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/is paper addresses the importance of engineering asset management decisions and control. For this purpose, a Life-Cycle Cost
(LCC) analysis is conducted for typical reinforced concrete (R/C) buildings located inMexico City./e objective of this study is to
develop an artificial neural network (ANN) model that can estimate the total expected cost of R/C buildings by using LCC
functions./e total cost includes the initial cost and the cost of the damage caused by future possible groundmotions at the site of
interest. /e present value of the cost includes: initial cost, repair or reconstruction cost, cost of damage to the contents, costs
associated with the loss of life or injuries and economic losses. /e structural performance is evaluated using probabilistic models,
artificial neural networks models are used to obtain the seismic response of the buildings. /e methodology is applied to a set of
reinforced concrete buildings with 4, 8, and 12 stories which are located at the soft soil of Mexico City. Finally, it is concluded that
the life-cycle cost is efficiently obtained using artificial neural network models for estimating the structural reliability of reinforced
concrete buildings, in such a way that it can be used as an excellent planning tool that covers long spans of time.

1. Introduction

/e life-cycle cost estimation has received abundant at-
tention over the past decades. In that time, the challenge of
estimating the total life-cycle costs of structures considering
all variables involved in the problem has represented a
difficult task. /ere is a vast amount of literature available
regarding the estimation of the expected cost for different
structural systems [1–19]; however, those studies generally
are applied to a limited number of particular cases. Fur-
thermore, one of the main limitations of those studies is the

time consuming of the methodology to obtain the total
expected cost./is study addresses this issue, to perform this
task artificial neural networks are used aiming to minimize
the time consuming of the methodology within low errors in
the estimation. /e great potential of ANNs is the high-
speed processing provided in a massive parallel imple-
mentation [20]. ANNs can be developed and used for image
recognition, natural language processing and so on. Now-
adays, ANNs are vastly used for universal function ap-
proximation in numerical paradigms because of their
excellent properties of self-learning, adaptivity, fault
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tolerance, nonlinearity, and advancement in input and
output mapping [21]. In the engineering field ANN has been
used for optimization and seismic code calibration [22], they
have been applied for estimating concrete and reinforcement
consumption in the construction of integral bridges [23];
moreover, an artificial neural network model has been ap-
plied to estimate the construction costs [24]. For bridge
design an ANN was used to decrease the computational
demand of box-girder element analysis [25]. /e prediction
and identification of seismic-induced damage in structures
has been possible using neural networks [26–28]. For
earthquake engineering, the use of the power of ANN
pattern recognition was applied to evaluate seismic risk
problems [29].

/e estimation of the life-cycle cost of buildings is a
primary part of a construction project, it is considered one of
the major criteria in building design for its importance in
helping to choose economic structural configurations and to
estimate future costs of ownership. In this paper, it is
considered that the total expected life-cycle cost of buildings
includes: the initial costs plus the expected costs of the
damage caused to the structure by future earthquakes, in-
cluding repair cost, cost of damage to the contents, the cost
associated with the loss of life and injuries, and direct
economic losses [30]. /e loads considered for the structural
design are: dead load, life load, and earthquake loads. /e
structural performance is evaluated using probabilistic
analysis. /e occurrence of earthquakes is described by a
Poisson process [31]. /e methodology is applied to a set of
reinforced concrete buildings with 4, 8, and 12 stories (low,
middle and high rise) located in soft soil with ground period
of Ts� 2.0s of Mexico City, which are of main concern in
Mexico City Building Code (MCBC). Finally, it is concluded
that artificial intelligence can provide accurate results,
minimize prediction errors, and it can be used as an excellent
planning tool that covers long spans of time.

2. General Methodology

/e general approach taken to obtain the life-cycle costs of
buildings is summarized in the steps below and illustrated in
Figure 1.

2.1. Structural Design of Buildings (Step 1). /e buildings are
designed according to the Mexico City Building Code
considering the seismic design and concrete regulations for
buildings located in the soft soil of Mexico City.

2.2. Maximum Structural Capacity (Step 2). /e maximum
structural capacity is obtained using incremental dynamic
analysis (IDA) [32]. For this aim, the maximum inter-story
drift (MID) is selected as the engineering demand parameter
to conduct the analysis. /e associated yielding and near
collapse limit states of the buildings can be obtained from
this analysis.

2.3. Structural Reliability (Step 3). /e structural reliability is
obtained from the seismic demand hazard curve that esti-
mates the mean of the annual rate of exceeding a certain
MID. /e curve is calculated by the following expression
[33,34]:

d] Sa( 

d Sa( 




P D>d|Sa( d Sa( , (1)

Where ]D(d): represents the average number of times per
year that MID exceed a given value of d; d: a given value of
MID; D: structural demand, presented by the maximum
inter-story drift; Sa: pseudo-acceleration associated with the
fundamental period of vibration of the building; ](Sa): the
seismic hazard curve for the site of interest; and

P D> d | Sa(  � 1 −Φ
ln(D) − μlnd

σlnd

 , (2)

where P(D>d|Sa): is the fragility curve; Φ: the standard
normal cumulative distribution function; μln d: the median
of the logarithmic value of the seismic demand; σln d: log-
arithmic standard deviation of the demand.

1. The reinforced Concrete Buildings are designed in
accordance with the Mexico City Building Code.

2. The structural capacity of the buildings is
calculated using Incremental Dynamic Analysis.

3. The seismic demand hazard curve is obtained for
the R/C Buildings.

4. Artificial neural networks (ANN) are trainned to
obtain the structural design, structural capacity and
seismic demand hazard curve of the buildings.

5. Seismic demands are simulated from the seismic
demand hazard curve.

6. The structural damage is computed for the structure’s
service life.

7. The life-cycle cost is estimated for each building.

End

Figure 1: Flowchart of the life-cycle cost assessment procedure.
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2.4.ArtificialNeuralNetworkTraining (Step 4). In this study,
the artificial neural network technique has been used for the
structural design of the buildings and to estimate the ca-
pacity and seismic demand hazard curves. From the pre-
vious steps, and in order to obtain the structural capacity and
seismic demand hazard curve, numerous nonlinear analyses
that are time consuming are required. /erefore, it is pos-
sible to reduce the time for the analysis of the building using
ANN models. /e Matlab [35] software was used in this
study to develop the ANNs.

2.5. SeismicDemands Simulation (Step 5). Different values of
seismic demands are simulated from the seismic demand
hazard curve (equation (1)). For the numerical simulation,
the average number of times per year that a seismic event
occurs with a magnitude equal or greater than 6 is con-
sidered ]� 3. /e events are modeled by a Poisson process;
therefore, the earthquakes follow an exponential distribu-
tion. By using the inverse transformation method [36]
different values of MID are simulated for the life-cycle of the
buildings.

2.6.Damage Index (Step6). /ere are different approaches to
estimate the structural damage [37,38]. In the present study,
the level of structural degradation is estimated from a
measure of physical damage, which is represented as a
damage index, DI, expressed as the ratio between the global
structural capacity of the building and structural demand.
/e values taken by the DI are between 0 and 1, when DI
equals 0 represents no damage in the structure, and DI
equals 1 represents the total damage. /e DI is defined by
equation (3) [39]:

DI �
δD − δy

δu − δy

, (3)

Where δD: is the maximum inter-story drift demand, which
is obtained from the simulation of the seismic demands of
the seismic demand hazard curve (step 5); δy: is the max-
imum inter-story drift associated with serviceability limit
state (structure without damage), which is obtained from the
statistic value of the limit state considered in the incremental
dynamic analyses; δu: is the maximum inter-story drift as-
sociated with incipient collapse.

2.7. Life Cycle Cost Functions (Step 7). /e total cost of a
structure with an expected life cycle of 50 years is the
combination of the initial cost plus the expected damage
cost:

Ct � CI + CD, (4)

Where Ct: represents the total cost of the structure; CI: is
the initial cost; CD: is the cost associated with the damage.

2.7.1. Initial Cost. /e initial cost is calculated using an
approximated procedure proposed by De Leon [14]. /e
cost includes direct cost, indirect costs and the utility paid

to the contractor. /e direct cost CDI is estimated from
the material cost CM plus the cost of labor, approximately
40% of CM, CDI � 1.4CM. /e indirect cost due to the
nonstructural work the contractor has (i.e.: insurance,
training, office expenses, etc.) is estimated to be 20% of
CDI, CIN � 0.2CDI. /e constructor fee is 15% of the
summation of the direct cost and indirect cost,
UM � 0.15(CDI + CIN). /e total initial cost can be esti-
mated as the summation of CDI, CIN and UM, equation
(5);

CI � CDI + CIN + UM � 1.38CDI � 1.93CM. (5)

Where; CI: is the initial cost; CDI: is the direct cost; CIN: is
the indirect cost; UM: is the utility.

/e unit cost of the construction materials CM is shown
in Table 1. For the cost analyses the average cost of concrete
and steel in Mexico City is used.

2.7.2. Damage Cost. /e damage costs CD of the structure
during its useful life can be express as the following: repair or
reconstruction, CPR; loss of content, CPC; economic losses,
CPI; injury, CPL; and loss of life, CPV./e damage cost can be
expressed as Eq. (6);

Cd � CPR + CPC + CPI + CPL + CPV. (6)

/edamage costs are obtained bymeans of the simulated
level of structural damage present in the building. /e
damage index (Step 6) is used to measure the structural
damage simulated.

(1) Repair Cost or Reconstruction. /ere are several
methods to repair buildings damaged by previous
earthquakes, depending on factors such as the level of
damage, type of structure, configuration, logistics. In this
study, it is assumed that the R/C buildings will be repaired
using the jacketing technique of structural members, this
technique allows the structure to be repaired effectively
and return to practically its initial condition before the
damage. Based on the repair costs of buildings that were
damaged by previous earthquakes a relationship between
the repair cost and the damage index was established. /e
structural damage in some cases is extremely severe such
structures can no longer be repaired, and it is necessary to
be demolished. De León and Ang [40] considered that for
DI > 0.70 the R/C structure needs to be demolished. /e
costs of reconstruction are assumed to be equal to 1.2 CI,
which includes costs of demolition, cleaning and rede-
signing the structure. For DI < 0.70 the repair cost is a
function of the initial cost times the DI to the second
power. /e repair or reconstruction costs are defined by
equation (7) and (8):

CPR � CI( DI
2
, 0≤DI < 0.7, (7)

CPR � 1.2CI, DI ≥ 0.7. (8)

/e relationship between the normalize repair cost
(CPR/CI) and the damage index is shown in Figure 2.
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(2) Cost Due to Damage of Contents. /e estimation of costs
due to damage of contents depends on the type and use of
the structure; for example, the damage of contents in a
school does not have the same impact as that of an office
building or shopping mall. In this study, it is assumed that
the buildings are offices, it is considered as suggested by
Suranhman and Rojiani [41], that the maximum content loss
if DI> 1 is equal to 50% of the initial cost. For values of
DI< 1, the expected cost is assumed to be a linear function of
DI./e cost due to loss of content is defined by equations (9)
and (10):

CPC � 0.5 CI( DI , 0<DI < 1.0. (9)

CPC � 0.5CI, DI ≥ 1.0. (10)

/e relationship between the normalized cost due to
damage of contents (CPR/CI) and the damage index is
shown in Figure 3.

(3) Cost Due to Economic Loss. /e cost due to economic loss
depends on the economic activity for which the building is
used. /is study assumed the usage of the building as offices;
therefore, the economic loss is associated with the loss of
income due to rental during the time of repair or
reconstruction.

/e maximum cost for economic loss (DI> 1) is a
function of the period of reconstruction (PR), the average
rent in dollars per square meter (R) and the build area in
meters of the structure (A). For values of DI< 1 the variation
of cost is assumed to be a function of DI to the second power
[14]. /e average monthly rental for offices in Mexico City is
equal to $19 US dollars/m2 and it is assumed that the
maximum period of reconstruction of a building is equal to
24months. /e function due to economic loss is defined by
equations (11) and (12).

CPI � R PR( A, DI ≥ 1. (11)

CPI � R PR( (A)DI
2
, 0<DI < 1.0. (12)

/e relationship between the normalized economic cost
per square meter of building area (CPI/A) and the damage
index is shown in Figure 4.

(4) Cost Due to Loss of Life. /e estimation of the cost as-
sociated with life loss is a difficult task because it is a sensitive
issue [42–45]. Two postures regarding the value of a person
life can be found. /e first one, human life has a statistical
value based on its income; and the second one, the cost of
human life is invaluable. For this work, the value of a life is
considered by the average income of a person.

For the present study, the cost due to the loss of life is
estimated relying on previous catastrophic seismic events.
For this reason, it is necessary to estimate the average
number of dead people inside a building during a seismic
event. A nonlinear regression analysis [40] was obtained
based on the total area of buildings that collapse during the
1985 Mexico City earthquake [46] and the number of deaths
[47]. /e result of this analysis is summarized in equation
(13) and shown in Figure 5:

Nd � 45.48 + 5.531744A
2
. (13)

Where ND: is the number of deaths; A: is the of collapsed
buildings area in 1000m2.

/e cost due to the loss of life function (DI > 1) is
expressed as the total number of deaths, ND, in the case of
incipient collapse, multiplied by the value of the statistical
life-time income of a person, CPF. For smaller vales of DI,
it is assumed that the cost function can be represented by
the total number of deaths, multiplied by the statistical
life-time income of a person multiplied by DI to the fourth
power, Equation (15). It is considered that the average
annual income of a person in Mexico is considered equal
to $10000 US dollars [48], and that the useful working life
per person is equal to 25 years, so the cost per death (CPF)

of a person is equal to $250,000 US dollars. /e cost
functions due to loss of life are summarized in equations
(14) and (15) [14]:

Table 1: Unitary cost of materials.

Material Cost ($US Dollar)
Steel $1000/ton
Concrete (f’c� 250 kg/cm2) $130/m3
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Figure 2: Repair cost as function of damage index.

0

0.1

0.2

0.3

0.4

0.5

0.6

C P
C 

(C
I)

0.2 0.4 0.6 0.8 1 1.20
DI

Figure 3: Loss of content cost as function of damage index.
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CPV � ND CPFDI
4

 , 0<DI < 1. (14)

CPV � NDCPF, DI ≥ 1. (15)

(5) Cost Due to Injuries. /e evaluation of cost due to in-
juries, CPL, refers to expenses required for hospitalization of
people who became injured during an earthquake [14]. /e
average number of people injured per unit area of collapse is
equal to 0.0168/m2 estimated as the relation of the number of
injuries reported in the 1985 Mexico City earthquake [47]
with the total area of buildings collapsed [46]. /e cost of
injuries without disability, CLS, is considered equal to $2000
US dollars. Notice that costs for minor injuries, medical
expenses and medicine, including a small stay in the hospital
are considered. Injured without disability are considered to
represent 90% of all injured people [40]. /e cost of injuries
resulting in disability, CLI, is considered equal to $250,000
US dollars (equal to the cost of death). People with dis-
abilities represent 10% of total injuries.

For DI< 1 the cost due to injuries is assumed to be a
function of the total people injured in the building times the
DI raised to the second power, Equation (16) [14]. For DI> 1
the cost function is assumed to be a function of the total
people injured in the building with disability and without
disability in the building, Equation (17).

CPL � 0.1CLI + 0.9CLS( 0.0168(A)DI
2
, 0<DI < 1,

(16)

CPL � 0.1CLI + 0.9CLS( 0.0168A, DI ≥ 1.

(17)

/e relationship between the normalized cost due to
injuries per person injured (CPL) and the damage index is
shown in Figure 6.

3. Illustrative Example

/e illustration of the methodology is presented by an ex-
ample in this section. /e methodology is applied to a 12-
story, 3-bays reinforced concrete building.

3.1. Selected Ground Motion Records. In this study three
different buildings are located in soft soil with a dominant
period TS � 2.0s. A set of 15 ground motion records were
selected to perform the analyses of the buildings. Table 2
shows the main characteristics of the earthquake ground
motions. /e ground motion records were obtained from
the IINGEN database [49]. /e pseudo-acceleration elastic
seismic response spectra of the records selected are shown in
Figure 7 considering 5% of critical damping.

Figure 8 shows the seismic hazard curves associated with
different fundamental structural periods. /ose curves
represent the probability that a structure will exceed a
specified seismic intensity (e.g., pseudo-acceleration) in one
year. /e curves are used to solve Eq. 1, and corresponds to a
site located at soft soil of Mexico City.

3.2. Reinforced Concrete Building Characteristics. /ree
types of reinforced concrete buildings, low, mid, and high
rise were selected for the seismic analyses and design
according with common practice in Mexico City. /e
buildings were represented by three-dimensional structural
models with elevation between 4, 8, and 12 stories, an inter-
story height equal to 4meters. /e buildings are constituted by
orthogonal rigid reinforced concrete frames constituted by
beams and columns, with three bays in both directions. While
for the 4-story building the bay length is equal to 6m, for the 8
and 12-story buildings the bay length is equal to 8m./e frames
are connected by floor slabs assumed to be rigid diaphragms.
Figure 9 shows the geometric characteristics of the buildings.

3.3. Structural Design. /e 12-story building is designed in
accordance with the Mexico City Building Code [50]. /e
loads considered for the analysis are; dead load, live load and
seismic load.

/e 12- story building was divided into 3 groups of
beams and 3 groups of columns to uniform the buildings
sections. Table 3 shows the results of the structural design for
the 12-story building. /e sections characteristics shown in
Table 3 are the parameters for beams; b: width, h: depth, Ase:
longitudinal reinforcement inferior at the end region of
beam, Ase’: longitudinal reinforcement superior at the end
region of beam, Asm: longitudinal reinforcement inferior at
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Advances in Civil Engineering 5



the mid span, Asm’: longitudinal reinforcement superior at
the mid span, se: stirrups spacing at the end of the beam, sm;
stirrups spacing in the middle of the beam, for columns; b:
width, h: depth, As: longitudinal reinforcement, s: stirrups
spacing.

3.4. Building Structural Capacity. /e structural capacity of
the building is calculated using incremental dynamic
analysis. For this aim, the software Ruaumoko3D [51] was
used to apply a series of nonlinear structural analyses to the
building in order to determine the structural behavior.

Nonlinear structural analysis is performed by subjecting the
structure to a set of records (Table 2) scaled at different
increasing levels of pseudo-acceleration./e result extracted
from each analysis is a discrete point used to form the IDA
curve (see Figure 10). /e modified Takeda hysteretic model
was considered in the analyses to assume the degradation of
stiffness and strength of the reinforced concrete elements.

/e limit state near collapse is defined within the
Ruaumoko computer program when one of the following
conditions are reached: (a) Numerical instability, (b) dec-
rement of the tangent lateral stiffness to 20% of the initial
value or, c) ultimate rotation condition of a member. /e

Table 2: Earthquake ground motions recorded on soft soil Ts� 2.0s in Mexico City.

EQ. Date Epicenter
Coordinates Magnitude Station Location

S1 97-01-11 18.220N; 102.76W 6.9 RIDA RED INTERUNIVERSITARIA DE INSTRUMENTACION SISIMICA (RIIS)
S2 89-04-25 16.603N; 99.400W 6.9 DR16 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
S3 97-01-11 17.9N; 103.0W 6.9 DR16 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
S4 95-09-14 16.31N; 98.88W 7.3 IMPS CENTRO NACIONAL DE PREVENCION DE DESASTRES (CENAPRED)
S5 97-01-11 18.09N; 102.86W 6.9 IMPS CENTRO NACIONAL DE PREVENCION DE DESASTRES (CENAPRED)
S6 95-09-14 18.02N; 101.56W 7.3 CHAS CENTRO NACIONAL DE PREVENCION DE DESASTRES (CENAPRED)
S7 89-04-25 16.603N; 99.400W 6.9 EO30 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
S8 89-04-25 16.603N; 99.400W 6.9 CO47 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
S9 95-09-14 16.31N; 98.88W 7.3 CO47 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
S10 81-10-25 17.880N; 102.150W 7.3 SXVI INSTITUTO DE INGENIERÍA. UNAM
S11 85-09-19 18.081N; 102.942W 8.1 SXVI INSTITUTO DE INGENIERÍA. UNAM
S12 95-09-14 16.31N; 98.88W 7.3 COYS CENTRO NACIONAL DE PREVENCION DE DESASTRES (CENAPRED)
S13 95-09-14 16.31N; 98.88W 7.3 PII6 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
S14 95-09-14 16.31N; 98.88W 7.3 FJ74 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
S15 95-09-14 16.31N; 98.88W 7.3 CS78 CENTRO DE INSTRUMENTACION Y REGISTRO SISMICO (CIRES)
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Figure 6: Cost of Injuries per person as a function of the damage index.
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yielding limit state was defined as the difference of 10% of
the elastic slope.

3.5. Seismic Demand Hazard Curve. In order to obtain the
seismic demand hazard curves, the fragility curves for the
12-story building are needed. /e fragility curves represent
the conditional probability of damage being exceeded a
particular damage state, these curves are obtained from Eq.
2.

Figure 11 presents a set of 12 fragility curves. /ose
curves show the vulnerability of the building underground
motions, it represents the conditional probability of ex-
ceeding a maximum inter-story drift (d) as stated in the
Mexico City Building Code [50]. Two limit states are con-
sidered, the service limit state and near collapse state. /is
figure illustrates that when a ground motion intensity
Sa � 900 cm/s2, the probability of reaching or exceeding
d� 0.015 is approximately 30% for the 12-story building.

From the figure it can be seen that for the same intensity Sa,
the exceedance probability (P) decreases as the peak inter-
story drift (d) value increases. /e seismic demand hazard
curve show in Figure 12 was obtained from Eq. 1, and it
represents the mean annual rate of exceeding a maximum
inter-story drift (d).

3.6. Reliability Analysis Using Artificial Neural Networks.
In this study, the technique of artificial neural networks is
used, first; to design buildings based on similar character-
istics of the buildings used in the database, second; to es-
timate the structural capacity and the seismic demand
hazard curve. Two different ANNmodels were trained using
data from a set of buildings designed in previous studies
[52–54].

For the training phase of the first model a feedforward
backpropagation network was used to design a 12-story
building. /e architectural model of the ANN used was an
input layer, hidden layers and the output layer, with 7
neurons for the input layer, 5 neurons for the hidden layer
and 36 neurons for the output./e activation functions were
hyperbolic tangent sigmoid (tansig) for the hidden and
output layer. A set of 200 buildings were used as data for the
training phase of the first ANN model. /e 7 neurons in the
input layer represents the general characteristics of the
buildings; number of bays in X direction, number of bays in
Y direction, story levels, story height, bays spacing X, bays
spacing Y, soil period. /e 36 output neurons represent the
parameters of the beams and columns designed.

/e results of the design obtained from the first ANN
model are shown in Table 4, which are compared with the
results obtained using traditional approaches for seismic
design (see Table 3). /e results showed excellent similarity
with the actual values, attaining a good accuracy prediction
with a relative error less than 9%. Moreover, the selected 12-
story building was not used in the dataset of the training
phase.

/e second ANN model estimates the seismic demand
hazard curve and capacity of the 12-story building./e input

Table 3: 12-story building structural design.

Parameter Units Parameter Units
b 70 cm Ase 41.10 cm2

h 150 cm Ase’ 29.57 cm2

Ase 72.21 cm2 Asm 11.19 cm2

Ase’ 59.77 cm2 Asm’ 15.43 cm2

Asm 26.66 cm2 se 6 cm
Asm’ 27.46 cm2 sm 7 cm
se 4 cm b 130 cm
sm 4 cm h 130 cm
b 65 cm As 471.78 cm2

h 130 cm s 3 cm
Ase 63.99 cm2 b 130 cm
Ase’ 53.58 cm2 h 130 cm
Asm 21.32 cm2 As 286.55 cm2

Asm’ 24.56 cm2 s 3 cm
se 4 cm b 110 cm
sm 4 cm h 110 cm
b 45 cm As 234.83 cm2

h 100 cm s 5 cm

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Sa
 (c

m
/s

2 )

0.01 0.02 0.03 0.04 0.05 0.06 0.070
MID

s1
s2
s3
s4

s5
s6
s7
s8

s9
s10
s11
s12
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layer with 44 neurons, two hidden layers with 5 neurons and
the output layer with 14 neurons, constitutes the architec-
tural model used in the second ANN tool. /e same set of
200 buildings was used in the training phase. /e activation
functions were hyperbolic tangent sigmoid (tansig) for the
two hidden layers, and output layer. /e input layer pa-
rameters are the buildings general and section characteristics
and the output layer represents the capacity and seismic
demand hazard curve. Table 5 summarizes the input vector
parameters.

Figure 13 shows the results of the ANN model and the
comparison to those obtained using equation (1). From the
figure, it can be seen that the estimation of the seismic
demand hazard curve simulated with the ANN; SIM curve,
attained good accuracy on predicting equation (1), with a
mean square error (MSE) of 2.42e-08 about 9% relative
error.

3.7. Seismic Demand Simulation. /e simulation of the
seismic demands considering 50 years of service life is

performed using the seismic demand hazard curve estimated
by the ANN. For the simulation, the average number of
seismic events per year is needed, in this study an average
number of 3 seismic events with magnitude equal or greater
than 6 was used [22]. Figure 14 shows the seismic demands
in terms of MID, considering the service life for the 12-story
building.

3.8. Damage Index in Service Life of the Building. /e
damages are evaluated using equation (3)./e damage index
is then obtained for every seismic demand simulated for the
service life of the building. /e limit state associated with
serviceability, δy � 0.0018, and the limit state associated
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Figure 12: Seismic demand hazard curve.

Table 4: 12-story building structural design using ANN.

Parameter Units Parameter Units
b 72.90 cm Ase 38.72 cm2

h 155.27 cm Ase’ 24.60 cm2

Ase 70.73 cm2 Asm 9.79 cm2

Ase’ 58.54 cm2 Asm’ 13.93 cm2

Asm 27.85 cm2 se 6.7 Cm
Asm’ 28.54 cm2 sm 9.5 Cm
se 3.7 cm b 137.37 Cm
sm 3.6 cm h 137.37 Cm
b 65.31 cm As 492.75 cm2

h 138.69 cm s 2.4 cm
Ase 62.82 cm2 b 130.62 cm
Ase’ 50.92 cm2 h 130.62 cm
Asm 22.24 cm2 As 286.10 cm2

Asm’ 23.74 cm2 s 3.2 cm
se 4.2 cm b 106.76 cm
sm 4.2 cm h 106.76 cm
b 43.24 cm As 283.24 cm2

h 90.53 cm s 5.6 cm

Table 5: Input vector of the second ANN model.

Input parameter Units Input parameter Units
Number of bays X direction b cm
Number of bays Y direction h cm
STory levels Ase cm2

Bays spacing X Ase’ cm2

Bays spacing Y Asm cm2

Dead load design factor Asm’ cm2

Live load design factor se cm
Seismic load design factor sm cm
b cm b cm
h cm h cm
Ase cm2 As cm2

Ase’ cm2 s cm
Asm cm2 b cm
Asm’ cm2 h cm
se cm As cm2

sm cm s cm
b cm b cm
h cm h cm
Ase cm2 As cm2

Ase’ cm2 s cm
Asm cm2

Asm’ cm2

se cm
sm cm
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Figure 13: 12-story building seismic demand hazard curve results
comparison using equation (1) and the ANN model.
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with incipient collapse, δu � 0.0356, were obtained from the
results of the ANN training. Figure 15 shows the damage
index for the simulated demands scenario of Figure 14.

3.9. Cost of the 12 Story Building. /e initial cost of the 12-
story building is obtained from the amount of material
(concrete and steel) necessary for its construction. /e
material is obtained from the quantification of the ma-
terial necessary to build the beam and column elements
obtained from the structural design, 557 tons of rein-
forced steel and 3660 cubic meters of concrete were
quantified. Equation (5) is applied to obtain the initial
costs.

CI � 1.93∗ ((557∗ 1000) +(3660∗ 130)) � (18)

/e damage costs are obtained for the simulated seismic
demand of the year 14.07, where the demand is 0.014 for the
12-story building. Applying equation (3) for the year 14.07,
the damage index is 0.359 (Figure 15). /e costs due to
damage are then:

Repair cost or reconstruction (Equation (7)):

CPR � (1.993)(0.359)
2

� 0.256MM. (19)

Cost due to damage of contents (Equation (9)):

CPC � 0.5(1.993)(0.359) � 0.357MM. (20)

Cost due to economic loss (Equation (12)):

CPI � 19(24)(6912)(0.359)
2

� 0.406MM. (21)

Cost due to loss of life (Equations (13) and (14)):

Nd � 45.48 + 5.531744(6.912)
2

� 310Nd,

CPV � 310(250000)(0.359)
4

� $1.289MM.
(23)

Cost due to injuries (Equation (16))

CPL � (0.1(250000) + 0.9(2000))0.0168(6912)(0.359)
2

� $0.401MM.
(24)

/e total costs due to damage for the year 14.07 was
obtained by the summation of all the costs due to damage
(Equation (6)).

Cd � 0.256 + 0.357 + 0.406 + 1.289 + 0.401 � $2.709MM.

(25)

4. Results and Discussion

/is section shows the results of applying the methodology
for the 4, 8 and 12 story buildings.

/e ANN prediction results of the seismic demand
hazard curve are compared to those of Equation (1). Fig-
ure 16 shows the predicted values of the seismic demand
hazard curve for the 4-story building (SIM curve), based on
the results of the predictions done by the ANN, the curve
shows a deviation from the curve of Eq.1. /e mean square
error 2.97e-07 is estimated from the deviation, about a 12%
of relative error; therefore, the usefulness of the seismic
demand hazard curve to simulate the seismic demand
during the life-cycle of the building is sufficient to predict
accurate demand values. /e seismic demand hazard curve
for the 8-story building is shown in Figure 17, where the
mean square error estimated from the deviation of the curve
predicted by the ANN is 3.81Ee-07, about a 6% of relative
error.

/e initial cost of the 4-story building is obtained by
applying Equation (5). /e amount of material necessary for
the construction was obtained from the quantification of the
material necessary to build the structural members given by
the structural design of the ANN, a total of 39.5 tons of steel
and 353.75 cubic meters of concrete were obtained. By
applying Equation (5) and multiplying by unit cost of the
material (Table 1) the initial cost CI � US dollars.

Table 6 shows the cost due to damage expected over the
life cycle of the 4-story building. From the table it can be seen
the damage scenario simulated throughout the 50 year life-
cycle of the building, and the damage cost associated with
that damage. /e total life-cycle cost for the 4-story building
is the sum of the initial cost plus the cost due to damage
Ct � 164, 991 US dollars.

To estimate the initial cost for the 8-story building, the
ANN was used to design the building and quantify the
material necessary for its construction. A total of 230 tons of
steel and 1905 cubic meters of concrete were quantified. /e
initial cost is obtained applying equation (5), the cost is CI �

US dollars. /e damage cost for the simulated structural
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demand scenario of the life-cycle of the 8-story building is
shown in Table 7./e life-cycle cost is obtained as sum of the
initial cost plus the damage cost, resulting in Ct � 0..

/e damage cost for the simulated structural demand
scenario of the life-cycle of the 12-story building is shown

in Table 8. /e life-cycle cost of the 12-story structure is
obtained from the sum of the costs associated with
damage during the useful life of the structure and the
initial cost, for this scenario of simulated demands, the
total cost is: Ct � .

Eq.1
SIM
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Figure 16: 4-story building seismic demand hazard curve results comparison using Equation (1) and ANN model.
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Figure 17: 8-story building seismic demand hazard curve results comparison using Equation (1) and ANN model.

Table 6: Expected damage cost in the life-cycle of the 4-story building.

Year DI CPR CPC CPI CPL CPV Cd

0.97 0.0060 $5.91 $493.90 $21.18 $0.02 $20.92 $541.93
1.75 0.1147 $2,171.08 $9,463.19 $7,776.51 $2,350.17 $7,678.28 $29,439.23
5.75 0.0110 $19.92 $906.44 $71.35 $0.20 $70.45 $1,068.35
11.47 0.0365 $220.10 $3,013.05 $788.35 $24.15 $778.40 $4,824.04
17.48 0.0095 $14.93 $784.82 $53.49 $0.11 $52.81 $906.17
31.81 0.0074 $9.02 $609.84 $32.30 $0.04 $31.89 $683.08
37.28 0.0017 $0.46 $137.99 $1.65 $0.00 $1.63 $141.74
39.73 0.0275 $125.16 $2,272.15 $448.32 $7.81 $442.65 $3,296.09
41.52 0.0002 $0.01 $14.57 $0.02 $0.00 $0.02 $14.61
45.87 0.0198 $64.81 $1,634.99 $232.13 $2.09 $229.20 $2,163.23
45.99 0.2157 $7,677.55 $17,795.54 $27,499.99 $29,389.64 $27,152.62 $109,515.34
48.86 0.0420 $291.58 $3,468.00 $1,044.41 $42.39 $1,031.21 $5,877.59
49.86 0.0015 $0.35 $120.79 $1.27 $0.00 $1.25 $123.66

ΣCd � $158,595

Advances in Civil Engineering 11



5. Conclusions

In this paper, a general methodology to obtain the life-cycle
costs for buildings located at the soft soil of Mexico City was
presented. /e costs considered in the analysis are the initial

costs and the cost due to damage./e structural damage was
obtained by simulating the damage using the seismic de-
mand hazard curve; however, the number of nonlinear
analyses to obtain the curve can be complex and time de-
manding. /is paper proposes a methodology to reduce the

Table 7: Expected damage cost in the life-cycle of the 8-story building.

Year DI CPR CPC CPI CPL CPV Cd

0.50 0.0031 $8.6 $1,408.6 $19.6 $0.0 $19.4 $1,456.2
0.83 0.0033 $9.9 $1,507.5 $22.5 $0.0 $22.2 $1,562.0
2.64 0.0019 $3.3 $868.6 $7.5 $0.0 $7.4 $886.7
3.44 0.0018 $2.9 $822.5 $6.7 $0.0 $6.6 $838.7
5.21 0.0283 $738.3 $13,044.2 $1,682.8 $26.0 $1,661.6 $17,152.9
17.38 0.0396 $1,445.6 $18,252.4 $3,294.9 $99.9 $3,253.3 $26,346.0
19.84 0.0005 $0.3 $246.7 $0.6 $0.0 $0.6 $248.1
22.98 0.0009 $0.8 $422.6 $1.8 $0.0 $1.7 $426.9
23.66 0.0015 $2.0 $680.2 $4.6 $0.0 $4.5 $691.3
29.72 0.0010 $1.0 $480.7 $2.3 $0.0 $2.3 $486.3
34.72 0.4506 $187,193.8 $207,706.1 $426,679.5 $1,674,675.4 $421,289.8 $2,917,544.6
36.15 0.0004 $0.1 $183.3 $0.3 $0.0 $0.3 $184.1
37.42 0.0025 $5.9 $1,171.0 $13.6 $0.0 $13.4 $1,203.9
38.18 0.0025 $5.7 $1,145.5 $13.0 $0.0 $12.8 $1,177.0
38.39 0.0008 $0.5 $352.4 $1.2 $0.0 $1.2 $355.4
41.94 0.2557 $60,274.8 $117,861.4 $137,387.1 $173,627.9 $135,651.7 $624,802.9
43.56 0.0031 $8.8 $1,427.3 $20.1 $0.0 $19.9 $1,476.2
43.87 0.0002 $0.0 $80.0 $0.1 $0.0 $0.1 $80.1
48.03 0.1104 $11,231.6 $50,877.3 $25,600.7 $6,028.8 $25,277.3 $119,015.6

ΣCd � $ 3,715,935
$ 3.72 (MM)

Table 8: Expected damage cost in the life-cycle of the 12-story building.

Year DI CPR CPC CPI CPL CPV Cd

2.19 0.0015 $4.48 $1,494.98 $7.09 $0.00 $7.00 $1,513.56
4.72 0.0027 $14.53 $2,690.96 $22.98 $0.00 $22.69 $2,751.16
5.5 0.0035 $24.42 $3,488.28 $38.61 $0.01 $38.12 $3,589.44
9.42 0.0604 $7,271.89 $60,197.78 $11,498.53 $1,029.06 $11,353.29 $91,350.56
12.63 0.0123 $301.57 $12,258.82 $476.85 $1.77 $470.82 $13,509.83
14.07 0.359 $256,899.01 $357,798.07 $406,216.42 $1,284,313.83 $401,085.26 $2,706,312.59
15.35 0.0022 $9.65 $2,192.63 $15.26 $0.00 $15.06 $2,232.60
16.02 0.0054 $58.12 $5,381.92 $91.91 $0.07 $90.75 $5,622.77
19.52 0.0019 $7.20 $1,893.64 $11.38 $0.00 $11.23 $1,923.45
19.98 0.0048 $45.93 $4,783.93 $72.62 $0.04 $71.70 $4,974.22
22 0.0037 $27.29 $3,687.61 $43.15 $0.01 $42.60 $3,800.67
23.56 0.0307 $1,878.67 $30,597.22 $2,970.61 $68.68 $2,933.08 $38,448.26
24.06 0.0028 $15.63 $2,790.63 $24.71 $0.00 $24.40 $2,855.37
25.73 0.0049 $47.86 $4,883.59 $75.68 $0.04 $74.72 $5,081.90
29.8 0.0027 $14.53 $2,690.96 $22.98 $0.00 $22.69 $2,751.16
30.25 0.0027 $14.53 $2,690.96 $22.98 $0.00 $22.69 $2,751.16
32.22 0.0053 $55.99 $5,282.26 $88.54 $0.06 $87.42 $5,514.26
32.62 0.0003 $0.18 $299.00 $0.28 $0.00 $0.28 $299.74
32.77 0.0045 $40.36 $4,484.93 $63.83 $0.03 $63.02 $4,652.17
33.06 0.0038 $28.78 $3,787.28 $45.51 $0.02 $44.94 $3,906.53
38.1 0.0019 $7.20 $1,893.64 $11.38 $0.00 $11.23 $1,923.45
40.81 0.0021 $8.79 $2,092.97 $13.90 $0.00 $13.72 $2,129.39
48.77 0.0058 $67.05 $5,780.58 $106.03 $0.09 $104.69 $6,058.44
48.77 0.0031 $19.16 $3,089.62 $30.29 $0.01 $29.91 $3,168.98
49.97 0.0047 $44.03 $4,684.26 $69.62 $0.04 $68.75 $4,866.70

ΣCd � $ 2,921,988.34
$ 2.92 (MM)
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analysis time by using ANNs. /e proposed method uses
ANNs to model a relationship between the parameters
describing the structure and the seismic demand hazard
curve. Two feedforward backpropagation network models
were selected, the first model was used to obtain the
structural design of the buildings, and the second model to
obtain the seismic demand hazard curve. /e analyzes were
conducted considering 3D R/C buildings with varying
story height, and bay length subjected to soft soil ground
motion records. /e performance of the ANN was eval-
uated by obtaining the seismic demand hazard curve for the
different buildings and it was found to be capable of
successfully predicting the curves. /e accuracy of the
developed model was tested by comparing the results of the
traditional method and those obtained by the ANNs. /e
results show that the relative error of the seismic demand
hazard curve for the different buildings were between 6%
and 12%. It can be considered that the results were ac-
ceptable, taking into consideration the computational time
reduced from about a few hours when obtaining an exact
solution to a few seconds when the ANN model is used. A
limitation in the applicability of the presented method is
due to the nature of the ANNs that learn the relationships
using examples data sets, the particular implementation
proposed is then limited to the range of parameters, such as
types of buildings, types of soil, properties of materials in
construction, etc. Used for the training of the ANNs, any
extension of its applicability in other types of buildings will
require the generation of additional data to expand the
parameters used in the training of the network. Based on
the results obtained from the ANN, the seismic demand
hazard curves were used to simulate demands in the life-
cycle of the structures, from the simulated demands the
damage scenario for the life-cycle of the structures was
obtained. /e total costs of the structures that are given by
the initial costs and costs for damage during the useful life
were obtained./e total cost obtained in the analysis for the
4-story building was $323,586 US dollars, for the 8-story
building the total cost obtained was $4.64 million US
dollars, and for the 12-story building the total cost during
its life-cycle was $4.91 million US dollars. /e proposed
approach to obtain the life-cycle cost would be of great use
to investors and builders in helping them to consider the
future costs of constructing buildings on soft ground in
Mexico City. Finally, it is concluded that life-cycle cost is
efficiently obtain using artificial neural networks models
for the reliability analysis of reinforced concrete building,
so it can be used as an excellent planning tool that covers
long spans of time.
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UNAM),” Instituto de ingenieŕıa, Universidad Nacional
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Puerto Vallarta, Puerto Vallarta, Mexico, in Spanish, 2014.

Advances in Civil Engineering 15

https://www.nist.gov/el/earthquake-mexico-1985
https://www.nist.gov/el/earthquake-mexico-1985
https://www.inegi.org.mx/programas/enigh/nc/2020/
http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/
http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/


Research Article
Neural Network Based Estimation of Service Life of Different
Metal Culverts in Arkansas

Zahid Hossain ,1 MdAriful Hasan ,2 and Rouzbeh Ghabchi 3

1Civil Engineering, Arkansas State University, P.O. Box 1740, Engineering LSW 246, Jonesboro, AR 72467, USA
2Arkansas State University, P.O. Box 1740, Engineering LSW 246, Jonesboro, AR 72467, USA
3Civil Engineering, South Dakota State University, Crothers Engineering Hall 132, Box 2219, Brookings, SD 57007, USA

Correspondence should be addressed to Zahid Hossain; mhossain@astate.edu

Received 31 October 2021; Accepted 9 December 2021; Published 4 January 2022

Academic Editor: Juan Bojórquez
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,e Arkansas Department of Transportation (ARDOT) uses different types of metal culverts and cross-drains. Service lives of
these culverts are largely influenced by the corrosion of the metals used in these culverts. Corrosion of metallic parts in any soil-
water environment is governed by geochemical and electrochemical properties of the soils and waters. Many transportation
agencies including ARDOT primarily focus on investigating the physical and mechanical properties of soils rather than their
chemical aspects.,emain objective of this study is to analyze the geotechnical and geochemical properties of soils in Arkansas to
estimate the service lives of different metal pipes in different conditions. Soil resistivity values were predicted after analyzing the
United States Department of Agriculture (USDA) soil survey data using neural network (NN) models. ,e developed NNmodels
were trained and verified by using laboratory test results of soil samples collected from ARDOT, and survey data were obtained
from the USDA. ,e service lives of metal culverts were then estimated based on the predicted soil properties and water quality
parameters extracted from the data acquired from the Arkansas Department of Environmental Quality (ADEQ). Finally,
Geographic Information System-based corrosion risk maps of three different types of metal pipes were developed based on their
estimated service lives. ,e developed maps will help ARDOTengineers to assess the corrosion potential of the metal pipes before
starting the new construction and repair projects and will allow using proper culvert materials to maximize their life spans.

1. Introduction

Metal culverts or pipes are frequently used in Arkansas for
different highway drainage structures and irrigation pur-
poses. ,ese culverts are susceptible to significant corrosion.
Arkansas has a history of culvert failures and corrosion of
the metal culverts was found to be the major reason behind
these failures. ,e Arkansas Department of Transportation
(ARDOT) spends a significant amount of money in
replacing and installing different types of culverts for cross-
drains every year. In 2018, the ARDOT allocated about
US$3.5M for the installation of new and replacement of
existing metal pipe culverts [1]. In the coming years, the
ARDOTexpects to construct and install more metal culverts.
,e selection of appropriate metallic materials for these

culverts at different construction sites within the state can
save future investment and minimize maintenance costs.

,e ARDOT’s 2014 Standard Specifications for Highway
Construction document does not provide enough details
about the measures needed to be taken to reduce losses due
to corrosion [1]. In Section 601 of the ARDOT’s 2014
Standard Specifications for Highway Construction, the types
of metal culverts that can be used in Arkansas are enlisted.
According to the ARDOT specifications, zinc coated (gal-
vanized) corrugated steel pipes, aluminum coated corru-
gated steel pipes, aluminum-zinc alloy coated corrugated
steel pipes, corrugated aluminum pipes, asphalt coated
corrugated metal pipes, polymer precoated metallic coated
corrugated steel pipe culverts, and smooth lined polymer
precoated metallic coated corrugated steel pipes can be used
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[1]. ,e corrosion rates of these pipes depend on the ma-
terials used in these pipes and their physiochemical prop-
erties, type of coatings, properties of soils around the pipes,
the quality of surface water passing through the pipes,
quality of groundwater, ambient temperature, and other
environmental factors. Highly corrosive surface water,
abrasive bed materials, and corrosive groundwater can also
influence the corrosion of the culverts. Several studies have
been conducted in other states to analyze the service life of
metal culverts and to prepare risk maps. However, the
ARDOT does not have detailed information about the
probable spatial distribution of corrosion rates and the
expected service life of different metals. Also, no specific
guidelines exist for pipe material selection and their in-
stallation and/or replacement schedule in Arkansas.

,e National Resource Conservation Services (NRCS)
used the Survey Geographic Database (SSURGO) and
mapped the uncoated steel corrosion risk potentials as low,
moderate, and high based on different indicator variables.
,e NRCS used drainage class and texture of soils, the total
acidity of the soil, soil resistivity at saturation, and con-
ductivity of saturated extract for risk classification. ,e
agency has defined the “low” corrosion risk potential when
the soil is well-drained and contains coarse-textured par-
ticles in combination with a total acidity less than 8meq/
100 g, a resistivity at saturation of at least 5000 ohms/cm, and
conductivity of saturated extract less than 0.3 mmhos cm−1.
Similarly, “moderate” corrosion risk potential is defined as
when the soil is moderately well-drained, in general, with
moderately coarse-textured soils, having a total acidity be-
tween 8 and 12meq/100 g, soil resistivity at saturation be-
tween 2000 and 5000 ohms/cm, and soil conductivity of
saturated extract between 0.3 and 0.8mmhos cm−1. Finally,
“high” corrosion risk potential is considered mostly for fine-
textured soils with varied draining conditions, along with a
minimum total acidity of 12meq/100 g, a resistivity at sat-
uration of fewer than 2000 ohms/cm, and conductivity of
saturated extract greater than or equal to 0.8 mmhos cm−1

(NRCS 2018, [2], and [3]). In this study, risk categories are
divided into five different classes based on soil resistivity and
pH criteria, and they are applied for mapping purposes.

Tiwari and Manning [4] have developed metal corrosion
risk maps for the southern parts of Louisiana. ,ese re-
searchers categorized corrosion potentials into four different
types like “mildly corrosive,” “corrosive,” “highly corrosive,”
and “extremely corrosive,” based on the expected average life
of metal pipes. ,ese researchers used doubly weighted
25×12 matrix to categorize the risk potentials based on the
pH and resistivity of soil. ,e risk matrix was subdivided
based on the studies conducted by the Colorado Department
of Transportation and Louisiana Department of Trans-
portation and Development and the SSURGO database was
used for extracting soil conductivity and pH data.

,e main objective of this study is to develop corrosion
maps for Arkansas based on secondary data analysis, lab-
oratory test results, neural network (NN) modeling for
predicting soil resistivity, and estimation of service life.
Relevant literature and guidelines have been reviewed to
analyze the best options of the targeted index parameters

based on the available data sources and specific gaps were
assessed and addressed accordingly. In this study, galvanized
steel pipes (plain), corrugated aluminum (type II) steel pipes,
and corrugated aluminum pipe were considered for service
life estimations.

2. Methodology

,e American Iron and Steel Institute (AISI), the National
Corrugated Steel Pipe Association (NCSPA), California
Department of Transportation (CALTRANS), Florida
Department of Transportation, and a few other agencies in
the United States have estimated the service life of different
metal culverts for different locations. ,ese agencies have
pointed out that resistivity, pH, chloride, sulfate, moisture
content, dissolved gases, and bacterial activities in soil and
water can influence the service life of a metal pipe.
However, most of the agency-developed methods for es-
timating the service life of metal pipes are based on soil
resistivity, soil pH, water resistivity, and water pH. Again,
both the outer and inner sides of metal culverts are vul-
nerable to corrosion. Corrosion in the outer side of the
culverts is mainly governed by the soil or backfill material
properties and groundwater quality parameters. On the
other hand, the inner side corrosion of the culverts is
primarily governed by the drainage water quality param-
eters and abrasive properties of sediments passing through
the culverts [5]. ,e ARDOT does not have details of the
spatial variability of these parameters across the state. As a
result, an extensive literature review was carried out to
estimate the service life and develop metal corrosion maps.
In this process, relevant data sources were identified, and
relevant data and soil samples were collected. After the
literature review, soil resistivity was found as a missing
critical parameter in the ARDOT’s typical soil investigation
reports. So, an NN-based prediction model was developed
to predict soil resistivity based on soil properties provided
in the SSURGO and laboratory test results of collected soil
samples. Finally, based on the laboratory analysis of col-
lected soil data and secondary data preprocessing and
analysis, service lives of metal culverts in different locations
of the state were estimated and mapped. A detailed
flowchart of the steps involved in this project is presented
in Figure 1.

2.1. Secondary Data Collection and Preprocessing. ,e
ARDOT has a database of geotechnical reports from pre-
vious construction projects. However, the ARDOTdoes not
have enough data related to electric resistivity and electric
conductivity of soils. ,e United States Department of
Agriculture (USDA) has conducted extensive soil surveys
within the United States and has documented all the data in
an accessible format. ,e SSURGO database has extensive
extractable data comprised of important soil physical and
chemical properties (NRCS 2018 and [2]). It has relevant
data in the form of 68 different Microsoft-Access (MS-
Access) datasets for all 75 counties in Arkansas. Using Soil
Data Viewer, an add-ins software, data were extracted as
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polygon shapefiles of different parishes with corresponding
soil properties.

In this study, the Soil Data Viewer tool was added to
ArcMap 10.6.1 for the SSURGO data extraction. Feature
classes of twenty-one different soil parameters were
extracted and merged to create a shapefile related to all the
counties in the state. ,ese features were selected based on
the factors that are important for corrosion predictions and
referred to in different works of literature. ,e features
selected from the SSURGO are as follows: potential risks of
corrosion in concrete (categorized as high, moderate, and
low), potential risk of corrosion in uncoated steel (catego-
rized as high, moderate, and low), equivalent calcium car-
bonate content (percent of carbonates, by weight, in the
fraction of soil mass which are less than 2mm in size), cation
exchange capacity (CEC-7), effective cation-exchange ca-
pacity (ECEC), electric conductivity (EC), gypsum (percent
by weight, of hydrated calcium sulfates in the <20mm
fraction of soil), pH, sodium adsorption ratio (SAR), liquid
limit, organic matter, percent clay (soil particles that are less
than 0.002 millimeter in diameter), percent sand (soil
particles that are 0.05 millimeter to 2 millimeters in di-
ameter), percent silt (soil particles that are 0.002 to 0.05
millimeter in diameter), plasticity index, saturated hydraulic
conductivity (micrometers per second), AASHTO soil
classification, drainage class, depth of water table, flooding
frequency class(categorized as none, very rare, rare, occa-
sional, frequent, and very frequent), and ponding frequency
class (categorized as none, rare, occasional, and frequent)
[2, 6]. After collecting all the soil data from SSURGO, a series
of geoprocessing tasks was completed by using ArcMap’s
toolbox and “ArcPy” module commands to clean and merge
them. After merging all the data of all 75 counties, having a
total of 334,102 parishes, in Arkansas, all the fields were
renamed for keeping the attribute table clean and easily
exportable. A summary of the extracted numerical datasets is
presented in Table 1. All the data presented in Table 1 are
summarized based on the extracted data of the 334,102
parishes that are within the state of Arkansas.

After completion of data extraction, all the polygon
layers were dissolved into one layer. ,e initial geographic

coordinate reference (GCS_North_American_1983) data
for all polygons were also converted to the projected
coordinate system (NAD_1983_UTM_ZONE_15N).
Later on, this projected coordinate system was used for
applying all the geospatial interpolations. Geometric
features, X and Y coordinates of the center of each
polygon, were also added to the attribute table. ,e final
polygon shapefile was named “AR_Dissolved_SSUR-
GO.shp,” which had a total of 334,102 polygons. ,e
dataset, “AR_Dissolved_SSURGO.dBase” file, was
extracted as a Microsoft Excel spreadsheet. ,e data were
then saved in a different place for further processing and
use in the MATLAB programs.

,e ADEQ also has an extensive dataset of water quality
parameters from different monitoring stations within the
state. ,ese datasets are extractable in the Microsoft Excel
spreadsheet format. In this study, water pH and total dis-
solved solid data of the 75 counties were collected and
merged with location details. Later the extracted datasets
were transformed into point feature layers based on the
locations of the stations [7].

2.2. Laboratory Investigations. ,e SSURGO database has a
combination of geotechnical and geochemical parameters of
soils. Secondary data collected from the SSURGO have both
geotechnical and geochemical data. For gathering additional
data and boosting the observation and prediction model
development, soil samples were collected from different
ongoing construction projects in ARDOT Districts 10 and
02. District engineers were contacted and with their help, 22
soil samples were collected. Geographic locations of the
collected soil samples were also collected through ARDOT
engineers. Soil resistivity, pH, grain size distribution,
Atterberg limits, and specific gravities of the collected soil
samples were determined in the laboratory by following
ASTM G57, ASTM G51, ASTM D422, ASTM D4318, and
ASTM D854 methods, respectively. ,e description of the
soil samples with latitude and longitude of the sampling
points, laboratory measurement of soil pH, and resistivity
values are summarized in Table 2.

Water Quality
Data 

Data Preprocessing

Neural Network Modeling for Resistivity Prediction

USGS Sediment
Properties 

SSURGO Soil
Data 

Laboratory
Investigations Soil Sampling

Literature Review 

Test Matrix DevelopmentSecondary Data Collection

Service Life Estimation of Metal Pipes 

Figure 1: Flowchart of the study methodology.
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All the data obtained from laboratory investigation were
imported to ArcGIS as “soil_sample_data” data. ,e soil
sample dataset had sampling location, sample ID, pH, re-
sistivity, specific gravity, liquid limit, plasticity index, per-
cent sand, percent clay, and percent silt data only. Additional
data related to the soil samples were added to the dataset
based on the SSURGO data available for the closest geo-
graphical location. In the next stage, laboratory investigation
data were extracted as a point feature class, “soil_sam-
ple_data.” ,e joined data were finally converted to an
Excel-readable format.

2.3. Soil Resistivity Prediction. For developing a soil resis-
tivity prediction model, the exported datasheet (in spread-
sheet format) with all dissolved values was further cleaned by
removing duplicate rows irrespective of their metadata.

After cleaning 334,102 rows, only 1,927 rows of data were
found to be unique and meaningful. However, all of those
rows did not have values for EC. ,erefore, the dataset was
filtered and reduced to rows having EC values. ,e new
dataset having EC values was comprised of 152 rows. ,en,
the EC values were converted to resistivity values with a
conversion factor and the experimental results of 16 soil
samples were added to the 152 rows of data obtained from
the SSURGO database. Finally, 168 datasets were used to
train a shallow neural network fitting tool.

Based on the experience of initial data classification and
principal component analysis results, ten parameters were
selected for the prediction of soil resistivity. ,e selected
parameters were cation exchange capacity, effective cation
exchange capacity, pH, liquid limit, percent organic content,
percent clay content, percent sand content, percent silt
content, plasticity index, and hydraulic conductivity. After

Table 2: Resistivity and pH testing results of soils.

ID Description Latitude Longitude pH Rmin (ohm-cm)
D10-01 Job no: BR1610 35.830528 −90.764481 6.44 10682.25
D10-02 Monette, AR 35.890578 −90.324728 6.69 11364.82
D10-03 Job no: BB1006 35.984167 −89.875556 6.44 2271.28
D10-04 Job no: 100760 35.611944 −90.203889 7.23 1107.73
D10-05 Job no: 100654 35.903611 −90.291944 6.49 8077.66
D10-06 Job no: 100740 35.888889 −89.911667 6.70 1339.86
D10-07 Job no: 100653 35.903056 −90.237222 6.44 5395.69
D10-08 Job no: 100708 35.997157 −90.562616 7.28 6392.07
D10-09 Job no: 100708 36.056047 −90.621886 7.04 7305.18
D10-10 Job no: 100708 35.830966 −90.512811 6.08 6933.06
D10-11 Job no: 100708 35.830966 −90.512811 7.03 6891.44
D10-12 S Caraway Road, Jonesboro 35.800625 −90.678611 8.33 9187.68
D02-01 Job no: GF 0270 33.654583 −91.211944 7.80 4028.17
D02-02 Job no: 020534 33.134944 −91.855556 6.48 16480.59
D02-03 Job no: 20584 34.100817 −92.001944 5.06 9710.39
D02-04 Job no: BB0203 34.221944 −92.074444 6.49 2168.77
D10-SR01 S Caraway Road, Jonesboro 35.802683 −090.67863 6.40 9234.50
D10-SR02 S Caraway Road, Jonesboro 35.792397 −090.678437 7.26 6770.66
D10-SR03 S Caraway Road, Jonesboro 35.778245 −090.679274 5.66 7608.75
D10-SR04 S Caraway Road, Jonesboro 35.761323 −090.679531 5.91 3448.44
D10-SR05 S Caraway Road, Jonesboro 35.781553 −090.679059 4.78 3569.53
D10-SR06 S Caraway Road, Jonesboro 35.793668 −090.678716 6.21 34554.10

Table 1: Summary of SSURGO data of Arkansas.

Field Min. Max. Mean Standard deviation
CaCo3 0.00 14.00 0.06 0.45
Cation exchange capacity (meq/10 g) 0.00 57.50 7.38 10.18
Effective cation exchange capacity (meq/10 g) 0.00 56.70 10.71 8.28
Electric conductivity (mmhos cm−1) 0.00 8.60 0.20 0.56
Gypsum 0.00 3.00 0.02 0.21
pH 4.30 8.30 5.35 0.65
Sodium absorption ratio 0.00 16.50 0.09 0.78
Liquid limit 4.90 85.00 36.75 11.20
Organic matter content 0.02 4.40 0.66 0.43
Clay (%) 3.50 73.00 28.50 11.67
Sand (%) 1.50 95.00 31.02 19.63
Silt (%) 0.60 77.40 40.45 16.30
Plasticity index 0.00 58.70 16.92 8.80
Hydraulic conductivity (micrometers per second) 0.14 92.00 9.51 12.84
Depth of water table (cm) 0.00 >201 118.18 76.52
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several trials, the Bayesian regularization-based “trainbr,” a
MATLAB function, was selected for developing the neural
networkmodels. In the case of selecting several hidden layers
and the number of neurons, a simplified approach was used.
According to Erzin et al. [8], the maximum number of
neurons that can be used for any given number of variables
(I) is 2I+ 1. Based on Erzin et al. [8], for ten predictors, a
maximum of 21 neurons were considered for training the
model. A random process was used for the selection of the
datasets for training, validation, and testing at ratios of 75%,
5%, and 20%, respectively. A shallow neural network with
having 10 hidden neurons was found to be the best appli-
cable prediction model for the datasets used in this study. A
MATLAB function was generated based on the best-per-
formed model, which was finally used to predict the soil
resistivity for the rest of the datasets. A summary of per-
formance indicators after training the dataset with different
structures of hidden layers is shown in Table 3.

,e coefficient of determination (R2) is a measurement
of the performance indicator of any regression model. ,e
training and testing results of the neural network show that
one hidden layer with ten neurons has the highest value of R
(Table 3). A hidden layer with eight neurons also has
comparatively better training and testing performance.
From Table 3, it is evident that an increase in the number of
neurons resulted in a deterioration in the performance of the
model. In the cases of multilayer hidden structures, the
model having a two-layer structure with seven neurons in
the first layer and three neurons in the second layer was
found to exhibit an acceptable performance. However, with
an increase in the number of layers and number of neurons,
the overall performance was found to reduce. ,erefore,
based on the performance evaluations, a simple model with
one hidden layer of ten neurons was selected as the final
model. ,e R2 value of the model in the training and overall
phases is 0.99 (R� 0.99) and 0.57 (R� 0.75), respectively.
,is is a relatively acceptable performance for estimating the
soil resistivity of a location lacking any physical resistivity
measurements. In other words, the developed NNmodel can
be used to predict soil resistivity by using only the SSURGO
data as input parameters.

2.4. Service Life Estimation. ,e American Iron and Steel
Institute (AISI), the National Corrugated Steel Pipe Asso-
ciation (NCSPA), and many transportation agencies have
developed their methods for evaluation of service life of
different culverts [5]. For galvanized steel pipes (GSP), the
“California Method” is widely accepted and used among
practitioners when no prior knowledge of the study site is
available. ,e AISI, the Florida Department of Trans-
portation (FDOT), the Federal Lands Highway (FLH), the
Colorado Department of Transportation, the NCSPA, and
the Utah DOT have also developed their methods of eval-
uating the service life of GSPs. Most of the methods in-
cluding the “California Method” use resistivity and pH for
evaluation of the service life of GSPs. ,e graphical form of
the “California Method” is shown in Figure 2(a) [9], and it
has been used for estimating the service life of GSPs in this

study. Aluminized steel (type II) pipe is another common
type of culvert used by the ARDOT. ,e FDOTdeveloped a
method based on resistivity, gage thickness, and pH to es-
timate the service lives of aluminized steel culverts, as
presented in Figure 2(b). Aluminum pipe is a material that is
commonly used by different state agencies. ,e FDOT also
developed a method to estimate the service life of this type of
culvert. A graphical representation of this method is shown
in Figure 2(c) [5, 10, 11]. ,e methods developed by FDOT
[10] have been used for the estimation of the service life of
aluminized steel and aluminum pipes in this study.

As mentioned earlier, corrosion in the inner side and
outer side of the metal pipe is mainly controlled by the water
quality parameters and soil or backfill parameters. Part of the
pipe connected to the soil bed is more susceptible to cor-
rosion of easier electric passage. For this reason, multiple
studies have recommended the use of both the electric re-
sistivity and pH of soil and water for the estimation of service
life. In the current study, the electric resistivity and pH of
both soil and water were considered, and the minimum
estimated service life (in years) was considered as the ex-
pected service life of that pipe. To this end, pH values
available in the SSURGO database and the soil resistivity
predicted from the developed neural network model were
used. On the other hand, pH values of water available in the
ADEQ dataset were used for estimating the pipe service lives.
,e resistivity (in ohm-cm) of water was estimated from
total dissolved solids (mg/l), available in the ADEQ dataset,
by applying a correlation developed by Rusydi [12].

For mapping purposes, the entire state of Arkansas was
divided into rasters (size of each raster 250m× 250m).,en
the nearest neighbor method was applied to assign water
resistivity and pH to individual point features. ,e ArcGIS
geoprocessing tool was used for this purpose. Later, the
raster features were converted to point features and the
Empirical Bayesian Kriging (EBK) technique was applied to
develop the interpolated map of predicted service life for
different locations in Arkansas. ,ree different maps were
prepared for the three types of selected metal pipes. For
comparative analysis, a 16-gage pipe was selected for esti-
mation of the service lives of all three metal pipes. All three
methods are based on using resistivity and pH values of the
surrounding soil and surface water. ,erefore, service lives
can be estimated based on the detailed graphs shown in
Figure 2.,ese methods predict the service lives (in years) of
the metal pipes, which vary linearly or nonlinearly with the
logarithmic scale of resistivity of surrounding media for a
particular range of pH. When the pH range varies, the re-
sponse curves shift. In all three cases, the response curves
were found to have positive slopes shifting towards their
ordinates with an increase in pH values. Aluminum pipes
were found to be less sensitive to resistivity values when
compared with the other two types of metal pipes.

3. Research Outcomes

3.1. pH. Based on the data extracted from the SSURGO
database, it was observed that the soil pH values varied from
4.3 to 8.3 with an average value of 5.4 and a standard
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Table 3: Shallow NN training results for prediction of the soil resistivity data after including laboratory test results.

Training function Trainbr Trainbr Trainbr Trainbr Trainbr Trainbr Trainbr Trainbr Trainbr Trainbr
Hidden layer structure [10] [12] [14] [16] [8] [8 4] [10 6] [10 6 2] [7 3] [7]
Number of epochs 572 285 1000 331 504 437 683 1000 432 1000
Training—R value 0.99 0.98 0.99 1 0.98 1 0.98 0.99 0.98 0.42
Testing—R value 0.35 0.07 0.06 −0.18 0.20 0.22 0.38 0.14 0.21 0.13
Overall—R value 0.75 0.61 0.59 0.47 0.74 0.51 0.69 0.68 0.74 0.35
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deviation of 0.65. After dividing all 334,102 Arkansas par-
ishes into 250m× 250m raster cells and allocating the same
pH within a raster cell, the average pH of 2,137,685 raster
cells was found to be 5.51 with a standard deviation of 0.77.
,e average pH of surface water within the state varies from
1.5 to 10.28, with an average of value 7.0 and a standard
deviation of 0.83. ,e average pH value of soils for each
county is presented in Figure 3(a). ,is map shows that
Union, Ouachita, Nevada, Grant, Saline, and Madison
counties have pH values of less than 5, which are categorized
as “highly acidic.” Four other categories shown in the map
are classified as “moderately acidic,” with average pH values
between 5 and 5.5, and “acidic,” with pH values ranging
from 5.5 to 6.0. For pH ranging from 6.0 to 6.5, the counties
are considered as “mild acidic,” and for pH values greater
than 6.5, the counties are considered as “not acidic.”

3.2.Resistivity. As noted earlier, one of the main goals of this
research is to evaluate the soil resistivity of different loca-
tions based on the existing secondary data and collected
primary data. Using the secondary data collected from the
USDA and laboratory investigation results, a neural network
model was developed to predict the soil resistivity of par-
ishes. ,e predicted average soil resistivity values of each
county are plotted in Figure 3(b).

As seen in Figure 4, a few counties (Fulton, Sharp, Izard,
Baxter, and Clay) in the northeastern part of Arkansas have
low soil resistivity values. In the northwestern part of the
state, Newton and Madison counties have very low soil
resistivity values. On the western border of the state, three
counties (Scott, Howard, and Perry) have very low soil
resistivity. In the southern part of the state, two counties
(Union and Nevada) have comparatively lower soil resis-
tivity values compared to other counties under study. ,e
rest of the counties in the eastern part have comparatively

higher soil resistivity. Figure 4 shows that the upper basin of
the White River has comparatively lower soil resistivity, and
the lower basin, a part of the Arkansas River basin, and the
Red River basin have comparatively higher soil resistivity.
,e results obtained based on the model show consistency
with the geological map of Arkansas [13]. In general, the
average value of soil resistivity of each county varies between
657 and 7698 ohm-cm. For the entire state, the resistivity
ranges from 7 to 22515 ohm-cm. ,e average value of soil
resistivity in Arkansas is 3524 ohm-cm with a standard
deviation of 4034 ohm-cm. On the other hand, the estimated
water resistivity within the state ranges from 264 to 1,62,500
ohm-cm with an average value of 9,156 ohm-cm and a
standard deviation of 8,133 ohm-cm.

3.3. Estimated Service Life

3.3.1. Plain Galvanized Steel Pipe (GSP). According to the
California method (1993), the service life of plain GSP can be
up to 50 years. ,is method uses resistivity and pH values of
the surrounding media (soil and water) as key parameters,
and the service life can be estimated based on the technique
shown in Figure 2(a). ,e current study used the previously-
determined soil resistivity values and extracted soil pH,
water pH, and water resistivity values to estimate the service
life GSP at each raster cell for a 16-gage pipe. ,e service life
is estimated separately based on soil pH and resistivity and
water pH and resistivity, then the lowest value is reported.
For GSP, an estimated service life from 0 to 10 years has been
considered as extremely corrosive, 10 to 20 years as highly
corrosive, 20 to 30 years as moderately corrosive, 30 to 40
years as corrosive, and 40 to 50 years as mildly corrosive.
Later, the estimated service lives were interpolated over the
region. ,e interpolated GIS raster map for GSP is shown in
Figure 4. From Figure 4 it is evident that most of the counties
and districts are categorized as extremely corrosive to highly
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Figure 2: Graphical representation of service life estimation methods: (a) 1999 caltrans, (b) 2012 FDOT-aluminized steel, and (c) 2012
FDOT-aluminum.
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corrosive for 16-gage GSPs. ,e service lives for different
sizes of GSPs can be estimated by using multiplying factors
of 1.6, 2.2, 2.8, and 3.4 for 14-gage, 12-gage, 10-gage, and 8-

gage GSPs, respectively [9]. Based on Figure 4, only the GSPs
located in the northeastern part of Arkansas have high
expected service lives. In general, most of the parts of the
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Figure 3: Average pH and resistivity of soils in different counties of Arkansas: (a) average soil pH and (b) average soil resistivity.
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state should be given careful thought before using any 16 and
18 gages GSPs. Any existing GSPs with 10 years of service or
more should be checked as precautionary steps. For future
development or construction projects, alternative pipe
materials should be taken into consideration for achieving
better service lives.

3.3.2. Aluminized (Type II) Corrugated Steel Pipe. While
determining the service lives of aluminized (type II) cor-
rugated steel pipes, the previously stated approaches of GSPs
were used except that for the cases in which the FDOT
method instead of the California method was followed. In
the interpolated maps developed for this category of pipes,
an estimated service life of 0 to 20 years was considered as
extremely corrosive, 20 to 40 years as highly corrosive, 40 to 60
years asmoderately corrosive, 60 to 80 years as corrosive, and
more than 80 years asmildly corrosive. ,e interpolated map
for aluminized (type II) corrugated steel pipe is shown in
Figure 5. From Figure 5, it is evident that a significant
portion of the state has moderate to mild corrosion risks,
which indicate comparatively higher service lives compared
to those of GSPs. However, in some parts of ARDOT
Districts 2, 3, 4, 6, 7, and 9, this type of pipe is expected to
have a very low service life. ,us, sufficient precautions
should be taken to use this type of pipe in these regions. ,e
raster maps shown in Figure 5 are for 16-gage pipes. For
different sizes of aluminized (type II) corrugated steel pipes,
the service lives can be estimated by using a multiplying
factor. ,ese multiplying factors are 1.3, 1.8, 2.3, and 2.8 for
14-gage, 12-gage, 10-gage, and 8-gage pipes, respectively
[10].

3.3.3. Corrugated Aluminum Pipe. Similar to GSP and
aluminized corrugated steel pipes, the service life of corru-
gated aluminum pipes is estimated based on the FODOT
method. For this type of pipe, an estimated service life of 0 to
40 years was considered as extremely corrosive, 40 to 60 years
as highly corrosive, 60 to 80 years asmoderately corrosive, 80 to
100 years as corrosive, and more than 100 years as mildly
corrosive. Even if the environment is extremely corrosive, this
study showed that this type of metal pipe can survive for a
very long period. However, the risk of abrasion is very high for
this type of metal pipe. So, in the case of selecting this type of
metal pipe, the type of sediments that pass through the pipes
or culverts should be analyzed before any decisions are made.
A detailed interpolated map of predicted service lives of
corrugated aluminum type is shown in Figure 6. Figure 6
shows that except for some counties (Union, Logan, Grant,
Newton, Lonoke, Independent, Washington, and Crawford),
most of the state has soils that are categorized as less corrosive
to this type of pipe. Similar to the other two types of pipes, a
16-gage pipe has been considered to evaluate the service life of
this type of pipe. For different sizes of corrugated aluminum
pipes, the service life can be extrapolated by using a multi-
plying factor according to the method in [10]. ,ese multi-
plying factors are 1.3, 1.8, 2.3, and 2.8 for 14-gage, 12-gage, 10-
gage, and 8-gage aluminum pipes, respectively.

4. Conclusions

,e main objective of this study was to evaluate the corrosion
risk of metal pipes and develop corrosion risk maps for the state
of Arkansas. ,is study has identified the useable secondary
data sources and analyzed the available datasets along with
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laboratory-based experimental results. Important geotechnical
and geochemical properties of soil and water quality data were
collected for all 75 counties of Arkansas. Several soil samples
were also collected fromdifferent locations in the state. Based on
the experimental results and collected data from the public
domain, a neural network (NN) based model was developed to
predict soil resistivity. ,e water quality data were collected
from the ADEQ. Combined soil pH, soil resistivity, surface
water pH, water resistivity parameters, and the expected service
lives of three types of predominately used metal pipes (plain
galvanized steel, aluminized steel, and aluminum) in Arkansas
were estimated using the California and FDOT methods. ,e
EBK interpolation method was applied for developing the GIS-
based maps that estimate the probable service lives of the three
metal types of 16-gage pipes. In general, aluminized corrugated
steel pipe or aluminum pipes were found to last longer than
galvanized steel pipes. However, the service lives of any of these
types of metal pipes varied significantly when they were to be
installed in different construction sites within Arkansas. ,e
estimated service lives presented in the maps can be used to
extrapolate the service lives of different sizes (gage thicknesses)
and other types of metal such as coated pipes.

,e findings of this study are implementation-ready and
can be immediately used by ARDOT engineers for selecting
appropriate metal pipes and maintaining highway drainage
pipes. ,e practice of using these maps will help avoid any
unwanted accidents by selecting unsuitable metal pipes in
critical areas shown in the maps. ,erefore, it is expected to
reduce the unnecessary costs associatedwith the removal and/or
replacement of metal culverts. ,e findings of this study will
also help the agency to estimate the condition of the existing
culverts installed at critical locations and can be used as a guide
for taking the necessary measures to reduce extra expenditure.
,e developed neural networkmodel can be used for estimating
soil resistivity, based on existing secondary data in any location.

One of the limitations of this study is the incorporation
of the abrasion levels in the model since they are not easily
quantifiable at different locations based on the available
sediment data found in the United States Geological Survey
database.,erefore, precautions should be taken in selecting
aluminum pipes in which abrasion levels play a critical role
in determining the service life. ,e developed neural net-
work model can be updated when new investigation results
and additional secondary data are available.
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