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1. Discussion and Up-To-Date Overview

Intelligence techniques, such as fuzzy logic approaches, have
long been applied to dynamical systemswithmany important
theoretical solutions and successful applications. The overall
aim of this special issue is both to promote discussion among
researchers actively working on applied fuzzy systems and
to provide an up-to-date overview of the research directions
and advance observer and controllersmethods in the field. Of
particular interest, the papers in this special issue are devoted
to the development of mathematical methodologies analysis,
control and observer problems of fuzzy systems, including
nonlinear dynamics, fuzzy logic, and interdisciplinary topics
with artificial intelligence. Potential topics include, but are
not limited to (1) fuzzy controller design (robust control,
adaptive control, and supervisory control), (2) fuzzy observer
design (adaptive observers, sliding mode observers, and
unknown inputs observers), (3) cascaded fuzzy systems and
observers, (4) synchronization in fuzzy systems, (5) sto-
chastic fuzzy systems, (6) robust fault detection and iso-
lation, fault diagnosis, and fault-tolerant control of fuzzy
systems, (7) applications of fuzzy controllers and observers
to complex systems (including hardware and software devel-
opment environments for fuzzy systems), (8) fuzzy logics,
and (9) fuzzy modeling and optimization. For this special
issue we solicit submissions from mathematicians, electri-
cal/control/mechanical engineers, and computer scientists.
After a rigorous peer review process, 31 papers have been

selected. These papers have covered both the theoretical
and practical aspects of fuzzy systems in the broad areas
of dynamical systems, mathematics, statistics, operational
research, and engineering.

During the past decades, the problem of stability analysis
of fuzzy systems has received significant attentions. In the
paper entitled “Delay-dependent stability analysis of uncertain
fuzzy systems with state and input delays under imperfect
premise matching” by Z. Zhang et al., the robust stability
and stabilization problems are studied for general nonlinear
fuzzy systems with time-varying state and input delays.
For obtaining a less conservative delay-dependent robust
stability criterion, the authors introduce a novel augmented
Lyapunov function with an additional triple-integral term to
the stability analysis for the systems. Moreover, for improv-
ing the design flexibility and reducing the implementation
cost of the fuzzy controller, they propose a new design
approach different from the traditional PDC design tech-
nique, which means that the fuzzy model and the fuzzy
controllers share different membership functions. Some less
conservative stability conditions are obtained, and a new
design approach is also proposed. The proposed stability
conditions are less conservative in the sense of getting larger
allowable time-delay and obtaining smaller feedback control
gains, and the design flexibility is enhanced by arbitrarily
selecting simple fuzzy membership functions. In the paper
entitled “Stability analysis and stabilization of T-S fuzzy
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delta operator systems with time-varying delay via an input-
output approach” by Z. Zhong et al., the stability analysis
and stabilization problems are investigated for fuzzy delta
operator systems with time-varying delay. The delta operator
method is introduced to transform T-S fuzzy continuous-
time systems into discrete-time systems, and the input-output
(IO) approach is employed to deal with the stability analysis
and control design of T-S fuzzy delta operator systems with
time-varying delay.Themain contribution of the paper is that
the stability analysis and stabilization problems for fuzzy delta
operator systems with time-varying delay are investigated
by the IO Approach. A model approximation method is
employed to transform the original system into an equivalent
interconnected system, which is comprised of a forward
subsystemwith constant time-delays and a feedback one with
delayed uncertainties, such that less conservative results are
ensured.

The problems of modeling and identification have long
been the main stream of research topics, and much effort
has been made for fuzzy systems. In order to approximate
any nonlinear systems, not just affine nonlinear systems,
generalized T-S fuzzy systemswhere the control variables and
the state variables are all premise variables are introduced
in the paper entitled “A novel identification method for
generalized T-S fuzzy systems” by L. Huang et al.. In order to
improving the identification effect, a new method combined
colony algorithm and genetic algorithm is proposed. Firstly,
fuzzy spaces and rules are determined by using ant colony
cluster algorithm to get the best one, and colony cluster
algorithm has general optimizing capability, which is better
than general cluster algorithm. Secondly, the state-space
model parameters are optimized by genetic algorithm based
on the least square method, which provided the better
consequence parameters. In the paper entitled “Approximate
analytic and numerical solutions to Lane-Emden equation
via fuzzy modeling method” by D. Wang et al., a novel
algorithm, called variable weight fuzzymarginal linearization
(VWFML) method, is proposed to obtain the approximate
analytic and numerical solutions to Lane-Emden equations.
Themain ideas of the VWFMLmethod are as follows. Firstly,
the authors need to transfer a group of data into fuzzy rules.
Then, they, respectively, use two partition methods to divide
the input universes and utilize fuzzy marginal linearization
method to obtain the corresponding fuzzy system. By trans-
ferring initial value technology, the authors can solve these
two fuzzy systems. Finally, they take weighted sum of these
two solutions and obtain the approximate solutions of the
Lane-Emden equations. When the Lane-Emden equation is
unknown and only data information can obtained, many tra-
ditional numerical approximationmethods could not solve it.
The main contribution of this paper is that the authors can
only use some data information to obtain the approximate
analytic and numerical solutions to Lane-Emden equation
with high accuracy. And this method is easy to be imple-
mented and extended for solving other nonlinear differential
equations. In the paper entitled “Bi-objective optimization
method and application of mechanism design based on pigs’
payoff game behavior” by L. Wang et al., a new bi-objective
optimization game method is proposed. Two design goals

can be regarded as two game players, the design variables
set can be regarded as strategy subsets named 𝑆

1
and 𝑆
2
, and

the constraints in multiobjective problems can be regarded
as constraints in the game method. Through the specific
technological means, the design variables can be divided
into each game players strategy subsets (𝑆

1
and 𝑆
2
), and two

payoff functions u are constructed based on pigs’ payoff game
behavior. For optimization problems with preferred target,
the designers need to emphasize one design goal. For this
problem, there exist traditional methods such as weighting
method (by adjusting the weight of each goal), hierarchical
sequence method (by adjusting the objective optimization
order), and goal programming method. In this paper, one
new bi-objective optimization game method is proposed
based on pigs’ payoff game behavior for solving optimization
problemswith preferred target. It takes bi-objective optimiza-
tion of luffing mechanism of compensative shave block; for
example, the results show that the method can effectively
solve the bi-objective optimization problems with preferred
target (designers need to take the preferred target as the small
pig side and take another target as the big pig side), the
efficiency and accuracy are well, and the solution is obtained
only through fewer game rounds. Although the Markowitz
mean-variance (MV) portfolio optimization theory has been
widely used, which leads the investment theory to a new
era, in the paper entitled “Fuzzy investment portfolio selection
models based on interval analysis approach” by H. Guo et al.,
the authors found that this model has unintuitive problem
in investment portfolio selection in economic decision. Thus
this paper employs fuzzy set theory and extends it to a fuzzy
investment portfolio selection model to solve this problem.
Our model establishes intervals for expected returns and risk
preference, which can take into account investors’ different
investment appetite and thus can find the optimal resolution
for each interval. In the empirical part, we test this model
in Chinese stocks investment and find that this model can
fulfill different kinds of investors’ objectives. Furthermore,
investment risk can be decreased when we add investment
limit to each stock in our model. The results indicate that
fuzzy set theory is useful to avoid the problems of Markowitz
mean-variance portfolio model and takes into account dif-
ferent expected return levels and risk preference levels. In the
paper entitled “On interval valued supra fuzzy syntopogenous
structure” by F. Sleim and H. Mustafa, the authors generalize
the concept of supra fuzzy syntopogenous space by using the
notion of interval valued set. Topology and its generalization
proximity and syntopogenous are branches of mathematics
which have many real life applications. They believe that
the generalized topological structure suggested in this paper
will be important base for modification of medical diagnosis,
decision making, and knowledge discovery.

In the past decades, the issue of control design for fuzzy
systems has received considerable research interests and has
found successful applications in a variety of areas. An adap-
tive fuzzy slidingmode controller for a class of uncertain non-
linear systems is proposed in the paper entitled “Fuzzy sliding
mode controller design using Takagi-Sugeno modelled nonlin-
ear systems” by S. Bououden et al.. The unknown system
dynamics and upper bounds of the minimum approximation
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errors are adaptively updated with stabilizing adaptive laws.
The closed-loop system driven by the proposed controllers is
shown to be stable with all the adaptation parameters being
bounded. The performance and stability of the proposed
control system is achieved analytically using the Lyapunov
stability theory. In the paper entitled “Fuzzy variable structure
control for uncertain systems with disturbance” by B. Wang et
al., the authors focus on the fuzzy variable structure control
for uncertain systems with disturbance. Specifically, the fuzzy
control is introduced to estimate the control disturbance,
and the switching control is included to compensate the
approximation error and possess the characteristic of sim-
pleness in design and effectiveness in attenuating the control
chattering. In the paper entitled “Robust 𝐻

∞
control for a

class of uncertain switched fuzzy time-delay systems based on
T-S models” by Y. Cui et al., the authors have developed
a robust 𝐻

∞
control with disturbance attenuation level 𝛾

approach for a class of uncertain switched fuzzy time-delay
systems based on T-S models. Each and every subsystem
of the switched systems is an uncertain fuzzy one to which
the PDC (parallel distributed compensation) controller of
every subfuzzy system is proposed with its main condition
given in a more solvable form of convex combinations. The
closed-loop stability of the proposed robust 𝐻

∞
control

scheme is rigorously proved using Lyapunov theory. Finally,
switching law of the state-dependent form achieving system
quadratic stability of the switched fuzzy system is given. In the
paper entitled “direct adaptive fuzzy sliding mode control with
variable universe fuzzy switching term for a class of MIMO
nonlinear systems” byG.Haigang et al., the authors developed
a novel framework for the control of the MIMO nonlinear
with model uncertainty and external disturbances. They also
proposed a high-precision controller by the variable universe
fuzzy control theory. In the paper entitled “A Fuzzy approach
to robust control of stochastic nonaffine nonlinear systems”
by T. Gang et al., the authors investigate the stabilization
problem for a class of discrete-time stochastic nonaffine
nonlinear systems (SNNS) based on generalized stochastic
T-S fuzzy models. By using the function approximation
capability of the stochastic T-S fuzzy models, the original
SNNS can be exactly represented by a stochastic T-S fuzzy
model with some norm bounded approximation errors as
the uncertainty term on any compact set. In this way, the
stabilization problem of the SNNS can be solved as a robust
stabilization problem of the obtained uncertain stochastic
T-S fuzzy models. By using a class of piecewise dynamic
feedback fuzzy controllers and piecewise quadratic Lyapunov
functions, robust semiglobally stabilization of SNNS can be
formulated in terms of linear matrix inequalities. In the
paper entitled “adaptive fuzzy tracking control for uncertain
nonlinear time-delay systems with unknown dead-zone input”
by C. Chiang, the problem of output tracking control is
investigated for a class of uncertain nonlinear state time-
delay systems containing unknown dead-zone input and
unmatched uncertainties. In general systems, there exist
some nonsmooth nonlinearities in the actuators, such as
dead zone, saturation, and backlash. However, the dead-
zone characteristics in actuators may severely limit the
performance of the systems. Also, time-delay characteristic

and the existence of uncertain elements usually confronted
in engineering systemsmay degrade the control performance
and make the systems unstable. The main features of the
proposed robust adaptive fuzzy controller are summarized as
follows. (i) An adaptive law is used to estimate the proper-
ties of the dead-zone model intuitively and mathematically,
without constructing a dead-zone inverse. (ii) Fuzzy logic
systems with some appropriate learning laws are applied
to approximate the nonlinear gain function and the upper
bounded functions of uncertainties. (iii)Theunknownupper
bound of the uncertainties caused by approximation (or
fuzzy modeling) error is estimated by a simple adaptive law.
(iv) By means of Lyapunov stability theorem, the proposed
controller cannot only guarantee the robust stability of the
whole closed-loop system, but also obtain the good tracking
performance. In this paper entitled “Fuzzy PD control of
networked control systems based on CMAC neural network”
by L. Huang and J. Chen, the main problem is how to design
the fuzzy PD controller and combine with the cerebellar
model articulation controller to compose a integral controller
which used in the networked control systems effectively. In
order to solve this problem, the switching control system
between fuzzy PD and PD control is proposed. PD control
in the small deviation is applied to obtain higher static
control accuracy, and fuzzy PD control in large deviations
is applied to obtain faster dynamic response and smaller
overshoot. The paper entitled “Fuzzy control and connected
region marking algorithm-based SEM nanomanipulation” by
D. Li et al. is motivated for manipulating the nanocomponent
in SEM with telepresence as in macroscale. With the help of
virtual reality and haptic technology, the SEM-based master-
slave telenanomanipulation platform is established having
the performance of security, reliable, and real time without
force sensor. The CRM algorithm is introduced to process
the 2D SEM image which provides effective position data of
the objects for updating the virtual environment. The fuzzy
control algorithm is adopted in the master-slave control to
obtain relatively stable control variable to avoid damage of
platform.

Over the past decades, the observer/filter problems of
fuzzy systems have been investigated extensively, since they
are very useful in signal processing and engineering appli-
cations. In the paper entiled “Robust observer design for
Takagi-Sugeno fuzzy systems with mixed neutral and discrete
delays and unknown inputs” by H. Karimi and M. Chadli, a
robust observer design is proposed for Takagi-Sugeno fuzzy
neutral models with unknown inputs. The model consists of
a mixed neutral and discrete delay, and the disturbances are
imposed on both state and output signals. Delay-dependent
sufficient conditions for the design of an unknown input T-S
observer with time delays are given in terms of linear matrix
inequalities. In the paper entitled “Observer-based robust
adaptive fuzzy control for MIMO nonlinear uncertain systems
with delayed output” by C. Chiang, the problem of controller
design is considered for a class ofMIMOnonlinear uncertain
output-delay systems whose states are not available. The
common feature of most previous results is the assumption
that the controlled systems are free of uncertainties, or
the uncertainties are assumed to be a bounded external
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disturbance. Therefore, the motivation of this paper is to
synthesize an observer-based robust adaptive fuzzy control
scheme to deal with the tracking control problem for a class
of MIMO nonlinear uncertain systems with delayed output
in the presence of uncertainties including the structural
uncertainty. In the paper entitled “Unknown input observer
design for fuzzy bilinear system: an LMI approach” by D.
Saoudi et al., a new method to design a Fuzzy Bilinear
Observer (FBO) with unknown inputs is developed for a
class of nonlinear systems. The nonlinear system is modeled
as a fuzzy bilinear model (FBM). This kind of T-S fuzzy
model is especially suitable for a nonlinear system with a
bilinear term. The proposed fuzzy bilinear observer subject
to unknown inputs is developed to ensure the asymptotic
convergence of the error dynamic using the Lyapunov
method. An unknown input fuzzy bilinear fault diagnosis
observer design is also proposed. Specifying for a class of
nonlinear systems described by Takagi-Sugeno (T-S) model,
in the paper, entitled “A reduced-order TS fuzzy observer
scheme with application to actuator faults reconstruction” by
D. Krokavec and A. Filasova, is newly defined the reduced-
order T-S fuzzy observer, and it is demonstrated that the
matching requirement, under which it can be disposed to
actuator faults estimation, can be reflected in the observer
design stipulation. The stability conditions, relying on the
feasibility of an associated system of linearmatrix inequalities
(LMI), are derived and guarantee that the observer scheme
asymptotically estimates actuator faults. In terms of fuzzy
systems, the article provides a suitable newmethodology and
expands the theoretical basis of TS fuzzy model applications
in control system design.The paper entitled “Terminal sliding
mode control using adaptive fuzzy-neural observer” by D. Xu
et al. proposed a dynamic approximation algorithm which
is used to simplify the nonaffine nonlinear systems as affine
nonlinear systems with time-varying parameters. And the
time-varying parameters can be obtained by a filter. Next,
an adaptive fuzzy-neural observer is designed to estimate
the signals of position, velocity, and unknown functions.
Terminal sliding mode control is used to design based on
the observer. Stability analysis and simulations can show
that the method is effective. The paper entitled “Filtering
for discrete fuzzy stochastic time-delay systems with sensor
saturation” by J. You et al. investigates the 𝐻

∞
filtering

problem for T-S fuzzy systems with time varying delay
and sensor saturation. The communication channel between
the plant and the filer is supposed to be imperfect, and
random noise depending on the state and external distur-
bance is taken into account. The key method employed to
handle with the time-varying delay is to develop the Scaled
Small Gain (SSG) theorem to the stochastic systems. The
main contribution is that this paper establishes a research
approach that could handle with time varying delay and
sensor saturation together, and both characteristics are always
involved in many theoretical and practical problems. The
paper entitled “Robust stabilization for continuous Takagi-
Sugeno fuzzy system based on observer design” by Y. Manai
and M. Benrejeb investigates the influence of new Parallel
Distributed Controller (PDC) on the stabilization region
of continuous Takagi-Sugeno (T-S) fuzzy models. Using a

nonquadratic Lyapunov function, new sufficient stabilization
criterion is established in terms of linear matrix inequality.
The criterion examines the derivative membership function;
an approach to determine state variables is given based on
observer design.

The applications of various control schemes have received
considerable research interests in the past decades. In the
work entitled “An iterative procedure for optimizing the
performance of the fuzzy-neural job cycle time estimation
approach in a wafer fabrication factory” by T. Chen and Y.
Wang, a classifying fuzzy-neural approach, based on the com-
bination of principal component analysis (PCA), fuzzy c-
means (FCM), and back propagation network (BPN), is
proposed to estimate the cycle time of a job in a wafer
fabrication factory. The paper entitled “Switched two-level
𝐻
∞

and robust fuzzy learning control of an overhead crane”
by K. Hung et al. investigates the use of fuzzy techniques for
modeling nonlinear plants as a combination of a nominal
linear system and a T-S fuzzy blending of affine terms. This
type of dynamic model significantly simplifies subsequent
analysis and control designs, because assumptions on the
plant dynamics can be significantly reduced. In the paper
entitled “A two-wheeled self-balancing robot with the fuzzy PD
control method” by J. Wu et al., the utility and effectiveness of
soft computing approaches for a two-wheeled self-balancing
robot with structured and unstructured uncertainties are
presented. In this approach, precompensation of a hybrid
fuzzy PD controller is proposed.The control scheme consists
of a fuzzy logic-based precompensator followed by fuzzy PD
control. Moreover, a fuzzy supervisory controller is used to
supervise conventional proportional and derivative actions,
such that the conventional gains are adapted online through
fuzzy reasoning. Due to the influence of nonlinear friction,
creep phenomenon occurs when the moving speed is low
in the telescopic boom system of heavy-load transfer robot.
To solve this problem and to improve control precision, B.
You et al. in the paper entitled “Low-speed control of heavy-
load transfer robot with long telescopic boom based on stribeck
friction model” built a three-loop control nonlinear model
of the system with the Stribeck friction disturbance model
to simulate the motion of the telescopic boom in low speed.
Fuzzy PID control was used to solve the problem of “flat-top”
position tracking and “dead-zone” speed tracking. The creep
phenomenon was eliminated, and the tracking accuracy and
robustness of the system were also improved.The paper enti-
tled “Using metaheuristic and fuzzy system for optimization
of material-pull in a push pull flow logistics network” by A.
Mehrsai et al. generally complies with a known problem in
manufacturing environment, which is the coordination of
heterogeneous material flows throughout supply chains and
within every production plant. Alternative flows of material,
following push and pull principles of control cause collection
of inventory and WIP of materials as well as lags in delivery
times. Model-based control of material flows regarding the
interference of human in the entire process seems relatively
very complex to practitioners in industries. In contrast, in
this paper some material flow strategies are recommended
to simplify and improve the flows throughout. Besides, some
heuristics (i.e., genetic algorithm and simulated annealing)
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to solve the flow coordination are experimented here as well.
Fuzzy logic as a suitable solution for solving human centered
operations is reasonably explained and experimented in two
applications, that is, control of pallets within an assembly sys-
tem as well as normalization of multiobjective optimization
problem. In the paper entitled “A novel evaluation model for
hybrid power system based on vague set and dempster-shafer
evidence theory” by D. Niu et al., due to advantages of vague
set processing abundant uncertain and fuzzy information, it
is chosen to determine basic decision matrix of evaluation
model. Combining vague set with D-S evidence theory, a
novel evaluation algorithm is established and applied into the
comprehensive benefit evaluation of hybrid power system. In
the paper entitled “𝐻

∞
fuzzy control of DC-DC converters

with input constraint,” D. Saifia et al. study fuzzy control
of DC-DC converters under actuator saturation. Because
linear control design methods do not take into account the
nonlinearity of the system, a T-S fuzzy models and a con-
troller design approach are used. The input constraint is first
transformed into a symmetric saturationwhich is represented
by a polytopic model. Stabilization conditions for the 𝐻

∞

state feedback system of DC-DC converters under actuator
saturation are established using the Lyapunov approach. In
the paper entitled “A compound fuzzy disturbance observer
based on sliding modes and its application on flight simulator,”
Y. Wu et al. present a compound fuzzy disturbance observer
based on sliding modes. The proposed method improves
the performance of the disturbance inhibition when there
exists huge modeling mismatch. Traditional methods use
high-gain control, which may cause resonance in controlling
elastic electromechanical systems, to inhibit equivalent dis-
turbance. The proposed method employs fuzzy tools to deal
with the primary part of the disturbance, and the residual
disturbance is compensated by sliding mode control. The
proposed method improves the robustness and performance
of the system while avoiding the disadvantages of traditional
methods. Finally, the paper entitled “Fuzzy formation control
and collision avoidance for multiagent systems” by Y. Chang
et al. investigates the formation control of leader-follower
multiagent systems, where the problem of collision avoidance
is considered. Based on the graph-theoretic concepts and
locally distributed information, a neural fuzzy formation
controller is designed with the capability of online learning.
The learning rules of controller parameters can be derived
from the gradient descent method. To avoid collisions
between neighboring agents, a fuzzy separation controller
is proposed such that the local minimum problem can be
solved.

Appendix

A. Accepted Papers According to
Classified Topics

A.1. Papers on the Topic of Stability

(1) Delay-dependent Stability Analysis of Uncertain
Fuzzy Systems with State and Input Delays under
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(2) Stability Analysis and Stabilization of T-S Fuzzy
Delta Operator Systems with Time-Varying Delay via
an Input-Output Approach.
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(3) A Novel Identification Method for Generalized
T-S Fuzzy Systems.
(4) Approximate analytic and numerical solutions to
Lane-Emden equation via fuzzy modeling method.
(5) Bi-objective Optimization Method and Applica-
tion of Mechanism Design Based on Pigs’ Payoff
Game Behavior.
(6) Fuzzy investment portfolio selection models
based on interval analysis approach.
(7) On interval valued supra fuzzy syntopogenous
structure.

A.3. Papers on the Topic of Control for Fuzzy Systems

(8) Fuzzy Sliding Mode Controller Design Using
Takagi-Sugeno modelled Nonlinear Systems.
(9) Fuzzy variable structure control for uncertain
systems with disturbance.
(10) Robust 𝐻

∞
Control for A Class of Uncertain

Switched Fuzzy Time-Delay Systems based on T-S
Models.
(11) Direct Adaptive Fuzzy SlidingMode Control with
Variable Universe Fuzzy Switching Term for a class of
MIMO Nonlinear Systems.
(12) A Fuzzy Approach to Robust Control of Stochas-
tic Non-Affine Nonlinear Systems.
(13) Adaptive Fuzzy Tracking Control for Uncertain
Nonlinear Time-Delay SystemswithUnknownDead-
Zone Input.
(14) Fuzzy PDControl of Networked Control Systems
Based on CMAC Neural Network.
(15) Fuzzy Control and Connected Region Marking
Algorithm-based SEM Nanomanipulation.

A.4. Papers on the Topic of Observer/Filter Design for Com-
plex Systems

(16) Robust Observer Design for Takagi-Sugeno
Fuzzy Systems with Mixed Neutral and Discrete
delays and Unknown Inputs.
(17) Observer-based Robust Adaptive Fuzzy Con-
trol for MIMO Nonlinear Uncertain Systems with
Delayed Output.

(18) Unknown Input Observer Design for Fuzzy
Bilinear System: an LMI Approach.
(19) A reduced-order TS fuzzy observer scheme with
application to actuator faults reconstruction.
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(20) Terminal Sliding Mode Control using Adaptive
Fuzzy-Neural Observer.
(21) Filtering for Discrete Fuzzy Stochastic Time-
Delay Systems with Sensor Saturation.
(22) Robust Stabilization for Continuous Takagi-
Sugeno Fuzzy System based on Observer Design.

A.5. Papers on the Topic of Applications

(23) An Iterative Procedure for Optimizing the Per-
formance of the Fuzzy-neural Job Cycle Time Estima-
tion Approach in a Wafer Fabrication Factory.

(24) Switched Two-Level𝐻
∞

and Robust Fuzzy Lea-
rning Control of an Overhead Crane.
(25) A Two-Wheeled Self-Balancing Robot with the
Fuzzy PD Control Method.
(26) Low-Speed Control of Heavy-Load Transfer
Robot with Long Telescopic Boom Based on Stribeck
Friction Model.
(27) Using Meta-Heuristic and Fuzzy System for
Optimization of Material-Pull In A Push-Pull Flow
Logistics Network.
(28) A Novel Evaluation Model for Hybrid Power
System Based on Vague Set and Dempster-Shafer
EvidenceTheory.

(29) 𝐻
∞

Fuzzy Control of DC-DC Converters with
Input Constraint.
(30)ACompoundFuzzyDisturbanceObserver based
on Sliding Modes and Its Application on Flight
Simulator.

(31) Fuzzy Formation Control and Collision Avoid-
ance for Multi-Agent Systems.
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Overhead cranes are typical dynamic systems which can be modeled as a combination of a nominal linear part and a highly
nonlinear part. For such kind of systems, we propose a control scheme that deals with each part separately, yet ensures global
Lyapunov stability. The former part is readily controllable by the𝐻

∞
PDC techniques, and the latter part is compensated by fuzzy

mixture of affine constants, leaving the remaining unmodeled dynamics or modeling error under robust learning control using
the Nelder-Mead simplex algorithm. Comparison with the adaptive fuzzy control method is given via simulation studies, and the
validity of the proposed control scheme is demonstrated by experiments on a prototype crane system.

1. Introduction

Overhead cranes are used in workshops or harbors to trans-
port massive goods within short distance. The manipulation
of overhead cranes is affected by the existence of unavoidable
disturbances, such as friction, winds, unbalanced load, and
accidental collision. Besides, change of payloads and string
length can result in tremendous variations in system dynam-
ics. Due to these inherent problems, most of the overhead
cranes are still operated by skilled labors.

An automatic crane system should be able to accurately
carry payloads to the desired position as fast as possible
without swing. Many works have been focused on automatic
control of the overhead crane in the literature. For instance,
Park et al. and Singhose et al. [1, 2] investigated the input
shaping control of the crane systems. [3–5] used the variable
structure control with sliding modes to control the overhead
crane. Moreno et al. [6] used neural networks to tune the
parameters of state feedback control law to improve the
performance of an overhead crane. Lee and Cho [7] proposed
an antiswing fuzzy controller to enhance a servo controller
that was used for positioning. Moreover, Nalley and Trabia
[8] adopted fuzzy control for both positioning control and
swing damping. Moreover, a standard discrete-time fuzzy
model [9–13] and continuous-time fuzzy controller [14] have

been proposed in the literature. While the controllers of
[15–20] are based on the so-called Single Input Rule Modules
(SIRMs) and [21] focused on the construction of a reduced-
order model to approximate the original system.

In the above researches, [1, 2] lack robustness consider-
ation for external disturbances and plant uncertainty, while
stability is not guaranteed in [6–8]. Successful implemen-
tation of these schemes might depend on unreliable and
hard-to-obtain consequent parts (linguistic value), such as
the schemes of [3, 14] and the dynamic importance degree
defined in [15], respectively.

In this paper, we model the nonlinear plant as a com-
bination of a continuous-time linear nominal model and
fuzzily blended supplemental affine terms. These terms are
added mainly to account for dominant friction effects and
residual nonlinear dynamics. The model not only simplifies
subsequent control design but also enhances system robust-
ness, because assumptions on the plant dynamics are sig-
nificantly reduced. The nominal model allows linear control
techniques, specifically, the𝐻

∞
linear control technique [22,

23], to be applied to the nonlinear plant.
In the closely related literature of [15–20, 24–31], fuzzy

controllers are developed to simultaneously stabilize these
fuzzy linear models using the parallel distributed control
(PDC) scheme that satisfies the linear matrix inequality
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(LMI) relations. However, these control design strategies rely
on accurate fuzzymodeling of the plant, which usually results
in a large number of fuzzy rules and, hence, complex and
conservative designs.

To further alleviate the requirement for accurate fuzzy
modeling of the plant, a two-level 𝐻

∞
robust nonlinear

control scheme is proposed. The inner-level controller is
responsible for accurate servo control, while the outer-level
controller compensates for unmodeled system dynamics and
bounded disturbances. Besides, each part of the proposed
control laws can be independently designed satisfying its
own specification. This incremental design procedure avoids
solving the problem at one time and allows each part to be
designedwith different guidelines. Also, global stability of the
closed-loop system is ensured against bounded disturbances
with guaranteed disturbance attenuation level.

A particular switching controller is proposed in [32] for
nonlinear systems with unknown parameters based on a
fuzzy logic approach. The major difference between our pro-
posed scheme and the controller of [32] is that the switching
of our scheme is between the inner-loop and the outer-loop
controllers, while the controller of [32] is switched constantly
between many (which is 8 in the simulation example) linear
controllers. Furthermore, the fuzzy terms in our controller
are dedicated for the compensation of highly nonlinear effects
that deviate from the nominal linear dynamics. Nevertheless,
in [32], a fuzzy plantmodel is required for the construction of
the switching plant model, which is then used for the model-
based design of the switching controller. The switching
Takagi-Sugeno fuzzy control proposed in [33] also requires
the plant to be accurately represented by a fuzzy system.

As the closed-loop stability is ensured by the outer-level
controller, we are able to optimize the inner-level controller
by the Nelder-Mead simplex algorithm [34] based on actual
closed-loop control performance, rather than deriving from
the plant model.The optimization algorithm converges faster
than particle swarm optimization (PSO) [35], which is ade-
quate for online applications. This scheme, which incorpo-
rates online trials, can be applied to many applications such
as self-guided robot and evolvable systems. Furthermore,
considering that the swing dynamics depend on both string
length and load mass, fuzzy rules are created to interpolate
control gains obtained from trial experiments [36–38].

In the following sections, this paper is divided into
four parts. Section 2 describes the plant model and the
problem, Section 3 proposes the two-level control scheme,
and Section 4 evaluates the effectiveness of the proposed
scheme using both simulation comparison with a recently
proposed strategy in the literature and experimental studies.
Finally, Section 5 concludes the results.

2. Problem Formulation

The plant under consideration is assumed to be a disturbed
nonlinear system which is affine in the input and contains
uncertain dynamics:

̇𝑥 = 𝑓 (𝑥) + Δ𝑓 (𝑥, 𝑡) + [𝑔 (𝑥) + Δ𝑔 (𝑡)] ⋅ 𝑢 + 𝑤, (1)

where Δ𝑓(𝑥, 𝑡) and Δ𝑔(𝑡) are unknown system dynamics,
which are bounded in 𝑥 and 𝑡; 𝑥 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇
∈ 𝑅
𝑛×1 is

the state vector, 𝑢 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
]
𝑇
∈ 𝑅
𝑚×1 is the nonlinear

input vector, and 𝑤 ∈ 𝑅
𝑛×1 denotes unknown and bounded

disturbance. Furthermore, nonlinear functions𝑓(𝑥) and𝑔(𝑥)
are Lipschitz in 𝑥.

Next, we approximate the nonlinear system as a nominal
linear system augmented with Takagi-Sugeno type fuzzy
blending of affine terms. Note that these affine terms, which
are usually dominated by friction in many mechatronic
systems, are added to the control-input term, rather than
being added directly. This form closely reflects the practical
effects of friction on system dynamics. Specifically, the 𝑖th
rule of the affine T-S fuzzy model is in the following form:

Plant rule 𝑖:
IF 𝑧
1
(𝑡) is𝑀

𝑖1
and ⋅ ⋅ ⋅ and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝

THEN ̇𝑥 = 𝐴 ⋅ 𝑥 + Δ𝐴 (𝑡) ⋅ 𝑥 + [𝐵 + Δ𝐵 (𝑡)] ⋅ [𝑢 + 𝑐𝑖]

for 𝑖 = 1, 2, . . . , 𝐿.
(2)

In each rule, 𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . and 𝑧

𝑝
(𝑡) are the 𝑝 premise

variables, which can be state variables or functions of state
variables, 𝑀

𝑖𝑗
is the fuzzy set corresponding to the 𝑗th

premise variable, 𝐴 ∈ 𝑅
𝑛×𝑛 is the system matrix, and 𝐵 ∈

𝑅
𝑛×𝑚 denotes the control input matrix. Moreover, 𝑐

𝑖
∈ 𝑅
𝑚×1

is the 𝑖th bias vector, Δ𝐴(𝑡) ∈ 𝑅𝑛×𝑛 is the system uncertainty,
and Δ𝐵(𝑡) ∈ 𝑅𝑛×𝑚 denotes the control input uncertainty.

Defining 𝜇
𝑖𝑗
(⋅) as the membership function correspond-

ing to fuzzy set 𝑀
𝑖𝑗
, we have that 𝜇

𝑖𝑗
(𝑧
𝑗
(𝑡)) is the grade

of membership of 𝑧
𝑗
(𝑡) in 𝑀

𝑖𝑗
. Using the sum-product

composition, the firing strength of the 𝑖th fuzzy rule is
represented as 𝜛

𝑖
= 𝜛
𝑖
(𝑧) ≡ ∏

𝑝

𝑗=1
𝜇
𝑖𝑗
(𝑧
𝑗
(𝑡)) with 𝑧 ≡

[𝑧
1
(𝑡), 𝑧
1
(𝑡), . . . , 𝑧

𝑝
(𝑡)]
𝑇.

By defining ℎ
𝑖
(𝑧) = 𝜛

𝑖
/∑
𝐿

𝑗=1
𝜛
𝑗
as the normalized firing

strength of the 𝑖th rule, hence∑𝐿
𝑖=1
ℎ
𝑖
(𝑧) = 1, the overall fuzzy

system model is then inferred as the weighted average of the
consequent parts:

̇𝑥 = 𝐴𝑥 + Δ𝐴 (𝑡) 𝑥 + [𝐵 + Δ𝐵 (𝑡)] ⋅ [𝑢 +

𝐿

∑

𝑖=1

ℎ
𝑖
(𝑧) ⋅ 𝑐
𝑖
] . (3)

The proposed control scheme is of a two-level switching
structure where the control input is composed of three parts,
𝑢
𝑆
, 𝑢
𝐻
, and 𝑢

𝑓
, defined as follows:

𝑢 = (1 − 𝐼
∗
) ⋅ 𝑢
𝑆
+ 𝐼
∗
⋅ 𝑢
𝐻
+ 𝑢
𝑓

= (1 − 𝐼
∗
) ⋅ 𝐾
𝑆
⋅ 𝑒 − 𝐼

∗
⋅ 𝐾
𝐻
⋅ 𝑥 −

𝐿

∑

𝑖=1

ℎ
𝑖
(𝑧) ⋅ 𝑐
𝑖
,

(4)

where 𝐼∗ ∈ {0, 1} is a switching function to be defined
in Section 3. In (4), the first term, 𝑢

𝑆
= 𝐾
𝑆
⋅ 𝑒, is a servo

controller located in the inner loop responsible for accurate
tracking, where 𝑒 = 𝑥

𝑟
− 𝑥 is the tracking error with 𝑥

𝑟

denoting the reference state trajectory. The second term,
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𝑢
𝐻
= −𝐾
𝐻
⋅ 𝑥, is an𝐻

∞
robust controller in the outer loop to

ensure system stability. And 𝑢
𝑓
= −∑

𝐿

𝑖=1
ℎ
𝑖
(𝑧) ⋅ 𝑐

𝑖
is a fuzzy-

combination term that compensates for nonlinear dynamics,
such as friction and other effects that deviate from nominal
linear dynamics.

Next, let us define the modeling error 𝑒 mod as

𝑒 mod ≡ 𝑓 (𝑥) + Δ𝑓 (𝑥, 𝑡) + [𝑔 (𝑥) + Δ𝑔 (𝑡)] ⋅ 𝑢 + 𝑤 − y, (5)

where 𝑦 = 𝐴 ⋅ 𝑥 +Δ𝐴(𝑡) ⋅ 𝑥 + [𝐵 +Δ𝐵(𝑡)] ⋅ [𝑢 +∑𝐿
𝑖=1
ℎ
𝑖
(𝑧) ⋅ 𝑐
𝑖
].

Hence the closed-loop system, formed by applying (4) to (1),
can be expressed concisely as follows:

̇𝑥 = 𝐴 ⋅ 𝑥 + Δ𝐴 (𝑡) ⋅ 𝑥 + [𝐵 + Δ𝐵 (𝑡)]

⋅ [(1 − 𝐼
∗
) ⋅ 𝑢
𝑆
+ 𝐼
∗
⋅ 𝑢
𝐻
+ 𝑢
𝑓
+

𝐿

∑

𝑖=1

ℎ
𝑖
(𝑧) ⋅ 𝑐
𝑖
] + 𝑒 mod

= 𝐴 ⋅ 𝑥 + Δ𝐴(𝑡)⋅𝑥 + [𝐵 + Δ𝐵 (𝑡)]⋅[(1 − 𝐼
∗
) ⋅ 𝑢
𝑆
+ 𝐼
∗
⋅ 𝑢
𝐻
]

+ 𝑒 mod .

(6)

3. The Proposed Two-Level Control Scheme

As shown in Figure 1, the overall control scheme is composed
of an outer-level stabilizing controller and an inner-level
servo controller. Each of the controllers is designed according
to a switching condition defined by the deviation of tracking
errors from a prescribed reference vector 𝑥

𝑟
(𝑡). That is,

If ‖𝑒‖ = 𝑥𝑟 − 𝑥
 ≤ 𝜀𝐸 then 𝐼∗ = 0, otherwise 𝐼∗ = 1.

(7)

In the condition, the threshold 𝜀
𝐸
is a user-defined positive

number.The value of it, for instance, may be designed as 0.1×
max
𝑡
(‖𝑥
𝑟
(𝑡)‖).

The closed-loop system dynamics when ‖𝑒‖ > 𝜀
𝐸
is

formed by assigning 𝐼∗ = 1 in (6), as follows:

̇𝑥 = [𝐴 + Δ𝐴 (𝑡)] ⋅ 𝑥 − [𝐵 + Δ𝐵 (𝑡)] ⋅ 𝐾𝐻 ⋅ 𝑥 + 𝑒 mod . (8)

If uncertainties in the plant dynamic matrices, Δ𝐴(𝑡) and
Δ𝐵(𝑡), are bounded, wemay introduce a time-varyingmatrix,
𝐹(𝑡) with 0 ≤ ‖𝐹(𝑡)‖ ≤ 1, and constant matrices, 𝐷, 𝐸

1
, and

𝐸
2
, such that

[Δ𝐴 (𝑡) Δ𝐵 (𝑡)𝐾
𝐻] ⋅ 𝑥 = 𝐷 ⋅ 𝐹 (𝑡) ⋅ [𝐸1 𝐸2𝐾𝐻] ⋅ 𝑥

+ [𝛿 (𝑡) 0] ,

(9)

with 𝛿(𝑡) being a bounded function in 𝑥:

‖𝛿 (𝑡)‖ ≤ 𝑎 ⋅ ‖𝑥‖ , where 𝑎 is a positive constant. (10)

Using (9), the closed-loop system dynamics, (8), can then be
written as

̇𝑥 = (𝐴 − 𝐵 ⋅ 𝐾
𝐻
) ⋅ 𝑥 + 𝐷 ⋅ 𝐹 (𝑡) ⋅ (𝐸

1
− 𝐸
2
⋅ 𝐾
𝐻
) ⋅ 𝑥 + 𝑒 mod ,

(11)

where 𝑒 mod = 𝑒 mod + 𝛿(𝑡).
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Figure 1: The proposed two-level switching control scheme.

When the system is under acceptable tracking, that is,
‖𝑒‖ ≤ 𝜀

𝐸
, only the servo controller is in charge. The closed-

loop system dynamics is then formed by assigning 𝐼∗ = 0 in
(6), as follows:

̇𝑥 = [𝐴 + Δ𝐴 (𝑡)] ⋅ 𝑥 + [𝐵 + Δ𝐵 (𝑡)] ⋅ 𝐾𝑆 ⋅ 𝑒 + 𝑒 mod . (12)

3.1. Design of the Outer-Level 𝐻
∞

Stabilization Controller.
The𝐻

∞
stabilization performance of 𝑢

𝐻
is defined as follows:

∫
𝑡𝑓

0
[𝑥(𝑡)
𝑇
⋅ 𝑄 ⋅ 𝑥 (𝑡)] ⋅ 𝑑𝑡

𝐸 mod
≤ 𝜌
2
, (13)

where

𝐸 mod = ∫

𝑡𝑓

0

𝑒
𝑇

mod ⋅ 𝑒 mod ⋅ 𝑑𝑡, (14)

𝑡
𝑓
is terminal time of control, 𝑄 is a positive definite weight-

ing matrix, and 𝜌 denotes prescribed attenuation level with
𝜌
2 being the attenuation disturbance level. From the energy

viewpoint, (13) confines the effect of 𝑒 mod on state, 𝑥(𝑡), to be
attenuated below a desired level. If initial conditions are also
considered, the 𝐻

∞
performance in (13) can be modified as

follows:

∫

𝑡𝑓

0

(𝑥
𝑇
⋅ 𝑄 ⋅ 𝑥) 𝑑𝑡 ≤ 𝑥

𝑇
(0) ⋅ 𝑃 ⋅ 𝑥 (0) + 𝜌

2
⋅ 𝐸 mod , (15)

where𝑄 and 𝑃 are symmetric and positive definite weighting
matrices. The design of the stabilizing controller in the outer
level corresponds to find a linear controller in the form of
𝑢
𝐻

= −𝐾
𝐻
⋅ 𝑥, such that the 𝐻

∞
performance (15) is

guaranteed to stabilize the closed-loop system (11).

Theorem 1. Assuming that the modeling error is bounded
such that ‖𝑒 mod ‖ ≤ 𝑒

𝑈
, with 𝑒

𝑈
being a positive constant,

the 𝐻
∞

control performance, defined in (15) is guaranteed
for the closed-loop system (11) via the stabilizing control law,
𝑢
𝐻

= −𝐾
𝐻
⋅ 𝑥, and the feed-forward fuzzy compensator

𝑢
𝑓
= −∑

𝐿

𝑖=1
ℎ
𝑖
(𝑧) ⋅ 𝑐

𝑖
, if there exist constant positive values

V, 𝜌, positive-definite matrix 𝑃, and matrix 𝐾
𝐻
, such that the

following linear matrix inequality is satisfied

Φ ≡ [
𝜙 (𝐸

1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌)
𝑇

(𝐸
1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌) −V2 ⋅ 𝐼

] < 0, (16)
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where

𝑊 ≡ 𝑃
−1
, 𝑌 ≡ 𝐾

𝐻
⋅ 𝑊, (17)

𝜙 ≡ (𝐴 ⋅ 𝑊 − 𝐵 ⋅ 𝑌)
𝑇
+ 𝐴 ⋅ 𝑊 − 𝐵 ⋅ 𝑌 +

1

𝜌2
⋅ 𝐼 + V

2
⋅ 𝐷 ⋅ 𝐷

𝑇
.

(18)

The proof of Theorem 1 requires the following lemma.

Lemma 2 (see [31, 39]). Given constant matrices𝐷 and 𝐸 and
a symmetric constant matrix 𝑆 of appropriate dimensions, the
following inequality holds:

𝑆 + 𝐷 ⋅ 𝐹 (𝑡) ⋅ 𝐸 + 𝐸
𝑇
⋅ 𝐹
𝑇
(𝑡) ⋅ 𝐷

𝑇
< 0, (19)

if and only if for some V > 0

𝑆 + [V−1 ⋅ 𝐸𝑇 V ⋅ 𝐷] ⋅ [
𝑅 0

0 𝐼
] ⋅ [

V−1 ⋅ 𝐸

V ⋅ 𝐷𝑇
] < 0, (20)

where 𝐹(𝑡) satisfies 𝐹(𝑡)𝑇 ⋅ 𝐹(𝑡) ≤ 𝑅.

Proof of Theorem 1. Considering a Lyapunov function candi-
date composed of the Lyapunov function:

𝑉 (𝑡) = 𝑥
𝑇
(𝑡) ⋅ 𝑃 ⋅ 𝑥 (𝑡) , (21)

its time derivative, 𝑉, can be obtained as

𝑉 (𝑥 (𝑡)) = ̇𝑥
𝑇
⋅ 𝑃 ⋅ 𝑥 + 𝑥

𝑇
⋅ 𝑃 ⋅ ̇𝑥

= 𝑥
𝑇
⋅ {(𝐴 − 𝐵 ⋅ 𝐾

𝐻
)
𝑇

⋅ 𝑃 + 𝑃 ⋅ (𝐴 − 𝐵 ⋅ 𝐾
𝐻
)} ⋅ 𝑥

+ 𝑥
𝑇
⋅ {[𝐷 ⋅ 𝐹 (𝑡) ⋅ (𝐸

1
− 𝐸
2
⋅ 𝐾
𝐻
)]
𝑇

⋅ 𝑃

+ 𝑃 ⋅ 𝐷 ⋅ 𝐹 (𝑡) ⋅ (𝐸
1
− 𝐸
2
⋅ 𝐾
𝐻
) } ⋅ 𝑥

+ 𝑒
𝑇

mod ⋅ 𝑃 ⋅ 𝑥 + 𝑥
𝑇
⋅ 𝑃 ⋅ 𝑒 mod .

(22)

By Lemma 2, we have

𝑉 ≤ 𝑥
𝑇
⋅ {(𝐴 − 𝐵 ⋅ 𝐾

𝐻
)
𝑇

⋅ 𝑃 + 𝑃 ⋅ (𝐴 − 𝐵 ⋅ 𝐾
𝐻
) +

1

𝜌2
⋅ 𝑃
𝑇
⋅ 𝑃

+ [V−1 ⋅ (𝐸
1
− 𝐸
2
⋅ 𝐾
𝐻
)
𝑇

V ⋅ 𝑃 ⋅ 𝐷]

⋅ [
V−1 ⋅ (𝐸

1
− 𝐸
2
⋅ 𝐾
𝐻
)

V ⋅ 𝐷𝑇 ⋅ 𝑃
]} ⋅ 𝑥 + 𝜌

2
⋅ 𝑒
𝑇

mod ⋅ 𝑒 mod

= −𝑥
𝑇
⋅ 𝑄 ⋅ 𝑥 + 𝜌

2
⋅ 𝑒
𝑇

mod ⋅ 𝑒 mod ,

(23)

where

𝑄 ≡ − {(𝐴 − 𝐵 ⋅ 𝐾
𝐻
)
𝑇

⋅ 𝑃 + 𝑃 ⋅ (𝐴 − 𝐵 ⋅ 𝐾
𝐻
) +

1

𝜌2
⋅ 𝑃
𝑇
⋅ 𝑃

+ [V−1 ⋅ (𝐸
1
− 𝐸
2
⋅ 𝐾
𝐻
)
𝑇

V ⋅ 𝑃 ⋅ 𝐷]

⋅ [
V−1 ⋅ (𝐸

1
− 𝐸
2
⋅ 𝐾
𝐻
)

V ⋅ 𝐷𝑇 ⋅ 𝑃
]} .

(24)

According to (16) and (24), we have

𝑊
𝑇
⋅ 𝑄 ⋅ 𝑊 = − {(𝐴 ⋅ 𝑊 − 𝐵 ⋅ 𝑌)

𝑇
+ 𝐴 ⋅ 𝑊 − 𝐵 ⋅ 𝑌 +

1

𝜌2
⋅ 𝐼

+ [V−1 ⋅ (𝐸
1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌)
𝑇

V ⋅ 𝐷]

⋅ [
V−1 ⋅ (𝐸

1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌)

V ⋅ 𝐷𝑇
]} .

(25)

From (18) and (25), we have

𝜙 + V
−2
⋅ (𝐸
1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌)
𝑇

⋅ (𝐸
1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌) < 0. (26)

Equation (26) can be represented in the standard LMI form:

[
𝜙 (𝐸

1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌)
𝑇

(𝐸
1
⋅ 𝑊 − 𝐸

2
⋅ 𝑌) −V2 ⋅ 𝐼

] < 0. (27)

If (16) holds, then 𝑄 > 0. Equation (23) can be rewritten as

𝑉 ≤ − 𝑥
𝑇
⋅ 𝑄 ⋅ 𝑥 + 𝜌

2
⋅ 𝑒
𝑇

mod ⋅ 𝑒 mod ≤ −𝜆min (𝑄) ⋅ ‖𝑥‖
2

+ 𝜌
2
⋅
𝑒 mod



2

≤ −𝜆min (𝑄) ⋅ ‖𝑥‖
2
+ 𝜌
2
⋅ 𝑒
2

𝑈
,

(28)

where the property ‖𝑒 mod ‖ ≤ 𝑒𝑈 is applied.
Whenever ‖𝑥‖ > (𝜌 ⋅ 𝑒

𝑈
)/√𝜆min(𝑄), we have that 𝑉 < 0.

It is clear that if (16) is satisfied, then the system (11) is UUB
stable. This completes the proof.

3.2. Design of the Inner-Level Tracking Controller. Once the
outer-level stabilization controller, 𝑢

𝐻
= −𝐾

𝐻
⋅ 𝑥, has been

designed, we are able to put the system undergoing safe trials.
Taking tracking performance together with control effort into
consideration, the overall performance index, 𝐽, is defined as
a weighted sum of the indices

𝐽 =
1

𝑡
𝑓

⋅ ∫

𝑡𝑓

0

‖𝑢 (𝑡)‖ ⋅ 𝑑𝑡 +
𝜔
1

𝑡
𝑓

⋅ ∫

𝑡𝑓

0

‖𝑒 (𝑡)‖ ⋅ 𝑑𝑡, (29)

where 𝜔
1
is a weighting factor, which is defined according

to practical trade-offs between desired tracking performance
and physical constrains.

The inner-level controller, 𝑢
𝑆

= 𝐾
𝑆
⋅ 𝑒, is designed

by searching for the gain matrix 𝐾
𝑆
such that the overall

performance index, 𝐽, is minimized. We propose to use the
Nelder-Mead simplexmethod [34] to guide theminimization
procedure in this paper. The method deals with nonlin-
ear optimization problems without derivative information,
which normally requires fewer steps to find a solution close
to global optimum, when proper initial values are given,
in comparison with the more powerful DIRECT (DIviding
RECTangle) algorithm or evolutionary computation tech-
niques.

The Nelder-Mead simplex method uses the concept of
a simplex, which has 𝑁 + 1 vertices in 𝑁 dimensions for
an optimization problem with𝑁 design parameters. In each
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step of the algorithm, one of the four possible operations is
conducted: reflection, expansion, contraction, and shrink. As
the method is sensitive to initial guess, for an𝑁-dimensional
problem we may start the algorithm with 𝑁 + 1 simplexes
with (𝑁 + 1)

2 randomly generated parameter sets for the
vertices, and, after several steps, collect the 𝑁 + 1 best solu-
tions of the simplexes to form a simplex for final convergence.
With this strategy, we have more initial guesses to avoid
being trapped at local minimum. Details are presented in the
subsequent case study.

4. Case Study

In order to verify performance of the proposed control
scheme, case studies of simulations and experiments are
conducted. In the simulations, a comparison with the adap-
tive fuzzy control method (AFCM) of [40] is made. In
experimental studies, a two-dimensional prototype crane
system is used.

4.1. Simulation Study. The crane system under control is
composed of a motor-driven cart running along a horizontal
rail, a payload, and a string carrying the payload, which is
attached to a joint on the cart. We assume that the cart and
the load can move only in the vertical plane. In the following
study, the cart is of mass𝑀 = 6.78 kg, the payload is of mass
𝑚 = 1.5 kg, and the string is of length 𝑙 = 0.5m. Furthermore,
𝑥
1
is the cart position, 𝜃 is the swing angle, 𝑢 is the control

signal applied to the cart, and 𝑥
𝑟
= [1, 0, 0, 0]

𝑇 is the reference
input. The position of payload, 𝑦, can be calculated from the
relation:𝑦 = 𝑥

1
+𝑙⋅sin(𝜃). Besides, we assume that the viscous

friction coefficient between the cart and the rail is𝐷
1
, and the

wind resistance coefficient between the air and the string is
𝐷
2
.
Lagrange analysis of the simplified two-dimensional

crane system gives the dynamic equation

̈𝑥
1
= (𝑢 + 𝑚 ⋅ 𝑙 ⋅ ̇𝜃

2
⋅ sin (𝜃) + 𝑚 ⋅ 𝑔 ⋅ sin (𝜃) ⋅ cos (𝜃)

−𝐷
1
⋅ ̇𝑥
1
+ 𝐷
2
⋅ ̇𝜃 ⋅ cos (𝜃) ) (𝑀 + 𝑚 − 𝑚 ⋅ cos2 (𝜃))

−1

̈𝜃 = ((𝑚 ⋅ cos (𝜃) ⋅ 𝑢 + 𝑚2 ⋅ 𝑙 ⋅ ̇𝜃
2
⋅ sin (𝜃) ⋅ cos (𝜃)

+ (𝑀 + 𝑚) ⋅ 𝑚 ⋅ 𝑔 ⋅ sin (𝜃))

×(𝑚
2
⋅ 𝑙 ⋅ cos2 (𝜃) − 𝑚 ⋅ 𝑙 ⋅ (𝑀 + 𝑚))

−1

)

+ ( (−𝐷
1
⋅ ̇𝑥
1
⋅ 𝑚 ⋅ cos (𝜃) + 𝐷

2
⋅ 𝑙

⋅ [(𝑀 + 𝑚) − 𝑚 ⋅ cos2 (𝜃)] ⋅ ̇𝜃)

×(𝑚
2
⋅ 𝑙 ⋅ cos2 (𝜃) − 𝑚 ⋅ 𝑙 ⋅ (𝑀 + 𝑚))

−1

) + 𝑤
4
,

(30)

where𝑔 is the gravitational acceleration and𝑤
4
represents the

external disturbance.

(1) Controller Design of the Proposed Control Strategy. From
(3), the overall fuzzymodel of the overhead crane system (30)
is inferred to be

̇𝑥 = 𝐴𝑥 + Δ𝐴 (𝑡) 𝑥 + [𝐵 + Δ𝐵 (𝑡)] ⋅ [𝑢 +

2

∑

𝑖=1

ℎ
𝑖
(𝑧) ⋅ 𝑐
𝑖
] ,

(31)

where 𝑥 = [𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
]
𝑇
= [𝑥
1
, ̇𝑥
1
, 𝜃, ̇𝜃]

𝑇 is the state
vector. And the matrices are

𝐴 =

[
[
[
[
[
[

[

0 1 0 0

0 −
𝐷
1

𝑀

𝑚 ⋅ 𝑔

𝑀

𝐷
2

𝑀
0 0 0 1

0
𝐷
1

(𝑙 ⋅ 𝑀)

− (𝑀 + 𝑚) ⋅ 𝑔

𝑙 ⋅ 𝑀

(𝑀 + 𝑚) ⋅ 𝐷
2

𝑚2 ⋅ 𝑙 − 𝑚 ⋅ 𝑙 ⋅ (𝑀 + 𝑚)

]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[
[
[
[
[

[

0

1

𝑀

0

−
1

(𝑙 ⋅ 𝑀)

]
]
]
]
]
]
]
]
]
]
]

]

,

(32)

with 𝐷
1
= 588, 𝐷

2
= 0.01, 𝑔 = 9.81, 𝑧 = 𝑚 ⋅ 𝑙 ⋅ sin(𝑥

3
) ⋅ 𝑥
2

4
,

ℎ
1
= 0.5(1 + 𝑧), ℎ

2
= 0.5(1 − 𝑧), 𝑐

1
= 1, and 𝑐

2
= −1. And

[ Δ𝐴(𝑡) Δ𝐵(𝑡) ] = 𝐷 ⋅ 𝐹(𝑡) ⋅ [ 𝐸1 𝐸2 ], where 𝐹(𝑡) = sin(𝑡),
𝐷 = [0, −0.01, 0, 0.01]

𝑇, 𝐸
1
= [2, 0, 0, 0], and 𝐸

2
= 0.02.

By selecting V = 3 and 𝜌 = 18, we are able to obtain

𝑃 =
[
[
[

[

90.3667 18.8347 13.0680 9.0783

18.8347 14.5588 0.3778 7.1938

13.0680 0.3778 51.4426 0.6680

9.0783 7.1938 0.6680 3.5618

]
]
]

]

, (33)

and𝐾
𝐻
= [1250, 315.7, −1766.5, 129.5] using the standard

LMI techniques. The optimal servo control gains are found
to be 𝐾

𝑆
= [1140.47, 230.47, 69.97, 315.22] by the simplex

method.

(2) Controller Design of [40]. For comparison purpose, the
adaptive fuzzy controller of [40], abbreviated as AFCM,
is implemented. Design parameters of the AFCM include
membership functions of the antecedents in the fuzzy rules,
values of the consequent forces, and the fuzzy rule map.
Detailed values obtained by the procedures described in [40]
are shown in Figure 2.

In the fuzzy rules, each of the universe of discourse
of the variables is divided into 6 linguistic values as
{NB,NS,ZO,PS,PM,PB}, which represent Negative Big,
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Figure 2: Linguistic terms,membership functions, and rule table of the fuzzy control rules for AFCM. (a)Definition ofmembership functions
of position error; (b) definition of membership functions of swing angle; (c) consequent part membership function of control input 𝑢(𝑡); and
(d) fuzzy rule map.

Negative Small, Zero, Positive Small, and Positive Big, respec-
tively.

(3) Performance Comparison. In order to compare relative
performance of the two approaches, a significant disturbance
of 𝑤 = [0, 0, 0, 𝑤

4
]
𝑇 with

𝑤
4
=
{

{

{

𝜋

3
, 4.5 ≤ 𝑡 ≤ 6.5,

0, otherwise
(34)

is applied to the crane model.
From the time history of the payload position of these

two approaches, shown in Figure 3(a), it is clear that both can
successfully demonstrate stable tracking during 0 ≤ 𝑡 < 4.5.
However, while the proposed approach remains stable and
exhibits accurate tracking after 𝑡 ≥ 4.5, the controller of
AFCMcannot effectively compensate the applied disturbance
𝑤
4
, shown in Figure 3(b), and eventually goes unstable. Note

also that the control signal 𝑢(𝑡) generated by the proposed
controller is much smoother and less violent than that
of AFCM, further justifying it as a more efficient control
strategy.

4.2. Experimental Study. Aprototype crane system, shown in
Figure 4(a), is built to test the proposed control strategy. As
shown in the pictures of Figures 4(b) and 4(c), an encoder
with resolution of 2000 pulse/rev is installed in the hanging
joint to measure the swing angle 𝜃. To investigate robustness
of the control system, the string length can vary between 0.5
to 0.6m, and the payload weight has three choices: 0.531,
1.041, and 1.484 kg.

The system is firstly identified using the parallel genetic
algorithms [41] as T-S type fuzzy combination of the follow-
ing two rules.
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Figure 3: Comparative simulation for the proposed control strategy and the AFCM. (a) Position of payload, 𝑦(𝑡); (b) control input, 𝑢(𝑡), and
the external disturbance, 𝑤

4
(𝑡).

(a)

(b) (c)

Figure 4: Pictures of the experimental crane system. (a) A whole view of the system.The image was generated by overlapping five snapshots
taken during operation. (b) An upper view of the cart showing a servo motor to drive the cart and a bearing-supported shaft to hang the
payload. (c) Close view of an encoder, also shown in (b), which is attached to the shaft for swing angle measurement.

(i) Plant rule 1:

If 𝑥
2
is𝑀
11
,

then ̇𝑥 = 𝐴 ⋅ 𝑥 + Δ𝐴 (𝑡) ⋅ 𝑥 + [𝐵 + Δ𝐵 (𝑡)] ⋅ [𝑢 + 𝑐1] . (35)

(ii) Plant rule 2:

If 𝑥
2
is𝑀
21
,

then ̇𝑥 = 𝐴 ⋅ 𝑥 + Δ𝐴 (𝑡) ⋅ 𝑥 + [𝐵 + Δ𝐵 (𝑡)] ⋅ [𝑢 + 𝑐2] . (36)
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the fuzzy control law 𝑢
𝑓
.

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

−0.1 −0.08 −0.06 −0.04 −0.02

𝑥4

−6

−4

−2

−
𝑢
𝑓

Figure 6: The magnitude of −𝑢
𝑓
as a function of 𝑥

4
(cart velocity).

In the identification, a set of commands are designed to
perform various maneuvers satisfying persistent excitation
requirements for system identification. The identified two
antecedentmembership functions of these two rules,𝑀

11
and

𝑀
21
, are shown in Figure 5, with

𝐴 =
[
[
[

[

0 1 0 0

−23.9363 0 0 0

0 0 0 1

2.1681 0 0 0

]
]
]

]

,

𝐵 =
[
[
[

[

0

−0.295

0

0.1475

]
]
]

]

.

(37)

Furthermore,

𝐷 =
[
[
[

[

0

−0.1

0

0.01

]
]
]

]

, 𝐸
1
= [2 0 0 0] ,

𝐸
2
= 0.02 with 𝐹 (𝑡) ∈ [−1, 1] .

(38)

These are used to define Δ𝐴(𝑡) and Δ𝐵(𝑡) according to (9).
Interesting enough, if we draw the magnitude of∑𝐿

𝑖=1
ℎ
𝑖
(𝑧) ⋅ 𝑐
𝑖

versus 𝑥
4
, the velocity of the cart, we are able to obtain the

relationship of Figure 6, which shows the behavior similar to
a combination of Coulomb friction with Stribeck effects [42].

Next, by selecting V = 1 and𝜌 = 0.54, we are able to obtain

𝑃 =
[
[
[

[

1.7070 0.3014 −0.1362 −0.2631

0.3014 0.0869 −0.0188 −0.0444

−0.1362 −0.0188 0.0298 0.0269

−0.2631 −0.0444 0.0269 0.0658

]
]
]

]

, (39)

𝑐
1
= −7.772, 𝑐

2
= 4.0561, and𝐾

𝐻
= [26.23, 8.02, 23.44, 14.92]

by the standard LMI techniques.
Figure 7 shows the performance of the outer-level stabi-

lizing controller, 𝑢
𝐻
. In this figure, three cases were recorded

where impacts were applied to the payload at 1.72, 1.45,
and 0.38 sec, respectively. The string length and payload
weight, [length, weight], of these cases were [0.5, 0.531],
[0.55, 1.041], and [0.6, 1.484], respectively. According to these
experimental results, the stabilizing controller applied at
the outer level exhibits 𝐻

∞
robustness against significant

disturbances, in spite of variations in the plant dynamics.
Next, considering that string length and payload weight

dominate system dynamics, we implemented the servo con-
trol law, 𝑢

𝑆
= 𝐾
𝑆
⋅ 𝑒, as a fuzzy controller composed of four

fuzzy rules:

Servo control rule 𝑖𝑗

If string length is 𝐴
𝑖
and payload weight is 𝐵

𝑗
,

then 𝑢
𝑆
= 𝐾
𝑆𝑖𝑗
⋅ 𝑒. (40)

That is, both string length and payload weight are fuzzified
with two membership functions, 𝐴

1
, 𝐴
2
, 𝐵
1
, and 𝐵

2
, respec-

tively. The corresponding membership grades of these four
fuzzy sets are shown in Figure 8.

Furthermore, by assigning 𝜔
1
= 10 in the definition of

the overall performance index 𝐽, defined in (29), the Nelder-
Mead simplex method was applied to search for the best
gains 𝐾

𝑆𝑖𝑗
in the four rules. The learning history of gains is

depicted in Figure 9. Note that only the gains corresponding
to [length, weight] = [0.5, 0.531] underwent 116 steps; all the
other gains were initiated with the gains of fuzzy rule 1, hence
less than 30 steps were required. According to considerations
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Figure 7: Performance of 𝑢
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and procedures detailed in Remark 3, the gains are found to
be of the following values:

𝐾
𝑆11

= [56, 44, 34, 23] for [length,weight] = [0.5, 0.531] ,

𝐾
𝑆21

= [62, 40, 53, 39] for [length,weight] = [0.6, 0.531] ,

𝐾
𝑆12

= [53, 48, 42, 24] for [length,weight] = [0.5, 1.484] ,

𝐾
𝑆22

= [56, 41, 46, 38] for [length,weight] = [0.6, 1.484] .
(41)

Remark 3. Four fuzzy rules defined in (40), each of them
contains a set of optimized control gains, are designed to
compensate for the uncertainties in the weight of payload and
string length. As shown in the learning history of Figure 10,
the gains of rule 1 took 50 iterations and those of the rest of
the rules took only 12 iterations.That is, only the first gain set
requires complete search. This is because the performance of
the Nelder-Mead simplex algorithm is sensitive to initial trial
values, and the optimal control gains are close to each other.
If the search for the other sets begin with the optimized first
set, less iteration is required. Also, an iteration of Figure 10
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Figure 9: The learning history of gains guided by the simplex method showing convergence of the gain parameters. In each of the 3
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Figure 10: The simplex convergence history of the overall perfor-
mance index, 𝐽, in the four rules.

corresponds to 1 to 3 steps in Figure 9, since only improved
step is regarded as an effective iteration.

In the experiments of automatic repetitive trials to find
the optimal gains, reference state trajectories were designed

such that the payload moves smoothly forward without
swinging back. In fulfilling the requirement, the reference
trajectories should be a function of the nature frequency
that, in turn, depends on both the string length and the load
weight. Specifically, for the payload position 𝑦 = 𝑥

1
+ 𝑙 ⋅ sin 𝜃

to move in this way, the trajectory of 𝜃 should contain integer
multiple of a full nature-frequency cycle.

Finally, experiments were conducted to justify the control
performance. Three experiments were designed: Case 1:
[length, weight, distance] = [0.6, 1.484, 1.0], Case 2: [length,
weight, distance] = [0.6, 1.041, 0.8], and Case 3: [length,
weight, distance] = [0.5, 0.531, 0.6]. The gains of Case 2
are interpolated from four fuzzy rules to be: 𝐾

𝑆
= [58.7891,

40.5352, 49.2539, 38.4648]. The performance of the crane
control system is demonstrated in Figure 11. According to the
experimental results, the proposed control strategy can guide
the payload smoothly forward without swinging back in a
reasonable period of time.

5. Conclusions

By the antiswing control approach, a two-level control
scheme is proposed for crane systems. The plant is modeled
as a combination of a nominal linear system and a T-S
fuzzy blending of affine terms. This type of dynamic model
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Figure 11: Experimental results of the crane control system. Case 1: [length, weight, distance] = [0.6, 1.484, 1.0], Case 2: [length, weight,
distance] = [0.6, 1.041, 0.8], Case 3: [length, weight, distance] = [0.5, 0.531, 0.6].

significantly simplifies the subsequent analysis and control
designs, because assumptions on the plant dynamics can be
significantly reduced. The proposed control scheme can also
be applied to other nonlinear plants, such as ships, mobile
robots, and aircrafts, but is not applicable for systems with
considerable time delay, which is the issue to be addressed in
our future investigation.

In the scheme, the outer-level control law serves as
an 𝐻
∞

robust controller, which is responsible for closed-
loop stability in the face of disturbances and plant dynamic
variations. Optimal gains of the inner-loop servo control
law are obtained using the Nelder-Mead simplex algorithm
in a learning control manner. Close observation of the
obtained fuzzy model reveals that the fuzzy compensator
mainly counteracts the effects of friction. The dynamics of
Coulomb friction, viscous friction, and Stribeck effects are
distinguishable as functions of relative velocity.

A simulation study shows superior performance of the
proposed control strategy in compensating significant distur-
bances. Experimental results of a prototype two-dimensional
crane control system also demonstrate smooth manipulation
of the payload with𝐻

∞
robust stability. The control strategy

can be extended to full dimensional crane systems and is
within our plans of future research.
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This paper discusses the stability and stabilization problem for uncertain T-S fuzzy systemswith time-varying state and input delays.
A new augmented Lyapunov function with an additional triple-integral term and different membership functions of the fuzzy
models and fuzzy controllers are introduced to derive the stability criterion, which is less conservative than the existing results.
Moreover, a new flexibility design method is also provided. Some numerical examples are given to demonstrate the effectiveness
and less conservativeness of the proposed method.

1. Introduction

Since the Takagi-Sugeno (T-S) [1] fuzzy systems were firstly
proposed in 1985, their stability analysis has received con-
siderable research attention [2, 3]. However, most of the
existing results are only for the T-S fuzzy systems free of
time delay. Actually, time delay often occurs inmany practical
systems, such as [4, 5]. It has been shown that the existence
of time delay usually becomes the source of instability and
deteriorated performance of systems. Therefore, study of the
time delay is important in both theory and practice [6]. The
first stability analysis work on the T-S fuzzy systemswith time
delay is done in [7, 8] by using the Lyapunov-Razumikhin
functional approach. If some uncertainties exist in a T-S
fuzzy time delay system, they may also significantly affect
the system performances and even cause unstable system
outputs. Therefore, the issue of the stability for the uncertain
T-S fuzzy time delay systems has been widely explored [9–11].
In the literature, two basic approaches have been utilized, that
is, delay-independent approach [12] and delay-dependent
approach. The latter makes use of the information on the
length of the delays, and it is less conservative than the former
one.A lot of stability analysis results have been reported based
on the delay-dependent approach [13, 14].

During the recent years, some research work for different
types of the delays of the T-S fuzzy systems has been
published, such as constant delay [15, 16], bounded time
delay [17], time varying delay [18], and interval time varying
delay [19, 20]. However, all these results are only for the T-
S fuzzy systems with state delays. Thus, they may be invalid
when applied to the systems with input delays. As we know,
input delays extensively exist in industrial processes and
can cause instability or serious performance deterioration.
In fact, in modern industrial systems, sensors, controllers,
and plants are often connected together, and the sampled
data and controller signals are transmitted through networks.
In view of this, the input delays should be taken into
consideration for robust controller design. Intensive results
on the stabilization for the T-S fuzzy systems with state and
input delays are reported in [21–28]. For example, the work
in [21] is based on the linear systems with input delays. In
[22, 24], the authors only consider the fuzzy systems with
constant input delays, and their results are conservative. In
[23], the authors study the fuzzy systems with both the state
and input delays. Unfortunately, the results are obtained
without any uncertainty, and the state delay is assumed to
be equal to the input delay. In [26], the uncertainty has been
considered in the analysis, but the state delay is also assumed



2 Mathematical Problems in Engineering

to be the same as the input delay. Some interesting results for
the uncertain fuzzy systems with state and input delays have
been obtained in [25, 27, 28], most of which introduce some
Lyapunov-Krasovskii functions containing integral terms,
for example, ∫𝑡

𝑡−𝜏
𝑥
𝑇
(𝑠)𝑄𝑥(𝑠)𝑑𝑠, and double-integral terms,

∫
0

−𝜏
∫
𝑡

𝑡+𝜃
̇𝑥
𝑇
(𝑠)𝑄 ̇𝑥(𝑠)𝑑𝑠 𝑑𝜃. Several triple-integral terms are

used in the Lyapunov function [29] to yield less conservative
results for the fuzzy systems with state delay. A large portion
of robust controller design topics have been investigated on
the basis of the Parallel Distribution Compensation (PDC)
design technique, where the fuzzy controller shares the same
premise membership functions as those of the T-S fuzzy time
delay model [7–11, 15–20, 22–28]. As a matter of fact, if the
membership functions in the premise of the fuzzy rules of
the fuzzy controllers are allowed to be designed arbitrarily, we
can even achieve better design flexibility. For instance, a fuzzy
controller not sharing the same premise rules as those of the
T-S fuzzy model referred to as imperfect premise matching
is employed to control the nonlinear plants [30, 31], and
[12] extends the available results to the T-S fuzzy time-delay
systems with only the state delay.

In this paper, an augmented Lyapunov-Krasovskii func-
tion that contains a triple-integral term is introduced to inves-
tigate the stability and stabilization problem for uncertain T-
S fuzzy systems with the state and input delays under the
imperfect premise matching, in which the fuzzy time delay
model and fuzzy controller are with different premise. Some
less conservative delay-dependent stability and robust stabil-
ity conditions are obtained by two integral inequalities and
a parameterized model transformation method. Moreover,
different from the general PDC design technique, a new
design approach of robust stable controllers is proposed. Two
simulation examples are further given to illustrate that the
proposed design methods are less conservative and more
flexible.

2. System Description and Preliminaries

Let 𝑟 be the number of the fuzzy rules describing the time
delay nonlinear plant. The 𝑖th rule can be represented as
follows.

If 𝑓
1
(𝑥(𝑡)) is𝑀𝑖

1
and . . . and 𝑓

𝑝
(𝑥(𝑡)) is𝑀𝑖

𝑝

̇𝑥 (𝑡) = (𝐴
1𝑖
+ Δ𝐴
1𝑖
(𝑡)) 𝑥 (𝑡) + (𝐴

2𝑖
+ Δ𝐴
2𝑖
(𝑡))

× 𝑥 (𝑡 − 𝑑
1
(𝑡)) + (𝐵

𝑖
+ Δ𝐵
𝑖
(𝑡)) 𝑢 (𝑡 − 𝑑

2
(𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−max (ℎ
1
, ℎ
2
) , 0] ,

(1)

where 𝑀𝑖
𝛼
is a fuzzy term of rule 𝑖 corresponding to the

function𝑓
𝛼
(𝑥(𝑡)), 𝛼 = 1, 2, . . . , 𝑝; 𝑖 = 1, 2, . . . , 𝑟. 𝑥(𝑡) ∈ 𝑅𝑛 is

the system state vector, and 𝑢(𝑡) ∈ 𝑅𝑚 is the input vector.The
matrices 𝐴

1𝑖
, 𝐴
2𝑖
, and 𝐵

𝑖
, 𝑖 = 1, 2, . . . , 𝑟, are of appropriate

dimensions.The initial condition 𝜑(𝑡) is a continuous vector-
valued function. The delays 𝑑

1
(𝑡) and 𝑑

2
(𝑡) are time varying,

and satisfy

0 ≤ 𝑑
1
(𝑡) ≤ ℎ

1
, ̇𝑑

1
(𝑡) ≤ 𝜇

1
,

0 ≤ 𝑑
2
(𝑡) ≤ ℎ

2
, ̇𝑑

2
(𝑡) ≤ 𝜇

2
,

(2)

where ℎ
𝑖
are constants representing the upper bound of the

delay. 𝜇 is a positive constant. Δ𝐴
1𝑖
, Δ𝐴
2𝑖
, and Δ𝐵

𝑖
denote

the uncertainties in the system, and they are the form of

[Δ𝐴
1𝑖

Δ𝐴
2𝑖

Δ𝐵
𝑖
] = 𝐷

𝑖
𝐾
𝑖
(𝑡) [𝐸
1𝑖

𝐸
2𝑖

𝐸
𝑏𝑖
] ,

𝑖 = 1, 2, . . . , 𝑟,

(3)

where 𝐷
𝑖
, 𝐸
1𝑖
, 𝐸
2𝑖
, and 𝐸

𝑏𝑖
are known constant matrices

of appropriate dimensions, and 𝐾
𝑖
(𝑡) is unknown matrix

function satisfying 𝐾
𝑖

𝑇
(𝑡)𝐾
𝑖
(𝑡) ≤ 𝐼. 𝐼 is an appropriately

dimensioned identity matrix. Hence, the overall fuzzy model
can be formulized as follows:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑤
𝑖
(𝑥 (𝑡)) [(𝐴

1𝑖
+ Δ𝐴
1𝑖
(𝑡)) 𝑥 (𝑡) + (𝐴

2𝑖
+ Δ𝐴
2𝑖
(𝑡))

× 𝑥 (𝑡 − 𝑑
1
(𝑡)) + (𝐵

𝑖
+ Δ𝐵
𝑖
(𝑡))

×𝑢 (𝑡 − 𝑑
2
(𝑡))] ,

(4)

where
𝑟

∑

𝑖=1

𝑤
𝑖
(𝑥 (𝑡)) = 1, 𝑤

𝑖
(𝑥 (𝑡)) ≥ 0,

𝑤
𝑖
(𝑥 (𝑡)) =

𝜇
𝑖
(𝑥 (𝑡))

∑
𝑟

𝑖=1
𝜇
𝑖
(𝑥 (𝑡))

,

𝜇
𝑖
(𝑥 (𝑡)) =

𝑝

∏

𝛼=1

𝜇
𝑀
𝑖
𝛼
(𝑓
𝛼
(𝑥 (𝑡))) .

(5)

𝑤
𝑖
(𝑥(𝑡)) is the normalized grade ofmembership function that

is a nonlinear function of 𝑥(𝑡). 𝜇
𝑀
𝑖
𝛼
(𝑓
𝛼
(𝑥(𝑡))) is the grade of

the membership corresponding to the fuzzy term of𝑀𝑖
𝛼
.

Different from the popular PDC design technique, the
following fuzzy control law under imperfect premise match-
ing is employed to deal with the problem of stabilization via
state feedback. Under the imperfect premise matching, the
𝑗th rule of the fuzzy controller is defined as follows.

If 𝑔
1
(𝑥(𝑡)) is𝑁𝑖

1
and . . . and 𝑔

𝑞
(𝑥(𝑡)) is𝑁𝑖

𝑞

𝑢 (𝑡) = 𝐹
𝑗
𝑥 (𝑡) , 𝑗 = 1, 2, . . . , 𝑟, (6)

where 𝑁𝑗
𝛽
denotes the fuzzy set. 𝑞 is a positive integer, and

𝐹
𝑗
∈ 𝑅
𝑚×𝑛 is the feedback gain of rule 𝑗. The state feedback

fuzzy control law is represented by

𝑢 (𝑡) =

𝑟

∑

𝑗=1

𝑚
𝑗
(𝑥 (𝑡)) 𝐹

𝑗
𝑥 (𝑡) , (7)
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where
𝑟

∑

𝑗=1

𝑚
𝑗
(𝑥 (𝑡)) = 1, 𝑚

𝑗
(𝑥 (𝑡)) ≥ 0,

𝑚
𝑗
(𝑥 (𝑡)) =

V
𝑗
(𝑥 (𝑡))

∑
𝑟

𝑗=1
V
𝑗
(𝑥 (𝑡))

,

V
𝑗
(𝑥 (𝑡)) =

𝑞

∏

𝛽=1

V
𝑁
𝑗

𝛽

(𝑔
𝛽
(𝑥 (𝑡))) .

(8)

𝑚
𝑗
(𝑥(𝑡)) is the normalized grade of membership function

that is a nonlinear function of 𝑥(𝑡). V
𝑁
𝑗

𝛽

(𝑔
𝛽
(𝑥(𝑡))) is the grade

of the membership corresponding to the fuzzy term of𝑁𝑗
𝛽
.

As the time varying delay is included in the control input,
we have

𝑢 (𝑡 − 𝑑
2
(𝑡)) =

𝑟

∑

𝑗=1

𝑚
𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡))) 𝐹

𝑗
𝑥 (𝑡 − 𝑑

2
(𝑡)) , (9)

where
𝑟

∑

𝑗=1

𝑚
𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡))) = 1, 𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡))) ≥ 0. (10)

Lemma 1 (see [32] (Schur complement)). Given constant
matrices Ω

1
, Ω
2
, and Ω

3
, where Ω

1
= Ω
𝑇

1
and Ω

2
= Ω
𝑇

2
, there

is Ω
1
+ Ω
𝑇

3
Ω
−1

2
Ω
3
< 0, if and only if

[
Ω
1
Ω
𝑇

3

∗ −Ω
2

] < 0 or [
−Ω
2

Ω
3

∗ −Ω
1

] < 0. (11)

Lemma 2 (see [33]). Let Q = Q𝑇, D, E, and K(𝑡) satisfies
K𝑇(𝑡)K(𝑡) ≤ I; the following inequality holds

𝑄 + 𝐷𝐾 (𝑡) 𝐸 + 𝐸
𝑇
𝐾
𝑇
(𝑡) 𝐷
𝑇
< 0, (12)

if and only if the following inequality holds for any smaller 𝜀 >
0:

𝑄 + 𝜀
−1
𝐷𝐷
𝑇
+ 𝜀𝐸
𝑇
𝐸 < 0. (13)

Lemma 3 (see [34]). For any constant matrix Σ = Σ
𝑇
> 0

and a scalar 𝜏 > 0 such that the following integrations are well
defined, we have

− ∫

𝑡

𝑡−𝜏

𝑥
𝑇
(𝑠) Σ𝑥 (𝑠) 𝑑𝑠

≤ −
1

𝜏
(∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠)

𝑇

Σ(∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠) ,

− ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑥
𝑇
(𝑠) Σ𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −
1

𝜏2
(∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

Σ(∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃) .

(14)

3. Main Results

In this section, some new delay-dependent criteria for the
T-S fuzzy systems with state and input delays are proposed
by introducing a novel Lyapunov function with an additional
triple-integral term under the imperfect premise matching.
Moreover, a robust stabilization criterion is also investigated.

3.1. Stability of Nominal Fuzzy Systems. Firstly, we consider
the control design of a state feedback control law under
the imperfect premise matching that stabilizes the following
nominal fuzzy time varying delay system:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))

× [𝐴
1𝑖
𝑥 (𝑡) + 𝐴

2𝑖
𝑥 (𝑡 − 𝑑

1
(𝑡)) + 𝐵

𝑖
𝐹
𝑗
𝑥

× (𝑡 − 𝑑
2
(𝑡))] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−max (ℎ
1
, ℎ
2
) , 0] .

(15)

Theorem 4. Given scalars ℎ
1

≥ 0, ℎ
2

≥ 0, 𝜇
1
, 𝜇
2
, and

𝑡
𝑖
(𝑖 = 2, . . . , 8), the closed-loop system (15) is asymptotically

stable for any 0 ≤ 𝑑
𝑖
(𝑡) ≤ ℎ

𝑖
(𝑖 = 1, 2) via the

imperfect premise matching controller design technique, if the
membership functions of the fuzzy model and fuzzy controller
satisfy 𝑚

𝑗
(𝑥(𝑡 − 𝑑

2
(𝑡))) − 𝜌

𝑗
𝑤
𝑗
(𝑥(𝑡)) ≥ 0 for all 𝑗, 𝑥(𝑡) and

𝑥(𝑡 − 𝑑
2
(𝑡)), where 0 < 𝜌

𝑗
< 1, and there exist matrices

𝑃
11

> 0, 𝑃
22

> 0, 𝑊
11

> 0, 𝑊
22

> 0, 𝑍
11

> 0, 𝑍
22

>

0, 𝑁
11
> 0, 𝑁

22
> 0, 𝑄

𝑖
> 0, 𝑀

𝑖
> 0, 𝑅

𝑖
> 0 (𝑖 = 1, 2),

Λ
𝑖
= Λ
𝑇

𝑖
∈ 𝑅
8𝑛×8𝑛

> 0 (i = 1, 2, . . . , 𝑟), and

𝑃 = [
𝑃
11

𝑃
12

∗ 𝑃
22

] > 0, 𝑊 = [
𝑊
11

𝑊
12

∗ 𝑊
22

] > 0,

𝑍 = [
𝑍
11

𝑍
12

∗ 𝑍
22

] > 0, 𝑁 = [
𝑁
11

𝑁
12

∗ 𝑁
22

] > 0,

(16)

and real matrices 𝑌
𝑗
(𝑗 = 1, 2, . . . , 𝑟), 𝑃

12
𝑊
12
𝑍
12
𝑁
12
, and

𝑋 such that (30)–(32) hold. In addition, the stabilizing control
law is given by

𝑢 (𝑡) =

𝑟

∑

𝑗=1

𝑚
𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡))) 𝑌

𝑗
𝑋
−𝑇
𝑥 (𝑡) . (17)

Proof. Choose a fuzzy weighting-dependent Lyapunov-
Krasovskii functional candidate as

𝑉 (𝑥 (𝑡)) = 𝑉
1
(𝑥 (𝑡)) + 𝑉

2
(𝑥 (𝑡)) + 𝑉

3
(𝑥 (𝑡)) + 𝑉

4
(𝑥 (𝑡))

+ 𝑉
5
(𝑥 (𝑡)) ,
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𝑉
1
(𝑥 (𝑡)) = 𝜉

𝑇

1
(𝑡) 𝑃𝜉

1
(𝑡) + 𝜉

𝑇

2
(𝑡)𝑊𝜉

2
(𝑡) ,

𝑉
2
(𝑥 (𝑡)) = ∫

0

−ℎ1

∫

𝑡

𝑡+𝜃

𝜉
𝑇
(𝑠) 𝑍𝜉 (𝑠) 𝑑 𝑠𝑑𝜃

+ ∫

0

−ℎ2

∫

𝑡

𝑡+𝜃

𝜉
𝑇
(𝑠)𝑁𝜉 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
3
(𝑥 (𝑡)) = ∫

𝑡

𝑡−𝑑1(𝑡)

𝑥
𝑇
(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑2(𝑡)

𝑥
𝑇
(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑥 (𝑡)) = ∫

𝑡

𝑡−ℎ1

𝑥
𝑇
(𝑠)𝑀
1
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−ℎ2

𝑥
𝑇
(𝑠)𝑀
2
𝑥 (𝑠) 𝑑𝑠,

𝑉
5
(𝑥 (𝑡)) = ∫

0

−ℎ1

∫

0

𝜃

∫

𝑡

𝑡+𝜆

̇𝑥
𝑇
(𝑠) 𝑅
1
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃

+ ∫

0

−ℎ2

∫

0

𝜃

∫

𝑡

𝑡+𝜆

̇𝑥
𝑇
(𝑠) 𝑅
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃,

(18)

where

𝜉
𝑇

1
(𝑡) = [𝑥

𝑇
(𝑡) (∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

] ,

𝜉
𝑇

2
(𝑡) = [𝑥

𝑇
(𝑡) (∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

] ,

𝜉
𝑇
(𝑡) = [𝑥

𝑇
(𝑡) ̇𝑥

𝑇
(𝑡)] ,

𝑃 = [
𝑃
11

𝑃
12

∗ 𝑃
22

] > 0, 𝑊 = [
𝑊
11

𝑊
12

∗ 𝑊
22

] > 0,

𝑍 = [
𝑍
11

𝑍
12

∗ 𝑍
22

] > 0, 𝑁 = [
𝑁
11

𝑁
12

∗ 𝑁
22

] > 0,

(19)

and 𝑄
𝑖
, 𝑀
𝑖
, and 𝑅

𝑖
(𝑖 = 1, 2) are the positive-definite

matrices to be determined.
The derivatives of𝑉(𝑥(𝑡)) along the trajectories of system

(15) are as follows:

𝑉
1
(𝑥 (𝑡)) = 2𝜉

𝑇

1
(𝑡) 𝑃 ̇𝜉
1
(𝑡) + 2𝜉

𝑇

2
(𝑡)𝑊 ̇𝜉

2
(𝑡)

= 2 [𝑥
𝑇
(𝑡) (∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

] [
𝑃
11

𝑃
12

∗ 𝑃
22

]

× [
̇𝑥 (𝑡)

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
1
)
]

+ 2 [𝑥
𝑇
(𝑡) (∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

] [
𝑊
11

𝑊
12

∗ 𝑊
22

]

× [
̇𝑥 (𝑡)

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
2
)
] ,

𝑉
2
(𝑥 (𝑡)) = ℎ

1
[𝑥
𝑇
(𝑡) ̇𝑥
𝑇
(𝑡)] [

𝑍
11

𝑍
12

∗ 𝑍
22

] [
𝑥 (𝑡)

̇𝑥 (𝑡)
]

−∫

𝑡

𝑡−ℎ1

[𝑥
𝑇
(𝑠) ̇𝑥
𝑇
(𝑠)] [

𝑍
11

𝑍
12

∗ 𝑍
22

] [
𝑥 (𝑠)

̇𝑥 (𝑠)
] 𝑑𝑠

+ ℎ
2
[𝑥
𝑇
(𝑡) ̇𝑥
𝑇
(𝑡)] [

𝑁
11

𝑁
12

∗ 𝑁
22

] [
𝑥 (𝑡)

̇𝑥 (𝑡)
]

−∫

𝑡

𝑡−ℎ2

[𝑥
𝑇
(𝑠) ̇𝑥
𝑇
(𝑠)] [

𝑁
11

𝑁
12

∗ 𝑁
22

] [
𝑥 (𝑠)

̇𝑥 (𝑠)
] 𝑑𝑠,

𝑉
3
(𝑥 (𝑡)) = 𝑥

𝑇
(𝑡) 𝑄
1
𝑥 (𝑡) − (1 − ̇𝑑

1
(𝑡)) 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡))

× 𝑄
1
𝑥 (𝑡 − 𝑑

1
(𝑡)) + 𝑥

𝑇
(𝑡) 𝑄
2
𝑥 (𝑡)

− (1 − ̇𝑑
2
(𝑡)) 𝑥
𝑇
(𝑡 − 𝑑

2
(𝑡)) 𝑄

2
𝑥 (𝑡 − 𝑑

2
(𝑡))

≤ 𝑥
𝑇
(𝑡) 𝑄
1
𝑥 (𝑡) + 𝑥

𝑇
(𝑡) 𝑄
2
𝑥 (𝑡) − (1 − 𝜇

1
)

× 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡)) 𝑄

1
𝑥 (𝑡 − 𝑑

1
(𝑡)) − (1 − 𝜇

2
)

× 𝑥
𝑇
(𝑡 − 𝑑

2
(𝑡)) 𝑄

2
𝑥 (𝑡 − 𝑑

2
(𝑡)) ,

𝑉
4
(𝑥 (𝑡)) = 𝑥

𝑇
(𝑡)𝑀
1
𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − ℎ

1
)𝑀
1
𝑥 (𝑡 − ℎ

1
)

+ 𝑥
𝑇
(𝑡)𝑀
2
𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − ℎ

2
)𝑀
2
𝑥 (𝑡 − ℎ

2
) ,

𝑉
5
(𝑥 (𝑡)) =

1

2
ℎ
2

1
̇𝑥
𝑇
(𝑡) 𝑅
1
̇𝑥 (𝑡) − ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇
(𝑠)

× 𝑅
1
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃 +

1

2
ℎ
2

2
̇𝑥
𝑇
(𝑡) 𝑅
2
̇𝑥 (𝑡)

− ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇
(𝑠) 𝑅
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.

(20)

From (15), the following equation can be obtained for any
matrices 𝑇

𝑖
, 𝑖 = 1, 2, . . . , 8,

2

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))

× [𝑥
𝑇
(𝑡) 𝑇
1
+ 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡)) 𝑇
2
+𝑥𝑇 (𝑡 − ℎ

1
) 𝑇
3

+ (∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑇
4
+ 𝑥
𝑇
(𝑡 − 𝑑

2
(𝑡)) 𝑇
5
+ 𝑥
𝑇

× (𝑡 − ℎ
2
) 𝑇
6
+ (∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑇
7
+ ̇𝑥
𝑇
(𝑡) 𝑇
8
]

× [𝐴
1𝑖
𝑥 (𝑡) − 𝐴

2𝑖
𝑥 (𝑡 − 𝑑

1
(𝑡))

−𝐵
𝑖
𝐹
𝑗
𝑥 (𝑡 − 𝑑

2
(𝑡)) − ̇𝑥 (𝑡)] = 0.

(21)



Mathematical Problems in Engineering 5

By Lemma 3, we have

− ∫

𝑡

𝑡−ℎ1

[𝑥
𝑡
(𝑠) ̇𝑥
𝑇
(𝑠)] [

𝑍
11

𝑍
12

∗ 𝑍
22

] [
𝑥 (𝑠)

̇𝑥 (𝑠)
] 𝑑𝑠

≤ −
1

ℎ
1

[(∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑥
𝑇
(𝑡) − 𝑥

𝑇
(𝑡 − ℎ

1
)]

× [
𝑍
11

𝑍
12

∗ 𝑍
22

][

[

∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
1
)

]

]

,

− ∫

𝑡

𝑡−ℎ2

[𝑥
𝑇
(𝑠) ̇𝑥
𝑇
(𝑠)] [

𝑁
11

𝑁
12

∗ 𝑁
22

] [
𝑥 (𝑠)

̇𝑥 (𝑠)
] 𝑑𝑠

≤ −
1

ℎ
2

[(∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑥
𝑇
(𝑡) − 𝑥

𝑇
(𝑡 − ℎ

1
)]

× [
𝑁
11

𝑁
12

∗ 𝑁
22

][

[

∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
2
)

]

]

,

− ∫

0

−ℎ𝑖

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇
(𝑠) 𝑅
𝑖
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −
2

ℎ
𝑖

2
(∫

0

−ℎ𝑖

∫

𝑡

𝑡+𝜃

̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

𝑅
𝑖
(∫

0

−ℎ𝑖

∫

𝑡

𝑡+𝜃

̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)

= −
2

ℎ
𝑖

2
(ℎ
𝑖
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ𝑖

𝑥 (𝑠) 𝑑𝑠)

𝑇

× 𝑅
𝑖
(ℎ
𝑖
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ𝑖

𝑥 (𝑠) 𝑑𝑠) 𝑖 = 1, 2.

(22)

Using the above inequalities, andwith the zero quantities (21),
we can obtain

𝑉 (𝑥
𝑡
)

≤ 2 [𝑥
𝑇
(𝑡) (∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

] [
𝑃
11

𝑃
12

∗ 𝑃
22

]

× [
̇𝑥 (𝑡)

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
1
)
] + ℎ
1
[𝑥
𝑇
(𝑡) ̇𝑥
𝑇
(𝑡)]

× [
𝑍
11

𝑍
12

∗ 𝑍
22

] [
𝑥 (𝑡)

̇𝑥 (𝑡)
] + ℎ
2
[𝑥
𝑇
(𝑡) ̇𝑥
𝑇
(𝑡)] [

𝑁
11

𝑁
12

∗ 𝑁
22

]

× [
𝑥 (𝑡)

̇𝑥 (𝑡)
] −

1

ℎ
1

[(∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑥
𝑇
(𝑡) − 𝑥

𝑇
(𝑡 − ℎ

1
)]

× [
𝑍
11

𝑍
12

∗ 𝑍
22

][

[

∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
1
)

]

]

−
1

ℎ
2

[(∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑥
𝑇
(𝑡) − 𝑥

𝑇
(𝑡 − ℎ

2
)]

× [
𝑁
11

𝑁
12

∗ 𝑁
22

][

[

∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
2
)

]

]

+ 𝑥
𝑇
(𝑡) 𝑄
1
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
2
𝑥 (𝑡) − (1 − 𝜇

1
) 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡)) 𝑄

1
𝑥

× (𝑡 − 𝑑
1
(𝑡)) − (1 − 𝜇

2
) 𝑥
𝑇
(𝑡 − 𝑑

2
(𝑡)) 𝑄

2
𝑥

× (𝑡 − 𝑑
2
(𝑡)) + 𝑥

𝑇
(𝑡)𝑀
1
𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − ℎ

1
)𝑀
1
𝑥

× (𝑡 − ℎ
1
) + 𝑥
𝑇
(𝑡)𝑀
2
𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − ℎ

2
)𝑀
2
𝑥

× (𝑡 − ℎ
2
) +

1

2
ℎ
2

1
̇𝑥
𝑇
(𝑡) 𝑅
1
̇𝑥 (𝑡) −

2

ℎ
1

2

×(ℎ
1
𝑥 (𝑡)−∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑅
1
(ℎ
1
𝑥 (𝑡)−∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

+
1

2
ℎ
2

2
̇𝑥
𝑇
(𝑡) 𝑅
2
̇𝑥 (𝑡)−

2

ℎ
2

2

(ℎ
2
𝑥 (𝑡)−∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

×𝑅
2
(ℎ
2
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

+ 2 [𝑥
𝑇
(𝑡) (∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

]

× [
𝑊
11

𝑊
12

∗ 𝑊
22

] [
̇𝑥 (𝑡)

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
2
)
]

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))

× [𝑥
𝑇
(𝑡) 𝑇
1
+ 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡)) 𝑇
2
+ 𝑥𝑇 (𝑡 − ℎ

1
) 𝑇
3

+ (∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑇
4
+ 𝑥
𝑇
(𝑡 − 𝑑

2
(𝑡)) 𝑇
5
+ 𝑥
𝑇

× (𝑡 − ℎ
2
) 𝑇
6
+(∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑇
7
+ ̇𝑥
𝑇
(𝑡) 𝑇
8
]

× [𝐴
1𝑖
𝑥 (𝑡) − 𝐴

2𝑖
𝑥 (𝑡 − 𝑑

1
(𝑡))

−𝐵
𝑖
𝐹
𝑗
𝑥 (𝑡 − 𝑑

2
(𝑡)) − ̇𝑥 (𝑡)]

= 𝜁
𝑇
(𝑡)(

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))Φ

𝑖𝑗
)𝜁 (𝑡) ,

(23)
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where

𝜁
𝑇
(𝑡) = [𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡 − 𝑑

1
(𝑡)) 𝑥

𝑇
(𝑡 − ℎ

1
) (∫

𝑡

𝑡−ℎ1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑥
𝑇
(𝑡 − 𝑑

2
(𝑡)) 𝑥

𝑇
(𝑡 − ℎ

2
) (∫

𝑡

𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠)

𝑇

̇𝑥
𝑇
(𝑡)] . (24)

Φ
𝑖𝑗
=

[
[
[
[
[
[

[

Φ11𝑖 Φ12𝑖 Φ13 Φ14 Φ15𝑖𝑗 Φ16 Φ17 Φ18

∗ Φ22𝑖 𝐴
𝑇
2𝑖𝑇
𝑇
3 𝐴
𝑇
2𝑖𝑇
𝑇
4 Φ25𝑖𝑗 𝐴

𝑇
2𝑖𝑇
𝑇
6 𝐴

𝑇
2𝑖𝑇
𝑇
7 Φ28𝑖

∗ ∗ Φ33𝑖 −𝑃22 𝑇3𝐵𝑖𝐹𝑗 0 0 −𝑇3

∗ ∗ ∗ Φ44 𝑇4𝐵𝑖𝐹𝑗 0 0 Φ48

∗ ∗ ∗ ∗ Φ55𝑖𝑗 𝐹
𝑇
𝑗 𝐵
𝑇
𝑖 𝑇
𝑇
6 𝐹
𝑇
𝑗 𝐵
𝑇
𝑖 𝑇
𝑇
7 Φ58𝑖

∗ ∗ ∗ ∗ ∗ Φ66 Φ67 −𝑇6
∗ ∗ ∗ ∗ ∗ ∗ Φ77 Φ78
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88

]
]
]
]
]
]

]

,

Φ
11𝑖
= 𝑃
12
+ 𝑃
𝑇

12
+𝑊
12
+𝑊
𝑇

12
+ ℎ
1
𝑍
11
+ ℎ
2
𝑁
11

−
1

ℎ
1

𝑍
22
−
1

ℎ
2

𝑁
22
+ 𝑄
1
+ 𝑄
2
+𝑀
1
+𝑀
2

− 2𝑅
1
− 2𝑅
2
+ 𝑇
1
𝐴
1𝑖
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

1
,

Φ
12𝑖
= 𝑇
1
𝐴
2𝑖
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

2
,

Φ
13
= −𝑃
12
−
1

ℎ
1

𝑍
22
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

3
,

Φ
14
= 𝑃
22
−
1

ℎ
2

𝑍
𝑇

12
+
1

ℎ
1

𝑅
1
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

4
,

Φ
15𝑖𝑗

= 𝑇
1
𝐵
𝑖
𝐹
𝑗
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

5
,

Φ
16
= −𝑊

12
−
1

ℎ
2

𝑁
22
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

6
,

Φ
17
= 𝑊
22
−
1

ℎ
2

𝑁
𝑇

12
+
2

ℎ
2

2

𝑅
2
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

7
,

Φ
18
= 𝑃
11
+𝑊
11
+ ℎ
1
𝑍
12
+ ℎ
2
𝑁
12
− 𝑇
1
+ 𝐴
𝑇

1𝑖
𝑇
𝑇

8
,

Φ
22𝑖
= − (1 − 𝜇

1
) 𝑄
1
+ 𝑇
2
𝐴
2𝑖
+ 𝐴
𝑇

2𝑖
𝑇
𝑇

2
,

Φ
25𝑖𝑗

= 𝑇
2
𝐵
𝑖
𝐹
𝑗
+ 𝐴
𝑇

2𝑖
𝑇
𝑇

5
,

Φ
28𝑖
= −𝑇
2
+ 𝐴
𝑇

2𝑖
𝑇
𝑇

8
,

Φ
33
= −

1

ℎ
𝑍
22
−𝑀
1
,

Φ
44
= −

1

ℎ
1

𝑍
11
−
2

ℎ
2

1

𝑅
1
,

Φ
48
= 𝑃
𝑇

12
− 𝑇
4
,

Φ
55𝑖
= − (1 − 𝜇

2
) 𝑄
2
+ 𝑇
5
𝐵
𝑖
𝐹
𝑗
+ 𝐹
𝑇

𝑗
𝐵
𝑇

𝑖
𝑇
𝑇

5
,

Φ
58𝑖
= −𝑇
5
+ 𝐹
𝑇

𝑗
𝐵
𝑇

𝑖
𝑇
𝑇

8
,

Φ
66
= −

1

ℎ
2

𝑁
22
−𝑀
2
,

Φ
67
= −

1

ℎ
2

𝑁
𝑇

12
−𝑊
22
,

Φ
77
= −

1

ℎ
2

𝑁
11
−
2

ℎ
2

2

𝑅
2
,

Φ
78
= 𝑊
𝑇

12
− 𝑇
7
,

Φ
88
= ℎ
1
𝑍
22
+ ℎ
2
𝑁
22
+
1

2
ℎ
2

1
𝑅
1
+
1

2
ℎ
2

2
𝑅
2
− 𝑇
8
.

(25)

From (25), it is obvious that if

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))Φ

𝑖𝑗
< 0, (26)

𝑉(𝑥(𝑡)) < 0.
From (26), we can discover that the feedback gains

are predefined. The following proof presents the controller
design method. We first pre- and postmultiply both the
diag [𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 𝑋 ] and transpose to both sides of (25)
and pre- and postmultiply the diag [𝑋 𝑋 ] transpose to both
sides of 𝑃, 𝑊, 𝑍, and 𝑁 and the 𝑋 and transpose to both
sides of 𝑄

𝑖
,𝑀
𝑖
, and 𝑅

𝑖
, 𝑖 = 1, 2. Let 𝑇

𝑖
= 𝑡
𝑖
𝑇
1
(𝑖 = 2, . . . , 8),

and denote new variables 𝑋 = 𝑇
−1

1
, 𝑅
1
= 𝑋𝑅

1
𝑋
𝑇, 𝑄
1
=

𝑋𝑄
1
𝑋
𝑇,𝑀
1
= 𝑋𝑀

1
𝑋
𝑇, 𝑅
2
= 𝑋𝑅

2
𝑋
𝑇, 𝑄
2
= 𝑋𝑄

2
𝑋
𝑇, 𝑀
2
=

𝑋𝑀
2
𝑋
𝑇, Λ
𝑖
= 𝑋Λ

𝑖
𝑋
𝑇, Λ
𝑗
= 𝑋Λ

𝑗
𝑋
𝑇
, 𝑖 = 1, 2, . . . , 𝑟, 𝑃

11
=

𝑋𝑃
11
𝑋
𝑇, 𝑃
12
= 𝑋𝑃

12
𝑋
𝑇, 𝑃
22
= 𝑋𝑃

22
𝑋
𝑇, 𝑊
11
= 𝑋𝑊

11
𝑋
𝑇,

𝑊
12
= 𝑋𝑊

12
𝑋
𝑇, 𝑊
22
= 𝑋𝑊

22
𝑋
𝑇, 𝑍
11
= 𝑋𝑍

11
𝑋
𝑇, 𝑍
12
=

𝑋𝑍
12
𝑋
𝑇, 𝑍
22
= 𝑋𝑍

22
𝑋
𝑇, 𝑁
11
= 𝑋𝑁

11
𝑋
𝑇, 𝑁
12
= 𝑋𝑁

12
𝑋
𝑇,

and𝑁
22
= 𝑋𝑁

22
𝑋
𝑇. With 𝐹

𝑖
= 𝑌
𝑖
𝑋
−𝑇
, 𝑖 = 1, 2 . . . , 𝑟,we next

get

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))Φ

𝑖𝑗
< 0, (27)
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where

Φ
𝑖𝑗
=

[
[
[
[
[
[
[
[

[

Φ11𝑖 Φ12𝑖 Φ13 Φ14 Φ15𝑖𝑗 Φ16 Φ17 Φ18

∗ Φ22𝑖 𝑡3𝑋𝐴
𝑇
2𝑖 𝑡4𝑋𝐴

𝑇
2𝑖 Φ25𝑖𝑗 𝑡6𝑋𝐴

𝑇
2𝑖 𝑡7𝑋𝐴

𝑇
2𝑖 Φ28𝑖

∗ ∗ Φ33𝑖 −𝑃22 𝑡3𝐵𝑖𝑌𝑗 0 0 −𝑡3𝑋
𝑇

∗ ∗ ∗ Φ44 𝑡4𝐵𝑖𝑌𝑗 0 0 Φ48

∗ ∗ ∗ ∗ Φ55𝑖𝑗 𝑡6𝑌
𝑇
𝑗 𝐵
𝑇
𝑖 𝑡7𝑌

𝑇
𝑗 𝐵
𝑇
𝑖 Φ58𝑖

∗ ∗ ∗ ∗ ∗ Φ66 Φ67 −𝑡6𝑋
𝑇

∗ ∗ ∗ ∗ ∗ ∗ Φ77 Φ78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88

]
]
]
]
]
]
]
]

]

,

Φ
11𝑖
= 𝑃
12
+ 𝑃
𝑇

12
+𝑊
12
+𝑊
𝑇

12
+ ℎ
1
𝑍
11

+ ℎ
2
𝑁
11
−
1

ℎ
1

𝑍
22
−
1

ℎ
2

𝑁
22
+ 𝑄
1
+ 𝑄
2

+𝑀
1
+𝑀
2
− 2𝑅
1
− 2𝑅
2
+ 𝐴
1𝑖
𝑋
𝑇
+ 𝑋𝐴

𝑇

1𝑖
,

Φ
12𝑖
= 𝐴
2𝑖
𝑋
𝑇
+ 𝑡
2
𝑋𝐴
𝑇

1𝑖
,

Φ
13
= −𝑃
12
−
1

ℎ 1
𝑍
22
+ 𝑡
3
𝑋𝐴
𝑇

1𝑖
,

Φ
14
= 𝑃
22
−
1

ℎ
1

𝑍
𝑇

12
+
1

ℎ
1

𝑅
1
+ 𝑡
4
𝑋𝐴
𝑇

1𝑖
,

Φ
15𝑖𝑗

= 𝐵
𝑖
𝑌
𝑗
+ 𝑡
5
𝑋𝐴
𝑇

1𝑖
,

Φ
16
= −𝑊

12
−
1

ℎ
2

𝑁
22
+ 𝑡
6
𝑋𝐴
𝑇

1𝑖
,

Φ
17
= 𝑊
22
−
1

ℎ
2

𝑁
𝑇

12
+
2

ℎ
2

2

𝑅
2
+ 𝑡
7
𝑋𝐴
𝑇

1𝑖
,

Φ
18
= 𝑃
11
+𝑊
11
+ ℎ
1
𝑍
12
+ ℎ
2
𝑁
12
− 𝑋
𝑇
+ 𝑡
8
𝑋𝐴
𝑇

1𝑖
,

Φ
22𝑖
= − (1 − 𝜇

1
) 𝑄
1
+ 𝑡
2
𝐴
2𝑖
𝑋
𝑇
+ 𝑡
2
𝑋𝐴
𝑇

2𝑖
,

Φ
25𝑖𝑗

= 𝑡
2
𝐵
𝑖
𝑌
𝑗
+ 𝑡
5
𝑋𝐴
𝑇

2𝑖
,

Φ
28𝑖
= −𝑡
2
𝑋
𝑇
+ 𝑡
8
𝑋𝐴
𝑇

2𝑖
,

Φ
33
= −

1

ℎ
1

𝑍
22
−𝑀
1
,

Φ
44
= −

1

ℎ
1

𝑍
11
−
2

ℎ
2

1

𝑅
1
,

Φ
48
= 𝑃
𝑇

12
− 𝑡
4
𝑋
𝑇
,

Φ
55𝑖
= − (1 − 𝜇

2
) 𝑄
2
+ 𝑡
5
𝐵
𝑖
𝑌
𝑗
+ 𝑡
5
𝑌
𝑇

𝑗
𝐵
𝑇

𝑖
,

Φ
58𝑖
= −𝑡
5
𝑋
𝑇
+ 𝑡
8
𝑌
𝑇

𝑗
𝐵
𝑇

𝑖
,

Φ
66
= −

1

ℎ
2

𝑁
22
−𝑀
2
,

Φ
67
= −

1

ℎ
2

𝑁
𝑇

12
−𝑊
22
,

Φ
77
= −

1

ℎ
2

𝑁
11
−
2

ℎ
2

2

𝑅
2
,

Φ
78
= 𝑊
𝑇

12
− 𝑡
7
𝑋
𝑇
,

Φ
88
= ℎ
1
𝑍
22
+ ℎ
2
𝑁
22
+
1

2
ℎ
2

1
𝑅
1
+
1

2
ℎ
2

2
𝑅
2
− 𝑡
8
𝑋
𝑇
.

(28)

Here, “∗” denotes the transpose elements in the symmetric
positions.

If (27) holds, then 𝑉(𝑥(𝑡)) < 0. Consider
∑
𝑟

𝑖=1
∑
𝑟

𝑗=1
𝑤
𝑖
(𝑥(𝑡))(𝑤

𝑗
(𝑥(𝑡)) − 𝑚

𝑗
(𝑥(𝑡 − 𝑑

2
(𝑡))))Λ

𝑖
= 0,

where Λ
𝑖
= Λ
𝑇

𝑖
∈ 𝑅
8𝑛×8𝑛

> 0, 𝑖 = 1, 2, . . . , 𝑟, are arbitrary
matrices. These terms are introduced to (27) to alleviate the
conservativeness. From (27), we also have

Φ =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))Φ

𝑖𝑗

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡)) (𝑤

𝑗
(𝑥 (𝑡)) − 𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))

+𝜌
𝑗
𝑤
𝑗
(𝑥 (𝑡)) − 𝜌

𝑗
𝑤
𝑗
(𝑥 (𝑡))) Λ

𝑖

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))Φ

𝑖𝑗

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡)) 𝑤

𝑗
(𝑥 (𝑡)) (𝜌

𝑗
Φ
𝑖𝑗
− 𝜌
𝑗
Λ
𝑖
+ Λ
𝑖
)

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡)) (𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡))) − 𝜌

𝑗
𝑤
𝑗
(𝑥 (𝑡)))

× (Φ
𝑖𝑗
− Λ
𝑖
)

≤

𝑟

∑

𝑖=1

𝑤
2

𝑖
(𝜌
𝑖
Φ
𝑖𝑖
− 𝜌
𝑖
Λ
𝑖
+ Λ
𝑖
)

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑚
𝑗
− 𝜌
𝑗
𝑤
𝑗
) (Φ
𝑖𝑗
− Λ
𝑖
)

+

𝑟

∑

𝑖=1

∑

𝑖<𝑗

𝑤
𝑖
𝑤
𝑗
(𝜌
𝑗
Φ
𝑖𝑗
+ 𝜌
𝑖
Φ
𝑗𝑖
− 𝜌
𝑗
Λ
𝑖
− 𝜌
𝑖
Λ
𝑗

+Λ
𝑖
+ Λ
𝑗
)

(29)

with𝑚
𝑗
(𝑥(𝑡 − 𝑑

2
(𝑡))) − 𝜌

𝑗
𝑤
𝑗
(𝑥(𝑡)) ≥ 0 for all 𝑗, 𝑥(𝑡) and 𝑥(𝑡 −

𝑑
2
(𝑡)). Let

Φ
𝑖𝑗
− Λ
𝑖
< 0, (30)

𝜌
𝑖
Φ
𝑖𝑖
− 𝜌
𝑖
Λ
𝑖
+ Λ
𝑖
< 0, (31)

𝜌
𝑗
Φ
𝑖𝑗
+ 𝜌
𝑖
Φ
𝑗𝑖
− 𝜌
𝑗
Λ
𝑖
− 𝜌
𝑖
Λ
𝑗
+ Λ
𝑖
+ Λ
𝑗
≤ 0, 𝑖 < 𝑗, (32)

for all 𝑖, 𝑗 = 1, 2, . . . , 𝑟.
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Since 𝑉(𝑥(𝑡)) < 0, the fuzzy control system with the time
varying state and input delays (15) is asymptotically stable
with the state feedback control law (17).

3.2. Robust Stability of Uncertain Fuzzy Systems. We also
examine the design of a robust stable controller for the
uncertain system (4) under the imperfect premise matching.
Consider the following uncertain fuzzy time varying delay
control system:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑

2
(𝑡)))

× [(𝐴
1𝑖
+ Δ𝐴
1𝑖
(𝑡)) 𝑥 (𝑡) + (𝐴

2𝑖
+ Δ𝐴
2𝑖
(𝑡))

× 𝑥 (𝑡 − 𝑑
1
(𝑡)) + (𝐵

𝑖
+ Δ𝐵
𝑖
(𝑡))

×𝑢 (𝑡 − 𝑑
2
(𝑡))] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−max (ℎ
1
, ℎ
2
) , 0] .

(33)

Based on the above results of Theorem 4, a robust stabiliza-
tion criterion for theT-S fuzzy systemswith time varying state
and input delays is investigated. The following result can be
obtained.

Theorem 5. Given scalars ℎ
1
≥ 0, ℎ

2
≥ 0, 𝜇

1
, 𝜇
2
, and 𝑡

𝑖
(𝑖 =

2, . . . , 8), the uncertain fuzzy control systems with the time
varying state and input delays (33) is robustly stable for any
0 ≤ 𝑑

𝑖
(𝑡) ≤ ℎ

𝑖
(𝑖 = 1, 2) via the imperfect premise matching

controller design technique, if the membership functions of the
fuzzy model and fuzzy controller satisfy 𝑚

𝑗
(𝑥(𝑡 − 𝑑

2
(𝑡))) −

𝜌
𝑗
𝑤
𝑗
(𝑥(𝑡)) ≥ 0 for all 𝑗, 𝑥(𝑡), and 𝑥(𝑡 − 𝑑

2
(𝑡)), where 0 <

𝜌
𝑗
< 1, and there exist common matrices 𝑃

11
> 0, 𝑃

22
> 0,

𝑊
11
> 0, 𝑊

22
> 0, 𝑍

11
> 0, 𝑍

22
> 0, 𝑁

11
> 0, 𝑁

22
> 0,

𝑄
𝑖
> 0, 𝑀

𝑖
> 0, 𝑅

𝑖
> 0 (𝑖 = 1, 2) and Λ

𝑖
= Λ

T
𝑖
∈ 𝑅
8𝑛×8𝑛

>

0 (i = 1, 2, . . . , r), 𝑃 > 0, 𝑊 > 0, 𝑍 > 0, 𝑁 > 0 and some
matrices 𝑌

𝑗
(𝑗 = 1, 2, . . . , 𝑟), 𝑋 and scalars 𝜀

1𝑖
> 0, 𝜀

2𝑖
> 0,

𝜀
𝑏𝑖𝑗
> 0 satisfy the following LMIs:

Ψ
𝑖𝑗
− Λ
𝑖
< 0, (34)

𝜌
𝑖
Ψ
𝑖𝑖
− 𝜌
𝑖
Λ
𝑖
+ Λ
𝑖
< 0, (35)

𝜌
𝑗
Ψ
𝑖𝑗
+ 𝜌
𝑖
Ψ
𝑗𝑖
− 𝜌
𝑗
Λ
𝑖
− 𝜌
𝑖
Λ
𝑗
+ Λ
𝑖
+ Λ
𝑗
, ≤ 0 𝑖 < 𝑗, (36)

where Ψ
𝑖𝑗
is defined as in (44). The state feedback gains can be

constructed as 𝐹
𝑖
= 𝑌
𝑖
𝑋
−𝑇.

Proof. If 𝐴
1𝑖
, 𝐴
2𝑖
, and 𝐵

𝑖
in Φ
𝑖𝑗
are replaced with 𝐴

1𝑖
+

𝐷
𝑖
𝐾
𝑖
(𝑡)𝐸
1𝑖
, 𝐴
2𝑖
+ 𝐷
𝑖
𝐾
𝑖
(𝑡)𝐸
2𝑖
, and 𝐵

𝑖
+ 𝐷
𝑖
𝐾
𝑖
(𝑡)𝐸
𝑏𝑖
in (28) of

Theorem 4, respectively, (27) for system (33) can be rewritten
as

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑 (𝑡))) Ω

𝑖𝑗
< 0, (37)

where

Ω
𝑖𝑗
= Φ
𝑖𝑗
+ 𝐷
𝑇

1𝑖
𝐾
𝑖
(𝑡) 𝐸
𝑖
+ 𝐸
𝑇

𝑖
𝐾
𝑇

𝑖
(𝑡) 𝐷
1𝑖
+ 𝐷
𝑇

2𝑖
𝐾
𝑖
(𝑡) 𝐸
2𝑖𝑗

+ 𝐸
𝑇

2𝑖𝑗
𝐾
𝑇

𝑖
(𝑡) 𝐷
2𝑖
+ 𝐷
𝑇

𝑏𝑖
𝐾
𝑖
(𝑡) 𝐸
𝑏𝑖𝑗
+ 𝐸
𝑇

𝑏𝑖𝑗
𝐾
𝑇

𝑖
(𝑡) 𝐷
𝑏𝑖
,

𝐷
1𝑖
= [𝐷
𝑇

𝑖
0 0 0 0 0 0 0] ,

𝐷
2𝑖
= [0 𝐷

𝑇

𝑖
0 0 0 0 0 0] ,

𝐷
𝑏𝑖
= [0 0 0 0 𝐷

𝑇

𝑖
0 0 0] ,

(38)

𝐸
1𝑖
= [𝐸
1𝑖
𝑋
𝑇
𝑡
2
𝐸
1𝑖
𝑋
𝑇
𝑡
3
𝐸
1𝑖
𝑋
𝑇
𝑡
4
𝐸
1𝑖
𝑋
𝑇

𝑡
5
𝐸
1𝑖
𝑋
𝑇
𝑡
6
𝐸
1𝑖
𝑋
𝑇
𝑡
7
𝐸
1𝑖
𝑋
𝑇
𝑡
8
𝐸
1𝑖
𝑋
𝑇
] ,

𝐸
2𝑖
= [𝐸
2𝑖
𝑋
𝑇
𝑡
2
𝐸
2𝑖
𝑋
𝑇
𝑡
3
𝐸
2𝑖
𝑋
𝑇
𝑡
4
𝐸
2𝑖
𝑋
𝑇
𝑡
5
𝐸
2𝑖
𝑋
𝑇
𝑡
6
𝐸
2𝑖
𝑋
𝑇
𝑡
7
𝐸
2𝑖
𝑋
𝑇
𝑡
8
𝐸
2𝑖
𝑋
𝑇
] ,

𝐸
𝑏𝑖𝑗
= [𝐸𝑏𝑖𝑌𝑗 𝑡2𝐸𝑏𝑖𝑌𝑗 𝑡3𝐸𝑏𝑖𝑌𝑗 𝑡4𝐸𝑏𝑖𝑌𝑗 𝑡5𝐸𝑏𝑖𝑌𝑗 𝑡6𝐸𝑏𝑖𝑌𝑗 𝑡7𝐸𝑏𝑖𝑌𝑗 𝑡8𝐸𝑏𝑖𝑌𝑗] .

(39)

If Ω
𝑖𝑗

< 0, (37) holds. According to Lemma 2, it is
straightforward to know that Ω

𝑖𝑗
< 0 is true, if for each 𝑖,

𝑗, there exists scalars 𝜀
1𝑖
> 0, 𝜀

2𝑖
> 0, and 𝜀

𝑏𝑖𝑗
> 0 such that

the following inequality holds:

Φ
𝑖𝑗
+ 𝜀
1𝑖
𝐷
𝑇

1𝑖
𝐷
1𝑖
+ 𝜀
−1

1𝑖
𝐸
𝑇

1𝑖
𝐸
1𝑖
+ 𝜀
2𝑖
𝐷
𝑇

2𝑖
𝐷
2𝑖

+ 𝜀
−1

2𝑖
𝐸
𝑇

2𝑖
𝐸
2𝑖
+ 𝜀
𝑏𝑖𝑗
𝐷
𝑇

𝑏𝑖
𝐷
𝑏𝑖
+ 𝜀
−1

𝑏𝑖𝑗
𝐸
𝑇

𝑏𝑖𝑗
𝐸
𝑏𝑖𝑗
< 0.

(40)

Based on Schur complement, (40) is equivalent to the
following inequality:

Ψ
𝑖𝑗
=
[
[
[

[

Φ̂
𝑖𝑗

𝐸
𝑇

1𝑖
𝐸
𝑇

2𝑖
𝐸
𝑇

𝑏𝑖𝑗

∗ −𝜀
1𝑖
𝐼 0 0

∗ ∗ −𝜀
2𝑖
𝐼 0

∗ ∗ ∗ −𝜀
𝑏𝑖𝑗
𝐼

]
]
]

]

< 0, (41)
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where

Φ̂
𝑖𝑗
=

[
[
[
[
[
[
[
[

[

Φ̂11𝑖 Φ12𝑖 Φ13 Φ14 Φ15𝑖𝑗 Φ16 Φ17 Φ18

∗ Φ̂22𝑖 𝑡3𝑋𝐴
𝑇
2𝑖 𝑡4𝑋𝐴

𝑇
2𝑖 Φ25𝑖𝑗 𝑡6𝑋𝐴

𝑇
2𝑖 𝑡7𝑋𝐴

𝑇
2𝑖 Φ28𝑖

∗ ∗ Φ33𝑖 −𝑃22 𝑡3𝐵𝑖𝑌𝑗 0 0 −𝑡3𝑋
𝑇

∗ ∗ ∗ Φ44 𝑡4𝐵𝑖𝑌𝑗 0 0 Φ48

∗ ∗ ∗ ∗ Φ̂55𝑖𝑗 𝑡6𝑌
𝑇
𝑗 𝐵
𝑇
𝑖 𝑡7𝑌

𝑇
𝑗 𝐵
𝑇
𝑖 Φ58𝑖

∗ ∗ ∗ ∗ ∗ Φ66 Φ67 −𝑡6𝑋
𝑇

∗ ∗ ∗ ∗ ∗ ∗ Φ77 Φ78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88

]
]
]
]
]
]
]
]

]

< 0,

Φ̂
11𝑖
= Φ
11𝑖
+ 𝜀
1𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
,

Φ̂
22𝑖
= Φ
22𝑖
+ 𝜀
2𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
,

Φ̂
55𝑖𝑗

= Φ
55𝑖𝑗

+ 𝜀
𝑏𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
,

(42)

and Φ are the same as in Theorem 4. Therefore, (41) holds, if
and only if the following inequality holds:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑤
𝑖
(𝑥 (𝑡))𝑚

𝑗
(𝑥 (𝑡 − 𝑑 (𝑡))) Ψ

𝑖𝑗
< 0. (43)

To alleviate the conservativeness of our robust stability
analysis, similar to the analysis approach of Theorem 4, we
introduce ∑𝑟

𝑖=1
∑
𝑟

𝑗=1
𝑤
𝑖
(𝑤
𝑗
− 𝑚
𝑗
)Λ
𝑖
= 0 to (43), and the

following proof is the same as in Theorem 4. We can obtain
the conditions and (34)–(36). Thus, the fuzzy control system
with the time varying state and input delays (34) is robust
stable on the basis of the control law 𝐹

𝑖
= 𝑌
𝑖
𝑋
−𝑇under these

conditions, and (34)–(36) hold.

Remark 6. If we set 𝑤
𝑖
(𝑥(𝑡)) = 𝑚

𝑗
(𝑥(𝑡)), 𝑑

1
(𝑡) = 𝑑

2
(𝑡),

the closed-loop system in this paper has the same structure
as that of paper [26]. On the other hand, let 𝑤

𝑖
(𝑥(𝑡)) =

𝑚
𝑗
(𝑥(𝑡)) and 𝑑

1
(𝑡) = 𝑑

2
(𝑡) = 𝑑; we can obtain the system

in [16]. Therefore, the system studied in this paper is more
general. Additionally, the information of the membership
functions of the fuzzy time delay models and controllers are
all considered in the stability analysis. If the fuzzymodels and
fuzzy controllers share the same fuzzymembership functions,
that is, 𝑤

𝑖
(𝑥(𝑡)) = 𝑚

𝑗
(𝑥(𝑡)), the stability analysis can be

referred to [25, 27, 28]. In other words, the problem in [25,
27, 28] is actually a special case of the one investigated in this
paper.

Remark 7. The augmented Lyapunov function with an addi-
tional triple-integral term is introduced in analyzing the
stability problem for the T-S fuzzy systems with time varying
state and input delays. In addition, two integral inequalities
are used to derive Theorem 4, and less free-weighting matri-
ces are introduced, which lead to get less conservative results.
It can be observed that some existing results are the special
cases of this paper. For example, the method in [25] is from
(18) with 𝑃

12
= 0, 𝑃

22
= 0, 𝑍

12
= 𝑍
22
= 0, 𝑁

12
= 𝑁
22
= 0,

and 𝑅
1
= 𝑅
2
= 0 in Theorem 4. The results in [22] are based

on system (33) with 𝑑
2
(𝑡) = 0 and (18) with𝑀

2
= 0, 𝑍

12
=

𝑍
22
= 0, 𝑄

1
= 𝑄
2
= 0, and 𝑅

1
= 𝑅
2
= 0.

Remark 8. Different from the general PDC technique, the
design method under the imperfect premise matching is
much more flexible, because the membership functions of
the fuzzy controllers do not need to be chosen the same as
those of the fuzzy time delay models. Instead, they can be
designed arbitrarily.Thus, the design flexibility is significantly
enhanced. On the other hand, some simple membership
functions of the fuzzy controllers might be employed, which
can reduce the implementation cost.

Remark 9. In [7–11, 15–20], the authors have considered the
robust control for uncertain T-S fuzzy systems with state
delays. Some delay-dependent conditions and fuzzy con-
trollers are obtained with a traditional Lyapunov-Krasovskii
functionalmethod andPDCmethod, which all are the special
cases of Theorem 5 in this paper.

4. Numerical Examples

In this section, two numerical examples are given to illus-
trate the conservativeness and effectiveness of the proposed
methods. The first example compares our techniques with
the existing ones in the literature for stability analysis, which
shows that Theorem 4 in this paper is less conservative than
the other results. The second example is used to illustrate the
advantage of the robust stability conditions ofTheorem 5 and
demonstrate how to design robust fuzzy controllers by using
our approach.

Example 10. Consider the following fuzzy system with state
and input delays:

̇𝑥 (𝑡) =

2

∑

𝑖=1

𝑤
𝑖
(𝜃 (𝑡)) [𝐴

1𝑖
𝑥 (𝑡) + 𝐴

2𝑖
𝑥 (𝑡 − 𝑑

1
(𝑡))

+𝐵
𝑖
𝑢 (𝑡 − 𝑑

2
(𝑡))] ,

𝐴
11
= [

0 0.6

0 1
] , 𝐴

21
= [

0.5 0.9

0 2
] ,

𝐴
12
= [

1 0

1 0
] , 𝐴

22
= [

0.9 0

1 1.6
] ,

𝐵
1
= 𝐵
2
= [

1

1
] .

(44)

The fuzzy membership functions are selected as [31]

𝑤
1
(𝑥
1
(𝑡)) = (1 −

𝑐 (𝑡) sin (𝑥1 (𝑡)


−4

)
5

1 + exp−100𝑥1(𝑡)3(1−𝑥1(𝑡))
)

×
cos (𝑥

1
(𝑡))
2

1 + exp−2.5𝑥1(𝑡)(3+(𝑥1(𝑡)/0.42))

× 𝑤
2
(𝑥
1
(𝑡)) = 1 − 𝑤

1
(𝑥
1
(𝑡)) ,

(45)
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Table 1: The maximum allowable time delay and feedback gains
(𝜇
1
= 0, 𝜇

2
= 0).

Paper ℎ
1

ℎ
2 Feedback gains

[26] 0.3120 0.3120
𝐹
1
= [1.0598 −5.6598]

𝐹
2
= [−1.3068 −4.1167]

Theorem 4 0.33 0.57
𝐹
1
= [−0.0042 −0.0449]

𝐹
2
= [0.0048 0.0717]

where

𝑥
1
(𝑡) ∈ [−

𝜋

2

𝜋

2
] ,

𝑐 (𝑡) =
sin (𝑥

1
(𝑡)) + 1

40
∈ [−0.05 0.05] .

(46)

If we set 𝑑
1
(𝑡) = 𝑑

2
(𝑡) in system (44), we can obtain the

system in [26], which implies that our system ismore general.
Employing the LMIs in [26] and those inTheorem 4yields the
maximum state and input delays ℎ

1
, and ℎ

2
, which guarantee

the stability of system (44) and the feedback gains for 𝜇
1
= 0,

and 𝜇
2
= 0, when 𝜌

1
= 0.75, 𝜌

2
= 0.95, 𝑡

2
= 0.1, 𝑡

3
=

0.2, 𝑡
4
= 0.7, 𝑡

5
= 0.1, 𝑡

6
= 0.4, 𝑡

7
= 0.1, and 𝑡

8
= 1.3 as

given in Table 1, which clearly shows the superiority of the
results derived in this paper over those obtained from [26].

Example 11. Consider the well-known truck-trailer system,
which can be described by the following T-S fuzzy system:

̇𝑥 (𝑡) =

2

∑

𝑖=1

𝑤
𝑖
(𝜃 (𝑡)) [(𝐴

1𝑖
+ Δ𝐴
1𝑖
) 𝑥 (𝑡) + 𝐴

2𝑖
𝑥 (𝑡 − 𝑑

1
(𝑡))

+ (𝐵
𝑖
+ Δ𝐵
𝑖
) 𝑢 (𝑡 − 𝑑

2
(𝑡))] ,

(47)

𝐴
11
=

[
[
[
[
[
[
[
[
[

[

−𝑎
V𝑡

𝐿𝑡
0

0 0

𝑎
V𝑡

𝐿𝑡
0

0 0

𝑎
V2𝑡
2

2𝐿𝑡
0

V𝑡

𝑡
0

0

]
]
]
]
]
]
]
]
]

]

,

𝐴
21
=

[
[
[
[
[
[
[
[
[

[

− (1 − 𝑎)
V𝑡

𝐿𝑡
0

0 0

(1 − 𝑎)
V𝑡

𝐿𝑡
0

0 0

(1 − 𝑎)
V2𝑡
2

2𝐿𝑡
0

0 0

]
]
]
]
]
]
]
]
]

]

,

𝐵
1
=

[
[
[
[

[

V𝑡

𝑙𝑡
0

0

0

]
]
]
]

]

,

𝐴
12
=

[
[
[
[
[
[
[
[
[

[

−𝑎
V𝑡

𝐿𝑡
0

0 0

𝑎
V𝑡

𝐿𝑡
0

0 0

𝑎
𝑑V2𝑡
2

2𝐿𝑡
0

𝑑V𝑡

𝑡
0

0

]
]
]
]
]
]
]
]
]

]

,

𝐴
22
=

[
[
[
[
[
[
[
[
[

[

− (1 − 𝑎)
V𝑡

𝐿𝑡
0

0 0

(1 − 𝑎)
V𝑡

𝐿𝑡
0

0 0

(1 − 𝑎)
𝑑V2𝑡
2

2𝐿𝑡
0

0 0

]
]
]
]
]
]
]
]
]

]

,

(48)

𝐵
2
=

[
[
[
[

[

V𝑡

𝑙𝑡
0

0

0

]
]
]
]

]

, (49)

where 𝑙 = 2.8, 𝐿 = 5.5, V = −1.0, 𝑡 = 2.0, 𝑡
0
= 0.5,

𝑑 = 10𝑡
0
/𝜋, 𝐷

𝑖
= [0.2555 0.2555 0.2555]𝑇, 𝐸

1𝑖
= 𝐸
2𝑖
=

[0.1 0 0]𝑇, 𝐸
𝑏𝑖

= [0.1 0 0]𝑇 (𝑖 = 1, 2), and the fuzzy
membership functions are selected the same as inExample 10.

(1) Let 𝑎 = 1, system (47) is the same as the fuzzy system
of [22], which implies that our system ismore general.
Table 2 gives themaximum input delay value of ℎ

2
, for

which the stabilization is guaranteed byTheorem 5 as
well as the state feedback gains, when 𝜌

1
= 0.75, 𝜌

2
=

0.95 𝑡
2
= 0.1, 𝑡

3
= 0.2, 𝑡

4
= 0.7, 𝑡

5
= 0.1, 𝑡

6
=

0.4, 𝑡
7
= 0.8, and 𝑡

8
= 2. It is clearly visible that the

results derived in this paper are better than those from
[22, 28].

(2) In the case of 𝑎 ̸=1, the state and input delays of system
(47) are all exist. The approach proposed in [22] can
not be used to get the maximum of state delay ℎ

1
,

as the system in [22] only contains the input delay.
However, the method in [28] and Theorem 5 can be
used. Here, let 𝑎 = 0.7, 𝜌

1
= 0.75, 𝜌

2
= 0.95, 𝑡

2
=

0.1, 𝑡
3
= 0.2, 𝑡

4
= 0.7, 𝑡

5
= 0.1, 𝑡

6
= 0.4, 𝑡

7
=

0.8, and 𝑡
8
= 3, and Table 3 provides the maximum

upper bounds of ℎ
1
and ℎ

2
and the state feedback

gains for which the robust stabilization is guaranteed
byTheorem 5.

By Theorem 5, we can conclude that the uncertain fuzzy
model (47) is robust stable based on the following fuzzy
control law:

𝑢 (𝑡 − ℎ
2
) =

2

∑

𝑗=1

𝑚
𝑗
(𝑥
1
(𝑡 − ℎ

2
)) 𝐹
𝑗
𝑥 (𝑡 − ℎ

2
) . (50)

With the PDC design technique, it is required that the
fuzzy controller must share the same fuzzy membership
functions as those of the fuzzy time delay model. Under such
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Table 2: The maximum allowable time delay and feedback gains
(𝜇
2
= 0).

Paper ℎ
2 Feedback gains

[22] 0.75
𝐹
1
= [3.4227 −0.3535 0.0045]

𝐹
2
= [3.5215 −0.3617 0.0056]

[28] 0.86
𝐹
1
= [3.3219 −0.2406 0.0025]

𝐹
2
= [3.3272 −0.2494 0.0026]

Theorem 5 1.2
𝐹
1
= [−0.0212 0.0093 −0.0024]

𝐹
2
= [−0.0250 0.0044 0.0014]

Table 3: The maximum allowable time delay and feedback gains
(𝜇
1
= 𝜇
2
= 0).

Paper ℎ
1

ℎ
2 Feedback gains

[28] 0.1 0.55
𝐹
1
= [3.3219 −0.2406 0.0025]

𝐹
2
= [3.3272 −0.2494 0.0026]

Theorem 5 0.4 1.7
𝐹
1
= [−0.0128 0.0090 −0.0017]

𝐹
2
= [−0.0194 0.0012 0.0009]

a condition, the implementation cost of the fuzzy controller
is high by employing these complex membership functions.
However, fromTheorem 5, the membership functions do not
need to be chosen the same as𝑤

1
(𝑥
1
(𝑡)) and𝑤

2
(𝑥
1
(𝑡)). Thus,

we can select some simple membership functions instead,
such as

𝑚
1
(𝑥
1
(𝑡 − ℎ

2
)) = 0.75 exp

(−𝑥
1
(𝑡 − ℎ

2
) − 0.38)

2

2 × 0.382
+ 0.05,

𝑚
2
(𝑥
1
(𝑡 − ℎ

2
)) = 1 − 𝑚

1
(𝑥
1
(𝑡 − ℎ

2
)) .

(51)

We also assume that 𝜌
1
= 0.75, and 𝜌

2
= 0.95, such that

𝑚
𝑗
(𝑥
1
(𝑡 − ℎ

2
)) − 𝜌

𝑗
𝑤
𝑗
(𝑥
1
(𝑡)) > 0 for 𝑗 = 1, 2 and 𝑥

1
(𝑡 − ℎ

2
).

The fuzzy control law 𝑢(𝑡 − ℎ
2
) = 𝑚

1
[−0.0128 0.0090 −

0.0017]𝑥 + 𝑚
2
[−0.0194 0.0012 0.0009]𝑥 can be employed

to stabilize the uncertain fuzzy control systems in (47) with
the state and input delays. Figures 1 and 2 illustrate the stable
state response and control input under the initial condition
of 𝑥(0) = [4 − 1 2]𝑇.

Remark 12. In Example 11, our method offers less conser-
vative results in the sense of allowing longer time delay
and obtaining smaller feedback control gains. Moreover,
compared with [22–28], where the fuzzy controllermust have
the same fuzzy membership functions as those of the fuzzy
time delay model, the above membership functions of our
fuzzy controller are much simper, which can considerably
lower the implementation cost of the fuzzy controller and
enhance the design flexibility.

Remark 13. If the function of 𝑐(𝑡) in 𝑤
1
(𝑥
1
(𝑡)) is unknown,

on the basis of the PDC design technique [7–11, 15–20, 22–
28], the fuzzy controller cannot be implemented as 𝑐(𝑡) is
not available. However, using the proposed design method,

0 5 10 15
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Closed-loop response

−12

−10

−8

−6

−4

−2

𝑡 (s)

𝑥
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𝑥3𝑥1

Figure 1:The state responses of system (47) with ℎ
1
= 0.4, ℎ

2
= 1.7.
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−20

−15

−10

−5

𝑢
(
𝑡
)

Figure 2: The control input of system (47) with ℎ
1
= 0.4, ℎ

2
= 1.7.

we can select some simper and well-known membership
functions that are different from those of the fuzzy time delay
models, for example,𝑚

1
(𝑥
1
(𝑡)) and𝑚

2
(𝑥
1
(𝑡)), so as to realize

the fuzzy controller. In other words, the proposed design
approach can be applied even for the fuzzy time delay models
with uncertain grades of membership.

5. Conclusions

In this paper, we study the robust stability and stabilization
problems for general nonlinear fuzzy systems with time
varying state and input delays. A less conservative delay-
dependent robust stability criterion has been obtained by
introducing a novel augmented Lyapunov function with
an additional triple-integral term. Moreover, a new design
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approach different from the traditional PDC design tech-
nique is proposed, which can significantly improve the design
flexibility and reduce the implementation cost of the fuzzy
controller by arbitrarily selecting simple fuzzy membership
functions. Two numerical examples are used to illustrate the
conservativeness and effectiveness of our proposed methods.
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This paper addresses theH
∞
filtering problem for discrete fuzzy stochastic systems with time-varying delay and sensor saturation.

Random noise depending on state and external disturbance is also taken into account. A decomposition approach is employed to
solve the characteristic of sensor saturation. The scaled small gain (SSG) theorem is extended to the stochastic systems, which
is employed to handle with the time-varying delay by transforming the original system into the form of an interconnected
system consisting of two subsystems. By the proposed Lyapunov-Krasovskii function, the scaled small gains of the subsystems
are analyzed, respectively. Sufficient conditions for the stochastic stability of the filtering error system with a prescribedH

∞
level

are established such that the gains of theH
∞
filter can be obtained explicitly. Finally, simulation results are presented to demonstrate

the effectiveness of the proposed approach.

1. Introduction

In recent years, the control and filtering problems for Takagi-
Sugeno (T-S) fuzzy systems, which have been employed to
solve a great deal of issues in control and filtering fields, have
drawn a great attention of many researchers [1–4]. Described
by a set of If-Then rules, the T-S fuzzy system can approximate
any given continuous function in a compact set ofR𝑛 at any
preciseness [5–7]. Consequently, it has become one of the
most useful and popular research platforms in fuzzy logic
control (FLC), since many nonlinear systems can be analyzed
by using the properties of conventional linear systems via
T-S fuzzy model. A great number of significant results have
been reported in the literatures [8–11]. In particular, a great
effort has been devoted to the filtering problems for T-S fuzzy
systems. Among the existing filtering approaches, theKalman
filtering is popular and useful due to its easy implementing
and good performance in many engineering problems [12].
However, the Kalman filtering has strict constraints that a
precise model of the system is available and all error terms
and measurements have Gaussian distributions, which are
hard to reach in many practical dynamics. Meanwhile, H

∞

filtering, which only requires that the noise sources to be
arbitrary signals with bounded energy or bounded average
power instead of Gaussian noises, has arguably become
another useful and important filtering method for T-S fuzzy
systems.

On the other hand, a large number of practical engineer-
ing problems encounter time-delay phenomenon, which is
always a source of poor performance and even instability of
the systems [13, 14]. Over the past few years, a great interest
has been devoted to time-delay systems, andmany significant
results have been reported by the Lyapunov method [3,
15–17]. On the other hand, an input-output (IO) approach
developed from the SSG theorem that has been introduced
for constant delay [18, 19] and then extended to time-varying
delay [20]. In contrast to the time-independent methods [15],
less conservative results could be achieved by this approach,
which analyzes the stability of the system by transforming the
system into the form of two interconnected subsystems [20,
21], especially for small time delays [22]. It should be noted
that a proper approximation to the time delay plays the key
role in this method, andmany approximation approaches are
proposed to pursue smaller approximation error. Recently,
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a method for estimating the time-varying delay by the upper
and lower delay bounds was introduced in [23], which has a
much smaller resulting error than the other one-term ones
[24–26]. This motivates this research to extend this approach
toH
∞

filtering problems for T-S fuzzy systems.
In practical engineering, sensor saturation is one of the

most popular phenomena that limits the performance of
sensors on various aspects significantly.When sensors cannot
provide the enough amplitude signals due to the physical or
safety constraints [18, 27], a complicated controller is needed
for a good resulting performance. In recent years, researchers
have paid a great attention to filtering problems with sensor
saturation [28, 29]. However, it should be noted that in [28]
the output of the system is only the sum of a linear term and a
nonlinear one, whichmeans that the outputmodel is a special
class of nonlinear sensor model, rather than a general form,
and the filtering method in [28] cannot be utilized for the
stochastic systems directly [30, 31].

Motivated by the above reasons, we investigate the H
∞

filtering problem for discrete-time T-S fuzzy stochastic sys-
temswith time-varying delay and senor saturation. A decom-
position approach is applied to handle with the characteristic
of the sensor saturation, and random noise subject to state
and external-disturbance is also considered. A new model
transformation is employed to transform the original system
into a form of two interconnected subsystems. Based on
the SSG theorem developed to stochastic systems and the
proposed Lyapunov-Krasovskii function, the SSG of each
subsystem is analyzed to establish the sufficient conditions
under which the filtering error system is stochastically stable
with a prescribedH

∞
performance level 𝛾. Then, the corre-

spondingH
∞
filter design technique is proposed. Finally, an

illustrative example is presented to show the effectiveness of
the proposed method.

The remainder of this paper is organized as follows. In
Section 2, the problem of H

∞
filtering is formulated for

T-S fuzzy stochastic systems with time-varying delay and
sensor saturation. Section 3 presents the results for H

∞

performance analysis and H
∞

filter design. A numerical
example is provided to demonstrate the effectiveness of the
designedfiltering technique in Section 4, andwe conclude the
paper with Section 5.

Notation. Throughout this paper, R𝑛 represents the 𝑛-
dimensional Euclidean space, R𝑛×𝑚 is the set of all 𝑛 × 𝑚

real matrices, and the superscripts “−1” and “𝑇”, respectively,
stand for the matrix inverse and matrix transpose. Sym{𝐴} is
the shortened notation for 𝐴 + 𝐴

𝑇, and the notation 𝑃 > 0

(resp., 𝑃 ≥ 0), for 𝑃 ∈ R𝑛×𝑛, means that 𝑃 is real symmetric
and positive definite (resp., semidefinite). The symmetric
elements of the symmetric matrix are represented by an
asterisk (∗), and the block diagonal matrices are denoted by
diag{⋅ ⋅ ⋅}. G

1
∘ G
2
means the series connection of mapping

G
1
and G

2
⋅ E{⋅} denotes the expectation operator with

respect to probability measure, and for vector 𝑥(𝑘), ‖𝑥‖
𝐸2

=

E{∑∞
𝑛=0

‖𝑥(𝑛)‖
2
}
1/2.

2. Problem Formulation

We consider the following nonlinear fuzzy dynamic
described by a Takagi-Sugeno (T-S) stochastic model:

𝑅
𝑖: If 𝜁

1
(𝑘) is 𝐹𝑖

1
, 𝜁
2
(𝑘) 𝑖𝑠 𝐹

𝑖

2
and . . ., and 𝜁

𝑠
(𝑘) is 𝐹𝑖

𝑠
,

Then

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏

𝑘
) + 𝐵
𝑖
V (𝑘)

+ [𝐸
𝑖
𝑥 (𝑘) + 𝐺

𝑖
V (𝑘)] 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝜙 (𝐶
𝑖
𝑥 (𝑘)) + 𝐷

𝑖
V (𝑘) ,

𝑧 (𝑘) = 𝐿
𝑖
𝑥 (𝑘) ,

(1)

where𝑅𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛}, denotes the 𝑖th fuzzy inference rule,
𝑛 is the number of the inference rules, 𝐹𝑖

𝑗
, 𝑗 ∈ {1, 2, . . . , 𝑠},

are fuzzy sets, and 𝜁(𝑘) = [𝜁
1
(𝑘), 𝜁
2
(𝑘), . . . , 𝜁

𝑠
(𝑘)] are some

measurable premise variables of the system. 𝑥(𝑘) ∈ R𝑛 is the
state vector, 𝑦(𝑘) ∈ R𝑚 is the measured output, and 𝑧(𝑘) ∈
R𝑝 is the signal to be estimated. 𝐴

𝑖
∈ R𝑛×𝑛, 𝐴

𝑑𝑖
∈ R𝑛×𝑛,

𝐵
𝑖
∈ R𝑛×𝑞, 𝐶

𝑖
∈ R𝑚×𝑛, 𝐷

𝑖
∈ R𝑚×𝑞, 𝐿

𝑖
∈ R𝑝×𝑛, 𝐸

𝑖
∈ R𝑛×𝑛,

and 𝐺
𝑖
∈ R𝑛×𝑞 are known constant matrices. 𝜏

𝑘
is the time-

varying delay satisfying

𝑑
1
≤ 𝜏
𝑘
≤ 𝑑
2
, (2)

where 𝑑
1
> 0 and 𝑑

2
> 0 denote the lower and upper bounds

of the delays, respectively. We define the delay interval as
𝑑
12
= 𝑑
2
− 𝑑
1
.

In the system (1),𝑤(𝑘) is a random process with standard
one dimension on a probability space (Ω,F,P), where Ω
denotes the sample space, and P is the probability measure
on F, which is the 𝜎-algebra of subsets of the sample space.
The sequence of 𝑤(𝑘) is generated by (𝑤(𝑘))

𝑘∈N, where N is
the set of natural numbers, such that E{𝑤(𝑘)} = 0, E{𝑤(𝑘)2} =
1, and E{𝑤(𝑖)𝑤(𝑗)} = 0 for 𝑖 ̸= 𝑗.

The exogenous disturbance V(𝑘) ∈ R𝑞 is assumed
to belong to L

𝐸2
([0,∞);R𝑞), which denotes the space

of 𝑘-dimensional nonanticipatory square-integrable process
𝑓(⋅) = (𝑓(𝑘))

𝑘∈N on N with respect to (F
𝑘∈N), such that

𝑓


2

𝐸2
= E{

∞

∑

𝑘=0

𝑓(𝑘)


2

} =

∞

∑

𝑘=0

E {𝑓(𝑘)


2

} < ∞. (3)

The defuzzified output of the T-S fuzzy system (1) is
inferred as

Σ : 𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) {𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏

𝑘
) + 𝐵
𝑖
V (𝑘)

+ [𝐸
𝑖
𝑥 (𝑘) + 𝐺

𝑖
V (𝑘)] 𝑤 (𝑘)} ,

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) {𝜙 (𝐶

𝑖
𝑥 (𝑘)) + 𝐷

𝑖
V (𝑘)} ,

𝑧 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
𝑥 (𝑘) ,

(4)
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where

ℎ
𝑖
(𝜃
𝑘
) =

𝜇
𝑖
(𝜃
𝑘
)

∑
𝑟

𝑗=1
𝜇
𝑗
(𝜃
𝑘
)
, 𝜇

𝑖
(𝜃
𝑘
) =

𝑠

∏

𝑖=1

𝐹
𝑖

𝑗
(𝜃
𝑗𝑘
) . (5)

Then, we have 𝜇
𝑖
(𝜃
𝑘
) ≥ 0, (𝑖 = 1, 2, . . . , 𝑟) and ∑𝑟

𝑖=1
𝜇
𝑖
(𝜃
𝑘
) >

0, which implies that ℎ
𝑖
(𝜃
𝑘
) ≥ 0 (𝑖 = 1, 2, . . . , 𝑟) and

∑
𝑟

𝑖=1
ℎ
𝑖
(𝜃
𝑘
) = 1.

In this paper, the sensor saturation is described by the
saturation function 𝜙(⋅) : R𝑚 → R𝑚 satisfying 𝜙 ∈ [𝐾

1
, 𝐾
2
],

for some given diagonal matrices 𝐾
1
≥ 0, 𝐾

2
≥ 0 with

𝐾
2
> 𝐾
1
, such that

(𝜙(𝜁) − 𝐾
1
𝜁)
𝑇

(𝜙 (𝜁) − 𝐾
2
𝜁) ≤ 0, ∀𝜁 ∈ R

𝑚
. (6)

Furthermore, the nonlinear function 𝜙(𝜁) can be decom-
posed into a linear and a nonlinear part

𝜙 (𝜁) = 𝜙
𝑠
(𝜁) + 𝐾

1
𝜁, (7)

where the nonlinearity 𝜙
𝑠
(𝜁) belongs to Φ

𝑠
, where

Φ
𝑠
= {𝜙
𝑠
: 𝜙
𝑇

𝑠
(𝜁) (𝜙
𝑠
(𝜁) − 𝐾𝜁) ≤ 0} , 𝐾 ≜ 𝐾

2
− 𝐾
1
. (8)

For the fuzzy system (1), we construct the following
filter with full order to estimate the system states 𝑥(𝑘) from
measured output 𝑦(𝑘):

F :

{{{{

{{{{

{

�̂� (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) {𝐴Fi�̂� (𝑘) + 𝐵Fi𝑦 (𝑘)} ,

�̂� (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
�̂� (𝑘) ,

(9)

where �̂�(𝑘) ∈ R𝑛 is the filter state vector, �̂�(𝑘) ∈ R𝑝 is the
estimate of 𝑧(𝑘), and 𝐴

𝐹
∈ R𝑛×𝑛 and 𝐵

𝐹
∈ R𝑛×𝑚 are the filter

gains to be determined.
Define the following error variables:

𝑒
𝑥
(𝑘) = 𝑥 (𝑘) − �̂� (𝑘) , 𝑒 (𝑘) = [𝑥

𝑇
(𝑘) 𝑒
𝑇

𝑥
(𝑘)]
𝑇

,

𝑒
𝑧
(𝑘) = 𝑧 (𝑘) − �̂� (𝑘) .

(10)

Combining the system (1) and the filter (9) yields the filtering
error system as follows:

E :

{{{{{{{{{

{{{{{{{{{

{

𝑒 (𝑘+1) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

{𝐴
𝑖𝑗
𝑒 (𝑘)+𝐴

𝑑𝑖
𝐼
𝐾
𝑒 (𝑘 − 𝜏

𝑘
)

+𝐵
𝑖𝑗
V (𝑘) [𝐸

𝑖
𝐼
𝐾
𝑒 (𝑘)+𝐺

𝑖
V (𝑘)] 𝑤 (𝑘)

+𝐵Fi𝜙 (𝐶𝑗𝑒 (𝑘))} ,

𝑒
𝑧
(𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
𝑒 (𝑘) ,

(11)

where

𝐴
𝑖𝑗
= [

𝐴
𝑖

0

𝐴
𝑖
− 𝐴Fi − 𝐵Fi𝐾1𝐶𝑗 𝐴Fi

] , 𝐴
𝑑𝑖
= [

𝐴
𝑑𝑖

𝐴
𝑑𝑖

] ,

𝐵
𝑖𝑗
= [

𝐵
𝑖

𝐵
𝑖
− 𝐵Fi𝐷𝑗

] , 𝐸
𝑖
= [

𝐸
𝑖

𝐸
𝑖

] , 𝐺
𝑖
= [

𝐺
𝑖

𝐺
𝑖

] ,

𝐵Fi = [
0

−𝐵Fi
] , 𝐶

𝑗
= [𝐶𝑗 0] ,

𝐿
𝑖
= [0 𝐿

𝑖] , 𝐼
𝐾
= [𝐼𝑛 0] .

(12)

Furthermore, the following definitions will be used in this
paper.

Definition 1 (see [32]). For the system in (1) with 𝜔(𝑘) = 0,
the system is stochastically stable if for any 𝜓(𝑘) ∈ R𝑛,

E{
∞

∑

𝑘=0

‖𝑥(𝑘)‖
2
} ≤ 𝜃E {‖𝑥(0)‖2} . (13)

Definition 2 (see [33]). A mapping G : 𝑢(𝑘) → 𝑦(𝑘) is said
to be input-output stable in the mean square if there exists
𝛾 ≥ 0, such that

𝑦(𝑘)
𝐸2

= ‖G(𝑢)‖𝐸2 ≤ 𝛾‖𝑢(𝑘)‖𝐸2
. (14)

Then, the main objective of this paper is as follows.

H
∞

Filtering Problem. Given a scalar 𝛾 > 0, the gains𝐴Fi and
𝐵Fi of the filter (9) are designed such that for any time-delay
𝜏(𝑘) satisfying (2), the filter error system (11) is stochastically
stable under V(𝑘) = 0, and for any given integer 𝛾, the
followingH

∞
performance index
‖𝑧 (𝑘) − �̂� (𝑘)‖

𝐸2
≤ 𝛾‖V (𝑘)‖𝐸2 (15)

holds for any function 𝜙(⋅) ∈ [𝐾
1
, 𝐾
2
].

3. Filtering Performance Analysis

In this section, we focus on the filter performance analysis
based on the developed SSG theorem. By the developed SSG
theorem to the stochastic systems and a new model transfor-
mation to the system E in (11), the sufficient conditions are
proposed, under which the system E is stochastically stable
with a prescribedH

∞
performance index.

3.1. SSGTheorem for Stochastic Systems

Lemma 3 (stochastic small gain theorem [34]). Consider the
following interconnected system consisting of two subsystems in
Figure 1:

S
1
: 𝜀 (𝑡) = G𝜖 (𝑡) , S

2
: 𝜖 (𝑡) = Δ𝜀 (𝑡) . (16)

Then, the closed loop systems are input-output stable in mean
square for all the subsystems G and Δ satisfying

G(𝑢1)
𝐸2

≤ 𝑘
1

𝑢1
𝐸2

, 𝑘
1
> 0,

Δ (𝑢2)
𝐸2

≤ 𝑘
2

𝑢2
𝐸2

, 𝑘
2
> 0

(17)

if 𝑘
1
𝑘
2
< 1.
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𝑦2

𝑦 𝑦
1

𝑢2

𝑢1

+

𝑢
−

G

Δ

Figure 1: The interconnection subsystems.

Proof. Considering (16) yields

𝑦
𝐸2

≤ 𝑘
1

𝑢1
𝐸2

= 𝑘
1

𝑢 − Δ(𝑦)
𝐸2

≤ 𝑘
1
(‖𝑢‖𝐸2

+ 𝑘
2

𝑦
𝐸2

) .

(18)

Obviously,

𝑦
𝐸2

≤
𝑘
1

1 − 𝑘
1
𝑘
2

‖𝑢‖𝐸2
, (19)

which implies that the closed loop is input-output stable in
mean square.

Corollary 4 (stochastic SSG theorem [34]). Consider the
system described in (16). The system is input-output stable in
mean square if ‖𝑇

𝜖
∘ G ∘ 𝑇

𝜀
‖ < 1 holds for some nonsingular

matrices 𝑇
𝑦
and 𝑇

𝛿
with ‖𝑇

𝜀
∘ Δ ∘ 𝑇

𝜖
‖ ≤ 1.

The proof of Corollary 4 can be readily obtained by
following the similar lines of Lemma 3.

3.2. A New Model Transformation. To transform the systems
(11) into the form of (16), we express 𝑥(𝑘 − 𝜏

𝑘
) as

𝑥 (𝑘 − 𝜏
𝑘
) =

1

2
𝑥 (𝑘 − 𝑑

1
) +

1

2
𝑥 (𝑘 − 𝑑

2
) +

𝑑
12

2
𝜖 (𝑘) , (20)

where (1/2)[𝑥(𝑘 − 𝑑
1
) + 𝑥(𝑘 − 𝑑

2
)] is the approximation of

𝑥(𝑘 − 𝜏
𝑘
), and (𝑑

12
/2)𝜖(𝑘) denotes the approximation error.

Then, the system E can be rewritten as follows:

E :

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑒 (𝑘+1) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

{𝐴
𝑖𝑗
𝑒 (𝑘) +

1

2
𝐴
𝑑𝑖

× [𝑥 (𝑘−𝑑
1
)+𝑥 (𝑘−𝑑

2
) + 𝑑
12
𝜖 (𝑘)]

+𝐵
𝑖𝑗
V (𝑘) +[𝐸

𝑖
𝐼
𝐾
𝑒 (𝑘) +𝐺

𝑖
V (𝑘)]

× 𝑤 (𝑘) , +𝐵Fi𝜙 (𝐶𝑗𝑒 (𝑘)) } ,

𝑒
𝑧
(𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
𝑒 (𝑘) .

(21)

Define 𝜀(𝑘) = E{𝑥(𝑘 + 1)} − 𝑥(𝑘), and we have

𝜖 (𝑘) =
2

𝑑
12

[𝑥 (𝑘 − 𝜏
𝑘
) −

1

2
𝑥 (𝑘 − 𝑑

1
) −

1

2
𝑥 (𝑘 − 𝑑

2
)]

=
1

𝑑
12

[

[

𝑘−𝜏𝑘−1

∑

𝑖=𝑘−𝑑2

𝜀 (𝑖) −

𝑘−𝑑1−1

∑

𝑖=𝑘−𝜏𝑘

𝜀 (𝑖)]

]

=
1

𝑑
12

[

[

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

𝛽 (𝑖) 𝜀 (𝑖)]

]

,

(22)

where

𝛽 (𝑖) ≜ {
1, when 𝑖 ⩽ 𝑘 − 𝜏

𝑘
− 1,

−1, when 𝑖 > 𝑘 − 𝜏
𝑘
− 1.

(23)

Then, obviously the system (21) can be rewritten in the form
as follows:

E
1
: 𝜎 (𝑘) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

G𝜉 (𝑘) , E
2
: 𝜖 (𝑘) = Δ𝜀 (𝑘) , (24)

where

𝜉 (𝑘) = [𝑒
𝑇
(𝑘) 𝑥

𝑇
(𝑘−𝑑

1
) 𝑥
𝑇
(𝑘−𝑑

2
) 𝜖 (𝑘) V (𝑘) 𝜙

𝑠
(𝐶
𝑗
𝑥(𝑘))]

𝑇

,

𝜎 (𝑘) = [𝑒
𝑇
(𝑘 + 1) 𝜀

𝑇
(𝑘) 𝑒

𝑇

𝑧
(𝑘)]
𝑇

, G = [G𝑇
1

G𝑇 G𝑇
3
]
𝑇

,

G
1
= [𝐴
𝑖𝑗

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

𝐵
𝑖𝑗

𝐵Fi] ,

G
2
= [𝐴

𝑖
− 𝐼 0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

𝐵
𝑖
0] ,

G
3
= [𝐿
𝑖
0
𝑝×(3𝑛+𝑚+𝑞)

] .

(25)

Furthermore, the SSGof themappingΔdenoted by 𝛾(Δ
𝑇
) has

an upper bound.

Lemma 5. 𝛾(Δ
𝑇
) has an upper bound

𝛾 (Δ
𝑇
) = sup

‖𝑇𝜖 (𝑘)‖𝐸2

‖𝑇𝜀 (𝑘)‖𝐸2

≤ 1. (26)

Proof. According to the fact that |𝛽(𝑖)| = 1, by using Jensen’s
inequality, it can be derived under zero initial condition

‖𝑇𝜖(𝑘)‖
2

𝐸2
= E

{

{

{

∞

∑

𝑗=0

[𝜖
𝑇
(𝑗) 𝑍𝜖 (𝑗)]

}

}

}

≤
2

𝑑
2

12

E
{

{

{

∞

∑

𝑖=0

[

[

𝑑
12

𝑖−𝑑1−1

∑

𝑗=𝑖−𝑑2

𝛽
2
(𝑗) 𝜖
𝑇
(𝑗) 𝜖 (𝑗)]

]

}

}

}
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=
1

𝑑
12

E
{

{

{

−𝑑1−1

∑

𝑗=−𝑑2

∞

∑

𝑖=0

𝜖
𝑇
(𝑖 + 𝑗) 𝜖 (𝑖 + 𝑗)

}

}

}

≤
1

𝑑
12

E
{

{

{

−𝑑1−1

∑

𝑗=−𝑑2

∞

∑

𝑖=0

𝜖
𝑇
(𝑖) 𝜖 (𝑖)

}

}

}

≤ E
{

{

{

∞

∑

𝑗=0

[𝜀
𝑇
(𝑗) 𝑍𝜀 (𝑗)]

}

}

}

= ‖𝑇𝜀(𝑘)‖
2

𝐸2
,

(27)

where 𝑍 = 𝑇
𝑇
𝑇, which implies 𝛾(Δ

𝑇
) ≤ 1. The proof is

completed.

FromLemmas 3 and 5, the systemE in (11) is input-output
stable in mean square if the SSG of the subsystemE

1
satisfies

the conditions in Lemma 3, which will be investigated in the
following section.

3.3. H
∞

Performance Analysis. In this section, the H
∞

performance of the filtering error system is analyzed by
the SSG of the subsystem E

1
in (24) in order to establish

the conditions under which the H
∞

performance index is
guaranteed for the filtering error system (11).

Theorem 6. Suppose that the system matrices 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐵
𝑖
, 𝐶
𝑖
,

𝐷
𝑖
, and 𝐿

𝑖
represent a fixed system. Given the filter matrices

𝐴Fi, 𝐵Fi and integers 𝑑
2
> 𝑑
1
≥ 0 and a constant 𝛾 > 0,

the filtering error system (21) is input-output stable in mean
square with anH

∞
performance attention level 𝛾 for any time-

varying delay satisfying (2) if there exist matrices 𝑃 > 0, 𝑄
𝑖
>

0, 𝑖 = 1, 2, such that

Ψ
𝑖𝑗
≜ [

Ξ
1

[Γ
𝑇

2
𝑍 Γ
𝑇

3
Γ
𝑇

1
𝑃]

∗ diag {−𝑍, −𝐼
𝑝
, −𝑃}

] < 0, (28)

where

Ξ
1
= [

Ξ
11

[0 0 0 𝐼
𝑇

𝑘
𝐸
𝑇

𝑖
𝑃𝐺
𝑖
𝐼
𝑇

𝑘
𝐶
𝑇

𝑗
𝐾
𝑇
]

∗ diag {−𝑄
1
, −𝑄
2
, −𝑍, 𝛼

𝑖
, −2𝐼
𝑚
}
] ,

Γ
1
= [𝐴
𝑖𝑗

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

1

2
𝑑
12
𝐴
𝑑𝑖

𝐵
𝑖𝑗
𝐵Fi] ,

Γ
2
= [𝐴
𝑖
− 𝐼 0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

1

2
𝑑
12
𝐴
𝑑𝑖

𝐵
𝑖
0] ,

Γ
3
= [𝐿
𝑖
0
𝑝×(3𝑛+𝑚+𝑞)

] , 𝛼
𝑖
= −𝛾
2
𝐼
𝑞
+ 𝐺
𝑇

𝑖
𝑃𝐺
𝑖
,

Ξ
11
= −𝑃 + 𝐼

𝑇

𝐾
(𝑄
1
+ 𝑄
2
+ 𝐸
𝑇

𝑖
𝑃𝐸
𝑖
) 𝐼
𝐾
.

(29)

Proof. Choose the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) (30)

with

𝑉
1
(𝑘) = 𝑒

𝑇
(𝑘) 𝑃𝑒 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝑑1

𝑥
𝑇
(𝑖) 𝑄
1
𝑥 (𝑖) +

𝑘−1

∑

𝑖=𝑘−𝑑2

𝑥
𝑇
(𝑖) 𝑄
2
𝑥 (𝑖) ,

(31)

where 𝑃 > 0 and 𝑄
𝑖
> 0, 𝑖 = 1, 2 are the matrices to be

determined.
Define Δ𝑉(𝑘) = E{𝑉(𝑘 + 1)} − 𝑉(𝑘), then we have

Δ𝑉
1
(𝑘)

= E {𝑒𝑇 (𝑘+1) 𝑃𝑒 (𝑘+1)}−𝑒𝑇 (𝑘) 𝑃𝑒 (𝑘)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

{(
𝜉
𝑇
(𝑘) Γ
𝑇

1
𝑃Γ
1
𝜉 (𝑘)−𝑒

𝑇
(𝑘) 𝑃𝑒 (𝑘)

−2𝜙
𝑠
(𝐶
𝑗
𝑥 (𝑘)) [𝜙

𝑠
(𝐶
𝑗
𝑥 (𝑘))−𝐾𝐶

𝑗
𝑥 (𝑘)]

)} ,

Δ𝑉
2
(𝑘) = 𝑥

𝑇
(𝑘) 𝑄
1
𝑥 (𝑘) − 𝑥

𝑇
(𝑘 − 𝑑

1
) 𝑄
1
𝑥 (𝑘 − 𝑑

1
)

+ 𝑥
𝑇
(𝑘) 𝑄
2
𝑥 (𝑘) − 𝑥

𝑇
(𝑘 − 𝑑

2
) 𝑄
2
𝑥 (𝑘 − 𝑑

2
) .

(32)

Then, define

𝐽
𝑠
= E{

∞

∑

𝑘=0

[𝜀
𝑇
(𝑘) 𝑍𝜀 (𝑘) − 𝜖

𝑇
(𝑘) 𝑍𝜖 (𝑘)

+𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2
V
𝑇
(𝑘) V (𝑘)] } ,

(33)

which together with (30) yields

𝐽
𝑠
≤ 𝐽
𝑠
+ 𝑉 (∞) − 𝑉 (0)

= E{
∞

∑

𝑘=0

(
Δ𝑉 (𝑘) + 𝜀

𝑇
(𝑘) 𝑍𝜀 (𝑘) − 𝜖

𝑇
(𝑘) 𝑍𝜖 (𝑘)

+𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2V𝑇 (𝑘) V (𝑘)
)}

= E
{

{

{

∞

∑

𝑘=0

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

[

[

𝜉
𝑇
(𝑘)(

Ξ
1
+ Γ
𝑇

1
𝑃Γ
1

+Γ
𝑇

2
𝑍Γ
2
+ Γ
𝑇

3
Γ
3

)𝜉 (𝑘)]

]

}

}

}

.

(34)

By the Schur complement, it can be verified that 𝐽
𝑠
< 0 is

guaranteed byΨ
𝑖𝑗
< 0, which implies that if𝑍 = 𝑇

𝑇
𝑇, we have

𝛾(G
𝑇
) < 1, where G is defined in (24). According to Lemmas

3 and 5, it is shown that the system E in (11) is input-output
stable in mean square.

Furthermore, 𝐽
𝑠
< 0 implies that

‖𝑇𝜀(𝑘)‖
2

𝐸2
+
𝑒𝑧(𝑘)



2

𝐸2
< ‖𝑇𝜖(𝑘)‖

2

𝐸2
+ 𝛾
2
‖V(𝑘)‖

2

𝐸2
, (35)

which together with (30) yields ‖𝑒
𝑧
(𝑘)‖
2

𝐸2
< 𝛾
2
‖V(𝑘)‖2

𝐸2
. The

proof is completed.

Theorem 6 shows the conditions under which the system
E in (11) is input-output stable in mean square with a
prescribedH

∞
performance index.Moreover, the conditions

for stochastic stability of the system E can be reached by
the Lyapunov-Krasovskii functional method, which will be
discussed in the following theorem.
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Theorem 7. For the forward system E in (24), if Theorem 6
holds, then, the system E is stochastically stable for V(𝑘) = 0.

Proof. For the LKF defined in (30), we have

Δ𝑉
𝑐
(𝑘) = Δ𝑉 (𝑘) + 𝜀

𝑇
(𝑘) 𝑍𝜀 (𝑘) − 𝜖

𝑇
(𝑘) 𝑍𝜖 (𝑘)

= 𝜉
𝑇

1
(𝑘) (Ξ̃

1
+ Γ̃
𝑇

1
𝑃Γ̃
1
+ Γ̃
𝑇

2
𝑍Γ̃
2
) 𝜉
1
(𝑘) ,

(36)

with

𝜉
1
(𝑘) = [𝑒

𝑇
(𝑘) 𝑥

𝑇
(𝑘 − 𝑑

1
) 𝑥
𝑇
(𝑘 − 𝑑

2
) 𝜖(𝑘) 𝜙

𝑠
(𝐶
𝑗
𝑥(𝑘))]

𝑇

,

Ξ̃
1
= [

Ξ
11

[0 0 0 𝐼
𝑇

𝑘
𝐶
𝑇

𝑗
𝐾
𝑇
]

∗ diag {−𝑄
1
, −𝑄
2
, −𝑍, −2𝐼

𝑚
}
] ,

Γ̃
1
= [𝐴
𝑖𝑗

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

𝐵Fi] ,

Γ̃
2
= [𝐴
𝑖
− 𝐼 0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

0] ,

(37)

where Ξ
11
is defined in (28).

Define (Ξ̃
1
+ Γ̃
𝑇

1
𝑃Γ̃
1
+ Γ̃
𝑇

2
𝑍Γ̃
2
) asΦ

𝑖𝑗
. It can be shown that

Φ
𝑖𝑗
< 0, if Theorem 6 holds. Then, we can always find a small

scalar 𝜆 > 0, such that

Φ
𝑖𝑗
< [

−𝜆𝐼
𝑛
0

0 0
] , (38)

which implies that

E {𝑉
𝑐
(𝑘 + 1) − 𝑉

𝑐
(𝑘)} ≤ −𝜆𝑥

𝑇
(𝑘) 𝑥 (𝑘) < 0. (39)

For any positive integer 𝑅, by summing up the inequality
on both sides from 𝑘 = 0, . . . , 𝑅, we obtain

E {𝑉
𝑐
(𝑅) − 𝑉

𝑐
(0)} ≤ −𝜆

𝑅

∑

𝑘=0

𝑥
𝑇
(𝑘) 𝑥 (𝑘) < 0, (40)

which implies that when 𝑅 → ∞,
∞

∑

𝑘=0

E {𝑥𝑇 (𝑘) 𝑥 (𝑘)} ≤ 1

𝜆
E {𝑉
𝑐
(0) − 𝑉

𝑐
(∞)}

≤
1

𝜆
E {𝑉
𝑐
(0)} < 𝜃E {‖𝑥(0)‖2} ,

(41)

which indicates that the systems in (24) are stochastically
stable according to Definition 1. The proof is completed.

Remark 8. It is well known that free-weighting matrices are
introduced a lot to estimate the upper bound of the term
(1/𝑑
12
) ∑
−𝑑1−1

𝑖=−𝑑2
𝜖
𝑇
(𝑘 + 𝑖)𝑍𝜖(𝑘 + 𝑖), while in this paper, Jensen’s

inequality is employed instead of such weighting matrices,
which reduce the NoV of the proposed conditions to 3𝑛2+3𝑛.
It is remarkably smaller than the results in some existing
literatures, such as 9𝑛

2
+ 3𝑛 [35], and 11𝑛

2
+ 2.5𝑛 [16],

13𝑛
2
+ 5𝑛 [36], and 31𝑛2 + 7𝑛 [17], which demonstrates the

computational advantage of the proposed approach obviously
[24].

4. H
∞

Filter Design

This section is devoted to the H
∞

filter design problem for
the system (1) based on Theorem 6. Sufficient conditions for
the existence of the H

∞
filter are provided in the following

theorem.

Theorem9. Consider the discrete-time fuzzy stochastic system
in (1), for a given constant 𝛾 > 0, if there exist matrices 0 < 𝑋 ∈

R𝑛×𝑛, 0 < 𝑌 ∈ R𝑛×𝑛, 𝐴Fi ∈ R𝑛×𝑛, and 𝐵Fi ∈ R𝑛×𝑚, such that
the following LMI holds:

Ψ̃
𝑖𝑗
≜ [

[

Ξ̃
1
[Γ
𝑇

2
𝑍 Γ
𝑇

3
Γ
𝑇

𝐶
𝑋 Γ
𝑇

𝐶
𝑌 + Γ
𝑇

𝐹
]

∗ diag {−𝑍, −𝐼
𝑝
, −𝑋, −𝑌}

]

]

< 0, (42)

where

Ξ̃
1
= [

[

Ξ̃
11

[0𝑛×4𝑛 𝐸
𝑇

𝑖
(𝑋 + 𝑌)𝐺

𝑖
𝐶
𝑇

𝑗
𝐾
𝑇
]

∗ diag {𝑌, −𝑄
1
, −𝑄
2
, −𝑍, �̃�

𝑖
, −2𝐼
𝑚
}

]

]

,

Γ
𝐶
= [𝐴
𝑖
0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

1

2
𝑑
12
𝐴
𝑑𝑖

𝐵
𝑖
0] ,

Γ
𝐹
= [−𝐵Fi𝐾1𝐶𝑗 − 𝐴Fi 𝐴Fi 0

𝑛×3𝑛
−𝐵Fi𝐷𝑗 −𝐵Fi] ,

�̃�
𝑖
= −𝛾
2
𝐼
𝑞
+ 𝐺
𝑇

𝑖
(𝑋 + 𝑌)𝐺

𝑖
,

Ξ̃
11
= −𝑋 + 𝑄

1
+ 𝑄
2
+ 𝐸
𝑇

𝑖
(𝑋 + 𝑌) 𝐸

𝑖
,

(43)

then, the system E in (11) is stochastically stable with H
∞

performance level 𝛾, and the filter gains are given by

𝐴Fi = 𝑌
−1
𝐴Fi, 𝐵Fi = 𝑌

−1
𝐵Fi. (44)

Proof. Define 𝑃 introduced inTheorem 6 as

𝑃 = [
𝑋 0

0 𝑌
] , (45)

where 0 < 𝑋 ∈ R𝑛×𝑛 and 0 < 𝑌 ∈ R𝑛×𝑛 are to be determined
such that solvability of (28) is satisfied.

Then, we have

[
𝐴
𝑇

𝑖
𝐴
𝑇

𝑖
− 𝐴
𝑇

Fi − 𝐶
𝑇

𝑗
𝐾
𝑇

1
𝐵
𝑇

Fi
0 𝐴

𝑇

Fi
] [

𝑋 0

0 𝑌
]

= [
𝐴
𝑇

𝑖
𝑋 𝐴
𝑇

𝑖
𝑌 − 𝐴

𝑇

Fi𝑌 − 𝐶
𝑇

𝑗
𝐾
𝑇

1
𝐵
𝑇

Fi𝑌

0 𝐴
𝑇

Fi𝑌
] ,

[𝐵
𝑇

𝑖
𝐵
𝑇

𝑖
− 𝐷
𝑇

𝑗
𝐵
𝑇

Fi] [
𝑋 0

0 𝑌
]

= [𝐵
𝑇

𝑖
𝑋 𝐵
𝑇

𝑖
𝑌 − 𝐷

𝑇

𝑗
𝐵
𝑇

Fi𝑌] .

(46)

Define 𝐴Fi = 𝑌𝐴Fi, 𝐵Fi = 𝑌𝐵Fi, which together with (28)
yields (42). The proof is completed.
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5. Numerical Example

In this section, an example is provided to demonstrate
effectiveness of the filter design method proposed in the
preceding sections.

Example 10. Consider the system (1) with the following
parameters:

𝐴
1
= [

[

−0.28 −0.01 −0.02

−0.2 −0.25 −0.29

0.03 −0.04 −0.23

]

]

,

𝐴
𝑑1
= [

[

0.01 0.02 0

0.01 0 0.01

0 0 −0.01

]

]

,

𝐸
1
= [

[

−0.11 0.1 1.66

0 0.46 −0.47

0.47 −0.11 −0.43

]

]

, 𝐵
1
=[

[

−2.02

3.83

1.39

]

]

,

𝐶
1
= [

−0.11 0.05 −0.1

0.69 0.35 0.48
] , 𝐿

1
=[

0.1 0.1 0.1

0.12 0.1 0.19
] ,

𝐺
1
= [−0.21 0.61 0.15]

𝑇

, 𝐷
1
=[0.3 −0.3]

𝑇

,

𝐴
2
= [

[

−0.35 0.0 0.01

−0.59 −0.24 0.02

0.1 −0.06 −0.72

]

]

,

𝐴
𝑑2
= [

[

0.01 0.02 0

0.01 0 0.01

0 0 0.01

]

]

,

𝐸
2
= [

[

−0.12 −0.11 0.38

0.11 0.64 −0.18

−0.31 −0.63 −0.6

]

]

, 𝐵
2
=[

[

2.04

−3.25

−0.93

]

]

,

𝐶
2
= [

−0.2 −0.1 −0.2

0.5 0.2 0.21
] , 𝐿

2
=[

0.2 0.19 0.2

0.1 0.1 0.2
] ,

𝐺
2
= [−0.43 2.11 0.51]

𝑇

, 𝐷
2
=[0.1 0.47]

𝑇

,

(47)

and the saturation parameters are selected as

𝐾
1
= [

0.6 0

0 0.7
] , 𝐾

2
= [

0.8 0

0 0.8
] , (48)

the membership functions are

ℎ
1
(𝜃) =

1 − sin (𝑥
1
)

2
, ℎ

1
(𝜃) =

1 + sin (𝑥
1
)

2
, (49)

and the noises V(𝑘) are assumed to be V(𝑘) = 1/(0.1 + 𝑘
2
),

which satisfy the constraint in (3), and set 𝑑
1
= 1 and 𝑑

2
= 2.
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To design the H
∞

filter, by solving the LMI condition
(42) under the prescribed disturbance level 𝛾 = 1.2, it can
be obtained that

𝐴
𝐹1
= [

[

−0.0001 −0.0008 0.0021

0.0001 0.0005 −0.0013

0.0000 0.0002 −0.0006

]

]

,

𝐵
𝐹1
= [

[

−0.5877 1.4425

1.2489 −2.1186

0.5082 −0.5446

]

]

,
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𝐴
𝐹2
= [

[

−0.0002 −0.0005 0.0012

0.0002 0.0000 0.0002

0.0000 0.0001 −0.0002

]

]

,

𝐵
𝐹2
= [

[

1.0949 2.0782

−0.9802 −3.5244

0.0898 −1.1212

]

]

.

(50)

Assume the sensor saturation as

𝜙 (𝑦) =
𝐾
1
+ 𝐾
2

2
𝑦 +

𝐾
2
− 𝐾
1

2
sin (𝑦) , (51)

which satisfies (8), and the initial conditions as 𝑥(0) =

[1.5 0 − 1]
𝑇, 𝑥(−1) = 𝑥(−2) = [1 0.1 − 0.6]

𝑇. By
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calculation, it can be obtained that the ‖𝑒
𝑧
(𝑘)‖
2

𝐸2
= 0.0095

and ‖V(𝑘)‖2
𝐸2
= 3.0810 that yields 𝛾 = 0.0555 which is below

the given 𝛾 = 1.2, which demonstrates effectiveness of the
proposed filter design. In addition, the trajectories of state
variable 𝑥(𝑘) and its estimate �̂�(𝑘) are shown in Figures 2, 3,
and 4, 𝑧(𝑘) and its estimate �̂�(𝑘) are given in Figures 5 and 6,
and 𝑒
𝑧
(𝑘) = 𝑧(𝑘) − �̂�(𝑘) is provided in Figure 7.

6. Conclusion

This paper addresses theH
∞

filtering problem for T-S fuzzy
systems subject to sensor saturation. The plant is consid-
ered with random noise depending on state and external-
disturbance. The system is transformed into an input-output
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form consisted of two interconnected subsystems. Based on
the SSG theorem developed to stochastic systems and the
proposed Lyapunov-Krasovskii function, sufficient condi-
tions under which the H

∞
filter can be achieved with the

prescribedH
∞

performance index are established. Finally, a
numerical example is presented to demonstrate the effective-
ness of the proposed filter design scheme.
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An observer-based robust adaptive fuzzy control scheme is presented to tackle the problem of the robust stability and the
tracking control for a class of multiinput multioutput (MIMO) nonlinear uncertain systems with delayed output. Because the
nonlinear system functions and the uncertainties of the controlled system including structural uncertainties are supposed to be
unknown, fuzzy logic systems are utilized to approximate these nonlinear system functions and the upper bounded functions of
the uncertainties. Moreover, the upper bound of uncertainties caused by these fuzzy modeling errors is also estimated. In addition,
the state observer based on state variable filters is designed to estimate all states which are not available for measurement in the
controlled system. By constructing an appropriate Lyapunov function and using strictly positive-real (SPR) stability theorem, the
proposed robust adaptive fuzzy controller not only guarantees the robust stability of a class of multivariable nonlinear uncertain
systems with delayed output but also maintains a good tracking performance. Finally, some simulation results are illustrated to
verify the effectiveness of the proposed control approach.

1. Introduction

Controller design for nonlinear systems has been given a
lot of attention in the control community during the last
two decades. Recently, the methods of feedback lineariza-
tion have been successfully applied in the development of
controllers for a class of nonlinear systems [1, 2]. However,
the above techniques can be only applied to nonlinear
systems whose dynamics are exactly known. Actually, it is
difficult to obtain the exact construction of the systems
in most of industrial and engineering systems because of
the complexity of systems. In addition, the existence of
uncertainties such as parameter uncertainties, modeling
errors, and external disturbances may lead to poor per-
formance and instability [3–8]. Hence, the study of robust
stability of nonlinear uncertain systems in the presence of
uncertainties is an important topic for the control design
engineer.

Recently, fuzzy control technique has been considered
extensively in the control problems of complex and ill-defined
nonlinear systems in the presence of incomplete knowledge

of the plant [3, 9–15]. However, the above adaptive fuzzy con-
trollers are only limited to the systems under the conservative
assumption that system states are available for measurement.
In order to relax this restriction, an observer-based fuzzy
adaptive output feedback control for the SISO nonlinear
systems is presented to tackle the nonlinear systems whose
states are not available [16–23]. So far, few research results
have been extended to MIMO nonlinear systems [24, 25].
The common feature of most previous results [16, 19, 24,
25] is the assumption that the controlled systems are free
of uncertainties. Although the above restrictive assumption
can be relaxed in [17, 18, 20–23], the uncertainties are
assumed to be a bounded external disturbance.Therefore, the
motivation of this paper is to synthesize an observer-based
robust adaptive fuzzy control scheme to dealwith the tracking
control problem for a class of MIMO nonlinear uncertain
systems with delayed output in the presence of uncertainties
including the structural uncertainty.

On the other hand, the design problem of nonlinear time-
delay systems has received considerable attention in [26–
31] because time-delay characteristic often encountered in
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various engineering systems may not only cause instability
but also lead to serious deterioration in the performance of
the plants. By employing the input-output approach and the
scaled small gain theorem, the filtering problem for discrete-
time T-S fuzzy systems with time-varying delay has been
studied [26]. The robust 𝐻

∞
control problem for stochastic

systems with a delay in the state is investigated in [28],
and the results are further extended to the stochastic time-
delay systems with parameter uncertainties. The problems
of stability analysis and robust control for uncertain systems
with input delay were examined in [29, 31]. In [27], the design
scheme of output feedback controller for a class of SISO
nonlinear systems with delayed output was proposed to con-
struct a delay-dependent controller making the closed-loop
system globally asymptotically stable. In [30], a new approach
for the construction of a state observer for SISO nonlinear
systems with delayed output was presented to ensure the
global exponential convergence to zero of the observation
error. It should be pointed out that the uncertainty was not
taken into account in [27, 30]. Therefore, the robust control
problem of MIMO nonlinear systems with delayed output
in the presence of uncertainties will be considered in this
paper.

In this paper, the problem of controller design for a class
of MIMO nonlinear uncertain output-delay systems whose
states are not available is considered. The main features of
the proposed observer-based robust adaptive fuzzy controller
are summarized as follows. (i) Fuzzy logic systems with some
appropriate learning laws are applied to approximate the
nonlinear system functions and the upper bounded functions
of the uncertainties including the structural uncertainty.
(ii) The unknown upper bound of the uncertainties caused
by approximation (or fuzzy modeling) error is estimated
by a simple adaptive law. (iii) The state observer based
on state variable filters is designed to estimate all states
which are not available for measurement in the controlled
system. (iv) By constructing an appropriate Lyapunov func-
tion and using strictly positive-real (SPR) stability theorem,
the proposed robust adaptive fuzzy output feedback con-
troller can not only guarantee the robust stability of the
whole closed-loop system but also obtain the good tracking
performance.

This paper is organized as follows: the description of
the system and the concept of fuzzy logic systems are given
together in Section 2. Section 3 proposes an observer-based
robust adaptive fuzzy output feedback controller to achieve
the purpose of asymptotic stabilization and output tracking
performance of the whole closed-loop MIMO nonlinear
uncertain systems with delayed output. In Section 4, a series
of simulation results are illustrated to show the effectiveness
of the proposed control scheme. Finally, a conclusion is given
in Section 5.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation. Consider a class of MIMO non-
linear uncertain systems with delayed output in the following
form:

̇𝑥
11
(𝑡) = 𝑥

12
(𝑡) ,

̇𝑥
12
(𝑡) = 𝑥

13
(𝑡) ,

...

̇𝑥
1(𝑛1−1)

(𝑡) = 𝑥
1𝑛1

(𝑡) ,

̇𝑥
1𝑛1

(𝑡) = 𝑓
1
(x (𝑡)) +

𝑝

∑

𝑗=1

𝑔
1𝑗
(x (𝑡)) 𝑢

𝑗
(𝑡) + Δ𝜙

1
(x (𝑡)) ,

...

̇𝑥
𝑝1

(𝑡) = 𝑥
𝑝2

(𝑡) ,

̇𝑥
𝑝2

(𝑡) = 𝑥
𝑝3

(𝑡) ,

...

̇𝑥
𝑝(𝑛𝑝−1)

(𝑡) = 𝑥
𝑝𝑛𝑝

(𝑡) ,

̇𝑥
𝑝𝑛𝑝

(𝑡) = 𝑓
𝑝
(x (𝑡)) +

𝑃

∑

𝑗=1

𝑔
𝑝𝑗
(x (𝑡)) 𝑢

𝑗
(𝑡) + Δ𝜙

𝑝
(x (𝑡)) ,

𝑦
1
(𝑡) = 𝑥

11
(𝑡 − 𝜏) ,

...

𝑦
𝑝
(𝑡) = 𝑥

𝑝1
(𝑡 − 𝜏) ,

(1)

or equivalently

̇x (𝑡) = Ax (𝑡) + B [F (x (𝑡)) + G (x (𝑡)) u (𝑡) + ΔΦ (x (𝑡))] ,

y (𝑡) = Cx (𝑡 − 𝜏) ,

(2)

where

F (x) = [𝑓
1
(x), . . . , 𝑓

𝑝
(x)]
𝑇

∈ 𝑅
𝑝
,

G (x) = [G
1
(x) , . . . ,G

𝑝
(x)] ∈ 𝑅

𝑝×𝑝
,

G
𝑖
(x) = [𝑔

1𝑖
(x) , . . . , 𝑔

𝑝𝑖
(x)]
𝑇

∈ 𝑅
𝑝
, 𝑖 = 1, 2, . . . , 𝑝,

A = diag [A
1
, . . . ,A

𝑝
] ∈ 𝑅
𝑛×𝑛

,

B = diag [B
1
, . . . ,B

𝑝
] ∈ 𝑅
𝑛×𝑝

,

C = diag [C
1
, . . . ,C

𝑝
] ∈ 𝑅
𝑝×𝑛

,
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A
𝑖
=

[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

... ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

]

∈ 𝑅
𝑛𝑖×𝑛𝑖 ,

B
𝑖
=

[
[
[
[

[

0

0

...
1

]
]
]
]

]

∈ 𝑅
𝑛𝑖 , C

𝑖

𝑇
=

[
[
[
[

[

1

0

...
0

]
]
]
]

]

∈ 𝑅
𝑛𝑖 ,

(3)

where x = [𝑥
11
, 𝑥
12
, . . . , 𝑥

1𝑛1
, . . . , 𝑥

𝑝1
, 𝑥
𝑝2
, . . . , 𝑥

𝑝𝑛𝑝
]
𝑇
∈ 𝑅
𝑛 is

the system state vector which is assumed to be unavailable
for measurement, u = [𝑢

1
, . . . , 𝑢

𝑝
]
𝑇
∈ 𝑅
𝑝 is the control input,

y = [𝑦
1
, . . . , 𝑦

𝑝
]
𝑇
∈ 𝑅
𝑝 is the output vector, 𝑛

1
+𝑛
2
+⋅ ⋅ ⋅+𝑛

𝑝
=

𝑛, 𝜏 > 0 is a known time delay of the system, 𝑓
𝑖
(x(𝑡)) and

𝑔
𝑖𝑗
(x(𝑡)) are the unknown nonlinear system functions, and

ΔΦ(x(𝑡)) = [Δ𝜙
1
(x(𝑡), Δ𝜙

2
(x(𝑡), . . . , Δ𝜙

𝑝
(x(𝑡)]𝑇 ∈ 𝑅

𝑝 is the
vector of uncertainties.

Now let the output of the system and its derivatives be
expressed as follows:

𝑦
𝑖
(𝑡) = 𝑥

𝑖1
(𝑡 − 𝜏) ,

̇𝑦
𝑖
(𝑡) = ̇𝑥

𝑖1
(𝑡 − 𝜏) = 𝑥

𝑖2
(𝑡 − 𝜏) ,

...

𝑦
𝑖

(𝑛𝑖−1) (𝑡) = ̇𝑥
𝑖(𝑛𝑖−1)

(𝑡 − 𝜏) = 𝑥
𝑖𝑛𝑖

(𝑡 − 𝜏) ,

𝑦
𝑖

(𝑛𝑖) (𝑡) = ̇𝑥
𝑖𝑛𝑖

(𝑡 − 𝜏)

= 𝑓
𝑖
(x (𝑡 − 𝜏)) +

𝑝

∑

𝑗=1

𝑔
𝑖𝑗
(x (𝑡 − 𝜏)) 𝑢

𝑗
(𝑡 − 𝜏)

+ Δ𝜙
𝑖
(x (𝑡 − 𝜏)) .

(4)

Then, let y
𝑑

= [𝑦
1𝑑
, . . . , 𝑦

𝑝𝑑
]
𝑇

∈ 𝑅
𝑝 be the given bounded

output desired signal and contain finite derivatives up to the
𝑛th order. The tracking errors of the system can be defined
as 𝑒
𝑖𝑗
(𝑡) = 𝑦

(𝑗−1)

𝑖
(𝑡) − 𝑦

(𝑗−1)

𝑖𝑑
(𝑡), for 𝑖 = 1, 2, . . . , 𝑝 and 𝑗 =

1, 2, . . . , 𝑛
𝑖
, and its derivatives can be obtained as

̇𝑒
𝑖1
(𝑡) = ̇𝑦

𝑖
(𝑡) − ̇𝑦

𝑖𝑑
(𝑡) = 𝑒

𝑖2
(𝑡) ,

̇𝑒
𝑖2
(𝑡) = 𝑦

𝑖

(2)
(𝑡) − 𝑦

𝑖𝑑

(2)
(𝑡) = 𝑒

𝑖3
(𝑡) ,

...

̇𝑒
𝑖(𝑛𝑖−1)

(𝑡) = 𝑦
𝑖

(𝑛𝑖−1) (𝑡) − 𝑦
𝑖𝑑

(𝑛𝑖−1) (𝑡) = 𝑒
1𝑛𝑖

(𝑡) ,

̇𝑒
𝑖𝑛𝑖

(𝑡) = 𝑦
𝑖

(𝑛𝑖) (𝑡) − 𝑦
𝑖𝑑

(𝑛𝑖) (𝑡)

= 𝑓
𝑖
(x (𝑡 − 𝜏)) +

𝑝

∑

𝑗=1

𝑔
𝑖𝑗
(x (𝑡 − 𝜏)) 𝑢

𝑗
(𝑡 − 𝜏)

+ Δ𝜙
𝑖
(x (𝑡 − 𝜏)) − 𝑦

𝑖𝑑

(𝑛𝑖) (𝑡)

= 𝑓
𝑖
(x (𝑡 − 𝜏)) +

𝑝

∑

𝑗=1

𝑔
𝑖𝑗
(x (𝑡 − 𝜏)) 𝑢

𝑗
(𝑡)

− 𝑦
𝑖𝑑

(𝑛𝑖) (𝑡) + Δ𝜓
𝑖
(x, u) ,

(5)

where the uncertainty Δ𝜓
𝑖
(x, u) including the structural

uncertainty is defined as

Δ𝜓
𝑖
(x, u) =

𝑝

∑

𝑗=1

𝑔
𝑖𝑗
(x (𝑡 − 𝜏)) [𝑢

𝑗
(𝑡 − 𝜏) − 𝑢

𝑗
(𝑡)]

+ Δ𝜙
𝑖
(x (𝑡 − 𝜏)) .

(6)

Thus, (5) can be expressed as

̇e
𝑖
(𝑡) = A

𝑖
e
𝑖
(𝑡) + B

𝑖
[

[

𝑓
𝑖
(x (𝑡 − 𝜏)) +

𝑝

∑

𝑗=1

𝑔
𝑖𝑗
(x (𝑡 − 𝜏)) 𝑢

𝑗
(𝑡)

−𝑦
(𝑛𝑖)

𝑖𝑑
(𝑡) + Δ𝜓

𝑖
(x, u) ]

]

.

(7)

From (7), it is easy to verify that the tracking error dynamics
of the system (2) can be represented in the following form:

̇e (𝑡) = Ae (𝑡) + B [F (x (𝑡 − 𝜏)) + G (x (𝑡 − 𝜏)) u (𝑡)

−Y
𝑑
(𝑡) + ΔΨ (x, u)] .

e
1
(𝑡) = Ce (𝑡) ,

(8)

where

e = [e𝑇
1
, e𝑇
2
, . . . , e𝑇

𝑝
]
𝑇

= [𝑒
11
, . . . , 𝑒

1𝑛1
, . . . , 𝑒

𝑝1
, . . . , 𝑒

𝑝𝑛𝑝
]
𝑇

∈ 𝑅
𝑛
,

e
1
= [𝑒
11
, 𝑒
21
, . . . , 𝑒

𝑝1
]
𝑇

∈ 𝑅
𝑝
,

ΔΨ = [Δ𝜓
1
, Δ𝜓
2
, . . . , Δ𝜓

𝑝
]
𝑇

∈ 𝑅
𝑝
,

e
𝑖
= [𝑒
𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑛𝑖
]
𝑇

∈ 𝑅
𝑛𝑖 ,

Y
𝑑
= [𝑦
(𝑛1)

1𝑑
, 𝑦
(𝑛2)

2𝑑
, . . . , 𝑦

(𝑛𝑝)

𝑝𝑑
]

𝑇

∈ 𝑅
𝑝
,

Y
𝑑
= [𝑦
1𝑑
, . . . , 𝑦

1𝑑

(𝑛1−1), . . . , 𝑦
𝑝𝑑
, . . . , 𝑦

𝑝𝑑

(𝑛𝑝−1)]
𝑇

∈ 𝑅
𝑛
.

(9)

Based on the above discussion, the following assumptions
should be made for the controller design.
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Assumption 1. The matrix G(x) is nonsingular (i.e., G(x)−1
exists) for all x ∈ 𝑈

𝑥
where 𝑈

𝑥
is a compact set in 𝑅

𝑛.

Assumption 2. ‖ΔΨ(x, u)‖ ≤ ℎ
1
(x)+ℎ

2
(x(𝑡−𝜏)), where ℎ

1
(x)

and ℎ
2
(x(𝑡−𝜏)) are the unknown positive smooth continuous

functions.

Remark 3. Compared with the previous results [27, 30], the
uncertainties including the structural uncertainty are taken
into account in this paper. In addition, the uncertainties
considered in this paper are not supposed to be a bounded
external disturbance unlike the previous results [17, 18, 20–
23].

The control objective of this paper is to design a control
law u(𝑡) such that y(𝑡) can follow a given desired reference
signal y

𝑚
(𝑡) and guarantee that all the signals involved in the

whole closed-loop system are bounded.

2.2. Description of Fuzzy Logic Systems. The basic config-
uration of the fuzzy logic system consists of four main
components: fuzzy rule base, fuzzy inference engine, fuzzifier
and defuzzifier [12, 16]. The fuzzy logic system performs a
mapping from 𝑈 ⊂ 𝑅

𝑛 to 𝑉 ⊂ 𝑅. Let 𝑈 = 𝑈
1
× ⋅ ⋅ ⋅ × 𝑈

𝑛

where 𝑈
𝑖
⊂ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. The fuzzifier maps a crisp point

in 𝑈 into a fuzzy set in 𝑈. The fuzzy rule base consists of a
collection of fuzzy IF-THEN rules:

𝑅
(𝑙)

: IF 𝑥
1
is 𝐹
𝑙

1
, and 𝑥

2
is 𝐹
𝑙

2
, . . . , 𝑥

𝑛
is 𝐹
𝑙

𝑛

THEN 𝑦
𝑗
is 𝐺
𝑙

𝑗
, 𝑗 = 1, . . . , 𝑝 , 𝑙 = 1, . . . , 𝑁,

(10)

in which x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑈 and 𝑦 ∈ 𝑉 ⊂ 𝑅 are
the input and output of the fuzzy logic system, 𝐹𝑙

𝑖
and 𝐺

𝑙

𝑗

are fuzzy sets in 𝑈
𝑖
and 𝑉

𝑗
, respectively. 𝑁 is the number of

rules. The fuzzy inference engine performs a mapping from
fuzzy sets in 𝑈 to fuzzy sets in 𝑉, based upon the fuzzy IF-
THEN rules in the fuzzy rule base and the compositional rule
of inference. The defuzzifier maps a fuzzy set in 𝑉 to a crisp
point in 𝑉. Through singleton fuzzification, center average
defuzzification, and product inference, the output of the fuzzy
logic system can be expressed as

𝑦
𝑗
= 𝜃
𝑇

𝑗
𝜉 (𝑥) , 𝑗 = 1, . . . , 𝑝, (11)

where 𝜃
𝑇

𝑗
= [𝜃
1

𝑗
, . . . , 𝜃

𝑁

𝑗
] with each variable 𝜃

𝑙

𝑗
as the point

at which the fuzzy membership function of 𝐺𝑙
𝑗
achieves the

maximum value, and 𝜉(𝑥) = [𝜉
1
(𝑥), . . . , 𝜉

𝑁
(𝑥)]
𝑇 with each

variable 𝜉l as the fuzzy basis function defined as

𝜉
𝑙
(𝑥) =

∏
𝑛

𝑖=1
𝜇
𝐹
𝑙
𝑖
(𝑥
𝑖
)

∑
𝑁

𝑙=1
(∏
𝑛

𝑖=1
𝜇
𝐹
𝑙
𝑖
(𝑥
𝑖
))

, (12)

where 𝜇
𝐹
𝑙
𝑖
(𝑥
𝑖
) is the membership function of the fuzzy set.

Now let MIMO fuzzy logic systems be expressed as
follows:

y = Φ (x) 𝜃, (13)

where

𝜃
𝑇
= [𝜃
1

𝑇
, . . . , 𝜃

𝑝

𝑇
] ,

𝜃
𝑇

𝑖
= [𝜃
1

𝑖
, . . . , 𝜃

𝑁

𝑖
] for 𝑖 = 1, 2, . . . , 𝑝,

Φ (x) = diag [𝜉𝑇 (x) , . . . , 𝜉𝑇 (x)] .

(14)

3. Observer-Based Robust Adaptive Fuzzy
Controller Design and Stability Analysis

According to the description of the fuzzy logic systems
presented in Section 2.2, we can construct the following fuzzy
logic systems, over a compact set Ωx, to approximate the
unknown nonlinear functions 𝑓

𝑖
(x(𝑡)) and 𝑔

𝑖𝑗
(x(𝑡)) and the

unknown upper bounded functions ℎ
1
(x), ℎ

2
(x(𝑡 − 𝜏)) as

follows:

�̂�
𝑖
(x | 𝜃
𝑓1
) = 𝜃
𝑇

𝑓𝑖
𝜉 (x) , 𝑖 = 1, . . . , 𝑝,

�̂�
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) = 𝜃
𝑇

𝑔𝑖𝑗
𝜉 (x) , 𝑖, 𝑗 = 1, . . . , 𝑝,

ℎ̂
1
(x) = 𝜃

𝑇

ℎ1
𝜉 (x) ,

ℎ̂
2
(x (𝑡 − 𝜏)) = 𝜃

𝑇

ℎ2
𝜉 (x (𝑡 − 𝜏)) .

(15)

Based on the above statements, it can be easily shown that

F̂ (x | 𝜃
1
) = [�̂�

1
(x | 𝜃
𝑓1
) , . . . , �̂�

𝑝
(x | 𝜃

𝑓𝑝
)]
𝑇

= Φ (x) 𝜃
1
,

Ĝ (x | 𝜃
2
) =

[
[
[
[

[

�̂�
11
(x | 𝜃
𝑔11

) , . . . , �̂�
1𝑝

(x | 𝜃
𝑔1𝑝

)

...
. . .

...
�̂�
𝑝1

(x | 𝜃
𝑔𝑝1

) , . . . , �̂�
𝑝𝑝

(x | 𝜃
𝑔𝑝𝑝

)

]
]
]
]

]

= Φ (x) 𝜃
2
,

(16)

where

𝜃
𝑇

1
= [𝜃
𝑇

𝑓1
, . . . , 𝜃

𝑇

𝑓𝑝
] , 𝜃

𝑇

𝑓𝑖
= [𝜃
1

𝑓𝑖
, . . . , 𝜃

𝑁

𝑓𝑖
] ,

𝜃
2
=
[
[
[

[

𝜃
𝑔11

, . . . , 𝜃
𝑔1𝑝

...
. . .

...
𝜃
𝑔𝑝1

, . . . , 𝜃
𝑔𝑝𝑝

]
]
]

]

, 𝜃
𝑇

𝑔𝑖𝑗
= [𝜃
1

𝑔𝑖𝑗
, . . . , 𝜃

𝑁

𝑔𝑖𝑗
] ,

𝜃
𝑇

ℎ1
= [𝜃
1

ℎ1
, . . . , 𝜃

𝑁

ℎ1
] , 𝜃

𝑇

ℎ2
= [𝜃
1

ℎ2
, . . . , 𝜃

𝑁

ℎ2
] ,

Φ (x) = diag [𝜉𝑇 (x) , . . . , 𝜉𝑇 (x)] .

(17)

Suppose the state variables of the controlled system (1) are
available formeasurement, then the following robust adaptive
fuzzy controller u(𝑡) can be adopted to let the system achieve
the above control objective and can be defined as follows:

u (𝑡) = Ĝ(x (𝑡 − 𝜏))
−1

[−F̂ (x (𝑡 − 𝜏)) − K
𝑐
e (𝑡)

+Y
𝑑
(𝑡) + u

𝑠
(𝑡) ] ,

(18)



Mathematical Problems in Engineering 5

where K
𝑐

= diag[K
𝑐1
, . . . ,K

𝑐𝑝
] ∈ 𝑅

𝑝×𝑛, where K
𝑐𝑖

=

[𝑘
𝑐

𝑖1
, . . . , 𝑘

𝑐

𝑖𝑛𝑖
] ∈ 𝑅

1×𝑛𝑖 for 𝑖 = 1, 2, . . . , 𝑝, is the control gain
matrix such that the characteristic polynomial of A − BK

𝑐
is

Hurwitz. The robust compensator u
𝑠
(𝑡) will be designed to

compensate the fuzzy approximation errors and the uncer-
tainties.

However, the state variables of the system are unavailable
for measurement in many engineering systems. In addition,
although the tracking error vector e can be obtained ideally
by successive differentiation of 𝑒

𝑖1
(𝑖 = 1, 2, . . . , 𝑝), ideal

differentiators are physically unrealizable.Obviously, wemust
employ a state observer to estimate x and e and let x̂ and ê be
the estimates of x and e, respectively.Then replacing F̂(x | 𝜃

1
),

Ĝ(x | 𝜃
2
), ℎ̂
1
(x | 𝜃

ℎ
), ℎ̂
2
(x(𝑡 − 𝜏)), x, and e by F̂(x̂ | 𝜃

1
),

Ĝ(x̂ | 𝜃
2
), ℎ̂
1
(x̂ | 𝜃

ℎ
), ℎ̂
2
(x̂(𝑡 − 𝜏)), x̂, and ê, respectively, the

robust adaptive fuzzy controller (18) cannot be used to control
the nonlinear system (2) andwill bemodified as the following
form:

u (𝑡) = Ĝ(x̂ (𝑡 − 𝜏))
−1

[−F̂ (x̂ (𝑡 − 𝜏)) − K
𝑐
ê (𝑡)

+Y
𝑑
(𝑡) + u

𝑠
(𝑡) ] ,

(19)

where

F̂ (x̂ | 𝜃
1
) = [�̂�

1
(x̂ | 𝜃
𝑓1
) , . . . , �̂�

𝑝
(x̂ | 𝜃

𝑓𝑝
)]
𝑇

= Φ (x̂) 𝜃
1
,

(20)

Ĝ (x̂ | 𝜃
2
) =

[
[
[
[

[

�̂�
11
(x̂ | 𝜃
𝑔11

) , . . . , �̂�
1𝑝

(x̂ | 𝜃
𝑔1𝑝

)

...
. . .

...
�̂�
𝑝1

(x̂ | 𝜃
𝑔𝑝1

) , . . . , �̂�
𝑝𝑝

(x̂ | 𝜃
𝑔𝑝𝑝

)

]
]
]
]

]

= Φ (x̂) 𝜃
2
,

(21)

ℎ̂
1
(x̂) = 𝜃

𝑇

ℎ1
𝜉 (x̂) ; ℎ̂

2
(x̂ (𝑡 − 𝜏)) = 𝜃

𝑇

ℎ2
𝜉 (x̂ (𝑡 − 𝜏)) . (22)

Substituting (19) into (8) yields

̇e (𝑡) = Ae (𝑡) − BK
𝑐
ê (𝑡)

+ B {F (x (𝑡 − 𝜏)) − F̂ (x̂ (𝑡 − 𝜏) | 𝜃
1
)

+ [G (x (𝑡 − 𝜏)) − Ĝ (x̂ (𝑡 − 𝜏) | 𝜃
2
)] u (𝑡)

+ u
𝑠
(𝑡) + ΔΨ (x, u) } ,

e
1
(𝑡) = Ce (𝑡) .

(23)

In order to estimate the output tracking error vector, we
design the observer as follows:

̇ê (𝑡) = (A − BK
𝑐
) ê (𝑡) + K

𝑜
(e
1
(𝑡) − ê

1
(𝑡)) ,

ê
1
(𝑡) = Cê (𝑡) ,

(24)

where K
𝑜

= diag[K
𝑜1
, . . . ,K

𝑜𝑝
] ∈ 𝑅

𝑛×𝑝, where K
𝑜𝑖

=

[𝑘
𝑜

1𝑖
, . . . , 𝑘

𝑜

𝑛𝑖𝑖
]
𝑇 for 𝑖 = 1, 2, . . . , 𝑝, is the observer gain matrix

such that the characteristic polynomial of A − K
𝑜
C is

Hurwitz. Let us define the observation error vector as

ẽ (𝑡) = e (𝑡) − ê (𝑡) . (25)

Then by (23) and (24), we obtain

̇ẽ (𝑡) = (A − K
𝑜
C) ẽ (𝑡)

+ B {F (x (𝑡 − 𝜏)) − F̂ (x̂ (𝑡 − 𝜏) | 𝜃
1
)

+ [G (x (𝑡 − 𝜏)) − Ĝ (x̂ (𝑡 − 𝜏) | 𝜃
2
)] u (𝑡)

+ us (𝑡) + ΔΨ (x, u) } ,

ẽ
1
(𝑡) = Cẽ (𝑡) .

(26)

It is assumed that 𝜃
1
, 𝜃
2
, 𝜃
ℎ1
, and 𝜃

ℎ2
belong to compact sets

Ω𝜃1
, Ω𝜃2 , Ω𝜃ℎ1 , andΩ

𝜃ℎ2
, respectively, which are defined as

Ω𝜃1
= {𝜃
1
∈ 𝑅
𝑁×𝑝

:
𝜃1

 ≤ 𝑀𝜃1
< ∞} ,

Ω𝜃2
= {𝜃
2
∈ 𝑅
𝑝𝑁×𝑝

:
𝜃2

 ≤ 𝑀𝜃2
< ∞} ,

Ω
𝜃ℎ1

= {𝜃
ℎ1

∈ 𝑅
𝑁

:

𝜃
ℎ1


≤ 𝑀
𝜃ℎ1

< ∞} ,

Ω
𝜃ℎ2

= {𝜃
ℎ2

∈ 𝑅
𝑁

:

𝜃
ℎ2


≤ 𝑀
𝜃ℎ2

< ∞} ,

(27)

where𝑀𝜃1 ,𝑀𝜃2 ,𝑀𝜃ℎ1 , and𝑀
𝜃ℎ2

are the designed parameters
by the designer, and𝑁 is the number of fuzzy inference rules.

Now let us define the optimal parameter vectors 𝜃∗
1
, 𝜃∗
2
,

𝜃
∗

ℎ1
, and 𝜃

∗

ℎ2
as follows:

𝜃
∗

1
= arg min

𝜃1∈Ω𝜃1

{ sup
x∈Ωx ,x̂∈Ωx̂


F (x) − F̂ (x̂ | 𝜃

1
)

} ,

𝜃
∗

2
= arg min

𝜃2∈Ω𝜃2

{ sup
x∈Ωx ,x̂∈Ωx̂


G (x) − Ĝ (x̂ | 𝜃

2
)

} ,

𝜃
∗

ℎ1
= arg min

𝜃ℎ1
∈Ω𝜃ℎ1

{ sup
x∈Ωx ,x̂∈Ωx̂


ℎ
1
(x) − ℎ̂

1
(x̂ | 𝜃
ℎ1
)

} ,

𝜃
∗

ℎ2
= arg min

𝜃ℎ2
∈Ω𝜃ℎ2

{ sup
x∈Ωx ,x̂∈Ωx̂


ℎ
2
(x (𝑡 − 𝜏))

−ℎ̂
2
( x̂ (𝑡 − 𝜏)) | 𝜃

ℎ2
)

} ,

(28)

where 𝜃∗
1
, 𝜃∗
2
, 𝜃∗
ℎ1
, and 𝜃

∗

ℎ2
are bounded in the suitable closed

setsΩ𝜃1 ,Ω𝜃2 ,Ω𝜃ℎ1 , andΩ
𝜃ℎ2

, respectively. Also the parameter
estimation errors are defined as

�̃�
1
= 𝜃
∗

1
− 𝜃
1
, (29)

�̃�
2
= 𝜃
∗

2
− 𝜃
2
, (30)

�̃�
ℎ1

= 𝜃
∗

ℎ1
− 𝜃
ℎ1
; �̃�

ℎ2
= 𝜃
∗

ℎ2
− 𝜃
ℎ2
. (31)
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Then, the minimum approximation errors which correspond
to the optimal parameter vectors are defined as

𝜔
1
= F (x (𝑡 − 𝜏)) − F̂ (x̂ (𝑡 − 𝜏) | 𝜃

∗

1
)

+ (G (x (𝑡 − 𝜏)) − Ĝ (x̂ (𝑡 − 𝜏) | 𝜃
∗

2
)) u,

(32)

𝜔
2
= ℎ
1
(x) − ℎ̂

1
(x̂ | 𝜃

∗

ℎ1
)

+ ℎ
2
(x (𝑡 − 𝜏)) − ℎ̂

2
(x̂ (𝑡 − 𝜏) | 𝜃

∗

ℎ2
) .

(33)

Applying (29), (30), and (32), (26) can be rewritten as

̇ẽ (𝑡) = (A − K
𝑜
C) ẽ (𝑡)

+ B {Φ (x̂) �̃�
1
+Φ (x̂) �̃�

2
u (𝑡)

+ F (x (𝑡 − 𝜏)) − F̂ (x̂ (𝑡 − 𝜏) | 𝜃
∗

1
)

+ [G (x (𝑡 − 𝜏)) − Ĝ (x̂ (𝑡 − 𝜏) | 𝜃
∗

2
)] u (𝑡)

+u
𝑠
(𝑡) + ΔΨ (x, u) }

= (A − K
𝑜
C) ẽ (𝑡) + B [Φ (x̂) �̃�

1
+Φ (x̂) �̃�

2
u (𝑡)

+𝜔
1
+ u
𝑠
(𝑡) + ΔΨ (x, u) ] ,

ẽ
1
(𝑡) = Cẽ (𝑡) .

(34)

Then, the output error dynamics in (34) can be expressed as
follows:

ẽ
1
= H (s) [Φ (x̂) �̃�

1
+Φ (x̂) �̃�

2
u (𝑡) + 𝜔

1
+ u
𝑠
(𝑡)

+ΔΨ (x, u) ] ,
(35)

where

H (s) = C(sI − (A − K
𝑜
C))−1B. (36)

Obviously, the transfer function H(s) is a known stable
transfer functionmatrix. In order to utilize the SPR-Lyapunov
design approach, (35) can be represented as

ẽ
1
= H (s) L (s) [L(s)−1Φ (x̂) �̃�

1
+ L(s)−1Φ (x̂) �̃�

2
u (𝑡)

+L(s)−1 (𝜔
1
+ u
𝑠
(𝑡) + ΔΨ (x, u))] ,

(37)

with

L (𝑠) = diag [𝐿
𝑖
(𝑠) , . . . , 𝐿

𝑝
(𝑠)] ,

𝐿
𝑖
(𝑠) = 𝑠

𝑚𝑖 + 𝑏
𝑖1
𝑠
𝑚𝑖−1 + ⋅ ⋅ ⋅ + 𝑏

𝑖𝑚𝑖

(𝑚
𝑖
= 𝑛
𝑖
− 1) , 𝑖 = 1, 2, . . . , 𝑝.

(38)

It is worth noting that L(𝑠) is chosen to be a proper stable
transfer function matrix and to makeH(s)L(s) to be a proper

SPR transfer functionmatrix.Then the state-space realization
of (37) can be written as

̇ẽ
𝑐
(𝑡) = (A − K

𝑜
C) ẽ
𝑐
+ B
𝑐
[Φ
𝑓
(x̂) �̃�
1
+Φ
𝑓
(x̂) �̃�
2
u (𝑡)

+𝜔
1𝑓

+ u
𝑠𝑓
(𝑡) + ΔΨ

𝑓
(x, u) ] ,

ẽ
1
(𝑡) = Cẽ

𝑐
(𝑡) ,

(39)

with

B
𝑐
= diag [B

𝑐1
, . . . ,B

𝑐𝑝
] ∈ 𝑅
𝑛×𝑝

, (40)

B
𝑐𝑖
= [1, 𝑏

𝑖1
, 𝑏
𝑖2
, . . . , 𝑏

𝑖𝑚𝑖
]
𝑇

∈ 𝑅
𝑛𝑖×1, 𝑖 = 1, 2, . . . , 𝑝, (41)

Φ
𝑓
(x̂) = L(s)−1Φ (x̂) , (42a)

𝜔
1𝑓

= L(s)−1𝜔
1
, (42b)

u
𝑠𝑓

= L(s)−1u
𝑠
, (42c)

ΔΨ
𝑓
(x, u) = L(s)−1ΔΨ (x, u) . (42d)

We define

𝜔
1𝑓


+
𝜔2

 ≤ 𝜔
𝑓
,

�̃�
𝑓
= 𝜔
𝑓
− �̂�
𝑓
,

(43)

where �̂�
𝑓
is the estimate of an unknown positive constant𝜔

𝑓
.

Remark 4. Since L(s) is chosen as a proper stable transfer
functionmatrix, it is obvious that the norm of ΔΨ

𝑓
(x, u) also

satisfies the inequality in Assumption 2. Moreover, the upper
bound functionswill be replaced by ℎ̂

1
(x̂ | 𝜃
ℎ
) and ℎ̂

2
(x̂(𝑡−𝜏))

because the state variables are unavailable for measurement.
Based on the Lyapunov stability theorem, we can obtain

the robust compensator u
𝑠𝑓
(𝑡) as follows:

u
𝑠𝑓
(𝑡) = u

1
(𝑡) + u

2
(𝑡) , (44)

where

u
1
(𝑡) = −

B𝑇
𝑐
P
1
ẽ
𝑐


ẽ𝑇
𝑐
P
1
B
𝑐



× [�̂�
𝑓
+ ℎ̂
1
(x̂ | 𝜃
ℎ1
) + ℎ̂
2
(x̂ (𝑡 − 𝜏) | 𝜃

ℎ2
)] ,

u
2
(𝑡) = −

B𝑇
𝑐
P
1
ẽ
𝑐


ẽ𝑇
𝑐
P
1
B
𝑐



2
[ê𝑇P
2
K
𝑜
ẽ
1
] ,

(45)

where K
𝑐
is the control gain matrix, K

𝑜
is the observer gain

matrix, and P
1
and P

2
are the symmetric positive definite

matrices and will be solved later.
Then, the parameter adaptive learning laws are chosen as

̇𝜃
1
= 𝛾
1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
, (46)

̇𝜃
2
= 𝛾
2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇, (47)
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̇𝜃
ℎ1

= 𝛾
3


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂) , (48a)

̇𝜃
ℎ2

= 𝛾
4


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂ (𝑡 − 𝜏)) , (48b)

̇�̂�
𝑓
= 𝛾
5


ẽ𝑇
𝑐
P
1
B
𝑐


, (49)

where 𝛾
1
> 0, 𝛾

2
> 0, 𝛾

3
> 0, 𝛾

4
> 0, and 𝛾

5
> 0 are the

positive adaptive gain constants and can be chosen by the
designer.

Remark 5. Without loss of generality, the adaptive laws used
in this paper are assumed such that the parameter vectors
are within the constraint sets or on the boundaries of the
constraint sets but moving toward the inside of the constraint
sets. If the parameter vectors are on the boundaries of
the constraint sets but moving toward the outside of the
constraint sets, we have to use the projection algorithm [12] to
modify the adaptive laws such that the parameter vectors will
remain inside of the constraint sets. The proposed adaptive
laws (46)–(49) can be modified as the following form:

̇𝜃
1
=

{{{{{{{

{{{{{{{

{

𝛾
1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
, if (

𝜃1
 < 𝑀

𝜃1
)

or (
𝜃1

 = 𝑀
𝜃1
,

𝜃
𝑇

1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
≤ 0) ,

𝑃 {𝛾
1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
} , if (

𝜃1
 = 𝑀

𝜃1
,

𝜃
𝑇

1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
> 0) ,

(50)

where 𝑃{𝛾
1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
} is defined as

𝑃 {𝛾
1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
} = 𝛾
1
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐

− 𝛾
1

𝜃
1
𝜃
𝑇

1

𝜃1


2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
,

(51)

̇𝜃
2
=

{{{{{{{

{{{{{{{

{

𝛾
2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇, if (

𝜃2
 < 𝑀

𝜃2
)

or (
𝜃2

 = 𝑀
𝜃2
,

𝜃
𝑇

2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇 ≤ 0) ,

𝑃 {𝛾
2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇} , if (

𝜃2
 = 𝑀

𝜃2
,

𝜃
𝑇

2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇 > 0) ,

(52)

where 𝑃{𝛾
2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇} is defined as

𝑃 {𝛾
2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇} = 𝛾

2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇

− 𝛾
2

𝜃
2
𝜃
𝑇

2

𝜃2


2
Φ
𝑇

𝑓
(x̂)B𝑇
𝑐
P
1
ẽ
𝑐
u𝑇,

(53)

̇𝜃
ℎ1

=

{{{{{{{{

{{{{{{{{

{

𝛾
3


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂) , if (


𝜃
ℎ1


< 𝑀
𝜃ℎ1

)

or (

𝜃
ℎ1


= 𝑀
𝜃ℎ1

,


ẽ𝑇
𝑐
P
1
B
𝑐


⋅ 𝜃
𝑇

ℎ1
𝜉 (x̂) ≤ 0) ,

𝑃 {𝛾
3


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂)} , if (


𝜃
ℎ1


= 𝑀
𝜃ℎ1

,


ẽ𝑇
𝑐
P
1
B
𝑐


⋅ 𝜃
𝑇

ℎ1
𝜉 (x̂) > 0) ,

(54a)

where 𝑃{𝛾
3
‖ẽ𝑇
𝑐
P
1
B
𝑐
‖𝜉(x̂)} is defined as

𝑃 {𝛾
3


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂)} = 𝛾

3


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂)

− 𝛾
3

𝜃
ℎ1
𝜃
𝑇

ℎ1


𝜃
ℎ1



2


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂) ,

(54b)

̇𝜃
ℎ2

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝛾
4


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂ (𝑡 − 𝜏)) , if (


𝜃
ℎ2


< 𝑀
𝜃ℎ2

)

or (

𝜃
ℎ2


= 𝑀
𝜃ℎ2

,


ẽ𝑇
𝑐
P
1
B
𝑐



⋅ 𝜃
𝑇

ℎ2
𝜉 (x̂ (𝑡 − 𝜏)) ≤ 0) ,

𝑃 {𝛾
4


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂)} , if (


𝜃
ℎ2


= 𝑀
𝜃ℎ2

,


ẽ𝑇
𝑐
P
1
B
𝑐



⋅ 𝜃
𝑇

ℎ2
𝜉 (x̂ (𝑡 − 𝜏)) > 0) ,

(55a)

where 𝑃{𝛾
4
‖ẽ𝑇
𝑐
P
1
B
𝑐
‖𝜉(x̂(𝑡 − 𝜏))} is defined as

𝑃 {𝛾
4


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂ (𝑡 − 𝜏))}

= 𝛾
4


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂ (𝑡 − 𝜏))

− 𝛾
4

𝜃
ℎ2
𝜃
𝑇

ℎ2


𝜃
ℎ2



2


ẽ𝑇
𝑐
P
1
B
𝑐


𝜉 (x̂ (𝑡 − 𝜏)) .

(55b)

The main result of the proposed observer-based robust
adaptive fuzzy control scheme is summarized in the following
theorem.

Theorem 6. Consider the MIMO nonlinear system (2) in
the presence of output delay and the uncertainties subject to
Assumptions 1-2. The observer-based robust adaptive fuzzy
controller is defined by (19) and (44)-(45)with adaptation laws
given by (46)–(49). For the given positive definite matrices Q

1

and Q
2
, if there exist symmetric positive definite matrices P

1

and P
2
such that the following Lyapunov equations

(A − K
𝑜
C)𝑇P
1
+ P
1
(A − K

𝑜
C) = −Q

1
, (56)

(A − BK
𝑐
)
𝑇P
2
+ P
2
(A − BK

𝑐
) = −Q

2
, (57)

P
1
B
𝑐
= C𝑇, (58)

are satisfied, then all the closed-loop signals are bounded, and
the tracking errors converge to a neighborhood of zero.

Proof. Consider the Lyapunov function candidate

𝑉 =
1

2
ẽ𝑇
𝑐
P
1
ẽ
𝑐
+

1

2
ê𝑇P
2
ê + 1

2𝛾
1

(�̃�
𝑇

1
�̃�
1
) +

1

2𝛾
2

tr (�̃�
𝑇

2
�̃�
2
)

+
1

2𝛾
3

(�̃�
𝑇

ℎ1
�̃�
ℎ1
) +

1

2𝛾
4

(�̃�
𝑇

ℎ2
�̃�
ℎ2
) +

1

2𝛾
5

�̃�
2

𝑓
.

(59)
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By the time derivative of 𝑉 and the facts that ̇
�̃�
1
= − ̇𝜃
1
, ̇
�̃�
2
=

− ̇𝜃
2
, ̇
�̃�
ℎ1

= − ̇𝜃
ℎ1
, ̇
�̃�
ℎ2

= − ̇𝜃
ℎ2

and ̇�̃�
𝑓
= − ̇�̂�
𝑓
, it can be easily

shown from (24) and (39) that

𝑉 =
1

2

̇ẽ𝑇
𝑐
P
1
ẽ
𝑐
+

1

2
ẽ𝑇
𝑐
P
1
̇ẽ
𝑐
+

1

2

̇ê𝑇P
2
ê + 1

2
ê𝑇P
2
̇ê

−
1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
) −

1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
) −

1

2𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
)

−
1

2𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
) −

1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓

=
1

2
ẽ𝑇
𝑐
[(A − K

𝑜
C)𝑇P
1
+ P
1
(A − K

𝑜
C)] ẽ
𝑐

+
1

2
ê𝑇 [(A − BK

𝑐
)
𝑇P
2
+ P
2
(A − BK

𝑐
)] ê

+ ẽ𝑇
𝑐
P
1
B
𝑐
[Φ
𝑓
(x̂) �̃�
1
+Φ
𝑓
(x̂) �̃�
2
u (𝑡) + 𝜔

1𝑓

+u
𝑠𝑓
(𝑡) + ΔΨ

𝑓
(x, u) ] + ê𝑇P

2
K
𝑜
ẽ
1

−
1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
) −

1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
) −

1

2𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
)

−
1

2𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
) −

1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓

≤
1

2
ẽ𝑇
𝑐
[(A − K

𝑜
C)𝑇P
1
+ P
1
(A − K

𝑜
C)] ẽ
𝑐

+
1

2
ê𝑇 [(A − BK

𝑐
)
𝑇P
2
+ P
2
(A − BK

𝑐
)] ê

+ ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
1
+ ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
2
u

+ ẽ𝑇
𝑐
P
1
B
𝑐
u
𝑠𝑓

+

ẽ𝑇
𝑐
P
1
B
𝑐




𝜔
1𝑓



+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅

ΔΨ
𝑓
(x, u) + ê𝑇P

2
K
𝑜
ẽ
1

−
1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
) −

1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
) −

1

2𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
)

−
1

2𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
) −

1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓
.

(60)

Applying Assumption 2, (56), and (57), it yields

𝑉 ≤ −
1

2
ẽ𝑇
𝑐
Q
1
ẽ
𝑐
−

1

2
ê𝑇Q
2
ê + ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
1

+ ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
2
u + ẽ𝑇
𝑐
P
1
B
𝑐
u
𝑠𝑓

+

ẽ𝑇
𝑐
P
1
B
𝑐




𝜔
1𝑓



+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ (ℎ
1
(x) + ℎ

2
(x (𝑡 − 𝜏))) + ê𝑇P

2
K
𝑜
ẽ
1

−
1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
) −

1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
) −

1

2𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
)

−
1

2𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
) −

1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓

= −
1

2
ẽ𝑇
𝑐
Q
1
ẽ
𝑐
−

1

2
ê𝑇Q
2
ê + ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
1

+ ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
2
u + ẽ𝑇
𝑐
P
1
B
𝑐
u
𝑠𝑓

+

ẽ𝑇
𝑐
P
1
B
𝑐




𝜔
1𝑓



+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ [ℎ
1
(x) − ℎ̂

1
(x̂ | 𝜃

∗

ℎ1
) + ℎ̂
1
(x̂ | 𝜃

∗

ℎ1
)

−ℎ̂
1
(x̂ | 𝜃
ℎ1
) + ℎ̂
1
(x̂ | 𝜃
ℎ1
)]

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ [ℎ
2
(x (𝑡 − 𝜏)) − ℎ̂

2
(x̂ (𝑡 − 𝜏) | 𝜃

∗

ℎ2
)

+ ℎ̂
2
(x̂ (𝑡 − 𝜏) | 𝜃

∗

ℎ2
)

− ℎ̂
2
(x̂ (𝑡 − 𝜏) | 𝜃

ℎ2
)

+ℎ̂
2
((𝑡 − 𝜏) x̂ | 𝜃

ℎ2
)]

+ ê𝑇P
2
K
𝑜
ẽ
1
−

1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
) −

1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
)

−
1

2𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
) −

1

2𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
) −

1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓
.

(61)

According to (33) and (43), we have

𝑉 ≤ −
1

2
ẽ𝑇
𝑐
Q
1
ẽ
𝑐
−

1

2
ê𝑇Q
2
ê + ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
1

+ ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
2
u + ẽ𝑇
𝑐
P
1
B
𝑐
u
𝑠𝑓

+

ẽ𝑇
𝑐
P
1
B
𝑐




𝜔
1𝑓



+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ ℎ̂
1
(x̂ | 𝜃
ℎ1
) +


ẽ𝑇
𝑐
P
1
B
𝑐


⋅ �̃�
𝑇

ℎ1
𝜉 (x̂)

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ ℎ̂
2
(x̂ (𝑡 − 𝜏) | 𝜃

ℎ2
)

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ �̃�
𝑇

ℎ2
𝜉 (x̂ (𝑡 − 𝜏))

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅
𝜔2

 + ê𝑇P
2
K
𝑜
ẽ
1
−

1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
)

−
1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
) −

1

2𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
) −

1

2𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
)

−
1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓

≤ −
1

2
ẽ𝑇
𝑐
Q
1
ẽ
𝑐
−

1

2
ê𝑇Q
2
ê + ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
1

+ ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
2
u + ẽ𝑇
𝑐
P
1
B
𝑐
u
𝑠𝑓

+

ẽ𝑇
𝑐
P
1
B
𝑐


�̂�
𝑓

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ ℎ̂
1
(x̂ | 𝜃
ℎ1
) +


ẽ𝑇
𝑐
P
1
B
𝑐


⋅ �̃�
𝑇

ℎ1
𝜉 (x̂)

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ ℎ̂
2
(x̂ (𝑡 − 𝜏) | 𝜃

ℎ2
)

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ �̃�
𝑇

ℎ2
𝜉 (x̂ (𝑡 − 𝜏))
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+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ �̃�
𝑓
+ ê𝑇P

2
K
𝑜
ẽ
1
−

1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
)

−
1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
) −

1

2𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
)

−
1

2𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
) −

1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓

= −
1

2
ẽ𝑇
𝑐
Q
1
ẽ
𝑐
−

1

2
ê𝑇Q
2
ê + ẽ𝑇
𝑐
P
1
B
𝑐
u
𝑠𝑓

+

ẽ𝑇
𝑐
P
1
B
𝑐


�̂�
𝑓
+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ ℎ̂
1
(x̂ | 𝜃
ℎ1
)

+

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ ℎ̂
2
(x̂ (𝑡 − 𝜏) | 𝜃

ℎ2
) + ê𝑇P

2
K
𝑜
ẽ
1

+ [ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
1
−

1

𝛾
1

(�̃�
𝑇

1

̇𝜃
1
)]

+ [ẽ𝑇
𝑐
P
1
B
𝑐
Φ
𝑓
(x̂) �̃�
2
u −

1

𝛾
2

tr (�̃�
𝑇

2

̇𝜃
2
)]

+ [

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ �̃�
𝑇

ℎ1
𝜉 (x̂) − 1

𝛾
3

(�̃�
𝑇

ℎ1

̇𝜃
ℎ1
)]

+ [

ẽ𝑇
𝑐
P
1
B
𝑐


⋅ �̃�
𝑇

ℎ2
𝜉 (x̂ (𝑡 − 𝜏)) −

1

𝛾
4

(�̃�
𝑇

ℎ2

̇𝜃
ℎ2
)]

+ [

ẽ𝑇
𝑐
P
1
B
𝑐


�̃�
𝑓
−

1

𝛾
5

�̃�
𝑓

̇�̂�
𝑓
] .

(62)

By employing (46)–(49) and using the control laws (44)-(45),
we can obtain

𝑉 ≤ −
1

2
ẽ𝑇
𝑐
Q
1
ẽ
𝑐
−

1

2
ê𝑇Q
2
ê. (63)

Therefore, it can be concluded that 𝑉 ≤ 0 from (63), and
the output tracking error of the closed-loop system converges
asymptotically to a neighborhood of zero based on the
Lyapunov synthesis approach. This completes the proof.

4. An Example and Simulation Results

In this paper, a numerical example is illustrated to verify the
performance of the proposed observer-based robust adaptive
fuzzy controller. Consider the following MIMO nonlinear
uncertain system with delayed output:

̇𝑥
11
(𝑡) = 𝑥

12
(𝑡) ,

̇𝑥
12
(𝑡) = 𝑓

1
(x) + 𝑔

11
(x) 𝑢
1
(𝑡) + 𝑔

12
(x) 𝑢
2
(𝑡) + Δ𝜙

1
(x) ,

̇𝑥
21
(𝑡) = 𝑥

22
(𝑡) ,

̇𝑥
22
(𝑡) = 𝑓

2
(x) + 𝑔

21
(x) 𝑢
1
(𝑡) + 𝑔

22
(x) 𝑢
2
(𝑡) + Δ𝜙

2
(x) ,

𝑦
1
(𝑡) = 𝑥

11
(𝑡 − 𝜏) ,

𝑦
2
(𝑡) = 𝑥

21
(𝑡 − 𝜏) .

(64)

According to (2), the above equation can be rewritten as the
following compact form:

[
[
[

[

̇𝑥
11
(𝑡)

̇𝑥
12
(𝑡)

̇𝑥
21
(𝑡)

̇𝑥
22
(𝑡)

]
]
]

]

=
[
[
[

[

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

]
]
]

]

[
[
[

[

𝑥
11
(𝑡)

𝑥
12
(𝑡)

𝑥
21
(𝑡)

𝑥
22
(𝑡)

]
]
]

]

+
[
[
[

[

0 0

1 0

0 0

0 1

]
]
]

]

× ([
𝑓
1
(x)

𝑓
2
(x)] + [

𝑔
11
(x) 𝑔

12
(x)

𝑔
21
(x) 𝑔

22
(x)] [

𝑢
1
(𝑡)

𝑢
2
(𝑡)

]

+ [
Δ𝜙
1
(x)

Δ𝜙
2
(x)]) ,

[
𝑦
1
(𝑡)

𝑦
2
(𝑡)

] = [
1 0 0 0

0 0 1 0
]
[
[
[

[

𝑥
11
(𝑡 − 𝜏)

𝑥
12
(𝑡 − 𝜏)

𝑥
21
(𝑡 − 𝜏)

𝑥
22
(𝑡 − 𝜏)

]
]
]

]

,

(65)

where A
1
= A
2
= [ 0 1
0 0

], B
1
= B
2
= [ 0
1
], C
1
= C
2
= [ 1 0 ],

the nonlinear system functions 𝑓
1
(x) = (1− 𝑒

−𝑥11)/(1+ 𝑒
−𝑥11),

𝑓
2
(x) = (1 − 𝑒

−𝑥21)/(1 + 𝑒
−𝑥21), 𝑔

12
(x) = 𝑔

21
(x) = 0, and

𝑔
11
(x) = 𝑔

22
(x) = 1, and the uncertainties ΔΦ = [

0.1𝑥21 sin(𝑡)
0.1𝑥12 cos(𝑡) ]

and the delay time is 𝜏 = 0.1. In the simulation, these
nonlinear system functions and uncertainties are assumed to
be unknown and are estimated by the fuzzy logic systems.The
fuzzy membership functions are chosen as follows:

𝜇
𝐹
1
𝑖
(�̂�
𝑖
) =

1

1 + exp (5 (�̂�
𝑖
+ 0.8))

,

𝜇
𝐹
2
𝑖
(�̂�
𝑖
) = exp (−(�̂�

𝑖
+ 0.6)

2

) ,

𝜇
𝐹
3
𝑖
(�̂�
𝑖
) = exp (−(�̂�

𝑖
+ 0.4)

2

) ,

𝜇
𝐹
4
𝑖
(�̂�
𝑖
) = exp (−�̂�

𝑖

2
) ,

𝜇
𝐹
5
𝑖
(�̂�
𝑖
) = exp (−(�̂�

𝑖
− 0.4)

2

) ,

𝜇
𝐹
6
𝑖
(�̂�
𝑖
) = exp (−(�̂�

𝑖
− 0.6)

2

) ,

𝜇
𝐹
7
𝑖
(�̂�
𝑖
) =

1

1 + exp (−5 (�̂�
𝑖
− 0.8))

, 𝑖 = 1, 2, 3, 4.

(66)

Let

𝜉
𝑙
(�̂�) =

𝜇
𝐹
𝑙
1
(�̂�
1
) 𝜇
𝐹
𝑙
2
(�̂�
2
) 𝜇
𝐹
𝑙
3
(�̂�
3
) 𝜇
𝐹
𝑙
4
(�̂�
4
)

∑
7

𝑙=1
𝜇
𝐹
𝑙
1
(�̂�
1
) 𝜇
𝐹
𝑙
2
(�̂�
2
) 𝜇
𝐹
𝑙
3
(�̂�
3
) 𝜇
𝐹
𝑙
4
(�̂�
4
)
,

𝜉 (�̂�) = (𝜉
1
(�̂�) , 𝜉

2
(�̂�) , 𝜉

3
(�̂�) , 𝜉

4
(�̂�) , 𝜉

5
(�̂�) , 𝜉

6
(�̂�) , 𝜉

7
(�̂�))
𝑇

.

(67)

In this section, we apply the observer-based robust adaptive
fuzzy controller proposed in Section 3 to deal with the output
tracking control problem of an MIMO nonlinear uncertain
system with delayed output in (65).

The control objective is to force the system output to track
the given desired trajectories 𝑦

1𝑑
= 𝑦
2𝑑

= 0.5 sin(2𝜋/10).
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First, we select the control and observer gainmatrices asK
𝑐
=

[ 170 40 0 0
0 0 180 30

] andK
𝑜
= [ 50 100 0 0
0 0 75 100

]
𝑇, using (20) and (21) to

approximate the unknown F(x) andG(x), respectively. Given
the positive definite matrices Q

1
= diag[1, 1, 1, 1] and Q

2
=

diag[1, 1, 1, 1], and solving the Lyapunov equations (56), we
can get

P
1
=
[
[
[

[

0.0101 0.005 0 0

0.005 1.26 0 0

0 0 0.0067 0.005

0 0 0.005 1.0483

]
]
]

]

,

P
2
=
[
[
[

[

0.1302 −0.5 0 0

−0.5 2.1375 0 0

0 0 0.1 −0.5

0 0 −0.5 3.0167

]
]
]

]

.

(68)

The initial conditions are chosen as x(0) =

[−0.5, −0.5, 0.5, 0.5]
𝑇, ê(0) = [0.3, 0.3, 0.3, 0.3]

𝑇, 𝜃
ℎ
(0) = 0,

𝜃
𝑓1
(0) = 𝜃

𝑓2
(0) = 0, 𝛾

1
= 𝛾
2
= 0.13, 𝛾

3
= 0.1, 𝛾

4
= 0.01,

𝜃
𝑔11

(0) = 1, 𝜃
𝑔12

(0) = 0, 𝜃
𝑔21

(0) = 0, 𝜃
𝑔22

(0) = 1. The
Simulation results are shown in Figures 1, 2, 3, 4, 5, 6, and 7.
Figures 1 and 2 show the output tracking performance of the
system output. Figures 3, 4, 5, and 6 show the trajectories of
the system states and their estimation states. Figure 7 shows
the control signal. Obviously, the proposed controller can not
only ensure that all the signals of the resulting closed-loop
system are bounded but also obtain that the good tracking
performance of an MIMO nonlinear uncertain output-delay
system is achieved.

5. Conclusion

For a class of multiinput multioutput (MIMO) nonlinear sys-
tems with output delay and uncertainties, a robust adaptive
fuzzy output feedback controller is proposed to deal with
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Figure 2: The trajectories of 𝑦
2
and 𝑦

2𝑑
.
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Figure 3: The trajectories of 𝑥
11
and �̂�

11
.

the problem of robust stability and output tracking control.
Since the system states are unavailable for measurement, the
elements of the observation error vector cannot be obtained
completely. Hence, by means of the strictly positive-real
(SPR) theory, all elements of the observation error vector will
be obtained completely. Moreover, the fuzzy logic systems
and some parameter adaptive laws are used to approximate
the unknown nonlinear functions and the unknown upper
bounds of the uncertainties including the structural uncer-
tainty. By constructing an appropriate Lyapunov function,
the proposed observer-based robust adaptive fuzzy controller
can not only guarantee that all the signals in the whole
closed-loop system are bounded but also obtain that the
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output tracking performance of the controlled system with
delayed output and uncertainties can be achieved. Finally,
some simulation results are provided to illustrate the validity
of the proposed approach.
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A compound fuzzy disturbance observer based on sliding modes is developed, and its application on flight simulator is presented.
Fuzzy disturbance observer (FDO) is an effective method in nonlinear control. However, traditional FDO is confined to monitor
dynamic disturbance, and the frequency bandwidth of the system is restricted. Sliding mode control (SMC) compensates the high-
frequency component of disturbance while it is limited by the chattering phenomenon.The proposedmethod uses the slidingmode
technique to deal with the uncompensated dynamic equivalent disturbance. The switching gain of sliding mode control designed
according to the error of disturbance estimation is a small value. Therefore, the proposal also helps to decrease the chattering. The
validity of the proposal method is confirmed by experiments on flight simulator.

1. Introduction

Flight simulator simulates the attitude of aircraft and helps
the ground experiments. High precision motion control is
the key of a flight simulator, which influences the accuracy
of simulation experiments. As a typical kind of servomotor
system, the robustness against external nonlinear distur-
bances, time-varied characters, and modeling uncertainties
is urgently required [1]. The disturbance observer (DOB)
approach has been widely used as an effective robust method
to compensate the disturbance and parameter variations
from both environment and system [2, 3]. The disturbance
observer, which makes the system dynamics same as the
nominalmodel in ideal condition, can absolutely compensate
the equivalent disturbance regarding the external disturbance
torque,modeling error, and other uncertain factors.However,
this method is a linear one and equivalent to high-gain
control, which may cause resonance in controlling elastic
electromechanical systems [4]. Moreover, there exists huge
modeling mismatch if the nonlinear characters of the system
are ignored and the performance of the system is limited
as the two elements are contradictive in stable controller
designing.

Fuzzy method, as a nonlinear method, has been studied
with the basic idea that a fuzzy logic system can well
approximate arbitrary highly nonlinear system [5, 6]. In
previous work, fuzzy approach has been used in complex
nonlinear areas such as facial pattern recognition [7], project
management [8], and economic dispatch [9] and obtained
good effect. Facing to the difficulties caused by nonlinear
factors in control area, an apparent view is to use fuzzy
tools tomonitor and compensate these uncertainties. In some
investigations, fuzzy method has been used in controller
design [10, 11], filter design [12, 13], and observer design
[14, 15]. Thereinto, a fuzzy-disturbance-observer- (FDO-)
based control suggested by Kim [14] inherits the advantages
of disturbance observer and avoids the unstable factors
when there exists huge difference between the nominal
model and the actual system. Compared with the indirect
and direct adaptive fuzzy approaches suggested by Chen
et al. [15] and Ordonez and Passino [16], the FDO-based
method guarantees the uniformly ultimately bounded of
the disturbance observation error within a sufficiently small
region by appropriate choice of the design parameter without
the requirement of a supervisory or a robustifying controller.
FDO deals with nonlinear problems in motion control
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systems and is optimal to industrial application. However,
FDO still has difficulty in compensating high-frequency
component of a nonlinear disturbance sufficiently.

Sliding mode control (SMC) can inhibit high-frequency
disturbance by switching control value, which also causes
chattering phenomenon. SMC is an effective approach to deal
with nonlinear systems [17, 18]; therefore, an apparent solu-
tion is to combine SMC and disturbance observer together.
SMC is used as an outer loop controller in some investigations
while disturbance observer deals with the compensation of
disturbance [19, 20]. In these conditions, the SMC needs
to improve the tracking performance as well as inhibiting
the disturbance simultaneous. As a result, the chattering
phenomenon is hardly decreased as the switching gain
keeps affecting. Meanwhile, the upper bound on unknown
disturbances is generally considered as constant estimation in
order to meet the conditions for the existence of generalized
sliding mode [21, 22]. Therefore, if the upper bound is
underestimated, the tracking performance of motor servo
system is difficult to improve and the system is possibly
unstable. Moreover, the switching gain of SMC is designed
conservatively and the chattering alleviation is also limited.
In previous work, slidingmode disturbance observer has also
been proposed as an independent branch which employs the
sliding mode technique to estimate the lumped disturbance
rather than to do the position control directly [23, 24],
and some intelligent methods have also been employed to
observe the varying disturbances and estimate the upper
bound accordingly [25, 26]. However, the conservative is still
a great problem as the switching gain should be larger than
the unknown upper bound, and most of intelligent units are
not sufficiently sensitive to the chattering in the output of the
controller.

In this paper, a compound fuzzy disturbance observer
(CFDO) based on sliding modes is proposed, and the task
of disturbance compensation is divided into two parts. Low-
frequency disturbance is compensated by FDO while high-
frequency disturbance is treated by SMC. As low-frequency
component is the main part of equivalent disturbance, SMC
deals with only the secondary part of the disturbance.
Consequently, the switching gain of SMC may be designed
as a relative small value, and the chattering alleviation is
achieved. The proposed method comprehended the advan-
tages of both FDO and SMC. By using this method, the
equivalent disturbance can be compensated more accurately,
and the resonance caused by traditional methods in con-
trolling elastic electromechanical systems can be avoided.
Compared with the traditional proposed DOB and FDO
schemes, CFDO has better robustness when there exists large
nonlinear factors, decreases the modeling mismatch, and
extends the frequency bandwidth of the systems. The model
of disturbance is not required when the CFDO is designed.
As a typical kind of servo motor system, the theoretic results
in flight simulator can be used in other servo motion control
systems.

The brief outline of the paper is as follows. In Section 2,
the fuzzy disturbance observer is introduced. In Section 3, the
control problem is formulated.Then, the structure and design
of CFDO are proposed. In Section 4, experimental results are

𝑟 +++

𝐷equ

−
�̂�equ

𝑥
Controller Plant

Fuzzy
disturbance

observer

Figure 1: Structure of the control system with fuzzy disturbance
observer.

included to support the theoretical work. Finally, the paper is
concluded in Section 5.

2. Fuzzy Disturbance Observer

Consider a system described as

̇𝑥
1
= 𝑥
2
, (1)

̇𝑥
2
= [𝛼 (𝑥

2
) + Δ𝐴 (𝑥)] + [𝛽 (𝑥

2
) + Δ𝐵 (𝑥)] 𝑢 + 𝑑ext, (2)

where 𝑢 denotes controller output, 𝑥 = (𝑥
1
, 𝑥
2
)
𝑇 denotes

state vector of the system, 𝛼(𝑥
2
) and 𝛽(𝑥

2
) are decided

by nominal model, Δ𝐴(𝑥) and Δ𝐵(𝑥) denote the internal
unknown time-varying nonlinear dynamics, and𝑑ext denotes
generalized external disturbance. In the viewpoint of dis-
turbance observer, both internal uncertainty and external
disturbance can be defined as equivalent disturbance, and the
system can be written as

̇𝑥
2
= 𝛼 (𝑥

2
) + 𝛽 (𝑥

2
) (𝑢 + 𝐷equ) , (3)

where𝐷equ = [Δ𝐴(𝑥)+Δ𝐵(𝑥)𝑢+𝑑ext]/𝛽(𝑥2) is the nonlinear
equivalent disturbance in controller output terminal and
cannot be described by mathematical expressions in general.
A fuzzy logic is used as a solution to approximate the
nonlinear disturbance as an FDO.

Figure 1 shows the structure of FDO. From the structure,
the equivalent disturbance can be compensated sufficiently,
and the system has the same dynamics as the nominal model
in the case of the fuzzy system �̂�equ follows the disturbance
𝐷equ completely.

In order to achieve the compensation, the estimated value
can be obtained by fuzzy logic system, which is described
briefly here. The fuzzy inference engine uses the fuzzy IF-
THEN rules to perform a mapping from an input compact
set 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛 to an output variable 𝑧 ∈ 𝑅.

The fuzzy rules can be described as

𝑅
𝑖
: If 𝑥
1
is 𝐾𝑖
1
and ⋅ ⋅ ⋅ and 𝑥

𝑛
is 𝐾𝑖
𝑛
, then 𝑧 is 𝑧

𝑖
, (4)

where 𝐾𝑖
1
, 𝐾
𝑖

2
, . . . , 𝐾

𝑖

𝑛
are fuzzy variables and 𝑧

𝑖
is a singleton

number. By using product inference engine, center-average
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defuzzifier, and singleton fuzzifier, the output of the fuzzy
system can be expressed as

𝑧 (𝑥) =

∑
𝑀

𝑖=1
𝑧
𝑖
(∏
𝑛

𝑗=1
𝜇
𝐾
𝑖
𝑗
(𝑥
𝑗
))

∑
𝑀

𝑖=1
(∏
𝑛

𝑗=1
𝜇
𝐾
𝑖
𝑗
(𝑥
𝑗
))

= �̂�
𝑇

𝜉 (𝑥) , (5)

where 𝜇
𝐾
𝑖
𝑗
(𝑥
𝑗
) is membership function value of the fuzzy

variable 𝑥
𝑗
,𝑀 is the number of fuzzy rules, �̂�

𝑇

= (𝑧
1
, 𝑧
2
, . . . ,

𝑧
𝑀
) denote adjustable parameter vector, and 𝜉(𝑥) = (𝜉

1
(𝑥),

𝜉
2
(𝑥), . . . , 𝜉

𝑀
(𝑥))
𝑇 denote fuzzy basis functions defined by

𝜉
𝑖
=

∏
𝑛
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. (6)

In order to design an FDO, a tuning method must be
developed for the adjustable parameter vector. Consider the
following dynamic system (7):

̇𝜇 = −𝜎𝜇 + 𝜎𝑥
2
+ 𝛼 (𝑥

2
) + 𝛽 (𝑥

2
) (𝑢 + �̂�equ) . (7)

Define disturbance observation error as 𝜍 ≡ 𝑥
2
−𝜇. Obviously,

𝜍 → 0(𝜇 → 𝑥
2
) implies that the estimated disturbance value

�̂�equ approaches the actual but unknown disturbance𝐷equ.
The disturbance observation error 𝜍 is uniformly ulti-

mately bounded within a region, which size can be kept
arbitrarily small, if the adjustable parameter vector of the
FDO is tuned by (8) and bounded. To ensure the FDOoutputs
zero signal in case of 𝐷equ = 0 (perfect matching), the
adjustable parameter vector is set to zero as (9).The correlated
proof can be found in [14]. Consider

̇
�̂� = 𝛾𝜍𝜉 (𝑥, 𝑢) , (8)

�̂� (0) = 0, (9)

As a typical servo system, a flight simulator system can be
described as

𝐽
𝑛
̈𝜃 + 𝐵
𝑛
̇𝜃 = 𝑢 + 𝑑, (10)

where 𝑑 is the nonlinear equivalent disturbance in controller
output terminal, 𝐽

𝑛
is the nominal inertia, and 𝐵

𝑛
is the

nominal damping. Define 𝑥
1
= 𝜃, 𝑥

2
= ̇𝜃, it is significant that

the system (10) is a special case of system (2), and the FDO
can be designed as is stated previously.

The FDOmakes system response the same as the nominal
model. Compared with DOB, FDO-based control has advan-
tages on the robust stability and static performance when the
system lacks mechanical stiffness. Unfortunately, some flight
simulator systems are elastic electromechanical systems, and
the use of DOB is restricted. Therefore, the FDO helps to
improve the static performance and robustness of these flight
simulators.

However, the nonlinear disturbance, such as friction, is
composed of the components of many frequencies.The high-
frequency components limit the system performance and the
effect of FDO is limited in practice [27]. Therefore, distur-
bance compensation method with better effect is expected.

3. Compound Fuzzy Disturbance Observer

Consider the flight simulator system (10) with the help of
FDO, it can be described as (11), where �̂� is the estimated dis-
turbance by FDO.The difference between the observer value
𝑑 and the equivalent disturbance �̂� should be compensated.
Define a secondary system as (12), where 𝑢

𝑐
is the objective

control value to make 𝑒 → 0. In this case, 𝑢
𝑐
is expected to

𝑑 − �̂�. Consider

𝐽
𝑛
̈𝜃 + 𝐵
𝑛
̇𝜃 = 𝑢 + 𝑑 − �̂�, (11)

𝐽
𝑛
̈𝜃
𝑛
+ 𝐵
𝑛
̇𝜃
𝑛
= 𝑢 + 𝑢

𝑐
, (12)

𝑒 = 𝜃 − 𝜃
𝑛
. (13)

Define the sliding surface as (14), where 𝑐 = 𝐵
𝑛
/𝐽
𝑛
. Then

the objective turns into making 𝑤 → 0. The control value
is designed as (15), where 𝜅 is a positive constant gain, 𝜓
is the positive switching gain, 𝜀 is a small constant that
communicates with the boundary layer near the slidingmode
surface, and sat(∙) is the saturation function defined as (16):

𝑤 = ̇𝑒 + 𝑐𝑒, (14)

𝑢
𝑐
= 𝜅𝑤 + 𝜓 sat(

𝜓𝑤

4𝜀
) , (15)

sat (∙) =
{{

{{

{

1, ∙ ≥ 1

∙, |∙| < 1

−1, ∙ ≤ −1.

(16)

According to (11)∼(15), there is (17). Define a positive definite
Lyapunov candidate (18); its time derivative is obtained as
(19):

𝐽
𝑛
𝑤 = 𝐽
𝑛
̈𝜃
𝑛
+ 𝐵
𝑛
̇𝜃
𝑛
− (𝐽
𝑛
̈𝜃 + 𝐵
𝑛
̇𝜃)

= − 𝜅𝑤 − 𝜓 sat(
𝜓𝑤

4𝜀
) + �̂� − 𝑑,

(17)

𝑉 (𝑤) =
1

2
𝐽
𝑛
𝑤
2
, (18)

𝑉 (𝑤) = 𝑤𝐽
𝑛
𝑤 ≤ −𝜅𝑤

2
− 𝑤𝜓 sat(

𝜓𝑤

4𝜀
) + |𝑤|


�̂� − 𝑑


,

(19)

𝜓 ≥

�̂� − 𝑑


. (20)

Suppose that (20) is satisfied; the analysis of (19) is discussed
as follows.

If |𝑤| ≥ 4𝜀/𝜓 and 𝜓 ≥ |�̂� − 𝑑|, there is (21). From (21) and
considering |𝑤| ≥ 4𝜀/𝜓, there is (22):

𝑉 (𝑤) = − 𝜅𝑤
2
− |𝑤| (𝜓 −


�̂� − 𝑑


)

≤ − 𝜅𝑤
2
= −2

𝜅

𝐽
𝑛

𝑉 (𝑤) ≤ 0,

(21)

lim
𝑡→∞

|𝑤 (𝑡)| ≤
4𝜀


�̂� − 𝑑



. (22)
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If |𝑤| ≤ 4𝜀/𝜓 and 𝜓 ≥ |�̂� − 𝑑|, there is (23). According to the
solution of the differential inequality, there is (24) and (25):

𝑉 (𝑤) = −𝜅𝑤
2
−
𝜓
2
|𝑤|
2

4𝜀
+ |𝑤|


�̂� − 𝑑



≤ −𝜅𝑤
2
−
𝜓
2
|𝑤|
2

4𝜀
+ |𝑤| 𝜓

= −𝜅𝑤
2
−
1

𝜀
(
𝜓 |𝑤|

2
− 𝜀)

2

+ 𝜀

≤ −𝜅𝑤
2
+ 𝜀 = −2

𝜅

𝐽
𝑛

𝑉 (𝑤) + 𝜀,

(23)

𝑤
2
(𝑡) ≤ 𝑤

2
(0) exp(−2𝜅

𝐽
𝑛

𝑡) +
𝜀

𝜅
[1 − exp(−2𝜅

𝐽
𝑛

𝑡)] ,

(24)

lim
𝑡→∞

|𝑤 (𝑡)| ≤ √
𝜀

𝜅
. (25)

Consequently, if (20) is satisfied, 𝑤 exponentially converges
and satisfied (25). By the definition of 𝑤, 𝑒 exponentially
converges and satisfied (26). Therefore, the compound dis-
turbance observer can be designed if (20) is satisfied:

lim
𝑡→∞

|𝑒 (𝑡)| ≤
1

𝑐
√
𝜀

𝜅
. (26)

The expression (20) should be satisfied; that is, the switching
gain is related to the difference between equivalent distur-
bance and observer value of FDO. From the process of FDO
design, the difference aforementioned are decided by the
disturbance observation error 𝜍. Therefore, the estimation of
upper bound which is used to design sliding mode controller
can be got by 𝜍. When the disturbance observation error
disappears after some time, the switching gain of the SMC
can be kept in a small value. And further, the chattering
phenomenon can be decreased.The expression (27) gives the
description of the switching gain in this paper, where 𝜂 is the
magnification coefficient that can be tried in practice. The
whole structure of CFDO is showed in Figure 2. Consider

𝜓 = 𝜂𝜍. (27)

4. Experiment Results

In order to test the effect of the proposed method, an
experiment is implemented by using a three-axis flight
simulator shown in Figure 3. The optical-electrical encoder
with resolution of 0.0007 degrees is employed as the position
sensor. The program of control algorithm is written with C
language based on Windows-RTX real-time system in an
industrial computer (Advantech IPC 610), which connects
with the servo drivers by a 16-bit D/A convertor of PCI bus.
The control cycle is 0.001s.

As in the previous discussion, FDO monitors both the
internal and the external disturbance so that each axis of the

𝑢 + ++

+

+
𝑟

𝑢𝑐

𝑑

−

𝜍

𝜃
𝑑

Controller Plant

Fuzzy
disturbance

observer

Sliding mode
controller

𝜓 = 𝜂𝜍

Figure 2: Structure of the control system with compound fuzzy
disturbance observer.

Figure 3: The three-axis flight simulator.

flight simulator can be designed independently. Therefore,
the pitch axis is chosen herein to verify the method. The
controller design is based on the parameters which are
acquired by identifying the flight simulator. The parameters
of the nominal model are identified as 𝐽

𝑛
= 0.0172, 𝐵

𝑛
=

0.0948. The fitting curves for frequency characteristics of
actual plant and nominal model are shown in Figure 4. A PD
controller is used as a position controller and 𝐾

𝑝
= 0.65,

𝐾
𝑑
= 0.03. The membership functions shown in Figure 5

are selected for the premise parts of the FDO. Other factors
employed in the experiment are given as follows: 𝜎 = 15,
𝛾 = 350, 𝜅 = 10, and 𝜂 = 1.1. A nonlinear tracking
differential estimator is used to get differential value [28],
and the nonlinear tracking differential gain is 𝑔V = 400. The
accuracy of the static position, the stationarity of the static
velocity, and the dynamic frequency are the most important
indexes to a flight simulator. Generally, the static position
accuracy can be guaranteed by a stable disturbance observer.

Figure 6 shows the curves of the steady-state speed
under DOB, FDO, and CFDO schemes, respectively. In
this case, the reference signal is constant and the response
curves tracking with the velocity of 1∘/s as well. All of the
systems can reach the position command value ultimately.
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Figure 4: The fitting curves for frequency characteristics of actual plant and nominal model.
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Figure 5: Gaussian membership functions.

However, the DOB scheme has a oscillatory speed because
of the influence of elasticity. The FDO and CFDO schemes
can keep a stable speed while tracking and it is the effect
of FDO as the sliding mode part almost has no effect in
static condition. Comparedwith traditionalDOB scheme, the
proposedmethod has better robustness as FDO is a nonlinear
approach and decreases the modeling mismatch. Evidently,
reducing the effect of DOB helps to decrease the oscillation
while restricting the performance of the system.

Figure 7 compares the tracking error and the control value
of the FDO and CFDO schemes when the reference signal
is described as 2 sin(2𝜋 ⋅ 0.5𝑡). The figure shows that the
maximum tracking error under the FDO scheme approx-
imately equals 0.037 deg while that decreases to 0.028 deg
using the proposed CFDO. The tracking error indicates that
the systemwith CFDO has better dynamic performance than
the system with only FDO. Furthermore, the control value
of the CFDO system does not exhibit obvious chattering
phenomenon compared with the value of the FDO system.
The system performance is effected by FDO primarily, and
the slidingmode controller whose switching gain is restricted
in a small range only assists secondarily.

Figure 8 shows the tracking error and the control value
of the two systems when the reference signal is described
as 2 sin(2𝜋 ⋅ 4𝑡). High-frequency disturbance, treated by
SMC, is the main problem in this environment. The figure
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Figure 6: The curves of the steady-state speed under DOB, FDO,
and CFDO schemes.

shows that the maximum tracking error under the FDO
scheme approximately equals 0.652 deg while that decreases
to 0.203 deg using the proposedCFDO. From the comparison
of the two error curves, the CFDO system has better dynamic
performance and the frequency range is extended with the
help of SMC. Inevitably, chattering phenomenon can hardly
be alleviated for the SMC need to recover rapidly.

Neither the steady-state error of FDO nor the error of
CFDO is influenced by the extra constant disturbance, as
FDO compensates the constant disturbance over time. How-
ever, under the condition of small time-varying disturbance
like Figure 8, CFDO has better performance than FDO as
the sliding mode controller deals with the high-frequency
disturbance rapidly. According to Figures 7 and 8, changes of
working frequency have less influence under CFDO scheme
than under FDO scheme; that is, the system with CFDO has
better robustness than the system with FDO.

Thepart of slidingmode controller compensates the high-
frequency component of disturbance and improves not only
the robustness but also the dynamic performance of the
system, meanwhile, the FDO deals with the low-frequency
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Figure 7: The comparison of error curves and control value in the case of sin input (𝐴 = 2, 𝑓 = 0.5).
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Figure 8: The comparison of error curves and control value in the case of sin input (𝐴 = 2, 𝑓 = 4).

component of disturbance and helps to weaken the chatter-
ing. In consequence, they help each other to compensate the
equivalent disturbance.

To a flight simulator system, the references are often
slow-varying signals, which can be seen as static signals, in
most part of an aircraft trajectory. In the last part of the
trajectory, there will be fast-varying signals. CFDO meets
the demand of these systems perfectly: FDO guarantees the
accuracy, chattering is limited in most part of time, and
SMC helps the system to respond fast while facing enormous
variations.

5. Conclusion

This paper proposes a compound fuzzy disturbance observer
based on sliding modes. The equivalent disturbance is suf-
ficiently compensated by using the proposed CFDO when
there exists huge modeling mismatch, and the disadvantages
of FDO and SMC are avoided. The performance, especially
the accuracy, of the system is improved.The switching gain of
slidingmode controller is designed by disturbance estimation
error, and the reduction of switching gain helps to weaken the
chattering.
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The method has been validated by experiments. By using
the proposedmethod, themaximum tracking error decreases
from 0.037 deg to 0.028 deg in low-frequency condition with
the reference of 2 sin(2𝜋 ⋅ 0.5𝑡), and from 0.652 deg to
0.203 deg in high-frequency condition with the reference of
2 sin(2𝜋⋅4𝑡). Most servomotion control systems have similar
characteristics as flight simulator; therefore, the theoretic
results are able to be extended to other relational fields such as
mechanical arm systems, camera tracking systems, and other
servo motion control systems, especially those with high-
precision requirement and deficient mechanical stiffness.

However, the coefficient about the fuzzy disturbance
observer error can only be decided by trying in practice and
an unsuitable parameter may lead to performance degra-
dation or make the system unstable. In future work, better
ways to decide switching gain will be studied and the fuzzy
adjustable method will be optimized.
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We propose a terminal sliding mode control (SMC) law based on adaptive fuzzy-neural observer for nonaffine nonlinear uncertain
system. First, a novel nonaffine nonlinear approximation algorithm is proposed for observer and controller design. Then, an
adaptive fuzzy-neural observer is introduced to identify the simplified model and resolve the problem of the unavailability of the
state variables. Moreover, based on the information of the adaptive observer, the terminal SMC law is designed. The Lyapunov
synthesis approach is used to guarantee a global uniform ultimate boundedness property of the state estimation error and the
asymptotic output tracking of the closed-loop control systems in spite of unknown uncertainties/disturbances, as well as all the
other signals in the closed-loop system. Finally, using the designed terminal sliding mode controller, the simulation results on the
dynamic model demonstrate the effectiveness of the proposed new control techniques.

1. Introduction

Sliding mode control (SMC) is known to be a robust
control scheme applicable for controlling uncertain systems.
Great robustness is provided against various categories of
uncertainties such as external disturbances andmeasurement
errors [1–7]. It is also straightforward to execute the resulting
algorithms. The dynamics performance of a SMC system
is affected by the suggested sliding manifolds upon which
the control structure is switched. The most normally used
sliding manifolds are linear hyperplanes. Such hyperplanes
ensure the asymptotic stability of the sliding mode. Non-
linear switching manifolds may give increase to a better
control performance, provided the nonlinearity is added
purposefully. The terminal sliding mode concept has been
suggested to focus the finite time control [8]. However, SMC
techniques cannot provide satisfactory results when suffering
poorly modeling unless the designers know the bounds of
uncertainty.

Since fuzzy logic systems (FLSs) and neural networks
(NNs) are universal function approximators [9–16], the
adaptive control methods of nonlinear systems that integrate
the universal function approximators have developed quickly
[2, 13, 17].Themain improvement of using universal function

approximators is to eliminate the linear-in-the-parameters
formon unknownnonlinearities of the controlled pant.Thus,
the class of nonlinear systems to which the adaptive control
technique can be employed is improved by using universal
function approximators. Another benefit is that we can use
conventional and advanced adaptive techniques with a novel
robust action which compensates the errors.

In fact, most of the works in the fuzzy/neural control
are dedicated to the control problem for the affine nonlinear
systems, that is, systems characterized by inputs appearing
linearly in the system input-output equation. Few results
are accessible for nonaffine nonlinear systems in which
the control input occurs in a nonlinear fashion. In this
paper, a novel dynamic model approximation method is first
proposed to approximate the nonaffine nonlinear dynamics,
which is a solution that bridges the gap between affine and
nonaffine control systems. Then we combine the FLSs and
NNs, and adaptive techniques proposed an adaptive fuzzy-
neural observer for nonaffine nonlinear systems. Because
in many control problems, state variables may be partly
unavailable. So an adaptive observer is designed, and it entails
simultaneous estimation of parameters and unknown state
variables. The update laws of fuzzy-neural network (FNN)
parameters provide the Lyapunov stability for the closed-loop
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Figure 1: Functional link of a fuzzy-neural network structure.

system and guarantee that all signals involved are globally
uniformly ultimately bounded. Using terminal SMC, based
on the adaptive FNN observer, the robust tracking controller
is designed.

The rest of this paper is organized as follows. First, a
brief descriptions of the fuzzy-neural network system. Main
results include a novel dynamic model approximation tech-
nique, adaptive fuzzy-neural observer, and an SMC control
algorithm which are proposed in Section 3. In Section 4,
simulation results are presented to show the effectiveness of
the proposed technique. Finally, some conclusions are made
at the end of this paper.

2. Background

2.1. Fuzzy-Neural Network for Approximation. Figure 1
depicts a functional link FNN which consists of fuzzy
logic and neural network. The FLS can be divided into two
parts: some fuzzy IF-THEN rules and a fuzzy inference
engine. The fuzzy inference engine uses the fuzzy IF-THEN
rules to perform a mapping from an input linguistic vector𝑧 = [𝑧

1
, . . . , 𝑧

𝑚
]𝑇 ∈ R𝑚 to a scalar output variable 𝑦

𝑓
∈ R.

The 𝑖th fuzzy IF-THEN rule can be characterized by the
following form [16]:

IF 𝑧
1
is 𝐴𝑖

1
and ⋅ ⋅ ⋅ and 𝑧

𝑚
is 𝐴𝑖

𝑚

THEN 𝑦
𝑓
is 𝐵𝑖 (𝑖 = 1, . . . , 𝑁) , (1)

where 𝐴𝑖

𝑗
, 𝐵𝑖 are fuzzy sets. By using product inference,

center-average and singleton fuzzifier, 𝑁 is the total number
of rules. Then the output of the FNN can be expressed as

𝑦
𝑓

= ∑𝑁

𝑖=1
𝜔𝑖 [∏𝑚

𝑗
𝜇
𝐴
𝑖
𝑗
(𝑧

𝑗
)]

∑𝑁

𝑖=1
[∏𝑚

𝑗
𝜇
𝐴
𝑖
𝑗
(𝑧

𝑗
)] = 𝑊𝑇𝑃 (𝑧) , (2)

where 𝜇
𝐴
𝑖
𝑗
(𝑧

𝑗
) is the membership function value of the

fuzzy variable, 𝜔𝑖 is the point at which 𝜇
𝐵
𝑖(𝜔𝑖) = 1, and𝑊 = [𝜔1, 𝜔2, . . . , 𝜔𝑁] is an adjustable parameter vector. We

assume that an upper limit ‖𝜀(𝑧)‖ ≤ 𝜀
𝑀

of the functional
reconstruction error is known. 𝑃 = [𝑝1, 𝑝2, . . . , 𝑝𝑁] is a fuzzy
basis vector, where 𝑝𝑖 is defined as

𝑝𝑖 (𝑧) = ∏𝑚

𝑗
𝜇
𝐴
𝑖
𝑗
(𝑧

𝑗
)

∑𝑁

𝑖=1
[∏𝑚

𝑗
𝜇
𝐴
𝑖
𝑗
(𝑧

𝑗
)] . (3)

The truth value 𝑝𝑖 (layer III) of the antecedent part of the 𝑖th
implication is calculated by (3). Among the commonly used
defuzzification strategies, the output (layer IV) of the FNN
is expressed as (2). The fuzzy logic approximator based on
the neural network can be established. The approximator has
four layers. At layer I, nodes, which are input ones, stand for
the input linguistic variables. At layer II, nodes represent the
values of the membership function value. At layer III, nodes
are the values of the fuzzy basis vector. Each node of layer III
performs a fuzzy rule. The links between layer III and layer
IV are full connected by the weighting vector. 𝜔, that is, the
adjusted parameters. At layer IV, the output stands for the
value of 𝑦

𝑓
.

3. Main Results

Consider the nonaffine nonlinear system represented in the
following normal form:

.𝑥
𝑖
= 𝑥

𝑖+1
, 𝑖 = 1, 2, . . . , 𝑛 − 1,

.𝑥
𝑛
= 𝑓 (𝑥, 𝑢) + 𝑑 (𝑡) ,

𝑦 = 𝑥
1
,

(4)
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or equivalently in observer canonical form given by
.𝑥 = 𝐴𝑥 + 𝑏 [𝑓 (𝑥, 𝑢) + 𝑑 (𝑡)] ,

𝑦 = 𝑐𝑇𝑥, (5)

where

𝐴 = [[[[[[

0 1 0 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0
⋅ ⋅ ⋅0 0 0 ⋅ ⋅ ⋅ 10 0 0 ⋅ ⋅ ⋅ 0

]]]]]]
, 𝑏 = [[[[[[[

00
...01

]]]]]]]
, 𝑐 = [[[[[[[

10
...00

]]]]]]]
, (6)

and 𝑥 = [𝑥
1
, . . . , 𝑥

𝑛
]𝑇 ∈ R𝑛 is the state vector of the system

in the normal form which is assumed to be available for
measurement, 𝑢 ∈ R is the control input assumed to have
an upper bound 𝑢 (i.e., |𝑢| ≤ 𝑢), 𝑦 ∈ R is the system output,
and 𝑓(𝑥, 𝑢) is an unknown smooth nonlinear function. 𝑑(𝑡)
denotes the external disturbance.

Observer-based model identification methods have been
proposed in affine nonlinear systems in [18, 19]. However,
using such observers to identify for nonaffine nonlinear
systems is not an easy thing. And inmany practical situations,
state variables are often unavailable in nonlinear systems.
Thus, observer-based adaptive fuzzy control is required for
such complicated applications. In this section, in order to
design robust tracking controller for unknown nonaffine
nonlinear uncertain systems, a new model-free control
design method is firstly proposed based on sliding mode
technology.

3.1. Novel Nonaffine Nonlinear Approximation. The problem
of controlling the plants characterized by models that are
nonaffine in the control input vector is a difficult one. For
the tracking control especially, the linearization may result
in the design of sufficiently accurate controllers in the case
of stabilization around the operating point; in the case of
tracking of desired trajectories, the problem becomes much
more difficult because the linearized model is time-varying.
Hence, there is a clear need for the development of systematic
control design techniques for nonlinear models that are
nonaffine in 𝑢 and that are suitable for the case of tracking
of desired trajectories.

For the nonaffine nonlinear model (4), the Taylor expan-
sion of the nonlinear function 𝑓[𝑥(𝑡), 𝑢(𝑡)] with respect to𝑢(𝑡) around 𝑢(𝑡 − 𝜏) can result in

.𝑥
𝑖
= 𝑥

𝑖+1
,

.𝑥
𝑛
= 𝑓 (𝑥, 𝑢 (𝑡 − 𝜏)) + 𝑓

𝑑
(𝑥, 𝑢 (𝑡 − 𝜏)) Δ𝑢 + 𝑅

𝑝
+ 𝑑, (7)

whereΔ𝑢 = 𝑢−𝑢(𝑡−𝜏),𝑓
𝑑
(𝑥, 𝑢(𝑡−𝜏)) = 𝜕𝑓(𝑥, 𝑢)/𝜕𝑢|

𝑢=𝑢(𝑡−𝜏)
,

and the remainder 𝑅
𝑝

= 𝑓
𝑑𝑑

Δ𝑢2/2 is bounded by

𝑅𝑝

 ≤ 𝑟
𝑝
Δ𝑢2

2 , (8)

where 𝑓
𝑑𝑑

= 𝜕2𝑓(𝑥, 𝑢)/𝜕2𝑢|
𝑢=𝜁

, 𝜁 is a point between 𝑢 and𝑢(𝑡−𝜏). Let 0 ≤ |𝑓
𝑑𝑑

| ≤ 𝑟
𝑝
with 𝑟

𝑝
be a finite positive number.

Theparameter 𝜏 > 0 is the updating input. Itmay be chosen as
the sampling time in a sampled-data control system or as an
integer multiple of the sampling time. A better choice of the
parameter 𝜏 is the sampling because a larger 𝜏may lead to an
inaccurate approximation when the system function 𝑓(𝑥, 𝑢)
varies quickly.

It is easy that (7) can be representation as the following
form:

.𝑥
𝑖
= 𝑥

𝑖+1
,

.𝑥
𝑛
= 𝑓

𝑛
(𝑥, 𝑢 (𝑡 − 𝜏)) + 𝑓

𝑑
(𝑥, 𝑢 (𝑡 − 𝜏)) 𝑢 + 𝑑

𝜉
(𝑡) , (9)

where 𝑑
𝜉
(𝑡) = 𝑅

𝑝
+ 𝑑(𝑡) and

𝑓
𝑛
(𝑥, 𝑢 (𝑡 − 𝜏)) = 𝑓 (𝑥, 𝑢 (𝑡 − 𝜏)) − 𝑓

𝑑
(𝑥, 𝑢 (𝑡 − 𝜏)) 𝑢 (𝑡 − 𝜏) .

(10)

In this paper, we assume that |𝑑
𝜉
(𝑡)| ≤ 𝑑

𝑀
. To approximation

accuracy, control input must satisfy the following assump-
tion.

Assumption 1. Consider that |Δ𝑢| ∈ [0, 𝛿] and 0 < |𝜕𝑓/𝜕𝑢| ≤𝛽; 𝛿 and 𝛽 are two finite positive constants.

In Assumption 1, 0 < |𝜕𝑓/𝜕𝑢| ≤ 𝛽 means that the
system (4) has a well-defined relative degree. |Δ𝑢| should
not be too large in order to limit the approximation error of
the model (9) for a computed 𝑢(𝑡). In many actual process
control systems and flight control systems, |Δ𝑢(𝑡)| ∈ [0, 𝛿] is
a physical restriction of many practical systems because their
states and outputs (actuators) cannot change too fast because
of system “inertia”.

Convenient for the following statements, 𝑢(𝑡 − 𝜏) is
defined as 𝜐(𝑡), then (9) can be described as follows:

.𝑥
𝑖
= 𝑥

𝑖+1
,

.𝑥
𝑛
= 𝑓

𝑛
(𝑥, 𝜐) + 𝑓

𝑑
(𝑥, 𝜐) 𝑢 + 𝑑

𝜉
(𝑡) . (11)

Remark 1. By (9) and Assumption 1, it can be seen that𝑢(𝑡 − 𝜏) should be around the input 𝑢. If the time-delay𝜏 is selected too large, the precision of approximation of
simplified model will be reduced. So the selection of 𝜏 often
requires experience. Theoretically, the smaller 𝜏 the better
precision of global approximation, the best precision of global
approximation if 𝜏 = 0. But 𝑢 is a control law to be solved, so it
is unable to be realized. In order to obtain exact time-varying
trim point, here, further improvement of the above-proposed
method is given as follows. Considering lag property of the
filtering as

.𝜐 = −𝜆𝜐 + 𝜆𝑢, (12)

then lim
𝜆→∞

𝜐 = 𝑢. This is a very good solution to the
problem that 𝑢(𝑡 − 𝜏) may be not around 𝑢. Here, 𝜆 → ∞
is only a rigorous expression for mathematics meanings, in
general, 𝜆 ∈ [5, 50]. The filter (12) is not unique. The filtering𝜐 can be completely replaced by an other filtering equation,
such as higher-order differentiator.
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Remark 2. The traditional model simplification method is
not global, mainly due to that the simplified model is fixed
rather than time-varying model. It can be seen that (11)
is a time-varying simplified model. The method which is
proposed in this subsection can achieve the global approxi-
mation for nonlinear systems (4). So the proposed simplified
model method can effectively solve the tracking control
problem using affine nonlinear control strategy, such as
sliding mode control, output-feedback control, and so on.
backstepping control.

3.2. Adaptive Fuzzy-Neural Observer Design. The simplified
model (11) can be described as

.𝑥 = 𝐴𝑥 + 𝑏 [𝑓
𝑛
(𝑥, 𝜐) + 𝑓

𝑑
(𝑥, 𝜐) 𝑢 + 𝑑

𝜉
(𝑡)] ,

𝑦 = 𝑐𝑥. (13)

In order to ascertain subject for further elaboration, we shall
use the following vectors, they are x = [𝑥𝑇, 𝜐]𝑇 and x̂ =[�̂�𝑇, 𝜐]𝑇.

We approximate the functions 𝑓
𝑛
(x), 𝑓

𝑑
(x) by using two

fuzzy systemswith their input being estimated byx as follows:

𝑓
𝑛
(x̂) = 𝑊𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x̂) , 𝑓
𝑑
(x̂) = 𝑊𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x̂) . (14)

The original functions 𝑓
𝑛
(x) and 𝑓

𝑑
(x) in (24) can be

expressed as

𝑓
𝑛
(x) = 𝑊∗𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x) + 𝜀
𝑓𝑛
,

𝑓
𝑑
(x) = 𝑊∗𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x) + 𝜀
𝑓𝑑

, (15)

where 𝜀
𝑓𝑛

and 𝜀
𝑓𝑑

are the FNN functional reconstruction
errors. In general, even given the best possible weight values,
the given nonlinear function is not exactly approximated, and
functional reconstruction error is remaining.𝑊∗

𝑓𝑛
and𝑊∗

𝑓𝑑
are

the optimal parameter vectors required for analytical purpose
satisfying

𝑊∗

𝑓𝑛
= arg min

𝑊𝑓𝑛

[ sup
x∈R𝑛+1

𝑓𝑛 (x̂) − 𝑓
𝑛
(x)] ,

𝑊∗

𝑓𝑑
= arg min

𝑊𝑓𝑑

[ sup
x∈R𝑛+1

𝑓𝑑 (x̂) − 𝑓
𝑑
(x)]

(16)

bounded as ‖𝑊∗

𝑓𝑛
‖ ≤ 𝑀

𝑓𝑛
, ‖𝑊∗

𝑓𝑑
‖ ≤ 𝑀

𝑓𝑑
.

Using the FNN approximations, the dynamic equation
of a fuzzy-neural observer that estimates the states in (13) is
given as follows:

.�̂� = 𝐴�̂� + 𝑏
0
[𝑓

𝑛
(x̂) + 𝑓

𝑑
(x̂) 𝑢] + 𝐿 (𝑦 − 𝑐𝑇�̂�) ,

�̂� = 𝑐𝑇�̂�, (17)

where 𝐿 = [𝑙
1
, 𝑙
2
, . . . , 𝑙

𝑛
]𝑇 is the observer gain vector, and 𝑏

0

will be designed later.

Defining the state and output estimate errors as �̃� = 𝑥− �̂�
and �̃� = 𝑦 − �̂� yields the error dynamics from (13) and (17):

.�̃� = 𝐴�̃� + 𝑏
0
[�̃�𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x̂) + �̃�𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x̂) 𝑢]
+ (𝑏 − 𝑏

0
) [𝑊∗𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x) + 𝑊∗𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x) 𝑢]
+ 𝑏

0
(𝑑

𝑓𝑛
+ 𝑑

𝑓𝑑
𝑢) + 𝑏 [𝑑

𝜉
(𝑡) + 𝜀

𝑓𝑛
+ 𝜀

𝑓𝑑
𝑢] ,

(18)

where 𝐴 = 𝐴 − 𝐿𝑐𝑇, �̃�
𝑓𝑛

= 𝑊∗

𝑓𝑛
− 𝑊

𝑓𝑛
, �̃�

𝑓𝑑
= 𝑊∗

𝑓𝑑
− 𝑊

𝑓𝑑
,𝑑

𝑓𝑛
= 𝑊∗𝑇

𝑓𝑛
[𝑃

𝑓𝑛
(x) − 𝑃

𝑓𝑛
(x̂)], and 𝑑

𝑓𝑑
= 𝑊∗𝑇

𝑓𝑑
[𝑃

𝑓𝑑
(x) −𝑃

𝑓𝑑
(x̂)]. In general, the FNN basis function is bounded, for

example, radial basis activation function, sigmoidal function,
and spline function.This implies that every element of 𝑃(x)−𝑃(x̂) is bounded, that is, ‖𝑃

𝑓𝑛
(x)−𝑃

𝑓𝑛
(x̂)‖ ≤ �̃�𝑀

𝑓𝑛
and ‖𝑃

𝑓𝑑
(x)−𝑃

𝑓𝑑
(x̂)‖ ≤ �̃�𝑀

𝑓𝑑
with �̃�𝑀 constant.

In order to construct the vector 𝑏
0
, the algebraic Ricati-

like equation 𝐴𝑇Γ + Γ𝐴 + Γ2 ≤ −𝑄 for 𝑄 > 0 is considered
[20]. Using the positive definite matrix Γ, the vector 𝑏

0
is

chosen as 𝑏
0

= Γ−1𝑐. It is shown below that this choice will
guarantee the stability of the observer.

Theorem 3. Consider the observer system (17). Let the update
laws for the parameters of fuzzy-neural systems be

.𝑊
𝑓𝑛

= �̃� Γ
𝑓𝑛
𝑃
𝑓𝑛

(x̂) − 𝑘
𝑓𝑛
𝑊

𝑓𝑛
,

.𝑊
𝑓𝑑

= �̃� Γ
𝑓𝑑

𝑃
𝑓𝑑

(x̂) 𝑢 − 𝑘
𝑓𝑑

𝑊
𝑓𝑑

, (19)

where Γ
𝑓𝑛

= Γ𝑇
𝑓𝑛

> 0, Γ
𝑓𝑑

= Γ𝑇
𝑓𝑑

> 0 and 𝑘
𝑓𝑛

> 0, 𝑘
𝑓𝑑

> 0. Then,
the state estimation error and parameter estimation errors are
uniformly ultimately bounded.

Proof. Consider the Lyapunov-function candidate

𝑉 = �̃�𝑇Γ�̃�⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑉1

+ �̃�𝑇

𝑓𝑛
Γ−1
𝑓𝑛

�̃�
𝑓𝑛

+ �̃�𝑇

𝑓𝑑
Γ−1
𝑓𝑑

�̃�
𝑓𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑉2

. (20)

The time derivative of 𝑉
1
is

.𝑉
1
= �̃�𝑇 (𝐴𝑇Γ + Γ𝐴) �̃� + 2�̃� [�̃�𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x̂) + �̃�𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x̂) 𝑢]
+ 2�̃�𝑇Γ {(𝑏 − 𝑏

0
) [𝑊∗𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x) + 𝑊∗𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x) 𝑢]
+ 𝑏

0
(𝑑

𝑓𝑛
+ 𝑑

𝑓𝑑
𝑢) + 𝑏 [𝑑

𝜉
(𝑡) + 𝜀

𝑓𝑛
+ 𝜀

𝑓𝑑
𝑢]} .
(21)

Since the 𝑃
𝑓𝑛
and 𝑃

𝑓𝑑
are bounded, that is, ‖𝑃

𝑓𝑛
(x)‖ ≤ 𝑃𝑀

𝑓𝑛
and

‖𝑃
𝑓𝑑

(x)‖ ≤ 𝑃𝑀

𝑓𝑑
with 𝑃𝑀

𝑓𝑛
and 𝑃𝑀

𝑓𝑑
as constants, thus,

(𝑏 − 𝑏
0
) [𝑊∗𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x) + 𝑊∗𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x) 𝑢] + 𝑏
0
(𝑑

𝑓𝑛
+ 𝑑

𝑓𝑑
𝑢)

+ 𝑏 [𝑑
𝜉
(𝑡) + 𝜀

𝑓𝑛
+ 𝜀

𝑓𝑑
𝑢] ≤ Υ

(22)
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with

Υ = (𝑏 − 𝑏
0
) [𝑀

𝑓𝑛
𝑃𝑀

𝑓𝑛
+ 𝑀

𝑓𝑑
𝑃𝑀

𝑓𝑑
𝑢]

+ 𝑏0 (𝑀
𝑓𝑛
�̃�𝑀

𝑓𝑛
+ 𝑀

𝑓𝑑
�̃�𝑀

𝑓𝑑
𝑢)

+ 𝑏 [𝑑
𝑀

+ 𝜀
𝑓𝑛𝑀

+ 𝜀
𝑓𝑑𝑀

𝑢] .
(23)

By using 2𝑎𝑇
1
𝑏
1
≤ 𝑎𝑇

1
𝑎
1
+ 𝑏𝑇

1
𝑏
1
, it can be shown that

2�̃�𝑇Γ {(𝑏−𝑏
0
) [𝑊∗𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x)+𝑊∗𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x) 𝑢] + 𝑏
0
(𝑑

𝑓𝑛
+𝑑

𝑓𝑑
𝑢)

+𝑏 [𝑑
𝜉
(𝑡) + 𝜀

𝑓𝑛
+ 𝜀

𝑓𝑑
𝑢]}

≤ �̃�𝑇Γ2�̃� + Υ2.
(24)

Substituting (24) into (21) yields
.𝑉
1
≤ −�̃�𝑇𝑄�̃� + 2�̃� [�̃�𝑇

𝑓𝑛
𝑃
𝑓𝑛

(x̂) + �̃�𝑇

𝑓𝑑
𝑃
𝑓𝑑

(x̂) 𝑢] + Υ2.
(25)

Then,
.𝑉 follows as

.𝑉 ≤ −�̃�𝑇𝑄�̃� + 2𝑘
𝑓𝑛
�̃�𝑇

𝑓𝑛
𝑊

𝑓𝑛
+ 2𝑘

𝑓𝑔
�̃�𝑇

𝑓𝑔
𝑊

𝑓𝑔
+ Υ2, (26)

where the update laws (19) have been used. By completion of
squares, it follows that

.𝑉 ≤ − 𝜆min (𝑄) {‖�̃�‖2 + 2𝑘
𝑓𝑛𝜆min (𝑄)(�̃�𝑇

𝑓𝑛

 − 12 𝑊∗

𝑓𝑛

)2

+ 2𝑘
𝑓𝑑𝜆min (𝑄)(�̃�𝑇

𝑓𝑑

 − 12 𝑊∗

𝑓𝑑

)2

− [ 𝑘
𝑓𝑛2𝜆min (𝑄)𝑊∗

𝑓𝑛

2 + 𝑘
𝑓𝑑2𝜆min (𝑄)𝑊∗

𝑓𝑑

2
+ 1𝜆min (𝑄)Υ2]} ,

(27)

which is guaranteed negative as long as either

‖�̃�‖ > √ 𝑘
𝑓𝑛

𝑊∗

𝑓𝑛

22𝜆min (𝑄) + 𝑘
𝑓𝑑

𝑊∗

𝑓𝑑

22𝜆min (𝑄) + Υ2

𝜆min (𝑄) = 𝐵
𝑥

(28)

or

�̃�𝑇

𝑓𝑛

 > √ 𝑊∗

𝑓𝑛

24 + 𝑊∗

𝑓𝑑

24 + Υ2

2 + 𝑊∗

𝑓𝑛

2 = 𝐵
𝑓𝑛
,

(29)

�̃�𝑇

𝑓𝑑

 > √ 𝑊∗

𝑓𝑛

24 + 𝑊∗

𝑓𝑑

24 + Υ2

2 + 𝑊∗

𝑓𝑑

2 = 𝐵
𝑓𝑑

.
(30)

Defining a vector z = [�̃�𝑇, �̃�𝑇

𝑓𝑛
, �̃�𝑇

𝑓𝑑
]𝑇, thus, .𝑉 is negative

outside the compact set: 𝑀
𝜎

= {z ∈ 𝑀
𝑧

| ‖z‖ ≤ 𝜎}, where𝜎 = max(𝐵
𝑥
, 𝐵

𝑓𝑛
, 𝐵

𝑓𝑑
). We can guarantee that 𝛼 < 𝛽 which

can be made by increasing 𝜆min(𝑄), and therefore ultimate
boundedness of z, where 𝛼 = max

‖z‖=𝜎𝑉 and 𝛽 = min
‖z‖=𝑅𝑉.

3.3. Controller Design and Stability Analysis. Define tracking
error as

𝐸 = 𝑥 − 𝑥
𝑑
= [𝑒, .𝑒, . . . , 𝑒(𝑛−1)]𝑇, (31)

where 𝑒 = 𝑥
1
− 𝑥

1𝑑
. Define the following terminal sliding

mode surface:

𝜎 (𝑥, 𝑡) = 𝐶𝐸 − 𝑊(𝑡) , (32)

where 𝐶 = [𝑐
1
, 𝑐

2
, . . . , 𝑐

𝑛
], 𝑐

𝑖
(𝑖 = 1, . . . , 𝑛) is positive

constant, and 𝑐
𝑛

= 1. And 𝑊(𝑡) = 𝐶𝑃(𝑡), where 𝑃(𝑡) =[𝑝(𝑡), .𝑝(𝑡), . . . , 𝑝(𝑛−1)(𝑡)]𝑇.
Assumption 2. Consider terminal function 𝑝(𝑡) : R

+
→ R,𝑝(𝑡) ∈ 𝐶𝑛[0,∞), 𝑝, .𝑝, . . . , 𝑝(𝑛) ∈ 𝐿∞, 𝑝(𝑡) is finite in interval[0, 𝑇], 𝐸(0) = 𝑃(0), .𝐸(0) = .𝑃(0), that is, 𝑝(0) = 𝑒(0), .𝑝(0) =

.𝑒(0), . . . , 𝑝(𝑛)(0) = 𝑒(𝑛)(0). Moreover, 𝑝 = 0, .𝑝 = 0, ⋅ ⋅ ⋅ , 𝑝(𝑛) =0, for 𝑡 ≥ 𝑇. 𝐶𝑛[0,∞) represents the set of all 𝑛 rank
differentiable continuous functions defined in [0,∞).

Define terminal function 𝑝(𝑡) for (4) as

𝑝 (𝑡) =
{{{{{{{{{{{{{{{{{

𝑛∑
𝑗=0

( 𝑛∑
𝑙=0

𝑎
𝑗𝑙𝑇𝑗−𝑙+𝑛+1

𝑒
𝑖
(0)(𝑙)) 𝑡𝑗+𝑛+1

+ 𝑛∑
𝑘=0

1𝑘! 𝑒𝑖(0)(𝑘)𝑡𝑘 𝑡 ≤ 𝑇
0 𝑡 > 𝑇,

(33)

where 𝑎
𝑗𝑙
can be defined by using Assumption 3.

Theorem 4. Suppose that the control law is

𝑢 (𝑡) = − 1𝑏
0
𝑓
𝑑
(x̂) {𝑏

0
𝑓
𝑛
(x̂) + 𝑙

𝑛
�̃� − 𝑥(𝑛)

1𝑑
− 𝑝(𝑛) (𝑡)

+ 𝑐−1
𝑛

𝑛−1∑
𝑘=1

[�̂�(𝑘) − 𝑝(𝑘) (𝑡)]}
− 1𝑏

0
𝑓
𝑑
(x̂) 𝑐

𝑛
𝜎 (𝑥, 𝑡)𝑐𝑛𝜎 (𝑥, 𝑡) {𝐷 (𝑡) + 𝐾} ,

(34)

where 𝐾 > 0, then 𝜎(𝑥, 𝑡) will reach zero in finite time 𝑇.
Furthermore, the sates 𝑥 will converge to zero in finite time 𝑇,
and 𝐷 is a positive constant value designed as below.

Proof. Consider a Lyapunov-function candidate as follows:

𝑉
3
(𝑡) = 12𝜎𝑇𝜎. (35)
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The derivative of 𝜎(𝑥, 𝑡) is
.𝜎 (𝑥, 𝑡) = 𝐶 .𝐸 − 𝐶 .𝑃 (𝑡)

= 𝐶 ⋅ [ .𝑒𝑇 ⋅ ⋅ ⋅ 𝑒(𝑛−1)𝑇]𝑇 − 𝐶 ⋅ [ .𝑝(𝑡)𝑇 ⋅ ⋅ ⋅𝑝(𝑛−1)(𝑡)𝑇]𝑇
= 𝑐

𝑛
[𝑥(𝑛)

1
− 𝑥(𝑛)

1𝑑
− 𝑝(𝑛) (𝑡)] + 𝑛−1∑

𝑘=1

𝑐
𝑘
[𝑒(𝑘) − 𝑝(𝑘) (𝑡)]

= 𝑐
𝑛
[�̂�(𝑛)

1
− 𝑥(𝑛)

1𝑑
− 𝑝(𝑛) (𝑡)] + 𝑛−1∑

𝑘=1

𝑐
𝑘
[�̂�(𝑘) − 𝑝(𝑘) (𝑡)]

+ 𝑛∑
𝑘=2

𝑐
𝑘
�̃�
𝑘

= 𝑐
𝑛
[𝑏

0
𝑓
𝑛
(x̂) + 𝑏

0
𝑓
𝑑
(x̂) 𝑢 + 𝑙

𝑛
�̃� − 𝑥(𝑛)

1𝑑
− 𝑝(𝑛) (𝑡)]

+ 𝑛−1∑
𝑘=1

𝑐
𝑘
[�̂�(𝑘) − 𝑝(𝑘) (𝑡)] + 𝑛∑

𝑘=2

𝑐
𝑘
�̃�
𝑘
,

(36)

where �̂� = �̂� − 𝑥
𝑑
,

.�̂� = �̂�
2
− .𝑥

𝑑
, . . . , �̂�(𝑛−1) = �̂�

𝑛
= �̂�(𝑛−1)

𝑑
. Then

.𝑉
3
(𝑡) = 𝜎𝑇 .𝜎

= 𝜎𝑇𝑐
𝑛
{𝑏

0
𝑓
𝑛
(x̂) + 𝑙

𝑛
�̃� − 𝑥(𝑛)

1𝑑
− 𝑝(𝑛) (𝑡)

+𝑐−1
𝑛

𝑛−1∑
𝑘=1

[�̂�(𝑘) − 𝑝(𝑘) (𝑡)]} + 𝜎𝑇𝑐
𝑛
𝑏
0
𝑓
𝑑
(x̂) 𝑢

+ 𝜎𝑇𝑐
𝑛
𝑐−1
𝑛

𝑛∑
𝑘=2

𝑐
𝑘
�̃�
𝑘

≤ 𝜎𝑇𝑐
𝑛
{𝑏

0
𝑓
𝑛
(x̂) + 𝑙

𝑛
�̃� − 𝑥(𝑛)

1𝑑
− 𝑝(𝑛) (𝑡)

+𝑐−1
𝑛

𝑛−1∑
𝑘=1

[�̂�(𝑘) − 𝑝(𝑘) (𝑡)]} + 𝜎𝑇𝑐
𝑛
𝑏
0
𝑓
𝑑
(x̂) 𝑢

+ 𝜎𝑇𝑐
𝑛


𝑐−1𝑛

𝑛∑
𝑘=2

𝑐
𝑘
�̃�
𝑘

 .
(37)

ByTheorem 3, it is easily get that |𝑐−1
𝑛

∑𝑛

𝑘=2
𝑐
𝑘
�̃�
𝑘
| ≤ 𝐷(𝑡).

Substituting the control law (34) into
.𝑉
3
(𝑡) yields

.𝑉
3
(𝑡) ≤ −𝜎𝑇𝑐

𝑛
𝑐𝑇
𝑛
𝜎𝑐𝑛𝜎 {𝐷 (𝑡) + 𝐾} (38)

because of

𝜎𝑇𝑐
𝑛
𝑐𝑇
𝑛
𝜎 = 𝑐𝑛𝜎2, (39)

so
.𝑉
3
(𝑡) ≤ 0. (40)

If |𝜎| /= 0, then .𝑉
3
(𝑡) < 0. This means that this Lyapunov

function will decrease gradually, and the sliding surface𝜎(𝑥, 𝑡) will converge to zero. The proof is completed.

Remark 5. It follows from Assumption 2 that

𝜎 (𝑥, 0) = 𝐶𝐸 (0) − 𝑊 (0) = 𝐶 [𝐸 (0) − 𝑃 (0)] = 0. (41)

According to Lyapunov analysis, 𝜎(𝑥, 𝑡) = 0 can be achieved
all the time.This indicates that the reaching phase in terminal
slidingmode control can be eliminated, and global robustness
can be guaranteed.

Remark 6. In order to reduce chattering which is caused
by discontinuous control signal, a continuous function vec-
tor is used to the controller design. In control law (34),𝑐𝑇
𝑛
𝜎(𝑥, 𝑡)/‖𝑐

𝑛
𝜎(𝑥, 𝑡)‖ is replaced by the continuous function

vector 𝑆
𝛿
defined by

𝑆
𝛿
= 𝑐𝑇

𝑛
𝜎 (𝑥, 𝑡)𝑐𝑛𝜎 (𝑥, 𝑡) + 𝛿 (42)

with 𝛿 = 𝛿
0
+ 𝛿

1
‖𝑒‖, where 𝛿

0
, 𝛿

1
are two positive constants.

4. Simulation Results

This section presents the simulation results of the proposed
tracking controller to illustrate that the stability of the
closed-loop system is guaranteed, and all signal involved are
bounded. Consider the nonlinear system

.𝑥
1
= 𝑥

2
,

.𝑥
2
= 0.2 (1 + 𝑒𝑥1𝑥2) (2 + sin (𝑥

2
)) (𝑢 + 𝑒𝑢 − 1) + 𝑑 (𝑡) ,

𝑦 = 𝑥
1
,

(43)

where external disturbance 𝑑(𝑡) = 5 sin(7𝜋𝑡). Define termi-
nal function 𝑝(𝑡) for dynamics of (43) as

𝑝 (𝑡) =
{{{{{{{{{{{{{{{{{

2∑
𝑗=0

( 2∑
𝑙=0

𝑎
𝑗𝑙𝑇𝑗−𝑙+3

𝑒
𝑖
(0)(𝑙)) 𝑡𝑗+3

+ 2∑
𝑘=0

1𝑘! 𝑒𝑖(0)𝑘𝑡𝑘 𝑡 ≤ 𝑇
0 𝑡 > 𝑇

(44)

according to Assumption 3; function 𝑝(𝑡), .𝑝(𝑡), and ..𝑝(𝑡) can
be equal to zero at time 𝑡 = 𝑇 by designing 𝑎

𝑗𝑙
(𝑗 = 0, 1, 2, 𝑙 =0, 1, 2). That is, if we design 𝑎

𝑗𝑙
according to the following



Mathematical Problems in Engineering 7

equations, 𝑝(𝑡), .𝑝(𝑡), and ..𝑝(𝑡) can all be equal to zero at time𝑡 = 𝑇:
𝑎
00

+ 𝑎
10

+ 𝑎
20

= −1,
3𝑎

00
+ 4𝑎

10
+ 5𝑎

20
= 0,

6𝑎
00

+ 12𝑎
10

+ 20𝑎
20

= 0,
𝑎
01

+ 𝑎
11

+ 𝑎
21

= −1,
3𝑎

01
+ 4𝑎

11
+ 5𝑎

21
= −1,

6𝑎
01

+ 12𝑎
11

+ 20𝑎
21

= 0,
𝑎
02

+ 𝑎
12

+ 𝑎
22

= −12 ,
3𝑎

02
+ 4𝑎

12
+ 5𝑎

22
= −1,

6𝑎
02

+ 12𝑎
12

+ 20𝑎
22

= −1.

(45)

Based on the three groups of (45), parameters 𝑎
𝑗𝑙
can be

solved as

𝑎
00

= −10, 𝑎
01

= −6, 𝑎
02

= −1.5,
𝑎
10

= 15, 𝑎
11

= 8, 𝑎
12

= 1.5,
𝑎
20

= −6, 𝑎
21

= −3, 𝑎
22

= −0.5.
(46)

From (44)–(46), 𝑝(𝑡) can be written as

𝑝 (𝑡) =
{{{{{{{{{{{{{{{{{{{{{{{

𝑒
0
+ .𝑒

0
𝑡+ 12 ..𝑒

0
𝑡2+(𝑎00𝑇3

𝑒
0
+ 𝑎

01𝑇2

.𝑒
0
+ 𝑎

02𝑇 ..𝑒
0
) 𝑡3

+(𝑎
10𝑇4

𝑒
0
+ 𝑎

11𝑇3

.𝑒
0
+ 𝑎

12𝑇2

..𝑒
0
) 𝑡4

+(𝑎
20𝑇5

𝑒
0
+ 𝑎

21𝑇4

.𝑒
0
+ 𝑎

22𝑇3

..𝑒
0
) 𝑡5, 𝑡 ≤ 𝑇

0, 𝑡 > 𝑇.
(47)

We choose control parameters as 𝑐
2
= 50, 𝑐

1
= 1, and 𝐾 = 0,

and terminal time is chosen as 𝑇 = 1.0. The control law is
now chosen as

𝑢 (𝑡) = − 1𝑏
0
𝑓
𝑑
(x̂){𝑏0𝑓𝑛 (x̂)+𝑙

𝑛
�̃�− ..𝑥

1𝑑
− ..𝑝 (𝑡)+𝑐−1

2

.�̂� −𝑐−1
2

.𝑝 (𝑡)}
− 1𝑏

0
𝑓
𝑑
(x̂) 𝑐

2
𝜎 (𝑥, 𝑡)𝑐2𝜎 (𝑥, 𝑡) {𝐷 (𝑡) + 𝐾} .

(48)

Then the observer for the system (43) is given by (17). We can
apply Theorem 3 with the following simulation parameters:
observer gain 𝐿 = [1000, 8000], weight-tuning parametersΓ
𝑓𝑛

= diag[5 × 104], and Γ
𝑓𝑑

= diag[5 × 103]. And 𝑘
𝑓𝑛

= 𝑘
𝑓𝑑

=0.001.
The desired output is 𝑥

1𝑑
= sin 𝑡. The initial conditions

are 𝑥(0) = [0, 0.5]𝑇. x̂(0) = [0.1, 0, 0]𝑇. The response of
the system (43) and adaptive fuzzy-neural observer with the
terminal SMC law is shown in Figure 2. FromFigure 2, we can
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Figure 2: System response with the proposed tracking controller.
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Figure 3: System states and observer values.

obtain a better tracking ability by terminal SMC than output
feedback control (OFC) method of [21, 22]. Figure 3 shows
the states and observer values, and Figure 4 shows the errors
of observer.

5. Conclusion

We have carried out a systematic study on fuzzy-neural
observer-based terminal SMC in this paper, based on an
adaptive fuzzy-neural observer which is used to identify
the model and estimate the states. So the information of
mathematical model and states does not require to know,
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Figure 4: Observer error of states.

only using the measurable output. The proposed nonlin-
ear tracking control scheme can guarantee the asymptotic
output tracking of the closed-loop control systems in spite
of unknown uncertainties/disturbances. Finally, simulation
results are provided on a nonaffine nonlinear system to show
the effective and advantages of the new control strategy.
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This paper aims to investigate the formation control of leader-followermultiagent systems, where the problemof collision avoidance
is considered. Based on the graph-theoretic concepts and locally distributed information, a neural fuzzy formation controller is
designedwith the capability of online learning.The learning rules of controller parameters can be derived from the gradient descent
method. To avoid collisions between neighboring agents, a fuzzy separation controller is proposed such that the local minimum
problem can be solved. In order to highlight the advantages of this fuzzy logic based collision-free formation control, both of
the static and dynamic leaders are discussed for performance comparisons. Simulation results indicate that the proposed fuzzy
formation and separation control can provide better formation responses compared to conventional consensus formation and
potential-based collision-avoidance algorithms.

1. Introduction

Recently, distributed multiagent coordination has attracted
much attention in many fields, where only the information
available locally from its neighbors is required for each agent
[1–6]. There are many applications of multiagent systems,
such as autonomous unmanned aerial vehicles [7], autono-
mous formation flight [8], congestion-controlled commu-
nication network [9], wireless sensor network [10], and
autonomous multivehicle formations [11]. Graph theory has
been used to characterize network topologies for consensus
studies. A general consensus problem solving is to find a
distributed control strategy such that the states of agents con-
verge to a common value. Average-consensus problem was
investigated for distributed networks with fixed and switch-
ing topologies [12]. Relying on graph theory, matrix theory,
and control theory, the analysis of consensus protocols was
thoroughly discussed. In [13], an impulsive control protocol
was presented for multiagent linear dynamic systems with
fixed topology based on the local information of agents. A

fuzzy sliding-mode controller was proposed to investigate
the formation control problem in directed graphs [14]. Cai
et al. [15] addressed the controllability improvement problem
for two types of linear time-invariant dynamic multiagent
systems by adjusting the configuration of graphs. A general
case of leader-following consensus problems under fixed and
switching topologies was discussed in [16].The second-order
agents under switching topology were concerned in [17],
where the condition of communication delays was deter-
mined for achieving consensus. The consensus problem for a
group of high-order dynamic agents with switching topology
and time-varying communication delays was discussed in
[18]. In the work of [19], linear consensus protocol and satu-
rated consensus protocol were presented for the consensus
problem of heterogeneous multiagent system. The heteroge-
neous multiagent system consists of first-order and second-
order integrator agents.

Lately, the fuzzy logic control which consists of linguistic
control rules is a technique to design controllers based on
human expert knowledge and experience. This technique
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is a good alternative to overcome the difficulties in the
requirement of exact mathematics models for plants with
unexpected complex dynamics and external disturbances.
Although the method has been practically successful, it
has proved extremely difficult to develop a general analysis
and design theory for conventional fuzzy control systems.
Recently, based on Takagi-Sugeno (T-S) fuzzy techniques,
there have appeared in the literature a great number of results
concerning stability analysis and design. T-S fuzzy techni-
ques have been applied to many applications of interest [20–
25].However, themembership functions of the abovemethod
are through manual adjustment. Lately, neural fuzzy control,
combining with the capability of fuzzy reasoning to handle
uncertain information and the capability of artificial neu-
ral networks to learn from processes, has been popularly
addressed. In [26], a robust fuzzy neural network control
(FNN) scheme including a parameter tuning algorithm was
designed for a linear Maglev rail system to achieve the objec-
tive of model-free control. A neural network-based self-
learning control strategy including an FNN controller and a
recurrent neural network identifier was proposed for elec-
tronic throttle valves [27]. Lin and Shen [28] proposed an
adaptive fuzzy neural network control scheme for a field-
oriented control permanent magnet linear synchronous
motor servo-drive system to track periodic reference trajec-
tories. In [29], an adaptive network based fuzzy inference
system was presented for speed and position estimations
of a permanent-magnet synchronous generator. In [30], an
adaptive neurofuzzy controller was presented for the tracking
control of dynamic systems with unknown nonlinearities. A
recurrent fuzzy neural controller for the robust tracking of
a robot manipulator with adaptive observers was addressed
in [31]. A robust self-organizing neural fuzzy control scheme
was proposed for a class of uncertain nonlinear MIMO
systems [32]. In the study of [33], an adaptive neurofuzzy
inference systemwas employed to identify handmotion com-
mands based on surface electromyogram signals. In [34], a
new approach was proposed for machine health condition
prognosis with the integration of neurofuzzy system and
Bayesian algorithms.Moreover, a T-S fuzzy-neuralmodelwas
adopted for identification and robust adaptive control of an
antilock braking system [35]. In addition, a hybrid evolution-
ary algorithm using fuzzy rules to adjust optimization para-
meters was proposed in [36].

In multiagent networks, the problem of collision avoid-
ance is also an important and interesting topic that is worthy
of being discussed. A cooperative control law was proposed
for general nonlinear dynamicmodels to guarantee collision-
free conflict resolution [37]. In [38], a fuzzy logic was
designed for potential functions to achieve the separation
control with input constrains. In the work of [39], a flocking
algorithm was presented for separation forces generated to
avoid collisions with external obstacles. A modified avoid-
ance function was proposed for nonlinear Lagrange systems
to achieve collision avoidance with bounded disturbances
[40]. In [41], a potential field method was discussed for
mobile robots to solve the local minimum problem. In addi-
tion, Wang and Gu [42] presented a fuzzy potential force
for the separating potential function in flocking control.

However, only few of existing results have been presented to
solve the problem of local minima in multiagent systems.

This paper aims to investigate the formation control of
leader-follower multiagent systems, where the problem of
collision avoidance is also considered. The graph theory is
used to model the communication topology between agents.
To improve the control performance, a novel formation algo-
rithm, neural-fuzzy formation controller, is proposed for
multiagent systems in directed graphs. The neural-fuzzy
control parameter consists of input Gaussian membership
functions and output fuzzy singletons, where the parameters
of input and output membership functions can be adaptively
adjusted.Theproposed neural-fuzzy formation controller has
the capability of on-line learning, and the adaptive rules
can be derived using the gradient descent method. Moreover,
a fuzzy based separation control is presented for colli-
sion avoidance, and the local minimum problem of tradi-
tional potential-based separation control can be solved. The
fuzzy based separation control consists of triangular input
membership functions and singleton output membership
functions, where the control output provides an alternative
moving direction for agents to achieve collision-free tasks.
Numerical simulations are provided to validate the collision-
free formation responses.

This paper is organized as follows. In Section 2, some
essential graph-theoretic concepts and a network of single-
integrator agents are introduced. In Section 3, the framework
of a neural-fuzzy formation controller is investigated, where
the updating rules for controller parameters are derived. In
Section 4, the conventional potential-based collision avoid-
ance is introduced. Moreover, a novel fuzzy-oriented sepa-
ration control is presented. In Section 5, simulation results
are provided for performance validations. Some concluding
remarks are given in Section 6.

2. Preliminaries

2.1. Graph Theory. Considering a multiagent system of 𝑛
agents, let𝐺 = (𝑉, Ξ) be a directed graph (digraph), consisting
of a vertex set 𝑉 = {𝜈

1
, 𝜈
2
, . . . , 𝜈

𝑛
} and an edge set Ξ ⊆

𝑉×𝑉. The vertexes 𝜈
𝑖
and 𝜈
𝑗
represent the 𝑖th and 𝑗th agents,

respectively. In digraphs, an edge of 𝐺 is an ordered pair of
distinct nodes (𝜈

𝑗
, 𝜈
𝑖
) ∈ Ξ, in which 𝜈

𝑖
and 𝜈

𝑗
are the head

and tail of the edge, respectively [43].Theweighted adjacency
matrix of a digraph 𝐺 is denoted as

𝐴 =

[
[
[
[

[

𝑎
11
𝑎
12
. . . 𝑎
1𝑛

𝑎
21
𝑎
22
. . . 𝑎
2𝑛

...
...

. . .
...

𝑎
𝑛1
𝑎
𝑛2
. . . 𝑎
𝑛𝑛

]
]
]
]

]

∈ 𝑅
𝑛×𝑛
, (1)

where 𝑎
𝑖𝑗
is the link weight; 𝑎

𝑖𝑗
= 1, if (𝜈

𝑗
, 𝜈
𝑖
) ∈ Ξ, and 𝑎

𝑖𝑗
= 0,

if (𝜈
𝑗
, 𝜈
𝑖
) ∉ Ξ.

In this paper, a leader-follower problem will be dealt
with, where the multiagent system consists of 𝑛 agents, one
leader, and 𝑛 − 1 followers. In notations, the agents indexed
by 1, 2, . . . , 𝑛 − 1 are followers and the item 𝑛 is the leader.
Assume that the leader agent has only transmitting capability,
that is, the leader acquires no information from followers,
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𝑎
𝑛𝑗
= 0, 𝑗 = 1, . . . , 𝑛. In this case, let the topology relationship

of follower agents be denoted as𝐺, a subgraph of𝐺.Then, the
associated adjacency matrix of 𝐺 is represented as

𝐴 =

[
[
[
[

[

𝑎
11

𝑎
12

. . . 𝑎
1(𝑛−1)

𝑎
21

𝑎
22

. . . 𝑎
2(𝑛−1)

...
...

. . .
...

𝑎
(𝑛−1)1

𝑎
(𝑛−1)2

. . . 𝑎
(𝑛−1)(𝑛−1)

]
]
]
]

]

∈ 𝑅
(𝑛−1)×(𝑛−1)

. (2)

Consequently, the connection relationship between the
leader and followers can be described as 𝐵 = diag{𝑏

1
,

𝑏
2
, . . . , 𝑏

𝑛−1
}, where 𝑏

𝑖
= 𝑎
𝑖𝑛
, 𝑖 = 1, 2, . . . , 𝑛 − 1.

2.2. Single-Integrator Multiagent System. In this paper, a
single-integrator network is considered as

̇𝑟
𝑖
(𝑡) = 𝑢

𝑖
(𝑡) , (3)

where 𝑟
𝑖
(𝑡) = [𝑥

𝑖
(𝑡) 𝑦
𝑖
(𝑡)]
𝑇
∈ 𝑅
2 is the position vector and

𝑢
𝑖
(𝑡) = [𝑢

𝑥𝑖
(𝑡) 𝑢
𝑦𝑖
(𝑡)]
𝑇
∈ 𝑅
2 is the control input vector of

the 𝑖th agent, 𝑖 = 1, 2, . . . , 𝑛. It is assumed that all agents
have the same environment sensing capability. In addition to
formation keeping, each agent is not allowed to collide with
other agents during the whole moving process.

The geometric relationship between agents is shown in
Figure 1, where 𝑅

𝑠
is the sensing radius. The node 𝑗 is a

neighboring agent of the 𝑖th node if the Euclidean distance
between two agents is less or equal to the sensing radius,
𝑑
𝑖𝑗
= ‖𝑟
𝑖
− 𝑟
𝑗
‖ ≤ 𝑅

𝑠
. Let 𝑁

𝑖
stand for the neighbor set of the

𝑖th agent. Once the 𝑗th agent moves inside the sensing radius
of the 𝑖th agent, the collision-avoidance mechanism starts
to work. In Figure 1, the notation 𝑟

𝑎
denotes the avoidance

radius of which the minimum distance allowed between two
agents is 2𝑟

𝑎
. In this case, it is reasonable that 𝑅

𝑠
> 2𝑟
𝑎
for

preventing collisions.

3. Neural Fuzzy Formation Control

3.1. Structure of Neural Fuzzy Controller. In this section,
a neural fuzzy control (NFC) is proposed to deal with the
leader-following formation problem, where the single-integ-
rator model of (3) is considered. First, let the 𝑥- and 𝑦-axis
error functions be, respectively, defined as

𝑒
𝑥𝑖
(𝑡) =

𝑛−1

∑

𝑗=1, 𝑗 ̸= 𝑖

𝑎
𝑖𝑗
[(𝑥
𝑖
(𝑡) − 𝑝

𝑥𝑖
) − (𝑥

𝑗
(𝑡) − 𝑝

𝑥𝑗
)]

+ 𝑏
𝑖
[(𝑥
𝑖
(𝑡) − 𝑝

𝑥𝑖
) − (𝑥

𝑛
(𝑡) − 𝑝

𝑥𝑛
)] ,

(4)

𝑒
𝑦𝑖
(𝑡) =

𝑛−1

∑

𝑗=1, 𝑗 ̸= 𝑖

𝑎
𝑖𝑗
[(𝑦
𝑖
(𝑡) − 𝑝

𝑦𝑖
) − (𝑦

𝑗
(𝑡) − 𝑝

𝑦𝑗
)]

+ 𝑏
𝑖
[(𝑦
𝑖
(𝑡) − 𝑝

𝑦𝑖
) − (𝑦

𝑛
(𝑡) − 𝑝

𝑦𝑛
)] ,

(5)

where𝑝
𝑥𝑖
, 𝑝
𝑥𝑛
, 𝑝
𝑦𝑖
, and𝑝

𝑦𝑛
are coordinate positions regard-

ing a desired formation pattern in 𝑥- and 𝑦-axes. It is noticed
that 𝑎

𝑖𝑗
= 1 means that the 𝑗th agent can send position

Table 1: Fuzzy rule base.

𝑆
𝑥𝑖
(𝑆
𝑦𝑖
) NB NM NS PS PM PB

𝑢
𝑥𝑖
(𝑢
𝑦𝑖
) PB PM PS NS NM NB

𝑟𝑎

𝑟𝑎

Agent 𝑗
(𝑥𝑗, 𝑦𝑗)

𝑅𝑠

𝑑𝑖𝑗

Agent 𝑖
(𝑥𝑖, 𝑦𝑖)

(a)

𝑟𝑎
𝑟𝑎

𝑑𝑖𝑗

𝑅𝑠

Agent 𝑖

Agent 𝑗
(𝑥𝑗, 𝑦𝑗)

(𝑥𝑖, 𝑦𝑖)

(b)

Figure 1: Geometric relationship between agents: (a) node 𝑗 is not
a neigh-boring agent of node 𝑖; (b) node 𝑗 is a neighboring agent of
node 𝑖.

information to the 𝑖th agent, and 𝑏
𝑖
= 1 means that the

𝑖th agent can receive position information from the leader.
In this study, the leader is maneuvered along a prespecified
trajectory, and the design of formation controller is focused
on followers. Let the controller inputs of the 𝑖th follower agent
be designated as follows

𝑆
𝑥𝑖
= 𝑐
1
⋅ 𝑒
𝑥𝑖
+ 𝑐
2
⋅ ∫

𝑡

0

𝑒
𝑥𝑖
𝑑𝑡,

𝑆
𝑦𝑖
= 𝑐
1
⋅ 𝑒
𝑦𝑖
+ 𝑐
2
⋅ ∫

𝑡

0

𝑒
𝑦𝑖
𝑑𝑡,

(6)

where 𝑐
1
and 𝑐
2
are positive constants, 𝑖 = 1, 2, . . . , 𝑛 − 1.

The network structure of NFC is shown in Figure 2. The
fuzzy rules are given in Table 1, where the input and output
spaces are fuzzily partitioned into six fuzzy sets, Negative Big
(NB), Negative Medium (NM), Negative Small (NS), Positive
Small (PS), Positive Medium (PM), and Positive Big (PB).
The input and output membership functions are depicted in
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Output
layer

Membership
layer

Input
layer

𝑢𝑥𝑖 (𝑢𝑦𝑖)

𝑆𝑥𝑖 (𝑆𝑦𝑖)

𝜃𝑥𝑖1 𝜃𝑥𝑖2 𝜃𝑥𝑖3 𝜃𝑥𝑖4 𝜃𝑥𝑖5 𝜃𝑥𝑖6

(𝜃𝑦𝑖1) (𝜃𝑦𝑖2) (𝜃𝑦𝑖3) (𝜃𝑦𝑖4) (𝜃𝑦𝑖5) (𝜃𝑦𝑖6)

𝜉𝑥𝑖2𝜉𝑥𝑖1 𝜉𝑥𝑖3 𝜉𝑥𝑖4 𝜉𝑥𝑖5 𝜉𝑥𝑖6

(𝜉𝑦𝑖2)(𝜉𝑦𝑖1) (𝜉𝑦𝑖3) (𝜉𝑦𝑖4) (𝜉𝑦𝑖5) (𝜉𝑦𝑖6)

Figure 2: Structure of NFC.

Figure 3. The corresponding if-then fuzzy rules for the 𝑖th
agent are expressed as

𝑅
𝑖𝑘
: IF 𝑆

𝑥𝑖
(𝑆
𝑦𝑖
) is 𝜉

𝑥𝑖𝑘
(𝜉
𝑦𝑖𝑘
)

THEN 𝑢
𝑥𝑖
(𝑢
𝑦𝑖
) is 𝜃

𝑥𝑖𝑘
(𝜃
𝑦𝑖𝑘
) ,

(7)

where 𝜉
𝑥𝑖𝑘
(𝜉
𝑦𝑖𝑘
) and 𝜃

𝑥𝑖𝑘
(𝜃
𝑦𝑖𝑘
) are the fuzzy sets of the

antecedent and consequence parts, respectively, 𝑖 = 1, 2, . . . ,
𝑛 − 1, 𝑘 = 1, 2, . . . , 6. In Figure 3, the 𝑘th nodes of the
membership layer are Gaussian functions,

𝜉
𝑥𝑖𝑘
(𝑆
𝑥𝑖
, 𝜎
𝑥𝑖
, 𝐶
𝑥𝑖
) = exp[−1

2
(
𝑆
𝑥𝑖
− 𝑐
𝑥𝑖𝑘

𝜎
𝑥𝑖𝑘

)

2

] , (8)

𝜉
𝑦𝑖𝑘
(𝑆
𝑦𝑖
, 𝜎
𝑦𝑖
, 𝐶
𝑦𝑖
) = exp[−1

2
(
𝑆
𝑦𝑖
− 𝑐
𝑦𝑖𝑘

𝜎
𝑦𝑖𝑘

)

2

] , (9)

where

𝜎
𝑥𝑖
= [𝜎𝑥𝑖1 𝜎𝑥𝑖2 𝜎𝑥𝑖3 𝜎𝑥𝑖4 𝜎𝑥𝑖5 𝜎𝑥𝑖6]

𝑇

,

𝜎
𝑦𝑖
= [𝜎𝑦𝑖1 𝜎𝑦𝑖2 𝜎𝑦𝑖3 𝜎𝑦𝑖4 𝜎𝑦𝑖5 𝜎𝑦𝑖6]

𝑇

,

𝐶
𝑥𝑖
= [𝑐𝑥𝑖1 𝑐𝑥𝑖2 𝑐𝑥𝑖3 𝑐𝑥𝑖4 𝑐𝑥𝑖5 𝑐𝑥𝑖6]

𝑇

,

𝐶
𝑦𝑖
= [𝑐𝑦𝑖1 𝑐𝑦𝑖2 𝑐𝑦𝑖3 𝑐𝑦𝑖4 𝑐𝑦𝑖5 𝑐𝑦𝑖6]

𝑇

,

(10)

𝑖 = 1, 2, . . . , 𝑛 − 1. In (8) and (9), 𝑐
𝑥𝑖𝑘
(𝑐
𝑦𝑖𝑘
) and 𝜎

𝑥𝑖𝑘
(𝜎
𝑦𝑖𝑘
) are

means and standard deviations, respectively, 𝑘 = 1, 2, . . . , 6.

NB NM NS PS PM PB

𝑆𝑥𝑖

(𝑆𝑦𝑖)
𝐶𝑥𝑖1 𝐶𝑥𝑖2 𝐶𝑥𝑖3 𝐶𝑥𝑖4 𝐶𝑥𝑖5 𝐶𝑥𝑖6

(𝐶𝑦𝑖1) (𝐶𝑦𝑖2) (𝐶𝑦𝑖3) (𝐶𝑦𝑖4) (𝐶𝑦𝑖5) (𝐶𝑦𝑖6)

(a)

NB NM NS PS PM PB

𝑢𝑥𝑖
(𝑢𝑦𝑖)

𝜃𝑥𝑖1 𝜃𝑥𝑖2 𝜃𝑥𝑖3 𝜃𝑥𝑖4 𝜃𝑥𝑖5 𝜃𝑥𝑖6

(𝜃𝑦𝑖1) (𝜃𝑦𝑖2) (𝜃𝑦𝑖3) (𝜃𝑦𝑖4) (𝜃𝑦𝑖5) (𝜃𝑦𝑖6)

(b)

Figure 3: Membership functions of NFC.

By using the centroid defuzzification technique, the NFC
output can be calculated as follows:

𝑢
𝑥𝑖
(𝑆
𝑥𝑖
, 𝜉
𝑥𝑖
, 𝜃
𝑥𝑖
) =
∑
6

𝑘=1
𝜉
𝑥𝑖𝑘
𝜃
𝑥𝑖𝑘

∑
6

𝑘=1
𝜉
𝑥𝑖𝑘

= 𝜃
𝑇

𝑥𝑖
𝜉
𝑥𝑖
,

𝑢
𝑦𝑖
(𝑆
𝑦𝑖
, 𝜉
𝑦𝑖
, 𝜃
𝑦𝑖
) =

∑
6

𝑘=1
𝜉
𝑦𝑖𝑘
𝜃
𝑦𝑖𝑘

∑
6

𝑘=1
𝜉
𝑦𝑖𝑘

= 𝜃
𝑇

𝑦𝑖
𝜉
𝑦𝑖
,

(11)

where 𝜃
𝑥𝑖𝑘
(𝜃
𝑦𝑖𝑘
) are the values corresponding to singleton

outputs,

𝜃
𝑥𝑖
= [𝜃𝑥𝑖1 𝜃𝑥𝑖2 𝜃𝑥𝑖3 𝜃𝑥𝑖4 𝜃𝑥𝑖5 𝜃𝑥𝑖6]

𝑇

,

𝜃
𝑦𝑖
= [𝜃𝑦𝑖1 𝜃𝑦𝑖2 𝜃𝑦𝑖3 𝜃𝑦𝑖4 𝜃𝑦𝑖5 𝜃𝑦𝑖6]

𝑇

,

𝜉
𝑥𝑖
= [
𝜉
𝑥𝑖1

𝜉


𝑥𝑖

𝜉
𝑥𝑖2

𝜉


𝑥𝑖

𝜉
𝑥𝑖3

𝜉


𝑥𝑖

𝜉
𝑥𝑖4

𝜉


𝑥𝑖

𝜉
𝑥𝑖5

𝜉


𝑥𝑖

𝜉
𝑥𝑖6

𝜉


𝑥𝑖

]

𝑇

,

𝜉
𝑦𝑖
= [

𝜉
𝑦𝑖1

𝜉


𝑦𝑖

𝜉
𝑦𝑖2

𝜉


𝑦𝑖

𝜉
𝑦𝑖3

𝜉


𝑦𝑖

𝜉
𝑦𝑖4

𝜉


𝑦𝑖

𝜉
𝑦𝑖5

𝜉


𝑦𝑖

𝜉
𝑦𝑖6

𝜉


𝑦𝑖

]

𝑇

,

(12)

in which 𝜉
𝑥𝑖
= ∑
6

𝑘=1
𝜉
𝑥𝑖𝑘

and 𝜉
𝑦𝑖
= ∑
6

𝑘=1
𝜉
𝑦𝑖𝑘

.

3.2. Parameter-Learning Algorithms. In this section, the idea
of gradient descent will be adopted to derive on-line learning
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(𝑥1, 𝑦1)
(𝑥𝑖, 𝑦𝑖) agent 𝑖
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(𝑥𝑡𝑖 , 𝑦
𝑡
𝑖 )
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𝑖

𝑟𝑎

Neighboring
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Neighboring
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𝑔𝑖1

𝑔𝑖2

𝑢𝑖
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𝛼𝑖

Target 𝑖

Figure 4: Schematic diagram of local minima problem.
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(𝑥𝑖, 𝑦𝑖) agent 𝑖

(𝑥2, 𝑦2)

(𝑥𝑡𝑖 , 𝑦
𝑡
𝑖 )

𝑢NFC
𝑖

Neighboring
agent 2

Neighboring
agent 1

𝑢𝑖

𝑢𝑠𝑖

𝜙𝑖

𝛼𝑖

Target 𝑖

𝜙
fuzzy
𝑖

𝑢𝑠,new
𝑖

𝑟
𝑔
𝑗

Figure 5: Schematic diagram of improved avoidance functions.

algorithms to updateNFCparameters. First, energy functions
𝐸
𝑥𝑖
and 𝐸

𝑦𝑖
are defined as follows:

𝐸
𝑥𝑖
=
1

2
(𝑆
𝑥𝑖
)
2

,

𝐸
𝑦𝑖
=
1

2
(𝑆
𝑦𝑖
)
2

,

(13)

where 𝑖 = 1, 2, . . . , 𝑛 − 1. Then, the update laws of layer
parameters are described in the following.

(1) Output Layer. According to the gradient decent method
[44], 𝜃

𝑥𝑖𝑘
and 𝜃
𝑦𝑖𝑘

are updated by the following rules:

Δ𝜃
𝑥𝑖𝑘
= −𝜂
1

𝜕𝐸
𝑥𝑖

𝜕𝜃
𝑥𝑖𝑘

= −𝜂
1

𝜕𝐸
𝑥𝑖

𝜕𝑢
𝑥𝑖

𝜕𝑢
𝑥𝑖

𝜕𝜃
𝑥𝑖𝑘

,

Δ𝜃
𝑦𝑖𝑘
= −𝜂
1

𝜕𝐸
𝑦𝑖

𝜕𝜃
𝑦𝑖𝑘

= −𝜂
1

𝜕𝐸
𝑦𝑖

𝜕𝑢
𝑦𝑖

𝜕𝑢
𝑦𝑖

𝜕𝜃
𝑦𝑖𝑘

,

(14)

where 𝜂
1
> 0 is a learning rate, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑘 =

1, 2, . . . , 6. From (11), it can be obtained that

𝜕𝑢
𝑥𝑖

𝜕𝜃
𝑥𝑖𝑘

=
𝜉
𝑥𝑖𝑘

∑
6

𝑘=1
𝜉
𝑥𝑖𝑘

,

𝜕𝑢
𝑦𝑖

𝜕𝜃
𝑦𝑖𝑘

=
𝜉
𝑦𝑖𝑘

∑
6

𝑘=1
𝜉
𝑦𝑖𝑘

.

(15)

In (14), the error term to be propagated can be reformulated
as

𝜕𝐸
𝑥𝑖

𝜕𝑢
𝑥𝑖

=
𝜕𝐸
𝑥𝑖

𝜕𝑆
𝑥𝑖

𝜕𝑆
𝑥𝑖

𝜕𝑢
𝑥𝑖

,

𝜕𝐸
𝑦𝑖

𝜕𝑢
𝑦𝑖

=
𝜕𝐸
𝑦𝑖

𝜕𝑆
𝑦𝑖

𝜕𝑆
𝑦𝑖

𝜕𝑢
𝑦𝑖

.

(16)

However, the terms 𝜕𝑆
𝑥𝑖
/𝜕𝑢
𝑥𝑖
and 𝜕𝑆

𝑦𝑖
/𝜕𝑢
𝑦𝑖

in (16) cannot
be analytically determined. To overcome this problem, the
following adaptive laws are adopted [45]:

−
𝜕𝐸
𝑥𝑖

𝜕𝑢
𝑥𝑖

≈ 𝑘
1
⋅ 𝑆
𝑥𝑖
+ 𝑘
2
⋅ ̇𝑆
𝑥𝑖
,

−
𝜕𝐸
𝑦𝑖

𝜕𝑢
𝑦𝑖

≈ 𝑘
1
⋅ 𝑆
𝑦𝑖
+ 𝑘
2
⋅ ̇𝑆
𝑦𝑖
,

(17)

where 𝑘
1
and 𝑘
2
are positive constants.

In summary, from (15) and (17), the parameters of the out-
put layer can be adaptively updated.

(2)Membership Layer. The parameters 𝑐
𝑥𝑖𝑘

and 𝑐
𝑦𝑖𝑘

are
updated by the following rules:

Δ𝑐
𝑥𝑖𝑘
= −𝜂
2

𝜕𝐸
𝑥𝑖

𝜕𝑐
𝑥𝑖𝑘

= −𝜂
2

𝜕𝐸
𝑥𝑖

𝜕𝑢
𝑥𝑖

𝜕𝑢
𝑥𝑖

𝜕𝜉
𝑥𝑖𝑘

𝜕𝜉
𝑥𝑖𝑘

𝜕𝑐
𝑥𝑖𝑘

,

Δ𝑐
𝑦𝑖𝑘
= −𝜂
2

𝜕𝐸
𝑦𝑖

𝜕𝑐
𝑦𝑖𝑘

= −𝜂
2

𝜕𝐸
𝑦𝑖

𝜕𝑢
𝑦𝑖

𝜕𝑢
𝑦𝑖

𝜕𝜉
𝑦𝑖𝑘

𝜕𝜉
𝑦𝑖𝑘

𝜕𝑐
𝑦𝑖𝑘

,

(18)

where 𝜂
2
> 0 is a learning rate, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑘 =

1, 2, . . . , 6. From (8), (9), and (11), it can be obtained that

𝜕𝑢
𝑥𝑖

𝜕𝜉
𝑥𝑖𝑘

𝜕𝜉
𝑥𝑖𝑘

𝜕𝑐
𝑥𝑖𝑘

=

𝜃
𝑥𝑖𝑘
⋅ (∑
6

𝑘=1
𝜉
𝑥𝑖𝑘
) − ∑
6

𝑘=1
𝜉
𝑥𝑖𝑘
𝜃
𝑥𝑖𝑘

(∑
6

𝑘=1
𝜉
𝑥𝑖𝑘
)
2

⋅ exp[−1
2
(
𝑆
𝑥𝑖
− 𝑐
𝑥𝑖𝑘

𝜎
𝑥𝑖𝑘

)

2

] ⋅ (
𝑆
𝑥𝑖
− 𝑐
𝑥𝑖𝑘

𝜎
2

𝑥𝑖𝑘

) ,

𝜕𝑢
𝑦𝑖

𝜕𝜉
𝑦𝑖𝑘

𝜕𝜉
𝑦𝑖𝑘

𝜕𝑐
𝑦𝑖𝑘

=

𝜃
𝑦𝑖𝑘
⋅ (∑
6

𝑘=1
𝜉
𝑦𝑖𝑘
) − ∑
6

𝑘=1
𝜉
𝑦𝑖𝑘
𝜃
𝑦𝑖𝑘

(∑
6

𝑘=1
𝜉
𝑦𝑖𝑘
)
2

⋅ exp[−1
2
(
𝑆
𝑦𝑖
− 𝑐
𝑦𝑖𝑘

𝜎
𝑦𝑖𝑘

)

2

] ⋅ (
𝑆
𝑦𝑖
− 𝑐
𝑦𝑖𝑘

𝜎
2

𝑦𝑖𝑘

) .

(19)
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Table 2: Fuzzy rule base.

Rule 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
𝑧
1

𝑖
NB NB NB NB NB NS NS NS NS NS ZO ZO ZO ZO ZO PS PS PS PS PS PB PB PB PB PB

𝑧
2

𝑖
VC C M F VF VC C M F VF VC C M F VF VC C M F VF VC C M F VF

𝜙
fuzzy
𝑖

PS PS PS ZO ZO PB PB PS PS PS PB PB PB PB PB PB PB PS PS PS PS PS PS ZO ZO

NB NS ZO PS PB

−90∘ −45∘ 0∘ 45∘ 90∘

𝑧1𝑖

(a)

VC C M F VF

𝑧2𝑖

𝑟𝑎 𝑅𝑠𝑅𝑠 + 3𝑟𝑎
4

2𝑅𝑠 + 2𝑟𝑎
4

3𝑅𝑠 + 𝑟𝑎
4

(b)

Figure 6: The input membership functions.

Similarly, 𝜎
𝑥𝑖𝑘

and the 𝜎
𝑦𝑖𝑘

are updated by the following
amounts:

Δ𝜎
𝑥𝑖𝑘
= −𝜂
3

𝜕𝐸
𝑥𝑖

𝜕𝜎
𝑥𝑖𝑘

= −𝜂
3

𝜕𝐸
𝑥𝑖

𝜕𝑢
𝑥𝑖

𝜕𝑢
𝑥𝑖

𝜕𝜉
𝑥𝑖𝑘

𝜕𝜉
𝑥𝑖𝑘

𝜕𝜎
𝑥𝑖𝑘

,

Δ𝜎
𝑦𝑖𝑘
= −𝜂
3

𝜕𝐸
𝑦𝑖

𝜕𝜎
𝑦𝑖𝑘

= −𝜂
3

𝜕𝐸
𝑦𝑖

𝜕𝑢
𝑦𝑖

𝜕𝑢
𝑦𝑖

𝜕𝜉
𝑦𝑖𝑘

𝜕𝜉
𝑦𝑖𝑘

𝜕𝜎
𝑦𝑖𝑘

,

(20)

where 𝜂
3
> 0 is a learning rate, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 6.

From (8), (9), and (11), it can be obtained that

𝜕𝑢
𝑥𝑖

𝜕𝜉
𝑥𝑖𝑘

𝜕𝜉
𝑥𝑖𝑘

𝜕𝜎
𝑥𝑖𝑘

=

𝜃
𝑥𝑖𝑘
⋅ (∑
6

𝑘=1
𝜉
𝑥𝑖𝑘
) − ∑
6

𝑘=1
𝜉
𝑥𝑖𝑘
𝜃
𝑥𝑖𝑘

(∑
6

𝑘=1
𝜉
𝑥𝑖𝑘
)
2

⋅ exp[−1
2
(
𝑆
𝑥𝑖
− 𝑐
𝑥𝑖𝑘

𝜎
𝑥𝑖𝑘

)

2

] ⋅
(𝑆
𝑥𝑖
− 𝑐
𝑥𝑖𝑘
)
2

(𝜎
𝑥𝑖𝑘
)
3
,

NB NS ZO PS PB

−60∘ −30∘ 0∘ 30∘ 60∘

𝜙
fuzzy
𝑖

Figure 7: The output membership functions.

𝜕𝑢
𝑦𝑖

𝜕𝜉
𝑦𝑖𝑘

𝜕𝜉
𝑦𝑖𝑘

𝜕𝜎
𝑦𝑖𝑘

=

𝜃
𝑦𝑖𝑘
⋅ (∑
6

𝑘=1
𝜉
𝑦𝑖𝑘
) − ∑
6

𝑘=1
𝜉
𝑦𝑖𝑘
𝜃
𝑦𝑖𝑘

(∑
6

𝑘=1
𝜉
𝑦𝑖𝑘
)
2

⋅ exp[−1
2
(
𝑆
𝑦𝑖
− 𝑐
𝑦𝑖𝑘

𝜎
𝑦𝑖𝑘

)

2

] ⋅

(𝑆
𝑦𝑖
− 𝑐
𝑦𝑖𝑘
)
2

(𝜎
𝑦𝑖𝑘
)
3
.

(21)

In summary, from (18)–(21), the parameters of the input layer
can be adaptively updated.

4. Separation Control for Collision Avoidance

4.1. Potential-Based Separation Control. Let 𝑔
𝑖𝑗
be the sepa-

ration force between the 𝑖th and 𝑗th agents. Then, the integ-
rated separation force from all its neighboring agents can be
formulated as

𝑢
𝑠

𝑖
= −∑

𝑗∈𝑁𝑖

𝑔
𝑖𝑗
(𝑟
𝑖
, 𝑟
𝑗
) . (22)

To derive a proper separation force between two connected
agents, a smooth potential function 𝑉

𝑖𝑗
is considered,

𝑉
𝑖𝑗
(𝑑
𝑖𝑗
) = [min(0,

𝑑
2

𝑖𝑗
− 𝑅
2

𝑠

𝑑
2

𝑖𝑗
− 4𝑟2
𝑎

)]

2

, (23)

such that

𝑔
𝑖𝑗
= ∇
𝑟𝑖
𝑉
𝑖𝑗
. (24)
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Figure 8: Simulation results of collision avoidance: (a) linger in local minimum (PSC) and (b) bypass neighboring agents (FSC).
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In a two-dimensional case, 𝑟
𝑖
= [𝑥
𝑖
𝑦
𝑖
]
𝑇, the gradient com-

putations of 𝑉
𝑖𝑗
can be obtained as follows:

𝜕𝑉
𝑖𝑗

𝜕𝑥
𝑖

=

{{

{{

{

0, if 𝑅
𝑠
≤ 𝑑
𝑖𝑗
,

𝑉
𝑔𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) , if 2𝑟

𝑎
< 𝑑
𝑖𝑗
< 𝑅
𝑠
,

𝑉max, if 𝑑
𝑖𝑗
< 2𝑟
𝑎
,

𝜕𝑉
𝑖𝑗

𝜕𝑦
𝑖

=

{{

{{

{

0, if 𝑅
𝑠
≤ 𝑑
𝑖𝑗
,

𝑉
𝑔𝑖𝑗
(𝑦
𝑖
− 𝑦
𝑗
) , if 2𝑟

𝑎
< 𝑑
𝑖𝑗
< 𝑅
𝑠
,

𝑉max, if 𝑑
𝑖𝑗
< 2𝑟
𝑎
,

𝑉
𝑔𝑖𝑗
=

4 (𝑅
2

𝑠
− 4𝑟
2

𝑎
) (𝑑
2

𝑖𝑗
− 𝑅
2

𝑠
)

(𝑑
2

𝑖𝑗
− 4𝑟2
𝑎
)
3

,

(25)

where𝑉max is themaximumallowable separation force. Integ-
rating the formation and separation forces, the net control
action to an agent can be obtained as

𝑢
𝑖
= 𝑢

NFC
𝑖

+ 𝑢
𝑠

𝑖
, (26)

where 𝑢NFC
𝑖

= [𝑢
𝑥𝑖
𝑢
𝑦𝑖
]
𝑇 is the neural fuzzy formation

action.

4.2. Fuzzy Separation Control. In a multiagent system, an
agent could be standstill or move back and forth if the net
force acting on this agent is balanced. This phenomenon is
known as the local minimum problem. In Figure 4, the case
of agent 𝑖 with two neighboring agents is considered, where
(𝑥
1
, 𝑦
1
) and (𝑥

2
, 𝑦
2
) are neighboring agents, and the related

target is located at (𝑥𝑡
𝑖
, 𝑦
𝑡

𝑖
). The notation 𝑢NFC

𝑖
is denoted as

the attractive force to the target, and 𝑔
𝑖1
and 𝑔

𝑖2
are sep-

aration forces corresponding to neighboring agents. Then,
the integrated separation force to the 𝑖th agent is the vector
sum of 𝑔

𝑖1
and 𝑔

𝑖2
, where 𝜙

𝑖
is the related direction of 𝑢𝑠

𝑖
to

the 𝑥-axis. In addition, 𝑢
𝑖
is the net force of the 𝑖th agent,

and 𝛼
𝑖
is angle between the agent 𝑖 and its target. In case

𝜙
𝑖
= 𝛼
𝑖
, the direction of 𝑢𝑠

𝑖
is opposite to the attractive action

𝑢
NFC
𝑖

. Moreover, if the magnitude of 𝑢NFC
𝑖

is less or equal to
the magnitude of 𝑢𝑠

𝑖
, the 𝑖th agent will be stuck in the local

minimum. To solve this problem, a fuzzy separation control
method will be presented, and the key idea is depicted in
Figure 5, where an extra angle 𝜙fuzzy

𝑖
is added to the original

separation force, 𝜙new
𝑖
= 𝜙
𝑖
+ 𝜙

fuzzy
𝑖

. In Figure 5, 𝑢𝑠,new
𝑖

is the
modified separation force, of which the magnitude keeps
unchanged but the direction is changed because of 𝜙fuzzy

𝑖
.

Consequently, the integrated net force of attractive force and
separation force can be represented as

𝑢
𝑖
= 𝑢

NFC
𝑖

+ 𝑢
𝑠,new
𝑖

. (27)

Basically, 𝑢𝑠,new
𝑖

can provide a new route to bypass the neigh-
boring agents when a local minimum situation happens. It
is noticed that the target of a follower is its temporary des-
tination for next movement during the process of avoiding
collision. For those follower agents, communication-con-
nected to the leader, their respective targets can be obtained

according to the leader position and designated formation
pattern; however, a substitute solution is required for other
followers. Alternatively, from (4) and (5), targets can be
equivalently viewed as the propagated errors from other fol-
lowers,

𝑥
𝑡

𝑖
= 𝑥
𝑖
− 𝑒
𝑥𝑖
,

𝑦
𝑡

𝑖
= 𝑦
𝑖
− 𝑒
𝑦𝑖
,

(28)

where follower 𝑖 is not communicated to the leader, 𝑏
𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑛 − 1.
The design of fuzzy separation controller will be illus-

trated in the following. First, let the fuzzy inputs of the 𝑖th
agent be

𝑧
1

𝑖
= 𝜙
𝑖
− 𝛼
𝑖
,

𝑧
2

𝑖
=

𝑟
𝑖
− 𝑟
𝑔

𝑗


,

(29)

where 𝑟𝑔
𝑗
= [𝑥
𝑔

𝑗
𝑦
𝑔

𝑗
]
𝑇
∈ 𝑅
2 is the position of the center gravity

of neighboring agents,

𝑥
𝑔

𝑗
=

∑
𝑗∈𝑁𝑖
𝑥
𝑗

𝑁𝑖


,

𝑦
𝑔

𝑗
=

∑
𝑗∈𝑁𝑖
𝑦
𝑗

𝑁𝑖


,

(30)

where | ⋅ | is the cardinality of a set, that is, |𝑁
𝑖
| is the number

of neighboring agents of the 𝑖th agent.
The fuzzy rules are given in Table 2, where the input

and output spaces are fuzzily partitioned into ten fuzzy sets,
Negative Big (NB), Negative Small (NS), Zero (ZO), Positive
Small (PS), Positive Big (PB), Very Close (VC), Close (C),
Medium (M), Far (F), and Very Far (VF). The input and
output membership functions are depicted in Figures 6 and
7, respectively. The corresponding if-then fuzzy rules for the
𝑖th agent are expressed as

𝑅
𝑖
: IF 𝑧1

𝑖
is 𝑀1
𝑖𝑘
AND 𝑧2

𝑖
is 𝑀2
𝑖𝑘
THEN 𝜙fuzzy

𝑖
is 𝐺
𝑖𝑘
,

(31)

where𝑀1
𝑖𝑘
and𝑀2

𝑖𝑘
are the fuzzy sets of the antecedent part,

and 𝐺
𝑖𝑘
is the fuzzy set of the consequence part, 𝑖 = 1, 2, . . . ,

𝑛−1, and 𝑘 = 1, 2, . . . , 5. By using the centroid defuzzification
technique, the defuzzified fuzzy output is calculated as

𝜙
fuzzy
𝑖

=
∑
5

𝑘=1
𝜇
𝑖𝑘
(𝐺
𝑖𝑘
) ⋅ 𝐺
𝑖𝑘

∑
5

𝑘=1
𝜇
𝑖𝑘
(𝐺
𝑖𝑘
)
, (32)

where a min-max operation is performed over all rules map-
ping to the same output fuzzy set:

𝜇
𝑖𝑘
(𝐺
𝑖𝑘
) = max
𝐺𝑖𝑘

{min (𝜇
𝑀
1
𝑖𝑘
(𝐺
𝑖𝑘
) , 𝜇
𝑀
2
𝑖𝑘
(𝐺
𝑖𝑘
))} . (33)
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Figure 9: Separation force and angle of collision avoidance: (a) PSC and (b) FSC.

𝐿

12

34

Figure 10: Communication topology of multiagent systems.

5. Simulation Results

In the following, all the agents are assumed to be homo-
geneous with the same specifications, 𝑟

𝑎
= 0.05 (m) and

𝑅
𝑠
= 0.15 (m). To verify the feasibility of proposed neuro-

fuzzy formation controller and fuzzy separation controller,
both the collision avoidance and formation preservation are
considered.

5.1. Collision Avoidance with Static Target. One dynamical
agent is initially placed at the point (1, 1) (m), and four fixed
agents are located at (0.5, 0.5), (0.6, 0.4), (0.42, 0.62), and
(0.3, 0.85) (m), respectively. The target position is given as
(−0.2, −0.2) (m). It is desired that the dynamic agent can reach
the designated target without colliding with fixed agents.
Figures 8 and 9 illustrate the collision-avoidance responses
corresponding to potential-based separation control (PSC)

and the proposed fuzzy separation control (FSC), where the
formation control of each case is the conventional consensus
algorithm [46]. In Figure 8, it can be seen that the agent
lingers in front of neighboring agents with PSC. On the other
hand, the agent can successfully bypass neighboring agents
with the proposed FSC. The responses of position errors,
shown in the bottom two subplots of Figure 8, indicate that
the desired target can be asymptotically achieved with the
proposed FSC. However, a local-minimum behavior exists
by using the PSC, and the related separation force keeps
oscillation. The oscillation behavior of the separation force
is coincided with the response of 𝜙, shown in Figure 9(a).
In Figure 9(b), the angle 𝜙 = 0 after 8.26 (sec) means that
the dynamic agent successfully bypasses the fixed agents, and
thus, there is no separation force.

5.2. Formation Control and Collision Avoidance with Static
Leader. In leader-follower formation control, the case of five
agents, one static leader and four followers, is considered.
The communication topology is shown in Figure 10, where
the circles labelled 1 to 4 denote the follower agents and the
circle 𝐿 represents the leader agent. From (2), the information
exchanges between leader and followers can be modelled as

𝐴 =
[
[
[

[

0 0 1 0

0 0 0 0

1 0 0 0

0 1 0 0

]
]
]

]

, 𝐵 =
[
[
[

[

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

]
]
]

]

. (34)

The followers are initially placed at the points (0, −0.25),
(0.25, 0), (0, 0.25), and (−0.25, 0) (m), respectively, and the
position of the leader is (0.5, 0) (m). The formation pattern
is designated as (𝑝

𝑥1
, 𝑝
𝑦1
) = (−0.5, 0.25), (𝑝

𝑥2
, 𝑝
𝑦2
) =

(−0.75, 0), (𝑝
𝑥3
, 𝑝
𝑦3
) = (−0.5, −0.25), (𝑝

𝑥4
, 𝑝
𝑦4
) = (−0.25, 0),

and (𝑝
𝑥5
, 𝑝
𝑦5
) = (0, 0) (m). The parameters of the NFC are
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Figure 11: Simulation results of formation and collision avoidance control with static leader (CA+PSC): (a) agents’ trajectories and formation
errors and (b) the distance between agents.
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Figure 12: Simulation results of formation and collision-avoidance control with static leader (CA+FSC): (a) agents’ trajectories and formation
errors and (b) the distance between agents.



12 Mathematical Problems in Engineering

Leader
Follower1
Follower2

Follower3
Follower4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4 0.5 0.6−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.4

𝑥-axis (m)

𝑦
-a

xi
s (

m
)

0 10 20 30 40 50
−0.5

0

0.5

−0.5

0

0.5

Time (s)

0 10 20 30 40 50
Time (s)

𝑥
-a

xi
s e

rr
or

 (m
)

𝑦
-a

xi
s e

rr
or

 (m
)

(a)

F1–F3
F1–F4

F2–F4

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

𝑅𝑠

2𝑟𝑎

Time (s)

D
ist

an
ce

 (m
)

F1-F2 F2-F3

F3-F4

(b)

Figure 13: Simulation results of formation and collision-avoidance control with static leader (NFC + FSC): (a) agents’ trajectories and
formation errors and (b) the distance between agents.
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Figure 14: Simulation results of formation and collision-avoidance control with dynamic leader (CA + PSC): (a) agents’ trajectories and
formation errors and (b) the distance between agents.



14 Mathematical Problems in Engineering

Leader
Follower1
Follower2

Follower3
Follower4

−0.4

−0.3

−0.5

−0.2

−0.1

0

0.1

0.2

0.3

2 2.5−0.5 0 0.5 1.51 3

0.5

0.4

𝑥-axis (m)

𝑦
-a

xi
s (

m
)

0 10 20 30 40 50
−1

−0.5

0

0.5

−0.5

0

0.5

Time (s)
0 10 20 30 40 50

Time (s)

𝑥
-a

xi
s e

rr
or

 (m
)

𝑦
-a

xi
s e

rr
or

 (m
)

(a)

F1-F2 F2-F3

F3-F4

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

𝑅𝑠

2𝑟𝑎

Time (s)

D
ist

an
ce

 (m
)

F1–F3
F1–F4

F2–F4

(b)

Figure 15: Simulation results of formation and collision-avoidance control with dynamic leader (CA + FSC): (a) agents’ trajectories and
formation errors and (b) the distance between agents.
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Figure 16: Simulation results of formation and collision-avoidance control with dynamic leader (NFC + FSC): (a) agents’ trajectories and
formation errors and (b) the distance between agents.
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Table 3: Formation errors: formation and separation control with
static leader.

IAE ISE ITAE ITSE
CA + PSC 5887.77 1580.74 114492.31 23911.31
CA + FSC 1746.77 304.78 20183.14 1249.37
NFC + FSC 382.47 90.12 967.88 103.77

originally chosen as 𝑐
1
= 3, 𝑐
2
= 2, 𝐶

𝑥𝑖
(0) = 𝐶

𝑦𝑖
(0) = 𝜃

𝑥𝑖
(0) =

𝜃
𝑦𝑖
(0) = [−1 − 0.67 − 0.33 0.33 0.67 1]

𝑇, 𝑖 = 1, 2, 3, 4,
𝜎
𝑥𝑖
(0) = 𝜎

𝑦𝑖
(0) = [0.5 0.5 0.5 0.5 0.5 0.5]

𝑇, 𝜂
1
= 0.022,

𝜂
2
= 0.01, and 𝜂

3
= 0.012. Three unique distributed

strategies, consensus algorithm with potential-based separa-
tion control (CA + PSC), consensus algorithm with fuzzy
separation control (CA + FSC), and neurofuzzy formation
control with fuzzy separation control (NFC + FSC), are
considered. Accordingly, simulation results are shown in
Figures 11, 12, and 13, including the error trajectories of
𝑥- and 𝑦-axis, and the relative distances between a pair of
agents. Since the relative distance between any two agents is
greater than 2𝑟

𝑎
, shown in Figures 11(b), 12(b), and 13(b), the

desired collision avoidance can be accomplished using these
three control strategies. In addition, the formation responses
are shown in Figures 11(a), 12(a), and 13(a). It can be seen
that there exist significant steady-state errors using CA +
PSC. Conversely, the formation pattern can be asymptotically
achieved with the use of NFC + FSC. The position errors,
|𝑒
𝑥𝑖
| + |𝑒

𝑦𝑖
|, are summarized in Table 3, where IAE is the

integral absolute error, ISE is the integral square error, ITAE
is the integral time absolute error, and ITAE stands for the
integral time square error. In summary, the proposed NFC +
FSC can provide better performance than the counterparts of
the other two methods.

5.3. Formation Control and Collision Avoidance with Dynamic
Leader. In the following, previous leader-follower system is
addressed, where all initial settings are the same except that
one fixed agent is added at the position (0.95, −0.25) (m).This
fixed agent can be viewed as a standstill obstacle. Besides, a
time-varying leader is considered, where the velocity vector
is (0.06, 0.08 sin(0.002𝜋𝑡)) (m/s). The formation responses
are shown in Figures 14, 15, and 16, where the methods of
CA + PSC, CA + FSC, and NFC + FSC are considered.
Similar to the previously mentioned illustrations, the moving
trajectories and the relative distances between two follower
agents are depicted in Figures 14, 15, and 16. It can be
seen that even the collision avoidance can be achieved with
CA + PSC and CA + FSC; however, these two strategies
eventually fail to preserve the desired formation pattern.
On the other hand, from Figure 16, collision-free formation
can be obtained by using the proposed NFC + FSC control
scheme. In particular, it can be seen that the third follower
can successfully bypass the fixed agent and keep its way to
form a designated pattern. The formation errors of different
control strategies are summarized in Table 4. It can be
concluded that the proposed neurofuzzy formation and fuzzy
separation combined controller can provide better responses

Table 4: Formation errors: formation and separation control with
dynamic leader.

IAE ISE ITAE ITSE
CA + PSC 8214.19 3156.40 223875.11 96814.34
CA + FSC 7477.28 2528.48 204209.46 75349.76
NFC + FSC 765.87 99.88 13552.16 700.71

than the counterparts of conventional consensus algorithm
with potential-based separation control.

Remark 1. From simulation results, it can be seen that the
collision-free formation task can be achieved for single-
integrator agents. In particular, the local minimum problem
can be overcome using the proposed fuzzy separation control.
It is promising that the proposed works can be applied to
some practical applications, such as multirobot systems and
unmanned vehicle systems.

6. Conclusion

This paper presents a neural fuzzy formation controller for
multiagent systems. The learning rules for controller param-
eters can be derived from the use of gradient decent method.
In addition, a fuzzy separation control is proposed to achieve
collision avoidance such that the problem of local minima
can be solved. Simulation results are provided for the cases
of static leader and dynamic leader.The collision-free leader-
follower formation can be accomplished by the proposed
fuzzy formation and separation control strategy. Performance
comparisons indicate that the proposed fuzzy-based con-
trol scheme has better formation responses compared to
the counterparts of conventional consensus algorithm and
potential-based separation control. The current results are
mainly limited in single-integrator multiagent systems. It
should be challenging and interesting to investigate the colli-
sion avoidance problem for high-order agents with nonlinear
dynamics. For example, a fuzzy based separation control for
kinematic agents will be undertaken in our future work.
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Adaptive fuzzy sliding mode controller for a class of uncertain nonlinear systems is proposed in this paper. The unknown system
dynamics and upper bounds of the minimum approximation errors are adaptively updated with stabilizing adaptive laws. The
closed-loop system driven by the proposed controllers is shown to be stable with all the adaptation parameters being bounded.The
performance and stability of the proposed control system are achieved analytically using the Lyapunov stability theory. Simulations
show that the proposed controller performs well and exhibits good performance.

1. Introduction

Recent research on fuzzy logic control has, therefore, been
devoted to model based fuzzy control systems that guarantee
not only stability, but also performance of closed-loop fuzzy
control systems [1–6]. For a systematic control design of
nonlinear systems, the Takagi-Sugeno (T-S) fuzzy model [4,
5, 7–12] has been a popular choice in industrial processes due
to its ability to represent the nonlinear system only for input-
output data without complex mathematical equations.

In an effort to improve the robustness of the adaptive
fuzzy control system, many works have been published on
the design of adaptive fuzzy sliding mode controller [13–
18], which integrates the sliding mode controller [16, 19–23]
design technique into the adaptive fuzzy control to improve
the stability and the robustness of the control system. Con-
ventionally, adaptive fuzzy sliding control systems (AFSCSs)
design is based on the assumption that the system states are
available for measurement, so the adaptive laws of AFSCS are
formulated as functions of the tracking error of the system
[21, 24–27].

However, some problems on the algorithm convergence
and conditions stabilities remainwith no response. To resolve

this problem, first is the need for accurate information on the
evolution of the system in the state space, upper bounds of
uncertainties and disturbances. The second is the knowledge
of the upper bound of theminimum approximation error.We
know that the uncertain nature of nonlinear systemsmakes it
difficult to have an analytical description of the dynamics of
the system. Moreover, the knowledge of the upper bound of
the minimum approximation error leaves the control law still
restrictive. In the further study involving a perturbed large-
scale systemwith a time-varying interconnection, an adaptive
algorithm for estimating an uncertain upper bound based on
a variable sliding control frame was proposed in [28].

In this note, based on the variable surface, a fuzzy
sliding model controller is developed for guaranteeing the
tracking performance, in particular, time-varying uncertain
parameters are approximated by fuzzy system, and the adap-
tive sliding mode control is designed so as to compensate
for any unknown reconstruction error, through parameter
adaptation law. In this way, the actual system can follow the
reference signal even in the event of a hard nonlinearity, and
fuzzy sliding mode control gives the unknown upper bound
of uncertainties that are adaptively updated with stabilizing
adaptive laws. It is proved that the closed-loop system is
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globally stable in the Lyapunov sense if the signals involved
are bounded and the system output can track the desired
reference input asymptotically.

This paper is organized as follows: some preliminaries
are provided in Section 2. Following the introduction, the
fuzzy logic system is reviewed briefly in Section 3. The
design and stability analysis for the proposed adaptive fuzzy
sliding mode controller is included in Section 4. Simulation
examples to demonstrate the performance of the proposed
method are provided in Section 5. Finally, in Section 6, we
give a brief conclusion.

2. Preliminaries

Consider the 𝑛th-order nonlinear dynamical system of the
form:

𝑥
𝑛
= 𝑓 (x) + 𝑔 (x) 𝑢 + 𝑑

𝑠
,

𝑦 = 𝑥,

(1)

where x = [𝑥,
.

𝑥, . . . , 𝑥
𝑛−1

]
𝑇

= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑅
𝑛

is vector of the system that is assumed to be available for
measurements,𝑓 and 𝑔 are unknown but bounded nonlinear
functions, 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅 control input and output of the
system, respectively, and 𝑑

𝑠
is external disturbance. As system

(1) is required to be controllable, the nonzero condition of
input gain 𝑔(x) ̸= 0 is necessary.

The system (1) can be rewritten in the following form:

0 = −𝑔
−1

(x) 𝑥𝑛 + 𝑔
−1

(x) 𝑓 (x) + 𝑢 + 𝑔
−1

(x) 𝑑
𝑠
. (2)

By adding 𝑥
𝑛 to both sides, we get

𝑥
𝑛
= 𝑥
𝑛
− 𝑔
−1

(x) 𝑥𝑛 + 𝑔
−1

(x) 𝑓 (x) + 𝑢 + 𝑔
−1

(x) 𝑑
𝑠
. (3)

Equation (3) can be rewritten as

𝑥
𝑛
= 𝐹 (x) + 𝑢 + 𝑑 (x) (4)

such that

𝐹 (x) = (1 − 𝑔
−1

(x)) 𝑥𝑛 + 𝑔
−1

(x) 𝑓 (x) ,

𝑑 (x) = 𝑔
−1

(x) 𝑑
𝑠
.

(5)

Assumption 1 (see [29, 30]). Assume that 𝑓(x), 𝑔(x), and 𝑑
𝑠

satisfy |𝑓(x)| ≤ 𝜇 < ∞, 0 < 𝑔min ≤ 𝑔(x) ≤ 𝑔max < ∞, and
|𝑑| ≤ 𝜅, respectively, for all x ∈ Ux ⊂ R𝑛.

Where 𝜇, 𝑔min, 𝑔max, and 𝜅 are known constants. The
control problem is to force the system output 𝑦 to follow a
given bounded reference signal 𝑦

𝑑
.

Define the tracking error as

𝑒 = 𝑦
𝑑
− 𝑦. (6)

3. Takagi-Sugeno (T-S) Fuzzy Model

Fuzzy logic systems address the imprecision of the input
and output variables directly by defining them with fuzzy

numbers (and fuzzy sets) that can be expressed in linguistic
terms. The basic configuration of the Takagi and Sugeno
[5, 8, 31] system includes a rule base, which consists of a
collection of fuzzy IF-THEN rules in the following form:

Plant Rule 𝑟:
IF 𝑥

1
is 𝐵𝑟
1
and ⋅ ⋅ ⋅ and 𝑥

𝑛
is 𝐵𝑟
𝑛
,

THEN 𝑦
𝑟
= 𝑎
𝑟

0
+ 𝑎
𝑟

1
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑟

𝑛
𝑥
𝑛
= 𝜃
𝑇

𝑟
x, (7)

where 𝐵𝑟
𝑖
are fuzzy sets and 𝜃

𝑇

𝑟
= [𝑎
𝑟

0
, 𝑎
𝑟

1
, . . . , 𝑎

𝑟

𝑛
] is a vector of

the adjustable factors on the consequence part of the fuzzy
rule, and the input vector x = [1, 𝑥

1
, . . . , 𝑥

𝑛
] ∈ 𝑅

𝑛. Let
𝑖 = 1, 2, . . . , 𝑛 denote the number of input for fuzzy logic
system, and let 𝑟 = 1, 2, . . . , 𝑚 denote the number of the fuzzy
IF-THEN rules. By using the singleton fuzzification, product
inference and centre average defuzzication, the output value
of the fuzzy system is

𝑦 (x) =
∑
𝑚

𝑟=1
𝑦
𝑟
(∏
𝑛

𝑖=1
𝜇
𝐵
𝑟
𝑖
(𝑥
𝑖
))

∑
𝑚

𝑟=1
(∏
𝑛

𝑖=1
𝜇
𝐵
𝑟
𝑖
(𝑥
𝑖
))

, (8)

where 𝜇
𝐵
𝑟
𝑖
(𝑥
𝑖
) is the membership function value of the fuzzy

variable 𝑥
𝑖
and ∏

𝑛

𝑖=1
𝜇
𝐵
𝑟
𝑖
(𝑥
𝑖
) is the true value of the rth

implication. Equation (8) can be rewritten as

𝑦 (x) = 𝜃
𝑇
𝜉 (x) , (9)

where 𝜃𝑇 = [𝜃
𝑇

1
, 𝜃
𝑇

2
, . . . , 𝜃

𝑚
] is an adjustable parameter vector,

𝜉(x)𝑇 = [𝜉
1
(x), . . . , 𝜉𝑚(x)] is a fuzzy basis function vector in

which, 𝜉𝑟(x), 𝑟 = 1, 2, . . . , 𝑚,

𝜉
𝑟
(x) =

∏
𝑛

𝑖=1
𝜇
𝐵
𝑟
𝑖
(𝑥
𝑖
)

∑
𝑚

𝑟=1
∏
𝑛

𝑖=1
𝜇
𝐵
𝑟
𝑖
(𝑥
𝑖
)
. (10)

The aforementioned fuzzy system has been shown to be capa-
ble of universally approximating well-defined functions over
a compact set to arbitrary degree of accuracy. For smooth
nonlinear functions 𝐹(x), 𝑑(x), they can be approximated by

𝐹 (x) = 𝜃
∗𝑇

𝑓
Ψ (x) + 𝜀,

𝑑 (x) =𝜃∗𝑇
𝑑

Ξ (x) + 𝜎,

(11)

where 𝜀 and 𝜎 are the fuzzy approximations and 𝜃
∗

𝑓
, and 𝜃

∗

𝑑

are optimal weight vectors.
And whose estimates are given by

𝐹(
x
�̂�
𝑓

) = �̂�
𝑇

𝑓
Ψ (x) ,

𝑑 (
x
�̂�
𝑑

) = �̂�
𝑇

𝑑
Ξ (x) .

(12)

4. Adaptive Fuzzy Sliding Mode
Controller Design

In this section, a systematic methodology is presented for
the design of stable adaptive fuzzy sliding mode controller,
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the control law and the weight adaptation rules are devel-
oped, guaranteeing the uniform ultimate boundedness of
the tracking error with respect to an arbitrary small set
around the origin. Additionally, the boundedness of all
signals involved in the closed-loop configuration is ensured.
The resetting scheme is introduced, performing on theweight
estimates 𝜃

𝑓
, 𝜃
𝑑
to guarantee the validity of the control law.

If we consider the system given by (4), the sliding surface
can be defined by

𝑆 = 𝑎
𝑛−1

𝑒 + ⋅ ⋅ ⋅ + 𝑎
1
𝑒
𝑛−2

+ 𝑒
𝑛−1

. (13)

The elements of the sliding surface are chosen such that the
polynomial 𝑎

𝑛−1
𝑝
𝑛−1

+ 𝑎
𝑛−2

𝑝
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑎
0
is strictly Hurwitz

[32] (here𝑝 denotes the complex Laplace transform variable).
We propose to choose “𝑎” as follows [33]:

𝑎
𝑖
=

𝑀
𝑖

𝑒
𝑛−1−𝑖 + 𝜂

𝑖

; 𝑖 = 1, . . . , 𝑛 − 1, (14)

where𝑀
𝑖
is a given positive scalar, and 𝜂

𝑖
is positive constant

low value.
Note that 𝑀/𝜂 represents the slope of sliding along the

surface when it is reached by the system.
By using the tracking error defined by (6), the time

derivative of (13) is

.

𝑆 =

𝑛−1

∑

𝑖=1

𝑎
𝑛−𝑖

𝑒
𝑖
+

𝑛−1

∑

𝑖=1

.

𝑎
𝑛−𝑖

𝑒
𝑖−1

+ 𝑒
𝑛
,

.

𝑆 = 𝑦
𝑛

𝑑
− 𝑦
𝑛
+

𝑛−1

∑

𝑖=1

𝑎
𝑛−𝑖

𝑒
𝑖
+

𝑛−1

∑

𝑖=1

.

𝑎
𝑛−𝑖

𝑒
𝑖−1

= 𝑦
𝑛

𝑑
− 𝐹 (x) − 𝑢 − 𝑑 (x) +

𝑛−1

∑

𝑖=1

𝑎
𝑛−𝑖

𝑒
𝑖
+

𝑛−1

∑

𝑖=1

.

𝑎
𝑛−𝑖

𝑒
𝑖−1

= 𝑦
𝑛

𝑑
− 𝐹 (x) − 𝑢 − 𝑑 (x) + Ae,

(15)

where 𝑛 is the 𝑛th derivative of the system, and A =

[
.

𝑎
𝑛−1

, 𝑎
𝑛−1

,
.

𝑎
𝑛−2

, . . . ,
.

𝑎
1
, 𝑎
1
], e = [𝑒, . . . , 𝑒

𝑛−3
; 𝑒
𝑛−2

, 𝑒
𝑛−2

; 𝑒
𝑛−1

]
𝑇.

Assumption 2. Let x belong to a compact setΩ
𝑥
. The optimal

weight vectors 𝜃∗
𝑓
and 𝜃
∗

𝑑
are defined as

𝜃
∗

𝑓
= arg min
�̂�𝑓∈Ω𝑓

[ sup
𝑥∈Ω𝑥

[𝐹(
x
�̂�
𝑓

) − 𝐹 (x)]] ,

𝜃
∗

𝑑
= arg min
�̂�𝑑∈Ω𝑑

[ sup
𝑥∈Ω𝑥

[𝑑(
x
�̂�
𝑑

) − 𝑑 (x)]] .

(16)

And define the constraint sets that the parameters concerned
belong to

Ω
𝑓
= {𝜃
𝑓
|

𝜃
𝑓


≤ 𝑀
𝑓
} ,

Ω
𝑑
= {𝜃
𝑑
|
𝜃𝑑

 ≤ 𝑀
𝑑
} ,

(17)

where𝑀
𝑓
and𝑀

𝑔
are design parameters.

We assume that �̂�
𝑓
, �̂�
𝑑
, and 𝑥 never reach the boundaries

Ω
𝑓
,Ω
𝑑
, andΩ

𝑥
. We can define the minimum approximation

errors as

𝜀 = 𝐹 (x) −𝐹(
x
𝜃
∗

𝑓

) ,

𝜎 = 𝑑 (x) −𝑑(
x
𝜃
∗

𝑑

) .

(18)

It is assumed that minimum approximation errors are
bounded for all 𝑥 ∈ Ω

𝑥
:

|𝜀| ≤ 𝜀, |𝜎| ≤ 𝜎, ∀𝑥 ∈ Ω
𝑥
. (19)

The upper bound 𝜀, 𝜎 can be reduced arbitrarily. But this
choice is not always easy, that is our aim in this work to
estimate them by adaptive laws, which guarantee the stability
of the closed loop system.

The role of the fuzzy systems 𝐹(x/�̂�
𝑓
) and 𝑑(x/�̂�

𝑑
) is

to represent the unknown functions using the input-output
measurement of the target system. Also, a corrective con-
troller is defined to guarantee the stability of the closed-loop
control system and compensate the approximation errors. A
direct adaptive control law can be chosen as

𝑢 = (



𝐹(
x
�̂�
𝑓

)



+



𝑑 (
x
�̂�
𝑑

)



+ 𝑦
𝑛

𝑑
+ 𝜆 + Ae+�̂� + �̂�) sgn (𝑆) ,

(20)

where 𝜆 is a strictly positive constant, and �̂�, �̂� are estimates
of 𝜀, 𝜎, and

sgn (𝑆) =

{{

{{

{

1 if 𝑆 > 0

0 if 𝑆 = 0

−1 if 𝑆 < 0.

(21)

Theorem 1. Consider the nonlinear system described by (4),
and suppose that Assumptions 1 and 2 are satisfied.The control
law is provided by (20), and the parameters adaptation laws
are given by

.

�̂�
𝑓
= 𝛾
𝑓
Ψ
𝑓
(x) 𝑆,

.

�̂�
𝑑
= 𝛾
𝑑
Ξ
𝑑
(x) 𝑆,

.

�̂� = 𝑆𝛾
𝜀
,

.

�̂� = 𝑆𝛾
𝜎
.

(22)

Then, the desired tracking performance can be achieved as 𝑆
becomes asymptotically stable and all adaptation parameters
remain bounded.
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Proof. Taking into account the minimum approximation
errors (18) and control law (20), the sliding surface (15) can
be rewritten as

.

𝑆 = 𝑦
𝑛

𝑑
− (



𝐹(
x
�̂�
𝑓

)



+



𝑑 (
x
�̂�
𝑑

)



+𝑦
𝑛

𝑑
+ 𝑙 + Ae + �̂� + �̂�) sgn (𝑆)

− 𝐹 (x) − 𝑑 (x) + Ae.

(23)

Defining the parameters errors �̃�
𝑓
= �̂�
𝑓
− 𝜃
∗

𝑓
, �̃�
𝑑
= �̂�
𝑑
− 𝜃
∗

𝑑
.

We choose the Lyapunov function candidate as follows:

𝑉 =
1

2
𝑆
2
+

1

2𝛾
𝑓

�̂�
𝑇

𝑓
�̂�
𝑓
+

1

2𝛾
𝑑

�̂�
𝑇

𝑑
�̂�
𝑑
+

1

2𝛾
𝑒

�̂�
2

+
1

2𝛾
𝑠

�̂�
2

�̃� = 𝜀 − �̂�, �̃� = 𝜎 − �̂�,

(24)

where 𝛾
𝑓
, 𝛾
𝑑
, 𝛾
𝜀
, and 𝛾

𝜎
are positive constants. The time

derivative of (24) can be obtained as follows:

.

𝑉 = 𝑆

.

𝑆 +
1

𝛾
𝑓

�̃�
𝑇

𝑓

.

�̃�
𝑓
+

1

𝛾
𝑑

�̃�
𝑇

𝑑

.

�̃�
𝑑
+

1

𝛾
𝜀

�̃�

.

�̃� +
1

𝛾
𝜎

�̃�

.

�̃�

= 𝑆(𝑦
𝑛

𝑑
− 𝐹 (x) −(



𝐹(
x
�̂�
𝑓

)



+



𝑑 (
x
�̂�
𝑑

)



+𝑦
𝑛

𝑑
+ 𝜆 + Ae

+�̂� + �̂�) sgn (𝑆) − 𝑑 (x) + Ae)

+
1

𝛾
𝑓

�̃�
𝑇

𝑓

.

�̃�
𝑓
+

1

𝛾
𝑑

�̃�
𝑇

𝑑

.

�̃�
𝑑
+

1

𝛾
𝜀

�̃�

.

�̃� +
1

𝛾
𝜎

�̃�

.

�̃�

≤ |𝑆| |Ae| + |𝑆| 𝑦
𝑛

𝑑
− 𝑆(



𝐹(
x
�̂�
𝑓

)



+



𝑑 (
x
�̂�
𝑑

)



+ ̈𝑦
𝑑

+𝜆 + Ae+�̂� + �̂�) sgn (𝑆)

− 𝑆𝐹 (x) − 𝑆𝑑 (x) + 1

𝛾
𝑓

�̃�
𝑇

𝑓

.

�̃�
𝑓
+

1

𝛾
𝑑

�̃�
𝑇

𝑑

.

�̃�
𝑑
+

1

𝛾
𝜀

�̃�

.

�̃� +
1

𝛾
𝜎

�̃�

.

�̃�

= − 𝜆 |𝑆| − |𝑆|



𝐹(
x
�̂�
𝑓

)



− |𝑆|



𝑑 (
x
�̂�
𝑑

)



− |𝑆| �̂�

− |𝑆| �̂� − 𝑆𝐹 (x) − 𝑆𝑑 (x)

+
1

𝛾
𝑓

�̃�
𝑇

𝑓

.

�̃�
𝑓
+

1

𝛾
𝑑

�̃�
𝑇

𝑑

.

�̃�
𝑑
+

1

𝛾
𝜀

�̃�

.

�̃� +
1

𝛾
𝜎

�̃�

.

�̃�

= − 𝜆 |𝑆| − |𝑆|



𝐹(
x
�̂�
𝑓

)



− |𝑆|



𝑑 (
x
�̂�
𝑑

)



− |𝑆| �̂�

− |𝑆| �̂� − 𝑆(𝐹(
x
𝜃
∗

𝑓

) + 𝜀)

− 𝑆(𝑑(
x
𝜃
∗

𝑑

) + 𝜎) +
1

𝛾
𝑓

�̃�
𝑇

𝑓

.

�̃�
𝑓
+

1

𝛾
𝑑

�̃�
𝑇

𝑑

.

�̃�
𝑑

+
1

𝛾
𝜀

�̃�

.

�̃� +
1

𝛾
𝜎

�̃�

.

�̃�

≤ − 𝜆 |𝑆| − |𝑆|



𝐹(
x
�̂�
𝑓

)



− |𝑆|



𝑑 (
x
�̂�
𝑑

)



− |𝑆| �̂� − |𝑆| �̂�

+ |𝑆|



𝐹(
x
�̂�
𝑓

)



− |𝑆|



𝑑 (
x
�̂�
𝑑

)



− 𝑆�̃�
𝑓
Ψ (x) − 𝑆�̃�

𝑑
Ξ (x) + |𝑆| 𝜀 + |𝑆| 𝜎 +

1

𝛾
𝑓

�̃�
𝑇

𝑓

.

�̃�
𝑓

+
1

𝛾
𝑑

�̃�
𝑇

𝑑

.

�̃�
𝑑
+

1

𝛾
𝜀

�̃�

.

�̃� +
1

𝛾
𝜎

�̃�

.

�̃�

= − 𝜆 |𝑆| − 𝑆�̃�
𝑓
Ψ (x) − 𝑆�̃�

𝑑
Ξ (x) + |𝑆| �̃� + |𝑆| �̃�

+
1

𝛾
𝑓

�̃�
𝑇

𝑓

.

�̃�
𝑓
+

1

𝛾
𝑑

�̃�
𝑇

𝑑

.

�̃�
𝑑
+

1

𝛾
𝜀

�̃�

.

�̃� +
1

𝛾
𝜎

�̃�

.

�̃�

= − 𝜆 |𝑆| + �̃�
𝑇

𝑓
(−𝑆Ψ

𝑓
(x) + 1

𝛾
𝑓

.

�̃�
𝑓
)

+ �̃�
𝑇

𝑑
(−𝑆Ξ

𝑑
(x) 𝑢 +

1

𝛾
𝑑

.

�̃�
𝑑
)

+ �̃� (𝑆 +
1

𝛾
𝜀

.

�̃�) + �̃� (𝑆 +
1

𝛾
𝑑

.

�̃�) .

(25)

Choosing a fuzzy rule adaptive method as

.

�̃�
𝑓
= 𝛾
𝑓
Ψ
𝑓
(x) 𝑆,

.

�̃�
𝑔
= 𝛾
𝑑
Ξ
𝑑
(x) 𝑆,

.

�̃� = −𝑆𝛾
𝜀
,

.

�̃� = −𝑆𝛾
𝜎

(26)
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or equivalently, by definition
.

�̂�
𝑓
= 𝛾
𝑓
Ψ
𝑓
(x) 𝑆,

.

�̂�
𝑔
= 𝛾
𝑑
Ξ
𝑑
(x) 𝑆,

.

�̂� = 𝑆𝛾
𝜀
,

.

�̂� = 𝑆𝛾
𝜎

(27)

yields
.

𝑉 = −𝜆 |𝑆| . (28)

Integrating both sides of (28), we have ∫
∞

0

.

𝑉𝑑𝑡 ≤

−∫
∞

0
(1/2)|𝑆|𝑑𝑡, and thus, the following equation holds:

∫

∞

0

|𝑆| 𝑑𝑡 ≤ 2 (𝑉 (0) − 𝑉 (∞)) . (29)

As 𝑉(0) is bounded and also 0 ≤ 𝑉(∞) ≤ 𝑉(0) from (28),
∫
∞

0
|𝑆|𝑑𝑡 is also bounded from (29). Using Barbalat’s lemma,

[19, 34] |𝑆| → 0 for 𝑡 → ∞.
From the moment where the sliding surface is designed

and constructed to be attractive, we can also see that
lim
𝑡→∞

𝑒 = 0.Therefore, the closed-loop system is asymptot-
ically stable and the position tracking objective is achieved.
The modified projection adaptive laws are given in [7].

5. Simulation Example

We illustrate the validity of the design approach by an
example of robot arm tracking control with a single degree
of freedom as Figure 1 shows.

The dynamic equations of such a system are given by

𝑥
(3)

= 𝑓 (x) + 𝑔 (x) 𝑢 + 𝑑,

𝑦 = 𝑥,

(30)

where

𝑓 (x) = −
𝑟

𝐿
𝑥
3
− (

𝑔

𝑙
cos (𝑥

1
) +

𝐾
𝑏
𝑁
2
𝐾
𝑡

𝐿𝑚𝑙2
)𝑥
2
−

𝑟𝑔

𝐿𝑙
sin (𝑥

1
) ,

𝑔 (x) = 𝐾
𝑡
𝑁

𝐿𝑚𝑙2
,

x = [𝑥
1
, 𝑥
2
, 𝑥
3
]
𝑇

,

(31)

where 𝑥
1
is the angular position (rad), 𝑥

2
is the angular

velocity (rad/s), 𝑥
3
is the angular acceleration (rad/s2), 𝑢(𝑡)

is the applied force (control signal) (N), and 𝑑 is the external
disturbance. The simulation parameters are given in Table 1.

According to (30), we choose the sliding surface as 𝑆 =

𝑒
(2)

+𝑎
2
𝑒
(1)

+𝑎
1
𝑒.The following parameters are chosen so that

x1

Figure 1: Robot arm.

Table 1: Simulation parameters.

Mass of the pole 𝑚 = 5 kg
The half-length of the pole 𝑙 = 0.5m
The acceleration due to gravity 𝐺 = 9.8

Resistance 𝑟 = 1.5

Inductance 𝐿 = 0.5

Electromotive force constant 𝐾
𝑏
= 0.2

Constant torque motor 𝐾
𝑡
= 0.3

Reduction ratio 𝑁 = 60

the characteristic function of the surface is the negative real
part

𝑀
1
= 8, 𝜂

1
= 1, 𝑀

2
= 15 𝜂

2
= 1. (32)

To construct two fuzzy logic systems, 𝐹(x/�̂�
𝑓
) and

𝑑(x/�̂�
𝑑
) as given in (12), the initial consequent parameters of

fuzzy rules are chosen randomly in the interval [−1.2, 1.2].
The initial values of x are given as [0 0 0]

𝑇.
This interval will be sufficiently covered by threemember-

ship functions for position, velocity, and angular acceleration.
Then, we have 27 rules.

Let the learning rate 𝛾
𝑓
= 0.05, 𝛾

𝑑
= 20, 𝛾

𝜀
= 100, 𝛾

𝜎
=

500, 𝑘
𝑑
= 6, and𝑀 = 40.

The control objective is tomaintain the system to track the
desired angle trajectory, 𝑦

𝑑
= sin(𝑡), and to test the proposed

control, we introduced parametric variations and external
disturbances given by Δ𝑚 = 0.1 sin(𝑥), 𝑑 = 0.125 × sin(2𝑡),
respectively.

Figures 2–5 show the simulation results obtained in the
case where the system is subjected to external disturbances
and parametric variations. Figures 2, 3, and 4 show the rapid
convergence of the system output to the reference signal. In
Figure 5, we can see that the control signal is smooth and
that the actual and desired trajectories are superposed, after
a short transitional arrangement whereby the error is signif-
icant between the two outputs, this is due to disturbances,
initial conditions, and initialization of adjustable parameters.

Figures 2–4 show that the effect of parametric perturba-
tions is negligible, with less stress to the control level despite
greater external disturbances. Similarly, the results obtained
in [35] show that the tracking error is about 8% whereas it is
less than 2, 5% in our case.
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Figure 2: Trajectories of the state 𝑥
1
(𝑡) of tracking control of the

desired 𝑦
𝑑
(𝑡) for the robot arms.
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Figure 3: Trajectories of the state 𝑥
2
(𝑡) of tracking control of the

desired .𝑦
𝑑
(𝑡) for the robot arm.

It can be seen in Figures 2–5 that the advantage of our
controller is its ability to eliminate the effect of fluctuations
in the transient response with less effort on the control
law; moreover, an estimation of the upper bound of error
is performed without needing their prior knowledge, which
allows the control law to be less restrictive regarding the
conditions of stability.

6. Conclusion

In this paper, the output tracking control problem has been
considered for a class of uncertain nonlinear systems. The
unknown functions in systems are not linearly parameterized
and have no a priori knowledge of the bounded functions.
Fuzzy logic systems are used to approximate these unknown
nonlinear functions. By sliding mode design technique, the

1220 4 86 10
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ÿd
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Figure 4: Trajectories of the state 𝑥
3
(𝑡) of tracking control of the

desired ̈𝑦
𝑑
(𝑡) for the robot arm.
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Figure 5: Trajectories of the control input 𝑢(𝑡) of the tracking
control for robot arm.

adaptive fuzzy tracking control scheme has been developed
for nonlinear systems. The proposed controllers guarantee
that the outputs of the closed-loop system follow the reference
signals, and achieve uniform ultimate boundedness of all the
signals in the closed-loop system. It is proved in theory and
shown in simulation that the closed-loop system is stable
and the output tracks the given reference signal satisfactorily.
Future work will deal with the delay systems in the type 2
fuzzy systems taking into account uncertainties and a novel
nonlinearity slidingmode surface and an application to a real
process.
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Estimating the cycle time of each job in a wafer fabrication factory is a critical task to every wafer manufacturer. In recent years,
a number of hybrid approaches based on job classification (either preclassification or postclassification) for cycle time estimation
have been proposed. However, the problemwith thesemethods is that the input variables are not independent. In order to solve this
problem, principal component analysis (PCA) is considered useful. In this study, a classifying fuzzy-neural approach, based on the
combination of PCA, fuzzy c-means (FCM), and back propagation network (BPN), is proposed to estimate the cycle time of a job
in a wafer fabrication factory. Since job classification is an important part of the proposed methodology, a new index is proposed
to assess the validity of the classification of jobs. The empirical relationship between the S value and the estimation performance is
also found. Finally, an iterative process is employed to deal with the outliers and to optimize the overall estimation performance.
A real case is used to evaluate the effectiveness of the proposed methodology. Based on the experimental results, the estimation
accuracy of the proposed methodology was significantly better than those of the existing approaches.

1. Introduction

The competition in the semiconductor industry has been
very intense. How to obtain and maintain the competitive
edge is an important task for all manufacturers in this
industry. Quick response and on-time delivery are obviously
pressing needs for any modern enterprise. To this end,
accurate estimating and shortening the cycle time (flow time
or manufacturing lead time) of each job in the factory is
a prerequisite [1–9]. In a wafer fabrication factory, a job
is usually composed of about 25 pieces of wafers and has
hundreds of steps to be processed. In addition, a job may
visit the same workstation more than once because the same
operation may be needed multiple times. A wafer fabrication
factory is therefore classified as a complicated reentrant
production system.

Estimating the cycle time of each job in awafer fabrication
factory is very important to the factory because it can

signal the manager if the orders are progressed as they were
expected. For example, if the estimated cycle time of a job
is longer than as it was expected, then this order may not
be completed to the customer before its due date. Some
production control actions should then immediately be taken
to accelerate the progress of the job [10].That iswhy this paper
studies the estimation of job cycle time in a wafer fabrication
factory.

The existing approaches for the job cycle time estimation
in a wafer fabrication factory can be classified into six
categories: statistical analysis, production simulation (PS),
back propagation network (BPN), case-based reasoning
(CBR), fuzzy modeling methods, and hybrid approaches [9].
Among the six approaches, statistical analysis is the easiest,
quickest, and most prevalent in practical applications. Most
of the statistical analyses used linear regression equations
to estimate the job cycle time (e.g., [11, 12]). Pearn et al.
[13] fitted the distribution of the waiting time of a job with
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a gamma distribution and then used a linear equation to
estimate the job cycle time. Recently, Chien et al. [14] used
nonlinear regression equations instead and then found out
the relationship between the estimation error and some
factory conditions and job attributes with a BPN to further
improve the estimation accuracy. The major disadvantage
of statistical analysis is the lack of estimation accuracy [9].
Conversely, a huge amount of data and lengthy simulation
time required are two disadvantages of PS. Nevertheless,
theoretically PS is themost accurate job cycle time estimation
approach if the simulation model is completely valid and is
continuously updated.

Considering effectiveness (estimation accuracy) and effi-
ciency (execution time) simultaneously, Chang et al. [8],
Chang and Hsieh [15], and Sha and Hsu [16] estimated the
cycle time of a job in a wafer fabrication factory using a
BPN with a single hidden layer. A BPN is an effective tool
in modeling complex physical systems described by sets of
different equations for prediction, control, and design pur-
poses. Compared with some statistical analysis approaches,
the average estimation accuracy measured with root mean
squared error (RMSE) was considerably improved with the
BPNs. For example, an improvement of about 40% in RMSE
was achieved in the study of Chang et al. [8]. Chen [17]
incorporated the job releasing plan of the wafer fabrication
factory into a BPN, and constructed a “look-ahead” BPN for
the same purpose, which led to an average reduction of 12%
in RMSE. On the other hand, much less time and fewer data
are required with a BPN than with PS. Chen et al. [18] and
Beeg [19] estimated the cycle time of a job in a ramping up
wafer fabrication factory. In their studies, Chen et al. used a
BPN-based method, while Beeg tried to find out the impact
of utilization for the cycle time.

Chiu et al. [20] established an expert system based on
CBR for the job cycle time estimation. To effectively consider
the uncertainty in the job cycle time, fuzzy logic was used in
a number of studies. For example, Chang et al. [8] modified
the first step (i.e., partitioning the range of each input variable
into several fuzzy intervals) of the fuzzy modeling method
proposed by Wang and Mendel [21], called the WMmethod,
with a simple genetic algorithm (GA) and proposed the
evolving fuzzy rule (EFR) approach to estimate the cycle time
of a job in a wafer fabrication factory. Their EFR approach
outperformed CBR and BPN in the estimation accuracy.
Chen [9] constructed a fuzzy back propagation network
(FBPN) that incorporated expert opinions to modify the
inputs of the FBPN. Chen’s FBPN surpassed the crisp BPN
especially with respect to efficiency.

In recent years, a number of hybrid approaches have been
proposed, most of which classified jobs before estimating
the cycle times. For example, Chen [7] combined self-
organization map (SOM) and WM, in which jobs were
classified using a SOM before estimating the cycle times
of the jobs with WM. Chen and Wang [22] constructed a
look-ahead k-means- (kM-) FBPN for the same purpose and
discussed in detail the effects of using different look-ahead
functions. More recently, Chen [17] proposed the look-ahead
SOM-FBPN approach for the job cycle time estimation in a
semiconductor factory [23]. Besides, a set of fuzzy inference

rules were also developed to evaluate the achievability of a
cycle time forecast. Subsequently, Chen [24] added a selective
allowance to the cycle time estimated using the look-ahead
SOM-FBPN approach to determine the intermediate due
date. Further, Chen et al. [23] showed that the suitability
of combining the SOM and FBPN for the data could be
improved with the feedback of the estimation error by the
FBPN to adjust the classification results of the SOM. Chen et
al. [25] proposed a postclassification fuzzy-neural approach
in which a job was not pre-classified but rather postclassified
after estimating the cycle time. Experimental results showed
that the postclassification approach was better than the
preclassification approaches in certain cases. In order to
combine the advantages of preclassifying and post-classifying
approaches, Chen [26] proposed a bi-directional classifying
approach, in which jobs are not only pre-classified but also
postclassified. Except few studies in which the historical data
of a real semiconductor factory were collected, most studies
in this field used simulated data [27].

In short, the followings have not done before:

(1) Some factors used to estimate the cycle time are
dependent on each other, which may cause problems
in classifying jobs and in fitting the relationship
between the job cycle time and these factors. How-
ever, this issue has rarely been addressed in previous
studies of this field.

(2) Job classification has been shown to be conducive
to the estimation performance. However, most past
studies chose classifiers subjectively and did not eval-
uate the performance of the classifier. Needless to say
optimizing the classifier for the subsequent estima-
tion task.

Principal component analysis (PCA) is a multivariate sta-
tistical analysis method. This method constructs a series of
linear combinations of the original variables to form a new
variable, so that these new variables are unrelated to each
other as much as possible, and the relationship among them
can be reflected in a better way. In this study, a fuzzy-neural
approach, based on the combination of PCA, FCM, and BPN,
is proposed to estimate the cycle time of a job in a wafer
fabrication factory. The motivation of this study is explained
as follows.

(1) While in the past some studies combined PCA and
FCM, the references on the combination of PCA,
FCM, and BPN are still very limited. Chen [28]
applied PCA to modify the inputs to a BPN for the
job cycle time estimation. The estimation accuracy
of PCA-BPN was slightly better than that of BPN
alone. It seems that BPN can solve the dependencies
of the input variables for the job cycle time estimation
problems. PCA seems to be more important for
the classification of jobs. This provides us with a
motivation to improve the existing job cycle time
estimation methods based on job classification.

(2) FCM, as a part of the preclassifying approach, can-
not be evaluated alone. Its success depends on the
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performance of the subsequent estimation task. This
provides us with a motivation to assess the validity of
the classification of jobs from this point of view.

(3) The 𝑆 test is a commonly used method to determine
the best number of categories in FCM. However,
whether this way directly favors the estimation per-
formance has not been confirmed.

The contribution compared with some previous works in
the literature includes the following.

(1) With factors that are dependent on each other, jobs
may bemisclassified if FCM is used alone.Thismay be
harmful to the estimation accuracy of BPN, because
incorrect examples are used to train the BPN. The
fuzzy-neural approach replaces the original factors
with new independent factors and is expected to
be able to generate the correct classification results.
The correctness of the classification results must be
judged from the estimation performance. In order to
measure that, two new indexes are defined.

(2) It is anticipated that the new factors found out by
PCA have a more explicit relationship with the job
cycle time. As a result, the training of BPN may be
accelerated. This also means that a more accurate
relationship between the factors and the cycle time
can also be generated with the same time.

(3) A new index is proposed to assess the validity of the
classification of jobs.

(4) The empirical relationship between the 𝑆 value and
the estimation performance is found.

(5) Outliers, that is, jobs that cannot be classified def-
initely, have not been dealt with properly in the
past. However, the overall estimation performance
is often affected by the outliers. For this reason, an
iterative process is established in this study, which can
optimize the overall estimation performance.

The differences between the proposed methodology and the
previous methods are summarized in Table 1.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the proposed PCA-FCM-BPN
approach. An example is employed to illustrate the proposed
methodology. A case with the real data from a wafer fabri-
cation factory is investigated in Section 3. The performance
of the proposed methodology is compared with those of the
existing approaches for this real case. Based on the results,
some points are made in analysis. Finally, the concluded
remarks with a view to the future are given in Section 4.

2. Methodology

Two characteristics of the proposed methodology are input
replacement and job classification. These features not are
mathematical skills, but also have implications for the oper-
ations of a wafer fabrication factory. First, in the useful
information for the estimation of the job cycle time, many
factors are in fact mutually dependent. For example, it is

well known that the utilization of a factory increases when
the work-in-process (WIP) level in the factory rises. Both
utilization and theWIP level are important factors considered
in some job cycle time estimation approaches. Whether
the dependence of the factors will lead to problems in the
classification of jobs needs to be checked. Therefore, the
replacement of these factors with new independent variables
is worth a try.

On the other hand, a number of job cycle time estimation
approaches in this field classify jobs. A well-known concept
is that the cycle time of a job is proportional to the WIP
level of the factory, according to Little’s law; however, that
only holds when the factory utilization is 100%. Therefore,
it is reasonable to divide jobs into two categories: jobs that
are released into the factory when the factory utilization is
100% and jobs released when the factory utilization is less
than 100%.

The architecture of the proposed methodology is shown
in Figure 1.

2.1. Variable Replacement Using PCA. First, PCA is used to
replace the inputs to the FCM-BPN.The combination of PCA
and FCM has proven to be a more effective classifier than
FCM alone [29]. PCA consists of the following steps.

(1) Raw data standardization: to eliminate the difference
between the dimensions and the impact of large
numerical difference in the original variables, The
original variables are standardized as the following:

𝑥
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where 𝑥
𝑗𝑖
is the 𝑖th attribute of job 𝑗, 𝑗 = 1 ∼ 𝑛; 𝑥

𝑖

and 𝜎
𝑖
indicate the mean and standard deviation of

variable 𝑖, respectively.
(2) Establishment of the correlation matrix 𝑅:

𝑅 =
1

𝑛 − 1
𝑋
∗𝑇
𝑋
∗
, (2)

where 𝑋
∗ is the standardized data matrix. The

eigenvalues and eigenvectors of 𝑅 are calculated and
represented as 𝜆

1
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1
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(3) Determination of the number of principal compo-
nents: the variance contribution rate is calculated as:

𝜂
𝑞
=

𝜆
𝑞

∑
𝑚

𝑟=1
𝜆
𝑟

⋅ 100%, (3)
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Table 1: The differences between the proposed methodology and the previous methods.

Method SOM-WM [7], SOM-FBPN [17],
kM-FBPN [22–24] BPN-BPN [25] FCM-FBPN-RBF [26] The proposed

methodology
Job preclassification Yes No Yes Yes
Job post/reclassification No Yes Yes Yes
Parameter replacement No No No Yes
Dealing with outliers No No No Yes
Iteration No No No Yes
∗RBF is radial basis function network.

Job data PC
A

FC
M

Category 1
examples

examples

1

2

1

2

1

1

2

1

2

1

Outliers

⋯

⋮ ⋮

⋮⋮

𝑁(𝐶𝑇𝑗)
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𝑝
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Figure 1: The architecture of the proposed methodology.

where 𝑞 = 1 ∼ 𝑚, and the accumulated variance
contribution rate is

𝜂
Σ
(𝑝) =

𝑝

∑

𝑞=1

𝜂
𝑞
, (4)

where 𝑝 = 1 ∼ 𝑚. Choose the smallest 𝑝 value such
that 𝜂
Σ
(𝑝) ≥ 85% ∼ 90%. A Pareto analysis chart can

be used to compare the percent variability explained
by each principal component.

(4) Formation of the following matrixes:

𝑈
𝑚×𝑝

= [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑝
] ,

𝑍
𝑛×𝑝

= 𝑋
∗

𝑛×𝑚
𝑈
𝑚×𝑝

.

(5)

𝑍
𝑛×𝑝

= [𝑧
𝑗𝑞
] (𝑗 = 1 ∼ 𝑛; 𝑞 = 1 ∼ 𝑝) is the

component scores, which contain the coordinates of
the original data in the new coordinate systemdefined
by the principal components, and will be used as the
new inputs to the FFNN.
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Table 2: An example.

𝑗 𝑥
𝑗1

𝑥
𝑗2

𝑥
𝑗3

𝑥
𝑗4

𝑥
𝑗5

𝑥
𝑗6

1 24 1261 181 781 112 0.92
2 24 1263 181 762 127 0.90
3 24 1220 176 761 127 0.89
4 23 1282 178 802 127 0.94
5 23 1303 180 780 175 0.93
6 23 1281 183 782 175 0.93
7 23 1242 184 741 163 0.89
8 24 1262 182 681 139 0.86
9 22 1260 182 701 98 0.86
10 22 1260 179 700 257 0.87
11 24 1301 163 722 99 0.84
12 22 1221 184 641 131 0.82
13 23 1323 159 740 247 0.87
14 24 1362 181 782 191 0.95
15 24 1261 181 762 219 0.91
16 23 1321 177 801 219 0.96
17 22 1343 180 822 219 0.97
18 24 1321 177 762 54 0.93
19 25 1343 179 781 54 0.96
20 25 1300 180 740 54 0.92
21 22 1320 181 721 54 0.91
22 24 1321 182 742 49 0.92
23 23 1262 165 680 201 0.80
24 22 1240 161 722 103 0.82
25 23 1183 183 661 53 0.82
26 23 1282 184 701 53 0.88
27 22 1202 177 680 248 0.84
28 23 1202 178 681 248 0.85
29 24 1202 185 701 82 0.86
30 23 1202 158 721 98 0.81
31 24 1343 181 760 67 0.94
32 24 1381 185 801 67 0.97
33 22 1362 156 780 67 0.91
34 23 1282 179 782 223 0.92
35 23 1320 180 782 176 0.93
36 25 1340 176 801 462 0.97
37 23 1320 182 781 168 0.95
38 22 1361 181 781 141 0.94
39 22 1381 179 781 95 0.97
40 23 1363 178 802 179 0.97

To illustrate the application of the proposedmethodology,
an example is given in Table 2. To get a quick impression of
the data, a box plot is made in Figure 2. Note that there is
substantially more variability in 𝑥

𝑗2
, 𝑥
𝑗4
, and 𝑥

𝑗5
than in the

remaining variables.
Subsequently, we standardize the data (see Table 3) and

obtain the correlation matrix as

𝑅 =

[
[
[
[
[
[
[

[

0.97 0.10 0.16 0.21 −0.03 0.25

0.10 0.98 0.01 0.70 −0.01 0.78

0.16 0.01 0.98 0.05 −0.07 0.37

0.21 0.70 0.05 0.98 0.15 0.86

−0.03 −0.01 −0.07 0.15 0.98 0.10

0.25 0.78 0.37 0.86 0.10 0.98

]
]
]
]
]
]
]

]

. (6)
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Figure 2: The box plot.

The eigenvalues and eigenvectors of 𝑅 are calculated as
the following:

𝜆
1
= 2.66, 𝜆

2
= 1.15,

𝜆
3
= 0.94, 𝜆

4
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𝜆
5
= 0.25, 𝜆
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]
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]
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]

,
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−0.02

]
]
]
]
]
]
]

]

, 𝑢
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=

[
[
[
[
[
[
[
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−0.15

]
]
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]
]
]

]

,

𝑢
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=

[
[
[
[
[
[
[

[

−0.12

−0.72

−0.07

0.65

−0.18

0.09
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, 𝑢
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=

[
[
[
[
[
[
[

[

0.02

0.29

0.28

0.47
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,

(7)

respectively. The variance contribution rates are

𝜂
1
= 46%, 𝜂

2
= 20%, 𝜂

3
= 16%,

𝜂
4
= 14%, 𝜂

5
= 4%, 𝜂

6
= 0%.

(8)
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Table 3: The standardized data.

𝑗 𝑥
𝑗1

𝑥
𝑗2

𝑥
𝑗3

𝑥
𝑗4

𝑥
𝑗5

𝑥
𝑗6

1 0.88 −0.53 0.40 0.74 −0.40 0.37
2 0.88 −0.49 0.48 0.30 −0.22 −0.05
3 0.88 −1.27 −0.17 0.29 −0.22 −0.31
4 −0.22 −0.15 0.07 1.18 −0.22 0.65
5 −0.22 0.24 0.37 0.71 0.35 0.58
6 −0.22 −0.17 0.78 0.74 0.35 0.45
7 −0.22 −0.87 0.90 −0.14 0.21 −0.19
8 0.88 −0.51 0.53 −1.45 −0.08 −0.87
9 −1.32 −0.55 0.60 −1.01 −0.56 −0.81
10 −1.32 −0.54 0.23 −1.03 1.34 −0.55
11 0.88 0.20 −1.87 −0.57 −0.56 −1.19
12 −1.32 −1.25 0.80 −2.33 −0.18 −1.64
13 −0.22 0.60 −2.40 −0.16 1.22 −0.60
14 0.88 1.31 0.47 0.75 0.55 0.94
15 0.88 −0.53 0.40 0.31 0.88 0.19
16 −0.22 0.57 −0.05 1.17 0.88 1.13
17 −1.32 0.97 0.33 1.62 0.88 1.38
18 0.88 0.56 −0.01 0.31 −1.09 0.62
19 1.97 0.96 0.15 0.74 −1.09 1.06
20 1.97 0.19 0.38 −0.16 −1.09 0.36
21 −1.32 0.55 0.51 −0.57 −1.09 0.10
22 0.88 0.55 0.54 −0.13 −1.16 0.32
23 −0.22 −0.52 −1.59 −1.47 0.67 −2.00
24 −1.32 −0.91 −2.11 −0.57 −0.51 −1.54
25 −0.22 −1.95 0.72 −1.89 −1.11 −1.64
26 −0.22 −0.15 0.89 −1.01 −1.11 −0.36
27 −1.32 −1.59 −0.07 −1.47 1.23 −1.26
28 −0.22 −1.60 0.07 −1.47 1.23 −1.11
29 0.88 −1.60 0.93 −1.03 −0.76 −0.87
30 −0.22 −1.59 −2.57 −0.58 −0.56 −1.86
31 0.88 0.97 0.41 0.27 −0.94 0.70
32 0.88 1.65 1.00 1.16 −0.94 1.27
33 −1.32 1.30 −2.73 0.71 −0.94 0.10
34 −0.22 −0.14 0.16 0.74 0.92 0.33
35 −0.22 0.55 0.34 0.75 0.36 0.54
36 1.97 0.91 −0.23 1.17 3.79 1.28
37 −0.22 0.55 0.61 0.73 0.27 0.91
38 −1.32 1.28 0.42 0.72 −0.05 0.81
39 −1.32 1.66 0.14 0.72 −0.60 1.36
40 −0.22 1.33 0.13 1.18 0.40 1.42

Summing up 𝜂
𝑞
’s, we obtain the following

𝜂
Σ
(1) = 46%, 𝜂

Σ
(2) = 65%,

𝜂
Σ
(3) = 81%, 𝜂

Σ
(4) = 95%,

𝜂
Σ
(5) = 100%, 𝜂

Σ
(6) = 100%.

(9)

A Pareto analysis chart is used to compare the percent vari-
ability explained by each principal component (see Figure 3).
There is a clear break in the amount of variance accounted
for by each component between the first and the second
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Figure 3: The Pareto analysis chart.
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Figure 4: The component scores.

components. However, that component by itself can only
explain less than 50% of the variance, so more components
may be needed. To meet the requirement 𝜂

Σ
(𝑝) ≥ 85% ∼

90%, 𝑝 is chosen as 3.We can see that the first three principal
components explain roughly 80% of the total variability in
the standardized data, so that might be a reasonable way to
reduce the dimensions in order to visualize the data.

Subsequently, the component scores are computed (see
Table 4), which contain the coordinates of the original data
in the new coordinate system defined by the principal
components and will be used as the new inputs to the FCM-
BPN. In Figure 4, the first two columns of the component
scores are plotted, showing the data projected onto the first
two principal components.

2.2. Classifying Jobs Using FCM. After employing PCA,
examples are then classified using FCM. If a crisp clustering
method is applied instead, then it is very likely that some
clusters will have very few examples. In contrast, an example
belongs to multiple clusters to different degrees in FCM,
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Table 4: New inputs to the FCM-BPN.

𝑧
𝑗1

𝑧
𝑗2

𝑧
𝑗3

−0.56 0.91 −0.19
−0.13 0.87 −0.34
0.51 0.57 −0.37
−0.97 −0.10 0.20
−0.87 −0.20 −0.26
−0.75 0.14 −0.51
0.57 0.56 −0.66
1.30 1.18 −0.55
1.55 0.31 0.47
1.37 −0.87 −1.04
1.11 −0.59 0.91
3.04 0.63 −0.20
0.51 −2.44 −0.02
−1.94 0.12 −0.43
−0.30 0.35 −1.29
−1.62 −0.84 −0.48
−2.04 −1.24 −0.17
−0.87 0.77 0.89
−1.92 1.34 0.64
−0.58 1.70 0.34
0.22 0.23 1.29
−0.62 1.31 0.73
2.54 −1.26 −0.16
2.39 −1.64 1.20
3.02 1.57 0.14
0.89 1.21 0.66
2.56 −0.74 −1.19
2.19 −0.13 −1.54
1.61 1.90 −0.42
2.72 −1.23 0.87
−1.27 0.99 0.71
−2.56 1.07 0.78
−0.37 −2.44 2.47
−0.60 −0.51 −0.82
−1.06 −0.27 −0.17
−2.54 −1.36 −3.41
−1.31 −0.02 −0.18
−1.32 −0.63 0.67
−1.77 −0.58 1.32
−2.13 −0.66 0.12

which provides a solution to this problem. Similarly, in
probability theory, the naı̈ve Bayes method provides the
probability that the item belongs to each class. However,
the application of FCM can consider subjective factors in
classifying the jobs. Algorithm 1.

FCM classifies jobs byminimizing the following objective
function:

Min
𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚

𝑗(𝑘)
𝑒
2

𝑗(𝑘)
, (10)

where𝐾 is the required number of categories; 𝑛 is the number
of jobs; 𝜇

𝑗(𝑘)
indicates the membership that job 𝑗 belongs

to category 𝑘; 𝑒
𝑗(𝑘)

measures the distance from job 𝑗 to the
centroid of category 𝑘; 𝑚 ∈ [1,∞) is a parameter to adjust
the fuzziness and is usually set to 2. The procedure of FCM is
described as follows.

(1) Normalize the input data.
(2) Produce a preliminary clustering result.
(3) (Iterations) Calculate the centroid of each category as

the following:

𝑧
(𝑘)
= {𝑧
(𝑘)𝑞
} , 𝑘 = 1 ∼ 𝐾,

𝑧
(𝑘)𝑞

=

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)
𝑧
𝑗𝑞

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)

, 𝑘 = 1 ∼ 𝐾, 𝑞 = 1 ∼ 𝑝,

𝜇
𝑗(𝑘)

=
1

∑
𝐾

𝑔=1
(𝑒
𝑗(𝑘)
/𝑒
𝑗(𝑔)
)
2/(𝑚−1)

, 𝑗 = 1 ∼ 𝑛, 𝑘 = 1 ∼ 𝐾,

𝑒
𝑗(𝑘)

= √

𝑝

∑

𝑞=1

(𝑧
𝑗𝑝
− 𝑧
(𝑘)𝑝
)
2

, 𝑗 = 1 ∼ 𝑛, 𝑘 = 1 ∼ 𝐾,

(11)

where 𝑧
(𝑘)

is the centroid of category 𝑘. 𝜇(𝑡)
𝑗(𝑘)

is the
membership that job 𝑗 belongs to category 𝑘 after the
𝑡th iteration.

(4) Remeasure the distance from each job to the centroid
of each category and then recalculate the correspond-
ing membership.

(5) Stop if the following condition is met. Otherwise,
return to step (3):

max
𝑘

max
𝑗


𝜇
(𝑡)

𝑗(𝑘)
− 𝜇
(𝑡−1)

𝑗(𝑘)


< 𝑑. (12)

where 𝑑 is a real number representing the threshold
for the convergence of membership.

The performance of FCM is highly affected by the settings for
the initial values, and therefore can be repeatedmultiple times
in order to find the optimal solution. Finally, the separate
distance test (𝑆 test) proposed by Xie and Beni [30] can be
applied to determine the optimal number of categories 𝐾 as
follows:

Min 𝑆 (13)
subject to

𝐽
𝑚
=

𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚

𝑗(𝑘)
𝑒
2

𝑗(𝑘)
,

𝑒
2

min = min
𝑘1 ̸=𝑘2

(

𝑝

∑

𝑞=1

(𝑧
(𝑘1)𝑞

− 𝑧
(𝑘2)𝑞

)
2

) ,

𝑆 =
𝐽
𝑚

𝑛 × 𝑒
2

min
,

𝐾 ∈ 𝑍
+
.

(14)
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A=[0.3857 7175 0.5381; . . . ; 0.1614 0.4281 0.5803]

c=2

[center, U, obj fun]=fcm(A, c);

Jm=min (obj fun)

e2 min=9999;

for i=1 : c

for j=i+1 : c

e2 sum=0;

for k=1 : 3

e2 sum=e2 sum+(center (i, k)−center(j, k))∧ 2;

end

if e2 sum<e2 min

e2 min=e2 sum;

end

end

end

e2 min

S=min (Jm)/(40∗e2 min)

Algorithm 1: The sample MATLAB code for the FCM approach.

Table 5: The results of the 𝑆 test.

Number of categories (𝐾) 𝐽
𝑚

𝑒
2

min 𝑆

2 1.96 0.14 0.34
3 1.21 0.09 0.34
4 0.86 0.07 0.30
5 0.67 0.06 0.26
6 0.53 0.03 0.43

Table 6: The classifying results (𝜇
𝐿
= 0.5).

Category Jobs
1 1, 2, 18, 19, 20, 22, 31, 32
2 3, 7, 8, 9, 12, 25, 26, 29
3 4, 5, 6, 14, 16, 17, 34, 35, 37, 38, 39, 40
4 10, 11, 23, 24, 27, 30

Table 7: The classifying results (𝜇
𝐿
= 0.3).

Category Jobs
1 1, 2, 18, 19, 20, 21, 22, 31, 32
2 2, 3, 7, 8, 9, 12, 25, 26, 28, 29
3 4, 5, 6, 14, 15, 16, 17, 33, 34, 35, 36, 37, 38, 39, 40
4 10, 11, 13, 23, 24, 27, 28, 30, 33

The𝐾 value minimizing 𝑆 determines the optimal number of
categories.

The Fuzzy Logic Toolbox of MATLAB can be used to
implement the FCM approach. A sample code is shown in

In the illustrative example, the data have been standard-
ized and therefore are not normalized again. The results of
the 𝑆 test are summarized in Table 5. In this case, the optimal
number of job categories was 5. However, there will be some
categories with very few jobs. For this reason, the second best
solution is used, that is, 4 categories. A common practice is

to set a threshold of membership 𝜇
𝐿
to determine whether

a job belongs to each category. For example, if 𝜇
𝐿
= 0.5,

then the classifying results are shown in Table 6. With the
decrease in the threshold, each category will contain more
jobs. For example, if 𝜇

𝐿
= 0.3, then the classifying results are

shown in Table 7. Such a property can solve the problem of
an insufficient number of examples.

We also note that the classification results are very
different according to the new variables, compared with the
results based on the original variables. In other words, the
results of FCM and PCA-FCM are not the same.

(1) The optimal number of categories in FCM is 6, while
that in PCA-FCM is 5.

(2) If jobs are divided into four categories in these two
methods, then the results are compared in Figure 5.
Many jobs have been reclassified, which means that
the misclassification problem has been resolved after
variable replacement.

In Figure 5, there are also some outliers that cannot be
classified into any category.

2.3. Estimating the Cycle Time Using BPN. Finally, the jobs/
examples of a category are learned with the same BPN. Arti-
ficial neural networks have been proposed to solve a wide
variety of problems usually characterized by sets of different
equations. Although there have been some more advanced
artificial neural networks, such as compositional pattern-
producing network, cascading neural network, and dynamic
neural network, a well-trained BPN with an optimized struc-
ture can still produce very good results. The configuration of
the BPN is established as follows.

(1) Inputs: the new factors determined by PCAassociated
with the 𝑗th example/job. These factors have to be
partially normalized so that their values fall within
[0.1, 0.9] [18].
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Figure 5: Comparison of the classification results by PCA-FCMand
FCM.

(2) Single hidden layer: generally one or two hidden lay-
ers are more beneficial for the convergence property
of the BPN.

(3) For simplicity, the number of neurons in the hidden
layer is twice that in the input layer. An increase in
the number of hidden-layer nodes lessens the output
errors for the training examples, but increases the
errors for novel examples. Such a phenomena is often
called “over-fitting.” There has been some research
considering the relation among the complexity of
a BPN, the performance for the training data and
the number of examples, for example using Akaike’s
information criterion (AIC) or theminimumdescrip-
tion length (MDL).

(4) Output: the (normalized) cycle time estimate of the
example.

The procedure for determining the parameter values
is now described. After preclassification, a portion of the
adopted examples in each category is fed as “training exam-
ples” into the BPN to determine the parameter values for
the category. Two phases are involved at the training stage.
At first, in the forward phase, inputs are multiplied with
weights, summated, and transferred to the hidden layer.Then
activated signals ℎ

𝑗𝑙
are outputted from the hidden layer as:

ℎ
𝑗𝑙
=

1

1 + 𝑒
−𝑛
ℎ
𝑗𝑙

, (15)

where

𝑛
ℎ

𝑗𝑙
= 𝐼
ℎ

𝑗𝑙
− 𝜃
ℎ

𝑙
,

𝐼
ℎ

𝑗𝑙
=

𝑝

∑

𝑞=1

𝑤
ℎ

𝑞𝑙
𝑧
𝑗𝑞

(16)

ℎ
𝑗𝑙
’s are also transferred to the output layer with the same

procedure. Finally, the output of the BPN is generated as:

𝑜
𝑗
=

1

1 + 𝑒
−𝑛
𝑜
𝑗

, (17)

where

𝑛
𝑜

𝑗
= 𝐼
𝑜

𝑗
− 𝜃
𝑜
,

𝐼
𝑜

𝑗
=

𝐿

∑

𝑙=1

𝑤
𝑜

𝑙
ℎ
𝑗𝑙
.

(18)

The output 𝑜
𝑗
is comparedwith the normalized step flow time

𝑁(𝐶𝑇
𝑗
), for which RMSE is calculated as the following:

RMSE = √
∑
𝑛

𝑗=1
(𝑜
𝑗
− 𝑁(𝐶𝑇

𝑗
))
2

𝑛
.

(19)

Subsequently in the backward phase, some algorithms
are applicable for training a BPN, such as the gradi-
ent descent algorithms, the conjugate gradient algorithms,
the Levenberg-Marquardt algorithm, and others. In this
study, the Levenberg-Marquardt algorithm is applied. The
Levenberg-Marquardt algorithm was designed for training
with the second-order speed without having to compute
the Hessian matrix. It uses approximation and updates the
network parameters in a Newton-like way, as described
below.

The network parameters are placed in vector 𝛽 =
[𝑤
ℎ

11
, . . . , 𝑤

ℎ

𝑝𝐿
, 𝜃
ℎ

1
, . . .,𝜃ℎ
𝐿
, 𝑤𝑜
1
, . . . , 𝑤

𝑜

𝐿
, 𝜃𝑜]. The network output

𝑜
𝑗
can be represented with 𝑓(x

𝑗
,𝛽). The objective function

of the BPN is to minimize RMSE or equivalently the sum of
squared error (SSE):

SSE (𝛽) =
𝑛

∑

𝑗=1

(𝑁(𝐶𝑇
𝑗
) − 𝑓 (x

𝑗
,𝛽))
2

. (20)

The Levenberg-Marquardt algorithm is an iterative pro-
cedure. In the beginning, the user should specify the initial
values of the network parameters 𝛽. Let 𝛽T = (1, 1, . . . , 1)

be a common practice. In each step, the parameter vector 𝛽
is replaced by a new estimate 𝛽 + 𝛿, where 𝛿 = [Δ𝑤

ℎ

11
, . . .,

Δ𝑤
ℎ

𝑝𝐿
, Δ𝜃ℎ
1
, . . . , Δ𝜃

ℎ

𝐿
, Δ𝑤𝑜
1
, . . ., Δ𝑤𝑜

𝐿
, Δ𝜃𝑜].The network output

becomes 𝑓(x
𝑗
,𝛽+𝛿) that is approximated by its linearization

as

𝑓 (x
𝑗
,𝛽 + 𝛿) ≈ 𝑓 (x

𝑗
,𝛽) + J

𝑗
𝛿, (21)

where

J
𝑗
= 𝜕

𝑓 (x
𝑗
,𝛽)

𝜕𝛽

(22)

is the gradient vector of 𝑓 with respect to 𝛽. Substituting (21)
into (20) leads to.

SSE (𝛽+𝛿) ≈
𝑛

∑

𝑗=1

(𝑁 (𝐶𝑇
𝑗
) − 𝑓 (x

𝑗
,𝛽) − J

𝑗
𝛿)
2

. (23)
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tn input=[0.843 0.831 ⋅ ⋅ ⋅ ; 0.839 0.859 ⋅ ⋅ ⋅ ; 0.9 0.9 ⋅ ⋅ ⋅ ; 0.878 0.889 ⋅ ⋅ ⋅ ; 0.875 0.858 ⋅ ⋅ ⋅ ;

0.822 0.827 ⋅ ⋅ ⋅]

tn target=[0.849 0.849 ⋅ ⋅ ⋅]

net=newff ([0 1; 0 1; 0 1; 0 1; 0 1; 0 1], [12, 1], {"logsig" , "logsig"}, "trainlm");
net=init (net);

net. trainParam. show=10;

net. trainParam. lr=0.1;

net. trainParam. epochs=1000;

net. trainParam. goal=1e−4;

[net, tr]=train (net, tn input, tn target);

tn output=sim (net, tn input)

te input=[0.825 0.844⋅ ⋅ ⋅ ; 0.824 0.835 ⋅ ⋅ ⋅ ; 0.9 0.9 ⋅ ⋅ ⋅ ; 0.878 0.889 ⋅ ⋅ ⋅ ; 0.883 0.875 ⋅ ⋅ ⋅ ;

0.807 0.820 ⋅ ⋅ ⋅]

te output=sim (net, te input)

Algorithm 2: The sample MATLAB code for the BPN approach.

When the network reaches the optimal solution, the gradient
of SSE with respect to 𝛿 will be zero. Taking the derivative of
SSE(𝛽+𝛿)with respect to 𝛿 and setting the result to zero gives
the following:

(JTJ) 𝛿 = JT (𝑁 (𝐶𝑇
𝑗
) − 𝑓 (x

𝑗
,𝛽)) , (24)

where J is the Jacobian matrix containing the first derivative
of network error with respect to the weights and biases.
Equation (24) includes a set of linear equations that can be
solved for 𝛿.

In the illustrative example, 3/4 of the examples in each
category are used as the training example. The remaining 1/4
is left for testing. A three-layer BPN is then used to estimate
the cycle time of jobs in each category according to the new
variables with the following setting.

Single hidden layer.

The number of neurons in the hidden layer: 2∗3 = 6.

Convergence criterion: SSE < 10
−6 or 10000 epochs

have been run.

For an outlier, the BPNs of all categories are applied to
estimate the cycle time. The Neural Network Toolbox of
MATLAB is used to implement the BPN approach. The
sample code is shown in Algorithm 2. The estimation accu-
racy can be evaluated with mean absolute error (MAE),
mean absolute percentage error (MAPE), and RMSE. The
estimation performances are summarized in Table 8.

Obviously, the overall estimation performance is affected
by the outliers. If the outliers can be dealt with properly, the
overall estimation will be improved. To this end, an iterative
feedback control procedure is established in the next subsec-
tion (see Figure 6), which can optimize the overall estimation
performance. In the literature, there have been a few control
mechanisms for various types of fuzzy systems [31–39]. On
the other hand, we also compare the performances of the
gradient descent algorithm and the Levenberg-Marquardt
algorithm, as shown in Table 9.

Table 8: The estimation performances.

Category MAE (hrs) MAPE RMSE (hrs)
1 18 1.6% 42
2 1 0.1% 3
3 6 0.4% 12
4 23 1.8% 53
Outliers 149 11.9% 152
Total 42 3.5% 85

Table 9: Comparing the performances of two training algorithms
(group 4, convergence criterion: SSE < 10−6).

Algorithm Number of epochs MAE MAPE RMSE
Gradient descent 10000 79 6.7% 98
Levenberg-Marquardt <100 23 1.8% 53

2.4. Iterative Optimization

2.4.1. The Effectiveness of the 𝑆 Test. Job classification in the
proposed methodology is based on the combination of FCM
(or PCA-FCM) and the 𝑆 test, according to which the best
number of categories is chosen. This classification method
takes into account only the similarity of the parameters of
jobs. Whether it has a decisive impact for the subsequent
cycle time estimation is not clear. For this reason, the cycle
time estimation performances with different numbers of
categories are compared to verify the results from the 𝑆 test.
The results are shown in Figure 7. 𝑌-axis is provided in a
logarithmic scale to make the relationship clearer. Clearly,
when the 𝑆 value becomes smaller, the estimation error (in
terms of MAPE) is also reduced. Therefore, choosing the
clustering results with the smallest 𝑆 value is helpful to the
estimation accuracy.

2.4.2.The Correctness of Job Classification. There are absolute
rules for the classification of jobs in a wafer fabrication
factory. It usually depends on the purpose of job classifica-
tion, apparently to enhance the estimation accuracy in the
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Figure 7: The relationship between the 𝑆 value and MAPE.

proposedmethodology.Therefore, a job is correctly classified
if its cycle time is accurately estimated after classification.
Otherwise, the job is misclassified.

Definition 1 (job misclassification). Assuming the cycle time
of job 𝑗 estimated by the BPN of category 𝑘 is indicated with
𝑜
𝑗
(𝑘).The category of job 𝑗 determined by classifier𝑓 is𝑓(𝑗).

Then, job 𝑗 is correctly classified if


𝑜
𝑗
(𝑓 (𝑗)) − 𝑁 (𝐶𝑇

𝑗
)


≤

𝑜
𝑗
(𝑘) − 𝑁 (𝐶𝑇

𝑗
)

, for any 𝑘 ̸=𝑓(𝑗) .

(25)

A strong requirement of inequality (25) is

𝑜
𝑗
(𝑓 (𝑗)) − 𝑁 (𝐶𝑇

𝑗
)

≤ min
𝑘 ̸=𝑓(𝑗)


𝑜
𝑗
(𝑘) − 𝑁 (𝐶𝑇

𝑗
)

, (26)

while a weak requirement of this inequality is

𝑜
𝑗
(𝑓 (𝑗)) − 𝑁 (𝐶𝑇

𝑗
)

≤ max
𝑘 ̸=𝑓(𝑗)


𝑜
𝑗
(𝑘) − 𝑁 (𝐶𝑇

𝑗
)

. (27)

Definition 2 (the correctness of classifying a job). The degree
that job 𝑗 is correctly classified by classifier 𝑓 is

𝜃 (𝑓, 𝑗)

=

{{{{{{{{

{{{{{{{{

{

1 if 𝑜𝑗 (𝑓 (𝑗)) − 𝑁 (𝐶𝑇𝑗)

≤ min
𝑘 ̸=𝑓(𝑗)


𝑜
𝑗
(𝑘) − 𝑁 (𝐶𝑇

𝑗
)


0 if 𝑜𝑗 (𝑓 (𝑗)) − 𝑁 (𝐶𝑇𝑗)

≥ max
𝑘 ̸=𝑓(𝑗)


𝑜
𝑗
(𝑘) − 𝑁 (𝐶𝑇

𝑗
)



𝑜
𝑗
(𝑓 (𝑗)) − 𝑁 (𝐶𝑇

𝑗
)

−max

𝑘 ̸=𝑓(𝑗)


𝑜
𝑗
(𝑘) − 𝑁 (𝐶𝑇

𝑗
)


min
𝑘 ̸=𝑓(𝑗)


𝑜
𝑗
(𝑘)−𝑁 (𝐶𝑇

𝑗
)

−max

𝑘 ̸=𝑓(𝑗)


𝑜
𝑗
(𝑘)−𝑁 (𝐶𝑇

𝑗
)


otherwise.
(28)

Definition 3 (the correctness/correct percentage of the clas-
sification results). The correctness/correct percentage of the
classification results by classifier 𝑓 is

𝜃 (𝑓) =

∑
𝑛

𝑗=1
𝜃 (𝑓, 𝑗)

𝑛
⋅ 100%. (29)

In the illustrative example, the correctness of job classification
is evaluated, and the results are summarized in Table 10. In
this example, the correctness of the classification results is
94%.

2.4.3. Feeding Back the Estimation Error and Reclassifi-
cation. Subsequently, the estimation error is fed back to
the FCM classifier to adjust the classification results. The
difference with Chen and Wang’s method [40] is that in
the proposed methodology the BPNs of all categories are
applied to estimate the cycle time of a job [41], and then
the estimation errors arising from these BPNs all become
additional inputs to the FCM, and jobs are reclassified. The
new classification results are shown and compared with that
before error feedback in Figure 8. After job reclassification,
some outliers are assigned to the existing categories, and the
overall estimation performance is improved in this way (see
Table 11). The correctness of job classification 𝜃(𝑓) is now
97%. Job reclassification continues until the improvement in
the overall estimation performance or in the correctness of
job classification becomes negligible.

3. Further Comparisons

To further evaluate the advantages and/or disadvantages
of the proposed methodology, eight existing approaches,
statistical analysis, CBR [20], BPN, SOM-WM [7], EFR [21],
SOM-FBPN [17], the postclassifying FBPN [25], and the
bidirectional classifying BPN approach [26] were all applied
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Table 10: The correctness of the classification results.

𝑗 𝜃(𝑓, 𝑗)

1 1.00
2 1.00
3 1.00
4 1.00
5 1.00
6 1.00
7 1.00
8 1.00
9 1.00
10 1.00
11 1.00
12 1.00
13 1.00
14 1.00
15 1.00
16 1.00
17 1.00
18 1.00
19 1.00
20 1.00
21 1.00
22 1.00
23 1.00
24 1.00
25 1.00
26 0.63
27 1.00
28 0.58
29 1.00
30 1.00
31 1.00
32 1.00
33 1.00
34 1.00
35 1.00
36 1.00
37 1.00
38 0.55
39 0.00
40 1.00

to the collected data. Three performance measures including
MAE, MAPE, and the minimal RMSE were evaluated.

The proposed methodology was implemented on a PC
with an Intel Dual CPUE2200 2.2 GHz and 2.0GRAM. FCM

Table 11: The estimation performances.

Category MAE (hrs) MAPE RMSE (hrs)
1 1 0.0% 1
2 1 0.1% 2
3 1 0.1% 2
4 2 0.2% 5
Outliers 56 4.5% 80
Total 15 1.2% 36

Table 12: Comparisons of the performances of various approaches.

MAE (hours) MAPE RMSE (hours)
Statistical analysis 73 6.1% 99
CBR 81 6.5% 104
BPN 33 2.8% 71
SOM-WM 30 2.5% 64
EFR 30 2.6% 65
SOM-FBPN 22 2.0% 38
Postclassifying FBPN 40 2.7% 88
Bidirectional classifying BPN 19 1.9% 37
The proposed methodology 15 1.2% 36

was implemented with the Fuzzy toolbox ofMATLAB 2006a.
In addition, BPN was implemented with the Neural Network
Toolbox under the following conditions.

(1) Number of epochs per replication: 10000.

(2) Number of initial conditions/replications: 10.

(3) Stop training ifMSE< 10−6 is satisfied or 10000 epochs
have been run.
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Figure 8: Comparison of the classification results.
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Among the steps, PCAandFCMcanbe done instantaneously.
The training of BPN usually takes less than 1 minute per
replication.

Theperformanceswith the nine approaches are compared
and summarized in Table 12.

In statistical analysis, a linear regression equation is used
to estimate the job cycle time. In the CBR approach, the
weights of factors (the cycle times of the previous cases)
are proportional to the similarities of the new job with the
previous cases. The optimal value of parameter 𝑘 in the CBR
approach was equal to the value that minimized the RMSE
[8]. In the BPN approach, there was one hidden layer with
4∼8 nodes, depending on the results of a preliminary analysis
for establishing the best configuration. 3/4 of the collected
data were used for training the BPN, while the remaining
data were used for testing. In SOM-FBPN and SOM-WM,
jobs were first classified with SOM. Subsequently, the exam-
ples of different categories were then learned with different
FBPNs but with the same topology (or WM). In EFR, jobs
are classified using fuzzy partition. In the post-classifying
FBPN approach, a job was not pre-classified but rather
post-classified after the estimation error has been generated.
For this purpose, a BPN was used as the postclassification
algorithm. In the bidirectional classifying approach, jobs are
not only preclassified but also postclassified. The results of
preclassification and postclassification are aggregated into a
suitability index for each job. Each job is then assigned to the
category to which its suitability index is the highest.

Statistical analysis was adopted as a comparison basis.
According to experimental results, the following points are
made.

(1) The combination of BPNandPCAcould reduce about
50% of space for storing the input variables in the
modeling of the wafer fabrication system.

(2) From the effectiveness viewpoint, the estimation
accuracy (measured with the MAPE) of the proposed
methodology was significantly better than those of
the other approaches. The average advantage over
statistical analysis is 80%.

(3) The standard deviation of the cycle time for this case
is 100 hours. Compared with this, the accuracy of the
proposed methodology is good.

(4) The estimation performance of the proposedmethod-
ology was also better than the existing classifying
methods, such as SOM-WM, SOM-FBN, EFR, SOM-
FBPN, the postclassifying FBPN, and the bidirec-
tional classifying BPN approach. The advantage of
the proposed methodology was reasonable due to the
replacement of the variables and the iterative process
of dealing with the outliers.

(5) In general, the performances with the preclassify-
ing approaches are better than that with the post-
classifying approach.

(6) The proposed methodology was also applied to
other cases. The results are summarized in Table 13.

Table 13: Performances in other cases.

RMSE Case I Case II Case III Case IV
Statistical analysis 77 83 104 78
CBR 74 78 96 72
BPN 53 68 84 63
SOM-WM 49 71 86 66
EFR 50 50 62 47
SOM-FBPN 38 53 66 50
Postclassifying FBPN 62 93 113 86
Bidirectional classifying BPN 24 31 38 28
The proposed methodology 23 23 28 22

Wilcoxon signed-rank test [42] was then used to
make sure whether or not the differences between the
performance of the proposedmethodology and those
of the eight existing approaches are significant.
𝐻
0
: When estimating the job cycle time the esti-
mating performance of the proposedmethodol-
ogy is the same as that of the existing approach
being compared.

𝐻
1
: When estimating the job cycle time, the esti-
mating performance of the proposedmethodol-
ogy is better than that of the existing approach
being compared.

The results are summarized in Table 14. The null hypothesis
𝐻
0
was rejected at 𝛼 = 0.05, showing that the proposed

methodology was superior to seven existing approaches in
estimating the job cycle time.

(7) To ascertain the effect of each treatment taken in the
proposed methodology, the performances of BPN,
FCM-BPN, PCA-BPN, and PCA-FCM-BPN (the pro-
posed methodology) are compared in Table 15. Obvi-
ously, job classification (FCM) did contribute to the
effectiveness of the proposed methodology, while the
effect of variable replacement (PCA) was not obvious.
The simultaneous application of the two treatments
further improved the estimation accuracy for the
testing data.

4. Conclusions and Directions for
Future Research

Estimating the cycle time of each job in a wafer fabrication
factory is a critical task to the wafer fabrication factory and
has been widely studied in recent years. In order to further
enhance the accuracy of the job cycle time estimation, PCA
is applied to the FCM-BPN approach in this study, which is
an innovative treatment in this field. Through replacing the
variables, job classification can bemore accurate. In addition,
the relationship between the factors and the cycle time can be
clearly specified.

On the other hand, since job classification is the core for
the proposedmethodology, a new index is used to validate the
classification of jobs. The empirical relationship between the
𝑆 value and the estimation performance is also found. Finally,
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Table 14: Results of the Wilcoxon sign-rank test.

𝐻
0

Statistical analysis 𝑍 = 1.83∗

CBR 1.83∗

BPN 1.83∗

SOM-WM 1.83∗

EFR 1.64
SOM-FBPN 1.83∗

Postclassifying FBPN 1.83∗

Bidirectional classifying BPN 1.83∗
∗P < 0.05.
∗∗P < 0.025.
∗∗∗P < 0.01.

Table 15: The effects of the treatments taken in the proposed
methodology.

RMSE (hrs) BPN FCM-BPN PCA-BPN PCA-FCM-BPN
Training data 73 58 71 36

an iterative process is established to deal with the outliers to
optimize the overall estimation performance.

An example is used to illustrate the proposed methodol-
ogy. According to the experimental results,

(1) the estimation accuracy (measured with MAE,
MAPE, and RMSE) using the proposed methodology
was significantly better than those with the existing
approaches;

(2) the advantage of PCA is for improving the correctness
of job classification. The simple combination of PCA
and BPN does not show much advantage;

(3) after combining with PCA, the estimation accuracy of
FCM-BPN was significantly improved;

(4) the overall estimation performance is often affected
by the outliers.The iterative procedure tries to remove
the outliers and gradually improves the overall esti-
mation performance.

Some other issues for this topic can be further investi-
gated. Most of the existing methods are based on the job
clustering.The aim of this study is to provide positive impacts
on certain measures for these methods. However, if there
are the other variable replacement techniques that can be as
effective is also worth exploring in future studies. In addition,
the iterative procedure used to optimize the results of job clas-
sification is quite time consuming especially for a large-scale
problem, and therefore a more efficient way should be found.
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The stability analysis and stabilization of Takagi-Sugeno (T-S) fuzzy delta operator systems with time-varying delay are investigated
via an input-output approach. A model transformation method is employed to approximate the time-varying delay. The original
system is transformed into a feedback interconnection form which has a forward subsystem with constant delays and a feedback
one with uncertainties. By applying the scaled small gain (SSG) theorem to deal with this new system, and based on a Lyapunov
Krasovskii functional (LKF) in delta operator domain, less conservative stability analysis and stabilization conditions are obtained.
Numerical examples are provided to illustrate the advantages of the proposed method.

1. Introduction

The T-S fuzzy modeling approach, as a simple and effective
tool for nonlinear control systems, has been widely accepted
and extensive studied for a few decades [1–8]. In addition, it is
well known that time delay is a source of instability or perfor-
mance degradation [9].Hence, analysis and synthesis of time-
delay systems and other relative studies have attracted much
attention during the past years [10–17]. Moreover, high-speed
digital processing methods are of increasing importance in
modern industrial applications. However, most traditional
signal processing and control algorithms are inherently ill-
conditioned when data are taken at high sampling rates [18].
The delta operator model can be applied as a useful approach
to deal with discrete-time systems under high sampling rates
through the analysis methods of continuous-time systems
[19–22]. In view of the above considerations, both T-S fuzzy
modeling approach and delta operator modeling approach
have been extended to tackle the analysis and synthesis of
nonlinear systems with time delay [23–25].

Recently, some works on analysis and design of T-S fuzzy
systems via delta operator approach were developed [26–28].
However, to the authors’ best knowledge, few results on the

stability analysis and stabilization for Takagi-Sugeno (T-S)
fuzzy delta operator systems with time-varying delay are
proposed.

In this paper, an indirect approach, namely, the input-
output (IO) approach is introduced to deal with the stability
analysis and control design of T-S fuzzy delta operator
systems with time-varying delay. The main contribution of
paper is that the stability analysis and stabilization problems
for fuzzy delta operator systems with time-varying delay are
investigated by the IO approach. A model approximation
method is employed to transform the original system into
an equivalent interconnected system, which is comprised of a
forward subsystem with constant time delays and a feedback
one with delayed uncertainties. The scaled small gain (SSG)
method is applied and an LKF in delta domain is constructed
to analyze and synthesize this system. Furthermore, a fre-
quency sweeping method [9] is suggested to guarantee the
internal stability for the forward subsystem, such that less
conservative results are ensured. Finally, some comparisons
are made with the existing results and control of a truck-
trailer model is also presented to illustrate the effectiveness
of our method.
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This paper is organized as follows. A model transforma-
tion method and the proof of the SSG theorem for T-S fuzzy
delta operator systems with time-varying delay are presented
in Section 2. In Section 3, the stability analysis and stabiliza-
tion results are provided. The simulation studies are given
in Section 4 to illustrate the effectiveness of the proposed
method. Finally, conclusions are drawn in Section 5.

Notations.The notations used throughout this paper are stan-
dard. R𝑛 and R𝑛×𝑚 represent the 𝑛-dimensional Euclidean
space and 𝑛 × 𝑚 real matrices, respectively.G

1
∘G
2
represents

the series connection of mapping G
1
and G

2
. The notation

𝑃 > 0 (≥0) means that the matrix 𝑃 is positive (semi)
definite, 𝐼

𝑛
denotes an identity matrix with dimension 𝑛, and

diag{⋅ ⋅ ⋅} denotes a block-diagonal matrix. The symbol “∗” in
a matrix stands for the transposed elements in the symmetric
positions.

2. Model Description
and Problem Formulation

In the following, we consider a fuzzy delta operator system
with time-varying delay, which can be described by the
following T-S fuzzy model.

Plant Rule 𝑖. IF 𝜃
1
(𝑡) is𝑀

𝑖1
and 𝜃
2
(𝑡) is𝑀

𝑖2
and . . . and 𝜃

𝑝
(𝑡)

is𝑀
𝑖𝑝
, THEN

𝜕𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑛𝑇) + 𝐵

𝑖
𝑢 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ
2
, 0] , 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝑥(𝑡) ∈ R𝑛𝑥 is the state variable; 𝑢(𝑡) ∈ R𝑚 is control
input; 𝑛 is a time-varying integer; 𝑇 is the sampling period;
the bounded time-varying delay 𝑛𝑇 satisfies 0 < ℎ

1
≤ 𝑛𝑇 ≤

ℎ
2
; 𝜙(𝑡) ∈ R𝑛𝑥 is the vector-valued initial condition; 𝑀

𝑖𝑗

is the fuzzy set; 𝑟 is the number of IF-THEN rules; 𝜃(𝑡) =

[𝜃
1
(𝑡), 𝜃
2
(𝑡), . . . , 𝜃

𝑝
(𝑡)] are the premise variables which do

not depend on the control input; 𝐴
𝑖
, 𝐴
𝑑𝑖
, and 𝐵

𝑖
are known

constant matrices with appropriate dimensions; 𝜕𝑥(𝑡) is the
delta operator of 𝑥(𝑡), which is defined by

𝜕𝑥 (𝑡) =

{{

{{

{

𝑑

𝑑𝑡
𝑥 (𝑡) , 𝑇 = 0,

𝑥 (𝑡 + 𝑇) − 𝑥 (𝑡)

𝑇
, 𝑇 ̸= 0.

(2)

The overall T-S fuzzy delta operator system with time-
varying delay is inferred as follows:

𝜕𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) [𝐴

𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑛𝑇) + 𝐵

𝑖
𝑢 (𝑡)] ,

(3)

where ∑𝑟
𝑖=1

𝜆
𝑖
(𝜃(𝑡)) = 1, 𝜆

𝑖
(𝜃(𝑡)) = 𝜔

𝑖
(𝜃(𝑡))/∑

𝑟

𝑖=1
𝜔
𝑖
(𝜃(𝑡)) ≥

0, and 𝜔
𝑖
(𝜃(𝑡)) = ∏

𝑟

𝑗=1
𝑀
𝑖𝑗
(𝜃
𝑗
(𝑡)) with 𝑀

𝑖𝑗
(𝜃
𝑗
(𝑡)) represent

the grade of membership of 𝜃
𝑗
(𝑡) in𝑀

𝑖𝑗
.

The following control law is employed to deal with
the problem of stabilization via state feedback, where the
controller rule shares the same fuzzy sets with the T-S model.

Controller Rule 𝑖. IF 𝜃
1
(𝑡) is𝑀

𝑖1
and 𝜃
2
(𝑡) is𝑀

𝑖2
and . . . and

𝜃
𝑝
(𝑡) is𝑀

𝑖𝑝
, THEN

𝑢 (𝑡) = 𝐾
1𝑖
𝑥 (𝑡) +

1

2
𝐾
2𝑖
𝑥 (𝑡 − ℎ

1
)

+
1

2
𝐾
3𝑖
𝑥 (𝑡 − ℎ

2
) , 𝑖 = 1, 2, . . . , 𝑟.

(4)

Theoverall T-S fuzzy state feedback control law is inferred
as

𝑢 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) [𝐾

1𝑖
𝑥 (𝑡) +

1

2
𝐾
2𝑖
𝑥 (𝑡 − ℎ

1
)

+
1

2
𝐾
3𝑖
𝑥 (𝑡 − ℎ

2
)] .

(5)

Remark 1. It is noted that the controller given in (5) covers
the special cases of the memoryless controller when 𝐾

2𝑖
=

𝐾
3𝑖

= 0 and the purely delayed controller when 𝐾
1𝑖

= 0,
respectively.

Combining system (3) with the control law (5), the
resulting closed-loop system can be expressed as follows:

𝜕𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡))

× [ (𝐴
𝑖
+ 𝐵
𝑖
𝐾
1𝑗
) 𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑛𝑇)

+
1

2
𝐵
𝑖
𝐾
2𝑗
𝑥 (𝑡 − ℎ

1
) +

1

2
𝐵
𝑖
𝐾
3𝑗
𝑥 (𝑡 − ℎ

2
)] .

(6)

Before ending this section, we introduce the following
lemmas as to be used to prove our main results in the
following sections.

Lemma 2 (see [9]). Consider an interconnected system with
two subsystems S̃

1
and S̃

2
:

S̃
1
: 𝑧 (𝑡) = G𝜔 (𝑡) ,

S̃
2
: 𝜔 (𝑡) = Δ𝑧 (𝑡) ,

(7)

where the forward subsystem S̃
1
is known, the feedback

subsystem S̃
2
is unknown and time-varying, and assume that

S̃
1
is internally stable. The closed-loop system formed by S̃

1

and S̃
2
is asymptotically stable for allΔ ∈ 𝐷 ≜ {Δ : ‖Δ‖

∞
≤ 1}
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if there exist matrices {𝑇
𝑤
, 𝑇
𝑧
} ∈ T satisfied:

T ≜ { {𝑇
𝑤
, 𝑇
𝑧
} ∈ R
𝑤×𝑤

×R
𝑧×𝑧

: 𝑇
𝑤
, 𝑇
𝑧
nonsigular;


𝑇
𝑤
∘ Δ ∘ 𝑇

−1

𝑧

∞
≤ 1} ,

(8)

such that the following SSG condition holds:

𝑇
𝑧
∘ G ∘ 𝑇

−1

𝑤

∞
≤ 1. (9)

Lemma 3 (see [29]). For any constant positive semidefinite
symmetric matrix 𝑊, two positive integers 𝑟 and 𝑟

0
satifying

𝑟 ≥ 𝑟
0
≥ 1, the following inequality holds:

[

𝑟

∑

𝑖=𝑟0

𝑥 (𝑖)]

𝑇

𝑊[

𝑟

∑

𝑖=𝑟0

𝑥 (𝑖)] ≤ (𝑟 − 𝑟
0
+ 1)

𝑟

∑

𝑖=𝑟0

𝑥
𝑇
(𝑖)𝑊𝑥 (𝑖) .

(10)

Lemma 4 (see [30]). The property of delta operator: for any
time function 𝑥(𝑡) and 𝑦(𝑡), it holds that

𝜕 (𝑥 (𝑡) 𝑦 (𝑡)) = 𝜕𝑥 (𝑡) 𝑦 (𝑡) + 𝑥 (𝑡) 𝜕𝑦 (𝑡) + 𝑇𝜕𝑥 (𝑡) 𝜕𝑦 (𝑡) ,

(11)

where 𝑇 is the sampling period.

3. Model Transformation

In this paper, the T-S fuzzy delta operator system with time-
varying delay is investigated by an IO approach. By this
method, the term 𝑥(𝑡 − 𝑛𝑇) is approximated and the error
is written into the feedback path. The recent work in [31]
proposed a two-term approximation method (1/2)[𝑥(𝑡 −

ℎ
1
) + 𝑥(𝑡 − ℎ

2
)] for 𝑥(𝑡 − 𝑛𝑇), which results in a smaller

approximation error bound. Inspired by this method, the
approximation error of time-varying delay can be expressed
as

𝜔
𝑡
(𝑡) = 𝑥 (𝑡 − 𝑛𝑇) −

1

2
[𝑥 (𝑡 − ℎ

1
) + 𝑥 (𝑡 − ℎ

2
)]

=
𝑇

2

−𝑛−1

∑

𝑖=−ℎ2/𝑇

𝜕𝑥 (𝑡 + 𝑖𝑇) −
𝑇

2

−(ℎ1/𝑇)−1

∑

𝑖=−𝑛

𝜕𝑥 (𝑡 + 𝑖𝑇)

=
𝑇

2

−(ℎ1/𝑇)−1

∑

𝑖=−ℎ2/𝑇

𝑘 (𝑖) 𝜕𝑥 (𝑡 + 𝑖𝑇) ,

(12)

where 𝜕𝑥(𝑡) is defined in (2), and

𝑘 (𝑖) = {
1, 𝑖 < −𝑛,

−1, 𝑖 ≥ −𝑛.
(13)

3.1. Open-Loop Case. Considering the fuzzy delta operator
system (3) and setting 𝑢(𝑡) = 0, we have

𝜕𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) [𝐴

𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑛𝑇)] . (14)

Employing the two-term approximation method to pull
out the uncertainties of time-varying delay, the open-loop
system can be written as an interconnected system with a
forward subsystem and a feedback one, which is described
by

S
1
: [

𝜕𝑥 (𝑡)

𝑧 (𝑡)
]

=

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡))

[
[

[

Θ
1

ℎ
12

2
𝐴
𝑑𝑖
𝑋
−1

𝑋Θ
1

𝑋
ℎ
12

2
𝐴
𝑑𝑖
𝑋
−1

]
]

]

× [

𝜁 (𝑡)

𝜔 (𝑡)
] ,

S
2
: 𝜔 (𝑡) = 𝑋Δ𝑋

−1
𝑧 (𝑡) ,

(15)

where Θ
1
= [𝐴
𝑖
(1/2)𝐴

𝑑𝑖
(1/2)𝐴

𝑑𝑖
], 𝜁(𝑡) = col{𝑥(𝑡) 𝑥(𝑡 −

ℎ
1
) 𝑥(𝑡−ℎ

2
)}, ℎ
12

= ℎ
2
−ℎ
1
,𝜔(𝑡) = (2/ℎ

12
)𝑋𝜔
𝑡
(𝑡), the scaling

matrix {𝑋,𝑋} ∈ T has the appropriate dimensions, and the
operator Δ is the maping 𝑧(𝑡) → 𝜔(𝑡).

For convenience, we denote 𝜔(𝑡) = 𝑋�̃�(𝑡) and 𝑧(𝑡) =

𝑋�̃�(𝑡). The system (15) can be rewritten as

S
3
: [

𝜕𝑥 (𝑡)

�̃� (𝑡)
]

=

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡))

[
[

[

Θ
1

ℎ
12

2
𝐴
𝑑𝑖

Θ
1

ℎ
12

2
𝐴
𝑑𝑖

]
]

]

[

𝜁 (𝑡)

�̃� (𝑡)
] ,

S
4
: �̃� (𝑡) = Δ�̃� (𝑡) .

(16)

Now, the uncertainties of the time-varying delay have
been pulled out from the system (14). Furthermore, the
system has been transformed into the interconnection by
the forward subsystem and the feedback subsystem. The
following result shows that this reformulated system satisfies
the following SSG condition.

Lemma 5. The operator Δ : 𝑧(𝑡) → 𝜔(𝑡) in system (15)
satisfies the SSG theorem if there exists the nosingular matrix
{𝑋,𝑋} ∈ T , such that


𝑋Δ𝑋
−1

≤ 1. (17)

Proof. Following the notations in (12), under the zero initial
condition, we have the following inequalities by using the
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discrete Jensen inequality in Lemma 3:

∞

∑

𝑡=0

𝜔
𝑇
(𝑡) 𝜔 (𝑡)

= (
𝑇

ℎ
12

)

2 ∞

∑

𝑡=0

[

[

−(ℎ1/𝑇)−1

∑

𝑖=−ℎ2/𝑇

𝑘 (𝑖) 𝜕𝑥 (𝑡 + 𝑖𝑇)]

]

𝑇

× 𝑋
𝑇
𝑋[

[

−(ℎ1/𝑇)−1

∑

𝑖=−ℎ2/𝑇

𝑘 (𝑖) 𝜕𝑥 (𝑡 + 𝑖𝑇)]

]

≤
𝑇

ℎ
12

−(ℎ1/𝑇)−1

∑

𝑖=−ℎ2/𝑇

∞

∑

𝑡=0

[𝜕𝑥
𝑇
(𝑡 + 𝑖𝑇)𝑋

𝑇
𝑋𝜕𝑥 (𝑡 + 𝑖𝑇)]

≤
𝑇

ℎ
12

−(ℎ1/𝑇)−1

∑

𝑖=−ℎ2/𝑇

∞

∑

𝑡=0

[𝜕𝑥
𝑇
(𝑡) 𝑋
𝑇
𝑋𝜕𝑥 (𝑡)]

=

∞

∑

𝑡=0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) ,

(18)

which implies that ‖𝑋Δ𝑋
−1
‖ ≤ 1. The proof is completed.

3.2. Closed-Loop Case. Employing the two-term approxima-
tion method to pull out the uncertainties of time-varying
delay, the closed-loop system (6) can also be written as
an interconnected system with a forward subsystem and a
feedback one, which is described by

S
5
: [

𝜕𝑥 (𝑡)

𝑧 (𝑡)
]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡))

[
[

[

Θ
2

ℎ
12

2
𝐴
𝑑𝑖
𝑋
−1

𝑋Θ
2

𝑋
ℎ
12

2
𝐴
𝑑𝑖
𝑋
−1

]
]

]

× [

𝜁 (𝑡)

�̃� (𝑡)
] ,

S
6
: 𝜔 (𝑡) = 𝑋Δ𝑋

−1
𝑧 (𝑡) ,

(19)

where Θ
2
= [(𝐴

𝑖
+ 𝐵
𝑖
𝐾
1𝑗
) (1/2)(𝐴

𝑑𝑖
+ 𝐵
𝑖
𝐾
2𝑗
) (1/2)(𝐴

𝑑𝑖
+

𝐵
𝑖
𝐾
3𝑗
)], and 𝜁(𝑡), 𝜔(𝑡), and 𝑧(𝑡) are defined as the same as the

open-loop case.

For convenience, we denote 𝜔(𝑡) = 𝑋�̃�(𝑡) and 𝑧(𝑡) =

𝑋�̃�(𝑡). The system (19) can be rewritten as

S
7
: [

𝜕𝑥 (𝑡)

�̃� (𝑡)
]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡))

[
[

[

Θ
2

ℎ
12

2
𝐴
𝑑𝑖

Θ
2

ℎ
12

2
𝐴
𝑑𝑖

]
]

]

[

𝜁 (𝑡)

�̃� (𝑡)
] ,

S
8
: �̃� (𝑡) = Δ�̃� (𝑡) .

(20)

Remark 6. The definitions of 𝜔(𝑡) and 𝑧(𝑡) for the closed-
loop system are the same as the open-loop system, so it is easy
to see that the closed-loop system (19) also satisfies the SSG
condition.

Now the reformulated systems have been shown to satisfy
the SSG condition in both the open-loop and closed-loop
cases. Then the systems in (15) and (19) are asymptotically
stable if both the forward subsystems are internally stable.
Indeed, a frequency sweeping method is often used to check
this condition [9].

Lemma 7 (see [9]). Consider the following system:

S̃
1
: 𝑧 (𝑡) = G𝜔 (𝑡) ,

S̃
2
: 𝜔 (𝑡) = Δ𝑧 (𝑡) .

(21)

The aforementioned system is internally asymptotically
stable if there exist a scalar 𝜀 > 0 and a Lyapunov Krasovskii
functional 𝑉(𝑡) satisfying

𝑉 (𝑡) > 𝜀‖𝑥 (𝑡)‖
2
, (22)

such that the functional

𝑤 (𝑡) = 𝑉 (𝑡) + 𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝜔

𝑇
(𝑡) 𝜔 (𝑡) (23)

statisfies

𝑤 (𝑡) ≤ −𝜀‖𝑥 (𝑡)‖
2
− 𝜀‖𝜔 (𝑡)‖

2
. (24)

4. Stability Analysis

The previous section presents a model transformation for the
original system (3).Theopen-loop systemhas been converted
into an interconnected system in (15), and the closed-loop
system has been converted into (19). In this section, we
investigate the asymptotic stability of the system in (15). First,
we present the following result for T-S fuzzy delta systemwith
time-varying delay.

Theorem 8. Consider T-S fuzzy delta operator system in (14).
Then given scalars ℎ

2
> ℎ
1
> 0 and the sampling period 𝑇 > 0,
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the fuzzy delta operator system (14) with time-varying delay is
asymptotically stable if there exist positive definite symmetric
matrices 𝑈, 𝑃, 𝑅

1
, 𝑅
2
, 𝑄
1
, 𝑄
2
, and 𝑍, such that the following

LMIs hold for 𝑖 = 1, 2, . . . , 𝑟:

Φ
𝑖

=

[
[
[
[
[
[
[
[
[
[
[

[

Φ𝑖 (1, 1) 𝑃𝐴𝑖

1

2
𝑃𝐴𝑑𝑖

1

2
𝑃𝐴𝑑𝑖

ℎ12

2
𝑃𝐴𝑑𝑖

∗ Φ𝑖 (2, 2)
1

2
𝑃𝐴𝑑𝑖 +

𝑅1

ℎ1

1

2
𝑃𝐴𝑑𝑖 +

𝑅2

ℎ2

ℎ12

2
𝑃𝐴𝑑𝑖

∗ ∗ −𝑄1 −
1

4
𝑍 −
𝑅1

ℎ1

−
1

4
𝑍 −

ℎ12

4
𝑍

∗ ∗ ∗ −𝑄2 −
1

4
𝑍 −
𝑅2

ℎ2

−
ℎ12

4
𝑍

∗ ∗ ∗ ∗ −
ℎ
2
12

4
𝑍 − 𝑈

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(25)

where

Φ
𝑖
(1, 1) = 𝑇𝑃 + ℎ

1
𝑅
1
+ ℎ
2
𝑅
2
− 2𝑃 + 𝑈,

Φ
𝑖
(2, 2) = 𝑃𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑃 + 𝑍 +

ℎ
12

𝑇
𝑍

+ 𝑄
1
+ 𝑄
2
−
𝑅
1

ℎ
1

−
𝑅
2

ℎ
2

.

(26)

Proof. Firstly, choosing a Lyapunov-Krasovskii functional
candidate in delta domain,

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (27)

where

𝑉
1
(𝑡) = 𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡) = 𝑇

ℎ2/𝑇

∑

𝑖=ℎ1/𝑇

𝑖

∑

𝑗=1

𝑥
𝑇
(𝑡 − 𝑗𝑇)𝑍𝑥 (𝑡 − 𝑗𝑇) ,

𝑉
3
(𝑡) = 𝑇

ℎ1/𝑇

∑

𝑖=1

𝑥
𝑇
(𝑡 − 𝑖𝑇)𝑄

1
𝑥 (𝑡 − 𝑖𝑇)

+ 𝑇

ℎ2/𝑇

∑

𝑖=1

𝑥
𝑇
(𝑡 − 𝑖𝑇)𝑄

2
𝑥 (𝑡 − 𝑖𝑇) ,

𝑉
4
(𝑡) =

ℎ1/𝑇

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡 − 𝑗𝑇) 𝑅

1
𝑒 (𝑡 − 𝑗𝑇)

+

ℎ2/𝑇

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡 − 𝑗𝑇) 𝑅

2
𝑒 (𝑡 − 𝑗𝑇) ,

(28)

and 𝑇 is the sampling period, 𝑒(𝑗) = 𝑥(𝑗) − 𝑥(𝑗 + 𝑇), so that
𝜕𝑥(𝑗) = −𝑒(𝑗)/𝑇 and 𝑒(𝑡 − 𝑗𝑇) = 𝑥(𝑡 − 𝑗𝑇) − 𝑥(𝑡 − (𝑗 − 1)𝑇).

Taking the delta operatormanipulations of𝑉
1
(𝑡) along the

trajectory of systems S
1
and S

2
, and using Lemma 4, it can

be obtained that

𝜕𝑉
1
(𝑡) = 𝜕

𝑇
(𝑥 (𝑡)) 𝑃𝑥 (𝑡) + 𝑥

𝑇
(𝑡) 𝑃𝜕 (𝑥 (𝑡))

+ 𝑇 ⋅ 𝜕
𝑇
(𝑥 (𝑡)) 𝑃𝜕 (𝑥 (𝑡))

=

[
[
[
[
[
[
[

[

𝜕𝑥 (𝑡)

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − ℎ
2
)

�̃� (𝑡)

]
]
]
]
]
]
]

]

𝑇

×

[
[
[
[
[
[
[
[

[

𝑇𝑃 0 0 0 0

∗ 𝑃𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃

1

2
𝑃𝐴
𝑑𝑖

1

2
𝑃𝐴
𝑑𝑖

ℎ
12

2
𝑃𝐴
𝑑𝑖

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[

[

𝜕𝑥 (𝑡)

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − ℎ
2
)

�̃� (𝑡)

]
]
]
]
]
]
]

]

.

(29)

Taking the delta operator manipulation of 𝑉
2
(𝑡), we have

𝜕𝑉
2
(𝑡) = 𝑇 ⋅

1

𝑇

ℎ2/𝑇

∑

𝑖=ℎ1/𝑇

𝑖

∑

𝑗=1

𝑥
𝑇
(𝑡 − (𝑗 − 1) 𝑇)

× 𝑍𝑥 (𝑡 − (𝑗 − 1) 𝑇)

− 𝑇 ⋅
1

𝑇

ℎ2/𝑇

∑

𝑖=ℎ1/𝑇

𝑖

∑

𝑗=1

𝑥
𝑇
(𝑡 − 𝑖𝑇)𝑍𝑥 (𝑡 − 𝑖𝑇)

=

ℎ2/𝑇

∑

𝑖=ℎ1/𝑇

𝑥
𝑇
(𝑡) 𝑍𝑥 (𝑡)

−

ℎ2/𝑇

∑

𝑖=ℎ1/𝑇

𝑥
𝑇
(𝑡 − 𝑖𝑇)𝑍𝑥 (𝑡 − 𝑖𝑇)

≤ (
ℎ
12

𝑇
+ 1)𝑥

𝑇
(𝑡) 𝑍𝑥 (𝑡)

− 𝑥
𝑇
(𝑡 − 𝑛𝑇)𝑍𝑥 (𝑡 − 𝑛𝑇) .

(30)
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Substituting (12) into (30), we have

𝜕𝑉
2
(𝑡) =

[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − ℎ
2
)

�̃� (𝑡)

]
]
]

]

𝑇

×

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑍 +
ℎ
12

𝑇
𝑍 0 0 0

∗ −
1

4
𝑍 −

1

4
𝑍 −

ℎ
12

4
𝑍

∗ ∗ −
1

4
𝑍 −

ℎ
12

4
𝑍

∗ ∗ ∗ −
ℎ
2

12

4
𝑍

]
]
]
]
]
]
]
]
]
]
]
]

]

×
[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
1
)

𝑥 (𝑡 − ℎ
2
)

�̃� (𝑡)

]
]
]

]

.

(31)

Taking the delta operator manipulation of 𝑉
3
(𝑡), we have

𝜕𝑉
3
(𝑡) =

1

𝑇
⋅ 𝑇[

ℎ1/𝑇

∑

𝑖=1

𝑥
𝑇
(𝑡 − (𝑖 − 1) 𝑇)

× 𝑄
1
𝑥 (𝑡 − (𝑖 − 1) 𝑇)

+

ℎ2/𝑇

∑

𝑖=1

𝑥
𝑇
(𝑡 − (𝑖 − 1) 𝑇)

× 𝑄
2
𝑥 (𝑡 − (𝑖 − 1) 𝑇)

−

ℎ1/𝑇

∑

𝑖=1

𝑥
𝑇
(𝑡 − 𝑖𝑇)𝑄

1
𝑥 (𝑡 − 𝑖𝑇)

−

ℎ2/𝑇

∑

𝑖=1

𝑥
𝑇
(𝑡 − 𝑖𝑇)𝑄

2
𝑥 (𝑡 − 𝑖𝑇)]

= 𝑥
𝑇
(𝑡) (𝑄

1
+ 𝑄
2
) 𝑥 (𝑡)

− 𝑥
𝑇
(𝑡 − ℎ

1
) 𝑄
1
𝑥 (𝑡 − ℎ

1
)

− 𝑥
𝑇
(𝑡 − ℎ

2
) 𝑄
2
𝑥 (𝑡 − ℎ

2
) .

(32)

Taking the delta operatormanipulation of𝑉
4
(𝑡) and using

Lemma 3, we have

𝜕𝑉
4
(𝑡) =

1

𝑇

[

[

ℎ1/𝑇

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡 − (𝑗 − 1) 𝑇)

× 𝑅
1
𝑒 (𝑡 − (𝑗 − 1) 𝑇)

+

ℎ2/𝑇

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡 − (𝑗 − 1) 𝑇)

× 𝑅
2
𝑒 (𝑡 − (𝑗 − 1) 𝑇)

−

ℎ1/𝑇

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡 − 𝑗𝑇) 𝑅

1
𝑒 (𝑡 − 𝑗𝑇)

−

ℎ2/𝑇

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡 − 𝑗𝑇) 𝑅

2
𝑒 (𝑡 − 𝑗𝑇)]

]

≤
ℎ
1

𝑇2
𝑒
𝑇
(𝑡) 𝑅
1
𝑒 (𝑡)

−
1

ℎ
1

(

ℎ1/𝑇

∑

𝑖=1

𝑒 (𝑡 − 𝑖𝑇))

𝑇

𝑅
1
(

ℎ1/𝑇

∑

𝑖=1

𝑒 (𝑡 − 𝑖𝑇))

+
ℎ
2

𝑇2
𝑒
𝑇
(𝑡) 𝑅
2
𝑒 (𝑡)

−
1

ℎ
2

(

ℎ2/𝑇

∑

𝑖=1

𝑒 (𝑡 − 𝑖𝑇))

𝑇

𝑅
2
(

ℎ2/𝑇

∑

𝑖=1

𝑒 (𝑡 − 𝑖𝑇))

= ℎ
1
𝜕𝑥
𝑇
(𝑡) 𝑅
1
𝜕𝑥 (𝑡) −

1

ℎ
1

(𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡))

𝑇

× 𝑅
1
(𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡)) + ℎ

2
𝜕𝑥
𝑇
(𝑡) 𝑅
2
𝜕𝑥 (𝑡)

−
1

ℎ
2

(𝑥 (𝑡 − ℎ
2
) − 𝑥 (𝑡))

𝑇

𝑅
2
(𝑥 (𝑡 − ℎ

2
) − 𝑥 (𝑡)) .

(33)

For the positive definite symmetric matrix 𝑃, we have the
following equation from (16):

0 = −

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) 2𝜕

𝑇
(𝑥 (𝑡)) 𝑃

× [𝜕𝑥 (𝑡) − 𝐴
𝑖
𝑥 (𝑡) −

1

2
𝐴
𝑑𝑖
(𝑥 (𝑡 − ℎ

1
) + 𝑥 (𝑡 − ℎ

2
))

−
ℎ
12

2
𝐴
𝑑𝑖
�̃� (𝑡)] .

(34)

Substituting (34) into 𝜕𝑉(𝑡), we have

𝜕𝑉 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜉

𝑇
Σ
1𝑖
𝜉, (35)



Mathematical Problems in Engineering 7

where

Σ
1𝑖

=

[
[
[
[
[
[
[
[
[
[
[

[

Σ1𝑖 (1, 1) 𝑃𝐴𝑖

1

2
𝑃𝐴𝑑𝑖

1

2
𝑃𝐴𝑑𝑖

ℎ12

2
𝑃𝐴𝑑𝑖

∗ Σ1𝑖 (2, 2)
1

2
𝑃𝐴𝑑𝑖 +

𝑅1

ℎ1

1

2
𝑃𝐴𝑑𝑖 +

𝑅2

ℎ2

ℎ12

2
𝑃𝐴𝑑𝑖

∗ ∗ −𝑄1 −
1

4
𝑍 −
𝑅1

ℎ1

−
1

4
𝑍 −

ℎ12

4
𝑍

∗ ∗ ∗ −𝑄2 −
1

4
𝑍 −
𝑅2

ℎ2

−
ℎ12

4
𝑍

∗ ∗ ∗ ∗ −
ℎ
2
12

4
𝑍

]
]
]
]
]
]
]
]
]
]
]

]

,

Σ
1𝑖
(1, 1) = 𝑇𝑃 + ℎ

1
𝑅
1
+ ℎ
2
𝑅
2
− 2𝑃,

Σ
1𝑖
(2, 2) = 𝑃𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑃 + 𝑍 +

ℎ
12

𝑇
𝑍 + 𝑄

1
+ 𝑄
2
−
𝑅
1

ℎ
1

−
𝑅
2

ℎ
2

,

𝜉
𝑇
= [𝜕
𝑇
(𝑥 (𝑡)) 𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡 − ℎ

1
) 𝑥
𝑇
(𝑡 − ℎ

2
) �̃�
𝑇
(𝑡)] .

(36)

Therefore if 𝜕𝑉(𝑡) < 0, there always exists a sufficiently
small scalar 𝜀, for 𝑥(𝑡) ̸= 0, such that 𝜕𝑉(𝑡) ≤ −𝜀‖𝑥(𝑡)‖

2, which
indicates that the systems S

1
and S

2
under 𝜔(𝑡) = 0 are

asymptotically stable.
Next, to consider the condition 𝜔(𝑡) ̸= 0, we denote 𝑈 =

𝑋
𝑇
𝑋 > 0 and it can be expanded in Lemma 7 as

W ≜ 𝜕𝑉 (𝑡) + 𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝜔

𝑇
(𝑡) 𝜔 (𝑡)

=

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜉

𝑇
Σ
1𝑖
𝜉 + �̃�
𝑇
(𝑡) 𝑋
𝑇
𝑋�̃� (𝑡)

− �̃�
𝑇
(𝑡) 𝑋
𝑇
𝑋�̃� (𝑡)

=

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜉

𝑇
Σ
2𝑖
𝜉,

(37)

where Σ
2𝑖
= Φ
𝑖
. The proof is completed.

To compare the results obtained by IO approach, we give
the following corollary, which is obtained by a direct LKF-
based method.

Corollary 9. Consider T-S fuzzy delta operator system in (14).
Then given scalars ℎ

2
> ℎ
1
> 0 and the sampling period 𝑇 > 0,

the fuzzy delta operator system (14) with time-varying delay is
asymptotically stable if there exist positive definite symmetric
matrices 𝑃, 𝑅

1
, 𝑅
2
, 𝑄
1
, 𝑄
2
, and 𝑍, matrices 𝑁 = [

𝑁1

𝑁2
], 𝑀 =

[
𝑀1

𝑀2
], 𝑆 = [

𝑆1

𝑆2
], 𝑋 = [

�̃�11 �̃�12

�̃�
𝑇
12 �̃�22

], and 𝑌 = [
𝑌11 𝑌12

𝑌
𝑇
12 𝑌22

], such that the
following LMIs (38)-(39) hold:

Ψ
1
=
[
[
[

[

−𝑋
11

−𝑋
12

𝑁
1

∗ −𝑋
22

𝑁
2

∗ ∗ −
𝑅
2

𝑇

]
]
]

]

< 0,

Ψ
2
=
[
[
[

[

−𝑋
11

−𝑋
12

𝑀
1

∗ −𝑋
22

𝑀
2

∗ ∗ −
𝑅
2

𝑇

]
]
]

]

< 0,

Ψ
3
=
[
[

[

−𝑌
11

−𝑌
12

𝑆
1

∗ −𝑌
22

𝑆
2

∗ ∗ −
𝑅
1

𝑇

]
]

]

< 0,

(38)

Ψ
4𝑖
=

[
[
[
[
[

[

Ψ
4𝑖
(1, 1) 𝑃𝐴

𝑖
𝑃𝐴
𝑑𝑖

0 0

∗ Ψ
4𝑖
(2, 2) Ψ

4𝑖
(2, 3) −𝑆

1
−𝑀
1

∗ ∗ Ψ
4𝑖
(3, 3) −𝑆

2
−𝑀
2

∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ −𝑄
2

]
]
]
]
]

]

< 0, 𝑖 = 1, 2, . . . , 𝑟,

(39)

where

Ψ
4𝑖
(1, 1) = 𝑇𝑃 + ℎ

1
𝑅
1
+ ℎ
2
𝑅
2
− 2𝑃,

Ψ
4𝑖
(2, 2) = 𝑃𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑃 + 𝑍 +

ℎ
12

𝑇
𝑍 + 𝑄

1
+ 𝑄
2

+ 𝑁
1
+ 𝑁
𝑇

1
+ 𝑆
1
+ 𝑆
𝑇

1
+
ℎ
2

𝑇
𝑋
11
+
ℎ
1

𝑇
𝑌
11
,

Ψ
4𝑖
(2, 3) = 𝑃𝐴

𝑑𝑖
− 𝑁
1
+ 𝑁
𝑇

2
+𝑀
1
+ 𝑆
𝑇

2

+
ℎ
2

𝑇
𝑋
12
+
ℎ
1

𝑇
𝑌
12
,

Ψ
4𝑖
(3, 3) = − 𝑍 − 𝑁

2
− 𝑁
𝑇

2
+𝑀
2
+𝑀
𝑇

2

+
ℎ
2

𝑇
𝑋
22
+
ℎ
1

𝑇
𝑌
22
.

(40)

Proof. To make a fair comparison, we choose the same LKF
candidate as in the proof of Theorem 8.

Taking the delta operator manipulations of 𝑉
1
(𝑡), 𝑉
2
(𝑡),

𝑉
3
(𝑡), and 𝑉

4
(𝑡) along the trajectory of system (14), we have

𝜕𝑉
1
(𝑡) = 𝜕

𝑇
(𝑥 (𝑡)) 𝑃𝑥 (𝑡) + 𝑥

𝑇
(𝑡) 𝑃𝜕 (𝑥 (𝑡))

+ 𝑇 ⋅ 𝜕
𝑇
(𝑥 (𝑡)) 𝑃𝜕 (𝑥 (𝑡))

= [

[

𝜕𝑥 (𝑡)

𝑥 (𝑡)

𝑥 (𝑡 − 𝑛𝑇)

]

]

𝑇

[

[

𝑇𝑃 0 0

∗ 𝑃𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃 𝑃𝐴

𝑑𝑖

∗ ∗ 0

]

]

× [

[

𝜕𝑥 (𝑡)

𝑥 (𝑡)

𝑥 (𝑡 − 𝑛𝑇)

]

]

,
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𝜕𝑉
2
(𝑡) ≤ (

ℎ
12

𝑇
+ 1)𝑥

𝑇
(𝑡) 𝑍𝑥 (𝑡)

− 𝑥
𝑇
(𝑡 − 𝑛𝑇)𝑍𝑥 (𝑡 − 𝑛𝑇) ,

𝜕𝑉
3
(𝑡) = 𝑥

𝑇
(𝑡) (𝑄

1
+ 𝑄
2
) 𝑥 (𝑡)

− 𝑥
𝑇
(𝑡 − ℎ

1
) 𝑄
1
𝑥 (𝑡 − ℎ

1
)

− 𝑥
𝑇
(𝑡 − ℎ

2
) 𝑄
2
𝑥 (𝑡 − ℎ

2
) ,

𝜕𝑉
4
(𝑡) = ℎ

1
𝜕
𝑇
(𝑥 (𝑡)) 𝑅

1
𝜕 (𝑥 (𝑡))

−
1

𝑇

ℎ1/𝑇

∑

𝑖=1

𝑒
𝑇
(𝑡 − 𝑖𝑇) 𝑅

1
𝑒 (𝑡 − 𝑖𝑇)

+ ℎ
2
𝜕
𝑇
(𝑥 (𝑡)) 𝑅

2
𝜕 (𝑥 (𝑡))

−
1

𝑇

ℎ2/𝑇

∑

𝑖=1

𝑒
𝑇
(𝑡 − 𝑖𝑇) 𝑅

2
𝑒 (𝑡 − 𝑖𝑇) ,

(41)

where 𝑒(𝑡 − 𝑖𝑇) is defined in (27).
For a positive definite symmetric matrix 𝑃, we have the

following equation from (14):

0 = −

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) 2𝜕

𝑇
(𝑥 (𝑡)) 𝑃

× [𝜕𝑥 (𝑡) − 𝐴
𝑖
𝑥 (𝑡) − 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑛𝑇)] .

(42)

From the definition of 𝑒(𝑡 − 𝑖𝑇), the following equations
hold for any matrices 𝑁, 𝑀, and 𝑆 with appropriate dimen-
sions:

0 = 2Υ
𝑇
(𝑡)𝑁[𝑥 (𝑡) − 𝑥 (𝑡 − 𝑛𝑇) +

𝑛

∑

𝑖=1

𝑒
𝑇
(𝑡 − 𝑖𝑇)] ,

0 = 2Υ
𝑇
(𝑡)𝑀[𝑥 (𝑡 − 𝑛𝑇) − 𝑥 (𝑡 − ℎ

2
)

+

ℎ2/𝑇

∑

𝑖=𝑛+1

𝑒
𝑇
(𝑡 − 𝑖𝑇)] ,

0 = 2Υ
𝑇
(𝑡) 𝑆 [𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

1
) +

ℎ1/𝑇

∑

𝑖=1

𝑒
𝑇
(𝑡 − 𝑖𝑇)] ,

(43)

where Υ𝑇(𝑡) = [𝑥
𝑇
(𝑡)𝑥
𝑇
(𝑡 − 𝑛𝑇)].

For any appropriate dimensions matrices 𝑋 = 𝑋
𝑇 and

𝑌 = 𝑌
𝑇, we have

0 =

ℎ2/𝑇

∑

𝑖=1

Υ
𝑇
(𝑡) 𝑋Υ (𝑡) −

ℎ2/𝑇

∑

𝑖=1

Υ
𝑇
(𝑡) 𝑋Υ (𝑡)

=
ℎ
2

𝑇
Υ
𝑇
(𝑡) 𝑋Υ (𝑡) −

𝑛

∑

𝑖=1

Υ
𝑇
(𝑡) 𝑋Υ (𝑡)

−

ℎ2/𝑇

∑

𝑖=𝑛+1

Υ
𝑇
(𝑡) 𝑋Υ (𝑡) ,

0 =

ℎ1/𝑇

∑

𝑖=1

Υ
𝑇
(𝑡) 𝑌Υ (𝑡) −

ℎ1/𝑇

∑

𝑖=1

Υ
𝑇
(𝑡) 𝑌Υ (𝑡)

=
ℎ
1

𝑇
Υ
𝑇
(𝑡) 𝑌Υ (𝑡) −

ℎ1/𝑇

∑

𝑖=1

Υ
𝑇
(𝑡) 𝑌Υ (𝑡) .

(44)

Substituting (42)–(44) into 𝜕𝑉(𝑡), we have

𝜕𝑉 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝑡) 𝜉
𝑇

1
Σ
3𝑖
𝜉
1
+

𝑛

∑

𝑖=1

Υ
𝑇

1
(𝑡) Σ
4
Υ
1
(𝑡)

+

ℎ1/𝑇

∑

𝑖=1

Υ
𝑇

1
(𝑡) Σ
5
Υ
1
(𝑡) +

ℎ2/𝑇

∑

𝑖=𝑛+1

Υ
𝑇

1
(𝑡) Σ
6
Υ
1
(𝑡) ,

(45)

where 𝜉𝑇
1
= [𝜕𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡) 𝑥
𝑇
(𝑡−𝑛𝑇) 𝑥

𝑇
(𝑡−ℎ
1
) 𝑥
𝑇
(𝑡−ℎ
2
)],

Υ
𝑇

1
(𝑡) = [𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡 − 𝑛𝑇) 𝑒

𝑇
(𝑡 − 𝑖𝑇)], Σ

3𝑖
= Ψ
4𝑖
, Σ
4
= Ψ
1
,

Σ
5
= Ψ
3
, and Σ

6
= Ψ
2
. Since Σ

3𝑖
< 0, Σ

4
< 0, Σ

5
< 0, and

Σ
6
< 0 hold, then 𝜕𝑉(𝑡) < 0. The proof is completed.

5. Stabilization

The previous section presents the criterion for asymptotic
stability of fuzzy delta operator open-loop system. In this
section, we are interested in designing a controller in (5).
By employing the same LKF and applying IO method, the
following criteria can be obtained.

Theorem 10. Consider T-S fuzzy delta operator system (3)
with the controller in (5). Then given scalars ℎ

2
> ℎ
1
> 0 and

the sampling period𝑇 > 0, the fuzzy delta operator systemwith
time-varying delay is asymptotically stable if there exist positive
definite symmetric matrices 𝐺, 𝑈, 𝑅

1
, 𝑅
2
, 𝑄
1
, 𝑄
2
, and 𝑍 and

matrices �̃�
1𝑖
, �̃�
2𝑖
, and �̃�

3𝑖
, such that the following LMIs hold:

Φ
𝑖𝑖
< 0, (1 ≤ 𝑖 ≤ 𝑟) ,

Φ
𝑖𝑗
+ Φ
𝑗𝑖
< 0, (1 ≤ 𝑖 < 𝑗 ≤ 𝑟) ,

(46)
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where

Φ
𝑖𝑗

=

[
[
[
[
[
[
[
[
[
[
[
[

[

Φ𝑖𝑗 (1, 1) Φ𝑖𝑗 (1, 2) Φ𝑖𝑗 (1, 3) Φ𝑖𝑗 (1, 4)
ℎ12

2
𝐴𝑑𝑖𝐺

∗ Φ𝑖𝑗 (2, 2) Φ𝑖𝑗 (2, 3) Φ𝑖𝑗 (2, 4)
ℎ12

2
𝐴𝑑𝑖𝐺

∗ ∗ Φ𝑖𝑗 (3, 3) −
1

4
𝑍 −

ℎ12

4
𝑍

∗ ∗ ∗ Φ𝑖𝑗 (4, 4) −
ℎ12

4
𝑍

∗ ∗ ∗ ∗ −
ℎ
2

12

4
𝑍 − 𝑈

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
𝑖𝑗
(1, 1) = 𝑇𝐺 + ℎ

1
𝑅
1
+ ℎ
2
𝑅
2
− 2𝐺 + 𝑈,

Φ
𝑖𝑗
(1, 2) = 𝐴

𝑖
𝐺 + 𝐵

𝑖
�̃�
1𝑗
,

Φ
𝑖𝑗
(1, 3) =

1

2
(𝐴
𝑑𝑖
𝐺 + 𝐵

𝑖
�̃�
2𝑗
) ,

Φ
𝑖𝑗
(1, 4) =

1

2
(𝐴
𝑑𝑖
𝐺 + 𝐵

𝑖
�̃�
3𝑗
) ,

Φ
𝑖𝑗
(2, 2) = 𝐴

𝑖
𝐺 + 𝐵

𝑖
�̃�
1𝑗
+ 𝐺𝐴
𝑇

𝑖
+ �̃�
𝑇

1𝑗
𝐵
𝑇

𝑖

+ 𝑍 +
ℎ
12

𝑇
𝑍 + 𝑄

1
+ 𝑄
2
−
𝑅
1

ℎ
1

−
𝑅
2

ℎ
2

,

Φ
𝑖𝑗
(2, 3) =

1

2
(𝐴
𝑑𝑖
𝐺 + 𝐵

𝑖
�̃�
2𝑗
) +

𝑅
1

ℎ
1

,

Φ
𝑖𝑗
(2, 4) =

1

2
(𝐴
𝑑𝑖
𝐺 + 𝐵

𝑖
�̃�
3𝑗
) +

𝑅
2

ℎ
2

,

Φ
𝑖𝑗
(3, 3) = −𝑄

1
−
1

4
𝑍 −

𝑅
1

ℎ
1

,

Φ
𝑖𝑗
(4, 4) = −𝑄

2
−
1

4
𝑍 −

𝑅
2

ℎ
2

.

(47)

Moreover, a suitable stabilizing fuzzy state feedback con-
troller can be chosen by

𝑢 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) [𝐾

1𝑖
𝑥 (𝑡) +

1

2
𝐾
2𝑖
𝑥 (𝑡 − ℎ

1
)

+
1

2
𝐾
3𝑖
𝑥 (𝑡 − ℎ

2
)] , 𝑖 = 1, 2, . . . , 𝑟,

(48)

where𝐾
1𝑖
= �̃�
1𝑖
𝐺
−1, 𝐾
2𝑖
= �̃�
2𝑖
𝐺
−1, 𝐾
3𝑖
= �̃�
3𝑖
𝐺
−1.

Proof. Choosing the same LKF candidate as in the proof of
Theorem 8, we have

𝜕𝑉(𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡)) 𝜉

𝑇
Σ
1𝑖𝑗
𝜉, (49)

where

Σ
1𝑖𝑗

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
1𝑖𝑗
(1, 1) Σ

1𝑖𝑗
(1, 2) Σ

1𝑖𝑗
(1, 3) Σ

1𝑖𝑗
(1, 4)

ℎ
12

2
𝑃𝐴
𝑑𝑖

∗ Σ
1𝑖𝑗
(2, 2) Σ

1𝑖𝑗
(2, 3) Σ

1𝑖𝑗
(2, 4)

ℎ
12

2
𝑃𝐴
𝑑𝑖

∗ ∗ Σ
1𝑖𝑗
(3, 3) −

1

4
𝑍 −

ℎ
12

4
𝑍

∗ ∗ ∗ Σ
1𝑖𝑗
(4, 4) −

ℎ
12

4
𝑍

∗ ∗ ∗ ∗ −
ℎ
2

12

4
𝑍

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Σ
1𝑖𝑗

(1, 1) = 𝑇𝑃 + ℎ
1
𝑅
1
+ ℎ
2
𝑅
2
− 2𝑃,

Σ
1𝑖𝑗

(1, 2) = 𝑃 (𝐴
𝑖
+ 𝐵
𝑖
𝐾
1𝑗
) ,

Σ
1𝑖𝑗

(1, 3) =
1

2
𝑃 (𝐴
𝑑𝑖
+ 𝐵
𝑖
𝐾
2𝑗
) ,

Σ
1𝑖𝑗

(1, 4) =
1

2
𝑃 (𝐴
𝑑𝑖
+ 𝐵
𝑖
𝐾
3𝑗
) ,

Σ
1𝑖𝑗

(2, 2) = 𝑃 (𝐴
𝑖
+ 𝐵
𝑖
𝐾
1𝑗
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
1𝑗
)
𝑇

𝑃

+ 𝑍 +
ℎ
12

𝑇
𝑍 + 𝑄

1
+ 𝑄
2
−
𝑅
1

ℎ
1

−
𝑅
2

ℎ
2

,

Σ
1𝑖𝑗

(2, 3) =
1

2
𝑃 (𝐴
𝑑𝑖
+ 𝐵
𝑖
𝐾
2𝑗
) +

𝑅
1

ℎ
1

,

Σ
1𝑖𝑗

(2, 4) =
1

2
𝑃 (𝐴
𝑑𝑖
+ 𝐵
𝑖
𝐾
3𝑗
) +

𝑅
2

ℎ
2

,

Σ
1𝑖𝑗

(3, 3) = −𝑄
1
−
1

4
𝑍 −

𝑅
1

ℎ
1

,

Σ
1𝑖𝑗

(4, 4) = −𝑄
2
−
1

4
𝑍 −

𝑅
2

ℎ
2

,

(50)

and 𝜉 is defined in (35).
Next, by applying Lemma 7, we have

W ≜ 𝜕𝑉 (𝑡) + 𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝜔

𝑇
(𝑡) 𝜔 (𝑡)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡)) 𝜉

𝑇
Σ
1𝑖𝑗
𝜉

+ �̃�
𝑇
(𝑡) 𝑋
𝑇
𝑋�̃� (𝑡) − �̃�

𝑇
(𝑡) 𝑋
𝑇
𝑋�̃� (𝑡)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡)) 𝜉

𝑇
Σ
2𝑖𝑗
𝜉,

(51)
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where

Σ
2𝑖𝑗

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ1𝑖𝑗 (1, 1) + 𝑈 Σ1𝑖𝑗 (1, 2) Σ1𝑖𝑗 (1, 3) Σ1𝑖𝑗 (1, 4)
ℎ12

2
𝑃𝐴𝑑𝑖

∗ Σ1𝑖𝑗 (2, 2) Σ1𝑖𝑗 (2, 3) Σ1𝑖𝑗 (2, 4)
ℎ12

2
𝑃𝐴𝑑𝑖

∗ ∗ Σ1𝑖𝑗 (3, 3) −
1

4
𝑍 −

ℎ12

4
𝑍

∗ ∗ ∗ Σ1𝑖𝑗 (4, 4) −
ℎ12

4
𝑍

∗ ∗ ∗ ∗ −
ℎ
2

12

4
𝑍 − 𝑈

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(52)

It can be clearly shown that

W ≜

𝑟

∑

𝑖=1

𝜆
2

𝑖
(𝜃 (𝑡)) 𝜉

𝑇
Σ
2𝑖𝑖
𝜉

+

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡)) 𝜉

𝑇
× (Σ
2𝑖𝑗

+ Σ
2𝑗𝑖
) 𝜉.

(53)

Premultiplying and postmultiplying Σ
2𝑖𝑖

by
diag{𝑃−1 𝑃−1 𝑃−1 𝑃−1 𝑃−1}, and letting 𝐺 = 𝑃

−1, 𝑅
1

=

𝑃
−1
𝑅
1
𝑃
−1, 𝑅
2
= 𝑃
−1
𝑅
2
𝑃
−1, 𝑄
1
= 𝑃
−1
𝑄
1
𝑃
−1, 𝑄
2
= 𝑃
−1
𝑄
2
𝑃
−1,

𝑈 = 𝑃
−1
𝑈𝑃
−1, �̃�
1𝑖
= 𝐾
1𝑖
𝑃
−1, �̃�
2𝑖
= 𝐾
2𝑖
𝑃
−1, and �̃�

3𝑖
= 𝐾
3𝑖
𝑃
−1

yield Φ
𝑖𝑖
. Following a similar line in the previous process to

Σ
2𝑖𝑗

and Σ
2𝑗𝑖

yields Φ
𝑖𝑗
and Φ

𝑗𝑖
.

Since Φ
𝑖𝑖
< 0 holds for 1 ≤ 𝑖 ≤ 𝑟, and (Φ

𝑖𝑗
+ Φ
𝑗𝑖
) < 0

holds for 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,then we have W < 0. Then by using
Lemma 7, the system (19) is internally asymptotically stable.
Furthermore, from Lemma 2, the fuzzy delta operator system
(3) under the controller (5) is asymptotically stable. Finally,
the explicit expression of the state feedback controller is given
by 𝐾
1𝑖
= �̃�
1𝑖
𝐺
−1, 𝐾
2𝑖
= �̃�
2𝑖
𝐺
−1, and 𝐾

3𝑖
= �̃�
3𝑖
𝐺
−1. The proof

is completed.

To compare the results obtained by the IO approach, we
give the following corollary, which is obtained by a direct
LKF-based method.

Corollary 11. Consider T-S fuzzy delta operator system (3)
with the controller in (5). Then given scalars ℎ

2
> ℎ
1
> 0

and the sampling period 𝑇 > 0, the fuzzy delta operator system
with time-varying delay is asymptotically stable if there exist
positive definite symmetric matrices 𝐺, 𝑅

1
, 𝑅
2
, 𝑄
1
, 𝑄
2
, and 𝑍

and matrices 𝑁 = [
𝑁1

𝑁2

], 𝑀 = [
𝑀1

𝑀2

], 𝑆 = [
𝑆1

𝑆2

], 𝑋 = [
𝑋11 𝑋12

𝑋
𝑇

12 𝑋22

],

𝑌 = [
𝑌11 𝑌12

𝑌
𝑇

12 𝑌22

] and �̃�
1𝑖
, such that (38) and the following LMIs

hold:

Ψ
4𝑖𝑖

< 0 (1 ≤ 𝑖 ≤ 𝑟) ,

Ψ
4𝑖𝑗

+ Ψ
4𝑗𝑖

< 0 (1 ≤ 𝑖 < 𝑗 ≤ 𝑟) ,

(54)

where

Ψ
4𝑖𝑗

=

[
[
[
[
[
[
[

[

Ψ
4𝑖𝑗

(1, 1) 𝐴
𝑖
𝐺 + 𝐵

𝑖
�̃�
1𝑗

𝐴
𝑑𝑖
𝐺 0 0

∗ Ψ
4𝑖𝑗

(2, 2) Ψ
4𝑖𝑗

(2, 3) −𝑆
1

−𝑀
1

∗ ∗ Ψ
4𝑖𝑗

(3, 3) −𝑆
2

−𝑀
2

∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ −𝑄
2

]
]
]
]
]
]
]

]

,

Ψ
4𝑖𝑗

(1, 1) = 𝑇𝐺 + ℎ
1
𝑅
1
+ ℎ
2
𝑅
2
− 2𝐺,

Ψ
4𝑖𝑗

(2, 2) = 𝐴
𝑖
𝐺 + 𝐵

𝑖
�̃�
1𝑗
+ 𝐺𝐴
𝑇

𝑖
+ �̃�
𝑇

1𝑗
𝐵
𝑇

𝑖
+ 𝑍

+
ℎ
12

𝑇
𝑍 + 𝑄

1
+ 𝑄
2
+ 𝑁
1
+ 𝑁
𝑇

1
+ 𝑆
1
+ 𝑆
𝑇

1

+
ℎ
2

𝑇
𝑋
11
+
ℎ
1

𝑇
𝑌
11
,

Ψ
4𝑖𝑗

(2, 3) = 𝐴
𝑑𝑖
𝐺 − 𝑁

1
+ 𝑁
𝑇

2
+𝑀
1
+ 𝑆
𝑇

2

+
ℎ
2

𝑇
𝑋
12
+
ℎ
1

𝑇
𝑌
12
,

Ψ
4𝑖𝑗

(3, 3) = − 𝑍 − 𝑁
2
− 𝑁
𝑇

2
+𝑀
2
+𝑀
𝑇

2

+
ℎ
2

𝑇
𝑋
22
+
ℎ
1

𝑇
𝑌
22
.

(55)

Moreover, a suitable stabilizing fuzzy state feedback con-
troller is given by

𝑢 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) 𝐾

1𝑖
𝑥 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟, (56)

where𝐾
1𝑖
= �̃�
1𝑖
𝐺
−1.

Proof. Choosing the same LKF candidate as in the proof of
Theorem 8, we have

𝜕𝑉 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡)) 𝜉

𝑇

1
Σ
3𝑖𝑗
𝜉
1

+

𝑛

∑

𝑖=1

Υ
𝑇

1
(𝑡) Σ
4
Υ
1
(𝑡) +

ℎ1/𝑇

∑

𝑖=1

Υ
𝑇

1
(𝑡) Σ
5
Υ
1
(𝑡)

+

ℎ2/𝑇

∑

𝑖=𝑛+1

Υ
𝑇

1
(𝑡) Σ
6
Υ
1
(𝑡) ,

(57)
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where

Σ
3𝑖𝑗

=

[
[
[
[
[

[

Σ
3𝑖𝑗

(1, 1) 𝑃 (𝐴
𝑖
+ 𝐵
𝑖
𝐾
1𝑗
) 𝑃𝐴

𝑑𝑖
0 0

∗ Σ
3𝑖𝑗

(2, 2) Σ
3𝑖𝑗

(2, 3) −𝑆
1

−𝑀
1

∗ ∗ Σ
3𝑖𝑗

(3, 3) −𝑆
2

−𝑀
2

∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ −𝑄
2

]
]
]
]
]

]

,

Σ
3𝑖𝑗

(1, 1) = 𝑇𝑃 + ℎ
1
𝑅
1
+ ℎ
2
𝑅
2
− 2𝑃,

Σ
3𝑖𝑗

(2, 2) = 𝑃 (𝐴
𝑖
+ 𝐵
𝑖
𝐾
1𝑗
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
1𝑗
)
𝑇

𝑃 + 𝑍

+
ℎ
12

𝑇
𝑍 + 𝑄

1
+ 𝑄
2
+ 𝑁
1
+ 𝑁
𝑇

1
+ 𝑆
1
+ 𝑆
𝑇

1

+
ℎ
2

𝑇
𝑋
11
+
ℎ
1

𝑇
𝑌
11
,

Σ
3𝑖𝑗

(2, 3) = 𝑃𝐴
𝑑𝑖
− 𝑁
1
+ 𝑁
𝑇

2
+𝑀
1
+ 𝑆
𝑇

2

+
ℎ
2

𝑇
𝑋
12
+
ℎ
1

𝑇
𝑌
12
,

Σ
3𝑖𝑗

(3, 3) = − 𝑍 − 𝑁
2
− 𝑁
𝑇

2
+𝑀
2
+𝑀
𝑇

2

+
ℎ
2

𝑇
𝑋
22
+
ℎ
1

𝑇
𝑌
22
,

(58)

and 𝜉
𝑇

1
, Υ𝑇
1
, Σ
4
, Σ
5
, and Σ

6
are defined in (45).

It can be clearly shown that

𝜕𝑉 (𝑡) ≜

𝑟

∑

𝑖=1

𝜆
2

𝑖
(𝜃 (𝑡)) 𝜉

𝑇

1
Σ
3𝑖𝑖
𝜉
1

+

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

𝜆
𝑖
(𝜃 (𝑡)) 𝜆

𝑗
(𝜃 (𝑡)) 𝜉

𝑇

1
(Σ
3𝑖𝑗

+ Σ
3𝑗𝑖
) 𝜉
1

+

𝑛

∑

𝑖=1

Υ
𝑇

1
(𝑡) Σ
4
Υ
1
(𝑡) +

ℎ1/𝑇

∑

𝑖=1

Υ
𝑇

1
(𝑡) Σ
5
Υ
1
(𝑡)

+

ℎ2/𝑇

∑

𝑖=𝑛+1

Υ
𝑇

1
(𝑡) Σ
6
Υ
1
(𝑡) .

(59)

Premultiplying and postmultiplying Σ
3𝑖𝑖

by
diag{𝑃−1 𝑃−1 𝑃−1 𝑃−1 𝑃−1}, premultiplying and
postmultiplying Σ

4
, Σ
5
, Σ
6
by diag{𝑃−1 𝑃−1 𝑃−1}, and letting

𝐺 = 𝑃
−1, 𝑅
1
= 𝑃
−1
𝑅
1
𝑃
−1, 𝑅
2
= 𝑃
−1
𝑅
2
𝑃
−1, 𝑄
1
= 𝑃
−1
𝑄
1
𝑃
−1,

𝑄
2
=𝑃
−1
𝑄
2
𝑃
−1, 𝑍=𝑃−1𝑍𝑃−1,𝑁

1
=𝑃
−1
𝑁
1
𝑃
−1,𝑁
2
=𝑃
−1
𝑁
2
𝑃
−1,

𝑀
1
=𝑃
−1
𝑀
1
𝑃
−1,𝑀
2
=𝑃
−1
𝑀
2
𝑃
−1, 𝑆
1
=𝑃
−1
𝑆
1
𝑃
−1, 𝑆
2
=𝑃
−1
𝑆
2
𝑃
−1,

𝑋
11

= 𝑃
−1
𝑋
11
𝑃
−1, 𝑋
12

= 𝑃
−1
𝑋
12
𝑃
−1, 𝑋
22

= 𝑃
−1
𝑋
22
𝑃
−1,

𝑌
11

= 𝑃
−1
𝑌
11
𝑃
−1, 𝑌
12

= 𝑃
−1
𝑌
12
𝑃
−1, 𝑌
22

= 𝑃
−1
𝑌
22
𝑃
−1, and

�̃�
1𝑖

= 𝐾
1𝑖
𝑃
−1 yield Ψ

4𝑖𝑖
, Ψ
1
, Ψ
2
, and Ψ

3
. Following a similar

line of the previous process to Σ
3𝑖𝑗

and Σ
3𝑗𝑖

yields Ψ
4𝑖𝑗

and
Ψ
4𝑗𝑖
.
Since Ψ

4𝑖𝑖
< 0 holds for 1 ≤ 𝑖 ≤ 𝑟, and (Ψ

4𝑖𝑗
+ Ψ
4𝑗𝑖
) < 0

holds for 1 ≤ 𝑖 < 𝑗 ≤ 𝑟, Σ
4
< 0, Σ

5
< 0, and Σ

6
< 0,then we

have 𝜕𝑉(𝑡) < 0. Therefore the fuzzy delta operator system (3)

Table 1: Comparisons of maximum allowed delay upper bound ℎ
2

for Example 12 with ℎ
1
= 0.8.

Method ℎ
2
(𝑇 = 0.01)

Result of Corollary 9 Infeasible
Result of Theorem 8 0.933

under the controller (59) is asymptotically stable. Finally, the
explicit expression of the state feedback controller is given by
𝐾
1𝑖
= �̃�
1𝑖
𝐺
−1. The proof is completed.

6. Simulation Examples

In this section, three examples are provided to demonstrate
the effectiveness of the proposed results.

Example 12 (Stability Analysis). Consider a T-S fuzzy delta
operator system with time-varying delay in the form of (1)
with parameters given by

𝐴
1
= [

−2 0

0 −0.9
] , 𝐴

2
= [

−1 0.5

0 −1
] ,

𝐴
𝑑1

= [
−1 0

−1 −1
] , 𝐴

𝑑2
= [

−1 0

0.1 −1
] .

(60)

In this example, for a given delay lower bound ℎ
1
= 0.8,

we seek for the admissible upper bound ℎ
2
, which guarantees

the asymptotic stability of the open-loop system. Choosing
the sampling period 𝑇 = 0.01, the obtained results are listed
in Table 1.

Table 1 shows that the proposed result inTheorem 8 is less
conservative than that in Corollary 9, which demonstrates
the advantages of our method. Table 2 shows the delay upper
bound ℎ

2
under different delay lower bound ℎ

1
and different

sampling period𝑇. It is obvious that the delay upper bound ℎ
2

increases gradually as the sampling rate rises, which indicates
the advantage of the delta operator fuzzy system at high
sampling rate.

Example 13 (Controller Design). To further illustrate the
effectiveness of ourmethod for controller design, we consider
the following T-S fuzzy delta operator system with time-
varying delay:

𝜕𝑉 (𝑡) =

𝑟

∑

𝑖=1

𝜆
𝑖
(𝜃 (𝑡)) [𝐴

𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑛𝑇) + 𝐵

𝑖
𝑢 (𝑡)] ,

(61)

where 𝐴
𝑖
, 𝐵
𝑖
, and 𝐴

𝑑𝑖
(𝑖 = 1, 2) are given by

𝐴
1
= [

0 0.6

0 1
] , 𝐴

𝑑1
= [

0.5 0.9

0 2
] ,

𝐵
1
= [

1

1
] , 𝐴

2
= [

1 0

1 0
] ,

𝐴
𝑑2

= [
0.9 0

1 1.6
] , 𝐵

2
= [

1

1
] .

(62)



12 Mathematical Problems in Engineering

Table 2: Comparisons of maximum allowed delay upper bound ℎ
2
by different ℎ

1
and 𝑇 for Example 12.

Method 𝑇 = 0.01 𝑇 = 0.05 𝑇 = 0.1

ℎ
1

0.1 0.4 0.8 0.1 0.4 0.8 0.1 0.4 0.8
Result of Theorem 8 0.732 0.790 0.933 0.685 0.749 0.901 0.626 0.700 0.863

Table 3: Comparisons of maximum allowed delay upper bound ℎ
2
by different ℎ

1
and 𝑇 for Example 13.

Method 𝑇 = 0.01 𝑇 = 0.05 𝑇 = 0.1

ℎ
1

0.1 0.4 0.8 0.1 0.4 0.8 0.1 0.4 0.8
Result of Corollary 11 0.185 — — 0.179 — — 0.172 — —
Result of Theorem 10 0.428 0.668 0.951 0.418 0.658 0.941 0.406 0.646 0.929

For different delay lower bounds ℎ
1
, the allowed delay

upper bounds ℎ
2
are listed in Table 3. It can be seen that

the proposed results inTheorem 10 are less conservative than
those in Corollary 11.

The fuzzy controller gains for 𝑇 = 0.01, ℎ
1
= 0.8, and

ℎ
2
= 0.951 byTheorem 10 are given as

𝐾
11

= [1.2781 −4.4103] ,

𝐾
12

= [0.0812 −2.9757] ,

𝐾
21

= [−0.1010 −2.0993] ,

𝐾
22

= [−1.0592 −2.5416] ,

𝐾
31

= [−0.1064 −1.9295] ,

𝐾
32

= [−1.0592 −2.5414] .

(63)

Example 14. To illustrate the application of our method, we
consider the following truck-trailer system given in [32]:

̇𝑥
1
(𝑡) = −𝑐

𝑣𝑡
1

𝐿𝑡
0

𝑥
1
(𝑡) − (1 − 𝑐)

𝑣𝑡
1

𝐿𝑡
0

𝑥
1
(𝑡 − 𝑑 (𝑡)) +

𝑣𝑡
1

𝑙𝑡
0

𝑢 (𝑡) ,

̇𝑥
2
(𝑡) = 𝑐

𝑣𝑡
1

𝐿𝑡
0

𝑥
1
(𝑡) + (1 − 𝑐)

𝑣𝑡
1

𝐿𝑡
0

𝑥
1
(𝑡 − 𝑑 (𝑡)) ,

̇𝑥
3
(𝑡) =

𝑣𝑡
1

𝑡
0

sin𝑥
2
(𝑡) + 𝑐

𝑣𝑡
1

2𝐿
𝑥
1
(𝑡)

+ (1 − 𝑐)
𝑣𝑡
1

2𝐿
𝑥
1
(𝑡 − 𝑑 (𝑡)) ,

(64)

where 𝑥
1
(𝑡) is the angular difference between the truck and

trailer, 𝑥
2
(𝑡) is the angle of the trailer, and 𝑥

3
(𝑡) is the vertical

position of rear end of the trailer.
The model parameters are given as 𝑙 = 2.8, 𝐿 = 5.5,

𝑣 = −1.0, 𝑡
1
= 2.0, and 𝑡

0
= 0.5, and 𝑐 ∈ [0, 1] is a retarded

coefficient with limits 0 and 1 corresponding to delay-free
term and to a full-delay term.The premise variable is chosen
as 𝜃(𝑡) = 𝑥

2
(𝑡)+ 𝑐(𝑣𝑡

1
/𝐿𝑡
0
)𝑥
1
(𝑡)+ (1−𝑐)(𝑣𝑡

1
/𝐿𝑡
0
)𝑥
1
(𝑡−𝑑(𝑡)),

and the sampling period 𝑇 = 0.01. The following fuzzy rules

via delta operator are employed by

Plant Rule 1: IF 𝜃(𝑡) = is about 0 rad, THEN

𝜕𝑥 (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐴

𝑑1
𝑥 (𝑡 − 𝑛𝑇) + 𝐵

1
𝑢 (𝑡) , (65)

PlantRule 2: IF 𝜃(𝑡) = is about𝜋 rad or -𝜋 rad, THEN

𝜕𝑥 (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐴

𝑑2
𝑥 (𝑡 − 𝑛𝑇) + 𝐵

2
𝑢 (𝑡) . (66)

Themembership functions for Rule 1 and Rule 2 are given
by

𝜆 =

{{{{{{

{{{{{{

{

𝜆
1
= (1 −

1

1 + exp (−3 (𝜃 (𝑡) − 0.5𝜋))
)

×(1 −
1

1 + exp (−3 (𝜃 (𝑡) + 0.5𝜋))
) ,

𝜆
2
= 1 − 𝜆

1
,

(67)

and with

𝐴
1
= [

[

0.509 0 0

−0.509 0 0

0.509 −4 0

]

]

,

𝐴
𝑑1

= [

[

0.218 0 0

−0.218 0 0

0.218 0 0

]

]

,

𝐵
1
= [

[

−1.4286

0

0

]

]

,

𝐴
2
= [

[

0.509 0 0

−0.509 0 0

0.810 −6.366 0

]

]

,

𝐴
𝑑2

= [

[

0.218 0 0

−0.218 0 0

0.347 0 0

]

]

,

𝐵
2
= [

[

−1.4286

0

0

]

]

.

(68)
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Figure 1: State responses for the closed-loop system in Example 14.

Assume the time-varying delay 1 ≤ 𝑛𝑇 ≤ 2, and the
initial condition 𝑥(𝑡

0
) = [−0.5𝜋 0.75𝜋 −5]

𝑇. The fuzzy delta
operator controller gains byTheorem 10 are given as

𝐾
11

= [2.2108 −2.7252 0.1445] ,

𝐾
12

= [2.2620 −3.0776 0.1453] ,

𝐾
21

= [0.5423 0.0608 −0.0046] ,

𝐾
22

= [0.5656 0.0503 −0.0038] ,

𝐾
31

= [0.5467 0.0095 −0.0015] ,

𝐾
32

= [0.5689 0.0079 −0.0012] .

(69)

As shown in Figure 1, the states of the closed-loop system
converge to zero under the obtained fuzzy delta operator
state-feedback controller, which demonstrates the effective-
ness of our method.

7. Conclusion

This paper proposes an input-output method to analysis and
synthesis of T-S fuzzy delta operator systems with time-
varying delay.The two-term approximationmethod has been
employed to transform the fuzzy delta operator system with
time-varying delay into a feedback interconnection form.
Based on a Lyapunov-Krasovskii functional in delta operator
domain, the SSG method is suggested for the interconnected
system. Numerical examples are given to demonstrate the
advantages and less-conservatism of the proposed results.
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The tracking control problem of uncertain nonlinear time-delay systems with unknown dead-zone input is tackled by a robust
adaptive fuzzy control scheme. Because the nonlinear gain function and the uncertainties of the controlled system including
matched and unmatched uncertainties are supposed to be unknown, fuzzy logic systems are employed to approximate the nonlinear
gain function and the upper bounded functions of these uncertainties. Moreover, the upper bound of the uncertainty caused by the
fuzzy modeling error is also estimated. According to these learning fuzzy models and some feasible adaptive laws, a robust adaptive
fuzzy tracking controller is developed in this paper without constructing the dead-zone inverse. Based on the Lyapunov stability
theorem, the proposed controller not only guarantees that the robust stability of the whole closed-loop system in the presence of
uncertainties and unknown dead-zone input can be achieved, but it also obtains that the output tracking error can converge to a
neighborhood of zero exponentially. Some simulation results are provided to demonstrate the effectiveness and performance of the
proposed approach.

1. Introduction

In general systems, there exist some nonsmooth nonlinear-
ities in the actuators, such as dead-zone, saturation, and
backlash [1–7]. The information of the dead-zone is usually
poorly known and time variant. Recently, high accuracy posi-
tion control is required, such as DC servosystems, pressure
control systems, power systems, chemical reactor systems,
and machine tools [1–3, 8]. However, the dead-zone charac-
teristics in actuators may severely limit the performance of
the systems and let the output of the systems not reach our
requirements. The robust adaptive control was proposed to
deal with nonlinear systems with unknown dead-zone [2]. In
Corradini and Orlando [3], the sliding mode controller was
presented to robustly stabilize a nonlinear uncertain input.
Robust adaptive dead-zone compensation method was used
in a DC servo-motor control system [4]. Variable structure
control laws were proposed for uncertain large-scale system
with dead-zone input [5]. In [8, 9], adaptive control approach
was used to cope with nonlinear systems with nonsymmetric
dead-zone input. The proposed controllers in [10, 11] tackled

the plants with unknown dead-zone via dead-zone inverse.
However, the common feature of most previous results [1, 2,
4–6, 8, 9, 12] is the nonlinear gain function which is assumed
to be a constant. Although the Previous restrictive assump-
tion can be relaxed in [3, 7, 10, 11], the unmatched uncertainty
is not taken into account. Therefore, the motivation of this
paper is to synthesize a controller to handle the tracking
control problem for a class of uncertain nonlinear state time-
delay systems in the presence of an unknowndead-zone input
and unmatched uncertainties without constructing the dead-
zone inverse.

It is well known that a real system is difficult to be
described by the exact mathematical model, owing to the
existence of uncertain elements, such as parameter variation,
modeling errors, unmodeled dynamics, and external distur-
bances.These uncertainties may affect the stability of the sys-
tems. Robust stabilization of the nonlinear uncertain system
has widely been investigated [13–16]. In [13], the purpose of
this direct robust adaptive fuzzy controller was to deal with
a class of nonlinear systems containing both unconstructed
state-dependent unknown nonlinear uncertain and gain
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functions. Bartolini et al. [14] suggested the second-order
sliding mode controller to cope with the uncertain system
nonaffine in the control law and the presence of the unmod-
eled dynamic actuator. The methods of robust adaptive con-
trol [15, 16] were utilized to solve the nonlinear uncertain
problem. In [15], the robust adaptive controller for SISO non-
linear uncertain system was presented by the input/output
linearization approach. In the case where the nonlinear
uncertain systems include constant linearly parameterized
uncertainty and nonlinear state-dependent parametric un-
certainty, the direct robust adaptive control framework was
developed in [16].

In recent years, the design problem of nonlinear time-
delay systems has received considerable attention in [17–23]
because time-delay characteristic usually confronted in engi-
neering systems may degrade the control performance and
make the systems unstable. By employing the input-output
approach and the scaled small gain theorem, the filtering
problem for discrete-time T-S fuzzy systems with time-vary-
ing delay has been studied [17]. In [18], the stabilization of
LTI systems with time delay was considered by using a low-
order controller. The stability analysis and robust control for
time-delay systems attracted a large number of researchers
over the past years [19–21]. Recently, the problem of stability
analysis for stochastic neural networks with discrete interval
and distributed time-varyingwas investigated by applying the
idea of delay partitioning method [23].

On the other hand, the fuzzy control techniques have been
widely used in many control problems in recent years [24–
26]. The fuzzy logic system is constructed from a collection
of fuzzy IF-THEN rules. It becomes a useful way to approx-
imate the unknown nonlinear functions and uncertainties
in the nonlinear systems. An adaptive interval type-2 fuzzy
sliding mode controller for a class of unknown nonlinear
discrete-time systems corrupted by external disturbances was
presented [24]. In [25], an adaptive neural-fuzzy control de-
sign was examined for tracking of nonlinear affine in the
control dynamic systemswith unknownnonlinearities. Based
on a novel fuzzy Lyapunov-Krasovskii functional, a delay par-
titioningmethodhas been developed for the delay-dependent
stability analysis of fuzzy time-varying state delay systems
[26].

In this paper, the problem of output tracking control is
investigated for a class of uncertain nonlinear state time-delay
systems containing unknown dead-zone input and unmatch-
ed uncertainties. The main features of the proposed robust
adaptive fuzzy controller are summarized as follows. (i) By
utilizing a description of a dead-zone feature, an adaptive law
is used to estimate the properties of the dead-zone model
intuitively and mathematically, without constructing a dead-
zone inverse. (ii) Fuzzy logic systems with some appropriate
learning laws are applied to approximate the nonlinear gain
function and the upper bounded functions of matched and
unmatched uncertainties. (iii) The unknown upper bound of
the uncertainties caused by approximation (or fuzzy mod-
eling) error is estimated by a simple adaptive law. (iv) By
means of Lyapunov stability theorem, the proposed controller
cannot only guarantee the robust stability of thewhole closed-
loop system but also obtain the good tracking performance.

This paper is organized as follows. In Section 2, the form
of the uncertain nonlinear state time-delay system with
unknown dead-zone input is described. The fuzzy logic sys-
tems and fuzzy basis functions are also reviewed. Section 3
presents the robust adaptive fuzzy tracking controller to deal
with a class of nonlinear uncertain state time-delay systems
containing unknown dead-zone input. By Lyapunov stability
theorem, the presented controller can ensure the stability of
the controlled systems. Simulation results are demonstrated
along with the effectiveness and performance of the proposed
controller in Section 4. Finally, a conclusion is given in
Section 5.

2. Problem Statement and Preliminaries

2.1. Problem Statement. Consider a class of uncertain nonlin-
ear state time-delay systems containing an unknown dead-
zone in the following form:

̇𝑥
1
= 𝑥
2
+ Δ𝜙
1
(x) ,

̇𝑥
2
= 𝑥
3
+ Δ𝜙
2
(x) ,

̇𝑥
3
= 𝑥
4
+ Δ𝜙
3
(x) ,

...

̇𝑥
𝑛−1

= 𝑥
𝑛
+ Δ𝜙
𝑛−1

(x) ,

̇𝑥
𝑛
=

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡)) + Δ𝑓

1
(x (𝑡))

+

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏)) + Δ𝑓
2
(x (𝑡 − 𝜏))

+ 𝑔 (x) 𝑍 (𝑣 (𝑡)) + Δ𝜙
𝑛
(x) ,

𝑦 = 𝑥
1
,

(1)

or equivalently,

̇x = Ax + B[

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡)) + Δ𝑓

1
(x (𝑡))

+

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏))

+ Δ𝑓
2
(x (𝑡 − 𝜏)) + 𝑔 (x) 𝑍 (𝑣 (𝑡)) ] + Θ (x) ,

𝑦 = Cx,
(2)
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where

A =

[
[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 ⋅ ⋅ ⋅ 0 1

0 0 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]
]

]

∈ 𝑅
𝑛×𝑛

, B =

[
[
[
[
[
[

[

0

0

...
0

1

]
]
]
]
]
]

]

∈ 𝑅
𝑛×1

,

C𝑇 =

[
[
[
[
[
[

[

1

0

...
0

0

]
]
]
]
]
]

]

∈ 𝑅
𝑛×1

,

(3)

where x(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛 is the system state

vector which is assumed to be available for measurement,
and 𝑣(𝑡) ∈ 𝑅 and 𝑦(𝑡) ∈ 𝑅 are the input and output of the
system, respectively. 𝜏 is the value of time delay.Theunknown
nonlinear system functions are assumed to be in the linearly
parameterized form and consist of two parts: (i) the sum
of 𝜃
1𝑖
𝑓
1𝑖
(x(𝑡)) for 𝑖 = 1, 2, . . . ,𝑀; (ii) the sum of 𝜃

2𝑗
𝑓
2𝑗
(x(𝑡 −

𝜏)) for 𝑗 = 1, 2, . . . , 𝑁. The parameters 𝜃
1i and 𝜃

2j are un-
knownbut constant.𝑓

1𝑖
(x(𝑡)) and𝑓

2𝑗
(x(𝑡−𝜏)) are known con-

tinuous, linear or nonlinear functions. Δ𝑓
1
(x(𝑡)) and

Δ𝑓
2
(x(𝑡−𝜏)) are the unknownmatched uncertainties. 𝑔(x(𝑡))

is the unknown nonlinear gain function, and Θ(x) =

[Δ𝜙
1
(x), Δ𝜙

2
(x), . . . , Δ𝜙

𝑛
(x)]𝑇 ∈ 𝑅

𝑛×1 is the vector of
unknown unmatched uncertainties. Without loss of
generality, it is assumed that the sign of 𝑔(x(𝑡)) is positive.
𝑍(𝑣(𝑡)) : 𝑅 → 𝑅 is the nonlinear input function containing
a dead-zone.

Now, let the output of the system and its derivatives be
expressed as follows:

𝑦 = 𝑥
1
,

𝑦
(1)

= ̇𝑥
1
= 𝑥
2
+ Δ𝜙
1
,

𝑦
(2)

= ̇𝑥
2
+ (Δ𝜙

1
)
(1)

= 𝑥
3
+ Δ𝜙
2
+ (Δ𝜙

1
)
(1)

,

𝑦
(3)

= ̇𝑥
3
+ (Δ𝜙

2
)
(1)

+ (Δ𝜙
1
)
(2)

= 𝑥
4
+ Δ𝜙
3
+ (Δ𝜙

2
)
(1)

+ (Δ𝜙
1
)
(2)

,

...

𝑦
(𝑛−1)

= ̇𝑥
(𝑛−1)

+ (Δ𝜙
(𝑛−2)

)
(1)

+ (Δ𝜙
(𝑛−3)

)
(2)

+ ⋅ ⋅ ⋅ + (Δ𝜙
2
)
(𝑛−3)

+ (Δ𝜙
1
)
(𝑛−2)

= 𝑥
𝑛
+ (Δ𝜙

(𝑛−1)
) + (Δ𝜙

(𝑛−2)
)
(1)

+ (Δ𝜙
(𝑛−3)

)
(2)

+ ⋅ ⋅ ⋅ + (Δ𝜙
2
)
(𝑛−3)

+ (Δ𝜙
1
)
(𝑛−2)

,

𝑦
(𝑛)

= ̇𝑥
𝑛
+ (Δ𝜙

(𝑛−1)
)
(1)

+ (Δ𝜙
(𝑛−2)

)
(2)

+ (Δ𝜙
(𝑛−3)

)
(3)

+ ⋅ ⋅ ⋅ + (Δ𝜙
2
)
(𝑛−2)

+ (Δ𝜙
1
)
(𝑛−1)

=

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡)) + Δ𝑓

1
(x (𝑡))

+

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏)) + Δ𝑓
2
(x (𝑡 − 𝜏))

+ 𝑔 (x) 𝑍 (𝑣 (𝑡)) + Δ𝜙
𝑛
+ (Δ𝜙

(𝑛−1)
)
(1)

+ (Δ𝜙
(𝑛−2)

)
(2)

+ (Δ𝜙
(𝑛−3)

)
(3)

+ ⋅ ⋅ ⋅ + (Δ𝜙
2
)
(𝑛−2)

+ (Δ𝜙
1
)
(𝑛−1)

=

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡)) + Δ𝑓

1
(x (𝑡))

+

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏)) + Δ𝑓
2
(x (𝑡 − 𝜏))

+ 𝑔 (x) 𝑍 (𝑣 (𝑡)) + ΔΦ,

(4)

where

ΔΦ = Δ𝜙
(𝑛−1)

1
+ Δ𝜙
(𝑛−2)

2
+ ⋅ ⋅ ⋅ + Δ𝜙

(1)

𝑛−1
+ Δ𝜙
𝑛
. (5)

The dead-zone with input 𝑣(𝑡) and output as shown in
Figure 1 is described by

𝑍 (𝑣 (𝑡)) =

{{{

{{{

{

𝑚
𝑟
(𝑣 (𝑡) − 𝑐

𝑎
) for 𝑣 (𝑡) ≥ 𝑐

𝑎
,

0 for 𝑐
𝑏
< 𝑣 (𝑡) < 𝑐

𝑎
,

𝑚
𝑙
(𝑣 (𝑡) − 𝑐

𝑏
) for 𝑣 (𝑡) ≤ 𝑐

𝑏
,

(6)

where 𝑐
𝑎
> 0, 𝑐
𝑏
< 0 and 𝑚

𝑟
> 0, 𝑚

𝑙
> 0 are parameters and

slopes of the dead-zone, respectively. In order to investigate
the key features of the dead-zone in the control problems, the
following assumptions should be made.

Assumption 1. The dead-zone output 𝑍(𝑣(𝑡)) is not available
to obtain.

Assumption 2. The dead-zone slopes are of the same value;
that is, 𝑚

𝑟
= 𝑚
𝑙
= 𝑚.

Assumption 3. There exist known constants 𝑐
𝑎min, 𝑐𝑎max,

𝑐
𝑏min, 𝑐𝑏max,𝑚min, and 𝑚max such that the unknown dead-
zone parameters 𝑐

𝑎
, 𝑐
𝑏
, and𝑚 are bounded; that is, 𝑐

𝑎
∈ [𝑐
𝑎min,

𝑐
𝑎max], 𝑐𝑏 ∈ [𝑐

𝑏min, 𝑐𝑏max], and 𝑚 ∈ [𝑚min,𝑚max].

Based on the previous assumptions, the expression (6)
can be represented as

𝑍 (𝑣 (𝑡)) = 𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)) , (7)
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Figure 1: Dead-zone model.

where 𝑧(𝑣(𝑡)) can be calculated from (6) and (7) as

𝑧 (𝑣 (𝑡)) =

{{

{{

{

−𝑚𝑐
𝑎

for 𝑣 (𝑡) ≥ 𝑐
𝑎
,

−𝑚𝑣 (𝑡) for 𝑐
𝑏
< 𝑣 (𝑡) < 𝑐

𝑎
,

−𝑚𝑐
𝑏

for 𝑣 (𝑡) ≤ 𝑐
𝑏
.

(8)

From Assumptions 2 and 3, we can conclude that 𝑧(𝑣(𝑡)) is
bounded and satisfies |𝑧(𝑣(𝑡))| ≤ 𝜌, where 𝜌 is the upper
bound which can be chosen as

𝜌 = max {𝑚max𝑐𝑎max, −𝑚max𝑐𝑏max} , (9)

where 𝑐
𝑏min is a negative value.

Then, let 𝑦
𝑚

be a given bounded reference signal and
contain finite derivatives up to the 𝑛th order, define the track-
ing error as

𝑒
𝑖
= 𝑦
𝑚

(𝑖−1)
− 𝑦
(𝑖−1)

, for 𝑖 = 1, 2, . . . , 𝑛, (10)

and denote e = [𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
]
𝑇, y = [𝑦, ̇𝑦, . . . , 𝑦

(𝑛−1)
]
𝑇

, and
y
𝑚

= [𝑦
𝑚
, ̇𝑦
𝑚
, . . . , 𝑦

𝑚

(𝑛−1)
]
𝑇

.
The control objective of this paper is to design a control

law 𝑣(𝑡) such that𝑦 can follow a given desired reference signal
𝑦
𝑚
and guarantee that all the signals involved in the whole

closed-loop system are bounded.

2.2. Description of Fuzzy Logic Systems. The basic config-
uration of the fuzzy logic system consists of four main
components: fuzzy rule base, fuzzy inference engine, fuzzifier,
and defuzzifier [27]. The fuzzy logic system performs a
mapping from 𝑈 ⊂ 𝑅

𝑛 to 𝑉 ⊂ 𝑅. Let 𝑈 = 𝑈
1
× ⋅ ⋅ ⋅ × 𝑈

𝑛
,

where 𝑈
𝑖
⊂ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. The fuzzy rule base consists of a

collection of fuzzy IF-THEN rules as follows:

𝑅
(𝑙)
: IF 𝑥

1
is 𝐹
𝑙

1
and . . . and 𝑥

𝑛
is 𝐹
𝑙

𝑛
, THEN 𝑦 is 𝐺

𝑙
,

(11)

where x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑈 and 𝑦 ∈ 𝑉 ⊂ 𝑅 are the input
and output of the fuzzy logic system, and 𝐹

𝑙

𝑖
and 𝐺

𝑙 are fuzzy
sets in𝑈

𝑖
and𝑉, respectively.The fuzzifier maps a crisp point

x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇 into a fuzzy set in𝑈.The fuzzy inference

engine performs a mapping from fuzzy sets in𝑈 to fuzzy sets
in 𝑉, based upon the fuzzy IF-THEN rules in the fuzzy rule
base and the compositional rule of inference. The defuzzifier
maps a fuzzy set in 𝑉 to a crisp point in 𝑉.

The fuzzy systems with center-average defuzzifier, prod-
uct inference, and singleton fuzzifier are of the following
form:

𝑦 (x) =

∑
𝑀

𝑙=1
𝜃
𝑙
(∏
𝑛

𝑖=1
𝜇
𝐹
𝑙
𝑖
(𝑥
𝑖
))

∑
𝑀

𝑙=1
(∏
𝑛

𝑖=1
𝜇
𝐹
𝑙
𝑖
(𝑥
𝑖
))

, (12)

where 𝑀 is the number of rules, 𝜃𝑙 is the point at which the
fuzzy membership function 𝜇

𝐺
𝑙(𝜃
𝑙
) of fuzzy sets 𝐺

𝑙 achieves
its maximum value, and it is assumed that 𝜇

𝐺
𝑙(𝜃
𝑙
) = 1.

Equation (12) can be rewritten as

𝑦 (x) = 𝜃
𝑇
𝜉 (x) , (13)

where 𝜃 = [𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑀
]
𝑇 is a parameter vector, and 𝜉(x) =

[𝜉
1
(x), . . . , 𝜉𝑀(x)]𝑇 is a regressive vector with the regressor

𝜉
l
(x), which is defined as fuzzy basis function

𝜉
𝑙
(x) =

∏
𝑛

𝑖=1
𝜇
𝐹
𝑙
𝑖
(𝑥
𝑖
)

∑
𝑛

𝑙=1
(∏
𝑛

𝑖=1
𝜇
𝐹
𝑙
𝑖
(𝑥
𝑖
))

. (14)

3. Adaptive Fuzzy Tracking Controller Design
and Stability Analysis

According to (2.1), (7), and (10), the tracking error dynamic
equation can be expressed as

̇e = Ae + B[𝑦
(𝑛)

𝑚
−

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡)) − Δ𝑓

1
(x (𝑡))

−

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏)) − Δ𝑓
2
(x (𝑡 − 𝜏))

−𝑔 (x)𝑚𝑣 (𝑡) − 𝑔 (x) 𝑧 (𝑣 (𝑡)) − ΔΦ] .

(15)

Now, let us choose a vector K = [𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
] ∈ 𝑅

1×𝑛

such that A
𝑚

= A − BK is Hurwitz; then, the tracking error
dynamic equation (15) can be rewritten as

̇e = A
𝑚
e + B[Ke + 𝑦

(𝑛)

𝑚
−

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡)) − Δ𝑓

1
(x (𝑡))

−

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏)) − Δ𝑓
2
(x (𝑡 − 𝜏))

−𝑔 (x)𝑚𝑣 (𝑡) − 𝑔 (x) 𝑧 (𝑣 (𝑡)) − ΔΦ] .

(16)

It is worth noting that Δ𝑓
1
(x(𝑡)), 𝑓

2𝑗
(x(𝑡−𝜏)), and ΔΦ are

unknown uncertainties and satisfy the following assumption.
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Assumption 4. |ΔΦ| ≤ ℎ
1
(x), |Δ𝑓

1
(x(𝑡))| ≤ ℎ

2
(x(𝑡)), and

|Δ𝑓
2
(x(𝑡 − 𝜏))| ≤ ℎ

3
(x(𝑡 − 𝜏)), where ℎ

1
(x), ℎ

2
(x(𝑡)), and

ℎ
3
(x(𝑡 − 𝜏)) are unknown smooth positive functions and can

be estimated by fuzzy logic systems with some adaptive laws
which will be determined later.

First, the nonlinear gain function 𝑔(x) and the upper
bounded functions ℎ

1
(x), ℎ
2
(x(𝑡)), and ℎ

3
(x(𝑡 − 𝜏)) of

unmatched and matched uncertainties can be approximated,
over a compact set Ωx, by the fuzzy logic systems as follows:

𝑔 (x | 𝜃
𝑔
) = 𝜃
𝑇

𝑔
𝜉 (x) ,

ℎ̂
1
(x | 𝜃
ℎ1
) = 𝜃
𝑇

ℎ1
𝜉 (x) ,

ℎ̂
2
(x | 𝜃
ℎ2
) = 𝜃
𝑇

ℎ2
𝜉 (x) ,

ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
) = 𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏)) ,

(17)

where 𝜉(x) and 𝜉(x(𝑡 − 𝜏)) are the fuzzy basis vectors, and
𝜃
𝑔
, 𝜃
ℎ1
, 𝜃
ℎ2
, and 𝜃

ℎ3
are the corresponding adjustable param-

eter vectors of each fuzzy logic system. It is assumed that
𝜃
𝑔
, 𝜃
ℎ1
, 𝜃
ℎ2
, and 𝜃

ℎ3
belong to compact sets Ω𝜃𝑔

, Ω𝜃ℎ1
, Ω𝜃ℎ2

,
and Ω𝜃ℎ3

, respectively, which are defined as

Ω𝜃𝑔 = {𝜃
𝑔
∈ 𝑅
𝑀

:

𝜃
𝑔


≤ 𝑁
1
< ∞} ,

Ω𝜃ℎ1
= {𝜃
ℎ1

∈ 𝑅
𝑀

:
𝜃ℎ1

 ≤ 𝑁
2
< ∞} ,

Ω𝜃ℎ2
= {𝜃
ℎ2

∈ 𝑅
𝑀

:
𝜃ℎ2

 ≤ 𝑁
3
< ∞} ,

Ω𝜃ℎ3
= {𝜃
ℎ3

∈ 𝑅
𝑀

:
𝜃ℎ3

 ≤ 𝑁
4
< ∞} ,

(18)

where 𝑁
1
, 𝑁
2
, 𝑁
3
, and 𝑁

4
are the designed parameters, and

𝑀 is the number of fuzzy inference rules. Let us define the
optimal parameter vectors 𝜃∗

𝑔
, 𝜃
∗

ℎ1
, 𝜃
∗

ℎ2
, and 𝜃∗

ℎ3
as follows:

𝜃
∗

𝑔
= arg min

𝜃𝑔∈Ω𝜃𝑔

{sup
x∈Ωx


𝑔 (x) − 𝑔 (x | 𝜃

𝑔
)

} ,

𝜃
∗

ℎ1
= arg min

𝜃ℎ1∈Ω𝜃ℎ1

{sup
x∈Ωx


ℎ
1
(x) − ℎ̂

1
(x | 𝜃
ℎ1
)

} ,

𝜃
∗

ℎ2
= arg min

𝜃ℎ2∈Ω𝜃ℎ2

{sup
x∈Ωx


ℎ
2
(x) − ℎ̂

2
(x | 𝜃
ℎ2
)

} ,

𝜃
∗

ℎ3
= arg min

𝜃ℎ3∈Ω𝜃ℎ3

{sup
x∈Ωx

ℎ3 (x (𝑡 − 𝜏))

− ℎ̂
1
(x (𝑡 − 𝜏) | 𝜃

ℎ1
)

} ,

(19)

where 𝜃∗
𝑔
, 𝜃
∗

ℎ1
, 𝜃
∗

ℎ2
, and 𝜃∗

ℎ3
are bounded in the suitable closed

sets Ω𝜃𝑔
, Ω𝜃ℎ1

, Ω𝜃ℎ2
, and Ω𝜃ℎ3

, respectively. The parameter

estimation errors can be defined as

�̃�
𝑔
= 𝜃
𝑔
− 𝜃
∗

𝑔
,

�̃�
ℎ1

= 𝜃
ℎ1

− 𝜃
∗

ℎ1
,

�̃�
ℎ2

= 𝜃
ℎ2

− 𝜃
∗

ℎ2
,

�̃�
ℎ3

= 𝜃
ℎ3

− 𝜃
∗

ℎ3
,

𝜔1
 +

𝜔2
 ≤ 𝜔,

(20)

where 𝜔 is an unknown positive constant, and

𝜔
1
= (ℎ
1
(x) − ℎ̂

1
(x | 𝜃
∗

ℎ1
) )

+ (ℎ
2
(x (𝑡)) − ℎ̂

2
(x | 𝜃
∗

ℎ2
))

+ (ℎ
3
x (x (𝑡 − 𝜏)) − ℎ̂

3
(x | 𝜃
∗

ℎ3
)) ,

𝜔
2
= (𝑔 (x) − 𝑔 (x | 𝜃

∗

𝑔
)) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))

(21)

as the minimum approximation errors, which correspond to
approximation errors obtained when optimal parameters are
used.

Secondly, we define

𝜙 = 𝜙 − 𝜙,

�̃�
1
= �̂�
1
− 𝜃
1
,

�̃�
2
= �̂�
2
− 𝜃
2
,

�̃� = �̂� − 𝜔,

(22)

where 𝜙 is an estimate of 𝜙, which is defined as 𝜙 = (𝑚)
−1. �̂�
1

and �̂�
2
are the estimates of 𝜃

1
and 𝜃

2
, respectively, which are

defined as

𝜃
1
= [(𝑚)

−1
𝜃
11
, (𝑚)
−1

𝜃
12
, . . . , (𝑚)

−1
𝜃
1𝑀

]
𝑇

∈ 𝑅
𝑀
,

𝜃
2
= [(𝑚)

−1
𝜃
21
, (𝑚)
−1

𝜃
22
, . . . , (𝑚)

−1
𝜃
2𝑁

]
𝑇

∈ 𝑅
𝑁
,

(23)

and �̂� is an estimate of 𝜔.

Based on the previous discussion and under Assumptions
1–4, we are in a position to propose the robust adaptive fuzzy
controller in the following form:

𝑣 = 𝑣
1
+ 𝑣
2
+ 𝑣
3
+ 𝑣
4
+ 𝑣
5
, (24)

where

𝑣
1
=

1

𝑔 (x | 𝜃
𝑔
)

𝜙[

[

Ke + 𝑦
(𝑛)

𝑚
+

(e𝑇PB)
𝑇

e𝑇PB


× (ℎ̂
1
(x | 𝜃
ℎ1
) + ℎ̂
2
(x | 𝜃
ℎ2
)

+ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)) ]

]

,

(25)
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𝑣
2
= −

1

𝑔 (x | 𝜃
𝑔
)

f𝑇
1
(x (𝑡)) �̂�

1
,

𝑣
3
= −

1

𝑔 (x | 𝜃
𝑔
)

f𝑇
2
(x (𝑡 − 𝜏)) �̂�

2
,

𝑣
4
=

1

𝑚min

1

𝑔 (x | 𝜃
𝑔
)

(e𝑇PB)
𝑇

e𝑇PB


�̂�,

𝑣
5
=

𝜌

𝑚min
tanh(

e𝑇PB
𝜀

) ,

(26)

where f
1
(x(𝑡)) = [𝑓

11
, 𝑓
12
, . . . , 𝑓

1𝑀
]
𝑇

∈ 𝑅
𝑀 and f

2
(x(𝑡 − 𝜏)) =

[𝑓
21
, 𝑓
22
, . . . , 𝑓

2𝑁
]
𝑇

∈ 𝑅
𝑁, 𝜌 is defined in (9), and P is a sym-

metric positive definite matrix, which is a solution of the
following Lyapunov equation:

A𝑇
𝑚
P + PA

𝑚
= −Q, (27)

where Q is a positive definite matrix, and the parameter
update laws are as follows:

̇𝜃
𝑔
= −𝛾
𝑔
e𝑇PB𝜉 (x) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) , (28)

̇𝜃
ℎ1

= 𝛾
ℎ1


e𝑇PB
𝜉 (x (𝑡)) ,

̇𝜃
ℎ2

= 𝛾
ℎ2


e𝑇PB
𝜉 (x (𝑡)) ,

(29)

̇𝜃
ℎ3

= 𝛾
ℎ3


e𝑇PB
𝜉 (x (𝑡 − 𝜏)) , (30)

̇
�̂�
1
= −𝛾
1
e𝑇PBf

1
(x (𝑡)) , (31)

̇
�̂�
2
= −𝛾
2
e𝑇PBf

2
(x (𝑡 − 𝜏)) , (32)

̇�̂� = 𝛾
𝜔


e𝑇PB

, (33)

̇̂
𝜙 = 𝜂 (e𝑇PB){ [Ke + 𝑦

(𝑛)

𝑚
] +

(e𝑇PB)

e𝑇PB


ℎ̂
1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)

e𝑇PB


ℎ̂
2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)

e𝑇PB


ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)} ,

(34)

where the scalars 𝛾
ℎ1
, 𝛾
ℎ2
, 𝛾
ℎ3
, 𝛾
𝑔
, 𝛾
1
, 𝛾
2
, 𝛾
𝜔
, and 𝜂 are positive

constants, determining the rates of adaptations, and

𝑧
1
(𝑣 (𝑡)) =

{{

{{

{

−𝑐
𝑎

for 𝑣 (𝑡) ≥ 𝑐
𝑎
,

−𝑣 (𝑡) for 𝑐
𝑏
< 𝑣 (𝑡) < 𝑐

𝑎
,

−𝑐
𝑏

for 𝑣 (𝑡) ≤ 𝑐
𝑏
.

(35)

Remark 1. Without loss of generality, the adaptive laws used
in this paper are assumed that the parameter vectors are
within the constraint sets or on the boundaries of the

constraint sets but moving toward the inside of the constraint
sets. If the parameter vectors are on the boundaries of the con-
straint sets but moving toward the outside of the constraint
sets, we have to use the projection algorithm [27] to modify
the adaptive laws such that the parameter vectors will remain
inside of the constraint sets.The proposed adaptive law (28)–
(30) can be modified as the following form:

̇𝜃
𝑔
=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

−𝛾
𝑔


e𝑇PB
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) ,

if (

𝜃
𝑔


< 𝑁
1
) or

(


𝜃
𝑔


= 𝑁
1
and


e𝑇PB
𝜃
𝑇

𝑔
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) ≥ 0

) ,

𝑃 {−𝛾
𝑔


e𝑇PB
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡)))} ,

if (


𝜃
𝑔


= 𝑁
1
and


e𝑇PB
𝜃
𝑇

𝑔
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) < 0

) ,

(36)

where 𝑃{−𝛾
𝑔
‖e𝑇PB‖𝜉(x(𝑡))(𝑣(𝑡) + 𝑧

1
(𝑣(𝑡)))} is defined as

𝑃 {−𝛾
𝑔


e𝑇PB
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡)))}

= −𝛾
𝑔


e𝑇PB
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡)))

+ 𝛾
𝑔


e𝑇PB

𝜃
𝑔
𝜃
𝑇

𝑔


𝜃
𝑔



2
𝜉 (x (𝑡))

× (𝑣 (𝑡) + 𝑧
1
(𝑣 (𝑡))) ,

̇𝜃
ℎ1

=

{{{{{{{{{{

{{{{{{{{{{

{

𝛾
ℎ1


e𝑇PB
𝜉 (x (𝑡)) ,

if (
𝜃ℎ1

 < 𝑁
2
) or

(
𝜃ℎ1

 = 𝑁
2
and 

e𝑇PB
𝜃
𝑇

ℎ1
𝜉 (x (𝑡)) ≤ 0) ,

𝑃 {𝛾
ℎ1


e𝑇PB
𝜉 (x (𝑡))} ,

if (
𝜃ℎ1

 = 𝑁
2
and 

e𝑇PB
𝜃
𝑇

ℎ1
𝜉 (x (𝑡)) > 0) ,

(37)

where 𝑃{𝛾
ℎ1
‖e𝑇PB‖𝜉(x(𝑡))} is defined as

𝑃 {𝛾
ℎ1


e𝑇PB
𝜉 (x (𝑡))}

= 𝛾
ℎ1


e𝑇PB
𝜉 (x (𝑡))

− 𝛾
ℎ1


e𝑇PB

𝜃
ℎ1
𝜃
𝑇

ℎ1

𝜃ℎ1


2
𝜉 (x (𝑡)) ,

̇𝜃
ℎ2

=

{{{{{{{{{

{{{{{{{{{

{

𝛾
ℎ2


e𝑇PB
𝜉 (x (𝑡)) ,

if (
𝜃ℎ2

 < 𝑁
3
) or

(
𝜃ℎ2

 = 𝑁
3
and 

e𝑇PB
𝜃
𝑇

ℎ2
𝜉 (x (𝑡)) ≤ 0) ,

𝑃 {𝛾
ℎ2


e𝑇PB
𝜉 (x (𝑡))} ,

if (
𝜃ℎ2

 = 𝑁
3
and 

e𝑇PB
𝜃
𝑇

ℎ2
𝜉 (x (𝑡)) > 0) ,

(38)



Mathematical Problems in Engineering 7

where 𝑃{𝛾
ℎ2
‖e𝑇PB‖𝜉(x(𝑡))} is defined as

𝑃 {𝛾
ℎ2


e𝑇PB
𝜉 (x (𝑡))}

= 𝛾
ℎ2


e𝑇PB
𝜉 (x (𝑡))

− 𝛾
ℎ2


e𝑇PB

𝜃
ℎ2
𝜃
𝑇

ℎ2

𝜃ℎ2


2
𝜉 (x (𝑡)) ,

̇𝜃
ℎ3

=

{{{{{{{{{

{{{{{{{{{

{

𝛾
ℎ3


e𝑇PB
𝜉 (x (𝑡 − 𝜏)) ,

if (
𝜃ℎ3

 < 𝑁
4
) or

(
𝜃ℎ3

=𝑁
4

and 
e𝑇PB
𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏)) ≤ 0) ,

𝑃 {𝛾
ℎ3


e𝑇PB
𝜉 (x (𝑡 − 𝜏))} ,

if (
𝜃ℎ3

 = 𝑁
4
and


e𝑇PB
𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏)) > 0) ,

(39)

where 𝑃{𝛾
ℎ3
‖e𝑇PB‖𝜉(x(𝑡 − 𝜏))} is defined as

𝑃 {𝛾
ℎ3


e𝑇PB
𝜉 (x (𝑡 − 𝜏))}

= 𝛾
ℎ3


e𝑇PB
𝜉 (x (𝑡 − 𝜏))

− 𝛾
ℎ3


e𝑇PB

𝜃
ℎ3
𝜃
𝑇

ℎ3

𝜃ℎ3


2
𝜉 (x (𝑡 − 𝜏)) .

(40)

The main result of the proposed robust adaptive fuzzy
tracking control scheme is summarized in the following
theorem.

Theorem2. Consider the uncertain nonlinear state time-delay
system (1) with unknown dead-zone input (7). If Assumptions
1–4 are satisfied, then the proposed robust adaptive fuzzy track-
ing controller defined by (24)–(3) with some adaptation laws
(28)–(34) ensures that all the signals of the whole closed-loop
system are bounded, and the output tracking errors converge to
a neighborhood of zero exponentially.

Proof. Consider the Lyapunov function candidate

𝑉 =
1

2
(

1

𝑚
e𝑇Pe +

1

𝛾
1

�̃�
𝑇

1
�̃�
1
+

1

𝛾
2

�̃�
𝑇

2
�̃�
2
+

1

𝑚 ⋅ 𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

+
1

𝑚 ⋅ 𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

+
1

𝑚 ⋅ 𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

+
1

𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔
+

1

𝜂
𝜙
2
+

1

𝑚min ⋅ 𝛾
𝜔

�̃�
2
) .

(41)

Differentiating the Lyapunov function𝑉with respect to time,
we can obtain

𝑉 =
1

2𝑚
̇e𝑇Pe +

1

2𝑚
e𝑇P ̇e +

1

𝛾
1

�̃�
𝑇

1

̇
�̃�
1

+
1

𝛾
2

�̃�
𝑇

2

̇
�̃�
2
+

1

𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1

̇
�̃�
ℎ1

+
1

𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2

̇
�̃�
ℎ2

+
1

𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3

̇
�̃�
ℎ3

+
1

𝛾
𝑔

�̃�
𝑇

𝑔

̇
�̃�
𝑔
+

1

𝜂
𝜙

̇̃
𝜙 +

1

𝑚min ⋅ 𝛾
𝜔

�̃� ̇�̃�.

(42)

From (16) and by the fact that ̇
�̃�
1
=

̇
�̂�
1
,

̇
�̃�
2
=

̇
�̂�
2
,

̇
�̃�
ℎ1

= ̇𝜃
ℎ1
,

̇
�̃�
ℎ2

= ̇𝜃
ℎ2
,

̇
�̃�
ℎ3

= ̇𝜃
ℎ3
,

̇
�̃�
𝑔

= ̇𝜃
𝑔
,

̇̃
𝜙 =

̇̂
𝜙, and ̇�̃� = ̇�̂�, the

previous equation becomes

𝑉 =
1

2𝑚
e𝑇 [A𝑇
𝑚
P + PA

𝑚
] e

+
1

𝑚
e𝑇PB[Ke + 𝑦

(𝑛)

𝑚
−

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡))

− Δ𝑓
1
(x (𝑡)) −

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏))

− Δ𝑓
2
(x (𝑡 − 𝜏)) − 𝑔 (x)𝑚𝑣 (𝑡)

−𝑔 (x) 𝑧 (𝑣 (𝑡)) − ΔΦ]

+
1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1
+

1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2
+

1

𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1

̇𝜃
ℎ1

+
1

𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2

̇𝜃
ℎ2

+
1

𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3

̇𝜃
ℎ3

+
1

𝛾
𝑔

�̃�
𝑇

𝑔

̇𝜃
𝑔
+

1

𝜂
𝜙

̇̂
𝜙 +

1

𝑚min𝛾𝜔
�̃� ̇�̂�.

(43)

Applying (27) and Assumption 4 to (43) yields

𝑉 ≤ −
1

2𝑚
e𝑇Qe +

1

𝑚
e𝑇PB

× [Ke + 𝑦
(𝑛)

𝑚
−

𝑀

∑

𝑖=1

𝜃
1𝑖
𝑓
1𝑖
(x (𝑡))

−

𝑁

∑

𝑗=1

𝜃
2𝑗
𝑓
2𝑗

(x (𝑡 − 𝜏))

−𝑔 (x)𝑚𝑣 (𝑡) − 𝑔 (x) 𝑧 (𝑣 (𝑡)) ]

+
1

𝑚


e𝑇PB

ℎ
1
(x) + 1

𝑚


e𝑇PB

ℎ
2
(x (𝑡))

+
1

𝑚


e𝑇PB

ℎ
3
(x (𝑡 − 𝜏)) +

1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1

+
1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2
+

1

𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1

̇𝜃
ℎ1

+
1

𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2

̇𝜃
ℎ2
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+
1

𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3

̇𝜃
ℎ3

+
1

𝛾
𝑔

�̃�
𝑇

𝑔

̇𝜃
𝑔

+
1

𝜂
𝜙

̇̂
𝜙 +

1

𝑚min𝛾𝜔
�̃� ̇�̂�.

(44)

Substituting (17) and (23) into (44), we obtain

𝑉 ≤ −
1

2𝑚
e𝑇Qe + e𝑇PB

× {
1

𝑚
[Ke + 𝑦

(𝑛)

𝑚
] − f𝑇
1
(x (𝑡)) 𝜃

1
− f𝑇
2
(x (𝑡 − 𝜏)) 𝜃

2
}

+
1

𝑚


e𝑇PB

(
𝜔1

 +
𝜔2

) −
1

𝑚
e𝑇PB

× [𝑔 (x | 𝜃
𝑔
) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))]

+
1

𝑚
e𝑇PB [�̃�

𝑇

𝑔
𝜉 (x) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))]

+
1

𝑚


e𝑇PB

[ℎ̂
1
(x | 𝜃
ℎ1
) − �̃�
𝑇

ℎ1
𝜉 (x)]

+
1

𝑚


e𝑇PB

[ℎ̂
2
(x (𝑡) | 𝜃

ℎ2
) − �̃�
𝑇

ℎ2
𝜉 (x (𝑡))]

+
1

𝑚


e𝑇PB

[ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
) − �̃�
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏))]

+
1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1
+

1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2
+

1

𝑚 ⋅ 𝛾
ℎ1

�̃�
𝑇

ℎ1

̇𝜃
ℎ1

+
1

𝑚 ⋅ 𝛾
ℎ2

�̃�
𝑇

ℎ2

̇𝜃
ℎ2

+
1

𝑚 ⋅ 𝛾
ℎ3

�̃�
𝑇

ℎ3

̇𝜃
ℎ3

+
1

𝛾
𝑔

�̃�
𝑇

𝑔

̇𝜃
𝑔
+

1

𝜂
𝜙

̇̂
𝜙 +

1

𝑚min ⋅ 𝛾
𝜔

�̃� ̇�̂�

≤ −
1

2𝑚
e𝑇Qe + e𝑇PB

× {
1

𝑚
[Ke + 𝑦

(𝑛)

𝑚
] − f𝑇
1
(x (𝑡)) 𝜃

1
− f𝑇
2
(x (𝑡 − 𝜏)) 𝜃

2
}

+
1

𝑚


e𝑇PB

𝜔 −
1

𝑚
e𝑇PB

× [𝑔 (x | 𝜃
𝑔
) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))]

+
1

𝑚
e𝑇PB [�̃�

𝑇

𝑔
𝜉 (x) (𝑚𝑣 (𝑡) + 𝑚 ⋅ 𝑧

1
(𝑣 (𝑡)))]

+
1

𝑚


e𝑇PB

[ℎ̂
1
(x | 𝜃
ℎ1
) − �̃�
𝑇

ℎ1
𝜉 (x)]

+
1

𝑚


e𝑇PB

[ℎ̂
2
(x (𝑡) | 𝜃

ℎ2
) − �̃�
𝑇

ℎ2
𝜉 (x (𝑡))]

+
1

𝑚


e𝑇PB

[ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
) − �̃�
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏))]

+
1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1
+

1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2
+

1

𝑚 ⋅ 𝛾
ℎ1

�̃�
𝑇

ℎ1

̇𝜃
ℎ1

+
1

𝑚 ⋅ 𝛾
ℎ2

�̃�
𝑇

ℎ2

̇𝜃
ℎ2

+
1

𝑚 ⋅ 𝛾
ℎ3

�̃�
𝑇

ℎ3

̇𝜃
ℎ3

+
1

𝛾
𝑔

�̃�
𝑇

𝑔

̇𝜃
𝑔
+

1

𝜂
𝜙

̇̂
𝜙 +

1

𝑚min ⋅ 𝛾
𝜔

�̃� ̇�̂�.

(45)

According to adaptive laws (28)–(30), (45) can be rewritten
as

𝑉 ≤ −
1

2𝑚
e𝑇Qe +

1

𝑚


e𝑇PB

𝜔

+
1

𝑚
e𝑇PB

{

{

{

[Ke + 𝑦
(𝑛)

𝑚
]

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)
}

}

}

+ e𝑇PB {−𝑔 (x | 𝜃
𝑔
) 𝑣 (𝑡) − 𝑔 (x | 𝜃

𝑔
)
𝑧 (𝑣 (𝑡))

𝑚
}

− e𝑇PBf𝑇
1
(x (𝑡)) 𝜃

1
− e𝑇PBf𝑇

2
(x (𝑡 − 𝜏)) 𝜃

2

+
1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1
+

1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2
+

1

𝜂
𝜙

̇̂
𝜙

+
1

𝑚min ⋅ 𝛾
𝜔

�̃� ̇�̂�

≤ −
1

2𝑚
e𝑇Qe +

1

𝑚


e𝑇PB

𝜔 +
1

𝑚
e𝑇PB

×
{

{

{

[Ke + 𝑦
(𝑛)

𝑚
] +

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)
}

}

}

− e𝑇PB𝑔 (x | 𝜃
𝑔
) 𝑣 (𝑡) +


e𝑇PB

𝑔 (x | 𝜃
𝑔
)

×
|𝑧 (𝑣 (𝑡))|

|𝑚|
− e𝑇PBf𝑇

1
(x (𝑡)) 𝜃

1

− e𝑇PBf𝑇
2
(x (𝑡 − 𝜏)) 𝜃

2
+

1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1

+
1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2
+

1

𝜂
𝜙

̇̂
𝜙 +

1

𝑚min ⋅ 𝛾
𝜔

�̃� ̇�̂�.

(46)
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Using the control laws (24)–(3), the previous equation can be
rewritten as

𝑉 ≤ −
1

2𝑚
e𝑇Qe +

1

𝑚min


e𝑇PB

⋅ (𝜔 − �̂�)

+ e𝑇PB (𝜙 − 𝜙)

×
{

{

{

[Ke + 𝑦
(𝑛)

𝑚
] +

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)
}

}

}

+

e𝑇PB

𝑔 (x | 𝜃
𝑔
)
|𝑧 (𝑣 (𝑡))|

|𝑚|

− e𝑇PB (𝜃
𝑇

1
− �̂�
𝑇

1
) ⋅ f
1
(x (𝑡))

− e𝑇PB (𝜃
𝑇

2
− �̂�
𝑇

2
) ⋅ f
2
(x (𝑡 − 𝜏))

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min

⋅ tanh(
e𝑇PB

𝜀
) +

1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1
+

1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2

+
1

𝜂
𝜙

̇̂
𝜙 +

1

𝑚min ⋅ 𝛾
𝜔

�̃� ̇�̂�

= −
1

2𝑚
e𝑇Qe −

1

𝑚min


e𝑇PB

⋅ �̃�

− e𝑇PB𝜙
{

{

{

[Ke + 𝑦
(𝑛)

𝑚
] +

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)
𝑇

e𝑇PB


ℎ̂
3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)
}

}

}

+

e𝑇PB

𝑔 (x | 𝜃
𝑔
)
|𝑧 (𝑣 (𝑡))|

|𝑚|

+ e𝑇PB ⋅ �̃�
𝑇

1
⋅ f
1
(x (𝑡)) + e𝑇PB ⋅ �̃�

𝑇

2
⋅ f
2
(x (𝑡 − 𝜏))

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ tanh(

e𝑇PB
𝜀

)

+
1

𝛾
1

�̃�
𝑇

1

̇
�̂�
1
+

1

𝛾
2

�̃�
𝑇

2

̇
�̂�
2

+
1

𝜂
𝜙

̇̂
𝜙 +

1

𝑚min ⋅ 𝛾
𝜔

�̃� ̇�̂�.

(47)

According to adaptive laws (31)–(33), we have

𝑉 ≤ −
1

2𝑚
e𝑇Qe +


e𝑇PB

𝑔 (x | 𝜃
𝑔
)
|𝑧 (𝑣 (𝑡))|

|𝑚|

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ tanh(

e𝑇PB
𝜀

)

≤ −
1

2𝑚
e𝑇Qe +


e𝑇PB

𝑔 (x | 𝜃
𝑔
)

𝜌

𝑚min

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ tanh(

e𝑇PB
𝜀

) .

(48)

By considering the inequality |𝜙|−𝜙 tanh(𝜙/𝜀) ≤ 0.2785𝜀. We
obtain

𝑉 ≤ −
1

2𝑚
e𝑇Qe + 0.2785𝑔 (x | 𝜃

𝑔
) ⋅

𝜌

𝑚min
⋅ 𝜀

= −
1

2𝑚
e𝑇Qe −

1

2𝛾
1

�̃�
𝑇

1
�̃�
1
−

1

2𝛾
2

�̃�
𝑇

2
�̃�
2

−
1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

−
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

−
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

−
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔
−

1

2𝜂
𝜙
2

−
1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2
+

1

2𝛾
1

�̃�
𝑇

1
�̃�
1
+

1

2𝛾
2

�̃�
𝑇

2
�̃�
2

+
1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

+
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

+
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

+
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔
+

1

2𝜂
𝜙
2

+
1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2
+ 0.2785𝑔 (x | 𝜃

𝑔
) ⋅

𝜌

𝑚min
⋅ 𝜀.

(49)

Let

𝐿 =
1

2𝛾
1

�̃�
𝑇

1
�̃�
1
+

1

2𝛾
2

�̃�
𝑇

2
�̃�
2

+
1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

+
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

+
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

+
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔

+
1

2𝜂
𝜙
2
+

1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2

+ 0.2785𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ 𝜀.

(50)
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Then,

𝑉 ≤ −
1

2𝑚
e𝑇Qe −

1

2𝛾
1

�̃�
𝑇

1
�̃�
1

−
1

2𝛾
2

�̃�
𝑇

2
�̃�
2
−

1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

−
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

−
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

−
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔
−

1

2𝜂
𝜙
2
−

1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2
+ 𝐿

≤ −
1

2𝑚
𝜆min (Q) e𝑇e −

1

2𝛾
1

�̃�
𝑇

1
�̃�
1

−
1

2𝛾
2

�̃�
𝑇

2
�̃�
2
−

1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

−
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

−
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

−
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔
−

1

2𝜂
𝜙
2
−

1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2
+ 𝐿

≤ −
1

2𝑚

𝜆min (Q)

𝜆max (P)
e𝑇Pe −

1

2𝛾
1

�̃�
𝑇

1
�̃�
1

−
1

2𝛾
2

�̃�
𝑇

2
�̃�
2
−

1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

−
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

−
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

−
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔
−

1

2𝜂
𝜙
2
−

1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2
+ 𝐿.

(51)

Let 𝜆
𝑣
= 𝜆min(Q)/𝜆max(P). We obtain

𝑉 ≤ −
1

2𝑚
𝜆
𝑣
e𝑇Pe −

1

2𝛾
1

�̃�
𝑇

1
�̃�
1

−
1

2𝛾
2

�̃�
𝑇

2
�̃�
2
−

1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

−
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

−
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

−
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔
−

1

2𝜂
𝜙
2
−

1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2
+ 𝐿

≤ −min{𝜆
𝑣
,
1

𝛾
1

,
1

𝛾
2

,
1

𝑚 ⋅ 𝛾
ℎ1

,
1

𝑚 ⋅ 𝛾
ℎ2

,

1

𝑚 ⋅ 𝛾
ℎ3

,
1

𝛾
𝑔

,
1

𝜂
,

1

𝑚 ⋅ 𝛾
𝜔

}

× [
1

2𝑚
e𝑇Pe +

1

2𝛾
1

�̃�
𝑇

1
�̃�
1
+

1

2𝛾
2

�̃�
𝑇

2
�̃�
2

+
1

2𝑚𝛾
ℎ1

�̃�
𝑇

ℎ1
�̃�
ℎ1

+
1

2𝑚𝛾
ℎ2

�̃�
𝑇

ℎ2
�̃�
ℎ2

+
1

2𝑚𝛾
ℎ3

�̃�
𝑇

ℎ3
�̃�
ℎ3

+
1

2𝛾
𝑔

�̃�
𝑇

𝑔
�̃�
𝑔

+
1

2𝜂
𝜙
2
+

1

2𝑚min ⋅ 𝛾
𝜔

�̃�
2
] + 𝐿.

(52)

Setting 𝑐 = min{𝜆
𝑣
, 1/𝛾
1
, 1/𝛾
2
, 1/(𝑚 ⋅ 𝛾

ℎ1
), 1/(𝑚 ⋅ 𝛾

ℎ2
), 1/(𝑚 ⋅

𝛾
ℎ3
), 1/𝛾
𝑔
, 1/𝜂, 1/(𝑚 ⋅ 𝛾

𝜔
)}, it yields that

𝑉 ≤ −𝑐𝑉 + 𝐿. (53)

Then, it is easy from (53) to show that

𝑉 (𝑡) ≤ 𝑒
−𝑐𝑡

𝑉 (0) +
𝐿

𝑐
. (54)

Therefore, the output tracking error converges to a neighbor-
hood of zero exponentially.

Remark 3. In the future work, the control problem of uncer-
tain T-S fuzzy time-varying delay systems with unknown
dead-zone input is an important topic and is worth to be
studied. Based on a novel fuzzy Lyapunov-Krasovskii func-
tional, a delay partitioning method has been developed for
the delay-dependent stability analysis of fuzzy time-varying
state delay systems [26]. Obviously, it provides a useful idea
to deal with the aforementioned future research.

4. An Example and Simulation Results

Consider the second-order uncertain nonlinear time-delay
system containing an unknown dead-zone that is modified
from the simulation example in [7] as follows:

̇𝑥
1
= 𝑥
2
+ Δ𝜙
1
(x) ,

̇𝑥
2
= 𝑥
1
+ 𝑓
11

(x (𝑡)) + 𝑓
22

(x (𝑡 − 𝜏))

+ Δ𝑓
1
(x (𝑡)) + Δ𝑓

2
(x (𝑡 − 𝜏))

+ 𝑔 (x) 𝑍 (𝑣 (𝑡)) + Δ𝜙
2
(x) ,

𝑦 = 𝑥
1
,

(55)

where the nonlinear functions 𝑓
11
(x(𝑡)) = −0.3 sin𝑥

1
(𝑡),

𝑓
12
(x(𝑡)) = 0,𝑓

21
(x(𝑡 − 𝜏)) = 0, and 𝑓

22
(x(𝑡 − 𝜏)) = 0.1𝑥

2

1
(𝑡 −

𝜏) are assumed to be known, and Δ𝑓
1
(x(𝑡)) =

−0.1𝑥
1
sin(3𝑥

2
(𝑡)), Δ𝑓

2
(x(𝑡 − 𝜏)) = −0.1𝑥

1
sin(3𝑥

2
(𝑡 − 𝜏))

are unknown system uncertainties with unknown upper
bound functions, where 𝜏 is the time delay. Δ𝜙

1
(x) =

0.1𝑥
1
sin(𝑡) and Δ𝜙

2
(x) = 0.3𝑥

2
sin(𝑡) are unknown exter-

nal disturbances, and 𝑔(x(𝑡)) = 2 − sin2(𝑥
1
(𝑡)). |Δ𝑓

1
(x(𝑡))| ≤

ℎ
2
(x(𝑡)), |Δ𝑓

2
(x(𝑡 − 𝜏))| ≤ ℎ

3
(x(𝑡 − 𝜏)), and 𝑍(𝑣(𝑡)) is an

output of a dead-zone. The goal of control is to maintain
the system output 𝑦 to follow the reference signal 𝑦

𝑚
=

0.5[sin(𝑡) + sin(0.5𝑡)].
In the simulation, parameters of the dead-zone are 𝑚 =

1, 𝑐
𝑟

= 0.5, and 𝑐
𝑙
= −0.5. And their bounds are chosen as

𝑚max = 1.5,𝑚min = 0.6, 𝑐
𝑟max = 0.9, 𝑐

𝑟min = 0.1, 𝑐
𝑙max = −0.1,
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1
and desired output 𝑦

𝑚1
.

and 𝑐
𝑙min = −0.8. In the implementation, six fuzzy sets are

defined over interval [−3, 3] for both 𝑥
1
and 𝑥

2
, with labels

𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, and 𝐹6, and their membership functions
are

𝜇
𝐹1

(𝑥
𝑖
) =

1

1 + exp (5 (𝑥
𝑖
+ 2))

,

𝜇
𝐹2

(𝑥
𝑖
) = exp (−(𝑥

𝑖
+ 1.5)

2

) ,

𝜇
𝐹3

(𝑥
𝑖
) = exp (−(𝑥

𝑖
+ 0.5)

2

) ,

𝜇
𝐹4

(𝑥
𝑖
) = exp (−(𝑥

𝑖
− 0.5)

2

) ,

𝜇
𝐹5

(𝑥
𝑖
) = exp (−(𝑥

𝑖
− 1.5)

2

) ,

𝜇
𝐹6

(𝑥
𝑖
) =

1

1 + exp (−5 (𝑥
𝑖
− 2))

, 𝑖 = 1, 2.

(56)

In this section, we apply the proposed robust adaptive
fuzzy tracking control approach in Section 3 to deal with the
output tracking control problem of the second-order uncer-
tain nonlinear time-delay system as shown in (55). Choose
K = [10, 10] andQ = diag[5, 5]; then, we solve the Lyapunov
equation (27) to obtain

P = [
5.25 0.25

0.25 0.275
] . (57)

In this example, the sampling time is 0.01 sec. Initial values
are chosen as x(0) = [−2, 3]

T, 𝜃
𝑔
(0) = 1, 𝜃

ℎ1
(0) = 0,

𝜃h2(0) = 0, and 𝜃h3(0) = 0. The initial values of the para-
meters to be estimated are selected as 𝜙(0) = 0.85, �̂�

1
(0) =

[0 0]
𝑇, �̂�
2
(0) = [0 0]

𝑇. 𝛾
𝑔
= 2, 𝛾

ℎ1
= 1.5, 𝛾

ℎ2
= 1.5, 𝛾

ℎ3
= 1.5,

𝛾
1

= 1.5, 𝛾
2

= 1.5, 𝛾
𝜔

= 1.5, 𝜂 = 1.0, 𝜏 = 0.5 s, and 𝜀 =

0.06.The simulation results are shown in Figures 2–5. Figures
2 and 3 show the trajectories of states 𝑥

1
and 𝑥

2
and the
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.

desired outputs 𝑦
𝑚1

and 𝑦
𝑚2
, respectively. The phase plane

of tracking errors of 𝑒
1
and 𝑒
2
is shown in Figure 4. Figure 5

shows the trajectory of the control signal. Obviously, the
proposed robust adaptive fuzzy tracking control scheme can
achieve the objective of good tracking performance and
robust stability simultaneously in spite of the controlled
system containing an unknown dead-zone and uncertainties.

5. Conclusion

The dead-zone input characteristics widely exist in the actu-
ators of practical control systems, which are usually poorly
known.The time-delay characteristics are usually confronted
in engineering systems. The two characteristics may severely
limit the performance of control. In this paper, the robust
adaptive fuzzy tracking controller is designed to overcome the



12 Mathematical Problems in Engineering

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

Time (s)

𝑣

𝑣

Figure 5: The trajectory of the control input 𝑣(𝑡).

stabilization problem of a class of uncertain nonlinear state
time-delay systems containing unknown dead-zone input
and unmatched uncertainties. By utilizing a description of
a dead-zone feature to estimate the properties of the dead-
zonemodel intuitively andmathematically, the adaptive fuzzy
tracking controller is proposed without constructing the
dead-zone inverse. The nonlinear uncertainties are approx-
imated by the fuzzy logic system according to the adaptive
laws. Based on the Lyapunov stability theorem, the proposed
robust adaptive tracking fuzzy controller can ensure that the
output tracking error of the resulting closed-loop system con-
verges to a neighborhood of zero exponentially. Finally, some
simulations results are illustrated to verify the effectiveness
and performance of the proposed approach.
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The problem of robust𝐻
∞
control for a class of uncertain switched fuzzy time-delay systems is discussed for system described by

T-S fuzzy model with Lyapunov stable theory and linear matrix inequality approach. A sufficient condition in terms of the LMI is
derived such that the stability of the closed-loop systems is guaranteed. The continuous state feedback controller is built to ensure
the asymptotically stable closed-loop system for all allowable uncertainties, with the switching law designed to implement the
global asymptotic stability of uncertain switched fuzzy time-delay systems. In this model, each and every subsystem of the switched
systems is an uncertain fuzzy one to which the parallel distributed compensation (PDC) controller of each sub fuzzy system system
is proposed with its main condition given in amore solvable form of convex combinations. Such a switched control system is highly
robust to varying parameters. A simulation shows the feasibility and effectiveness of the design method.

1. Introduction

In recent years, as intelligent control method, the research
of the fuzzy system has been paid extensive attention [1–3].
The T-S model which is a fuzzy system is the most effective
system model. This paper is focused on a class of uncertain
switched time-delay systems, in which each subsystem is T-S
fuzzy model. The T-S fuzzy model is a kind of fuzzy system
proposed by Sugeno et al. [4, 5], which is described by a set of
fuzzy IF-THEN rules representing local linear input-output
relations of a nonlinear system. The main idea of T-S fuzzy
model is to express the local dynamics of each fuzzy rule by a
linear systemmodel and to express the overall systemby fuzzy
“blending” of the local linear system models. The stability
studies based on this model fuzzy system have had yielded
fruitful results [6–10]. Recently, considerable effort [11–13] has
been contributed to the problem of𝐻

∞
robust fuzzy control

for a class of nonlinear systems that can be represented by T-S
fuzzy models.

On the other hand, switched systems are an important
class of hybrid systems. A switched system consists of a
number of subsystems, both continuous time and discrete

time dynamic systems, and a switching law, which orches-
trates the switching between the subsystems. The applica-
tions in robot control systems, computer disc drives, and
other engineering systems indicate that switched systems
have extensive practice background. Therefore, it has the
important theoretical significance and practical value, which
has yielded fruitful research results [14–20]. A switched
system is called a switched fuzzy system if all subsystems are
fuzzy systems. This class of systems can often more precisely
describe continuous dynamics and discrete dynamics as well
as their interactions in actual systems. Compared with the
results on stability of switched systems and those of fuzzy
control systems, the results on switched fuzzy systems are
very few. Reference [21] presents a novel switched T-S fuzzy
control design approach based on control Lyapunov function.
Reference [22] advances a fuzzy-basis-dependent and mode-
dependent Lyapunov function to study the problems of
stability analysis and 𝐻

∞
controller design for discrete-time

switched fuzzy systems.
This paper will study the problem of designing state

feedback 𝐻
∞

controllers for continuous-time T-S switched
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Figure 1: The switching signal.

fuzzy systems. A new type of state feedback controllers,
namely, switched parallel distributed compensation (PDC)
controllers, are proposed, which are switched based on
the values of membership functions. The problem begins
with the representation models for switched systems. The
design method inherits some hybrid features and presents
the information of fuzzy system. The delay-independent
sufficient condition in terms of the LMI is derived such
that the quadratic stability of the closed-loop systems is
guaranteed. The state feedback controller is built to ensure
the asymptotically stable closed-loop system for all allowable
uncertainties, with the switching law designed to implement
the global asymptotic stability of uncertain fuzzy time-delay
switched systems. In this model, each and every subsystem
of the switched systems is an uncertain fuzzy one to which
the PDC controller of each sub fuzzy system system is
proposed with its main condition given in a more solvable
form of convex combinations. Numerical example is given to
illustrate the effectiveness of the proposed method.

2. Problem Formulation

In this section, we consider the continuous uncertain
switched fuzzy time-delay model; namely, every subsystem
of switched systems is uncertain fuzzy time-delay system.
Consider the following:

𝑅
𝑙

𝜎
: if 𝜉

1
(𝑡) is𝑀𝑙

𝜎1
⋅ ⋅ ⋅ and 𝜉

𝑝
(𝑡) is𝑀𝑙

𝜎𝑝
, then

.

𝑥 (𝑡) = [𝐴
𝜎𝑙
+ Δ𝐴

𝜎𝑙
(𝑡)] 𝑥 (𝑡) + [𝐴

𝑑𝜎𝑙
+ Δ𝐴

𝑑𝜎𝑙
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵
𝜎𝑙
𝑢 (𝑡) + 𝐵

1𝜎𝑙
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝜎𝑙
𝑥 (𝑡) , 𝑥 (𝑡) = 𝜑 (𝑡) ,

∀𝑡 ∈ [−𝑑, 0] , 𝑙 = 1, 2, . . . , 𝑁
𝜎
,

(1)

where 𝜎 = 𝜎(𝑡) : [0, +∞) → {1, 2, . . . , 𝑁} = 𝑁 is the
switching signal to be designed (Figure 1).

𝑀
𝑙

𝜎1
, . . . ,𝑀

𝑙

𝜎𝑝
denote fuzzy sets in the 𝜎th switched

subsystem. 𝑅𝑙

𝜎
denotes the 𝑙th fuzzy inference rule in the

𝜎th switched subsystem. 𝑁
𝜎
is the number of inference

rules in the 𝜎th switched subsystem, and fuzzy rules are

selected in every switched subsystem. 𝑥(𝑡) ∈ 𝑅
𝑛 is the

state variable vector, 𝑢(𝑡) is the input variable, 𝑧(𝑡) is output
variable vector, 𝑤(𝑡) is external disturbance of the switched
systems, and satisfies 𝑤(𝑡) ∈ 𝐿

2
[0, 𝑇]. 𝑑 is the delay constant,

and satisfies 𝑑 ≥ 0. 𝐴
𝜎𝑙
, 𝐴

𝑑𝜎𝑙
, 𝐵

𝜎𝑙
, 𝐵

1𝜎𝑙
, and 𝐶

𝜎𝑙
are

known constant matrices of appropriate dimensions of the
𝜎th switched subsystem. Δ𝐴

𝜎𝑙
and Δ𝐴

𝑑𝜎𝑙
are the uncertain

matrices corresponding to the 𝜎th switched subsystem with
appropriate dimensions. 𝜑(𝑡) denotes a differentiable vector-
valued initial function. 𝜉

1
(𝑡), 𝜉

2
(𝑡), . . . , 𝜉

𝑛
(𝑡) are the premise

variables.
In this paper, the switching signal 𝜎 = 𝜎(𝑡) is state

dependent; namely, 𝜎 ∈ 𝑁, the switching signal 𝜎 = 𝜎(𝑡) = 𝑖,
and the switching signal is totally described by 𝑣

𝑖
= {

1,𝑥(𝑡)∈Ω̃𝑖

0,𝑥(𝑡)∉Ω̃𝑖

,
that is, if and only 𝜎 = 𝜎(𝑡) = 𝑖, 𝑣

𝑖
(𝑥(𝑡)) = 1. Ω̃

1
, Ω̃

2
, . . . , Ω̃

𝑛

will be designed later.
Through the function 𝑣

𝑖
(𝑥(𝑡)), the global model of the 𝑖th

switched subsystem is described by

.

𝑥 (𝑡) =

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡)) [𝐴

𝑖𝑙
+ Δ𝐴

𝑖𝑙
(𝑡)] 𝑥 (𝑡)

+ [𝐴
𝑑𝑖𝑙

+ Δ𝐴
𝑑𝑖𝑙

(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵
𝑖𝑙
𝑢 (𝑡) + 𝐵

1𝑖𝑙
𝑤 (𝑡) ,

𝑧 (𝑡) =

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡)) 𝐶

𝑖𝑙
𝑥 (𝑡) , 𝑥 (𝑡) = 𝜑 (𝑡) ,

∀𝑡 ∈ [−𝑑, 0] , 𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑁
𝑖
,

(2)

where 0 ≤ 𝜂
𝑖𝑙
(𝜉(𝑡)) ≤ 1, and ∑

𝑁𝑖

𝑙=1
𝜂
𝑖𝑙
(𝜉(𝑡)) = 1.

Also, 𝜔
𝑖𝑙
(𝜉(𝑡)) = ∏

𝑝

𝜌=1
𝑀

𝑙

𝑖𝜌
(𝜉

𝜌
(𝑡)), and 𝜂

𝑖𝑙
= 𝜔

𝑖𝑙
(𝜉(𝑡))/

∑
𝑁𝑖

𝑙=1
𝜔

𝑖𝑙
(𝜉(𝑡)), where 𝑀

𝑙

𝑖𝜌
(𝜉

𝜌
(𝑡)) denotes the membership

function, and 𝜉
𝜌
(𝑡) belongs to the fuzzy set𝑀𝑙

𝑖𝜌
.

Definition 1. The𝐻
∞
control problem for the switched fuzzy

system (1) is stated as follows.
Let a constant 𝛾 > 0 be given. Find a continuous state

feedback controller 𝑢 = 𝑢(𝑥) for each subsystem and a
switching law 𝑖 = 𝜎(𝑡) such that
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(1) the closed-loop system is asymptotically stable when
𝑤(𝑡) = 0,

(2) the output 𝑧 satisfies ‖𝑧‖
𝐿2[0,𝑇]

< 𝛾‖𝑤‖
𝐿2[0,𝑇]

under the
zero initial condition.

3. Main Results

Assumption 2. The uncertainties can be represented and
emulated as

[Δ𝐴
𝑖𝑙
, Δ𝐴

𝑑𝑖𝑙
] = 𝐸

𝑖𝑙
Σ

𝑖𝑙
(𝑡) [𝐹

1𝑖𝑙
, 𝐹

2𝑖𝑙
] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑁
𝑖
,

(3)

where, 𝐸
𝑖𝑙
, 𝐹

1𝑖𝑙
, and 𝐹

2𝑖𝑙
are known constant matrices,

and Σ
𝑖𝑙
(𝑡) is an unknown time-varying matrix satisfying

Σ
𝑇

𝑖𝑙
(𝑡)Σ

𝑖𝑙
(𝑡) < 𝐼, for all 𝑡 ≥ 0.

Here, the PDC fuzzy controller design method is used for
each sub fuzzy systemnamely, fuzzy controller and system (2)
have the same fuzzy inference premise variables. Consider the
following:

𝑅
𝑙

𝑗
: if 𝜉

1
(𝑡) is𝑀𝑙

𝑗1
⋅ ⋅ ⋅ and 𝜉

𝑝
(𝑡) is𝑀𝑙

𝑗𝑝
, then

𝑢 (𝑡) = 𝐾
𝑗𝑙
𝑥 (𝑡) , 𝑗 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑁

𝑗
. (4)

Thus, the global controller is

𝑢 (𝑡) =

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡)) 𝐾

𝑖𝑙
𝑥 (𝑡) . (5)

The global closed-loop system can be expressed as fol-
lows:

.

𝑥 (𝑡) =

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

×

𝑁𝑖

∑

ℎ=1

𝜂
𝑖ℎ
(𝜉 (𝑡)) [(𝐴

𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖ℎ
+ Δ𝐴

𝑖𝑙
(𝑡)) 𝑥 (𝑡)

+ (𝐴
𝑑𝑖𝑙

+ Δ𝐴
𝑑𝑖𝑙

(𝑡)) 𝑥 (𝑡 − 𝑑)

+𝐵
1𝑖𝑙
𝑤 (𝑡)] ,

𝑧 (𝑡) =

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡)) 𝐶

𝑖𝑙
𝑥 (𝑡) , 𝑥 (𝑡) = 𝜑 (𝑡) ,

∀𝑡 ∈ [−𝑑, 0] , 𝑖 = 1, 2, . . . , 𝑛, ℎ, 𝑙 = 1, 2, . . . , 𝑁
𝑖
.

(6)

Lemma 3 (see [23]). Let 𝑅
1
and 𝑅

2
be real matrices of

appropriate dimensions, with Σ𝑇
(𝑡)Σ(𝑡) ≤ 𝐼; then, one has that

for any scalar 𝛼 > 0,

𝑅
1
Σ (𝑡) 𝑅

2
+ 𝑅

𝑇

2
Σ

𝑇
(𝑡) 𝑅

𝑇

1
≤ 𝛼𝑅

1
𝑅

𝑇

1
+ 𝛼

−1
𝑅

𝑇

2
𝑅

2
. (7)

Lemma 4 (Lemma (Schur complement)). The matrix
[

𝑄 𝑅

𝑅
𝑇

𝑆
] < 0 is symmetrical matrix, and then the following two

functions are equivalent:

𝑆 < 0, 𝑄 − 𝑅𝑆
−1
𝑅

𝑇
< 0, or 𝑄 < 0, 𝑆 − 𝑅𝑄

−1
𝑅

𝑇
< 0.

(8)

Theorem 5. Let a constant 𝛾 > 0 be given. If there exist
the symmetric positive definite matrices 𝑋,𝑄

𝑖
∈ 𝑅

𝑛×𝑛, scalar
𝜀, 𝜀

1
, 𝜀

2
> 0, 𝛼

𝑖
(𝛼

𝑖
∈ [0, 1], ∑

𝑛

𝑖=1
𝛼
𝑖
= 1), and the matrices𝑊

𝑖ℎ

satisfying

𝑛

∑

𝑖=1

𝛼
𝑖

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝐴𝑖𝑙𝑋+ 𝐵𝑖𝑙𝑊𝑖ℎ)
𝑇

+ (𝐴𝑖𝑙𝑋+ 𝐵𝑖𝑙𝑊𝑖ℎ) + 𝑄𝑖 ∗ ∗ ∗ ∗ ∗ 0

𝐸
𝑇
𝑖𝑙 −𝜀𝐼 0 0 0 0 0

𝐹1𝑖𝑙𝑋 0 −𝜀
−1
1 𝐼 0 0 0 0

𝐶𝑖𝑙𝑋 0 0 −𝐼 0 0 0

𝐵
𝑇
1𝑖𝑙 0 0 0 −𝛾

2
𝐼 0 0

0 0 0 0 0 −𝜀
−1
2 𝐼 ∗

𝑋𝐴
𝑇
𝑑𝑖𝑙 0 0 0 0 𝑋𝐹

𝑇
2𝑖𝑙 −𝑄𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(9)

then system (6) is globally asymptotically stable, and𝐻
∞
robust

control problem is solvable under the switching law 𝜎(𝑡), where
𝜀
−1

= 𝜀
−1

1
+ 𝜀

−1

2
.

So, the gain matrices of switched fuzzy controllers and the
switching law are given as follows:

𝐾
𝑖ℎ
=𝑊

𝑖ℎ
𝑋

−1
, (10)

𝜎 (𝑡) = argmin
𝑖∈𝑁

max
𝑙,ℎ

{𝑥
𝑇
[

𝑅𝑖𝑙ℎ+𝛾
−2

𝑃𝐵1𝑖𝑙𝐵
𝑇
1𝑖𝑙𝑃+𝐶𝑖𝑙𝐶

𝑇
𝑖𝑙 𝑃𝐴𝑑𝑖𝑙

𝐴
𝑇
𝑑𝑖𝑙𝑃 −𝑆𝑖 + 𝜀2𝐹

𝑇
2𝑖𝑙𝐹2𝑖𝑙

]𝑥,

𝑙, ℎ = 1, 2, . . . , 𝑁
𝑖

}

}

}

,

(11)

where

𝑃 = 𝑋
−1
,

𝑅
𝑖𝑙ℎ

= (𝐴
𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖ℎ
)
𝑇

𝑃 + 𝑃 (𝐴
𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖ℎ
)

+ 𝑆
𝑖
+ 𝜀

−1
𝑃𝐸

𝑇

𝑖𝑙
𝐸

𝑖𝑙
𝑃 + 𝜀

1
𝐹

𝑇

1𝑖𝑙
𝐹
1𝑖𝑙
.

(12)

Proof. We define 𝐾
𝑖ℎ
= 𝑊

𝑖ℎ
𝑋

−1 and 𝑆
𝑖
= 𝑋

−1
𝑄

𝑖
𝑋

−1.
So, choose the Lyapunov function as follows:

𝑉 (𝑡) = 𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝑑

𝑥
𝑇
(𝜏) 𝑆

𝑖
𝑥 (𝜏) 𝑑𝜏. (13)

We now compute the time derivative of the function (13):

.

𝑉 (𝑡) =

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

×

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝑡) {𝑥

𝑇
[(𝐴

𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)
𝑇

𝑃 + 𝑃 (𝐴
𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)

+Δ𝐴
𝑇

𝑖𝑙
(𝑡) 𝑃 + 𝑃Δ𝐴

𝑖𝑙
(𝑡) + 𝑆

𝑖
] 𝑥
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+ 𝑥
𝑇
𝑃𝐵

1𝑖𝑙
𝑤 + 𝑤

𝑇
𝐵

𝑇

1𝑖𝑙
𝑃𝑥

+ 𝑥(𝑡 − 𝑑)
𝑇
𝐴

𝑇

𝑑𝑖𝑙
𝑃𝑥

+ 𝑥
𝑇
𝑃𝐴

𝑑𝑖𝑙
𝑥 (𝑡 − 𝑑)

+ 𝑥(𝑡 − 𝑑)
𝑇
Δ𝐴

𝑇

𝑑𝑖𝑙
𝑃𝑥

+ 𝑥
𝑇
Δ𝑃𝐴

𝑑𝑖𝑙
𝑥 (𝑡 − 𝑑)

−𝑥(𝑡 − 𝑑)
𝑇
𝑆
𝑖
𝑥 (𝑡 − 𝑑)} . (14)

It follows from Lemma 3 that for any of scalars 𝜀
1
> 0 and

𝜀
2
> 0, we have that

Δ𝐴
𝑇

𝑖𝑙
(𝑡) 𝑃 + 𝑃Δ𝐴

𝑖𝑙
(𝑡) = 𝐹

𝑇

1𝑖𝑙
Σ

𝑇

𝑖
(𝑡) 𝐸

𝑇

𝑖𝑙
𝑃 + 𝑃𝐸

𝑖𝑙
Σ

𝑖
(𝑡) 𝐹

1𝑖𝑙

≤ 𝜀
1
𝐹

𝑇

1𝑖𝑙
𝐹
1𝑖𝑙

+ 𝜀
−1

1
𝑃𝐸

𝑖𝑙
𝐸

𝑇

𝑖𝑙
𝑃,

𝑥
𝑇
(𝑡 − 𝑑) Δ𝐴

𝑇

𝑖𝑙
(𝑡) 𝑃𝑥 + 𝑥

𝑇
𝑃Δ𝐴

𝑖𝑙
(𝑡) 𝑥 (𝑡 − 𝑑)

= 𝑥
𝑇
(𝑡 − 𝑑) 𝐹

𝑇

2𝑖𝑙
Σ

𝑇

𝑖𝑗
(𝑡) 𝐸

𝑇

𝑖𝑙
𝑃𝑥 + 𝑥

𝑇
𝑃𝐸

𝑖𝑙
Σ

𝑖𝑙
(𝑡) 𝐹

2𝑖𝑙
𝑥 (𝑡 − 𝑑)

≤ 𝜀
2
𝑥
𝑇
(𝑡 − 𝑑) 𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙
𝑥 (𝑡 − 𝑑) + 𝜀

−1

2
𝑥
𝑇
𝑃𝐸

𝑖𝑙
𝐸

𝑇

𝑖𝑙
𝑃𝑥.

(15)

When 𝑤(𝑡) = 0, the function (14) can be given as follows:

.

𝑉 (𝑡) ≤

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

×

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝜉 (𝑡)) {𝑥

𝑇
[(𝐴

𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)
𝑇

𝑃

+ 𝑃 (𝐴
𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)

+𝜀
1
𝐹

𝑇

1𝑖𝑙
𝐹
1𝑖𝑙

+ 𝜀
−1
𝑃𝐸

𝑖𝑙
𝐸

𝑇

𝑖𝑙
𝑃 + 𝑆

𝑖
] 𝑥

+ 𝑥(𝑡 − 𝑑)
𝑇
𝐴

𝑇

𝑑𝑖𝑙
𝑃𝑥 + 𝑥

𝑇
𝑃𝐴

𝑑𝑖𝑙
𝑥 (𝑡 − 𝑑)

−𝑥
𝑇
(𝑡 − 𝑑) (𝑆

𝑖
− 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙
) 𝑥 (𝑡 − 𝑑) }

=

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑛

∑

𝑖=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

×

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝜉 (𝑡)) [𝑥

𝑇
𝑥
𝑇
(𝑡−𝑑)] [

𝑅
𝑖𝑙ℎ

𝑃𝐴
𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃−𝑆

𝑖
+𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]

× [
𝑥

𝑥 (𝑡 − 𝑑)
] .

(16)

That is,

.

𝑉 (𝑡) ≤

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑛

∑

𝑖=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

×

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝜉 (𝑡)) 𝜁

𝑇
(𝑡) [

[

𝑅
𝑖𝑙ℎ

𝑃𝐴
𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃 −𝑆

𝑖
+ 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]

]

𝜁 (𝑡) ,

(17)

where 𝜁(𝑡) = [
𝑥

𝑥(𝑡−𝑑) ]. So, we need to prove that
[

𝑅𝑖𝑙ℎ 𝑃𝐴𝑑𝑖𝑙

𝐴
𝑇
𝑑𝑖𝑙𝑃 −𝑆𝑖+𝜀2𝐹

𝑇
2𝑖𝑙𝐹2𝑖𝑙

] < 0, the closed-loop system (6) is asymp-
totically stable when 𝑤(𝑡) = 0.

Inequalities (9) are pre- and postmultiplied by the trans-
formation diag{𝑃, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑃}, respectively. In turn, we have
tha following:

𝑛

∑

𝑖=1

𝛼
𝑖

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝐴𝑖𝑙 + 𝐵𝑖𝑙𝐾𝑖ℎ)
𝑇
𝑃

+𝑃(𝐴𝑖𝑙 + 𝐵𝑖𝑙𝐾𝑖ℎ) + 𝑆𝑖 ∗ ∗ ∗ ∗ ∗ 0

𝐸
𝑇

𝑖𝑙
𝑃 −𝜀𝐼 0 0 0 0 0

𝐹1𝑖𝑙 0 −𝜀
−1

1
𝐼 0 0 0 0

𝐶𝑖𝑙 0 0 −𝐼 0 0 0

𝐵
𝑇

1𝑖𝑙
𝑃 0 0 0 −𝛾

2
𝐼 0 0

0 0 0 0 0 −𝜀
−1

2
𝐼 ∗

𝐴
𝑇

𝑑𝑖𝑙
𝑃 0 0 0 0 𝐹

𝑇

2𝑖𝑙
−𝑆𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0.

(18)

Due to Lemma 4, inequality (18) can be changed as follows:

𝑛

∑

𝑖=1

𝛼
𝑖
[

[

𝑅
𝑖𝑙ℎ

+ 𝛾
−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃 + 𝐶

𝑖𝑙
𝐶

𝑇

𝑖𝑙
𝑃𝐴

𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃 −𝑆

𝑖
+ 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]

]

< 0.

(19)

So, for any 𝑥 ∈ 𝑅
𝑛
\ {0},

𝑛

∑

𝑖=1

𝛼
𝑖

{

{

{

𝑥
𝑇 [

[

𝑅
𝑖𝑙ℎ

+ 𝛾
−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃 + 𝐶

𝑖𝑙
𝐶

𝑇

𝑖𝑙
𝑃𝐴

𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃 −𝑆

𝑖
+ 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]

]

𝑥
}

}

}

< 0.

(20)

Due to the switching law (11), for all 𝑡 ≥ 0, the inequality
is tenable as follows:

𝑥
𝑇[

[

𝑅
𝑖𝑙ℎ

+ 𝛾
−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃 + 𝐶

𝑖𝑙
𝐶

𝑇

𝑖𝑙
𝑃𝐴

𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃 −𝑆

𝑖
+ 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]

]

𝑥 < 0.

(21)

Let

Ω
𝑖
= {𝑥 ∈ 𝑅

𝑛
| 𝑥

𝑇

× [

[

𝑅
𝑖𝑙ℎ

+ 𝛾
−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃 + 𝐶

𝑖𝑙
𝐶

𝑇

𝑖𝑙
𝑃𝐴

𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃 −𝑆

𝑖
+ 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]

]

𝑥

< 0} .

(22)

Constructing the sets Ω̃
1

= Ω
1
, . . . , Ω̃

𝑛
= Ω

𝑛
− ⋃

𝑛−1

𝑖=1
Ω̃

𝑖
,

obviously, we have⋃𝑛

𝑖=1
Ω̃

𝑖
= 𝑅

𝑛
\ {0}, and Ω̃

𝑖
∩ Ω̃

𝑗
= Φ, 𝑖 ̸=𝑗.

Now, we focus on designing a switching law as follows:

𝜎 = 𝑖, 𝑥 (𝑡) ∈ Ω̃
𝑖
. (23)

When 𝑤 = 0, ∑𝑛

𝑖=1
𝛼
𝑖
[

𝑅𝑖𝑙ℎ 𝑃𝐴𝑑𝑖𝑙

𝐴
𝑇
𝑑𝑖𝑙𝑃 −𝑆𝑖+𝜀2𝐹

𝑇
2𝑖𝑙𝐹2𝑖𝑙

] < 0 is correct.

So, we have that
.

𝑉(𝑡) ≤ ∑
𝑛

𝑖=1
𝑣
𝑖
(𝑡)∑

𝑛

𝑖=1
𝜂
𝑖𝑙
(𝜉(𝑡))∑

𝑛

𝑖=1
𝜂
𝑖ℎ
(𝜉(𝑡))
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𝜁
𝑇
(𝑡) [

𝑅𝑖𝑙ℎ 𝑃𝐴𝑑𝑖𝑙

𝐴
𝑇
𝑑𝑖𝑙𝑃 −𝑆𝑖 + 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

] 𝜁(𝑡) < 0; so, the system is asymp-

totically stable.
From the design of switching law, we can obtain that

.

𝑉(𝑡) < 0, for all 𝑥(𝑡) ̸=0; that is, the switching fuzzy
controllers can make the system (6) asymptotically stable,
when 𝑤 = 0.

To demonstrate that the𝐻
∞
control problem of system is

solvable, we define that

𝐽 = ∫

∞

0

[𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝛾

2
𝑤

𝑇
(𝑡) 𝑤 (𝑡)] 𝑑𝑡. (24)

Thus, when the initial state is 𝑥(𝑡) = 0, for any nonzero
vector 𝑤(𝑡) ∈ 𝐿

2
[0,∞), the function 𝐽 can be written as

follows:

𝐽 = ∫

∞

0

[𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝛾

2
𝑤

𝑇
(𝑡) 𝑤 (𝑡) +

.

𝑉 (𝑡)] 𝑑𝑡

− [𝑉 (∞) − 𝑉 (0)]

= ∫

∞

0

[𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝛾

2
𝑤

𝑇
(𝑡) 𝑤 (𝑡) +

.

𝑉 (𝑡)] 𝑑𝑡 − 𝑉 (∞)

≤ ∫

∞

0

[𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝛾

2
𝑤

𝑇
(𝑡) 𝑤 (𝑡) +

.

𝑉 (𝑡)] 𝑑𝑡.

(25)

Due to the Lemma 3, the function (14) can be changed as
follows:

.

𝑉 (𝑡) ≤

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

×

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝜉 (𝑡)) {𝑥

𝑇
[(𝐴

𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)
𝑇

𝑃

+ 𝑃 (𝐴
𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)

+ 𝜀
1
𝐹

𝑇

1𝑖𝑙
𝐹
1𝑖𝑙

+ 𝜀
−1
𝑃𝐸

𝑖𝑙
𝐸

𝑇

𝑖𝑙
𝑃

+𝑆
𝑖
+ 𝛾

−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃] 𝑥

+ 𝛾
2
𝑤

𝑇
𝑤 + 𝑥(𝑡 − 𝑑)

𝑇
𝐴

𝑇

𝑑𝑖𝑙
𝑃𝑥

+ 𝑥
𝑇
𝑃𝐴

𝑑𝑖𝑙
𝑥 (𝑡 − 𝑑) − 𝑥

𝑇
(𝑡 − 𝑑)

× (𝑆
𝑖
− 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙
) 𝑥 (𝑡 − 𝑑)} .

(26)

So, the function 𝐽 can be further expressed as follows:

𝐽 ≤

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝜉 (𝑡))

× ∫

∞

0

{𝑥
𝑇
[(𝐴

𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)
𝑇

𝑃 + 𝑃 (𝐴
𝑖𝑙
+ 𝐵

𝑖𝑙
𝐾

𝑖𝑙
)

+ 𝜀
1
𝐹

𝑇

1𝑖𝑙
𝐹
1𝑖𝑙
+ 𝜀

−1
𝑃𝐸

𝑖𝑙
𝐸

𝑇

𝑖𝑙
𝑃

+𝑆
𝑖
+ 𝛾

−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃 + 𝐶

𝑇

𝑖𝑙
𝐶

𝑖𝑙
] 𝑥

+ 𝑥(𝑡 − 𝑑)
𝑇
𝐴

𝑇

𝑑𝑖𝑙
𝑃𝑥 + 𝑥

𝑇
𝑃𝐴

𝑑𝑖𝑙
𝑥 (𝑡 − 𝑑)

−𝑥
𝑇
(𝑡 − 𝑑) (𝑆

𝑖
− 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙
) 𝑥 (𝑡 − 𝑑)} 𝑑𝑡

=

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝜉 (𝑡))

× ∫

∞

0

[𝑥
𝑇

𝑥
𝑇
(𝑡 − 𝑑)]

[
[
[
[
[

[

𝑅
𝑖𝑙ℎ

+ 𝛾
−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃

+𝐶
𝑖𝑙
𝐶

𝑇

𝑖𝑙
𝑃𝐴

𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃 −𝑆

𝑖
+ 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]
]
]
]
]

]

× [
𝑥

𝑥 (𝑡 − 𝑑)
] 𝑑𝑡

=

𝑛

∑

𝑖=1

𝑣
𝑖
(𝑡)

𝑁𝑖

∑

𝑙=1

𝜂
𝑖𝑙
(𝜉 (𝑡))

𝑛

∑

𝑖=1

𝜂
𝑖ℎ
(𝜉 (𝑡))

× ∫

∞

0

𝜁
𝑇
(𝑡) [

[

𝑅
𝑖𝑙ℎ

+ 𝛾
−2
𝑃𝐵

1𝑖𝑙
𝐵

𝑇

1𝑖𝑙
𝑃 + 𝐶

𝑖𝑙
𝐶

𝑇

𝑖𝑙
𝑃𝐴

𝑑𝑖𝑙

𝐴
𝑇

𝑑𝑖𝑙
𝑃 −𝑆

𝑖
+ 𝜀

2
𝐹

𝑇

2𝑖𝑙
𝐹
2𝑖𝑙

]

]

× 𝜁 (𝑡) 𝑑𝑡.

(27)

From the design of switching law, we get that 𝐽 < 0; that
is, for any 𝑤(𝑡) ∈ 𝐿

2
[0,∞), ‖𝑧‖

𝐿2[0,𝑇]
< 𝛾‖𝑤‖

𝐿2[0,𝑇]
holds.

4. Simulation Example

The switched systems (1) consists of two fuzzy subsystems,
and each subsystem has two fuzzy rules; that is, 𝑛 =

2, and 𝑁
𝑖
= 2, where 𝑖 = 1, 2. Hence, we approximate the

system by the following modes:
𝑅

1

1
: if 𝜉

1
(𝑡) is𝑀1

11
, then

.

𝑥 (𝑡) = [𝐴
11
+ Δ𝐴

11
(𝑡)] 𝑥 (𝑡) + [𝐴

𝑑11
+ Δ𝐴

𝑑11
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵
11
𝑢 (𝑡) + 𝐵

111
𝑤 (𝑡) , 𝑧 (𝑡) = 𝐶

11
𝑥 (𝑡) ,

(28)

𝑅
2

1
: if 𝜉

1
(𝑡) is𝑀2

11
, then

.

𝑥 (𝑡) = [𝐴
12
+ Δ𝐴

12
(𝑡)] 𝑥 (𝑡) + [𝐴

𝑑12
+ Δ𝐴

𝑑12
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵
12
𝑢 (𝑡) + 𝐵

112
𝑤 (𝑡) , 𝑧 (𝑡) = 𝐶

12
𝑥 (𝑡) ,

(29)
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𝑅
1

2
: if 𝜉

1
(𝑡) is𝑀1

21
, then

.

𝑥 (𝑡) = [𝐴
21
+ Δ𝐴

21
(𝑡)] 𝑥 (𝑡) + [𝐴

𝑑21
+ Δ𝐴

𝑑21
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵
21
𝑢 (𝑡) + 𝐵

121
𝑤 (𝑡) , 𝑧 (𝑡) = 𝐶

21
𝑥 (𝑡) ,

(30)

𝑅
2

2
: if 𝜉

1
(𝑡) is𝑀2

21
, then

.

𝑥 (𝑡) = [𝐴
22
+ Δ𝐴

22
(𝑡)] 𝑥 (𝑡) + [𝐴

𝑑22
+ Δ𝐴

𝑑22
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵
22
𝑢 (𝑡) + 𝐵

122
𝑤 (𝑡) , 𝑧 (𝑡) = 𝐶

22
𝑥 (𝑡) ,

(31)

where

𝐴
11

= [
−5 1

4 −2
] , 𝐴

12
= [

−6 −2

5 −3
] , 𝐴

21
= [

−6 1

7 −4
] ,

𝐴
22

= [
−4 −3

6 −2
] , 𝐴

𝑑11
= [

0.1 0.6

0.6 0.2
] ,

𝐴
𝑑12

= [
0.3 0.4

0.5 0.3
] , 𝐴

𝑑21
= [

0.4 0.3

0.2 0.1
] ,

𝐴
𝑑22

= [
0.5 0.1

0.3 0.6
] ,

𝐵
11

= [
−1

−2
] , 𝐵

12
= [

1

−2
] ,

𝐵
21

= [
−1

−2
] , 𝐵

22
= [

1

−2
] , 𝐵

111
= [

0.4654

1.4937
] ,

𝐵
112

= [
0.3478

1.5417
] , 𝐵

121
= [

0.8324

1.6574
] ,

𝐵
122

= [
0.6497

1.8876
] , 𝐶

11
= [−1 −1] , 𝐶

12
= [1 −1] ,

𝐶
21

= [−1 −1] , 𝐶
22

= [1 −1] ,

𝐸
11

= 𝐸
12

= 𝐸
21

= 𝐸
22

= [
0.4

0.2
] ,

𝐹
111

= 𝐹
112

= 𝐹
121

= 𝐹
122

= [0.3 0.2] ,

𝐹
111

= 𝐹
212

= 𝐹
221

= 𝐹
222

= [0.2 0.1] ,

𝛼
1
= 𝛼

2
= 0.5,

Σ
11
(𝑡) = Σ

12
(𝑡) = Σ

21
(𝑡) = Σ

22
(𝑡) = 0.2 sin 𝑡,

𝑤 (𝑡) = 𝑒
−0.5𝑡 sin (2𝜋𝑡) .

(32)

The membership functions are, respectively,

𝜇
𝑀
1
11
(𝑥

1
) = 𝜇

𝑀
1
21
(𝑥

1
) = 1 −

1

1 + 𝑒−4𝑥1
,

𝜇
𝑀
2
11
(𝑥

1
) = 𝜇

𝑀
2
21
(𝑥

1
) =

1

1 + 𝑒−4𝑥1
.

(33)

Let 𝛾 = 1/√2, choosing 𝑢(𝑡) =

−∑
𝑛

𝑖=1
𝑣
𝑖
(𝑡) ∑

𝑁𝑖

𝑙=1
𝜂
𝑖𝑙
(𝜉(𝑡))𝐾

𝑖𝑙
𝑥(𝑡), where 𝑖 = 1, 2 and 𝑁

𝑖
= 2.

For the linear matrix inequality (9) of Theorem 5, the
following can be obtained with LMI toolbox:

𝑋 = [
6.3950 −1.4630

−1.4630 4.1467
] , 𝑄

1
= [

29.2473 −21.0996

−21.0996 71.6683
] ,

𝑄
2
= [

26.7269 −19.7250

−19.7250 69.5959
] ,

𝑊
11

= [22.5630 34.4393] , 𝑊
12

= [−30.4831 48.9880] ,

𝑊
21

= [6.0884 48.0289] ,

𝑊
22

= [− 14.9545 49.1351 ] , 𝜔
1
= 0.0087,

𝜔
2
= 0.0086.

(34)

Because 𝐾
𝑖ℎ
= 𝑊

𝑖ℎ
𝑋

−1, we have that

𝐾
11

= [5.9048 10.3884] , 𝐾
12

= [−2.2453 11.0215] ,

𝐾
21

= [3.9180 12.9647] , 𝐾
22

= [0.4050 11.9920] .

(35)

Designing the switching law by (11), the system state
responseswith the initial condition𝑥(0) = [

1

−0.8
] are depicted

by Figure 2 which is obtained by the Matlab simulation.
Obviously, the closed-loop switched fuzzy system is stable

under the corresponding switching laws and the robust
fuzzy controllers in Figure 3, in spite of the influences
by parameter uncertainties and time-delay, and possesses
the strong robustness. Comparing their results with others,
the simulation results indicate that the design controllers
can satisfy the robust performance requirements under the
corresponding switching laws.

5. Conclusions

In this paper, the problem of state feedback robust 𝐻
∞

control for a class of uncertain switched fuzzy time-delay
systems based on T-S models is discussed. The sufficient
condition in terms of the LMI is derived such that the
quadratic stability of the closed-loop systems is guaranteed.
A new type of continuous state feedback PDC controllers
are built to ensure the asymptotically stable closed-loop
system with 𝐻

∞
disturbance attenuation level 𝛾, with the

switching law designed to implement the global asymptotic
stability of uncertain fuzzy time-delay switched systems. The
results are also extended to the interval fuzzy time-delay
systems. Simulation results demonstrate that a quality control
performance has been achieved.
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Alternative material flow strategies in logistics networks have crucial influences on the overall performance of the networks.
Material flows can follow push, pull, or hybrid systems. To get the advantages of both push and pull flows in networks, the
decoupling-point strategy is used as coordination mean. At this point material pull has to get optimized concerning customer
orders against pushed replenishment-rates. To compensate the ambiguity and uncertainty of both dynamic flows, fuzzy set theory
can practically be applied. This paper has conceptual and mathematical parts to explain the performance of the push-pull flow
strategy in a supply network and to give a novel solution for optimizing the pull side employingConwip system.Alternative numbers
of pallets and their lot-sizes circulating in the assembly system are getting optimized in accordance with a multi-objective problem;
employing a hybrid approach out ofmeta-heuristics (genetic algorithm and simulated annealing) and fuzzy system. Twomain fuzzy
sets as triangular and trapezoidal are applied in this technique for estimating ill-defined waiting times. The configured technique
leads to smoother flows between push and pull sides in complex networks. A discrete-event simulation model is developed to
analyze this thesis in an exemplary logistics network with dynamics.

1. Introduction

Today, after spanning the extension phase from simple com-
panies towards supply chains and correlated networks, more
complex logistics processes have been burdened to industries
[1]. Under the pressure of global competitions, continuously
changing business environment, mass customized products,
and transient demands, not only the individual plant, but
also the logistics networks have rather acquired decisive roles
for achieving excellence. Accordingly, planning and control
of material flows within individual factories and supply
networks have become one of themost complex tasks in prac-
tices.The complexities accompanied with collaborative logis-
tics networks are the consequences of the paradox in inte-
grating the members of a network, while they have their own
requirements and performances [2]. Indeed, material flows,
inside shop floors, besides integration, and coordination of
flows throughout logistics networks have engaged the most
planning and control potentials in manufacturing organiza-
tions. Concerning the changing business environment, more

flexible systems are required to fulfill customers’ demands
more quickly [3]. Since being responsive to customers is
an inevitable factor for sustainment in such markets [4],
several material flow strategies and production systems can
be employed, for example, flexible manufacturing systems,
hybrid systems, and distributed and autonomous control
systems [5–7]. Although mass production originally follows
material push strategy by higher production rate and higher
benefits, for some other production approaches material
pull reflects better performance [8]. Appropriately selecting
a material flow system directly contributes to the ultimate
performance of production systems. Implementation of push,
pull, or both strategies has a direct effect on performances of
the overall logistics processes in a network.

Moreover,manufacturing enterprises are confrontedwith
continuous changing conditions inside their processes, called
dynamics, which are supposed to be handled by more
intelligent strategies. For example, mass customized products
force supply networks to follow make-to-order (MTO) or
engineer-to-order (ETO) production strategies to comply
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with individual demands. The recent production strategies
burden more pressure on logistics networks to operate based
on real demand and at the right time. This issue can result
in real-time operations, which impose more agile systems
by means of better regulated systems, for example, pull
strategies. In the literature it is argued that push strategy,
for example, MRP, results better when high variety exists
and demand fluctuates [9]. On the contrary, traditional
pull strategies, for example, Kanban, comply better with
preferably stable demands and low variety in products [10].
Indeed, different material flow strategies have their own
benefits and drawbacks. Shifting from totally push systems
to Kanban system, that is, fully pull system, may result in
some shortcomings in facing uncertainties in new business
environments. Therefore, a clever strategy is required to deal
with such conditions and to employ advantages of several
material flow control strategies [11]. For this purpose, some
hybrid systems have been practiced, for example, CONWIP,
Polca, andG-Polca, in shop-floor aswell as Leagility approach
in supply networks [12, 13]. These flow control strategies
compensate the potential drawbacks of merely using a strat-
egy and, at the same time, protect production systems from
getting failed or overproduction. Furthermore, employment
of hybrid strategies supports the targets of responsiveness,
quickness, flexibility, reliable delivery, and agility as well as
leanness in logistics [11].

In general, most of the above-stated systems have empha-
sized production and shop-floor logistics, while they can be
effectively applied by supply chains and logistics networks
as well. For instance, a logistics network with application of
material pushup to a specific point, called decoupling point
(DC) [14], can have push planning and control systems (like
MRP), whereas the downstream of DC can follow pull or
hybrid push-pull control system. This is specifically useful
for benefiting from both control concepts and still remaining
flexible. Nevertheless, coordination of downstream, with pull
system, along with upstream, by means of push flow, is
a challenging issue in such networks. This specific hybrid
system for complex logistics networks is selected to be
studied in this paper. Although the current study is a part
of a greater research project which proceeds with material
flow control throughout supply networks, this paper only
focuses on the pull section of hybrid system and tries to
optimize the number of carrier carts (pallet) and their lot
sizes for smoother flows. For this purpose, a discrete-event
simulation scenario of a hybrid logistics network is developed
facing dynamics in their processes (material replenishments
and demands). In the pull side a CONWIP (constant work
in process in pull environment) technique is developed to
control the flow of materials and the pallets, representing
the control means in CONWIP. Correspondingly, the rec-
ommended hybrid concept contributes to the improvement
of logistics performance measures, for example, throughput
time (TPT), throughput (TP), responsiveness, utilization, and
work in process (WIP) [15]. The dynamics include stochastic
demands, fluctuating supply, and uncertain processing times
of operations that resemble real-world problems in logistics.
Several stochastic variables affect material flow control both
at shop floors [16] and, in a broader scale, throughout logistics

networks. Abundance of dynamic factors and their causal
effects on flows’ performances make a complex optimization
problem of flows in the pull side that aims at the least
collection of stocks in the system.

The particular assumption in this paper is that the push
side can be optimized by means of MRP system, while
optimization ofmaterial pull is not straightforward regarding
the real-time control and the required coordination of both
sides of flows (demand and supply). Therefore, this study
highlights the general strategies dealing with uncertainty and
fluctuations in material flows over supply networks and at
shop floors. Particularly, it complies with two main parts
as theoretical comments on the material flow strategies in
supply/logistics networks by focusing on better coordination
of material pull from DC to final customer. In doing so, a
brief introduction is given to possible material flow systems
in supply networks, facing uncertain processing times.Then it
directly proceeds with a practical solution in the optimization
of material flows after DC in networks. In this way, the supply
network for optimizing its pull control is developed that
considers uncertainty of customer orders, stochastic material
push replenishments in DC, and stochastic processing times.
For finding the optimum combination of effective factors,
genetic algorithm (GA) as a stochastic optimization method,
known as metaheuristic, is chosen to solve the optimization
problem of pull flows, as in [17].This optimization procedure
regards the number of pallets and lot sizes in the pull section.
Besides, to prove the performance of metaheuristics in such
a dynamic problem, simulated annealing (SA) is partially
experimented too.

To recognize the uncertain and ill-defined processing
times in flows control fuzzy set theory against the con-
ventional crisp estimations is employed. In other words,
control of distributed pallets in an optimum manner under
an ill-defined circumstance requires more smart control
techniques. Therefore, fuzzy system is applied to manage the
ambiguous situations in locally decision makings for better
routes. Besides, GA and SA are exploited to competently
cover the huge range of combinations that a distributed
control systemmay build under dynamics and uncertainty to
meet specific demands. The target is to show the importance
of metaheuristic methods and fuzzy system in dealing with
complex as well as uncertain material flow systems.Themain
contributions are to show the privileges of fuzzy control
system for smoothing the flow of distributed pallets, the
contribution of heuristics in approximating the optimum
combination values of just some key factors of pull flows
in a logistics networks, for example, number of carts, and
flexible lot sizes, and the simplicity and applicability of fuzzy
set theory in solving multiobjective problems by means of
defining satisfaction degrees.

The rest of the paper is organized as follows. Section 2
proceeds with a brief explanation about the types of material
flow control systems. Section 3 refers to GA and its approach
in solving stochastic optimization problems. Section 4 con-
cisely describes the algorithm of SA as an alternative to
GA. Section 5 shortly introduces the application of fuzzy
set theory in production and logistics. The logistics network
scenario is clearly given in Section 5. The problem solution
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is displayed in Section 7 that represents the application of
fuzzy control system and its set theory in material flow
control and solving multiobjective optimization problems.
Experimental results are depicted in Section 8 by means of
several 3D graphs.The summary and further works are given
in Section 9.

2. Material Flow Control System

Generally, the systems of material flow control can be
classified into push and pull mechanisms [13]. Each of
which systems has some advantages and drawbacks, for
example, under control inventory for pull systems and
profiting from forecast information for push systems are
the advantages of both control mechanisms [18]. In case
of uncertainty, that is, variability, and volatility in produc-
tion networks these flow systems can be used to com-
pensate the undesirable effects of uncertain supply and
demand [19]. However, these two pure systems trigger
a spectrum of flow strategies between two manufactur-
ing points maybe two workstations or (in a macroscale)
two members of a supply network. Below the two con-
trol systems and a hybrid approach of them are concisely
explained.

2.1.Material PushControl. Conventionally,material flow sys-
tems have been worked in accordance to push-flow control,
by means of pushing materials to next processing steps as
soon as processing of them is finished at the current step.
In other words, the production (flow) of materials is planned
beforehand based on forecasted demand or some predefined
information about demand. However, if the production line
or workstations are not balanced together, work in process
(WIP)may be collected everywhere aswell as overproduction
may occur, as the consequence of this performance. Indeed,
push control mechanism is assumed more appropriate for
mass production and make-to-forecast (MTF) strategies
with balanced lines [20]. Nevertheless, line balancing is a
challenging issue by itself when the production system (order,
supply, processing-time) is unstable. Material requirement
planning (MRPI) is a well-known method categorized as a
push control system [18]. According to theMRPImechanism,
flow of materials is planned in advance based on forecasted
demand and without any concern about real capacity or
current demand. Despite the fact that capacity utilization
is quite high with push specifications (in advance planning
and predefined logistics operations), this control mecha-
nism suffers from some shortcomings. These drawbacks are
basically in opposite to logistics’ targets, that is, they result
in higher WIP and inventory level, blind production, and
less flexibility in plan and schedule. Moreover, in spite of
the specifications in pure push mechanisms, some authors
partially classify drum-buffer-rope (DBR), starvation avoid-
ance, G-Polca, and even CONWIP mechanisms as push
control systems [13, 21, 22]. Nevertheless, classification of
some of these systems as pure push mechanisms does not
completely reflect their performances, for example, CON-
WIP.

2.2. Material Pull Control. In contrast, generally, material
pull control usually operates based on current demand of
the upstream customer. This control strategy is originated
by Toyota production system (TPS) in the form of Kanban
system [23]. The material pull mechanism in the context of
TPS has made a breakthrough at Toyota and later at other
adherent industries for a long time. Nonetheless, this flow
mechanism encounters some difficulties when demand is
oscillating and processes are inherently uncertain [24, 25].
The strategy of pullmechanism is simply to fulfill the required
material of customer (internal/external) just in time (JIT),
so that ideally no blockage and starvation occur. Normally,
blockage and starvation happen to pull mechanism, while in
push with infinite capacity only starvation can be realized
[26]. In addition to Kanban and partially the CONWIP, the
Paired-Cell Overlapping Loops of Cards with Authorization
(Polca) [27] and in part the Synchro-MRP [28] can be
categorized in the pull control system as well. However these
two later mechanisms, like the other semipush mechanisms,
exploit some aspects of push control. In this manner, several
hybrid control systems have been developed to resolve the
drawbacks accompanied with pure pull or push systems.
Among them CONWIP and Polca mechanisms can be
mentioned.

2.3. Hybrid Push-Pull Control. Contrary to MRP system, as
a centralized control mechanism with push approach, pull
mechanisms are categorized as distributed control systems.
As mentioned before, pull control generally works based on
WIP limitation and current demandof the local working area,
whilst push systems perform based on predefined material
flow plans with considering forecasts. However, simultane-
ous application of both push and pull systems reflects a
twofold view by a seamless control of material flow, while
it streams the flow. In developing a hybrid system following
contributions occur. Firstly, by employing a push mechanism
(by a central control) the release dates of operations in
global context can be defined. Meanwhile, in contributing
to the global context, the employed pull control performs
based on local situations of WIP to facilitate smoother flows.
Consequently, in this context, global and local factors interact
with each other in a positivemanner.This approach enhances
the coordination of the entire logistic system facing dynamic
challenges. However, simultaneous employment of the push
and the pull systems is not necessarily required. Inspired by
shop floors control systems, some suggested control strategies
for logistic networks can be sorted as follows:

(i) dividing the entire logistic network into two parts as
push and pull, which is broadly discussed as Leagile
supply chains [29],

(ii) employing both the push and the pull control systems
simultaneously within each member of the network
or throughout the whole network, like: CONWIP
and G-Polca (this type needs high flexibility entirely
which is subject to have distributed and intelligent
control system),
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(iii) inspired by Polca, dividing the network into paired-
cells and applying the material release date by push
system as well as WIP limitation by pull cards.

These listed options are some assisting strategies for
profiting from alternative material flow controls in case of
fluctuations and variations in demand and supply. However,
in realizing these three alternatives material flow scheduling,
that is, work dispatching rules and workload balancing (par-
ticularly in shop floors echelon), is still a challenging issue
in that order. Nevertheless, in this paper, the first proposed
option is considered to be analyzed with regard to inventory
control andwork dispatching (assignment) concerns. Indeed,
this hybrid flow system is being practiced in manufacturing
industries like automotive [30, 31], for example, Daimler
AG locates its DC before painting shop of bodies. Here,
the downstream of a logistic network with material pull
flow is optimized to coordinate the collision point (DC) of
both push and pull flows close to the end customer. The
flows in this point require to be optimized to avoid any
condition of overloaded inventory. Respectively, the tasks of
workloads balancing and job dispatching are assigned to an
autonomous control system, which is briefly explained in the
next section [32]. This autonomous control basically follows
the bottleneck control rule, but is based on self-decisions of
autonomous objects and less queue length estimation (QLE)
[33].

3. Logistic Network Scenario

3.1. General Structure. Today, thanks to the achievements in
simulation, complex problems, like material flow control in
logistic networks with a broad solution space, can be solved
easier and quicker. A combination out of simulation and
heuristic methods with quick response time is preferred to
those conventionalmodel-basedmathematical solutionswith
relatively long optimization time. This holds specifically true
for alternating circumstances in industries. In this regard, an
exemplary logistic network scenario is modeled by discrete-
event simulation software to present the improvement of
material pull flow in a push-pull flowmechanism throughout
the network.

Plant-Simulation is a discrete-event based simulation
package developed by Siemens. The inventory policy, service
levels, and so forth are arbitrary adjustable. However, in
the current simulation, the policy of entrance inventory at
OEM is set to priority rules (depending on the availability
of respective pallets for the products in the inventory), and
the rest buffers and inventories are set to first-in-first-out
(FIFO) policy. The service level of the simulated production
network at the inventory is dependent on the transportmeans
and sources production rates. But the geranial service level
is reflected into the satisfaction degree of the manager by
means of more total delivery (throughput) at the customer
side. Moreover, the inputs of the simulation model are some
distribution functions for generating production intervals at
sources and also some stochastic demands for sinking these
produced products at the exit of OEM.The general outputs of
the simulation are several statistics of performance indicators

of production systems that some are used by the optimization
function.

However, the enhancement in material flows by means
of this mechanism is achieved by simulating metaheuristics,
that is, GA and SA, for flows in this study. It is shown that
metaheuristic algorithms can just optimize two factors (out of
several potential ones) at the pull side of the network to reflect
a reasonable solution for smoothing the flows throughout
the network. Indeed, this contribution directly coordinates
the push-pull collision point just by optimizing the pull-
side material flow. The simulation model is developed to
apply an offline optimization approach, using GA as the
main contribution and using SA as the justification of GA
performance. However, metaheuristics may be employed as
online or real-time control system. For example, in practice,
this can be carried out by autonomous pallets within a pull
principle production system [32, 34].

In material pull systems, pallets (or any means of trans-
port like fixtures) circulate permanently within logistics
systems; thus, such pallets can be used as pull signals [24].
Pallets as local and distributed logistic objects have the chance
to concurrently evaluate the system anddecide for optimizing
the sequence of the next steps without a global controller.
Since GA and SA are global search techniques [35], the
optimization process is considered to be offline to have all
data at once; so that it makes it possible to use the entire
information at the original equipment manufacturer (OEM)
in the exemplary network.

The simulated network is constructed out of three steps
of processing plants. In step one, two source plants (𝑃

11
, 𝑃
12
)

are considered to produce three types of raw materials. Each
plant produces the counterparts of the other raw materials
at the other source plant. Every type of raw material has
to be assembled with its counterpart in the next step. The
step two has two assembly plants (𝑃

21
, 𝑃
22
), which have

comparable processing capabilities. Therefore, the plants in
step one are fully connected to the plants in step two, so
that the semifinished parts can be allocated to them based
on bottleneck control concept; that is, the plant with less
queuing in entrance inventory has priority. Finally, the plants
in step two transfer their assembled products (which are
now just three types) to the last plant (OEM). This specific
structure of the network reflects several characteristics of a
complex logistic network, for example, differentiation and
alternation in supply of counterpart products from different
suppliers, arrangement of DC close to the end customer, and
smart allocation of pushed replenishments by considering
the current requirement of either customer plant. DC can
be shifted to customer side or supplier side depending to
the production strategy; this issue is already experimented in
[24]. Universally, from the sources up to the entrance of OEM
products are pushed regarding the forecasted demands and
existing plan, whilst just inside OEM (in downstream from
the entrance inventory) pull principle is applied.This strategy
is to meet fluctuations in demands of final customer for the
three final-product types over the simulation time horizon.
Figure 1 shows the overview of the exemplary network.

In order to reflect alternations in demand of each type
of product, orders are triggered to OEM with time intervals
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Figure 1: Exemplary push-pull network, with lasting each round trip 4 hours for transporters.

Table 1: Processing times for each product on each line.

Processing times [h:min] for each plant

Plant 𝑃
11
; 𝑃
12

𝑃
21
; 𝑃
22

𝑃
3
(OEM)

Line
Deterministic value Mean value (𝜇𝑢)

Product type 1 2 3 1 1 2 3
Type 1 2:00 3:00 2:30 0:50 2:00 2:40 2:20
Type 2 2:30 2:00 3:00 0:50 2:20 2:00 2:40
Type 3 3:00 2:30 2:00 0:50 2:40 2:20 2:00

following the exponential distribution in the first alternative
and normal distribution in the second one. Hence, final
demand is stochastic based on time intervals between each
order of products. Equation (1) represents the used negative
exponential distribution (Neg-Exp) for intervals. Neg-Exp is
a common model for representing the intervals of customer
random arrivals as Johnston and Boylan [36] say “. . . with a
random arrival of independent customers, the order arrival
process could be modeled as a Poisson stream and, therefore,
a negative exponential distributionwould be a realisticmodel
for the inter-order interval.” Moreover, consideration of nor-
mal distribution by practice oriented studies is also typical,
for example, [37], and it is considered to be experimented
against the first alternative. For the first alternative, the mean
value (2 hours and 30 minutes 𝛽𝑒 = 2:30 for each type) is
assumed a bit bigger than themean supply rate to collectWIP
at the entrance inventory of OEM. The mean value and the
variance in (1) are respectively denoted by (𝜇𝑢 = 1/𝛽𝑒 and
𝜎
2
= 𝛽𝑒
2). For the second alternative, the mean value is 2

hours and 30 minutes: 𝜇𝑢 = 2:30 and the standard deviation
is (𝜎 = 10min):

𝑓 (𝑥) =
1

𝛽𝑒
⋅ exp(− 𝑥

𝛽𝑒
) . (1)

It is noticeable that inside each plant, except the assembly
ones in step 2, a 3 × 3matrix of workstations is devised. This
matrix configures three similar production lines in parallel,
which are fully coupled to every workstation in the next
column. This resembles the flexible flow shop problem in
general and is selected based on a predefined problem at the
research cluster CRC 637 about autonomy in logistics at the
Bremen University (http://www.logdynamics.com/).

However, the purpose of this fully coupled system is to
simulate a highly flexible logistic system with the capability
of employing autonomous logistic objects for self-organizing
material flow. As one alternative, autonomous objects by
collecting local information about successive queues (buffers
in front of each station) and by using bottleneck control
rule decide which route has the least waiting time to pro-
ceed. This specific control system (called QLE) has been
discussed in previous papers, for example, [7, 10, 11, 33].
Alternatively, without considering any autonomous carrier
objects, a conventional flow control (Conv) can be developed
to just proceed through the stations with the least predefined
processing times without any updating. These are later
experimented in the simulation. Table 1 shows the processing
times of each workstation inside every plant of the network.
Just for OEM the processing times are considered stochastic
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Table 2: Applied notations in the problem.

Notation Description
𝜇𝑢 = 1/𝛽𝑒 Mean value of distribution
𝜎 Standard deviation
𝑋 Random variable
𝑃 Product type, 𝑝 = 1 ⋅ ⋅ ⋅ 𝑃; 𝑃 = 3
𝑇 Time, 𝑡 = 0 ⋅ ⋅ ⋅ 𝑇; 𝑇 = 80 × 24 hours

ALTPT
𝑝

Average local throughput time (in
OEM at 𝑇)

AGTPT
𝑝 Average global throughput time at 𝑇

TD
𝑝

Total delivery of product 𝑝 at time 𝑇
𝜇
𝐴

Membership value of fuzzy set 𝐴
Lsize Capacity of a pallet [1 10]
𝑒 Upper bound of the fuzzy number 𝜇
WIP
𝑝 Maximum OEM inventory

𝜑, 𝛿
Importance weights; may be chosen
arbitrarily by decision-maker

𝑓
𝑖

Fitness value of chromosome 𝑖

Pr
𝑖

Selection probability value of
chromosome 𝑖

Te Current temperature in SA
Temin The least temperature in SA
𝑐 The cycle number in the loop of SA
𝐴 Fuzzy set
NPallet Number of pallets in system [10 60]
𝑏 Lower bound of the fuzzy number 𝜇

with the normal distribution, where the standard deviation is
equal to (𝜎 = 𝜇𝑢/10). Besides, the mean of processing times
is identical to the mean intervals of products’ replenishment.
These values are empirically extracted from several simu-
lation runs toward smoother and coordinated flows. Each
simulation experiment is run for 80 days each 24 hours to
make authentic results.

The used flow strategy in the simulation is as follows.
In step 1, materials are discharged to the network based
on release dates following normal distribution. The normal
distribution is arbitrarily assumed for time intervals between
each release with 𝜇𝑢 = 50min and 𝜎 = 5min. Correspond-
ingly, the three product types are randomly released to the
system and pushed forward to the next step. In contrast, in
downstream of the network customer orders are triggered
within a stochastic manner, using exponential time intervals.
The downstream control of pull material at OEM operates
based on a form of CONWIP system. In other words, the
orders pull the semifinished products from the entrance
inventory of OEM and then the pallets are pushed toward the
exit of OEM. Availability of circulating pallets at the entrance
of OEM is the signal of stated demand and the pull signal.
In fact, pallets do the duty of CONWIP cards or signals here.
They are pushed by the merit of autonomous control (self-
selection of next station with least queue) to the downstream
of the shop-floor after picking up their respective products
[32]. Eventually, uncertainties in the pushed replenishments

at the entrance inventory and the stochastic pulled orders
result in a chaotic performance at the collision (decoupling)
point of push-pull. Therefore, this chaotic system must get
coordinated toward an optimum solution with less inventory
quantity.

3.2. ProblemStatement. Thecurrent network scenario resem-
bles a multiobjective optimization problem that minimizes
the average local throughput time (ATPT), the average
global throughput time (AGTPT), and the entrance inventory
(WIP) of OEM, as well as maximizing the total deliveries
(TD) to the end customers. Since there are several stochastic
and vague defined variables which directly or indirectly
influence the performance of the model and the optimization
process, this problem is very complex to be formulated and
solved by conventional mathematical solutions. Thus, as an
alternative solution it is decided to employ simulation with
the assistance of metaheuristics to realize the objective of
the problem without mathematically modeling the existing
constraints. These multiobjectives can be compactly written
in one objective form with minimization target like (2). The
used notations for the multiobjectives are given in Table 2.
However, the unique objective out of the multiobjectives
can only be formulated in a compact equation when all
single objectives have a unique unit or they all can be
written without units.Therefore, further synthesis is required
to achieve a uniform objective equation. This is broadly
explained in the solution section:

Min ∑
𝑃

(
ALTPT

𝑝
+ AGTPT

𝑝
+WIP

𝑝
× 𝜑

TD
𝑝
× 𝛿

) . (2)

To explain this optimization problem,material flow flexibility
as well as push rate (uncertainty in replenishment time of
semifinished products) has to be considered. On the other
side, the stochastic time of customer orders on the pull side
have to be taken into account as well. For this purpose, the
flexibilities in the simulation are as considered as flexible
lot sizes and number of cyclic pallets in carrying products,
which are the optimization factors. Besides, the autonomous
control for pallets in selecting their own routes is another
flexibility factor. This issue is not heighted in this paper, for
more information see [32]. However, one great accompanied
complexity with this scenario is the on-time arrangement
of empty pallets to be available at the entrance inventory
to pick up the upcoming products. This arrangement has to
regard the respective orders of each product pallet. It can be
optimally achieved when supply, demand, and production
rates at OEM are coordinated with each other as much as
possible. Thus, an intelligent heuristic algorithm plus several
experiments is required to find the optimality of the decisive
variables in those regards.

Since the time of pushed replenishments as well as
upcoming demands is uncertain (leading to fluctuations),
the number of pallets (CONWIP carts) and lot sizes can be
considered as optimizing factors for making tradeoffs in the
oscillating flow problem. However, their exact contributions
to the objective are mathematically difficult to be defined in
advance. These characteristics of the problem make strong
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reasons for employing simulation and heuristic methods for
solving it in a proper way.

As aforementioned, the selected heuristics for the current
problem are GA and SA. Here, the core target is to show
the suitability of the metaheuristics (e.g., GA and SA) for
optimization material flow throughout the network. For
instance, in using GA it can be possible just to minimize a
fitness function of a problem, like (2), to achieve the optimum
objectives within an evolutionary procedure. Additionally,
with regard to the vague information about processing and
waiting times and other processes at the shop floor of OEM,
the superiority of fuzzy sets in better distinguishing uncertain
processing times is to be explored. Besides, application of
fuzzy set theory can facilitate the normalization and unifica-
tion of the disparate multiobjectives of the model, which is
represented following.

4. Genetic Algorithm

In general, a number of optimization methodologies have
been introduced to solve complex problems, for example,
nonlinear and NP-hard. As a competent evolutionary tech-
nique, GA is defined as a stochastic optimization method
based on heuristic procedures [38]. It has been shown that
GA is able to approximately find the optimum solution for
complex problems within a fairly quick time. Universally,
optimization process ofGA starts with randomly generating a
population of solutions (individuals), which are in the format
of genotype. The specification of a solution can be stored in
one or more chromosomes that a chromosome by itself is
made of an ordered sequence of single genes. In each gene a
single parameter of a coded solution (genotype) is stored. In
fact, a genotype carries the coded solution, whose decoded
form to the original solution is called phenotype. Moreover,
the position of a gene in a chromosome is named locus [39].
Frequently, to codify a problem the binary-based encoding
procedure is selected; nonetheless, encoding is not limited to
binary values, for example, integer values are used here.

Basically, the initial population, which is normally gen-
erated randomly, is subject to get improved to achieve the
optimum solution. In doing so, GA employs two strong
driving engines to produce new solutions without having any
knowledge in prior, that is, selection and adaption operations,
in which crossover and mutation functions are driving
engines. Generally, for crossover function two individuals
from a population are considered to be merged and produce
either one child (offspring) or two children. Respectively,
there are one-point or multipoint crossover procedures for
running this function in GA. Similarly, mutation is also a
function of optimization procedure which avoids local traps.
For example, changing a gene in an individual and shifting
one/some gene(s) fromone locus to other one(s) are twoways
of mutation procedure. Inversion of an individual’s genes can
be assumed as mutation as well. Basically, the procedure of
GA applied in this paper can be reflected as in Figure 2.

Furthermore, optimization elements in GA are depen-
dent on fitness function values, evolution of individuals,
and selection method [40]. Fitness function is an objective

function to evaluate individuals and assigning a fitness value
to each of them. Accordingly, the fitness values of individuals
in a generation define the chance (probability) of each
individual in being selected for the next generation. Usually,
the best individuals breed the next generation and eliminate
the weak performing solutions. In doing so, after generating
enough new individuals in a generation each fitness value
of them is measured. Afterwards, depending on the type of
selection operator, their selection probabilities, proportional
to each other, can be calculated. Correspondingly, weak
individuals are substituted by those with better performances
in solving the problem as the parents for the next generation.
Afterwards, the new population of solutions is produced by
means of reproduction operator.

However, selection methods can have different mech-
anisms for selecting the parents of the next generation,
for example, roulette-wheel selection, stochastic remainder
selection, stochastic universal sampling, and tournament
selection [41]. For the sake of simplicity in this paper and
regarding the homogeneity merit in defining probabilities,
the roulette-wheel selection method is employed to evaluate
the solutions. Indeed, the roulette-wheel function measures
a probability of selection for each individual by getting the
mean value of the fitness (𝑓

𝑖
) of an individual in proportion to

all observations of the fitness values. Equation (3) defines the
probability function of roulette-wheel selection. Here, 𝑁 is
the number of individuals in current population. The higher
the probability value, the more chances the individuals have
to get selected. Furthermore, SA as another metaheuristic
technique can be used as an alternative to GA in some
optimization problems. This technique can justify the per-
formance of GA in the specific application at the current
problem:

Pr
𝑖
=

𝑓
𝑖

∑
𝑁

𝑗=1
𝑓
𝑗

. (3)

5. Simulated Annealing

Simulated annealing is a stochastic search technique inspired
by statistical mechanics. Similar to GA, the metaheuristic
algorithm of SA is suitable for solving global optimization
problems with large solution space. The algorithm is initially
introduced by [41] based on the physical annealing process
in metallurgy. Basically, SA performs according to the low-
energy state principle in aligning metal atoms, which is
dependent on gradually cooling the temperature in annealing
process similar to thermodynamics. The general algorithm
of this method is shown in Figure 3. In this work, the step
function, in decreasing the temperature after each loop,
follows (4), where Te notices the current temperature, Temin
is the least temperature, and 𝑐 denotes the cycle number in
the loop. For more information about different strategies in
SA see also [40, 42]:

Step = exp( 𝑐 − 1

ln (Te/Temin)
) . (4)

The special use of cooling procedure assists the algorithm
to avoid local optimum solutions and optimistically escape
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Figure 2: General genetic algorithm.

from local traps towards global optimum in a given amount
of time.

6. Review on Fuzzy Set Application

Fuzzy set theory is considered as a powerful set theory for
characterizing ill-defined, uncertain, and stochastic nature of
practical operations in complex systems [43], like vagueness
in logistics [44]. Practitioners are aware that any human-
centered problems in industries, for example, processing
times, due dates, and delivery time, forecasting, are uncertain
and imprecise in nature [45]. Specially, in case of logistics
operations it can be seen that customers’ orders appear
stochastically with ambiguity, so that the respective informa-
tion is usually imprecise throughout supply networks. For this
purpose, a fuzzy control system by employing fuzzy numbers,
their membership functions, and defining fuzzy rules (fuzzy
inferring) can distinguish the existing uncertainties as well as
making tradeoffs in case of imprecision in practice.

In particular here, stochastic processing times, thanks to
normal or exponential distribution, causes imprecise esti-
mation over the waiting times in queues and, consequently,
uncertainmaterial flow scheduling and control.This problem
can be better solved by taking into account the fuzzy nature
of the operations and arranging fuzzy rules for inferring
improved decisions. Respectively, IF-Then inference fuzzy
rules reflect the policy of decision makers for the objectives
of similar problems [46].
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Create random
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or rand < prob
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max tries for this

Calculate new energy

step
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𝑇

𝐸new ,
Δ𝐸 = 𝐸new − 𝐸old

Decrease 𝑇 by

𝑇 > 𝑇min

𝑋oldconfiguration

Figure 3: The flow chart of SA algorithm.

Desirably, fuzzy sets can directly assist the solution of
normalizing multiobjective problems [47] with disparate and
conflicting targets. Introduction of satisfaction degree by
means of fuzzy sets theory enables decision makers to trans-
form the multiobjectives of such problems into a normalized
unique linear and unitless objective. This alternative reflects
the satisfaction’s amount of a decision maker in achieving
(near)-/optimized values for each single objective and, there-
upon, builds tradeoffs between them.This is briefly explained
in the solution section. Depending on each objective, various
fuzzy membership functions can be employed to reflect the
satisfaction of decisionmaker. However, the functions should
be simple for arithmetic operations. A good application of
this solution is recently presented by [46].

In addition to the above privilege of fuzzy set theory in
operational problems, estimation of imprecise waiting times
at each buffer of stations can also be a suitable application
of fuzzy sets in material flow control. In order to configure
the best routing for each specific material with alternative
processing times among several possibilities, different fuzzy
functions can be employed for time estimation. Indeed, fuzzy
numbers simulate the imprecise processing andwaiting times
of parts in each processing steps.
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In General, several shapes can be applied for defining
membership functions in fuzzy sets that amongst them are
triangular, trapezoidal, Gaussian, and s-curve [48]. Each of
these functions can be allocated to a specific application in
industry; nonetheless, the arithmetic operations of them are
usually not similar and easy handling. For instance, the
triangular fuzzy membership function, because of its simple
arithmetic operations, is often considered in the literature
for modeling uncertain processing times. This membership
function is represented by a triplet (𝑎

1
, 𝑎
2
, 𝑎
3
) as defined by

(5); see Figure 4. While 𝑎
1
is the lower bound and 𝑎

3
is the

upper bound of the fuzzy number (𝐴) with membership
degrees of zero (𝜇

𝐴
= 0), 𝑎

2
is themodal point (middle range)

with membership degree of one (𝜇
𝐴
= 1). However, the other

simple function to be used in manufacturing operations is
trapezoidal. This function is denoted by a quadruple (𝑎

1
, 𝑎
2
,

𝑎
3
, 𝑎
4
) and can be defined by (6), see Figure 4. Trapezoidal

function has almost the same arithmetic characteristics of
triangular functions based onZadeh extension principle [49].
Thus, it is also comfortable to be used in straightforward
computations [50]. On this basis, these two functions are
selected to be employed in this paper:

𝜇
𝐴
=

{{{{{{{{{

{{{{{{{{{

{

0
if
→ 𝑥 ≤ 𝑎

1
∨ 𝑥 ≥ 𝑎

2
,

𝑥 − 𝑎
1

𝑎
2
− 𝑎
1

if
→ 𝑎

1
≤ 𝑥 ≤ 𝑎

2
,

𝑎
3
− 𝑥

𝑎
3
− 𝑎
2

if
→ 𝑎

2
≤ 𝑥 ≤ 𝑎

3
, 𝑥, 𝑎
1
, 𝑎
2
, 𝑎
3
∈ 𝑅,

(5)

𝜇
𝐴
=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

0
if
→ 𝑥 ≤ 𝑎

1
∨ 𝑥 ≥ 𝑎

3
,

𝑥 − 𝑎
1

𝑎
2
− 𝑎
1

if
→ 𝑎

1
≤ 𝑥 ≤ 𝑎

2
,

1
if
→ 𝑎

2
≤ 𝑥 ≤ 𝑎

3
,

𝑎
4
− 𝑥

𝑎
4
− 𝑎
3

if
→ 𝑎

3
≤ 𝑥 ≤ 𝑎

4
, 𝑥, 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
∈ 𝑅.

(6)

The arithmetic operations of fuzzy numbers are also alter-
native according to the shape of the membership functions
and the employed method. For instance, the addition of two
triangular or trapezoidal numbers can be defined by (7) and
(8), respectively, as defined by [45, 51–53]:

𝐴 + 𝐵 = (𝑎
1
+ 𝑏
1
, 𝑎
2
+ 𝑏
2
, 𝑎
3
+ 𝑏
3
;min (𝜇

𝐴
+ 𝜇
𝐵
)) , (7)

𝐴 + 𝐵 = (𝑎
1
+ 𝑏
1
, 𝑎
2
+ 𝑏
2
, 𝑎
3
+ 𝑏
3
, 𝑎
4
+ 𝑏
4
;min (𝜇

𝐴
+ 𝜇
𝐵
)) .

(8)

However, ranking of fuzzy sets is not as simple as classical
sets. Several methods are given in the literature, which aim at
discriminating (ranking) fuzzy numbers; see [54]. However,
most of the methods in the literature are computationally
expensive for simulation with moderated capability for com-
puting in a short time. Therefore, two practical and easy

methods out of several are selected to rank the selected fuzzy
sets (i.e., triangular and trapezoidal). For this purpose, [45]
three simple ranking criteria were adopted to be sequentially
used to discriminate triangular fuzzy sets. Firstly, criterion
(9) is calculated as the greatest associate ordinary number;
if the order of fuzzy numbers is cleared the criteria (10) and
(11) are not required. Otherwise, (10) calculates the mode of
the numbers to order them; if not criterion (11) is calculated
to complete ranking procedure:

𝐶
1
(𝐴) =

𝑎
1
+ 2𝑎
2
+ 𝑎
3

4
, (9)

𝐶
2
(𝐴) = 𝑎

2
, (10)

𝐶
2
(𝐴) = 𝑎

3
− 𝑎
1
. (11)

Similarly, to discriminate trapezoidal fuzzy numbers
some criteria are needed. However, trapezoidal fuzzy num-
bers are not as easy as triangular ones to be ranked. Rao
et al. [55] developed a “method for ranking fuzzy numbers
based on the Circumcenter of Centroids and uses an index
of optimism to reflect the decisionmaker’s optimistic attitude
and also an index of modality that represents the neutrality of
the decision maker.” Briefly explained, based on the Centroid
of a trapezoid, as its balancing point, they divide the trapezoid
into three plane figures as two triangles on two sides and
one rectangle in the middle. Then, the Circumcenter of
the Centroids of these three planes is considered as the
reference point to rank generalized fuzzy numbers. Hence,
the Circumcenter of the built triangle within a generalized
trapezoidal fuzzy number 𝐴 = (𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
; 𝜇) can be

calculated by the following equation:

𝑆
𝐴
(𝑥
0
, 𝑦
0
)

= (
𝑎
1
+ 2𝑎
2
+ 2𝑎
3
+ 𝑎
4

6
,

(2𝑎
1
+ 𝑎
2
− 3𝑎
3
) (2𝑎
4
+ 𝑎
3
− 3𝑎
2
) + 5𝜇

2

12𝜇
) .

(12)

Accordingly, the associated index with the ranking is as
(13), where 𝛼 ∈ [0, 1] denotes the index of optimism. If 𝛼 = 0
the decision maker is pessimistic but if 𝛼 = 1 the decision
maker is totally optimistic. In this paper moderated decision
maker is chosen, that is, 𝛼 = 0.5:

𝐼
𝛼
(𝐴) = 𝛼𝑦

0
+ (1 − 𝛼) 𝑥

0
. (13)

However, Rao et al. [55] argue that this index dose not
suffice the discrimination of fuzzy numbers, since it “uses
only the extreme values of the Circumcenter of Centroids.”
Therefore, they add another index of modality to that as in
(14). Here, 𝛽 ∈ [0, 1] is the index of modality to denote the
importanceweight of the central value versus the two extreme
values of (𝑥

0
, 𝑦
0
). This value is taken as 𝛽 = 0.5 in this paper:

𝐼
𝛼,𝛽
(𝐴) = 𝛽(

(𝑥
0
+ 𝑦
0
)

2
) + (1 − 𝛽) 𝐼

𝛼
(𝐴) . (14)
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Figure 4: (a) Triangular membership function. (b) Trapezoidal membership function.
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Figure 5: Membership functions for (a) minimization of TPT. (b) minimization of WIP. (c) maximization of TD.

Now, in order to rank the generalized trapezoidal fuzzy
numbers the ranking function (15) has to be used, which
defines the Euclidean distance from the Circumcenter of the
Centroids and the original point:

𝑅 (𝐴) = √𝑥
2

0
+ 𝑦
2

0
. (15)

Each fuzzy number with bigger 𝑅(𝐴) is considered as
greater number than the others. However, in case of equal
values for this ranking function, the index ofmodality 𝐼

𝛼,𝛽
(𝐴)

has to be subsequently calculated to rank the numbers.
This method regarding its computational ease is adopted to
compare trapezoidal fuzzy waiting times in material flow
control.

7. Problem Formulation (Solution)

This section complies with formulating the exemplary prob-
lem of this study by taking into account the heuristics and
fuzzy set theory. Since the objectives of this problem cover
both directions of minimization (ATPT and WIP) as well
as maximization (TD), besides consisting of two different
units (time and number), these objectives must be properly
homogenized (normalized). A suitable solution for making
the objectives homogeneous is to transform them into their
corresponding satisfaction degrees. Practitioners are aware
of the contradictory nature of optimization problems and
the realistic constraints accompanied with them. Therefore,
it is quite common in practice to make some tradeoffs by
managers between the goals to be optimized. The art of
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a professional manager is to define the best tradeoffs in
accordance with the practical tolerances their organization
can accept.There exists always a lower and anupper limit for a
desired goal. This boundary builds a range for being satisfied
with an achieved objective. Of course, the closer to their
ideal value, the higher satisfaction can be obtained. However,
this boundary may be applied to alternative goals differently
by means of its function shape. On this basis, instead of
optimizing some contradictory goals managers can subjec-
tively optimize their multiobjective problems by converting
them into a uniform problem (called a scalarized problem)
of maximizing their satisfaction degrees for all objectives.

Moreover, a very appropriate solution in operational research
for solving multiobjective problems is the Pareto frontier. In
general, the solutions of a multiobjective problem that any
improvement in one objective results in decline of at least one
other objective are called Pareto optimal solution. A set of
these optimal solutions from different points of view is called
Pareto optimal set.This is what the outputs of the satisfaction
degree solution are going to depict in 3D figures. The drawn
plot out of a set of Pareto optimal solution is called Pareto
frontier.

There are always some challenges to solve amultiobjective
problem, among them is scalarizing the multiobjectives and
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Figure 9: Satisfaction degrees of normalized average TPT with demands following negative exponential distribution.

selecting the best solution. There are different approaches
and mathematical solutions for solving these challenges, for
example, using a decision maker (like satisfaction degree),
no decision maker (like no preference methods), a priori
methods, a posteriori methods, interactive methods, and
hybrid methods [56]. These all solutions are not covered
by this paper, since the intention here is to introduce

a simple and practical solution for practitioners to solve
their multiobjective problems in a quick time. Nevertheless,
the satisfaction degree solution is not distinct from Pareto
frontier solution, the difference may be the exact formulation
of the scalarized problem which can be also adopted by
satisfaction degree and the later improvement iterations by
decision maker which can be adopted as well.
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Figure 11: Satisfaction degrees of normalized throughputs with demands following negative exponential distribution.

For this purpose, all objectives together can simply be
mapped into maximization of a linear membership function
which takes the aggregation of every satisfaction degree
within the range of [0 1]. Mapping of a real objective into
the normalized satisfaction degree is a subjective process that
can be applicable just by defining the lower (𝑏) and upper
(𝑒) bounds, that is, [𝑏 𝑒], of the corresponding objective by

decision maker. Indeed, the boundaries are selected by the
decision maker according to the system performance and
his/her satisfaction from the operations. Explanation of this
transformation process can better be illustrated by Figure 5.
For this procedure, (17)–(20) hold true. It is noticeable that
(17) 𝜇

𝑎
reflects the satisfaction degree of the minimization

objective of TPT, (18) calculates the satisfaction degree 𝜇
�̃�
of
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minimization ofWIP, and (19) defines the satisfaction degree
𝜇
𝑐
of maximization of TD. Then either by configuring some

fuzzy rules, the minimum operator (16), or simply using the
average aggregation operator for the satisfaction degrees, one
unique linear satisfaction degree, representing all objectives,
can be achieved:

maximize𝑓 = Min (𝜇
𝑎
, 𝜇
�̃�
, 𝜇
𝑐
) , (16)

𝜇
𝑎
=

{{{{{{{{{

{{{{{{{{{

{

{
𝑒 − 𝑥
1

𝑒 − 𝑏
}

if
→ 𝑏 < 𝑥

1
< 𝑒,

0
if
→ 𝑒 ≤ 𝑥

1
,

1
if
→ 𝑥

1
= 𝑏 = 0,

(17)

𝜇
�̃�
=

{{{{{{{{{

{{{{{{{{{

{

{
𝑒 − 𝑥
2

𝑒 − 𝑏
}

if
→ 𝑏 < 𝑥

2
< 𝑒,

0
if
→ 𝑒 ≤ 𝑥

2
,

1
if
→ 𝑥

2
= 𝑏 = 0,

(18)

𝜇
𝑐
=

{{{{{{{{{

{{{{{{{{{

{

{
𝑥
3
− 𝑏

𝑒 − 𝑏
}

if
→ 𝑏 < 𝑥

3
< 𝑒,

0
if
→ 𝑥

3
≤ 𝑏,

1
if
→ 𝑒 ≤ 𝑥

3
,

(19)

where

𝑥
1
= ∑

𝑃

AGTPT
𝑝
+∑

𝑃

ALTPT
𝑝
,

𝑥
2
= ∑

𝑃

WIP
𝑝
,

𝑥
3
= ∑

𝑇

∑

𝑃

TD
𝑡𝑝
.

(20)

In addition to the first application of fuzzy set theory, it can
also contribute to the material flow control inside shop floors
by means of self-controlled pallets. Each autonomous pallet
is able to watch the size of parallel queues in front of parallel
stations.This gives the pallet the ability to estimate thewaiting
time for each station (by aggregating the uncertain processing
times of all waiting products in a queue) and to choose the
one with the least waiting time [32].This kind of autonomous
control for pallets is called QLE. However, if the waiting
and processing time of stations are not deterministic, this
ambiguity leads to imprecise estimation of the waiting times
in queues.Thus, the fuzzy set theory can assist the estimation
process as follows.

Particularly, two alternatives as triangular and trapezoidal
functions are considered for the fuzzy sets which approximate
the waiting and processing times of products in queues
and stations. In alternative one (Trian), the triangular fuzzy
numbers for approximating the processing times of stations

are considered as 1:48, 2:00, 2:12; 2:06, 2:20, 2:34; and 2:24,
2:40, 2:56 for the three product types. Here, the (mean ∗
0.05) can be considered as standard deviation of the normal
distribution 𝑁 ∼ (mean, (mean ∗ 0.05)2). These values are
exerted to recognize uncertain waiting times and, thereupon,
choosing the best route with the least waiting time. This
calculation happens by knowing the number and types of
products in each parallel queue to choose the corresponding
values for the triangular sets. In other words, the pallet adds
the fuzzy set of its content to the fuzzy sets of all existing
products in the queue aswell as the successor station, bymean
of the addition operator (7). After calculating the waiting
times of all three parallel stations then by means of ranking
criteria, say (9), (10), and (11), the pallet chooses the station
with the least waiting time.

For the second alternative (Trape), the trapezoidal fuzzy
numbers are differently calculated to the triangular ones.
Since just the mean times (modal points in triangles) are
given, they are taken as the reference values to estimate
trapezoidal functions for each product type. The quadruple
of each type are calculated as (mean − 2 (mean ∗ 0.05), mean
– 1 (mean ∗ 0.05), mean + 1 (mean ∗ 0.05), mean + 2 (mean
∗ 0.05)), which means: 1:48, 1:54, 2:00, 2:06, 2:12; 2:06, 2:13,
2:20, 2:27, 2:34; and 2:24, 2:32, 2:40, 2:48, 2:56, respectively,
for each type on parallel stations.The process of waiting time
estimation is comparable to the alternative one; again the
pallet adds the trapezoidal set of its content to the fuzzy sets
in the queue as well as the successor station by using (8) to
achieve the entire waiting time. Accordingly, by means of the
criteria (15) and (14) the least waiting time of parallel queues
can be approximated.

Furthermore, the developed GA for this problem is sup-
posed to optimize the fitness value, which is a maximization
function. This importance is done by means of the following
procedure.Thefitness values (called observation too) for each
individual, in the first generation, are originally calculated
by (5). Then by means of (1) the selection’s probabilities for
each individual can be found. Derived from the probability
values, ten individuals have to be randomly chosen for
crossover and mutation operators. In the next generations
the procedure is repeated the same until the termination
value (sixth generation) is reached. Basically, GA by using (1)
defines selection probabilities for individuals and then based
on probabilities takes each successful couple of individuals to
breed two children, bymeans of crossover and thenmutation.
In this experiment, the first created generation is configured
by 10 individuals. The crossover operator (Figure 6) and
mutation operators are applied according to their probability
values as 0.8 and 0.1, respectively. Nevertheless, from the
second generation to the last one, the populations are com-
bined out of 20 individuals to cover a broader scope of the
solution space. In the second generation, again 10 individuals
with higher probabilities are selected to become parents for
breeding new children. This repetitive procedure runs up to
the termination value, which is set as six generations. All
individuals in a new generation are evaluated; unless they
have been seen in the previous generations. Universally, for
seeking the excellent performance of the system, within the
range of pallets number (NPallet = [10 60]) and lot size (Lsize
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Figure 12: Satisfaction degrees of normalized WIP with demands following normal distribution.

= [1 10]), GA evaluates 110 individuals, that is, (1 × 10 + 5 × 20
= 110 out of 50 × 10 = 500), see Figure 6 for more illustrations.

In general, two alternative pull-flow scenarios are consid-
ered to be experimented against four material flow control
systems. In the first alternative, demands are triggered by
following the negative exponential distribution (NegExp),
whereas in the second alternative demands follow the normal
distribution (Norm). Additionally, four variants are devel-
oped for material flow control as QLE with triangular fuzzy
set (Trian), QLE with trapezoidal fuzzy set (Trape), QLE with
crisp values (QLE), and conventional flow control (Conv).
These alternatives and variants together configure eight
experiment alternatives in the simulationwhich are presented
in the next section. Moreover, to define the performance of
each alternative some indicators are evaluated as throughput
time (TPT), number of output products (TP), and work-in-
processes (WIP).

8. Experimental Results

The eight alternatives include applying different fuzzy sets
against conventional crisp numbers in estimation of waiting
times for parallel queues are compared by scatter and surface
graphs. Figure 7 shows a variety of values for fitness function
in GA experiments against the two optimization factors.
As it can be seen in different cases the fitness values of
each alternative vary. This proves the compatibility of every
control system for a specific flow circumstance. Additionally,
the surface graphs in the appendix look smoother in case
of using fuzzy sets than using crisp values in conventional
and QLE control alternatives. Indeed, these results justify
that when the system has high pressure of flow regarding
number of pallets, lot size, and demand rate; besides existing

some uncertain factors using fussy numbers brings more
reasonable performance.

For better representation of the control alternatives
against each performance indicator they are solely displayed
in Figures 8, 9, 10, 11, 12, and 13. There, the alternatives
against each performance indicator are easily analyzable for
managers to decide over their flow control system.

Finally, application of metaheuristics gives the opportu-
nity to decision maker for adapting its system to optimality
through a broad range of available searched values.Moreover,
to justify the performance of GA in seeking the near-
optimum solutions, SA is employed as well. The results in
Table 3 out of SA are quite comparable with those from GA;
therefore, both are applicable for this problem with authen-
ticity. However, because of SA essence, just the continuously
improving results are shown to the simulator, according
to the temperature and cooling system. Nevertheless, SA
like GA requires several tunings to bring desirable results.
Since GA has several operators (e.g., crossover or mutation
probabilities) as well as SA (e.g., definition of step function)
to proceed their evolutionary approaches towards optimum
solutions there is no guarantee for such heuristics to get the
global optimums. Therefore, tuning of the operator factors
requires more efforts and experience. However, there lots of
studies which aimed for tuning the factors of heuristics that
can be directly applied for tuning.The tuning of the factors is
subjective and may vary for alternative problems.

9. Summary and Discussion

In summary, the beginning sections of the paper gave
some information about material flow control strategies. The
strategies complying with material pull and material push
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Figure 13: Satisfaction degrees of normalized WIP with demands following negative exponential distribution.

Table 3: Fitness values out of SA in three dimensions.

Fitness values out of SA results in a three dimension form

Lot-size Number
of pallet

Trape
Norm

Conv
NegExp

Trian
NegExp

Trian
Norm

QLE
Norm

QLE
NegExp

Trape
NegExp

Conv
Norm

5 45 0.84 0.78 0.78 0.78 0.76 0.80
4 22 0.85 0.81 0.79
3 33 0.82 0.79 0.77 0.84
3 17 0.79 0.83 0.84 0.81 0.83
2 45 0.88 0.85 0.86 0.82 0.83 0.89 0.84 0.86
2 22 0.83 0.81 0.88 0.82 0.83 0.82
1 27 0.90 0.87 0.85 0.91 0.88 0.88
1 16 0.92 0.84 0.85 0.86 0.90 0.88 0.87

were briefly explained and some theoretical examples were
mentioned for them. The main emphasis in the conceptual
sections was on the advantages of applying a hybrid control
systemout of push and pull concepts to exploit the advantages
of both. This was inspired by Polca, CONWIP, Leagility,
and other comparable hybrid systems to control a smooth
and robust flow of material in dynamic systems (regarding
uncertainty and fluctuating demands). In order to reflect the
applicability of the recommended thesis on supply networks,
an exemplary model is simulated with a discrete-event
approach. The specifications of the model were given as well.
After justifying the importance of coordinating (optimizing
WIP and waiting time at) the collision point of push and
pull flows, GA and SA as global optimization heuristics were
concisely described and their procedures to get the optimum
solutionwere defined.However, bothmethodsmay bring dif-
ferent results in case of varying their adjustment factors (e.g.,

crossover, selection function, cooling schedule, etc.). Later,
a brief review is done on the application of fuzzy set theory
in normalizingmultiobjectives optimization problems and in
defining uncertain processes. It was explained that by means
of satisfaction degree of decision maker all single objectives
can be converted into the range of [0 1]with a common unit
to homogenize the heterogeneousmultiobjectives. Moreover,
the application of fuzzy sets in compensating uncertainty
and ambiguity of processes, for example, processing and
waiting times, by means of alternative membership functions
was described and practiced. Correspondingly, triangular
and trapezoidal fuzzy numbers with their selected ranking
methods were elaborated.

It was shown that heuristic methods (e.g., GA, SA, and
Tabu search) can be employed to find optimum values for
coordinating factors (here number of pallets and lotsize) of
stochastic flows (i.e., push andpull). Following the conceptual
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Figure 14

sections, the solution formulation for the simulated problem
was fairly described. The results of the simulation experi-
ments with alternative pull flows were depicted at the end.
Conclusively, the enhancement of material flows with the
assistance of fuzzy sets in alternative cases was proved against
some performance indicators. Indeed, the graphs displayed a
broad range of performances in case of alternative values for
the two factors. The better flow of materials by use of fuzzy

numbers was partially apparent in the graphs. However, in
some cases the other alternatives as QLE and Conv without
using fuzzy numbers outperformed the fuzzy sets. This fact
reflects the necessity of adjusting the fuzzy sets to each
specific simulation case. Moreover, the broad range of perfor-
mances gives the opportunity to decision makers to fit their
constraints to each performance circumstance in practice.
Optimization of material flows throughout supply networks



18 Mathematical Problems in Engineering

(inbound as well as outbound) is a challenging task of
practitioners. Experimental results showed that employment
of optimizing factors in metaheuristics and using simulation
contribute to the solution of complex flow controls.The broad
scope of solution space investigated by heuristics gives the
opportunity to managers to observe a broad range of single
solutions (Pareto solutions) and exert those which suit the
best to their constraints and requirements.

A very appropriate solution in operational research for
solving multiobjective problems is the Pareto frontier. The
precision of this solution is reflected by its strong math-
ematical models for finding the scalarized problem and
solving them.This approach is considered to be experimented
and compared against the applied approach in this paper
(satisfaction degree) as further works in similar case studies.
Moreover, in this study the optimization procedure was not
run in real time of flows, but with the assistance of offline
simulation’s experiments. In further works, employment of
some intelligent methodologies for example, data mining,
artificial neural network (ANN), and Lamarckian learning
for improving GA [35] are to be explored. Some learning
methodologies can directly be assigned to distributed flow
objects, so that they get the capability to locally control and
improve their routes and decisions locally and globally in real
time [32, 57].

Appendix

See Figure 14.
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Copyright q 2012 D. Krokavec and A. Filasová. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper focuses on the principle for designing reduced-order fuzzy-observer-based actuator
fault reconstruction for a class of nonlinear systems. The problem addressed can be indicated
as an approach for a kind of reduced-order fuzzy observer design with special gain matrix
structure that depends on a given matching condition specification. Using the Lyapunov theory,
the stability conditions are obtained and expressed in terms of linear matrix inequalities, and the
conditions for asymptotic estimation of actuator faults are derived. Simulation results illustrate
the observer design procedure and demonstrate the actuator fault reconstruction effectiveness and
performance.

1. Introduction

Automated diagnosis has been one of the most fruitful applications in sophisticated
control systems, with potential significance for domains in which systems diagnosis must
proceed, while the system is operative and testing opportunities are limited by operational
considerations. A real problem is usually to fix the system with faults so that it can continue
its mission for some time with some limitations in functionality. Consequently, diagnosis
is a part of a larger problem known as Fault Detection, Identification and Reconfiguration
(FDIR). The classical principles include observer-based methods, parity space methods, and
parameter identification based methods, which have been thoroughly studied (see, e.g., [1, 2]
and the references therein).

Observer design is an actual research topic, important in the observer-based fault
estimation, and in the fault detection and isolation [3–5]. The nonlinear system theory,
exploiting Lipschitz condition, is emerged as an approach capable of use in the state
estimation design for nonlinear systems [6], although Lipschitz condition is a restrictive
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limitation and many classes of systems may not be satisfied. Application of this principle
in state estimator design results only in a sufficient condition for the asymptotic stability of
estimation error, and, in fact, there is no straightforward method for selecting the observer
gain to satisfy such conditions [7]. Because of strong restrictions, an observer structure with
adaptively adjusted parameters is proposed in [8], where Lipchitz constant can be unknown.
Concerning fault detection, for example, in [9–11] there are proposed sliding-mode observers.
Since they are conditioned by matching conditions, these approaches are not sufficient to
ensure safe operation in all applications.

Recently, fault estimation and reconstruction are preferred as an option to fault
detection, where, instead of generating residuals, observer-based methods are used to
reconstruct sensor and actuator fault signals in nonlinear systems. These practices primarily
use adaptive and unknown input observer structures (see e.g., [12–14]), ensuring disturbance
rejection and robustness properties of fault estimation.

An alternative approach is the Takagi-Sugeno (TS) fuzzy approximation of the
nonlinear system model equations. Since the TS fuzzy method provides the suitable model
for a certain class of nonlinear dynamic systems [15], the well-known nonlinear observers are
based on TS fuzzy system model. Using TS fuzzy model, a nonlinear system is represented
by the fuzzy rules. Each rule utilizes the local system dynamics by a linear model, and the
nonlinear system is represented by a collection of fuzzy rules. In this sense, the TS fuzzy
model can be viewed as an expansion of piecewise linear partition for the nonlinear system.
Since such description allows the utilization of system state representation, model order
reduction and error approximation problems have to be solved using the projection methods
[16], generally given in the form of linear matrix inequality (LMI) constraints.

System state observers based on TS fuzzy models are principally realized in the same
structures as the linear observers [17–20], and design principles usually used techniques
based on LMIs. Research in TS fuzzy observers application in fault detection and isolation
has attracted many investigators and was the subject of widely scattered publications (see,
e.g., [21–24]), mainly focused on the LMI-based observer design, to ensure the stability of the
residuals and to optimize the quadratic performance of residual transfer matrix with respect
to exogenous disturbance.

Because fault reconstruction provides a direct estimate of the size and severity of
a fault, the location of the fault is so known, and the fault isolation step can be deleted.
Establishing a general approach for fault reconstruction in systems described by TS models,
or finding conditions under which fault reconstruction is well possible, is still an open
task [25]. Sophisticated fault estimation schemes were proposed especially for systems
with disturbances and uncertainties, where, for example, Gao et al. [26] propose the fuzzy
descriptor observer, potentially applicable to sensor fault estimation. In contrast, Xu et al.
[27] present an estimation algorithm, based on the integrated fuzzy observer and the inverse
system model, for nonlinear actuator fault estimation. The principle of the inverse system
model is combined with sliding mode also in [27], since sliding mode observers can be
employed in fault estimation if systems are uncertain owing to their insensitivity to matched
uncertainties or disturbances. Certainly, the basic approach to actuator faults estimation is
based on TS adaptive observers [17], in spite of high-order observer dynamics. On the other
hand, few results have been reported to reduced-order observer-based fault reconstruction
[8, 28], despite the importance of relative-order dynamics of reduced-order observers for
systems without disturbances.

Considering the author’s previous work [29], the main contribution of the paper
is to examine one principle for designing of reduced-order-observer-based actuator fault
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estimation for a class of continuous-time nonlinear MIMO systems, approximated by TS
models. Comparing with the approach given in [14], a new design method is proposed
to construct a set of linear reduced-order observers, combined by fuzzy rules, to estimate
unmeasurable part of the system state vector. Based on the stable observer set, the actuator
fault estimation scheme is developed to guarantee asymptotic estimation of actuator faults.
The structure of the design conditions is motivated by the need for feasibility, while under
defined matching conditions the stability of the reduced-order observer is assured.

The remainder of this paper is organized as follows. Sections 2 and 3 describe TS fuzzy
model properties for given class of nonlinear systems and the design principle of the reduced-
order observer based on TS model, respectively. The actuator fault reconstruction, using
reduced-order fuzzy observer, is outlined in Section 4, especially with respect to observer
design principle, matching condition, and stability. In Section 5, one illustrative example is
given, and simulation results are presented to confirm the validity of the proposed fault
reconstruction scheme. Finally, Section 6 draws some concluding remarks.

Throughout the paper, the following notations are used: xT , XT denotes the transpose
of the vector x and matrix X, respectively, diag[·] denotes a block diagonal matrix, for a
square matrix X = XT > 0 (resp., X = XT < 0) means that X is a symmetric positive definite
matrix (resp., symmetric negative definite matrix), the symbol In represents the nth order unit
matrix, R denotes the set of real numbers, and R

n×r denotes the set of all n × r real matrices.

2. Takagi-Sugeno Fuzzy Models

The systems under consideration fall in a class of multi-input and multioutput (MIMO)
nonlinear dynamic systems, which in the state-space form are represented as

q̇(t) = a(q(t)) + B(q(t))u(t) + Bf f(t),

y(t) = Cq(t),
(2.1)

where q(t) ∈ R
n, u(t), uf(t) ∈ R

r , and y(t) ∈ R
m are vectors of the state, input, actuator

fault, and output variables, respectively, C ∈ R
m×n, Bf ∈ R

n×r are real matrices, a(q(t)) ∈ R
n,

B(q(t)) ∈ R
n×r are bounded nonlinear functions of q(t), and f(t) ∈ R

r is an actuator fault.
It is assumed that a(q(t)) is bounded in associated sectors, that is, in the regions within the
system will operate, a(0) = 0, only actuator faults can occur, and if no actuator fault occurs
then uf(t) = 0, for all t ≥ 0.

It is considered that the number of the nonlinear terms in the vector function a(q(t))
is p and there exists the set of the nonlinear sector functions {wlj(θj(t)), l = 1, 2, . . . , p, j =
1, 2, . . . , k} such that

wl1(θ(t)) = 1 −
k∑

j=2

wlj

(
θj(t)

)
, (2.2)

where k is the number of sector functions, and

θ(t) =
[
θ1(t) θ2(t) · · · θq(t)

]
(2.3)
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is the vector of premise variables. A premise variable represents any measurable variable (in
a simple case it can be directly a state variable) and none of the premise variables depend on
the inputs u(t).

Thus, constructing the set of membership functions wi(θ(t)) =
∏p

l=1|jwlj(θj(t)), i =

1, 2, . . . s, s = 2k from all combinations of the sector functions, the states of the system with
an actuator fault are inferred as follows:

q̇(t) =
s∑

i=1

hi(θ(t))(Aiq(t) + Biu(t)) + Bf f(t), (2.4)

y(t) = Cq(t), (2.5)

where the system output is given by the relation (2.5) and

hi(θ(t)) =
wi(θ(t))∑s
i=1 wi(θ(t))

(2.6)

is the averaging weight for the ith rule, representing the normalized grade of membership
(membership function). By definition, the membership functions satisfy the following convex
sum properties:

0 ≤ hi(θ(t)) ≤ 1,
s∑

i=1

hi(θ(t)) = 1, ∀i ∈ 〈1, . . . , s〉, (2.7)

Ai ∈ R
n×n is the Jacobian matrix of a(q(t)) with respect to q(t) = qi, Bi ∈ R

n×r is the matrix
equal to B(qi), and qi is the center of the i-th fuzzy region, described by the associated sector
function. It is evident that the fuzzy model is achieved by fuzzy amalgamation of the linear
subsystem models.

Using a TS model, the conclusion part of a single rule consists no longer of a fuzzy
set [19], but determines a function with state variables as arguments, and the corresponding
function is a local function for the fuzzy region that is described by the premise part of the
rule. Thus, using linear functions, a system state is described locally (in fuzzy regions) by
linear models, and at the boundaries between regions the linear interpolation is used between
the corresponding local models.

Note, the model (2.4), (2.5) is mostly considered for analysis, control, and state
estimation of nonlinear systems.

It is supposed in the next that the aforementioned TS model does not include
parameter uncertainties or external disturbances, and all premise and output variables are
measurable.

3. Basic Preliminaries

Definition 3.1 (null space of the matrix). Let E ∈ R
h×h, rank(E) = k < h be a rank deficient

matrix. Then the null space NE of E is the orthogonal complement of the row space of E.
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Lemma 3.2 (orthogonal complement). If E ∈ R
h×h, rank(E) = k < h, is a rank deficient matrix,

then an orthogonal complement E⊥ of E is

E⊥ = E◦UT
E2, (3.1)

where UT
E2 is the null space of E and E◦ is an arbitrary matrix of appropriate dimension.

Proof (see, e.g., [30]). The singular value decomposition (SVD) of E gives

UT
EEVE =

[
UT

E1
UT

E2

]
E
[
VE1 VE2

]
=
[
SE 012

021 022

]
, (3.2)

where UT
E ∈ R

h×h is the orthogonal matrix of the left singular vectors of E, VE ∈ R
h×h is the

orthogonal matrix of the right singular vectors of E, and SE ∈ R
k×k is the diagonal positive

definite matrix of the form

SE = diag
[
σE1 · · · σEk

]
, σE1 ≥ · · · ≥ σEk > 0, (3.3)

which diagonal elements are the singular values of E. Using orthogonal properties of UE and
VE, that is, UT

EUE = Ih,VT
EVE = Ih, and

[
UT

E1
UT

E2

]
[
UE1 UE2

]
=
[
I1 0
0 I2

]
, UT

E2UE1 = 0, (3.4)

respectively, where Ih ∈ R
h×h is the identity matrix, then E can be written as

E = UESEVT
E =
[
UE1 UE2

]
[
SE 012

021 022

][
VT

E1
VT

E2

]
=
[
UE1 UE2

]
[
SE1

02

]
= UE1SE1, (3.5)

where SE1 = SEVT
E1. Thus, (3.4) and (3.5) imply

UT
E2E = UT

E2

[
UE1 UE2

]
[
SE1

02

]
= 0. (3.6)

It is evident that for an arbitrary matrix E◦ it is

E◦UT
E2E = E⊥E = 0, (3.7)

which implies (3.1). This concludes the proof.

Lemma 3.3 (congruence transform). Let the output matrix C be of full column rank, rank C = m,
then there exists a new coordinate system such that C takes the structure Ca = [Im 0].
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Proof. Applying SVD to C gives

C = U
[
S 0
]
VT = US

[
Im 0

]
VT , (3.8)

where rows of UT ∈ R
m×m are left singular vectors of C, and columns of V ∈ R

n×n are right
singular vectors of C, all ordered in such way to be associated with the singular values of C,
written as diagonal elements of S ∈ R

m×m,

S = diag
[
σ1 · · · σm

]
, σ1 ≥ · · · ≥ σm > 0. (3.9)

Using the notations

W−1 = US, Ta = VT , Ca =
[
Im 0

]
, (3.10)

where

TT
a =
[
TT
a1 TT

a2

]
, TT

a1 ∈ R
n×m, (3.11)

then (3.8) implies

C = W−1CaTa, Ca = WCT−1
a . (3.12)

Note if C is of rank m, W ∈ R
m×m is a regular matrix, and Ta ∈ R

n×n is an orthogonal matrix
such that T−1

a = TT
a = V. This concludes the proof.

Lemma 3.4. Using the congruence transform (3.12), each linear submodel of fault-free TS fuzzy
model (2.4), (2.5) can be partitioned such that

[
q̇a1i

q̇a2i

]
=
[
Aa11i Aa12i

Aa21i Aa22i

][
qa1(t)
qa2(t)

]
+
[
Ba1i

Ba2i

]
u(t) +

[
Baf1

Baf2

]
f(t), (3.13)

y(t) = W−1v(t), (3.14)

v(t) =
[
Im 0

]
qa(t) =

[
Im 0

]
[
qa1(t)
qa2(t)

]
, (3.15)

qT
a(t) =

[
qT
a1(t) qT

a2(t)
]
, qa(t) = Taq(t), (3.16)

where qa1(t) ∈ R
m, qa2(t) ∈ R

n−m, Ba1i ∈ R
m×r , Baf1 ∈ R

m×r , respectively.

Proof. Substituting (3.11) into (2.5) gives

y(t) = W−1CaTaq(t) = W−1Caqa(t). (3.17)
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Thus, using

v(t) = Caqa(t), (3.18)

(3.17) implies (3.14), and with (3.11), (3.12), then (3.18) implies (3.15).
Substituting (3.16) in (2.4), it can be obtained

q̇a(t) =
s∑

i=1

hi(θ(t))Aaiqa(t) + Baiu(t) + Baf f(t), (3.19)

where

Aai = TaAiT−1
a , Bai = TaBi, Baf = TaBf , (3.20)

and partitioning accordingly to (3.15), (3.20) implies (3.13). This concludes the proof.

Proposition 3.5 (matching condition). The fault input matrix and the output matrix Baf , C
satisfies the conditions rank Baf = r, rank C > rank Bf , respectively, that is, m > r, and the matrix
Baf takes the structure

Baf = CT
aBaf1. (3.21)

The matching condition, given in Proposition 3.5 seems to be restrictive theoretically,
but fortunately, for many practical control systems it is satisfied. In addition, comparing
with the static decoupling control principle [31], the condition reflects inserting at least one
redundant output sensor into the sensor structure.

4. Full-Order TS Fuzzy Observer

Standard applications of TS fuzzy principle in nonlinear system fault diagnosis exploit the
fuzzy observers as residual generators. The procedure of fault detection covers the residual
generation by the fuzzy observers and their evaluation. Thus, the reconstruction error, or any
function of it, is used as fault residual signal that is as a rule zero in the fault free case and
nonzero otherwise [1, 2].

The fuzzy observer to the fault-free system (2.4), (2.5) is constructed as follows:

q̇e(t) =
s∑

i=1

hi(θ(t))(Aqe(t) + Bu(t) +Aiqe(t) + Ji(y − ye(t))), (4.1)

ye(t) = Cqe(t), (4.2)

where qe(t) ∈ R
n is the estimation of the system state vector, Ji ∈ R

n×m, i = 1, 2, . . . , s, is the
set of the observer gain matrices. The design conditions are given by the next lemma.
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Lemma 4.1. The fuzzy observer (4.1), (4.2) is stable if there exist a positive definite symmetric matrix
P > 0, P ∈ R

n×n, and matrices Zi ∈ R
n×m, i = 1, 2, . . . , s, such that

P = PT > 0, (4.3)

AiP + PAi − ZT
i C

T − ZiC < 0, ∀i. (4.4)

If the above conditions hold, the set of the observer gain matrices is given as

Ji = P−1Zi. (4.5)

Proof. Introducing the estimation error between the fault-free (2.4) and (4.1) as follows:

e(t) = q(t) − qe(t), (4.6)

and taking into account the time derivative of e(t), it can be obtained

ė(t) =
s∑

i=1

hi(θ(t))(Ai − JiC)e(t) =
s∑

i=1

hi(θ(t))Aeie(t), (4.7)

where the observer system matrices are

Aei = Ai − JiC, i = 1, 2, . . . , s. (4.8)

Defining the quadratic positive definite Lyapunov function of the form

v(e(t)) = eT (t)Pe(t), (4.9)

where P > 0, then after evaluation of its derivative with respect to t it is obtained

v̇(e(t)) = ėT (t)Pe(t) + eT (t)Pė(t). (4.10)

Substituting (4.7) in (4.10) gives

v̇(e(t)) = eT (t)P
s∑

i=1

hi(θ(t))Aeie(t) + eT (t)
s∑

i=1

hi(θ(t))AT
eiPe(t), (4.11)

v̇(e(t)) = eT (t)
s∑

i=1

hi(θ(t))
(
PAei +AT

eiP
)
e(t), (4.12)

respectively. It is evident that (4.12) is negative if there exist a set of gain matrices Ji ∈
R

n×m, i = 1, 2, . . . , s, and a symmetric positive definite matrix P ∈ R
n×n such that

(Ai − JiC)TP + P(Ai − JiC) < 0, ∀i. (4.13)
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Setting

PJi = Zi, (4.14)

(4.13) implies (4.4). This concludes the proof.

Note, to apply for actuator fault reconstruction, an adaptive structure of the full-order
state observer can be used [12].

5. Reduced-Order TS Fuzzy Observer

Problem of the interest is to design the asymptotically stable reduced-order observer based
on the TS fuzzy model of the fault-free nonlinear system (2.4), (2.5).

Theorem 5.1. Considering the affine TS fuzzy system (2.4), (2.5), then the reduced-order TS fuzzy
observer takes the form

ṗ2e(t) =
s∑

i=1

hi(θ(t))q◦
2ei(t), (5.1)

q◦
2ei(t) = Aaeip2e(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t), (5.2)

qa2e(t) = p2e(t) +
s∑

i=1

hi(θ(t))Jiv(t), (5.3)

where

Aavi = Aa21i − JiAa11i + (Aa22i − JiAa12i)
s∑

j=1

hj(θ(t))Jj , (5.4)

Aaei = Aa22i − JiAa12i, (5.5)

and Ji ∈ R
(n−m)×m, i = 1, 2, . . . , s is the set of gains.

Proof. Since (3.13) can be partitioned as

Aa12iqa2(t) = q̇a1i(t) −Aa11iv(t) − Ba1iu(t), (5.6)

q̇a2i(t) = Aa21iv(t) +Aa22iqa2(t) + Ba2iu(t), (5.7)

then the TS fuzzy observer can be defined as follows:

q̇a2e(t) =
s∑

i=1

hi(θ(t))q•
a2ei(t), (5.8)

q•
a2ei(t) = Aa21iv(t) +Aa22iqa2e(t) + Ba2iu(t) + Ji(q̇a1i(t) −Aa11iv(t) − Ba1iu(t) −Aa12iqa2e(t)),

(5.9)



10 Mathematical Problems in Engineering

where qa2e(t) ∈ R
n−m is an estimation of the unmeasurable part of system state vector, and

Ji, i = 1, 2, . . . , s, Ji ∈ R
(n−m)×m, is the set of the observer gain matrices. Now, (5.8), (5.9) can

be rewritten as

q̇a2e(t) −
s∑

i=1

hi(θ(t))Jiq̇a1i(t) =
s∑

i=1

hi(θ(t))q

a2i(t), (5.10)

q

a2i(t) = Ba2iu(t) +Aa21iv(t) +Aa22i

(
qa2e(t) −

∑s
j=1 hj(θ(t))Jjv(t) +

∑s
j=1 hj(θ(t))Jjv(t)

)

+ Ji

( −Aa11iv(t) − Ba1iu(t)
−Aa12i

(
qa2e(t) −

∑s
j=1 hj(θ(t))Jjv(t) +

∑s
j=1 hj(θ(t))Jjv(t)

)
)

.

(5.11)

Defining the new state variable

p2e(t) = qa2e(t) −
s∑

i=1

hi(θ(t))Jiv(t), (5.12)

then (5.12) implies (5.3), and defining the left side of (5.10) as

ṗ2e(t) = q̇a2e(t) −
s∑

i=1

hi(θ(t))Jiq̇a1i(t), (5.13)

it can be obtained

ṗ2e(t) =
s∑

i=1

hi(θ(t))q◦
2ei (5.14)

q◦
2ei = (Aa22i − JiAa12i)p2e(t) + (Ba2i − JiBa1i)u(t)

+ (Aa21i − JiAa11i)v(t) + (Aa22i − JiAa12i)
s∑

j=1

hj(θ(t))Jjv(t).
(5.15)

Since

Ba2i − JiBa1i =
[−Ji In−m

]
Bai (5.16)

with (5.4), (5.5), and (5.16) then (5.14), (5.15) implies (5.1), (5.2).
It is evident that

v(t) = qa1(t) = p1(t). (5.17)

This concludes the proof.
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Theorem 5.2 (reducer-order TS fuzzy observer stability). The reduced-order TS fuzzy observer
(5.1), (5.2) is asymptotically stable if there exist a symmetric positive definite matrix P◦ ∈
R

(n−m)×(n−m) and matrices Z◦
i ∈ R

(n−m)×m, i = 1, 2, . . . , s such that

P◦ = P◦T > 0, (5.18)

AT
a22iP

◦ + P◦Aa22i −AT
a12iZ

◦T
i − Z◦

iAa12i < 0. (5.19)

If the above conditions hold, the set of the observer gain matrices is given as

Ji = (P◦)−1Z◦
i . (5.20)

Proof. Using (5.1), (5.2), it can be rewritten as

ṗ2e(t) =
s∑

i=1

hi(θ(t))
(
Aaeip2e(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t)

)
, (5.21)

and, with (5.4), the autonomous part of (5.21) takes the form

ṗ2e(t) =
s∑

i=1

hi(θ(t))(Aa22i − JiAa12i)p2e(t). (5.22)

Defining the quadratic positive definite Lyapunov function:

v(p2e(t)) = pT
2e(t)P

◦p2e(t), (5.23)

where P◦ = P◦T > 0, P◦ ∈ R
(n−m)×(n−m) then, after evaluation of derivative with respect to t, it

is obtained

v̇(p2e(t)) = pT
2e(t)P

◦ṗ2e(t) + ṗT
2e(t)P

◦p2e(t) < 0. (5.24)

Substituting (5.22) into (5.24) gives

v̇(p2e(t)) = pT
2e(t)P

◦
s∑

i=1

hi(θ(t))Aaeip2e(t) + pT
2e(t)

s∑

i=1

hi(θ(t))AT
aeiP

◦p2e(t) < 0, (5.25)

v̇(p2e(t)) = pT
2e(t)

s∑

i=1

hi(θ(t))
(
P◦Aaei +AT

aeiP
◦
)
p2e(t) < 0, (5.26)

respectively. Thus, (5.26) is negative, if there exist a set of matrices Ji, i = 1, 2, . . . , s, and a
matrix P◦ such that

(Aa22i − JiAa12i)TP◦ + P◦(Aa22i − JiAa12i) < 0, ∀i. (5.27)
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Setting

P◦Ji = Z◦
i (5.28)

(5.27) implies (5.19). This concludes the proof.

Remark 5.3. If (5.19) is infeasible, then it can be set

AT
a22iP + PAa22i −AT

a12iZ
T
i − ZiAa12i < −Q, (5.29)

where Q = QT > 0, Q ∈ R
(n−m)×(n−m) is a symmetric positive definite matrix. It is

obvious, based on the inequality (5.29), such design condition implies inherently the more
conservative solution.

Theorem 5.4 (stability condition equivalency). The asymptotic stability condition of the
autonomous part of (5.22) is the same as the asymptotic stability condition of the error reference
model as follows:

ėaq2(t) =
s∑

i=1

hi(θ(t))(Aa22i − JiAa12i)eaq2(t), (5.30)

where the estimation error of the unmeasurable part of state variables is

eaq2(t) = qa2(t) − qa2e(t). (5.31)

Proof. Substituting (5.3) in (5.31) gives

ea2(t) = qa2(t) − p2e(t) −
s∑

i=1

hi(θ(t))Jiv(t). (5.32)

Defining, in analogy with (5.1)–(5.3), the reference variable p2(t) is as follows:

p2(t) = qa2(t) −
s∑

i=1

hi(θ(t))Jiv(t), (5.33)

ṗ2(t) =
s∑

i=1

hi(θ(t))q◦
2i(t), (5.34)

q◦
2i(t) = Aaeip2(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t), (5.35)

and substituting (5.33) in (5.32) gives

eaq2(t) = p2(t) − p2e(t) = ep2(t), (5.36)

ėaq2(t) = ėp2(t) = ṗ2(t) − ṗ2e(t), (5.37)
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respectively. Thus, inserting (5.1), (5.2) and (5.34), (5.35) into (5.37) results in

ėaq2(t) =
s∑

i=1

hi(θ(t))Aaei(p2(t) − p2e(t)), (5.38)

and with (5.5), (5.36) then (5.38) implies (5.30).
Since (5.22) and (5.36) are associated with the same system matrix Aaei, this concludes

the proof.

Note, the form of the time derivative (5.13) is given by the definition.

Corollary 5.5 (error reference model). The equalities (5.17), (5.33) can be compactly written as

[
p1(t)
p2(t)

]
=

s∑

i=1

hi(θ(t))Ti(Aaiqai(t) + Baiu(t)), (5.39)

where

Ti =
[
Im 0
−Ji In−m

]
,

TiBaiu(t) =
[
Im 0
−Ji In−m

][
Ba1i

Ba2i

]
u(t),

TiAaiqa(t) =
[

Aa11i Aa12i

Aa21i − JiAa11i Aa22i − JiAa12i

][
v(t)
qa2(t)

]
.

(5.40)

Ones explaining the variable p2(t) as a function of qa2(t) using (5.39), then the time derivative
of p2(t) can be obtained by the substitution (5.33), that is,

ṗ2(t) = p2(t)(qa2(t))‖qa2(t)≡p2(t)+
∑s

j=1 hj (θ(t))Jjv(t). (5.41)

Evidently, (5.39)–(5.41) can be adequately exploited to obtain the time derivative ṗ2e(t)
in the dependency on p2e(t), v(t), and u(t).

Using the equivalency of the stability conditions, an actuator fault estimation structure
based on reduced-order TS fuzzy observer can be discussed.

6. Estimation of Actuator Faults

To obtain an actuator fault estimation structure based on reduced-order TS fuzzy observer,
the matching condition (3.21) has to be satisfied. This implies that a special observer gain
matrices have to be chosen.
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Theorem 6.1. The estimation error dynamics of the reduced-order TS fuzzy observer (5.1), (5.2) is
not affected by actuator faults if, with the matching condition (3.21), there exists a symmetric positive
definite matrix P◦ ∈ R

(n−m)×(n−m) such that

P◦J = B⊥
af1, (6.1)

where B⊥
af1 is the orthogonal complement to Baf1, and Ji = J for all i = 1, 2, . . . , s.

Proof. The system with an actuator fault is described as

q̇afi(t) = Aaiqafi(t) + Baiu(t) + Bafuf(t). (6.2)

Since (3.13), (5.1), (5.2), and (5.34), (5.35) now implies

Baf = CT
aBaf1 =

[
Im
0

]
Baf1 =

[
Baf1

0

]
, (6.3)

ṗ2e(t) =
s∑

i=1

hi(θ(t))q◦
2efi(t),

ṗ2(t) =
s∑

i=1

hi(θ(t))q◦
2i(t),

(6.4)

q◦
2efi(t) = Aaeip2e(t) +Aaviv(t) +

[−Ji In−m
](
Baiu(t) + Bafuf(t)

)
, (6.5)

q◦
2i(t) = Aaeip2(t) +Aaviv(t) +

[−Ji In−m
]
Baiu(t), (6.6)

the dynamics of the error (5.37) can be rewritten as

ėaq2(t) = ṗ2(t) − ṗ2e(t) =
s∑

i=1

hi(θ(t))Aaeieaq2(t) +
s∑

i=1

hi(θ(t))
[−Ji In−m

]
Bafuf(t) (6.7)

Defining the quadratic positive definite Lyapunov function as follows:

v
(
eaq2(t)

)
= eTaq2(t)P

◦eaq2(t), (6.8)

where P◦ = P◦T > 0, P◦ ∈ R
(n−m)×(n−m), after evaluation of derivative of (6.7) with respect to t

it is obtained

v̇
(
eaq2(t)

)
= ėTaq2(t)P

◦eaq2(t) + eTaq2(t)P
◦ėaq2(t). (6.9)
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From the expression (6.7) it follows that

v̇
(
eaq2(t)

)
= eTaq2(t)P

◦
s∑

i=1

hi(θ(t))Aaeieaq2(t) + eTaq2(t)
s∑

i=1

hi(θ(t))AT
aeiP

◦ea2(t)

+ eTaq2(t)P
◦

s∑

i=1

hi(θ(t))
[−Ji In−m

]
Bafuf(t)

+ uT
f (t)

s∑

i=1

hi(θ(t))BT
af

[−Ji In−m
]T
P◦eTaq2(t),

(6.10)

and with respect to the matching condition (3.21), it can be set

P◦[−Ji In−m
]
Baf = P◦[−JiBaf1 0n−m

]
= 0, (6.11)

which results in the equality:

P◦JiBaf1 = 0, ∀i. (6.12)

Evidently, (6.12) can be satisfied if and only if Ji = J for all i. With such J, the equality (6.12)
will be satisfied if (6.1) is satisfied. This concludes the proof.

Evidently, Baf1 may not be a square matrix.

Theorem 6.2. The estimation error dynamic (6.7) is asymptotically stable, if there exists a symmetric
positive definite matrix P◦ ∈ R

(n−m)×(n−m) such that for i = 1, 2, . . . , s

P◦ = P◦T > 0, (6.13)

AT
a22iP

◦ + P◦Aa22i −AT
a12iB

⊥T
af1 − B⊥

af1Aa12i < 0, (6.14)

where B⊥
af1 is the orthogonal complement to Baf1.
If the above conditions hold, the observer gain matrix is given as

J = (P◦)−1B⊥
af1. (6.15)

Proof. Satisfying (6.11) then (6.10) implies

v̇
(
eaq2(t)

)
= eTaq2(t)

s∑

i=1

hi(θ(t))
(
P◦Aaei +AT

aeiP
◦
)
eaq2(t) < 0, (6.16)
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where Aaei is defined in (5.5). It is evident that (6.16) is negative if for all i

(Aa22i − JiAa12i)TP◦ + P◦(Aa22i − JiAa12i) < 0. (6.17)

Using (6.1) then (6.17) implies (5.19). This concludes the proof.

Corollary 6.3. Using (5.20), then one has

[−J In−m
]
Baf = (P◦)−1

[
−B⊥

af1 P◦
]
CTBaf1 = (P◦)−1

[
−B⊥

af1Baf1 0
]
= 0. (6.18)

Equality given above implies that neither estimation error (6.7), nor reduced-order TS fuzzy observer
equation (6.5) is affected by actuator faults.

Corollary 6.4. Since Ji = J for all i and
∑s

j=1 hj(θ(t)) = 1, (5.12) and (5.19) take the form

p2e(t) = qa2e(t) − Jv(t), (6.19)

Aavi = Aa21i − JAa11i + (Aa22i − JAa12)J. (6.20)

Remark 6.5. If Bai = Ba = Baf for all i, (6.18) implies that the reduced-order TS fuzzy observer
will be independent on the input u(t) and will exploit only the vector variable v(t).

Considering the fact that the reduced-order TS fuzzy observer does not contain any
information about actuator faults, the next reconstruction principle can be used.

Theorem 6.6. Designed with respect to P◦ satisfying (5.18)–(5.20), the reduced-order TS fuzzy
observer (5.1), (5.2) asymptotically estimates actuator faults.

Proof. Since (3.11), (3.14) implies

qe(t) = TT
aqae(t) = TT

a2qa2e(t) + TT
a1v(t), (6.21)

substituting (6.19) in (6.21) leads to

qe(t) = TT
a2p2e(t) +

(
TT
a1 + TT

a2J
)
Wy(t), (6.22)

q̇e(t) =
s∑

i=1

hi(θ(t))(Aiqe(t) + Biu(t)) + Bfuf(t). (6.23)

Thus, using Moore-Penrose pseudoinverse B1
f

of Bf ,

ufe(t) = B1
f

s∑

i=1

hi(θ(t))(q̇e(t) −Aiqe(t) − Biu(t)). (6.24)
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Explaining uf(t) as follows:

uf(t) = B1
f

s∑

i=1

hi(θ(t))(q̇(t) −Aiqe(t) − Biu(t)), (6.25)

then for euf(t) = uf(t) − ufe(t) it yields

euf(t) = B1
f

s∑

i=1

hi(θ(t))
(
ėq(t) −Aieq(t)

)
. (6.26)

Owing to that reduced-order observer is stable, euf(t) converges asymptotically to zero. This
concludes the proof.

Remark 6.7. Taking the actuator fault reconstructor as given by (6.24), it is necessary to note
that q̇e(t) has to be computed numerically from (6.22), since (5.7) is affected by actuator faults
and so cannot be used to the first state vector component derivative evaluation.

Note, matrix pseudoinverse in (6.24) is the reason that Bf has to be the same in all
linear submodels of (2.4).

7. Illustrative Example

Referring to [32], a nonlinear hydrostatic transmission system is considered in this section
for simulating the real environment. The proposed design method is applied to design an
actuator fault estimation scheme based on a reduced-order fuzzy observer using TS model of
this model. The hydrostatic transmission system is represented by the nonlinear state-space
model of the form

q̇1(t) = −a11q1(t) + b11u1(t)

q̇2(t) = −a22q2(t) + b22u2(t),

q̇3(t) = a31q1(t)p(t) − a33q3(t) − a34q2(t)q4(t),

q̇4(t) = a43q2(t)q3(t) − a44q4(t),

(7.1)

where q1(t) is the normalized hydraulic pump angle, q2(t) is the normalized hydraulic motor
angle, q3(t) is the pressure difference [bar], q4(t) is the hydraulic motor speed [rad/s], u1(t) is
the normalized control signal of the hydraulic pump, u2(t) is the normalized control signal of
the hydraulic motor, and the external signal p(t) represents speed of hydraulic pump [rad/s].
It is supposed that the external variable p(t) and all state variables except q3(t) are measurable
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and the model parameters are

a11 = 7.6923, a22 = 4.5455, a33 = 7.6054 ∗ 10−4,

a31 = 0.7877, a34 = 0.9235, b11 = 1.8590 ∗ 103,

a43 = 12.1967, a44 = 0.4143, b22 = 1.2879 ∗ 103.

(7.2)

Since the variables p(t) ∈ 〈105, 300〉 and q2(t) ∈ 〈0, 1〉 are bounded on the prescribed sectors,
the vector of premise variables was chosen as follows:

θ(t) =
[
θ1(t) θ2(t)

]
=
[
q2(t) p(t)

]
, (7.3)

where the set of nonlinear sector functions:

w11
(
q2(t)

)
=

b1 − q2(t)
b1 − b2

, w12
(
q2(t)

)
= 1 −w11

(
q2(t)

)
, b1 = 0, b2 = 1,

w21
(
p(t)
)
=

c1 − p(t)
c1 − c2

, w22
(
p(t)
)
= 1 −w21

(
p(t)
)
, c1 = 105, c2 = 300

(7.4)

implies the next set of normalized membership functions:

h1(θ(t)) = w11
(
q2(t)

)
w21
(
p(t)
)
, h2(θ(t)) = w11

(
q2(t)

)
w22
(
p(t)
)
,

h3(θ(t)) = w12
(
q2(t)

)
w21
(
p(t)
)
, h4(θ(t)) = w12

(
q2(t)

)
w22
(
p(t)
)
.

(7.5)

The overall TS fuzzy model (2.4), (2.5) with an actuator fault is represented as follows:

q̇(t) =
4∑

i=1

hi(θ(t))(Aiq(t)) + B(u(t) + f(t)),

y(t) = Cq(t),

(7.6)
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where

A1 =

⎡

⎢⎢
⎣

−7.6923 0 0 0
0 −4.5455 0 0

82.7086 0 −0.0008 0
0 0 0 −0.4143

⎤

⎥⎥
⎦,

A2 =

⎡

⎢
⎢
⎣

−7.6923 0 0 0
0 −4.5455 0 0

236.3103 0 −0.0008 0
0 0 0 −0.4143

⎤

⎥
⎥
⎦,

A3 =

⎡

⎢⎢
⎣

−7.6923 0 0 0
0 −4.5455 0 0

82.7086 0 −0.0008 −0.9235
0 0 12.1967 −0.4143

⎤

⎥⎥
⎦,

A4 =

⎡

⎢⎢
⎣

−7.6923 0 0 0
0 −4.5455 0 0

236.3103 0 −0.0008 −0.9235
0 0 12.1967 −0.4143

⎤

⎥⎥
⎦,

Bi = B = Bf =

⎡

⎢⎢
⎣

1.8590 0
0 1.2879
0 0
0 0

⎤

⎥⎥
⎦ × 103, i = 1, 2, 3, 4, C =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦.

(7.7)

Note that rank(C) > rank(B) and Proposition 3.5 are satisfied.
Using SVD of the output matrix C, (3.10) implies

U = S = W−1 = I3, V = Ta = diag
[
I2

[
0 1
1 0

]]
=

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥
⎦,

Ta1 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦, Ta2 =
[
0 0 1 0

]
,

(7.8)
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and with such defined Ta, for i = 1, 2, 3, 4, it yields

Ca =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦, Ba1 =

⎡

⎣
1.8590 0

0 1.2879
0 0

⎤

⎦ × 103, Ba2 =
[
0 0
]
,

Aa211 =
[
82.7086 0 0

]
, Aa212 =

[
236.3103 0 0

]
,

Aa213 =
[
82.7086 0 −0.9235

]
, Aa214 =

[
236.3103 0 −0.9235

]
,

Aa121 = Aa122 =

⎡

⎣
0
0
0

⎤

⎦, Aa123 = Aa124 =

⎡

⎣
0
0

12.1967

⎤

⎦,

Aa11i =

⎡

⎣
−7.6923 0 0

0 −4.5455 0
0 0 −0.4143

⎤

⎦, Aa22i =
[−0.0008

]
, i = 1, 2, 3, 4.

(7.9)

Considering the conditions given in Theorem 6.1, the reduced-order observer (5.1)–(5.5)
takes now the form

ṗ2e(t) =
4∑

i=1

hi(θ(t))
(
Aaeip2e(t) +Aaviv(t) +

[−J In−m
]
Baiu(t)

)
, (7.10)

where

Aavi = Aa21i − JAa11i + (Aa22i − JAa12i)J, Aaei = Aa22i − JAa12i, (7.11)

and J ∈ R
1 × 3 is given by (6.15) as follows:

J = (P◦)−1B⊥
a1, (7.12)

where B⊥
a1 is an orthogonal complement to Ba1.

The scalar LMI variable P ◦ can be found by using the convex optimization techniques
if B⊥

a1 is defined as a structured LM variable of the form

B⊥
a1 =

[
0 0 Z

]
, Z ∈ R, (7.13)

where Z is an LMI variable. Note that a structured matrix variable can be specified only by
including LMI matrix variables multiplied by a natural number or zero.
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Thus, solving (6.13), (6.14) with respect to the LMI variables P ◦, Z using Self-Dual-
Minimization (SeDuMi) package for Matlab [33], the reduced observer gain design problem
was feasible with the results

P ◦ = 1.0832, B⊥
a1 =

[
0 0 0.0410

]
, J =

[
0 0 0.0378

]
,

Aae2 = Aae1 = Aa22 − JAa121 = −7.6053 × 10−4,

Aae4 = Aae3 = Ab22 − JAa123 = −0.4610.

(7.14)

It is evident that the design of the stable reduced-order observer with suppressed input fault
signals is now completely specified, and the system state can be reconstructed, using (6.22),
from the estimated vector p2e(t) and the output vector y(t) as

qe(t) =

⎡

⎢⎢
⎣

0
0
1
0

⎤

⎥⎥
⎦p2e(t) +

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

1 0 0
0 1 0
0 0 0
0 0 1

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

0
0
1
0

⎤

⎥⎥
⎦
[
0 0 0.0378

]

⎞

⎟⎟
⎠

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦y(t). (7.15)

Evidently, the final form of the state reconstruction equation is

qe(t) =

⎡

⎢⎢
⎣

0
0
1
0

⎤

⎥⎥
⎦p2e(t) +

⎡

⎢⎢
⎣

1 0 0
0 1 0
0 0 0.0378
0 0 1

⎤

⎥⎥
⎦y(t), (7.16)

and actuator faults, if were occurred, can be computed by (6.24) as

ufe(t) = B1
4∑

i=1

hi(θ(t))(q̇e(t) −Aiqe(t) − Bu(t)), (7.17)

where

B1 =
[

0.5379 0 0 0
0 0.7765 0 0

]
× 10−3, (7.18)

and θ(t), hi(θ(t))(q̇e(t)), Ai, and B are above specified. The derivative of the system
state estimation q̇e(t) was computed by standard numerical method from the obtained
qe(t). Since the reduced-order observer is used only, for system without uncertainties no
extra computation consumption is needed, comparing, for example, with the sliding mode
approach.

For simulation purposes only, the equilibrium of the system was stabilized by the
fuzzy feedback controller

u(t) = −
4∑

j=1

hj(θ(t))Kjq(t), (7.19)
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Figure 1: The second actuator fault signal.

where, using the method proposed in [34], offering the possibility to design the linear state
controller for TS fuzzy system, the gain matrices were computed as

K = Kj =
[

0.2386 0.0000 0.0350 0.0075
0.0000 0.0207 0.0000 0.0000

]
, j = 1, 2, 3, 4. (7.20)

In simulations was considered the fault which does not cause closed-loop system
instability, modeled by a fault starting at any time instant in the system equilibrium state.
Applying the above-designed reduced-order observer-based actuator fault estimation, the
fault responses for the nonlinear system are given in Figures 1 and 2. Thus, Figure 1 presents
the fault signal reflecting single actuator fault in the the second actuator, starting at the time
instant t = 20 s and continuing during the time 10 s, and Figure 2 illustrates the signals u1

f , u2
f

obtained from (6.26) as a reconstruction of the single fault. Note that equivalent results are
obtained for the system working in a forced regime.

From the simulation results of Figures 1 and 2, it can be found that the errors between
the signals reflecting a single actuator fault and the observer approximate ones tend to
zero. Moreover, the states of the system converge to the equilibrium when the actuator fault
disappeared, via the used fuzzy controller.

8. Concluding Remarks

Generalized design method of a reduced-order observer-based actuator fault estimation
scheme is developed, as augmentation of unknown observers synthesis for one class of
nonlinear systems described by TS fuzzy model. This is achieved by manipulation of observer
asymptotic stability with respect to the proposed matching conditions. Design conditions
for asymptotic estimation of actuator faults are derived in terms of LMI, using standard
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Figure 2: The reconstruction of the actuator fault signal.

LMI procedures to manipulate the reducer-order observer stability. Because of the specific
observer gain matrix structure, the estimated unmeasurable part of the system state is free
of actuators faults. By examining the estimated state vector, it is presented that using a
numerical realization of time derivative of the state vector estimate, the actuator fault signals
can be faithfully reconstructed.

Proposed scheme is able to simultaneously estimate the time-varying actuator faults,
as well as the system state variables with a good accuracy, is easy to implement, and can be
applied to a reasonably wide class of systems satisfying the matching condition. Presented
simulations have shown that the proposed design task is feasible and effective.
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This paper investigates the stabilization problem for a class of discrete-time stochastic non-
affine nonlinear systems based on T-S fuzzy models. Based on the function approximation
capability of a class of stochastic T-S fuzzy models, it is shown that the stabilization problem
of a stochastic non-affine nonlinear system can be solved as a robust stabilization problem of
the stochastic T-S fuzzy system with the approximation errors as the uncertainty term. By using
a class of piecewise dynamic feedback fuzzy controllers and piecewise quadratic Lyapunov
functions, robust semiglobal stabilization condition of the stochastic non-affine nonlinear systems
is formulated in terms of linear matrix inequalities. A simulation example illustrating the
effectiveness of the proposed approach is provided in the end.

1. Introduction

In recent years, Takagi-Sugeno (T-S) type dynamic fuzzy model [1] based control metho-
dologies have attracted great attention from control community. T-S fuzzy models describe
a nonlinear system by the “blending” of a set of local linear dynamic models. This relatively
simple structure facilitates the systematic stability analysis and controller design of T-S fuzzy
control systems in view of the powerful linear systems control theory [2–13]. By using a
common quadratic Lyapunov function and LMI techniques, control design of T-S fuzzy
systems can be formulated in a convex optimization problem, which can be effectively solved



2 Mathematical Problems in Engineering

by various tools. However, common Lyapunov functions (CLFs) tend to be conservative and
even might not exist for many highly complex nonlinear systems [3]. In order to reduce
the conservatism of approaches based on CLFs, some results based on piecewise Lyapunov
functions (PLFs) have been proposed [12, 13]. For the most recent advances on relevant
topics, readers please refer to the book and the survey paper [2, 3] and the references therein
for details.

Control design of nonlinear systems based on T-S fuzzy models can be typically sum-
marized into two steps: (i) for a given nonlinear system, find its approximate T-S fuzzy
model; and (ii) design a controller for the obtained T-S fuzzy model. It has been shown
that T-S fuzzy models are universal function approximators in the sense that they are able
to approximate any smooth nonlinear functions to any degree of accuracy in any convex
compact region [14–16], which provides a theoretical foundation for utilizing the T-S fuzzy
modeling method as an alternative approach to describing complex nonlinear systems
approximately. However, it has been proved in [16] that the commonly used T-S fuzzy
models where the control variables are not included in the premise variables are only able
to approximate affine nonlinear systems to any degree of accuracy on any compact set. This
implies that only the control design of affine nonlinear systems can be solved based on the
commonly used T-S fuzzy models. To deal with more general nonlinear systems, that is, non-
affine nonlinear systems, recently the coauthors proposed a class of generalized T-S fuzzy
models which are universal function approximators of non-affine nonlinear systems [17, 18].

On another fruitful research frontier, stochastic control systems have been extensively
studied because stochastic modeling plays a very important role in many branches of science
and engineering [19–22]. Although many valuable results on stability analysis and controller
synthesis of stochastic linear systems have been reported, most of the existing results on
stochastic nonlinear control systems do not provide any systematic way of control design
due to the difficulty in searching for suitable Lyapunov functions, especially for highly
complex stochastic nonlinear systems. Motivated by the deterministic T-S fuzzy model based
control techniques, the T-S fuzzy models have been extended to the stochastic case, where
the local models are stochastic linear dynamic models instead of deterministic ones [23–
26]. Especially, to deal with stochastic non-affine nonlinear systems (SNNS), the so-called
generalized stochastic T-S fuzzy models were proposed in [26] by the co-authors.

In [26], the stabilization problem of continuous-time SNNS was studied based on the
generalized stochastic T-S fuzzy models. However, it is noted that the approach proposed
in [26] is based on common Lyapunov functions, which is very conservative. In this
paper, we investigate the stabilization problem of discrete-time SNNS based on discrete-
time generalized stochastic T-S fuzzy models. By using a piecewise Lyapunov function
and a class of piecewise dynamic feedback fuzzy controllers, it is shown that the robust
semiglobal stabilization condition of discrete-time SNNS can be formulated in terms of a set
of linear matrix inequalities (LMIs) that are numerically efficient with commercially available
software.

The rest of this paper is structured as follows. Section 2 is devoted to model description
and problem formulation. In Section 3, robust controller design result for discrete-time
stochastic non-affine nonlinear systems is presented. Simulation results are provided in
Section 4 to demonstrate the effectiveness of the proposed approach. Conclusions are given
in Section 5.

Notations. The notations used in this paper are fairly standard. The notation � is used
to indicate the terms that can be induced by symmetry. “T ′′ represents vector or matrix
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transpose. In and 0m×n are used to denote the n × n identity matrix and the m × n zero
matrix, respectively. The subscripts n and m × n are omitted when the size is not relevant
or can be determined from the context. P > 0 means that matrix P is real, symmetric, and
positive definite. For a matrix A, λ{A} is the eigenvalue of A. Let E{·} be the mathematical
expectation operator with respect to the given probability measure P, and let (Ω,F,P) be a
complete probability space with a natural filtration {Ft}t≥0.

2. Model Description and Problem Formulation

2.1. T-S Fuzzy Model Description of SNNS

In this paper, we consider the following discrete-time stochastic non-affine nonlinear system:

x(t + 1) = f(x(t), u(t)) + g(x(t), u(t))W(t), (2.1)

where x(t) = [x1(t), . . . , xn(t)]
T ∈ X ⊂ �n, u(t) = [u1(t), . . . , um(t)]

T ∈ U ⊂ �m, X × U is
a compact set on �n × �m containing the origin, and W(t) = [W1(t),W2(t), . . . ,Wq(t)]

T is a
q-dimensional Wiener process defined on a complete probability space (Ω,F,P) with

E{Wi(t)} = 0, E

{
W2

i (t)
}
= 1. (2.2)

Moreover, the noise processes W1(t),W2(t), . . . ,Wq(t), the system state, and the control input
are independent. It is assumed in this paper that the mappings f ∈ C1 and g ∈ C1 both
vanish at zero, that is, f(0, 0) = 0 and g(0, 0) = 0. It is also assumed that f and g satisfy the
usual linear growth and local Lipschitz conditions for existence and uniqueness of solutions
to (2.1).

Our objective is to develop an approach to controlling the SNNS in (2.1) via T-S fuzzy
modeling. In order to approximate the SNNS in (2.1), the following discrete-time generalized
stochastic T-S fuzzy model is employed.

Plant ruleRl

IF x1(t) is Ul
1 AND. . . AND xn(t) is Ul

n; u1(t) is Vl
1 AND. . . AND um(t) is Vl

m; THEN

x(t + 1) = Alx(t) + Blu(t) +
q∑

k=1

(Clkx(t) +Dlku(t))Wk(t), l ∈ L := {1, 2, . . . r}, (2.3)

where Rl denotes the lth rule, r the total number of rules, Ul
i and Vl

j the fuzzy sets, x(t) ∈ �n

the state vector, u(t) ∈ �m the input vector, and [Al, Bl, Clk,Dlk] the matrices of the lth local
model.

Under the center-average defuzzifier, product inference, and singleton fuzzifier, the
T-S fuzzy system in (2.3) can be expressed globally as

x(t + 1) = f̂(x(t), u(t)) + ĝ(x(t), u(t))W(t) (2.4)
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with

f̂(x(t), u(t)) =
r∑

l=1

μl(x, u)[Alx(t) + Blu(t)],

ĝ(x(t), u(t)) =
r∑

l=1

μl(x, u) ×
[
Cl1x(t) +Dl1u(t), . . . , Clqx(t) +Dlqu(t)

]
,

μl(x, u) =

∏n
i=1Ul

i(xi)
∏m

j=1Vl
j

(
uj

)

∑r
l=1
∏n

i=1Ul
i(xi)
∏m

j=1Vl
j

(
uj

) ,

(2.5)

where μl(x, u) are the so-called normalized fuzzy membership functions satisfying∑r
l=1 μl(x, u) = 1 and μl(x, u) ≥ 0.

In the co-authors’ recent work [26], the continuous-time counterpart of the stochastic
T-S fuzzy models in (2.4) has been proved to be the universal function approximator to
continuous-time SNNS. It has been also shown in [26] that the function approximation
capability also holds for the discrete-time case, which is summarized in the following lemma.

Lemma 2.1 (see [26]). For any given SNNS described by (2.1) and any two positive constants ε1

and ε2, there exist a set of fuzzy basis functions μl(x, u) and constant matrices Al, Bl, Clk, and Dlk,
l ∈ {1, . . . , r}, k ∈ {1, . . . , q} such that

f̂(x, u) =
r∑

l=1

μl(x, u)[Alx + Blu] = f(x, u) + εf(x, u),

ĝ(x, u) =
r∑

l=1

μl(x, u)
[
Cl1x +Dl1u, . . . , Clqx +Dlqu

]
= g(x, u) + εg(x, u),

(2.6)

where

εf(x, u) = ΔEf(x, u)x,

εg(x, u) =
[
εg1(x, u), . . . , εgq(x, u)

]
=
[
ΔEg1(x, u)x, . . . ,ΔEgq(x, u)x

]
,

(2.7)

with

∥∥ΔEf(x, u)
∥∥ < ε1,

∥∥ΔEgk(x, u)
∥∥ < ε2, k =

{
1, . . . , q

}
. (2.8)
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From (2.6) in Lemma 2.1, an SNNS described by (2.1) can be exactly expressed in a
compact set by a generalized stochastic T-S fuzzy model in (2.4) with the approximation
errors as some norm-bounded uncertainties as follows:

x(t + 1) =
r∑

l=1

μl(x, u)

{

Alx(t) + Blu(t) + εf(x(t), u(t))

+
q∑

k=1

(
Clkx(t) +Dlku(t) + εgk(x(t), u(t))

)
Wk(t)

}

,

(2.9)

where

εf(x(t), u(t)) = ΔEf(x, u)
[
x(t)
u(t)

]
, εgk(x(t), u(t)) = ΔEgk(x, u)

[
x(t)
u(t)

]
. (2.10)

Therefore, one can easily conclude that the stabilization of an SNNS given in (2.1)
can be actually solved as a robust stabilization problem of its corresponding stochastic
generalized T-S fuzzy model with the approximation errors as the uncertainty terms.

2.2. System Formulation and Dynamic Fuzzy Controllers

It is noted that fuzzy system (2.4) induces a polyhedral partition of the premise space, which
is dependent on both the system state x and control input u. As a result, the global fuzzy
system can be viewed as a number of subsystems in a number of individual regions.

In this paper, the premise space is divided into a set of crisp regions and fuzzy regions.
Denote the partitioned regions as {Si}i∈� with � as the set of region indices and define I(i)
the indices of fired rules in each region Si, then the crisp regions and fuzzy regions can be
defined respectively by

Si :=
{
(x, u) | μm(x, u) = 1, m ∈ I(i)},

Sj :=
{
(x, u) | 0 ≤ μm(x, u) < 1, m ∈ I(j)},

(2.11)

where i, j ∈ �.
Based on such a partition method, the fuzzy model (2.4), or the original SNNS (2.1),

in each region can be rewritten by a blending of m ∈ I(i) subsystems,

x(t + 1) =
∑

m∈I(i)
μm(x(t), u(t))

×
{

Amx(t) + Bmu(t) + εf(x(t), u(t))

+
q∑

k=1

(
Cmkx(t) +Dmku(t) + εgk(x(t), u(t))

)
Wk(t)

}

, (x, u) ∈ Si, i ∈ �.

(2.12)
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In order to stabilize the nonlinear system in (2.12), we employ the following piecewise
dynamic state feedback fuzzy controller:

u(t + 1) =
∑

m∈I(i)
μm(x, u){Fmix(t) +Gmiu(t)}, (x, u) ∈ Si, i ∈ �. (2.13)

Remark 2.2. As it has been argued in [17], because the premise variables of the generalized
stochastic T-S fuzzy system in (2.12) contain the system control input, the commonly used
parallel distributed compensation (PDC) scheme cannot be directly applied. Instead, the
dynamic fuzzy controller in (2.13) is proposed. It is noted that by using the dynamic
state feedback controller in (2.13), the closed-loop control system can be expressed in the
summation of one index which is different from the traditional static state feedback case
where indices are used. This will lead to much less number of LMIs in controller design
which will be shown subsequently.

Remark 2.3. When the local gains of the piecewise dynamic fuzzy controller (PDFC) in (2.13)
are equal, that is, [Fmi, Gmi] = [Fi, Gi], for m ∈ I(i), the fuzzy controller in (2.13) reduces to
the so-called piecewise dynamic crisp controller (PDCC). It will be shown in Section 4 that
the fuzzy controller in (2.13) achieves better performance than the piecewise dynamic state
feedback controller.

Then the closed-loop control system consisting of (2.12) and (2.13) is given by

x(t + 1) =
∑

m∈I(i)
μm(x(t))

×
{
(Ami + RΔEf(x(t))

)
x(t)

+
q∑

k=1

(Cmk + RΔEgk(x(t))
)
x(t)Wk(t)

}

, x(t) ∈ Si,

(2.14)

where Ami = Am + BKmi, ΔEf and ΔEgk are defined in (2.10), and

x(t) =
[
x(t)
u(t)

]
, Am =

[
Am Bm

0m×n 0m×m

]
,

B =
[
0n×m
Im

]
, R =

[
In

0m×n

]
,

Kmi =
[
Fmi Gmi

]
, Cmk =

[
Cmk Dmk

0m×n 0m×m

]
.

(2.15)

In addition, we define a new set that represents all possible state transitions among
regions of the closed-loop T-S fuzzy system in (2.15) as follows:

Ω :=
{(

i, j
) | x(t) ∈ Si, x(t + 1) ∈ Sj, i, j ∈ �}. (2.16)
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In the case of (i, j) ∈ Ω and i = j, the state trajectories evolve in the same region Si at
the time t. Otherwise, the state trajectories will transit from the region Si to Sj at that time.

3. Robust Controller Design for SNNS

In this section, an LMI approach will be developed to solve the stabilization problem of the
SNNS in (2.1) based on the generalized stochastic T-S fuzzy models in (2.4).

The following definitions are introduced first.

Definition 3.1. The closed-loop control system in (2.14) is said to be stochastically asymptot-
ically stable in the mean square sense, if for any initial conditions x(0), the solution x(t) of
(2.14) exists for all t ≥ 0 and limt→∞E{‖x(t)‖2} = 0.

Definition 3.2. The closed-loop control system in (2.14) is said to be stochastically exponen-
tially stable in the mean square sense, if there exist a set of positive constants C, 0 < σ < 1
and λ > 0, such that given any initial states x(0), the solution x(t) of (2.14) exists for all t ≥ 0
and E{‖x(t)‖} ≤ C‖x(0)‖σt.

Denote Mm = [(Cm1)
T , . . . , (Cmq)

T ]
T

and ΔEg(x(t)) = [(RΔET
g1(x(t))), . . . ,

(RΔET
gq(x(t)))]

T . For the sake of simplicity, we denote μi(x(t)), ΔEf(x(t)), ΔEgi(x(t)), and
ΔEg(x(t)) as μi, ΔEf , ΔEgi, and ΔEg , respectively.

Suppose that the upper bounds of the uncertainties ΔEf and ΔEg are given by

ΔET
fΔEf ≤ ε2

1I(m+n), ΔET
gΔEg ≤ ε2

2I(m+n), (3.1)

respectively.
Then the stochastic stability analysis result for the closed-loop control system (2.14) is

provided in the following theorem.

Theorem 3.3. The closed-loop stochastic fuzzy control system (2.14) is stochastically asymptotically
stable in the mean square sense if there exist a set of positive definite matrices Pi, i ∈ �, two sets of
positive constants ε1i and ε2i, and a positive constant δ such that the following matrix inequalities
hold for all (i, j) ∈ Ω, m ∈ I(i),

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ξij +

(
ε2

1

ε1i
+

ε2
2

ε2i

)

I � �

RTPjAmi RTPjR − 1
ε1i

I �

Iq ⊗ PjMm 0 Iq ⊗ Pj − 1
ε2i

I

⎤

⎥⎥⎥⎥⎥⎥
⎦

< −δI, (3.2)

where

Ξij = AT
miPjAmi +MT

m

(
Iq ⊗ Pj

)Mm − Pi. (3.3)
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Proof. Consider the following piecewise Lyapunov function candidate:

V (x(t)) = xT (t)Pix(t), x(t) ∈ Si. (3.4)

For a given set of given positive definite matrices Pi, from (2.2) one has

E

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎞

⎠

T

Pj

⎛

⎝
∑

m∈I(i)
μm

q∑

k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞

⎠

⎫
⎪⎬

⎪⎭

= E

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

m∈I(i)
μm

q∑

k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞

⎠

T

Pj

⎛

⎝
∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎞

⎠

⎫
⎪⎬

⎪⎭

= 0.
(3.5)

Based on Lemmas A.1 and A.2, one has that

⎧
⎨

⎩

∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎫
⎬

⎭

T

Pj

⎧
⎨

⎩

∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎫
⎬

⎭

≤
∑

m∈I(i)
μmx

T (t)
(Ami + RΔEf

)T
Pj

(Ami + RΔEf

)
x(t),

E

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

m∈I(i)
μm

q∑

k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞

⎠

T

Pj

×
⎛

⎝
∑

m∈I(i)
μm

q∑

k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞

⎠

⎫
⎬

⎭

≤
∑

m∈I(i)
μmE

⎧
⎨

⎩

(
q∑

k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

)T

Pj ×
(

q∑

k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

)⎫⎬

⎭

=
∑

m∈I(i)
μm

q∑

k=1

xT (t)
(Cmk + RΔEgk

)T
Pj

(Cmk + RΔEgk

)
x(t)

=
∑

m∈I(i)
μmx

T (t)
(Mm + ΔEg

)T(Iq ⊗ Pj

)(Mm + ΔEg

)
x(t).

(3.6)
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Then one has that along the system trajectories of (2.14),

E{V (x(t + 1) | x(t))} − V (x(t))

≤
∑

m∈I(i)
μmx

T (t)
{(Ami + RΔEf

)T
Pj

(Ami + RΔEf

)

+
(Mm + ΔEg

)T(Iq ⊗ Pj

)(Mm + ΔEg

) − Pi

}
x(t).

(3.7)

Therefore one has that E{V (x(t + 1) | x(t))} − V (x(t)) < −δxT (t)x(t) if

(Ami + RΔEf

)T
Pj

(Ami + RΔEf

) − Pi

+
(Mm + ΔEg

)T(Iq ⊗ Pj

)(Mm + ΔEg

)
< −δI.

(3.8)

Denote ζ = [I(m+n),ΔET
f ,ΔET

g ]
T . Then it can be seen that the inequality (3.8) is equi-

valent to

ζT

⎡

⎢⎢
⎣

Ξij � �

RTPjAmi RTPjR �

Iq ⊗ PjMm 0 Iq ⊗ Pj

⎤

⎥⎥
⎦ζ < −δI, (3.9)

where Ξij is defined in (3.3).
The upper bounds defined in (3.1) can be rewritten, respectively, as

ζT

⎡

⎢⎢
⎣

−ε2
1I(m+n) � �

0 I(m+n) �

0 0 0

⎤

⎥⎥
⎦ζ < 0, ζT

⎡

⎢⎢
⎣

−ε2
2I(m+n) � �

0 0 �

0 0 I(m+n)

⎤

⎥⎥
⎦ζ < 0. (3.10)

Then by applying Lemma A.3 (S-procedure) in the appendix, one can conclude that
(3.8) holds if there exist two sets of positive constants ε1i and ε2i such that (3.2) holds.

Therefore, if (3.2) holds, one has that

E{V (x(t + 1) | x(t))} − V (x(t)) < −δxT (t)x(t). (3.11)

Taking expectation of both sides of (3.11) yields

E{V (x(t + 1))} − E{V (x(t))} < −δE

{
‖x(t)‖2

}
, (3.12)

which implies

E

{
N∑

t=0
‖x(t)‖2

}

<
1
δ
(E{V (x(0))} − E{V (x(N + 1))}) ≤ 1

δ
E{V (x(0))} < ∞. (3.13)



10 Mathematical Problems in Engineering

Then one has that limt→∞E{‖x(t)‖2} = 0. From Definition 3.1, the closed-loop fuzzy
system (2.14) is stochastically asymptotically stable in the mean square sense. The proof is
thus completed.

Corollary 3.4. Under the conditions of Theorem 3.3, the closed-loop stochastic fuzzy control system
(2.14) is also stochastically exponentially stable in the mean square sense.

Proof. From (3.4) one has that

λ1‖x(t)‖2 ≤ V (x(t)) ≤ λ2‖x(t)‖2, (3.14)

where λ1 = mini λ{Pi} and λ2 = maxi λ{Pi}.
Then from (3.12), one has

E{V (x(t + 1))} <

(
1 − δ

λ2

)
E{V (x(t))}, (3.15)

which implies

λ1E
{
‖x(t)‖2

}
≤ V (x(t)) ≤

(
1 − δ

λ2

)t

E{V (x(0))}. (3.16)

Thus one has that E{‖x(t)‖2} ≤ C‖x(0)‖σt, where C = λ2/λ1 > 0 and 0 < σ = 1−δ/λ2 <
1. From Definition 3.2, one can conclude that the closed-loop fuzzy control system (2.14) is
stochastically exponentially stable in the mean square sense. The proof is thus completed.

Remark 3.5. It is noted that σ = 1 − δ/λ2 represents the convergence rate of the closed-loop
control system.

Based on Theorem 3.3, the following controller design results can be obtained.

Theorem 3.6. The SNNS (2.1) can be semiglobally stochastically asymptotically stabilized in the
mean square sense by the dynamic fuzzy controller in (2.13), if there exist a set of positive definite
matrices Xi, i ∈ �, two sets of positive constants ε1i and ε2i, and a positive constant λ such that the
following matrix inequalities hold for all (i, j) ∈ Ω, m ∈ I(i),

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−Xi � � � � �

ε1Xi −ε1iI � � � �

ε2Xi 0 −ε2iI � � �

Xi 0 0 −λI � �

AmXi + BQmi 0 0 0 Xj − ε1iI �

MmXi 0 0 0 0 Iq ⊗Xj − ε2iIq(m+n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0. (3.17)

Moreover, the controller gain matrices Kmi are given by Kmi = QmiX
−1
i .

Proof. It is noted that the SNNS (2.1) can be expressed by the generalized stochastic T-S fuzzy
model in any compact set. It is also noted that the system (4.2) can be expressed by (2.12)
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in each local region of interest. Thus if the system (2.12) can be stochastically asymptotically
stabilized in the mean square sense by the controller (2.13), with the bounded initial condition
on the state x(0) and the control u(0), the original SNNS (2.1) can be shown to be semi-
globally stochastically asymptotically stabilized in the mean square sense.

By using Schur’s complement, (3.2) is equivalent to

AT
miPjAmi −AT

miPjR

(
RTPjR − 1

ε1i
I
)−1

RTPjAmi − Pi +

(
ε2

1

ε1i
+

ε2
2

ε2i

)

I

+MT
m

(
Iq ⊗ Pj

)Mm −MT
m

(
Iq ⊗ Pj

)
(
Iq ⊗ Pj − 1

ε2i
I
)−1(

Iq ⊗ Pj

)Mm < −δI.
(3.18)

By matrix inverse lemma, (3.18) becomes

AT
mi

(
P−1
j − ε1iI

)−1Ami − Pi +

(
ε2

1

ε1i
+

ε2
2

ε2i

)

I +MT
m

((
Iq ⊗ Pj

)−1 − ε2iI
)−1Mm < −δI. (3.19)

Multiplying Xi = P−1
i from both sides to (3.19), one has

XiAT
mi

(
Xj − ε1iI

)−1AmiXi −Xi +

(
ε2

1

ε1i
+

ε2
2

ε2i

)

XiXi

+XiMT
m

(
Iq ⊗Xj − ε2iI

)−1MmXi < −δXiXi

(3.20)

which is equivalent to (3.17) by using Schur’s complement with the fact that Qmi = KmiXi

and λ = 1/δ.
Thus it follows from Theorem 3.3 that the closed-loop fuzzy system (2.14) is

stochastically asymptotically stable in the mean square sense. Thus one has shown that
the original SNNS (2.1) can be semi-globally stochastically asymptotically stabilized by the
controller in (2.13). Thus the proof is completed.

Remark 3.7. From (3.19), one can see that the LMIs in (3.17) are not easy to be satisfied if the
upper bounds of the approximation errors, that is, ε1 and ε2, are too large. In order to achieve
better approximation performance one has to use larger number of fuzzy rules, which, based
on Theorems 3.3 and 3.6, leads to much higher computation cost of control design. However,
this problem can be lessened to some extent due to the robustness of the proposed approach.
In other words, the smaller number of fuzzy rules can be chosen since the robustness of the
proposed approach allows larger approximation errors.

Remark 3.8. Theorems 3.3 and 3.6 are based on a piecewise quadratic Lyapunov function.
When the positive definite matrices Xi are chosen as common ones, that is, Xi = X, i ∈ �, then
the results of Theorems 3.3 and 3.6 reduce to those based on common Lyapunov functions. It
will be shown in Section 4 that the results based on piecewise Lyapunov functions (FLPs) are
less conservative than those based on common Lyapunov functions (CLFs).
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4. Simulation Studies

In this section, to show the performance of the proposed controller design results, we consider
the balancing problem of an inverted pendulum on a cart. The following discretized inverted
pendulum plant with non-affine mathematical model [26] is used:

x1(t + 1) = x1(t) + Tx2(t),

x2(t + 1) = x2(t) + T

(
f(x(t), v(t)) + [10x1 + 10u, 15x2 − 10u]

[
W1(t)
W2(t)

])
,

(4.1)

where f(x, v) = (g sin(x1) − amlx2
2 sin(2x1)/2 − a cos(x1)v)/(4l/3 − aml cos2(x1)), v(t) =

(arctan(u(t)) + 0.55u(t)) ∗ 102, x1 denotes the angle of pendulum from the vertical, and x2

is the angular velocity. g = 9.8 m/s2 is the gravity constant, m is the mass of pendulum, M
is the mass of the cart, a = 1/(M + m), T = 0.01 s is the sampling time in this study, and 2l
is the length of the pendulum. Note that the input force is given by arctan(u) + 0.15u with
an amplifier of gain 1000 connected. In this simulation, we choose m = 2.0 kg, M = 8.0 kg,
and 2l = 1.0 m.

We linearize the plant around the following operating points, (x;u) = (0; 0; 0), (0; 0; 3),
(±88◦; 0; 0), and (±88◦; 0;±3), respectively, and consider the approximation errors between
the linearized local model and the original nonlinear models as norm-bounded uncertainties.
Then the following uncertain discrete-time dynamic T-S fuzzy model can be obtained:

x(t + 1) =
4∑

l=1

μl(x, u)

{
(
Alx(t) + Blu(t) + εf(x(t), u(t))

)

+
2∑

k=1

(
Clkx(t) +Dlku(t) + εgk(x(t), u(t))

)
Wk(t)

}

,

(4.2)

where the membership functions are shown in Figure 1,

A1 = A2 =
[

0 1
17.2941 0

]
, A3 = A4 =

[
0 1

0.3593 0

]
,

B1 =
[

0
−27.36

]
, B2 =

[
0

−15.56

]
,

B3 =
[

0
−0.81

]
, B4 =

[
0

−0.46

]
,

Cl1 =
[

0 0
10 0

]
, Dl1 =

[
0
10

]
, Cl2 =

[
0 0
0 15

]
,

Dl2 =
[

0
−10

]
, l ∈ L := {1, 2, . . . , 4}.

(4.3)

As it has been defined in Section 2, the indices of fired rules in each local region are
given in Table 1.
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0 π/6 π/4 π/2

|x1|

0

0.5

3

|u|

vLarge(•)

vZero(•)μLarge(•)μZero(•)

S1
S2

S3

S4

S5 S6

Figure 1: Membership functions.

Table 1: Indices of rules fired in each local region.

Local region Si Indices of rules fired I(i)
S1 {4}
S2 {2}
S3 {1, 2, 3, 4}
S4 {2, 4}
S5 {1, 2}
S6 {3, 4}

It is noted that the exact or tightest upper bounds of the approximation errors are
difficult to identify. However, one can apply the method shown in [26] to obtain the
approximate upper bounds, which are ε1 = 0.3 and ε2 = 0, respectively. Then by applying
Theorem 3.6, the controller gains with respect to each partitioned regions are obtained as

Region S1: K41 =
[−0.0147 0.0615 0.0191

]
,

Region S2: K22 =
[−0.0147 0.0615 0.0191

]
,

Region S3: K13 =
[−0.3471 0.0333 0.5511

]
,

K23 =
[−0.3437 0.0296 0.3024

]
,

K33 =
[−0.0065 0.0279 0.0152

]
,

K43 =
[−0.0066 0.0279 0.0085

]
,

Region S4: K24 =
[−0.3738 0.0341 0.3357

]
,

K44 =
[−0.0069 0.0300 0.0093

]
,

Region S5: K15 =
[−0.0210 −0.0010 0.0332

]
,

K25 =
[−0.0210 −0.0010 0.0189

]
,

Region S6: K36 =
[−0.0145 0.0611 0.0336

]
,

K46 =
[−0.0145 0.0608 0.0188

]
.

(4.4)
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Table 2: Comparison of the convergence rate for different cases.

Methods The convergence rate σ = 1 − (δ/λ2)

Theorem 3.6 0.8317

Results based on PDCC and PLFs as indicated in Remark 2.3 0.9117

Results based on PDCC and CLFs as indicated in Remark 3.8 0.9991
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Figure 2: State trajectories.

0 2 4 6 8

0

0.5

1

1.5

Time (seconds)

C
on

tr
ol

 in
pu

t

−0.5

The mean of u

Figure 3: Control input.

To illustrate the performance of the approach proposed in this paper, the state
trajectories and control input of the closed-loop system under initial condition x(0) = (80◦, 0)
along 10 individual Wiener process paths are shown in Figures 2 and 3, respectively. One can
observe that both the means of the system states and control input converge to zero as time
approaches infinity.

To compare the proposed approach with results based on piecewise dynamic controll-
er and piecewise/common Lyapunov functions, respectively, the convergence rates under
different cases are presented in Table 2. It can be observed from Table 2 that the approaches
based on piecewise quadratic Lyapunov functions are less conservative than those based on
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common Lyapunov functions, and the piecewise dynamic fuzzy controller (PDFC) has better
performance than the piecewise dynamic crisp controller.

5. Conclusion

In this paper, T-S fuzzy model based control design of discrete-time stochastic non-affine
nonlinear systems (SNNS) has been investigated. By using a piecewise Lyapunov function,
it is shown that a discrete-time SNNS can be stochastically asymptotically stabilized in the
mean square sense by solving a set of linear matrix equalities. Simulation results are provided
to demonstrate the effectiveness of the approaches proposed in this paper. Some interesting
future topics include filtering design and fault detection problems for complex discrete-time
SNNS based on piecewise Lyapunov functions.

Appendix

Lemma A.1. Given a set of independent stochastic processesW1(t), . . . ,Wq(t) satisfying

E{Wi(t)} = 0, E

{
W2

i (t)
}
= wi, (A.1)

a set of vectors Xi ∈ �n×1, and a symmetric matrixH ∈ �n×n, one has that

E

⎧
⎨

⎩

(
q∑

i=1

Wi(t)Xi

)T

H

(
q∑

i=1

Wi(t)Xi

)⎫⎬

⎭
=

q∑

i=1

wiX
T
i HXi. (A.2)

Proof. One has

E

⎧
⎨

⎩

(
q∑

i=1

Wi(t)Xi

)T

H

(
q∑

i=1

Wi(t)Xi

)⎫⎬

⎭

= E

{
q∑

i=1

W2
i X

T
i HXi

}

+ E

⎧
⎨

⎩

∑

i /= j

WiWjX
T
i HXj

⎫
⎬

⎭
=

q∑

i=1

wiX
T
i HXi.

(A.3)

Lemma A.2 (see [27]). For any real matrices Xi and P > 0 with compatible dimensions, then

{
r∑

i=1

γiXi

}T

P

{
r∑

i=1

γiXi

}

≤
r∑

i=1

γiX
T
i PXi, (A.4)

where γi, (i = 1, . . . , r), are nonnegative scalars with
∑r

i=1 γi = 1.
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Lemma A.3 (S-procedure [28]). Let T0, . . . , Tp ∈ R
n×n be symmetric matrices. Then the following

condition on T0, . . . , Tp

ξTT0ξ > 0, ∀ξ /= 0, (A.5)

such that

ξTTiξ ≥ 0, i = 1, . . . , p, (A.6)

holds if there exists

τ1 ≥ 0, . . . , τp ≥ 0 such that T0 −
p∑

i=1

τiTi > 0. (A.7)
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The network and plant can be regarded as a controlled time-varying system because of the random
induced delay in the networked control systems. The cerebellar model articulation controller
(CMAC) neural network and a PD controller are combined to achieve the forward feedback
control. The PD controller parameters are adjusted adaptively by fuzzy reasoning mechanism,
which can optimize the control effect by reducing the uncertainty caused by the network-
induced delay. Finally, the simulations show that the control method proposed can improve the
performance effectively.

1. Introduction

Networked control system (NCS) is a distributed and networked real-time feedback
control system which combine communication network and control system [1]. Due to the
irregularly multiple nodes shared network and data flowing change, information exchange
time delay occurred inevitably, which is the network-induced delay [2]. The network-
induced delay will cause system poor control quality and bad performance, even unstable
[3–5]. Therefore, the induced delay is one of the most issues in the network control system
[6–9].

Based on the influence of the induced delay in the network control system, a cycle
time delay network using augmented deterministic discrete time model method is proposed
by [10] to control the linear continuous controlled object. In [11] based on the queue
management network, the queuing methodology is put forward to turn random time delay
into fixed-length time delay. The buffer queue method is designed based on probability
predictor delay compensation, according to the problem of random delay in the network
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control system [12]. Zhang et al. [13] studied the stability of network control system with
constant delay. Wu et al. [14] propose a delay-dependent sufficient condition by applying
the delay partitioning approach for the asymptotic stability with an H∞ error performance
for the error system. Wu and Zheng [15] addressed the L 2-L ∞ dynamic output feedback
(DOF) control problem for a class of nonlinear fuzzy ItO stochastic systemswith time-varying
delay. Yue et al. [16] established the new network control systemmodel considering network-
varying delay, packet loss, and wrong sequence. Peng et al. [17] researched on network
control system with interval variable delay and reduced complexity by introducing Jessen
inequality. Wu et al. [18] investigated the problems of stability analysis and stabilization for
a class of discrete-time Takagi-Sugeno fuzzy systems with time-varying state delay. Wu et al.
[19] proposed sufficient conditions to guarantee the exponential stability for the switched
neural networks with constant and time-varying delays by using the average dwell time
approach together with the piecewise Lyapunov function technique and by combining a
novel Lyapunov-Krasovskii functional, which benefits from the delay partitioning method,
with the free-weighting matrix technique. In [20] the impact of the network-induced
delay is described as a system of continuous-time nonlinear perturbation using nonlinear
perturbation theory by assuming no observation noise. Yang et al. introduced a new class of
discrete-time networked nonlinear systems with mixed random delays and packet dropouts
[21] and discussed the problem of feedback control for networked systems with discrete and
distributed delays subject to quantization and packet dropout [22]. Xie et al. [23] discussed
the problem of robustH∞ fault-tolerant control for uncertain networked control system with
random delays and actuator faults.

In this paper, the PD control with CMAC (cerebellar model articulation controller,
CMAC) is proposed. The transmission network and the controlled object are regarded as the
time-varying controlled system, in which CMAC neural network implements the forward
feedback, while the fuzzy PD composite switching model is applied and adaptive on-line
parameters by using fuzzy inference engine are set. The method proposed can reduce the
impact of network-induced delay and the uncertainties, so it optimize the control effect and
improve the control performance of the system.

The rest of the paper is organized as follows. In Section 2, the problem of time delay
in NCS is described. The CMAC neural network-based fuzzy PD controller is put forward
in Section 3. Simulation results are shown in Section 4. Finally, a conclusion is provided in
Section 5.

2. The Description of Network Control System with Time Delay

In network control system, there are three kinds of delay, namely, sensor-controller delay τsc,
controller computation delay τc, and controller-actuator delay τca, where the τsc and τca are
caused by the transmission delay generated by the forward channel and feedback channel,
and the τc is caused by the hardware structure and software code. The controller computation
delay τc used is to be neglected because it is smaller than τsc and τca. So the total delay of the
kth sampling period can be represented as τk = τksc + τkca [24]. The network control system
block diagram is shown in Figure 1.

3. The Design of CMAC Neural Network-Based Fuzzy PD Controller

Network control system is time varying because of the network random delay, and the
general PID controller will make the control performance worse. But intelligent control has
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a better adaptive ability and is an effective method to improve the system performance [25–
28], therefore intelligent control is applied to improve the robustness of the system [29–33].
In this paper, CMAC neural network-based fuzzy PD is applied to control the system. We
use the PD algorithm instead of the PID, so that the learning of CMAC neural network only
depends on the measured and varying values of errors.

3.1. CMAC Neural Network

CMAC is a neural network model which can simulate the function of the cerebellar and
has the ability to express and inquire complex nonlinear forms adaptively. The network can
change the form’s information through the learning algorithm and can also store information
by category [34]. CMAC consists of input layer, middle layer, and output layer, and its
structure is shown in Figure 2.

up = [u1p,u2p, . . . ,unp]
T and [up] are respectively input space vector and quantization

coding, and the input space is mapped to the c memory cells, and c is generalization
parameters. The mapping vector is as follows:

Rp = S
([
up

])
=
[
s1
(
up

)
, s2

(
up

)
, . . . , sc

(
up

)]T
, (3.1)
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where sj([up]) = 1, j = 1, 2, . . . , c. The network’s output is the sum of the weights of the c
units.

Now only thinking of the single input, the output is

y =
c∑

j=1

wjsj
([
up

])
, (3.2)

so

y =
c∑

j=1

wj. (3.3)

The learning algorithm is as follows.
The δ learning rule is adapted to adjust the weights, and the norm of weight adjustment is

E =
1
2c

e(t)2, (3.4)

where e(t) = r(t) − y(t).
According to the gradient descent, the weights are adjusted as follows:

Δwj(k) = −η ∂E

∂w
= η

r(t) − y(t)
c

· ∂y
∂w

= η
e(t)
c

,

wj(t) = wj(t − 1) + Δwj(t) + β
(
wj(t − 1) −wj(t − 2)

)
,

(3.5)

where w = [w1, w2, . . . , wc]
T , and β is inertial coefficient.

3.2. Fuzzy PD Controller

Fuzzy PD controller takes fuzzy reasoning to adjust the real-time PD parameters. The
design of the fuzzy controller includes the fuzzy rules, fuzzy domain, and defuzzification.
In this paper, fuzzy algorithm applies the dual-input-output, where signal difference e and
difference rate ec are the input, meanwhile, the PD controller proportion coefficient kp and
differential coefficient kd are the output, respectively. The structure is shown in Figure 3.
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The fuzzy PD control in a wide range can improve the dynamic response speed,
while PD control in a small scale can improve the static control accuracy. So in this paper
switching control system between fuzzy PD and PD control is proposed, PD control in the
small deviation is applied to obtain higher static control accuracy, and fuzzy PD control
in large deviations is applied to obtain faster dynamic response and smaller overshoot. Its
structure is shown in Figure 4. The PD control is applied when |e| ≤ e0 and the fuzzy PD
control is applied when |e| > e0, where e0 is threshold value.

3.3. Fuzzy PD Composite Controller Based on CMAC Neural Network

In general, CMAC network is a nonlinear mapping, which is very suitable for online
applications because it takes a simple δ algorithm as learning algorithm. This algorithm has
a fast convergence speed and avoids local minimum value problem. The fuzzy PD switching
controller is a nonlinear control, which has faster dynamic response, smaller overshoot, and
strong robustness. So the CAMC-fuzzy PD controller is designed, which has the advantages
of CMAC neural network and fuzzy PD controller. Also it is applied in the network control
system with delay. The structure is shown in Figure 5.

The input of CMAC neural network is command signal rin(k). Using the study
algorithm with tutor, calculate the relative neural network output un(k) of CMAC, compare
with the total control input u(k) at the end of each control cycle, then correct weights, and go
to the process of learning.

At the beginning of the operating system, fuzzy PD controller plays a major role, while
the neural network of CMAC does not work. After a while, the output of CMAC neural
network gradually plays a key role by continuous learning the actual output and the expected
output values to modify weights.
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Figure 6: Step responses when the mean of time delay is 5ms.

The control algorithm is

un(k) =
c∑
i=1

wiai, (3.6)

where ai is binary choice vector, and c is a generalization parameter.
Consider the following:

up(k) =

{
kP ∗ e(k) + kd ∗ ec(k), |e| ≤ e0,

k′
p ∗ e(k) + k′

d ∗ ec(k), |e| > e0,
(3.7)

where kP and kd are parameters preset by PD controller, meanwhile k′
p and k′

d
are parameters

adjusted online by fuzzy PD controller.
The output of system is

u(k) = un(k) + up(k), (3.8)
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Figure 7: Step responses when the mean of time delay is 50ms.

where un(k) is the output of CMAC neural network, and up(k) is the output of the fuzzy PD
composites switching controller.

The mapping of CMAC neural network is that the input space is S and the range of
[Smin, Smax] is divided into N + 2c quantization intervals, that is,

v1 · · ·vc = Smin,

vj = vj−1 + Δvj

(
j = c + 1, . . . , c +N

)
,

vN+c+1 · · ·vN+2c = Smax.

(3.9)

The mapping of CMAC is

aj =

{
1, if Sj ∈

[
vjvj+c

]
, j = c + 1, . . . , c +N,

0, other.
(3.10)
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Adjusted index in the learning process is

E =
1
2c

(un(k) − u(k))2,

Δw(k) = −η ∂E

∂w
= η

u(k) − un(k)
c

· ai = η
up(k)
c

ai,

w(k) = w(k − 1) + Δw(k) + β(w(k − 1) −w(k − 2)),

(3.11)

where η is the rate of network learning, η ∈ (0, 1), and β is inertial, β ∈ (0, 1).

4. Simulation

In simulation, the input is the unit step, and the transfer function of controlled object is
(0.0008674z + 0.0008503)/(z2 − 1.94z + 0.9418). Parameters N = 100, c = 5, η = 0.1, β = 0.04,
and kp = 0.02, kd = 0.06, and switching threshold e is 0.2.

The domain of fuzzy algorithm input e and ec is, respectively, [−6, 6] and [−30, 30].
If the actual value of e exceeds the set domain, the value will be limited. The membership
function is Gaussian bell-shaped function, which is N, Z, P (negative, zero, positive),
respectively; the domain of k′

p and k′
d

is, respectively, [0, 0.001] and [0, 0.1], and
membership function is also Gaussian bell-shaped function, which is Z, S, M, P (zero, small,
medium, large) respectively; Mamdani-type reasoning is adopted and gravity method is
defuzzification. Fuzzy lut of k′

p and k′
d is, respectively, shown as Tables 1 and 2.

Due to the network delay varies randomly during continuous-time. In simulation,
system network delay is generated by Gaussian random signal source, and step responses
means for 5ms and 50ms under Gaussian distribution random delay network. Compared
with the traditional CMAC-PD composite control and fuzzy PD control, step response charts
are shown in Figures 6 and 7, where sampling time is 1ms.

From Figure 6(a), we can see that the result is not very good because of the time delay.
Under traditional fuzzy PD controller, the step responses of the system show great overshot,
long rising time, and large steady state error. In Figure 7(a) especially, when the time delay
increases, the fuzzy PD control overshoot of the system is also increased. Otherwise, the result
is not ideal under traditional CMAC-PD controller from Figures 6–7(b). Compared with the
first two kinds of methods, the CMAC-fuzzy PD controller proposed in this paper is more
ideal, especially in the long-delay network. Figures 6–7(c) show that the system has the virtue
of stability, precision, fastness, and strong robustness.

5. Conclusions

Network control system is the time varying because of the random-induced delay, which
results in worse control effects. But the intelligent control has better adaptation and can be
used to improve the control performance. This paper regards transmission network and the
controlled objects as a time-varying system, combines CMAC neural network algorithmwith
PD controller to achieve forward feedback control, and adopts the intelligent control strategy.
The PD controller introduces fuzzy PD complex switching model. According to the size of
the error signal, switching-controller switches between directly PD controller and fuzzy PD
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Table 1: Fuzzy lut of k
′
p.

e/ec N Z P
N S M Z
Z P P P
P P P P

Table 2: Fuzzy lut of k
′
d
.

e/ec N Z P
N Z M M
Z P Z P
P M Z S

controller, in order to improve the speed of dynamic response of the system and accuracy
of steady-state control. Simulation results show that the system has the virtue of stability,
precision, fastness, and strong robustness. So that this method can achieve a better effect and
can also improve the system’s performance effectively.
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delay measurement and estimation,” Control Engineering Practice, vol. 17, no. 2, pp. 231–244, 2009.

[3] I. Hideaki, “Control with limited communication and message losses,” Systems and Control Letters,
vol. 57, pp. 322–331, 2008.

[4] X. Su, P. Shi, L. Wu et al., “Induced L2 filtering of fuzzy stochastic systems withtime-varying delays,:
cybernetics,” IEEE Transactions on Systems, Man and Cybernetics B. In press.

[5] R. S. Gau, C. H. Lien, and J. G. Hsieh, “Novel stability conditions for interval delayed neural networks
with multiple time-varying delays,” International Journal of Innovative Computing, Information and
Control, vol. 7, no. 1, pp. 433–444, 2011.

[6] M. B. G. Cloosterman, N. van de Wouw, W. P. M. H. Heemels, and H. Nijmeijer, “Stability of
networked control systems with uncertain time-varying delays,” IEEE Transactions on Automatic
Control, vol. 54, no. 7, pp. 1575–1580, 2009.

[7] Y. Shi and B. Yu, “Output feedback stabilization of networked control systems with random delays
modeled by Markov chains,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1668–1674,
2009.

[8] X. Su, P. Shi, L. Wu et al., “A novel control design on discrete-time takagi-sugeno fuzzysystems with
time-varying delays,” IEEE Transactions on Fuzzy Systems. In press.

[9] X. Su, P. Shi, L. Wu et al., “A novel approach to filter design for T-S fuzzy discrete-time systems with
time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1114–1129, 2012.

[10] Y. Halevi and A. Ray, “Integrated communication and control systems. Part 1—analysis,” Journal of
Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 110, no. 4, pp. 367–373, 1988.

[11] R. Luck and A. Ray, “An observer-based compensator for distributed delays,” Automatica, vol. 26, no.
5, pp. 903–908, 1990.



10 Mathematical Problems in Engineering

[12] H. Chan, “Closed-loop control of systems over a communications network with queues,” International
Journal of Control, vol. 62, no. 3, pp. 493–510, 1995.

[13] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control systems,” IEEE Control
Systems Magazine, vol. 21, no. 1, pp. 84–97, 2001.

[14] L. Wu, X. Su, P. Shi, and J. Qiu, “Model approximation for discrete-time state-delay systems in the TS
fuzzy framework,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 366–378, 2011.

[15] L. Wu and W. X. Zheng, “L2-L∞ control of nonlinear fuzzy itô stochastic delay systems via dynamic
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A new definition of interval-valued supra-fuzzy syntopogenous (resp., supra-fuzzy proximity)
space is given. We show that for any interval-valued fuzzy syntopogenous structure S, there is
another interval-valued fuzzy syntopogenous structure Sc called the conjugate of S. This leads
to introducing the concept of interval-valued bifuzzy syntopogenous space. Finally, we show
every interval-valued bifuzzy syntopogenous space induces an interval-valued fuzzy supra-
syntopogenous space. Throughout this paper, the family of all fuzzy sets on nonempty set X will
be denoted by IX and the family of all interval-valued fuzzy sets on a nonempty set X will be
denoted by πX .

1. Introduction

In [1], Csaszar introduced the concept of a syntopogenous structure to develop a unified
approach to the three main structures of set-theoretic-topology: topologies, uniformities,
and proximities. This enables him to evolve a theory including the foundations of the three
classical theories of topological spaces, uniform spaces, and proximity spaces. In the case of
the fuzzy structures, there are at least three notions of fuzzy syntopogenous structures. The
first notion worked out in [2–4] presents a unified approach to the theories of Chang fuzzy
topological spaces [5], Hutton fuzzy uniform spaces [6], and Liu fuzzy proximity spaces [7].
The second notion worked out in [8] agrees very well with Lowen fuzzy topological spaces
[9], Lowen-Hohle fuzzy uniform spaces [10], and Artico-Moresco fuzzy proximity spaces
[11]. The third notion worked out in [12] agrees with the framework of a fuzzifying topology
[13]. In [14], Kandil et al. introduced the concepts of a supra-fuzzy topological space and
supra-fuzzy proximity space. In [15], Ghanim et al. introduced the concepts of supra-fuzzy
syntopogenous space as a generalization of the concepts of supra-fuzzy proximity and supra-
fuzzy topology.



2 Mathematical Problems in Engineering

Interval-valued fuzzy sets were introduced independently by Zadeh [16], Grattan-
Guiness [17], Jahn [18], and Sambuc [19], in the seventies, in the same year. An interval-
valued fuzzy set (IVF) is defined by an interval-valued membership function. As a
generalization of fuzzy, the concept of intuitionistic fuzzy sets was introduced by Atanassov
[20]. In [21], it is shown that the concepts of interval-valued fuzzy sets and intuitionistic
fuzzy sets are equivalent and they are extensions of fuzzy sets.

Interval-valued fuzzy sets can be viewed as a generalization of fuzzy sets (Zadeh [22])
that may better model imperfect information which is omnipresent in any conscious decision
making [23]. It can be considered as a tool for a more human consistent reasoning under
imperfectly defined facts and imprecise knowledge, with an application in supporting med-
ical diagnosis [24, 25]. In [26] new notions of interval-valued supra-fuzzy topology (resp.,
supra-fuzzy proximity) were introduced by using the notions of interval-valued fuzzy sets.

In this paper, we generalize the concept of supra-fuzzy syntopogenous space by using
the notion of interval-valued set. Topology and its generalization proximity and syntopoge-
nous are branches of mathematics which have many real life applications. We believe that the
generalized topological structure suggested in this paper will be important base for modifica-
tion of medical diagnosis, decision making, and knowledge discovery. The other parts of this
paper are arranged as follows. In Section 2, We recall and develop some notions and notations
concerning supra-fuzzy topological space, interval-valued fuzzy set, interval-valued fuzzy
topology, interval-valued supra-fuzzy topology, and interval-valued supra-fuzzy proximity.
In Section 3, we introduce the concept of interval-valued supra-fuzzy syntopogenous (resp.,
supra-fuzzy proximity) space. We show that there is one-to-one correspondence between
family of all interval-valued supra-fuzzy topological spaces and the family of all perfect
interval-valued supra-fuzzy topogenous spaces. Also, we prove that there is one-to-one
correspondence between the family of all interval-valued supra-fuzzy proximity spaces and
the family of all symmetrical interval-valued supra-fuzzy topogenous spaces. We show that
for any interval-valued fuzzy topogenous order R on πX there is another interval-valued
fuzzy topogenous structure Rc in Section 3. In Section 4, we introduce the concept of interval-
valued bifuzzy syntopogenous structure by using two interval-valued fuzzy syntopogenous
spaces. In the last section we show that with every interval-valued bifuzzy syntopogenous
space there is an interval-valued supra-fuzzy syntopogenous associated with this space.

2. Preliminaries

The concept of a supra-fuzzy topological space has been introduced as follows.

Definition 2.1 (see [27]). A collection τ∗ ⊂ IX is a supra-fuzzy topology on X if 0, 1 ∈ τ∗ and
τ∗ is closed under arbitrary supremum. The pair (X, τ∗) is a supra-fuzzy topological space.

Definition 2.2 (see [20]). An interval-valued fuzzy set (IVF set for short) is a set A = (A1, A2) ∈
IX × IX such that A1 ≤ A2. The family of all interval-valued fuzzy sets on a given nonempty
set X will be denoted by πX .

The IVF set 1 = (1, 1) is called the universal IVF set and the IVF set 0 = (0, 0) is called
the empty IVF set.

Proposition 2.3 (see [20]). The operations on πX are given by the following: Let A, B ∈ πX :

(1) A = B ⇔ A1 = B1,A2 = B2,

(2) A ≤ B ⇔ A1 ≤ B1, A2 ≤ B2,
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(3) A ∨ B = (A1 ∨ B1, A2 ∨ B2),

(4) A ∧ B = (A1 ∧ B1, A2 ∧ B2),

(5) Ac = (Ac
2, A

c
1).

Definition 2.4 (see [26]). The family η ⊆ πX is called an interval-valued fuzzy topology (IVF
tpology for short) on X if and only if η contains 1, 0, and it is closed under finite intersection
and arbitrary union. The pair (X, η) is called an interval-valued fuzzy topological space (IVF
top. space for short). Any IVF set A ∈ η is called an open IVF set and the complement of A
denoted by Ac is called a closed IVF set. The family of all closed interval-valued fuzzy sets is
denoted by ηc.

Definition 2.5 (see [26]). A non empty family η∗ ⊆ πX is called an interval-valued supra-fuzzy
topology (IVSF top. for short) on X if it contains 0, 1 and it is closed under arbitrary unions.

Definition 2.6 (see [26]). A binary relation δ ⊆ πX × πX is called an interval-valued supra-
fuzzy (IVSF) proximity on X if it satisfies the following conditions:

(1) AδB ⇒ BδA,

(2) AδB or AδC ⇒ Aδ(B ∨ C),

(3) 0 �δ 1,

(4) A �δ B ⇒ A ≤ 1 − B,

(5) A �δ B ⇒ ∃ C ∈ πX s.t. A�δC and (1 − C)�δB.

3. Interval-Valued Fuzzy Topogenous Order

In this article, we define a new concept of topogenous structure by using the concept of
interval-valued fuzzy sets.

Definition 3.1. Let R be a binary relation on πX . Consider the following axioms:

(1) 0R0,

(2) ARB ⇒ A ⊆ B,

(3) A1 ≤ ARB ≤ B1 ⇒ A1RB1,

(4) A1RB1 and A2RB2 ⇒ (A1 ∨A2)R(B1 ∨ B2) and (A1 ∧A2)R(B1 ∧ B2),

(5) AiRBi for all i ⇒ (∨Ai)R(∨Bi),

(6) AiRBi for all i ⇒ (∧Ai)R(∧Bi),

(7) ARB ⇔ (1 − B)R(1 −A).

If R satisfies (1)–(4) then it is called an interval-valued fuzzy topogenous order (IVF
topogenous order for short) on X.

If R satisfies (1)–(3) then it is called an interval-valued supra-fuzzy topogenous order
(IVSF topogenous order for short) on X.

The interval-valued fuzzy topogenous order is called perfect (resp., biperfect,
symmetrical) if it satisfies the condition (5) (resp., (6), (7)).



4 Mathematical Problems in Engineering

Definition 3.2. Let X/=φ and S be a nonempty family of IVF topogenous orders on X satisfy
the following conditions:

(s1) R1, R2 ∈ S ⇒ ∃R ∈ S s.t. R1 ≤ R and R2 ≤ R,

(s2) R ∈ S ⇒ ∃L ∈ S s.t. R ≤ L ◦ L.

Then S is said to be interval-valued fuzzy (IVF) syntopogenous structure on X. The
pair (X,S) is called an interval-valued fuzzy syntopogenous (IVF syntopogenous for short)
space. If S satisfy the single element, then S is called an IVF topogenous structure on X and
the pair (X,S) is called an IVF topogenous space.

Definition 3.3. Let X /=φ and S∗ be a nonempty family of IVSF topogenous orders on X satisfy
the conditions (s1) and (s2). Then S∗ is called an IVSF syntopogenous space. If S∗ consists of
single element, then it is called an IVSF topogenous structure. If each element of S∗ is perfect
(resp., biperfect symmetrical), then it is called a perfect (resp., biperfect symmetrical) IVSF
structure on X.

The following proposition investigates the relation between the family of all IVSF
topological spaces and the family of all perfect IVSF topogenous spaces.

Proposition 3.4. There is one-to-one correspondence between the family of all IVSF topological spaces
and the family of all perfect IVSF topogenous spaces.

Proof. Let (X, τ∗) be an IVSF topological space. Define a relation Rτ∗ by ARτ∗B ⇔ ∃C ∈ τ∗ s.t.
A ≤ C ≤ B. Then Rτ∗ is a perfect IVSF topogenous order on X. In fact, since 0, 1 ∈ τ∗, 0 ≤ 0 ≤
0, and 1 ≤ 1 ≤ 1, then 0Rτ∗0 and 1Rτ∗1. Let ARτ∗B ⇒ ∃C ∈ τ∗ s.t. A ≤ C ≤ B ⇒ A ≤ B.
Assume that A1 ≤ ARτ∗B ≤ B1 ⇒ ∃E ∈ τ∗ s.t. A1 ≤ A ≤ E ≤ B ≤ B1 ⇒ A1Rτ∗B1. Thus, Rτ∗

is an IVSF topogenous order on X. We show that Rτ∗ is perfect. Let AiRτ∗Bi ⇒ ∃Ci ∈ τ∗ s.t.
Ai ≤ Ci ≤ Bi. Hence ∨Ci ∈ τ∗ and ∨Ai ≤ ∨Ci ≤ ∨Bi. Thus, (∨Ai)Rτ∗(∨Bi) and consequently Rτ∗

is perfect. Thus Rτ∗ is an IVSF topogenous order. Consequently, Sτ∗ = {Rτ∗} is a perfect IVSF
topogenous structure.

Conversely, let (X,S∗) be a perfect IVSF topogenous space. Then S∗ = {R∗}, where R∗

is a perfect IVSF order. Define τR∗ ⊆ πX by A ∈ τR∗ ⇔ AR∗A. We show that τR∗ is an IVSF
topology on X. Since 0R∗0 and 1R∗1, then 0, 1 ∈ τR∗ . Also, Ai ∈ τR∗ for all i ⇒ AiR

∗Ai for
all i ⇒ ∨AiR

∗ ∨ Ai, because R∗ is perfect. Hence ∨Ai ∈ τR∗ and, consequently, τR∗ is an IVSF
topology on X.

Remark 3.5. One can easily show that RτR∗ = R∗ and τRτ∗ = τ∗.

Example 3.6. This example is a small form of interval-valued information table of a file
containing some patients X = {Li, Wang, Zhang, Sun}. We consider the set of symptoms S =
{Chest-pain, Cough, Stomach-pain, Headache, Temperature}. Each symptom is described by an
interval fuzzy sets on X. The symptoms are given in Table 1. Define a binary relation R on
πX by A,B ∈ πXARB if and only if x ≤ y implies A(x) ≤ B(y) for all x ∈ X. Therefore, R is
biperfect IVSF topogenous order on X. The set of patients are ordered by Li ≤Wang ≤ Zhang ≤
Sun. So, we have chest-pain R Cough.

The following proposition shows the relation between the family of all IVSF proximity
spaces and the family of all symmetrical IVSF topogenous spaces.
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Table 1

Chest-pain Cough Stomach-pain Headache Temperature
Li [0.1, 0.2] [0.1, 0.3] [0, 0.2] [0.3, 0.9] [0.1, 0.9]
Wang [0.1, 0.2] [0.2, 0.3] [0.3, 0.9] [0.3, 0.6] [0.2, 0.2]
Zhang [0.5, 0.5] [0.2, 0.3] [0.4, 0.4] [0.1, 0.9] [0.1, 0.9]
Sun [0.3, 0.6] [0.7, 0.8] [0.3, 0.6] [0.1, 0.6] [0.3, 0.4]

Proposition 3.7. There is one-to-one correspondence between the family of all IVSF proximity spaces
and the family of all symmetrical IVSF topogenous spaces.

Proof. Let δ∗ be an IVSF proximity. Define ARδ∗B ⇔ A�δ
∗(1 − B). Then Rδ∗ is a symmetrical

IVSF topogenous order. In fact, since 0�δ1 and 1�δ0, then 0Rδ∗0 and 1Rδ∗1. Also ARδ∗B ⇒
A�δ

∗1 − B ⇒ A ≤ B. Finally, A1 ≤ ARδ∗B ≤ B1 ⇒ A1 ≤ A, A�δ
∗1 − B and 1 − B ≥ 1 − B1. Thus

A1�δ
∗1−B1 and therefore A1Rδ∗B1. Consequently (X,S∗), where S∗ = {Rδ∗} is IVSF topogenous

space.
Conversely, let (X,S∗) a symmetrical IVSF topogenous space. Then S∗ = {R∗}, where

R∗ is a symmetrical IVSF topogenous order on X. Define δR∗ by AδR∗B ⇔ A�R
∗1−B. We show

that δR∗ is an IVSF topogenous order on X. Assume that AδR∗B, then A�R
∗(1 − B). Therefore

B�R
∗(1 −A) because R∗ is symmetric. Hence BδR∗A. Since 0R∗0 and 1R∗1, then 0�δR∗0. Assume

that AδR∗B or AδR∗C. Then A�R
∗(1−B) or A�R

∗(1−C). Suppose that Aδ�R
∗
B ∨C, then A�R

∗(1−
(B ∨C)). Thus A�R

∗(1−B)∧ (1−C). Consequently A�R
∗(1−B) and A�R

∗(1−C). So, A�δR∗B and
A�δR∗C a contradiction. Now A�δR∗B implies A�R

∗(1 − B) and hence A ≤ (1 − B).

4. Interval-Valued Bifuzzy Syntopogenous Space

Proposition 4.1. Let R be an IVF topogenous order on X. Then the relation Rc on πX defined by
ARcB ⇔ (1 − B)R(1 −A) is an IVF topogenous order on X.

Proof. Since 0R0 and 1R1, then 1Rc1 and 0Rc0. Also, ARcB ⇒ (1 − B)R(1 − A) ⇒ 1 − B ≤
1 − A ⇒ A ≤ B. Furthermore, A1 ≤ ARcB ≤ B1 ⇒ (1 − B)R(1 − A), 1 − B1 ≤ 1 − B, 1 − A ≤
1−A1 ⇒ (1−B1)R(1−A1) ⇒ A1R

cB1. Finally, A1R
cB1 and A2R

cB2 ⇒ (1−B1)R(1−A1) and
(1 − B2)R(1 −A2). Since R is a topogenous order, then (1 − B1) ∧ (1 − B2)R(1 −A1) ∧ (1 −A2)
and hence (1 − (B1 ∨ B2))R(1 − (A1 ∨A2)). Consequently, (A1 ∨A2)R

c(B1 ∨ B2). Similarly, we
can show that (A1 ∧A2)R

c(B1 ∧ B2). Thus Rc is an IVF topogenous order on X.

Remark 4.2. (1) The relation Rc defined in the previous proposition is called the conjugate of
R.

(2) If R is perfect or biperfect, then Rc is also.

Proposition 4.3. Let R1 and R2 be two IVF topogenous orders on X. If R1 ⊆ R2, then R1
c ⊆ R2

c and
(R1 ◦ R2)

c = R2
c ◦ R1

c.

Proof. Assume that, R1 ⊆ R2. Then AR1
cB ⇒ (1 − B)R1(1 −A) ⇒ (1 − B)R2(1 −A) ⇒ AR2

cB.
Hence, R1

c ⊆ R2
c. Also, A(R1 ◦ R2)

cB ⇒ (1 − B)(R1 ◦ R2)(1 −A) ⇒ ∃C ∈ πX s.t. (1 − B)R1C ∧
CR2(1−A) ⇒ ∃C ∈ πX s.t. (1−C)R1

cB∧AR2
c(1−C) ⇒ ∃1−C ∈ πX s.t. AR2

c1−C∧(1−C)R1
cB ⇒

A(R2
c ◦ R1

c)B ⇒ (R1 ◦ R2)
c ≤ R2

c ◦ R1
c. Similarly, we can show that R2

c ◦ R1
c ≤ (R1 ◦ R2)

c.
Consequently, (R1 ◦ R2)

c = R2
c ◦ R1

c.
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Proposition 4.4. Let S be an IVF syntopogenous structure on X. Then the family Sc = {Rc : R ∈ S}
is also an IVF syntopogenous structure.

Proof. Since S /=φ, then Sc /=φ. Let R1
c, R2

c ∈ Sc, then R1, R2 ∈ S. Hence ∃R ∈ S s.t. R1 ≤ R
and R2 ≤ R. Therefore ∃Rc ∈ Sc s.t. R1

c ≤ Rc and R2
c ≤ Rc. Also, Rc ∈ Sc ⇒ R ∈ S ⇒ ∃R1 ∈ S

s.t. R ≤ (R1 ◦R1) ⇒ Rc ≤ (R1 ◦R1)
c = R1

c ◦R1
c. Thus ∃Rc

1 ∈ Sc s.t. Rc ≤ R1
c ◦R1

c. Consequently,
Sc is also IVF syntopogenous structure on X.

Hence, we have the result that on a nonempty set X we have two interval-valued fuzzy
syntopogenous structures.

Definition 4.5. Let X a nonempty set. Let S1, S2 be two IVF syntopogenous structures on X.
The triple (X,S1, S2) is called an interval-valued bifuzzy syntopogenous space. If each S1, S2

is perfect (resp., biperfect symmetrical), then the space (X,S1, S2) is perfect (resp. biperfect
symmetrical).

The following proposition shows that two IVF topogenous orders on X can induce an
IVSF topogenous order on X.

Proposition 4.6. Let R1, R2 be two interval-valued fuzzy topogenous orders on X. Then the order
R = R1 ∨ R2 defined by

ARB ⇐⇒ AR1B or AR2B (4.1)

is IVSF topogenous order on πX .

Proof. Since, 0Ri0 and 1Ri1 for all i = 1, 2, then 0R0 and 1R1. Also, A1 ≤ ARB ≤ B1 ⇒ A1 ≤
ARiB ≤ B1 for some i = 1, 2 ⇒ A1RiB1 for some i = 1, 2 ⇒ A1RB1. Finally, ARB ⇒ ARiB for
some i = 1, 2 ⇒ A ≤ B. Thus, R is an IVSF topogenous order on πX .

5. Interval-Valued Supra-Fuzzy Syntopogenous Space Associated with
Interval-Valued Bifuzzy Syntopogenous Spaces

Proposition 5.1. Let (X,S1, S2) be interval-valued bifuzzy syntopogenous space. Then the family
S∗

12 = {R = R1 ∨ R2 : R1 ∈ S1, R2 ∈ S2} is an IVSF syntopogenous structure on X.

Proof. (s1) Let R, L ∈ S∗
12 ⇒ R = R1 ∨ R2 and L = L1 ∨ L2Ri and Li ∈ Si for some i = 1, 2 ⇒

∃K1 ∈ S1 s.t. R1 ∨ L1 = K1 and ∃K2 ∈ S1 s.t. R2 ∨ L2 = K2. So, ∃K = K1 ∨ K2 ∈ S∗
12 s.t.

R ∨ L ≤ K1 ∨K2 = K.
(s2) R ∈ S∗

12 ⇒ ∃R1 ∈ S1, R2 ∈ S2 s.t. R = R1 ∨ R2 ⇒ ∃L1 ∈ S1 s.t. R1 ≤ L1 ◦ L1

and ∃L2 ∈ S2 s.t. R2 ≤ L2 ◦ L2. Since L1, L2 ≤ L1 ∨ L2, then L1 ◦ L1 ≤ L1 ∨ L2 ◦ L1 ∨ L2 and
L2◦L2 ≤ L1∨L2◦L1∨L2. Therefore R1 ≤ L1◦L1 ≤ L1∨L2◦L1∨L2 and R2 ≤ L2◦L2 ≤ L1∨L2◦L1∨L2.
So R1 ∨R2 ≤ (L1 ∨L2) ◦ (L1 ∨L2) and consequently S∗

12 is an IVSF syntopogenous structure on
X.

Remark 5.2. The structure S∗
12 is called the interval-valued supra-fuzzy syntopogenous

associated with the space (X,S1, S2).

Proposition 5.3. Let (X, Ti)i = 1, 2 be an IVF topological spaces. Then the family T ∗
12 = {A =

A1 ∨A2 : Ai ∈ Ti i = 1, 2} is an IVSF topology on X.
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Proof. Since 0, 1 ∈ Ti for all i = 1, 2, then 0, 1 ∈ T ∗
12 Also, Ai ∈ T ∗

12 ⇒ Ai = Bi
1 ∨ Bi

2, B
i
1 ∈

T1, B
i
2 ∈ T2 ⇒ ∨iAi = ∨i(Bi

1 ∨ Bi
2) = (∨iB

i
1) ∨ (∨iB

i
2). Since, Ti i = 1, 2 is an IVSF topology, then

(∨iB
i
1) ∈ T1 and (∨iB

i
2) ∈ T2. Therefore, ∨iAi ∈ T ∗

12 and consequently, T ∗
12 is an IVSF topology

on X.

Proposition 5.4. Let (X,S1, S2) be an interval-valued bifuzzy syntopogenous space. Assume that
Ti is the interval-valued fuzzy topology associated with Si for all i = 1, 2 and T ∗

12 is interval-valued
supra-fuzzy topology associated with the space (X, T1, T2). Then T ∗

12 is the IVSF topology associated
with the space (X,S∗

12), that is, T
∗
12 = TS∗

12
.

Proof. The proof is obvious.

Remark 5.5. In crisp case, let R be a fuzzy topogenous order on IX . Define a binary relation Rp

as follows:

μRpρ ⇐⇒ ∃ family
{
μi : i ∈ I

}
s.t. μ = ∨iμi, μiRρ ∀i. (5.1)

Then, Rp is a perfect fuzzy topogenous order on X finer than R and coarser than any perfect
fuzzy semitopogenous order on IX which is finer than R.

Let S be a fuzzy syntopogenous structure on X. Define a relation RS on IX by

μRSρ ⇐⇒ μRρ for some R ∈ S. (5.2)

The binary relation RS as defined above is a perfect topogenous order on IX . Let Rp be
the coarsest perfect topogenous order on IX finer than each member of S. (X,R

p

S) is the
topogenous space. Let Ro = R

p

S.

6. Conclusion

Computer scientists used the relation concepts in many areas of life such as artificial
intelligence, knowledge discovery, decision making and medical diagnosis [28]. One of
the important theories depend on relations is the rough set theory [29]. Many authors
studied the topological properties of rough set [30, 31]. In this paper we generalized the
topological concepts by introducing the notions of IVSF syntopogenous structures. We can
use the relations obtained from an interval-valued information systems to generate an IVSF
syntopogenous structure and use the mathematical properties of these structures to discover
the knowledge in the information modelings.
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It takes two design goals as different game players and design variables are divided into strategy
spaces owned by corresponding game player by calculating the impact factor and fuzzy clustering.
By the analysis of behavior characteristics of two kinds of intelligent pigs, the big pig’s behavior
is cooperative and collective, but the small pig’s behavior is noncooperative, which are endowed
with corresponding game player. Two game players establish the mapping relationship between
game players payoff functions and objective functions. In their own strategy space, each game
player takes their payoff function as monoobjective for optimization. It gives the best strategy upon
other players. All the best strategies are combined to be a game strategy set. With convergence
and multiround game, the final game solution is obtained. Taking bi-objective optimization of
luffing mechanism of compensative shave block, for example, the results show that the method
can effectively solve bi-objective optimization problems with preferred target and the efficiency
and accuracy are also well.

1. Introduction

Multiobjective optimization problem in actual engineering design is very common. The
essential characteristics of multiobjective optimization are as follows: (1) there exist several
objective interests; (2) the status of the various objectives are different and have conflicts. The
solution methods are diverse; the latest research is as follows: Akbari and Ziarati [1] applied a
novel bee swarm optimization method to obtain a uniformly distributed Pareto front. Ismail
et al. [2] proposed a new self-organizing genetic algorithm for multiobjective optimization
problems to obtain a better value as compared to the existing weighted-sum methods.
Lee et al. [3] used the multiobjective fuzzy optimization method to obtain the optimal
parameters of rotor experimental apparatus. Ding et al. [4] proposed a new multiobjective
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optimization algorithm named KSVC-SPEA to effectively achieve the overall performance of
injection molding machine.

In recent years, considering the similarity between multiobjective design and the
game, game theory has been used to solve multiobjective design problems, especially
for practical problems in engineering fields. According to the different behaviors of each
game player seeking for benefit, the game can be divided into noncooperative game and
cooperative game. In a noncooperative game, each player benefits from competitive behavior
patterns and the typical models are Nash equilibrium game model and the Stackelberg
oligopoly game model. A cooperative game is defined as game players abiding by a
binding agreement, benefiting from cooperative behavior patterns. The typical binding
agreements contain three types, which are known as the “self-interest do not harm the
others” (competitive and cooperative game model), “You have me, I have you” (coalition
cooperative game model), and “all for one and one for all” (unselfish cooperative game
model). About noncooperative game to solve multiobjective design, Spallino and Rizzo [5]
proposed a noncooperative game optimization method based on evolutionary strategy in
the multiobjective design of the composite laminate, which treated each game player as an
equal body and eventually found a Nash equilibrium point through negotiation functions.
Neng-gang et al. [6] established a multiobjective game design technology roadmap and key
indicators based on the Nash equilibrium model and the Stackelberg oligopoly game model
and successfully applied to multiobjective optimization design such as gravity dam, structure
of arch-arch ring, and luff mechanism of compensative sheave block. In the use of cooperative
games to solve multiobjective design, Chen and Li [7] proposed three-tier two-objective
optimization method and applied this method to the manufacture of concurrent product and
process optimization; Neng-gang et al. [8] adopted a competitive-cooperative game model
to conduct a multi-objective optimization design and obtained a good design. However,
whether the non-cooperative game methods or the cooperative game methods are used to
solve multi-objective design problems, if the game method is selected, behavior modes of
all players remain unchanged during the whole process. But this is an ideal situation. Each
player’s behavior is diverse in many survival games in nature. Neng-gang et al. [9] proposed
a mixed game model according to the diversity of behavior patterns caused by differences in
resources and endowment of each player. Through the bionics of the survival mechanisms
of reproduction of lizard species, a typical mixed game model is presented, which consists
of both competitive behavior patterns and cooperative behavior patterns of “all for one and
one for all” and “benefits oneself but do not harm other people”. This method is very good to
solve the oneness problem of constructing payoff functions, but there exist two shortcomings
as follows. (1) It can only be applied to three objectives or more than three objectives
and cannot solve two-objective optimization problems. (2) It cannot solve “principal and
subordinate” optimization problems. That is, it cannot solve the optimization problem with
target preference. To compensate this deficiency and improve the game method for solving
optimization problems, bi-objective optimization method is proposed based on pigs’ payoff
behavior, which can be applied in two-objective optimization problem with target preference.

2. The Basic Idea

2.1. Pigs’ Payoff Game Model

American economist named Nash (the Nobel economic prize winner) has proposed “Pigs’
Payoff”. It is shown in Figure 1 and is as follows: there are a big pig and a small pig in
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Big pig Small pig

Food sloat Button

Figure 1: The picture of pigs’ payoff.

Table 1: The payoff matrix.

Pigs’ payoff Small pig
Pressing the button Waiting

Big pig
Pressing the button (5, 1) (4, 4)
Waiting (9, −1) (0, 0)

the pigsty. One side of the pigsty has food slot and the other side has food control button.
Whether the big pig or the small pig will pay 2-unit energy cost if it presses the food control
button and 10-unit food will fall into food slot in return. If the big pig first arrives in the food
slot, the benefit ratio of the big pig to the small pig is 9 : 1. If the big pig and the small pig
arrive in the food slot at the same time, the benefit ratio of the big pig to the small pig is 7 : 3.
If the small pig first arrives in the food slot, the benefit ratio of the big pig to the small pig
is 6 : 4. The payoff matrix is shown in Table 1. In premise of both the big pig and small pig
having intelligence, the final game result is that the big pig presses the button and the small
pig dose not press the button but chooses to wait [10].

From the result of the behavior, the strategy of waiting is a selfish behavior of non-
cooperation and the strategy of pressing the button is a collective behavior of cooperation.
Hence, two game players (the big pig and the small pig) adopt two different behavior modes
and constitute a hybrid game mode. The equilibrium solution (4, 4) is Pareto solution.

2.2. The Technology Principle

The design variables:X = (x1, x2, . . . , xn) ∈ Ωn,

let the objective functions be minimized:F(X) = (F1(X), F2(X)) −→ min,

subject to constraint conditions: gk(X) ≤ 0
(
k = 1, 2, . . . , q

)
,

(2.1)

where n is the number of design variables. q is the number of constraint conditions. Ωn is the
feasible space of design variables.

Meanwhile, the definition of game is as follows: Gm represents one game. If Gm has 2
players (Illustration: the implication of number of players is equal to the number of objective
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functions), the sets of available strategies are denoted by S1, S2. The payoff functions are
u1, u2. Hence, the game with 2 players can be written as Gm = (S1,S2; u1, u2).

The basic idea for bi-objective optimization method based on game is as follows:
(1) there are 2 design objectives, which are seen as 2 players and the design variables X
are divided into strategy subsets S1, S2 of the corresponding players by certain technical
methods. (2) According to the specific game model, mapping relationships are established
between the payoff functions u and objective functions F. (3) Each player takes its own
payoff function as its objective and gets a single-objective optimal solution in its own strategy
subset. So this player obtains the best strategy versus other players. The best strategies of all
players form the group strategy in this round. The final equilibrium solutions can be obtained
through multiround game according to the convergence criterion.

The payoff function u is closely related to the game model. The different behavior
characteristics of the big pig and small pig, respectively, are assigned to the corresponding
game players based on pigs’ payoff game behavior model; then, the payoff functions u is
constructed according to the corresponding behavior characteristics.

3. The Key Technology and Structure of the Algorithm

3.1. Game Player’s Strategy Subset Computation

Fuzzy mathematics has been successfully used in the related design fields with the
multidisciplinary cross research. Fuzzy mathematics has been successfully applied in filter
design [11], T-S fuzzy systems [12, 13], and T-S fuzzy stochastic systems [14] and abundant
research results are obtained. In this paper, the design variables are divided into each game
players strategy subsets (S1, S2) by calculating the impact factor and fuzzy clustering based
on fuzzy mathematics.

Computation steps are as follows.

(1) Optimize 2 mono-objectives; then obtain optimal solution F1(X∗
1), F2(X∗

2), where

X∗
i =
{
x∗

1i, x
∗
2i, . . . , x

∗
ni

}
(i = 1, 2). (3.1)

(2) Every xj is divided into T fragments with step length Δxj in its feasible space; Δji

is an impact factor (xj affecting the objective fi) and is shown as

Δji

=

∑T
t=1

∣∣∣Fi

(
x∗

1i, . . . , x
∗
(j−1)i, xj(t), x∗

(j+1)i, . . . , x
∗
ni

)
− Fi

(
x∗

1i, . . . , x
∗
(j−1)i, xj(t − 1), x∗

(j+1)i, . . . , x
∗
ni

)∣∣∣

T ·Δxj
.

(3.2)

To avoid the different functions’ self-affecting, make impact factors dimensionless:

Δji =
Δji

∣∣Fi

(
X∗
i

)∣∣ . (3.3)
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(3) All samples classification Δ = {Δ1,Δ2, . . . ,Δn}, the classification of j is Δj =
{Δj1, . . . ,Δj2} (j = 1, . . . , n), and Δj means the impact factor set of j on all the
players. The purpose is classifying highly similar samples as one classification; this
paper uses a similar degree approach to reflect the samples’ similarity relation.
Select any two samples Δk and Δl and analyze their similarity relation; define a
fuzzy relation function by normal distribution:

μi(Δk,Δl) = exp
(
− |Δki −Δli|
(1/m)

∑m
i=1|Δki −Δli|

)
(k, l = 1, 2, . . . , n; k /= l; i = 1, 2), (3.4)

where μi(Δk,Δl) is the fuzzy relation between Δk and Δl in the ith objective
function.

The correlation degree of Δk and Δl is

rkl =
1
2

2∑

i=1

mini∈{1,2}|Δki −Δli| + 0.5maxi∈{1,2}|Δki −Δli|
|Δki −Δli| + 0.5maxi∈{1,2}|Δki −Δli| . (3.5)

(4) Establish the matrix R based on rkl and do fuzzy clustering to matrix R:

R =

∣∣∣∣∣∣∣∣∣∣

r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
...

...
rn1 rn2 · · · rnn

∣∣∣∣∣∣∣∣∣∣

. (3.6)

Classification results of Δ represent the classification results of X because of a one-
to-one relationship between Δ = {Δ1,Δ2, . . . ,Δn} and X = {x1, x2, . . . , xn}.

(5) According to fuzzy clustering, divide the design variables X into strategy subsets
S1, . . . ,Sm and assign the strategy subset to the corresponding player by the average
value of impact factors. According to a statistical viewpoint [15], when the number
of design variables and objective functions is small, we can directly divide variable
sets X into strategy space S1, S2 according to the value of impact factor. When the
number design variables and objective functions are large, fuzzy clusterings are
needed. Meanwhile, according to experience, we can first classify variables with
strong correlation as a sample to reduce the complexity of clustering analysis.

Input system’s classification control value is M and maximal sample number is P ; each
with sample as one classification, the system is Δ1,Δ2, . . . ,Δn.

The steps of clustering are as follows.

(1) Calculate the correlation degree rkl and build matrix R(0); attention: rkl = rlk, rkl > 0.

(2) Set maximum value of matrix R(0) to be rab, rab = maxk,l∈{1,2,...,n}rkl and classify Δa

and Δb into a new classification Δs; if the sample number is larger than P , then
combine the second maximal value of R(0).
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(3) Combine Δc(c = 1, 2, . . . , n; c /=a, c /= b) and Δs into a new classification system,
calculate its correlation degree, and build a new matrix R(1); the correlation degree
of any classification Δc and Δs is rcs = min{rca, rcb}.

(4) Repeat procedures (1), (2), and (3) until the system classification number equals
control value M.

3.2. Behavior Modes and Construction of Game Payoff Functions

The characteristic of the small pig is competitive behavior mode and its corresponding game
payoff function is as follows:

ui =
Fi

Fi

(i = 1, 2), (3.7)

where F is a reference value, which can eliminate the differences in the magnitude for each
objective function. In this paper, the initial objective function value is chosen to be F.

The characteristic of the big pig is cooperative behavior mode and its corresponding
game payoff function is as follows:

ui = wii
Fi

Fi

+
m∑

j=1(j /= i)

wij

Fj

Fj

(i = 1, 2), (3.8)

where
∑m

j=1 wij = 1 value of wii reflects the degree of considering its own interest. The greater
the value is, the lower the cooperative degree is.

3.3. Algorithm Procedures and Flow Chart

(1) Obtain strategy subset S1, S2 attached to each player through calculating the impact
factor and fuzzy clustering.

(2) Payoff functions ui to any ith player (i = 1, 2) is constructed according to the
characteristic of the small pig and big pig proposed by Section 3.2 above.

(3) Generate the initial feasible strategies in the strategy set of each player randomly
and then form a strategy permutation s(0) = {s(0)1 , s

(0)
2 }.

(4) Let s(0)1 , s
(0)
2 be the corresponding complementary set of s(0)1 , s

(0)
2 in s(0). For any

player i (i = 1, 2), solve the optimal strategy s∗i ∈ Si, and make payoff minimum
ui(s∗i , s

(0)
i ) → min(i = 1, 2);

(5) Define optimal strategy permutation s(1) = s∗1 ∪ s∗2. Then judge the feasibility of s(1).
If gk(s(1)) ≤ 0 (k = 1, 2, . . . , q) does not satisfy, turn to step (3). Otherwise, compute
the distance between s(1) and s(0) which is called the Euclidean norm. Then examine
whether the distance satisfies the convergence criterion ‖s(1) − s(0)‖ ≤ ε or not (ε is a
decimal parameter given in advance). If it satisfies, the game is over; if not, let s(1)

displace s(0) and turn to step (4) to repeat.
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Objective function–F1 Objective function–F2

S1 S2Dividing the design variables–X

Initial strategy–s(0)1 s
(0)
2 –initial strategy

Payoff function–u2Payoff function–u1

s(0)–strategy permutation

Convergence judgement

Small
pig–noncooperative

Big
pig–cooperative

Optimal strategy–s∗1 s∗2–optimal strategys

s(1)–optimal strategy permutation

Figure 2: The algorithm chart.

The algorithm chart is shown in Figure 2 (illustration: if the big pig stands for F1, then
the small pig stands for F2 and if the big pig stands for F2, then the small pig stands for
F1).

4. Bi-Objective Optimization Model of Luff Mechanism of
Compensative Sheave Block

4.1. The Design Model

The luff mechanism of compensative sheave block is a working device, which can realize
mechanical loading range and is widely used in hoisting machinery. In its working process,
there exists the stability goal; namely, the goods need to move along the horizontal path. On
the other hand, there also exists the economic goal; namely, it needs less energy consumption.
So, design problems have multiobjective optimization issues.

The luff mechanism of compensative sheave block is shown in Figure 3. The design
variables are X = (x1, x2, x3, x4, x5). Constraints need to meet upper and lower limits of design
variables and amplitude range cannot exceed the prescribed range. The objective functions
are F1 (stability index) and F2 (economic index).
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Figure 3: The luff mechanism of compensative sheave block.

4.2. The Objective Function of the Stability Index

Consider

R = L cosα + x3 sin(α + x5) + f + r, (4.1)

where R is the amplitude of fluctuation and α is the elevation.
The mechanism in the biggest amplitude is the starting point and the rise quantity

relative to the starting point is Δz(t) in any time t,

Δz(t) = L(sinωt − sinα1) + x3[cos(α1 + x5) − cos(ωt + x5)], (4.2)

where ω = (α2 − α1)/T is angular velocity, T is the total time of the fluctuation, α1 is the
elevation in Rmax (the maximum luffing), and α2 is the elevation in Rmin (the minimum
luffing).

The fall quantity relative to the starting point is Δl(t) in any time t due to the rope
releasing:

Δl(t) =
mb

mq
(l1 − l(t)), (4.3)

where mq is the number of wire rope of lifting pulley and mb is the number of wire rope of
compensation pulley, where

l1 =
√
[L cosα1 − x4 sin(α1 + x5) − x1]2 + [L sinα1 + x4 cos(α1 + x5) − x2]2,

l(t) =
√
[L cosωt − x4 sin(ωt + x5) − x1]2 + [L sinωt + x4cos(ωt + x5) − x2]2,

Δh(t) = Δz(t) −Δl(t),

(4.4)

where Δh(t) is the deviation relative to the starting point in any time t.
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So, the objective function of the stability index is as follows:

F1 = sup
t∈[0,T]

Δh(t) − inf
t∈[0,T]

Δh(t). (4.5)

4.3. The Objective Function of the Economic Index

The energy consumption is P(t) in any time t.

P(t) = Mq(t)ω, (4.6)

where Mq(t) is the torque. For no frame balance system, it is as follows:

Mq(t) =
G

9.8
[L cosωt + x3 sin(ωt + x5) + r] − mb

mq

G

9.8
(
zB cos β − yB sin β

)
+

G′

9.8
Lξ cosωt,

(4.7)

where yB = L cosωt − x4 sin(ωt + x5), zB = L sinωt + x4 cos(ωt + x5), G is the gravity of the
goods, β = arctg((zB − x2)/(yB − x1)), G′ is the gravity of the arm frame, and ξ is the ratio of
the distance (center of gravity of the arm frame from O point in Figure 3) to arm length-L.

So, the objective function of the economic index is as follows:

F2 =
∫T

0
P(t)dt = ω

∫T

0
Mq(t)dt. (4.8)

5. The Application in Mechanism Design

5.1. Calculation Statement

The paper takes the luff mechanism of compensative sheave block (shown in Figure 3) as
application object. G = 31360 N, G′ = 13720 N, L = 14 m, f = 0.7 m, ξ = 0.5, r = 0.2 m, mb = 6,
mq = 2. Rmax = 12 m, Rmin = 5.8 m, −0.4 ≤ x1 ≤ 0.5, 3 ≤ x2 ≤ 8, 0.4 ≤ x3 ≤ 0.8, 0.3 ≤ x4 ≤ 0.7,
0 ≤ x5 ≤ 0.43633. The total fluctuation time is 40 seconds (T = 40 seconds). The smallest unit
time is 1 second. The more-detailed mechanism instructions can refer to [16]. Meanwhile,
a group of realistic optimization design parameters (x1 = −0.030, x2 = 4.040, x3 = 0.550,
x4 = 0.370, x5 = 0.160) is listed [16].

5.2. Single-Objective Optimization Results

Consider

X∗
1 = (0.01897, 4.08848, 0.51854, 0.53969, 0.33220), F1

(
X∗

1

)
= 0.01558 m,

X∗
2 = (0.00954, 4.83460, 0.77453, 0.57673, 0.31204), F2

(
X∗

2
)
= 2.946 kJ.

(5.1)

The impact factors are shown in Table 2.
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Table 2: The impact factors.

Impact factors Δji
Design variables

x1 x2 x3 x4 x5

Objective functions
F1 95.53 85.86 29.75 21.57 1.78
F2 17.12 13.99 5.34 5.27 0.36

Table 3: The impact factors of strategy subsets to objection functions.

Impact factors
Strategy subsets

Sa Sb

Objection functions

F1 90.695 17.700
F2 15.555 3.657

5.3. Fuzzy Clustering

Consider Δ1 = (95.53, 17.12), Δ2 = (85.86, 13.99), Δ3 = (29.75, 5.34), Δ4 = (21.57, 5.27), Δ5 =
(1.78, 0.36),

R =

⎛

⎜⎜⎜⎜⎜
⎝

∗ 1.66393 1.54728 1.52919 1.54697
∗ 1.52336 1.50450 1.53111

∗ 1.34602 1.54624
Symmetry ∗ 1.60735

∗

⎞

⎟⎟⎟⎟⎟
⎠

, (5.2)

M = 2, and P = 3. Because r12 = 1.66393 is the maximum value of matrix R, x1 and x2 belong
to one class. Namely, Sa = {x1, x2} and Sb = {x3, x4, x5}. The impact factors bof strategy
subsets to objection functions are shown in Table 3.

According to Table 3, because the maximum value is 90.695, Sa = S1 = {x1, x2} is the
strategy subset of F1. Sb = S2 = {x3, x4, x5} is the strategy subset of F2.

5.4. Calculation Results

There exist two kinds of cases. Case 1 is that the big pig stands for F2 and the small pig stands
for F1. Case 2 is that the big pig stands for F1 and the small pig stands for F2.

We take case 1; for example, the detailed calculation steps are as follows.

(1) Take the corresponding values of the initial design in strategy subsets S1, S2 as
the initial feasible strategies s

(0)
1 , s(0)2 . Then, form a strategy permutation s(0) =

{s(0)1 , s
(0)
2 }.

(2) Perform the following two single-objective optimization.
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Table 4: The iterative process of Case 1.

Game round
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

Initial strategy 0.02968 4.09656 0.59710 0.56809 0.04602 0.06290 34.819
Bout 1 −0.02685 4.06819 0.68734 0.30528 0.35235 0.04682 30.382
Bout 2 0.06769 4.15154 0.63034 0.46589 0.30726 0.03309 32.764
Bout 3 −0.01810 4.07167 0.69530 0.32966 0.41033 0.03157 30.829
Bout 4 0.00422 4.09241 0.72985 0.30224 0.40272 0.02267 31.060
Bout 5 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438
Bout 6 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438

(a) Seek the optimal strategy s∗1 ∈ S1 and minimize the payoff function,

u1

(
s∗1, s

(0)
2

)
=

F1

(
s∗1, s

(0)
2

)

F1

(
s
(0)
1 , s

(0)
2

) −→ min . (5.3)

(b) Seek the optimal strategy s∗2 ∈ S2 and minimize the payoff function,

u2

(
s
(0)
1 , s∗2

)
= w22 ×

F2

(
s
(0)
1 , s∗2

)

F2

(
s
(0)
1 , s

(0)
2

) +w21 ×
F1

(
s
(0)
1 , s∗2

)

F1

(
s
(0)
1 , s

(0)
2

) −→ min . (5.4)

(3) Define strategy permutation s(1) = s∗1 ∪ s∗2. Then, justify the feasibility of s(1). If
s(1) does not satisfy constraint conditions, turn to step (1). Otherwise, compute√∑5

j=1(((x
(1)
j − x

(0)
j )/x(0)

j )2/5) and examine whether it satisfies the convergence
precision ε (ε is 0.0001 in this paper). If it satisfies, the game is over; if not, let
s(0) = s(1) and turn to step (2) to iteration loop.

Illustration: for case 2, u1 is constructed according to cooperative behavior mode and
u2 is constructed according to noncooperative behavior mode.

(1) For case 1, w22 = 0.5, w21 = 0.5, calculation starts from the initial strategy
X0 = (0.02968, 4.09656, 0.59710, 0.56809, 0.04602) and obtains convergence value
X∗ = (−0.00605, 4.06225, 0.58250, 0.49698, 0.02102) after six rounds game and F1 =
0.01581 m, F2 = 33.438 KJ. Iterative process is shown in Table 4.

(2) For case 2, w11 = 0.5, w12 = 0.5, calculation starts from the initial strategy
X0 = (0.19247, 4.17230, 0.42101, 0.31284, 0.31592) and obtains convergence value
X∗ = (0.01724, 4.08923, 0.40303, 0.30493, 0.43130) after four rounds game and F1 =
0.14471 m, F2 = 28.255 KJ. Iterative process is shown in Table 5.

The compared results are shown in Table 6. (Illustration: multiobjective fuzzy opti-
mization method is adopted in [17] and multiobjective Nash equilibrium game method is
adopted in [6]).
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Table 5: The iterative process of Case 2.

Game round
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

Initial strategy 0.19247 4.17230 0.42101 0.31284 0.31592 0.03357 33.212
Bout 1 0.05860 4.02781 0.40414 0.30544 0.40052 0.02428 32.968
Bout 2 0.18459 4.17053 0.41018 0.30223 0.39318 0.03514 32.457
Bout 3 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225
Bout 4 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225

Table 6: The compared results.

Reference
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

[16] −0.030 4.040 0.550 0.370 0.160 0.05935 31.166
[17] −0.02199 4.14131 0.76369 0.44838 0.32446 0.04325 30.174
[6] 0.11480 4.08089 0.40800 0.30067 0.41340 0.01604 33.140
Method in this
paper

Case 1 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438
Case 2 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225

The comparison of deviation trajectory (cases 1 and 2, [6, 16, 17]) is shown in Figure 4.
According to Table 6, we can know that F1 in case 1 is better than [6, 16, 17] and case

2, and that F1 in case 2 is the worst. According to Figure 4, the deviation trajectory in case
1 is better than [6, 16, 17] and case 2. F2 in case 2 is better than [6, 16, 17] and case 1. F2

in case 1 is the worst. The results show that the method can effectively solve bi-objective
optimization problems with preferred target and that multiobjective fuzzy optimization
method [17] is an effective method without preferred target (both F1 and F2 are better than
realistic optimization results [16]).

By analyzing the results, we can know three conclusions as follows. (1) The game
player with noncooperative characteristic of the small pig has greater advantage in the
pursuit of its own interests than the game player with cooperative characteristic of the big pig.
(2) If the designers have target preference, they need to take the preferred target as the small
pig side and take another target as the big pig side. (3) The satisfactory equilibrium solution
can be obtained through less iteration rounds because the design variables are decomposed
into the strategy subset owned by 2 game players.

To reveal the influence of wii on the final solutions, wii = 0.1, 0.3, 0.5, 0.7, respectively.
The results are shown in Tables 7 and 8. In case 1, the big pig stands for F2 and the greater the
value of w22 is (the cooperative degree is lower), the better the final value of F2 is. In case 2,
the big pig stands for F1 and the greater the value of w11 is (the cooperative degree is lower),
the better the final value of F1 is.

6. Conclusions

(1) One new bi-objective optimization game method is proposed. Two design goals
can be regarded as two game players, the design variables set can be regarded as
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Figure 4: The comparison of deviation trajectory.

Table 7: The influence of w22 on the final solutions in Case 1.

w22
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

0.1 0.00034 4.06904 0.49224 0.57956 0.07845 0.01569 33.585
0.3 −0.00605 4.06225 0.59757 0.48890 0.00316 0.01574 33.481
0.5 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438
0.7 0.01812 4.09616 0.58756 0.48979 0.37132 0.01588 32.383

Table 8: The influence of w11 on the final solutions in Case 2.

w11
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

0.1 0.03455 4.11824 0.40770 0.30283 0.39273 0.15709 27.850
0.3 0.00833 4.08878 0.40770 0.30283 0.39273 0.15380 27.973
0.5 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225
0.7 0.02928 4.10112 0.40770 0.30283 0.39273 0.14075 28.377

strategy subsets named S1, S2, and the constraints in multiobjective problems can
be regarded as constraints in the game method. Through the specific technological
means, the design variables can be divided into each game players strategy subsets
(S1, S2) and two payoff functions u are constructed based on pigs’ payoff game
behavior.

(2) The solution step of game player’s strategy subset is presented. The design
variables are divided into strategy spaces owned by the corresponding game player
by calculating the impact factor and fuzzy clustering.

(3) The big pig’s behavior is cooperative but the small pig’s behavior is noncooperative.
The different behavior characteristics of the big pig and small pig, respectively, are
assigned to the corresponding game players based on pigs’ payoff game behavior.
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The paper constitutes a hybrid game mode and proposes the detailed solution
steps.

(4) For optimization problems with preferred target, the designers need to emphasize
one design goal. For this problem, there exist traditional methods such as weighting
method (by adjusting the weight of each goal), hierarchical sequence method (by
adjusting the objective optimization order), and goal programming method. In this
paper, one new bi-objective optimization game method is proposed based on pigs’
payoff game behavior for solving optimization problems with preferred target. It
takes bi-objective optimization of luffing mechanism of compensative shave block;
for example, the results show that the method can effectively solve the bi-objective
optimization problems with preferred target (designers need to take the preferred
target as the small pig side and take another target as the big pig side), the efficiency
and accuracy are well, and the solution is obtained only through fewer game
rounds.
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Combining adaptive fuzzy sliding mode control with fuzzy or variable universe fuzzy switching
technique, this study develops two novel direct adaptive schemes for a class of MIMO nonlinear
systems with uncertainties and external disturbances. The proposed control schemes consist
of fuzzy equivalent control terms, fuzzy switching control terms (in scheme one) or variable
universe fuzzy switching control terms (in scheme two), and compensation control terms. The
compensation control terms are used to relax the assumption on fuzzy approximation error. Based
on Lyapunov stability theory, the parameters update laws are adaptively tuned online and the
global asymptotic stability of the closed-loop system can be guaranteed. The major contribution
of this study is to develop a novel framework for designing direct adaptive fuzzy sliding mode
control scheme facing model uncertainties and external disturbances. The derived schemes can
effectively solve the chattering problem and the equivalent control calculation in that environment.
Simulation results performed on a two-link robotic manipulator demonstrate the feasibility of the
proposed control schemes.

1. Introduction

Some nonlinear systems, such as robotic manipulator, inverted pendulum, and electrical
machines, not only are often highly coupled and time-varying systems, but also suffer
from structured and unstructured uncertainties [1, 2]. The control of these systems is an
important topic in the field of control. Sliding mode control (SMC) is an effective control
scheme to deal with these problems [3–6]. However, this control scheme suffers mainly from
two disadvantages. One is the chattering due to discontinuous switching term. The other is
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the difficulty involved in the calculation of the equivalent control [7]. A thorough knowledge
of the plant dynamics is required for this purpose. But in the real world, there are many
complex industrial processes whose accurate mathematical models are not available or
difficult to formulate.

In recent decades, fuzzy control methodology has emerged as a promising way to
approach nonlinear control problems since it can incorporate linguistic information from
human experts into control strategy [8–13]. Considerable efforts have been done to combine
fuzzy system with SMC to overcome the disadvantages of general SMC [1, 14–30]. For
example, fuzzy switching technique [15–17] and fuzzy boundary layer technique [18–20]
have been developed to eliminate chattering problem. Both the techniques are built on the
condition that the equivalent control has already existed. There exist some difficulties for
the techniques to obtain a suitable equivalent control if the nominal mathematics model is
unknown. In this case, there are generally two kinds of adaptive fuzzy SMC approaches
to calculate the equivalent control in the existing literatures: direct [1, 21, 22] and indirect
approaches [23–27]. Direct approach is to use fuzzy system directly to approximate the
equivalent control term. Indirect approach is first to utilize fuzzy systems to approximate the
unknown system functions, then to design the equivalent control based on these estimates.
Both the approaches can effectively deal with the calculation of the equivalent control in the
presence of model uncertainties and unknown disturbance. But the chattering problem might
be encountered no matter what type of adaptive fuzzy SMC.

Several indirect schemes which combined adaptive fuzzy SMC with fuzzy switching
technique have been reported for SISO nonlinear systems in [28–30]. The proposed schemes
can simultaneously overcome the two disadvantages of SMC mentioned above despite of
model uncertainties and unknown disturbances. Unfortunately, convergence of the tracking
error to zero is guaranteed by assuming that the fuzzy approximation error is very small if
not equal to zero and square integrable. This, however, is difficult to show for any given plant
[31]. Besides, direct approach may be of more interest not only because of its simple design
and easy implementation, but also because it does not need to consider any possible controller
singularity problem [32]. However, the constraints on control gain present difficulties for the
design of direct adaptive control. Therefore, it will be a challenge for the direct control of
MIMO nonlinear systems with model uncertainties and unknown disturbances.

Combining adaptive fuzzy SMC with fuzzy or variable universe fuzzy switching
technique, this paper proposes two novel direct adaptive control schemes for a class of MIMO
nonlinear systems with uncertainties and external disturbances. The difference between them
lies in that one scheme employs fuzzy system to estimate the switching control gain and the
other uses the variable universe fuzzy system proposed in [33] to do it. Motivated by paper
[21], this study relaxes the constraint on the gain matrix and only requires it to be positive
definite symmetric besides the inverse of its derivative is bounded by an unknown function.
To relax the assumption on fuzzy approximation error [28–30], we append an adaptive
compensation term to compensate the effect of fuzzy approximation error [34]. The overall
closed-loop systems stability and the online adjustment laws of the updated parameters are
built based on Lyapunov stability theory. Lastly, the proposed schemes are utilized to deal
with the trajectory tracking problem of robotic manipulators. Simulation results demonstrate
that the proposed schemes are effective for a class of MIMO nonlinear systems. The two
control schemes cannot only achieve the asymptotical tracking for ideal input signal, but also
effectively eliminate the chattering of the general SMC.

The rest of this paper is organized as follows. In Sections 2 and 3, brief statements
about the control system and variable universe fuzzy system are provided, respectively.
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Section 4 develops two novel direct adaptive fuzzy SMC schemes. Computer simulation
results are illustrated in Section 5. Section 6 concludes this paper.

2. Problem Statement

Consider the following MIMO nonlinear system [21, 25]:

y
(r1)
1 = f1(x) +

p∑

j=1

g1j(x)uj + d1,

...

y
(rp)
p = fp(x) +

p∑

j=1

gpj(x)uj + dp,

(2.1)

where x = [y1, . . . , y
(r1−1)
1 , y2, . . . , y

(r2−1)
2 , . . . , yp, . . . , y

(rp−1)
p ]T is the state vector which is

available for measurement and r = [r1, r2, . . . , rp]
T , u = [u1, u2, . . . , up]

T is the control input
vector, y = [y1, y2, . . . , yp]

T is the output vector, fi(x) (i = 1, 2, . . . , p) are unknown continuous
nonlinear functions, gij(x) (i, j = 1, 2, . . . , p) are smooth unknown nonlinear functions, and
D(t) = [d1, d2, . . . , dp]

T are unknown external disturbances.

Define y = [y(r1)
1 , y

(r2)
2 , . . . , y

(rp)
p ]T , F(x) = [f1(x), f2(x), . . . , fp(x)]

T , and

G(x) =

⎡

⎢
⎣

g11(x), . . . , g1p(x)
... . . . ,

...
gp1(x), . . . , gpp(x)

⎤

⎥
⎦. (2.2)

Then the dynamic system equation (2.1) can be rewritten as

y(r) = F(x) +G(x)u +D(t). (2.3)

Define reference trajectory xd = [xd1, xd2, . . . , xdp]
T and the tracking error

e1(t) = xd1(t) − y1(t),

...

ep(t) = xdp(t) − yp(t).

(2.4)
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According to [3, 25], for each subsystem, one can define sliding surface as follows:

s1(t) =
(

d

dt
+ λ1

)(r1−1)

e1(t), λ1 > 0,

...

sp(t) =
(

d

dt
+ λp

)(rp−1)

ep(t), λp > 0.

(2.5)

From (2.5), we can see that e(j)i (t) → 0, j = 0, 1, . . . , ri − 1, i = 1, 2, . . . , p as si(t) → 0. Then, the
control duty can be transferred to design the control law such that si(t) → 0, i = 1, 2, . . . , p.

The time derivatives of the sliding surface of each subsystem are

ṡ1(t) = e
(r1)
1 +

r1−1∑

j=1

C
j

r1−1e
(r1−j)
1 λ

(j)
1 = v1 − f1(x) −

p∑

j=1

g1j(x)uj − d1,

...

ṡp(t) = e
(rp)
p +

rp−1∑

j=1

C
j

rp−1e
(rp−j)
p λ

(j)
p = vp − fp(x) −

p∑

j=1

gpj(x)uj − dp,

(2.6)

where Ck
n = n!/k!(n − k)! in which k ≤ n, and

v1 = x
(r1)
d1 +

r1−1∑

j=1

C
j

r1−1e
(r1−j)
1 λ

(j)
1 ,

...

vp = x
(rp)
dp +

rp−1∑

j=1

C
j

rp−1e
(rp−j)
p λ

(j)
p .

(2.7)

Let S = [s1, s2, . . . , sp]
T and v = [v1, v2, . . . , vp]

T . Equation (2.6) can be rewritten as

Ṡ = v − F(x) −G(x)u −D(t). (2.8)

The objective of this paper is to design a control law u(t) such that the output vector
y(t) follows asymptotically the desired trajectory xd(t), with all involved signals in the
closed-loop system remaining bounded. In the controller design, the following assumptions
are useful for steady analysis and proof.

Assumption 2.1. G(x) is a positive definite and symmetrical matrix.

Assumption 2.2. (1/2)‖(dx/dt)G−1(x)‖ ≤ δ(x), where δ(x) is bounded positive continuous
function without knowing its bound.
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Assumption 2.3. The ideal trajectory xdi(t) (i = 1, 2, . . . , p) are ri-order derivable, and
xdi(t) (i = 1, 2, . . . , p) and their j-order derivatives (j = 1, 2, . . . , ri−1) are continuous functions
of known boundary.

Remark 2.4 (see [21]). Assumption 2.1 is useful to the stability analysis and stability proof.
There are many physical systems, such as robotic systems and electrical machines, which
satisfy the positive definiteness and the symmetry. Assumption 2.2 is not restrictive, since
we only assume the existence of δ(x) and not its knowledge. Moreover, there are several
physical systems in which the control gain matrix G(x) satisfies the inequality, for example,
robotic manipulators, electrical machines, inverted pendulum, and chaotic systems.

3. Variable Universe Fuzzy System

Fuzzy control emerged in decades ago is a promising way to solve nonlinear control
problems. It has several excellent properties. For example, it does not require the plant
model and can effectively incorporate the semantic knowledge of human experts. Since the
universal approximation theorem has been put forward in [10], fuzzy system and fuzzy
control evolve faster than before. Specifically, in the control area, fuzzy systems are mainly
used as a nonlinear function approximation tool.

It should be emphasized that, in this paper, it is assumed that the structure and the
membership function parameters of the fuzzy system are properly specified in advance by
the designer. This means that the designer decision is needed to determine the structure of
the fuzzy system, namely, the pertinent inputs, the number of membership functions for each
input, the membership function parameters, and the number of rules.

3.1. Fuzzy System

For convenience, we will recall briefly the fuzzy system in the following. Let Xi =
[−Ei, Ei] (i = 1, 2, . . . , m) be the universe of input variable zi (i = 1, 2, . . . , m) and Y = [−U,U]
the universe of output variable uo. Ai = {Aij} (j = 1, 2, . . . ,N) is defined as a fuzzy partition
on Xi and B = {Bj} (j = 1, 2, . . . ,N) a fuzzy partition on Y , where Aij ∈ F(Xi) and Bj ∈ F(Y )
are termed as the base, and aij and bj are the peak points of Aij and Bj , respectively. Ai and
B are regarded as linguistic variables so that a group of fuzzy inference rules are formed as
follows:

If z1 is A1j , z2 is A2j , . . . , zm is Amj, then uo is Bj

(
j = 1, 2, . . . ,N

)
, (3.1)

where N represents the number of the rules. Singleton fuzzifier, triangle membership
function (overlap law is 0.5), product inference engine, and center average defuzzifier are
used in this fuzzy system. The derived output of fuzzy system can be written as

ûo(z) = ξ(z)Tθ, (3.2)
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where z = [z1, z2, . . . , zm]
T , θ = [u1, u2, . . . , uN]T is a vector grouping all consequent parame-

ters, and ξ(z) = [ξ1(z), ξ2(z), . . . , ξN(z)]T is fuzzy basis function vector defined as

ξj(z) =
m∏

i=1

Aij(zi), j = 1, 2, . . . ,N. (3.3)

3.2. Variable Universe Fuzzy System

Adaptive fuzzy controller based on fixed universe has limited approximation accuracy
according to the interpolation mechanism of fuzzy system [35]. Aiming at the problem, Li
first presents the variable universe idea [36]. The core idea of variable universe fuzzy control
is that the universes contracts following the decrease of error. Contraction of the universe is
equivalent to the increase of the control rules. Therefore, control accuracy is improved.

The so-called variable universe means that some universes, for example, Xi and Y ,
respectively, can change along with changing of variables zi and uo. In this case, the universes
are denoted by

Xi(zi) = [−αi(zi)Ei, αi(zi)Ei],

Y (uo) =
[−β(uo)U, β(uo)U

]
,

(3.4)

where αi(zi) (i = 1, 2, . . . , m) and β(uo) are, respectively, called contraction-expansion factors
of the universes Xi (i = 1, 2, . . . , m) and Y . Being relative to the variable universes, the original
universes Xi and Y are naturally called initial universes. After the above changes, the output
of variable universe fuzzy controller can be written as

ûo

(
β, z
)
= βζ(z)Tϑ, (3.5)

where ϑ = [u2, u2, . . . , uN]T and ζ(z) = [ζ1(z), ζ2(z), . . . , ζN(z)]T represent the parameter
vector of inference consequence and the fuzzy base function vector, respectively, in which
ζj(z) =

∏m
i=1Aij(zi/αi(zi)), j = 1, 2, . . . ,N.

Remark 3.1. Under the framework of variable universe fuzzy control, the parameter which
needs to be online adjusted is a scalar β instead of a parameter vector θ in conventional
adaptive fuzzy control scheme. Therefore, variable universe fuzzy control scheme simplifies
the design procedure of adaptive fuzzy control. In addition, we hardly need smart expert
knowledge in the realm, but need the rough trend of control rules in the design of variable
universe fuzzy controller [37]. From this point, variable universe fuzzy control reduces the
design difficulty.
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4. Adaptive Fuzzy SMC Design

4.1. Sliding Mode Control

In this section, we firstly consider that nonlinear function matrices F(x) and G(x) are known.
From Assumption 2.1, the matrix G(x) is reversible. Both sides of (2.8) are multiplied by
G1(x) = G−1(x), then we obtain that

G1(x)Ṡ = G1(x)v − F1(x) − u −G1(x)D(t), (4.1)

where F1(x) = G1(x)F(x). The control law is designed as

u = G1(x)v − F1(x) −G1(x)D(t) + δ(x)IpS + η sign(S), (4.2)

where sign(S) = [sign(s1), sign(s2), . . . , sign(sp)]
T and η = diag(η1, η2, . . . , ηp) in which ηi >

0 (i = 1, 2, . . . , p), where its aim is to meet the sliding condition. Substituting (4.2) into (4.1),
we can obtain

G1(x)Ṡ = −η sign(S) − δ(x)IpS. (4.3)

We choose a candidate Lyapunov function V = (1/2)STG1(x)S. For the matrix G(x)
being positive definite and symmetrical, G1(x) is also positive definite and symmetrical and
satisfies ṠTG1(x)S = STG1(x)Ṡ. Combining with Assumption 2.2, we have

V̇ = STG1(x)Ṡ +
1
2
STĠ1(x)S = −ST(η sign(S) + δ(x)IpS

)
+

1
2
STĠ1(x)S ≤ −

p∑

i=1

ηi|si|. (4.4)

Therefore, V̇ is negative definite and the control objective can be achieved. However, in
engineering practice, nonlinear system matrix F(x) and control gain matrix G(x) are often
unknown. Accordingly, the derivative function matrices F1(x) and G1(x) as well as δ(x)
are also unknown. Moreover, external disturbance vector D(t) is also unknown. Therefore,
the control law (4.2) cannot be implemented. In the following, we employ fuzzy systems to
design the control law.

4.2. Direct Adaptive Fuzzy SMC with Fuzzy Switching
Term (DAFSMC with FSW)

According to the sliding mode control scheme, the control law u can be decomposed into the
equivalent control and the switching control. In the sliding phase, the role of the equivalent
control is to force the system dynamics to stay on the sliding surface. In the reaching phase,
the switching control is designed to satisfy the sliding mode condition [3, 28, 29].

Let

ueq � G1(x)v − F1(x) −G1(x)D(t) + δ(x)IpS (4.5)
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and usw � η sign(S). Equation (4.2) can rewritten as

u = ueq + usw. (4.6)

It is well known that the fuzzy rules used for reasoning are not easy to extract,
especially for multi-input (m > 2) fuzzy system. Yet, a prominent merit of adaptive fuzzy
system is that it does not need initial fuzzy rules and can generate fuzzy rules online based
on Lyapunov stability theory [38].

So, in what follows, adaptive fuzzy systems as (3.2) are chosen to approximate the
equivalent control term ueq. Therefore, we have the following format:

ueq = ûeq(Θ∗
e, x) +ω = ΞT

e (x)Θ
∗
e +ω, (4.7)

where ω = [ω1, ω2, . . . , ωp]
T and Ξe(x) = [diag(ξTe1(x), ξ

T
e2(x), . . . , ξ

T
ep(x))]

T denotes fuzzy
approximate error vector and fuzzy base function matrix, respectively.

Let Θ∗
e = [θ∗T

e1 , θ
∗T
e2 , . . . , θ

∗T
ep ]

T be the optimal parameter vector, where

θ∗
ei = arg min

‖θei‖≤Mei

{

sup
x∈Dx

∣∣ueqi − ûeqi(θei, x)
∣∣
}

, (4.8)

in which Mei (i = 1, 2, . . . , p) is design constant restraining parameter vector θei (i =
1, 2, . . . , p) and Dx is a compact set containing state x, and

ûeqi(θei, x) = θT
eiξei(x) (4.9)

denotes the estimate of the equivalent control law ueqi. Due to unknown ideal parameter
vector θ∗

ei, we estimate θ∗
ei by virtue of θei.

Remark 4.1. In this paper, we assume that fuzzy approximation errors ωi (i = 1, 2, . . . , p) are
bounded for all x ∈ Dx, that is, |ωi(x)| ≤ ρi, for all x ∈ Dx, where ρi is an unknown constant.
The knowledge of ρ = diag(ρ1, ρ2, . . . , ρp) is only required for analysis purpose.

Given the approximation error ωi between the equivalent control ueqi and the used
fuzzy system ûeqi, the switching control term usw must be modified as (η + ρ) sign(S), that is,
uswi = (ηi+ρi) sign(si) (i = 1, 2, . . . , p). The objective of this modification is to meet the sliding
mode existing condition. In the previous literatures [23, 26], the switching gain matrix (η+ρ)
has to be determined in advance. This is difficult when the bound of the approximation error
is unknown. Improper switching gain easily causes chattering problem which is undesired in
practice.

Since the chattering is caused by the switching gain matrix (η + ρ) and the
discontinuous function sign(s), let the switching control usw = (η + ρ) sign(s) be replaced by
a gain vector K = [k1, k2, . . . , kp] [17]. Motivated by papers [28–30], in the controller design,
we employ fuzzy systems in the form of (3.2) to approximate the gain vector K.

According to the switching control uswi in (4.6), we can choose a single-input single-
output fuzzy system k̂i(si) to approximate the gain ki. Here, the fuzzy system k̂i is applied to
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compensate the system uncertainty to reduce the energy of si and causes the sliding surface to
approach zero. It is obvious that the sign of ki is the same as that of si. When |si| is away from
zero, |ki| should be chosen a large value to make the system move quickly to the switching
surface. When |si| is small, |ki| should be chosen a small value to avoid overshoot. When si is
zero, |ki| should be zero. From the above analysis, it is easy to make siṡi ≤ 0 and guarantee
the sliding condition. Briefly, the fuzzy rules can be determined as follows:

If si is Ah, then ki is Bh, h = 1, 2, . . . , iL, (4.10)

where si and ki are the input and the output variables of the fuzzy system, respectively,
and iL represents the number of fuzzy rules. Then the estimated switching gain k̂i of the
ith subsystem can be written as

k̂i = ξsi(si)Tθsi, (4.11)

where ξsi(si) = [A1(si/αi(si)), . . . , AiL(si/αi(si))]
T and θsi = [b1, b2, . . . , biL]

T . Let

θ∗
si = arg min

‖θsi‖≤Msi

{

sup
si∈Dsi

∣∣∣ki − ξsi(si)Tθsi
∣∣∣

}

, (4.12)

be the optimal parameter vector, where Msi is design constant restraining parameter vector
θsi and Dsi is compact set containing the variable si. The optimal parameter vector θ∗

si is
unknown, so θ∗

si is estimated by θsi.
Further, to cancel the approximation error between the equivalent control ueqi and the

used fuzzy system ûeqi, we append a compensation control term uc = [uc1, uc2, . . . , ucp]
T [34].

Therefore, the overall control effort can be modified as

ui = ûeqi + k̂i + uci = ξTei(x)θei + ξTsi(si)θsi + uci (4.13)

or

u = ûeq + K̂ + uc = Ξe(x)TΘe + ΞT
s (S)Θs + uc, (4.14)

where Ξs(S) = [diag(ξTs1(s1), ξTs2(s2), . . . , ξTsp(sp))]
T and Θs = [θT

s1, θ
T
s2, . . . , θ

T
sp]

T .The compen-
sation control term uc will be designed next.

Substituting (4.14) into (4.1), we obtain

G1(x)Ṡ = G1(x)v − F1(x) −
(
ΞT
e (x)Θe + ΞT

s (S)Θs + uc

)
−G1(x)D(t)

= ω − uc −
(
ΞT
e (x)Θe − ΞT

e (x)Θ
∗
e

)
−
(
ΞT
s (S)Θs − ΞT

s (S)Θ
∗
s

)
− ΞT

s (S)Θ
∗
s − δ(x)IpS.

(4.15)
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Let Θ̃e = Θe −Θ∗
e and Θ̃s = Θs −Θ∗

s. Combining the above equation, we have

G1(x)Ṡ = ω − uc − ΞT
e (x)Θ̃e − ΞT

s (S)Θ̃s − ΞT
s (S)Θ

∗
s − δ(x)IpS. (4.16)

To derive the adaptive laws of the parameter vectors, let us consider the Lyapunov
candidate function

V1 =
1
2
STG1(x)S +

1
2γ1

Θ̃T
e Θ̃e +

1
2γ2

Θ̃T
s Θ̃s +

1
2γ

ω̃T ω̃, (4.17)

where γ1, γ2, γ are positive constants, ω̃ = ω − ω̂ in which the vector ω̂ = [ω̂1, ω̂2, . . . , ω̂p]
T

denotes the estimate of the unknown approximation error vector ω.

Theorem 4.2. For system (2.1), nonlinear function matrices F(x), G(x), and vector D(t) are
unknown, and Assumptions 2.1–2.3 hold. The control law is selected as (4.13) or (4.14) in which
uci = ω̂i with adaptation laws (4.18) as follows:

θ̇ei =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ1siξei(x), ‖θei‖ < Mei or ‖θei‖ = Mei, γ1siθ
T
eiξei(x) ≤ 0,

γ1siξei(x) − γ1si
θeiθ

T
ei

‖θei‖2
ξei(x), ‖θei‖ = Mei, γ1siθ

T
eiξei(x) > 0,

θ̇si =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ2siξsi(si), ‖θsi‖ < Msi or ‖θsi‖ = Msi, γ2siθ
T
siξsi(si) ≤ 0,

γ2siξsi(si) − γ2si
θsiθ

T
si

‖θsi‖2
ξsi(si), ‖θsi‖ = Msi, γ2siθ

T
siξsi(si) > 0,

˙̂ωi = γsi,

(4.18)

whereMei and Msi are defined as before. Then one can derive the performance as follows.

(1) The involved signals of the close loop are bounded.

(2) The tracking errors and their derivatives decay to zero asymptotically, in other words, when
t → ∞, e(j)i → 0, j = 0, 1, . . . , ri − 1, i = 1, 2, . . . , p.
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Proof . Differentiating (4.17) with respect to t and using (4.16), we have

V̇1 = STG1(x)Ṡ +
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ2
Θ̃T

s
˙̃Θs +

1
γ
ω̃T ˙̃ω

= ST
(
ω − uc − ΞT

e (x)Θ̃e − ΞT
s (S)Θ̃s − ΞT

s (S)Θ
∗
s − δ(x)IpS

)

+
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ2
Θ̃T

s
˙̃Θs +

1
γ
ω̃T ˙̃ω

≤
p∑

i=1

siωi −
p∑

i=1

siω̂i −
p∑

i=1

siθ̃
T
eiξei(x) +

1
γ1

p∑

i=1

θ̃T
ei

˙̃θei +
1
2
STĠ1(x)S − δ(x)‖S‖2

−
p∑

i=1

siθ̃
T
siξsi(si) +

1
γ2

p∑

i=1

θ̃T
si

˙̃θsi −
p∑

i=1

ηi|si| − 1
γ

p∑

i=1

ω̃T
i

˙̂ωi

≤ − 1
γ1

p∑

i=1

θ̃T
e

(
γ1siξei(x) − θ̇e

) − 1
γ2

p∑

i=1

θ̃T
si

(
γ2siξsi(si) − ˙̃θsi

)

+
1
γ

p∑

i=1

(
γsi(ωi − ω̂i) − ω̃T

i
˙̃ωi

)
−

p∑

i=1

ηi|si|.

(4.19)

Considering the same sign between si and the fuzzy switching term ki, the first inequality
in the above derivation is easily established by using the inequality ηi|si| ≤ siθ

∗T
si ξsi(si) ≤

(ηi + ρi)|si|. Noticing (4.18), we have

V̇1 ≤ −
p∑

i=1

ηi|si| < 0. (4.20)

Consequently, all signals in the system are bounded. Obviously, if e(0) is bounded, then e(t)
is also bounded for all t. Since the reference trajectory xd is bounded, then the system state
x(t) is bounded as well.

To complete the proof and establish asymptotic convergence of the tracking error, we
need to prove that S → 0 as t → ∞. We rearrange (4.16) as following:

Ṡ = G(x)
(
ω − ω̂ − ΞT

e (x)Θ̃e − ΞT
s (S)Θ̃s − ΞT

s (S)Θ
∗
s − δ(x)IpS

)
. (4.21)

Since G(x) and δ(x) are continuous functions in a compact set Dx, they are bounded. By using
the boundness of S, ˙̂ω ∈ L∞ and in turn ω̂ ∈ L∞. Therefore, Ṡ ∈ L∞ holds. Using Barbalat’s
lemma, S → 0 (t → ∞) holds. This completes the proof.

Remark 4.3. The tracking control using conventional adaptive fuzzy SMC with fuzzy
switching control term [28–30] does not tackle the problem of attenuation of the effect of
the fuzzy approximation error. We usually have V̇ ≤ Sw − ηST sign(S). In this case, it can
be excepted that Sw should be very small if not equal to zero in [28–30] but here we get
V̇ ≤ −∑p

i=1 ηi|si| < 0, which improves the stability proof. In order to overcome this restriction,
we have proposed ω̂ to estimate the fuzzy approximation error ω.
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Remark 4.4. In conventional adaptive fuzzy SMC design [24, 39, 40], there is often an
assumption that the unknown external disturbance D(t) is bounded by a known positive
constant. However, it is often not possible to obtain the bound in complex situations. In order
to overcome this restriction, the variable D(t) is incorporated into the equivalent control term
ueq and a fuzzy system is used to approximate ueq. Therefore, knowledge of the bound of
external disturbance is not necessary in the present paper.

4.3. Direct Adaptive Fuzzy SMC with Variable Universe Fuzzy Switching
Term (DAFSMC with VUFSW)

As stated in Section 3.2, variable universe fuzzy system possesses high static precision by
virtue of contraction-expansion factor. In this subsection, to accelerate response speed and
improve the control accuracy, we consider an adaptive fuzzy SMC with VUFSW.

Similar to the analysis in Section 4.2, the variables si and ki are still taken as the input
and the output variables of the variable universe fuzzy system. Then the variable universe
fuzzy switching control law k̂i of the ith subsystem can be written as

k̂i = βiζsi(si)Tθsi, (4.22)

where ζsi(si) = [A1(si/αi(si)), . . . , AiL(si/αi(si))]
T and θsi = [b1, b2, . . . , biL]

T .
Let β∗ = diag(β∗1, β

∗
2, . . . , β

∗
p) be the optimal parameter vector, where

β∗i = arg min
|βi|≤Mi

{

sup
si∈Dsi

∣∣∣ki − βiζsi(si)Tθsi
∣∣∣

}

, (4.23)

in which Mi is the design constant. Similarly, since the ideal parameter β∗i is unknown, βi is
employed to estimate β∗i . Therefore, the overall control effort can be modified as

ui = ûeqi + k̂i + uci = ξTei(x)θei + βiζ
T
si(si)θsi + ω̂i (4.24)

or

u = ûeq + K̂ + uc = ΞT
e (x)Θe + βΞT

s (S)Θs + ω̂, (4.25)

where Ξs(S) = [diag(ζTs1(s1), ζTs2(s2), . . . , ζTsp(sp))]
T and Θs = [θT

s1, θ
T
s2, . . . , θ

T
sp]

T .
Substituting (4.25) into (4.1), we obtain

G1(x)Ṡ = G1(x)v − F1(x) −
(
ΞT
eΘe + βΞT

s (S)Θs + ω̂
)
−G1(x)D(t)

= (ω − ω̂) −
(
ΞT
eΘe − ΞT

eΘ
∗
e

)
−
(
βΞT

s (S)Θs − β∗ΞT
s (S)Θs

)
− β∗ΞT

s (S)Θs − δ(x)IpS.

(4.26)
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Let Θ̃e = Θe −Θ∗
e and β̃ = β − β∗. Then

G1(x)Ṡ = ω̃ − ΞT
e (x)Θ̃e − β̃ΞT

s (S)Θs − β∗ΞT
s (S)Θs − δ(x)IpS. (4.27)

To derive the adaptive law of the parameter vectors, we consider the Lyapunov
candidate function as

V2 =
1
2
STG1(x)S +

1
2γ1

Θ̃T
e Θ̃e +

1
2γ3

β̃T β̃T +
1

2γ
ω̃T ω̃, (4.28)

where γ3 is a positive constant.

Theorem 4.5. For system (2.1), nonlinear function matrices F(x), G(x), and vector D(t) are
unknown, and Assumptions 2.1–2.3 hold. The control law is selected as (4.24) or (4.25), with
adaptation laws (4.29) as follows:

θ̇ei =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ1siξei(x), ‖θei‖ < Mei or ‖θei‖ = Mei, γ1siθ
T
eiξei(x) ≤ 0,

γ1siξei(x) − γ1si
θeiθ

T
ei

‖θei‖2
ξei(x), ‖θei‖ = Mei, γ1siθ

T
eiξei(x) > 0,

β̇i =

⎧
⎪⎨

⎪⎩

γ3siθ
T
siζsi(si),

∣∣βi
∣∣ < Mi or

∣∣βi
∣∣ = Mi, γ3siθ

T
siζsi(si) ≤ 0,

0,
∣∣βi
∣∣ = Mi, γ3siθ

T
siζsi(si) > 0,

˙̂ω = γsi,

(4.29)

whereMei and Mi are defined as before. Then one can derive the performance as follows.

(1) The involved signals of the close loop are bounded.

(2) The tracking errors and their derivatives decay to zero asymptotically, in other words, when
t → ∞, e(j)i → 0, j = 0, 1, . . . , ri − 1, i = 1, 2, . . . , p.

Proof. Differentiating (4.28) with respect to t and using (4.27), we have

V̇2 = STG1(x)Ṡ +
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ3
β̃T ˙̃β +

1
γ
ω̃T ˙̃ω

= ST
(
ω̃ − ΞT

e (x)Θ̃e − β̃ΞT
s (S)Θs − β∗ΞT

s (S)Θs − δ(x)IpS
)

+
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ3
β̃T ˙̃β +

1
γ
ω̃T ˙̃ω
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≤
p∑

i=1

siω̃i − 1
γ

p∑

i=1

ω̃T
i

˙̂ωi −
p∑

i=1

siθ̃
T
eiξei(x) +

1
γ1

p∑

i=1

θ̃T
eiθ̇ei +

1
2
STĠ1(x)S − δ(x)‖S‖2

−
p∑

i=1

siβ̃iθ
T
siζsi(si) +

1
γ3

p∑

i=1

β̃iβ̇i −
p∑

i=1

ηi|si|

≤ 1
γ

p∑

i=1

ω̃i

(
γsi − ˙̂ωi

) − 1
γ1

p∑

i=1

θ̃T
ei

(
γ1siξei(x) − θ̇ei

) − 1
γ3

p∑

i=1

β̃i
(
γ3siθ

T
siζsi(si) − β̇i

)
−

p∑

i=1

ηi|si|.

(4.30)

Noticing that (4.29), we have

V̇2 ≤ −
p∑

i=1

ηi|si| < 0. (4.31)

Therefore, all signals in the system are bounded. In order to show the boundedness of Ṡ, we
rearrange (4.27) as follows:

Ṡ = G(x)
(
ω̃ − ΞT

e (x)Θ̃e − β̃ ΞT
s (S)Θs − β∗ΞT

s (S)Θs − δ(x)IpS
)
. (4.32)

Similarly, we can derive Ṡ ∈ L∞.

To summarize the above analysis, the step-by-step procedures for the two direct
adaptive fuzzy SMCs are proposed as follows.

Design Procedure:

Step 1. Select proper positive coefficients λ1, λ2, . . . , λp and learning coefficients γ1, γ2, γ3, and
γ .

Step 2. Specify design constant vectors Me = [Me1,Me2, . . . ,Mep]
T , Ms = [Ms1,Ms2, . . .,

Msp]
T and M = [M1,M2, . . . ,Mp]

T .

Step 3. Define mi fuzzy sets Fi for variable xi to achieve an uniform coverage of the universe
of discourse. Select the initial parameter vector θei(0) = 0mi×1 (i = 1, 2, . . . , p).

Step 4. Construct the fuzzy rule bases for the fuzzy system uswi. Define iL fuzzy sets Ai for
variable si to achieve a uniform coverage of the universe of discourse. Select the initial
parameter vectors θsi(0)iL×1 (i = 1, 2, . . . , p) for DAFSMC with FSW and the initial values
βi(0) (i = 1, 2, . . . , p) for DAFSMC with VUFSW.

Step 5. Construct the fuzzy systems ûeqi in (4.9), and k̂i in (4.11) or (4.22).

Step 6. Construct the control law (4.13) or (4.14) with the adaptive laws in (4.18) or construct
the control law (4.24) or (4.25) with the adaptive laws in (4.29).

Step 7. Use the adaptive laws (4.18) or (4.29) to adjust the parameters θei, θsi or βi, and ω̂i.
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5. Simulation Results and Analysis

In this section, we test the proposed control schemes on the trajectory tracking control of the
two-link rigid robot manipulators moving a horizontal plane. The equations of motion of the
manipulators can be expressed in matrix form as follows [21, 25]:

(
q̈1

q̈2

)
= −
(
M11, M12

M21, M22

)−1(−hq̇2, −h(q̇1 + q̇2
)

hq̇1, 0

)(
q̇1

q̇2

)
+
(
M11, M12

M21, M22

)−1(
u1

u2

)
+
(
d1

d2

)
, (5.1)

where

M11 = a1 + 2a3 cos q2 + 2a4 sin q2,

M22 = a2,

M21 = M12 = a2 + a3 cos q2 + a4 sin q2,

h = a3 sin q2 − a4 cos q2,

(5.2)

in which

a1 = I1 +m1l
2
c1 + Ie +mel

2
ce +mel

2
1,

a2 = Ie +mel
2
ce,

a3 = mel1lce cos δe,

a4 = mel1lce sin δe.

(5.3)

In the simulation, the following parameter values of the plant are used: m1 = 1, me = 2,
l1 = 1, lc1 = 0.5, lce = 0.6, I1 = 0.12, Ie = 0.25, δe = 30o. Let y = [q1, q2]

T , u = [u1, u2]
T ,

x = [q1, q̇1, q2, q̇2]
T ,

F(x) =
(
f1(x)
f2(x)

)
= −
(
M11, M12

M21, M22

)−1(−hq̇2, −h(q̇1 + q̇2
)

hq̇1, 0

)(
q̇1

q̇2

)
,

G(x) =
(
g11, g12

g21, g22

)
=
(
M11, M12

M21, M22

)−1

, D(t) =
(
d1

d2

)
.

(5.4)

Then, the robotic manipulators dynamics given by (5.1) can be expressed as

ÿ = F(x) +G(x)u +D(t). (5.5)

The object is to design control law u to force the system output q1 and q2 to track the
desired trajectories yd1 = sin t and yd2 = sin t, respectively. The initial state is selected as
x0 = [1, 0, 1, 0]T . The fuzzy system k̂i (i = 1, 2) in (4.9) have x = [q1, q̇1, q2, q̇2]

T as inputs. For
each input variable, we define three triangular membership functions uniformly distributed
on the interval [−1, 1]. si and ki are the input and the output of the fuzzy system ûswi (i = 1, 2)
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Table 1: Fuzzy rule list of variable universe fuzzy switching control.

Input si PB PM PS ZE NS NM NB
Output ki PB PM PS ZE NS NM NB
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Figure 1: Angular trajectory tracking curves of robotic manipulators.

in (4.11) and (4.22), respectively. We define seven triangle membership functions uniformly
distributed on the input domain [−2, 2] and the output domain [−1, 1], respectively. The used
fuzzy rules are showed in Table 1, in which the fuzzy labels used in this study are negative big
(NB), negative medium (NM), negative small (NS), zero (ZE), positive small (PS), positive
medium (PM), and positive big (PB).

In this paper, we consider that the nonlinear function matrices F(x) and G(x) are
assumed to be completely unknown, that is, the design of the proposed controller does not
require the knowledge of the system’s model. Moreover, the external disturbance D(t) is also
unknown. In fact, these functions are only required for simulation purpose. To make a fair
comparison, in the simulation, we consider the direct adaptive fuzzy SMC proposed by A.
Boulkroune et al. in [21] where a classical switching control term is employed to eliminate
the fuzzy approximation error (hereafter referred to as a DAFSMC with CSW).

In the whole simulation, the design parameters used are chosen as follows: λ1 = λ2 = 5,
γ1 = 1, γ2 = 8, γ3 = 8, γ = 1, Me1 = 2, Me2 = 1, Ms1 = 50, Ms2 = 20, M1 = M2 = 2,
η1 = 13, η2 = 6 and the contraction-expansion factors αi = 1 − λ exp(−ks2

i ) (i = 1, 2) with
λ = 0.95, k = 1. The initial conditions of the online adjustable parameter vectors are selected
as θei = [0]81×1 (i = 1, 2), θsi = [−3,−2,−1, 0, 1, 2, 3]T (i = 1, 2), and β(0) = diag(5, 1).

To verify the robust stability of the proposed schemes, external disturbances are chosen
as square wave signal d1 = d2 = square(2πt) [21]. The response curves, the tracking error
curves, and sliding mode dynamic evolution curves under the aforementioned three control
schemes are illustrated in Figures 1, 2, and 3, respectively. Their associated control efforts are
illustrated in Figure 4. For evaluating numerically their tracking performance, the integral
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Figure 2: Angular trajectory tracking error curves of robotic manipulators.
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Figure 3: Sliding mode dynamic evolution curves.

of the absolute error (IAE), the integral of the time multiplied by the absolute error (ITAE),
and the integral of square value (ISV) of the control input are also considered because mere
visual observation of response curve is not always enough to make a sound comparison. The
corresponding tracking performance indices in first 20 seconds and in first 100 seconds are
tabulated in Tables 2 and 3, respectively.

As shown in Figures 1–4, the proposed two schemes can effectively achieve the
trajectory tracking of the joint angles despite of the system uncertainties and external
disturbances. Furthermore, they can effectively alleviate the chattering, which is the main
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Figure 4: Control input torques of robotic manipulators.

Table 2: The performance indices in 20 seconds.

Controller rod1 rod2
IAE (rad) ITAE (rad · s) ISV (N2) IAE (rad) ITAE (rad · s) ISV (N2)

DAFSMC with CSW 0.8485 1.5820 3.3838e + 03 0.4191 0.3299 704.3263
DAFSMC with FSW 2.3991 12.8742 1.9102e + 03 1.1504 5.3901 253.8947
DAFSMC with VUFSW 0.3923 0.3867 2.9613e + 03 0.2852 0.3180 437.4319

disadvantage of general SMC. It can also be seen from Figures 1–3, the performance
specifications of DAFSMC with VUFSW are much better than those of DAFSMC with CSW
and DAFSMC with FSW in terms of reaching time, steady precision.

Both IAE and ITAE are used as evaluating error performance, while the criterion
ISV shows energy consumption. It is well known that there is a trade-off between error
performance and energy consumption, that is, when IAE and ITAE are improved, ISV
becomes worse, and vice versa. Conservative control input is often required to guarantee the
stability of the control system in DAFSMC with CSW scheme. Therefore, DAFSMC with CSW
expends relatively more energy to achieve the tracking task than DAFSMC with FSW. It also
implies that the indices IAE and ITAE of DAFSMC with FSW become worse. But DAFSMC
with VUFSW simultaneously improves IAE and ITAE as well as ISV as compared to the
others as stated in Tables 2 and 3. It is undeniable that DAFSMC with VUFSW expends more
energy than DAFSMC with FSW in the initial stage due to its fast response speed. However,
thanks to the high precision of the variable universe fuzzy control, its energy consumption
reduces quickly in the steady state.

Remark 5.1. As already stated in Section 1, in the presence of model uncertainties and external
disturbances, the two disadvantages of general SMC cannot be overcome just using fuzzy
switching technique or adaptive fuzzy SMC. Combining adaptive fuzzy SMC with fuzzy
or variable universe fuzzy switching technique, a novel framework for designing direct
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Table 3: The performance indices in 100 seconds.

Controller rod1 rod2
IAE (rad) ITAE (rad · s) ISV (N2) IAE (rad) ITAE (rad · s) ISV (N2)

DAFSMC with CSW 1.4397 33.2521 1.6863e + 04 0.4722 6.6922 3.5550e + 03
DAFSMC with FSW 3.9996 97.6183 9.0121e + 03 2.1688 63.2731 1.2830e + 03
DAFSMC with VUFSW 0.5073 7.2268 8.6772e + 03 0.3844 6.1505 1.2590e + 03

adaptive fuzzy SMC is developed for a class of MIMO nonlinear systems in this study. The
derived schemes can effectively overcome these disadvantages of the general SMC.

Remark 5.2. Compared with [22, 24, 28–30, 38, 41], our proposed control schemes have several
advantages as follows. (i) The proposed schemes can simultaneously solve the chattering and
the calculation of the equivalent control in the presence of model uncertainties and unknown
disturbances. (ii) The constraint on the control gain matrix is relaxed. In this study, the gain
matrix is just required to be positive definite symmetric and the inverse of its derivative
is bounded by an unknown function. (iii) An adaptive compensation term is appended to
remove the assumption on fuzzy approximation error in the stability proof. (iv) The derived
DAFSMC with VUFSW achieves better performances than the others in terms of response
speed, steady accuracy, IAE, ITAE, and ISV.

6. Conclusion

A novel framework is developed to design a direct adaptive fuzzy SMC for a class of MIMO
nonlinear systems with model uncertainties and unknown disturbances. Combining adaptive
fuzzy SMC with fuzzy or variable universe fuzzy switching technique, this study proposes
two novel direct adaptive fuzzy SMC schemes. The derived schemes effectively overcome
the two disadvantages of general SMC. Besides, the constraint on the control gain matrix
and the fuzzy approximation error are relaxed. Future works will focus on the extension of
the framework to more general MIMO nonlinear systems such as the continuous-time or the
discrete-time nonaffine nonlinear systems.
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The severe low-speed creep phenomenon occurs in the telescopic boom system of a heavy-load
transfer robot with a long telescopic boom as a result of nonlinear friction. In order to improve
control precision and operation performance at low speeds, we built a three-loop control nonlinear
model of an AC servo motor with Stribeck friction disturbance. Traditional proportional-integral-
derivative controller (PID) and fuzzy PID controls were, respectively, adopted in the position
loop, and the control performance was simulated. The results showed that a system with fuzzy
PID control eliminates “flat top” position tracking and “dead zone” speed tracking, which are
generated by traditional PID, and thereby decreases the effect of friction on the performance of the
servo system. This elimination also improved the tracking accuracy and robustness of the system.

1. Introduction

The heavy-load transfer robot with a long telescopic boom is an automatic equipment used
to replace manual labour. It is widely used in situations where a small entrance leads
into a large inner space, such as in installations in airplanes, space capsules, and bullet
trains. The accuracy of the assembly and safety of the high-tech products installed depend
on the positioning accuracy and stability of the robot when moving at low speeds. In an
extensive system that bears heavy loads like this one, friction is a key factor that cannot be
neglected.

Many research of adopting fuzzy control to solve the problem of stability of robot
have been done, as example of [1–5]. Friction is a physical phenomenon that is complex,
nonlinear, and probabilistic. It is generated between contacting surfaces that are in relative
motion or tending to such motions [6, 7]. Friction significantly contributes to the effect that
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low-speed creep and steady-state cyclic oscillations have on the dynamic and static properties
of the system [8, 9]. In a heavy-load transfer robot system with a long telescopic boom,
the quivering caused by the low-speed creep of the telescopic boom affects not only the res-
ponse of the system but also its mechanical structure. Hence, eliminating the constraint of the
nonlinear friction element in the mechanical system is the key to improving the performance
of the control system.

The key to solving the problem of nonlinear friction is the development of an
applicable friction model and the adoption of the dynamic compensation and advanced
control algorithm [10]. Many scholars have done extensive research on this subject.
According to nonlinear systems, Qiu et al. do some simulation studies about subsection
H∞ static output feedback control [11] based on fuzzy control and asynchronous output
feedback control [12] based on fuzzy affine model, and the results indicate the effectiveness
of this method presented. Li et al. do some simulation studies about reliable fuzzy control [13]
with run time delay and fault active suspension system and adaptive sliding mode control
of the nonlinear vehicle active suspension system [14] based on T-S fuzzy approaches, and
the results indicate the effectiveness of control technology design. Xu and Yao put forward
nonlinear dynamic friction compensation [15] and achieved self-adaption compensation
control of friction. However, this method requires the foreknowledge of the structures and
characteristic parameters of the friction model, and it is difficult to realise in practise. Morel
proposed that adopting torque feedback control restrains friction interference [16]. This
method is effective but is not widely used because the sensor that it requires is expensive
and difficult to install. Besides, the flexibility of the system is increased by the installation.
Xiao et al. simulated the flight simulation turntable servo system. He found that adopting the
traditional PID (proportional-integral-derivative) control method was more effective when
there was no friction. Highaccuracy tracking can only be achieved in a friction element by the
addition of advanced PID control to traditional PID control [17].

For solving the nonlinear friction problem happening with heavy-duty servo system
running slowly to improving control precision and performance of control system, in this
paper, a fuzzy PID control based on a Stribeck friction model is proposed for controlling the
telescopic boom of the heavy-load transfer robot with a long telescopic boom to achieve low-
speed and high-precision control. We also present our three-loop control nonlinear model
of an AC servo motor with Stribeck friction. Traditional PID and fuzzy PID controls were,
respectively, adopted for the positioning loop, and the control performance was simulated.
The results showed that traditional PID cannot be easily used to achieve the desired control
performance, but adopting fuzzy PID control can yield better positioning and speed-tracking
accuracy. Fuzzy-PID control algorithm fuses fuzzy control and PID control, and make up for
the deficiency of the other party with their respective advantages. On the one hand, it makes
PID control have the intellectuality of fuzzy control. On the other hand, it makes fuzzy control
have certain structure [18]. Compared with past control algorithm, it has the advantages
such as conciser algorithm, stronger robustness, wider subject range, higher control precision,
overcoming nonlinear, and so on [19–21].

This paper partly removes the nonlinear rub problem of big arms-outstretched heavy-
duty servo system, improving control precision and performance of control system, provid-
ing valuable reference for removing the influence of the nonlinear rub when heavy-duty
servo system runs at a low speed, providing a powerful support for successfully using Fuzzy-
PID control on engineering control system, and providing an another way to solve nonlinear
rub problem in the control system.
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Figure 1: Three-dimensional map of a heavy loading and unloading robot with outstretched arm.

2. Control System Design of Heavy-Load Transfer Robot with
Long Telescopic Boom

The structure of the heavy-load transfer robot with long telescopic boom is shown in Figure 1.
It includes the base, telescopic boom, and end actuator. The telescopic boom, which has a
length of 6.6 m, is moveable and bears the loads. It is an extensive and heavy-load system, so
the influence of friction on its performance cannot be neglected. This is especially so when it
is running at a super-low speed and bearing heavy load, which would result in a severe case
of the creep phenomenon.

The control system of the robot is shown in Figure 2. It primarily consists of the motion
controller, servo motor, and industrial computer. Its architecture comprises a host and lower
computer with different CPUs, with the industrial computer and PMAC constituting a strong
functional opening motion control system. The industrial computer serves as a user interface
and medium for system state feedback, while the PMAC is used for motion and logical
control. The PMAC2A-PC104 communicates in real-time with the host computer through the
RS232 port. The host computer converts the operator’s commands into control parameters
and downloads the parameters to the PMAC through the serial port. The PMAC completes
the operation and logical control and uploads the status of the machine to the display of the
host computer. VC++6.0 is used in programming the host computer of the control system.
The host computer, which uses a WINDOWS operating system, completes the settings of
the control parameters and the status display. The control software of the lower computer
includes two parts: one to write the PLC program that executes the I/O signal disposition for
PMAC and the instructions of the schedule of motion control program and the other to write
the motion control program for the servo motor. With these two programs, the robot can be
conveniently controlled.

3. Stribeck Friction Model

Owing to its complexity, it is difficult to directly test friction. Considering that the output
torsion of a motor is equal to the sum of the motor and load torque, rotor and moment of
inertia of the load, friction torque and disturbance. In the experiment, the controller operated
the motor smoothly and eliminated various moments of inertia. The total friction torque
generated by the load and rotor could be measured approximately.
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Figure 2: Control system structure of the telescopic boom.

Obviously, it is difficult to maintain uniform motion in a telescopic boom’s low-speed
zone in an actual system. To facilitate the development of the friction model of the telescopic
boom system, we designed a test-bed of the strong stiffness [22] shrink ratio telescopic boom
strove system, which included an experimental stent, servo, ball screw, and load block. They
corresponded to the outriggers, servo motor, ball screw, and transportation load of an actual
telescopic boom system. The friction between the load block and the test-bed corresponded
to the friction between the lead screw and the ball, while the friction between the load block
and the ball screw corresponded to the friction between outrigger and outrigger of an actual
system.

In this system, the servo motor powered the load module through a ball screw. The
weight of the load was appropriately selected to maintain a constant speed for the load block
in the low-speed zone. By inputting the appropriate parameters to the servo motor driver,
several types of experimental data could be collected by adjusting the value of the torsion
output through the monitoring interface and the value of the actual speed of the servo drive.
Table 1 lists the friction torque data for different speeds.

The curve fitting of the friction torque was done with Matlab, as shown in Figure 3.
As can be seen from the relationship between the friction torque and the speed, it

is more appropriate to select the Stribeck friction model for this system. According to the
research of scholars, the Stribeck friction model most appropriately describes the behaviour of
friction [6] in the low-speed zone. Thus, the model was adopted in our study of the influence
of friction on the long telescopic boom of a heavy-load transfer robot. Figure 4 shows the
Stribeck curve [10, 23].

The Stribeck friction model can be demonstrated with the following.
When |v(t)| < α, the static friction is

Ff(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fm F(t) > Fm,

F(t) −Fm < F(t) < Fm,

−Fm F(t) < −Fm.

(3.1)
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Table 1: Correspondence between speed and friction torque.

Speed (rad/s) 0.35 0.56 1.00 3.30 6.00 7.50 10.00
Friction torque (N·m) −0.82 −0.88 −0.74 −0.64 −0.47 −0.53 −0.42
Speed (rad/s) 15.00 17.50 20.00 25.00 30.00 34.70 40.00
Friction torque (N·m) −0.56 −0.54 −0.51 −0.64 −0.58 −0.56 −0.63
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Figure 3: Friction torque curve-fitting.

When |v(t)| > α, the dynamic friction is

Ff(t) =
[
Fc + (Fm − Fc)e−α1|v(t)|

]
sgn(v(t)) +Kvv(t),

F(t) = −Jv(t),
(3.2)

where F(t) is the driving force, Fc is the coulomb friction, Fm is the maximum static friction,
Kv is the viscous friction coefficient, and α and α1 are the titchy integers.

4. Design of Fuzzy PID Controller

PID control is widely used in conventional control systems and has the advantages of
simplicity of principle, ease of realisation, and high precision. It can be designed both analyt-
ically on the basis of mathematical models and by experiment and trial-and-error. However,
nonlinear friction is known to increase the difficulty of control with a telescopic boom AC
servo control system. It is therefore difficult to guarantee the control performance when a
traditional PID control algorithm is adopted. Fuzzy control is more adaptive and performs
robustly in complex nonlinear systems. However, a static error exists in fuzzy control, and it is
not suitable for precision control [24–26]. The fuzzy PID control combines the advantages of
fuzzy logic control and traditional PID control; it applies the control experience of human
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experts, has robust performance, and is precise in handling a nonlinear complex control
system.

Fuzzy PID control adopts fuzzy regulations in modifying three parameters of PID
online to constitute the fuzzy adaptive PID controller, shown in Figure 5.

The process involves considering the error e and the error changing rate ec as inputs,
and then blurring them. Fuzzy regulations are adopted in the blurring and deduction and
eventually produce more accurate inference results, which are used to adjust the parameters
of the PID controller by consulting the fuzzy matrix table [27]. The final parameters of the
fuzzy PID are determined by

Kp = Kpo + ΔKp,

Ki = Kio + ΔKi,

Kd = Kdo + ΔKd,

(4.1)

where Kpo, Kio, and Kdo are the initial PID values.
The universe of the variables Kp, Ki, and Kd are even fuzzy subsets of {NB,NM,NS,

ZO,PS,PM,PB}, the membership function of which obeys the triangle disturbance. Figure 6
shows the distribution map of the membership function.
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Figure 6: Distribution map of the membership function.

5. System Model Development

A three-loop control model was adopted for the AC servo system of the telescopic boom. The
current loop and speed loop were achieved by a traditional PID integrated in the servo, while
the position loop was achieved by a fuzzy PID integrated in the PMAC motion controller.
The position loop was a semiclosed loop, and the feedback was the angular displacement of
the servo motor shaft. The triphase AC permanent magnetic synchronous machine (PMSM)
was used, and the effect of the spatial harmonics was ignored. It was assumed that the
three-phase winding was symmetrical and the magnetic motive force (MMF) was distributed
sinusoidally along the circumference. The magnetic saturation, eddy currents, and magne-
toresistive effect were ignored. It was also assumed that the power supply voltages of the
three phases were equal. Under this circumstance, the inductance parameters could be
considered to be approximately equal (i.e., Ld = Lq = L) and the friction coefficient B to be
equal to 0. With the adoption of the field orientation vector control tactics (id = 0), the linear
state equation and electromagnetic torque equation were obtained.

The linear state equation was determined to be

⎡

⎢⎢
⎣

diq

dt

dω

dt

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−R
L

−pnϕf

L
3pnϕf

2J
0

⎤

⎥⎥
⎦

[
iq

ω

]

+

⎡

⎢⎢
⎣

uq

L

−Tl
L

⎤

⎥⎥
⎦. (5.1)

The electromagnetic torque equation was determined to be

Te =
3pnϕf iq

2
, (5.2)

where R is the equivalent resistance (Ω), Ld = Lq = L is the equivalent inductance (H), pn is
the number of pole pairs, ω is the palstance of the rotor (rad/s), ϕf is the equivalent magnetic
linkage (Wb), Tl is the load moment (N·m), iq is the current in the q shaft (A), and J is the
moment of inertia (kg·m2).
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Figure 7: Simulink block diagram of the telescopic boom.

The mechanical transmission rig of the telescopic boom system comprised the driving
motor, speed reducer, ball screw pairs, screw steady bearings, and moving parts. When the
angular displacement of the servo motor θ(t) was the input of the mechanical transmission,
the motion of the boom X(t) was the output. The connection between the motor and the
speed reducer was equivalent to a fixed joint. All the loads of the boom were converted to the
moment of inertia Jl of the motor shaft. The friction torques and sticky connections among
other parts of the boom are described by the Stribeck friction model and were added to the
system model in perturbation of the speed loop. The parameters of the Stribeck friction model
were adjusted. The Simulink block diagram of the telescopic boom system using fuzzy PID
control with a nonlinear friction element is shown in Figure 7.

6. Results and Analysis

The sinusoidal superimposed signal was chosen as the input to the system, and is as follows:

r(t) = A sin(2πFt) + 0.5A sin(1.0πFt) + 0.25A sin(0.5πFt). (6.1)

The position loop is controlled by traditional PID control and Fuzzy-PID control.
Simulation results from position, speed, and error scope are shown below.

The position trailing curve, speed trailing curve, and position trailing error curve of
the position loop controlled by traditional PID are shown in Figure 8. In Figure 8(a), red curve
is input signal curve, blue curve is output signal curve. From the curves, output signal has
obvious position trailing “flat top” phenomena and has more error following input signal, as
is shown in Figure 8(c). From the curve in Figure 8(b), the wave form of output curve distorts,
and speed trailing “dead zone” phenomena happens. This meant that the robustness of the
low-speed servo system with friction was poor when traditional PID control was adopted,
for which reason high-precision tracking could not be achieved.

The position trailing curve, speed trailing curve, and position trailing error curve of
the position loop controlled with fuzzy PID control are shown in Figure 9. In Figure 9(a),
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the output curve mainly covers input curve, so using Fuzzy-PID control partly removed the
position trailing “flat top” phenomena, and mainly induces position trailing error, as is shown
in Figure 9(c). From the curve in Figure 9(b), output signal speed trailing “dead zone” phe-
nomena is almost removed. It indicates that Fuzzy-PID control could achieve higher control
precision and performance in slow servo system with rub.

Figure 10 shows the self-adapting curve of three parameters of fuzzy PID control. In
this paper, Fuzzy-PID control means that Kp, Ki, and Kd of position loop change on line in
real time to realize higher trailing precision and control performance.

7. Conclusions

The low-speed performance of the telescopic boom AC servo system of the heavy-load
transfer robot with a long telescopic boom was investigated. First, we designed a scale model
telescopic boom servo system experiment table with high stiffness and used it to develop a
friction model of the system. Secondly, the three-loop control nonlinear model of the AC servo
system was developed based on the Stribeck friction model of the actual telescopic boom.
The position loops with traditional PID and fuzzy PID controls were simulated. The results
showed that it was difficult to track the input signal by traditional PID control, and that the
position trailing “flat top” and speed trailing “dead zone” phenomena were basically elim-
inated by fuzzy PID, which also produced a significant improvement in the low-speed per-
formance and tracking precision of the servo system. Research results in this paper provide
valuable control method for the accuracy control of heavy-duty servo system in low running
speed.

With increasing and growing since technology, intelligent Fuzzy-PID control will
become a very good development direction. Fuzzy-PID control need rules formulated by
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humans expert on earth so that one certain control rule can not achieve ideal control effect
in an unpredictable system running process. So more intelligent control algorithm should be
input in the Fuzzy-PID control algorithm, such as neural network to form intelligent Fuzzy-
PID control algorithm and remove the influence of human will in control process, to really
realize the intelligent control algorithm with automatic adaptation, perfection and adjust-
ment in system running process.
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This paper employs fuzzy set theory to solve the unintuitive problem of the Markowitz mean-
variance (MV) portfolio model and extend it to a fuzzy investment portfolio selection model. Our
model establishes intervals for expected returns and risk preference, which can take into account
investors’ different investment appetite and thus can find the optimal resolution for each interval.
In the empirical part, we test this model in Chinese stocks investment and find that this model can
fulfill different kinds of investors’ objectives. Finally, investment risk can be decreased when we
add investment limit to each stock in the portfolio, which indicates our model is useful in practice.

1. Introduction

The Markowitz mean-variance (MV) portfolio optimization theory [1] proposed by
Markowitz has been widely used, which leads the investment theory to a new era. In this
model, the best portfolio is a maximized profit, subjected to reaching a specified level of risk,
or a minimized variance, subjected to obtaining a predetermined level of expected return
[2]. However, there have been persistent doubts about the estimates’ performance. Many
studies indicate the model has some shortage. For example, Michaud [3] have found that MV-
optimized portfolios are unintuitive, and, therefore, their estimates should be promoted [4].

In portfolio selection problem, the variables such as expected return, risk, liquidity,
and so forth cannot be predicted precisely and investors generally make portfolio decision
according to experience and economic wisdom; therefore, deterministic portfolio selection is
not a good choice for investors. Fuzzy set theory is thought to be a good method to solve this
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problem. For example, Bhattacharyya et al. [5] use fuzzy set theory to extend the investment
portfolio model into a mean-variance-skewness (MVS) model, which is tested to be useful to
explain the stock investment decision.

Our paper employs fuzzy set theory to extend Markowitz portfolio optimization
theory by establishing return intervals and risk intervals. Because investors have difficulty
to make a decision which is the best expected return or the lowest investment risk, they
may set a portfolio which is in different hierarchical return and risk levels. Therefore, our
paper can help investors to make investment decisions according to their return expectations
level and risk preference level. Our method further minimizes the intuitive disadvantage of
Markowitz mean-variance (MV) portfolio optimization method and thus can be more widely
used in practice.

Our paper is structured as follows. Section 2 describes investment portfolio selection
model and explain how to establish return intervals and risk intervals. Section 3 uses Chinese
stock market and tests our models empirically. Section 4 makes some conclusions.

2. Fuzzy Investment Portfolio Selection Models

2.1. Markowitz MV Portfolio Optimization Model

Markowitz MV portfolio optimization theory assumes that investors are risk averse, meaning
that given two portfolios that offer the same expected return, investors will prefer the less
risky one. Thus, an investor will take on increased risk only if compensated by higher
expected returns. Conversely, an investor who wants higher expected returns must accept
more risk. The exact trade-off will be the same for all investors, but different investors
will evaluate the trade-off differently based on individual risk aversion characteristics. The
implication is that a rational investor will not invest in a portfolio if a second portfolio exists
with a more favorable risk-expected return profile, that is, if for that level of risk an alternative
portfolio exists which has better expected returns.

Markowitz MV portfolio optimization models are as follows:

max f(x) =
n∑

i=1

E(ri)xi,

s.t.
n∑

i=1

n∑

j=1

σijxixj ≤ ω,

n∑

i=1

xi = 1,

0 ≤ xi ≤ μi, i = 1, 2, ..., n, j = 1, 2..., n,

(2.1)

min f(x) =
n∑

i=1

n∑

j=1

σijxixj ,

s.t.
n∑

i=1

E(ri)xi ≥ r0,

n∑

i=1

xi = 1,

0 ≤ xi ≤ μi, i = 1, 2, ..., n, j = 1, 2..., n.

(2.2)
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Model (2.1) explains a maximized expected return based on a certain risk level and model
(2.2) delineates a minimized risk level conditional on a certain return level. In these two
models, xi is the investment portion of stock i in an investor’s portfolio and ri is the return
of stock i. R = (E(r1), E(r2), . . . , E(rn))

T is the portfolio of expected returns, where E(ri) is
the expected return of stock i.

∑n
i=1
∑n

j=1 σijxixj is the portfolio variance, which represents
investment risk, where σij is the covariance of stocks i and j. ω is the maximum risk an
investor can tolerate, μi is the maximum limit of stock i in investment portfolio, and r0 is the
minimum return an investor expects.

2.2. Risk Preference

Investment decisions are accompanied by much uncertainty, and risk preference varies
according to an individual’s personality and other reasons, such as age. Studies show that an
individual’s risk preference is not only affected by expected returns and risk, but also affected
by gender, age, educations, wealth, health, marital factors, and so forth. In fact, investors’ risk
preferences are not stable; that is, different environment and social psychology can affect
them as well. In general, an investor’s risk appetite changes in a different environment.
Therefore this section is to analyze the risk appetite.

Many investment decision models use the forms of utility function, but in some
occasions, the utility function is difficult to be determined. In order to simplify the calculation
and facilitate the interpretation of results, Mercurio proposes a utility function U(WM) =
E(WM) − AVar(WM). Based on this model, model (2.3) is constructed using risk preference
coefficients, where V = ((σ2

ij)n×n) is the covariance matrix of ri, and e = (1, 1, . . . , 1)T .
This model solves the single-objective optimization problem of Markowitz’s mean-variance
portfolio model. One has

minS(X) =
(
1 − β

)
XTVX − βXTR,

s.t XTe = 1.
(2.3)

In this model, β is defined as the coefficient of risk preference and it is nonnegative. In this
model, if β is bigger, investment return is more important for investors. In particular, investors
focus only on the income and do not care about risk when β = 1, while, it is exactly the
opposite when β approaches zero. When investors become risk averse, that is, when β = 0,
model (2.3) will be simplified to the minimum variance model of portfolio:

minσ2
p = XTVX,

s.t XTe = 1.
(2.4)

The optimal solution for model (2.4) is Xg = (V −1
e)/(eTV −1

e). Further the optimal return and
optimal variance of model (2.4) are as follows:

Rg = RTXg =
RTV −1e

eTV −1e
,

σ2
g = XT

gVXg =
1

eTV −1e
.

(2.5)
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Then we define a = eTV −1e, b = RTV −1e; the solution of model (2.4) can be further simplified
as follows:

Xg =
V −1e

a
, Rg =

b

a
, σ2

g =
1
a
. (2.6)

Properties. If the covariance matrix is positive definite, model (2.3) has a unique optimal
solution:

X∗ =
V −1e

eTV −1e
+

β

2
(
1 − β

)

[

V −1R +
eTV −1R

eTV −1e
V −1e

]

. (2.7)

In (2.7), X∗ indicates the optimal portfolio of model (2.3).

Proof. If V is positive definite, then model (2.3) is convex quadratic. The necessary and
sufficient conditions for the solution of convex quadratic are to meet the Kuhn-tucker condi-
tions. Kuhn-tucker conditions for model (2.3) are

2
(
1 − β

)
VX∗ − βR − λe = 0,

X∗Te = 1.
(2.8)

According to (2.8), we can deduce the portfolio

X∗ =
V −1e

eTV −1e
+

β

2
(
1 − β

)

[

V −1R +
eTV −1R

eTV −1e
V −1e

]

. (2.9)

According to (2.7), we can solve the optimal return of (2.3):

Rp = RTX∗ =

(
ac − b2)β

2a
(
1 − β

) +
b

a
, (2.10)

where c = RTV −1R.
Discussion about ac − b2.
By definition we know that a > 0, c > 0, and the covariance matrix is positive semi-

definite.
According to the Cauchy-Schwarz inequality, ac − b2 ≥ 0, then:

(1) when securities in the portfolio have the same expected returns, according to
Cauchy-Schwarz inequality, ac − b2 = 0;

(2) in the portfolio, if there are at least two securities whose expected returns are
different, the expected returns of all securities in the portfolio are not identical.

According to the Cauchy-Schwarz inequality, ac − b2 > 0.
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Based on the above two properties, combined with the actual situation, we assume that
the expected returns of all securities in the portfolio are not exactly the same, so ac − b2 > 0.
Thus, the risk preference decision parameter β can be computed as follows:

β =
2
(
aRp − b

)

ac − b2 + 2
(
aRp − b

) . (2.11)

2.3. Fuzzy Investment Portfolio Model

Generally, an interval linear model is expressed as the following form:

max f(x) = f(x1, x2, . . . , xn) =
n∑

i=1

Kixi,

s.t.
n∑

i=1

Zijxi ≤ Mj, j = 1, 2, . . . , m,

xi ≥ 0, i = 1, 2, . . . , n.

(2.12)

In the above formula, Ki and Zij are interval numbers, and they are, respectively, expressed
as Ki = [ki, ki], Zij = [zij , zij], where we will denote the feasible region of X by Ω, that is
X ∈ Ω.

After this, some scholars transformed the interval linear programming model into a
two-goal programming problem and build a new planning model as follows:

max f1(x) = f1(x1, x2, . . . , xn) =
n∑

i=1

kixi,

s.t. X ∈ Ω,

(2.13)

max f2(x) = f2(x1, x2, . . . , xn) =
n∑

i=1

kixi,

s.t. X ∈ Ω.

(2.14)

Da and Liu [6] adopt a parameter α and use interval model to extend the above model into
(2.15), which takes into account both investors’ judgment and environment situation.

max f3(x) = f3(x1, x2, . . . , xn) =
n∑

i=1

[
(1 − α)kixi + αkixi

]
,

s.t. X ∈ Ω, α ∈ [0, 1].

(2.15)

In (2.15), there are two kinds of specific situation, that is, α = 1 and α = 0. Further, based
on investors’ risk preference, there are two kinds of models: (2.16) represents a risk lover’s
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investment and (2.17) represents a risk adverse investor’s choice, where, vi = [vi, vi] means
the risk range of stock i. One has

maxU(xi) =
n∑

i=1

rixi,

s.t. XTe = 1, X ≥ 0,

(2.16)

minV (xi) =
n∑

i=1

vixi,

s.t. XTe = 1, X ≥ 0.

(2.17)

As for investors, we can naturally think of that investors want to maximize the return on
investment and minimize the investment risk in the portfolio, that is, meeting the above
two models at the same time, but according to practical experience, we know that this is
impossible, because the higher the expected return of the portfolio, their attendant risks will
also be the greater; high yield is the compensation of high risk, which requires investors to
choose a balance of investment returns and risks according to their own psychology.

Since returns are uncertain, the allocation of capital in different risky assets to
minimize the risk and maximize the return is the main concern of portfolio selection [5].
Therefore, it is useful to take into account returns and risks together by using the risk
preference coefficient β. Thus the above multitarget interval linear function can be converted
into a parametric function. By applying the risk preference coefficient β, investment flexibility
can be increased because investors can decide to set different proportion of earnings targets
and risks targets. It also takes into account different investors’ decision-making behaviors.

However, the expected returns and risks in portfolios should be intrinsically linked
and discussed together. Chen et al. [7] simplify the variance constraints using fuzzy con-
straints:

maxU(xi) =
n∑

i=1

E(ri)xi,

s.t.
n∑

i=1

σixi ≤ M + d(1 − α),

XTe = 1,

μ ≥ X ≥ 0,

μ =
{
μ1, μ2, . . . , μn

}
.

(2.18)

In (2.18), α is fuzzy membership which an investor belongs to, α ∈ [0, 1]; the membership
function is expressed as:

μ(xi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤
n∑

i=1
σixi ≤ M − d,

M −∑n
i=1 σixi

d
, M − d ≤

n∑

i=1
σixi ≤ M,

0, others,

(2.19)
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where d is the tolerance of investors and σi is the standard deviation of the stock i’s return.
Chen et al. [7] adopt parameters in the fuzzy interval and thus the model is transformed into
a linear function:

maxU(xi) =
n∑

i=1

[
ri, ri
]
xi ,

s.t.
n∑

i=1

[
σi, σixi

]
≤
[
M + d(1 − α),M + d(1 − α)

]
,

XTe = 1,

μ ≥ X ≥ 0,

μ =
{
μ1, μ2, . . . , μn

}
.

(2.20)

This model can solve the calculation problems, but this model involves multiple parameters.
Although parameters have the advantages in increasing flexibility, too many parameters
result in decision-making errors and thereby increase uncertainty.

Risk preference is determined by the expected return and risk, which are expressed
by interval numbers. We define risk preference coefficient as β = [β, β] and use Markowitz
method to calculate the stocks investment risk. Model (2.21) can estimate investors’ risk pre-
ferences from investment decision-making behaviors, and then it compares the returns and
risk together in the same model

max f(xi) = β
n∑

i=1

rixi −
(
1 − β

) n∑

i=1

XVXT

=
[
β, β
] n∑

i=1

[
ri, ri
]
xi −

[
1 − β, 1 − β

] n∑

i=1

XVXT

=
n∑

i=1

[
βri, βri

]
xi −

[
1 − β, 1 − β

] n∑

i=1

XVXTs.

(2.21)

Covariance matrix is V =

[ σ11 σ12 ··· σ1n

...
...

σn1 σn2 ··· σnn

]

. All elements of the matrix are interval numbers, that

is, σij = [σij , σij]. So the formula
∑n

i=1 XVXT can be simplified as follows:

n∑

i=1

XVXT = {x1x2 · · ·xn}

⎡

⎢
⎣

σ11 σ12 · · · σ1n
...

...
σn1 σn2 · · · σnn

⎤

⎥
⎦{x1x2 · · ·xn}T

=

{
n∑

i=1

[
σi1, σi1

]
xi,

n∑

i=1

[
σi2, σi2

]
xi, . . . ,

n∑

i=1

[
σin, σin

]
xi

}

{x1x2 · · ·xn}T
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= x1

n∑

i=1

[
σi1, σi1

]
xi + x2

n∑

i=1

[
σi2, σi2

]
xi + · · · + xn

n∑

i=1

[
σin, σin

]
xi

=
n∑

j=1

xj

n∑

i=1

[
σij , σij

]
xi.

(2.22)

Therefore, the portfolio model can be simplified as follows:

max f(xi) = β
n∑

i=1

rixi −
(
1 − β

) n∑

i=1

XVXT

=
[
β, β
] n∑

i=1

[
ri, ri
]
xi −

[
1 − β, 1 − β

] n∑

j=1

xj

n∑

i=1

[
σij , σij

]
xi

=
n∑

i=1

[
βri, βri

]
xi −

n∑

j=1

xj

n∑

i=1

[(
1 − β

)
σij ,
(

1 − β
)
σij

]
xi.

(2.23)

The optimal estimators of (2.23) are defined as b = [0, 1], where b is the membership of the
interval. A bigger b means higher expected return; that is, b reflects investor’s confidence
level on market expectations. Specifically when b is closer to 1, it indicates that investors are
more optimistic about the market future. However, the expectation for the future market is
extremely pessimistic when b is closer to 0. So the final form of the fuzzy investment portfolio
model is expressed as follows:

max f(xi) =
n∑

i=1

(
bβri + (1 − b)βri

)
xi −

n∑

j=1

xj

n∑

i=1

[
b
(

1 − β
)
σij + (1 − b)

(
1 − β

)
σij

]
xi,

s.t. XTe = 1,

X ≥ 0.

(2.24)

By using (2.12), we can set an investment limit for each stock, and thus the model is expressed
as follows:

max f(xi) =
n∑

i=1

(
bβri + (1 − b)βri

)
xi −

n∑

j=1

xj

n∑

i=1

[
b
(

1 − β
)
σij + (1 − b)

(
1 − β

)
σij

]
xi,

s.t. XTe = 1,

μi ≥ xi ≥ 0,

(2.25)

where μi indicates the maximum amount of the stock i in sthe portfolio.
Based on the investment behavior analysis and clear understanding of their risk

reference as well as future expectations of the market, investors can utilize this model to
solve effective programs of the portfolio. Fuzzy theory is widely used to solve time varying
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problems [8–18]; therefore, the following section will adopt the model we generated to solve
the practice problems.

3. Empirical Study on the Stock Investment Portfolio

3.1. Data

The principle of decentralization can reduce the nonsystematic risk of the portfolio. In
accordance with the principle of decentralization, we use twenty stocks which are selected
from different industries. In order to provide investors with multiple choices, these stocks
have different enterprise growth rates.

We use Chinese stocks to test our fuzzy investment portfolio model. The primary data
come from CSMAR database produced by GTA company. We select 20 stocks and the data
include each stock’s weekly opening prices and weekly closing prices for the 100 weeks from
June 11, 2010, to May 18, 2012.

3.2. Variables

In order to compute the expected returns, we use the historical average return to estimate the
expected return. On this basis, we can make interval estimation of the returns by utilizing the
fuzzy statistical method and thus construct a number of reasonable income sets.

Since many stocks distribute a little dividend to investors, the weekly dividend can
be ignored because the dividend will be very small after being divided into every week. So
in this paper, we discard the dividend and only take into account the stock trading prices
change. We use the price change during each week. The weekly return is calculated as

rit =
pit − pit0

pit0
, (3.1)

where rit is stock i’s return during week t (i = 1, 2, . . . , 20; t = 1, 2, . . . , 52). Meanwhile, pit0 is
the opening price of stock i on week t and pit is the closing price of stock i on week t.

3.3. Interval Determined by Fuzzy Statistical Method

3.3.1. Determination of Return Intervals

As for the return interval, we compute it as follows.

(1) Based on the stocks’ weekly returns for 100 weeks, we divide them into 10
subintervals. Then we count the number of actual return rate contained within each
subinterval.

(2) The number of returns is the degree of membership of each interval.

(3) The final return interval is the interval which the sum of each median multiplied
membership degree locates in.

The stock returns are listed in Table 1.
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Table 1: The stock return intervals.

Stock name Interval lower limit Interval upper limit
Vanke 0.005224 0.031831
Konka −0.00596 0.021606
Victor onward Textile 0.002509 0.031017
Universe −0.00717 0.026362
Tellus −0.03185 0.012672
Shenxin −0.03593 0.02052
Nonfemet −0.03978 0.010745
Xinmao S&T −0.00754 0.022664
INT’L Group −0.0213 0.01444
Jinlu −0.0273 0.00901
ZY Environment −0.01111 0.020413
DaTong Gas −0.00474 0.021312
Advanced Technology −0.00708 0.024332
Fujian Electric −0.00968 0.018596
Sinosteel −0.01617 0.044893
Huayi Brothers −0.0378 0.022356
China Merchants Bank −0.00997 0.013047
Xi’An Aero Engine −0.0003 0.031385
Ping An −0.0124 0.01055
Petro China −0.0207 −0.0007

3.3.2. Determination of Risks Intervals

Based on Markowitz mean-variance model, we use the variance of the stock returns to
measure the level of investment risk. Stock return variance is calculated as follows.

(1) Based on the stock’ weekly returns for 100 weeks, we divide the returns into 10
subintervals and count the number of returns in each subinterval.

(2) The number of returns is the degree of membership of each interval.

(3) We define that ai and bi are the upper and lower bounds for each interval, resp-
ectively. Thus μ̂u and μ̂l are, respectively, the upper and lower bounds of the inter-
val which the product of the mean of return range and the degree of membership
are in.

Denote U as a fuzzy set, where {xi = [ai, bi], i = 1, 2, . . . ,N} comprises the set U. Thus the
means can be expressed as Fμ = [μl, μu]. We define that {xi = [ai, bi], i = 1, 2, . . . , n} is a
random fuzzy sample from set U, where the mean of the sample is FX = [μ̂l, μ̂u], which is
the return set. Further, we denote ci = (ai +bi)/2, li = |bi −ai|, c = (μl +μu)/2, and l = |μu −μl|,
ĉ = (μ̂l + μ̂u)/2, l̂ = |μ̂u − μ̂l|, then variance of the fuzzy set can be expressed as

Fσ2 =

〈∑N
i=1 (ci − c)2

N
,

∑N
i=1 (li − l)2

N

〉

, (3.2)

FS2 =

〈∑n
i=1 (ci − ĉ)2

n − 1
,

∑N
i=1

(
li − l̂

)2

n − 1

〉

. (3.3)
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Table 2: Variance based on fuzzy method.

Stock name Variance
Vanke 0.001959
Konka 0.002526
Victor onward Textile 0.002652
Universe 0.002953
Tellus 0.003845
Shenxin 0.0056
Nonfemet 0.004228
Xinmao S&T 0.003022
INT’L Group 0.003809
Jinlu 0.00416
ZY Environment 0.002569
DaTong Gas 0.002516
Advanced Technology 0.00328
Fujian Electric 0.003027
Sinosteel 0.007421
Huayi Brothers 0.004313
China Merchants Bank 0.001113
Xi’An Aero Engine 0.003863
Ping An 0.001489
Petro China 0.000719

(4) Then we substitute the respective values into (3.3) to calculate the variance of
stocks.

The results are in Table 2.
In this model, the risk of the stock is expressed by the covariance matrix than risk

losing rate. In order to determine the interval for the variance the traditional approach is
to directly select the range of variance fluctuation. Then it is expressed as α2 ± a, where a
is a given constant. But there are no studies about the determination of covariance interval.
Therefore this paper defines the covariance by determining the variance of interval numbers.
By using a = 0.0001, the covariance interval is determined.

3.4. Empirical Results

3.4.1. Estimation without Investment Limit

Next, in order to figure out the role of the investment limit on the portfolio, we also calculate
the portfolio without setting maximum investment ratio and list the results in Table 3.

3.4.2. Estimation with Investment Limit

In order to show the role of risk controlling, we set a maximum investment ratio for each
stock which depends on the investor’s risk preference. The investor’ risk preference can be
calculated in accordance with investor’s risk preference decision model. Given the different
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Table 3: The investment portfolio of different market expectations without limits.

Stock name b = 0 b = 0.3 b = 0.5 b = 0.8 b = 1
Vanke 1.0000 0.6763 0.6950 0.2345 0
Konka 0 0 0 0 0
Victor onward Textile 0 0.3237 0.3050 0 0
Universe 0 0 0 0 0
Tellus 0 0 0 0 0
Shenxin 0 0 0 0 0
Nonfemet 0 0 0 0 0
Xinmao S&T 0 0 0 0 0
INT’L Group 0 0 0 0 0
Jinlu 0 0 0 0 0
ZY Environment 0 0 0 0 0
DaTong Gas 0 0 0 0 0
Advanced Technology 0 0 0 0 0
Fujian Electric 0 0 0 0 0
Sinosteel 0 0 0 0.7655 1.0000
Huayi Brothers 0 0 0 0 0
China Merchants Bank 0 0 0 0 0
Xi’An Aero Engine 0 0 0 0 0
Ping An 0 0 0 0 0
Petro China 0 0 0 0 0
Fval −0.0023 −0.0074 −0.0110 −0.0185 −0.0264

expectations of the investors on the market in the future, the optimal portfolio of investors
can be calculated.

Firstly, we assume that the investor’s target return is [10%, 12%]. Then we calculated
the interval of investors risk preference [0.6031, 0.6454] using the risk preference decision
parameter β. We can find that the investor is the slight risk preferences type. This paper sets
the maximum investment ratio on each stock on the level of 0.2, that is, μi = 0.2. Then the
portfolio can be comprised of at least 5 stocks, which can relatively reduce investment risk.
We assume the investor’s market expectations are, respectively, b = 0, b = 0.3, b = 0.5, b =
0.8, and b = 1. The results are listed in Table 4.

Table 4 shows that the investment portfolio only includes a few stocks. Some stocks
such as Tellus and ZY Environment have not been selected regardless of the market
expectations. The reason is that the expected returns of selected stocks are stable and they
have higher expected return range. In Table 4, we find that the investment ratios of Vanke and
Victor onward Textile are 0.2, respectively, because their expected return range is positive.
Meanwhile, these two stocks are less risky. Meanwhile, the investment ratio of Advanced
Technology is 0.2 as well, since the investment return of the Advanced Technology is more
stable than that of other stocks regardless of economic situation. Investment proportion of
DaTong Gas is high in bad economic environment. However, when the economy becomes
better, the investment proportion gradually declines due to its instable return. Therefore this
stock is a good choice for risk-averse investor.

In the contrary, the impact of the economic situation on Sinosteel is more significant,
which is reflected by the big expected return interval. So the investment ratio gradually
increases when the economic situation becomes better. The value shows a decreasing trend.
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Table 4: The investment portfolio of different market expectations under the conditions of limited invest-
ment ratio.

Stock name b = 0 b = 0.3 b = 0.5 b = 0.8 b = 1
Vanke 0.2000 0.2000 0.2000 0.2000 0.2000
Konka 0.1672 0.0632 0 0 0
Victor onward Textile 0.2000 0.2000 0.2000 0.2000 0.2000
Universe 0 0.0919 0.1047 0.1328 0.2000
Tellus 0 0 0 0 0
Shenxin 0 0 0 0 0
Nonfemet 0 0 0 0 0
Xinmao S&T 0 0 0 0 0
INT’L Group 0 0 0 0 0
Jinlu 0 0 0 0 0
ZY Environment 0 0 0 0 0
DaTong Gas 0.2000 0.1292 0.0477 0 0

Advanced Technology 0.0328 0.0658 0.0476 0.0672 0
0 0.0499 0.2000 0.2000 0.2000

Fujian Electric 0 0 0 0 0
Sinosteel 0 0 0 0 0
Huayi Brothers 0.2000 0.2000 0.2000 0.2000 0.2000
China Merchants Bank 0 0 0 0 0
Xi’An Aero Engine 0 0 0 0 0
Ping An 0 0 0 0 0
Petro China 0 0 0 0 0
Fval 0.0011 −0.0044 −0.0089 −0.0160 −0.0208

Therefore the maximum value of the model will show an increasing trend as the economic
situation improves.

By comparing Tables 3 and 4, we find that without the investment limit, the investment
portfolio consists more of Vanke and Victor onward Textile, especially in the case of a poor
economic situation. But when the economy becomes better, the investment portfolio becomes
to include Sinosteel. It shows that Sinosteel is more significantly influenced by the economic
situation. In conclusion, we find that the expected returns and risk are both increasing
without investment restrictions. Therefore, the risk can be reduced if the investment limit
is set in the portfolio.

In comparison to the current research on the investment portfolio, our model’s results
show the optimal selection portfolio for investors with different risk preference; that is, each
investor can set an expected return and risk level and thus makes his/her decision according
to this level. Meanwhile, our model can set the maximum risk limit. Through this restriction,
investment risk can be under control in a certain level, because it’s hard for investors to
always find a minimum risk.

4. Conclusions

In this paper, we use fuzzy set theory to extend Markowitz mean-variance portfolio model
and test this model in Chinese stock market. The results indicates that fuzzy set theory is
useful to avoid the problems of Markowitz mean-variance portfolio model and takes into
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account different expected return levels and risk preference levels. The paper also uses 20
Chinese stocks to test the model’s efficiency. We find that the risk can be minimized by our
fuzzy investment portfolio model through adding the maximum investment portion. The
model is finally proved to be useful in investment practice.

Fuzzy investment portfolio selection model can be used in many fields such as stock
markets, futures market and stock index futures markets, and so forth. Further, the portfolio
model can set more intervals according to investors’ needs, which will be more detailed when
intervals become smaller.
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A robust observer design is proposed for Takagi-Sugeno fuzzy neutral models with unknown
inputs. The model consists of a mixed neutral and discrete delay, and the disturbances are imposed
on both state and output signals. Delay-dependent sufficient conditions for the design of an
unknown input T-S observer with time delays are given in terms of linear matrix inequalities.
Some relaxations are introduced by using intermediate variables. A numerical example is given to
illustrate the effectiveness of the given results.

1. Introduction

In recent years, there have been rapidly growing interests in stability analysis and synthesis
of fuzzy control systems; several works concerning stability and state estimation for a class
of systems described by Takagi-Sugeno (T-S) fuzzy models [1–7] have been carried out.
Furthermore, some recent applications of fuzzy theory in engineering are reported in [8–10].
Based on the Lyapunov method, design conditions for controllers and observers are given
in linear matrix inequalities (LMIs) formulation (see among others [11–19]). In the literature
of the study, all of the existing results concern T-S fuzzy models with known inputs (see,
e.g., [15, 17]). However, it is well known that state estimation for dynamic systems with time
delays and unknown inputs or disturbances is an interesting research topic in the fields of
robust control, system supervision, and fault-tolerant control [20–23]. Recently, the problem
of H∞ model reduction for Takagi-Sugeno (TS) fuzzy stochastic systems in [24], the problem
of H∞ model approximation for discrete-time Takagi-Sugeno (T-S) fuzzy time-delay systems
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in [25], and the problem of filtering for a class of discrete-time T-S fuzzy time-varying delay
systems in [26] have been fully investigated.

On the other hand, stability of neutral systems proves to be a more complex issue
because the system involves the derivative of the delayed state. Especially, in the past few
decades, increased attention has been devoted to the problem of robust delay-dependent
stability and stabilization via different approaches for linear neutral systems with delayed
state and/or input and parameter uncertainties [27–30]. Recently, the problem of network-
based feedback control for systems with mixed delays based on quantization and dropout
compensation has been studied in [31].

However, to the best of our knowledge, the class of unknown input T-S neutral models
has not yet been fully investigated in the past and remains to be important and challenging.
This motivates the present study. Thus, the contributions of this paper are two-fold: (i) design
of observers for T-S fuzzy models with mixed neutral and discrete time delays and unknown
inputs which influence states and outputs simultaneously and (ii) for the addressed problem,
the observer gains are computed by solving a convex optimization technique.

This paper is organized as follows. First, the considered observer structure for T-S
fuzzy model with mixed time delays and unknown inputs is given. In Section 3, the main
results are given for T-S models. Section 4 gives a numerical example to show the validity of
the given results. At last, we conclude the paper in Section 5.

Notation. Throughout this paper, the notation X > Y , where X and Y are symmetric matrices,
means that X − Y is positive definite, and Rn and Rn×m denote, the n-dimensional Euclidean
space and the set of all n × m real matrices respectively. Superscript “T” denotes matrix
transposition, I is the identity matrix with compatible dimensions, the symbol (∗) denotes
the transpose elements in the symmetric positions, IM = {1, 2, . . . ,M}, and Σ+ denotes any
generalized inverse of matrix Σ with ΣΣ+Σ = Σ. The operator diag{· · · } represents a block
diagonal matrix, and the operator sym(A) represents A +AT .

2. Problem Formulation

Now, consider the following T-S fuzzy models with unknown inputs and different neutral
and discrete time delays:

ẋ(t) =
M∑

i=1

μi(ξ(t))(Aix(t) +Aτi ẋ(t − τ) +Ahix(t − h) + Biu(t) + Rid(t) +Hiw(t))

x(t) = φ(t), t ∈ [−κ, 0],
y(t) = Cx(t) + Fd(t) + Jw(t),

(2.1)

with

μi(ξ(t)) ≥ 0,
M∑

i=1

μi(ξ(t)) = 1, (2.2)

where M is the number of submodels, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, d(t) ∈ Rqd is the unknown input, w(t) ∈ Rqw is the external disturbance vector, and
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y ∈ Rp is the measured output. Ai ∈ Rn×n, Aτi ∈ Rn×n, Bi ∈ Rn×m, and C ∈ Rp×n define
the ith local model. Matrices Ri ∈ Rn×qd and F ∈ Rp×qd represent the influence matrices of
the unknown inputs, and Hi ∈ Rn×qw and J ∈ Rp×qw represent the influence matrices of
the disturbances. The activation functions μi(·) depend on the decision vector ξ(t) assumed
to depend on measurable variables. It can depend on the measurable state variables and be
a function of the measurable outputs of the system and possibly of the known inputs [1, 32].
The time-varying function φ(t) is continuous vector-valued initial function, and τ and h are
constant time delays with κ := max{τ, h}.

In this paper, we are concerned with the reconstruction of state variable x(t) of
unknown inputs T-S model (2.1) using measurable signals, that is, known input u(t) and
measured output y(t). In order to estimate the state of the unknown input T-S fuzzy model
(2.1), the considered unknown input observer structure has the following form:

ż(t) =
M∑

i=1

μi(ξ(t))
(
Niz(t) +Nτi ż(t − τ) +Nhiz(t − h) +Giu(t) + Liy(t)

)

z(t) = ϕ(t), t ∈ [−κ, 0],
x̂(t) = z(t) − Ey(t),

(2.3)

where the observer considers the same activation functions μi(·) as used for the T-S model
(2.1). The variables Ni ∈ Rn×n, Nτi ∈ Rn×n, Gi ∈ Rn×m, Li ∈ Rn×p, and E ∈ Rn×p are the observer
gains to be determined in order to estimate the state of the unknown input T-S model (2.1).
The time-varying function ϕ(t) is continuous vector-valued initial function. Now let us define
the state estimation error

e(t) = x(t) − x̂(t). (2.4)

From estimation error (2.4) with the expression of x̂(t) given by the observer (2.3) and
T-S model (2.1), we get

e(t) = (I + EC)x(t) − z(t) + EFd(t) + EJw(t). (2.5)

The dynamic of state estimation error is then given by

ė(t) =
M∑

i=1

μi(ξ)(Nie(t) + (TAi −KiC −Ni)x(t) + TAτi ẋ(t − τ) −Nτi ż(t − τ)

+ TAhix(t − h) −Nhiz(t − h) + (TBi −Gi)u(t)

+(TRi −KiF)d(t) + (THi −KiJ)w(t)) + EFḋ(t) + EJẇ(t),

(2.6)

with

T = I + EC, Ki = NiE + Li. (2.7)
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Then, we get

ė(t) =
M∑

i=1

μi(ξ(t))(Nie(t) +Nτi ė(t − τ) +Nhie(t − h)), (2.8)

if the following constraints hold

Ni = TAi −KiC, (2.9)

TAτi −NτiT = 0, (2.10)

TAhi −NhiT = 0, (2.11)

TBi −Gi = 0, (2.12)

TRi −KiF = 0, (2.13)

E[F J] = 0, (2.14)

THi −KiJ = 0. (2.15)

For description brevity, (2.8) can be written as

ė(t) = Nμe(t) +Nμτ ė(t − τ) +Nμhe(t − h), (2.16)

where Nμ =
∑M

i=1 μi(ξ(t))Ni, Nμh =
∑M

i=1 μi(ξ(t))Nhi , and Nμτ =
∑M

i=1 μi(ξ(t))Nτi .

Remark 2.1. It is noting that if E is determined, we get T from (2.7) and deduce directly Gi,
Nhi , and Nτi from (2.9)–(2.15). Then, it suffices to guarantee the stability of the dynamic
system (2.8) under the constraint (2.9)–(2.15). Furthermore, (2.5) is simplified to e(t) = (I +
EC)x(t) − z(t).

In the following, LMIs design conditions satisfying e(t) → 0 when t → ∞ are given
for continuous-time systems.

3. Synthesis Conditions

This section deals with the continuous-time T-S models. Sufficient LMIs conditions
guaranteeing the global asymptotic convergence of state estimation error (2.4) are given by
using slack variable to introduce relaxation.

Theorem 3.1. The observer (2.3) converges asymptotically to the state of the continuous-time
T-S model (2.1), if there exist matrices Qj > 0, j = 1, . . . , 4, S1, Ul > 0, l = 1, . . . , 3,
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and P 2, P 3,Ni,Nhi ,Ndi such that the conditions (2.9)–(2.15) and the following hold for all
i ∈ IM:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ̂11i Σ̂12i Σ̂13i −Q3 +Q
T

4 Nτi

(∗) Σ̂22 Nhi 0 Nτi

(∗) (∗) Σ̂33 0 0
(∗) (∗) (∗) Σ̂44 0
(∗) (∗) (∗) (∗) −U2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.1)

where Σ̂11i = sym{Ni + Q1 + Q3} + U1 + S1, Σ̂12i = −PT

2 + N
T

i , Σ̂13i = Nhi − Q1 + Q
T

2 , Σ̂22 =
sym{−P 3} +U2 + dU3 + hS1, Σ̂33 = −S1 − sym{Q2}, and Σ̂44 = −U1 − sym{Q4}.

Proof. To investigate the delay-dependent asymptotically stable analysis of the error system
(2.8), we define a class of Lyapunov-Krasovskii functions as follows:

V (t) =
3∑

i=1

Vi(t), (3.2)

where

V1(t) = eT(t)P1e(t),

V2(t) =
∫ t

t−h
eT (θ)S1e(θ)dθ +

∫0

−h

∫ t

t+τ
ėT (θ)S2ė(τ)dθ dτ,

V3(t) =
∫ t

t−τ
eT (θ)U1e(θ)dθ +

∫ t

t−τ
ėT (s)U2ė(s)ds +

∫0

−τ

∫ t

t+τ
ėT (θ)U3ė(τ)dθ dτ.

(3.3)

Time derivative of V1(t) along the system trajectory (2.16) becomes

V̇1(t) = 2eT (t)P1
(
Nμe(t) +Nμτ ė(t − τ) +Nμhe(t − h)

)
, (3.4)

Then by taking the time derivative of V2(t) and V3(t), one can read

V̇2(t) = &eT (t)S1e(t) − eT (t − h)S1e(t − h) + hėT (t)S1ė(t) −
∫ t

t−h
ėT (θ)S1ė(θ)dθ, (3.5)

V̇3(t) = eT (t)U1e(t) − eT (t − τ)U1e(t − τ) + ėT (t)U2ė(t) − ėT (t − τ)U2ė(t − τ)

+ τėT(t)U3ė(t) −
∫ t

t−τ
ėT(τ)U3ė(τ)dτ.

(3.6)

Moreover, from (2.16), the following equation holds for any matrices P2 and P3 with
appropriate dimensions:

2
(
eT (t)PT

2 + ėT (t)PT
3

)
× (−ė(t) +Nμe(t) +Nμτ ė(t − τ) +Nμhe(t − h)

)
= 0. (3.7)
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Furthermore, from the Leibniz-Newton formula, the following equations hold for any
matrices Qj, j = 1, . . . , 4, with appropriate dimensions:

2
(
eT (t)Q1 + eT(t − h)Q2

)(

e(t) − e(t − h) −
∫ t

t−h
ė(s)ds

)

= 0,

2
(
eT (t)Q3 + eT (t − τ)Q4

)(

e(t) − e(t − τ) −
∫ t

t−τ
ė(s)ds

)

= 0.

(3.8)

From the obtained derivative terms in (3.4)–(3.6) and adding the left-hand side of (3.7)–(24)
into V̇ (t), we obtain the following result for V̇ (t):

V̇ (t) = χT (t)Πχ(t)

−
∫ t

t−h

(
χT (t)ν1 + ė(s)S1

)
S1

(
χT (t)ν1 + ė(s)S1

)T
ds

−
∫ t

t−τ

(
χT (t)ν2 + ė(s)U3

)
U3

(
χT (t)ν2 + ė(s)U3

)T
ds,

(3.9)

or equivalently,

V̇ (t) = χT (t)Πχ(t), (3.10)

with Π := Ξ + hν1S1ν
T
1 + τν2U3ν

T
2 , S1 := S−1

1 , U3 := U−1
3 , χ(t) = col{e(t), ė(t), e(t − h), e(t −

τ), ė(t − τ)}, ν1 = col{Q1, 0, Q2, 0, 0}, ν2 = col{Q3, 0, 0, Q4, 0}, and

Ξ =

⎡

⎢⎢⎢⎢⎢
⎣

Σ11 Σ12 Σ13 −Q3 +QT
4 Σ15

(∗) Σ22 PT
3 Nμh 0 PT

3 Nμτ

(∗) (∗) Σ33 0 0
(∗) (∗) (∗) Σ44 0
(∗) (∗) (∗) (∗) −U2

⎤

⎥⎥⎥⎥⎥
⎦
, (3.11)

where Σ11 = sym{(P1 + PT
2 )Nμ+ Q1 + Q3}+ U1 + S1, Σ12 = −PT

2 + NT
μP3, Σ13 = (P1 + PT

2 )Nμh −
Q1 + QT

2 , Σ15 = (P1 + PT
2 )Nμτ , Σ22 = sym{−P3} + U2 + τU3 + hS1, Σ33 = −S1 − sym{Q2}, and

Σ44 = −U1 − sym{Q4}.
If a constant scalar κ > 0 satisfies the following condition:

Π = Π + Π̃ < 0, (3.12)
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where

Π̃ :=

⎡

⎢
⎢⎢
⎣

κI 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥⎥
⎦
, (3.13)

then

V̇ (t) ≤ χT (t)Πχ(t) = χT (t)
(
Π − Π̃

)
χ(t)

< −χT (t)Π̃χ(t).
(3.14)

From the previous inequality, we can easily obtain, for all ê(t)/= 0,

V̇ (t) < −κ‖ê(t)‖2 < 0. (3.15)

Based on Lyapunov stability theory, the error system (2.16) is asymptotically stable.
However, the condition (3.12) is not strict LMI due to the nonconvex constraints in the

matrix indices, and, thus, one always has difficulties to get solutions satisfying the constraint.
In order to find the solutions of (3.12), the obtained sufficient condition is now changed by
some manipulations. The inequality Π < 0 yields (by Schur complements)

M∑

i=1

μi(ξ(t))

⎡

⎢
⎣
Ξi + Π̃ hν1 τν2

(∗) −hS1 0
(∗) (∗) −τU3

⎤

⎥
⎦ < 0, (3.16)

with

Ξi =

⎡

⎢⎢⎢⎢⎢
⎣

Σ11i Σ12i Σ13i −Q3 +QT
4 Σ15i

(∗) Σ22 PT
3 Nhi 0 PT

3 Nτi

(∗) (∗) Σ33 0 0
(∗) (∗) (∗) Σ44 0
(∗) (∗) (∗) (∗) −U2

⎤

⎥⎥⎥⎥⎥
⎦
, (3.17)

where Σ11i = sym{(P1 + PT
2 )Ni +Q1 +Q3} +U1 + S1, Σ12i = −PT

2 +NT
i P3, Σ13i = (P1 + PT

2 )Nhi −
Q1 +QT

2 , and Σ15i = (P1 + PT
2 )Nτi . It is clear that Ξi < 0 result in LMI stabilization conditions.

It can be easily seen that the matrices (P1 + P2)
T and P3 are nonsingular. Let ς :=

diag{((P1 + P2)
T )

−1
, P−1

3 , ((P1 + P2)
T )

−1
, ((P1 + P2)

T )
−1
, P−1

3 }. By premultiplying ς, postmulti-
plying ςT to Ξi < 0, and using the definitions Ni := Ni(P1 + P2)

−1, Nhi := Nhi(P1 + P2)
−1, Nτi :=

NτiP
−1
3 , Qi := (P1 + PT

2 )
−1
Qi(P1 + P2)

−1, U1 := (P1 + PT
2 )

−1
U1(P1 + P2)

−1, U2 := P−1
3 U1(PT

3 )
−1,

P 2 := P−1
3 P2(P1 + P2)

−1, and P 3 := P−1
3 , one can obtain the LMI (3.1). This completes the

proof.
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Remark 3.2. The equality constraints (2.13)–(2.15) can be rewritten in the following equivalent
form:

[
E K

]
[
CR CH [F J]
−F −J 0

]
=
[−R −H 0

]
, (3.18)

with

H =
[
H1 H2 · · · HM

]
, K =

[
K1 K2 · · · KM

]
,

R =
[
R1 R2 · · · RM

]
,

F =

⎡

⎢
⎢
⎢
⎢⎢
⎣

F 0 · · · 0

0 F · · · ...
...

...
. . .

...
0 · · · · · · F

⎤

⎥
⎥
⎥
⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, J =

⎡

⎢
⎢
⎢
⎢⎢
⎣

J 0 · · · 0

0 J · · · ...
...

...
. . .

...
0 · · · · · · J

⎤

⎥
⎥
⎥
⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

M times,

(3.19)

where F ∈ RM·p×M·qd , H ∈ Rn×M·qw , R ∈ Rn×M·qd , and K ∈ Rn×M·p. A necessary and sufficient
condition for the existence of a solution [E,K] to (3.18) is [33]

rank

⎡

⎣
CR CH [F J]
−F −J 0
−R −H 0

⎤

⎦ = rank
[
CR CH [F J]
−F −J 0

]
. (3.20)

Note that under this condition, a solution is obtained by

[
E K

]
=
[−R −H 0

]
[
CR CH [F J]
−F −J 0

]+

− Z

(

I −
[
CR CH [F J]
−F −J 0

][
CR CH [F J]
−F −J 0

]+)

,

(3.21)

where Z is an arbitrary matrix [33].

Remark 3.3. According to Theorem 3.1, the observer parameters can be calculated in the
following:

(1) calculate Nτi = NτiP3,

(2) compute T by solving (2.10) and calculate E from T = I + EC,

(3) compute Nhi by solving (2.11),

(4) compute Gi by solving (2.12),

(5) compute Ni = NiN
−1
hi
Nhi ,

(6) compute Ki by solving (2.9),

(7) compute Li from Li = Ki −NiE.
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Remark 3.4. It is worth noting that the number of the variables to be determined in the LMI
(3.1) is 3n2(M + 2) + 4n.

Remark 3.5. The reduced conservatism of Theorem 3.1 benefits from the construction of the
Lyapunov-Krasovskii functional in (3.2), introducing some free weighting matrices to express
the relationship among the system matrices, and neither the model transformation approach
nor any bounding technique is needed to estimate the inner product of the involved crossing
terms. It can be easily seen that results of this paper are quite different from existing results in
the literature in the following perspective. The structures at most of references, for instance
[20], consider a delay-free T-S fuzzy system and in comparison to our case do not center on
time delays, that is, the results in the previous reference cannot be directly applied to the T-S
fuzzy models with unknown inputs and different neutral and discrete-time delays.

4. Numerical Example

To show the validness of the proposed results, a numerical example is proposed for the
discrete-time T-S model (2.1) with the following data:

A1 =

⎡

⎣
−0.4 0.2 0.3
0.3 −0.6 0.3
0.4 0.2 0.6

⎤

⎦,

A2 =

⎡

⎣
−0.45 0.375 0.375
0.15 −0.45 0
0.75 0.75 −0.45

⎤

⎦,

Ah1 =

⎡

⎣
−0.01 0.03 0.02
0.01 −0.005 0

0.005 0.07 −0.03

⎤

⎦,

Ah2 =

⎡

⎣
−0.005 0.01 0.04

0.01 −0.025 0.02
0.05 0.03 −0.01

⎤

⎦,

Aτ1 =

⎡

⎣
0.0045 −0.0037 −0.0037
−0.0015 0.0045 0
−0.0075 −0.0075 0.0045

⎤

⎦,

Aτ2 =

⎡

⎣
0.0170 −0.0115 −0.0135
−0.0090 0.0210 −0.0060
−0.0230 −0.0190 −0.0030

⎤

⎦,

B1 =

⎡

⎣
1.0
−0.5
−0.5

⎤

⎦, B2 =

⎡

⎣
−0.5
1.0
−0.5

⎤

⎦, F =
[

1
1.2

]
,

R1 =

⎡

⎣
0.4
−0.4
0.4

⎤

⎦, R2 =

⎡

⎣
0.4
0.4
−0.8

⎤

⎦, C =
[

0 1 1
1 0 1

]
,

J = 0, H = 0, τ = 0.05, h = 0.1, Aτ1 = 0.1I3, Aτ2 = 0.7I3.

(4.1)
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Figure 1: Time behaviour of states and corresponding error signals.

In the light of Theorem 3.1 and Remark 3.2, we solved LMIs and obtained the following
observer gains by using Matlab LMI Control Toolbox [34]

E =

⎡

⎣
0.1945 −0.1508
−0.7474 0.6300
−0.5524 0.4682

⎤

⎦,

G1 =

⎡

⎣
0.7363
0.5659
0.2927

⎤

⎦, G2 =

⎡

⎣
−0.2518
−0.0032
−1.2461

⎤

⎦,
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N1 =

⎡

⎣
−0.2699 −0.2149 0.0543
−0.2053 −0.1778 0.0849
−0.0775 −0.0530 −0.2330

⎤

⎦,

N2 =

⎡

⎣
−0.2734 −0.1996 −0.0930
−0.4198 −0.3263 −0.1422
1.1909 0.9204 0.3656

⎤

⎦,

L1 =

⎡

⎣
0.1565 0.0973
0.2284 −0.1071
0.6159 0.1294

⎤

⎦, L2 =

⎡

⎣
0.3221 0.0557
0.0335 0.3480
0.8122 −1.3116

⎤

⎦.

(4.2)

For simulation purpose, we simply choose w(t) = t/(1+t2) as the disturbance, u(t) = e−t sin(t)
as the input signal, and μ1(ξ) = (1 − sin(x2(t)))/2 and μ2(ξ) = (1 + sin(x2(t)))/2 as activation
functions. The error signals for an input are depicted in Figure 1. It is seen that the state
estimation for the systems is performed as well.

5. Conclusion

In this paper, a robust observer design was proposed for Takagi-Sugeno (T-S) fuzzy neutral
models with unknown inputs. The model consists of a mixed neutral and discrete delay, and
the disturbances are imposed on both state and output signals. Delay-dependent sufficient
conditions for the design of an unknown input T-S observer with time delays were given
in terms of linear matrix inequalities (LMIs). Some relaxations were introduced by using
intermediate variables. A numerical example was given to illustrate the effectiveness of
the given results. Extension to the case of unmeasured decision variables is considered as
a challenging problem. A numerical example has shown the effectiveness of the proposed
results. Future work will investigate fault detection and Markovian jump systems for fuzzy
systems with unknown inputs and time delays (see for instance [25–27, 35–37]).
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This paper focuses on the fuzzy variable structure control for uncertain systems with disturbance.
Specifically, the fuzzy control is introduced to estimate the control disturbance, the switching
control is included to compensate for the approximation error, and they possess the characteristic
of simpleness in design and effectiveness in attenuating the control chattering. Some typical
numerical examples are presented to demonstrate the effectiveness and advantage of the fuzzy
variable structure controller proposed.

1. Introduction

Since the pioneering works of Utkin in 1977 [1], the variable structure control (VSC) has
generated considerable interests in control field. Up to now many researches on VSC have
been carried out [2–16]. Based on VSC theory, [2] developed an adaptive fuzzy control system
design method for uncertain Takagi-Sugeno fuzzy models with norm-bounded uncertainties.
By using a high-gain observer, [3] presented an output feedback model-reference variable
structure controller to achieve global exponential stability with respect to a small residual
set without generating peaking in the control signal. In [4], the subordinated reachability
of the sliding motion is introduced to realize the control on a class of uncertain stochastic
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systems with time-varying delay. Via introducing a pseudo-inversion, the authors in [5]
discussed the adaptive control for the uncertain discrete time linear systems preceded by
hysteresis nonlinearity. In [6], a sufficient condition for existence of reduced-order sliding
mode dynamics was derived to realize the sliding mode control of a continuous-time
switched stochastic system. For VSC, one of the most intriguing properties is the insensitivity
to parameter uncertainties and external disturbance for the switching action between sliding
modes, which can lead to the generation of chattering phenomenon and make a difference
to system control performance. Therefore how to solve this problem is always a challenging
topic for VSC.

Uncertainties and disturbances exist in many kinds of systems; this makes the practical
control problem complicated and has received much attention from scholars [17–22]. VSC
method is one of the effective solutions, and conventionally the switching term is built based
on the upper norm bound of control disturbance to satisfy the system control condition.
Therefore there exists the difference between real control disturbance and its upper norm
bound. The maximum switching amplitude can be double disturbance error upper bound.
For ease of use, the upper norm bound sometimes is taken as a constant by experience. This
may lead to the serious chattering problem. Widely acknowledged, an effective solution is
to build a unit to obtain the estimate of time-varying control disturbance. Up to now, there
exist some feasible methods, such as neural networks and genetic algorithm, to tackle the
problem. However in real application, those approaches are too complicated and need much
more control information. Corresponding control cost problem cannot be ignored.

Recently, fuzzy method gets wide attention in the control field, corresponding research
can be seen in [23–33] and the references therein. It is also introduced to VSC area for its
characteristic of simpleness in design, and effectiveness in attenuating chattering. In this
paper, a fuzzy auxiliary controller will be built to approximate the control disturbance based
on just one feedback signal and a switching control term will be designed to compensate for
the approximation error. Some typical simulation examples will be concerned afterward to
illustrate the effectiveness of the controller given.

Notations used in this paper are fairly standard. Let Rn be the n-dimensional Euclidean
space, Rn×m represents the set of n ×m real matrix, (·)(i) denotes the ith derivative of (·), and
the notation A > 0 means that A is real symmetric and positive definite, sgn(x) denotes the
operator |x|/x, and sat(·) denotes the saturated function.

2. Problem Statement

In this paper, the following high order uncertain single-input single-output (SISO) system
with disturbance is considered:

ẋi(t) = xi+1(t), i < n,

ẋn(t) = f(x, t) + Δf(x, t) + p(t) + b(t) · u(t),
(2.1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn is the system state vector, f(·, t) is the nonlinear

function, Δf(·, t) is the nonlinear uncertainties, p(t) is the external disturbance, b(t) is the
nonzero coefficient of control input, and u(t) is the control input.
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Define the tracking error

E(t) = x(t) − xr(t), (2.2)

where E = (e1(t), e2(t), . . . , en(t))
T ∈ Rn, xr(t) = (xr1(t), xr2(t), . . . , xrn(t))

T ∈ Rn, and xr1(t) is
the desired trajectory with

xri(t) = xr1
(i−1)(t), i ≤ n, (2.3)

where (·)(i−1) denotes the (i − 1)th derivative of (·). Then the error dynamic system can be
expressed by

ėi(t) = ei+1(t),

ėn(t) = f(x, t) − xrn(t) + d(t) + b(t) · u(t),
(2.4)

where d(t) = Δf(x, t) + p(t) is the control disturbance.
The problem to be addressed in this paper is to design a controller such that the

tracking error variable satisfies

lim
t→∞

‖E(t)‖ = lim
t→∞

‖x(t) − xr(t)‖ −→ 0. (2.5)

In this paper, the following lemma is needed

Lemma 2.1 (see [34]). If w(t) : R → R is a uniformly continuous function for t ≥ 0 and if

lim
t→∞

∫ t

0
w(s)ds (2.6)

exists and is finite, then

lim
t→∞

w(t) −→ 0. (2.7)

3. Design of Fuzzy Variable Structure Controller

In this section, the FVSC method is introduced to realize the control for uncertain system with
disturbance. First, the following sliding surface is introduced:

s(t) = CTE(t) = en(t) +
n−1∑

i=1

ciei(t), (3.1)
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where C = [c1, c2, . . . , cn−1, 1]
T is chosen such that the distribution of the roots of characteristic

equation pn−1 + cn−1p
n−2 + · · · + c2p + c1 = 0 is on the left side of complex plane to make the

following system stable:

en(t) +
n−1∑

i=1

ciei(t) = 0. (3.2)

Then, we have

ṡ(t) = ėn(t) +
n−1∑

i=1

ciei+1(t)

= f(x) − xrn(t) + d(t) + b(t) · u(t) +
n−1∑

i=1

ciei+1(t).

(3.3)

Based on Lyaponov method and VSC theory, the following theoretical result can be obtained.
First, a fuzzy auxiliary controller D(t) is built to estimate the control disturbance d(t).

Corresponding fuzzy rules are given by

IF Sd(t) > 0 THEN D(t) should be increased,

IF Sd(t) < 0 THEN D(t) should be decreased,

where

Sd(t) = ṡ(t) + ε · sgn(s(t)). (3.4)

The term under consideration D(t) can take a greater value. If it is too big, this may lead
to some serious control problem in practice. Therefore in this paper, based on the integral
method, the small value ΔD(t) is recommended to replace by D(t) for their relations as
follows:

D(t) = G

∫ t

0
ΔD(s)ds, (3.5)

where G is the proportionality coefficient.
Let Sd denote the fuzzy input Sd(t), and ΔD denotes the fuzzy output ΔD(t). The

fuzzy sets of the input and the output are defined, respectively, as

Sd = {NB,NM,ZO,PM,PB},
ΔD = {NB,NM,ZO,PM,PB},

(3.6)

where NB is negative and large, NM is negative and medium, ZO is zero, PM is the positive
and medium, and PB is positive and large.
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Select the following fuzzy rules:

R1: IF Sd is PB THEN ΔD is PB,

R2: IF Sd is PM THEN ΔD is PM,

R3: IF Sd is ZO THEN ΔD is ZO,

R4: IF Sd is NM THEN ΔD is NM,

R5: IF Sd is PB THEN ΔD is NB.

Hence based on the proposed fuzzy auxiliary controller, the following theoretical
result can be concluded.

Theorem 3.1. For ε > 0, system (2.1) can track the desired trajectory (2.3) based on the following
fuzzy variable structure controller:

u(t) =
1

b(t)

[

−f(x) + xrn(t) −
n−1∑

i=1

ciei+1(t) −D(t) − ε · sgn(s(t))

]

. (3.7)

Proof. Choose the Lyapunov functional candidate as

V (t) =
1
2
s2(t). (3.8)

The time derivative of V (t) along trajectories of error model (2.4) is as

V̇ (t) = s(t)ṡ(t)

= s(t)

[

f(x) − xrn(t) + d(t) + b(t) · u(t) +
n−1∑

i=1

ciei+1(t)

]

.
(3.9)

Substituting (3.7) into (3.9), we have

V̇ (t) = s(t)
[
d(t) −D(t) − ε · sgn(s(t))

]

= −w(t),
(3.10)

where w(t) = ε|s(t)|. For ε > 0, we have V̇ ≤ 0. Integrating both sides of (3.9) from 0 to t leads
to

lim
t→∞

V (t) − V (0) ≤ − lim
t→∞

∫ t

0
w(s)ds. (3.11)

Since V (t) is positive and V (0) is finite, the following inequality can be concluded:

lim
t→∞

∫ t

0
w(s)ds ≤ V (0) < ∞. (3.12)
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Figure 2: The membership function of the fuzzy output.

Based on Lemma 2.1, we can obtain

lim
t→∞

w(t) = lim
t→∞

ε|s(t)| −→ 0. (3.13)

Hence

lim
t→∞

E(t) −→ 0. (3.14)

This means the system control can be achieved based on the fuzzy VSC proposed. The proof
of Theorem 3.1 is thus completed.

Remark 3.2. The fuzzy auxiliary controller is constructed based on the feedback signal Sd =
ṡ(t) + ε · sgn(s(t)), the employed fuzzy rule is simple, and essentially used to keep Sd at zero.
Hence it can be concluded that V̇ (t) = s(t)ṡ(t) = −ε|s(t)| ≤ 0. This completes our proof.
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Figure 4: The time response of the tracking error in case 1.

We can see that the fuzzy auxiliary controller and the sliding mode controller come
together to realize the effective control on system (2.1).

4. Numerical Example

In this section, we will verify the proposed methodology by giving an illustrative example.
First consider the following disturbed system

ẋ1(t) = x2(t),

ẋ2(t) = f(x, t) + d(t) + b(t) · u(t),
(4.1)
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where

f(x, t) = −0.5x2(t) + x1(t) − x1
3(t), b(t) = 133,

d(t) = 50 exp

[

− (t − 1.5)2

2 · 0.22

]

− 20 exp

[

− (t − 3)2

2 · 0.12

]

.
(4.2)

For simulation purposes, we consider the step size 0.001 second, the initial condition x0 =
[−1,−1]T , the desired trajectory xr(t) = sin(2πt), and the control parameters η = 1.0, r = 1.0,
G = 800, c = 150. The membership function of the input and the output of fuzzy system are
shown in Figures 1–2. First, we adopt the general VSC method via fixing D(t) = max{|d(t)|} =
50. The simulation results are shown in Figures 3–5. Next, we adopt the general VSC method
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via fixing D(t) = max{|d(t)|} = 20. The simulation results are shown in Figures 6–8. Finally,
we employ the given fuzzy VSC method. The simulation results are shown in Figures 9–11.

Remark 4.1. Figures 3, 6, and 9 show the time response of control disturbance d(t) and its
estimate D(t). Figures 4, 7, and 10 show the time response of the tracking error. Figures
5, 8 and 11 show the time response of the control input. In case 1, the control disturbance
D(t) is fixed at 50, which is bigger than the upper bound of d(t). From Figures 3–5 it can be
seen, when d(t)/= 50, that there is an obvious chattering phenomenon in control input for the
estimation error of d(t). In case 2, the control disturbance D(t) is fixed at 20, which is less
than the upper bound of d(t). From Figures 6–8 it can be seen, when d(t) ≥ 20, that there
exists a big tracking error because the VSC can not be guaranteed at this moment. In case
3, the control disturbance d(t) is estimated by the fuzzy auxiliary controller. From Figures
9–11 it can be seen that the control for the given system is realized within 1 second and the
chattering phenomenon is reduced distinctly, which demonstrates the effectiveness of the
presented fuzzy VSC method.
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Figure 11: The time response of the control input in case 3.



Mathematical Problems in Engineering 11

Remark 4.2. From the simulation results, we can see that the chattering phenomenon
is reduced effectively by using the proposed fuzzy controller however there still exists
the switching term ε · sgn(s(t)) in control signal although ε is a small constant. To
further overcome the control chattering phenomenon, the switching term ε · sgn(s(t)) is
recommended to be substituted for ε · sat(s(t)).

5. Conclusion

In this paper, the fuzzy variable structure control problem has been studied. The fuzzy control
method and the switching control method have been employed to realize the control for
uncertain system with disturbance, they possess the characteristic of simpleness in design
and effectiveness in attenuating the control chattering, and aresuitable for the application in
engineering. Some typical numerical examples have been included afterward to demonstrate
the effectiveness of the given controller.
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A new method to design a fuzzy bilinear observer (FBO) with unknown inputs is developed for
a class of nonlinear systems. The nonlinear system is modeled as a fuzzy bilinear model (FBM).
This kind of T-S fuzzy model is especially suitable for a nonlinear system with a bilinear term. The
proposed fuzzy bilinear observer subject to unknown inputs is developed to ensure the asymptotic
convergence of the error dynamic using the Lyapunov method. The proposed design conditions
are given in linear matrix inequality (LMI) formulation. The paper studies also the problem of
fault detection and isolation. An unknown input fuzzy bilinear fault diagnosis observer design
is proposed. This work is given for both continuous and discrete cases of fuzzy bilinear models.
Illustrative examples are chosen to provide the effectiveness of the given methodology.

1. Introduction

In the recent past decades, there has been important increasing interest in the state observer
design of dynamic systems subjected to unknown inputs that play an essential role in robust
model-based fault detection. The case of unknown input linear system has been considered
by different authors [1–4], and many types of full order and reduced order unknown input
observers (UIOs) are now available.

On the other hand, since bilinear systems present the main advantage of representing
an intermediate structure between linear and nonlinear models, a considerable attention
has been paid for the study of this class of process [5, 6]. The observer design for bilinear
systems with unknown input has been an important research topic during the last years. The
works of [7, 8] have considered the design of UIO for bilinear systems in which the error
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estimation dynamics is linear. Under suitable transformation, the design of UIO for bilinear
systems proposed in [9, 10] is equivalent to the design of UIO for linear systems in which the
unknown input links with the non measurable states.

However, many physical systems are nonlinear in nature. For such system, the use
of the well-known linear techniques may reduce in bad performance and even instability.
Generally, analysis for nonlinear systems is a quite involved procedure. In these last decades,
a T-S fuzzy approach to represent or approximate a large class of nonlinear systems is
developed [11–14]. Then, in the field of stability analysis and stabilization, many works
including delay and uncertainty have been developed and applied in a lot of practical
situations [15–20]. For the state estimation problems and its application in fault diagnosis
for uncertain T-S fuzzy models, robust of fault detection filter is developed in LMI terms
[21–25].

It is of importance to design observers for linear or nonlinear systems partially driven
by unknown inputs [26–29]. Such a problem arises in systems subject to disturbances and
in many applications such as robust control, fault detection and isolation (FDI), system
supervision, and fault-tolerant control. The design of observers for nonlinear systems is a
challenging problem and has received a considerable amount of attention in the literature. In
many approaches, the transform of nonlinear systems to bilinear T-S models provides a better
approximation than classical T-S models [30, 31]. Motivated by this, we consider in this work
bilinear T-S fuzzy models whose consequent parts are bilinear systems with unknown inputs.

Considering the advantages of bilinear systems and fuzzy control, the fuzzy bilinear
system (FBS) based on the T-S fuzzy model with bilinear rule consequence has attracted
the interest of researchers [30, 32–35]. For example, robust stabilization for the T-S FBS
has studied in [30, 33, 34], and extension to the T-S FBS with time delay is given in [35].
An adaptive fuzzy-bilinear-observer- (FBO-) based synchronization design for generalized
Lorenz system (GLS) was also examined in [36], and in [32] an observer is designed using
iterative procedure.

In this paper, we propose a novel approach of designing a fuzzy bilinear observer for a
class of nonlinear system. The nonlinear system is modeled as a fuzzy bilinear model subject
to unknown inputs. This kind of T-S fuzzy model is especially suitable for a nonlinear system
with a bilinear term. The considered bilinear observer is obtained by a convex interpolation
of unknown input bilinear observers. This interpolation is obtained throughout the same
activation functions as the fuzzy bilinear model. Based on Lyapunov theory, the synthesis
conditions of the given fuzzy observer are expressed in LMI terms. The design conditions lead
to the resolution of linear constraints easy to solve with existing numerical tools. The given
observer is then applied for fault detection. These results are provided for both continuous-
time and discrete-time T-S bilinear models.

To the best of our knowledge, the FBO synthesis and fault diagnosis for fuzzy bilinear
model subjected to unknown input seem not fully addressed in the past works. Moreover,
in contrast with previous works, the proposed design is given in LMI formulation solved
simultaneously.

This paper is organized as follows. In Section 2 the considered structure of the FBS
is presented. In Section 3, the synthesis of fuzzy bilinear observers with unknown input
in continuous and discrete cases is presented. Section 4 is devoted to the problem of fault
detection by using unknown input fuzzy bilinear fault diagnosis observer. In Section 5, two
examples to illustrate the proposed approach are proposed. The practical use of the theoretic
study is illustrated by applying the proposed design to an isothermal continuous stirred tank
reactor (CSTR).
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Notation. In the rest of the paper, the following useful notation is used: � denotes the set of real
numbers, XT denotes the transpose of the matrix X, X � 0 denotes symmetric positive definite
matrix, X−1 denotes the Moore-Penrose inverse of X, and

(
A ∗
B C

)
denotes symmetric matrix

where (∗) = BT . The operator δ denotes the time derivative for continuous-time models, that
is, δ(x(t)) = ẋ(t), and the shift operator for discrete-time models, that is, δ(x(t)) = x(t + 1).
For simplicity, in the sequel, we will simply write hi(ξ(t)) = hi(t).

2. General Structure of a Fuzzy Bilinear Model

In this section, fuzzy bilinear systems in the continuous and discrete-time cases are
introduced. Indeed, the T-S fuzzy model is described by if-then rules and used to present
a fuzzy bilinear system. The ith rule of the FBS for nonlinear systems is represented by the
following form:

Ri : if ξ1(t) is Fi1, . . . , ξg(t) is Fig, (2.1)

then

δx(t) = Aix(t) + Biu(t) +Nix(t)u(t),

y(t) = Cx(t),
(2.2)

where Ri denotes the ith fuzzy rule for all i = {1, . . . , r}, r is the number of if-then rules, ξi(t)
are the premise variables assumed to be measurable, and Fij(ξj(t)) is the membership degree
of ξj(t) in the fuzzy set Fij . x(t) ∈ �n is the state vector, u(t) ∈ � is the control input, and
y(t) ∈ �p is the system output. The matrices Ai ∈ �n×n, Bi ∈ �n×1, Ni ∈ �n×n, C ∈ �p×n are
known matrices.

Then, the overall FBS can be described as follows:

δx(t) =
r∑

i=1

hi(t)(Aix(t) + Biu(t) +Nix(t)u(t)),

y(t) = Cx(t)

(2.3)

with hi(ξ(t)) = μi(ξ(t))/
∑r

j=1 μj(ξ(t)), μi(ξ(t)) =
∏g

j=1Fij(ξ(t)) and hi(·) verify the following
properties:

r∑

i=1

hi(ξ(t)) = 1

∀i ∈ {1, 2, . . . , r}.
0 ≤ hi(ξ(t)) ≤ 1

(2.4)

Remark 2.1. Matrices Ai, Bi, Ni, and C can be obtained by using the polytopic transformation
[37]. The advantage of this method is (i) to lead to a bilinear transformation of the nonlinear
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model without any approximation error and (ii) to reduce the number of local models
compared to other methods [33].

The following section is dedicated to the state estimation of the FBS (2.3), subject to
unknown inputs, where the vector ξ(t) is assumed depending on measurable variables.

3. Design of an Unknown Input Fuzzy Bilinear Observer

Considering an FBS subject to unknown inputs, the FBS (2.3) can be rewritten as follows:

δx(t) =
r∑

i=1

hi(t)(Aix(t) + Biu(t) +Nix(t)u(t) + Fid(t)),

y(t) = Cx(t),

(3.1)

where d(t) ∈ �q is the unknown inputs vector and Fi ∈ �n×q is a matrix with full column
rank. In order to estimate state of (3.1), we propose a full-order observer of the form

δz(t) =
r∑

i=1

hi(t)
(
Hiz(t) + Liy(t) + Jiu(t) +Miy(t)u(t)

)
,

x̂(t) = z(t) − Ey(t),

(3.2)

where x̂(t) ∈ �n is the estimated state vector and the activation functions are the same
as those used in FBS (3.1). Hi, Mi, Li, Ji, and E are constant matrices with appropriate
dimensions.

Our objective is to design T-S fuzzy bilinear observer of the fuzzy bilinear system (3.1)
for system (3.1) subject to unknown input such that the estimation error

e(t) = x̂(t) − x(t) (3.3)

converges towards zero when t → ∞. Note that estimation error can be rewritten as follows:

e(t) = z(t) − Tx(t), (3.4)

where T = In + EC.
The dynamics of the state estimation error is governed by

δe =
r∑

i=1

hi(t)(Hie + (HiT + LiC − TAi)x + (MiC − TNi)xu + (Ji − TBi)u − TFid). (3.5)
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Hence, if the following constraints are satisfied

HiT + LiC − TAi = 0, (3.6)

MiC − TNi = 0, (3.7)

Ji − TBi = 0, (3.8)

TFi = 0, (3.9)

T = In + EC, (3.10)

the estimation error becomes

δe(t) =
r∑

i=1

hi(ξ(t))Hie(t). (3.11)

The parameter gains Hi, Mi, Li, Ji, and E should be determined such that the state
estimate x̂(t) converges asymptotically to system state x(t).

3.1. Continuous-Time Case

The estimation error for continuous case is given by

ė(t) =
r∑

i=1

hi(ξ(t))Hie(t). (3.12)

The following theorem gives sufficient design conditions for the unknown inputs FBS
(3.1).

Theorem 3.1. If there exist a symmetric definite positive matrix P , matrices Wi, Vi, S, Ri such that
the following linear conditions hold for all i = 1, . . . , r:

((P + SC)Ai −WiC)T + ((P + SC)Ai −WiC) ≺ 0, (3.13)

Ri = (P + SC)Bi, (3.14)

ViC = (P + SC)Ni, (3.15)

(P + SC)Fi = 0, (3.16)
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then the state estimation of the CFBO (3.2) converges globally asymptotically to the state of the CFBS
(3.1). The observer gains are determined by

E = P−1S,

Ji = P−1Ri,

Mi = P−1Vi,

Hi = (In + EC)Ai − P−1WiC,

Li = P−1Wi −HiE.

(3.17)

Proof. In order to establish the stability of the estimation error e(t), let us consider the
following Lyapunov function:

V (t) = eT(t)Pe(t), P = PT > 0. (3.18)

Using (3.12), the derivative of the Lyapunov function (3.18) is given by

V̇ (t) =
r∑

i=1

hi(t)
(
eT (t)

(
HT

i P + PHi

)
e(t)
)
. (3.19)

From (3.6) and using (3.10), we get

Hi = TAi −KiC (3.20)

with

Ki = HiE + Li. (3.21)

Then, the derivative of the Lyapunov function is negative if

(TAi −KiC)TP + P(TAi −KiC) < 0. (3.22)

Taking into account (3.10) and considering the variable change:

S = PE, (3.23)

Wi = PKi, (3.24)

we get the LMI (3.13). Taking account (3.10) and (3.23), equality (3.16) is derived from (3.9).
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Similarly, using the following variable change:

Ri = PJi,

Vi = PMi,
(3.25)

we get equalities (3.14) and (3.15) from (3.8) and (3.7), respectively, which ends the proof.

Remark 3.2. Classical numerical tools may be used for solving the LMI problem (3.13) subject
to linear equality constraints (3.14)–(3.16). Solving this linear problem allows to deduce the
observer parameters from P , Wi, Vi, S, and Ri as mentioned by (3.17).

3.2. Discrete-Time Case

For discrete-time case, the estimation error is given by

e(t + 1) =
r∑

i=1

hi(t)Hie(t). (3.26)

The following result gives linear conditions to design discrete-time unknown inputs
DFBS (3.1).

Theorem 3.3. If there exists a symmetric definite positive matrix P , matrices Wi, Vi, S, Ri such that
the following linear conditions hold for all i = 1, . . . , r

[
P ∗

(P + SC)Ai −WiC P

]
� 0, (3.27)

Ri = (P + SC)Bi, (3.28)

ViC = (P + SC)Ni, (3.29)

(P + SC)Fi = 0, (3.30)

then the state estimation of the DFBO (3.2) converges globally asymptotically to the state of the DFBS
(3.1). The observer gains are determined by (3.17).

Proof. To prove the asymptotic convergence of the DFBS (3.1), sufficient conditions are
derived using quadratic Lyapunov function (3.18). Indeed, the variation ΔV (t) = V (t + 1) −
V (t) along the solution of (3.26) is

ΔV (t) = eT(t)
(
HT

i PHi − P
)
e(t). (3.31)

Sufficient conditions for the negativity of (3.31) are

HT
i PHi − P ≺ 0. (3.32)
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Substituting (3.20) in (3.32), we obtain

(TAi −KiC)TP(TAi −KiC) − P ≺ 0. (3.33)

Thus by taking account the expression of T (3.10), introducing the same variables change
(3.23)-(3.24), and then applying Schur complement to (3.33), we get LMI conditions (3.27).
Equality constraints (3.28)–(3.30) are obtained as previously mentioned which ends the
proof.

3.3. Design Algorithm

A design procedure to design FBO for both continuous and discrete cases is summarized as
follows.

(1) Solve linear constraints (3.13)–(3.16) for continuous-time (or (3.27)–(3.30) for
discrete-time) case to get Wi, Vi, S, Ri and P > 0.

(2) Deduce Ki = P−1Wi.

(3) Knowing that T = I + EC, the observer gains are computed as follows:

E = P−1S,

Hi = TAi −KiC,

Li = Ki −HiE,

Ji = TBi,

Mi = P−1Vi.

(3.34)

In the following, the proposed observer is used for fault detection and isolation of
actuator fault.

4. Fault Detection and Isolation for Fuzzy Bilinear System

The fault detection and isolation problem for nonlinear systems is far more complicated.
In this section, an unknown input fuzzy bilinear fault diagnosis observer is considered for
nonlinear model in T-S fuzzy modeling. Based on proposed unknown inputs fuzzy bilinear
observer, a fuzzy bilinear system affected by an actuator fault vector f(t) ∈ �nf is considered.
In this section, a residual generation is considered in order to be sensitive to fault vector f(t)
and insensitive to the unknown inputs d(t). Then, the considered system is as follows:

δx(t) =
r∑

i=1

hi(t)
(
Aix(t) + Biu(t) +Nix(t)u(t)

+Fid(t) +Gif(t)

)

y(t) = Cx(t),

(4.1)

where f(t) represents the vector of faults and the Gi represents matrix with appropriate
dimensions.
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The following unknown input fuzzy bilinear fault detection observer is proposed:

δz(t) =
r∑

i=1

hi(t)
(
Hiz(t) + Liy(t) + Jiu(t) +Miy(t)u(t)

)
,

r(t) = E1z(t) + E2y(t),

(4.2)

where z(t) represents the estimated vector and r(t) is the output signal called the residual.
The determination of gain matrices in (4.2) will be determined to ensure the

convergence of the estimated errors. In order to describe the dynamic of unknown input
fuzzy bilinear fault detection observer (4.2), the state estimation error is defined by e(t) =
z(t) − Tx(t). Then, from (4.1) and (4.2), we have

δe(t) =
r∑

i=1

hi(t)

⎛

⎝
Hie(t) +

(
HiT + LiC − TAi

)
x(t) − TFid(t)(

MiC − TNi

)
x(t)u(t) +

(
Ji − TBi

)
u(t) − TGif(t)

⎞

⎠,

r(t) = E1e(t) +
(
E1T + E2C

)
x(t).

(4.3)

If the following conditions are satisfied:

HiT + LiC − TAi = 0, (4.4)

MiC − TNi = 0, (4.5)

Ji − TBi = 0, (4.6)

TFi = 0, (4.7)

E1T + E2C = 0, (4.8)

we get

δe(t) =
r∑

i=1

hi(ξ(t))
(
Hie(t) − TGif(t)

)
,

r(t) = E1e(t).

(4.9)

Multiplying (4.8) by Fi we get

E1TFi + E2CFi = 0. (4.10)

Taking into account the constraint (4.7), (4.10) becomes

E2CFi = 0, (4.11)
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or equivalently

E2C� = 0, � = [F1, F2, . . . , Fr]. (4.12)

Then we get

E2 = Ω
(
Ip − C�(C�)+

)
, (4.13)

where (C�)+ is the pseudoinverse of C� and Ω is an arbitrary matrix. Substituting (4.13) into
(4.8) leads to

E1T + ΩC
(
In − �(C�)+C

)
= 0. (4.14)

A suitable choice of E1 and T satisfying the relation (4.14) is

E1 = −ΩC, (4.15)

T = In − �(C�)+C. (4.16)

Then, the observer gains are obtained by the following result.

Theorem 4.1. If there exist a symmetric definite positive matrix P , matrices Zi, Vi, Ui such that the
following linear conditions hold for all i = 1, . . . , r

ZT
i + Zi ≺ 0 (for continuous case), (4.17)

or

[
P ∗
Zi P

]
� 0 (for discrete case),

ZiT +UiC − PTAi = 0,

ViC − PTNi = 0,

(4.18)

then the state estimation of the FBO (4.2) converges globally asymptotically to the state of the FBS
(4.1). The observer gains are determined by

Hi = P−1Zi,

Li = P−1Ui,

Mi = P−1Vi,

Ji = TBi,

(4.19)

where T , E1, and E2 are given in (4.16), (4.15), and (4.13), respectively.
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Proof. The proof of this result is similar to the one of Theorem 3.1.

To illustrate the theoretical development and the design algorithm, numerical
examples are proposed in the following section.

5. Simulation Examples

In this section, we consider two examples: the first is an academic example in discrete-time
case, and the second is a physical model of an isothermal continuous stirred tank reactor
(CSTR) for the Van de Vusse reactor system.

5.1. Example 1: Synthesis of a Discrete Fuzzy Bilinear Observer

Let us consider now the following discrete system defined by

x1(t + 1) = −0.2x2 + 0.5x3
3 +
(

0.5x2
3 − 0.7x1

)
u + 0.1d,

x2(t + 1) = (0.3 − x3)x1 − 0.1x2 + (0.3 − 0.1x2)u + 0.2d,

x3(t + 1) = (0.3 − x3)x2 − 0.6x3 + (0.4 − x1)u + 0.3d,

y(t) = Cx(t),

(5.1)

where

C =
[

0 0 0.1
−0.6 −0.1 −0.4

]
. (5.2)

This system can be written as

x(t + 1) = A(x(t))x(t) + B(x(t))u(t) +Nx(t)u(t) + Fd(t) (5.3)

with

A(x(t)) =

⎡

⎣
0 −0.2 0.5x2

3
0.3 − x3 −0.1 0

0 0.3 − x3 −0.6

⎤

⎦,

B(x(t)) =

⎡

⎣
0.5x2

3
0.3
0.4

⎤

⎦, N =

⎡

⎣
−0.7 0 0

0 −0.1 0
−1 0 0

⎤

⎦, F =

⎡

⎣
0.1
0.2
0.3

⎤

⎦.

(5.4)
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Using the polytopic transformation [37] with −0.2 < x3(t) < 0.2 and 0 < x2
3(t) < 0.33, the

DFBS can be described as (2.3)

x(t + 1) =
4∑

i=1

hi(x(t))(Aix(t) + Biu(t) +Nix(t)u(t) + Fid(t));

y(t) = Cx(t),

(5.5)

where

A1 =

⎡

⎣
0 −0.2 0.165

0.1 −0.1 0
0 0.1 −0.6

⎤

⎦, A2 =

⎡

⎣
0 −0.2 0

0.1 −0.1 0
0 0.1 −0.6

⎤

⎦,

A3 =

⎡

⎣
0 −0.2 0.165

0.5 −0.1 0
0 0.5 −0.6

⎤

⎦, A4 =

⎡

⎣
0 −0.2 0

0.5 −0.1 0
0 0.5 −0.6

⎤

⎦,

B1 = B3 =

⎡

⎣
0.165
0.3
0.4

⎤

⎦, B2 = B4 =

⎡

⎣
0

0.3
0.4

⎤

⎦,

N1 = N2 = N3 = N4 =

⎡

⎣
−0.7 0 0

0 −0.1 0
−1 0 0

⎤

⎦,

F1 = F2 = F3 = F4 =

⎡

⎣
0.1
0.2
0.3

⎤

⎦,

h1(x(t)) = F11(x3) · F21(x3), h2(x(t)) = F12(x3) · F21(x3),

h3(x(t)) = F11(x3) · F22(x3), h4(x(t)) = F12(x3) · F22(x3)

(5.6)

with

F11(x3) =
x3 + 1

2
, F12(x3) =

1 − x3

2
,

F21(x3) =
x2

3

0.33
, F22(x3) = 1 − x2

3

0.33
.

(5.7)

u(t) is the input signal given in Figure 1, and d(t) is the unknown input taken as a sine wave
signal of amplitude 0.1 and frequency 50 rad/s.

Solving the design conditions (3.27)–(3.30), we get

P =

⎡

⎣
85.457 14.243 0
14.243 2.374 0

0 0 87.83

⎤

⎦. (5.8)
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Figure 1: Input signal.

Therefore, the observer gains are computed from (3.17) as follows:

H1 = H2 =

⎡

⎣
−0.018 0.07 0
0.107 −0.418 −0.001

0 0 0

⎤

⎦,

H3 = H4 =

⎡

⎣
−0.035 0.134 0

0.21 −0.805 −0.002
0 0 0

⎤

⎦,

L1 =

⎡

⎣
0.135 0.164
−0.808 −0.983

0 0

⎤

⎦, L2 =

⎡

⎣
0.432 0.164
−2.595 −0.983

0 0

⎤

⎦,

L3 =

⎡

⎣
1.694 0.417

−10.164 −2.5
0 0

⎤

⎦, L4 =

⎡

⎣
1.992 0.417

−11.951 −2.499
0 0

⎤

⎦,

J1 = J3 =

⎡

⎣
−0.035
0.207

0

⎤

⎦, J2 = J4 =

⎡

⎣
−0.005
0.029

0

⎤

⎦,

M1 = M3 =

⎡

⎣
0.024 0.006
−0.143 −0.036

0 0

⎤

⎦, M2 = M4 =

⎡

⎣
0.024 0.006
−0.143 −0.036

0 0

⎤

⎦,

E =

⎡

⎣
9.226 1.967

−15.357 −1.805
−10 0

⎤

⎦.

(5.9)
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These parameters define completely the observer

z(t + 1) =
4∑

i=1

hi(x3)
(
Hiz(t) + Liy(t) + Jiu(t) +Miy(t)u(t)

)
,

x̂(t) = z(t) − Ey(t).

(5.10)

To show the effectiveness of the designed observer, simulation results are presented in
Figures 2, 3, and 4 for initial conditions given by x0 = [0.5 0.5 0.5]T and x̂0 = [1 1 1]T .

It can be deduced from Figures 2, 3, and 4 that the proposed observer succeeds to track
the system trajectories in spite of the presence of the unknown input.

5.2. Example 2: Synthesis of a Continuous Fuzzy Bilinear Observer

In this subsection, we intend to apply the proposed design to an isothermal continuous stirred
tank reactor (CSTR) (see, e.g., [38–40]).

The dynamics of CSTR for the Van de Vusse reactor can be described by the following
nonlinear second order system:

ẋ1 = −k1x1 − k3x
2
1 + u(CA0 − x1) + 0.6d,

ẋ2 = k1x1 − k2x2 + u(−x2) + d,

y = x1 + x2,

(5.11)

where the state x1 represents the concentration of the reactant inside the reactor (mol/L)
and the state x2 is the concentration of the product in the CSTR output stream (mol/L).
The output y determines the grade of the final product. The input-feed stream to the CSTR
consists of a reactant with concentration CA0, and the controlled input is the dilution rate
u = F/V (h−1), where F is the input flow rate to the reactor (L/h) and V is the constant volume
of the CSTR (liters). In all the following discussions, the kinetic parameters are chosen to be
k1 = 50 h−1, k2 = 100 h−1, k3 = 10 L/(molh), CA0 = 10 mol/L, and V = 1 L as in [39].

The system (5.11) can be written as

ẋ(t) = A(x(t))x(t) + Bu(t) +Nx(t)u(t) + Fd(t), (5.12)

where

A(x(t)) =
[−k1 − k3x1 0

k1 −k2

]
, B =

[
10
0

]

N =
[−1 0

0 −1

]
, F =

[
0.6
1

] (5.13)
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Figure 4: Trajectories of (a) x3 and x̂3, (b) x̂3 − x3.

with x1(t) ∈ [1,−1]. This system can be represented using the polytopic transformation [37]
as follows:

ẋ(t) =
2∑

i=1

hi(x1(t))(Aix(t) + Biu(t) +Nix(t)u(t) + Fid(t))

y(t) = Cx(t),

(5.14)

where

A1 =
[−60 0

50 −100

]
, A2 =

[−40 0
50 −100

]
,

B1 = B2 =
[

10
0

]
, N1 = N2 =

[−1 0
0 −1

]
,

F1 = F2 =
[

0.6
1

]
, C = [1 1],

(5.15)

h1(x1(t)) = (1 − x1(t))/2, h2(x1(t)) = (x1(t) + 1)/2.
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5.2.1. Observer Design

The observer gains are obtained by solving design conditions (3.13)–(3.16), which lead to the
following parameters:

P =
[

72.215 72.215
72.215 72.215

]
. (5.16)

Then the observer is completely defined from (3.17) by

H1 =
[−57.470 56.231

56.970 −56.732

]
, H2 =

[−52.743 52.892
52.243 −53.392

]
,

L1 =
[−8.175

8.175

]
, L2 =

[−3.362
3.362

]
,

J1 =
[

4.063
−4.063

]
, J2 =

[
4.061
−4.061

]
,

M1 =
[

0.093
−0.093

]
, M2 =

[
0.092
−0.092

]
,

E =
[−0.597
−0.403

]
.

(5.17)

Then, the fuzzy bilinear state and their estimation are given in the following figures.
Figures 5 and 6 show, respectively, the evolution of the state variables x1 and x2 of

the considered system and their corresponding observer estimation x̂1 and x̂2 with the input
signal u(t) = 4.5 sin (0.5πt) and the initial conditions x0 = [1 1]T and x̂0 = [0.5 0.5]T .

5.2.2. Residual Generation

In this paragraph, we will consider the same system of isothermal stirred tank reactor subject
to actuator fault:

ẋ(t) =
2∑

i=1

hi(t)
(
Aix(t) + Biu(t) +Nix(t)u(t) + Fid(t) +Gif(t)

)

y(t) = Cx(t)

(5.18)

with Ai, Bi, Ni, Fi, and C being the same previous matrices and

G1 = G2 = [0.5 0.5],

f(t) =

{
50 sinπt, for t ∈ [6 8],
0, elsewhere.

(5.19)
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Figure 7 displays the convergence of the residual corresponding to the actuator fault
signal. One can see that the residual is almost zero throughout the time simulation run except
at time t = 6 s where it appears at the actuator fault and disappears at t = 8 s. Figure 7 shows
that the residual r(t) is sensitive to f(t) and insensitive to d(t). So the designed unknown
input fuzzy bilinear fault diagnosis observer can be efficiently used to detect faults.
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6. Conclusion

In this paper, a bilinear observer design is proposed for a class of unknown inputs nonlinear
system. Such design is based on a T-S fuzzy bilinear model representation, particularly
suitable for a nonlinear system with a bilinear term. The proposed results are developed for
both continuous-time and discrete-time cases. The synthesis conditions lead to the resolution
of linear constraints easy to solve with existing numerical tools. The proposed unknown input
bilinear observer structure is applied for fault detection. Two illustrative examples are also
given.

Based on the results in the paper, interesting future studies may be extended the
proposed technique to uncertain fuzzy bilinear systems or fuzzy bilinear systems with time-
delay, and can also be considered the problem of pole placements to improve the performance
of the proposed fuzzy bilinear observer.
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A two-wheeled self-balancing robot with a fuzzy PD control method is described and analyzed
as an example of a high-order, multiple-variable, nonlinear, strong-coupling, and unstable system.
Based on a system structure model, a kinetic equation is constructed using Newtonian dynamics
and mechanics. After a number of simulation experiments, we get the best Q, R, and state-feedback
matrices. Then a fuzzy PD controller is designed for which the position and speed of the robot are
inputs and for which the angle and angle rate of the robot are controlled by a PD controller. Finally,
this paper describes a real-time control platform for the two-wheeled self-balancing robot that
controls the robot effectively, after some parameter debugging. The result indicates that the fuzzy
PD control algorithm can successfully achieve self-balanced control of the two-wheeled robot and
prevent the robot from falling.

1. Introduction

Existing research on fuzzy reasoning can be roughly divided into three overlapping
categories [1]: fuzzy reasoning methods and their analysis, logical foundations of fuzzy
reasoning, and applications of fuzzy reasoning. Various fuzzy methods have been proposed
based mainly on three different ideas. The first idea, composition, leads to the Zadeh
compositional rule of inference (CRI) method [2, 3] and its variants [4–6]. The second idea
is that of analogy and similarity. The third idea, interpolation analysis of fuzzy reasoning
methods, is concerned with various properties of interest, such as interpretability of fuzzy
rules, consistency of new fuzzy consequences with existing fuzzy premises, and continuity
of fuzzy consequences with respect to fuzzy premises and fuzzy relations [7]. Numerous
different implication operators and connectives can be adopted in fuzzy reasoning methods,
including an important class of methods concerned with the suitability of particular fuzzy
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reasoning methods for domain-specific applications [8]. The logical foundation of fuzzy
reasoning is concerned with formal systems in which various fuzzy reasoning methods can
be interpreted. Several formal systems of this kind have been proposed, including basic logic,
monoidal t-norm-based logic, the quasiformal deductive system of Wang [9], and possibilistic
logic [10]. These formal systems are mainly generalizations of classical propositional logic
and multivalued logic. On the other hand, applications of fuzzy reasoning methods are
extensive and can be found in disparate areas such as complex systems modeling and control
[11], pattern recognition, decision-making [12], and safety monitoring.

In recent decades, motion control of robot manipulators has received a lot of attention
[13]. Motion control is needed to make each joint track a desired trajectory as closely as
possible. Many control algorithms, such as the computer torque method [14], optimal control
[15], adaptive control [16], variable structure control (VSC) [17], neural networks (NNs), and
fuzzy systems [18], have been proposed to deal with this robotic control problem. In [19, 20],
a computer torque control is developed on the basis of feedback linearization. However, these
designs are possible only when the robotic dynamics are well known.

A fuzzy logic controller (FLC) makes control decisions using well-known fuzzy IF-
THEN rules. FLCs can be classified into two major categories: the Mamdani-type FLC,
which uses fuzzy numbers to make decisions [21], and the Takagi-Sugeno (TS)-type FLC,
which generates control actions using linear functions of the input variables. In the early
years, most FLCs were designed by trial and error. Since the complexity of an FLC will
increase exponentially when it is used to control complex systems, it is tedious to design
and tune FLCs manually for most industrial problems such as robotic systems. This is
why conventional nonlinear design methods [22] such as fuzzy sliding control, fuzzy gain
scheduling [8], and adaptive fuzzy control [17] were adopted in the fuzzy control field to
alleviate difficulties in constructing the fuzzy rule base.

Analytical calculations show that a two-input FLC employing a proportional error
signal and a velocity error signal is a nonlinear proportional-integral (PI) or proportional-
derivative (PD) controller. Due to the popularity of PID controllers in industrial applications,
most of the development of fuzzy controllers in the past decade has revolved around fuzzy
PID controllers [13]. PI- and PD-type fuzzy controllers have gained prominence for almost
two decades now because of their simple structure, ease of implementation, and inherent
robustness [22]. Another possible implementation of a PID-type FC requires the development
of a popular PD-type fuzzy controller in parallel with a conventional integral (I) controller.
Presently, research interest in this field is focused on the development of adaptation policies
that can adapt these component fuzzy controllers in a suitable and simple fashion and can
further achieve a reasonably accurate and satisfactory performance. An excellent example of
applying self-organized fuzzy systems to autotune the gains of a classic PID controller online
and its successful application in controlling a MIMO robot arm can be found in [23].

A two-wheeled self-balancing robot [24] system is characterized as being multiple-
variable, high-order, nonlinear, strong-coupling, and unstable, so it is considered a standard
research target by many modern control theory researchers [25], and many abstract control
concepts such as system stability, robustness, controllability, and system anti-interference
properties can be displayed via two-wheeled self-balancing robot system experiments.
Recently, a two-wheeled self-balancing robot, namely, Segway [26], has been widely
recognized as a powerful personal transportation vehicle. It is constructed from very
sophisticated and high-quality dedicated components, such as a brushless servomotor
with neodymium magnets, a precision gearbox, nickel metal hydride batteries, silica-based
wheels, a digital signal processor as the main controller, motor drivers, six gyroscopes,



Mathematical Problems in Engineering 3

and several safety accessories. In contrast to this kind of high-cost human transporter,
many researchers have presented low-tech self-balancing transporters and claimed that such
a vehicle can be built using off-the-shelf inexpensive components. Because of its simple
structure, stable operation, high energy efficiency, and environmental adaptability, it has very
broad application prospects in both military and civilian areas.

In this paper, the utility and effectiveness of soft computing approaches for a two-
wheeled self-balancing robot with structured and unstructured uncertainties is presented. In
this approach, precompensation of a hybrid fuzzy PD controller is proposed. The control
scheme consists of a fuzzy logic-based precompensator followed by fuzzy PD control.
Moreover, a fuzzy supervisory controller is used to supervise conventional proportional
and derivative actions such that the conventional gains are adapted online through fuzzy
reasoning.

We study the GBOT1001 two-wheeled self-balancing robot produced by Googol Tech-
nology (Shenzhen) Limited, and we establish the mathematical model of this system, use
fuzzy PD control theory to control the robot, and, at the same time, achieve effective control.

2. System Description

2.1. Structural Analysis of the Robot System

We can develop a linear model with the following assumptions [27].

(1) The robot is a rigid body and does not distort during moving.

(2) The left- and right-hand wheels are completely analogous.

(3) Cornering forces are considered negligible.

(4) Friction is neglected during the analysis.

(5) Since the time constant of electric motors is small compared to the system’s time
constants, the motor dynamics have been neglected in the model.

The design of the two-wheeled self-balancing robot is based on a mobile single
inverted pendulum. The robot is composed of a chassis carrying a DC motor coupled to
a planetary gearbox for each wheel, the DSP board used to implement the controller, the
power amplifiers for the motors, the necessary sensors to measure the robot’s states, and
the receiver for the radiocontrol unit, as well as a vertical bar. The wheels of the vehicle are
directly coupled to the output shaft of the gearboxes. A GE laser (scanner) motion controller
is the core of the embedded DSP board. This is composed of a floating-point DSP from Analog
Devices, an FPGA, three 10-bit D/A converters, and four 12-bit A/D converters.

2.2. Dynamics Model of the System

Figure 1 [27] shows the chassis diagram of the robot. The linear movement of the chassis
is characterized by the position x and the speed ẋ; it is also able to rotate around the axis
(pitch), a movement described by the angle θ, and the corresponding angular velocity θ̇. In
addition, the vehicle can rotate around its vertical axis (yaw) with the associated angle δ and
angular velocity δ̇. m is the mass of rotating masses connected to the left and right wheels,
M is the mass of the chassis, R is the radius of the wheel, L is the distance between the z-axis
and the center of gravity of the chassis, D is the lateral distance between the contact patches
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Figure 1: Chassis diagram of the robot.

of the wheels, yp is the shift position of the wheel with respect to the y-axis, and xp is the
shift position of the chassis with respect to the x-axis.

For the left-hand wheel,

m
··
xl = fl −Hl

Jω
R

··
xl = Cl − flR.

(2.1)

For the right-hand wheel,

m
··
xr = fr −Hr (2.2)

Jω
R

··
xr = Cr − frR. (2.3)

For the chassis,

M
··
xp = Hl +Hr

Jp
..

θ = (Vl + Vr)L sin θ − (Hl +Hr)L cos θ − (Cl + Cr)

M
..
yp = Vl + Vr −Mg

Jδ
..

δ =
D

2
(Hl −Hr).

(2.4)
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For a premise,

xp = x + L sin θ,

yp = L cos θ,
(2.5)

where Hl,Hr, Vl, Vr represent reaction forces between the different free bodies [27].
Modifying the above equations and then linearizing the result around the operating point
(θ ≈ 0, so sin θ ≈ θ, cos θ ≈ 1), the system’s state-space equations can be written in matrix
form as:

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

ẋ
..
x
θ̇
..

θ
δ̇
..

δ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 a23 0 0 0
0 0 0 1 0 0
0 0 a43 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

x
ẋ
θ
θ̇
δ
δ̇

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0 0
b21 b22

0 0
b41 b42

0 0
b61 b62

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

(
Cl

Cr

)
. (2.6)

In order to derive a simpler mathematical model, we need a decoupling unit (2.7) that
transforms Cl and Cr into the wheel torques Cθ and Cδ as follows:

(
Cl

Cr

)
=
(

0.5 0.5
0.5 −0.5

)(
Cθ

Cδ

)
. (2.7)

Some parameters of the GBOT1001 robot are as follows:

M = 21 kg, m = 0.42 kg, R = 0.106 m, L = 0.3 m, D = 0.44 m, g = 9.8 m/s2. (2.8)

Then the state-space equations for the vehicle can be written as two different systems
[28]: one system is the model (2.9) of an inverted pendulum, which describes the rotation
about the z-axis, and the other is the model (2.10) of rotation, which describes the rotation
about the y-axis. Thus, we obtain

⎛

⎜⎜
⎝

ẋ
ẍ
θ̇
θ̈

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0 1 0 0
0 0 −23.7097 0
0 0 0 1
0 0 83.7742 0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

x
ẋ
θ
θ̇

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎝

0
1.8332

0
−4.9798

⎞

⎟⎟
⎠Cθ, (2.9)

(
δ̇
δ̈

)
=
(

0 1
0 0

)(
δ
δ̇

)
+
(

0
5.1915

)
Cδ. (2.10)
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Table 1: Fuzzy control rules.
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Figure 2: Structure chart of the multiple fuzzy PD controllers.

3. Controller Design

3.1. Parameters of the Fuzzy PD Controller

First, we examine the controllability of the open-loop system. After some calculations, we
know that the system is controllable and the state feedback matrices can be obtained using
the LQR method. After a number of simulation experiments, we choose the matrices

Q =

⎛

⎜⎜
⎝

1000 0 0 0
0 0 0 0
0 0 1000 0
0 0 0 0

⎞

⎟⎟
⎠, R = 1. (3.1)

Then, we use the MATLAB function K = lqr(A,B,Q,R) to solve the optimality
problem. Running K = lqr(A,B,Q,R) in MATLAB, we can get the state feedback matrix:

K = [−10.1522, −5.6683, −26.5230, −4.1971]. (3.2)

Thus, the proportion parameter is 26.5230, and the differential parameter is 4.1971.

3.2. Fuzzy PD Control Method

3.2.1. Fuzzy PD Controller Design

A fuzzy logic controller is a controller that utilizes fuzzy logic to determine a course of action.
The computation of the control action is composed of four steps [28]: input scaling and
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Figure 3: Membership functions of inputs.
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Figure 4: Membership functions of output.

shifting, fuzzification, fuzzy inference, and defuzzification. In the input scaling and shifting
step, crisp inputs can be processed and scaled appropriately. In the fuzzification step, the
crisp inputs are then converted into fuzzy values. After fuzzy inference, a proper control
action is determined by searching through a previously established rule table. Finally, the
deterministic output is defined in the defuzzification step.

In this section, a fuzzy PD controller is applied to the dynamic model of the two-
wheeled self-balancing robot. Two inputs, position error e(t) = r − x and change of error
ė(t) = ṙ − ẋ, are fed to the fuzzy controller, while integral error is used as a conventional
integral action [29]. The inputs of the fuzzy controller are the position and speed of the robot,
while the angle and angle rate of the robot are controlled by the PD controller. Figure 2 shows
the structure of the fuzzy PD controller.

The input (e(t), ė(t)) and output (u) membership functions are denoted as NB, NM,
NS, ZE, PS, PM, and PB. The fuzzy membership functions for inputs and output are shown
in Figures 3 and 4. The control surface of the output is shown in Figure 5. Table 1 lists the
fuzzy control rules.

3.2.2. Simulation Result

The control system includes a Simulink model of the feedback system [29]. The block dia-
gram, as shown in Figure 6, consists of the subsystem 1 block with system matrices as defined
in the script file. The position state is compared to a reference signal and then multiplied by
its feedback gain, while the other states are simply multiplied by their respective gains, and
all of these are fed back into the subsystem 1 block, which is the Simulink model of the robot,
as shown in Figure 7.
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When a disturbance x0 = [0 0 0.2 0] is input to the system, the response curves
become as shown in Figures 8 and 9.

As shown in Figure 8, when the disturbance of the angle is given as θ = 0.2 rad, the
system is successfully stabilized as required, with good dynamic performance. The robot’s
position, speed, angle, and angle rate return to the origin point after no more than 5 s. The
system is stable throughout with good dynamic performance and robustness, showing that
the fuzzy PD control method is effective. Figure 9 is the graph of the output motor torque;
we can see that at time 0 the motor torque is very high, almost 5.4 N ·m. 5 s later, it reduces to
0 N · m.
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4. Real-Time Control System

We use the fuzzy PD controller to replace the real-time control platform designed by
Googol Technology Limited, so we can get the self-balancing robot’s real-time control system
platform, as shown in Figure 10. Compared with the simulation model, the real-time control
system has a corner controller that is used to control the robot to turn around. After some
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parameter debugging, the robot is controlled effectively. Figure 11 is the robot’s real-time
curve; Figure 12 is its stable control photo.

From Figure 11, we can see that the robot’s angle is very large at the beginning, about
0.31 rad, so the motor output torque is very high, that is, about 13 N · m with 1.7 m/s initial
angle rate. 0.5 s later, the robot basically comes to a dynamic balance, which is 4 s faster than
in the simulation. Since the ground is not flat, and there are various outside interferences,
the robot does not move smoothly, and so there will be a little convulsion. After 5 s, an
interference is given to the robot; from the figure we can see that the motor output torque
and the angle rate increase rapidly. 0.7 s later, they all enter a stable state.

5. Conclusion

In this paper, based on the structure model of a two-wheeled self-balancing robot, a
systematic mathematical model is devised according to dynamic mechanics theory. After a
number of simulation experiments, we get the best Q, R, and state-feedback matrices. Based
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Figure 12: Stable control photo of robot.

on traditional PD control theory and fuzzy logic control theory, a fuzzy PD controller is
designed, which coordinates effectively the robust stability and speediness of the system.

Finally, a real-time control platform for the two-wheeled self-balancing robot is
designed; after some parameter debugging, the robot is controlled effectively. The result
indicates that the fuzzy PD control algorithm can achieve self-balanced control of the two-
wheeled robot successfully and prevent the robot from falling in order to satisfy the robot’s
anticipated control goals and obtain a good dynamic performance.
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A novel algorithm, called variable weight fuzzy marginal linearization (VWFML) method, is
proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden
equations. And it is easy to be implemented and extended for solving other nonlinear differential
equations. Numerical examples are included to demonstrate the validity and applicability of the
developed technique.

1. Introduction

Lane-Emden equations are used to describe singular initial value problems (IVPs) relating
to second-order ordinary differential equations which have been used to model several
phenomena in mathematical physics, thermodynamics, fluid mechanics, and astrophysics
such as the theory of stellar structure, the thermal behavior of a spherical cloud of gas,
isothermal gas spheres, and theory of thermionic currents.

Lane-Emden equations, first introduced by Jonathan Homer Lane in 1870 and further
explored in detail by Emden, have the following form:

y′′ +
2
x
y′ + f

(
y
)
= 0, 0 < x ≤ 1, (1.1)
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subject to the conditions

y(0) = A, y′(0) = B, (1.2)

where A and B are constants and f(y) is a continuous real valued function.
Since Lane-Emden type equations have significant applications in many scientific

fields, various forms of f(y) have been investigated in many research works. Among them,
many attentions have been carried on the generalized Lane-Emden type equations,

y′′ +
k

x
y′ + f

(
x, y
)
= g(x), 0 < x ≤ 1, k ≥ 0, (1.3)

subject to condition (1.2), where f(x, y) is a continuous real valued function, and g ∈ C[0, 1].
Many different methods have been used to obtain solutions for the generalized

Lane-Emden equations. Wazwaz [1, 2] got approximate solutions by using the Adomian
decomposition method (ADM) and obtained the analytic solutions of some equations. But
it may be an intricate problem to calculate the so-called Adomian polynomials involved in
ADM sometimes. He [3, 4] developed a more convenient analytical technique, called the
homotopy perturbation method (HPM). Chowdhury and Hashim [5] and Yildirim and Öziş
[6] gave the solutions for a class of singular second-order IVPs of Lane-Emden type by
using HPM. Sajid et al. [7] pointed out that HPM is a special case of the homotopy analysis
method (HAM) and that it is valid only for weakly nonlinear problems. Liao [8] and Van
Gorder and Vajravelu [9] used HAM to increase the radius of convergence of series solutions
for Lane-Emden equations. Recently, Yiğider et al. studied a numerical method for solving
Lane-Emden type equations by Padé approximation in [10]. Generally, when all the above
cited analytical approaches are used to solve Lane-Emden equation, a truncated power series
solution of the true solution is obtained. By the methods such as HPM and HAM, a series of
newly achievements on the analytical solving for some nonlinear differential equations have
been proposed recently. By HAM, Ziabakhsh et al. [11, 12] studied the natural convection
of a non-Newtonian fluid between two infinite parallel vertical flat plates and the effects of
the non-Newtonian nature of fluid on the heat transfer. Jalaal et al. [13, 14] investigated the
settling behavior of solid particles using HPM, which show the capability and effectiveness
of the method and exhibit new application of it further.

Besides, many soft computing technologies are developed to deal with all types of
models for dynamic systems [15–18]. It is important to note that fuzzy modeling technology
can transfer data information into a mathematical model which can approximate the original
system with high accuracy [19–24]. Li et al. [25] used fuzzy modeling method to approximate
the solutions of a class of autonomous differential equation. In order to obtain the analytical
solution of the fuzzy system, Li et al. [26] introduced fuzzy marginal linearization method.
Further, Li et al. [27] proposed fuzzy inference modeling (FIM) method to approximate
the time-variant system. Wang et al. [28] proposed a dynamic fuzzy inference modeling
(DFIM) method and proved that fuzzy system generalized by this method was universal
approximators to the solutions of some nonautonomous differential equations.

However, above fuzzy modeling technology could not be used to solve the differential
equation (1.3). And when f(x, y) and g(x) in (1.3) are unknown and only input-output data
of them are obtained, how to obtain the corresponding solution is an interesting question.
Motivated by this fact, the aim of this paper is to propose a novel fuzzy modeling method to
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solve the Lane-Emden equation. This paper is organized as follows. In Section 2, we introduce
some preliminary knowledge. In Section 3, we propose a novel fuzzy modeling technology
and use it to obtain the approximate analytical solutions of the Lane-Emden equation. Some
examples are used to illustrate the validity of the proposed method in Section 4. Finally,
conclusions are presented in Section 5.

2. Preliminaries and Basic Ideas of FIM

Firstly, we introduce some basic concepts which will be used in sequel.

Definition 2.1. A fuzzy set A of X is a function from the reference set X to the unit interval
[0, 1], that is, A : X → [0, 1], x �→ A(x).

Definition 2.2. Let Ai (i = 1, . . . , n) be a group of normal fuzzy sets of X, where xi is the peak
point of Ai, that is, Ai(xi) = 1. If Ai (i = 1, . . . , n) satisfies the condition:

∑n
i=1 Ai(x) = 1 (for all

x ∈ X) and for all i, j (i /= j ⇒ xi /=xj), then A � {Ai}1≤i≤n is called a fuzzy partition of X.

Definition 2.3. The mappings wr (r = 1, 2) from [a, b] to [0, 1] are variable weights if the
following conditions hold

(a) for any x ∈ [a, b], w1(x) +w2(x) = 1;

(b) w1(a) = 1, w2(b) = 1.

Example 2.4. Let Xk = [xk, xk+1]. The following mappings are variable weights on Xk:
w1k(x) = (xk+1 − x)/(xk+1 − xk), w2k(x) = (x − xk)/(xk+1 − xk).

In the following, we will introduce FIM method. Consider a second order ordinary
differential equation

y′′ = φ
(
x, y, y′), (2.1)

where x is the independent variable, y is the unknown function, X, Y , Y ′, and Y ′′ are the
universes of x, y, y′, and y′′, respectively, and φ is a real-valued continuous function, which
explicitly contains the independent variable x. Obviously (1.3) is the special case of (2.1). In
this paper, we assume that X, Y , Y ′, and Y ′′ are real number intervals, that is, X = [a0, b0],
Y = [a1, b1], Y ′ = [a2, b2], and Y ′′ = [a3, b3].

Let (xi, yj , y
′
k, y

′′
ijk) ∈ X × Y × Y ′ × Y ′′ (i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l) be a group

of known data from (2.1), which satisfy the following two conditions:

(1) a0 = x1 < · · · < xn = b0, a1 = y1 < · · · < ym = b1, a2 = y′
1 < · · · < y′

l = b2;

(2) y′′
ijk

= φ(xi, yj , y
′
k
), (i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , l).

Then, we use above data information to construct fuzzy rule base. For each index i (i =
1, . . . , n), we, respectively, take yj , y′

k, and y′′
kij as the peak points of fuzzy sets Aj , Bk, and

Cijk, such that {Aj}1≤j≤m is a fuzzy partition of Y , {Bk}1≤k≤l is a fuzzy partition of Y ′, and
{Cijk}1≤i≤n,1≤j≤m,1≤k≤l is a fuzzy partition of Y ′′. Similarly, we take y′′

ijk
as peak point of fuzzy
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set Dijk, such that {Dijk}1≤i≤n,1≤j≤m,1≤k≤l is a fuzzy partition of Y ′′. In this way, fuzzy rules based
on data information are represented as follows:

If y is Bj and y′ is Ck then y′′ is Dijk,

i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l.
(2.2)

For fuzzy rules (2.2), fuzzy system generalized by FIM method can be expressed by

y′′ =
n−1∑

i=1

m∑

j=1

l∑

k=1

(
Aj

(
y
) · Bk

(
y′)) · y′′

ijk · χi(x), (2.3)

where the characteristic function χi(x) is defined as

χi(x) �
{

1, x ∈ [xi, xi+1],
0, x /∈ [xi, xi+1].

(2.4)

Remark 2.5. It can be seen that fuzzy system (2.3) is a nonlinear differential equation
with variable coefficients. When Aj(y) and Bk(y′) are, respectively, chosen as triangular
membership functions, in each local region [xi, xi+1] × [yj, yj+1] × [y′

k
, y′

k+1], (2.3) is changed
into an autonomous differential equation with constant coefficients. This fact means that (2.3)
is a two-order differential equation with piecewise constant coefficients. In [27], it is proved
that solutions of (2.3) can approximate the numerical solutions of some nonautonomous
differential equations with high accuracy.

3. Approximate Analytic Solutions of the Lane-Emden Equation Based
on Variable Weight Fuzzy Marginal Linearization Method

From (2.3), we find that in each local region it is still a nonlinear differential equation. Hence,
it is difficult for us to get the corresponding analytical solution for it. In this section, we
propose a novel fuzzy modeling method, called variable weight fuzzy marginal linearization
(VMFML) method, and utilize this technology to obtain the approximate analytical solution
for Lane-Emden equation. For simplicity, we introduce some denotations.

Let {[xi, xi+1) × [yj, yj+1) × [y′
k
, y′

k+1)} (i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l) be a
partition of X × Y × Y ′, where [xn, xn+1) � {xn}, [ym, ym+1) � {ym} and [y′

l, y
′
l+1) � {y′

l}.
Similarly, {(xi−1, xi] × [yj , yj+1) × [y′

k
, y′

k+1)} (i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l) is another
partition of X × Y × Y ′, where (x0, x1] � {x1}. Further, we, respectively, divide [xi, xi+1) ×
[yj, yj+1) × [y′

k, y
′
k+1) and (xi−1, xi] × [yj, yj+1) × [y′

k, y
′
k+1) into 4 pieces and let

(
i, j, k

)
r1r2

� [xi, xi+1) ×
[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2, y

′
k+(r2+1)/2

)
,

(
i, j, k

)
r1r2

� (xi−1, xi] ×
[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2, y

′
k+(r2+1)/2

)
,

(3.1)
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where r1 = 1, 2; r2 = 1, 2; yj+1/2 � (yj + yj+1)/2, y′
k+1/2 � (y′

k + y′
k+1)/2, j = 1, . . . , m − 1; k =

1, . . . , l − 1. The characteristic functions on (i, j, k)r1r2
and (i, j, k)r1r2

are, respectively, denoted
as χ(i,j,k)r1r2

and χ(i,j,k)r1r2
, that is,

χ(i,j,k)r1r2

(
x, y, y′) �

⎧
⎪⎨

⎪⎩

1,
(
x, y, y′) ∈ [xi, xi+1) ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2, y

′
k+(r2+1)/2

)
,

0,
(
x, y, y′) /∈ [xi, xi+1) ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2, y

′
k+(r2+1)/2

)
.

χ(i,j,k)r1r2

(
x, y, y′) �

⎧
⎪⎨

⎪⎩

1,
(
x, y, y′) ∈ (xi−1, xi] ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2, y

′
k+(r2+1)/2

)
,

0,
(
x, y, y′) /∈ (xi−1, xi] ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2, y

′
k+(r2+1)/2

)
.

(3.2)

In the following, we will introduce the basic idea of VMFML method.
For any (x, y, y′) ∈ X × Y × Y ′, without loss of generality, we assume that (x, y, y′) ∈

(i, j, k)r1r2
. For any j ∈ {1, . . . , m} and k ∈ {1, . . . , l}, by fuzzy marginal linearization

technology, we take Aj(y) as triangular membership function and Bk(y′) as rectangle-shaped
membership function, then fuzzy system (2.3) can be changed into

y′′ =
yj+1 − y

yj+1 − yj
· y′′

ij(k+r2)
+

y − yj

yj+1 − yj
· y′′

ij(k+r2)
. (3.3)

Similarly, when Aj(y) is chosen as rectangle-shaped membership function and Bk(y′) is
chosen as triangular membership function, fuzzy system (2.3) can be changed into

y′′ =
y′
k+1 − y′

y′
k+1 − y′

k

· y′′
ij(k+r2)

+
y′ − y′

k

y′
k+1 − y′

k

· y′′
ij(k+r2)

. (3.4)

Furthermore, we take sum of the right side of expressions (3.3) and (3.4) and subtract a
constant, the corresponding fuzzy system in the local region (i, j, k)r1r2

is represented as

y′′ = d
(1)
ijk

+ d
(2)
ijk
y + d

(3)
ijk
y′, (3.5)

where

d
(1)
ijk

=
yj+1y

′′
ij(k+r2)

− yjy
′′
i(j+1)(k+r2)

yj+1 − yj
+
y′
(k+1)y

′′
i(j+r1)k

− y′
ky

′′
i(j+r1)(k+1)

y′
k+1 − y′

k

− y′′
i(j+r1)(k+r2)

, (3.6)

d
(2)
ijk =

y′′
i(j+1)(k+r2)

− y′′
ij(k+r2)

yj+1 − yj
, (3.7)

d
(3)
ijk

=
y′′
i(j+r1)(k+1) − y′′

i(j+r1)k

y′
k+1 − y′

k

. (3.8)
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By characteristic function, we can obtain fuzzy system on X × Y × Y ′ as follows:

y′′ � f
(
x, y, y′) �

n∑

i=1

m∑

j=1

l∑

k=1

(
d
(1)
ijk

+ d
(2)
ijk
y + d

(3)
ijk
y′
)
· χ(i,j,k)r1r2

(
x, y, y′). (3.9)

Remark 3.1. It is easy to see that (3.9) is a piecewise linear differential equation. In each local
region (i, j, k)r1r2

, (3.9) transfers into a linear differential equation and the corresponding
coefficients can be computed by input-output data of the original system. By expressions
(3.5)–(3.8), it is easy to prove that the right-hand side f(x, y, y′) is an interpolation function
of φ(x, y, y′), that is, f(xi, yj , y

′
k) = y′′

ijk = φ(xi, yj , y
′
k), i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l. By

numerical analysis theory, we know that when we obtain enough data information on (2.1),
f(x, y, y′) can approximate φ(x, y, y′) with the specified accuracy. This fact means that (3.6)
can be used to describe the nonlinear differential equation (2.1).

Then, we will solve the initial value problem of (3.9).
Given an initial value problem as

y′′ =
n∑

i=1

m∑

j=1

l∑

k=1

(
d
(1)
ijk + d

(2)
ijky + d

(3)
ijky

′
)
· χ(i,j,k)r1r2

(
x, y, y′), (3.10)

subject to the conditions y(0) = y0 and y′(0) = y′
0.

First, we can determine the local region which the initial vector (0, y0, y
′
0) locates

in. Suppose that (0, y0, y
′
0) ∈ [x1, x2) × [yj, yj+1/2) × [y′

k, y
′
k+1/2). By (3.9) the corresponding

piecewise equation can be written as

y′′ = d
(1)
1jk + d

(2)
1jky + d

(3)
1jky

′, (3.11)

and the corresponding coefficients can be computed by expressions (3.6)–(3.8). Since it is
a linear ode, we can get the corresponding analytical solution and denote it as y1. Then,
we take (x2, y1(x2), y′

1(x2)) as the initial vector and search the next region which it moves
in. And we can solve the corresponding piecewise linear equation with the initial value
(y1(x2), y′

1(x2)). In this way, by transferring initial value piece by piece and solving the
corresponding piecewise linear equation, we can obtain analytical solution of (3.9).

On the other hand, if we take (i, j, k)r1r2
(r1 = 1, 2; r2 = 1, 2; j = 1, . . . , m − 1; k =

1, . . . , l − 1) as the local region of universe X × Y × Y ′, using fuzzy marginal linearization
technology, we can obtain another fuzzy system as follows:

y′′ =
n∑

i=1

m∑

j=1

l∑

k=1

(
d
(1)
ijk + d

(2)
ijky + d

(3)
ijky

′
)
· χ(i,j,k)r1r2

(
x, y, y′), (3.12)
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where

d
(1)
ijk =

yj+1y
′′
(i+1)j(k+r2)

− yjy
′′
(i+1)(j+1)(k+r2)

yj+1 − yj
+
y′
(k+1)y

′′
(i+1)(j+r1)k

− y′
k
y′′
(i+1)(j+r1)(k+1)

y′
k+1 − y′

k

− y′′
(i+1)(j+r1)(k+r2)

,

d
(2)
ijk =

y′′
(i+1)(j+1)(k+r2)

− y′′
(i+1)j(k+r2)

yj+1 − yj
,

d
(3)
ijk =

y′′
(i+1)(j+r1)(k+1) − y′′

(i+1)(j+r1)k

y′
k+1 − y′

k

.

(3.13)

Obviously, both (3.9) and (3.12) can describe (2.1) and the analytical solutions of them
can be obtained. The differences between them are that the coefficients of (3.9) in the local
region [xi, xi+1]×[yj+r1/2, yj+(r1+1)/2)×[y′

k+r2/2, y
′
k+(r2+1)/2) are computed by data (xi, yj , y

′
k
, y′′

ijk
),

(xi, yj , y
′
k+1, y

′′
ij(k+1)), (xi, yj+1, y

′
k
, y′′

i(j+1)k),(xi, yj+1, y
′
k+1, y

′′
i(j+1)(k+1)).

On the other hand, the corresponding coefficients of (3.12) in the local region
[xi, xi+1] × [yj+r1/2, yj+(r1+1)/2) × [y′

k+r2/2, y
′
k+(r2+1)/2) are deduced by data (xi+1, yj , y

′
k
, y′′

(i+1)jk),
(xi+1, yj , y

′
k+1, y

′′
(i+1)j(k+1)), (xi+1, yj+1, y

′
k
, y′′

(i+1)(j+1)k), and (xi+1, yj+1, y
′
k+1, y

′′
(i+1)(j+1)(k+1)). For a

given initial value y(0) = y0 and y′(0) = y′
0, by transferring initial value technology, we

can solve the corresponding analytical solutions of (3.9) and (3.12) denote them as ϕ1(x) and
ϕ2(x), respectively. In order to describe (2.1) better, we take variable weighted sum of ϕ1(x)
and ϕ2(x), and denote

ϕ(x) =
n−1∑

k=1

(
ω1k(x) · ϕ1(x) +ω2k(x) · ϕ2(x)

) · χk(x), (3.14)

as the approximation analytical solution of (2.1), where w1k(x) = (xk+1 − x)/(xk+1 − xk) and
w2k(x) = (x − xk)/(xk+1 − xk).

In this way, we use variable weight fuzzy marginal linearization (VWFML) technology
to obtain the approximation analytical solution for (2.1).

Next, we also take (2.1) as example to summarize basic processes of VWFLM method.

Step 1. Determine the universes of x, y, and y′ and denote them as X, Y , and Y ′.

Step 2. Divide the universes and let xi, yj , y′
k

be the partition points of X, Y , and Y ′, where
i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l.

Step 3. By (2.1), compute the corresponding output data y′′
ijk = φ(xi, yj , y

′
k).

Step 4. Using expressions (3.6)–(3.8) and data information (xi, yj , y
′
k, y

′′
ijk) (i = 1, . . . , n−1; j =

1, . . . , m; k = 1, . . . , l), deduce the coefficients of piecewise equation and construct the
corresponding fuzzy system (3.9).

Step 5. For given initial value, by transferring initial value technology, solve above fuzzy
system and denote the solution as ϕ1(x).
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Step 6. By expression (3.13) and data information (xi+1, yj , y
′
k, y

′′
(i+1)jk) (i = 2, . . . , n; j =

1, . . . , m; k = 1, . . . , l), we can also deduce the coefficients of piecewise equation and construct
another fuzzy system (3.12).

Step 7. Similarly, by transferring initial value technology, we can solve this fuzzy system
(3.12) and denote the solution as ϕ2(x).

Step 8. We take weighted sum of ϕ1(x) and ϕ2(x), that is,

ϕ(x) =
n−1∑

k=1

(
ω1k(x) · ϕ1(x) +ω2k(x) · ϕ2(x)

) · χk(x), (3.15)

where w1k(x) = (xk+1 − x)/(xk+1 − xk) and w2k(x) = (x − xk)/(xk+1 − xk).

Remark 3.2. In many physical problems when differential equation models are unknown and
only some data information of the investigated systems are known, by VWFML method we
can still set up dynamic models and obtain corresponding approximation analytical solutions
for the problems.

4. Numerical Results

In this section, we will use VWFML method to solve four Lane-Emden equations. The
former two equations are of original type Lane-Emden equations and the latter two are of
generalized type.

Example 4.1. Consider the linear singular initial value problem:

y′′ +
2
x
y′ + y = 6 + 12x + x2 + x3, (4.1)

subject to the initial conditions y(0) = 0 and y′(0) = 0. The exact solution for this equation is
y(x) = x2 + x3.

The solution, which is generated from this Lane-Emden equation of classical
astrophysics, has a proven physical foundation and can be used to calculate the radius of
electron in an electromagnetic mass model.

Let n = 5, m = 5, and l = 5. Figure 1, respectively, shows curves of exact solution
and approximate solutions obtained by VWFML method, DFIM method, and FIM method.
Table 1 shows the coefficients of piecewise (3.9) and (3.12). In Figure 2, the absolute error
curves among them are given, where “crossed line” denotes the absolute error curve between
the approximate solution obtained by VWFML method and the exact solution, “· · · ” denotes
the absolute error curve between the approximate solution obtained by FIM method and the
exact solution, and “–∗–” denotes the absolute error curve between the approximate solution
obtained by DFIM method and the exact solution. Table 2 presents the errors among the exact
solution and the approximate solutions obtained by them.

In this simulation, the approximation results are satisfying. In fact, the number of
divided local regions is not large, which means that we can get all the coefficients of (3.9) and
(3.12) without a great deal of computation. Accordingly, the approximate analytic solution
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Figure 1: Solution curves of Example 4.1.
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Figure 2: Error curves of Example 4.1.

can be found for Example 4.1. From Figure 2 and Table 2, it is clear that for solving this
equation VWFML technology is more effective than DFIM and FIM, and the corresponding
amount of error data is smaller.

Example 4.2. Consider isothermal gas spheres equation:

y′′ +
2
x
y′ + ey = 0, (4.2)

subject to the initial conditions y(0) = 0, y′(0) = 0.
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Table 1: Coefficients of (3.9) and (3.12).

Example 4.1 (n = 5, m = 5, l = 5)

k x d
(1)
ijk

d
(2)
ijk

d
(3)
ijk

d
(1)
ijk d

(2)
ijk d

(3)
ijk

1 (0, 0.25] 0 0 0 −1 −8 9.0781
2 (0.25, 0.5] −1.0000 −8.0000 9.0781 −1.0000 −4.0000 12.3750
3 (0.5, 0.75] −1.0000 −4.0000 12.3750 −1.0000 −2.6667 15.9844
4 (0.75, 1] −1.0000 −2.6667 15.9844 −1.0000 −2.0000 20.0000

Table 2: Errors of different approximate solutions for Example 4.1.

Example 4.1 (n = 5, m = 5, l = 5)

x
Error of Error of Error of FIM
VWFML DFIM

0.1 0.0067 0.0052 0.0125
0.2 0.0087 0.0059 0.0176
0.3 −0.0027 0.0028 0.0035
0.4 0.0029 −0.0035 0.0041
0.5 0.0010 −0.0345 −0.0027
0.6 0.0008 −0.0689 −0.0081
0.7 0.0072 −0.0991 −0.0070
0.8 0.0027 −0.1306 −0.0169
0.9 0.0107 −0.1678 −0.0146
1 0.0117 −0.2096 −0.0193

This type of equation has been used to model the thermal behavior of a spherical cloud
of gas acting under the mutual attraction of its molecules. Isothermal gaseous sphere, in
which the temperature remains constant, subjects to the classical laws of thermodynamics
when one seeks to determine the density and electric force of an electron gas in the
neighborhood of a hot body in thermal equilibrium. It is worthy to notice that this equation
is nonlinear and has no analytic solution.

From [1, 5], we know that the 6-term series solutions of this equation obtained by
ADM and HPM are the same. Obviously, in Figure 3 we find that solutions obtained by
VWFML method are very close to solutions of ADM method, where “· · · ” denotes the
solution obtained by ADM method and “crossed line” denotes the solution obtained by
VWFML method.

For the consistency of the comparison and without loss of generality, chosen the same
initial value and the same independent variable values, Table 3 shows the approximations
of solutions for Example 4.2, respectively, obtained by ADM method and VWFML method.
Further, in Figure 4, the curves obtained by the above two methods are given. Since Lane-
Emden equations are singular initial value problems, the accuracy of solutions near zero point
is important, whatever the solution is gotten from approximate analytical method or from
numerical method. From simulation results, we can see that if the number of local regions
increased in VWFML method, the accuracy of the approximation solution can be improved
evidently, especially when the independent variable is near the initial value 0. Besides, the
solutions of Lane-Emden equations converge rapidly in a very small region (0 < x < 1), and
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in Figure 3 the approximate curve follows the trend appropriately. This implies that VWFML
method can describe the isothermal gas spheres equation with high accuracy degree.

Example 4.3. Consider the linear initial value problem:

y′′ +
8
x
y′ + xy = x5 − x4 + 44x2 − 30x, (4.3)

subject to the initial conditions y(0) = 0, y′(0) = 0. The exact solution is y(x) = x4 − x3.
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Table 3: Solutions of Example 4.2.

x
6-term ADM VWFML solution VWFML solution

solution (n = m = l = 5) (n = 15, m = l = 10)
0.1 −0.0016658 0.0019471 0.0014253
0.2 −0.0066534 −0.0062487 −0.0062547
0.3 −0.014933 −0.012383 −0.014411
0.4 0.026456 −0.023321 −0.025868
0.5 −0.041154 −0.037287 −0.04051
0.6 −0.058945 −0.054402 −0.058256
0.7 −0.079728 −0.074936 −0.079011
0.8 −0.10339 −0.098012 −0.10264
0.9 −0.12981 −0.12426 −0.12904
1 −0.15886 −0.15302 −0.15806
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Figure 5: Solution curves of Example 4.3.

Let n = 15, m = 5, and l = 5. The curves of exact solution of Example 4.3 and the
corresponding approximate solution obtained by VWFML method are shown in Figure 5,
where “· · · ” denotes the exact solution and “crossed line” denotes the approximate solution
obtained by VWFML method.

Example 4.4. We consider the nonlinear initial value problem:

y′′ +
6
x
y′ + 14y = −4y lny, (4.4)

subject to the initial conditions y(0) = 1, y′(0) = 0. The exact solution is y(x) = e−x
2
.
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Let n = 7, m = 5, and l = 5. The interval of independent variable is chosen as [0, 1]. The
curves of exact solution of Example 4.4 and the corresponding approximate solution obtained
by VWFML method are shown in Figure 6, where “· · · ” denotes the exact solution and
“crossed line” denotes the approximate solution obtained by VWFML method. Furthermore,
the interval of independent variable is extended as [0, 3] and let n = 15, m = 10, and l = 10.
The simulation result is shown in Figure 7.
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Remark 4.5. From Examples 4.3 and 4.4, it can be seen that VWFML method is effective
for solving generalized Lane-Emden type differential equations. Furthermore, if the solving
interval is extended, VWFML method can also provide approximate solutions in the larger
domains with high accuracy degree.

Remark 4.6. Comparison with some analytical solutions, solutions of VWFML methods are
totally dependent on the dividing points of independent variable interval, which means
that the proposed technique can be presented in a general way. In particular, when the
objective equation is unknown and only some data information can be obtained, equation
determined by VWFML method can be solved analytically and the corresponding solution
can approximate the solution of objective equation with high accuracy.

5. Conclusion

In this paper, we apply VWFML method to obtain the approximate analytical and numerical
solution for Lane-Emden type differential equation. Some numerical examples show that by
relatively minor data information, solutions obtained by VWFML method can approximate
the corresponding solutions of Lane-Emden type equations with high accuracy. This means
that VWFML method can be utilized to solve and analyze complex nonlinear differential
equations in practical application.
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The interactive nanomanipulation platform is established based on fuzzy control and connected
region marking (CRM) algorithm in SEM. The 3D virtual nanomanipulation model is developed
to make up the insufficiency of the 2D SEM image information, which provides the operator
with depth and real-time visual feedback information to guide the manipulation. The haptic
device Omega3 is used as the master to control the 3D motion of the nanopositioner in master-
slave mode and offer the force sensing to the operator controlled with fuzzy control algorithm.
Aiming at sensing of force feedback during the nanomanipulation, the collision detection method
of the virtual nanomanipulation model and the force rending model are studied to realize the
force feedback of nanomanipulation. The CRM algorithm is introduced to process the SEM image
which provides effective position data of the objects for updating the virtual environment (VE),
and relevant issues such as calibration and update rate of VE are also discussed. Finally, the
performance of the platform is validated by the ZnO nanowire manipulation experiments.

1. Introduction

As an assistant imaging tool to research nanomaterial characteristics and the visual detection
device for nanomanipulation, SEM has been paid more and more attention for its real time
imaging and large operation space [1, 2]. Compared with AFM, SEM is used as a tool for
providing the operator with real-time visual feedback during the nanoscale manipulation
although it only provides the 2D images of single view angle [3], which contains limited
environment information. For example, Sitti [4] has established the SEM-based robotics
systems for Microscale and nanoscale with AFM as the handle tool; Fatikow et al. [3, 5] has
realized the automatic nanohandling inside SEM using the advantage of vision feedback;
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Penga et al. [6] did a lot of experiments to study the probe in the SEM. In the existing
SEM-based nanomanipulation system, the operator could not judge the position relationship
among probe, objects, and substrate accurately only according SEM image, which would
easily damage the devices and objects [7, 8] as does in open loop during manipulation. Due to
the unstructured character of nanoenvironment and scale effect of nanomanipulation, micro
force sensor is a possible solution compared with position sensor. On the other hand, force
sensors for micro/nanomanipulation, especially for nanoscale, are difficult to manufacture
and expensive, which is only suitable for force/haptic information in contact status [9].
Therefore, it is particularly important to introduce the virtual reality technology for the
unstructured nanoenvironment [10]. It can guide and control the real nanomanipulation
platform working in the master-slave mode with virtual nanomanipulation model and virtual
force feedback information. It is a novel approach to realize the nanomanipulation with real
time, accuracy, high efficiency and friendly human-machine interaction.

This work is motivated for manipulating the nanocomponent in SEM with telepres-
ence as in macro scale. By adopting the virtual reality and haptic technology, the operator
can handle the nanowire in SEM by controlling the virtual force. At the same time, although
the SEM can only offer 2D image, the operator can feel the force and 3D visual information
offered by virtual reality technology. The main motivation of this work is to establish a
SEM-based master-slave telenanomanipulation platform having the performance of security,
reliable, and real-time without force sensor.

With the aid of force feedback device (Omega 3), the nanocomponent manipulation
method combined with virtual reality and SEM is studied. It can provide users with
senses of force and more intuitional operation interface, as well as changeable view point
and angle in virtual environment (VE) to provide more sufficient visual information of
nanomanipulation in previewing and real time tracking. While updating the VE, the CRM
algorithm is introduced to process the SEM image.

The slave (Attocube) needs relatively stable control variable to avoid damage of
the probe, nanowire, and substrate, which is controlled by the master (controlled by the
operator). But the operator’s input is so unstable that it is difficult to control and accurately
formalize mathematically. Fuzzy logic has become a particularly widely used methodological
approach on real world applications control. Fuzzy logic-based systems do not require
models, which make them especially appropriate for processes whose mathematical
formalism is not clear or global for all the cases [11, 12]. The systems with fuzzy characters
are studied extensively [13–16]. The fuzzy control theory and its improved theoretics have
been used in many practical applications [17], such as in noisy image segmentation [18],
languages character recognition [19], and prioritizing service attributes [20]. Based on this,
in the literatures, the fuzzy control is adopted in the master-slave control.

The organization of the paper is as follows. Section 2 describes the designed system
framework in detail, including control information and data exchanging procedure, the
fuzzy control for the system. The creation method of grid model in VE as well as dynamic
modeling of probe and nanowire using skeleton sphere is discussed in Section 3. Section 4
demonstrates the collision detection method using Hierarchical Bounding Volumes (BVH).
Force rendering model is built to embed force information to the VE in Section 5. The region
marking algorithm (CRM) used to process SEM image is introduced in Section 6, and the
procedure of VE update is also illustrated in this section. In Section 7, the performance of the
platform is validated on experimental results via nanowire manipulation experiments, and
the results are also analysed. Section 8 is the conclusions and the novelties of our platform.
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Figure 1: Structure of master-slave nanomanipulation platform.

2. System Construction

The overall structure of the master-slave nanomanipulation platform is displayed in
Figure 1. The platform is mainly composed of the following components: tungsten probe,
nanopositioner (Attocube), SEM vacuum manipulation environment, master haptic device
(Omega 3), and the master/slave control PC. The tungsten probe is installed on the
nanopositioner, working in SEM vacuum environment as the slave. The slave PC controls the
imaging of SEM and communicates with the master control PC for real time image
transmission via the TCP/IP. The master control PC interacts with the operator, running a 3D
virtual nanomanipulation environment and the main control interface with transmitted SEM
image integrated. The 3-DOF haptic device communicates with the master PC through USB.
The three axes of the Attocube nanopositioner are controlled with its dedicated controller
(ANC150) in remote way by the master control PC according to the information acquired
from Omega 3. The nanomanipulation platform presented in this paper could accomplish
multi-DOF nanomanipulation for various kinds of nanocomponents with the help of SEM
real-time visual feedback.

As the master, the haptic device Omega 3 has energy output to outside. If the haptic
interface composed of Omega 3 is unstable, damage will be caused to the manipulation
object and the manipulation tool. Meanwhile, the transparency of manipulation process
will be destroyed. For the adjustment process from the control of the operator to the
suitable control variable needs time and the model of the operator is hard to establish,
the robustness of the fuzzy control is considered. Therefore, fuzzy control unit is added to
control the haptic interaction system, which is composed of operator, haptic interface, and the
virtual environment. Energy conversion between the operator and the virtual environment is
completed by the haptic interface.

The input of the fuzzy controller is the deviation e and deviation change rate ec
of the output force of the operator (that is the displacement of the Omega 3). The output
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is the controlled variables transmitted to virtual environment, which are transmitted to
Attocube Piezo Step Controller after large scaled down. In the manipulation process, the
detection of e and ec is done continuously and the parameters modification online are
conducted according to the fuzzy control principle, in order to meet the requirements of the
control parameters and to improve the output characteristics of virtual manipulation.

According to the characteristics of Omega 3 and the haptic control manipulation, the
action range of the fuzzy controller is selected objectively. The range of the error e and error
change rate ec is defined to be the universe of the fuzzy sets:

e, ec = {−3,−2,−1, 0, 1, 2, 3}. (2.1)

Its fuzzy subset is

e, ec = {NB,NM,NS,Z,PS,PM,PB}. (2.2)

Assuming that they all obey normal distribution, the quantization factor of e and ec
is 1.

The weighted average method with smoothing output inference rules is adopted. The
crisp value of the weighted average of the output of the membership degree is picked up.
The final output value of the fuzzy inference is determined. That is, the areas bounded by the
fuzzy membership function cure and the horizontal ordinate are the final output value.

3. Establishment of Virtual Nanomanipulation Model

Virtual nanomanipulation is an effective way to provide the 3D visual information and
simulation for real nanomanipulation, which is helpful for the operator to judge in real
time, enhance their perception, and proceed off-line simulation [21–23]. The credibility of
simulation interface depends on the virtual operating model. In this sense, the more realistic
of the operated object model, the more actual operation scene will be reflected in the
simulation interface of virtual vision. Meanwhile, the precision of operating model reduces
corresponding with the increasing of modelling error in the nanoVE.

As a software interface of graphics hardware, OpenGL can satisfy modelling demands
with advantages of fast getting state, good characteristics of base development, and dynamic
display. Besides, it is convenient to apply in other engines with its independent hardware
interface and variety library functions. Therefore, OpenGL is adopted as the base develop-
ment tool to establish the basic model of nanowire in this paper. Aiming at establishing
the virtual nanowire model, vertices are drawn as grid elements and formed mesh model
using OpenGL functions. Although the mesh model can be edited to realize geometrical
deformation, it is important to know which grid element needs to be deformed. Because of
the large calculated amount of analysing each grid element, a kind of simple assistant model
is needed, whose characteristics are analysed to determine the rules of deformation.

In this paper, skeleton model is adopted as the simple assistant model to research the
deformation of the virtual nanowire model. Skeleton models are widely used in creating
dynamic model as the role of bone in animals and plants, and the skeleton in 3D model is
used to judge the motion property. A certain amount of skeleton models would be filled in
the mesh model (virtual nanowire model) built with OpenGL. According to the dynamic
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Figure 2: Perspective map of nanowire filled with skeleton spheres.

Figure 3: Modeled nanowire filled with skeleton spheres in virtual environment (VE).
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Figure 4: Deformation of skeleton spheres.

characteristic of the nanowire, skeleton spheres are suitable to fill the nanowire model. The
skeleton sphere is characteristic sphere. By judging the position of every skeleton sphere in
VE, the vertices is reedited to realize the dynamic deformation of the virtual objects, namely,
that the mesh model (virtual nanowire model) would change its shape as the skeleton
spheres. Simple perspective map of nanowire model filled with skeleton spheres is shown
in Figure 2. Sketch map of modeled nanowire filled with skeleton spheres in VE is shown as
Figure 3.

Figure 4 is the deformation schematic diagram of skeleton spheres in VE. It is shown
that the relative coordinates of polygon grid elements also change as the coordinates of
skeleton spheres change. Deformation model of skeleton spheres in VE is shown in Figure 5.
In order to see the movement relationship between skeleton spheres and nanowire more
clearly, the updating speed of movement is reduced; thus, the effect of nanowire motion
driven by skeleton spheres is more obvious.

4. Collision Detection

In order to perceive the immersive of presence and complete interactive force in the VE,
fast and accurate collision detection between different models is necessary [7]. Collision
detection is to detect whether different objects in the VE have bumped into each other. In fact,
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Figure 5: Motion of nanowire driven by skeleton spheres in VE.

two impenetrable objects cannot simultaneously occupy the same space in the real world;
however, they can occupy the same space in the virtual world. In order to avoid regional
mixed taken by the objects cross in the virtual world and offer the sense of reality, collision
detection is needed [24]. Besides, the data of virtual force presence mainly comes from the
collision detection among different objects. When designing a collision detection system, the
design factors, namely, all aspects of developing collision detection modules, should be firstly
considered in collision detection algorithm. There are many collision detection problems
worthy of further research. In this paper, the structures of objects to be manipulated are
relatively simple, so we only analyze the collision detection suitable for this platform. In
other words, the algorithm we studied is suitable for the collision detection between single
cone probe, columnar nanowire/nanotube and the substrate with smooth surface, and good
rigidity. It can be used in the force presence of nanowire/nanotube manipulation handled
with single probe based on adhesive control.

Among the collision detection algorithms, we usually do not adopt the “full-featured”
collision detection method, while selecting the specific collision detection method is an
advisable choice [25]. For the simple nanowire model in this system, BVH method is more
suitable. But it is different from the collision detection algorithm of static models, the collision
detection between probe and nanowire is normally dynamic and more complex. Thus,
the difficulty of collision detection is greatly increased. Hence, the collision detection of
nanomanipulation is divided into three parts: between probe and substrate, nanowire and
substrate, and probe and nanowire, then they are integrated.

The mesh model of the probe is built with OpenGL according to the geometric
parameters obtained by SEM image. Based on the virtual probe mesh model established,
suitable bounding spheres which are as one category of BVH according to pyramid (the
probe model) data are filled in the probe mesh model to realize the intersect detection
between probe and nanowire. The arrangement method of bounding spheres filled in probe
model determines the effect of collision detection between the virtual nanowire model
and virtual probe model. Normally, there are three approaches to arrange the bounding
spheres in probe mesh model: sphere diameter arrangement (SDA), prestack sphere center
arrangement (PESCA), and poststack sphere center arrangement (POSCA) (different
arrangement methods are shown as Figure 6). According to the feature of the probe (large
cone height) and experimental comparison among the three arrangement method, the
PESCA method is adopted since it neither leaves out a lot of empty space in probe mesh
model as SDA method dose nor makes complex permutation order and larger calculated
quantity as POSCA method dose. Figure 7 shows the collision detection between probe
and nanowire by using PESCA method. It can be seen from Figure 7 that the probe is filled
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Empty space

(a) Sphere diameter arrangement (SDA) (b) Prestack sphere center arra-
ngement (PESCA)

(c) Poststack sphere centre arra-
ngement (POSCA)

Figure 6: Arrangement methods of pyramid single line balls for probe model.

Figure 7: Collision detection between probe and nanowire.

properly, and the collision between the probe model filled with bounding spheres and the
nanowire model could be detected, which prevents penetration between models.

5. Force Rendering Model

In the whole nanomanipulation process, embedding of virtual force feedback as a kind of
force sensing can greatly enhance the operator’s perception [26], which is important and
essential for nanomanipulation and nanoassembly [27, 28]. It can allow the operator to
carry out simulation of nanomanipulation better and guide real nanomanipulation more
effectively.

The force rendering provides an interactive approach through which the operator
could find out what kind of effects was produced between the virtual models. In nanoscale
manipulation environment, the forces among operating objects, operation tools and the
substrate are complicated. For SEM vacuum working space, the Van der Waals force acts as
a dominated force among the nanocomponents; therefore, the force rendering is conducted
based on Van der Waals force.

5.1. Force between Probe and Substrate

The shape of the probe tip is simplified as two parts [29, 30]: microsphere and microcylinder.
According to Hamaker’s assumption, the forces between each part and the substrate are
calculated, respectively, and then added up to create a resultant force.
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The interaction energy between the substrate and the microsphere molecule of the
probe tip could be expressed as

Esingle = −πCρ1

6d3
, (5.1)

where C is Van der Waals constant, ρ1 is the numerical density of the substrate, and d is the
minimum distance between the substrate and the microsphere. And the interaction energy
between the substrate and all molecules of the microsphere could be obtained via integral
calculation of (5.1):

E = −π
2Cρ1ρ2

6

∫H1

0

(2R1 − z)z

(d + z)3
dz, (5.2)

where ρ2 is the numerical density of the microsphere, and H1 is the height of the microsphere.
The force between the substrate and the microsphere is obtained via differential

calculation of (5.2):

F1 = − π2Cρ1ρ2

2

∫H1

0

(2R1 − z)z

(d + z)4
dz

= − AH

2

[
3(H1 − R1)(H1 + d) + d(2R1 + d)

3(d +H1)
3

− d − R1

3d2

]

,

(5.3)

where AH = π2Cρ1ρ2 is Hamaker constant.
Similarly, the force between the substrate and the microcylinder is calculated as

F2 = − πCρ1

2

∫H2

0

πR2
2ρ2

(d +H1 + z)4

=
AHR2

2

6

[
1

(d +H1 +H2)
3
− 1

(d +H1)
3

]

,

(5.4)

where H2 is the height of the microcylinder.
Finally, the force between the substrate and the probe tip could be expressed as

F = F1 + F2. (5.5)

5.2. Force between Nanowire and Substrate

The force between the substrate and the nanowire could be viewed as a kind of interaction
force between serial particles and infinite plane, based on which the Van der Waals force
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between a single nanowire molecule and the infinite substrate could be expressed as the
following equation according to the differential of (5.1):

Fsingle =
πρC

2d4
. (5.6)

The force between unit length nanowire and the substrate could be obtained by
calculating integration of (5.6):

F =
∫2R+d

d

πρ1ρ2 · C
r4

√
R2 − (R + d − r)dr

=
∫2R+d

d

AH

r4

√
R2 − (R + d − r)dr,

(5.7)

where d is the minimum distance between the substrate and the microsphere, R is the
molecule radius of the nanowire, and ρ1 and ρ2 are numerical densities of the nanowire and
the substrate, respectively.

5.3. Force between Probe and Nanowire

The force between the probe and the nanowire could be expressed as Van der Waals force
between the nanowire and microsphere of the probe tip. There exist two situations to be exp-
lained.

When the probe tip contacts with the nanowire vertically or the contacting angle is
closed to 90◦, the force could be expressed as the interaction between two microspheres, and
the Van der Waals energy is

EV = −AH

6d
R1R2

R1 + R2
, (5.8)

where AH is Hamaker constant, d is the minimum distance between the two microspheres,
and R1 and R2 are the radius of the two microspheres, respectively. The force between the
two microspheres is obtained by calculating differential of (5.8):

FV =
AH

6d2

R1R2

R1 + R2
. (5.9)

When the probe tip contacts with the nanowire horizontally or the contacting angle
is closed to 0◦, the two objects contact as parallel cylinders, and the Van der Waals energy is
expressed as

EH =
AHL

12
√

2d3/2

√
R1R2

R1 + R2
. (5.10)
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And the calculated force is

FH = − AHL

8
√

2d5/2

√
R1R2

R1 + R2
, (5.11)

where l represents the contact length between probe and nanowire.
The forces among the virtual models are approximately simulated according to the

previous expressions when different objects (nanowire, probe, and substrate) interact with
one another. And these simulated forces output by CHAI 3D engine are used to strengthen
the operator’s perception when manipulating the nanocomponents.

6. SEM Image Processing and Virtual Environment Update

It is an essential step to acquire the position information of objects (probe and nanowire) in
real nanomanipulation working space for updating the VE. Since no nanoscale sensors are
installed in the vacuum space of SEM, the real time SEM image is considered as the only
visual servo for the whole system, which is the source of the objects coordinates information.
Therefore, it is necessary to research an effective SEM image processing approach to obtain
the position data of the objects in the SEM image, which provides information for VE update.

Some researchers have proposed some novel algorithms about 2D positioning under
SEM according to a single 2D SEM image [1, 12]. However, most of these have complex
processing procedure which inevitably increases the calculation as well as difficulty of
realization. In order to provide valid position data for VE updating, a connected region
marking (CRM) algorithm for single transmitted SEM image is carried out in this paper to
extract the figure of the objects, and then the desired information is obtained. After the SEM
image is processed with gray-scale algorithm, dynamic threshold binarization and denoising
algorithm in sequence, certain connected regions are marked with tags (such as number
1, 2, and 3). Then, the pixel number of every connected region is calculated. The essential
regions of nanowire and probe are extracted respectively after setting the thresholds of pixel
number according to the characteristic of nanowire and probe, which are used to calculate
the key geometric parameter (position) in image. This method has the advantage of easy to
be implemented.

The purpose of updating the VE or adjusting the virtual models is to realize the synch-
ronization of real nanoworking space in slave and VE in master. It needs to calibrate the VE,
namely, the relationship between a SEM image and VE should be determined. The detailed
calibration process is as follow.

The size of the VE designed in this paper is set as A3, where A = 40 (mm); the range
of XYZ coordinates is set to (−l,+l), where l = 20 (mm). Suppose one coordinates of the
nanowire endpoint is (S, T) obtained from the processed SEM image with resolution of 1024
× 768 using CRM algorithm and define α = S/1024, β = T/768; therefore, the coordinates of
the nanowire model in VE corresponding with (S, T) is expressed as xv = α ·A−l, yv = β ·A−l.

In addition, the rate of the VE needs to be discussed during the continuous operation.
In this system, whether the VE should be updated depends on the processing results of the
SEM image. The rate of SEM image transmission is determined in advance (transmission
interval is set as 2 second). The system compares the current position data of objects acquired
from the transmitted SEM image with last data acquired 2 second ago and stored in RAM. If
the data changes beyond the given error range, the position data of the virtual models would
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The original SEM image The processed image containing interesting 
area of both nanowire and probe 

The processed image only containing 
interesting area of probe 

The virtual environment containing 
models of nanowire and probe 

Figure 8: Detail procedure for acquiring position data of nanowire and probe from the SEM image.

be adjusted to the current data, which would be stored in the RAM for next data comparison.
However, in the case that the data are same as last or change within the error range, the VE
would not be updated, which could save the system resource and increase the efficiency of
manipulation.

The SEM image processing procedure using CRM algorithm, as well as the update of
VE, is illustrated in Figure 8. It can be seen from Figure 8 that the position of nanowire and
probe in VE keeps synchronous with that in the original SEM image.

7. Experiments and Results

The experimental platform is shown in Figure 9, containing the SEM (KYKY-EM3200),
Omega 3, Attocube nanopositioner and controller, and master and slave control PC. All the
experiments mentioned in this paper have been done in the ten thousand level clean-room of
Science Park in HIT.

The control interface of the experimental platform is shown in Figure 10. The 3D
graphic interface in the master control PC is programmed with VS 2008 combined with
OpenGL and CHAI 3D. The virtual nanomanipulation environment and the real SEM
nanomanipulation image sent from the slave PC are displayed in the same interface. There are
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Figure 9: Experimental platform containing necessary devices in the ten thousand level clean-room.

Figure 10: Control interface of the platform.

two different control modes: single-step and real time tracking. In single-step control mode,
the virtual models have been controlled to move to a desired position, then the Attocube
nanopositioner moves after receiving the execution commands sent by the master PC.
Satisfaction test before real manipulation in single-step mode is an approach to improve
the operation accuracy, although it has low efficiency. On the other hand, in real time
tracking mode, the operator could manipulate Omega 3 to move Attocube nanopositioner
continuously with high efficiency compared with single-step mode, but it could cause
maloperation.

In the experiments, the operator pushes the bar of the 3-DOF haptic device (Omega 3)
at a certain velocity to a position; the force and position information applied on the haptic
device captured by the master PC is transmitted to the virtual nanoenvironment; thus, the
3D graphic interface run in the master control PC changes real time to track the movement
of master; the slave Attocube positioner moves following the master as soon as receiving the
position data of large scaled down. Simultaneously, the operator can feel the force in hand
according to the force and position information provided by VE.

The performance of the virtual force feedback master-slave telenanomanipulation
platform is tested with the ZnO nanowire (with radius of 100∼200 nm) manipulation.
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Figure 11: Procedure of ZnO nanowire shift experiment.

The experimental results are shown in Figure 11. The curves of probe position during the
experiment without and with fuzzy control are shown as Figure 12.

From the curves, we can find that the trajectory of the probe controlled with fuzzy
control is much smoother than that without it, and it is confined to a certain scope of the
starting point. That is the redundant path of the probe is avoided, and the stability and safety
(avoiding the damage of probe, nanowire, and substrate, which are expensive and need much
time while replaced) of the whole manipulation process is guaranteed.

8. Conclusions

In this paper, the nanomanipulation platform with virtual 3D visual and virtual force
feedback is established combined with virtual reality technology and SEM. The fuzzy control
algorithm is adopted to assure the system stability and safety. The virtual models of probe
and nanowire are built to provide 3D visual information of SEM-based nanomanipulation.
To obtain the sense of immersion and interactive force for the operator during nanomanipu-
lation, the collision detection model of nanomanipulation and the force rendering models are
built. With employing of the VR and haptic technology, the operator can handle the nanowire
by controlling virtual force, so the operator’s perception to nanomanipulation is enhanced.

The CRM algorithm is proposed to process the transmitted SEM image which is the
basis of VE update, and the calibration of the VE. In addition, the updating rate of VE is also
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Figure 12: (a) Curves of probe position without fuzzy control; (b) Curves of probe position controlled
with fuzzy control.

discussed. The 3D visualized manipulation environment cannot only provide the operator
with real time image information, but also make the platform run automatically after the
satisfied virtual preview result. It could reduce the research cycles and research cost of
nanomanipulation.

System performance is evaluated by the ZnO nanowire manipulation experiments.
The experimental studies show that the nanowire can be accurately pushed and manipulated
on the substrate using the newly developed platform. The real time visual display coupled
with the real time force feedback provides a telepresence environment in which the operator
cannot only feel the interaction forces but also observe the real time changes of the
nanoenvironment.

Through experiments, we conclude that the platform presented in this paper has the
following advantages: (1) the man-machine interactive performance is enhanced with
combining of virtual reality environment, SEM feedback image, and haptic device; (2) the
nanomanipulation efficiency stability and safety are improved for the simultaneous monitor-
ing and manipulating and the employing of fuzzy control; (3) the real time performance of
the nanomanipulation is improved, for the dynamic refresh of VE is realized.

In future, we will do further study on automatic detection for the contact between tip
and substrate based on 2D SEM image and automatic nanomanipulation based on virtual
nanomanipulation model.
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In order to approximate any nonlinear system, not just affine nonlinear systems, generalized T-S
fuzzy systems, where the control variables and the state variables, are all premise variables are
introduced in the paper. Firstly, fuzzy spaces and rules were determined by using ant colony
algorithm. Secondly, the state-space model parameters are identified by using genetic algorithm.
The simulation results show the effectiveness of the proposed algorithm.

1. Introduction

Since the presentation of Takagi-Sugeno (T-S) fuzzy model by Takagi and Sugeno in 1985,
great effort has been devoted to fuzzy modeling, analysis, and design, see for example, [1–
10] and the references therein. A multilayer incinerator was modeled by a T-S fuzzy model,
and it was shown that the model has better accuracy compared to statistical methods in [11].
A process control rig with three subsystems, a heating element, a heat exchanger, and a com-
partment tank, was modeled by a T-S fuzzy model in [12], and it was shown that the proposed
approach provides better modeling when compared with a linear modeling approach.

In identification of fuzzy models, an interdependent procedure for the structure
determination and parameter identification is often concerned, that is, determination of
the premise and consequence variables and identification of the premise and consequence
parameters [13]. Structure identification of the fuzzy model is concerned with the
determination of the number of rules and parameter estimation. Clustering algorithms were
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widely used in the literature. The work in [14] introduced a fuzzy C-means criterion to ant
clustering algorithm and analyze the partitions performance obtained from the ant-based
algorithm with those from randomly initialized Hard C-means. The work in [15] focused
on a global optimization strategy for the optimal clustering in compromise sum-difference
linear arrays based on ant algorithm. Gath-Geva clustering algorithm [16] and subtractive
clustering algorithm [17] have been applied in structure identification and premise parameter
estimation.

The T-S fuzzy model is composed of linear models, and each model is according to a
group of input-output data, divided by the clustering algorithm. The recursive least squares
estimation can be easily used for constructing a linear system as a means for tuning the T-
S fuzzy model [18, 19]. Amine et al. [20] also used T-S fuzzy model with fuzzy clustering
technique to determine both the antecedent and consequent parameters of the fuzzy T-S
rules. Then, recursive weighted least squares algorithm with forgetting factor is used to
adapt consequent parameters. They applied the methods to model the air temperature and
humidity inside the greenhouse. The other researcher, Chang-Ho et al. [21], proposed T-S
fuzzy model to design adaptive fuzzy observer and controller and the proposed method is
applied to the stabilization problem of a flexible joint manipulator in order to guarantee its
performance.

In [22], Petridis et al. introduced a hybrid neural-genetic multimodel parameter
estimation algorithm and applied it to structured system identification of nonlinear
dynamical systems, and the work in [23] presented Genetic-Algorithm-Based Parameter
Estimation Technique for Fragmenting Radar Meteor Head Echoes. The work in [24–27]
brought an optimization methodology by using a genetic algorithm to obtain the parameters
of a soil that can be represented in a multilayer structure. The method uses a curve of
experimental apparent resistivity obtained from measurements made in the soil.

It is shown that a general nonlinear system can be approximated by a T-S fuzzy model
to any degree of accuracy on any compact set [28]. However, it has been argued in [29]
that the commonly used linear or affine T-S fuzzy models, where the control variables are
not included in the premise variables, are only able to approximate affine nonlinear systems
to any degree of accuracy on any compact. So the paper investigated the approximation of
generalized T-S fuzzy systems, where the control variables and the state variables are all
premise variables. This paper proposes application of K-Means ant-clustering algorithm to
optimize the fuzzy membership function in the antecedent part. Genetic algorithm (GA) is
then used in the consequent part to obtain the plant parameters and depends on the values
of the membership functions in antecedent part.

The rest of this paper is structured as follows. Section 2 is devoted to the generalized
T-S fuzzy model; the model description and the design principle of the idea are included. In
Section 3, the algorithm for the best partition of given data and parameter estimation by using
genetic algorithm are presented. Simulation results are provided in Section 4 to demonstrate
the effectiveness of the proposed algorithm. Conclusion is given in Section 5.

2. Generalized T-S Fuzzy Model

Takagi-Sugeno (T-S) models are based on fuzzy rule base structures of IF. . .THEN rules for
reasoning in which antecedents are fuzzy sets and consequents are linear functions in each
rule. In this way a T-S fuzzy model can approximate a complex affine nonlinear system,
general nonlinear systems exist widely in practice can be approximated by generalized T-
S fuzzy model.
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2.1. Model Description

The generalized T-S fuzzy model considered in this paper is as follows.
Rule i: if z1(t) is Mi1 and . . . zn(t) is Min; u1(t) is Vi1 and . . . um(t) is Vim, then

ẋ(t) = Aix(t) + Biu(t), (2.1)

where i = 1, 2, . . . , r is the number of IF-THEN rules, Mi1,Mi2, . . . ,Min, Vi1, Vi2, . . . , Vim are the
fuzzy sets, and Z(t) = [z1(t), . . . , zn(t)]

T is the premise variable; xj(j = 1, 2, . . . r) is the system
input, and x(t) ∈ Rn, u(t) ∈ Rm are the state vector and controlled input vector, respectively;
Ai ∈ Rn×n, Bi ∈ Rn×m are the system matrix and input matrix of the i system, respectively.

Using the parallel distributed compensation strategy, the overall fuzzy system of the
model is inferred as

ẋ(t) =
r∑

i=1

hi(z(t))hi(u(t))[Aix(t) + Biu(t)], (2.2)

where

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

, hi(z(t)) ≥ 0, hi(u(t)) =
wi(u(t))∑r
i=1 wi(u(t))

, hi(u(t)) ≥ 0,

(2.3)

with

r∑

i=1

hi(z(t)) = 1, wi(z(t)) =
n∏

j=1

Mij

(
zj(t)

)
, i = 1, 2, . . . , r

r∑

i=1

hi(u(t)) = 1, wi(u(t)) =
m∏

j=1

Vij

(
uj(t)

)
, i = 1, 2, . . . , r

(2.4)

and Mij(zj(t)) is the grade of membership of zj(t) in the fuzzy set Mij ; Vij(uj(t)) is the grade
of membership of uj(t) in the fuzzy set Vij .

2.2. Design Principle of Model Identification

The framework of fuzzy system models can be shown in Figure 1. During identification,
fuzzy functions are fixed. The approach first clusters the given data into several overlapping
fuzzy clusters, each of which is used to define a separate decision rule. During structure
identification, the original input variables are used to estimate the local relations of the input-
output data.

Ant-clustering model based on K-Means algorithm is used to search for the best
partition of given data; genetic algorithm (GA) is used to estimate state-space model
parameters. GA has been proved to be a robust approach on estimating the parameters on
the time series and nonlinear functions simultaneously.
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Figure 1: The framework of fuzzy system models.

3. Algorithm Implementation

3.1. The Algorithm for the Best Partition of Given Data

The single ant’s action is very simple, but the group’s action through the cooperation is very
complex; coordinating among a group of ants it is very easy to find the shortest path from the
ant nest to food source. The ants between the individual conduct information by pheromone
which is a substance left by an ant when it transfers through the way. The ant clustering algo-
rithm exactly utilizes swarm intelligence to solve combinatorial optimization problem, which
has smart search, global optimization, robustness, positive feedback, distribute computing,
and so forth. The ant clustering algorithm provided the powerful tool for solving complex
optimization problem for many fields, which has a good effect on the traveling salesman
problem (TSP), the resources, quadratic assignment problem (QAP), and telecom routing
controlling such classical optimization. In addition, the classification ant eggs behavior also
inspired the corresponding clustering algorithm. The core of ant clustering algorithm is
first, selection mechanism: the more pheromone of the path, the greater probability selected;
second, pheromones update mechanism: the shorter path, the faster the increase; third,
cooperation mechanism: In communication between individual through pheromones.

Before introducing the algorithm, some definitions are given. Suppose an ant is put
in the ith data of the nth state, and the data is assigned to the jth cluster centroid zj , j =
1, 2, . . . , k, the pheromone τij is leaved when the ant goes from data i to cluster centroid j,
then the ant i chooses the centroid zj in accordance with the probability

pij =
τij

∑n
j=1 τij

. (3.1)

And the pheromone is updated based on the following equation:

τij(t + 1) = ρτij(t) +
Q

dij
, (3.2)

where dij is the distance from the data i to the centroid zj ; ρ is the permanence coefficient of
the pheromone, usually taken about 0.5–0.9; Q is a positive constant, which is represented as
the amount of pheromone from an ant.

The algorithm flow chart is shown in Figure 2. Firstly, we sample input data of
the original system, confirm the number of clusters k for every state, and then initialize
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Figure 2: The K-means ant algorithm flow chart.

the algorithm parameters Q, ρ iteration counter nc = 0, maximum iterations NC MAX,
the pheromone τij , (i, j = 1, 2 . . . n). We place n ants in n data, each of the ants chooses the
next node in accordance with the probability pij , and update the pheromone τij of every
path. Then the new k centroids are calculated, the distance from n data to the new centroids
dij , i = 1, 2, . . . , n, j = 1, 2, . . . , k are calculated. Repeat like this until nc is greater than the
maximum iterations NC MAX or all ants choose the same path, the optimal clustering can
be given based on the pheromone. Finally, the centers of the Gaussian membership function
are determined on the cluster centroid.

3.2. Parameter Estimation by Using Genetic Algorithm

Genetic algorithm (GA) is a meta-heuristic method used to find a solution based on biological
evolution process. The process includes crossover, natural selection, and mutation to obtain
an individual with the best gen combination. GA begins with determination of chromosome
set (solution set) in terms of binary (1 and 0). Next, the selection is conducted based on the
fitness value. The chromosome with the highest fitness value is retained while the rest are
removed. The selected chromosomes, then, experience reproduction process to be parents.
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As the aim is to minimize the error between the output of fuzzy model and output
data, in the paper, the mean of squared error (MSE) is used as a proper evaluation function.
MSE is given by

MSE =
1
M

M∑

i=1

[
Yi − yi

]2
, (3.3)

where Yi is output from Fuzzy model, yi is output data, and M is number of data pairs.
Since the objective is to minimize MSE value, the fitness function is defined as follows:

Jk = −MSEk + max(MSE), (3.4)

where k is the kth chromosome.
If the normalized fitness function fk(i) is used, it can be calculated by using

fk(i) =
Jk(i)∑n
i=1 Jk(i)

, (3.5)

where Jk(i) is the fitness function for chromosome i.
The algorithm flow chart of the parameter estimation by using genetic algorithm is

shown in Figure 3. Firstly, we sample output data of the original system, write the objective
function based on equation and then initialize the algorithm parameters number individual
NIND, maximum genetic times MAXGEN, number variable NVAR, variable precision
PRECI, generation gap GGAP, and genetic counter GEN. Then the initial population
Â, B̂, i = 1, 2, . . . , k with lines NIND, columns NVAR ∗ PRECI is generated randomly. The
following step is calculating fitness function value for different data in different state,
then select, crossover, mutate, and calculate a new objective function value and track the
performance of the solution. Selection process is used to determine two chromosomes to be
the parents. Crossover is used to produce two new individuals. Generate initial population:
initial solution is a randomly generated digit that has NIND line and NVAR ∗ PRECI
row. We calculate fitness function value under different data in different state, then select,
crossover, mutate and calculate a new objective function value and track the performance
of the solution. Selection process is used to determine two chromosomes to be the parents.
Crossover is used to produce two new individuals. Repeat like this until GEN > MAXGEN
performance index is satisfied. Finally, the optimal Â, B̂, i = 1, 2, . . . , k are obtained.

4. An Illustrative Example

In order to verify the effectiveness of proposed method, an example is given. Consider a
system is composed of three springs and masses, see Figure 4.



Mathematical Problems in Engineering 7

Start

End

Yes

Yes

No

No

Output of T-S fuzzy model
Output of the original system

Initialization GEN=0

Generate initial population

Calculate fitness function value

Seletion process

Crossover

Is mutated?

Calculate a new objective function value
track the performance ofthe solution

GEN = GEN + 1

GEN>MAXGEN
or

performance index is satisfied

Optimal solution

Mutation

Figure 3: The genetic algorithm flow chart.
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Figure 4: Spring mass system.

The dynamic characteristic of the model can be simplified as

m1ẍ1 + (k1 + k2)x1 − k2x2 = F1 sinω1t,

m2ẍ2 − k2x1 + (k2 + k3)x2 − k3x3 = F2 sinω2t,

m3ẍ3 − k3x2 + k3x3 = F3 sinω3t.

(4.1)
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By choosing states Z1 = x1, Z2 = ẋ1, Z3 = x2, Z4 = ẋ2, Z5 = x3, Z6 = ẋ3 and output
variables y1 = Z1, y2 = Z3, y3 = Z5, then the state-space model can be obtained:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ż1

Ż2

Ż3

Ż4

Ż5

Ż6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
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0
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0 0 0
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0 0
k3

m3
0 − k3

m3
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦
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⎢
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⎤
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⎥
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⎡
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⎣
F1 sinω1t
F2 sinω2t
F3 sinω3t

⎤

⎦,

⎡

⎣
y1

y2

y3

⎤

⎦ =
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0 0 1 0 0 0
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Z1

Z2

Z3

Z4

Z5

Z6

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

(4.2)

For the real system, F1 = F2 = F3 = 1500 N, ω1 = ω2 = ω3 = 260 rad/s, k1 = k2 = k3 =
2000 N/M, and m1 = m2 = m3 = 0.5 kg.

Suppose the input function is sine wave, for each state sample 250 points during half
a cycle, and then cluster the data by using K-means ant cluster algorithm; the parameters are
setting as: the number of cluster centroids k = 3, the number of ants n = 300, the number of
maximum iterations NC MAX = 500, the permanence coefficient of the pheromone ρ = 0.1,
the constant Q = 0.9, then the centroids can be optimized to

⎡

⎣
k1

k2

k3

⎤

⎦ =

⎡

⎣
−1.5 0 1.5
−2.3 0 2.3
−2.7 0 2.7

⎤

⎦. (4.3)

We sample the output data of the original system and the T-S fuzzy model and
calculate T-S fuzzy model consequent parameters using genetic algorithm according to
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Figure 5: Optimization process.

the performance index (3.3). In order to reduce iteration times, the initialization parameters
are chosen through the least square method. The consequent parameters are calculated as

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a11

a12

a13

a21
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a23

a31
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a 33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.0001 0.0001 0.0001 −1.4329
0.0001 0.0001 0.0001 −2.4251
0.0001 0.0001 0.0001 −2.9370
0.0003 0.0003 0.0003 −0.1127
0.0005 0.0005 0.0005 −0.1574
0.0006 0.0006 0.0006 −0.1703
0.0005 0.0005 0.0005 −0.0734
0.0009 0.0009 0.0009 −0.1475
0.0011 0.0011 0.0011 −0.1965

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.4)

The parameter optimization process of a11 by using the genetic algorithm is shown in
Figure 5. It can be seen from the figure that the parameters become stable when the Genetic
algorithm has had 10 runs. And after a period of input simulation, the states of the original
system and the T-S fuzzy model are shown in Figure 6. From the figures, we can see that the
responses of the fuzzy model can approximate the original system responses very well. And
the model approximation error of different methods are shown in Table 1, we can see from
the table that the method proposed in the paper is more appropriate.

5. Conclusion

This paper considered the identification of T-S fuzzy model in which the control variables and
the state variables are all premise variables. Ant K-means algorithm and genetic algorithm
were used to determine the number of the rules and the state-space model parameters,
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Table 1: Comparison of different methods.

Methods No. of centers No. of
parameters

MSE

Subtraction clustering algorithm and least squares algorithm 3 12 0.0202

C-means clustering and least squares algorithm 3 12 0.0133

Ant colony algorithm and genetic algorithm 3 17 0.0105

respectively. The simulation results illustrated the effectiveness of the proposed algorithm.
Future work will investigate determination of the optimal cluster number for a certain
amount of data.
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Because clean energy and traditional energy have different advantages and disadvantages, it is
of great significance to evaluate comprehensive benefits for hybrid power systems. Based on
thorough analysis of important characters on hybrid power systems, an index system including
security, economic benefit, environmental benefit, and social benefit is established in this paper.
Due to advantages of processing abundant uncertain and fuzzy information, vague set is used to
determine the decision matrix. Convert vague decision matrix to real one by vague combination
ruleand determine uncertain degrees of different indexes by grey incidence analysis, then the mass
functions of different comment set in different indexes are obtained. Information can be fused
in accordance with Dempster-Shafer (D-S) combination rule and the evaluation result is got by
vague set and D-S evidence theory. A simulation of hybrid power system including thermal power,
wind power, and photovoltaic power in China is provided to demonstrate the effectiveness and
potential of the proposed design scheme. It can be clearly seen that the uncertainties in decision
making can be dramatically decreased compared with existing methods in the literature. The actual
implementation results illustrate that the proposed index system and evaluation model based on
vague set and D-S evidence theory are effective and practical to evaluate comprehensive benefit of
hybrid power system.

1. Introduction

At present, climate warming and environmental pollution are becoming increasingly
prominent, which poses a serious threat to sustainable development of human society.
Developing clean energies, such as wind power and photovoltaic power, is widely accepted
common choice of the world [1–5]. Clean energy and traditional energy have their own
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different characteristics. As to thermal power, it has advantages of low cost and stable power,
but generally causes serious pollution, especially carbon dioxide, whereas clean energy
power has the disadvantages of high cost and instability, but is highly environmental friendly
[6–9]. A power system usually includes thermal power, wind power, and photovoltaic
power. Because of different techniques and economic influences, it is of practical significance
to choose scientific, comprehensive, and reasonable indexes, and methods to evaluate
comprehensive benefit of hybrid power system.

Numerous factors should be considered to evaluate the comprehensive benefit of
hybrid power system, such as technique security, influence to environment, and economy
[10]. Literatures [11, 12] have analyzed economic aspect of power system; security and
technique aspect are considered in [13, 14]; the work in [15, 16] evaluated environmental
influence of different energies. However, only a few attempts have been made on social
benefit of power system, let alone comprehensive benefit including social and environmental
aspects of hybrid power system.

The input indexes are critical for comprehensive evaluation and are often complex,
which involves production, scheduling, dispatch, marketing, planning, and finance as well
as many other aspects [17]. Because of ambiguity of characters of evaluation indexes, it
is suitable for information fusion technique to evaluate comprehensive benefit of hybrid
power system which allows representation of both imprecision and uncertainty [18, 19].
Information fusion technique includes several kinds of methods, such as Kalman filtering,
Bayesian estimation, and D-S evidence theory. Because Kalman filtering is depending on the
initial state estimation, and by measuring the noise influence such as large faults, estimate
process covariance easily appears morbid, leading to filter positioning results are not stable.
Bayesian is a kind of commonly used method for static environment fusion in sensor lower
information, suitable for normal distribution measuring result or additive Gaussian noise
system. D-S evidence theory tackles the prior probability issue by keeping track of an explicit
probabilistic measure of a possible lack of information. It is suitable take into account the
disparity between knowledge types [20] because it is able to provide a federative framework
[21] and it combines cumulative evidence for changing prior opinions in the light of new
evidence [22]. Literature [23] proposed the combined fuzzy logic/D-S evidence theory
method. Although Jones et al. [24] noted that it is necessary to ensure the validity of basic
probability assignment, they did not give a method to do so. Vague set is proposed to solve
the problem in this paper.

Due to advantages of vague set processing abundant uncertain and fuzzy information,
it is chosen to determine basic decision matrix of evaluation model [25–30]. Combining vague
set with D-S evidence theory, a novel evaluation algorithm is established and applied into the
comprehensive benefit evaluation of hybrid power system.

The paper is organized as follows. Section 2 proposes a systematic evaluation index
system according to characters of hybrid power system. A comprehensive evaluation model
based on vague set and D-S evidence theory is given in Section 3. A simulation of hybrid
power system including thermal power, wind power, and photovoltaic power in China
is proposed, and comparison between the proposed evaluation model with some existing
works is analyzed in Section 4. The paper is conducted in Section 5.

2. Evaluation Index System

Comprehensive benefit evaluation of hybrid power generation should not only include
economic benefit, but also its impact on the environment, namely, environmental benefit.
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Due to the public service property of electric power, it is necessary to consider social benefit;
meanwhile, because of instable clean energy generation, it is needed to consider the security
of the power system. This paper establishes comprehensive benefit evaluation index system
of hybrid power system from the four aspects of economic benefit, environmental benefit,
social benefit, and security.

2.1. Economic Benefit

Economic benefit is the most important aspect of comprehensive benefit evaluation. It
is mainly composed of the four aspects of profitability capability, solvency capability,
operational capability, and development capacity.

Profitability refers to the ability to profit in a certain period. Profitability capability is
determined by comprehensive consideration of gross profit margin, net profit margin, ratio
of profits to cost, and return on total assets. Solvency capability refers to the ability to repay
due debts which be assessed in terms of current ratio, quick ratio, asset-liability ratio, and
interest coverage ratio. Operational capacity refers to enterprise’s ability to make profits using
existing assets. This paper mainly assesses the operational capability through current asset
turnover, fixed asset turnover, and total asset turnover. Development capacity refers to the
potential ability to expand scale and grow strength in the coming years which can be accessed
through profit growth, sale growth, and total asset growth.

2.2. Environmental Benefit

Environmental benefit refers to the influence on living environment, which can be divided
into positive benefit, negative benefit, direct benefit, and indirect benefit. Fundamentally
speaking, environmental benefit is the basis of economic benefit and social benefit.
Environmental benefit is a qualitative index. Comprehensively considering circumstances of
hybrid power system, this paper evaluates environmental benefit from the two aspects of
saving natural resources and reducing scraps.

2.3. Social Benefit

Social benefit refers to the good consequences and implications for community and society,
also known as external and indirect economic benefit, mainly in forms of public reflection
and social assessment system. Social benefit is a qualitative indicator. Comprehensively
considering the specific circumstances of hybrid power system, this paper establishes social
benefit evaluation index system from the three aspects of pulling gross domestic product,
improving people’s living standard and promoting social employment.

2.4. Security

Security occupies a basic position in comprehensive benefit evaluation of power grid.
Combined with exiting researches and characters of hybrid power system, this paper
selects four indexes to evaluate security, including integrated voltage qualification rate, grid
frequency qualification rate, average loading rate of provincial grid, and power supply
reliability rate.
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Figure 1: Comprehensive evaluation index system.

Above all, the comprehensive benefit evaluation index system of hybrid power system
is shown in Figure 1.

3. Model Establishment

3.1. Decision Matrix Based on Vague Set

Vague set proposed by Gau and Buehrer [31] is a generalized form of fuzzy set. Vague set has
been successfully applied in the field of fuzzy control, decision analysis and expert systems,
and has achieved better results than the traditional fuzzy set theory [32–34].

Set U the universe of discourse, with a generic element u. A vague set A is
characterized by a truth-membership function tA and a false-membership function fA, where
tA(u) is a lower bound on the grade of membership of u, derived from the evidence rising
for u; fA(u) is a lower bound on the negation of u, derived from the evidence against u;
0 ≤ tA(u) + fA(u) ≤ 1. The grade of membership of u in vague set A is bound to a subinterval
[tA(u), 1− fA(u)] of [0, 1]. The vague value [tA(u), 1− fA(u)] indicates that the exact grade of
membership μA(u) of u maybe unknown, but it is bound by tA(u) ≤ μA(u) ≤ 1−fA(u), where
0 ≤ tA(u) + fA(u) ≤ 1.
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When the universe of discourse U is discrete, a vague set A can be written as

A =
n∑

i=1

[
tA(ui), 1 − fA(ui)

]

ui
, ui ∈ U. (3.1)

When the universe of discourse U is continuous, a vague set A can be written as

A =

∫
U

[
tA(ui), 1 − fA(ui)

]

uidui
, ui ∈ U. (3.2)

The steps of determining the decision matrix is as follows.

(1) Determination Evaluation Factors and Comment Set

The evaluation factors are expressed as u1, u2, . . . , um, then the evaluation factor set is
U = {u1, u2, . . . , um}.

set evaluation indexes of each evaluation factor be uij , (i = 1, 2, . . . , m; j = 1, 2 . . . , n).
We can get index set ui = {ui1, ui2, . . . , uij , . . . , uim}, i = 1, 2, . . . , m; j = 1, 2, . . . , n.

Define the comment set as V = {v1, v2, . . . , vp}.

(2) Construct Evaluation Matrix

Assuming the comment level of index uij , (i = 1, 2, . . . , m; j = 1, 2, . . . , n) is vk(k =
1, 2, . . . , p), then the relationship matrix of factor set U mapping to comment set V is Ri:

Ri =

⎡

⎢⎢⎢
⎣

ri11, ri12, . . . , ri1p
ri21, ri22, . . . , ri2p
...

...
...

rin1, rin2, . . . , rinp

⎤

⎥⎥⎥
⎦
, (3.3)

where rijk means the comment of factor uij mapping to comment set, and rijk can be expressed
as

rijk =
[
tR̃ijk, 1 − fR̃ijk

]
. (3.4)

For qualitative index, the value can be got from experts’ evaluation. For quantitative
index, its quantitative value is the index value. Normalizing index value, we can get tR̃ijk and
1 − fR̃ijk.

The main calculations are as follows.
Multiply calculation:

k · Ã =
[
k · tÃ, k · (1 − fÃ

)]
k, k ∈ [0, 1]. (3.5)
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Finite sum calculation:

Ã ⊕ B̃ =
[
tÃ ⊕ tB̃,

(
1 − fÃ

) ⊕ (
1 − fB̃

)]
=

[
min

{
1, tÃ + tB̃

}
,min

{
1,

(
1 − fÃ

)
+

(
1 − fB̃

)}]
, (3.6)

bik =

⎡

⎣min

⎧
⎨

⎩
1,

n∑

j=1

aij tR̃ijk

⎫
⎬

⎭
,min

⎧
⎨

⎩
1,

n∑

j=1

aij

(
1 − fR̃ijk

)
⎫
⎬

⎭

⎤

⎦, (3.7)

where B̃i is a vague subset and bik (k = 1, 2, . . . , p) is the evaluation value of k to B̃i.

3.2. D-S Evidence Theory

The evidence theory, first proposed by Harvard University mathematician A. P. Dempster in
the 1960s, aims to use upper and lower probability to solve the multivalued mapping issues.
G. Shafer, Dempster’s student, has further developed the evidence theory by introducing the
concept of belief function to form a mathematical system to deal with uncertainty reasoning
based on “evidence” and “portfolio.”

Definition 3.1. Suppose Θ is the frame of discernment. If set function m : 2Θ → [0, 1] (2Θ is
the power set of Θ) is to meet m(Φ) = 0,

∑
A⊂Θ m(A) = 1, the function m is called the basic

probability assignment on Θ; for all A ⊂ Θ, m(A) is called the basic belief degree.

Definition 3.2. Suppose Θ is the frame of discernment, function m : 2Θ → [0, 1] is the basic
probability assignment on Θ, then the belief function is defined as Bel : 2Θ → [0, 1], where
Bel(A) =

∑
B⊂A m(B), for all A ⊂ Θ.

Definition 3.3. If m(A) > 0, then A is called the focal element of the belief function Bel. And
all focal elements are called its core.

Definition 3.4. If function Q : 2Θ → [0, 1] is defined by Q(A) =
∑

A⊂B m(B), for all A ⊂ Θ,
then Q is called the total belief function of Bel. For all A ⊂ Θ, Q(A) is called the total belief
number of A.

Definition 3.5. Suppose Bel : 2Θ → [0, 1] is a belief function on Θ. Functions Dou : 2Θ →
[0, 1] and pl : 2Θ → [0, 1] are defined as for all A ⊂ Θ Dou(A) = Bel(A) and pl(A) =
1 − Bel(A), then Dou is called suspicion function of Bel, and pl is called plausibility function.
For all A ⊂ Θ, Dou(A) is called the suspicion degree of A, and pl(A) is called the plausibility
degree.

Theorem 3.6. Suppose m1 and m2 are two basic probability assignment functions formed based
on information obtained from two different information sources, Bel1 and Bel2, in the same frame
of discernment Θ. A1, A2, . . . , Ak and B1, B2, . . . , Bl are focal elements of Bel1 and Bel2. If∑

Ai∩Bj=φ m1(Ai)m2(Bj) < 1, the combination of m1 and m2 is as follows:

m(A) =

⎧
⎪⎪⎨

⎪⎪⎩

0, A = φ,∑
Ai∩Bj=A m1(Ai)m2

(
Bj

)

1 − ∑
Ai∩Bj=φ m1(Ai)m2

(
Bj

) , A/=φ.
(3.8)
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Theorem 3.7. Supposem1, m2, . . . , mn are the corresponding basic probability assignment functions
formed based on information obtained from different information sources Bel1,Bel2, . . . ,Beln in the
same frame of discernmentΘ. If Bel1⊕Bel2⊕· · ·⊕Beln exists andm is its basic probability assignment
function, then

∀A ⊆ Θ, A/=φ,

m(A) = Kn

∑

A1∩A2∩···∩AN

m1(A1)m2(A2) · · ·mn(An),

Kn =
1
Nn

,

Nn =
∑

A1∩A2∩···∩AN /=φ

m1(A1)m2(A2) · · ·mn(An).

(3.9)

3.3. Design of Comprehensive Evaluation Model

Suppose there is a multiattribute (index) evaluation problem with comprehensive comment
set V = {V1, V2, . . . , Vm} and evaluation index set I = {I1, I1, . . . , In}. According to vague set,
the decision matrix R = (Rij)m×n, Rij = [tij , 1 − fij] is got. By synthesis law of vague set, we
can convert the vague set R into a real set G = (gij)m×n, gij = (tij + (1 − fij))/2.

Different mass functions mean different evaluation results. So it is vital to determine
the uncertainty degree of evidences. Theoretically, one index which matches average
information better than other indexes is more beneficial for decision making, and the
information uncertainty degree of the index is lower, vice versa.

Suppose the matrix G is

G =
(
gij

)
m×n, gi =

1
n

n∑

j=1

gij , i = 1, 2, . . . , m. (3.10)

Define the q-order uncertainty degree of index Ij as

DOI
(
Ij
)
=

1
m

[
m∑

i=1

(
rij

)q
]1/q

,

rij =
mini

∣∣gij − g
∣∣ + ξ mini

∣∣gij − g
∣∣

∣∣gij − g
∣∣ + ξ mini

∣∣gij − g
∣∣ , i = 1, 2, . . . , m; j = 1, 2, . . . , n,

(3.11)

where rij is called gray mean correlation degree with ξ = 0.5 in general.
In case of negative number, the normalization method is shown as

gij =
gij − mini

(
gij

)

mini

(
gij

) − mini

(
gij

) . (3.12)
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Suppose x = (x1, x2, . . . , xt) is a finite difference information sequence with a length of
t(t /= 0). An index set exists in the form of sequence xj /= 0, j ∈ J , J = {1, 2, . . . , t}. The mapping
function f is defined as information structure operator of finite sequence x:

f : x −→ yyj =
xj

∑t
k=1 xk

. (3.13)

Here y = (y1, y2, . . . , yt) is called mapping sequence of information structure.
The normalized score function matrix can be transformed into mapping sequence of

information structure Y = (yij)m×n.
Then the mass function mj(i) can be constructed:

mj(i) =
(
1 − DOI

(
Ij
))
yij , (3.14)

where mj(i) is a mass function of Vm to index Ij ,
∑m

i=1 mj(i) < 1. So the mass function of
overall uncertainty with respect to the index Ij is shown as

mj(i + 1) = 1 −
m∑

i=1

mj(i). (3.15)

According to the proposed combination rule, the final evaluation results can be
calculated after the combination of mass functions of comment set with respect to all indexes.

In summary, steps for comprehensive evaluation based on vague set and D-S evidence
theory are as follows.

Step 1. Construct the decision-making matrix R based on the vague set theory.

Step 2. Convert R into real matrix G = (gij)m×n according to vague combination rule.

Step 3. Calculate the uncertainty degree DOI(Ij) j = 1, 2, . . . , n combined with real matrix G
and (3.6).

Step 4. Establish the mapping sequence of information structure Y = (yij)m×n.

Step 5. Build up mass function mj(i) and mass function of overall uncertainty mj(i+1) on the
basis of Y = (yij)m×n and DOI(Ij).

Step 6. Fuse evidence information using the D-S combination rule.

Step 7. Make evaluation and decision in principle of the maximizing belief function.

4. Simulation Analysis

Guangdong power system in China, which includes thermal power, wind power, and solar
photovoltaic power, is selected to simulation analysis. It is known from Section 2 that the
comprehensive benefit evaluation index system of hybrid power system includes the four
aspects of economic benefit, environmental benefit, social benefit, and security, which is
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composed of 13 indexes shown in Table 1. According to data statistics and calculation, the
original index value can be got as follows.

The comprehensive comment set is set to be V = {v1, v2, v3, v4, v5} =
{best, better,good,worse,worst}. For quantitative indexes such as voltage qualification
rate, power grid frequency rate, average load rate, and power supply reliability rate, their
values can be directly calculated by basic statistical data. For qualitative indicators such
as debt paying ability, operation ability, saving natural resources, reducing environmental
pollution, their values can be decided by comprehensive experts’ opinions with specific
situations.

According to vague set, we can get the vague matrix R for hybrid power system.
Calculate the uncertainty degree DOI(Ij) and mapping sequence of information structure
Y = (yij)m×n. Then we can get mass function mj(i) and mass function of overall uncertainty
mj(i + 1):

R =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

v1 v2 v3 v4 v5

I1 [0.72, 0.86][0.83, 0.89][0.52, 0.63][0.24, 0.28][0.10, 0.16]
I2 [0.68, 0.88][0.76, 0.80][0.86, 0.93][0.27, 0.38][0.34, 0.49]
I3 [0.92, 0.87][0.80, 0.86][0.43, 0.49][0.34, 0.40][0.13, 0.28]
I4 [0.67, 0.73][0.79, 0.87][0.64, 0.73][0.41, 0.56][0.34, 0.39]
I5 [0.64, 0.73][0.79, 0.87][0.64, 0.73][0.41, 0.55][0.34, 0.39]
I6 [0.71, 0.84][0.94, 0.98][0.74, 0.82][0.51, 0.64][0.14, 0.25]
I7 [0.75, 0.84][0.77, 0.86][0.89, 0.90][0.23, 0.29][0.21, 0.31]
I8 [0.77, 0.84][0.74, 0.83][0.91, 0.96][0.23, 0.32][0.14, 0.31]
I9 [0.68, 0.76][0.70, 0.81][0.84, 0.92][0.18, 0.22][0.08, 0.16]
I10 [0.82, 0.96][0.94, 0.97][0.75, 0.96][0.34, 0.48][0.18, 0.33]
I11 [0.79, 0.80][0.94, 0.96][0.56, 0.63][0.29, 0.33][0.13, 0.20]
I12 [0.84, 0.90][0.95, 0.97][0.34, 0.41][0.23, 0.26][0.19, 0.36]
I13 [0.75, 0.69][0.87, 0.84][0.24, 0.33][0.17, 0.31][0.12, 0.24]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

M =

⎡

⎢⎢⎢⎢⎢
⎣

0.14, 0.12, 0.00, 0.24, 0.11, 0.13, 0.17, 0.20, 0.17, 0.00, 0.24, 0.21, 0.17
0.32, 0.21, 0.37, 0.14, 0.37, 0.29, 0.29, 0.15, 0.15, 0.13, 0.00, 0.18, 0.24
0.14, 0.09, 0.27, 0.28, 0.17, 0.14, 0.00, 0.00, 0.16, 0.21, 0.23, 0.14, 0.00
0.00, 0.00, 0.07, 0.17, 0.19, 0.25, 0.16, 0.23, 0.00, 0.18, 0.15, 0.31, 0.18
0.24, 0.25, 0.13, 0.17, 0.16, 0.19, 0.22, 0.22, 0.39, 0.35, 0.08, 0.16, 0.31

⎤

⎥⎥⎥⎥⎥
⎦
.

(4.1)

Set θ = v1, v2, v3, v4, v5, 2θ = {{v1}, {v2}, {v3}, {v4}, {v5}, {v1, v2, v3, v4, v5}}. According
to D-S combination rule, we can get belief functions of {v1}, {v2}, {v3}, {v4}, {v5},
{v1, v2, v3, v4, v5} which are 0.19, 0.45, 0.13, 0.14, 0.08, 0.01, meaning v2 
 v1 
 v4 
 v3 
 v1.
The belief functions of v2 is best. According to maximizing principle of belief function, the
result of comprehensive benefit evaluation is “better.”

In order to validate the proposed evaluation algorithm, three other com-
monly used algorithms including Fuzzy set theory, Vague set theory, and D-S evi-
dence theory are calculated for comparison. According to Fuzzy set theory and
the original index value, the comprehensive evaluation result of hybrid power sys-
tem is [v1, v2, v3, v4, v5] = [0.2204, 0.2060, 0.1963, 0.1925, 0.1849], which means the qual-
ity of hybrid power system is “best.” According to Vague set theory and the cal-
culated vague index value, the comprehensive evaluation result is [v1, v2, v3, v4, v5]
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Table 1: Comprehensive benefit evaluation index system of hybrid power system.

Evaluation
objective

Influence factors Evaluation indexes Original index
value

Pulling gross domestic product (I1) 61.24%
Social benefit Improving people’s living standard (I2) 2.99%

Promoting social employment (I3) 3.79%

Comprehensive
benefit

Environmental benefit Saving natural resources (I4) 17.77%
Reducing environmental pollution (I5) 6.70%

Solvency capacity (I6) 4.47%

Economic benefit Operational capacity (I7) 4%
Profitability (I8) 4.50%
Development capacity (I9) 5%

Integrated voltage qualification rate (I10) 99.27%

Security Grid frequency qualification rate (I11) 99.99%

Average loading rate of provincial grid (I12) 80.94%

Power supply reliability rate (I13) 99.81%

= [[0.7517,0.8414][0.8587,0.9067][0.6760,0.7513][0.3368,0.4229][0.1843,0.3045]], the corre-
sponding evaluation value is 0.7966, 0.8827, 0.7137, 0.3799, 0.2444, which means the final
evaluation result is “better” and the corresponding evaluation value being 0.8827. According
to D-S evidence theory, the belief functions of {v1}, {v2}, {v3}, {v4}, {v5}, {v1, v2, v3, v4, v5} are
0.19, 0.32, 0.12, 0.16, 0.07, 0.14, which means the result of comprehensive benefit evaluation is
“better.”

Combine the actual conditions and experts’ opinions we know such that the actual
comprehensive benefit of hybrid power system in Guangdong province is better, which
means that the evaluation results of proposed evaluation model, vague set theory, and D-
S evidence theory are all correct but fuzzy set. Therefore we know that fuzzy set has a
great limitation in comprehensive evaluation compared to the proposed model. At the same
time, the best result of proposed model is 0.45 which is much more than better 0.19 no less
than the worst 0.01. Analyze final evaluation result sequence of proposed evaluation model,
vague set theory, and D-S evidence theory; it is known that the range of result set of the
proposed model is much more apparent than other evaluation algorithms. So the results from
different evaluation methods validate that the proposed algorithm based on vague set and
D-S evidence theory could obtain satisfying conclusion and decrease uncertainty of decision
making.

5. Conclusion

The proportion of clean energy is increasing in recent years. Different power generation
models have different advantages and disadvantages. It is of great significance for hybrid
power system to evaluate the comprehensive benefits. Analyzing characteristics of hybrid
power system, an index system of comprehensive benefit evaluation including economic
benefit, environmental benefit, social benefit, and security is established in this paper. Due
to advantages of processing abundant uncertain and fuzzy information, vague set is used
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to determine the decision matrix. Convert vague decision matrix to real one by vague
combination rule and determine uncertain degrees of different indexes by grey incidence
analysis, then the mass functions of different comment set in different indexes are obtained.
Information can be fused in accordance with the D-S combination rule and the evaluation
result is got. A simulation of hybrid power system including thermal power, wind power,
and photovoltaic power in China is simulated. In order to validate the proposed evaluation
model, three other commonly used algorithms including Fuzzy set theory, Vague set theory,
and D-S evidence theory are calculated for comparison. The results illustrate that a satisfying
conclusion can be obtained and an obvious decrease can be observed in the uncertainty
of decision making compared to other commonly used evaluation methods. The actual
implementation results prove that the proposed evaluation algorithm based on vague set and
D-S evidence theory is effective and practical to evaluate comprehensive benefit of hybrid
power system.

Acknowledgments

This work was partially supported by the Natural Science Foundation of China (71071052,
71201057, 61174058, and 61134001), the National Key Basic Research Program, China
(2012CB215202), the 111 Project (B12018), and the Fundamental Research Funds for the
Central Universities (12QX22).

References

[1] R. J. Wai and C. Y. Lin, “Active low-frequency ripple control for clean-energy power-conditioning
mechanism,” IEEE Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3780–3792, 2010.

[2] P. D. C. Wijayatunga and D. Prasad, “Clean energy technology and regulatory interventions for
Greenhouse Gas emission mitigation: Sri Lankan power sector,” Energy Conversion and Management,
vol. 50, no. 6, pp. 1595–1603, 2009.

[3] A. Esmin and G. Lambert-Torres, “Application of particle swarm optimization to optimal power
systems,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 3A, pp. 1705–
1716, 2012.

[4] J. Park, T. Oh, K. Cho et al., “Reliability evaluation of interconnected power systems including wind
turbine generators,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 8,
pp. 5797–5808, 2012.

[5] A. Abro and J. Mohamad-Saleh, “Control of power system stability-reviewed solutions based on
intelligent systems,” International Journal of Innovative Computing, Information and Control, vol. 8, no.
10A, pp. 6643–6666, 2012.

[6] P. Tavner, “Wind power as a clean-energy contributor,” Energy Policy, vol. 36, no. 12, pp. 4397–4400,
2008.

[7] K. Kaygusuz, “Wind power for a clean and sustainable energy future,” Energy Sources, Part B, vol. 4,
no. 1, pp. 122–133, 2009.

[8] A. Nishimura, Y. Hayashi, K. Tanaka et al., “Life cycle assessment and evaluation of energy payback
time on high-concentration photovoltaic power generation system,” Applied Energy, vol. 87, no. 9, pp.
2797–2807, 2010.

[9] K. Morison, L. Wang, and P. Kundur, “Power system security assessment,” IEEE Power and Energy
Magazine, vol. 2, no. 5, pp. 30–39, 2004.

[10] Y. Wei, D. Niu, and G. Wang, “Comprehensive benefit evaluation of thermal-wind-hydraulic power
joint operation based on combined weight,” East China Electric Power, vol. 4, pp. 1–5, 2012.

[11] C. He, F. Kai, and Z. Quan, “et al. Investment evaluation system development based on unified
information platform for future smart grid,” Energy Procedia, vol. 12, pp. 10–17, 2011.



12 Mathematical Problems in Engineering

[12] Y. Jing, H. Bai, and J. Wang, “A fuzzy multi-criteria decision-making model for CCHP systems driven
by different energy sources,” Energy Policy, vol. 42, pp. 286–296, 2012.

[13] S. Hu and L. Wang, “A comprehensive analysis of the cogeneration units to the thermal system
transformation,” Energy Procedia, vol. 17, no. B, pp. 1169–1176, 2012.

[14] Q. Sun, X. Ge, L. Liu et al., “Review of smart grid comprehensive assessment systems,” Energy
Procedia, vol. 12, pp. 219–229, 2011.

[15] A. Hepbasli, “A key review on exergetic analysis and assessment of renewable energy resources for a
sustainable future,” Renewable and Sustainable Energy Reviews, vol. 12, no. 3, pp. 593–661, 2008.

[16] R. Laleman, J. Albrecht, and J. Dewulf, “Life cycle analysis to estimate the environmental impact of
residential photovoltaic systems in regions with a low solar irradiation,” Renewable and Sustainable
Energy Reviews, vol. 15, no. 1, pp. 267–281, 2011.

[17] G. Shafer, AMathematical Theory of Evidence, Princeton University Press, Princeton, NJ, USA, 1976.
[18] M. Beynon, D. Cosker, and D. Marshall, “An expert system for multi-criteria decision making using

Dempster Shafer theory,” Expert Systems with Applications, vol. 20, no. 4, pp. 357–367, 2001.
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This paper investigates the influence of a new parallel distributed controller (PDC) on the
stabilization region of continuous Takagi-Sugeno (T-S) fuzzy models. Using a nonquadratic
Lyapunov function, a new sufficient stabilization criterion is established in terms of linear matrix
inequality. The criterion examines the derivative membership function; an approach to determine
state variables is given based on observer design. In addition, a stabilization condition for
uncertain system is given. Finally, numeric simulation is given to validate the developed approach.

1. Introduction

Fuzzy control systems have experienced a big growth of industrial applications in the recent
decades, because of their reliability and effectiveness. Many researches have investigated the
Takagi-Sugeno models [1–3] during the last decades. Two classes of Lyapunov functions are
used to analyze these systems: quadratic Lyapunov functions and nonquadratic Lyapunov
ones which are less conservative than the first class. Many researches have investigated with
nonquadratic Lyapunov functions [4–10].

As the information about the time derivatives of membership function is considered by
the PDC fuzzy controller, it allows the introduction of slack matrices to facilitate the stability
analysis. The relationship between the membership function of the fuzzy model and the fuzzy
controllers is used to introduce some slack matrix variables. The boundary information of
the membership functions is brought to the stability condition and thus offers some relaxed
stability conditions [6]. In order to determine the state variables many approaches of observer
design are given [9–11].
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In this paper, new stabilization conditions for Takagi-Sugeno uncertain fuzzy models
based on the use of fuzzy Lyapunov function are presented. This criterion is expressed in
terms of linear matrix inequalities (LMIs) which can be efficiently solved by using various
convex optimization algorithms [12, 13]. The presented method is less conservative than
existing results.

The organization of the paper is as follows. In Section 2, we present the system
description and problem formulation and we give some preliminaries which are needed
to derive results. Section 3 will be concerned with stabilization analysis for continuous T-S
fuzzy systems by the use of new PDC controller based on derivative membership functions.
An observer approach design is derived to estimate state variables. In Section 4, a new
stabilization condition for uncertain system is given. Next, a new robust PDC controller
design approach is presented. Illustrative examples are given in Section 5 for a comparison
of previous results to demonstrate the advantage of the proposed method. Finally Section 6
makes the conclusion.

Notation. Throughout this paper, a real symmetric matrix S > 0 denotes S being a positive
definite matrix. The superscript “T” is used for the transpose of a matrix.

2. System Description and Preliminaries

Consider an uncertain T-S fuzzy continuous model for a nonlinear system as follows:

IF z1(t) is Mi1, . . . , zp(t) is Mip,

THEN ẋ(t) = (Ai + ΔAi)x(t) + (Bi + ΔBi)u(t) i = 1, . . . , r,
(2.1)

where Mij (i = 1, 2, . . . , r, j = 1, 2, . . . , p) is the fuzzy set and r is the number of model rules,
x(t) ∈ �n is the state vector, u(t) ∈ �m is the input vector, Ai ∈ �n×n, Bi ∈ �n×m are constant
real matrices, and z1(t), . . . , zp(t) are known premise variables. ΔAi, and ΔBi are time-varying
matrices representing parametric uncertainties in the plant model. These uncertainties are
admissibly norm-bound and structured.

The final outputs of the fuzzy systems are:

ẋ(t) =
r∑

i=1

hi(z(t)){(Ai + ΔAi)x(t) + (Bi + ΔBi)u(t)}, (2.2)

where

z(t) =
[
z1(t)z2(t) · · · zp(t)

]
,

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

,

wi(z(t)) =
p∏

j=1

Mij

(
zj(t)

) ∀t.

(2.3)
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The term Mi1(zj(t)) is the grade of membership of zj(t) in Mi1

Since

⎧
⎪⎨

⎪⎩

r∑

i=1
wi(z(t)) � 0

wi(z(t)) ≥ 0, i = 1, 2, . . . , r
we have

⎧
⎪⎨

⎪⎩

r∑

i=1
hi(z(t)) = 1,

hi(z(t)) ≥ 0, i = 1, 2, . . . , r
(2.4)

for all t.
We have the following property:

r∑

k=1

ḣk(z(t)) = 0. (2.5)

This study investigates the PDC controller influence on the closed-loop stability region and
gives robustness analysis of uncertain Takagi-Sugeno fuzzy system. Thus, we consider a PDC
fuzzy controller which examines the derivative membership function and it is given by

u(t) = −
r∑

i=1

hi(z(t))Fix(t) −
r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
x(t). (2.6)

The fuzzy controller design consists to determine the local feedback gains Fi, Kρ, and R in
the consequent parts. The state variables are determined by an observer and are detailed in
the next section.

The open-loop system is given by

ẋ(t) =
r∑

i=1

hi(z(t))(Ai + ΔAi)x(t). (2.7)

By substituting (2.6) into (2.2), the closed-loop fuzzy system can be represented as:

ẋ(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩
AΔi − BΔiFj −

r∑

ρ=1

ḣρ(z(t))BΔi

(
Kρ + R

)
⎫
⎬

⎭
x(t), (2.8)

where AΔi = Ai + ΔAi and BΔi = Bi + ΔBi.

Assumption 2.1. The time derivative of the premises membership function is upper bound
such that |ḣk| ≤ φk, for k = 1, . . . , r, where, φk, k = 1, . . . , r are given positive constants.

Assumption 2.2. The matrices denote the uncertainties in the system and take the form of

ΔAi = DaiFai(t)Eai ,

ΔBi = DbiFbi(t)Ebi ,
(2.9)



4 Mathematical Problems in Engineering

where Dai ,Dbi , Eai , and Ebi are known constant matrices and Fai(t) and Fbi(t) are unknown
matrix functions satisfying:

FT
ai(t)Fai(t) ≤ I, ∀t,

FT
bi
(t)Fbi(t) ≤ I, ∀t,

(2.10)

where I is an appropriately dimensioned identity matrix.

Lemma 2.3 (Boyd et al. Schur complement [12]). Given constant matrices Ω1,Ω2, and Ω3 with
appropriate dimensions, where Ω1 = ΩT

1 and Ω2 = ΩT
2 , then

Ω1 + ΩT
3Ω

−1
2 Ω3 ≺ 0 (2.11)

if and only if

[
Ω1 ΩT

3
−Ω2

]
� 0 or

[−Ω2 Ω3

Ω1

]
� 0. (2.12)

Lemma 2.4 (Peterson and Hollot [2]). Let Q = QT,H,E, and F(t) satisfying FT (t)F(t) ≤ I are
appropriately dimensional matrices then the following inequality

Q +HF(t)E + ETFT (t)HT ≺ 0 (2.13)

is true, if and only if the following inequality holds for any λ � 0

Q + λ−1HHT + λETE ≺ 0. (2.14)

The aim of the next section is to find conditions for the stabilization of the closed-loop
T-S fuzzy system by using the Lyapunov theory.

3. Main Results

Consider the closed-loop system without uncertainties

ẋ(t) =
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}. (3.1)

In order to give stability conditions, the slack matrix variables and the membership function
boundary Mozelli et al. [14] are used. Consider the following null product that will serve
stability analysis purposes:

2
[
xT (t)M + ẋT (t)μM

]
×
[

ẋ(t) −
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}
]

= 0. (3.2)
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3.1. A PDC Controller with Derivative Membership Function

By substituting (2.6) into (3.1), the closed-loop fuzzy system can be represented as:

ẋ(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

{

Ai − BiFj −
r∑

m=1

ḣm(z(t))Bi(Km + R)

}

x(t). (3.3)

The next Theorem gives sufficient conditions to guarantee stability of system (3.3).

Theorem 3.1. Under Assumptions 2.1 and 2.2, and for μ � 0, ε ≥ 0, the Takagi-Sugeno fuzzy system
(3.1) is stabilizable with the PDC controller (2.6), with gains given by Fi = ST

i H
−T , Kρ = V T

ρ H
−T ,

and R = V TH−T , if there exist positive definite symmetric matrices Tk, k = 1, 2, . . . , r, Y , and any
matricesH,Si, Vρ, and V with appropriate dimensions such that the following LMIs hold.

Ti � 0,

Ti + Y � 0 (i = 1, 2, . . . , r),

Λii ≺ 0,

Λij ≺ 0,

(3.4)

Λij = Λij + Λji, (3.5)

where

Λij =

⎡

⎣
Tφ −AiH

T −HAT
i + BiS

T
j + SjB

T
i + BiV

T

φ + V φB
T
i ∗

Ti − μ
(
AiH

T − BiS
T
j − BiV

T

φ

)
+H μ

(
HT +H

)

⎤

⎦,

V φ =
r∑

ρ=1

φρ

(
V T
ρ + V T

)
,

Tφ =
r∑

k=1

φk(Tk + Y ).

(3.6)

Proof of Theorem 3.1. Let’s consider the fuzzy weighting-dependent Lyapunov-Krasovskii
functional as:

V (x(t)) =
r∑

k=1

hk(z(t)) · Vk(x(t)), (3.7)

with Vk(x(t)) = xT (t)(Pk + εX)x(t), k = 1, 2, . . . , r, where Pk = PT
k , X = XT , ε ≥ 0, and

(Pk + εX) ≥ 0.
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This candidate Lyapunov function satisfies

(i) V (x(t)) is C1,

(ii) V (0) = 0 and V (x(t)) ≥ 0 for x(t)/= 0,

(iii) ‖x(t)‖ → ∞ ⇒ V (x(t)) → ∞.

The time derivative of V (x(t)) is given by:

V̇ (x(t)) =
r∑

k=1

ḣk(z(t))Vk(x(t)) +
r∑

k=1

hk(z(t))V̇k(x(t)). (3.8)

Adding the null product, then

V̇ (x(t)) =
r∑

k=1

ḣk(z(t))Vk(x(t)) +
r∑

k=1

hk(z(t))V̇k(x(t)) + 2
[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣ẋ(t) −
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩
Ai − BiFj −

r∑

ρ=1

ḣρ(z(t))Bi

(
Kρ + R

)
⎫
⎬

⎭
x(t)

⎤

⎦.

(3.9)

Equation (3.9) can be rewritten as,

V̇ (x(t)) = Υ1(x, z) + Υ2(x, z), (3.10)

where

Υ1(x, z) = xT (t)

(
r∑

k=1

ḣk(z(t)) · (Pk + εX)

)

x(t) + 2
[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣
r∑

i=1

r∑

ρ=1

hi(z(t))ḣρ(z(t))Bi

(
Kρ + R

)
x(t)

⎤

⎦,

Υ2(x, z) =
r∑

i=1

hi(z(t))
{

2xT (t)(Pi + εX)ẋ(t)
}
+ 2

[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣ẋ(t) −
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))
{
Ai − BiFj

}
x(t)

⎤

⎦.

(3.11)

Then, based on Assumption 2.1, an upper bound of Υ1(x, z) is obtained as:

Υ1(x, z) ≤
r∑

i=1

hi(z(t))

⎧
⎨

⎩

r∑

k=1

φk · x(t)T (Pk + εX)x(t) + 2
[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣
r∑

ρ=1

φρBi

(
Kρ + R

)
x(t)

⎤

⎦

⎫
⎬

⎭
.

(3.12)
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Based on (2.5), it follows that
∑r

k=1 ḣk(z(t))(1 − ε)X = 0 where X is any symmetric
matrix of proper dimension.

Suppose that X =
∑r

k=1 ḣk(z(t))(1 − ε)X and adding X to (3.12), then

Υ1(x, z) ≤
r∑

i=1

hi(z(t))

⎧
⎨

⎩

r∑

k=1

φk · x(t)T (Pk +X)x(t) + 2
[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣
r∑

ρ=1

φρBi

(
Kρ + R

)
x(t)

⎤

⎦

⎫
⎬

⎭

=
r∑

i=1

hi(z(t))
{
x(t)TPφx(t) + 2xT (t)M · BiKφx(t) + 2ẋT (t)μM · BiKφx(t)

}
,

(3.13)

where

Pφ =
r∑

k=1

φk · (Pk +X), Kφ =
r∑

ρ=1

φρ

(
Kρ + R

)
. (3.14)

Then,

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

×
{
x(t)TPφx(t) + 2xT (t)M · BiKφx(t) + 2ẋT (t)μM · BiKφx(t)

+ 2xT (t)(Pi + εR)ẋ(t) + 2xT (t)Mẋ(t) + 2ẋT (t)μMẋ(t)

−2xT (t)M
(
Ai − BiFj

)
x(t) − 2ẋT (t)μM

(
Ai − BiFj

)
x(t)

}
.

(3.15)

Using vector ηT = [xT (t) ẋT (t)]T , (3.15) can be rewritten as

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))ηTΞijη

=
r∑

i=1

h2
i (z(t))η

TΞiiη +
r∑

i=1

∑

i≺j
hi(z(t))hj(z(t))ηT(Ξij + Ξji

)
η,

(3.16)

where

Ξij =

⎡

⎢
⎣

{
Pφ −M

(
Ai − BiFj − BiKφ

)
−
(
Ai − BiFj − BiKφ

)T
MT

}
∗

(Pi + εX) − μM
(
Ai − BiFj − BiKφ

)
+MT μ

(
M +MT

)

⎤

⎥
⎦. (3.17)
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If Ξii ≺ 0 and (Ξij + Ξji) ≺ 0, then V̇ (x(t)) ≺ 0 and (3.3) is stable. Pre- and post-
multiplying Ξii ≺ 0 and (Ξij + Ξji) ≺ 0 by nonsingular matrices diag(M−1,M−1) and
diag(M−T ,M−T), respectively, and pre- and postmultiplying by M−1 and M−T , respectively,
then we obtain

M−1(Pi + εX)M−T � 0 (i = 1, 2, . . . , r),

M−1(Pi +X)M−T � 0 (i = 1, 2, . . . , r),

Λii ≺ 0 (i = 1, 2, . . . , r),

Λij ≺ 0 (i ≺= 1, 2, . . . , r),

(3.18)

where Λij = Λij + Λji, and

Λij =

⎡

⎢⎢⎢⎢⎢
⎣

{
M−1PφM

−T −
(
Ai − BiFj − BiKφ

)
M−T

−M−1
(
Ai − BiFj − BiKφ

)T} ∗
{
M−1(Pi + εX)M−T − μ

(
Ai − BiFj − BiKφ

)
M−T +M−1

}
μ
(
M−T +M−1)

⎤

⎥⎥⎥⎥⎥
⎦

(3.19)

for the following variables definition:

H = M−1, Ti = H(Pi + εX)HT, Tφ = HPφH
T, Sj = HFT

j ,

Vj = HKT
ρ , V = HRT, Y = HXHT.

(3.20)

If LMI in (3.4) holds then the closed-loop continuous fuzzy system (3.3) is asymptotically
stable. The control gains are given by Fi = ST

i H
−T , Kρ = V T

ρ H
−T , and R = V TH−T . This

completes the proof.

Remark 3.2. The selection of φk given in Assumption 2.1 is performed by using a simple
procedure given in [15] .

Remark 3.3. The major contribution of the Theorem 3.1 is represented by the proposed PDC
controller given by (2.6). The contribution appears in the gains (Kρ + R) introduced in
the controller term based on derivative membership functions. The stabilization condition
proposed is less conservative than some of those in the literature, as is shown in the example
below.

3.2. Observer Design

In order to determine state variables of the system, this section gives a solution by the means
of fuzzy observer design. The following condition is to be satisfied by the observer:

x(t) − x̂(t) −→ 0 as t −→ ∞, (3.21)
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where x̂(t) denotes the state vector estimated by a fuzzy observer. This condition guarantees
that the steady-state error between x(t) and x̂(t) converge to 0 and we denote this error by
e(t) = x(t) − x̂(t).

A stabilizing observer-based controller can be formulated as follow:

̂̇x(t) =
r∑

j=1

hi(z(t))
{
Aix̂(t) + Biu(t) + Lj

(
Cix̂(t) − y(t)

)}
,

y(t) = −
r∑

i=1

hi(z(t))Cix̂(t),

(3.22)

where y(t) denotes the output vector.
We consider the proposed PDC controller given by (2.6):

u(t) = −
r∑

i=1

hi(z(t))Fix̂(t) −
r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
x̂(t). (3.23)

Replacing the fuzzy controller (2.6) in fuzzy observer (3.22) we obtain the closed-loop
fuzzy system as:

ẋ(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩
(
Ai − BiFj

) −
r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
⎫
⎬

⎭
x(t)

+
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩
BiFj +

r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
⎫
⎬

⎭
e(t)

ė(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))
{
Ai − LiCj

}
e(t).

(3.24)

The augmented system is represented as follows:

ẋa(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))G̃ijxa(t)

=
r∑

j=1

hi(z(t))hj(z(t))G̃iixa(t) + 2
r∑

i=1

r∑

i≺j
hi(z(t))hj(z(t))

{
G̃ij + G̃ji

2

}

xa(t),

(3.25)
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where

xa(t) =
[
x(t)
e(t)

]
,

G̃ij =

⎡

⎣
Ai − BiFj −

r∑

ρ=1
ḣρBi

(
Kρ + R

)
BiFj +

r∑

ρ=1
ḣρBi

(
Kρ + R

)

0 Ai − LiCj

⎤

⎦.

(3.26)

By applying Theorem 1 in [16] in the augmented system (3.25) we derive the following
Theorem.

Theorem 3.4. Under Assumptions 2.1 and 2.2, and for 0 ≤ μ ≤ 1, the Takagi-Sugeno fuzzy system
(3.1) is stable if there exist positive definite symmetric matrices Pk, k = 1, 2, . . . , r, and R, matrices
F1, . . . , Fr such that the following LMIs holds.

Pk + R � 0, k ∈ {1, . . . , r},
Pj + μR ≥ 0, j = 1, 2, . . . , r,

Pφ +
{
G̃T

ii

(
Pk + μR

)
+
(
Pk + μR

)
G̃ii

}
≺ 0, i, k ∈ {1, . . . , r},

{
G̃ij + G̃ji

2

}T
(
Pk + μR

)
+
(
Pk + μR

)
{
G̃ij + G̃ji

2

}

≺ 0, for i, j, k = 1, 2, . . . , r such that i ≺ j,

(3.27)

where

G̃ij =

⎡

⎣
Ai − BiFj −

r∑

ρ=1
ḣρBi

(
Kρ + R

)
BiFj +

r∑

ρ=1
ḣρBi

(
Kρ + R

)

0 Ai − LiCj

⎤

⎦,

Pφ =
r∑

k=1

φk(Pk + R).

(3.28)

Proof of Theorem 3.4. The result follows immediately from the proof of Theorem 1 in [16].

4. Robust Stability Condition with PDC Controller

Consider the uncertain closed-loop system (2.8). A sufficient robust stability condition is
given as follows.

Theorem 4.1. Under Assumptions 2.1 and 2.2, and for μ � 0, ε ≥ 0, the Takagi-Sugeno fuzzy system
(2.2) is stabilizable with the PDC controller (2.6), with gains given by Fi = ST

i H
−T , Kρ = V T

ρ H
−T ,
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and R = V TH−T , if there exist positive definite symmetric matrices Tk, k = 1, 2, . . . , r, Y , and any
matricesH,Si, Vρ, and V with appropriate dimensions such that the following LMIs hold.

Ti � 0,

Ti + Y � 0 (i = 1, 2, . . . , r),
∑

ii

≺ 0,

∑

ij

≺ 0,

(4.1)

∑

ij

=
∑

ij

+
∑

ji

,

Tφ =
r∑

k=1

φk(Tk + Y ),

(4.2)

where

Σij =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ11 Φ12 MDai MDbi ET
ai −

(
Ebi

(
Fi +Kφ

))T

Φ22 μMDai μMDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (4.3)

with

Φ11 = Pφ +
[
M · BiKφ +K

T

φB
T
i M

]
−
[
MGii +Gii

TMT
]
,

Φ12 = (Pi + εX) − μ
(
Gii − BiKφ

)T
MT +M,

Φ22 = μ
(
M +MT

)
,

(4.4)

where Gij = Ai − BiFj , Gii = Ai − BiFi, and Pφ =
∑r

k=1 φk(Pk + R).
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Proof. [Proof of Theorem 4.1] The result follows immediately from the proof of Theorem 3.1
by replacing in the matrix inequality Ai with Ai +DaiF(t)Eai and Bi with Bi +DbiF(t)Ebi, we
obtain the following inequality:

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

×
{

x(t)TPφx(t) + 2xT (t)M · BiKφx(t) + 2ẋT (t)μM · BiKφx(t)

+ 2xT (t)(Pi + εR)ẋ(t) + 2xT (t)Mẋ(t) + 2ẋT (t)μMẋ(t)

− 2xT (t)M
(
Ai − BiFj

)
x(t) − 2xT (t)M

×
(
[
Dai Dbi

]
[
Fai(t) 0

0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])

x(t)

− 2ẋT (t)μM
(
Ai − BiFj

)
x(t) − 2ẋT (t)μM

×
(
[
Dai Dbi

]
[
Fai(t) 0

0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])

x(t)

}

.

(4.5)

Using vector ηT = [xT (t) ẋT (t)]T , (4.5) can be rewritten as

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))ηT Ξ̃ijη

=
r∑

i=1

h2
i (z(t))η

T Ξ̃iiη +
r∑

i=1

∑

i≺j
hi(z(t))hj(z(t))ηT

(
Ξ̃ij + Ξ̃ji

)
η,

(4.6)

where

Ξ̃ij = Ξij +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M

⎛

⎝
[
Dai Dbi

]
[
Fai(t) 0

0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
]⎞

⎠

+

([
Dai Dbi

] [
Fai(t) 0

0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])T

MT

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∗

μM

(
[
Dai Dbi

]
[
Fai(t) 0

0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ξ̃ij = Ξij +
[
M
[
Dai Dbi

]

μM
[
Dai Dbi

]
][

Fai(t) 0
0 Fbi(t)

][ Eai 0
−Ebi

(
Fj +Kφ

)
0

]

+

⎡

⎣E
T
ai −

(
Ebi

(
Fj +Kφ

))T

0 0

⎤

⎦
[
Fai(t) 0

0 Fbi(t)

]T
⎡

⎣
DT

aiM
T μDT

aiM
T

DT
bi
MT μDT

bi
MT

⎤

⎦.

(4.7)
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Then, based on Lemma 2.4, an upper bound of Ξ̃ij obtained as:

Ξ̃ij = Ξij + λ−1M

[
Dai Dbi

μDai μDbi

]
⎡

⎣
DT

ai μDT
ai

DT
bi

μDT
bi

⎤

⎦MT

+ λ

⎡

⎣E
T
ai −

(
Ebi

(
Fj +Kφ

))T

0 0

⎤

⎦

[
Eai 0

−Ebi

(
Fj +Kφ

)
0

]

≺ 0

(4.8)

by Schur complement, we obtain,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ11 Φ12 MDai MDbi ET
ai −

(
Ebi

(
Fj +Kφ

))T

Φ22 μMDai μMDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

≺ 0, (4.9)

with

Φ11 = Pφ +
[
M · BiKφ +K

T
φB

T
i M

]
−
[
M
(
Ai − BiFj

)
+
(
Ai − BiFj

)T
MT

]
,

Φ12 = (Pi + εX) − μ
(
Ai − BiFj − BiKφ

)T
MT +M,

Φ22 = μ
(
M +MT

)
.

(4.10)

If the LMI (4.1) holds then the system (2.8) is stable. This completes the proof.

The following theorem gives sufficient conditions for robust PDC controller design.

Theorem 4.2. Under Assumptions 2.1 and 2.2, and for μ � 0, ε ≥ 0, the Takagi-Sugeno robust
fuzzy system (2.2) is stabilizable with the PDC controller (2.6), with gains given by Fi = S̃T

i H̃
−T ,
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Kρ = Ṽ T
ρ H̃

−T , and R = Ṽ T H̃−T , if there exist positive definite symmetric matrices T̃k, k = 1, 2, . . . , r,

Ỹ , and any matrices H̃, S̃i, Ṽρ, and Ṽ with appropriate dimensions such that the following LMIs hold.

T̃i � 0,

T̃i + Ỹ � 0 (i = 1, 2, . . . , r),

Λ̃ii ≺ 0,

Λ̃ij ≺ 0,

(4.11)

Λ̃ij = Λ̃ij + Λ̃ji,

T̃φ =
r∑

k=1

φk

(
T̃k + Ỹ

)
,

Ṽ φ =
r∑

ρ=1

φρ

(
Ṽ T
ρ + Ṽ T

)
,

(4.12)

where

Λ̃ij =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ̃11 Φ̃12 Dai Dbi HET
ai −S̃jE

T
bi
− Ṽ φE

T
bi

Φ̃22 μDai μDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (4.13)

with

Φ̃11 = T̃φ −AiH̃
T − H̃AT

i + BiS̃
T
j + S̃jB

T
i + BiṼ

T

φ + Ṽ φB
T
i ,

Φ̃12 = T̃i − μ

(
AiH̃

T − BiS̃
T
j − BiṼ

T

φ

)
+ H̃,

Φ̃22 = μ
(
HT +H

)
.

(4.14)

Proof of Theorem 4.2. Consider (4.8) and pre- and postmultiplying by M−1 and M−T ,
respectively, then we obtain

Λ̃ij = Λij + λ−1
[
Dai Dbi

μDai μDbi

]
⎡

⎣
DT

ai μDT
ai

DT
bi

μDT
bi

⎤

⎦

+ λM−1

⎡

⎣E
T
ai −

(
Ebi

(
Fj +Kφ

))T

0 0

⎤

⎦

[
Eai 0

−Ebi

(
Fj +Kφ

)
0

]

M−T ≺ 0,

(4.15)

with Λij defined by (3.5).
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By Schur complement, we obtain,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ̃11 Φ̃12 Dai Dbi M−1ET
ai −M−1

(
Ebi

(
Fj +Kφ

))T

Φ̃22 μDai μDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0, (4.16)

with

Φ̃11 = M−1PφM
−T −

(
Ai − BiFj − BiKφ

)
M−T −M−1

(
Ai − BiFj − BiKφ

)T
,

Φ̃12 = M−1(Pi + εX)M−T − μ
(
Ai − BiFj − BiKφ

)
M−T +M−1,

Φ̃22 = μ
(
M−T +M−1

)

(4.17)

for the following variables definition:

H̃ = M−1, T̃i = H̃(Pi + εX)H̃T , T̃φ = H̃PφH̃
T ,

S̃j = H̃FT
j , Ṽj = H̃KT

ρ , Ṽ = H̃RT , Ỹ = H̃XH̃T .
(4.18)

If LMI in (4.11) holds then the closed-loop continuous fuzzy system (2.8) is
asymptotically stable.

The control gains are given by Fi = S̃T
i H̃

−T , Kρ = Ṽ T
ρ H̃

−T , and R = Ṽ T H̃−T . This
completes the proof.

5. Numerical Examples

In order to show the improvements of the proposed approaches over some existing results, in
this section, we present a numerical example in which we present the feasible area for a T-S
fuzzy system. Indeed, we compare the proposed fuzzy Lyapunov approaches (Theorem 3.4)
with result provided by [17], and in [14, Theorem 6]. A second example is given to improve
the given gains of robust PDC controller.

Example 5.1. Consider the following continuous T-S fuzzy system:

ẋ(t) =
r∑

i=1

hi(z(t))Aix(t),

(5.1)



16 Mathematical Problems in Engineering

5 10 15 20 25

a

b

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

Figure 1: Feasible area provided by [17] (+), [14] (©) and Theorem 3.1 (•).

with

r = 2; A1 =
[

3.6 −1.6
6.2 −4.3

]
, A2 =

[−a −1.6
6.2 −4.3

]
,

B1 =
[−0.45

−3

]
, B2 =

[−b
−3

]
,

(5.2)

where a ∈ [0, 25], b ∈ [0, 2], considering μ = 0.04 and φ1,2 = 1.
The proposed approach (Theorem 3.4) gives less conservative stabilization conditions

(Figure 1) than some recent results provided by [14, 17].

Example 5.2. Consider the uncertain continuous T-S fuzzy system given by (2.8) with

r = 2; A1 =
[

3.6 −1.6
6.2 −4.3

]
, A2 =

[−a −1.6
6.2 −4.3

]
,

B1 =
[−0.45

−3

]
, B2 =

[−b
−3

]
,

Da1 = Ea1 =
[

0.3 0
0 0

]
, Db1 = Eb1 =

[
0.3
0

]
,

Da2 = Ea2 =
[−0.2 0

0 0.3

]
, Db2 = Eb2 =

[−0.2
0.3

]

(5.3)
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for a = 1, b = 0.5, considering μ = 0.04, λ = 0.1 and φ1,2 = 1, we find the following gains
values:

F1 = [−5.03401.5230], F2 = [3.7868 − 0.8082],

K1 = [−180.233465.7330], K2 = [−180.949465.9073], R = [201.9216 − 71.7345].
(5.4)

6. Conclusion

This paper provided new conditions for the stabilization with a class of PDC controller
of Takagi-Sugeno fuzzy systems in terms of a combination of the LMI approach and the
use of nonquadratic Lyapunov function as fuzzy Lyapunov function. In addition, the time
derivative of membership function is considered by the PDC fuzzy controller and the slack
matrix variables are introduced in order to facilitate the stability analysis. An approach to
design an observer is derived in order to estimate variable states. In addition, a new condition
of the stabilization of uncertain system is given in this paper.

The stabilization condition proposed in this paper is less conservative than some of
those in the literature, which has been illustrated via examples.
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2 MIS (EA 4290), Université de Picardie Jules Verne, Rue du Moulin Neuf,
80000 Amiens, France

3 Department of Engineering, Faculty of Engineering and Science, University of Agder,
4898 Grimstad, Norway

Correspondence should be addressed to M. Chadli, mohammed.chadli@u-picardie.fr

Received 6 June 2012; Accepted 9 September 2012

Academic Editor: Peng Shi

Copyright q 2012 D. Saifia et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper proposes a method for designing H∞ fuzzy control of DC-DC converters under actuator
saturation. Because linear control design methods do not take into account the nonlinearity of the
system, a T-S fuzzy model and a controller design approach is used. The designed control not only
handles the external disturbance but also the saturation of duty cycle. The input constraint is first
transformed into a symmetric saturation which is represented by a polytopic model. Stabilization
conditions for the H∞ state feedback system of DC-DC converters under actuator saturation are
established using the Lyapunov approach. The proposed method has been compared and verified
with a simulation example.

1. Introduction

The main task of DC-DC converters is the adaptation of the voltage and current levels
between sources and loads while maintaining a low power loss in the conversion [1–3].
With the extensive use of DC-DC converters in different industry applications (e.g. power
supplies for personal computers, DC-motor drive, telecommunications equipment, etc.),
improving their performances has become an interesting problem in recent years [1–17].
Recently, different converter circuits (buck converter, boost converter, buck-boost converter,
Cuk converter, etc.) are known. According to each application purpose (increase or decrease
the magnitude of the DC voltage and/or invert its polarity), the converter circuit was chosen.
Among them, we consider here, the control of the basic Pulse-Width-Modulation (PWM)
buck converters, but it could be easily adapted for other converters.
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The DC-DC switching power converters are highly nonlinear systems [4, 5, 15,
16]. Consequently, the conventional linear controls based on averaging and linearization
techniques [12, 14] will result in poor dynamic performance or system instability. In order
to resolve this problem, the fuzzy logic approach has been proposed as an alternative
solution [4, 5, 7, 8, 11, 13, 15, 16]. Specifically, in [4, 5], the authors have reported very
significant results on the modelling and control of DC-DC converters with T-S fuzzy systems.
In [4, 5, 8, 11, 15, 16], authors have proposed methods for designing fuzzy control of DC-
DC converters. Nevertheless, in the aforementioned papers, they have not taken into account
the inherent nonlinearity of actuator saturation (duty cycle) and the external disturbance.
Motivated by this observation, our aim is to use T-S fuzzy systems in order to control a
nonlinear DC-DC converter subject to external disturbances and actuator saturation.

The actuator saturation can degrade the performance of the closed-loop system and
often make the stable closed-loop system unstable [1, 18–21]. The T-S fuzzy system in the
presence of saturation has been receiving increasing attention for control of nonlinear systems
[18–29]. In these works, the saturation effect is considered as a symmetric function. This is
not the case in DC-DC converter application where the saturation function constrained is
between 1 and 0. The solution of this problem proposed in linear control case [2] has been
leading to complexity analysis with the nonlinearity of DC-DC converter model. Here, we
proposed a simple mathematical transformation to obtain a symmetric saturation.

The H∞ approach is used to analyze and to synthesize controllers/observers achieving
an optimal level of disturbance attenuation and to guarantee the stability of the closed-loop
system. To achieve this goal, the idea is to minimize the H∞ norm which represents the
maximum value ratio between the output signal energy (controlled output) and the input
signal energy (disturbance input). Recently, many researchers have used this approach for
control design of T-S fuzzy systems (see for example [20, 21, 30, 31] and their references). In
most cases, the quadratic Lyapunov function and linear matrix inequality (LMI) techniques
are used to analyze and synthesize of stabilization of T-S fuzzy systems [17–21, 30, 31]. Based
on these works, we address the control problem of DC-DC converters via PDC controller
with actuator saturation and external disturbance. In this paper, we will use T-S fuzzy
systems to represent the DC-DC converters. The control design is based on the parallel
distributed compensation (PDC) scheme [32]. The idea is that for each local linear model,
a linear feedback control is designed. The control problem is formulated and solved as a LMI
optimization problem [33].

This paper is organized as follows. Section 2 gives the averaged model of basic PWM
buck converter. Section 3 presents the T-S fuzzy model of the DC-DC converter. Section 4
formulates the conditions for the H∞ stabilization of fuzzy control with actuator saturation
problem in terms of LMI. The simulation results to show the effectiveness of the proposed
method are given in Section 4.
Notation 1. Ir denotes the set {1, 2, . . . , r}, � denotes the set of real number and �n×m the set of
all n ×m real matrix. M > (≥, , <,≤) is used to denote a symmetric positive definite (positive
semidefinite, negative definite, negative semidefinite, resp.) matrix. ∗ denotes the symmetric
bloc matrix, X + (∗) denotes X +XT , × denotes the multiplication, co denotes the convex hull,
and
⋂r

j=1 is used to denote the intersection of r sets.

2. Averaged Model of Basic PWM Buck Converter

Figure 1 shows the basic circuit of the nonlinear PWM buck converter proposed in [4, 5]
with an external disturbance iload(t) as proposed in [1, 2]. Rm is the on-state resistance of the
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Figure 1: Schematic of a basic PWM buck converter.

MOSFET transistor, RL is the winding resistance of inductor, Vd is the threshold voltage of
the diode, and Rc is the equivalent series resistance of the filter capacitor.

By applying the Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL) in
on-state of the MOSFET transistor case, we obtain

[
i̇l(t)
v̇c(t)

]
=

⎡

⎢⎢
⎣

− 1
L

[
Rl +

RRc

R + Rc

]
− R

L(R + Rc)
R

C(R + Rc)
− 1
C(R + Rc)

⎤

⎥⎥
⎦

[
il(t)

vc(t)

]

+

⎡

⎣
1
L
[Vin + Rmil(t)]

0

⎤

⎦ +

⎡

⎢⎢
⎣

RRc

L(R + Rc)

− R

C(R + Rc)

⎤

⎥⎥
⎦iload(t).

(2.1)

Now, in off-state of the MOSFET transistor case and by applying of KVL and KCL, we get

[
i̇l(t)
v̇c(t)

]
=

⎡

⎢⎢
⎣

− 1
L

[
Rl +

RRc

R + Rc

]
− R

L(R + Rc)
R

C(R + Rc)
− 1
C(R + Rc)

⎤

⎥⎥
⎦

[
il(t)

vc(t)

]

+

⎡

⎢
⎣
−Vd

L

0

⎤

⎥
⎦ +

⎡

⎢⎢
⎣

RRc

L(R + Rc)

− R

C(R + Rc)

⎤

⎥⎥
⎦iload(t).

(2.2)
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Figure 2: Membership functions of the T-S fuzzy model.

Using averaging method for one-time scale discontinuous system (AM-OTS-Ds) [9], the
global dynamical behavior of the DC-DC converter is modeled as follows:

[
i̇l(t)
v̇c(t)

]
=

⎡

⎢⎢
⎣

− 1
L

[
Rl +

RRc

R + Rc

]
− R

L(R + Rc)
R

C(R + Rc)
− 1
C(R + Rc)

⎤

⎥⎥
⎦

[
il(t)

vc(t)

]

+

⎡

⎣
1
L
[Vin + Vd + Rmil(t)]

0

⎤

⎦d(t) +

⎡

⎣−
Vd

L
0

⎤

⎦ +

⎡

⎢⎢
⎣

RRc

L(R + Rc)

− R

C(R + Rc)

⎤

⎥⎥
⎦iload(t),

(2.3)

where d(t) is the duty cycle.

3. T-S Fuzzy Model of DC-DC Converter

Our control approach is based on T-S fuzzy models and the robustness of this control depends
on the ability of the fuzzy model to represent the real system. In this section our objective is
to show the effectiveness of T-S fuzzy model to represent the DC-DC converter.

The T-S fuzzy model has been successfully used to approximate nonlinear systems by
interpolation of numerous local linear models [34].

Ri: If ξ1(t) is about M1i and ξq(t) is about Mqi then

ẋ(t) = Aix(t) + B1iw(t) + B2iσ(t)

z(t) = C1ix(t) +D1iw(t) +D2iσ(t)
For i ∈ Ir (3.1)

in which Mji is the fuzzy set of ξi in rule Ri, r is the number of if-then fuzzy rules and ξi(t)
are the decision variable assumed measurable, x(t) ∈ �n is the system state vector, σ(t) ∈ �m

is the saturate control input, y(t) ∈ �p is the measurable output, z(t) ∈ �nz is the controlled
output variable, and w(t) ∈ �2 is the disturbance variable with �2 = {w ∈ �nw | ‖w‖2 ≤
w,w 
 0}.
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Figure 3: The nonlinear DC-DC converter responses and its T-S fuzzy representation with initial conditions
(vc(0) = 0 V, il(0) = 5 A).
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Figure 4: The nonlinear DC-DC converter responses and its T-S fuzzy representation with initial conditions
(vc(0) = 5 V, il(0) = 0 A).

The global dynamic system is inferred as follows:

ẋ(t) =
r∑

i=1

μi(ξ(t))(Aix(t) + B1iw(t) + B2iσ(t)),

z(t) =
r∑

i=1

μi(ξ(t))(C1ix(t) +D1iw(t) +D2iσ(t)),

(3.2)

where

μi(ξ(t)) =

∏q

j=1Mji

(
ξj(t)
)

∑r
i=1

(∏q

j=1Mji

(
ξj(t)
)) , (3.3)
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Figure 6: Response of the output voltage vc(t) of PWM buck converter.

Mji(ξj(t)) is the grade of membership of ξj(t) in Mji. The normalized activation function
μi(ξ(t)) in relation with the ith submodel is such that

r∑

i=1

μi(ξ(t)) = 1 0 ≤ μi(ξ(t)) ≤ 1 ∀i ∈ Ir , (3.4)

Among different methods (identification method, linearization around different operating
points, or by transformation in nonlinear sector), the method by transformation in nonlinear
sector is based on bounded function and gives a minimum number of local models. Here we
will use this method to represent the DC-DC converter.

The following Lemma will be used in the sequel of the paper.

Lemma 3.1. Let f(x(t)) : R → R is a bounded function, it always exist tow functions, η1(x(t))
and η2(x(t)) and two scalars α and β such that:

f(x(t)) = α × η1(x(t)) + β × η2(x(t)) (3.5)
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with

η1(x(t)) + η2(x(t)) = 1, η1(x(t)) ≥ 0, η2(x(t)) ≥ 0. (3.6)

In this case, the obtained T-S fuzzy model represents exactly the nonlinear system for
x ∈ Rn with 2nl locals models where nl represents the number of local models.

Assuming that, Ilmin ≤ il(t) ≤ Ilmax and by Lemma 3.1, the system described by (2.3) is
modeled with a two-rules T-S fuzzy system as follows:

Rule 1: if il(t) is about Imin then: ẋ(t) = Amx(t) + Bm1iload(t) + Bm21d(t) +Dm.

Rule 2: if il(t) is about Imax then: ẋ(t) = Amx(t) + Bm1iload(t) + Bm22d(t) +Dm.

The overall model of T-S fuzzy system can be given by the following:

ẋ(t) = Amx(t) + Bm1iload(t) + Bm2μd(t) +Dm, (3.7)

with x1(t) = il(t), x2(t) = vc(t), Bm2μ =
∑2

i=1 μi(il(t))Bm2i and

Am =

⎡

⎢⎢
⎣

− 1
L

[
Rl +

RRc

R + Rc

]
− R

L(R + Rc)
R

C(R + Rc)
− 1
C(R + Rc)

⎤

⎥⎥
⎦, Bm21=

⎡

⎣
1
L
(Vin + Vd + RmIlmin)

0

⎤

⎦,

Bm1 =

⎡

⎢⎢
⎣

RRc

L(R + Rc)

− R

C(R + Rc)

⎤

⎥⎥
⎦, Bm22=

⎡

⎣
1
L
(Vin + Vd + RmIlmax)

0

⎤

⎦, Dm =

⎡

⎢
⎣
−Vd

L

0

⎤

⎥
⎦.

(3.8)

The membership function is such that

μ1(il(t)) =
−il(t) + Ilmax

Ilmax − Ilmin
, μ2(il(t)) =

il(t) − Ilmin

Ilmax − Ilmin
. (3.9)

To show the effectiveness of the fuzzy model to represent the nonlinear system, we
simulate the fuzzy model and the nonlinear system for the same inputs with different initial
conditions. The simulation parameters used in this work are as follows [4]:

R = 6Ω, Rl = 48.5 mΩ, Rc = 0.16Ω, Rm = 0.27Ω, Vin = 30 V,

L = 98.58 mH, C = 202.5μF, f = 1 KH, Ilmin = 0 A, Ilmax = 10 A,
(3.10)

with d(t) = 0.5 and the input current iload(t) = 0.25 sin(5000t).
Figure 2 shows the membership functions of the fuzzy model. The DC-DC converter

responses of nonlinear system (2.3) and T-S fuzzy system (3.7) with initial conditions (vc(0) =
0 V, il(0) = 5 A) and (vc(0) = 5 V, il(0) = 0 A) are shown in Figures 3 and 4, respectively.

These figures demonstrate that, with different initial conditions, the T-S fuzzy system
(2.3) has the same behaviour as the nonlinear system (3.7). This means the satisfactory
approximation ability of the fuzzy model.
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4. H∞ Fuzzy Control of DC-DC Converter

In this section, we present an H∞ fuzzy approach to the control design of DC-DC converter.

4.1. Saturated Control Analysis

In order to control the output voltage of the DC-DC converter, we define the following
variables:

e1(t) = vc(t) − Vref, e2(t) = ė1(t), (4.1)

where Vref is the reference voltage of vc(t).
The time-derivative of e2(t) is as follows:

ė2(t) = v̈c(t) =
R

C(R + Rc)
i̇l(t) − 1

C(R + Rc)
v̇c(t) − R

C(R + Rc)
i̇load(t). (4.2)

Using the converter’s model defined in (2.3), we have

ẋ(t) = Ax(t) + Bww1(t) + B2(x)d(t) +D,

x1(t) = e1(t), x2(t) = e2(t), w1(t) =
[
iload(t)
i̇load(t)

]
,

A =

⎡

⎣
0 1

− (R + Rl)
LC(R + Rc)

−L + RlC(R + Rc) + CRRc

LC(R + Rc)

⎤

⎦,

B2(x) =

⎡

⎣
0

R

LC(R + Rc)
[Vin + Vd − Rmil(t)]

⎤

⎦,

Bw =

⎡

⎣
0 0

− RlR

LC(R + Rc)
− R

C(R + Rc)

⎤

⎦, D =

⎡

⎣
0

−R(Vd + Vref) + RlVref

LC(R + Rc)

⎤

⎦.

(4.3)

By Lemma 3.1, this system can be modeled with a two-rule T-S fuzzy system as follows:

Rule 1: if il(t) is about Imin then: ẋ(t) = Ax(t) + Bww1(t) + B21d(t) +D.

Rule 2: if il(t) is about Imax then: ẋ(t) = Ax(t) + Bww1(t) + B22d(t) +D.

and the global T-S fuzzy model can be given by the following:

ẋ(t) = Ax(t) + Bww1(t) + B2μd(t) +D, (4.4)
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Figure 7: Response of the inductance current il(t) of PWM buck converter.

with:

w1(t) =
[
iload(t)
i̇load(t)

]
, B2μ =

2∑

i=1

μi(il(t))B2i,

B21 =

⎡

⎣
0

R

LC(R + Rc)
[Vin + Vd − RmIlmin]

⎤

⎦, B22 =

⎡

⎣
0

R

LC(R + Rc)
[Vin + Vd − RmIlmax]

⎤

⎦,

(4.5)

The output voltage of the DC-DC converter can be controlled by means of variation of duty
cycle (Figure 1). The duty cycle is defined by the ratio Ton/Ts, where Ts is the frequency
of the PWM circuit and Ton is the time when the MOSFET is on (Figure 5). A transistor gate
driver (Figure 1) switches the MOSFET between the conducting (on) and blocking (off) states
using a binary signal ub(t). This signal is produced by the modulator. In this operation, the
duty cycle is compared with a sawtooth signal Vs(t) of amplitude equals to 1. Consequently,
the duty-cycle is constrained in amplitude between 0 and 1.

Thus, in this application, the control input is subject to actuator saturation with the
following saturation:

0 ≤ d(t) ≤ 1, (4.6)

which is not a symmetric saturation. However, most results reported in open literature have
treated the controller design analysis with symmetric saturation [18–21]. To transform this
saturation into a symmetric saturation, authors in [2] have proposed a change of variables to
the linear converter model. This idea cannot be used in our case (nonlinear converter model)
because it increases the complexity of the control analysis. Here, we will propose another idea
that allows a simple analysis thereafter.
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The system described in (4.4) can be written as follows:

ẋ(t) = Ax(t) + Bww1(t) + B2(x)
(
d(t) − 1

2

)
+

1
2
B2(x) +D,

ẋ(t) = Ax(t) + B1w(t) + B2(x)δ(t),

(4.7)

with

w(t) =
1
2

R

LC(R + Rc)
[Vin + Vd − Rmil(t)] − RlR

LC(R + Rc)
iload(t)

− R

C(R + Rc)
i̇load(t) − R(Vd + Vref) + RlVref

LC(R + Rc)

(4.8)

is the external disturbance, B1 = [0 1]T , and δ(t) = d(t) − 1/2 is the new control input.
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This last system can be represented with the following T-S fuzzy model:

ẋ(t) = Ax(t) + B1w(t) + B2μδ(t). (4.9)

Thus, the new control input δ(t) is constrained as follows:

−1
2

≤ δ(t) ≤ 1
2
. (4.10)

In this work, the controller is a nonlinear state feedback which shares the same
activation functions as the T-S fuzzy model (3.2) of the following form [32]:

u(t) = Kμx(t),

Kμ =
r∑

j=1

μj(ξ(t))Kj,
(4.11)

where and Kj ∈ �m×n is the local controller matrix to be determined.
The control input is subject to actuator saturation the saturation function means:

σ(t) = sat(u(t), u) = [s1, s2, . . . , sm]T ,

si = sign(ui)min{ui, |ui|},
(4.12)

u ∈ Rm denotes the saturation level and ui and ui denote the ith element of u and u(t). In our
case:

ui = u = 0.5. (4.13)

The saturation obtained in (3.6) is a symmetric saturation and the following lemma can be
used to the stability analysis.

Lemma 4.1 (see [18]). Let E be the set ofm ×m diagonal matrices whose diagonal elements are 1 or
0. Suppose that |vi| ≤ ui for all i ∈ Im, where vi and ui denote the ith element of v ∈ �m and u ∈ �m,
respectively. If x ∈ ⋂r

j=1 �(Hj) for x ∈ �n, then:

sat(u, u) =
2m∑

s=1

αs

(
Esu + Esν

)
,

2m∑

s=1

αs = 1, 0 ≤ αs ≤ 1,

ν =
r∑

j=1

μjHjx,

�(Hj

)
=
{
x ∈ �n |

∣∣∣h
j

ix
∣∣∣ ≤ ui

}
,

(4.14)
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where Es denotes all elements of E, Es = I −Es,Hj ism×nmatrix and hj

i is the ith row of the matrix
Hj .

In our case m = 1, Es ∈ co{0, 1}, u1 is the saturation level (u1 = 1/2) and r(r = 2) is
the number of local models. Consequently, the saturation function in (4.10) can be rewritten
as follows:

sat
(
Kμx(t)

)
=
(
EαKμ + EαHμ

)
x(t), (4.15)

with
∣
∣
∣h

j

ix
∣
∣
∣ ≤ 1

2
, ∀i ∈ Im, j ∈ Ir , (4.16)

and Hμ =
∑2

i=1 μiHi, Eα =
∑2

s=1 αsEs and Eα =
∑2

s=1 αsEs.

4.2. Quadratic Lyapunov Stability

For a constant ρ > 0 and a symmetric positive matrix P , define an ellipsoid as follows:

ε
(
P, ρ
)
=
{
x ∈ �n | xTPx ≤ ρ

}
. (4.17)

This ellipsoid can be rewritten as follows:

ε
(
P, ρ
)
=
{
x ∈ �n | xTPx ≤ 1

}
(4.18)

ρ 
 0, this implied that P = P/ρ ∈ �n×n is a symmetric positive matrix.
We define the Lyapunov function as follows:

V (x) = x(t)TPx(t). (4.19)

An ellipsoid ε(p, ρ) is said to be contractively invariant set if V̇ (x) < 0, for all x ∈ ε(P, ρ) | {0}.
Therefore, if an ellipsoid is contractively invariant, it is inside the domain of attraction.

An ellipsoid ε(P, ρ) = {x ∈ Rn | xTPx ≤ 1} is inside
⋂r

j=1 �(Hj) if and only if for all
i ∈ Im, j ∈ Ir :

(
h
j

i

)T
Phj

i ≤ u2
i I. (4.20)

In order to design a DC-DC converter to perform adequately in the presence of external
disturbances, the H∞ attenuation performance is chosen as the performance measure, which
is defined as follows:

∫T

0
z(τ)Tz(τ)dτ < γ2

∫T

0
w(τ)Tw(τ)dτ, (4.21)

where γ is a positive scalar and small as possible, w(t) ∈ L2[0 1] and x(0) = 0.
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Figure 10: Response of the output voltage vc(t) of PWM buck converter for 1 kHz.

In our problem, the controlled output is the error e1(t), that is:

z(t) = C1x(t), (4.22)

where C1 = [0 1]. The closed-loop system composed of (4.9), (4.22), and (4.15) is given by
the following:

ẋ(t) =
(
A + B2μ

(
EαKμ + EαHμ

))
x(t) + Bm1w(t),

z(t) = C1x(t).
(4.23)

Theorem 4.2. The ellipsoid ε(P, ρ) is contractively invariant set of the closed-loop system (4.15) and
achieves in a disturbance rejection level γ , if there exist a symmetric positive definite matrix Q and
matrices Fj ∈ �m×n, solutions of the following LMI problem:

minγ

Q,Fj ,Zj
, (4.24)

⎡

⎢⎢
⎣

1
4

z
j

i

(
z
j

i

)T
Q

⎤

⎥⎥
⎦ ≥ 0, ∀i ∈ Im, j ∈ Ir (4.25)

⎡

⎢
⎣
AQ + B2iEsFj + B2iEsZj + (∗) ∗ ∗

B
T

1 −γI ∗

C1Q 0 −γI

⎤

⎥
⎦ < 0, ∀i ∈ Ir , j ∈ Ir . (4.26)

Then one gets

Kj = FjQ
−1, Hj = ZjQ

−1. (4.27)



14 Mathematical Problems in Engineering

Using Lemma 3.1 for inequality (4.20), one has:

(
h
j

i

)T
Phj

i ≤
1
4
, ∀i ∈ Im, j ∈ Ir . (4.28)

Let the following change of variables:

Q = P−1, (4.29)

Zj = HjQ. (4.30)

Consequently, the inequality (4.28) can be rewritten as follows

Q

4
−
(
z
j

i

)T
z
j

i ≥ 0, (4.31)

where z
j

i is the ith row of the matrix Zj . By Schur complement [33], this last inequality can be
transformed as LMI (4.25).

Proposition 4.3 (see [30]). If the Lyapunov function defined in (4.19) satisfies the following
Hamilton-Jacobi-Bellman inequality:

V̇ (x(t)) + γ−1z(t)Tz(t) − γw(t)Tw(t) < 0, (4.32)

along (4.23) for all x(t)/= 0 andw(t) ∈ L2[0 1] � {w ∈ �nw | ∫T0 ‖w‖2dt ≤ w,w > 0}, then (4.21)
is verified. Using (4.23), one has:

V̇ (x(t)) − γw(t)Tw(t) + γ−1z(t)Tz(t)

=
[
x(t)
w(t)

]T
⎧
⎨

⎩

⎡

⎣
(
A + B2μEsKμ + B2μEsHμ

)T
P + (∗) ∗

BT
1 P −γI

⎤

⎦ + γ−1
[
CT

1
0

]
[
C1 0

]
⎫
⎬

⎭

[
x(t)
w(t)

]
.

(4.33)

By Schur complement [13], the condition (4.32) holds if

Σμ =

⎡

⎢
⎣
PT
(
A + B2μEsKμ + B2μEsHμ

)
+ (∗) ∗ ∗

BT
1 P −γI ∗

C1 0 −γI

⎤

⎥
⎦ < 0. (4.34)
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Pre- and postmultiplying this last inequality by Γ = diag(Q, I, I) one has

ΓΣμΓ =

⎡

⎢
⎢
⎣

AiQ + B2iEsKjQ + B2iEsHjQ + (∗) ∗ ∗

BT
1 −γI ∗

C1Q 0 −γI

⎤

⎥
⎥
⎦ < 0. (4.35)

Taking account (4.27) and (4.30), one gets the following LMI:

ΓΣμΓ =

⎡

⎢
⎢
⎣

AμQ + B2μFμ + (∗) ∗ ∗

BT
1 −γI ∗

C1Q 0 −γI

⎤

⎥
⎥
⎦ < 0, (4.36)

which ends the proof.

4.3. The Initial Conditions Constraint

The main purpose of the DC-DC converter control is to maintain the voltage level vc(t) equal
to the desired level Vref. The initial condition for the state vector is as follows:

x0 =
[
x1(0) x2(0)

]T
=
[
e1(0) e2(0)

]T
=
[
Vref 0

]T
. (4.37)

However, it is not possible to assure that any initial condition will belong to the ellipsoid
of stability given in Theorem 4.2. In this section, the objective is to guarantee the start up
stability with maximum elimination of external disturbances in the presence of saturation.

The point x0 ∈ ε(P, ρ) is equivalent to the following:

xT
0Px0 ≤ 1. (4.38)

Or in LMI form by the following:

[
1 xT

0
x0 Q

]
≥ 0. (4.39)

The optimization problem proposed in Theorem 4.2 can be formulated as follows:

minγ

Q,Fj ,Zj
.

LMI(4.27), LMI(4.28), LMI(4.41)
(4.40)

4.4. Simulation Results

In order to demonstrate the effectiveness of the proposed method, the DC-DC converter is
controlled by the proposed H∞-based state feedback and the PDC controller proposed in [4].
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In this simulation, the current perturbation step equals to 1 A and the PWM frequency equals
to 5 kHz.

Solving the optimization problem described in (4.40) for initial condition x0 =
[12V 0]T , we have:

Q =
[

817.3975 − 6.1238 × 105

−6.1238 × 105 5.5691 × 105

]
, H1 = H2 = [−0.0354 0],

γ = 0.7255, K1 = [−1.4681 − 0.0016], K2 = [−1.5030 − 0.0017].

(4.41)

The control is defined by d(t) = sat(Kμx(t)) + 1/2.
Figures 6, 7, and 8 show the DC-DC converter responses (output voltage and

inductance current, resp.). Figure 9 shows the trajectory of the saturated control input signal
(duty cycle d(t)). Figure 8 shows, with the presence of saturation, the H∞ control can
guarantee the stability of all initial conditions in the interval e1(0) ∈ [−12V 12V ] in presence
of actuator saturation and external disturbances (see initial time and 0.1 s time).

Simulation results (Figures 6–8) demonstrate that our controller guarantees better
stabilization performance, better perturbation rejection (see initial time in Figure 6) and better
time response (see Figures 6–8) Moreover, the proposed controller is robust with respect to
frequency change. Figure 10 shows the simulation results for a frequency of 1 kHz. It shows
that our controller achieves better performance even with different frequency values.

Despite that we take into account not only the actuators saturation but also the external
disturbance in the designing control, our controller gives better stabilization performance
(perturbation rejection and better time response) of the system as reported in the open
literature [4]. Moreover, with different frequency values, our saturated control gives robust
control signal (guarantees the same performances despite the change of frequency). These
results demonstrate the effectiveness of proposed method.

5. Conclusion

This work has presented an H∞ controller design for DC-DC converters via state feedback
under actuator saturation and external disturbances. The T-S fuzzy system is first used to
describe the DC-DC converter. Then, the state controller is designed to guarantee the stability
of the closed loop system with H∞ performance. The saturation effect is represented by
a polytopic model. Based on Lyapunov approach, the problem of H∞ stabilization in the
presence of actuator saturation was formulated as an LMI optimization and solved easily
by using existing numerical tools. Finally, the simulation results on a DC-DC converter have
demonstrated the effeteness of the proposed control.

The analysis given here is applied to the buck converter; we can extend this work
to other converters (boost converter, buck-boost converter, Cuk converter, etc.). Finally, the
results developed in the paper can be extended to the case that the underlying systems are
involved with any switching dynamics such as a nondeterministic or stochastic switching
system (see [35–37]).
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