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A vehicular network is expected to empower all aspects of the intelligent transportation system (ITS) and aim at improving road
safety and traffic efficiency. In view of the fact that spectrum scarcity becomes more severe owing to the increasing number of
connected vehicles, implying spectrum sensing technology in vehicular network, i.e., cognitive vehicular network, has emerged
as a promising solution to provide opportunistic usage of licensed spectrum. However, some unique features of vehicular
networks, such as high movement and dynamic topology, take on high challenges for spectrum sensing. Recently, machine
learning-based approaches, especially deep learning, for spectrum sensing have attracted sufficient interest. In this work, we
investigate a learning-based cooperative spectrum sensing (CSS) approach for multiband spectrum sensing in the cognitive
vehicular network. Specifically, we integrate two powerful deep learning models, i.e., the convolutional neural network (CNN)
to exploit the features from sensing data, and the long-short-term memory (LSTM) network is then utilized to extract
temporal correlations given input as the generated features by the CNN structure. Instead of the predefined decision threshold
typically set in conventional approaches, our proposed approach could eliminate the impact of impertinent threshold value setting.
Extensive simulations have been conducted to evaluate the effectiveness of the proposed method in achieving satisfactory spectrum
sensing performance, particularly in terms of higher detection accuracy, robustness in low signal-to-noise ratio (SNR)
environments, and a significant reduction in spectrum sensing time compared to other methods.

1. Introduction

The unprecedented development of intelligent transportation
system (ITS) and various vehicular applications magnifies
the scarcity of available spectrum resources. Meanwhile, in
light of the fact that the licensed spectrum is usually not fully
utilized, cognitive radio (CR) has been recognized as a prom-
ising solution to improve spectrum utilization. As the core
technique of CR, spectrum sensing (SS) plays a key role in
identifying the spectrum occupancy state associated with
licensed users (i.e., primary users and PUs). The unlicensed
users, called secondary users (SUs), are allowed to opportunis-
tically access the spectrum that is not occupied by its incum-
bent PU. During the past decades, a variety of research
works on effective spectrum sensing have been fully studied

in conventional wireless network. Nevertheless, it is still in
the development stage to implement spectrum sensing in
vehicular network due to a series of challenges brought on
by the high-speed movement of vehicles, such as the fluctua-
tion of wireless communication channels, the dynamics of
the network topology, and the diverse environments where
the vehicular network is located [1].

Conventional spectrum sensing schemes typically rely
on well-designed test statistics based on received sensing sig-
nals and then compare them with a predefined threshold to
check the spectrum availability. According to the require-
ment for a priori information about PU’s signal (such as
modulation type and grade, pulse shape, and frame format)
and noise (e.g., channel model and power), those spectrum
sensing schemes can be classified into three categories:

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 4352786, 8 pages
https://doi.org/10.1155/2023/4352786

https://orcid.org/0000-0001-6807-3319
https://orcid.org/0000-0003-0780-4637
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4352786


nonblind, semiblind, and completely blind. The nonblind
spectrum sensing schemes require both accurate statistical
models of the PU’s signal and noise. For example, derived
from the log-likelihood ratio (LLR) detection, the estimator-
correlator (E-C) detection has been proved to achieve the
theoretical optimum [2] and provide perfect knowledge of
both PU signals and noises. Accordingly, Gardner designed
cyclostationary detection by exploiting the cyclostationarity
attributes of received signals, which can differentiate noise
from primary users’ signals [3]. Similarly, matched filtering
(MF) detection was proposed in [4] if certain PU signal infor-
mation is known, but it requires perfect timing and synchroni-
zation which increases the calculation complexity. Among the
semiblind schemes, energy detection (ED) is the most com-
mon way [5] which only needs the knowledge of noise power
and thus has low implementation complexity. However, the
performance of energy detection practically faces challenges
due to the existence of noise uncertainty, and it fails to work
when the signal-to-noise ratio (SNR) falls below some thresh-
old, which is commonly known as the SNR-wall problem. To
get rid of any a priori knowledge on PU signal or noise power,
eigenvalue-based detection [6] and covariance matrix-based
detection [7] are two preferred approaches with respect to
the totally blind schemes. Although they reveal robustness
against low SNR condition and noise uncertainty, extra com-
putational cost is needed for computing the statistical covari-
ance matrix and substantial eigenvalues. In conclusion, these
works are mainly based on test statistic design with empirically
statistical modeling, which might not perform favorably in a
real-time-varying vehicular network, thus resulting in signifi-
cant performance degradation.

In contrast to conventional model-driven methods, by
exploiting the test statistics of received sensing signals, moti-
vated by recent trends in machine learning (ML) applied to
wireless communication which has proved great success,
comprehensive learning-based applications for spectrum
sensing have been advocated. The spectrum sensing process
is equivalent to a binary classification problem in the context
of ML. There are various studies related to ML models for
spectrum sensing, which include but are not limited to the
hidden Markov model (HMM), decision tree (DT), linear
autoregressive model, support vector machine (SVM), and
Gaussian mixture model (GMM). Specifically, deep learning
(DL) presents an outstanding performance in many areas
because of its powerful ability to extract complex features
in a data-driven way. For example, to benefit from the pow-
erful capability of convolutional neural network (CNN) in
extracting features from matrix-shaped data, Liu et al. [8]
dealed with the sample covariance matrix as the CNN input
and proposed a covariance matrix-aware CNN (CM-CNN)
method which significantly outperforms other spectrum
sensing methods. Chen et al. [9] utilized the short-time
Fourier transform (STFT) to obtain rich information by
time-frequency analyses, and then a STFT-CNN spectrum
sensing model was designed to extract the features of the
time-frequency matrix and further improve the sensing
accuracy under low SNR. Besides, to address the problem
of labeled data shortage as vehicular network changes over
time, Xie et al. [10] developed an unsupervised deep

learning-based spectrum sensing method (UDSS), which
established the variational autoencoder with the Gaussian
mixture model that achieves close performance compared
with the supervised learning-based benchmarks. Several
works with a generative adversarial network (GAN) have
been proposed to generate synthetic data for training when
the number of training samples is insufficient and the spec-
trum sensing model can be retrained in a new environment,
thus enhancing its adaptability [11, 12].

In practical wireless communication, the quality of PUs’
signal detected at SUs is easily degraded; even SUs cannot
receive PUs’ signal which is known as the hidden node prob-
lem. Besides, the sensing reliability of individual SUs is sus-
ceptible to errors, leading to incorrect prediction of the
occupancy state of the licensed spectrum. To overcome these
issues, cooperative spectrum sensing (CSS) is viewed as a
better solution, where all SUs exchange their sensing infor-
mation with a fusion center (FC) for global decision-
making. The FC might be part of the network infrastructure
such as the wireless access point or one of the SUs. It
combines the sensing information from all participating
SUs, follows some fusion rules, analyzes the spectrum
availability, and then feedbacks the prediction result of the
spectrum occupancy state.

Despite the aforementioned studies, especially the usage
of DL, which have shown extreme success in solving spec-
trum sensing problem, there are still many challenges that
need to be solved urgently. One weakness of most spectrum
sensing approaches is that they seldom consider the tempo-
ral correlation of received signals across multiple sensing
periods. It has been reflected that when a PU turns from
the silent state to the transmission state, it will probably stay
in the transmission state for multiple sensing periods and
vice versa [13, 14], thus the PU’s pattern should be fully
harnessed to improve the spectrum sensing performance.
In addition, it is of vital importance to perform sensing over
a wide frequency range, i.e., multiband spectrum sensing,
whereas existing studies usually perform spectrum sensing
over a single band. Intuitively, this problem can be
addressed by converting it into a series of single-band spec-
trum sensing. However, implementing spectrum sensing in
each subband independently may ignore the correlation
between subbands.

In this paper, we consider multiband spectrum sensing
utilizing deep learning models in a cooperative way. Specifi-
cally, considering that the covariance matrix of received sig-
nals has been inherent as the scope of interest input features
in relative researches, we first propose a covariance matrix-
aware CNN model, and then a LSTM shows a powerful
capability to capture the temporal features from time series
data. It is worth highlighting that the proposed detection
does not require any additional information about the pri-
mary signal or noise density when deployed online. Through
extensive simulation and comparison, the advantages of the
proposed detection method are verified compared with tra-
ditional spectrum sensing methods. In addition, the effects
of different false alarm probabilities, different sampling
lengths, and different modulation types on the detection per-
formance of the proposed model are also explored.
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The remainder of this paper is organized as follows.
Section 2 presents the system model. In Section 3, our
proposed multiband cooperative spectrum sensing approach
is described in detail. Extensive simulations are discussed in
Section 4, followed by conclusions in Section 5.

2. System Model

As shown in Figure 1, we consider a multiband cognitive
vehicular network consisting of M, PUs, and K cognitive
vehicle users (CVU). The system spectrum is divided equally
into Q nonoverlapping subbands. The set of PUs, CVUs, and
available subbands is collected asM,K , and Q, respectively.
For convenience, we suppose each PU randomly selects a
fixed number of Qm consecutive subbands that can meet
its communication requirement. Furthermore, the power
leakage effect is considered, which means the occupied sub-
bands with PU’s signal may influence the adjacent idle sub-
band [15], and the proportion of power leakage is set to η.

According to subband occupancy, an arbitrary subband
q can be categorized into three cases: occupied by PU
(q ∈Qo), fully vacant (q ∈Qv), and vacant but influenced by
power leakage (q ∈Qvp). In this paper, we consider the

subband-occupied case as H 1 hypothesis, and the other
two cases are viewed as H 0 hypothesis. An example of the
possible spectrum occupancy state of two PUs is shown in
Figure 2.

During a spectrum sensing period, each CVU aims to
perform spectrum sensing to decide vacant subbands for
access through capturing N signal sampling on each sub-
band. Therefore, the nth received a signal sample of the k
th CVU on the qth subband can be represented as equation
(1). Here, wnðqÞ is the additive noise on the subband q
following the zero mean circularly symmetric complex
Gaussian (CSCG) distribution with variance σ2

ω. The binary
indicator αmq ∈ f0, 1g means that the mth PU is inactive or

active on the subband q, and it is limited that ∑M
m=1α

m
q ≤ 1

indicating only one PU can access to individual subband in
each sensing period to avoid mutual interference. The PUs’
transmit power is fixed as

ffiffiffiffiffiffiffiffi
PPU

p
, and sm,n is the transmit

symbol of the mth PU at sampling time n. The variables
q− and q+ denote two adjacent subbands of subband q,
respectively. hm,kðqÞ denotes the channel gain from the mth
PU to the kth CVU on a subband q modeled as

hm,k qð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL cPUm − cCVUk



 


2

� �r
· νm,k: ð2Þ

Here cPUm and cCVU
k are the two-dimensional coordinates

of PUs and CVUs, respectively. The operation k·k2 is to
evaluate the Euclidean distance, and PLðdÞ = d−β is the power
loss in the propagation with regard to distance d and path-
loss exponent β. νm,k represents the fading coefficient, and
in this paper, it is assumed that the transmitted signal
experiences a quasi-static channel. Therefore, the received
sampling signal matrix of CVU k can be represented as
Yk = ½ykð1Þ⋯ ykðqÞ⋯ ykðQÞ�T , i.e.,

Yk =

yk,1 1ð Þ ⋯ yk,n 1ð Þ ⋯ yk,N 1ð Þ,
⋮ ⋱ ⋮   ⋱ ⋮

yk,1 qð Þ ⋯ yk,n qð Þ ⋯ yk,N qð Þ,
⋮ ⋱ ⋮   ⋱ ⋮

yk,1 Qð Þ ⋯ yk,n Qð Þ ⋯ yk,N Qð Þ:

8>>>>>>>><
>>>>>>>>:

ð3Þ

PUm, ⩝m

CVU1

CVU2 CVUK

{1,..., M}⫙ Fusion
center

Primary User (PU)

Cognitive Vehicle User (CVU)
Spectrum sensing channel

Report channel to fusion center

Figure 1: The cooperative spectrum sensing system for the
cognitive vehicular network.

yk,n qð Þ =

〠
M

m=1
αmq

ffiffiffiffiffiffiffiffi
PPU

p
hm,k qð Þsm,n +wn qð Þ, case1 : q ∈Qo,

ffiffiffi
η

p 〠
M

m=1
αmq−

ffiffiffiffiffiffiffiffi
PPU

p
hm,k q−ð Þsm,n +

ffiffiffi
η

p 〠
M

m=1
αmq+

ffiffiffiffiffiffiffiffi
PPU

p
hm,k q+ð Þsm,n +wn qð Þ, case2 : q ∈Qvp

wn qð Þ, case3 : q ∈Qv:

8>>>>>>><
>>>>>>>:

, ð1Þ
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3. The Proposed Multiband Cooperative
Spectrum Sensing Approach Based
on CNN-LSTM

The purpose of the spectrum sensing problem in the context
of deep learning is equivalent to constructing a classifier,
which can correctly map the collected K received signal
vectors Yk, ∀k ∈K to the subband occupancy state. In this
section, we next illustrate the details of the proposed multi-
band cooperative spectrum sensing algorithm.

3.1. Data Preprocessing. Instead of utilizing the originally
received sampling signal matrix for following spectrum
sensing decision, we adopt sample covariance matrix trans-
form, i.e., calculating the covariance matrix of each sample
ykðqÞ, ∀q ∈Q on all subbands denoted as RkðqÞ.

Rk qð Þ = 1
N
yk qð ÞyHk qð Þ: ð4Þ

Then, we concatenate the multiband covariance matrices
as the collected feature matrix locally of the kth CVU, i.e.,

Rk =

Rk 1ð Þ
⋮

Rk qð Þ
⋮

Rk Qð Þ

2
666666664

3
777777775
: ð5Þ

At each sensing period, the fusion center can collect all K
local feature matrices fRk,∀k ∈Kg and put them together as
a feature matrix globally X = ½R1 ⋯ Rk ⋯ RK �, which is
viewed as the input of the learning module to perform mul-
tiband cooperative spectrum sensing.

X =

R1 1ð Þ ⋯Rk 1ð Þ ⋯ RK 1ð Þ
R1 2ð Þ ⋯Rk 2ð Þ ⋯ RK 2ð Þ
⋮ ⋮ ⋮

R1 Qð Þ ⋯Rk Qð Þ ⋯ RK Qð Þ

0
BBBBB@

1
CCCCCA
: ð6Þ

It is required to collect enough labeled training data
firstly for execution following the deep learning approach.
We first collect sensing data over T consecutive sensing
periods, where each data consists of the global feature matrix
and corresponding subband occupancy, i.e., ðXð1Þ, að1ÞÞ,⋯,
ðXðtÞ, aðtÞÞ,⋯, ðXðTÞ, aðTÞÞ. The subbands occupancy aðtÞ is
a vector with a length of Q, in which each element is 1 or
0 indicating the corresponding subband is or not be occu-
pied. Furthermore, we rearrange those T number of consec-
utive sensing data in order to excavate the inherent pattern
of PUs. Specifically, a sequence of λ length sensing data is
combined, and we obtain the required training dataset D =
ðd1, b1Þ,⋯, ðdu, buÞ,⋯, ðdU , bUÞ, where du = ½XðuÞ,Xðu+1Þ,
⋯,Xðu+λ−1Þ� and bu = aðu+λ−1Þ. It means that the built classi-
fier can predict current subband occupancy via both the cur-
rent sensing feature vector and previous λ − 1 sensing
feature vectors. The training dataset D for the following net-
work training is built, which has U = T − λ + 1 number of
training samples. The procedure of data preprocessing above
is illustrated in Figure 3.

3.2. Network Structure and Learning Process. The network
structure of the proposed learning approach is shown in
Figure 4, which is inspired by [16]. The training sample du
is in complex value and thus can be witnessed as a series
of two-layer images with a length of λ. We first sequentially
input the training sample into the CNN module which con-
sists of two convolutional layers. Two parallel structures
containing multiple convolution layers and max-pooling
layers intake and process the observation of present and his-
torical sensing periods. After the convolution-pooling struc-
ture, the outputs of the two parallel structures are flattened

Case 3:
Vacant subband

Case 1:
Occupied by PUs Case 2:

Vacant subband but
influenced by power leakage

Two adjacent subbands
of the q-th subband

The totally Q number of subbands in cognitive vehicular network

Subbands index

1 2 ...... ......q– q+ Qq

PU1 PU2

Figure 2: The illustration of the subband occupancy state of two PU systems.
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into two vectors and then concatenated. The CNN-extracted
feature is viewed as the input into the following LSTM mod-
ules, which are responsible to exploit the time-dynamic cor-
relations concealed in the series of sensing periods. At last,
the output of the last LSTM cell is catenated with a dense
layer to stand for the belief that the input corresponds to
predicted subband occupancy.

After the formulation of the training input and the net-
work structure, the next process is to design the loss function
to train our proposed classifier. Given a training sample
<du, bu > , let J ðdu ; θÞ the prediction subband occupancy
vector from the classifier, θ be the classifier parameters. The
categorical cross-entropy loss function, as formulated in
equation (7), is employed to measure the difference between
prediction value J ðdu ; θÞ and actual subband occupancy bu.

L du, bu ; θð Þ = −〠
Q

q=1
b qð Þ
u log J du ; θð Þ qð Þ ð7Þ

Here, the Jðdu ; θÞðqÞ and bðqÞu is the qth element of the
actual/prediction subband occupancy vectors. In this way,
the training loss on the collected training dataset can be
denoted as 1/U∑uLðdu, bu ; θÞ.

To minimize the loss value, the stochastic gradient
descent (SGD) method and adaptive moment estimation
(Adam) optimizer are adopted. The trained classifier can
be evoked to recognize the subband occupancy pattern based
on the matrix collected by all CAUs. In general, the training
module should be activated when the network is initialized
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and periodically configured to catch up with the changing
radio environment.

4. Numerical Analysis

4.1. Dataset Prerequisite. The PU signals are retrieved from
the open-source RadioML2018.01a dataset [17], which
includes 24 kinds of typically digital and analog modulated
signals. For each class of modulation type, it contains 26
levels of SNR ranging from -20 to 30 dB with intervals of
2 dB. Each hmodulation, SNRi pair is composed of 4096
examples and has a length of 1024 in-phase and quadrature
(I/Q) complex-value per example. For simplicity, in this
study, we limit the datasets to negative SNR, and seven linear
modulations are simulated: BPSK, QPSK, 8PSK, 8QAM,
16QAM, 32QAM, and 64QAM. The entire dataset is parti-
tioned into three halves for training, validating, and testing
with a commonly used split ratio of 7 : 2 : 1.

4.2. Simulation Parameters. We conduct numerical experi-
ments to corroborate the performance of the proposed
method in a multiband cognitive vehicular network with
M = 3 PUs using Q = 16 subbands for communication. The
3 PUs occupy 2, 3, and 4 consecutive subbands, respectively.
On the channel model, Rayleigh fading is assumed with
path-loss exponent α = 4, the fading component ν = 1. For
the convenience of analysis, we set PðH1Þ = PðH0Þ = 0:5
about the PU activity pattern. During the network training
process, we define 100 SGD iterations as an epoch, and after
each epoch, we check the classification accuracy on the val-
idation set and save the network parameters if the present
sensing accuracy on the validation set is higher than that
corresponding to the previous epochs. The network param-
eters determined through extensive cross-validation are
detailed in Table 1. The Pytorch-based simulations are
implemented on a computer with a CPU (Intel(R) Xeon(R)
Gold 6134M) and a GPU (NVIDIA Quadro P5000).

4.3. Results Evaluation. In this section, extensive simulation
results are provided to demonstrate the performance superi-
ority of the proposed approach. Also, the impact of key
parameters such as SNR level and modulation scheme is
investigated. For comparison, the benchmark methods
include the traditional rule-based cooperative spectrum
sensing methods, i.e., AND rule and the OR rule, two
typically test-statistic methods such as energy detection

(ED) [5], maximum-minimum eigenvalue (MME) [6], and
another learning method of SVM, K-means, and covariance
matrix CNN (CM-CNN) [8]. Note that all the baseline
methods are introduced for narrowband spectrum sensing,
and thus all the sensing results of them are obtained in each

Table 1: Network parameters of the proposed approach.

Network parameters Value

Filters per conv layer 6

Filter size 16

Cells per LSTM layer 20

Neurons per flattened layer 128

Optimizer Adam

Learning rate 0.003

Batch size 200

SNR = 0 dB

Lo
ss

SNR = –10 dB

5

1

0.75

0.25
0

0.5

10 15 20
Training epoch

25 30 35 40

5 10 15 20
Training epoch

25 30 35 40

SNR = –20 dB

5 10 15 20
Training epoch

Train
Validation

25 30 35 40

Lo
ss

1

0.75

0.25
0

0.5

Lo
ss

1

0.75

0.25
0

0.5

Figure 5: The loss value with training epoch iteration.

–20

1.0

0.8

0.6

0.4

0.2

0.0
–15 –10 –5 0

SNR (dB)

Proposed approach
CM-CNN
SVM

K-means
OR
AND

D
et

ec
tio

n 
pr

ob
ab

ili
ty

5 10 15 20

Figure 6: The detection probability of different methods.

6 Wireless Communications and Mobile Computing



subband separately. Each point in the simulation results is
obtained by averaging 100 Monte Carlo realizations.

4.3.1. Loss function’s Convergence with SNR Level. First, we
evaluate the loss function’s convergence behavior under
different SNR levels. As shown in Figure 5, with the epoch
of the model training, both training loss and validation loss
are decreasing. In high SNR scenarios, the difference in
extracted features from spectrum sensing data between idel
subbands and occupied subbands is large, and therefore,
the loss function shows quick convergence. With the decline
of SNR, i.e., the wireless channel condition becomes worse;
the inapparent difference in the subband state makes the
classification task more difficult. The loss curve of the train-
ing process needs more iterative rounds to obtain statistical
results. In addition, the loss value of the proposed approach
is reduced smoothly in the training process and shows its
superiority.

4.3.2. Spectrum Sensing Performance. The performance of
the spectrum sensing algorithm is mainly evaluated by the
detection probability. A higher detection probability signifies
a better capability to protect PUs.Figure 6 shows the spec-
trum detection probability of the proposed approach and
other compared methods under different SNR conditions.
We can see that even under the condition of low SNRs, the
detection probability of the proposed approach is still better
than the others. Because the LSTM structure learns the time
characteristics of historical sensing data, it obtains higher
detection accuracy. It is depicted that the proposed approach
can achieve the highest detection probability, and the
detection probability of CM-CNN is slightly lower, closely
approaching that of the proposed method. The SVM scheme
is in the middle of performance. The detection probability of
K-means is lower since it is an unsupervised learning dia-
gram. The detection probability of the rule-based scheme is
the lowest one due to the high difficulty of a full vote among
all the SUs. It is also interesting that for the fusion rule, the
detection probability of the AND-rule is a little lower than
the OR-rule-based scheme. From these simulation results,
we can see that the proposed classifier generally exhibits
relatively superior performance and achieves the best perfor-
mance among them.

4.3.3. Complexity Comparison. Finally, the specific complex-
ity of different methods is compared. When analyzing the
complexity of different methods, we consider three metrics
in the offline training phase, namely, the required number
of floating point operations (FLOPs), the total number of
parameters, and the offline training time. The classifier
training has usually been executed once in practice; there-
fore, we only evaluate the prediction delay in the online test-
ing phase. Two tables (Tables 2 and 3) have been simulated
to verify the superiority of the proposed method over others.

As a comparison, the proposed method demands the
highest offline training duration among all the classifiers,
and the additional FLOPs overhead is higher than other
methods. For the classifier built on neural network methods,
i.e., the proposed method and the CM-CNN method, they
require a larger parameter number because of the cascaded
structure of the neural network. Both the training duration
and prediction delay for the K-means are founded to be nor-
mal. The proposed method shows the most rapid spectrum
occupancy prediction. In addition, the SVM suffers from a
very high prediction delay. It can be viewed that the pro-
posed spectrum sensing approach can predict the spectrum
state by mining the internal correlation of historical data,
so the overall sensing time is greatly shortened. Another
observation is reflected intuitively that with more sufficient
training samples, it takes more effort to train the classifier
to a satisfactory results.

5. Conclusion

In this work, we have studied the problem of multiband
spectrum sensing in a cognitive vehicular network and devel-
oped a cooperative spectrum sensing algorithm based on the
covariance matrix-aware CNN-LSTM. The proposed method
can effectively learn the underlying dependence features across
adjacent subbands and consecutive sensing periods to improve
spectrum sensing performance. Numerical results demon-
strated that the proposed method has a substantial perfor-
mance advantage over other existing methods under noise
uncertainty.

Data Availability

The data used in the simulation are retrieved from the open-
source RadioML2018.01a dataset.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Table 2: Complexity comparison of different spectrum sensing methods on offline training phase.

Metrics Proposed CM-CNN SVM K-means

FLOPs (×107) 1.79 1.21 0.71 0.027

Parameters (×106) 0.169 0.141 0.092 0.047

Training time (seconds) 170.5 138.01 63.2 40.9

Table 3: The prediction time (seconds) of different spectrum
sensing methods in the online testing phase.

Proposed method CM-CNN SVM K-means

0.057 0.083 0.12 0.07
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For the cooperative adaptive cruise control (CACC) vehicular platoon, apart from decentralized controllers, the dynamics of a
platoon can be affected substantially by the information flow among connected and automated vehicles (CAVs). Existing
research studies mainly focus on the stability analysis of platoons where CAVs only adopt the predecessor-following (PF)
communication scheme; however, when CAVs “look” further ahead or behind than one vehicle, the stability of platoons might
change. To this end, this study seeks to explore the stability and investigate the rear-end collision risk of CACC vehicular
platoon under diverse information flow topologies. The research first comprehensively reviews typical information flow
topologies for CAV platoons and platoon stability criteria for analyzing local and string stability of platoons. Moreover, the
CACC longitudinal dynamic model is derived using the exact feedback linearization technique, which accommodates the
inertial delay of powertrain dynamics. Accordingly, sufficient conditions of stability are mathematically derived to guarantee
distributed frequency-domain-based control parameters. Simulation experiments are conducted to verify the correctness of
derived sufficient stability conditions. The results show that platoons could better maintain stability with more vehicle
information taken into consideration. However, when assessing the safety, it is found that the bidirectional type information
flow topology would increase rear-end collision risk for CAV platoon. Further, the information flow topology of two-
predecessor-leader following is the most recommended to enhance fully CAV platoon stability.

1. Introduction

Connected and automated vehicle (CAV) technologies,
which incorporate communication technologies into auton-
omous systems to enable cooperative sensing and control [1,
2], are expected to improve traffic mobility, safety, and
sustainability [3, 4]. A widely adopted method to achieve
these purposes is adaptive cruise control (ACC), which is a
vehicle-following control system that controls the speed in
pace with the immediate preceding vehicles [5–7]. More-
over, the emergence of advanced communication (i.e.,
vehicle-to-everything (V2X) communication technology)
has provided particularly promising for CAVs to receive
additional information from other connected vehicles and

could better form a platoon where CAVs travel as a string/
chain to enhance traffic efficiency and stability. It has
recently attracted extensive research interest (see [8–10]
and the references therein).

From the viewpoint of control, CAV platoon is a con-
trolled multiagent system where several vehicles are aimed
at traveling at a common speed while keeping a safe distance
within them. In this context, Cooperative Adaptive Cruise
Control (CACC), which is an extension of ACC functional-
ity, is recognized as an effective means to maintain stable
and desired headways between adjacent vehicles [7, 11].
CACC has been modeled in a recent literature in different
ways [12–15]. Among them, constant time headway (CTH)
spacing policy is suggested to combine with CACC by many
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studies, where the equilibrium spacing is defined as the
speed multiplied by a predefined constant time headway
plus a standstill spacing, since it is more robust to error
propagation through traffic [16, 17].

On the other hand, for a CAV platoon, apart from
decentralized controllers, the information flow among vehi-
cles can significantly affect the dynamics, as well. In a pla-
toon, agents exchange information (e.g., speed, intervehicle
distance, and control inputs) with each other depending on
how that information flows and a different communication
scheme arises [18, 19]. The information flow topologies
can describe the configuration of V2X communication links
from one CAV to one or more CAVs in the platoon. Early-
stage platoons primarily focus on predecessor following type
which means that a vehicle can only obtain the information
of its nearest front vehicles [20–23]. Under the V2X commu-
nication framework, more types of information flow topolo-
gies are proposed, such as the two-predecessors following
type [24], the predecessor-leader following type [25], and
the bidirectional type [26, 27]. For instance, an H∞ control-
ler synthesis approach is developed by [28] to guarantee pla-
toon stability for platoons under one- and two-CAV look-
ahead information flow topologies. Zheng et al. [18] study
the relationship between information flow topology and
the internal stability and scalability of CAV platoons moving
in a rigid formation. However, to date, few studies have
investigated the influence of different information flow
topologies on CACC vehicular platoon stability.

The aim of stability analysis is to study how the per-
turbation of a leading vehicle evolves over time and space
by assuming that vehicles travel on a single lane without
overtaking. For the respective of CAV platoon, there exist
two types of stability that have been defined in existing
research: local stability and string stability [29, 30]. More
specifically, if the distance gap and speed fluctuations of
a single follower decrease with time, the CAVs are consid-
ered locally stable, while the platoon is string stable if local
perturbations decay everywhere even in an arbitrarily long
vehicle platoon. Hence, for a platoon to be stable, it is not
enough just to satisfy the local stability but also to satisfy
the string stability.

In conclusion, to the best of the authors’ knowledge,
the stability of a CAV platoon under diverse information
flow topologies so far has not been considered before while
most of the investigation is focused on the predecessor-
following communication scheme. Moreover, few
researches have evaluated the safety of CAV platoon under
diverse information flow topologies. The main objective of
this paper is to fill these gaps. To this aim, several main
contributions are provided, each one corresponding to a
different section.

This paper is organized as follows. Section 2 introduces
different types of information flow topologies and the Coop-
erative Adaptive Cruise Control low for a CAV platoon.
Section 3 provides the stability analysis of vehicular platoon
under diverse information flow topologies. Numerical simu-
lations are shown in Section 4, and the safety assessment is
presented in Section 5. Concluding remarks and future
research directions are described in the final section.

2. Diverse Information Flow Topologies for
Cooperative Adaptive Cruise Control
Vehicular Platoon

According to diverse information flow topologies, the
control laws of the CAV platoon are diverse. In this section,
the form of diverse information flow topologies and the
corresponding CACC model would be elaborated on.

2.1. Diverse Information Flow Topologies. Due to V2X com-
munication, CAVs can form platoons in the single-lane free-
way sections where there is no cut-in/cutout behavior. The
platoon consists of N + 1 CAVs, as indicated in Figure 1,
with a leading vehicle and N following vehicles. The platoon
travels on a flat route and uses various information flow
topologies. Figure 1 depicts six types of typical topologies
as follows:

(1) Predecessor following (PF) topology

(2) Predecessor-leader following (PLF) topology

(3) Two-predecessor following (TPF) topology

(4) Bidirectional (BD) topology

(5) Bidirectional-leader (BDL) topology

(6) Two-predecessor-leader following (TPLF) topology

Specifically, for the leader following type (i.e., PLF, BDL,
and TPLF), a leader with information broadcasting func-
tions is indispensable; for the bidirectional type (i.e., BD
and BDL), the controller can control utilizing information
from both the preceding and following vehicles; for the
two-predecessor type (i.e., TPF and TPLF), the controller
can control utilizing information from both the two preced-
ing vehicles. Furthermore, many more topologies are not
included here for the sake of brevity, although they may all
be examined using similar methods.

2.2. CAV Longitudinal Control with CACC. This section
describes the formulation of the proposed distributed CAV
longitudinal control. Assume that all CAVs in the platoon
are of the same type. According to Zhou et al.’s [31] study,
the CAV longitudinal control usually includes upper level
and lower level controllers that govern CAVs to stay close
and stable while compensating for vehicle longitudinal
dynamics. The lower level controller prescribes the accelera-
tion rate that can be realized after considering the vehicle
longitudinal dynamics since the demanded acceleration
may not be fully executed due to air drag force, gear posi-
tion, etc.; meanwhile, the upper level controller, in particu-
lar, regulates a CAV to follow predefined equilibrium
spacing at the same speed as the preceding vehicle via vehi-
cle acceleration.

For the lower level controller, as suggested by Yi and
Kwon [32], the generalized vehicle dynamic (GLVD) equa-
tion is leveraged to incorporate the nonlinear vehicle
dynamics. The vehicle dynamics are specifically modeled
using the first-order approximation as
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_an tð Þ = −
1
TL

an tð Þ + KL

TL
un tð Þ, ð1Þ

where KL represents the ratio of demanded acceleration that
can be realized (which ideally equals to 1) for CAVs, TL is
the time-lag for CAVs to realize the acceleration, _anðtÞ is
the jerk, anðtÞ stands for the realized acceleration of CAV
n at time t, and unðtÞ is the demanded acceleration of
CAV n at time t by the upper level controller, which also
represents the control low of CAV n.

For the upper level controller, CACC combined with
constant time gap policy which is shown to be more robust
against disturbance propagation [17] is adopted. On the
basis of the Society of Automotive Engineer (SAE) standard,
the constant time gap policy is widely leveraged in CAV pla-
toon control. According to the constant time gap policy [33],
the equilibrium spacing is defined as

d∗n tð Þ = vn tð Þ × τ∗n + ln, ð2Þ

where vnðtÞ is the velocity of CAV n at time t, d∗nðtÞ is the
target equilibrium spacing of CAV n at time t, τ∗n presents
the predefined constant time gap of CAV n, and ln is the
standstill spacing of CAV n. Moreover, the relationships
between acceleration, velocity, and position of CAV n are
defined as

an tð Þ = _vn tð Þ, ð3Þ

vn tð Þ = _pn tð Þ, ð4Þ
where pnðtÞ is position of CAV n. Based on Equations
(1)–(4), a 3rd-order state space model is derived for each
CAV in the platoon with control input unðtÞ as below:

_xn tð Þ = Anxn tð Þ + Bnun tð Þ, ð5Þ

where

An =

0 1 0

0 0 1

0 0 −
1
TL

2
6664

3
7775, Bn =

0

0
KL

TL

2
6664

3
7775, xn tð Þ = pn tð Þ, vn tð Þ, an tð Þ½ �T :

ð6Þ

Further, each controller can only use the information
specified by ℚn which depends on the type of information
flow topology applied to the platoon. The linear control
law of CAV n (except the leading CAV) in the platoon is

un tð Þ = k1 pn−1 tð Þ − pn tð Þ − d∗n tð Þð Þ
+ k2 vn−1 tð Þ − vn tð Þð Þ + k3 an−1 tð Þ − an tð Þð Þ
+ 〠

J∈ℚn

kJa aJ tð Þ − an tð Þ� �
+ kJv vJ tð Þ − vn tð Þ� �� �

,

ð7Þ

(a) Predecessor following topology

(b) Predecessor-leader following topology

(c) Two-predecessor following topology

(d) Bidirectional topology

(e) Bidirectional-leader topology

02 1N-1N N-2

(f) Two-predecessor-leader following topology

Figure 1: Typical information flow topologies for platoons.
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where k#(# = 1, 2, 3, Ja, Jv) is the control gain of the CACC
and they all exceed zero. Except k1, k2, k3, for the
predecessor-leader following type, the control gains are writ-
ten as klv and kla; for two-predecessor following type, the
control gains are written as ktv and kta; for the bidirectional
type, the control gains are written as kbv and kba.

More specifically, based on Equation (7), the linear
control law for CAV n under PF topology is

un PF tð Þ = k1 pn−1 tð Þ − pn tð Þ − d∗n tð Þð Þ
+ k2 vn−1 tð Þ − vn tð Þð Þ + k3 an−1 tð Þ − an tð Þð Þ: ð8Þ

The linear control law for CAV n under PLF topology is
described as

un PLF tð Þ = k1 pn−1 tð Þ − pn tð Þ − d∗n tð Þð Þ
+ k2 vn−1 tð Þ − vn tð Þð Þ + k3 an−1 tð Þ − an tð Þð Þ
+ klv v0 tð Þ − vn tð Þð Þ + kla a0 tð Þ − an tð Þð Þ:

ð9Þ

The linear control law for CAV n under TPF topology is
described as

un TPF tð Þ = k1 pn−1 tð Þ − pn tð Þ − d∗n tð Þð Þ + k2 vn−1 tð Þ − vn tð Þð Þ
+ k3 an−1 tð Þ − an tð Þð Þ + ktv vn−2 tð Þ − vn tð Þð Þ
+ kta an−2 tð Þ − an tð Þð Þ:

ð10Þ

The linear control law for CAV n under BD topology is
written as

un BD tð Þ = k1 pn−1 tð Þ − pn tð Þ − d∗n tð Þð Þ + k2 vn−1 tð Þ − vn tð Þð Þ
+ k3 an−1 tð Þ − an tð Þð Þ + kbv vn+1 tð Þ − vn tð Þð Þ
+ kba an+1 tð Þ − an tð Þð Þ:

ð11Þ

Likewise, the linear control law under TPLF topology is

un TPLF tð Þ = k1 pn−1 tð Þ − pn tð Þ − d∗n tð Þð Þ + k2 vn−1 tð Þ − vn tð Þð Þ
+ k3 an−1 tð Þ − an tð Þð Þ + klv v0 tð Þ − vn tð Þð Þ
+ kla a0 tð Þ − an tð Þð Þ + ktv vn−2 tð Þ − vn tð Þð Þ
+ kta an−2 tð Þ − an tð Þð Þ + kbv vn+1 tð Þ − vn tð Þð Þ
+ kba an+1 tð Þ − an tð Þð Þ:

ð12Þ

3. Stability Analysis of CACC Vehicular Platoon

As alluded, the control gains should be prudently selected to
guarantee that the CACC vehicular platoon is stable. In this
section, the theory of stability is concisely recalled from the
control theory standpoint, and the stability of the CACC
vehicular platoon under diverse information flow topologies
is explored.

3.1. Preliminaries for Stability. In general, there are two typ-
ical categories of stability, which have been widely adopted
for maintaining safety under perturbances while controlling
vehicular platoon, i.e.,

(1) Local stability: a platoon following linear time-
invariant dynamics is said to be locally stable con-
cerning equilibrium state xn,e if and only if the
closed-loop system has eigenvalues with strictly
negative real parts [34].

(2) String stability: a platoon is said to be string stable
if and only if the magnitude of a perturbance is
not amplified for each leader-follower pair when
propagating along the vehicular string [24, 25], as
defined in

E1 sð Þk k2 ≥ E2 sð Þk k2 ≥ E3 sð Þk k2 ≥⋯≥ En sð Þk k2, ð13Þ

where k:k2 denotes the H2 norm; EnðsÞ ∈ fanðsÞ, vnðsÞ,
pn−1ðsÞ − pnðsÞ − d∗nðtÞg and kEnðsÞk2 = ðÐ∞0 jEnðwjÞj2dwÞ2.
s =w, where w > 0 represents frequency and j is the imag-
inary unit.

Local stability can guarantee each CAV can eliminate
deviation from desired spacing and speed difference acti-
vated locally through a single vehicle by perturbances (devi-
ation from equilibrium spacing, speed difference, or
acceleration). Local stability is essential for any acceleration
model since driver behavior is locally stable in reality.
Furthermore, to satisfy the local stability, the sufficient
condition by Hurwitz criterion [35] is given below.

3.1.1. Routh Hurwitz Stability Criterion. Given a polynomial,
pðsÞ = a0s

3 + a1s
2 + a2s + a3, where a0, a1, a2, a3 ∈ℝ, pðsÞ is

stable if and only if a0, a1, a2, a3 > 0 and a1 a2 > a0a3.
Unlike local stability, string stability considers how a

small perturbation in the gap and speed of the leading vehi-
cle influence the gap and speed of all the following vehicles
in the platoon. Thus, the cohesion of the CAVs can be main-
tained, and the states of CAVs bounded can be kept by string
stability. However, string stability is not always observed in
empirical data. According to [7, 36, 37], string stability can
also be divided into two kinds: strict string stability and
head-to-tail string stability. Additionally, the detailed defini-
tion is as follows:

Definition 1 (strict string stability). A platoon system of a
finite number of vehicles N + 1 is said to be strict string sta-
ble if satisfying for any sufficiently small perturbation input
acting upon CAV 0, for any n ∈ ð0,N�:

Fn sð Þj j2 = En sð Þk k2
En−1 sð Þk k2

≤ 1, ð14Þ

where FnðsÞ is the transfer function describing perturbance
propagation between CAV n − 1 and CAV n in the
frequency domain.
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Definition 2 (head-to-tail string stability). A platoon system
of a finite number of vehicles N + 1 is said to be head-to-
tail string stable if satisfying for any sufficiently small pertur-
bation input acting upon CAV 0, for any n ∈ ð0,N�:

Gn sð Þj j2 = En sð Þk k2
E0 sð Þk k2

≤ 1, ð15Þ

where GnðsÞ is the transfer function describing perturbance
propagation from CAV 0 and CAV n in the frequency
domain. Note that when FnðsÞ = 1 and GnðsÞ = 1, the CAV
platoon is marginally H2-norm string stable.

For perturbances in the form of velocity and accelera-
tion, the transfer functions FnðsÞ and GnðsÞ are of the
general form:

an sð Þ = Fn sð Þan−1 sð Þ,
vn sð Þ = Fn sð Þvn−1 sð Þ,
an sð Þ = Gn sð Þa0 sð Þ,
vn sð Þ =Gn sð Þv0 sð Þ:

ð16Þ

Except for the velocity and acceleration oscillation, the
spacing error can be obtained through Laplace Transformation:

s pn−1 sð Þ − pn sð Þð Þ = vn−1 sð Þ − vn sð Þ: ð17Þ

As there is no spacing error in the leadingCAV, the transfer
function is defined for other CAVs from the first following
CAV to CAV n. Thus, the transfer functions of spacing error
can be formulated as follows:

Fxn sð Þ = pn sð Þ − pn−1 sð Þ
pn−1 sð Þ − pn−2 sð Þ

=
Fn sð ÞFn−1 sð Þ − Fn−1 sð Þ

Fn−1 sð Þ − 1

=
Fn−1 sð Þ Fn sð Þ − 1ð Þ

Fn−1 sð Þ − 1
,

ð18Þ

Gxn sð Þ = pn sð Þ − pn−1 sð Þ
p1 sð Þ − p0 sð Þ =

Gn sð Þ −Gn−1 sð Þ
G1 sð Þ − 1

: ð19Þ

To address the string stability, based on [7], the worst cases,
Fn−1ðsÞ = FnðsÞ = 1 and Gn−1ðsÞ = 1, are taken into consider-
ation to reduce the order in Equations (18) and (19). Therefore,
we get

Fxn sð Þ = Fn−1 sð Þ = 1, ð20Þ

Gxn sð Þ = Gn sð Þ − 1
G1 sð Þ − 1

if Gn sð Þ =G1 sð Þ,Gxn sð Þ = 1ð Þ: ð21Þ

On the basis of Equations (20) and (21), aiming at analyzing
the string stability of the CACC vehicular platoon under differ-
ent information flow topologies, we can only concern the trans-
fer functions FnðsÞ and GnðsÞ.

3.2. Stability Analysis

3.2.1. Local Stability. Based on Routh Hurwitz stability crite-
rion, local stability requires that the real-part of the Eigen-
value of matrix Acn = ðAn + BnKÞ is less than zero, where
K = ½k1, k2 +∑J∈ℚn

kJv , k3 +∑J∈ℚn
kJa�.

According to control law as Equation (7), we have

det sI − Acnð Þ = 0

⟺
TL

KL
s3 +

1
KL

− k3 − 〠
J∈ℚn

kJa

 !
s2 + k1τ

∗
n + k2 + 〠

J∈ℚn

kJv

 !
s + k1 = 0:

ð22Þ

Hence, by applying the Hurwitz criterion, the CACC
vehicular platoon is locally stable if the following inequalities
are satisfied.

TiL

KL
> 0, ð23aÞ

k1 > 0, ð23bÞ
1
KL

− k3 − 〠
J∈ℚn

kJa > 0, ð23cÞ

k1τ
∗
n + k2 + 〠

J∈ℚn

kJv > 0, ð23dÞ

1
KL

− k3 − 〠
J∈ℚn

kJa

 !
k1τ

∗
n + k2 + 〠

J∈ℚn

kJv

 !
>
TL

KL
k1:

ð23eÞ
3.2.2. String Stability. Under diverse information flow topol-
ogies, the string stability needs to be analyzed separately.

(1) PF Topology. Based on Equation (8), for PF topology, the
transfer function FnðsÞ is presented by

Fn PF sð Þ = k3s
2 + k2s + k1

TL/KLð Þs + 1/KLð Þ + k3ð Þs2 + k1τ∗n + k2ð Þs + k1
:

ð24Þ

Building on Equations (14) and (24), the following suffi-
cient condition for the H2-norm string stability is shown:

Fn PF
sð Þ�� ��

2 = sup
−k3w2 + k2wj + k1

− TL/KLð Þwj + 1/KLð Þ + k3ð Þw2 + k1τ∗n + k2ð Þwj + k1

����
���� ≤ 1:

ð25Þ

Hence, the CACC vehicular platoon under PF topology
is strict string stable if the following inequalities are satisfied.

1
K2

L

+ 2k3
KL

−
2TL

KL
k1τ

∗
n + k2ð Þ + k23 − k21 ≥ 0, ð26aÞ

k1τ
∗
n
2 + 2k2τ∗n −

2
KL

≥ 0, ð26bÞ
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TL

KL
≥ 0: ð26cÞ

Under PF topology, the head-to-tail string stability can
be written as

Gn PF sð Þ =
Yn
i=1

Fn PF sð Þ: ð27Þ

When kFn PF
ðsÞk2 ≤ 1, kGn PF

ðsÞk2 is not greater than 1.
In conclusion, the CAV platoon under PF topology is string
stable if the inequations in Equations (26a), (26b), and (26c)
are satisfied.

(2) PLF Topology. Under PLF topology, based on Equation
(9), the first following CAV could be affected by the leading
CAV, and the transfer function G1 PLFðsÞ is written as

G1 PLF sð Þ = a1 sð Þ
a0 sð Þ =

k3s
2 + k2s + k1

� �
+ klvs + klas

2� �
TL/KLð Þs + 1/KLð Þ + k3 + klað Þs2 + k1τ∗n + k2 + klvð Þs + k1

:

ð28Þ

Differently, the second following CAV could be affected
by both its predecessor and the leader. Consequently,
through substituting Equation (28), its transfer function is
formulated as

G2 PLF sð Þ = a2 sð Þ
a0 sð Þ =

G1 PLF sð Þ k3s
2 + k2s + k1

� �
+ klvs + klas

2� �
TL/KLð Þs + 1/KLð Þ + k3 + klað Þs2 + k1τ∗n + k2 + klvð Þs + k1

:

ð29Þ

For the rest following CAV n, the transfer function can
be obtained by induction:

Gn PLF sð Þ = Gn−1 PLF sð Þ k3s
2 + k2s + k1

� �
+ klvs + klas

2� �
TL/KLð Þs + 1/KLð Þ + k3 + klað Þs2 + k1τ∗n + k2 + klvð Þs + k1

:

ð30Þ

Nevertheless, the above Equation (30), is a high-order
transfer function which is too complicated to be analyzed
directly. In this way, we have the following formulation
assuming the worst case, Gn−1 PLFðsÞ = 1:

Gn PLF sð Þ = k3s
2 + k2s + k1 + klvs + klas

2

TL/KLð Þs + 1/KLð Þ + k3 + klað Þs2 + k1τ∗n + k2 + klvð Þs + k1
:

ð31Þ

Hence, the CACC vehicular platoon under PLF topol-
ogy is head-to-tail string stable if the following inequalities
are satisfied:

1
K2

L

+
2 k3 + klað Þ

KL
−
2TL

KL
k1τ

∗
n + k2 + klvð Þ + k3 + klað Þ2 − k21 ≥ 0,

ð32aÞ

k1τ
∗
n
2 + 2 k2 + klvð Þτ∗n −

2
KL

≥ 0, ð32bÞ

TL

KL
≥ 0: ð32cÞ

Comparing Equations (32a) and (32b) with Equations
(26a) and (26b), it can be found that the value ranges of
k1, k2, k3 (i.e., the stable region) under PLF topology are
greater than that under PF topology, since CAVs could
obtain more information (i.e., the leading vehicle informa-
tion) under PLF topology than under PF topology.

Similarly, the transfer function Fn PLF is presented as

Fn PLF sð Þ = k1 + k2s + k3s
2 + klvs + klas

2/Gn−1 PLF sð Þ� �
TL/KLð Þs + 1/KLð Þ + k3 + klað Þs2 + k1τ∗n + k2 + klvð Þs + k1

:

ð33Þ

Consider the worst case:

Fn PLF sð Þ =Gn PLF sð Þ = k3s
2 + k2s + k1 + klvs + klas

2

TL/KLð Þs + 1/KLð Þ + k3 + klað Þs2 + k1τ∗n + k2 + klvð Þs + k1
:

ð34Þ

In brief, the CACC vehicular platoon under PLF topol-
ogy is string stable if the inequations in Equations (32a),
(32b), and (32c) are satisfied.

(3) TPF Topology. Correspondingly, under TPF topology,
based on Equation (10), expressions of the transfer function
are

Gn TPF sð Þ = Gn−1 TPF sð Þ k1 + k2s + k3s
2� �

+ ktvs + ktas
2� �
Gn−2 TPF sð Þ

TL/KLð Þs + 1/KLð Þ + k3 + ktað Þs2 + k1τ∗n + k2 + ktvð Þs + k1
,

Fn TPF sð Þ = k1 + k2s + k3s
2 + ktvs + ktas

2� �
/Fn−1 TPF sð Þ� �

TL/KLð Þs + 1/KLð Þ + ktað Þs2 + k1τ∗n + k2 + ktvð Þs + k1
:

ð35Þ

Considering the worst case, the CACC vehicular platoon
under TPF topology is string stable if the following inequa-
tions are satisfied. Compared with the stable region under
PF topology, the stable region under TPF topology is larger.

1
K2

L

+
2 k3 + ktað Þ

KL
−
2TL

KL
k1τ

∗
n + k2 + ktvð Þ + k3 + ktað Þ2 − k21 ≥ 0,

ð36aÞ

k1τ
∗
n
2 + 2 k2 + ktvð Þτ∗n −

2
KL

≥ 0, ð36bÞ

TL

KL
≥ 0: ð36cÞ
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(4) BD Topology. Under BD topology, based on Equation
(11), the transfer function can be written as

When Fn+1 BDðsÞ = 1, Fn BDðsÞ = Fn PFðsÞ. However,
when Fn+1 BDðsÞ ≠ 1, the CACC vehicular platoon under
BD topology is string stable if

As a matter of fact, we set the CACC controllers to make
kFn+1 BDðsÞk2 < 1. Thus, kFn BDðsÞk2 < kFn PFðsÞk2, and
kGn BDðsÞk2 < kGn PFðsÞk2. The stable region for BD topol-
ogy is larger than the stable region for PF topology.

(5) BDL Topology. Based on PLF topology and BD topology,
under BDL topology, based on Equation (12), the transfer
function of Fn BDLðsÞ and Gn BDLðsÞ can be written as

In addition, when Fn+1 BDLðsÞ = 1, Fn BDLðsÞ = Fn PLFðsÞ;
when Fn+1 BDLðsÞ ≠ 1, the CACC vehicular platoon under
BDL topology is string stable if inequations in Equations

(41a), (41b), and (41c) are met. Therefore, the stable region
for BDL topology is larger than the stable region for PF topol-
ogy and even larger than the stable region for PLF topology.

Fn BD sð Þ = k1 + k2s + k3s
2

TL/KLð Þs + 1/KLð Þ + k3 + kbað Þs2 + k1τ∗n + k2 + kbvð Þs + k1 − Fn+1 BD sð Þ kbas2 + kbvsð Þ ,

Gn BD sð Þ = Gn−1 BD sð Þ k1 + k2s + k3s
2� �

TL/KLð Þs + 1/KLð Þ + k3 + kbað Þs2 + k1τ∗n + k2 + kbvð Þs + k1 − Fn+1BD sð Þ kbas2 + kbvsð Þ :
ð37Þ

1
K2

L

+
2 k3 + 1 − Fn+1BD sð Þ�� ��

2kba
� 	

KL
−
2TL

KL
k1τ

∗
n + k2 + 1 − Fn+1BD sð Þ�� ��

2kbv
� 	

+ k3 + 1 − Fn+1BD sð Þ�� ��
2kba

� 	2
− k21 ≥ 0, ð38aÞ

k1τ
∗
n
2 + 2 k2 + 1 − Fn+1BD sð Þ�� ��

2kbv
� 	

τ∗n −
2
KL

≥ 0, ð38bÞ
TL

KL
≥ 0: ð38cÞ

Fn BDL sð Þ

=
k1 + k2s + k3s

2 + klvs + klas
2� �
/Gn−1 BDL sð Þ� �

TL/KLð Þs + 1/KLð Þ + k3 + kla + kbað Þs2 + k1τ∗n + k2 + klv + kbvð Þs + k1 − Fn+1 BDL sð Þ kbas2 + kbvsð Þ ,
ð39Þ

Gn BDL sð Þ = Gn−1 BDL sð Þ k3s
2 + k2s + k1

� �
+ klvs + klas

2� �
TL/KLð Þs + 1/KLð Þ + k3 + kla + kbað Þs2 + k1τ∗n + k2 + klv + kbvð Þs + k1 − Fn+1 BDL sð Þ kbas2 + kbvsð Þ : ð40Þ

1
K2

L

+
2 k3++kla + 1 − Fn+1 BDL sð Þk k2kba
� �

KL
−
2TL

KL
k1τ

∗
n + k2 + klv + 1 − Fn+1BDL sð Þ�� ��

2kbv
� 	

+ k3 + kla + 1 − Fn+1BDL sð Þ�� ��
2kba

� 	2
− k21 ≥ 0, ð41aÞ

k1τ
∗
n
2 + 2 k2 + klv + 1 − Fn+1BDL sð Þ�� ��

2kbv
� 	

τ∗n −
2
KL

≥ 0, ð41bÞ

TL

KL
≥ 0: ð41cÞ
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(6) TPLF Topology. Likewise, under TPLF topology, based
on Equation (13), the transfer functions are presented as

With the worst case, the CACC vehicular platoon under
TPLF topology is string stable if

1
K2

L

+
2 k3 + kla + ktað Þ

KL
−
2TL

KL
k1τ

∗
n + k2 + klv + ktvð Þ + k3 + kla + ktað Þ2 − k21 ≥ 0,

ð43aÞ

k1τ
∗
n
2 + 2 k2 + ktv + klvð Þτ∗n −

2
KL

≥ 0, ð43bÞ
TL

KL
≥ 0: ð43cÞ

On the whole, under diverse information flow topolo-
gies, with more information a CAV obtains, the larger stable
region the platoon system has and the CAV platoon is easier
to control for maintaining stability. However, according to
Zheng et al.’s study [18], under bidirectional topology, the
scalability of CAV platoon will be affected. Moreover, for a
pure CAV platoon, the perturbances are often applied to
the leading vehicle instead of internal CAVs. Hence, the
leader-type information flow topology can play an impor-
tant role in enhancing stability. In this study, the informa-
tion flow topology of TPLF provides the largest stable
region for CAV platoon control.

4. Numerical Simulation

Numerical simulations are conducted to illustrate the main
results. The parameter setting for the CACC vehicular pla-
toon is given in Table 1, according to the existing studies
[28, 31]. Unless otherwise specified, these parameters would
not change. Since CAVs under PF topology are simplest for
control and receive the least information, the CAV perfor-
mance under PF topology is set as the baseline.

Based on the parameter setting, Figure 2 illustrates the
regions of feedback gains for different information flow
topologies to satisfy the local and string stability. The plots
suggest empirically that with more information given to
the CAV, the stable region will be larger, which supports
the stability analysis results in Section 3.

To further verify the theoretical results presented in
Section 3, we conduct two simulation scenarios on the
CACC vehicular platoon: with simulated perturbation and
with the human-driven vehicle trajectory. In both scenarios,
we consider a CAV platoon with 11 identical CAVs (1 leader
and 10 followers) interconnected by the six information flow
topologies shown in Figure 1. In addition, the CAV length is

equal to 3m and the control gains k1, k2, k3 are set as 2, 2,
and 1, respectively.

4.1. Scenario I: With Simulated Perturbation. In this case, the
initial state of the leading CAV is set as p0ðtÞ = 0, v0ðtÞ = 20
m/s and the desired trajectory is given by

vn tð Þ =
20m/s, t ≤ 5s,

20 + 2t, 5s < t ≤ 9s,

30m/s, t > 9s:

8>><
>>: ð44Þ

The initial state of the platoon is set as the desired state;
i.e., the initial spacing errors and velocity errors are all equal
to 0. Figures 3–5 demonstrate distance gap, velocity gap, and
acceleration under different information flow topologies. It
is noted that under different information flow topologies,
when the platoon is stable, the maximum values of velocity
gap between CAV 9 and CAV 10 are lower than the maxi-
mum values of velocity gap between other CAVs. Further-
more, under different information flow topologies, the
maximum values of acceleration of the last CAV in a stable
platoon are lower than the maximum values of acceleration
of other CAVs in the platoon. Particularly, the last CAVs
in the platoon under the TPLF topology are of the smallest
changes in the amplitude of acceleration as well as the
amplitude of velocity gap, compared with other information
flow topologies. Meanwhile, platoons under the leader type
topology could better keep stability than other types for it
assists communication among the whole platoon.

4.2. Scenario II: With Human-Driven Vehicle Trajectories
from NGSIM. To explore CAV platoon stability in a more
realistic situation, simulation experiments embedded with
field data are carried out field. Hence, two sets of trajectory
data of the real-world vehicle that experienced stop-and-go
perturbances are obtained from the NGSIM dataset [38,
39]. The leading vehicles adopt the data of vehicle #1992 in
Lane 2 from 4:00 p.m. to 4:15 p.m. on April 13, 2005, for
Interstate 80 (i.e., I-80) in Emeryville, and the data of vehicle
#1635 in Lane 1 from 7:50 a.m. to 8:35 a.m. on June 15, 2005,
for US101 freeway (i.e., US101) in Los Angeles, whose
dynamic statuses are illustrated in Figures 6 and 7. Note that,
due to the noise in the acceleration data, the data is handled
via a low-pass filter with the lower bound of 0.5Hz.

Gn TPLF sð Þ = Gn−1 TPLF sð Þ k1 + k2s + k3s
2� �

+ Gn−2 TPLF sð Þ ktvs + ktas
2� �

+ klvs + klas
2� �

TL/KLð Þs + 1/KLð Þ + k3 + kta + klað Þs2 + k1τ∗n + k2 + ktv + klvð Þs + k1
,

Fn TPLF sð Þ = k1 + k2s + k3s
2 + ktvs + ktas

2� �
/Fn−1 TPLF sð Þ� �

+ klvs + klas
2� �
/Gn−1 TPLF sð Þ� �

TL/KLð Þs + 1/KLð Þ + k3 + kta + klað Þs2 + k1τ∗n + k2 + ktv + klvð Þs + k1
:

ð42Þ
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Figures 8–10 demonstrate distance gap, velocity gap, and
acceleration under different information flow topologies
with vehicle #1992 as the leading vehicle. Among
Figures 8–10, the amplitudes of distance gap and velocity
gap as well as the acceleration of PF topology are larger than
those of other information flow topologies. Consistent with
the above result, TPLF holds the best stability among the
six topologies.

Figures 11–13 show distance gap, velocity gap, and accel-
eration under different information flow topologies with
vehicle #1635 as the leading vehicle. Similar to the case with
vehicle #1992 as the leading vehicle, all topologies could
offer stability for platoons and TPLF works best.

From the above simulations, we can find that when sta-
ble conditions are satisfied, with more information a CAV
obtains, the CAV platoon is more stable under perturbances,
since the larger stable region means the system has a signif-
icant ability to resist the perturbances. In addition, we also
find that the leader type could better maintain stability than
other types. The reason is that the perturbances are applied
to the leader in the platoon in this study.

4.3. Sensitivity Analysis. In order to explore the influence of
inertial delay of powertrain dynamics on the stability of
CACC vehicular platoon under diverse information flow
topologies, simulation analyses are conducted. Based on
the parameters of KL and TL setting, Figures 14–17 illustrate
stable regions of control gains for information flow topolo-
gies to satisfy the platoons’ local and string stability.

Comparing the Figure 2 (TL = 0:45 s) with Figure 14
(TL = 0:6 s) as well as Figure 15 (TL = 0:3 s), it can be found
that with the same KL (setting KL = 1), the lesser the actua-
tion lag, the more stable a CACC vehicular platoon is.
Besides, the changes in stable regions under diverse informa-
tion flow topologies accord with the theoretical analysis
results in Section 3.

Then numerical simulations of three KL values were
carried out based on the stability analysis in Section 3.2.
It should be emphasized that the value of KL cannot
exceed one. With the same TL (setting TL = 0:45 s), com-
paring the Figure 2 (KL = 1) with Figure 16 (KL = 0:9) as
well as Figure 17 (KL = 0:8), the larger the ratio of
demanded acceleration that can be realized, the more sta-
ble a CACC vehicular platoon is.

5. Safety Assessment

To thoroughly assess the risk probability of CAVs, Time-to-
collision (TTC), the modified Time Integrated Time-to-
collision (TIT) and the Time Exposed Time-to-collision
(TET) are employed in this study. TTC is defined as the time
required for two vehicles to collide if they keep their current
velocity on the same path [40]:

TTCn kð Þ =
pn−1 kð Þ − pn kð Þ − l
vn kð Þ − vn−1 kð Þ , if vn kð Þ > vn−1 kð Þ,

∞, if vn kð Þ ≤ vn−1 kð Þ:

8><
>:

ð45Þ

Herein, a larger TTC indicates a safer condition. It is
worth mentioning that minimum TTC could only demon-
strate the most dangerous degree of vehicles while ignoring
the overall duration. Hence, we use minimum TTC value
to evaluate the danger degree during moving.

Both TET and TIT are aggregated indexes from TTC for
safety evaluation. Concretely, the expression of TIT and TET
can be presented as [41]

TIT kð Þ = 〠
N

k=1

1
TTCk kð Þ −

1
TTC∗


 �
Δt, ∀0 < TTCi tð Þ ≤ TTC∗,

TIT = 〠
T

t=0
TIT kð Þ,

TET kð Þ = 〠
N

k=1
δk∙Δt, δk =

1, ∀0 < TTCi kð Þ ≤ TTC∗,

0, else,

(

TET = 〠
T

k=0
TET kð Þ,

ð46Þ

where TTC∗ is the threshold of TTC value and Δt stands for
the sampling time. Furthermore, a larger TIT/TET indicates
a more dangerous condition. TET could present the rear-end
collision risk, and TIT shows the duration of having the risk
of rear-end collision over the whole operation.

Aiming at further evaluating the safety of different
information flow topologies, we select three more real-
world single vehicles from NGSIM I-80 dataset randomly:
Vehicle #12, #391, and #2385, as the leading vehicle. The
trajectories of these vehicles are shown in Figure 18, and
the entire traveling time for each vehicle is 70.5 s, 37.1 s,
and 34.5 s, respectively.

The results of minimum TTC, TIT, and TET values for
the CACC vehicular platoons under diverse information
flow topologies with real-world vehicle trajectories described
in Section 4 and Figure 18 are demonstrated in Table 2,
where Δt = 0:1s, τ∗n = 0:5 s (then, the desired intervehicular
distance can be calculated by Equation (2) at each sampling
time), and all CAVs are in equilibrium at the initial time

Table 1: Default value setting for the experimental design.

Parameters Value

KL 1

TL 0.45 s

τ∗n 0.5 s

ln 5m

Fn+1 BDL sð Þ, Fn+1 BD sð Þ 0.8

kla, kta, kba 0.5

klv , ktv , kbv 1
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with the same velocity as the leading vehicle. Moreover, the
threshold of TTC value (i.e., TTC∗) is also set as 0.5 s, which
is equal to the desired time headway.

The results in Table 2 suggest the following: (1) from the
aspect of minimum TTC, with more information, CAV pla-
toon could better reduce the risk of rear-end collisions.
However, in general, there is less impact of information flow
topologies on minimum TTC; (2) from the aspect of TET,
predecessor-leader following type (i.e., PLF, BDL, and TPLF)
could better maintain safety for CAV platoons. Meanwhile,
the two-predecessor type topologies perform better than
the bidirectional type topologies since the TET values of
CAV platoon under TPF topology are larger than those

under BD topology and the TET values of CAV platoon
under TPLF topology are larger than those under BDL
topology; (3) from the aspect of TIT, the bidirectional type
topologies could bring adverse impact on reducing the risk
of rear-end collision and predecessor-leader following type
could also enhance the CAV platoon safety. In all cases,
the TIT values under BD topology are larger than that under
PF topology, and the TIT values under BDL are larger than
that under PLF topology. It is worth noting that the CAV
under TPLF topology could reduce TIT by half compared
with the CAV under PF topology. Therefore, among the
six information flow topologies, TPLF is the most recom-
mended to enhance both stability and safety.
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Figure 2: Stable region of feedback gains for diverse information flow topologies (KL = 1, TL = 0:45s).
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Figure 3: Platoon distance gap with simulated perturbation under diverse information flow topologies.
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Figure 4: Platoon velocity gap with simulated perturbation under diverse information flow topologies.
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Figure 5: Platoon acceleration with simulated perturbation under diverse information flow topologies.
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Figure 6: Profiles of vehicle #1992 for I-80 set of NGSIM data.
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Figure 7: Profiles of vehicle #1635 for US-101 set of NGSIM data.
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Figure 8: Platoon distance gap with leading vehicle #1992 under diverse information flow topologies.
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Figure 9: Platoon velocity gap with leading vehicle #1992 under diverse information flow topologies.
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Figure 10: Platoon acceleration with leading vehicle #1992 under diverse information flow topologies.
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Figure 11: Platoon distance gap with leading vehicle #1635 under diverse information flow topologies.
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Figure 12: Platoon velocity gap with leading vehicle #1635 under diverse information flow topologies.
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Figure 13: Platoon acceleration with leading vehicle #1635 under diverse information flow topologies.
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Figure 14: Stable region of feedback gains for diverse information flow topologies (KL = 1, TL = 0:6 s).
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Figure 15: Stable region of feedback gains for diverse information flow topologies (KL = 1, TL = 0:3 s).
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Figure 16: Stable region of feedback gains for diverse information flow topologies (KL = 0:9, TL = 0:45 s).
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Figure 17: Stable region of feedback gains for diverse information flow topologies (KL = 0:8, TL = 0:45 s).

24 Wireless Communications and Mobile Computing



0 10 20 30 40 50 7060
Time (s)

Vehicle 12

0

Po
sit

io
n 

(m
)

20

40

60

80

100

(a) Time space diagram for vehicle 12

0 10 20 30 40 50 7060
Time (s)

Vehicle 12

0

V
el

oc
ity

 (m
/s

)

1

2

3

4

5

(b) Velocity profiles for vehicle 12

−3

A
cc

el
er

at
io

n 
(m

/s
2 )

−1

−2

0

1

2

3

0 10 20 30 40 50 7060
Time (s)

Vehicle 12

(c) Acceleration profiles for vehicle 12

0

Po
sit

io
n 

(m
)

20

40

60

80

120

100

0 5 10 15 20 25 3530
Time (s)

Vehicle 391

(d) Time space diagram for vehicle 391

0

2

1

3

4

5

7

6

0 5 10 15 20 25 3530
Time (s)

Vehicle 391

V
el

oc
ity

 (m
/s

)

(e) Velocity profiles for vehicle 391

0 5 10 15 20 25 3530
Time (s)

Vehicle 391

A
cc

el
er

at
io

n 
(m

/s
2 )

−1

−2

0

1

2

3

(f) Acceleration profiles for vehicle 391

Figure 18: Continued.
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Figure 18: Time space diagrams and velocity and acceleration profiles for different vehicles from NGSIM I-80.

Table 2: Safety effects of information flow topologies with different real-world leading vehicles.

PF PLF TPF BD BDL TPLF

Vehicle #1992

Min TTC 0.28 0.28 0.29 0.29 0.30 0.30

TET 28.4 15.4 18.8 26.9 16.0 11.3

TIT 409.4 326.2 353.8 413.2 339.8 213.9

Vehicle #1635

Min TTC 0.24 0.27 0.26 0.27 0.27 0.27

TET 3.3 2.2 2.4 2.7 2.3 1.2

TIT 103.1 73.7 84.6 104.5 81.3 57.0

Vehicle #12

Min TTC 0.27 0.29 0.30 0.30 0.31 0.31

TET 35.6 21.9 23.7 30.8 25.3 19.5

TIT 505.3 354.6 388.4 523.9 372.7 281.0

Vehicle #391

Min TTC 0.31 0.33 0.32 0.32 0.33 0.33

TET 2.9 2.1 2.2 2.2 2.0 1.4

TIT 81.0 57.2 61.8 85.7 60.3 45.1

Vehicle #2385

Min TTC 0.26 0.28 0.27 0.28 0.28 0.28

TET 10.2 7.6 7.8 8.0 6.9 4.3

TIT 286.4 211.8 230.2 294.4 226.7 167.5
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6. Conclusions

This paper first studies the stability of CACC vehicular pla-
toon under diverse information flow topologies. The CACC
longitudinal dynamic model is derived using the exact feed-
back linearization technique, which accommodates the iner-
tial delay of powertrain dynamics. Accordingly, sufficient
conditions of stability are mathematically derived to guaran-
tee distributed frequency-domain-based control parameters.
The paper demonstrates that under diverse information flow
topologies, with more information a CAV obtains, the larger
stable region the platoon system has and the CAV platoon is
easier to control for maintaining stability and safety. Further,
the information flow topology of TPLF is the most recom-
mended to enhance platoon stability.

Then, this paper assesses the safety of fully CAV platoon
under diverse information flow topologies with real-world
vehicles as leaders. The safety assessment results demon-
strate that the bidirectional type topologies could bring
adverse impact on reducing the risk of rear-end collision
comparing with other types. Moreover, the predecessor-
leader following type topologies contribute to reducing
rear-end collision risk. Thus, the information flow topology
of TPLF is also recommended to enhance platoon safety.

Unsolved topics for future research include the string
stability for heterogeneous platoons under diverse informa-
tion flow topologies. In addition, there is a need to address
CACC vehicular platoon with nonidentical controllers that
possess communication delays.
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