑅
]) =

𝑣
(𝑗)

∑

𝑙=𝑢
(𝑗)
+1

𝑝
𝑙

𝑝
𝑢
(𝑗)
+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
(𝑗)

𝑅
𝑙
. (10)

Let𝑊
1
,𝑊
2
be, respectively, the average weighted rank of the

𝑋 and 𝑌 samples, so that

𝑊
1
=

1

𝑛
1

𝑛
1

∑
𝑖=1

rank ((𝑋𝑖
𝐿
, 𝑋
𝑖

𝑅
])

=
1

𝑛
1

𝑛
1

∑
𝑖=1

(

𝑣
(𝑖)

∑

𝑙=𝑢
(𝑖)
+1

𝑝
𝑙

𝑝
𝑢
(𝑖)
+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
(𝑖)

𝑅
𝑙
) ,

𝑊
2
=

1

𝑛
2

𝑛
2

∑
𝑗=1

rank ((𝑌𝑗
𝐿
, 𝑌
𝑗

𝑅
])

=
1

𝑛
2

𝑛
2

∑
𝑗=1

(

𝑣
(𝑗)

∑

𝑙=𝑢
(𝑗)
+1

𝑝
𝑙

𝑝
𝑢
(𝑗)
+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
(𝑗)

𝑅
𝑙
) .

(11)

To test whether two IC samples come from the same popula-
tion, we propose the test statistic

W.R.T =
𝑊
1
−𝑊
2

√Var (𝑊
1
) + Var (𝑊

2
)

. (12)

Under 𝐻
0
, the central limit theorem implies that W.R.T

is approximately distributed as a standard normal random
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variable. However, the mean and variance of 𝑊
1
and 𝑊

2

may depend on the probability space where they are defined;
it means, different selection probability for IC intervals in
(4) leads to different mean and variance of 𝑊

1
and 𝑊

2
. We

therefore only consider the selection model of Fay defined in
Section 2.2. In this model, the selection probability of an IC
interval is in one of the following categories:

(i) 𝑄 {(0, 𝑥
𝑟
]} =

𝑟

∑
𝑗=1

𝑝
𝑗
𝑞(1 − 𝑞)

𝑟−1

, 1 ≤ 𝑟 < 𝑚, (13)

(ii) 𝑄 {(0, 𝑥
𝑚
]} =

𝑚

∑
𝑗=1

𝑝
𝑗
(1 − 𝑞)

𝑚−1

, (14)

(iii) 𝑄 {(𝑥
𝑢
, 𝑥
𝑣
]} =

𝑣

∑
𝑗=𝑢+1

𝑝
𝑗
𝑞
2

(1 − 𝑞)
𝑟−1

, 1 ≤ 𝑢 < 𝑣 < 𝑚,

(15)

(iv) 𝑄 {(𝑥
𝑢
, 𝑥
𝑚
]} =

𝑚

∑
𝑗=𝑢+1

𝑝
𝑗
𝑞(1 − 𝑞)

𝑚−𝑢−1

, 1 ≤ 𝑢 < 𝑚.

(16)

Consider the probability space (𝑈, 2𝑈, 𝑄), where the probabil-
itymeasure𝑄 is defined in Section 2. To compute the variance
of𝑊
1
and𝑊

2
, we define a random variable𝑍 on this space by

assigning value𝑍{(𝑥
𝑢
, 𝑥
𝑣
]} to the interval (𝑥

𝑢
, 𝑥
𝑣
] in𝑈, where

𝑍 {(𝑥
𝑢
, 𝑥
𝑣
]} =

𝑣

∑
𝑙=𝑢+1

𝑝
𝑙

𝑝
𝑢+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣

𝑅
𝑙
, 0 ≤ 𝑢 < 𝑣 ≤ 𝑚.

(17)

The value 𝑍{(𝑥
𝑢
, 𝑥
𝑣
]} can be viewed as the weighted rank of

(𝑥
𝑢
, 𝑥
𝑣
]. If 𝑅

𝑙
, 𝑙 = 1, 2, . . . , 𝑚 are chosen as in the Wilcoxon

test for exact data, then our proposed test statistic W.R.T is
a Wilcoxon-type weighted rank test. Under this probability
space, the expectation 𝐸(𝑍) can be simplified as in the
following theorem.

Theorem 1. Suppose that 𝑍 is the random variable defined
on the probability space (𝑈, 2𝑈, 𝑄) according to (17). Then, the
expectation of 𝑍, 𝐸(𝑍), can be simplified as

𝐸 (𝑍) =

𝑚

∑
𝑙=1

𝑝
𝑙
𝑅
𝑙
, (18)

which is independent of the choice of 𝑞.

Proof. It is obvious that 𝐸(𝑍) can be written as 𝐸(𝑍) =

∑
𝑚

𝑙=1
𝑏
𝑙
𝑝
𝑙
𝑅
𝑙
, where the coefficients 𝑏

𝑙
, 𝑙 = 1, 2, . . . , 𝑚 are to be

determined. The theorem is, hence, proved if we can show
that all the coefficients 𝑏

𝑙
are ones.

Consider 𝑏
1
first. An interval (𝑥

𝑢
, 𝑥
𝑣
] contributes 𝑝

1
𝑅
1
in

𝐸(𝑍) if and only if it contains the point 𝑥
1
. Therefore, it must

be of the form (0, 𝑥
𝑣
], 𝑣 = 1, 2, . . . , 𝑚. For intervals (0, 𝑥

𝑣
],

1 ≤ 𝑣 ≤ 𝑚− 1, the probabilities𝑄{(0, 𝑥
𝑣
]} are defined in (13).

For interval (0, 𝑥
𝑚
], the probability 𝑄{(0, 𝑥

𝑚
]} is defined in

(14). Therefore, the coefficient 𝑏
1
is

𝑏
1
=

𝑚−1

∑
𝑣=1

𝑞(1 − 𝑞)
𝑣−1

+ (1 − 𝑞)
𝑚−1

= 𝑞
1 − (1 − 𝑞)

𝑚−1

1 − (1 − 𝑞)
+ (1 − 𝑞)

𝑚−1

= 1.

(19)

Next, consider the coefficient 𝑏
𝑗
for 1 < 𝑗 ≤ 𝑚 − 1. An

interval contributes 𝑝
𝑗
𝑅
𝑗
if and only if it contains the point

𝑥
𝑗
. Therefore, it must be of the form (𝑥

𝑢
, 𝑥
𝑣
], where 0 ≤ 𝑢 <

𝑗 ≤ 𝑣 ≤ 𝑚. It is necessary to study the contribution of the
interval (𝑥

𝑢
, 𝑥
𝑣
] to 𝑏
𝑗
in four different categories.

(i) 𝑢 = 0, 𝑣 ≤ 𝑚 − 1.

By (13), this category contributes∑𝑚−1
𝑣=𝑗

𝑞(1 − 𝑞)
𝑣−1.

(ii) 𝑢 = 0, 𝑣 = 𝑚.

By (14), the interval (0, 𝑥
𝑚
] contributes (1 − 𝑞)

𝑚−1.

(iii) 1 ≤ 𝑢 < 𝑣 ≤ 𝑚 − 1.

By (15), this category contributes ∑
𝑗−1

𝑢=1
∑
𝑚−1

𝑣=𝑗
𝑞2(1 −

𝑞)
𝑣−𝑢−1.

(iv) 𝑢 ≥ 1, 𝑣 = 𝑚.

By (16), this category contributes∑𝑗−1
𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1.

Consequently, the coefficient of 𝑏
𝑗
is

𝑏
𝑗
=

𝑚−1

∑
𝑣=𝑗

𝑞(1 − 𝑞)
𝑣−1

+ (1 − 𝑞)
𝑚−1

+

𝑗−1

∑
𝑢=1

𝑚−1

∑
𝑣=𝑗

𝑞
2

(1 − 𝑞)
𝑣−𝑢−1

+

𝑗−1

∑
𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

= 𝑞
(1 − 𝑞)

𝑗−1

[1 − (1 − 𝑞)
𝑚−𝑗

]

1 − (1 − 𝑞)
+ (1 − 𝑞)

𝑚−1

+

𝑗−1

∑
𝑢=1

𝑞(𝑞
(1 − 𝑞)

𝑗−𝑢−1

[1 − (1 − 𝑞)
𝑚−𝑗

]

1 − (1 − 𝑞)
)

+

𝑗−1

∑
𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

= (1 − 𝑞)
𝑗−1

− (1 − 𝑞)
𝑚−1

+ (1 − 𝑞)
𝑚−1

+

𝑗−1

∑
𝑢=1

𝑞(1 − 𝑞)
𝑗−𝑢−1

−

𝑗−1

∑
𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

+

𝑗−1

∑
𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1
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Table 3: The mean, sample variance, and sample deviation of 𝑞.

𝑛 𝑞 0.8 0.5 0.3
Estimate 0.8001 0.5029 0.3024

50 Variance 0.0020 0.0021 0.0012
Std. 0.0448 0.0461 0.0341

Estimate 0.8039 0.5036 0.3012
100 Variance 0.0010 0.001 0.0005

Std. 0.0320 0.0312 0.0233
Estimate 0.8009 0.4977 0.3033

150 Variance 0.0005 0.0008 0.0004
Std. 0.0225 0.0277 0.0207

= (1 − 𝑞)
𝑗−1

+ (1 − (1 − 𝑞)
𝑗−1

)

= 1.

(20)

Finally, the proof for the case 𝑗 = 𝑚 is

𝑏
𝑚
=

𝑚−1

∑
𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

+ (1 − 𝑞)
𝑚−1

= 1 − (1 − 𝑞)
𝑚−1

+ (1 − 𝑞)
𝑚−1

= 1.

(21)

The variance of 𝑍, Var(𝑍), is

Var (𝑍) = 𝐸 (𝑍
2

) − 𝐸
2

(𝑍)

=

𝑚(𝑚+1)/2

∑
𝑖=1

𝑄 (𝐼
𝑖
) 𝑅
2

(𝐼
𝑖
) − 𝐸
2

(𝑍) ,

(22)

where 𝑄(𝐼
𝑖
) and 𝑅(𝐼

𝑖
) are the selected probability and the

weighted rank of the 𝑖th admissible interval of 𝐼
𝑖
, respectively,

𝐼
𝑖
∈ 𝑈.
Consider the formulas (13)–(16), the selection probability

𝑄(𝐼) depends on 𝑝 = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) and 𝑞; therefore, the

likelihood function can be written as

𝐿 (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
, 𝑞) = 𝑃 (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
) 𝐺 (𝑞) , (23)

where 𝐺(𝑞) = 𝑞𝑘1(1 − 𝑞)
𝑘
2 , 𝑘
1
and 𝑘

2
are positive inte-

gers determined by the sample. Since the probability 𝑝 =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) can be estimated by Turnbull’s [1] algorithm

discussed in Section 2.2, and 𝑞 can also be estimated by
𝑘
1
/(𝑘
1
+ 𝑘
2
) trivially.

For demonstration, we set 𝑚 = 6, inspection times 𝑥
𝑖
=

𝑖, 𝑖 = 1, 2, . . . , 6, and the true lifetime 𝑋 is exponentially
distributed with 𝜆 = 1/3. For different sample sizes 𝑛 =

50, 100, and 150, different return probabilities of inspection
𝑞 = 0.8, 0.5, and 0.3, and simulation with 100 replications,
Table 3 presents the estimates of 𝑞 and sample variance and
sample deviation of 𝑞. To show the normality of W.R.T, we
assume that the two populations (sample size 𝑛

1
= 𝑛
2

=

30) are coming from the same distribution exponential (1/5).

−2 −1.5 −1 −0.5 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 1: CDF of standard normal and simulation result of W.R.T.
Line: standard normal. Point: simulation result of W.R.T (𝑞 = 0.5).

By simulation with 10000 replications and different return
probabilities of inspection 𝑞 = 0.8, 0.5, and 0.3, Table 4
presents the quantiles of W.R.T and 𝑁(0, 1). Figure 1 shows
the CDF plots of𝑁(0, 1) and W.R.T with 𝑞 = 0.5.

4. Simulation Study

In this section, we carry out simulation studies to compare
the performance ofW.R.T test withMantel’s [2] and Peto’s [6]
tests. In the study, we assume that the failure time random
variable is distributed as exponential, total sample sizes are
𝑛 = 100 and 200, and each sample has (𝑛/2) subjects. The
interval censored data are generated by the following four
steps.

Step 1. Generate a failure time 𝑡
𝑗
from some distribution.

Step 2. Create a 0, 1 sequence 𝐴 = {𝐴
0
, 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} with

probabilities 𝑃(𝐴
𝑖
= 1) = 𝑞, 𝑖 = 1, 2, . . . , 𝑚 − 1, and 𝑃(𝐴

0
=

1) = 𝑃(𝐴
𝑚
= 1) = 1.

Step 3. The observation is (𝑎, 𝑏], if 𝑎 < 𝑡
𝑗
≤ 𝑏, 𝐴

𝑎
= 𝐴
𝑏
= 1,

and 𝐴
𝑎+1

= 𝐴
𝑎+2

= ⋅ ⋅ ⋅ = 𝐴
𝑏−1

= 0.

Step 4. Repeat Step 1 to Step 3 for 𝑛 times.
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Table 4: The quantiles of W.R.T and𝑁(0, 1).

Quantile Normal (0,1) W.R.T
0.8 0.5 0.3

0.05 −1.6449 −1.6757 −1.6421 −1.6786

0.10 −1.2816 −1.3083 −1.2855 −1.3064

0.15 −1.0364 −1.0543 −1.0354 −1.0700

0.20 −0.8416 −0.8647 −0.8494 −0.8649

0.25 −0.6745 −0.6874 −0.6892 −0.6877

0.30 −0.5244 −0.5326 −0.5351 −0.5338

0.35 −0.3853 −0.3883 −0.3966 −0.3946

0.40 −0.2533 −0.2623 −0.2651 −0.2663

0.45 −0.1257 −0.1247 −0.1379 −0.1314

0.50 0 −0.0007 −0.0152 0.0002

0.55 0.1257 0.1296 0.1136 0.1306

0.60 0.2533 0.2582 0.2503 0.2604

0.65 0.3853 0.3879 0.3789 0.4012

0.70 0.5244 0.5336 0.5176 0.5501

0.75 0.6745 0.6814 0.6549 0.6954

0.80 0.8416 0.8535 0.8215 0.8611

0.85 1.0364 1.0508 1.0146 1.0734

0.90 1.2816 1.2758 1.2628 1.3346

0.95 1.6449 1.6368 1.6458 1.6747

We consider three return probabilities, 𝑞 = 0.8, 0.5, and
0.3, two sets of inspection time points, 𝑚 = 6, 10, and 1000
replications at significance level 0.05.

In the case of𝑚 = 6, 6 return points, we set the hazards 1/3
for population 1 and 1/3𝑒

𝛽 for population 2. Figure 2 shows
the density plot of exponential distribution with 𝛽 = −0.4,
−0.2, 0, 0.2, 0.4. In the case of 𝑚 = 10, 10 return points, we
set the hazards 1/4 for population 1 and 1/4𝑒

𝛽 for population
2. Figure 3 shows the density plot of exponential distribution
with 𝛽 = −0.6, −0.3, 0, 0.3, 0.6. Tables 5 and 6 present the
powers of the three tests with sample size 𝑛 = 100 and 200.
Simulation result shows that when the failure times come
from the exponential distribution, our proposed test W.R.T
is the most powerful.

5. An Application to AIDS Cohort Study

Consider the data of 262 hemophilia patients in De Gruttola
and Lagakos [18], among them, 105 patients received at least
1,000𝜇g/kg of blood factor for at least one year between
1982 and 1985, and the other 157 patients received less than
1,000𝜇g/kg in each year. In this medical study, patients were
treated between 1978 and 1988, the observations (𝑋

𝐿
, 𝑋
𝑅
] for

the 262 patients, based on a discretization of the time axis
into 6-month intervals.The failure time of interest is the time
of HIV seroconversion. The object is to test the difference of
the failure times between the two treatments. Applying our
proposed test, namely, W.R.T, Mantel’s [2] and Peto’s [6] tests
to this data set, the values of the three test statistics are −7.815,
−7.352, and 56.476, respectively. All the three 𝑃 values are
less than 0.001 and have the same conclusion that the HIV
seroconversion appeared in the two groups of patients being
significantly different.

1 2 3 4 5 6
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0.3

0.4

0.5

Figure 2: Density plot of exponential distribution with hazards
1/3𝑒𝛽.

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Figure 3: Density plot of exponential distribution with hazards
1/4𝑒
𝛽.
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Table 5: Power comparison of tests under exponential distribution with sample 𝑛 = 100.

m 𝑞 Test 𝛽

−0.4 −0.2 0 0.2 0.4
W.R.T 0.419 0.131 0.050 0.150 0.371

0.8 Mantel 0.391 0.120 0.047 0.143 0.362
Peto 0.385 0.122 0.050 0.140 0.361

W.R.T 0.383 0.123 0.045 0.132 0.345
6 0.5 Mantel 0.360 0.121 0.041 0.124 0.344

Peto 0.345 0.109 0.045 0.124 0.336

W.R.T 0.313 0.102 0.042 0.103 0.254
0.3 Mantel 0.307 0.101 0.040 0.096 0.255

Peto 0.294 0.099 0.040 0.101 0.248

m 𝑞 Test 𝛽

−0.6 −0.3 0 0.3 0.6
W.R.T 0.801 0.289 0.047 0.264 0.779

0.8 Mantel 0.736 0.246 0.051 0.236 0.737
Peto 0.717 0.242 0.050 0.237 0.740

W.R.T 0.793 0.278 0.048 0.275 0.712
10 0.5 Mantel 0.754 0.247 0.045 0.262 0.678

Peto 0.718 0.240 0.052 0.256 0.663

W.R.T 0.680 0.238 0.052 0.239 0.662
0.3 Mantel 0.667 0.215 0.048 0.223 0.640

Peto 0.624 0.216 0.049 0.224 0.632

Table 6: Power comparison of tests under exponential distribution with sample 𝑛 = 200.

m 𝑞 Test 𝛽

−0.4 −0.2 0 0.2 0.4
W.R.T 0.710 0.268 0.049 0.196 0.642

0.8 Mantel 0.678 0.251 0.053 0.192 0.632
Peto 0.667 0.253 0.054 0.190 0.630

W.R.T 0.656 0.201 0.050 0.193 0.573
6 0.5 Mantel 0.636 0.193 0.046 0.184 0.561

Peto 0.621 0.188 0.047 0.188 0.558

W.R.T 0.549 0.182 0.058 0.171 0.523
0.3 Mantel 0.537 0.182 0.057 0.168 0.506

Peto 0.523 0.181 0.052 0.164 0.501

m 𝑞 Test 𝛽

−0.6 −0.3 0 0.3 0.6
W.R.T 0.984 0.520 0.049 0.473 0.945

0.8 Mantel 0.964 0.472 0.050 0.441 0.930
Peto 0.957 0.460 0.050 0.439 0.927

W.R.T 0.971 0.484 0.046 0.448 0.957
10 0.5 Mantel 0.961 0.458 0.045 0.424 0.946

Peto 0.948 0.434 0.039 0.415 0.944

W.R.T 0.942 0.429 0.053 0.402 0.901
0.3 Mantel 0.927 0.413 0.050 0.387 0.892

Peto 0.908 0.385 0.060 0.368 0.889
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We investigate the problem of finding a common solution of a general system of variational
inequalities, a variational inclusion, and a fixed-point problem of a strictly pseudocontractive
mapping in a real Hilbert space. Motivated by Nadezhkina and Takahashi’s hybrid-extragradient
method, we propose and analyze new hybrid-extragradient iterative algorithm for finding a
common solution. It is proven that three sequences generated by this algorithm converge strongly
to the same common solution under very mild conditions. Based on this result, we also construct
an iterative algorithm for finding a common fixed point of three mappings, such that one of these
mappings is nonexpansive, and the other two mappings are strictly pseudocontractive mappings.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset ofH, and let PC be the metric projection fromH onto C. Let S : C → C
be a self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of
all real numbers. A mapping A : C → H is called monotone if

〈
Ax −Ay, x − y〉 ≥ 0, ∀x, y ∈ C. (1.1)

A mapping A : C → H is called L-Lipschitz continuous if there exists a constant L > 0, such
that

∥∥Ax −Ay∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ C. (1.2)
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For a given mapping A : C → H, we consider the following variational inequality (VI) of
finding x∗ ∈ C, such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C. (1.3)

The solution set of the VI (1.3) is denoted by VI(C,A). The variational inequality was first
discussed by Lions [1] and now is well known. Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving, and equilibrium problems; see, for example, [2–4]. To
construct a mathematical model which is as close as possible to a real complex problem, we
often have to use more than one constraint. Solving such problems, we have to obtain some
solution which is simultaneously the solution of two or more subproblem or the solution of
one subproblem on the solution set of another subproblem. Actually, these subproblems can
be given by problems of different types. For example, Antipin considered a finite-dimensional
variant of the variational inequality, where the solution should satisfy some related constraint
in inequality form [5] or some system of constraints in inequality and equality form [6].
Yamada [7] considered an infinite-dimensional variant of the solution of the variational
inequality on the fixed-point set of some mapping.

A mappingA : C → H is called α-inverse strongly monotone if there exists a constant
α > 0, such that

〈
Ax −Ay, x − y〉 ≥ α∥∥Ax −Ay∥∥2, ∀x, y ∈ C; (1.4)

see [8, 9]. It is obvious that an α-inverse strongly monotone mapping A is monotone and
Lipschitz continuous. A self-mapping S : C → C is called k-strictly pseudocontractive if
there exists a constant k ∈ [0, 1), such that

∥∥Sx − Sy∥∥2 ≤ ∥∥x − y∥∥2 + k∥∥(I − S)x − (I − S)y∥∥2, ∀x, y ∈ C; (1.5)

see [10]. In particular, if k = 0, then S is called a nonexpansive mapping; see [11].
A set-valued mapping M with domain D(M) and range R(M) in H is called

monotone if its graph G(M) = {(x, f) ∈ H × H : x ∈ D(M), f ∈ Mx} is a monotone set
inH ×H; that is,M is monotone if and only if

(
x, f
)
,
(
y, g
) ∈ G(M) =⇒ 〈x − y, f − g〉 ≥ 0. (1.6)

A monotone set-valued mapping M is called maximal if its graph G(M) is not properly
contained in the graph of any other monotone mapping inH.

Let Φ be a single-valued mapping of C into H, and let M be a multivalued mapping
with D(M) = C. Consider the following variational inclusion: find x∗ ∈ C, such that

0 ∈ Φ(x∗) +Mx∗. (1.7)

We denote by Ω the solution set of the variational inclusion (1.7). In particular, if Φ =M = 0,
then Ω = C.
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In 1998, Huang [12] studied problem (1.7) in the case whereM is maximal monotone,
and Φ is strongly monotone and Lipschitz continuous with D(M) = C = H. Subsequently,
Zeng et al. [13] further studied problem (1.7) in the case which is more general than Huang’s
one [12]. Moreover, the authors [13] obtained the same strong convergence conclusion as
in Huang’s result [12]. In addition, the authors also gave the geometric convergence rate
estimate for approximate solutions.

In 2003, for finding an element of Fix(S) ∩ VI(C,A) when C ⊂ H is nonempty, closed,
and convex, S : C → C is nonexpansive, and A : C → H is α-inverse strongly monotone.
Takahashi and Toyoda [14] introduced the following iterative algorithm:

xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn), ∀n ≥ 0, (1.8)

where x0 ∈ C chosen arbitrarily, {αn} is a sequence in (0, 1), and {λn} is a sequence in
(0, 2α). They showed that, if Fix(S) ∩ VI(C,A)/= ∅, then the sequence {xn} converges weakly
to some z ∈ Fix(S) ∩ VI(C,A). In 2006, to solve this problem (i.e., to find an element
of Fix(S) ∩ VI(C,A)), Nadezhkina and Takahashi [15] introduced an iterative algorithm
by a hybrid method. Generally speaking, the suggested algorithm is based on two well-
known types of methods, that is, on the extragradient-type method due to Korpelevich
[16] for solving variational inequality and so-called hybrid or outer-approximation method
due to Haugazeau (see [15]) for solving fixed point problem. It is worth emphasizing
that the idea of “hybrid” or “outer-approximation” types of methods was successfully
generalized and extended in many papers; see, for example, [17–23]. In addition, the idea
of the extragradient iterative algorithm introduced by Korpelevich [16] was successfully
generalized and extended not only in Euclidean but also in Hilbert and Banach spaces; see,
for example, [24–29].

Theorem NT (see [15, Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert
spaceH. LetA : C → H be a monotone and k-Lipschitz-continuous mapping, and let S : C → C be
a nonexpansive mapping such that Fix(S) ∩ VI(C,A)/= ∅. Let {xn}, {yn} and {zn} be the sequences
generated by

yn = PC(xn − λnAxn),
zn = αnxn + (1 − αn)SPC

(
xn − λnAyn

)
,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.9)

where x0 ∈ C is chosen arbitrarily, {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k), and {αn} ⊂ [0, c] for some
c ∈ [0, 1). Then the sequences {xn}, {yn}, and {zn} converge strongly to PFix(S)∩VI(C,A)x0.

It is easy to see that the class of α-inverse strongly monotone mappings in the above
mentioned problem of Takahashi and Toyoda [14] is the quite important class of mappings
in various classes of well-known mappings. It is also easy to see that while α-inverse
strongly monotone mappings are tightly connected with the important class of nonexpansive
mappings, α-inverse strongly monotone mappings are also tightly connected with the more
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general and also quite important class of strictly pseudocontractive mappings. That is, if a
mapping S : C → C is nonexpansive, then the mapping I − S is (1/2-) inverse strongly
monotone; moreover, Fix(S) = VI(C, I − S) (see, e.g., [14]). The construction of fixed points
of nonexpansive mappings via Mann’s algorithm has extensively been investigated in the
literature (see, e.g., [30, 31] and references therein). At the same time, if a mapping S : C → C
is k-strictly pseudocontractive, then the mapping I−S is (1−k)/2-inverse strongly monotone
and 2/(1 − k)-Lipschitz continuous.

Let B1, B2 : C → H be two mappings. Recently, Ceng et al. [32] introduced and
considered the following problem of finding (x∗, y∗) ∈ C × C, such that

〈
μ1B1y

∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,〈
μ2B2x

∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C,
(1.10)

which is called a general system of variational inequalities (GSVI), where μ1 > 0 and μ2 > 0
are two constants. The set of solutions of problem (1.10) is denoted by GSVI(C,B1, B2). In
particular, if B1 = B2 = A, then problem (1.10) reduces to the new system of variational
inequalities (NSVI), introduced and studied by Verma [33]. Further, if x∗ = y∗ additionally,
then the NSVI reduces to the VI (1.3).

In particular, if B1 = A and B2 = 0, then the GSVI (1.10) is equivalent to the VI (1.3).
Indeed, in this case, the GSVI (1.10) is equivalent to the following problem of finding

(x∗, y∗) ∈ C × C, such that

〈
μ1B1y

∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,〈
y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C.

(1.11)

Thus we must have x∗ = y∗. As a matter of fact, if x∗ /=y∗, then by setting x = x∗ we have

0 > −∥∥x∗ − y∗∥∥2 = 〈y∗ − x∗, x∗ − y∗〉 ≥ 0, (1.12)

which hence leads to a contradiction. Therefore, the GSVI (1.10) coincides with the VI (1.3).
Recently, Ceng at al. [32] transformed problem (1.10) into a fixed-point problem in the

following way.

Lemma 1.1 (see [32]). For given x, y ∈ C, (x, y) is a solution of problem (1.10) if and only if x is a
fixed point of the mapping G : C → C defined by

G(x) = PC
[
PC
(
x − μ2B2x

) − μ1B1PC
(
x − μ2B2x

)]
, ∀x ∈ C, (1.13)

where y = PC(x − μ2B2x).

In particular, if the mapping Bi : C → H is βi-inverse strongly monotone for i = 1, 2,
then the mapping G is nonexpansive provided μi ∈ (0, 2βi] for i = 1, 2.

Utilizing Lemma 1.1, they introduced and studied a relaxed extragradient method for
solving the GSVI (1.10). Throughout this paper, the set of fixed points of the mapping G
is denoted by Ξ. Based on the relaxed extragradient method and viscosity approximation
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method, Yao et al. [34] proposed and analyzed an iterative algorithm for finding a common
solution of the GSVI (1.10) and the fixed point problem of a strictly pseudocontractive
mapping S : C → C.

Subsequently, Ceng et al. [35] further presented and analyzed an iterative scheme for
finding a common element of the solution set of the VI (1.3), the solution set of the GSVI
(1.10), and the fixed point set of a strictly pseudo-contractive mapping S : C → C.

Theorem CGY (see [35, Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be α-inverse strongly monotone, and let Bi : C → H be βi-inverse
strongly monotone for i = 1, 2. Let S : C → C be a k-strictly pseudocontractive mapping such that
Fix(S) ∩ Ξ ∩ VI(C,A)/= ∅. Let Q : C → C be a ρ-contraction with ρ ∈ [0, 1/2). For given x0 ∈ C
arbitrarily, let the sequences {xn}, {yn}, and {zn} be generated iteratively by

zn = PC(xn − λnAxn),
yn = αnQxn + (1 − αn)PC

[
PC
(
zn − μ2B2zn

) − μ1B1PC
(
zn − μ2B2zn

)]
,

xn+1 = βnxn + γnyn + δnSyn, ∀n ≥ 0,

(1.14)

where μi ∈ (0, 2βi) for i = 1, 2, {λn} ⊂ (0, 2α] and {αn}, {βn}, {γn}, {δn} ⊂ [0, 1], such that

(i) βn + γn + δn = 1 and (γn + δn)k ≤ γn, for all n ≥ 0;

(ii) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1 and lim infn→∞δn > 0;

(iv) limn→∞(γn+1/(1 − βn+1) − γn/(1 − βn)) = 0;

(v) 0 < lim infn→∞λn ≤ lim supn→∞λn < 2α and limn→∞|λn+1 − λn| = 0.

Then the sequence {xn} generated by (1.14) converges strongly to x = PFix(S)∩Ξ∩VI(C,A)Qx, and
(x, y) is a solution of the GSVI (1.10), where y = PC(x − μ2B2x).

On the other hand, let A : C → H be a monotone, and let L-Lipschitz-continuous
mapping, Φ : C → H be an α-inverse strongly monotone mapping. Let M be a
maximal monotone mapping with D(M) = C, and let S : C → C be a nonexpansive
mapping such that Fix(S)∩Ω∩VI(C,A)/= ∅. Motivated Nadezhkina and Takahashi’s hybrid-
extragradient algorithm (1.9), Ceng et al. [36, Theorem 3.1] introduced another modified
hybrid-extragradient algorithm

yn = PC(xn − λnAxn),
tn = PC

(
xn − λnAyn

)
,

t̂n = JM,μn

(
tn − μnΦ(tn)

)
,

zn = (1 − αn − α̂n)xn + αnt̂n + α̂nSt̂n,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.15)
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where JM,μn = (I + μnM)−1, x0 ∈ C chosen arbitrarily, {λn} ⊂ (0, 1/L), {μn} ⊂ (0, 2α], and
{αn}, {α̂n} ⊂ (0, 1] such that αn + α̂n ≤ 1. It was proven in [36] that under very mild conditions
three sequences {xn}, {yn}, and {zn} generated by (1.15) converge strongly to the same point
PFix(S)∩Ω∩VI(C,A)x0.

Inspired by the research going on this area, we propose and analyze the following
hybrid extragradient iterative algorithm for finding a common element of the solution set Ξ
of the GSVI (1.10), the solution setΩ of the variational inclusion (1.7), and the fixed point set
Fix(S) of a strictly pseudo-contractive mapping S : C → C.

Algorithm 1.2. Assume that Fix(S) ∩ Ω ∩ Ξ/= ∅. Let μi ∈ (0, 2βi) for i = 1, 2, {μn} ⊂ (0, 2α],
and {σn}, {βn}, {γn}, {δn} ⊂ [0, 1] such that βn + γn + δn = 1, for all n ≥ 0. For given x0 ∈ C
arbitrarily, let {xn}, {yn}, and {zn} be the sequences generated by the hybrid extragradient
iterative scheme

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
,

t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
,

zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.16)

where JM,μn = (I + μnM)−1, for all n ≥ 0.

Under very appropriate assumptions, it is proven that all the sequences {xn}, {yn}, and
{zn} converge strongly to the same point x = PFix(S)∩Ω∩Ξx0. Furthermore, (x, y) is a solution
of the GSVI (1.10), where y = PC(x − μ2B2x).

Let T : C → C be a k-strictly pseudocontractive mapping, let Γ : C → C be a κ-
strictly pseudocontractive mapping, and let S : C → C be a nonexpansive mapping. Putting
B1 = I −T, B2 = 0, Φ = I −Γ, M = 0, and σn = 0, for all n ≥ 0 in Algorithm 1.2, we consider and
analyze the following hybrid extragradient iterative algorithm for finding a common fixed
point of three mappings S, Γ, and T .

Algorithm 1.3. Assume that Fix(S)∩Fix(Γ)∩Fix(T)/= ∅. Let μ1 ∈ (0, 1−k), {μn} ⊂ (0, 1−κ], and
{βn}, {γn}, {δn} ⊂ [0, 1] such that βn + γn + δn = 1, for all n ≥ 0. For given x0 ∈ C arbitrarily, let
{xn}, {yn}, and {zn} be the sequences generated by the hybrid extragradient iterative scheme

yn = xn − μ1(xn − Txn),
tn = yn − μ1

(
yn − Tyn

)
,

t̂n = tn − μn(tn − Γtn),
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zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0.

(1.17)

Under quite mild conditions, it is shown that all the sequences {xn}, {yn}, and {zn}
converge strongly to the same point PFix(S)∩Fix(Γ)∩Fix(T)x0.

Observe that Ceng et al. [36, Theorem 3.1] considered the problem of finding an
element of Fix(S) ∩ Ω ∩ VI(C,A) where S : C → C is nonexpansive, Nadezhkina and
Takahashi [15, Theorem 3.1] studied the problem of finding an element of Fix(S) ∩ VI(C,A)
where S : C → C is nonexpansive, and Ceng et al. [35, Theorem 3.1] investigated the problem
of finding an element of Fix(S) ∩ Ξ ∩ VI(C,A)where S : C → C is strictly pseudocontractive.
It is clear that every one of these three problems is very different from our problem of finding
an element of Fix(S) ∩ Ω ∩ Ξ where S : C → C is strictly pseudocontractive. Hence there is
no doubt that the strong convergence results for solving our problem are very interesting and
quite valuable. Because our hybrid extragradient iterative algorithms involve two inverse
strongly monotone mappings B1 and B2, a strictly pseudo-contractive self-mapping S, and
several parameter sequences, they are more flexible and more subtle than the corresponding
ones in [36, Theorem 3.1] and [15, Theorem 3.1], respectively. Furthermore, the relaxed
extragradient iterative scheme in Yao et al. [34, Theorem 3.2] is extended to develop our
hybrid extragradient iterative algorithms. In our results, the hybrid extragradient iterative
algorithms drop the requirements that 0 < lim infn→∞βn ≤ lim supn→∞βn < 1 and
limn→∞(γn+1/(1−βn+1)−γn/(1−βn)) = 0 in [34, Theorem 3.2] and [35, Theorem 3.1]. Therefore,
our results represent the modification, supplementation, extension, and improvement of [36,
Theorem 3.1], [15, Theorem 3.1], [34, Theorem 3.2], and [35, Theorem 3.1] to a great extent.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty closed convex subset ofH. We write → to indicate that the
sequence {xn} converges strongly to x and ⇀ to indicate that the sequence {xn} converges
weakly to x. Moreover, we use ωw(xn) to denote the weak ω-limit set of the sequence {xn},
that is,

ωw(xn) :=
{
x : xni ⇀ x for some subsequence {xni} of {xn}

}
. (2.1)

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such
that

‖x − PCx‖ ≤ ∥∥x − y∥∥, ∀y ∈ C. (2.2)
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PC is called the metric projection of H onto C. We know that PC is a firmly nonexpansive
mapping ofH onto C; that is, there holds the following relation

〈
PCx − PCy, x − y〉 ≥ ∥∥PCx − PCy

∥∥2, ∀x, y ∈ H. (2.3)

Consequently, PC is nonexpansive and monotone. It is also known that PC is characterized by
the following properties: PCx ∈ C and

〈
x − PCx, PCx − y〉 ≥ 0, (2.4)∥∥x − y∥∥2 ≥ ‖x − PCx‖2 +

∥∥y − PCx
∥∥2, (2.5)

for all x ∈ H,y ∈ C; see [11, 37] for more details. Let A : C → H be a monotone mapping. In
the context of the variational inequality, this implies that

x ∈ VI(C,A) ⇐⇒ x = PC(x − λAx), ∀λ > 0. (2.6)

It is also known that the norm of every Hilbert space H satisfies the weak lower
semicontinuity [4]. That is, for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn‖ ≥ ‖x‖ (2.7)

holds.
Recall that a set-valued mappingM : D(M) ⊂ H → 2H is called maximal monotone

ifM is monotone and (I + λM)D(M) = H for each λ > 0, where I is the identity mapping of
H. We denote by G(M) the graph ofM. It is known that a monotone mappingM is maximal
if and only if, for (x, f) ∈ H ×H, 〈f − g, x − y〉 ≥ 0 for every (y, g) ∈ G(M) implies f ∈ Mx.
Here the following example illustrates the concept of maximal monotone mappings in the
setting of Hilbert spaces.

Let A : C → H be a monotone, L-Lipschitz-continuous mapping, and letNCv be the
normal cone to C at v ∈ C, that is,

NCv =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C.

(2.8)

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,A); see [38].
Assume thatM : D(M) ⊂ H → 2H is a maximal monotone mapping. Then, for λ > 0,

associated withM, the resolvent operator JM,λ can be defined as

JM,λx = (I + λM)−1x, ∀x ∈ H. (2.9)

In terms of Huang [12] (see also [13]), there holds the following property for the resolvent
operator JM,λ : H → H.



Journal of Applied Mathematics 9

Lemma 2.1. JM,λ is single valued and firmly nonexpansive, that is,

〈
JM,λx − JM,λy, x − y〉 ≥ ∥∥JM,λx − JM,λy

∥∥2, ∀x, y ∈ H. (2.10)

Consequently, JM,λ is nonexpansive and monotone.

Lemma 2.2 (see [39]). There holds the relation:

∥∥λx + μy + νz
∥∥2 = λ‖x‖2 + μ∥∥y∥∥2 + ν‖z‖2 − λμ∥∥x − y∥∥2 − μν∥∥y − z∥∥2 − λν‖x − z‖2, (2.11)

for all x, y, z ∈ H and λ, μ, ν ∈ [0, 1] with λ + μ + ν = 1.

Lemma 2.3 (see [36]). Let M be a maximal monotone mapping with D(M) = C. Then for any
given λ > 0, x∗ ∈ C is a solution of problem (1.7) if and only if x∗ ∈ C satisfies

x∗ = JM,λ(x∗ − λΦ(x∗)). (2.12)

Lemma 2.4 (see [13]). LetM be a maximal monotone mapping with D(M) = C, and let V : C →
H be a strong monotone, continuous, and single-valued mapping. Then for each z ∈ H, the equation
z ∈ Vx + λMx has a unique solution xλ for λ > 0.

Lemma 2.5 (see [36]). LetM be a maximal monotone mapping with D(M) = C, and let A : C →
H be a monotone, continuous, and single-valued mapping. Then (I + λ(M + A))C = H for each
λ > 0. In this case,M +A is maximal monotone.

It is clear that, in a real Hilbert spaceH, S : C → C is k-strictly pseudo-contractive if
and only if there holds the following inequality:

〈
Sx − Sy, x − y〉 ≤ ∥∥x − y∥∥2 − 1 − k

2
∥∥(I − S)x − (I − S)y∥∥2, ∀x, y ∈ C. (2.13)

This immediately implies that if S is a k-strictly pseudocontractive mapping, then I − S is
(1 − k)/2-inverse strongly monotone; for further detail, we refer to [10] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the class
of nonexpansive mappings.

Lemma 2.6 (see [10, Proposition 2.1]). Let C be a nonempty closed convex subset of a real Hilbert
spaceH, and let S : C → C be a mapping.

(i) If S is a k-strict pseudo-contractive mapping, then S satisfies the Lipschitz condition

∥∥Sx − Sy∥∥ ≤ 1 + k
1 − k

∥∥x − y∥∥, ∀x, y ∈ C. (2.14)

(ii) If S is a k-strict pseudo-contractive mapping, then the mapping I − S is semiclosed at 0;
that is, if {xn} is a sequence in C such that xn → x̃ weakly and (I − S)xn → 0 strongly,
then (I − S)x̃ = 0.
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(iii) If S is k-quasistrict pseudo-contraction, then the fixed point set Fix(S) of S is closed and
convex, so that the projection PFix(S) is well defined.

Lemma 2.7 (see [34]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
S : C → C be a k-strictly pseudo-contractive mapping. Let γ and δ be two nonnegative real numbers
such that (γ + δ)k ≤ γ . Then

∥∥γ(x − y) + δ(Sx − Sy)∥∥ ≤ (γ + δ)∥∥x − y∥∥, ∀x, y ∈ C. (2.15)

The following lemma is well known to us.

Lemma 2.8 (see [11]). Every Hilbert spaceH has the Kadec-Klee property; that is, for given x ∈ H
and {xn} ⊂ H, we have

xn ⇀ x
‖xn‖ −→ ‖x‖

}
=⇒ xn −→ x. (2.16)

3. Main Results

In this section, we first prove the strong convergence of the sequences generated by
our hybrid extragradient iterative algorithm for finding a common solution of a general
system of variational inequalities, a variational inclusion, and a fixed problem of a strictly
pseudocontractive self-mapping.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let Bi : C → H
be βi-inverse strongly monotone for i = 1, 2, let Φ : C → H be an α-inverse strongly monotone
mapping, let M be a maximal monotone mapping with D(M) = C, and let S : C → C be a k-
strictly pseudocontractive mapping such that Fix(S) ∩ Ω ∩ Ξ/= ∅. For given x0 ∈ C arbitrarily, let
{xn}, {yn}, and {zn} be the sequences generated by

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
,

t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
,

zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(3.1)

where μi ∈ (0, 2βi) for i = 1, 2, {μn} ⊂ [ε, 2α] for some ε ∈ (0, 2α], and {σn}, {βn}, {γn}, {δn} ⊂
[0, 1] such that {σn} ⊂ [0, c] for some c ∈ [0, 1), {δn} ⊂ [d, 1] for some d ∈ (0, 1], βn + γn + δn = 1
and (γn + δn)k ≤ γn, for all n ≥ 0. Then the sequences {xn}, {yn}, and {zn} converge strongly to the
same point x = PFix(S)∩Ω∩Ξx0 if and only if ‖St̂n − t̂n‖ → 0. Furthermore, (x, y) is a solution of the
GSVI (1.10), where y = PC(x − μ2B2x).
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Proof. It is obvious that Cn is closed and Qn is closed and convex for every n = 0, 1, 2, . . .. As

Cn =
{
z ∈ C : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ 0

}
, (3.2)

we also know that Cn is convex for every n = 0, 1, 2, . . .. As

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0}, (3.3)

we have 〈xn − z, x − xn〉 ≥ 0, for all z ∈ Qn, and hence xn = PQnx0 by (2.4).
First of all, assume that the sequences {xn}, {yn}, and {zn} converge strongly to the

same point x = PFix(S)∩Ω∩Ξx0. Then it is clear that ‖xn − yn‖ → 0 and ‖xn − zn‖ → 0. Observe
that from the nonexpansiveness of the mappings PC(I − μ1B1) and PC(I − μ2B2) (due to μi ∈
(0, 2βi) for i = 1, 2), we have

∥∥yn − tn∥∥ =
∥∥PC[PC(xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
−PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]∥∥
=
∥∥PC(I − μ1B1

)
PC
(
I − μ2B2

)
xn − PC

(
I − μ1B1

)
PC
(
I − μ2B2

)
yn
∥∥

≤ ∥∥PC(I − μ2B2
)
xn − PC

(
I − μ2B2

)
yn
∥∥

≤ ∥∥xn − yn∥∥.
(3.4)

Hence, we conclude that ‖yn − tn‖ → 0 and tn → x. Since x ∈ Fix(S) ∩ Ω ∩ Ξ, we obtain
that Sx = x and x = JM,μn(x − μnΦ(x)). Thus, from the nonexpansiveness of the mapping
JM,μn(I − μnΦ), we have

∥∥∥t̂n − tn∥∥∥ =
∥∥σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

) − tn∥∥
= (1 − σn)

∥∥JM,μn

(
tn − μnΦ(tn)

) − tn∥∥
≤ ∥∥JM,μn

(
tn − μnΦ(tn)

) − x∥∥ + ‖x − tn‖
=
∥∥JM,μn

(
I − μnΦ

)
tn − JM,μn

(
I − μnΦ

)
x
∥∥ + ‖tn − x‖

≤ ‖tn − x‖ + ‖tn − x‖ = 2‖tn − x‖.

(3.5)

So, we deduce that ‖t̂n − tn‖ → 0 and t̂n → x. Note that∥∥∥St̂n − t̂n∥∥∥ ≤
∥∥∥St̂n − x∥∥∥ + ∥∥∥x − t̂n

∥∥∥
=
∥∥∥St̂n − Sx∥∥∥ + ∥∥∥x − t̂n

∥∥∥
≤
(
1 + k
1 − k + 1

)∥∥∥t̂n − x∥∥∥ =
2

1 − k
∥∥∥t̂n − x∥∥∥.

(3.6)

This implies that ‖St̂n − t̂n‖ → 0 as n → ∞.
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For the remainder of the proof, we divide it into several steps.
Step 1. We claim that Fix(S) ∩Ω ∩ Ξ ⊂ Cn ∩Qn for every n = 0, 1, 2, . . ..

Indeed, take a fixed p ∈ Fix(S) ∩Ω ∩ Ξ arbitrarily. Then Sp = p, JM,μn(p − μnΦ(p)) = p,
for all n ≥ 0, and

p = PC
[
PC
(
p − μ2B2p

) − μ1B1PC
(
p − μ2B2p

)]
. (3.7)

For simplicity, we write q = PC(p − μ2B2p), x̃n = PC(xn − μ2B2xn), and ỹn = PC(yn − μ2B2yn),

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
= PC

(
x̃n − μ1B1x̃n

)
,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
= PC

(
ỹn − μ1B1ỹn

)
,

(3.8)

for each n ≥ 0. Since Bi : C → H is βi-inverse strongly monotone, and 0 < μi < 2βi for i = 1, 2,
we know that for all n ≥ 0,

∥∥yn − p∥∥2
=
∥∥PC[PC(xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)] − p∥∥2
=
∥∥PC[PC(xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
−PC
[
PC
(
p − μ2B2p

) − μ1B1PC
(
p − μ2B2p

)]∥∥2
≤ ∥∥[PC(xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
−[PC(p − μ2B2p

) − μ1B1PC
(
p − μ2B2p

)]∥∥2
=
∥∥[PC(xn − μ2B2xn

) − PC(p − μ2B2p
)] − μ1

[
B1PC

(
xn − μ2B2xn

) − B1PC
(
p − μ2B2p

)]∥∥2
≤ ∥∥PC(xn − μ2B2xn

) − PC(p − μ2B2p
)∥∥2

− μ1
(
2β1 − μ1

)∥∥B1PC
(
xn − μ2B2xn

) − B1PC
(
p − μ2B2p

)∥∥2
≤ ∥∥(xn − μ2B2xn

) − (p − μ2B2p
)∥∥2 − μ1

(
2β1 − μ1

)∥∥B1x̃n − B1q
∥∥2

=
∥∥(xn − p) − μ2

(
B2xn − B2p

)∥∥2 − μ1
(
2β1 − μ1

)∥∥B1x̃n − B1q
∥∥2

≤ ∥∥xn − p∥∥2 − μ2
(
2β2 − μ2

)∥∥B2xn − B2p
∥∥2 − μ1

(
2β1 − μ1

)∥∥B1x̃n − B1q
∥∥2 ≤ ∥∥xn − p∥∥2.

(3.9)

Repeating the same argument, we can obtain that for all n ≥ 0,

∥∥tn − p∥∥2 ≤ ∥∥yn − p∥∥2 − μ2
(
2β2 − μ2

)∥∥B2yn − B2p
∥∥2

− μ1
(
2β1 − μ1

)∥∥B1ỹn − B1q
∥∥2 ≤ ∥∥yn − p∥∥2. (3.10)
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Furthermore, by Lemma 2.1 we derive from (3.9) and (3.10)

∥∥∥t̂n − p∥∥∥2 = ∥∥σn(tn − p) + (1 − σn)
(
JM,μn

(
tn − μnΦ(tn)

) − p)∥∥2
≤ σn

∥∥tn − p∥∥2 + (1 − σn)
∥∥JM,μn

(
tn − μnΦ(tn)

) − p∥∥2
= σn

∥∥tn − p∥∥2 + (1 − σn)
∥∥JM,μn

(
tn − μnΦ(tn)

) − JM,μn

(
p − μnΦ

(
p
))∥∥2

≤ σn
∥∥tn − p∥∥2 + (1 − σn)

∥∥(tn − μnΦ(tn)
) − (p − μnΦ(p))∥∥2

≤ σn
∥∥tn − p∥∥2 + (1 − σn)

[∥∥tn − p∥∥2 + μn(μn − 2α
)∥∥Φ(tn) −Φ

(
p
)∥∥2]

≤ ∥∥tn − p∥∥2
≤ ∥∥yn − p∥∥2 − μ2

(
2β2 − μ2

)∥∥B2yn − B2p
∥∥2 − μ1

(
2β1 − μ1

)∥∥B1ỹn − B1q
∥∥2

≤ ∥∥xn − p∥∥2 − μ2
(
2β2 − μ2

)∥∥B2xn − B2p
∥∥2 − μ1

(
2β1 − μ1

)∥∥B1x̃n − B1q
∥∥2

− μ2
(
2β2 − μ2

)∥∥B2yn − B2p
∥∥2 − μ1

(
2β1 − μ1

)∥∥B1ỹn − B1q
∥∥2

=
∥∥xn − p∥∥2 − μ2

(
2β2 − μ2

)(∥∥B2xn − B2p
∥∥2 + ∥∥B2yn − B2p

∥∥2)
− μ1

(
2β1 − μ1

)(∥∥B1x̃n − B1q
∥∥2 + ∥∥B1ỹn − B1q

∥∥2).

(3.11)

Since (γn + δn)k ≤ γn, for all n ≥ 0, utilizing Lemmas 2.2 and 2.7, we get from (3.11)

∥∥zn − p∥∥2
=
∥∥∥βn(xn − p) + γn(t̂n − p) + δn(St̂n − p)∥∥∥2

=
∥∥∥∥βn(xn − p) + (γn + δn) 1

γn + δn

[
γn
(
t̂n − p

)
+ δn

(
St̂n − p

)]∥∥∥∥2

≤ βn
∥∥xn − p∥∥2 + (γn + δn)∥∥∥∥ 1

γn + δn

[
γn
(
t̂n − p

)
+ δn

(
St̂n − p

)]∥∥∥∥2
≤ βn

∥∥xn − p∥∥2 + (γn + δn)∥∥∥t̂n − p∥∥∥2
≤ βn

∥∥xn − p∥∥2 + (γn + δn){∥∥xn − p∥∥2 − μ2
(
2β2 − μ2

)(∥∥B2xn − B2p
∥∥2 + ∥∥B2yn − B2p

∥∥2)
−μ1
(
2β1 − μ1

)(∥∥B1x̃n − B1q
∥∥2 + ∥∥B1ỹn − B1q

∥∥2)}
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=
∥∥xn − p∥∥2 − (γn + δn){μ2

(
2β2 − μ2

)(∥∥B2xn − B2p
∥∥2 + ∥∥B2yn − B2p

∥∥2)
+μ1
(
2β1 − μ1

)(∥∥B1x̃n − B1q
∥∥2 + ∥∥B1ỹn − B1q

∥∥2)}
≤ ∥∥xn − p∥∥2,

(3.12)

for every n = 0, 1, 2, . . ., and hence p ∈ Cn. So, Fix(S) ∩ Ω ∩ Ξ ⊂ Cn for every n = 0, 1, 2, . . ..
Next, let us show by mathematical induction that {xn} is well defined and Fix(S) ∩ Ω ∩ Ξ ⊂
Cn ∩Qn for every n = 0, 1, 2, . . .. For n = 0, we have Q0 = C. Hence we obtain Fix(S) ∩Ω ∩ Ξ ⊂
C0 ∩Q0. Suppose that xn is given and Fix(S) ∩Ω ∩ Ξ ⊂ Cn ∩Qn for some integer n ≥ 0. Since
Fix(S) ∩Ω ∩Ξ is nonempty, Cn ∩Qn is a nonempty closed convex subset of C. So, there exists
a unique element xn+1 ∈ Cn ∩Qn such that xn+1 = PCn∩Qnx0. It is also obvious that there holds
〈xn+1 − z, x0 −xn+1〉 ≥ 0 for z ∈ Fix(S)∩Ω∩Ξ, and hence Fix(S)∩Ω∩Ξ ⊂ Qn+1. Therefore, we
derive Fix(S) ∩Ω ∩ Ξ ∩ Cn+1 ∩Qn+1.
Step 2. We claim that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn − zn‖ = 0. (3.13)

Indeed, let l0 = PFix(S)∩Ω∩Ξx0. From xn+1 = PCn∩Qnx0, and l0 ∈ Fix(S) ∩Ω ∩ Ξ ⊂ Cn ∩Qn,
we have

‖xn+1 − x0‖ ≤ ‖xn+1 − x0‖ (3.14)

for every n = 0, 1, 2, . . .. Therefore, {xn} is bounded. From (3.9)–(3.12), we also obtain that
{x̃n}, {yn}, {ỹn}, {tn}, {t̂n}, and {zn} all are bounded. Since xn+1 ∈ Cn ∩ Qn ⊂ Qn and xn =
PQnx0, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖ (3.15)

for every n = 0, 1, 2, . . .. Therefore, there exists limn→∞‖xn − x0‖. Since xn = PQnx0 and xn+1 ∈
Qn, utilizing (2.5), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 (3.16)

for every n = 0, 1, 2, . . .. This implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.17)
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Since xn+1 ∈ Cn, we have ‖zn − xn+1‖ ≤ ‖xn − xn+1‖, and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ ≤ 2‖xn+1 − xn‖ (3.18)

for every n = 0, 1, 2, . . .. From ‖xn+1 − xn‖ → 0 it follows that

lim
n→∞

‖xn − zn‖ = 0. (3.19)

Step 3. We claim that

lim
n→∞

∥∥xn − yn∥∥ = lim
n→∞

‖xn − tn‖ = lim
n→∞

∥∥∥t̂n − tn∥∥∥ = 0. (3.20)

Indeed, for p ∈ Fix(S) ∩Ω ∩ Ξ, we obtain from (3.12)

∥∥zn − p∥∥2 ≤ ∥∥xn − p∥∥2
− (γn + δn){μ2

(
2β2 − μ2

)(∥∥B2xn − B2p
∥∥2 + ∥∥B2yn − B2p

∥∥2)
+μ1
(
2β1 − μ1

)(∥∥B1x̃n − B1q
∥∥2 + ∥∥B1ỹn − B1q

∥∥2)}.
(3.21)

Therefore, we have

(
γn + δn

){
μ2
(
2β2 − μ2

)(∥∥B2xn − B2p
∥∥2 + ∥∥B2yn − B2p

∥∥2)
+μ1
(
2β1 − μ1

)(∥∥B1x̃n − B1q
∥∥2 + ∥∥B1ỹn − B1q

∥∥2)}
≤ ∥∥xn − p∥∥2 − ∥∥zn − p∥∥2
=
(∥∥xn − p∥∥ − ∥∥zn − p∥∥)(∥∥xn − p∥∥ + ∥∥zn − p∥∥)

≤ ‖xn − zn‖
(∥∥xn − p∥∥ + ∥∥zn − p∥∥).

(3.22)
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Since {δn} ⊂ [d, 1] for some d ∈ (0, 1], ‖xn − zn‖ → 0, and the sequences {xn} and {zn} are
bounded, we deduce that

lim
n→∞

∥∥B2xn − B2p
∥∥ = lim

n→∞
∥∥B2yn − B2p

∥∥ = lim
n→∞

∥∥B1x̃n − B1q
∥∥

= lim
n→∞

∥∥B1ỹn − B1q
∥∥ = 0.

(3.23)

On the other hand, by firm nonexpansiveness of PC, we have

∥∥x̃n − q∥∥2 = ∥∥PC(xn − μ2B2xn
) − PC(p − μ2B2p

)∥∥2
≤ 〈(xn − μ2B2xn

) − (p − μ2B2p
)
, x̃n − q

〉
=

1
2

[∥∥xn − p − μ2
(
B2xn − B2p

)∥∥2 + ∥∥x̃n − q∥∥2
−∥∥(xn − p) − μ2

(
B2xn − B2p

) − (x̃n − q)∥∥2]
≤ 1

2

[∥∥xn − p∥∥2 + ∥∥x̃n − q∥∥2 − ∥∥(xn − x̃n) − μ2
(
B2xn − B2p

) − (p − q)∥∥2]
=

1
2

[∥∥xn − p∥∥2 + ∥∥x̃n − q∥∥2 − ∥∥xn − x̃n − (p − q)∥∥2
+2μ2

〈
xn − x̃n −

(
p − q), B2xn − B2p

〉 − μ2
2

∥∥B2xn − B2p
∥∥2]

≤ 1
2

[∥∥xn − p∥∥2 + ∥∥x̃n − q∥∥2 − ∥∥xn − x̃n − (p − q)∥∥2
+2μ2

∥∥xn − x̃n − (p − q)∥∥∥∥B2xn − B2p
∥∥];

(3.24)

that is,

∥∥x̃n − q∥∥2 ≤ ∥∥xn − p∥∥2 − ∥∥xn − x̃n − (p − q)∥∥2 + 2μ2
∥∥xn − x̃n − (p − q)∥∥∥∥B2xn − B2p

∥∥.
(3.25)

Repeating the same argument, we can also obtain

∥∥ỹn − q∥∥2 ≤ ∥∥yn − p∥∥2 − ∥∥yn − ỹn − (p − q)∥∥2 + 2μ2
∥∥yn − ỹn − (p − q)∥∥∥∥B2yn − B2p

∥∥.
(3.26)
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Moreover, using the argument technique similar to the above one, we derive

∥∥yn − p∥∥2 = ∥∥PC(x̃n − μ1B1x̃n
) − PC(q − μ1B1q

)∥∥2
≤ 〈(x̃n − μ1B1x̃n

) − (q − μ1B1q
)
, yn − p

〉
=

1
2

[∥∥x̃n − q − μ1
(
B1x̃n − B1q

)∥∥2 + ∥∥yn − p∥∥2
−∥∥(x̃n − q) − μ1

(
B1x̃n − B1q

) − (yn − p)∥∥2]
≤ 1

2

[∥∥x̃n − q∥∥2 + ∥∥yn − p∥∥2 − ∥∥(x̃n − yn) − μ1
(
B1x̃n − B1q

)
+
(
p − q)∥∥2]

=
1
2

[∥∥x̃n − q∥∥2 + ∥∥yn − p∥∥2 − ∥∥x̃n − yn + (p − q)∥∥2
+2μ1

〈
x̃n − yn +

(
p − q), B1x̃n − B1q

〉 − μ2
1

∥∥B1x̃n − B1q
∥∥2]

≤ 1
2

[∥∥x̃n − q∥∥2 + ∥∥yn − p∥∥2 − ∥∥x̃n − yn + (p − q)∥∥2
+2μ1

∥∥x̃n − yn + (p − q)∥∥∥∥B1x̃n − B1q
∥∥];

(3.27)

that is,

∥∥yn − p∥∥2 ≤ ∥∥x̃n − q∥∥2 − ∥∥x̃n − yn + (p − q)∥∥2 + 2μ1
∥∥x̃n − yn + (p − q)∥∥∥∥B1x̃n − B1q

∥∥.
(3.28)

Repeating the same argument, we can also obtain

∥∥tn − p∥∥2 ≤ ∥∥ỹn − q∥∥2 − ∥∥ỹn − tn + (p − q)∥∥2 + 2μ1
∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q

∥∥. (3.29)

Utilizing (3.11), (3.25)–(3.29), we have

∥∥zn − p∥∥2
=
∥∥∥βn(xn − p) + γn(t̂n − p) + δn(St̂n − p)∥∥∥2

≤ βn
∥∥xn − p∥∥2 + (γn + δn)∥∥∥t̂n − p∥∥∥2

= βn
∥∥xn − p∥∥2 + (γn + δn)∥∥tn − p∥∥2

≤ βn
∥∥xn − p∥∥2

+
(
γn + δn

)[∥∥ỹn − q∥∥2 − ∥∥ỹn − tn + (p − q)∥∥2
+2μ1

∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q
∥∥]
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≤ βn
∥∥xn − p∥∥2

+
(
γn + δn

)[∥∥yn − p∥∥2 − ∥∥yn − ỹn − (p − q)∥∥2
+ 2μ2

∥∥yn − ỹn − (p − q)∥∥∥∥B2yn − B2p
∥∥

−∥∥ỹn − tn + (p − q)∥∥2 + 2μ1
∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q

∥∥]
≤ βn

∥∥xn − p∥∥2
+
(
γn + δn

){∥∥x̃n − q∥∥2 − ∥∥x̃n − yn + (p − q)∥∥2
+ 2μ1

∥∥x̃n − yn + (p − q)∥∥∥∥B1x̃n − B1q
∥∥

− ∥∥yn − ỹn − (p − q)∥∥2 + 2μ2
∥∥yn − ỹn − (p − q)∥∥∥∥B2yn − B2p

∥∥
−∥∥ỹn − tn + (p − q)∥∥2 + 2μ1

∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q
∥∥}

≤ βn
∥∥xn − p∥∥2

+
(
γn + δn

){∥∥xn − p∥∥2 − ∥∥xn − x̃n − (p − q)∥∥2
+ 2μ2

∥∥xn − x̃n − (p − q)∥∥∥∥B2xn − B2p
∥∥

− ∥∥x̃n − yn + (p − q)∥∥2 + 2μ1
∥∥x̃n − yn + (p − q)∥∥∥∥B1x̃n − B1q

∥∥
− ∥∥yn − ỹn − (p − q)∥∥2 + 2μ2

∥∥yn − ỹn − (p − q)∥∥∥∥B2yn − B2p
∥∥

−∥∥ỹn − tn + (p − q)∥∥2 + 2μ1
∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q

∥∥}
≤ ∥∥xn − p∥∥2 + 2μ2

∥∥xn − x̃n − (p − q)∥∥∥∥B2xn − B2p
∥∥

+ 2μ1
∥∥x̃n − yn + (p − q)∥∥∥∥B1x̃n − B1q

∥∥
+ 2μ2

∥∥yn − ỹn − (p − q)∥∥∥∥B2yn − B2p
∥∥ + 2μ1

∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q
∥∥

− (γn + δn)[∥∥xn − x̃n − (p − q)∥∥2 + ∥∥x̃n − yn + (p − q)∥∥2
+
∥∥yn − ỹn − (p − q)∥∥2 + ∥∥ỹn − tn + (p − q)∥∥2],

(3.30)

which hence implies that

(
γn + δn

)[∥∥xn − x̃n − (p − q)∥∥2 + ∥∥x̃n − yn + (p − q)∥∥2
+
∥∥yn − ỹn − (p − q)∥∥2 + ∥∥ỹn − tn + (p − q)∥∥2]

≤ ∥∥xn − p∥∥2 − ∥∥zn − p∥∥2 + 2μ2
∥∥xn − x̃n − (p − q)∥∥∥∥B2xn − B2p

∥∥
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+ 2μ1
∥∥x̃n − yn + (p − q)∥∥∥∥B1x̃n − B1q

∥∥
+ 2μ2

∥∥yn − ỹn − (p − q)∥∥∥∥B2yn − B2p
∥∥

+ 2μ1
∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q

∥∥
≤ ‖xn − zn‖

(∥∥xn − p∥∥ + ∥∥zn − p∥∥)
+ 2μ2

∥∥xn − x̃n − (p − q)∥∥∥∥B2xn − B2p
∥∥

+ 2μ1
∥∥x̃n − yn + (p − q)∥∥∥∥B1x̃n − B1q

∥∥
+ 2μ2

∥∥yn − ỹn − (p − q)∥∥∥∥B2yn − B2p
∥∥

+ 2μ1
∥∥ỹn − tn + (p − q)∥∥∥∥B1ỹn − B1q

∥∥.
(3.31)

Since {δn} ⊂ [d, 1] for some d ∈ (0, 1], ‖xn − zn‖ → 0, and {xn}, {yn}, {zn}, {x̃n}, {ỹn}, and
{tn} all are bounded, it follows from (3.23) that

lim
n→∞

∥∥xn − x̃n − (p − q)∥∥ = lim
n→∞

∥∥x̃n − yn + (p − q)∥∥ = 0,

lim
n→∞

∥∥yn − ỹn − (p − q)∥∥ = lim
n→∞

∥∥ỹn − tn + (p − q)∥∥ = 0.
(3.32)

Consequently, it immediately follows that

lim
n→∞

∥∥xn − yn∥∥ = 0, lim
n→∞

∥∥yn − tn∥∥ = 0. (3.33)

This shows that

lim
n→∞

‖xn − tn‖ = 0. (3.34)

Also, note that

‖zn − xn‖2 =
∥∥∥γn(t̂n − xn) + δn(St̂n − xn)∥∥∥2

=
∥∥∥∥(γn + δn) 1

γn + δn

[
γn
(
t̂n − xn

)
+ δn

(
St̂n − xn

)]∥∥∥∥2
=
(
γn + δn

)2[ γn
γn + δn

∥∥∥t̂n − xn∥∥∥2 + δn
γn + δn

∥∥∥St̂n − xn∥∥∥2
− γnδn(
γn + δn

)2∥∥∥t̂n − St̂n∥∥∥2
]

=
(
γn + δn

)[
γn
∥∥∥t̂n − xn∥∥∥2 + δn∥∥∥St̂n − xn∥∥∥2] − γnδn∥∥∥t̂n − St̂n∥∥∥2.

(3.35)
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Thus we have

d2
∥∥∥St̂n − xn∥∥∥2] ≤ (γn + δn)[γn∥∥∥t̂n − xn∥∥∥2 + δn∥∥∥St̂n − xn∥∥∥2]

= ‖zn − xn‖2 + γnδn
∥∥∥t̂n − St̂n∥∥∥2

≤ ‖zn − xn‖2 +
∥∥∥t̂n − St̂n∥∥∥2.

(3.36)

This together with ‖zn − xn‖ → 0 and ‖t̂n − St̂n‖ → 0 implies that

lim
n→∞

∥∥∥St̂n − xn∥∥∥ = 0, lim
n→∞

∥∥∥t̂n − xn∥∥∥ = 0. (3.37)

Consequently, from (3.34) we immediately derive

lim
n→∞

∥∥∥t̂n − tn∥∥∥ = 0. (3.38)

Step 4. We claim that ωw(xn) ⊂ Fix(S) ∩Ω ∩ Ξ.
Indeed, as {xn} is bounded, there is a subsequence {xni} of {xn} such that {xni}

converges weakly to some u ∈ ωw(xn). We can obtain that u ∈ Fix(S) ∩ Ω ∩ Ξ. First, it is
clear from Lemma 2.6(ii) that u ∈ Fix(S). Now let us show that u ∈ Ξ. We note that

‖xn −G(xn)‖ =
∥∥xn − PC[PC(xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]∥∥
=
∥∥xn − yn∥∥ −→ 0 (n −→ ∞),

(3.39)

where G : C → C is defined as that in Lemma 1.1. According to Lemma 2.6(ii) we obtain
u ∈ Ξ. Further, let us show that u ∈ Ω. As a matter of fact, since Φ is α-inverse strongly
monotone, and M is maximal monotone, by Lemma 2.5 we know that M + Φ is maximal
monotone. Take a fixed (y, g) ∈ G(M + Φ) arbitrarily. Then we have g ∈ My + Φ(y). So, we
have g −Φ(y) ∈My. Since

t̂ni = σni tni + (1 − σni)JM,μni

(
tni − μniΦ(tni)

)
(3.40)

implies

1
μni

(
tni − sni − μniΦ(tni)

) ∈Msni , (3.41)

where sni = tni + (t̂ni − tni)/(1 − σni), we have

〈
y − sni , g −Φ

(
y
) − 1

μni

(
tni − sni − μniΦ(tni)

)〉 ≥ 0, (3.42)
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which hence yields

〈
y − sni , g

〉 ≥ 〈y − sni ,Φ
(
y
)
+

1
μni

(
tni − sni − μniΦ(tni)

)〉

=
〈
y − sni ,Φ

(
y
) −Φ(tni)

〉
+
〈
y − sni ,

1
μni

(tni − sni)
〉

≥ α∥∥Φ(y) −Φ(sni)
∥∥2 + 〈y − sni ,Φ(sni) −Φ(tni)

〉
+
〈
y − sni ,

1
μni

(tni − sni)
〉

≤ 〈y − sni ,Φ(sni) −Φ(tni)
〉
+
〈
y − sni ,

1
μni

(tni − sni)
〉
.

(3.43)

Observe that ∣∣∣∣〈y − sni ,Φ(sni) −Φ(tni)
〉
+
〈
y − sni ,

1
μni

(tni − sni)
〉∣∣∣∣

≤ ∥∥y − sni
∥∥‖Φ(sni) −Φ(tni)‖ +

∥∥y − sni
∥∥∥∥∥∥ 1

μni
(tni − sni)

∥∥∥∥
≤ 1
α

∥∥y − sni
∥∥‖sni − tni‖ + 1

ε

∥∥y − sni
∥∥‖tni − sni‖

=
(
1
α
+
1
ε

)∥∥y − sni
∥∥‖tni − sni‖.

(3.44)

From ‖sni − tni‖ = (1/(1 − σni))‖t̂ni − tni‖ ≤ (1/(1 − c))‖t̂ni − tni‖ → 0, it follows that

lim
i→∞

∣∣∣∣〈y − sni ,Φ(sni) −Φ(tni)
〉
+
〈
y − sni ,

1
μni

(tni − sni)
〉∣∣∣∣ = 0. (3.45)

Since ‖xn − tn‖ → 0, ‖t̂n − tn‖ → 0, and xni ⇀ u, we derive sni = tni +((t̂ni − tni)/(1−σni))⇀ u,
and hence by letting i → ∞we get from (3.43)

〈
y − u, g〉 ≥ 0. (3.46)

This shows that 0 ∈ Φ(u) +Mu. Thus, u ∈ Ω. Therefore, u ∈ Fix(S) ∩Ω ∩ Ξ.
Step 5. We claim that

lim
n→∞

‖xn − l0‖ = lim
n→∞

∥∥yn − l0∥∥ = lim
n→∞

‖zn − l0‖ = 0, (3.47)

where l0 = PFix(S)∩Ω∩Ξx0.
Indeed, Since l0 = PFix(S)∩Ω∩Ξx0, and u ∈ Fix(S) ∩Ω ∩ Ξ, from (3.14)we have

‖l0 − x0‖ ≤ ‖u − x0‖ ≤ lim inf
i→∞

‖xni − x0‖ ≤ lim sup
i→∞

‖xni − x0‖ ≤ ‖l0 − x0‖. (3.48)
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So, we obtain

lim
i→∞

‖xni − x0‖ = ‖u − x0‖. (3.49)

From xni − x0 ⇀ u− x0, we have xni − x0 → u− x0 (due to the Kadec-Klee property of Hilbert
spaces [37]), and hence xni → u. Since xn = PQnx0, and l0 ∈ Fix(S) ∩Ω ∩ Ξ ⊂ Cn ∩Qn ⊂ Qn,
we have

−‖l0 − xni‖2 = 〈l0 − xni , xni − x0〉 + 〈l0 − xni , x0 − l0〉 ≥ 〈l0 − xni , x0 − l0〉. (3.50)

As i → ∞, we obtain −‖l0 − xni‖2 ≥ 〈l0 − u, x0 − l0〉 ≥ 0 by l0 = PFix(S)∩Ω∩Ξx0, and u ∈ Fix(S) ∩
Ω ∩ Ξ. Hence we have u = l0. This implies that xn → l0. It is easy to see that yn → l0 and
zn → l0. This completes the proof.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let Bi : C → H
be βi-inverse strongly monotone for i = 1, 2, let Φ : C → H be an α-inverse strongly monotone
mapping, let M be a maximal monotone mapping with D(M) = C, and let S : C → C be a
nonexpansive mapping such that Fix(S)∩Ω∩Ξ/= ∅. For given x0 ∈ C arbitrarily, let {xn}, {yn}, and
{zn} be the sequences generated by

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
,

t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
,

zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(3.51)

where μi ∈ (0, 2βi) for i = 1, 2, {μn} ⊂ [ε, 2α] for some ε ∈ (0, 2α], and {σn}, {βn}, {γn}, {δn} ⊂
[0, 1] such that {σn} ⊂ [0, c] for some c ∈ [0, 1), {γn}, {δn} ⊂ [d, 1] for some d ∈ (0, 1], and βn +
γn+δn = 1 for all n ≥ 0. Then the sequences {xn}, {yn}, and {zn} converge strongly to the same point
x = PFix(S)∩Ω∩Ξx0. Furthermore, (x, y) is a solution of the GSVI (1.10), where y = PC(x − μ2B2x).

Proof. Since S is a nonexpansive mapping, Smust be a k-strictly pseudocontractive mapping
with k = 0. Take a fixed p ∈ Fix(S) ∩ Ω ∩ Ξ arbitrarily. Note that in Step 1 for the proof of
Theorem 3.1, we have obtained that {xn} is bounded and the relation holds∥∥∥t̂n − p∥∥∥ ≤ ∥∥xn − p∥∥, ∀n ≥ 0 (3.52)

(due to (3.11)). Moreover, in Step 2 for the proof of Theorem 3.1, we have proven that

lim
n→∞

‖zn − xn‖ = 0. (3.53)
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Now, utilizing Lemma 2.2, from the nonexpansiveness of S we deduce that

∥∥zn − p∥∥2 = ∥∥∥βn(xn − p) + γn(t̂n − p) + δn(St̂n − p)∥∥∥2
≤ βn

∥∥xn − p∥∥2 + γn∥∥∥t̂n − p∥∥∥2 + δn∥∥∥St̂n − p∥∥∥2 − γnδn∥∥∥St̂n − t̂n∥∥∥2
≤ βn

∥∥xn − p∥∥2 + γn∥∥∥t̂n − p∥∥∥2 + δn∥∥∥t̂n − p∥∥∥2 − γnδn∥∥∥St̂n − t̂n∥∥∥2
= βn

∥∥xn − p∥∥2 + (γn + δn)∥∥∥t̂n − p∥∥∥2 − γnδn∥∥∥St̂n − t̂n∥∥∥2
≤ βn

∥∥xn − p∥∥2 + (γn + δn)∥∥xn − p∥∥2 − γnδn∥∥∥St̂n − t̂n∥∥∥2
=
∥∥xn − p∥∥2 − γnδn∥∥∥St̂n − t̂n∥∥∥2.

(3.54)

This together with {γn}, {δn} ⊂ [d, 1] implies that

d2
∥∥∥St̂n − t̂n∥∥∥2 ≤ γnδn

∥∥∥St̂n − t̂n∥∥∥2 ≤ ∥∥xn − p∥∥2 − ∥∥zn − p∥∥2
≤ ‖xn − zn‖

(∥∥xn − p∥∥ + ∥∥zn − p∥∥). (3.55)

So, we immediately derive

lim
n→∞

∥∥∥St̂n − t̂n∥∥∥ = 0. (3.56)

It is easy to see that all the conditions of Theorem 3.1 are satisfied. Therefore, in terms of
Theorem 3.1 we obtain the desired result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let Bi : C → H
be βi-inverse strongly monotone for i = 1, 2, and let S : C → C be a k-strictly pseudocontractive
mapping such that Fix(S) ∩ Ξ/= ∅. For given x0 ∈ C arbitrarily, let {xn}, {yn}, and {zn} be the
sequences generated by

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
,

zn = βnxn + γnPC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
+ δnSPC

[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(3.57)

where μi ∈ (0, 2βi) for i = 1, 2, {βn}, {γn}, {δn} ⊂ [0, 1] such that {δn} ⊂ [d, 1] for some d ∈ (0, 1],
βn + γn +δn = 1, and (γn +δn)k ≤ γn for all n ≥ 0. Then the sequences {xn}, {yn}, and {zn} converge
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strongly to the same point x = PFix(S)∩Ξx0. Furthermore, (x, y) is a solution of the GSVI (1.10), where
y = PC(x − μ2B2x).

Proof. Putting Φ =M = 0 in Theorem 3.1, we haveΩ = C and Fix(S)∩Ω∩Ξ = Fix(S)∩Ξ. Let
α be any positive number in the interval (0,∞), and take any sequence {σn} ⊂ [0, c] for some
c ∈ [0, 1) and any sequence {μn} ⊂ [ε, 2α] for some ε ∈ (0, 2α]. Then Φ is α-inverse strongly
monotone, and we have

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
,

t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
= σntn + (1 − σn)

(
I + μnM

)−1
tn = tn,

zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(3.58)

which is just equivalent to (3.57). In this case, we have

zn = βnxn + γnt̂n + δnSt̂n = βnxn + γntn + δnStn. (3.59)

Note that in Steps 2 and 3 for the proof of Theorem 3.1, we have proven that

lim
n→∞

‖zn − xn‖ = 0, lim
n→∞

‖tn − xn‖ = 0, (3.60)

respectively. Thus, we have

‖δn(Stn − xn)‖ ≤ ‖zn − xn‖ + γn‖tn − xn‖ −→ 0. (3.61)

Consequently, it follows from {δn} ⊂ [d, 1] that ‖Stn − xn‖ → 0, and hence ‖Stn − tn‖ → 0.
This shows that ‖St̂n − t̂n‖ → 0. Utilizing Theorem 3.1, we obtain the desired result.

Remark 3.4. Our Theorems 3.1 improves, extends, and develops [36, Theorem 3.1], [15,
Theorem 3.1], [34, Theorem 3.2], and [35, Theorem 3.1] in the following aspects.

(i) Compared with the relaxed extragradient iterative algorithm in [34, Theorem 3.2]
and the hybrid extragradient iterative algorithm in [35, Theorem 3.1], our hybrid
extragradient iterative algorithms remove the requirements that 0 < lim infn→∞βn ≤
lim supn→∞βn < 1 and limn→∞(γn+1/(1 − βn+1) − γn/(1 − βn)) = 0.
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(ii) The problem of finding an element of Fix(S) ∩ Ω ∩ Ξ in our Theorem 3.1 is more
general than the corresponding ones in [36, Theorem 3.1], [15, Theorem 3.1], and
[34, Theorem 3.2] to a great extent. Thus, beyond question our results are very
interesting and quite valuable.

(iii) The relaxed extragradient method for finding an element of Fix(S) ∩ Ξ in [34,
Theorem 3.2] is extended to develop our hybrid extragradient iterative algorithms
for finding an element of Fix(S) ∩Ω ∩ Ξ.

(iv) The proof of our results are very different from that of [15, Theorem 3.1] because
our argument technique depends on two inverse strongly monotone mappings B1

and B2, the property of strict pseudocontractions (see Lemmas 2.6 and 2.7), and the
properties of the resolvent JM,λ to a great extent.

(v) Because our iterative algorithms involve two inverse strongly monotone mappings
B1 and B2, a k-strictly pseudocontractive self-mapping S, and several parameter
sequences, they are more flexible and more subtle than the corresponding ones in
[36, Theorem 3.1], [15, Theorem 3.1], and [34, Theorem 3.2], respectively.

4. Applications

Utilizing Theorem 3.1, we prove some strong convergence theorems in a real Hilbert space.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let Bi : C → H
be βi-inverse strongly monotone for i = 1, 2, let Φ : C → H be an α-inverse strongly monotone
mapping, and letM be a maximal monotone mapping withD(M) = C such thatΩ∩Ξ/= ∅. For given
x0 ∈ C arbitrarily, let {xn}, {yn}, and {zn} be the sequences generated by

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
,

zn = βnxn +
(
1 − βn

)[
σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)]
,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(4.1)

where μi ∈ (0, 2βi) for i = 1, 2, {μn} ⊂ [ε, 2α] for some ε ∈ (0, 2α], and {σn}, {βn} ⊂ [0, 1] such
that {σn} ⊂ [0, c] for some c ∈ [0, 1), and {βn} ⊂ [0, d] for some d ∈ [0, 1). Then the sequences
{xn}, {yn}, and {zn} converge strongly to the same point x = PΩ∩Ξx0. Furthermore, (x, y) is a
solution of the GSVI (1.10), where y = PC(x − μ2B2x).
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Proof. In Corollary 3.2, putting S = I, we have

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
,

t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
,

zn = βnxn + γnt̂n + δnSt̂n = βnxn +
(
1 − βn

)
t̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(4.2)

which is just equivalent to (4.1). In this case, we know that Fix(S) ∩Ω ∩Ξ = Ω ∩Ξ. Therefore,
by Corollary 3.2 we obtain desired result.

Theorem 4.2 (see [15, Theorem 4.2]). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let S : C → C be a nonexpansive mapping such that Fix(S) is nonempty. For given
x0 ∈ C arbitrarily, let {xn} and {zn} be the sequences generated by

zn = (1 − δn)xn + δnSxn,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(4.3)

where {δn} ⊂ [d, 1] for some d ∈ (0, 1]. Then the sequences {xn} and {zn} converge strongly to
PFix(S)x0.

Proof. Putting B1 = B2 = Φ = M = 0 in Corollary 3.2, we let β1, β2, and α be any positive
numbers in the interval (0,∞), and take any numbers μi ∈ (0, 2βi) for i = 1, 2 and any
sequence {μn} ⊂ [ε, 2α] for some ε ∈ (0, 2α]. Then Bi : C → H is βi-inverse strongly
monotone for i = 1, 2, and Φ : C → H is α-inverse strongly monotone. In this case, we
know that Fix(S) ∩Ω ∩ Ξ = Fix(S) and

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
= xn,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
= yn,
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t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
= tn,

zn = βnxn + γnt̂n + δnSt̂n = (1 − δn)xn + δnSxn,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(4.4)

which is just equivalent to (4.3). Therefore, by Corollary 3.2 we obtain the desired result.

Remark 4.3. Originally Theorem 4.2 is the result of Nakajo and Takahashi [22].

Theorem 4.4. Let H be a real Hilbert space. Let A : H → H be a λ-inverse strongly monotone
mapping, let Φ : H → H be an α-inverse strongly monotone mapping, let M : H → 2H be a
maximal monotone mapping, and let S : H → H be a nonexpansive mapping such that Fix(S)∩Ω∩
A−10/= ∅. For given x0 ∈ H arbitrarily, let {xn} and {zn} be the sequences generated by

tn = xn − μ
[
Axn +A

(
xn − μAxn

)]
,

zn = βnxn + γnJM,μn

(
tn − μnΦ(tn)

)
+ δnSJM,μn

(
tn − μnΦ(tn)

)
,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(4.5)

where μ ∈ (0, 2λ), {μn} ⊂ [ε, 2α] for some ε ∈ (0, 2α], and {βn}, {γn}, {δn} ⊂ [0, 1] such that
{γn}, {δn} ⊂ [d, 1] for some d ∈ (0, 1], and βn + γn + δn = 1 for all n ≥ 0. Then the sequences {xn}
and {zn} converge strongly to PFix(S)∩Ω∩A−10x0.

Proof. Putting C = H, B1 = A, B2 = 0, μ1 = μ, and σn = 0, for all n ≥ 0 in Corollary 3.2,
we know that PC = PH = I and the GSVI (1.10) coincides with the VI (1.3). Hence we have
A−10 = VI(H,A) = Ξ. In this case, we conclude that Fix(S) ∩Ω ∩ Ξ = Fix(S) ∩Ω ∩A−10 and

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
= xn − μAxn,

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
= xn − μAxn − μA

(
xn − μAxn

)
,

t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
= JM,μn

(
tn − μnΦ(tn)

)
,

zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0.

(4.6)

Therefore, by Corollary 3.2 we obtain the desired result.
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Let B : H → 2H be a maximal monotone mapping. Then, for any x ∈ H and r > 0,
consider JB,rx = (I + rB)−1x. It is known that such a JB,r is the resolvent of B.

Theorem 4.5. Let H be a real Hilbert space. Let A : H → H be a λ-inverse strongly monotone
mapping, let Φ : H → H be an α-inverse strongly monotone mapping, and let B,M : H → 2H

be two maximal monotone mappings such that A−10 ∩ B−10 ∩Ω/= ∅. Let JB,r be the resolvent of B for
each r > 0. For given x0 ∈ H arbitrarily, let {xn} and {zn} be the sequences generated by

tn = xn − μ
[
Axn +A

(
xn − μAxn

)]
,

zn = βnxn + γnJM,μn

(
tn − μnΦ(tn)

)
+ δnJB,rJM,μn

(
tn − μnΦ(tn)

)
,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(4.7)

where μ ∈ (0, 2λ), {μn} ⊂ [ε, 2α] for some ε ∈ (0, 2α], and {βn}, {γn}, {δn} ⊂ [0, 1] such that
{γn}, {δn} ⊂ [d, 1] for some d ∈ (0, 1], and βn + γn + δn = 1 for all n ≥ 0. Then the sequences {xn}
and {zn} converge strongly to PA−10∩B−10∩Ωx0.

Proof. Putting S = JB,r in Theorem 4.4, we know that Fix(S) = Fix(JB,r) = B−10. In this case,
(4.5) is coincident with (4.7). Therefore, by Theorem 4.4 we obtain the desired result.

It is well known that a mapping T : C → C is called pseudocontractive if
‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖(I − T)x − (I − T)y‖2, for all x, y ∈ C. It is easy to see that this
definition is equivalent to the one that a mapping T : C → C is called pseudocontractive if
〈Tx − Ty, x − y〉 ≤ ‖x − y‖2, for all x, y ∈ C; see [8]. In the meantime, we also know one more
definition of a k-strictly pseudocontractive mapping, which is equivalent to the definition
given in the introduction. A mapping T : C → C is called k-strictly pseudocontractive if
there exists a constant k ∈ [0, 1), such that

〈
Tx − Ty, x − y〉 ≤ ∥∥x − y∥∥2 − 1 − k

2
∥∥(I − T)x − (I − T)y∥∥2, (4.8)

for all x, y ∈ C. It is clear that in this case the mapping I − T is (1 − k)/2-inverse strongly
monotone. From [10], we know that if T is a k-strictly pseudocontractive mapping, then T is
Lipschitz continuous with constant (1+k)/(1−k), such that Fix(T) = VI(C, I−T) (see, e.g., the
proof of Theorem 4.6). It is obvious that the class of strict pseudocontractions strictly includes
the class of nonexpansive mappings and the class of pseudocontractions strictly includes the
class of strict pseudocontractions.

In the following theorem we introduce an iterative algorithm that converges strongly
to a common fixed point of three mappings: one of which is nonexpansive, and the other two
ones are strictly pseudocontractive mappings.

Theorem 4.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a k-strictly pseudocontractive mapping, let Γ : C → C be a κ-strictly pseudocontractive mapping,
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and let S : C → C be a nonexpansive mapping such that Fix(T) ∩ Fix(S) ∩ Fix(Γ)/= ∅. For given
x0 ∈ C arbitrarily, let {xn}, {yn}, and {zn} be the sequences generated by

yn = xn − μ1(xn − Txn),

tn = yn − μ1
(
yn − Tyn

)
,

t̂n = tn − μn(tn − Γtn),

zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(4.9)

where μ1 ∈ (0, 1 − k), {μn} ⊂ [ε, 1 − κ] for some ε ∈ (0, 1 − κ], and {βn}, {γn}, {δn} ⊂ [0, 1] such
that {γn}, {δn} ⊂ [d, 1] for some d ∈ (0, 1], and βn + γn + δn = 1 for all n ≥ 0. Then the sequences
{xn}, {yn}, and {zn} converge strongly to PFix(T)∩Fix(S)∩Fix(Γ)x0.

Proof. Putting B1 = I −T , B2 = 0,Φ = I −Γ,M = 0, and σn = 0, for all n ≥ 0 in Corollary 3.2, we
know that B1 is β1-inverse strongly monotone with β1 = (1− k)/2 and Φ is α-inverse strongly
monotone with α = (1 − κ)/2. Moreover, we have Ξ = VI(C,B1) = VI(C, I − T). Noticing
μ1 ∈ (0, 1−k) and k ∈ [0, 1), we know that μ1 ∈ (0, 1), and hence (1−μ1)xn +μ1Txn ∈ C. Also,
noticing {μn} ⊂ [ε, 1−κ] ⊂ (0, 1−κ], we know that {μn} ⊂ (0, 1], and hence (1−μn)tn+μnΓtn ∈
C. This implies that

yn = PC
[
PC
(
xn − μ2B2xn

) − μ1B1PC
(
xn − μ2B2xn

)]
= PC

((
1 − μ1

)
xn + μ1Txn

)
= xn − μ1(xn − Txn),

tn = PC
[
PC
(
yn − μ2B2yn

) − μ1B1PC
(
yn − μ2B2yn

)]
= PC

((
1 − μ1

)
yn + μ1Tyn

)
= yn − μ1

(
yn − Tyn

)
,

t̂n = σntn + (1 − σn)JM,μn

(
tn − μnΦ(tn)

)
= tn − μn(tn − Γtn),

zn = βnxn + γnt̂n + δnSt̂n,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, ∀n ≥ 0.

(4.10)
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Now let us show Fix(T) = VI(C,B1). In fact, we have, for λ > 0,

u ∈ VI(C,B1) ⇐⇒ 〈B1u, y − u〉 ≥ 0, ∀y ∈ C
⇐⇒ 〈u − λB1u − u, u − y〉 ≥ 0, ∀y ∈ C
⇐⇒ u = PC(u − λB1u)

⇐⇒ u = PC(u − λu + λTu)

⇐⇒ 〈u − λu + λTu − u, u − y〉 ≥ 0, ∀y ∈ C
⇐⇒ 〈u − Tu, u − y〉 ≤ 0, ∀y ∈ C
⇐⇒ u = Tu

⇐⇒ u ∈ Fix(T).

(4.11)

Next let us show Ω = Fix(Γ). In fact, noticing thatM = 0 and Φ = I − Γ, we have

u ∈ Ω ⇐⇒ 0 ∈ Φ(u) +Mu⇐⇒ 0 = Φ(u) = u − Γu⇐⇒ u ∈ Fix(Γ). (4.12)

Consequently,

Fix(S) ∩Ω ∩ Ξ = Fix(S) ∩ Fix(Γ) ∩ VI(C,B1) = Fix(S) ∩ Fix(Γ) ∩ Fix(T). (4.13)

Therefore, by Theorem 3.1 we obtain the desired result.
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Under the condition that the values of mapping F are evaluated approximately, we propose a
proximal analytic center cutting plane algorithm for solving variational inequalities. It can be
considered as an approximation of the earlier cutting plane method, and the conditions we impose
on the corresponding mappings are more relaxed. The convergence analysis for the proposed
algorithm is also given at the end of this paper.

1. Introduction

According to [1], the history of algorithms for solving finite-dimensional variational inequal-
ities is relatively short. A recent development of such methods is the analytic center method
based on cutting plane methods. It combines the feature of the newly developed interior
point methods with the classical cutting plane scheme to achieve polynomial complexity in
theory and quick convergence in practice. More details can be found in [2, 3]. Specifically,
Goffin et al. [4] developed a convergent framework for finding a solution x∗ of the vari-
ational inequality VIP (F,X) associated with the continuous mapping F from X to Rn and
the polyhedron X = {x ∈ Rn | Ax ≤ b} under an assumption slightly stronger than
pseudomonotonicity. Again, Marcotte and Zhu [5] extended this algorithm to quasimonotone
variational inequalities that satisfy a weak additional assumption. Such methods are effective
in practice.
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Note that the facts in optimization problems, see [6–8], some functions from Rn to R
are themselves defined through other minimization problems. For example, consider the
Lagrangian relaxation, see [9–12], the primal problem is

max
{
q(ξ) | ξ ∈ P, h(ξ) = 0

}
, (1.1)

where P is a compact subset of Rm and q : Rm → R, h : Rm → Rn are two functions. La-
grangian relaxation in this problem leads to the problem min{f(x) | x ∈ Rn}, where

f(x) = max
ξ∈P

{
q(ξ) + 〈x, h(ξ)〉} (1.2)

is the dual function. Trying to solve problem (1.1) by means of solving its dual problem
min{f(x) | x ∈ Rn} becomes more difficult since in this case evaluating the function value
f(x) requires solving exactly another optimization problem (1.2). Let us see another example:
consider the problem

min
{
f(x) | x ∈ C}, (1.3)

where f is convex (not necessarily differentiable), C ⊂ Rn is a nonempty closed convex set, F
is called the Moreau-Yosida regularization of f on C, that is,

F(x) = min
z∈C

{
f(z) +

1
2α

‖z − x‖2
}
, (1.4)

where α is a positive parameter. A point x ∈ C is a solution to (1.3) if and only if it is a solution
to the problem:

min
x∈Rn

F(x). (1.5)

The problem (1.5) is easier to deal with than (1.3), see [13]. But in this case, computing the
exact function value of F at an arbitrary point x is difficult or even impossible since F itself is
defined through a minimization problem involving another function f . Intuitively, we con-
sider the approximate computation of function F.

The above-mentioned phenomenon also exists for mappings from X to Y , where X
and Y are two subspaces of any two finite-dimensional spaces, respectively. Once a mapping,
and more specifically, a continuous mapping is defined implicitly rather than explicitly, the
approximation of the mapping becomes inevitable, see [14]. In this paper we try to solve
VIP (F,X) by assuming the values of the mapping F from X to Rn can be only computed
approximately. Under the assumption, we construct an algorithm for solving the approximate
variational inequality problem AVIP (F,X) and we also prove that there exists a cluster point
of the iteration points generated by the proposed algorithm, it is a solution to the original
problem VIP (F,X).

This paper is organized as follows. Some basic concepts and results are introduced
in Section 2. In Section 3, a proximal analytic center cutting plane algorithm for solving the
variational inequality problems is given. The convergence analysis of the proposed algorithm
is addressed in Section 4. In the last section, we give some conclusions.
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2. Basic Concepts and Results

Let X = {x ∈ Rn | Ax ≤ b} be a polyhedron and F a continuous mapping from X to Rn. A
vector x∗ is a solution to the variational inequality VIP (F,X) if and only if it satisfies the
system of nonlinear inequalities:

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ X. (2.1)

The vector x∗ is a solution to the dual variational inequality VID(F,X) of VIP (F,X) if and only
if it satisfies

〈F(x), x − x∗〉 ≥ 0, ∀x ∈ X. (2.2)

We denote by X∗
P the solution set of VIP (F,X), and X∗

D the solution set of VID(F,X), respec-
tively. Whenever F is continuous, we have X∗

D ⊆ X∗
P , see [15]. If F is pseudomonotone on

X, then X∗
D = X∗

P , see [15]. If F is quasimonotone at x∗ ∈ X∗
P and F(x∗) is not normal to

X at x∗, then X∗
D is nonempty, see Proposition 1 in [5]. For the definitions of monotone,

pseudomonotone and quasimonotone, see [5, 15].

Definition 2.1. The gap functions gP (x) and gD(x) of VIP (F,X) and VID(F,X) are, respectively,
defined by

gP (x) = max
y∈X

〈F(x), x − y〉,

gD(x) = max
y∈X

〈F(y), x − y〉.
(2.3)

Note that gP (x) ≥ 0, gD(x) ≥ 0, and gP (x∗) = 0 if and only if x∗ is a solution to VIP (F,X),
gD(x∗) = 0 if and only if x∗ is a solution to VID(F,X). Thus, X∗

P = {x ∈ X | gP (x) = 0}, X∗
D =

{x ∈ X | gD(x) = 0}.

Definition 2.2. A point x̃ ∈ X is called an ε-solution to VIP (F,X) if gP (x̃) ≤ ε for given ε > 0.

Definition 2.3. For x, y ∈ X, we say F(x)  F(y) if and only if Fi(x) ≤ Fi(y), for i = 1, 2, . . . , n,
where F(x) = (F1(x), F2(x), . . . , Fn(x))

T .

Assumptions 2.4. Throughout this paper, we make the following assumptions: for each x, y ∈
X, given any ε = (ε, ε, . . . , ε), δ = (δ, δ, . . . , δ), where ε, δ ∈ (0, 1), we can always find a Fx ∈ Rn

and a Fy ∈ Rn such that

(a) F(x)  Fx  F(x) + ε, F(y)  Fy  F(y) + δ,
that is, we can compute the approximate value of F with any precision;

(b) Fy −→ Fx if y −→ x, no matter the relationship between ε and δ;

(c)
∥∥∥Fy − Fx∥∥∥ ≤ L∥∥y − x∥∥, where L > 0 is a constant.

(2.4)
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These assumptions are realistic in practice, see [16, 17]. By using the given architecture in
[16, 17], we can approximate the mapping F arbitrary well since neural networks are capable
of approximating any function from one finite-dimensional real vector space to another one
arbitrary well, see [18]. Specifically, let us consider the case of univariate function. If f is a
min-type function of the form

f(x) = inf{Nz(x) | z ∈ Z}, (2.5)

where each Nz(x) is convex and Z is an infinite set, then it may be impossible to calculate
f(x). However, we may still consider two cases. In the first case of controllable accuracy, for
each positive ε > 0 one can find an ε-minimizer of (2.5), that is, an element zx ∈ Z satisfying
Nzx(x) ≤ f(x) + ε; in the second case, this may be possible only for some fixed (any possibly
unknown) ε < ∞. In both cases, we may set fx = Nzx(x) ≤ f(x) + ε. A special case of (2.5)
arises from Lagrangian relaxation [15], where the problem max{f(x) | x ∈ S} with S = Rn

+ is
the Lagrangian dual of the primal problem

inf ψ0(x) s.t. ψj(x) ≥ 0, j = 1, 2, . . . , n, x ∈ X, (2.6)

with Nz(x) = ψ0(z) + 〈x, ψ(z)〉 for ψ = (ψ1, ψ2, . . . , ψn). Then, for each multiplier x ≥ 0, we
need only to find zx ∈ Z such that fx =Nzx(x) ≤ f(x) + ε, see [19].

Under the above assumptions (2.4), we introduce an approximate problem AVIP (F,X)
associated with VIP (F,X): finding x∗ ∈ X such that

〈
Fx∗ , x − x∗

〉
≥ 0, ∀x ∈ X, (2.7)

where Fx∗ satisfies F(x∗)  Fx∗  F(x∗) + ε for arbitrary ε � 0. Its dual problem AVID(F,X) is
to find x∗ ∈ X such that 〈

Fx, x − x∗
〉
≥ 0, ∀x ∈ X, (2.8)

where Fx satisfies F(x)  Fx  F(x) + ε for arbitrary ε � 0.

Definition 2.5. The gap function of AVIP (F,X) is defined by gP (x) = maxy∈X〈Fx, x − y〉.

Definition 2.6. A point x̃ ∈ X is called an ε-solution to AVIP (F,X) if gP (x̃) ≤ ε for given ε > 0.
The optimal solution sets of AVIP (F,X) and AVID(F,X) are denoted byAX∗

P andAX∗
D,

respectively. The following proposition ensures that AX∗
D is nonempty.

Proposition 2.7. If there exists a point x∗ ∈ AX∗
P such that

〈
Fx∗ , y − x∗

〉
> 0 =⇒

〈
Fy, y − x∗

〉
≥ 0, ∀y ∈ X, (2.9)

and Fx∗ is not normal to X at x∗, then AX∗
D is nonempty.
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Proof. Since Fx∗ is not normal toX at x∗, there exists a point x0 ∈ X such that 〈Fx∗ , x0−x∗〉 > 0.
∀ x ∈ X, set xt = tx0+(1−t)x for t ∈ (0, 1], then we have 〈Fx∗ , x−x∗〉 ≥ 0 and 〈Fx∗ , xt−x∗〉 > 0.
Note the condition (2.9), we obtain 〈Fxt , xt − x∗〉 ≥ 0. Letting t → 0, it follows from the
condition (b) in (2.4) that 〈Fx, x − x∗〉 ≥ 0, that is, x∗ ∈ AX∗

D.

In the following part, we focus our attention on solving AVIP (F,X). Let Γ(y, x) : Rn ×
Rn → Rn denote an auxiliary mapping, continuous in x and y, strongly monotone in y, that
is,

〈
Γ
(
y, x

) − Γ(z, x), y − z〉 ≥ β∥∥y − z∥∥2
, ∀y, z ∈ X, (2.10)

for some β > 0. We consider the auxiliary variational inequality associated with Γ, whose
solution w(x) satisfies

〈
Γ(w(x), x) − Γ(x, x) + Fx, y −w(x)

〉
≥ 0, ∀y ∈ X. (2.11)

In view of the strong monotonicity of Γ(y, x) with respect to y, this auxiliary variational
inequality has a unique solution w(x).

Proposition 2.8. The mapping w : X → X is continuous on X. Furthermore, x is a solution to
AVIP (F,X) if and only if x = w(x).

Proof. The first part of the proposition follows from Theorem 5.4 in [1]. To prove the second
part, we first suppose that x = w(x). This yields 〈Fx, y − x〉 ≥ 0, ∀y ∈ X, that is, x solves
AVIP (F,X). Conversely, suppose that x solves AVIP (F,X), then

〈
Fx,w(x) − x

〉
≥ 0, (2.12)

and from (2.11), we have

〈
Γ(w(x), x) − Γ(x, x) + Fx, x −w(x)

〉
≥ 0. (2.13)

Adding the two preceding inequalities, one obtains

〈Γ(w(x), x) − Γ(x, x), x −w(x)〉 ≥ 0, (2.14)

and we conclude, from the strong monotonicity of Γ with respect to y, that x = w(x).

Let ρ < 1, α < β be two positive numbers. Let l be the smallest nonnegative integer
satisfying

〈
Fx+ρl(w(x)−x), x −w(x)

〉
≥ α‖w(x) − x‖2, (2.15)
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where Fx+ρl(w(x)−x) satisfies F(x + ρl(w(x) − x))  Fx+ρl(w(x)−x)  F(x + ρl(w(x) − x)) + ε for
arbitrary ε � 0. The existence of a finite l will be proved in Proposition 2.9. The composite
mapping G is defined, for every x ∈ X, by

G(x) = Gx = Fx+ρl(w(x)−x). (2.16)

If x∗ is a solution to AVIP (F,X), then we have w(x∗) = x∗, l = 0 and Gx∗ = Fx∗ .

Proposition 2.9. The operator G is well defined for every x ∈ X. Moreover, we have

l ≤ ln
((
β − α)/L)
ln ρ

, (2.17)

where L is the number given in (2.4)-(c).

Proof. From the definition of w(x), we have

〈Fx, x −w(x)〉 ≥ 〈Γ(w(x), x) − Γ(x, x), w(x) − x〉 ≥ β‖x −w(x)‖2. (2.18)

Suppose (2.15) does not hold for any finite integer l, that is,

〈Fx+ρl(w(x)−x), x −w(x)〉 < α‖x −w(x)‖2. (2.19)

Note the assumption (2.4)-(b), we obtain

Fx+ρl(w(x)−x) −→ Fx as l −→ +∞, (2.20)

therefore, 〈
Fx, x −w(x)

〉
≤ α‖x −w(x)‖2. (2.21)

Since α < β, (2.21) is in contradiction with (2.18). To prove the second part, we notice that

〈
Fx+ρl(w(x)−x), x −w(x)

〉
=
〈
Fx, x −w(x)

〉
+
〈
Fx+ρl(w(x)−x) − Fx, x −w(x)

〉
≥ β‖w(x) − x‖2 − Lρl‖w(x) − x‖2

≥ α‖w(x) − x‖2

(2.22)

if α ≤ β − Lρl, which means the second conclusion of Proposition 2.9 holds.

Proposition 2.10. If x /∈ AX∗
P , then ∀y∗ ∈ AX∗

D, we have〈
Gx, x − y∗

〉
> 0. (2.23)
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Proof. Let y(x) = x + ρl(w(x) − x), then Gx = Fy(x) and

〈
Fy(x), w(x) − x

〉
≤ −α‖w(x) − x‖2. (2.24)

Since x /∈ AX∗
P , so w(x)/=x. Therefore,

〈
Fy(x), y(x) − x

〉
= ρl

〈
Fy(x), w(x) − x

〉
< 0. (2.25)

For all y∗ ∈ AX∗
D, there holds

〈
Fy(x), y(x) − y∗

〉
≥ 0. (2.26)

By combining (2.25) with (2.26), we obtain 〈Fy(x), x − y∗〉 > 0, that is, 〈Gx, x − y∗〉 > 0.

3. A Proximal Analytic Center Cutting Plane Algorithm

Algorithm 3.1 offered in this section is a modification of the algorithm in [5]. Algorithm 3.1
is described as follows.

Algorithm 3.1. Let β be the strong monotonicity constant of Γ(x, y) with respect to y, and let
α ∈ (0, β), ε ∈ (0, 1) be two constants. Set k = 0, Ak = A ∈ Rm×n, bk = b, and εk = ε.

Step 1 (computation of the center). Find an approximate analytic center xk of Xk = {x ∈ Rn |
Akx ≤ bk}.

Step 2 (stopping criterion). If gP (xk) ≤ ε, stop.

Step 3 (solving the approximate auxiliary variational inequality problem). Find w(xk), such
that

〈
Fxk + Γ

(
w
(
xk

)
, xk

)
− Γ

(
xk, xk

)
, y −w

(
xk

)〉
≥ 0, ∀y ∈ X, (3.1)

where Fxk satisfies F(xk)  Fxk  F(xk) + εxk , εxk = (εk, εk, . . . , εk)T .

Step 4 (construction of the approximate cutting plane). Let yk = xk + ρlk(w(xk) − xk) and
Gxk = Fyk , where lk is the smallest integer that satisfies

〈
Fxk+ρlk (w(xk)−xk), x

k −w
(
xk

)〉
≥ α

∥∥∥w(xk) − xk
∥∥∥2
, (3.2)

where Fxk+ρlk (w(xk)−xk) satisfies F(xk + ρlk(w(xk) − xk))  Fxk+ρlk (w(xk)−xk)  F(xk + ρlk(w(xk) −
xk)) + εxk+ρlk (w(xk)−xk), εxk+ρlk (w(xk)−xk) = (εk, εk, . . . , εk)T .
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Let Hk = {x | 〈Gxk , x − xk〉 = 0},

Ak+1 =

(
Ak

Gxk

)
, bk+1 =

(
bk

G
T

xkx
k

)
. (3.3)

Increase k by one and go to Step 1.
End of Algorithm 3.1

4. Convergence Analysis

In [20], the authors proposed a column generation scheme to generate the polytope Xk, and
they proved if k satisfies the following inequality

ε2

m
≥ 1/2 + 2m ln

(
1 + (k + 1)/8m2)

2m + k + 1
e−2α((k+1)/(2m+k+1)), (4.1)

where ε < 1/2 is a constant, the scheme will stop with a feasible solution, that is, they can find
a vector ak+1 such that {y | aT

k+1y ≤ aT
k+1y

k} ⊃ Γ with ||ak+1|| = 1, Γ contains a full-dimensional
closed ball with ε < 1/2 radius. In other words, there exists the smallest k(ε) such that Xk(ε)

generated by the column generation scheme does not contain the ball with ε < 1/2 radius,
and it is known as the finite cut property. It is easy to know that the result of Theorem 6.6 in
[20] also holds without much change for our Algorithm 3.1 using the approximate centers.
That is, by using the row generation scheme, there exists the smallest k(ρ) such that Xk(ρ)

generated in Step 4 in Algorithm 3.1 does not contain the ball with ρ radius lying inside the
polytope X. This result plays an important role in proving the convergence of the described
Algorithm 3.1 in Section 3.

Theorem 4.1. Let the polyhedron X have nonempty interior, and let AX∗
D be nonempty. Assumption

(2.4) holds. Then either Algorithm 3.1 stops with a solution to AVIP(F,X) after a finite number of
iterations, or there exists a subsequence of the infinite sequence {xk} that converges to a point in AX∗

P.

Proof. Assume that xk /∈ AX∗
P for every iteration k, and let y∗ ∈ AX∗

D. From Proposition 2.10,
we know that y∗ ∈ Xk never lies on Hk for any k. Let {yi}i∈N be an arbitrary sequence of
point in the interior of X converging to y∗ and δi a sequence of positive numbers such that
limi→+∞δi = 0 and that the sequence of closed balls {B(yi, δi)}i∈N lies in the interior of X.
Note that limi→+∞B(yi, δi) = {y∗}. From finite cut property, we know that there exists the
smallest index k(i) and a point ỹi ∈ B(yi, δi) such that ỹi satisfies

〈Gxk(i) , x
k(i) − ỹi〉 < 0. (4.2)

As 〈Gxk(i) , x
k(i) − y∗〉 > 0, there exists a point ŷi on the segment [ỹi, y∗] such that 〈Gxk(i) , x

k(i) −
ŷi〉 = 0. Since X is compact, we can extract from {xk(i)}i∈N a convergent subsequence
{xk(i)}i∈S. Denote by x̂ its limit point, we have

〈Gxk(i) , ŷi − xk(i)〉 = 0, ∀i ∈ S. (4.3)
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From Proposition 2.9, we know that lk(i) is bounded. Consequently, we can extract form
{lk(i)}i∈S a constant subsequence lk∗(i) = k∗. Now from the continuity of w(x) for fixed k and
the relations (2.15) and (4.3), it follows by taking the limit in (4.3) that

〈Gx̂, y
∗ − x̂〉 = 0. (4.4)

By Proposition 2.10, we conclude that x̂ ∈ AX∗
P .

Theorem 4.2. Under the conditions of Theorem 4.1, either Algorithm 3.1 stops with a solution to
AVIP (F,X) after a finite number of iterations, or there exists a subsequence of the infinite sequence
{xk} that converges to a point in X∗

P .

Proof. Since ε ∈ (0, 1), εk ∈ (0, 1). At the end of Step 4 in Algorithm 3.1 we increase k by one,
so we have εk+1 < εk, εk → 0 as k → ∞. Moreover, εxk → 0 as k → ∞ in Algorithm 3.1,
where 0 denotes the zero vector. This means Fx̂ = F(x̂) as k → ∞. Therefore, from the second
result of Theorem 4.1, we know x̂ is the solution to the problem VIP (F,X).

5. Conclusions

In [5], the authors proposed a cutting plane method for solving the quasimonotone vari-
ational inequalities, but throughout the paper they employed the exact information of the
mapping F from X to Rn. Just like the discussion in the first part of our paper, sometimes, it is
not so easy or even impossible to compute the exact values of the mapping F. Motivated by
this fact, we consider constructing an approximate problem AVIP (F,X) of VIP (F,X), and try
out a proximal analytic center cutting plane algorithm for solving AVIP (F,X). In contrast to
[5], our algorithm can be viewed as an approximation algorithm, and it is easier to implement
than [5] since it only requires the inexact information of the corresponding mapping. At the
same time, the conditions we impose on the corresponding mappings are more relaxed, for
example, [5] requires the mapping F satisfies the Lipschitz condition, but we only require
that the so-called approximate Lipschitz condition (2.4)-(c) holds.
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This paper is devoted to metric subregularity of a kind of generalized constraint equations.
In particular, in terms of coderivatives and normal cones, we provide some necessary and
sufficient conditions for subsmooth generalized constraint equations to be metrically subregular
and strongly metrically subregular in general Banach spaces and Asplund spaces, respectively.

1. Introduction

Let X be a Banach space and f : X → R be a function. Consider the following inequality:

f(x) ≤ 0. (1.1)

Let S := {x ∈ X : f(x) ≤ 0}. Recall that (1.1) has a local error bound at a ∈ S if there exist
τ, δ ∈ (0,+∞) such that

d(x, S) ≤ τ[f(x)]+ ∀x ∈ B(a, δ), (1.2)

where [f(x)]+ := max{f(x), 0} and B(a, δ) denotes the open ball of center a and radius δ.
The error bound has been studied by many authors (see [1–3] and the references therein).
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Let Y be another Banach space, b ∈ Y , and let F : X ⇒ Y be a closed multifunction.
The following generalized equation:

b ∈ F(x) (GE)

concludes most of systems in optimization and was investigated by many researchers (see
[4–9] and the references therein). Let x ∈ X and b ∈ F(a). Recall that (GE) is metrically
subregular at (a, b) if there exist τ, δ ∈ (0,∞) such that

d
(
x, F−1(b)

)
≤ τd(b, F(x)) ∀x ∈ B(a, δ) (1.3)

(see [4–6] and the references therein). This property provides an estimate how far for an
element x near a can be from the solution set of (GE). A stronger notion is the metric
regularity: a multifunction F is metrically regular at (a, b) if there exist τ, δ ∈ (0,+∞) such
that

d
(
x, F−1(y)) ≤ τd(y, F(x)) ∀(x, y) ∈ B((a, b), δ). (1.4)

There exists a wide literature on this topic. We refer the interested readers to [3, 7–11] and
to the references contained therein. Let A be a closed subset of X. Consider the generalized
constraint equation as follows:

b ∈ F(x) subject to x ∈ A. (GCE)

Let S denote the solution set of (GCE), that is, S = {x ∈ A : b ∈ F(x)}. We say that
(GCE) is metrically subregular at a ∈ S if there exist τ, δ ∈ (0,∞) such that

d(x, S) ≤ τ(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δ). (1.5)

When A = X, (GCE) reduces (GE) and (1.5) means that (GE) is metrically subregular
at (a, b). When F(x) = [f(x),+∞), b = 0 and A = X, (GCE) reduces the inequality (1.1)
and (1.5) means that this inequality has a local error bound at a. Error bounds, metric
subregularity and regularity have important applications in mathematical programming
and have been extensively studied (see [1–12] and the references therein). The Authors
[13] introduced the notions of primal smoothness and investigated the properties of
primal smooth functions. Under proper conditions, the distance function is primal smooth.
Differentiability of the distance function was discussed in [14]. As extension of primal
smoothness and convexity, the notion of subsmoothness was introduced and some functional
characterizations were provided in [15]. Recently, by variational analysis techniques (for
more details, see [16–19]), Zheng and Ng [6] investigated metric subregularity of (GE)
under the subsmooth assumption. In this paper, in terms of normal cones and coderivatives,
we devote to metric subregularity of generalized constraint equation (GCE) under the
subsmooth assumption. We will build some new necessary and sufficient conditions for
(GCE) to be metrically subregular and strongly metrically subregular.
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2. Preliminaries

Let X be a Banach space. We denote by BX and X∗ the closed unit ball and the dual space of
X, respectively. Let A be a nonempty subset of X, int(A) and bd(A), respectively, denote the
interior and the boundary of A. For a ∈ X and δ > 0, let B(a, δ) denote the open ball with
center a and radius δ.

We introduce some notions of variations and derivatives needed to state our results.
For a closed subset A of X and a ∈ A, let Tc(A, a) and T(A, a), respectively, denote the

Clarke tangent cone and contingent (Bouligand) cone of A at a defined by

Tc(A, a) := lim inf
x

A−→a,t→ 0+

A − x
t

, T(A, a) := lim sup
t→ 0+

A − a
t

, (2.1)

where x A−→ a means that x → a with x ∈ A. It is easy to verify that v ∈ Tc(A, a) if and only
if for each sequence {an} in A converging to a and each sequence {tn} in (0, ∞) decreasing to
0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for each natural
number n; while v ∈ T(A, a) if and only if there exists a sequence {vn} in X converging to v
and a sequence {tn} in (0,∞) decreasing to 0 such that a + tnvn ∈ A for all n.

We denote by Nc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ Tc(A, a)}. (2.2)

For ε ≥ 0 and a ∈ A, the nonempty set

N̂ε(A, a) :=

⎧⎨⎩x∗ ∈ X∗ : lim sup
x

A−→a

〈x∗, x − a〉
‖x − a‖ ≤ ε

⎫⎬⎭ (2.3)

is called the set of Fréchet ε-normals of A at a. When ε = 0, N̂ε(A, a) is a convex cone which
is called the Fréchet normal cone of A at a and is denoted by N̂(A, a). Let N(A, a) denote the
Mordukhovich limiting or basic normal cone of A at a, that is,

N(A, a) := lim sup
x

A−→a,ε→ 0+

N̂ε(A,x), (2.4)

that is, x∗ ∈N(A, a) if and only if there exist sequences {(xn, εn, x∗
n)} in A×R+ ×X∗ such that

(xn, εn) → (a, 0), x∗
n

w∗
−−→ x∗ and x∗

n ∈ N̂εn(A,xn) for each natural number n. It is known that

N̂(A, a) ⊆N(A, a) ⊆Nc(A, a), (2.5)

(see [4, 9, 16, 18, 19] and the references contained therein). If A is convex, then

T(A, a) = Tc(A, a),

N̂(A, a) =N(A, a) =Nc(A, a) = {x∗ ∈ X∗ : 〈x∗, x − a〉 ≤ 0 ∀x ∈ A}.
(2.6)
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Recall that a Banach space X is called an Asplund space if every continuous convex function
on X is Fréchet differentiable at each point of a dense subset of X (for other definitions and
their equivalents, see [19]). It is well known that X is an Asplund space if and only if every
separable subspace of X has a separable dual space. In particular, every reflexive Banach
space is an Asplund space. When X is an Asplund space, it is well known that

Nc(A, a) = cl∗(co(N(A, a))), N(A, a) = lim sup
x

A−→a

N̂(A,x), (2.7)

where cl∗(·) denotes the closure with respect to the weak∗ topology, see [9, 19]. Recently,
Zheng and Ng [5] established an approximate projection result for a closed subset ofX, which
will play a key role in the proofs of our main results.

Lemma 2.1. Let A be a closed nonempty subset of a Banach space X and let β ∈ (0, 1). Then for any
x /∈ A there exist a ∈ bd(A) and a∗ ∈Nc(A, a) with ‖a∗‖ = 1 such that

β‖x − a‖ < min{d(x,A), 〈a∗, x − a〉}. (2.8)

If X is an Asplund space, thenNc(A, a) can be replaced by N̂(A, a).

Let F : X ⇒ Y be a multifunction and let Gr(F) denote the graph of F, that is,

Gr(F) :=
{(
x, y
) ∈ X × Y : y ∈ F(x)}. (2.9)

As usual, F is said to be closed (resp., convex) if Gr(F) is a closed (resp., convex) subset of
X × Y . Let (x, y) ∈ Gr(F). The Clarke tangent and contingent derivatives DcF(x, y), DF(x, y)
of F at (x, y) are defined by

DcF
(
x, y
)
(u) :=

{
v ∈ Y : (u, v) ∈ Tc

(
Gr(F),

(
x, y
))} ∀u ∈ X,

DF
(
x, y
)
(u) :=

{
v ∈ Y : (u, v) ∈ T(Gr(F),

(
x, y
))} ∀u ∈ X,

(2.10)

respectively. Let D̂∗F(x, y), D∗F(x, y), and D∗
cF(x, y) denote the coderivatives of F at (x, y)

associated with the Fréchet, Mordukhovich, and Clarke normal structures, respectively. They
are defined by the following:

D̂∗F
(
x, y
)(
y∗) :=

{
x∗ ∈ X∗ :

(
x∗,−y∗) ∈ N̂(Gr(F),

(
x, y
))} ∀y∗ ∈ Y ∗,

D∗F
(
x, y
)(
y∗) :=

{
x∗ ∈ X∗ :

(
x∗,−y∗) ∈N(Gr(F),

(
x, y
))} ∀y∗ ∈ Y ∗,

D∗
cF
(
x, y
)(
y∗) :=

{
x∗ ∈ X∗ :

(
x∗,−y∗) ∈Nc

(
Gr(F),

(
x, y
))} ∀y∗ ∈ Y ∗.

(2.11)

The more details of the coderivatives can be found in [9, 18, 19] and the references therein.
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3. Subsmooth Generalized Constraint Equation

Let A be a closed subset of X. Recall (see [13, 14]) that A is said to be prox-regular at a ∈ A if
there exist τ, δ > 0 such that

〈x∗ − u∗, x − u〉 ≥ −τ‖x − u‖2 (3.1)

whenever x, u ∈ A ∩ B(a, δ), x∗ ∈Nc(A,x) ∩ BX∗ , and u∗ ∈Nc(A,u) ∩ BX∗ .
As a generalization of the prox-regularity, Aussel et al. [15] introduced and studied

the subsmoothness. A is said to be subsmooth at a ∈ A if for any ε > 0 there exist τ, δ > 0
such that

〈x∗ − u∗, x − u〉 ≥ −ε‖x − u‖, (3.2)

whenever x, u ∈ A ∩ B(a, δ), x∗ ∈Nc(A,x) ∩ BX∗ , and u∗ ∈Nc(A,u) ∩ BX∗ .
It is easy to verify that A is subsmooth at a ∈ A if and only if for any ε > 0, there exists

δ > 0 such that

〈u∗, x − u〉 ≤ ε‖x − u‖ (3.3)

whenever x, u ∈ A ∩ B(a, δ) and u∗ ∈Nc(A,u) ∩ BX∗ .
Let F : X ⇒ Y be a closed multifunction, b ∈ Y and a ∈ F−1(b). Zheng and Ng [6]

introduce the concept of the L-subsmoothness of F at a for b: F is called to be L-subsmooth at
a for b if for any ε > 0 there exists δ > 0 such that

〈u∗, x − a〉 + 〈v∗, y − v〉 ≤ ε(‖x − a‖ + ∥∥y − v∥∥), (3.4)

whenever v ∈ F(a)∩B(b, δ), (u∗, v∗) ∈Nc(Gr(F), (a, v))∩BX∗×Y ∗ and (x, y) ∈ Gr(F) with ‖x−
a‖+‖y−b‖ < δ. Next, we introduce the concept of the subsmoothness of generalized constraint
equation (GCE) which will be useful in our discussion.

Definition 3.1. Generalized equation (GCE) is subsmooth at a ∈ S if for any ε > 0, there exists
δ > 0 such that

〈u∗, x − u〉 − 〈v∗, y − b〉 ≤ ε(‖x − u‖ + ∥∥y − b∥∥), 〈
w∗, x′ − u〉 ≤ ε∥∥x′ − u∥∥, (3.5)

whenever x ∈ B(a, δ), x′ ∈ A ∩ B(a, δ), u ∈ S ∩ B(a, δ), y ∈ F(x) ∩ B(b, δ), v∗ ∈ BY ∗ , u∗ ∈
D∗
cF(u, b)(v

∗) ∩ BX∗ , and w∗ ∈Nc(A,u) ∩ BX∗ .

Remark 3.2. The subsmoothness of (GCE) at a means the subsmoothness of F at a for b when
A = X, while the subsmoothness of (GCE) at a means the subsmoothness of A at a when
F(x) = b for all x ∈ X. If A = X and Gr(F) is prox-regular at (a, b), then generalized equation
(GCE) is subsmooth at a. If A and Gr(F) are convex, then F is also subsmooth at a. Finally
when A is prox-regular and F is single-valued and smooth, (GCE) is subsmooth at a, too.
Hence, Definition 3.1 extends notions of smoothness, convexity and prox-regularity.
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Proposition 3.3. Suppose that Generalized equation (GCE) is subsmooth at a ∈ S. Then for any
ε > 0 there exists δ > 0 such that

〈u∗, x − u〉 ≤ (2 + ε)d(b, F(x)) + ε‖x − u‖, (3.6)

〈w∗, x − u〉 ≤ d(x,A) + ε‖x − u‖, (3.7)

whenever x ∈ B(a, δ), u ∈ S ∩ B(a, δ), u∗ ∈ D∗
cF(u, b)(BY ∗) ∩ BX∗ , and w∗ ∈Nc(A,u) ∩ BX∗ .

Proof. Suppose that (GCE) is subsmooth at a ∈ S. Then for any ε > 0, there exists δ > 0 such
that

〈u∗, x − u〉 − 〈v∗, y − b〉 ≤ ε

2
(‖x − u‖ + ∥∥y − b∥∥), 〈

w∗, x′ − u〉 ≤ ε

2
∥∥x′ − u∥∥, (3.8)

whenever x ∈ B(a, 2δ), x′ ∈ A ∩ B(a, 2δ), u ∈ S ∩ B(a, 2δ), y ∈ F(x) ∩ B(b, 2δ), v∗ ∈ BY ∗ , u∗ ∈
D∗
cF(u, b)(v

∗) ∩ BX∗ , and w∗ ∈Nc(A,u) ∩ BX∗ .
Let x ∈ B(a, δ), u ∈ S∩B(a, δ), v∗ ∈ BY ∗ , u∗ ∈ D∗

cF(u, b)(v
∗)∩BX∗ , and w∗ ∈Nc(A,u)∩

BX∗ . If F(x) ∩ B(b, δ) = ∅, then

〈u∗, x − u〉 ≤ ‖x − u‖ ≤ ‖x − a‖ + ‖a − u‖ ≤ 2δ, d(b, F(x)) ≥ δ. (3.9)

Thus, (3.6) holds. Otherwise, one has

〈u∗, x − u〉 ≤ 〈v∗, y − b〉 + ε

2
(‖x − u‖ + ∥∥y − b∥∥) ≤ (1 + ε)

∥∥y − b∥∥ + ε‖x − u‖, (3.10)

whenever y ∈ F(x) ∩ B(b, δ). Noting that d(b, F(x)) = d(b, F(x) ∩ B(b, δ)) (sine F(x) ∩
B(b, δ)/= ∅), it follows that

〈u∗, x − u〉 ≤ (1 + ε)d(b, F(x)) + ε‖x − u‖. (3.11)

It remains to show that (3.7) holds. Since

〈w∗, x − u〉 =
〈
w∗, x − x′〉 + 〈w∗, x′ − u〉 ≤ ∥∥x − x′∥∥ + ε

2
∥∥x′ − u∥∥

≤
(

1 +
ε

2

)∥∥x − x′∥∥ + ε

2
‖x − u‖,

(3.12)

whenever x′ ∈ A ∩ B(a, δ). One has

〈w∗, x − u〉 ≤ d(x,A) +
ε

2
(d(x,A) + ‖x − u‖). (3.13)

Noting that u ∈ A, it follows that d(x,A) ≤ ‖x − u‖ which implies that (3.7) holds and
completes the proof.
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4. Main Results

This section is devoted to metric subregularity of generalized equation (GCE). We divide
our discussion into two subsections addressing the necessary conditions and the sufficient
conditions for metric subregularity.

4.1. Necessary Conditions for Metric Subregularity

There are two results in this subsection: one is on the Banach space setting and the other on
the Asplund space setting.

Theorem 4.1. Suppose thatX,Y are Banach spaces and that generalized equation (GCE) is metrically
subregular at a ∈ S. Then there exist τ, δ ∈ (0,+∞) such that

N̂(S, u) ∩ BX∗ ⊆ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗) ∀u ∈ S ∩ B(a, δ). (4.1)

Proof. Let δGr(F) denote the indicator function of Gr(F) and δ > 0 such that (1.5) holds. Then
(1.5) can be rewritten as

d(x, S) ≤ δGr(F)
(
x, y
)
+ τ
(∥∥y − b∥∥ + d(x,A)

) ∀(x, y) ∈ B(a, δ) × Y. (4.2)

Let u ∈ S ∩ B(a, δ) and u∗ ∈ N̂(S, u) ∩ BX∗ . Noting (cf. [9, Corollary 1.96]) that N̂(S, u) ∩
BX∗ = ∂̂d(·, S)(u), one gets that for any natural number n, there exists r ∈ (0, δ) such that
B(u, r) ⊆ B(a, δ) and

〈u∗, x − u〉 ≤ d(x, S) + 1
n
‖x − u‖ ∀x ∈ B(u, r). (4.3)

Hence, by (4.2), it follows that

〈u∗, x − u〉 ≤ δGr(F)
(
x, y
)
+ τ
∥∥y − b∥∥ + τd(x,A) +

1
n
‖x − u‖ ∀(x, y) ∈ B(u, r) × Y, (4.4)

that is, (u, b) is a local minimizer of φ defined by

φ
(
x, y
)

:= −〈u∗, x − u〉 + δGr(F)
(
x, y
)
+ τ
∥∥y − b∥∥ + τd(x,A) +

1
n
‖x − u‖ ∀(x, y) ∈ X × Y.

(4.5)

Hence, (0, 0) ∈ ∂cφ(u, b). It follows from [16] that

(0, 0) ∈ (−u∗, 0) +Nc(Gr(F), (u, b)) + {0} × τBY ∗ + τ∂cd(·, A)(u) × {0} + 1
n
BX∗ × {0}, (4.6)
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that is,

(
1
τ
u∗ +

1
τn

x∗
n,−y∗

n

)
∈Nc(Gr(F), (u, b)) + ∂cd(·, A)(u) × {0}, (4.7)

for some x∗
n ∈ BX∗ and y∗

n ∈ BY ∗ . Since BX∗ and BY ∗ are weak∗ compact, without loss of

generality (otherwise take a generalized subsequence), we can assume x∗
n

w∗
−−→ x∗, y∗

n
w∗
−−→ y∗

for some x∗ ∈ BX∗ and y∗ ∈ BY ∗ as n → ∞. Noting that

Nc(Gr(F), (u, b)) + ∂cd(·, A)(u) × {0} (4.8)

is weak∗ closed (since Nc(Gr(F), (u, b)) is weak∗ closed and ∂cd(·, A)(u) × {0} is weak∗

compact), one has

(
u∗

τ
,−y∗

)
∈Nc(Gr(F), (u, b)) + ∂cd(·, A)(u) × {0}. (4.9)

This implies that

u∗ ∈ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗). (4.10)

This shows that (4.1) holds true. The proof is completed.

WhenX and Y are Asplund spaces, the conclusion in Theorem 4.1 can be strengthened
with D∗

cF(u, b)(BY ∗) and Nc(A,u) ∩ BX∗) replaced by D∗F(u, b)(BY ∗) and N(A,u) ∩ BX∗),
respectively. Its proof is similar to that of Theorem 4.1.

Theorem 4.2. Suppose that X and Y are Asplund spaces and that generalized equation (GCE) is
metrically subregular at a ∈ S. Then there exist τ, δ ∈ (0,+∞) such that

N̂(S, u) ∩ BX∗ ⊆ τ(D∗F(u, b)(BY ∗) +N(A,u) ∩ BX∗) ∀u ∈ S ∩ B(a, δ). (4.11)

4.2. Sufficient Conditions for Metric Subregularity

Under the subsmooth assumption, we will show in the next result that some conditions
similar to (4.1) turns out to be sufficient conditions for metric subregularity.

Theorem 4.3. Let X and Y be Banach spaces. Suppose that generalized constraint equation (GCE) is
subsmooth at a and that there exist τ, δ ∈ (0,+∞) such that

Nc(S, u) ∩ BX∗ ⊆ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗), (4.12)
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whenever u ∈ bd(S)∩B(a, δ). Then (GCE) is metrically subregular at a and, more precisely, for any
ε ∈ (0, 1/(2(1 + τ))) there exists δε ∈ (0, δ/2) such that

d(x, S) ≤ (1 + τ)(2 + ε)
1 − 2(1 + τ)ε

(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δε). (4.13)

Proof. Let ε ∈ (0, 1/(2(1 + τ))). Then, by subsmooth assmption of (GCE) at a and
Proposition 3.3, there exists δ′ ∈ (0, δ/2) such that

〈
u∗1, x − u〉 ≤ (2 + ε)d(b, F(x)) + ε‖x − u‖,〈

u∗2, x − u〉 ≤ d(x,A) + ε‖x − u‖,
(4.14)

whenever x ∈ B(a, δ′), u ∈ S ∩ B(a, δ′), u∗1 ∈ D∗
cF(u, b)(BY ∗) ∩ BX∗ and u∗2 ∈Nc(A,u) ∩ BX∗ .

Let δε ∈ (0, δ′/2) and x ∈ B(a, δε) \ S. Now we need only show (4.13).

(i) If F(x)∩B(b, δ′) = ∅, then d(x, S) ≤ ‖x−a‖ < δε, d(b, F(x)) ≥ δ′. Hence (4.13) holds.

(ii) Suppose F(x) ∩ B(b, δ′)/= ∅ and let

β ∈
(

max
{
d(x, S)
δε

, 2(1 + τ)ε,
1
2

}
, 1
)
. (4.15)

By Lemma 2.1 there exist u0 ∈ bd(S) and u∗ ∈Nc(S, u0) with ‖u∗‖ = 1 such that

β‖x − u0‖ ≤ min{〈u∗, x − u0〉, d(x, S)}. (4.16)

Thus, ‖x − u0‖ ≤ (d(x, S)/β) < δε. Hence,

‖u0 − a‖ ≤ ‖u0 − x‖ + ‖x − a‖ < 2δε < δ′ < δ. (4.17)

By (4.12) there exist y∗
1 ∈ BY ∗ , x∗

1 ∈ D∗
cF(u0, b)(y∗

1), and x∗
2 ∈ Nc(A,u0) ∩ BX∗ such that u∗ =

τ(x∗
1 + x∗

2). Applying (4.14) with ((τ/(1 + τ))x∗
1, (τ/(1 + τ))x∗

2, u0) in place of (u∗1, u
∗
2, u), it

follows that

〈u∗, x − u0〉 = τ
(〈
x∗

1, x − u0
〉
+
〈
x∗

2, x − u0
〉)

≤ (1 + τ)(2 + ε)(d(b, F(x)) + d(x,A)) + 2(1 + τ)ε‖x − u0‖.
(4.18)

This and (4.16) imply that

d(x, S) ≤ ‖x − u0‖ ≤ (1 + τ)(2 + ε)
β − 2(1 + τ)ε

(d(b, F(x)) + d(x,A)). (4.19)

Letting β → 1, it follows that (4.13) holds. The proof is completed.

When X and Y are Asplund spaces, the assumption in Theorem 4.3 can be weakened
with Nc(S, u) replaced by N̂(S, u).
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Theorem 4.4. Suppose X and Y are Asplund spaces. Suppose that generalized constraint equation
(GCE) is subsmooth at a and that there exist τ, δ ∈ (0,+∞) such that

N̂(S, u) ∩ BX∗ ⊆ τ(D∗
cF(u, b)(BY ∗) +Nc(A,u) ∩ BX∗), (4.20)

whenever u ∈ bd(S) ∩ B(a, δ). Then for any ε > 0 there exists δε > 0 such that (4.13) holds.

With the Asplund space version of Lemma 2.1 applied in place of the Banach space
version, similar to the proof of Theorem 4.3, it is easy to verify Theorem 4.4.

In general, (GCE) is not necessarily metrically subregular at a if (GCE) only has that
Nc(S, a) ∩ BX∗ ⊆ τ(D∗

cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗).
Finally, we end this subsection with a sufficient and necessary condition for the Clarke

tangent derivative mapping DcF(a, b) to be metrically subregular at 0 for 0 over the Clerke
tangent cone Tc(A, a).

Let

τ(F, a, b;A) := inf{τ > 0 : there exists δ > 0 such that (1.5)holds}. (4.21)

For u ∈ S, let

γ(F, u, b;A) := inf{τ > 0 : Nc(S, u) ∩ BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A,u) ∩ BX∗)}. (4.22)

The following lemma is known ([5, Theorem 3.2]) and useful for us in the sequel.

Lemma 4.5. Assume that F : X ⇒ Y is a closed convex multifunction, A is a closed convex subset
of X, and a ∈ S. And suppose that there exist a cone C and a neighborhood V of a such that S ∩ V =
(a + C) ∩ V . Then,

τ(F, a, b;A) = γ(F, a, b;A). (4.23)

Consequently, (GCE) is metrically subregular at a if and only if γ(F, a, b;A) < +∞.

Theorem 4.6. Let a ∈ S and

τ := inf{τ > 0 : d(h, Tc(S, a)) ≤ τ(d(0, DcF(a, b)(h)) + d(h, Tc(A, a))) ∀h ∈ X}. (4.24)

Suppose that

Tc(S, a) ⊆ Tc(A, a) ∩DcF(a, b)
−1(0). (4.25)

Then,

τ = γ(F, a, b;A). (4.26)
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If, in addition, τ < +∞, then

Tc(S, a) = Tc(A, a) ∩DcF(a, b)
−1(0). (4.27)

Consequently, DcF(a, b) is metrically subregular at (0, 0) over Tc(A, a) if and only if γ(F, a, b;A) <
+∞.

Proof. First, we assume that τ < +∞. By the definition of τ , we have

d(x, Tc(S, a)) ≤ τ(d(0, DcF(a, b)(x)) + d(x, Tc(A, a))) ∀x ∈ X. (4.28)

This implies that

Tc(A, a) ∩DcF(a, b)
−1(0) ⊆ Tc(S, a). (4.29)

This and (4.25) imply that (4.27) holds.
We consider the following constraint equation:

0 ∈ DcF(a, b)(x) subject to x ∈ Tc(A, a).
(
GCE′)

Let S′ denote the solution set of
(
GCE′). Then,

S′ = Tc(A, a) ∩DcF(a, b)
−1(0). (4.30)

Noting that

Nc

(
S′, 0
)
=Nc(Tc(S, a), 0) =Nc(S, a),

Nc(Gr(F), (a, b)) =Nc(Gr(DcF(a, b)), (0, 0)),
(4.31)

it is straightforward to verify that

τ = τ(DcF(a, b), 0, 0; Tc(A, a)), γ(F, a, b;A) = γ(DcF(a, b), 0, 0; Tc(A, a)). (4.32)

On the other hand, since DcF(a, b) is a closed convex multifunction from X to Y and Tc(A, a)
is a closed convex cone, Lemma 4.5 implies that

τ(DcF(a, b), 0, 0; Tc(A, a)) = γ(DcF(a, b), 0, 0; Tc(A, a)). (4.33)

This gives us τ = γ(F, a, b;A).
It remains to show that γ(F, a, b;A) = +∞ when τ = +∞. Suppose that

γ(F, a, b;A) < +∞. (4.34)
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We need only show that τ < +∞. Let x ∈ X \ Tc(S, a) and β ∈ (0, 1). By Lemma 2.1 there exist
u ∈ Tc(S, a) and x∗ ∈Nc(Tc(S, a), u) with ‖x∗‖ = 1 such that

β‖x − u‖ ≤ 〈x∗, x − u〉. (4.35)

Noting that Tc(S, a) is a convex cone, it is easy to verify that

x∗ ∈Nc(Tc(S, a), 0) =Nc(S, a), 〈x∗, u〉 = 0. (4.36)

Take a fixed r in (γ(F, a, b;A),+∞). Then there exist y∗ ∈ rBY ∗ , x∗
1 ∈ D∗

cF(a, b)(y
∗) and x∗

2 ∈
Nc(A, a) ∩ rBX∗ such that

x∗ = x∗
1 + x

∗
2. (4.37)

We equip the product space X × Y with norm

∥∥(x, y)∥∥r :=
r

1 + r
‖x‖ + ∥∥y∥∥ ∀(x, y) ∈ X × Y. (4.38)

Noting that the unit ball of the dual space of (X × Y, ‖ · ‖r) is (((1 + r)/r)BX∗) × BY ∗ , it follows
from the convexity of DcF(x, y) and Tc(A, a) that

1
r

(
x∗

1,−y∗) ∈Nc(Gr(F), (a, b)) ∩
((

1 + r
r

BX∗

)
× BY ∗

)

=Nc(Gr(DcF(a, b)), (0, 0)) ∩
((

1 + r
r

BX∗

)
× BY ∗

)
= ∂cd‖·‖r (·,Gr(DcF(a, b)))(0, 0),

1
r
x∗

2 ∈Nc(A, a) ∩ BX∗ =Nc(Tc(A, a), 0) ∩ BX∗ = ∂cd(·, Tc(A, a))(0).

(4.39)

Hence,

1
r

〈
x∗

1, x
〉 ≤ d‖·‖r ((x, 0),Gr(DcF(a, b))) ≤ d(0, DcF(a, b)(x)),

1
r

〈
x∗

2, x
〉 ≤ d(x, Tc(A, a)), (4.40)

whenever x ∈ X. Noting that 〈x∗, u〉 = 0, it follows from (4.35) that

β‖x − u‖
r

≤ d(0, DcF(a, b)(x)) + d(x, Tc(A, a)). (4.41)
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Therefore,

βd(x, Tc(S, a))
r

≤ d(0, DcF(a, b)(x)) + d(x, Tc(A, a)). (4.42)

Letting β → 1, one has

d(x, Tc(S, a)) ≤ r(d(0, DcF(a, b)(x)) + d(x, Tc(A, a))). (4.43)

This contradicts with τ = +∞. The proof is completed.

4.3. Strongly Metric Subregularity

Let F : X ⇒ Y be a multifunction and b ∈ F(a). Recall that F is strongly subregular at a if
there exist τ ∈ (0,+∞), neighborhoods U of a, and V of b such that

‖x − a‖ ≤ τd(b, F(x) ∩ V ) ∀x ∈ U. (4.44)

It is clear that this definition is equivalent to the next one when A = X.

Definition 4.7. One says that generalized constraint equation (GCE) is strongly metrically
subregular at a if there exists τ, δ ∈ (0,∞) such that

‖x − a‖ ≤ τ(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δ). (4.45)

It is clear that (GCE) is strongly metrically subregular at a if and only if a is an isolated point
of S (i.e., S∩B(a, r) = {a} for some r > 0) and it is metrically subregular at a. Thus, if (GCE) is
strongly metrically subregular at a, Then Nc(S, a) = X∗. We immediately have the following
Corollary 4.8 from Theorem 4.1.

Corollary 4.8. Suppose that there exists τ, δ ∈ (0,∞) such that (4.45) holds. Then,

BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗). (4.46)

Applying Theorem 4.3, one obtains a sufficient condition for (GCE) to be strongly
metrically subregular at a.

Corollary 4.9. Let X,Y be Banach spaces. Suppose that generalized constraint equation (GCE) is
subsmooth at a and that there exists τ ∈ (0,+∞) such that

BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗). (4.47)
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Then (GCE) is strongly metrically subregular at a and, more precisely, for any ε ∈ (0, 1/(1 + 2τ))
there exists δε > 0 such that

‖x − a‖ ≤ (1 + τ)(2 + ε)
1 − 2(1 + τ)ε

(d(b, F(x)) + d(x,A)) ∀x ∈ B(a, δε). (4.48)

Proof. From Theorem 4.3, we need only show that S ∩ B(a, δ) = {a} for some δ > 0. Since the
assumption that (GCE) is subsmooth at a, by Proposition 3.3, for any ε ∈ (0, 1/2(1+τ)), there
exists δ > 0 such that

〈
a∗1, x − a〉 ≤ (2 + ε)d(b, F(x)) + ε‖x − u‖, (4.49)〈

a∗2, x − a〉 ≤ d(x,A) + ε‖x − u‖, (4.50)

whenever x ∈ B(a, δ), a∗1 ∈ D∗
cF(a, b)(BY ∗) ∩ BX∗ and a∗2 ∈Nc(A, a) ∩ BX∗ .

Take an arbitrary x∗ ∈ BX∗ . By (4.47), there exist x∗
1 ∈ D∗

cF(a, b)(BY ∗), x∗
2 ∈ Nc(A, a) ∩

BX∗ such that x∗ = τ(x∗
1 + x

∗
2). Let x ∈ S ∩ B(a, δ). Applying (4.49) with (τ/(1 + τ))x∗

1 in place
of a∗1, it follows from this and (4.50) that we have

τ
〈
x∗

1, x − a〉 ≤ (1 + τ)ε‖x − a‖, 〈
x∗

2, x − a〉 ≤ ε‖x − a‖. (4.51)

Then,

〈x∗, x − a〉 = τ
(〈
x∗

1, x − a〉 + 〈x∗
2, x − a〉)

≤ (1 + 2τ)ε‖x − a‖.
(4.52)

And so,

‖x − a‖ = sup
x∗∈BX∗

〈x∗, x − a〉 ≤ (1 + 2τ)ε‖x − a‖. (4.53)

This shows that S ∩ B(a, δ) = {a}. The proof is completed.

From Corollaries 4.8 and 4.9, we also have the following equivalent results.

Corollary 4.10. Suppose that generalized constraint equation (GCE) is subsmooth at a. Then the
following statements are equivalent:

(i) (GCE) is strongly metrically subregular at a;

(ii) there exists τ ∈ (0,∞) such that BX∗ ⊆ τ(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗));

(iii) 0 ∈ int(D∗
cF(a, b)(Y

∗) +Nc(A, a));

(iv) X∗ = D∗
cF(a, b)(Y

∗) +Nc(A, a);

(v) DcF(a, b) is strongly metrically subregular at 0 for 0 over Tc(A, a).
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Proof. First, by Corollaries 4.8 and 4.9, it is clear that (i)⇔(ii). Noting that D∗
c(DcF

(a, b))(0, 0)(BY ∗) = D∗
cF(a, b)(BY ∗), (ii)⇔(v) is immediate from (i)⇔(ii).

It is clear that (ii)⇔(iii). Noting that Nc(A, a) and D∗
cF(a, b)(Y

∗) are cones, hence,

D∗
cF(a, b)(Y

∗) +Nc(A, a) =
∞⋃
n=1

(D∗
cF(a, b)(nBY ∗) +Nc(A, a) ∩ nBX∗). (4.54)

This shows that (ii)⇒(iv).
It remains to show that (iv)⇒(ii). Suppose that (iv) holds, by the Alaogu theorem, for

each n, the set D∗
cF(a, b)(nBY ∗) +Nc(A, a) ∩ nBX∗ is weakly star-closed, it follows from the

well-known Baire category theorem and (iv) that

0 ∈ int(D∗
cF(a, b)(BY ∗) +Nc(A, a) ∩ BX∗). (4.55)

Hence, (ii) holds. The proof is completed.
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In this paper, the structural characteristic of urban multimodal transport system is fully analyzed
and then a two-tier network structure is proposed to describe such a system, in which the first-
tier network is used to depict the traveller’s mode choice behaviour and the second-tier network
is used to depict the vehicle routing when a certain mode has been selected. Subsequently, the
generalized travel cost is formulated considering the properties of both traveller and transport
mode. A new link impedance function is proposed, in which the interferences between different
vehicle flows are taken into account. Simultaneously, the bi-equilibrium patterns for multimodal
transport network are proposed by extending Wardrop principle. Correspondingly, a bi-level
programming model is then presented to describe the bi-equilibrium based assignment for multi-
class multimodal transport network. The solution algorithm is also given. Finally, a numerical
example is provided to illustrate the model and algorithm.

1. Introduction

With the rapid development of economy, the transportation infrastructures have been
improved significantly in the most cities of China, especially in some metropolitan cities
like Beijing and Shanghai, where the integrated urban transportation systems have been
established gradually. Synchronously, the modal share for passenger travel has been
dramatically changed. Table 1 lists statistics of the trip intensity and mode split of Beijing
in 1986, 2000, 2005, and 2010, respectively [1].

It shows that Beijing’s transportation development mode is a typical multimodal
transportation system. The system consists of different transportation subsystems or subnets
for passenger cars, buses, trains, bicycles, and so forth, in which the multimodal traffic
flows are interdependent and interactive. Obviously, the equilibriums between the various
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Table 1: Trip intensity and mode split characteristics of Beijing by year.

Year Total trips/day Average trip distance (km) Mode split (%)
Bus Subway Taxi Car Bicycle

1986 1.61 — 29.31 0.36 5.24 65.09
2000 2.77 8.0 27.33 9.03 23.96 39.68
2005 2.64 9.3 26.60 5.70 7.60 29.80 30.30
2010 2.82 10.6 28.20 11.50 6.70 34.20 16.40

subsystems and within each subsystem are much more complicated than that for a pure
private vehicle system. Thus, the following critical issues should be carefully considered for
resolving the multimodal network equilibrium problem.

(i) The multimodal transportation network is a superposition or compound of various
physical subnets for different transportation modes.

(ii) The performance of each mode depends on both self-demand and the demands in
other modes, which means that there are interactions between different modes.

(iii) The traffic flow pattern in a multimodal network involves traveler’s combined
choice behaviors in which the travelers not only choose trip modes through the
whole multimodal network but also select routes within each subnet.

(iv) The criteria of mode choice and route choice during a trip are usually different.
In the mode choice stage, the travelers’ decisions are generally influenced by a
combination of travel time, potential expense, and other factors. Once the trip
mode has been selected, the travelers only care about how to minimize their travel
time through route choice within the specific subnet. Therefore, different types
of travelers have different psychological preferences for mode choice while the
characteristics of travelers have no impact on their route choices.

(v) There are feedbacks between these two choices. Firstly, the traveler’s mode choice
results in the total demands for different transportation modes, which determines
the traffic flows through the multimodal network. Secondly, the traffic assignment
patterns corresponding to the route choice within subnets determine the travel time
in the respective modes, which conversely affect the mode choice.

The user equilibrium (UE) assignment problem for the private vehicle traffic network
has been formulated by Beckmann et al. [2], Sheffi [3], Patriksson [4], and so forth. For
multimodal networks, the earlier models [5–9] were developed for modal choice using logit
type functions to split travel demand for each travel mode. However, these models cannot
reflect a multimodal network’s configuration and how the traffic flows are distributed in
the network [10]. In order to overcome this, the combined or integrated models have been
developed [11–13], in which modal split and flow assignment are incorporated together.
Based on the assumption that travel cost structures are either separable or symmetric, the
above models were formulated as convex optimization programs. However, the assumption
for the cost structure may be not realistic in certain situations [14, 15]. In order to model
the asymmetric interactions, some general combined travel demand models were formulated
as a variational inequality problem [10, 16–20] and a fixed point problem [21]. Although
the above studies have combined the traveler’s modal choice and traffic flow assignment,
they usually focus on user equilibrium for path flow assignment within single mode traffic
network. However, the multimodal equilibrium issue associated with mode split has rarely
been explored, and few studies investigate the relationship between these two equilibriums.
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From the viewpoint of economics, the transportation service can be measured by
the generalized travel cost in addition to the expense charged. The generalized cost is not
fixed given a specific trip but is dependent on travel demand. If many individuals choose
to use a certain mode, it will get congested and its travel time will increase. In response,
some travelers may take alternative modes. Consequently, the alternative modes can also be
congested, which will push travelers back to the original mode. Therefore, the UE principle in
a multimodal system includes two categorizes. One is the user equilibrium between different
modes, and the other is the traditional user equilibrium among different routes in respective
subnets. The first equilibrium derives from the monotonically increasing of the generalized
cost of each mode with travel demand while the later one derives from travel time in a specific
subnet also with the monotonically increasing nature of the link impedance functions. There
exists a two-way influence between the two types of equilibriums. If the travel demands of
transportation modes are all given, the demands will be assigned in each subnet based on
traditional user equilibrium, under which the travel time of various transportation modes
will be obtained. Subsequently, such travel times will lead to the changes in the generalized
costs of different modes, and then the travelers will reselect transportation modes. Eventually,
both user equilibrium between different modes and user equilibrium between different
routes in each mode are achieved.

The generalized travel cost is associated with the properties of transportation mode,
such as travel time, travel expense, and convenience. Meanwhile, the traveler’s psychological
preference is another important factor leading to different mode-choice behaviors. Different
types of travelers may perceive different values of the properties stated above. For example,
the high-income travelers will concern more about the factor of time while the low-income
travelers will care more about the factor of expense. To account for multiple user classes
that can be distinguished by the value of travel time, the multiclass, multicriteria traffic
network equilibrium models were developed, in which each class of travelers perceives
the travel disutility associated with a route as a subjective weighting for travel time and
travel cost [22]. The models allow both travel time and travel cost of a link to depend
on the entire link load pattern, rather than on the particular link flow only [23–25]. The
multiclass, multicriteria models were further applied for dynamic traffic assignment [26] and
multimodal network issues, such as using aggregate hierarchical logit structures for mode
choice [17, 27] and extending the fixed point theory to the multimodal network equilibrium
model [21]. However, the previous studies considered the factors of travel time and expense
in the link impedance function, and the same criteria are adopted for the travelers’ mode
choice and route choice. So, the travelers have different preferences not only in the stage of
mode choice but also for route choice. In fact, the influence factors of traveler’s mode choice
in the multimodal network and route choice in a single modal network are different. The
generalized travel cost involving travel time, expense, or other factors should be addressed
as user preference or multiclass problems in the stage of mode choice. Once travelers decide
which mode they would take, travel time is the only factor for their route choices unless
there is an imposed charge for selecting the shortest travel time, for example, toll for urban
freeways. Such a special issue in the multimodal transportation system is beyond the scope
of this study. Nevertheless, few studies clearly indicate the criteria difference between mode
choice and route choice, neither is the issue formalised in previous multimodal network
models.

In addition, the structure of multimodal system is generally more complicated than
that of private car roadway system. Hierarchical structure is an efficient way to model
the multimodal system with multiple subnet levels. Mainguenaud [28] presented a data
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model to manage multimodal networks with a Geographical Information System (GIS),
which allows definition of a node and link as an abstraction of a subnet. Jing et al. [29]
proposed the Hierarchical Encoded Path View (HEPV) model that partitions large graph into
smaller subgraphs and organizes them in a hierarchical fashion. Van Nes [30] introduced
a strategy for hierarchical multimodal network levels utilizing specific journey functions
according to travel distance as well as quality in terms of travel speed and comfort. Jung
and Pramanik [31] developed a graph model, called hierarchical multilevel graph, for very
large topographical road maps. This graph model provides a tool to structure and abstract
a topographic road map in a hierarchical fashion. These studies mainly focused on topology
of multimodal transportation network and discussed how to deal with the problem of a very
large volume of data, but the travelers’ choice behaviors in the multimodal network were
rarely investigated. Not until recent years, researchers have started to integrate traveler’s
mode choice and route choice with complex network structure in the multimodal network
models. Lo et al. [32] transformed a multimodal network to a so-called State Augmented
Multimodal (SAM) network, by which the network equilibrium problem can be resolved
directly. Wu and Lam [33] used a multilayer network to represent the multimodal network
with combined modes that can facilitate generating feasible routes. Garcı́a and Marı́n [34]
explored the network equilibrium model in the space of hyperroute flows, which contributes
to considering asymmetric costs and modeling multimodal network in a more flexible way.
Si et al. [35–37] presented an augmented network model for urban transit system. The route
choice in the augmented transit network was defined according to the passengers’ behaviors,
and the corresponding network equilibrium model with an improved shortest path algorithm
was developed for the urban transit assignment problem.

The objective of this study is to address the aforementioned concerns of the urban
multimodal network equilibrium issue, including (1) assigning traffic based on both user
equilibrium between different modes and user equilibrium between different routes; (2)
adopting different criteria for travelers’ mode choice and route choice behaviors, namely,
using multiclass-related general travel cost in the stage of mode choice and traditional link
impedance for route choice within each single mode subnet; (3) constructing a hierarchical
network to describe the multimodal transportation system, in which the first-tier network
is used to depict the travelers’ mode choice behaviors and the second-tier network is
used to describe travelers’ route choice behaviors within the single mode subnets. In this
paper, the biequilibrium patterns for multimodal transportation network are proposed
by extending Wardrop principle. Correspondingly, a bilevel programming model with its
solution algorithm is applied for the biequilibrium traffic assignment in the multimodal
transportation network. Finally, a numerical example is provided to illustrate the model and
algorithm.

2. Hierarchical Network for Multimodal Transportation System

In this paper, the multimodal transportation system is expressed asG = (N,A,K), whereA is
the set of roads,N is the set of nodes that usually represent the intersections or zones, andK is
the set of transportation modes. Clearly, there areK subnets in the multimodal transportation
system, and each subnet, represented byGk = (Ak,Nk), corresponds to transport mode k(k ∈
K).

Figure 1 illustrates a physical network example for the proposed multimodal network
system, which consists of one O-D pair (r-s), nine nodes, twelve roads, and three transporta-
tion modes (car, bus, and bike). It shows that the different modes have different network
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Figure 1: The multimodal transportation system.
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Figure 2: The subnets for different modes.

structures. Figure 2 shows the subnets for different modes separately, in which the traveler
can choose the different routes from node 1 to node 9.

Generally, the traveler during a trip from origin to destination should make two
successive decisions in the multimodal system. The first one is the mode choice in the whole
network, and the second is the route choice in the corresponding subnet once a mode is
selected. At the first stage, the multimodal system can be represented as a simple network
by the different connections, as shown in Figure 3.

According to the structural features of urban multimodal transportation system
demonstrated above, a hierarchical network model can be used to describe such a system.
In the model, each node is described by two variables (n, k), where n(n ∈ N) denotes the
location in the physical network and k(k ∈ K) denotes the transportation mode. Note that the
notations of origin and destination nodes require special attention. An origin node is denoted
as single variable r and a destination is denoted as s, where r and s designate their physical
locations. The set of links connecting the different nodes is divided into two categories.
One category includes loading link and unloading link, the end of which is either origin or
destination; the other category only includes in-vehicle link that indicates connectivity in each
subnet. Both categories are all described by two variables (a, k), where a(a ∈ A) denotes the
physical road and k(k ∈ K) denotes the transportation mode. The hierarchical multimodal
transport system is described in Figure 4.

In such a hierarchical network, the origin is connected with different subnets by the
loading links. Similarly, the destination is connected with different subnets by the unloading
links. If all travelers are assumed to complete their trips through only one mode, it implies
that there should be no connectivity between subnets in the hierarchical network. Based on
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Figure 3: The simplified multimodal transport network.
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Figure 4: The hierarchical network for multimodal transport system.

the hierarchical network, the multimodal transportation system can be used as a generalized
network for traffic assignment or network analysis.

3. Travel Costs Based on Traveler’s Characteristics

In this paper, all travelers are divided into I classes by socioeconomic attributes, assuming
that the mode-choice decision is homogeneous within each class, but differs among classes.
Moreover, the travel time of each mode depends on the travel demands for the mode, and
the potential expense of each mode is included in the generalized travel cost for different
travelers. The generalized travel costs of different modes for different traveler classes can be
expressed as follows:

ci,kw = αiμkw(q) + β
iτkw, ∀w, k, i, (3.1)
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where ci,kw is the generalized cost of mode k for class i between O-D pair w; μkw(q) represents
the equilibrium travel time for transportation mode k between O-D pair w, which is decided
by the travel demands (represented by q); τkw denotes the potential expense of transportation
mode k between O-D pair w; αi and βi are parameters related to socioeconomic attributes of
class i.

Similar to the general traffic network, the travel time of class i on route r in subnet k
between the O-D pair w, denoted by ti,kw,r , can be obtained by the travel time on the link, that
can be expressed as follows:

ti,kw,r =
∑
a

ti,ka δ
k,w
a,r , ∀w, k, i, r, (3.2)

where ti,ka denotes the travel time of class i selecting mode k on road a; δk,wa,r is route and
road incidence variable in the subnet k between O-D pair w; if road a is on the route r, then
δk,wa,r = 1, otherwise, δk,wa,r = 0.

Generally, no matter what class of travelers, as long as the transportation mode is
selected, the travel time in the corresponding subnet is not relevant to the personal properties.
In other words, the travel time on the road network is only related to the characteristics of
transportation modes, but not related to the traveler’s personal properties. Let tkw,r and tka
denote the travel time of mode k on route r between the O-D pair w and the travel time of
transportation mode k on road a, respectively. Then,

ti,kw,r = t
j,k
w,r = · · · = tkw,r , ∀w, k, r, ∀i /= j, (3.3a)

ti,ka = tj,ka = · · · = tka, ∀k, a, ∀i /= j. (3.3b)

Obviously, (3.2) can be rewritten as

tkw,r =
∑
a

tkaδ
k,w
a,r , ∀w, k, r. (3.4)

In the traffic network, the link impedance function mainly describes the relationship
between travel time and link flow. It should be noted that the interferences among different
modes will occur in the multimodal traffic network if there are no physical barriers between
different flows on the road. Therefore, the link impedance function in the multimodal traffic
network is very different from that in a single-mode traffic network. The travel time of
different modes is decided by not only the road flow of its own mode but also the road flows
of the other modes. Accordingly, the link impedance function in multimodal traffic network
can be formulated as

tka = f
(
t
k(0)
a , v1

a, . . . , v
k
a, C

k
a

)
, ∀k, a, (3.5)

where tk(0)a is the free-flow travel time of mode k on road a; Ck
a is the practical capacity on

road a; vka is the vehicle flow of mode k on road a. Generally, tk(0)a and Ck
a can be assumed as

constants.



8 Journal of Applied Mathematics

In the multimodal traffic network, the link flow is defined as the number of vehicles
including cars, buses, and bikes that have traveled over the road sections during a time
unit, which is a congregative result by all travelers’ mode choice and route choice behaviors.
Therefore, the number of travelers can be looked upon as a variable in the link impedance
function, by which the link flows and corresponding travel time can be calculated.
Accordingly, the road flow can be represented by the travel demand as follows:

vka = xka ·
(
Uk

Ak

)
, ∀k, a, (3.6)

where xka is the travel demand of mode k on road a; Uk is the PCU conversion coefficient of
mode k; Ak is the occupancy rate of mode k, which indicates the average number of travelers
within each vehicle of mode k.

As stated above, the road flows of different modes on road a can be expressed by the
travel demand of corresponding mode on road a. Consequently, (3.5) can be rewritten as
follows:

tka = f̂ ka
(
x1
a, . . . , x

k
a

)
, ∀k, a. (3.7)

4. Conservations of Demand in Multimodal Transportation Network

Assuming that the total demands of different travelers between each O-D pair are given and
fixed, for a certain class, the sum of demands of different modes equals the total demand
between O-D pair, which can be represented as

∑
k

qi,kw = qiw, ∀w, i, (4.1)

where qiw is the total demand of class i between O-D pair w; qi,kw is the demand of class i
selecting mode k between O-D pair w.

Secondly, for a certain class selecting a certain mode, the sum of demands on different
routes in each subnet equals the demand of the corresponding mode between O-D pair, that
is:

∑
r

hi,kw,r = q
i,k
w , ∀w, k, i, (4.2)

where hi,kw,r is the demand of class i on the route r in subnet k between O-D pair w.
Obviously, the following formulation can be obtained according to (4.2):

∑
i

∑
r

hi,kw,r =
∑
i

qi,kw , ∀w, k. (4.3)
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Let qkw and hkw,r denote the total demand of mode k between O-D pair w and the
demand on the route r in subnet k between O-D pair w, respectively. Then the following
two equations can be obtained easily:

∑
i

qi,kw = qkw, ∀w, k, (4.4)

∑
i

hi,kw,r = hkw,r , ∀w, k, r. (4.5)

Then, (4.3) can be rewritten as

∑
r

hkw,r =
∑
i

qi,kw = qkw, ∀w, k. (4.6)

In addition, for class i in subnet k between O-D pair w, the demand on road a can be
represented by the demand on the routes passing though the road, that is:

xi,ka =
∑
w

∑
r

hi,kw,rδ
k,w
a,r , ∀a, i, k, (4.7)

where xi,ka is the demand of class i selecting mode k on road a.
Similarly, the following formulation can be obtained according to (4.7):

∑
i

xi,ka =
∑
i

∑
w

∑
r

hi,kw,rδ
k,w
a,r =

∑
w

∑
r

∑
i

hi,kw,rδ
k,w
a,r , ∀a, i, k. (4.8)

Thus, the total demand of mode k on road a is the sum of demand of different classes
selecting mode k on road a, that is:

xka =
∑
i

xi,ka , ∀a, k. (4.9)

The following formulation can be gotten easily according to (4.5) and (4.9):

xka =
∑
w

∑
r

hkw,rδ
k,w
a,r , ∀a, k. (4.10)

5. Biequilibrium Model for Multimodal Transport Network

Equilibrium is a central concept in numerous disciplines from economics and regional
science to operational research/management science [38]. The example in transportation
science is the famous Wardrop equilibrium. In the conventional equilibrium of transportation,
the single-mode traffic network with purely automobile flow is considered, and only the
motorists’ route choices are examined, while the traveler’s mode and route combined choices
and the resulting complicated equilibrium in the multimodal traffic network have not been
explored substantially.



10 Journal of Applied Mathematics

As aforementioned, the UE principle in multimodal transportation system can
be divided into two categories in order to be consistent with the travelers’ combined
choice behaviors. One category of equilibrium exists between different modes, where the
generalized travel cost for a certain class selecting a certain mode is the same and the
minimum generalized travel costs of unselected transportation modes must not be less than
the minimum cost between O-D pair. The other category is the traditional equilibrium among
different routes in each single-mode subnet between O-D pair. The biequilibriums in the
multimodal transportation system can be described as

ci,kw

{
= ηiw,
≥ ηiw,

if
qi,kw ≥ 0,

qi,kw = 0,
∀w, k, i, (5.1)

tkw,r

{
= μkw,
≥ μkw,

if
hkw,r ≥ 0,
hkw,r = 0,

∀w, k, r, (5.2)

where ηiw and μkw are the generalized travel cost for class i and the travel time for mode k
between O-D pair w at equilibrium.

In this paper, the following bilevel programming model is proposed to describe the
combined equilibrium assignment through the multimodal transportation network.

The upper-level problem is to find q̃ ∈ Ω = {q | ∑k q
i,k
w = qiw, q

i,k
w ≥ 0, ∀w, i, k} such

that ∑
w

∑
i

∑
k

{
αi · μkw(q̃) + βi · τkw

}
×
(
qi,kw − q̃ i,kw

)
≥ 0, (5.3)

where q is the vector of qi,kw ; the function μkw(q) is decided by the following lower-level
problem.

The lower-level problem is to find

x̃(q) ∈ Ψ =

{
x |

∑
r

hkw,r =
∑
i

qi,kw , x
k
a =

∑
w

∑
r

hkw,rδ
k,w
a,r , h

k
w,r ≥ 0, ∀w, k, r, a

}
(5.4)

such that ∑
a

∑
k

f̂ k
a {x̃(q)} ×

(
xka − x̃ka(q)

)
≥ 0, (5.5)

where x is the vector of xka.
It can been seen that the variational inequality (VI) model for upper-level problem

is to find equilibrium demand of class i selecting mode k between O-D pair w, that is, q̃i,kw ,
to meet the first equilibrium principle in (5.1). The travelers’ generalized costs are partially
decided by the equilibrium flow patterns and the corresponding travel time through the
different subnets. The relationship between them is described by the lower-level VI model
with parameters in (5.5). The lower-level problem represents the equilibrium assignment
reflecting travelers’ route choice behaviors within each subnet, and the goal is to find the
equilibrium flows and corresponding travel time under the condition that the demands
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of different classes and selected different modes are all given. The variables q and x can
be regarded as decision variables for the bilevel problem. The biequilibrium for the urban
multimodal network can be achieved by solving the bilevel problem.

The equivalence between the solution to the previous model and the equilibrium
conditions for multimodal transportation network is given as follows.

Assuming that q̃ ∈ Ω is a solution to VI problem in (5.3), then q̃ is bound to meet the
following conditions:

q̃i,kw
(
ci,kw − ηiw

)
= 0, ∀w, k, i, (5.6a)

ci,kw − ηiw ≥ 0, ∀w, k, i, (5.6b)

where ηiw is the dual multiplier of the constraint condition (4.1).
Similarly, assuming that x̃ ∈ Ψ is a solution to VI problem in (5.5), then x̃ is bound to

meet the following conditions:

hkw,r

(
tkw,r − μkw

)
= 0, ∀w, k, r, (5.7a)

tkw,r − μkw ≥ 0, ∀w, k, r, (5.7b)

where μkw is the dual multiplier of the constraint condition in (4.6).
Obviously, the first equilibrium condition in (5.1) can be gotten from (5.6a) and (5.6b),

and the second equilibrium condition in (5.2) can be gotten by (5.7a) and (5.7b).

6. Solution Algorithm

Due to the intrinsic complexity of model formulation, the bilevel programming problem has
been recognized as one of the most difficult, yet challenging, problems for global optimality in
transportation system. In the past decades, researchers [35, 36, 39–42] developed alternative
solution algorithms for this problem. The sensitivity analysis-based method proposed by
Tobin and Friesz [43] is used to solve the bilevel programming model proposed in this paper.

It is necessary to derive the derivatives of the decision variables with respect to the
parameters for the lower-level problem in the sensitivity analysis approach. In our proposed
problem, we need to calculate the derivatives of the optimal dual multiplier of the constraint
condition in (4.6), that is, the equilibrium of O-D travel time (represented by µ), with respect
to the travel demand (represented by q). By assuming that the initial q(0) is given and
other conditions are fixed, the equilibrium O-D travel time matrix for a multimodal traffic
network, µ̃(q(0)) can be obtained by solving the lower level of the model. Through conducting
a sensitivity analysis of VI model in (5.5) (see appendix), the approximate differential
coefficient, ∇qµ, can be obtained. Then the response function can be approximated by the
Taylor expansions. That is,

µ(q) ≈ µ̃
(
q(0)

)
+
(∇qµ

)T(q − q(0)
)
. (6.1)

By substituting (6.1) into the upper-level problem, the whole optimization model can
be simplified as one-level optimization problem. The solution of this one-level optimization
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will then be input into the lower level of the model to run the next iteration. By repeating
the iteration process, it is possible to obtain an optimum solution for the above bilevel
programming model. This process can be summarized as the following steps.

Step 1. Set the initial value q(0), and set the number of iterations to i = 1.

Step 2. Find the solution of the lower-level model, µ̃(i).

Step 3. Find the linear equation of the matrix, µ(q), through sensitivity analysis and Taylor
expansion.

Step 4. Put the linear equation of the matrix into the upper-level model to update the value
of q(i) by solving upper-level problem.

Step 5. Examine the convergence. If q(i) ≈ q(i−1) or i = N, then iteration stops, where N is the
maximum number of iterations. Otherwise, set i = i + 1 and start a new iteration.

Note that both Steps 2 and 4 solve different VI models. The approach most commonly
used to solve VI model is the popularly known “diagonalization” method, which mimics the
Jacobi (resp., Gauss-Seidel) decomposition approach used for solving systems of equations
[44]. The idea behind the method is to fix flows for all but one group of variables
and to iteratively solve a sequence of separable subproblems which can be described as
mathematical programs. As for VI model in (5.3), the vector function μkw(q) is “diagonalized”
by the current solution in nth iteration, yielding a symmetric assignment problem, which can
be represented by the following mathematical program:

minZ(q)
q∈Ω

=
∑
w

∑
k

∑
i

∫qi,kw

0
ci,kw

(
q1,1
w(n−1), . . . , q

1,k
w(n−1), . . . , q

i,1
w(n−1), . . . , ω

)
dω. (6.2)

Similarly, as for VI model in (5.5), the vector function f̂ k
a (x) is “diagonalized” at the current

solution, yielding the following mathematical program:

minF(x)
x∈Ψ

=
∑
a

∑
k

∫xka

0
f̂ ka

(
x1
a(n−1), x

2
a(n−1), . . . , ω

)
dω. (6.3)

The Frank-Wolfe method or MSA method can be employed to solve the diagonalization
problem (6.2) and (6.3). Due to the limited space, the detailed process MSA method for (6.3)
is given as follows here.

Step 1. Initialization: set xka = 0 and compute tk(0)a for any k and a. Find the shortest route in
subnet k between O-D pair w. Then perform all-or-nothing assignment to load qkw for subnet
k and obtain xk(1)a for any k and a. Set iteration n = 1.

Step 2. Compute tk(n)a based on xk(n)a .

Step 3. Find the shortest route in subnet k between O-D pair w. Perform all-or-nothing
assignment to load qkw and obtain yk(n)a for any k and a.
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Step 4. Compute

x
k(n+1)
a = xk(n)a +

1
n

(
y
k(n)
a − xk(n)a

)
, ∀k, a. (6.4)

Step 5. Convergence test: if a convergence criterion is met, stop. The current solutions,
{xk(n+1)

a }, are the sets of equilibrium solutions; otherwise, set n = n + 1 and go to Step 2.

7. Numerical Example

A simple numerical example is used to illustrate the effectiveness of the proposed model
and algorithm. The multimodal transportation system and the corresponding hierarchical
network structure are, respectively, given by Figures 1 and 4.

The following impedance functions are used in this example [18, 19]:

tka = tk(0)a

∏
m

[
1 + γ

(
Um · xma
Am · Cm

a

)λ
]
, ∀k, a. (7.1)

The relevant data of different roads are given in Table 2, where the PCU conversion
coefficient, the average occupancy rate, and potential expense, which are pertinent to
different modes, are illustrated in Table 3.

The values of γ = 0.15, λ = 4 are set for the parameters in (7.1). In this example, the
travelers are divided into two classes: (i) for the first class, α1 = 2.5 and β1 = 0.5 indicate that
this class is sensitive to the travel time; (ii) for the second class, α2 = 1.5 and β2 = 0.5 indicate
that this class is sensitive to the potential expense. The demands of these two classes are all
assumed as 5000/Ph−1.

The convergences of the diagonalization method for the lower-level problem and the
upper-level problem are, respectively, analyzed using the gap measure proposed by Boyce et
al. [45]. The gaps at iteration n for the assignment models can be defined as

gap(n) = −
∑
a

∑
k

t
k(n)
a ·

(
y
k(n)
a − xk(n)a

)
,

gap(n) = −
∑
w

∑
i

∑
k

c
i,k(n)
w ·

(
v
i,k(n)
w − qi,k(n)w

)
,

(7.2)

where yk(n)a is the auxiliary flow of mode k on link a at iteration n given by an all-or-nothing
assignment based on link travel time, tk(n)a , and v

i,k(n)
w is the auxiliary demand of class i

selecting mode k between O-D pair w at iteration n given by an all-or-nothing assignment
based on the generalized costs, ci,k(n)w .

Figure 5 shows the gaps against the iteration number for the lower-level problem and
upper-level problem, respectively. It can be seen that the solution algorithm has a good
convergence especially for the upper-level problem. It can be explained that the network
structure of the traveler’s mode choice in the upper-level problem is simpler than that of the
traveler’s route choice in the lower-level problem.
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Table 2: The relevant data of different roads.

Road t
1(0)
a /(h) t

2(0)
a /(h) t

3(0)
a /(h) C1

a/(Ph−1) C2
a/(Ph−1) C3

a/(Ph−1)
(1,2) 0.111 0.178 0.361 1000 1000 600
(2,3) 0.128 — 0.378 700 — 400
(1,4) 0.100 0.167 0.350 1500 1500 800
(2,5) 0.106 0.172 0.356 700 700 400
(3,6) 0.089 — 0.339 700 — 400
(4,5) — 0.144 0.328 — 1000 600
(5,6) — — 0.344 — — 600
(4,7) 0.133 0.200 0.383 900 900 500
(5,8) 0.111 0.178 0.361 700 700 400
(6,9) 0.144 — 0.394 700 — 400
(7,8) 0.094 0.161 0.344 900 900 500
(8,9) 0.100 0.167 0.350 900 900 500

Table 3: The relevant data of different modes.

Mode Uk Ak τkw
Car 1 4 10
Bus 1.5 20 4
Bike 0.25 1 0

Table 4 shows the equilibrium results of mode demand and the corresponding
generalized costs of different classes. Table 5 shows the equilibrium results of road demand
and the corresponding travel time of different modes.

Next, we analyze the impacts of the pertinent parameters in this example on the modal
share and the performance of the whole network. Here, the shares of different modes, denoted
by Pkw, can be computed by

Pkw =
qkw∑
i q

i
w

, ∀w, k. (7.3)

The total travel time of the network, denoted by T , is used to represent the performance
of the whole network, that is:

T =
∑
a

∑
k

Uk · xka
Ak

· tka. (7.4)

Figures 6(a)–6(d), respectively, show the changes in modal share and the total travel
time of the whole network with the changes of the parameters (α1, α2), which indicate the
travelers’ sensitivity to the factor of travel time (or congestion). It shows that the share of
bike and the total travel time of whole network will decrease while the shares of bus and car
will increase symmetrically with the increasing of α1 or α2. The travelers who select the bike
mode with longer travel time will shift into the car or bus mode when such travelers become
more sensitive to travel time.

Figures 7(a)–7(d), respectively, display the changes in modal share and the total travel
time with the changes of the parameters (β1, β2), which indicate the travelers’ sensitivity to
the potential travel expense. It can be found that the share of bike and the total travel time
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Figure 5: The convergences of the algorithms for upper problem (a) and lower problem (b).

Table 4: The equilibrium results of demand and the corresponding costs of different classes.

Mode 1 (car) Mode 2 (bus) Mode 3 (bike)
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Demand/Ph−1 609 284 1809 1684 2582 3032
Generalized cost/h 21.0199 13.0646 21.0195 13.0635 21.0196 13.0644

Table 5: The equilibrium results of road demands and its travel time of different modes.

Roads x1
a/(Ph−1) x2

a/(Ph−1) x3
a/(Ph−1) t1a/(h) t2a/(h) t3a/(h)

(1,2) 166.72 0 2148.55 0.1147 0.1835 0.3960
(2,3) 0 — 900.00 0.1284 — 0.3835
(1,4) 726.28 3493.00 3465.45 0.1070 0.1783 0.4225
(2,5) 166.72 0 1248.55 0.1075 0.1754 0.3754
(3,6) 0 — 900.00 0.0893 — 0.3440
(4,5) — 3443.00 1940.48 — 0.1476 0.3489
(5,6) — — 1572.41 — — 0.3540
(4,7) 726.28 50.00 1524.97 0.1356 0.2034 0.4028
(5,8) 166.72 3443.00 1616.62 0.1175 0.1880 0.4183
(6,9) 0 — 2472.41 0.1858 — 0.7331
(7,8) 726.28 50.00 1524.97 0.0961 0.1639 0.3619
(8,9) 893.00 3493.00 3141.59 0.1321 0.2202 0.6725
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Figure 6: The changes of shares of different modes and the total travel time with the changes of (α1, α2).

will increase while the shares of bus and car will decrease with the increment of β1 or β2. The
travelers who select the bus or car mode will shift into the bike mode without any potential
expense when such travelers become more sensitive to the potential expense. The previous
results imply that the performance of the whole network in terms of total travel time would
be better when the travelers are more sensitive to the travel time and less sensitive to potential
expense.

The shares of various modes and the total travel time can be dramatically changed
with the changes of (α1, α2) or (β1, β2) in a certain range. However, these values will not
change significantly when these parameters reach a certain value. When the travelers are
all excessive time-sensitive or cost-sensitive, the other factor can affect their mode choice
behaviors to a very small extent. For example, when the travelers are very sensitive to the
potential expense, they would not consider the factor of travel time. In such a condition,
most of the travelers would choose bike as their traffic tools since they do not bear any costs.
As the speed of bike is slowest, the total cost of network will reach the maximum. On the
contrary, when the traveler is very sensitive to the travel time, they will not consider the
factor of money. Therefore, the travelers always tend to choose the mode with the shortest
travel time (such as car). Simultaneously, the travel time of such mode will become longer
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Figure 7: The changes of shares of different modes and the total travel time with the changes of (β1, β2).

and longer with its increasing demand. The equilibrium between different modes will be
achieved ultimately, and the shares and the total travel time of the whole network will not be
changed at such equilibrium.

Assuming that the total number of travelers between O-D remains unchanged (take
the value of 10000 persons each hour), Figures 8(a) and 8(b), respectively, show the change
trends of the shares and the total travel time with the proportion of class I which is sensitive
to the travel time. It can be shown that the share of bike mode will decrease and the share
of car will go up slightly, while the share of bus remained unchanged. Meanwhile, the total
travel time of whole network will increase with the increment of the proportion of class I.
The results also imply that in the multiclass multimodal transportation network, the more
travelers who focus on the factor of travel time, the lower the total travel time of network is.

8. Conclusions

This paper presents a biequilibrium traffic assignment model for multimodal transportation
networks using the bilevel programming method. The model development is based on
several important concepts that are not explored by the previous studies.
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Figure 8: The changes of shares of different modes and the total travel time with the proportions of class 1.

First, a two-tier hierarchical multimodal network is proposed for the model, in which
the first-tier network is used for mode choice and the second-tier network is used to for route
choice in the single mode subnets.

Second, the model distinguishes the criteria between mode choice and route choice.
The mode choice behavior is based on the multiclass generalized travel cost while the route
choice behavior is based on the travel time only. The generalized cost functions of different
modes and the link impendence functions are formulated while the interferences between
different modes are considered. The approach can better reflect traveler’s preference and
decision-making process in a multimodal transportation system.

Third, the biequilibrium pattern of traffic assignment is firstly proposed for
multimodal traffic network modeling. Its major advantage is integrating the separated two
steps of mode split and traffic assignment in the traditional transportation planning method
into a unified process.

The solution algorithm for the bilevel programming model is illustrated by a simple
numerical example. The sensitivity analysis shows that as travelers are more sensitive to
travel time, they are more likely to choose the mode with less travel time, which will mitigate
the congestion of whole network. In contrast, as travelers are more sensitive to travel expense,
they are more likely to choose the mode without expense, such as bike, which will aggravate
the congestion of whole network. As for the travelers who are more sensitive to travel time,
the changes of their choice behaviors will impact on the performance of whole network
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significantly. Additionally, with the increment of the proportion of traveler class that is more
sensitive to travel time, the network congestion will be mitigated gradually.

It should be noted that there are some limitations in this paper. For example, all
travelers are assumed to complete their trips through only one mode; in other words, they
are assumed not to change modes during their journey. Such reasonable assumption will
preclude the possibility of park-and-ride or similar mode-change mechanisms. In addition,
the case of fixed demand is considered, while the case of elastic demand or demand
uncertainty is not taken into account. So, the promising future work would be extension to
reliability analysis for these situations.

Appendix

Sensitivity Analysis of VI Model (5.5)

Assume that the solutions to x̃(q(0)) and µ(q(0)) of the variational inequality problem in
(5.5) at q = q(0) have been obtained and that f̂ k

a (x) is strongly monotone in x, so that the
solutions are unique. According to Tobin and Friesz [43], the necessary conditions excluding
the nonbinding constraints for solution at q = q(0) for VI problem in (5.5) can be expressed as
follows: ∑

a

f̂ka (x̃) · δk,wa,r − μ̃kw = 0, ∀w, k, r,

∑
r

h̃kw,r −
∑
i

qi,kw = 0, ∀w, k.
(A.1)

Let y = [h,µ]T , where h is the vector of hkw,r . Let Jy and Jq denote the Jacobian matrixes
of (A.1) with respect to y and q at the point q = q(0), respectively:

Jy =
[∇ht ΛT

Λ 0

]
, (A.2)

where t is the vector of tkw,r , and Λ is the O-D and path incidence matrix. Suppose

[
Jy
]−1 =

[
B11 B12

B21 B22

]
. (A.3)

The following results can be obtained:

B22 =
[
Λ · ∇ht−1 ·ΛT

]−1
,

B12 = ∇ht−1 ·ΛT · B22 = ∇ht−1 ·ΛT
[
Λ · ∇ht−1 ·ΛT

]−1
,

B21 = − B22 ·Λ · ∇ht−1 = −
[
Λ · ∇ht−1 ·ΛT

]−1 ·Λ · ∇ht−1,

B11 = ∇ht−1 ·
[
I +ΛT · B21

]
= ∇ht−1 ·

{
I −ΛT ·

[
Λ · ∇ht−1 ·ΛT

]−1 ·Λ · ∇ht−1
}
,

(A.4)
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where I is unit matrix:

Jq =
[∇qt
−I

]
. (A.5)

From theorems in Tobin and Friesz [43], the following result can be obtained:

[∇qh
∇qµ

]
=
[
Jy
]−1 · [−Jq] = [

B11 B12

B21 B22

][−∇qt
I

]
. (A.6)

Thus, the approximate differential coefficient, ∇qµ, can be obtained:

∇qµ = −B21 · ∇qt + B22 =
[
Λ · ∇ht−1 ·ΛT

]−1 ·Λ · ∇ht−1 · ∇qt +
[
Λ · ∇ht−1 ·ΛT

]−1
. (A.7)
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For the extended mixed linear complementarity problem (EML CP), we first present the
characterization of the solution set for the EMLCP. Based on this, its global error bound is also
established under milder conditions. The results obtained in this paper can be taken as an extension
for the classical linear complementarity problems.

1. Introduction

We consider that the extended mixed linear complementarity problem, abbreviated as
EMLCP, is to find vector (x∗;y∗) ∈ R2n such that

F(x∗) ≥ 0, G
(
x∗, y∗) ≥ 0, F(x∗)�G

(
x∗, y∗) = 0,

Ax∗ + By∗ + b ≥ 0, Cx∗ +Dy∗ + d = 0,
(1.1)

where F(x) =Mx + p, G(x) =Nx +Qy + q, M,N,Q ∈ Rm×n, p, q ∈ Rm, A, B ∈ Rs×n,C, D ∈
Rt×n, b ∈ Rs, d ∈ Rt. We assume that the solution set of the EMLCP is nonempty throughout
this paper.

The EMLCP is a direct generalization of the classical linear complementarity problem
and a special case of the generalized nonlinear complementarity problem which was
discussed in the literature ([1, 2]). The extended complementarity problem plays a significant
role in economics, engineering, and operation research, and so forth [3]. For example,
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the balance of supply and demand is central to all economic systems; mathematically,
this fundamental equation in economics is often described by a complementarity relation
between two sets of decision variables. Furthermore, the classical Walrasian law of
competitive equilibria of exchange economies can be formulated as a generalized nonlinear
complementarity problem in the price and excess demand variables [4].

Up to now, the issues of the solution set characterization and numerical methods
for the classical linear complementarity problem or the classical nonlinear complementarity
problem were fully discussed in the literature (e.g., [5–8]). On the other hand, the global
error bound is also an important tool in the theoretical analysis and numerical treatment for
variational inequalities, nonlinear complementarity problems, and other related optimization
problems [9]. The error bound estimation for the classical linear complementarity problems
(LCP) was fully analyzed (e.g., [7–12]).

Obviously, the EMLCP is an extension of the LCP, and this motivates us to extend the
solution set characterization and error bound estimation results of the LCP to the EMLCP.
To this end, we first detect the solution set characterization of the EMLCP under milder
conditions in Section 2. Based on these, we establish the global error bound estimation for the
EMLCP in Section 3. These constitute what can be taken as an extension of those for linear
complementarity problems.

We end this section with some notations used in this paper. Vectors considered in
this paper are all taken in Euclidean space equipped with the standard inner product.
The Euclidean norm of vector in the space is denoted by ‖ · ‖. We use Rn

+ to denote the
nonnegative orthant in Rn and use x+ and x− to denote the vectors composed by elements
(x+)i := max{xi, 0} and (x−)i := max{−xi, 0}, 1 ≤ i ≤ n, respectively. For simplicity, we use
(x;y) for column vector (x�, y�)�. We also use x ≥ 0 to denote a nonnegative vector x ∈ Rn if
there is no confusion.

2. The Solution Set Characterization for EMLCP

In this section, we will characterize the solution set of the EMLCP. First, we can give the
needed assumptions for our analysis.

Assumption 2.1. For the matrices M,N,Q involved in the EMLCP, we assume that the matrix(
M�N+N�M M�Q

Q�M 0

)
is positive semidefinite.

Theorem 2.2. Suppose that Assumption 2.1 holds; the following conclusions hold.

(i) If (x0;y0) is a solution of the EMLCP, then

X∗ =
{(
x;y

) ∈ X |
{
(M, 0m×n)�(N,Q) + (N,Q)�(M, 0m×n)

}{(
x;y

) − (
x0;y0

)}
= 0 ,

{
(M, 0m×n)�q + (N,Q)�p

}�{(
x;y

) − (
x0;y0

)}
= 0

}
,

(2.1)

where X = {(x;y) ∈ R2n |Mx + p ≥ 0,Nx +Qy + q ≥ 0,Ax +By + b ≥ 0, Cx +Dy + d = 0}, and
X∗ denotes the solution set of EMLCP.
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(ii) If (x1;y1) and (x2;y2) are two solutions of the EMLCP, then

(
Mx1 + p

)�(
Nx2 +Qy2 + q

)
=
(
Mx2 + p

)�(
Nx1 +Qy1 + q

)
= 0. (2.2)

(iii) The solution set of EMLCP is convex.

Proof. (i) Set

W =
{(
x;y

) ∈ X |
{
(M, 0)�(N,Q) + (N,Q)�(M, 0)

}{(
x;y

) − (
x0;y0

)}
= 0,

{
(M, 0)�q + (N,Q)�p

}�{(
x;y

) − (
x0;y0

)}
= 0

}
.

(2.3)

For any (x̃; ỹ) ∈ X∗, since (x0;y0) ∈ X, we have

((
x0;y0

) − (
x̃; ỹ

))�((M, 0)�(N,Q)
(
x̃; ỹ

)
+ (M, 0)�q

)
=
[(
Mx0 + p

) − (
Mx̃ + p

)]�(
Nx̃ +Qỹ + q

)
=
[(
Mx0 + p

)]�(
Nx̃ +Qỹ + q

) − (
Mx̃ + p

)�(
Nx̃ +Qỹ + q

)
=
[(
Mx0 + p

)]�(
Nx̃ +Qỹ + q

) ≥ 0.

(2.4)

Since (x̃; ỹ) ∈ X, (x0;y0) ∈ X∗, using the similar arguments to that in (2.4), we have

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q)
(
x0;y0

)
+ (M, 0)�q

)
≥ 0. (2.5)

Combining (2.4) with (2.5), one has

((
x̃; ỹ

) − (
x0;y0

))�(M, 0)�(N,Q)
((
x̃; ỹ

) − (
x0;y0

)) ≤ 0. (2.6)

By (2.6), we have

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̃; ỹ
) − (

x0;y0
)) ≤ 0. (2.7)

By Assumption 2.1, one has

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̃; ỹ
) − (

x0;y0
))

=
((
x̃; ỹ

) − (
x0;y0

))�(M�N +N�M M�Q
Q�M 0

)((
x̃; ỹ

) − (
x0;y0

)) ≥ 0.
(2.8)
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Combining (2.7) with (2.8), we have

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̃; ỹ
) − (

x0;y0
))

= 0. (2.9)

That is,

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x̃; ỹ

) − (
x0;y0

))
= 0. (2.10)

Using (x0;y0) ∈ X, (x̃; ỹ) ∈ X∗ again, we have

((
x0;y0

) − (
x̃; ỹ

))�((N,Q)�(M, 0)
(
x̃; ỹ

)
+ (N,Q)�p

)
=
[(
Nx0 +Qy0 + q

) − (
Nx̃ +Qỹ + q

)]�(
Mx̃ + p

)
=
(
Nx0 +Qy0 + q

)�(
Mx̃ + p

) − (
Nx̃ +Qỹ + q

)�(
Mx̃ + p

)
=
(
Nx0 +Qy0 + q

)�(
Mx̃ + p

) ≥ 0.

(2.11)

Using (x̃; ỹ) ∈ X, (x0;y0) ∈ X∗ again, using the similar arguments to that in (2.11), we have

((
x̃; ỹ

) − (
x0;y0

))�((N,Q)�(M, 0)
(
x0;y0

)
+ (N,Q)�p

)
≥ 0. (2.12)

From (2.9), (2.4), and (2.11), one has

((
x0;y0

) − (
x̃; ỹ

))�{((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

}
=
((
x0;y0

) − (
x̃; ỹ

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x0;y0
) − (

x̃; ỹ
))

+
((
x0;y0

) − (
x̃; ỹ

))�{((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x̃; ỹ

)
+(M, 0)�q + (N,Q)�p

}
=
((
x0;y0

) − (
x̃; ỹ

))�{(M, 0)�(N,Q)
(
x̃; ỹ

)
+ (M, 0)�q

}
+
((
x0;y0

) − (
x̃; ỹ

))�{(N,Q)�(M, 0)
(
x̃; ỹ

)
+ (N,Q)�p

}
≥ 0.

(2.13)

Combining (2.5) with (2.12) yields

((
x̃; ỹ

) − (
x0;y0

))�(((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

)
≥ 0.

(2.14)



Journal of Applied Mathematics 5

Combining this with (2.13) yields

((
x̃; ỹ

) − (
x0;y0

))�(((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

)
= 0.
(2.15)

From (2.10) and (2.15), one has(
(M, 0)�q + (N,Q)�p

)�((
x̃; ỹ

) − (
x0;y0

))
= 0. (2.16)

By (2.10) and (2.16), we obtain that (x̃; ỹ) ∈W follows.
On the other hand, for any (x̂; ŷ) ∈W , then (x̂; ŷ) ∈ X, and(

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̂; ŷ
) − (

x0;y0
))

= 0,(
(M, 0)�q + (N,Q)�p

)((
x̂; ŷ

) − (
x0;y0

))
= 0,

(2.17)

and one has

0 =
((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+(M, 0)�q + (N,Q)�p

]
=
((
x̂; ŷ

) − (
x0;y0

))�((M, 0)�(N,Q)
(
x0;y0

)
+ (M, 0)�q

)
+
((
x̂; ŷ

) − (
x0;y0

))�((N,Q)�(M, 0)
(
x0;y0

)
+ (N,Q)�p

)
=
[(
Mx̂ + p

) − (
Mx0 + p

)]�(
Nx0 +Qy0 + q

)
+
[(
Nx̂ +Qŷ + q

) − (
Nx0 +Qy0

)
+ q )

]�(
Mx0 + p

)
=
(
Mx̂ + p

)�(
Nx0 +Qy0 + q

)
+
(
Nx̂ +Qŷ + q

)�(
Mx0 + p

)
.

(2.18)

Using (2.18), one has

0 =
((
x̂; ŷ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̂; ŷ
) − (

x0;y0
))

= 2
((
x̂; ŷ

) − (
x0;y0

))�(M, 0)�(N,Q)
((
x̂; ŷ

) − (
x0;y0

))
= 2

[(
Mx̂ + p

) − (
Mx0 + p

)]�[(
Nx̂ +Qŷ + q

) − (
Nx0 +Qy0 + q

)]
= 2

[(
Mx̂ + p

)�(
Nx̂ +Qŷ + q

) − (
Mx̂ + p

)�(
Nx0 +Qy0 + q

)
−(Mx0 + p

)�(
Nx̂ +Qŷ + q

)
+
(
Mx0 + p

)�(
Nx0 +Qy0 + q

)]
= 2

(
Mx̂ + p

)�(
Nx̂ +Qŷ + q

)
.

(2.19)

Thus, we have that (x̂; ŷ) ∈ X∗.
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(ii) Since (x1;y1) and (x2;y2) are two solutions of the EMLCP, by Theorem 2.2 (i), we
have (

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x1;y1
) − (

x2;y2
))

=
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x1;y1

) − (
x0;y0

))
−
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x2;y2

) − (
x0;y0

))
= 0.

(2.20)

Combining this with (Mx1 + p)
�(Nx1 +Qy1 + q) = (Mx2 + p)

�(Nx2 +Qy2 + q) = 0, one has

0 =
((
x1;y1

) − (
x2;y2

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x1;y1
) − (

x2;y2
))

= 2
((
x1;y1

) − (
x2;y2

))�(M, 0)�(N,Q)
((
x1;y1

) − (
x2;y2

))
= 2

[(
Mx1 + p

) − (
Mx2 + p

)]�[(
Nx1 +Qy1 + q

) − (
Nx2 +Qy2 + q

)]
= − 2

[(
Mx1 + p

)�(
Nx2 +Qy2 + q

)
+
(
Mx2 + p

)�(
Nx1 +Qy1 + q

)]
.

(2.21)

On the other hand, from Mxi + p ≥ 0, Nxi +Qyi + q ≥ 0, i = 1, 2, we can deduce

(
Mx1 + p

)�(
Nx2 +Qy2 + q

) ≥ 0,
(
Mx2 + p

)�(
Nx1 +Qy1 + q

) ≥ 0. (2.22)

From (2.21) and (2.22), thus, we have that Theorem 2.2 (ii) holds.
(iii) If solution set of the EMLCP is single point set, then it is obviously convex. In

this following, we suppose that (x1;y1) and (x2;y2) are two solutions of the EMLCP. By
Theorem 2.2 (i), we have

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x1;y1

)
− (

x0;y0
))

= 0,(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x2;y2

)
− (

x0;y0
))

= 0,

(
(M, 0)�q + (N,Q)�p

)�((
x1;y1

)
− (

x0;y0
))

= 0,

(
(M, 0)�q + (N,Q)�p

)�((
x2;y2

)
− (

x0;y0
))

= 0.

(2.23)

For the vector (x;y) = τ(x1;y1) + (1 − τ)(x2;y2), for all τ ∈ [0, 1], by (2.23), we have

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))
=
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
τ
(
x1;y1

)
− τ(x0;y0

))
+
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
(1 − τ)

(
x2;y2

)
− (1 − τ)(x0;y0

))
= 0.

(2.24)
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Using the similar arguments to that in (2.24), we can also obtain

(
(M, 0)�q + (N,Q)�p

)�((
x;y

) − (
x0;y0

))
= 0. (2.25)

Combining (2.24) and (2.25) with the conclusion of Theorem 2.2 (i), we obtain the desired
result.

Corollary 2.3. Suppose that Assumption 2.1 holds. Then, the solution set for EMLCP has the
following characterization:

X∗ =
{(
x;y

) ∈ X |
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))
= 0,

((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+(M, 0)�q + (N,Q)�p

]
≤ 0.

}
.

(2.26)

Proof. Set

W̃ =
{(
x;y

) ∈ X |
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))
= 0 ,

((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+(M, 0)�q + (N,Q)�p

]
≤ 0

}
.

(2.27)

For any (x̂; ŷ) ∈ W̃ , then (x̂; ŷ) ∈ X, combining this with (x0;y0) ∈ X∗. Using the similar
arguments to that in (2.5) and (2.12), we have

((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]
≥ 0.

(2.28)

Combining this with (x̂; ŷ) ∈ W̃ , one has

((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]
= 0.

(2.29)

From ((M, 0)�(N,Q) + (N,Q)�(M, 0))((x̂; ŷ) − (x0;y0)) = 0, we have

(
(M, 0)�q + (N,Q)�p

)�((
x̂; ŷ

) − (
x0;y0

))
= 0. (2.30)

Thus, by Theorem 2.2 (i), one has (x̂; ŷ) ∈ X∗.
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On the other hand, for any (x̂; ŷ) ∈ X∗, by Theorem 2.2 (i), we have (x̂; ŷ) ∈ X,
((M, 0)�(N,Q) + (N,Q)�(M, 0))((x̂; ŷ) − (x0;y0)) = 0, and ((M, 0)�q + (N,Q)�p)�((x̂; ŷ) −
(x0;y0)) = 0, that is,

((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]
= 0.

(2.31)

Thus, (x̂; ŷ) ∈ W̃ .

Using the following definition developed from EMLCP, we can further detect the
solution structure of the EMLCP.

Definition 2.4. A solution (x;y) of the EMLCP is said to be nondegenerate if it satisfies

(
Mx + p

)
+
(
Nx +Qy + q

)
> 0. (2.32)

Theorem 2.5. Suppose that Assumption 2.1 holds, and the EMLCP has a nondegenerate solution,
say (x0;y0). Then, the following conclusions hold.

(i) The solution set of EMLCP

X∗ =
{(
x;y

) ∈ X | ((x;y
) − (

x0;y0
))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)
+(M, 0)�q + (N,Q)�p

]
≤ 0

}
.

(2.33)

(ii) If the matrices Mα and Qα are the full-column rank, where α = {i | (Mx0 + p)i > 0, i =
1, 2, . . . , m}, α = {i | i = 1, 2, . . . , m, i /∈ α}, then (x0;y0) is the unique nondegenerate
solution of EMLCP.

Proof. (i) Set

W=
{(
x;y

) ∈ X | ((x;y
) − (

x0;y0
))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)
+(M, 0)�q + (N,Q)�p

]
≤ 0

}
.

(2.34)

From Corollary 2.3, one has X∗ ⊆ W . In this following, we will show that W ⊆ X∗. For any
(x;y) ∈ W , then (x;y) ∈ X, combining this with (x0;y0) ∈ X∗. Using the similar arguments
to that in (2.14), we have

((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]
≥ 0.

(2.35)
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Combining this with (x;y) ∈W , one has

0 =
((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]
=
((
x;y

) − (
x0;y0

))�[(M, 0)�(N,Q)
(
x0;y0

)
+ (M, 0)�q

]
+
((
x;y

) − (
x0;y0

))�[(N,Q)�(M, 0)
(
x0;y0

)
+ (N,Q)�p

]
=
[(
Mx + p

) − (
Mx0 + p

)]�(
Nx0 +Qy0 + q

)
+
[(
Nx +Qy + q

) − (
Nx0 +Qy0 + q

)]�(
Mx0 + p

)
=
(
Mx + p

)�(
Nx0 +Qy0 + q

)
+
(
Nx +Qy + q

)�(
Mx0 + p

)
.

(2.36)

Combining Mx + p ≥ 0,Nx +Qy + q ≥ 0 with (2.36), one has

(
Mx + p

)�(
Nx0 +Qy0 + q

)
=
(
Mx0 + p

)�(
Nx +Qy + q

)
= 0. (2.37)

Since (x0;y0) is a nondegenerate solution, combining this with (2.37), we have (Mx +
p)�(Nx +Qy + q) = 0. That is, (x;y) ∈ X∗.

(ii) Let (x̂; ŷ) be any nondegenerate solution. Since (x0;y0) is a nondegenerate
solution, then we have

(
Mx0 + p

)�(
Nx0 +Qy0 + q

)
= 0, (2.38)(

Mx0 + p
)
+
(
Nx0 +Qy0 + q

)
> 0. (2.39)

Combining (2.38) with (2.39), we have

(
Nx0 +Qy0 + q

)
i = 0, ∀i ∈ α. (2.40)

If i /∈ α, then (Nx0 +Qy0 + q)i > 0 by (2.39). By (2.38) again, we can deduce that

(
Mx0 + p

)
i = 0, ∀i /∈ α. (2.41)

On the other hand, for the (x0;y0) and (x̂; ŷ) which are solutions of EMLCP, and combining
Theorem 2.2 (ii), we have (Mx̂+p)�(Nx0+Qy0+q) = 0. Using (Nx0+Qy0+q)i > 0, for all i /∈
α, we can deduce that

(
Mx̂ + p

)
i = 0, ∀i /∈ α. (2.42)

Combining Theorem 2.2 (ii) again, we also have

((
Mx0 + p

))�(
Nx̂ +Qŷ + q

)
= 0. (2.43)
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For any i ∈ α, that is, (Mx0 + p)i > 0, and combining (2.43), we obtain

(
Nx̂ +Qŷ + q

)
i = 0, ∀i ∈ α. (2.44)

Combining this with the fact that (Mx̂ + p) + (Nx̂ +Qŷ + q) > 0, we can deduce that

(
Mx̂ + p

)
i > 0, ∀i ∈ α. (2.45)

From (2.41) and (2.42), we obtain

Mα(x̂ − x0) = 0. (2.46)

Thus, x̂ = x0 by the full-column rank assumption onMα. Using x̂ = x0, combining (2.40) with
(2.44), we can deduce that

Qαŷ = −Nαx̂ − q = −Nαx0 − q = Qαy0. (2.47)

That is, ŷ = y0 by the full-column rank assumption on Qα. Thus, the desired result follows.

The solution set characterization obtained in Theorem 2.2 (i) coincides with that of
Lemma 2.1 in [7], and the solution set characterization obtained in Theorem 2.5 (i) coincides
with that of Lemma 2.2 in [8] for the linear complementarity problem.

3. Global Error Bound for the EMLCP

In this following, we will present a global error bound for the EMLCP based on the results
obtained in Corollary 2.3 and Theorem 2.5 (i). Firstly, we can give the needed error bound for
a polyhedral cone from [13] and following technical lemmas to reach our claims.

Lemma 3.1. For polyhedral cone P = {x ∈ Rn | D1x = d1, B1x ≤ b1} with D1 ∈ Rl×n, B1 ∈ Rm×n,
d1 ∈ Rl and b1 ∈ Rm, there exists a constant c1 > 0 such that

dist(x, P) ≤ c1[‖D1x − d1‖ + ‖(B1x − b1)+‖] ∀x ∈ Rn; (3.1)

Lemma 3.2. Suppose that (x0;y0) is a solution of EMLCP, and let

ω =
[(

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]
, (3.2)

then, there exists a constant τ > 0, such that for any (x;y) ∈ R2n, one has

[
ω�((x;y

) − (
x0;y0

))]
−

≤ τ(∥∥(Mx + p
)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥ +

∥∥(Ax + By + b
)
−
∥∥ +

∥∥Cx +Dy + d
∥∥). (3.3)
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Proof. Similar to the proof of (2.14), we can obtain

ω�((x;y
) − (

x0;y0
)) ≥ 0, ∀(x;y

) ∈ X. (3.4)

We consider the following linear programming problems

min ω�(x;y
)

s.t. Mx + p ≥ 0,

Nx +Qy + q ≥ 0,

Ax + By + b ≥ 0,

Cx +Dy + d = 0.

(3.5)

From the assumption, we know that (x0, y0) is an optimal point of the linear programming
problem. Thus, there exist optimal Lagrange multipliers λ1, λ2 ∈ Rm

+ , λ3 ∈ Rs
+, and λ4 ∈ Rt

such that

ω = (M, 0)�λ1 + (N,Q)�λ2 + (A,B)�λ3 + (C,D)�λ4,

Mx0 + p ≥ 0, Nx0 +Qy0 + q ≥ 0,

Ax0 + By0 + b ≥ 0, Cx0 +Dy0 + d = 0,(
(M, 0)

(
x0;y0

)
+ p

)�
λ1 = 0,(

Nx0 +Qy0 + q
)�
λ2 = 0,(

Ax0 + By0 + b
)�
λ3 = 0.

(3.6)

From (3.6), we can easily deduce that

ω�(x0;y0
)
=
{
(M, 0)�λ1 + (N,Q)�λ2 + (A,B)�λ3 + (C,D)�λ4

}�(
x0;y0

)
= λ�1 (M, 0)

(
x0;y0

)
+ λ�2 (N,Q)

(
x0;y0

)
+ λ�3 (A,B)

(
x0;y0

)
+ λ�4 (C,D)

(
x0;y0

)
= − λ�1p − λ�2q − λ�3b − λ�4d.

(3.7)

Thus, for any (x;y) ∈ R2n, from the first equation in (3.6), we have
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ω�((x;y

) − (
x0;y0

))]
−
=
{
λ�1

(
(M, 0)

(
x;y

)
+ p

)
+ λ�2

(
(N,Q)

(
x;y

)
+ q

)
+λ�3

(
(A,B)

(
x;y

)
+ b

)
+ λ�4

(
(C,D)

(
x;y

)
+ d

)}
−

≤
{
λ�1

(
(M, 0)

(
x;y

)
+ p

)}
−
+
{
λ�2

(
(N,Q)

(
x;y

)
+ q

)}
−

+
{
λ�3

(
(A,B)

(
x;y

)
+ b

)}
−
+
{
λ�4

(
(C,D)

(
x;y

)
+ d

)}
−

≤ λ�1
{
(M, 0)

(
x;y

)
+ p

}
− + λ

�
2
{
(N,Q)

(
x;y

)
+ q

}
−

+ λ�3
{
(A,B)

(
x;y

)
+ b

}
−

+ {λ4}�−
{
(C,D)

(
x;y

)
+ d

}
+ + {λ4}�+

{
(C,D)

(
x;y

)
+ d

}
−

≤ ‖λ1‖
∥∥{(M, 0)

(
x;y

)
+ p

}
−
∥∥ + ‖λ2‖

∥∥{(N,Q)
(
x;y

)
+ q

}
−
∥∥

+ ‖λ3‖
∥∥{(A,B)(x;y

)
+ b

}
−
∥∥ + ν

∥∥(C,D)
(
x;y

)
+ d

∥∥,

(3.8)

Where ν ≥ 0 is a constant. Let τ = max{‖λ1‖, ‖λ2‖, ‖λ3‖, ν}, then the desired result follows.

Now, we are at the position to state our results.

Theorem 3.3. Suppose that Assumption 2.1 holds. Then, there exists a constant η > 0 such that for
any (x;y) ∈ R2n, there exists (x∗;y∗) ∈ X∗ such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ η
{
s
(
x, y

)
+ s

(
x, y

)1/2
}
, (3.9)

where

s
(
x, y

)
=
∥∥(Mx + p

)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥

+
∥∥(Ax + By + b

)
−
∥∥ +

∥∥Cx +Dy + d
∥∥ +

[(
Mx + p

)�(
Nx +Qy + q

)]
+
.

(3.10)

Proof. Using Corollary 2.3 and Lemma 3.1, there exists a constant μ1 > 0, for any (x;y) ∈ R2n,
and there exists (x∗;y∗) ∈ X∗ such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ μ1

{∥∥(Mx + p
)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥

+
∥∥(Ax + By + b

)
−
∥∥ +

∥∥Cx +Dy + d
∥∥
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+
∥∥∥∥[(((M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

)�((
x;y

) − (
x0;y0

))]
+

∥∥∥∥
+
∥∥∥((M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))∥∥∥},
(3.11)

Where (x0;y0) is a solution of EMLCP. Now, we consider the right-hand-side of expression
(3.11).

Firstly, by Assumption 2.1, we obtain that

H
(
x, y

)
=
(
Mx + p

)�(
Nx +Qy + q

)
(3.12)

is a convex function. For any (x;y) ∈ R2n, we have

H
(
x, y

) −H(
x0;y0

) ≥
[(

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]�((
x;y

) − (
x0;y0

))
.

(3.13)

Combining this with H(x0;y0) = 0, we can deduce that

{[(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]�((
x;y

) − (
x0;y0

))}
+

≤
[(
Mx + p

)�(
Nx +Qy + q

)]
+
.

(3.14)

Secondly, we consider the last item in (3.11). By Assumption 2.1, there exists a constant
μ2 > 0 such that for any (x;y) ∈ R2n,

∥∥∥((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x;y
) − (

x0;y0
))∥∥∥2

≤ μ2
((
x;y

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x;y
) − (

x0;y0
))

= 2μ2

{(
Mx + p

)�(
Nx +Qy + q

) − (
Mx0 + p

)�(
Nx0 +Qy0 + q

)
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−
[(

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]�
× ((

x;y
) − (

x0;y0
))}

≤μ2

[(
Mx + p

)�(
Nx +Qy + q

)]
+
+ 2μ2

{[(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)
+ (M, 0)�q+(N,Q)�p

]�((
x;y

) − (
x0;y0

))}
−

≤ 2μ2

[(
Mx + p

)�(
Nx +Qy + q

)]
+
+ 2μ2τ

(∥∥(Mx + p
)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥

+
∥∥(Ax + By + b

)
−
∥∥ +

∥∥Cx +Dy + d
∥∥),
(3.15)

where the first equality is based on the Taylor expansion of function H(x, y) on (x0;y0) point,
the second inequality follows from the fact that (x0;y0) is a solution of EMLCP and the fact
that a + b ≤ a+ + b+ for any a, b ∈ R, and the last inequality is based on Lemma 3.2. By
(3.11)–(3.15), we have that (3.9) holds.

The error bound obtained in Theorem 3.3 coincides with that of Theorem 2.4 in [11]
for the linear complementarity problem, and it is also an extension of Theorem 2.7 in [7] and
Corollary 2 in [14].

Theorem 3.4. Suppose that the assumption of Theorem 2.5 holds. Then, there exists a constant η1 > 0,
such that for any (x;y) ∈ R2n, there exists a solution (x∗;y∗) ∈ X∗ such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ η1s
(
x, y

)
, (3.16)

where s(x, y) is defined in Theorem 3.3.

Proof. From Theorem 2.5, using the proof technique is similar to that of Theorem 3.3. For any
(x;y) ∈ R2n, there exist (x∗;y∗) ∈ X∗ and a constant μ4 > 0 such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ μ4

{∥∥(Mx + p
)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥

+
∥∥(Ax + By + b

)
−
∥∥ +

∥∥Cx +Dy + d
∥∥

+
∥∥∥∥[(((M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

)�((
x;y

) − (
x0;y0

))]
+

∥∥∥∥}.
(3.17)

Combining this with (3.14), we can deduce that (3.16) holds.
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4. Conclusion

In this paper, we presented the solution Characterization, and also established global error
bounds on the extended mixed linear complementarity problems which are the extensions of
those for the classical linear complementarity problems. Surely, we may use the error bound
estimation to establish quick convergence rate of the noninterior path following method for
solving the EMLCP just as was done in [14], and this is a topic for future research.
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The robust local regularity and controllability problem for the Takagi-Sugeno (TS) fuzzy descriptor
systems is studied in this paper. Under the assumptions that the nominal TS fuzzy descriptor
systems are locally regular and controllable, a sufficient criterion is proposed to preserve the
assumed properties when the structured parameter uncertainties are added into the nominal TS
fuzzy descriptor systems. The proposed sufficient criterion can provide the explicit relationship
of the bounds on parameter uncertainties for preserving the assumed properties. An example is
given to illustrate the application of the proposed sufficient condition.

1. Introduction

Recently, it has been shown that the fuzzy-model-based representation proposed by Takagi
and Sugeno [1], known as the TS fuzzy model, is a successful approach for dealing with
the nonlinear control systems, and there are many successful applications of the TS-fuzzy-
model-based approach to the nonlinear control systems (e.g., [2–19] and references therein).
Descriptor systems represent a much wider class of systems than the standard systems [20].
In recent years, some researchers (e.g., [4–6, 8, 21–28] and references therein) have studied
the design issue of the fuzzy parallel-distributed-compensation (PDC) controllers for each
fuzzy rule of the TS fuzzy descriptor systems. Both regularity and controllability are actually
two very important properties of descriptor systems with control inputs [29]. So, before the
design of the fuzzy PDC controllers in the corresponding rule of the TS fuzzy descriptor
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systems, it is necessary to consider both properties of local regularity and controllability for
each fuzzy rule [23]. However, both regularity and controllability of the TS fuzzy systems are
not considered by those mentioned-above researchers before the fuzzy PDC controllers are
designed. Therefore, it is meaningful to further study the criterion that the local regularity
and controllability for each fuzzy rule of the TS fuzzy descriptor systems hold [30].

On the other hand, in fact, in many cases it is very difficult, if not impossible, to obtain
the accurate values of some system parameters. This is due to the inaccurate measurement,
inaccessibility to the system parameters, or variation of the parameters. These parametric
uncertainties may destroy the local regularity and controllability properties of the TS fuzzy
descriptor systems. But, to the authors’ best knowledge, there is no literature to study the
issue of robust local regularity and controllability for the uncertain TS fuzzy descriptor
systems.

The purpose of this paper is to present an approach for investigating the robust local
regularity and controllability problem of the TS fuzzy descriptor systems with structured
parameter uncertainties. Under the assumptions that the nominal TS fuzzy descriptor
systems are locally regular and controllable, a sufficient criterion is proposed to preserve
the assumed properties when the structured parameter uncertainties are added into the
nominal TS fuzzy descriptor systems. The proposed sufficient criterion can provide the
explicit relationship of the bounds on structured parameter uncertainties for preserving the
assumed properties. A numerical example is given in this paper to illustrate the application
of the proposed sufficient criterion.

2. Robust Local Regularity and Controllability Analysis

Based on the approach of using the sector nonlinearity in the fuzzy model construction, both
the fuzzy set of premise part and the linear dynamic model with parametric uncertainties
of consequent part in the exact TS fuzzy control model with parametric uncertainties can
be derived from the given nonlinear control model with parametric uncertainties [5]. The TS
continuous-time fuzzy descriptor system with parametric uncertainties for the nonlinear con-
trol system with structured parametric uncertainties can be obtained as the following form:

R̃i: IF z1 isMi1 and . . . and zg isMig,

thenEiẋ(t) = (Ai + ΔAi)x(t) + (Bi + ΔBi)u(t),
(2.1)

or the uncertain discrete-time TS fuzzy descriptor system can be described by

R̃i: IF z1 isMi1 and . . . and zg isMig,

thenEix(k + 1) = (Ai + ΔAi)x(k) + (Bi + ΔBi)u(k),
(2.2)

with the initial state vector x(0), where R̃i (i = 1, 2, . . . ,N) denotes the ith implication,N is the
number of fuzzy rules, x(t) = [x1(t), x2(t), . . . , xn(t)]

T and x(k) = [x1(k), x2(k), . . . , xn(k)]
T

denote the n-dimensional state vectors, u(t) = [u1(t), u2(t), . . . , up(t)]
T and u(k) =

[u1(k), u2(k), . . . , up(k)]
T denote the p-dimensional input vectors, zi (i = 1, 2, . . . , g) are

the premise variables, Ei, Ai, and Bi (i = 1, 2, . . . ,N) are, respectively, the n × n, n × n and
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n × p consequent constant matrices, ΔAi and ΔBi (i = 1, 2, . . . ,N) are, respectively, the
parametric uncertain matrices existing in the system matrices Ai and the input matrices Bi of
the consequent part of the ith rule due to the inaccurate measurement, inaccessibility to the
system parameters, or variation of the parameters, and Mij (i = 1, 2, . . . ,N and j = 1, 2, . . . , g)
are the fuzzy sets. Here the matrices Ei (i = 1, 2, . . . ,N) may be singular matrices with
rank(Ei) ≤ n (i = 1, 2, . . . ,N). In many applications, the matrices Ei (i = 1, 2, . . . ,N)
are the structure information matrices; rather than parameter matrices, that is, the
elements of Ei (i = 1, 2, . . . ,N) contain only structure information regarding the problem
considered.

In many interesting problems (e.g., plant uncertainties, constant output feedback with
uncertainty in the gain matrix), we have only a small number of uncertain parameters, but
these uncertain parameters may enter into many entries of the system and input matrices
[31, 32]. Therefore, in this paper, we suppose that the parametric uncertain matrices ΔAi and
ΔBi take the forms

ΔAi =
m∑
k=1

εikAik, ΔBi =
m∑
k=1

εikBik, (2.3)

where εik (i = 1, 2, . . . ,N and k = 1, 2, . . . , m) are the elemental parametric uncertainties, and
Aik and Bik (i = 1, 2, . . . ,N and k = 1, 2, . . . , m) are, respectively, the given n × n and n × p
constant matrices which are prescribed a priori to denote the linearly dependent information
on the elemental parametric uncertainties εik.

In this paper, for the uncertain TS fuzzy descriptor system in (2.1) (or (2.2)), each
fuzzy-rule-nominal model Eiẋ(t) = Aix(t) + Biu(t) or Eix(k + 1) = Aix(k) + Biu(k), which
is denoted by {Ei,Ai, Bi}, is assumed to be regular and controllable. Due to inevitable
uncertainties, each fuzzy-rule-nominal model {Ei,Ai, Bi} is perturbed into the fuzzy-rule-
uncertain model {Ei,Ai + ΔAi, Bi + ΔBi}. Our problem is to determine the conditions
such that each fuzzy-uncertain model {Ei,Ai + ΔAi, Bi + ΔBi} for the uncertain TS fuzzy
descriptor system (2.1) (or (2.2)) is robustly locally regular and controllable. Before we
investigate the robust properties of regularity and controllability for the uncertain TS fuzzy
descriptor system (2.1) (or (2.2)), the following definitions and lemmas need to be introduced
first.

Definition 2.1 (see [33]). The measure of a matrix W ∈ Cn×n is defined as

μ
(
W
)
≡ lim

θ→ 0

(∥∥∥I + θW∥∥∥ − 1
)

θ
, (2.4)

where ‖ · ‖ is the induced matrix norm on Cn×n.

Definition 2.2 (see [34]). The system {Ei,Ai, Bi} is called controllable, if for any t1 > 0 (or
k1 > 0), x(0) ∈ Rn, and w ∈ Rn, there exists a control input u(t) (or u(k)) such that x(t1) = w
(or x(k1) = w).
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Definition 2.3. The uncertain TS fuzzy descriptor system in (2.1) (or (2.2)) is locally regular, if
each fuzzy-rule-uncertain model {Ei,Ai + ΔAi, Bi + ΔBi} (i = 1, 2, . . . ,N) is regular.

Definition 2.4. The uncertain TS fuzzy descriptor system in (2.1) (or (2.2)) is locally
controllable, if each fuzzy-rule-uncertain model {Ei,Ai + ΔAi, Bi + ΔBi} (i = 1, 2, . . . ,N) is
controllable.

Lemma 2.5 (see [34]). The system {Ei,Ai, Bi} is regular if and only if rank[Eni Bdi] = n2, where
Eni ∈ Rn2×n and Edi ∈ Rn2×n2

are given by

Eni =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ei
0
·
·
·
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Edi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ai

Ei Ai

· ·
· ·

· ·
Ei Ai

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.5)

Lemma 2.6 (see [29, 35]). Suppose that the system {Ei,Ai, Bi} is regular. The system {Ei,Ai, Bi}
is controllable if and only if rank[Edi Ebi] = n2 and rank[Ei Bi] = n, where Edi ∈ Rn2×n2

is given
in (2.5) and Ebi = diag{Bi, Bi, . . . , Bi} ∈ Rn2×np.

Lemma 2.7 (see [33]). The matrix measures of the matricesW and V , namely, μ(W) and μ(V ), are
well defined for any norm and have the following properties:

(i) μ(±I) = ±1, for the identity matrix I;

(ii) −‖W‖ ≤ −μ(−W) ≤ Re(λ(W)) ≤ μ(W) ≤ ‖W‖, for any norm ‖ · ‖ and any matrix
W ∈ Cn×n;

(iii) μ(W + V ) ≤ μ(W) + μ(V ), for any two matricesW,V ∈ Cn×n;

(iv) μ(γW) = γμ(W), for any matrixW ∈ Cn×n and any non-negative real number γ ,

where λ(W) denotes any eigenvalue of W , and Re(λ(W)) denotes the real part of λ(W).

Lemma 2.8. For any γ < 0 and any matrixW ∈ Cn×n, μ(γW) = −γμ(−W).

Proof. This lemma can be immediately obtained from the property (iv) in Lemma 2.7.

Lemma 2.9. LetN ∈ Cn×n. If μ(−N) < 1, then det(I +N)/= 0.

Proof. From the property (ii) in Lemma 2.7 and since μ(−N) < 1, we can get that Re(λ(N)) ≥
−μ(−N) > −1. This implies that λ(N)/= − 1. So, we have the stated result.
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Now, let the singular value decompositions of Ri = [Eni Edi], Qi = [Edi Ebi], and
Pi = [Ei Bi] be, respectively,

Ri = Ui

[
Si 0n2×n

]
VH
i , (2.6)

Qi = Uri

[
Sri 0n2×np

]
VH
ri , (2.7)

Pi = Uci

[
Sci 0n2×q

]
VH
ci , (2.8)

where Ui ∈ Rn2×n2
and Vi ∈ R(n2+n)×(n2+n) are the unitary matrices, Si = diag{σi1, σi2, . . . , σin2},

and σi1 ≥ σi2 ≥ · · · ≥ σin2 > 0 are the singular values ofRi; Uri ∈ Rn2×n2
and Vri ∈ R(n2+np)×(n2+np)

are the unitary matrices, Sri = diag{σri1, σri2, . . . , σrin2} and σri1 ≥ σri2 ≥ · · · ≥ σrin2 > 0 are
the singular values of Qi; Uci ∈ Rn×n and Vci ∈ R(n+p)×(n+p) are the unitary matrices, Sci =
diag{σci1, σci2, . . . , σcin} and σci1 ≥ σci2 ≥ · · · ≥ σcin > 0 are the singular values of Pi; VH

i , VH
ri ,

and VH
ci denote, respectively, the complex-conjugate transposes of the matrices Vi, Vri, and

Vci.
In what follows, with the preceding definitions and lemmas, we present a sufficient

criterion for ensuring that the uncertain TS fuzzy descriptor system in (2.1) or (2.2) remains
locally regular and controllable.

Theorem 2.10. Suppose that the each fuzzy-rule-nominal descriptor system {Ei,Ai, Bi} is regular
and controllable. The uncertain TS fuzzy descriptor system in (2.1) (or (2.2)) is still locally regular
and controllable (i.e., each fuzzy-rule-uncertain descriptor system {Ei,Ai + ΔAi, Bi + ΔBi} remains
regular and controllable), if the following conditions simultaneously hold

m∑
k=1

εikϕik < 1, (2.9a)

m∑
k=1

εikθik < 1, (2.9b)

m∑
k=1

εikφik < 1, (2.9c)

where i = 1, 2, . . . ,N, and k = 1, 2, . . . , m:

ϕik =

⎧⎪⎨⎪⎩
μ
(
−S−1

i U
H
i RikVi[In2 , 0n2×n]

T
)
, for εik ≥ 0,

−μ
(
Si

−1UH
i RikVi[In2 , 0n2×n]

T
)
, for εik < 0,

Rik =
[
0n2×n R̃ik

]
∈ Rn2×(n2+n),

R̃ik = diag{Aik, . . . , Aik} ∈ Rn2×n2
,

θik =

⎧⎪⎨⎪⎩
μ
(
−S−1

ri U
H
ri QikVri

[
In2 , 0n2×np

]T)
, for εik ≥ 0,

−μ
(
S−1
ri U

H
ri QikVri

[
In2 , 0n2×np

]T)
, for εik < 0,
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Qik =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Aik

Aik

·
·

·
Aik

Bik
Bik

·
·

·
Bik

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn2×(n2+np),

φik =

⎧⎪⎨⎪⎩
μ
(
−S−1

ci U
H
ci PikVci

[
In, 0n×p

]T)
, for εik ≥ 0,

−μ
(
S−1
ci U

H
ci PikVci

[
In, 0n×p

]T)
, for εik < 0,

Pik =
[
0n×n Bik

] ∈ Rn×(n+p),

(2.10)

the matrices Si, Ui,Vi, Sri, Uri,Vri, Sci, Uci, and Vci (i = 1, 2, . . . ,N) are, respectively, defined in
(2.6)–(2.8), and In2 denotes the n2 × n2 identity matrix.

Proof. Firstly, we show the regularity. Since each fuzzy-rule-nominal descriptor system
{Ei,Ai, Bi} (i = 1, 2, . . . ,N) is regular, then, from Lemma 2.5, we can get that the matrix
Ri = [Eni Edi] ∈ Rn2×(n2+n) has full row rank (i.e., rank(Ri) = n2). With the uncertain matrices
Ai + ΔAi and Bi + ΔBi, each fuzzy-rule-uncertain descriptor system {Ei,Ai + ΔAi, Bi + ΔBi}
is regular if and only if

R̃i = Ri +
m∑
k=1

εikRik (2.11)

has full row rank, where Rik = [0n2×n R̃ik] ∈ Rn2×(n2+n) and R̃ik = diag{Aik, . . . , Aik} ∈ Rn2×n2
.

It is known that rank
(
R̃i

)
= rank

(
S−1
i U

H
i R̃iVi

)
. (2.12)

Thus, instead of rank(R̃i), we can discuss the rank of

[In2 , 0n2×n] +
m∑
k=1

εikR̂ik, (2.13)

where R̂ik = S−1
i U

H
i RikVi, for i = 1, 2, . . . ,N and k = 1, 2, . . . , m. Since a matrix has at least

rankn2 if it has at least one nonsingular n2×n2 submatrix, a sufficient condition for the matrix
in (2.13) to have rankn2 is the nonsingularity of

Li = In2 +
m∑
k=1

εikRik, (2.14)

where Rik = S−1
i U

H
i RikVi[In2 , 0n2×n]

T (for i = 1, 2, . . . ,N and k = 1, 2, . . . , m).
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Using the properties in Lemmas 2.7 and 2.8 and from (2.9a), we get

μ

(
−

m∑
k=1

εikRik

)
= μ

(
−

m∑
k=1

εikSi
−1UH

i RikVi[In2 , 0n2×n]
T

)

≤
m∑
k=1

μ
(
−εikSi−1UH

i RikVi[In2 , 0n2×n]
T
)

=
m∑
k=1

εikϕik < 1.

(2.15)

From Lemma 2.9, we have that

det(Li) = det

(
In2 +

m∑
k=1

εikRik

)
/= 0. (2.16)

Hence, the matrix Li in (2.14) is nonsingular. That is, the matrix R̃i in (2.11) has full row
rankn2. Thus, from the Lemma 2.5, the regularity of each fuzzy-rule-uncertain descriptor
system {Ei,Ai + ΔAi, Bi + ΔBi} is ensured.

Next, we show the controllability. Since each fuzzy-rule-nominal descriptor system
{Ei,Ai, Bi} (i = 1, 2, . . . ,N) is controllable, then from Lemma 2.6, we have that the matrix
Qi = [Edi Ebi] has full row rank (i.e., rank(Qi) = n2) and Pi = [Ei Bi] has full row rank (i.e.,
rank(Pi) = n). With the uncertain matrices Ai + ΔAi and Bi + ΔBi, each fuzzy-rule-uncertain
descriptor system {Ei,Ai + ΔAi, Bi + ΔBi} is controllable if and only if

Q̃i = Qi +
m∑
k=1

εikQik, (2.17)

P̃i = Pi +
m∑
k=1

εikPik (2.18)

have full row rank, where

Qik =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Aik

Aik

·
·

·
Aik

Bik
Bik

·
·

·
Bik

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn2×(n2+np), (2.19)

and Pik = [0n×n Bik] ∈ Rn×(n+p).
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It is known that

rank
(
Q̃i

)
= rank

(
S−1
ri U

H
ri Q̃iVri

)
. (2.20)

Thus, instead of rank(Q̃i), we can discuss the rank of

[
In2 , 0n2×np

]
+

m∑
k=1

εikQ̂ik, (2.21)

where Q̂ik = S−1
ri U

H
ri QikVri, for i = 1, 2, . . . ,N and k = 1, 2, . . . , m. Since a matrix has at least

rank n2 if it has at least one nonsingular n2×n2 submatrix, a sufficient condition for the matrix
in (2.21) to have rankn2 is the nonsingularity of

Gi = In2 +
m∑
k=1

εikQik, (2.22)

where Qik = S−1
ri U

H
ri QikVri[In2 , 0n2×np]

T (for i = 1, 2, . . . ,N and k = 1, 2, . . . , m).
Applying the properties in Lemmas 2.7 and 2.8 and from (2.9b), we get

μ

(
−

m∑
k=1

εikQik

)
= μ

(
−

m∑
k=1

εikS
−1
ri U

H
ri QikVri

[
In2 , 0n2×np

]T)

≤
m∑
k=1

μ
(
−εikS−1

ri U
H
ri QikVri

[
In2 , 0n2×np

]T)

=
m∑
k=1

εikθik < 1.

(2.23)

From Lemma 2.9, we have that

det(Gi) = det

(
In2 +

m∑
k=1

εikQik

)
/= 0. (2.24)

Hence, the matrix Gi in (2.22) is nonsingular. That is, the matrix Q̃i in (2.17) has full row
rankn2.

And then, it is also known that

rank
(
P̃i
)
= rank

(
S−1
ci U

H
ci P̃iVci

)
. (2.25)
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Thus, instead of rank(P̃i), we can discuss the rank of

[
In, 0n×p

]
+

m∑
k=1

εikP̂ik, (2.26)

where P̂ik = S−1
ci U

H
ci PikVci, for i = 1, 2, . . . ,N and k = 1, 2, . . . , m. Since a matrix has at least

rank n if it has at least one nonsingular n × n submatrix, a sufficient condition for the matrix
in (2.26) to have rankn is the nonsingularity of

Hi = In +
m∑
k=1

εikP ik, (2.27)

where Pik = S−1
ci U

H
ci PikVci[In, 0n×p]

T (for i = 1, 2, . . . ,N and k = 1, 2, . . . , m).
Adopting the properties in Lemmas 2.7 and 2.8 and from (2.9c), we obtain

μ

(
−

m∑
k=1

εikP ik

)
= μ

(
−

m∑
k=1

εikS
−1
ci U

H
ci PikVci

[
In, 0n×p

]T)

≤
m∑
k=1

μ
(
−εikS−1

ci U
H
ci PikVci

[
In, 0n×p

]T)

=
m∑
k=1

εikφik < 1.

(2.28)

From Lemma 2.9, we get that

det(Hi) = det

(
In +

m∑
k=1

εikP ik

)
/= 0. (2.29)

Hence, the matrix Hi in (2.27) is nonsingular. That is, the matrix P̃i in (2.18) has full row
rankn. Thus, from the Lemma 2.6 and the results mentioned above, the controllability of each
fuzzy-rule-uncertain descriptor system {Ei,Ai +ΔAi, Bi +ΔBi} is ensured. Therefore, we can
conclude that the uncertain TS fuzzy descriptor system in (2.1) (or (2.2)) is locally regular and
controllable, if the inequalities (2.9a), (2.9b), and (2.9c) are simultaneously satisfied. Thus, the
proof is completed.

Remark 2.11. The proposed sufficient conditions in (2.9a)–(2.9c) can give the explicit
relationship of the bounds on εik (i = 1, 2, . . . ,N and k = 1, 2, . . . , m) for preserving
both regularity and controllability. In addition, the bounds, that are obtained by using the
proposed sufficient conditions, on εik are not necessarily symmetric with respect to the origin
of the parameter space regarding εik (i = 1, 2, . . . ,N and k = 1, 2, . . . , m).
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Remark 2.12. This paper studies the problem of robust local regularity and controllability
analysis. If the proposed conditions in (2.9a)–(2.9c) are satisfied, each rule of the uncertain TS
fuzzy descriptor system {Ei,Ai + ΔAi, Bi + ΔBi} is guaranteed to be robustly locally regular
and controllable. This implies that, in the fuzzy PDC controller design, if the proposed
conditions in (2.9a)–(2.9c) are satisfied, the PDC controller of each fuzzy rule can control
every state variable in the corresponding rule of the uncertain TS fuzzy descriptor system
{Ei,Ai +ΔAi, Bi +ΔBi}. However, here, it should be noticed that although the PDC controller
of each control rule can control every state variable in the corresponding rule under the
presented conditions being held, the PDC controller gains should be determined using global
design criteria that are needed to guarantee the global stability and control performance [5],
where many useful global design criteria have been proposed by some researchers (e.g., [4-6,
8, and 21-28] and references therein).

3. Illustrative Example

Consider a two-rule fuzzy descriptor system as that considered by Wang et al. [21]. The TS
fuzzy descriptor system with the elemental parametric uncertainties is described by

R̃1: IF z1 isM11,

thenE1x(k + 1) = (A1 + ΔA1)x(k) + (B1 + ΔB1) u(k);
(3.1a)

R̃2: IF z1 isM21,

thenE2x(k + 1) = (A2 + ΔA2)x(k) + (B2 + ΔB2) u(k),
(3.1b)

where

x(k) =
[
x1(k) x2(k)

]T
, E1 = E2 =

[
1 0
0 0

]
, A1 =

[
0.848 0

0 −0.315

]
,

A2 =
[−0.236 0

0 0.113

]
, B1 = B2 =

[
1
1

]
, ΔAi =

2∑
k=1

εikAik,

ΔBi =
2∑
k=1

εikBik, A11 =
[

0 0
−0.1 0

]
, A21 =

[
0 0

0.2 0

]
, A12 = A22 =

[
0 0
0 0

]
,

Bi1 =
[

0
0

]
, Bi2 =

[
0.1
0.1

]
, M11 =

1
1 + exp(−0.5(z1 − 0.3))

,

M21 =
exp(−0.5(z1 − 0.3))

1 + exp(−0.5(z1 − 0.3))
, εi1 ∈ [−1 1.1], εi2 ∈ [−1.2 10], in which i = 1, 2.

(3.2)

Now, applying the sufficient conditions in (2.9a)–(2.9c) with the two-norm-based
matrix measure, we can get the following:
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(I) for the fuzzy rule 1:

(i)
2∑
k−1

εikϕik ≤ 0.17460 < 1, for εi1 ∈ [0 1.1], εi2 ∈ [−1.2 10], (3.3a)

(ii)
2∑
k−1

εikϕik ≤ 0.15873 < 1, for εi1 ∈ [−1 0], εi2 ∈ [−1.2 10], (3.3b)

(iii)
2∑
k−1

εikθik ≤ 0.03297 < 1, for εi1 ∈ [0 1.1], εi2 ∈ [0 10], (3.3c)

(iv)
2∑
k−1

εikθik ≤ 0.13861 < 1, for εi1 ∈ [−1 0], εi2 ∈ [0 10], (3.3d)

(v)
2∑
k−1

εikθik ≤ 0.25078 < 1, for εi1 ∈ [−1 0], εi2 ∈ [−1.2 0], (3.3e)

(vi)
2∑
k−1

εikθik ≤ 0.14514 < 1, for εi1 ∈ [0 1.1], εi2 ∈ [−1.2 0], (3.3f)

(vii)
2∑
k−1

εikφik = 0 < 1, for εi1 ∈ [−1 1.1], εi2 ∈ [0 10], (3.3g)

(viii)
2∑
k−1

εikφik ≤ 0.1200 < 1, for εi1 ∈ [−1 1.1], εi2 ∈ [−1.2 0]; (3.3h)

(i)
2∑
k−1

εikϕik ≤ 0.97345 < 1, for εi1 ∈ [0 1.1], εi2 ∈ [−1.2 10], (3.4a)

(ii)
2∑
k−1

εikϕik ≤ 0.88496 < 1, for εi1 ∈ [−1 0], εi2 ∈ [−1.2 10], (3.4b)

(iii)
2∑
k−1

εikθik ≤ 0.56719 < 1, for εi1 ∈ [0 1.1], εi2 ∈ [0 10], (3.4c)

(iv)
2∑
k−1

εikθik ≤ 0.87768 < 1, for εi1 ∈ [−1 0], εi2 ∈ [0 10], (3.4d)

(v)
2∑
k−1

εikθik ≤ 0.99740 < 1, for εi1 ∈ [−1 0], εi2 ∈ [−1.2 0], (3.4e)

(vi)
2∑
k−1

εikθik ≤ 0.168691 < 1, for εi1 ∈ [0 1.1], εi2 ∈ [−1.2 0], (3.4f)
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(vii)
2∑
k−1

εikφik = 0 < 1, for εi1 ∈ [−1 1.1], εi2 ∈ [0 10], (3.4g)

(viii)
2∑
k−1

εikφik ≤ 0.1200 < 1, for εi1 ∈ [−1 1.1], εi2 ∈ [−1.2 0]. (3.4h)

From the results in (3.3a)–(3.3h) and (3.4a)–(3.4h), we can conclude that the uncertain
TS fuzzy descriptor system (3.1a) and (3.1b) is locally robustly regular and controllable.

4. Conclusions

The robust local regularity and controllability problem for the uncertain TS fuzzy descriptor
systems has been investigated. The rank preservation problem for robust local regularity and
controllability of the uncertain TS fuzzy descriptor systems is converted to the nonsingularity
analysis problem. Under the assumption that each fuzzy rule of the nominal TS fuzzy
descriptor system has the full row rank for its related regularity and controllability matrices,
a sufficient criterion has been proposed to preserve the assumed properties when the
elemental parameter uncertainties are added into the nominal TS fuzzy descriptor systems.
The proposed sufficient conditions in (2.9a)–(2.9c) can provide the explicit relationship of
the bounds on elemental parameter uncertainties for preserving the assumed properties. One
example has been given to illustrate the application of the proposed sufficient conditions.
On the other hand, the issue of robust global regularity and controllability with evolutionary
computation [36] for the uncertain TS fuzzy descriptor systems will be an interesting and
important topic for further research.

Acknowledgment

This work was in part supported by the National Science Council, Taiwan, under Grants nos.
NSC 100-2221-E-151-009, NSC 101-2221-E-151-076, and NSC 101-2320-B-037-022.

References

[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and
control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[2] R. Babuska, Fuzzy Modeling for Control, Kluwer, Boston, Mass, USA, 1998.
[3] S. S. Farinwata, D. Filev, and R. Langari, Fuzzy Control: Synthesis and Analysis, John Wiley & Sons,

Chichester, UK, 2000.
[4] T. Taniguchi, K. Tanaka, and H. O. Wang, “Fuzzy descriptor systems and nonlinear model following

control,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 4, pp. 442–452, 2000.
[5] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality

Approach, John Wiley & Sons, New York, NY, USA, 2001.
[6] Y. Wang, Q. L. Zhang, and W. Q. Liu, “Stability analysis and design for T-S fuzzy descriptor systems,”

in Proceedings of the 40th IEEE Conference on Decision and Control (CDC ’01), pp. 3962–3967, Orlando,
Fla, USA, December 2001.

[7] S. C. Tong, T. Wang, Y. P. Wang, and J. T. Tang, Design and Stability Analysis of Fuzzy Control Systems,
Science Press, Beijing, China, 2004.

[8] Y. Wang, Z. Q. Sun, and F. C. Sun, “Robust fuzzy control of a class of nonlinear descriptor systems
with time-varying delay,” International Journal of Control, Automation and Systems, vol. 2, no. 1, pp.
76–82, 2004.



Journal of Applied Mathematics 13

[9] T.-S. Lee, Y.-H. Chen, and J. C.-H. Chuang, “Robust control design of fuzzy dynamical systems,”
Applied Mathematics and Computation, vol. 164, no. 2, pp. 555–572, 2005.

[10] J. S. Ren and Y. S. Yang, “Robust control of chaotic system based on T-S fuzzy model,” Systems
Engineering and Electronics, vol. 27, no. 3, pp. 474–478, 2005.

[11] K. Y. Lian, J. J. Liou, and C. Y. Huang, “LMI-based integral fuzzy control of DC-DC converters,” IEEE
Transactions on Fuzzy Systems, vol. 14, no. 1, pp. 71–80, 2006.

[12] Z. Li, Fuzzy Chaotic Systems: Modeling, Control and Applications, Springer, Berlin, Germany, 2006.
[13] W. H. Ho and J. H. Chou, “Design of optimal controllers for Takagi-Sugeno fuzzy-model-based

systems,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 37, no. 3, pp. 329–339, 2007.
[14] W. H. Ho, J. T. Tsai, and J. H. Chou, “Robust-stable and quadratic-optimal control for TS-fuzzy-model-

based control systems with elemental parametric uncertainties,” IET Control Theory and Applications,
vol. 1, no. 3, pp. 731–742, 2007.

[15] M. R. Hsu, W. H. Ho, and J. H. Chou, “Stable and quadratic optimal control for TS fuzzy-model-based
time-delay control systems,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 38, no. 4,
pp. 933–944, 2008.

[16] W. H. Ho, J. T. Tsai, and J. H. Chou, “Robust quadratic-optimal control of TS-fuzzy-model-based
dynamic systems with both elemental parametric uncertainties and norm-bounded approximation
error,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 3, pp. 518–531, 2009.
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Under the environment of fuzzy factors including the return of market, performance of product,
and the demanding level of market, we use the method of dynamic programming and establish
the model of investment decision, in technology innovation project of enterprise, based on the
dynamic programming. Analysis of the influence caused by the changes of fuzzy uncertainty
factors to technological innovation project investment of enterprise.

1. Introduction

The enterprise technological innovation is a creative process. The uncertainty risk mainly
includes the environment, technology, market, and risk management. At the same time, the
process of enterprise technological innovation is a dynamic process. In the initial stage of the
technical innovation, the enterprise must evaluate and select the innovation project and also
consider the social and economic benefits and the development of technology with the combi-
nation of their own development strategies; at the end select the most suitable for the devel-
opment of innovative investment projects. Sarkar [1] had studied market uncertainty and
corporate investment relationship in consideration of system risk conditions, and he thinks
that increasing the uncertainty may increase the probability of investment of enterprises to
some low growth and low risk of investment project. In fact, a technical innovation project
can be regarded as embedded in a series of options chain, and each option gives investors
investment rights, so every decision stage contains an “improvement option”; when the
difficult technology problem definitely is solved, we can make further investment in product
prototype development and innovative design and then continue investing to enter the test-
ing phase. At the same time, in every decision stage there is an abandonment option, so the
flexibility of project management not only increases the value of the project, but also reduces
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the investment risk of the technical innovation project. Weeds [2] described if research and
development is successful as a Poisson process, and it is used to describe the uncertainty of
technology and of Hershey’s bad market opportunity arrival timing. He builds two stages’
R&D investment pricing model and discusses the reality of ”Sleeping Patent” rationality; that
is, the enterprise is willing to develop a technology, but after the success of the technology
research and development, will put it away unheeded and not put it into the market. Mitchell
and Hamilton [3] point out that due to R&D plays an important role in creating competitive
advantage and, therefore, should be treated from a strategic perspective, discussing in detail
the multiple features of the R&D strategic options and then taking three steps: clear strategic
aim, evaluation strategy options, and select influence strategic target to study R&D strategy
option. Lint and Pennings [4, 5] mainly studied the innovation of real option in the process of
marketization and pointed out that there were two choices, disposable rapid advancing, and
slow advancing and related options opportunities and options value hid in slow advancing.
Huchzermeier and Loch [6] proposed a decision model of multiple stages and considered in
each phase of this model that managers had three solutions: continue to invest in the project,
improve the project, and give up the project. From the market returns, assumed total return
consists of two levels: a basic income can be relatively easy to be obtained; only in the project
performance exceeding market demands becomes uncertain. They also identified several
different sources of the flexibility and uncertainty and made analysis of the impact problem
increased by uncertainty and flexibility. From the characteristics that the state variable of
R&D project is a nonfinancial parameter, using an equivalent method, dynamic planning of
the option evaluation to build the dynamic programming model of R&D project, without the
need for asset replication, Sheng [7] had solved the flexible problem of R&D project well.

The aforementioned is the study conducted under random environment (some dis-
crete environmental). In fact, the essence of fuzzy real option is that tolerance in the same
information shows diversification before the rationality and that the complexity of the human
mind is admitted, namely, the introduction of nonuniform rational in the value assessment.
At the same time, there are often still some realities that we cannot accurate valuation or
expect net cash flow situation and due to objective factors some variables cannot be esti-
mated by the exact data, and some actual situation etc (Liu [8]). So evaluation results often
deviate from the actual if we use the accurate values to determine model input parameters.
In this paper, we mainly combine the dynamic programming method and option analysis
method, in a fuzzy environment making an analysis of some flexible decision problems of
enterprise technology innovation and innovation investment. Firstly the Huchzermeier and
Loch [6] model is extended. Secondly a discussion of dynamic programming model of the
second stage under fuzzy environment is made. Thirdly analysis is made about technological
innovation project decision model under fuzzy environment. Then the elastic value of the
project of technology innovation is discussed. It focuses on the analysis of changes of the
fuzzy uncertainty factors (including market returns and demanding level).

2. The Dynamic Programming Decision Model of the Technological
Innovation Investment under Fuzzy Environment

2.1. Extending of Huchzermeier and Loch Model

Under the fuzzy environment, we consider a technical innovation project; the success of the
project depends mainly on the performance of the products during commercialization in the
market, and the fuzzy uncertainty of market performance is caused by market and technology
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risk, denoted by (i, t) project at time t expected market performance (the market performance
can be expected through the simulation test, get). Typically managers have difficulty to
predict the distribution of i during the stage of outcome of the market commercialization,
assuming i as fuzzy variables and i obeying credibility distribution; the expected profits of
the maximum and minimum values are Q and q, respectively, actual process of project meets
no aftereffect, and the state transfer of market performance obeys two distribution; if the
products of the project development reach to the performance state i, the expected profit is

πi = q + Φ(i)
(
Q − q) (

Φ(i) is credibility distribution function
)
. (2.1)

By Liu [8], in the processing of fuzzy event, credibility measure plays a similar role in
the probability measure on random events. So, modeled as stochastic events in the transition
probability, in the evaluation model of two-fork tree option, assuming the state transfer of
market performance obeys two distributions, namely, the condition of market upgraded by
the credibility of Cr{A}, and under adverse conditions turning for the worse with probability
(1 − Cr{A}), we generalize this process as the market’s performance improvement and
deterioration and then easily conclude that the transition probability Pij is expressed as
follows under fuzzy environment:

Pij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cr{A}
N

, j ∈
(
i +

1
2
, . . . , i +

N

2

)
,

1 − Cr{A}
N

, j ∈
(
i − 1

2
, . . . , i − N

2

)
,

0, other.

(2.2)

At the same time, while expanding the scale of investment, under fuzzy environment
the transition probability is

Pij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cr{A}
N

, j ∈
(
i + 1 +

1
2
, . . . , i + 1 +

N

2

)
,

1 − Cr{A}
N

, j ∈
(
i + 1 − 1

2
, . . . , i + 1 − N

2

)
,

0, other.

(2.3)

Under fuzzy environment, the project management dynamic programming optimal
value function, in the last stage of commercial stage project:

Vi(T) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−C(T) +
∑N

j

[
Cr{A}πi+j/2 + (1 − Cr{A})πi−j/2

]
N(1 + r)

continue,

−C(T) −A(T) +

∑N
j

[
Cr{A}πi+1+j/2 + (1 − Cr{A})πi+1−j/2

]
N(1 + r)

improvement,

0 give up,
(2.4)
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where C(T) is the cost of project’s continuation and A(T) are the cost when the project
is increased in size, including the net present value of option strategic: V = V (0) − I;
theoretically speaking, fuzzy environment is closer to the reality of the technical innovation.
So, this model has certain practical significance, of course, according to the difference of the
actual investment situation; we also can extend the model to the fuzzy random environment,
fuzzy environment, rough fuzzy environment, and so forth.

2.2. The Dynamic Programming Model of the Two Stages under
Fuzzy Environment

Assuming I is sunk cost, the interest rate without the risk is r > 0, and u, d are parameters;
hypothesize; the price of the product in stage 0 is P0, from the beginning of stage 1, the
feasibility of the prices (1+u)P0 is Cr{A}, the feasibility of the prices of (1−d)P0 is (1−Cr{A}),
assuming that the investment opportunity lies only in stage 0; if the technical innovation
enterprises do not invest at this stage, so in stage 1, it will not change the decision forever; we
use V0 to be the symbol for the expectation value obtained from its investment of technology
innovation enterprise, then

V0 = P0 + [Cr{A}(1 + u)P0 + (1 − Cr{A})(1 − d)P0]

[
1

1 + r
+

1

(1 + r)2
+ · · ·

]

=
P0[1 + r + Cr{A}(u + d) − d]

r
.

(2.5)

Now, we consider the reality of the situation; in any future stage, the investment
opportunities still exist. So, at this time, in stage 0, we can choose to invest or wait to select
until stage 1; from stage 1 forward conditions will not change; if in phase 1 waiting, the price
becomes

P1 =

{
(1 + u)P0, when the feasibility of Cr{A},
(1 − d)P0, when the feasibility of 1 − Cr{A}. (2.6)

To either possibilities (price changing in stage 0 and stage 1), if V0 > I, then enterprise
invests, we can get the net return: F1 = max{V1 − I, 0}.

The discounted value is V1 = P1(1 + r)/r; from stage 0, the price is P1 in stage 1, the
value is V1, F1 is the random variables, and E0 is the expected value calculated by feasible
weighted average in stage 0, then

E0(F1) = Cr{A}max
[
(1 + u)P0(1 + r)

r
− I, 0

]

+ (1 − Cr{A})max
[
(1 −D)P0(1 + r)

r
− I, 0

]
.

(2.7)

Back to stage 0, the enterprise has two kinds of choices. If it invests, the income is
V0 − I; if not, the enterprise has continuous value E0(F1), but the value is obtained in stage 1,
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so it should use 1/(1 + r) to discount; therefore, the whole investment opportunities are the
net present value of the investment profit arranged optimally, credited as F0

F0 = max
{
V0 − I, 1

1 + r
E(F1)

}
. (2.8)

Previously we discussed the dynamic programming model in Sheng [7] under
fuzzy environment. Theoretically speaking, the fuzzy environment is closer to the technical
innovation in reality, so this model has certain practical significance. Below we start from Liu
[8] model, combine Dixit and Pindyck [9], and make discussion about the multistage model.

2.3. The Decision Model of Technological Innovation Project during
Multistages under Fuzzy Environment

2.3.1. Fuzzy Uncertainty of Technological Innovation Project during Development Stage

Investment management of technical innovation project is a decision process of multistages.
Each stage has decision points of project evaluation. Each decision point includes the pro-
ject evaluation at present, investment decision making of the current state, and future earn-
ings evaluation based on each kind of decision-making choice. In this section, we use the
fuzzy theory proposed by Liu [8] to handle uncertainty of technical innovation project’s
development phase. Firstly the decision model of technology innovation project during
multistage is described [7].

Santiago and Vakili Model

Assuming totally there are T stages of decision making of technology innovation project,
t = 0, 1, 2, . . . , T − 1, in each stage t, decision makers will face three alternatives, “continue”
“improvement,” and “give up”. The success of technical innovation project depends on the
performance of the product put into market; we use the state variables of the project to show
the product performance in the process of the development. Let the Xt project be the state
variables in the initial stage t, and assume when t = 0, X0 = 0; ξt is the fuzzy uncertainty of
the project inside and outside during t stage in the process of innovation, and {ξ0, ξ1, . . . , ξT−1}
are independent from each other; ut is the choice decision of the project in stage of starting
time. So, when the t stage is completed, the state variable of project can be expressed as [10]

Xt+1 =

{
Xt + k(ut) + ξt, if ut choose “continue” or “improvement”,
Xt, if ut choose to “give up”,

(2.9)

where the feasibility of k(continue) = 0 and k(improvement) = 1 is Cr{A}/N, the feasibility
of ξt = −i/2 is (1 − Cr{A})/N, i = 1, 2, . . . ,N, N is regarded as a measure of the uncertainty
and fuzziness. In other words, if the item “continues,” then in the next stage, the expected
performance will be present together with some fuzzy uncertainty; if the item “improves,” the
project of state variable will be plused one more improved unit and fuzzy uncertain effects;
if the project “gives up”, the project stops at current state variables and remains unchanged.
According to the discussion of Sheng [7], we have the following



6 Journal of Applied Mathematics

Nature 1

A decision-making problem of a technical innovation project is considered under fuzzy
environment:

Xt =

{
X′
t, if choose “continue” or “improvement”,

Xt, if choose to “give up”.
(2.10)

According to hypothesis at the initial time of t stage, the state variables of project in two
cases are Xt and X′

t, respectively, and Xt and X′
t are fuzzy variables on possibility space

(Θ, P(Θ),Pos), then, Xt ≥ X′
t.

Proof. Assume in two cases that the initial state variables of project equal, that is, X0 = X′
0 = 0,

because Xt and X′
t are fuzzy variables of (Θ, P(Θ),Pos) on possibility space. According to

hypothesis in t − 1 phase, for all θ ∈ Θ, we have Xt−1(θ) ≥ X′
t−1(θ). Assume in t − 1 phase

situation 1, decision makers take u∗ as the optimal decision, and then in the t stage by Santiago
and Vakili [10] model, we can get

Xt(θ) = Xt−1(θ) + k(u∗) + ξt−1(θ) ≥ X′
t−1(θ) + ξt−1(θ) = X′

t(θ), then Xt ≥ X′
t. (2.11)

2.3.2. Fuzzy Expected Value, Variance

The fuzzy uncertainty of technical innovation project ξt (t = 0, . . . , T − 1) includes the tech-
nical risk of the project development process inside and the fuzziness influenced by the
external environment, though there is statistical data of the project of the same type for
reference, because technical innovation project is unique and singular, which makes sub-
jective judgment of decision makers essential. We describe this kind of fuzzy uncertainty as
fuzzy variable, which is independent and identically distributed, and its expected value is 0.
It indicates that the project performance may be improved due to favorable fuzzy uncertain
events, and also may be worse due to the occurrence of adverse; by assumptions of Yi Chang
sheng, the fuzzy variable ξt expectations of the technological innovation project are expressed
as

E[ξt] =
∫+∞

0
Cr{ξt ≥ r}dr −

∫0

−∞
Cr{ξt ≤ r}dr = 0. (2.12)

According to Liu [8] and E(ξ) = 0, then the variance is V [ξt] = E[(ξt − E[ξt])
2].

The variance of V [ξt] can be used as a measure of fuzzy degree of uncertainty of technical
innovation project. If V [ξt] is smaller, then the fuzzy uncertainty is smaller. The solvent of
fuzzy uncertainty can be reflected by the cumulative value of technical innovation project.
Assumed in the of the initial state item variables is Xt, at the end of t phase and the initial
time of t+1 stage, the fuzzy uncertain factors ξt of t phase are solved, and the state variables of
project will change toXt + k(ut) + ξt. ξt shows the fuzzy uncertainty of the project in the phase
under internal and external environment. It includes the technical risk during the process of
project development, the evaluation of the project’s profitability made by the project team,
the external market information of project, and other aspects.
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2.3.3. Development Costs and Market Returns

According to the model of Huchzermeier and Loch [6], because during the development
process of each stage of the development cost and decision-making choices, we can assume
the project in phase t development costs as Ct(ut); if the decision maker chooses “give up,”
then the cost of project development is 0. If the decision maker selects “continue,” then the
cost of project development is c(t) (the “continue” cost of c(t) for stage t); if the decision
maker selects “improvement,” then the cost of project development is c(t) + a(t) (a(t) is the
additional cost invested when taking corrective action and does not need to extend the project
schedule, such as processing engineers and the experimental equipment; it can make the
project status variables improve a unit). If project’s initial investment is I while t = 0, the
revenue and cost of project discount according to the nonrisk free rate r. At the end of t − 1
phase, the project is completed and products are put into market, enterprises will get market
gains closely related to product performance, and R(XT ) expressed as follows:

R(XT ) =

⎧⎪⎨⎪⎩
m, if XT < η,

M, if XT ≥ η,
(2.13)

where η is the market’s demand level of the product and XT is the state variable after t − 1
stage is over, that is, the final product performance obtained by enterprise. If the product’s
performance meets or exceeds η, then the business has more advantages than its competitors
in product performance and will gain a perfect profit of M; conversely, the enterprise can
only get a small profit of m (clearly, m < M ); because the η is unknown before the product
entering market, we postulate it is the fuzzy variable. For any θ ∈ Θ, assums the variable is
XT (θ) during project phase, we use Cr{XT (θ) ≥ η} to show that project state variable XT (θ)
reaches or exceeds the credibility of η; then, when the state variable is XT (θ), the expected
value of fuzzy market returns is

E[Π(XT )] =
∫+∞

0
Cr{R(XT (θ)) ≥ r}dr

=
∫m

0
Cr{R(XT (θ)) ≥ r}dr +

∫M
m

Cr{R(XT (θ)) ≥ r}dr

= m +
∫M
m

Cr
{
XT (θ) ≥ η

}
dr

= m + Cr
{
XT (θ) ≥ η

} ∫M
m

dr

= m + Cr
{
XT (θ) ≥ η

}
(M −m).

(2.14)

We use φ(·) to show credibility distribution function of the fuzzy variable η, then

E[Π(XT )] = m + φ(XT ) · (M −m). (2.15)
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Huchzermeier and Loch [6] show the benefit function: if the performance level is XT

at the moment of T , it will generate the expected market return Πi. According to the differ-
ent actual investment situations, we can also extend the conclusion to fuzzy random environ-
ment, rough fuzzy environment, and so on. For example, under fuzzy random environment,
when the variables of product state are XT (θ), the expectation obtained by fuzzy stochastic
market returns Π(XT ) can also be presented in this way.

Definition 2.1. Let ξ be a fuzzy random variable, and then one has a finite expected value E(ξ),
V [ξ] = E[(ξ − E[ξ])2] that is called fuzzy variable ξ variance.

From the previous discussion, when the product state variable is XT (θ), the expecta-
tion of fuzzy stochastic market returns Π(XT ) is obtained by

E[Π(XT )] =
∫+∞

0
Pr{ξ ∈ Ω | R(XT (θ)) ≥ r}dr

=
∫m

0
Pr{ξ ∈ Ω | R(XT (θ)) ≥ r}dr +

∫M
m

Pr{ξ ∈ Ω | R(XT (θ)) ≥ r}dr

= m +
∫M
m

Pr{ξ ∈ Ω | R(XT (θ)) ≥ r}dr

= m + Pr{ξ ∈ Ω | XT (θ) ≥ r}
∫M
m

dr

= m + Pr{ξ ∈ Ω | XT (θ) ≥ r}(M −m).

(2.16)

Therefore, a double-fuzzy environment and rough fuzzy environment are similar to
be launched.

2.3.4. The Dynamic Programming Model of Technological Innovation Project

We consider the decision behavior of the enterprise technology innovation investment; the
project current state variable is indicated by x, it will affect opportunities of the enterprise’s
decision-making and expansion, at any stage of t, and the value of variable xt is known, let
the future value xt+1, xt+2, . . . be random variables. {xt} is Markov process; we use the Vt(x)
to be the whole decision results of company from t; when selecting ut as the control variables,
its cash flow is Πt(xt, ut), at the phase of t + 1, the state is xt+1, the result of optimal decision
result is Vt+1(xt+1); at the phase of t, this result is a random variable, so, we take E(Vt+1(xt+1))
as expected value, discounting to the stage of t; the plus of sight cash flow and the continuous
value is

Πt(xt, ut, ξt) +
1

1 + ρ
E(Vt+1(xt+1)). (2.17)

Enterprises will choose ut to be maximum, and the result just is Vt(xt); then we have

Vt(xt) = max
ut

{
Πt(xt, ut) +

1
1 + ρ

E(Vt+1(xt+1))
}
. (2.18)

This equation is the optimal basic equation (see [9]).
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If multiple phase problems have limited stage T , the ultimate returns of enterprises are
ΩT (xt); then in the previous stage, we have

VT−1 (xT−1) = max
uT−1

{
ΠT−1(xT−1, uT−1) +

1
1 + ρ

E(ΩT−1(xT−1))
}
, (2.19)

which provides theoretical basis to simulate by using computer.
In fact, the xt, xt+1 may be in any state, and it can be generally denoted as x, x′; then,

for any x, we have Bellman equation of infinite duration dynamic programming:

V (x) = max
t

{
Π(x, u) +

1
1 + ρ

E
(
V
(
x′) | x, u)}. (2.20)

In the following we put this problem to further discussion under fuzzy environment.
Technical innovation project is on the stage of development spending is by the final

market returns to compensate for an evaluation, according to the Santiago and Vakili model,
since each choose temporary investment costs are known, therefore, management decision
based primarily on the final market assessment. We use the value of the function Vt(x) to be
this evaluation, fuzzy uncertainty ξt (t = 0, . . . , T − 1) of technical innovation project includes
the technical inside risk of the project during the development process, and the uncertainty
influenced by external environment, and ξt is fuzzy variable independent and identically
distributed, and its expected value is 0. Assuming in the stage that the development cost is
Ct(ut), according to Santiago and Vakili model, it can be described by dynamic programming
equation:

Vt(xt) = max
ut

{
−Ct(ut) +

1
1 + r

E[Vt+1(Xt+1(xt, ut, ξt))]
}
. (2.21)

Value of the function is Vt(x) at t phase; initial project state variable is x. At the end of
the project phase of t = T , we have

Vt(x) = E[Π(x)]. (2.22)

At the same time, under fuzzy environment, if multiple phase problems have limited
stage T , the ultimate returns obtained by the enterprises are ΩT (xt); at an earlier stage, we
have

VT−1(xT−1) = max
u
T−1

{
−CT−1(uT−1) +

1
1 + ρ

E[VT (ΩT (xT−1, uT−1, ξT−1))]
}
. (2.23)

In fact, xt, xt+1 may be any state, it can be generally written as x, x′; and then for any x,
we have Bellman equation of infinite duration dynamic programming under fuzzy environ-
ment:

V (x) = max
t

{
−C(x, u, ξ) + 1

1 + ρ
E
(
V
(
x′) | x, u, ξ)}. (2.24)
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The discussion of Santiago and Vakili [10] and Sheng [7] also gives a property of value
function under the stochastic uncertainty environment; the following is the promotion under
fuzzy environment.

Nature 2

Assuming the technology innovation project of state variables is indicated by x under fuzzy
environment, if the expected market return function E[Π(x)] is nondecreasing, then the value
of the function Vt(x) (t = 0, 1, . . . , T − 1) of technical innovation project in any stage is non-
decreasing too.

Proof. In reference Santiago and Vakili [10], if Vt+1(x) is non-decreasing, we assume that
Vt+1(x) is nondecreasing; for two project state variables x1 and x2 of a given t phase, if x2 > x1,
then we only need to prove Vt(x2) ≥ Vt(x1). Assuming that at t phase, the project of state
variable is x1, selecting the optimal decision u∗, makes the enterprise obtain the maximum
Vt(x1). When the state variable of t phase is x2, the taken decisions u∗ make enterprises get
the project value V ′

t (x2); then consider the following;

(1) If u∗ is “continue” or “improved,” we have

V ′
t (x2) − Vt(x1) = max

ut

{
−Ct(ut) +

1
1 + r

E[Vt+1(Xt+1(x2, ut, ξt))]
}

− max
ut

{
−Ct(ut) +

1
1 + r

E[Vt+1(Xt+1(x1, ut, ξt))]
}

=
1

1 + r
E[Vt+1(x2 + k(u∗) + ξt) − Vt+1(x1 + k(u∗) + ξt)].

(2.25)

(2) If u∗ is “gives up.” V ′
t (x2) − Vt(x1) = 0. Because ξt is a fuzzy variable, so, x1 +

k(u∗) + ξt and x2+k(u∗)+ξt are fuzzy variables. If x2 > x1, we have x1 +k(u∗) + ξt >
x2 + k(u∗) + ξt. Because Vt+1(x) is monotonicity, we have

Vt+1(x2 + k(u∗) + ξt) − Vt+1(x1 + k(u∗) + ξt) ≥ 0. (2.26)

From the properties that the fuzzy variable is nonnegative, and its expected value is also
non-negative, we have

E[Vt+1(x2 + k(u∗) + ξt) − Vt+1(x1 + k(u∗) + ξt)] ≥ 0. (2.27)

Therefore, V ′
t (x2)−Vt(x1) ≥ 0. When the status of technical innovation project is x2, the maxi-

mum value of technology innovation obtained, and the makers’ optimal decision is Vt(x2), so
we have Vt(x2) ≥ V ′

t (x2).

Therefore, Vt(x2) − Vt(x1) ≥ V ′
t (x2) − Vt(x1) ≥ 0, that is, Vt(x2) ≥ Vt(x1). (2.28)
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From the aforementioned, we also can get that under fuzzy environment, if the optimal
decision selected by the decision maker is “give up,” when the state variable is x during
the state of t and when the variable is less than x, the optimal decision is “give up” too.

3. Conclusion

Combining the dynamic programming method and option analysis method, we make
analysis of flexible decision problems of enterprise technological innovation investment,
under fuzzy environment, mainly introducing fuzzy factors based on the model of
Huchzermeier and Loch [6], Santiago and Vakili [10], Dixit and Pindyck [9], Sheng [7], and so
forth. We establish the model, focus on the promotion of the Huchzermeier and Loch model
under fuzzy environment, establish models of two-phase, multi-stage dynamic programming
decision and make some analysis, and then draw valuable conclusions. But it only extends
the models of Huchzermeier and Loch and Santiago and Vakili [10] to the fuzzy environment;
in fact, this kind of promotion can also be extended to the fuzzy random environment and
rough fuzzy environment. Although some attempt has been made, it is still not enough. This
is what we should try our best in during the next step.
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Based on the model of symmetric and asymmetric duopoly option game, this paper discusses the
present value of profit flows and the sunk investment costs for the trapezoidal fuzzy number. It
constructs the fuzzy expressions of the investment value and investment threshold of followers
and leaders under fuzzy environment and conducts numerical analysis. This offers a kind of
explanation to the investment strategies under fuzzy environment.

1. Introduction

Under the condition of uncertain symmetric duopoly game model, the model was firstly
proposed by Smets [1]. For the research of asymmetric enterprises, Huisman [2] considered
the initial investment cost and two asymmetry enterprise option-game models. Technology
investment extends the already existing real option models by the introduction of the game
theory. Under the environment of imperfect competition, the original idea of decision-
making model of investment cost asymmetry investment came from the Grenadier’s [3]
duopoly model. Kong and Kwok [4] studied the real options problem of strategic investment
game between two asymmetry enterprises. Pawlina and Kort [5] studied the influence
to the investment decision caused by the difference of the enterprise and discussed the
relationship of the value of enterprises and the different investment cost. Zmeškal [6] used
the European call option of fuzzy random variables to assess the value of the enterprise.
Yoshida [7] constructed symmetric triangular fuzzy numbers with the assumption that the
stock price was fuzzy and stochastic; the fuzzy objective definition was introduced with fuzzy
expectation with the assumption that the fuzzy degree and stock price were in proportion.
It gave rise to the pricing formula of the European option and the fuzzy hedge strategy.
Hui and Yong [8] studied the influence of the enterprise investment strategy given by
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the investment cost’s variance and the time required by the success of technical innovation
strategy. Carlsson et al. [9] considered the rates’ fuzzy option formula of fuzzy relation and
used the optimization theory to build R & D project’s investment decision model. Liu [10]
applied the fuzzy theory to build the model of currency option pricing, which converts
the risk-free interest rate. The volatility and the original asset price to the fuzzy number
under fuzzy environment, based on the model of equivalent martingale measuring and Black-
Scholes.

The Problem of Trapezoidal Fuzzy Number

The concept of fuzzy set was initiated by Zadeh [11]. From the definition of Carlsson and
Fullér [12], a fuzzy set A is a fuzzy set of the real line, (fuzzy) convex, and continuous
membership function of bounded support; the family of fuzzy numbers will be denoted by
F, for any for all A ∈ F; we will use the notation [A]γ = [a1(γ), a2(γ)] as γ-sets of A; If A ∈ F
is a fuzzy number and x ∈ R is a real number, then A(x) may be interpreted as the degree of
possibility of the statement “x is A”.

Definition 1.1 (See [7, 12]). A fuzzy set A ∈ F is called a trapezoidal fuzzy number with core
[a, b], left width α, and right width β, if its membership function has the following form:

A(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − a − t
α

if a − α ≤ t < a
1 if a ≤ t ≥ b
1 − b − t

β
if b ≤ t ≤ b + β

0 Otherwise.

(1.1)

And we use the notation A = (a, b, α, β), for all γ ∈ [0, 1], then it can easily be shown that

[A]γ =
[
a − (1 − γ)α, b − (1 − γ)β]. (1.2)

The support of A is (a − α, b + β).
Let [A]γ = (a1(γ), b1(γ), α1(γ), β1(γ)), [B]γ = (a2(γ), b2(γ), α2(γ), β2(γ)) be fuzzy

numbers and let λ ∈ R be a real number; using the extension principle, we can verify the
following rules for addition and scalar multiplication of fuzzy numbers

[A + B]γ =
[
a1
(
γ
)
+ a2
(
γ
)
, b1
(
γ
)
+ b2
(
γ
)
, α1
(
γ
)
+ α2
(
γ
)
, β1
(
γ
)
+ β2
(
γ
)]
, (1.3)

[A − B]γ = [a1
(
γ
) − b2

(
γ
)
, b1
(
γ
) − a2

(
γ
)
, α1
(
γ
)
+ α2
(
γ
)
, β1
(
γ
)
+ β2
(
γ
)]
, (1.4)

[λA]γ = λ[A]γ . (1.5)
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From Carlsson and Fullér [12] and Yoshida [7], it is easy to see that the (crisp) possi-
bility mean (or expected) value of A and the (possibility) variance of A:

E(A) =
∫1

0
γ
(
a − (1 − γ)α + b +

(
1 − γ)β) = a + b

2
+
β − α

6
,

δ2(A) =
(b − a)2

4
+
(b − a)(α + β

)
6

+

(
α + β

)2

24
.

(1.6)

This paper reviews the symmetrical and asymmetrical enterprises technology
innovation investment decision problem under fuzzy environment, discusses the model
under fuzzy environment, and concludes followers’ and leaders’ fuzzy expression of the
investment and the critical value under fuzzy environment. By the technology of fuzzy
simulation and data, we can find that the symmetrical and asymmetrical enterprises have
the optimal investment strategy under fuzzy environment.

2. Symmetric Model in Fuzzy Environment

2.1. Basic Assumptions

Assuming that there exist two technology innovation investment enterprises with neutral
and rational risk in market and assuming that both of them have opportunities of technology
innovation and irreversible investment, where such investment opportunity exists forever,
their competition and strategies are both symmetrical. The sunk investment cost I is a fuzzy
number, because the enterprise technology innovation investment sunk cost is often difficult
to be expressed by a number; using fuzzy numbers to estimate is more objective and actual.
Market is in the symmetrical duopoly, supposing that the two enterprises are of nonconstraint
conspiracy. The present value of expected profit value of technology innovation investment
project has uncertainty and fuzziness. In order to incorporate uncertainty, assuming the
uncertainty factor X(t) of market demanding follows a geometric Brown motion process

dX(t) = μX(t)dt + σX(t)dz, (2.1)

where μ ∈ (0, r) is drift, and σ is the rate of fluctuation. For the technical innovation of
enterprises, assuming their anticipated profits of the present value’s stream depends on X(t),
and the firms’ investment behavior at the same time, the expected profit of the present value’s
stream is a trapezoidal fuzzy number and can be given by

π(t) = X(t)D
(
Ni,Nj

)
, (2.2)

where D(Ni,Nj) is determined by the market demand parameters. Therefore, according
to the trapezoidal fuzzy number (1.5), the nature of X(t) is also for the trapezoidal fuzzy
number. For any k ∈ {i, j}, we can conclude

Nk =

{
0 The enterprise k has not invest
1 The enterprise k has to invest.

(2.3)
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If the investment can increase the expected income stream and have advantage of the
first mover, the following restrictions on D(Ni,Nj) are implied:

D(1, 0) > D(1, 1) > D(0, 0) > D(0, 1). (2.4)

Further, we assume that there is a first mover advantage to investment

D(1, 0) −D(0, 0) > D(1, 1) −D(0, 1). (2.5)

2.2. The Investment Value and Investment Threshold Value of Followers

According to the calculation rules of the trapezoidal fuzzy number, the solution (X/Xf)θ1 is
difficult, according to the literature [6, 7, 9, 10, 12] in solving similar problems by expectations
to approximate estimation methods; we also can use (E(X)/E(Xf))θ1 to estimate. We have
taken the similar approach, just using E(X) < E(Xf) instead of X < Xf . According to the
equation of Itô’s lemma and the Behrman equation, the option value F(X) of followers can
be shown by the following partial differential equation. According to the method of Dixit and
Pindyck [13] and Huisman [2], we have the following investment value:

Ff(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
X

Xf

)θ1 Xf(D(1, 1) −D(0, 1))(
r − μ)θ1

+

(
X1, X2, α1, β1

)
D(0, 1)

r − μ if E(X) < E
(
Xf
)

(
X1, X2, α1, β1

)
D(1, 1)

r − μ − (I1, I2, α2, β2
)

if E(X) ≥ E(Xf
)
.

(2.6)

Here, it is optimal for the investment to invest when E(X) ≥ E(Xf). Equation (2.6) is derived
by solving the optimal stopping problem with use of Itô’s lemma. Xfexpresses the followers’
investment value and the investment threshold value under fuzzy environment, then

Xf =
θ1

θ1 − 1

(
r − μ)

D(1, 1) −D(0, 1)
(
I1, I2, α2, β2

)
, (2.7)

where

θ1 =
−(μ − (1/2)σ2) +√(μ − (1/2)σ2

)2 + 2rσ2

σ2
. (2.8)
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2.3. Investment Value and Investment Threshold Value of Leaders

Similar with the followers’ discussion, we have the leading value function Fl(X) and the
optimal investment’s threshold Xl, using Xm as the monopolist’s critical value of investment

Fl(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
X

Xf

)θ1 Xf(D(1, 1) −D(1, 0))
r − μ

+

(
X1, X2, α1, β1

)
D(1, 0)

r − μ − (I1, I2, α2, β2
)

if E(X) < E
(
Xf
)

(
X1, X2, α1, β1

)
D(1, 1)

r − μ − (I1, I2, α2, β2
)

if E(X) ≥ E(Xf
)
.

(2.9)

When there does not exist an initial investment, the critical value of the optimal
investment strategy in a critical point is

Xm =
θ1

θ1 − 1

(
r − μ)

D(1, 0) −D(0, 0)
I. (2.10)

When there exists an initial investment, Xl is the leader’s’ critical value of investment,
then the leader’s optimal investment strategy is

Xl = Inf
{

0 < E
(
Xl
)
< E
(
Xf
)
, Fl
(
Xl
)
= Ff

(
Xl
)}
. (2.11)

3. Establishments of the Asymmetric Model under Fuzzy Environment

3.1. Review of Model and Basic Assumptions

Under imperfect competition environment, the thought of the investment cost asymmetry
investment decision-making’s model is from the Grenadier’s [3] duopoly model, according
to Hui and Yong’s [8] model, using standard backward induction of solving dynamic
game. Promote the symmetry enterprises considered by Grenadiar to the enterprise of
asymmetry. Suppose there are two technology innovation enterprises in the market,
neutral risk and pursuing the largest expected value, expressed as i and j, they have
opportunity to do a technical innovation investment to increase their profit flow and
investment cost is asymmetry; that is, (I1i, I2i, α2i, β2i)1 /= (I1i, I2i, α2i, β2i)2, followers’ profit
flow begins to be immediately affected, and the net profit of leaders changes to zero in the
process of implementation of technology innovation. From the beginning to the successful
implementation of investment, it needs a fixed period of time, δ years; the inverse demanding
curve faced by enterprises can be shown by market prices P(t) of unit product of enterprise
i:

P(t) = X(t)DNiNj . (3.1)

Here, X(t) shows product market demanding uncertainty, if we assume that the two
enterprises’ fuzzy uncertainty is equal, and is (X1, X2, α1, β1); in order not to cause confusion
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of circumstances, we use X(t) to express, assuming that it follows the geometric Brown
motion

dX(t) = αX(t)dt + σX(t)dWt, (3.2)

where α is the drift term, σ is a variable rate, dWt is the increment of standard Wiener process,
and DNiNj is the deterministic demand parameters of enterprises i, showing the effect of
the strategic decision to profit flow between enterprises, which depends on the identity of
enterprise k ∈ {i, j}, and the following inequality is established:

D10 > D11 > D00 > D01 > 0, (3.3)

where D10 > D00 shows that the profit of unsuccessful innovation enterprise decreases
because of competitor’s success; D00 > D01 shows that the profits of enterprise’s innovation
success exceeds the failed; D11 > D00 shows that when the competitor succeeds, the success
of enterprise innovation can increase the profits;D11 < D10 shows that if the competition
has innovation success cases, successful innovation will improve their profit level; DNiNj > 0
said corporate profits for non negative. In addition, also assumes the existence of investment
first mover advantage over a competitor is enterprise innovation successful case of the
comparative income greater than after competitor’s innovation successful case of the
comparative income, and have the following relations (refer to Grenadier [3]):

D10 −D00 > D11 −D01. (3.4)

3.2. The Followers’ Investment Value and Investment Threshold Value under
Fuzzy Environment

When the leader has invested, investment value of followers is the combination of the profit
stream XD(0, 1) and the investment option value. Inspired by the [2–5] and other relative
literatures, according to Itô’s lemma and the Behrman equation [13], we can obtain the
option-game model of enterprise technology innovation under fuzzy environment (avoiding
causing confusion circumstances, we still use the original symbol, F(X), XiF express the
followers’ investment value and investment threshold value under fuzzy environment)

Fi(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
X

XiF

)β (I1i, I2i, α2i, β2i
)
i

β − 1
+

(
X1, X2, α1, β1

)
D01

(r − α) , E(X) < E(XiF)(
X1, X2, α1, β1

)
D01

(r − α) − (I1i, I2i, α2i, β2i
)
i

+

(
X1, X2, α1, β1

)
(D11 −D01)

(r − α) e−(r−α)δ, E(X) ≥ E(XiF),

(3.5)
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where (I1i, I2i, α2i, β2i)i (i = 1, 2) is a follower of cost of the enterprise technological innovation
investment. Assuming that (I1i, I2i, α2i, β2i)1 /= (I1i, I2i, α2i, β2i)2, the β in (3.5) is the positive root
of the following quadratic equation

1
2
σ2β
(
β − 1

)
+ αβ − r = 0. (3.6)

From Dixit and Pindyck [13], we can conclude the investment threshold of followers

XiF =
(

β

β − 1

)(r − α)(I1i, I2i, α2i, β2i
)
i

D11 −D01
e−(r−α)δ. (3.7)

According to the method from the literature [6, 7, 9, 10, 12], using the expectations of
X to approximate estimation in solving similar problems, we can also use (E(X)/E(XiF))

β to
estimate; in the comparison, we adopt a similar approach too, namely, using E(X) < E(XiF)
to be instead of X < XiF .

Conclusion 1. The optimal investment strategy of followers to invest is at the time of TF =
{t ≥ 0 : X(t) ≥ XiF}. The optimal investment threshold of followers is XF = (β/β − 1)((r −
α)(I1i, I2i, α2i, β2i)i/D11 −D01)e−(r−α)δ. The coefficient β/(β − 1) > 1 is more expanded with the
rule of the optimal investment than that with the rule of net present value; in the symmetric
case, XiF is influenced under the previous symmetric case e−(r−α)δ; it is different from the
discussion. Using the same method, we can establish the value function and the investment
threshold of the enterprise as the leader under fuzzy environment

Li(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
X

XjF

)β
β

β − 1
D11 −D10

D11 −D01

(
I1i, I2i, α2i, β2i

)
i

+

(
X1, X2, α1, β1

)
D10

(r − α) e−(r−α)δ − (I1i, I2i, α2i, β2i
)
i, E(X) < E

(
XjF

)
(
X1, X2, α1, β1

)
D11

(r − α) e−(r−α)δ − (I1i, I2i, α2i, β2i
)
i, E(X) ≥ E(XjF

)
.

(3.8)

Under fuzzy environment, the value function and monopoly investment threshold of
the enterprise i and its competitors are given by Si(X) when they invest at the same time

Si(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
X1, X2, α1, β1

)
D00

(r − α) +

(
I1i, I2i, α2i, β2i

)
i

β − 1

(
X

XiS

)β
, E(X) < E(XiS)(

X1, X2, α1, β1
)
D00

(r − α) − (I1i, I2i, α2i, β2i
)
i

+

(
X1, X2, α1, β1

)
(D11 −D00)

(r − α) e−(r−α)δ E(X) ≥ E(XiS).

(3.9)
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Conclusion 2. Under the situation of two companies investing at the same time, the value of
each enterprise investment

Si(X) =
β

β − 1
(r − α)

(D11 −D00)
(
I1i, I2i, α2i, β2i

)
ie

−(r−α)δ. (3.10)

Conclusion 3. The optimal investment strategy of two businesses is to invest at the time of
TS = inf{t ≥ 0 : X ≥ XiS}.

4. Analysis with Comparison

(1) In most cases, under the condition of symmetry and asymmetry, the present value and
investment sunk of expected profit flow uncertainty factor are not a definite number, but an
estimate. This provides the basis for dealing with the above problem.
(2) From symmetry model, we can see the following.

When E(X) < E(Xf), Ff(X) and (D(1, 1)−D(0, 1)), X is in correlation positively, with
(r − μ), I negative correlation.

At the same time, influenced by σ, θ1, (r − μ), D(1, 1) − D(0, 1) and the fuzzy of
investment sunk cost according to the formula (2.6). From the model of asymmetry.

When E(X) < E(XiF), F(X) and D11 − D01, (I1i, I2i, α2i, β2i)i, and (X1, X2, α1, β1) are
related positively. This is different according to the formula (3.5), from the symmetric case.
(3) To solve the symmetry model, firstly we calculate the θ1, Xf , Xl, then we get the X range
by fuzzy mathematics, we not only know the optimal strategy of two enterprise which can
also be calculated through the simulation, but also can calculate the investment value of
followers and leaders.

When E(X) ≥ E(Xl) and E(X) ≥ E(Xf) the investment value of followers is equal
to the leader, that is, Ff(X) = Fl(X). Due to the assumption that the two enterprises
have symmetry, the leader and followers have no difference for any enterprise. But for the
asymmetric model, this is different.

5. Conclusion

Due to space limitations, we do not use the fuzzy simulation method to compute. This
method can be found in [10]. As long as we are given the estimation value of parameter, we
can find the investment strategy and estimate the strategy of investment value according to
the relative model. We also can make in-depth analysis according to the features of different
districts caused by the different parameters.

Of course, when the uncertain factor of the enterprise technology innovation
investment project cash flow, and the investment sunk cost of the enterprise technology
innovation are trapezoidal fuzzy numbers, we consider the cost difference and balanced
relationship types of operating costs of the symmetrical and asymmetrical enterprise, and
obtain the value function and the corresponding threshold value of investment of the
leaders and followers under fuzzy environment. Through numerical analysis, we find the
symmetrical and asymmetrical enterprises under fuzzy environment still have the optimal
investment strategies and make comparison. Of course, since in reality there exist the
situation of symmetry and asymmetry of market demanding under fuzzy environment and
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technology, two or more factors, and the problems in process of dynamic stage, we will try
our best to solve these problems in the future.
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It is with a great significance to discuss the selection model of regional strategic emerging industry.
First, the paper uses the fuzzy optimization theory to select the central industry of area as the
regional strategic emerging industry and try to optimize the weight’s calculation in the multistage
fuzzy comprehensive evaluation to get more accurate results. Then it will do a strategic emerging
industrial inspection about the advantage and ecological related index based on a multiobjective
programming model and the maximum entropy.

1. Introduction

Strategic emerging industry includes both the characteristics of the huge development
potential and the strong leading ability as strategic industry and the highly innovative
characteristics as emerging industry. After the financial crisis period, countries all over the
world especially some major developed countries take the development of new energy, new
materials, energy conservation and environmental protection, and green economy emerging
industry as a key of a new round of industry development. In September 2009, China first
raised the concept of strategic emerging industry and selected seven industries as the national
strategic emerging industries.

At present the provinces in our country also take a national strategic emerging
industry planning as a guide and put forward the strategic emerging industry which
will be developed in this area. Making a strategic arrangement in the development of
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national strategic emerging industry in 30 provinces of our country, we found that the
choice of a regional strategic new industry convergence was serious that the choice of the
new material area should achieve 29, new energy 26, and the choice of biological 25. But
the regional industry structure characteristics and resources endowment difference are not
taken into consideration, which will inevitably lead to three prominent problems that are
serious industry homogenization phenomenon, excess capacity, and the waste of resources.
Therefore, how to scientifically choose accurate selection and evaluation of regional strategic
emerging industry is of a strong theoretical and practical significance.

2. Literature Review

The American economists Hector Seaman (A. O. Hirschman), the first person to put
forward the concept of strategic industry, has called the put-output relationship between
the most closely related economic system “strategic department” [1]. Cambridge scholars
such as Heffeman have carried on a deep analysis of the emerging industry characteristics,
development, evolution path system, and so on. From the perspective of commercial
development, it emphasizes on the idea-to-product of the conversion process, and that
emerging industry development is a dynamic evolution process [2]. Liu from strategic
emerging industry concept holds that the strategic emerging industry has at least several
characteristics such as strategy, innovation, growth, relevance, guidance, and risk [3]. Some
researchers have a try on the choice of strategic emerging industry. Hu and Zhao of Liaoning
province evaluated 18 scales above high and new technology industrial economic benefits
in 2006, using factor analysis, and got development strategic emerging industry potential
and comparative advantage of industry [4]. He et al. [5–7] established the evaluation model
based on analytic hierarchy process (AHP) and integrated fuzzy evaluation method, and
they knew about a region that was whether or not fit for the development of strategic
new industry by the model. and helped the region to have comprehensive, accurate, and
objective selection and evaluation of strategic emerging industry. Qing [8], with the aid
of expert questionnaire marking method and analytic hierarchy process (AHP), calculated
the weights of the six factors such as natural, economic, social and human, science and
technology, industrial competitiveness, and the government which had influenced the
emerging industry development in Henan province and put in order the seven big emerging
industry developments according to quality. Qiao et al., [9] based on the gray theory analysis,
established the evaluation index system and evaluation mode l which are suited to the
characteristics of the strategic emerging industry in biological medicine. Hu et al., [10]
based on the combination weights “AHP-IE-PCA”, the selection model of regional strategic
emerging industries was tentative proposed, which was applied to N county in the selection
and evaluation of strategic emerging industries.

It is obvious that, at present, the empirical research of regional strategic emerging
industry choice always uses the analytic hierarchy process and expert scoring method, and
this kind of method subjectivity is too strong and lacks dynamics. In addition the choice
of empirical research is more than an unidirectional choice, and the lack of the selected
conclusion effectiveness and efficiency evaluation makes the industry choice lack research
reliability analysis and policy persuasion.

Vector optimization ideas originated from utility theory research in economics from
1776. In 1896, French economist Pareto [11] first put forward the problem of the multi-
objective programming for a limited number of evaluation index in economic balance study.
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At that time, from the perspective of political economics, he summarized a lot of targets
difficult to compare as multi-objective optimization and proposed the thought of the later
called Pareto efficient solution, and this thought had an important and profound impact
upon the forming of the vector optimization disciplines. In 1944, from the point of view of
game theory, Neumann and Morgenstern [12] put forward the problem of multi-objective
decision which contradicted each other and had several decision makers. In 1951, from the
analysis of production and distribution activities, Koopmans [13] put forward the problem
of multi-objective optimization, and for the first time he put forwards the concept of Pareto
effective solution. In the same year, from the point of view of mathematical programming,
Kuhn and Tucker [14] proposed the concept of Pareto efficient solution for the vector
extremism and studied this solution’s optimally sufficient and necessary conditions. The
evaluation balanced research by Debreu [15] in 1954, the research of pushing multi-objective
optimization problem to the general topological vector space by Harwicz [16] in 1958, and
the vector optimization problems were concerned by people gradually. In 1968, Johnsen
[17] published the first monograph about multi-objective decision-making model. In 1970
Bellman and Zadeh put forward “fuzzy optimization” concept and provided effective tool for
linear programming in several fields which had more fuzzy factors, such as multi-objective
optimization [18].

Therefore, with the aid of the industrial structure similarity coefficient, this paper
will first measure the area of industrial isomorphism, thus give system dynamical judgment
of the regional industrial structure convergence change characteristics, and determine the
regional industrial structure from the macroscopic perspective preliminary. Secondly, in
view of regional strategic emerging industry, selection is influenced by multiple factors and
belongs to multistage comprehensive evaluation problem, the paper uses the method of
fuzzy mathematics comprehensive evaluation. Since it is needed to optimize and improve
multistage fuzzy comprehensive evaluation model, the evaluation results will be as accurate
and objective as possible. Finally, the paper will evaluate the chosen results and calculate the
quotient of location to find out whether the area industry has advantage in the same industry
of country or not. It will calculate intersection to the two kinds of industry and confirm
the area strategic emerging industry. In addition, it will be coupled to an evaluation about
the traditional industries and the strategic emerging industries, including double coupling
relevance and developmental evaluation.

3. The Selection Model of Strategic Emerging Industries

3.1. Regional Industrial Structure Convergence Degree Test

Firstly the research is to analyze the convergence of industrial structure, and carry on the
measure. The convergence of industrial structure generally refers to a phenomenon that
the areas of different geographical location, different resource abundance and different
development path form a similar industrial structure, which refers in particular to the
convergence within the industry and the internal structure of industry. The convergence
of industrial structure mainly performances for the structure of the industry between the
areas difference contractible, industrial categories and industrial systems between the areas
resembling gradually, spatial distribution equalization of the major industries and product
production. As to the specific measure of industrial isomorphism, this paper uses the
similarity coefficient method put forward by the United Nations industrial development
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organization international industrial research center and Shingling Wang’s related research;
the similarity coefficient is defined as [19]:

Sij =

∑n
k=1 Xik ·

∑n
j=1 Xjk√∑n

k=1 X
2
ik ·
∑n

k=1 X
2
jk

. (3.1)

The type of Sij is similarily coefficient, I, j is two phase comparison areas, and Xik,
Xjk are industries k in the area I and j region as a proportion of the industrial structure. Sij is
a direct link between the number of 0 and 1. And if the value is 0, it means the two compared
regional industrial structures are completely different; if the value is 1, it means the two
compared regional manufacturing structures are exactly the same. Through the observation
of the certain period Sij value changes, it may give dynamic judgments to the changes in
regional industrial structure. If Sij value tends to rise, it is “structure convergence”; if Sij
value tends to decline, it is “structure divergence.” In this way, it can judge on the whole
the similar degree of different regional industrial structure so as to provide macro basis for a
strategic choice of emerging industry.

3.2. Multistep Fuzzy Comprehensive Evaluation Model

Multistage fuzzy comprehensive evaluation model is the organic union of multistage fuzzy
theory and classic comprehensive evaluation method, which is mainly used to solve the
evaluation object affected by various uncertain factors and the various factors, and has
different levels. The choice of strategic emerging industry involves many fuzzy factors,
and various factors have obvious hierarchy; therefore, we will choose the multistage fuzzy
comprehensive evaluation method to research it. In the fuzzy comprehensive evaluation
model, establishing single factor evaluation matrixR and determining the weight distribution
A are two key jobs. But at the same time there is no unified format which can be abided by.
Typically it uses the expert evaluation method to work out, but in practical operation this
kind of method has weakness in the long survey period, which may delay decision time and
affect the real-time performance of the evaluation results to a certain extent. Here the paper
will mainly discuss how to use the statistical method to determine the weights model.

The strategic emerging industry index system is as shown in Figure 1.

3.2.1. The Fuzzy Weighted Vector Sure [20]

Multistage fuzzy comprehensive evaluation method often uses Delphi method to determine
the index weight, which affects the model practicality and objectivity of evaluation results.
In order to overcome this shortcoming of this model, we will determine the weight of each
index by the variation coefficient method. First, through the Figure 1 index system, determine
the level one evaluation index set U = {u1, u2, . . . , un}; ui means the ith one class index.
Second, we will further divide it into several evaluation levels according to the assessment
and evaluation factors: uij = {u′j1, u′j2, . . . , u′jk}; k is the number of evaluation factors for the ith
evaluation, the jth evaluation factor. Third, using variance method to determine the weight
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of each basic index A reflects the importance of the various factors in the whole. That is, each
index is A group of survey data z1, z2, . . . , zn, written as

z =
1
n

n∑
i=1

xi,

tk =

(
1

n − 1

n∑
i=1

(zi − z)2

)1/2

.

(3.2)

That is

νk =
tk
|z| . (3.3)

νk is the coefficient of the variation of data z1, z2, . . . , zn, the weight aj is:

aj =
νj∑m
i=1 νi

. (3.4)

3.2.2. Comment Set and the Determination of Membership Function

Be sure that comment setU = {shall not choose, will consider, should select} and membership
functions in order to determine the evaluation factors on the comments membership.

3.2.3. The Generation of Fuzzy Judgment Vector B [21]

Starting from the Ui, determining the evaluation object of evaluation element set ν and
degrees of membership Ri is, namely, called single factor fuzzy evaluation. Factor Ui and
evaluation results Ri are called single factor fuzzy evaluation set, which is the ν fuzzy subset,
Ri = {ri1, ri2, . . . , rim}.

Put the single factor evaluation set as the line, then it can get deviation fuzzy matrix:

R =

⎡⎣r11 r12 · · · r1m

· · · · · · · · · · · ·
rn1 rn2 · · · rnm

⎤⎦. (3.5)

In type (3.4),

rij =

∣∣aij − λi∣∣
max

{
aij
} − min

{
aij
} , λi =

{
max

{
aij
}
, aij is performance indicator,

min
{
aij
}
, aij is cost indicator.

(3.6)
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Single factor fuzzy evaluation can only reflect a factor of evaluation object, but cannot
reflect the comprehensive influence of all factors. Thus, all factors must be comprehensively
considered. All single factor fuzzy evaluation can be expressed as

B = A · R = (a1, a2, . . . , an)

⎡⎣r11 r12 · · · r1m

· · · · · · · · · · · ·
rn1 rn2 · · · rnm

⎤⎦ = (b1, b2, . . . , bn),

bi =
n∨
i=1

(
ai ∧ rij

)
, j = 1, 2, . . . , m.

(3.7)

In formula (3.7), “∧” and “∨” are “take small” operator, “take big” operator.

3.2.4. Construct an Evaluation Function

In order to facilitate and get an accurate evaluation result, suppose the level of the value of
a variable range is 0–60 (not to be chosen), 60–80 (to be considered), and 80–100 (should be
chosen) and calculate the group data to get evaluation matrix P :

P =

⎡⎣50
70
90

⎤⎦. (3.8)

Then the comprehensive evaluation function is

S = B · R. (3.9)

Then according to the size of the S, Table 1 found out the corresponding level
evaluation, which is the final evaluation result of whether the strategic emerging industry
has been chosen or not.

3.3. Fuzzy Evaluation Model Optimization

3.3.1. Optimization of Multistage Fuzzy Comprehensive Evaluation Methods [20]

Because the evaluation vector is at the next higher level for the fuzzy evaluation vector, it
can use the level evaluation of fuzzy evaluation vector to structure the evaluation fuzzy
evaluation set again. In addition, another important problem is to determine the index weight
above Level two. As the variation coefficient method applies only to statistical index, and the
indicators above Level two have no direct statistics, the paper will adjust the above evaluation
method so that researchers can use the statistical method to calculate the weight of the index
above the second level.

After the calculation of the level of the index weight, we separately judge each
questionnaire for the primary evaluation, get the fuzzy evaluation vector of secondary
evaluation index (y1, y2, . . . , yn), use the membership functions of inverse function to
calculate secondary statistical indexes x2i, put each index value of the questionnaire
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Table 1: Comparison between the results of evaluation and the level of remark.

Level comments Not chosen To be considered Should be chosen
The comprehensive evaluation value [0, 60] [60, 80] [80, 100]

calculated as a secondary index of the statistics, and repeat the process of the different
coefficient method to determine the secondary index weight. The index weights above the
second level are calculated with this method. Then repeat the above steps so as to complete
the fuzzy comprehensive evaluation of each layer index.

3.3.2. Optimization of the Weights in the Fuzzy Comprehensive Evaluation [22]

Objective weighting method is got according to current sample data statistics, related to
weight and the current sample data, which has a stronger objectivity and avoids the deviation
of the artificial factors. It also has the determination of the weight of the consideration on each
factor, such as principal component analysis focused on the relationship between index data,
the mean square error method, maximizing deviations method, the entropy weight method,
and the variation coefficient method. All of them have more consideration of the influence of
the data discrete sex to the real evaluation result. Therefore there is also likely the situation in
disagreement with the importance of the determination between the weight of index and the
index itself.

Therefore, this paper will optimize the method of the fuzzy comprehensive evaluation
weights calculation, combine the principal component analysis method and the entropy
weighting method of mutual confluence, so that it can keep both the principal component
analysis and the linear combination of the original data, simplify the advantages of the
index, and at the same time compensate the defect without the consideration of the principal
component analysis and the determination of the weights for data features by means of
entropy value method. The concrete methods are as follow.

(1) Make the original data of n industry p indexes matrix X(i = 1, 2, . . . , n; j =
1, 2, . . . , p), which were then dimensionless or standardized processing and
generally use Z-score method, which is dimensionless, and next get new Mij

matrix.

(2) The correlation coefficient matrix Rjk of the calculation index:

Rjk =
1
n
·

n∑
i=1

(
Xij −Xj

)
Sj

·

(
Xik −Xk

)
Sk

=
1
n

n∑
i=1

Zij · Zik, Rjj = 1, Rjk = Rkj . (3.10)

(3) Work out the Rjk array value of characteristics λk (k = 1, 2, . . . , p) and characteristic
vector Lk (k = 1, 2, . . . , p). According to the characteristic equation:

|R − λI| = 0. (3.11)

Calculate characteristic value λk, citing the characteristic value λk, and feature
vector Lk.
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(4) Calculation of contribution rate:

Tk =
λk∑p

j=1 λj
(3.12)

and cumulative contribution:

Dk =
k∑
j=1

Tj . (3.13)

The selection of Dm ≥ 85% of the characteristic value λm (m < p) corresponding
several principal components.

(5) Use each principal component proportion of the principal components to explain
reflects index righteousness.

(6) Calculate the principal component index weights. The first m a principal com-
ponent characteristic value of the product contribution Dm is set 1. Calculate the
T1, T2, . . . , Tm of the corresponding new T ′

1, T
′
2, . . . , T

′
m, that is, the main component

of the index weights.

(7) Calculate the principal components and get part matrix Fij (i = 1, 2, . . . , m; j =
1, 2, . . . , n). So far, we have achieved the purpose of simplified index number with
the aid of the principal component analysis method. Next we will use entropy
weight method to calculate the weight of each index factor.

(8) Data translation. Make

yij = yij + 1
(
i = 1, 2, . . . , m; j = 1, 2, . . . , n

)
. (3.14)

Because using entropy value to work out weight should be made use of logarithmic
calculation, in this way we can avoid taking logarithmic time nonsense.

(9) Calculating the proportion of the index in the j indexes and i the value of the
industry:

Pij =
yij∑m
i=1 yij

(
i = 1, 2, . . . , m; j = 1, 2, . . . , n

)
. (3.15)

(10) Computing the first j indexes entropy:

ej = −k
m∑
i=1

Pij lnPij , k > 0, k =
1

ln(n)
, ej ≥ 0. (3.16)

(11) Compute the difference coefficient of the j indexes. As to the j indexes, the greater
the differences of the Yij index value is, the greater effect the scheme evaluation Yij
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is and the smaller the entropy value is. The definition of the difference coefficient is
as follows:

gi =
1 − ej∑n

j=1
(
1 − ej

) =
1 − ej
n − Ee , E =

n∑
j=1

ej , 0 ≤ gi ≤ 1,
n∑
j=1

gj = 1. (3.17)

(12) Working out weight:

wj =
gj∑n
j=1 gj

(
1 ≤ j ≤ n). (3.18)

(13) Weighted comprehensive evaluation model according to many indexes to calculate
the comprehensive evaluation value:

Si =
m∑
j=1

wj · Pij
(
i = 1, 2 . . . m; j = 1, 2 . . . n

)
. (3.19)

4. The Inspection Model Strategic Emerging Industries

4.1. The Industry Advantage Index

4.1.1. The Escalating Rate of Productivity Index

As a strategic emerging industry, the high escalating rate of productivity has a high potential
for growth and development advantages, and such ability will drive the development of the
industry system. The escalating rate of productivity index,

νi =
ai(tn) − ai(t0)

tn − t0 . (4.1)

ai(tn) is the productivity of theith sector and the tn year, ai(t0) is the productivity of theith
sector and the t0 year.

4.1.2. The Comparative Advantage Coefficient

The selection of strategic emerging industry should be beneficial in this area’s development,
and should have a certain comparative advantage in the output value, profit tax rate, and so
forth. The relative advantage of ith sector will be shown ηi,

ηi =
xi/x

Xi/X
· oi/o
Oi/O

· pi/p
Pi/P

· ti
Ti

· qi
Qi
. (4.2)

xi, oi, pi and ti are, respectively, the product value, product output, total factor
productivity, and profit tax rate of the ith sector; qi is the year-end staff’s total of i industry
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departments; x, o, and p are, respectively, total product value, total value of product output,
and average productivity of each sector; Qi is the year-beginning staff’s total of i industry
departments; Xi,Oi, Pi, and Ti are, respectively, total product value, product output, total
factor productivity, and profit tax rate of the i sector; X,O, and P are, respectively, total
product value, total value of product output, total profit tax rate. Q is average productivity
of all of sectors.

4.2. The Industry Lead Function Index

4.2.1. The Technology Index

Strategic emerging industry has a new technical support, such as the capital fusion, science
and technology innovation, and talent cultivation that will focus on the industry. One has

πi =
νi[

yi(tn) − yi(t0)
]
/(tn − t0)

· xi
Xi

· ωi

yi
. (4.3)

νi is the improved rate of productivity, yi(tn)—is the total product value of the ith sector in the
ith year, xi—is total technology personnel of the ith sector,Xi—is total employment personnel
of the ith sector, and ωi is R&D funds.

4.2.2. The Location Entropy

Location entropy coefficient compares the specialized level of area industrial department
with the average level of one country. It can evaluate the competitive level of an area strategic
emerging industry in the country. One has

LQ =
yi/y

Yi/Y
. (4.4)

4.3. The Industry Ecosystem Index

4.3.1. The Output Value Rate of Unit Energy Index

The output value rate of unit energy reflects the industry department energy dissipation
capacity, and the strategic emerging industry should be the low consumption industry. One
has

hi =
yi∑n2

j=1 eij × f2j
. (4.5)

eij is the total of j energy utilized by i sector; f2j is the use of the fees of unit j energy; n2 is
the type of energy.
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4.3.2. The Output Value Rate of Unit Three-Kinds-Waste Discharge Index

One has

gi =
yi∑3

j=1 wij × f1j
, (4.6)

wij is the total of j waste outputted by i sector; f1j is the administered fees of unit j waste.

4.4. The Selection Model of the Maximum Entropy

4.4.1. Establish Evaluation Matrix

Definition 4.1. Suppose there is n industry to participate in the selection, notes for Q =
{Q1, Q2, Q3, . . . , Qn}, the number of each industry evaluation index is m; notes for P =
{P1, P2, P3, . . . , Pm}, xij is the evaluation value of the ith industry and the jth evaluation index.
A = [xij]n×m is the evaluation matrix of industry set Q for index set P :

A =

∣∣∣∣∣∣∣∣
x11 x12 · · · x1m

x21 x22 · · · x2m

· · · · · · · · · · · ·
xn1 xn2 · · · xnm

∣∣∣∣∣∣∣∣. (4.7)

Presume standard index:

x0j =
1
n

n∑
i=1

xij . (4.8)

Let the jth index (x1j , x2j , . . . , xnj) compare with standard index, determine its
corresponding equivalent value (r1j , r2j , . . . , rnj). We can get the corresponding equivalent
matrix:

R =

∣∣∣∣∣∣∣∣
r11 r12 · · · r1m

r21 r22 · · · r2m

· · · · · · · · · · · ·
rn1 rn2 · · · rnm

∣∣∣∣∣∣∣∣. (4.9)

4.4.2. Establishment of Multi-Objective Programming (MP) Model

If m evaluation index weight vectors W = (w1, w2, . . . , wm)
T , and the final evaluation value

of the ith industry for Ui,

Ui =
m∑
j=i

wjrij . (4.10)
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According to the idea of the maximum entropy and the corresponding equivalent
index, we can set up the goal programming equation:

(MP)max

{
−

n∑
i=1

wi lnwi

}
,

(MP)min
n∑
i=1

fi(w) =
n∑
i=1

m∑
j=1

wj

(
1 − rij

)2
.

(4.11)

Constraint conditions for

m∑
j=1

wj = 1, wj ≥ 0, j = 1, 2, . . . , m, (4.12)

wi > wk, 1 ≤ i, k ≤ m, i /=m. (4.13)

For the solution of type (4.10)–(4.12) multi-objective programming function,
researchers will structure the following mathematical model as (4.13)

min δ
n∑
i=1

m∑
j=1

wj

(
1 − rij

)2 + (1 − δ) +
m∑
j=1

wj lnwj,

s.t.
m∑
j=1

wj = 1, wj ≥ 0, j = 1, 2, . . . , m,

0 ≤ δ ≤ 1.

(4.14)

For the solution of type (4.13), we will structure Lagrange function:

F(w, λ) = δ
n∑
i=1

m∑
j=1

wj

(
1 − rij

)2 + (1 − δ) +
m∑
j=1

wj lnwj − λ
⎛⎝ m∑

j=1

wj − 1

⎞⎠. (4.15)

According to a necessary condition for the extreme existence, we can get

∂F

∂wj
= δ

n∑
i=1

(
1 − rij

)2 + (1 − δ)(lnwj + 1
) − λ = 0, j = 1, 2, . . . , m,

∂F

∂λ
=

m∑
j=1

wj − 1 = 0.

(4.16)
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Next get

wj =
exp
{
−
[
1 + δ

∑n
i=1
(
1 − rij

)2
/(1 − δ)

]}
∑m

j=1 exp
{
−
[
1 + δ

∑n
i=1
(
1 − rij

)2
/(1 − δ)

]} , j = 1, 2, . . . , m. (4.17)

Through changing δ values for the many different results of empowerment choose a
group result that most conforms to the formula (4.17) of the combination of empowerment,
and get wj , j = 1, 2, . . . , m of the empowerment results of formula (4.12) and (4.13). Then
based on the industry’s index, find out the industrial appraisal value:

Ui =
m∑
j=1

wjrij . (4.18)

We will order and choose strategic emerging industry according to the size of the Ui.

5. Conclusions

It is a theoretical and practical significance to make the scientific and accurate selection
and evaluation of regional strategic emerging industry. This paper tried to use the fuzzy
optimization theory and the maximum entropy to select the central and sustainable
development industry of area as the regional strategic emerging industry.

First, the paper depends on the aid of the industrial structure similarity coefficient to
measure the area of industrial isomorphism, thus gives system dynamically the judgment
of the regional industrial structure convergence change characteristics and determines the
regional industrial structure from the macroscopic perspective preliminary.

Secondly, it establishes and optimizes fuzzy evaluation model. The problem in view of
regional strategic emerging industry selection is influenced by multiple factors and belongs to
multistage comprehensive evaluation problem. We can use the method of fuzzy mathematics
comprehensive evaluation, but we also need to optimize and improve multistage fuzzy
comprehensive evaluation model, so that the evaluation results will be as accurate and
objective as possible.

Thirdly, it evaluates the chosen results. We calculate the quotient of location to find out
whether the area industry has advantage in the same industry of country. We will calculate
intersection to the two kinds of industry and confirm the area strategic emerging industry.

In the future, we will also do empirical analysis based on these models. In addition, we
will be coupled to an evaluation about the traditional industries and the strategic emerging
industries, including double coupling relevance and developmental evaluation.
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An iterative sequence for quasi-φ-asymptotically nonexpansive multivalued mapping for modify-
ing Halpern’s iterations is introduced. Under suitable conditions, some strong convergence theo-
rems are proved. The results presented in the paper improve and extend the corresponding results
in the work by Chang et al. 2011.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. Let D be a nonempty closed subset of a real Banach space X. A mapping T :
D → D is said to be nonexpansive, if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ D. Let N(D) and
CB(D) denote the family of nonempty subsets and nonempty closed bounded subsets of D,
respectively. The Hausdorff metric on CB(D) is defined by

H(A1, A2) = max

{
sup
x∈A1

d(x,A2), sup
y∈A2

d
(
y,A1

)}
(1.1)

for A1, A2 ∈ CB(D), where d(x,A1) = inf{‖x − y‖, y ∈ A1}. The multivalued mapping T :
D → CB(D) is called nonexpansive, if H(Tx, Ty) ≤ ‖x−y‖, for all x, y ∈ D. An element p ∈ D
is called a fixed point of T : D → N(D), if p ∈ T(p). The set of fixed points of T is represented
by F(T).
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Let X be a real Banach space with dual X∗. We denote by J the normalized duality
mapping from X to 2X

∗
which is defined by

J(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, x ∈ X, (1.2)

where 〈·, ·〉 denotes the generalized duality pairing.
A Banach space X is said to be strictly convex, if ‖(x + y)/2‖ ≤ 1 for all x, y ∈ X with

‖x‖ = ‖y‖ = 1 and x /=y. A Banach space is said to be uniformly convex, if limn→∞‖xn−yn‖ = 0
for any two sequences {xn}, {yn} ⊂ X with ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 0.

The norm of Banach space X is said to be Gâteaux differentiable, if for each x, y ∈ S(x),
the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.3)

exists, where S(x) = {x : ‖x‖ = 1, x ∈ X}. In this case, X is said to be smooth. The norm of
Banach spaceX is said to be Fréchet differentiable, if for each x ∈ S(x), the limit (1.3) is attained
uniformly, for y ∈ S(x), and the norm is uniformly Fréchet differentiable if the limit (1.3) is
attained uniformly for x, y ∈ S(x). In this case, X is said to be uniformly smooth.

Remark 1.1. The following basic properties for Banach space X and for the normalized duality
mapping J can be found in Cioranescu [1].

(1) X (X∗, resp.) is uniformly convex if and only if X∗ (X, resp.) is uniformly smooth.

(2) If X is smooth, then J is single-valued and norm-to-weak∗ continuous.

(3) If X is reflexive, then J is onto.

(4) If X is strictly convex, then Jx
⋂
Jy /= ∅, for all x, y ∈ X.

(5) If X has a Fréchet differentiable norm, then J is norm-to-norm continuous.

(6) If X is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of X.

(7) Each uniformly convex Banach spaceX has the Kadec-Klee property, that is, for any
sequence {xn} ⊂ X, if xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x ∈ X.

(8) If X is a reflexive and strictly convex Banach space with a strictly convex dual X∗

and J∗ : X∗ → X is the normalized duality mapping in X∗, then J−1 = J∗, JJ∗ = IX∗

and J∗J = IX .

Next, we assume that X is a smooth, strictly convex, and reflexive Banach space and D
is a nonempty, closed and convex subset of X. In the sequel, we always use φ : X × X → R+

to denote the Lyapunov functional defined by

φ
(
x, y

)
= ‖x‖2 − 2〈x, Jy〉 + ∥∥y∥∥2

, x, y ∈ X. (1.4)
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It is obvious from the definition of the function φ that

(‖x‖ − ∥∥y∥∥)2 ≤ φ(x, y) ≤ (‖x‖ + ∥∥y∥∥)2
,

φ
(
y, x

)
= φ

(
y, z

)
+ φ(z, x) + 2〈z − y, Jx − Jz〉, x, y, z ∈ X,

(1.5)

φ
(
x, J−1(λJy + (1 − λ)Jz)) ≤ λφ(x, y) + (1 − λ)φ(x, z), (1.6)

for all λ ∈ [0, 1] and x, y, z ∈ X.
Following Alber [2], the generalized projection ΠD : X → D is defined by

ΠD(x) = arg inf
y∈D

φ
(
y, x

)
, ∀x ∈ X. (1.7)

Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed
point of a nonexpansive mapping.

Example 1.2 (see [3]). Let ΠD be the generalized projection from a smooth, reflexive and
strictly convex Banach space X onto a nonempty closed convex subset D of X, then ΠD is a
closed and quasi-φ-nonexpansive from X onto D.

In 1953, Mann [4] introduced the following iterative sequence {xn}:

xn+1 = αnxn + (1 − αn)Txn, (1.8)

where the initial guess x1 ∈ D is arbitrary, and {αn} is a real sequence in [0, 1]. It is known that
under appropriate settings the sequence {xn} converges weakly to a fixed point of T . How-
ever, even in a Hilbert space, Mann iteration may fail to converge strongly [5]. Some attempts
to construct iteration method guaranteeing the strong convergence have been made. For
example, Halpern [6] proposed the following so-called Halpern iteration:

xn+1 = αnu + (1 − αn)Txn, (1.9)

where u, x1 ∈ D are arbitrary given and {αn} is a real sequence in [0, 1]. Another approach
was proposed by Nakajo and Takahashi [7]. They generated a sequence as follows:

x1 ∈ X is arbitrary,

yn = αnu + (1 − αn)Txn,
Cn =

{
z ∈ D :

∥∥yn − z∥∥ ≤ ‖xn − z‖
}
,

Qn = {z ∈ D : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qnx1 (n = 1, 2, . . .),

(1.10)

where {αn} is a real sequence in [0, 1] and PK denotes the metric projection from a Hilbert
space H onto a closed and convex subset K of H. It should be noted here that the iteration
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previous works only in Hilbert space setting. To extend this iteration to a Banach space, the
concept of relatively nonexpansive mappings are introduced (see [8–12]).

Inspired by Matsushita and Takahashi, in this paper, we introduce modifying Halpern-
Mann iterations sequence for finding a fixed point of multivalued mapping T : D → CB(D).

2. Preliminaries

In the sequel, we denote the strong convergence and weak convergence of the sequence {xn}
by xn → x and xn ⇀ x, respectively.

Lemma 2.1 (see [2]). Let X be a smooth, strictly convex, and reflexive Banach space, and let D be a
nonempty closed and convex subset of X. Then the following conclusions hold

(a) φ(x, y) = 0 if and only if x = y, for all x, y ∈ X;

(b) φ(x,ΠDy) + φ(ΠDy, y) ≤ φ(x, y), for all x ∈ D, for all y ∈ X;

(c) if x ∈ X and z ∈ D, then z = ΠDx ⇔ 〈z − y, Jx − Jz〉 ≥ 0, for all y ∈ D.

Remark 2.2. IfH is a real Hilbert space, then φ(x, y) = ‖x−y‖2 and ΠD is the metric projection
PD of H onto D.

Definition 2.3. A point p ∈ D is said to be an asymptotic fixed point of T : D → CB(D), if
there exists a sequence {xn} ⊂ D such that xn ⇀ x ∈ X and d(xn, T(xn)) → 0. Denote the set
of all asymptotic fixed points of T by F̂(T).

Definition 2.4. (1) A multivalued mapping T : D → CB(D) is said to be relatively nonexpan-
sive, if F(T)/= ∅, F̂(T) = F(T), and φ(p, z) ≤ φ(p, x), for all x ∈ D, p ∈ F(T), z ∈ T(x).

(2) A multivalued mapping T : D → CB(D) is said to be closed, if for any sequence
{xn} ⊂ D with xn → x ∈ D and d(y, T(xn)) → 0, then d(y, T(x)) = 0.

Next, we present an example of relatively nonexpansive multivalued mapping.

Example 2.5 (see [13]). LetX be a smooth, strictly convex, and reflexive Banach space, letD be
a nonempty closed and convex subset of X, and let f : D ×D → R be a bifunction satisfying
the conditions: (A1) f(x, x) = 0, for all x ∈ D; (A2) f(x, y) + f(y, x) ≤ 0, for all x, y ∈ D;
(A3) limt→ 0 f(tz + (1 − t)x, y) ≤ f(x, y), for each x, y, z ∈ D; (A4) the function y �→ f(x, y) is
convex and lower semicontinuous, for each x ∈ D. The “so-called” equilibrium problem for
f is to find a x∗ ∈ D such that f(x∗, y) ≥ 0, for all y ∈ D. The set of its solutions is denoted by
EP(f).

Let r > 0, x ∈ X and define mapping Tr : X → D as follows:

Tr(x) =
{
x ∈ D, f(z, y) + 1

r

〈
y − z, Jz − Jx〉 ≥ 0, ∀y ∈ D

}
, ∀x ∈ X, (2.1)

then (1) Tr is single-valued, and so {z} = Tr(x); (2) Tr is a relatively nonexpansive mapping,
therefore it is a closed and quasi-φ-nonexpansive mapping; (3) F(Tr) = EP(f).

Definition 2.6. (1) A multivalued mapping T : D → CB(D) is said to be quasi-φ-nonexpan-
sive, if F(T)/= ∅, and φ(p, z) ≤ φ(p, x), for all x ∈ D, p ∈ F(T), z ∈ T(x).
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(2) A multivalued mapping T : D → CB(D) is said to be quasi-φ-asymptotically non-
expansive, if F(T)/= ∅, and there exists a real sequence kn ⊂ [1,+∞), kn → 1 such that

φ
(
p, zn

) ≤ knφ
(
p, x

)
, ∀x ∈ D, p ∈ F(T), zn ∈ Tn(x). (2.2)

(3) A multivalued mapping T : D → CB(D) is said to be totally quasi-φ-asymptoti-
cally nonexpansive, if F(T)/= ∅, and there exist nonnegative real sequences {vn}, {μn} with vn,
μn → 0 (as n → ∞) and a strictly increasing continuous function ζ : R+ → R+ with ζ(0) = 0
such that

φ
(
p, zn

) ≤ φ(p, x) + vnζ[φ(p, x)] + μn, ∀x ∈ D, ∀n ≥ 1, p ∈ F(T), zn ∈ Tn(x). (2.3)

Remark 2.7. From the definitions, it is obvious that a relatively nonexpansive multivalued
mapping is a quasi-φ-nonexpansive multivalued mapping, and a quasi-φ-nonexpansive
multivalued mapping is a quasi-φ-asymptotically nonexpansive multivalued mapping, but
the converse is not true.

Lemma 2.8. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, and letD be a nonempty closed and convex subset ofX. Let {xn} and {yn} be two sequences
in D such that xn → p and φ(xn, yn) → 0, where φ is the function defined by (1.4), then yn → p.

Proof. For φ(xn, yn) → 0, we have (‖xn‖ − ‖yn‖)2 → 0. This implies that ‖yn‖ → ‖p‖ and so
‖Jyn‖ → ‖Jp‖. Since D is uniformly smooth, X∗ is reflexive and JX = X∗, therefore, there
exist a subsequence {Jyni} ⊂ {Jyn} and a point x ∈ X such that Jyni ⇀ Jx. Because the norm
‖ · ‖ is weakly lower semi continuous, we have

0 = lim
ni →∞

φ
(
xni , yni

)
= lim

ni →∞

{
‖xni‖2 − 2

〈
xni , Jyni

〉
+
∥∥Jyni∥∥2

}
≥ ∥∥p∥∥2 − 2〈p, Jx〉 + ‖Jx‖2 = φ

(
p, x

)
.

(2.4)

By Lemma 2.1(a), we have p = x. Hence we have Jyni ⇀ Jp. Since ‖Jyni‖ → ‖Jp‖ and X∗

has the Kadec-Klee property, we have Jyni → Jp. By Remark 1.1, it follows that yni ⇀ p.
Since ‖Jyni‖ → ‖Jp‖, by using the Kadec-Klee property of X, we get yni → p. If there exists
another subsequence {Jynj} ⊂ {Jyn} such that ynj → q, then we have

0 = lim
nj →∞

φ
(
xnj , ynj

)
= lim

nj →∞

{∥∥∥xnj∥∥∥2 − 2
〈
xnj , Jynj

〉
+
∥∥∥Jynj∥∥∥2

}
=
∥∥p∥∥2 − 2〈p, Jq〉 + ∥∥q∥∥2 = φ

(
p, q

)
.

(2.5)

This implies that p = q. So yn → p. The conclusion of Lemma 2.8 is proved.

Lemma 2.9. Let X and D be as in Lemma 2.8. Let T : D → CB(D) be a closed and quasi-φ-
asymptotically nonexpansive multivalued mapping with nonnegative real sequences {kn} ⊂ [1,+∞),
if kn → 1, then the fixed point set F(T) of T is a closed and convex subset of D.
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Proof. Let {xn} be a sequence in F(T), such that xn → x∗. Since T is quasi-φ-asymptotically
nonexpansive multivalued mapping, we have

φ(xn, z) ≤ k1φ(xn, x∗) (2.6)

for all z ∈ Tx∗ and for all n ∈N. Therefore,

φ(x∗, z) = lim
n→∞

φ(xn, z) ≤ lim
n→∞

k1φ(xn, x∗) = k1φ(x∗, x∗) = 0. (2.7)

By Lemma 2.1, we obtain z = x∗, Hence, Tx∗ = {x∗}. So, we have x∗ ∈ F(T). This implies that
F(T) is closed.

Let p, q ∈ F(T) and t ∈ (0, 1), and put w = tp+(1− t)q. we prove that w ∈ F(T). Indeed,
in view of the definition of φ, let zn ∈ Tnw, we have

φ(w, zn) = ‖w‖2 − 2〈w, Jzn〉 + ‖zn‖2

= ‖w‖2 − 2〈tp + (1 − t)q, Jzn〉 + ‖zn‖2

= ‖w‖2 + tφ
(
p, zn

)
+ (1 − t)φ(q, zn) − t∥∥p∥∥2 − (1 − t)∥∥q∥∥2

.

(2.8)

Since

tφ
(
p, zn

)
+ (1 − t)φ(q, zn)

≤ tknφ
(
p,w

)
+ (1 − t)knφ

(
q,w

)
= t

{∥∥p∥∥2 − 2〈p, Jw〉 + ‖w‖2 + (kn − 1)φ
(
p,w

)}
+ (1 − t)

{∥∥q∥∥2 − 2
〈
q, Jw

〉
+ ‖w‖2 + (kn − 1)φ

(
q,w

)}
= t

∥∥p∥∥2 + (1 − t)∥∥q∥∥2 − ‖w‖2 + t(kn − 1)φ
(
p,w

)
+ (1 − t)(kn − 1)φ

(
q,w

)
.

(2.9)

Substituting (2.8) into (2.9) and simplifying it, we have

φ(w, zn) ≤ t(kn − 1)φ
(
p,w

)
+ (1 − t)(kn − 1)φ

(
q,w

) −→ 0, (as n −→ ∞). (2.10)

Hence, we have zn → w. This implies that zn+1(∈ TTnw) → w. Since T is closed, we have
Tw = {w}, that is, w ∈ F(T). This completes the proof of Lemma 2.9.

Definition 2.10. A mapping T : D → CB(D) is said to be uniformly L-Lipschitz continuous,
if there exists a constant L > 0 such that ‖xn − yn‖ ≤ L‖x − y‖, where x, y ∈ D, xn ∈ Tnx,
yn ∈ Tny.

3. Main Results

Theorem 3.1. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, letD be a nonempty, closed and convex subset ofX, and let T : D → CB(D) be a closed and
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uniformly L-Lipschitz continuous quasi-φ-asymptotically nonexpansive multivalued mapping with
nonnegative real sequences {kn} ⊂ [1,+∞) and kn → 1 satisfying condition (2.2). Let {αn} be a
sequence in (0, 1). If {xn} is the sequence generated by

x1 ∈ X is arbitrary; D1 = D,

yn = J−1[αnJx1 + (1 − αn)Jzn], zn ∈ Tnxn,
Dn+1 =

{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + ξn
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .),

(3.1)

where ξn = (kn − 1)supp∈F(T)φ(p, xn), F(T) is the fixed point set of T , and ΠDn+1 is the generalized
projection of X onto Dn+1. If F(T) is nonempty, then {xn} converges strongly toΠF(T)x1.

Proof. (I) First, we prove thatDn are closed and convex subsets inD. By the assumption that D1 =
D is closed and convex. Suppose that Dn is closed and convex for some n ≥ 1. In view of the
definition of φ, we have

Dn+1 =
{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + ξn
}

=
{
z ∈ D : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + ξn
} ∩Dn

=
{
z ∈ D : 2αn〈z, Jx1〉 + 2(1 − αn)〈z, Jxn〉 − 2〈z, Jzn〉

≤ αn‖x1‖2 + (1 − αn)‖xn‖2 − ‖zn‖2
}
∩Dn.

(3.2)

This shows that Dn+1 is closed and convex. The conclusions are proved.
(II) Next, we prove that F(T) ⊂ Dn, for all n ≥ 1. In fact, it is obvious that F(T) ⊂ D1.

Suppose F(T) ⊂ Dn, for some n ≥ 1. Hence, for any u ∈ F(T) ⊂ Dn, by (1.6), we have

φ
(
u, yn

)
= φ

(
u, J−1(αnJx1 + (1 − αn)Jzn)

)
≤ αnφ(u, x1) + (1 − αn)φ(u, zn)
≤ αnφ(u, x1) + (1 − αn)knφ(u, xn)
= αnφ(u, x1) + (1 − αn)

{
φ(u, xn) + (kn − 1)φ(u, xn)

}
≤ αnφ(u, x1) + (1 − αn)

{
φ(u, xn) + (kn − 1) sup

u∈F(T)
φ(u, xn)

}

= αnφ(u, x1) + (1 − αn)φ(u, xn) + ξn.

(3.3)

This shows that u ∈ F(T) ⊂ Dn+1 and so F(T) ⊂ Dn.
(III)Now, we prove that {xn} converges strongly to some point p∗. In fact, since xn = ΠDnx1,

from Lemma 2.1(c), we have

〈xn − y, Jx1 − Jxn〉 ≥ 0, ∀y ∈ Dn. (3.4)
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Again since F(T) ⊂ Dn, we have

〈xn − u, Jx1 − Jxn〉 ≥ 0, ∀u ∈ F(T). (3.5)

It follows from Lemma 2.1(b) that for each u ∈ F(T) and for each n ≥ 1,

φ(xn, x1) = φ(ΠDnx1, x1) ≤ φ(u, x1) − φ(u, xn) ≤ φ(u, x1). (3.6)

Therefore, {φ(xn, x1)} is bounded, and so is {xn}. Since xn = ΠDnx1 and xn+1 = ΠDn+1x1 ∈
Dn+1 ⊂ Dn, we have φ(xn, x1) ≤ φ(xn+1, x1). This implies that {φ(xn, x1)} is nondecreasing.
Hence limn→∞ φ(xn, x1) exists. Since X is reflexive, there exists a subsequence {xni} ⊂ {xn}
such that xni ⇀ p∗ (some point in D = D1). Since Dn is closed and convex and Dn+1 ⊂ Dn.
This implies that Dn is weakly closed and p∗ ∈ Dn for each n ≥ 1. In view of xni = ΠDni

x1, we
have

φ(xni , x1) ≤ φ
(
p∗, x1

)
, ∀ni ≥ 1. (3.7)

Since the norm ‖ · ‖ is weakly lower semicontinuous, we have

lim
ni →∞

infφ(xn, x1) = lim
ni →∞

inf
(
‖xni‖2 − 2〈xni , Jx1〉 + ‖x1‖2

)
≥ ∥∥p∗∥∥2 − 2

〈
p∗, Jx1

〉
+ ‖x1‖2

= φ
(
p∗, x1

)
,

(3.8)

and so

φ
(
p∗, x1

) ≤ lim
ni →∞

infφ(xn, x1) ≤ lim
ni →∞

supφ(xn, x1) = φ
(
p∗, x1

)
. (3.9)

This shows that limni →∞ φ(xni , x1) = φ(p∗, x1), and we have ‖xni‖ → ‖p∗‖. Since xni ⇀ p∗, by
the virtue of Kadec-Klee property of X, we obtain that xni → p∗. Since {φ(xn, x1)} is con-
vergent, this together with limni →∞ φ(xni , x1) = φ(p∗, x1) shows that limni →∞ φ(xn, x1) =
φ(p∗, x1). If there exists some subsequence {xnj} ⊂ {xn} such that xn → q, then from
Lemma 2.1, we have

φ
(
p∗, q

)
= lim

ni,nj →∞
φ
(
xni , xnj

)
= lim

ni,nj →∞
φ
(
xni ,ΠDnj

x1

)
≤ lim

ni,nj →∞

[
φ(xni , x1) − φ

(
ΠDnj

x1, x1

)]
= lim

ni,nj →∞

[
φ(xni , x1) − φ

(
xnj , x1

)]
= φ

(
p∗, x1

) − φ(p∗, x1
)
= 0,

(3.10)

that is, p∗ = q and hence

xn −→ p∗. (3.11)
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By the way, from (3.11), it is easy to see that

ξn = (kn − 1) sup
p∈F(T)

φ
(
p, xn

) −→ 0. (3.12)

(IV) Now, we prove that p∗ ∈ F(T). In fact, since xn+1 ∈ Dn+1, from (3.1), (3.11), and
(3.12), we have

φ
(
xn+1, yn

) ≤ αnφ(xn+1, x1) + (1 − αn)φ(xn+1, xn) + ξn −→ 0. (3.13)

Since xn → p∗, it follows from (3.13) and Lemma 2.8 that

yn −→ p∗. (3.14)

Since {xn} is bounded and T is quasi-φ-asymptotically nonexpansive multivalued mapping,
Tnxn is bounded. In view of αn → 0. Hence from (3.1), we have that

lim
n→∞

∥∥Jyn − Jzn∥∥ = lim
n→∞

‖Jx1 − Jzn‖ = 0. (3.15)

Since Jyn → Jp∗, this implies Jzn → Jp∗. From Remark 1.1, it yields that

zn ⇀ p∗. (3.16)

Again since

‖zn‖ −
∥∥p∗∥∥ = ‖Jzn‖ −

∥∥Jp∗∥∥ ≤ ∥∥Jzn − Jp∗∥∥ −→ 0, (3.17)

this together with (3.16) and the Kadec-Klee-property of X shows that

zn −→ p∗. (3.18)

On the other hand, by the assumptions that T is L-Lipschitz continuous, thus we have

d(Tzn, zn) ≤ d(Tzn, zn+1) + ‖zn+1 − xn+1‖ + ‖xn+1 − xn‖ + ‖xn − zn‖
≤ (L + 1)‖xn+1 − xn‖ + ‖zn+1 − xn+1‖ + ‖xn − zn‖.

(3.19)

From (3.18) and xn → p∗, we have that d(Tzn, zn) → 0. In view of the closeness of T , it yields
that T(p∗) = {p∗}, this implies that p∗ ∈ F(T).

(V) Finally, we prove that p∗ = ΠF(T)x1 and so xn → ΠF(T)x1. Let w = ΠF(T)x1. Since
w ∈ F(T) ⊂ Dn, we have φ(p∗, x1) ≤ φ(w,x1). This implies that

φ
(
p∗, x1

)
= lim

n→∞
φ(xn, x1) ≤ φ(w,x1), (3.20)



10 Journal of Applied Mathematics

which yields that p∗ = w = ΠF(T)x1. Therefore, xn → ΠF(T)x1. This completes the proof of
Theorem 3.1.

By Remark 2.7, the following corollaries are obtained.

Corollary 3.2. Let X and D be as in Theorem 3.1, and let T : D → CB(D) be a closed and uni-
formly L-Lipschitz continuous a relatively nonexpansive multivalued mapping. Let {αn} in (0, 1)
with limn→∞ αn = 0. Let {xn} be the sequence generated by

x1 ∈ X is arbitrary; D1 = D,

yn = J−1[αnJx1 + (1 − αn)Jzn], zn ∈ Txn,
Dn+1 =

{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .),

(3.21)

where F(T) is the set of fixed points of T , andΠDn+1 is the generalized projection of X ontoDn+1, then
{xn} converges strongly toΠF(T)x1.

Corollary 3.3. LetX andD be as in Theorem 3.1, and let T : D → CB(D) be a closed and uniformly
L-Lipschitz continuous quasi-φ-nonexpansive multivalued mapping. Let {αn} be a sequence of real
numbers such that αn ∈ (0, 1) for all n ∈N, and satisfying: limn→∞ αn = 0. Let {xn} be the sequence
generated by (3.21). Then, {xn} converges strongly toΠF(T)x1.

4. Application

We utilize Corollary 3.3 to study a modified Halpern iterative algorithm for a system of equi-
librium problems.

Theorem 4.1. LetD,X, and {αn} be the same as in Theorem 3.1. Let f : D×D → R be a bifunction
satisfying conditions (A1)–(A4) as given in Example 2.5. Let Tr : X → D be a mapping defined by
(2.1), that is,

Tr(x) =
{
x ∈ D, f(z, y) + 1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ D

}
, ∀x ∈ X. (4.1)

Let {xn} be the sequence generated by

x1 ∈ X is arbitrary; D1 = D,

f
(
un, y

)
+

1
r

〈
y − un, Jun − Jxn

〉 ≥ 0, ∀y ∈ D, r > 0, un ∈ Trxn,

yn = J−1[αnJx1 + (1 − αn)Jun],
Dn+1 =

{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .).

(4.2)
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If F(Tr)/= ∅, then {xn} converges strongly to ΠF(T)x1 which is a common solution of the system of
equilibrium problems for f .

Proof. In Example 2.5, we have pointed out that un = Tr(xn), F(Tr) = EP(f), and Tr is a closed
and quasi-φ-nonexpansive mapping. Hence (4.2) can be rewritten as follows:

x1 ∈ X is arbitrary; D1 = D,

yn = J−1[αnJx1 + (1 − αn)Jun], un ∈ Trxn,

Dn+1 =
{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .).

(4.3)

Therefore the conclusion of Theorem 4.1 can be obtained from Corollary 3.3.
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A class of G-semipreinvex functions, which are some generalizations of the semipreinvex func-
tions, and theG-convex functions, is introduced. Examples are given to show their relations among
G-semipreinvex functions, semipreinvex functions and G-convex functions. Some characteriza-
tions of G-semipreinvex functions are also obtained, and some optimality results are given for a
class of G-semipreinvex functions. Ours results improve and generalize some known results.

1. Introduction

Generalized convexity has been playing a central role in mathematical programming and
optimization theory. The research on characterizations of generalized convexity is one of most
important parts in mathematical programming and optimization theory. Many papers have
been published to study the problems of how to weaken the convex condition to guarantee
the optimality results. Schaible and Ziemba [1] introduced G-convex function which is a
generalization of convex function and studied some characterizations of G-convex functions.
Hanson [2] introduced invexity which is an extension of differentiable convex function. Ben-
Israel and Mond [3] considered the functions for which there exists η : Rn × Rn → Rn such
that, for any x, y ∈ Rn, λ ∈ [0, 1],

f
(
y + λη

(
x, y
)) ≤ λf(x) + (1 − λ)f(y). (1.1)

Weir et al. [4, 5] named such kinds of functions which satisfied the condition (1.1) as preinvex
functions with respect to η. Further study on characterizations and generalizations of



2 Journal of Applied Mathematics

convexity and preinvexity, including their applications in mathematical programming, has
been done by many authors (see [6–18]). As a generalization of preinvexity, Yang and Chen
[15] introduced semipreinvex functions and discussed the applications in prevariational
inequality. Yang et al. [16] investigated some properties of semipreinvex functions. As a
generalization of G-convex functions and preinvex functions, Antczak [17] introduced G-
preinvex functions and obtained some optimality results for a class of constrained opti-
mization problems. As a generalization of B-vexity and semipreinvexity, Long and Peng
[18] introduced the concept of semi-B-preinvex functions. Zhao et al. [19] introduced r-
semipreinvex functions and established some optimality results for a class of nonlinear
programming problems.

Motivated by the results in [17–19], in this paper, we propose the concept of G-
semipreinvex functions and obtain some important characterizations of G-semipreinvexity.
At the same time, we study some optimality results under G-semipreinvexity. Our results
unify the concepts of G-convexity, preinvexity, G-preinvexity, semipreinvexity, and r-
semipreinvexity.

2. Preliminaries and Definitions

Definition 2.1 (see [1]). Let G be a continuous real-valued strictly monotonic function defined
on D ⊂ R. A real-valued function f defined on a convex set X ⊂ Rn is said to be G-convex if
for any x, y ∈ X, λ ∈ [0, 1],

f
(
y + λ

(
x − y)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y))), (2.1)

where G−1 is the inverse of G, f(X) ⊂ D.

Remark 2.2. Every convex functions is G-convex, but the converse is not necessarily true.

Example 2.3. Let X = [−1, 1], f : X → R, If(X) be the range of real-valued function f , and let
G : If(X) → R be defined by

f(x) = arctan(|x| + 1), G(t) = tan(t). (2.2)

Then, we can verify that f is a G-convex function. But f is not a convex function because the
following inequality

f
(
y + λ

(
x − y)) > λf(x) + (1 − λ)f(y) (2.3)

holds for x = 1/4, y = 3/4, and λ = 1/2.
Weir et al. [4, 5] presented the concepts of invex sets and preinvex functions as follows.

Definition 2.4 (see [4, 5]). A set X ⊆ Rn is said to be invex if there exists a vector-valued
function η : X ×X → Rn such that for any x, y ∈ X, λ ∈ [0, 1],

y + λη
(
x, y
) ∈ X. (2.4)
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Definition 2.5 (see [4, 5]). Let X ⊆ Rn be invex with respect to vector-valued function η : X ×
X → Rn. Function f(x) is said to be preinvex with respect to η if for any x, y ∈ X, λ ∈ [0, 1],

f
(
y + λη

(
x, y
)) ≤ λf(x) + (1 − λ)f(y). (2.5)

Remark 2.6. Every convex function is a preinvex function with respect to η = x − y, but the
converse is not necessarily true.

Example 2.7. Let X = [−1, 1]. f : X → R be defined by

f(x) = arctan(|x| + 1). (2.6)

Then, we can verify that f is a preinvex function with respect to η, where

η
(
x, y
)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−y − x2 + 2x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
−y − x, −1 ≤ x < 0, 0 ≤ y ≤ 1,
−y − x, 0 ≤ x ≤ 1, −1 ≤ y < 0,
−y + x, −1 ≤ x < 0, −1 ≤ y < 0.

(2.7)

But f is not convex a function in Example 2.3.
Antczak [17] introduced the concept of G-preinvex functions as follows.

Definition 2.8 (see [17]). Let X be a nonempty invex (with respect to η) subset of Rn. A
function f : X → R is said to be (strictly) G-preinvex at y with respect to η if there exists
a continuous real-valued increasing function G : If(X) → R such that for all x ∈ X (x /=y),
λ ∈ [0, 1],

f
(
y + λη

(
x, y
)) ≤ G−1(λ(G(f(x))) + (1 − λ)G(f(y))),(

f
(
y + λη

(
x, y
))

< G−1(λ(G(f(x))) + (1 − λ)G(f(y)))). (2.8)

If (2.8) is satisfied for any y ∈ X, then f is said to be (strictly) a G-preinvex function on X
with respect to η.

Remark 2.9. Every preinvex function with respect to η is G-preinvex function with respect to
the same η, where G(x) = x. Every G-convex function is G-preinvex function with respect to
η(x, y, λ) = x − y. However, the converse is not necessarily true.

Example 2.10. Let X = [−1, 1]. f : X → R, G : If(X) → R be defined by

f(x) = arctan(2 − |x|), G(t) = tan t. (2.9)
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Then, we can verify that f is a G-preinvex function with respect to η, where

η
(
x, y
)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−y − x2 + 2x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
−y − x2 − 2x, −1 ≤ x < 0, 0 ≤ y ≤ 1,
−y − x, 0 ≤ x ≤ 1, −1 ≤ y < 0,
−y + x, −1 ≤ x < 0, −1 ≤ y < 0.

(2.10)

But f is not a preinvex function because the following inequality

f
(
y + λη

(
x, y
))

> λf(x) + (1 − λ)f(y) (2.11)

holds for x = 0, y = 1, and λ = 1/2.
And f(x) is not a G-convex function because the following inequality

f
(
y + λ

(
x − y)) > G−1(λG(f(x)) + (1 − λ)G(f(y))) (2.12)

holds for x = 1, y = −1, and λ = 1/2.

Definition 2.11 (see [15]). A set X ⊆ Rn is said to be a semiconnected set if there exists a
vector-valued function η : X ×X × [0, 1] → Rn such that for any x, y ∈ X, λ ∈ [0, 1],

y + λη
(
x, y, λ

) ∈ X. (2.13)

Definition 2.12 (see [15]). Let X ⊆ Rn be a semiconnected set with respect to a vector-valued
function η : X ×X × [0, 1] → Rn. Function f is said to be semipreinvex with respect to η if for
any x, y ∈ X, λ ∈ [0, 1], limλ→ 0λη(x, y, λ) = 0,

f
(
y + λη

(
x, y, λ

)) ≤ λf(x) + (1 − λ)f(y). (2.14)

Next we present the definition of G-semipreinvex functions as follows.

Definition 2.13. Let X ⊆ Rn be semiconnected set with respect to vector-valued function η :
X × X × [0, 1] → Rn. A function f : X → R is said to be (strictly) G-semipreinvex at y with
respect to η if there exists a continuous real-valued strictly increasing functionG : If(X) → R
such that for all x ∈ X (x /=y), λ ∈ [0, 1], limλ→ 0λη(x, y, λ) = 0,

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y))),(
f
(
y + λη

(
x, y, λ

))
< G−1(λG(f(x)) + (1 − λ)G(f(y)))). (2.15)

If (2.15) is satisfied for any y ∈ X, then f is said to be (strictly) G-semipreinvex on X with
respect to η.

Remark 2.14. Every semipreinvex function with respect to η is aG-semipreinvex function with
respect to the same η, where G(x) = x. However, the converse is not true.



Journal of Applied Mathematics 5

Example 2.15. Let X = [−6, 6]. Then X is a semiconnected set with respect to η(x, y, λ) and
limλ→ 0λη(x, y, λ) = 0, where

η
(
x, y, λ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − y
3
√
λ
, −6 ≤ x < 0, −6 ≤ y < 0, x > y, 0 < λ ≤ 1,

λ2(x − y), 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x ≥ y,
λ2(x − y), −6 ≤ x < 0, −6 ≤ y < 0, x ≤ y,
x − y, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x < y,
x − y, 0 ≤ x ≤ 6, −6 ≤ y < 0, x < −y,
x − y, −6 ≤ x < 0, 0 ≤ y ≤ 6, x > −y,
0, 0 ≤ x ≤ 6, −6 ≤ y < 0, x ≥ −y,
0, −6 ≤ x < 0, 0 ≤ y ≤ 6, x ≤ −y.

(2.16)

Let f : X → R, G : If(X) → R be defined by

f(x) = arctan
(
x2 + 2

)
, G(t) = tan t. (2.17)

Then, we can verify that f is a G-semipreinvex function with respect to η. But f is not a
semipreinvex function with respect to η because the following inequality

f
(
y + λη

(
x, y, λ

))
> λf(x) + (1 − λ)f(y) (2.18)

holds for x = 2, and y = 4, λ = 1/2.

Example 2.16. Let X = [−6, 6]. Then X is a semiconnected set with respect to η(x, y, λ) and
limλ→ 0λη(x, y, λ) = 0, where

η
(
x, y, λ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − y
ϕ(λ)

, −6 ≤ x < 0, −6 ≤ y < 0, x > y, 0 < λ ≤ 1,

ϕ(λ)
(
x − y), 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x ≥ y,

ϕ(λ)
(
x − y), −6 ≤ x < 0, −6 ≤ y < 0, x ≤ y,

x − y, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x < y,
x − y, 0 ≤ x ≤ 6, −6 ≤ y < 0, x < −y, λ < ϕ(λ) < 1
x − y, −6 ≤ x < 0, 0 ≤ y ≤ 6, x > −y,
0, 0 ≤ x ≤ 6, −6 ≤ y < 0, x ≥ −y,
0, −6 ≤ x < 0, 0 ≤ y ≤ 6, x ≤ −y.

(2.19)

Let f : X → R, G : If(X) → R be defined by

f(x) = arctan
(
x2 + k

)
, G(t) = tan t, ∀k ∈ R. (2.20)
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Then, we can verify that f(x) is aG-semipreinvex function with respect to classes of functions
η. But f(x) is not semipreinvex function with respect to η because the following inequality

f
(
y + λη

(
x, y, λ

))
> λf(x) + (1 − λ)f(y) (2.21)

holds for x = 2, y = 4, and λ = 1/2.

Remark 2.17. Every a G-convex function is G-semipreinvex function with respect to
η(x, y, λ) = x − y. But the converse is not true.

Example 2.18. Let X = (−6, 6), it is easy to check that X is a semiconnected set with respect to
η(x, y, λ) and limλ→ 0λη(x, y, λ) = 0, where

η
(
x, y, λ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
(
x − y), 0 ≤ x < 6, 0 ≤ y < 6, x < y,

λ
(
x − y), −6 < x < 0, −6 < y < 0, x > y,

x − y√
λ
, 0 ≤ x < 6, 0 ≤ y < 6, x ≥ y, 0 < λ ≤ 1,

x − y√
λ
, −6 < x < 0, −6 < y < 0, x ≤ y, 0 < λ ≤ 1,

−x − y, 0 ≤ x < 6, −6 < y < 0, x ≥ −y,
−x − y, −6 < x < 0, 0 ≤ y < 6, x ≤ −y,
0, 0 ≤ x < 6, −6 < y < 0, x < −y,
0, −6 < x < 0, 0 ≤ y < 6, x > −y.

(2.22)

Let f : X → R, G : If(X) → R be defined by

f(x) = arctan(6 − |x|), G(t) = tan t. (2.23)

Then, we can verify that f is a G-semipreinvex function with respect to η. But f is not a
G-convex function, because the following inequality

f
(
y + λ

(
x − y)) > G−1(λG(f(x)) + (1 − λ)G(f(y))) (2.24)

holds for x = 1, y = −1, and λ = 1/2.

3. Some Properties of G-Semipreinvex Functions

In this section, we give some basic characterizations of G-semipreinvex functions.

Theorem 3.1. Let f be a G1-semipreinvex function with respect to η on a nonempty semiconnected
set X ⊂ Rn with respect to η, and let G2 be a continuous strictly increasing function on If(X). If
the function g(t) = G2G

−1
1 (t) is convex on the image under G1 of the range of f , then f is also

G2-semipreinvex function on X with respect to the same function η.
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Proof. Let X be a nonempty semiconnected subset of Rn with respect to η, and we assume
that f is G1-semipreinvex with respect to η. Then, for any x, y ∈ X, λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

)) ≤ G−1
1

(
λG1
(
f(x)

)
+ (1 − λ)G1

(
f
(
y
)))

. (3.1)

Let G2 be a continuous strictly increasing function on If(X). Then,

G2
(
f
(
y + λη

(
x, y, λ

))) ≤ G2G
−1(λG1

(
f(x)

)
+ (1 − λ)G1

(
f
(
y
)))

. (3.2)

By the convexity of g(t) = G2G
−1
1 , it follows the following inequality

G2G
−1(λG1

(
f(x)

)
+ (1 − λ)G1

(
f
(
y
))) ≤ λG2G

−1
1

(
G1
(
f(x)

)
+ (1 − λ)G2G

−1
1

(
G1f
(
y
)))

= λG2
(
f(x)

)
+ (1 − λ)G2

(
f
(
y
)) (3.3)

for all x, y ∈ X, λ ∈ [0, 1]. Therefore,

G−1
1

[
λ
(
G1
(
f(x)

))
+ (1 − λ)G1

(
f
(
y
))]

≤ G−1
2

[
λ
(
G2
(
f(x)

))
+ (1 − λ)G2

(
f
(
y
))]

.
(3.4)

Thus, we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1
2

(
λG2
(
f(x)

)
+ (1 − λ)G2

(
f
(
y
)))

. (3.5)

Theorem 3.2. Let f be a G-semipreinvex function with respect to η on a nonempty semiconnected
set X ⊂ Rn with respect to η. If the function G is concave on If(X), then f is semipreinvex function
with respect to the same function η.

Proof. Let y, z ∈ If(X), from the assumption G is concave on If(X), we have

G
(
z + λ

(
y − z)) ≥ λG(y) + (1 − λ)G(z), λ ∈ [0, 1]. (3.6)

Let

G
(
y
)
= x, G(z) = u, y = G−1(x), z = G−1(u), (3.7)

then

G
(
G−1(u) + λ

(
G−1(x) −G−1(u)

))
≥ λG

(
G−1(x)

)
+ (1 − λ)G

(
G−1(u)

)
= λx + (1 − λ)u.

(3.8)
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It follows that

G−1G
(
λG−1(x) + (1 − λ)G−1(u)

)
≥ G−1(λx + (1 − λ)u). (3.9)

Then,

λG−1(x) + (1 − λ)G−1(u) ≥ G−1(λx + (1 − λ)u). (3.10)

This means that G−1 is convex. Let G1 = G, G2 = t, then g(t) = G2G
−1
1 (t) is convex. Hence by

Theorem 3.1, f is G2-semipreinvex with respect to η. But G2 is the identity function; hence, f
is a semipreinvex function with respect to the same function η.

Theorem 3.3. Let X be a nonempty semiconnected set with respect to η subset of Rn and let fi :
X → R, i ∈ I, be finite collection of G-semipreinvex function with respect to the same η and G on X.
Define f(x) = sup(fi(x) : i ∈ I), for every x ∈ X. Further, assume that for every x ∈ X, there exists
i∗ = i(x) ∈ I, such that f(x) = fi∗(x). Then f is G-semipreinvex function with respect to the same
function η.

Proof. Suppose that the result is not true, that is, f is not G-semipreinvex function with
respect to η on X. Then, there exists x, y ∈ X, λ ∈ [0, 1] such that

f
(
y + λη

(
x, y, λ

))
> G−1(λG(f(x)) + (1 − λ)G(f(y))). (3.11)

We denote z = y + λη(x, y, λ) there exist i(z) := iz ∈ I, i(x) := ix ∈ I, and i(y) := iy ∈ I, satis-
fying

f(z) = fiz(z), f(x) = fix(x), f
(
y
)
= fiy

(
y
)
. (3.12)

Therefore, by (3.11),

fiz(z) > G
−1
(
λG
(
fix(x)

)
+ (1 − λ)G

(
fiy
(
y
)))

. (3.13)

By the condition, we obtain

fiz(z) ≤ G−1(λG(fiz(x)) + (1 − λ)G(fiz(y))). (3.14)

From the definition of G-semipreinvexity, G is an increasing function on its domain. Then,
G−1 is increasing. Since fiz(x) ≤ fix(x), fiz(y) ≤ fiy(y), then (3.14) gives

fiz(z) ≤ G−1
(
λG
(
fix(x)

)
+ (1 − λ)G

(
fiy
(
y
)))

. (3.15)

The inequality (3.15) above contradicts (3.13).
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Theorem 3.4. Let f be a G-semipreinvex function with respect to η on a nonempty semiconnected
set X ⊂ Rn with respect to η. Then, the level set Sα = {x ∈ X : f(x) ≤ α} is a semiconnected set with
respect to η, for each α ∈ R.

Proof. Let x, y ∈ Sα, for any arbitrary real number α. Then, f(x) ≤ α, f(y) ≤ α. Hence, it
follows that

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y))) ≤ G−1(G(α)) = α. (3.16)

Then, by the definition of level set we conclude that y +λη(x, y, λ) ∈ Sα, for any λ ∈ [0, 1], we
conclude that Sα is a semiconnected set with respect to η.

Let f is a G-semipreinvex function with respect to η, its epigraph Ef = {(x, α) : x ∈
X, α ∈ R, f(x) ≤ α} is said to be G-semiconnected set with respect to η if for any (x, α) ∈
Ef , (y, β) ∈ Ef , λ ∈ [0, 1],

(
y + λη

(
x, y, λ

)
, G−1(λG(α) + (1 − λ)G(β))) ∈ Ef . (3.17)

Theorem 3.5. Let X ⊂ Rn with respect to η be a nonempty semiconnected set, and let f be a real-
valued function defined on X. Then, f is a G-semipreinvex function with respect to η if and only if its
epigraph Ef = {(x, α) : x ∈ X, α ∈ R, f(x) ≤ α} is a G-semiconnected set with respect to η.

Proof. Let (x, α) ∈ Ef , (y, β) ∈ Ef , then f(x) ≤ α, f(y) ≤ β. Thus, for any λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y)))
≤ G−1(λG(α) + (1 − λ)G(β)). (3.18)

By the definition of an epigraph of f , this means that

(
y + λη

(
x, y, λ

)
, G−1(λG(α) + (1 − λ)G(β))) ∈ Ef . (3.19)

Thus, we conclude that Ef is a G semiconnected set with respect to η.
Conversely, letEf be aG semiconnected set. Then, for any x, y ∈ X, we have (x, f(x)) ∈

Ef , (y, f(y)) ∈ Ef . By the definition of an epigraph of f , the following inequality

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y))) (3.20)

holds for any λ ∈ [0, 1]. This implies that f is a G-semipreinvex function on X with respect to
η.



10 Journal of Applied Mathematics

The following results characterize the class of G-semipreinvex functions.

Theorem 3.6. LetX ⊆ Rn be a semiconnected set with respect to η : X×X×[0, 1] → Rn; f : X → R
is a G-semipreinvex function with respect to the same η if and only if for all x, y ∈ X, λ ∈ [0, 1], and
u, v ∈ R,

f(x) ≤ u, f
(
y
) ≤ v =⇒ f

(
y + λη

(
x, y, λ

)) ≤ G−1(λG(u) + (1 − λ)G(v)). (3.21)

Proof. Let f be G-semipreinvex functions with respect to η, and let f(x) ≤ u, f(y) ≤ v, 0 <
λ < 1. From the definition of G-semipreinvexity, we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y)))
≤ G−1(λG(u) + (1 − λ)G(v)).

(3.22)

Conversely, let x, y ∈ X, λ ∈ [0, 1]. For any δ > 0,

f(x) < f(x) + δ,

f
(
y
)
< f
(
y
)
+ δ.

(3.23)

By the assumption of theorem, we can get that for 0 < λ < 1,

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y)))
≤ G−1(λG(f(x) + δ) + (1 − λ)G(f(y) + δ)). (3.24)

Since G is a continuous real-valued increasing function, and δ > 0 can be arbitrarily small, let
δ → 0, it follows that

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(u) + (1 − λ)G(v)). (3.25)

4. G-Semipreinvexity and Optimality

In this section, we will give some optimality results for a class of G-semipreinvex functions.

Theorem 4.1. Let f : X → R be a G-semipreinvex function with respect to η, and we assume that
η satisfies the following condition: η(x, y, λ)/= 0, when x /=y. Then, each local minimum point of the
function f is its point of global minimum.

Proof. Assume that y ∈ X is a local minimum point of f which is not a global minimum
point. Hence, there exists a point x ∈ X such that f(x) < f(y). By the G-semipreinvexity of f
with respect to η, we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y))), λ ∈ [0, 1]. (4.1)
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Then, for λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

))
< G−1(λG(f(y)) + (1 − λ)G(f(y)))
= G−1(G(f(y)))
= f
(
y
)
.

(4.2)

Thus, we have

f
(
y + λη

(
x, y, λ

))
< f
(
y
)
. (4.3)

This is a contradiction with the assumption.

Theorem 4.2. The set of points which are global minimum of f is a semiconnected set with respect to
η.

Proof. Denote by A the set of points of global minimum of f , and let x, y ∈ A. Since f is
G-semipreinvex with respect to η, then

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(x)) + (1 − λ)G(f(y))), λ ∈ [0, 1] (4.4)

is satisfied. Since f(x) = f(y), we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(f(y)) + (1 − λ)G(f(y))). (4.5)

So, for any λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

)) ≤ G−1(G(f(y))) = f(y) = f(x). (4.6)

Since x, y ∈ A are points of a global minimum of f , it follows that, for any λ ∈ [0, 1], the
following relation:

y + λη
(
x, y, λ

) ∈ A (4.7)

is satisfied. Then, A is a semiconnected set with respect to η.
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The main goal of this paper is to present a minmax programming model for the optimal dispatch
of Traffic and Patrol Police Service Platforms with single traffic congestion. The objective is to
minimize the longest time of the dispatch for Traffic and Patrol Police Service Platforms. Some
numerical experiments are carried out, and the optimal project is given.

1. Introduction

Traffic and Patrol Police Service Platforms (in short, TPPSP) in the city have been playing
an important role in dealing with emergency and traffic administration. The national college
mathematical modeling contest of China in 2011 proposed the problem related to the optimal
dispatch of TPPSP. However, only the case without any traffic congestion is considered for the
problem. It is well known that the optimal dispatch and design of TPPSP is very complicated
and it is affected by many real factors, such as

(i) the influence of traffic congestion on the optimal dispatch;

(ii) the influence of police resources allocation for each platform;

(iii) the influence of the uncertainty of road weights.

The shortest path between any two nodes in urban traffic network is usually solved
by Floyd shortest path algorithm in traffic computing and path search. Also the shortest
path algorithms are widely applied to computer science, operational research, geographic
information systems and traffic guidance, navigation systems, and so forth [1–5]. Especially,
given a detailed GIS mapping and image display program, Liao and Zhong [4] proved that
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the Floyd shortest path algorithm can quickly and easily retrieve the shortest path between
two locations, saving computing time and overhead.

The minmax programming model has received more attentions in operations research
and optimization fields in the literatures [6–9]. Averbakh and Berman [8] considered the
location minmax p-TSP problem, where only optimal locations of the servers must be found,
without the corresponding tours and without the optimal value of the objective function.
Exact linear time algorithms for the cases p = 2 and p = 3 are presented.

In recent years, the research on optimal dispatch of TPPSP has also received some
attentions in the literatures [10–12]. However, we noted that these works only focused on the
case without any traffic congestion for the optimal dispatch of TPPSP.

In this paper, we first consider the optimal dispatch with single traffic congestion when
the emergent event and establish a minmax programming model (model II) which objective
is to minimize the longest time of the dispatch for TPPSP. Furthermore, some numerical
experiments are carried out, and the optimal project is presented.

2. Notations

m: The number of the TPPSP

n: The number of intersections that should be blockaded

d′
ij : (i = 1, 2, . . . , m, j = 1, 2, . . . , n) The shortest distance from the ith TPPSP to the
jth intersection without traffic congestion

tij : (i = 1, 2, . . . , m, j = 1, 2, . . . , n) The shortest time from the ith TPPSP to the jth
intersection

v: The speed of police vehicles

xij : (i = 1, 2, . . . , m, j = 1, 2, . . . , n) The ith TPPSP is dispatched to the jth intersection
or not.

Assume that every TPPSP has almost the same police force, TPPSP have been settled
at some traffic centers and key parts of an urban area of a city. The average of the police car
is 60 km/h.

3. Mathematical Models

In this section, we first introduce a minimax programming model for the optimal dispatch of
TPPSP without any traffic congestion in the literatures. Then, we present our main model for
the optimal dispatch of TPPSP with single traffic congestion.

3.1. The Case without Any Traffic Congestion

When the road section has no traffic congestion, some authors presented the following
minimax programming model, which is also a 0-1 integer programming model, see literatures
[10, 12], and so forth.
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(model I)

min max
{
tijxij

}
(3.1)

s.t.
m∑
i=1

xij = 1, j = 1, 2, . . . , n; (3.2)

n∑
j=1

xij ≤ 1, i = 1, 2, . . . , m; (3.3)

xij
(
1 − xij

)
= 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n; (3.4)

tij =
100d′

ij

60υ
, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (3.5)

The objective function (3.1) requires that the maximum time from the ith TPPSP to the
jth node which is minimum. Besides, constraint (3.2) requires that every intersection should
be blockaded by only one TPPSP. Constraint (3.3) ensures that one TPPSP can only blockade
one intersection. Constraint (3.4) requires that xij is 0-1 variable. Constraint (3.5) shows that
the relation between the time and the distance from the ith TPPSP to the jth intersection.
Furthermore, in Constraint (3.5), the unite of tij is minutes, v is meters per second and the
symbol d′

ij (the unite is millimeters) is the distance of map, 100d′
ij (the unite is meters) is the

real distance.

3.2. The Case with Single Traffic Congestion

In the real life, traffic congestion may occur in urban traffic network. Therefore, the research
on the optimal dispatch of TPPSP with Traffic congestions is important and meaningful.
Considering that the emergency may occur at any time and place, and the road section
may have some traffic congestions, in this subsection, we present one minmax programming
model for the optimal dispatch of TPPSP with single traffic congestion. The optimal dispatch
of TPPSP with Traffic congestions model is more effective than model I. Moreover, the
optimal dispatch of TPPSP with Traffic congestions model’s results has immediate practical
applications.

We assume that the traffic congestion occurs on the road section from the node p to
the node q, where the node p is adjacent to the node q. And Tpq denotes the average time of
blocking. Besides, d′′

ij denotes the shortest distance from the TPPSP i to the jth intersection
without the road section from the node p to the node q, Pij denotes the shortest path from
the ith TPPSP to the jth node. R denotes the set of Pij which go through p and q nodes.
t′ij(i = 1, 2, . . . , m, j = 1, 2, . . . , n) denotes the shortest time from the ith TPPSP to the jth
intersection without traffic congestion, and t′′ij denotes the shortest time from the ith TPPSP
to the jth intersection without the road section from the node p to the node q.

We establish the following minmax programming model II for the dispatch of TPPSP
with single traffic congestion:
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(model II)

min max
{
tijxij

}
, (3.6)

s.t.
m∑
i=1

xij = 1, j = 1, 2, . . . , n; (3.7)

n∑
j=1

xij ≤ 1, i = 1, 2, . . . , m; (3.8)

xij
(
1 − xij

)
= 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (3.9)

where

tij =

⎧⎪⎪⎨⎪⎪⎩
t′ij , Pij ∈ A1;

t′′ij , Pij ∈ A2;

t′ij + Tpq − min
{
t′ip, t

′
iq

}
, Pij ∈ A3;

t′ij =
100d′

ij

60υ
i = 1, 2, . . . , m, j = 1, 2, . . . , n;

t′′ij =
100d′′

ij

60υ
i = 1, 2, . . . , m, j = 1, 2, . . . , n;

A1 =
{
Pij | Pij /∈ R or Pij ∈ R, min

{
t′ip, t

′
iq

}
≥ Tpq

}
;

A2 =
{
Pij | Pij ∈ R, min

{
t′ip, t

′
iq

}
< Tpq, t

′
ij + Tpq − min

{
t′ip, t

′
iq

}
> t′′ij
}

;

A3 =
{
Pij | Pij ∈ R, min

{
t′ip, t

′
iq

}
< Tpq, t

′
ij + Tpq − min

{
t′ip, t

′
iq

}
≤ t′′ij
}
.

(3.10)

The objective function (3.6) requires that the maximum times from the ith TPPSP to the
jth node which is minimum. The analysis of constraints (3.6)–(3.9) is the same as constraints
(3.2)–(3.4). However, the value of tij is different from the time of the model I. In the model II,
the function of tij is divided into three segments.

4. Numerical Experiments

In this paper, we take m = 20, n = |I| = 13, where

I = {12, 14, 16, 21, 22, 23, 24, 28, 29, 30, 38, 48, 62}, (4.1)

to do specific analysis for our model. The data is based on (http://www.mcm.edu.cn/).
We use Floyd Shortest Path Algorithm to figure out d′

ij and d′′
ij by Matlab software. We can
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Table 1: The optimal dispatch project of TPPSP without any traffic congestion.

Dispatching project Path of choosing project Time from the ith TPPSP
to the jth intersection

1–38 1-69-70-2-40-39-38 5.880900

2–16 2-40-39-38-16 7.388100

4–48 4-57-58-59-51-50-5-47-48 7.395900

7–29 7-30-29 8.015500

9–30 9-34-33-32-7-30 3.492300

10–12 10-26-27-12 7.586600

11–22 11-22 3.269600

12–23 12-25-24-13-23 6.477000

13–24 13-24 2.385400

14–21 14-21 3.265000

15–28 15-28 4.751800

16–14 16-14 6.741700

20–62 20-85-62 6.448900

Table 2: The optimal dispatch project of TPPSP with Tpq = 5 min.

Dispatching project Path of choosing project Time from the ith TPPSP
to the jth intersection

1–38 1-69-70-2-40-39-38 5.880900

2–16 2-40-39-38-16 7.388100

4–48 4-57-58-59-51-50-5-47-48 7.395900

5–30 5-47-48-30 3.182900

7–29 7-30-29 8.015500

10–12 10-26-27-12 7.586600

11–24 11-25-24 3.805300

12–22 12-25-24-13-22 6.882500

13–23 13-23 0.500000

14–21 14-21 3.265000

15–28 15-28 4.751800

16–14 16-14 6.741700

18–62 18-80-79-19-77-76-64-63-4-62 6.734400

obtain the dispatch project of TPPSP without any traffic congestion when the emergent event
happens in the city as Table 1.

Considering the case with single traffic congestion for the optimal dispatch of TPPSP
in urban traffic network, we do the numerical experiments for the minmax programming
model II by using Matlab software. Here, we take p = 36, q = 16, Tpq = 5 min. The dispatching
project of TPPSP with one road section having single traffic congestion when the emergent
event happens is shown in Table 2.
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Table 3: The optimal dispatch project of TPPSP with Tpq = 10 min.

Dispatching project Path of choosing project Time from the ith TPPSP
to the jth intersection

1–38 1-69-70-2-40-39-38 5.880900

2–16 2-40-39-38-16 7.388100

5–62 5-50-51-59-58-57-60-62 5.255100

6–48 6-47-48 2.506400

7–29 7-30-29 8.015500

8–30 8-33-32-7-30 3.060800

10–12 10-26-27-12 7.586600

11–23 11-22-13-23 4.675100

12–22 12-25-24-13-22 6.882500

13–24 13-24 2.385400

14–21 14-21 3.265000

15–28 15-28 4.751800

16–14 16-14 6.741700

Table 4: The optimal dispatch project of TPPSP with Tpq = 30 min.

Dispatching project Path of choosing project Time from the ith TPPSP
to the jth intersection

1–62 1-75-76-64-63-4-62 4.885200

2–16 2-40-39-38-16 7.388100

6–30 6-47-48-30 3.213500

7–29 7-30-29 8.015500

8–48 8-47-48 3.099500

9–38 9-35-36-39-38 4.725700

10–22 10-26-11-22 7.707900

11–23 11-22-13-23 4.675100

12–12 12-12 0.000000

13–24 13-24 2.385400

14–21 14-21 3.265000

15–28 15-28 4.751800

16–14 16-14 6.741700

From Tables 1 and 2, we can clearly see that the maximum time of the optimal dispatch
for TPPSP is the same for the case without any traffic congestion and the case with single
traffic congestion in the given urban traffic network. However, the optimal dispatch project
of TPPSP is different each other. Consequently, this shows that traffic congestion between
the nodes in urban traffic network system will influence the optimal dispatch project of
TPPSP in a certain degree when the emergent event happens.
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Table 5: The optimal dispatch project of TPPSP with Tpq = 60 min.

Dispatching project Path of choosing project Time from the ith TPPSP
to the jth intersection

2–16 2-40-39-38-16 7.388100

4–48 4-57-58-59-51-50-5-47-48 7.395900

7–29 7-30-29 8.015500

9–30 9-34-33-32-7-30 3.492300

10–22 10-26-11-22 7.707900

11–24 11-25-24 3.805300

12–23 12-25-24-13-23 6.477000

13–12 13-24-25-12 5.977000

14–21 14-21 3.265000

15–28 15-28 4.751800

16–14 16-14 6.741700

19–38 19-79-78-1-69-70-2-40-39-38 7.639300

20–62 20-85-62 6.448900

From Tables 2, 3, 4, and 5, we can gain the different dispatch project when the time
of a traffic congestions is different. We can know the traffic congestion can influence the
dispatching project. The influence degree is different when the time of a traffic congestion
is different. However, for the node p and node q, the maximum time from the TPPSP to the
intersection is 8.015500 min when the time of a traffic congestion is different.

In order to avoid the data that we use may be too special, we further take p = 7, q = 30.
Still take m = 20, n = 13, and Tpq = 5 or 10 or 30 or 60 min, respectively, the dispatching
project about the TPPSP with one road section having a traffic congestion when the emergent
event happens as Table 6, whereM1 means blocking time,M2 means dispatching project,M3

means path of choosing project, andM4 means time from the ith TPPSP to the jth intersection.
In Table 6, where p = 7, q = 30, we can also gain the different dispatching project when

the time of a traffic congestion is different. However, the maximum time from the TPPSP to
the intersection is 8.570200 min when the time of a traffic congestion is different.

Road section with having a traffic congestion is different, the maximum time from the
TPPSP to the intersection is different. The influence degree of the time of a traffic congestion
is not too large to the maximum time from the TPPSP to the intersection, but is large to the
dispatching project.

5. Concluding Remarks

In this paper, we present a minmax programming models for the optimal dispatch of
TPPSP with single traffic congestion. Some numerical experiments are carried out by using
Matlab software and the optimal dispatch projects are given. However, in this paper, we
only consider the case with single traffic congestion in model II. Hence, it is possible and
meaningful to study the optimal dispatch project of TPPSP with several traffic congestions.
This will be the future topics that we study.
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Table 6: The optimal dispatch project of TPPSP with Tpq = 5, 10, 30, 60 min.

M1 5 min 10 min 30 min 60 min

M2

1→ 38 1→ 38 1→ 38 3→ 48
4→ 48 5→ 48 2→ 16 7→ 28
5→ 16 7→ 28 4→ 48 8→ 30
6→ 62 9→ 14 7→ 28 10→ 24
7→ 28 10→ 12 9→ 14 11→ 21
9→ 14 11→ 21 10→ 22 12→ 21

10→ 22 12→ 22 11→ 12 13→ 22
11→ 23 13→ 24 12→ 24 14→ 23
12→ 24 14→ 23 13→ 23 15→ 29
13→ 12 15→ 29 14→ 21 16→ 14
14→ 21 16→ 30 15→ 29 17→ 16
15→ 29 17→ 16 16→ 30 19→ 38
16→ 30 20→ 62 20→ 62 20→ 62

M3

1-69-70-2-40-39-38 1-69-70-2-40-39-38 1-69-70-2-40-39-38 3-55-54-53-49-5-47-48
4-57-58-59-51-50-5-47-48 5-47-48 2-40-39-38-16 7-15-28

5-47-8-9-35-36-16 7-15-28 4-57-58-59-51-50-5-47-48 8-47-48-30
6-59-58-57-60-62 9-35-36-16-14 7-15-28 10-26-11-25-24

7-15-28 10-26-27-12 9-35-36-16-14 11-22-21
9-35-36-16-14 11-22-21 10-26-11-22 12-12
10-26-11-22 12-25-24-13-22 11-25-12 13-22
11-22-13-23 13-24 12-25-24 14-21-22-13-23

12-25-24 14-21-22-13-23 13-23 15-28-29
13-24-25-12 15-28-29 14-21 16-14

14-21 16-36-35-9-8-47-48-30 15-28-29 17-40-39-38-16
15-28-29 17-40-39-38-16 16-36-35-9-8-47-48-30 19-79-78-1-69-70-2-40-39-38

16-36-37-7-30 20-85-62 20-85-62 20-85-62

M4

5.880900 5.880900 5.880900 8.197900
7.395900 2.475800 7.388100 8.570200
6.228000 8.570200 7.395900 3.806600
5.337300 8.274200 8.570200 8.243600
8.570200 7.586600 8.274200 5.072300
8.274200 5.072300 7.707900 0.000000
7.707900 6.882500 3.791400 0.905540
4.675100 2.385400 3.591600 6.473300
3.591600 6.473300 0.500000 5.700500
5.977000 5.700500 3.265000 6.741700
3.265000 6.498900 5.700500 8.161600
5.700500 8.161600 6.498900 7.639300
5.583100 6.448900 6.448900 6.448900
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Traffic network equilibrium problems with capacity constraints of arcs are studied. A (weak)
vector equilibrium principle with vector-valued cost functions, which are different from the ones
in the work of Lin (2010), and three kinds of parametric equilibrium flows are introduced. Some
necessary and sufficient conditions for a (weak) vector equilibrium flow to be a parametric
equilibrium flow are derived. Relationships between a parametric equilibrium flow and a solution
of a scalar variational inequality problem are also discussed. Some examples are given to illustrate
our results.

1. Introduction

The earliest traffic network equilibrium model was proposed by Wardrop [1] for a transporta-
tion network. After getting Wardrop’s equilibrium principle, many scholars have studied
variant kinds of network equilibrium models, see, for example, [2–5]. However, most of these
equilibrium models are based on a single criterion. The assumption that the network users
choose their paths based on a single criterion may not be reasonable. It is more reasonable
to assume that no user will choose a path that incurs both a higher cost and a longer delay
than some other paths. In other words, a vector equilibrium should be sought based on the
principle that the flow of traffic along a path joining an O-D pair is positive only if the vector
cost of this path is the minimum possible among all the paths joining the same O-D pair.
Recently, equilibrium models based on multiple criteria or on a vector cost function have
been proposed. In [6], Chen and Yen first introduced a vector equilibrium principle for
vector traffic network without capacity constraints. In [7, 8], Khanh and Luu extended vector
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equilibrium principle to the case of capacity constraints of paths. For other results of vector
equilibrium principle with capacity constraints of paths, we refer to [9–17].

Very recently, in [18, 19], Lin extended traffic network equilibrium principle to the
case of capacity constraints of arcs and obtained a sufficient condition and stability results of
vector traffic network equilibrium flows with capacity constraints of arcs. In [20], Xu et al.
also considered that vector network equilibrium problems with capacity constraints of arcs.
By virtue of a Δ function, which was introduced by Zaffaroni [21], the authors introduced a
Δ-equilibrium flow and a weak Δ-equilibrium flow, respectively, and obtained sufficient and
necessary conditions for a weak vector equilibrium flow to be a (weak) Δ-equilibrium flow.

In this paper, our aim is to further investigate traffic network equilibrium problems
with capacity constraints for arcs. We introduce a (weak) vector equilibrium principle with
vector-valued cost functions, which are more reasonable from practical point of view than
the ones in [18, 19]. In order to obtain necessary and sufficient conditions for a (weak) vector
equilibrium, we introduce three kinds of parametric equilibrium flows. Simultaneously, we
also discuss relationships between a parametric equilibrium flow and a solution of a scalar
variational inequality problem.

The outline of the paper is as follows. In Section 2, a (weak) equilibrium principle
with capacity constraints of arcs is introduced. In Section 3, three kinds of parametric equi-
librium flows are introduced. Some sufficient and necessary conditions for a (weak) vector
equilibrium flow are obtained. Relationships between a parametric equilibrium flow and a
solution of a scalar variational inequality problem are also discussed.

2. Preliminaries

For a traffic network, let N and E denote the set of nodes and directed arcs, respectively, and
let C = (ce)e∈E denote the capacity vector, where ce (>0) denotes the capacity of arc e ∈ E. Let
W denote the set of origin-destination (O-D) pairs and let D = (dw)w∈W denote the demand
vector, where dw (>0) denotes the demand of traffic flow on O-D pair w. A traffic network
with capacity constraints of arcs is usually denoted byG = (N,E,C,W,D). For each arc e ∈ E,
the arc flow needs to satisfy the capacity constraints: ce ≥ ve ≥ 0, for each e ∈ E. For each
w ∈W , let Pw denote the set of available paths joining O-D pair w. Let m =

∑
w∈W |Pw|. For a

given path k ∈ Pw, let hk denote the traffic flow on this path and h = (h1, h2, . . . , hm) ∈ Rm is
called a path flow. The path flow vector h induces an arc flow ve on each arc e ∈ E given by

ve =
∑
w∈W

∑
k∈Pw

δekhk, (2.1)

where δek = 1 if the arc e is contained in path k and 0, otherwise. Suppose that the demand
of network flow is fixed for each O-D pair w. We say that a path flow h satisfies demand
constraints ∑

k∈Pw
hk = dw, ∀w ∈W. (2.2)

A path flow h satisfying the demand constraints and capacity constraints is called a feasible
path flow. Let H = {h ∈ Rm

+ : for all w ∈ W ,
∑

k∈Pw hw = dw and for all e ∈ E, ce ≥ ve ≥ 0} =
{h ∈ Rm

+ : for all w ∈ W ,
∑

k∈Pw hw = dw and for all e ∈ E, ce ≥ ∑w∈W
∑

k∈Pw δekhk ≥ 0} and
let H /= ∅. Clearly, H is convex and compact. Let te(hk) : R+ → Rr be a vector-valued cost
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function for the path k on the arc e. Let Tk(h) : Rm
+ → Rr be a vector-valued cost function

along the path k. Then the vector-valued cost on the path k is equal to the sum of the all costs
of the flow hk through arcs, which belong to the path k, that is,

Tk(h) =
∑
e∈E
δekte(hk). (2.3)

Let T(h) = (T1(h), T2(h), . . . , Tm(h)) ∈ Rr×m.

Remark 2.1. In [18, 19], Lin defined the vector cost function along the path k as follows:

Tk(h) =
∑
e∈E
δekte(h), (2.4)

where te(h) : Rm → Rr be a vector-valued cost function for arc e. If the paths have common
arcs, then the definition is unreasonable. The following example can illustrate the case.

Example 2.2. Consider the network problem depicted in Figure 1. V = {1, 2, 3, 4}, E = {e1, e2,
e3, e4, e5}, C = (3, 2, 2, 4, 3), W = {(1, 4), (3, 4)}, D = (3, 4). The cost functions of arcs from R to
R are, respectively, as follows:

te1(h) = te1(ve1) = 50ve1 + 100, te2(h) = te2(ve2) = 20ve2 + 500,

te3(h) = te3(ve3) = 60ve3 + 100, te4(h) = te4(ve4) = 30ve4 + 200,

te5(h) = te5(ve5) = 70ve5 + 300.

(2.5)

For O-D pair (1, 4): P(1,4) includes path 1 = (1, 2, 4) and path 2 = (1, 4), for O-D pair
(3, 4) : P(3,4) includes path 3 = (3, 2, 4) and path 4 = (3, 4). And by (2.4), we have

T1(h) = te1(h) + te5(h) = 50ve1 + 70ve5 + 400, T2(h) = te2(h) = 20ve2 + 500,

T3(h) = te3(h) + te5(h) = 60ve3 + 70ve5 + 400, T4(h) = te4(h) = 30ve4 + 200.
(2.6)

Then, for flow h = (h1, h2, h3, h4) = (2, 1, 1, 3), we have that arc flows

v = (ve1 , ve2 , ve3 , ve4 , ve5) = (2, 1, 1, 3, 3). (2.7)

It follows from (2.4) that

T1(h) = te1(ve1) + te5(ve5) = 50 × 2 + 100 + 70 × 3 + 300 = 710,

T3(h) = te3(ve3) + te5(ve5) = 60 × 1 + 100 + 70 × 3 + 300 = 670.
(2.8)

However, from the practical point of view, the cost values of the path 1 and path 3 with respect
to h are, respectively, as follows:

T1(h) = te1(h1) + te5(h1) = 50 × 2 + 100 + 70 × 2 + 300 = 640,

T3(h) = te3(h3) + te5(h3) = 60 × 1 + 100 + 70 × 1 + 300 = 530.
(2.9)

So, in this paper, we define the vector-valued cost function on a path as (2.3).
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Figure 1: Network topology for an example.

In this paper, the cost space is an r-dimensional Euclidean space Rr , with the ordering
cone S = Rr

+, a pointed, closed, and convex cone with nonempty interior intS. We define the
ordering relation as follows:

x≤Sy, iff y − x ∈ S;

x<Sy, iff y − x ∈ intS.
(2.10)

The orderings ≥S and >S are defined similarly. In the sequel, we let the set S+ := {ϕ ∈ Rr :
ϕ(s) ≥ 0, for all s ∈ S} be the dual cone of S. Denote the interior of S+ by

intS+ :=
{
ϕ ∈ Rr : ϕ(s) > 0, ∀s ∈ S \ {0}}. (2.11)

Lemma 2.3 (see [22]). Consider

S \ {0} :=
{
x ∈ Rr : ϕ(x) > 0, ∀ϕ ∈ int S+},

intS :=
{
x ∈ Rr : ϕ(x) > 0, ∀ϕ ∈ S+ \ {0}}. (2.12)

Definition 2.4 (see [18, 19]). Assume that a flow h ∈ H,

(i) for e ∈ E, if ve = ce, then arc e is said to be a saturated arc of flow h, otherwise a
nonsaturated arc of flow h.

(ii) for k ∈ ⋃w∈W Pw, if there exists a saturated arc e of flow h such that e belongs to
path k, then path k is said to be a saturated path of flow h, otherwise a nonsaturated
path of flow h.

We introduced the following vector equilibrium principle and weak vector equilib-
rium principle.
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Definition 2.5 (vector equilibrium principle). A flow h ∈ H is said to be a vector equilibrium
flow if for all w ∈W , for all k, j ∈ Pw, we have

Tk(h) − Tj(h) ∈ S \ {0} =⇒ hk = 0 or path j is a saturated path of flow h. (2.13)

Definition 2.6 (weak vector equilibrium principle). A flow h ∈ H is said to be a weak vector
equilibrium flow if for all w ∈W , for all k, j ∈ Pw, we have

Tk(h) − Tj(h) ∈ intS =⇒ hk = 0 or path j is a saturated path of flow h. (2.14)

If for all e ∈ E, ce = c ≥ ∑w∈W dw, then the capacity constraints of arcs are invalid, in this
case, the traffic equilibrium problem with capacity constraints of arcs reduces to the traffic
equilibrium problem without capacity constraints of arcs.

3. Sufficient and Necessary Conditions for
a (Weak) Vector Equilibrium Flow

In this section, we introduce an intS+-parametric equilibrium flow, a S+ \ {0}-parametric
equilibrium flow and a ϕ-parametric equilibrium flow, respectively. By using the three new
concepts, we can obtain some sufficient and necessary conditions of a vector equilibrium flow
and a weak vector equilibrium flow, respectively.

Definition 3.1. A flow h ∈ H is said to be in intS+-parametric equilibrium if for all w ∈W , for
all k, j ∈ Pw and for all ϕ ∈ int S+, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hk = 0 or path j is a saturated path of flow h. (3.1)

Definition 3.2. A flow h ∈ H is said to be in S+ \ {0}-parametric equilibrium if for all w ∈ W ,
for all k, j ∈ Pw and for all ϕ ∈ S+ \ {0}, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hk = 0 or path j is a saturated path of flow h. (3.2)

Definition 3.3. Let a ϕ ∈ S+ \ {0} be given. A flow h ∈ H is said to be in ϕ-parametric equilib-
rium flow if for all w ∈W and for all k, j ∈ Pw, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hk = 0 or path j is a saturated path of flow h. (3.3)

The intS+-equilibrium flow and ϕ-parametric equilibrium flow for some ϕ ∈ intS+

are defined in Definitions 3.1 and 3.2, respectively. They can be used to characterize vector
equilibrium flow in the following theorems.

Theorem 3.4. A flow h ∈ H is in vector equilibrium if and only if the flow h is in int S+-parametric
equilibrium.

Proof. It can get immediately the above conclusion by Lemma 2.3. Thus the proof is omitted
here.
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Theorem 3.5. If there exists ϕ ∈ intS+ such that a flow h ∈ H is in ϕ-parametric equilibrium, then
the flow h is in vector equilibrium.

Proof. Suppose that for any O-D pair w ∈W , for all k, j ∈ Pw, we have

Tk(h) − Tj(h) ∈ S \ {0}. (3.4)

By ϕ ∈ intS+ and Lemma 2.3, we get immediately

ϕ
[
Tk(h) − Tj(h)

]
> 0. (3.5)

Since h is in ϕ-parametric equilibrium, we have

hk = 0 or path j is a saturated path of flow h. (3.6)

Thus, the flow h ∈ H is in vector equilibrium.

Now, we give the following example to illustrate Theorem 3.5.

Example 3.6. Consider the network problem depicted in Figure 2. N = {1, 2, 3, 4}, E = {e1, e2,
e3, e4, e5, e6}, C = (3, 3, 3, 2, 3, 4)T , W = {(1, 4), (3, 4)}, D = (6, 4). The cost functions of arcs
from R to R2 are defined as follows:

te1(h1) =

(
h2

1 + 1
2h1

)
, te2(h2) =

(
5h2

3h2
2

)
, te3(h3) =

(
h2

3 + 7
5h3

)
,

te4(h4) =

(
2h4 + 1

3h4

)
, te5(h5) =

(
3h2

5
6h5

)
, te6(h1) =

(
h2

1

2h1

)
, te6(h4) =

(
h2

4

2h4

)
.

(3.7)

Then, we have

T1(h) = te1(h1) + te6(h1) =

(
2h2

1 + 1
4h1

)
, T4(h) = te4(h4) + te6(h4) =

(
h2

4 + 2h4 + 1
5h4

)
,

T2(h) = te2(h2) =

(
5h2

3h2
2

)
, T3(h) = te3(h3) =

(
h2

3 + 7
5h3

)
, T5(h) = te5(h5) =

(
3h2

5

6h5

)
.

(3.8)

Taking h∗ = (2, 2, 2, 2, 2)′ ∈ H, then there exists ϕ = (1, 1) ∈ intR2
+ such that the flow

h∗ is in ϕ-parametric equilibrium. Thus, by Theorem 3.5, we have that the flow h∗ is in vector
equilibrium.

For weak vector equilibrium flows, we have following similar results.

Theorem 3.7. A path flow h ∈ H is in weak vector equilibrium if and only if the flow h is in S+ \{0}-
parametric equilibrium.
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Figure 2: Network topology for an example.

Theorem 3.8. If there exists ϕ ∈ S+\{0} such that a path flow h ∈ H is in ϕ-parametric equilibrium,
then the flow h is in weak vector equilibrium.

From Theorems 3.4–3.8, we can get immediately the following corollaries.

Corollary 3.9. If there exists ϕ ∈ intS+ such that a flow h ∈ H is in ϕ-parametric equilibrium, then
the flow h is in intS+-parametric equilibrium.

Corollary 3.10. If there exists ϕ ∈ S+ \ {0} such that a flow h ∈ H is in ϕ-parametric equilibrium,
then the flow h is in S+ \ {0}-parametric equilibrium.

Remark 3.11. When a flow h ∈ H is in intS+-parametric equilibrium, then, the flow h may
not be in ϕ-parametric equilibrium for some ϕ ∈ intS+. Of course, when a flow h ∈ H is in
S+ \ {0}-parametric equilibrium, then, the flow h may not be in ϕ-parametric equilibrium for
some ϕ ∈ S+ \ {0}. The following example can explain these cases.

Example 3.12. Consider the network problem depicted in Figure 1. N = {1, 2, 3, 4}, E =
{e1, e2, e3, e4, e5, }, C = (3, 3, 2, 4, 3, ), W = {{1, 4}, {3, 4}}, D = {3, 4}. Let the cost functions
of arcs are defined as follows:

te1(h1) =

⎛⎝h2
1 + 2

h2
1 + 3

⎞⎠, te2(h2) =
(
h2

2 + h2 + 2
h2 + 2

)
, te3(h3) =

(
3h2

3 + 2
2h3 + 2

)
,

te4(h4) =
(

2h4 + 4
h4 + 1

)
, te5(h1) =

(
h2

1 + 2
2h1

)
, te5(h3) =

(
h2

3 + 2
2h3

)
.

(3.9)

Then, we have

T1(h) = te1(h1) + te6(h1) =

(
2h2

1 + 4

h2
1 + 2h1 + 3

)
, T2(h) = te2(h2) =

(
h2

2 + h2 + 2
h2 + 2

)
,

T3(h) = te3(h3) = te3(h3) + te5(h3) =
(

4h2
3 + 4

4h3 + 2

)
, T4(h) = te4(h4) =

(
2h4 + 4
h4 + 1

)
.

(3.10)
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Taking

h∗ = (1, 2, 1, 3)′, (3.11)

we have

T1(h∗) =
(

6
6

)
, T2(h∗) =

(
8
4

)
, T3(h∗) =

(
8
6

)
, T4(h∗) =

(
10
4

)
. (3.12)

Thus, by Definitions 3.1 and 3.2, we know that the flow h∗ is a intS+-parametric equilibrium
flow and is a S+ \ {0}-parametric equilibrium flow as well. On the other hand, for ϕ =
(1, 1/2)′ ∈ intS+ ⊂ S+ \ {0}, there exists w = {1, 4} and path 1, 2 ∈ Pw, we have

ϕ[T2(h∗) − T1(h∗)] = 1 > 0. (3.13)

But, h2 = 2 > 0 and path 1 is nonsaturated path of h∗. Thus, it follows from Definition 3.3 that
the flow h∗ is not in ϕ-parametric equilibrium.

Theorem 3.13. Let ϕ ∈ S+ \ {0} be given. A flow h ∈ H is in ϕ-parametric equilibrium if the flow h
solves the following scalar variational inequality:

∑
w∈W

∑
p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥ 0, ∀f ∈ H. (3.14)

Proof. Assume that h ∈ H solves above scalar variational inequality problem. For all w ∈ W ,
for all k, j ∈ Pw, if ϕ[Tk(h) − Tj(h)] = ϕ[Tk(h)] − ϕ[Tj(h)] > 0 and path j is nonsaturated path
of flow h, we need to prove that hk = 0. Denote that pj = {e ∈ E | arc e belongs to path j}. If
the conclusion is false, then

ε = min
{

min
e∈pj

(ce − ve), hk
}
> 0. (3.15)

Construct a flow f as follows:

f =
(
fl
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hl, if l /= k or j,

(hk − ε), if l = k,(
hj + ε

)
, if l = j.

(3.16)

It is easy to verify that

f ∈ H. (3.17)
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It follows readily that∑
w∈W

∑
p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

)
= ϕ(Tk(h))

(
fk − hk

)
+ ϕ
(
Tj(h)

)(
fj − hj

)
= ε
(
ϕ
[
Tj(h)

] − ϕ[Tk(h)])
< 0,

(3.18)

which contradicts (3.14). Thus, h is in ϕ-parametric equilibrium and the proof is complete.

From Theorems 3.4–3.13, we can get the following corollary.

Corollary 3.14. If there exists ϕ ∈ intS+ (ϕ ∈ S+ \ {0}) such that a flow h ∈ H is a solution of the
following scalar variational inequality:∑

w∈W

∑
p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥ 0, ∀f ∈ H, (3.19)

then the flow h is in (weak) vector equilibrium.

Remark 3.15. We can prove that the the converse of Theorem 3.13 is valid when the traffic
network equilibrium problem without capacity constraints of arcs, such as traffic network
equilibrium problems without capacity constraints or with capacity constraints of paths. The
result will be showed on Theorem 3.18. But, if the traffic network equilibrium problem with
capacity constraints of arcs, then the converse of Theorem 3.13 may not hold. The following
example is given to illustrate the case.

Example 3.16. Consider the network problem depicted in Figure 1. N = {1, 2, 3, 4}, E = {e1, e2,
e3, e4, e5}, C = (3, 2, 2, 4, 3), W = {{1, 4}, {3, 4}}, D = {3, 4}. Let the cost functions of arcs are
defined as follows:

te1(h1) =

⎛⎝h1

h2
1

⎞⎠, te2(h2) =

⎛⎝h2
2 + 3h2 + 5

h3
2 + 4h2 + 3

⎞⎠, te3(h3) =

⎛⎝h3
3 + 3

h2
3 + 4

⎞⎠,

te4(h4) =
(
h4 + 4
h4 + 4

)
, te5(h1) =

(
h2

1 + 1
h1

)
, te5(h3) =

(
h2

3 + 1
h3

)
.

(3.20)

Then, we have

T1(h) = te1(h1) + te5(h1) =

⎛⎝h2
1 + h1 + 1

h2
1 + h1

⎞⎠, T2(h) = te2(h2) =

⎛⎝h2
2 + 3h2 + 5

h3
2 + 4h2 + 3

⎞⎠,

T3(h) = te3(h3) + te5(h3) =

⎛⎝h3
3 + h

2
3 + 4

h2
3 + h3 + 4

⎞⎠, T4(h) = te4(h4) =
(
h4 + 4
h4 + 4

)
.

(3.21)
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Taking

h∗ = (2, 1, 1, 3)′, (3.22)

we have

T1(h∗) =
(

7
6

)
, T2(h∗) =

(
9
8

)
, T3(h∗) =

(
6
6

)
, T4(h∗) =

(
7
7

)
. (3.23)

Then for any ϕ ∈ intS+(ϕ ∈ S+ \ {0}), we have

ϕ[T2(h∗) − T1(h∗)] > 0,

ϕ[T4(h∗) − T3(h∗)] > 0,
(3.24)

and path 1 is a saturated arc path of h∗, and path 3 is a saturated arc path of h∗ as well.
Thus, the flow h∗ is a ϕ-parametric equilibrium flow by Definition 3.3. However, taking f =
(3, 0, 0, 4)′ ∈ H, we have

∑
w∈W

∑
p∈Pw

Tp(h∗)
(
fp − h∗p

)
= (−1,−1)′. (3.25)

Thus, for any ϕ ∈ intS+(ϕ ∈ S+ \ {0}), we can always get

∑
w∈W

∑
p∈Pw

ϕ
(
Tp(h∗)

)(
fp − h∗p

)
< 0. (3.26)

Therefore, the converse of Theorem 3.13 is not valid.
The following theorem shows that the converse of Theorem 3.13 is valid when the

traffic equilibrium problem with capacity constraints of paths. The proof is similar when the
traffic network equilibrium problem without capacity constraints. Let

K :=

⎧⎨⎩h | λ ≤ h ≤ μ,
∑
p∈Pw

hp = dw, ∀w ∈W
⎫⎬⎭, (3.27)

be the feasible set of traffic network equilibrium problem with capacity constraints of paths,
where λ = (λ1, λ2, . . . , λm) and μ = (μ1, μ2, . . . , μm) are lower and upper capacity constraints
of paths, respectively. The ϕ-parametric equilibrium principle of traffic equilibrium problem
with capacity constraints of paths is as follows.

Definition 3.17. Let a ϕ ∈ S+ \ {0} be given. A flow h ∈ H is said to be in ϕ-parametric equilib-
rium flow if for all w ∈W and for all k, j ∈ Pw, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hj = μj or hk = λk. (3.28)
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Theorem 3.18. Let ϕ ∈ S+ \ {0} be given. A path h ∈ K is in ϕ-parametric equilibrium if and only
if the flow h solves the following scalar variational inequality:∑

w∈W

∑
p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥ 0, ∀f ∈ K. (3.29)

Proof. From Theorem 3.13, we only prove necessity. So, we set

Aw := {v ∈ Pw | hv > λv}, Bw :=
{
u ∈ Pw | hu < μu

}
. (3.30)

It follows from the definition of the ϕ-parametric equilibrium flow that

ϕ[Tu(h)] ≥ ϕ[Tv(h)], ∀u ∈ Bw, v ∈ Aw. (3.31)

Thus, there exists a γw ∈ R such that

min
u∈Bw

ϕ[Tu(h)] ≥ γw ≥ max
v∈Aw

ϕ[Tv(h)]. (3.32)

Let f ∈ K be arbitrary. Then, for every r ∈ Pw, we consider three cases.

Case 1. If ϕ[Tr(h)] < γw, then r /∈ Bw. Hence, hr = μr , fr − hr ≤ 0 and

[
ϕ(Tk(h)) − γw

](
fr − hr

) ≥ 0. (3.33)

Case 2. If ϕ[Tr(h)] > γw, then r /∈ Aw. Hence, hr = λr , fr − hr ≥ 0 and

[
ϕ(Tk(h)) − γw

](
fr − hr

) ≥ 0. (3.34)

Case 3. If ϕ[Tr(h)] = γw, then we have

[
ϕ(Tk(h)) − γw

](
fr − hr

) ≥ 0. (3.35)

From (3.33), (3.34), and (3.35), we have

∑
w∈W

∑
p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥ ∑
w∈W

∑
p∈Pw

γw(dw − dw) = 0. (3.36)

Thus, the proof is complete.

4. Conclusions

In this paper, we have studied traffic network equilibrium problems with capacity constraints
of arcs. We have introduced some new parametric equilibrium flows, such as: S+ \ {0}-para-
metric equilibrium flows, int S+-parametric equilibrium flows, and ϕ-parametric equilibrium
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flows. By using these new concepts, we have characterized vector equilibrium problems on
networks and derived some necessary and sufficient conditions for a (weak) vector equilib-
rium flow.
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Based on the single-leg air cargo issues, we establish a dynamic programming model to consider
the overbooking and space inventory control problem. We analyze the structure of optimal booking
policy for every kind of booking requests and show that the optimal booking decision is of
threshold type (known as booking limit policy). Our research provides a theoretical support for
the air cargo space control.

1. Introduction

For the air cargo carrier, the main purpose of implementing seat inventory control in the
actual operation is to avoid cargo space being occupied by too many low-value goods, caus-
ing the lack of timely transportation of high-value goods and resulting in the loss of some
potential gains. In fact, some customers (FITs or agents) who order the space through tele-
phone or network temporarily cancel the booking or directly do not appear while the aircraft
is taking off. It brings a lot of losses to the air cargo carrier. In order to reduce the losses caused
by the empty cabin, decision makers tend to overbook. However, overbooking too much
may lead to greater economic losses. For this reason, during the air cargo overbooking, it is
necessary to consider freight revenue, but at the same time decision makers have to consider
the cost of overbooking as well. Above all, the decision makers’ aim is to obtain the maximum
profit of freight. Usually, most of the goods are transported by single legs (single routes). For
some relatively tight (the market demand is greater than supply) segments (routes), it is more
suitable for scientific space control and proper overbooking. The problem can be described in
detail as follows: in some tight legs, if there are some booking requests, decision makers will
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decide whether to accept or not. If it is accepted, decision makers will have to set aside proper
space to its customers in accordance with the cargo information. Simply put, in the case of
implementing overbooking, the goal is to maximize air cargo revenue by properly accepting
customers’ booking requests.

2. Related Literature Review

Based on the analysis of the characteristics of the products, Kasilingam [1] establishes the air
cargo overbooking decision-making model on the case of space capacity random, discusses
the production capacity in discrete case and continuous case, and identifies the optimal over-
booking for each situation. Kleywegt and Papastavrou [2] use dynamic random backpack
model to discuss air cargo revenue management problem. The above-mentioned method can
be used to describe the multidimensional problems, but the model is too difficult to solve
easily. Luo et al. [3] establish a two-dimensional air cargo overbooking model and then deter-
mine the approximate optimal overbooking level. In this model, both the weight attributes
and volume attributes are taken into account, and the objective is to minimize freight costs.
Moussawi and Cakanyildrima [4] further study the two-dimensional air cargo overbooking
model. The objective is to maximize freight revenue. What they do is different from Luo et al.
[3]. Considering the benefits of passengers and cargo, Sandhu and Klabjan [5] establish space
inventory control model with the static method. On the assumption of fixed volume, using the
method of reducing dimension, they get the model’s approximate solution and gain the maxi-
mum revenue. Considering the freight forwarders and the delay of cargo transportation,
Chew et al. [6] establish a stochastic dynamic programming model of short-term space inven-
tory control, and the objective is to minimize transportation costs. Amaruchkul et al. [7] con-
sider a single-leg air cargo space control problem. Under the random cargo volume and
weight, they build a Markov decision process model and take a heuristic algorithm to analyze
the model. Considering protocol sale customers and free sale customers, Levin and Nediak
[8] build a space inventory control model by using dynamic programming methods, and the
purpose is to make maximum total income rooted in the receipt of the goods. Under uncer-
tain environment, Wang and Kao [9] establish an air cargo overbooking model and solve it
by the fuzzy systems approach. Taking into account the two different demands of customers,
Modarres and Sharifyazdi [10] build a random capacity space inventory control model and
get the optimal decision. By analyzing the expected revenue function in dynamic program-
ming model, combining the randomness of cargo volume and weight, Huang and Chang [11]
establish a more efficient algorithm in air cargo revenue management problem. Supposing the
cargo volume, weight and the yields of the air cargo are random and the cargo space booking
process has no aftereffect, Han et al. [12] set up a single-leg air cargo revenue management
space allocation model and take the bid control strategy to determine the goods receiving.
Amaruchkul and Lorchirachoonkul [13] study the allocation of air transport capacity for the
number of freight forwarders, get the probability distribution of the actual use of the transport
capacity through discrete Markov chain, and solve the model by dynamic programming
methods.

By contrast, our work is to consider a single-leg air cargo overbooking and space inven-
tory control problem by dynamic programming. We analyze the structure of optimal booking
policy for every kind of booking requests and show that the optimal booking decision is of
booking limit policy.
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3. Model Description

Next we will study the single-leg air cargo space inventory control and overbooking under
the conditions of shipping season (the demand is greater than supply). Because of the com-
plexity of the actual situation, in order to abstract practical problems to theoretical issues, we
need some basic assumptions.

(i) Aircraft total capacity is fixed (cargo size is unchanged);

(ii) customers’ booking requests are sufficient, namely, the supply is adequate;

(iii) the booking requests are divided into multiple classes;

(iv) each class’s arrival is independent;

(v) there is at most one booking request at any time;

(vi) on the condition that the aircraft is due to take off, whether or not to show up for
each booking request is independent;

(vii) each booking request’s weight (volume) is identically independently distributed;

(viii) during whole booking period, accepted booking requests will not be free to cancel.

Based on the above assumptions, we will establish mathematical model and make
decisions on air cargo. In our model, the main parameters and variables are as follows:

t: decision time, 0 ≤ t ≤ T , where T is a booking period;

j: jth class booking request, j = 1, 2, . . . , n, where n is the number of booking classes;

pjt: the arrival probability of jth class booking request in time t;

p0t = 1 −∑n
j=1 pjt: probability of no booking request in time t;

rj : unit tariff of jth class booking request;

ρ: penalty cost because of overbooking resulting in denying a booking request;

yj : cumulative number of the accepted jth class booking request in time t;

y =
∑n

j=1 yj : cumulative number of all accepted booking requests in time t;

θ: the show-up rate of each accepted booking request near the takeoff;

Cw: the maximum available load of the aircraft;

Cv: the maximum available volume of the aircraft;

W : weight of each booking request in time t;

V : volume of each booking request in time t;

w: expected weight of each booking request in time t, namely, E(W);

v: expected volume of each booking request in time t, namely, E(V );

λ: IATA required standard density, value of 0.006 m3/kg.

In order to meet up only one request in a period, we will divide booking lead time into
a number of small discrete booking periods. t = 0 means that air cargo carrier begins to accept
the booking; t = T marks the end of booking, then the air cargo carrier should consider the
DB (denying booking) problem.



4 Journal of Applied Mathematics

When 0 < t < T , Ut(y) is the maximum total expected profit given state y in time t.
Given t and y, the dynamic programming optimality equation can be written as

Ut

(
y
)
=

n∑
j=1

pjt max
{
Ut+1

(
y + 1

)
+ rj max

{
w,

v

λ

}
, Ut+1

(
y
)}

+ p0tUt+1
(
y
)

(3.1)

= Ut+1
(
y
)
+

n∑
j=1

pjt max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y
)
, 0
}
, (3.1)′

where ΔUt(y) = Ut+1(y) − Ut+1(y + 1) is the opportunity cost of accepting some class
request in time t. From (3.1)’, it is optimal to accept jth class booking request in time t if
rj max{w,v/λ } −ΔUt(y) ≥ 0.

Obviously, U0(0) is the maximum total expected profit from the beginning of booking
to the end of booking. In t = T , the penalty cost of overbooking is

UT

(
y
)
= −ρE

[(
yθW − Cw

)+ +(yθV − Cv

λ

)+
]

∀y. (3.2)

The boundary condition (3.2) shows that because of overbooking and relatively fixed
capacity, air cargo carrier needs to deny some accepted requests at the end of booking.

4. Structural Properties

In (3.2), there exist continuous random variables W and V . The cumulative distribution
function and probability density function are FW(·), FV (·) and fW(·), fV (·), respectively.

Next, we will prove that Ut(y) satisfies the following first-order and second-order
properties as follows.

Property 1. ΔUt(y) ≥ 0, namely, Ut(y) is decreasing in y.

Proof. When t = T ,

UT

(
y
)
= −ρE

[(
yθW − Cw

)+ +(yθV − Cv

λ

)+
]

= −ρ
[∫+∞

Cw/yθ

(
yθw − Cw

)
fW(w)dw +

∫+∞

Cv/yθ

(
yθv − Cv

λ

)
fV (v)dv

]

= −ρ
[
yθ

∫+∞

Cw/yθ

wfW(w)dw − Cw

∫+∞

Cw/yθ

fW(w)dw

+
yθ

λ

∫+∞

Cv/yθ

vfV (v)dv − Cv

λ

∫+∞

Cv/yθ

fV (v)dv

]
,

∴
dUT

(
y
)

dy
= −ρθ

[∫+∞

Cw/yθ

wfW(w)dw +
1
λ

∫+∞

Cv/yθ

vfV (v)dv

]
≤ 0. (4.1)

Then, UT (y) is decreasing in y.
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Suppose that Ut+1(y) is decreasing in y. Next, we will show that Ut(y) is decreasing
in y.

From (3.1), we can get the conclusion easily. This completes the proof.

Property 2. Ut(y) is concave in y, that is, for each given t, ΔUt(y) is increasing in y.

Proof. When t = T ,

d2UT

(
y
)

dy2
= −ρθ

[
Cw

yθ
fW

(
Cw

yθ

)
Cw

θ

1
y2

+
1
λ

Cv

yθ
fW

(
Cv

yθ

)
Cv

θ

1
y2

]
≤ 0. (4.2)

Then ΔUT (y) is increasing in y, namely, UT (y) is concave in y.
Suppose that ΔUt(y) is increasing in y. Next, we will show that ΔUt−1(y) is increasing

in y.
By (3.1)’, we have

ΔUt−1
(
y
)
= ΔUt

(
y
)
+

n∑
j=1

pjt max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y
)
, 0
}

−
n∑
j=1

pjt max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y + 1

)
, 0
}
.

(4.3)

Let

A = ΔUt

(
y
)
+

n∑
j=1

pjt max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y
)
, 0
}
,

B = −
n∑
j=1

pjt max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y + 1

)
, 0
}
,

∴ ΔUt−1
(
y
)
= A + B.

(4.4)

For B, by the above assumption, ΔUt(y + 1) is increasing in y, then B is increasing in
y.

For A, suppose that there are m = 0, 1, . . . , n classes booking requests satisfying
rj max{w,v/λ} ≥ ΔUt(y), n−m classes booking requests meeting rj max{w,v/λ} ≤ ΔUt(y).
We may assume that the first m classes in total n satisfy rj max{w,v/λ} ≥ ΔUt(y), and the
last n −m classes satisfy rj max{w,v/λ} ≤ ΔUt(y). Then,

A = ΔUt

(
y
)
+

m∑
j=1

pjt

(
rj max

{
w,

v

λ

}
−ΔUt

(
y
))

= ΔUt

(
y
)
+

m∑
j=1

pjtrj max
{
w,

v

λ

}
−ΔUt

(
y
) m∑
j=1

pjt

=

⎛⎝1 −
m∑
j=1

pjt

⎞⎠ΔUt

(
y
)
+

m∑
j=1

pjtrj max
{
w,

v

λ

}
.

(4.5)
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By above hypothesis, we know that ΔUt(y) is increasing in y, then A is increasing in
y.

From above, we can get: ΔUt−1(y) is increasing in y. This completes the proof.

Property 3. ΔUt(y) is decreasing in t, that is, ΔUt−1(y) ≥ ΔUt(y).

Proof. From (4.3), we have

ΔUt−1
(
y
) −ΔUt

(
y
)
=

n∑
j=1

pjt max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y
)
, 0
}

−
n∑
j=1

pjt max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y + 1

)
, 0
}

=
n∑
j=1

pjt

{
max

{
rj max

{
w,

v

λ

}
−ΔUt

(
y
)
, 0
}

−max
{
rj max

{
w,

v

λ

}
−ΔUt

(
y + 1

)
, 0
}}

.

(4.6)

By Property 2, we have ΔUt(y) ≤ ΔUt(y+1), then ΔUt−1(y) ≥ ΔUt(y). This completes
the proof.

Define n∗jt = max{y|rj max{w,v/λ} ≥ ΔUt(y)}, combining Property 3, we have at any
time t, as long as y ≤ n∗jt, air cargo carrier will accept jth class booking request. And then, we
have the following optimal control policy.

Theorem 4.1. The optimal control policy of the n classes booking requests is a booking limit policy: it
is optimal to accept jth class booking request in time t if y ≤ n∗jt, or reject it. Furthermore, the threshold
n∗jt has the following properties:

(1) If r1 ≥ r2 ≥ · · · ≥ rn, n∗jt is decreasing in j, that is, n∗1t ≥ n∗2t ≥ · · · ≥ n∗nt;
(2) n∗jt is increasing in t, that is, n

∗
j1 ≤ n∗j2 ≤ · · · ≤ n∗jn.

Proof. From Properties 2 and 3, we can have the conclusions easily. This theorem is verified.

The theorem shows that the optimal booking limits are time-dependent and nested
in classes. Furthermore, the unit tariff is higher, the optimal booking control policy is more
relaxed; the optimal booking limit policy of each class is increasing in time.

5. Conclusions

In this paper, we consider a single-leg air cargo overbooking and space inventory control
problem. Based on actual problem, we discrete the booking time into small pieces and
establish the dynamic space inventory control model of considering overbooking. After some
powerful proofs, we get the optimal booking-limit policy for each class of goods.
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We study some properties for parametric generalized vector equilibrium problems and the
convergent behavior for the correspondent solution sets of this problem under some suitable
conditions. Several existence results and the topological structures of the efficient solutions set
are established. Some new results of existence for weak solutions and strong solutions are derived.
Finally, we give some examples to illustrate our theory including the example studied by Fang
(1992), who established the perturbed nonlinear program (Pμ) and described successfully that the
optimal solution of (Pμ) will approach the optimal solution of linear program (P).

1. Introduction and Preliminaries

In recent years, the topological structures of the set of efficient solutions for vector equilibrium
problems or generalized systems or variational inequality problems have been discussed in
several aspects, as we show in [1–29]. More precisely, we divide this subject into several
topics as following. First, the closedness of the set of efficient solutions are studied in [1, 4,
6, 13–16, 27]. Second, the lower semicontinuity of the set of efficient solutions are studied in
[1, 9, 10, 19, 21, 23–26, 30]. Third, the upper semicontinuity of the set of efficient solutions
are studied in [1, 4, 7, 8, 16, 21, 23–26, 30]. Fourth, the connectedness of the set of efficient
solutions are studied in [2, 3, 17, 20, 27, 29]. Fifth, the existence of efficient solutions are
studied in [5, 6, 8–12, 16–18, 22, 27, 29, 31].

Gong and Yao [19] establish the lower semicontinuity of the set of efficient solutions
for parametric generalized systems with monotone bifunctions in real locally convex
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Hausdorff topological vector spaces. They also discuss the connectedness of the efficient
solutions for generalized systems, we refer to [20]. Luc [27, Chapter 6] investigates the
structures of efficient point sets of linear, convex, and quasiconvex problems and also points
out that the closedness and connectedness of the efficient solutions sets are important
in mathematical programming. Huang et al. [8] discuss a class of parametric implicit
vector equilibrium problems in Hausdorff topological vector spaces, where the mappings
f and K are perturbed by parameters, say η and μ, respectively. They establish the upper
semicontinuity and lower semicontinuity of the solution mapping for such problems and
derive the closedness of the set of efficient solutions. Li et al. [1] discuss the generalized
vector quasivariational inequality problem and obtain both upper semicontinuous and lower
semicontinuous properties of the set of efficient solutions for parametric generalized vector
quasivariational inequality problems. The closedness of the set of efficient solutions is also
derived. Cheng [2] discusses the connectedness of the set of weakly efficient solutions
for vector variational inequalities in R

n. In 1992, Fang [32] established the perturbed
nonlinear program

(
Pμ

)
and described successfully that the optimal solution of

(
Pμ

)
will

approach the optimal solution of linear program (P). We will state the result in Example 3.7
below. We further point out that, in some suitable conditions, such convergent behavior
will display continuity. Furthermore, the correspondent solution sets will preserve some
kinds of topological properties under the convergent process. These results will show the
convergent behavior about the sets of solutions by two kinds of parameters. As mentioned
in [20], for the connectedness, “there are few papers which deal with this subject.” But from
above descriptions, we can understand and the topological structures of the sets of efficient
solutions for some problems are more and more popular and interesting subjects. On the
other hand, for our recent result [15], we study the generalized vector equilibrium problems
in real Hausdorff topological vector space settings. The concepts of weak solutions and strong
solutions are introduced. Several new results of existence for weak solutions and strong
solutions of the generalized vector equilibrium problems are derived. These inspired us to
discuss the parametric generalized vector equilibrium problems (PGVEPs). Let us introduce
some notations as follows. We will use these notations through all this paper.

Let X,Y , and Z be arbitrary real Hausdorff topological vector spaces, where X and Z
are finite dimensional. Let Δ1, and Δ2 be two parametric sets,K : Δ2 → 2X be a mapping with
nonempty values, K = ∪η∈Δ1K(η), C : K → 2Y a set-valued mapping such that for each x ∈
K, C(x) is a proper closed convex and pointed cone with apex at the origin and intC(x)/= ∅.
For each x ∈ K, we can define relations “≤C(x)” and “�C(x)” as follows: (1) z≤C(x)y ⇔ y − z ∈
C(x) and (2) z�C(x)y ⇔ y − z /∈ C(x). Furthermore, we use the following notations:

y≥C(x)z⇐⇒ z≤C(x)y, y/≥C(x)z⇐⇒ z�C(x)y. (1.1)

Similarly, we can define the relations “≤intC(x)” and “�intC(x)” if we replace the set C(x) by
intC(x). If the mapping C(x) is constant, then we denote it by C. The mappings f : Δ1 ×
Z × K ×K → Y and T : K → 2Z are given. The parametric generalized vector equilibrium
problem (PGVEP, for short) is as follows: For every (ξ, η) ∈ Δ1 × Δ2, we will like to find an
x ∈ K(η) such that

f
(
ξ, s, x, y

)
/∈ − intC(x), (1.2)
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for all y ∈ K(η) and for some s ∈ T(x). Such set of weak efficient solutions for (PGVEP) is
denoted by Γw(ξ, η). If we find x ∈ K(η) and some s ∈ T(x) such that

f
(
ξ, s, x, y

)
/∈ − intC(x), (1.3)

for all y ∈ K(η). Such set of efficient solutions for (PGVEP) is denoted by Γ(ξ, η). Our main
purpose is to find some topological structures for these two sets, Γw(ξ, η) and Γ(ξ, η), of
efficient solutions of the parametric generalized vector equilibrium problem. Furthermore,
we try to find some sufficient conditions lead them to be nonempty or closed or connected or
even compact sets.

2. Some Properties for Γw(ξ, η)

Theorem 2.1. Let X,Y,Z,C,K,K, T , and f be given as in Section 1, the parametric spaces Δ1,Δ2

be two Hausdorff topological vector spaces. Let the mapping f : Δ1 × Z × K ×K → Y be such that
(ξ, s, x, y) → f(ξ, s, x, y) is continuous and y → f(ξ, s, x, y) is C(x)-convex for every (ξ, s, x) ∈
Δ1 × Z ×K, the mapping T : K → 2Z be an upper semicontinuous with nonempty compact values,
and the mapping K : Δ2 → 2X is continuous with nonempty compact and convex values. Suppose
that the following conditions hold the following:

(a) for any ξ ∈ Δ1, x ∈ K, there is an s ∈ Tx, such that f(ξ, s, x, x) /∈ (− intC(x));

(b) the mapping x → Y \ (− intC(x)) is closed [33] onK.

Then, we have

(1) for every (ξ, η) ∈ Δ1 × Δ2, the weak efficient solutions for (PGVEP) exist, that is, the set
Γw(ξ, η) is nonempty, where Γw(ξ, η) = {x ∈ K(η) : f(ξ, s, x, y) /∈ − intC(x) for some
s ∈ T(x) for all y ∈ K(η)}.

(2) Γw : Δ1 ×Δ2 → 2X is upper semicontinuous on Δ1 ×Δ2 with nonempty compact values.

Proof. (1) For any fixed (ξ, η) ∈ Δ1 × Δ2, we can easy check that the mappings (s, x) →
f(ξ, s, x, y), y → f(ξ, s, x, y) satisfy all conditions of Corollary 2.2 in [15] with K = K and
D = conv(K). Hence, from this corollary, we know that Γw(ξ, η) is nonempty.

(2) For any fixed (ξ, η) ∈ Δ1 × Δ2, we first claim that Γw(ξ, η) is closed in K(η), hence
it is compact. Indeed, let a net {xα} ⊂ Γw(ξ, η) and xα → p for some p ∈ X. Then, xα ∈ K(η)
and f(ξ, sαy, xαy, y) /∈ − intC(xα) for all y ∈ K(η) and for some sαy ∈ T(xα). Since K(η) is
compact, p ∈ K(η). For each α and for each y ∈ K(η), there exists an sαy ∈ T(xα) such that
f(ξ, sαy, xα, y) ∈ Y \ (− intC(xα)). Since T is upper semicontinuous with nonempty compact
values, and the set {xα}∪ {p} is compact, T({xα}∪ {p}) is compact. Therefore, without loss of
generality, we may assume that the net {sαy} converges to some sy. Then sy ∈ T(p). Since the
mapping (s, x) → f(ξ, s, x, y) is continuous, we have

lim
α
f
(
ξ, sαy, xα, y

)
= f

(
ξ, sy, p, y

)
. (2.1)

Since f(ξ, sαy, xα, y) ∈ Y \ (− intC(xα)), xα → p and the mapping x → Y \ (− intC(x)) is
closed, we have

f
(
ξ, sy, p, y

) ∈ Y \ (− intC
(
p
))
. (2.2)
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This proves that p ∈ Γw(ξ, η), and hence Γw(ξ, η) is closed. Since K(η) is compact, so is
Γw(ξ, η).

We next prove that the mapping Γw : Δ1×Δ2 → 2K(η) is upper semicontinuous. That is,
for any (ξ, η) ∈ Δ1 ×Δ2, if there is a net {(ξβ, ηβ)} converges to (ξ, η) and some xβ ∈ Γw(ξβ, ηβ),
we need to claim that there is a p ∈ Γw(ξ, η) and a subnet {xβν} of {xβ} such that xβν →
p. Indeed, since xβ ∈ K(ηβ) and K : Δ2 → 2X are upper semicontinuous with nonempty
compact values, there is a p ∈ K(η) and a subnet {xβν} of {xβ} such that xβν → p.

If we can claim that p ∈ Γw(ξ, η), then we can see that Γw : Δ1 × Δ2 → 2X is upper
semicontinuous on Δ1 × Δ2, and complete our proof. Indeed, if not, there is a y ∈ K(η) such
that for every s ∈ T(p) we have

f
(
ξ, s, x, y

) ∈ − intC
(
p
)
. (2.3)

Since K is lower semicontinuous, there is a net {yβν} with yβν ∈ K(ηβν) and yβν → y.
Since xβν ∈ Γw(ξβν , ηβν), we have xβν ∈ K(ηβν) and, for each yβν ,

f
(
ξβν , sβν , xβν , yβν

) ∈ Y \ (− intC
(
xβν

))
, (2.4)

for some sβν ∈ T(xβν).
Since T is upper semicontinuous and the net xβν → x, without loss of generality, we

may assume that sβν → s for some s ∈ T(x). Since the mapping (ξ, s, x, y) → f(ξ, s, x, y) is
continuous, we have

lim
βν

f
(
ξβν , sβν , xβν , yβν

)
= f

(
ξ, s, p, y

)
. (2.5)

From (2.4) and the closedness of the mapping x → Y \ (− intC(x)), we have

f
(
ξ, s, p, y

) ∈ Y \ (− intC
(
p
))
, (2.6)

which contradicts (2.3). Hence, we have p ∈ Γw(ξ, η).

3. Some Properties for Γ(ξ, η)

In the section, we discuss the set Γ(ξ, η) of the efficient solutions for (PGVEP), where Γ(ξ, η) =
{x ∈ K(η) : there is an s ∈ T(x), such that f(ξ, s, x, y) /∈ − intC(x) for all y ∈ K(η)}. The sets
of minimal points, maximum points, weak minimal points, and weak maximum points for
some set A with respect to the cone C(x) are denoted by MinC(x)A, MaxC(x)A, MinC(x)w A, and
MaxC(x)w A, respectively. For more detail, we refer the reader to Definition 1.2 of [28].

Theorem 3.1. Under the framework of Theorem 2.1, for each (ξ, η) ∈ Δ1 × Δ2, there is an x ∈
Γw(ξ, η) with s ∈ T(x). In addition, if T(x) is convex, the mapping s → −f(ξ, s, x, y) is properly
quasi C(x)-convex (Definition 1.1 of [28]) on T(x) for each (ξ, y) ∈ Δ1 × K(η). Assume that the
mapping (s, y) → f(ξ, s, x, y) satisfies the following conditions:
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(i)

MaxC(x)
⋃

s∈T(x)
MinC(x)w

⋃
y∈K(η)

{
f
(
ξ, s, x, y

)} ⊂ MinC(x)w

⋃
y∈K(η)

{
f
(
ξ, s, x, y

)}
+ C(x) (3.1)

for every s ∈ T(x);
(ii) for any fixed x ∈ K(η), if δ ∈ MaxC(x)

⋃
s∈T(x){f(ξ, s, x, y)} and δ cannot be comparable

with f(ξ, s, x, y) which does not equal to δ, then δ�intC(x)0;

(iii) if MaxC(x)
⋃
s∈T(x) MinC(x)w

⋃
y∈K(η){f(ξ, s, x, y)} ⊂ Y \ (− intC(x)), there exists an s ∈

T(x) such that MinC(x)w

⋃
y∈K(η){f(ξ, s, x, y)} ⊂ Y \ (− intC(x)).

Then, we have

(a) for every (ξ, η) ∈ Δ1 ×Δ2, the efficient solutions exists, that is, the set Γ(ξ, η) is nonempty,
furthermore, it is compact;

(b) the mapping Γ : Δ1 × Δ2 → 2X is upper semicontinuous on Δ1 × Δ2 with nonempty
compact values;

(c) for each (ξ, η) ∈ Δ1 × Δ2, the set Γ(ξ, η) is connected if C : K(η) → 2Y is constant, and
for any (ξ, η) ∈ Δ1 ×Δ2, x ∈ K(η) and s ∈ T(K(η)), f(ξ, s, x,K(η)) + C is convex.

Proof. (a) Fixed any (ξ, η) ∈ Δ1 ×Δ2, we can easy see that all conditions of Theorem 2.3 of [15]
hold, hence from Theorem 2.3 of [15], we know that Γ(ξ, η) is nonempty and compact.

(b) Let {(ξα, ηα)} ⊂ Δ1 × Δ2 be a net such that (ξα, ηα) → (ξ, η) and {xα} be a net with
xα ∈ Γ(ξα, ηα). Since xα ∈ K(ηα) and K : Δ2 → 2X are upper semicontinuous with nonempty
compact values, there are an x ∈ K(η) and a subnet {xαι} of {xα} such that xαι → x. Since
T : K → 2Z is upper semicontinuous with nonempty compact values, T({xαι} ∪ {x}) is
compact. Since sαι ∈ T(xαι), there is an s ∈ T(x) such that a subnet of {sαι} converges to s.
Without loss of generality, we still denote the subnet by {sαι}, and hence sαι → s.

If x /∈ Γ(ξ, η), then there is a y ∈ K(η) such that

f
(
ξ, s, x, y

) ∈ − intC(x). (3.2)

Since K(η) is compact, there is a net, say {yαι}, in K(η) converges to y. Since the mapping
(ξ, s, x, y) → f(ξ, s, x, y) is continuous, and the mapping x → Y \ (− intC(x)) is closed, we
have

f
(
ξ, s, x, y

)
= lim

αι
f
(
ξαι , sαι , xαι , yαι

) ∈ Y \ (− intC(x)), (3.3)

which contracts (3.2). Thus, x ∈ Γ(ξ, η).
In order to prove (c), we introduce Lemmas 3.2–3.4 as follows.
Let Y	 be the topological dual space of Y . For each x ∈ K,

C	(x) =
{
g ∈ Y	 : g

(
y
) ≥ 0 ∀y ∈ C(x)}. (3.4)
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Let C	 = ∩x∈KC	(x), then C	 is nonempty and connected. If C	 : K → 2Y
	

is a constant
mapping, then C	(x) = C	 for all x ∈ K. In the sequel, we suppose that C	 is not a singleton.
That is, C	 \ {0}/= ∅, and hence it is connected. For each g ∈ C	 \ {0}, let us denote the set of
g-efficient solutions to (PGVEP) by

Sξ,η
(
g
)
=

{
x ∈ K(

η
)

: sup
s∈T(x)

g
(
f
(
ξ, s, x, y

)) ≥ 0 for every y ∈ K(
η
)}

. (3.5)

Lemma 3.2. Under the framework of Theorem 3.1,

Sξ,η
(
g
)
/= ∅, (3.6)

for every g ∈ C	 \ {0}.

Proof. From (a) of Theorem 3.1, we know that, for each (ξ, η) ∈ Δ1 × Δ2, there is an x ∈ K(η)
with s ∈ T(x) such that

g
(
f
(
ξ, s, x, y

)) ≥ 0, (3.7)

for all y ∈ K(η) and for all g ∈ C	 \ {0}. Thus, x ∈ Sξ,η(g) for every g ∈ C	 \ {0}. Hence,
Sξ,η(g)/= ∅ for every g ∈ C	 \ {0}.

Lemma 3.3. Suppose that for any (ξ, η) ∈ Δ1 × Δ2 and y ∈ K(η), f(ξ, T(K(η)), K(η), y) are
bounded. Then, the mapping Sξ,η : C	 \ {0} → 2K(η) is upper semicontinuous with compact values.

Proof. Fixed any (ξ, η) ∈ Δ1 × Δ2. We first claim that the mapping Sξ,η : C	 \ {0} → 2K(η) is
closed. Let xν ∈ Sξ,η(gν), xν → x and gν → g with respect to the strong topology σ(Y	, Y ) in
Y	.

Since xν ∈ Sξ,η(gν), there is an sν ∈ T(xν) such that g(f(ξ, sν, xν, y)) ≥ 0 for all y ∈
K(η). Since T is upper semicontinuous with nonempty compact values, by a similar argument
in the proof of Theorem 3.1(b), there is an s ∈ T(x) such that a subnet of {sν} converges to s.
Without loss of generality, we still denote the subnet by {sν}.

For each y ∈ K(η), we define Pf(ξ,T(K(η)),K(η),y)(g) = supz∈f(ξ,T(K(η)),K(η),y)|g(z)| for
all g ∈ Y	. We note that the set f(ξ, T(K(η)), K(η), y) is bounded by assumption, hence
Pf(ξ,T(K(η)),K(η),y)(g) is well defined and is a seminorm of Y	. For any ε > 0, let Uε = {g ∈
Y	 : Pf(ξ,T(K(η)),K(η),y)(g) < ε} be a neighborhood of 0 with respect to σ(Y	, Y ). Since gν → g,
there is a α0 ∈ Λ such that gν − g ∈ Uε for every ν ≥ ν0. That is, Pf(ξ,T(K(η)),K(η),y)(gν − g) =
supz∈f(ξ,T(K(η)),K(η),y)|(gν − g)(z)| < ε/2 for every ν ≥ ν0. This implies that

∣∣(gν − g)(f(ξ, sν, xν, y))∣∣ < ε

2
, (3.8)

for all ν ≥ ν0. Since the mapping (s, x) → f(ξ, s, x, y) is continuous and (sν, xν) → (s, x), we
have

f
(
ξ, sν, xν, y

) → f
(
ξ, s, x, y

)
. (3.9)
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By the continuity of g, we have

∣∣g(f(ξ, sν, xν, y)) − g(f(ξ, s, x, y))∣∣ < ε

2
, (3.10)

for some ν1 and all ν ≥ ν1. Let us choose ν2 = max{ν0, ν1}. Combining (3.8) and (3.10), we
know that, for all ν ≥ ν2,

∣∣gν(f(ξ, sν, xν, y)) − g(f(ξ, s, x, y))∣∣
≤ ∣∣gν(f(ξ, sν, xν, y)) − g(f(ξ, sν, xν, y))∣∣
+
∣∣g(f(ξ, sν, xν, y)) − g(f(ξ, s, x, y))∣∣

<
ε

2
+
ε

2

= ε.

(3.11)

That is gν(f(ξ, sν, xν, y)) → g(f(ξ, s, x, y)). Since gν(f(ξ, sν, xν, y)) ≥ 0, there is an s ∈ T(x)
such that g(f(ξ, s, x, y)) ≥ 0, which proves that x ∈ Sξ,η(g). Therefore, the mapping Sξ,η :
C	\{0} → 2K(η) is closed. By the compactness and Corollary 7 in [33, page 112], the mapping
Sξ,η is upper semicontinuous with compact values.

Lemma 3.4. Suppose that for any (ξ, η) ∈ Δ1 × Δ2, x ∈ K(η) and s ∈ T(K(η)), f(ξ, s, x,K(η)) +
C(x) is convex. Then

Γ
(
ξ, η

) ⊇
⋃

g∈C	\{0}
Sξ,η

(
g
)
. (3.12)

Furthermore, if C : K(η) → 2Y is constant, then we have

Γ
(
ξ, η

)
=

⋃
g∈C	\{0}

Sξ,η
(
g
)
. (3.13)

Proof. We first claim that Γ(ξ, η) ⊇ ∪g∈C	\{0}Sξ,η(g).
If x ∈ ∪g∈C	\{0}Sξ,η(g), there is a g ∈ C	 \ {0} such that x ∈ Sξ,η(g). Then, there is a

g ∈ C	 \ {0} such that

g
(
f
(
ξ, s, x, y

)) ≥ 0 (3.14)

for all y ∈ K(η). This implies that f(ξ, s, x, y) /∈ − intC(x) for all y ∈ K(η). Indeed, if there is
a y ∈ K(η) such that f(ξ, s, x, y) ∈ − intC(x). Since g ∈ C	 \ {0}, we have g(f(ξ, s, x, y)) < 0
which contracts (3.14). Thus, x ∈ Γ(ξ, η). This proves (3.12) holds.

Second, if C : K(η) → 2Y is constant, we claim that Γ(ξ, η) ⊆ ∪g∈C	\{0}Sξ,η(g).
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If x ∈ Γ(ξ, η), then x ∈ K(η) with s ∈ T(x) and f(ξ, s, x, y) /∈ − intC for all y ∈ K(η),
that is, f(ξ, s, x,K(η)) ∩ (− intC) = ∅. Hence,

(
f
(
ξ, s, x,K

(
η
))

+ C
) ∩ (− intC) = ∅. (3.15)

Since f(ξ, s, x,K(η)) + C is convex, by Eidelheit separation theorem, there is a g ∈
Y	 \ {0} and ρ ∈ R such that

g
(
w′) < ρ ≤ g(f(ξ, s, x, y) +w)

, (3.16)

for all y ∈ K(η), w ∈ C, w′ ∈ − intC. Then,

(
g − ρ)(w′) < 0 ≤ (

g − ρ)(f(ξ, s, x, y) +w)
, (3.17)

for all y ∈ K(η), w ∈ C, w′ ∈ − intC.
Without loss of generality, we denote g − ρ by g, then

g
(
w′) < 0 ≤ g(f(ξ, s, x, y) +w)

, (3.18)

for all y ∈ K(η),w ∈ C,w′ ∈ − intC. By the left-hand side inequality of (3.18) and the linearity
of g, we have g(m) > 0 for all m ∈ intC. Since C is closed, for any m in the boundary of C,
there is a net {mν} ⊂ intC such that mν → m. By the continuity of g, g(m) = g(limνmν) =
limνg(mν) ≥ 0. Hence, for all w ∈ C, g(w) ≥ 0, that is g ∈ C	 \ {0}.

By the right-hand side inequality of (3.18), for all w ∈ C, there is an s ∈ T(x) such that
g(f(ξ, s, x, y) +w) ≥ 0 for all y ∈ K(η). This implies that g(f(ξ, s, x, y)) ≥ 0 for all y ∈ K(η)
if we choose w = 0. Hence, sups∈T(x)g(f(ξ, s, x, y)) ≥ 0 for all y ∈ K(η). Thus, x ∈ Sξ,η(g).
Therefore, x ∈ ∪g∈C	\{0}Sξ,η(g), and hence

Γ
(
ξ, η

) ⊆
⋃

g∈C	\{0}
Sξ,η

(
g
)
. (3.19)

Combining this with (3.12), we have

Γ
(
ξ, η

)
=

⋃
g∈C	\{0}

Sξ,η
(
g
)
. (3.20)

Now, we go back to prove Theorem 3.1(c).

Proof of Theorem 3.1(c). From Lemmas 3.2 and 3.3, the mapping Sξ,η : C	\{0} → 2K(η) is upper
semicontinuous with nonempty compact values. From Lemma 3.4 and Theorem 3.1 [29], we
know that for each (ξ, η) ∈ Δ1 ×Δ2, the set Γ(ξ, η) is connected.

Modifying the Example 3.1 [8], we give the following examples to illustrate Theorems
2.1 and 3.1 as follows.
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Example 3.5. Let Δ1 = Δ2 = X = Y = Z = R, K(η) = [0, 1] for all η ∈ Δ2, K = ∪η∈Δ2K(η) =
[0, 1], C(x) = [0,∞) for all x ∈ K. Choose T : K → 2Z by T(x) = {x, x/2} for all x ∈ K.
Define f(ξ, s, x, y) = s − y + ξ2 for all (ξ, x, y) ∈ Δ1 × X × Y . Then, all the conditions of
Theorem 2.1 hold, and Γw(ξ, η) = [1 − ξ2, 1] ∩ [0, 1] for all (ξ, η) ∈ Δ1 ×Δ2. Indeed, since there
are two choices for s, one is x, and the other is x/2. If the nonnegative number ξ2 is less than
1, for any y in [0, 1], and we always choose s = x/2, then for this case, the set Γw(ξ, η) will
contain all elements of the set [2(1 − ξ2), 1]. Furthermore, if we always choose s = x, then
the set Γw(ξ, η) will contain all elements of the set [(1 − ξ2), 1]. If the nonnegative number ξ2

is greater than or equal to 1, then the set Γw(ξ, η) will contain all elements of the set [0, 1].
Hence,

Γw
(
ξ, η

)
=
([

2
(

1 − ξ2
)
, 1
]
∩ [0, 1]

)⋃([(
1 − ξ2

)
, 1
]
∩ [0, 1]

)⋃
[0, 1]

=
[(

1 − ξ2
)
, 1
]
∩ [0, 1].

(3.21)

Here, we note that we cannot apply Theorem 3.1 since T(x) is not convex.

Example 3.6. Following Example 3.5, let T(x) = [x/2, x] for all x ∈ K = [0, 1]. By
Theorem 2.1, the set Γw(ξ, η)/= ∅. We choose any x ∈ Γw(ξ, η), and we can see the mapping
s → −f(ξ, s, x, y) is properly quasi C(x)-convex on T(x) for any (ξ, y) ∈ Δ1 × K(η).
Since MaxC(x)∪s∈[x/2,x]MinC(x)w ∪y∈[0,1]{s − y + ξ2} = {x − 1 + ξ2} ⊂ {s − 1 + ξ2} + [0,∞) =
MinC(x)w ∪y∈[0,1]{s − y + ξ2} + C(x) for all s ∈ [x/2, x] = T(x). So, condition (i) of Theorem 3.1
holds. Obviously, the condition (ii) also holds, since no such δ exists in this example. Now,
we can see condition (iii) holds. Indeed, from the facts

MinC(x)w

⋃
y∈[0,1]

{
s − y + ξ2

}
=
{
s − 1 + ξ2

}
,

MaxC(x)
⋃

s∈T(x)
MinC(x)w

⋃
y∈[0,1]

{
s − y + ξ2

}
=
{
x − 1 + ξ2

}
,

(3.22)

we know that if x − 1+ ξ2 ≥ 0, then we can choose s = x ∈ T(x) such that s− 1+ ξ2 ≥ 0. Hence,
we can apply Theorem 3.1, and we know that Γ(ξ, η) is nonempty compact and connected.
Let us compute the set Γ(ξ, η) for any (ξ, η) ∈ Δ1 × Δ2. If we choose any s = tx for some
t ∈ [1/2, 1], we can see that all the points in the set [(1 − ξ2)/t, 1] are efficient solutions for
(PGVEP). Hence,

Γ
(
ξ, η

)
=

⋃
t∈[1/2,1]

[(
1 − ξ2

)
/t, 1

]
∩ [0, 1]

=
[(

1 − ξ2
)
, 1
]
∩ [0, 1],

(3.23)

for any (ξ, η) ∈ Δ1 ×Δ2.



10 Journal of Applied Mathematics

Example 3.7 (see [32]). The perturbed nonlinear program
(
Pμ

)
described successfully that the

optimal solutions set Γ(μ) of
(
Pμ

)
will approach the optimal solutions set Γ of linear program

(P), where (P) and
(
Pμ

)
are as follows

Minimise cTx,

subject to Ax = 0,

eTx = 1,

x ≥ 0,

(P)

minimise cTx + μ
n∑
j=1

xj logxj ,

subject to Ax = 0,

eTx = 1,

x ≥ 0,

(
Pμ

)

where μ > 0.
We further note that, such convergent behavior will be described by upper

semicontinuity by Theorems 2.1 and 3.1. That is,

Γ
(
μ
) u.s.c.−−−−→ Γ as μ → 0+. (3.24)

Furthermore, the correspondent solution sets will preserve some kinds of topological
properties, such as compactness and connectedness, under the convergent process.

We would like to point out an open question that naturally raises from Theorems 2.1
and 3.1. Under what conditions the mappings Γw and Γ will be lower semicontinuous?
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We consider the expected residual minimization method for a class of stochastic quasivariational
inequality problems (SQVIP). The regularized gap function for quasivariational inequality
problem (QVIP) is in general not differentiable. We first show that the regularized gap function
is differentiable and convex for a class of QVIPs under some suitable conditions. Then, we
reformulate SQVIP as a deterministic minimization problem that minimizes the expected residual
of the regularized gap function and solve it by sample average approximation (SAA) method.
Finally, we investigate the limiting behavior of the optimal solutions and stationary points.

1. Introduction

The quasivariational inequality problem is a very important and powerful tool for the study
of generalized equilibrium problems. It has been used to study and formulate generalized
Nash equilibrium problem in which a strategy set of each player depends on the other
players’ strategies (see, for more details, [1–3]).

QVIP is to find a vector x∗ ∈ S(x∗) such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ S(x∗), (1.1)

where F : R
n → R

n is a mapping, the symbol 〈·, ·〉 denotes the inner product in R
n, and

S : R
n → 2R

n
is a set-valued mapping of which S(x) is a closed convex set in R

n for each x.
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In particular, if S is a closed convex set and S(x) ≡ S for each x, then QVIP (1.1) becomes the
classical variational inequality problem (VIP): find a vector x∗ ∈ S such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ S. (1.2)

In most important practical applications, the function F always involves some random
factors or uncertainties. Let (Ω,F, P) be a probability space. Taking the randomness into
account, we get stochastic quasivariational inequality problem (SQVIP): find an x∗ ∈ S(x∗)
such that

P{ω ∈ Ω : 〈F(x∗, ω), x − x∗〉 ≥ 0, ∀x ∈ S(x∗)} = 1, (1.3)

or equivalently,

〈F(x∗, ω), x − x∗〉 ≥ 0, ∀x ∈ S(x∗), ω ∈ Ω a.s., (1.4)

where F : R
n × Ω → R

n is a mapping and a.s. is abbreviation for “almost surely” under the
given probability measure P .

Due to the introduction of randomness, SQVIP (1.4) becomes more practical
and also evokes more and more attentions in the recent literature [4–16]. However, to
our best knowledge, most publications in the existing literature discuss the stochastic
complementarity problems and the stochastic variational inequality problems, which are two
special cases of (1.4). It is well known that quasivariational inequalities are more complicated
than variational inequalities and complementarity problems and that they have widely
applications. Therefore, it is meaningful and interesting to study the general problem (1.4).

Because of the existence of a random element ω, we cannot generally find a vector
x∗ ∈ S(x∗) such that (1.4) holds almost surely. That is, (1.4) is not well defined if we think
of solving (1.4) before knowing the realization ω. Therefore, in order to get a reasonable
resolution, an appropriate deterministic reformulation for SQVIP becomes an important issue
in the study of the considered problem.

Recently, one of the mainstreaming research methods on the stochastic variational
inequality problem is expected residual minimization method (see [4, 5, 7, 11–13, 16] and
the references therein). Chen and Fukushima [5] formulated the stochastic linear comple-
mentarity problem (SLCP) as a minimization problem which minimizes the expectation of
gap function (also called residual function) for SLCP. They regarded the optimal solution
of this minimization problem as a solution to SLCP. This method is the so-called expected
residual minimization method (ERM). Following the ideas of Chen and Fukushima [5],
Zhang and Chen [16] considered the stochastic nonlinear complementary problems. Luo
and Lin [12, 13] generalized the expected residual minimization method to solve stochastic
variational inequality problem.

In this paper, we focus on ERM method for SQVIP. We first show that the regularized
gap function for QVIP is differentiable and convex under some suitable conditions. Then, we
formulate SQVIP (1.4) as an optimization problem and solve this problem by SAA method.

The rest of this paper is organized as follows. In Section 2, some preliminaries and
the reformulation for SQVIP are given. In Section 3, we give some suitable conditions under
which the regularized gap function for QVIP is differentiable and convex. In Section 4, we
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show that the objective function of the reformulation problem is convex and differentiable
under some suitable conditions. Finally, the convergence results of optimal solutions and
stationary points are given in Section 5.

2. Preliminaries

Throughout this paper, we use the following notations. ‖ · ‖ denotes the Euclidean norm of a
vector. For an n × n symmetric positive-definite matrix G, ‖ · ‖G denotes the G-norm defined
by ‖x‖G =

√
〈x,Gx〉 for x ∈ R

n and ProjS,G(x) denotes the projection of the point x onto the
closed convex set S with respect to the norm ‖ · ‖G. For a mapping F : R

n → R
n, ∇xF(x)

denotes the usual gradient of F(x) in x. It is easy to verify that

√
λmin‖x‖ ≤ ‖x‖G ≤

√
λmax‖x‖, (2.1)

where λmin and λmax are the smallest and largest eigenvalues of G, respectively.
The regularized gap function for the QVIP (1.1) is given as follows:

fα(x) := max
y∈S(x)

{
−〈F(x), y − x〉 − α

2
∥∥y − x∥∥2

G

}
, (2.2)

where α is a positive parameter. Let X ⊆ R
n be defined by X = {x ∈ R

n : x ∈ S(x)}. This is
called a feasible set of QVIP (1.1). For the relationship between the regularized gap function
(2.2) and QVIP (1.1), the following result has been shown in [17, 18].

Lemma 2.1. Let fα(x) be defined by (2.2). Then fα(x) ≥ 0 for all x ∈ X. Furthermore, fα(x∗) = 0
and x∗ ∈ X if and only if x∗ is a solution to QVIP (1.1). Hence, problem (1.1) is equivalent to finding
a global optimal solution to the problem:

min
x∈X

fα(x). (2.3)

Though the regularized gap function fα(x) is directional differentiable under some
suitable conditions (see, [17, 18]), it is in general nondifferentiable.

The regularized gap function (or residual function) for SQVIP (1.4) is as follows:

fα(x,ω) := max
y∈S(x)

{
−〈F(x,ω), y − x〉 − α

2
∥∥y − x∥∥2

G

}
, (2.4)

and the deterministic reformulation for SQVIP is

min
x∈X

Θ(x) := Efα(x,ω), (2.5)

where E denotes the expectation operator.
Note that the objective function Θ(x) contains mathematical expectation. Throughout

this paper, we assume that Efα(x,ω) cannot be calculated in a closed form so that
we will have to approximate it through discretization. One of the most well-known
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discretization approaches is sample average approximation method. In general, for an
integrable function φ : Ω → R, we approximate the expected value E[φ(ω)] with
sample average (1/Nk)

∑
ωi∈Ωk

φ(ωi), where ω1, . . . , ωNk are independently and identically
distributed random samples of ω and Ωk := {ω1, . . . , ωNk}. By the strong law of large
numbers, we get the following lemma.

Lemma 2.2. If φ(ω) is integrable, then

lim
k→∞

1
Nk

∑
ωi∈Ωk

φ(ωi) = E
[
φ(ω)

]
(2.6)

holds with probability one.

Let

Θk(x) :=
1
Nk

∑
ωi∈Ωk

fα(x,ωi). (2.7)

Applying the above techniques, we can get the following approximation of (2.5):

min
x∈X

Θk(x). (2.8)

3. Convexity and Differentiability of fα(x)

In the remainder of this paper, we restrict ourself to a special case, where S(x) = S + m(x).
Here, S is a closed convex set in R

n and m(x) : R
n → R

n is a mapping. In this case, we can
show that fα(x) is continuously differentiable whenever so are the functions F(x) and m(x).
In order to get this result, we need the following lemma (see [19, Chapter 4, Theorem 1.7]).

Lemma 3.1. Let S ∈ R
n be a nonempty closed set and U ∈ R

m be an open set. Assume that
f : R

n × U → R be continuous and the gradient ∇uf(·, ·) is also continuous. If the problem
minx∈Sf(x, u) is uniquely attained at x(u) for any fixed u ∈ U, then the function φ(u) :=
minx∈Sf(x, u) is continuously differentiable and ∇uφ(u) is given by ∇uφ(u) = ∇uf(x(u), u).

For any y ∈ S(x) = S +m(x), we can find a vector z ∈ S such that y = z +m(x). Thus,
we can rewrite (2.2) as follows:

fα(x) = max
z∈S

{
−〈F(x), z +m(x) − x〉 − α

2
‖z − (x −m(x))‖2

G

}
= − min

z∈S

{
〈F(x), z − (x −m(x))〉 + α

2
‖z − (x −m(x))‖2

G

}
.

(3.1)

The minimization problem in (3.1) is essentially equivalent to the following problem:

min
z∈S

∥∥∥z − [x −m(x) − α−1G−1F(x)
]∥∥∥2

G
. (3.2)
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It is easy to know that problem (3.2) has a unique optimal solution ProjS,G(x −m(x) −
α−1G−1F(x)). Thus, ProjS,G(x −m(x) − α−1G−1F(x)) is also a unique solution of problem (3.1).
The following result is a natural extension of [20, Theorem 3.2].

Theorem 3.2. If S is a closed convex set in R
n and m(x) and F(x) are continuously differentiable,

then the regularized gap function fα(x) given by (2.2) is also continuously differentiable and its
gradient is given by

∇fα(x) = [I − ∇m(x)]F(x) − [∇F(x) − α(I − ∇m(x))G][zα(x) − (x −m(x))], (3.3)

where zα(x) = ProjS,G(x −m(x) − α−1G−1F(x)) and I denotes the n × n identity matrix.

Proof. Let us define the function h : R
n × S → R by

h(x, z) = 〈F(x), z − (x −m(x))〉 + α

2
‖z − (x −m(x))‖2

G. (3.4)

It is obviously that if F(x) and m(x) are continuous, then h(x, z) is continuous in (x, z). If
F(x) and m(x) are continuously differentiable, then

∇xh(x, z) = −[I − ∇m(x)]F(x) + [∇F(x) − α(I − ∇m(x))G][z − (x −m(x))] (3.5)

is continuous in (x, z). By (3.1), we have

fα(x) = −min
z∈S

h(x, z). (3.6)

Since the minimum on the right-hand side of (3.6) is uniquely attained at z = zα(x), it follows
from Lemma 3.1 that fα(x) is differentiable and its gradient is given by

∇fα(x) = − ∇xh(x, zα(x))

= [I − ∇m(x)]F(x) − [∇F(x) − α(I − ∇m(x))G][zα(x) − (x −m(x))].
(3.7)

This completes the proof.

Remark 3.3. When m(x) ≡ 0, we have S(x) ≡ S and so QVIP (1.1) reduces to VIP (1.2). In this
case

∇fα(x) = F(x) − [∇F(x) − αG][zα(x) − x], (3.8)

where

zα(x) = ProjS,G
(
x − α−1G−1F(x)

)
. (3.9)
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Moreover, when α = 1, we have

∇fα(x) = F(x) − [∇F(x) −G][zα(x) − x],

zα(x) = ProjS,G
(
x −G−1F(x)

)
,

(3.10)

which is the same as [20, Theorem 3.2].

Now we investigate the conditions under which fα(x) is convex.

Theorem 3.4. Suppose that F(x) = Mx + q and m(x) = Nx, where M and N are n × n matrices
and q ∈ R

n is a vector. Denote βmin and μmax by the smallest and largest eigenvalues ofMT (I −N) +
(I −N)TM and (N − I)TG(N − I), respectively. We have the following statements.

(i) If μmax > 0, βmin ≥ 0 and α ≤ (βmin/μmax), then the function fα(x) is convex. Moreover,
if there exists a constant β > 0 such that α ≤ (βmin/μmax(1 + β)), then fα(x) is strongly
convex with modulus αβμmax.

(ii) If μmax = 0 and βmin ≥ 0, then the function fα(x) is convex. Moreover, if βmin > 0, then
fα(x) is strongly convex with modulus βmin.

Proof. Substituting F(x) =Mx + q and m(x) =Nx into (3.1), we have

fα(x) = max
z∈S

{
−〈Mx + q, z + (N − I)x〉 − α

2
‖z − (I −N)x‖2

G

}
. (3.11)

Define

H(x, z) = −〈Mx + q, z + (N − I)x〉 − α

2
‖z − (I −N)x‖2

G. (3.12)

Noting that

∇2
xH(x, z) =MT (I −N) + (I −N)TM − α(N − I)TG(N − I), (3.13)

we have, for any y ∈ R
n,

yT∇2
xH(x, z)y = yT

[
MT (I −N) + (I −N)TM

]
y − αyT (N − I)TG(N − I)y

≥ (βmin − αμmax
)∥∥y∥∥2

.

(3.14)
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If μmax > 0, βmin ≥ 0 and α ≤ (βmin/μmax), we have

yT∇2
xH(x, z)y ≥ (βmin − αμmax

)∥∥y∥∥2 ≥ 0. (3.15)

This implies that the Hessen matrix ∇2
xH(x, z) is positive semidefinite and hence H(x, z) is

convex in x for any z ∈ S. In consequence, by (3.11), the regularized gap function fα(x) is
convex. Moreover, if α ≤ (βmin/μmax(1 + β)), then

yT∇2
xH(x, z)y ≥ (βmin − αμmax

)∥∥y∥∥2 ≥ αβμmax
∥∥y∥∥2

, (3.16)

which means that H(x, z) is strongly convex with modulus αβμmax in x for any z ∈ S. From
(3.11), we know that the regularized gap function fα(x) is strongly convex.

If μmax = 0 and βmin ≥ 0, we have

yT∇2
xH(x, z)y ≥ βmin

∥∥y∥∥2 ≥ 0. (3.17)

Thus, the regularized gap function fα(x) is convex. Moreover, if βmin > 0, then the regularized
gap function fα(x) is strongly convex with modulus βmin. This completes the proof.

Remark 3.5. When N = 0, QVIP (1.1) reduces to VIP (1.2). Denote βmin and μmax by the
smallest and largest eigenvalues of MT +M and G, respectively. In this case, the function

fα(x) = max
z∈S

{
−〈F(x), z − x〉 − α

2
‖z − x‖2

G

}
(3.18)

is convex when μmax > 0, βmin ≥ 0 and α ≤ (βmin/μmax).

Remark 3.6. When N = 0 and G = I, we have that μmax = 1. In this case, the function

f̂α(x) = max
z∈S

{
−〈F(x), z − x〉 − α

2
‖z − x‖2

}
(3.19)

is convex when βmin ≥ 0 and α ≤ βmin. This is consistent with [4, Theorem 2.1].

4. Properties of Function Θ

In this section, we consider the properties of the objective function Θ(x) of problem (2.5). In
what follows we show that Θ(x) is differentiable under some suitable conditions.

Theorem 4.1. Suppose that F(x,ω) := M(ω)x +Q(ω), whereM : Ω → R
n×n and Q : Ω → R

n

with

E

[
‖M(ω)‖2 + ‖Q(ω)‖2

]
< +∞. (4.1)
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Let S(x) = S +Nx. Then the function Θ(x) is differentiable and

∇xΘ(x) = E∇xfα(x,ω). (4.2)

Proof. Since S(x) = S +Nx, it is easy to know that

fα(x,ω) = −〈F(x,ω), yα(x,ω) − (x −Nx)
〉 − α

2
∥∥yα(x,ω) − (x −Nx)

∥∥2
G, (4.3)

where

yα(x,ω) = ProjS,G
(
x −Nx − α−1G−1F(x,ω)

)
. (4.4)

It follows from Lemma 2.1 that fα(x,ω) ≥ 0 and so

α

2
∥∥yα(x,ω) − x +Nx

∥∥2
G ≤ −〈F(x,ω), yα(x,ω) − x +Nx

〉
≤ ‖F(x,ω)‖∥∥yα(x,ω) − x +Nx

∥∥
≤ 1√

λmin
‖F(x,ω)‖∥∥yα(x,ω) − x +Nx

∥∥
G.

(4.5)

Thus,

∥∥yα(x,ω) − x +Nx
∥∥
G ≤ 2

α
√
λmin

‖F(x,ω)‖,

∥∥yα(x,ω) − x +Nx
∥∥ ≤ 1√

λmin

∥∥yα(x,ω) − x +Nx
∥∥
G ≤ 2

αλmin
‖F(x,ω)‖.

(4.6)

In a similar way to Theorem 3.2, we can show that fα(x,ω) is differentiable with
respect to x and

∇xfα(x,ω) = (I −N)F(x,ω) − [M(ω) − α(I −N)G]
[
yα(x,ω) − (I −N)x

]
. (4.7)
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It follows that

∥∥∇xfα(x,ω)
∥∥ ≤ ‖I −N‖‖F(x,ω)‖ − ‖M(ω) − α(I −N)G‖∥∥yα(x,ω) − (I −N)x

∥∥
≤
{
‖I −N‖ + 2

αλmin
‖M(ω) − α(I −N)G‖

}
‖F(x,ω)‖

≤
(

1 +
2‖G‖
λmin

)
‖I −N‖‖F(x,ω)‖ + 2

αλmin
‖M(ω)‖‖F(x,ω)‖

≤
(

1 +
2‖G‖
λmin

)
‖I −N‖(1 + ‖x‖)(‖M(ω)‖ + ‖Q(ω)‖)

+
2

αλmin
(1 + ‖x‖)(‖M(ω)‖ + ‖Q(ω)‖)2

≤
(

1 +
2‖G‖
λmin

)
‖I −N‖(1 + ‖x‖)(‖M(ω)‖ + ‖Q(ω)‖)

+
4

αλmin
(1 + ‖x‖)

(
‖M(ω)‖2 + ‖Q(ω)‖2

)
.

(4.8)

By [21, Theorem 16.8], the function Θ is differentiable and ∇xΘ(x) = E∇xfα(x,ω). This
completes the proof.

The following theorem gives some conditions under which Θ(x) is convex.

Theorem 4.2. Suppose that the assumption of Theorem 4.1 holds. Let

β0 := inf
ω∈Ω\Ω0

λmin

(
M(ω)T (I −N) + (I −N)TM(ω)

)
, (4.9)

whereΩ0 is a null subset ofΩ and λmin(G) denotes the smallest eigenvalue ofG. We have the following
statements.

(i) If μmax > 0, β0 > 0 and α ≤ (β0/μmax), then the function Θ(x) is convex. Moreover, if
α ≤ (β0/μmax(1 + β)) with β > 0, then Θ(x) is strongly convex with modulus αβμmax.

(ii) If μmax = 0 and β0 ≥ 0, then the function Θ(x) is convex. Moreover, if β0 > 0, then Θα(x)
is strongly convex with modulus β0.

Proof. Define

H(x, z,ω) = −〈M(ω)x +Q(ω), z + (N − I)x〉 − α

2
‖z − (I −N)x‖2

G. (4.10)

Noting that

∇2
xH(x, z,ω) =M(ω)T (I −N) + (I −N)TM(ω) − α(N − I)TG(N − I), (4.11)



10 Journal of Applied Mathematics

we have, for any y ∈ R
n,

yT∇2
xH(x, z,ω)y = yT

[
M(ω)T (I −N) + (I −N)TM(ω)

]
y − αyT (N − I)TG(N − I)y

≥ (β0 − αμmax
) ∥∥y∥∥2

,

(4.12)

where the inequality holds almost surely.
If μmax > 0, β0 > 0 and α ≤ (β0/μmax), then

yT∇2
xH(x, z,ω)y ≥ 0. (4.13)

This implies that the Hessen matrix ∇2
xH(x, z,ω) is positive semidefinite and hence

H(x, z,ω) is convex in x for any z ∈ S. Since

fα(x,ω) = max
y∈S(x)

{
−〈F(x,ω), y − x〉 − α

2
∥∥y − x∥∥2

G

}
= max

z∈S
H(x, z,ω), (4.14)

the regularized gap function fα(x,ω) is convex and so is Θ(x). Moreover, if α ≤ (β0/μmax(1 +
β)), then

yT∇2
xH(x, z,ω)y ≥ αβμmax

∥∥y∥∥2
, (4.15)

which means that H(x, z,ω) is strongly convex in x for any z ∈ S. From the definitions of
H(x, z,ω) and fα(x,ω), we know that fα(x,ω) is strongly convex with modulus αβμmax and
so is Θ(x).

If μmax = 0 and β0 ≥ 0, then

yT∇2
xH(x, z,ω)y ≥ β0

∥∥y∥∥2 ≥ 0, (4.16)

which implies that the regularized gap function fα(x,ω) is convex and so is Θ(x). Moreover,
if β0 > 0, then Θ(x) is strongly convex with modulus β0. This completes the proof.

It is easy to verify that X = {x ∈ R
n : x ∈ S(x)} is a convex subset when S(x) = S+Nx.

Thus, Theorem 4.2 indicates that problem (2.5) is a convex program. From the proof details
of Theorem 4.2, we can also get that problem (2.8) is a convex program. Hence we can obtain
a global optimal solution using existing solution methods.

5. Convergence of Solutions and Stationary Points

In this section, we will investigate the limiting behavior of the optimal solutions and
stationary points of (2.8).

Note that if the conditions of Theorem 4.1 are satisfied, then the set X is closed, and

E‖M(ω)‖ <∞, E[‖M(ω)‖ + ‖Q(ω)‖ + c]2 <∞, (5.1)

where c is a constant.
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Theorem 5.1. Suppose that the conditions of Theorem 4.1 are satisfied. Let xk be an optimal solution
of problem (2.8) for each k. If x∗ is an accumulation point of {xk}, then it is an optimal solution of
problem (2.5).

Proof. Without loss of generality, we assume that xk itself converges to x∗ as k tends to infinity.
It is obvious that x∗ ∈ X.

We first show that

lim
k→∞

∣∣∣Θk

(
xk
)
−Θk(x∗)

∣∣∣ = 0. (5.2)

It follows from mean-value theorem that

∣∣∣Θk

(
xk
)
−Θk(x∗)

∣∣∣ = ∣∣∣∣∣ 1
Nk

∑
ωi∈Ωk

[
fα
(
xk,ωi

)
− fα(x∗, ωi)

]∣∣∣∣∣
≤ 1
Nk

∑
ωi∈Ωk

∣∣∣fα(xk,ωi

)
− fα(x∗, ωi)

∣∣∣
≤ 1
Nk

∑
ωi∈Ωk

∥∥∥∇xfα
(
yki , ωi

)∥∥∥∥∥∥xk − x∗
∥∥∥,

(5.3)

where yki = γki x
k + (1 − γki )x∗ and γki ∈ [0, 1]. From the proof details of Theorem 4.1, we have

∥∥∥∇xfα
(
yki , ωi

)∥∥∥ ≤ (1 +
2‖G‖
λmin

)(
1 +
∥∥∥yki ∥∥∥)(‖M(ωi)‖ + ‖Q(ωi)‖)‖I −N‖

+
2

αλmin

(
1 +
∥∥∥yki ∥∥∥)(‖M(ωi)‖ + ‖Q(ωi)‖)2.

(5.4)

Since limk→+∞xk = x∗, there exists a constant C such that ‖xk‖ ≤ C for each k. By the
definition of yki , we know that ‖yki ‖ ≤ C. Hence,

∥∥∥∇xfα
(
yki , ωi

)∥∥∥ ≤ (1 +
2‖G‖
λmin

)
(1 + C)(‖M(ωi)‖ + ‖Q(ωi)‖)‖I −N‖

+
2

αλmin
(1 + C)(‖M(ωi)‖ + ‖Q(ωi)‖)2

≤ C′(‖M(ωi)‖ + ‖Q(ωi)‖ + 1)2,

(5.5)

where

C′ = max
{(

1 +
2‖G‖
λmin

)
(1 + C)‖I −N‖, 2

αλmin
(1 + C)

}
. (5.6)
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It follows that

∣∣∣Θk

(
xk
)
−Θk(x∗)

∣∣∣ ≤ C′ 1
Nk

∑
ωi∈Ωk

(‖M(ωi)‖ + ‖Q(ωi)‖ + 1)2
∥∥∥xk − x∗

∥∥∥ −→ 0, (5.7)

which means that (5.2) holds.
Now, we show that x∗ is an optimal solution of problem (2.5). It follows from (5.2) and

∣∣∣Θk

(
xk
)
−Θ(x∗)

∣∣∣ ≤ ∣∣∣Θk

(
xk
)
−Θk(x∗)

∣∣∣ + |Θk(x∗) −Θ(x∗)|, (5.8)

that limk→+∞Θk(xk) = Θ(x∗). Since xk is an optimal solution of problem (2.8) for each k, we
have that, for any x ∈ X,

Θk

(
xk
)
≤ Θk(x). (5.9)

Letting k → ∞ above, we get from (5.2) and Lemma 2.2 that

Θ(x∗) ≤ Θ(x), (5.10)

which means x∗ is an optimal solution of problem (2.5). This completes the proof.

In general, it is difficult to obtain a global optimal solution of problem (2.8), whereas
computation of stationary points is relatively easy. Therefore, it is important to study the
limiting behavior of stationary points of problem (2.8).

Definition 5.2. xk is said to be stationary to problem (2.8) if

〈
∇xΘk

(
xk
)
, y − xk

〉
≥ 0, ∀y ∈ X, (5.11)

and x∗ is said to be stationary to problem (2.5) if

〈∇xΘ(x∗), y − x∗〉 ≥ 0, ∀y ∈ X. (5.12)

Theorem 5.3. Let xk be stationary to problem (2.8) for each k. If the conditions of Theorem 4.1 are
satisfied, then any accumulation point x∗ of {xk} is a stationary point of problem (2.5).

Proof. Without loss of generality, we assume that {xk} itself converges to x∗.
At first, we show that

lim
k→∞

∥∥∥∇xΘk

(
xk
)
− ∇xΘk(x∗)

∥∥∥ = 0. (5.13)
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It follows from (2.1) and the nonexpansivity of the projection operator that

∥∥∥yα(xk,ω) − yα(x∗, ω)
∥∥∥

≤ 1√
λmin

∥∥∥yα(xk,ω) − yα(x∗, ω)
∥∥∥
G

=
1√
λmin

∥∥∥ProjS,G
(
xk −Nxk − α−1G−1F

(
xk,ω

))
−ProjS,G

(
x∗ −Nx∗ − α−1G−1F(x∗, ω)

)∥∥∥
G

≤ 1√
λmin

∥∥∥xk −Nxk − α−1G−1F
(
xk,ω

)
−
[
x∗ −Nx∗ − α−1G−1F(x∗, ω)

]∥∥∥
G

≤
√
λmax

λmin

∥∥∥xk −Nxk − α−1G−1F
(
xk,ω

)
−
[
x∗ −Nx∗ − α−1G−1F(x∗, ω)

]∥∥∥
≤
√
λmax

λmin

(
‖I −N‖ + α−1

∥∥∥G−1
∥∥∥‖M(ω)‖

)∥∥∥xk − x∗
∥∥∥.

(5.14)

Thus,∥∥∥∇xΘk

(
xk
)
− ∇xΘk(x∗)

∥∥∥
≤ 1
Nk

∑
ωi∈Ωk

∥∥∥∇xfα
(
xk,ωi

)
− ∇xfα(x∗, ωi)

∥∥∥
=

1
Nk

∑
ωi∈Ωk

∥∥∥(I −N)
[
M(ωi)xk +Q(ωi)

]
− [M(ωi) − α(I −N)G]

×
[
yα
(
xk,ωi

)
− (I −N)xk

]
− {(I −N)[M(ωi)x∗ +Q(ωi)] − [M(ωi) − α(I −N)G]

×[yα(x∗, ωi) − (I −N)x∗]}∥∥∥
≤ 2
∥∥∥xk − x∗

∥∥∥‖I −N‖ 1
Nk

∑
ωi∈Ωk

‖M(ωi)‖ + α‖I −N‖2‖G‖
∥∥∥xk − x∗

∥∥∥
+

1
Nk

∑
ωi∈Ωk

‖M(ωi) − α(I −N)G‖
∥∥∥yα(xk,ωi

)
− yα(x∗, ωi)

∥∥∥
≤ 2
∥∥∥xk − x∗

∥∥∥‖I −N‖ 1
Nk

∑
ωi∈Ωk

‖M(ωi)‖ + α‖I −N‖2‖G‖
∥∥∥xk − x∗

∥∥∥
+

√
λmax

λmin

1
Nk

∑
ωi∈Ωk

‖M(ωi) − α(I −N)G‖
[
‖I −N‖ + α−1

∥∥∥G−1
∥∥∥‖M(ωi)‖

]∥∥∥xk − x∗
∥∥∥
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≤
⎡⎣2 +

√
λmax

λmin

(
‖G‖
∥∥∥G−1

∥∥∥ + 1
)⎤⎦‖I −N‖ 1

Nk

∑
ωi∈Ωk

‖M(ωi)‖
∥∥∥xk − x∗

∥∥∥
+

⎛⎝1 +

√
λmax

λmin

⎞⎠α‖I −N‖2‖G‖
∥∥∥xk − x∗

∥∥∥
+ α−1

∥∥∥G−1
∥∥∥
√
λmax

λmin

1
Nk

∑
ωi∈Ωk

‖M(ωi)‖2
∥∥∥xk − x∗

∥∥∥
−→ 0,

(5.15)

which means that (5.13) is true.
Next, we show that

lim
k→∞

∇xΘk

(
xk
)
= ∇xΘ(x∗). (5.16)

It follows from Lemma 2.2 and Theorem 4.1 that

lim
k→∞

∇xΘk(x∗) = lim
k→∞

1
Nk

∑
ωi∈Ωk

∇xfα(x∗, ωi) = E∇xfα(x∗, ω) = ∇xΘ(x∗). (5.17)

By (5.13), we have

∥∥∥∇xΘk

(
xk
)
− ∇xΘ(x∗)

∥∥∥ ≤ ∥∥∥∇xΘk

(
xk
)
− ∇xΘk(x∗)

∥∥∥ + ‖∇xΘk(x∗) − ∇xΘ(x∗)‖

−→ 0,
(5.18)

which implies that (5.16) is true.
Now we show that x∗ is a stationary point of problem (2.5). Since xk is stationary to

problem (2.8), that is, for any y ∈ X,

〈
∇xΘk

(
xk
)
, y − xk

〉
≥ 0. (5.19)

Letting k → ∞ above, we get from (5.16) that

〈∇xΘ(x∗), y − x∗〉 ≥ 0. (5.20)

Thus, x∗ is a stationary point of problem (2.5). This completes the proof.
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A new hybrid projection algorithm is considered for a finite family of λi-strict pseudocontractions.
Using the metric projection, some strong convergence theorems of common elements are obtained
in a uniformly convex and 2-uniformly smooth Banach space. The results presented in this paper
improve and extend the corresponding results of Matsushita and Takahshi, 2008, Kang and Wang,
2011, and many others.

1. Introduction

Let E be a real Banach space and let E∗ be the dual spaces of E. Assume that J is the
normalized duality mapping from E into 2E

∗
defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 is the generalized duality pairing between E and E∗.
Let C be a closed convex subset of a real Banach space E. A mapping T : C → C is

said to be nonexpansive if

∥∥Tx − Ty∥∥ ≤ ∥∥x − y∥∥, (1.2)
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for all x, y ∈ C. Also a mapping T : C → C is called a λ-strict pseudocontraction if there
exists a constant λ ∈ (0, 1) such that for every x, y ∈ C and for some j(x − y) ∈ J(x − y), the
following holds:

〈
Tx − Ty, j(x − y)〉 ≤ ∥∥x − y∥∥2 − λ∥∥(I − T)x − (I − T)y∥∥2

. (1.3)

From (1.3) we can prove that if T is λ-strict pseudo-contractive, then T is Lipschitz
continuous with the Lipschitz constant L = (1 + λ)/λ.

It is well-known that the classes of nonexpansive mappings and pseudocontractions
are two kinds important nonlinear mappings, which have been studied extensively by many
authors (see [1–8]).

In [9] Reich considered the Mann iterative scheme {xn}

xn+1 = (1 − αn)xn + αnTxn, x1 ∈ C (1.4)

for nonexpansive mappings, where {αn} is a sequence in (0, 1). Under suitable conditions,
the author proved that {xn} converges weakly to a fixed point of T . In 2005, Kim and Xu
[10] proved a strong convergence theorem for nonexpansive mappings by modified Mann
iteration. In 2008, Zhou [11] extended and improved the main results of Kim and Xu to the
more broad 2-uniformly smooth Banach spaces for λ-strict pseudocontractive mappings.

On the other hand, by using metric projection, Nakajo and Takahashi [12] introduced
the following iterative algorithms for the nonexpansive mapping T in the framework of
Hilbert spaces:

x0 = x ∈ C,
yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥z − yn∥∥ ≤ ‖z − xn‖
}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx, n = 0, 1, 2, . . . ,

(1.5)

where {αn} ⊂ [0, α], α ∈ [0, 1), and PCn∩Qn is the metric projection from a Hilbert space H onto
Cn ∩Qn. They proved that {xn} generated by (1.5) converges strongly to a fixed point of T .

In 2006, Xu [13] extended Nakajo and Takahashi’s theorem to Banach spaces by using
the generalized projection.

In 2008, Matsushita and Takahashi [14] presented the following iterative algorithms
for the nonexpansive mapping T in the framework of Banach spaces:

x0 = x ∈ C,
Cn = co{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n = 0, 1, 2, . . . ,

(1.6)
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where coC denotes the convex closure of the set C, J is normalized duality mapping, {tn} is a
sequence in (0, 1) with tn → 0, and PCn∩Dn is the metric projection from E onto Cn ∩Dn. Then,
they proved that {xn} generated by (1.6) converges strongly to a fixed point of nonexpansive
mapping T .

Recently, Kang and Wang [15] introduced the following hybrid projection algorithm
for a pair of nonexpansive mapping T in the framework of Banach spaces:

x0 = x ∈ C,
yn = αnT1xn + (1 − αn)T2xn,

Cn = co
{
z ∈ C : ‖z − T1z‖ + ‖z − T2z‖ ≤ tn

∥∥xn − yn∥∥},
xn+1 = PCnx, n = 0, 1, 2, . . . ,

(1.7)

where coC denotes the convex closure of the set C, {αn} is a sequence in [0, 1], {tn} is a
sequence in (0,1) with tn → 0, and PCn is the metric projection from E onto Cn. Then, they
proved that {xn} generated by (1.7) converges strongly to a fixed point of two nonexpansive
mappings T1 and T2.

In this paper, motivated by the research work going on in this direction, we introduce
the following iterative for finding fixed points of a finite family of λi-strict pseudocontractions
in a uniformly convex and 2-uniformly smooth Banach space:

x0 = x ∈ C,

yn =
N∑
i=1

αn,iTixn,

Cn = co

{
z ∈ C :

N∑
i=1

‖z − Tiz‖ ≤ tn
∥∥xn − yn∥∥},

xn+1 = PCnx, n = 1, 2, . . . ,

(1.8)

where coC denotes the convex closure of the set C, {αn,i} is N sequences in [0,1] and∑N
i=1 αn,i = 1 for each n ≥ 0, {tn} is a sequence in (0,1) with tn → 0, and PCn is the metric

projection from E onto Cn. we prove defined by (1.8) converges strongly to a common fixed
point of a finite family of λi-strictly pseudocontractions, the main results of Kang and Wang
is extended and improved to strictly pseudocontractions.

2. Preliminaries

In this section, we recall the well-known concepts and results which will be needed to prove
our main results. Throughout this paper, we assume that E is a real Banach space and C is a
nonempty subset of E. When {xn} is a sequence in E, we denote strong convergence of {xn}
to x ∈ E by xn → x and weak convergence by xn ⇀ x. We also assume that E∗ is the dual
space of E, and J : E → 2E

∗
is the normalized duality mapping. Some properties of duality

mapping have been given in [16].
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A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for all x, y ∈ U = {z ∈
E : ‖z‖ = 1} with x /=y. E is said to be uniformly convex if for each ε > 0 there is a δ > 0 such
that for x, y ∈ E with ||x||, ||y|| ≤ 1 and ||x − y|| ≥ ε, ||x + y|| ≤ 2(1 − δ) holds. The modulus of
convexity of E is defined by

δE(ε) = inf
{

1 −
∥∥∥∥x + y

2

∥∥∥∥ : ‖x‖,∥∥y∥∥ ≤ 1,
∥∥x − y∥∥ ≥ ε

}
. (2.1)

E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ U. The modulus of smoothness of E is defined by

ρE(t) = sup
{

1
2
(∥∥x + y

∥∥ + ∥∥x − y∥∥) − 1 : ‖x‖ ≤ 1,
∥∥y∥∥ ≤ t

}
. (2.3)

A Banach space E is said to be uniformly smooth if ρE(t)/t → 0 as t → 0. A Banach space E is
said to be q-uniformly smooth, if there exists a fixed constant c > 0 such that ρE(t) ≤ ctq.

If E is a reflexive, strictly convex, and smooth Banach space, then for any x ∈ E, there
exists a unique point x0 ∈ C such that

‖x0 − x‖ = min
y∈C

∥∥y − x∥∥. (2.4)

The mapping PC : E → C defined by PCx = x0 is called the metric projection from E onto C.
Let x ∈ E and u ∈ C. Then it is known that u = PCx if and only if

〈
u − y, J(x − u)〉 ≥ 0, ∀y ∈ C. (2.5)

For the details on the metric projection, refer to [17–20].
In the sequel, we make use the following lemmas for our main results.

Lemma 2.1 (see [21]). Let E be a real 2-uniformly smooth Banach space with the best smooth
constant K. Then the following inequality holds

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, J(x)

〉
+ 2
∥∥Ky∥∥2 (2.6)

for any x, y ∈ E.

Lemma 2.2 (see [11]). Let C be a nonempty subset of a real 2-uniformly smooth Banach space E
with the best smooth constant K > 0 and let T : C → C be a λ-strict pseudocontraction. For
α ∈ (0, 1)∩ (0, λ/K2], we define Tαx = (1−α)x +αTx. Then Tα : C → E is nonexpansive such that
F(Tα) = F(T).
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Lemma 2.3 (demiclosed principle, see [22]). Let E be a real uniformly convex Banach space, let
C be a nonempty closed convex subset of E, and let T : C → C be a continuous pseudocontractive
mapping. Then, I − T is demiclosed at zero.

Lemma 2.4 (see [23]). Let C be a closed convex subset of a uniformly convex Banach space. Then for
each r > 0, there exists a strictly increasing convex continuous function γ : [0,∞) → [0,∞) such
that γ(0) = 0 and

γ

⎛⎝∥∥∥∥∥∥T
⎛⎝ m∑

j=0

μjzj

⎞⎠ −
m∑
j=0

μjTzj

∥∥∥∥∥∥
⎞⎠ ≤ max

0≤j<k≤m
(∥∥zj − zk∥∥ − ∥∥Tzj − Tzk∥∥), (2.7)

for all m ≥ 1, {μj}mj=0 ∈ Δm, {zj}mj=0 ⊂ C ∩ Br , and T ∈ Lip(C, 1), where Δm = {{μ0, μ1, . . . , μm} :
0 ≤ μj (0 ≤ j ≤ m) and

∑m
j=0 μj = 1}, Br = {x ∈ E : ||x|| ≤ r}, and Lip(C, 1) is the set of all

nonexpansive mappings from C into E.

3. Main Results

Now we are ready to give our main results in this paper.

Lemma 3.1. Let C be a closed convex subset of a uniformly convex and 2-uniformly smooth Banach
space E with the best smooth constant K > 0, and T : C → C be a λ-strict pseudocontraction. Then
for each r > 0, there exists a strictly increasing convex continuous function γ : [0,∞) → [0,∞) such
that γ(0) = 0 and

γ

⎛⎝α

∥∥∥∥∥∥T
⎛⎝ m∑

j=0

μjzj

⎞⎠ −
m∑
j=0

μjTzj

∥∥∥∥∥∥
⎞⎠ ≤ α max

0≤j<k≤m
(∥∥zj − Tzj∥∥ + ‖zk − Tzk‖

)
, (3.1)

for all m ≥ 1, {μj}mj=0 ∈ Δm, {zj}mj=0 ⊂ C ∩ Br , where α ∈ (0, 1) ∩ (0, λ/K2], Δm =
{{μ0, μ1, . . . , μm} : 0 ≤ μj (0 ≤ j ≤ m) and

∑m
j=0 μj = 1}, Br = {x ∈ E : ||x|| ≤ r}.

Proof. Define the mapping Tα : C → C as Tαx = (1 − α)x + αTx, for all x ∈ C. Then Tα is
nonexpansive. From Lemma 2.4, there exists a strictly increasing convex continuous function
γ : [0,∞) → [0,∞) with γ(0) = 0 and such that

γ

⎛⎝∥∥∥∥∥∥Tα
⎛⎝ m∑

j=0

μjzj

⎞⎠ −
m∑
j=0

μjTαzj

∥∥∥∥∥∥
⎞⎠ ≤ max

0≤j<k≤m
(∥∥zj − zk∥∥ − ∥∥Tαzj − Tαzk∥∥). (3.2)
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Hence

γ

⎛⎝α

∥∥∥∥∥∥T
⎛⎝ m∑

j=0

μjzj

⎞⎠ −
m∑
j=0

μjTzj

∥∥∥∥∥∥
⎞⎠ = γ

⎛⎝∥∥∥∥∥∥Tα
⎛⎝ m∑

j=0

μjzj

⎞⎠ −
m∑
j=0

μjTαzj

∥∥∥∥∥∥
⎞⎠

≤ max
0≤j<k≤m

(∥∥zj − zk∥∥ − ∥∥Tαzj − Tαzk∥∥)
≤ max

0≤j<k≤m
(∥∥zj − Tαzj∥∥ + ‖zk − Tαzk‖

)
= α max

0≤j<k≤m
(∥∥zj − Tzj∥∥ + ‖zk − Tzk‖

)
.

(3.3)

This completes the proof.

Theorem 3.2. Let C be a nonempty closed subset of a uniformly convex and 2-uniformly smooth
Banach space E with the best smooth constant K > 0, assume that for each i (i = 1, 2, . . . ,N), Ti :
C → C is a λi-strict pseudocontraction for some 0 < λi < 1 such that F = ∩Ni=1F(Ti)/= ∅. Let {αn,i}
beN sequences in [0,1] with

∑N
i=1 αn,i = 1 for each n ≥ 0 and {tn} be a sequence in (0,1) with tn → 0.

Let {xn} be a sequence generated by (1.8), where co{z ∈ C :
∑N

i=1 ||z − Tiz|| ≤ tn||xn − yn||} denotes
the convex closure of the set {z ∈ C :

∑N
i=1 ||z − Tiz|| ≤ tn||xn − yn||} and PCn is the metric projection

from E onto Cn. Then {xn} converges strongly to PFx.

Proof. (I) First we prove that {xn} is well defined and bounded.
It is easy to check that Cn is closed and convex and F ⊂ Cn for all n ≥ 0. Therefore {xn}

is well defined.
Put p = PFx. Since F ⊂ Cn and xn+1 = PCnx, we have that

‖xn+1 − x‖ ≤ ∥∥p − x∥∥ (3.4)

for all n ≥ 0. Hence {xn} is bounded.
(II) Now we prove that ||xn − Tixn|| → 0 as n → ∞ for all i ∈ {1, 2, . . . ,N}.
Since xn+1 ∈ Cn, there exist some positive integer m ∈ N (N denotes the set of all

positive integers), {μi} ∈ Δm and {zi}mi=0 ⊂ C such that

∥∥∥∥∥∥xn+1 −
m∑
j=0

μjzj

∥∥∥∥∥∥ < tn, (3.5)

N∑
i=1

∥∥zj − Tizj∥∥ ≤ tn
∥∥xn − yn∥∥ (3.6)
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for all j ∈ {0, 1, . . . , m}. Put r0 = supn≥1||xn − p|| and λ = min1≤i≤N{λi}. Take α ∈ (0, 1) ∩
(0, λ/K2]. It follows from Lemma 2.2 and (3.5) that

‖xn − Tixn‖ =
1
α

∥∥(Tiαxn − p) + (p − xn)∥∥ ≤ 2r0

α
, (3.7)∥∥∥∥∥∥Ti

⎛⎝ m∑
j=0

μjzj

⎞⎠ − Tixn+1

∥∥∥∥∥∥ ≤ 1
α

⎛⎝∥∥∥∥∥∥Tiα
⎛⎝ m∑

j=0

μjzj

⎞⎠ − Tiαxn+1

∥∥∥∥∥∥ + (1 − α)
∥∥∥∥∥∥

m∑
j=0

μjzj − xn+1

∥∥∥∥∥∥
⎞⎠

≤
(

2
α
− 1
)∥∥∥∥∥∥

m∑
j=0

μjzj − xn+1

∥∥∥∥∥∥
≤
(

2
α
− 1
)
tn

(3.8)

for all i ∈ {1, 2, . . . ,N}. Moreover, (3.7) implies

∥∥xn − yn∥∥ ≤ 2r0

α
. (3.9)

It follows from Lemma 3.1, (3.5)–(3.9) that

N∑
i=1

‖xn+1 − Tixn+1‖ ≤
N∑
i=1

⎛⎝∥∥∥∥∥∥xn+1 −
m∑
j=0

μjzj

∥∥∥∥∥∥ +
∥∥∥∥∥∥

m∑
j=0

μj
(
zj − Tizj

)∥∥∥∥∥∥
+

∥∥∥∥∥∥
m∑
j=0

μjTizj − Ti
⎛⎝ m∑

j=0

μjzj

⎞⎠∥∥∥∥∥∥ +
∥∥∥∥∥∥Ti
⎛⎝ m∑

j=0

μjzj

⎞⎠ − Tixn+1

∥∥∥∥∥∥
⎞⎠

≤ 2N
α

∥∥∥∥∥∥xn+1 −
m∑
j=0

μjzj

∥∥∥∥∥∥ +
m∑
j=0

μj

(
N∑
i=1

∥∥zj − Tizj∥∥)

+
N∑
i=1

∥∥∥∥∥∥
m∑
j=0

μjTizj − Ti
⎛⎝ m∑

j=0

μjzj

⎞⎠∥∥∥∥∥∥
≤ 2N

α
tn + tn

∥∥yn − xn∥∥ + N∑
i=1

1
α
γ−1
(
α max

0≤k<j≤m
(‖zk − Tizk‖ + ∥∥zj − Tizj∥∥))

≤ 2N + 2r0

α
tn +

N

α
γ−1(4r0tn) −→ 0 as n −→ ∞.

(3.10)

This shows that
‖xn − Tixn‖ −→ 0 as n −→ ∞ (3.11)

for all i ∈ {1, 2, . . . ,N}.
(III) Finally, we prove that xn → p = PFx.
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It follows from the boundedness of {xn} that there exists {xni} ⊂ {xn} such that xni ⇀
v as i → ∞. Since for each i ∈ {0, 1, . . . ,N}, Ti is a λi-strict pseudocontraction, then Ti is
demiclosed. one has v ∈ F.

From the weakly lower semicontinuity of the norm and (3.4), we have

∥∥p − x∥∥ ≤ ||v − x|| ≤ lim inf
i→∞

‖xni‖ − x

≤ lim sup
i→∞

‖xni − x‖ ≤ ∥∥p − x∥∥. (3.12)

This shows p = v and hence xni ⇀ p as i → ∞. Therefore, we obtain xn ⇀ p. Further, we
have that

lim
n→∞

‖xn − x‖ =
∥∥p − x∥∥. (3.13)

Since E is uniformly convex, we have xn−x → p−x. This shows that xn → p. This completes
the proof.

Corollary 3.3. Let C be a nonempty closed subset of a uniformly convex and 2-uniformly smooth
Banach space E with the best smooth constant K > 0, assume that T : C → C is a λ-strict
pseudocontraction for some 0 < λ < 1 such that F(T)/= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C,
Cn = co{z ∈ C : ||z − Tz|| ≤ tn||xn − Txn||},

xn+1 = PCnx, n = 0, 1, 2, . . . ,

(3.14)

where {tn} is a sequence in (0,1) with tn → 0. co{z ∈ C : ||z − Tz|| ≤ tn||xn − Txn||} denotes the
convex closure of the set {z ∈ C : ||z − Tz|| ≤ tn||xn − Txn||} and PCn is the metric projection from E
onto Cn. Then {xn} converges strongly to PF(T)x.

Proof. Set T1 = T, Tk = I for all 2 ≤ k ≤ N, and αn,1 = 1, αn,k = 0 for all 2 ≤ k ≤ N in
Theorem 3.2. The desired result can be obtained directly from Theorem 3.2.

Remark 3.4. At the end of the paper, we would like to point out that concerning the
convergence problem of iterative sequences for strictly pseudocontractive mappings has been
considered and studied by many authors. It can be consulted the references [24–37].
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We present a smooth augmented Lagrangian algorithm for semiinfinite programming (SIP). For
this algorithm, we establish a perturbation theorem under mild conditions. As a corollary of the
perturbation theorem, we obtain the global convergence result, that is, any accumulation point of
the sequence generated by the algorithm is the solution of SIP. We get this global convergence result
without any boundedness condition or coercive condition. Another corollary of the perturbation
theorem shows that the perturbation function at zero point is lower semi-continuous if and only
if the algorithm forces the sequence of objective function convergence to the optimal value of SIP.
Finally, numerical results are given.

1. Introduction

We consider the semi-infinite programming (SIP):

inf
{
f(x) | x ∈ X}

, (1.1)

whereX = {x ∈ Rn | g(x, s) ≤ 0, for all s ∈ Ω}, the functions f : Rn → R and g : Rn×Rm → R
are continuously differentiable. Ω ⊂ Rm is a nonempty bounded and closed domain. In this
paper, we assume that

inf
x∈Rn

f(x) > −∞. (1.2)

This assumption is very mild, because the objective function f(x) can be replaced by ef(x) if
the assumption is not satisfied.
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Semi-infinite programming has wide applications such as engineering technology,
optimal control, characteristic value calculation, and statistical design. Many methods have
been proposed to solve semi-infinite programming (see [1–4]). As we know, the main
difficulty for solving SIP is that it has infinite constraints. If transforming the infinite
constraints into an integral function, SIP (1.1) is equivalent to a nonlinear programming with
finite constraints.

For any given x ∈ Rn and s ∈ Ω, let

[
g(x, s)

]
+ = max

{
g(x, s), 0

}
. (1.3)

Define ϕ : Rn → R by

ϕ(x) =
∫
Ω

[
g(x, s)

]
+dμ(s), (1.4)

where μ ≥ 0 is a given probability measure on Ω, that is,
∫
Ω dμ(s) = μ(Ω) = 1. Thus SIP

(1.1) can be reformulated as the following nonlinear programming (NP) with one equality
constraint:

inf
x∈Rn

{
f(x) | ϕ(x) = 0

}
. (1.5)

Then nonlinear programming (1.5) has the same optimal solution and optimal value with SIP
(1.1).

For nonlinear programming with finite equality constraints, Hestenes [5] and Powell
[6] independently proposed an augmented Lagrangian function by incorporating a quadratic
penalty term in the conventional Lagrangian function. This augmented Lagrangian function
avoids the shortcoming that the conventional Lagrangian function is only suitable for convex
function. So the augmented Lagrangian function can be applied to nonconvex optimization
problem. Later, the augmented Lagrangian function was extended to inequality constrained
optimization problems and thoroughly investigated by Rockafellar [7]. Recently, Yang and
Teo [8] and Rückmann and Shapiro [9] introduced the augmented Lagrangian function
for SIP (1.1). In [9], necessary and sufficient conditions for the existence of corresponding
augmented Lagrange multipliers were presented. [8] proposed a nonlinear Lagrangian
method and established that the sequence of optimal values of nonlinear penalty problems
converges to that of SIP (1.1), under the assumption that the level set of objective function is
bounded. In this paper, using the equivalent relation of semi-infinite programming (1.1) and
nonlinear programming (1.5), without any boundness condition, we present an augmented
Lagrangian algorithm for SIP (1.1).

We notice that although the constraints of NP (1.5) are finite, but the constraint
function is nonsmooth. Therefore, existing gradient-based optimization methods cannot be
used to solve NP (1.5) directly. To overcome this inconvenience, we have to smooth the
constraint function. For SIP (1.1), [10–13] presented semismooth Newton methods and
smoothing Newton methods. They proved that each accumulation point is a generalized
stationary point of SIP (1.1). However, at each iteration of these methods, a Hessian matrix
needs to be computed. When the size of the problem is large, computing a Hessian matrix
is very expensive. Based on exact l1 penalty function that is approximated by a family of
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smoothing functions, a smoothed-penalty algorithm for solving NP (1.5) was proposed by
[14]. They proved that if the constrained set is bounded or the objective function is coercive,
the algorithm generates a sequence whose accumulation points are solutions of SIP (1.1).

In this paper, for SIP (1.1), we present a smooth augmented Lagrangian algorithm
by smoothing the classical augmented Lagrangian function [7]. In this algorithm, we need
not have to get an exact global optimal solution of unconstraint subproblem at each
iteration. It is sufficient to search an inexact solution. It is not difficult to obtain an inexact
solution, whenever the evaluation of the integral function is not very expensive. For this
algorithm, we establish a perturbation theorem under mild conditions. As a corollary of the
perturbation theorem, we obtain the global convergence result, that is, any accumulation
point of the sequence generated by the algorithm is the solution of SIP (1.1). We get this
global convergence result without any boundedness condition or coercive condition. It is
noteworthy that the boundedness of the multiplier sequence is a sufficient condition in many
literatures about Lagrangian method (see [15–17]). However, in our algorithm, the multiplier
sequence can be unbounded. Another corollary of the perturbation theorem shows that the
perturbation function at zero point is lower semi-continuous if and only if the algorithm
forces the sequence of objective function convergence to the optimal value of SIP (1.1).

The paper is organized as follows. In the next section, we present a smooth augmented
Lagrangian algorithm. In Section 3, we establish the perturbation theorem of the algorithm.
By this theorem, we obtain a global convergence property and a sufficient and necessary
condition in which the algorithm forces the sequence of objective functions convergence to
the optimal value of SIP (1.1). Finally, we give some numerical results in Section 4.

2. Smooth Augmented Lagrangian Algorithm

Before we introduce the algorithm, some definitions and symbols need to be given. For ε ≥ 0,
we define the relaxed feasible set of SIP (1.1) as follows:

Rε =
{
x ∈ Rn |

∫
Ω

[
g(x, s)

]
+dμ(s) ≤ ε

}
. (2.1)

Then R0 is the feasible set of SIP (1.1). Let R∗
0 be the set of optimal solutions of SIP (1.1). We

assume that R∗
0 /= ∅ in this paper.

The perturbation function is defined as follows:

θf(ε) = inf
x∈Rε

f(x). (2.2)

Thus the optimal value of SIP (1.1) is

θf(0) = inf
x∈R0

f(x). (2.3)

It is easy to show that θf(·) is upper semi-continuous at the point ε = 0.
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For problem (1.5), the corresponding classical augmented Lagrangian function [7] is

L
(
x, λ, ρ

)
= f(x) +

ρ

2

[
ϕ(x) +

λ

ρ

]2

− λ2

2ρ
, (2.4)

where λ is the Lagrangian multiplier and ρ is the penalty parameter. On base of it, we
introduce a class of smooth augmented Lagrangian function:

fr
(
x, λ, ρ

)
= f(x) +

ρ

2

[
r

∫
Ω
φ

(
g(x, s)
r

)
dμ(s) +

λ

ρ

]2

− λ2

2ρ
. (2.5)

Here r is the approximate parameter.
In the following, we suppose that the continuously differentiable function φ : R → R

satisfies

(a) φ(·) is nonnegative and monotone increasing;

(b) for any t > 0, φ(t) ≥ t;
(c) limt→+∞(φ(t)/t) = 1.

It is easy to check that there are many continuously differentiable functions satisfying
conditions (a), (b), and (c). For example,

φ1(t) = log
(
1 + et

)
.

φ2(t) =

{
2et, t < 0,
t + log(1 + t) + 2, t ≥ 0.

φ3(t) =

{
et, t < 0,
t + 1, t ≥ 0.

φ4(t) =
1
2

(
t +

√
t2 + 4

)
.

(2.6)

Using conditions (a) and (c), for any t ∈ R, we have

lim
r→ 0+

rφ

(
t

r

)
= max{0, t}. (2.7)

From the above equation, under conditions (a)–(c), the smooth function fr(x, λ, ρ) approxi-
mates to the classical augmented Lagrangian function L(x, λ, ρ) as r approaches to zero, that
is,

lim
r→ 0+

fr
(
x, λ, ρ

)
= L

(
x, λ, ρ

)
= f(x) +

ρ

2

[
ϕ(x) +

λ

ρ

]2

− λ2

2ρ
. (2.8)

Based on the smooth augmented Lagrangian function fρ(x, β, r), we present the
following smooth augmented Lagrangian algorithm.
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Algorithm 2.1. Set x0 ∈ Rn, r0 > 0, ε0 > 0, ρ0 > 0, λ0 ∈ (0,min{1/
√
r0, 1/

√
ε0}], k := 0.

Step 1. Compute

xk ∈ arg min
x∈Rn

frk
(
x, λk, ρk

)
. (2.9)

Otherwise, seek on inexact global optimal solution xk satisfying

frk
(
xk, λk, ρk

) ≤ inf
x∈Rn

frk
(
x, λk, ρk

)
+ εk. (2.10)

Step 2. Set rk+1 = (1/2)rk, εk+1 = (1/2)εk,

ρk+1 =

{
ρk, xk ∈ Rεk ;
2ρk, xk /∈ Rεk ,

λk+1 ∈
(

0,min
{

1√
rk+1

,
1√
εk+1

}]
.

(2.11)

Step 3. Set k := k + 1, go back step 1.

Since f(x) is bounded below and φ(·) is nonnegative, an inexact solution satisfying
(2.10) always exists. Thus Algorithm 2.1 is feasible.

3. Convergence Properties

In this section, by using a perturbation theorem of Algorithm 2.1, we will obtain a global
convergence property, a sufficient and necessary condition that Algorithm 2.1 forces the
sequence of objective functions convergence to the optimal value of SIP (1.1). To prove the
perturbation theorem, we first give the following two lemmas.

Let Ω+(x) = {s ∈ Ω | g(x, s) > 0}, Ω0(x) = {s ∈ Ω | g(x, s) = 0}, Ω−(x) = {s ∈ Ω |
g(x, s) < 0}.

Lemma 3.1. Suppose that the point sequence {xk} is generated by Algorithm 2.1. Then for any ε > 0,
there exists a positive integer k0 such that xk ∈ Rε, for all k > k0.

Proof.

Case 1. When k → +∞, ρk tends to a finite number. From Algorithm 2.1, there exists a positive
integer N1 such that xk ∈ Rεk for all k > N1. Notice that εk → 0, so for any ε > 0, there exists
a positive integer N2 such that εk < ε for all k > N2. Therefore, when k > max{N1,N2}, we
have xk ∈ Rεk ⊆ Rε.

Case 2. When k → +∞, ρk → +∞. We suppose that the conclusion does not hold. Then for
ε > 0, there exists an infinite subsequenceK ⊆N = {1, 2, 3, . . .} such that xk /∈ Rε for all k ∈ K,
that is, ∫

Ω

[
g(xk, s)

]
+dμ(s) > ε. (3.1)
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Since εk → 0, for the above ε > 0, there exists a positive integer N3 such that εk < ε for all
k > N3. Then using (2.10) in Algorithm 2.1, we have

frk
(
xk, λk, ρk

) ≤ inf
x∈Rn

frk
(
x, λk, ρk

)
+ ε. (3.2)

Therefore by (3.1), (3.2), and φ(t) satisfying (a)-(b), for any k ∈ K, k > N3, we derive that

inf
x∈Rn

frk
(
x, λk, ρk

)
+ ε ≥ frk

(
xk, λk, ρk

)
= f(xk) +

ρk
2

[
rk

∫
Ω
φ

(
g(xk, s)
rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk

≥ f(xk) +
ρk
2

[
rk

∫
Ω+(xk)

φ

(
g(xk, s)
rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk

≥ f(xk) +
ρk
2

[∫
Ω+(xk)

g(xk, s)dμ(s) +
λk
ρk

]2

− λ2
k

2ρk

≥ f(xk) +
ρk
2

[
ε +

λk
ρk

]2

− λ2
k

2ρk

≥ f(xk) +
ρk
2
ε2.

(3.3)

Note that {f(xk)} is bounded below and ρk → +∞(k → +∞), then we can obtain that

f(xk) +
ρk
2
ε2 −→ +∞, (k ∈ K, k −→ +∞), (3.4)

that is, infx∈Rnfrk(x, λk, ρk) → +∞(k ∈ K, k → +∞). However, on the other hand, since
R0 /= ∅, we can choose x ∈ R0; by the choice of rk, ρk, λk in Algorithm 2.1 and the properties of
φ, we obtain that

inf
x∈Rn

frk
(
x, λk, ρk

) ≤ frk
(
x, λk, ρk

)
= f(x) +

ρk
2

[
rk

∫
Ω
φ

(
g(x, s)
rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk

≤ f(x) +
ρk
2

[
rk

∫
Ω
φ(0)dμ(s) +

λk
ρk

]2

− λ2
k

2ρk

= f(x) +
ρk
2
r2
k

(
φ(0)μ(Ω)

)2 + λkrkφ(0)μ(Ω)

≤ f(x) + ρ0r
2
0
(
φ(0)μ(Ω)

)2 +
√
r0φ(0)μ(Ω).

(3.5)

This indicates that infx∈Rnfrk(x, λk, ρk) has an upper bound. It is in contradiction with
infx∈Rnfrk(x, λk, ρk) → +∞(k ∈ K, k → +∞).

By using Lemma 3.1, we have the following Lemma 3.2.



Journal of Applied Mathematics 7

Lemma 3.2. Suppose that the point sequence {xk} is generated by Algorithm 2.1. Then for every
accumulation point x∗ of {xk}, one has x∗ ∈ R0.

Theorem 3.3. Suppose that the sequence {xk} is generated by Algorithm 2.1, then

(i) limk→∞f(xk) = limε→ 0+θf(ε);

(ii) limk→∞frk(xk, λk, ρk) = limε→ 0+θf(ε);

(iii) limk→∞(ρk/2)[rk
∫
Ω φ(g(xk, s)/rk)dμ(s) + λk/ρk]

2 − λ2
k/2ρk = 0.

Proof. Since θf(ε) is monotonically decreasing with respect to ε > 0 and has below bound,
we know limε→ 0+θf(ε) exists and is finite. By Algorithm 2.1, we have εk ↓ 0. Then

lim
k→+∞

θf(εk) = lim
ε→ 0+

θf(ε). (3.6)

Taking δk > 0 and δk → 0(k → +∞), by the definition of infimum, there exists zk ∈ Rεk such
that

f(zk) ≤ θf(εk) + δk. (3.7)

Since zk ∈ Rεk , that is,
∫
Ω[g(zk, s)]+dμ(s) ≤ εk.

On the other hand, by Lemma 3.1, for any ε > 0, when k is sufficiently large, we have

xk ∈ Rε. (3.8)

Since φ(t) satisfies conditions (a) and (c), we obtain

lim
t→+∞

φ(t) − φ(0)
t

= lim
t→+∞

φ(t)
t

= 1, lim
t→ 0+

φ(t) − φ(0)
t

= lim
t→ 0+

φ′(t) = φ′(0). (3.9)

Therefore, there exists M > 0 such that

φ(t) ≤Mt + φ(0), (3.10)
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for any t ≥ 0. As stated previously, by the choice of rk, εk, ρk, and λk in Algorithm 2.1, (3.7),
(3.8), and (3.10) derive that for any ε > 0,

θf(ε) ≤ f(xk)

≤ f(xk) +
ρk
2

[
rk

∫
Ω
φ

(
g(xk, s)
rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk

≤ inf
x∈Rn

frk
(
x, λk, ρk

)
+ εk

≤ f(zk) +
ρk
2

[
rk

∫
Ω
φ

(
g(zk, s)
rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk
+ εk

≤ θf(εk) + δk +
ρk
2

[
rk

∫
Ω
φ

(
g(zk, s)
rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk
+ εk

≤ θf(εk) + δk +
ρk
2

[
Mεk + rkφ(0)μ(Ω) +

λk
ρk

]2

− λ2
k

2ρk
+ εk

≤ θf(εk) + δk +
ρk
2
(
max{rk, εk}

(
M + φ(0)μ(Ω)

))2

+ λk max{rk, εk}
(
M + φ(0)μ(Ω)

)
+ εk

≤ θf(εk) + δk +
ρ0

2
max{r0, ε0}

(
M + φ(0)μ(Ω)

)2 max{rk, εk}

+
(
M + φ(0)μ(Ω)

)
max{√rk,

√
εk} + εk.

(3.11)

From the above inequalities and (3.6), noticing that rkεk → 0(k → ∞), for any ε > 0, we
have

θf(ε) ≤ lim inf
k→+∞

f(xk)

≤ lim sup
k→+∞

f(xk)

≤ lim sup
k→+∞

{
f(xk) +

ρk
2

[
rk

∫
Ω
φ

(
g(xk, s)
rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk

}

≤ lim
k→+∞

θf(εk)

= lim
ε→ 0+

θf(ε).

(3.12)

Then limε→ 0+θf(ε) = limk→+∞f(xk) = lim supk→+∞{f(xk) +
ρk
2
[rk

∫
Ω φ(g(xk, s)/rk)dμ(s) +

λk/ρk]
2 − λ2

k
/2ρk}. So the conclusions (i)–(iii) hold.

Now, we prove the global convergence of Algorithm 2.1.
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Corollary 3.4. Suppose that the point sequence {xk} is generated by Algorithm 2.1. Then every
accumulation point of {xk} is the optimal solution of the problem (1.1).

Proof. Let x∗ be an accumulation point of {xk}; from Lemma 3.2, we have

x∗ ∈ R0. (3.13)

By the conclusion (i) of Theorem 3.3 and (3.13), we obtain

lim
ε→ 0+

θf(ε) = lim
k→∞

f(xk) = f(x∗) ≥ θf(0). (3.14)

Then we get f(x∗) = θf(0), because (3.14) and θf(ε) are upper semi-continuous at the point
ε = 0.

By using Theorem 3.3, we have the following Corollary 3.5.

Corollary 3.5. limk→∞f(xk) = θf(0) if and only if θf(ε) is lower semi-continuous at the point
ε = 0.

4. Numerical Results

To give some insight into the behavior of the algorithm presented in this paper. It is imple-
mented in Matlab 7.0.4 and runs are made on AMD Athlon(tm) 64 × 2 Dual Core Processor
4800+ with CPU 2.50 GHz and 1.87 GB memory. Tables 1 and 2 show the computational
results of the corresponding problems with the following items:

k : number of iterations;

x0: starting point;

φ(t): smoothing function;

xk: the final iteration point;

λk: the final Lagrangian multiplier;

f(xk): the function value of f(x) at the final xk.

The parameters used in the Algorithm 2.1 are specified as follows:

r0 = 1, ε0 = 1, ρ0 = 1, λ0 = 1,

λk+1 = min
{
λk + ρkrk

∫
Ω
φ

(
g(xk, s)
rk

)
dμ(s), 103

}
.

(4.1)

Example 4.1 (see [18]). Consider the following:

min 1.21 exp(x1) + exp(x2)

s.t. s − exp(x1 + x2) ≤ 0, ∀s ∈ [0, 1].
(4.2)
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Table 1: Numerical results of Example 4.1.

k φ(t) xk λk f(xk)
26 log (1 + et) (−0.0968, 0.0938) 367.2453 2.1982
30 (1/2)(t +

√
t2 + 4) (−0.0959, 0.0947) 923.9.40 2.1993

19 et (−0.0953, 0.0953) 6.1129 2.1999

Table 2: Numerical results of Example 4.2.

n k φ(t) xk λk f(xk)

3 17 log (1 + et) (0.0839, 0.4494, 1.0105) 18.5016 0.6472
3 16 (1/2)(t +

√
t2 + 4) (0.0839, 0.4494, 1.0108) 18.5869 0.6472

3 16 et (0.0873, 0.4248, 1.0460) 12.3942 0.6484

6 16 log (1 + et) (0.00, 1.03, −0.25, 1.24,
−1.39, 0.94) 5.3234 0.6161

6 17 (1/2)(t +
√
t2 + 4) (−0.00, 1.03, −0.25, 1.23,

−1.39, 0.94) 7.5705 0.6161

6 16 et
(−0.00, 1.02, −0.25, 1.24,

−1.41, 0.95) 4.1742 0.6161

8 17 log (1 + et) (−0.00, 1.00, −0.06, 0.77,
−1.49, 2.77, −2.41, 0.96) 4.3033 0.6157

8 18 (1/2)(t +
√
t2 + 4) (−0.00, 1.00, −0.06, 0.77,

−1.47, 2.78, −2.40, 0.96) 7.0902 0.6157

8 16 et
(0.00, 1.00, −0.06, 0.78,
−1.49, 2.78, −2.42, 0.97) 3.3116 0.6158

We choose the starting point x0 = (0, 0). This example has the optimal solution x∗ =
(− ln 1.1, ln 1.1).

Example 4.2 (see [18]). Consider the following:

min
n∑
i=1

xi/i

s.t. tan s −
n∑
i=1

xis
i−1 ≤ 0, ∀s ∈ [0, 1],

(4.3)

for n = 3, 6, and 8. We choose zero vectors as the starting points.

Throughout the computational experiments, we use trust region method for solving
an unconstrained optimization subproblem at each step. For the corresponding trust region
subproblem, we directly use the trust function in Matlab toolbox. The test results of
Example 4.1 are summarized in Table 1. We test the three cases for φ(t) = log(1 + et),
φ(t) = (1/2)(t +

√
t2 + 4) and φ(t) = et, which are, respectively, used as the smoothing

approximation functions. k denotes the number of the iteration, λk denotes the approximate
Lagrangian multiplier at the final iteration, and xk and f(xk) are the approximate solution
and the objective function at the final iteration. For Example 4.2, we test the results when
n = 3, n = 6, and n = 8 in Table 2. Numerical results demonstrate that augmented Lagrangian
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algorithm established in this paper is a practical and effective method for solving semi-
infinite programming problem.
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We first introduce a new notion of the partial and generalized cone subconvexlike set-valued
map and give an equivalent characterization of the partial and generalized cone subconvexlike
set-valued map in linear spaces. Secondly, a generalized alternative theorem of the partial and
generalized cone subconvexlike set-valued map was presented. Finally, Kuhn-Tucker conditions
of set-valued optimization problems were established in the sense of globally proper efficiency.

1. Introduction

Generalized convexity plays an important role in set-valued optimization. The generalization
of convexity from vector-valued maps to set-valued maps happened in the 1970s. Borwein
[1] and Giannessi [2] introduced and studied the cone convexity of set-valued maps. Based
on Borwein and Giannessi’s work, some authors [3–7] established a series of optimality
conditions of set-valued optimization problems under different types of generalized
convexity of set-valued maps in topological spaces. Since linear spaces are wider than
topological spaces, generalizing some results of the above mentioned references from
topological spaces to linear spaces is an interesting topic. Li [8] introduced a cone
subconvexlike set-valued map involving the algebraic interior and established Kuhn-Tucker
conditions. Huang and Li [9] studied Lagrangian multiplier rules of set-valued optimization
problems with generalized cone subconvexlike set-valued maps in linear spaces. When the
algebraic interior of the convex cone is empty, Hernández et al. [10] used the relative algebraic
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interior of the convex cone to introduce cone subconvexlikeness of set-valued maps and
investigated Benson proper efficiency of set-valued optimization problems in linear spaces.

The aim of this paper is to study globally proper efficiency of set-valued optimization
problems in linear spaces. This paper is organized as follows. In Section 2, we recalled some
basic notions and gave some lemmas. In Section 3, we presented a generalized alternative
theorem of the partial and generalized cone subconvexlike set-valued map and established
Kuhn-Tucker conditions of set-valued optimization problems in the sense of globally proper
efficiency.

2. Preliminaries

In this paper, let Y and Z be two real-ordered linear spaces, and let 0 denote the zero element
of every space. Let K be a nonempty subset in Y . The cone hull of K is defined as coneK :=
{λk | k ∈ K, λ ≥ 0}. K is called a convex cone if and only if

λ1k1 + λ2k2 ∈ K, ∀λ1, λ2 ≥ 0, ∀k1, k2 ∈ K. (2.1)

A cone K is said to be pointed if and only if K ∩ (−K) = {0}. A cone K is said to be nontrivial
if and only if K/= {0} and K/=Y .

Let Y ∗ and Z∗ stand for the algebraic dual spaces of Y and Z, respectively. Let C and
D be nontrivial, pointed, and convex cones in Y and Z, respectively. The algebraic dual cone
C+ of C is defined as C+ := {y∗ ∈ Y ∗ | 〈y, y∗〉 � 0, ∀y ∈ C}, and the strictly algebraic dual
cone C+i of C is defined as C+i := {y∗ ∈ Y ∗ | 〈y, y∗〉 > 0, ∀y ∈ C \ {0}}, where 〈y, y∗〉 denotes
the value of the linear functional y∗ at the point y. The meaning of D+ is similar to that of C+.

Let K be a nonempty subset of Y . The linear hull spanK of K is defined as spanK :=
{k | k =

∑n
i=1 λiki, λi ∈ R, ki ∈ K, i = 1, . . . , n}, and the affine hull affK of K is defined as

affK := {k | k =
∑n

i=1 λiki,
∑n

i=1 λi = 1, λi ∈ R, ki ∈ K, i = 1, . . . , n}. The generated linear
subspace L(K) of K is defined as L(K) := span(K −K).

Definition 2.1 (see [11]). Let K be a nonempty subset of Y . The algebraic interior of K is the
set

corK :=
{
k ∈ K | ∀k′ ∈ Y, ∃λ′ > 0, ∀λ ∈ [

0, λ′
]
, k + λk′ ∈ K}

. (2.2)

Definition 2.2 (see [12]). Let K be a nonempty subset of Y . The relative algebraic interior of K
is the set

icrK = {k ∈ K | ∀v ∈ affK − k, ∃λ0 > 0, ∀λ ∈ [0, λ0], k + λv ∈ K}. (2.3)

Clearly, affK − k = L(K), for all k ∈ K. Therefore, Definition 2.2 is consistent with the
definition of the relative algebraic interior of K in [13, 14]. However, Definition 2.2 seems to
be more convenient than the ones in [13, 14].

It is worth noting that if K is a nontrivial and pointed cone in Y , then 0 /∈ icrK, and if
K is a convex cone, then icrK is a convex set, and icrK ∪ {0} is a convex cone.
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Lemma 2.3 (see [13]). If K is a convex cone in Y , then K + icrK = icrK.

Lemma 2.4 (see [10, 12, 14]). If K is a nonempty subset in Y , then

(a) affK − k = affK −K, for all k ∈ K;

if K is convex in Y and icrK/= ∅, then

(b) icr (icrK) = icrK;

(c) aff(icrK) = affK.

Lemma 2.5 (see [12]). Let K be a convex set with icr (K)/= ∅ in Y . If 0 /∈ icrK, then there exists
y∗ ∈ Y ∗ \ {0} such that

〈
k, y∗〉 ≥ 0, ∀k ∈ K. (2.4)

3. Main Results

Let A be a nonempty set, and let F : A ⇒ Y and G : A ⇒ Z be two set-valued maps on A.
Write F(A) :=

⋃
x∈A F(x) and 〈F(x), y∗〉 := {〈y, y∗〉 | y ∈ F(x)}. The meanings of G(A) and

〈G(x), z∗〉 are similar to those of F(A) and 〈F(x), y∗〉.
Now, we introduce a new notion of the partial and generalized cone subconvexlike

set-valued map.

Definition 3.1. A set-valued map J = (F,G) : A ⇒ Y × Z is called partial and generalized
C ×D-subconvexlike on A if and only if cone(J(A)) + icrC ×D is a convex set in Y × Z.

The following theorem will give some equivalent characterizations of the partial and
generalized C ×D-subconvexlike set-valued map in linear spaces.

Theorem 3.2. Let icrC/= ∅. Then the following statements are equivalent:

(a) the set-valued map J : A ⇒ Y × Z is partial and generalized C ×D-subconvexlike on A,

(b) For all (c, d) ∈ icrC ×D, ∀x1, x2 ∈ A, ∀λ ∈ ]0, 1[,

(c, d) + λJ(x1) + (1 − λ)J(x2) ⊆ cone(J(A)) + icrC ×D, (3.1)

(c) ∃c′ ∈ icrC, ∀x1, x2 ∈ A, ∀λ ∈]0, 1[, ∀ε > 0,

ε
(
c′, 0

)
+ λJ(x1) + (1 − λ)J(x2) ⊆ cone(J(A)) + C ×D, (3.2)

(d) ∃c′′ ∈ C, ∀x1, x2 ∈ A, ∀λ ∈]0, 1[, ∀ε > 0,

ε
(
c′′, 0

)
+ λJ(x1) + (1 − λ)J(x2) ⊆ cone(J(A)) + C ×D. (3.3)
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Proof. (a) ⇒ (b). Let (c, d) ∈ icrC × D,x1, x2 ∈ A, λ ∈]0, 1[, (y1, z1) ∈ J(x1), and (y2, z2) ∈
J(x2). Clearly,

(
y1, z1

)
+ (c, d) ∈ cone(J(A)) + icrC ×D,(

y2, z2
)
+ (c, d) ∈ cone(J(A)) + icrC ×D.

(3.4)

Since J is partial and generalized C ×D-subconvexlike on A, it follows from (3.4) that

(c, d) + λ
(
y1, z1

)
+ (1 − λ)(y2, z2

)
= λ

((
y1, z1

)
+ (c, d)

)
+ (1 − λ)((y2, z2

)
+ (c, d)

) ∈ cone(J(A)) + icrC ×D,
(3.5)

which implies that (3.1) holds.
The implications (b) ⇒ (c) ⇒ (d) are clear.
(d) ⇒ (a). Let (mi, ni) ∈ cone(J(A)) + icrC ×D (i = 1, 2), λ ∈]0, 1[. Then there exist ρi ≥

0, xi ∈ A, (yi, zi) ∈ J(xi), and (ci, di) ∈ icrC×D (i = 1, 2) such that (mi, ni) = ρi(yi, zi) + (ci, di).
Case one: if ρ1 = 0 or ρ2 = 0, we have λ(m1, n1)+(1−λ)(m2, n2) ∈ cone (J(A))+icrC×D.
Case two: if ρ1 > 0 and ρ2 > 0, we have

λ(m1, n1) + (1 − λ)(m2, n2)

= λ
(
ρ1
(
y1, z1

)
+ (c1, d1)

)
+ (1 − λ)(ρ2

(
y2, z2

)
+ (c2, d2)

)
= [λ(c1, d1) + (1 − λ)(c2, d2)] +

[
λρ1

(
y1, z1

)
+ (1 − λ)ρ2

(
y2, z2

)]
= β

{
1
β
[λ(c1, d1) + (1 − λ)(c2, d2)] +

[
λρ1

β

(
y1, z1

)
+
(1 − λ)ρ2

β

(
y2, z2

)]}
,

(3.6)

where β = λρ1 + (1 − λ)ρ2.
By Lemma 2.4, we obtain

−c′′ ∈ C − C ⊆ affC − C = affC − 1
β
[λc1 + (1 − λ)c2]

= aff(icrC) − 1
β
[λc1 + (1 − λ)c2].

(3.7)

Since (1/β)[λc1 + (1 − λ)c2] ∈ icrC = icr(icrC), there exists λ0 > 0 such that

1
β
[λc1 + (1 − λ)c2] + λ0

(−c′′) ∈ icrC. (3.8)
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By (3.3), (3.6), (3.8), and Lemma 2.3, we have

λ(m1, n1) + (1 − λ)(m2, n2) = β

{
1
β
[λ(c1, d1) + (1 − λ)(c2, d2)]

+λ0
(−c′′, 0) + [

λ0
(
c′′, 0

)
+
λρ1

β

(
y1, z1

)
+
(1 − λ)ρ2

β

(
y2, z2

)]}

= β

{(
1
β
[λc1 + (1 − λ)c2] + λ0

(−c′′), 1
β
[λd1 + (1 − λ)d2]

)

+
[
λ0
(
c′′, 0

)
+
λρ1

β

(
y1, z1

)
+
(1 − λ)ρ2

β

(
y2, z2

)]}
∈ β(icrC ×D) + cone(J(A)) + C ×D ⊆ cone(J(A)) + icrC ×D.

(3.9)

Cases one and two imply that cone(J(A))+ icrC×D is a convex set in Y ×Z. Therefore,
(a) holds.

Remark 3.3. Theorem 3.2 generalizes the sixth item of Proposition 2.4 in [14], Lemma 2.1 in
[15], and Lemma 2 in [16].

Now, we will give a generalized alternative theorem of the partial and generalized
C ×D-subconvexlike map. We consider the following two systems.

System 1. There exists x0 ∈ A such that −J(x0) ∩ (icrC ×D)/= ∅.
System 2. There exists (y∗, z∗) ∈ (C+ ×D+) \ {(0, 0)} such that

〈
y, y∗〉 + 〈z, z∗〉 ≥ 0, ∀(y, z) ∈ J(A). (3.10)

Theorem 3.4 (generalized alternative theorem). Let icr (cone(J(A)) + icrC×D)/= ∅, and let the
set-valued map J : A ⇒ Y × Z be partial and generalized C ×D-subconvexlike on A. Then,

(i) if System 1 has no solutions, then System 2 has a solution;

(ii) if (y∗, z∗) ∈ C+i ×D+ is a solution of System 2, then System 1 has no solutions.

Proof. (i) Firstly, we assert that (0, 0) /∈ cone(J(A)) + icrC ×D. Otherwise, there exist x0 ∈ A
and α ≥ 0 such that (0, 0) ∈ αJ(x0) + icrC ×D.

Case one: if α = 0, then 0 ∈ icrC. Since C is a nontrivial, pointed, and convex cone,
0 /∈ icrC. Thus, we obtain a contradiction.

Case two: if α > 0, then there exists (y0, z0) ∈ J(x0) such that

−(y0, z0
) ∈ 1

α
(icrC ×D) ⊆ icrC ×D, (3.11)

which contradicts that System 1 has no solutions.
Cases one and two show that our assertion is true. Since the set-valued map J is partial

and generalizedC×D-subconvexlike onA, cone(J(A))+icrC×D is a convex set in Y×Z. Note
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that icr(cone(J(A))+ icrC×D)/= ∅. Thus, all conditions of Lemma 2.5 are satisfied. Therefore,
there exists (y∗, z∗) ∈ (Y ∗ × Z∗) \ {(0, 0)} such that

〈
ry + c, y∗〉 + 〈rz + d, z∗〉 ≥ 0, ∀r ≥ 0, x ∈ A,y ∈ F(x), z ∈ G(x), c ∈ icrC, d ∈ D. (3.12)

Letting r = 1 in (3.12), we have

〈
y + c, y∗〉 + 〈z + d, z∗〉 ≥ 0, ∀x ∈ A,y ∈ F(x), z ∈ G(x), c ∈ icrC, d ∈ D. (3.13)

We again assert that y∗ ∈ C+. Otherwise, there exists y′ ∈ C such that 〈y′, y∗〉 < 0. Let
x ∈ A,y ∈ F(x), z ∈ G(x), c ∈ icrC, and d ∈ D be fixed. Then there exists sufficiently large
positive number λ such that λ〈y′, y∗〉 + 〈y + c, y∗〉 + 〈z + d, z∗〉 < 0, that is,

〈
y +

(
c + λy′), y∗〉 + 〈

z + d, z∗
〉
< 0. (3.14)

By Lemma 2.3, c + λy′ ∈ icrC. Thus, (3.14) contradicts (3.13). Therefore, y∗ ∈ C+. Similarly,
we can prove that z∗ ∈ D+.

Let c ∈ icrC be fixed in (3.13). Then, βc ∈ icrC, ∀β > 0. Letting d = 0 in (3.13), we have

〈
y, y∗〉 + β〈c, y∗〉 + 〈z, z∗〉 ≥ 0, ∀x ∈ A, y ∈ F(x), z ∈ G(x). (3.15)

Letting β → 0 in (3.15), we obtain

〈
y, y∗〉 + 〈z, z∗〉 ≥ 0, ∀x ∈ A,y ∈ F(x), z ∈ G(x), (3.16)

which implies that System 2 has a solution.
(ii) If (y∗, z∗) ∈ C+i ×D+ is a solution of System 2, then

〈
y, y∗〉 + 〈z, z∗〉 ≥ 0, ∀x ∈ A, y ∈ F(x), z ∈ G(x). (3.17)

We assert that System 1 has no solutions. Otherwise, there exist p ∈ F(x0) and q ∈ G(x0)
such that −p ∈ icrC ⊆ C \ {0} and −q ∈ D. Therefore, we have 〈p, y∗〉 + 〈q, z∗〉 < 0, which
contradicts (3.17). Therefore, our assertion is true.

Remark 3.5. If Y × Z is a finite-dimensional space, then the partial and generalized C × D-
subconvexlikeness of J : A ⇒ Y ×Z implies that cone(J(A))+ icrC×D is a nonempty convex
in Y ×Z, which in turn implies that the condition icr(cone(J(A))+ icrC×D)/= ∅ holds trivially.

Remark 3.6. Theorem 3.4 generalizes Theorem 3.7 in [14], Theorem 2.1 in [15], and Theo-
rem 1 in [16].

From now on, we suppose that icrC/= ∅.

Definition 3.7 (see [17]). Let B ⊆ Y. y ∈ B be called a global properly efficient point with
respect to C (denoted by y ∈ GPE(B,C)) if and only if there exists a nontrivial, pointed, and
convex cone C′ with C \ {0} ⊆ icrC′ such that (B − y) ∩ (−C′ \ {0}) = ∅.
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Now, we consider the following set-valued optimization problem:

Min F(x)

subject to −G(x) ∩D/= ∅.
(3.18)

The feasible set of (3.18) is defined by S := {x ∈ A | −G(x) ∩D/= ∅}.

Definition 3.8. Let x ∈ S be called a global properly efficient solution of (3.18) if and only if
there exists y ∈ F(x) such that y ∈ GPE(F(S), C). The pair (x, y) is called a global properly
efficient element of (3.18).

Now, we will establish Kuhn-Tucker conditions of set-valued optimization problem
(3.18) in the sense of globally proper efficiency.

Theorem 3.9. Suppose that the following conditions hold:

(i) (x0, y0) is a global properly efficient element of (3.18);

(ii) the set-valued map I : A ⇒ Y × Z is partial and generalized C × D-subconvexlike on A,
where I(x) = (F(x) − y0, G(x)), for allx ∈ A.

Then, there exists (y∗, z∗) ∈ (C+ ×D+) \ {(0, 0)} such that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) =

〈
y0, y

∗〉, inf〈G(x0), z∗〉 = 0. (3.19)

Proof. Since (x0, y0) is a global properly efficient element of (3.18), there exists a nontrivial,
pointed, and convex cone C′ with C \ {0} ⊆ icrC′ such that

−(F(x) − y0
) ∩ (

C′ \ {0}) = ∅, ∀x ∈ A. (3.20)

It follows from (3.20) that

−(F(x) − y0
) ∩ icrC = ∅, ∀x ∈ A. (3.21)

By (3.21), we obtain

−I(x) ∩ (icrC ×D) = ∅, ∀x ∈ A. (3.22)

Since I is partial and generalized C × D-subconvexlike on A, it follows from (3.22) and
Theorem 3.4 that there exists (y∗, z∗) ∈ (C+ ×D+) \ {(0, 0)} such that

〈
F(x) − y0, y

∗〉 + 〈G(x), z∗〉 ≥ 0, ∀x ∈ A, (3.23)

that is

〈
F(x), y∗〉 + 〈G(x), z∗〉 ≥ 〈

y0, y
∗〉, ∀x ∈ A. (3.24)
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Because x0 ∈ S, there exists p ∈ G(x0) such that −p ∈ D. Since z∗ ∈ D+, we have

〈
p, z∗

〉 ≤ 0. (3.25)

Letting x = x0 in (3.24), we obtain

〈
p, z∗

〉 ≥ 0. (3.26)

It follows from (3.25) and (3.26) that

〈
p, z∗

〉
= 0. (3.27)

Therefore, we have

〈
y0, y

∗〉 ∈ 〈
F(x0), y∗〉 + 〈G(x0), z∗〉. (3.28)

By (3.24) and (3.28), we have infx∈A(〈F(x), y∗〉 + 〈G(x), z∗〉) = 〈y0, y
∗〉. Letting x = x0 in

(3.24), we have

〈G(x0), z∗〉 ≥ 0. (3.29)

It follows from (3.27) and (3.29) that inf〈G(x0), z∗〉 = 0.

The following theorem, which can be found in [17], is a sufficient condition of global
properly efficient elements of (3.18).

Theorem 3.10. Suppose that the following conditions hold:

(i) x0 ∈ S,
(ii) there exist y0 ∈ F(x0) and (y∗, z∗) ∈ C+i ×D+ such that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) ≥ 〈

y0, y
∗〉. (3.30)

Then, (x0, y0) is a global properly efficient element of (3.18).
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Suppose that E is a real normed linear space, C is a nonempty convex subset of E, T : C → C is a
Lipschitzian mapping, and x∗ ∈ C is a fixed point of T . For given x0 ∈ C, suppose that the sequence
{xn} ⊂ C is the Mann iterative sequence defined by xn+1 = (1−αn)xn+αnTxn, n ≥ 0, where {αn} is a
sequence in [0, 1],

∑∞
n=0 α

2
n <∞,

∑∞
n=0 αn = ∞. We prove that the sequence {xn} strongly converges

to x∗ if and only if there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0
such that lim supn→∞infj(xn−x∗)∈J(xn−x∗){〈Txn − x∗, j(xn − x∗)〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)} ≤ 0.

1. Introduction

Let E be an arbitrary real normed linear space with dual space E∗, and let C be a nonempty
subset of E. We denote by J the normalized duality mapping from E to 2E

∗
defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 =

∥∥f∥∥2
}
, ∀ x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing.
A mapping T : C → E is called strongly pseudocontractive if there exists a constant

k ∈ (0, 1) such that, for all x, y ∈ C, there exists j(x − y) ∈ J(x − y) satisfying

〈
Tx − Ty, j(x − y)〉 ≤ (1 − k)∥∥x − y∥∥2

. (1.2)
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T is called φ-strongly pseudocontractive if there exists a strictly increasing function φ : [0,∞) →
[0,∞) with φ(0) = 0 such that, for all x, y ∈ C, there exists j(x − y) ∈ J(x − y) satisfying

〈
Tx − Ty, j(x − y)〉 ≤ ∥∥x − y∥∥2 − φ(∥∥x − y∥∥)∥∥x − y∥∥. (1.3)

T is called generalized Φ-pseudocontractive (see, e.g., [1]) if there exists a strictly increasing
function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈
Tx − Ty, j(x − y)〉 ≤ ∥∥x − y∥∥2 −Φ

(∥∥x − y∥∥) (1.4)

holds for all x, y ∈ C and for some j(x − y) ∈ J(x − y).
Let F(T) = {x ∈ C : Tx = x} denote the fixed point set of T . If F(T)/= ∅, and (1.3)

and (1.4) hold for all x ∈ C and y ∈ F(T), then the corresponding mapping T is called
φ-hemicontractive and generalized Φ-hemicontractive, respectively. It is well known that these
kinds of mappings play important roles in nonlinear analysis.

φ-hemicontractive (resp., generalized Φ-hemicontractive) mapping is also called uni-
formly pseudocontractive (resp., uniformly hemicontractive) mapping in [2, 3]. It is easy
to see that if T is generalized Φ-hemicontractive mapping, then F(T) is singleton.

It is known (see, e.g., [4, 5]) that the class of strongly pseudocontractive mappings is a
proper subset of the class of φ-strongly pseudocontractive mappings. By taking Φ(s) = sφ(s),
where φ : [0,∞) → [0,∞) is a strictly increasing function with φ(0) = 0, we know that
the class of φ-strongly pseudocontractive mappings is a subset of the class of generalized Φ-
pseudocontractive mappings. Similarly, the class of φ-hemicontractive mappings is a subset
of the class of generalized Φ-hemicontractive mappings. The example in [6] demonstrates
that the class of Lipschitzian φ-hemicontractive mappings is a proper subset of the class of
Lipschitzian generalized Φ-hemicontractive mappings.

It is well known (see, e.g., [7]) that if C is a nonempty closed convex subset of a real
Banach space E and T : C → C is a continuous strongly pseudocontractive mapping, then
T has a unique fixed point p ∈ C. In 2009, it has been proved in [8] that if C is a nonempty
closed convex subset of a real Banach space E and T : C → C is a continuous generalized
Φ-pseudocontractive mappings, then T has a unique fixed point p ∈ C.

Many results have been proved on convergence or stability of Ishikawa iterative
sequences (with errors) or Mann iterative sequences (with errors) for Lipschitzian φ-
hemicontractive mappings or Lipschitzian generalized Φ-hemicontractive mapping (see, e.g.,
[4–6, 9–12] and the references therein). In 2010, Xiang et al. [6] proved the following result.

Theorem XCZ (see [6, Theorem 3.2]). Let E be a real normed linear space, let C be a nonempty
convex subset of E, and let T : C → C be a Lipschitzian generalizedΦ-hemicontractive mapping. For
given x0 ∈ C, suppose that the sequence {xn} ⊂ C is the Mann iterative sequence defined by

xn+1 =
(
1 − βn

)
xn + βnTxn, n ≥ 0, (1.5)
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where {βn} is a sequence in [0, 1] satisfying the following conditions:

(1)
∑∞

n=0 βn = ∞,

(2)
∑∞

n=0 β
2
n <∞.

Then {xn} converges strongly to the unique fixed point of T in C.

The main purpose of this paper is to give necessary and sufficient condition for the
Mann iterative sequence which converges to a fixed point of general Lipschitzian mappings
in an arbitrary real normed linear space. As an immediate consequence, we will obtain
necessary and sufficient condition for the Mann iterative sequence which converges to a
solution of a general Lipschitzian operator equation Tx = f .

2. Preliminaries

The following lemmas will be used in the proof of our main results.

Lemma 2.1 (see, e.g., [12]). Let E be a real normed linear space. Then for all x, y ∈ E, we have
∥∥x + y

∥∥2 ≤ ‖x‖2 + 2
〈
y, j

(
x + y

)〉
, ∀j(x + y

) ∈ J(x + y
)
. (2.1)

Lemma 2.2 (see, e.g., [13]). Let {an}, {bn}, {cn} be three nonnegative sequences satisfying the
following condition:

an+1 ≤ (1 + bn)an + cn, ∀ n ≥ n0, (2.2)

where n0 is some nonnegative integer,
∑∞

n=n0
bn < ∞, and

∑∞
n=n0

cn < ∞. Then the limit limn→∞an
exists.

Lemma 2.3. Suppose that ϕ : [0,∞) → [0,∞) is a strictly increasing function with ϕ(0) = 0 and
there exists a natural number n0 such that an, bn, εn, and αn are nonnegative real numbers for all
n ≥ n0 satisfying the following conditions:

(i) an+1 ≤ (1 + bn)an − αnϕ(an+1) + αnεn, for all n ≥ n0,

(ii)
∑∞

n=n0
bn <∞, limn→∞εn = 0,

(iii)
∑∞

n=n0
αn = ∞.

Then limn→∞an = 0.

Proof. Without loss of generality, let limn→∞ inf an = a. Now, we will show that a = 0.
Consider its contrary: a > 0 or a = ∞. For any given r ∈ (0, a), there exists a nonnegative
integer n1 ≥ n0 such that an ≥ r > 0 and εn < 1/2ϕ(r) ≤ 1/2ϕ(an+1) for all n ≥ n1. By
condition (i), we have

an+1 ≤ (1 + bn)an − αnϕ(an+1) + αn · 1
2
ϕ(an+1)

= (1 + bn)an − 1
2
αnϕ(an+1)

≤ (1 + bn)an, ∀n ≥ n1.

(2.3)
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Using Lemma 2.2 and condition (ii), we obtain that limn→∞an exists and {an} is bounded.
Suppose that an ≤M (for all n ≥ n1), where M is a nonnegative constant. It follows that

an+1 ≤ (1 + bn)an − 1
2
αnϕ(an+1) ≤ an − 1

2
αnϕ(r) +Mbn(∀n ≥ n1). (2.4)

Thus,

∞ =
1
2
ϕ(r)

∞∑
n=n1

αn ≤ an1 +M
∞∑

n=n1

bn <∞, (2.5)

which is a contradiction. Therefore,

lim inf
n→∞

an = 0. (2.6)

By condition (ii), for all ε > 0, there exists a nonnegative integer n2 ≥ n0 such that

εn < ϕ(ε) (∀n ≥ n2),
∞∑

n=n2

bn < ln 2. (2.7)

By (2.6), there exists a natural number N ≥ n2 such that aN < ε. Now, we prove the following
inequality (2.8) holds for all k ≥N:

ak ≤ ε · exp

(
k−1∑
n=N

bn

)
. (2.8)

It is obvious that (2.8) holds for k = N. Assuming (2.8) holds for some k ≥ N, we prove that
(2.8) holds for k + 1. Suppose this is not true, that is, ak+1 > ε · exp(

∑k
n=N bn). Then ak+1 ≥ ε

and so ϕ(ak+1) ≥ ϕ(ε). Noting that 1 + bk ≤ exp(bk), it follows from condition (i), (2.7), and
(2.8) that

ak+1 ≤ (1 + bk)ak − αkϕ(ak+1) + αkεk

≤ (1 + bk)ak − αkϕ(ε) + αkϕ(ε)

≤ ε · (1 + bk) exp

(
k−1∑
n=N

bn

)

≤ ε · exp

(
k∑

n=N

bn

)
,

(2.9)
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which is a contradiction. This implies that (2.8) holds for k + 1. By induction, (2.8) holds for
all k ≥N. From (2.7), and (2.8), we have

lim sup
k→∞

ak ≤ ε · exp

( ∞∑
n=N

bn

)
< 2ε. (2.10)

Taking ε → 0, we obtain limn→∞ supak = 0. By (2.6), we have limn→∞ an = 0. This completes
the proof.

Remark 2.4. Lemma 2.3 is different from Lemma 3 in [14], which requires that bn = 0 for all
n ≥ 0. It is also different from Lemma 2.3 in [6], which requires that

∑∞
n=n0

αnεn <∞.

3. Main Results

Theorem 3.1. LetE be a real normed linear space,C be a nonempty convex subset ofE, let T : C → C
be a Lipschitzian mapping, and let x∗ ∈ C be a fixed point of T . For given x0 ∈ C, suppose that the
sequence {xn} ⊂ C is the Mann iterative sequence defined by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 0, (3.1)

where {αn} is a sequence in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 α
2
n <∞,

(ii)
∑∞

n=0 αn = ∞.

Then {xn} converges strongly to x∗ if and only if there exists a strictly increasing function Φ :
[0,∞) → [0,∞) with Φ(0) = 0 such that

lim sup
n→∞

inf
j(xn−x∗)∈J(xn−x∗)

{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)
}
≤ 0. (3.2)

Proof. First, we prove the sufficiency of Theorem 3.1.
Suppose there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0

such that (3.2) holds. Let

γn = inf
j(xn−x∗)∈J(xn−x∗)

{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)
}
. (3.3)

Then there exists j(xn − x∗) ∈ J(xn − x∗) such that

〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖) < γn + 1
n
, ∀n ≥ 1. (3.4)

By (3.2), we obtain limn→∞ sup γn ≤ 0. Taking εn = 1/(n + 1) + max{γn+1, 0} (for all n ≥ 0),
then

lim
n→∞

εn = 0. (3.5)
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From (3.1) and (3.4), by using Lemma 2.1, we obtain

‖xn+1 − x∗‖2

= ‖(1 − αn)(xn − x∗) + αn(Txn − x∗)‖2

≤ (1 − αn)2‖xn − x∗‖2 + 2αn
〈
Txn − x∗, j(xn+1 − x∗)

〉
≤ (1 − αn)2‖xn − x∗‖2 + 2αn

〈
Txn+1 − x∗, j(xn+1 − x∗)

〉
+ 2αn〈Txn − Txn+1, j(xn+1 − x∗)〉

≤ (1 − αn)2‖xn − x∗‖2 + 2αn
[
‖xn+1 − x∗‖2 −Φ(‖xn+1 − x∗‖) + γn+1 +

1
n + 1

]
+ 2Lαn‖xn − xn+1‖ · ‖xn+1 − x∗‖

≤ (1 − αn)2‖xn − x∗‖2 + 2αn
[
‖xn+1 − x∗‖2 −Φ(‖xn+1 − x∗‖) + εn

]
+ 2Lαn‖xn − xn+1‖ · ‖xn+1 − x∗‖,

(3.6)

where L is the Lipschitzian constant of T . It follows from (3.1) that

‖xn − xn+1‖ = ‖αn(xn − Txn)‖
≤ αn(‖xn − x∗‖ + ‖Tx∗ − Txn‖)
≤ αn(1 + L)‖xn − x∗‖.

(3.7)

Substituting (3.7) into (3.6), we have

‖xn+1 − x∗‖2 ≤ (1 − αn)2‖xn − x∗‖2 + 2αn‖xn+1 − x∗‖2 − 2αnΦ(‖xn+1 − x∗‖)

+ 2αnεn + 2L(1 + L)α2
n‖xn − x∗‖ · ‖xn+1 − x∗‖

≤ (1 − αn)2‖xn − x∗‖2 + 2αn‖xn+1 − x∗‖2 − 2αnΦ(‖xn+1 − x∗‖)

+ 2αnεn + L(1 + L)α2
n

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)
.

(3.8)

Setting an = ‖xn − x∗‖2(for all n ≥ 0), ϕ(s) = 2Φ(
√
s), it follows from (3.8) that

an+1 ≤ (1 − αn)2an + 2αnan+1 − αnϕ(an+1) + 2αnεn

+ L(1 + L)α2
n(an + an+1)

=
[
1 − 2αn + α2

n + L(1 + L)α2
n

]
an +

[
2αn + L(1 + L)α2

n

]
an+1

− αnϕ(an+1) + 2αnεn.

(3.9)
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It follows from condition (i) that limn→∞[2αn + L(1 + L)α2
n] = 0. Thus, there exists a natural

number n0 such that 2αn + L(1 + L)α2
n ≤ 1/2 for all n ≥ n0. Let

bn =
1 − 2αn + α2

n + L(1 + L)α2
n

1 − 2αn − L(1 + L)α2
n

− 1 =
α2
n + 2L(1 + L)α2

n

1 − 2αn − L(1 + L)α2
n

, ∀n ≥ n0. (3.10)

Since 1/2 ≤ 1 − 2αn − L(1 + L)α2
n ≤ 1 for all n ≥ n0, by (3.9) and (3.10), we have

an+1 ≤ (1 + bn)an − αnϕ(an+1) + 4αnεn, ∀n ≥ n0,

0 ≤ bn ≤ 2[1 + 2L(1 + L)]α2
n, ∀n ≥ n0.

(3.11)

It follows from condition (i) that
∑∞

n=n0
bn < ∞. Therefore, by (3.5), condition (ii), and

Lemma 2.3, we obtain that limn→∞an = limn→∞‖xn − x∗‖2 = 0. That is, {xn} converges
strongly to x∗.

Finally, we prove the necessity of Theorem 3.1.
Assume that {xn} converges strongly to x∗. Let L be the Lipschitzian constant of T . For

all j(xn − x∗) ∈ J(xn − x∗), we have

∣∣〈Txn − x∗, j(xn − x∗)
〉∣∣ ≤ L‖xn − x∗‖2. (3.12)

Taking Φ(s) =
√
s, then Φ : [0,∞) → [0,∞) is a strictly increasing function with Φ(0) = 0,

and limn→∞Φ(‖xn − x∗‖) = 0. From (3.12), we obtain

lim
n→∞

inf
j(xn−x∗)∈J(xn−x∗)

{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)
}
= 0, (3.13)

which implies (3.2) holds. This completes the proof of Theorem 3.1.

Remark 3.2. If T : C → C is a generalized Φ-hemicontractive mapping, then (3.2) holds. By
Theorem 3.1, we obtain Theorem XCZ.

Theorem 3.3. Let E be a real Banach space, let C be a nonempty closed convex subset of E, and let
T : C → C be a Lipschitzian generalized Φ-pseudocontractive mapping. For given x0 ∈ C, suppose
that the sequence {xn} ⊂ C is the Mann iterative sequence defined by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 0, (3.14)

where {αn} is a sequence in [0, 1] satisfying the following conditions:

(1)
∑∞

n=0 αn = ∞,

(2)
∑∞

n=0 α
2
n <∞.

Then {xn} converges strongly to the unique fixed point of T in C.

Proof. By Theorem 2.1 in [8], T has a unique fixed point x∗ in C. By Theorem 3.1, {xn}
converges strongly to x∗. This completes the proof of Theorem 3.3.
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Theorem 3.4. Let E be a real normed linear space, let S : E → E be a Lipschitzian operator, and let
f ∈ E and x∗ be a solution of the equation Sx = f . For given x0 ∈ E, suppose that the sequence {xn}
is the Mann iterative sequence defined by

xn+1 = (1 − αn)xn + αn
(
f + xn − Sxn

)
, n ≥ 0, (3.15)

where {αn} is a sequences in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 α
2
n <∞,

(ii)
∑∞

n=0 αn = ∞.

Then {xn} converges strongly to x∗ if and only if there exists a strictly increasing function Φ :
[0,∞) → [0,∞) with Φ(0) = 0 such that

lim inf
n→∞

sup
j(xn−x∗)∈J(xn−x∗)

{〈
Sxn − Sx∗, j(xn − x∗)

〉 −Φ(‖xn − x∗‖)} ≥ 0. (3.16)

Proof. Define T : E → E by Tx = f + x − Sx. Since Sx∗ = f , we have Tx∗ = x∗. From (3.15),
we obtain xn+1 = (1 − αn)xn + αnTxn, n ≥ 0. Since

〈
Sxn − Sx∗, j(xn − x∗)

〉 −Φ(‖xn − x∗‖)

= −
{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)
}
.

(3.17)

Therefore,

lim inf
n→∞

sup
j(xn−x∗)∈J(xn−x∗)

{〈
Sxn − Sx∗, j(xn − x∗)

〉 −Φ(‖xn − x∗‖)}
= −lim sup

n→∞
inf

j(xn−x∗)∈J(xn−x∗)
{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖ + Φ(‖xn − x∗‖)}. (3.18)

The condition (3.16) is equivalent to condition (3.2). Since S is a Lipschitzian operator, T
is a Lipschitzian mapping. By Theorem 3.1, Theorem 3.4 holds. This completes the proof of
Theorem 3.4.
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Sufficient optimality and sensitivity of a parameterized min-max programming with fixed
feasible set are analyzed. Based on Clarke’s subdifferential and Chaney’s second-order directional
derivative, sufficient optimality of the parameterized min-max programming is discussed first.
Moreover, under a convex assumption on the objective function, a subdifferential computation
formula of the marginal function is obtained. The assumptions are satisfied naturally for some
application problems. Moreover, the formulae based on these assumptions are concise and
convenient for algorithmic purpose to solve the applications.

1. Introduction

In this paper, sufficient optimality and sensitivity analysis of a parameterized min-max
programming are given. The paper is triggered by a local reduction algorithmic strategy for
solving following nonsmooth semi-infinite min-max-min programming (SIM3P, see [1, 2],
etc. for related applications reference):

min
x

f(x)

s.t. g(x) = max
y∈Y

min
1≤i≤q
{
gi
(
x, y
)} ≤ 0.

(1.1)
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With the local reduction technique, the SIM3P can be rewritten as a bilevel programming first,
where the lower problem is the following parameterized min-max programming Px (see [3–
5] for related reference of local reduction strategy):

min
y

g
(
x, y
)
= max

1≤i≤q
{−gi(x, y)}

s.t. y ∈ Y.
(1.2)

To make the bilevel strategy applicable to SIM3P, it is essential to discuss the second-order
sufficient optimality of Px and give sensitivity analysis of the parameterized minimum y(x)
and corresponding marginal function g(x, y(x)).

Sensitivity analysis of optimization problems is an important aspect in the field
of operation and optimization research. Based on different assumptions, many results on
kinds of parametric programming have been obtained ([6–9], etc.). Among these, some
conclusions on parameterized min-max programming like (1.2) have also been given.
For example, based on variation analysis, parameterized continuous programming with
fixed constraint was discussed in [7]. Problem like (1.2) can be seen as a special case.
Under the inf-compactness condition and the condition objective function is concave with
respect to the parameter, directional derivative computational formula of marginal function
for (1.2) can be obtained directly. However, concave condition cannot be satisfied for
many problems. Recently, Fréchet subgradients computation formula of marginal functions
for nondifferentiable programming in Asplund spaces was given ([9]). By using Fréchet
subgradients computation formula in [9], subgradient formula of marginal function for
(1.2) is direct. But the formula is tedious, if utilizing the formula to construct optimality
system of (1.1), the system is so complex that it is difficult to solve the obtained optimality
system.

For more convenient computational purpose, the focus of this paper is to establish
sufficient optimality and simple computation formula of marginal function for (1.2). Based
on Clarke’s subdifferential and Chaney’s second-order directional derivative, sufficient
optimality of the parameterized programming Px is given first. And then Lipschitzian
continuousness of the parameterized isolated minimizer y(x) and the marginal function
g(y(x), x) is discussed; moreover, subdifferential computation formula of the marginal
function is obtained.

2. Main Results

Let Y in (1.2) be defined as Y = {y ∈ Rm : hi(y) ≤ 0, i = 1, . . . , l}, where hi(·) and
i = 1, . . . , l, are twice continuously differentiable functions on Rm, and gi(·, ·) in (1.2) are twice
continuously differentiable functions on Rn×m. In the following, we first give the sufficient
optimality condition of (1.2) based on Clarke’s subdifferential and Chaney’s second-order
directional derivative, and then make sensitivity analysis of the parameterized problem
Px.
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2.1. Sufficient Optimality Conditions of Px

Definition 2.1 (see [10]). For a given parameter x, a point y∗ ∈ Y is said to be an local
minimum of problem Px if there exists a neighborhood U of y∗ such that

g
(
x, y
) ≥ g(x, y∗), ∀y ∈ U ∩ Y, y /=y∗. (2.1)

Assumption 2.2. For a given parameter x, suppose that Px satisfying the following constraint
qualification:

{
d ∈ Rm : ∇hi

(
y
)T
d < 0, ∀i ∈ Ih

(
y
)
, y ∈ Y

}
/= ∅, (2.2)

where Ih(y) = {i = {1, . . . , l} : hi(y) = 0}.
For a given parameter x, denote the Lagrange function of Px as L(x, y, λ) = g(x, y) +∑l

i=1 λihi(y), then the following holds.

Theorem 2.3. For a given parameter x, if y∗ is a minimum of Px, Assumption 2.2 holds, then there
exists a λ∗ ∈ Rl

+ such that 0 ∈ ∂yL(x, y∗, λ), where ∂yL(x, y∗, λ∗) denotes the Clarke’s subdifferential
of L(x, y∗, λ∗). Specifically, the following system holds:

0 ∈ ∂yg
(
x, y∗) + l∑

i=1

λi∇hi
(
y∗), (2.3)

where ∂yg(x, y) denotes Clarke’s subdifferential of g(x, y) with respect to y, it can be computed
as co{∇ygi(x, y∗) : i ∈ I(x, y∗)}, co{·} is an operation of making convex hull of the elements,
I(x, y∗) = {i ∈ {1, . . . , q} : g(x, y∗) = g(x, y∗)}.

Proof. The conclusion is direct from Theorem 3.2.6 and Corollary 5.1.8 in [11].

Since g(x, y) = max1≤i≤p{gi(x, y)} is a directional differentiable function (Theorem
3.2.13 in [11]), the directional derivative of g(x, y) with respect to y in direction d can be
computed as follows:

g ′
y

(
x, y;d

)
= max

{
ξTd : ∀ξ ∈ ∂yg

(
x, y
)
, ∀d ∈ Rm

}
. (2.4)

Definition 2.4 (see [10]). Let f(x) is a locally Lipschitzian function on Rn, u be a nonzero
vector in Rn. Suppose that

d ∈ ∂uf(x) =
{
υ ∈ Rn : ∃{xk}, {υk}, s. t. xk

x−→, υk −→ υ, υk ∈ ∂f(xk) for each k
}

(2.5)

define Chaney’s lower second-order directional derivative as follows:

f ′′
−(x, υ, u) = lim inf

f(xk) − f(x) − υT (xk − x)
t2
k

, (2.6)
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taking over all triples of sequences {xk}, {υk}, and {tk} for which

(a) tk > 0 for each k and {xk} → x;

(b) tk → 0 and (xk − x∗)/tk converges to u;

(c) {υk} → υ with υk ∈ ∂f(xk) for each k.

Similarly, Chaney’s upper second-order directional derivative can be defined as

f ′′
+ = lim sup

f(xk) − f(x) − υT (xk − x)
t2k

, (2.7)

taking over all triples of sequences {xk}, {υk}, and {tk} for which (a), (b), and (c) above hold.
For parameterized max-type function g(x, y) = max1≤i≤p{−gi(x, y)}, where x is a

given parameter, its Chaney’s lower and upper second-order directional derivatives can be
computed as follows.

Proposition 2.5 (see [12]). For any given parameter x, Chaney’s lower and upper second-order
directional derivatives of g(x, y) with respect to y exist; moreover, for any given 0/=u ∈ Rq, υ ∈
∂ug(x, y), it has

g ′′
−
(
x, y;d

)
= min

{
1
2

q∑
i=1

aju
T∇2

ygi
(
x, y
)
u : a ∈ Tu

(
g, y, υ

)}
,

g ′′
+
(
x, y;d

)
= max

{
1
2

q∑
i=1

aju
T∇2

ygi
(
x, y
)
u : a ∈ Tu

(
g, y, υ

)}
,

(2.8)

where

Tu
(
g, y, υ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃{y(k)}, {a(k)}, {υ(k)}, such that
(1) y(k) −→ y in direction u,

a ∈ Rq
+ : (2) υ(k) −→ υ, and υ(k) ∈ ∂yg

(
x, y(k)), k = 1, 2, . . . ,

(3) a(k) −→ a, a(k) ∈ Eq, υ(k) =
p∑
i=1
a
(k)
i ∇ygi

(
x, y(k)),

(4) a(k)j = 0, for j /∈ Kg

(
y(k))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (2.9)

where Kg(y(k)) = {i ∈ Q : gi(x, y(n)) = g(x, y(n)), ∃y(n) ∈ B(y, 1/n), ∀n ∈ N}, Eq = {a ∈ R
q
+ :∑p

i=1 ai = 1}, Q = {1, . . . , q}, and B(y, 1/n) denotes the ball centered in y with radius 1/n.

Theorem 2.6 (sufficiency theorem). For a given parameter x ∈ Rn, Assumption 2.2 holds, then
there exists y∗ ∈ Rm such that (2.3) holds. Moreover, for any feasible direction d ∈ Rm of Y , that is,
max{∇hi(y∗)Td : 1 ≤ i ≤ l} ≤ 0, if d satisfying one of the following conditions:
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(1) g ′
y(x, y

∗;d)/= 0;

(2) g ′
y(x, y

∗;d) = 0,
∑l

i=1 λi∇hi(y)Td = 0, that is, L′
y(x, y;d) = 0, and

min

{
1
2

q∑
i=1

aid
T∇2

ygi
(
x, y∗)d : a ∈ Eq

}
+

l∑
i=1

λid
T∇2hi

(
y∗)d > 0, (2.10)

then y∗ is a local minimum of Px.

Proof. (1) If not, then there exists sequences tk ↓ 0, dk → d, yk = y∗ + tkdk ∈ Y such that

g
(
x, yk

)
< g
(
x, y∗). (2.11)

As a result, g ′
y(x, y

∗;d) = limt↓0(g(x, y∗ + td) − g(x, y∗))/t = limk→+∞(g(x, y∗ + tkdk) −
g(x, y∗))/tk ≤ 0. If g ′

y(x, y
∗;d)/= 0, then g ′

y(x, y
∗;d) < 0. From (2.4), we know that ξTd <

0 for all ξ ∈ ∂yg(x, y∗). Hence, for the direction d ∈ Rm, we have

ξTd +
l∑
i=1

∇hi
(
y∗)Td < 0, ξ ∈ ∂yg

(
x, y∗). (2.12)

On the other hand, from y∗ satisfying (2.3), we know that there exists a ξ ∈ ∂yg(x, y∗) such
that

ξTd +
l∑
i=1

∇hi
(
y∗)Td = 0, (2.13)

which leads to a contradiction to (2.12).
(2) From Theorem 4 in [10] and Proposition 2.5, the conclusion is direct.

2.2. Sensitivity Analysis of Parameterized Px

In the following, we make sensitivity analysis of parameterized min-max programming Px,
that is, study variation of isolated local minimizers and corresponding marginal function
under small perturbation of x.

For convenience of discussion, for any given parameter x, denote y∗(x) as a minimizer
of Px, υ(x) = min{g(x, y) : y ∈ Y} as the corresponding marginal function value and make
the following assumptions first.

Assumption 2.7. For given x ∈ Rn, the parametric problem Px is a convex problem, specifically,
gi(x, y) and i = 1, . . . , q are concave functions with respect to that variables y and hj(y), j =
1, . . . , l are convex functions.

Assumption 2.8. Let Ih(y) = {i ∈ L : hi(y) = 0}, {∇hi(y) : i ∈ Ih(y)} are linearly independent.
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Definition 2.9 (see Definition 2.1, [13]). For a given x, y ∈ Y is said to be an isolated local
minimum with order i (i = 1 or 2) of Px if there exists a real m > 0 and a neighborhood V of y
such that

g
(
x, y
)
> g
(
x, y
)
+

1
2
m
∥∥y − y∥∥i, ∀y ∈ V ∩ Y, y /=y. (2.14)

Theorem 2.10. For a given x ∈ Rn, Assumptions 2.2–2.8 hold, then the following conclusions hold:

(1) if y∗(x) with corresponding multiplier λ∗ is the solution of (2.3), then y∗(x) is a unique
first-order isolated minimizer of Px;

(2) for any minimum y∗(x), it is a locally Lipschitzian function with respect to x, that is, there
exists a L1 > 0, δ > 0 such that∥∥∥y∗

(
xk
)
− y∗(x)

∥∥∥ ≤ L1

∥∥∥xk − x∥∥∥, ∀xk ∈ U(x, δ), y∗
(
xk
)
∈ Y
(
xk
)
, (2.15)

where Y (xk) denotes minima set of Pxk ;

(3) for any minimum y∗(x), marginal function υ(x) = g(x, y∗(x)) is also a locally Lipschitz
function with respect to x, and ∂υ(x) ⊆ S(x), where

S(x) = co
{∇xgi

(
x, y∗(x)

)
, i ∈ I(x, y∗(x)

)}
, (2.16)

and I(x, y∗(x)) = {i ∈ {1, . . . , q} : gi(x, y∗(x)) = g(x, y∗(x))}. As a result,

∂υ(x) =

⎧⎨⎩ ∑
i∈I(x,y∗(x))

λi∇xgi
(
x, y∗(x)

)
: λi ≥ 0,

∑
i∈I(x,y∗(x))

λi = 1

⎫⎬⎭. (2.17)

Proof. (1) From Assumption 2.7, it is direct that y∗(x) is a global minimizer of Px. We only
prove y∗(x) is a first-order isolated minimizer.

If the conclusion does not hold, then there exists a sequence {yk} ∈ Y (x) converging
to y∗(x), yk /=y∗(x), and a sequence mk, mk > 0, and mk converges to 0 such that

g
(
x, yk

)
≤ g(x, y∗(x)

)
+

1
2
mk

∥∥∥yk − y∗
∥∥∥, yk ∈ Y. (2.18)

Take dk = (yk − y∗(x))/‖yk − y∗(x)‖, for simplicity, we suppose dk → d, with ‖d‖ = 1. Let
tk = ‖yk − y∗(x)‖, then from yk ∈ Y , dk → d and Y is compact, we have

y∗(x) + tkd ∈ Y, tk −→ 0, (2.19)

that is,

∇hi
(
y∗(x)

)T
d ≤ 0, ∀i ∈ I(x, y∗(x)

)
. (2.20)
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From Assumption 2.8, we know that
∑

i∈I(x,y∗(x)) ∇hi(y∗(x))Td /= 0. As a result, we have∑
i∈I(x,y∗(x)) ∇hi(y∗(x))Td < 0.

From the first equation of (2.3), we know that there exists a z ∈ ∂yg(x, y∗(x)) such that
for any feasible direction d, zTd = −∑i∈I(x,y∗(x)) λi∇hi(y∗(x))Td > 0. Hence,

g ′
y

(
x, y∗(x);d

)
= max

{
ξTd : ξ ∈ ∂yg

(
x, y∗(x)

)} ≥ zTd > 0. (2.21)

On the other hand, from y∗(x) is a minimizer, we know that g ′
y(x, y

∗(x);d) ≥ 0, this leads to
a contradiction;

(2) from Assumption 2.8 and Theorem 3.1 in [13], the conclusion is direct;
(3) since g(x, y) is a locally Lipschitzian function with respect to x and y, then there

exists δ > 0, δ′ > 0, and L2 > 0 such that for any x1 ∈ U(x, δ), y ∈ U(y∗(x), δ′), it has

∣∣g(x1, y
∗(x)
) − g(x, y∗(x)

)∣∣ ≤ L2‖x1 − x‖,∣∣g(x, y) − g(x, y∗(x)
)∣∣ ≤ L2

∥∥y − y∗(x)
∥∥. (2.22)

As to x1 ∈ U(x, δ), from the conclusion in (1.2), there exists a a L1 > 0 such that
‖y∗(x1) − y∗(x)‖ ≤ L1‖x1 − x‖. As a result,

|υ(x1) − υ(x)|
=
∣∣g(x1, y

∗(x1) − g
(
x, y∗(x)

))∣∣
=
∣∣g(x1, y

∗(x1)
) − g(x1, y

∗(x)
)
+ g
(
x1, y

∗(x)
) − g(x, y∗(x)

)∣∣
≤ ∣∣g(x1, y

∗(x1)
) − g(x1, y

∗(x)
)∣∣ + ∣∣g(x1, y

∗(x)
) − g(x, y∗(x)

)∣∣
≤ L2

∥∥y∗(x1) − y∗(x)
∥∥ + L2‖x1 − x‖ ≤ L2(1 + L1)‖x1 − x‖.

(2.23)

Hence, the marginal function υ(x) is a local Lipschitzian function with respect to x.
Let Ŝ(x) = {−∇xgi(x, y(x)), i ∈ I(x, y(x))}, then S(x) = co{ξ, ξ ∈ Ŝ(x)}. We prove that

Ŝ(x) is closed first, that is, prove for any sequence {xk} ⊂ Rn, xk → x, zk ∈ Ŝ(xk), zk → z, it
has z ∈ Ŝ(x).

From zk ∈ Ŝ(xk), there exist yk ∈ Y (xk); ik ∈ I(xk, yk) such that zk = −∇xgik(x
k, yk).

Without loss of generality, suppose that {yk} converges to y; {ik} converges to i. From
Proposition 3.3 in [14], it has y ∈ Y (x), and i ∈ I(x, y) and from ∇xgi(x, y) is a continuous
function, it has z = limk→+∞zk = limk→+∞∇xgik(x

k, yk) = ∇xgi(x, y) ∈ Ŝ(x). As a result, Ŝ(x)
is a closed set.
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From Theorem 3.2.16 in [11], for any ξ ∈ ∂υ(x), there exists xk ∈ Rn, xk → x such that
∇υ(xk) exists and ξ = limk→+∞∇υ(xk). In addition, for arbitrary d ∈ Rn, it has

∇υ
(
xk
)T
d = υ′

(
xk;d

)
= lim

t↓0

υ
(
xk + td

) − υ(xk)
t

= lim
t↓0

g
(
xk + td, y∗(xk + td)) − g(xk, y∗(xk))

t

≤ lim
t↓0

g
(
xk + td, y∗(xk)) − g(xk, y∗(xk))

t

= max
i∈I(xk,y)

{
−∇xgi

(
xk, y

)T
d

}
.

(2.24)

From the definition of S(xk), ∃zk ∈ S(xk) such that zk
T
d = maxi∈I(xk,y){−∇xgi(xk, y)

T
d}.

Hence, it has ∇υ(xk)Td ≤ zkT d.
From zk → z ∈ Ŝ(x) ⊂ S(x), ∇υ(xk) → ξ and ∇υ(xk)Td ≤ zkT d, it has ξTd ≤ zTd, that

is, for arbitrary d ∈ Rn and ξ ∈ ∂υ(x), there exists z ∈ S(x) such that ξTd ≤ zTd.
If ∂υ(x) ⊂ S(x) does not hold, then there exists a ξ ∈ ∂υ(x) and ξ /∈ S(x). From S(x) is a

compact convex set and separation theorem ([15]), there exists a d ∈ Rn such that ξTd < 0 and
for arbitrary z ∈ S(x), zTd ≥ 0, which leads to a contradiction. As a result, ∂υ(x) ⊂ S(x) holds.
From ∂υ(x) ⊂ S(x) and S(x) = co{∇xgi(x, y∗(x)), i ∈ I(x, y∗(x))}, computation formula
(2.17) is direct.

3. Discussion

In this paper, sufficient optimality and sensitivity analysis of a parameterized min-max
programming are given. A rule for computation the subdifferential of υ(x) is established.
Though the assumptions in this paper are some restrictive compared to some existing work,
the assumptions hold naturally for some applications. Moreover, the obtained computation
formula is simple, it is beneficial for establishing a concise first-order necessary optimality
system of (1.1), and then constructing effective algorithms to solve the applications.
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Assume that F is a nonlinear operator which is Lipschitzian and strongly monotone on a nonempty
closed convex subset C of a real Hilbert space H. Assume also that Ω is the intersection of the fixed
point sets of a finite number of Lipschitzian pseudocontractive self-mappings on C. By combining
hybrid steepest-descent method, Mann’s iteration method and projection method, we devise a
hybrid iterative algorithm with perturbation F, which generates two sequences from an arbitrary
initial point x0 ∈ H. These two sequences are shown to converge in norm to the same point PΩx0
under very mild assumptions.

1. Introduction and Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm || · || and C a nonempty closed
convex subset of H. Let T : C → C be a self-mapping of C. Recall that T is said to be a
pseudocontractive mapping if

∥∥Tx − Ty∥∥2 ≤ ∥∥x − y∥∥2 +
∥∥(I − T)x − (I − T)y∥∥2

, ∀x, y ∈ C, (1.1)

and T is said to be a strictly pseudo-contractive mapping if there exists a constant k ∈ [0, 1)
such that

∥∥Tx − Ty∥∥2 ≤ ∥∥x − y∥∥2 + k
∥∥(I − T)x − (I − T)y∥∥2

, ∀x, y ∈ C. (1.2)

For such cases, we also say that T is a k-strict pseudo-contractive mapping. We use F(T) to
denote the set of fixed points of T .
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It is well known that the class of strictly pseudo-contractive mappings strictly includes
the class of nonexpansive mappings which are the mappings T on C such that

∥∥Tx − Ty∥∥ ≤ ∥∥x − y∥∥, ∀x, y ∈ C. (1.3)

Iterative methods for nonexpansive mappings have been extensively investigated; see
[1–16] and the references therein.

However, iterative methods for strictly pseudo-contractive mappings are far less
developed than those for nonexpansive mappings though Browder and Petryshyn initiated
their work in 1967; the reason is probably that the second term appearing on the right-
hand side of (1.2) impedes the convergence analysis for iterative algorithms used to find
a fixed point of the strictly pseudo-contractive mapping T . However, on the other hand,
strictly pseudo-contractive mappings have more powerful applications than nonexpansive
mappings do in solving inverse problems; see Scherzer [17]. Therefore, it is interesting to
develop iterative methods for strictly pseudo-contractive mappings. As a matter of fact,
Browder and Petryshyn [18] showed that if a k-strict pseudo-contractive mapping T has a
fixed point in C, then starting with an initial x0 ∈ C, the sequence {xn} generated by the
recursive formula:

xn+1 = αxn + (1 − α)Txn, ∀n ≥ 0, (1.4)

where α is a constant such that k < α < 1 converges weakly to a fixed point of T .
Recently, Marino and Xu [19] have extended Browder and Petryshyn’s result by

proving that the sequence {xn} generated by the following Mann’s algorithm:

xn+1 = αnxn + (1 − αn)Txn, ∀n ≥ 0 (1.5)

converges weakly to a fixed point of T , provided that the control sequence {αn} satisfies the
condition that k < αn < 1 for all n and

∑∞
n=0(αn − k)(1 − αn) = ∞. However, this convergence

is in general not strong. It is well known that if C is a bounded and closed convex subset of
H, and T : C → C is a demicontinuous pseudocontraction, then T has a fixed point in C
(Theorem 2.3 in [20]). However, all efforts to approximate such a fixed point by virtue of the
normal Mann’s iteration algorithm failed.

In 1974, Ishikawa [21] introduced a new iteration algorithm and proved the following
convergence theorem.

Theorem I (see [21]). If C is a compact convex subset of a Hilbert space H,T : C → C is a
Lipschitzian pseudocontraction and x0 ∈ C is chosen arbitrarily, then the sequence {xn}n≥0 converges
strongly to a fixed point of T , where {xn} is defined iteratively for each positive integer n ≥ 0 by

xn+1 = (1 − αn)xn + αnTyn,
yn =

(
1 − βn

)
xn + βnTxn,

(1.6)

where {αn} and {βn} are sequences of real numbers satisfying the conditions (i) 0 ≤ αn ≤ βn < 1; (ii)
βn → 0 as n → ∞; (iii)

∑∞
n=0 αnβn = ∞.
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Since its publication in 1974, it remains an open question whether or not Mann’s
iteration algorithm converges under the setting of Theorem I to a fixed point of T if the
mapping T is Lipschitzian pseudo-contractive. In [22], Chidume and Mutangadura gave an
example of a Lipschitzian pseudocontraction with a unique fixed point for which Mann’s
iteration algorithm fails to converge.

In an infinite-dimensional Hilbert space, Mann and Ishikawa’s iteration algorithms
have only weak convergence, in general, even for nonexpansive mapping. So, in order to
get strong convergence for strictly pseudo-contractive mappings, several attempts have been
made based on the CQ method (see, e.g., [19, 23, 24]). The last scheme, in such a direction,
seems for us to be the following due to Zhou [25]:

x0 ∈ C chosen arbitrarily,

yn = (1 − αn)xn + αnTxn,
zn =

(
1 − βn

)
xn + βnTyn,

Cn =
{
z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − αnβn

(
1 − 2αn − L2α2

n

)
‖xn − Txn‖2

}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0.

(1.7)

He proved, under suitable choice of the parameters αn and βn, that the sequence {xn}
generated by (1.7) strongly converges to PF(T)x0.

Among classes of nonlinear mappings, the class of pseudocontractions is one of the
most important. This is due to the relation between the class of pseudocontractions and the
class of monotone mappings (we recall that a mapping A is monotone if 〈Ax −Ay, x − y〉 ≥
0 for all x, y ∈ H). A mapping A is monotone if and only if (I −A) is pseudo-contractive. It
is well known (see, e.g., [26]) that if S is monotone, then the solutions of the equation Sx = 0
correspond to the equilibrium points of some evolution systems. Consequently, considerable
research efforts, especially within the past 30 years or so, have been devoted to iterative
methods for approximating fixed points of a pseudo-contractive mapping T (see e.g., [27–
32] and the references therein).

Very recently, motivated by the work in [19, 25, 33] and the related work in the
literature, Yao et al. [34] suggested and analyzed a hybrid algorithm for pseudo-contractive
mappings in Hilbert spaces. Further, they proved the strong convergence of the proposed
iterative algorithm for Lipschitzian pseudo-contractive mappings.

Theorem YLM (see [34]). Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let
T : C → C be a L-Lipschitzian pseudo-contractive mapping such that F(T)/= ∅. Assume that the
sequence αn ∈ [a, b] for some a, b ∈ (0, 1/(L + 1)). Let x0 ∈ H. For C1 = C and x1 = PC1x0, let
{xn} be the sequence in C generated iteratively by

yn = (1 − αn)xn + αnTxn,
Cn+1 =

{
z ∈ Cn :

∥∥αn(I − T)yn∥∥2 ≤ 2αn
〈
xn − z, (I − T)yn

〉}
,

xn+1 = PCn+1x0, n ≥ 1.

(1.8)

Then {xn} converges strongly to PF(T)x0.
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Inspired by the above research work of Yao et al. [34], in this paper we will continue
this direction of research. Let C be a nonempty closed convex subset of a real Hilbert
space H. We will propose a new hybrid iterative scheme with perturbed mapping for
approximating fixed points of a Lipschitzian pseudo-contractive self-mapping on C. We
will establish a strong convergence theorem for this hybrid iterative scheme. To be more
specific, let T : C → C be a L-Lipschitzian pseudo-contractive mapping and F : C → H
a mapping such that for some constants κ, η > 0, F is κ-Lipschitzian and η-strong monotone.
Let {αn} ⊂ (0, 1), {λn} ⊂ [0, 1) and take a fixed number μ ∈ (0, 2η/κ2). We introduce the
following hybrid iterative process with perturbed mapping F. Let x0 ∈ H. For C1 = C and
x1 = PC1x0, two sequences {xn}, {yn} are generated as follows:

yn = (1 − αn)xn + αnPC
[
Txn − λnμF(Txn)

]
,

Cn+1 =
{
z ∈ Cn :

∥∥αn(I − PC(I − λnμF)T)yn∥∥2 ≤ 2αn
[〈
xn − z,

(
I − PC

(
I − λnμF

)
T
)
yn

〉
−〈Tyn − PC(I − λnμF)Tyn, yn − z〉]}

xn+1 = PCn+1x0, n ≥ 1.
(1.9)

It is clear that if λn = 0, for all n ≥ 1, then the hybrid iterative scheme (1.9) reduces to the
hybrid iterative process (1.8). Under very mild assumptions, we obtain a strong convergence
theorem for the sequences {xn} and {yn} generated by the introduced method. Our proposed
hybrid method with perturbation is quite general and flexible and includes the hybrid
method considered in [34] and several other iterative methods as special cases. Our results
represent the modification, supplement, extension, and improvement of [34, Algorithm 3.1
and Theorem 3.1]. Further, we consider the more general case, where {Ti}Ni=1 are N L-
Lipschitzian pseudo-contractive self-mappings on C with N ≥ 1 an integer. In this case,
we propose another hybrid iterative process with perturbed mapping F for approximating
a common fixed point of {Ti}Ni=1. Let x0 ∈ H. For C1 = C and x1 = PC1x0, two sequences
{xn} and {yn} are generated as follows:

yn = (1 − αn)xn + αnPC
[
Tnxn − λnμF(Tnxn)

]
,

Cn+1 =
{
z ∈ Cn :

∥∥αn(I − PC(I − λnμF)Tn)yn∥∥2 ≤ 2αn
[〈
xn − z,

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
−〈Tnyn−PC(I − λnμF)Tnyn, yn−z〉]}

xn+1 = PCn+1x0, n ≥ 1,
(1.10)

where Tn := Tn mod N , for integer n ≥ 1, with the mod function taking values in the set
{1, 2, . . . ,N} (i.e., if n = jN + q for some integers j ≥ 0 and 0 ≤ q < N, then Tn = TN if
q = 0 and Tn = Tq if 1 < q < N). It is clear that if N = 1, then the hybrid iterative scheme (1.10)
reduces to the hybrid iterative process (1.9). Under quite appropriate conditions, we derive
a strong convergence theorem for the sequences {xn} and {yn} generated by the proposed
method.
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We now give some preliminaries and results which will be used in the rest of this
paper. A Banach space X is said to satisfy Opial’s condition if whenever {xn} is a sequence in
X which converges weakly to x, then

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y∥∥, ∀y ∈ X, y /=x. (1.11)

It is well known that every Hilbert space H satisfies Opial’s condition (see, e.g., [35]).
Throughout this paper, we shall use the notations: “⇀” and “→ ” standing for the weak
convergence and strong convergence, respectively. Moreover, we shall use the following
notation: for a given sequence {xn} ⊂ X,ωw(xn) denotes the weak ω-limit set of {xn}, that is,

ωw(xn) :=
{
x ∈ X : xnj ⇀ x for some subsequence

{
nj
}

of {n}
}
. (1.12)

In addition, for each point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that

‖x − PCx‖ ≤ ∥∥x − y∥∥, ∀y ∈ C, (1.13)

where PC is called the metric projection of H onto C. It is known that PC is a nonexpansive
mapping.

Now we collect some lemmas which will be used in the proof of the main result in the
next section. We note that Lemmas 1.1 and 1.2 are well known.

Lemma 1.1. LetH be a real Hilbert space. There holds the following identity:

∥∥x − y∥∥2 = ‖x‖2 − ∥∥y∥∥2 − 2
〈
x − y, y〉, ∀x, y ∈ H. (1.14)

Lemma 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Given x ∈ H and
z ∈ C. Then z = PCx if and only if there holds the relation:

〈
x − z, y − z〉 ≤ 0, ∀y ∈ C. (1.15)

Lemma 1.3 (see [23]). Let C be a nonempty closed convex subset ofH. Let {xn} be a sequence inH
and u ∈ H. Let q = PCu. If {xn} is such that ωw(xn) ⊂ C and satisfies the condition:

‖xn − u‖ ≤ ∥∥u − q∥∥, ∀n ≥ 0. (1.16)

Then xn → q.

Lemma 1.4 (see [27]). Let X be a real reflexive Banach space which satisfies Opial’s condition. Let
C be a nonempty closed convex subset of X, and T : C → C be a continuous pseudo-contractive
mapping. Then, I − T is demiclosed at zero.
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Let T : C → C be a nonexpansive mapping and F : C → H be a mapping such that
for some constants κ, η > 0, F is κ-Lipschitzian and η-strongly monotone, that is, F satisfies
the following conditions:

∥∥Fx − Fy∥∥ ≤ κ∥∥x − y∥∥, ∀x, y ∈ C,〈
Fx − Fy, x − y〉 ≥ η∥∥x − y∥∥2

, ∀x, y ∈ C,
(1.17)

respectively. For any given numbers λ ∈ [0, 1) and μ ∈ (0, 2η/κ2), we define the mapping
Tλ : C → H:

Tλx := Tx − λμF(Tx), ∀x ∈ C. (1.18)

Lemma 1.5 (see [36]). If 0 ≤ λ < 1 and 0 < μ < 2η/κ2, then there holds for Tλ : C → H:

∥∥∥Tλx − Tλy
∥∥∥ ≤ (1 − λτ)∥∥x − y∥∥, ∀x, y ∈ C, (1.19)

where τ = 1 −
√

1 − μ(2η − μκ2) ∈ (0, 1).

In particular, whenever T = I the identity operator of H, we have

∥∥(I − λμF)x − (
I − λμF)y∥∥ ≤ (1 − λτ)∥∥x − y∥∥, ∀x, y ∈ C. (1.20)

2. Main Result

In this section, we introduce a hybrid iterative algorithm with perturbed mapping for pseudo-
contractive mappings in a real Hilbert space H.

Algorithm 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T :
C → C be a pseudo-contractive mapping and F : C → H be a mapping such that for some
constants κ, η > 0, F is κ-Lipschitzian and η-strong monotone. Let {αn} ⊂ (0, 1), {λn} ⊂ [0, 1)
and take a fixed number μ ∈ (0, 2η/κ2). Let x0 ∈ H. For C1 = C and x1 = PC1x0, define two
sequences: {xn} and {yn} of C as follows:

yn = (1 − αn)xn + αnPC
[
Txn − λnμF(Txn)

]
,

Cn+1 =
{
z ∈ Cn :

∥∥αn(I − PC(I − λnμF)T)yn∥∥2 ≤ 2αn
[〈
xn − z,

(
I − PC

(
I − λnμF

)
T
)
yn

〉
−〈Tyn − PC(I − λnμF)Tyn, yn − z〉]}

xn+1 = PCn+1x0, n ≥ 1.
(2.1)

Now we prove the strong convergence of the above iterative algorithm for Lipschitzian
pseudo-contractive mappings.
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Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C be
a L-Lipschitzian pseudo-contractive mapping such that F(T)/= ∅, and let F : C → H be a mapping
such that for some constants κ, η > 0, F is κ-Lipschitzian and η-strong monotone. Assume that
{αn} ⊂ [a, b] for some a, b ∈ (0, 1/(L + 1)) and {λn} ⊂ [0, 1) such that limn→∞λn = 0. Take a fixed
number μ ∈ (0, 2η/κ2). Then the sequences {xn} and {yn} generated by (2.1) converge strongly to
the same point PF(T)x0.

Proof. Firstly, we observe that PF(T) and {xn} are well defined. From [19, 27], we note that
F(T) is closed and convex. Indeed, by [27], we can define a mapping g : C → C by g(x) =
(2I − T)−1 for every x ∈ C. It is clear that g is a nonexpansive self-mapping such that F(T) =
F(g). Hence, by [23, Proposition 2.1 (iii)], we conclude that F(g) = F(T) is a closed convex
set. This implies that the projection PF(T) is well defined. It is obvious that {Cn} is closed and
convex. Thus, {xn} is also well defined.

Now, we show that F(T) ⊂ Cn for all n ≥ 0. Indeed, taking p ∈ F(T), we note that
(I − T)p = 0, and (1.1) is equivalent to

〈
(I − T)x − (I − T)y, x − y〉 ≥ 0, ∀x, y ∈ C. (2.2)

Using Lemma 1.1 and (2.2), we obtain

∥∥xn − p − αn(I − PC(I − λnμF)T)yn∥∥2

=
∥∥xn − p∥∥2 − ∥∥αn(I − PC(I − λnμF)T)yn∥∥2

− 2αn
〈(
I − PC

(
I − λnμF

)
T
)
yn, xn − p − αn

(
I − PC

(
I − λnμF

)
T
)
yn

〉
=
∥∥xn − p∥∥2 − ∥∥αn(I − PC(I − λnμF)T)yn∥∥2 − 2αn

〈
(I − T)yn − (I − T)p, yn − p

〉
− 2αn

〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
− 2αn

〈(
I − PC

(
I − λnμF

)
T
)
yn, xn − yn − αn

(
I − PC

(
I − λnμF

)
T
)
yn

〉
≤ ∥∥xn − p∥∥2 − ∥∥αn(I − PC(I − λnμF)T)yn∥∥2 − 2αn

〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
− 2αn

〈(
I − PC

(
I − λnμF

)
T
)
yn, xn − yn − αn

(
I − PC

(
I − λnμF

)
T
)
yn

〉
=
∥∥xn − p∥∥2 − ∥∥xn − yn + yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2

− 2αn
〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
− 2αn

〈(
I − PC

(
I − λnμF

)
T
)
yn, xn − yn − αn

(
I − PC

(
I − λnμF

)
T
)
yn

〉
=
∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2

− 2
〈
xn − yn, yn − xn + αn

(
I − PC

(
I − λnμF

)
T
)
yn

〉
+ 2αn

〈(
I − PC

(
I − λnμF

)
T
)
yn, yn − xn + αn

(
I − PC

(
I − λnμF

)
T
)
yn

〉
− 2αn

〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
=
∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2

− 2
〈
xn − yn − αn

(
I − PC

(
I − λnμF

)
T
)
yn, yn − xn + αn

(
I − PC

(
I − λnμF

)
T
)
yn

〉
− 2αn

〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
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≤ ∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2

+ 2
∣∣〈xn − yn − αn(I − PC(I − λnμF)T)yn, yn − xn + αn(I − PC(I − λnμF)T)yn〉∣∣

− 2αn
〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
.

(2.3)

Since T is L-Lipschitzian, utilizing Lemma 1.5 we derive

∥∥(I − PC(I − λnμF)T)xn − (
I − PC

(
I − λnμF

)
T
)
yn

∥∥
≤ ∥∥xn − yn∥∥ +

∥∥PC(I − λnμF)Txn − PC(I − λnμF)Tyn∥∥
≤ ∥∥xn − yn∥∥ +

∥∥(I − λnμF)Txn − (
I − λnμF

)
Tyn

∥∥
≤ ∥∥xn − yn∥∥ + (1 − λnτ)

∥∥Txn − Tyn∥∥
≤ ∥∥xn − yn∥∥ +

∥∥Txn − Tyn∥∥
≤ (L + 1)

∥∥xn − yn∥∥.

(2.4)

From (2.1), we observe that xn − yn = αn(I − PC(I − λnμF)T)xn. Hence, utilizing Lemma 1.5
and (2.4) we obtain∣∣〈xn − yn − αn(I − PC(I − λnμF)T)yn, yn − xn + αn(I − PC(I − λnμF)T)yn〉∣∣

= αn
∣∣〈(I − PC(I − λnμF)T)xn − (

I − PC
(
I − λnμF

)
T
)
yn,

yn − xn + αn
(
I − PC

(
I − λnμF

)
T
)
yn

〉∣∣
≤ αn

∥∥(I − PC(I − λnμF)T)xn − (
I − PC

(
I − λnμF

)
T
)
yn

∥∥
× ∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥

≤ αn(L + 1)
∥∥xn − yn∥∥∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥

≤ αn(L + 1)
2

(∥∥xn − yn∥∥2 +
∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2

)
.

(2.5)

Combining (2.3) and (2.5), we get

∥∥xn − p − αn(I − PC(I − λnμF)T)yn∥∥2

≤ ∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2

+ αn(L + 1)
(∥∥xn − yn∥∥2 +

∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2
)

− 2αn
〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
=
∥∥xn − p∥∥2 + [αn(L + 1) − 1]

(∥∥xn − yn∥∥2 +
∥∥yn − xn + αn(I − PC(I − λnμF)T)yn∥∥2

)
− 2αn

〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
≤ ∥∥xn − p∥∥2 − 2αn

〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − p

〉
.

(2.6)
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At the same time, we observe that

∥∥xn − p − αn(I − PC(I − λnμF)T)yn∥∥2 =
∥∥xn − p∥∥2 − 2αn

〈
xn − p,

(
I − PC

(
I − λnμF

)
T
)
yn

〉
+
∥∥αn(I − PC(I − λnμF)T)yn∥∥2

.

(2.7)

Therefore, from (2.6) and (2.7) we have

∥∥αn(I − PC(I − λnμF)T)yn∥∥2 ≤ 2αn
[〈xn − p, (I − PC(I − λnμF)T)yn〉
−〈Tyn − PC(I − λnμF)Tyn, yn − p〉], (2.8)

which implies that

p ∈ Cn, (2.9)

that is,

F(T) ⊂ Cn, ∀n ≥ 0. (2.10)

From xn = PCnx0, we have

〈
x0 − xn, xn − y

〉 ≥ 0, ∀y ∈ Cn. (2.11)

Utilizing F(T) ⊂ Cn, we also have

〈x0 − xn, xn − u〉 ≥ 0, ∀u ∈ F(T). (2.12)

So, for all u ∈ F(T) we have

0 ≤ 〈x0 − xn, xn − u〉
= 〈x0 − xn, xn − x0 + x0 − u〉

= −‖x0 − xn‖2 + 〈x0 − xn, x0 − u〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − u‖,

(2.13)

which hence implies that

‖x0 − xn‖ ≤ ‖x0 − u‖, ∀u ∈ F(T). (2.14)

Thus, {xn} is bounded and so are {yn} and {Tyn}.
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From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (2.15)

Hence,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

(2.16)

and therefore

‖x0 − xn‖ ≤ ‖x0 − xn+1‖. (2.17)

This implies that limn→∞||xn − x0|| exists.
From Lemma 1.1 and (2.15), we obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2

−→ 0.

(2.18)

Since xn+1 ∈ Cn+1 ⊂ Cn, from ||xn − xn+1|| → 0 and λn → 0 it follows that

∥∥αn(I − PC(I − λnμF)T)yn∥∥2

≤ 2αn
[〈
xn − xn+1,

(
I − PC

(
I − λnμF

)
T
)
yn

〉 − 〈
Tyn − PC

(
I − λnμF

)
Tyn, yn − xn+1

〉]
≤ 2αn

[‖xn − xn+1‖
∥∥yn − PC(I − λnμF)Tyn∥∥ +

∥∥Tyn − PC(I − λnμF)Tyn∥∥∥∥yn − xn+1
∥∥]

≤ 2αn
[‖xn − xn+1‖

∥∥yn − PC(I − λnμF)Tyn∥∥ +
∥∥Tyn − (

I − λnμF
)
Tyn

∥∥∥∥yn − xn+1
∥∥]

= 2αn
[‖xn − xn+1‖

∥∥yn − PC(I − λnμF)Tyn∥∥ + λnμ
∥∥F(Tyn)∥∥∥∥yn − xn+1

∥∥]
−→ 0.

(2.19)

Noticing that αn ∈ [a, b] for some a, b ∈ (0, 1/(L + 1)), thus, we obtain

∥∥yn − PC(I − λnμF)Tyn∥∥ −→ 0. (2.20)
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Also, we note that ||Tyn − PC(I − λnμF)Tyn|| ≤ λnμ||F(Tyn)|| → 0. Therefore, we get

∥∥yn − Tyn∥∥ ≤ ∥∥yn − PC(I − λnμF)Tyn∥∥ +
∥∥Tyn − PC(I − λnμF)Tyn∥∥ −→ 0. (2.21)

On the other hand, utilizing Lemma 1.5 we deduce that

∥∥xn − PC(I − λnμF)Txn∥∥
≤ ∥∥xn − yn∥∥ +

∥∥yn − PC(I − λnμF)Tyn∥∥ +
∥∥PC(I − λnμF)Tyn − PC(I − λnμF)Txn∥∥

≤ ∥∥xn − yn∥∥ +
∥∥yn − PC(I − λnμF)Tyn∥∥ +

∥∥(I − λnμF)Tyn − (
I − λnμF

)
Txn

∥∥
≤ ∥∥xn − yn∥∥ +

∥∥yn − PC(I − λnμF)Tyn∥∥ + (1 − λnτ)
∥∥Tyn − Txn∥∥

≤ ∥∥xn − yn∥∥ +
∥∥yn − PC(I − λnμF)Tyn∥∥ + L

∥∥yn − xn∥∥
= (L + 1)

∥∥xn − yn∥∥ +
∥∥yn − PC(I − λnμF)Tyn∥∥

= αn(L + 1)
∥∥xn − PC(I − λnμF)Txn∥∥ +

∥∥yn − PC(I − λnμF)Tyn∥∥,
(2.22)

that is,

∥∥xn − PC(I − λnμF)Txn∥∥ ≤ 1
1 − αn(L + 1)

∥∥yn − PC(I − λnμF)Tyn∥∥ −→ 0. (2.23)

Meantime, it is clear that

∥∥Txn − PC(I − λnμF)Txn∥∥ ≤ λnμ‖F(Txn)‖ −→ 0. (2.24)

Consequently,

‖xn − Txn‖ ≤ ∥∥xn − PC(I − λnμF)Txn∥∥ +
∥∥Txn − PC(I − λnμF)Txn∥∥ −→ 0. (2.25)

Now (2.25) and Lemma 1.4 guarantee that every weak limit point of {xn} is a fixed point
of T , that is, ωw(xn) ⊂ F(T). In fact, the inequality (2.14) and Lemma 1.3 ensure the strong
convergence of {xn} to PF(T)x0. Since ||xn − yn|| = ||αn(I − PC(I − λnμF)T)xn|| → 0, it is
immediately known that {yn} converges strongly to PF(T)x0. This completes the proof.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C
be a nonexpansive mapping such that F(T)/= ∅, and let F : C → H be a mapping such that for some
constants κ, η > 0, F is κ-Lipschitzian and η-strong monotone. Assume that {αn} ⊂ [a, b] for some
a, b ∈ (0, 1/2) and {λn} ⊂ [0, 1) such that limn→∞λn = 0. Take a fixed number μ ∈ (0, 2η/κ2).
Then the sequences {xn} and {yn} generated by (2.1) converge strongly to the same point PF(T)x0.

Corollary 2.4. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C be
a L-Lipschitzian pseudo-contractive mapping such that F(T)/= ∅. Assume that {αn} ⊂ [a, b] for some
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a, b ∈ (0, 1/(L+1)) and {λn} ⊂ [0, 1) such that limn→∞λn = 0. Then the sequences {xn} and {yn}
generated by the scheme

yn = (1 − αn)xn + αnPC((1 − λn)Txn),

Cn+1 =
{
z ∈ Cn :

∥∥αn(yn − PC((1 − λn)Tyn
))∥∥2 ≤ 2αn

[〈
xn − z, yn − PC

(
(1 − λn)Tyn

)〉
−〈Tyn − PC((1 − λn)Tyn

)
, yn − z

〉]}
xn+1 = PCn+1x0

(2.26)

converge strongly to the same point PF(T)x0.

Proof. Put μ = 2 and F = (1/2)I in Theorem 2.2. Then, in this case we have κ = η = 1/2, and
hence

(
0,

2η
κ2

)
= (0, 4). (2.27)

This implies that μ = 2 ∈ (0, 2η/κ2) = (0, 4). Meantime, it is easy to see that the scheme (2.1)
reduces to (2.26). Therefore, by Theorem 2.2, we obtain the desired result.

Corollary 2.5 ([34, Corollary 3.2]). Let A : H → H be a L-Lipschitzian monotone mapping for
which A−1(0)/= ∅. Assume that the sequence {αn} ⊂ [a, b] for some a, b ∈ (0, 1/(L + 2)). Then the
sequence {xn} generated by the scheme

yn = xn − αnAxn,

Cn+1 =
{
z ∈ Cn :

∥∥αnAyn∥∥2 ≤ 2αn
〈
xn − z,Ayn

〉}
,

xn+1 = PCn+1x0

(2.28)

strongly converges to PA−1(0)x0.

Proof. Put λn = 0 and T = I −A in Corollary 2.4. Then, it is easy to see that the scheme (2.26)
reduces to (2.28). Therefore, by Corollary 2.4, we derive the desired result.

Next, consider the more general case where Ω is expressed as the intersection of the
fixed-point sets of N pseudo-contractive mappings Ti : C → C with N ≥ 1 an integer, that is,

Ω =
N⋂
i=1

F(Ti). (2.29)

In this section, we propose another hybrid iterative algorithm with perturbed mapping for a
finite family of pseudo-contractive mappings in a real Hilbert space H.



Journal of Applied Mathematics 13

Algorithm 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Ti}Ni=1
be N pseudo-contractive self-mappings on C with N ≥ 1 an integer, and let F : C → H be a
mapping such that for some constants κ, η > 0, F is κ-Lipschitzian and η-strong monotone.
Let {αn} ⊂ (0, 1), {λn} ⊂ [0, 1), and take a fixed number μ ∈ (0 , 2η/κ2). Let x0 ∈ H. For
C1 = C and x1 = PC1x0, define two sequences {xn}, {yn} of C as follows:

yn = (1 − αn)xn + αnPC
[
Tnxn − λnμF(Tnxn)

]
,

Cn+1 =
{
z ∈ Cn :

∥∥αn(I − PC(I − λnμF)Tn)yn∥∥2

≤ 2αn
[〈
xn − z,

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
−〈Tnyn − PC(I − λnμF)Tnyn, yn − z〉]},
xn+1 = PCn+1x0, n ≥ 1,

(2.30)

where

Tn := Tn mod N, (2.31)

for integer n ≥ 1, with the mod function taking values in the set {1, 2, . . . ,N} (i.e., if n = jN+q
for some integers j ≥ 0 and 0 ≤ q < N, then Tn = TN if q = 0 and Tn = Tq if 1 < q < N).

Theorem 2.7. LetC be a nonempty closed convex subset of a real Hilbert spaceH. Let {Ti}Ni=1 beN L-
Lipschitzian pseudo-contractive self-mappings onC such thatΩ =

⋂N
i=1 F(Ti)/= ∅, and let F : C → H

be a mapping such that for some constants κ, η > 0, F is κ-Lipschitzian and η-strong monotone.
Assume that {αn} ⊂ [a, b] for some a, b ∈ (0, 1/(L+1)) and {λn} ⊂ [0, 1) such that limn→∞λn = 0.
Take a fixed number μ ∈ (0, 2η/κ2). Then the sequences {xn}, {yn} generated by (2.30) converge
strongly to the same point PΩx0.

Proof. Firstly, as stated in the proof of Theorem 2.2, we can readily see that each F(Ti) is closed
and convex for i = 1, 2, . . . ,N. Hence, Ω is closed and convex. This implies that the projection
PΩ is well defined. It is clear that the sequence {Cn} is closed and convex. Thus, {xn} is also
well defined.

Now let us show that Ω ⊂ Cn for all n ≥ 0. Indeed, taking p ∈ Ω, we note that (I−Tn)p =
0 and

〈
(I − Tn)x − (I − Tn)y, x − y〉 ≥ 0, ∀x, y ∈ C. (2.32)

Using Lemma 1.1 and (2.32), we obtain

∥∥xn − p − αn(I − PC(I − λnμF)Tn)yn∥∥2

=
∥∥xn − p∥∥2 − ∥∥αn(I − PC

(
I − λnμF

)
Tn

)
yn

∥∥2

− 2αn
〈(
I − PC

(
I − λnμF

)
Tn

)
yn, xn − p − αn

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
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=
∥∥xn − p∥∥2 − ∥∥αn(I − PC(I − λnμF)Tn)yn∥∥2 − 2αn

〈
(I − Tn)yn − (I − Tn)p, yn − p

〉
− 2αn

〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
− 2αn

〈(
I − PC

(
I − λnμF

)
Tn

)
yn, xn − yn − αn

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
≤ ∥∥xn − p∥∥2 − ∥∥αn(I − PC(I − λnμF)Tn)yn∥∥2 − 2αn

〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
− 2αn

〈(
I − PC

(
I − λnμF

)
Tn

)
yn, xn − yn − αn

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
=
∥∥xn − p∥∥2 − ∥∥xn − yn + yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2

− 2αn
〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
− 2αn

〈(
I − PC

(
I − λnμF

)
Tn

)
yn, xn − yn − αn

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
=
∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2

− 2
〈
xn − yn, yn − xn + αn

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
+ 2αn

〈(
I − PC

(
I − λnμF

)
Tn

)
yn, yn − xn + αn

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
− 2αn

〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
=
∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2

− 2
〈
xn − yn − αn

(
I − PC

(
I − λnμF

)
Tn

)
yn, yn − xn + αn

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
− 2αn

〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
≤ ∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2

+ 2
∣∣〈xn − yn − αn(I − PC(I − λnμF)Tn)yn, yn − xn + αn(I − PC(I − λnμF)Tn)yn〉∣∣

− 2αn
〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
.

(2.33)

Since each Ti is L-Lipschitzian for i = 1, 2, . . . ,N, utilizing Lemma 1.5 we derive

∥∥(I − PC(I − λnμF)Tn)xn − (
I − PC

(
I − λnμF

)
Tn

)
yn

∥∥
≤ ∥∥xn − yn∥∥ +

∥∥PC(I − λnμF)Tnxn − PC(I − λnμF)Tnyn∥∥
≤ ∥∥xn − yn∥∥ +

∥∥(I − λnμF)Tnxn − (
I − λnμF

)
Tnyn

∥∥
≤ ∥∥xn − yn∥∥ + (1 − λnτ)

∥∥Tnxn − Tnyn∥∥
≤ ∥∥xn − yn∥∥ +

∥∥Tnxn − Tnyn∥∥
≤ (L + 1)

∥∥xn − yn∥∥.

(2.34)

From (2.30), we observe that xn − yn = αn(I − PC(I − λnμF)Tn)xn. Hence, utilizing Lemma 1.5
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and (2.34) we obtain

∣∣〈xn − yn − αn(I − PC(I − λnμF)Tn)yn, yn − xn + αn(I − PC
(
I − λnμF

)
Tn

)
yn

〉∣∣
= αn

∣∣〈(I − PC(I − λnμF)Tn)xn − (
I − PC

(
I − λnμF

)
Tn

)
yn,

yn − xn + αn
(
I − PC

(
I − λnμF

)
Tn

)
yn

〉∣∣
≤ αn

∥∥(I − PC(I − λnμF)Tn)xn − (
I − PC

(
I − λnμF

)
Tn

)
yn

∥∥
× ∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥

≤ αn(L + 1)
∥∥xn − yn∥∥∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥

≤ αn(L + 1)
2

(∥∥xn − yn∥∥2 +
∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2

)
.

(2.35)

Combining (2.33) and (2.35), we get

∥∥xn − p − αn(I − PC(I − λnμF)Tn)yn∥∥2

≤ ∥∥xn − p∥∥2 − ∥∥xn − yn∥∥2 − ∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2

+ αn(L + 1)
(∥∥xn − yn∥∥2 +

∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2
)

− 2αn
〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
=
∥∥xn − p∥∥2 + [αn(L + 1) − 1]

(∥∥xn − yn∥∥2 +
∥∥yn − xn + αn(I − PC(I − λnμF)Tn)yn∥∥2

)
− 2αn

〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
≤ ∥∥xn − p∥∥2 − 2αn

〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − p

〉
.

(2.36)

Meantime, we observe that

∥∥xn − p − αn(I − PC(I − λnμF)Tn)yn∥∥2

=
∥∥xn − p∥∥2 − 2αn〈xn − p,

(
I − PC

(
I − λnμF

)
Tn

)
yn〉

+
∥∥αn(I − PC(I − λnμF)Tn)yn∥∥2

.

(2.37)

Therefore, from (2.36) and (2.37) we have

∥∥αn(I − PC(I − λnμF)Tn)yn∥∥2 ≤ 2αn
[〈
xn − p,

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉
−〈Tnyn − PC(I − λnμF)Tnyn, yn − p〉], (2.38)
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which implies that

p ∈ Cn, (2.39)

that is,

Ω ⊂ Cn, ∀n ≥ 0. (2.40)

From xn = PCnx0, we have

〈
x0 − xn, xn − y

〉 ≥ 0, ∀y ∈ Cn. (2.41)

Utilizing Ω ⊂ Cn, we also have

〈x0 − xn, xn − u〉 ≥ 0, ∀u ∈ Ω. (2.42)

So, for all u ∈ Ω we have

0 ≤ 〈x0 − xn, xn − u〉
= 〈x0 − xn, xn − x0 + x0 − u〉

= −‖x0 − xn‖2 + 〈x0 − xn, x0 − u〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − u‖,

(2.43)

which hence implies that

‖x0 − xn‖ ≤ ‖x0 − u‖, ∀u ∈ Ω. (2.44)

Thus {xn} is bounded and so are {yn} and {Tnyn}.
From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (2.45)

Hence,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

(2.46)
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and therefore

‖x0 − xn‖ ≤ ‖x0 − xn+1‖. (2.47)

This implies that limn→∞||xn − x0|| exists.
From Lemma 1.1 and (2.45), we obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 −→ 0 as n −→ ∞.

(2.48)

Thus,

lim
n→∞

‖xn+1 − xn‖ = 0. (2.49)

Obviously, it is easy to see that limn→∞||xn − xn+i|| = 0 for each i = 1, 2, . . . ,N. Since xn+1 ∈
Cn+1 ⊂ Cn, from ||xn − xn+1|| → 0 and λn → 0 it follows that

∥∥αn(I − PC(I − λnμF)Tn)yn∥∥2

≤ 2αn
[〈
xn − xn+1,

(
I − PC

(
I − λnμF

)
Tn

)
yn

〉 − 〈
Tnyn − PC

(
I − λnμF

)
Tnyn, yn − xn+1

〉]
≤ 2αn

[‖xn − xn+1‖
∥∥yn − PC(I − λnμF)Tnyn∥∥ +

∥∥Tnyn − PC(I − λnμF)Tnyn∥∥∥∥yn − xn+1
∥∥]

≤ 2αn
[‖xn − xn+1‖

∥∥yn − PC(I − λnμF)Tnyn∥∥ +
∥∥Tnyn − (

I − λnμF
)
Tnyn

∥∥∥∥yn − xn+1
∥∥]

= 2αn
[‖xn − xn+1‖

∥∥yn − PC(I − λnμF)Tnyn∥∥ + λnμ
∥∥F(Tnyn)∥∥∥∥yn − xn+1

∥∥] −→ 0.
(2.50)

Noticing that αn ∈ [a, b] for some a, b ∈ (0, 1/(L + 1)), thus, we obtain

∥∥yn − PC(I − λnμF)Tnyn∥∥ −→ 0. (2.51)

Also, we note that ||Tnyn − PC(I − λnμF)Tnyn|| ≤ λnμ||F(Tnyn)|| → 0. Therefore, we get

∥∥yn − Tnyn∥∥ ≤ ∥∥yn − PC(I − λnμF)Tnyn∥∥ +
∥∥Tnyn − PC(I − λnμF)Tnyn∥∥ −→ 0. (2.52)
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On the other hand, utilizing Lemma 1.5 we deduce that

∥∥xn − PC(I − λnμF)Tnxn∥∥
≤ ∥∥xn − yn∥∥ +

∥∥yn − PC(I − λnμF)Tnyn∥∥ +
∥∥PC(I − λnμF)Tnyn − PC(I − λnμF)Tnxn∥∥

≤ ∥∥xn − yn∥∥ +
∥∥yn − PC(I − λnμF)Tnyn∥∥ +

∥∥(I − λnμF)Tnyn − (
I − λnμF

)
Tnxn

∥∥
≤ ∥∥xn − yn∥∥ +

∥∥yn − PC(I − λnμF)Tnyn∥∥ + (1 − λnτ)
∥∥Tnyn − Tnxn∥∥

≤ ∥∥xn − yn∥∥ +
∥∥yn − PC(I − λnμF)Tnyn∥∥ + L

∥∥yn − xn∥∥
= (L + 1)

∥∥xn − yn∥∥ +
∥∥yn − PC(I − λnμF)Tnyn∥∥

= αn(L + 1)
∥∥xn − PC(I − λnμF)Tnxn∥∥ +

∥∥yn − PC(I − λnμF)Tnyn∥∥,
(2.53)

that is,

∥∥xn − PC(I − λnμF)Tnxn∥∥ ≤ 1
1 − αn(L + 1)

∥∥yn − PC(I − λnμF)Tnyn∥∥ −→ 0. (2.54)

Furthermore, it is clear that

∥∥Tnxn − PC(I − λnμF)Tnxn∥∥ ≤ λnμ‖F(Tnxn)‖ −→ 0 as n −→ ∞. (2.55)

Consequently,

‖xn − Tnxn‖ ≤ ∥∥xn − PC(I − λnμF)Tnxn∥∥ +
∥∥Tnxn − PC(I − λnμF)Tnxn∥∥ −→ 0, (2.56)

and hence for each i = 1, 2, . . . ,N:

‖xn − Tn+ixn‖ ≤ ‖xn − xn+i‖ + ‖xn+i − Tn+ixn+i‖ + ‖Tn+ixn+i − Tn+ixn‖
≤ (L + 1)‖xn − xn+i‖ + ‖xn+i − Tn+ixn+i‖ −→ 0 as n −→ ∞.

(2.57)

So, we obtain limn→∞||xn − Tn+ixn|| = 0 for each i = 1, 2, . . . ,N. This implies that

lim
n→∞

‖xn − Tlxn‖ = 0 for each l = 1, 2, . . . ,N. (2.58)

Now (2.58) and Lemma 1.4 guarantee that every weak limit point of {xn} is a fixed point of
Tl. Since l is an arbitrary element in the finite set {1, 2, . . . ,N}, it is known that every weak
limit point of {xn} lies in Ω, that is,ωw(xn) ⊂ Ω. This fact, the inequality (2.44) and Lemma 1.3
ensure the strong convergence of {xn} to PΩx0. Since ||xn−yn|| = ||αn(I−PC(I−λnμF)Tn)xn|| →
0, it follows immediately that {yn} converges strongly to PΩx0. This completes the proof.

Remark 2.8. Algorithm 3.1 in [34] for a Lipschitzian pseudocontraction is extended to develop
our hybrid iterative algorithm with perturbation forN-Lipschitzian pseudocontractions; that
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is, Algorithm 2.6. Theorem 2.7 is more general and more flexible than Theorem 3.1 in [34].
Also, the proof of Theorem 2.7 is very different from that of Theorem 3.1 in [34] because our
technique of argument depends on Lemma 1.5. Finally, we observe that several recent results
for pseudocontractive and related mappings can be found in [37–42].
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