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Internet of "ings (IoT) allows billions of devices in the
physical world as well as virtual environments to exchange
data with each other intelligently. "e worldwide govern-
ment Internet of "ings (IoT) endpoint electronics and
communications market will total $21.3 billion in 2022 [1].
For example, smartphones have become an important
personal assistant and an indispensable part of people’s
everyday life and work. However, IoTsecurity has also been a
major concern in both academia and industry [2, 3]. "e
insider threat is one of the major threats to the IoT appli-
cations [4], where the attackers can enjoy the resources
within the organization or network. For example, Passive
Message Fingerprint Attacks (PMFA) [5], a type of insider
attacks, can allow several internal nodes to collaborate and
compromise a distributed intrusion detection system
(DIDS). Hence, there is a need to deploy more suitable
security mechanisms to safeguard the IoT and distributed
environment, such as traffic filtration [3, 6], trust man-
agement [4, 7], and blockchain [8, 9].

Currently, machine learning technique is being widely
applied to IoT in order to facilitate performance and effi-
ciency, such as semisupervised learning [10, 11], rein-
forcement learning [12], and deep learning [13, 14]. For
instance, semisupervised learning has been widely studied
on how to enhance the detection of spam by leveraging both
labeled and unlabeled data [15]. However, machine learning
also suffers many issues, which may threaten the security,
trust, and privacy of IoTenvironments. Among these issues,
adversarial learning is one major threat, in which attackers

may try to fool the learning algorithm with particular
training examples and lead to a false result or an inaccurate
machine learning model [16, 17].

"is Special Issue will focus on cutting-edge research
from both the academia and industry and aims to solicit
original research and review articles with a particular em-
phasis on discussing the security, trust, and privacy chal-
lenges in machine learning-based IoT. "e potential topics
focus on the application of machine learning techniques to
address security, privacy, and trust issues in IoT systems,
networks, and beyond. All submissions have been reviewed
by independent reviewers and have undergone several
rounds of revisions before being accepted for publication in
this Special Issue. After a rigorous review process, a total of
12 papers were finally accepted.

In the first contribution titled “An Unsupervised
Learning-Based Network "reat Situation Assessment
Model for Internet of "ings”, Yang et al. [18] presented an
unsupervised learning-based network threat situation as-
sessment model that could work in a multisource data IoT
network. In the evaluation, they implemented the algorithm
with Python and demonstrated that their approach could
reach a stronger characterization ability for network threats.

In the second contribution titled “A Key Business Node
Identification Model for Internet of "ings Security”, Xie
et al. [19] introduced a key business node identification
model for IoTnetworks, by providing an analysis of business
continuity. It contains four major modules: data preparation
module, data operation module, decision module, and
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analysis module. "e experimental results indicated that the
proposed model can enhance the identification accuracy,
with reasonable continuity risk assessment.

In the third contribution titled “A Privacy-Preserving
Caching Scheme for Device-to-Device Communications”,
Zhong et al. [20] introduced a privacy-preserving device-to-
device (D2D) caching scheme by defining the node im-
portance as the weighted sum of the physical intimacy and
request similarity between devices. In their comparison with
Leave Copy Everywhere (LCE) and Most Popular Cache
(MPC), the proposed scheme demonstrated better
performance.

In the fourth contribution titled “Two-Party Secure
Computation for Any Polynomial Function on Ciphertexts
under Different Secret Keys”, Jiang [21] introduced a scheme
that can reduce the size of the ciphertext under a single key.
In the fifth contribution titled “An Efficient Anonymous
Communication Scheme to Protect the Privacy of the Source
Node Location in the Internet of "ings”, Li et al. [22]
introduced an efficient anonymous communication scheme
to ensure privacy in two aspects: source node location and
the workload.

In the next contribution titled “A Residual Learning-
Based Network Intrusion Detection System”, Man and Sun
[23] designed a deep learning-based intrusion detection
model based on residual learning. "ere are three parts: data
preprocessing, model construction, and model evaluation.
"eir evaluation on UNSW-NB15 demonstrated that the
proposed scheme can reach good performance due to the
residual blocks.

In the next contribution titled “Machine Learning-Based
Stealing Attack of the Temperature Monitoring System for
the Energy Internet of "ings”, Li et al. [24] designed a
platform of Energy Internet of "ings (EIoT) for the tem-
perature monitoring system. "ey then introduced a two-
step model stealing attack that can use the stolen data to set a
copycat network, which could leak the artificial intelligence
models.

In the next contribution titled “An Efficient Commu-
nication Intrusion Detection Scheme in AMI Combining
Feature Dimensionality Reduction and Improved LSTM”,
Lu and Tian [25] introduced a Stacked Autoencoder method
to achieve feature dimensionality reduction for the high-
dimensional features of data in Advanced Metering Infra-
structure (AMI). In addition to using Attention Mechanism,
their evaluation showed that better performance could be
achieved based on two datasets: UNSW-NB15 and NSL-
KDD.

In the next contribution titled “An Adaptive Commu-
nication-Efficient Federated Learning to Resist Gradient-
Based Reconstruction Attacks”, Li et al. [26] introduced an
adaptive frequency-compression federated learning (AFC-
FL) by adjusting the communication frequency and pa-
rameter compression. In the evaluation, they showed that
the proposed model could reduce the workload significantly.

In the next contribution titled “A Hierarchical Approach
for Advanced Persistent "reat Detection with Attention-
Based Graph Neural Networks”, Li et al. [27] introduced a
hierarchical approach that is capable of effectively detecting

APTs with attention-based Graph Neural Networks (GNNs).
In the evaluation, they discussed that the proposed method
could outperform some similar approaches.

In the next contribution titled “Towards a Statistical
Model Checking Method for Safety-Critical Cyber-Physical
System Verification”, Xie et al. [28] constructed a cross-
entropy optimization model in Safety-Critical Cyber-
Physical System (SCCPS). "eir experimental results indi-
cated that the proposed method could reduce the standard
deviation and corresponding errors by more than an order
of magnitude.

In the final contribution titled “Cost-Sensitive Approach
to Improve the HTTP Traffic Detection Performance on
Imbalanced Data”, Li et al. [29] introduced a character-level
abstract feature extraction approach (cost-effective) to en-
hance the detection of the HTTP traffic under imbalanced
data. In the evaluation, they demonstrated a higher detection
rate as compared with two similar studies.
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Aim. )e purpose of this study is how to better detect attack traffic in imbalance datasets.)e deep learning technology has played
an important role in detecting malicious network traffic in recent years. However, it suffers serious imbalance distribution of data
if the traffic model skews towards the modeling in the benign direction, because only a small portion of traffic is malicious, while
most network traffic is benign. )at is the reason why the authors wrote this manuscript. Methods. We propose a cost-sensitive
approach to improve the HTTP traffic detection performance with imbalanced data and also present a character-level abstract
feature extraction approach that can provide features with clear decision boundaries in addition. Finally, we design a spark-based
HTTP traffic detection system based on these two approaches. Results. )e methods proposed in this paper work well in
imbalanced datasets. Compared to othermethods, the experiment results indicate that our system has F1-score in a high precision.
Conclusion. For imbalanced HTTP traffic detection, we confirmed that the method of feature extraction and the cost function is
very effective. In the future, we may focus on how to use the cost function to further improve detection performance.

1. Introduction

1.1. Background. In the past few years, cybersecurity inci-
dents have occurred frequently. In the first half of 2018, 360
Internet Security Center intercepted 140 million malicious
programs in all, nearly 795,000 ones per day on average [1].
Moreover, around 8% of Hypertext Transfer Protocol
(HTTP) messages in 2017 were reported to be malicious [2].

Deep learning, as one of the most currently remarkable
machine learning techniques, has achieved great success in
many applications such as image analysis, speech recogni-
tion, and text understanding [3]. In the field of objection
detection, Girshick et al. [4] greatly improved the accuracy of
objection detection through the deep learning technology.
Wu et al. [5] used weakly supervised learning to classify and
annotate images. Rattani et al. [6] applied deep learning
technology to the field of selfie biometrics and has made
good progress. Inmedical image segmentation, U-NET [7] is
undoubtedly one of the most successful methods, which was
proposed at the MICCAI conference in 2015. In the field of

HTTP traffic detection, the deep learning technology is
prominent way to detect malicious network traffic. However,
it suffers serious imbalanced distribution of data. For ex-
ample, the traffic detection tasks usually focus on reducing
malicious traffic such as web attack, but not the data of web
browsing accounts for the majority. )e contribution of the
majority class to the cost function far exceeds that of the
minority class. )erefore, it is difficult to identify the small
amount of traffic, which brings serious challenges to network
traffic classification [8].

1.2.RelatedWork. )e detection technologies of imbalanced
data can be classified into three types: data-level methods,
feature extraction, and cost-sensitive learning. Over-
sampling, undersampling, and random sampling are the
most commonly used in data level. Jin et al. [9] and Lim et al.
[10] applied the data-level methods to rebalance traffic data
and improve the performance of imbalanced dataset de-
tection. Oversampling improves classification performance
by increasing the number of the minority class samples.
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However, due to the large number of copies of the minority
class samples, the classification algorithm is difficult to avoid
overfitting. Undersampling improves classification perfor-
mance by reducing the number of themajority class samples.
However, in the field of HTTP traffic detection, the majority
class samples are far more than the minority class samples,
and the quantity difference may be hundreds of times, so the
downsampling method may not be suitable. Random
sampling randomly abandons the minority class samples,
which may remove potentially useful information from the
minority class samples. Park et al. [11] proposed an anomaly
detection technique for imbalanced HTTP traffic utilizing
convolutional autoencoders (CAE), which belongs to the
type of feature extraction. However, converting HTTP
massage into an image via one-hot encoding will lose some
original information. And we will improve the feature ex-
traction method mentioned in the paper. Another common
method is cost-sensitive learning, which uses a cost function
to train the classifier. )e cost-sensitive method in [12] is
based on decision tree. However, due to the complexity of
the problem, the performance of the algorithm based on
neural network is usually better than the algorithm based on
decision tree in the field of HTTP traffic detection. Chen
et al. [13] introduced a novel imbalanced classification
model, named simplex imbalanced data gravitation classi-
fication (S-IDGC). )is model uses Euclidean distance to
calculate gravity, but fails to consider the data distribution
characteristics and the results were in a low precision. Re-
cently, the focal-loss cost function proposed by Lin et al. [14]
has been proved to be effective in the field of image seg-
mentation. )is method performs well in image segmen-
tation. Tong [15] proposed a traffic classification method
based on convolutional neural network which consists of
two main traffic classification stages and combines the flow
and packet-based features to predict the services based on
quick UDP internet connection. Aceto et al. [16] used
multimodal deep learning to study mobile encrypted traffic
classification which has a good result about TSL traffic
detection. Lotfollahi et al. [17] combined port-based, pay-
load inspection and statistical machine learning to analyze
encrypted traffic classification. Bovenzi [18] imposed a hi-
erarchical hybrid intrusion detection approach, which has
been proved to be very effective in the Internet of things
scenario. Aceto [19] firstly investigated and experimentally
evaluated the adoption of DL-based network traffic classi-
fication strategies as supported by BD frameworks. )e
recent schemes focused on the mobile or light equipment
and they analyzed encrypted traffic classification. However,
in the field of HTTP traffic detection, the contribution of the
minority class samples to the loss function will be reduced
according to the predicted value in the training model,
which is not conducive to the detection of the minority class
samples. )e characteristics of recent related works are
shown in Table 1.

Contributions: the main motivation of this paper is to
detect attacks from serious imbalanced network traffic. To
achieve this goal, we address it from two aspects: feature
extraction and cost function. )e main contributions of this
paper can be summarized as follows:

(i) In terms of feature extraction, we present character-
level abstract feature extraction approach which can
provide features with clear decision boundaries.

(ii) In terms of cost function, we present the HM-loss
cost function to improve the http traffic detection
performance on imbalanced data. )e cost-sensitive
approach can reduce the contribution of the ma-
jority class in the cost function.

(iii) Finally, we design and implement spark-based
HTTP traffic detection system and apply the cost-
sensitive approach and the feature extraction ap-
proach into this detection system. )e experiment
results show that proposed scheme has higher
precisions, recall, and F1-score.

)e rest of this paper is organized as follows. Section 2 is
a detailed description on character-level abstract feature
extraction approach whereas Section 3 describes cost-sen-
sitive approach. )e experiment is given in Section 4.
Conclusion and future directions are given at the end of the
paper.

2. Methods

2.1. �e Character-Level Abstract Feature Extraction
Approach. We present the character-level abstract feature
extraction approach in this section which combines char-
acter-level features and abstract features. Our main work is
to extract character-level features based on spark [20]
clusters, design a one-dimensional convolutional autoen-
coder, and then extract abstract features.

For the feature extraction of http traffic, n-gram feature
[21] and character-level feature [22] are the most popular
methods for converting HTTP messages into input vectors
fed into neural networks. However, n-gram features can
cause a large amount of information loss and have higher
feature dimensions, and character-level features have no
clean decision boundaries on imbalanced data because it
contains a lot of noise information. Considering that the
abstract features generated by CAE have clean decision
boundaries, but CAE cannot directly obtain input vectors
from http traffic, we present the character-level abstract
feature extraction approach based on character-level fea-
tures. )e workflow of the abstract feature extraction ap-
proach is shown in Figure 1.

2.2. Character-Level Feature Extraction Method Based on
Spark. Zhang et al. [22] have done a lot of research on
character-level features. However, Zhang’s experiment is
implemented on a single computer. In an actual production
environment, it will encounter a calculation bottleneck.
)erefore, we extend the character-level feature extraction
method on spark and combine it with abstract features to
extract character-level abstract features used in the paper.

We perform preprocessing steps and extract character-
level features on the spark cluster. First, we install and
configure the Hadoop cluster [23] on the ubuntu server, and
our spark mode is spark on yarn. Second, we allocate
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appropriate computing resources for spark tasks based on
the amount of task data and expected completion time. For
example, the gateway produces 15GB http traffic stored on
Hadoop Distributed File System (HDFS) every 5 minutes.
We set the size of HDFS default block to 128MB, so the
traffic can be split into 120 (15GB/128MB) tasks. )en, we
assume that 120 tasks need to run 2 to 3 times in the cluster
(according to experience, this configuration can maximize
resource utilization). )erefore, we can assign 50 executor
instances to the cluster, each instance assigning 2 to 3 CPU.
)ird, we write spark programs with the Jupyter notebook
tool. )e specific steps of data preprocessing and feature
extraction are same as in the paper [22]. )e pseudocode of
the character-level feature extraction algorithm is shown in
Algorithm 1. In pseudocode, we will merge the URL and
post fields into feature string and then filter out non-ASCII
characters. In the end, we need to generate a string of fixed
length L, and if the length is greater than L, truncate it; if the
length is less than L, repeat filling until the length reaches L.
After extracting the character-level features, we transfer the
feature data into Kafka [24] system for using in subsequent
steps.

For malicious http traffic, the URL and body fields are
more likely to contain sensitive attack information. )ere-
fore, this paper chooses these two fields as themain detection
target. Part of the training set containing only the URL field
and the body field is shown in Table 2.

2.3. Abstract Feature Extraction by Autoencoder. )e section
mainly presents the workflow of extracting the abstract
feature generated by the one-dimensional CAE. )e main
motivation of the abstract features generated by CAE is to
generate a clean decision boundary. )erefore, we use the
one-dimensional CAE to generate abstract features by
learning the character-level feature. )e results show that
this method can effectively reduce the impact of imbalanced
data distribution on the malicious traffic detection.

In Figure 2, the classic CAE’s input is two-dimensional
images. But the URL and post fields for HTTP traffic are one-
dimensional, unlike images with two-dimensional spatial
information; the paper processes the input text data into
one-dimensional.

Figure 3 shows the structure of the one-dimensional
CAE designed by us. Each layer of the encoder consists of
multiple nodes, and the last hidden layer of the encoder
generates the abstract feature. )e decoder also has a multi-
layered structure that is symmetrical with the corresponding
layer in the encoder, and the last layer of decoder is the
output layer. )e cost function calculates the error based on
the output layer and the input layer. And, to reduce over-
fitting, the dropout ratio between the encoder and the de-
coder is set to 0.1.

CAE is unsupervised learning, so manual labels are not
required and the CAE’s input is 300∗1 character, and after
convolution steps, an abstract feature of size 25∗ 8 is
generated.

3. The Cost-Sensitive Approach

We present the HM-loss cost function in this section. Our
main work consists of two parts. First, we describe the
disadvantages of the CE-loss when dealing with imbalanced
http traffic. Second, we design the HM-loss cost function
which is cost-sensitive. In this approach, we design a co-
efficient for the loss function and when the classification
algorithm predicts the minority class samples, the weight
coefficient factor can dynamically adjust the contribution of
the majority class samples to the loss function. When the
minority class samples are predicted, the contribution of the
sample of the loss function is kept unchanged.

3.1. �e Disadvantages of the CE-Loss on Imbalanced HTTP
Traffic. )e CE-loss function used as the cost function for
deep learning techniques is very popular in the classification
task. However, it suffers from a low F1-score value when
dealing with severely imbalanced HTTP traffic in an actual
production environment. Because the contribution of the
majority class to the cost function far exceeds that of the
minority class, the model’s decision tends to support the
majority class and ignore the minority exception class [14].

Figure 4 shows the loss value of the CE-loss varies with
the prediction probability. As shown in the picture, the
predicted value of a single normal sample tends to be large,
close to 1, but the contribution to the loss function is small.
Conversely, the predicted value of a single malicious sample
tends to be small (less than the normal sample), but con-
tributes a lot to the loss function.

Now, we assume that the predicted probability of a
normal sample is 0.97, and we can calculate that the sum of
contribution to the cost function of 500,000 normal samples
is 15,229. At the same time, assuming that the predicted
probability of a malicious sample is 0.88, the sum of con-
tribution to the cost function of 705 malicious samples is
39.14. )e loss value of the benign sample was about 389
(15,229/39.14) times that of the malicious sample. )erefore,
in the backpropagation of the neural network, the loss of
normal samples dominates the decline of the gradient, and
the algorithm focuses on the majority class.

3.2.�eDefinition ofHM-LossCost Function. In this part, we
design the HM-loss cost function and give the definition of
HM-loss cost function. First, we present the idea of HM-loss,
then give the definition of HM-loss, and finally summarize
the advantages and characteristics of HM-loss.

)e main idea of the HM-loss cost function is to dy-
namically adjust the weight of sample’s contribution to the
loss value [14]. When the true label belongs to the majority
category (negative), the weight of the contribution to the loss
decreases, and the degree of decrease varies according to the
predicted probability value, and usually, when the prediction
is correct, the contribution to the loss decreases greatly. In
addition, our cost function has another property. When the
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true label belongs to the minority class (positive), the weight
of contribution to the loss remains. )erefore, we can adjust
the algorithm to focus on the minority class samples by
giving the majority class samples less attention [25]. We
focus on the minority class samples but not the majority
class samples.

)e idea of the HM-loss cost function is present in the
previous paragraph. Now, we give the specific definition.)e
definition of HM-loss is shown in formula (1). “ytrue”
represents the real label, and there are only two values of 0
and 1, where 0 represents the positive class and 1 represents
the negative class. “ypred” represents the prediction
probability value, which ranges from 0 to 1.

loss � − ytrue ∗ cos(α∗ypred)
c

+(1 − ytrue)( ∗ log(ypred), ytrue ε 1, 0{ } and αε 0,
π
2

 . (1)

)e HM-loss cost function derived from the CE-loss
consists of two parts. )e first part is
“ytrue∗ cos(α∗ypred)c” which controls the weight that
varies from ypred value.)e two hyperparameters contained
in this part are to adjust the degree of weight reduction. )e
second part is “(1 − ytrue)” which controls the weight of the
minority class’s contribution to the loss function and it
remains unchanged. Figure 5 shows the loss value of the
HM-loss cost function under different hyperparameters.

We explain the definition of the HM-loss cost function in
the previous section, and we present the advantages of it as
follows. )e first advantage of the HM-loss cost function is
that the contribution of the majority class samples to the loss
function can be dynamically reduced according to the
predicted value. )e second is that, regardless of whether the
minority classes samples are predicted correctly or not, its
contribution to the loss function does not change. )e third
is that only when the majority class samples are correctly
predicted and the probability value is close to 1, the weight
value decreases faster.

Now, we take a simple example of what the HM-loss cost
function does. Figure 6 shows the loss of 500,000 normal
samples under different loss functions, and to show the data
better, we select the data with the probability value between
0.85 and 1. We assume that the probability of the majority
class sample is 0.97, and we can calculate that the sum of
500,000 samples loss value under the CE-loss cost function is
15,229. Similarly, we can calculate that the loss using the
HM-loss cost function under different hyperparameters is
4642, 431, and 40, respectively. It can be seen that the HM-
loss cost function is very effective in this case.

4. Results

4.1. Experiment. In this section, we explain the details of the
datasets and the performance metrics used in the experi-
ments. Using these metrics, we compare the performance of
the proposed scheme with related schemes including data-
level methods and Park’s method [11]. )e experiment
consists of three parts. Firstly, we introduce the preparation
stage of the experiment, including the dataset and the ex-
perimental evaluation index. )en, we show the structure of

convolutional neural network used to detect malicious
samples. )e third part shows the experimental results.

4.2. Experiment Setup. We use real traffic data accumulated
over time to validate our approach. And we collect around
701,000 HTTP messages from the gateway of a university in
2019 for this experiment. )e collected data is highly sen-
sitive because it contains most of the network activities
during work hours of teachers and students. For these data,
we perform manual verification and tagging. )e types and
quantities of malicious samples are shown in Table 3. )e
numbers of normal and anomalous HTTP messages are
around 700,000 and 1,000, respectively. We divide it into
training datasets and test datasets according to a certain
proportion.

Existing studies have shown that AUC has certain
limitations in performance evaluation, especially when the
numbers of normal and anomalous messages are signifi-
cantly different [26, 27]. )erefore, we use F-score [28].
Specifically, the F-score directly related to the recall and the
precision is the harmonic average of the precision and recall,
and the specific definition is shown in the following formula.

F �
2

(1/recall) +(1/precision)
. (2)

4.3. �e Neural Network Model Structure. After obtaining
character-level abstract features, we can train the CNN
network to classify samples. Our model is based on one-
dimensional convolutional neural network which can ac-
quire more local feature. )e reason for using one-dimen-
sional vector is that HTTP traffic has no two-dimensional
space attributes. )e structure of the model used by this
experiment mainly includes the input layer, the hidden layer,
and the output layer. )e input layer first converts the input
data into the input tensor fed into one-dimensional con-
volutional neural network. After the convolution, pooling,
ReLU, and flattening steps, the softmax function produces
the prediction value. )e model architecture is shown in
Figure 7.
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Table 1: Comparison of related works.

Scheme Method Encrypted
or not

Friendly
to lightweight devices

Friendly to a few
samples

Jin et al. [9] Data-level method No No No
Lim et al. [10] Data-level method No No No
Park et al. [11] Convolutional autoencoders No No No
Ting [12] Decision tree No No No

Chen et al. [13] Implex imbalanced data gravitation
classification No No No

Lin et al. [14] )e focal-loss cost function No No No
Tong [15] Convolutional neural network No No No
Aceto et al. [16] Multimodal deep learning Yes Yes No

Lotfollahi [17] Port-based, payload inspection and statistical
machine learning Yes No No

Bovenzi [18] Hierarchical hybrid intrusion detection Yes Yes No
Aceto [19] Big data-enabled DL framework for mobile TC Yes Yes No
Ours Spark-based HTTP traffic detection No Yes Yes

Preprocess
Character-level

feature
Contract
URL and

post

Convert
to ASCII
sequence

Get first
L char

Convolution
autoencoder

Abstract
feature

Detection

Figure 1: Feature extraction flow chart.

Input：HTTP traffic path
(1) Configure the resources occupied by the spark task
(2) Init spark session
(3) Initialize: Truncated fixed length: L, result: res
(4) feat-contract URL and post
(5) Filter non-ASCII characters of feat
(6) if(the length of feat≥ L){
(7) feat� the first L character of the feat
(8) }
(9) else{
(10) do{
(11) feat�merge two feat strings
(12) }
(13) While(getLength( feat)> L)
(14) }
(15) if(the length of feat≥ L){
(16) feat� the first L character of the feat
(17) }
(18) Return feat; //return the string of fixed length

ALGORITHM 1: Character-level feature (HTTP traffic path).
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Table 2: URL and post features.

Label Post URL
1 −7�@eval(get_magic_quotes_gpc()?stripslashes($... http://weki.php/admin/login.action
1 sqzr�@eval(get_magic_quotes_gpc()?stripslashes($... http://plus/sdfg.php//plusmytag_js.php?aid=8080
1 C� /var/www/vhosts/13/133103/webspace/httpdocs/... http://wp-includes/js/crop/data.php
1 z2� ???php+\r\ntitleline =file(‘key.txt’);\r\n... http://upload/2015/09/07/1441610150952000.jsp
1 action� editfile&fname� d:\wwwroot\www.jsjyjxx.c... http://com4.yichen.asp?action2=post
1 sqzr� response.write(“------>/”);var err:except... http://news/pics/20151017/201510171445088639847.php
0 ------------------------a1fa340557\0× 0d\0... http://upload.php?hid=sgpy-windows-generic-device-id...
0 api_token� f04362c49325b5cf1ef9d373e4fb89dc16d7... http://kancolle/proxykancolleapi?h=125.6.189.247&p=/...
0 ------------------------cqdems00sd0wevzsr... http://cloudquery.php
0 ejx9k8ty4yaqrb/gs1mkeahpmys81vmfruyhmxojoqg5cb... http://restapi.php

Original
input

Encoder Decoder

Compressed
representation

Reconstructed
input

Figure 2: Autoencoder structure.

Encoder
Dropout (drop rate of 0.1)

Decoder

Average pooling (25∗8)

Convolution (75∗8) Upsampling (75∗8)

Convolution (75∗8)

Upsampling (150∗8)

Convolution (150∗16)

Upsampling (300∗16)

Input (300∗1)

Average pooling (75∗8)

Convolution (150∗8)

Average pooling (150∗16)

Convolution (300∗16)

Input (300∗1)

Figure 3: One-dimensional convolution autoencoder architecture.

Result analysis
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Figure 4: )e loss value of CE-loss varies with the prediction probability.
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4.4. Experiment Result

4.4.1. HM-Loss Cost Function with Different
Hyperparameters. )e purpose of this experiment is to find
the best two hyperparameters of HM-loss, the experimental
data used in this paper.

Table 4 shows that when the hyperparameter alpha and
gamma take 1.3 and 3, respectively, the HM-loss performs
best on the dataset. And precision recall and F1-score value
can reach 0.90, 0.84, and 0.87, respectively.

4.4.2. Comprehensive Experimental Results. )e following
experimental results are divided into two parts. First, we
verify the effectiveness of the character-level feature ex-
traction method. Second, we compare our method with
other methods.

(i). We compare Park’s feature and character-level
abstract features. In this process, we apply different
feature extraction methods, but the same algorithm.
As shown in Figure 8, our feature has a higher
F-score value. )erefore, through this comparative
experiment, we can conclude that our feature can
work.

(ii). We compare our method with others’ methods. )e
ordinary method which does not adopt any strategy.
)e oversampling method focuses on the data level.
Park’s method mentioned in paper [11] focuses on
feature extraction. And Lin et al.’s method men-
tioned in the paper [14] mainly focuses on cost
function, which is effective in the field of computer
vision. Our method focuses on both feature ex-
traction and cost functions.

Result analysis
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Figure 5: −cos (α∗ypred)c ∗ log(ypred) with different values in c.

Loss of 500000 normal samples
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CE
α = 1.3, γ = 1

α = 1.3, γ = 3
α = 1.3, γ = 5

0
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a = 15229
b = 4642
c = 431
d = 40

Figure 6: Contribution of the 500,000 normal sample to the loss function.
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As shown in Table 5, through the comparative experi-
ment of ordinary method and our method, we can conclude
that our method can work. Comparing our method with
other method, we can find that our method has higher
accuracy and F-score than oversampling technique, Park’s
method, and Tsung-Yi Lin’s method. From the ROC curve
comparison results of the three methods in Figure 9, under
the same FPR, the HM loss method proposed by us can
obtain higher TPR than the method proposed by Tsung-Yi
Lin’s and Park’s, which is better than the other two methods.

According to the experimental results, we can conclude
that our method works and performs better than the above
related methods when dealing with the imbalanced traffic
dataset.

5. Discussion

In this paper, we propose a cost-sensitive approach to im-
prove the HTTP traffic detection performance with im-
balanced data. In this approach, we design a coefficient for
the loss function and when the classification algorithm
predicts the minority class samples, the weight coefficient

factor can dynamically adjust the contribution of the ma-
jority class samples to the loss function. When the minority
class samples are predicted, the contribution of the sample to
the loss function is kept unchanged.)e experimental results
show that this approach is more effective than others. In
addition, we also present a character-level abstract feature
extraction approach that can provide features with clear
decision boundaries in addition. In conclusion, the methods
proposed in this paper work well in imbalanced datasets.
Compared to other methods, the experiment results indicate
that our system has F1-score in a high precision. For im-
balanced HTTP traffic detection, we confirmed that the
method of feature extraction and cost function is very
effective.

In our future work, we will analyze the influence of
different types of autoencoders in character-level abstract
feature extraction and examine their capabilities and
characteristics of improving the performance, whether
streamlined autoencoders can keep precision and increase
computational efficiency. )e theoretical causes of the re-
sults require more rigorous regulation. In addition, we will
explore more about the performance of stacked autoencoder

Table 3: Dataset.

Normal Malicious Total
Training set 500000 705 500705
Test set 250000 352 250352
total 700000 1057 701057

Input tensor Conv1D

MaxPooling

Batch
normalization

ReLU Flatten Dense

Dropout

Softmax

/ 47
S 83
Q 81
L 76
. 46

A 65
S 83
P 80

Figure 7: Convolutional neural network structure.

Table 4: )e performance metrics when the HM-loss’s hyperparameters are assigned different values.

Alpha Gamma Precision Recall f1-score
1.1 1 0.89 0.71 0.79
1.1 3 0.89 0.67 0.76
1.1 5 0.91 0.76 0.83
1.3 1 0.91 0.75 0.82
1.3 3 0.90 0.84 0.87
1.3 5 0.90 0.8 0.85
1.4 1 0.87 0.81 0.84
1.4 3 0.84 0.83 0.83
1.4 5 0.88 0.8 0.84
Pi/2 1 0.86 0.82 0.84
Pi/2 3 0.82 0.79 0.8
Pi/2 5 0.86 0.83 0.84

8 Security and Communication Networks



0.87
0.89

0.79
0.81

0.83
0.85

Park’s feature Our feature

Precision
Recall
F1-score

0.7

0.75

0.8

0.85

0.9

Figure 8: )e performance metrics on the ordinary method and our method.

Table 5: )e performance metrics on different methods.

Precision Recall F1-score
Ordinary method 0.94 0.35 0.51
Oversampling 0.79 0.82 0.81
Park’s method 0.87 0.79 0.83
Tsung-Yi Lin’s method 0.85 0.83 0.84
Our method 0.9 0.84 0.87
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Figure 9: Comparison of ROC curves of three methods.
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when extracting HTTP traffic feature, make the focal loss
suitable for HTTP traffic feature, and verify that our method
is feasible in other mobile communication protocols.
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Safety-Critical Cyber-Physical System (SCCPS) refers to the system that if the system fails or its key functions fail, it will cause
casualties, property damage, environmental damage, and other catastrophic consequences. +erefore, it is vital to verify the safety
of safety critical systems. In the community, the SCCPS safety verification mainly relies on the statistical model checking
methodology, but for SCCPS with extremely high safety requirements, the statistical model checking method is difficult/infeasible
to sample the extremely small probability event since the probability of the system violating the safety is very low (rare property).
In response to this problem, we propose a new method of statistical model checking for high-safety SCCPS. Firstly, with the
CTMC-approximated SCCPS path probability space model, it leverages the maximum likelihood estimation method to learn the
parameters of CTMC.+en, the embedded DTMC can be derived from CTMC, and a cross-entropy optimization model based on
DTMC can be constructed. Finally, we propose an algorithm of iteratively learning the optimal importance sampling distribution
on the discrete path space and an algorithm to check the statistical model of verifying the rare attribute. Eventually, experimental
results show that the method proposed in this paper can effectively verify the rare attributes of SCCPS. Under the same sample
size, comparing with the heuristic importance sampling methods, the estimated value of this method can be better distributed
around the mean value, and the related standard deviation and relative error are reduced by more than an order of magnitude.

1. Introduction

Safety-Critical Cyber-Physical System (SCCPS) is charac-
terized with high safety and high reliability and are widely
used in fields closely related to the national economy and
people’s livelihoods, such as aerospace, nuclear industry,
public transportation, finance, and medical care. Once the
execution of such system fails, it will deeply threaten the safety
of human’s life and property [1–3]. +erefore, it is vital to
analyze and verify the safety and reliability of safety-critical
systems, and it is of great significance to the design and
development of safety-critical systems. Indeed, it has attracted
wide attention from researchers and has extensively grown as
a prominent research topic in the community [4–7].

Essentially, SCCPS is a kind of complex cyber-physical
fusion system [8–10]. For this kind of systems, the

continuously changing behavior in their physical layer is
intertwined with the discrete changing behavior in their
decision control layer. +eir state spaces are infinite as well.
It increases the difficulty and brings severe challenges to the
safety analysis and verification of SCCPS. However, the
traditional model checking has the problem of state space
explosion, and it is difficult to effectively verify it [11].

With the execution path of the sampling system, Sta-
tistical Model Checking (SMC) uses statistical analysis
techniques to approximate the probability that the target
system meets the sequential logic attributes and can provide
arbitrarily small error limits [12–14]. Because SMC does not
need to analyze the complex logic inside the target system to
verify the timing logic properties of the system, it can ef-
fectively avoid the complexity of the system and the ex-
plosion of the state space [15, 16]. +erefore, SMC is the
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most effective solution to verify the timing properties of
complex SCCPS [12, 17–19]. However, for SCCPS requiring
extremely high safety, the probability of occurrence of the
negative events of its safety attributes and the probability of
system failures are extremely low. It is infeasible for SMC to
sample extremely low probability events. +us, how to use
SMC to verify the extremely secure SCCPS is an urgent
problem to be solved [20, 21].

To date, verification of the SMC rare attributes mainly
relies on the importance sampling method. For CTMC and
DTMC random models, Reijsbergen et al. [22] and Barbot
et al. [23] utilized the heuristic methods to obtain an
importance sampling distribution to complete the attribute
verification of the two models, respectively. Clarke and
Zuliani [24] proposed the cross-entropy minimization
importance sampling-based SMC method to verify the
safety properties of the Stateflow/Simulink model system.
Zuliani et al. [17] used the SMC method in his study [24] to
verify the secure attribute of the discrete-time SHS. +e
methods proposed by Clarke and Zuliani assume that the
distribution of the system path space is an exponential
distribution. By simply increasing the failure rate of the
system parameters, several paths that satisfy the rare at-
tributes are extracted at one time to calculate the optimal
parameters for the exponential distribution to obtain an
importance sampling distribution [25]. J´egourel et al. [26]
leveraged the cross-entropy minimum optimization
method in the random model of a random guardian
command system, which can approximate the path dis-
tribution of the system by increasing the number of
commands (number of parameters), to obtain an impor-
tance sampling distribution in the random model. How-
ever, the optimal importance sampling distribution
obtained with the aforementioned methods is not from the
distribution family of the system path space, but essentially
is a heuristic importance sampling method. +us, the
verification results are only rough approximation.

In this paper, we propose a method with the SCCPS path
space to construct a cross-entropy optimization model and
use an iterative learning method to obtain an optimal im-
portance sampling distribution from the parameterized
distribution cluster of the path space. It can ensure that the
optimal importance sampling distribution is from the spatial
distribution family in the SCCPS path, and the iterative
learning method can ensure that the distribution evenly
covers the unsafe path distribution area. As evaluated in our
experiments, the accuracy and efficiency of the rare attribute
verification are significantly improved.

2. Background

2.1. Statistical Model Checking. Statistical Model Checking
(SMC) can be simply described as follows: given a system
model M and system properties φ described by the bounded
linear temporal logic (BLTL) [18], it uses the Monte Carlo
sampling, model checking, and statistical analysis techniques
to qualitatively/quantitatively verify the following two
questions:

(i) +e probability that M satisfies the attribute φ:
Pr(M⊨π)

(ii) Whether the probability of M satisfying the attribute
φ is higher than or equal to the threshold θ:
M⊨Pr(≥θ) (φ)

In SMC, it first simulates the execution of the system
model M to extract a random execution path ω. +en, the
BLTL model detector is used to determine whether ω sat-
isfies the attribute φ, and a certain number of samples will be
generated after multiple simulations. It further leverages the
statistical method to perform statistical analysis on the
samples to assess the probability of the system model M

satisfying the attribute φ, as well as give the confidence
interval or the estimated error margin. Let I(ω) represent the
output result of the BLTL model detector. If ω⊨π, I(ω)� 1;
otherwise, it is 0. I(ω) is a Bernoulli random variable, so the
behavior of M can be modeled by the Bernoulli distribution
with a parameter p:

Pr(I(ω) � 1) � p,

Pr(I(ω) � 0) � 1 − p.
 (1)

+e parameter p represents the probability that the
model M satisfies the BLTL attribute φ. With the Bernoulli
distribution, we note that p � E[I(ω)], var[I(ω)]� p ×

(12212p). Since the value of p is unknown, the goal of SMC is
to estimate the value of p.

SMC can be divided into two categories: hypothesis
testing and parameter estimation. +e hypothesis testing is
used to determine whether the probability of the system
satisfying the temporal logic attribute is greater than or equal
to a given threshold, which is a qualitative result, while the
parameter estimation is a quantitative result to represent the
approximate probability of the system satisfying the tem-
poral logic attribute. SMC qualitative algorithms include the
single sampling plan (SSP) algorithm [27], the sequential
probability ratio test (SPRT) algorithm [27], and the
Bayesian hypothesis test (BHT) algorithm [18]. SMC
quantitative algorithms mainly include the approximate
probabilistic model checking (APMC) [28] algorithm and
the Bayesian interval estimation testing (BIET) algorithm
[18]. Kim et al. [29] conducted an empirical evaluation on
the performance and applicability of the four algorithms
(i.e., SSP, SPRT, BHT, and BIET).

2.2. Safety Requirement Specification. In this paper, we use
Bounded Linear Temporal Logic (BTCL) as our specification
language. BLTL restricts Linear Temporal Logic (LTL) with
time bounds on the temporal operators. Formally, the syntax
of BLTL is given as

φ⩴ x ∼ v|(φ 1) ∨ φ 2|(φ 1 ∧ φ 2)|φ 1φ 1∪ tφ 2, (2)

where ∼∈ ≤ , ≥ , �{ }, x ∈ SV (the finite set of state variables),
v ∈ R, t ∈ R≥0, and ∨, ∧, and are the usual Boolean con-
nectives. +e formulas x ∼ v is called the atomic proposi-
tions (AP).+e formula φ _1{ }∪ tφ _2{ } will return true if and
only if φ _2{ } is true and φ _1{ } will hold within the time t.+e
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operators ◇t and □t can be defined as follows by using the
∪ t operator:◇tφ � True ∪ tφ, which required φ to hold true
within time t (true). □tφ �¬◇t¬φ requires φ to hold true up
to time t.

+e semantics of BLTL formulas [28, 30, 31] is defined
with respect to system traces (or executions). A trace is a
sequence σ � (s0, t0), (s1, t1), . . ., where si is the state of the
system at the represented time ti. +e pair (si, ti) expresses
the fact that the systemmoved to state si+1 after having spent
ti time units in state si. If the trace σ satisfies the property φ,
we write σ⊨φ. +e trace suffix of σ starting at k ∈ N is
denoted by σk, and σ0 denotes the full trace σ.

�e semantics of BLTL for a trace σk is defined as
follows:

(i) σk⊨x ∼ v, iff x ∼ v holds true in state sk

(ii) σk⊨φ1∧φ2, iff σk⊨φ1 and σk⊨φ2

(iii) σk⊨φ1∨φ2, iff σk⊨φ1 or σk⊨φ2

(iv) σk⊨φ1, iff σk⊨φ1 does not hold (σk⊭φ1)
(v) σk⊨φ_1∪ tφ _2{ }, iff ∃i ∈ N such that (a) 

i− 1
l�0tk+1

< t and (b) σk+i⊨φ2, as well as (c) ∀0≤ j< i, σk+j⊨φ1

�e sampling bound: #(φ)∈∈Q≥ 0 of a BLTL
formula φ is the maximum nested sum of time
bounds

(vii) #(x ∼ v): � 0
(viii) #(φ1): � #(φ)

(ix) #(φ1∨φ2): � max(#(φ1), #(φ2))

(x) #(φ1∧φ2): � max(#(φ1), #(φ2))

(xi) #(φ1 ∪ tφ2): � t + max(#(φ1), #(φ2))

Lemma 1 (Bounded sampling). 6e problem “σ⊨φ” is well-
defined and can be checked for BLTL formulas φ and traces σ
based on only a finite prefix of σ of bounded duration.

Proof. According to Lemma 1, the decision “σ⊨φ” is uniquely
determined (and well-defined) by considering only a prefix of
σ of duration #(φ)∈∈Q≥ 0. By divergence of time, σ reaches
or exceeds this duration #(φ) in some finite number of steps n.
Let σ0 denote a finite prefix of σ of length n, such that
0≤l<ntl≥ #(φ). Again by Lemma 3, the semantics of σ0⊨φ is
well-defined because any extension σ” of σ’ satisfies σ”⊨φ if
and only if σ’⊨φ. Consequently, the semantics of σ’⊨φ co-
incides with the semantics of σ ⊨φ. On the finite trace σ0, it is
easy to see that BLTL is decidable by evaluating the atomic
formulas x ∼ v at each state si of the system simulation. □

Lemma 2 (BLTL on bounded simulation traces). Let φ be a
BLTL formula, k ∈ N. 6en, for any two infinite traces, σ �

(s0, t0), (s1, t1), . . . and σ � (s0, t0), (s1, t1), . . . with
sk+I � sk+I and tk+I � tk+I ∀I ∈ N with tk+I

≤ #(ϕ) [17]. We
have that σk⊨φ if σk⊨φ.

Proof. IH is short for induction hypothesis.

(1) If φ is of the form x ∼ v, σk⊨φ if σk⊨φ since sk+I �

sk+I and tk+I � tk+I by using [17] for i � 0.
(2) If φ is of the form φ1∨φ2,

σk⊨φ1∨φ2

iff σk⊨φ1 or σk⊨φ2,

iff σk⊨φ1 or σk⊨φ2,

iff σk⊨φ1∨φ2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

by induction hypothesis as #(φ1∨φ2)≥ #(φ1) and
#(φ1∨φ2)≥ #(φ2). +e proof is similar to φ1 and
φ1 ∩φ2.

(3) If φ is of the form φ1 ∪ tφ2, σk⊨φ1 ∪ tφ2 if the fol-
lowing three conditions are satisfied:

(a′). 0≤l<it
∼

k+l ≤ t because #(φ1 ∪ tφ2)≥ t such that
the durations of trace σ and σ are tk+l � t ∼k+l for each
index l with 0≤ l< i by the assumption [17].
(b′). σk+i⊨φ2 by induction hypothesis as follows: we
know that the traces σ and σ match at k for duration
#(φ1 ∪ tφ2) and need to show that the semantics of
φ1 ∪ tφ2 matches at k. By IH, we know that φ2 has
the same semantics at k + i (that is, k + i⊨φ2 if
k + i⊨φ2) provided that we can show that the traces
σ and σ match at k + i for duration #(φ2). For this
case, it considers any I ∈ N with 0≤l<Itk+i+l

≤ #(φ2). +en, #(φ2)≥0≤l<Itk+i+l � 0≤l< Itk+l −

0≤l<Itk+l ≥0≤l<i+ltk+l − t. +us, 0≤l<i+Itk+l ≤ t +

#(φ2)≤ t + max(#(φ1), #(φ2)) � #(φ1 ∪ tφ2). As
I ∈ N was arbitrary, we conclude from this with
assumption [17] that, indeed sI � s ∼I and tI � t ∼I
for all I ∈ N with 0≤l<Itk+i+l ≤ #(φ2). +us, the IH
for φ2 yields the equivalence of σk+i⊨φ2 and σk+i⊨φ2
when using the equivalence of (a) and (a’).
(c′). For each 0≤ j< i, σk+i⊨φ1. +e proof of
equivalence to (c) is similar to that for (b’) using
j< i. +e existence of an i ∈ N for which these
conditions (a′), (b′), and (c′) hold is equivalent to
k⊨φ1 ∪ tφ2. □

2.3. Safety Critical System Model. Safety-Critical Systems
(SCCPS) [32] are defined as a tuple,
SCCPS � (L, X, E, Inv, D, G, R), where

(i) L is a finite set of discrete states (control mode);
(ii) X⊆Rn is a finite set of continuous variables;
(iii) E ⊂ L × L is a collection of discrete changes;
(iv) Inv: L⟶ 2X represents the mapping from the

discrete state set L to the continuous state space. For
∀l ∈ L, Inv (l) is the invariant-position set of l;

(v) D: L⟶ (X⟶ X) is a mapping of a vector
domain, which assigns a set of Stochastic Differ-
ential Equations (SDE) to each control mode l ∈ L

to describe the continuous random dynamic be-
havior with respect to the different control modes l,
dx(t) � f(l, x(t))dt + g(l, x(t))dBt

. Bt is a
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standard Wiener process defined in the real
number field. It assumes that ∀l ∈ L, f(l, ·), and
g(l, ·) are bounded and Lipschitz continuous;

(vi) G: E⟶ 2X is to assign a guardian condition to
each discrete transition, satisfying the following
conditions:
∗∗ ∀e � (l, l′) ∈ E, G(e) denotes a measurable
subset of z Inv (l)
∗∗ ∀l ∈ L, G(e): e � (l, l′) ∈ E, l′ ∈ L  is a dis-
joint subset of z Inv (l)

(vii) R: E × X⟶ P(X) is a reset mapping. P(X)

represents a set of probability measures defined on
X, and continuous variables are reset according to
the probability distribution.

According to the definition, the SCCPS hybrid state
space is L × X, and (l, x) ∈ L × X represents the hybrid state.
+e continuous dynamics of SCCPS evolves according to the
SDE in the current control mode. However, the discrete
dynamics refers to migrating one control mode to another
control mode with the guardian condition on the discrete
transition, when the continuous variable cannot reach the
boundary of the invariant.

Let xl(t) be the SDE solution of the initial state xl(0);
τ(l) � inf t ∈ R>0, xl(t) ∉ Inv(l)  means that, in the control
mode l, the first time that the evolution of a continuous
variable violates the invariant, that is, the first time of exiting
the control mode l.

SCCPS execution semantics: a random execution of
SCCPS is defined as a random process (l(t), x(t)) ∈ L × X in
the SCCPS state space. If there is a stop-time sequence T0 �

0<T1 <T2 < · · · that makes ∀k ∈ N, where

(i) (l0, x0) ∈ L × X indicates the initial state of SCCPS.
(ii) t ∈ (Tk, Tk+1), l(t) � l(Tk) is a const, and x(t) is a

continuous solution of the SDE
dx(t) � f(l(Tk), x(t))dt + g(l(Tk), x(t))dBt

;
• Tk+1 � Tk + τ(l(Tk));
• the probability distribution of x(Tk+1) is determined
by the reset map R(ek, x(T−

k+1)), where
ek � (l(Tk), l(Tk+1)) ∈ E andx(T−

k+1) � limt⟶
Tk+1x(t).

SCCPS path: a SCCPS execution path is defined as an
infinite sequence σ � ((l0, x0), t0), ((l1, x1), t1), . . . from the
initial state (l0, x0), where (li, xi) ∈ L × X represents the
SCCPS state. ti ∈ R≥0 means the time that transitions the
state (li, xi) to the next state (li+1, xi+1).

3. Our Approach

In this section, we present our proposed method with the
SCCPS path space to construct a cross-entropy optimization
model and use an iterative learning method to obtain an
optimal importance sampling distribution from the pa-
rameterized distribution cluster of the path space.

3.1. SCCPS Path Space Model

3.1.1. Model Representation. To avoid the complexity of the
dynamic evolution of SCCPS, SMC does not pay attention
to the structure of SCCPS, but focus on sampling the
execution path of SCCPS. +e behavior of SCCPS evolving
over time can be characterized by the path of the system.
According to the execution semantics of SCCPS, the ex-
ecution path generation process of SCCPS can be described
as follows: in the current control mode li, the continuous
variable xi evolves according to the SDE. When the evo-
lution of xi satisfies the guardian condition (xi ∈ G(li, li+1)),
it migrates to the next control mode li+1 and the initial value
of xi+1 is determined by the random reset kernel R. +e
residence time of li is ti � inf t ∈ R>0, xi(t) ∉ Inv(li) . ti is a
random variable, and its value depends on the SDE of li and
the initial values xi(0) and Inv (li). According to the
generation process of the SCCPS execution path, the next
state of SCCPS depends on the current state and the related
residence time of the current state. +erefore, the execution
path of the SCCPS can be regarded as that it is generated in
the continuous-time Markov process in the hybrid state
space. As the residence time of li is longer, the probability of
migration from li is higher. It can further presume that the
residence time of li obeys the exponential distribution, and
the continuous-timeMarkov process then becomes CTMC.

Let Gl denote the guard condition set of all edges starting
from l:

Gl � G(e): e � l, l′(  ∈ E, l′ ∈ Loc , (4)
where G(e) ∈z Inv (l) and G(ei)∩G(ej) � ∅, i≠ j. In l, the
time for the continuous variable evolving to satisfying the
conditions of each guard is τ1, τ2, . . . , τ|Gl|

. +en, the resi-
dence time in l is tl � min τ1, τ2, . . . , τ|Gl|

 . Supposing
τ1, τ2, . . . , τ|Gl|

, respectively, obey the exponential distribu-
tion of parameters λl,l′ , l′ ∈ L, (l, l′) ∈ E , then the resi-
dence time tl in l obeys the exponential distribution of
parameters l′∈Loc,(l,l′)∈Eλl,l′ . With this assumption, the ex-
ecution path of SCCPS can be generated by the CTMC
random process.

Definition 1. SCCPS path generation model: the path
generation model on the SCCPS state space is defined as
CTMC � (S, s0, λ), where

(i) S � L represents the discrete state set of SCCPS
• s0 ∈ L denotes the initial state of SCCPS
• Migration rate function λ: S × S⟶ R≥0, and all
migration rate function values form the migration
rate matrix λ

It can be seen from this definition that when the
CTMC structure is known, its behavior is controlled by
the migration rate matrix λ, whose value comes from
SCCPS. +e value of λ is estimated with the maximum
likelihood method according to simulating the execution
of SCCPS to obtain the time samples of the state
transition.
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3.1.2. Algorithm of Learning Model Parameters. +e rarity of
the path does not necessarily imply that the conversion rate
between two adjacent discrete states is low, and the rarity of
the safety attributes in the path space does not necessarily
imply that the optimal parameters in the parameter space are
rare. Based on this observation, this section introduces our
approach of leveraging the maximum likelihood estimation
method to estimate the migration rate of two adjacent
discrete states of SCCPS and obtain the migration rate
matrix λ. With the simulation operation of each discrete
state of SCCPS, the discrete state is sampled to migrate to the
next discrete state time; we then use the maximum likeli-
hood estimation to obtain an estimate of λ.

For the state si ∈ S, we simulate executing the SDE in the
running state si to obtain the migration time
tk(k � 1, . . . , N) samples of the adjacent state sj. Assuming
that the migration time between si and sj obeys the expo-
nential distribution of the parameter λij, then the likelihood
function of λij can be obtained:

L λij  � 
N

k�1
λije

− λijtk , (5)

and its log likelihood function is as follows:

ln L λij  � 
N

k�1
ln λij − λij 

N

k�1
tk. (6)

We further take the derivative of λij with the log-
likelihood function and make it equal to 0, and its estimated
value can be resolved, λij � (1/N) 

N
k�1 tk. With

E(λij) � (1/N) 
N
k�1 E(λij) � (1/λij), it can be seen that the

estimated value is an unbiased estimate of λij. +e estimated
variance is

Var λij  � Var
1
N



N

k�1
tk

⎛⎝ ⎞⎠ �
1

N
2 

N

j�1
Var tk(  �

1
Nλ2ij

,

(7)

but the estimated variance is biased, and the variance will be
decreased as the samples increase.

In most cases, it is difficult to obtain a clear expression
for the random execution of SCCPS. However, what the
safety concerned is the accessibility analysis of discrete
states. +e discrete state set S and its transitions can capture
all necessary information. +erefore, we derive the DTMC
from the SCCPS path generationmodel to represent the path
space of SCCPS.+e value of DTMC’s migration probability
matrix P: S × S⟶ [0, 1] can be obtained from the mi-
gration rate matrix λ of the SCCPS path generation model.
For two states si and sj ∈ S,

P si, sj  �

λij

λi

, si ≠ sj,

1, si � sj,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

where λi � sj∈Sλij.

3.2.Method of SamplingRareAttributes. In the path space of
the high-safety SCCPS, it is difficult to obtain samples
satisfying the rare attributes, which makes the SMC infea-
sible. To address this challenge, we propose a method for
sampling the rare attributes. It uses the cross-entropy
method to learn an optimal-importance sample distribution
from the path space of the SCCPS. With this sample dis-
tribution, it is easy to obtain the samples that satisfy the rare
attributes. +us, the convergence of the SMC can be
accelerated. +e importance sampling distribution is cor-
rected by the likelihood ratio weighting to ensure that the
SMC verification result is unbiased.

3.2.1. Zero-Variance Importance Sampling Distribution.
+e basic idea of the importance sampling method [33, 34] is
to change the probability density distribution of random
variables, so as to obtain the samples of extremely small
probability events with a higher probability. We now present
the SMC method based on the importance sampling. Let
f(ω) be the true distribution of path ω, and let g(ω) be the
importance sampling distribution, and g(ω) can obtain the
samples of the extremely small probability events with a
higher probability when g(ω)≠ 0 and f(ω)≠ 0. In the case
of verifying the extremely small probability events, it is
difficult to sample from f(ω) to meet the requirements, but
the importance sampling method is to sample from g(ω).
+e probability p � Ef[I(ω)] satisfying the system attribute
can be described as

p � Ef[I(ω)] �  I(ω)f(ω)dω �  I(ω)
f(ω)

g(ω)
g(ω)dω

�  I(ω)W(ω)g(ω)dω � Eg[I(ω)W(ω)],

(9)

where W(ω) � (f(ω)/g(ω)) is the likelihood ratio, and
g(ω) is for the importance sampling. We leverage the
likelihood ratio to correct the weighting to ensure that the
estimated value of p is unbiased. We then randomly sample
N independent execution paths ωi, i ∈ 1, . . . , N{ } from the
importance distribution g(ω) and obtain the unbiased
estimate:

p �
1
N



N

i�1
I ωi( W ωi( , (10)

and estimated variance

Varg[p] �
1
N

Eg I
2
(ω)W

2
(ω)  − p

2
 , (11)

for p, respectively.
+e efficiency and accuracy of importance sampling rely

on the selection of the distribution g(ω). If the selection is
inadequate, the importance sampling method is difficult to
effectively achieve the acceleration effect and may play a
decelerating effect.+e key problem of importance sampling
is to find a density function for the optimal sampling
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probability to minimize the estimated variance. With for-
mula (10) returning 0, it can obtain the following formula:

g
∗
(ω) �

I(ω)f(ω)

p
, (12)

where g∗(ω) is a zero-variance importance sampling dis-
tribution, whichmeans that extracting only one sample from
the zero-variance importance sampling distribution can be
used to calculate its estimated value, that is, any sample is an
unbiased estimate of its mean. However, the zero-variance
importance sampling distribution depends on the true value
p, and the value of p is unknown. +erefore, it is impossible
to sample from g∗(ω). +is paper proposes to use the cross-
entropy method to find an approximate optimal importance
sampling distribution closest to g∗(ω) from the parame-
terized distribution family of the sample path space, so as to
reduce the SMC variance and accelerate the convergence of
the SMC algorithm.

3.2.2. Cross-Entropy Optimization Model. +is section is to
obtain the optimal importance sampling distribution by
minimizing the cross entropy between the two probability
distributions. According to the definition of cross entropy
[35], this section provides the definition of cross entropy for
the SCCPS path space.

Definition 2. Cross entropy for the SCCPS path space: the
cross entropy between two probability measures f(ω) and
f′(ω) for the SCCPS path space Ω is as follows:

CE f(ω), f′(ω)(  � 
Ω

f(ω)ln
f(ω)

f′(ω)
dω. (13)

+e cross entropy is used to assess the similarity of two
probability distributions. +e value of cross entropy is
smaller, and f(ω) and f′(ω) are more similar, i.e.,
CE(f(ω), f′(ω)) � 0 if and only if f(ω) � f′(ω).

According to Definition 2, the construction of the cross-
entropy optimization model on the SCCPS path space is
given below. Assume that the original distribution f(ω) of
the SCCPS path ω comes from the parameterized distri-
bution family f(ω, θ) , +e cross-entropy optimization
method is used to select a distribution f(ω, λ∗), λ∗ ∈ θ in
the parameterized distribution family, λ∗ ∈ θ and the op-
timal distribution g∗(ω) have the smallest cross-entropy.
+is optimization problem can be described for

minλCE g
∗
(ω), f(ω, λ)(  � minλ

Ω
g
∗
(ω)ln

g
∗
(ω)

f(ω, λ)
dω

� minλ
Ω

g
∗
(ω)ln g

∗
(ω)dω

− 
Ω

g
∗
(ω)lnf(ω, λ)dω.

(14)

+e first term of formula (13) has nothing to do with λ
and minimizing cross entropy is equivalent to maximizing

the second term. Let D(λ) � Ωg
∗(ω)Inf(ω, λ)dω; the

minimization problem of formula (13) is equivalent to the
maximization problem of formula (14):

maxλ
Ω

g
∗
(ω)lnf(ω, λ)dω � maxλ

Ω
I(ω)f(ω)lnf(ω, λ)dω

� maxλE[I(ω)lnf(ω, λ)].

(15)

Solving the optimization problem of formula (14)
requires sampling from the true distribution f(ω).
However, in the case of rare attribute verification, it is
difficult to sample from f(ω) to the path sample that
satisfies the rare attribute. By using importance again, the
sampling method samples from the distribution f(ω, μ)

and the selection of parameter μ should be able to in-
crease the probability of the path that meets the rare
attribute. +erefore, the optimization problem of formula
(14) can be re-formed as

maxλ
Ω

I(ω)
f(ω)

f(ω, μ)
f(ω, μ)lnf(ω, λ)dω

� maxλ
Ω

I(ω)W(ω, μ)f(ω, μ)lnf(ω, λ)dω.

� maxλEμ[I(ω)W(ω, μ)lnf(ω, λ)].

(16)

Among them, the likelihood ratio function
W(ω, μ) � (f(ω)/f(ω, μ)). In formula (16), the optimal
solution of its optimization problem λ∗ can be estimated by
the path sample, and the sample mean is replaced by the
expectation Get the estimated value of λ∗

λ∗ � argmaxλ
1
N



N

i�1
I ωi( W ωi, μ( lnf ωi, λ( , (17)

where ω1,ω2, . . . ,ωN is a sample from the distribution
f(ω, μ).

3.3. Algorithm of Verifying the Cross-Entropy Safety. In
Section 3.1, we provide a DTMC-based method to ap-
proximate the SCCPS path space. SMC mainly considers
the system execution path ω � s0, s1, . . . , sk(k> 0) within a
bounded time T, where k is a random variable to rep-
resent the number of state transitions, and its value varies
with ω. Let 〈l, m〉 denote two adjacent and ordered state
pairs in ω, S(ω) represent the set of ordered state pairs in
ω, n

(ω)
lm represent the number of transitions from state l to

state m in ω, and n
(ω)
l represent the number of occur-

rences of the state l in ω; then, the probability measure
function of path ω under system parameter p can be
formulated as

f(ω, p) � ιinit s0(  
〈l,m〉∈S[ω]

plm( 
n

(ω)

lm . (18)

Substituting f(ωi, λ) of formulas (16) with (17), we
obtain
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maxp

1
N



N

i�1
I ωi( W ωi, μ(  lntinit s0(  + 

〈l,m〉∈S ωi( )

n
ωi( )

lm lnplm
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠s.t. 

m∈S
plm � 1, (19)

and formula (18) can be transformed by the Lagrangian
multiplier method into the following optimization problem:

maxp 

N

i�1
I ωi( W ωi, μ(  ln ιinit s0(  + 

〈l,m〉∈S ωi( )

n
ωi( )

lm lnplm
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + ]i 

m∈S
plm − 1⎛⎝ ⎞⎠, (20)

where ]i is the Lagrangian multiplier. Taking the derivative
of formula (19) to plm and making it equal to 0, the solution
can be

plm �


N
i�1 I ωi( W ωi, μ( n

ωi( )
lm


N
i�1 I ωi( W ωi, μ( n

ωi( )
l

, (21)

where ωi (1≤ i≤N) is the sample path from the distribution
f(ω, μ), and f(ωi) represents the true probability distri-
bution of the SCCPS path.

With formula (20), it indicates that the estimated value
of the optimal solution relies on the initial distribution
f(ω, μ). However, the distribution of f(ω, μ) is generally
far from the optimal distribution. +erefore, in order to
reduce the influence of the initial distribution f(ω, μ) on
the optimal importance sampling distribution, this paper
proposes the iterative solution in the path space. +rough
the iteration, the algorithm can explore a wider path
space, so as to obtain a better approximate optimal
solution.

Let the initial distribution parameter be u � p(0), and an
iterative formula can be obtained from formula (20):

p
(j+1)

lm �


N
i�1 I ω(j)

i W ω(j)
i , p

(j)
 n

ω(j)

i( 
lm


N
i�1 I ω(j)

i W ω(j)

i , p
(j)

 n
ω(j)

i( 
l

, (22)

where N is the number of samples per iteration,
W(ω(j)

i , p(j)) � (f(ω(j)

i )/f(ω(j)

i , p(j))) represents the like-
lihood ratio of the nth iteration, and ω(j)

i is the ith sample
path sampled from the distribution f(ω(j)

i , p(j)).
Usually, only a few state transitions can be seen in each

simulated execution. During each iteration, some param-
eters do not work in the path that satisfies the extremely
small probability event. Formula (21) will set these pa-
rameter values to zero so that these parameters will not
work in all subsequent iterations. As a result, the iterative
algorithm converges too prematurely to detect a wider
parameter space. To avoid this situation, this paper adopts a
smoothing strategy to temporarily reduce the importance
of inoperative parameters in the iteration instead of simply
setting them to zero. +e smoothing strategy is to weight
current iteration value and the parameters of the previous
iteration:

p
(j+1)

lm � αp
(j)

lm +(1 − α)


N
i�1 I ω(j)

i W ω(j)

i , p
(j)

 n
ω(j)

i( 
lm


N
i�1 I ω(j)

i W ω(j)

i , p
(j)

 n
ω(j)

i
( 
l

,

α ∈ (0, 1).

(23)

+e smoothing strategy can retain important but not yet
effective parameters. Iterative formula (21) and smoothing
formula (22) can jointly ensure that approximately uniform
sampling is obtained from the path set of events satisfying
the minimal probability.

+e selected initial distribution f(·; p(0)) should be able
to produce some paths that satisfy the event with minimal
probability in the first iteration, that is, the selected pa-
rameter p(0) should be able to increase the probability of
occurrence of the extremely small probability events.
+erefore, in this paper, we set the initial parameter p(0) to a
uniform distribution, and the uniform distribution can
quickly obtain the sample path that satisfies the extremely
small probability event. +e condition for stopping the it-
eration can be that the coefficient of variance or the distance
between two iteration parameter vectors are not higher than
a certain constant or themaximum number of iterations. For
example, given any small positive number ϵ> 0, if ‖p(j) −

p(j − 1)‖< ϵ is satisfied, the iteration will be stopped. To
facilitate the comparison, we limit the maximum number of
iterations in the experiment. To sum up, Algorithm 1
presents the description of the importance sampling dis-
tribution learning algorithm, which iteratively solves the
approximate optimal importance sampling distribution in
the SCCPS path space of the attributes for being verified.

Regardless of sample acquisition time and BLTL model
checking time, the time complexity of Algorithm 1 is
O(jmax|p|N). Since the optimized objective function is
convex, there is a unique optimal solution. If Algorithm 1
can converge, it must converge to the vicinity of the unique
optimal solution [36]. Since the number of samples in each
iteration is limited, the convergence is probabilistic but not
necessarily monotonic. By simply limiting the maximum
number of iterations jmax, the algorithm can be guaranteed
to be terminated with 100% probability. For the proof of
convergence of cross-entropy optimization, please refer to
[37]; thus, a formal proof of convergence is not provided in
this paper. In experiments, we observe that the parameters
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are convergent. Once the parameters converge, the last set of
simulated samples is used to estimate the probability p that
SCCPS satisfies the safety attribute with the optimal im-
portance sampling distribution. Algorithm 2 describes the
verification process of the safety verification algorithm.

4. Experiment and Analysis

To evaluate the effectiveness and performance of the Cross-
Entropy Safety Verification Algorithm (CESVA) method
proposed in this paper, we apply CESVA to a fault-tolerant
controller for an aircraft elevator system (FTC4AE), that is, a
Stateflow/Simulink hybrid system modeling case from
MATLAB. It introduces the randomness in terms of the fault
injection and simulates with MATLAB to obtain the system
execution path. Path checking is realized by the BLTL model
detector of Plasma-Lab [38]. In the experiment, the rare
attributes of FTC4AE is verified with the CESVA method,
which is further compared with the Heuristic Importance
Sampling (HIS) method [17].

4.1. Validity Measurement of Experimental Results. In the
case of nonrare attribute verification, the confidence interval
is used to assess the accuracy of various methods, while in
the case of rare attribute verification, the relative error of
sampling is used to assess the accuracy of the estimation:

RE(p) �

������
Var[p]



E[p]
≈

���
1

Np



, (24)

where E[p] is replaced by the current estimated value p,
Var[p] � (1/N − 1) 

N
i�1 (I(σi)W(σ i, μ, λ∗) − p)2.

Skewness is a measure of assessing the skewing direction
and degree of data distribution and is the characteristic
number that characterizes the degree of asymmetry of the
probability distribution density curve with respect to the
average. Skewness is defined as the third-order standardized
moment of the sample, and the skewness of the normal
distribution is 0, and its estimator is evenly distributed
around the mean:

skew(p) �
N

(N − 1)(N − 2)


N
i�1 p − (1/N) 

N
j�1 pj 

3

(Var[p])
(3/2)

.

(25)

+e negative skewness means that the distribution is left-
tailed. At this time, the data on the left of the mean are less
than the data on the right. Intuitively, the tail on the left is
longer than the tail on the right. In contrast, the positive
skewness means that the distribution is right-tailed.+e data
on the right of the mean is less than the left. Intuitively, the
tail on the right is longer than the tail on the left.

4.2. Experiment and Analysis on a Fault-Tolerant Controller
for theAircraft Elevator System. +e fault-tolerant controller
for an aircraft elevator system is a part of a large Simulink
model of HL-20 rescuers developed by the National

Aeronautics and Space Administration [39]. +e two hor-
izontal tails on the two side of the aircraft’s fuselage are
controlled by two elevators, respectively. Each elevator has
two independent hydraulic actuators. In the normal oper-
ation process, each elevator is positioned by its corre-
sponding external actuator, and its internal actuator can be
used when the external actuator does not work. +e two
external actuators are driven by two independent hydraulic
circuits, and the two internal actuators are both connected to
the third hydraulic circuit. +e system should ensure that
only one set of actuators (i.e., external or internal) locates the
elevator at any given time. If the external actuator or its
corresponding hydraulic circuit fails, the system will activate
the internal actuator. If the fault still exists, the external
actuator will be shut down and eventually isolated. +e fault
in the hydraulic circuit may be temporary, and if the fault is
cleared, the hydraulic circuit can always be restored to the
online state. +e control logic of the system is implemented
in the form of a state flow diagram, while the hydraulic
actuators and elevators are modeled by using Simulink.

According to modifying the Stateflow/Simulink model,
we add random faults into three hydraulic circuits. Setting
the fault model with an out-of-bounds’ reading of circuit
pressure, we model the fault injection as three independent
Poisson processes. When the hydraulic circuit fails, the
circuit will stay in the fault state for one second. +en, the
pressure reading will restore to its normal value, and the
fault state will be terminated. In our experiments, the being
estimated safety attribute is the probability that, within 25
seconds, the horizontal tails will not respond to the control
inputs in the duration of 1 second.

We estimated the probability of the BLTL formula φ:

φ � F25G1 H1fail∨H3fail( ∧H2fail( , (26)

where H1 and H3 represent the hydraulic circuit that drives
the external actuator, while H2 represents the hydraulic
circuit that drives the internal actuator.

In the experiment, the failure rate of the three hydraulic
circuits is set to 0.001, and the failure repair rate is 1. With
the two parameters, the parameter v in Algorithm 1 can be
calculated. It still is difficult to obtain samples that satisfy the
attribute φ with the previous parameters. +erefore, to
ensure that the obtained samples can satisfy the attribute φ,
the initial failure rate is set as 0.1 and the fault repair rate is
set as 1. According to these two parameters, the initial
parameter of iteration p(0) in Algorithm 1 can be calculated.
In order to assess the performance of verifying the rare
attributes with the CESVA method, 20 iterations of Algo-
rithm 1 are performed. In each iteration, the number of
samples is N � 104, the smoothing factor α � 0.2, and the
total number of required samples is 2.0 × 105.

Figure 1 shows the change trend of the failure rate
parameters during the 20 iterations of the CESVA method.
At the beginning of the iteration, the parameters converge
rapidly. When the parameters are close to their optimal
values, the convergences of their values slow down with
random fluctuations. From the 16th iteration, the failure rate
parameters start to converge to the stable values. From the
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perspective of the parameter convergence trend, it seems
that the value of the failure rate parameter increases with the
increasing iteration times. It indicates that the proportion of
sampling the paths satisfying the rare attribute is gradually
increasing.

Figure 2 illustrates the distribution of the estimated
values of the CESVA method during the iterations. +e
estimated value gradually converges from the 17th iteration.
Figure 3 presents the distribution of the relative error of the
CESVA method during the iterations. +e relative error
gradually converges from the 16th iteration. Finally, the
probability estimated value of the security attribute φ is
1.682 × 10− 12, and the value of the relative error is 0.01.

In order to verify the statistical performance of the
CESVAmethod, 100 experiments were carried out under the
above parameters, and 2.0 × 105 samples were used in each
experiment. Compared with the performance of the HIS
method under the same sample size, Table 1 shows the mean,
skewness, and statistical indicators such as standard devi-
ation (likelihood ratio standard deviation), relative error,
and sample size for each experiment. As presented in Ta-
ble 1, with the same sample size, the estimated values of the
CESVA method are more closely distributed around the
mean value, and the likelihood is over 10 times less than the
standard deviation and relative error, when comparing
against the HIS method. Although the true probability is
unknown, statistical indicators such as the standard devi-
ation, skewness, and relative error of the likelihood ratio
illustrate that the true probability and the mean are very
close.

5. Related Work

+e verification of the rare attribute for SMC mainly in-
cludes the importance sampling method, the importance
splitting method, and the statistical learning method.

+e importance sampling method is an effective
method to solve the verification of rare attributes. For the
CTMC and DTMC random models, Reijsbergen et al. [40]
and Barbot et al. [23] leveraged the heuristic methods to
obtain an importance sampling distribution to complete
the attribute verification of the two types of models. For

the Stateflow/Simulink model, Clarke and Zuliani [24]
proposed the SMC method of cross-entropy minimization
importance sampling to verify its safety properties.
Zuliani et al. [17] further used the SMC method in paper
[24] to verify the safety properties of a class of discrete-
time SHS. +e method proposed by Clarke and Zuliani
[24] assumes that the distribution of the system path space
is exponential distribution. By simply increasing the
failure rate of the system parameters and calculating the
optimal parameters of the exponential distribution with
the paths satisfying the rare attributes extracted at one
time, an importance sampling distribution can be ob-
tained. J´egourel et al. [26] used a random guardian
command to the importance sampling distribution. +is
model can approximate the path distribution of the system
by increasing the number of commands (the number of
parameters) and uses the minimized cross-entropy
method to obtain an importance sampling distribution in
the random model. However, the optimal importance
sampling distribution obtained by the above method does
not come from the distribution family of the system path
space, and these methods actually belong to the heuristic
importance sampling method.

+e importance segmentation method [34] is a method
of reducing the estimated variance. Based on the importance
segmentation method, J´egourel et al. [33] proposed the
SMC algorithm for the verification of small probability
events. +e key idea is to decompose the system logic
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Figure 1: Convergence of parameters during 20 iterations.
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attributes into embedded attributes, which makes its
probability easier to be estimated and reduces the number of
sample paths required by verification. To improve the
performance, the attributes need to be decomposed into
multiple levels with different probabilities. During the de-
composition process, copying or eliminating paths depend
on their intermediate behavior. When the decomposition is
over, an estimated probability that the attribute is satisfied
can be obtained. +e importance segmentation method is
essentially heuristic and depends on the model, but lacks the
support of theoretical results.

Applying statistical learning methods to SMC is also an
important research direction. Du et al. [19] proposed a
learning SMC framework based on support vector machine-
based two classifiers. It uses cost-sensitive and resampling
methods to solve the unbalanced data learning problem of
support vector machines and implements predicting and
assessing the probability of occurrence of small-probability
events with a relatively small number of samples. However,
this method cannot obtain rare attribute samples. For the
low-probability attributes of hardware circuits with multiple
failure regions, Kumar et al. [41] assumed that the system
failure distribution is a Gaussian mixture model, thus
proposed to use the variational Bayes method to learn an
optimal importance sampling distribution from the
Gaussian mixture model. However, the optimal importance
sampling distribution is not a distribution family from the
system path space. Kalajdzic et al. [42] proposed an SMC
method based on the principle of feedback control. +is
method learns a model of a cyber-physical fusion system by

Input: N, the number of samples per iteration.
Input: v, the true path distribution parameter of SCCPS.
Input: p(0), the initialization parameter.
Input: jmax, the maximum number of iterations.
Output: p∗ Optimal parameters.

(1) Function learningAlg (N, v, p(0)jmax)
(2) j� 0;
(3) while j< jmax do
(4) A� 0, B� 0, i� 1
(5) while i≤N do
(6) generate a path ωi according to the pdf f(., p(j))

(7) if ωi⊨φ then
(8) Wi � 〈l,m〉∈S(ωi)

(vlm/plm)n
(ωi )

lm ;

(9) A � A + Win
(ωi)

lm
;

(10) B � B + Win
(ωi)

l ;
(11) i� i+ 1;
(12) p

(j+1)

lm � αp
(j)

lm + (1 − α)(A/B);
(13) j� j+ 1
(14) return p(j− 1)

ALGORITHM 1: Importance sampling distribution learning algorithm.

Input: NIS, +e number of samples.
Input: v, the true path distribution parameter of SCCPS.
Input: p∗, the optimal parameters calculated by Algorithm 1.
Output: p, Probability of SCCPS meeting safety attributes.

(1) Function verifyingAlg (N, v, p(0)jmax)
(2) A� 0, i� 1
(3) while i≤N do
(4) generate a path ωi according to the pdf f(., p(j))

(5) if ωi⊨φ then
(6) Wi � 〈l,m〉∈S(ωi)

(vlm/plm)n
(ωi )

lm :
(7) A � A + Wi;
(8) i� i+ 1
(9) return (A/NIS)

ALGORITHM 2: Safety verification algorithm.

Table 1: Comparison of statistical performance between CESVA
and HIS.

Algorithm Mean Skewness Standard
deviation Relative error

CESVA 1.687×10− 12 0.029 1.853×10− 14 0.011
HIS 1.986×10− 12 1.264 2.654×10− 13 0.133
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using importance sampling to estimate the system state and
importance division to control the system. So it can infer the
probability that the system satisfies the given attributes.

+e method proposed in this paper starts from the
SCCPS path probability space, constructs a cross-entropy
optimization model, and uses an iterative learning method
to obtain an optimal importance sampling distribution from
the parameterized distribution clusters of the path space. It
ensures that the optimal importance sampling distribution
can come from the distribution family in the path probability
space of SCCPS. And, the iterative learning method ensures
that the distribution can evenly cover the unsafe path dis-
tribution area. +erefore, the accuracy and efficiency of the
rare attribute verification can be improved significantly.

6. Conclusion

SMC has been successfully applied to SCCPS safety attri-
bute verification and has become the most effective solu-
tion, but rare attribute verification is still a challenge for
SMC. To be able to extract samples satisfying the rare
attributes from SCCPS, CTMC is used to construct the
probability space model of the execution path of SCCPS
given with the probability measure of the random execu-
tion path as well as the parameterized probability distri-
bution function family, to construct the cross-entropy
iterative model. According to the iteratively learning from
finding the approximate optimal importance sampling
distribution in the SCCPS path probability space, the ef-
ficient sampling of rare attribute samples in SCCPS is
achieved. With the evaluating experiments, the experi-
mental results show that, for the verification of rare at-
tributes, comparing against the heuristic importance
sampling method with the same number of samples, the
estimated value of our method is better distributed around
the mean, and the standard deviation and relative error are
reduced by more than an order of magnitude. Based on the
method proposed in this paper, combining with the current
mainstream SMC method to develop an adaptive SMC tool
is set as the future work.
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Advanced Persistent )reats (APTs) are the most sophisticated attacks for modern information systems. Currently, more and
more researchers begin to focus on graph-based anomaly detection methods that leverage graph data to model normal behaviors
and detect outliers for defending against APTs. However, previous studies of provenance graphs mainly concentrate on system
calls, leading to difficulties in modeling network behaviors. Coarse-grained correlation graphs depend on handcrafted graph
construction rules and, thus, cannot adequately explore log node attributes. Besides, the traditional Graph Neural Networks
(GNNs) fail to consider meaningful edge features and are difficult to perform heterogeneous graphs embedding. To overcome the
limitations of the existing approaches, we present a hierarchical approach for APT detection with novel attention-based GNNs.
We propose a metapath aggregated GNN for provenance graph embedding and an edge enhanced GNN for host interactive graph
embedding; thus, APT behaviors can be captured at both the system and network levels. A novel enhancement mechanism is also
introduced to dynamically update the detection model in the hierarchical detection framework. Evaluations show that the
proposed method outperforms the state-of-the-art baselines in APT detection.

1. Introduction

Advanced Persistent )reats (APTs) are becoming in-
creasingly prominent in modern networks [1, 2]. Unlike
conventional attacks, APTs are a class of sophisticated
attacks launched by resourceful adversaries using a wide
spectrum of attack techniques and tools [3]. )e APT
perpetrators initially compromise hosts or servers in a
target environment and then stealthily traverse from
system to system for internal reconnaissance and data
breach [4, 5].

Traditional detection systems are insufficient to defend
against APTattacks. Misuse-based detectors [6, 7] that learn
patterns associated with known attacks are difficult to detect
APTs because of their nonrepetitive behaviors. In contrast,
anomaly-based detectors [8–13] are capable of identifying
unforeseen activities that do not conform to the learned
normal patterns. However, they are susceptible to be cir-
cumvented by attackers because they typically treat system

calls or network events as temporal sequences [8, 9, 11],
which only carry the sequential relationships among log
entries. As such, they cannot achieve satisfactory perfor-
mance in detecting APTs [1].

Recent works suggested that the provenance graph is a
better tool for threat modeling and APT detection [14].
Provenance graphs represent system executions as control
flows and data flows between subjects and objects. )e naı̈ve
method is to perform rule-based subgraph matching for
APT detection [1, 15, 16], but it is incapable of dealing with
unknown APT patterns. Moreover, provenance graphs only
focus on system-level information and thus cannot effec-
tively model network-level behaviors. Besides, the correla-
tion graphs [3, 17] treat log entries as nodes and bridge them
by rules. )e limitation of log graphs is that they require too
much expert knowledge to define proper correlation rules,
and coarse-grained log nodes ignore semantic information
of log attributes, making it difficult for them to capture
system-level APT patterns.
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Traditional graph embedding methods, including
DeepWalk [18] and node2vec [19], rely on heuristic algo-
rithms to aggregate graph structural information. )ese
methods are inherently transductive and fail to encode node
attributes for graph embedding. Graph Neural networks
(GNNs) [20–22] are deep learning methods to perform
graph representation learning with good scalability and
generalization ability. A series of GNN-based anomaly de-
tection systems [12, 23, 24] have been proposed to perform
inductive graph embedding by learning a set of aggregator
functions to aggregate neighbor’s features. Unfortunately,
these models are not well-suited for APTdetection. Because
it is difficult for them to encode heterogeneous graphs in-
tegrating multiple types of system entities and operations,
and most of them discard meaningful edge attributes that
represent interactions between nodes.

To overcome the limitations of existing approaches, we
propose a hierarchical approach that is capable of effectively
detecting APTs with novel attention-based GNNs. Our ap-
proach comprises three components as shown in Figure 1. (1)
Graph construction: we construct the Intrahost Provenance
Graph (IPG) and the Interhost Interactive Graph (IIG) to
comprehensively capture the behaviors of the full APT lifecycle.
(2) Graph embedding and detection algorithm: for the IPG, we
propose ametapath aggregated GNN and train an autoencoder
to identify anomalous hosts; for the IIG, we present an edge
feature-enhanced GNN and leverage the negative sampling to
detect anomalous interactions among hosts. (3) Anomaly
detection and model update: after the anomalous hosts and
events are detected, the enhancement mechanism dynamically
updates the IIG detection model using the reported malicious
hosts from the IPG detectors.

We introduce specialized designs to tackle the afore-
mentioned problems. First, the IPG and the IIG enable
modeling behaviors both at system and network levels.
Second, we encode the heterogeneous IPG using the met-
apath aggregated GNNwith the attentionmechanism, which
enables the full exploration of semantic information using
metapaths tailored to the IPG. )ird, for the IIG, the in-
teraction edges among hosts contain meaningful informa-
tion; thus, we propose the edge feature-enhanced GNN to
adequately exploit the multidimensional edge features.
Additionally, with the enhancement from the IPG detectors,
the IIG detection model can be efficiently updated to learn
new patterns, and the malicious behaviors among hosts can
be further detected after the compromised hosts are re-
ported. Finally, we introduce a compact three-stage APT
model and map the anomalies at both the system and
network levels to the corresponding APTstages according to
the hierarchical detection framework.

Specifically, the contributions of this article are sum-
marized as follows:

(i) We propose a novel metapath aggregated GNN that
models complex semantic and structural informa-
tion of the system-level provenance graph.

(ii) We present a novel edge feature-enhanced GNN
that models rich interactive information of the
network-level host interactive graph.

(iii) We introduce an enhancement mechanism to dy-
namically update the network-level IIGmodel using
the reported malicious host from the system-level
IPG detectors to learn new anomalous patterns over
time.

(iv) We propose a compact three-stage APTmodel and a
hierarchical detection framework where the system-
level and network-level anomalies can be mapped to
the corresponding APT stages.

(v) )e proposed method is evaluated on the Stream-
Spot and the LANL datasets for system-level and
network-level APT attack detection. Experimental
results show that our method outperforms the state-
of-the-art approaches.

)e remainder of the article is organized as follows.
Section 2 reviews the related works. In Section 3, we present
the schematic architecture, the compact three-stage APT
model, and the hierarchical detection framework. )e graph
construction is shown in Section 4. Section 5 presents the
details of the anomaly detection in provenance graphs.
Section 6 presents the network-level anomaly detector and
the model update mechanism. Evaluation results are pre-
sented and discussed in Section 7.)e limitations and future
works are discussed in Section 8. )e conclusion is drawn in
Section 9.

2. Related Work

Our work lies in the intersection of log analysis, provenance-
based threat modeling, and graph-based intrusion detection.
)erefore, we discuss the existing works in the following
related areas. )e taxonomy and representative publications
are shown in Table 1.

2.1. Sequence-Based Log Analysis. Modern systems con-
stantly generate logs and events that describe system status at
various critical points, which are ideal sources of infor-
mation for attack detection and system failures debugging
[32]. LogLens [11] is a real-time anomaly detection system
that deployed an unsupervised learning method to analyze
log sequences without the knowledge of target systems and
user specifications. Advances in natural language processing
have shed light on log analysis. DeepLog [8] converts system
logs into natural language sequences by utilizing the Long
Short-Term Memory (LSTM) network, which can auto-
matically learn normal patterns from system behaviors and
alert for anomalies. To identify rare anomalies in the con-
stantly evolving environment, Parveen [9] presented an
unsupervised ensemble learning algorithm that compresses
repetitive sequences to a dictionary to detect anomalies. In
addition to detecting malicious activities as they happen,
attack prediction is still an open research problem. Tiresias
[25] leverages the Recurrent Neural Network (RNN) to
predict specific attack steps by considering previously ob-
served events.

)ese log analysis approaches mostly treat logs as
temporal sequences, which only hold sequential
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relationships among log entries. )erefore, they ignore
the semantic relationships among system entities and the
interactive relationships among hosts, whereas our
method considers these relationships for anomaly
detection.

2.2. Provenance-Based -reat Modeling. More and more
research works start to focus on the provenance graphs that
model the control flow and data flow between system-level
entities [14]. Provenance is typically used for forensic
analysis and attack attribution. BackTracker [28] leverages
the provenance tracking system to identify the entry point of
attacks, while PriorTracker [29] enhances it by timely for-
ward causality tracking and automatically prioritizing the
abnormal causal dependencies. To combat the challenge
named “threat alert fatigue,” NoDoze [30] uses contextual
and historical information of alerts in the provenance de-
pendency graph and performs attack triage by identifying
anomalous subgraphs. SPADE [26] is an open-source
provenance collection and management framework, which
decouples the function of collection, storage, and querying.
Pasquier et al. [27] designed a practical provenance capture
system, called CamFlow, that can tailor the captured data to
reduce the overhead.

)e increasingly sophisticated APTs prompt a number of
researchers to use provenance graphs for APT analysis.
SLEUTH [15] constructs memory-based provenance graphs
that significantly improve the speed of data processing and
uses the trustworthiness and confidentiality tags for code
and data to perform source identification and impact
analysis. HOLMES [1] uses the semantic information of
provenance to construct a customized policy framework,
and the behaviors that conform to the policies are further
mapped to Tactics, Techniques, and Procedures (TTPs),
which are eventually mapped to high-level APT kill-chain
stages. Poirot [16] uses provenance graphs to perform threat
detection. It extracts Indicators of Compromise (IoCs) from
Cyber)reat Intelligence (CTI) related to APTs to construct
the query graphs and aligns them with provenance graphs
constructed out of kernel audit logs to detect attack be-
haviors. However, these rule-based methods require prior
expert knowledge of known APT patterns and thus cannot

deal with unknown APT attacks. Our method instead is an
anomaly-based system that requires no expert knowledge or
labeled anomalous data.

2.3. Graph-Based Anomaly Detection. Anomaly detection
with graph data has been widely researched and applied to
identify outliers [12]. To analyze temporal evolution of in-
sider threat events, Moriano et al. [31] proposed an unsu-
pervised learning method to capture interactions between
users and systems by constructing a bipartite graph. Log2vec
[3] optimizes the correlated log graphs by constructing a
rule-based heterogeneous graph integrating multirelation-
ships among log entries. )en, Log2vec presents an im-
proved graph embedding algorithm based on the random
walk and word2vec and leverages the clustering threshold
detector to identify malicious events. StreamSpot [13] is a
memory-efficient anomaly detection system that deals with
provenance graph heterogeneity and streaming challenge.
To mitigate the drawbacks of StreamSpot in handling locally
constrained graph features and dynamically clusters main-
taining, UNICORN [2] analyzes contextualized provenance
graphs to detect APTs. It is capable of modeling and
summarizing the evolving system executions and report
anomalous system status.

However, these approaches focus on either the system
operations or the network flows for graph analysis, making
them unable to fully capture the activities of APT attacks.
Also, they depend on handcrafted algorithms that are dif-
ficult to generalize to different settings. GNNs have been
widely adopted to learn node embeddings in an unsuper-
vised way for anomaly detection. Ding et al. [23] studied the
graph anomaly detection problem and deployed a novel
model with the synergy of Graph Convolutional Network
(GCN) and autoencoder. AddGraph [24] further combines
GCN with Gated Recurrent Unit (GRU) to capture the long-
term and short-term temporal patterns using an attention
model. However, these GNN-based anomaly detection
methods are not well-suited to APT detection because they
either discard meaningful edge features or difficult to embed
heterogeneous graphs. We introduce the metapath aggre-
gated GNN to fully explore the semantic information em-
bedded in the heterogeneous IPG, and we proposed the edge
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Node
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Figure 1: Schematic architecture: (a) graph construction; (b) graph embedding and detection algorithm; (c) anomaly detection and model
update.
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feature-enhanced GNN to adequately exploit the edge at-
tributes in the IIG.

3. Overview

3.1. Architecture. As shown in Figure 1, our approach is
composed of three key components:

3.1.1. Graph Construction. To capture all footprints left by
APT attackers, we collect multimodal information of the
system audit logs from different operating systems and
network events from various protocols. )e input to the
graph construction component is the raw network events
and system audit logs, which are normalized to uniform
formats by the data parser. System audit records from
different OS platforms are normalized to a common data
representation of system entities and operations. Network
events involving different protocols are normalized to a
common data representation of interactions between hosts.

To capture the structural information and semantic
dependencies, the parsed system audit logs are used to
construct the IPG where all system entities are treated as
nodes and operations are treated as edges, and the parsed
network events are used to construct the IIG where all hosts
are treated as nodes and events among them are treated as
edges. By doing so, the execution status of the target en-
vironment is comprehensively captured from both system-
level and network-level graphs. )e IPG is capable of
modeling system-level APT behaviors, such as exploitation
of target systems and malicious code execution. )e net-
work-level APTevents, which can be captured by the IIG, are
not limited to lateral movement and DNS communication
with Command and Control (C & C) servers.

3.1.2. Graph Embedding and Detection Algorithm. Graph
embedding, also known as graph representation learning, is
an approach that is capable of transforming graph nodes into
vectors with a lower dimension while maximally preserving
structural and semantic information. Specifically, we pro-
posed a metapath aggregated GNN for the IPG and an edge
feature-enhanced GNN for the IIG. For the system-level IPG
with multitypes of entities and operations, we aggregate
every single metapath instance, including the neighbor
nodes and intermediate nodes, to a latent representation
vector; then, we combine them by an attention-based
mechanism to obtain the embedding of target nodes. For the

network-level IIG with rich edge features, we leverage the
novel edge feature-enhanced embedding algorithm based on
the attention mechanism to adequately incorporate the
interactions among host nodes.

After converting nodes into latent vectors, we design two
detection algorithms for anomaly detection at both the
system and network levels. Note that we have no labeled
anomaly data to training the detection model; thus, the
detection models are trained in an unsupervised manner.
For the IPG, we use graph embeddings to train an
autoencoder model by optimizing the reconstruction errors
that are used to flag anomalies. Moreover, for the IIG, we
compute the anomaly scores for edges based on the cor-
responding node embeddings and leverage the negative
sampling to generate anomalous edges for training the
detection model.

3.1.3. Anomaly Detection and Model Update. At last, the
learned models are implemented to identify anomalous
network events and system operations. )e IPG detectors
report a ranked list of suspicious hosts that perform system-
level malicious actions inside, while the IIG detector reports
a set of malicious events among hosts. However, the training
data recording normal executions are usually incomplete
and noisy, which may lead to an excessive number of false
alarms during anomaly detection. To enhance the detection
model, we use the reported suspicious hosts from the IPG
detectors to dynamically update the IIG detection model.
Specifically, after the IPG detectors report a list of suspicious
hosts, malicious interactions appear among these hosts with
high probability.)us, we treat the interactions among these
hosts as malicious samples to dynamically update the IIG
detection model to learn new anomalous patterns over time.

3.2. -ree-Stage APT Model. In contrast to other conven-
tional attacks, APTs are characterized by persistence, diverse
attack vectors, and low-and-slow attack patterns, which give
rise to multiple attack stages of the APT lifecycle. MITRE
ATT & CK framework presents a 14-stage APT knowledge
base to describe adversary tactics and techniques of APT
attacks. )e Lockheed Martin cyber kill-chain [33] is a 7-
phase framework to describe the sophisticated APT attack
process. Nevertheless, some stages, such as the Initial Re-
connaissance, are difficult to be detected given that the
actions of the phase are conducted without any interaction
with the target network. As such, it is impracticable to design

Table 1: Taxonomy and representative publications of the related works.

Category Publications

Sequence-based log analysis Attack detection [8, 9, 11]
Attack prediction [25]

Provenance-based threat modeling
Provenance capture [26, 27]
Forensic analysis [28–30]

Rule-based APT detection [1, 15, 16]

Graph-based anomaly detection
Provenance graph [2, 13]
Correlation graph [3, 31]

GNN-based methods [23, 24]
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a comprehensive approach to detect all the stages of the APT
lifecycle. Moreover, an overly redundant multistage model
can only be used to better for understanding the evolution of
APTs, but not for detecting them.

After analyzing various APTcases, a compact three-stage
APT model that is at the heart of the APT lifecycle is
proposed. )e invariant parts of APTs include three stages:

(i) Infiltration and malicious code execution: at first,
the attacker must deploy the malware and execute
the malicious code in the victim host to exploit an
entry point of the target network or establish a
foothold for the next move.

(ii) Internal reconnaissance and lateral movement: the
goal of the APT perpetrator is to steal confidential
data or to damage critical network components. To
this end, the attacker would need to further com-
promise more vulnerable hosts, traverse from sys-
tem to system within the target environment, and
escalate privileges at any time if needed.

(iii) C & C communication and data exfiltration: the
infected host would try to communicate with the C
& C server to receive remote attack instructions or
any other relevant tasks. Besides, actions that in-
volve exfiltrating data to the C & C server and
undermining critical components fall under this
stage.

)e compact three-stage APT lifecycle is presented to
model APT attacks performed in complex networks and is
applicable and necessary for most APT scenarios.

3.3.-eHierarchicalAPTDetectionFramework. As shown in
Figure 2, the hierarchical APT detection framework maps
anomalies of system-level hosts and network-level events to
high-level APTstages. APTattackers not only deploy malicious
code inside specific hosts to manipulate processes and files but
alsomove laterally for internal reconnaissance and information
exfiltration. )e IPG detectors over the Intrahost Provenance
Graphs report malicious hosts that are suffering attacks.
Further, these hosts detected at the system layer can be used as
seeds to analyze which internal hosts they try to communicate
with at the network layer. Moreover, the IIG detection model
can also be dynamically updated by learning detection results
from the IPG detectors. At last, the infected host nodes and
attack paths among them are mapped to a compact three-stage
APTmodel described above. Bringing together the information
of system audit logs and network events into graph data allows
us to comprehensively model the status of the target envi-
ronment, and the synergy between the IPG and IIG detection
model enables our method to capture footprints of APTattacks
by considering the target environment as a whole.

4. Graph Construction

4.1. Intrahost Provenance Graph. )e system-level prove-
nance graph enables a strong semantic expression of system
execution and is increasingly attractive for researchers in the
APTanalysis. )e provenance collection system captures the

record information at the system level from different op-
erating systems; thus, causality dependencies can be prop-
erly captured. As shown in Figure 3, the provenance graph
treats all subjects (e.g., processes, threads) and objects (e.g.,
files, sockets) as nodes and all operations from subjects to
objects (such as a process reading a file, interprocess
communication, and a process sending data to an Internet
socket) as directed edges.)e built-in auditing systems, such
as Windows ETW (Event Tracing for Windows) and Linux
Auditd, provide coarse-grained provenance capture, while
the extra provenance infrastructure, such as Hi-Fi [34], LPM
[35], and CamFlow [27], are used to collect more fine-
grained provenance.

Following the idea of the provenance graph, we collect
system operations from all hosts of the target network and
model these event data as a platform-neutral heterogeneous
graph for each host. Formally, a heterogeneous IPG is
denoted by IPG � (V, E), in which V is a set of nodes
involving subjects and objects and E denotes a set of events.
)e types of subject and object in IPG include process,
thread, file, and socket. It is noteworthy mentioning that the
subject and object are relative, meaning that a subject of an
event can be the object of another operation. )e event in
IPG can be represented by a 4-tuple
<subject, object, operation, timestamp > where the oper-
ation types include the fork, clone, open, write, read, etc. )e
IPG is used to detect the infiltration and malicious code
execution of the APT model.

4.2. Interhost Interaction Graph. To exfiltrate confidential
data or sabotage critical components, the APT perpetrators
would need to laterally move across multiple hosts of the
target Intranet to escalate privilege and search for the
components and data. Besides, the infected hosts would try
to communicate with the C & C server via the DNS requests
to receive the instructions and exfiltrate data. As such, the
analysis of interactive relationships among multiple hosts is
essential for the detection and mitigation of APT activities.
To this end, the Interhost Interaction Graph is proposed to
model the communication and connectivity of the entire
target network.

As shown in Figure 4, in the IIG, each node represents
a host or server while the interactions between them are
denoted by edges. In an enterprise, hosts own different
users who tend to conduct diverse operations with in-
ternal and external nodes. For instance, administrators
often log into multiple hosts for policy management,
parameter configuration, and crash recovery. Moreover,
file transmission and domain name lookup are frequently
performed, which could generate a volume of data flow
and DNS traffic. To capture these interhost behaviors, the
IIG takes network flow events, authentication events, and
DNS lookup events into consideration. Formally, the
Interhost Interaction Graph is denoted by IIG � (V, E), in
which V is the set of host nodes and E is the set of events
conducted by the source host to the destination host. )e
IIG is mainly used to detect the last two stages of the
proposed APT model.
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5. Anomaly Dete ction on the IPG

5.1. Metapath Aggregated GNN. )e constructed IPGs are
heterogeneous with multiple different types of system en-
tities and causal dependencies. )us, we propose a novel
metapath aggregated GNN to embed nodes of the hetero-
geneous IPG into low-dimensional node representations in a
semantically meaningful way. )e definitions of metapath
and metapath instance are as follows:

Metapath: Ametapath P is an ordered sequence in the
form of A1⟶R1 A2⟶R2 · · ·⟶Rl Al+1 defined on
the graph network schema TG � (A,R), which de-
scribes a composite relation R � R1 · R2 · · · · · Rl be-

tween node types Al and Al+1, where l denotes the
length of P and · is the composite operator on relations.
For simplicity, we use an abbreviation form
P � (A1, A2, . . . , Al+1) to denote a metapath when
there is only one event type between a pair of entities.
Metapath instance: Given that metapath
P � (A1, A2, . . . , Al+1), if ∀i, ϕ(vi) � Ai and
ei � <vi, vi+1> belongs to the relationship Ri ∈ P, then
metapath instance p is presented in the form of p �

(v1, v2, . . . , vl+1) following the schema defined by
metapath P.

As shown in Figure 5, we propose a metapath encoder
for the IPG embedding. Given metapath P, the metapath
encoder combines the information embedded in the met-
apath context by aggregating the metapath-based neigh-
bors of the target node v and the intermediate nodes
for each metapath instance of P. Specifically, let p(v, u)

denote a metapath instance of P correlating the target node
v and its metapath-based neighbor u ∈NP

v , and Ip(v,u) �

p(v, u)∖ v, u{ } denotes the set of intermediate nodes within
p(v, u). )e metapath encoder first employs a node
aggregator to embed all node embeddings along with a
metapath instance into a single vector:

hp(v,u) � f hv
′ ,hu
′ , ht
′, ∀t ∈ Ip(v,u)  , (1)

where hv
′ , hu
′ , and ht

′ are the input node representations, f(·)

is a node aggregation function; hp(v,u) is the aggregated
output of the metapath instance p(v, u).

After aggregating every single metapath instance into a
latent representation vector, the metapath encoder combines
different instances of metapath P regarding target node v

through the graph attention layer. It is reasonable to use the
weighted sum of metapath instances because different instances
would have different degrees of contribution to the target node’s
embedding. )us, all metapath instances can be weighted
summed by learning a normalized attention coefficient:

Intrahost
Provenance Graph 

Interhost 
Interactive Graph

APT Stages
C&C communication and data

exfiltration 

Internal reconnaissance and lateral
movement 

Infiltration and malicious code
execution

Figure 2: )e hierarchical APT detection framework.
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′,Whp(v,u) ,

αp
vu �

exp LeakyReLU a⊤P Whv
′‖Whp(v,u)   

s∈NP
v
exp LeakyReLU a⊤P Whv

′‖Whp(v,s)   
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hP
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u∈NP
v

αp
vu · hp(v,u)

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(2)

Here, aP is a weight attention vector for metapath P.
We concatenate the representations of target node v and
metapath instance embedding p(v, u) parametrized by a⊤P
and apply the LeakyReLU nonlinear activation function
to compute the attention coefficient e

p
vu, which indicates

the importance of the representation of the metapath
instance p(v, u) to the node v. )e coefficients are nor-
malized to make them easily comparable across different
instances using the softmax function, and then they are
used as the weights to compute the combination of all
representations of different metapath instances about
node v. )e output finally goes through an activation
function σ(·) to obtain the representation of target node v

regarding metapath P.
After aggregating the information contained in each

metapath, we need to further aggregate the structural and
semantic information among all different metapaths. For a
given target node v and the set of metapaths
P � P1, P2, . . . , PK , we now have K representations for
each metapath Pi denoted as hP1

v , hP2
v , . . . , hPK

v . )e met-
apath encoder further employs an attention mechanism to
combine the metapath-specific representations by assigning
different weights to different metapaths. First, we average the
transformed representations of metapath Pi ∈ P for all
nodes as

ePi
�

1
|V|


v∈V

tanh W · hPi

v + b , (3)

where W and b are the weight and bias parameters. )en,
the attention-based mechanism is used to aggregate the
metapath-specific representations of the target node v as
follows:

αPi
�

exp a⊤ · ePi
 

Pj∈Pexp a⊤ · ePj
 

,

hv � 
Pi∈P

αPi
· hPi

v ,

(4)

where a is a weight attention vector and αPi
indicates the

relative importance of metapath Pi to the target node v. Once
ePi

is obtained for each metapath Pi ∈ P, we use the nor-
malized importance αPi

to sum up all metapath-specific
representations of node v in a weighted way to obtain the
final node representation hv. Finally, to obtain the graph
level representation hg, the mean readout operation is
performed by averaging all the representations of the target
nodes.

5.2. Autoencoder-Based Anomaly Detection. To detect
anomalies launched by APT attackers, an anomaly de-
tection mechanism based on the deep autoencoder is
designed to reconstruct the learned graph embeddings.
)e deep autoencoder is used to learn data encodings in an
unsupervised fashion, typically for data denoising and
dimensionality reduction. Here, we leverage it to perform
anomaly detection by computing the reconstruction er-
rors that are used to flag anomalies. )e intuition behind
this is that the instances with large reconstruction errors
are more likely to be anomalies because their behavior
patterns significantly deviate from the normal patterns
and thus cannot be effectively reconstructed from the
observed data. )e deep autoencoder is capable of
identifying those hosts that do not conform to the ex-
pected normal patterns.

Metapath # 1

Metapath # 2

Instance # 1

Instance # 2 

Instance # 3 

Instance # 2 
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Figure 5: )e metapath encoder for Intrahost Provenance Graphs.
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For system-level anomaly detection, the autoencoder
takes the representations of IPG snapshots as its inputs.
)us, the anomaly detection in the provenance graph sce-
nario can be simply regarded as a graph classification
problem. Specifically, given graph embedding hg, the en-
coder is first implemented to compress the input into a latent
feature space with a lower dimension. After that, the decoder
attempts to reconstruct the original data based on the latent
vector. We can optimize the model parameters by mini-
mizing the following MSE loss function:

LAE �
1
n



n

i�1
Dec Enc hg   − hg

�����

�����
2
. (5)

)e loss function takes ℓ2-norm distance as the mea-
surement of the reconstruction errors. After several training
iterations, the anomaly score of each IPG snapshot can be
computed as follows:

S hg  � Dec Enc hg   − hg

�����

�����
2
. (6)

It indicates that the snapshots with large anomaly scores
are more likely to be under attack.)us, we can rank the top-
k suspicious hosts and set threshold λ to trigger alerts.

6. Anomaly Detection on the IIG

6.1. Edge Feature-Enhanced GNN. )e Interhost Interaction
Graph is a combination of host nodes and network-level
information flows over the whole target network. For the
IIG, the host nodes are relatively uniform, whereas the
interactions between them vary in types, including au-
thentication, network flow, and DNS lookup. )ese events
contain important information about the network activities.
Consequently, multidimensional edge features of IIG events
should be further exploited to capture the interactive in-
formation. We propose a novel edge feature-enhanced GNN
that leverages the attention mechanism to fully incorporate
edge features for the IIG representations.

Given an Interhost Interaction Graph, let Evu be a tensor
of edge features between nodes v and u, and Ep

vu is the pth

channel of the edge feature in P-dimensional feature vector
Evu. In contrast to the existing attention mechanism de-
scribed in GAT [22], the proposed mechanism allows us to
implement attention operations guided by the edge features.
For the IIG with various activities, we consider the multi-
dimensional edge features as multichannel signals, and each
channel of signals can guide an independent attention op-
eration, respectively. For a specific channel for the pth edge
feature, the normalized attention coefficient is computed as
follows:

e
p
vu � f hv

′, hu′( Ep
vu,

a
p
vu �

exp LeakyReLU e
p
vu( ( 

s∈Nv
exp LeakyReLU e

p
vs( ( 

,
(7)

where Ep
vu is the pth channel feature of the edge connecting

nodes v and u, and f(·) is an arbitrary attention function
that produces a scalar importance value from two input

embedding vectors. Here, we adopt a linear function to
perform the following:

f hv
′, hu
′(  � a⊤ Whv′‖Whu′( . (8)

At last, we aggregate the neighbor embeddings and the
corresponding edge features based on the attention mech-
anism to generate the new embedding for the target node.
)e aggregation operation can be formulated as follows:

hv �‖
P
p�1 σ 

u∈Nv

αp
vuW hu

′,Ep
vu( ⎛⎝ ⎞⎠, (9)

where hv is the new embedding of the target node. We use
weight αp

vu to sum up neighbor embeddings and the edge
feature of a specific channel. )e results produced by all
different channels of the edge features are combined by the
concatenation operation. By doing so, the multidimensional
edge features can be seamlessly aggregated into the node
embeddings, which helps capture the structural and se-
mantic information across the whole target network.

6.2. Negative Sampling. Due to the characteristics of APT
attacks, it is difficult to collect sufficient labeled data that
describe APT attack patterns comprehensively. So, it results
in poor performance if we train a detection model in a
supervised fashion that the labeled data cover only a small
part of the possible anomalous operations. Besides, the goal
of anomaly detection in IIG is to discriminate the anomalous
edges when new events occur in the target network.)us, we
compute the anomaly scores for edges based on the cor-
responding node embeddings and leverage the negative
sampling to train the detection model. Given an IIG
snapshot Gt at timestamp t, we produce the vector repre-
sentations of all host nodes. For each incoming edge (v, u)

of Gt, the anomaly score can be computed as follows:

S(v, u) � ω · σ β · a⊙ hv + b⊙ hu

����
����
2
2 − μ  , (10)

where hv and hu denote the vector representations of node v

and node u, respectively, and σ(·) is the sigmoid function.
)e node embeddings are parametrized by weight vectors a
and b that are optimized in the output layer. β and μ
represent hyperparameters in the anomaly score function.

To overcome the challenge of insufficient anomaly data,
we leverage the negative sampling to train a detection model
that learns the normal behaviors of the target network.
Specifically, we generate a negative sample for each normal
edge as an anomalous edge. )e negative sampling means
replacing those nodes at the end of normal edges with other
nodes in the graph. For example, given normal edge (v, u),
the set of selected nodes should be V∖Nv if node u is
replaced. )us, the edges are assigned to the hosts that
originally had no interactions. We define a Bernoulli dis-
tribution for the negative sampling: for normal edge (v, u),
we corrupt the event by replacing the head host with a
probability of dv/(dv + du) or replacing the tail host with a
probability of du/(dv + du), where dv and du denote the
degree of node v and node u, respectively.
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It is worth noting that the generated negative samples
may still be normal; thus, the strict loss functions, such as the
cross-entropy, cannot be used to discriminate the original
edges and the generated ones. )us, we adopt the margin-
based pairwise loss function in training the detection model:

L
t

� min 

(v,u)∈Et



v′,u′( )∉Et

max 0, c + S(v, u) − S v′, u′(  ,

(11)

where s(v, u) and s(v′, u′) are the anomaly scores of the
existing edges and the generated edges, respectively.
c ∈ (0, 1) is the margin between the anomaly scores of the
normal edge and the anomalous one. )e minimization of
the loss function Lt drives s(v, u) to be smaller while
s(v′, u′) to be larger, which is consistent with our goal.

6.3.DynamicModelUpdate. )e detection models proposed
in this article do not require any anomalous data for training,
so they are capable of detecting unforeseen anomaly types
such as zero-day attacks exploited in APT campaigns.
However, the training data are usually noisy and incomplete,
so false positives and false negatives may be generated when
we use the trained model for anomaly detection. Note that
the IPG describes normal patterns from the perspective of
system events and the IIG models normal behaviors at the
network level. )e promising idea is to combine the IPG and
IIG to build an anomaly detection mechanism that fully
integrates both sources of information. To this end, we
propose an enhancement mechanism that dynamically
updates the IIG detection model using the reported mali-
cious hosts by the IPG detectors.

Recall that the IPG anomaly detectors will report a set of
hosts that do not conform to the learned normal patterns.
Administrators can diagnose the systems by referring to the
list of suspicious hosts. Beyond that, APTactors may further
move laterally to infiltrate across multiple hosts after
compromising a certain target. To detect the subsequent
actions of APT attacks, we use the detected suspicious hosts
to enhance the IIG detector by dynamically updating the
detection model. Note that the false-positive samples may
appear in the reported list of suspicious hosts; thus, before
updating the IIG model with newly reported hosts from the
IPG detectors, the security analysts should manually remove
the false-positive samples to ensure that the hosts used for
the update are all compromised.

We can update the IIG detection model by defining the
loss function Lt

update as follows:

L
t
update � min 

(v,u)∉Et



v′ ,u′( )∈Et

max 0, c − S(v, u) + S v′, u′(  ,

(12)

where v and u are suspicious hosts reported by the IPG
detectors, and (v, u) are edges that may appear between
them with a high probability of being malicious. For each
potentially malicious edge (v, u), we choose a sample (v′, u′)
as a normal edge that exists in Et and is not reported as an
anomaly.With this view, the minimization of the update loss

function Lt
update pushes S(v, u) to become larger and

S(v′, u′) to become smaller. With the enhancement from the
IPG detectors, the IIG detection model can be efficiently
updated to learn new attack patterns.)e combination of the
IPG and IIG can collectively detect APT activities from a
comprehensive perspective.

7. Experimental Evaluation

)e efficacy of the proposed method is explored in this
section. We conducted all our experimental evaluations
on Ubuntu 18.04 LTS, which possesses an Intel Xeon
W-2133 3.60 GHz CPU, an NVIDIA GeForce RTX 2080 Ti
GPU, and 64 GB RAM. )e proposed graph embedding
algorithms are implemented using Python’s Deep Graph
Library (DGL) that leverages the message passing
mechanism to build GNNs. We evaluate our approach
with different attack scenarios. For the Intrahost Prove-
nance Graph and the corresponding IPG anomaly de-
tector, we use the StreamSpot dataset to test the detection
performance of our method at the system level. )e Los
Alamos National Lab (LANL) dataset is used to evaluate
the IIG anomaly detector over the Interhost Interactive
Graph from a network perspective.

7.1. Datasets

7.1.1. StreamSpot Dataset. )e StreamSpot dataset is com-
posed of 600 provenance graphs derived from 5 benign and 1
attack scenarios. )e benign scenarios involve normal be-
haviors of playing video games, checking emails in Google
Mail, browsing cnn.com, downloading files, and watching
YouTube videos. )e attack scenario involves malicious
behaviors of a drive-by download attack triggered by
browsing a malicious URL which exploits a Flash vulner-
ability and further gains root access to the victim host. For
each scenario, 100 tasks were executed automatically on a
Linux machine.)e Linux SystemTap logging system is used
to record system call traces from the start of a task until its
termination on the machine. All system calls running on the
machine (including the ones not from the task) are collected
and used to construct provenance graphs for anomaly de-
tection. )e statistics of the dataset are summarized in
Table 2.

7.1.2. LANL Dataset. )e LANL dataset comprises 58
consecutive days of event data collected from the internal
computer network of Los Alamos National Laboratory. It
involves five data sources, including the network flow data
collected from several key routers, DNS lookup events
collected from internal DNS servers, process start and stop
events collected from individual Windows computers and
servers, authentication events collected from Windows-
based individual computers and Active Directory servers,
and a set of red team events that presents malicious be-
haviors deviating from normal computer activities. In total,
the dataset comprises 1,648,275,307 events for 17,684
computers, involves 749 malicious events with 305
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compromised computers which presents a typical APT
campaign. We utilize three data sources to evaluate the IIG
detector at the network level. Authentication events and
internal network flow events are taken into account for
detection of the second APTstage as attackers often attempt
to compromise more hosts. To detect anomalous hosts that
engage in communication with the C & C server and data
exfiltration in the last phase of APT, attention is focused on
the network flow and DNS lookup events from internal to
external hosts.

7.2. Evaluation on the StreamSpot Dataset. We compare the
IPG detector with three anomaly detection methods:
StreamSpot [13], UNICORN [2], and Graph Attention
Network (GAT) [22]. StreamSpot and UNICORN are
state-of-the-art approaches for provenance-based APT
anomaly detection using heuristic algorithms. GAT is a
GNN algorithm that leverages self-attention layers to
assign different weights to different neighbor nodes. We
use 60% of the benign data to train the detection model
and 40% of it along with all attack data for testing. )e
number of the metapath aggregated GNN layers is 3. )e
learning rate is 0.003. )e weight decay for regularization
is 5e − 6. As shown in Table 3, we employ precision, ac-
curacy, recall, and F-score to evaluate different methods.
)e IPG detector performs best in all evaluation metrics
compared with all baselines. In particular, the IPG de-
tector has gained more than 25% improvement compared
with the StreamSpot and more than 10% improvement
compared with the UNICORN and GAT.

As shown in Table 4, we split the benign graphs into
three datasets to fully explore the performance of our
method.)e Receiver Operator Characteristic (ROC) curves
for all datasets are shown in Figure 6; note that the IPG
detector is capable of ranking attack graphs correctly with
AUC� 0.98 (area under the ROC curve). More specifically,
on the ALL dataset, the IPG detector reaches an ideal
performance with TPR� 0.98 and FPR� 0.1 when the
threshold is set to 0.18 (which means that the graphs with
reconstruction errors greater than 0.18 are classified as
anomalies). Finally, we evaluate the influence of the training
ratio on AUC and Average Precision (AP). Figure 7 shows
the variations of AP and AUC with the training ratio varied
from 10% to 90%. We note that our method achieves good
detection performance when sufficient benign training
graphs are employed.

7.3. Evaluation on the LANL Dataset. )e LANL dataset is
used to evaluate the performance of the IIG detector and
the model update mechanism. )e event types used for
evaluation regarding authentication, network flow, and
DNS lookup, which describe the network-level behaviors.
)e dataset properties are shown in Table 5, with all the
three types of events are benign. We randomly select 600
malicious events from the red team file, accounting for
80% of the total. )e 600 malicious operations involve 280
suspicious hosts and 254 suspicious users. )e target
environment involves 4,110 host nodes. We use 4,000

benign events (i.e., 2,000 authentication events, 1,000 flow
events, and 1,000 DNS events) to examine FPRs, and the
rest of benign events to train the IIG model. All attack data
are used to examine the IIG detector’s ability to identify
malicious events.

To evaluate the performance of the IIG detector in
different scenarios, we split the benign dataset into three
subdatasets: authentication and DNS lookup events (AD),
authentication and network flow events (AF), and all three
types of benign events (AFD). Figure 8 presents the de-
tection results in terms of ROC curves on the three datasets.
Note that the IIG detector performs best with AUC� 0.90
when we use all benign events to train the detection model.
)e AUC of themodel trained by the AD and AF datasets are
0.83 and 0.85, respectively. When we use the AFD for
training and set the threshold to 0.27, the TPR of the IIG
detector is 0.83, and the FPR does not exceed 0.05. It is
evident from the ROC curve that increasing the number of
event types for model training contributes to modeling
network behaviors. As such, anomaly detection models
incorporating multiple benign patterns are more likely to
identify outliers.

We compare the IIG detector with four baseline methods
(Tiresias [25], ensemble method [36], log2vec [3], and GAT
[22]) to evaluate the effectiveness of our method. Tiresias is
an advanced log-entry-level approach that leverages RNN to
predict future events on a host. )e ensemble method uses
Principal Component Analysis, k-means clustering, and
Median Absolute Deviation–based outlier detection to
identify anomalies. Log2vec is a heterogeneous graph em-
bedding-based approach that leverages random walk and
word2vec to identify malicious events. We implement the
IIG detector with a 3-layer edge feature-enhanced GNN.)e
learning rate is 0.002, and the weight decay for regularization
is 5e-6.

As shown in Table 6, we employ precision, recall, F-
score, and AUC to compare the performances of different
methods. )e LANL dataset is extremely unbalanced;
thus, we do not use the accuracy as a metric, which cannot
indicate performance of the detectors when anomalous
data are scarce. )e ROC curves of the IIG detector and
the baselines are shown in Figure 9. Tiresias simply treats
events with less than ten occurrences as anomalies.
However, the rare events involve numerous benign pat-
terns, which leads to poor performance with the precision
and F-score less than 0.60. )e ensemble method analyzes
network events by identifying characteristic patterns as
statistical features to detect APT behaviors, but the per-
formance is not ideal. )e performances of log2vec

Table 2: StreamSpot dataset summary.

Dataset Scenario Avg. |E| Avg. |V| # of graphs

StreamSpot

GMail 37,382 6,827 100
Download 310,814 8,831 100

CNN 294,903 8,990 100
VGame 112,958 8,637 100
YouTube 113,229 8,292 100
Attack 28,423 8,891 100
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(AUC � 0.85) and GAT (AUC � 0.83) are similar. How-
ever, log2vec relies on a heuristic model that uses too
many user-defined parameters and only uses statistical
information from a fixed hop of neighbors, which ignores

the global information of APT activities. GAT is unable to
encode network-level events involving multidimensional
edge features. )e IIG detector incorporates edge features
to perform graph embedding, thus producing significant
improvement in all evaluation metrics (AUC � 0.9 and all
other metrics are 0.83).

After executing malicious code and securing the entry
point of the target environment, ATP attackers further
search for critical assets and move laterally to exfiltrate
information and undermine components. )e malicious
hosts reported from the system-level anomaly detectors can
be further used to enhance the network-level anomaly de-
tector. To evaluate the enhancement mechanism, we ran-
domly label k malicious hosts assuming they are detected by
the IIG detectors to update the trained IIG model. By in-
creasing the number of reported hosts from 0 to 10, we
investigate the impact of k in the IIG detector.)e results are
shown in Figure 10, where we employ AUC, AP, and TPR to
verify the performance improvement. Compared with the
IIG detector without enhancement, we can achieve im-
proved performance as the number of reported malicious
hosts increases. Specifically, when we label 10 malicious
hosts, the IIG detector performs best with AUC� 0.95,
TPR� 0.92, and AP� 0.91.

Table 3: Detection results of different approaches on the StreamSpot dataset.

Experiment Precision Accuracy Recall F-score
StreamSpot 0.77 0.84 0.74 0.75
UNICORN 0.87 0.90 0.84 0.86
GAT 0.86 0.91 0.88 0.87
IPG detector 0.98 0.98 0.98 0.98

Table 4: StreamSpot subdatasets summary.

Dataset Scenarios Avg. |E| Avg. |V| # of graphs
ALL GMail, download, CNN, VGame, YouTube 173,857 8,315 500
GVC GMail, VGame, CNN 148,414 8,151 300
YDC YouTube, download, CNN 239,648 8,705 300
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Figure 6: ROC curves of the IPG detector on the StreamSpot subdatasets.
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Figure 7: Performance of the IPG detector with different training
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8. Discussion

In this study, we propose a hierarchical framework with two
detection models, IPG and IIG, to detect APT attacks. Cur-
rently, we evaluate the IPG detector on the StreamSpot dataset
and the IIG detector on the LANL dataset separately. However,
the two models need to be combined for a more adequate
analysis. Besides, the identified anomalies should be further
analyzed and mapped to the three-stage APT model. )us, a
complete dataset that records behaviors of a target environ-
ment at both the network and system levels is needed. In the
future, we could implement a virtual environment to execute
normal operations and simulate APT attacks. We could thus
evaluate our approach adequately in such an environment.

9. Conclusion

To overcome the limitations of graph-based attack detection
in APT studies, we propose a hierarchical approach for
defending against APTs with novel attention-based GNNs.
To comprehensively capture the behaviors of the full APT
lifecycle, we propose a metapath aggregated GNN and an
edge feature-enhanced GNN to identify anomalies at both
the system and network levels. Besides, we present an en-
hancement mechanism to dynamically update the IIGmodel
with reported hosts from the IPG detectors in the hierar-
chical detection framework. )e evaluations show that our
methods outperform the state-of-the-art baselines.

Data Availability

)e StreamSpot data and LANL data used to support the
results of this work are publically available at https://
github.com/sbustreamspot/sbustreamspot-data/ and
https://csr.lanl.gov/data/cyber1/.

Table 5: LANL dataset summary.

Dataset Event types # of hosts # of events # of test events

LANL

Authentication 4,110 2,317,309 2,000
Network flow 3,740 1,645,377 1,000
DNS lookup 2,102 974,533 1,000

Attack 280 600 600
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Figure 8: ROC curves of the IIG detector on the LANL subdatasets.

Table 6: Detection results of different methods on the LANL
dataset.

Method Precision Recall F-score AUC
Tiresias 0.56 0.63 0.59 0.76
Ensemble method 0.62 0.68 0.65 0.80
Log2vec 0.72 0.78 0.74 0.85
GAT 0.69 0.73 0.71 0.83
IIG detector 0.83 0.83 0.83 0.90
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Figure 9: ROC curves of different methods on the LANL dataset.
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[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
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(e widely deployed devices in Internet of (ings (IoT) have opened up a large amount of IoTdata. Recently, federated learning
emerges as a promising solution aiming to protect user privacy on IoTdevices by training a globally shared model. However, the
devices in the complex IoT environments pose great challenge to federate learning, which is vulnerable to gradient-based re-
construction attacks. In this paper, we discuss the relationships between the security of federated learning model and optimization
technologies of decreasing communication overhead comprehensively. To promote the efficiency and security, we propose a
defence strategy of federated learning which is suitable to resource-constrained IoTdevices.(e adaptive communication strategy
is to adjust the frequency and parameter compression by analysing the training loss to ensure the security of the model. (e
experiments show the efficiency of our proposed method to decrease communication overhead, while preventing privacy
data leakage.

1. Introduction

In recent years, Internet of (ings (IoT) has had great
popularity in different aspects of modern life and a huge
amount of IoT services are emerging. In the IoT area, user
devices generate a large amount of data that can be used to
improve the user experience of the intelligence system.
However, the extensive users’ data processing from the IoT
device brings some privacy problems [1]. As the IoT devices
can be deeply involved in users’ private data, the data
generated by them will contain privacy-sensitive informa-
tion [2–4]. To tackle the privacy challenges and encourage
clients to proactively participate in IoT services, federated
learning enables training a deep learning model across
different participants in a collaborative manner. It provides
the privacy of clients to keep their original data training on
their own devices, while jointly learn a global model by
sharing only local parameters with the server.

However, several recent works have shown that the
privacy in federated learning is insufficient for protecting the
local training data from gradient-based reconstruction at-
tacks [5–7]. (e wide malicious devices in IoT make it

vulnerable to these type attacks based on shared parameters.
(e first type of attack is GAN-based attacks. Hitaj and
Perez-Cruz proposed a GAN-based attack against collabo-
rative deep learning on a malicious client, which infers
sensitive information from another client successfully [8].
Based on this work, an improve GAN with a multitask
discriminator was proposed to enable a malicious server to
discriminate category, reality, and client identity of input
samples simultaneously [9]. Another type of gradient-based
reconstruction attacks is Deep Leakage from Gradients
(DLG), which was proposed by Zhu et al. to reveal the
training data from gradients [6]. (e main idea of DLG is to
generate dummy data and labels via matching the dummy
gradients to the shared gradients. It has been used in many
following works to perform the privacy leakage attacks on
federated learning [5, 7]. (e GAN-based attack uses GAN
to generate pictures that look similar to the training images,
while DLG aims at revealing the complete training data from
gradients. (ese two types of attacks both utilize gradient to
reconstruction.

To guarantee the privacy of federated learning, there are
many privacy techniques for preventing indirect leakage.
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Cheng et al. presented a FL-EM-GMM algorithm to make
model training without data exchange for protecting privacy
[10]. Secure multiparty computation (SMC) involves mul-
tiple parties and provides security proof to guarantee
complete zero knowledge so that each party knows nothing
except its own input and output. It has been used for model
training and verification without users revealing sensitive
data [11–13]. However, the secure aggregation requires
gradients to be integers, which makes it is not compatible
with most CNNs. A general method named differential
privacy involves adding noise to the training data or ob-
scuring certain sensitive attributes so that the third party
could not distinguish the individual information [14–16].
This method usually decreases the accuracy. However,
theGAN-based attack is resist against to a certain-level
differential privacy [8]. Asad et al. proposed the FedOpt
algorithm using homomorphic encryption to protect the
privacy of users [17]. But homomorphic encryption in-
creased the model upload time and the system burden,
which may increase the system overhead in a bandwidth-
limited server system. In addition, they ignore the rela-
tionship between efficiency and privacy.

To overcome the performance bottleneck is to apply
optimization technologies in federated learning. (ere are
numerous variants of gradient quantization or sparsification
and communication delay have been proposed to different
distributed deep learning tasks to reduce the communication
cost. Han et al. proposed a fairness-aware gradient sparsi-
fication method to minimize the overall training time [18].
Zhou et al. proposed a privacy-preserving multidimensional
data aggregation scheme, which has great advantages in the
communication overhead [19]. In addition, the adaptive
communication strategy was adopted to save communica-
tion delay and improve convergence speed [20]. (ere are
few works that discuss the impact of these optimization
technologies on the security under gradient-based recon-
struction attacks. (e experiments showed that gradient
compression and sparsification could mitigate the leakage of
DLG [6, 21].

In this paper, we discuss the security of the federated
learning model with different optimization technologies
comprehensively. Based on our analysis, the optimization
technologies used to reduce communication cost may also
improve the resistance against gradient-based reconstruc-
tion attacks. To promote the efficiency and security simul-
taneously, we propose a defence strategy of federated
learning without extra high overhead countermeasures,
which are not suitable to resource-constrained IoT devices.
Our strategy aims at reducing the communication overhead
in IoT environment and achieving higher security against
gradient-based reconstruction attacks. (e experiments on
the open source dataset have shown that our method ach-
ieves a relative low training loss and prevents from gradient-
based reconstruction attacks.

(e remainder of the paper is organized as follows.
Section 2 describes the optimization technologies to improve
the efficiency of FL and the two type gradient-based
reconstruction attacks for FL. In Section 3, we discuss the
relationship between the optimization and security. Based

on the results, we introduce a new method of FL to improve
the efficiency and security simultaneously in Section 4. (e
experimental results are shown in Section 5. Finally, we
provide the conclusion.

2. Background

2.1. EfficiencyOptimization of Federated Learning. (e surge
of massive data has led to significant interest in distributed
algorithms for scaling computations in the context of ma-
chine learning and optimization. (e baseline communi-
cation protocol is used in many early federated learning
implementations: the client sends a full vector of local
training parameter update back to the federated learning
server in each round. In this context, the current research is
focused on how to reduce the transfer cost of model pa-
rameters to make it more efficient in terms of communi-
cation, of which the gradient compression and periodic
methods are intensively researched.

2.1.1. Gradient Compression. Gradient quantization or
sparsification is used to reduce the communication cost
through gradient compression. Strom proposed a com-
pression and quantization-based approach to compress
single communications and introduced the concept of
gradient residuals [22]. Firstly, the participating node k

computes the local gradient ΔWk by adding the local gra-
dient ΔWk to the previously residual gradient residual ΔWr

k.
If the new gradient is larger than the threshold T, the index
and threshold T of that gradient are encapsulated in message
M and the gradient residuals are updated: ΔWr

k � ΔWr
k − T.

If the new negative gradient is less than threshold −T, the
index and threshold −T of the gradient are also encapsulated
in message M, and the gradient residuals are updated:
ΔWr

k � ΔWr
k + T. Finally, the compression message M is

sent to other nodes.
Given that the exact selection of the threshold T is

difficult in practice, Aji and Heafield proposed a heuristic
method for threshold compression [23]. (e unique feature
of this method is the dynamic selection of thresholds, which
reduces the difficulty of threshold selection by setting a
discard rate R, sorting the sampled gradient values by ab-
solute values, and taking the number with the (1 − R%)

largest absolute value of the gradient as the current
threshold. Tian et al. proposed a novel sketch-based
framework (DiffSketch) for distributed learning [24]. (e
framework can protect privacy using federated learning and
compressing the parameters. But some existing attacks can
already steal privacy information in federated learning, and
only compressing the parameters could not guarantee the
data privacy. We would like to seek a balance between
compression and communication frequency that protects
privacy and ensures accuracy.

2.1.2. Periodic. (e communication delay approach is an-
other solution to the above bottleneck, which differs from
the gradient sparse and quantitative optimization perspec-
tive. (e former significantly reduces the number of
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communication rounds by increasing the local computa-
tional cost appropriately, while the latter is to reduce the cost
of communication per round. (e two can be comple-
mentary, but not contradictory.

(ough period-average gradient descent can significantly
reduce the number of communication rounds through
delayed communication, it also increases the local compu-
tational cost, and the appropriate communication frequency
is not easy to select. High frequent communication leads to
huge communication rounds, but eventually it converges to a
smaller loss, while sparse communication reduces the cost of
communication, but the results of the federated learning
model is worse. (erefore, to solve the above issues, Wang
proposed an adaptive communication strategy ADACOMM,
which divided the training phase into subphases and tried to
find the optimal communication frequency for each phase
[20]. Before the start of the new phase, ADACOMMwas used
to select the frequency by the training loss.

(e communication frequency update rule is shown in
the following equation:

τl � ⌈

����������

F Xt�lT0
 

F Xt�0( 
τ0




⌉. (1)

As the training proceeds, the loss F(Xt�lT0
) becomes

smaller and the frequency τl becomes smaller, i.e., the local
computation round becomes smaller and the communica-
tion frequency increases gradually. Finally, the model will
converge with fewer iterative rounds according to the
ADACOMM.

2.2. Gradient-Based Reconstruction Attacks. (e original
idea of the federated learning was to build global models
based on the gradient parameters that are distributed across
multiple devices and to prevent data leakage. Potential
loopholes are found in some research in the gradients shared
by federated learning, which can be divided into two main
categories: GAN-based attacks and DLG attacks. (e pro-
cedure of the two types of attacks is depicted in Figure 1.

2.2.1. GAN-Based Attacks. GAN is proposed to implement a
novel class of active inference attacks on deep neural networks
in a collaborative setting. Specifically, the generator G at-
tempts to imitate the data from target distribution tomake the
“fake” data indistinguishable to the adversarial supervisor D.
(ere may be a setup defensible to attacks, which may be
achieved by setting stronger privacy guarantees, releasing
fewer parameters, or establishing tighter thresholds. However,
as proved by the results in this article, such measures lead to
models that are unable to learn or worse performance than
models trained on centralized data. (erefore, we consider
solving the problem from a combination of approaches.

2.2.2. DLG Attacks. Zhu et al. presented an approach which
shows the possibility to obtain private training data from the
publicly shared gradients [6]. In their Deep Leakage from

Gradient (DLG) method, they synthesized the dummy data
and corresponding labels with the supervision of shared
gradients. Specifically, they start with random initialization
of pseudodata and labels. Virtual gradients are computed on
the current shared model in the distributed setup. By
minimizing the difference between the virtual gradient and
the shared real gradient, they iteratively update the virtual
data and labels simultaneously. Although DLG works, we
find that it could be affected by a number of factors that
affect the quality of the images generated by federated
learning efficiency.

2.3. Notation. In order to express with conciseness and
standardization, we stipulate the letters’ notation of some
indicators and show the main hyperparameter settings and
notations in Table 1. CE is a communication compression
ratio index, which is also one of the most important indexes
for evaluating communication efficient algorithms. E0 is the
fixed rounds of updating. avgparameter is the mean parameters
of all iteration communication. acc90 is the accuracy reached
90% for the first time. maxacc is the maximum of the ac-
curacy in all iteration.

3. The Relationship between Communication
Efficiency and Security

Recent improvements have been focused on communication
cost in federated learning. (e main approaches are to re-
duce the communication overhead and improve the overall
efficiency of federated learning. (e goal can be achieved by
reducing the communication frequency and compressing
the parameters. (is section introduces the evaluation in-
dexes to measure the security threats to federated learning;
based on this, we discuss the relationship between com-
munication optimization methods and security under the
gradient-based reconstruction attacks in federated learning.

3.1. EvaluationMetrics. Privacy threats in federated learning
are mainly recovery training dataset images and image pixels
that imply private information about the user, so the image
similarity metric can be referred as a security evaluation
metric.

Attack success rate (ASR) refers to the percentage of
successful attackers recovering the local training data victim.
(e metrics for determining the success of the attack are
different for various attack strategies. In the GAN-based
attacks, the accuracy of the recovered image label category
shall prevail; however, in the DLG attacks, the similarity
between the reconstructed image and the original image can
be used as a criterion for success. (e attack success rate
(ASR) is the percentage of successfully reconstructed
training data to the number of attacked training data.

An iterative attack is a situation in which a malicious
attacker recovers the original data attacked through multiple
iterative rounds. (e criteria for determining the success of
an attack is the same as ASR.

Structural Similarity (SSIM) is usually used as an index
to measure the similarity of two images. SSIM is based on the
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perception model to measure the structural similarity be-
tween two images. Due to the outstanding performance of
this indicator, it has been widely used in fields such as
measuring video quality and image deblurring. Given two
images x and y, then SSIM can be expressed as

SSIM(x, y) �
2μxμy + c1  2σxy + c2 

μ2x + μ2y + c1  σ2x + σ2y + c2 
, (2)

where μx and μy are estimated as the mean intensity, and the
luminance comparison function is then a function of
μx and μy. σx and σy are the unbiased estimate in the discrete
form, and the comparison of the two signal is used as the
contrast comparison. (e constant c1 and c2 are to avoid
instability when other signals are close to zero.

MSE is a signal fidelity measure. MSE refers to the root
mean square deviation. (e mean square error function is
used to measure the similarity between the attacker’s

reconstructed image y and its true value x. Usually, it is
assumed that one of the signals is a pristine original, while
the other is distorted or contaminated by errors. (e data
recovered by the attacker is more similar to the real data with
smaller MSE. (e following formula is usually used to
calculate MSE:

MSE(x, y) �
1

M


M

i�1
(x(i) − y(i))

2
, (3)

where x and y are two finite-length discrete signals (e.g.,
visual images), where M is the number of signal samples
(pixels, if the signals are images) and x(i) and y(i) denote
the values of the ith samples in x and y, respectively.

3.2. Relationships between Efficiency and Security. Hitaj et al.
proposed the GAN-based attacks, to which the impact of
optimization methods has not been researched. (erefore,

Table 1: Hyperparameter settings and letter representation.

Notation Denote
M (e number of all clients
C (e number of compression
f (e number of frequency
CE Compression rate of single communication
E0 (e fixed rounds of updating
avgparameter (e mean parameters of all iterations’ communication
acc90 (e number of iterations when test accuracy is beyond 90 for the first time in all iterations
maxacc (e maximum of the accuracy in all iterations
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Figure 1: (e gradient-based reconstruction attacks on federated learning in IoT.
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this section is to study the effect of communication per-
formance factors on the security of the two types of attacks
[8]. We perform the experiments on theMNISTand AIFAR-
100, which were used as the validation datasets in DLG work
[6]. To defense the DLG attacks, the author experimented to
defend by gradient compression. We reproduce some ex-
periments according to the source code given by the authors,
and the results show that parametric compression of the
recovered images has obvious artifact pixels at 10% com-
pression. (is result is better than that described in that
article. Firstly, the effect of a change in communication
frequency on the security of federated learning is shown
under the two types of attacks. Secondly, we discuss the effect
of the two types of attacks under different parameter
compression rates. (e two evaluative metrics, SSIM and
MSE, are used to determine the results of the attacks. Finally,
we summarize the defensive effects of the two factors af-
fecting the efficiency of federated learning on its security.

3.2.1. Relationships between Frequency and Security.
Since the DLG method is a pixel-level reconstruction, the
number of categories in the original datasets has no effect on
it. (e successful attacks of the DLG attacks are influenced
by the pixel size of the original image. (e GAN is very
different. (e method based on GAN-based attacks is label-
level image reconstruction. (e number of categories in the
original data set determines the classification effect of the
classifier, which in turn affects the classification effect of the
discriminator, and ultimately affects the generator genera-
tion image quality. (erefore, the DLG attacks’ method can
achieve better attack effects on both the MNIST and CIFAR
datasets, while the GAN-based attacks’ method performs
worse in the CIFAR100 dataset.

Figure 2 is the experimental result when the number of
DLG attacks’ iteration rounds is set to 500, and the com-
munication frequency is 1. (e image is reconstructed by
printing the attack every 10 rounds. It can be seen from the
figure that, after about 60 iterations, the original image can
be considered successfully attacked.

Figure 3 shows the 36 three-category reconstructed
images generated by the GAN method after 500 rounds of
attack.(e generated image can be clearly recognized as 3 by
the human eyes, so this attack can be considered effective.
(e GAN method can generate false images in batches,
which is very efficient in scenarios where the image quality is
not high and only the category requirements are required.

Reducing the communication cost is one of the opti-
mization goals of federated learning. (e method to change
the local communication frequency can alleviate the bot-
tleneck problem caused by communication effectively. On
the contrary, the change of communication frequency also
caused a change in the security of federated learning. In this
series of experiments, we explore the relationship between
communication frequency and DLG attacks.(e experiment
includes 15 groups, with the communication frequency set
to different values from 1 to 50 and the learning rate of 0.001.
We count two indicators, SSIM and MSE, and visualize the
reconstructed image after the attacks. (e specific experi-
mental results are shown in Table 2.

From the statistical data in the table, we can clearly see
that, as the number of local training rounds increases (the
communication frequency decreases), the similarity between
the image generated by the statistical reconstruction and the
original image becomes smaller and smaller, showing an
opposite linear relationship. (e experimental results show
that, within a certain limit, reducing the communication
frequency cannot only reduce the communication cost of
federated training but also increase the difficulty of the DLG
attacks against other client data attacks, which improves the
security of the federated learning system.

Figure 4 shows the initial messy image, the original
image, and 15 groups of attacks’ reconstruction images
under different communication frequencies. (e visualiza-
tion results are consistent with Table 2, and the image quality
recovered by the attacker is getting worse. Similarly, we
count the experimental results of this method on the MNIST
dataset, and the above experimental phenomenon can also
be found.

We also count the experimental results of the GAN-
based attacks on the MNIST dataset. Since this method is
more sensitive to the communication frequency, the ex-
periment only sets 5 different frequency values. From the
experimental results in Table 3, we can find that the SSIM
value is smaller and the MSE value is larger. (at is, the
image quality reconstructed by the GAN-based attacks’
method is average, but the category information is still there,
so the applicability of the two indicators of image similarity
becomes weaker here.

Figure 5 is the reconstructed images corresponding to
the above settings. (e image is tending to get blurred, and
its category information is gradually lost. (e experimental
results are consistent with the experimental results of DLG.

From the above experiments, we can find that changing
the communication frequency is one of the key factors af-
fecting the attacker’s success in the federated learning en-
vironment. We can find that the greater the number of local
training cycles, the more difficult the attacks, that is, the
more secure the client data during the training of the fed-
erated learning system.

3.2.2. Relationships between Compression and Security.
Parameter compression (gradient sparseness) is often used
in federated learning algorithms to reduce the amount of
communication between the client and the parameter server,
thereby to improve training efficiency. Previous studies have
pointed out that this strategy will also affect the difficulty for
potential attackers to recover other client data. In order to
further explore the potential relationship between federated
learning performance and security, we also set up multiple
sets of comparative experiments and make statistics on
relevant indicators and visualized reconstructed images.

Table 4 is the statistics of comparative experiments
conducted under the same communication frequency and
different communication compression ratios. We control
different communication compression ratios by setting
different thresholds. During the communication process, the
client only passes the parameters (gradients) that exceed the
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Figure 3: (e reconstructed images generated by the GAN-based attacks after 500 rounds.

Iter = 0 Iter = 10 Iter = 20 Iter = 30 Iter = 40 Iter = 50 Iter = 60 Iter = 70 Iter = 80 Iter = 90

Iter = 100 Iter = 110 Iter = 120 Iter = 130 Iter = 140 Iter = 150 Iter = 160 Iter = 170 Iter = 180 Iter = 190

Iter = 200 Iter = 210 Iter = 220 Iter = 230 Iter = 240 Iter = 250 Iter = 260 Iter = 270 Iter = 280 Iter = 290

Iter = 300 Iter = 310 Iter = 320 Iter = 330 Iter = 340 Iter = 350 Iter = 360 Iter = 370 Iter = 380 Iter = 390

Iter = 400 Iter = 410 Iter = 420 Iter = 430 Iter = 440 Iter = 450 Iter = 460 Iter = 470 Iter = 480 Iter = 490

Figure 2: (e results of DLG attacks on images from CIFAR-100.
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threshold to the parameter server for aggregation. (e ex-
periment set 6 thresholds of different levels, and the learning
rate was uniformly set to 0.001. After 500 rounds of attack
iterations, the image similarity index was counted, and the
attacks’ results were visualized.

Figure 6 shows that parameter compression plays a role
in suppressing the GAN-based attacks’ mode as well. Since

GAN-based attacks perform more frequent interactions for
federated learning, the effect of the image is no longer ev-
ident when the parameters are compressed to 90. Although
the applicability of the two security metrics is weak, the
overall trend in Table 5, and the reconstructed image in
Figure 7 can reflect the progressively worsening effect of the
attack.

It can be seen from the above experimental results that
proper parameter compression can effectively avoid the
leakage of local data and also reduce the single communi-
cation cost. However, excessive compression will adversely
affect the training of the global model. When changing the
degree of sparsity, we can see that the attacks still cannot be
successful when the compression rate reaches 90%. So we
can achieve a balance between compression and security by
setting appropriate parameter compression thresholds.

Table 3: (e evaluation metrics of the GAN-based attacks with the
MNIST dataset in different frequencies.
Method Iterations Communication frequency SSIM MSE
GAN 100 1 0.6289 41.9540
GAN 100 2 0.6347 40.3287
GAN 100 3 0.6110 43.9704
GAN 100 4 0.6009 42.4333
GAN 100 5 0.5914 46.7876

Table 2: (e evaluation metrics of the DLG attacks with the CIFAR100 dataset in different frequencies.
Method Iterations Communication frequency SSIM MSE
DLG 500 1 0.9985 0.3300
DLG 500 2 0.9961 0.5437
DLG 500 3 0.9892 1.4399
DLG 500 4 0.9815 2.7646
DLG 500 5 0.9731 4.3394
DLG 500 6 0.9631 6.3177
DLG 500 7 0.9521 8.3981
DLG 500 8 0.9427 10.8416
DLG 500 9 0.9325 12.7527
DLG 500 10 0.9215 15.2681
DLG 500 15 0.8824 23.8498
DLG 500 20 0.8427 30.3106
DLG 500 30 0.7856 36.5652
DLG 500 40 0.7440 40.5796
DLG 500 50 0.7170 42.4485
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Figure 4: (e results of the DLG attacks with the CIFAR100 dataset in different frequencies.
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We can draw the following conclusions. (1) Changing
communication frequencies is one of the key factors af-
fecting the success in an attack. (e more local training
iteration, the more difficult it is to be attacked, i.e., the more
secure the client data is in the training process of the

federated learning system; (2) compressing the weights
(parameters) cannot only avoid data leakage but also affect
the security of federated learning, and the more the pa-
rameters and the smaller the compressing rate, the higher
the security. (erefore, the communication frequency and
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Figure 6: (e results of the DLG attacks with the CIFAR100 dataset in different compression.

Table 5: (e evaluation metrics of the GAN-based attacks with the MNIST dataset in different compression.
Method Iterations CE Communication frequency SSIM MSE
GAN 500 1 1 0.6248 37.3750
GAN 500 0.97 1 0.6138 40.1095
GAN 500 0.95 1 0.6107 45.3234
GAN 500 0.93 1 0.5861 45.6194
GAN 500 0.90 1 0.6144 39.9441
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Figure 5: (e results of the GAN-based attacks with the MNIST dataset in different frequencies.

Table 4: (e evaluation metrics of the DLG attacks with the CIFAR100 dataset in different compression.
Iterations CE SSIM MSE
500 1 0.9987 0.2948
500 0.98 0.9825 2.7182
500 0.96 0.9158 17.5191
500 0.94 0.8589 28.4093
500 0.92 0.7963 37.3693
500 0.90 0.6201 46.2852
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parameter compression are two important factors that affect
the security of federated learning. If a single value is changed,
it will increase the security, but the quality of the federated
learning model will be sacrificed.

4. Adaptive Frequency-Compression
Federated Learning

In order to improve the security of the federated learning
model and reduce the effect on the quality of the global
model, we propose an adaptive frequency-compression
federated learning (AFC-FL) by adjusting the communi-
cation frequency and parameter compression. (e weights
of the two factors are adjusted to ensure the accuracy of
federated learning adaptively, while providing higher se-
curity. (is calls for AFC-FL to start from a larger frequency
and minimal compression and adjust them gradually as the
model reaches closer to convergence. Such an adaptive
strategy will offer a win-win in system operation by ensuring
communication efficiency and security.

4.1.AdaptiveStrategy. (is approach of AFC-FL is to change
the communication frequency and parameter compression
rates in each iteration round, according to the loss value in
the model during training. However, the fixed iteration
rounds are difficult to be determined without prior
knowledge. (erefore, we divide the entire training process
into multiple identical iteration rounds. At the beginning of
each iteration round, we determine the communication
frequency based on the difference between this round and
the previous. (e parametric compression rate is then af-
fected by the communication frequency. (e strategy of
AFC-FL is to estimate the choice of two factors accurately
and to make the federated learning model more efficient and
secure. It will be described in details in the following
sections.

During the training phase of federated learning, it is
difficult to select the accurate communication period. An
alternative is proposed to obtain the basic communication
period update rule. Based on this rule, we adjust it to our
strategy with fixed iteration rounds. (e improved rule is as
follows:

fl � ⌈

����������

F Xe�lE0
 

F Xe�0( 
f0




⌉, (4)

where E0 is the fixed rounds of updating, F(Xe�lE0
) is the

objective function values of the lth update, and F(Xe�0) is
the initial loss value. (e frequency fl of the next round is
guided by the training loss value. When the loss F(Xe�lE0

)

becomes smaller, the frequency fl decreases, i.e., local
computation rounds are fewer, and the communication
frequency gradually increases.

It can be concluded that both communication frequency
and parameter compression have inhibitory effects on the ac-
curacy and security of federated learning. Although the lower
frequency and compression can achieve higher resistance
against gradient-based reconstruction attacks, the accuracy will
be decreased seriously. (ere is a need for an adaptive strategy
to trade off the accuracy and security. (rough the results in
Section 2.1, we found that there is a linear relationship between
frequency and loss and between compression and loss under a
certain constraint: f ≈ k∗ Loss and C ≈ q∗ Loss, where
0<f< 5, 90<C< 100.

(erefore, we consider whether we can find a balance
between frequency, compression, and loss so that the algorithm
can guarantee both the accuracy and the security of the model
under the joint influence of compression and frequency.We try
to find the appropriate Loss to make our algorithm achieve the
most effect by giving different values of the Loss interval. We
analyze by the following assumptions:

Loss �
1
k
∗f +

1
q
∗C, (5)

where Loss is the set constant and k and q are the two
influencing factors. (e purpose of the formula is to make
the obtained communication frequency to influence the
parameter compression rate so that the two inhibiting
factors do not overlap each other to achieve the effect of
adaptive parameter change. (erefore, the formula is or-
ganized as follows:

Cl � C0 −⌊fl ∗D⌋, (6)

where C0 is the initial parametric compression rate, Cl is the
parametric compression rate after the lth update, and D is
the constant used to control the rate of decline. It is found
that a low parameter compression rate makes federated
learning worse, so we set a minimum threshold for the
parameter compression rate (Cmin). (e improved formula
is as follows:

Cl � max Cmin, C0 −⌊fl ∗D⌋( . (7)
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Figure 7: (e results of the GAN-based attacks with the MNIST dataset in different compression.
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It has been shown that the communication frequency fl

and the parameter compression C can be adjusted mutually
when the appropriate parameter D is set, which affects the
completion of the federated learning training and makes the
attacks fail.

4.2. Adaptive Communication-Efficient Federated Learning
(AFC-FL). To improve the security of the system, we
combine multiple influences into a federated learning
model, where communication frequency and parameter
compression jointly affect the security of the model.
(rough experimental analysis and research, we propose
a method for improving the security of the system, AFC-
FL. AFC-FL is comprised of one adaptive frequency
model and adaptive compression model. (e adaptive
frequency model is used to change the frequency by
model loss. And, the adaptive compression model is
designed to change the parameter compression value by
changing the frequency. In the following, we present the
network architecture and then analyze the procedure of
the distributed optimization.

An overview of the proposed architecture is shown in
Figure 8. (ere are N clients and a central server. (e central
server aggregates the parameters uploaded by each client.
Each client updates parameters according to our proposed
AFC-FL.

Algorithm 1 describes the execution process of the
AFC-FL algorithm. (e initial parameters include the
number of clients M, training epochs Et, updating epochs
Eu, optimization function learning rate η, batch size B, and
the optimization function is Adam. AdaptFreq is the
function of change of the frequency. It can be expressed by
equation (4). (e function AdaptComp, which can be
expressed by equation (7), is to change the compression.
Comp can decrease the number of parameters by com-
pression.(e algorithm is divided into two parts, client side
and server side. (e server side is responsible for con-
trolling the global model generation, while the client side
performs the adaptive algorithm updates and the local
model uploads.

(e execution process on the server side is (1) initialize
the model Wg,0; (2) at round i, collect the sparse parameters
Wm,i uploaded by m clients and find the next round of global
model Wg,i+1 by means of mean aggregation; (3) send the
new round of the global model down to each client.

(e execution process of the clients is (1) first download
the global model Wg,i sent by the parameter server; (2)
determine whether it is an update interval before each it-
eration, and if so, perform the update function to update the
communication frequency f and the parameter compres-
sion ratioC; (3) then, train each client node locally according
to the new communication frequency; (4) obtain the locally
compressed model Wm,i according to the parameter com-
pression ratio C and by compressing the parameters of the
locally trained model ω; (5) upload the model Wm,i to the
server side.

In Algorithm 1, lines 8–12 execute the AFC-FL algorithm
after a certain number of rounds through the code, adjusting

the communication frequency of the local model as well as
the parameter compression rate after the training is com-
pleted. When the communication frequency is higher, the
more the parameters of the model trained by each client
change, the less effective the attacker’s attack will be. At this
time, 15 lines of parameter compression will not need too
much compression to ensure the accuracy of the model
training.When the training reaches the late convergence, the
communication frequency increases to correct the accuracy
and reduce the model upload parameters. Our parameter
compression and communication frequency change are
calculated on the client side to ensure that the local model
parameters are trimmed before uploading. Meanwhile, it
avoids joint attacks by the server and the attacker on the
client to ensure the security of the system.

5. Experiment Results

To verify the efficiency and security of AFC-FL, we perform
experiments using MNIST datasets. In principle, however,
AFC-FL can be extended to other types of data, such as
medical records. We first show the advantages of our ap-
proach by comparing the experiments in Section 3.2; sec-
ondly, we perform the GAN-based attacks’ experiment to
compare the effect of recovered images after the attacks, and
we judge the success of our approach by observing the
imaging characteristics of the images artificially, combined
with the accuracy of the final model.

5.1. Experiment Setup. We mimic the ideas provided by the
authors of the GAN article and use Tensorflow to implement
the attacks in the privacy scenario of a federated learning
client. And, we set up the adaptive frequency parameter
compression scheme to further extend in terms of efficiency
and security.

5.1.1. Platform. All experiments are completed in the same
experimental environment, including Intel (R) Xeon (R)
CPU E5-2620 v4 @2.1GHz, Nvidia 1080Ti GPU (11GB) ∗2,
and 32GB RAM. Due to the limitation of experimental
conditions, the uploading and downloading of shared pa-
rameters in the iteration process of the federated model are
implemented by the same machine simulation. Obviously,
the statistical indicators of the experimental results have
nothing to do with the communication method, so the
evaluation is still accurate and effective.

5.1.2. Dataset. (e MNIST dataset is stored in bytes. (e
training set contains 60,000 0–9 digital pixel samples and
labels, and the test set contains 10,000 0–9 digital pixel
samples and labels. Each image is composed of 32× 32
pixels. (is dataset is one of the deep learning benchmark
datasets. For each client in the experiment, we use a non-IID
approach, i.e., each client has only one class of images.

5.1.3. Model. We choose to use the architecture of the
classical convolutional neural network LeNet5, which is the
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basis of many networks such as AlexNet, VGGNet, and
ResNet, and it is general with great effect. LeNet5 has seven
layers, namely, C1 convolutional layer, S2 pooling layer, C3
convolutional layer, S4 pooling layer, C5 convolutional
layer, F6 fully connected layer, and output fully connected
layer. Each layer contains trainable parameters; each layer
has multiple Feature Maps, and each feature map extracts
one feature of the input through a kind of convolutional
filter.

5.1.4. Hyperparameter Choice. We choose to use ADAM as
optimization algorithms and the batch size of 50; for setting
a stable learning rate, we conduct some experiments. In the
end, we set the learning rate to 0.01.

5.1.5. Metrics. We compare the performance of proposed
AFC-FL with the following methods at a fixed frequency or
compression period. (1) Baseline: fully compression and one
communication iteration; (2) manually adjust the frequency,
i.e., using the same frequency for each iteration and for
multiple experimental comparisons; (3) manually tuned the
compression case where compression is changed by fre-
quency before new training epochs. We train all methods for
a long time to convergence and compare the results of 500
iterations.

5.2. Efficiency Experiment. In our experiments, we evaluate
the results using the different learning rates or batch sizes.
We find that higher learning rates make the federated
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Figure 10: (e accuracy of the experimental results.
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learning model unstable and suffer from model oscillations,
and smaller batch sizes result in worse convergence of the
model. After analysis of several results, we set a learning rate
of 0.01 and a batch size of 50 as the hyperparameter.
Meanwhile, we also conduct several experiments on the
variation range of the adaptive frequency and parameter
compression rate. It shows that the frequency is greater than
5, and the parameter information uploaded by each client
node is more vague, which makes the federated learning less
effective; when the parameter compression rate is lower than
90, the loss of critical information of the local model will also
lead to the reduction of the quality of the federated learning
model. (erefore, we set thresholds to control the frequency
and parameter compression range when using AFC-FL.

We compare the results between the AFC-FL function
and the threshold set at a critical value after the com-
munications of 500 epochs. From Figure 9, we can find
that our method converges nearly as fast as the com-
parative experiments’ scheme. In Figure 10, the accuracy
of our method is better than the experiment that the
frequency is 5 and no matter whether it has parameter

compression or not. Although the experimental accuracy
which with a frequency of 1 and no parameter com-
pression is slightly higher than ours, the cost of com-
munication is much higher than ours, and our method
provides more security.

We use the cost of communication as an evaluation
criterion, i.e., the number of uploader parameters in the
same communication round determines the upload time
of the local model to the server, which affects the effi-
ciency of the global model. (e amount of client traffic
handled by the server in the same round can be used
to represent the throughput of the federated training
system. (e user participation will be low in a bandwidth-
constrained communication environment. Our algo-
rithms make the system to allow more users to participate
in training at the same time by reducing the number of
uploaded parameters, which improves the throughput. In
order to succinctly compare the cost of communication,
we use the average number of parameters uploaded in
each communication round as the evaluation criterion.
(e number of parameters uploaded at each epoch is

Input: (e number of clients M;
Input: Training epochs Et;
Input: Updating epochs Eu;
Input: Learning rate η;
Input: Local mini-batch size B;
Input: Local optimization function Adam;
Output: A global model Wg;

(1) Procedure ServerExecute:
(2) initialize Wg,0;
(3) for each Iteration i ∈ [1, Et] do
(4) Wg,i+1←1/M 

M
m�1 Wm,i;

(5) end for
(6) end procedure
(7) Procedure ClientUpdate (m Wg,i):
(8) for each Iteration i ∈ [1, Et] do
(9) if i%Eu �� 0 then
(10) f←AdaptFreq(L): f � 

������������������
F(Xe�iEu

)/F(Xe�0)f0




(11) C←AdaptComp(f): C � max(Cmin, C0 − f∗D)

(12) end if
(13) for each Client m ∈ [1, M] do
(14) ω←Adam(Wg,i, f, η)

(15) Wm,i←Comp(ω, C)

(16) end for
(17) end for
(18) end procedure

ALGORITHM 1: An adaptive communication-efficient federated learning (AFC-FL).

Table 6: (e comparative experiment results.

Function avgparameter acc90(epochs) (e parameters of acc90 maxacc
AFC-FL 570,434 86 5.265×107 0.9597
F� 1, CE� 100 620,060 98 6.076×107 0.9738
F� 1, CE� 90 558,042 329 1.836×108 0.9166
F� 5, CE� 100 620,060 221 1.370×108 0.9622
F� 5, CE� 90 558,039 459 2.561× 108 0.9092
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shown in Figure 11. We record the epoch number when
the accuracy of model achieving 90%. In addition, we also
focus the accuracy after 500 rounds.

From Table 6, we can find that AFC-FL uses the fewest
epochs to achieve 90% accuracy for the first time, where
avgparameter is the mean parameters of 500 epochs’ com-
munication, acc90 is the accuracy reached 90% for the first
time, the parameters of acc90 are the total parameters of the
accuracy reached 90% for the first time, and maxacc is the
maximum of the accuracy in 500 epochs. We verify that the
compression and frequency can impact the global model to
achieve high accuracy in Section 3. (us, the results of
comparative experiments prove the superiority of our
method. Since the model also has the compression to
ensure the security of the federated learning model, the
accuracy is slightly reduced, but the small reduction in

accuracy is acceptable in exchange for the improvement in
communication efficiency and the security of the whole
system.

5.3. Security Experiment. We now evaluate the security of
our AFC-FL against GAN-based attacks. We partition the
MNIST dataset into 10 clients by numbers 0–9, with each
client having only one of the numerical datasets. We pre-
process each client before the formal iteration to avoid any
failure to converge due to obscure model features. We use
LeNet5 as the generator (G) and the model training network,
and we perform the training using Algorithm 1. We observe
the generative effect in Figure 12, showing the reconstruc-
tion results of every five rounds of attacks during 500 it-
eration rounds. We can find that the picture cannot be

Figure 12: (e reconstruction results of GAN-based attack on AFC-FL.
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reconstructed inmost cases. It is also unclear which numbers
are actually identified. Figure 13 shows the reconstructed
image generated by our method after performing 500 rounds
of attacks. (e generated image is not recognizable to the
human eye, and it can be assumed that our method is
effective.

6. Conclusions

In this paper, we propose a federated learning optimi-
zation algorithm (AFC-FL) with adaptive frequency and
compression selection in IoT. (e sparsification or
communication delay technique significantly reduces the
communication cost for clients, improving the security
during gradient transmission. Meanwhile, the adaptive
strategy also decreases the communication costs of cli-
ents. Verified analysis of the algorithms and experimental
results using MNIST datasets conclude that AFC-FL is
effective in resisting gradient-based reconstruction at-
tacks. Extensive experiments are conducted to verify the

effects of resisting attacks and communication time of our
algorithm compared to fixed frequency or fixed com-
pression. Experimental results show that AFC-FL not
only significantly reduces the communication traffic but
also keeps the client data safe to increase the security of
the federated learning model, while preserving the
convergence. Future works can also consider asynchro-
nous collection of the client parameter, as well as the
selection of different update strategies for each client
depending on the size of the parameter. It is the goal of
our future research studies to ensure security, while
speeding up the convergence rate of the model. In ad-
dition, we may also consider improvements in homo-
morphic encryption and differential privacy. How to
improve the efficiency using a low additional overhead is
also important to research.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.

Figure 13: (e reconstructed images generated by the GAN-based attacks on AFC-FL.
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[1] F. Mármol, C. Sorge, O. Ugus, and G. Pérez, “Do not snoop
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Communication intrusion detection in Advanced Metering Infrastructure (AMI) is an eminent security technology to ensure the
stable operation of the Smart Grid. However, methods based on traditional machine learning are not appropriate for learning
high-dimensional features and dealing with the data imbalance of communication traffic in AMI. To solve the above problems, we
propose an intrusion detection scheme by combining feature dimensionality reduction and improved Long Short-Term Memory
(LSTM). ,e Stacked Autoencoder (SAE) has shown excellent performance in feature dimensionality reduction. We compress
high-dimensional feature input into low-dimensional feature output through SAE, narrowing the complexity of the model.
Methods based on LSTM have a superior ability to detect abnormal traffic but cannot extract bidirectional structural features. We
designed a Bi-directional Long Short-Term Memory (BiLSTM) model that added an Attention Mechanism. It can determine the
criticality of the dimensionality and improve the accuracy of the classification model. Finally, we conduct experiments on the
UNSW-NB15 dataset and the NSL-KDD dataset. ,e proposed scheme has obvious advantages in performance metrics such as
accuracy and False Alarm Rate (FAR). ,e experimental results demonstrate that it can effectively identify the intrusion attack of
communication in AMI.

1. Introduction

In recent years, as the Internet of ,ings (IoT) technology is
commonly used in the power industry, Smart Grid has
become the development direction of future power grids.
,e core architecture of Smart Grid connecting with the
computer network is AMI. AMI is a complicated system
directly related to electricity consumption information,
privacy information, and electricity transaction information.
,e possible threat of network intrusion has a huge impact
on the reliable operation of the Smart Grid [1, 2]. As an
influential research content of network communication
security, intrusion detection has been widely discussed by
experts and scholars. ,e application of intrusion detection
algorithms represents one of the research hotspots in the
field of communication in AMI in recent years. Radoglou-
Grammatikis and Sarigiannidis [3] summarized the

contribution of intrusion detection and prevention system
(IDPS) to the Smart Grid paradigm and provided an analysis
of 37 cases. Intrusion detection can be viewed as a classi-
fication problem, using machine learning algorithms and
data mining algorithms to classify network data into normal
traffic and intrusion attack traffic [4]. When the intrusion
detector finds misbehavior, it can take appropriate actions
immediately so that any harm to the system will be mini-
mized [5]. At present, related research can be divided into
misuse-based detection [6] and anomaly-based detection [7]
according to detection technology. ,e misuse-based in-
trusion detection scheme matches the extracted network
traffic with the data traffic, which has the existing type tags. If
the detected traffic and intrusion attack traffic have similar
characteristics, the system will send out an alarm message.
Such a method has good performance in identifying existing
attacks by establishing a pattern library of intrusion attacks.
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However, as an emerging model in the Smart Grid, there will
be many new types of attacks appearing in AMI. ,e ac-
curacy of the Misuse-based intrusion detection has de-
creased significantly, so it cannot meet the existing needs of
the communication environment in AMI.

By judging the degree of deviation among the features of
the collected traffic and the normal traffic, the anomaly-
based intrusion detection scheme identifies intrusion at-
tacks. It can be divided into intrusion detection based on
statistical learning [8], traditional machine learning [9], and
deep learning [10]. Because of the requirements of data
distribution, intrusion detection methods based on statis-
tical learning have been eliminated. With the development
of Artificial Intelligence (AI) technology, the accuracy of
methods based on machine learning has been significantly
improved. However, communication traffic in AMI presents
the characteristics of large data volume, high-dimensional
data, and complex feature information. Methods based on
traditional machine learning have the limitation of manually
setting features in feature selection. Such methods can only
be applied to simple and shallow learning. By constructing a
deep hierarchical network structure, the methods based on
deep learning can learn advanced features from data au-
tomatically. ,is method saves time for feature engineering
[11]. ,e experimental result shows that Autoencoder (AE)
has satisfactory performance in feature dimensionality re-
duction, and LSTM has an exceptional ability to solve
classification problems. Currently, researchers have pro-
posed a variety of intrusion detection schemes based on
these two models. Dong et al. [12] proposed an intrusion
detection model named AE-AlexNet based on deep learning.
,ey use AE to realize dimensionality reduction of high-
dimensional traffic. ,is method fails to achieve layer-by-
layer training for high-dimensional traffic, and the robust-
ness of the model is relatively poor. Due to the availability of
LSTM on time series data, Althubiti et al. [13] proposed an
intrusion detection scheme based on LSTM. In this scheme,
only the unidirectional structural features are extracted, and
it cannot determine important features. It has serious
limitations in its application.

To deal with the above problems, we propose a com-
munication intrusion detection scheme by combining fea-
ture dimensionality reduction and improved LSTM in AMI.
,e main contributions of this paper can be summarized as
follows:

(1) First, we propose a Stacked Autoencoder method to
achieve feature dimensionality reduction for the
high-dimensional features of data in AMI. By
extracting the key point information of attributes, it
can reduce the calculation time and improve the
efficiency of communication intrusion detection in
AMI. SAE can modularize and improve the ro-
bustness of the neural network.

(2) Second, for the problem that LSTM cannot extract
bidirectional structural features, we propose a Bi-
directional Long Short-Term Memory model for the

classification of traffic. It can reduce the high FAR
due to data imbalance in AMI.

(3) ,ird, to determine the criticality of the dimen-
sionality and the feature, we improve the classifi-
cation model by the Attention Mechanism. It sets
weight coefficients to allocate more attention to key
dimensions and important features, to realize ac-
curate detection.

(4) Fourth, the proposed method is compared with the
methods based on traditional machine learning and
the recent papers on intrusion detection. ,e ex-
perimental results indicate that our scheme is
preferable to other competing schemes.

,e rest of this paper is organized as follows: Section 2
summarizes the related research work. Section 3 presents the
basic theory required in the scheme. Section 4 introduces
our intrusion detection scheme in detail. Section 5 is the
analysis and comparison of the experiment. Section 6 reports
possible threats to the validity of the scheme. ,e paper is
concluded in Section 7.

2. Related Work

,is section discusses two types of related work: methods
based on traditional machine learning and methods based
on deep learning. According to the requirements of com-
munication intrusion detection in AMI, both methods face
certain challenges. ,e challenge of methods based on
traditional machine learning is whether the selected features
are appropriate for the classification model. Methods based
on deep learning face the challenges of high-dimensional
features of communication traffic and data imbalance in
AMI.

2.1. Intrusion Detection Based on Traditional Machine
Learning. Most of the previous research studies are based on
traditional machine learning methods, such as Naive Bayes,
Decision Tree, K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), and Hidden Markov Model (HMM). Farid
et al. [14] proposed a learning algorithm of intrusion de-
tection, which uses the methods of Naive Bayes and Decision
Tree to reconstruct the data. ,e purpose was to reduce the
noise and eliminate the redundant attributes in the training
data.,is scheme improved the accuracy of different types of
network intrusion attacks. Radoglou-Grammatikis and
Sarigiannidis [15] proposed an intrusion detection system in
AMI based on the CART decision tree, and the system was
tested on the intrusion detection dataset CICIDS2017. Ac-
curacy can reach 99.66%, and True Positive Rate (TPR) can
reach 99.30%. Senthilnayaki et al. [16] used the Rough Sets
Attribute Reduction algorithm to select features and data,
extracted the more important features and data, and realized
the feature dimensionality reduction of the data attributes in
the dataset. Finally, the improved KNN classifier was utilized
to complete the classification of traffic, which effectively
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reduces the FAR of detecting intrusion attacks. For the
threats in AMI, Vijayanand et al. [17] constructed an in-
trusion detection system in Smart Grid through the SVM
classifier method. ,e feature was selected by mutual in-
formation value. Finally, through simulation experiments,
the detection accuracy of normal records obtained could
reach 93.4%, and the detection accuracy of intrusion attack
records could reach 89.2%.,e advantage of the SVMmodel
is its brilliant generalization ability. ,e FAR of the final
results is low, but the SVMmodel is only suitable for solving
the binary classification problem. For detecting multiclass
intrusion attacks in AMI, the performance of the SVM
model is not good. Hurley et al. [18] used HMMalgorithm to
develop an adaptive network intrusion detection system,
which had a superior performance in detecting intrusion
attacks in Software Defined Network (SDN). High-quality
training datasets can be constructed through the clustering
algorithm in traditional machine learning. ,is kind of
method can make the type of the dataset from complex to
simple. It can reduce the spatial dimension of the data and
the computational overhead. In previous studies, clustering
algorithms used in intrusion detection include k-means
algorithm [19], hierarchical clustering [20], and Principal
Component Analysis (PCA) [21]. Unsupervised machine
learning technology is an imperative method for data
processing and feature engineering in the context of massive
data in AMI. However, such algorithms are sensitive to the
outliers and noise of data.

,e arrival of the big data era indicates that intrusion
detection has entered a stage of large data volume, high data
dimension, high network bandwidth, and complex feature
information.Methods based on traditional machine learning
need to manually set features, which are relatively shallow
learning methods. It is therefore difficult to achieve the
purpose of prediction and analysis.

2.2. Intrusion Detection Based on Deep Learning. ,e deep
learning method constructs a network structure constituted
by multiple hidden layers to adapt to the higher-dimensional
learning process by learning the internal laws and repre-
sentation levels of sample data. At the stage of feature en-
gineering, the convergence time of the model is saved. ,e
deep learning algorithms commonly used in the field of
communication intrusion detection in AMI include
Autoencoder, Recurrent Neural Network (RNN) and its
excellent variants, and Convolutional Neural Network
(CNN). To obtain hidden information, Sun et al. [22]
adopted the idea of the Variational Autoencoder (VAE) to
achieve feature dimensionality reduction. ,ey can extract
more advanced features than manually set features. ,e
proposed scheme has shown good performance on the
KDD-CUP dataset, Mnist dataset, and UCSD pedestrian’s
dataset. Distributed Denial of Services (DDoS) is one of the
most notorious attacks in AMI. Learning features through a
multilayer AutoEncoder, Ali and Li [23] proposed an effi-
cient DDoS attack detection technique. Bhardwaj et al. [24]
combined stacked sparse AutoEncoder and Deep Neural
Network (DNN) to detect DDoS attacks in cloud computing.

However, there are various types of intrusion attacks in
AMI, which cannot guarantee the robustness of the scheme.
Gao et al. [25] proposed a new intrusion detection method
based on the LSTMmodel, which can be used in Supervisory
Control And Data Acquisition (SCADA) systems. Agarap
[26] introduced a linear SVM to replace the softmax function
in the final output layer of the Gated Recurrent Unit (GRU)
and built a model named GRU-SVM for intrusion detection.
Finally, through simulation experiments, they showed the
superiority of their scheme in training and testing time. Roy
and Cheung [27] proposed to detect attacks based on the
BiLSTM model in IoT. ,ey used the UNSW-NB15 dataset
for testing and achieved an accuracy of over 95% in attack
detection. Khan et al. [28] built the intrusion detection
system consisting of two stages:,e first stage is the anomaly
detection module based on Spark-ML, and the second stage
is the misuse detection module based on Convolutional-
LSTM (Conv-LSTM). In the cross-validation, the accuracy
rate can reach 97.29%. Riyaz and Ganapathy [29] used CNN
to select the most contributory feature and classify the traffic
when identifying and detecting intrusion attacks on wireless
networks.,e proposed intrusion detection system achieved
an overall accuracy of 98.88%. Lin et al. [30] proposed a
framework named IDSGAN by Generative Adversarial
Networks (GAN) to generate adversarial attacks to deceive
and evade intrusion detection systems. Based on the NSL-
KDD dataset, experiments had proved the feasibility of this
model to attack systems that can detect multiple different
attacks, and had achieved excellent results.

Although intrusion detection based on deep learning has
many advantages in feature learning, it also has some short-
comings. During the communication of AMI, the training
dataset contains a large number of normal data samples, and the
proportion of intrusion attack traffic is very small. ,e records
of data show the phenomenon of unbalance. Meanwhile, the
structural data are high-dimensional, and the features need to be
selected and extracted. In response to the need for commu-
nication intrusion detection in AMI, this paper proposes a
corresponding scheme to solve the above problems.

3. Preliminary: Basic Theory

,is section introduces the basic theory of the model used in
the next section.

3.1. Autoencoder. Autoencoder is an unsupervised neural
network algorithm, which can reconstruct the vector which
is input into the model [31]. It shows powerful nonlinear
generalization capabilities and has been applied in many
fields, such as image denoising [32] and anomaly detection
[33]. Figure 1 is the hierarchical structure of the Autoen-
coder. ,e Autoencoder consists of two parts: encoder
(visible layer to hidden layer) and decoder (hidden layer to
output layer). ,e encoder is represented by the function
h � fθ(x), and it maps the input data to the feature space.
,e decoder is represented by the function x′ � gθ′(h), and
it maps the encoded data back to the sample space for the
generation and reconstruction of the input vector.
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,e learning target of an Autoencoder is to make the
input equal to the output. ,e objective function of the
network is gθ′(f(x)) ≈ x, which means learning an identity.
We suppose that the set of data samples input to the
Autoencoder model is (x1, y1), (x2, y2), . . . , (xn, yn) . ,e
training dataset formed after removing the category labels is
x1, x2, . . . , xn .

,e encoder can be expressed by the following equation:

hk � fθ xk(  � R 

n1

i�1
Wij · xki + bi

⎛⎝ ⎞⎠. (1)

,e decoder can be expressed by the following equation:

xk
′ � gθ′ hk(  � R 

n2

i�1
Wij · hki + bi

⎛⎝ ⎞⎠. (2)

,e loss function can be expressed by the following
equation:

LW,b xk, xk
′(  �

1
2



n1

i�1
xk − xk
′( 
2
. (3)

In equations (1)–(3), xk is the kth training sample. hk is
the value of each neuron in the hidden layer of the kth
training sample. xk

′ is the value of each neuron in the output
layer of the kth training sample. n1 is the number of neurons
in the visible layer, and n2 is the number of neurons in the
hidden layer. Wij is the connection weight of the ith neuron
in the previous layer and the jth neuron in the next layer. bi is
the bias term of the ith neuron on the corresponding layer. R
indicates that the activation function used in the Autoen-
coder is the Relu function.

For the task of feature dimensionality reduction, the final
output xk

′ and the original data xk have the same feature di-
mensions, which is meaningless. ,e result of hk in the hidden
layer is the dimensionality reduction expression of xk. It is
obtained without losing the original data information as much

as possible. We can accomplish the target of transforming high-
dimensional features into low-dimensional features.

3.2. Long Short-Term Memory. Long Short-Term Memory
neural network was proposed as an improved variant of
Recurrent Neural Network, which mainly solves the prob-
lems of gradient disappearance or explosion that may occur
during RNN training. It is more suitable for use in sequence
data processing with long-term correlation [34]. Figure 2
displays the LSTM network structure.

Figure 3 is the internal structure of the memory storage
unit of LSTM, which is mainly composed of the forget gate,
the input gate, and the output gate [35]. ,e forget gate is
responsible for processing the output of the previous layer,
selecting useful information, and filtering useless informa-
tion. ,e input gate is responsible for judging the impor-
tance of information and updating the status of the unit
through critical information. ,e output gate is responsible
for determining which unit status can be input to the unit of
the next layer.

,e forget gate can be expressed by the following
equation:

ft � σ Wf · ht−1, xt  + bf . (4)

In the equation, the value of ht−1 and xt is 0 or 1. After
the forget gate, if the output is 0, the current useful infor-
mation will be stored. And if the output is 1, the current
useless information will be deleted.

,e calculation process of the input gate consists of two
parts: one is to determine the important information that
needs to be added to the unit status through the sigmoid
activation function, and the other is to use the tanh acti-
vation function to form a new vector to update the unit
status. ,e equations of the two parts are shown in the
following equations:

it � σ Wi · ht−1, xt  + bi( , (5)

Ct � tanh WC · ht−1, xt  + bC( . (6)

At this time, the original unit status Ct−1 is updated to Ct,
and the equation is as follows:

Ct � ft ∗Ct−1 + it ∗ Ct. (7)

,e output gate determines the output through the
sigmoid function, which can be expressed by the following
equations:

ot � σ Wo ht−1, xt  + bo( , (8)

ht � ot ∗ tanh Ct( . (9)

In equations (4)–(9): σ indicates that the activation
function used is sigmoid. ht−1 is the hidden layer status of the
previous layer unit. Wf is the weight of the forget gate, and
bf is the bias term of the forget gate. Wi is the weight of the
input gate, and bi is the bias term of the input gate. WC is the
weight of the unit status, and bC is the bias term of the unit

...

...

... Visible layer

Hidden layer

Output layer

x′ = gθ′ (h) ≈ x

h = fθ (x)

Figure 1: ,e hierarchical structure of the Autoencoder. ,e
structure consists of a visible layer, a hidden layer, and an output
layer. ,e visible layer and the hidden layer constitute the encoder
part. ,e hidden layer and the output layer constitute the decoder
part.
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status. Wo is the weight of the output gate, and bo is the bias
term of the output gate.

4. Proposed Method

,e intrusion detection scheme we proposed is mainly for
the communication scenario in AMI, and Figure 4 provides
a detailed description of this scenario. AMI is generally
composed of smart meters, concentrators, grid servers of
measurement management, and its communication net-
work. ,e bottom component of AMI is the smart meter. It
is responsible for collecting and analyzing user information
on Home Area Network (HAN), Business Area Network
(BAN), and Industry Area Network (IAN), while moni-
toring and recording electricity consumption data and other
statistical data. ,e intermediate component of the system is
the data collector deployed in the Neighbor Area Network
(NAN), responsible for summarizing the data information
received from the smart meter. ,e top component of the
system is the device of AMI headend, which is deployed in
the Wide Area Network (WAN) and is responsible for
collecting data from multiple data collectors. ,ere are
multiple feasible communication methods and protocols at
each level. For example, the ZigBee protocol stack and
Bluetooth communication are used in the HAN. In the
NAN, the communication standard of WiFi is used. ,ere
are numerous communicationmethods in theWAN, such as
Digital Subscriber Line (DSL), optical fiber communications,

and GPRS communication. Figure 4 also captures the col-
lection environment of communication data in AMI. ,e
Programmable Logic Controller (PLC) and the data ac-
quisition unit are connected to the communication server on
the data bus through the switch. On the data bus, potential
intrusion attack threat terminals send abnormal traffic
during the communication, carry out various attacks, and
affect the communication between normal devices. ,e
database server is responsible for storing communication log
files between devices.,e data acquisition unit is in charge of
collecting normal traffic and intrusion attack traffic.

In this section, we first introduce the data preprocessing
approach. ,en, we describe the proposed communication
intrusion detection model in AMI and explain how to
classify the records of normal traffic and intrusion attack
traffic.

4.1. Data Preprocessing. ,e communication traffic in the
AMI system contains many nondigital features. Such fea-
tures cannot be directly used as input to the model, so it is
necessary to convert nondigital features into digital features.
We apply the idea of one-hot encoding to process data and
use n-bit status registers to encode n states of nondigital
features. Assume that nondigital features have n states such
as {Status_1, Status_2, . . ., Status_n}, and Table 1 is the final
result of the encoding.

To eliminate the difference of the feature quantification
results and prevent the features with a large value range from
affecting the model results, we use the procedure of nor-
malization for all features to process the obtained data.
Normalization of data can improve the accuracy of the
model and speed up the solution of the model. In our
proposed scheme, the Min-Max normalization method is
used [36]. Assuming that the dataset of a group of features is
X1, X2, . . . , Xn , the equation for normalizing a certain data

Xi in the set is shown in the following equation:

Xi
′ �

Xi − XMin

XMax − XMin
. (10)

Here, Xi
′ is the normalized data and XMin and XMax are the

minimum and maximum values in the dataset, respectively.
,e pseudocode description of the algorithm at this stage

is shown in Algorithm 1.
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Figure 2: ,e framework of the LSTM model. Sigmoid and tanh activation functions are used inside the unit.
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Figure 3: ,e internal structure of the LSTM unit. (a) Forget gate.
(b) Input gate. (c) Output gate.
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4.2. IntrusionDetectionModel. ,e preprocessed data can be
used for classification detection. Figure 5 is the established
communication intrusion detection model in AMI, which is
divided into two parts: the first part is to perform dimen-
sionality reduction operations on the features of the data
through the Stacked Autoencoder, which is marked by (i) in
Figure 5. ,e second part is to classify the traffic through the
improved LSTM for the data after feature reduction, to
achieve the purpose of identifying intrusion attacks. ,is
part is indicated by (ii) in Figure 5.

4.2.1. SAE for Feature Dimensionality Reduction. ,e
Stacked Autoencoder is a neural networkmade up ofmultiple
layers of sparse Autoencoders, which can effectively extract
features and reduce feature dimensions [37]. Figure 6 is the
structure of the Stacked Autoencoder. ,is SAE is composed
of n Autoencoders stacked. Hidden layers (1∼n−1) are the
output of the previous Autoencoder and the input of the next
Autoencoder. In this case, one Autoencoder is nested inside
another, and learning takes place in a layer-by-layer greedy
learning manner [38]. After every Autoencoder is trained, the
decoder part is removed, and the final target output is at-
tached to the innermost encoder layer.

To use the AMI dataset for communication traffic, after
completing the data preprocessing, the vector with a di-
mension of 196 is obtained.,is vector is used as the input of
SAE. Figure 7 is the design of SAE to achieve feature se-
lection and dimensionality reduction. In the proposed
scheme, the number of hidden layers of the SAE network

structure is 4 layers. ,e number of neurons in the hidden
layer is {128, 64, 32, 32}, and finally, a 32-dimensional vector
is selected as the output.

,e processes of SAE for feature dimensionality re-
duction generally include two stages: pretraining and fine-

Table 1: Encoding results of n states of nondigital features.
Description of the status One-hot encoding result (n bits)
Status_1 (0, 0, . . ., 0, 1)
Status_2 (0, 0, . . ., 1, 0)
. . . . . .

Status_n−1 (0, 1, . . ., 0, 0)
Status_n (1, 0, . . ., 0, 0)

...

...

Traffic after data preprocessing

...

...(Hidden layer)

BN BN BN

BN BN BN

AMI communication traffic data

Output 

ht–1
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working 
forward

Fully connected neural network layer (dense)
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Figure 5: Communication intrusion detection model in AMI. ,e
overall model has two stages: (i) SAE for feature dimensionality
reduction. (ii) Improved LSTM for classification.
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Figure 4: Communication scenario in AMI. (i) Communication network hierarchy structure in AMI. (ii) ,e collection environment of
communication data in AMI. (iii) Protocols used in each layer of AMI.
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tuning. Pretraining is an unsupervised training process that
uses a large amount of unlabeled traffic data to perform
layer-by-layer greedy learning and training in SAE.,e steps
of the pretraining stage are as follows:

Step 1: input the preprocessed AMI communication
data into the visible layer of the SAE, and initialize the
connection weight W and bias term b randomly.
Step 2: train the network parameters of the Hidden
layer1 and calculate the output of the Hidden layer1
through the trained parameters.
Step 3: use the unsupervised learning method to train
the Autoencoder and calculate the loss function value
LW,b. Keep updating the weight W and the bias term b

until the loss function value finally reaches the set
threshold and no longer changes.
Step 4: use the output of the previous network layer as
the input of the next network layer and apply the same

method to train the parameters of this hidden network
layer. Repeat Step 3 until all layers of the SAE have been
trained.

,e above pretraining process cannot obtain a mapping
from the input communication traffic in AMI to the output
label, so one or more connection layers need to be added to
the last layer of the SAE network, and the backpropagation
method is used for training.,is stage is called the fine-tuning
process. ,e steps of the fine-tuning stage are as follows:

Step 1: construct the entire SAE by connecting the
hidden layers trained by each AE, and set the con-
nection weight W and the bias term b to the values
obtained in the pretraining stage.
Step 2: cascade a softmax classifier after the last layer,
and train the network parameters of the softmax
classifier in combination with the labeled original data.
Step 3: use the network parameters of the pretraining
stage and the fine-tuning stage as the initialization
parameters of the entire deep network. Find the pa-
rameter values around the minimum value of the cost
function as the optimal parameter.
Step 4: use the backpropagation algorithm to fine-tune
the optimal parameters obtained in the SAE model.

,e pseudocode of the algorithm using the SAE to
complete feature dimensionality reduction is shown in
Algorithm 2.

,e scheme has been put forward since the process of
completing feature dimensionality reduction. As the
network deepens, the training process becomes more
difficult and the convergence speed becomes slower. We
adopted the idea of Batch Normalization (BN) [39] to
solve this problem. In Step 4 of the fine-tuning stage,
there is the phenomenon that gradient disappears in the
low-layer neural network during backpropagation. BN
means that the input value distribution of any neuron in
each layer of the neural network is forced back to the
standard normal distribution with the mean of 0 and the
variance of 1 through the normalization method. In this
way, the input value of the nonlinear transformation
function falls into an area that is sensitive to the input, to
avoid the problem of vanishing gradient. Figure 8 dis-
plays the process of improving the hidden layer network

Visible 
layer

Hidden
layer1

Output
layer

Encoder1

Hidden
layern–1

...

Encoder2 Encodern...

Input Input InputTrain Train Train

Trained-output Trained-output Trained-output

Figure 6:,e structure of SAE.,e output of the Autoencoder of the previous layer is used as the input of the Autoencoder of the next layer.

...

... Visible layer
(196 dimensions)

Hidden layer1
(128 dimensions)

...

...

Hidden layer2
(64 dimensions)

Hidden layer3
(32 dimensions)

Output Output layer

Traffic after data preprocessing

... Hidden layer4
(32 dimensions)

Figure 7: ,e process of feature selection and dimensionality
reduction implemented by SAE in the proposed scheme. ,e
structure of the hidden layer in SAE is {128,64,32,32}.
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structure of the Autoencoder. We use the idea of BN for
processing behind each hidden layer.

In the BN operating experience, the equation for
transforming the activation value of each neuron in the
hidden layer is shown in the following equation:

x
(k)

�
x

(k)
− E x

(k)
 

��������

Var x
(k)

 

 . (11)

In the equation, x(k) is the linear activation value of the
corresponding neuron in this layer. E[x(k)] is the average
value of linear activation values obtained by all training
instances in this training process. Var[x(k)] is the variance of
the linear activation value. Assuming that there are n in-
stances in the training process, the calculation equations of
E[x(k)] and Var[x(k)] are

E x
(k)

  �
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i�1
x

(k)
i , (12)

Var x
(k)

  �
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i�1
x

(k)
i − E x
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2
. (13)

To prevent the expression ability of the SAE network
from decreasing after changing the distribution, the ad-
justment parameters scale and shift are added at each neuron
to activate the inverse transformation operation. ,e
equation for the inverse operation is shown in the following
equation:

y
(k)

� c
(k)

x
(k)

+ β(k). (14)

4.2.2. Improved LSTM for Classification. After completing
data dimensionality reduction, it is necessary to classify the
normal traffic and intrusion attack traffic of communication
data in AMI. ,e scheme in this paper applies the Bi-di-
rectional Long Short-TermMemory [40] method. Figure 9 is
the structure of the BiLSTM model.

In the proposed scheme, the input layer is responsible
for sequence encoding of the data after feature

dimensionality reduction. ,e forward working LSTM
unit is responsible for extracting the forward features of
the data sequence in the input layer, and the backward
working LSTM unit is responsible for extracting the
backward features of the data sequence in the input layer.
,e output layer integrates the data output by the forward
and backward transmission layers.

,e calculation equations inside the LSTM unit of
forward transmission are shown in the following equations:

f
→

t � σ W
�→

f · h
→

t−1, x
→

t  + b
→

f , (15)

i
→

t � σ W
�→

i · h
→

t−1, x
→

t  + b
→

i , (16)

C
→

t � f
→

t ∗ C
→

t−1 + i
→

t ∗ tanh W
�→

C · h
→

t−1, x
→

t  + b
→

C ,

(17)

o
→

t � σ W
�→

o h
→

t−1, x
→

t  + b
→

o ,

(18)

h
→

t � o
→

t ∗ tanh C
→

t . (19)

,e calculation equations inside the LSTM unit of backward

...
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... Hidden
layern–1

... Hidden
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(b)

Figure 8: Using the BN method to improve the hidden layer network structure of the Autoencoder. (a) ,e original network structure
between two layers. (b) ,e improved network structure between two layers.
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Figure 9: ,e structure of the BiLSTM network. It consists of a
forward working LSTM and a backward working LSTM.
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transmission are shown in the following equations:

f
←

t � σ W
←

f · h
←

t−1, x
←

t  + b
←

f , (20)

i
←

t � σ W
←

i · h
←

t−1, x
←

t  + b
←

i , (21)

C
←

t � f
←

t ∗C
←

t−1 + i
←

t ∗ tanh W
←

C · h
←

t−1, x
←

t  + b
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C , (22)

o
←

t � σ W
←

o h
←

t−1, x
←

t  + b
←

o , (23)

h
←

t � o
←

t ∗ tanh C
←

t . (24)

,e output vector ht of the output layer can be calculated
from the output vectors h

→
t and h

←

t of the forward and
backward hidden layers, respectively. ,e calculation
equation is shown in the following equation:

ht � h
→

t ⊕ h
←

t . (25)

In equation (25), ⊕ is the combination method of for-
ward and backward output vectors.

In the communication intrusion detection scheme in
AMI, to pay corresponding attention to the different features
of the intrusion attack traffic data, the Attention Mechanism
is introduced. ,is will improve the accuracy of intrusion
detection. Attention Mechanism is widely used in image
processing [41], natural language processing [42], target
detection [43], and other fields. ,e core idea of this method
is to imitate the way the human body observes objects and
select more critical parts from a large amount of information
to achieve the purpose of feature extraction. ,e Attention
Mechanism is used in two measures in the improved LSTM
to classify traffic data. One is to use the Attention Mecha-
nism to determine which dimensions play a critical role in
classification. ,e other is that the data sequence results
obtained by the BiLSTM output layer are added to the
Attention Mechanism layer to obtain a more accurate
classification. ,e calculation equations are shown in the
following equations:

ut � tanh Wwht + bw( , (26)

at � softmax u
T
t , uw , (27)

v �  atht. (28)

In equations (26)−(28), ut is the attribute representation
of the output vector ht of the BiLSTM output layer, at is the
weight of importance, v is the result of the importance
weighting operation on the output vector ht, and uw is a
randomly generated context vector during training.

,e final result is input to the fully connected neural
network layer for classification, and the prediction result is
obtained. ,e pseudocode of the algorithm for

implementing traffic data classification using improved
LSTM is shown in Algorithm 3.

5. Experimental Results and Analysis

,is section first introduces the experimental environment
and the dataset used. ,en, we compare with other methods
and debug the internal structure and parameters of the
model to illustrate the superiority of the proposed scheme of
communication intrusion detection scenarios in AMI.

5.1. Experimental Settings and Dataset Description. ,e ex-
periment was run on a machine with Windows 10 oper-
ating system, Intel Core i9-9900K CPU, NVIDIA RTX2080
Ti GPU, and 32GB RAM. To compare the running time of
the proposed model on CPU and GPU, we conducted the
comparative experiment on a machine with Windows 10
operating system with Intel Core i7-5500U CPU and 8GB
RAM. ,e methods mentioned in the scheme are all
programmed with Python 3.7, and the compiler used is
Pycharm2020. A large number of programming libraries in
python are employed in programming, such as Numpy,
Pandas, Keras, and Sklearn. Numpy provides the basic
packages for data analysis and high-performance scientific
computing, which can calculate the matrix precisely and
work with vectors. Pandas is a tool based on Numpy, in-
cluding different libraries and various standard data types.
It is used to accurately process large-scale datasets. Keras is
the most important library in the process of programming,
and it can run on TensorFlow or ,eano. Our scheme is
running on TensorFlow. Because some deep learning
models (AE, LSTM) are used in the designed scheme, Keras
provides a flexible deep learning framework for it. We can
easily and quickly implement the scheme programming
through Keras. Sklearn encapsulates a large number of
machine learning algorithms, such as classification, re-
gression, and clustering.

To evaluate our proposed communication intrusion
detection scheme in AMI, the public intrusion detection
standard dataset UNSW-NB15 is employed for verifica-
tion. ,is dataset was created by the cyber security re-
search group of the Australian Centre for Cyber Security
(ACCS) [44], which addresses the issue of data redun-
dancy in other datasets. ,e traffic obtained by the AMI
system has the characteristic of more normal data and less
intrusion attack data. An unbalanced dataset is needed to
verify the proposed scheme. Table 2 contains the distri-
bution of the data. ,e UNSW-NB15 dataset has 175341
records in the training dataset and 82332 records in the
testing dataset. In addition to normal data records, the
dataset has 9 types of intrusion attacks: Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms. ,ere are 93000 normal records in
the dataset, accounting for 36.09%. However, Shellcode
and Worms have 1511 records and 174 records, respec-
tively, accounting for 0.59% and 0.07%. ,erefore, the
UNSW-NB15 dataset meets the verification characteris-
tics of the unbalanced dataset.
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Network communication technology is applied to AMI,
and massive data present a multidimensional characteristic
structure. ,e UNSW-NB15 dataset comprises 44 features
[45], which like the characteristic of communication traffic
with many features in AMI. Table 3 displays all the features
and types of the dataset. ,ese features are divided into 6
categories:

Flow features: it includes the data flow attributes that
the communication terminal interacts with. In this
dataset, only proto belongs to Flow Features, which is
used to mark the transaction protocol used in the
communication.
Base features: it shows the basic attributes of the traffic
in the records, such as the features of the protocol
connection.
Content features: it is related to the attributes of the
TCP and the HTTP.

Time features: it includes all the time attributes of the data
in the record, such as the arrival time of the data packet,
the return confirmation time, and the survival time.
Additional generated features: it can be divided into
two parts: one is general feature attributes, and the
other is connection feature attributes. In general feature
attributes, each feature gets its use from the defense
point of view. Connection feature attributes only
provide defenses in connection attempts.
Labeled features: it indicates whether the record is
normal data or generated from an intrusion attack.
Both the normal and attack records are marked with a
Boolean type.

5.2. Performance Evaluation Metrics. We are required to set
model evaluation standards to test the effectiveness of the
designed communication intrusion detection scheme in

Input: original training dataset Original_train, testing dataset Original_test
Output: preprocessed training dataset Preprocessed_train, testing dataset Preprocessed_test
train� pd.read_csv (Original_train)
test� pd.read_csv (Original_train)
/∗ concat() complete data splicing ∗ /
Spliced_data� pd.concat([train, test])
/∗ get_dummies() complete one-hot encoding ∗ /
Encoded_data� get_dummies(Spl_data, [“Feature_1”, “Feature_2”, . . ., “Feature_n”])
Encoded_data.drop([“label”, “attack_cat”])
/∗MinMaxScaler() normalizes the data to [0, 1] ∗ /
Preprocessed_train�MinMaxScaler (Encoded_data, train, feature_range� (0, 1))
Preprocessed_test�MinMaxScaler (Encoded_data, test, feature_range� (0, 1))
End

ALGORITHM 1: Algorithm description of data preprocessing stage.

Input: Preprocessed_train, Preprocessed_test, Train_label, Test_label
Output: Encoded_train, Encoded_test, Train_label, Test_label
Load processed data Preprocessed_train, Preprocessed_test
While not reach terminating condition: n-layer autoencoder training (n� 1, 2, 3, 4)

for Epoch in range (1, 100):
/∗ complete filepath stitching ∗ /
os.path.join()
/∗ Save the model results after each epoch to filepath ∗ /
AE_n_point�ModelCheckpoint (filepath, monitor� “val_loss”, verbose� 1, save_best_only�True, mode� “min”)
/∗ Save the best model to prevent overfitting ∗ /
AE_n_stops�EarlyStopping (monitor� “val_loss”, patience� 10, mode� “min”)
break

AutoEncoder_n.load_weights()
Output the prediction result of this layer: layer_n_output, test_n_out

End While
Encoded_train� SAE_encoder.predict (train)
Encoded_test� SAE_encoder.predict (test)
/∗ save SAE final result ∗ /
np.save (Encoded_train, Encoded_test, Train_label, Test_label)
End

ALGORITHM 2: Using the SAE to implement feature dimensionality reduction algorithm.
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AMI. Intrusion attack traffic detection is a classification
problem, and its performance metrics depend on the con-
fusion matrix [46]. Table 4 enumerates the definition and
explanation of each item in the confusion matrix.

,e confusion matrix can be used to calculate the fol-
lowing performance metrics to evaluate our proposed
scheme:

Accuracy can be used to represent the proportion of all
traffic data (normal and intrusion attack) being classified
correctly. ,e calculation equation is shown in the following
equation:

Accuracy �
TP + TN

TP + FN + FP + TN
. (29)

Precision can be used to express the probability that the
data detected as a positive sample is truly a positive sample.
,e calculation equation is shown in the following equation:

Precision �
TP

TP + FP
. (30)

Recall can express the ratio of intrusion attack traffic
detected as positive samples by our proposed scheme to the
overall intrusion attack traffic. Recall can be used as an
important performance metric in the detection of datasets
with an unbalanced category. ,e calculation equation is
shown in the following equation:

Recall �
TP

TP + FN
. (31)

F1_score is the harmonic value of Precision and Recall,
and the calculation equation is shown in the following
equation:

F1 score �
2 × Precision × Recall
Precision + Recall

. (32)

FAR reports the ratio of the normal traffic detected as a
positive sample to the overall normal traffic. ,e calculation
equation is shown in the following equation:

FAR �
FP

FP + TN
. (33)

5.3. Experimental Results. According to our proposed
communication intrusion detection scheme in AMI, the
UNSW-NB15 dataset is used for verification. First, we
preprocess the dataset and use one-hot encoding to convert
the nondigital features in the dataset into digital features.
,en, we input the preprocessed data into the Stacked
Autoencoder for feature dimensionality reduction. ,e
encoded data are input into the improved LSTM model for
classification. Finally, the result of classification is output
through the fully connected layer. Table 5 is the confusion
matrix obtained from the detection results of the proposed
scheme on the UNSW-NB15 dataset. Table 6 comprises the
results of performance metrics calculated by the values of
items in the confusion matrix.

5.4. Comparison with Other Methods

5.4.1. Comparison with Traditional Machine Learning
Methods. To prove the advantages of our proposed AMI
communication intrusion detection scheme, traditional
machine learning methods are utilized to classify and detect
the UNSW-NB15 dataset. Table 7 compares their final re-
sults with the results of our proposed scheme. Traditional

Input: Encoded_train, Encoded_test, Train_label, Test_label
Output: Classification result
Load feature reduced data Encoded_train, Encoded_test, Train_label, Test_label
Define parameters time_steps, batch_size
Train_label_� np. insert (Train_label)
Test_label_� np.insert (Test_label)
train_generator�TimeseriesGenerator (Encoded_train, Train_label_)
test_generator�TimeseriesGenerator (Encoded_test, Test_label_)/∗ define Attention Mechanism function ∗ /
def attention_3d_block (inputs)/∗ define Attention Mechanism function ∗ /
lstm1�Bidirectional (LSTM (units� 24)) (input_traffic) /∗ define the first layer lstm ∗ /
Call the attention_3d_block () function to judge the criticality of the dimension
lstm2�Bidirectional (LSTM (units� 12)) (attention_output) /∗ define the second layer lstm ∗ /
Input BiLSTM output layer results into Attention Mechanism layer
mlp�Dense (units� 6, activation� “relu”) (attention _output2)
mlp2�Dense (units� 1, activation� “sigmoid”) (mlp) /∗ ,e fully connected neural network layer outputs the classification results
∗ /
for Epoch in range(1, 250):
history� classifier.fit_generator (train_generator, steps_per_epoch, callbacks� [], validation_data� test_generator,

validation_steps)
np.save (Classification result) /∗ save classification final result ∗/
End

ALGORITHM 3: Use improved LSTM for data classification.
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machine learning methods are not particularly effective for
intrusion detection on the dataset with unbalanced cate-
gories. ,e best methods about the results are Random
Forest and Decision Tree. ,e performance metric of Ac-
curacy can reach 0.8583 and 0.8531, respectively. However,
the FAR of these two traditional machine learning methods
is very high. Support Vector Machines show good perfor-
mance on the Binary Classification problems. After being
used for the detection of intrusion attack traffic, the FAR
value of the SVM model can reach 0.0079, but the classi-
fication Accuracy is only 0.6486. In summary, compared
with traditional machine learning schemes, our proposed
communication intrusion detection scheme in AMI greatly
improves the Accuracy of intrusion detection, while en-
suring low FAR. Especially, for datasets with unbalanced
categories, it has better performance of classification.

5.4.2. Comparison with Recent Intrusion Detection Scheme.
Table 8 compares our proposed scheme with some recent
intrusion detection schemes. DO_IDS [47] proposed an
intrusion detection algorithm that relies on mixed data
optimization. ,e Time-related NIDS [48] scheme uses a
time-related deep learning method to detect intrusion at-
tacks in the network. ,e SDAE+ SVM [49] scheme also
uses Denoising Autoencoder (DAE) to reduce the feature
dimension. But, different from the scheme we proposed, this
scheme finally uses the idea of SVM for classification.

Table 8 suggests that our proposed communication in-
trusion detection scheme in AMI can better detect intrusion
attack traffic compared to the recently proposed papers of
intrusion detection. Reference [48] used the time-series
model for the scheme. Reference [49] used the feature di-
mensionality reduction of the Denoising Autoencoder. ,e
scheme we propose is to use an improved LSTM to classify
time series data based on the feature dimensionality re-
duction of SAE. So, we compare the accuracy and loss of
each Epoch on the training dataset and the testing dataset of
the proposed model and the two deep learning methods.
Figure 10 is the curve drawn founded on the results ob-
tained. ,e three models were trained with 180 Epochs, and
the values of accuracy and loss after each Epoch were
recorded. ,e proposed scheme converges significantly
faster during training and testing, and the final classification
accuracy of our model is considerably higher.

To compare the computational cost of the proposed
scheme and other schemes, Figure 11 reports the running
time for each parameter in the training dataset and the
testing dataset to reach the set threshold. We use GPU to

Table 2: ,e distribution of records in the UNSW-NB15 dataset.
Number Record class Size Distribution (%)
1 Normal 93000 36.09
2 Fuzzers 24246 9.41
3 Analysis 2677 1.04
4 Backdoors 2329 0.90
5 DoS 16353 6.35
6 Exploits 44525 17.28
7 Generic 58871 22.85
8 Reconnaissance 13987 5.43
9 Shellcode 1511 0.59
10 Worms 174 0.07

Totals 257673 100

Table 3: Features in the UNSW-NB15 dataset.
Number Feature Feature type Data type
1 proto Flow features Nominal
2 state Base features Nominal
3 dur Base features Float
4 sbytes Base features Integer
5 dbytes Base features Integer
6 sttl Base features Integer
7 dttl Base features Integer
8 sloss Base features Integer
9 dloss Base features Integer
10 service Base features Nominal
11 sload Base features Float
12 dload Base features Float
13 spkts Base features Integer
14 dpkts Base features Integer
15 swin Content features Integer
16 dwin Content features Integer
17 stcpb Content features Integer
18 dtcpb Content features Integer
19 smeansz Content features Integer
20 dmeansz Content features Integer
21 trans_depth Content features Integer
22 res_bdy_len Content features Integer
23 sjit Time features Float
24 djit Time features Float
25 rate Time features Float
26 sintpkt Time features Float
27 dintpkt Time features Float
28 tcprtt Time features Float
29 synack Time features Float
30 ackdat Time features Float

31 is_sm_ips_ports Additional generated
features Binary

32 ct_state_ttl Additional generated
features Integer

33 ct_flw_http_mthd Additional generated
features Integer

34 is_ftp_login Additional generated
features Binary

35 ct_ftp_cmd Additional generated
features Integer

36 ct_srv_src Additional generated
features Integer

37 ct_srv_dst Additional generated
features Integer

38 ct_dst_ltm Additional generated
features Integer

39 ct_src_ltm Additional generated
features Integer

40 ct_src_dport_ltm Additional generated
features Integer

41 ct_dst_sport_ltm Additional generated
features Integer

42 ct_dst_src_ltm Additional generated
features Integer

43 attack_cat Labeled features Nominal
44 Label Labeled features Binary
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accelerate the training speed of all models. Although the
proposed scheme spends more time on training for each
Epoch, less Epoch is used to reach the threshold. Consid-
ering the overall running time, we can complete intrusion
detection faster in AMI. ,e time for the power system to
build up a defense mechanism has been extended.

5.5. Comparison with Different Structures of SAE and LSTM.
To explore the influence of different structures of SAE and
LSTM on our proposed scheme, experiments were carried
out with different SAE structures and LSTM structures. ,e
SAE network uses three different structures: {128, 64, 32, 32},
{128, 64, 32}, and {128, 32, 32}. LSTM uses two separate
structures: the original model and the improved model.
Table 9 highlights the different experimental performance
results. When the Stacked Autoencoder structure adopts
{128, 64, 32, 32} four hidden layer structures and the im-
proved LSTM network in our scheme is employed to
classification, the model has the best effect. But, the structure
of a Stacked Autoencoder with four hidden layers will in-
crease the convergence time of the algorithm. Improving
LSTM to BiLSTM and adding the Attention Mechanism will
also increase the amount of calculation in the model.
,erefore, in the actual scenes in Smart Grid, it is necessary
to comprehensively consider the detection accuracy, the
required calculation configuration of the model, and the
implementation time of the scheme. We should select the
optimal structure for communication intrusion detection in
AMI.

5.6. Comparison with Different Timesteps. Because our
scheme uses the method of generating time series data in the
final classification model, the selection of different timestep
values will also affect the performance metrics of the model.
In the LSTM classification model, timestep refers to how
much data the current input data of the model is related to
before. In the final classification process, through code
debugging, the timestep value is selected in the set {4, 8, 12,
16, 20}, and we record the results of our model. Figure 12
shows the comparison of four performance metrics after
different timesteps. With the increase of timesteps, the
performance of various metrics gradually becomes better
and eventually tends to a stable value. Accuracy, Precision,

and FAR have the best performance when the timestep value
is equal to 20. Recall has the best performance when the
timestep value is equal to 16, but the Recall value is only
0.0005 lower when the timestep value is equal to 20.
However, while improving the performance of the model,
the calculation time of the model should be taken into
account. Figure 13 explains the calculation time of each
Epoch for different timesteps. It indicates that the cost of
increasing timesteps to obtain good performance is that the
calculation time becomes longer.

We set different timestep values in the classification
model. Figure 14 records the accuracy and loss values of the
training dataset and the testing dataset after each Epoch. As
the timestep value increases, the final performance that the
model can eventually achieve becomes better and better, but
this does not mean that the time to reach the best perfor-
mance is getting faster. Figure 14 suggests that the overall
convergence trend is almost the same in the process of the
model reaching the best performance. When the timestep
value increases evenly, the performance improvement of the
model is less and less obvious.

5.7. Experiments on the NSL-KDD Dataset. ,e proposed
scheme shows excellent performance on the UNSW-NB15
dataset. To ensure the robustness of the proposed scheme, we
use the NSL-KDD dataset for experiments. ,e NSL-KDD
dataset is improved based on the KDD Cup99 dataset [50].
Compared to KDD Cup99, NSL-KDD does not include re-
dundant records in the training dataset and duplicate records in
the testing dataset. ,is dataset also conforms to the essential
characteristics of traffic in the AMI communication environ-
ment: data imbalance and multidimensional feature structure.
In the NSL-KDD dataset, there are 125973 records in the
training dataset and 22544 records in the testing dataset. Ta-
ble 10 shows the distribution of various types of intrusion
attacks. In addition to the data marked as Normal, there are
samples of four types of intrusion attacks: DoS, U2R, R2L, and
Probe.,e dataset has 42 features (1 category feature, 7 discrete
features, and 34 continuous features).

Under the same environmental setting as 5.1, we
conducted experiments on the NSL-KDD dataset
according to the proposed scheme. Table 11 is the con-
fusion matrix obtained through the testing dataset.
,rough the confusion matrix, we calculate the perfor-
mance metrics, as shown in Table 12. ,e proposed
scheme is also applicable to the NSL-KDD dataset,
showing excellent performance in intrusion attack de-
tection. Unlike the UNSW-NB15 dataset, the testing
dataset in NSL-KDD includes many new attack variants.
,erefore, the scheme could detect new attack variants.

Table 4: Explanation of the meaning of each item in the confusion matrix.
Items in confusion matrix Explanation
TP ,e number of intrusion attack traffic detected as positive samples
TN ,e number of normal traffic detected as negative samples
FP ,e number of normal traffic detected as positive samples
FN ,e number of intrusion attack traffic detected as negative samples

Table 5: Confusion matrix over the UNSW-NB15 dataset using
SAE+Attention−BiLSTM.

Predicted
Anomalous Normal

Actual Anomalous 36275 313
Normal 172 45160
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Figure 10: Changes in accuracy and loss of the training dataset and the testing dataset with the increase of Epoch. (a) Accuracy changes in
the training dataset. (b) Loss changes in the training dataset. (c) Accuracy changes in the testing dataset. (d) Loss changes in the testing
dataset.
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Table 6: Results of each performance evaluation metric on the UNSW-NB15 dataset.
Evaluation index Value
Accuracy 0.9941
Precision 0.9914
Recall 0.9952
F1_score 0.9933
FAR 0.0069
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Figure 12: Continued.
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6. Threats to Validity

In this section, we report possible threats to the validity of
the proposed scheme.

6.1. :reats to Internal Validity. In the process of intrusion
detection, the dependent variable is the performance eval-
uationmetric, which is obtained finally. It is calculated based

on the confusion matrix of the classification results. Time
performance is also used as one of the evaluation metrics in
comparison with related work. However, we should ensure
the consistency of the machines used when comparing the
time performance of schemes. GPU will significantly ac-
celerate the training speed of the model.

,e independent variables that affect the dependent
variable can be split into the structural setting of the model
and the internal parameters of the model. In the structure of
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Figure 12: ,e results of performance metrics with different timesteps. (a) Accuracy. (b) Precision. (c) Recall. (d) FAR.
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Figure 13:,e calculation time of each Epoch under different timestep values. (i),emachine configuration used is CPU. (ii),emachine
configuration used is GPU 2080Ti.
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Figure 14: Changes in performance metrics with increasing Epoch when setting different timesteps. (a) Accuracy changes in the training
dataset. (b) Loss changes in the training dataset. (c) Accuracy changes in the testing dataset. (d) Loss changes in the testing dataset.
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the model, the number of layers in the SAE and the number
of neurons in each layer will have a significant impact on
the internal validity. When using LSTM for classification,
choosing a bidirectional structure to extract features and
adding an Attention Mechanism will improve accuracy.
However, the complexity of the model structure will lead to
an increase in the computational cost. Timesteps is one of
the most important internal parameters, which affects the
time performance of the model. In the programming
models for deep learning, we also need to consider the
threat of internal parameters (such as learning rate) to
internal validity. Besides, some advanced technologies are
used in the algorithm design of our scheme. For example,
we use the dropout function to prevent the model from
overfitting. Different probabilities of deactivation may
cause the model to produce different classification results.

Table 7: ,e comparison of results between the proposed method and traditional machine learning methods.
Method Accuracy Precision Recall FAR
K-nearest neighbor 0.7544 0.7942 0.6977 0.1870
Naive Bayesian 0.8358 0.7399 0.8731 0.1869
Decision tree 0.8531 0.7811 0.8765 0.1624
Random forest 0.8583 0.8434 0.8400 0.1268
Logistic regression 0.8471 0.7212 0.9190 0.1917
Support vector machines 0.6486 0.9964 0.5599 0.0079
Multilayer perceptron 0.8095 0.7147 0.8350 0.2063
SAE+Attention-BiLSTM 0.9941 0.9914 0.9952 0.0069

Table 8: ,e comparison of results among the proposed scheme and recent intrusion detection papers.
Method Accuracy Precision Recall FAR
DO_IDS [47] 0.9282 0.9670 0.8966 0.0330
Time-related NIDS [48] 0.9793 0.9685 0.9848 0.0251
SDAE+ SVM [49] 0.9311 0.9679 0.8879 0.0280
SAE+Attention-BiLSTM 0.9941 0.9914 0.9952 0.0069

Table 9: Evaluation results of SAE and LSTM with different structures.
Structures of SAE and LSTM Accuracy Precision Recall FAR

{128, 64, 32, 32} Attention-BiLSTM 0.9941 0.9914 0.9952 0.0069
LSTM 0.9859 0.9778 0.9905 0.0178

{128, 64, 32} Attention-BiLSTM 0.9893 0.9822 0.9938 0.0142
LSTM 0.9809 0.9682 0.9888 0.0252

{128, 32, 32} Attention-BiLSTM 0.9861 0.9763 0.9924 0.0189
LSTM 0.9767 0.9595 0.9880 0.0320

Table 10: ,e distribution of various types of intrusion attacks in the NSL-KDD dataset.
Dataset class Attack class Size Distribution (%)

Training dataset

Normal 67343 53.46
DoS 45927 36.46
Probe 11656 9.25
R2L 995 0.79
U2R 52 0.04

Testing dataset

Normal 9711 43.07
DoS 7458 33.08
Probe 2421 10.74
R2L 2754 12.22
U2R 200 0.89

Table 11: Confusion matrix over the NSL-KDD dataset using
SAE+Attention−BiLSTM.

Predicted
Anomalous Normal

Actual Anomalous 11769 95
Normal 46 12826

Table 12: Results of each performance evaluation metric on the
NSL-KDD dataset.
Evaluation index Value
Accuracy 0.9943
Precision 0.9961
Recall 0.9920
F1_score 0.9940
FAR 0.0036
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6.2. :reats to External Validity. Aiming at the character-
istics of intrusion attack traffic in AMI, we propose a de-
tection scheme. In the experiment, the UNSW-NB15
dataset was used to verify the effectiveness of the scheme.
To ensure the robustness of the scheme, we use the NSL-
KDD dataset to test. ,ese two general datasets are col-
lected by network communication, so the proposed scheme
can adapt to other environments. In other industrial
control traffic anomaly detection, there are also problems
with high-dimensional features and data imbalance. We
implement feature dimensionality reduction through the
SAE part of the designed IDS and then use BiLSTM with
Attention Mechanism to extract the bidirectional feature
structure. Finally, the purpose of efficient intrusion de-
tection can be achieved.

But in deep research, we found that the proposed scheme
needs the ability to detect subtypes of attacks. For example,
Table 13 shows the attack categories and subtypes of attacks
in the NSL-KDD dataset. Based on the results of subtype
intrusion attack detection, researchers can implement de-
fense measures precisely.

7. Conclusion

In this paper, considering high-dimensional features of
massive data and data imbalance in AMI, we propose the
corresponding intrusion detection scheme. ,e scheme
consists of two parts: feature dimensionality reduction and
classification. In feature dimensionality reduction, we use
the Stacked Autoencoder to convert the 196-dimensional
original data features into 32-dimensional encoded data
features. It could reduce the computational complexity of
the model. In classification, the Attention Mechanism is
applied to the BiLSTM model to determine the criticality of
the dimensionality and select efficient features to improve
the accuracy of classification. ,e proposed intrusion de-
tection scheme is evaluated using the UNSW-NB15 dataset.
,rough experimental comparison: among all the perfor-
mance indicators selected in this paper, the proposed
communication intrusion detection scheme in AMI is much
better than the methods based on traditional machine
learning. In comparison with the new intrusion detection
scheme, our scheme still shows good performance. By
changing the structure of the SAE and LSTM models in the

scheme and debugging the timestep value, we explore the
influence of the internal parameters of the model on the
overall scheme. To ensure the robustness of the work, we test
on the NSL-KDD dataset. It also shows superior
performance.

In future work, although the accuracy of intrusion de-
tection is improved and the FAR is reduced, the scheme we
propose has a lot of time cost in terms of the SAE deep
network structure and the calculation of the Attention
Mechanism.,erefore, it is necessary to further explore how
to reduce the computational cost of the model while en-
suring high accuracy and low FAR. In the communication
scenario of AMI, various new types of attacks emerge
endlessly. In our future work, it is crucial to choose the
structure and corresponding parameters to realize the op-
timized intrusion detection scheme and adapt to the changes
of new attacks in AMI.
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With the development of the Energy Internet of1ings (EIoT), it is of great practical significance to study the security strategy and
intelligent control system for solar thermal utilization system to optimize the operation efficiency and carry out intelligent
dynamic adjustment. For buildings integrated with solar water heating systems, computational fluid dynamics simulation was
used in analyzing the process of solar energy output. A method based on machine learning is proposed to predict energy
conversion. Besides, the simulation and analysis are carried out in combination with the possible safety problems such as the
vibration of the control system.1is paper proposed a novel platform of EIoTfor machine learning-based cybersecurity study and
implemented the platform for the temperature monitoring system. After the evaluation of the machine learning-based
cybersecurity study, the EIoT system demonstrated a high performance with the Extreme Gradient Boosting (XGBoost)
training algorithm.

1. Introduction

With the resonant coupling of multiple energy sources, the
new energy supply system under the background of the
Internet of 1ings will have the characteristics of multi-
energy complementation and synergy [1–3]. 1e traditional
thermal and electric demand response will gradually develop
into a comprehensive demand response suitable for inte-
grated energy systems.1e EIoT (Energy Internet of1ings)
has brought a better operation, monitoring, and manage-
ment mode for the new energy utilization systems. It uses
advanced sensors, control, and software applications to
connect a large number of equipment, machines, and sys-
tems at the energy production side, energy transmission
side, and energy consumption side to form the “Internet of
1ings foundation” [4]. Big data analysis, machine learning,
and prediction are the important technical support for the
EIoT to realize the life characteristics. 1erefore, in the solar
water heating system, the sensor measurement technology,
numerical simulation technology, Internet of 1ings tech-
nology, and machine learning technology can be used to

remote monitoring of the control parameters, heat gain, and
status of the solar water heating engineering system, so as to
realize the saving, comfortable, efficient and reliable water,
energy and heat consumption, which has strong practical
application value [5].

However, in the operation environment of EIoT, the
operation control of a high-proportion new energy system
highly relies on low-latency and highly reliable information
and communication technology, which brings excellent
technical challenges to the system’s network security
defense.

In the applications of IoT, in recent years, some critical
solutions have been put forward by many experts and
scholars to security issues. Xu [6] listed some security
problems and critical technologies of IoT. Mahmoud et al.
[7] provide eight frameworks for the security applications in
the IoT field, each of the framework addresses in detail the
security measures and the ability to fight against the attacks.
In each specific application scenario, faced with the security
demand of the smart home environment, Huichen Lin and
Neil Bergmann [8] proposed two critical technologies of
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auxiliary management to deal with these problems. Minoni
et al. [9] provided relevant tools and technologies to address
security vulnerabilities in e-health and assisted living ap-
plications. Baranwal et al. [10] designed a remote control and
monitoring device; it can be used for the security detection
of farmland, grain storage, and cold storage. At the same
time, ML can provide algorithm support for the designed
whole IoT system. For example, when we develop a system
that uses text data for classification, we can adopt the ML
method to process the data and set our system according to
the actual situation. 1e researchers above have given us an
idea to use ML to design a new platform for the temperature
monitoring system. 1e system is equipped with high se-
curity and privacy and can be applied to daily life.

(1) Create a new platform of EIoT for machine learning-
based cybersecurity study

(2) Propose a model stealing attack on the intelligent
energy supply system

(3) Implement the proposed intelligent energy supply
platform and model stealing attack

1e structure and content of this paper are organized as
follows: in Section 2, we review the related works on the
cyber-attacks withmachine learning for the EIoT.1emodel
stealing attack experiments are designed in the methodology
part, which is presented in Section 3. In the next section, the
performance of attacks on the medical platform was dem-
onstrated and discussed. In the last section, we summarize
the results and conclude this paper.

2. Related Work

Another algorithm in machine learning, the Random-
Forest algorithm, also is used in systems of IoT. In the face
of IoT security problems, Nawir et al. [11] directly
summarized various attacks into a well-structured clas-
sification to help researchers and developers, so that se-
curity measures can be planned appropriately in the
development of the IoT. Overall, with the extensive ap-
plication in IoT of various fields, the security of IoT will
always be a hot research direction. However, sometimes
existing solutions are insufficient to cover the security
range of IoT; machine learning (ML) technology can
provide embedded intelligence in IoT devices and net-
works to address security issues [12]. According to the
unique characteristics of IoT devices and environments,
Zeadally et al. [13] mentioned the relevant advantages of
ML algorithms. Gomes et al. [14] used this set of an al-
gorithm for indoor positioning of users in a smart home.
As a basic algorithm in machine learning, the XGBoost
algorithm is applied to a wide range of modern industries.
1e main advantage of XGBoost is its scalability, and
speed of execution is usually superior to other ML models
[15]. When dealing with classification problems, com-
pared to other models, XGBoost has better classification
accuracy [16]. In the field of IoT, sometimes XGBoost is
used as a method to detect if a system has been com-
promised [17]. In this paper, XGBoost has been applied to

solve our data classification; on this basis, our system is
also equipped with high security.

3. New Platform for Mobile and
Intelligent Medicine

3.1. EIoT System Design

3.1.1. Machine Learning Models for Monitoring Water In-
stantaneous Flow. In this article, we use RandomForest to
classify the water temperature measured from the water
tank outlet and then use XGBoost to steal the entire
network. RandomForest is a classifier containing multiple
decision trees, and its output category is determined by
the model number of the categories output by individual
trees. It was first proposed by Leo Breiman and Adele
Cutler. We can think of a decision tree as a collection of if-
then rules. Decision tree learning can be described by Pi �

Xi/M, i � 1, 2, . . .,N, in which x is the input instance
(eigenvector), M is the number of features, and i is the
class tag, i � 1, 2, . . ., N. N is the sample size [breiman] RF
constructs bagging integration on a decision tree-based
learner and further introduces random attribute selection
in the training process of the decision tree. XGBoost is a
tree integration model. Assuming that there are k trees, so
the sum of the predicted values of each of the k trees for
the sample is used as the prediction of the XGBoost model.

Given a dataset, including z samples and s features, T �

(xi, yi)  (|T| � z, xiϵR
s, yiϵR).

1e output of the tree model is

yi � ∅ xi(  � 
K

k�1
fk xi( , fkεF. (1)

1e space of CART tree is F, as follows:

F � f(x) � ωq(x)  q: R
s⟶ H,ωεRH

 , (2)

where q represents the model of the tree. Input a sample
and map the selection to the leaf node according to the
model to output the predicted score. ωq(x) represents the
set of fractions of all leaf nodes of tree Q; H is the number
of leaves in the tree q. 1erefore, it can be seen from
equation (1) that the predicted value of XGBoost is the
sum of the predicted values of each tree; namely, the sum
of the scores of the corresponding leaf nodes of each tree
(ω) i represents the score of the ith leaf node. Our goal is to
learn K tree models like this f(x). First, define a target
function:

L(ϕ) � 
i

l yi, yi(  + 
k

Ω fk( , whereΩ(f) � cT +
1
2
λω2

.

(3)

1e optimization parameter of the XGBoost model is
model F (x), rather than an additive value, so we cannot
use traditional optimization methods to optimize the
Euclidean distance. We use additive training to learn the
model.
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3.2. Model Stealing Attack to the New Platform

3.2.1. Overview of the <reat Model. As we can see in
Figure 1, the IoT temperature control system is divided into
three different layers by us. In the player, we focus on
collecting the functions that users need to implement in this
system. In this article, it is precisely the temperature
monitoring of the water tank outlet; the second layer is the n
layer, focusing on modelling the entire user requirements. In
this article, the RandomForest algorithm is mainly used to
monitor the temperature of the water tank, and after ex-
periencing our system, users will provide suggestions, and
then we make improvements to our system based on these
suggestions. 1is layer is to feed back user opinions to us so
that our network can better meet customer needs.

Dividing the IoTnetwork into three different layers is the
result of consideration from the perspective of network
security. Doing so can reduce the risk of network attacks on
the entire system. In the perceptual layer, Ian et al. [18]
proposed the concept of input, which forms input by im-
posing small but deliberate worst-case perturbations on the
examples in the dataset, so that they can output a high-
confidence wrong answer.

For the solar hot water monitoring platform, its main
purpose is to monitor and effectively dispatch the relevant
data in the solar hot water system, such as monitoring the
water level data of the water tank, and setting different water
replenishment strategies according to the change of water
level; or setting different water temperature heating strate-
gies, so that the solar hot water system with insufficient
sunlight can heat up automatically in time. 1erefore, the
system needs to effectively receive the data from the data
acquisition end and establish the corresponding database, so
as to obtain the corresponding data change curve, such as the
water temperature change curve of the water tank, so as to
facilitate the subsequent prediction of the water temperature
change and set the corresponding maintenance strategy.

3.2.2. <eoretical Description of the Model Stealing Attack.
We will introduce how to use data stolen from an existing
target network (RandomForest in this case) to build our
copycat network, in this part. 1e importance of the whole
process is to use random natural data to instruct a network
of imitators from the existing target network. Two steps have
been included: the creation of pseudo training data is used to
train the imitator network. First, use the target network as a
grey box to label random natural data to generate a pseudo
dataset. 1en, use the pseudo dataset to train the simulated
network and copy the attributes of the target network
(Figure 2).

In Figure 2, we briefly explained how to build a copycat
network. Now, we will introduce this process in detail.
Corresponding to Figure 2, the entire copycat network
training process should be divided into two parts. 1e first
is an essential training set. 1e training set used by copycat
builds and the training set used by the target network are in
the same problem [19–21]. 1e point that needs to be
emphasized here is that although they use data in the same

problem domain, their datasets are not the same, because
random sampling is generally used when collecting data. If
there is a large amount of data duplication when adopting
the copycat dataset, we can also go online and use natural
data to augment the copycat dataset, so as to avoid copycat
and the target network using the same dataset and affecting
the final result judgment error. Importing the selected
dataset into the original professional network to steal the
corresponding labels is the most critical step for the entire
copycat network. At this time, the quality of the titles stolen
will often determine whether the copycat network can fully
implement the original network.

After using the copycat dataset to steal the appropriate
labels from the target network, the next step is to use these
datasets to train the selected network. In this article, we
chose the XGBoost t as the attack model. 1e reason for the
choice is that it is the same machine learning algorithm as
RandomForest, but there are also differences: RandomForest
processes data in serial, while XGBoost processes data [22].
It is parallel processing. 1is choice of the network also
proves the feasibility of our network attack from the side.
During training, we imported the copycat dataset and its
corresponding labels generated by ourselves into the
XGBoost network and imported the same test set as the
original network to determine whether the copycat network
we created can achieve the accuracy of the average tem-
perature and abnormal temperature in the input data
classification.

Next, we will explain the assignability of adversarial
samples. Suppose that the adversary is interested in classi-
fying the wrong sample and producing a hostile sample ω∗

�→

different from the model in which the class is assigned to the
legal input ω→. In the following optimization formula, we can
achieve this:

ω∗
�→

� ω→ + θ ω→where θ ω→ � argmin
α→

g(ω→ + α→)≠g(ω→).

(4)

ω∗
�→

is the hostile sample, and g is the activation function.
However, adversarial samples are often incorrectly classified
as g′ instead of g in practice. For the convenience of dis-
cussion, the concept of transferability of adversarial samples
is formalized [23]:

Modeling according to
user requirements

Perception layer

Organizing the 
requirements of users

Network layer

Application layer

Practical application

Feedback
Is attached to

Is associated with

Figure 1: EIoT system framework based on the temperature
control system.
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ΠY g, g′(  � g′(ω→)≠g′ ω→ + θ ω→
��→

: ω→ ∈ Y  




. (5)

Set Y represents expected input distribution solved by
the models g and g′ in the task. We divide the trans-
ferability of adversarial samples into two variables to
describe the models (g, g′). 1e first is the transferability
within the technology, the transferability between dif-
ferent parameter initializations of the same technology or
training models of different datasets (for example, g and
g′ are both deep learning networks or both support vector
machines (SVM)) is defined by which. Second, for cross-
technology transferability, two technologies can be used
to train models (for example, g is a deep learning network
and g′ is SVM).

4. Experiments and Results

4.1. Implementation of the Platform

4.1.1. Discussion on Specific Temperature Control System
Usage Scenarios and the Attack. 1e solar heating system is
the most widely used solar energy utilization system. 1e
dynamic modelling, characteristic analysis, and optimal
control of solar heating systems play an essential role in
promoting intelligent applications, safety, and conve-
nience. 1e numerical calculation method of the dynamic
thermal characteristics of the solar heating system is an
effective means for the thermal dynamic modelling and
analysis of the heating pipe network. However, the time
and space complexity of the numerical calculation method
are relatively large, and it is necessary to deeply analyze
the time and space of the numerical calculation method.
Due to its excellent algorithm, machine learning can
optimize the numerical calculation performance of the
thermal dynamics of the heating system, thereby pro-
viding a basis for the rapid analysis and optimization of
the non-steady thermal process of an extensive heating
network. Moreover, when the heating network performs

frequent and wide-range temperature and flows adjust-
ments, it may cause the control system to oscillate, which
in turn causes the dynamic instability and imbalance of
the heating network, so that our temperature control
system has its place.

1e intelligent solar heating control system based on
EIoT can be seen in Figure 3. Energy supply, storage and
transfer, energy management system, and energy con-
sumption have been contained within the system. 1e
working process of the whole system can be described as
follows: after the solar energy is captured by the energy
acquisition system, the energy is converted into thermal
energy for storage by heating cold water. After the energy
monitoring system determines that the output water tem-
perature reaches the safe water temperature, the energy will
be output to the user’s home.

4.1.2. Discussion on Specific Temperature Control System
Usage Scenarios and the Attack. In this section, a solar water
heating system for buildings is studied, and its hot water
output process is simulated by computational fluid dynamics
(CFD). Considering the actual operation of the solar balcony
wall hanging system, the inlet temperature of the circulating
working medium is set as 338K, and the initial water
temperature inside the water tank is 288K. 1e temperature
contours and velocity vector diagram change with time
when the mass flow rate of the circulating working medium
is 0.022 kg/s. 1e temperature and internal velocity fields
change with time as shown in Figure 4. When the inlet cold
water penetrates a certain height in the water tank, it falls
back. 1e falling fluid sucks hot water from its adjacent hot
water area, forcing the cooler fluid to move down to the
bottom of the solar water tank gradually. At the same time,
the hot water in the water tank is discharged through the
tank outlet. However, with the increase of time, the tem-
perature difference between the cold water and the hot water
decreases.

Text data
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Figure 2:1e figure shows how to steal a model from a trained network.1e entire network can be divided into two parts; that is, copycat is
divided into two parts. First of all, we see that the part on the left is the existing network, which is what we call the target network. It uses the
data we already have for training and testing, while the network on the right is the copycat network. Its basics are that it is based on a certain
cognition of the target network, and its training set and the training set used by the original network are in the same problem domain.
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After we monitored the temperature of the water
outlet of our experimental platform, we obtained a set of
temperature records at different times under the same
water flow conditions, including 909 sets of abnormal data
and 230 sets of average data. Here, we classify the data
based on the body’s tolerance to water temperature during
bathing: 310.15 (K) ∼ 315.15 (K). All temperatures data

within the range are classified as standard data, and data
outside this temperature range are classified as abnormal
data. 1e above is our design philosophy for the tem-
perature monitoring system of the Internet of 1ings.
However, if this temperature monitoring system is
attacked by the network, the following results will be
produced: the failure of the temperature alarm system will
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Figure 3: 1e intelligent solar heating control system based on EIoT.
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Figure 4: Temperature contours (top row) and velocity streamline (bottom row) in solar water storage tank in the discharging mode. (a)
(t)� 100 s, (b) (t)� 900 s, (c) (t)� 1800 s, (d) (t)� 2700 s, and (e) (t)� 3600 s.
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threaten the personal safety of users. 1e theft of the entire
network of the temperature control system will cause
direct economic losses to the owner. And the whole
copycat network we designed is based on stealing the
whole of RandomForest prediction system to warn our
system.

4.2. Performance of the Temperature Control System. 1e
confusion matrix is generally used to evaluate the network
output. 1e following is the definition of confusion ma-
trix. Confounding matrix is a situation analysis table that
summarizes the prediction results of classification models
in machine learning. In the form of matrix, records in the
dataset are summarized according to two criteria of real
classification and classification judgment predicted by
classification models. TP (True Positive), FN (False
Negative), FP (False Positive), and TN (True Negative) are
the four elements of the confusion matrix that reflect the
performance of the model [24]. A high proportion of TP
means that the performance of the entire network is
satisfied.

In the predictive classification model, the larger the
number of TP and TN, and the smaller the number of FP
and FN, the higher the prediction accuracy (as can be
seen from Figure 5). However, the calculations in the
confusion matrix are numbers. Sometimes, in the face of
large amounts of data, it is difficult to measure the
number of models by counting. 1erefore, the confusion
matrix is an extension of the secondary and tertiary
indicators (the lowest indicator addition, subtraction,
multiplication, and division) in the basic statistical re-
sults [25].

Acc �
tp + tn

tp + fp + fn + tn
,

Rec �
tp

tp + tn
,

pre �
tp

tp + tn
,

f1 � 2∗
Pre∗Rec
Pre + Rec

.

(6)

We analyzed the confusion matrix obtained by Ran-
domForest to classify the existing temperature dataset and
found that TP and TN accounted for the highest proportion
of the total output (278 + 60� 338, the total of which is 342).
Based on this data, we can draw a conclusion: using Ran-
domForest to create a temperature control system can get a
high accuracy.

Macro average refers to averaging the recall rates of
category 1 and category 0.1e weighted average is calculated
using the proportion of the sample as the weight. It can be
seen from the above table that our model has high prediction
accuracy. As can be seen from Table 1, our model has
reached a very high accuracy.
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Figure 5: 1e confusion matrix for average temperature and abnormal temperature prediction.

Table 1: Values of different indicators based on the source model.

Object Precision Recall F1-score
Normal T 0.94 1.00 0.97
Abnormal T 1.00 0.99 0.99
Macro avg 0.97 0.99 0.98
Weighted avg 0.99 0.99 0.99
Accuracy — — 0.99
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4.3. Effectiveness of Model Stealing Attack. A RandomForest
was trained to predict the average temperature and ab-
normal temperature. Based on the understanding of tem-
perature data, we set the maximum depth of the (decision)
tree in RandomForest to 30. In some other hyperparameters,
min_samples_leaf is set to 3, min_samples_split is set to 4,
n_estimators is set to 8000, and the values of verbose and
n_jobs are both set to 1 [26].1e implementation is based on
Pytorch and uses NVIDIA GTX 1070 GPU.

1e difference between the original network and the
copycat network is fully reflected in Figure 6. Although the
precision, recall, and F1-score values obtained by the copycat
network are about 15% lower than those of the original
network, the accuracy obtained by the copycat network is
6.1% higher than that of the original network, which is
enough to prove that the copycat network can pose a threat
to the original network.

Based on the data in Table 2, we can conclude that the
model that uses machine learning to classify text data can be
stolen by different kinds of machine learning. It can be seen
from Table 1 that, without considering the average tem-
perature output, the model we used XGBoost to steal can be
able to distinguish abnormal temperature data. So in terms
of classifying abnormal temperature, the model we stole can
already achieve this function.

5. Conclusions

A solar water temperature monitoring system based on the
Internet of 1ings was established in this article. Based on

the temperature monitoring system, we propose a Ran-
domForest for normal temperature and abnormal temper-
ature classification. In order to demonstrate the attack on the
established model on the IoT platform, an XGBoost model
was built by using a small number of labeled samples to steal
the known target model. Experimental results show that the
replication model can successfully replicate the performance
of the target RandomForest, with small performance dif-
ferences. 1e success of this attack shows that intellectual
property rights such as artificial intelligence models similar
to temperature monitoring systems that have been suc-
cessfully established can be stolen. How to effectively solve
these problems has become an urgent problem in the field of
deep learning.
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Neural networks have been proved to perform well in network intrusion detection. In order to acquire better features of network
traffic, more learning layers are necessarily required. However, according to the results of the previous research, adding layers to
the neural networks might fail to improve the classification results. In fact, after the number of layers has reached a certain
threshold, performance of the model tends to degrade. In this paper, we propose a network intrusion detection model based on
residual learning. After transforming the UNSW-NB15 data set into images, deeper convolutional neural networks with residual
blocks are built to learn more critical features. Instead of the cross-entropy loss function, the modified focal loss is calculated to
address the class imbalance problem in the training set and identify minor attacks in the testing set. Batch normalization and
global average pooling are used to avoid overfitting and enhance the model. Experimental results show that the proposed model
can improve attack detection accuracy compared with existing models.

1. Introduction

With the continuing expanding network scale, network
security confronts more sophisticated threats than ever
before. Hence, network security issues are attracting in-
creasing attention. Commonly used network security sys-
tems that discover suspicious attacks involve firewalls,
intrusion detection systems (IDSs), and intrusion preven-
tion systems (IPSs) [1]. Among them, the task of IDSs is to
collect and identify abnormal behaviors in the network [2].
By analyzing captured data packets, IDSs can check legiti-
mate network behaviors, detect the attacks, and report the
attacks for further containment.

Conventional IDSs tend to get low detection rates and
high false positive rates due to their reliance on patterns of
known attacks. Researchers have applied artificial intelli-
gence (AI) algorithms in the designing part of IDSs to
provide better performances. +e performance of an IDS is
closely related to the selected classifier, while traditional
machine learning algorithms tend to perform poorly in the
scenarios when large amounts of network data packets are
included. In recent years, deep learning has achieved

outstanding results in multiple fields. +e advantage of deep
learning is that it can learn the hierarchical features from a
large amount of data to improve model efficiency [3]. +e
application of deep learning can reduce costs of IDSs and
strengthen the abilities to identify attacks.

Convolutional neural networks (CNNs) can extract deep
and critical features from the given data. It is a general
perspective that increasing the number of network layers can
help learn better features; hence, the performance of model
is improved. However, simply stacking more layers may fail
these tasks. Furthermore, after the number of layers has
reached a certain threshold, it may even lead to performance
degradation. Residual learning is proposed to address the
issue above. Residual is the error between the actual value
and the estimated value, and residual learning is originally
derived from the residual representation in image recog-
nition [4]. Residual learning is realized by establishing a
direct connection between the input and the output. CNNs
based on residual learning have achieved outstanding results
in image recognition [5]. +ey are easier to train and op-
timize than common CNNs. In network intrusion detection,
it is also vital to build deeper networks to improve the
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detection capabilities of IDSs. Because residual learning
allows CNNs to be deeper, this paper introduced the concept
of residual learning into IDSs.

UNSW-NB15, an imbalanced network intrusion de-
tection data set, is selected to evaluate the model. In real-
time network intrusion detection, the class imbalance
problem seriously affects the classification results [6]. Pre-
diction models that predict only the dominant classes fail to
identify the minor classes. Resampling techniques are
common solutions to class imbalance problems. However,
resampling techniques have their disadvantages. Over-
sampling might disrupt the original data, and it takes more
time to train the model when using oversampling tech-
niques. Undersampling might cause the loss of vital infor-
mation, affecting the classification capabilities. Focal loss
was originally proposed to balance the loss between samples.
We apply the modified focal loss function in the proposed
model to enhance the abilities to detect minor classes
without disrupting the training data.

+emajor contributions of the paper can be summarized
as follows:

(1) Propose a deep learning-based intrusion detection
model with a higher accuracy compared with other
existing models

(2) Introduce residual learning into the model to address
the network degradation problem, allowing the
model to learn deeper features

(3) Use a modified focal loss function to deal with the
class imbalance problem in the training set

+is paper is organized as follows:

(1) +e first chapter gives a brief overview of network
intrusion detection and the motivation of the pro-
posed methodology

(2) +e second chapter introduces the related work
(3) +e third chapter provides the methodology and

implementation process in detail
(4) +e fourth chapter carries out the experiments and

analyzes the testing results
(5) +e final chapter concludes the paper

2. Related Work

Data preprocessing is a key step in network intrusion
detection. It can extract key features that have great in-
fluences on the classification results, effectively reducing
the size of data and improving the efficiency of given
classifiers. Zhang et al. [7] proposed an effective network
traffic classification method, which used principal com-
ponent analysis (PCA) to remove the irrelevant features
and applied Gaussian Naive Bayes as the classifier. Kasongo
et al. [8] applied a filter-based feature reduction technique
on the UNSW-NB15 data set using the XGBoost algorithm
and then implemented several algorithms to classify the
data. Results demonstrated that the feature selection
method increased the test accuracy. Sun et al. [9] proposed
an improved Naive Bayesian learning method which took

the influence of different features into account. It achieved a
higher accuracy than traditional machine learning algo-
rithms. It can be seen that the performance of traditional
classifiers is excessively dependent on the extracted fea-
tures. However, traditional machine learning algorithms
are shallow learning algorithms which require feature
engineering. To build the fittest model, optimization of
parameters is also needed. +e size of the data set also
affects the efficiency of the models. +ese difficulties slow
down the training process of traditional machine learning
algorithms and affect the overall network security.

In recent years, deep learning models have been grad-
ually applied to intrusion detection to enhance the classi-
fication classifiers due to their high efficiency and easy
implementation. Among deep learning models, CNNs have
made great success in many fields [10–12], and researchers
have applied CNNs in intrusion detection. Qian et al. [13]
analyzed the network traffic with a CNN. In the training
phase, rectified linear unit (ReLU) served as the activation
function and adaptive moment estimation (Adam) algo-
rithm was used to optimize the model. Lai et al. [14] also
used a CNN as the intrusion detection model, achieving a
higher accuracy rate than other deep learning models.

In the aspect of residual learning, the concept of Residual
Network (ResNet) was proposed by He et al. [15] from
Microsoft Research Institute to deal with the performance
degradation problem as the number of layers grows. ResNets
have outperformed common CNNs in image classification
and object recognition [16–18]. Because of residual learning,
the depth of ResNets is deeper than that of the traditional
CNNs. In network intrusion detection, a deeper CNN can
extract more critical features and get better classification
results. +erefore, CNNs based on residual learning have
been attempted in network intrusion detection. Wu et al.
[19] proposed a deep neural network built upon residual
blocks to discover malicious network behaviors, achieving a
low false alarm rate. Chouhan et al. [20] proposed a mul-
tipath residual learning-based CNN architecture that was
being evaluated on NSL-KDD data set, showing significant
improvements over the previous research.

However, while residual learning can improve the overall
performance of CNNs, in the practical aspect, it does not
improve models’ abilities to detect minor attacks due to lack
of original training data. Classes in most modern network
intrusion detection data sets are imbalanced. +erefore,
most IDSs fail to provide better performances for attacks
with fewer samples. Focal loss was proposed by He et al. [21]
in 2017. Focal loss takes the different level of training dif-
ficulty of samples into consideration and focuses more on
the difficult-to-train samples; therefore, it has been applied
in many fields, such as object detection, imbalanced data
classification, and so on [22–24]. To identify classes with
fewer training samples more accurately, a modified focal loss
function is used to replace cross-entropy loss function in the
proposed model.

Choosing a suitable data set is vital for the building of
IDSs. In recent years, most commonly used public data sets
in network intrusion detection are KDD99 [25], NSL-KDD
[26], and UNSW-NB15 [27]. In spite of being the most
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popular data sets in network intrusion detection, KDD99
and NSL-KDD are out-of-date due to old and redundant
data. Evaluating IDSs using KDD99 and NSL-KDD does not
reflect satisfactory results due to their shortcomings.
According to the previous research and statistical analysis,
compared with the other two data sets, UNSW-NB15 has
more complex feature sets, contains more modern normal
traffic scenarios, covers richer types of attack traffic, and
contains fewer incomplete samples. Also, most new
cyberattacks are variants of these known attacks in the
UNSW-NB15 data set. +erefore, UNSW-NB15 can more
accurately reflect the characteristics of modern network
traffic data and is more suitable for evaluating IDSs.
+erefore, we choose UNSW-NB15 data set as the evaluation
set for the proposed model.

In summary, with the powerful capabilities of automatic
feature extraction, deep learning has been applied to net-
work intrusion detection. However, how to build deeper
networks without triggering the performance degradation
problem and address the class imbalance problem in the
training set are two major challenges. In this paper, a re-
sidual learning-based CNN is constructed to learn deeper
features of network traffic, and the modified focal loss
function is introduced into the proposed model to detect
minor attacks.

3. Methodology

+e proposed methodology consists of three parts: data
preprocessing, model constructing, and model evaluation.
First, network flows are converted into images. +en, CNNs
with residual learning are constructed. Finally, trained
models are tested and evaluated. +e main structure is
shown in Figure 1.

3.1. Data Set. As stated before, UNSW-NB15 is a network
intrusion detection data set, which is processed and built
through collecting different types of network connection
data. +is data set includes multiple types of contemporary
attacks. Each flow of the data set contains 47 features, and
the data set divides the network behaviours into nine cat-
egories of attacks plus the category of normal behaviours.
+ese attacks can also be divided into 177 categories
according to the environments that the specific attack de-
pends on.

In this paper, part of the data set known as the
UNSW-NB15 training set and UNSW-NB15 testing set are
selected as the training data and testing data. +ey are data
sets which are used for intrusion detection after redundant
flows and features are processed. +e distribution is shown
in Table 1.

3.2. Data Preprocessing. Features in UNSW-NB15 contain
numeric features and symbolic features; therefore, symbolic
features should be digitized first. +en, processed features
are normalized to obtain a standardized data set and con-
verted into matrices.

One-hot encoding is used to map symbolic features into
numerical features, and labels are mapped into digits using
label encoding. +e specific implementations are as follows:

(1) One-Hot Encoding. One-hot encoding mainly uses a
state register of size X to encode a character, and each
character will have an independent register bit

(2) Label Encoding. Labels in the UNSW-NB15 data set
are divided into 10 categories. Coding rules are
shown in Table 1

+is paper uses Min-Max normalization. +e main
function of Min-Max normalization is to unify the feature
values in the interval of [0,1]:

x
∗

�
x − xmin

xmax − xmin
, (1)

where x∗ is the normalized eigenvalue, x is the original
eigenvalue, xmin is the minimum eigenvalue, and xmax is the
maximum eigenvalue. After numerical normalization, each
flow of the new set contains 196 features, so the data are

Dataset

Feature
preprocessing

Train_set Test_set

Converted to
images

Model
training Classification

Model
evaluation

(1) Data 
preprocessing

(2) Model training 
and classification

Figure 1: Model structure.

Table 1: Distribution of UNSW-NB15 training set and testing.

Type Train_set Test_set Label
Analysis 2000 677 0
Backdoors 1746 583 1
DoS 12264 4089 2
Exploits 33393 11132 3
Fuzzers 18185 6062 4
Generic 40000 18871 5
Normal 56000 37000 6
Recon 10492 3496 7
Shellcode 1133 378 8
Worms 130 44 9
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converted into 14 ∗ 14 matrices; then, the matrices are
changed into black and white images.

3.3. Network Construction. Figure 2 shows the overall
structure and the parameters of the CNN model. +e
proposed model extracts the features of input data by the
convolution layers and pooling layers. Feature maps are then
input into a global average pooling layer. Finally, the model
classifies the sample data with a softmax layer.

3.3.1. Convolution and Pooling. Convolution layers are the
core parts of CNN models. Convolution layers in proposed
model extracted spatial features of given data and produced
a feature map as the output. ReLU is often used as the
activation function:

f(x) � max(0, x), (2)

and the function of pooling layers is to reduce the size of
feature maps.

3.3.2. Batch Normalization. In the training part of CNNs,
with the change of the parameters of the previous layer, the
input distribution of the next layer will change corre-
spondingly, making it more difficult to train deeper neural
networks. Batch normalization, in the training process of
CNNs, makes the input of each layer maintain the same
distribution and provides with the solution to the difficulty
of network training, thus effectively improving the training
speed of networks and avoiding overfitting. Input data are all
divided into batches, for instance, parameter “batch_size” is
set to 128; therefore, 128 pieces of data are input as a batch at
a time. Batch normalization layers are to normalize each
batch so that the distribution of data remains unchanged.
Suppose we have a batch of inputs:

x � x1, x2, . . . , xn . (3)

+e output of batch normalization is computed by

yi � λ∗ xi
′ + φ, (4)

where λ and φ are learned parameters and xi
′ is calculated

through

μβ �
1
m



m

i�1
xi;

σ2β �
1
m



m

i�1
xi − μβ 

2
;

xi
′ �

xi − μβ
�����
σ2β + ε

 .

(5)

In this paper, batch normalization layers are placed after
convolution layers and before the activation functions.

3.3.3. Residual Learning. Compared with common CNNs
such as the LeNet-5 [28] and the AlexNet [29], ResNets
introduced residual learning into the constructing of CNNs.
+e depth of a CNN has a great influence on the final
classification results, so deeper networks are often con-
structed. However, as the network depth increases, the
phenomenon of gradient explosion might occur, and the
performance of the network will degrade. According to the
previous experimental results, simply adding convolution
layers and pooling layers to the network does not improve
the accuracy of the network but leads to the deterioration of
network performance. In this paper, residual learning is used
to address the issue above. Residual refers to the residual
difference between the local input and output:

f(x) � g(x) − x. (6)

In contrast to identity mapping, the learning goal of
residual learning is 0, that is, to reduce the difference be-
tween the input and the output, allowing the original input
to be directly connected to one certain network layer, so that
the network can learn the residual. Residual learning is
realized by a fast shortcut connection between the input and
output of a block. It not only avoids adding additional
parameters and computations to the network, but also ef-
fectively trains the parameters in the network and guarantees
the performance while the network can learn deeper fea-
tures. Two blocks used in this paper are shown in Figure 3. In
the construction of plain models, the normal block exhibited
in (a) is used, while the residual block shown in (b) is used to
construct residual networks.

GAP

Softmax

Output

Layer Parameters

Convolution 3 ∗ 3 ∗ 64, stride 1

Maxpooling 3 ∗ 3, stride 2

Residual block_1

Conv 1 ∗ 1 ∗ 64, stride 1
Conv 3 ∗ 3 ∗ 64, stride 1

Conv 1 ∗ 1 ∗ 256, stride 1

Residual block_2
Conv 1 ∗ 1 ∗ 128, stride 1
Conv 3 ∗ 3 ∗ 128, stride 1
Conv 1 ∗ 1 ∗ 512, stride 1

Residual block_3
Conv 1 ∗ 1 ∗ 256, stride 1
Conv 3 ∗ 3 ∗ 256, stride 1

Conv 1 ∗ 1 ∗ 1024, stride 1

Figure 2: CNN model.
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3.3.4. Global Average Pooling. At the end of CNN models,
flatten layers are often adopted to flatten the data processed
by the previous layers into a one-dimensional vector. +e
output size is gradually reduced through full connection
layers, and the final output is obtained through an activation
function. Since every node in flatten layers and full con-
nection layers is connected to each other, too many pa-
rameters may lead to overfitting. A global average pooling
layer is an average pooling layer without filter size. It av-
erages the entire feature map. Using a global average pooling
layer can reduce the count of calculating parameters and
accordingly reduce the possibility of overfitting. In this
paper, a global average pooling layer is used to replace the
flatten layer. +e principle of global average pooling is
shown in Figure 4.

3.3.5. Softmax and Loss Function. Finally, the probability
distribution of each label is calculated through the softmax
layer:

Sj �
e

aj


N
k�1 e

ak
, (7)

where N denotes the total count of classes.aj denotes the jth
input of softmax layer. Cross-entropy loss function is de-
fined as

L � − 
N

k�1
yklog Sk, (8)

where yk denotes the probability that tested sample belongs
to class k.

With the obvious class imbalance problem in the
training set, preventing loss function from optimising one
category while suppressing other categories is important.
To increase the classification accuracy for minor classes, we
need to make the model pay more attention to them during
training. Resampling is one of the most common methods
to deal with imbalanced data. Among resampling methods,
undersampling may cause the loss of vital information
while oversampling may add new information to disrupt
the data and greatly increase training time. Compared with
cross-entropy loss function, focal loss aims to solve the
class imbalance problem so that if the number of samples
that are easy to train is large, contribution of certain
samples to the total loss is small. In other words, focal loss
function focuses on minor samples. In our multilabel
classification, focal loss is defined as

FLloss � −at 1 − pt( 
clog pt( , (9)

where (1 − pt)
c is a modulating factor that reduces loss

contribution from easy samples.pt was calculated through

pt �
p, y � 1

1 − p, otherwise,
 (10)

where p ∈ [0, 1] represents the category prediction proba-
bility and y is the label value. As pt⟶ 1, (1 − pt)

c goes to 0
and the weights of samples that are easy to train to the loss
are reduced. And at is a weighting factor that can be used to
scale the minor classes separately. In this paper, we intro-
duce the multilabel focal loss where c was set to 2 and at was
calculated through

at � 1 −
numt

total_cnt
, (11)

where numt denotes the number of samples belonging to
class t and total cnt denotes the total number of samples in
the training data.

4. Experiments

4.1. Experimental Environments. Experimental environ-
ments of this paper are shown in Table 2.

Input

Conv

BN

Conv

BN

Conv

BN

Output

ReLU

ReLU

ReLU

(a)

Input

Conv

BN

Conv

BN

Conv

BN

Output

ReLU

ReLU

ReLU

Conv

BN

(b)

Figure 3: Normal block and residual block. (a) Normal block. (b)
Residual block.

Feature maps Output nodes

Averaging

Figure 4: Global average pooling.
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4.2. Evaluation Metrics. Accuracy, precision, recall, and
F1-measure are adopted as evaluation metrics.

(1) Accuracy (Acc): the ratio of the number of correctly
classified samples to the total number of samples
tested.

(2) Precision (P): the ratio of correctly classified positive
samples to the total number of positive samples.

(3) Recall (R): the ratio of accurately identified positive
samples to the total number of positive samples in
the testing set.

(4) F1-measure (F1): the weighted average of precision
and recall.

accuracy �
TP + TN

TP + TN + FP + FN
;

precision �
TP

TP + FP
;

recall �
TP

TP + FN
;

F1 �
2∗ precision∗ recall
precision + recall

.

(12)

True Positive (TP) denotes the number of positive
samples correctly classified as positive; True Negative (TN)
denotes the number of negative samples correctly classified
as negative; False Positive (FP) denotes the number of
negative samples misclassified as positive; and False Nega-
tive (FN) denotes the number of positive samples mis-
classified as negative. +e confusion matrix is shown in
Table 3.

4.3. Experimental Performance Evaluation. In the training
phase, 6 CNN models are constructed, including 3 plain
models and 3 residual models. Model Pn (Rn) consists of n
normal blocks (residual blocks) shown in Section 3.3.3. Each
model is trained by the processed training set for 100 epochs.
+e learning rate is set to 0.01. And after calculating the loss,
an optimizer is needed to update the network weights. Adam
is selected as the optimizer. Performances of 6 models are
evaluated by calculating the model accuracy and the
weighted average of precision, recall, and F1-measure. We
choose weighted average to evaluate the overall perfor-
mance, because compared with other average methods like
the micro average and the macro average, the weighted
average method takes the number of samples belonging to

each class into consideration, so its results are more con-
vincing to reflect the performance of the model. +e
weighted average is defined as

WM � 
k

i�1
nkMk, (13)

where k denotes the total amount of classes, nk denotes the
number of testing samples in class k, and Mk is the testing
result of metric M on class k.

We record the training loss of the above 6 models every
20 epochs to examine the effects of residual learning on
CNNs. It can be seen from Figure 5, by utilizing residual
learning in the blocks, training loss is greatly reduced. By
adding residual blocks in the CNN, we achieve lower
training loss, indicating that residual learning can address
the network degradation problem. Also, as the figure
demonstrates, the training loss at the very beginning is quite
large, but as the training process progresses, the loss value
continues to decrease. When the training epoch reaches 20,
the training loss tends to decrease at a slower rate.

According to the comparison results from Table 4, the
overall performance of CNNs has been significantly im-
proved with residual blocks added into the plain models,
indicating that we can build deeper CNNs with residual
learning. Results can also demonstrate that with the in-
creasing number of network layers, residual networks can
achieve better performances than shallow residual networks
on the whole.+emodel with 3 residual blocks (R3) achieves
the highest overall classification accuracy of 88.695%. R3
(RLF-CNN) will be further compared with the state-of-the-
art classification algorithms.

In order to evaluate the abilities of proposed method to
detect attacks like Shellcode andWorm in network intrusion
detection, we conduct several experiments and compared
the recall value of each class with Multilayer Perceptron
(MLP) and Long Short-Term Memory (LSTM), LeNet-5,
AlexNet, and CNN with simple cross-entropy loss function
(RLC-CNN). Support Vector Machine (SVM) and Random
Forest (RF) are commonly used machine learning algo-
rithms in network intrusion detection [30, 31]. We select
SVM and RF to compare their classification results with
those of deep learning algorithms. +e number of training
epochs of deep learning models was also set to 100. Table 5
and Figure 6 demonstrate the recall values of all models on
each class. Figure 6 also shows the overall accuracy of each
model. It can be seen from Table 5 that the performance of
deep neural networks is significantly better than the classic
machine learning algorithms. Classic machine learning al-
gorithms need manually designed features of network traffic
before the training phase, while deep learning algorithms
automatically extract features.

Table 2: Experimental environment.

Environment Value
OS Windows
CPU i7-7700 HQ
Memory DDR4 8GB
Language Python
SDE Keras
Tool Anaconda

Table 3: Confusion matrix.

Actual class
Predicted class

Positive Negative
Positive TP FN
Negative FP TN
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Among deep learning algorithms, we are able to build
deeper networks to learn more critical features of network
traffic due to the residual blocks. Table 5 and Figure 6
demonstrate that our model achieves better results than
other deep learning algorithms. With residual learning,
CNNs can provide better performances in network intrusion
detection.

In terms of minor classes, all the other models perform
poorly due to the class imbalance problems in the training
set. Our model utilizes focal loss to address the issue above.
Although in some dominant classes, RLF-CNN’s perfor-
mance slightly weakens due to their reduced weights in the
loss function, RLF-CNN outperforms other classifiers in the

classification of minor classes with higher recall values,
indicating that focal loss is more suitable in classifying
imbalanced data sets and enhancing the detecting
capabilities.

To prove our model’s ability to detect normal flows and
attacks, we compare it with other algorithms using metrics
including True Positive and True Negative. +e testing re-
sults are shown in Table 6.

Among these models, RLC-CCNN is the improved
version of RLC-CNN possessing the same class weights as
the ones used in the focal loss of RLF-CNN. SMOTE-RF
[32] is an algorithm of Random Forest combined with
SMOTE. Pelican [19] and S-ResNet [1] are improved

Table 4: Classification results of 6 models.

Model
Testing metrics

Acc PW RW F1W
P1 0.849 0.861 0.843 0.825
P2 0.869 0.852 0.873 0.859
P3 0.864 0.853 0.868 0.844
R1 0.872 0.864 0.875 0.851
R2 0.881 0.869 0.884 0.865
R3 0.887 0.875 0.893 0.879
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Figure 5: Training loss.

Table 5: Comparison of results of recall with other classifiers.

Model
Testing metric R

Analysis Backdoors DoS Exploits Fuzzers Generic Normal Recon Shellcode Worms
RF 0 0 0.012 0.839 0.741 0.630 0.999 0.754 0.111 0
SVM 0.062 0.033 0.183 0.669 0.730 0.763 0.997 0.645 0.206 0.068
MLP 0.007 0.039 0.076 0.825 0.679 0.891 0.999 0.661 0.508 0.227
LSTM 0 0 0.008 0.853 0.793 0.747 0.998 0.683 0 0.045
LeNet-5 0 0 0 0.852 0.689 0.901 0.996 0.787 0.553 0
AlexNet 0 0.002 0.057 0.833 0.725 0.915 0.999 0.711 0.352 0.114
RLC-CNN 0 0.026 0.077 0.875 0.711 0.926 0.998 0.805 0.370 0
RLF-CNN 0.435 0.482 0.311 0.860 0.732 0.918 0.993 0.797 0.712 0.818
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residual networks which have faster convergence velocity
and better testing results compared to other deep learning
algorithms. As shown in Table 6, all the models above can
identify over 99.3% of all 37000 normal samples correctly.
But compared with other contemporary algorithms for
network intrusion detection, RLF-CNN can identify more
attacks correctly, given that most of the attacks in the data
set are minor samples, showing higher attack detection
rates.

Compared with SMOTE-RF, our model detects more
attacks while it avoids generating new data. SMOTE-RF
generates over 300000 training samples, consuming a lot of
time and memory. Also, tradition machine learning algo-
rithms lack the abilities to acquire data features automati-
cally; therefore, with the absence of feature engineering
techniques, SMOTE-RF is inferior to others in detecting
attacks. Compared with other residual networks, our model
got better results in the detection of attacks. It can also be
seen that our model outperforms RLC-CCNN. Focal loss
enables the model to focus on samples that are harder to
learn, and testing results indicate that the focal loss can learn
complex samples more efficiently and is superior to class
weights in the training phase.

5. Conclusions

In this paper, a network intrusion detection method based
on residual learning and focal loss has been proposed.
Experimental results show that models with residual
learning are easier to train, achieving lower loss values on the
training data and higher accuracy rates on the testing data.
Compared with other deep learning algorithms, RLF-CNN
has achieved better performance in terms of several metrics
due to residual learning. And our model uses a modified
focal loss function to deal with the class imbalance problem
existing in the training data. Also, the proposedmodel shows
better results than a CNN with the same class weights.
Despite outstanding results, this study has its potential
limitations. Although our model has outperformed other
deep learning algorithms in the detection of minor attacks
with the focal loss, its performance to detect some dominant
classes has weakened due to reduced weights.+erefore, how
to improve the model’s performance on minor classes
without affecting its abilities to detect dominant classes is an
important issue that needs to be addressed in the future.
Also, UNSW-NB15 data set only contains a few types of
attacks; due to the low tolerance for errors in IDSs, we will
combine other data sets to cover various types of attacks in
the future. Last but not least, due to limited computing
resources, deeper neural networks with more residual blocks
and normal blocks cannot be tested. So, with more powerful
resources in the future, we will continue to perform more
experiments and maybe get better results when it comes to
detecting network attacks.
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Advances in machine learning (ML) in recent years have enabled a dizzying array of applications such as data analytics, au-
tonomous systems, and security diagnostics. As an important part of the Internet of .ings (IoT), wireless sensor networks
(WSNs) have been widely used in military, transportation, medical, and household fields. However, in the applications of wireless
sensor networks, the adversary can infer the location of a source node and an event by backtracking attacks and traffic analysis..e
location privacy leakage of a source node has become one of the most urgent problems to be solved in wireless sensor networks. To
solve the problem of source location privacy leakage, in this paper, we first propose a proxy source node selection mechanism by
constructing the candidate region. Secondly, based on the residual energy of the node, we propose a shortest routing algorithm to
achieve better forwarding efficiency. Finally, by combining the proposed proxy source node selection mechanism with the
proposed shortest routing algorithm based on the residual energy, we further propose a new, anonymous communication scheme.
Meanwhile, the performance analysis indicates that the anonymous communication scheme can effectively protect the location
privacy of the source nodes and reduce the network overhead.

1. Introduction

.e coming of age of the science of machine learning (ML)
coupled with advances in computational and storage ca-
pacities have transformed the technology landscape. For
example, within the security domain, detection and moni-
toring systems now consume massive amounts of data and
extract actionable information. ML is now pervasive—new
systems and models are being deployed in every domain
imaginable [1]. Internet of .ings is based on the Internet,
using RFID, wireless data communication, and other
technologies to construct a network covering possible nodes
in the world. In the IoT, objects can “communicate” with
each other without human intervention. IoT devices are
committed to maximizing their utility within a limited ca-
pacity and maintaining the security of the IoT system [2].
Wireless sensor networks are an important part of the In-
ternet of .ings, and it is a distributed sensor network.
Sensor nodes are stationary or mobile, and they constitute a

wireless sensor network in a self-organizing and multihop
manner. As a link between the physical world and the virtual
world, the WSNs have become one of the most promising
technologies. .ey have the ability to monitor object exits in
the network, and realize data collection, processing, and
transmission. At present, the WSNs have been widely used
in military, transportation, medical, household, and in-
dustrial fields. However, due to the large-scale deployment
of wireless sensor networks, security and privacy risks be-
come critical. Currently, in the context of the Internet of
.ings, the WSNs still face security problems. For instance,
adversaries can infer the location information of the source
node through backtracking attacks, and then obtain the
location information of an event, which causes the leakage of
sensitive messages.

In the IoT, many existing security schemes can protect
message content and contextual information using the
traditional cryptography theory, but they cannot solve the
problem of the source node location privacy protection.
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Adversaries can obtain sensitive messages through traffic
analysis [3], hop-by-hop tracking, backtracking attacks, and
other methods. Moreover, many schemes fail to take into
account the finiteness of the node resources, which result in
a large amount of resource consumptions, unsuitable for the
WSNs with limited energy. In addition, many schemes
cannot resist traffic analysis attacks. A large amount of traffic
will be generated near the source nodes due to data packets
being transmitted between nodes. .erefore, when an ad-
versary analyzes the traffic in the network to find the hot
spots in the network, it will obtain the correct location of the
source node and attack it.

In the random routing algorithm, after purely random h
hops, the probability that the proxy source node is no more
than h/5 hops away from the real source node is as follows
[4]:

P � 1 − e
− (h/25)

. (1)

When h is large enough, the value of P approaches 1. In
other words, purely random routing does not guarantee that
the selected proxy source node is far enough away from the
real source node. However, if the selected proxy source node
is very close to the real source node, the position of the real
source node cannot be effectively hidden. .erefore, the
proxy source node that we select is required to be far enough
away from the real source node.

In this paper, we propose an efficient anonymous com-
munication scheme to protect the privacy of the source node
location, which not only protects the source location privacy in
wireless sensor networks but also guarantees the forwarding
efficiency of anonymous messages through the shortest path
routing algorithm, and reduces the network overhead.

Specifically, the main contributions of this paper are as
follows:

(1) We propose the mechanism for selecting proxy
source nodes based on the candidate region. .is
proposal selects the nodes that meet the upper and
the lower limits of the hop count to construct the
candidate region around the source node. It also
selects the proxy source node to replace the real
source node in the candidate region to forward the
messages in order to realize the location privacy
protection of the real source node.

(2) We propose the shortest path routing algorithm
based on the residual energy. When forwarding a
message from the proxy source node to the sink, each
node selects the next hop according to the residual
energy of its neighbor nodes and the minimum
number of hops from the sink to itself. We propose
the shortest path routing algorithm based on the
residual energy, which improves the efficiency of
anonymous message forwarding.

.e rest of the paper is organized as follows. In Section 2,
we introduce related work. In Section 3, we first design the
system model of the anonymous communication system,
and then we propose an anonymous communication scheme
based on the proxy source node and the shortest path

routing. In Section 4, the results and discussion of the
proposed scheme is given. Finally, we conclude this paper in
Section 5.

2. Related Works

In recent years, privacy issues have been a hot issue in
machine learning. To avoid privacy issues caused by massive
data collection, Mohassel et al. proposed new and efficient
protocols for privacy preserving machine learning for linear
regression [5], logistic regression, and neural network
training using the stochastic gradient descent method. In
order to solve the risk of large-scale collection of sensitive
data, Bonawitz et al. designed a novel, communication-ef-
ficient, failure-robust protocol for the secure aggregation of
high-dimensional data [6]..e protocol has good security in
an honest but curious and active adversary environment. At
the same time, even if a randomly selected subset of users
exits at any time, the security is maintained.

Blockchain has been widely discussed and used in the
IoT [7, 8], in order to be able to balance between fairness and
incentive compatibility. Wang et al. tailored a new bonus
reward function by adding random salts to the geometric
reward function [9]. Li et al. highlighted the combination of
game theory and blockchain [10], including rational smart
contracts, game theoretic attacks, and rational mining
strategies. In the IoT, privacy issues are also a hot issue of
research. .e service evaluation model is an important part
of the service-oriented Internet of .ings (IoT) architecture,
but it is vulnerable to various attacks. Li et al. put forth a new
service evaluation model named Tesia allowing specific users
to submit the comments as a group in the IoTnetworks [11]
to solve the problem. To enhance the privacy of the source
location in wireless sensor networks, Zhao et al. conducted a
comprehensive investigation on the theory and practice of
the SMPC protocol [12], explaining the security require-
ments and the basic construction technology of the SMPC. It
also introduces the research progress of the general SMPC
protocol construction technology and its application in the
IoT. Wang et al. proposed a trace-cost-based source location
privacy protection scheme in wireless sensor networks for a
smart city (TCSLP) [13], by constructing a phantom area,
and combining shortest path routing and random routing to
send packets, whereby the security time of the smart city in
the wireless city is extended and the SLP is enhanced. Zhu
proposed a method of regional division based on node lo-
cation information [14], and by using this method, he selects
the hop distance between the location nodes. .e distance
accuracy of the data nodes in the vicinity selected during
information transmission is improved, and the location
privacy of the source node is better protected. Han et al.
proposed a dynamic ring-based routing (DRBR) scheme
[15], which solved the balance issues between security and
energy consumption and provided efficient source location
privacy. Muruganathan et al. proposed a centralized energy-
efficient routing protocol for the WSNs (BCDCP) [16],
which can evenly distribute energy consumption among all
the sensor nodes to improve network life and save energy on
average. Mutalemwa and Shin proposed a routing scheme
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with stronger source location privacy than the traditional
routing scheme [17], providing a highly random routing
path between the source and the sink nodes. Randomly send
data packets to the sink node through tactically positioned
proxy nodes, and implement the stronger source location
privacy. In order to protect the privacy of the event and
observe the privacy of the source node reporting the event,
Chakraborty and Verma proposed a differential privacy
framework [18]. By reporting the accumulation of the real
and the virtual traffic of the same event, they distinguished
the real and virtual events and provided differential privacy
protection for nodes in the network.

Wang et al. proposed a data domain partitioning model
[19], which is more accurate to choose the grid size. .ey
proposed a uniform grid release method based on this model,
and further improved the query accuracy. To solve the problem
of privacy leakage caused by data analysis and mining, Spachos
and Toumpakaris proposed a source-location privacy scheme
that employs randomly selected intermediate nodes based on
inclination angles [20], and analyzed the introduced angle-
based dynamic routing scheme. However, as this scheme is for
the data transmission of the included angle region, it could not
adapt this angle for selecting an optimal routing. Furthermore,
Liu and Xu proposed a new scheme to dynamically change the
included angle in the ADRS—dynamic routing scheme
(VADRS) based on the includedAngle [21]..e scheme further
improves the security performance of the ADRS by selecting the
optimal Angle for data transmission at each hop. Aiming at the
low security cycle of the existing source location privacy pro-
tection algorithm, Bai et al. proposed a source location privacy
protection algorithm based on the expected phantom source
node [22]. An ellipse is established through the coordinates of
the source and the sink nodes, and a node is randomly selected
on the ellipse as the expected phantom source node..e source
location privacy protection is realized based on the phantom
source node. Li et al. proposed a new routing strategy [23]. .e
routing strategy is divided into three stages to route data packets
to the base station: directional random route, H-hop route, and
the shortest path route in the ring area. .e source location
privacy protection is realized when information is sent to the
base station in the WSNs.

Lin proposed schemes such as the ant colony algorithm to
protect the location information of the source nodes and the
multisource and the multipath protection of the source node
location, etc. [24], to achieve the protection of node location
privacy. To avoid the leakage of user personal information from
the IoTdevices during data processing and transmission, Li et al.
proposed a certificateless encryption scheme to implement a
novel anonymous communication protocol [25]. In the pro-
tocol, an anonymous communication link establishment
method and an anonymous communication packet encapsu-
lation format are proposed. It improves the privacy, security, and
efficiency of CPSS anonymous communication. Sharma and
Ghosh proposed new technology to prevent active and passive
attacks in the mobile base station environment [26]. By
deploying mobile sinks in the network, data were collected from
sensor nodes and sent to the fixed base station, so as to guarantee
the privacy of data in the mobile sink. Tan et al. proposed two
effective source node location privacy protection policies [27]:

the enhanced directional random routing protectionmechanism
(EDROW) and the multilayer ring proxy filtering mode routing
protection mechanism (MRPFS). Aiming at the hop-by-hop
reverse attackers with local traffic analysis behavior, Zhao et al.
proposed the source location privacy protection routing pro-
tocol RAPFPR [28] based on the random angle and the
probability forwarding. .is protocol produces phantom nodes
and enables them to be evenly distributed around the real source
nodes and adopts the probabilistic forwarding routing mech-
anism, thus greatly reducing the generation of the overlapping
paths. Sheu and Jiang proposed an anonymous path routing
protocol (APR) for the wireless sensor networks [29]. .is
protocol encrypts data based on pair-wise keys, realizes the
anonymous message transmission between adjacent nodes and
the anonymous information transmission between the source
node and the target node in themulti-hop communication path,
and protects the data communication in the WSNs. Li and Ren
proposed a source-location privacy scheme [30]. In this scheme,
an anonymous path is constructed by randomly selecting in-
termediate nodes far away from the source node to realize the
transmission of anonymous messages to the sink node. .is
solution provides satisfactory privacy of the local source location.

In order to better improve the privacy of source locations
in the Internet of .ings, we propose an anonymous
communication scheme based on the proxy source node and
the shortest path routing in this paper. .is scheme can
prevent the adversary from obtaining the location of the
source node and event by means of backtracking attacks and
traffic analysis. At the same time, the shortest path routing
algorithm in this paper takes into account the residual
energy of each node, ensuring the rationality of the energy
overhead of the whole network.

3. An Anonymous Communication Scheme
Based on the Proxy Source Node and the
Shortest Path Routing

In order to realize the privacy protection of source locations
in the IoT, we propose an anonymous communication
scheme to protect the privacy of the source node location. In
this anonymous communication scheme, the privacy pro-
tection of the source node location is achieved by setting the
candidate region to select the proxy source node; the shortest
routing algorithm based on the residual energy is used to
achieve efficient anonymous message forwarding.

3.1. System Model

3.1.1. Network Model. First, we make the following as-
sumptions about the network model:

① .e wireless sensor network is composed of sensor
nodes that are uniformly and randomly deployed,
which cannot be moved at will after the nodes have
been deployed. Any two nodes can communicate
through multihop [31].
②.e appearance of the object is randomly distributed
throughout the network, so the probability of each
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sensor detecting the object information is equal. .e
node that detects the object, i.e., the source node,
periodically generates data packets and sends them to
the base station. .ere is only one base station in the
whole network, the base station is safe, and it cannot be
destroyed by adversaries.
③ .e adversary cannot attack the object in the area
that is one hop away from the base station because this
area has powerful surveillance capabilities.

.e symbols used in this paper are shown in Table 1.

3.1.2. Adversary Model. .e adversary is assumed to be an
external, passive, and global attacker [31]:

① External. An external adversary is an attacker who
will not compromise or control any sensor nodes.
② Passive. Passive means that we assume that the
adversary will not conduct any active attacks, such as
traffic injection, channel interference, or denial of
service attack. .e adversary cannot decrypt the data
packet and tamper with the contents of the data packet,
nor destroy the sensor node.
③ Global. A global adversary is the one who we assume
that an adversary can collect and analyze communi-
cations throughout the network.

3.1.3. Energy Consumption Model. In the IoT, no matter
what routing strategy is used for data transmission, each
node will consume energy to send and receive data.
.erefore, here, we only consider the energy consumption
generated when sending and receiving a certain number of
bits of information [31, 32]. If the sender wants to send n-bit
data to the receiver, and the distance between the two parties
is l, then for the sender, the energy consumed to send n-bit
data is defined as

Esender(n, l) �
nEcon + nεfsl

2
, l< l0,

nEcon + nεampl
4
, l≥ l0.

⎧⎪⎨

⎪⎩
(2)

For the receiver, the energy consumed to receive n-bit
data is defined as

Ereceiver(n) � nEcon. (3)

Among them, Econ represents the energy consumption in
the sender or the receiver circuit, and the value of Econ is
related to the distance between the sender and the receiver,
i.e., l. We consider two models: for the free space and the
multi-path fading channel models, their power losses are l2

and l4, respectively. εfs and εamp are the energies required by
the power amplification in these two models, respectively.

3.1.4. DH Key Exchange Algorithm. When two parties
communicate, the storage and disclosure of the user keys is a
very important issue. We should ensure the identity privacy
of both parties and the forward-backward security of the

keys [33, 34]. Diffie–Hellman Key Exchange (D-H) is an
algorithm jointly invented by Diffie and Hellman. Both
parties in communication are able to generate shared
cryptographic numbers only by exchanging publicly avail-
able information, and this cryptographic number is used as a
key. .is key can be used as a symmetric key to encrypt the
communication content in subsequent communications.

Specifically, we assume that both Alice and Bob need a
symmetric cryptographic key, but the communication line
between the two parties has been eavesdropped on by an
eavesdropper. At this time, Alice and Bob can generate the
shared key by taking the DH key exchange in the following
way:

① Take the prime number p and the integer a, a is a
primitive root of p, a and p are disclosed
② Alice chooses a random number XA <p, and cal-
culates YA � aXA modp

③ Bob chooses a random number XB <p, and cal-
culates YB � aXB modp

④ Each party keeps X secret and Y public to the other
party
⑤ .e way Alice calculates the key is K � Y

XB

B modp

⑥ .e way Bob calculates the key is K � Y
XB

A modp

In this way, Alice and Bob have the equal shared key.

3.2. Proxy Source Node Selection Mechanism Based on Can-
didate Region. .e main idea of anonymous communica-
tion is to hide the identity or the communication
relationship of the two parties through a certain method, so
that the adversary cannot directly know or infer the com-
munication relationship between the two parties or the party
of the communication.

Anonymous communication in the WSN includes
sender anonymity, receiver anonymity, and communication
relationship anonymity. In this paper, we mainly focus on
the sender’s the anonymity and communication relationship
anonymity. In order to hide the location information of the
real source node, realize the privacy of the source location,
and then realize the anonymity in WSN—the anonymity of
the communication relationship, there is no identity in-
formation involved in the process of message transmission.
Each node only knows who its previous hop and next hop
are, and does not know the source and the destination of the
information. At the same time, we must ensure that the
selected proxy source node is far away from the real source
node, so as to better protect the location privacy of the real
source node.

We use the limited flooding from the real source node to
establish an anonymous proxy path, and then establish a
candidate region. Before each message is forwarded, a node
will be selected from the candidate region as the proxy
source node to send the message instead of the real source
node. .e real source node selects neighbor nodes that meet
the energy requirements from the neighbor node list, and
sends the detection data packets to the neighbor nodes.
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3.2.1. H-Hop Limited Flooding Starting from the Real Source
Node. After the real source node detects that the object is
nearby, it performs a limited flooding with a beacon
message SM � {IDs, hops} [4], and the range of the flooding
is limited within h hops. .e SM contains the ID number of
node IDs that sent the message and the hop value from the
real source node to the current node hops (the initial value
is 0, plus 1 for each hop). When node u receives the beacon
message SM from node v, if IDv already exists in the
neighbor node list Tu of node u, then the Minhopsv,s of IDv

in Tu is updated with the smaller value hops in SM and the
current Minhopsv,s of node v. Otherwise, node u adds a new
record to Tu, adds IDv and hops into it, and hops at time
Minhopsv,s.

.en we add 1 to hops and compare it with Minhopsu,s

for its own basic information, and update Minhopsu,s with
the smaller one as the current minimum number of hops
from u to the real source node.

Node u replaces the ID in the message SM with its own
ID, and forwards SM to its neighbor nodes together with the
new hops. .e neighbor nodes of u perform the same op-
eration as u until hops count reaches h. At this point, h-hop
limits the flooding process of the beacon message SM. Each
node i within the range of h hops from the real source node
knows the minimum number of hops Minhopsi,s from itself
to the real source node and the minimum number of hops
from its neighbor nodes to the source node.

3.2.2. :e Source Node Establishes Anonymous Proxy Paths.
Definition. A is a node in the sensor network, the current
node u selects v from its neighbor nodes as the forwarding
node of the next hop. If the node v satisfies
Minhopsv,A -Minhopsu,A ≥ 1, then we can say that the hop
forwarding of the data packet from u to v is in a direction
away from node A, where A ≠ u and A ≠ v.

In addition, we define an optional set u.gather for each
node u..e nodes in the set are the neighbors of u and satisfy
the condition that the minimum number of hops from the
source node is greater than the minimum number of hops
from node u to the source node.

According to the energy requirements of receiving and
sending data packets, the source node selects the neighbor
nodes that meet the energy requirements according to the
residual energy of each neighbor stored in its neighbor node
list, and sends a detection data packet (h′, Q) for possible
proxy nodes. .e detection data packet includes the number
of hops h′ from the source node to the node (the initial value
of h′ is 0) and a node queue Q; at the beginning, Q only
contains the ID of the source node. Each time a detection
data packet arrives at a node, the node adds its own ID to the
node queue Q, at the same time the hop count h′ is added 1.

We first select neighbor nodes that meet the energy
requirements from its neighbor node list; then, we verify
whether these selected neighbor nodes exist in their own
optional set, and forward the detection data packet to the
neighbor nodes in the optional set u.gather.

.e neighbor node repeats this process until h′ reaches h,
and the detection process is completed. .e node that re-
ceives the data packet at the h hop returns the queueQ to the
real source node along the original path. Each node queue Q
received by the real source node constitutes an anonymous
proxy path. During the message forwarding phase, the
anonymous proxy path is responsible for forwarding
anonymous data packets to the proxy source node.

.e detection process is over. At this time, the real source
node has obtained several anonymous proxy paths.

3.2.3. Establishment of Candidate Region. For the anony-
mous proxy paths obtained in the previous section, the real
source node chooses the first returned t as the candidate
anonymous proxy paths. According to the predetermined
upper and lower limits of the number of hops, we select all
the nodes between the upper and the lower limits of the
number of hops on the candidate anonymous proxy paths to
form a candidate region.

For example, we suppose the real source node selects t
node queues as follows: Q1, Q2, . . . , Qt. .e region formed
by all the nodes between the lth hop and the hth hop of each
queue Qi (i � 1, 2, . . . , t) is called the candidate region. At
the same time, we call the region where the node from the

Table 1: Definition of notations in this paper.

Notation Definition
Rs .e real source node
Ps .e proxy source node
E(·) .e secure encryption algorithm
D(·) .e secure decryption algorithm
Ie(J) Initial energy, value 2
l0(m) .reshold distance, value 87
Econ (nJ/bit) Energy consumption, value 50
εfs (pJ/bit/m2) .e energy required by the power amplification in the free space channel model, value 10
εamp (pJ/bit/m4) .e energy required by the power amplification in the multipath fading channel model, value 0.0013
Tu .e neighbor node list of node u
hopb .e number of hops from the base station to the current node
hops .e number of hops from the real source node to the current node
Minhopsi,b .e minimum number of hops that the node i is away from the base station
Minhopsi,s .e minimum number of hops that the node i is away from the real source node
Ei Residual energy of node i
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first hop to the mth (m� l− 1) hop of each queue
Qi (i � 1, 2, . . . , t)is located as the visible region. .e can-
didate region and the visible region in this example are
shown in Figure 1.

3.2.4. Select Proxy Source Node. We select a node in the
candidate region as the proxy source node of this com-
munication..e path from the real source node to the proxy
source node constitutes the anonymous proxy path of our
anonymous communication.

In Figure 1, if the selected proxy source node Ps is the
green node in the figure, then the anonymous proxy path
Rs⟶N1⟶N2⟶N3⟶N4⟶ Ps from the real
source node to the proxy source node is obtained.

3.3. Shortest Path Routing Algorithm Based on Residual
Energy. .e proxy source node uses the shortest path
routing algorithm based on the residual energy to forward
the data packets to the sink.

First, the proxy source node Ps obtains the residual
energy of its neighbors by looking up the locally stored
neighbor node list TPs, and selects all the neighbor nodes
that meet the residual energy requirement, i.e., the residual
energy can support the neighbor nodes that can receive and
forward the data packets.

.en, the proxy source node searches its neighbor node
list TPs again, selects a neighbor node with the smallest
number of hops from the sink from the nodes that meet the
remaining energy condition, and sends the data packet to the
neighbor node.

Finally, after the neighbor node has received the data
packet, it searches its neighbor node list in the same way as
the proxy source node, selects the neighbor node that meets
the energy requirements and has the smallest number of
hops from the sink, which receives the data packet. .is
forwarding process is repeated till the data packet reaches
the sink.

.e shortest path routing algorithm based on the re-
sidual energy is shown below.

3.4. An Anonymous Communication Scheme Based on Proxy
Source Node and Shortest Path Routing. Based on the pre-
viously proposed proxy source node selection mechanism,
this section presents an anonymous communication scheme
to protect the location privacy of the real source node. Our
scheme is divided into three stages, namely, network ini-
tialization, anonymous path establishment, and anonymous
message forwarding.

In the network initialization phase, the sink performs
flooding of the beacon message BM in the network. At this
stage, the nodes in the network can obtain the minimum
number of hops from its own to the sink and the minimum
number of hops from its neighbor nodes to the sink.

.e anonymous path establishment phase includes four
steps: the real source node performs h hop limited flooding,
obtains an optional anonymous proxy path, establishes a
candidate region, and selects the proxy source node..e real

source node obtains the anonymous proxy paths from the
source node to the proxy source node according to Section
3.2.

In the anonymous message forwarding phase, the source
node first forwards the data packet from the real source node
to the proxy source node via the anonymous proxy path
obtained in Section 3.2, and then the proxy source node
forwards the data packet to sink via the shortest path al-
gorithm based on the residual energy to complete anony-
mous forwarding of the data packet.

3.4.1. Network Initialization Phase

① Deployment of Sensor Networks. In the sensor network, it
includes a real source node, a sink node, and N (N∈N+)
wireless sensor nodes. .ese wireless sensor nodes com-
municate wirelessly with each other, and finally deliver the
information to the sink node.

.e topology of our wireless sensor network is shown in
Figure 2, which depicts a random path from the real source
node to the sink.

When the sensor network is deployed, each node u
establishes a neighbor node list Tu. .e neighbor node list
contains the ID number IDiof neighbor node i, the mini-
mum number of hops Minhopsi,b from neighbor node i to
the base station, the minimum number of hops Minhopsi,s

from neighbor node i to the real source node, and the re-
sidual energy value Ei of neighbor node i. .e data structure
of the neighbor node list is shown in Table 2. Among them,
there is a situation where a neighbor node is of only
Minhopsi,b but not Minhopsi,s.

.e neighbor node ID of each node u is obtained by the
flooding process of the base station and the real source node.
.e minimum number of hops Minhopsi,b from the
neighbor node i to the base station is obtained by the
flooding process from the base station. .e minimum
number of hops Minhopsi,s from the neighbor node i to the
real source node is obtained by the h hop limited flooding
process starting from the source node.

Basic information of node u: each node u stores its own
basic information through a quadruple (Eu, h, Minhopsu,b,
Minhopsu,s). Among them, Eu represents the residual energy
value of u. H-parameter is the number of the hops in the
limited flooding performed by the real source node, which is
initialized to null and is obtained during the flooding process
of the base station. Minhopsu,b is the minimum number of
the hops between node u and the sink node, Minhopsu,s is
the minimum number of the hops between node u and the
real source node. Both Minhopsu,b and Minhopsu,s are
initialized to be the maximum number of the nodes in the
network.

② Flooding of Base Station. .e base station floods the
beacon message BM� {IDb, hopb, h} to the network, which
contains the ID number of the node IDb that sent the
message, the hop value from the base station to the current
node hopb (the initial value is 0, plus 1 for each hop) and the
number of hops h required for the establishment of the
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candidate region in the network. When node u receives the
beacon message BM from node v, it performs the following
operations in sequence:

First, u stores hops h in its own basic information.
Secondly, we search IDv in the neighbor node list Tu. If

the search is successful, i.e., there already exists node v in the
list, we compare the newly received hopb with the original
minimum hop value Minhopsv,b, node u retains the smaller
value and updates it as the minimum hop value Minhopsv,b

from u to the base station. Otherwise, we add a new record to
Tu, assign the IDv, and use the number of hops hopb as the

Minhopsv,b, i.e., the minimum number of the hops from v to
the base station.

.irdly, we add 1 to the number of hops hopu received,
compare it with Minhopsu,b in the quadruple, and select the
smaller value as the new Minhopsu,b.

Finally, we replace IDv in the message with its own IDu,
together with the latest hopb (at this time hopb � hopb + 1)
and the received hop count h, construct a new beacon
message BM� {IDu, hopb, h} and forward it to the next node.

After flooding, each node i in the network is associated
with h in the limited flooding, the minimum number of the

cur_node i� proxy source;
Initialize_neighbor_node_list(Ti);
Initialize_packetInfo(pI) � (Qproxy, EKs,b

(M));
while(cur_node i !� sink) do
u� first_neighbor(node i);
while(Eu≥Esender (n, l)+Ereceiver (n)) do

save IDu in the array A[];
u� next_neighbor(node i);

end while
hops-min�N;
for(node u� first of (A[]); node u in array A[]; u�next of (A[]))

if(Minhopsu,b<hops-min)
{
hops-min�Minhopsu,b;
IDhops− min � IDu;

}
end for
i forwards the pI to IDhops− min;
cur_node i� IDhops− min;

end while

ALGORITHM 1: Shortest path routing algorithm based on residual energy.

Real source node
Nodes on the anonymous proxy path
Nodes in the candidate region

Proxy source node
Sink
Ordinary sensor node

Figure 1: Establishment of candidate region.
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hops from itself to the base station Minhopsi,b and the
minimum number of the hops from its neighbor nodes to
the base station.

3.4.2. Anonymous Path Establishment Phase. .e com-
pletely anonymous path refers to the anonymous path used
for message forwarding from the real source node to the
sink.

First of all, based on the content shown in Section 3.2, we
establish a candidate region around the real source node.
Before each communication, we will select a node in the
candidate region as the proxy source node of the source node
of this communication, and establish the first half anony-
mous proxy path from the real source node to the proxy
source node. .is process involves two stages in the proxy
source node selection mechanism based on the candidate
region: h hop flooding of the real source node and an op-
tional anonymous proxy path. Secondly, based on the
content shown in Section 3.3, we establish the second half of
the shortest anonymous path from the proxy source node to

the base station through the shortest path routing algorithm
based on the residual energy.

.e anonymous proxy path and the shortest anonymous
path together constitute our anonymous communication
path, as shown in Figure 3. .e path from the real source
node to the proxy source node is the anonymous proxy path,
and the path from the proxy source node to the base station
is the shortest anonymous path. We use the complete
anonymous path to complete message forwarding.

3.4.3. Anonymous Message Forwarding Phase. .is phase is
divided into two stages. Stage 1: forward the data packet
from the real source node to the selected proxy source node.
Stage 2: the proxy source node forwards the data packet to
the base station through the shortest path routing strategy
based on the residual energy.

Stage 1: Rs-Ps message forwarding
According to the ID of the selected proxy source node, the
real source node finds the queue where the proxy source

Real source node
Sink

Figure 2: Network topology.

Table 2: Neighbor node list.

IDi Minhopsi,b Minhopsi,s Ei

IDa Minhopsa,b Minhopsa,s Ea

IDc Minhopsc,b Minhopsc,s Ec

IDd Minhopsd,b Minhopsd,s Ed

IDe Minhopse,b Null Ee

. . .. . .
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node is located atQproxy, and then encrypts themessageM
to be sent with the DH key Ks,b shared by the real source
node and the base station, forming a data packet (Qproxy,
EKs,b

(M)) with the queue Qproxy. Send the data packet
randomly to a certain number of neighbor nodes, and the
selected neighbor nodesmust include the first hop node in
Qproxy. For the neighbor nodes selected for each hop, there
are two situations. First, if the node is not in the queue, it
will randomly send the data packet to the next node.
Second, if the node is in the queue, then it will select the
next node based on the ID stored in Qproxy.
Repeat this process till the proxy source node receives the
data packet and stops the transmission. .e process of
Stage 1 is shown in Figure 4.
Stage 2: Ps-sink message forwarding
.e proxy source node uses the shortest path routing
strategy based on the residual energymentioned in Section
3.3 to send the data packet to the base station. First, the
proxy source node looks up the residual energy in the
neighbor node list and finds the neighbor nodes that meet
the energy requirements.We search the neighbor node list
to find the one neighbor node that has the smallest
minimum number of hops from it to the base station in
these neighbor nodes that meets the energy requirements.
.e proxy source node sends the data packet to the
neighbor node..en the neighbor node forwards the data
packet to the next node in the same way, until the base
station receives the data packet and stops the transmission.
After the sink receives the data packet, it can get the

message by decryptingMwith the operation of DKs,b
(M),

where M is the message to be transmitted to the sink.

.e process of Stage 2 is shown in Figure 5.

3.5. Enhanced Anonymous Communication. In order to
further improve the anonymity of the scheme in this paper,
an enhanced anonymous communication scheme is pro-
posed in this section by dividing the candidate region into
several sectors.

According to the scheme proposed above, if the real
source node selects the proxy source node before data
transmission, it selects the node on the same or similar
anonymous proxy path several times in a row. .e network
will be affected by the node receiving and forwarding the
data. .e generated traffic will be concentrated in a certain
area for a period of time, which will make it easy for the
adversary to guess the location of the real source node
through traffic analysis. .erefore, in order to make the real
source node evenly select a node on each anonymous proxy
path and further resist traffic analysis attacks, we propose an
enhanced anonymous communication strategy based on
sector division.

For the candidate region established in Section 3.2, we
define Rmin to represent the distance between the selected
lower limit and the real source node, and define Rmax to
represent the distance between the selected upper limit and
the real source node. .en, we divide the candidate region
into several equal sectors, each sector spans an angle μ, the
total number of the sectors is s � (2π/μ), and we define these

Real source node
Nodes on the anonymous proxy path
Nodes on the shortest anonymous path

Proxy source node
Sink
Ordinary sensor node

Figure 3: An anonymous path to protect the privacy of the source location.
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sectors as area1, area2, , areaμ. We can use the following
equation to calculate μ.

μ �
arcsin Rmin/Rmax(  + arcsin Rmin/H( 

π
, (4)

which is used to calculate the value of the angle μ [28].
Among them, Rmin is the radius of the visible region, Rmax is
the radius of the candidate region, and H is the number of
the hops from the real source node to the sink. .en we can

Start

The real source node finds 
the queue where the selected 
proxy source node is located

Encrypt M with DH key 
to form a data packet

Randomly forward data packets 
to neighboring nodes (including 
the first hop node after the real 

source node in the queue)

Is the current node 
in the queue?

Select the next node 
based on the ID 

stored in the queue

Randomly send data 
packets to the next 

node

No

Yes

End

No

Is the current node a 
proxy source node?

Yes

Figure 4: Forward the data packet from RS to PS.
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calculate the total number of sectors s via μ. .e candidate
region divided into sectors is shown in Figure 6.

When selecting the proxy source node, we first randomly
select an area areai, where i falls in [1, μ]. .en, we generate a
random angle β, which is in the range of [(i− 1)μ, iμ]. Finally,

we generate a random distance d, which satisfies the range
[Rmin, Rmax]. .e relative position of the selected proxy
source node is (x d+ d cos(β), y d+ d sin(β)), where (x, y) are
the coordinates of the real source node. Because the location
of the proxy source node is randomly selected, we may not

Start

Find neighboring 
node list

Find the residual energy 
of all neighboring nodes

Count the minimum number 
of hops between these nodes 

and the base station

Select the neighboring 
node with the smallest 

number of hops

Is the current node
a base station?

No

EndYes

Pick out all neighboring 
nodes that meet the 
energy requirements

Send a data packet to the 
neighboring node

Figure 5: Forward the data packet from PS to the sink.
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see any node in the desired region. If there is no node in the
desired region, the last hop node routed to the selected
location path becomes the proxy source node.

It is important to note that there may be duplicate nodes
in these paths, but this will not affect our operations. When
we select the proxy source node through the candidate
region before each data transmission, it should alternately
select the proxy source node from different sectors instead of
the same sector..at is, when the real source node selects the
node in the area areai (i� 1, 2, , μ) as the proxy source node
in a packet transmission, it will not select nodes in the
adjacent area of areai used as the proxy source node in the
next packet transmission, and the node in the areai will not
be selected as the proxy source node in the subsequent k
(k≤(μ/4)) data packet transmissions.

In this way, the traffic in the network is evenly dis-
tributed in different areas within a period of time, instead of
being concentrated in the same area, which makes it difficult
for the adversary to track and guess the location of the real
source node.

4. Results and Discussion

In this paper, we have proposed an anonymous commu-
nication scheme based on the proxy source node and the
shortest path routing algorithm to protect source location
privacy in the IoT. .e scheme has the location privacy of
the source node, anonymity, and can also prevent adver-
saries from collecting and analyzing communication mes-
sages in the whole network, and monitoring of network
traffic in a certain region, such as impersonation and
backtracking attacks. Table 3 compares the security per-
formance of our scheme with Random Walk, GROW
[35, 36], and ARPLP scheme.

4.1. Source Node Privacy. .e scheme in this paper selects
the proxy source node to replace the real source node to
send data packets, and there is no direct connection
between the proxy source node and the real source node.
And the proxy source node is randomly selected from the
candidate region, that is to say, there is also no direct

connection between the selected proxy source nodes each
time. .erefore, for the adversary, they do not know any
strategy about how the proxy source node is selected, and
will not obtain the location information of the real source
node through the proxy source node. Specifically, assume
that two consecutive data transmissions use x and y as the
proxy source nodes; however, because they are randomly
selected, there is no connection between x and y. .e
adversary cannot judge the selection rule of the proxy
source node through the two selections of the proxy
source node.

At the same time, this scheme ensures that the selected
proxy source node is far enough from the real source node
through the selection mechanism of the proxy source node
within the candidate region, thereby increasing the distance
between the real source node and the proxy source node, and
making the real source node have better privacy. In the
process of establishing anonymous proxy paths, since the
detection data packet is sent to the nodes that meet the energy
requirements and are in the optional set, the number of hops
from the next node to the real source node is greater than the
number of hops from the current node to the real source
node. In this way, after h hops, the probability that the proxy
source node is less than h/5 hops from the real source node
will be greatly reduced from the original P � 1 − e− (h/25).

In conclusion, this scheme can well hide the location of
the real source node and protect the location privacy of the
source node.

4.2. Anonymity. .e scheme in this paper realizes the an-
onymity of the transmitted messages and the anonymity of
the nodes in the wireless sensor networks.

Before the data packet transmission starts, the real
source node and the base station jointly negotiate a DH
shared key Ks , b, and only the real source node and the base
station can know this key. .e data to be transmitted are
encrypted with this shared key, which forms the data packet
with Qi and is forwarded to the next hop. Passing through
the proxy source node, the data arrive at the base station, and
the base station uses the shared key to decrypt the data
packet. When the data packet is transmitted from the real

Figure 6: Sector division in the candidate area. .e angle of each sector is μ, and there are (s) sectors in total.
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source node to the base station through the anonymous path
we have established, each intermediate node does not know
the shared key; therefore, others cannot decrypt the data
packet and tamper with the content of the data packet, and
the packet does not contain any information about the
identity of the node.

At the same time, anonymity also includes the ano-
nymity of the source node in the network and the anonymity
of the communication relationship. .e source node sends
the information to the proxy source node through the
anonymous proxy path, and then the proxy source node
sends the information to the base station through the
shortest path routing based on the residual energy. .ere is
no identity information involved in the process. Each node
only knows who its previous hop and next hop are, and does
not know the source and destination of the information.

4.3. Anti-ImpersonationAttack. Impersonation attacks refer
to malicious nodes pretending to be legitimate nodes to
forward messages, causing messages to be tampered with or
interrupted in forwarding. In our scheme, it is not feasible
for a node in the network to pretend to be a proxy source
node. .e reason is as follows:

When the real source node sends the data packet to the
next node, the selected neighbor nodes must include the first
hop after the source node ID recorded in the selected
anonymous proxy path, and then the current node also
selects the next node according to the ID recorded in the
path. If the malicious node is not in the selected anonymous
proxy path, then its ID will not appear in the selected
anonymous proxy path; if the malicious node is in the se-
lected initial path, but the real source node knows the ID of
the selected proxy source node, it will not select the nodes
with other hops on the path.

Specifically, if the real source node selects node p in the
candidate region as the proxy source node before a message
transmission starts. .e node p is a node on the anonymous
proxy path Qr. .en, in the first stage of the anonymous
message forwarding, the real source node forwards the data
packet (Qr, EKs,b

(M)) to a certain number of the neighbor
nodes, containing the node represented by the first ID other
than the real source node ID recorded in Qr. If the malicious
node is not in the selected Qr, then its ID will not appear in
Qr and will not affect the transmission of the data packets; if
the malicious node is in Qr, since the real source node knows

IDp on Qr, it will not select the nodes with other hops on Qr,
but will stop until the data packet is transmitted to p.

4.4. Backtracking Attack. In wireless sensor networks,
backtracking attack means that the adversary located near
the base station will observe that the destination node re-
ceives the data information, and then start from the desti-
nation node and trace back hop-by-hop along the path until
the source sensor node is found, which is the sender of the
information. Our anonymous communication scheme can
resist adversary backtracking attacks. .e reason is as
follows:

In our scheme, a candidate region formed by a flooding
mechanism is set up, in which all nodes may become proxy
source nodes and send messages instead of the real source
nodes. In the process of message forwarding from the real
source node to the proxy source node, there will be a lot of
branch traffic to confuse the adversary, so the adversary can
only trace back to the proxy source node, but cannot
continue to trace back to find the location of the real source
node.

We used PyCharm [37] to simulate the proposed
scheme. For the energy consumption model presented in
Section 3.1, the simulation results are as follows: Figure 7
shows the change trend of the energy consumed by the
sender as the distance between the sender and the receiver
changes when the number of the message bits transmitted
are 50, 100, 150, and 200, respectively. We can see that as the
distance between the sender and the receiver increases, the
energy consumed by the sender, i.e., Esender, is also in-
creasing. .e larger the number of bits, the more energy is
consumed. Figure 8 shows the change trend of the energy
consumed by the sender as the number of the message bits
transmitted changes when the distance between the sender
and the receiver is 50, 100, 150, and 200, respectively. It can
be seen that as the number of message bits continues to
increase, the energy consumed by the sender is also in-
creasing. .e greater the distance, the more energy is
consumed.

Figure 9 shows the change trend of the energy consumed
by the sender when the number of transmitted bits and the
distance between the sender and the receiver simultaneously
vary from 0 to 200.

At the same time, we simulated the relationship between
the number of the transmitted message bits and the energy

Table 3: Comparison of security performance.

Scheme Source location privacy Anonymity Anti-Impersonation Backtracking attack
Random walk No No No No
GROW Yes No No Yes
ARPLP Yes Yes No Yes
Proposed Yes Yes Yes Yes
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consumed by the receiver in a segmented form. As shown in
Figure 10, the number of the transmitted message bits is
divided into four closed intervals, which are [0, 50], [51,

100], [101, 150], and [151, 200], and the energy consumed by
the receiver in the four intervals is obtained. In each interval,
as the number of message bits increases, the energy
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consumed by the receiver will increase geometrically. At the
same time, as the number of bits in each interval increases,
the energy consumed by the receiver will also increase
linearly.

5. Conclusion

In the context of the Internet of.ings, while wireless sensor
networks are widely used in various fields, they also face
many security problems. Among them, the privacy pro-
tection of the source location is a very important security
issue. In response to this problem, we proposed an anon-
ymous communication scheme that protects the privacy of
the source location in the IoT. By establishing a candidate
region, the proxy source node is randomly selected in the
candidate region to replace the real source node to send data
packets, thereby achieving the purpose of protecting the
location of the real source node. In the process of data packet
transmission from the proxy source node to the sink, we
used the shortest path routing algorithm based on the re-
sidual energy, so as to achieve the goal of saving energy and
improving efficiency. But the work of this article does not
involve the part of protecting the base station, i.e., all the
nodes in the network know the location of the base station,
and there is no specific application part. .erefore, our
future work will focus on how to protect the location privacy
of the base station while ensuring the privacy of the overhead
and source location, and actively integrate it with practical
applications.
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Multikey fully homomorphic encryption proposed by Lopez-Alt et al. (STOC12) is a significant primitive that allows one to
perform computation on the ciphertexts encrypted by multiple different keys independently. 'en, several schemes were
constructed based on decisional small polynomial ratio or learning with errors. 'ese schemes all require an expansion algorithm
to transform a ciphertext under a single key into an encryption of the same message under a set of keys. To achieve the expansion
algorithm without interaction with these key-keepers, their encryption algorithm not only outputs a ciphertext of a plaintext but
also exports auxiliary information generated from the randomness used in the former encryption process. Beyond that, the size of
the ciphertext encrypted by multiple keys increases linearly or quadratically in the number of participants. In this paper, we
studied the problem whether someone can directly perform arbitrary computation on ciphertexts encrypted by different keys
without any auxiliary information in the output of the encryption algorithm and an increase in the size of the ciphertext in the
expansion algorithm. To this end, we proposed a novel and simple scheme of secure computation on ciphertexts under two
different keys directly without any auxiliary information. In other words, each party just provides its own ciphertexts encrypted by
the GSW scheme (CRYPTO13). In the procedure of executing evaluation on these ciphertexts, the size of the new ciphertext
remains the same as that of the GSW ciphertext.

1. Introduction

'e concept of multikey fully homomorphic encryption was
proposed by Lopez-Alt et al. [1], which allows someone to
perform arbitrary computations on the ciphertexts
encrypted by multiple different secret keys. Specifically, each
party independently encrypts input xi, to obtain a ciphertext
ci � Encpki

(xi), and one can homomorphically evaluate an
arbitrary function on these encrypted data without inter-
action between them. After this, there has been a lot of
research [2–12] for its assumptions, functionalities, and
performance.

'e main application of multikey FHE is that a plurality
of parties is informed to engage in a computing task after
they have submitted their data.'is is a significant difference
from the applications of the traditional (single-key) en-
cryption schemes. For example, two hospitals want to co-
operate and study the influence factors of some disease.

However, the data of these patients has been encrypted and
stored in their own servers ahead of this cooperation. How
could an evaluation algorithm be performed directly on
these ciphertexts without decrypting them? In [1], Lopez-Alt
et al. focused on a problem whereby a (untrusted) cloud
server wants to perform some computations over data from
multiple clients without interacting with them after each
client transmits their own (encrypted) input to the cloud and
other clients. In the scheme proposed by Lopez-Alt et al. [1],
although a ciphertext only contains an encryption of a
plaintext, the size of a ciphertext under multiple secret keys
becomes much larger than that of the original ciphertext and
its security is based on the nonstandard assumption. 'e
ciphertext’s length is related to the number of participants
where the former increases at least linearly in the later. In the
scheme of Clear and McGoldrick [3], an encryption of a
message contains a universal mask U generated by another
public-key encryption scheme. Also, the ratio of the size of
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the ciphertext under multiple keys and that under single key
grow quadratically with an increase in the number of the
associated participants. Afterwards, Mukherjee and Wichs
[2] proposed an optimized scheme with a simple generation
of the universal mask. However, there is still auxiliary in-
formation in the encryption algorithm and the ratio remains
quadratic. Following the previous works, there are two in-
dependent researches about multikey fully homomorphic
encryption introduced by Brakerski and Perlman [5] and
Peikert and Shiehian [4], respectively. In the former scheme,
although the authors replaced the algorithm of the universal
mask with the bootstrapping algorithm, the ciphertext’s
growth rate was still linear and their evaluation keys were
generated by the previous multikey fully homomorphic
encryption schemes. 'ere are two versions in the paper in
[4]. In the first scheme, the encryption of a message contains
a commitment of the message and an encryption of the
randomness used in the former commitment algorithm.'e
ratio becomes linear. In the second one, the encryption
algorithm only outputs a ciphertext of a message, but the
ratio becomes quadratic and the evaluation keys are gen-
erated by the first scheme. In [13], the growth rate is qua-
dratic, and the output of the encryption algorithm also
contains auxiliary information except a ciphertext of a
plaintext. Recently, Chen et al. [6] proposed a multikey FHE
scheme based on the ring-LWE (Learning with Errors)
assumption, in which their ciphertext-extension algorithm
only generates the evaluated keys for the scheme with
multiple keys but the size of the ciphertext under multiple
keys also relies on the number of associated parties.

'e first multikey fully homomorphic encryption was
proposed by Lopez-Alt et al., but their solution is based on
nonstandard assumptions. Subsequent solutions, despite
being based on standard cryptographic assumptions (LWE),
have two common shortcomings. 'e first shortcoming is
that they require the encryption of not only the plaintext but
also random numbers that have been used; namely,
c � Enc(pk, m, r), and U � Enc(pk, r). Each ciphertext must
be attached with additional information U. 'e second one
is that the length of the ciphertext increases linearly or
quadratically with the number of participants. In this paper,
our main research problem is how to directly perform secure
computation on ciphertext data c directly provided by each
user without any additional information U. 'ese ciphertext
data are encrypted with different secret keys. Our main focus
here is the case of encryption with two different keys. We
begin by taking the GSW13 encryption scheme [14] into
consideration as we notice that the main process of its
decryption algorithm is the inner product of two vectors;
that is, 〈c, v〉 � m d + e, where d is a large constant. As such,
if we want to calculate the product of ciphertexts c1 and c2
encrypted with different secret keys, we only need to cal-
culate c1 · cT

2 . 'is is because vT
1 · c1 · cT

2 · v2 � (m1d

+e1)(m2d + e2) � m1m2d
2 + d(m1e2 + m2e1) + e1e2. 'e fi-

nal result is desirable, with m1m2 being one of its factors.
However, there is another problem: the constant factor
becomes d2, and small noises e1 and e2 are also multiplied by
a large number. 'erefore, we must find a way to decrease
the constant factor to d, while keeping the noises within an

acceptable range. Because the noise in the ciphertext grows
with an increase in the number of addition and multipli-
cation operations, when it increased to some value defined
by the public parameters, it may cause incorrect decryption
of the output ciphertext. 'erefore, we should reduce the
noise growth in evaluation.

Our approach is to decrypt c1 · c2 in two steps without
directly multiplying it by two secret keys. Instead, a single
secret key is first used to decrypt it, that is, vT

1 · c1 · cT
2 �

(m1d + e1)c2 (denoted as tc1), before tc1/d is calculated and
rounded to obtain tc � m1c2. Finally, another secret key is
used to decrypt tc for the final plaintext m1m2. During the
process, noises have been kept at a low level without being
multiplied by a large constant factor. To sum up, the above
description explains how to perform the multiplication
operation on ciphertexts encrypted with two different keys.
'e addition operation can be transformed to the multi-
plication operation; that is, c1 + c2 � (c1 · c2′) + (c1′ · c2),
where c1′ and c2′ are encrypted from plaintext 1 with different
secret keys. Till this step, we completed the addition and
multiplication operations on ciphertexts encrypted with two
different secret keys. However, this scheme has a short-
coming: the multiplication operation can only be performed
once as the result of the multiplication operation on the
ciphertexts encrypted with two different secret keys cannot
be multiplied by other ciphertexts. In order to enable the
support of polynomial calculation, we can write any poly-
nomial f with u + v inputs (x1, . . . , xu, y1, . . . , yv) as fol-
lows: f � 

w
i�1(fi · gi), where the inputs of fi are x1, . . . , xu,

and the inputs of gi are y1, . . . , yv. In this way, we can first
use the single-key fully homomorphic encryption scheme to
calculate fi and gi to obtain intermediate results and then
calculate the final results with our proposed method.
'erefore, our secure computation only involves the GSW13
encryption scheme without the requirement for additional
information U. Moreover, unlike previous schemes where a
ciphertext’s size grows linearly or quadratically as the
number of secret keys increases, the ciphertext in our
scheme always maintains its original size.

Our Contributions. We proposed a protocol that allows one
to perform any polynomial functions on the GSW cipher-
texts under two different keys directly. Unlike the previous
works, each party just provides the GSW ciphertexts without
anything auxiliary of the private inputs and the size of the
new ciphertext remains invariant when executing evalua-
tions on these ciphertexts. In our Addition and Multipli-
cation algorithms on ciphertexts under two different keys,
the noise increases linearly. Compared to the scheme in [1],
our scheme is based on the standard assumption. Our
scheme reduces the size of the ciphertext under a single key
from O(n4log4 q) in [2, 3] to O(n2log2 q), where n is the
lattice dimension and q is a modulus. Compared to the
scheme in [5], our scheme does not require the expensive
technique of bootstrapping to transform a ciphertext under a
single key to a ciphertext under a set of keys. In the first
scheme of [4], the size of the ciphertext under a single key is
O(n3log3 q). 'e second scheme of [4] requires its first
scheme to generate a public key with larger size. Different
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from the scheme in [6], the size of the public key in our
scheme is the same as that of the GSW13 scheme, whereas it
is O(log q) times the size of the GSW13 scheme.

2. Related Work

In the scheme proposed by Lopez-Alt et al. [1], although a
ciphertext only contains an encryption of a plaintext, the size
of a ciphertext under multiple secret keys becomes much
larger than that of an original ciphertext and their security is
based on the nonstandard assumption. 'e ciphertext’s
length is related with the number of participants where the
former increases at least linearly in the latter. In the scheme
of Clear and McGoldrick [3], an encryption of a message
contains a universal mask U generated by another public-
key encryption scheme. Also, the ratio of the size of the
ciphertext under multiple keys and that under single key
grow quadratically with an increase in the number of the
associated participants. Afterwards, Mukherjee and Wichs
[2] proposed an optimized scheme with a simple generation
of the universal mask. However, there is still auxiliary in-
formation in the encryption algorithm and the ratio remains
quadratic. Following the previous works, there are two in-
dependent researches about multikey fully homomorphic
encryption introduced by Brakerski and Perlman [5] and
Peikert and Shiehian [4], respectively. In the former scheme,
although the authors replaced the algorithm of the universal
mask with the bootstrapping algorithm, the ciphertext’s
growth rate was still linear and their evaluation keys were
generated by the previous multikey fully homomorphic
encryption schemes. 'ere are two versions in the paper in
[4]. In the first scheme, the encryption of a message contains
a commitment of the message and an encryption of the
randomness used in the former commitment algorithm.'e
ratio becomes linear. In the second one, the encryption
algorithm only outputs a ciphertext of a message, but the
ratio becomes quadratic and the evaluation keys are gen-
erated by the first scheme. In [13], the growth rate is qua-
dratic and the output of the encryption algorithm also
contains auxiliary information except a ciphertext of a
plaintext. Recently, Chen et al. [6] proposed a multikey FHE
scheme based on the ring-LWE assumption, in which their
ciphertext-extension algorithm only generates the evaluated
keys for the scheme with multiple keys but the size of the
ciphertext under multiple keys also has a relationship with
the number of associated parties.

3. Preliminary

3.1. Learning with Errors, SIVP, and GapSVP. Regev firstly
introduced the Learning with Errors (LWE) problem in 2005
and showed that the hardness of LWE can be reduced
quantum to the lattice hard problems. 'en, Peikert in-
troduced an efficient classical reduction between LWE and
the lattice intractable problems. 'e details are given below.

Definition 1. (Learning with Errors). Let λ be the security
parameter, let n � n(λ) be an integer dimension of a lattice,

let q � q(λ)≥ 2 be an integer, and let χ � χ(λ) be an error
distribution over Z.

(i) (Searchable LWE) Sample s⟵Zn
q uniformly and

then draw ai ⟵ Zn
q uniformly, ei⟵ χ. Set

bi � 〈ai, s〉 + ei. 'e searchable LWE is to find s,
given m � m(λ) samples (ai, bi) 

m
i�1, called

LWEn,m,q,χ .
(ii) (Decision LWE) 'e decision LWE, denoted as

LWEn,q,χ , is to distinguish two distributions:'e first
one is a uniform distribution over Zn+1

q . 'e second
is that one first samples s⟵Zn

q and then draws
(ai, bi) ∈ Zn+1

q by sampling ai⟵Zn
q uniformly,

ei⟵ χ, and setting bi � 〈ai, si〉 + ei.

'e Learning with Errors (LWE) assumption is that
LWEn,m,q,χ (LWEn,q,χ) is intractable.

Definition 2. (SIVPc(n)). Let Λ be an n− dimension lattice.
'e SIVPc(n) problem is to output n linearly independent
vectors v1, . . . , vn such that maxi vi ≤ c(n) · λn, where
λn � minr r: dim(span(B(0, r)∩Λ))≥ n .

Definition 3. (GapSVPc(n)). LetΛ be an n− dimension lattice
and let d be a real number. GapSVPc(n) is to distinguish
whether λ1 < d or λ1 ≥ c(n) · d, where λ1 is the length of the
shortest vector in Λ.

Definition 4. (B-bounded distributions). A distribution
ensemble χn n∈N over the integers is called B-bounded
distribution if

Pr
e⟵ χn

[|e|>B] � negl(n). (1)

Theorem 1. Let q � q(n) be either a prime power or a
product of small (size poly(n)) distinct primes,
B≥ω(log n) ·

�
n

√
, and χ is an efficient sampleable B-bounded

distribution. If there exists an efficient algorithm solving the
LWEn,q,χ problem, then

9ere is an efficient quantum algorithm for
GapSVPO(nq/B)

on any n-dimension lattice
9ere is an efficient classical algorithm that solves
GapSVPO(nq/B)

on any n-dimension lattice

In both cases, if one also considers solving LWEn,q,χ with
subpolynomial advantage, then request B≥ O(n) and
c(n)≥ O(n1.5q/B).

3.2. Fully Homomorphic Encryption. A fully homomorphic
encryption is a tuple of algorithms (Gen, Enc, Dec, Eval)
described as follows:

(pk, sk, evk)⟵Gen(1λ): on the security parameter λ,
output a public key pk, a secret key sk, and a public
evaluation key evk.
c⟵Enc(pk, μ): encrypt a message μ from the
plaintext space and output a ciphertext c.
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μ⟵De c(sk, c): decrypt a valid ciphertext c and
output a corresponding message μ; otherwise, output a
special symbol ⊥.
cf⟵Eval(evk, f, c1, . . . , cl): input the public evalu-
ation key evk, a function f, and a sequence of ci-
phertexts c1, . . . , cl which are responding to the
sequence of plaintexts μ1, . . . , μl; output a valid ci-
phertext cf responding to the message f(μ1, . . . , μl).

We say that a schemeΠ � (Gen, Enc, De c, Eval) is fully
homomorphic if it satisfies the following properties:

Homomorphism: denote a class of all arithmetic cir-
cuits over GF(2) as C. If for arbitrary circuit f ∈ C, the
following inequation holds:

Pr Dec sk, Eval evk, f, c1, . . . , cl( ( ≠f μ1, . . . , μl(   � negl(λ).

(2)

Compactness: if there exists a polynomial p � poly(λ),
it holds that the output length of Eval is at most p(λ)

bits without relation to the function f or the numbers
of inputs.

3.3. Multikey Fully Homomorphic Encryption

Definition 5. (multikey FHE). A multikey FHE is a tuple of
algorithms (Setup, Keygen, Encrypt, Expand, Eval, De-
crypt) described as follows:

params⟵ Setup(1λ, 1d): on the security parameter λ
and the circuit depth d, the setup algorithm outputs the
system parameters params. We assume that all the
other algorithms take params as an input implicitly.
(sk, pk)⟵Keygen (params): generate secret key sk
and public key pk.
c⟵Encrypt (pk, μ): take public key pk and amessage
μ as an input and output for a ciphertext c.
c⟵Expand (pk1, . . . , pkN, i, c): on a sequence of N

public keys and a fresh ciphertext c under the i− th key
pki, it outputs an expanded ciphertext c.
c: �Eval (params,C, (c1, . . . , cl)): given a Boolean
circuitC of depth ≤d along with l expanded ciphertexts
c1, . . . , cl, output an evaluated ciphertext c.
μ: �Decrypt (params, (sk1, . . . , skN), c): take some
ciphertext c and a sequence of N secret keys as an input
and output a message μ.

'e following properties hold:

Semantic Security of Encryption. For any polynomial
d � d(λ) and any two messages μ0, μ1, the distribution
(params, pk, Encrypt(pk, μ0)) is computationally in-
distinguishable from the distribution (params, pk,
Encrypt (pk, μ1)), where params⟵ Setup (1λ, 1d),
(sk, pk)⟵ Keygen (params).
Correctness and Compactness. Let params⟵ Setup
(1λ, 1d). Consider any sequence of N correctly gen-
erated key pairs (pki, ski)⟵Keygen(params) i∈[N]

and l− tuple of messages (μ1, . . . , μl). For any sequence
of indices (I1, . . . , Il) where each Ii ∈ [N], let
ci⟵Encrypt(pkIi

, μi) 
i∈[l]

be encryptions of the
messages μi under the Ii− th public key and let
ci⟵Expan d((pk1, . . . , pkN), Ii, ci) i∈[l] be the cor-
responding expanded ciphertexts. Let C be any
Boolean circuit of depth ≤d and let
c: � Eval(C, (c1, . . . , cl)) be the evaluated ciphertext.
'en the following holds:
Correctness of Expansion. ∀i ∈ [l], Decrypt ((sk1, . . . ,

skN), ci) � μi.
Correctness of Evaluation.Decrypt ((sk1, . . . , skN), c) �

C(μ1, . . . , μl).
Compactness. 'ere exists a polynomial p(·) such as
|c|≤p(λ, d, N). In other words, the size of c should be
independent of C and l but can depend on λ, d, N.

4. A Scheme of Evaluation on Two-Key
Ciphertexts for Any Polynomial

In this section, we formally describe our fully homomorphic
encryption scheme. At the beginning, we introduce three
operations used in the encryption algorithm for slow noise
growth. Consider three vectors a � (a0, . . . , an− 1) ∈ Zn

q,
α � (α0, . . . , αN− 1) ∈ 0, 1{ }N, and β � (β0, . . . , βN− 1) ∈ ZN

q .
BitDecomp(a) � (a0,0, a0,1, . . . , a0,l− 1, a1,0, . . . , a1,

l − 1, . . . , an− 1,l− 1), where ai,j is the j-th element of the binary
representation of ai.

BitDecomp− 1(α) � (
l− 1
i�02

iαi, 
2l− 1
i�l 2i− lαi, . . . , 

N− 1
i�(n− 1)l

2i− (n− 1)lαi), where α ∈ 0, 1{ }N.
Flatten(β) � BitDecomp(BitDecomp− 1(β)).
We can see that BitDecomp(·) expands each element of a

vector to its binary representation, BitDecomp− 1(·) can be
seen as the inverse operation of BitDecomp(·), and it makes
each l element of a vector to a number in Zq. 'ese three
operations on a matrix are that they are performed on each
column vector of the matrix. 'at is,

BitDecomp(A) �

BitDecomp(A0)

⋮
BitDecomp(An− 1)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. BitDecomp− 1(·)

and Flatten(·) on a matrix are similar to that.
Our scheme consists of the following probabilistic

polynomial time algorithms (Setup, Gen, Enc, Dec, Add,
Mult, Add2, Mult2, and Dec2).

Setup (1λ, 1L): let λ be the security parameter and let L

be the max circuit depth. Choose appropriate LWE
parameters: modulus q � q(λ, L), lattice dimension
n � n(λ, L), and error distribution χ � χ(λ, L). Choose
parameter m � O(n log q). Set params � (q, n, χ, m).
Let l � log q + 1 and N � n × l.
Gen (params): choose randomly t⟵Zn− 1

q . Choose a
random matrix B⟵Zm×(n− 1)

q and a vector e⟵ χm.
Set b � B · t + e. Output the secret key
sk � s � (1, − t1, . . . , − tn− 1) ∈ Zn

q and the public key
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pk � A � [b|B]. Let v � Powerof2(s) (note that
A · s � e.)
Enc (params, pk, μ): choose randomly a matrix
R⟵ 0, 1{ }N×m. 'en encrypt the message μ as follows:

C � Flatten μ · IN + BitDecomp(R · A)(  ∈ ZN×N
q .

(3)

Output the ciphertext C.

Dec (params, sk, C): let vi ∈ ((q/4), (q/2)]. Output
μ�└〈Ci, v〉/vi┐.
Add (params, pk, C1, C2): to add two ciphertexts
C1, C2 ∈ ZN×N

q , output Flatten(C1 + C2).
Mult (params, pk, C1, C2): to multiply two ciphertexts
C1, C2 ∈ ZN×N

q , output Flatten(C1 · C2).
Mult2 (params, pk1, pk2, C1, C2): these two keys are
independently generated from the algorithm Gen () on
the common parameters. If C1 is not encrypted under
pk1 or C2 is not under pk2, then output ⊥. Otherwise,
output C1,l− 1 · CT

2,l− 1.
Add2 (params, pk1, pk2, C1, C2): if C1 is not encrypted
under pk1 or C2 is not under pk2, then output ⊥.
Otherwise, set C1′ and C2′ as encryptions of message 1
under pk1 and pk2, respectively, and output
C1,l− 1 · (C2,l− 1′)

T + C1,l− 1′ · CT
2,l− 1.

Dec2 (parmas, C, sk1, sk2): if C is an evaluated ci-
phertext from two ciphertexts under the public keys
pk1 and pk2, respectively, then the first secret key sk1
holder computes tempc1 � vT

1 · C and sends it to the sk2
holder. Similarly, the sk2 holder computes tempc2 �

C · v2 and sends it to the first holder. 'en, the sk1
holder outputs vT

1 · tempc2 and the sk2 holder outputs
tempc1 · v2.

'e evaluation algorithm Eval(·) that performs a depth-L
circuit computations on polynomial GSW ciphertexts can be
composed of Add and Multi operations.

5. Evaluation on Two-Key FHE Ciphertexts

5.1. Multiplication. Assume that C1 is a GSW ciphertext of
the message μ1 under the public key pk1 and C2 is that of μ2
under pk2. s1 and s2 are secret keys corresponding to pk1 and
pk2, respectively. Set vi �Powerof2(si), i � 1, 2. 'is func-
tion Powerof2() transforms a vector (a0, . . . , an− 1) into a
new vector (a0, 2a0, . . . , 2l− 1a0, . . . , an− 1, . . . , 2l− 1an− 1),
where l is the length of the binary representation of the
modulus q.

Mult2(C1, C2) � c1 · cT
2 , where ci � Ci[l − 1, ·], i � 1, 2.

De c2(v1, v2, C): Compute (└vT
1 · C/2l− 1┐)T+ c′, deno-

ted as tc, where c′ is the (l − 1)− th row of a ciphertext of a
message 0 under the secret key v2 such that └(〈c′, v2〉/2l− 1)┐.
Output └〈tc, v2〉/2l− 1┐.

Theorem 2. Suppose that C1, C2 are ciphertexts under the
secret keys v1, v2, respectively. If C is obtained from
Mult2(C1, C2) or A dd 2(C1, C2), the probability of the
decryption algorithm De c2(·) on inputs v1, v2, C  running
correctly is negligible. 9at is, there exists a negligible function
negl(·) on the security parameter λ, satisfying the following
inequation:

Pr Dec2 v1, v2, C( ≠ μ1μ2

pki, ski( ⟵ GSW.Gen 1λ , i � 1, 2;

vi � Powerof 2 ski( , i � 1, 2;

μ1, μ2⟵ 0, 1{ }, Ci � GSW.Enc pki, μi( ;



C � Mult2 C1, C2( ,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤negl(λ).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(4)

Proof. Obviously, Ci · vi � μi · vi + ei, i � 1, 2. We also know
that the first l elements of vi are (1, 2, . . . , 2l− 1). 'us, we can
decrypt the ciphertext Ci as μi �└〈Ci[l − 1, ·], vi〉/2l− 1┐. Set
ci � Ci[l − 1, ·] and ei � ei[l − 1], i � 1, 2. So, 〈ci, vi〉 �

μi · 2l− 1 + ei. Running the first part of the decryption algo-
rithm, we can obtain that tc � (└vT

1 · C/2l− 1┐)T+ c′ �
(└vT

1 · c1 · cT
2 /2

l− 1┐)T+ c′� (└cT
2 · (μ1 · 2l− 1 + ei)/2l− 1 ┐)T +

c′ � μ1c2 + c′. After the second part, we can get └〈tc, v2〉/
2l− 1┐�└μ1〈c2, v2〉/2l− 1 + 〈c′, v2〉/2l− 1┐� μ1μ2 'at is to say,
one-time multiplication on two ciphertexts under different
secret keys only increases doubly the size of noise because
the noise in the intermediate ciphertext tc can be viewed as
that in an addition to two GSW ciphertexts under the same
secret key. 'erefore, the ciphertexts obtained from this
multiplication algorithm can be decrypted correctly.

We can easily find that one-time multiplication causes a
double increase of noise. 'us, scaling up the parameters or
appending something auxiliary is undesired. We can directly
perform one-time multiplication on two ciphertexts
encrypted by two different keys without adjusting anything
of the original GSW scheme.

5.2. Addition. We can achieve the Addition operation by
using the operation Multiplication. 'at is,
A dd 2(C1, C2) � Mult2(C1, C2) + Mult2(C1, C2), where
Ci is a ciphertext of message 1 under the secret key vi,
i � 1, 2.

According to 'eorem 2, after one-time operation
Multiplication on two ciphertexts under different secret keys,
the noise increases doubly. 'us, one-time operation
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Addition causes the noise to increase quadruply, which is
faster than that of Multiplication. It is not hard to find that
the ciphertextCi is unnecessary to preserve the privacy of the
plaintext, an exact number 1. 'erefore, when constructing
Ci, we can set the randomness to zero. 'at is to say, Ci is a
special “ciphertext” of the plaintext 1 without noise. 'is
change makes both the operations Addition and Multipli-
cation have the same growth of the noise.

Note that the Add2 operation not only supports the
input of two ciphertexts under different secret keys but also
processes the input of one ciphertext obtained from the
Add2 or Mult2 procedure and one ciphertext under a single
key as well as the input of two former-type ciphertexts. 'e
following are the details of the operation.

Assume that C′ is output by the Add2 or Mult2 pro-
cedure and C is a ciphertext under the secret key vb+1, where

b⟵ 0, 1{ }. 'en A DD(C, C′) � Mult2(C, C) + C′, where
C is a ciphertext of message 1 under the secret key v

b+1.
Assume thatC, C′ are both output by theAdd2 or Mult2

procedure. 'en, A DD(C, C′) � C + C′. It also can extend
to the case of the input of polynomial ciphertexts from the
Add2 or Mult2 procedure.

5.3. Evaluation of Any Polynomial Function. Assume that f

is an arbitrary polynomial function of u + v inputs, denoted
as x1, . . . , xu, y1, . . . , yv and can be rewritten as
f(x1, . . . , yv) � 

w
i�1 gi(x1, . . . , xu)fi(y1, . . . , yv), where gi

and fi are all L− bounded-depth circuits. Now, we have u + v

ciphertexts denoted as C1,1, . . . , C1,u under the public key
pk1 and C2,1, . . . , C2,v under the public key pk2. So,

Eval pk1, pk2, C1,1, . . . , C1,u, C2,1, . . . , C2,v,Cf 

� 
w

i�1
Mult2 GSW.Eval pk1, C1,1, . . . , C1,u,Cgi

 , GSW.Eval pk2, C2,1, . . . , C2,v,Cfi
  

� ADD Mult2 Cg1
, Cf1

 , . . . , Mult2 Cgw
, Cfw

  ,

(5)

where Cgi
� Eval(pk1, C1,1, . . . , C1,u, gi) and Cfi

� Eval(pk2,
C2,1, . . . , C2,v, fi).

Because gi and fi are all L-bounded-depth circuits, Cgi

and Cfi
can be decrypted correctly by the secret keys sk1 and

sk2, respectively.'e operationsAddition andMultiplication
both cause the noise to increase linearly. 'erefore, the
output of the algorithm Eval can be decrypted correctly.

6. Analysis

6.1. Correctness. Suppose that C1 and C2 are GSW ci-
phertexts of the plaintexts μ1 and μ2 under the public keys
pk1 and pk2, respectively, so that Ci · vi � μi · vi + smalli.
'ese two ciphertexts are possibly fresh GSW ciphertexts
and also can be evaluated ciphertexts through a circuit of the
depth less than L. Also, a fresh GSW ciphertext has a
B− bounded noise, namely, |small|∞ ≤B. 'e error is
bounded by B(N + 1) after one homomorphic operation.
So, Ci is a ciphertext with B(N + 1)L− bounded noise. From
the simple analysis in the front section, the noise in Mult2
(C1, C2) is bounded by 2B(N + 1)L. Moreover, the noise in
the addition of C1 and C2 increases linearly as the same as
that of the Multiplication. So, finishing one-time homo-
morphic operation on two ciphertexts under different en-
cryption keys, the noise grows up to 2B(N + 1)L. We only
discuss one multiplication operation on two ciphertexts
under different keys and polynomial additions on two
multiplied ciphertexts. 'us, we assume that there are
polynomial additions w � poly(λ, L). 'e final evaluated
ciphertext is bounded 2wB(N + 1)L. As long as this bound is
less than q/8, we can decrypt the evaluated ciphertext
correctly. We just set B(N + 1)L ≤ (1/4)

����
q/w


. 'en, it

satisfies B(N + 1)L ≤ q/8 so that GSW ciphertexts can be
decrypted correctly. Also, 2Bw(N + 1)L ≤ q/8. We can de-
crypt correctly evaluated ciphertexts through quadratic
computations on ciphertexts under two different keys. Now,
we conclude this in the following theorem.

Theorem 3. Given the parameters, a modulus q, a lattice
dimension n, a B− bounded distribution χ, and the max
circuit-depth L, set N � n × (log q + t1). If
B(N + 1)L ≤ q/8, we can decrypt correctly a ciphertext from
evaluating a depth-L circuit.

Theorem 4. Given the above parameters q, n, χ, B, L, N, and
w, that is, the number of additions of a quadratic function, if
B(N + 1)L ≤ (1/4)

����
q/w


, we can decrypt a ciphertext, that is,

from performing a quadratic computations on fresh GSW
ciphertexts under two different keys or evaluated ciphertexts
through a depth-L circuit under two different keys.

6.2. Security. 'e security of our scheme is dependent on
that of the GSW scheme. 'e inputs of the evaluation al-
gorithm are just the GSW-type ciphertexts, two public keys,
and some common parameters without other information of
private inputs. 'us, this process reveals no knowledge. In
the process of the decryption, the output of the first part is
indistinguishable with the uniform distribution because it
adds a fresh ciphertext of message 0 and introduces a new
noise in the intermediate result. So, we can conclude the
following theorem.

Theorem 5. Assume that the GSW scheme is semantically
secure, and so does our scheme. 9at is, if there exists a
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probabilistic polynomial time adversary A which can dis-
tinguish the distribution of the ciphertext of the GSW scheme
and the uniform distribution, we can construct another
probabilistic polynomial time adversary B which can dis-
tinguish the distribution of the ciphertext of our scheme and
the uniform distribution.

7. Conclusion

In this paper, we present an efficient algorithm of secure
computation on ciphertexts under two different keys. In
previous works, when evaluating multikey ciphertexts, the
size of the ciphertext grows with the number of participants
at a more or less linear rate. Although the size of the ci-
phertext remains invariant, it also provides auxiliary in-
formation of the plaintexts. We wanted to evaluate directly
on the GSW ciphertexts from two parties without any
auxiliary information or interaction between them. We
designed a scheme in which one can directly perform any
polynomial function on the GSW ciphertexts under two
different keys.
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With device-to-device (D2D) communication, user equipment can share data with each other without the involvement of network
infrastructures. In order to maintain the Quality of Service (QoS) and Quality of Experience (QoE) for user applications in D2D
communications, most existing schemes use proactive content caching that needs to predict content popularity before making
caching decisions which may result in privacy leakage, since the information of users is collected to train a deep learning-based
model to predict content popularity. -erefore, it is crucial to guarantee secure data collection in machine learning-based
framework. In this paper, we propose a privacy-preserving D2D caching scheme with a passive content caching strategy based on
node importance, which can deliver more efficient caching and prevent the potential leakage of user privacy. -e scheme is based
on softwaredefined networking (SDN), in which the controller is responsible for calculating node importance of devices according
to the information of requests and encounters collected by SDN switches. Base station will decide which device can establish
reliable and secure communication with content requester based on historical information. -e simulation results show that the
proposed strategy can outperform other D2D caching strategies in terms of cache hit rate and data rate.

1. Introduction

During the recent years, with the rapid development of the
mobile Internet, mobile data traffic has increased expo-
nentially. A Cisco VNI report predicted that 79% of global
mobile data traffic will be mainly generated from access to
video content by 2022 [1]. -e current wireless network is
facing huge challenges. To reduce the backhaul traffic and
base station load, device-to-device (D2D) communication
technology has emerged. User devices can directly establish
D2D communication links with other devices within the
communication range in the D2D communication network
without the use of base stations or other access points.

Research results have shown that most mobile traffic is
generated from repeated access to popular content [2, 3]. By
deploying caches in the core network [4], access network
[5–8], and user device [9, 10] in the 5G mobile commu-
nication network architecture, the popular content can be

cached at the network edges, which can effectively reduce
network congestion and improve network performance.-e
content is cached to the user devices, and a D2D caching
network is constructed. -us, user devices can share content
via the D2D communication link without the use of access
points, which can effectively reduce backhaul traffic and base
station load. -e caching mechanism can determine the
caching position and caching contents, is the kernel of the
D2D caching network, and determines the caching per-
formance. However, due to the heterogeneity of D2D
caching network, it is more vulnerable to security and data
privacy threats. It is important to find the trade-off between
the performance of security and the cost of protection. Most
existing D2D caching mechanisms belong to a proactive
caching mechanism that requires content popularity in
advance. Before a user sends a request, the content with
higher popularity is cached into the D2D caching network in
advance. Some owners of mobile devices may be curious
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about the content cached in their devices and scan the
caching content, which may result in privacy leaking [11].

During recent years, short videos distributed by users
have attracted massive traffic. -e QuestMobile report
indicates that the time spent by users in short video ap-
plications was 5.5% of the total time spent on mobile
applications in 2017. With the quick development of short
video applications, such as Bilibili and TikTok, a user can
distribute short videos whenever and wherever possible.
Short videos can be distributed and requested in a random
and burst manner. After popular videos are distributed,
they are accessed by massive users in a short period. For
example, one user distributed a short video on TikTok, and
it was accessed 30,000 times in a couple of minutes. In such
cases, a proactive caching strategy cannot predict the
popularity of popular video content in time. -us, the
cached contents cannot be updated in real time, which
results in massive ineffective caching and wastes network
resources.

Motivated by this, we propose a privacy-preserving
D2D caching scheme with passive content caching based
on node importance to update the cached contents in real
time, increase the cache hit rate, and preserve the user
privacy. Since the proposed caching scheme adopts a
passive caching strategy, the device can only cache the
content that it requests, which prevents the leakage of user
privacy. By using the network coding technology [12], the
diversity of the cached contents can also be improved in
limited cache size. It has been proved that using networking
coding in content caching can improve the security and
performance of the caching system [13]. -e SDN switch
collects the history request of the terminal devices and
meeting information among devices, and the SDN con-
troller can compute the node importance of the terminal
devices using the history information. Base station decides
which content holder can establish reliable and secure D2D
communication link with the content requester.-e cached
contents can be updated in real time based on user requests
and node importance.

-e contributions of this paper include the following:

(i) Firstly, we introduce a privacy-preserving D2D
caching scheme with passive content caching based
on node importance to improve the security and
performance of D2D caching network. -e device
with higher node importance and social trust will be
selected to establish reliable and secure D2D
communication link with the content requester.

(ii) -en, we define the node importance as the
weighted sum of the physical intimacy and request
similarity between devices, which also reflects the
social trust of the device.

(iii) Finally, we evaluate the performance of the pro-
posed D2D caching strategy and other two well-
known caching strategies. -e simulation results
show that the caching strategy based on node im-
portance proposed by this paper could effectively
improve network performance compared to the
other two caching strategies.

-e remainder of the paper is organized as follows. We
introduce related works in Section 2. In Section 3, we define
the node importance and propose a privacy-preserving D2D
caching strategy based on node importance. Simulation
results are presented in Section 4. Finally, we conclude the
paper in Section 5.

2. Related Work

If the popular content is cached in the user devices, it can
effectively reduce the backhaul traffic and the downloading
delay for users. -us, service quality and user experience can
be improved. Currently, most D2D caching mechanisms are
based on a proactive caching strategy, and the content
popularities are assumed to be known. Golrezaei et al.
[14, 15] divided the D2D network into multiple D2D
clusters, and only the devices in one cluster can establish the
D2D communication link. Based on this, the authors pro-
posed two in-cluster D2D caching strategies to improve
network performance of cellular networks, including de-
terministic cache and random cache based on Zipf. In the
deterministic caching mechanism [14], k devices can cache
nonrepeated k contents with the top popularities in one
virtual cluster and each device only caches one content. In
the random caching mechanism based on the Zipf distri-
bution [14], within one virtual cluster, each device can in-
dependently and randomly cache content and the
popularities of the content cached in the cluster obeying Zipf
distribution. Wang et al. proposed a novel D2D caching
strategy based on mobile perception, which takes the mo-
bility of users into account. -e low-speed and high-speed
moving user devices cache content with top popularities, and
user devices with middle-speed moving cache content with
lower popularities.-us, the offloading rate can be improved
[16]. Chen et al. modelled the offloading benefits and energy
consumption of content holders and proposed a proactive
caching strategy and user-oriented protocol to obtain higher
offloading benefits with lower energy consumption [17].
Malak et al. extended the caching mechanism based on the
geographical position and proposed a space-based caching
strategy to improve the cache hit rate. To reduce cache
redundancy and improve the diversity of cached contents, all
the devices in the mutual exclusion area cannot cache the
same content [18]. Wu et al. proposed a distributed D2D
caching strategy that considers the characteristics of dif-
ferent requests and demands of physical links [19]. Besides a
proactive caching strategy that assumes that the content
popularity is known, partial D2D caching mechanisms
predict content popularity by algorithms such as machine
learning. After the future content popularities are predicted,
the caching mechanism is determined. Jiang et al. modelled
the D2D caching as the multiagent and multiarm gaming
machine and determined the cache by using reinforcement
learning to reduce downloading delay for users [20]. Li et al.
optimized content caching and content distribution jointly
to reduce transmission delay and power consumption. -ey
deployed two potential recurrent neural network models,
echo state network (ESN) and long short-term memory
(LSTM), to predict mobility of users and future popularity of
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content and then determined the cached contents and cache
position. -e authors also proposed a content distribution
mechanism based on deep reinforcement learning to im-
prove user experience [21]. In another study [22], the au-
thors proposed a proactive caching strategy based on the
association between users and content. -ey predicted the
content popularity by using machine learning and collab-
orative filtering technology. -e content with higher pop-
ularities is precached to the base stations and user devices in
the low peak period to alleviate the backhaul congestion.
Chen and Yang proposed a D2D caching strategy based on
user preference to improve the offloading rate, which pre-
dicts user preferences by using a collaborative filtering al-
gorithm based on the model and then makes caching
decisions [23].

In summary, most D2D caching strategies are based on
proactive caching mechanisms and the content popularities
must be known or be predicted. -en, the caching decision
problem is transformed into optimization problems to find a
solution. -e prediction accuracy of future content popu-
larities decides the caching performance. However, the rise
of short video applications makes the proactive caching
strategy fail to precisely predict content popularities and
update cached content in real time. -us, caching perfor-
mance is reduced. Motivated by this, we propose a passive
D2D caching strategy based on node importance, and the
cached content can be updated in real time according to user
requests. Moreover, network coding technology is
employed, which can improve the diversity of the cached
content and increase the cache hit rate and data rate without
increasing the cache size.

3. System Design

3.1. Defining Node Importance. In this paper, we propose a
software-defined passive D2D caching strategy (NIC) based
on node importance. Different devices have different node
importance in the D2D network. In this system, the SDN
switch collects meeting information among user devices and
information of content requested by user devices to compute
the physical intimacy and request similarity among devices.
-e node importance is defined as the weighted sum of the
physical intimacy [24] and request similarity. For the
physical network layer, the user devices with higher node
importance will have a higher probability to establish stable
D2D communication links with other devices in the future.
For content requesting, the user devices with higher node
importance have a higher probability to request the same
content as other devices. In other words, the user devices
with higher node importance have a higher probability of
providing other user devices with requested content in the
future. -us, the devices with higher importance will cache
content with higher popularities, and the original blocks are
cached to reduce the network coding and decoding time and
computing consumption. -e devices with lower impor-
tance will cache contents with lower popularities, and the
coding blocks are cached to distribute contents in the
network more reasonably, improve caching diversity, and
increase the caching efficiency without increasing cache size.

-e physical intimacy between user devices indicates the
probability of establishing reliable D2D communication
links between two user devices in the future. When device Di

and device Dj are within the D2D communication range, the
two devices may have D2D communication potential, which
is recorded as one meeting between them. -e duration is
recorded as the meeting duration. Zhang et al. [24] proved
that the user meeting time obeys the gamma distribution
Γ(k, θ), namely, X ∼ Γ(k � (M2

ij/Iij), θ � (Iij/Mij)),
wherein

Mij �
fnXn

Nij

,

Iij �
n Xn − Mij 

2

Nij

,

(1)

where Xn indicates the nth meeting duration of device Di and
device Dj and Nij indicates the meeting count between
device Di and device Dj. -e physical intimacy cij ∈ [0, 1]

can be expressed as [24]

cij � 1 − 
Xmin

0
f(u; k, θ)du � 1 −

c k, Xmin/θ( ( 

Γ(k)
,

c k,
Xmin

θ
  � 

Xmin/θ( )

0
t
k− 1

e
− tdt,

(2)

where Xmin is the minimal meeting duration required by two
user devices to successfully transfer one file via the D2D
communication link. -us, the average physical intimacy ci

between device Di and other devices in the D2D caching
network is given by following:

ci �


n
j�1 cij

n
, (3)

where n is the quantity of the devices within the D2D
communication range of device Di. -e higher the physical
intimacy of the user device is, the higher its probability of
establishing a reliable D2D communication link with other
user devices in the future will be. As shown in Figure 1, the
average physical intimacy c1 of user device 1 is

c1 �


5
j�2 c1j

4
. (4)

Based on the history requests of the device, the SDN
controller can compute the request similarity sij ∈ [0, 1]

between user devices by using cosine similarity, which is
expressed as follows:

sij � cos wi,wj  �
wi · wj

wi

����
����2 wj

�����

�����2

, (5)

where wi and wj indicate the interest vector of device Di and
device Dj, respectively. -e average request similarity si of
device Di and the other devices in the D2D caching network
is
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si �


n
j�1 sij

n
, (6)

where n is the quantity of the devices within the D2D
communication range of device Di. -e higher the average
request similarity of the user device is, the higher the
overlapping degree of requested contents with other
devices will be. In this paper, we propose a passive
caching mechanism, namely, the user device only caches
the ever-requested content to satisfy other users’ requests
by providing other users with the desired content. -e
cached content in the user device with higher average
request similarity will have a higher probability to be
requested by other users. In this paper, we define the node
importance as the weighted sum of the physical intimacy
and request similarity. -e devices with higher node
importance will have a higher probability to provide
other user devices with requested content and receive
higher caching benefits. -e node importance Ii of user
device Di is given by the following equation:

Ii � αci + βsi, (7)

where ci is the normalized average physical intimacy of device
Di, si is the normalized average request similarity of device Di,
and α ∈ [0, 1] and β ∈ [0, 1] are the design parameters and
indicate the importance of physical intimacy and request
similarity. In this paper, α and β are set as 0.5.

3.2.D2DCaching Strategy Based onNode Importance. In this
system, to improve the caching efficiency, the base station
divides the content into m content blocks with the same size.
When device Di requests content f, it will first send the
request packet to the base station. If the D2D caching
network includes this content, the base station will locate a
group of user devices with hit caches and determine the
caching plan according to the node importance. If Ii of
device Di is higher, then device Di caches the original blocks.
If the node importance Ii of device Di is lower, then device
Di caches the coding blocks. -is is because the device with
higher node importance has higher request similarity with
other devices, namely, the cached content has higher
probabilities to be requested by other devices. -e devices
with higher node importance have a higher probability to
successfully establish D2D communication links with other
users and can ensure successful content transfer. -erefore,
the devices with higher node importance will cache content
with higher popularities and cache original content blocks to
improve the cache hit rate and reduce decoding/coding time
and computing consumption. -e devices with lower node
importance will cache contents with lower popularities and
cache coding blocks. Each coding block should include all
the original block information.-is can improve the content
diversity of the caching system without increasing the cache
size.

In the D2D caching network, the base station maintains
the D2D caching network information and locates a group of
user device with hit caches, namely, the content holder.
Infok indicates the caching information of cached content

fk in the D2D caching network, and
Infok � Info1k, . . . , InfoN

k , where N is the number of user
devices with cached content fk. -e content holders will be
ranked by the node importance in descending order. Info1k
indicates the caching information of content fk cached in
the user devices with highest node importance, and the
caching information is expressed as follows:

Info1k � Di, Ii,Vi, ni , (8)

where Di is the device ID, Ii is the node importance of device
Di, ni indicates the quantity of the cached original blocks or
coding blocks, Vi � vi1, . . . , vim , and vij ∈ 0, 1{ } indicates if
the cached content block in device Di includes the infor-
mation of the original content block j. If it is included, then
vij � 1; otherwise, vij � 0. When Vi is an all-1 vector and
ni ≠m, it indicates that the user device caches the coding
blocks of content fk.

When device Di requests content fk, the base station will
find the D2D cache information table and check if the D2D
caching network can satisfy the user requests. If the quantity
of the content blocks cached in the D2D caching network is
more than or equal to m, then the base station selects a group
of content holders with higher node importance, and the
selected content holders will establish D2D communication
links with the device Di to transfer corresponding content
blocks. If the D2D caching network cannot satisfy the user
requests, the base station will send (m − m′) content blocks
to respond to device Di, where m′ is the quantity of the
content blocks cached in the D2D caching network, as
described in Algorithm 1. -e complexity of Algorithm 1 is
O(n), where n is the number of content holders.

In this system, the base station selects a group of content
holders with higher node importance and social trust to
establish reliable and secure D2D communication links to
transmit desired content. Moreover, the base station is also
responsible for making caching decisions and instructing
how the user devices cache the received content blocks. If the
request is from users with higher node importance, then it
indicates that caching the content in content requester will

1

2
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5

C12

C15

C13

C14

Figure 1: Example of physical intimacy.
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bring benefits with a higher probability, i.e., higher cache hit
rate. When the base station responds to the device request,
it will send the original block and instruct the user devices
to cache the original block. Otherwise, when the base
station responds to the user request, it sends the coding
blocks generated with all the original blocks and instructs
the user devices to cache the coding blocks. For details,
refer to Algorithm 1. To prevent users from receiving the
linearly dependent coding blocks, the user device only
caches the coding blocks sent by the base station and does
not cache coding blocks obtained by D2D communication
links.

When content requester Di receives the content blocks
from the base stations or other devices, it will decide
whether to cache the received contents based on cache
identifier fq. If fq � 1, then the content will be cached
locally; otherwise, the content will not be cached. Since the
cache size of the device is limited, when the caches are
replaced, the user device codes the replaced content blocks
into a coding block. In this way, all the original block

information of this content will be reserved while the cache
size is released to improve the diversity of the caching
contents.

4. Experimental Results and Analysis

In the simulation test, the radius of the base station was
500m and a total of 100 devices were provided. -e max-
imum D2D communication distance was 100m. -e D2D
communication belongs to the in-band communication,
namely, the D2D communication shares the bandwidth with
cellular communication [25]. -e cache size of the device
included 1, 2, 5, 8, 10, 15{ } files, and the number of files was
500. -e user request obeyed the Poisson distribution, the
popularities of the content obeyed the Zipf distribution, and
the Zipf parameter was α ∈ 0.56, 0.8, 1, 1.2, 1.5{ }. In the
simulation test, the passive caching strategy NIC in this
paper was compared with the passive caching strategy, Leave
Copy Everywhere (LCE), and the proactive caching strategy,
Most Popular Cache (MPC). For the LCE, all the received

Input: α, β;
Output: fq, nc //fq is the cache identifier, nc is the code identifier, 0 indicates the original block, and 1 is the coding block;

(1) Initialization: fq � 0, nc � 0;
(2)-e SDN switch collects the request records and interactive information of the devices and periodically sends it to the SDN

controller;
(3)-e SDN controller computes the node importance of the device according to the history information collected by SDN switches,

namely, Ii:
(4)While BS receives the request from device Di for content fk do
(5) if the node importance of device Di is higher then
(6) Make fq � 1, nc � 0;
(7) else
(8) Make fq � 1, nc � 1;
(9) end if
(10) if m′(m′ ≥m) content blocks are cached in the D2D caching network then
(11) BS locates a group of cached content holder Dj with the top node importance to respond to the user request;
(12) for each cached content holder Dj do
(13) if the cached content is the original block then
(14) make fq � 1;
(15) else
(16) make fq � 0;
(17) end if
(18) BS sends data packets (fk, nj, fq) to the content holder;// nj is the number of content blocks to be sent by content holder

Dj to the requester
(19) After content holder Dj receives the data packets from BS, it will establish the D2D communication link with device Di and

transfer the data packet (fk, block(s), fq);// block(s) is the coding block or content block;
(20) end for
(21) else
(22) if nc � 0 then
(23) BS sends (m − m′) original blocks to the content requester device Di, namely, (fk, blocks, fq);
(24) else
(25) BS sends (m − m′) coding blocks to the content requester device Di, namely, (fk, blocks, fq);
(26) end if
(27) end if
(28) end while

ALGORITHM 1: D2D caching strategy based on node importance.
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content will be cached by requester. For the MPC, the most
popular content will be cached into devices in advance. -e
strategies were assessed by the cache hit rate and data rate.
-e cache hit rate was defined as the ratio of the number of
requests responded by user devices to the total requests sent
by user devices, which is an important parameter to assess
the performance of the caching system. When device Di

requests contents from the base station via cellular com-
munication, the data rate RB,i is defined as follows [24]:

RB,i � Wlog2 1 +
PB hBi



2

j′βj′iPj′ hj′i




2

+ N0

⎛⎜⎜⎝ ⎞⎟⎟⎠. (9)

When device Di requests contents from device Dj via
D2D communication, the data rate is defined as follows [24]:

Rj,i � Wlog2 1 +
Pj hji




2

PB hBi



2

+ j′ ≠ jβj′iPj′ hj′i




2

+ N0

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(10)

where PB, Pj, and Pj′ indicate the transmission power of the
base station, device Dj, and device Dj′; N0 is the Gauss white
noise; |hBi|

2 and |hj′i|
2 are the path loss and are related to

communication distance; βj′i � 1 indicates interference; and
βj′i � 0 indicates no interference.

-e influences of the cache size on the three caching
mechanisms are shown in Figures 2 and 3. As shown in
Figure 2, the cache hit rate of the three caching mecha-
nisms increased with the growth of the cache size. -is is
because with the growth of the cache size of the user
device, more files can be cached in the D2D caching
network to make more requests responded to by other
terminals. In this case, it can reduce the base station load
and backhaul traffic to improve the data rate, as shown in
Figure 3. As shown in Figures 2 and 3, the cache hit rate
and data rate of the NIC caching strategy proposed in this
paper were higher than those of the other two caching
strategies. -e NIC strategy deploys caches and imple-
ments differential caching strategies according to the
content popularities and node importance. -us, the
content can be distributed more reasonably in the D2D
caching network and more content can be obtained via
D2D communication. It can reduce the base station load
and improve the caching hit rate. Compared to the other
two caching strategies, the NIC mechanism can consider
the physical intimacy between user devices and make the
cache hit node closer to the request devices and obtain a
higher data rate.

-e influences of the Zipf parameters on the three
caching mechanisms are shown in Figures 4 and 5. -e
bigger the Zipf parameter is, the more similar the user re-
quests will be, and there will be a greater repeated request
time for a small part of the files. As time elapses, the cached
contents in the D2D network increase, and the cached
contents are centralized in a small number of files. -en,

users have a higher probability to receive files via the D2D
communication link. -us, the cache hit rate and data rate
of the three caching mechanisms grow as Zipf parameters
enlarge. -e caching performance of NIC was always su-
perior to the other two caching strategies, which was more
significant when the Zipf parameter was smaller. -e
reason for this is that NIC can improve the diversity of the
cached contents and improve caching performance by
using network coding technology without increasing the
cache size.
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Figure 3: Influences of cache size on the data rate.
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5. Conclusion

In this paper, we propose a privacy-preserving D2D caching
strategy based on the node importance, which can improve
the diversity of the cached content by using the network
coding technology and preserve the privacy of users and
data. -e SDN switch collects the information of requests
and meeting information of the devices, and the SDN
controller can compute the physical intimacy and request
similarity between user devices and other devices by using
the history information collected by SDN switches to obtain
the node importance of the device. -e node importance is

defined as the weighted sum of the physical intimacy and
request similarity. -e nodes with higher importance have
higher cache benefits and will cache the original blocks; the
nodes with lower importance have lower cache benefits and
will cache the coding blocks to make the cached contents be
distributed more reasonably in the network. Base station will
decide which device can establish reliable and secure
communication with the requester based on historical in-
formation, which reflects the importance and social trust of
devices. -e simulation results show that the caching
strategy based on node importance in this paper could
improve the cache hit rate and data rate and effectively
improve the performance and security of the caching net-
work compared to the other two proactive and passive
caches.
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Based on the research of business continuity and information security of the Internet of ,ings (IoT), a key business node
identification model for the Internet of ,ings security is proposed. First, the business nodes are obtained based on the business
process, and the importance decision matrix of business nodes is constructed by quantifying the evaluation attributes of nodes.
Second, the attribute weights are improved by the analytic hierarchy process (AHP) and entropy weighting method from
subjective and objective dimensions to form the combination weight decision matrix, and the analytic hierarchy process and
entropy weighting VIKOR (AE-VIKOR) method are used to calculate the business node importance coefficient to identify the key
nodes. Finally, according to the NSL-KDD dataset, the network security events of IoT network intrusion detection based on
machine learning are monitored purposefully, and after the information security event occurs in the smart mobile phone, which
impacts through IoT on the business system, the impact of the key business node on business continuity is analyzed, and the
business continuity risk value is calculated to evaluate the business risk to prove the effectiveness of the model. ,e experimental
results of the civil aviation departure business show that the AE-VIKORmethod can effectively identify key business node, and the
impact of the key business node on business continuity is analyzed, which further proves the efficiency and accuracy of the model
in identifying the key business node.

1. Introduction

Nowadays, with the rapid development of the Internet of
,ings, related research fields are more concerned about
information security and business continuity. ,e Internet
of things (IoT) and mobile technology [1] make multisystem
cooperation more convenient, the multisystem cooperation
is closely related to its business continuity. ,erefore, due to
the application of the IoT technology, when an information
security event occurs [2], it may lead to delay or stagnation of
business execution, which will inevitably affect business
continuity. ,e security of the Internet of ,ings is one of
the hotspots in various academic fields, such as information
security and machine learning. In particular, machine
learning is used for intrusion detection of the IoT. Belouch
et al. [3] used a machine learning analysis framework to

detect any anomalous events occurring in the network traffic
flow. Liu et al. [4] examined specific attacks in the NSL-KDD
dataset that can impact sensor nodes and networks in IoT
settings and studied eleven machine learning algorithms to
detect the introduced attacks. Xie et al. [5] designed a
monitoring mechanism to detect link-flooding attack (LFA)
based on the availability of the crucial links and trace route
flows for IoT security. Yang et al. [6] proposed a malicious
node detection model based on reputation with enhanced
low energy adaptive clustering hierarchy (Enhanced
LEACH) routing protocol for wireless network security.

Based on the management of business continuity, at
present, there are many achievements in the research of
business continuity security [7–13]. Key business node
identification is very important for business recovery, which
is one of the research hotspots in the field of risk assessment
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for the business process. Ali et al. [14] proposed a business
continuity risk assessment framework for IoTservices. Given
the problems of information security risk assessment and
business continuity management, Torabi et al. [15] put
business continuity risk management into the framework of
information security risk assessment through business
continuity risk analysis. Belov et al. [16] proposed a risk
value calculation of the business completion rate by studying
the situation of the business resource completion rate and
quantitatively assessed the business system risk. Hariyanti
et al. [17] proposed a new information security risk as-
sessment model based on the business process to improve
the model based on the organization’s assets. Silmie et al.
[18] proposed a business continuity plan framework, which
is a procedural guidance to create plans that prevent, pre-
pare, respond, manage, and recover a business from any
disruption. Diesch et al. [19] developed a comprehensive
model of relevant management success factors for organi-
zational information security to make appropriate decisions.
,e Vise Kriterijumska Optimizacija I Kompromisno
Resenje in Serbian (VIKOR) method [20] is one of the
common methods of multiattribute decision-making, which
is often used in risk assessment, economics, management,
and other hot fields. Yang et al. [21] proposed a hybrid
multicriteria decision-making model based on the intui-
tionistic fuzzy number, extended Decision-Making Trial and
Evaluation Laboratory (DEMATEL) method, and VIKOR
algorithm to assess the information system security risk.
Mohsen et al. [22] proposed an extended VIKOR method
based on entropy measure for the failure modes of the
geothermal power plant risk assessment. Han et al. [23] used
the modified VIKOR method to identify and preferentially
reinforce critical lines for skeleton-network of power sys-
tems. ,e Technique for Order Performance by Similarity to
Ideal Solution (TOPSIS) method [24, 25] is also one of the
classic multiattribute evaluation methods, which is com-
pared with the method in this paper. In summary, the paper
uses the AE-VIKOR method with combined weighting for
eliminating the subjective influence of some attributes to
identify effectively the key business node. ,e model ana-
lyzes the impact of key business nodes on business conti-
nuity and further proves the effectiveness of key
identification.

,e main contributions of this paper can be summarized
as follows. A key business node identification model for
Internet of ,ings security is proposed. ,e model in this
paper identifies effectively the key business node and ana-
lyzes its impact on business continuity. ,e model is mainly
focused on the following.

(1) ,e combined weighting from the subjective and
objective dimensions is used to improve the attribute
weights of the VIKOR method to identify the key
business node. Compared with the single weighting
method, such as the AHP method, the combined
weighting makes the results more accurate, which is
verified by experiments.

(2) After the information security event occurs in the
smart mobile phone, which impacts through IoT on

the business system, themodel can be used to analyze
the impact of the key business node on business
continuity. For the specific business of the business
process, this model analyzes the number of business
users, business average execution time, and resource
utilization.

(3) According to the business user number, business
average execution time, and resource utilization, the
business continuity risk value is calculated and re-
alizes properly the risk assessment of business
continuity in the model.

(4) In this model, the decision coefficient is selected
reasonably by the experiment to realize accurate
identification of key business node. Compared with
other multiple attribute decision-making cases, such
as using the VIKOR method to select coal suppliers,
it is novel that the paper analyzed the influence of
different decision mechanism coefficients on the
identification results. After the key nodes are iden-
tified by this model, the key nodes are further an-
alyzed to facilitate the analysis of the impact of
business continuity.

,e organization of this paper is described as follows. In
section 2, a key business node identification model for the
Internet of ,ings security is proposed. ,e key business
node identificationmodel is composed of four modules: data
preparation module, data operation module, decision
module, and analysis module. In section 3, the data prep-
aration module and the data operation module are described
in detail. ,e decision module and analysis module are
expounded in section 4. In section 5, the effectiveness of the
model is verified by analyzing the business continuity of the
departure business and the loading business. Conclusion is
given in section 6.

2. Key Business Node Identification Model

,e key business node identification model is composed of
four modules: data preparation module, data operation
module, decision module, and analysis module. ,e
framework diagram of the model is shown (see Figure 1).

,e function design of each module in the model is as
follows.

(1) Data preparation module: according to the business
process, the business node set to be evaluated is
obtained, and the node importance decision matrix
is obtained from the business node set and the
evaluation attribute.

(2) Data operation module: in this module, AHP sub-
jective weighting and entropy objective weighting
methods are used.,e decisionmatrix is weighted by
the combined weight from the subjective and ob-
jective dimensions, and the node importance com-
bined weight decision matrix is formed.

(3) Decision module: in this module, the combination
weights are used to improve the attribute weight of
the VIKOR method to get the node importance
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coefficient and rank it. ,e key business node is
identified in this model.

(4) Analysis module: when information security events
occur, business continuity faces risks. ,e impact of
key business nodes on business continuity is ana-
lyzed in this module, the business continuity risk
value is calculated, and business continuity risk as-
sessment is carried out.

3. Data Preparation Module and Data
Operation Module

3.1. Data PreparationModule. IoT allows billions of devices
as well as virtual environments to exchange data with each
other intelligently. For example, smartphones have become
an important personal assistant and indispensable part of
people’s everyday life and work.With such a large amount of
data, the model first analyzes business processes to better
analyze business continuity. ,rough the analysis of the
business process, this model extracts all businesses into
nodes to form the business node set to be evaluated, which is
recorded as M � n1, n2, n3, . . . , nm . M is the business node
set to be evaluated. ,e set indicates that there are m nodes
in the business process, which are numbered as
n1, n2, n3, . . . , nm..

Considering business importance from multiple per-
spectives makes the identification of key business more
effective. ,erefore, this paper selects three factors to
evaluate business importance, which are business node
relevance, business user, and business priority.

,e specific process of indicator quantification of the
business node importance attribute is as follows.

First, according to the theory of business process and
complex network node centrality [26], business relevance is
considered to assess business importance, and business
relevance value can be measured according to the direct
relationship between other business nodes and the business

node. ,e value of business node relevance is calculated
according to (1). ,e larger the business node relevance
value is, the more important the business is:

gi �
hi

(m − 1)
, (1)

where gi is the ratio of the number of connected nodes of
business node i to the total number of nodes except for node
i. ,e larger the value is, the more important the business
node is. hi is the number of nodes directly connected to node
i. m is the total number of business nodes.

Second, the business user importance is used to evaluate
business importance. ,e types of business users are divided
into staff, ordinary users, and both staff and ordinary users.
In this paper, levels one, two, and three are assigned to
business user types.

Different types of users have different initial values. ,e
larger the value is, the more important the business is. ,e
importance levels for business user type values are defined in
Table 1.

Finally, business priorities based on different business
service types are used to evaluate business importance. ,e
higher the business priority level, the higher the importance
of business.

,e business priority assignment is based on the service
characteristics and application types of the business. ,e
business priority level is divided into levels one, two, three,
and four. ,e assignment is shown in Table 2.

,e data preparationmodule forms the node importance
decision matrix X through the quantification of attributes
and the nodes obtained. Due to the different dimensions of
each attribute, matrixX is normalized by (3) for comparison.
,e standardized matrix is written as R.

X �

x11 x12

x21 x22

x13

x23

⋮ ⋮

xm1 xm2

⋮

xm3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

rij �
xij − x

min
j 

x
max
j − x

min
j 

, (3)

where xmax
j � max xi1, xi2, xi3  and xmin

j � min xi1, xi2, xi3 

in (3).

3.2. Data Operation Module. To eliminate some subjective
influence of attributes and enhance the accuracy of the
model, this paper uses the combined subjective and objective
weighting method to determine the attribute weight.

,e AHP method is one of the common methods to
calculate the subjective weight. First, three attributes are
compared.,e business relevance is the local attribute of the
business nodes, and its impact is relatively low. When the
business user directly affects business operations, the impact
of the user is stronger than that of the business relevance,

Obtain business nodes set

Node importance decision matrix
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Key node identification
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Figure 1: Key business node identification model for business
process.
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and the impact of the business type is greater than others.
,erefore, the comparison of the attribute of node impor-
tance evaluation is shown in Table 3.

where 2 and 4 indicate that the influence degree of at-
tribute i and attribute j is between 3 and 5.

,e subjective weighting steps are as follows.

Step 1: according to the subjective influence of business
attributes on business importance, an initial compar-
ison matrix A is constructed.

A �

1
1
3

1
5

3 1
1
3

5 3 1
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. (4)

Matrix A is normalized to form matrix B according to
the following:

B �
Aij


3
j�1 Aij

, (5)

B �

1
9

1
13

1
23

1
9

3
13

5
23

1
9

9
13

13
23
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. (6)

Step 2: calculate the sum of each row of matrix B and
get set S which is {0.3185, 0.7815, 1.9000}. ,e set is
standardized to get the other set S1 which is {0.1062,
0.2605, 0.6333}. ,e element of set S1 is the subjective
weight.

,e AHP method coordinates the importance of each
attribute to avoid the contradiction of each scheme.

,erefore, it is necessary to meet the consistency test. After
the consistency test, the calculation of consistency test index
CI is shown as follows:

CI �
λmax − n( 

(n − 1)
, (7)

AW � λmaxW, (8)

where λmax is the maximum eigenvalue and W is the
maximum eigenvector in (8).

After testing, the subjective weight assignment conforms
to the consistency test index.,erefore, the subjective weight
of each attribute is obtained which are wA

1 � 0.1062,
wA

2 � 0.2065, and wA
3 � 0.6333.

Entropy weighting is one of the classical methods to
calculate objective weight. Using entropy value to modify the
index weight provides a more reliable basis for the evalu-
ation of business importance. ,e objective weight is cal-
culated as follows:

Sij �
rij


m
i�1 rij

, (9)

ej � −k 

n

j�1
Sij ln Sij, j � 1, 2, . . . , n, (10)

wj �
1 − ej


n
j�1 1 − ej

, (11)

where Sij is the proportion of each indicator of each node in
(9), and ej is the information entropy of the j-th index. ,e
objective weight of each attribute is obtained, which are
defined as wO

1 , wO
2 , and wO

3 .

Table 2: Business priority assignment.

Business Service Application type Business priority
Background Without time delay No special requirement for the business transmission time 1
Interactive On demand response Online data interaction of business characterized by the request response mode 2
Flow pattern Time delay Real-time business with low interaction 3
Conversation Time delay strictly Real-time business with high quality interaction 4

Table 3: Importance level of business user type.

Meaning Value
Attribute i has the same effect as attribute j 1
Attribute i has a stronger influence than attribute j 3
Attribute i is an absolutely stronger influence than
attribute j 5

Table 1: Importance level of business user type.

Category Value
Ordinary users 1
Staff member 2
Both staff and ordinary users 3
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Combined weight combines subjective weight and ob-
jective weight. ,e weight matrix Y is constructed based on
the subjective and the objective method. ,e combined
weight of attributes is calculated by (9)–(11) which is defined
as wz � (wz

1, wz
2, wz

3):

Y �

w
A
1 w

O
1

w
A
2 w

O
2

w
A
3 w

O
3
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, (12)

RTY 
T
RTY  X∗ � λmaxX

∗
, (13)

W � YX∗, (14)

w
z
i �

w
∗
1


3
j�1 w
∗
j

,
w
∗
2


3
j�1 w
∗
j

,
w
∗
3


3
j�1 w
∗
j

⎛⎝ ⎞⎠, (15)

C � w
z
i × R, (16)

where λmaxand X∗ are the largest eigenvalue and the largest
eigenvector of R, respectively, in (13). ,e standardized
decision matrix C of node importance combined weight is
calculated by (16).

4. Decision Module and Analysis Module

4.1.DecisionModule. ,e importance coefficient of business
is calculated and sorted based on the AE-VIKOR method in
the decision module. ,e AE-VIKOR method improves the
evaluation attribute weight of the VIKOR method by
combined weighting in the data operation module detailed
in section 3.

VIKOR method is one of the common methods of the
multiattribute decision model. ,e method considers both
the maximum group utility and the minimum individual
regret effect of the object; VIKOR method focuses on
ranking and selecting from a set of alternatives and deter-
mines compromise solutions for a problem with conflicting
criteria, which can help the decision-makers to reach a final
decision.

,e value of the maximum group utility is measured by
Ui, the value of the minimum individual regret effect is
expressed by Ki, and Qi is the decision value, which is
calculated by the following:

Ui � 
3

i�1
w

z
i cij, (17)

Ki � maxi w
z
i cij , (18)

Qi � v
Ui − U

∗

U
−

− U
∗ +(1 − v)

Ki − K
∗

K
−

− K
∗, (19)

where v is the coefficient of the decision-making mechanism
in (19), U∗ � miniUi, U− � maxiUi, K∗ � miniKi, and

K− � maxiKi. ,rough comparative experimental analysis
in section 5, in order not to lose the generality, this paper
selects v � 0.5.

AE-VIKOR method is also a compromise ranking
method, the feasible solution of which is closest to the ideal
solution. ,erefore, the AE-VIKOR method is without loss
of generality to meet the following two conditions.

Condition 1. Acceptable advantage. ,e first two nodes in
sorting are Qi and Qj. ,e conditions shown in formula (16)
need to be met, where m is the number of business nodes.

Qi − Qj ≥
1

(m − 1)
. (20)

Condition 2. Acceptable stability. ,e importance coeffi-
cients of key business nodes rank first in Ui and Ki.

If the aforementioned two conditions aremet at the same
time, the model recognition results are considered valid. ,e
value of Qi calculated based on the AE-VIKORmethod is the
business importance coefficient.,e key business node is the
largest business importance coefficient. ,rough the cal-
culation of the AE-VIKORmethod, the business importance
coefficient is between [0, 1].

4.2. Analysis Module. ,e information security of IoT is
closely related to business continuity management in the
Internet era. When an information security event occurs in
the system, it will affect the business continuity for the
business process.

When a threat makes use of the vulnerability of IoT,
information security events will appear, such as natural
disaster events, infrastructure failures, network attacks,
technical failures, and malicious code attacks. ,erefore, it
shows the relationship between information security and
business continuity (see Figure 2).

,e risk value of business continuity is calculated by
combining the importance coefficient of key business
according to the number of business users, average execu-
tion time of business, and resource utilization in this paper.

In this paper, the maximum of business user’s numbers,
average execution time, and resource utilization are, re-
spectively, set as umax, rmax, tmax. When an information se-
curity event occurs, the number of business users, business
execution time, and resource utilization rate at i time are
defined as ui, ri, ti. ,e business continuity risk value is
calculated by the following:

Pi � 1 −
1
3

 
 ui, ri, ti( 

umax, rmax, tmax( 
, (21)

ΔP � P1 − P2, (22)

L � Qi ∗ΔP, (23)

where Qi represents the business importance coefficient,
which can be calculated by the AE-VIKOR method in
section 3. L represents the business continuity risk value,
which is an important basis for the business continuity risk
assessment level.
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On calculating according to (21)–(23), the business
continuity risk value L is an important basis for the business
continuity risk assessment level. Because the value range ΔP
is between 0 and 1, and the business importance coefficient is
between 0 and 1, business continuity risk is classified
according to business continuity risk value. When the risk
value of business continuity is higher than 0.15, it is con-
sidered that business continuity is at higher risk. Business
continuity changes with the change of business execution
time.,e experimental results based onmobile devices show
that, after the completion of service execution time, the
business continuity risk value calculated by the model does
not exceed 0.15. ,erefore, the use of academic language to
describe business continuity risk is shown in Table 4. ,e
business risk value is between 0 and 0.15, so the risk level of
business continuity is shown in Table 4.

5. Experimental Results and Analysis

,e civil aviation industry is one of the key industries of
information security. Due to the convenience of IoT, it is very
common for the public to handle the departure business on
mobile devices. In particular, the check-in service is carried
out through the IoT technology on the smart mobile devices.
However, information security appears in the smart mobile
devices, and other services connected through IoT technology
will also be affected. As one of the core business systems in the
field of civil aviation, departure system security is of great
significance. To ensure the operation safety of the civil avi-
ation business, this paper studies the potential security risks
and possible risks of civil aviation information.,erefore, it is
of great significance to analyze the implementation and
business continuity of the key services of mobile devices.

5.1. Key Node Identification. According to the NSL-KDD
dataset, the network security events of IoTnetwork intrusion
detection based on machine learning are monitored pur-
posefully, and the risk of business continuity caused by the
key business is analyzed. Once the information security
event occurs in the smart mobile phone, which impacts
through IoT on every business of the system, it will cause a
great threat to civil aviation security.

,erefore, the experimental object of this paper is the
departure business process of civil aviation. Its business
process is shown (see Figure 3). Specific experimental steps of
calculating the business importance coefficient are as follows.

Step 1. Obtain the business node set.
,is experiment needs to evaluate the importance of all

business nodes in the departure business process. ,erefore,
all businesses in the departure business process are extracted

into nodes to form the business node set to be evaluated,
which is recorded asN � n1, n2, n3, n4, n5, n6, n7, n8, n9 , and
represents establish flight information, flight data control
prepared flight, loading preparation flight, check-in, mon-
itoring the check-in flights, end check-in, end monitoring,
loading closure, and flight closure, respectively.

Step 2. Construct the decision matrix of node importance.
,e decision matrix of node importance is formed by the

node and the attributes of each node. According to the
assignment of node attribute indicators in the data prepa-
ration module, the assignment of departure business node
importance attribute indicators is shown in Table 5.

,e node importance decision matrix X is formed
according to the business nodes and quantitative values of
each attribute shown in Table 5.

After (3) is standardized, the standardized node im-
portance decision matrix R is formed:

R �

0.2917 0.4330 0.1961

0.4376 0.2887 0.1961

0.2917 0.4330 0.3922
0.5835 0.4330 0.5883

0.1459 0.2887 0.3922

0.2917 0.2887 0.1961
0.1459 0.2887 0.1961

0.2917 01443 0.1961

0.2917 0.2887 0.1961
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. (24)

Threaten Affect

Business
system 

Key 
business

Business 
continuity

Analysis

Information
 security

Figure 2: Relationship between information security and business
continuity.

Table 4: ,e risk level of business continuity.

Business continuity risk value Business continuity risk level
0∼0.05 Low
0.05∼0.10 Medium
0.10∼0.15 High
L≥ 0.15 Higher risk

Establish flight 
information 

Flight data control 
prepared flight 

Loading 
preparation flight 

Check-in

End monitoring 

Loading closure

Monitoring check-in 
flights 

End check-in

Flight closure 

Figure 3: Framework diagram of departure business.
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Step 3. Calculate the combined weight.
,e combined weight is calculated.,e subjective weight

is wA � {0.1062, 0.2605, 0.6333}, which is calculated by the
AHP method. According to the objective weight calculated
by the entropy method, wO � {0.3273, 0.3298, 0.3429}
according to (9)–(11), and the combined weight of the two is
wZ � {0.2228, 0.2756, 0.5016} according to (13)–(16).

Step 4. Key business node identification.
Node importance ranking based on the AE-VIKOR

method in section 4 and the importance coefficient of
departure business node are calculated as Qi � {0.1975,
0.1464, 0.5199, 1.000, 0.4844, 0.4947, 0.1048, 0.057, 0.1176}
according to (13)–(15). ,e recognition results of the
model meet two conditions after testing according to
(16)–(19), and then the identification result of the key
node identification model is regarded as valid. It can be
seen that the most important factor of n4 is the node. It is
the check-in business that is the key business of the de-
parture system.

5.2. Business Continuity Analysis. When a threat makes use
of the vulnerability of IoT, an information security event
occurs in the passenger check-in system, and the maximum
number of business users, average execution time, and re-
source utilization rate of the passenger check-in system at T0
time, respectively, correspond to 1000, 10 s, and 90%.

After the information security event occurs in the check-
in system at T0 time, the check-in system data within 1 h can
be obtained through monitoring. Table 6 shows the exe-
cution of the check-in business at T1, T2, T3, T4 after the
information security event.

To compare with the check-in, when the information
security event occurs in the loading system at the time, the
system data within 1 h is monitored and obtained. Problems
in the loading system affected the loading fight business and
loading closure business.

Execution of the loading preparation business after the
information security event is shown in Table 7. ,e exe-
cution of the loading closure business after the information
security event is shown in Table 8.

,e data in Tables 6–8 show, after the occurrence of
information security incidents, the three factors related to

business continuity, namely, the number of business users,
average execution time of business, and change of resource
utilization rate with time.

,e time of the loading system is inconsistent with the
time of the aforementioned passenger check-in system, and
the time of information security incident is inconsistent,
while the monitoring time and time interval are consistent.
,erefore, the business continuity risk value and assessment
level are shown in Figure 4 at the same time.

,e data of check-in business and loading business at
every moment shows the degree of business continuity risk
in Figure 4.

When an information security event occurs at T0 time, it
can be seen from Figure 4 that the business continuity risk
value of check-in business increases rapidly after the time,
while that of the loading fight business is relatively slow
compared with check-in business. ,e data of the loading
closure business shows it has the least impact on business
continuity and the change degree of business continuity risk
of the loading closure is the least.

At T4 time, the value of the business continuity risk of
the check-in business is 0.1426, and it is close to the higher
risk.,e data shows that the business continuity risk value of
loading fights business within T4 time is slowly increasing,
and the risk of the loading fights business at T4 time is
0.0654, and the corresponding risk level of business conti-
nuity is medium. At T4 time, the risk of the loading closure
business is 0.0086. Its risk increases more slowly with the
change of time. ,e corresponding risk level of business
continuity is low at T4 time.

,erefore, the experiment further proves the validity and
accuracy of the key business node identification model based
on the AE-VIKOR method, and the impact of key nodes on
business continuity is clearly demonstrated in Figure 4.

5.3. Comparison of Key Business Identification Methods.
In this paper, the AE-VIKORmethod is used to calculate the
importance coefficient of civil aviation departure business
nodes, and the AE-VIKOR method is compared with the
other five methods. ,e importance coefficient calculated by
each method for each node is shown in Table 9. ,e cal-
culation method and business node ranking of several
business nodes are shown (see Figure 5) to clearly describe
the difference between each method. ,erefore, the value in
Figure 5 corresponds to the importance coefficient calcu-
lated in Table 9.

As can be seen from Figure 5, the AE-VIKOR method is
more accurate than the other four methods. AHP-VIKOR
and Entropy-VIKOR methods consider attribute weight
from a single perspective, and then, the evaluation results
from subjective or objective perspectives are biased. ,e
VIKOR method does not consider attribute weight and it is
not an accurate assessment of business importance from
multiple perspectives. ,e DEMATEL and AHP methods
are used to calculate the subjective weight. By comparison,
the weight calculated by the AHP method is better than that

Table 5: Assignment of the important attribute index of departure
business nodes.

Node Business relevance Business user Business priority
n1 0.2500 3 1
n2 0.3750 2 1
n3 0.2500 3 2
n4 0.5000 3 3
n5 0.1250 2 2
n6 0.2500 2 2
n7 0.1250 2 1
n8 0.2500 1 1
n9 0.2500 2 1
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by the DEMATEL method. For example, there is not much
difference between the value of n1 and that of n2 calculated
by the DEMATEL-Entropy-VIKOR method, and the dif-
ference in importance is not clearly expressed. However, the
AE-VIKOR method clearly shows the difference in im-
portance coefficients between the two nodes.

In this paper, the combined weight is applied to the
TOPSIS method and compared with the AE-VIKOR
method. ,e results show that the business importance
coefficients of n1, n3, n5 calculated by the TOPSIS method are
also biased compared with the AE-VIKOR method (see
Figure 5). ,erefore, this paper uses the AHP method to
calculate the subjective weight of attributes and uses the
entropy method to calculate objective weights. From these
two dimensions, the combined weights are considered to
improve the attribute weights of the VIKOR method and
further improve the model recognition effect. ,is paper
uses the AE-VIKOR method to calculate the business im-
portance coefficient to ensure the accuracy of the results to
facilitate the analysis and management of business
continuity.

5.4. Comparative Experiment on the Coefficient Selection of
Decision Mechanism. ,e evaluation results of the AE-
VIKOR method are different due to different coefficients of
decision mechanism v. It is very important to choose the
coefficient of decision mechanism reasonably for the eval-
uation result of the method. To adopt a reasonable and
efficient decision mechanism, coefficient v is designed to be
0.2, 0.4, 0.5, 0.6, and 0.8, in this paper. ,e importance

coefficient of departure business node is calculated and
analyzed. ,e evaluation result is shown (see Figure 6).

It can be seen from Figure 6 that when v � 0.5, the
calculation of the importance coefficient of each node is
accurate and the difference is obvious.,erefore, to improve
the universality of the model. ,e decision mechanism
coefficient v of the AE-VIKOR method is set to 0.5.

Table 7: Execution of the loading fight business after an information security event.

Time Number of business users Business average execution time/s Resource utilization
T0 100 5.0 98
T1 80 6.5 81
T2 55 7.2 69
T3 30 7.8 50
T4 10 8.0 28

Table 8: Execution of the loading closure business after an information security event.

Time Number of business users Business average execution time/s Resource utilization (%)
T0 800 3.0 95
T1 675 4.0 72
T2 574 4.3 63
T3 350 4.8 57
T4 190 5.0 26

Table 6: Execution of the check-in business after an information security event.

Time Number of business users Business average execution time/s Resource utilization
T0 1000 10.0 90
T1 800 10.5 85
T2 550 12.0 65
T3 300 12.5 50
T4 100 13.0 25
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Figure 4: Business continuity risk analysis.
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Figure 6: Comparison of different decision mechanism coefficient selection experiments.

Table 9: ,e importance coefficient for each node.

AHP-VIKOR Entropy-VIKOR DEMATEL-Entropy-VIKOR VIKOR TOPSIS AE-VIKOR
n1 0.0879 0.3721 0.3623 0.3897 0.1697 0.1974
n2 0.0668 0.3721 0.3748 0.3982 0.1058 0.1464
n3 0.5211 0.4732 0.4689 0.4904 0.5106 0.5199
n4 1.0000 1.0000 0.7645 1.0000 1.0000 1.0000
n5 0.4543 0.2877 0.2777 0.2734 0.4047 0.4844
n6 0.4772 0.3611 0.4611 0.3483 0.4523 0.4949
n7 0.0211 0.0001 0.0001 0.0001 0.0106 0.1048
n8 0.0001 0.0015 0.0018 0.0058 0.0001 0.0567
n9 0.0439 0.0746 0.0846 0.0799 0.0582 0.1175
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Figure 5: Business nodes importance coefficient calculated by different methods.
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6. Conclusion

,is paper proposes a key business node identification
model for the Internet of ,ings security. ,e model an-
alyzed the business process to obtain business nodes. ,en
the business node importance evaluation attributes were
quantified. And a combined weight was used to improve
the attribute weight to identify key business node. After the
information security event occurs in the smart mobile
phone which impacts through IoT on the business system,
the AE-VIKOR method is used to make a decision and sort
the importance of business nodes, and the model analyzes
the impact of key business node’ on business continuity.
,e experimental results show that the key business node
identification model based on the AE-VIKOR method is
more accurate, and the business continuity risk assessment
is carried out reasonably. ,e next step is to analyze the
impact of the key business node on business recovery
priority, after information security events occur, and
further improve the recognition ability and adaptive ability
of the model.
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With the wide application of network technology, the Internet of)ings (IoT) systems are facing the increasingly serious situation
of network threats; the network threat situation assessment becomes an important approach to solve these problems. Aiming at
the traditional methods based on data category tag that has high modeling cost and low efficiency in the network threat situation
assessment, this paper proposes a network threat situation assessment model based on unsupervised learning for IoT. Firstly, we
combine the encoder of variational autoencoder (VAE) and the discriminator of generative adversarial networks (GAN) to form
the V-G network. )en, we obtain the reconstruction error of each layer network by training the network collection layer of the
V-G network with normal network traffic. Besides, we conduct the reconstruction error learning by the 3-layer variational
autoencoder of the output layer and calculate the abnormal threshold of the training. Moreover, we carry out the group threat
testing with the test dataset containing abnormal network traffic and calculate the threat probability of each test group. Finally, we
obtain the threat situation value (TSV) according to the threat probability and the threat impact.)e simulation results show that,
compared with the other methods, this proposed method can evaluate the overall situation of network security threat more
intuitively and has a stronger characterization ability for network threats.

1. Introduction

In recent years, the application of various emerging network
technologies such as big data, blockchain, artificial intelli-
gence, and other technologies in the field of Internet of
)ings (IoT) has brought about more andmore convenience
to people in many fields. At the same time, because of the
connection with the Internet, the IoT devices are also vul-
nerable to more network threats [1], which will result in
malicious attacks on physical devices. Reference [2] indi-
cated that cyberphysical systems (CPSs) are vulnerable to
traditional network threats, so the entire IoT system and the
security and privacy of users are facing a huge threat. IoT
devices and applications play an increasingly important role
in critical infrastructure and everyday life; recent security
incidents show that any successful attack will seriously

hinder economic development and even endanger the safety
of human life.

Because the IoT devices and applications are connected
to the Internet, they are vulnerable to a variety of network
attacks, which leads to important information leakage and
even allows attackers to obtain permission to operate these
devices. )e authors of [3, 4] applied encryption algorithm
in oblivious RAM to ensure the information security of
storage devices. )e IoT devices that are attacked by the
network may have the management rights of the database
stolen. To ensure the privacy and security of the database, the
authors of [5, 6] proposed encryption algorithms to prevent
the leakage of important information. However, in the face
of a large number of complex network attacks, it is necessary
to ensure network information security from a more
comprehensive perspective.
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To strengthen the construction of the network security
defense system and deal with the emerging new threat at-
tacks in the IoT network environment effectively, the stable
and efficient network threat situation assessment (NTSA)
method has become an important research topic. )e NTSA
evaluates the whole degree of security threats suffered by the
IoT network system to analyze the situation of network
attack and master the overall security situation of the net-
work. NTSA can evaluate the current network security
situation for IoT from a more comprehensive perspective
and provide reliable information for network managers to
make decision analysis and to minimize the loss that is
caused by network threats [7]. However, in the past several
years, the network has faced a large number of multisource
threat attacks, which poses a huge threat to individuals and
enterprises. )e traditional network threat situation as-
sessment method has the shortcomings of high modeling
cost, low efficiency, and long cycle, which cannot make real-
time and effective network security situation assessment.

To evaluate the network threat situation effectively in a
multisource data environment of IoT, this paper proposes an
unsupervised learning-based network threat situation as-
sessment model for IoT. )e contributions of this paper are
as follows:

(1) To reduce the damage of network threats to IoT
applications and devices, an unsupervised learning-
based network threat situation assessment model
was proposed. )is model can reflect the current
network situation of IoT effectively and provide
decision support to network managers.

(2) )is paper selects multisource heterogeneous net-
work threat data to simulate the threats that IoT will
be confronted with and calculate the threat situation
value for the network threat situation assessment of
IoT.

(3) )e simulation results show that, compared to tra-
ditional models, this proposed method can evaluate
the overall situation of network threats more intu-
itively and effectively for IoT.

1.1. Organization. )e remainder of this paper is organized
as follows. In Section 2, we present related works. Section 3
describes our proposed unsupervised network in detail. In
Section 4, we propose our network threat situation assess-
ment framework and the quantitative assessment process of
the network threat situation in detail. Section 5 reports the
experiments and the comparisons with other methods and,
in the end, the conclusion is placed in Section 6.

2. Related Works

Assessment methods based on the mathematical model as
applied to one of the earliest methods in network threat
situation assessment and on account of its features such as
being simple and easy to implement are widely used. Yang
et al. [8] proposed a cloud computing risk assessment model
that used the Markov chain (MC) model to describe the

random risk environment and measured the risk value
through information entropy (IE). Wang et al. [9] combined
the analytic hierarchy process (AHP) with the hierarchical
model of situational assessment and integrated the fuzzy
results of multisource equipment with D-S evidence theory
to solve the problem of single information source and large
deviation of accuracy. Because the evaluation method based
on the mathematical model is greatly influenced by sub-
jective factors and there is no objective and unified standard
definition variable, it is usually unable to achieve relatively
perfect evaluation results.

Assessment methods based on probability and knowl-
edge reasoning usually take advantage of the statistical
characteristics of prior knowledge and combine with expert
knowledge and experience database to build a model and
then evaluate the threat situation by adopting logical rea-
soning. Sallam [10] identified potential network threats
through fuzzy logic technology based on fuzzy reasoning
(FR) engine and evaluated network security risks according
to the attacker’s overall capability, the overall probability of
attack success, and the impact of the attack on three subfuzzy
reasoning systems. Wen et al. [11] conducted a quantitative
assessment of network security situation by fusing infor-
mation sources with graded Naive Bayes classifier. )ese
methods fuse various security assessment indicators in
combination with the characteristics of mathematical sta-
tistics. However, the limitations of these methods are that
they cannot give timely feedback and cannot meet the needs
of task processing which result in a decrease in evaluation
efficiency.

Deep-learning-based evaluation methods have been
widely used in recent years because of their high efficiency
and easy implementation. Feng et al. [12] extracted internal
and external information features from the original time
series network data and then trained and verified the
extracted features in the recursive neural network (RNN)
model, which has high predictive accuracy and robustness.
He et al. [13] combined the wavelet neural network (WNN)
with the maximum overlap discrete wavelet transform
(MODWT) and proposed the network security situation
prediction model through the data-driven method. Never-
theless, in the face of massive network security data, due to
the lack of sufficient prior knowledge and established criteria
of data category annotation, the task of manual category
annotation is large and the cost is high, so the supervised
data modeling method based on data label is gradually
unable to apply to specific network scenarios.

Unsupervised learning (UL) provides an idea to solve the
shortcomings of the above methods. Its main feature is that
there is no need to label data categories manually but to
conduct feature learning and modeling on the preprocessed
data directly.

To evaluate the network threat situation of IoTeffectively
in a multisource data environment, this paper proposes a
network threat situation assessment model based on un-
supervised learning for IoT. It applies variant autoencoder
and generative adversarial networks (V-G) model for cluster
analysis of the training set; then the error threshold is
calculated by the 3-layer variation automatic encoder. )en
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it uses the abnormal traffic datasets to conduct threat tests
and quantify the network situation assessment according to
the calculated results of the threat situation value. )e ex-
perimental results show that the method presented in this
paper has a good evaluation effect on network threats and
has a strong characterization ability in the face of network
threats. Furthermore, it can evaluate the network threat
situation effectively without relying on data labels.

3. Unsupervised Generation Network Model

3.1. Variational Autoencoder (VAE) and Generative Adver-
sarial Network (GAN). Autoencoder (AE) and variational
autoencoder (VAE) [14] are both composed of encoder and
decoder; the biggest difference between them is that VAE
adds the “noise constraint” that compels the encoder to
produce a collection of latent variables (LV) that are subject
to the unit Gaussian distribution. )e network structures of
AE and VAE are demonstrated in Figures 1 and 2.

Comparing Figures 1 and 2, VAE compels every sample
Xk in the original sample X� {X1, X2, X3, ..., Xn} to follow the
normal distribution N (μ, σ2), which means fitting the av-
erage µ and the variance σ2 of any sample Xk by the internal
neural network, and then obtains a set of potential variables
Z� {Z1, Z2, Z3, ..., Zn}, in which the element Zk is subject to
the multivariate standard normal distributionN (0, I). In the
decoding process, Z generates the sample set Y� {Y1, Y2, Y3,
..., Yn} through the decoder; then the similarity between the
generated sample set Y and the original sample set X is
statistically computed by the distance function. )e re-
construction error loss of the overall data element can be
obtained by calculation.

Generative adversarial network (GAN) [15] is one of the
most promising deep generation network models in the field
of unsupervised learning, which consists of a generator and a
discriminator. )e network structure of GAN is shown in
Figure 3.

As shown in Figure 3, the generator first learns the
probability distribution characteristics of a collection of
random noises obtained by direct sampling through a prior
distribution. )en it tries to generate the data sample Y�

{Y1, Y2, Y3, ..., Yn} which is the same as the original sample
X� {X1, X2, X3, ..., Xn} to “trick” the discriminator that is
responsible for determining the similarity between the
generated sample Y and the original sample X. )e output of
the discriminator is a scalar in the range of [0, 1] for each
similarity test. )e closer the scalar gets to 0, the less likely
the generated sample Yk will be judged as real data. )e
closer the scalar gets to 1, the more likely the generated
sample Yk will be judged as real data.

Generator and discriminator compose a dynamic game
process, and the generator is gradually acquiring the dis-
tribution features of the data after the repeated game; when
the discriminator’s output reaches the NASH equilibrium
(NASH� 0.5), it can generate sample Y that has a high
degree of similarity to the original sample X through a
random noise Z. )e training will finish when the dis-
criminant is unable to distinguish between real data and
generated data.

3.2. V-G Network. )e design of the V-G network is based
on the following analysis:

(1) VAE can learn in the process of encoding data prior
distribution and generate samples with good di-
versity performance while measuring the similarity
between generated samples and original samples, can
only use the mean square error (MSE) functions to
roughly calculate the similarity errors between data
elements, and is unable to adopt a more reasonable
strategy of the similarity measure, which reduces the
accuracy of matching samples.

(2) GAN has a high discriminant standard for gener-
ating samples and original samples when it judges
the similarity of samples through discriminator.
However, it is difficult for the fitting of real sample
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distribution to converge to a better result because the
generator does not add any condition constraint,
which causes a huge solution space when generating
samples. Besides, as GAN is prone to input multiple
random noise samples corresponding to the same
type of sample generation in the process of sample
generation, it is easy to reduce the diversity of
generated samples and fall into model collapse (MC).

To complement each other’s advantages, VAE’s encoder
and GAN’s discriminator are combined to form a V-G
network. Besides, when measuring the similarity, the orig-
inal measurement of element error carried out by VAE is
transformed into characteristic error measurement per-
formed by GAN discriminator. For this, the V-G network
can capture the data distribution characteristics easier.
)erefore, using V-G for the training model not only can
ensure that the diversity of sample generation is not re-
stricted and improve its ability of mapping to original
samples but also makes the discriminant result of similarity
more precise. )e V-G network structure is shown in
Figure 4.

)e V-G network in this paper is mainly used for net-
work threat testing, and its application objects are mainly
multisource heterogeneous network traffic data generated by
the host, network, and server terminals. Due to the unique
structural advantages of the V-G network, it can effectively
extract data feature information during model training, so it
can improve the accuracy of clustering and ensure higher
accuracy of threat testing.

4. Network Security Threat Situation
Assessment for IoTBasedon theV-GNetwork

IoT applications and devices are vulnerable to various
network threats because of the connection to the Internet. At
present, common types of network threats include website
information leakage, web attack threat, DDoS attack vul-
nerability, host commonly used service vulnerability, and
system configuration security. )rough the threat analysis of
host and network traffic data, this paper aims to discover
network threats and network vulnerabilities in time and
carry out real-time network security situation threat
assessment.

)e network security threat situation assessment
framework for IoT established in this paper is presented in
Figure 5.

)e architecture includes five parts: assessment data set
construction, data preprocessing, multisource data feature
selection, network threat testing, and network threat situ-
ation assessment.

)e steps of network threat quantitative assessment are
as follows:

Step 1. Data acquisition: obtain the multisource net-
work security traffic dataset as the evaluation data
source.
Step 2. Data preprocessing: the original data is pro-
cessed by the numerical method and feature specifi-
cation to meet the requirements of model training and
improve the utilization of the data.
Step 3. Feature selection: the characteristics of multi-
source network security traffic data are selected to
reduce data redundancy.
Step 4. )reat testing: the unsupervised threat test
model is used to test the threat and obtain the threat
probability.
Step 5. Network threat situation assessment: obtain the
threat severity and the threat impact according to the
threat probability calculated in Step 4; then calculate
the threat situation value and evaluate the overall sit-
uation of the network.
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4.1. Data Acquisition. IoT networks are susceptible to de-
nial-of-service (DDoS) type of network attacks [16, 17]; in
reality, however, IoT networks are facing various network
attacks. To evaluate the network threat situation compre-
hensively, this paper selects four different types of network
threat traffic datasets in the field of network security as the
evaluation data sources; they are, respective, CSIC 2010
HTTP dataset based on web attack, ADFA-LD dataset based
on Linux host exception, UNSW-NB15 dataset based on
DDoS anonymous traffic attack, and ISOTdataset composed
of mixed botnet traffic. Basic information on the four
datasets is displayed in Table 1.

TP CSIC 2010 HTTP dataset is a set of normal and
abnormal network attack traffic data automatically gener-
ated based on Web applications. It contains 36,000 normal
requests and more than 25,000 exception requests. )ere are
mainly three types of exception requests, which are divided
into 16 attack categories.

ADFA-LD dataset is a network traffic dataset based on
Linux host-level intrusion detection system, containing 5925
pieces of traffic data which are mainly divided into six attack
categories: Hydra-FTP, Hydra-SSH, Adduser, Java-
Meterpreter, Meterpreter, and Webshell.

ISOT dataset is composed of various botnet traffic and
normal network data traffic which include 134916 pieces of
traffic data divided into 19 characteristic categories: Byte-
sAB, BytesBA, NpacketsAB, NpacketsBA, Duration, and so
on.

UNSW-NB15 dataset is mainly composed of DDoS at-
tacks in about an hour of anonymous traffic trace data; it
contains 257673 traffic data, mainly divided into 9 types of
attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Ge-
neric, Reconnaissance, Shellcode, and Worms.

Part of the network threat situation indicators contained
in the four datasets is shown in Figure 6.

Figure 6 lists some threat situation indicators for V-G
network testing. Besides, other types of threat indicators are
not present in this paper, but they also are used for effective
testing through the V-G network. )e premise is to obtain
data traffic sets that contain these threatened attacks because
the model needs a lot of network traffic data as baseline data
for model training.

4.2. Data Preprocessing. Data preprocessing mainly includes
two operations: numerical processing of character feature
and feature normalization. It is necessary to carry out nu-
merical processing for the symbolic data in the evaluation
data source and convert all symbolic features into ordered
numerical features since the training of the V-G network set
requires digital feature vector as input. At the same time, to
eliminate the dimension and facilitate the operations, all the
numerical characteristics after the numerical treatment are
normalized in the same interval.

4.2.1. Numerical Processing of Character Feature.
)rough the way of one-hot encoding, the 14 HTTP request
feature classes of the CSIC 2010 HTTP dataset are trans-
formed into numerical vectors. Specifically, transform 8
kinds of feature data, protocal, userAgent, accept, accept-
Encoding, pragma, cacheControl, acceptCharset, and
acceptLanguage, into numerical vectors of size between 0
and 1. Convert the 3 types of HTTP request data (GET,
POST, and PUT) into binary eigenvectors (1, 0, 1), (1, 0, 0),
and (1, 1, 0), respectively; moreover, the three types of URL
extensions (JSP, GIF, and PNG) of the web application are
converted into binary eigenvectors (1, 1, 1), (0, 1, 1), and (0,
1, 0), respectively; similarly, the 42-dimensional features of
the UNSW-NB15 dataset are eventually converted into 196-
dimensional binary numeric vectors after numeric
processing.

4.2.2. Feature Normalization. )ere is a significant differ-
ence between the minimum and maximum values of some
features while evaluating the data source. To suppress the
negative impact of these outliers on the model training, the

Data acquisition Data preprocessing

Feature
normalization

Numerical
processing

Feature selection �reat testing

HTTP CSIC 2010

ADFA-LD

UNSW-NB15

ISOT

Multisource
data selection

Unsupervised
learning model

Network threat 
situation assessment

�reat severity

�reat impact

Figure 5: Network threat situation assessment framework.

Table 1: Basic information on four types of datasets.

Dataset Data size Category Data type
HTTP CSIC 2010 61000 16 Web application
ADFA-LD 5925 6 Linux host exception
ISOT 134916 19 Hybrid botnet
UNSW-NB15 257673 10 DDoS anonymous attack
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Max-Min scaling method is used to unify the feature values
in the interval of [0, 1] and the formula is given as

x
∗

�
x − xmin

xmax − xmin
, (1)

where x∗ represents the normalized value of a certain class
of features, x represents the initial eigenvalue, xmin is the
minimum eigenvalue, and xmax is the maximum eigenvalue.

4.3. Multisource Dataset Feature Selection. To avoid the
existing mass of redundant data of evaluating data source
which may increase the overfitting risk of the V-G network
in the training model and reduce the generalization ability of
the model, this paper selects features of the evaluated data
source which filter the unrelated features of the data source
to ensure the high availability and the redundancy of data,
improving the data clustering accuracy of all kinds of fea-
tures in the V-G network and reducing the time complexity
of model training.

In general, the feature selection process does not need to
consider the structural characteristics of the data itself, but
the flow data in the dataset used in this paper has the
characteristics of clustering structure, so the three following
factors should be considered before feature selection:

(1) V-G model training is a multifeature clustering
process

(2) )e data selected by features can keep the clustering
structure characteristics of the flow data to the
greatest extent

(3) )e data selected by features can cover all possible
clustering situations in a single dataset

From the above, the multicluster feature selection
(MCFS) algorithm is selected for feature selection in this
paper. MCFS is an unsupervised feature selection algorithm
that does not rely on the data label information in the
dataset. )e feature selection process is divided into the five
following steps.

Step 1. Constructing a k-nearest-neighbor graph. For
each data point xi corresponding to the graph with N
vertices, a k-nearest-neighbor graph is constructed by
searching for the k-nearest-neighbor points of xi to
obtain the local geometric structure features of the data
distribution and the adjacency weight matrixW. In this
paper, the Heat Kernel Weighting method is applied to
calculate the adjacency weight matrix W among data
points and the formula is as follows:

Wij � e
− xi− xj



2
/σ 

, (2)

where xi and xj represent any two data points in the k-
nearest-neighbor graph and σ is a fixed parameter.
Step 2. Spectral clustering embedded analysis. Define a
diagonal matrix D whose diagonal elements are Dij �

j�1Wij and obtain the planar embedding structure of
the data stream by calculating the generalized eigen-
value of Laplace matrix L:

LHk � λDhk, (3)

where L�D− W and H� {h1, h2, ..., hk} is the set of
eigenvectors corresponding to the minimum general-
ized eigenvalues obtained through equation (3). Each
column of H represents the planar embedding of any
data point xi and k represents the inner dimension of
the data whose size is usually the number of clusters of
the dataset.
Step 3. Sparse coefficient learning. After obtaining the
planar embedding H of data points, to evaluate the
importance of each feature in its corresponding data
dimension (each column of H) and measure the ability
of each feature to distinguish data clustering, MCFS
takes the embedded hk given by any column in H as a
regression target and the objective function is repre-
sented by the following formula:

min
ak

hk − Q
T
ak

����
����
2

+ β ak


min

ak

hk − Q
T

ak

����
����, (4)
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where ak is an m-dimensional vector and Q is a matrix
of N×M. For minimizing the objective function, define
the L1-norm of ak as

ak


 � 

M

j�1
ak,j



, (5)

where ak includes the sparse coefficients used to ap-
proximate the different features of hk. According to the
penalty of L1-norm, the sparse coefficient of ak will
gradually shrink to zero when β is large enough. At this
point, a subset of features that are most relevant to hk
will be selected.
Step 4. Calculate the MCFS score. Calculate k sparse
coefficient vectors {a1, a2, ..., ak} ∈RM based on Step 3
for a dataset that contains k clusters, where each
nonzero element ak corresponds to d features. To select
d effective features from k sparse coefficient vector, the
MCFS score of each feature j is defined as

MCFS(j) � max
k

ak,j



, (6)

where ak ,j is the jth element of vector ak.
Step 5. Feature selection. According to Step 4, calculate
the MCFS scores of each class of features in the dataset
and sort the MCFS scores of all features in a descending
order and the first d important features will be selected.

4.4.AreatTesting. To detect the new attack threats that may
appear in the network environment in real time, this paper
applies a V-G network to perform network threat testing.
)e network threat situation test model built in this paper is
shown in Figure 7.

)e process of threat testing is mainly divided into four
processing stages: network collection layer training, network
parameters optimization, output layer reconstruction error
training, and threat testing.

For the convenience of expression and analysis, let l
represent a single V-G network layer, and let L1 and L2
represent the network collection layer and network output
layer, respectively. L1 is made out ofml and L1 � {l1, l2, ..., lm}.
L2 is a 3-layer variational autoencoder network with k input
and output units. )e detailed steps of the network threat
testing process are designed as follows.

Step 1. Network collection layer training. Normal
network traffic data is input to L1 in batches for training
after data preprocessing and multisource data feature
selection. )e training ends when it reaches a Nash
equilibrium.
Step 2. Network parameters optimization. To overcome
the parameters’ tendency to fall into local optimization
which is caused by the parameter tuning process with
Gradient Descent (GD) method, Newton method
(NM), Gauss Newton (GN) method, and other algo-
rithms, this paper uses Levenberg-Marquardt (LM)

optimization algorithm instead of GD and GN algo-
rithm to carry out parameter tuning for the V-G
network.
In the process of optimizing network parameters, four
algorithms, GD, NM, GN, and LM, find the optimal
function matching of high-dimensional data by min-
imizing the error sum of squares, namely, minimizing
the objective function f (x):

f(x) � min
M

j�1


N

i�1
f
2
i,j(x). (7)

)e gradient change of the objective function is

f′ xj,k  � 

M

j�1


N

i�1
fi,j(x)

zfi,j(x)

zxj,k

. (8)

LM algorithm introduces the identity matrix I to avoid
the irreversible phenomenon that may occur when the
Jacobian matrix J (in GN algorithm) approximately
represents the Hessian matrix H (in NM algorithm)
and applies the damping factor μ to adjust the oper-
ation of the algorithm. LM algorithm combines GD
algorithm and GN algorithm to dynamically tune
parameters.
When optimizing the parameters, the optimization
method is determined according to the gradient de-
scent rate and the damping factor μ. If the gradient
descent rate of the function is too slow, the damping
factor μ increases. )e GD algorithm is used to find the
global optimal value:

RMSE
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Figure 7: Network threat test based on the V-G network.
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x
∗
k+1 � xk − (H + μI)

− 1
f′ xk( . (9)

If the gradient descent rate of the function is too high,
the damping factor μ decreases. )e GN algorithm is
used to find the global optimal value:

x
∗
k+1 � xk − (V + μI)

− 1
J

T
f,

V � J
T
J.

(10)

Step 3. Output layer reconstruction error training. )e
input item of the output layer network L2 comes from
the 0-1 normalized reconstruction error value of the
training output of each corresponding subnetwork in
L1. )e reconstructed error value of the output of L1
and L2 is calculated by the Root Mean Square Error
(RMSE) function:

RMSE( x
→

, y
→

) �

������������

1
n



n

i�1
xi − yi( 

2




, (11)

where x
→ and y

→ represent the input sample vector and
the generated sample vector, respectively, and n is the
dimension of the input vector.
)e training error set e∗ output by L1 can be expressed
as e∗ � e1, e2, . . . , em . e∗ will be the input item of L2;
then calculate training anomaly threshold η through
the RMSE function when conducting error training.
Step 4. )reat testing. After the training of the V-G
network collection layer and the training of output
layer reconstruction error, the test dataset containing
abnormal network traffic data is used for threat testing.
Select m groups randomly in the same number of test
samples v and take them as the input data of L1.)e test
error output by L1 in each test can be expressed as
β� {β1, β2, . . ., βm}.

4.5. Network Areat Situation Quantitative Assessment. In
this study, the quantitative assessment results of network
threat situation are determined by two key factors that affect
network security: threat severity and threat impact.

4.5.1. Areat Severity. In this paper, the unsupervised net-
work model is used to analyze the characteristics of mul-
tisource network traffic data. After executing the threat tests,
the normalized test error value β obtained according to the
threat test results during each test is taken as the probability
of threat occurrence:

TPi � βi. (12)

)is paper refers to the “Overall Emergency Plans for
National Sudden Public Incidents” [18] and develops the
classification of network threat situations combined with the
attack classification of the Snort Chinese user manual. )e
threat severity is divided into five levels in this paper: safety,
low-risk, middle-risk, high-risk, and super-risk levels,

corresponding to the five probability intervals of threat
probability: 0.00∼0.20, 0.21∼0.40, 0.41∼0.60, 0.61∼0.80, and
0.81∼1.00, respectively.

4.5.2. Areat Impact. To classify the degree of impact on the
threat probability, the Common Vulnerability Scoring
System (CVSS) [19, 20] is used to develop a classification
table of threat impact (as shown in Table 2).

)e formula for calculating the threat impact (TI) is
defined as

TIi � log2
x12

c
+ x22

I
+ x32

A

3
 . (13)

C, I, and A represent the confidentiality, integrity, and
availability of three threat impact indicators, respectively,
and x1, x2, and x3 represent the weight of quantified value of
threat impact in three threat impact indicators, respectively.

)reat situation value (TSV, denoted as T) is determined
by the threat probability and the threat impact. )e cal-
culation formula is as follows:

T �
1
n



n

i�1
TPi × TIi( . (14)

5. Experiments and Results

)e training and testing process based on the V-G network is
carried out on the Ubuntu system, and the algorithm is
implemented by Python programming language. )e
hardware environment of the experiment includes the Intel
Core i7-7700 HQ processor, 8G RAM, and GTX 1050
graphics card, 16GB.

5.1. Network Areat Test Results Analysis

5.1.1. Network Training. To prove the validity of the model
in this paper, four networks, AE, VAE, GAN, and V-G, are,
respectively, used to form a network set for model training.
Four kinds of models use the same parameters for network
training and the training data is the same set of normal
network traffic data which ensures the comparability of the
results. Model training is carried out when the number of
layers of network collection is 5, 10, 15, 20, and 30.

)e training anomaly threshold η output from four types
of threat test models in the stage of model training under the
different network layers is shown in Figure 8.

Figure 8 shows that, compared with the other three
models, the V-G network obtains the minimum training
error threshold η when the number of the network layers is
15, suggesting that refactoring capability for processing raw
data of the V-G model is superior to the other three models.

In the process of model training, four optimization al-
gorithms, GD, NM, GN, and LM, are used to optimize the
model parameters of the V-G network, and the convergence
of the optimization process of the four algorithms is shown
in Table 3.
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As can be seen from Table 3, compared with the other
three algorithms, though the LM algorithm has more iter-
ations and consumes more time, the Root Mean Square
Error value is the smallest, indicating that the algorithm
achieves a better convergence effect for the model which is
more helpful for improving the accuracy of threat testing.

5.1.2. Network Testing. We conduct 200 groups of threat
tests with random data of the same size, which is selected
from the same test dataset. Four models, AE, VAE, GAN,
and V-G, are used to carry out threat testing experiments,
respectively. )e normalized test error β obtained from the
10 groups of threat test experiments is shown in Figure 9.

As can be seen from Figure 9, compared with the other
three types of models, the V-G network has the largest test
error β when the number of network collection layers
reaches 15 with the same test samples which indicate that its
ability to detect network threats is more prominent.

5.2.NetworkAreat SituationQuantitativeAssessmentResults
Analysis. )e test error β of each group is normalized to the
interval of [0, 1] and is obtained through the process of
network threat testing. )e evaluation results of the threat
severity and the threat impact of 10 groups of network threat
situations are shown in Table 4.

Table 2: )reat impact classification.

)reat impact Probability interval
Impact indicators

Confidentiality (C) Integrity (I) Availability (A)
No-effect 0.00∼0.40 0 0 0
Low-effect 0.41∼0.80 0.22 0.22 0.22
High-effect 0.81∼1.00 0.56 0.56 0.56
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Figure 8: Four kinds of models training error threshold η.

Table 3: )e convergence of different optimization algorithms.

Optimization algorithms Iterations Time (s) RMSE
GD 220 350 0.35
NM 210 370 0.37
GN 200 320 0.32
LM 240 340 0.08
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Figure 9: )reat test results of four kinds of models.
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To increase the objectivity and authenticity of the
evaluation results, the threat situation value was calculated,
respectively, by Back Propagation (BP) [21] and Radial Basis
Function (RBF) [22] methods and compared with the cal-
culated results of the V-G network.)e calculation results of
the threat situation values of three types of methods in a
certain period are displayed in Figure 10.

As can be seen from Figure 10, at 9 minutes, 22 minutes,
and 47minutes, the threat situation value shows a large range of
changes, which indicates that the threat severity of the network
is high at thesemoments and the networkmight be subjected to
various types of attacks. It is found that, compared with the BP
network and the RBF network in the three moments when the
network is threatened, the method in this paper has a stronger
capability of representing the features of network threats.

Besides, the curve of the V-G network is smoother than
the other two networks, which indicates that the threat
situation value calculated by the V-G network is more stable.

6. Conclusions

To overcome the limitations that traditional method of
network threat situation assessment based on supervised

learning needs to rely on data modeling label, this paper
proposes a network threat situation assessment model based
on unsupervised learning for IoT. )is paper selects the
multisource and heterogeneous datasets to simulate various
network threats to IoT and calculates the threat situation
value through quantifying the impact factors of network
threat situation and then accomplishes the real-time situ-
ation of network threat assessment. )e simulation exper-
imental results show that the proposed method can evaluate
the overall situation of network threats more intuitively and
has a stronger characterization ability for network threats
which can analyze the network security situation of IoTmore
precisely and take effective measures to reduce the risk of
network threats. In the future, we will apply more network
threat data that IoTwill be confronted with on our proposed
model, which will verify the general applicability of our
proposed method.
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